Families’ healthcare experiences for children with inherited metabolic diseases: protocol for a mixed methods cohort study

Andrea J Chow 1, Ryan Iverson, Monica Lamoureux, Kylie Tingley, Isabel Jordan, Nicole Pallone, Maureen Smith, Zobaida Al-Baldawi, Pranesh Chakraborty, Jamie Brehaut, Alicia Chan, Eyal Cohen, Sarah Dyack, Lisa Jane Gillis, Sharan Goobie, Ian D Graham, Cheryl R Greenberg, Jeremy M Grimshaw, Robin Z Hayeems, Shaibly Jain-Ghai, Ann Jolly, Sara Khangura, Jennifer J MacKenzie, Nathalie Major, John J Mitchell, Stuart G Nicholls, Amy Pender, Murray Potter, Chitra Prasad, Lisa A Prosser, Andreas Schulze, Komudi Siriwardena, Rebecca Sparkes, Kathy Speechley, Sylvia Stockler, Monica Taljaard, Mari Teitelbaum, Yannis Trakadis, Clara van Karnebeek, Jagdeep S Walia, Brenda J Wilson, Kumanan Wilson, Beth K Potter

ABSTRACT

Introduction Children with inherited metabolic diseases (IMDs) often have complex and intensive healthcare needs and their families face challenges in receiving high-quality, family centred health services. Improvement in care requires complex interventions involving multiple components and stakeholders, customised to specific care contexts. This study aims to comprehensively understand the healthcare experiences of children with IMDs and their families across Canada.

Methods and analysis A two-stage explanatory sequential mixed methods design will be used. Stage 1: quantitative data on healthcare networks and encounter experiences will be collected from 100 parent/guardians through a care map, 2 baseline questionnaires and 17 weekly diaries over 5–7 months. Care networks will be analysed using social network analysis. Relationships between demographic or clinical variables and ratings of healthcare experiences across a range of family centred care dimensions will be analysed using generalised linear regression. Other quantitative data related to family experiences and healthcare experiences will be summarised descriptively. Ongoing analysis of qualitative data and purpose, maximum variation sampling will inform sample selection for stage 2: a subset of stage 1 participants will participate in one-on-one videoconference interviews to elaborate on the quantitative data regarding care networks and healthcare experiences. Interview data will be analysed thematically. Qualitative and quantitative data will be merged during analysis to arrive at an enhanced understanding of care experiences. Quantitative and qualitative data will be combined and presented narratively using a weaving approach (jointly on a theme-by-theme basis) and visually in a side-by-side joint display.

Strengths and limitations of this study

- This study will ascertain family perspectives on healthcare networks and positive and negative care experiences for children with high care needs, such as those with inherited metabolic disease, forming a comprehensive understanding of current care, including gaps in family centred care that will form the foundation for successful development of complex interventions to improve healthcare experiences for this understudied population.
- We expect this study to contribute to the methodological literature on assessment of healthcare experiences by using a novel combination of approaches, including care maps, diaries and interviews.
- This study exemplifies partnership with patients and their families in co-designing research towards improved healthcare.
- A limitation of this study is the requirement of English proficiency for study participation, which will exclude a potentially more vulnerable population of children and families who, for example, require language supports for their healthcare.

Ethics and dissemination The study protocol and procedures were approved by the Children’s Hospital of Eastern Ontario’s Research Ethics Board, the University of Ottawa Research Ethics Board and the research ethics boards of each participating study centre. Findings will be published in peer-reviewed journals and presented at scientific conferences.

To cite: Chow AJ, Iverson R, Lamoureux M, et al. Families’ healthcare experiences for children with inherited metabolic diseases: protocol for a mixed methods cohort study. BMJ Open 2022;12:e055664. doi:10.1136/bmjopen-2021-055664

BMJ Open: first published as 10.1136/bmjopen-2021-055664 on 22 February 2022. Downloaded from http://bmjopen.bmj.com/ on February 23, 2022 by guest. Protected by copyright.
BACKGROUND

Inherited metabolic diseases (IMDs) are individually rare genetic conditions, often diagnosed in early childhood, that have a collective estimated global prevalence of 50.9 in 100,000 live births. Many children with IMDs have complex and intensive healthcare needs. Due in part to health service inequities related to infrastructure and funding, they and their families face multiple challenges in receiving high-quality care and, in common with children with medical complexities generally, may not receive optimal interdisciplinary family-centred services.

Patient experience is a key pillar of a high performing health system. Assessments of patient experience frequently address established principles of patient-centred care, including access, coordination, continuity and communication. In paediatrics, these principles extend to family-centred care, emphasising children’s developmental needs and recognising the central role of family members in disease management.

Several studies have focused on the quality of life and caregiving experiences of families of children with IMDs, a smaller proportion have identified challenges or needs associated with providing and accessing care. To begin to understand the healthcare experiences of this potentially underserved population, we completed two qualitative studies: first with representatives of relevant patient groups, then with caregivers of children with IMDs enrolled in a Canadian cohort study.

Overarching themes included a lack of familiarity with IMD care among many care providers outside of the metabolic clinic and poor suitability of some care systems to meet the needs of frequent and complex users. These studies expose a need for interventions that improve healthcare experiences of children with IMDs and their families. An Australian study found that families of children with IMDs experienced improved healthcare, and their association with healthcare encounter satisfaction.

The overall aim of this study is to comprehensively understand the healthcare experiences of children with IMDs and their families across Canada.

Objectives

The overall aim of this study is to comprehensively understand the healthcare experiences of children with IMDs and their families across Canada.

Quantitative objectives

- To identify and describe the providers and services included in children’s care networks and how they are connected to both the family and to one another, from parents’ perspectives.
- To prospectively measure the frequency, heterogeneity and satisfaction with healthcare encounters of children and their families.
- To identify the family characteristics and circumstances that form the context in which families experience healthcare, and their association with healthcare encounter satisfaction.

Qualitative objectives

- To explain and enhance our understanding of:
 a. parents’ perceptions and assessments of their children’s care networks;
 b. how families experience positive and negative healthcare encounters.

Mixed methods objectives

To merge the quantitative and qualitative findings to arrive at an enhanced understanding of:

- the nature of children’s care networks and how they are experienced and assessed by parents;
- the family-centred elements and processes related to parent perceptions of positive and negative healthcare encounters.

