SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations

Naushad UzZaman, Hector Llorens, Leon Derczynski, Marc Verhagen, James Allen and James Pustejovsky
Outline

• Motivation
• TempEval-3
• TempEval-3 participants
• Summary and Future Work
Temporal Information Processing

In 1492, Genoese explorer Christopher Columbus, under contract to the Spanish crown, reached several Caribbean islands, making first contact with the indigenous people. On April 2, 1513, Spanish conquistador Juan Ponce de León landed on what he called "La Florida"—the first documented European arrival on what would become the U.S. mainland. Spanish settlements in the region were followed by ones in the present-day southwestern United States that drew thousands through Mexico. French fur traders established outposts of New France around the Great Lakes; France eventually claimed much of the North American interior, down to the Gulf of Mexico. The first successful English settlements were the Virginia Colony in Jamestown in 1607 and the Pilgrims' Plymouth Colony in 1620. The 1628 chartering of the Massachusetts Bay Colony resulted in a wave of migration; by 1634, New England had been settled by some 10,000 Puritans. Between the late 1610s and the American Revolution, about 50,000 convicts were shipped to Britain's American colonies. Beginning in 1614, the Dutch settled along the lower Hudson River, including New Amsterdam on Manhattan Island.
Why is it important?

• Question Answering (QA)
• Summarization
• Visualization
• Natural Language Understanding
TempEval-3 vs earlier TempEval

- Size of corpus: 600K silver, 100K gold vs 50K
- End-to-end temporal relation processing task vs subtasks
- Full set of TimeML temporal relations vs reduced set used in earlier TempEvals
- Platinum test set
- Evaluation with temporal awareness score
Outline

- Motivation
- TempEval-3
- TempEval-3 participants
- Summary and Future Work
Data

• Reviewing Existing Corpora
 ‣ TimeBank and AQUAINT
 ‣ added missing entities and relations
 ‣ converted all to full set of TimeML relations

• New Corpora
 ‣ platinum corpus - annotated by the experts
 ‣ silver corpus - merged with the SOA systems
Data

Corpus	# of words	Standard
TimeBank	61,418	Gold
AQUAINT	33,973	Gold
TE-3 Silver	666,309	Silver
TE-3 Eval	6,375	Platinum
TB-ES Train	57,977	Gold
TB-ES Eval	9,833	Gold
Task A: temporal expression

Temporal expression	Type	Value
DCT (given): March 1, 1998; 14:11 hours	TIME	1998-03-01T14:11:00
Sunday	DATE	1998-03-01
last week	DATE	1998-W08
mid afternoon	TIME	1998-03-01TAF
nearly two years	DURATION	P2Y
each month	SET	P1M

Table 1: Examples of normalized values and types for temporal expressions according to TimeML
Task B: events

Event: something that happens or a dynamic property which holds the truth. Attributes: class, tense, aspect.

Class attribute:
1. Occurrence: die, crash, build
2. State: on board, alive
3. Reporting: say, report
4. I-Action: attempt, try, promise
5. I-State: believe, intend, want
6. Aspectual: begin, stop, continue
7. Perception: see, hear, watch, feel
Temporal Relations

Simultaneous	Identity during	Begins/begun by
X	Y	X

Before/after	iBefore/iAfter	Ends/ended by
X	Y	X

Overlaps/overlapped by	Includes/included by
X	Y
Task ABC: temporal relations

- Task ABC - annotating temporal relations from raw text
- Task C - annotating relations given gold entities
- Task C relations only - annotating relations given gold entities and related pairs
Evaluation Metric - Task A and B

- Sorted with attribute F1 score - captures entity and attribute performance together

\[
\text{Attribute Recall} = \frac{|\{\forall x \mid x \in (Sys_{entity} \cap Ref_{entity}) \land Sys_{attr}(x) == Ref_{attr}(x)\}|}{|Ref_{entity}|}
\]

\[
\text{Attribute Precision} = \frac{|\{\forall x \mid x \in (Sys_{entity} \cap Ref_{entity}) \land Sys_{attr}(x) == Ref_{attr}(x)\}|}{|Sys_{entity}|}
\]
Evaluation Metric - Task ABC and C

\[\text{Precision} = \frac{|Sys_{relation}^+ \cap Ref_{relation}^-|}{|Sys_{relation}^-|} \]
\[\text{Recall} = \frac{|Ref_{relation}^- \cap Sys_{relation}^+|}{|Ref_{relation}^-|} \]

where, \(G^+ \) is the closure of graph \(G \) and \(G^- \) is the reduced of graph \(G \), where redundant relations are removed.

A relation is redundant if it can be inferred through other relations.

