Role of topical application of gentamicin containing collagen implants in cardiac surgery

Pankaj Kumar Mishra1*, Ahmed Ashoub2, Kareem Salhiyyah2, Dincer Aktuerk1, Sunil Ohri2, Shahzad G Raja3 and Heyman Luckraz1

Abstract

Sternal wound infections (SWI) continue to be a major cause of concern after cardiac surgery. It leads to prolonged hospital stay and increased morbidity, mortality and increased hospital costs. Prophylactic systemic antibiotics have been used to prevent surgical site infection (SSI). However, prolonged postoperative use of systemic antibiotics can lead to emergence of resistant organisms. Gentamycin Containing Collagen Implants (GCCI) when used during sternotomy closure produces high local antibiotic concentrations in the wound with a low serum concentration. There is evidence that the concentration of gentamicin in the mediastinal fluid reaches levels high enough to be effective against bacteria that are considered resistant to gentamycin and other antibiotics.

However, questions have been raised about the safety and efficacy of GCCI. There were concerns whether GCCI can lead to systemic absorption with renal impairment and whether use of topical antibiotics can lead to emergence of antimicrobial resistance.

We, hereby, review the literature on GCCI (Collatamp) and take the opportunity to appraise the scientific community about their role in cardiac surgery. Several recent studies have supported their clinical effectiveness. They should be used in dry condition and should not be soaked in saline even for a short period prior to use. However, for GCCI to become part of routine practice in cardiac surgery further large randomised studies are required. As the incidence of sternal wound infection is low in the specialty of cardiac surgery, for any study to be sufficiently powered to address this issue, multicenter studies might be the way forward. Based on the evidence presented in this manuscript it is recommended GCCI (Collatamp) can be a cost effective adjunct for prevention of sternal wound infection. They can also be used for treatment of Deep Sternal Wound Infection.

Keywords: Surgical site infection, Supercial sternal wound infection, Deep sternal wound infection, Mediastinitis, Topical gentamicin, Gentamycin containing collagen implants, Collatamp

Review

Surgical Site Infections (SSI) is associated with increased length of hospital stay and cost of care [1]. Sternal wound infection (SWI) after cardiac surgery continues to be one of the most serious postoperative complications [2-6]. Superficial Sternal Wound infection (SSWI) leads to increased morbidity while Deep Sternal Wound Infection (DSWI) after cardiac surgery is a serious complication causing substantial increase in both morbidity and mortality. Efforts have been made to decrease the incidence to SWI. However, despite all efforts, DSWI is an everyday challenge in the life of a cardiothoracic surgeon.

In the last decade, new ways have been investigated to reduce the incidence of SSWI and DSWI. After positive experience in other specialties (e.g. colorectal surgery, orthopaedics) with topical antibiotic preparations, resorbable gentamicin-containing collagen implant (GCCI) has been introduced in cardiac surgery in an effort to reduce the incidence of sternal wound complications [7-9].

Gentamicin Containing Collagen Implant (GCCI) delivers high local concentrations of gentamicin with low serum levels [2-4]. The high local antibiotic concentrations may have an effect on bacteria that are normally considered to be resistant [2,10]. Although gentamicin is generally used for gram-negative infections, it does have a spectrum of
bactericidal activity for many gram-positive organisms, including staphylococci [11].

Gentamicin Containing Collagen Implant (GCCI) are licensed for use in cardiac surgery in over 50 countries but their effectiveness at preventing sternal wound infections (SWIs) continues to be debated [1,2,12]. We hereby, review the published clinical data for prophylactic application of resorbable GCCI following cardiac surgery. We take the opportunity to appraise the scientific community about the safety and efficacy of GCCI in prevention of postoperative sternal wound complication.

Definition and classification of SSI
The criteria for definition and classification of Surgical Site Infections (SSI) in the literature vary. A majority of studies have used criteria laid down by Centers of Disease Control and prevention for surgical site infection [2,13,14]. It is focused on the depth, but not on the clinical severity, of the infection [13]. In UK NICE (National Institute of Clinical Excellence) has issued guidelines for recognition and management of SSI [15]. Deep SWI includes all SWI with sternal dehiscence or infections down to the sternum, even when the sternum remained stable [2,13]. Infections are usually classified as definite if both clinical signs of infection and prespecified bacterial cultures were positive [1,2,13]. A more comprehensive clinical wound scoring system, such as the ASEPSIS score will be more informative but more laborious to use [16,17].

Pathophysiology of Sternal Wound Infection (SWI)
Incidence and Risk factors
The reported incidence of postoperative SWI varies considerably; because of differences in definitions and classification of infections and variations in follow-up [2,18-27]. Sternal wound infection (SWI) has a reported overall incidence between 0.5% and 6% [1]. However, in high-risk patients the incidence has been estimated at between 12 and 20% with an associated mortality rate between 14% and 47% [7,18-22]. Schersten et al. suggest that the incidence of SSI goes higher in studies reporting infection and they were mainly used in high-risk patients and also in patients undergoing emergency operations [28].

