High-Hydrophilic and Antifouling Poly (Vinylidene Fluoride) Composite Membranes via in Situ Mosaic-Assembled Nanocrystalline Cellulose and g-C3N4

Hongbin Li
Qiqihar University

chao liu (lwcp1981@163.com)
Shenzhen University https://orcid.org/0000-0001-6582-405X

Yongqiang Guo
Jiangsu Hengrui Medicine Co Ltd

Shuzhen Gao
Qiqihar University

Research Article

Keywords: poly (vinylidene fluoride) (PVDF), composite membranes, pineapple leaf nanocrystalline cellulose, g-C3N4

Posted Date: December 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1109115/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
High-hydrophilic and antifouling poly (vinylidene fluoride) composite membranes via in situ mosaic-assembled nanocrystalline cellulose and g-C$_3$N$_4$

Hongbin Lia, Chao Liub,*, Yongqiang Guoc, Shuzhen Gaoa

a College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
b Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
c Jiangsu Hengrui Medicine Co., Ltd. Lianyungang 222000, PR China

Abstract:

Developing an antifouling and stable separation poly (vinylidene fluoride) (PVDF) membrane for water treatment is of great significance but challenging due to the limitations of its low surface properties and strong hydrophobicity. In this study, a novel multi-block composite ultrafiltration membrane was developed using the mosaic-assembled doping of pineapple leaf nanocrystalline cellulose and g-C$_3$N$_4$. The effects of adding different components on the PVDF composite membrane properties have been analyzed. The surface chemical composition, surface morphology, crystallinity and thermal stability of the composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Both of the tensile strength and elongation length of the PVDF composite membranes were enhanced due to the addition of pineapple leaf nanocellulose and g-C$_3$N$_4$, and the tensile strength and elongation length of PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose composite membrane can reach 10.61 MPa and 8.85 mm. The porosity of the PVDF composite membranes was 46.6%, respectively. The water flux and flux recovery

* Corresponding author at: No. 3688, Nanhai Avenue, Nanshan District, Shenzhen 518060, PR China
Email address: liuchao@szu.edu.cn (C. Liu)
ratio of PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose also can reach 256.75 L/(m2·h) and up to 82.1%. All the above experimental data showed that the addition of pineapple leaf nanocellulose and g-C$_3$N$_4$ can greatly improve the performance of the PVDF composite membrane. The prepared modified membrane has potential application value in the field of wastewater separation and treatment.

Keywords: poly (vinylidene fluoride) (PVDF); composite membranes; pineapple leaf nanocrystalline cellulose; g-C$_3$N$_4$.

1. **Introduction**

The world is facing environmental problems of water shortage and severe water pollution recently [1, 2]. In this case, membrane separation has attracted people's attention as a highly efficient, energy-saving and simple operation technology [3, 4]. Poly (vinylidene fluoride) (PVDF), as an important polymer fluoride, has been widely used in the chemical stability and excellent film-forming performance [5]. And the PVDF membrane has been a hot area of research for several years. PVDF also has excellent anti-ultraviolet and anti-aging properties [6]. It is stable to ultraviolet light with a wavelength of 200-400 nm. PVDF membrane will not be brittle and cracked even if it is left outdoors for one or two decades. Due to its excellent resistance to chemical media, PVDF has excellent resistance to most inorganic acids, salts, halogens, oxidants, aliphatic, aromatic and halogenated solvents, et al [7, 8]. Its unique stability and surface properties are conducive to the compounding of PVDF with various inorganic particles, so that it is used in water treatment, gas separation membrane and other fields [9]. However, due to its low surface properties and strong hydrophobicity, PVDF has largely restricted the practical application [10].

Currently, there are many methods for preparing hydrophilic PVDF membrane, including surface coating, surface adsorption, surface plasma treatment, blending and
copolymerization, and surface irradiation graft modification [11-13]. Therefore, the modification of PVDF membrane has attracted wide attention which mainly due to the unique electronic, magnetic, and optical properties of nanoparticles, especially in the modification of PVDF membranes by nanoparticles [14, 15]. In recent years, g-C_3N_4 has the advantages of low cost, simple synthesis and good chemical stability [16]. Because g-C_3N_4 has good hydrophobicity and can resist changes in the external environment, g-C_3N_4 membranes exhibit better separation performance than other commercial and inorganic membranes used for water purification [17-19]. Therefore, g-C_3N_4 is often used as an introduced component to improve the environmental protection function and adsorption effect of the membrane [20]. Adding g-C_3N_4 to the PVDF membrane is better than the single PVDF membrane in oilfield wastewater treatment.

