Korean Red Ginseng (Panax ginseng) Potentiates the Inhibitory Actions of Testosterone on Obesity and Adipogenesis in High Fat Diet-Fed Castrated Mice

Dongmin Park and Michung Yoon

Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea

It has been suggested that ginseng is beneficial for ameliorating the aging males' symptoms, such as weight gain, fatigue, erectile dysfunction, and depression, in elderly men with testosterone deficiency. We thus investigated the effects of Korean red ginseng (Panax ginseng C.A. Meyer; Araliaceae) on obesity in a mouse model of testosterone deficiency (castrated C57BL/6J mice). The effects of ginseng extract (GE) and/or testosterone on obesity and adipogenesis in high-fat diet (HFD)-fed castrated C57BL/6J mice and 3T3-L1 adipocytes were examined using in vivo and in vitro approaches. After feeding mice a HFD for 8 weeks, we found that mice also receiving GE and/or testosterone showed decreased body weight, adipose tissue mass, adipocyte size, and hepatic lipid accumulation compared with untreated HFD-fed mice. Expression of adipogenic genes (PPARγ, C/EBPα, and aP2) was decreased by GE and/or testosterone in adipose tissues. Consistent with the in vivo data, lipid accumulation and the mRNA expression of adipogenesis genes in 3T3-L1 adipocytes were decreased by GE, ginsenosides, and testosterone. The inhibitory effects of GE (or ginsenosides) were comparable to those of testosterone, and the effects of co-treatment with GE (or ginsenosides) and testosterone were greater than those of testosterone alone in vivo and in vitro. Our results indicate that ginseng may be able to potentiate the inhibitory effects of testosterone on obesity and adipogenesis in HFD-fed castrated mice, providing possible therapeutic implications in men with testosterone deficiency.

Key Words: 3T3-L1 cell, Adipogenic gene, Ginsenosides, Lipid accumulation, Testosterone deficiency

INTRODUCTION

A growing body of evidence suggests that obesity in the aging men is deeply associated with lowered testosterone levels (Michalakis et al., 2013; Fui et al., 2014; Traish, 2014; Kelly and Jones, 2015). Low testosterone levels induce increased fat mass and testosterone therapy in men with testosterone deficiency results in weight loss and a lower risk of metabolic syndrome (Yassin and Doros, 2013; Francomano et al., 2014; Kelly and Jones, 2015). In mouse studies, knockout of the gene encoding the androgen receptor results in obesity, whereas overexpression of the androgen receptor results in decreased adipose tissue mass (Rana et al., 2011; Semirale et al., 2011; McInnes et al., 2012; Varlamov et al., 2012).

Ginseng has widely been used as a valuable medicine in Korea, China, and Japan for a long period (Yun, 2001; Yin et al., 2008; Park et al., 2012). Pharmacological studies have described the effects of ginseng on the central nervous, endo-

Received: June 11, 2017 / Revised: August 16, 2017 / Accepted: August 20, 2017

Corresponding author: Michung Yoon. Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea.

Tel: +82-42-829-7581, Fax: +82-42-829-7580, e-mail: yoon60@mokwon.ac.kr

©The Korean Society for Biomedical Laboratory Sciences. All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
crine, immune, and cardiovascular systems (Gillis, 1997; Attele et al., 1999; Lu et al., 2009). In addition, ginseng has been suggested to reduce weight gain in animal models of obesity and can effectively regulate genes involved in obesity (Attele et al., 2002; Kim et al., 2005; Karu et al., 2007; Mollah et al., 2009; Lee et al., 2009, 2012). Ginseng also significantly inhibits visceral obesity and adipocyte hypertrophy (Lee et al., 2013, 2014, 2016), which is closely associated with metabolic syndromes (Okuno et al., 1998; Jeong and Yoon, 2009; Lee et al., 2014).

Clinical reports suggested the favorable effects of ginseng on aging males' symptoms (AMS) and male sexual function (Choi et al., 2013; Ernst et al., 2011; Khera and Goldstein, 2011; Moyad and Park, 2012). AMS include testosterone deficiency, erectile dysfunction, depression, fatigue, weight gain, osteoporosis, and type 2 diabetes. Korean red ginseng (Panax ginseng C.A. Meyer; Araliaceae) and Malaysian ginseng increased the serum testosterone concentrations and improved the erectile function compared with placebo when administered to patients with testosterone deficiency (de Andrade et al., 2007; Ham et al., 2009; Tambi et al., 2012; Choi et al., 2013; Jung et al., 2016), indicating the testosterone-enhancing effects of ginseng. Thus, we hypothesized that Korean red ginseng is able to induce weight loss and regulate obesity in castrated male mice, an animal model of men with testosterone deficiency, by regulating the expression of adipogenesis-related genes.

