Cytogenetic analyses of five amazon lizard species of the subfamilies Teiinae and Tupinambinae and review of karyotyped diversity the family Teiidae

Natália Dayane Moura Carvalho¹, Federico José Arias², Francijara Araújo da Silva¹, Carlos Henrique Schneider¹, Maria Claudia Gross¹

¹ Laboratório de Citogenômica Animal, Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Estrada do Contorno 3000, Aleixo, CEP 69077-000 - Manaus, AM – Brazil
² Laboratório de Herpetologia, Universidade de São Paulo, Instituto de Biociências, Rua do Matão, Travessa 14, 321, Cidade Universitária, CEP 05508-090 – São Paulo, SP – Brazil

Corresponding author: Natália D. Moura Carvalho (nathydayane@gmail.com)

Academic editor: L. Kupriyanova | Received 26 May 2015 | Accepted 7 September 2014 | Published 7 October 2015

Citation: Carvalho NDM, Arias FJ, da Silva FA, Schneider CH, Gross MC (2015) Cytogenetic analyses of five amazon lizard species of the subfamilies Teiinae and Tupinambinae and review of karyotyped diversity the family Teiidae. Comparative Cytogenetics 9(4): 625–644. doi: 10.3897/CompCytogen.v9i4.5371

Abstract
Lizards of the family Teiidae (infraorder Scincomorpha) were formerly known as Macroteiidae. There are 13 species of such lizards in the Amazon, in the genera Ameiva (Meyer, 1795), Cnemidophorus (Wagner, 1830), Crocodilurus (Spix, 1825), Dracaena (Daudin, 1801), Kentropyx (Spix, 1825) and Tupinambis (Daudin, 1802). Cytogenetic studies of this group are restricted to karyotype macrostructure. Here we give a compilation of cytogenetic data of the family Teiidae, including classic and molecular cytogenetic analysis of Ameiva ameiva (Linnaeus, 1758), Cnemidophorus sp.1, Kentropyx calcicallata (Spix, 1825), Kentropyx pelviceps (Cope, 1868) and Tupinambis teguixin (Linnaeus, 1758) collected in the state of Amazonas, Brazil. Ameiva ameiva, K. calcicallata and K. pelviceps have 2n=50 chromosomes classified by a gradual series of acrocentric chromosomes. Cnemidophorus sp.1 has 2n=48 chromosomes with 2 biarmed chromosomes, 24 uniarmed chromosomes and 22 microchromosomes. Tupinambis teguixin has 2n=36 chromosomes, including 12 macrochromosomes and 24 microchromosomes. Constitutive heterochromatin was distributed in the centromeric and terminal regions in most chromosomes. The nucleolus organizer region was simple, varying in its position among the species, as evidenced both by AgNO₃ impregnation and by hybridization with 18S rDNA probes. The data reveal a karyotype variation with respect to the diploid number, fundamental number and karyotype formula, which reinforces the importance of increasing chromosomal analyses in the Teiidae.

Copyright Natália D. Moura Carvalho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords
Macroteiidae, Chromosome, Heterochromatin, Differential staining, rDNA-FISH

Background

The family Teiidae is composed of lizards formerly known as macroteiids that are restricted to the New World (Giugliano et al. 2007, Harvey et al. 2012). Harvey et al. (2012) recently divided Teiidae in three subfamilies: (1) Teiinae, including the genera *Ameiva* (Meyer, 1795), *Ameivula* (Spix, 1825), *Aurivela* (Bell, 1843), *Aspidoscelis* (Fitzinger, 1843), *Contomastix* (Duménil and Bibron, 1839), *Cnemidophorus* (Wagler 1830), *Dicrodon* (Duménil and Bibron, 1839), *Holcosus* (Cope, 1862), *Kentropyx* (Spix, 1825), *Medopheos* (Bocourt, 1874) and *Teius* (Merrem, 1820); (2) Tupinambinae, including the genera *Crocodilurus* (Spix, 1825), *Draeana* (Daudin, 1801), *Salvator* (Duménil & Bibron, 1839) and *Tupinambis* (Daudin, 1802); and (3) Callopistinae, which contains the single genus *Callopistes* (Gravenhorst, 1837) (Harvey et al. 2012). However, the phylogenetic hypothesis of Teiidae based on molecular data (Reeder et al. 2002, Giugliano et al. 2007) differs substantially from the hypothesis proposed by Harvey et al. (2012).

Most chromosome data for teiid lizards refer only to the determination of diploid numbers and karyotype formulae (Fritts 1969, Gorman 1970, Lowe et al. 1970, Robinson 1973, Cole et al. 1979, de Smet et al. 1981, Navarro et al. 1981, Ward and Cole 1986, Cole et al. 1995, Markezich et al. 1997, Rocha et al. 1997, Walker et al. 1997, Manriquen-Moran et al. 2000, Veronese et al. 2003). Some species of this family have, however, been analyzed in detail with respect to their chromosomal structure and organization, as revealed by differential staining techniques, such as the detection of heterochromatin and nucleolar organizer regions (NORs), as well as chromosomal physical mapping of DNA sequences (Bickham et al. 1976, Bull 1978, Peccinini-Seale and Almeida 1986, Porter et al. 1991, Rocha et al. 1997, Veronese et al. 2003, Peccinini-Seale et al. 2004, Santos et al. 2007, Santos et al. 2008).

The family Teiidae can be divided into two chromosomal groups: the *Dracaena* group (currently the subfamily Tupinambinae), which has a karyotype with 34–38 chromosomes and a clear distinction of macrochromosomes (M) from microchromosomes (mi), and the *Ameiva* group (currently the subfamily Teiinae), which has a diploid number ranging from 46–56 chromosomes, with no distinction between macrochromosomes and microchromosomes (Gorman 1970).

We did a cytogenetic study of five species in the family Teiidae (*Ameiva ameiva* (Linnaeus, 1758), *Cnemidophorus* sp.1, *Kentropyx calcarea* (Spix, 1825), *Kentropyx pelviceps* (Cope, 1868) and *Tupinambis teguixin* (Linnaeus, 1758)) using classical as well as molecular cytogenetic markers (conventional staining, heterochromatin patterns, NOR locations and chromosomal physical mapping of 18S rDNA sequences). Karyotype organization in the family is discussed.
Methods

Thirty-three specimens belonging to the subfamilies Teiinae and Tupinambinae were collected in the state of Amazonas, Brazil, in the following localities: the riverside forests of the Jatapu river, the city of São Sebastião do Uatumã (0°50’E 01°55’S; 58°50’E 60°10’W), the Darahá and Ayuanã rivers, both in the city of Santa Isabel do Rio Negro (0°24’24”N; 65°1’1”W), the city of Manaus (3°07’13.03”S; 60°01’440”W) and the Purus riverside in the city of Tapauá (5°42’115”S; 63°13’684”W). All of the collections were conducted with permission from the Brazilian Environmental Protection Agency (ICMBio/SISBIO 41825-1). The collection sites are located in public lands (Table 1, Figure 1). The animals were euthanized soon after capture in the field with a lethal dose of the anesthetic sodium thiopental to avoid being deprived of food or water. This research was approved by the Ethics Committee for Animal Experimentation of the Fundação Universidade do Amazonas / Universidade Federal do Amazonas (UFAM) (number 041/2013). No endangered or protected species were used in this research study. The animals underwent cytogenetic procedures and were then fixed with 10% formaldehyde (injected in the coelom and digestive tract), preserved in 70% alcohol. Voucher specimens were deposited in the Herpetological Collection of the Instituto Nacional de Pesquisas da Amazônia (INPA H31712, 33213, 34791, 34841, 35018).

