Green-Schwarz type formulation of $D = 11$ S-invariant superstring and superparticle actions.

A.A. Deriglazov* and D.M. Gitman†

Instituto de Física, Universidade de São Paulo, P.O. Box 66318, 05315-970, São Paulo, SP, Brasil.

Abstract

A manifestly Poincare invariant formulations for $SO(1,10)$ and $SO(2,9)$ superstring actions are proposed. The actions are invariant under a local fermionic κ-symmetry as well as under a number of global symmetries, which turn out to be on-shell realization of the known “new supersymmetry“ S-algebra. Canonical quantization of the theory is performed and relation of the quantum state spectrum with that of type IIA Green-Schwarz superstring is discussed. Besides, a mechanical model is constructed, which is a zero tension limit of the $D = 11$ superstring and which incorporates all essential features of the latter. A corresponding action invariant under off-shell closed realization of the S-algebra is obtained.

PAC codes: 0460D; 1130C; 1125

Keywords: $D = 11$ superstring, higher-dimensional superalgebras.

1 Introduction

Green-Schwarz (GS) approach [1] to the construction of a manifestly Poincare invariant actions for extended objects implies invariance under the local κ-symmetry...
symmetry [2], which eliminates half of the initial fermionic variables. It provides free dynamics for the physical sector variables as well as supersymmetric spectrum of quantum states. The requirement of consistency of the manifest super Poincare invariance with local \(\kappa \)-symmetry leads to rather rigid restrictions on possible dimensions of the target and worldvolume spaces in which the action can be formulated. These restrictions are enumerated in the known brane scan [3,4], which prohibits, in particular, the Green-Schwarz type formulation for \(D = 11 \) superstring action already at the classical level. According to the brane scan the only permitted dimensions are 3, 4, 6 and 10.

It would be an intriguing task to avoid this no-go theorem in relation to recent progress in understanding of the eleven-dimensional nature of the known superstring theories (see [4-9] and references therein). In the strong coupling limit of M-theory \(R^{11} \to \infty \), where \(R^{11} \) is the radius of the 11th dimension, the vacuum is eleven-dimensional Minkowski and the effective field theory is \(D11 \) supergravity, which is viewed now as strong coupling limit of ten-dimensional type IIA superstring [5]. Since \(D11 \) Poincare symmetry survives in this special point in the moduli space of M-theory vacua, one may ask of the existence of a consistent \(D11 \) quantum theory in this limit ("uncompactified M-theory" according to Ref.[8]). One possibility might be the supermembrane action [10-12], but in this case one faces the problem of a continuous spectrum for the first quantized supermembrane [13-15]. By analogy with the ten-dimensional case, where the known field theories can be obtained as low energy limit of the corresponding superstrings [16,8], a different natural candidate might be a \(D11 \) superstring.

Several ways are known to avoid the no-go theorem, either by considering space-time with non standard signature [17-20], or by introducing
higher spin worldvolume fields into the action \([22-28]\)\footnote{In recent works [29,30] \(D = 11\) action with second-class constraints simulating a gauge fixation for the \(\kappa\)-symmetry was suggested. It was achieved by adding of an appropriately chosen terms to the GS action written in \(D = 11\). Since there is no \(\kappa\)-symmetry, identities of the type (1), (2) are not necessary for the construction, but the price is that only one half of supersymmetries survive in the resulting Poincare invariant action. Supersymmetry of quantum states spectrum for the model is under investigation now.}. Since the brane scan is based on demanding of super Poincare invariance, other possibility is to consider \(D = 11\) GS type superstring actions for which the supergroup is different from the super Poincare [4]. To elucidate how it may work note that the crucial point of GS formulation for the case of superstring is the \(\gamma\)-matrix identity

\[
\Gamma^\mu_{\alpha(\beta} (C \Gamma^\nu)_{\gamma\delta)} = 0
\]

\((1)\)

which holds in \(D = 3, 4, 6, 10\). It provides the existence of both global supersymmetry and local \(\kappa\)-symmetry for the action [1]. An eleven-dimensional analog of Eq.(1) has the form [3,31,32]

\[
\Gamma^\mu_{\alpha(\beta} (C \Gamma^\nu)_{\gamma\delta)} + (\Gamma^\mu_{\alpha(\beta} (C \Gamma^\nu)_{\gamma\delta)} = 0,
\]

\((2)\)

which contains antisymmetric product of \(\gamma\)-matrices\footnote{Being appropriate for construction of the supermembrane action [10], this identity does not allow one to formulate \(D = 11\) super Poincare invariant action for superstring with desirable properties. As was shown by Curtright [31], the globally supersymmetric action based on this identity involves additional to \(x^i, \theta_a, \bar{\theta}_a\) degrees of freedom in the physical sector. Moreover, it does not posses the \(\kappa\)-symmetry that could provide free dynamics [31,33].}. It turns out to be applicable for the superstring case instead of Eq.(1), if one replaces the standard superspace 1-form

\[
dx^\mu - i \bar{\theta} \Gamma^\mu d\theta
\]

\((3)\)

by an other one, which contains the same product of \(\Gamma\)-matrices as in Eq.(2),

\[
dx^\mu - i (\bar{\theta} \Gamma^\mu d\theta) n_\nu.
\]

\((4)\)

Appearance of the new variable \(n^\mu(\tau, \sigma)\) seems to be an essential property of the construction [17-20,29,30,34-36]. An action, which may be constructed...
from these 1-forms, is not invariant under the standard supertranslations. As it will be shown the suitable generalization is the “new supersymmetry” [18-20]
\[
\delta \theta = \epsilon, \quad \delta x^\mu = i(\epsilon \Gamma^{\mu\nu} \theta) n_\nu.
\] (5)
The algebra of the corresponding generators is different from the super Poincare and may be written as [17-20]
\[
\{Q_\alpha, Q_\beta\} \sim \Gamma^{\mu\nu} P_\mu n_\nu.
\] (6)
It is known as S-algebra previously discussed in the M-theory context [17] (see [21] for discussion of the general case). To understand why it may be interesting, note that for the case of SO(2,9) space with signature (−,+,⋯+,−) and in special Lorentz reference frame, where \(n^\mu = (0,\cdots 0,1)\), eq.(5) reduces (see Appendix for our γ-matrix notations) to the following one:
\[
\delta \theta^\alpha = \epsilon^\alpha, \quad \delta \bar{\theta}^\alpha = \bar{\epsilon}^\alpha, \\
\delta x^{\bar{\mu}} = -i\bar{\epsilon}^\alpha \tilde{\Gamma}^{\bar{\mu}\alpha\beta} \bar{\theta}^\beta + i\bar{\epsilon}^\alpha \Gamma^{\bar{\mu}}_{\alpha\beta} \theta^\beta, \quad \delta x^{11} = 0,
\] (7)
where \(\theta = (\bar{\theta}^\alpha, \theta^\alpha), \mu = (\bar{\mu}, 11), \mu = 0,1,\cdots,9\). Equation (7) coincides with the standard \(D = 10, N = 2\) supersymmetry transformations. For the case of \(SO(1,10)\) space with the standard signature, Eq.(5) reduces to \(N = 2\) supersymmetry up to a sign: \(\{Q, Q\} \sim H, \{\bar{Q}, \bar{Q}\} \sim -H\). It may lead to a theory which is not manifestly unitary. The superalgebras with the “wrong” sign were considered in recent work of Hull [40] where it was suggested that the corresponding theories are related with the standard ones by duality transformations. Both possibilities can be considered simultaneously, since our \(D = 11\) γ - matrix notations are similar for these cases. Below, we discuss for definiteness the \(SO(2,9)\) case. Thus, one can treat the new supersymmetry (5) as a way to rewrite the \(D = 10, N = 2\) supersymmetry in “eleven dimensional notations”, and the corresponding
action might be related to type IIA superstring. The possibility of lifting
the known ten-dimensional models to the manifestly invariant higher
dimensional form is under intensive investigation now [18-20,29,30,35,36],
and the main problem here is to find an appropriate Lagrangian formulation
with the variable n^μ treated on equal footing with all other ones.
From the previous discussion it is clear that the most preferable might be
a formulation where the gauge $n^\mu = (0, \cdots, 0, 1)$ would be possible. Un-
fortunately, it is unknown how to introduce pure gauge variable with the
desired properties [18-20,34-36]. Below, we propose superstring action, in
which only zero modes of the auxiliary variables survive in the sector of
physical degrees of freedom. Since the state spectrum of a string is formed
by the action on a vacuum of oscillator modes only, one expects that the
presence of zero modes for the case is not essential. We demonstrate this
fact within the canonical quantization framework.

As compared to Refs.[18-20,35,36], an advantage of the present formu-
lation is that the explicit Lagrangian action for $D = 11$ superstring will be
presented. Moreover, since the variable $n^\mu(\tau, \sigma)$ is treated on equal footing
with other ones, global symmetry transformations form a superalgebra in
the usual sense, without appearance of nonlinear in generators terms in
the right hand side of Eq.(6) (see below). Thus, true form of the S-algebra
will be obtained.

