The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort *Pellia endiviifolia* sp. B using an RNA-seq approach

Izabela Sierocka1 · Sylwia Alaba2 · Artur Jarmolowski1 · Wojciech M. Karlowski2 · Zofia Szweykowska-Kulinska1

Received: 14 January 2020 / Accepted: 8 July 2020 / Published online: 15 July 2020 © The Author(s) 2020

Abstract

Main conclusion This study shows differences in gene expression between male and female gametophytes of the simple thalloid liverwort with a distinction between the vegetative and reproductive phases of growth.

Abstract *Pellia endiviifolia* is a simple thalloid liverwort that, together with hornworts and mosses, represents the oldest living land plants. The limited taxon sampling for genomic and functional studies hampers our understanding of processes governing evolution of these plants. RNA sequencing represents an attractive way to elucidate the molecular mechanisms of non-model species development. In the present study, RNA-seq was used to profile the differences in gene expression between *P. endiviifolia* male and female gametophytes, with a distinction between the vegetative and reproductive phases of growth. By comparison of the gene expression profiles from individuals producing sex organs with the remaining thalli types, we have determined a set of genes whose expression might be important for the development of *P. endiviifolia* reproductive organs. The selected differentially expressed genes (DEGs) were categorized into five main pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and organismal systems. A comparison of the obtained data with the *Marchantia polymorpha* transcriptome resulted in the identification of genes exhibiting a similar expression pattern during the reproductive phase of growth between members of the two distinct liverwort classes. The common expression profile of 87 selected genes suggests a common mechanism governing sex organ development in both liverwort species. The obtained RNA-seq results were confirmed by RT-qPCR for the DEGs with the highest differences in expression level. Five *Pellia*-female-specific and two *Pellia*-male-specific DEGs showed enriched expression in archegonia and antheridia, respectively. The identified genes are promising candidates for functional studies of their involvement in liverwort sexual reproduction.

Keywords Antheridia · Archegonia · Bryophytes · Generative phase · Thalli · Vegetative phase

Communicated by Dorothea Bartels.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00425-020-03424-z) contains supplementary material, which is available to authorized users.

Izabela Sierocka
izapaste@amu.edu.pl; biologia@amu.edu.pl

1 Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

2 Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

Abbreviations

Abbreviation	Description
1KP	1000 Plant project
DEGs	Differentially expressed genes
Fng/Mng	Female/male thalli-producing archegonia grown in natural habitat
RDA-cDNA	Representational difference analysis of cDNA
SPL1	SQUAMOSA promoter-binding protein-like
TF	Transcription factor
Introduction

The colonization of the terrestrial environment by the first land plants represents an evolutionary milestone that changed the evolutionary course of life and the ecosystems on Earth. The transition from freshwater to land by plants probably occurred in a stepwise fashion, starting over 500 million years ago (Morris et al. 2018). The fossil records of cryptospores and the earliest plant fragments indicate plants with a bryophyte body plan organization (Wellman et al. 2003; Rubinstein et al. 2010; Brown et al. 2015) most likely resembling today’s liverworts. Bryophytes—hornworts, liverworts, and mosses—are considered to be the earliest diverging land plants and, as the remnants of early land colonization, provide a laboratory for research on the morphological adaptations that enabled them to survive in a terrestrial environment (Supplementary Data S1: Fig. S1). Out of the 93 assembled and annotated genomes hosted in the Phytozome v12.1.6 database, there are 82 genomes of Viridiplantae species and only two bryophyte genomes, with *Physcomitrella patens* and *Marchantia polymorpha* being the leading model organisms for mosses and liverworts, respectively (Rensing et al. 2008; Bowman et al. 2017; Lang et al. 2018).

The application of various molecular genetics tools in both of these species has been successful in revealing the evolutionary course through several developmental mechanisms that regulate different morphological traits (Menand et al. 2007; Yasamura et al. 2005, 2007; Chater et al. 2011; Sakakibara et al. 2014; Eklund et al. 2015; Flores-Sandoval et al. 2015; Kato et al. 2015; Honkanen et al. 2016; Moody et al. 2018). To understand the hornwort biology, *Anthoceros agrestis* has recently been introduced as an experimental system and the first preliminary analyses of the nuclear genome sequence were also published (Szovenyi et al. 2015; Szovenyi 2016). However, tools for hornwort molecular study have not yet been developed.

One of the major innovations during terrestrialization by the first land plants was the transition from a haplobiontic to a diplobiontic life cycle in an algal ancestor (Kenrick 1994). The acquisition of this feature was a result of the evolution of the regulatory mechanisms governing developmental and physiological processes that led to the formation of a multicellular sporophyte. Similarly, the transition from a haploid- to a diploid-dominant alternation of generations must have been accompanied by radical changes in regulatory mechanisms, enabling large-scale alterations in the function and morphology of both generations. Genomic mechanisms underlying sporophyte development could have evolved de novo or by the partial or full transfer of preformed gametophytic programs to sporophyte generation (Nishiyama et al. 2003; Dolan 2009; Niklas and Kutschera 2009). Recent studies, primarily conducted in the model moss *P. patens*, have revealed details about the evolution of alternation of generations and embryogenesis. The crucial players for the moss alternation of the gametophyte in the sporophyte generation have been shown to belong to the homeodomain transcription factors (TFs) KNOX and BELL families (Sakakibara et al. 2008, 2013; Horst et al. 2016; Ortiz-Ramirez et al. 2017).

Also important discoveries concerning the origin of an ancient genetic mechanism needed for plant fertility were found on *M. polymorpha*. In this liverwort, it has been shown that the MpRKD TF from the RWP-RK family is required to establish and/or maintain the egg cells quiescent in the absence of fertilization (Rovekamp et al. 2016) and control the formation of germ cells (Koi et al. 2016). Another example, MpBONOBO (MpBNB), a single member of the subfamily VIIIa of basic helix–loop–helix TFs, was shown to be responsible for developmental control of gametangiophore initial cells into mature gametangia. Moreover, MpBNB can functionally complement two orthologous *Arabidopsis thaliana* BNB genes that control pollen generative cell formation, suggesting that these TFs have been core regulators for reproductive development since the early stages of land plant evolution (Yamaoka et al. 2018). Likewise, the evolution of DUO POLLEN 1-type MYB TFs was shown to be a major event leading to the emergence and maintenance of sperm differentiation in the land plant lineage (Higo et al. 2018). The sparse taxon sampling among bryophytes for genomic and functional studies impedes our understanding of land plant evolution. Thus, more species for genome-scale sequencing and functional studies are required. However, plant species tend to have larger and more complex genomes than animals, which is often a challenging feature for genome sequencing and assembly. RNA sequencing represents an attractive and cost-efficient alternative to whole-genome sequencing, an approach that, in recent years, has revolutionized the genomics of model as well as non-model plant species (Matasci et al. 2014). RNA-seq enables the quantitative assessment of transcripts between different cells, tissues, organs, or organisms, but also is a powerful tool for the discovery of novel transcript species including long noncoding RNA, miRNA, siRNA, and other small RNA classes.

