Does bariatric surgery improves kidney function? A cohort study

Juliana Amaro Borborema Bezerra (julianaamaroborborema@gmail.com)
Federal University of Pernambuco

Carlos Teixeira Brandt
Federal University of Pernambuco

Daniel Mozart Bezerra Borborema
UNIFACISA

Femanda Andréa Menezes Florêncio Maciel
Paraíba Endoscopic and Obesity Surgery Institution – ICOEP

Research Article

Keywords: Obesity, Bariatric surgery, Renal function, Glomerular filtration rate, Cystatin C

DOI: https://doi.org/10.21203/rs.3.rs-777646/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Obesity is a global epidemic that may cause renal dysfunction. Weight loss in the postoperative follow-up of bariatric surgery may improve renal function in these patients. Thus, the purpose of this study was to give insight on the subject using a sensible biomarker (cystatin C).

Methods

This cohort was performed in the Obesity Department from Campina Grande – Paraiba, Brazil. It was randomly enrolled 35 obese who underwent bariatric surgery (12 bypass and 23 sleeve) with follow-up of at least one year. The ages ranged from 24 and 57 years. Those with thyroid disease and with renal disease, with microalbuminuria ≥ 30mg/dL, were excluded. Serum levels of creatinine and cystatin C were measured, and the glomerular filtration rate (GFR) was estimated using the CKD Epi (chronic kidney disease epidemiology collaboration) cystatin-creatinine equation. The investigation was approved by the Ethics Committee.

Results

Twenty five women (71.4%) and 10 men (28.5%) were randomly recruited for the research. The most frequent associated morbidities were: sexual dysfunction (n = 17–48.5%); blood hypertension (n = 15–42.8%); type II diabetes (n = 13–37.1%); anxiety (n = 14–40.0%); and depression (n = 12–34.2%). Twenty three (65.7%) patients underwent sleeve technique and 12 (34.2%) bypass surgery. It was observed a significant reduction of BMI in the post-operative follow-up – p < 0.0001. There was a significant improvement of glomerular filtration rates (p = 0.0091). The improvement of renal function was more significant among those who underwent sleeve surgery as compared to bypass (p = 0.0008).

Conclusion

It was observed improvement of the majority of morbidities after bariatric surgery, as well as renal function, in obese individuals. Despite these results, larger and longer term outcome cohorts are required for better answer of the main purpose of this health issue.

Background

Obesity is an abnormal or excessive fat accumulation that may impair health. It is most commonly assessed using body mass index (BMI), a simple and quick anthropometric tool that has a low cost. BMI ≥30 kg/m² is considered obesity [1].
Obesity is a global epidemic, affecting all age, race and ethnic groups. Nowadays, overweight and obesity represent over one third of the planet population. It increases the risk for many chronic diseases, such as diabetes mellitus, cardiovascular diseases, cancers and chronic kidney disease (CKD), which may impair renal function [2-9].

Inflammations, oxidative stress and hyper activation of renin/angiotensin/aldosterone system, besides leptin and adipocin may play an important role in the physiopathology of renal dysfunction in obese patients. One can observe increase renal sodium reabsorption, besides the recruitment of functional reserve with glomerular hyper filtration. Obesity can also promote hypo filtration, increasing the risk for CKD [10-17].

Aiming to reduce the risk of obesity and its morbidities, as well as improving life quality of these individuals several clinical and surgical approach have been used including change in life style, drugs and surgical interventions. Bariatric surgery has become the main operative way of controlling the associated morbidities, and an effective method for achieving sustained weight loss, improves blood pressure, reducing hyperglycemia, and even inducing diabetes remission [18-22].

The effect of bariatric surgery regarding the renal function is a subject of intensive research. In some papers one can observe, after this operative procedure, improvement of glomerular filtration rate (GFR), reduction of hyper filtration and decrease in the micro albuminuria, preventing the onset of CKD and its progression. But in others, the improvement of kidney function is not well clear [23-26].

The purpose of this study was to evaluate the impact of bariatric surgery on renal function of the patients using a more sensitive biological marker.