The work is organized as follows. In Sec.2 the Hamiltonian analysis for
the bosonic part of the $D = 11$ superstring action is carried out. We show
that the zero mode sector is decoupled from x sector. As a consequence,
the existence of the zero modes has no effect on the mass formula as well
as on the the spin content of the quantum states on each mass level, which
allows one to identify the corresponding part of the quantum state spec-
trum for the case of superstring with that of type IIA superstring (let us
point that the situation is similar to the known relation between super
D-string and type IIB superstring [37-39]). In Sec.3 action of the $D = 11$ superstring and its local and global symmetries are presented. In Sec.4 we show that physical degrees of freedom of the theory obey free equations of motion. The canonical quantization of the theory and discussion of the state spectrum is presented. In Sec.5 zero-tension limit of the superstring action is studied. We present $D = 11$ action for mechanical system, which is invariant under local κ-symmetry as well as under off-shell closed realization of S-algebra of global symmetries. In the result, a model-independent form of the S-algebra will be presented. Appendix contains our $SO(2,9)$ γ-matrix conventions.

2 Bosonic part of the action and its spectrum.

As was mentioned in the Introduction, we need to get in our disposal an auxiliary time-like vector variable. As a preliminary step to such a construction we discuss $SO(2, D - 2)$ action of the bosonic string modified by some additional terms with the above mentioned variable. The aim of this section is to show that the additional terms describe trivial degrees of freedom. An action for the $D = 11$ superstring will be obtained in the next section as a supersymmetrization of the above mentioned bosonic action.

The action which will be examined is

$$S = \int d^2 \sigma \left\{ -\frac{g_{ab}}{2\sqrt{-g}} \partial_a x^\mu \partial_b x^\mu - \epsilon^{ab} \xi_a (n^\mu \partial_b x^\mu) - n^\mu \epsilon^{ab} \partial_a A_b^\mu - \phi (n^2 + 1) \right\} . \tag{8}$$

Here $n^\mu(\sigma^a)$ is $D11$ vector and $d2$ scalar, $A_a^\mu(\sigma^b)$ is $D11$ and $d2$ vector, while $\phi(\sigma^a)$ is a scalar. In Eq.(8) we have set $\epsilon^{ab} = -\epsilon^{ba}$, $\epsilon^{01} = -1$ and it also supposed that all the variables are periodic on the interval $\sigma \subset [0, \pi]$ functions. From the equation of motion $\delta S/\delta \phi = 0$ it follows that n^μ is a time-like vector.
Let us discuss the dynamics of the model. For this aim the Hamiltonian formalism seems to be the most appropriate, since second-class constraints will arise and must be taken into account. The total Hamiltonian constructed by means of standard procedure \[41,42\] has the form

\[
H = \int d\sigma \left\{ -\frac{N}{2} \left[\hat{p}^2 + (\partial_1 x)^2 \right] - N_1 (\hat{p} \partial_1 x) - \xi_0 (n \partial_1 x) + (n \partial_1 A_0) + \phi (n^2 + 1) + \omega^{ab}(\pi_g)_{ab} + \lambda_\phi \pi_\phi + \lambda_\xi a \pi_\xi^a + \lambda_0 \pi_0^\mu + \lambda_1 (p_1^\mu - n^\mu) + \lambda_{\mu} n \pi_\mu \right\}, \tag{9}
\]

where

\[
\hat{p}^\mu \equiv p^\mu + \xi_1 n^\mu, \quad N \equiv \sqrt{-g} g^{00}, \quad N_1 \equiv \frac{g^{01} g^{00}}{g^{00}}, \tag{10}
\]

and \(p^\mu, p^\mu_\alpha, p^\mu_n, (\pi_g)_{ab}, \pi_\xi^0, \pi_\phi\) are momenta conjugated to the variables \(x^\mu, A_\alpha^\mu, n^\mu, g^{ab}, \xi_a, \phi\) respectively; \(\lambda_*\) are Lagrange multipliers corresponding to the primary constraints. The complete set of constrains can be found and presented as follows

\[
p_n^\mu = 0, \quad n^\mu - p_1^\mu = 0; \tag{11}
\]

\[
\pi_\xi^1 = 0, \quad \xi_1 - (p_1 p) = 0; \tag{12}
\]

\[
(\pi_g)_{ab} = 0, \quad \pi_\phi = 0, \quad \pi_0^\mu = 0, \quad p_0^\mu = 0; \tag{13}
\]

\[
(p_1)^2 = -1, \quad \partial_1 p_1^\mu = 0; \tag{14}
\]

\[
H_0 \equiv (p_1 \partial_1 x) = 0, \quad H_\pm \equiv (\hat{p}^\mu \pm \partial_1 x^\mu)^2 = 0; \tag{15}
\]

Constraints (11),(12) are of second-class, while the remaining ones are first-class. An appropriate gauge fixing for the constraints (13) is

\[
g^{\alpha \beta} = \eta^{\alpha \beta}, \quad \phi = \frac{1}{2}, \quad \xi_0 = 0, \quad A_0^\mu = \int d\sigma' \xi_1 \hat{p}^\mu. \tag{16}
\]

After introducing of Dirac brackets, which correspond to second-class set (11)-(13),(16), the canonical pairs of variables \((n^\mu, p_n^\mu), (\xi_a, \pi_\xi^a), (g_{ab}, (\pi_g)_{ab}), (\phi, \pi_\phi), (A_\mu^0, p_0^\mu)\) can be omitted. The Dirac brackets for the remaining variables coincide with the Poisson ones. The choice in (16) simplifies the
subsequent analysis of \((A^\mu_1, p^\mu_1)\)-sector, since the Hamiltonian equations of motion for these variables look now as
\[
\partial_0 A^\mu_1 = p^\mu_1, \quad \partial_0 p^\mu_1 = 0. \quad (17)
\]
In order to find an appropriate gauge fixing for the constraints (14) let us consider Fourier decomposition of periodical in the interval \(\sigma \subset [0, \pi]\) functions
\[
\begin{align*}
A^\mu_1(\tau, \sigma) &= Y^\mu(\tau) + \sum_{n \neq 0} y_n^\mu(\tau)e^{i2n\sigma}, \\
p^\mu_1(\tau, \sigma) &= P_y^\mu(\tau) + \sum_{n \neq 0} p_n^\mu(\tau)e^{i2n\sigma}. \quad (18)
\end{align*}
\]
Then the constraint \(\partial_1 p^\mu_1 = 0\) is equivalent to \(p_n^\mu = 0, n \neq 0\), and an appropriate gauge condition is \(y_n^\mu = 0\), or, equivalently, \(\partial_1 A^\mu_1 = 0\). Thus, physical degrees of freedom in the sector \((A^\mu_1, p^\mu_1)\) are zero modes of these variables and the corresponding dynamics is
\[
\begin{align*}
A^\mu_1(\tau, \sigma) &= Y^\mu + P_y^\mu \tau, \\
p^\mu_1(\tau, \sigma) &= P_y^\mu = \text{const}, \quad (P_y)^2 = -1. \quad (19)
\end{align*}
\]
Since there are no of oscillator variables, this sector of the theory may be considered as describing a point-like object, which propagates freely according to Eq.(19). Dynamics of the remaining variables is governed now by the equations
\[
\partial_0 x^\mu = -p^\mu - (P_y p) P_y^\mu, \quad \partial_0 p^\mu = -\partial_1 \partial_1 x^\mu. \quad (20)
\]
In addition, the constraints
\[
H_0 \equiv (P_y \partial_1 x) = 0, \quad H_\pm \equiv (p^\mu + (P_y p) P_y^\mu \pm \partial_1 x^\mu)^2 = 0, \quad (21)
\]
hold, which obey the following algebra
\[
\begin{align*}
\{H_\pm, H_\mp\} &= \pm 4[H_\pm(\sigma) \pm (P_y p)H_0(\sigma) + (\sigma \to \sigma')]\partial_\sigma \delta(\sigma - \sigma'), \\
\{H_+, H_-\} &= 4[(P_y p)H_0(\sigma) + (\sigma \to \sigma')]\partial_\sigma \delta(\sigma - \sigma'), \\
\{H_0, H_\pm\} &= \pm 2H_0(\sigma')\partial_\sigma \delta(\sigma - \sigma'). \quad (22)
\end{align*}
\]
On the $D = 10$ hyperplane selected by the constraint $H_0(\sigma) = 0$ it reduces to the standard Virasoro algebra. Note also that the variable $x^\mu(\tau, \sigma)$ obeys the free equation $(\partial_\tau^2 - \partial_\sigma^2) x^\mu = 0$ as a consequence of Eqs.(20),(21).

To proceed further it is useful to impose the gauge condition

$$(P_y \partial_1 p) = 0, \quad (23)$$

to the constraint $H_0 = 0$. By virtue of Eqs.(20),(23) one finds, in particular, that $(P_y p) = (P_y P)$, where P^μ is the zero mode of $p^\mu(\tau, \sigma)$. Then the solution to Eq.(20) (for the case of closed world sheet) reads

$$x^\mu(\tau, \sigma) = X^\mu - \frac{1}{\pi} (P^\mu + (P_y P) P^\mu) \tau + \frac{i}{2\sqrt{\pi}} \sum_{n} \frac{1}{n} \tilde{\alpha}_n^\mu e^{i2n(\tau+\sigma)} + \alpha_{-n}^\mu e^{-i2n(\tau-\sigma)}, \quad (24)$$

$$p^\mu(\tau, \sigma) = \frac{1}{\pi} P^\mu + \frac{1}{\sqrt{\pi}} \sum \tilde{\alpha}_n^\mu e^{i2n(\tau+\sigma)} - \alpha_{-n}^\mu e^{-i2n(\tau-\sigma)},$$

which is accompanied by the constraints

$$P_y^\mu \tilde{\alpha}_n^\mu = 0, \quad P_y^\mu \alpha_{-n}^\mu = 0, \quad (25)$$

$$H_+ = \frac{8}{\pi} \sum_{-\infty}^{\infty} L_n e^{i2n(\tau-\sigma)}, \quad L_n \equiv \frac{1}{2} \sum_{-\infty}^{\infty} \alpha_{n-k}^\mu \alpha_k^\mu = 0,$$

$$H_- = \frac{8}{\pi} \sum_{-\infty}^{\infty} \bar{L}_n e^{i2n(\tau+\sigma)}, \quad \bar{L}_n \equiv \frac{1}{2} \tilde{\alpha}_{-n-k}^\mu \tilde{\alpha}_k^\mu = 0, \quad (26)$$

where $\alpha_0^\mu = -\tilde{\alpha}_0^\mu \equiv \frac{1}{2\sqrt{\pi}} (P^\mu + (P_y P) P_y^\mu)$.

