Present and Future of Phase-Selectively Disordered Blue TiO₂ for Energy and Society Sustainability

Yongguang Luo¹,², Hyoyoung Lee¹,²,³,⁴*

HIGHLIGHTS

• Milestones of TiO₂ development and invention of phase-selectively ordered/disordered blue TiO₂ (BTO) is in-depth illustrated.
• The explored and potential applications of BTO are reviewed and proposed thoroughly.
• The forthcoming flourishing research trends based on account of BTO are suggested.

ABSTRACT Titanium dioxide (TiO₂) has garnered attention for its promising photocatalytic activity, energy storage capability, low cost, high chemical stability, and nontoxicity. However, conventional TiO₂ has low energy harvesting efficiency and charge separation ability, though the recently developed black TiO₂ formed under high temperature or pressure has achieved elevated performance. The phase-selectively ordered/disordered blue TiO₂ (BTO), which has visible-light absorption and efficient exciton disassociation, can be formed under normal pressure and temperature (NPT) conditions. This perspective article first discusses TiO₂ materials development milestones and insights of the BTO structure and construction mechanism. Then, current applications of BTO and potential extensions are summarized and suggested, respectively, including hydrogen (H₂) production, carbon dioxide (CO₂) and nitrogen (N₂) reduction, pollutant degradation, microbial disinfection, and energy storage. Last, future research prospects are proposed for BTO to advance energy and environmental sustainability by exploiting different strategies and aspects. The unique NPT-synthesized BTO can offer more societally beneficial applications if its potential is fully explored by the research community.

KEYWORDS Blue TiO₂ (BTO); Phase-selective disordering; Visible-light-driven photocatalyst; Charge separation; Energy and society sustainability
1 Introduction

Modern society has achieved great science and technology explosion to date but faces severe energy demands and environmental concerns to realize sustainable development. One crucial issue in the twenty-first century is finding ways to convert and store renewable energy efficaciously while tackling climate change and environmental pollution caused by unsustainable human activity. In that context, titanium dioxide (TiO$_2$) has received a lot of attention for its photocatalytic activity, energy storage capability, low cost, high chemical stability, and nontoxicity. The initial discovery of the photocatalytic potential of TiO$_2$ dates back to the end of the 1920s [1]. Researchers observed that aniline dyes faded and fabrics degraded in the presence of TiO$_2$, oxygen gas (O$_2$), and ultraviolet (UV) light. However, the academic community did not show strong scientific enthusiasm about the phenomenon at that time due to a lack of interest in renewable energy and environmental stewardship.

That began to change after Fujishima and Honda reported the discovery of water photoelectrolysis into hydrogen (H$_2$) by rutile TiO$_2$ under UV irradiation in 1969 [2]. The Honda–Fujishima water splitting finding was refined and called “natural photosynthesis” by Nature in 1972 [3]. Now, TiO$_2$ is one of the most promising photocatalyst materials. Its valence band (VB) and conduction band (CB) positions offer more diverse catalysis reaction potential than available with many other transition metal oxides and dichalcogenides [4]. Furthermore, the heterogeneous photocatalysis of TiO$_2$ enables smoother industrial recycling than is available for homogeneous photocatalysts.

TiO$_2$ has three main polymorphs, anatase, rutile, and brookite. The anatase and rutile phases of TiO$_2$ are the most frequently studied and synthesized in laboratories and industry, whereas brookite, as a natural phase, is rarely investigated as a photocatalyst due to difficulties in synthesizing it [5]. The anatase phase is reported to have higher photocatalytic performance than the rutile phase because it has better bulk charge transportation and a smaller recombination portion of the exciton [6, 7]. After several decades of developments, various TiO$_2$ synthesis approaches have been established through gas-phase reactions, solution-based methods, and alcoholysis from titanium tetrachloride (TiCl$_4$) [8], titanium oxysulfate (TiO$_2$SO$_4$) [9], and Ti(OC$_4$H$_9$)$_4$ [10]. To date, one of the famous TiO$_2$ photocatalyst products is commercial Degussa P-25 (P25) (Degussa Co., Ltd), which has been frequently applied as a benchmark photocatalyst [11, 12]. P25 TiO$_2$ contains a unique hybrid of anatase and rutile phases in a roughly 3:1 ratio and exhibits good performance in many photocatalytic systems [13]. TiO$_2$ is also used in other industries: energy (energy production and storage), environment (degrading pollution in the air, wastewater, and indoors), human health and food (antibacterial, antiviral sterilization), cosmetics (sunscreen against UVA and UVB), and self-cleaning and antifogging products [14, 15]. The antiviral potential of TiO$_2$ will certainly draw attention during the struggle with the COVID-19 coronavirus pandemic [16].