Cellulose is a very attractive renewable natural polymer [21]. It is very abundant on earth and some properties not found in other natural or synthetic polymers, such as chirality, hydrophilic biodegradability, and extensive chemical modification [22]. With the emergence and development of nanotechnology, nanocellulose has become a research hotspot [23, 24]. Pineapple is one of the most popular tropical fruits in the world and its crop occupies a prominent position in the agricultural sector. Generally speaking, nanocellulose can be separation from plant materials [25]. Nanocrystalline cellulose can be prepared by chemical, physical and microbial technology [26]. For example, in the chemical method, water and hydrogen protons in an inorganic acid are used to hydrolyze cellulose, remove amorphous regions, and break glycosidic bonds to produce nanoscale fibers [27]. Physical methods for preparing nanocrystalline cellulose include homogenization, microfluidization, microcrushing and freezing [28]. The most commonly used preparation method of nanocellulose is the homogenization
method. But it faces the problem of homogeneous dispersion in the polymer matrix [29]. In addition, because the surface of nanocellulose is rich in hydroxyl groups, it has a strong tendency of self-association [30]. This is a problem that needs to be solved in the application. In general, nanoscale cellulose fibers are very popular for reinforcing polymers and enhancing hydrophilic materials for preparing composite materials.

This study aims to study a simple method to improve the hydrophilicity, separation and antifouling properties of PVDF membranes. A simple non-solvent induced phase separation (NIPS) strategy was used to design and prepare pineapple leaf nanocellulose and C₃N₄ or g-C₃N₄ modified PVDF membranes with interpenetrating network nanoarchitectonics and water channels. This work shows that the nano-materials can improve the hydrophilicity of the PVDF composite membranes by blending pineapple leaf nanocrystalline cellulose with g-C₃N₄. The prepared PVDF composite membranes were characterized by FTIR, SEM, TGA, XRD, and hydrophilicity (pure water flux and dynamic contact angle). In addition, the mechanical properties of the prepared membrane were quantified, and the effect of adding pineapple leaf nanocellulose and C₃N₄ or g-C₃N₄ was analyzed. Finally, the focus is on the antifouling properties of the prepared membrane, which provides valuable enlightenment for potential engineering treatment applications.

2. Experimental section

2.1. Materials

Commercially available PVDF (FR904) was dried at 60 °C overnight before further use. Pineapple leaf was obtained from South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences. N, N-dimethylformamide (DMF), polyethylene glycol (PEG 6000) and melamine were purchased from Sinopharm chemical reagent Co., Ltd., Shanghai. Bovine serum albumin (BSA) was
purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd., China. All of the used chemicals were of analytical grade without further purification.

2.2. Preparation of the PVDF composite Membranes

Graphite phase g-C₃N₄ was prepared by a common method [31]. Using melamine as raw material, 10 g of melamine was uniformly ground and placed in a semi-closed crucible. It was placed in a muffle furnace and heated to 550 °C at 2.5 °C/min for 4 h. The muffle furnace was closed, cooled and taken it out, and the yellow solid was ground into a powder to obtain a graphite phase g-C₃N₄. The treated pineapple leaf were immersed in a H₂SO₄ (15 wt%) solution, thoroughly mixed with an electric stirrer, and reacted at 85 °C. At the end of the reaction, the pH of the solution was adjusted to neutral using deionized water. After separated and dried, immersed the solid in DMAc, a high-pressure homogenizer was used. Subsequently, a colloidal suspension of nanocrystalline cellulose was obtained. The various PVDF composite membranes were obtained by using a non-solvent induced phase separation (NIPS) technique. The casting solution consisted of 16 wt% PVDF and 1.0 wt% PEG 6000, 0.5 wt% nanocrystalline cellulose and 0.5 wt% C₃N₄ or g-C₃N₄. PVDF, PEG, Pineapple leaf nanocellulose, C₃N₄ or g-C₃N₄ were dissolved in DMF under rigorous stirring at 60 °C for 24 h, and the casting solution was spread onto the glass plate using a blade (Scheme 1). Then, the glass plate was immersed into a water bath for 24 h before using.
2.3. Membrane characterization

