THE FIELD OF VALUES BOUND ON IDEAL GMRES
JÖRG LIESEN* AND PETR TICHÝ† (07.04.2013)

Abstract. A widely known result of Howard Elman, and its improvements due to Gerhard Starke, Michael Eiermann and Oliver Ernst, gives a bound on the (worst-case) GMRES residual norm using quantities related to the field of values of the given matrix and of its inverse. In this note we give a simple and direct proof that these bounds also hold for the ideal GMRES approximation. Our work was motivated by a question of Otto Strnad, a student at the Charles University in Prague.

1. Bounds on the GMRES residual norms. Consider a linear algebraic system $Ax = b$ with a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. The GMRES method of Saad and Schultz [10] is an iterative method that constructs approximations x_k, $k = 1, 2, \ldots$, such that
\[\| r_k \| = \| b - Ax_k \| = \min_{p \in \pi_k} \| p(A)r_0 \|. \] (1.1)

Here $\| v \| \equiv \langle v, v \rangle^{1/2}$ denotes the Euclidean norm, π_k denotes the set of polynomials p of degree at most k and with $p(0) = 1$, and $r_0 \equiv b - Ax_0$, for a given initial approximation x_0.

Let $M = \frac{1}{2}(A + A^T)$ denote the symmetric part of A. Assuming that M is positive definite, Elman derived in his PhD thesis of 1982 [3, Theorem 5.4 and 5.9] the following bound on the kth relative GMRES residual norm (stated in [3] for the GCR method):
\[\frac{\| r_k \|}{\| r_0 \|} \leq \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^T A)} \right)^{k/2}; \] (1.2)

see also the subsequent paper [2, Theorem 3.3]. Denote by $\mathcal{F}(A)$ the field of values of A, and by $\nu(\mathcal{F}(A))$ the distance of $\mathcal{F}(A)$ from the origin,
\[\nu(\mathcal{F}(A)) \equiv \min_{z \in \mathcal{F}(A)} |z|. \]

In his Habilitation thesis of 1994 [11, Section 2.2] and in his subsequent paper [12, Theorem 3.2], Starke proved that the kth relative GMRES residual norm for a matrix A with positive definite symmetric part is bounded by
\[\frac{\| r_k \|}{\| r_0 \|} \leq \left(1 - \nu(\mathcal{F}(A))\nu(\mathcal{F}(A^{-1})) \right)^{k/2}. \] (1.3)

Note that if M is positive definite, then $\nu(\mathcal{F}(A)) = \lambda_{\min}(M)$, and
\[\frac{\lambda_{\min}(M)}{\| A \|^2} \leq \min_{w \in \mathbb{C}^n \setminus \{0\}} \left| \frac{\langle Aw, w \rangle}{\langle w, w \rangle} \frac{\langle w, w \rangle}{\langle Aw, Aw \rangle} \right| = \min_{v \in \mathbb{C}^n \setminus \{0\}} \left| \frac{\langle A^{-1}v, v \rangle}{\langle v, v \rangle} \right| = \nu(\mathcal{F}(A^{-1})). \]

Hence, as pointed out by Starke in [11, 12], the bound (1.3) improves Elman’s bound (1.2). In [1 Corollary 6.2], Eiermann and Ernst proved that (1.3) holds for any nonsingular matrix A, i.e. they proved this bound without the assumption on the symmetric part of A.

*Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany (liesen@math.tu-berlin.de). The work of this author was supported by the Heisenberg Program of the Deutsche Forschungsgemeinschaft.

†Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 18207 Prague, Czech Republic (tichy@cs.cas.cz). This work was supported by the project M100301201 of the institutional support of the Academy of Sciences of the Czech Republic.
2. Worst-case and ideal GMRES. For each given A, b and x_0, the corresponding kth relative GMRES residual norm is bounded by the kth worst-case GMRES residual norm, which in turn is bounded by the kth ideal GMRES approximation (introduced in [6]),

$$\frac{\|r_k\|}{\|r_0\|} \leq \max_{v \neq 0} \min_{p \in \pi_k} \frac{\|p(A)v\|}{\|v\|} \leq \min_{p \in \pi_k} \max_{v \neq 0} \frac{\|p(A)v\|}{\|v\|} = \min_{p \in \pi_k} \|p(A)\|. \quad (2.1)$$

Note that the right hand sides in the bounds (1.2) and (1.3) both do not depend on r_0. Hence both right hand sides represent upper bounds on worst-case GMRES, i.e.

$$\max_{v \neq 0} \min_{p \in \pi_k} \frac{\|p(A)v\|}{\|v\|} \leq \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^TA)} \right)^{k/2}, \text{ if } M = \frac{1}{2}(A + A^T) \text{ is positive definite, worst-case GMRES} \quad (2.2)$$

and

$$\max_{v \neq 0} \min_{p \in \pi_k} \frac{\|p(A)v\|}{\|v\|} \leq \left(1 - \nu(F(A))\nu(F(A^{-1})) \right)^{k/2}, \text{ if } A \text{ is nonsingular. worst-case GMRES} \quad (2.3)$$

It has been shown by examples in [4, 13], that there exist matrices A and iteration steps k for which the value of the kth ideal GMRES approximation is larger than the value of the kth worst-case GMRES residual norm, i.e. the second inequality in (2.1) can be strict. The example in [13] even shows that the ratio of worst-case and ideal GMRES can be arbitrarily small. Therefore a natural question is whether the right hand sides of (2.2) and (2.3) also represent upper bounds on ideal GMRES, i.e. whether

$$\min_{p \in \pi_k} \|p(A)\| \leq \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^TA)} \right)^{k/2}, \text{ if } M = \frac{1}{2}(A + A^T) \text{ is positive definite, ideal GMRES} \quad (2.4)$$

and

$$\min_{p \in \pi_k} \|p(A)\| \leq \left(1 - \nu(F(A))\nu(F(A^{-1})) \right)^{k/2}, \text{ if } A \text{ is nonsingular. ideal GMRES} \quad (2.5)$$

The two bounds (2.4) and (2.5) are stated in our paper [9, p. 168], and also in the book [8, p. 296], but no proof is given there. The other publications in this context mentioned above (namely [1, 2, 3, 11, 12]) do not mention ideal GMRES, as they deal with (worst-case) GMRES only. However, a closer inspection of the statement of (1.2) in [2, equation (3.3)] reveals that this statement actually contains the stronger result (2.4). The bound (2.4) on ideal GMRES is not stated in any of these works, and we are unaware of a simple, direct proof of this bound in the previous literature. The following section gives such a proof.
3. Proof of the ideal GMRES bound. In this section we consider the general complex setting, i.e. $A \in \mathbb{C}^{n \times n}$, $b \in \mathbb{C}^n$, and $\langle x, y \rangle = y^H x$ where H denotes Hermitian transposed. Similarly, we will allow the polynomials from the set π_k to have complex coefficients in general.

Consider a given unit norm vector v and the problem

$$\min_{\alpha \in \mathbb{C}} \| v - \alpha A v \|^2.$$

It is easy to show that the minimum is attained for

$$\alpha_* = \frac{\langle v, A v \rangle}{\langle A v, A v \rangle},$$

and that

$$\| v - \alpha_* A v \|^2 = 1 - \frac{\langle v, A v \rangle}{\langle A v, A v \rangle} = 1 - \frac{\langle A^{-1} w, w \rangle}{\langle v, v \rangle} \frac{\langle A v, v \rangle}{\langle v, v \rangle},$$

where $w \equiv A v$.