Sternal wound infections can be divided into superficial and deep infections (DSWI) [23]. Sternal infections can also be classified as early and late [23,26]. Late infections include osteomyelitis, subcutaneous abscess, sterno-cutaneous fistulas and mediastinitis [23]. In cardiac surgery, numerous risk factors for SSI exist, such as obesity, diabetes, COPD, re-operation, use of two internal mammary arteries, and duration of surgery [7,25,29-32]. In the presence of bacterial contamination a slight instability in an osteal fixation promotes the development of clinical infection [33,34].

Bacteriology
The most common bacteria involved in postoperative wound infections are Gram-positive cocci, mainly staphylococci—either coagulase-negative staphylococci (CoNS) or Staphylococcus aureus [35-37]. Coagulase-negative staphylococci (CoNS) (usually S. epidermidis) have become the most common cause of SWI in many of the reported series [33]. CoNS were also the most commonly present agent in cases with multiple bacterial agents [33-35]. 80% were resistant to aminoglycosides and 81% were resistant to methicillin [33]. CoNS often cause chronic infections by forming a biofilm through attachment to an implanted device such as steel wires following median sternotomy [38]. Other organisms e.g. Streptococci, Gram-negative bacteria and fungi, especially Candida albicans, can also cause SWI [39,40].

Prevention of DSWI
Techniques to decrease SSI include preoperative skin care, aseptic surgical technique, gentle tissue handling and perioperative antibiotic cover [41-43]. Intravenous (IV) antibiotic prophylaxis for median sternotomy has been clearly shown to reduce the wound infection rate in several studies and is a routine practice in most cardiothoracic units [27]. There is some evidence that rigid sternal fixation with, usage of seven or more single sternal fixation wires leads to a lower rate of SWI, compared with only six single wires [33,44].

Topical antibiotics and GCCI
Gentamicin is predominantly used for gram-negative infections. However, it does have a spectrum of bactericidal activity for many gram-positive organisms, including staphylococci [2,45-48]. Administration of systemic antibiotics may lead to a greater risk of antibiotic resistance [46-48]. The emergence of local antibiotic-eluting products such as resorbable gentamicin-containing collagen implant (GCCI) enables delivery of high local concentrations of gentamicin with corresponding low serum levels. The use of collagen as a carrier also has a positive effect on wound healing [33].

GCCI sponges were introduced in 1985 for the prevention of surgical site infection and they were mainly used after laparotomy [49]. GCCI can be an effective adjunct in reducing the rate of SSI following cardiac surgery particularly in high risk patients [50]. GCCI may also have a role to play in the treatment of established DSWI [51]. However, currently there is no consensus about their use in patients undergoing cardiac surgery [49].

Collatamp
Collatamp* (Collatamp® G EUSA Pharma Europe) is a lyophilised collagen delivery system for gentamicin, used
Mechanism of action and pharmacokinetics

Synthetic collagen-based products have been used for their angiogenic properties and their role as a matrix or “scaffold” to promote fibroblast migration and granulation tissue formation [55-59]. Collatamp helps local haemostasis and has been advocated for use in areas with seeping haemorrhage with a high risk of infection. Haemostasis is triggered when blood comes into contact with exposed endogenous collagen fibrils or renatured collagen fibrils like those in Collatamp. The adhesion and aggregation of platelets is induced on the collagen fibrils of Collatamp and the coagulation process is accelerated. The sponge-like structure of Collatamp stabilizes the wound clot and also promotes granulation and epithelialisation. Overall effect is accelerated granulation tissue formation and enhanced healing process [51,60,61].

Systemically administered, gentamicin may be toxic [7,62]. However, locally administered, the serum concentrations remain well below toxic levels [7,53,62]. The pathogens involved in SSIs after cardiac surgery is mainly coagulase-negative staphylococci (Staph Epidermidis) and Staph aureus, especially in deep infections [4,7,29]. Gentamicin has good activity on these organisms [7,53].

The bactericidal effect of aminoglycosides is dependent on the peak level, and a high peak level is associated with a high bactericidal effect [51,63,64]. The minimum inhibitory concentration (MIC) of gentamicin for systemic antibiotic therapy is 4 mg/L. Leyh et al. showed that with GCCI high local gentamicin levels (>300 mg/L) for 36 h are detected in mediastinal effusions [50]. Serum concentrations remain low (1–4 mg/L 1 h postoperatively and ≥1.5 mg/L after 24 h). These values are well below the toxic threshold (10 mg/L) [51,53].

Therefore, a high bactericidal concentration of gentamicin in the anterior mediastinum and sternal bone can be anticipated. Besides, resistance is not an absolute feature of bacteria, but it results from the relation of growth inhibitory concentration of the bacteria to inhibitory concentration in the tissue. Grimm et al. demonstrated that bacteria which are resistant at the minimal inhibitory concentration (MIC) level are sensitive to higher gentamicin levels [65]. The peak local levels of gentamicin with GCCI are 75–200 times higher than the MIC making it highly effective against even resistant isolates [51]. In the study of Leyh et al., high bactericidal gentamicin levels were detected for 36 h after surgery [51]. It is uncertain how long gentamicin remains in mediastinal tissues, but release is dependent on the local blood flow [51].