Fourier transform infrared (FT-IR) spectroscopy (PerkinElmer, Spectra One, USA) was used to evaluate the stability of the PVDF composite membranes at room temperature within the range 550-4000 cm$^{-1}$ of the wave number. The surface morphology of the PVDF composite membranes were evaluated by the S-3400 SEM (Tokyo, Japan) at 20 kV. To obtain the crystallinity of the PVDF composite membranes, the siffraction angle (2θ) that ranged from 2 to 60° by using a XRD-6000X diffractometer with Cu Kα X-radiation. The thermal stability of the composite membrane and nanocrystalline cellulose were analyzed by a thermogravimetric analyzer system (Sta 449c, Netzch, Germany). The test temperature range is 100-800 °C, and the heating rate is 10 °C/min. Instron 5569 Material Testing Instrument was used to evaluate the mechanical properties of the PVDF composite membranes with the speed of 10 mm/min at room temperature. The surface hydrophilicity of the PVDF composite membrane was measured by a contact angle measuring device (SL2008, Shanghai Solon Technology Co., Ltd.). The porosity of the membrane were tested according to the method provided by Zhang et al’ s method [32]. A membrane with a
known area was weighed in a hygroscopic state and immediately dried in an oven.

Porosity is evaluated by the following equation:

$$P_r = \frac{G_w - G_d}{d_w \times A_m \times L_m}$$ \hspace{1cm} (1)

where G_w is weight of the wet membrane (g); G_d is weight of the dry membrane (g); d_w is the density of water (g/cm3); A_m and L_m are the membrane area (cm2) and thickness (cm), respectively.

2.4. Pure water flux and antifouling properties of the PVDF composite membranes

The pure water flux was measured according to the previous method [33]. In order to data collection, the various PVDF composite membranes were compacted with deionized water at a working pressure of 0.1 MPa for 30 min. Then, the pure water flux [J_w (L/(m$^2 \cdot$ h))] were obtained by the following equation:

$$J_w = \frac{V}{S \times t}$$ \hspace{1cm} (2)

where V is the volume of pure water penetrated through the various PVDF composite membranes (L), S is the effective membrane area (m2) and t is the time of working (h).

The selectivity of the various PVDF composite membrane was then determined with BSA solution (1 g/L) under stirring. Four comparison parameters, namely, flux recovery ratio (FRR), irreversible flux decline ratio (DRir), reversible flux decline ratio (DRr), and total flux decline ratio (FDR), were introduced for detailed comparison of antifouling performance [34]. The antifouling properties of various PVDF composite membrane were calculated using the following equation:

$$FRR = \frac{J_3}{J_1} \times 100\%$$ \hspace{1cm} (3)

$$DR_{ir} = \left(1 - \frac{J_3}{J_1}\right) \times 100\%$$ \hspace{1cm} (4)

$$DR_r = \left(\frac{J_3 - J_2}{J_1}\right) \times 100\%$$ \hspace{1cm} (5)
\[FDR = \left(1 - \frac{J_2}{J_1}\right) \times 100\% \quad (6) \]

Where \(J_1 \) is the pure water flux, \(J_2 \) is the 4 h of BSA foulant liquid filtration flux and \(J_3 \) is the water flux for a 1 h under the same operating pressure was retested after washing.

3. **Results and discussion**

3.1. **Membrane characterization**

The FT-IR spectra of various PVDF composite membranes with pineapple leaf nanocellulose, C3N4, and g-C3N4 were shown in Fig. 1. The chemical structure of pure PVDF and PVDF/PEG membranes was exhibited in Fig. 1(a) and (b). The bands located at 3080 and 2864 cm\(^{-1}\) related to the CH\(_2\) asymmetric and symmetric vibration of the PVDF. Meanwhile, there were differences between Fig. 1(a) and (c). A peak at 3348 cm\(^{-1}\) could be observed in Fig. 1(c) which has lower peak strength than found in Fig. 1(a). The occurrence of the new absorption peak was attributed to O-H stretching vibration of cellulose. It indicated that the molecule of pineapple leaf nanocellulose was existed in the PVDF composite membranes. Moreover, a weak band at 3347 cm\(^{-1}\) appeared in the PVDF/PEG/C3N4 and PVDF/PEG/C3N4/Pineapple leaf nanocellulose membrane (Fig.1 (d), (e) and (f)), which may be related to the N-H stretching mode of C3N4. This phenomenon can be seen that C3N4 has also been distributed on the surface of PVDF.
Fig. 1. FTIR spectra of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C₃N₄, (e) PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes.

