AN ABSTRACT INVERSE PROBLEM FOR BOUNDARY TRIPLES WITH AN APPLICATION TO THE FRIEDRICHS MODEL

B.M. BROWN, M. MARLETTA, S. NABOKO, AND I. WOOD

Abstract. We discuss the detectable subspaces of an operator. We analyse the relation between the M-function (the abstract Dirichlet to Neumann map) and the resolvent bordered by projections onto the detectable subspaces. The abstract results are explored further by an extensive study of the Friedrichs model, together with illustrative applications to the Schrödinger and Hain-Lüst-type models.

1. Introduction

In this paper we consider inverse problems in a boundary triple setting involving a formally adjoint pair of operators A and \tilde{A}, as studied in [12, 13, 14, 31, 33, 34, 35]. We define, and develop formulae for, the detectable subspace (see Definition 2.7) associated with the information available from the abstract Dirichlet to Neumann maps (Titchmarsh-Weyl functions) $M(\lambda)$. We examine the extent to which the following questions can be answered at a purely abstract level.

1. Is the function $M(\lambda)$ uniquely determined from a knowledge of resolvents reduced to the detectable subspace?
2. Can the resolvent, bordered by projections onto the detectable subspaces, be determined from $M(\lambda)$?
3. What can be said about the relationship between analytic continuation of $M(\lambda)$ and analytic continuation of bordered resolvents?
4. What is the relationship between the rank of the jump in $M(\lambda)$ and the rank of the jump in the bordered resolvent across a line of essential spectrum, w.l.o.g. the real axis, when one has a limiting absorption principle?
5. To what extent can the detectable subspace be explicitly described?

Illustrative examples include the Schrödinger operator and Hain-Lüst-type models which we also examined in [13]. However the main concrete example studied in this paper is the Friedrichs Model, discussed at length in Sections 7, 8, 9 together with the relevant appendices. These results reveal many connections to problems in modern complex analysis, including the theory of Hankel and Toeplitz operators, and demonstrate the interplay between complex analysis and operator theory in the description of the detectable subspace (see e.g. the appearance of the Riesz-Nevanlinna factorisation theorem in Theorem 9.3). We consider the Friedrichs model as a key example for the development of the theory of detectable subspaces, because it allows a precise description of the structure of the detectable subspace in many cases, while exhibiting such a variety of behaviours that one can hardly expect to obtain a description of the space in all cases in unique terms. It shows the problem of reconstruction of the detectable part of the operator from the M-function, well-known for Sturm-Liouville problems [10, 37], is not always possible. Our results for this example show that the detectable part of the operator can partially be recovered

M. Marletta and S.N. Naboko gratefully acknowledge the support of the Leverhulme Trust, grant RPG167, and of the Wales Institute of Mathematical and Computational Sciences. S.N. Naboko also was partially supported by the grant NCN t 2013/09/BST1/04319 (Poland) and RFBR 12 - 01 - 00215-a, as well as the EC Marie Curie grant PIIF-GA-2011-299919.
from the M-function. At least in the symmetric case we would expect this recovery to be possible up to unitary equivalence \[43\].

The paper is arranged as follows. Section 2 introduces boundary triples, M-functions, solution operators and the detectable subspace. Section 3 shows the concrete realizations of these abstract objects for Schrödinger operators, Hain-Lüst-type operators and the Friedrichs model. Sections 4, 5, 6 present various abstract results concerning the relationship between the bordered resolvent and the M-function. In particular, in Section 4 we prove that the M-function is uniquely determined by one bordered resolvent. It can be reconstructed from one bordered resolvent and two closed solution operator ranges or by two bordered resolvents associated with different boundary conditions. We show that the bordered resolvent can be determined from the M-function and a family of solution operator ranges. Section 5 examines simultaneous analytic continuation of the M-function and bordered resolvents, while Section 6 deals with jumps of the M-function and the bordered resolvent across the essential spectrum.

Sections 7 onwards, including the appendices, deal with the Friedrichs model. In Section 7 we consider the reconstruction of the M-function from one restricted resolvent for the Friedrichs model. Sections 8 and 9 deal with determining the detectable subspace for various combinations of the parameters of the model. In both these sections, results and techniques from complex analysis will be important; whilst in Section 8 Hankel operators will make an appearance, the results in Section 9 rely on the theory of Toeplitz operators. Many of the proofs from these sections can be found in the appendices.

We conclude this introduction by mentioning that there has been an explosion of interest in boundary triples in the last decade, in particular around their application to partial differential equations usually in the self-adjoint case (see, e.g. \[1\], \[2\], \[3\], \[4\], \[5\], \[6\], \[7\], \[8\], \[9\], \[14\], \[17\], \[18\], \[19\], \[20\], \[21\], \[22\], \[23\], \[24\], \[25\], \[30\], \[32\], \[34\], \[40\], \[43\]). Some interesting ODE applications have also appeared, such as Mikhailets’ and Sobolev’s study \[36\] of the common eigenvalue problem. Generalisations to relations have been studied by Derkach, Hassi, Malamud and de Snoo \[15\], \[16\]. However, the situation with inverse problems remains problematic: one of the striking differences between Schrödinger operators in dimension $d = 1$ and dimension $d > 1$ is that, for $d > 1$, the potential can be uniquely recovered from a knowledge of the Dirichlet to Neumann map at a single value of the spectral parameter \[26\]. The fact that this is not true for $d = 1$ \[10\] already indicates that abstract techniques will generally be of limited value unless supplemented by a detailed study of the concrete operators to which they will be applied.

