Current concepts in end-to-side neurorrhaphy

Marios G Lykissas

Abstract

In peripheral nerve injury, end-to-side neurorrhaphy involves coaptation of the distal stump of a transected nerve to the trunk of an adjacent donor nerve. It has been proposed as an alternative technique when the proximal stump of an injured nerve is unavailable or obliterated or the nerve gap is too long to be bridged by a nerve graft. Experimental and clinical data suggests that end-to-side neurorrhaphy can provide satisfactory functional recovery for the recipient nerve, without any deterioration of the donor nerve function. The most accepted mechanism of nerve regeneration following end-to-side neurorrhaphy is collateral sprouting. The source of the regenerating axons traveling in the epineurium of the donor nerve is thought to be the proximal Ranvier’s nodes at the site of end-to-side neurorrhaphy, however, histologic evidence is still lacking. Partial neurotomy of the donor nerve may enhance regeneration of motor neurons through end-to-side neurorrhaphy and reinnervation of motor targets.

© 2011 Baishideng. All rights reserved.

Key words: End-to-side neurorrhaphy; Collateral sprouting; Nerve regeneration; Peripheral nerve injury

Peer reviewers: R. Shane Tubbs, PhD, Professor of Anatomy, Pediatric Neurosurgery, Children’s Hospital, 1600 7th Avenue, Birmingham, AL 35233, United States; Shuichi Kaneyama, MD, PhD, Department of Orthopaedic Surgery, Kobe Rosai Hospital, 4-1-23, Kagoike-dori, Chuo-ku, Kobe 6510053, Japan; Juan A Pretell-Mazzini, MD, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, 34th Street and Civic Center Boulevard-Wood Building 2nd Floor, Philadelphia, PA 19104, United States.

INTRODUCTION

Autologous nerve grafting remains the gold standard for the management of nerve gaps following peripheral nerve injury. Use of autologous nerve grafts is bounded by the limited amount of available tissue and the increased donor site morbidity. Several surgical alternatives have been reported with various success. These include the combination of nerve grafts and silicon tubes, the use of synthetic or biologic nerve conduits, tubes containing blood vessels, the application of cultured Schwann cells and end-to-side neurorrhaphy.

It was not until 1992, when Viterbo et al reintroduced end-to-side neurorrhaphy, an almost forgotten technique of nerve coaptation. End-to-side neurorrhaphy involves coaptation of the distal stump of a transected nerve to the trunk of an adjacent donor nerve. It has been proposed as an alternative technique in cases of peripheral nerve injury, when the proximal stump of an injured nerve is unavailable or obliterated or the nerve gap is too long to be bridged by a nerve graft.

End-to-side neurorrhaphy was first described by Letievant in 1873 as a reconstructive strategy of peripheral nerves in cases of large substance loss. The pioneer
Collateral Sprouting

The most accepted mechanism of nerve regeneration following end-to-side neurorrhaphy is collateral sprouting, where regenerated axons emerge from the most proximal Ranvier's node of the donor nerve to the coaptation site and travel in the epineurium of the donor nerve[16-25]. Before axonal development, Schwann cells are organized into columns at the coaptation site[26]. At a later stage, these cells invade the epineurial layer of the recipient nerve. This is considered the critical step for the initiation of collateral axonal sprouting from the intact axons. It is supported that axons emerge from the Ranvier's nodes of the donor nerve proximal to the coaptation site[25,27-29].

According to one study, Schwann cells were found to stimulate axonal regeneration from the most distal nerve stump and Ranvier's nodes of the donor nerve[28].

The mechanism causing collateral sprouting after end-to-side neurorrhaphy may result from switching signals and/or switching factors, presumably neurotrophic[19]. Zhang et al[19] suggested that factors released from the Schwann cells, which have migrated to the epineurium, are transferred into the perineurium by diffusion and promote collateral sprouting from the closest to the injury site to Ranvier's nodes of the donor nerve.