Cellular suspensions were obtained from the bone marrow was removed soon after the euthanasia of animals in the field using an in vitro colchicine treatment (Ford and Hamerton 1956). Constitutive heterochromatin (CH) was detected using barium hydroxide (Sumner 1972) and the NORs were detected using silver nitrate staining (Howell and Black 1980).

Genomic DNA was extracted from muscle tissue using a phenol-chloroform protocol (Sambrook and Russell 2001) and quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific). 18S rDNA was amplified by polymerase chain reaction (PCR) using primers 18Sf (5’-CCG CTT TGG TGA CTC TTG AT-3’) and 18Sr (5’-CCG AGGACC TCA CTA AAC CA-3’) (Gross et al. 2010). PCR reactions were performed on a final volume of 15 µL, containing genomic DNA (200 ng), 10x buffer with 1.5 mM of MgCl₂, Taq DNA polymerase (5 U/µL), dNTPs (1 mM), forward and reverse primers (5 mM) and Milli-Q water. The amplification cycles followed these steps: 1 min at 95 °C; 35 cycles of 1 min at 94 °C, 1 min at 56 °C, 1 min 30 s at 72 °C and 5 min at 72 °C.

The PCR product of the 18S rDNA was labeled with digoxigenin-11-dUTP (Dig-Nick Translation mix; Roche), by nick translation according to the manufacturer’s instructions. The antibody anti-digoxigenin rhodamine (Roche) was used for probing the signal. Homologue (DNA probes from the same species) and heterologue (probes of one species hybridized to the chromosome of another) hybridizations were made under stringency conditions of 77% (2.5 ng/µL of 18S rDNA, 50% formamide, 10% dextran sulfate, and 2x SSC at 37 °C for 18 h) (Pinkel et al. 1986). The chromosomes were counterstained with DAPI (2 mg/ml) in VectaShield mounting medium (Vector). The chromosomes were analyzed using an Olympus BX51 epifluorescence mi-
Table 1. Species of the Teiinae and Tupinambinae subfamilies: collection sites, number and the analyzed animals and voucher specimens (lots) are listed. AM: Amazonas.

Subfamily	Species	Collection sites	Number and sex the analyzed animals	Voucher specimens (lots)
Teiinae	*Ameiva ameiva*	São Sebastião do Uatumã, AM	11 (four males; three females; four without sex identification)	INPA H33213
		Santa Isabel do Rio Negro, AM		
		Tapauá, AM		
	Cnemidophorus sp.1	Manaus, AM	13 (five males; eight females)	INPA H35018
Tupinambinae	*Kentropyx calcarata*	São Sebastião do Uatumã, AM	4 (three males; one females)	INPA H31712
		Tapauá, AM		
	Kentropyx pelviceps	Tapauá, AM	3 (three females)	INPA H34841
	Tupinambis teguixin	São Sebastião do Uatumã, AM	3 (two females; one without sex identification)	INPA H34791
		Tapauá, AM		

Figure 1. Satellite image of the Amazon basin showing the three different geographical areas; 1 = São Sebastião do Uatumã; 2 = Santa Isabel do Rio Negro; 3 = Tapauá; 4 = Manaus.

croscope and the images were captured with a digital camera (Olympus DP71) using Image-Pro MC 6.3 software. Mitotic metaphases were processed in Adobe Photoshop CS4 software and were measured using program ImageJ software. Chromosomes were organized by decreasing size, and chromosome morphology was determined based on
the arm ratio for metacentric (m), submetacentric (sm), subtelocentric (st) and acro-
centric (a) chromosomes (Levan et al. 1964). The karyotype formula was determined
according to chromosomes that show a gradual series of acrocentric chromosomes,
number of biarmed chromosomes, number of uniarmed chromosomes and number
of macrochromosomes (M), and microchromosomes (mi) (Lowe and Wright 1966,
Peccinini-Seale 1981). Macrochromosomes and microchromosomes are chromosomes
that can be differentiated according to size; macrochromosomes are large and have one
or two chromosome arms; microchromosomes are small (0.5–1.5 µm), puntiform and
do not have any specific chromosome morphology.

Results

The diploid number for all specimens of Ameiva ameiva, Kentropyx calcarata and Ken-
tropyx pelviceps was 50 chromosomes, and the karyotypic formula was classified by a
gradual series of acrocentric chromosomes (Fig. 2a, i and m). Cnemidophorus sp.1 had
48 chromosomes with 2 biarmed chromosomes, 24 uniarmed chromosomes and 22
microchromosomes (Fig. 2e). Tupinambis teguixin had 36 chromosomes with 12 mac-
rochromosomes (M) and 24 microchromosomes (mi). Pairs 1, 3, 4 and 5 of the macro-
chromosomes were metacentric and pairs 2 and 6 were submetacentric chromosomes
(Fig. 3a). A secondary constriction was observed in the distal region of the long arms of
pair 1 in Cnemidophorus sp.1, Kentropyx calcarata and Kentropyx pelviceps and in pair 2
in Tupinambis teguixin (Figs 2e, i, m and 3a). No differentiated sex chromosomes were
observed in the analysed species.

Constitutive heterochromatin was observed in the centromeric and terminal re-
gions in most chromosomes of Ameiva ameiva, Cnemidophorus sp.1, Kentropyx calcar-
ata and Kentropyx pelviceps (Figs 2b, f, j, n). In Tupinambis teguixin, heterochromatic
blocks were located in the centromeric region of all the macrochromosomes. However,
tenuous blocks were observed in the terminal regions in macrochromosomes and mi-
crochromosomes (Fig. 3b).

The NORs were located in the terminal region of the long arms of pair 7 in Ameiva
ameiva (Fig. 2c). In Cnemidophorus sp.1, Kentropyx calcarata and Kentropyx pelviceps,
NORs were seen in the distal region of the long arms of pair 1 and in pair 2 in Tupi-
nambis teguixin, coincident with the secondary constriction present in the karyotypes
of these species (Figs 2g, k, o and 3c, respectively). Fluorescent in situ hybridization
(FISH) with an 18S rDNA probe revealed a chromosome pair bearing this site, coin-
cident with the NOR sites in all of the five analyzed species (Figs 2d, h, l, p and 3d).