In this study, we examined the effects of Korean red ginseng extract (GE) and/or testosterone on obesity and adipogenesis in high-fat diet (HFD)-fed castrated C57BL/6J mice and 3T3-L1 adipocytes. Our findings suggest that ginseng can enhance the actions of testosterone on obesity and adipogenesis in testosterone deficiency.

MATERIALS AND METHODS

GE Preparation

The GE was prepared from 6-year-old Panax ginseng C.A. Meyer (Korea Ginseng Corporation, Seoul, Korea). A voucher specimen was deposited at the laboratory of Korea Ginseng Corporation and the batch number of ginseng used in our study is 6510100112048. Briefly, red ginseng was boiled in distilled water for 24 h at 95°C. The aqueous extracts were filtered and freeze-dried under vacuum to produce GE powder.

For analysis of the quality of GE, GE powder (100 g) was placed into a 1-L flask with a refluxing condenser and extracted twice with 500 mL of water-saturated 1-butanol for 1 h at 80°C. The extracted solution was passed through Whatman filter paper (No. 41) after cooling. The process was repeated twice. The residue and filter paper were washed with 100 mL of water-saturated 1-butanol, and then the filtrate was washed twice with 100 mL of water in a 2-L separating funnel. The butanol layer was then evaporated to dryness. The concentrate was extracted to remove any traces of fat with 100 mL of diethyl ether for 30 min at 36°C in a flask with a refluxing condenser, after which the ether solution was decanted. The quality control of GE was analyzed by the HPLC/ELSD system and the HPLC profile of GE was described previously (Lee et al., 2014).

Animal treatments

For all experiments, 8-week-old male wild-type C57BL/6J mice were housed and bred at Mokwon University with a standard 12-h light/dark cycle. Prior to the administration of a special diet, the mice were given standard rodent chow and water ad libitum. The mice were castrated and then divided into five groups (n = 8/group). The first group received a low-fat diet (LFD, 10% kcal fat, Research Diets, Brunswick, NJ, USA). The second group received an HFD (45% kcal fat, Research Diets). The third group received an HFD supplemented with 0.5% GE (w/w). 50 g GE powder was mixed with 1 kg HFD. The fourth group was fed an HFD and subcutaneously implanted with a testosterone pellet (5 mg testosterone per pellet, Innovative Research of America, Sarasota, FL, USA). The final group received an HFD supplemented with GE and the testosterone implant. After an 8-h fast on the last day of the study, the animals were sacrificed by cervical dislocation. Fat pads were removed, weighed, snap-frozen in liquid nitrogen, and stored at -80°C until use. Portions of the fat pads and liver tissues were prepared for histology. All animal experiments were approved by the Institutional Animal Care and Use Committees of Mokwon University and were carried out in
accordance with the National Research Council Guidelines.

Histological analysis

The adipose tissues were fixed in 10% phosphate-buffered formalin for 1 day and processed for paraffin sections. Tissue sections (5 μm) were cut and stained with hematoxylin and eosin for examination by microscopy. To quantify adipocyte size, the stained sections were analyzed using the Image-Pro Plus analysis system (Media Cybernetics, Bethesda, MD, USA).

3T3-L1 differentiation and analysis of triglyceride content

Murine 3T3-L1 cells (ATCC, Manassas, VA, USA) were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% bovine calf serum (Invitrogen, Carlsbad, CA, USA). The cells were maintained at confluence for 2 days, after which the medium was replaced with DMEM containing 0.5 mM 1-methyl-3-isobutyl-xanthine, 1 μM dexamethasone, and 1 μg/ml insulin, and 10% fetal bovine serum (Invitrogen) (day 0). The cultures were incubated for 2 days to induce adipocyte differentiation, and then the medium was replaced with DMEM containing 10% fetal bovine serum for the remainder of the differentiation process. The cells were treated with 10 μg/ml GE, 10 μg/ml ginsenosides, and/or 100 nM testosterone on days 0~2 only, and the medium was changed every other day (Singh et al., 2006; Oh et al., 2012). On day 8, the cells were fixed in 10% formalin for 1 h and stained with Oil Red O for 2 h. For quantitative analysis, the Oil Red O stain was eluted by adding isopropanol and quantified by measuring absorbance at 520 nm.