Methods

An observational, longitudinal and analytical study (cohort) was performed. The patients who participated in the study signed an informed consent form, after study approval by the Ethics Committee of the Faculty of Medical Sciences - UNIFACISA - Campina Grande-Paraíba, Brazil.

The criteria for performing bariatric surgery followed the recommendation of the National Consensus of Health Institutes with body mass index (BMI) \(\geq 40 \text{kg/m}^2 \) without comorbidities or \(\geq 35 \text{kg/m}^2 \) associated with comorbidities. BMI was obtained by weight, in kilograms, divided by height, by meter squared, and classified according to the values established by the World Health Organization (WHO).

It was randomly enrolled 35 patients who underwent bariatric surgery (12 bypass and 23 sleeve) with follow-up of at least one year, with ages from 24 to 57 years of age. Those with thyroid disease and renal disease with microalbuminuria \(\geq 30 \text{mg/dl} \) were excluded.
The weight was measured using Tanita BC533® portable scale (Brazil), with the patient standing and barefoot, in light clothes and without props. Height was measured by Altur-aexata® (Brazil), with the subject standing, barefoot, with heels together, back straight and arms extended at the side of the body.

Blood samples were collected in the morning after a fasting period of at least 12 hours.

The creatinine dosage was performed by the Jaffé reaction, with a result expressed in mg/dl, from the isotope dilution mass spectrometry (IDMS) methodology, according with organizations involved with laboratory quality management programs, for monitoring of total analytical error linked to the method.

The cystatin C was measured by nephelometry and later calibrated to recent cystatin C standardization, with a result expressed in mg/l.

The estimated glomerular filtration rate (GFR) was calculated using Nefrocalc 2.0 through the CKD-EPI equation cystatin-creatinine. After the calculation of the GFR, a correction was made for the corresponding body surface [27]. It was defined normal GFR between 90 and 120 mL/min/1.73 m², hypofiltration was defined by GFR<90 mL/min/1.73 m² and hyper filtration was defined by GFR >120mL/min/1.73 m².

The adjustment for body surface was made as follows:

a. Calculation of body superficial area (BSA), Weight.425 (kg) × Height.725 (cm) ×.007184²⁸.

b. Adjustment to standard BSA, measured glomerular filtration rate (mGFR) (mL/min) ×1.73 / BSA (m²) = mGFR (ml/min/1.73m²)²⁸.

c. De-adjustment from standard BSA, estimated glomerular filtration rate (eGFR) (mL/min/1.73 m²) ×BSA (m²) / 1.73 m² = eGFR in ml/min²⁸.

The samples were gathered at random from the obesity outpatient department when they were coming for the preoperative period and at least one year post-operative follow-up.

Quantitative variables were expressed by their means and standard deviation and qualitative variables were expressed by their absolute and relative frequencies. These parameters were fed into excel spreadsheets, and then analyzed using GraphPad InStat3 software. The paired “t” test was used for assessing difference between means. Fisher exact test was used to evaluate possible differences between frequencies. P ≤ 0.05 was established for rejection of the null hypothesis.

Results

Twenty five women (71.4%) and 10 man (28.5%) were randomly recruited for the research. Among them, 27 (77.1%) were white, four black (11.4%) and four brown
The mean age of them was 41.4 ± 9.7 years ranging from 24.0 to 57.0 years; the median was 42.0 years.

The more frequent associated morbidities were: sexual dysfunction ($n = 17 - 48.5\%$); blood hypertension ($n = 15 - 42.8\%$); type II diabetes ($n = 13 - 37.1\%$); anxiety ($n = 14 - 40.0\%$); and depression ($n = 12 - 34.2\%$). Twenty three (65.7\%) patients underwent sleeve technique and 12 (34.2\%) to bypass surgery. Table 1.