From Eq.(25) and the equality $(P^\mu + (P_y P) P_y^\mu) P_y^\mu = 0$ for the momenta of the center of mass, it follows that the sector (x^μ, p^μ) of the theory describes, in fact, a closed string, which lives on the $(D-1)$-dimensional hyperplane of standard signature which is orthogonal to the P_y^μ - direction.

Consider the following combinations:

$$\tilde{X}^\mu \equiv x^\mu - \frac{1}{2} (P_y P) P_y^\mu = X^\mu - \frac{1}{\pi} P^\mu + (\text{oscillators}),$$

$$\tilde{p}^\mu \equiv p^\mu + (P_y p) P_y^\mu = P^\mu + (\text{oscillators}), \quad (27)$$

$$X^\mu \equiv X^\mu - \frac{1}{2} (P_y P) P_y^\mu, \quad P^\mu \equiv P^\mu + (P_y P) P_y^\mu,$$
where solution of equations of motion (19), (24) was used. The quantities X^μ, P^μ obey the Poisson brackets

$$\{X^\mu, P^\nu\} = \eta^{\mu\nu}, \quad \{X^\mu, X^\nu\} = \{P^\mu, P^\nu\} = 0. \quad (27.a)$$

and the same is true for $\tilde{X}^\mu, \tilde{P}^\mu$ quantities. As a consequence, the conserved charges:

$$P^\mu = \frac{1}{\pi} \int_0^\pi d\sigma \tilde{P}^\mu,$$

$$L^{\mu\nu} = \frac{1}{\pi} \int_0^\pi d\sigma \tilde{X}^{[\mu} \tilde{P}^{\nu]} = X^{[\mu} P^{\nu]} + S^{\mu\nu} + \tilde{S}^{\mu\nu}, \quad (28)$$

where

$$S^{\mu\nu} = i \sum_{n=1}^{\infty} (\alpha_{-n}^\mu \alpha_n^{\nu} - \alpha_{n}^\mu \alpha_{-n}^{\nu}), \quad \tilde{S}^{\mu\nu} = i \sum_{n=1}^{\infty} (\tilde{\alpha}_{-n}^\mu \tilde{\alpha}_n^{\nu} - \tilde{\alpha}_n^\mu \tilde{\alpha}_{-n}^{\nu}), \quad (28.a)$$

are generators of the Poincare group. This allows one to obtain the standard mass formulae for physical states. We adopt the Gupta-Bleuler prescription by requiring that physical states be annihilated by half of the operators: $L_n : , : \tilde{L}_n :$

$$(L_n - a\delta_{n,0}) | \text{phys} >= (\tilde{L}_n - a\delta_{n,0}) | \text{phys} >= 0, \quad n > 0. \quad (29)$$

By virtue of Eq.(26) for $n=0$ one finds the mass of the states

$$m^2 = P^2 = -4\pi \left\{ \sum_{n>0} (\alpha_{-n}^\mu \alpha_n^{\mu} + \tilde{\alpha}_{-n}^\mu \tilde{\alpha}_n^{\mu}) + 2a \right\}. \quad (30)$$

As it should be, the mass of a state is determined by oscillator excitations of $x^\mu(\tau, \sigma)$–string only, zero modes of the sector (A_1^μ, p_1^μ) do not make contribution into this expression.

In order to describe the spectrum of the superstring suggested below, it is useful to consider also noncovariant quantization in an appropriately chosen coordinate system. By making use of a Lorentz transformation one can consider coordinate system where $P_y^\mu = (0, ...0, 1)$ (note that it is an
admissible procedure in the canonical quantization framework since the Lorentz transformation is particular example of the canonical one). This breaks manifest $SO(2, D - 2)$ covariance up to $SO(1, D - 2)$ one. In this basis Eq.(20)-(23) are reduced to

$$\partial_0 x^{D-1} = 0, \quad \partial_0 p^{D-1} = 0;$$ \hspace{1cm} (31)

$$\partial_0 \bar{x}^{\mu} = -p^{\bar{\mu}}, \quad \partial_0 \bar{p}^{\bar{\mu}} = -\partial_1 \partial_1 x^{\bar{\mu}}, \quad (p^{\bar{\mu}} \pm \partial_1 x^{\bar{\mu}})^2 = 0;$$ \hspace{1cm} (32)

where $\mu = (\bar{\mu}, D - 1)$. Thus, zero modes of the theory (8) along the direction P^μ_y decouples from $(D - 1)$-dimensional sector (32), while oscillator modes along the direction P^μ_y are absent as a consequence of the equations $(P_y \partial_1 x) = (P_y \partial_1 p) = 0$.

Thus, we have clear picture of the classical dynamics for the model(8). The bosonic D - dimensional theory (8) can be considered as describing a composite object. The sector of the auxiliary variables (A^μ_1, p^μ_1) corresponds to a point-like object. The only physical degrees of freedom of the sector are zero modes Y^μ, P^μ_y, which describe propagation of a free particle, see Eq.(19). The sector of variables (x^μ, p^μ) describes the closed string (32),(30), which lives on (D-1) - dimensional hyperplane of the standard signature which is orthogonal to P^μ_y - direction (the constraints (15), which relate the particle and the closed string mean that the latter one has no component of center of mass momenta as well as of oscillator excitations in the P^μ_y - direction, see Eqs.(24),(25)).

Next let us look at the spectrum of the quantum theory. The ground state of the full theory $| p_0, 0, p_{y0} >= | p_0 > | 0 > | p_{y0} >$ is a direct product of vacua, corresponding to the sectors $(X^\mu, P^\mu), (\alpha^\mu_n, \bar{\alpha}^\mu_n), (Y^\mu, P^\mu_y)$, which obey $P^2_y | p_{y0} > = - | p_{y0} >, P^\mu | p_0 >= p^\mu_0 | p_0 >, \alpha^\mu_n | 0 >= \bar{\alpha}^\mu_n | 0 >= 0$ for $n > 0$. The excitation levels are then obtained by acting with $n < 0$ oscillators on the ground state and looks as $\{ \prod \alpha^\mu_n \cdots \bar{\alpha}^\nu_m \cdots | p_0, 0 > \} \times \cdots | p_{y0} >$. From Eqs. (28), (25) one notes that the spin content on each
mass level (30) coincides with that of the $(D - 1)$-dimensional closed string [16]. In the result, from the mass formulae (30) and Eqs. (28), (25), (32) it follows that the quantum state spectrum of the theory (8) can be identified with that of the $(D - 1)$-dimensional closed bosonic string. One notes that zero modes Y^μ, P_y^μ manifest themselves in additional degeneracy of the continuous part of the energy spectrum only.

3 Action of $D=11$ superstring and its symmetries

As the $D = 11$ superstring action we propose the following supersymmetric version of (8):

$$ S = \int d^2 \sigma \left\{ -\frac{g^{a_b}}{2\sqrt{-g}} \Pi_a^\mu \Pi_b^\mu - i\varepsilon^{a_b} (\partial_a x^\mu - \frac{i}{2} \bar{\theta} \Gamma^\mu\nu n_\nu \partial_a \theta)(\bar{\theta} \Gamma_{\mu} \partial_b \theta) - \varepsilon^{a_b} \xi_a (n_\mu \Pi_b^\mu) - n_\mu \varepsilon^{a_b} \partial_a A_b^\mu - \phi (n^2 + 1) \right\}, \quad (33) $$

where θ is a 32-component Majorana spinor of $SO(2,9)$, ξ_a is a $d = 2$ vector and $\Pi_a^\mu \equiv \partial_a x^\mu - i\bar{\theta} \Gamma^\mu\nu n_\nu \partial_a \theta$. The role of the last two terms was discussed in the previous section. The third term is crucial for existence of local κ-symmetry and, at the same time, it provides a split of oscillator part of the coordinate $x^{11}(\tau, \sigma)$ from the physical sector.

