Predictors for Anterior Cruciate Ligament (ACL) Re-injury after Successful Primary ACL Reconstruction (ACLR)

Gupta R, MS, Singhal A, MS, Malhotra A, MS, Soni A, MS, Masih GD, MSc, Raghav M, MSc
Department of Orthopaedics, Government Medical College Hospital Chandigarh, Chandigarh, India

ABSTRACT
Introduction: Few authors have addressed risk factors related to an ipsilateral graft rupture and contralateral anterior cruciate ligament (ACL) injury after return to sports (RTS) following primary ACL reconstruction.

Material and Methods: Patients with ACL re-injury to either knee after successful primary ACLR were included in Group I and those with no further re-injury were included in Group II. Variables including age, gender, side, body mass index (BMI), thigh atrophy, anterior knee laxity difference between both knees measured by KT-1000 arthrometer, mean time of return to sports (RTS), graft type, type of game, mode of injury, Tegner Activity Score, hormone levels, femoral tunnel length (FTL), posterior tibial slope (PTS) and notch width index (NWI) were studied. Binary logistic regression was used to measure the relative association.

Results: A total of 128 athletes were included with 64 in each group. Mean age in Group I and II were 24.90 and 26.47 years respectively. Mean follow-up of Group I and Group II were 24.5 and 20.11 months respectively. Significant correlation was present between ACL re-injury and following risk factors; PTS of >10º, KT difference of >3.0mm, thigh atrophy of >2.50cm and time to RTS <9.50 months P value <0.05). No correlation was found with age, sex, BMI, type of game, Tegner Activity Score, mode of injury, NWI, size of graft, FTL and hormone levels.

Conclusion: Possible risk factors include PTS of ≥ 10º, KT difference of ≥ 3.0mm at 1 year follow-up, thigh atrophy of ≥ 2.50cm at 1 year follow-up and RTS <9.50 months after primary ACLR.

Keywords: ACL re-injury, knee, athletes, return to sports

INTRODUCTION
The anterior cruciate ligament (ACL) is the major passive restriction to anterior translation of the tibia on the femur, with the reported incidence of primary ACL injury as 1.5% to 1.7% per year in healthy athletic population. After an ACL injury, athletes present with the main complaint of knee instability, for which ACL reconstruction (ACLR) is the current gold standard operative management. A recent patient satisfaction survey concluded that athletes who can resume their sporting activity are more likely to be satisfied with the outcome of the ACLR.

Several risk factors for primary ACL injury have been studied and identified. Female sex, race and participation in pivoting sports have been widely reported as risk factors for primary ACL tear. Other reported risk factors include enhanced posterior tibial slope, narrow notch width, small size ACL, limb malalignment, neuromuscular control, vertical directed and short femoral tunnel length, and graft tunnel length.

In recent years, there has been tremendous improvement in surgical techniques, methods of fixation and rehabilitation protocol relating to ACL reconstruction. Despite this, the reported incidence of ACL re-injury remains high; 6% for ipsilateral graft injury and another 6% for contralateral knee ACL tear.

In addition, an earlier study has reported that the ACL graft rupture is a re-injury rather than the graft failure, which further emphasises on the importance of knowing the risk factors which predispose an athlete for ACL re-injury. Only a few authors have addressed risk factors related to an ipsilateral graft rupture and contralateral ACL injury after return to sports (RTS) following primary ACLR. Literature is still controversial over the argument of ACL re-injury risk factors to either knee after primary ACL reconstruction in athletes. Keeping racial factor as constant, this study was performed to find risk factors for ipsilateral graft rupture and contralateral ACL injury in athletes.
MATERIALS AND METHODS

In this study, patients who had undergone primary ACL reconstruction in the last 10 years were included.

Group I comprised of patients that had ACL re-injury to either knee post primary ACL reconstruction and Group II comprised of patients that had no further ACL injury post primary ACL reconstruction. Inclusion criteria were age 20 to 40 years, both sexes, injury during sports activity, ACLR using autografts semitendinosus gracilis free (STGF), semitendinosus gracilis with preserved insertion (STGPI) or bone patellar tendon bone (BPTB), clinical and magnetic resonance imaging (MRI) evidence of ACL deficient knee. Exclusion criteria were multiple knee ligament injuries, mode of injury other than sports, previous history of surgery on the knee other than ACLR, skeletally immature, infective or inflammatory pathology in the same knee previously or currently and patients who were not willing to participate in study.