Table 1: Absolute and relative frequency of sociodemographic and clinical variables of obese who underwent bariatric surgery

Variables	n	%
Gender		
Male	10	28.5
Female	25	71.4
Ethnicity		
White	27	77.1
Black	4	11.4
Brown	4	11.4
Type of Surgery		
Sleeve technique	23	65.7
Bypass surgery	12	34.2
Associated Morbidities		
Sexual dysfunction	17	48.5
Blood hypertension	15	42.8
Anxiety	14	40.0
Type II diabetes	13	37.1
Depression	12	34.2

The mean time of follow-up was 16.2 ± 2.6 months ranging from 12 to 22 months; median 18 months.
It was observed a significant reduction of BMI in the post-operative follow-up (pre-operative: mean 40.3 ± 5.7 versus post-operative: mean 29.5 ± 4.5 – p < 0.0001). Prior to bariatric surgery the BMI varied from 35.3 to 57.1 – median of 38.3 in the last follow-up it varied from 20.7 to 39.3 with the median of 29.2. This outcome was associated to a significant reduction (p < 0.0001); of abdominal circumference (mean pre-operative 120.7 ± 17.8cm – range of 91cm 159cm and median of 119cm versus mean post-operative 100.6 ± 14.8cm – range of 77.0cm to 130cm with median of 98.0cm) – p<0,0001. Table 2.

Table 2: Clinical markers measured before and after bariatric surgery.

Variables	Before Mean ± SD	After Mean ± SD	p
BMI	40.3 ± 5.7	29.5 ± 4.5	< 0.0001
Abdominal circumference	120.7 ± 17.8	100.6 ± 14.8	< 0.0001
Glomerular filtration rate	91.9 ± 17.8	100.5 ± 14.3	0.0091

Among the patients with blood hypertension the majority (12 out of 15 – 80.0%) obtained control without medication and three (20%) required medication for controlling their blood pressure.

Among the diabetic patients, 10 (76.9%) obtained control of this morbidity. However, three (23.1%) remained with the need of medication for control of this morbidity.

Regarding sexual dysfunction, 14 (82.3%) patients obtained improvement of this construct and three (17.6%) remained the same status. Furthermore, eight out of 12 (66.6%) informed better control of depression and five (35.7%) out of 14 decrease their anxiety.

It was observed a significant improvement of glomerular filtration rates of obese patients who underwent bariatric surgery [(preoperative 91.9 ± 17.8 mL/min/1.73 m2 ranging from 50.9 to 132.3 mL/min/1.73 m2 - median of 90.8 mL/min/1.73 m2) versus (follow up - 100.5 ± 14.3 mL/min/1.73 m2, ranging from 62.7 to 129.8 mL/min/1.73 m2 - with a median of 100.6 mL/min/1.73 m2) - p= 0.0091]. Out of 35 recruited patients, 26
(74.2%) improved GFR, four (11.4%) did not change GFR and five (14.2%) worsened GFR.

Figure 1.

The improvement of renal function was more significant among those who underwent sleeve surgery as compared to bypass (22 out of 23 – 95.6% versus 5 out of 12 – 41.6% - p = 0.0008).

Discussion

Obesity, as human being earth problem, has been continually increasing its prevalence, as well as its associated comorbidities and health care costs. Effective management of obesity and early intervention measures are necessary to overcome this global issue. The responsibility for preventing and managing this global epidemic does not lie solely on an individual, but also on the entire society and the health care systems [3, 4].

Multidisciplinary approaches for obesity management and the collaboration among clinical physicians, endocrinologists, nutritional professionals, physiotherapists, psychiatrists, surgeons and nurses need to be improved across the whole globe to tackle this huge health issue, which great affect the life quality [1].

Bariatric surgery remains the best strategy for the management of obesity regarding to effective and sustained weight loss. One can observe in this study, a significant weight lost after at least one year follow-up of these patients, as indicated in several studies [18–22, 29].

As regard to comorbidities (blood hypertension and diabetes) one can observe significantly decrease of the prevalence of these diseases after bariatric surgery, similar to most studies [18–22, 30]. Similarly, there was improvement of sexual dysfunction, especially among those who could control anxiety and depression [31].

Cystatin C has been used as biological marker for renal function due to its high sensitivity and specificity and it is not influenced by weight loss [28, 32–34], reasoning because it was used for assessing renal function after bariatric surgery in obese patients in the present study.