Reverse transcription-polymerase chain reaction

Total cellular RNA was extracted from VSC adipose tissues and 3T3-L1 cells using TRIzol reagent (Gibco-BRL, Grand Island, NY, USA). The RNA (2 μg) was denatured for 5 min at 72°C and then immediately placed on ice for 5 min. To generate cDNA, the denatured RNA was mixed with Moloney murine leukemia virus reverse transcriptase, buffer, and a deoxyribonucleotide triphosphate (dNTP) mixture.

Genes	Gene bank	Primer sequences
Mouse		
aP2	NM_024406.2	Forward: 5'-CCAAATGTGTGATGCTTTTGTG-3' Reverse: 5'-CTCCTCTTTTGGCTCAATGCC-3'
β-actin	NM_007393.5	Forward: 5'-TGGAAATCCTGTCATCCATGAAA-3' Reverse: 5'-TAAAACGCAGCTCAGTAACAGTCCG-3'
C/EBPα	NM_001287514.1	Forward: 5'-ATTCTGGGCCAACTTCCGGAGC-3' Reverse: 5'-ATCCAGAGGGACTGGAGGTT-3'
PPARγ	NM_001308354.1	Forward: 5'-TGGAAGCCTGATGCTTTATCCCA-3'
Human		
aP2	NM_001442.2	Forward: 5'-TCCAGTAAAAACCTGATTAT-3' Reverse: 5'-ACGCAITCCCACCGATTT-3'
β-actin	NM_001101.3	Forward: 5'-GCAAAGAGGAGCTTCCACC-3' Reverse: 5'-CGTAGATGGGCACAGTGATGG-3'
C/EBPα	NM_004364.4	Forward: 5'-TGGAAGACGCAGGAAGAAG-3' Reverse: 5'-TTCCAAAGCCACAGTACATT-3'
PPARγ	NM_138711.3	Forward: 5'-GCAGGAGAGAGGAAAGGTT-3' Reverse: 5'-AAATATTGCAAAGTGCTGATCATC-3'
and incubated for 1 h at 42 °C. The cDNA was mixed with PCR primers, Taq DNA polymerase (NanoHelix, Daejeon, Korea), and dNTPs and amplified in an MJ Research thermal cycler (Waltham, MA, USA). The PCR primers are shown in Table 1. The PCR products were analyzed by electrophoresis in a 1% agarose gel and quantified using the GeneGenius bio-imaging system (Syngene, Cambridge, UK). Relative expression levels are presented as the ratio of target gene cDNA to β-actin cDNA.

Statistical analysis

All values are expressed as mean ± standard deviation (SD). Groups were compared by analysis of variance followed by Tukey’s multiple comparison test; \(P < 0.05 \) was considered significant.

RESULTS

Effects of GE and testosterone on body weight and adiposity in HFD-fed castrated mice

Body weight and adipose tissue mass were measured in male castrated C57BL/6J mice on an LFD, HFD, and HFD containing GE with or without testosterone for 8 weeks. The mean body weight of untreated HFD-fed mice was 38.4 ± 1.33 g (Fig. 1A). However, the body weights of HFD-fed mice treated with GE or testosterone were 31.02 ± 1.35 g and 30.08 ± 2.32 g, respectively, representing decreased body weights of 19% and 22% compared with mice fed the HFD (\(P < 0.05 \)). Furthermore, the body weight of HFD-fed mice concomitantly treated with GE and testosterone was 26.96 ± 1.62 g, representing a decreased body weight of 13% by compared with HFD plus testosterone (\(P < 0.05 \)). Treatment with GE and/or testosterone also led to decreased adipose tissue mass in HFD-fed mice. Adipose tissue weights of HFD-fed mice treated with GE or testosterone were 37% or 65% lower than that of untreated HFD-fed mice (\(P < 0.05 \), Fig. 1B). Combined treatment with GE and testosterone further decreased fat weight by 72% compared with HFD-fed mice receiving testosterone only (\(P < 0.05 \)).