Gentamicin kills bacteria by inhibiting protein synthesis and destabilizes bilayered membranes of bacteria [7]. Thus, each component of collagenous gentamycin may be effective, whereby gentamicin acts as a bactericidal agent and the carrier substance collagen possibly supports the wound healing process and bone regeneration [7,51].

Initially concerns were raised that introduction of a topical antibiotic prophylaxis could induce antibiotic resistance with subsequent reduced effect of the prophylaxis [33]. However, pharmacokinetics of topical use of Collatamp shows an early high peak in the local gentamicin concentration, low serum concentrations and then rapid disappearance of the drug which reduces the selection of resistant bacteria. This pharmacokinetic profile is even favourable compared to normal IV use [2,10].

Use of collatamp in cardiac surgery

Collatamp is available in 3 different presentations: 5 cm × 5 cm; 10 cm × 10 cm and 5 cm × 20 cm sizes [66]. Collatampe implants are wrapped around the sternal edges prior to wound closure to ensure maximal concentration of gentamicin on all sides of the wound and inside the bone marrow. Sternal wires are used along the length of the sternum to firmly close the wound. Though collagen is rapidly resorbed, earlier it was argued that placing the collagen sponges between the sternal halves, rather than behind the sternum, might affect the sternal healing. Friberg et al. did not identify any such adverse effect [2,10,33,44]. However, the authors have emphasised the importance of a rigid fixation (defined as at least seven single sternal fixation wires), with complete compression of the sponges, to achieve a maximal reduction in deep infections by the collagen-gentamicin implant [44]. Too thick layer of Collatamp should be avoided as it can promote sternal instability [28].

Collatamp strips can also be used in vein harvesting site closure. Collatamp can be cut to size to fit the area to be treated. For SVG (Saphenous Vein Graft) harvesting site, once the vein has been removed, one 5 × 20 cm Collatamp implant can be folded and packed into the open wound. The wound is then closed with sutures.

However, the patient’s body weight and the total amount of gentamicin should be taken into account.
When using for both sternotomy and vein harvest site closure the number and size of the implants should be selected so that a total dose of 9 mg gentamicin sulphate per kg body weight is not exceeded [66]. Collatamp® should be stored between 4°C and 25°C [66].

Cautions and contraindications

Collatamp® is approved for commercial use within the European Union. No evidence of allergic reactions or adverse local effects on sternal healing has been reported [2]. In one study a higher incidence of early reoperation for bleeding in the Collatamp group was reported [2]. No side effects have been reported to date [2,43,50,51]. If the recommended maximum dose is exceeded, gentamicin-specific side effects cannot be ruled out completely, especially in the case of renal failure [66].

Systemically effective therapeutic blood or plasma levels are not generally achieved with the use of Collatamp®. However, interactions related to gentamicin should be considered. Besides, in patients with impaired renal function, the benefits of Collatamp® must be carefully considered [2,10,12,66].

Collatamp should not be used if a protein allergy is known or intolerability towards gentamicin has been observed. No experience has been gained in use during pregnancy and breast-feeding [66]. For this reason, the indication should be strictly established during pregnancy and breast-feeding [66].

No interactions have been reported to date. If adjuvant systemic treatment with gentamicin, other aminoglycoside antibiotics or other ototoxic or nephrotoxic drugs is necessary, the cumulative effects should be taken into account. In general, the number and size of the sponges should be selected so that a total dose of 9 mg gentamicin sulphate per kg body weight is not exceeded [66].

Cost analysis

DSWI are the most common cause of prolonged hospital stay and increased hospital costs [7,19,22,50,51]. For GCCI to become part of routine practice clinical effectiveness has to be matched with cost effectiveness [12]. The use of Collatamp as an adjunct to IV antibiotics was found to be cost saving step [2,44]. This was due to fewer wound infections and lower costs involved in subsequent treatment despite the cost of the implants [2,44]. This was particularly relevant for high-risk patients e.g. those with diabetes or BMI > 25 kg/m2 [44]. CoNS infections have an insidious presentation. They are difficult to treat, requiring prolonged courses of antibiotics, often requiring extensive surgical debridement with the use of muscle flaps [2,67]. It results in consumption of substantial healthcare resources [2,67].

Eklund et al. suggests that it would be economical to use gentamicin-collagen implants in every CABG patient, since the treatment of mediastinitis is extremely expensive [7,50,51]. Friberg et al. concluded that despite the high cost of the gentamicin impregnated sponges, the use of two sponges, in addition to intravenous antibiotic prophylaxis, was cost effective, resulting in both lower costs and fewer infections for all patients as well as for high risk patients [2,44].

