Genetic Susceptibility to Fungal Infections and Links to Human Ancestry

Bharati Naik, Sumayyah M. Q. Ahmed, Suparna Laha and Shankar Prasad Das*

Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India

Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual's susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.

Keywords: genetic predisposition, disease susceptibility, invasive, fungal infection, host genetics, genetic polymorphism, SNP, human ancestry

INTRODUCTION

Fungi are eukaryotic organisms that have a tremendous impact on human health. About 5.1 million fungal species are present on the earth (Hawksworth and Rossman, 1997; Blackwell, 2011). They reproduce asexually by sporulation, budding, and fragmentation. Sexual reproduction involves three phases like plasmogamy, karyogamy, and meiosis. In fungi, hyphae are the main mode of vegetative growth and are collectively called the mycelium. They are usually heterotrophic in nature (Carris et al., 2012) and few are commensal, with the human body acting as a host (Ibrahim and Voelz, 2017). Most of the fungi are adapted to the land environments, and during early
episodes of terrestrialization, they had interacted with other organisms having typical parasitic lifestyles (Naranjo-Ortiz and Gabaldón, 2019). Under certain not so well-defined conditions, fungi transform from the non-pathogenic budding yeast to its pathogenic hyphal form, which invades the host tissue (de Pauw, 2011; Underhill and Pearlman, 2015; Kruger et al., 2019; Rai et al., 2021). The fungal species can grow anywhere including plants, animals, and humans. Some enter into our body by inhalation (e.g., Aspergillus) and some are commensal (e.g., Candida, Malassezia) (Underhill and Pearlman, 2015). Commensal like Malassezia is more abundant in sebaceous sites of the host. Since they are lipid dependent, they obtain food sources from the host without harming them and colonization starts immediately after birth, when neonatal sebaceous glands are active (Vijaya Chandra et al., 2021). Studies of the microbiome have emerged to be an important area of research, and more importantly, the spotlight is now to understand less studied fungi that have a tremendous influence on the human microbiome especially among immunocompromised individuals. A dysbiotic microbial population is a general characteristic of any fungal infection affecting the mammalian system (Iliev and Leonardi, 2017). Recent reports point toward the role of fungus in pancreatic ductal adenocarcinoma (PDA), a form of human pancreatic cancer caused directly by the presence of budding yeast Malassezia, which colonizes the human gut (Aykut et al., 2019). The severity of fungal infection depends on factors such as inoculum load, magnitude of tissue destruction, ability of the fungus to multiply in the tissue, ability to migrate to nearby organs, microenvironment, and immunogenetic status of the host. Resistance to fungi externally is based on cutaneous and mucosal physical barriers and internally by the body's immune molecules and the defensins (Aristizabal and González, 2013; Coates et al., 2018; Salazar and Brown, 2018). Immunosuppression and breakdown of anatomical barriers such as the skin are the major factors behind fungal infections (Kobayashi, 1996). In addition to this, malnutrition, poor hygiene, use of antibiotics, genetic predisposition, environmental factors, and host physiological factors (e.g., oily skin) contribute toward disease progression (Figure 1).

Genetic variations play an important role in fungal infection (Pana et al., 2014; Maskarinec et al., 2016; Duxbury et al., 2019). Recent studies have shown the importance of host genetic variation in influencing the severity and susceptibility to invasive fungal infections (IFIs) (Maskarinec et al., 2016). Increased incidence of opportunistic fungal diseases has been implicated due to gene polymorphism, and genetic errors are frequently observed in immunodeficient phenotypes (Pana et al., 2014). Along with genetic and environmental factors, lifestyle also contributes toward the variation in the genome, as the presence of toxic chemicals and immunosuppressive drugs in an organism's environment leads to altered immune status and inherited deficiencies, which result in susceptibility toward fungal infection (Kumar et al., 2018; Figure 1). At the molecular level, epigenetic events like alteration of DNA methylation (a key feature that controls gene expression) (Martin and Fry, 2018), modification in the histones (involved in altered gene expression) (Dolino and Jirtle, 2008), and interaction between microbes, genotypes, and environment play a key role in disease progression (Goodrich et al., 2017). Now, challenge for biologists is to identify genetic components that predispose individuals to fungal infection. The study of genes will help to understand the relationship between genetic polymorphism and the cellular phenotype of host and pathogen (Sardinha et al., 2011). Recent research outcomes aided by genomic sequencing point toward an interesting link between genetic predisposition to fungal infections and human ancestry. Single nucleotide polymorphism (SNP) in key immune genes plays an important role in fungal infection affecting particular ancestral populations (Hughes et al., 2008; Dominguez-Andres and Netea, 2019). Thus, with the availability of genetic information, we can study the mechanism behind host defense against the pathogen, susceptibility toward infection (Sardinha et al., 2011), and also have an idea of how the pathogens are evolving and trying to adapt to their host environment through host-pathogen interactions.

GENETIC PREDISPOSITION AND HOST-PATHOGEN INTERACTION

An opportunistic fungus causes diseases mostly in immunocompromised individuals, though normal individuals are also affected (Low and Rotstein, 2011; Eades and Armstrong-James, 2019). Host-pathogen communication initiates through the interactions of the fungal ligands and receptors present on the skin and internal organs (Richmond and Harris, 2014). The better fit of the ligand present on the microbes (against the receptors present on the host), the stronger the interaction (Goyal et al., 2018; Patin et al., 2019). Fungal ligands are a
Host susceptibility to fungal infections: predisposing factors and treatment approach. Schematic diagram represents predisposition of the host to certain factors that make them susceptible to fungal infections. Such factors can be genetic as well as non-genetic. Apart from genetic mutations in the host ligand, fungal receptors, and immune genes, human ancestry plays an important role in susceptibility toward invasive fungal infections. The future approaches would be geared toward the investigation (as part of preventive medicine) of the genetic mutations that predispose individuals to fungal infections and offer personalized medicine compared to the more traditional approach that is practiced in the form of antifungal medication.
Naik et al. Human Ancestry and Fungal Infections

TABLE 1 | Genetic mutations, human ancestry, and fungal infections.