- F score -- temporal awareness score
- F score captures entity & relation performance
- F score can help to find overall best system
Outline

• Motivation
• TempEval-3
• TempEval-3 participants
• Summary and Future Work

Participants’ Task A Systems

Strategy	System	Training data	Classifier used
Data-driven	ATT-1, 2, 3	TBAQ + TE3Silver	MaxEnt
	ClearTK-1, 2	TimeBank	SVM, Logit
	ClearTK-3, 4	TBAQ	SVM, Logit
	JU-CSE	TBAQ	CRF
	ManTIME-1	TBAQ + TE3Silver	CRF
	ManTIME-3	TBAQ	CRF
	ManTIME-5	TE3Silver	CRF
	Temp : ESAfeature	TBAQ	MaxEnt
	Temp : WordNetfeature	TBAQ	MaxEnt
	TIPSem (TE2)	TBAQ	CRF
Rule-based	FSS-TimEx (EN)	None	None
	FSS-TimEx (ES)	None	None
	HeidelTime-1.2, bf (EN)	None	None
	HeidelTime-t (EN)	TBAQ	None
	HeidelTime (ES)	Gold	None
	NavyTime-1, 2	None	None
	SUTime	None	None
Hybrid	KUL	TBAQ + TE3Silver	Logit + post-processing
	KUL-TE3RunABC	TBAQ + TE3Silver	Logit + post-processing
	ManTIME-2	TBAQ + TE3Silver	CRF + post-processing
	ManTIME-4	TBAQ	CRF + post-processing
	ManTIME-6	TE3Silver	CRF + post-processing

Table 1: Automated approaches for TE3 Timex Extraction
Participants’ Task A Performance

	F1	P	R	strict F1	value F1
HeidelTime-t	90.30	93.08	87.68	81.34	**77.61**
HeidelTime-bf	87.31	90.00	84.78	78.36	72.39
HeidelTime-1.2	86.99	89.31	84.78	78.07	72.12
NavyTime-1,2	**90.32**	**89.36**	**91.30**	79.57	70.97
ManTIME-4	89.66	95.12	84.78	74.33	68.97
ManTIME-6	87.55	98.20	78.99	73.09	68.27
ManTIME-3	87.06	94.87	80.43	69.80	67.45
SUTime	**90.32**	**89.36**	**91.30**	79.57	67.38
ManTIME-1	87.20	97.32	78.99	70.40	67.20
ManTIME-5	87.20	97.32	78.99	69.60	67.20
ManTIME-2	88.10	97.37	80.43	72.22	66.67
ATT-2	85.25	98.11	75.36	78.69	65.57
ATT-1	85.60	**99.05**	75.36	79.01	65.02
ClearTK-1,2	90.23	93.75	86.96	**82.71**	64.66
JU-CSE	86.38	93.28	80.43	75.49	63.81
KUL	83.67	92.92	76.09	69.32	62.95
KUL-TE3RunABC	82.87	92.04	75.36	73.31	62.15
ClearTK-3,4	87.94	94.96	81.88	77.04	61.48
ATT-3	80.85	97.94	68.84	72.34	60.43
FSS-TimEx	85.06	90.24	80.43	49.04	58.24
TIPSem (TE2)	84.90	97.20	75.36	81.63	65.31

Table 1: Task A - Temporal Expression Performance.
Task A - Timex Observations

• Strategy: close competitions for all approaches

• Data: quality dataset helped more than larger dataset - silver data didn’t help
Participants’ Task B Systems

Strategy	System	Training data	Classifier used	Linguistic Knowledge
Data-driven	ATT-1, 2, 3	TBAQ + TE3Silver	MaxEnt	ms, ss
	ClearTK-1, 2	TimeBank	SVM, Logit	ms
	ClearTK-3, 4	TBAQ	SVM, Logit	ms
	JU-CSE	TBAQ	CRF	
	KUL	TBAQ + TE3Silver	Logit	ms, ls
	KUL-TE3RunABC	TBAQ + TE3Silver	Logit	ms, ls
	NavyTime-1	TBAQ	MaxEnt	ms, ls
	NavyTime-2	TimeBank	MaxEnt	ms, ls
	Temp: ESAFeature	TBAQ	MaxEnt	ms, ls, ss
	Temp: WordNetFeature	TBAQ	MaxEnt	ms, ls
	TIPSem (TE2)	TBAQ	CRF/SVM	ms, ls, ss
Rule-based	FSS-TimEx (EN)	None	None	ls, ms
	FSS-TimEx (ES)	None	None	ls, ms

Table 1: Automated approaches for Event Extraction
Participants’ Task B Performance