Clinical effectiveness: literature review

A wealth of literature is now available on GCCI and Collatamp®. Friberg et al. (Table 1) published a large double blind RCT (LOGIP Trial) on the role of GCCI in cardiac surgery [2]. Sternal closure was performed by the senior members of the team i.e. the operating surgeon. This study demonstrated an overall relative risk reduction in SSI in the GCCI-treated patients compared to the control group. The GCCI group demonstrated reduced need for surgical revision (2.3% vs. 4.0%) and postoperative IV antibiotic usage (11.6% vs. 18.0%) [2]. Use of GCCI was shown to be even more beneficial in preventing both SSWI and DSWI in high-risk patients. In obese patients the difference in DSWI did not attend statistical significance. No significant difference in postoperative renal function or 60 day mortality was found. There was also no indication of any increase in the occurrence of gentamicin-resistant isolates. An unexplained finding was the significantly higher rebleeding rate in the GCCI arm [2]. The authors suggested that the incidence of reoperation for bleeding in the GCCI group was similar to that seen in routine practice, and that the re-operation rate in the control group was lower than expected [2].

NICE guidelines 2008 acknowledged the role of GCCI in ‘Prevention and treatment of surgical site infection’ based on the LOGIP trial [15]. However, it emphasised the need for evaluation of the long-term effects on microbial resistance [15].

For the two centres enrolling patients in LOGIP Trial use of GCCI became a routine practice. As suggested by NICE guidelines, the authors re-evaluated their technique with a prospective non randomised study designed for comparison with the previous control group from the LOGIP trial [33] (Table 1). The highly significant risk reduction found in the previous trial at the same institute raised ethical concerns in randomizing patients again to control/placebo [33]. They also changed the surgical technique and use of at least seven single wires for sternal fixation was emphasized in the protocol of this second study (compared to 6–8 wires used at Surgeon’s discretion in the LOGIP Trial) [2,33]. The incidences of both superficial and deep SWI were less than half of that in the control group. The incidence of SWI was slightly lower than that in the treatment group of the primary LOGIP trial (4.3% SWI with 2.3% deep SWI)
Table 1 A summary of important studies on the use of GCCI (Gentamycin Containing Collagen Implants) in cardiac surgery

Authors	Study design, n = Number of Subjects	Treatment groups	Results		
Friberg O et al. [2], 2005 LOGIP Trial	Double blind, Randomized, controlled, two-centre study. Patients undergoing cardiac surgery through median sternotomy - including operations in the ascending aorta.	n = 1950 total patients	Wound infection (<2 months post-operatively):		
Friberg O et al. [33], 2009	Prospective study, Two centre study	n = 2326 total patients	Wound infection (<60 days postoperative):		
Eklund et al. [7], 2005	Randomised, Controlled Trial, Single-centre study.	n = 542 total patients	Need for postoperative antibiotic treatment: Group I: 11.6% vs Group II: 18.0% (RR 0.64; p < 0.001)		
Schersten et al. [28], 2007	Prospective Study with historical controls	n = 2026 total patients	Surgical revision: Group I vs Group II 1.8% vs 3.9% (p < 0.001)		
Leyh et al. [51], 1999	Observational Study (No Control Group) Impact of GCCI on treatment of DSWI, to assess side effects of Gentamycin topical use, and Gentamycin level in mediastinal fluid	N = 42 Patients of DSWI after cardiac surgery were treated with Collatamp with or without other surgical interventions	No definite conclusion regarding direct benefit of Collatamp use can be drawn from this study. High (bactericidal) local levels of Gentamycin noted in mediastinal fluid		
Bennett-Guerrero et al. [67], 2010	Randomised, Controlled Trial, Single blind, Multicentre study Patients undergoing cardiac surgery and at high-risk for sternal wound infection (diabetes, BMI > 30 or both)	n = 1502 total patients	Incidence of all types of wound infection Group I Vs Gr II 84% vs 8.7% (p value = n.s.)		
		n = 1006 [67%]			
		n = 1137 [76%]			
		n = 753			
		n = 749	Incidence of DSWI Group I: 1.9% vs. 2.5% (p value = n.s.)		
Study	Design	Setting	Intervention	Comparison	Outcomes
-------	--------	---------	--------------	------------	----------
Birgand et al. [68], 2013	Quasi-experimental prospective study (single-centre)	Diabetic and/or overweight patients undergoing CABG with bilateral internal mammary artery grafts.	n = 552 total patients Intervention period patients managed with GCCI n = 175	Incidence of SSWI Group I: 6.5% vs. 6.1% (p value = n.s.) Re-hospitalisation for sternal wound infection (<90 days post-operatively): Group I: 3.1% vs. 3.2% (p value = n.s.)	The end-point was the rate of reoperation for deep sternal wound infection.
Cohen et al. [73], 2010	Retrospective Case series	Wound infection: Group I vs Gr II: 0.0% vs 9.0% (p value = 0.0220).	n = 216 total patients Treatment Gr (Gr I): n = 108 Control Gr (Gr II): n = 108		
Raja et al. [50], 2011	Patient case series	Wound infection: Incidence of SSWI Group I vs Gr II: 2.1% vs 6.2% (p value = 0.01). Incidence of DSWI Group I vs Gr II: 2.1% vs 3.1% (p value = n.s)	n = 194 total patients Treatment Gr (Gr I): n = 97 Control Gr (Gr II): n = 97		
Schimmer et al. [74], 2012	Randomised, Controlled Trial, Double blind Single-centre study	Wound infection (<30 days): Incidence of SSWI/DSWI (Group I vs Gr II) 0.56%/1.9% vs 3.52%/2.9% (p = 0.013)	n = 723 total patients Treatment Gr (GrI) GCCI Gr, Collagen Implant with Gentamicin: n = 354		
Creanor et al. [12], 2012	Meta-analysis of randomised controlled trials	There is insufficient evidence of the effectiveness (or otherwise) of GCCI in preventing SWIs following cardiac surgery. However, some evidence does exist that such sponges can reduce the incidence of deep infections in high risk patients	Three randomised controlled trials (published between 2005 and 2010) involving 3,994 patients		