Let us describe global symmetry structure of the action (33). Bosonic symmetries are the $D = 11$ Poincaré transformations in the standard realization, and additional transformations with antisymmetric parameter $b^{\mu\nu} = -b^{\nu\mu}$,

$$ \delta_b x^\mu = b^\mu_\nu n^\nu, \quad \delta_b A_a^\mu = -b^\mu_\nu \left(\varepsilon_{ab} \frac{g^{bc}}{\sqrt{-g}} \Pi_c^\nu - \xi_a n^\nu + i(\bar{\theta} \Gamma^\nu \partial_a \theta) \right). \quad (34) $$

The following fermionic supersymmetry transformations also take place:

$$ \delta \theta = \epsilon, \quad \delta x^\mu = i\epsilon \Gamma^{\mu\nu} n_\nu \theta, \quad (35) $$
\[\delta A^\mu_a = i\varepsilon_{ab} \frac{g^{bc}}{\sqrt{-g}} \Pi_{\nu\rho} (\varepsilon \Gamma^{\mu\nu} \theta) - \frac{5}{6} (\varepsilon \Gamma^\mu \theta)(\bar{\theta} \Gamma_\nu \partial_\alpha \theta) + \frac{1}{6} (\varepsilon \Gamma_\nu \theta)(\bar{\theta} \Gamma^\mu \partial_\alpha \theta). \]

One can prove that the complete algebra of symmetry transformations is on-shell closed up to the equation of motion \(\partial_a n^\mu = 0 \) and up to the trivial transformations \(\delta A^\mu_a = \partial_a \rho^\mu \) (see Eq. (38) below) with field-dependent parameter \(\rho^\mu \), as it usually happens in component formulations of supersymmetric models without auxiliary fields. In Sec.5 an off-shell closed version of these transformations will be obtained for the case of \(D = 11 \) superparticle. The only nontrivial commutator is

\[[\delta \epsilon_1, \delta \epsilon_2] = \delta b, \quad b^{\mu\nu} = -2i(\bar{\epsilon}_1 \Gamma^{\mu\nu} \epsilon_2). \]

Let us note that one needs to use Fierz identities (which is the same as for \(SO(1,10) \) case)

\[(\Gamma^\mu)_{\alpha(\beta} (C\Gamma^{\mu\nu})_{\gamma\delta)} + (\Gamma^{\mu\nu})_{\alpha(\beta} (C\Gamma^\mu)_{\gamma\delta)} = 0 \]

(37)

to prove invariance of (33) under transformations (35) as well as to check Eq. (36) for \(A^\mu_a \) variable. A relation of Eq.(35) to the \(D = 10, N = 2 \) supersymmetry has been described in the Introduction.

Local bosonic symmetries for the action (33) are \(d = 2 \) reparametrizations (with the standard transformation lows for all the variables except the variable \(\phi \), which transforms as a density, \(\phi'(\sigma') = \det(\partial\sigma'/\partial\sigma)\phi(\sigma) \)), Weyl symmetry, and the following transformations with parameters \(\rho^\mu(\sigma^a) \) and \(\omega_a(\sigma^b) \),

\[\delta A^\mu_a = \partial_a \rho^\mu + \omega_a n^\mu, \quad \delta \phi = -\frac{1}{2} \varepsilon^{ab} \partial_a \omega_b. \]

(38)

\footnote{To elucidate relation between Eqs. (36) and (6) let us point a simple analogy: algebra of the Lorentz generators \(M^{\mu\nu} = \frac{1}{2} (x^\mu p^\nu - x^\nu p^\mu) \) can be written either as \([M^{\mu\nu}, M^{\rho\sigma}] = \eta^{\mu\rho} M^{\nu\sigma} + \ldots \) or \([M^{\mu\nu}, M^{\rho\sigma}] = -\eta^{\mu\rho} p^\sigma x^\nu + \ldots \). The second case may be considered as corresponding to Eq.(6).}
These symmetries are reducible since their combination with parameters of a special form ($\omega_a = \partial_a \omega, \rho^\mu = -\omega n^\mu$) is a trivial symmetry, $\delta \omega A^\mu_a = -\omega \partial_a n^\mu, \delta \omega \phi = 0$ (note that $\partial_a n^\mu = 0$ is one of the equations of motion). Thus, Eq.(38) includes 12 essential parameters, which correspond to the primary first-class constraints $p^\mu_0 = 0, \pi_\phi = 0$ (see below).

The action is also invariant under a pair of local fermionic κ-symmetries. To describe them let us consider the following ansatz:

$$\delta \theta = \pm \Pi_{d\mu} S^\pm \Gamma^\mu \kappa^{\mp d}, \quad \delta x^\mu = -i \delta \bar{\theta} \Gamma^{\mu\nu} n_{\nu} \theta,$$

$$\delta g^{ab} = 8i \sqrt{-g} P^{\pm ca} (\partial_c \bar{\theta} S^\mp \kappa^{\mp b}),$$

where

$$S^\pm = \frac{1}{2}(1 \pm n_{\mu} \Gamma^\mu), \quad \kappa^{\mp d} \equiv P^{\mp dc} \kappa_c, \quad P^{\mp dc} = \frac{1}{2} \left(\frac{g^{dc}}{\sqrt{-g}} \mp \varepsilon^{dc} \right).$$

Note that on-shell (where $n^2 = -1$) the operators $S^\pm_{\alpha\beta}$ form a pair of projectors in θ-space. Let us remember also that the $d = 2$ projectors P^\pm obey the following properties: $P^{+ab} = P^{-ba}, P^{+ab} P^{+cd} = P^{+cb} P^{+ad}$. After tedious calculations with the use of these properties and the Fierz identities (37) a variation of the action (33) under the transformations (39) can be presented in the form

$$\delta S = -\varepsilon^{ab} \partial_a n_{\nu} G^{\nu}_{b'} + (n^2 + 1) H + \varepsilon^{ab} (n_{\mu} \Pi^\mu_b) F_a,$$

where

$$G^{\nu}_{b'} \equiv -i \varepsilon_{bc} \frac{g^{cd}}{\sqrt{-g}} (\delta \bar{\theta} \Gamma^{\mu\nu} \theta) \Pi_{d\mu} + \frac{1}{2} (\delta \bar{\theta} \Gamma^{\mu\nu} \theta) (\bar{\theta} \Gamma_{\mu} \theta) - \frac{1}{2} (\delta \bar{\theta} \Gamma_{\mu} \theta) (\bar{\theta} \Gamma^{\mu\nu} \partial_{\nu} \theta) + i \xi_b (\delta \bar{\theta} \Gamma^{\mu\nu} \theta) n_{\nu},$$

$$H \equiv +i \frac{g^{ab}}{\sqrt{-g}} (\partial_d \bar{\theta} \Gamma^{\mu} \kappa^{\mp d}) \Pi_{b\mu},$$

$$F_a \equiv i [\varepsilon_{ac} \frac{g^{cd}}{\sqrt{-g}} (\partial_d \bar{\theta} \Gamma^{\mu} \kappa^{\mp d}) n_{\mu} + (\partial_d \bar{\theta} \kappa^{\mp d}) \mp]$$

14
\[\mp 2\varepsilon_{ab}P^{\pm cd}(\partial_c \tilde{\Theta}^\mu \kappa_{\pm}^b)\Pi_{d\mu}], \quad \tilde{\kappa}_{\pm} \equiv \Pi_{a\mu} \Gamma^\mu \kappa_{\pm a}. \]

All terms in Eq.(41) can evidently be canceled by the corresponding variations of the auxiliary fields,

\[\delta A^\nu_b = G^\nu_b, \quad \delta \phi = H, \quad \delta \xi_a = F_a. \quad (43) \]

In the result, the eleven dimensional superstring action (33) is invariant under the transformations (39),(43). Let us stress that three last terms in the action (33) turn out to be essential for achieving this local \(\kappa\)-symmetry. Since in Eq.(39) there appeared the double projectors \((S^\pm\) and \(\Pi_{a\mu} \Gamma^\mu\)) acting on the \(\theta\)-space, the total number of essential parameters is \(8 + 8\).

As a cheek-up of our calculations note that after the substitution \(n^\mu = (0, \cdots 0, 1)\) the equations (39) are reduced to the ten-dimensional \(\kappa\)-symmetry transformations of the GS superstring action

\[\delta \theta^\alpha = +P^{-cd}\Pi^{\bar{\mu}}_d \Gamma^{\bar{\mu} \alpha \beta} \kappa_{\beta}^c, \quad \delta \bar{\Theta}^\alpha = P^{+cd}\Pi^{\bar{\mu}}_d \Gamma^{\bar{\mu} \alpha \beta} \kappa_{\beta}^c, \]

\[\delta x^\mu = i\theta^\alpha \Gamma^{\mu}_{\alpha \beta} \delta \tilde{\theta}^\beta - i\bar{\theta}^\alpha \Gamma^{\bar{\mu}}_{\alpha \beta} \delta \bar{\tilde{\theta}}^\beta, \quad (44) \]

\[\delta g^{ab} = 8i\sqrt{-\text{det}} \{-P^{-ca}(\partial_c \bar{\theta} \kappa_{\alpha}^b) + P^{+ca}(\partial_c \theta \kappa_{\beta}^b)\}. \]

4 \hspace{1em} Dynamics of the D=11 superstring and D=10 type IIA GS superstring.