As shown in Fig. 2a-f, the surface morphology of the various PVDF composite membranes with different components was depicted by SEM images. Compared with the pure PVDF membrane, the PVDF/PEG/Pineapple leaf nanocellulose composite membrane (Fig. 2c) have more surface bubbles than pure PVDF membranes (Fig. 2a) which mainly attributed to the presence of pineapple leaf nanocellulose accelerates the process of water penetration into the solution. As shown in Fig. 2f, more distributed holes appeared on the surface of the PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes. The cross-sectional view of all sample shown the typical asymmetric structure, and an irregular cross-sectional fracture surface with many open voids. For this porous structure, it has an enhancement effect on promoting the pure water flux of the PVDF composite membrane.
Fig. 2. SEM images of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C₃N₄, (e) PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes.

The crystal structures of the various PVDF composite membranes were shown in Fig. 3. As shown in Fig. 3a-f, an obvious peak at $2\theta=20.1^\circ$ which related to the crystalline peaks of PVDF α crystalline phase [35]. A weak peak at $2\theta=27.5^\circ$ was observed in Fig. 3d-f, which correspond to the in-plane structure packing motif and the interlayer stacking of the aromatic system of C₃N₄ and g-C₃N₄ [36]. It can be seen a weak peak at $2\theta=18.3^\circ$ (Fig. 3 (e)), which may be related to the crystallographic planes, respectively and the peaks could be attributed to cellulose I, which had a monoclinic structure. These characteristic peaks are attributed to the crystal plane of...
nanocrystalline cellulose and g-C$_3$N$_4$, indicating that nanocrystalline cellulose and g-C$_3$N$_4$ exist in the PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose composite membrane.

![XRD patterns of various PVDF composite membranes](image)

Fig.3. XRD patterns of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C$_3$N$_4$, (e) PVDF/PEG/C$_3$N$_4$/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose composite membranes.

The TGA curve of various PVDF composite membranes was shown in Fig. 4. Due to the difference in chemical composition, the different PVDF composite membranes were decomposed at different temperatures [13]. The thermal decomposition of the pure PVDF membrane was mainly occurs at 450-500 °C (Fig. 4a). At the same time, a two weightlessness steps were observed in curve (Fig. 4c-f). The first weight loss stage was observed at 330-420 or 450 °C which mainly attributed to the thermal decomposition of pineapple leaf nanocrystalline cellulose or C$_3$N$_4$ (Fig. 4c and d) and the second weight loss stage observed at 440 to 480 or 450-400°C which mainly due to the thermal decomposition of pure PVDF. Meanwhile, we can clearly observe that the PVDF/PEG/C$_3$N$_4$/ Pineapple leaf nanocellulose composite membranes (Fig. 4e) has a lower weight loss than PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose composite membranes (Fig. 4f) which mainly attributed to the thermal decomposition of C$_3$N$_4$ and
g-C₃N₄. All the results shown that the weight loss of the various PVDF composite membranes has a better thermal stability under 330 °C.

![TGA Curves](image)

Fig. 4. TGA Curves of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C₃N₄, (e) PVDF/PEG/g-C₃N₄/ Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes.

3.2. The hydrophilicity of the PVDF composite membranes

The hydrophilicity of the various PVDF composite membranes was characterized by measuring contact angle. According to the Table 1, the contact angle of the various PVDF composite membranes had been reduced as time go on. Moreover, the hydrophilicity of the various PVDF composite membrane also can be improved by adding pineapple leaf nanocellulose which mainly due to its hydrophilic functional groups such as hydroxyl groups. Besides, adding the pineapple leaf nanocellulose, C₃N₄ or g-C₃N₄ also can form a higher surface porosity and lead to a slightly decrease in the contact angle. Higher surface total energy and adhesion mean that the membrane surface has strong polarity and hydrophilicity [37], and the results of modified membranes was higher than that of primary PVDF membrane (Table 1). Therefore, the PVDF composite membranes were effectively improved by adding the pineapple leaf nanocellulose, C₃N₄ or g-C₃N₄.
Table 1. The hydrophilicity of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C₃N₄, (e) PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes.