The data for the study variables was taken from the pre-filled proformas and inpatient records maintained in our department and medical records department respectively. Both the groups were compared for potential risk factors including age, gender distribution, mode of injury (contact or non-contact), type of sport played, graft type, graft diameter, time to return to sports post primary ACL reconstruction, body mass index, thigh muscle atrophy, arthrometric (KT) difference side to side translation, Tegner Activity Score, posterior tibial slope, notch width index, oestrogen and progesterone levels.

The surgical procedure was performed by the single surgeon (R.G.) in all cases with the same standard technique as of STGPI (semitendinosus gracilis with preserved insertion), STGF (semitendinosus gracilis free) and BPTB (bone-patellar tendon-bone)⁹⁻²¹.

Reference point 15cm above superior pole of patella was used to measure thigh circumference. Hormone levels (oestrogen and progesterone) were done in the serum by chemiluminescence ADVIA Centaur XP system. Tunnel view at 45° of flexion and lateral view were used to calculate intercondylar notch and posterior tibial slope²²⁻²³. All patients underwent a standard post-operative rehabilitation protocol for six months. Rehabilitation protocol with closed-chain exercises were started from post-operative day 1, and open-chain exercises were introduced at three months of follow-up. During the first six weeks, patients were allowed unlimited range of motion and full weight bearing in a brace, and they performed straight leg raises and static quadriceps exercises. At six weeks, cycling was introduced in addition to the existing physiotherapy. At three months, light jogging was allowed. At six months, patients were allowed to practice sports and undergo endurance exercises for the next one to two months. Finally, after satisfactory performance by players in a practice game, patients were allowed to return to competitive sports. Because the study was a single-blind study, the surgical technique was not disclosed to the patient and the observer.

In statistical analysis, quantitative data was presented as mean ± SD or median and interquartile range, as appropriate. Normality of data was checked by Kolmogorov-Smirnov test of normality. For skewed data or scores, Mann-Whitney test for two groups was applied. For normally distributed data, two groups were compared using independent t-test. Proportions were compared using Chi-square or Fisher’s exact test, depending on their applicability. All the statistical tests were two-sided and performed at a significance level of 0.05. The analysis was conducted using IBM SPSS STATISTICS (version 22.0).

RESULTS

Out of 2,042 ACL reconstruction surgeries performed in the last 10 years, 452 (22.13%) met the inclusion criteria. A total of 64 patients suffered ACL re-injury and were included under Group I (26 patients on ipsilateral side and 38 patients on contralateral side). In Group II, out of remaining 388 sportspersons, 64 were randomly selected. Ipsilateral graft rupture rate was 5.7% and contralateral ACL injury was 8.4%. The average age of the patients was 24.90±4.06 years in Group I and 26.47±6.51 years in Group II. The mean follow-up of patients in Group I was 24.9±7.0 months, whereas the mean follow-up of Group II patients was 28.2±7.3 months. In Group I, two patients lost to follow-up and in Group II three patients lost to follow-up. The mean duration between injury and index surgery was 15.75±20.16 months in Group I and 18.11 ±19.9 months in Group II. The mean duration between index surgery and re-injury was 20.11 ±7.56 months. There were 4 (6.25%) females in Group I and 3 (4.68%) in Group II. In Group I, 36 patients sustained an injury to the right knee, whereas in Group II, 38 patients sustained an injury to the right knee. In both the groups’ non-contact mode of injury was more with 42 (65.62%) patients in Group I and 46 (71.87%) patients in Group II. Both the groups were comparable for body mass index; femoral tunnel length (graft length in tunnel was kept ≥ 15mm in all cases in both the groups), notch width index, type and size of graft; hormonal factors including oestrogen and progesterone and type of game played with p value >0.05 (Table I, Table II and Table III). Limb symmetry index (LSI) using single leg hop test was 90.2% in Group I, and 88.7% in Group II at a mean follow-up of six months. The difference between uninjured and injured limb using single leg hop test was not significant (p=0.05). In Group I, mean posterior tibial slope was 10.15±1.40º and in Group II mean posterior tibial slope was 8.53±2.20º with p value <0.05 (Table I). Arthrometric KT-1000 difference was found to be significant at one year follow-up with p value of <0.05 (Table I). Mean time to return to sports was found to be
Table I: Comparison of continuous variables between two groups