Standard antibiotic prophylaxis given to both groups

- Incidence of SSWI Group I: 6.5% vs. 6.1% (p value = n.s.)
- Re-hospitalisation for sternal wound infection (<90 days post-operatively): Group I: 3.1% vs. 3.2% (p value = n.s.)
probably due to improvement in surgical technique. However, it is not possible to differentiate the relative effects of each of the variables (improvement in surgical technique and impact of GCCI) in improvement of sternal wound complications [33].

No trend towards less effect over time could be detected after 7 years of daily use [2,33]. A microbiological analysis between the two studies after a gap of several years showed that there had been no change in types of causative bacteria and no absolute increase in SSIs caused by aminoglycoside resistant microbes over time [2,33]. The organisms isolated were predominantly CoNS. They were resistant to both aminoglycosides and methicillin in approximately 80% of cases. These ‘resistant’ strains may be susceptible to the extremely high local concentrations achieved with GCCI [33].

Eklund et al. performed a RCT which did not show any evidence of beneficial effect of GCCI in prevention of sternal wound infection [7] (Table 1). However, the authors emphasised that with the infection rates in their study (4% study group; 5.9% control group), the sample size necessary to detect a significant (P < 0.05) RR with a statistical power of 0.8 would be 1275 patients in each group. The authors acknowledged that the study was too small to draw any firm conclusions (total 542 patients with 272 and 270 patients in each group).

Schersten et al. reported that after adding GCCI to their standard treatment protocol in a consecutive and unselected series of 1091 patients, they noticed a significant drop in the rate of mediastinitis [28] (Table 1). The study was designed for effectiveness of measures to treat DSWI and not for prevention. Use of Collatamp resulted in high mediastinal fluid level of Gentamicin which will be bactericidal for even Gentamicin resistant strains (15% organisms were Gentamicin resistant in this study) [51]. However, as all patients were treated with multiple interventions, no definite conclusion can be drawn from this study regarding direct beneficial effect of GCCI use in treatment of DSWI [51].

Bennett-Guerrero conducted a multicenter RCT of 1502 patients in US for patients undergoing cardiac surgery and at high-risk for sternal wound infection (diabetes, BMI > 30 or both) [67] (Table 1). No significant difference was noted in the rates of SSWI or DSWI or rehospitalisation rate for wound infection up to 90 days after surgery [67]. Similarly, Birgand et al. conducted a quasi-experimental single-centre prospective study in diabetic and/or overweight patients undergoing coronary-artery bypass surgery with bilateral internal mammary artery grafts [68] (Table 1). They found no evidence of efficacy of GCCI [68]. Interestingly in both these studies GCCI were soaked in saline prior to use [67,68].

Corn T et al., Raja et al. and Friberg O et al. challenged the findings of these studies which were in contrast to the findings of several other contemporary studies [68-70]. The study protocol and the training video of the study by Bennett-Guerrero et al. describes dipping GCCI for 1–2 sec in saline prior to use [69-71]. The GCCI used in this trial is marketed by EUSA Pharma (Europe) which
in their product information clearly states that the product should be used dry [66,69]. Gentamicin sulfate is highly soluble in aqueous solutions and dipping it in saline prior to use alters the release characteristics of Gentamicin decreasing its efficacy [66,69].

Lovering et al. conducted a study evaluating the impact of soaking gentamicin-containing collagen implants on potential antimicrobial efficacy of GCCI [72]. The study showed that even a short period of dipping of gentamicin-collagen sponge, before insertion into the patient, results in a significant loss of gentamicin [72]. The mean loss of Gentamicin was 6.7% at 2 s, increasing to 40.5% at 1 min and essentially total loss by 6 h of immersion [72]. This study provides clinching evidence that even a short period of dipping of Collatamp implants, before insertion into the patient results in a significant loss of gentamicin which may be of clinical significance [72].

