Serum Cytokine Profiling in Cats with Acute Idiopathic Cystitis

Citation for published version:
Parys, M, Yuzbasiyan Gurkan, V & Kruger, J 2018, ‘Serum Cytokine Profiling in Cats with Acute Idiopathic Cystitis’, *Journal of Veterinary Internal Medicine*, vol. 32, no. 1, pp. 274-279. https://doi.org/10.1111/jvim.15032

Digital Object Identifier (DOI):
10.1111/jvim.15032

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Veterinary Internal Medicine

Publisher Rights Statement:
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Brief Communication

J Vet Intern Med 2017

Serum Cytokine Profiling in Cats with Acute Idiopathic Cystitis

M. Parys a, V. Yuzbasiyan-Gurkan, and J.M. Kruger

Background: Feline idiopathic cystitis (FIC) is the most common lower urinary tract disorder in domestic cats and is characterized by clinical signs of dysuria, pollakiuria, peruria, stranguria, hematuria, and, in males, urinary tract obstruction. 1,2 The clinical and morphologic features of FIC are strikingly similar to those of an idiopathic cystopathy of people called interstitial cystitis/painful bladder syndrome (IC/PBS). 1,2 As of yet, no consistently reliable diagnostic markers establish a diagnosis of FIC or IC/PBS and differentiate among various clinical and pathologic disease phenotypes.

Over the past several decades, a large number of potential serum and urine proteins that may be utilized as biomarkers have been identified and evaluated in people with IC/PBS. 3,4 Similarly in cats with FIC, several urine proteins have been found to be increased (C4a, NF-kB, p65, p38 MAPK, fibronectin, galectin-7, thioredoxin) or decreased (GP-51, I-FAB, trefoil factor 2) in urine of affected cats compared to healthy controls. In contrast, studies investigating serum biomarkers in cats with acute or chronic FIC have not been performed to date. Because FIC may be associated with factors that can induce systemic immune activation and pro-inflammatory cytokine release (eg, bladder inflammation, comorbid nonurinary

Abbreviations:

CCL2 C-C motif chemokine ligand 2 (MCP-1)
CCL5 C-C motif chemokine ligand 5 (RANTES)
CXCL12 C-X-C motif chemokine ligand 12 (SDF-1)
CXCL1 C-X-C motif chemokine ligand 1 (KC)
CXCL8 C-X-C motif chemokine ligand 8 (IL-8 — interleukin 8)
FeLV feline leukemia virus
FIC feline idiopathic cystitis
FIV feline immunodeficiency virus
Flt3L fms-related tyrosine kinase 3 ligand
GM-CSF granulocyte-macrophage colony-stimulating factor
IC/PBS interstitial cystitis/painful bladder syndrome
IFN-γ interferon gamma
IL-12 (p40) interleukin 12 subunit p40
IL-13 interleukin 13
IL-18 interleukin 18
IL-1β interleukin 1 beta
IL-2 interleukin 2
IL-4 interleukin 4
IL-6 interleukin 6
ND not detected
NSAIDs nonsteroidal anti-inflammatory drugs
PDGF-BB platelet-derived growth factor subunit B
SCF stem cell factor
sFas soluble Fas cell surface death receptor
TNF-α tumor necrosis factor alpha

References:

1. Frenkel W. Urinary tract obstruction. In: Flesher SL. Feline Urology. Philadelphia: Lea & Febiger; 1989:37–46.
2. Easley KA, Yaeli S, Reuter VE. Interstitial cystitis in an infant: a critical review of the literature. J Urol. 1994;152:698–701.
3. Gerber TC. Urinary biomarkers in women with interstitial cystitis: a review. J Urol. 2009;181:2462–2468.
4. Parys M, Yuzbasiyan-Gurkan V, Kruger J. Serum cytokine profiling in cats with acute idiopathic cystitis. Vet Immunol Immunopathol. 2017;187:169–177.