	Group I Mean +/- S.D.	Group II Mean +/- S.D.	P value
Body Mass Index (n=64)	25.40±3.70	24.27±3.10	0.06
Thigh wasting at 12 months (n=62)	2.50±1.17cm	2.00±1.23cm	0.02
KT Difference at 12 months (n=64)	2.90±0.60mm	2.10±1.10mm	0.00(<0.05)
Time to RTS (n=64)	8.10±2.90 months	9.51±2.60 months	0.00(<0.05)
Posterior Slope (n=64)	10.15±1.40º	8.53±2.20º	0.00(<0.05)
Notch width Index (n=64)	.28±.04	.29±.05	0.21
Size of Hamstring Graft (n=64)	7.40±1.13mm	7.54±1.10mm	0.47
Hormone levels (n=64)			
Oestrogen	32.87±19.40 pg/ml	35.19±18.07 pg/ml	0.48
Progesterone	1.70±1.30 ng/ml	1.4±.34 ng/ml	0.07
Femoral Tunnel Length (n=64)	34.05±5.91(mm)	35.34 ±6.04	0.22
Type of Graft(n=64)			
BPTB	16	17	0.92
STGPI	14	11	0.32
STGF	34	36	0.86

Table II: Comparison of type of game played between two groups

Types of Game	Group I (n=64)	Group II (n=64)	p-value
Athletics	2	2	0.845
Badminton	2	2	
Basketball	2	1	
Cricket	5	2	
Football	16	15	
Golf	0	1	
Gymnastics	1	0	
Handball	1	0	
Hockey	1	0	
Kabaddi	28	34	
Kho Kho	1	0	
Lawn tennis	0	1	
Martial arts	1	0	
Squash	0	1	
Volleyball	1	1	
Wrestling	4	3	

Table III: Graft type in Group I between ipsilateral and contralateral ACL injury

Type of Graft	Ipsilateral graft rupture (n=26)	Contralateral ACL injury (n=38)
BPTB	5	12
STGF	11	6
STGPI	10	20

DISCUSSION

The principle findings of this study was that mean time to return to sports of less than 9.5 months, mean thigh circumference difference of >2.5cm at one year follow-up, mean KT difference of >3mm at one year follow-up were statistically significant risk factors for ACL re-injury. Further, it was observed that posterior slope of >10º, was a significant, with Group I having mean time to return to sports at 8.10±2.90 months and Group II having mean time to return to sports at 9.51±2.60 months (p<0.05) (Table I). In both the groups, difference between mean pre-injury and post-operative Tegner Activity Score at one year follow-up was found to be non-significant with p value of >0.05 (Table IV).
Risk Factors of ACL re-injury

It is a known fact that, forces acting on knee joint at the time of injury are different in non-contact and contact injury. In non-contact injury, both rotational and bending forces are acting on the knee with proposed theories of impingement on the intercondylar notch, forceful quadriceps contraction, quadriceps-hamstring force imbalance and axial compressive forces while in the later, the main force is exerted due to bending forces\cite{44-47}. Though previous literature, reports non-contact mode of injury as a risk factor for causing primary ACL injury, we in this study didn’t observe the same and hence report mode of injury is not a risk for causing ACL re-injury\cite{48}.

In this study, the correlation of oestrogen and progesterone with ACL re-injury to either knee was found to be statistically non-significant. It is a known fact that, receptors for oestrogen and progesterone are present on ACL in both males and females\cite{49,50}, wherein the former facilitates the collagen production and the latter inhibits the collagen production. Also, decreased fibroblast and pro-collagen production has been reported in tissue culture models when exposed to high concentrations of oestrogen\cite{51,52}, emphasising that these hormones do play a significant role in tissue remodelling. Till now, no single case control or cohort study has been done in humans to conclusively define this variable as a possible risk factor. Though few case series or descriptive studies mentioned its role as a risk factor but still a consensus has not been reached\cite{53}.

The limitations is this was a single-centre study with small sample size. Meniscal and chondral damage were not studied. The strengths of quadriceps (Q) and hamstring (H) and the Q/H could not be assessed individually. Thus we don’t have a clear understanding of flexor and extensor strength gap, as our study, relied on the thigh circumference measurement and arthrometric side to side measurement with help of KT-1000 at each follow-up to prevent re-injury to ACL.