Effects of GE and testosterone on adipocyte size in HFD-fed castrated mice

Histological analysis revealed that GE and/or testosterone treatment decreased mean adipocyte size in HFD-fed mice. The adipocyte size decreased by 47% or 69% in HFD-fed mice receiving either GE (6.053 ± 689 μm²) or testosterone.
rone (3,819 ± 379 μm²), compared with that of untreated HFD-fed mice (11,517 ± 731 μm²; *P*<0.05; Fig. 2). Co-treatment with GE and testosterone (1,695 ± 78 μm²) further decreased the mean adipocyte size by 53% compared with that of HFD-fed mice receiving testosterone only (*P*<0.05).

Effects of GE and testosterone on expression of adipogenesis-associated genes in adipose tissues of HFD-fed castrated mice

Expression patterns of genes involved in adipogenesis were investigated in adipose tissues of the castrated mice. GE administration decreased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and adipocyte fatty acid-binding protein 2 (aP2) in the adipose tissue of untreated HFD-fed mice, and testosterone decreased PPARγ and aP2 mRNA levels (*P*<0.05; Fig. 3). Co-administration of GE and testosterone decreased C/EBPα and aP2 mRNA levels compared with HFD-fed mice treated with testosterone alone (*P*<0.05).

Inhibition of lipid accumulation by GE, ginsenosides, and testosterone in 3T3-L1 adipocytes

We then examined the ability of GE (10 μg/ml), ginsenosides (10 μg/ml), and testosterone (100 nM) to prevent lipid accumulation in 3T3-L1 cells. After incubation in differentiation medium, the untreated 3T3-L1 cells (control) showed a marked accumulation of lipid droplets, as shown by the increase in Oil Red O staining (Fig. 4A). However, treatment with GE, ginsenosides, or testosterone decreased lipid accumulation by 34%, 52%, and 48%, respectively, compared with the control (Fig. 4B). Combination treatment with ginsenosides and testosterone further decreased triglyceride.
content compared with testosterone alone.

Effects of GE, ginsenosides, and testosterone on adipogenic gene expression in 3T3-L1 adipocytes

Treatment with GE, ginsenosides, or testosterone also decreased the expression of adipogenic genes compared with the control (Fig. 5). Treatment with GE decreased mRNA levels of C/EBPα and aP2, and ginsenosides decreased mRNA levels of PPARγ, C/EBPα, and aP2 (P<0.05). The inhibitory effects of ginsenosides were greater than those of GE. Testosterone treatment also decreased mRNA levels of all three genes. Co-treatment with ginsenosides and testosterone decreased mRNA levels of PPARγ, C/EBPα, and aP2 compared with testosterone alone (P<0.05).

DISCUSSION

Based on reports showing that low testosterone leads to obesity and its related metabolic diseases (Fui et al., 2014; Kelly and Jones, 2015) and that GE enhances testosterone effects in men with testosterone deficiency (de Andrade et al., 2007; Ham et al., 2009; Tambi et al., 2012; Jung et al., 2016), we examined the effects of ginseng on obesity and adipogenesis in testosterone-deficient castrated mice. Our results indicate that both GE and testosterone can prevent adipogenesis, adiposity, and obesity in HFD-fed castrated mice, and these effects are mediated in part through reducing the expression of adipogenic genes. Our findings also suggest that GE may be able to potentiate the inhibitory effects of testosterone on obesity and adipogenesis in obese castrated mice.
We found that 8 weeks of HFD feeding resulted in increased body weight in castrated mice (38.4 ± 1.33 g) compared with sham-operated mice (33.44 ± 2.24 g), as well as increased adipose tissue mass (data not shown), consistent
with previous studies reporting that testosterone deficiency leads to obesity. Administration of GE significantly decreased body weight and adipose tissue mass in the HFD-fed castrated mice by 19% and 37%, respectively, compared with untreated HFD-fed castrated mice. Our results are supported by previous reports showing that GE induced weight loss in several animal models of genetically and diet-induced obesity (Mollah et al., 2008; Lee et al., 2009, 2012, 2013). Weight loss was also observed with testosterone treatment, which decreased body weight and adipose tissue mass by 22% and 65%, respectively, in HFD-fed castrated mice. Testosterone plays a key role in the pathology of metabolic diseases such as obesity, and low testosterone levels are associated with increased fat mass and reduced lean mass in adult males (Kelly and Jones, 2015). In men with testosterone deficiency, testosterone therapy can produce significant and sustained weight loss, lower BMI, and decrease waist circumference (Yassin and Doros, 2013; Francomano et al., 2014), with the increase in testosterone proportional to the amount of weight loss. Moreover, body and adipose tissue weights in mice treated with the combination of GE and testosterone were lower than that of mice treated with testosterone alone.