TiO$_2$ still faces several hindrances to its photocatalytic performance. First, pristine TiO$_2$ can absorb sunlight only in the UV region (5%) due to its large electronic bandgaps (anatase, 3.2 eV; rutile 3.0 eV), which results in extremely low photocatalysis quantum efficiency that fails to meet the needs of industrial applications. Second, the separated charges (electrons and holes) formed after photoexcitation of a photocatalyst can recombine and disappear, giving subsequent photoluminescence. This exciton recombination process reduces the number of active electrons and holes on the photocatalyst surface, which is detrimental to any photocatalysis reaction. Therefore, research is needed to boost light absorption efficiency and block charge recombination to maintain a high exciton dissociation capability. Many attempts have been made to attain a broader range of light absorption by using non-metallic elements (C, N, and S) [17] and transition metal doping [18, 19] to tune the TiO$_2$ electronic structure. However, only a few researchers have tried to develop advanced TiO$_2$ by targeting both visible-light absorption and high charge separation efficiency. Those efforts produced “Black TiO$_2$” [20] and “Blue TiO$_2$” [21] in 2011 and 2016, respectively. In addition, the phase-selectively disordered blue TiO$_2$ (BTO) offers high H$_2$ generation performance through its three unique phase–interface configurations.

Next, we summarize several historical milestones in the development of TiO$_2$ materials and then systematically illustrate the development logic and discovery of BTO, including its mild synthesis conditions, robust reducing agent design, and phase-selective disordering. The phase selectivity of BTO results from its unique structure, which we disclose on the crystalline dimension level, and the reduction power of alkali metal amines. Its ordered-disordered phase
junctions, type II band alignment structure, and a surface rich in hydroxyl groups explain the high exciton dissociation efficiency, visible-light absorption, and superior photocatalysis of BTO. Particularly, we further present the exploratory attempts of BTO in various energy and environmental aspects. Finally, we suggest future research avenues to explore the potential of BTO further.

2 Milestones in TiO₂ and the Development of BTO

The research community has long worked to exploit the energy efficiency and activity of TiO₂ in versatile applications. Events of considerable significance in the recent history of TiO₂ development are shown in Fig. 1a. The first fundamental finding in TiO₂ photocatalysis for energy conversion was a report of water electrochemical photolysis which generates the absolute clean energy gas, H₂, using a rutile TiO₂ semiconductor electrode in 1972 by Fujishima and Honda et al. However, the applied rutile TiO₂ has lower charge transportability than anatase TiO₂, even though it has better light absorption efficiency to generate more charges. The underlying reasons that anatase has better charge transportation than the rutile phase are the higher VB maximum energy level of the anatase phase (Fig. 1b) [7], its preferred crystalline surface orientation [22], and its longer exciton (electron and hole pair) lifetime [23]. To use the advantages of both the anatase and rutile phases, the commercially available phase-mixed P25 TiO₂ has been widely used as a standard photocatalyst. It has been proved a better activity than the single-phase TiO₂ since the 1990s [13, 24, 25]. Extending the TiO₂ light absorption range was the main challenge after the development of P25. In 2011, Xiaobo Chen et al. found that TiO₂ phase disorder engineering through hydrogenation enhanced its light absorption capability into the visible and infrared ranges [20]. That hydrogenated black TiO₂ mostly answered concerns about the photocatalysis energy efficiency of TiO₂. Moreover, the photocatalytic activity of black TiO₂ is boosted by suppressing exciton recombination through the middle VB by means of localized holes generated in the disordered surface. During approximately four decades of research, TiO₂ material development has produced decent UV–visible-light absorption, acceptable photocatalytic activity, and reasonable charge generation. Nevertheless, TiO₂ still requires more development to be practical for energy production and photocatalysis applications. After thoroughly investigating the recent achievements in black TiO₂ material design, we found that most black TiO₂ synthesis approaches require high temperatures (400–900 °C) or a high H₂ atmospheric pressure (20–70 bar) [26]. Furthermore, the black TiO₂ core/shell structure produces a back reaction that diminishes its photocatalytic power because of its sole surface reaction interface. The issues that remain to be addressed since the development of black TiO₂ are developing an industrially suitable manufacturing process with mild conditions and further strengthening exciton dissociation and catalytic reaction efficiency.

3 NPT Synthesis of BTO and Its Phase-selective Specialty

The high-temperature and H₂ atmospheric pressure synthesis conditions of most black TiO₂ are energy-intensive and potentially explosive, an unfavorable manufacturing choice in both laboratories and industry. Therefore, it is essential to find a suitably, potent reducing agent or system. Birch reduction agents, an alkali metal in liquid ammonia, can reduce arenes into cyclohexadiene rather than cyclohexane [27]. Among the Birch reduction processes, the electride salts that form by mixing an alkali metal (M) and ammonia (NH₃) as \([M(NH₃)ₓ]⁺\cdot e⁻\) have strong reducing power. Therefore, we supposed that producing such vital electride salts as a reduction species would contribute to TiO₂ reduction. We found that a lithium ethylenediamine (Li-EDA) solution reduced the rutile phase of P25 TiO₂ while keeping the anatase phase intact, which resulted in a unique blue TiO₂ product (BTO(I)) [21].