The author(s) declare that they have no competing interests.
REFERENCES

1. Raines BT, Naclerio E, Sherman SL. Management of Anterior Cruciate Ligament Injury: What’s In and What’s Out? Indian J Orthop. 2017; 51(5): 563-75. doi: 10.4103/ortho.IJOrtho_245_17
2. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am. 1980; 62(2): 259-70.
3. Shea KG, Carey JL, Richmond J, Sandmeier R, Pitts RT, Polousky JD, et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on management of anterior cruciate ligament injuries. J Bone Joint Surg Am. 2015; 97(8): 672-4. doi: 10.2106/jbjs.n.01257
4. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013; 41(1): 216-24. doi: 10.1177/0363546512459638
5. Ardern CL, Osterberg A, Sonesson S, Gauffin H, Webster KE, Kvist J, et al. Satisfaction with knee function after primary anterior cruciate ligament reconstruction is associated with self-efficacy, quality of life, and returning to the preinjury physical activity. Arthroscopy. 2016; 32(8): 1631-8.e3. doi: 10.1016/j.arthro.2016.01.035
6. Cheung EC, Boguszewski DV, Joshi NB, Wang D, McAllister DR. Anatomic factors that may predispose female athletes to anterior cruciate ligament injury. Curr Sports Med Rep. 2015; 14(5): 368-72. doi: 10.1249/JSR.0000000000000188
7. Trojan TH, Collins S. The anterior cruciate ligament tear rate varies by race in professional women's basketball. Am J Sport Med. 2006; 34(6): 895-8. doi: 10.1177/0363546505284384
8. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000; 8(3): 141-50. doi: 10.5435/00124635-20000500-00001
9. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slaeterbeck JR, Schutt RC Jr, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010; 38(1): 54-62. doi: 10.1177/0363546509349055
10. Souryal TO, Moore HA, Evans JP. Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med. 1988; 16(5): 449-54. doi: 10.1177/036354658801600504
11. Smith HC, Vacek P, Johnson RJ, Slaeterbeck JR, Hashemi J, Shultz S, et al. Risk factors for anterior cruciate ligament injury: a review of the literature - part 1: neuromuscular and anatomic risk. Sports Health. 2012; 4(1): 69-78. doi: 10.1177/1941738111428281
12. Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, et al. Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy. 2011; 27(3): 380-90. doi: 10.1016/j.arthro.2010.07.018
13. Greis PE, Burks RT, Bachus K, Luker MG. The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med. 2001; 29(4): 493-7. doi: 10.1177/03635465010290041901
14. Vaishya R, Agarwal AK, Ingole S, Vijay V. Current trends in anterior cruciate ligament reconstruction: A Review. Cureus. 2015; 7(11): e378. doi: 10.7759/cureus.378
15. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005; 21(8): 948-57. doi: 10.1016/j.arthro.2005.04.110
16. Gupta R, Malhotra A, Sood M, Masih GD. Is anterior cruciate ligament graft rupture (after successful anterior cruciate ligament reconstruction and return to sports) actually a graft failure or a re-injury? J Orthop Surg (Hong Kong). 2019; 27(1): 2309499019829625. doi: 10.1177/2309499019829625
17. Kaeding CC, Pedroza AD, Reineke EK, Huston LJ, Spindler KP. Risk factors and predictors of subsequent acl injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sport Med. 2015; 43(7): 1583-90. doi: 10.1177/0363546515578836
18. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009; 19(1): 3-8. doi: 10.1097/JSM.0b013e318190bddd
Risk Factors of ACL re-injury

19. DiSilvestro KJ, Jauregui JJ, Glazier E, Cherkalin D, Bennett CH, Packer JD, et al. Outcomes of Anterior Cruciate Ligament Reconstruction in Obese and Overweight Patients: A Systematic Review. Clin J Sport Med. 2017; 29(4): 257-61. doi: 10.1097/JSM.0000000000000521

20. Frank RM, Higgins J, Bernadoni E, Cvetanovich G, Bush-Joseph CA, Verma NN, et al. Anterior cruciate ligament reconstruction basics: bone-patellar tendon-bone autograft harvest. Arthrosc Tech. 2017; 6(4): e1189-e94. doi: 10.1016/j.eats.2017.04.006

21. Gupta R, Bahadur R, Malhotra A, Masih GD, Gupta P. Anterior cruciate ligament reconstruction using hamstring tendon autograft with preserved insertions. Arthrosc Tech. 2016; 5(2): e269-e74. doi: 10.1016/j.eats.2015.12.007

22. MARS Group. Radiographic findings in revision anterior cruciate ligament reconstructions from the MARS cohort. J Knee Surg. 2013; 26(4): 239-48. doi: 10.1055/s-0032-1329717

23. Angelo RDCDO, de Moraes SRA, Suruagy LC, Tashiro T, Costa HM. Morphometric study of the femoral intercondylar notch of knees with and without injuries of anterior cruciate ligament (A.C.L.), by the use of software in digitalized radiographic images. Acta Ortop Bras. 2004; 12(3): 146-54. doi: 10.1590/S1413-78522004000300003

24. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med. 2004; 32(2): 477-83. doi: 10.1177/0363546503258928