In our study, we found that adipocytes were smaller in GE- or testosterone-treated HFD-fed mice than in untreated HFD-fed mice, and co-treatment with GE and testosterone further decreased adipocyte size compared with testosterone treatment alone. These results indicate that GE and testosterone effectively inhibit adipocyte hypertrophy in HFD-fed castrated mice and that GE potentiates the ability of testosterone to inhibit adipocyte hypertrophy. Adipocyte hypertrophy is closely related to metabolic syndromes, such as insulin resistance, type 2 diabetes, hypertension, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. The hypertrophied adipocytes secrete large amounts of inflammatory cytokines such as monocyte chemotactic protein-1 (MCP-1), which stimulates macrophage infiltration in mice and humans (Xu et al., 2003; Curat et al., 2004). This inflammatory response ultimately leads to the deposition of ectopic fat in liver, muscle, and pancreas (Bluher, 2009). Visceral adipocytes in obese individuals are insulin resistant, possibly as a consequence of adipose cell expansion. Large adipocytes increase the levels of circulating free fatty acids, tumor necrosis factor α, and leptin, which are associated with insulin resistance (Okuno et al., 1998; Jeong and Yoon, 2009; Oh et al., 2015). Therefore, GE and testosterone may alleviate metabolic disease by inhibiting adipocyte hypertrophy.

Adipogenesis involves excess fat accumulation and lipogenic gene expression during differentiation of preadipocytes into mature adipocytes (Rosen and Spiegelman, 2000). PPARγ and C/EBPα are major transcription factors of early-stage adipocyte differentiation. Their expression activates the target gene aP2, which plays a role in lipogenesis (Rosen et al., 1999). Based on their ability to decrease body weight and adipocyte size, we hypothesized that GE and testosterone regulate the expression of adipogenesis-associated genes. Our results showed that GE and testosterone negatively regulate the expression of PPARγ, C/EBPα and aP2 in the adipose tissue of castrated mice, and co-administration of GE and testosterone further decreased adipogenic gene expression compared with testosterone alone. Our findings are supported by previous studies describing that red ginseng downregulates PPARγ and aP2 expression in adipose tissue of rats with HFD-induced obesity (Jung et al., 2015) and androgens such as testosterone and dihydrotestosterone downregulate PPARγ and C/EBPα expression in human adipose stem cells (Chazenbalk et al., 2013). These results support our hypothesis that decreased body weight gain, adipose tissue mass, and adipocyte size following GE and testosterone treatments are due to the downregulation of adipogenesis genes.

We showed that in vitro adipogenesis is inhibited by GE, ginsenosides, and testosterone by staining 3T3-L1 adipocytes with Oil Red O. Ginsenosides, which comprise approximately 3~6% of ginseng, were more effective than GE in preventing the accumulation of intracellular triglycerides, likely because ginsenosides exert most of the pharmacological activity of ginseng (Attele et al., 1999; Huang, 1999). Co-treatment with ginsenosides and testosterone further decreased lipid content in 3T3-L1 cells compared with testosterone alone. In parallel with the reduced lipid accumulation, treatment with ginsenosides or testosterone decreased PPARγ, C/EBPα, and aP2 expression in 3T3-L1 cells, and
co-treatment with ginsenosides and testosterone further decreased expression of these genes compared with testosterone alone. Our data are consistent with several reports demonstrating that individual ginsenosides (Rb1, Rc, and Rf) inhibit adipogenic activities by downregulating PPARγ, C/EBPα, and aP2 in 3T3-L1 cells (Oh et al., 2012; Siraj et al., 2015; Yang and Kim, 2015), and a study reporting that testosterone inhibits adipogenic differentiation and decreases C/EBPα and PPARγ2 protein and mRNA levels in 3T3-L1 cells (Singh et al., 2006). Taken together, our in vitro data support the in vivo results showing that GE and testosterone inhibit adipogenesis and obesity by downregulating adipogenesis-related genes.