Immune response	Genes	Ancestry link**	Fungal pathogen	Diseases	
Innate immunity	Cell mediated	DOCK8, MyD88**,CARD9**, NCF1, TLR1, MPO, CYBB, CYBA, NADPH oxidase	Chinese (Han)	Candida	Chronic mucocutaneous candidiasis (CMC), chronic granulomatous disease (CGD), candidiasis
		PTX3, NCF1, NCF2, NCF4, DOCK8, TLR4, NADPH oxidase, MPO	African	Aspergillus	Invasive aspergillosis (IA)
		CARD9, DOCK8			
Humoral		MBL, MASP-2**, MBL **	Chinese	Malassezia	Pityriasis versicolor
		Ferrooxidase		Sporotrix	Sporotrichosis
		HLA-B22**		Pneumocystis jiroveci	Pneumocystis pneumonia (PCP)
Adaptive immunity	Cell mediated	IL-17F, Act1, IL-12R1, IL-17R, IL-17RA, IL-4, IL-12, Tyk2, IL-17RC, ZNF341, IL-17, IL-22, Y238X, CLEC7A, IL-10	Chinese (Han)	Candida	Recurrent vulvovaginal candidiasis (RVVC)
		Dectin 1 **, IL-10	Dutch	Aspergillus	Invasive pulmonary aspergillosis (IPA)
		Y238X **, IL-10 **, TNFα **, IFN-γ **, CLEC7A, CX3CR1 **, ARNT2 **	European (Dutch, Caucasian)	Pneumocystis jiroveci	Pneumocystis pneumonia (PCP)
		Asp299Gly, Thr39Me rs2243250(IL-4)		Blastomyces	Blastomycosis
		IL-6		Histoplasma	Histoplasmosis
		IL-2		Coccidioides	Coccidioidomycosis
		STAT1	Chinese (Han)	Candida	Candidiasis
		STAT1, STAT3, AIRE, GATA2, RORC, CYP2C19 **, RAG1, RAG2	Chilean	Aspergillus	Aspergillosis
		NOD2, STAT3, CYP2C19 **	Chinese (Han)	Pneumocystis jiroveci, Trichophyton	Invasive fungal infection (IFI)
		CD40L **, CD50, CD80	Chinese mainland	Candida	Coccidioidomycosis
Humoral		IgG, IgA, IgE, IgM, defect in MHC class II molecule		Pneumocystis jiroveci, Candida, Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma, Paracoccidioides	Pneumocystis pneumonia (PCP), candidiasis, aspergillosis, blastomycosis, coccidioidomycosis, cryptococcosis, histoplasmosis, paracoccidioidomycosis.

The symbol ** is used for the genes having the ancestry link.

class of evolutionarily conserved structures called the pathogen associated molecular patterns (PAMPs) and are recognized by receptors present on the host surface called pattern recognition receptors (PRRs). Post internalization, fungi are primarily recognized by the innate cells (e.g., macrophages and dendritic cells) of the immune system (Mogensen, 2009). The main receptors that recognize the fungal-derived PAMPs are Toll-like receptor (TLR like TLR2, TLR4, and TLR9), C-type lectin receptor (CLR like Dectin1 and Dectin2), Nod-like receptor (NLR), Rig-like receptor (RLR), complement receptor, and mannose binding lectin (MBL) (Akira et al., 2006; van de Veerdonk et al., 2008; Hatinguais et al., 2020). These receptors are a crucial component of fungal recognition and trigger an innate immune response.

The host immune response mainly consists of two types, innate and adaptive immunity (Chaplin, 2010; Aristizabal and Gonzalez, 2013; Netea et al., 2019). Cell-mediated innate immunity is through antigen-presenting cells (APC), which recognize the fungal antigen and process and present it to the T cells. The T cells that participate in antifungal immunity involve...
Th (helper T cells), Tc (cytotoxic T cells), and Treg (regulatory T cells) cells (Hamad et al., 2018). As soon as the body’s immune cells see the foreign fungus, a chain reaction is initiated. Phagocytosis of the fungal pathogen is mediated by neutrophils, macrophages, and dendritic cells, and the oxidative burst kills fungal pathogen by the activity of NADPH oxidase (Rosales and Uribe-Querol, 2017; Warris and Ballou, 2019). The deficiency of this enzyme disrupts the formation of reactive oxygen species (ROS) and makes an individual more susceptible to fungal infection (Hamad et al., 2018). The non-oxidative killing of the fungal pathogen is enhanced by antimicrobial peptides (AMPs) that disrupt the fungal cell wall and also produce neutrophil extracellular traps (NETs) consisting of calprotectin, which induces antifungal activity (Pathakumari et al., 2020; Ulfieg and Leichert, 2021). Calprotectin released from NET is an antimicrobial heterodimer that helps in clearing fungus like Candida, and its deficiency leads to increased fungal burden (Urban et al., 2009). Innate immune response activates adaptive immunity, which is enhanced by both humoral and cell-mediated immune response, aiding in recognizing fungal antigen, generating inflammation, activating the complement cascade, and further leading to opsonization and neutralization of fungal pathogen (Drummond et al., 2014).

Characterization of single gene defects that predispose individuals to fungal infections needs urgent attention. Monogenic causes for susceptibility of invasive fungal infections have unmasked novel molecules and key signaling pathways in defense against mucosal and systemic antifungal threats (Lionakis et al., 2014; Constantin and Lionakis, 2020). Genetic changes in some key genes play a crucial role in host-pathogen recognition (Kumar et al., 2018; Cunha and Carvalho, 2019; Merkhofer and Klein, 2020). Fungal β-glucan (PAMP) activity can be masked through a change in cell wall components and thus prevent target recognition (Plato et al., 2015). A genetic defect in the different types of PRR families makes the host susceptible to fungal infection (Netea et al., 2012). Defect in the CLR Dectin1, encoded by CLEC7A (C-type lectin domain containing 7A) predisposes humans to invasive aspergillosis (IA), chronic mucocutaneous candidiasis (CMC), and recurrent vulvovaginal candidiasis (RVVC) (Reid et al., 2009; Plantinga et al., 2012; Cunha et al., 2018). The CLEC7A intronic SNPs rs3901533 and rs7309123 are associated with susceptibility to invasive pulmonary aspergillosis (IPA) in patients with hematologic diseases (Taylor et al., 2007; Sainz et al., 2012). Dectin-1 Y238X polymorphism leading to diminished Dectin-1 receptor activity plays a role in RVVC and IA (Plantinga et al., 2009; Cunha et al., 2010; Zachedi et al., 2016). Dectin-1 gene variant also contributes susceptibility to coccidioidomycosis (del Pilar Jiménez-A et al., 2008). Another receptor MBL interacts with pathogens, helps in triggering an immune response, and plays an important role in innate immunity. Deficiency in MBL expression is associated with susceptibility to RVVC (Carvalho et al., 2010) and pneumocystis pneumonia (PCP) (Yanagisawa et al., 2020). Polymorphism in MBL is also associated with chronic cavitary pulmonary aspergillosis and Candida infection (Vaid et al., 2007).

SNPs in TLR lead to genetic variation that results in susceptibility to Candida and Aspergillus infections (Cunha et al., 2010; Table 1). Mutation in TLR1 is associated with candidemia (Ferwerda et al., 2009; Plantinga et al., 2009, 2012). Genetic variation in the PRR TLR4 can also make an individual susceptible to diseases like IPA (Cunha and Carvalho, 2019). Polymorphism in Asp299Gly and Thr399Ile present in the TLR4 impacts hyporesponsiveness to lipopolysaccharide signaling in epithelial cells or alveolar macrophages and results in chronic cavitary pulmonary aspergillosis (Arbour et al., 2000; Carvalho et al., 2008). In addition, polymorphism in immune response NOD2 (nucleotide binding oligomerization domain containing 2) gene results in IPA. Variation in another receptor type RLR is also associated with Candida infection (Gresnigt et al., 2018; Jaeger et al., 2019). Thus, a mutation in the gene coding for a receptor is an important susceptibility factor for CMC and plays a central role in host immune response (Glocker et al., 2009).