It is well known that Neurotrophin-3 (NT-3) plays a distinct role in the processes of nerve regeneration and muscle reinnervation[20]. NT-3 and its receptor Trk C are expressed in the coaptation site following end-to-side neurorrhaphy[1,2]. Growth-associated protein-43 (GAP-43), a marker of growth cone formation, brain-derived neurotrophic factor (BDNF) and Trk B (BDNF receptor) are also detected in the coaptation site in lower concentrations and after NT-3 expression[21]. In an end-to-side neurorrhaphy model using anti-GAP-43 antibody, growth cone direction was recorded from the donor nerve to the peripheral nerve segment of the injured nerve.

Many investigators have also shown the distinct role of nerve growth factor (NGF) during collateral sprouting[22-27]. NGF is produced in end-organs following nerve injury. The secreted NGF is taken up by the axon terminals and transported retrogradely to the nerve cell body stimulating a secondary response. It has been shown that the combination of NGF and ciliary neurotrophic factor (CNTF) promotes axonal regeneration after end-to-side neurorrhaphy[28].

Factors Affecting Motor Regeneration

Biological responses of the donor neuron to factors emanating from the transected nerve have been implicated in the initiation of collateral sprouting for both sensory and motor axons. According to previous studies, significant motor functional recovery after end-to-side neurorrhaphy can be achieved without donor nerve axotomy[19,40]. However, more recent studies suggest that donor nerve injury, such as axotomy or suturing, is required for motor reinnervation of the recipient nerve[41,42].

Bonti et al[43] revealed increased expression of activating transcription factor 3 (ATF3), a marker of cell activation induced in sensory and motor neurons following peripheral nerve injury, after the creation of an epineurial window and/or suturing. According to these findings, an operative injury to the donor nerve during end-to-side neurorrhaphy is the main prerequisite for axonal sprouting.

A dose-response relationship between axotomy of the donor nerve and motor axons regeneration has been demonstrated[42]. Presumably, motor fibers from the donor nerve may enter the recipient nerve segment to supply muscles which were normally innervated by motor fibers from the recipient nerve[40].

Double End-to-Side Neurorrhaphy

Viterbo et al[43] first described double end-to-side neurorrhaphy. In this technique, both proximal and distal stumps of the recipient nerve are coapted in an end-to-side fashion to the trunk of an adjacent donor nerve (Figure 1). The regenerated axons use the epineurium of the donor nerve as a bridge to find the distal stump. It has been suggested that this technique stimulates axonal growth by a supercharged effect compared with end-to-end repair. Interestingly, when double end-to-side neurorrhaphy was compared with the conventional end-to-side technique, the recipient nerve following the double terminalateral technique was found to contain a significantly larger number of myelinated nerve fibers distal to the neurorrhaphy site[44]. Two sources of axons may contribute to the increased number of regenerating nerve fibers, axons sprouted collaterally from myelinated nerve fibers at the node of Ranvier of the donor nerve, and axons that arise from the proximally coapted nerve segment.

Our experimental knowledge of double end-to-side neurorrhaphy, leads us to the belief that double end-to-side coaptation may be a valuable tool when the classic end-to-end technique is not possible. In our previous studies in rats, functional evaluation and axonal counting data demonstrated that nerve regeneration can be supported using the intact nerve bridge technique for a distance of 1.2 cm in a rat sciatic model[44].

Epineurial vs Perineurial Window

A technical parameter that may significantly affect axonal...
regeneration after end-to-side neurorrhaphy involves the application of epineurotomy or perineurotomy. Viterbo and Cao demonstrated no significant difference for end-to-side neurorrhaphy with and without epineurial window. Likewise, Viterbo et al. revealed no difference between neurorrhaphies with and without perineurial window. These observations may, in part, be explained by the finding that the regenerating axons following end-to-side neurorrhaphy can penetrate the endoneurium, perineurium, and epineurium.