© 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1111/jvim.15032
inflammatory conditions, and activation of sympathetic nerve system,10–14 characterization of serum cytokine and chemokine responses could offer additional insight into the pathogenesis of FIC and identify potential noninvasive biomarkers for diagnosis, prognosis, and prediction of therapeutic responses. In 1 study of 22 nonobstructed cats with chronic FIC, serum concentrations of tryptophan and its metabolite kynurenine were higher in FIC cats compared to healthy controls, but differences did not reach statistical significance.15

Inflammation appears to be involved in the pathogenesis of some forms of FIC.12,13,16 Cytokines and chemokines are factors important for migration, maturation, and proliferation of immune cells and play key roles in host inflammatory and immune responses. In humans with IC/PBS, inflammatory and immune responses could offer additional insight into the pathogenesis of FIC and identify potential serum or urine biomarkers of the disorder.11

Recently, a feline-specific bead-based multiplex assay has become available for simultaneous detection of immunologically active proteins in cats. Studies investigating the analytical performance of the multiplex assay suggested that at high blood analyte concentrations, recovery was linear and allowed for reliable cytokine detection in serum or heparinized plasma samples.17 The objective of our study was to investigate expression of 19 cytokines and chemokines in serum of cats with untreated nonobstructive acute FIC and in unaffected healthy control cats.

Materials and Methods

Study Population

In this retrospective pilot study, specimens included archived frozen serum samples collected from 12 untreated cats with a clinical diagnosis of nonobstructive acute FIC. All animals were evaluated at Michigan State University Veterinary Medical Center. Control samples were obtained from 13 clinically healthy client-owned, blood donor or research colony cats. Acute FIC was diagnosed based on clinical signs of dysuria, periuria, hematuria, or stranguria, where other disease processes with similar clinical presentation had been excluded. All cats were evaluated with a standardized medical history, a complete physical examination, a complete urinalysis, a urine culture, survey abdominal radiographs, and an abdominal ultrasound examination to exclude other comorbidities. Additionally, all FIC cats had serum biochemistry profiles, CBC, and FeLV/FIV testing performed. Cats with acute FIC were excluded from the study if they had another detectable disease process, had concurrent urethral obstruction, or had been treated with antimicrobials, anticholinergics, antidepressants, urinary acidifiers, glycosaminoglycans, diuretics, dimethyl sulfoxide, cyclophosphamide, or any other medication used to treat IC/PBS.

Peripheral blood samples were obtained by venipuncture. Collected samples were centrifuged at 2,000 g for 10 minutes. Serum samples subsequently were cryopreserved at −80°C and remained frozen until analysis.

All samples utilized in this study were obtained under informed consent from the owners and with the approval of the Michigan State University Institutional Animal Care and Use Committee.

Multiplex Cytokine Assays

A commercial feline-specific multiplex bead-based assay was utilized allowing for simultaneous measurement of 19 cytokines: sFas, TNF-α, CXCL12, SCF, CCL5, PDGF-BB, CCL2, CXCL1, IL-18, IL-13, IL-12 (p40), CXCL8, IL-6, IL-4, IL-2, IL-1β, IFN-γ, GM-CSF, and Flt3L.17 Serum samples were assayed according to manufacturer’s recommendations. Sample analytic concentrations were measured using a multiplexing platform,18 and data were analyzed using a commercial analytical software package.19 All assays were run in duplicate.

Statistical Analysis

Statistical analysis was performed using commercially available statistical software.20 D’Agostino and Pearson omnibus test was used to evaluate normality of data. Comparisons of cytokine concentrations between groups with normal distribution were performed by Student t-test, otherwise the nonparametric Mann-Whitney U test was performed.

Results

Animals

Samples from 12 FIC-affected cats (4 females and 8 males) and 13 healthy control cats (5 females and 8 males) were utilized in this study. Average age of affected cats was 4 years, 11 months (SD ± 1 year, 10 months; range, 1 year, 5 months to 7 years), and 5 years, and 2 months (SD ± 1 year, 10 months; range, 1–7 years, 2 months) for control cats. All FIC cats had clinical signs consistent with acute cystitis, with clinical signs lasting an average of 3 days (SD ± 2.21 days; range, 1–8 days) before presentation. The mean urine specific gravity of FIC cats was significantly lower than that of the control cats ($P = 0.0081$, t-test; FIC: 1.048 ± 0.012 versus control 1.060 ± 0.009). There were no significant differences in urinary pH between the groups (FIC: 6.6 ± 0.53 versus control: 6.72 ± 0.58). Struvite crystals were present in 3 affected and 3 control cats. Bacterial culture was negative in all animals. Microscopic hematuria was present in 9 FIC cats and 2 control cats. Pyuria was not observed in any affected or control cat.