The superior photocatalysis performance of BTO stimulated us to investigate the origin of its phase selectivity further. As shown in Fig. 2a, the free electron of M-EDA electrides can attack the firm Ti–O bond and produce a reduced Ti³⁺ state. The evidence for Ti³⁺ and oxygen vacancy (OV) were provided by X-ray photoelectron spectroscopy and electron paramagnetic resonance in our previous reports from 2015 to 2019, respectively. Besides, the reduced TiO₂ is generally presented in a disordered amorphous physical state with a black appearance. The blue color of BTO is caused by the coexistence of an ordered crystalline anatase (A₀) phase and a disordered amorphous rutile (R₀) phase.
The successful reduction of TiO$_2$ by a Li-EDA solution in normal pressure and temperature (NPT) conditions indicates its mighty reducing power. It successfully replaced the high pressure and temperature hydrogenation reduction approach.

After successfully preparing ordered anatase (A$_o$)/disordered rutile (R$_d$) TiO$_2$ from P25 with the Li-EDA solution under NPT conditions, we set out to design disordered anatase (A$_d$)/ordered rutile (R$_o$) TiO$_2$ from P25. With the curiosity of other alkali metal EDA reduction phenomena, we applied Na and K EDA solutions to reduce the P25. Interestingly, the Na/K-EDA solution selectively reduced the P25 TiO$_2$ reverse from the Li-EDA. Figure 2b shows that P25 TiO$_2$ turns to R$_d$/A$_o$ (BTO(I)) through Li-EDA reduction and R$_o$/A$_d$ (BTO(II)) through Na/K-EDA reduction. Furthermore, the anatase and rutile phases TiO$_2$ were individually treated by Li-EDA and Na/K-EDA, respectively. The pure white rutile TiO$_2$ becomes black R$_d$ TiO$_2$ in a Li-EDA environment, and the anatase single-crystalline form becomes black or gray A$_d$ TiO$_2$ after the Na/K-EDA reduction. Based on that initial finding, which we were the first to report, the TiO$_2$ architecture can be widely enriched to extend its potential applications. Because of their blended ordered and disordered phase structure, BTO(I) and BTO(II) have high potential as photocatalysts with effective heterojunctions and visible-light absorption. In addition, the M-EDA-reduced R$_d$ and A$_d$ can be used to anchor hybrid material systems and maintain a steady structure through covalent combinations.

To investigate the best amines for dissolving alkali metals and reducing TiO$_2$, we selected various liquid amine derivatives, including monoamines with different alkyl chain lengths (Numb. 1–4 in Fig. 2c) and diamines with diverse alkyl chain lengths and positions (Numb. 5–8 in Fig. 2c). The various M-amine solutions produced diverse forms from the P25 that were colored from blue to gray. Among them, the shortest alkyl chain diamine solution, Na-EDA, exhibited the best reduction results, producing a deep blue color and entirely vanished anatase crystalline phase, as shown in the

Fig. 1 a Milestones in TiO$_2$ material development and b the corresponding band structure of each typical TiO$_2$ configuration [3, 20, 21, 25, 28, 32]. The TiO$_2$ nanoparticles illustration figures in (a) are adapted with the permission from Ref. [28]. Copyright (2019) American Chemical Society
detailed XRD characterization in Ref. [28]. EDA’s effects result from its effective diamine structure and higher polarity than the long alkyl chain amines, which contribute to its high alkali metal solubility. This newly developed, powerful reducing system (M-EDA) can be readily extended to the reduction of other metal oxides or metal sulfides and defect design objectives.

Next, we examined the crystallography of anatase and rutile TiO$_2$ at the atomic level to find the origins of the phase selectivity. Beginning with facet information about the rutile (110) and anatase (101) phases [28–30], we found the gap distance in the unit lattice to be around 2.96 Å × 2.96 Å for rutile (110) and 2.86 × 3.79 Å2 for anatase (101), as shown in Fig. 2d. The diameters of Li, Na, and K atoms in the EDA environment are 2.7, 3.1, and 3.9 Å, respectively, as shown in the inserted table in Fig. 2d. Clues about phase selectivity can be drawn from that lattice and atomic size information. Na and K, which are larger than Li, are relatively close to the anatase (101) lattice unit dimensions but more massive than the rutile (110) lattice gaps. Therefore, Na and K can attack Ti–O–Ti bonds in the anatase phase and break the anatase crystalline into a disordered state. On the other hand, Li atoms can effectively attach to the rutile (110) lattice units, rather than the wider lattice spaces of the anatase (101), and thus successfully reduce only the rutile TiO$_2$ phase. In that way, the intrinsic adaptability of Li-EDA to the rutile phase and Na/K-EDA to the anatase phase determine the selectivity of the disordering results.

Furthermore, the M-EDA treatment process is easy to scale up and highly repeatable through the alkali metal stepwise feeding. Using a hydrophilic material is necessary to provide good interfacial contact in many photocatalysis
and other real-world applications. As shown in Fig. 2e, a water drop fully spreads on the BTO film, which indicates that BTO is more hydrophilic than pristine P25 TiO2. The excellent hydrophilicity of BTO originates from the enriched surface hydroxyl (OH) groups that appear after the M-EDA reduction. Pristine P25 TiO2 has a hydrophobic surface, with a 130° water contact angle, due to the absence of hydrophilic functional groups on its intact TiO2 surface. Material stability is another concern for practical applications. BTO has maintained its original disordered/ordered structure and appearance for almost 2.5 years under ambient conditions, as represented in Fig. 2f. Thus, BTO has many advantages, from low-cost production to high potential for many practical applications.