Our previous studies utilizing combined RNA-seq analyses of the transcriptome, small RNAs, and the degradome data from liverwort *Peltia endiviifolia* species B provided experimental evidence for target mRNA turnover by identified conserved and novel miRNAs. We showed the existence of common miRNAs between algae and land plants, suggesting that liverworts are at the base of the land plant evolutionary tree (Alaba et al. 2015). *P. endiviifolia* is a dioecious liverwort from the class Jungermanniopsida (Supplementary...
Data S1: Fig. S1–S2), one of three liverwort classes, which
comprise simple thalloid and leafy clades accounting for
over 80% of presently living liverwort taxa. Representatives
of the genus Pellia are recognized as the most basal line-
age of the simple thalloid liverworts with regard to many
pleisiomorphic features, such as the cuneate apical cell, a
thallus without the midrib, a spherical capsule, and massive
seta (Pacak et al. 1998; Pacak and Szweykowska-Kulinska
2003; He-Nygren et al. 2006; Crandall-Stotler et al. 2009).
In comparison with M. polymorpha, which belongs to the
class Marchantiopsida comprising the complex thalloid
liverworts, representatives of simple thalloid forms never
produce specialized gametangioiophores. Their antheridia
and archegonia are born at the thallus surface (Supplementary
Data S1: Fig. S2) (Schuster 1992; Paton 1999). In our pre-
vious work, we identified several genes expressed solely in
the male or female reproductive organs of P. endiviifolia by
utilizing the representational difference analysis of cDNA
(RDA-cDNA) technique (Sierocka et al. 2011, 2014). To
enhance our understanding of the genetic control governing
P. endiviifolia male and female gametophyte development,
RNA sequencing was performed on thalli collected from two
sources: the first from the natural habitat during sex organ
production and the second grown in axenic culture without
sex organs. Distinct gene sets were identified as differen-
tially regulated between male and female individuals in rela-
tion to different growth conditions, but differences in gene
expression were also observed between plants depending
on whether or not they were producing sex organs. Finally,
we point out several genes as potential candidates for fur-
ther functional studies to test their involvement in liverwort
sexual reproduction.

Materials and methods

Plant material

Female and male thalli of P. endiviifolia species B produc-
ing sex organs (Herbarium number 40228 in POZW) were
collected and cultured as previously described (Alaba et al.
2015), with the only difference being the year of collection
(2011–2013). For RNA sequencing, four types of Pellia
gametophytes were collected: (i) female thalli without arche-
genia cultivated in vitro (Fiv), (ii) female thalli-producing
archegonia collected from the natural habitat (2011 and 2012
seasons) (Fng), (iii) male thalli with and without anther-
idia cultivated in vitro (Miv), and (iv) male thalli-producing
archegonia collected from the natural habitat (2011 and 2012
seasons) (Mng) (Supplementary Data S1: Fig. S2). For real-
time PCR experiments, the same types of Pellia thalli were
used but from the 2013 season.

RNA extraction and deep sequencing

Total RNA was isolated using a single-step method
described by Chomczynski and Sacchi (1987), and modi-
fied as described by Pant et al. (2009). DNA was removed
digestion using RNase-free TURBO™DNase (Ambion®,
Austin, TX, USA). The lack of genomic DNA contamina-
tion was confirmed by PCR using primers designed for the
P. endiviifolia SKP1 gene promoter sequence (access-
sion number FJ266076; PSkp1_For: gctatactacatcatggtt;
PSkp1_Rev: aaacacaataactacgcg) (Supplementary Data
S1: Fig. S3). ~150 ng of RNA as a template, and DreamTaq
DNA polymerase (Thermo Fisher Scientific, Waltham,
MA, USA). RNA integrity was checked on 1.2% agarose
gels prior to and after the DNase digestion and measured
with GeneTools image analysis software (Syngene Synop-
tics, Cambridge, UK). RNA isolation steps were performed
multiple times for each thalli type. RNA isolates from each
thalli type were next combined separately to generate the
four RNA samples that met the criteria acceptable for plant
RNA-seq (Quantification): total RNA mass ≥ 5 µg, concen-
tration ≥ 150 ng/µL, r26S/18S ≥ 1, OD 260/280 ≥ 1.8, and
OD 260/230 ≥ 1.8, and were used to prepare four cDNA
libraries, each of which represented one type of thallus for
one biological replicate. The RNA samples were shipped
on dry ice to the Beijing Genome Institute (BGI, Beijing,
China) for cDNA library preparation and sequencing in one
50SE lane on an Illumina HiSeq2000 system (Illumina, San
Diego, CA, USA). Raw read sequences are available in the
Short Read Archive database from the National Center for
Biotechnology Information (NCBI, Bethesda, MD, USA)
with the accession number (BioProject ID: PRJNA596103).
Filtering of raw data was performed by BGI. Clean reads
(clean data) were obtained by removing reads with adaptor
sequences, reads with greater than 10% of unknown bases
(N), and low-quality reads. Clean reads were mapped to ref-
rence sequences—de novo transcriptome data from P. endi-
viiifolia (Alaba et al. 2015)—using SOAPaligner/SOAP2 (Li
et al. 2009). No more than two mismatches were allowed in
the alignment. For each RNA sample, more than 42 million
total reads were obtained, where more than 99% were clean
reads. Sequencing of all four samples reached the correct
degree of saturation as well as the distribution of readings
equated to reference transcriptome sequences was found
to be statistically significant. From over 40 million clean
reads from each tissue studied, around 90% were mapped
to the Pellia transcriptome data (Supplementary Data S2:
Table S1).