Studies have pointed the improvement of renal function after bariatric surgery, either with increased glomerular filtration rate in patients with chronic kidney disease, or reduction of hyper filtration in patients with no evidence of kidney disease. In this regard, the present results give support to this evidence, which can summarized in improvement of renal function after bariatric surgery [23–27, 35].

Renal function improvement was more evident among the patients who underwent sleeve technique. However, whether any kind of bariatric surgery delays the deterioration progression of this crucial biological function is still in question, large randomized prospective studies with a longer follow-up are needed [36].
Recent data, in obese adolescents, indicate that patients who require bariatric surgery may need a more personal technique as part of medicine precision for protecting kidney function, especially when long term outcome is anticipated. Furthermore, future non-surgical interventions therapies may mitigate the morbidities associated with obesity [37].

Limitations

First, the sample size is too small for definitive evidence on this important question. Second, the follow-up time could not be sufficient for assessing renal function after bariatric surgery in obese patients. Even though, the study has made a contribution for this challenging and unsolved question – Does bariatric surgery improve kidney function?

Conclusion

Significant improvement was observed in relation to the glomerular filtration rate when compared the pre and post-bariatric surgery times, corroborating other studies that had evidence about the effect of bariatric surgery on the improvement of renal function. Furthermore, this outcome is more evident among patients who underwent sleeve technique. Further larger and longer term outcome cohorts are required for better answer of the main purpose of this health issue.

Abbreviations

BMI: body mass index; GRF: glomerular filtration; CKD: chronic kidney disease; CKD-EPi: Chronic Kidney Disease Epidemiology collaboration; WHO: World Health Organization; IDMS: isotope dilution mass spectrometry; BSA: body superficial area; mGFR: measured glomerular filtration rate; eGFR: estimated glomerular filtration rate.

Declarations

Ethics approval and consent to participate

The Institucional Ethical Committee of Faculty of Medicine – Campina Grande – Paraiba, Brazil approved the research under the number- 79501417.0.0000.5175

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Competing interests
The authors declare that they have no competing interests

Funding
The first author funded the research.

Authors’ contributions
Bezerra JAB: collected the data, contributed in interpretation of data and prepared the manuscript.
Brandt CT: contributed in interpretation of data and made the final revision.
Borborema DMB: collected the data.
Maciel FAMF: contributed in interpretation of data.

Acknowledgements
Not applicable.

Authors' information
This manuscript is part of an ongoing thesis for obtained the PhD in surgery, from the Federal University of Pernambuco.

Contributor Information
Juliana Amaro Borborema Bezerra, Email: julianaamaroborborema@gmail.com
Carlos Teixeira Brandt, Email: carlosbrandt@bol.com.br – carlosbrandt.bol@uol.com.br
Daniel Mozart Bezerra Borborema, Email: danielmozart9@hotmail.com
Fernanda Andréa Menezes Florêncio Maciel, Email: nutrienter@gmail.com

References
1. Kolotkin RL, Andersen JR. A systematic review of reviews: exploring the relationship between obesity, weight loss and health related quality of life. Clin Obes. 2017; 7(5): 273–89. doi: 10.1111/cob.12203.
2. Rangel-Huerta OD, Villaescusa BP, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics. 2019; 15(6): 93. doi: 10.1007/s11306-019-1553-y.
3. Mohammed SH, Habtewold TD, Birhanu MM, Sissay TA, Tegegne BS, Abuzerr S, Ahmad Esmailzadeh A. Neighbourhood socioeconomic status and overweight/obesity: a systematic review and meta-analysis of epidemiological studies. BMJ Open. 2019; 9(11): e028238. doi: 10.1136/bmjopen-2018-028238.

4. Jaacks LM, Vandevijvere S, Pan A, McGowan CG, Wallace C, Imamura F, Mozaffarian D, Swinburn B, Ezzati M. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231–40. doi: 10.1016/S2213-8587(19)30026-9.

5. Talukdar D, Seenivasan S, Cameron AJ, Sacks G. The association between national income and adult obesity prevalence: Empirical insights into temporal patterns and moderators of the association using 40 years of data across 147 countries. PLoS One. 2020;15(5):e0232236. doi:10.1371/journal.pone.0232236.