4 Explored and Potential Applications of BTO

BTO exhibits strong visible-light (380–740 nm) absorption ability with a narrow optical bandgap (Fig. 1b), efficient photoinduced exciton disassociation with a heterojunction structure [21], and excellent hydrophilicity and stability (Fig. 2e, f). Our group has applied BTO to promote green energy and social sustainability in the field of hydrogenation [21], algae elimination from aquatic ecosystems [31], carbon dioxide (CO2) reduction [28, 32], and visible-light-driven organic synthesis (C–H arylation) [33]. Next, we describe those BTO applications and then propose strategies and directions for further designs and applications of BTO.

4.1 Explored Photocatalytic Aspects of BTO

Hydrogen has been deemed a perfect blue energy source that could solve the energy crisis in the twenty-first century. For example, its heating value (141.72 MJ kg⁻¹) is three times higher than gasoline (46.4 MJ kg⁻¹) [34], and it is an extremely abundant material that produces zero pollution and has reproducible capabilities through the water. Solar-driven photohydrogenation has received much attention because of its high sustainability. BTO, as a typical semiconductor material, can be used as a robust hydrogenation photocatalyst and has shown a remarkable performance enhancement over P25 and most other reported TiO2 materials [21]. The extended light absorption spectrum of BTO covers all solar illumination, which maximizes the quantum efficiency of its photocatalysis process. However, it is not enough to have a favorable light-harvesting ability; a desirable hydrogenation photocatalyst must also produce effective charge separation through a specific structure designation. As shown in Fig. 3a, BTO retains discrete catalytic redox reaction sites for the reduction of water to hydrogen and methanol sacrificial agent oxidation. The right-side gray R4 is responsible for absorbing enough light irradiation and generating the photoinduced electron and holes. Afterward, the adjacent A0 accepts electrons to trigger water splitting. Compared with the conventional core–shell structure of black TiO2, BTO eliminates the need for electrons to migrate from the core to the interface of the shell and water. Therefore, it greatly reduces the potential for charge recombination. Furthermore, the type II band alignment configuration of BTO assists in exciton dissociation and keeping the effective charges. The open ordered/disordered structure of BTO realized a superior H2 production rate of 13.89 mmol h⁻¹ g⁻¹ with 0.5 wt% Pt and 3.46 mmol h⁻¹ g⁻¹ without the Pt co-catalyst.

Algae blooms happen regionally in various brine and river systems, mainly due to water eutrophication induced by human activities, and they damage public health and the social economy [35]. Severe overgrowth of algae can kill aquatic creatures by consuming the limited oxygen dissolved in the water. TiO2, as a typical photocatalyst, can generate reactive oxygen species (ROS), which mainly consist of a hydroxyl radical (·OH) and superoxide anion radicals (·O2−), through photo irradiated hot carriers that attack water molecules. The ROS then remove algae. However, conventional TiO2 has low efficiency in generating sufficient ROS for algae elimination. Based on our previously obtained photocatalytic hydrogenation experience, we applied BTO to remove Chlamydomonas green algae (Fig. 3b) [31]. We expected that the powerfully wide range of light absorption and effective charge separation properties of BTO would produce an efficient ROS amount. The algae removal test was conducted under both UV and solar light with various types of TiO2. The BTO wiped out all the algae cells within 2–2.5 h, which was the most rapid among the kinds of TiO2 tested. Thus, BTO has meaningful roles to play in realizing a sustainable society.

The photoreduction of CO2 into chemical fuels under solar or visible light is supposed to be an excellent way to target both energy and environmental concerns. This so-called artificial photosynthesis strategy has been under
study for a while, but desirable conversion selectivity and production yield are still lacking [36]. Moreover, it is quite hard to crack the C=O bonds in the CO₂ molecule because the dissociation energy demand is high (around 750 kJ mol⁻¹) [37]. The ideal photocatalyst for the CO₂ reduction reaction (CO₂RR) needs a specific configuration with an optical band position (especially the CB) that is close to the CO₂ reduction potential, such as the −0.24 V_NHE of CO₂ to CH₄ or the −0.52 V_NHE of CO₂/CO, and also efficient charge separation with good electron transport. BTO has those structures, so we conducted CO₂ reduction experiments using BTO(II) under visible light [28] and BTO hybrid materials (BTO(I)/WO₃-Ag) under solar light [32]. The BTO(II) reached unprecedented CH₄ production levels (3.98 µmol g⁻¹ h⁻¹), with the highest yield among all the metal (Pt, Ru, W, and Ag)-doped P25 TiO₂ materials tested. The evident CO₂RR ability was conferred by the excellent match between the CB position of BTO(II) (−0.24 V_NHE) and the CO₂ to CH₄ potential and the efficient visible-light absorption by the A₈ with rapid charge-carrier disassociation (Fig. 3c). Even though BTO(II) offered excellent CO₂RR performance, another critical issue for CO₂RR, product selectivity, also has to be addressed. Consequently, we designed and constructed BTO(I)/WO₃-Ag, a combination material intended to build a particular Z-scheme band structure, as presented in Fig. 3d. The assembled Z-scheme band alignment can maximize the effective potential between a high CB and...
low VB and then strengthen the catalytic redox power. Notably, the CB position (−1.55 V\textsubscript{NHE}) of BTO(I) is close to the CO\textsubscript{2} to CO potential (Fig. 1b), which contributes to CO production, and higher than the CB of WO\textsubscript{3} (0.74 V\textsubscript{NHE}) used to construct the Z-scheme band alignment. In addition, the low difference between the VB of BTO(I) (1.14 V\textsubscript{NHE}) and the CB of WO\textsubscript{3} facilitates the flow of excited WO\textsubscript{3} electrons to BTO(I), thereby reinforcing the number of effective hot electrons. The decorated Ag nanoparticles serve as an electron reservoir that can initiate photoelectron production by means of the localized surface plasmon resonance effect and further enhance visible-light absorption. When tested, this BTO based Z-scheme composite produced absolute CO selective-production of 1166.7 μmol g−1 h−1 at the excellent photocatalytic electron reaction pace of 2333.4 μmol g−1 h−1. All in all, BTO showed vigorous CO\textsubscript{2}RR strength in producing CH\textsubscript{4} or CO with high output and selectivity, which means it can be an attractive way to tackle global warming and energy deficiency together.