GENETIC POLYMORPHISM OF THE IMMUNE SYSTEM LINKED TO FUNGAL INFECTIONS

Genetic variants leading to immunological susceptibility have long been recognized with a few immunodeficiencies characterized by their vulnerability to IFIs (Pana et al., 2014; Maskarinenc et al., 2016; Merkhofer and Klein, 2020). Deficiency in PTX3 (Pentraxin 3), which is involved in innate immunity, leads to susceptibility toward IA (Garlanda et al., 2002). Recently, downregulation of cluster of differentiation molecules CD50 and CD80 has been shown to make an individual susceptible to Trichophyton infection (Hamad et al., 2018). Polymorphism in the CX3CR1 gene (C-X3-C motif chemokine receptor 1, encoding chemokine receptor) is associated with fungal infection in the gut, and it plays an important role in antifungal activity through activation of Th17 cells and IgG antibody response (Kumar et al., 2018). Candida infections (ranging from mucosal to bloodstream, including deep-seated infections) are influenced by genetic variants in the human genomes like polymorphism in signal transducer and activator of transcription protein-coding genes STAT1 and STAT3 (Plantinga et al., 2012; Smeekens et al., 2013). The important adaptor protein CARD9 (caspase recruitment domain-containing protein 9) is involved in signal transduction from a variety of receptors, and mutation in this gene not only leads to mucosal infection but also is associated with IFIs, development of autoimmune diseases, inflammatory bowel disease (IBD), and cancer (Glocker et al., 2009; Drummond et al., 2018). CARD9 plays an important role in Th17 cell differentiation and helps in the release of cytokines (Vautier et al., 2010; Speakman et al., 2020; Vornholz and Ruland, 2020). Recently, defects in CARD9 and STAT3 have been found to cause IFI with gastrointestinal manifestations (Vinhal, 2019) and mutation in STAT3 results in reduced Th17 cells causing candidiasis (Engelhardt and Grimbacher, 2012). A heterozygous missense mutation in STAT1 is associated with coccidioidomycosis and histoplasmosis (Sampaio et al., 2013). Mutation in another transcription factor GATA2 (GATA-binding
factor 2) makes patients vulnerable to myeloid malignancy who have a high risk for treatment-associated IFIIs involving aspergillosis and candidiasis (Spinner et al., 2014; Donadieu et al., 2018; Vedula et al., 2021). ZNF341 (zinc finger protein 341) is a transcription factor that resides in the nucleus and regulates the activity of STAT1 and STAT3 genes. ZNF341-deficient patients lack Th17 cells and have an excess of Th2 cells and low memory B cells. Upon Candida infection, individuals with STAT3 mutation result in hyper–immunoglobulin E syndrome (HIES) associated with defective Th17 cell differentiation and characterized by elevated serum IgE (Béziat et al., 2018; Frey-Jakobs et al., 2018; Egri et al., 2021). Patients with AIRE (autoimmune regulator) gene mutations are also susceptible to Candida albicans infection and present themselves with autoimmune disorders (Pedroza et al., 2012; de Albuquerque et al., 2018). Genes encoding immune molecules of the adaptive immune system play an important role in controlling fungal invasion (Kawai and Akira, 2007). Immunoglobulins (Igs) IgG, IgA, IgE, and IgM as part of the humoral adaptive immunity mediate protection through direct actions on fungal cells, and classical mechanisms such as phagocytosis and complement activation are affected in case of mutations in genes coding for those Igs (Kaufman, 1985; Lionakis et al., 2014; Table 1). MHC class II defects lead to primary immunodeficiency disease (PIDD) and make individuals susceptible to a high rate of fungal infection like Candidiasis and PCP (Lanternier et al., 2013; Abd Elaziz et al., 2020). Mutation in CARD9 and DOCK8 (dedicator of cytokinesis 8) among PIDD individuals makes them susceptible to Malassezia infection, and deficiency in STAT3 leads to IPA (Abd Elaziz et al., 2020). Summary of the immune-related genes responsible for susceptibility to fungal infection is highlighted in Table 1.

Interleukins (ILs) play a crucial role during fungal infection and help in the maturation of B cells and antibody secretion, which helps fight fungal infections (Antachopoulos and Rolides, 2005; Verma et al., 2015; Sparber and LeibundGut-Landmann, 2019; Griffiths et al., 2021). Mutations in genes encoding for members of the IL-1 family are associated with acute and chronic inflammation and are essential for the innate response to infection (Caffrey et al., 2015; Griffiths et al., 2021). Genetic variation in IL-6 results in blastomycosis (Merkhofer et al., 2019), and defect in IL-10 and IL-6 signaling affects STAT3, a key immune response molecule. Genetic variation in IL-10 has also been found to be the underlying cause of susceptibility toward fungal infections like IA (ZaaS, 2006). IL-10 mutation makes an individual susceptible to Candida and Coccidoides immitis infection (Fierer, 2006), and IL-4 polymorphism resulted in susceptibility toward Candida infection (Babula et al., 2005; Choi et al., 2005). SNP in rs2243250, known to influence IL-4 production, is associated with susceptibility to PCP in HIV-positive patients (Wójcieszczuk et al., 2019). In addition, deficiency of interleukin IL-17 and IL-22 production as a result of genetic mutation has been reported to be the cause of RVVC (Sobel, 2016). IL-2 mutation too predisposes individuals to invasive fungal infection like histoplasmosis by affecting T cell functions (Smeekens et al., 2013; Lionakis et al., 2014; Kumareshan et al., 2017; Pathakumari et al., 2020). The emerging role of the IL-12 family of cytokines in the fight against candidiasis has been reported (Ashman et al., 2011; Thompson and Orr, 2018). IL-12RB1 (interleukin receptor subunit beta 1) impairs the development of human IL-17 producing T cells (Huppler et al., 2012; Johnson et al., 2012; Thompson and Orr, 2018), and mutations inherited might be responsible for histoplasmosis (León-Lara et al., 2020). RAR-related orphan receptor C (RORC) encoding transcription factors play an integral role in both IL-17 and IFNγ pathways in CMC (De Luca et al., 2007; Constantine and Lionakis, 2020). Deficiency of tyrosine kinase 2 (Tyk2) that participates in signal transduction for various cytokine receptors leads to impaired helper T cell type 1 (Th1) differentiation and accelerated helper T cell type 2 (Th2) differentiation in candidiasis (Minegishi et al., 2006). Mutation in the main inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), associated with fungal infection, leads to susceptibility toward RVVC or IPA (Kasper et al., 2018; Wang et al., 2020; Briard et al., 2021). Also, mutations in key recombination activating genes (RAG1 and RAG2) lead to loss of T and B cells, making individuals susceptible to CMC and a broad spectrum of pathogens (Schuetz et al., 2008; Delmonte et al., 2018). Genetic polymorphism in the IL-17 family genes, which encode for the Th17 cellular differentiation, results in an individual's susceptibility toward fungal infection (Hamad et al., 2018). One of the key signaling molecule pathways, the IL-17R signaling is dependent on Act1 (Actin1—a conserved protein that helps in key cellular processes), and mutation in the gene coding for Actin1 leads to defect in IL-17R signaling pathway, which ultimately fails to provide immunity against CMC (Boisson et al., 2013). IL-17RA binds to homo- and heterodimers of IL-17A and IL-17F, and its deficiency or genetic mutation in any of the gene coding for receptors IL-17RA or IL-17RC leads to CMC (Puel et al., 2011; Sawada et al., 2021).