Differential gene expression analysis

First, the expression level for each transcript was determined
by the number of reads uniquely mapped to the specific
unigene from the transcriptome data and the total number of uniquely mapped reads in the given tissue sample. Next, to normalize the transcript expression levels, we used the reads per kilobase per million reads (RPKM) method (Mortazavi et al. 2008) by the formula:

$$\text{RPKM}(X) = \left(10^6 \times C\right)/(NL/10^3).$$

Here, RPKM(X) is the expression of transcript X, C is the number of reads that uniquely aligned to transcript X. N is the total number of reads that are uniquely aligned to all transcripts, and L is the number of bases on transcript X. The RPKM method eliminated the influence of different gene lengths and sequencing levels on the calculation of gene expression. To identify DEGs between two-thalli types, the algorithm based on Poisson distribution model (Audic and Claverie 1997) was used with the following cut-off values: false discovery rate (FDR) ≤ 0.001 and log-2 fold change ≥ 2. Since our initial analysis was performed on sequencing results without replicates, we have further filtered the identified differentially expressed genes using edgeR tool by supplying 0.4 as the common BCV (square-root-dispersion) value (Robinson et al. 2010). Genes showing FDR < 0.05 were designated for subsequent analyses.

The selected unigenes were used for blast searching with annotation against NCBI nonredundant sequence database, Kyoto Encyclopedia of Genes and Genomes (KEGG) protein database (Kanehisa and Goto 2000), M. polymorpha genome database MarpolBase (Bowman et al. 2017), 1000 plant project (1KP) project database (Matasci et al. 2014) using an E value cut-off < 10^{-5}. Next, the distribution of gene functions was annotated using the Blast2GO program (Conesa and Götz 2008) to obtain the gene ontology (GO) functional classification.

Real-time PCR analysis

First-strand cDNA synthesis was carried out using Oligo-dT$_{18}$ (Life Technologies) and superscript III reverse transcriptase (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions. Real-time PCR was performed using a 7900HT fast real-time PCR system and power SYBR green PCR master mix (Applied Biosystems, Waltham, MA, USA), 1 µL of cDNA, and gene-specific primers (200 nM each) in a final volume of 10 µL. The following thermal profile was applied for all real-time PCRs: 95 °C for 10 min; 40 cycles of 95 °C for 15 s, and 60 °C for 1 min. After each real-time PCR run, dissociation curve analyses were performed to confirm the primer specificity. The results were analyzed with SDS 2.2.3 software (Applied Biosystems). Ct values for all transcripts from two biological replicates were normalized to the ACTIN1 (GenBank: DQ100290) Ct value. The relative expression level was calculated using the comparative ΔΔCt method. The primers that were used in this study are listed in Table S2 (Supplementary Data S2). Primers amplifying the fragment of the PenB_TUA1 gene specifically expressed in male individuals (GenBank: HQ634388) were used in RT-PCR and RT-qPCR analysis as a marker for male-specific expression (Sierocka et al. 2011). Primers amplifying the fragment of the PenB_MT2 gene specifically expressed in female individuals (GenBank: KF853594.1) were used in RT-PCR and RT-qPCR analysis as a marker of female-specific expression (Sierocka et al. 2014).

RACE experiments

5′RACE for the identification of the transcription start sites and 3′RACE for the identification of possible open-reading frames for selected DEGs were carried out. RACE experiments were performed as previously described (Sierocka et al. 2011, 2014). The primer sequences used in the RACE experiments are shown in Table S2 (Supplementary Data S2).

Sequence analysis

Database searches of the nucleotide and deduced amino acid sequences were performed using NCBI/GenBank/blast searching (Altschul et al. 1990), the M. polymorpha genome database (Bowman et al. 2017), and Blast for 1000 Plant Transcriptomes on the 1KP project website (Matasci et al. 2014). The search for specific amino acid sequences was conducted using MotifScan (https://myhits.isb-sib.ch/cgi-bin/motif_scan), InterProScan (Jones et al. 2014), and SMART (Letunic et al. 2012).

GenBank accession numbers

Sequences of full or partial cDNA sequences obtained after RACE experiments were submitted to the GenBank database under the accession numbers MN495995–MN496037.

Results

Differentially expressed genes between four *P. endiviifolia* thalli types

The RNA sequencing using short reads on an Illumina HiSeq2000 system was performed on four RNA samples isolated from four *P. endiviifolia* thalli types collected in two seasons, as described in Sect. “Materials and methods”, in one biological replicate for each tissue type. For each sample, around 200 male or female individuals were collected. The types of tissue selected represented the set of male and
female gametophytes for the study of differences in gene expression between the vegetative and reproductive stages of *Pellia* individuals during development.

Out of 62,711 unigenes assessed in the *P. endiviifolia* transcriptome (Alaba et al. 2015), we identified 37,801 expressed in male gametophytes without antheridia grown in vitro, 44,316 in male gametophytes producing antheridia and collected from their natural habitat, 38,586 in female gametophytes without archegonia grown in vitro, and 43,898 in female gametophytes producing archegonia and collected from their natural habitat. Differences in gene expression were then obtained by pairwise comparison of the four libraries, which resulted in six lists of DEGs (Supplementary Data S3, Supplementary Data S1: Fig. S4b), even when they were used in a Blast search against the *M. polymorpha* genome and the 1KP project database. Thus, removing unannotated DEGs markedly decreased the number of identified genes in the two-thalli comparisons (Fig. 1). Nevertheless, the trend for all six lists remained the same: the fewest DEGs were observed whenever the male and female thalli were grown under the same conditions, and in the contrary, the highest DEG numbers were observed whenever the male and female thalli were grown in different conditions (Fig. 1, Supplementary Data S1: Fig. S4).

To display the number of transcripts expressed commonly and specifically for the two-thalli comparison, three Venn diagrams (Supplementary Data S1: Fig. S5) were generated. Two Venn charts were prepared to represent specifically expressed genes in female (Supplementary Data S1: Fig. S5a) and male (Supplementary Data S1: Fig. S5b) in connection with the developmental phase and growth conditions. A third graph (Supplementary Data S1: Fig. S5c) combines differential gene expression from all six lists obtained from our RNA-seq experiment.

Our previous studies utilizing the RDA-cDNA technique allowed us to identify several genes specifically expressed in male or female individuals of *P. endiviifolia* (Sierocka et al. 2011, 2014). Transcripts for four genes were also present in our RNA-seq data, and their expression pattern is consistent with our previous results (Supplementary Data S2: Table S3).