Light-driven chemical synthesis is also an essential field that requires promising photocatalysts to boost synthesizing efficiency [38]. C–H arylation for organic synthesis was chosen as a typical study case to show the photocatalytic activity of BTO (Fig. 3e) [33]. The phase-mixed BTO absorbs light in the visible range through its Ti3+ defect-rich disordered state. It maintains good adsorptivity of an organic reactant and charges separation via its ordered crystalline phase. First, a charge transfer complex (4) formed on the A\textsubscript{o} site of BTO(I) from the aryl diazonium compound (2). Then, under visible-light irradiation, photogenerated electrons flowed to the anatase CB due to the type II band alignment and efficiently separated from the holes. An aryl intermediate radical (5) was produced after the single electron transfer process from A\textsubscript{o} to (4). As arylation proceeded, after initiation by aryl radical (5), the resulting radical (7) intermediate was oxidized by the hot hole carrier from the A\textsubscript{o} VB and gave the desired product (3) after deprotonation of the product (8). Moreover, BTO offers high reusability through direct filtration, and it maintained consistent yield (63%) performance when five batches were examined under six-fold scaled-up conditions. This application of BTO to photocatalytic chemical synthesis will enrich the role of TiO\textsubscript{2} in industrial chemical synthesis and contribute to further product cost reductions.

4.2 Potential Application and Design Commentary of BTO

Currently, ammonia (NH\textsubscript{3}) synthesis from nitrogen gas (N\textsubscript{2}) is an essential approach to supplying nitrogen to plants and humans by industry manufacturing. The Haber–Bosch process for NH\textsubscript{3} synthesis (N\textsubscript{2} + H\textsubscript{2} → NH\textsubscript{3}) has been used in industry for more than a century, urgently needs to be replaced due to its high consumption of fossil fuels, which results in enormous greenhouse gas (CO\textsubscript{2}) emissions, and extremely harsh operating conditions (400–500 °C, 100–200 bar with an iron-based catalyst) [39]. Therefore, photocatalysis nitrogen fixation that can use sustainable solar energy and eliminate CO\textsubscript{2} emissions has attracted growing attention. However, it remains challenging to design an efficient photocatalyst to convert N\textsubscript{2} to NH\textsubscript{3} under NPT conditions with high production rate and clear mechanism [40]. It has been reported since 1977 that TiO\textsubscript{2} generated NH\textsubscript{3} and other gases under UV irradiation with an N\textsubscript{2} source, but the process offered minimal yields and low selectivity [41]. After several decades of progress, the yields from TiO\textsubscript{2}-driven photosynthesis of NH\textsubscript{3} have been enhanced by hundreds-fold [40]. However, most related studies still apply only UV light because of the narrow light absorption region of conventional TiO\textsubscript{2}, which hinders the application range and produces low solar coulombic efficiency. As illustrated in Fig. 4a, by tracking the advanced TiO\textsubscript{2} photocatalyst design milestones, it has high credits to investigate the N\textsubscript{2} fixation to NH\textsubscript{3} by taking phase-selective disordering and visible-light harvesting advantages of BTO for targeting maximized NH\textsubscript{3} production yield and selectively under mild NPT conditions.

In recent years, volatile organic compounds (VOCs), which vaporize easily at room temperature, have become major hazardous pollutants in the air through speedy industrialization and urbanization. Some studies show that indoor atmospheres can have 2–10 times more VOCs than outdoor environments [42]. Therefore, VOCs’ health concerns, such as cancer, headaches, and dizziness, are serious among people who spend most of their time in buildings or enclosed spaces. Among the various VOCs, toluene, benzene, and aldehydes (formaldehyde and acetaldehyde) are the most common and toxic species [43]. Photodegradation of VOCs is inevitably regarded as the best and most economical choice for dealing with VOCs in the air. The carbon–carbon bonding and carbonyl groups in VOC molecules are
comparatively stable, requiring sufficiently hot carriers from a powerful photocatalyst to be decomposed. BTO is expected to actively cause full VOC degradation into CO₂ and H₂O by effectively generating photoinduced charges and inhibiting exciton recombination under solar and indoor LED lamplight (Fig. 4b). Additionally, the hydroxyl-rich character of the disordered portion of BTO can specifically support the covalent coating and binding process on various substrates and objects (such as air conditioner filters, indoor walls, and subway carriages) and thereby provide versatile application choices.