Mutation in DOCK8 characterized by elevated IgE level is also known to be responsible for recurrent fungal infections like IA and mucocutaneous candidiasis (Biggs et al., 2017; Nahum, 2017). During Aspergillus infection, tumor necrosis factor-alpha (TNFα) enhances the phagocytic activity and the polymorphic site in TNF promoter predisposes individuals to IA (Rolides et al., 1998; Sainz et al., 2007). Neutrophil cytotoxic factors (NCFs) are part of the group of proteins that form the enzyme complex called NADPH oxidase, and mutation in any of the key genes NCF1, NCF2, and NCF4 leads to impaired fungal eradication (as in aspergillosis) due to non-functional NADPH oxidase (Panday et al., 2015; Giardino et al., 2017; Dinauer, 2019; Wu et al., 2019). Decreased myeloperoxidase (MPO) activity (inability to produce hypochlorous acid) in neutrophils leads to delayed killing of pathogen and makes an individual susceptible to invasive Candida infection (Aratani et al., 1999; Merkhofer and Klein, 2020). Myeloperoxidase mutants lead to impaired ROS production, making the host susceptible to infection, and thus, both MPO and NADPH oxidase mutants are unable to eradicate fungal threats like chronic granulomatous disease (CGD) and IA (Lehrer and Cline, 1969; Aratani et al., 2004; Segal and Romani, 2009; Ren et al., 2012). Cytochrome b-245 is a primary component of the microbicidal oxidase system of phagocytes encoded by the alpha and beta chains CYBA and CYBB/Nox2 (NADPH oxidase 2), respectively (Stasia, 2016), and cytochrome...
b deficiency is also linked to CGD (Clark, 1999; Stasia et al., 2003; Kutukculer et al., 2019). Recently, it has been reported that mutants in the ferroxidase gene make individuals susceptible to mucormycosis (Navarro-Mendoza et al., 2018), an infection that has been affecting COVID-19 patients (Raut and Huy, 2021). Thus, mutations of key genes of the immune system play an important role in fungal resistance, and interestingly, genetic polymorphisms in these genes have revealed some links with human ancestry.

HUMAN ANCESTRY AND GENETIC PREDISPOSITION TO FUNGAL INFECTIONS

There is limited research investigating the link between genetic polymorphism in key immune genes, human ancestry, and susceptibility toward fungal infection (Figure 1). But recent research outcomes aided by genomic sequencing point toward an interesting fact. Infection with the fungus *Coccidioides immitis* among Filipino ancestry was found to be common among men and non-white persons causing coccidioidomycosis (van Burik and Magee, 2001). Studies on DNA, which provides genetic information transferred from ancestors to their family members and relatives, indicate that the Hmong ancestry are more susceptible to fungal infection (Xiong et al., 2013). In another report, genetic differentiation among the Hmong ancestry originating from Wisconsin makes them more susceptible to blastomycosis. The Chinese Han population was found to suffer due to poor metabolism as a result of *Hlm* ancestry originating from Wisconsin makes them more susceptible to fungal infection (Figure 1). Recently, it has been reported that mutants in the ferroxidase gene make individuals susceptible to mucormycosis (Navarro-Mendoza et al., 2018), an infection that has been affecting COVID-19 patients (Raut and Huy, 2021). Thus, mutations of key genes of the immune system play an important role in fungal resistance, and interestingly, genetic polymorphisms in these genes have revealed some links with human ancestry.

DISCUSSION

Fungi play an important role in the human microbiome (Huseyin et al., 2017; Perez et al., 2021; Tiew et al., 2021). In this review, we have focused on genetic predisposition to human fungal infections and discussed the link that exists between ancestry and susceptibility to IFIs. Among those fungi that are commensal with the warm-blooded host, few turn pathogenic under not so well-defined conditions (Hall and Noverr, 2017; Jacobsen, 2019; Limon et al., 2017). Such conversion to pathogenic forms is aided by external factors like environment, immunological status, and most importantly host genetics (Kobayashi, 1996; Kumar et al., 2018; Figure 1). As we learn more about fungal biology, we also understand genetic signatures in the host that make them prone to fungal infections. This is explained by the term genetic predisposition, and external players like the environment also play a role in triggering an autoimmune, inflammatory, or allergic reaction to fungal infections (Figure 1). Identification of fungal allergens has become challenging because most of the allergens mimic immune molecules (Pavia et al., 2020). We have seen how mutations in key recognition molecules (Table 1) play a trigger for several fungal infections. We looked into variations introduced by SNPs that are present in the immune response genes (Table 1) critical for fungal infections. The polymorphism in the immune genes (PTX3, CX3CR1, CARD9, STAT3, and others, Figure 1) make the host susceptible (Garlanda et al., 2002; Kumar et al., 2018; Vinh, 2019), and defect in interleukins (e.g., IL-4, IL-10) leads to genetic predisposition toward fungal infection (Babula et al., 2005; Choi et al., 2005; Zaa, 2006; Table 1). The study of these genes helps us to understand the relationship between genetic polymorphism and the cellular
phenotype of host, pathogen, and associated defense mechanisms (Sardinha et al., 2011). Thus, the composition of both host and pathogen plays important role in disease progression, and the challenge is to identify the genetic components involved in pathogenesis.

A few studies point toward a link between human ancestry and genetic predisposition to fungal infections (van Burik and Magee, 2001; Ferwerda et al., 2009; Xiong et al., 2013; Chen et al., 2019; Du et al., 2019; Espinoza et al., 2019; Table 1). Mutations in several components of the immune system make certain human ancestral descendants more prone to fungal infections. Few studies have looked into genetic associations and human ancestry. This aspect is an important and emerging research area in terms of population genetics (Hirschhorn et al., 2002; Gnat et al., 2021). Mutation in key genes relating to the immune system of the host makes certain ancestral descendants susceptible to fungal infections as we observe in the case of certain European, African, and Caucasian individuals (Larcombe et al., 2002; Gnat et al., 2021). Mutation in key genes relating to the immune system makes certain ancestral descendants more susceptible to fungal infections (Figure 1). Such fungi are a threat to global public health and can colonize the skin, spread from person to person, and cause many high-risk diseases (Lamoth and Kontoyiannis, 2018). To deal with such organisms, we require better surveillance methods, rapid and accurate diagnostics, and decolonization protocols that include administration of antimicrobial or antiseptic agents and new antifungal drugs (Jeffery-Smith et al., 2018; Jackson et al., 2019; Chowdhary et al., 2020; Fisher et al., 2020; Steenwyk et al., 2020). Genome-wide association studies (GWAS) would help us to evaluate the difference in the DNA sequences and understand heritability, disease risk, and susceptibility to antifungals (Bloom et al., 2019; Guo et al., 2020; Figure 1). From genome sequencing, genomic variations like SNPs, variable number tandem repeats (VNTRs), and insertion/deletions (Indels) can be identified. Structural genome variations like aneuploidy and copy number variations (CNVs) also provide important clues to fungal virulence (Tsai and Nelliat, 2019). During fungal microevolution, many of these events like insertion/deletion of genes, loss of heterozygosity (LOH), and genome plasticity help fungus to adapt against antifungal drugs and harsh host environment (Beekman and Ene, 2020). Thus, as part of preventive medicine, a better understanding of host genetics behind fungal infection will help us to study infectious diseases through modern genomic approaches and offer personalized therapy against invasive fungal diseases.

AUTHOR CONTRIBUTIONS

SD conceptualized, reviewed, and approved the manuscript. BN drafted the manuscript, revised the article critically, and provided critical suggestions. SA contributed toward artwork and reviewed the manuscript. SL provided critical review and revised intellectual content. All authors contributed to the article and approved the submitted version.