Differentially expressed genes associated with *P. endiviifolia* reproductive phase of growth

In the process of DEG screening, we decided to narrow down our interest to genes whose expression in *Pellia* individuals producing sex organs is changed in comparison to the remaining thalli types. As a result, we identified 786 DEGs whose expression profile is associated with *Pellia* male individuals producing antheridia (Mng): 387 were up-regulated and 399 were down-regulated. In the case of genes whose expression is associated with *Pellia* female thalli-producing archegonia, we identified 516 DEGs, 391 up-regulated and 125 down-regulated (Fng). In a pairwise comparison, the former one is considered as the control, and the latter one is considered as the treatment. *Fiv* female thalli grown in vitro, *Fng* female thalli with archegonia collected from natural habitat, *Miv* male thalli grown in vitro, *Mng* male thalli with antheridia collected from natural habitat.
and grown in the natural habitat, we selected gene transcripts with a similarity to RPs important for normal embryo development (L4, L18, L23) and leaf patterning (L5, L10a). The same processes are represented by RPs selected in Pellia male and female thalli-producing sex organs. Of the 387 genes up-regulated in the male individuals producing antheridia, only 141 showed similarity to known sequences deposited in the public databases. Of the 391 genes up-regulated in female individuals producing archegonia, only 153 showed similarity to known sequences deposited in the public databases. For the 148 Pellia male and 144 female-specifically expressed genes, Marchantia orthologs were found (Supplementary data S6 and S7, respectively). In previous transcriptomic studies published by Araki’s group, the transcriptional framework of Marchantia male gametogenesis was described (Higo et al. 2016). Thus, we next used the obtained Pellia endiviifolia gene list to look for Marchantia orthologs engaged in sperm cell production. Our analysis revealed that 37 Pellia endiviifolia genes that are specifically expressed in Pellia male gametophytes producing antheridia exhibit a similar expression pattern to the Marchantia orthologs (Supplementary Data S6). Six of these orthologs of the Marchantia genes specifically expressed in antheridiophores, while the remaining 31 Pellia genes are orthologs of Marchantia genes that show antheridiophore-specific expression in comparison to the expression observed in archegoniophores, according to MarpolBase (Bowman et al. 2017) (Supplementary Data S6). The most represented categories included genes encoding proteins with tetratricopeptide and Armadillo-like repeats, genes associated with oxidation-reduction processes and vesicle transport—four genes in each category (Table 1, selected examples).

We also used the MarpolBase transcriptomic data to check the expression profiles of Marchantia orthologs for the identified Pellia endiviifolia genes specifically expressed in female gametophytes producing archegonia. We found 50 Pellia genes for which Marchantia orthologs exhibit a similar expression pattern. Three of them display an archegoniophore-specific expression profile, while the remaining Marchantia orthologs show archegoniophore-enriched expression when compared to their expression in antheridiophores (Supplementary Data S7). The most represented functional categories included genes encoding different transmembrane transporters (eight genes), glycosyl hydrolases, and transferases (five genes for each category) (Table 1, selected examples).

In summary, after a comparison of our data with the Marchantia gene expression profiles, we found similarities in specific or enriched gene expression during the reproductive phase of growth for both liverwort species. The common expression of 87 selected genes suggests a common mechanism governing sex organ development in representatives of the two distinct liverwort classes.

Quantification of the selected DEGs in qPCR assay

To identify genes showing the highest differences in expression between the antheridia-producing male thalli and archegonia-producing female thalli of Pellia endiviifolia, we used the formula of log2 (Fng/Mng) ≥ 10. As a result, we selected 72 DEGs, 10 with ≥tenfold higher expression in the male thalli with antheridia and 62 with ≥tenfold higher expression in the female thalli with archegonia, both grown in their natural habitat (Supplementary Data S8). In addition, the 72 DEGs were juxtaposed with the expression level in the male and female thalli from the vegetative phase of growth from in vitro culture. This analysis showed that out of the ten genes up-regulated in sperm-producing male thalli, eight are also expressed during the vegetative phase of growth.

In turn, out of the 62 up-regulated gene transcripts in the archegonia-producing female thalli, 46 are also expressed during the vegetative phase of growth. The most enriched DEGs belong to RNA- or DNA-binding protein families (pen_RRM-1, pen_ARR-like, pen_MYB1, pen_SPL1), LRR receptor-like kinases (pen_RLK10.1, pen_RLK10.2, pen_RLK10.3), ubiquitin protein ligases (pen_UPL2.1, pen_UPL1.1, pen_UPL2.2), and serine/threonine protein phosphatases (pen_BSL2-like, pen_PP2C.1, pen_PP2C.2). Thirty-five DEGs showed no similarity to sequences from the public databases; the lengths of these transcripts range from ~250 to ~600 nt with no putative open-reading frames identified (Supplementary Data S8).

To validate the RNA-seq data of male- or female-specific patterns of gene expression, RT-qPCR analysis was performed on 72 selected DEGs for the four types of Pellia thalli, the same as for RNA-seq, but on new material collected in the 2013 season. The qPCR results confirmed the calculations for RPKM values from the RNA-seq experiment for 54 out of 72 selected transcripts (Fig. 2, Supplementary Data S1: Fig. S8) with minor discrepancies. Eight out of ten genes showed male-specific expression in both of the male thalli tested. The remaining two, pen_UNK6 and pen_UNK9, as in the data from RNA-seq, showed specific
Table 1 Selected examples of *M. polymorpha* orthologs of identified *P. endiviifolia* male and female-specifically expressed genes in gametophytes producing sex organs

Pellia gene ID	RPKM value (Mng/Miv/Fng/Fiv)	Blast NCBI: Marchantia polymorpha (taxid:3197)	E value	Annotation	Tracking id MarpolBase	Length nt	Antheridiophore FPKMa	Archegoniophore FPKMa	Sporophyte FPKMa	Sporeling (HATC)
Male specifically expressed										
Unigene13762	10.291,144/0.549,728/0.411,713/1,004,893	MARPO_0049s0007	9.00E−127	Ferric chelate reductase	Mapoly0049s0007.1	3529	658,892	286,858	330,731	0,534,337
Unigene21096	13.153,349/1,086,866/5,954,228/2,003,123	MARPO_0014s0103	2.00E−97	Potassium ion transporter family protein	Mapoly0014s0103.1	4234	20,1357	0,986,339	0,33,508	0,101,249
CL4820. Contig2	12.861,185/1,27,397/4,060,709/3,095,815	MARPO_0199s0021	2.00E−56	SNARE motif, subgroup Qc	Mapoly0199s0021.1	2394	33,7801	25,5893	25,6137	26,5067
Female specifically expressed										
Unigene8944	0.776,305/0.733,542/2.807,479/0.087,641	MARPO_0526s0002	9.00E−66	ABC-2 type transporter	Mapoly0526s0002.1	3114	0,344,105	1,94,363	79,0103	0,496,975
Unigene23704	Nd/Nd/0.282,026/Nd	MARPO_0030s0123	8.00E−40	Sugar efflux transporter for intercellular exchange	Mapoly0030s0123.1	1611	0,784,167	4,31,432	29,2534	0
CL10631. Contig1	Nd/0,099,671/Nd/43.668,835	MARPO_0040s0034	1.00E−31	Chitinase class I	Mapoly0040s0034.1	1632	0,123,774	65,4722	0,0,534,328	0,635,778
Unigene24732	Nd/Nd/0.101,221/36,34,404	MARPO_0040s0034	4.00E−39	Chitinase class I	Mapoly0040s0034.1	1632	0,123,774	65,4722	0,0,534,328	0,635,778