Some FIC cats had mild abnormalities in their blood chemistry and CBC results including hyperglycemia (3/12), increased CK activity (10/12), hypo- (1/12) or hyper-natremia (1/12), hypochloremia (1/12), hypocholesterolemia (2/12), hyperuricemia (2/12), increased TCO$_2$ (1/12), increased AST activity (2/12), increased ALT activity (1/12), hypophosphatemia (1/12), decreased hematocrit and hemoglobin (2/12) as well as decreased RBC counts (1/12). All other results were within reference ranges.

Serum Cytokine/Chemokine Concentration

Twelve FIC and 13 control serum samples were available for evaluation at the time of experiments. Four of 19 analytes were undetectable or detectable in an insufficient number of samples to make a meaningful comparison and were excluded from analyses. These analytes were GM-CSF, IL-1β, IL-2, and PDGF-BB (Table 1). Concentrations of 4 cytokines were significantly increased in serum of FIC cats compared to controls: IL-12 (p40) ($P < 0.0001$ Mann-Whitney test; FIC:
controls, increased serum or plasma concentrations of IL-1β, IL-6, CXCL8 (IL-8), and TNF-α have been reported in people with IC/PBS compared to healthy controls. Factors responsible for differences in cytokine profiles between acute FIC and IC/PBS are unknown, but may be related to differences in chronicity of disease, pathophysiologic mechanisms, and analytical performance of cytokine assays. No studies have investigated the expression of IL-2, IL-4, IL-12, IL-13, IL-18, sFas, Flt3L, GM-CSF, IFN-γ, CTCL1, CCL2, CXCL1, CXCL12 (SDF1), CCL2 (MCP-1), CCL5 (RANTES), PDGF-BB, and SCF in serum of people with IC/PBS. Although comparative data on each cytokine is not available for comparison of human IC/PBS and FIC serum cytokine profiles, increased levels of circulating pro-inflammatory cytokines are present in both disorders.

Interleukin 12 is a pro-inflammatory cytokine composed of 2 subunits: p35 and p40. Antigen-presenting cells are the main source of IL-12 in the body, and IL-12 is an important mediator of Th1 responses and induction of IFN-γ production. Limited information is available on the role of IL-12 in humans with IC/PBS. This cytokine was not significantly increased in bladder biopsies of human patients. However, urine IL-12 was increased in human patients with overactive bladder syndrome. Increased RNA expression of IL-12 (p40) in bladder tissues also was identified in mice with experimental autoimmune cystitis. Interestingly, human patients receiving intravesicular instillation of IL-12 for treatment of superficial bladder transitional cell carcinoma had adverse effects that were similar to IC/PBS such as pain, dysuria, or increased frequency.

Identification of presence of IL-12 in urine of cats with FIC warrants further investigation and will depend on validation and optimization of assays for detection of cytokines in feline urine.

Interleukin 18 is another Th1 pro-inflammatory cytokine, and significantly increased serum concentrations were observed in our cohort of FIC-affected patients. Interleukin 18 was observed to be significantly elevated in bladder tissues of IC/PBS-affected human patients. Furthermore, decreasing urine concentrations of this cytokine in patients with IC/PBS have correlated with clinical improvement after hydrodistention therapy. It is well established that IL-18 and IL-12 work in synergy to induce INF-γ expression in T-cells, NK cells, and dendritic cells. Although in our study we did not identify increased concentrations of INF-γ in FIC patients, previous studies have identified a potential serum biomarker, kynurenine, which is produced by an INF-γ-inducible gene IDO1. Importantly, this gene is known to be INF-γ-inducible in various cells as well, so one can speculate that INF-γ may be locally produced in FIC cats in early stage of the disease, and furthermore, our findings of increased serum concentrations of IL-12 and IL-18 suggest they may work in conjunction with INF-γ in FIC.

CXCL12 (also known as SDF1) is a chemokine, which induces migration of various cells such as T-cells, B-cells, macrophages, and dendritic cells which express...
the CXCL12 receptor CXCR4. We observed significantly increased concentrations of CXCL12 in serum of cats with acute FIC. Studies investigating the role of this chemokine in cystopathies of humans or cats have not been reported. However, increased concentrations of bladder tissue CXCL12 were documented in a cyclophosphamide-induced bladder inflammation rat model. Pain is one of the elements of both FIC and IC/PBS, and the chemokine CXCL12 has been shown to directly affect nociceptive neurons and induce pain.