FUNDING

SD was supported by the Grant in Aid program of DHR GIA/2019/000620/PRCGIA. BN is a JRF supported by Yenepoya (Deemed to be University). SA was supported by an ICMR grant to SD.

ACKNOWLEDGMENTS

We would like to acknowledge funding from the Department of Health Research (DHR), the Indian Council of Medical Research (ICMR) New Delhi for funding our research program. We also thank Yenepoya Research Centre for providing laboratory facilities.

REFERENCES

Abd Elaziz, D., Abd El-Ghany, M., Meshaal, S., El Hawary, R., Lotfy, S., Galal, N., et al. (2020). Fungal infections in primary immunodeficiency diseases. *Clin. Immunol.* Orlando Fla 219:108553. doi: 10.1016/j.clim.2020.108553

Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. *Cell* 124, 783–801. doi: 10.1016/j.cell.2006.02.015

Antachopoulos, C., and Rolides, E. (2005). Cytokines and fungal infections. *Br. J. Haematol.* 129, 583–596. doi: 10.1111/j.1365-2141.2005.05498.x

Aratani, Y., Koyama, H., Nyui, S., Suzuki, K., Kura, F., and Maeda, N. (1999). Severe impairment in early host defense against *Candida albicans* in mice deficient in myeloperoxidase. *Infect. Immun.* 67, 1828–1836. doi: 10.1128/IAI.67.4.1828-1836.1999

Aratani, Y., Kura, F., Watanabe, H., Akagawa, H., Takano, Y., Suzuki, K., et al. (2004). In vivo role of myeloperoxidase for the host defense. *Ipum. J. Infect. Dis.* 57:515.

Arbour, N. C., Lorenz, E., Schatte, B. C., Zabner, J., Kline, J. N., Jones, M., et al. (2000). TR4 mutations are associated with endotoxin hyporesponsiveness in humans. *Nat. Genet.* 25, 187–191. doi: 10.1038/76048

Aristizabal, B., and González, Á (2013). “Innate immune system,” in Autoimmunity: From Bench to Bedside, eds J. M. Anaya, Y. Shoenfeld, A. Rojas-Villarraga, R. A. Levy, and R. Cervera (Bogota: El Rosario University Press).

Ashman, R. B., Vijayan, D., and Wells, C. A. (2011). IL-12 and related cytokines: function and regulatory implications in *Candida albicans* infection. *Clin. Dev. Immunol.* 2011:686597. doi: 10.1155/2011/686597

Aykut, B., Pushalkar, S., Chen, R., Li, Q., Abengozar, R., Kim, J. I., et al. (2019). The fungal mycoobiome promotes pancreatic oncogenesis via activation of MBL. *Nature* 574, 264–267. doi: 10.1038/s41586-019-1608-2

Babula, O., Lazardè, G., Kroica, J., Linhares, I. M., Ledger, W. J., and Witkin, S. S. (2005). Frequency of interleukin-4 (IL-4) -589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 40, 1258–1262. doi: 10.1086/429246

Bao, F., Fu, X., Yu, G., Wang, Z., Liu, H., and Zhang, F. (2019). Mannose-Binding lectin and mannose-binding lectin-associated serine protease-2 genotypes and serum levels in patients with sporotrichosis. *Am. J. Trop. Med. Hyg.* 101, 1322–1324. doi: 10.4269/ajtmh.19-0470

Beekman, C. N., and Ene, I. V. (2020). Short-term evolution strategies for host adaptation and drug escape in human fungal pathogens. *PLoS Pathog.* 16:e1008319. doi: 10.1371/journal.ppat.1008319

Béziat, V., Li, J., Lin, J.-X., Ma, C. S., Li, P., Bousfiha, A., et al. (2018). A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. *Sci. Immunol.* 3:eaa4956. doi: 10.1126/sciimmunol.aat4956
Biggs, C. M., Keles, S., and Chatila, T. A. (2017). DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin. Immunol. Orlando Fla 181, 75–82. doi: 10.1016/j.clim.2017.06.003

Blackwell, M. (2011). The fungi: 1, 2, 3. 5.1 million species? Am. J. Bot. 98, 426–438. doi: 10.3732/ajb.090883

Bloom, J. S., Boosock, J., Treusch, S., Sadhu, M. J., Day, L., Oates-Barker, H., et al. (2019). Rare variants contribute disproportionately to quantitative trait variation in yeast. Elife 8:e49212. doi: 10.7554/elife.49212

Boehme, A. K., Mcgwin, G., Andes, D. R., Lyon, G. M., Chiller, T., Pappas, P. G., et al. (2014). Race and invasive fungal infection in solid organ transplant recipients. Ehnth. Dis. 24, 382–385.

Boisson, B., Wang, C., Pedergnana, V., Wu, L., Cypowyj, S., Rybojad, M., et al. (2013). An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686. doi: 10.1016/j.immuni.2013.09.002

Bried, B., Malirreddi, R. K. S., and Kanneganti, T.-D. (2021). Role of inflammasomes/pyroptosis and PAnoptosis during fungal infection. PLoS Pathog. 17:e1009358. doi: 10.1371/journal.ppat.1009358

Caflery, A. K., Lehmann, M. M., Zickovick, J. M., Espinosa, V., Shepardson, K. M., Watschke, C. P., et al. (2015). IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 11:e1004625. doi: 10.1371/journal.ppat.1004625

Carris, L. M., Little, C. R., and Stiles, C. M. (2012). Introduction to Fungi. The Plant Health Instructor. doi: 10.2135/phih-2012-0242-01

Carvalho, A., Cunha, C., Pasqualotto, A. C., Pitzurra, L., Denning, D. W., and Romani, L. (2010). Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int. J. Infect. Dis. 14, e460–e468. doi: 10.1016/j.ijid.2009.06.028

Carvalho, A., Pasqualotto, A. C., Pitzurra, L., Romani, L., Denning, D. W., and Rodrigues, F. (2008). Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J. Infect. Dis. 197, 618–621. doi: 10.1086/526500

Chai, L. Y. A., de Boer, M. G. J., van der Weldon, W. J. F. M., Plantinga, T. S., van Sprield, A. B., Jacobs, C., et al. (2011). The Y238X stop codon in Dectin-1 Y238X polymorphism associates with susceptibility to invasive pulmonary aspergillosis. Med. Mycol. 51, 725–730. doi: 10.1093/mmy/myy057

De Luca, A., Montagnoli, C., Zelante, T., Bonifazi, P., Bozza, S., Moretti, S., et al. (2007). Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rac. J. Immunol. Baltim. Md 190, 5999–6008. doi: 10.4049/jimmunol.179.9.5999

Dienemann, D. M. (2019). Insights into the NOX NADPH oxidases using heterologous cell whole assays. Methods Mol. Biol. Clifton NJ 1882, 139–151. doi: 10.1007/978-1-4939-9424-3_9

Dilolino, D. C., and Jurtle, R. L. (2008). Environmental epigenomics in human health and disease. Environ. Mol. Mutagen. 49, 4–8. doi: 10.1002/em.20366

Dominquez-Andres, J., and Netea, M. G. (2019). Impact of historic migrations and evolutionary processes on human immune system. Trends Immunol. 40, 1105–1119. doi: 10.1016/j.it.2019.10.001

Donadieu, J., Lamant, M., Fieschi, C., de Fonbrune, F. S., Caye, A., Ouachee, M., et al. (2018). Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 103, 1278–1287. doi: 10.3324/haematol.2017.181909