In a retrospective review Cohen and colleagues compared a group of 108 patients who had received GCCI to a group of matched contemporary controls on a 1:1 basis [73] (Table 1). There was a significant difference in the incidence of post-operative SSI between the two groups (0% GCCI vs. 9% standard treatment; p value 0.022). Raja and colleagues conducted a propensity score analysis and compared the adjunctive use of GCCI in patients deemed at high risk of developing SSI to a group of matched controls [50] (Table 1). This study demonstrated a significant benefit of GCCI, which reduced the rate of superficial wound infection by 66% compared to standard treatment alone (2.1% GCCI vs. 6.2% standard treatment; p value 0.01) [50]. Although the patients in the GCCI group also had a lower rate of deep wound infection compared to the control group, this difference did not reach statistical significance [50].

Most of these studies compared GCCI versus routine antibiotic prophylaxis and suffered from a limitation as there were no control arms for Collagen sponge without Gentamicin. Schimmer et al. addressed this issue with a double blind RCT Comparison of a GCCI versus a simple Collagen sponge [74] (Table 1). The two types of sponges were implanted retrosternally in dry condition. This study has shown a significant reduction in DSWI and SSWI in patients undergoing median sternotomy for cardiac surgery with routinely application of a GCCI. Numbers needed to treat (NNT) for all sternal wound infections and deep sternal wound infections were 26 and 33, respectively [74].

Multiple randomized controlled trials (RCTs) produced conflicting results [74]. Creanor et al. performed a meta-analysis of three randomised controlled trials (published between 2005 and 2010) involving 3,994 participants [12] (Table 1). Using random effects models, odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated for all SWIs and deep SWIs. There was insufficient evidence of the effectiveness (or otherwise) of gentamicin impregnated sponges in preventing SWIs following cardiac surgery. However, some evidence does exist that such sponges can reduce the incidence of deep infections in high risk patients. Chang et al. therefore conducted a systematic review and meta-analysis of all relevant RCTs [75] (Table 1). Fifteen RCTs encompassing a total of 6979 patients were included. The included studies were of moderate to high quality. Gentamicin-collagen implants significantly reduced SSI [OR = 0.51; 95% CI: 0.33–0.77; P = 0.001 [75].

Mavros et al. performed a meta-analysis of randomized controlled trials [76] (Table 1). Four RCTs were considered of high quality (score of 3 or more according to modified Jadad criteria) and were included in the study (4672 patients). GCCI reduced risk of DSWI (risk ratio, 0.62; 95% confidence interval, 0.39-0.97). However, no benefit was demonstrated regarding superficial sternal wound infections and all-cause mortality [76]. Pooled data from 2 randomized controlled trials (3410 patients), showed that use of GCCI also reduced the need for surgical revision of sternal wounds (risk ratio, 0.59; 95% confidence interval, 0.41-0.86). The most commonly isolated pathogens were coagulase-negative Staphylococcus spp (43%) and Staphylococcus aureus (28%) [76]. The authors concluded that there is large statistical heterogeneity among the existing trials and emphasised the need for additional large, high-quality randomized controlled trials [76].

Popescu et al. did a retrospective audit of 2238 patients where Collatamp was used in only 122 patients (5%) [77]. The rate of sternal wound infection in non-Collatamp group was 3% while it was 5% in Collatamp group [77]. The length of stay in hospital was shorter in Collatamp patients. No gentamicin sensitivity was recorded within the Collatamp group. Because of the small numbers and retrospective nature of the study no definite conclusion could be drawn [77].

It should be noted that in cardiothoracic surgery, where the infection rate is low, it is difficult to perform studies with appropriate statistical power. Eklund et al. highlighted that with the infection rates in their study (4% study group; 5.9% control group), the sample size necessary to detect a significant (P < 0.05) RR with a statistical power of 0.8 would be 1275 patients in each group [7]. As a result several studies are small, inadequately powered and it’s difficult to draw firm conclusions from such studies.

Conclusion

Safety and efficacy of GCCI (Collatamp) has been debated and tested in several recent studies with conflicting results. Several recent studies have supported their clinical effectiveness. They should be
EUSA Pharma funded the publication charges associated with this manuscript. The authors declare that they have no competing interests.

Authors’ contributions

PKM: Literature search, preparation of the manuscript, revising the manuscript; AA: Literature search, preparing the manuscript; KS: Literature search, preparation of the manuscript; DA: Literature search, preparation of the manuscript; SO: Literature search, preparation of the manuscript; RS: Literature search, preparation of the manuscript; SGR: Literature search, preparation of the manuscript; HL: Literature search, preparation of the manuscript, revising the manuscript. All authors read and approved the final manuscript.

Funding

No funding was received for conduct of the study. After acceptance of the manuscript, EUSA Pharma funded the publication charges for this manuscript.