Another significantly increased cytokine in the serum of FIC cats was Flt3L. The receptor for this ligand (Flt3) is expressed in hematopoietic progenitor cells and is crucial for development of dendritic cells and enhances production of lymphoid progenitors. Flt3L has been implicated as a pro-inflammatory factor in the pathogenesis of a variety of inflammatory diseases. It also has been shown to have a protective, anti-inflammatory role in some animal models. One proposed mechanism for this action of Flt3L has been the induction of T regulatory cells. The reason for increased Flt3L in our cohort of FIC-affected cats is unknown. To our knowledge, studies investigating the role Flt3L in humans with IC/PBS have not been reported.

One potential limitation of our study may be relatively low recovery of the multiplex assay and its ability to identify more subtle differences in analytes with lower sensitivities.

Fig 1.

Concentrations of IL-12(p40) (A), SDF1 (B), Flt3L (C), and IL-18 (D) in serum of 12 acute FIC cats were significantly higher than in 13 healthy control cats. Graph presents median with 95% confidence interval.

4 Parys et al
Cytokines in Feline Idiopathic Cystitis

serum concentrations. Where concentrations of all of the cytokines found to be significantly increased in serum of FIC cats (IL-12 p40, SDF1, Flt3L, and IL-18) were relatively high and well above the lower limits of detection, it is conceivable that concentrations of other cytokines could have been significantly different between groups, but remained undetected because of poor analyte detection at low concentrations.

Another potential limitation is that in some of the affected animals, slight increases in CK, AST, and ALT enzyme activities were detected. Although the changes were minimal and most likely not clinically relevant, we cannot completely exclude that these findings may be secondary to another ongoing disease process, which could cause increases in serum cytokine concentrations. The increase in CK activity was identified in the majority of cats, but none of the animals was symptomatic for myositis, and the increases probably were related to muscle damage secondary to restraint, intramuscular injection of sedatives or venipuncture. None of the animals developed any sign of myonecrosis or disease during months of close monitoring during the clinical trial. Increases in ALT (1/12) and AST (2/12) activities were minimal and slightly above the reference range. None of the cats had any changes identified on abdominal ultrasound examination that were suggestive of ongoing hepatic disease, such as cholangiohepatitis. The increases could have been a result of in vitro hemolysis after blood sampling.

Simultaneous determinations of serum and urine concentrations of cytokines and chemokines in affected and healthy cats would have been of value in differentiating local versus systemic responses. However, the optimal methods for preparation and storage of feline urine specimens for detection of urine cytokines have not been determined. In addition, studies investigating the analytical performance of the feline-specific multiplex assay for detection of cytokines and chemokines in cat urine have not been reported, but are being investigated in our laboratory.

Ours is the first study investigating serum cytokine concentrations in cats with FIC. We have identified several cytokines that are increased in the serum cats with FIC, which points to a pro-inflammatory milieu. Our study creates a foundation for future studies investigating the role of cytokines in FIC and their utilization as noninvasive biomarkers for diagnosis, differentiating disease phenotypes, and monitoring therapeutic outcomes in different forms of the disease. Future studies are needed to optimize sample preparation and storage, and to evaluate the specificity, sensitivity and clinical utility of these serum and urine cytokines as noninvasive biomarkers for FIC.

Acknowledgments

Grant support: This study was supported by a grant from the Michigan State University Center for Feline Health and Well-being.

Authors thank Dr. Andrea Amalfitano and Dr. Yasser Aldhamen for their technical assistance.

Conflict of Interest Declaration: Authors declare no conflict of interest.

Off-label Antimicrobial Declaration: Authors declare no off-label use of antimicrobials.