Drummond, R. A., Franco, L. M., and Lionakis, M. S. (2018). Human CARD9: a critical molecule of fungal immune surveillance. Front. Immunol. 9:1836. doi: 10.3389/fimmu.2018.01836

Drummond, R. A., Gaffen, S. L., Hise, A. G., and Brown, G. D. (2014). Innate defense against fungal pathogens. Cold Spring Harb. Perspect. Med. 5:a019620. doi: 10.1101/cshperspect.a019620

Du, X., Tang, W., Chen, X., Zeng, T., Wang, Y., Chen, Z., et al. (2019). Clinical, genetic and immunological characteristics of 40 Chinese patients with CD40 ligand deficiency. Scand. J. Immunol. 90:e12798. doi: 10.1111/sji.12798

Duxbury, E. M., Day, J. P., Maria Vespasiani, D., Thüringer, Y., Tolosana, I., Smith, S. C., et al. (2019). Host-pathogen coevolution increases genetic variation in susceptibility to infection. Elife 8:e46440. doi: 10.7554/elife.46440

Eades, C. P., and Armstrong-James, D. P. H. (2019). Invasive fungal infections in the immunocompromised host: mechanistic insights in an era of changing immunotherapeutics. Med. Mycol. 57, S307–S317. doi: 10.1093/amy/myy136

Egri, N., Esteve-Solé, A., Deyá-Martinez, À, Ortiz de Landazuri, I., Vlajea, A., García, A. P., et al. (2021). Primary immunodeficiency and chronic mucocutaneous candidiasis: pathophysiological, diagnostic, and therapeutic approaches. Allergol. Immunopathol. (Madr.) 49, 118–127. doi: 10.15588/aei.v49i1.20

Engelhardt, K. R., and Grimbacher, B. (2012). Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J. Allergy Clin. Immunol. 129, 294–305; quiz 306–307. doi: 10.1016/j.jaci.2011.12.966

Espinoza, N., Galdames, J., Navea, D., Farfan, M. J., and Salas, C. (2019). Frequency of the Y238X polymorphism in a Chilean population and its effect on voriconazole plasma concentration in immunocompromised children. Sci. Rep. 9:58863. doi: 10.1038/s41598-019-45345-2

Ferwerda, B., Ferwerda, G., Plantinga, T. S., Willment, J. A., van Sprield, A. B., Venselaar, H., et al. (2009). Human dactin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767. doi: 10.1056/NEJMoa0901053

Fiore, J. (2006). IL-10 and susceptibility to Coccidioides immitis infection. Trends Microbiol. 14, 426–427. doi: 10.1016/j.tim.2006.07.009

Fisher, M. C., Gurr, S. J., Cuomo, C. A., Blehert, D. S., Jin, H., Stukenberg, E. H., et al. (2020). Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11:e00449-20. doi: 10.1128/mBio.00449-20

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 709315

Naik et al. Human Ancestry and Fungal Infections
Frey-Jakobs, S., Hartberger, J. M., Fliegauf, M., Bossen, C., Wehmeier, M. L., Neubauer, J. C., et al. (2018). ZNF341 controls STAT3 expression and thereby immunocompetence. Science. 360:eaat4914. doi: 10.1126/science.aaa4914

Garlanda, C., Hirsch, E., Bozza, S., Salustri, A., De Acetis, M., Nota, R., et al. (2002). Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420, 182–186. doi: 10.1038/nature01195

Giardino, G., Cicalèse, M. P., Delmonte, O., Migliavacca, M., Palterer, B., Salzer, U., et al. (2017). NADPH oxidase deficiency: a multisystem approach. Oxid. Cell. Mol. Longe. 2017:490127. doi: 10.1155/2017/490127

Glocker, E.-O., Hennigs, A., Nabavi, M., Schäffer, A. A., Woellner, C., Salzer, U., et al. (2009). A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735. doi: 10.1056/NEJMoa081719

Gnat, S., Lągowski, D., and Nowakiewicz, A. (2021). Genetic predisposition and its heredity in the context of increased prevalence of dermatophytoses. Mycopathologia 186, 163–176. doi: 10.1007/s11046-021-00529-1

Goodrich, J. K., Davenport, E. R., Clark, A. G., and Ley, R. E. (2017). The fungal frontier: a comparative analysis of methods used in the study of fungi? Trends Microbiol. 25, 736–747. doi: 10.1016/j.tim.2017-04-0912-3

Griffiths, J. S., Camilli, G., Kotowicz, N. K., Ho, J., Richardson, J. P., and Naglik, J. R. (2021). Role for IL-1 family cytokines in fungal infections. Front. Microbiol. 12:633047. doi: 10.3389/fmicb.2021.633047

Guo, X., Zhang, R., Li, Y., Wang, Z., Ishchuk, O. P., Ahmad, K. M., et al. (2020). Understanding the genomic diversity and evolution of fungal pathogen Candida glabrata by genome-wide analysis of genetic variations. Methods San Diego Calif. 176, 82–90. doi: 10.1016/j.ymeth.2019.05.002

Hall, R. A., and Noverr, M. C. (2017). Fungal interactions with the human host: exploring the spectrum of symbiosis. Curr. Opin. Microbiol. 40, 58–64. doi: 10.1016/j.mib.2017.10.020

Hamad, M., Mohammad, M. G., and Abu-Elteen, K. H. (2018). Immunity to fungal infections, in Fungi Biology and Applications, ed. K. O. Habermehl (Berlin: Springer). doi: 10.1007/978-3-642-99493-6_21

Kawamura, K. (1996). “Disease mechanisms of fungi, ” in Medical Microbiology, ed. J. R. Kobayashi (Berlin: Springer). doi: 10.1007/978-3-642-99493-6_21

Kumar, V., van de Veerdonk, F. L., and Netea, M. G. (2018). Antifungal immune responses: emerging host-pathogen interactions and translational implications. Genome Med. 10:39. doi: 10.1186/s13005-018-0553-2

Kumaresh, P. R., da Silva, T. A., and Kooyiannis, D. P. (2017). Methods of controlling invasive fungal infections using CD8+ T cells. Front. Immunol. 8:1839. doi: 10.3389/fimmu.2017.01939

Kutukculer, N., Aykut, A., F. E., Durmaz, A., Aksu, G., Genel, F., et al. (2019). Chronic granulomatous disease: two decades of experience from a paediatric immunology unit in a country with high rate of consanguineous marriages. Scand. J. Immunol. 89:12277. doi: 10.1111/sij.12737

Kwizera, R., Musaza, J., Meya, D. B., Worordia, W., Bwanga, F., Kajumbula, H., et al. (2019). Burden of fungal skin in Asia: a systematic review and meta-analysis. PLoS One 14:e0216568. doi: 10.1371/journal.pone.0216568

Lehrer, R. I., and Cline, M. J. (1969). Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Clin. Immunol. 17, 516–520. doi: 10.1007/bf01228612

León-Lara, X., Hernández-Nieto, L., Zamora, C. V., Rodríguez-Dícid, R., Gutiérrez, M. E. C., Espinosa-Padilla, O., et al. (2013). Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 25, 736–747. doi: 10.1097/MOP.0b013e3283000031

Larcombe, L., Rempel, J. D., Dembinski, I., Tinckam, K., Rigatto, C., and Nickerson, P. (2005). Differential cytotoxic cytokine frequency among Canadian aboriginal and Caucasian populations. Genes Immun. 6, 140–144.