Author details

1Cardiothoracic Unit, Heart and Lung Centre, Wednesfield Road, Wolverhampton WV10 0QP, UK. 2Wessex Cardiothoracic Centre, Tremona Road, Southampton SO16 6Y, UK. 3Harefield Hospital, Hill End Road, London UB9 6JH, UK.

Received: 8 March 2014 Accepted: 28 May 2014

Published: 8 July 2014

References

1. Godbole G, Pai V, Kolvekar S, Wilson A: Use of gentamicin-collagen sponges in closure of sternal wounds in cardiothoracic surgery to reduce wound infections. Interact Cardiovasc Thorac Surg 2012, 14(4):392–394. April.

2. Friberg O, Svedjeholm R, Soderquist B, Vikerfors T, Kallman J: Local gentamicin reduces sternal wound infections after cardiac surgery: a randomized controlled trial. Ann Thorac Surg 2005, 79:153–161.

3. Mossad SB, Serkej JM, Longworth DL, Cosgrove DM, Gordon SM: Coagulase-negative staphylococcal sternal wound infections after open heart operations. Ann Thorac Surg 1997, 63:395–401.

4. Tegnell A, Are n C, Ohman L: Coagulase-negative staphylococci and sternal infections after cardiac operation. Ann Thorac Surg 2000, 69:1104–1109.

5. Hall RE, Ash AS, Ghali WA, Moskowitz MA: Hospital cost of complications associated with coronary artery bypass graft surgery. Am J Cardiol 1997, 79:1080–1083.

6. Taylor GJ, Mikell FL, Moses HW, et al: Determinants of hospital charges for coronary artery bypass surgery: the economic consequences of postoperative complications. Am J Cardiol 1990, 65:309–313.

7. Eklund AM, Valtonen M, Werkkala KA: Prophylaxis of sternal wound infections with gentamicin-collagen implant: randomized control study in cardiac surgery. J Hosp Infect 2005, 59:108–112.

8. Stemberger A, Grimm H, Bader F, Rahn HD, Ascherl R: Local treatment of bone and soft tissue infections with the collagen-gentamicin sponge. Eur J Surg 1997, 578(Suppl):17–26.

9. Rutten HJ, Nijhuis PH: Prevention of wound infection in elective colorectal surgery by local application of a gentamicin-containing collagen sponge. Eur J Surg 1997, 578(Suppl):31–35.

10. Friberg O, Jones I, Sjoberg L, Soderquist B, Vikerfors T, Kallman J: Antibiotic concentrations in serum and wound fluid after local gentamicin or intravenous dicloxacillin prophylaxis in cardiac surgery. Scand J Infect Dis 2003, 35:251–254.

11. Karlowski JA, Jones ME, Draghi DC, Thomsenberry C, Sahm DF, Voluto GA: Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002. Ann Clin Microbiol Antimicrob 2004, 3:7.

12. Creanor S, Barton A, Marchbank A: Effectiveness of a gentamicin impregnated collagen sponge on reducing sternal wound infections following cardiac surgery: a meta-analysis of randomised controlled trials. Ann R Coll Surg Engl 2012, 94(4):227–231(5).

13. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR: Guideline for prevention of surgical site infection, 1999 (Hospital Infection Control Practices Advisory Committee). Infect Control Hosp Epidemiol 1999, 20:250–278.

14. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008, 36(5):309–332. doi: 10.1016/j.ajic.2008.03.002.

15. Surgical site infection: full guideline. National Institute for Health and Clinical Excellence. 2008. ISBN 978-1-904752-69-1. (Updated 2013) https://www.evidence.nhs.uk/evidence-update-43 http://www.nice.org.uk/nicemedia/pdf/CG74FullGuideline.pdf.

16. Wilson AP, Treasure T, Sturridge MF, Gruneberg RN: A scoring method (ASEPSIS) for postoperative wound infections for use in clinical trials of antibiotic prophylaxis. Lancet 1986, 1:311–313.

17. Luckraz H, Treasure T: Infections in cardiac surgery. Surg Infect 1996, 4:1–4.

18. Franco S, Herrera AM, Atehortúa M, Vélez L, Botero J, Jaramillo JS, Wélez JF, Fernández H: Use of steel bands in sternal wound closure: implications in high-risk cardiac surgical patients. Int J Cardiol 2005, 98:272–277.

19. Valla J, Corbíneu H, Langány T, et al: Mediastinitis after cardiac surgery. A 10-year evaluation (1985–1995). Ann Cardioangiol 1996, 45:369–376.

20. Luckraz H, Murphy F, Bryant S, Charnock SC, Ritchie AJ: Vacuum-assisted closure as a treatment modality for infections after cardiac surgery. J Thorac Cardiovasc Surg 2003, 125:301–305. Feb.

21. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori GT: CDC definitions of nosocomial surgical site infections. Infect Control Hosp Epidemiol 1992, 13:606–608.