aFPKM values of *M. polymorpha* genes from the data published by Bowman et al. 2017. In bold, *M. polymorpha* genes are marked which expression is antheridiophore- or archegoniophorespecific.
expression only in the male thalli-producing antheridia and grown in the natural habitat (Fig. 2).

Forty-six DEGs selected as female-specifically expressed from the RNA-seq data also showed female-specific expression in the qPCR analysis. Five genes, pen_CHc1, pen_UNK5, pen_CHlcA, pen_UNK12, and pen_UNK28 (Fig. 2), are expressed only in the female thalli-producing archegonia and grown in the natural habitat. The remaining 39 are expressed in both female thalli tested, regardless of whether they produce archegonia (Fig. 2, Supplementary Data S1: Fig. S8). The observed differences in gene expression between male and female P. endiviifolia individuals may reflect the specific gene sets responsible for the execution of developmental pathways, leading to the development of antheridia-producing male thalli and archegonia-producing female thalli.

In the case of the 18 DEGs, four were revealed to be false positives according to real-time PCR. The remaining

Fig. 2 Comparison of gene expression data obtained by RNA-seq and RT-qPCR. Expression levels of selected genes in four types of *Pellia* thalli are shown. *Fiv* female thalli grown in vitro, *Fng* female thalli with archegonia collected from natural habitat, *Miv* male thalli grown in vitro, *Mng* male thalli with antheridia collected from natural habitat. *Y*-axis on the left side of graphs shows the scale for qPCR values (grey boxes) normalized against *ACTIN1* gene from two biological replicates. *Y*-axis on the right side of graphs shows the scale for RPKM values (black squares) from NGS.
14 showed no amplification in any of the four types of thalli used for the study, even though several primer pairs were designed. None of those 14 DEGs showed similarity to sequences deposited in the publicly available databases, even when different Blast algorithms were used. It should be noted that all 14 sequences were identified in female individuals collected from their natural habitat in the 2011 season, whereas for qPCR analysis, female individuals collected in the 2013 season were used. Therefore, it cannot be ruled out that some environmental conditions determining the expression of those DEGs differed between the 2011 and 2013 seasons, which could explain the observed results.

Molecular characterization of full-length transcripts of selected DEGs

Many of the gene transcripts validated by qPCR showed no similarity to the sequences from the public databases, even when the *M. polymorpha* genome database was searched. Most of them did not exceed 600 nt in length. Moreover, in some, the potential start or end of the open-reading frame was computationally identified, which may indicate that these transcripts are, in fact, 5′ or 3′ UTR parts of the mature mRNAs. To determine the mRNA end for these transcripts, RACE experiments were performed. Additionally, for all DEGs validated by qPCR, 5′ RACE was performed to determine their transcription start sites (TSS). The results of RACE analysis are summarized in Table S5 (Supplementary Data S2). Only in four cases (genes: *pen_UNK3*, *pen_RRM-1*, *pen_UNK18*, *pen_UNK19*), we were able to determine the coding sequence (CDS) after RACE experiment. This analysis also unexpectedly revealed that 21 out of 46 female-specific DEGs validated in qPCR, in fact, originate from seven gene transcripts, which gave us a final total of 30 specifically female-expressed genes. For some of the genes, different mRNA isoforms were identified that arise from alternative splicing events (genes: *pen_RRM-l*, *pen_UNK18*, *pen_AGD5-like1*, *pen_LRR-RLK1*) or the selection of different polyadenylation sites (e.g., *pen_RRM-l*, *pen_ARR-like*, *pen_YIPPEE-like*, *pen_UNK33*, *pen_TUA2*). Additionally, in the case of *pen_UNK3*, *pen_UNK18*, and *pen_AGD5-like1* genes, alternative splicing results in two mRNA isoforms with different protein-coding regions. For the *pen_LRR-RLK1* gene, alternative splicing occurs within 3′UTR and does not change the CDS.

Expression of selected DEGs in archegonia and antheridia

In the RNA-seq and qPCR analysis, whole male and female thalli-bearing sex organs were used, where most of the tissue is responsible for the vegetative growth and function. Antheridia, situated in 1–2 irregular rows at the dorsal part of the male gametophyte, are 200 µm in diameter. Archegonia, 8–12 shielded by the cylindrical involucre, are grouped in a zone 3 mm in diameter (Schuster 1992; Paton 1999). To investigate whether the elevated expression in the male or female thalli corresponded with antheridia- or archegonia-specific expression, a quantitative real-time PCR experiment was performed on RNA isolated from the vegetative and reproductive parts of the male and female gametophytes separately from vegetative ones. Approximately 500 antheridia from 70 male gametophytes were dissected from the vegetative part of thalli. The archegonia-bearing region, together with the involucre (3 mm × 3 mm in size), was dissected as previously described (Sierocka et al. 2014). RNA preparation and subsequent qPCR analysis were carried out separately for both generative and vegetative samples. Of the ten genes selected as specifically expressed in male, none showed enriched accumulation within the antheridia-isolated RNA (Mng.anth) (Supplementary Data S1: Fig. S9a). In this study, we also included the four male-specific genes identified by the RDA-cDNA approach, as previously described (Sierocka et al. 2011) from which two are present in our RNA-seq data (Supplementary Data S2: Table S3). Interestingly, two genes, *PenB_MT* and *PenB_HMGbox*, exhibit preferential expression in antheridia in comparison to the vegetative parts of the male thalli (Fig. 3a). We identified the homolog of *Pellia* HMG protein in the *Marchantia* genome and checked its expression profile in the available RNA-seq data. Strikingly, Mapoly0031s0059.1 was specifically expressed in antheridiophores (Supplementary Data S2: Table S6). This result strengthens the observations of our previous study, in which we proposed that both *PenB_MT* and *PenB_HMGbox* are important players during antheridia development in the natural environment, as their expression was shown only in male gametophytes producing antheridia and grown in their natural habitat (Sierocka et al. 2011).