According to some investigators, histologic results were better when a perineurial window was opened. This can be attributed to the greater degree of axonal damage to the donor nerve and subsequently the enhanced axonal regeneration after perineurotomy. When fibrin glue is used as an alternative to end-to-side neurorrhaphy, no damage to the donor nerve trunk is produced. This may explain the absence of muscle reinnervation after end-to-side coaptation with fibrin glue, without removing the epineurium. According to our studies, resection of a small part of the epineurium and placement of epineurial sutures without damaging the underlying perineurium improves the functional outcomes following terminolateral nerve repair without compromising the function of the donor nerve.

Clinical applications

To date, there have been no large clinical series describing either satisfactory or disappointing results after end-to-side neurorrhaphy. In 1993, Viterbo first applied end-to-side neurorrhaphy in recent clinical practice with the use of cross-facial nerve graft transplantation for the treatment of facial palsy. Reinnervation was observed in selected patients. A few years later, end-to-side neurorrhaphy was used to bridge the nerve gap after ulnar nerve section of a small part of the epineurium and placement of epineurial sutures without damaging the underlying perineurium.

Experimental and clinical studies suggest that end-to-side neurorrhaphy can provide satisfactory functional recovery in the recipient nerve, without any deterioration of donor nerve function. The source of the regenerating axons traveling in the epineurium of the donor nerve is thought to be the proximal Ranvier’s nodes at the site of end-to-side neurorrhaphy, however, histologic evidence is still lacking. Partial neurotomy of the donor nerve may enhance regeneration of motor neurons through end-to-side neurorrhaphy and reinnervation of motor targets. To date, a limited number of reported cases in clinical practice have revealed that the end-to-side technique may become a viable means of repairing peripheral nerves in certain clinical situations.
REFERENCES

1. Saito I, Oka Y, Odaka M. Promoting nerve regeneration through long gaps using a small nerve tissue graft. Surg Neurol 2003; 59: 148-154; discussion 154-155

2. Mackinnon SE, Delion AL. A study of nerve regeneration across synthetic (Matrax) and biological (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. J Reconstr Microsurg 1990; 6: 117-121

3. Kakino R, Nishijima N, Ueba Y, Oka M, Yamamuro T, Nakamura T. Nerve regeneration over a 25 mm gap in rat sciatic nerves using tubes containing blood vessels: the possibility of clinical application. Int Orthop 1997; 21: 332-336

4. Fansa H, Dodic T, Wolf G, Schneider W, Kelhoff G. Tissue engineering of peripheral nerves: Epineurial grafts with application of cultured Schwann cells. Microsurgery 2003; 23: 72-77

5. Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A. Late-terminal nerve regeneration without removal of the epineural sheath. Experimental study in rats. Rev Paul Med 1992; 110: 267-275

6. Ballance CA, Ballance HA, Stewart P. REMARKS on the OPERATIVE TREATMENT of CHRONIC FACIAL PALSY of PERIPHERAL ORIGIN. Br Med J 1903; 1: 1009-1013

7. Harris W, Low VW. On the importance of accurate muscular analysis in lesions of the brachial plexus, and the treatment of Erb's palsy and infantile paralysis of the upper extremity by cross-union of the nerve roots. BMJ 1903; 24: 1035-1038

8. Sherren J. Some points in the surgery of the peripheral nerves. Edith Med J 1906; 20: 297-332

9. Le 'tie'vant E. Traite des Sections Nerveuses. J-B. Bailliere et Fils. Paris: [publisher unknown]; 1873

10. Krivolutskaia EG, Chumasov El, Matina VN, Mel’tsova GM, Kirilov AL. [End-to-side type of plastic repair of the facial nerve branches]. Stomatologiia (Mosk) 1989; 68: 35-38

11. Viterbo F. A new method for treatment of facial palsy: the Cross-Face Nerve transplantation with end-to-side neurorraphy. Rev Soc Bras Cir Plast Estet Reconstr 1993; 8: 29-38

12. Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A. End-to-side nerve regeneration with removal of the epineural sheath: an experimental study in rats. Plast Reconstr Surg 1994; 94: 1038-1047

13. Viterbo F, Trindade JC, Hoshino K, Mazzoni A. Two end-to-side neurorrhaphes and nerve graft with removal of the epineural sheath: experimental study in rats. Br J Plast Surg 1994; 47: 75-80