22. Ottino G, De Paulis R, Pansini S, et al: Major sternal wound infection after open-heart surgery: a multivariate analysis of risk factors in 2,579 consecutive operative procedures. Ann Thorac Surg 1987, 44:173–179.

23. BirkoveCY,Gärdlund B: Mediastinitis after cardiovascular operations: a case–control study of risk factors. Ann Thorac Surg 1998, 65:36–40.

24. Kreter B, Woods M: Antibiotic prophylaxis for cardiothoracic operations: Meta-analysis of thirty years of clinical trials. J Thorac Cardiovasc Surg 1992, 104:590–599.

25. Schreiten H: Modified prophylaxis for preventing deep sternal wound infection after cardiac surgery. APMIS 2007, 115:1025–1028.

26. The Panian Mediastinitis Study Group: Risk factors for deep sternal wound infection after sternotomy: a prospective, multicenter study. J Thorac Cardiovasc Surg 1996, 112:1200–1207.

27. Hashimoto I, Takaku M, Matsuo S, Abe Y, Harada H, Nagaie H, Fujikoya Y, Annaku K, Inagawa K: Risk factors for complications after reconstructive surgery for sternal wound infection. Arch Plast Surg 2014, 41(3):253–257. doi: 10.5999/apjs.2014.41.3.253. Epub 2014 May 12.

28. Hammarmeister KJ, Buchfelder CR, Grover FL: Identification of patients at greatest risk for developing major complications at cardiac surgery. Circulation 1990, 82(Suppl. I):III80–III89.

29. Milano CA, Keisler K, Archibald N, Sexton DJ, Jones RH: Mediastinitis after coronary artery bypass graft surgery. Circulation 1995, 92:2245–2251.
33. Friberg Ö, Dahlen LG, Kallman J, Kihlström E, Soderquist B, Svedjeholm R: Collagen-gentamicin implant for prevention of sternal wound infection: long-term follow-up of effectiveness. *Interact Cardiovasc Thorac Surg* 2009, 9:454–458.

34. Friedch B, Klue P, Worlock P, Slack R, Harvey L, Mawhinney R, Kouy M, Ellis E. Third Mechanical stability and post-traumatic osteitis: an experimental evaluation of the relation between infection of bone and internal fixation. *Injury* 1977, 9:23–29.

35. Stahle E, Tammelin A, Bergstrom R, Hambreuk A, Nystrom SO, Hansson HE: Sternal wound complications—incidence, microbiology and risk factors. *Eur J Cardiothorac Surg* 1997, 11:140–1153.

36. Gardlund B, Bitkover CY, Vaage J: Post operative mediastinitis in cardiac surgery — microbiology and pathogenesis. *Eur J Cardiothorac Surg* 2002, 21:825–830.

37. Wilson AP, Gruneberg RN, Treasure T, Sturridge MF: Molecular basis of *Staphylococcus epidermidis* infections. *Treatment of infections associated with surgical implants.* N Engl J Med 1977, 21:843–48.

38. Otto M: The significance of the intraoperative repeated dosing of antimicrobials for prevention of surgical wound infection in colorectal surgery. *The devil is in the detail!* Interact Cardiovasc Thorac Surg 2010, 10:89–91.

39. Raja SG: Gentamicin-impregnated collagen sponge for high-risk cardiac surgery patients. *Interact Cardiovasc Thorac Surg* 2013, 16(2):141. (eComment). Feb.

40. Raja SG, Salhyshah K, Ralf MU, Feldherr J, Ammar M: Impact of gentamicin-collagen sponge (collatamp) on the incidence of sternal wound infection in high-risk cardiac surgery patients: a propensity score analysis. *Heart Surg Forum* 2012, 15:e257–261.

41. Leyh RG, Bates C, Sievers HH: Adjunctive treatment of deep sternal wound infection with collagenous gentamycin. *Ann Thorac Surg* 1999, 68:1469–1463.

42. Rutten HJ, Nijhuis PH: Prevention of wound infection in elective colorectal surgery by local application of a gentamicin-containing collagen sponge. *Eur J Surg Suppl.* 1997, 578:31–35.

43. Stemberger A, Grimm H, Bader F, Hahn HD, Ascherl R: Local treatment of bone and soft tissue infections with the collagen-gentamicin sponge. *Eur J Surg Suppl.* 1997, 578:17–26.
76. Mavros MN, Mitsikostas PK, Alexiou VG, Peppas G, Falagas ME: Gentamicin collagen sponges for the prevention of sternal wound infection: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2012, 144:1235–1240.

77. Popescu F, Rochon N, Raja S: Impact of Gentamicin – Collagen Sponge (Collatamp) on the incidence of sternal wound infection in high risk cardiac surgery patients. Journal of Cardiothoracic Surgery 2013, 8(Suppl 1):O123.

doi:10.1186/1749-8090-9-122

Cite this article as: Mishra et al.: Role of topical application of gentamicin containing collagen implants in cardiac surgery. Journal of Cardiothoracic Surgery 2014 9:122.