Microbial pathogens, which include various bacteria and viruses, are major health concerns to humans worldwide. They occasionally cause serious infectious disease pandemics, such as those caused by the novel coronavirus (COVID-19), severe acute respiratory syndrome coronavirus (SARS), swine influenza virus (H1N1), and Middle-East respiratory syndrome coronavirus (MERS) [16]. For the sake of human health, society needs effective microbial disinfection systems with enough versatility to attack airborne, waterborne, and foodborne pathogenic species. Practically, various microbicidal processes have already been adopted, such as UV disinfection, antibiotic sterilization, thermal treatments, and nanofiltration. However, the current approaches possess significant limitations; for instance, some microbes have already evolved antibiotic or UV resistance [44], and thermal, and filtration operations can cause energy exhaustion and are incompatible in many spaces. The microbial pathogens inactivation by TiO₂ photocatalyst can trace to 1994 after the Sjogren et al. finds the inactivation ability to bacteriophage MS2 on TiO₂ [45]. Besides, TiO₂ could be a good option for

Fig. 4 Potential applications and design commentary of BTO. a Photo-driven N₂ reduction to NH₃ to replace the conventional Haber–Bosch approach. b Photodegradation of volatile organic compounds (VOCs), especially in indoor atmospheres. c Adapting to visible-light-induced microbicidal processes. d Exploring BTO as electrode material in an energy storage system by taking advantage of its electro-conducting Ti³⁺ species, oxygen vacancy, and stability.
microorganism disinfection that is low cost, requires minimal energy consumption, and is harmless and eco-friendly [46, 47]. In the TiO₂ photocatalysis microorganism disinfection process, the ROS generated from photocatalytic processes after light irradiation plays the major roles [16]. To further boost the microbial pathogens inactivation performance of TiO₂, we need to strengthen the producing amount of ROS species. In the authors’ group previous reports, BTO can generate a higher amount of ROS species under UV, visible or solar light illumination, which is represented by the higher peak intensity of BTO than pristine TiO₂ in electron paramagnetic resonance analysis [31, 48]. Therefore, BTO could act as a broad-spectrum antimicrobial agent and outperform pristine TiO₂ by generating sufficient antibacterial and viricidal ROS at different band positions, as depicted in Fig. 4c. Harmful bacteria and viruses in living spaces could be effectively deactivated under mild conditions by using BTO and solar or visible light.

Because TiO₂ has superior stability, high safety, and good economic value, it has been investigated and considered as an anode or cathode candidate in various ion battery systems, including single-valent alkali-ion batteries (LIBs, SIBs, and KIBs) [49], multivalent magnesium ion batteries (MIBs) [50] and aluminum ion batteries (AIBs) [51]. Also, researchers have noticed that Ti³⁺ self-doped black anatase TiO₂ has better rate capability than pristine white anatase in LIBs [52], and the associated OV of black TiO₂ resulted in high-performance magnesium ion (Mg²⁺) storage [50]. Nevertheless, the synthesis of black TiO₂ requires a high-temperature reduction process, and their black TiO₂ products remain in a majority crystalline phase and only acquire a small portion Ti³⁺; even the OV and Ti³⁺ was suggested as main contributions to the advances. Therefore, we propose BTO (including the A₄ and R₄ synthesized by M-EDA) as an encouraging candidate for battery system electrodes (Fig. 4d). Our M-EDA reduction approach, along with the production of BTO under NPT conditions, can almost completely disorder anatase (Na-EDA) and rutile (Li-EDA) TiO₂ and deliver sufficient OV’s and electro-conducting Ti³⁺ species to enhance energy storage performance.

5 Prospects and Summary

The science and technology exploitation has been speeding up in modern society than any other historical era. Based on the invention of BTO, the research progress towards energy and society sustainability can be promoted from diverse aspects. The forthcoming flourishing research suggestions based on the account of BTO achievements are suggested below (Fig. 5).

1. Design and synthesize a BTO specific morphology and structure in a different dimension (0, 1, 2, 3D). Nanostructured materials are essential for photoelectrochemical devices because of their exposed active surfaces, obviously upgraded kinetics, and versatile adaptations

![Fig. 5](https://example.com/fig5.png)
Fig. 5 Future research suggestions based on the unique properties of BTO to improve energy and social sustainability
The potential of BTO could be widely explored by investigating it in 0D (quantum dots), 1D (nanowires, nanotubes, nanoribbons, and nanorods), 2D (nanoplates, nanodisks, and nanosheets), and 3D (nanoflowers, nanocoils, and ordered mesoporous framework) forms. BTO could offer more socially beneficial applications and approach to commercial, robust visible-light-driven versatile photocatalyst if its potential is fully explored by the research community.