14. Ross DA, Matsuda H, Zuker RM. End-to-side nerve coaptation for muscle reinnervation. In: Harii K. Transactions of the 11th Congress of the International Confederation of Plastic, Reconstructive and Aesthetic Surgery. Yokohama: [publisher unknown]; 1995: p4

15. Lundborg G, Zhao Q, Kanje M, Danielsen N, Kerns JM. Can sensory and motor collateral sprouting be induced from intact peripheral nerve by end-to-side anastomosis? J Hand Surg Br 1994; 19: 277-282

16. Cao X, Shidao H, Yu J. [Experimental study on the collateral sprouting after end-to-side anastomosis of nerve trunk]. Zhonggguo Xiu Fu Chong Jian Wai Ke Za Zhi 1997; 11: 321-324

17. Zhao JZ, Chen ZW, Chen TY. Nerve regeneration after terminal neurorrhaphy: experimental study in rats. J Reconstr Microsurg 1997; 13: 31-37

18. Tham SK, Morrison WA. Motor collateral sprouting through an end-to-side nerve repair. J Hand Surg Am 1998; 23: 844-851

19. Zhang Z, Souacasos PN, Beris AE, Bo J, Ioachim E, Johnson EO. Long-term evaluation of peripheral nerve repair with end-to-side neurorrhaphy. J Reconstr Microsurg 2000; 16: 303-311

20. Zhang Z, Souacasos PN, Bo J, Beris AE, Malizos KN, Ioachim E, Agnantis NJ. Reinnervation after end-to-side nerve coaptation in a rat model. Am J Orthop (Belle Mead NJ) 2001; 30: 400-406; discussion 407

21. Hayashi A, Yanai A, Komuro Y, Nishida M, Inoue M, Seki T. Collateral sprouting occurs following end-to-side neurorrhaphy. Plast Reconstr Surg 2004; 119: 129-137

22. Lutz BS, Chuang DCC, Hsu JC, Wei FC. End-to-side neurorrhaphy: fractional and double-labeling study in rat upper limb. J Reconstr Microsurg 1998; 14: 590

23. Andreadopoulos GK, Skoulis TG, Terzis JK. Double labeling technique to trace axonal sprouting after end-to-side neurorrhaphy. Abstract presented at the 43rd annual meeting of the Plastic Surgery Research Council; 1998 April 7; Loma Linda

24. Zhang Z, Souacasos PN, Bo J, Beris AE. Evaluation of collateral neurorrhaphy after end-to-side nerve coaptation using a fluorescent double-labeling technique. Microsurgery 1999; 19: 281-286

25. Sterne GD, Coulton GR, Brown RA, Green CJ, Terenghi G. Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. J Cell Biol 1997; 139: 709-715

26. Slack JR, Hopkins WG, Williams MN. Nerve sheaths and motoneurone collateral sprouting. Nature 1979; 282: 506-507

27. Buehler MJ, Seaber AV, Urbański JR. The relationship of functional return to varying methods of nerve repair. J Reconstr Microsurg 1990; 6: 61-69

28. EDDS MV. Collateral nerve regeneration. Q Rev Biol 1953; 28: 260-276

29. Torigoe K, Tanaka HG, Takahashi A, Hashimoto K. Early growth of regenerating neurites in acylamide neuropathic mice: application of a film model. Brain Res 1997; 746: 269-274

30. Tarasidis G, Watanabe O, Mackinnon SE, Strasberg SR, Haughey BH, Hunter DA. End-to-side neurorrhaphy resulting in limited sensory axonal regeneration in a rat model. Ann Otol Rhinol Laryngol 1997; 106: 506-512

31. Yamauchi T, Maeda M, Tamai S, Tamai M, Yajima H, Takakura Y, Haga S, Yamamoto H. Collateral sprouting mechanism after end-to-side nerve repair in the rat. Med Electron Microsc 2000; 33: 151-156