Discussion

Since the 1970s, cytogenetic analysis of the family Teiidae has shown that individuals
could be categorized into two groups: the Ameiva group, with diploid number vary-
Figure 2. Karyotypes of species belonging to Teiinae: a, e, i, m in conventional Giemsa staining b, f, j, n Regions of heterochromatin evidenced by C-band technique c, g, k, o highlight the nucleolar pair impregnated with AgNO₃, d, h, l, p highlighted in the chromosome pair bearing the site of 18S rDNA (red) and chromosomes were counterstained with DAPI. m = Macrochromossome, mi = microchromossome. Scale bar = 10 µm.
Tupinambis teguinix

Figure 3. Karyotype of Tupinambis teguinix: a in conventional Giemsa staining b Regions of heterochromatin evidenced by C-band technique c highlight the nucleolar pair impregnated with AgNO3 d highlight the chromosome pair bearing the site of 18S rDNA (red) and chromosomes were counterstained with DAPI. m = Macrochromosome, mi = microchromosome. Scale = 10 µm.

Most karyotype data comes from species of the subfamily Teiinae, with descriptions of diploid numbers for 63 species. The karyotypes reveal a diploid number varying from 2n=30 in Ameiva auberi (Cocceau, 1838) to 2n=54 in Teius oculatus (D’orbigny & Bibron, 1837) and Teius teyou (Daudin, 1802), besides the presence of sex chromosomes of XX/XY in Aspidocelis tigris tigris (Baird & Girard, 1852) and Ameivula littoralis (Rocha, Bamberg Araújo, Vrcibradic, 2000). Some Aspidoscelis species show triploid numbers such as Aspidoscelis tesselatus (Say, 1823) with 69 chromosomes. Interspecific hybridization has been observed in some species of the genus Aspidoscelis, which were previously placed within the genus Cnemidophorus (Lowe et al. 1970, Walker et al. 1997, Lutes et al. 2010, Manriquez-Morán et al. 2000). Although the Ameiva group proposed by Gorman (1970) corresponds to the subfamily Teiinae, some species have a distinction between macrochromosomes and microchromosomes,
while most chromosomes are acrocentric. This finding is contrary to what was proposed by Gorman (1970) as a cytogenetic feature of the *Ameiva* group (Table 2).

Ameiva ameiva and *Kentropyx calcarata*, which belong to Teiinae, have the same diploid number (2n=50 chromosomes). This result corroborates the available data for these species from different localities (Gorman 1970, Beçak et al. 1972, Peccinini-Seale and Almeida 1986, Schmid and Guttenbach 1988, Sites et al. 1990, Veronese et al. 2003, Santos et al. 2007). However, in present study *Ameiva ameiva* and *Kentropyx calcarata* present a gradual series of acrocentric chromosomes characterized by absence of distinction between macrochromosomes and microchromosomes, similar to the results described by Cole et al. (1995) and Santos et al. (2007). The same finding is observed for *Kentropyx pelviceps*, whose cytogenetic characteristics are revealed for the first time in the present study.

Furthermore, karyotypic formulae composed of biarmed chromosomes, uniarmed chromosomes and microchromosomes has been described for *Ameiva ameiva* and *Kentropyx calcarata* and in the other species genera of the subfamily Teiinae (Lowe and Wright 1966, Gorman 1970, Beçak et al. 1972, Peccinini-Seale and Almeida 1986, Schmid and Guttenbach 1988, Sites et al. 1990, Veronese et al. 2003). These data show that some differences may result from different classification parameters adopted by several authors in their chromosomal analyses.

Currently, the genus *Cnemidophorus* is divided into four morphological groups: (1) *Cnemidophorus lemniscatus* including the species *Cnemidophorus arenivagus* (Markezich, Cole & Dessauer, 1997), *Cnemidophorus arubensis* (Lidth de Jeude, 1887), *Cnemidophorus cryptus* (Cole & Dessauer, 1993), *Cnemidophorus flavissimus* (Ugueto, Harvey & Rivas, 2010), *Cnemidophorus graminigus* (Mccrystal & Dixon, 1987), *Cnemidophorus lemniscatus espeuti* (Boulenger, 1885), *Cnemidophorus lemniscatus gaigei* (Ruthven, 1924), *Cnemidophorus lemniscatus lemniscatus* (Linnaeus, 1758), *Cnemidophorus lemniscatus splendidus* (Markezich, Cole & Dessauer, 1997), *Cnemidophorus pseudolemniscatus* (Cole & Dessauer, 1993), *Cnemidophorus senectus* (Ugueto, Harvey & Rivas, 2010) and *Cnemidophorus sp.* B.; (2) *Cnemidophorus nigricolor* including the species *Cnemidophorus leucopsammus* (Ugueto & Harvey, 2010), *Cnemidophorus nigricolor* (Peters, 1873), *Cnemidophorus rostralis* (Ugueto & Harvey, 2010) and *Cnemidophorus sp.* A; (3) *Cnemidophorus murinus* including the species *Cnemidophorus murinus* (Laurenti, 1768) and *Cnemidophorus ruthveni* (Burt, 1935) and (4) *Cnemidophorus vanzoi* including the species *Cnemidophorus vanzoi* (Baskin & Williams, 1966) (Harvey et al. 2012). It is noteworthy that several new species of this genus have been described, showing that the taxonomy of this genus has not yet been elucidated, which emphasizes the need for morphological and molecular studies in this genus. Cytogenetically, some species of *Cnemidophorus* have 50 chromosomes, composed of biarmed chromosomes, uniarmed chromosomes and microchromosomes (Table 2, Peccinini-Seale and Almeida 1986). However, the karyotype of *Cnemidophorus* sp.1 from Manaus, in Amazonas state, differs from those described for other species of the genus. This species has 2n = 48 chromosomes with the absence of a pair of microchromosomes (Table 2, present study). Non-robertsonian chromosomal...
rearrangements may be associated with chromosomal evolution of this genus, which favored changes in diploid number (reduction in diploid number). Another population in Amazonas state (county Manacapuru) identified as belonging to \textit{Cnemidophorus lemniscatus} group has the expected diploid number of 50 chromosomes with the presence of biarmed chromosomes and uniarmed microchromosomes (0:26:24) (Sites et al. 1990). Our results show that the specimens we sampled from Manaus are karyotypically distinct from specimens we sampled from Manacapuru so \textit{Cnemidophorus} sp.1 (\textit{Cnemidophorus lemniscatus} group) could represent a new species.

Seven species from the subfamily Tupinambinae, have had their karyotypes analyzed, with diploid numbers varying from 2n=34–38 chromosomes, with the presence of both macrochromosomes and microchromosomes (Santos et al. 2008, present study). No sex chromosome system has been documented in the subfamily (Gorman 1970). \textit{Tupinambis teguixin} has 2n=36 chromosomes (12M+24m) (Table 2) the same number and karyotype formula was found by other authors (Gorman 1970, de Smet et al. 1981, Santos et al. 2008). Bečak et al. (1972) described a diploid number of 38 chromosomes (12M+26m) for \textit{T. teguixin}, with an additional pair of microchromosomes.

In the family Teiidae, heterochromatic blocks are located in the centromeric and terminal regions of almost all chromosomes. In some chromosomes, heterochromatic blocks are present in the pericentromeric, interstitial and terminal regions (Table 3). In the five species of the family Teiidae analyzed in this study, we observed a significant number of heterochromatic blocks in the centromere and terminal regions in the most of the chromosomes, which is consistent with similar patterns described in the literature.