Membrane	Contact Angle (°) a	Surface energy (mJ m⁻²)	Adhesion work (mN m⁻¹)	Fig.
	Initial 30s 60s 90s			
a	94.13 81.97 81.40 80.52	27.39	69.06	
b	81.77 77.67 74.81 71.82	34.75	83.99	
c	61.82 58.73 52.72 39.35	46.83	107.36	
d	73.73 71.90 65.17 57.78	39.40	93.20	
e	68.55 64.25 55.60 55.26	44.35	102.73	
f	70.08 61.61 57.02 52.77	42.42	99.06	

a Error in contact angle measurement is <1.0°.

3.3. Mechanical properties of the PVDF composite membranes

The thickness of various PVDF composite membranes was shown in Fig. 5 (left). The thickness of the various PVDF composite membranes is between 0.045-0.06 mm, and the differences in thickness of the membranes are small. Therefore, the addition of nanomaterials did not cause significant changes in thickness. The effects of pure PVDF, PVDF/PEG, PVDF/PEG/Pineapple leaf nanocellulose, PVDF/PEG/C₃N₄, PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose membranes on the porosity was listed in Fig. 5 (right). The porosity of the PVDF composite membranes were increased with the addition of different substances. The porosity of the prepared the PVDF composite membrane is in the range of 10% to 33%. The peak value of porosity is 32.6%. Pineapple leaf nanocellulose is a hydrophilic material with a large number of hydrophilic groups which can accelerate the diffusion process between gels (water) and solvent (DMF) in the PVDF composite membrane preparation process. Then, the PVDF/PEG/Pineapple leaf nanocellulose membrane has relatively higher porosity than pure PVDF membrane. However, the C₃N₄ have some negative effects on the porosity of the PVDF composite membrane which mainly attributed to its hydrophobic properties. Besides, the porosity of the PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes also has been
strength by adding g-C_3N_4. Therefore, the presence of pineapple leaf nanocellulose and g-C_3N_4 may facilitate the formation membranes with high porosity.

![Graph showing thickness and porosity of different membranes](image)

Fig. 5. The thickness (left) and porosity (right) of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C_3N_4, (e) PVDF/PEG/C_3N_4/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C_3N_4/Pineapple leaf nanocellulose composite membranes.

The tensile strength of the various PVDF composite membranes was shown in Fig. 6. Compared to the pure PVDF membrane, the tensile strength of the other PVDF composite membrane had a slightly decreased by adding C_3N_4, g-C_3N_4 or pineapple leaf nanocellulose at different extents, but in a tolerable degree. The reason for this phenomenon is that the PEG, as a pore-forming agent, will dissolved into the water and form the pore in the PVDF composite membrane which can reduces the cross-sectional area for resisting external forces. However, duo to the excellent mechanical properties and hydrophilicity of nanomaterials, the tensile strength of the other PVDF composite membrane also has been improved to some extent by adding the pineapple leaf nanocellulose, C_3N_4 or g-C_3N_4 in the casting solution. Table 2 shows the further benchmark comparison between the selected PVDF/PEG/g-C_3N_4/Pineapple leaf nanocellulose membrane and other modified PVDF membranes reported in the literature. Obviously, the membrane in this work has excellent tensile strength, elongation and hydrophilicity, indicating its good practical application potential.
Fig. 6. Mechanical properties of (a) pure PVDF, (b) PVDF/PEG, (c) PVDF/PEG/Pineapple leaf nanocellulose, (d) PVDF/PEG/C$_3$N$_4$, (e) PVDF/PEG/C$_3$N$_4$/Pineapple leaf nanocellulose and (f) PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose composite membranes.

Table 2 Comparison of hydrophilicity and mechanical properties of the various PVDF membranes.

Membrane	Method	Tensile strength (MPa)	Elongation (%)	Contact anglesa (°)	Reference
PVDF	NIPS	6.2	118.1	88.5	[38]
PVDF/PVP	TIPS	5.2	~340b	89.0	[39]
PVDF/PTFE	TIPS	7.4	~180b	106.0	[40]
F127/PTFE (TP1F1)	TIPS	7.0	170.0	76.0	[41]
PVDF-g-PEG	NIPS	8.5	~131b	61.6	[42]
PVDF/CaCO$_3$	NIPS	5.7	126.8	107.8	[43]
PVDF/PEG/g-C$_3$N$_4$/Pineapple leaf nanocellulose	NIPS	10.6	184.5	68.5	This work

a The contact angle error does not exceed 0.5°.

b The data was collected from graphs in the literature by using the digitizer function.