Pursuit of these objectives will be foundational to understanding how to develop complex, family-centred care interventions. For example, identifying the constellation of providers and services and their roles and connections in children’s care networks may enable us to identify key providers for healthcare coordination interventions (quant, qual). Knowing the most frequently used services will help with the prioritisation of intervention development and implementation (quant). Understanding which aspects of care contribute to negative and positive experiences will help inform the creation of responsive interventions (quant, qual). An understanding of family characteristics and situations will shape interventions that...
account for the challenges and realities faced by families managing their child’s care at home (quant).

The COVID-19 pandemic has exacerbated existing challenges related to access to care, and is expected to continue to affect how healthcare is delivered in the future. Therefore, we will collect data to understand the current context of healthcare delivery across Canada during the pandemic. In particular, we will aim to understand family experiences with virtual care, since this delivery modality has become more common due to pandemic response measures and the increase in its use is likely to influence healthcare delivery in a postpandemic environment.

METHODS

Study design

The UKMRC Complex Interventions Framework, a phased approach to the design, evaluation and implementation of complex interventions, guided this study’s design. Following previous studies of healthcare experiences, we will also use the Picker Principles of Patient-Centred Care to provide a framework to guide data collection and analysis regarding key aspects of family centred care.

We will conduct a mixed methods study, following a two-stage explanatory sequential design (figure 1). Stage 1: quantitative data will be collected on parent perceptions of children’s healthcare networks (the people involved in a child’s healthcare and how they are connected) and on healthcare encounters (frequency, context, experiences with care). These data will be analysed on an ongoing basis to inform the sample selection for stage 2: two subsets of participants from stage 1 will participate in qualitative data collection (interviews) about (i) the participant’s perception of the child’s care network and/or (ii) the factors that contributed to a strongly positive or negative healthcare experience. At the individual level data collection will be sequential: the quantitative collection of data related to the child’s care network and experiences will precede the qualitative collection of data related to the network or to a specific healthcare experience. Data from both stages will be integrated during analysis. We will

![Figure 1](http://bmjopen.bmj.com/)

Figure 1 Study design overview: mixed methods explanatory sequential design.
use the STrengthening the Reporting of OBservational studies in Epidemiology guideline\(^4\) to report the study (online supplemental material 2).

Patient and public involvement

The interventions informed by this study will be complex, involving diverse systems, providers and families, and aim to be family centred. This underscores a need to engage families and providers,\(^{48,49}\) especially in the context of rare disease where families become experts in their children’s care needs.\(^50\) Parents of children with IMDs and adults living with IMDs are engaged in this study to provide expertise on the family/patient experience. Three family/patient partners (IJ, NP, MS) are study co-investigators, leading the family engagement strategy, advising and providing expertise, and sharing in decision-making at all study stages, from conceptualisation to dissemination. The study also engaged 11 patient/family advisors, recruited through IMD family advocacy and support organisations, to provide advice and feedback during study instrument development; 6 of them also pilot tested the data collection instruments.

Quantitative sample

Participants will be parents or legal guardians (‘parents’) of children diagnosed with an IMD. Although children’s self-report of experiences is important, we seek to understand the experiences of healthcare for younger children (≤12 years). Parents are the family members most actively involved in seeking and managing healthcare for their children and thus are likely the best informants to provide comprehensive information on healthcare for this age group. For each participating family, one parent will be identified by the family as the ‘designated parent’ to provide data regarding one child in their family with an IMD (‘designated child’).

Eligibility criteria are described in table 1. Child age will be restricted to ≤12 years as adolescents with chronic conditions have different healthcare and clinical treatment needs.\(^51,52\) With respect to eligibility of IMD diagnoses, >1000 IMDS have been identified.\(^53\) IMDS typically follow one of three broad clinical course trajectories, with different implications for healthcare usage and experiences: (a) chronic and generally non-progressive; (b) acute episodes of severe illness with or without accompanying chronic multisystem sequelae and (c) progressive multisystem disease. Children with any of 30 priority IMDS included in an existing Canadian paediatric cohort study that will serve as one potential recruitment source.\(^54,55\) are eligible for this study (table 1). Few of the IMDS included in that cohort study, however, are characterised as following trajectory (c). Thus, children will also be eligible for this study if they have an IMD that meets clinical criteria associated with trajectory (c) (table 1), to be evaluated by clinician investigators on a case-by-case basis.

In order to collect data on healthcare experiences from a diverse sample of families, we will use a purposive, maximum variation sampling approach\(^56-58\) to identify and recruit participants. We will aim for maximum variation on six selection variables on which experiences with care are anticipated to vary: study centre, travel time from home to study centre, child’s sex, child’s age (years), IMD type and IMD typical clinical course trajectory. Treatment protocols and healthcare service availability and practice vary by IMD, clinical course classification, study centre and/or distance to specialists.\(^27,59\) Healthcare encounters tend to be more frequent in the first years following an IMD diagnosis (usually in infancy) and parents characterise this time as uncertain and stressful.\(^27\) Sex differences can affect metabolism, resulting in different care experiences for girls and boys.\(^60,61\) We will prioritise the selection of participants who expect the designated child to have ≥1 healthcare encounter per month during the study to collect sufficient data for analysis.

Quantitative procedures

Participants will be recruited from the existing cohort study and/or from the study centres across Canada. Eligible parents will be notified of the study by the study team (by telephone) or by their associated study centre (by telephone or at a clinic visit). For those notified by telephone, up to three contact attempts will be made. Participants will be enrolled on a rolling basis and the sample continually assessed for diversity on study selection variables to identify characteristics desired for further recruitment. Based on our previous experiences conducting studies with this population, we estimate a 50% response rate. Recruitment commenced in November 2020 and will be concluded when 100 families are enrolled. Interested parents will receive via email a postcard with study information and a link to the online Eligibility and Pre-Screening Questionnaire (5–10 min).

Data collection procedures are outlined in figure 1. All questionnaires will be web-based. Study data will be collected and managed using Research Electronic Data Capture hosted at the Children’s Hospital of Eastern Ontario (CHEO).\(^52,62\) The participant, if they desire, may consult other family members, including the designated child, to complete the data collection tools. Children will continue to access healthcare normally. Participants will be reminded up to two times to complete each questionnaire.

Quantitative data elements and instruments

Data collection instruments are described in table 2. Care map instructions, sample survey questions and measurements and interview guides are provided in online supplemental material 3. Instruments were developed with input from clinicians, methodological experts and family/patient partners and advisors and pilot tested.