25. Radin EL, Yang KH, Riegger C, Kish VL, O'Connor JJ. Relationship between lower limb dynamics and knee joint pain. J Orthop Res. 1991; 9(3): 398-405. doi: 10.1002/jor.110090312

26. Konishi Y, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport. 2010; 13(1): 101-5. doi: 10.1016/j.jsams.2008.08.001

27. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016; 50(13): 804-8. doi: 10.1136/bjsports-2016-096031

28. Kegerreis S. The construction and implementation of functional progressions as a component of athletic rehabilitation. J Orthop Sports Phys Ther. 1983; 5(1): 14-9. doi: 10.2519/jospt.1983.5.1.14

29. Sousa PL, Krych AJ, Cates RA, Levy BA, Stuart MJ, Dahm DL. Return to sport: does excellent 6-month strength and function following ACL reconstruction predict midterm outcomes? Knee Surg Sports Traumatol Arthrosc. 2017; 25(5): 1356-63. doi: 10.1007/s00167-016-3929-0

30. Myer GD, Martin L Jr, Ford KR, Paterno MV, Schmitt LC, Heidt RS Jr, et al. No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. Am J Sports Med. 2012; 40(10): 2256-63. doi: 10.1177/0363546512454656

31. Marouane H, Shirazi-Adl A, Adouni M, Hashemi J. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech. 2014; 47(6): 1353-9. doi: 10.1016/j.jbiomech.2014.01.055

32. Webb JM, Salmon LJ, Leclere E, Pinczewski LA, Roe JP. Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament–reconstructed patient. Am J Sports Med. 2013; 41(12): 2800-4. doi: 10.1177/0363546513503288

33. Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008; 16(2): 112-7. doi: 10.1007/s00167-007-0438-1

34. Palmer I. On the injuries to the ligaments of the knee joint: a clinical study. 1938. Clin Orthop Relat Res. 2007; 454: 17-22. doi: 10.1097/BLO.0b013e3181027915.

35. Alizadeh A, Kiavash V. Mean intercondylar notch width index in cases with and without anterior cruciate ligament tears. Iran J Radiol. 2008; 5(4):205-8.

36. Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH. Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015; 23(3): 680-6. doi: 10.1007/s00167-014-3414-6

37. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2013; 21(3): 678-82. doi: 10.1007/s00167-012-2038-y
38. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, et al. The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. *Knee Surg Sports Traumatol Arthrosc.* 2013; 21(4): 804-15. doi: 10.1007/s00167-012-2166-4

39. Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. *Am J Sports Med.* 2009; 37(2): 252-9. doi: 10.1177/0363546508328107

40. Meyer EG, Baumer TG, Slade JM, Smith WE, Haut RC. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. *Am J Sports Med.* 2008; 36(10): 1966-77. doi: 10.1177/0363546508318046

41. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. *Am J Sports Med.* 2003; 31(6): 831-42. doi: 10.1177/03635465030310061801

42. Kobayashi H, Kanamura T, Koshida S, Miyashita K, Okado T, Shimizu T, et al. Mechanisms of the anterior cruciate ligament injury in sports activities: a twenty-year clinical research of 1,700 athletes. *J Sports Sci Med.* 2010; 9(4): 669-75.

43. Liu SH, al-Shaikh R, Panossian V, Yang RS, Nelson SD, Soleiman N, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. *J Orthop Res.* 1996; 14(4): 526-33. doi: 10.1002/jor.11000140405

44. Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA. Combined Effects of estrogen and Progesterone on the Anterior Cruciate Ligament. *Clin Orthop Relat Res.* 2001; (383): 268-81. doi: 10.1097/00003086-200102000-00031

45. Wahl LM, Blandau RJ, Page RC. Effect of hormones on collagen metabolism and collagenase activity in the pubic symphysis ligament of the guinea pig. *Endocrinology.* 1977; 100(2): 571-9. doi: 10.1210/endo-100-2-571

46. Liu SH, al-Shaikh RA, Panossian V, Finerman GA, Lane JM. Estrogen affects the cellular metabolism of the anterior cruciate ligament: a potential explanation for female athletic injury. *Am J Sports Med.* 1997; 25(5): 704-9. doi: 10.1177/036354659702500521

47. Gomes JLE, Scarton A. Planificação radiológica da abertura intercondiliana na reconstrução do ligamento cruzado anterior / Preoperative radiological protocol of the intercondyle narrowing in anterior cruciate ligament reconstruction. *Rev Bras Ortop.* 1998; 33(8): 651-4.