	F1	P	R	class F1
ATT-1	81.05	81.44	80.67	71.88
ATT-2	80.91	81.02	80.81	71.10
KUL	79.32	80.69	77.99	70.17
ATT-3	78.63	81.95	75.57	69.55
KUL-TE3RunABC	77.11	77.58	76.64	68.74
ClearTK-3,4	78.81	81.40	76.38	67.87
NavyTime-1	80.30	80.73	79.87	67.48
ClearTK-1,2	77.34	81.86	73.29	65.44
NavyTime-2	79.37	80.52	78.26	64.81
Temp:ESAfeature	68.97	78.33	61.61	54.55
JU-CSE	78.62	80.85	76.51	52.69
Temp:WordNetfeature	63.90	78.90	53.69	50.00
FSS-TimEx	65.06	63.13	67.11	42.94
TIPSem (TE2)	82.89	83.51	82.28	75.59

Table 1: Task B - Event Extraction Performance.
Task B - Event Observations

- **Strategy**: machine learning systems dominant
- **Data**: larger dataset helped - silver data helped
- **Linguistic Features**: semantic features (lexical semantics and sentence-level semantic) helped, when executed properly
Task C: relation identification systems

Strategy	System	Training data	Classifier used	Linguistic Knowledge
Data-driven	ClearTK-1	TimeBank	SVM, Logit	e-attr, ms
	ClearTK-2	TimeBank + Bethard07	SVM, Logit	e-attr, ms
	ClearTK-3	TBAQ	SVM, Logit	e-attr, ms
	ClearTK-4	TBAQ + Muller’s inferences	SVM, Logit	e-attr, ms
	KULRunABC	TBAQ	SVM, Logit, ms	
Rule-based	JU-CSE	None	None	
	UTTime-1, 2, 3	None	None	
	TIPSem (TE2)	None	None	e-attr, ms, ls, ss
Hybrid	NavyTime-1	TBAQ	MaxEnt	ms
	NavyTime-2	TimeBank	MaxEnt	ms
	UTTime-4	TBAQ	Logit	ms, ls, ss
	UTTime-5	TBAQ + inverse relations	Logit	ms, ls, ss

Table 1: Automated approaches for TE3 TLINK Identification
Task C: relation classification systems

Strategy	System	Training data	Classifier used	Linguistic Knowledge
Data-driven	ClearTK-1	TimeBank	SVM, Logit	ms, ls
	ClearTK-2	TimeBank + Bethard07	SVM, Logit	ms, ls
	ClearTK-3	TBAQ	SVM, Logit	ms, ls
	ClearTK-4	TBAQ + Muller’s inferences	SVM, Logit	ms, ls
	JU-CSE	TBAQ	CRF	ms
	KULRunABC	TBAQ	SVM, Logit	ms
	NavyTime-1	TBAQ	MaxEnt	ms, ls
	NavyTime-2	TimeBank	MaxEnt	ms, ls
	UTTime-1,4, 2	TBAQ	Logit	ms, ls, ss
	UTTime-3,5	TBAQ + inverse relations	Logit	ms, ls, ss
	TIPSem (TE-2)	TBAQ	CRF/SVM	ms, ls, ss

Table 1: Automated approaches for Relation Classification
Task C: Relation Performance

	F1	P	R
ClearTK-2	30.98	34.08	28.40
ClearTK-1	29.77	34.49	26.19
ClearTK-3	28.62	30.94	26.63
ClearTK-4	28.46	29.73	27.29
NavyTime-1	27.28	31.25	24.20
JU-CSE	24.61	19.17	34.36
NavyTime-2	21.99	26.52	18.78
KUL-TE3RunABC	19.01	17.94	20.22
TIPSem (TE2)	42.39	38.79	46.74

Table 1: Task ABC - Task C evaluation from raw text

	F1	P	R
UTTime-1, 4	56.45	55.58	57.35
UTTime-3, 5	54.70	53.85	55.58
UTTime-2	54.26	53.20	55.36
NavyTime-1	46.83	46.59	47.07
NavyTime-2	43.92	43.65	44.20
JU-CSE	34.77	35.07	34.48

Table 1: Task C - TLINK Identification and Classification.