In this Section we are going to demonstrate that the dynamics of physical variables in the theory (33) is governed by the free equations. In the coordinate system, where \(n^\mu = (0, \cdots 0, 1)\), the variables and the corresponding equations can be identified with the ones of type IIA GS superstring (modulo center of mass type variables \((Y^\mu, P^\mu_y)\) discussed in Sec.2). This conclusion is independent on the frame chosen since the initial action has \(D = 11\) Poincare invariance.
Performing the standard Hamiltonian analysis for the theory (33), one finds a pair of second-class constraints \(p_n^\mu = 0, \quad p_1^\mu - n^\mu = 0 \) among primary constraints of the theory. Then the variables \((n^\mu, p_n^\mu)\) can be omitted after introducing the associated Dirac bracket (see Sec. 2). The Dirac brackets for the remaining variables coincide with the Poisson ones, and the total Hamiltonian may be written as

\[
H = \int d\sigma \left\{-\frac{N}{2}(\hat{p}^2 + \Pi_{1\mu}\Pi_1^\mu) - N_1\hat{p}_\mu\Pi_1^\mu + p_{1\mu}\partial_1 A_0^\mu - \xi_0(p_{1\mu}\partial_1 x^\mu) + \phi(p_1^2 + 1) + \lambda_\phi\pi_\phi + \lambda_0 p_0^\mu + \lambda^{ab}(\pi_g)_{ab} + \lambda\xi_0 p_1^a + L_\alpha\lambda_\theta^a\right\},
\]

(45)

where \(p^{\mu}, p_0^\mu, p_1^\mu, p_1^a, (\pi_g)_{ab} \) are momenta conjugated to the variables \(x^\mu, A_0^\mu, A_1^\mu, \xi_a, g_{ab} \) respectively; \(\lambda_* \) are Lagrange multipliers corresponding to the primary constraints, and the following notations are used

\[
N = \sqrt{-g} g^{00}, \quad N_1 = g^{01} g^{00}, \quad \hat{p}^\mu = p^\mu - i\bar{\theta}\Gamma^\mu \partial_1 \theta + \xi_1 p_1^\mu, \quad L_\alpha = \bar{p}_{\theta\alpha} - i(p_\mu - \frac{i}{2}\bar{\theta}\Gamma^\mu \partial_1 \theta)(\bar{\theta}\Gamma^\mu)_\alpha p_{1\nu}
\]

(46)

Poisson brackets for the fermionic constraints are:

\[
\{L_\alpha, L_\beta\} = 2i \left[(\hat{p}^\mu + \Pi_1^\mu)(C\Gamma^\mu S^+)_{\alpha\beta} - (\hat{p}^\mu - \Pi_1^\mu)(C\Gamma^\mu S^-)_{\alpha\beta}\right],
\]

(47)

from which it follows that half of the latter are of first-class. The complete system of constraints can be presented in the form

\[
p_{\xi_1} = 0, \quad \xi_1 = (pp_1) + i(\bar{\theta}\Gamma^\mu \partial_1 \theta)p_{1\mu} = 0; \quad (48.a)
\]

\[
(\pi_g)_{ab} = 0, \quad \pi_\phi = 0, \quad p_{\xi_0} = 0, \quad p_0^\mu = 0; \quad (48.b)
\]

\[
\partial_1 p_1^\mu = 0, \quad (p_1^\mu)^2 = -1; \quad (48.c)
\]

\[
H_0 \equiv \partial_1 x^\mu p_{1\mu} = 0, \quad H_\pm \equiv (\hat{p}^\mu \pm \Pi_1^\mu)^2 = 0, \quad L_\alpha = 0. \quad (48.d)
\]

Besides, some equations for the Lagrange multipliers have been determined in the course of Dirac procedure,

\[
\lambda_\eta^\mu = 0, \quad \lambda_1^\mu = \partial_1 A_0^\mu + 2\phi p_1^\mu + Q^\mu; \quad (49)
\]
\[(\hat{p}_\mu - \Pi_{1\mu})\Gamma^\mu S^-(\lambda_\theta - \partial_1 \theta) = 0,\]
\[(\hat{p}_\mu + \Pi_{1\mu})\Gamma^\mu S^+(\lambda_\theta + \partial_1 \theta) = 0;\]
where

\[Q^\mu \equiv -N\xi_1\hat{p}^\mu - N_1\xi_1\Pi^\mu_1 - \xi_0\partial_1 x^\mu - \right)\lambda_\theta;\]
and the Eq.(50) was obtained from the condition \{\(L_\alpha, H\}\} = 0. The constraints (48.a-c) were considered in Sec.2 and we do not repeat the corresponding analysis here. Doing the gauge fixing (16) and solving of the \((A_1^\mu, p_1^\mu)\)-sector similar to the Eq.(19), one can see that the dynamics of the remaining variables is governed by equations of motion of the form

\[\partial_0 x^\mu = -(p_\mu + (pP_y)P_y^\mu) - i(\bar{\theta}\Gamma^{\mu\nu}\lambda_\theta)P_y^\nu,\]
\[\partial_0 p^\mu = -\partial_1 \left[\partial_1 x^\mu - i(\bar{\theta}\Gamma^{\mu\nu}\partial_1 \theta)P_y^\nu + i\lambda_\theta\right],\]
\[\partial_0 \theta^\alpha = -\lambda_\theta^\alpha;\]

together with the constraints (48.d). Equations for \(\bar{p}_\theta\)-variables are omitted since they are a consequence of the constraints \(L_\alpha = 0\) and other equations.

Similarly to GS superstring, physical variables of the theory (33) obey free equations of motion. To demonstrate this let us consider the following decomposition for \(\theta\)-variable, \(\theta = \theta^+ + \theta^-\), where \(\theta^\pm\) are spinors of opposite S-chirality

\[\theta^\pm \equiv S^\pm \bar{\theta}, \quad S^{\mp} \theta^\pm = 0.\]
By virtue of Eq.(50), the last equation from (52) can be rewritten as

\[(\hat{p}_\mu + \Pi_{1\mu})\Gamma^\mu(\partial_0 - \partial_1)\theta^+ = 0, \quad (\hat{p}_\mu - \Pi_{1\mu})\Gamma^\mu(\partial_0 + \partial_1)\theta^- = 0.\]

Further, the following conditions

\[\Gamma^+ \theta^+ = 0, \quad \Gamma^+ \theta^- = 0,\]
\footnote{In the basis where \(n^\mu = P_y^\mu = (0, \cdots, 0, 1)\) the S-chiral spinors \(\theta^\pm\) can be identified with \(D = 10\) Majorana-Weyl spinors of opposite chirality \(\theta^+ = (\bar{\theta}_\alpha, 0), \theta^- = (0, \theta^\alpha)\). Also, in this basis \(S^\pm\)-projectors commutes with the light-cone \(\Gamma^\pm\)-matrices (See Appendix).}
turn out to be an appropriate gauge fixing for the first-class constraints, which can be extracted from the equations \(L_\alpha = 0 \). Then \(\Gamma^+ \lambda_\theta^\pm = 0 \), while for \(\Gamma^- \lambda_\theta^\pm \)-projections one finds as a consequence of Eq.(50),

\[
\Gamma^- \lambda_\theta^+ = -\Gamma^- \partial_1 \theta^+, \quad \Gamma^- \lambda_\theta^- = \Gamma^- \partial_1 \theta^-.
\]

Besides, the following identities

\[
\bar{\theta} \Gamma^+ \lambda_\theta = \bar{\theta} \Gamma^i \lambda_\theta = 0,
\]

\[
(\bar{\theta} \Gamma^+ \mu \lambda_\theta) P_{\gamma \mu} = (\bar{\theta} \Gamma^i \mu \lambda_\theta) P_{\gamma \mu} = 0,
\]

\[
(\bar{\theta} \Gamma^+ \mu \partial_1 \theta) P_{\gamma \mu} = (\bar{\theta} \Gamma^i \mu \partial_1 \theta) P_{\gamma \mu} = 0,
\]

hold in the gauge (55), where \(i = 1, 2, \cdots, 8, 11 \).

Thus, we have, in fact, a situation which is similar to \(D = 10 \) GS superstring, and the further analysis coincides with the well known case \([1,16]\). Besides the zero modes \((Y^\mu, P_\gamma^\mu), (X^{10}, P^{10})\) which was considered in Sec.2 and are fully decoupled from the others, physical variable sector contains the transverse components \(x^i, i = 1, \cdots, 8 \) of the coordinate \(x^\mu \), and a pair of 32-component spinors \(\theta^\pm \) constrained by the equations (53),(55). By virtue of Eqs.(52)-(57) one gets that the physical variables obey the free equations

\[
\partial_0 x^i = -(p^i + (p P_\gamma) P_i^\gamma), \quad \partial_0 p^i = -\partial_1 \partial_1 x^i;
\]

\[
(\partial_0 - \partial_1) \Gamma^- \theta^+ = 0, \quad (\partial_0 + \partial_1) \Gamma^- \theta^- = 0.
\]

To analyze the quantum state spectrum for the theory under consideration let us follow on the SO(8) covariant procedure described in Sec.2. In the basis where \(P_\gamma^\mu = (0, \cdots, 0, 1) \) the gauge conditions (55) are equivalent to \(\Gamma^+ \theta = 0 \) with the solution being \(\theta = (\theta_a, 0, 0, \bar{\theta}_\bar{a}) \), where \(\theta_a, \bar{\theta}_\bar{a} \) are SO(8) spinors of opposite chirality. Then the second line in (59) reduces to \((\partial_0 - \partial_1) \theta_a = 0, (\partial_0 + \partial_1) \bar{\theta}_\bar{a} = 0 \), while the second equation from (48.d)

\[5\] From equation \(B_\gamma \Gamma^\mu \Psi = 0 \) subject to condition \(\Gamma^+ \Psi = 0 \) it follows, in particular, that \(B^+ \Gamma^- \Psi = 0 \).
coincides with the ten-dimensional Virasoro constraints. General state of the theory is

\[[\Pi \alpha^\mu \cdots \bar{\alpha}_m \cdots \hat{S}_k^a \cdots \hat{S}_p^b \cdots |0, p_0 >] \otimes |p_y0 > \] \tag{59} \]

where the bosonic (\(\alpha\)) and fermionic (\(S\)) oscillators are identical to type IIA superstring oscillators. From analysis of the mass formula and of the spin content on each mass level (which is similar to that of Sec.2) it follows, that the expression in square brackets of Eq.(59) can be identified with the state spectrum of type IIA GS superstring. One notes that zero modes \(Y^\mu, P_y^\mu\) manifest themselves in additional degeneracy of the continuous part of the energy spectrum only. In conclusion, let us point analogy: recently [38] it was established that super D-string is canonically equivalent to type IIB GS superstring with \(\Theta\)-term added (the \(\Theta\)-term contains the world-volume vector of D-string, and zero modes of the vector survive in the physical variable sector). Equivalence in the path integral framework was established in [39]. Situation with the theory under consideration is similar, but we have \(D = 11\) action related with type IIA superstring action.