3.4. Separation and antifouling properties of the PVDF composite membranes

To evaluate the filtering performance of the PVDF composite membrane, the pure water flux and rejection ratio were measured, as shown in Fig.7A. Compared to the pure PVDF and PVDF/PEG, the pure water flux was significantly enhanced by adding
pineapple leaf nanocellulose which also attributed to its large specific surface area and abundant hydroxyl groups. Pineapple leaf nanocellulose can enhance the permeability of PVDF membrane by accelerating the transient phase separation process on the surface of the PVDF composite membrane. The water flux of the PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose membrane reached a peak of 256.75 L/(m² · h). Time-dependent normalized flux in the BSA-fouled was plotted in Fig.7B. When the BSA dirt solution was filtered, the membrane flux drops sharply attribute to the adsorption and deposition, but the degree of decline and the flux recovery ratio (FRR, J₃/J₁) were different. The FRR ratios of PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes were 77.8% and 82.1%, respectively, which are much higher than 41.8% of the pure PVDF membrane (1.8 and 2.0 times, respectively). The PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes still show excellent anti-fouling properties after repeating the scale test three times with BSA solution (Fig.7C). Fig.7D presents the total flux decline ratio (FDR), irreversible (DRir), reversible (DRr) fouling resistance ratios of the prepared membranes. The FDR ratios of PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose and PVDF/PEG/g-C₃N₄/Pineapple leaf nanocellulose composite membranes were 65.2% and 66.8%, respectively, which were much lower than the 85.2% of pure PVDF membranes. The main difference in the anti-fouling properties of the prepared membranes was the DRir ratio (12.2%, 27.3% and 28.4%, respectively), indicating that the addition of C₃N₄/g-C₃N₄ and pineapple leaf nanocellulose active suppressions the irreversible contamination, thus significantly enhanced the anti-fouling property of the PVDF membrane. For PVDF hydrophobic membrane, contaminants (such as proteins and sugars, etc.) may be bound to the large
pores or adsorbed to the channels, hindering their removal through hydraulic washing. This irreversible membrane fouling leads to a decrease in the water flux recovery rate after hydraulic washing. In this study, the hydrophilic groups in the C₃N₄/g-C₃N₄ and pineapple leaf nanocellulose particles in the prepared membrane interact with the water layer in the aqueous solution, which may hinder the deposition and adsorption of contamination on the membrane surface. Furthermore, the formed hydration layer may stabilize the structure of the protein to ensure that no obvious conformational changes occur during the adsorption process, which leads to reversible desorption. The results show that the prepared modified PVDF membrane has excellent antifouling performance and the water flux was higher than that of pure PVDF membrane.

![Fig. 7. The (A) pure water flux and (B) time-dependent normalized flux in the BSA-fouled of the](image)
prepared membrane. Antifouling properties: (C) water flux recovery ratio and (D) fouling resistance.

4. Conclusions

In summary, the PVDF composite membranes were prepared through non-solvent induced phase separation technique with nanocellulose and g-C₃N₄ were used as non-solvent additives in this work. Pineapple leaf nanocellulose and g-C₃N₄ was well dispersed in the PVDF composite membrane matrix and confirmed via FTIR, SEM, XRD, and TGA analyses. The addition of nanoparticles effectively improves the hydrophilicity of the membrane, and forms nano-scale water channels between the separation layers of the PVDF membrane, which effectively promotes water penetration. At the same time, the prepared composite membrane has the dual functions of surface hydrophilic modifier and pore former. These characteristics make the prepared PVDF composite membranes have higher hydrophilicity, and increase the filtration and antifouling properties of the membrane. The DRir ratio of PVDF/PEG/C₃N₄/Pineapple leaf nanocellulose membrane increased from 12.2% to 28.4% compared with that of the pure membrane. The nanoparticles in the PVDF matrix can also improve the crystallinity and thermal stability of the membrane. Moreover, compared with pure PVDF membrane, the prepared composite membrane has stronger mechanical properties, which is of great significance for industrial applications.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the following: Project funded by China Postdoctoral
Science Foundation (Grant No. 2020M682884), Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2021B032) and Heilongjiang Province Education Department Basal Research Fund (Grant No. 135409416).