Table 1: Task C - relation only: Relation Classification.
Task C - Relations Observations

- **Strategy:** machine learning systems dominant
- **Data:** no one used silver data for final system
- **Data:** adding extra high quality data from external sources usually helped
- **Features:** using more linguistic features are important, but needs to be executed properly
TempEval-3 Spanish

- Two participants for temporal expressions
- One participant for event extraction
- TIPSemB-Freeling provided as SOA reference
- TE-3 participant HeidelTime outperformed in temporal expressions task
Outline

- Motivation
- TempEval-3
- TempEval-3 participants
- Summary and Future Work
Summary

- Larger corpus: 600K silver, 100K gold
- End-to-end temporal relation processing task
- Full set of TimeML temporal relations
- Platinum test set
- Evaluation with one score
- Found out what worked for each tasks
Future

• Release larger corpus for human review merging all participants’ output

• Temporal QA can better evaluate temporal information understanding
 ‣ Natural task; easy to create questions / annotate
 ‣ Evaluates NLU; encourage for deep document level NLU
 ‣ Can evaluate human vs system annotations
 ‣ Can reason with any TimeML annotations
Acknowledgement

- Participants -- especially Steven Bethard, Jannik Strötgen, Nate Chambers, Oleksandr Kolomiyets, Michele Filannino, Philippe Muller and others -- who helped us to improve TempEval-3 with their valuable feedback.
Thank you!
Why Evaluate with Temporal QA

- Answering questions to judge understanding
- Creating questions easier than annotating
- Temporal IE performance might not reflect real task performance
- Completeness of human annotations
- Comparing human and system annotations
Temporal Question Taxonomy

• yes/no: Was Fein called after the killing?

• list: What happened after the crash?

• list between: What happened between the crash and today?

• factoid: When DT Inc. holders adopted a shareholder-rights plan? during the crisis
Temporal QA System

• Take TimeML annotation as input

• Temporal reasoning with Timegraph (Miller and Schubert, 1990) - efficient

• Maintains necessary relations in graph to infer relations between all entities

• Can answer yes/no, list, factoid

Evaluating Temporal Information Understanding with Temporal Question Answering. Naushad UzZaman, Hector Llorens and James F. Allen. Proceedings of IEEE International Conference on Semantic Computing, Italy, September 2012.
Summary of Temporal QA

• Temporal QA can better evaluate temporal information understanding
 ‣ Natural task; easy to create questions
 ‣ Can evaluate human temporal annotations

• Developed a system for temporal QA
 ‣ Can reason with any TimeML annotations
 ‣ Released the toolkit
Metrics for Temporal Evaluation

Evaluation Metric	Recall	Precision								
TempEval-2	$\frac{\text{Ref} \cap \text{Sys}}{\text{Ref}}$	$\frac{\text{Sys} \cap \text{Ref}}{\text{Sys}}$								
Setzer et al.	$\frac{\text{Ref}^+ \cap \text{Sys}^+}{\text{Ref}^+}$	$\frac{\text{Sys}^+ \cap \text{Ref}^+}{\text{Sys}^+}$								
Tannier and Muller	$\frac{\text{Ref}^- \cap \text{Sys}^-}{\text{Ref}^-}$	$\frac{\text{Sys}^- \cap \text{Ref}^-}{\text{Sys}^-}$								
Our ACL’11 metric	$\frac{	\text{Ref}^- \cap \text{Sys}^+	}{	\text{Ref}^-	}$	$\frac{	\text{Sys}^- \cap \text{Ref}^+	}{	\text{Sys}^-	}$
Our Updated metric	$\frac{	\text{Ref}^- \cap \text{Sys}^+	+ w \cdot (\text{Sys}^- - \text{Ref}^-) \cap \text{Ref}^+}{	\text{Ref}^-	}$	$\frac{	\text{Sys}^- \cap \text{Ref}^+	}{	\text{Sys}^-	}$

1 where, $w = \frac{0.99}{(1+|\text{Ref}^+| - |\text{Ref}^- \cap \text{Sys}^+|)}$
Improvement

\[
\text{Precision} = \frac{|Sys^- \cap Ref^+|}{|Sys^-|}
\]

* \(G^- = \text{Reduced Graph of } G\), which includes only the core relations

\[
\text{Recall} = \frac{|Ref^- \cap Sys^+| + w \times |(Sys^- - Ref^-) \cap (Ref^+ - Ref^-)|}{|Ref^-|}
\]

* \((Ref^- \cap Sys^+)\) captures system explicit relations that are found in gold explicit relations
* \((Sys^- - Ref^-)\) captures implicit system relations in terms of \(Ref^-\)
* \((Ref^+ - Ref^-)\) captures implicit gold relations
* \((Sys^- - Ref^-) \cap (Ref^+ - Ref^-)\) captures implicit system relations that exists in gold implicit relations

\[
\begin{array}{c}
K \quad A \quad \leftarrow \quad B \quad \rightarrow \quad C \quad \rightarrow \quad D \\
S_2 \quad A \quad \rightarrow \quad E \quad \leftarrow \quad C \quad \rightarrow \quad D
\end{array}
\]