Acknowledgements This work was supported by the Institute for Basic Science (IBS-R011-D1) and partially supported by the Korea Evaluation Institute of Industrial Technology (20004627) and the INNOPOLIS Foundation (2019-DD-SB-0602).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. E. Keidel, The fading of aniline dyes in the presence of titanium white. Farben-Zeitung 34, 1242–1243 (1929)
2. A. Fujishima, K. Honda, S. Kikuchi, Photochemical reactions of semiconductors. I. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi 72(1), 108–113 (1969). https://doi.org/10.1246/nikkan kagakuzasshi.1969.0108
3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/23837a0
4. F. Haque, T. Daeneke, K. Kalantar-Zadeh, J.Z. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-micro Lett. 10(2), 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
5. D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesquera, C. Cab, R. de Coss et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14), 145605 (2008). https://doi.org/10.1088/0957-4484/19/14/145605
6. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005). https://doi.org/10.1143/jjap.44.8269
7. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter et al., Why is anatase a better photocatalyst than rutile?−model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014). https://doi.org/10.1038/srep04043
8. R.H. West, M.S. Celnik, O.R. Inderwildi, M. Kraft, G.J.O. Beran et al., Toward a comprehensive model of the synthesis of TiO$_2$ particles from TiCl$_4$. Angew. Ind. Eng. Chem. Res. 46(19), 6147–6156 (2007). https://doi.org/10.1021/ie0706414

9. S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant et al., A facile synthesis of nanocrystalline anatase TiO$_2$ from TiOSO$_4$ aqueous solution. Mater. Lett. 105, 76–79 (2013). https://doi.org/10.1016/j.matlet.2013.04.064

10. L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H$_2$-production activity of CdS-sensitized Pr/TiO$_2$ nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 13(9), 8915–8923 (2011). https://doi.org/10.1039/c1cp20079h

11. Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya et al., Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO$_2$ nanoparticles by hydrothermal treatment. Angew. Chem. Int. Ed. 55(11), 3600–3605 (2016). https://doi.org/10.1002/anie.201510000

12. M. Moztahida, D.S. Lee, Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: optimization using response surface methodology. J. Hazard. Mater. 400, 123314 (2020). https://doi.org/10.1016/j.jhazmat.2020.123314

13. B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is degussa (evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A: Chem. 216(2–3), 179–182 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.024

14. M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO$_2$: a review. Environ. Sci. Pollut. Res. Int. 26(4), 3262–3291 (2019). https://doi.org/10.1007/s11356-018-3884-z

15. A. Fujishima, X. Zhang, D. Tryk, TiO$_2$ photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

16. A. Habibi-Yangjeh, S. Asadzadeh-Khanehgh, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J. Colloid Interface Sci. 580, 503–514 (2020). https://doi.org/10.1016/j.jcis.2020.07.047

17. X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO$_2$ nanomaterials. J. Am. Chem. Soc. 130(15), 5018–5019 (2008). https://doi.org/10.1021/ja711023z

18. S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Flame aerosol synthesized Cr incorporated TiO$_2$ for visible light photodegradation of gas phase acetonitrile. J. Phys. Chem. C 118(1), 231–242 (2013). https://doi.org/10.1021/jp404290g

19. A. Ali, E. Yassitepe, I. Ruzbyabayev, S.I. Shah, A.S. Bhatti, Improvement of (004) texturing by slow growth of Nd doped TiO$_2$ films. J. Appl. Phys. 112(11), 113505 (2012). https://doi.org/10.1063/1.4767361

20. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

21. L. Wang, K. Zhang, J.K. Kim, M. Ma, G. Veerappan et al., An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy. Environ. Sci. 9(2), 499–503 (2016). https://doi.org/10.1039/c5ee03100a

22. J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the true photoreactivity order of 001, [010], and [101] facets of anatase TiO$_2$ crystals. Angew. Chem. Int. Ed. 50(9), 2133–2137 (2011). https://doi.org/10.1002/anie.201006057

23. M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler et al., Photocatalytic activity of bulk TiO$_2$ anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106(13), 138302 (2011). https://doi.org/10.1103/PhysRevLett.106.138302

24. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurman, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO$_2$ using EPR. J. Phys. Chem. B 107(19), 4545–4549 (2003). https://doi.org/10.1021/jp027394

25. T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO$_2$ photocatalyst (degussa, P25) consisting of anatase and rutile crystalline phases. J. Catal. 203(1), 82–86 (2001). https://doi.org/10.1006/jcat.2001.3316

26. X. Chen, L. Liu, F.Q. Huang, Black titanium dioxide (TiO$_2$) nanomaterials. Chem. Soc. Rev. 44(7), 1861–1885 (2015). https://doi.org/10.1039/c4cs00330f

27. A.J. Birch, 117. Reduction by dissolving metals. Part I. J. Chem. Soc. (Resumed). (1944). https://doi.org/10.1039/JR9440000430

28. H.M. Hwang, S. Oh, J.-H. Shim, Y.-M. Kim, A. Kim et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO$_2$ reduction. ACS Appl. Mater. Interfaces 11(39), 35693–35701 (2019). https://doi.org/10.1021/acsami.9b10837