5 D=11 mechanical system with off-shell closed new supersymmetry S-algebra.

Being zero-tension limit of the GS superstring, the Casalbuoni-Brink-Schwarz superparticle incorporates all its essential features [44,45]. It allows one to study the problem in a more simple framework of the mechanical model. In a similar fashion, in this Section a point-like analog for the \(D = 11\) superstring is presented and discussed. The action is invariant under local \(\kappa\)-symmetry as well as under a number of global symmetries with on-shell closed algebra of commutators. Its off-shell closed version will be obtained by a slight modification of the initial action, which allows one to extract a
true form of the S-algebra. Being model-independent, it may be used now as a basis for systematic construction of various $D = 11$ models.

Our starting point is the following $SO(2, 9)$ Lagrangian action

$$S = \int d\tau \left\{ \frac{1}{2e} \Pi^\mu \Pi_\mu + n^\mu \dot{z}^\mu - \phi(n^2 + 1) \right\},$$

(60)

$$\Pi^\mu \equiv \dot{x}^\mu - i(\bar{\theta} \Gamma^{\mu\nu} \dot{\theta})n_\nu - \xi n^\mu,$$

with all the variables being functions on the evolution parameter τ. Note that the last two terms are, in fact, an action for bosonic particle $z^\mu(\tau)$ written in the first-order form.

Global bosonic symmetries of the action (60) are $D = 11$ Poincare transformations (with the variable n^μ being inert under the Poincare shifts), and the following transformations

$$\delta_b x^\mu = b^\mu_\nu n^\nu, \quad \delta_b z^\mu = -\frac{1}{e} b^\mu_\nu \Pi^\nu,$$

(61)

with antisymmetric parameter $\omega^{\mu\nu} = -\omega^{\nu\mu}$. There is also a global symmetry with a fermionic parameter ϵ^α,

$$\delta_\epsilon \theta = \epsilon, \quad \delta_\epsilon x^\mu = -i(\bar{\theta} \Gamma^{\mu\nu} \epsilon)n_\nu, \quad \delta_\epsilon z^\mu = -i(\bar{\epsilon} \Gamma^{\mu\nu} \theta)\Pi^\nu.$$

(62)

The algebra of the corresponding commutators turns out to be on-shell closed and looks as follows:

$$[\delta_{b1}, \delta_{b2}] x^\mu = 0, \quad [\delta_{b1}, \delta_{b2}] z^\mu = \frac{1}{e} b_{1\mu}^\nu (\delta_{b2} \Pi^\nu) - (1 \leftrightarrow 2);$$

$$[\delta_{e1}, \delta_{e2}] \theta = 0, \quad [\delta_{e1}, \delta_{e2}] x^\mu = \delta_b x^\mu,$$

(63)

$$[\delta_{e1}, \delta_{e2}] z^\mu = \delta_b z^\mu + \left[\frac{i}{e} (\bar{\epsilon}_1 \Gamma^{\mu\nu} \theta)(\delta_{e2} \Pi^\nu) - (1 \leftrightarrow 2) \right], b^{\mu\nu} \equiv -2i(\bar{\epsilon}_1 \Gamma^{\mu\nu} \epsilon_2);$$

$$[\delta_\epsilon, \delta_b] \theta = 0, \quad [\delta_\epsilon, \delta_b] x^\mu = 0,$$

$$[\delta_\epsilon, \delta_b] z^\mu = -\frac{1}{e} b^\mu_\nu (\delta_\epsilon \Pi^\nu) + \frac{i}{e} (\bar{\epsilon} \Gamma^{\mu\nu} \theta)\delta_b \Pi^\nu.$$

Commutators with the Poincare transformations are omitted here since they have the standard form. All the extra terms in the right hand side of
Eq. (63) contains $\delta \Pi^\mu \sim \dot{n}^\mu$ and vanish on-shell, where $\dot{n}^\mu = 0$. To find off-shell closed version of these transformations let us note that all extra terms arise owing to the variation of the Π^μ-term. The latter appears, in its turn, due to variation of the variable z^μ. Following the standard ideology \[46,47\], these terms can be canceled by replacing $\Pi^\mu \rightarrow (\Pi^\mu - B^\mu)$ in Eqs. (61), (62), where the auxiliary variable B^μ has the same transformation properties as Π^μ, $\delta B^\mu = \delta \Pi^\mu$. The resulting off-shell closed version of the global symmetries is

$$
\delta_c \theta = \epsilon, \quad \delta_c x^\mu = -i(\bar{\theta} \Gamma^\mu_{\nu\epsilon})n_\nu, \\
\delta_c z^\mu = -i(\bar{\epsilon} \Gamma^\mu_{\nu\epsilon}) \left[\frac{1}{\epsilon} \Pi^\nu - B^\nu \right], \quad \delta_c B^\mu = \frac{i}{\epsilon} (\bar{\epsilon} \Gamma^\mu_{\nu\epsilon}) \dot{n}^\nu; \quad (64)
$$

$$
\delta_b x^\mu = b^\mu_\nu n^\nu, \quad \delta_b z^\mu = -\omega^\mu_\nu \left(\frac{1}{\epsilon} \Pi^\nu - B^\nu \right), \quad \delta_b B^\mu = \frac{1}{\epsilon} \omega^\mu_\nu \dot{n}^\nu, \quad (65)
$$

while the final form of the action, which is invariant under these transformations, looks as follows:

$$
S = \int d\tau \left\{ \frac{1}{2\epsilon} \Pi^\mu \Pi_\mu + n^\mu \dot{z}^\mu - \phi(n^2 + 1) - \frac{1}{2} B^2 \right\}. \quad (66)
$$

Thus, S-algebra consist of Poincare subalgebra ($M^{\mu\nu}$, P^μ), and includes generators of the new supertranslations Q_α as well as second-rank Lorentz tensor $Z_{\mu\nu}$, corresponding to transformation (65). The only nontrivial commutator is

$$
\{Q_\alpha, Q_\beta\} = 2i(C \Gamma^\mu_{\nu\epsilon})_{\alpha\beta} Z_{\mu\nu}. \quad (67)
$$

Note, that it is not a modification of the super Poincare algebra, but essentially different one, since the commutator of the supertranslations leads to Z-transformation instead of the Poincare shift.

The action (66) is also invariant under the local κ-symmetry transformations

$$
\delta \theta = \Pi_\mu \Gamma^\mu_\kappa, \quad (68)
$$

Note, that it is not a modification of the super Poincare algebra, but essentially different one, since the commutator of the supertranslations leads to Z-transformation instead of the Poincare shift.
\[\delta x^\mu = i(\bar{\theta} \Gamma^{\mu\nu} \delta \theta)n_\nu, \quad \delta z^\mu = -\frac{i}{e_z}(\bar{\theta} \Gamma^{\mu\nu} \delta \theta) \Pi_\nu, \]
\[\delta e = 4ie(\bar{\theta} \Gamma^{\mu\nu} \delta \theta) \Pi_\nu, \quad \delta \xi = -2i(\bar{\theta} \delta \theta). \] (68)

This fact is essential to confirm that physical sector variables obey free equations of motion. The Hamiltonian analysis for the model is similar to that of the superstring action discussed above, and is as follows. One finds the total Hamiltonian
\[H = \frac{c}{2} p^2 + \xi(pp_z) + \phi(p_z^2 + 1) + \lambda e \pi_e + \lambda e \pi_{\pi_e} + \lambda \phi \pi_\phi + \lambda B p_B B + \lambda n_B p_B + \lambda z \pi_e (p_z - n_\nu) + L_\alpha \lambda^\alpha_\theta, \] (69)
and the constraints
\[p^{\mu}_n = 0, \quad p^{\mu}_z - n^{\mu} = 0; \] (70a)
\[\pi_e = 0, \quad \pi_\phi = 0, \quad p_\xi = 0, \quad p^\mu_B = 0; \] (70b)
\[p_z^2 = -1, \quad (pp_z) = 0, \quad p^2 = 0; \] (70c)
\[L_\alpha \equiv \bar{p}_\theta_\alpha - i(\theta' \Gamma_\alpha^\mu) p_\mu = 0, \] (70d)
where \(\theta' \equiv p_z \Gamma^\mu \theta. \) The matrix of the Poisson brackets of fermionic constraints
\[\{L_\alpha, L_\beta\} = 2i(C \Gamma^{\mu\nu})_\alpha_\beta p_\mu p_{z\nu}, \] (71)
is degenerated on the constraints surface as a consequence of the identity
\[(\Gamma^{\mu\nu} p_\mu p_{z\nu})^2 = 4[(pp_z) - p^2 p_z^2] \mathbf{1} = 0. \] It means that half of the constraints are first-class. Also, from the condition \(\{L_\alpha, H\} = 0 \) one finds equation, which determine \(\lambda_\theta \)-multipliers,
\[p_\mu \Gamma^\mu \lambda^\prime_\theta = 0, \quad \lambda^\prime_\theta \equiv p_z \Gamma^\mu \lambda_\theta. \] (72)

After a gauge fixation for the first-class constraints (70.b) (and take into account the second-class constraints (70.a)), the canonical pairs \((e, \pi_e) \), \((\phi, \pi_\phi) \), \((\xi, p_\xi) \), \((B^\mu, p_B^\mu) \), \((n^{\mu}, p^{\mu}_n) \) can be omitted from the consideration. The dynamics of the remaining variables is governed by the equations
\[\dot{z}^\mu = p_z^\mu + i(\bar{\theta} \Gamma^{\mu\nu} \lambda_\theta)p_\nu, \quad \dot{p}_z^\mu = 0; \] (73a)
\[\dot{x}^\mu = p^\mu - i(\bar{\theta} \Gamma^{\mu \nu} \lambda_\theta) p_{z\nu}, \quad \dot{p}^\mu = 0; \quad (73.b) \]
\[\dot{\theta}^\alpha = -\lambda_\theta^\alpha, \quad \dot{\bar{p}}_{\theta\alpha} = 0. \quad (73.c) \]

The next step is to impose a gauge for the first-class constraints which are contained among the equations (70.d),

\[\Gamma^+ \theta' = 0. \quad (74) \]

By virtue of (72),(73.c) all the \(\lambda_\theta \)-multipliers can be determined, \(\lambda_\theta = 0 \), and Eqs.(73.a-c) are reduced to free equations.