References

[1] A.A. Uliana, N. T.Bui, o. Kamcev, M.K. Taylor, J.J. Urban, J.R. Long, Ion-capture electrodialysis using multifunctional adsorptive membranes, Science 372 (2021) 296–299.
[2] Y. Guo, C. Liu, H. Liu, J. Zhang, H. Li, C. Zhang, Contemporary antifouling modifications of reverse osmosis membranes: State-of-the-art insights on mechanisms and strategies, Chemical Engineering Journal 429 (2022) 132400.
[3] C. Liu, C. Wang, Y. Guo, J. Zhang, Y. Cao, H. Liu, Z. Hu, C. Zhang, High-performance polyamide membrane with tailored water channel prepared via bionic neural networks for textile wastewater treatment, J Mater Chem A 7 (2019) 6695-6707.
[4] T.E. Culp, B. Khara, K.P. Brickey, M. Geitner, T.J. Zimudzi, J.D. Wilbur, S.D. Jons, A. Roy, M. Paul, B. Ganapatysubramanian, A.L. Zydney, M. Kumar, E.D. Gomez, Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes, Science 371 (2021) 72-75.
[5] R. Li, J. Li, L. Rao, H. Lin, L. Shen, Y. Xu, J. Chen, B.-Q. Liao, Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation, Journal of Membrane Science 619 (2021) 118790.
[6] T.T.V. Tran, S.R. Kumar, S.J. Lue, Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction, Journal of Membrane Science 575 (2019) 38-49.
[7] H. Liu, X. Liu, F. Zhao, Y. Liu, L. Liu, L. Wang, C. Geng, P. Huang, Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier, J Colloid Interface Sci 562 (2020) 182-192.
[8] A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal Membrane Distillation for Seawater Desalination, Adv Mater 29 (2017).
[9] Z. Guo, Y. Yang, S. Xiang, X. Du, Z. Cui, B. He, H. Wang, J. Li, T. Jiang, Preparation of PVDF membrane based on “In-situ Template-TIPS” technology and the investigation on membrane formation mechanism, microstructure regulation and permeability, Journal of Membrane Science (2020) 118839.
[10] J. Willet, K. Wetser, J. Vreeburg, H.H.M. Rijnaarts, Review of methods to assess sustainability of industrial water use, Water Resources and Industry 21 (2019) 100110.
[11] F. Beyghmohammdi, H. Nourizadeh Kazerooni, Y. Jafarzadeh, H. Hazrati, R. Vegani, Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system, Chemical Engineering Research and Design 154 (2020) 232-240.
[12] Q. Bi, Q. Li, Y. Tian, Y. Lin, X. Wang, Hydrophilic modification of poly(vinylidene fluoride) membrane with poly(vinyl pyrrolidone) via a cross-linking reaction, J Appl Polym Sci 127 (2013) 394-401.
[13] Y.W. Kim, J.K. Choi, J.T. Park, J.H. Kim, Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes, Journal of Membrane Science 313 (2008) 315-322.
[14] Z. Yang, H. Guo, Z.K. Yao, Y. Mei, C.Y. Tang, Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes, Environ Sci Technol 53 (2019) 5301-5308.
[15] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energ Environ Sci 4 (2011) 1946.
[16] Y. Gong, B. Yang, H. Zhang, X. Zhao, A g-C3N4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation, J Mater Chem A 6 (2018) 23703-23711.
[17] W. Iqbal, B. Yang, X. Zhao, M. Rauf, I.M.A. Mohamed, J. Zhang, Y. Mao, Facile one-pot
synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance, Catalysis Science & Technology 10 (2020) 549-559.

[18] B. Zhou, M. Waqas, B. Yang, K. Xiao, S. Wang, C. Zhu, J. Li, J. Zhang, Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution, Appl Surf Sci 506 (2020).

[19] C. Liu, W. Wang, B. Yang, K. Xiao, H. Zhao, Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies, Water Res 195 (2021) 116976.

[20] M. Ge, X. Wang, S. Wu, Y. Long, Y. Yang, J. Zhang, Highly anti fouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller, Sep Purif Technol 258 (2021) 117980.

[21] Komal, K. Gupta, V. Kumar, K.B. Tikoo, A. Kaushik, S. Singhal, Encrustation of cadmium sulfide nanoparticles into the matrix of biomass derived silanized cellulose nanofibers for adsorptive detoxification of pesticide and textile waste, Chemical Engineering Journal 385 (2020) 123700.

[22] F. Cheng, Y. Wu, H. Li, T. Yan, X. Wei, G. Wu, J. He, Y. Huang, Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion, Carbohydr Polym 207 (2019) 180-190.