References

1. Gerber B, Boretti FS, Kley S, et al. Evaluation of clinical signs and causes of lower urinary tract disease in European cats. J Small Anim Pract 2005;46:571–577.
2. Kruger JM, Osborne CA, Goyal SM, et al. Clinical evaluation of cats with lower urinary tract disease. J Am Vet Med Assoc 1991;199:211–216.
3. Kruger JM, Parys M, Schall P, et al. Biomarkers of Lower Urinary tract (LUT) Disease. Proceedings ACVIM Forum 2016.
4. Erickson DR, Xie SX, Bhavanandand VP, et al. A comparison of multiple urine markers for interstitial cystitis. J Urol 2002;167:2461–2469.
5. Treutlein G, Deeg C, Hauck S, et al. Follow-up protein profiles in urine samples during the course of obstructive feline idiopathic cystitis. Vet J 2013;198:625–630.
6. Lemberger SIK, Deeg CA, Hauck SM, et al. Comparison of urine protein profiles in cats without urinary tract disease and cats with idiopathic cystitis, bacterial urinary tract infection, or urolithiasis. Am J Vet Res 2011;72:1407–1415.
7. Treutlein G, Dorsch R, Euler KN, et al. Novel potential interacting partners of fibronectin in spontaneous animal model of interstitial cystitis. PLoS One 2012;7:e51391.
8. Press S, Moldwin R, Kushner L, et al. Decreased expression of GP-51 glycosaminoglycan in cats afflicted with feline interstitial cystitis. J Urol 1995;153:288A.
9. Lemberger SIK, Dorsch R, Hauck SM, et al. Decrease of Trefoil factor 2 in cats with feline idiopathic cystitis. BJU Int 2011;107:670–677.
10. Logadottir Y, Delbro D, Fall M, et al. Cytokine Expression in Patients with Bladder Pain Syndrome/Interstitial Cystitis ESSIC Type 3C. J Urol 2014;192:1564–1568.
11. Buffington CA, Chew DJ, Woodworth BE. Animal model of human disease feline interstitial cystitis. Comp Pathol Bullet 1997;29:3.
12. Specht AJ, Kruger JM, Fitzgerald SD. Light microscopic features of feline idiopathic cystitis. J Vet Intern Med 2003;17:436.
13. Reche A Jr, Hagiwara MK. Histopatologia e morfometria da bexiga de gatos com doença idiopática do trato urinário inferior (DITUI). Ciência Rural 2001;31:1045–1049.
14. Buffington CT. Idiopathic cystitis in domestic cats—beyond the lower urinary tract. J Vet Intern Med 2011;25:784–796.
15. Rubio-Diaz DE, Pozza ME, Dimitrakov J, et al. A candidate serum biomarker for bladder pain syndrome/interstitial cystitis. The Analyst 2009;134:1133–1137.
16. Specht AJ, Kruger JM, Fitzgerald SD. Histochemical and immunohistochemical features of chronic feline idiopathic cystitis. J Vet Intern Med 2004;18:416.

Footnotes

a Milliplex MAP Feline Cytokine/Chemokine Magnetic Bead Panel; Millipore, Billerica, MA
b Luminex 100; Luminex Corporation, Madison, WI
c Bio-Plex Manager 4.1.1; Bio-Rad, Hercules, CA
d GraphPad Prism 7.0; GraphPad, La Jolla, CA

Grant support: This study was supported by a grant from the Michigan State University Center for Feline Health and Well-being.

Conflict of Interest Declaration: Authors declare no conflict of interest.

Off-label Antimicrobial Declaration: Authors declare no off-label use of antimicrobials.
17. Halpin RE, Saunders RS, Thompson BI, et al. Evaluation of a feline-specific multiplex, bead-based assay for detection of cytokines, chemokines, growth factors, and other immunologically active proteins in serum and plasma samples from cats. Am J Vet Res 2016;77:495–504.

18. Liu H-T, Kuo H-C. Biomarkers for patients with interstitial cystitis/bladder pain syndrome. Urological Science 2015;26:225–229.

19. Schrepf A, O’Donnell M, Luo Y, et al. Inflammation and inflammatory control in interstitial cystitis/bladder pain syndrome: Associations with painful symptoms. Pain 2014;155:1755–1761.

20. Carra G, Gerosa F, Trinchieri G. Biosynthesis and post-translational regulation of human IL-12. J Immunol 2000;164:4752–4761.

21. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–146.

22. Nakahira M, Ahn H-J, Park W-R, et al. Synergy of IL-12 and IL-18 for IFN-γ gene expression: IL-12-induced STAT4 contributes to IFN-γ promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J Immunol 2002;168:1146–1153.

23. Corcoran AT, Yoshinura N, Tyagi V, et al. Mapping the cytokine profile of painful bladder syndrome/intertstitial cystitis in human bladder and urine specimens. World J Urol 2013;31:241–246.