The resulting picture corresponds to zero-tension limit of the \(D = 11 \) superstring action (33). The above consideration of the physical sector allows one to treat the system as a composite one. It consist of the bosonic \(z^\mu \)-particle (73.a) and the superparticle (73.b), (73.c), subjected to the constraints (70.c). Their free propagation is restricted by the kinematic constraint \((pp_z) = 0 \), which means that the superparticle lives on \(D = 10 \) hyperplane of the standard signature which is orthogonal to the direction of motion of \(z^\mu \)-particle.

6 Conclusion.

One can consider \(D = 10 \) GS superstring action as a lift of SO(8)-covariant superstring formulation up to the manifestly SO(1,9)-invariant form. In this paper we have considered, in fact, the next step of such a lift, from SO(1,9) up to SO(2,9) or SO(1,10). The key point is that the action constructed is based on the superalgebra of global symmetries (34)-(36), (67), which is nonstandard super extension of the Poincare one. It allows one to avoid restrictions of the brane scan followed from demanding of the super Poincare invariance. In the result, we have constructed \(N = 1 \) S-invariant action for \(D = 11 \) superstring with the quantum state spectrum.
which can be identified with that of $D = 10$, type IIA GS superstring. The only difference is an additional infinite degeneracy in the continuous part of the energy spectrum, related with the zero modes Y^{μ}, P^{μ}. On the classical level these degrees of freedom may be identified with coordinate and momenta of a free propagating point-like object.

In accordance with the results of Refs.[18] and [20] one expects that critical dimension of the theory is $D = 11$. We hope that similar construction will work for lifting of the $D = 10$ type IIB string to the corresponding $(10,2)$ version. It will be also interesting to apply the scheme developed in this work for construction of the Lagrangian formulation for $(D - 2, 2)$ SYM equations of motion considered in [35,36].

Acknowledgments.

One of the authors (A.A.D.) thanks N. Berkovits and J. Gates for useful discussions.

D.M.G. thanks Brazilian foundation CNPq for permanent support. The work of A.A.D. has been supported by the Joint DFG-RFBR project No 96-02-00180G, by Project INTAS-96-0308, and by FAPESP.

Appendix

In this Appendix we describe the minimal spinor representation of the Lorentz group $SO(2,9)$, which is known to have dimension $2^{[D/2]}$. To this aim, it is enough to find eleven 32×32 matrices Γ^{μ} satisfying the anti-commutation relations $\Gamma^{\mu} \Gamma^{\nu} + \Gamma^{\nu} \Gamma^{\mu} = -2 \eta^{\mu\nu}, \mu, \nu = 0, 1, \ldots, 9, 11, \eta^{\mu\nu} = (-, +, \ldots, +, -)$. A convenient way is to use the well known $16 \times 16 \gamma$-matrices of $SO(1,9)$ group, which we denote as $\Gamma^{m}_{\alpha\beta}, \tilde{\Gamma}^{m\alpha\beta}, m = 0, 1, \ldots, 9$.

24
Their explicit form is:

\[
\begin{align*}
\Gamma^0 &= \begin{pmatrix} 1_8 & 0 \\ 0 & 1_8 \end{pmatrix}, \\
\tilde{\Gamma}^0 &= \begin{pmatrix} -1_8 & 0 \\ 0 & -1_8 \end{pmatrix}, \\
\Gamma^i &= \begin{pmatrix} 0 & \gamma^i_{a\bar{a}} \\ \bar{\gamma}^i_{a\bar{a}} & 0 \end{pmatrix}, \\
\tilde{\Gamma}^i &= \begin{pmatrix} 0 & \gamma^i_{a\bar{a}} \\ \bar{\gamma}^i_{a\bar{a}} & 0 \end{pmatrix}, \\
\Gamma^9 &= \begin{pmatrix} 1_8 & 0 \\ 0 & -1_8 \end{pmatrix}, \\
\tilde{\Gamma}^9 &= \begin{pmatrix} 1_8 & 0 \\ 0 & -1_8 \end{pmatrix},
\end{align*}
\]

(A.1)

where \(\gamma^i_{a\bar{a}}, \bar{\gamma}^i_{a\bar{a}} \equiv (\gamma^i_{a\bar{a}})^T\) are real \(SO(8)\) \(\gamma\)-matrices \[16\],

\[
\gamma^i \bar{\gamma}^j + \gamma^j \bar{\gamma}^i = 2\delta^{ij} 1_8,
\]

(A.2)

and \(i, a, \bar{a} = 1, \ldots, 8\). As a consequence, the matrices \(\Gamma^m, \tilde{\Gamma}^m\) are real, symmetric, and obey the anticommutation relation

\[
\{\Gamma^m, \tilde{\Gamma}^n\} = 2\eta^{mn} 1,
\]

(A.3)

where \(\eta^{mn} = (-, +, \ldots, +)\). Then a possible realization for the \(D = 11\) \(\gamma\)-matrices is

\[
\Gamma^\mu = \begin{Bmatrix} \\
\begin{pmatrix} 0 & \Gamma^m \\ -\tilde{\Gamma}^m & 0 \end{pmatrix}, \\
\begin{pmatrix} 1_{16} & 0 \\ 0 & -1_{16} \end{pmatrix} \end{Bmatrix},
\]

(A.4)

The properties of \(\Gamma^m, \tilde{\Gamma}^m\) induce the following relations for \(\Gamma^\mu\):

\[
(\Gamma^0)^T = \Gamma^0, \quad (\Gamma^i)^T = -\Gamma^i, \quad (\Gamma^{11})^T = \Gamma^{11} \\
(\Gamma^\mu)^* = \Gamma^\mu, \quad \{\Gamma^\mu, \Gamma^\nu\} = -2\eta^{\mu\nu} 1_{32},
\]

(A.5)

The charge conjugation matrix \(C\),

\[
C \equiv \Gamma^0\Gamma^{11}, \quad C^{-1} = -C, \quad C^2 = -1
\]

(A.6)

can be used to construct the symmetric matrices \(C\Gamma^\mu\), \((C\Gamma^\mu)^T = C\Gamma^\mu\). One can introduce antisymmetrized products

\[
\Gamma^{\mu\nu} = \frac{1}{2}(\Gamma^\mu\Gamma^\nu - \Gamma^\nu\Gamma^\mu),
\]

(A.7)
which have the following explicit form in terms of the corresponding $SO(1, 9)$ and $SO(8)$ matrices:

\[
\Gamma^{0i} = - \begin{pmatrix} \Gamma^{0i} & 0 \\ 0 & \bar{\Gamma}^{0i} \end{pmatrix} = \begin{pmatrix} 0 & -\gamma^i \\ -\bar{\gamma}^i & 0 \\ 0 & 0 \\ 0 & \gamma^i \end{pmatrix},
\]

\[
\Gamma^{09} = - \begin{pmatrix} \Gamma^{09} & 0 \\ 0 & \bar{\Gamma}^{09} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix},
\]

\[
\Gamma^{ij} = - \begin{pmatrix} \Gamma^{ij} & 0 \\ 0 & \bar{\Gamma}^{ij} \end{pmatrix} = \begin{pmatrix} -\gamma^{ij} & 0 \\ 0 & -\bar{\gamma}^{ij} \\ 0 & 0 \\ -\gamma^{ij} & 0 \end{pmatrix},
\]

\[
\Gamma^{i9} = - \begin{pmatrix} \Gamma^{i9} & 0 \\ 0 & \bar{\Gamma}^{i9} \end{pmatrix} = \begin{pmatrix} 0 & \gamma^i \\ -\bar{\gamma}^i & 0 \\ 0 & 0 \\ 0 & -\gamma^i \end{pmatrix},
\]

\[
\Gamma^{0,11} = \begin{pmatrix} 0 & -\Gamma^0 \\ -\bar{\Gamma}^0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix},
\]

\[
\Gamma^{i,11} = \begin{pmatrix} 0 & -\Gamma^i \\ -\bar{\Gamma}^i & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\gamma^i \\ 0 & 0 & -\bar{\gamma}^i \\ 0 & 0 & 0 \end{pmatrix},
\]

(A.8)
where $i = 1, 2, \ldots, 8$ and Γ^0, Γ^0, $\Gamma^{i,11}$, $\Gamma^{9,11}$ are symmetric, whereas Γ^{ij}, Γ^{ij}, $\Gamma^{0,11}$, are antisymmetric. Besides, these matrices are real and, as a consequence of Eq. (A5), obey the commutation relations of the Lorentz algebra.