Next recall that the ideal and worst-case GMRES approximations are equal in the step $k = 1$; see Joubert [7, Theorem 1] or Greenbaum and Gurvits [5, Theorem 2.5]. Using this fact and α_* from above we see that

$$\min_{p \in \pi_k} \| p(A) \| \leq \min_{\alpha \in \mathbb{C}} \| (I - \alpha A)^k \| \leq \min_{\alpha \in \mathbb{C}} \| I - \alpha A \|^k$$

$$= \min_{\| v \| = 1} \max_{\alpha \in \mathbb{C}} \| v - \alpha A v \|^k$$

$$= \max_{\| v \| = 1} \left(\min_{\alpha \in \mathbb{C}} \| v - \alpha A v \|^2 \right)^{k/2}$$

$$= \max_{\| v \| = 1} \left(1 - \frac{\langle v, A v \rangle}{\langle A v, A v \rangle} \right)^{k/2}$$

$$\leq \left(1 - \min_{w \in \mathbb{C}^n} \frac{\langle A^{-1} w, w \rangle}{\langle w, w \rangle} \right)^{k/2} \min_{w \in \mathbb{C}^n} \frac{\langle A v, v \rangle}{\langle v, v \rangle}$$

$$= (1 - \nu(A) \nu(A^{-1}))^{k/2}.$$

Moreover, if the Hermitian part $M = \frac{1}{2}(A + A^H)$ is positive definite, we can bound $\nu(A)$ and $\nu(A^{-1})$ from below by

$$\lambda_{\min}(M) \leq \nu(A), \quad \frac{\lambda_{\min}(M)^2}{\| A \|^2} \leq \nu(A^{-1}).$$

Consequently, the following theorem has been shown.

Theorem 3.1. If $A \in \mathbb{C}^{n \times n}$ is a nonsingular matrix, then

$$\min_{p \in \pi_k} \| p(A) \| \leq \left(1 - \nu(A) \nu(A^{-1}) \right)^{k/2}, \quad (3.1)$$

where $\mathcal{F}(A)$ denotes the field of values of A, and $\nu(A)$ is the distance of $\mathcal{F}(A)$ from the origin. Moreover, if $M = \frac{1}{2}(A + A^H)$ is positive definite, then

$$\min_{p \in \pi_k} \| p(A) \| \leq \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^H A)} \right)^{k/2}. \quad (3.2)$$
Note that the derivation of (3.1) is based on replacing the optimal polynomial of degree \(k\) from the \(k\)th ideal GMRES approximation by the polynomial \((1 - \alpha z)^k\). Since the latter has only one \(k\)-fold root in the complex plane, the bound (3.1) cannot be expected to be sharp in general.

Acknowledgment. We thank Andreas Frommer for helpful comments on a previous version of this manuscript.

REFERENCES

[1] M. Eiermann and O. G. Ernst, *Geometric aspects of the theory of Krylov subspace methods*, Acta Numer., 10 (2001), pp. 251–312.
[2] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, *Variational iterative methods for nonsymmetric systems of linear equations*, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.
[3] H. C. Elman, *Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations*, PhD thesis, Yale University, New Haven, 1982.
[4] V. Faber, W. Joubert, E. Knill, and T. Manteuffel, *Minimal residual method stronger than polynomial preconditioning*, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 707–729.
[5] A. Greenbaum and L. Gurvits, *Max-min properties of matrix factor norms*, SIAM J. Sci. Comput., 15 (1994), pp. 348–358.
[6] A. Greenbaum and L. N. Trefethen, *GMRES/CR and Arnoldi/Lanczos as matrix approximation problems*, SIAM J. Sci. Comput., 15 (1994), pp. 359–368.
[7] W. Joubert, *A robust GMRES-based adaptive polynomial preconditioning algorithm for nonsymmetric linear systems*, SIAM J. Sci. Comput., 15 (1994), pp. 427–439.
[8] J. Liesen and Z. Strakoš, *Krylov Subspace Methods. Principles and Analysis*, Oxford University Press, Oxford, 2013.
[9] J. Liesen and P. Tichý, *Convergence analysis of Krylov subspace methods*, GAMM Mitt. Ges. Angew. Math. Mech., 27 (2004), pp. 153–173.
[10] Y. Saad and M. H. Schultz, *GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[11] G. Starke, *Iterative Methods and Decomposition-Based Preconditioners for Nonsymmetric Elliptic Boundary Value Problems*, Habilitationsschrift, Universität Karlsruhe, 1994.
[12] ———, *Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems*, Numer. Math., 78 (1997), pp. 103–117.
[13] K.-C. Toh, *GMRES vs. ideal GMRES*, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 30–36.