32. Diamond J, Holmes M, Coughlin M. Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 1992; 12: 1454-1466

33. Doubleday B, Robinson PP. The role of nerve growth factor in collateral reinnervation by cutaneous C-fibres in the rat. Brain Res 1992; 593: 179-184

34. Owen DJ, Logan A, Robinson PP. A role for nerve growth factor in collateral reinnervation from sensory nerves in the guinea pig. Brain Res 1989; 476: 248-255

35. Sebert ME. Shooter EM. Expression of mRNA for neurotrophic factors and their receptors in the rat dorsal root ganglion and sciatic nerve following nerve injury. J Neurosci Res 1993; 36: 357-367

36. Shen H, Chung JM, Chung K. Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Brain Res Mol Brain Res 1999; 64: 186-192

37. Bajrović F, Kovacic U, Pavcnik M, Sketelj J. Interneuronal signalling is involved in induction of collateral sprouting of nociceptive axons. Neuroscience 2002; 111: 587-596

38. McCallister WV, Tang P, Smith J, Trumble TE. Axonal regeneration stimulated by the combination of nerve growth factor and cilary neurotrophic factor in an end-to-side model. J Hand Surg Am 2001; 26: 478-488

39. Matsuda H, Hata Y, Matsuka K, Matsuda H, Battal NM. Experimental study of nerve regeneration in end-to-side coaptation. J Plast Reconstr Aesthet Surg 1995; 15: 910-918

40. Battal MN, Hata Y, Matsuka K, Ito O, Matsuda H. Cross-facial nerve grafting by end-to-side neurorrhaphy with or without removal of the epineurium in rats. J Plast Reconstr Aesthet Surg 1996; 16: 641-647

41. Bontiotti E, Dahlin LB, Kataoka K, Kanje M. End-to-side nerve repair induces nuclear translocation of activating tran-
Brenner MJ, Dvali L, Hunter DA, Myckatyn TM, Mackinnon SE. Motor neuron regeneration through end-to-side repairs is a function of donor nerve axotomy. *Plast Reconstr Surg* 2007; 120: 215-223

Bontiotti E, Kanje M, Lundborg G, Dahlín LB. End-to-side nerve repair in the upper extremity of rat. *J Peripher Nerv Syst* 2005; 10: 58-68

Lykissas MG, Korompilias AV, Battistatou AK, Mitsionis GI, Beris AE. Can end-to-side neurorrhaphy bridge large defects? An experimental study in rats. *Muscle Nerve* 2007; 36: 664-671

Viterbo F, Teixeira E, Hoshino K, Padvani CR. End-to-side neurorrhaphy with and without perineurium. *Sao Paulo Med J* 1998; 116: 1808-1814

Bertelli JA, dos Santos AR, Calixto JB. Is axonal sprouting able to traverse the conjunctival layers of the peripheral nerve? A behavioral, motor, and sensory study of end-to-side nerve anastomosis. *J Reconstr Microsurg* 1996; 12: 559-563

Luo Y, Wang T, Fang H. [Preliminary investigation of treatment of ulnar nerve defect by end-to-side neurorrhaphy]. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi* 1997; 11: 338-339

Yüksel F, Peker F, Collıköz B. Two applications of end-to-side nerve neurorrhaphy in severe upper-extremity nerve injuries. *Microsurgery* 2004; 24: 363-368

Amr SM, Moharram AN. Repair of brachial plexus lesions by end-to-side side-to-side grafting neurorrhaphy: experience based on 11 cases. *Microsurgery* 2005; 25: 126-146

Santamaria E, Wei FC, Chen IH, Chuang DC. Sensation recovery on innervated radial forearm flap for hemiglossectomy reconstruction by using different recipient nerves. *Plast Reconstr Surg* 1999; 103: 450-457

Mennen U. End-to-side nerve suture in clinical practice. *Hand Surg* 2003; 8: 33-42

Voche P, Ouattara D. End-to-side neurorrhaphy for defects of palmar sensory digital nerves. *Br J Plast Surg* 2005; 58: 239-244

S- Editor Yang XC L- Editor Webster JR E- Editor Yang XC