29. L.E. Oi, M.-Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid et al., Recent advances of titanium dioxide (TiO$_2$) for green organic synthesis. RSC Adv. 6(110), 108741–108754 (2016). https://doi.org/10.1039/C6RA22894A

30. J. Pal, T. Pal, Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale 7(34), 14159–14190 (2015). https://doi.org/10.1039/c5nr03395k

31. Y. Kim, H.M. Hwang, L. Wang, I. Kim, Y. Yoon et al., Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO$_2$. Sci. Rep. 6, 25212 (2016). https://doi.org/10.1038/srep25212

32. C.T.K. Nguyen, N.Q. Tran, S. Seo, H. Hwang, S. Oh et al., Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO$_2$ with almost complete CO selectivity. Mater. Today 35, 25–33 (2020). https://doi.org/10.1016/j.mattod.2019.11.005

33. S. Bak, S.M. Lee, H.M. Hwang, H. Lee, Phase-selective modulation of TiO$_2$ for visible light-driven charylation: tuning of absorption and adsorptivity. Mol. Catal. 471, 71–76 (2019). https://doi.org/10.1016/j.mcat.2019.04.017
34. S. McAllister, J.Y. Chen, A.C. Fernandez-Pello, *Fundamentals of Combustion Processes* (Springer, New York, 2011), p. 244

35. G.D. Cooke, R.H. Kennedy, Managing drinking water supplies. Lake Reserv. Manag. **17**(3), 157–174 (2001). https://doi.org/10.1080/07438140109354128

36. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. **119**(6), 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400

37. A.L. da Silva, L. Wu, L.B. Caliman, R.H.R. Castro, A. Navrotsky et al., Energetics of CO2 and H2O adsorption on alkaline earth metal doped TiO2. Phys. Chem. Chem. Phys. **22**(27), 15600–15607 (2020). https://doi.org/10.1039/d0cp01787f

38. X. Lang, X. Chen, J. Zhao, Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. **43**(1), 473–486 (2014). https://doi.org/10.1039/c3cs60188a

39. L. Wang, M. Xia, H. Wang, K. Huang, C. Qian et al., Greening ammonia toward the solar ammonia refinery. Joule **2**(6), 1055–1074 (2018). https://doi.org/10.1016/j.joule.2018.04.017

40. X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu et al., Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res. **12**(6), 1229–1249 (2019). https://doi.org/10.1007/s12274-018-2268-5

41. G.N. Schrauzer, T.D. Guth, Photoysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. **99**(22), 7189–7193 (1977). https://doi.org/10.1021/ja00464a015

42. M. Stucchi, F. Galli, C.L. Bianchi, C. Pirola, D.C. Boffito et al., Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere **193**, 198–206 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.003

43. M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. **40**, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031

44. D. Li, A.Z. Gu, M. He, H.C. Shi, W. Yang, UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res. **43**(13), 3261–3269 (2009). https://doi.org/10.1016/j.watres.2009.03.044

45. J.C. Sjogren, R.A. Sierka, Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl. Environ. Microbiol. **60**(1), 344 (1994)

46. M. Liu, K. Sunada, K. Hashimoto, M. Miyauchi, Visible-light sensitive Cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J. Mater. Chem. A **3**(33), 17312–17319 (2015). https://doi.org/10.1039/c5ta03756e

47. R. Nakano, M. Hara, H. Ishiguro, Y. Yao, T. Ochiai et al., Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts **3**(1), 310–323 (2013). https://doi.org/10.3390/catal3010310

48. Y. Luo, L. Wang, Y. Hwang, J. Yu, J. Lee et al., Binder-free TiO2 hydrophilic film coatedly formed by microwave treatment. Mater. Chem. Phys. **258**, 123884 (2021). https://doi.org/10.1016/j.matchemphys.2020.123884

49. J. Yang, X. Xiao, W. Gong, L. Zhao, G. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-iron batteries. Angew. Chem. Int. Ed. **58**(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478

50. Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi et al., Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2 x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano **12**(12), 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917

51. S. Wang, K.V. Kravchyk, S. Pigeot-Rény, W. Tang, F. Krumeich et al., Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Appl. Nano Mater. **2**(10), 6428–6435 (2019). https://doi.org/10.1021/acssnan.9b01391

52. S.-T. Mynng, M. Kikuchi, C.S. Yoon, H. Yashiro, S.-J. Kim et al., Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energ. Environ. Sci. **6**(9), 2609 (2013). https://doi.org/10.1039/c3ee41960f

53. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. **57**(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003

54. M. P. Nagaraja, Water on the space station. (NASA Science Share the Science, 2000). https://science.nasa.gov/science-news/science-atnasa/2000/ast02nov_1. Accessed 5 Nov 2020

55. J.L. Coutts, P.E. Hintze, A. Meier, M.G. Shah, R.W. Devor et al., Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energ. Environ. Sci. **6**(9), 2609 (2013). https://doi.org/10.1039/c3ee41960f

56. M.S. Robinson, B.W. Hapke, J.B. Garvin, D. Skillman, J.F. Bell et al., High resolution mapping of TiO2 abundances on the moon using the hubble space telescope. Geophys. Res. Lett. **34**(13), L13203 (2007). https://doi.org/10.1029/2007g029754