Levin, A. I., and Cline, M. J. (1969). Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Clin. Immunol. 17, 516–520. doi: 10.1007/bf01228612

Lionakis, M. S. (2012). Genetic susceptibility to fungal infections in humans. Curr. Fungal Infect. Rep. 6, 11–22. doi: 10.1016/j.jfcr.2011-01-0076-4

Lionakis, M. S., Netea, M. G., and Holland, S. M. (2014). Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb. Perspect. Med. 4:a016368. doi: 10.1101/cshperspect.a016368

Low, C.-Y., and Rotshtein, C. (2011). Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 3:14. doi: 10.3410/M3-14

Lupiñáñez, C. B., Martínez-Bueno, M., Sánchez-Maldonado, J. M., Badiola, J., Cunha, C., Springer, J., et al. (2020). Polymorphisms within the ARNT2 and CD8 genes are associated with the risk of developing aspergillosis. Infect. Immun. 88, e882–e819. doi: 10.1128/IAI.00882-19
Martin, E. M., and Fry, R. C. (2018). Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. *Ann. Rev. Public Health* 39, 309–333. doi: 10.1146/annurev-publhealth-040617-104629

Maskarines, S. A., Johnson, M. D., and Perfect, J. R. (2016). Genetic susceptibility to fungal infections: what is in the genes? *Curr. Clin. Microbiol. Rep.* 3, 81–91. doi: 10.1007/s40881-016-0037-3

Merkhofer, R. M., and Klein, B. S. (2020). Advances in understanding human genetic variations that influence innate immunity to fungi. *Front. Cell. Infect. Microbiol.* 10:69. doi: 10.3389/fcimb.2020.00069

Merkhofer, R. M., O’Neill, M. B., Xiong, D., Hernandez-Santos, N., Dobson, H., Fites, J. S., et al. (2019). Investigation of genetic susceptibility to blastomyositis reveals interleukin-6 as a potential susceptibility locus. *mBio* 10:e01224-19. doi: 10.1128/mBio.01224-19

Minegishi, Y., Saito, M., Watanabe, K., Kagami, K., Tsuchiya, S., et al. (2018). Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. *Sci. Rep.* 8:7660. doi: 10.1038/s41598-018-26051-x

Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. *Clin. Microbiol. Rev.* 22, 240–273. doi: 10.1128/CMR.00046-08 Table of Contents

Nahum, A. (2017). Chronic mucocutaneous candidiasis: a spectrum of genetic disorders. *LymphoSign* 4, 87–99.

Naranjo-Ortiz, M. A., and Gabaldon, T. (2019). Fungal evolution: major ecological adaptations and evolutionary transitions. *Biol. Rev. Camb. Philos. Soc.* 94, 1443–1476. doi: 10.1111/brc.12510

Navarro-Mendoza, M. L., Pérez-Arques, C., Murcia, L., Martínez-García, P., Lax, C., Sanchis, M., et al. (2018). Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. *Sci. Rep.* 8:7660. doi: 10.1038/s41598-018-26051-x

Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B., and Schultze, J. L. (2019). Early stop polymorphism in Candida J. W. M., Perfect, J. R., et al. (2012). Human genetic susceptibility to fungal infections. *Clin. Infect. Dis.* 50, 785–794. doi: 10.1093/cid/cis865

Pflüger, A., Wright, F., and Vorderstrasse, A. (2021). A microbial relationship reveals interleukin-17 immunity. *Science* 368, 65–68. doi: 10.1126/science.1204439

Rai, L. S., Wijlick, L. V., Bougnoux, M. E., Bachellier-Bassi, S. and d’Enfert, C. (2021). Regulators of communal and pathogenic life-styles of an opportunistic fungus–Candida albicans. *Yeast* 38, 243–250. doi: 10.1007/s12305

Raut, A., and Huy, N. T. (2021). Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? *Lancet Respir. Med.* 3, 265–264. doi: 10.1016/S2213-2600(21)00265-4

Reid, D. M., Gow, N. A. R., and Brown, G. D. (2009). Pattern recognition: recent insights from Dectin-1. *Curr. Opin. Immunol.* 21, 30–37. doi: 10.1016/j.coi.2009.01.003

Ren, R., Fedoriw, Y., and Willis, M. (2012). The molecular pathophysiology, differential diagnosis, and treatment of MPO deficiency. *J. Clin. Exp. Pathol.* 2, 2161–2681.

Richmond, J. M., and Harris, J. E. (2014). Immunology and skin in health and disease. *Cold Spring Harb. Perspect. Med.* 4:a015339. doi: 10.1101/cshperspect.a015339

Rotailia, E., Dimitriadiou-Georgiadou, A., Sein, T., Kadilsolou, I., and Walsh, T. J. (1998). Tumor necrosis factor alpha enhances antifungal activities of polymorphonuclear and mononuclear phagocytes against Aspergillus fumigatus. *Infect. Immun.* 66, 5999–6003. doi: 10.1128/IAI.66.12.5999–6003. 1998

Rosales, C., and Uribe-Quebol, E. (2017). Phagocytosis: a fundamental process in immunity. *BioMed Res. Int.* 2017:9042851. doi: 10.1155/2017/9042851

Rosenstul, D. C., Plantinga, T. S., Scott, W. K., Alexander, B. D., van de Geer, N. M. D., Perfect, J. R., et al. (2012). The impact of caspase-12 on susceptibility to candidemia. *Eur. J. Clin. Microbiol. Infect. Dis.* 31, 277–280. doi: 10.1007/s10029-011-1307-x

Sainz, J., Lupiáñez, C. B., Segura-Catena, J., Vazquez, L., Rios, O., Oyonarte, S., et al. (2012). Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. *PLoS One* 7:e32273. doi: 10.1371/journal.pone.0032273

Sainz, J., Pérez, E., Hassan, L., Moratalla, A., Romero, A., Collado, M. D., et al. (2007). Variable number of tandem repeats of TNF receptor type 2 promoter as a genetic biomarker of susceptibility to develop invasive pulmonary Aspergillosis. *Hum. Immunol.* 68, 41–50. doi: 10.1016/j.humimm.2006.10.011

Salazar, F., and Brown, G. D. (2018). Antifungal innate immunity: a perspective from the last 10 years. *J. Innate Immun.* 10, 373–397. doi: 10.1159/000488539

Sampaio, E. P., Hsu, A. P., Pecharcek, J., Bax, H. I., Dias, D. L., Paulson, M. L., et al. (2013). Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. *J. Allergy Clin. Immunol.* 131, 1624–1634. doi: 10.1016/j.jaci.2013.01.052

Sardinha, J. F. J., Tarlé, R. G., Fava, V. M., Francio, A. S., Ramos, G. B., Ferreira, L. C., et al. (2011). Genetic risk factors for human susceptibility to infections of relevance in dermatology. *An. Bras. Dermatol.* 86, 708–715. doi: 10.1590/0365-05962011000040013

Sawada, Y., Setoyama, A., Sakuragi, Y., Saito-Sasaki, N., Yoshioka, H., and Nakamura, M. (2021). The role of IL-17-Producing cells in cutaneous fungal infections. *Int. J. Mol. Sci.* 22, 5979–5994. doi: 10.3390/ijms22155794