[23] J. Lv, G. Zhang, H. Zhang, F. Yang, Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved anti fouling performance in MBR: Behavior and mechanism, Chemical Engineering Journal 352 (2018) 765-773.

[24] F. Asempour, D. Emadzadeh, T. Matsuura, B. Kruczek, Synthesis and characterization of novel Cellulose Nanocrystals-based Thin Film Nanocomposite membranes for reverse osmosis applications, Desalination 439 (2018) 179-187.

[25] X. Wang, Y. Zhao, B. Yuan, Z. Wang, X. Li, Y. Ren, Comparison of bio fouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors, Bioresour Technol 202 (2016) 50-58.

[26] X. Teng, W. Fang, Y. Liang, S. Lin, H. Lin, S. Liu, Z. Wang, Y. Zhu, J. Jin, High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support, Science China Materials 63 (2020) 2570-2581.

[27] X. Lu, X. Feng, Y. Yang, J. Jiang, W. Cheng, C. Liu, M. Gopinadhan, C.O. Osuji, J. Ma, M. Elimelech, Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size, Nat Commun 10 (2019) 2347.

[28] A. Sabir, M. Shafiq, A. Islam, A. Sarwar, M.R. Dilshad, A. Shafeeq, M.T. Zahid Butt, T. Jamil, Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis, Carbohydr Polym 132 (2015) 589-597.

[29] P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations, Carbohydr Polym 181 (2018) 1102-1111.

[30] B. Al-Ghafri, T. Bora, P. Sathe, S. Dobrestov, M. Al-Abri, Photocatalytic microbial removal and degradation of organic contaminants of water using PES fibers, Applied Catalysis B: Environmental 233 (2018) 136-142.

[31] H. Wang, R. Gong, X. Qian, Preparation and Characterization of TiO(2)/g-C(3)N(4)/PVDF Composite Membrane with Enhanced Physical Properties, Membranes (Basel) 8 (2018) 1-9.

[32] L. Zhang, G. Chen, H. Tang, Q. Cheng, S. Wang, Preparation and characterization of composite membranes of polysulfone and microcrystalline cellulose, J Appl Polym Sci 112 (2009) 550-556.

[33] H. Sun, Y. Zhang, H. Sadam, J. Ma, Y. Bai, X. Shen, J.-K. Kim, L. Shao, Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance, Journal of Membrane Science 582 (2019) 1-8.

[34] C. Liu, Y. Guo, X. Wei, C. Wang, M. Qu, D.W. Schubert, C. Zhang, An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment, Chemical Engineering Journal 384 (2020) 123306.

[35] W. Ma, J. Zhang, X. Wang, S. Wang, Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in
semi-dilute solutions, Appl Surf Sci 253 (2007) 8377-8388.

[36] S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation, Applied Catalysis B: Environmental 218 (2017) 600-610.

[37] C. Liu, Y. Liu, Y. Guo, C. Wang, Z. Hu, C. Zhang, High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment, Chemical Engineering Journal 357 (2019) 269-279.

[38] Y. Guo, C. Liu, H. Liu, W. Wang, H. Li, C. Zhang, Influences of gamma-ray irradiation on PVDF membrane behavior: An experimental study based on simulation and numerical analysis, Polymer Degradation and Stability 193 (2021) 109722.

[39] S. Rajabzadeh, C. Liang, Y. Ohmukai, T. Maruyama, H. Matsuyama, Effect of additives on the morphology and properties of poly(vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method, Journal of Membrane Science 423-424 (2012) 189-194.

[40] J. Zhao, L. Shi, C.H. Loh, R. Wang, Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method, Desalination 430 (2018) 86-97.

[41] J. Zhao, J.Y. Chong, L. Shi, R. Wang, PTFE-assisted immobilization of Pluronic F127 in PVDF hollow fiber membranes with enhanced hydrophilicity through nonsolvent-thermally induced phase separation method, Journal of Membrane Science (2020) 118914.

[42] Y. Guo, C. Liu, W. Xu, G. Liu, K. Xiao, H.-Z. Zhao, Interpenetrating network nanoarchitectonics of antifouling poly(vinylidene fluoride) membranes for oil–water separation, Rsc Adv 11 (2021) 31865-31876.

[43] D. Hou, J. Wang, X. Sun, Z. Ji, Z. Luan, Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation, Journal of Membrane Science 405-406 (2012) 185-200.