From 30 expressed genes selected as female-specific, three showed more than tenfold higher expression level in the archegonia-producing area of the female thalli (Fng.arch) in comparison to the female vegetative parts of thalli (Fng.veg) (Fig. 3b). These are the *pen_UNK12* and *pen_UNK28* genes, which showed no similarity to sequences from the public databases, and the *pen_CHc1* gene, with similarity to genes encoding plant class I chitinases. Another two cases, the *pen_SPL1* gene-encoding plant-specific SQUAMOSA promoter-binding protein-like (SPL) TF and the *pen_UNK2* gene with no similarity to known sequences, showed an approximately three-fold higher expression level in the archegonia-bearing section when compared with the vegetative parts of the female thalli. Importantly, the two genes encoding proteins have their orthologs in *M. polymorpha*. Both of them exhibit a similar expression pattern to their *Pellia* counterparts (Supplementary Data S2: Table S6). *MpSPL1*
Planta (2020) 252:21

Fig. 3 Several *P. endiviifolia* genes expression is correlated with antheridia or archegonia production. Quantitative RT-qPCR analyses of the (a) male-specifically expressed RDA-cDNA/RNA-seq identified genes and (b) the female-specifically expressed RNA-seq identified genes with different transcript levels in the vegetative and sex organs of male and female gametophytes grown in natural habitat, respectively. a The relative expression of each gene was compared with antheridia (Mng.anth) isolated from the vegetative parts of male thalli (Mng.veg). b The relative expression of each gene was compared with archegonia-bearing region (Fng.arch) isolated from the vegetative parts of female thalli (Fng.veg). All transcript levels were normalized against *ACTIN1*. Error bars indicate mean ± SD; *n* = 2

(Mapoly0014s0224.1) shows the highest expression in archegoniophores, although it also has a high expression level in antheridiophores and sporophytes. The Mapoly0040s0034.1 gene-encoding chitinase is specifically expressed in archegoniophores. Recently, a paper describing *MpSPL2* gene function was released, which in phylogenetic context is the closest paralog of *MpSPL1* (Tsuzuki et al. 2019). It was shown that *MpSPL2* may play a role in promotion of reproductive transition in response to inductive light conditions as it is necessary for proper development of reproductive gametangiophores (Tsuzuki et al. 2019). Interestingly, *MpSPL2* exhibits a similar expression profile as *MpSPL1* what may suggest that both *SPL* genes are important for *Marchantia* reproductive phase stimulation.

Overall, from 30 gene transcripts selected as specifically female-expressed, we have validated that five are enriched in the archegonia-bearing region of *P. endiviifolia* female thalli. The rest of the transcripts showed a comparable level of expression in both types of female tissues or higher expression in the vegetative parts of the female thalli (Supplementary Data S1: Fig. S9b, selected examples). The observed expression of gene transcription pattern for the two male and five female genes may indicate their direct involvement in the development of *P. endiviifolia* sex organs. However, more genes need to be tested with a similar approach to get a more comprehensive view of the essential gene set responsible for sexual reproductive success of *P. endiviifolia*. Further functional studies will reveal their true involvement in liverwort sexual reproduction processes.

Discussion

In the present study, we explored the transcriptional landscape of the *P. endiviifolia* male and female gametophytes with a distinction between the vegetative and reproductive developmental phases of growth in combination with two growth conditions. To our best knowledge, this is the first report on the gene expression profile in dioecious representatives of simple thalloid liverworts. Whenever the genes expressed in *Pellia* thalli grown in axenic culture were compared to genes expressed in those grown in their natural habitat, regardless of the sex, the differentially expressed gene number was more than double when compared to the genes expressed between the *Pellia* thalli grown in the same conditions, showing that the growth conditions have a significant impact on the regulation of gene expression. Additionally, during culture of *P. endiviifolia*, we could not obtain archegonia, and antheridia appear rarely, demonstrating that the axenic conditions do not resemble those of natural environments.

From the obtained data, we determined the transcriptional changes in the sex organ-producing *Pellia* individuals, which comprise ~1.25% genes associated with antheridia-producing *Pellia* male thalli grown in the natural habitat (Mng) and 0.82% genes associated with archegonia-producing *Pellia* female thalli grown in the natural habitat (Fng) in the context of *Pellia* transcriptome data. Importantly, over 50% of the DEGs from the four libraries did not show any similarity to sequences deposited in the public databases, including the closest relative with sequenced genome, *M. polymorpha*. In fact, *Marchantia* genome annotation also revealed that, from
archegonia. Over 90% of this category accounted for a differential expression of the identified *P. endiviifolia* genes encoding ribosomal proteins reflects the specific requirements for specialized translation machinery during germ cell specification and functional gamete formation in this plant species.

As expected, because of the phylogenetic relationship, we identified a set of genes with common expression profile that show preferential or specific expression during sex organ development for the representatives of two liverwort lineages, simple thalloid *P. endiviifolia* and complex thallloid *M. polymorpha*. Some of the male-specific expressed genes are responsible for intracellular vesicle trafficking.

In all bryophytes, the process of antheridia development involves several divisions of dedifferentiated epidermal cells. Next, spermatids undergo a dynamic morphogenetic process called spermiogenesis which leads to flagellated sperm cell formation. The machinery controlling this process needs to produce proteins which further are directed to appropriate cell compartment to allow successful cellular differentiation and mature antheridia production. Thus, the identified *Pellia* genes might be important factors for liverworts antheridia development. Other groups of genes overrepresented in the *Pellia* male gametophytes producing antheridia included genes associated with oxidation–reduction processes. In flowering plants, the entire process of sexual reproduction, starting from gametogenesis through pollen/embryo sac growth, and up to double-fertilization, is under strict control of redox-mediated signaling (reviewed in Traverso et al. 2013; Zinta et al. 2016). For bryophytes studies, recently, it was shown that the loss of activity of the MpTCP1 TF affects the expression of several groups of enzymes involved in reactive oxygen species metabolism. In a consequence, the misbalanced redox signaling pathways cause archegoniophore cells over proliferation and abnormal archegoniophores bearing secondary archegoniophores production (Busch et al. 2019). Together, these data suggest that redox regulation network is important for coordination of developmental processes already in early diverging land plants.