The heterochromatin patterns for \textit{Cnemidophorus} sp.1, \textit{Kentropyx calcarata}, \textit{Kentropyx pelviceps} and \textit{Tupinambis teguixin} are described for the first time in this study. The heterochromatin distributional pattern is similar among the analyzed species, suggesting a common pattern for species in the family Teiidae. Three species in the subfamily Tupinambinae (\textit{Crocodilurus amazonicus} (Spix, 1825), \textit{Salvator meriana}e (Duméril & Bibron, 1839) and \textit{Tupinambis quadrilineatus} (Manzani & Abe, 1997), however, show species-specific heterochromatin patterns, with heterochromatic blocks in the centromeric, pericentromeric, interstitial and proximal regions of most chromosomes (Santos et al. 2008). The existence of such a distinctive pattern can likely be attributed to the addition of heterochromatin or the heterochromatization process during the evolution of these species. Heterochromatic regions are rich in repetitive DNA sequences usually located in the centromeric or terminal regions of chromosomes. This has often been considered important species-specific or population markers (Carvalho et al. 2012, Schneider et al. 2013). Even though heterochromatin may be located on the same chromosome region in different species, this does not mean it has the same genetic composition, which may differ in the amount of repetitive DNA sequences in the chromosomes (Chaiprasertsri et al. 2013).

Although the five species in the family Teiidae analyzed in the present study present a conserved karyotype macrostructure, some chromosomal characteristics differentiate the karyotype of these species. In \textit{Cnemidophorus} sp.1, \textit{Kentropyx calcarata},
Table 2. Basic cytogenetic data compiled from the literature for the Teiidae family. Diploid number (2n), karyotypic formula (KF), fundamental number (FN).

Three descriptions of karyotypic formulas: (a) number of biarmed chromosomes, number of uniarmed chromosomes and number of microchromosomes; (b) chromosomes that show a gradual series of acrocentric chromosomes; (c) macrochromosome chromosomes (M) and microchromosomes (mi). For data not included in the literature, “-” is indicated.

Subfamily	Genus	Species (sensu [2])	Species (initial description)	2n	Type of KF and description	FN	Reference
Callopistinae	Callopistes	Callopistes flavipunctatus	Callopistes flavipunctatus	2n=38	c (12M+26m)	50	2
	Callopistes maculatus	Callopistes maculatus	Callopistes maculatus	2n=38	c (12M+26m)	26, 50	2, 8
Teiinae	Ameiva	Ameiva ameiva	Ameiva ameiva	2n=50	a (0: 26: 24)	50	2, 18
		Ameiva auberi	Ameiva auberi	2n=30	a (8: 10:12)	38	11
		Ameiva chrysolema	Ameiva chrysolema	2n=50	(0: 22: 28); (6: 20: 24)	50, 56	2
		Ameiva dorsalis	Ameiva dorsalis	2n=50	a (4: 22: 24)	54	2
		Ameiva exsul	Ameiva exsul	2n=50	a (0: 26: 24)	50	2
		Ameiva maynardi	Ameiva maynardi	2n=50	a (4: 22: 24)	54	2
	Ameivula	Ameivula nativo	Cnemidophorus nativo	2n=46 (XX/XY)	a (5: 19: 24)	53	14
		Ameivula littoralis	Cnemidophorus littoralis	2n=50	a (5: 19: 22)	51	9
		Ameivula ocellifera	Cnemidophorus ocellifera	2n=50	(gradual series of acrocentric chromosomes)	-	18
Tupinambinae	Aspidoscelis	Aspidoscelis angusticeps	Cnemidophorus angusticeps	2n=44, 46	a (6: 20: 18); a (2: 24: 20)	50, 48	3, 16
		Aspidoscelis burti	Cnemidophorus burti	2n=46	a (2: 24: 20)	48	3
		Aspidoscelis calidipes	Cnemidophorus calidipes	2n=46	a (2: 24: 20)	48	3
		Aspidoscelis ceratobensis	Cnemidophorus ceratobensis	2n=52	-	-	4
		Aspidoscelis communis	Cnemidophorus communis	2n=46	a (2: 24: 20)	48	3
		Aspidoscelis costatus	Cnemidophorus costatus	2n=46	a (2: 24: 20)	48	3
		Aspidoscelis cozumelae	Cnemidophorus cozumelae	2n=49, 50	a (0: 28: 21); a (11: 19: 20)	49, 61	3, 16
		Aspidoscelis deppei	Cnemidophorus deppei	2n=50, 52	a (0: 26: 24); a (0: 28: 24)	50, 52	3, 16
		Aspidoscelis eestanguis	Cnemidophorus eestanguis	3n=69*	-	-	3, 10
		Aspidoscelis flagellicaudas	Cnemidophorus flagellicaudas	3n=69*	-	-	3
		Aspidoscelis guttatus	Cnemidophorus guttatus	2n=52	a (0: 28: 24)	52	3
		Aspidoscelis hyperythrus	Cnemidophorus hyperythrus	2n=52	a (0: 28: 24)	52	3
		Aspidoscelis inornatus	Cnemidophorus inornatus	2n=46	a (2: 24: 20)	48	3, 10
		Aspidoscelis littorensis	Cnemidophorus littorensis	2n=46	a (2: 24: 20)	48	3
Subfamily	Genus	Species (sensu [2])	Species (initial description)	2n	Type of KF and description	FN	Reference
-----------	-------	----------------------	------------------------------	----	---------------------------	----	-----------
Aspidoscelis	lineatissima	Cnemidophorus lineatissima	2n=52	a (0: 28: 24)	52	3	
	marmoratus	Cnemidophorus marmoratus	2n=46	a (0: 22: 24)	46	11	
	maculini	Cnemidophorus maculini	2n=47	a (14: 13: 20)	49	3	
	mexicana	Cnemidophorus mexicana	2n=46	a (2: 24: 20)	48	3	
	motaguae	Cnemidophorus motaguae	2n=46	a (2: 24: 20)	48	3	
	neomexicanus	Cnemidophorus neomexicanus	2n=46	a (4: 20: 22)	50	3, 10	
	opatae	Cnemidophorus opatae	2n=46	a (0: 28: 24)	52	3	
	parvisocicus	Cnemidophorus parvisocicus	2n=46	a (2: 24: 20)	48	3	
	rodecki	Cnemidophorus rodecki	2n=50	-	-	1	
	sacki	Cnemidophorus sacki	2n=46	a (2: 24: 20)	48	3	
	spectivittatus	Cnemidophorus spectivittatus	2n=46	a (2: 24: 20)	48	3	
	sedineatus	Cnemidophorus sedineatus	2n=46	a (2: 24: 20), a (8: 18: 20)	48, 54	3, 5	
	sonorensis	Cnemidophorus sonorensis	2n=46, 3n=69	a (4: 20: 22)	48	2, 3, 10	
	tesselatus	Cnemidophorus tesselatus	2n=46, 3n=69	a (4: 20: 22)	48	2, 3, 10	
	tigris tigris	Cnemidophorus tigris tigris	2n=46XX/XY	a (6: 16: 24)	52	2, 10	
		t. aethiops	Cnemidophorus t. aethiops	2n=46	a (6: 16: 24)	52	3
		t. estebanensis	Cnemidophorus t. estebanensis	2n=46	a (6: 16: 24)	52	3
		t. gracilis	Cnemidophorus t. gracilis	2n=46	a (6: 16: 24)	52	3
		t. marmoratus	Cnemidophorus t. marmoratus	2n=46	a (6: 16: 24)	52	3
		t. maximus	Cnemidophorus t. maximus	2n=46	a (6: 16: 24)	52	3
		t. septentrionalis	Cnemidophorus t. septentrionalis	2n=46	a (6: 16: 24)	52	3
		ubiparens	Cnemidophorus ubiparens	3n=69	-	-	3, 10
		velox	Cnemidophorus velox	3n=69	-	-	3
Cnemidophorus	arenivagus	Cnemidophorus arenivagus	2n=50	a (2: 24: 24)	52	9, 13	
	arubensis	Cnemidophorus arubensis	2n=50	a (2: 24: 24)	52	9, 13	
	cryptus	Cnemidophorus cryptus	2n=50	-	-	9	
	graminivagus	Cnemidophorus graminivagus	2n=50	-	-	9	
	lemniscatus	Cnemidophorus lemniscatus	2n=50	a (2: 24: 24)	52	2, 3	
	murinus	Cnemidophorus murinus	2n=50	a (2: 24: 24)	52	4, 3	
Subfamily	Genus	Species (sensu [2])	Species (initial description)	2n	Type of KF and description	FN	Reference
-----------	---------	---------------------------	-------------------------------	-----	---------------------------	-----	---------------
Contomastix	Contomastix lacertoides	Cnemidophorus lacertoides	2n=50	a (0: 26: 24)	52	6, 17	
Kentropyx	Kentropyx borckiana	Kentropyx borckiana	2n=50	a (0: 26: 24)	50	12	
Kentropyx	Kentropyx calcarata	Kentropyx calcarata	2n=50	b(gradient series of acrocentric chromosomes)	50	12, 19	
Kentropyx	Kentropyx striata	Kentropyx striata	2n=50	a (0: 26: 24)	50	12	
Kentropyx	Kentropyx paulensis	Kentropyx paulensis	2n=50	b(gradient series of acrocentric chromosomes)	50	18	
Kentropyx	Kentropyx pelvices	Kentropyx pelvices	2n=50	b(gradient series of acrocentric chromosomes)	50	20	
Kentropyx	Kentropyx vanzi	Kentropyx vanzi	2n=50	b(gradient series of acrocentric chromosomes)	50	18	
Teius	Teius oculatus	Teius oculatus	2n=54	a (8: 28: 18)	62	17	
Teius	Teius teyou	Teius teyou	2n=54	a (8: 22: 24)	62	17	
Crocodilurus	Crocodilurus amazonicus	Crocodilurus amazonicus	2n=34	c(12M+22m)	46	2	
Dracaena	Dracaena guianensis	Dracaena guianensis	2n=38	a (10:226)	48	2	
Tupinambis	Tupinambis nigropunctatus	Tupinambis nigropunctatus	2n=36, 38	a (10: 2: 24), c (16M+22m)	46, 54	2, 7	
Tupinambis	Tupinambis quadrilineatus	Tupinambis quadrilineatus	2n=38	c(12M+22m)	48	7, 19	
Tupinambis	Tupinambis teguixin	Tupinambis teguixin	2n=38, 36	a (10: 0: 28), (12M+24m)	48, 50	7, 17, 19	
Salvator	Salvator merianae	Tupinambis merianae	2n=36, 38	a (10: 0: 26), c (12M+26m)	48, 50	7, 17, 19	