Care maps

In this study, a ‘care map’ is a pictorial representation of the networks of healthcare providers around a child with...
Table 1 Eligibility criteria

Inclusion	Exclusion
► The designated parent and designated child are Canadian residents	Designated parents who cannot speak, write and read English comfortably
► The designated child is ≤12 years at prescreening	
► The designated child is receiving healthcare from one of 11 participating paediatric metabolic clinics across Canada: Alberta’s Children Hospital, British Columbia Children’s Hospital, Children’s Hospital of Eastern Ontario, Health Sciences Centre Winnipeg Children’s Hospital, The Hospital for Sick Children, IWK Health Centre, Kingston General Hospital, London Health Sciences Centre, McMaster Children’s Hospital, Montreal Children’s Hospital, Stollery Children’s Hospital	
► The designated child has an IMD that is either 1. identified in the following list (these conditions were the focus of an existing cohort study; most have a typical clinical course that aligns with what we call trajectory a or trajectory b):	
 - β-Ketothiolase deficiency
 - Arginase deficiency
 - Argininosuccinic aciduria
 - Carbamoyl phosphate synthetase deficiency
 - Carnitine uptake defect
 - Citrin deficiency
 - Citrullinemia
 - Farber disease
 - Galactosemia
 - Glycogen storage disease type 1
 - Glutaric acidemia type I
 - Guanidinoacetate methyltransferase deficiency
 - HMG-CoA lyase deficiency
 - Homocystinuria
 - Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome
 - Isovaleric acidemia
 - Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency
 - Maple syrup urine disease
 - Medium chain acyl-CoA dehydrogenase deficiency
 - Methylmalonic acidemias
 - Mucopolysaccharidoses type I
 - Multiple carboxylase/biotinidase deficiency
 - N-acetylglutamate synthetase deficiency
 - Ornithine transcarbamylase deficiency
 - Phenylalanine hydroxylase deficiency
 - Propionic acidemia
 - Pyridoxine-dependent epilepsy
 - Trifunctional protein deficiency
 - Tyrosinemia type I
 - Very long-chain acyl-CoA dehydrogenase deficiency
 2. or meets the following clinical criteria (included to expand the list of eligible conditions and to increase representation of IMDs with a typical clinical course that aligns with what call trajectory c):
 - involves at least three organ systems and
 - chronic complications of the disease get progressively worse over time, even with available treatment | |

HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IMD, inherited metabolic disease.

an IMD and their family, commonly used in research on children with complex or chronic health conditions.5 64–66

Guided by a set of instructions,67 care maps will be drawn by hand, photographed and uploaded to the study data collection database by the participant, and a digital version rendered by the study team.

Baseline questionnaires

Participants will be invited to complete three questionnaires: the Care Map Questionnaire, the Baseline Questionnaire and the Pre-Questionnaire for the Weekly Logs (content overview, table 2). The Baseline Questionnaire includes a number of validated instruments. Child health
Data collection Instrument	Data type	Instrument completion time* (min)	Instrument and data details
Baseline			
Care map	Quantitative	40	Participant creation of a care map of their perceptions regarding their child’s network of care providers, which providers are perceived to work together to coordinate their child’s care, and which providers are considered ‘key providers’ (maximum 10).
Care Map Questionnaire	Quantitative	5	Participant perceptions about:
			Coordination of their child’s care.
			Familiarity with their child by identified key healthcare providers.
Baseline Questionnaire	Quantitative	20–40	Demographics and potential predictors of healthcare encounter satisfaction ratings, for example, child health status, child and family characteristics, family resources in IMD management and effects of the COVID-19 pandemic on child health and healthcare since March 2020.
Pre-Questionnaire for the Weekly Logs	Quantitative	5–20	Data will be used to tailor the healthcare diaries, to reduce repetition of questions where responses are anticipated to remain constant over the study period.
Follow-up			
Healthcare diaries†	Quantitative, qualitative	5–60	Descriptive data on healthcare encounters including: the mode of interaction, the care setting if applicable, the healthcare providers involved, the date of the encounter, financial costs, time inputs and any parent-perceived effects of the COVID-19 pandemic (eg, on scheduling or delivery of care).
			Optional, open-ended questions for descriptions of participant perceptions of care in each Picker Principle domain, and for the overall encounter.
			The Experience Questionnaire will be tailored to each encounter’s mode of interaction (in-person or virtual/remote), care setting and context (planned or urgent care; whether it is a ‘frequent’ care encounter, as identified on the Pre-Questionnaire for the Weekly Logs).
Interviews	Qualitative	(a) 30–60 (b) 30–45	(a) Map interviews: seek to understand and elaborate on the care map, including how the participant selected providers to include on the map, the roles and relationships with the family for the providers designated on the map as ‘key providers’, the meaning of connections drawn between providers and how the participant feels about the effectiveness of the care network, including what improvements they see as potentially important.
			(b) Encounter interviews: seek to clarify, interpret and deepen our understanding of information collected in the healthcare diaries, specifically: elements of a healthcare encounter that contributed to participants’ high or low satisfaction with that encounter; the impact of these experiences, especially the challenges, on the child, parent, other family members and the context of general healthcare for their child (ie, comparison between this encounter and past similar encounters). Impact will be iteratively defined, depending on the information shared by participants, and may include psychosocial, health and/or economic impacts.

*Estimated. |
†All elements are completed once except the healthcare diaries, which are completed weekly ×17 weeks.

Healthcare diaries

The Healthcare Diary (‘Diary’) is composed of two parts: a Healthcare Log and Experience Questionnaire. Once per week, participants will record whether a child had any healthcare encounters in a given week on the Healthcare Log. If yes, they will complete an Experience Questionnaire for each of those encounters. Diary methods have been used in health studies to capture real-time information to reduce the recall errors associated with retrospective surveys, with electronic diaries yielding higher quality data than paper diaries. The definition...
of a healthcare encounter is provided in Figure 2. Evaluations will be made for the overall experience as well as in eight domains consistent with the Picker Principles of Patient-Centred Care where applicable, access to care, information sharing/communication, care coordination, physical comfort, emotional support, family involvement, respect for the patient/family and continuity/follow-up. The Consumer Assessment of Healthcare Providers and Systems Child Hospital Survey,85 Ontario Emergency Department Patient Experience of Care Survey,86 Outpatient Survey (Christine Kouri, Manager for Patient Experience, CHEO, email communication, October 2017) and the Cost Utilisation Survey for Child Phenylketonuria87 were used as resources for our diary instrument development; diary questions were either author-developed, informed by or adapted from these resources.