In conclusion, the results of our study show that ginseng and testosterone can prevent obesity and adipogenesis in HFD-fed male castrated mice and suggest that these processes are mediated in part by the inhibition of adipogenesis gene expression. The inhibitory effects of GE (and ginsenosides) on obesity were comparable to those of testosterone. In addition, combination treatment provided effects greater than those of testosterone alone, indicating that ginseng may be able to replace or potentiate the inhibitory actions of testosterone on obesity and adipogenesis. Our findings suggest that ginseng may act as an anti-obesity drug in men with testosterone deficiency.

ACKNOWLEDGEMENTS
This work supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST) (2015R1A1A3A04001016).

CONFLICT OF INTEREST
The author declares no conflict of interest.

REFERENCES
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical Pharmacology. 1999. 58: 1685-1693.
Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 2002. 51: 1851-1858.
Bluher M. Adipose tissue dysfunction in obesity. Experimental and Clinical Endocrinology & Diabetes. 2009. 117: 241-250.
Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumescic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013. 2009. 78: 920-926.
Choi YD, Park CW, Jang J, Kim SH, Jeon HY, Kim WG, Lee SJ, Chung WS. Effects of Korean ginseng berry extract on sexual function in men with erectile dysfunction: a multicenter, placebo-controlled, double-blind clinical study. International Journal of Impotence Research. 2013. 25: 45-50.
Curat CA, Miranville A, Sengenes C, Diehl M, Tomus C, Busse R, Bouloumien A. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004. 53: 1285-1292.
de Andrade E, de Mesquita AA, Claro Jde A, de Andrade PM, Ortiz V, Paranhos M, Stougi M. Study of the efficacy of Korean Red Ginseng in the treatment of erectile dysfunction. Asian Journal of Andrology. 2007. 9: 241-244.
Ernst E, Posadzki P, Lee MS. Complementary and alternative medicine (CAM) for sexual dysfunction and erectile dysfunction in older men and women: an overview of systematic reviews. Maturitas. 2011. 70: 37-41.
Francomano D, Lenzi A, Aversa A. Effects of five-year treatment with testosterone undecanoate on metabolic and hormonal parameters in ageing men with metabolic syndrome. International Journal of Andrology. 2014. 2014: 527470.
Fui MN, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian Journal of Andrology. 2014. 16: 223-231.
Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochemical Pharmacology. 1997. 54: 1-8.
Ham WS, Kim WT, Lee JS, Ju HJ, Kang SJ, Oh JH, Her Y, Chung JY, Park K, Choi YD. Efficacy and safety of red ginseng extract powder in patients with erectile dysfunction: multicenter, randomized, double-blind, placebo-controlled study. Korean Journal of Urology. 2009. 50: 159-164.
Huang KC. The pharmacology of Chinese Herbs II. Boca Raton: CRC Press. 1999.
Jeong S, Yoon M. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Experimental and Molecular Medicine. 2009. 41: 397-405.
Jung DH, Lee YJ, Kim CB, Kim JY, Shin SH, Park JK. Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complementary Therapies in Medicine. 2016. 24: 40-46.

Jung S, Lee MS, Shin Y, Kim CT, Kim IH, Kim Y. High hydrostatic pressure extract of red ginseng attenuates inflammation in rats with high fat diet-induced obesity. Preventive Nutrition and Food Science. 2015. 20: 253-259.

Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. Journal of Agricultural and Food Chemistry. 2007. 55: 2824-2828.

Kelly DM, Jones TH. Testosterone and obesity. Obesity Reviews. 2015. 16: 581-606.

Khera M, Goldstein I. Erectile dysfunction. BMJ Clinical Evidence. 2011. 2011: 1803.

Kim JH, Haem DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. Journal of Pharmaceutical Sciences. 2005. 97: 124-131.

Lee H, Choi J, Shin SS, Yoon M. Effects of Korean red ginseng (Panax ginseng) on obesity and adipose inflammation in ovariectomized mice. Journal of Ethnopharmacology. 2016. 178: 229-237.

Lee H, Kim M, Shin SS, Yoon M. Ginseng treatment reverses obesity and related disorders by inhibiting angiogenesis in female db/db mice. Journal of Ethnopharmacology. 2014. 155: 1342-1352.

Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food and Chemical Toxicology. 2013. 53: 402-408.

Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, Lee KW, Kim KS, Lim SK, Lee HC. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism. 2009. 58: 1170-1177.