* Polyploidy in triploid form (3n). 1 - Fritts 1969; 2 - Gorman 1970; 3 - Lowe et al. 1970; 4 - Robinson 1973; 5 - Bickham et al. 1976; 6 - Cole et al. 1979; 7 - de Smet et al. 1981; 8 - Navarro et al. 1981; 9 - Peccinini-Scale and Almeida 1986; 10 - Ward and Cole 1986; 11 - Porter et al. 1991; 12 - Cole et al. 1995; 13 - Markezich et al. 1997; 14 - Rocha et al. 1997; 15 - Walker et al. 1997; 16 - Manrique-Moran et al. 2000; 17 - Veronese et al. 2003; 18 - Santos et al. 2007; 19 - Santos et al. 2008; 20 - Present work.
Table 3. Cytogenetic banding data compiled from the literature for the differential Teiidae family. Nucleolar organizer regions (NORs), constitutive heterochromatin (CH), fluorescent *in situ* hybridization (FISH). Locality: Amazonas (AM), Bahia (BA), United States (USA), Espírito Santo (ES), Goiás (GO), Mato Grosso (MT), Minas Gerais (MG), Pará (PA), Rio de Janeiro (RJ), Rio Grande do Sul (RS), Rondônia (RO), São Paulo (SP), Sergipe (SE), Tocantins (TO). For data not included in the literature, “-” is indicated.