In turn, in *Pellia* female individuals producing archegonia, the highest number of genes belongs to transmembrane...
transports with two ABC transporters and two sugar efflux transporters. The proper development of archegonia depends on appropriate regulation of the size and shape of every cell after each of several cell division cycles followed by cell differentiation. During that process, different transporters are needed to supply the dividing cells with necessary nutrients, but are also responsible for transporting signal molecules to orchestrate the proper archegonia development. Many ABC transporters have been reported to have important function in pollen formation (reviewed in Zhao et al. 2016). Recently, it was additionally shown that Arabidopsis ABCG1 and ABCG16 transporters may be required to maintain auxin homeostasis in pistils what is crucial for proper pollen tube growth (Liu et al. 2020). Whether the ABC transporters are important for hormone/nutrient homeostasis maintenance in the liverworts female reproductive organs is a matter of future investigations.

Current studies in M. polymorpha have identified conserved TFs regulating several crucial steps in the sexual reproduction process of this liverwort. These include FEMALE GAMETOPHYTE MYB (MpFGMYB) for female gametophyte development, MpBNB for gamete progenitor cell specification, MpDUO1 for sperm differentiation, and members of the RWP-RK domain family for female gamete formation (Higo et al. 2018; Yamaoka et al. 2018; Hisanaga et al. 2019). However, none of the Pellia genes identified in our analysis is an ortholog of the gene governing programs of sperm and eggs development described recently in Marchantia.

Of the 72 selected genes with the highest expression changes between P. endiviifolia male and female thalli in the reproductive phase of growth, over 75% (54 DEGs) of these were verified by RT-qPCR. 16.6% (14 DEGs) showed no amplification products, and 5.5% (4 DEGs) were false positives. Gonzales and Joly (2013) published a paper concerning the impact of the RNA-seq approach on false-positive rates in differential gene expression detection. They showed that the choice of single-end instead of paired-end sequences produced higher false-positive rate than reducing the length of sequence reads from 100 to 50 bp. In the present results, we used 50 bp single-end sequencing without knowledge about the bias that might result from this approach. Having P. endiviifolia transcriptome data, we decided to use 50SE sequencing for the differential gene expression analysis. In our study, we also did not include any biological replicates. Such replicates are mandatory to ensure the valid biological interpretation of results, due to individual sample variation. However, we did ensure specimen diversity due to the use of 200 individual thalli per sample, as in our previous successful study reporting Pellia small RNA (Alaba et al. 2015). Using RT-qPCR, we confirmed the up-regulation of 10 genes in the male thalli-producing antheridia and 30 genes in the female thalli-producing archegonia. The RNA-seq selected genes, together with the ones previously identified in the RDA-cDNA experiment (Sierocka et al. 2011), were used to test their expression on RNA isolated from antheridia and archegonia separately from the vegetative parts of Pellia thalli. From 40 DEGs selected after the RNA-seq experiments, only five female-specific DEGs showed enriched expression in archegonia. For two P. endiviifolia genes encoding SPL TF and class I chitinase, we have identified their Marchantia orthologs and, surprisingly, both Marchantia genes also display specific or enriched expression in the female reproductive organs. Interestingly, the SPL proteins from both liverworts group together with Arabidopsis SPL8 protein (unpublished data), which is crucial for proper pollen sac development (Unte et al. 2003) and regulates gynoecium differential patterning (Xing et al. 2013). Furthermore, MpSPL1 gene exhibits similar expression pattern as another representative of Marchantia SPL gene family, MpSPL2, which recently was shown to be necessary for proper development of reproductive branches (Tsuzuki et al. 2019). Taking together, this information indicates the pen_SPL1 and MpSPL1 genes as very interesting examples for further functional studies.

Of 14 selected genes, ten from RNA-seq and four from RDA-cDNA experiments (Sierocka et al. 2011), only two Pellia male-specific expressed genes showed enriched expression in antheridia. For these two genes, we found a Marchantia ortholog only for the PenB_HMG-box gene, whose antheridiphore-specific expression profile in Marchantia positively correlates with the expression profile which we observed in P. endiviifolia. As there are no available data about the function of the Marchantia genes selected in our study, it is not possible to indicate similarities or differences between the SPL and HMGbox gene families from the most ancient living land plants and highly diversified vascular plants. Further detailed analyses of the biological and developmental functions of the identified differentially expressed genes will be a matter for further investigation.

Conclusions

In the present study, we have shown differences in gene expression profiles between male and female gametophytes of the simple thalloid liverwort P. endiviifolia. Our data provide the first look at the transcriptional landscape of a representative from the most basal lineage of the Jungermanniopsida class. A comparison of the obtained data with the first sequenced liverwort genome resulted in the identification of a group of genes exhibiting similar expression patterns between members of the two distinct liverworts’ body plans. Finally, we point out several genes as candidates for functional studies to test their involvement in liverworts’ sexual reproduction.
Author contribution statement IS and ZSK conceived and designed research. IS performed the experiments. SA and WMK analyzed RNA-seq data. IS and ZSK wrote the manuscript. AJ and WMK made critical comments on the manuscript.

Acknowledgements We would like to thank Halina Pietrykowska for support in plant collection and axenic culture growing.

Funding This study was supported by: the Foundation for Polish Science under Parent Bridge Program (POMOST/2012-5/7) awarded to IS and under grant Mistrz 3/2014 awarded to AJ; the Polish National Science Centre with Grant Sonata (2016/21/D/NZ3/00353) awarded to IS; KNOW RNA Research Center in Poznan (01/KNOW2/2014). Computations were performed at Poznan Supercomputing and Networking Center (PSNC).