We will collect prospective data on blood draws done at home by the family, following the same family centred care domains. For many IMDs, blood draws are essential to the ongoing monitoring of a child’s health status, and although sometimes conducted by the family, require an ongoing dialogue with healthcare providers to adjust a child’s medication, diet or other treatment.

Qualitative sample

The two qualitative samples will be nested in the quantitative sample. Qualitative participants queried about their children’s care networks must have completed the Care Map Questionnaire, and those queried about their positive or negative encounters must have completed at least four diaries. For the interview focused on the healthcare encounter (‘encounter interview’), we will select participants who have had a healthcare encounter with which they reported they were ‘extremely satisfied’, ‘extremely dissatisfied’ or ‘somewhat dissatisfied’ overall or on at least one family centred care domain. We will use purposive, maximum variation sampling and extreme case sampling to separately sample participants for each interview set, aiming for sample variation across the selection variables used for the quantitative sample and across
healthcare settings in the encounter interviews. For the encounter interviews, if the parent who accompanied the child to the encounter is not the designated parent, they will be invited but asked to provide informed consent before proceeding. Some participants in the quantitative sample may be invited to participate in both interviews.

Qualitative procedures and data elements

On a rolling basis, participants will be identified and invited by email to participate in a one-on-one, semi-structured interview held by videoconference or by audio-conference, according to participant preference. For the interview focused on care network (‘map interviews’), participants may be sampled at any time after completing the Care Map Questionnaire. For the encounter interviews, participants will be sampled during and up to 3 weeks after completing week 17 of the diaries. Interviews will be audio-recorded with participant consent and transcribed. Up to three attempts to contact participants will be made to invite interview participation. Both interview sets will be semi-structured and informed by an interview guide.

Sample size

While we did not conduct a formal power calculation for the quantitative part of this study, given our largely descriptive purpose, we deemed a sample size of 100 families sufficiently large to support planned analyses across a heterogeneous sample, while maintaining feasibility for recruitment and study administration.

Because of the duration and intensity of study participation, we anticipate some dropout. Dropout rates may increase with longer study lengths. To facilitate participant retention, we pilot tested the feasibility of study questionnaires. In addition, we will: (1) enrol a new participant to replace any participant withdrawn before completion of at least four diaries; (2) actively monitor completion of study instruments and follow-up with participants if necessary; (3) provide participants with financial compensation (up to $400 in gift cards) for their time and as a participation incentive; (4) encourage the scheduling of time each week to complete the diaries; (5) allow for instrument completion over multiple sittings and (6) allow for flexibility of instrument completion.

A participant will be considered lost to follow-up on notification of withdrawal or non-completion of an instrument within prespecified timeframes; they will have the option to continue in the study if they proactively express a desire to do so. Data collected up to time of withdrawal will be included in the study.

The qualitative sample sizes will not be determined in advance; they will be assessed continuously and finalised during data collection. Information power is a methodological model for determining a qualitative sample size, and has five contributing dimensions related to: narrow versus broad qualitative objectives; the homogeneity of the sample on important characteristics; use of a theoretical framework; quality of interview data and planned analytic strategy (case vs cross-case analysis). Based on this concept and previous qualitative studies with parents of children with chronic conditions, we anticipate a sample size of approximately 15–30 participants for each interview set.

Analyses

Quantitative analyses

We will describe continuous variables using means and SD or medians and IQRs, and categorical variables using counts and proportions (%). Baseline data will be analysed to describe the characteristics of participating families, including child and parent demographic variables, quality of life, experiences with managing an IMD in the context of COVID-19 and experiences with managing an IMD in general, including time and cost impacts.

From the care maps, children’s networks of care providers and their interactions will be analysed using an adapted form of social network analysis, conducted using UCINET software. We will describe who is in the network (nodes), identify the most common providers perceived as key providers and analyse connections among providers from parents’ perspectives (social network analysis calculations of network size and density and the degree centrality of providers).

From the diaries, we will calculate the frequency (count and rate) of encounters by participant/child, accounting for follow-up time contributed. We will calculate counts and proportions to describe characteristics of healthcare encounters (eg, preplanned vs unplanned, the types of healthcare providers interacted with, care setting or mode of interaction), overall satisfaction ratings and satisfaction ratings by Picker Principles (access to care, communication, coordination of care, etc).

To explore the potential relationships between a range of explanatory variables and satisfaction with healthcare experiences, depending on data quantity and distribution, we propose to use generalised linear regression analysis. The unit of analysis will be the individual healthcare encounter with each child having potentially different numbers of encounters. Explanatory variables will include both time-fixed and time-varying factors, namely child, family and setting/provider characteristics (eg, child age, IMD clinical course trajectory, travel time from home to care setting, socioeconomic status), healthcare setting and mode of interaction. The five-point ordinal score for the overall experience of the healthcare encounter will be analysed using ordinal logistic regression. Correlation in repeated measures on the same child will be accommodated either by directly modelling the covariance matrix or through the addition of child-specific random effects. A similar approach will be used to analyse the experience ratings within the eight family centred care domains.

This study will minimise missing data by regularly monitoring completion of instruments and diary entries and following up with participants as necessary. Participants will have access to ongoing support from the study team. We will report on the number of missing values for
each variable of interest, the reasons for missing values (if known), characteristics of participants with missing versus non-missing values for key variables and missing data counts for each analysis. Our analytic strategy for managing missing data will depend on the extent of missingness of data for particular analyses and may rely on complete case analysis or multiple imputation. Withdrawn participants will be considered lost to follow-up at the date of their last completed baseline instrument or Healthcare Diary.

Qualitative analyses
Guided by principles of family centred care and incorporating an inductive approach, we will use thematic analysis to guide the coding and analysis of qualitative data across participants, using the following recommended process: (1) review the interview transcripts and familiarise themselves with the data; (2) do an initial, systematic coding of the data; (3) identify themes of codes; (4) review the generated themes against both the initial codes and the original data; (5) refine the themes and (6) select and review extracts to illustrate the themes. We will repeatedly cycle through steps, particularly steps 3–4, to ensure the themes remain reflective of the original data.