Under the action of the Lorentz group a $D = 11$ Dirac spinor is transformed as

$$\delta \theta = -\frac{1}{4} \omega_{\mu\nu} \Gamma^{\mu\nu} \theta. \quad (A.10)$$

Since $\Gamma^{\mu\nu}$ matrices are real, the reality condition $\theta^* = \theta$ is compatible with (A.10) which defines a Majorana spinor. To construct Lorentz-covariant bilinear combinations, one can note that

$$\delta \bar{\psi} \Gamma^\mu \theta = + \frac{1}{4} \omega_{\mu\nu} \bar{\theta} \Gamma^{\mu\nu}, \quad \bar{\theta} \equiv \theta^T C. \quad (A.11)$$

Then the combination $\bar{\psi} \Gamma^\mu \theta$ is a vector under the action of the $D = 11$ Lorentz group,

$$\delta(\bar{\psi} \Gamma^\mu \theta) = \omega^{\mu\nu} (\bar{\psi} \Gamma^\nu \theta). \quad (A.12)$$

The following properties are also useful

$$\bar{\psi} \Gamma^{\mu_1} \cdots \Gamma^{\mu_k} \phi = (-1)^k \bar{\phi} \Gamma^{\mu_k} \cdots \Gamma^{\mu_1} \psi$$

$$\bar{\psi} \Gamma^{\mu_1 \cdots \mu_k} \phi = (-1)^{\frac{k(k+1)}{2}} \bar{\phi} \Gamma^{\mu_1 \cdots \mu_k} \psi. \quad (A.13)$$

It is possible to decompose a $D = 11$ Majorana spinor in terms of its $SO(1,9)$ and $SO(8)$ components. Namely, it follows from Eq. (A.8) that in the decomposition

$$\theta = (\bar{\theta}_\alpha, \theta^\alpha), \quad \alpha = 1, 2 \cdots 16 \quad (A.14)$$
θ and \(\bar{\theta} \) are Majorana–Weyl spinors of opposite chirality with respect to the \(SO(1,9) \) subgroup of the \(SO(2,9) \) group. It follows from the third equation (A8) that in the decomposition

\[
\theta = (\theta_a, \bar{\theta}_a, \theta_\dot{a}, \bar{\theta}_\dot{a}) , \quad a, \dot{a} = 1, \ldots, 8 ,
\]

(A.15)

the pairs \(\theta_a, \theta_\dot{a} \) and \(\bar{\theta}_a, \bar{\theta}_\dot{a} \) are \(SO(8) \) spinors of opposite chirality.

It is convenient to define the \(D = 11 \) light-cone \(\Gamma \)-matrices

\[
\Gamma^+ = \frac{1}{\sqrt{2}}(\Gamma^0 + \Gamma^9) = \sqrt{2} \left(\begin{array}{c|c} 0 & 1_8 \\ \hline 0 & 0 \\ 0 & 1_8 \\ 0 & 0 \end{array} \right) ,
\]

\[
\Gamma^- = \frac{1}{\sqrt{2}}(\Gamma^0 - \Gamma^9) = \sqrt{2} \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & 0 \\ 1_8 & 0 \\ 0 & 0 \end{array} \right) ,
\]

\[
\Gamma^i = \left(\begin{array}{c} 0 \\ \Gamma^i \\ -\bar{\Gamma}^i \\ 0 \end{array} \right) ,
\]

\[
\Gamma^{11} = \left(\begin{array}{c} 1_{16} \\ 0 \\ 0 \\ -1_{16} \end{array} \right) ,
\]

(A.16)

Then the equation \(\Gamma^+ \theta = 0 \) has a solution

\[
\theta = (\theta_a, 0, 0, \bar{\theta}_a) .
\]

(A.17)

Besides, under the condition \(\Gamma^+ \theta = 0 \) the following identities:

\[
\bar{\theta} \Gamma^+ \partial_1 \theta = \bar{\theta} \Gamma^i \partial_1 \theta = \bar{\theta} \Gamma^{10} \partial_1 \theta = 0 , \quad (\bar{\theta} \Gamma^\mu \partial_1 \theta) \Gamma^\nu \theta = 0 ,
\]

(A.18)

hold.

References
[1] M.B. Green and J.H. Schwarz, Phys. Lett. B 136 (1984) 367.

[2] W. Siegel, Phys. Lett. B 128 (1983) 397.

[3] A. Achucarro, J. Evans, P. Townsend and D. Wiltshire, Phys. Lett. B 198 (1987) 441.

[4] M.J. Duff, *Supermembranes*, hep-th/9611203.

[5] E. Witten, Nucl. Phys. B 443 (1995) 85; hep-th/9503124.

[6] M.J. Duff, Int. J. Mod. Phys. A 11 (1996) 5623; hep-th/9608117.

[7] J.H. Schwarz, *Lectures on Superstring and M-Theory Dualities*, Nucl. Phys. Proc. Suppl. B 55 (1997) 1; hep-th/9607201.

[8] P. K. Townsend, *Four Lectures on M-Theory*, hep-th/9612121.

[9] T. Banks, W. Fishler, S. Shenker and L. Susskind, Phys. Rev. D 55 (1997) 5112, hep-th/9610043.

[10] E. Bergshoeff, E. Sezgin, and P.K. Townsend, Ann. of Physics, 185 (1988) 330.

[11] I. Bars, C.N. Pope, and E. Sezgin, Phys. Lett. B 198 (1987) 455.

[12] M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Phys. Lett. B 191 (1987) 70.

[13] B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B 305 (1988) 545.

[14] B. de Wit, M. Luscher and H. Nicolai, Nucl. Phys. B 320 (1989) 135.

[15] B. de Wit, K. Peeters and J. Plefka, Phys. Lett. B 409 (1997) 117.

[16] M. B. Green, J. H. Schwarz, and E. Witten, *Superstring Theory*, Cambridge Univ. Press, Cambridge, 1987.
[17] I. Bars, Phys. Rev. D 55 (1997) 2373; hep-th/9607112.

[18] I. Bars and C. Kounnas, A New Supersymmetry, hep-th/9612119; Phys. Rev. D 56 (1997) 3664; hep-th/9705203.

[19] I. Rudychev and E. Sezgin, Phys. Lett. B 415 (1997) 363; hep-th/9704057.

[20] I. Bars and C. Deliduman, Phys. Rev. D 56 (1997) 6579; hep-th/9707215.

[21] J. W. van Holten and A. van Proeyen, J. Phys. A 15 (1982) 3763.

[22] C. G. Callan, J. A. Harvey and A. Strominger, Nucl. Phys. B 359 (1991) 611; Nucl. Phys. B 367 (1991) 60.

[23] M. J. Duff and J. X. Lu, Nucl. Phys. B 390 (1993) 276.

[24] P.K. Townsend, Phys. Lett B 373 (1996) 68; hep-th/9512062.

[25] M. Cederwall, A. von Gussich, B.E.W. Nilsson, and A. Westenberg, Nucl. Phys. B 490 (1997) 163; Nucl. Phys. B 490 (1997) 179.

[26] M. Aganagic, C. Popesku, and J.H. Schwarz, Nucl. Phys. B 495 (1997) 99.

[27] P. Pasti, D. Sorokin, and M. Tonin, Phys. Lett. B 398 (1997) 41.

[28] I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Sorokin, M. Tonin, Phys. Rev. Lett. 78 (1997) 4332.

[29] A. A. Deriglazov and A. V. Galajinsky, Mod. Phys. Lett. A 12 (1997) 2993.

[30] A. A. Deriglazov and A. V. Galajinsky, Phys. Rev. D 58, ID 046005 (1998).
[31] T. Curtright, Phys. Rev. Lett. 60 (1987) 393.

[32] A.A. Deriglazov and A.V. Galajinsky, Mod. Phys. Lett. A 12 (1997) 1517; hep-th/9703104.

[33] E. Sezgin, Super p-Form Charges and Reformulation of the Supermembrane Action in Eleven Dimensions, hep-th/9512082.

[34] N. Berkovits, A Problem with the Superstring Action of Deriglazov and Galajinsky, hep-th/9712056.

[35] H. Nishino and E. Sezgin, Phys. Lett. B 388 (1996) 569; hep-th/9607183.

[36] H. Nishino, Supergravity in 10+2 Dimensions as Consistent Background for Superstring, hep-th/9703214; SYM Theories in $D \geq 12$, hep-th/9708064; Lagrangian and Covariant Field Equations for Supersymmetric YM Theory in 12D, hep-th/9710141.

[37] E. Witten, Nucl. Phys. B460 (1996) 335, hep-th/9510133.

[38] Y. Igarashi, K. Itoh, K. Kamimura and R. Kuriki, Canonical Equivalence between Super D-String and Type IIB Superstring, hep-th/9801118.

[39] I. Oda, Path Integral Equivalence between Super D-string and IIB Superstring, hep-th/9802152.

[40] C.M. Hull, Duality and the Signature of Space-Time, hep-th/9807127.

[41] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York, 1964.

[42] D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, 1990.
[43] C. Vafa, Nucl. Phys. B 469 (1996) 403.

[44] R. Casalbuoni, Phys. Lett B 62 (1976) 49.

[45] L. Brink and J. H. Schwarz, Phys. Lett. B 100 (1981) 310.

[46] J. Wess and J. Bagger, *Supersymmetry and Supergravity*, 2d ed. Princeton University Press, Princeton, 1992.

[47] A. A. Deriglazov and A. V. Galajinsky, Mod. Phys. Lett. A 9 (1994) 3445.