Subfamily	Species	Species (Initial description)	Locality	NOR	CH	FISH	Reference
Teiidae	*Ameiva* ameiva	*Ameiva* ameiva	GO, RO, MT, TO	Terminal region of the long arms of pair 7	Centromeric and terminal regions	-	8
	Ameiva auberi	*Ameiva* auberi	AM	Terminal region of the long arms of pair 7	Centromeric and terminal regions	18S rDNA (pair 7)	Present work
	Aspidoscelis gularis	*Cnemidophorus* gularis	USA	-	-	45S rDNA (pair of microchromosomes)	4
	Aspidoscelis sexlineatus	*Cnemidophorus* sexlineatus	USA	-	-	45S rDNA (pair 2)	4
	Aspidoscelis tigris	*Cnemidophorus* tigris	USA	-	-	Centromeric region	1
	Ameivala littoralis	*Cnemidophorus* littoralis	RJ	Terminal region of the long arms of pair 8	Centromeric region	-	7
	Ameivala nativo	*Cnemidophorus* nativo	ES	Multiple NORs	Centromeric and terminal regions	-	5
	Ameivala ocellifer	*Cnemidophorus* ocellifer	BA, SE, MG	Terminal region of the long arms of pair 5	-	-	8
	Cnemidophorus arenivagus	*Cnemidophorus* arenivagus	-	Terminal region of the long arms of pair 1	-	-	3
	Cnemidophorus cryptus	*Cnemidophorus* cryptus	-	Terminal region of the long arms of pair 1	-	-	3
	Cnemidophorus grammicus	*Cnemidophorus* grammicus	-	Terminal region of the long arms of pair 1	-	-	3
	Cnemidophorus lemniscatus	*Cnemidophorus* lemniscatus	-	Terminal region of the long arms of pair 1	-	-	3
	Cnemidophorus sp.1	-	AM	Terminal region of the long arms of pair 1	Centromeric and terminal regions	18S rDNA (pair 1)	Present work
	Contomastix larcetoides	*Cnemidophorus* larcetoides	RS	-	Centromeric region	-	6
	Kentropyrx calcarata	*Cnemidophorus* calcarata	BA, TO, MT	Distal region of the long arms of pair 1	-	-	8
Subfamily	Species (Current description)	Species (Initial description)	Locality	NOR	CH	FISH	Reference
------------------------------	-------------------------------	-------------------------------	----------	--	-----------------------------------	-----------------------	----------------------------
	Kentropryx calcana	Kentropryx calcana	AM	Distal region of the long arms of pair 1	Centromeric and terminal regions	18S rDNA (pair 1)	Present work
	Kentropryx paulensis	Kentropryx paulensis	SP	Distal region of the long arms of pair 1	Centromeric and terminal regions	-	8
	Kentropryx pelviceps	Kentropryx pelviceps	AM	Distal region of the long arms of pair 1	Centromeric and terminal regions	18S rDNA (pair 1)	Present work
	Kentropryx vanzoi	Kentropryx vanzoi	RO	Distal region of the long arms of pair 1	-	-	8
	Tiritis oculatus	Tiritis oculatus	RS	Multiple NORs (not indicated pairs)	-	-	6
	Tiritis oculatus	Tiritis oculatus	RS	Multiple NORs (not indicated pairs)	-	-	6
	Crocodilurus amazonicus	Crocodilurus amazonicus	PA	Distal region of the long arms of pair 2	Pericentromeric region	-	9
	Salvator merisae	Tupinambis merisae	TO, SP, ES	Distal region of the long arms of pair 2	Pericentromeric region	-	9
	Tiritis oculatus	Tiritis oculatus	RS	Multiple NORs (not indicated pairs)	-	-	6
	Tiritis oculatus	Tiritis oculatus	RS	Multiple NORs (not indicated pairs)	-	-	6
	Tiritis oculatus	Tiritis oculatus	RS	Multiple NORs (not indicated pairs)	-	-	6

1 - Bickhan et al. 1976; 2 - Bull 1978; 3 - Peccinini-Scale and Almeida 1986; 4 - Porter et al. 1991; 5 - Rocha et al. 1997; 6 - Veronese et al. 2003; 7 - Peccinini-Scale et al. 2004; 8 - Santos et al. 2007; 9 - Santos et al. 2008
Kentropyx pelviceps and Tupinambis teguixin, the presence of a secondary constriction localized in the distal region of pairs 1 and 2 was observed. The secondary constriction is absent in Ameiva ameiva.

Secondary constrictions are typically present in a single chromosomal pair and are very common in several lizard species (Bertolotto et al. 1996, Kasahara et al. 1996, Bertolotto et al. 2002, Srikulnath et al. 2009a). This region contain genes that produce ribosomal RNA and these regions may hold nucleoli proteins during the entire process of cellular division (Guerra 1988). In such secondary constrictions, NORs are usually placed and they are identified, indirectly, by silver nitrate impregnation of the chromosomes. Such impregnation marks only nucleoli proteins involved in the transcriptional activity of ribosomal genes of the 45S family. NORs may be located in a single chromosomal pair, a basal characteristic already reported for different lizard species (Porter et al. 1991).

In the present study, the localization of the NORs was revealed as an genus marker and this information has already been discussed for some genera in the family Teiidae, such as Kentropyx (Kentropyx calcarata, Kentropyx paulensis (Boettger, 1893) and Kentropyx vanzoii Gallagher & Dixon, 1980), Crocodilurus (Crocodilurus amazonicus), Cnemidophorus (Cnemidophorus arenivagus, Cnemidophorus cryptus, Cnemidophorus gramivagus and Cnemidophorus lemniscatus lemniscatus), Salvator (Salvator merianae) and Tupinambis (Tupinambis quadrilineatus and Tupinambis teguixin). Localization of the NORs is important for characterizing species and evolutionary studies among teiid lizards (Santos et al. 2007, 2008).

Tupinambis teguixin has a simple NOR, as evidenced by the secondary constriction of the long arm of pair 2. A common characteristic among species the subfamily Tupinambidae is the presence of such a secondary constriction in pair 2 (Gorman 1970). Four species of the subfamily Teiinae, Ameiva ameiva, Cnemidophorus sp.1, Kentropyx calcarata and Kentropyx pelviceps, also have simple NORs, but they are located in distinct chromosomal pairs. In Cnemidophorus sp.1, Kentropyx calcarata and Kentropyx pelviceps, a secondary constriction was seen in pair 1 while in Ameiva ameiva occurred in pair 7. The NOR data analyzed for Ameiva ameiva and Kentropyx calcarata in the present study corroborate previous data (Schmid and Guttenbach 1988, Cole et al. 1995, Veronese et al. 2003, Santos et al. 2007), but for Cnemidophorus sp.1 and Kentropyx pelviceps they are new data.

Two populations of Ameiva ameiva from the eastern Amazon showed multiple NORs involving pairs 1, 2, 6, 16, 18, 19 and some small chromosomes (Peccinini-Seale and Almeida 1986). Some authors suggest that the inter-individual variation observed in Ameiva ameiva may be related to the identification of active NOR sites, once the silver nitrate binds to acid nucleoli proteins involved with the transcriptional activity of the ribosomal genes (Miller et al. 1976, Howell and Black 1980, Boisvert et al. 2007). Such variability may also result from impregnation of CH regions rich in acid residues, in which the nitrate impregnates both the NORs and heterochromatic regions not bearing ribosomal sites, thereby not revealing the exact number of NORs (Sumner 2003). Moreover, this variation may be suggesting that Ameiva ameiva is a...
specie complex, as other teiids like *Ameivula ocellifera* (Spix, 1825) (Arias et al. 2011) or *Cnemidophorus lemniscatus* (Harvey et al. 2012).

Using 45S ribosomal DNA probes and FISH, it is possible to understand the organization of the NORs and to elucidate questions concerning the chromosomal organization and karyotypic evolution. The FISH technique is a more refined method than silver nitrate impregnation to locate 45S rDNA sequences in mitotic chromosomes (Carvalho et al. 2012, Terencio et al. 2012, Schneider et al. 2013). However, for the species analyzed in the present study, the fluorescent *in situ* hybridization of the 18S ribosomal gene corroborated the results obtained with silver nitrate impregnation, confirming the existence of this ribosomal site in a single pair of chromosomes. This same pattern was identified in other species in the family Teiidae, supporting the sites seen in a microchromosome pair in *Ameiva auberi* (Cocteau, 1838). In *Aspidoscelis marmorata* (Baird & Girard, 1852), the same pattern was located in a macrochromosome pair (Porter et al. 1991). Furthermore, it was possible to observe a size heteromorphism of the sites between the homologue chromosomes in the four analyzed species, a fact also described for other lizard species (O’Meally et al. 2009, Srikunath et al. 2009b, Srikunath et al. 2011). Such a size heteromorphism is likely associated with unequal crossing-over mechanisms, rearrangements such as transpositions, deletions and/or duplications or variations in the number of rDNA copies present in such regions that would entail some changes in ribosomal sites (Gross et al. 2010, Ribeiro et al. 2008).