Mixed methods integration and analysis
The two types of data will be integrated at several points in the study. The quantitative data will be used to inform the qualitative sample as well as the interview questions and topics. We will compare the qualitative sample with the quantitative sample on the quantitative sampling selection variables. The quantitative and qualitative results will be merged in analysis and integrated to better understand the elements and processes related to healthcare networks and to positive or adverse healthcare encounters than would be gained from either data type alone. In the final report, the qualitative and quantitative results will be integrated narratively using a weaving approach (reported together, grouped by theme or concept) and will be integrated narratively using a weaving approach (reported together, grouped by theme or concept) and will be integrated to better understand the elements and processes related to healthcare networks and to positive or adverse healthcare encounters than would be gained from either data type alone. In the final report, the qualitative and quantitative results will be integrated narratively using a weaving approach (reported together, grouped by theme or concept) and will be integrated to better understand the elements and processes related to healthcare networks and to positive or adverse healthcare encounters than would be gained from either data type alone.34

DISCUSSION
This study will collect important information about parent perceptions about their families’ experiences with healthcare for children with IMDs, a population with complex needs. Few paediatric studies have attempted to collect similarly comprehensive data on healthcare experiences. Previous studies of children with IMDs and their families have focused on the impact of the IMD on the child, caregiver or family well-being and/or on family experiences managing healthcare. To our knowledge, this is the first broad study of healthcare experiences in paediatric IMDs. We have designed a study that draws on mixed methods that best suit the research objectives, enabling the collection of experiential information of both breadth and depth. Diaries are an innovative tool in health research with potential for collecting real-time quantitative and qualitative data simultaneously. Care maps provide useful insight on how participants conceive of the networks of care around their children.

The main findings of this study will inform future phases of our research programme, culminating in the co-development of family centred interventions to improve healthcare for children with IMDs and their families. Comprehensive, prospective information collected on individual healthcare experiences will help elucidate the elements of healthcare that contribute to caregivers’ negative and positive experiences. This information will also enable an assessment of the degree to which healthcare experiences are family centred, ultimately helping to inform the creation of responsive interventions, especially for highly frequented services. Care map data will identify key providers and enable an understanding of how participants perceive providers to be connected to each other and to the family. This may help to identify key providers who may be able to lead a child’s ‘medical home’, playing an active role in coordinating their healthcare. Knowledge about the time, financial costs and other inputs required to care for a child with an IMD is necessary to ensure that interventions are responsive to the realities of families for whom the interventions are designed to support. Data captured on healthcare experiences during the COVID-19 pandemic will contribute important information on the benefits and drawbacks of significant changes to healthcare delivery, such as virtual healthcare, which can improve the way that this care is delivered in the future. Through our larger research programme, the evidence generated in this study will have a direct, actionable impact on family centred healthcare for paediatric IMDs.

This study has limitations. All study data will be sought from parents. Their perceptions of their child’s healthcare, for example, whether or not two providers work together to coordinate their child’s care, may differ from providers’ perceptions. However, healthcare providers will be interviewed about their perceived barriers to and facilitators of effective healthcare for children with IMDs in the next phase of the research programme. Requiring English proficiency for study participation will limit the generalisability of study findings and will exclude a potentially more vulnerable population of children and families who, for example, require access to translators and additional supports as part of their care.

This study may be affected by selection and information biases. We will prioritise the selection of participants who expect the designated child to have multiple healthcare encounters during the study; our quantitative sample will be over-representative of families who are frequent healthcare users. This characteristic of our anticipated sample will increase the number of prospective healthcare experiences reported; however, it may limit the generalisability of quantitative findings. Although Canada has a publicly funded healthcare system, access to all care and services is
not equitable. A higher frequency of encounters may indicate greater access to care. Children with fewer expected encounters will still be enrolled in the study, and access to care (unavailable services, out-of-pocket expenses) will be analysed. Past positive or negative experiences with care may motivate parents to participate in a study that provides the opportunity to share those problems and experiences. Non-response bias has been associated with both high and low patient satisfaction. Parents whose children are experiencing urgent or critical healthcare issues, whose children are newly diagnosed (often associated with younger age) or who experience significant financial and time costs may feel overwhelmed and be less likely to participate or remain in the study than parents whose children’s health issues are relatively stable. We will attempt to minimise the burden of study participation by employing web-based data collection and offering compensation for study participation. To ensure that lack of home internet access is not a barrier to study participation, participants may be loaned a study tablet with a mobile data plan to participate in the study. We anticipate that this may affect 10–15 participants.

Factors such as recall and negativity bias may affect the reporting of all healthcare encounters. Our collection of prospective data via diaries, however, aims to capture experiences during all healthcare encounters, positive and negative, with a high frequency of reporting to mitigate errors associated with recall time. The perspectives of the interviewer and data analysts may affect the collection and analysis of qualitative data. Interviewers will be trained by investigators with expertise in qualitative interviewing. Interviews will be transcribed as soon as possible after interviews and reviewed.

ETHICS AND DISSEMINATION

The study protocol and procedures were approved by associated research ethics boards (online supplemental material 4). Participants will provide informed consent. Study data will be analysed and stored securely.

Study findings will be published in peer-reviewed, open access journals and presented at relevant conferences. Additionally, a summary of study results will be shared with interested participants (opt-in). Study results will also inform future phases of our research to develop interventions to improve family centred healthcare for this population.

Author affiliations

1School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
2Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
3Patient Partner, Squamish, British Columbia, Canada
4Patient Partner, Canadian PKU & Allied Disorders Inc, Toronto, Ontario, Canada
5Patient Partner, Canadian Organization for Rare Disorders, Toronto, Ontario, Canada
6Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
7Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
8Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
9Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
10Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
11Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
12Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
13Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, Florida, USA
14Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
15Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
16Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
17Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
18Contagion Consulting Group, Ottawa, Ontario, Canada
19Hamilton Health Sciences, McMaster Children’s Hospital, Hamilton, Ontario, Canada
20Division of Pediatric Endocrinology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, Quebec, Canada
21Ottawa Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
22Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
23Department of Pediatrics, Western University, London, Ontario, Canada
24Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, Michigan, USA
25Department of Biochemistry, University of Toronto, Toronto, ON, Canada
26Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
27Departments of Medical Genetics and Pediatrics, Alberta Children’s Hospital, Calgary, Alberta, Canada
28Department of Pediatrics, BC Children’s Hospital, Vancouver, British Columbia, Canada
29Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
30Department of Pediatrics, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
31Medical Genetics, Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
32Medical Genetics, Department of Pediatrics, Kingston Health Sciences Centre, Kingston, Ontario, Canada
33Department of Pediatrics, Queen’s University, Kingston, Ontario, Canada
34Faculty of Medicine Division of Community Health and Humanities, Memorial University of Newfoundland, St John’s, Newfoundland, Canada
35Bruyere Research Institute, Ottawa, Ontario, Canada

Acknowledgements The authors thank Sangeetha Balaji, Lyes Bilal Khelladi, Natalie Henderson, Erin Holt, Angela Hui, Brenda McNelis, Melanie Napier, Katherine Schellevis, Karin Wallace, Ashley Wilson, Amy Yakimosi and Nataliya Yusiv for REB coordination and recruitment at study centers; Michael Pugliese, Alvi Rahman and Ammar Saad for general study support and the patient/family advisors for contributions to development and pilot testing of the data collection tools.