Compliance with ethical standards

Conflict of interest No conflicts of interest declared.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW et al (2015) The liverwort Pellia endiviifolia shares micro-transcriptomic traits that are common to green algae and land plants. New Phytol 206(1):352–367. https://doi.org/10.1111/nph.13220
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Arroniz-Crespo M, Nunez-Olivera E, Martinez-Abaigar J, Tomas R (2004) A survey of the distribution of UV-absorbing compounds in aquatic bryophytes from a mountain stream. The Bryologist 107:202–208. https://www.jstor.org/stable/3244845
Asakawa Y, Ludwichuk A, Nagashima F (2013) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52–80. https://doi.org/10.1016/j.phytochem.2012.04.012
Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995. https://doi.org/10.1101/gr.7.10.986
Bowman JL, Kohchi T, Yamato KT, Jenkins I, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030
Busch A, Deckena M, Almeida-Trapp M, Kopischke S, Kock C, Schüssler E et al (2019) MpTCP1 controls cell proliferation and redox processes in Marchantia polymorpha. New Phytol 224:1627–1641. https://doi.org/10.1111/nph.16132
Byrne ME (2009) A role for the ribosome in development. Trends Plant Sci 14(9):512–519. https://doi.org/10.1016/j.tplants.2009.06.009
Brown RC, Lemmon BE, Shimamura M, Renzaglia KS (2015) Spores of relictual bryophytes: diverse adaptations to life on land. Rev Palaeobot Palynol 216:1–17. https://doi.org/10.1016/j.revpalbo.2015.01.004
Campbell MA, Zhu W, Jiang N, Lin H, Ouyang S, Childs KL et al (2007) Identification and characterization of lineage-specific genes within the Poaceae. Plant Physiol 145:1311–1322. https://doi.org/10.1104/pp.107.104513
Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ (2011) Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution.Curr Biol 21:1025–1029. https://doi.org/10.1016/j.cub.2011.04.032
Conesa A, Gütz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. https://doi.org/10.1155/2008/619832
Crandall-Stotler B, Stotler RE, Long DG (2009) Phylogeny and the classification of the Marchantiophyta. Edinb J Bot 66(1):155–198. https://doi.org/10.1017/S0066024889005393
Dolan L (2009) Body building on land-morphological evolution of land plants. Curr Opin Plant Biol 12:4–8. https://doi.org/10.1016/j.copbio.2008.12.001
Eklund DM, Ishizaki K, Flores-Sandoval E, Kikuchi S, Takebayashi Y, Tsukamoto S et al (2015) Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27(6):1650–1669. https://doi.org/10.1105/tpc.15.00065
ExPaSy bioinformatics resource portal, MyHits database, Motif Scan tool. https://myhits.isb-sib.ch/cgi-bin/motif_scan. Accessed June 2015
Fabon G, Monforte L, Tomas-Las-Heras R, Nunez-Olivera E, Martinez-Abaigar J (2012) Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort. J Plant Physiol 169:20–26. https://doi.org/10.1016/j.jplph.2011.08.010
Flores-Sandoval E, Eklund DM, Bowman JL (2015) A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 11(5):e1005207. https://doi.org/10.1371/journal.pgen.1005207
González E, Joly S (2013) Impact of RNA-seq attributes on false positive rates in differential expression analysis of de novo assembled transcriptome. BMC Res Notes 6:503. https://doi.org/10.1186/1756-0500-6-503
Graham MA, Silverstein KA, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197. https://doi.org/10.1104/pp.104.037531
Grover A (2012) Plant chitinases: genetic diversity and physiological roles. CRC Crit Rev Plant Sci 31:57–73. https://doi.org/10.1080/07352689.2011.616043
He-Nygrén X, Jasús A, Ahonen I, Glaude DL, Pippolero P et al (2016) Illuminating the evolutionary history of liverworts (Marchantiophyta)—towards a natural classification. Cladistics 22:1–31. https://doi.org/10.1111/j.1096-0031.2006.00089.x
Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T et al (2016) Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57(2):325–338. https://doi.org/10.1093/pcp/pcw005
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp16

Rovekamp M, Bowman JL, Grossniklaus U (2016) Marchantia. MbpKD regulates the gametophyte–sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr Biol 26(13):1782–1789. https://doi.org/10.1016/j.cub.2016.05.028

Rubinstein CV, Gerrienne P, de la Puente GS, Astini RA, Steemans P (2010) Early middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369. https://doi.org/10.1111/j.1469-8137.2010.03433.x

Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class I KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Eolv Dev 10(5):555–566. https://doi.org/10.10111/j.1525-142X.2008.00271.x

Sakakibara K, Ando S, Yip HK, Tamada Y, Hiwatashi Y, Murata T et al (2013) KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:1067–1070. https://doi.org/10.1126/science.1230082

Schuster RM, Cannon SB, Schluter D, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

Schmutz J, Cannon SB, Aoyama T, Friedrich T, Ando S, Sato Y et al (2014) WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development 141(8):1660–1670. https://doi.org/10.1242/dev.097444

Schmutz J, Cannon SB, Schluter D, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

Sierocka I, Kozlowski LP, Bujnicki JM, Jarmolowski A, Szewykowska-Kulinska Z (2014) Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene 485(1):53–62. https://doi.org/10.1016/j.gene.2011.06.012

Sierocka I, Kozlowski LP, Bujnicki JM, Jarmolowski A, Szewykowska-Kulinska Z (2014) Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production. BMC Plant Biol 14:168. https://doi.org/10.1186/s12229-014-1468

Szwonyj P, Frangedakis E, Ricca M, Quandi D, Wicke S, Langdale JA (2015) Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Plant Biol 15:98. https://doi.org/10.1186/s12870-015-0481-x

Szwonyj P (2016) The genome of the model species Anthoceros agrestis. Adv Bot Res 78:189–211. https://doi.org/10.1016/bs.abr.2015.12.001

Traverso JA, Amada Pulido A, Rodríguez-García MI, Alché JD (2013) Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. Front Plant Sci 4:465. https://doi.org/10.3389/fpls.2013.00465

Tsuchis M, Futagami K, Shimamura M, Inoue C, Kunitomo K, Ogas T et al (2019) An early arising role of the microRNA156/SPL module in reproductive development revealed by the liverwort Marchantia polymorpha. Curr Biol 29:3307–3314.e5. https://doi.org/10.1016/j.cub.2019.07.084

Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15(4):1009–1019. https://doi.org/10.1105/tpc.010678

Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285. https://doi.org/10.1038/nature01884

Xing S, Salinas M, Garcia-Molina A, Höhmann S, Berndtgen R, Huijser P (2013) SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant J 75(4):566–577. https://doi.org/10.1111/tpj.12221

Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K, Saito M et al (2018) Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr Biol 28(3):479–486. https://doi.org/10.1016/j.cub.2017.12.053

Yasumura Y, Moylan E, Langdale J (2005) A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell 17:1894–1907. https://doi.org/10.1105/tpc.105.033191

Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230. https://doi.org/10.10111/j.cb.2007.06.037

Zhao G, Shi J, Liang W, Zhang D (2016) ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav 11(3):e1136764. https://doi.org/10.1080/15592324.2015.1136764

Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK (2016) Unveiling the redox control of plant reproductive development during abiotic stress. Front Plant Sci 7:700. https://doi.org/10.3389/fpls.2016.00700

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.