Lee SH, Lee HJ, Lee YH, Lee BW, Cha BS, Kang ES, Ahn CW, Park JS, Kim HJ, Lee EY, Lee HC. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytotherapy Research. 2012. 26: 142-147.

Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Current Vascular Pharmacology. 2009. 7: 293-302.

McMises KJ, Smith LB, Hunger NI, Saunders PT, Andrew R, Walker BR. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes. 2012. 61: 1072-1081.

Michalakis K, Goulis DG, Vazaiou A, Mintziori G, Polymeris A, Abrahamian-Michalakis A. Obesity in the ageing man. Metabolism. 2013. 62: 1341-1349.

Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS. Antiobesity effects of wild ginseng (Panax ginseng C.A. Meyer) mediated by PPAR-gamma, GLUT4 and LPL in ob/ob mice. Phytotherapy Research. 2009. 23: 220-225.

Moyad MA, Park K. What do most erectile dysfunction guidelines have in common? No evidence-based discussion or recommendation of heart-healthy lifestyle changes and/or Panax ginseng. Asian Journal Andrology. 2012. 14: 830-841.

Oh J, Lee H, Lim H, Woo S, Shin SS, Yoon M. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica inhibits visceral obesity and insulin resistance by upregulating visceral adipose genes involved in fatty acid oxidation. Pharmaceutical Biology. 2015. 53: 301-312.

Oh J, Lee H, Park D, Ahn J, Shin SS, Yoon M. Ginseng and Its Active Components Ginsenosides Inhibit Adipogenesis in 3T3-L1 Cells by Regulating MMP-2 and MMP-9. Evidence-Based Complementary and Alternative Medicine. 2012: 265023.

Okuno A, Tamemoto H, Tobes, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kawodaki T. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. The Journal of Clinical Investigation. 1998. 101: 1354-1361.

Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. Journal of Ginseng Research. 2012. 36: 225-241.

Rana K, Fam BC, Clarke MV, Pang TP, Zajac JD, MacLean HE. Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. American Journal of Physiology. Endocrinology and Metabolism. 2011. 301: E767-E778.

Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Mortensen RM. PARY is required for the differentiation of
adipose tissue *in vivo* and *in vitro*. Molecular Cell. 1999. 4: 611-617.

Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology. 2000. 16: 145-171.

Semirale AA, Zhang XW, Wiren KM. Body composition changes and inhibition of fat development *in vivo* implicates androgen in regulation of stem cell lineage allocation. Journal of Cellular Biochemistry. 2011. 112: 1773-1786.

Singh R, Artaza JN, Taylor WE, Braga M, Yuan X, Gonzalez-Cadavid NF, Bhasin S. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 2006. 147: 141-154.

Siraj FM, Natarajan S, Huq MA, Kim YJ, Yang DC. Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte. Journal of Ginseng Research. 2015. 39: 141-147.

Tambi MI, Imran MK, Henkel RR. Standardised water-soluble extract of Eurycoma longifolia, Tongkat ali, as testosterone booster for managing men with late-onset hypogonadism? Andrologia. 2012. 44: 226-230.

Traish AM. Testosterone and weight loss: the evidence. Current Opinion in Endocrinology, Diabetes and Obesity. 2014. 21: 313-322.

Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O'Rourke RW, Roberts CT Jr. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology. 2012. 153: 3100-3110.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation. 2003. 112: 1821-1830.

Yang JW, Kim SS. Ginsenoside Rc promotes anti-adipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBPα and PPARγ. Molecules. 2015. 20: 1293-1303.

Yassin A, Doros G. Testosterone therapy in hypogonadal men results in sustained and clinically meaningful weight loss. Clinical Obesity. 2013. 3: 73-83.

Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocrine, Metabolic & Immune Disorders Drug Targets. 2008. 8: 99-111.

Yun TK. Brief introduction of *Panax ginseng* C.A. Meyer. Journal of Korean Medical Science. 2001. 16: S3-S5.

https://doi.org/10.15616/BSL.2017.23.3.261

Cite this article as: Park D, Yoon M. Korean Red Ginseng (*Panax ginseng*) Potentiates the Inhibitory Actions of Testosterone on Obesity and Adipogenesis in High Fat Diet-Fed Castrated Mice. Biomedical Science Letters. 2017. 23: 261-271.