Conclusion

Our present data and those from the literature show that teiid lizards have karyotype variation with respect to diploid number, fundamental number and karyotype formula. This, reinforces the importance to increase the number of chromosomal analyses in the family Teiidae. Studies are currently underway with the chromosomal physical mapping of repetitive DNA sequences in three species of Amazonian teiids that are essential for the understanding of genome organization and karyotype evolution in this group of lizards.

Acknowledgments

This work was supported by the Universidade Federal do Amazonas (UFAM), the graduate program of INPA Genética, Conservação e Biologia Evolutiva, Rede Bio-PHAM (CNPq/FAPEAM grant number: 563348/2010-0); Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (grant number: 474617/2013-0); FAPEAM (020/2013); CAPES (Pró-Amazônia – grant number 23038.009447/2013-45, 3295/2013). Species were collected with a permit issued by the Chico Mendes Institute for Biodiversity Conservation (ICMBio/SISBIO license number 41825-1).
NDMC received funding from the Fundação de Amparo a Pesquisas do Estado do Amazonas. The authors are grateful to Sérgio Marques de Souza for revision of the manuscript and Dra. Eliana Feldberg for the epifluorescence microscope. American Manuscript Editors reviewed this paper.

References

Arias F, Carvalho CM, Rodrigues MT, Zaher H (2011) Two new species of *Cnemidophorus* (Squamata: Teiidae) from the Caatinga, northwest of Brazil. Zootaxa 2787: 37–54.

Beçak ML, Beçak W, Denaro L (1972) Chromosome polymorphism, geographical variation and karyotypes in Sauria. Caryologia 25: 313–326. doi: 10.1080/00087114.1972.10796485

Bertolotto CEV, Rodrigues MT, Skuk G, Yonenaga-Yassuda Y (1996) Comparative cytogenetic analysis with differential staining in three species of *Liolaemus* (Squamata, Tropiduridae). Hereditas 125: 257–264. doi: 10.1111/j.1601-5223.1996.00257.x

Bertolotto CEV, Pellegrino KCM, Rodrigues MT, Skuk G, Yonenaga-Yassuda Y (2002) Comparative cytogenetics and supernumerary chromosomes in the Brazilian lizard genus *Enyalius* (Squamata, Polychrotidae). Hereditas 136: 51–57. doi: 10.1034/j.1601-5223.2002.1360108.x

Bickham JW, McKinney CO, Michael MF (1976) Karyotypes of the parthenogenetic whiptail lizard *Cnemidophorus laredoensis* and its presumed parental species (Sauria: Teiidae). Herpetologica 4: 395–399.

Boisvert FM, Koningsbruggen SV, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Molecular and Cellular Biology 8: 574–585. doi: 10.1038/nrm2184

Bull JJ (1978) Sex chromosome differentiation: an intermediate stage in a lizard. Canadian Journal of Genetics and Cytology 20: 205–209. doi: 10.1139/g78-023

Carvalho NDM, Gross MC, Schneider CH, Terencio ML, Zuanon J, Feldberg E (2012) Cytogenetics of Synbranchiformes: a comparative analysis of two *Synbranchus* Bloch, 1795 species from the Amazon. Genetica 140: 149–158. doi: 10.1007/s10709-012-9666-5

Cole CJ, MacCoy A, Achaval F (1979) Karyotype from a South American teiid lizard, *Cnemidophorus lacertoides*. American Museum Novitates 2617: 1–5.

Cole CJ, Dessauer HC, Townsend CR, Arnold MG (1995) *Kentropyx borekiana* (Squamata, Teiidae): a unisexual lizard of hybrid origin in the Guiana region, South America. American Museum Novitates 3145: 1–30.

Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, Nishida C, Matsuda Y, Koga A, Srikulnath K (2013) Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (*Varanus salvator macromaculatus*, Platyrrhini). Journal of Heredity 104: 798–806. doi:10.1093/jhered/est061

de Smet WH (1981) Description of the orcein stained karyotypes of 36 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa). Acta Zoologica et Pathologica Antverpiensia 76: 73–118.

Estes R, Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Phylogenetic relationships of the lizard families. Stanford University Press, California, 119–281.
Ford CE, Hamerton JL (1956) The chromosomes of man. Nature 178: 1020–1023. doi: 10.1038/1781020a0

Ford CE, Hamerton JL (1956) The chromosomes of man. Nature 178: 1020–1023. doi: 10.1038/1781020a0

Fritts T (1969) The systematics of the parthenogenetic lizards of the *Cnemidophorus cozumela* complex. Copeia 1969: 519–535. doi: 10.2307/1441932

Giugliano LG, Collevatti RG, Colli GR (2007) Molecular dating and phylogenetic relationships among *Teiidae* (Squamata) inferred by molecular and morphological data. Molecular Phylogenetics and Evolution 45: 168–179. doi: 10.1016/j.ympev.2007.05.017

Gorman GC (1970) Chromosomes and the systematics of the family *Teiidae* (Sauria: Reptilia). Copeia 1970: 230–245. doi: 10.2307/1441645

Guerra M (1988) Introdução à citogenética geral. Editora Guanabara, Rio de Janeiro, Brasil.

Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E (2010) Variability of 18S rDNA locus among *Symphysodon* fishes: chromosomal rearrangements. Journal of Fish Biology 76: 1117–1127. doi: 10.1111/j.1095-8649.2010.02550.x

Harvey MB, Ugueto GN, Gutberlet Jr RL (2012) Review of *Teiid Morphology with a Revised* Taxonomy and Phylogeny of the *Teiidae* (Lepidosauria: Squamata). Zootaxa 3459: 1–156.

Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 5: 1014–1015. doi: 10.1007/BF01953855

Kasahara S, Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y (1996) Comparative cytogenetic studies of eleven species of the *Tropidurus torquatus* group (Sauria, Tropiduridae), with banding patterns. Hereditas 125: 37–46. doi: 10.1111/j.1601-5223.1996.00037.x

Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x

Lowe CH, Wright JW (1966) Chromosomes and karyotypes of *Cnemidophorus* teiid lizards. Mammalia Chromosome Newslettr 22: 199–200.

Lowe CH, Wright JW, Cole CJ, Bezy RL (1970) Chromosomes and evolution of the species groups of *Cnemidophorus* (Reptilia: Teiidae). Journal of Zoological Systematics and Evolutionary Research 2: 128–141. doi: 10.2307/2412450

Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P (2010) Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464: 283–287. doi: 10.1038/nature08818

Manriquez-Morán NL, Villagrán-Santa Cruz M, Cruz Méndez-De La Cruz FR (2000) Origin and evolution of the parthenogenetic lizards, *Cnemidophorus maslini* and *C. cozumela*. Journal of Herpetology 4: 634–637. doi: 10.2307/1565287

Markezich AL, Cole CJ, Dessauer HC (1997) The blue and green whiptail lizards (Squamata, *Teiidae, Cnemidophorus*) of the Peninsula de Paraguana, Venezuela: systematics, ecology, descriptions of two new taxa, and relationships to whiptails of the Guianas. American Museum Novitates 3207: 1–60.