Schuetz, C., Hück, K., Gudowius, S., Megahed, M., Feyen, O., Hubner, B., et al. (2008). An immunodeficiency disease with RAG mutations and granulomas. *N. Engl. J. Med.* 358, 2030–2038. doi: 10.1056/NEJMo079366

Segal, B. H., and Romani, L. R. (2009). Invasive aspergillosis in chronic granulomatous disease. *Med. Mycol.* 47(Suppl. 1), S282–S290. doi: 10.1080/13693780902736620

Smeekens, S. P., van de Veenhoven, H. K., Pullberg, B. J., and Netea, M. G. (2013). Genetic susceptibility to Candida infections. *EMBO Mol. Med.* 5, 805–813. doi: 10.1002/emmm.201201678

Sobel, J. D. (2016). Recurrent vulvovaginal candidiasis. *Am. J. Obstet. Gynecol.* 214, 15–21. doi: 10.1016/j.ajog.2015.06.067

Sparber, F., and LeibundGut-Landmann, S. (2019). Interleukin-17 in antifungal immunity. *Pathog. Basel Switz.* 8:E54. doi: 10.3390/pathogens8020054
Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., Spinner, M. A., Sanchez, L. A., Hsu, A. P., Shaw, P. A., Zerbe, C. S., Calvo, Speakman, E. A., Dambuza, I. M., Salazar, F., and Brown, G. D. (2020). T cell Naik et al. Human Ancestry and Fungal Infections Vautier, S., Sousa, M., da, G., and Brown, G. D. (2010). C-type lectins, fungi Vedula, R. S., Cheng, M. P., Ronayne, C. E., Farmakiotis, D., Ho, V. T., Koo, Tsai, H.-J., and Nelliat, A. (2019). A Double-Edged sword: aneuploidy is a Taylor, M. L., Pérez-Mejía, A., Yamamoto-Furusho, J. K., and Granados, J. van de Veerdonk, F. L., Kullberg, B. J., van der Meer, J. W., Gow, N.A., and Netea, Thompson, A., and Orr, S. J. (2018). Emerging IL-12 family cytokines in the fight Ulfig, A., and Leichert, L. I. (2021). The effects of neutrophil-generated Tiew, P. Y., Jaggi, T. K., Chan, L. L. Y., and Chotirmall, S. H. (2021). The airway Tsoi, C. Y. W., Mok, C. K. J., and Hahn, J. W. (2010). Essential function of TH17 Tsoni, S. V., Willment, J. A., Dennehy, K. M., Rosas, M., Findon, H., et al. (2007). Distinct alleles of mannose-binding lectin (MBL) and surfactant Taylor, P. R., Tsoni, S. V., Willment, J. A., Dennehy, K. M., Rosas, M., Findon, H., et al. (2007). Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38. doi: 10.1038/nl1408 Thompson, A., and Orr, S. J. (2018). Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine 111, 398–407. doi: 10.1016/j.cyto.2018.05.019 Ullig, A., and Leichert, L. I. (2021). The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell. Mol. Life Sci. 78, 385–414. doi: 10.1007/s00018-020-03591-y Underhill, D. M., and Pearlman, E. (2015). Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43, 845–858. doi: 10.1016/j.immuni.2015.10.023 Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., et al. (2009). Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5:e1000639. doi: 10.1371/journal.ppat.1000639 Vaid, M., Kaur, S., Sambatakou, H., Madan, T., Denning, D. W., and Sarma, P. U. (2007). Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin. Chem. Lab. Med. 45, 183–186. doi: 10.1515/CCLM.2007.033 van Burik, J. A., and Magee, P. T. (2001). Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772. doi: 10.1146/annurev.micro.55.1.743 van de Veerendonk, F. L., Kullberg, B. J., van der Meer, J. W., Gow, N.A., and Netea, M. G. (2008). Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr. Opin. Microbiol. 11, 305–312. doi: 10.1016/j.mib.2008.06.002 Vautier, S., Sousa, M., da, G., and Brown, G. D. (2010). C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 21, 405–412. doi: 10.1016/j.cytogfr.2010.01.001 Vedula, R. S., Cheng, M. P., Ronayne, C. E., Farmakiotis, D., Ho, V. T., Koo, S., et al. (2021). Somatic GATA2 mutations define a subgroup of myeloid malignancy patients at high risk for invasive fungal disease. Blood Adv. 5, 54–60. doi: 10.1182/bloodadvances.2020002854 Verma, A., Wüthrich, M., Deepe, G., and Klein, B. (2015). Adaptive immunity to fungi. Cold Spring Harb. Perspect. Med. 5:a019612. doi: 10.1101/cshperspect.a019612 Vijaya Chandra, S. H., Srinivas, R., Dawson, T. L. Jr., and Common, J. E. (2021). Cutaneous Malassezia: commensal, pathogen, or protector? Front. Cell. Infect. Microbiol. 10:614446. doi: 10.3389/fcimb.2020.614446 Vinh, D. C. (2019). The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity. Expert Rev. Clin. Immunol. 15, 461–486. doi: 10.1080/1744666X.2019.1584038 Vornholz, L., and Ruland, J. (2020). Physiological and pathological functions of CARD9 signaling in the innate immune system. Curr. Top. Microbiol. Immunol. 429, 177–203. doi: 10.1007/8_2020_211 Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., et al. (2020). NLRP3 inflammasome and inflammatory diseases. Oxid. Med. Cell. Longev. 2020:4063562. doi: 10.1155/2020/4063562 Warris, A., and Ballou, E. R. (2019). Oxidative responses and fungal infection biology. Semin. Cell Dev. Biol. 89, 34–46. doi: 10.1016/j.semcdb.2018.03.004 Wójtowicz, A., Biber, S., Taffe, P., Bernasconi, E., Furrer, H., Günthard, H. F., et al. (2019). IL-4 polymorphism influences susceptibility to Pneumocystis jirovecii pneumonia in HIV-positive patients. AIDS 33, 1719–1727. doi: 10.1097/QAD.0000000000002283 Wu, S.-Y., Weng, C.-L., Jheng, M.-J., Kan, H.-W., Hsieh, S.-T., Liu, F.-T., et al. (2019). Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLoS Pathog. 15:e1008096. doi: 10.1371/journal.ppat.1008096 Xiong, D., Meece, J. K., and Perrerelli, C. S. (2013). Genetic research with hmong-ancestry populations: lessons from the literature and a pilot study. Hmong Stud. J. 14, 1–28. Yanagisawa, K., Wichukchinda, N., Tsuchiya, N., Yasunami, M., Rojanawiwat, A., Tanaka, H., et al. (2020). Deficiency of mannose-binding lectin is a risk of Pneumocystis jirovecii pneumonia in a natural history cohort of people living with HIV/AIDS in Northern Thailand. PLoS One 15:e0242438. doi: 10.1371/journal.pone.0242438 Zaas, A. K. (2006). Host genetics affect susceptibility to invasive aspergillosis. Med. Mycol. 44, S55–S60. doi: 10.1080/13693780600865481 Zahedi, N., Abedian Kenari, S., Mohseni, S., Aslani, N., Ansari, S., and Badali, H. (2016). Is human Dectin-1 Y238X gene polymorphism related to susceptibility to recurrent vulvovaginal candidiasis? Curr. Med. Mycol. 2, 15–19. doi: 10.18689/acadpub.cmmn.2.3.15 Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Naik, Ahmed, Laha and Das. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.