6. Sommer I, Teufer B, Szegm S, Nußbaum-Streit B, Titscher V, Klerings I, Gartlehner G. The performance of anthropometric tools to determine obesity: a systematic review and meta-analysis. Sci Rep. 2020;10(1):12699. doi:10.1038/s41598-020-69498-7.

7. van der Valk ES, van den Akker ELT, Savas M, Kleinendorst L, Visser JA, Haelst MMV, Sharma AM, Rossum EFC. A comprehensive diagnostic approach to detect underlying causes of obesity in adults. Obes Rev. 2019;20(6):795–804. doi:10.1111/obr.12836S

8. Inoue Y, Qin B, Poti J, Sokol R, Gordon-Larsen P. Epidemiology of obesity in adults: Latest trends. Curr Obes Rep. 2018;7(4):276–88. doi:10.1007/s13679-018-0317-8.

9. Jia P, Dai S, Rohli KE, Rohli RV, Ma Y, Yu C, Pan X, Zhou W. Natural environment and childhood obesity: A systematic review. Obes Rev. 2021;22(Suppl 1): e13097. doi: 10.1111/obr.13097.

10. Pinto KRD, Feckinghaus CM, Hirakata VN. Obesity as a predictive factor for chronic kidney disease in adults: systematic review and meta-analysis. Braz J Med Biol Res. 2021; 54(4): e10022. doi: 10.1590/1414-431X202010022.

11. Pazos F. Range of adiposity and cardiorenal syndrome. World J Diabetes. 2020; 11(8): 322–50. doi: 10.4239/wjd.v11.i8.322.

12. McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JA. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol. 2019; 316(2): F316 – doi: 10.1152/ajprenal.00162.2018.

13. Choi JI, Cho YH, Lee SY, Jeong DW, Lee JG, Yi YH, Tak YJ, Lee SH, Hwang HR, Park EJ. The association between obesity phenotypes and early renal function decline in adults without hypertension, dyslipidemia, and diabetes. Korean J Fam Med. 2019;40(3):176–81.

14. Hall JE, Carmo JM, Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019; 15(6): 367–85. doi: 10.1038/s41581-019-0145-4.

15. Vahdat S. The complex effects of adipokines in the patients with kidney disease. J Res Med Sci. 2018;23:60.doi:10.4103/jrms.JRMS_1115_17.
16. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017;91(5):1224–1235. doi: 10.1016/j.kint.2016.12.013. PMID: 28187985.

17. Chang AR, Surapaneni A, Kirchner HL, Young A, Kramer HJ, Carey DJ, Appel LJ, Grams ME. Metabolically healthy obesity and risk of kidney function decline. Obesity (Silver Spring). 2018; 26(4): 762–8. doi:10.1002/oby.22134.

18. Reynolds JP, Vasiljevic M, Pilling M, Hall MG, Kurt M. Ribisl KM, Marteau TM. Communicating evidence about the causes of obesity and support for obesity policies: Two population-based survey experiments. Int J Environ Res Public Health. 2020; 17(18): 6539. doi: 10.3390/ijerph17186539.

19. Sigmund E, Dagmar Sigmundová D. The relationship between obesity and physical activity of children in the spotlight of their parents excessive body weight. Int J Environ Res Public Health. 2020; 17(23): 8737. doi: 10.3390/ijerph17238737.

20. Ovrebo B, Strommen M, Kulseng B, Martins C. Bariatric surgery versus lifestyle interventions for morbid obesity - Changes in body weight, risk factors and comorbidities at 1 year. Obesity Surgery, 21(7), 841–9. doi.org/10.1111/cob.12190.

21. Martin WP, White J, López-Hernández FJ, Docherty NG, Le Roux CW. Metabolic surgery to treat obesity in diabetic kidney disease, chronic kidney disease, and end-stage kidney disease; What are the unanswered questions?. Front Endocrinol (Lausanne). 2020;11:289. doi: 10.3389/fendo.2020.00289.