Miller EA, Dev VG, Tantravahi R, Miller OJ (1976) Suppression of human nucleolus organizer activity in mouse human somatic hybrid cells. Experimental Cell Research 101: 235–243. doi:10.1016/0014-4827(76)90373-6

Navarro J, Sallaberry M, Veloso A, Valencia J (1981) Diversidad cromossômica em lagartos (Squamata – Sauria). I Advances citotaxonomicos. Perspectiva de estudios evolutivos em Iguanidae. Meio Ambiente 5: 28–38.
O’Meally D, Miller H, Patel HR, Marshall Graves JA, Ezaz T (2009) The first cytogenetic map of the Tuatara, *Sphenodon punctatus*. Cytogenetics and Genome Research 127: 213–223. doi: 10.1159/000300099

Peccinini-Seale D (1981) New developments in vertebrate cytotaxonomy IV. Cytogenetic studies in reptiles. Genetica 56: 123–148. doi: 10.1007/BF00055413

Peccinini-Seale D, Almeida TMB (1986) Chromosomal variation nucleolar organizers and constitutive heterochromatin in the genus *Ameiva* and *Cnemidophorus* (Sauria, Teiidae). Caryologia 39: 227–239. doi: 10.1080/00087114.1986.10797785

Peccinini-Seale D, Rocha CFD, Almeida TMB, Araújo AFB, De Sena MA (2004) Cytogenetics of the brazilian whiptail lizard *Cnemidophorus litoralis* (Teiidae) from a resting area (Barra de Marica) in Southeastern Brazil. Brazilian Journal of Biology 64: 661–667. doi: 10.1590/S1519-69842004000400014

Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences 83: 2934–2938. doi: 10.1073/pnas.83.9.2934

Porter CA, Meredith JH, Sites JW Jr, Baker RJ (1991) Location of ribosomal DNA in chromosomes of squamate reptiles: systematic and evolutionary implications. Herpetologica 27: 271–280.

Presch W (1974) Evolutionary relationships and biogeography of the macroteiid lizards (Family Teiidae, Subfamily Teiinae). Bulletin Southern California Academy of Sciences 73: 23–32.

Presch W (1983) The lizard family Teiidae: is it a monophyletic group? Zoological Journal of the Linnean Society 77: 189–197. doi: 10.1111/j.1096-3642.1983.tb00529.x

Reeder TW, Cole CJ, Dessauer HC (2002) Phylogenetic relationships of whiptail lizards of the genus *Cnemidophorus* (Squamata:Teiidae): attest of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. American Museum Novitates 3365: 1–61. doi: 10.1206/0003-0082(2002)365<0001:PROWLO>2.0.CO;2

Ribeiro LB, Matoso DA, Almeida MC, Vicari MR, Moraes-Neto A, Svidinicki MCCM, Artoni RF (2008) Karyotypic variability in *Iheringichthys labrosus* (Teleostei, Pimelodidae) from the Tibagi River basin (Paraná State, Brazil). Genetics and Molecular Research 7: 718–724. doi: 10.4238/vol7-3gmr456

Robinson MD (1973) Chromosomes and systematics of the Baja California whiptail lizards *Cnemidophorus hyperythrus* and *C. cerabensis* (Reptilia: Teiidae). Journal of Zoological Systematics and Evolutionary Research 22: 30–35. doi: 10.2307/2412375

Rocha CFD, Bergallo HG, Peccinini-Seale D (1997) Evidence of an unisexual population of the Brazilian whiptail lizard genus *Cnemidophorus* (Teiidae), with description of a new species. Herpetologica 53: 374–382.

Santos RML, Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y (2007) Banding patterns and chromosomal evolution in five species of neotropical Teiinae lizards (Squamata: Teiidae). Genetica 131: 231–240. doi: 10.1007/s10709-006-9133-2

Santos RML, Rodrigues MT, Yonenaga-Yassuda Y, Pellegrino KCM (2008) Differential staining and microchromosomal variation in karyotypes of four Brazilian species of Tupinambinae lizards (Squamata: Teiidae). Genetica 134: 261–266. doi: 10.1007/s10709-007-9233-7

Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York, 633–664.
Sites JW, Peccinni-Seale DM, Mortiz C, Wright JW, Brown WM (1990) The evolutionary history of parthenogenetic Cnemidophorus lemniscatus (Sauria: Teiidae) I. Evidence for a hybrid origin. Evolution 44: 906–921. doi: 10.2307/2409554
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75: 304–306. doi: 10.1016/0014-4827(72)90558-7
Sumner AT (2003) Chromosomes: organization and function. Blackwell Publishing, New York.
Schmid M, Guttenbach M (1988) Evolutionary diversity of reverse (R) fluorescent chromosomes bands in vertebrates. Chromosoma 97: 101–114. doi: 10.1007/BF00327367
Schneider CH, Gross MC, Terencio ML, Artoni RF, Vicari MR, Martins C, Feldberg E (2013) Chromosomal evolution of neotropical cichlids: the role of repetitive DNA sequences in the organization and structure of karyotype. Reviews in Fish Biology and Fisheries 23: 201–214. doi: 10.1007/s11160-012-9285-3
Srikulnath K, Nishida C, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y (2009a) Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Research 17: 975–986. doi: 10.1007/s10577-009-9101-7
Srikulnath K, Matsubara K, Srikulnath K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y, Nishida C (2009b) Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenetic and Genome Research 125: 21–223. doi: 10.1159/000230005
Srikulnath K, Uno Y, Matsubara K, Thongpan A, Suputtitada S, Apisitwanich S, Nishida C, Matsuda Y (2011) Chromosomal localization of the 18S–28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata). Genetics and Molecular Biology 34: 582–586. doi: 10.1590/S1415-47572011000500042
Terencio ML, Schneider CH, Gross MC, Nogaroto V, de Almeida MC, Artoni RF, Vicari MR, Feldberg E (2012) Repetitive sequences associated with differentiation of W chromosome in Semaprochilodus taeniurus. Genetica 140: 505–512. doi: 10.1007/s10709-013-9699-4
Veronese LB, Freitas TRO, Krause L (2003) Cytogenetic studies of four brazilian species of teiid lizards (Squamata, Teiidae). Caryologia 56: 107–114. doi: 10.1080/00087114.2003.10589313
Walker JM, Cordes JE, Taylor HL (1997) Parthenogenetic Cnemidophorus tesselatus complex (Sauria: Teiidae): a neotype for diploid C. tesselatus (Say, 1823), redescription of the taxon, and description of a new triploid species. Herpetologica 53: 233–259.
Ward OG, Cole CJ (1986) Nucleolar dominance in diploid and triploid parthenogenetic lizards of hybrid origin. Cytogenetics and Cell Genetics 42: 177–182. doi: 10.1159/000132274