Contributors BKP, PC, JB, EC, SD, LJG, CRG, JM, ZH, AJ, LJ, SK, JMJ, NM, JMJ, SGN, NP, AS, MS, KNS, RS, SS, MTe, YT, CvK, JSW, BJW and KW conceived the study. AJC, BKP, RI, ML, KT, LJ, MS, NP, ZA-B, PC, JB, EC, IDG, CRG, SG, JM, ZH, AJ, SK, NM, JMJ, SGN, AP, MP, CP, LAP, AS, MTe, MTe, RS, SS, YT and BJW designed and planned the study. AJC and BKP drafted the manuscript. AJC, BKP, RI, ML, KT, LJ, MS, NP, ZA-B, PC, JB, EC, IDG, CRG, SG, JM, ZH, AJ, SK, NM, JMJ, SGN, AP, MP, CP, LAP, AS, MTe, MTe, RS, SS, YT and BJW reviewed and revised the manuscript. All authors approved the final manuscript.

Funding This work is supported by the Canadian Institutes of Health Research, grant #PT-153230. The Canadian Institutes of Health Research did not have a role in the design of the study or the writing of this manuscript.

Competing interests SD has been or is a member of advisory boards for, received indirect educational grants from, and/or received indirect speakers’ fees from Sanofi-Genzyme, Takeda, and Horizon Therapeutics. IDG is a recipient of a CHF Foundation Grant (FDN143237). MP has been an advisory board member with honoraria from Ultragenyx (Mar/Apr 2021) and Horizon Therapeutics (Oct 2020), and received a speakers’ honorarium (Sep 2020) and small investigator
grant ($6,000, 2019) from Horizon Therapeutics. SS received educational grants from Biomarin, Shire, Recordati and serves/serve as PI in clinical trials and postmarketing registries sponsored by Actelion, Biomarin, Shire, Ultragenyx. KW is the CEO of CANImmunize Inc.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use and license their derivative works appropriately.

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use and license their derivative works appropriately.

REFERENCES

1. Waters D, Adeloye D, Woolham D, et al. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health 2018;8:021102.

2. Costa T, Scrivener CR. Child B. The effect of Mendelian disease on human health: a measurement. Am J Med Genet 1985;21:231–42.

3. Cohen E, Berry BJG, Camacho X, et al. Patterns and costs of health care use of children with medical complexity. Pediatrics 2012;129:e1463–72.

4. Schiappetti A, Henter J-L, Daina E, et al. Why rare diseases are an important medical and social issue. Lancet 2008;371:2039–41.

5. Dewan T, Cohen E. Children with medical complexity in Canada. Paediatr Child Health 2013;18:518–22.

6. Canadian Association of Paediatric Health Centres (CAPHC) Complex Care Community of Practice. CAPHC Guideline For the Management of Medically Complex Children & Youth Through the Continuum of Care, 2018. Available: https://ken.caphc.org/xwiki/bin/view/Management+of+Medically+Complex+Children+and+Youth+Across+the+Continuum+of+Care.

7. Berwick DM, Nolan TW, Whittington J. The triple AIM: care, health, and cost. Health Aff 2008;27:759–69.

8. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the quality chasm. Washington, D.C: National Academies Press, 2001.

9. Health Quality Ontario. Measuring patient experience 2021. Available: https://www.hqontario.ca/System-Performance/Measuring-System-Performance/Measuring-Patient-Experience [Accessed 8 Mar 2021].

10. Coulter A, Lockett L, Zielbaldi S, et al. Collecting data on patient experience is not enough: they must be used to improve care. BMJ 2014;348:g2225.

11. National Health Service. Nhs patient experience framework, 2012. Available: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/215159/dh_132788.pdf

12. Picker Institute. Principles of patient-centered care. Available: http://pickerinstitute.ipfcc.org/about/picker-principles/ [Accessed 10 Jan 2018].

13. Council on Children with Disabilities and Medical Home Implementation Project Advisory Committee. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems. Pediatrics 2014;133:e1451–60.

14. Stillie C, Turchi RM, Antonelli R, et al. The family-centered medical home: specific considerations for child health research and policy. Acad Pediatr 2010;10:211–7.

15. Bilinsky C, Waitzman N, Leonard CO, et al. Living with phenylketonuria: perspectives of patients and their families. J Inherit Metab Dis 2005;28:639–49.

16. Fidita A, Salewski C, Godbeck L. Quality of life among parents of children with phenylketonuria (PKU). Health Qual Life Outcomes 2013;11:54.

17. Needham M, Packman W, Rappoport M, et al. Mps II: adaptive behavior of patients and impact on the family system. J Genet Couns 2014;23:330–8.

18. Pimentel M, Gulacsi L, Bodrozy V, et al. Social/economic costs and health-related quality of life of mucopolysaccharidoses patients and their caregivers in Europe. Eur J Health Econ 2016;17 Suppl 1:89–98.

19. ten Hoedt AE, Maurice-Stam H, Boelen CCA, et al. Parenting a child with phenylketonuria or galactosaemia: implications for health-related quality of life. J Inherit Metab Dis 2011;34:391–8.

20. Campbell H, Singh RH, Hall E, et al. Caregiver quality of life with tyrosinemia type 1. J Genet Couns 2018;27:723–31.

21. Cederbaum JA, LeMons C, Rosen M, et al. Psychosocial issues and coping strategies in families affected by urea cycle disorders. J Pediatr 2001;138:S72–80.

22. Hatzmann J, Valstar MJ, Bosch AM, et al. Predicting health-related quality of life of parents of children with inherited metabolic diseases. Acta Paediatr 2009;98:1205–10.

23. Mittoch T, Puda R, Jelkina P, et al. Dietary patterns, cost and compliance with low-protein diet of phenylketonuria and other inherited metabolic diseases. Eur J Clin Nutr 2018;72:87–92.