22. Martin WP, Docherty NG, Le Roux CW. Impact of bariatric surgery on cardiovascular and renal complications of diabetes: a focus on clinical outcomes and putative mechanisms. Expert Rev Endocrinol Metab. 2018;13(5):251–62. doi:10.1080/17446651.2018.1518130.

23. Bjornstad P, Nehus E, van Raalte D. Bariatric surgery and kidney disease outcomes in severely obese youth. Semin Pediatr Surg. 2020;29(1):150883. doi:10.1016/j.semptpedsur.2020.150883.

24. Cohen JB, Tewksbury CM, Torres Landa S, Williams NN, Dumon KR. National postoperative bariatric surgery outcomes in patients with chronic kidney disease and end-stage kidney disease. Obes Surg. 2019;29(3):975–82. doi:10.1007/s11695-018-3604-2.

25. Friedman AN, Wahed AS, Wang J, Courcoulas AP, Dakin G, Hinojosa MW, Kimmel PL, Mitchell JE, Pomp A, Pories WJ, Pumell JQ, le Roux C, Spaniolas K, Steffen KJ, Thiriby R, Wolfe B. Effect of bariatric surgery on CKD risk. J Am Soc Nephrol. 2018;29(4):1289–1300. doi:10.1681/ASN.2017060707.

26. Holcomb CN, Goss LE, Almehmi A, Grams JM, Corey BL. Bariatric surgery is associated with renal function improvement. Surg Endoscopy. 2018; 32(1):276–81. doi.org/10.1007/s00464-017-5674-y.

27. Favre G, Schiavo L, Lemoine S, Esnault VLM, Lannelli A. Longitudinal assessment of renal function in native kidney after bariatric surgery. Controversies in Bariatric Surgery. Surgery for Obesity and Related Diseases. 2018; doi: 10.1016/j.soard.2018.05.013.

28. Delanaye P, Krzesinski JM. Indexing of renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract. 2011;119(4):c289-92. doi: 10.1159/000330276.
29. De Paris, FGC, Padoin, AV, Mottin, CC, de Paris, MF. Assessment of changes in body composition during the first postoperative year after bariatric surgery. Obes Surg. 2019;29(9):3054–61. doi: 10.1007/s11695-019-03980-8.

30. Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: A systematic review and meta-analysis. PLoS Med. 2020;17(7):e1003206. doi:10.1371/journal.pmed.1003206.

31. Esfahani SB, Pal S. Obesity, mental health, and sexual dysfunction: A critical review. Health Psychol Open. 2018;5(2):2055102918786867. doi:10.1177/2055102918786867.

32. Inker LA., Schmid CH, Tighiouart H, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, & CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012; 367(1):20–9. doi.org/10.1056/NEJMoa1114248;

33. Grubb A, Nyman U, Björk J. Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand J Clin Lab Invest. 2012; 72(1):73–7. doi: 10.3109/00365513.2011.634023.

34. Imam TH, Fischer H, Jing B, Burchette R, Henry S, DeRose SF, Coleman KJ. Estimated GFR Before and After Bariatric Surgery in CKD. Am J Kidney Dis. 2017; 69(3):380–8. doi: 10.1053/j.ajkd.2016.09.020.

35. Lin YC, Lai YJ, Lin YC, Peng CC, Chen KC, Chuang MT, Wu MS, Chang TH. Effect of weight loss on the estimated glomerular filtration rates of obese patients at risk of chronic kidney disease: the RIGOR-TMU study. J Cachexia Sarcopenia Muscle. 2019;10(4):756–766. doi:10.1002/jcsm.12423.

36. Li K, Zou J, Ye Z, Di J, Han X, Zhang H, Liu W, Ren Q, Zhang P. Effects of bariatric surgery on renal function in obese patients: A systematic review and meta-analysis. PLoS One. 2016;11(10):e0163907. doi: 10.1371/journal.pone.0163907.

37. Bjornstad P, Nerus E, van Raalte D. Bariatric surgery and kidney disease outcomes in severely obese youth. Semin Pediatr Surg. 2020;29(1):150883. doi:10.1016/j.sempedsurg.2020.150883.

Figures
Figure 1

Modifications in GRF after bariatric surgery. The majority of patients improved their glomerular filtration rate.