24. Tyagi P, Barclay D, Zamora R, et al. Urine cytokines suggest an inflammatory response in the overactive bladder: A pilot study. Int Urol Nephrol 2009;42:629–635.

25. Singh UP, Singh NP, Guan H, et al. The Severity of Experimental Autoimmune Uveitis Can Be Ameliorated by Anti-CXCL10 Ab Treatment. PLoS One 2013;8:e79751.

26. Weiss GR, O’Donnell MA, Loughlin K, et al. Phase 1 study of the intravesical administration of recombinant human interleukin-12 in patients with recurrent superficial transitional cell carcinoma of the bladder. J Urology 2003;26:343–348.

27. Fukao T, Matsuda S, Koyasu S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-γ production by dendritic cells. J Immunol 2000;164:64–71.

28. Croitoru-Lamoury J, Lamoury FMJ, Caristo M, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of Indoleamine 2,3 Dioxygenase (IDO). PLoS One 2011;6:e14698.

29. Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogenic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103:4619–4621.

30. Parys M, Kruger JM, Yuzbasjian-Gurkan V. Evaluation of immunomodulatory properties of feline mesenchymal stem cells. Stem Cells Dev 2017;26:776–785.

31. Luster AD. Chemokines — Chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436–445.

32. Aiuti A, Webb IJ, Bleul C, et al. The Chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the moblilization of CD34+ progenitors to peripheral blood. J Exp Med 1997;185:111–120.

33. D’Apuzzo M, Rolink A, Loetscher M, et al. The chemo kine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 1997;27:1788–1793.

34. Oh SB, Tran PB, Gillard SE, et al. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 2001;21:5027–5035.

35. McKenna HJ, Stocking KL, Miller RE, et al. Mice lacking Flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000;95:3489–3497.

36. Waskow C, Liu K, Darrasse-Jeze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 2008;9:676–683.

37. Brasel K, McKenna H, Morrissey P, et al. Hematologic effects offlt3 ligand in vivo in mice. Blood 1996;88:2004–2012.

38. Ramos MI, Perez SG, Aarrass S, et al. FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis in rheumatoid arthritis. Arthritis Res Thers 2013;15:R209.

39. Ramos MI, Tak PP, Lebre MC. Fms-like tyrosine kinase 3 ligand-dependent dendritic cells in autoimmune inflammation. Autoimmun Rev 2014;13:117–124.

40. Whartenby KA, Calabresi PA, McCadden E, et al. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc Natl Acad Sci USA 2005;102:16741–16746.

41. Svensson MN, Andersson SEM, Erlandsson MC, et al. Fms-Like Tyrosine Kinase 3 Ligand Controls Formation of Regulatory T Cells in Autoimmune Arthritis. PLoS One 2013;8:e54884.

42. Eidenschenk C, Crozat K, Krebs P, et al. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc Natl Acad Sci USA 2010;107:9759–9764.

43. Kruger JM, Osborne CA, Lulich JP. Changing paradigms of feline idiopathic cystitis. Vet Clin North Am Small Anim Pract 2009;39:15–40.

44. Larson J, Kruger JM, Wise AG, et al. Nested case-control study of feline calcivirus viruria, oral carriage, and serum neutralizing antibodies in cats with idiopathic cystitis. J Vet Intern Med 2011;25:199–205.

45. Fabricant CG, King J, Gaskin J, et al. Isolation of a virus from a female cat with urolithiasis. J Am Vet Med Assoc 1971;158:200–201.

46. Gaskell R, Gaskell C, Page W, et al. Studies on a possible viral aetiology for the feline urological syndrome. Vet Rec 1979;105:243–247.

47. Kruger JM, Venta PJ, Swenson CL, et al. Prevalence of bovine herpesvirus-4 infection in cats in Central Michigan. J Vet Intern Med 2000;14:593–597.

48. Kruger JM, Osborne CA. The role of viruses in feline lower urinary tract disease. J Vet Intern Med 1990;4:71–78.

49. Solanilla A, Grosset C, Lemercier C, et al. Expression of Flt3-ligand by the endothelial cell. Leukemia 2000;14:153–162.

50. Miloud T, Fiegler N, Suffner J, et al. Organ-specific cellular requirements for in vivo dendritic cell generation. J Immunol 2012;188:1125–1135.