24. Packman W, Henderson SL, Mehta I, et al. Psychosocial issues in families affected by maple syrup urine disease. J Genet Couns 2007;16:799–808.

25. Rajasekar P, Gannavarapu S, Napier M, et al. Parental psychosocial aspects and stressors involved in the management of inborn errors of metabolism. Mol Genet Metab Rep 2020;25:100654.

26. Siddiq S, Wilson BJ, Graham ID, et al. Experiences of caregivers of children with inherited metabolic diseases: a qualitative study. Orphanet J Rare Dis 2016;11:168.

27. Khangura SD, Tingley K, Chakraborty P, et al. Child and family experiences with inborn errors of metabolism: a qualitative interview study with representatives of patient groups. J Inherit Metab Dis 2016;39:139–47.

28. Anderson M, Elliott EJ, Zurynski YA. Australian families living with rare disease: experiences of diagnosis, health services use and needs for psychosocial support. Orphanet J Rare Dis 2013;8:22.

29. Murphy NA, Carbone PS, et al, Council on Children With Disabilities. Parent-provider-community partnerships: optimizing outcomes for children with disabilities. Pediatrics 2011;128:795–802.

30. Cooley WC. Redefining primary pediatric care for children with special health care needs: the primary care medical home. Curr Pediatr Opin 2004;16:689–92.

31. Sutton C. Developing and evaluating complex interventions. J Pediatr 2010;10:211–7.

32. Uhl T, Duda LA, Gaskin KL. Patterns of transition experience for parents going home from hospital with their infant after first stage surgery for complex congenital heart disease. J Pediatr Nurs 2018;41:e23–32.

33. Jimmy ME, Fiks AG, Shah LR, et al. Factors associated with early intervention referral and evaluation: a mixed methods analysis. Acad Pediatr 2014;14:315–23.

34. Artis SG. Use of a mixed methods approach to investigate the support needs of older caregivers to family members affected by HIV and AIDS in South Africa. J Mix Methods Res 2012;6:275–93.

35. Heidl T, Fisher K, Dockerty SL, et al. Insights into patient and family-centered care through the hospital experiences of parents. J Obstet Gynecol Neonatal Nurs 2013;42:121–31.

36. Hargney ST, Lyman CA, Khan KG, et al. The social paediatricians initiative: a richer model of primary health care for at risk children and their families. BMC Pediatr 2012;12:158.
42 Peytremann-Bridevaux I, Kolly V, Perneger TV. The association between body mass index and patients’ experiences with inpatient care. Int J Qual Health Care 2010;22:140–4.

43 Wong ELY, Leung MCM, Cheung AWL, et al. A population-based survey using a modified relationship of care aspects to patient satisfaction in Hong Kong. Int J Qual Health Care 2011;23:390–6.

44 Byczkowski TL, Gillespie GL, Kennebeck SS, et al. Family-Centered Pediatric Emergency Care: A Framework for Measuring What Parents Want and Value. Acad Pediatr 2016;16:327–35.

45 Arthur KC, Mangione-Smith R, Meischke H, et al. Impact of English proficiency on care experiences in a pediatric emergency department. Acad Pediatr 2015;15:218–24.

46 Luthy C, Francis Gerstel P, Pugliesi A, et al. Bedside or not bedside: evaluation of patient satisfaction in intensive medical rehabilitation wards. PLoS One 2017;12:e0170474.

47 von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg 2014;12:1495–9.

48 Bate P, Robert G. Experience-Based design: from redesigning the system around the patient to co-designing services with the patient. Qual Saf Health Care 2006;15:307–10.

49 Batalden M, Batalden P, Margolis P, et al. Coproduction of healthcare service. BMJ Qual Saf 2016;25:509–17.

50 Potter BK, Khangura SD, Tingley K, et al. Translating rare-disease therapies into improved care for patients and families: what are the right outcomes, designs, and engagement approaches in health-systems research? Genet Med 2016;18:117–23.

51 Allen D, Gregory J. The transition from children’s to adult diabetes services: understanding the ‘problem’. Diabet Med 2009;26:162–6.

52 West NE, Mogayzel PJ. Transitions in health care. Pediatr Clin North Am 2016;63:887–97.

53 Ferreira CR, van Karnebeek CDM, Vockley J, et al. A proposed nosology of inborn errors of metabolism. Genet Med 2019;21:1023–32.

54 Potter BK, Chakraborty PK, Kronick JB, et al. Achieving the “triple aim” for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework. Genet Med 2015;15:415–22.

55 Tingley K, Lattimer WJ, Pugliesi A, et al. Evaluation of the quality of clinical data collection for a pan-Canadian cohort of children affected by inherited metabolic diseases: lessons learned from the Canadian inherited metabolic diseases research network. Orphanet J Rare Dis 2020;15:89.

56 Robinson OG. Sampling in Interview-Based qualitative research: a theoretical and practical guide. Qual Res Psychol 2014;11:25–41.

57 Patton MQ. Sampling, Qualitative (Purposive). In: The Blackwell encyclopedia of sociology. Oxford, UK: John Wiley & Sons, Ltd, 2007.

58 Crabtree BF, Miller WL. Doing qualitative research. 2nd ed. Thousand Oaks, CA: Sage Publications, 1999.

59 Sibley LM, Weiner JP. An evaluation of access to health care services along the rural-urban continuum in Canada. BMC Health Serv Res 2015;15:420.

60 Chella Krishnan K, Mehrabian M, Lusis AJ. Sex differences in the biology of health and disease: A proposed framework. Clin Genet Med 2013;15:415–22.

61 Clegg DJ, Mauvais-Jarvis P, Furlong S, et al. A proposed strategy for inborn errors of metabolism: a review of challenges to reporting of observational studies in epidemiology (STROBE) reporting process in pediatric palliative care: a pilot study. Orphanet J Rare Dis 2014;9:103.

62 Batalden M, Batalden P, Robert G. Achieving the “triple aim” for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework. Genet Med 2015;15:415–22.

63 Adams S, Nicholas D, Mahant S, et al. Care maps for children with medical complexity. Dev Med Child Neurol 2017;59:1299–306.

64 Siden H, Urbanski K. Using network analysis to map the informal care. Health Policy 2013;11:343.

65 Miller AR, Condon CJ, McKellin WH, et al. Continuity of care for children with complex chronic health conditions: parents’ perspectives. BMC Health Serv Res 2009;9:242.

66 Langford J, Abetz L, Ware J. The CHO user’s manual. Boston: The Health Institute, New England Medical Center, 1996.

67 Hoefnagel RJ, van Exel J, Brouwer WBF. Measuring the impact of caregiving on informal carers: a construct validation study of the CarerQol instrument. Health Qual Life Outcomes 2013;11:173.

68 Mulders-Manders CM, Kanters TA, van Dalee PLA, et al. Decreased quality of life and societal impact of cryopyrin-associated periodic syndrome treated with canakinumab: a questionnaire based cohort study. Orphanet J Rare Dis 2018;13:59.

69 Fitzgerald C, George S, Somerville R, et al. Caregiver burden of parents of young children with cystic fibrosis. J Cyst Fibros 2018;17:725–32.

70 Hoefnagel RJ, van Exel NJA, Van de Molengraft S, et al. A new test of the construct validity of the CarerQol instrument: measuring the impact of informal care giving. Qual Life Res 2011;20:857–8.

71 Hoefnagel RJ, van Exel NJA, Poets M, et al. Sustained informal care: the feasibility, construct validation and test-retest reliability of the CarerQol-instrument to measure the impact of informal care in long-term care. Aging Ment Health 2011;15:1018–27.

72 Payakachat N, Tilford JM, Brouwer WB, et al. Measuring health and well-being effects in family caregivers of children with craniofacial malformations. Qual Life Res 2011;20:1487–95.

73 Stone AA, Shiffman S, Schwartz JE, et al. Patient non-compliance with paper diaries. BMJ 2002;324:1193–4.

74 Picker Institute Europe. Principles of person centred care, 2018.

75 Orphanet. Reporting process in pediatric palliative care: a pilot study. Orphanet J Rare Dis 2014;9:103.

76 Butz A. Use of health diaries in pediatric research. J Pediatr Health Care 2004;18:262–3.

77 Elg M, Wiltel L, Polskinska B, et al. Solicited diaries as a means of involving patients in a research and development of healthcare services. Int J Qual & Service Sciences 2011;3:128–45.

78 Denham SH, Taylor R, Humphrey T. Aide-memoire diaries in longitudinal research. Nurse Res 2017;25:30–3.

79 Stone AA, Shiffman S, Schwartz JE, et al. Patient non-compliance with paper diaries. BMJ 2002;324:1193–4.

80 Picker Institute Europe. Principles of person centred care, 2018.

81 Ontario Hospital Association. Ontario pediatric patient experience survey, 2016. Available: https://www.oha.com/Documents/ Survey - Ontario PPEC.pdf [Accessed 27 Mar 2020].

82 Ontario Hospital Association. Ontario emergency department patient experience of care survey (Ontario EDPEC), 2016: 1–15. https://www.oha.com/Documents/Survey - EDPEC.pdf.

83 Rose AM, Grosse SC, Garcia SP, et al. The financial and time burden associated with phenylketonuria treatment in the United States. Mol Genet Metab Rep 2019;21:100523.

84 Sattouf S, Manders-Crawford M, Ayers M, et al. The CBM-Q is a robust measure of quality of life and societal impact of cryopyrin-associated periodic syndrome treated with canakinumab: a questionnaire based cohort study. Orphanet J Rare Dis 2018;13:59.

85 Matsuoka A, Kaneko M, Narukawa M. Meta-Analysis of dropout rates in placebo-controlled randomized clinical trials of atypical antipsychotics assessed by PANSS. Clin Drug Investig 2019;39:917–26.

86 Hui D, Gilzat I, Chisholm G, et al. Attrition rates, reasons, and predictive factors in supportive care and palliative oncology clinical trials. Cancer 2013;119:1098–105.

87 Ramsey BW. Appropriate compensation of pediatric research participants: thoughts from an Institute of medicine Committee report. J Pediatr 2004;149:515–19.

88 Malterud K, Siensma VA, Guassora AD. Sample size in qualitative interview studies. Qual Health Res 2016;26:1753–60.

89 Baenziger J, Hetherington K, Wainwright CE, et al. Understanding parents’ communication experiences in childhood cancer: a qualitative exploration and model for future research. Support Care Cancer 2020;28:4467–76.

90 Smith J, Cheater F, Bekker H. Parents’ experiences of living with a child with hydrocephalus: a cross-sectional interview-based study. Health Expect 2015;18:1709–20.

91 Nygård C, Clancy A. Unsung heroes, flying blind-A meta-synthesis of parents’ experiences of caring for children with special health-care needs at home. J Clin Nurs 2018;27:3179–96.

92 Dunn MS, Reilly MC, Johnston AM, et al. Development and dissemination of patient related practices for the provision of family-centered care in neonatology: the family-centered care MAP. Pediatrics 2006;118 Suppl 2:S95–107.
96 Jarrett N, Porter K, Davis C, et al. The networks of care surrounding cancer palliative care patients. BMJ Support Palliat Care 2015;5:435–42.
97 Borgatti S, Everett M, Freeman L. Ucinet for windows: software for social network analysis. Harvard, MA: Analytic Technologies, 2002.
98 Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol 2006;3:77–101.
99 Fetters MD, Curry LA, Creswell JW. Achieving integration in mixed methods designs-principles and practices. Health Serv Res 2013;48:2134–56.
100 Guetterman TC, Fetters MD, Creswell JW. Integrating quantitative and qualitative results in health science mixed methods research through joint displays. Ann Fam Med 2015;13:554–61.
101 Schneider EC, Shah A, Doty MM. Mirror, mirror 2021 — reflecting poorly: health care in the US. compared to other high-income countries, 2021.
102 Mazor KM, Clauser BE, Field T, et al. A demonstration of the impact of response bias on the results of patient satisfaction surveys. Health Serv Res 2002;37:1403–17.
103 Perneger TV, Chamot E, Bovier PA. Nonresponse bias in a survey of patient perceptions of hospital care. Med Care 2005;43:374–80.
104 Bendixen RM, Morgenroth LP, Clinard KL. Engaging participants in rare disease research: a qualitative study of Duchenne muscular dystrophy. Clin Ther 2016;38:1474–84.
105 Canadian Internet Registration Authority. Canada’s Internet Factbook 2020: The state of Canada’s internet, 2020. Available: https://www.cira.ca/resources/factbook/canadas-internet-factbook-
2020
106 Schneider S, Stone AA. Ambulatory and diary methods can facilitate the measurement of patient-reported outcomes. Qual Life Res 2016;25:497–506.