2. Definition of the detectable subspace and some properties

We use the following assumptions and notation throughout our article.

(1) A, \tilde{A} are closed, densely defined operators on domains in a Hilbert space H.

(2) A and \tilde{A} are an adjoint pair, i.e. $A^* \supseteq \tilde{A}$ and $\tilde{A}^* \supseteq A$.

Proposition 2.1. \[31\] (Lyantze, Storozh ‘83)]. For each adjoint pair of closed densely defined operators on H, there exist “boundary spaces” \mathcal{H}, \mathcal{K} and “trace operators”

$$
\Gamma_1 : D(\tilde{A}^*) \to \mathcal{H}, \quad \Gamma_2 : D(\tilde{A}^*) \to \mathcal{K}, \quad \tilde{\Gamma}_1 : D(A^*) \to \mathcal{K}, \quad \text{and} \quad \tilde{\Gamma}_2 : D(A^*) \to \mathcal{H}
$$

such that for $u \in D(\tilde{A}^*)$ and $v \in D(A^*)$ we have an abstract Green formula

$$
\langle \tilde{A}^* u, v \rangle_H = \langle u, A^* v \rangle_H = \langle \Gamma_1 u, \tilde{\Gamma}_2 v \rangle_{\mathcal{H}} - \langle \Gamma_2 u, \tilde{\Gamma}_1 v \rangle_{\mathcal{K}}.
$$

The trace operators $\Gamma_1, \Gamma_2, \tilde{\Gamma}_1$ and $\tilde{\Gamma}_2$ are bounded with respect to the graph norm. The pair \((\Gamma_1, \Gamma_2)\) is surjective onto $\mathcal{H} \times \mathcal{K}$ and \((\tilde{\Gamma}_1, \tilde{\Gamma}_2)\) is surjective onto $\mathcal{K} \times \mathcal{H}$. Moreover, we have

$$
D(A) = D(\tilde{A}^*) \cap \ker \Gamma_1 \cap \ker \Gamma_2 \quad \text{and} \quad D(\tilde{A}) = D(A^*) \cap \ker \tilde{\Gamma}_1 \cap \ker \tilde{\Gamma}_2.
$$
The collection \(\{ \mathcal{H} \oplus \mathcal{K}, (\Gamma_1, \Gamma_2), (\tilde{\Gamma}_1, \tilde{\Gamma}_2) \} \) is called a boundary triple for the adjoint pair \(A, \tilde{A} \).

Malamud and Mogilevskii \cite{35} use this setting to define Weyl \(M \)-functions associated with boundary triples. In \cite{14}, we used a slightly different setting in which the boundary conditions and Weyl function contain an additional operator \(B \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \). We now summarize some results from \cite{14} for the convenience of the reader.

Definition 2.2. Let \(B \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \) and \(\tilde{B} \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \). We define extensions of \(A \) and \(\tilde{A} \) (respectively) by

\[
A_B := \tilde{A}^*|_{\text{ker}(\Gamma_1 - B \Gamma_2)} \quad \text{and} \quad \tilde{A}_B := A^*|_{\text{ker}(\tilde{\Gamma}_1 - \tilde{B} \Gamma_2)}.
\]

In the following, we assume \(\rho(A_B) \neq \emptyset \), in particular \(A_B \) is a closed operator. For \(\lambda \in \rho(A_B) \), we define the \(M \)-function via

\[
M_B(\lambda) : \text{Ran}(\Gamma_1 - B \Gamma_2) \rightarrow \mathcal{K}, \quad M_B(\lambda)(\Gamma_1 - B \Gamma_2)u = \Gamma_2 u \quad \text{for all} \quad u \in \text{ker}(\tilde{A}^* - \lambda)
\]

and for \(\lambda \in \rho(\tilde{A}_B) \), we define

\[
\tilde{M}_B(\lambda) : \text{Ran}(\tilde{\Gamma}_1 - \tilde{B} \Gamma_2) \rightarrow \mathcal{H}, \quad \tilde{M}_B(\lambda)(\tilde{\Gamma}_1 - \tilde{B} \Gamma_2)v = \tilde{\Gamma}_2 v \quad \text{for all} \quad v \in \text{ker}(A^* - \lambda).
\]

It will follow from Lemma 2.5 that \(M_B(\lambda) \) and \(\tilde{M}_B(\lambda) \) are well defined for \(\lambda \in \rho(A_B) \) and \(\lambda \in \rho(\tilde{A}_B) \), respectively. Moreover, in our situation \(\text{Ran}(\Gamma_1 - B \Gamma_2) = \mathcal{K} \) and \(\text{Ran}(\tilde{\Gamma}_1 - \tilde{B} \Gamma_2) = \mathcal{K} \), so the \(M \)-functions are defined on the whole spaces.

Definition 2.3. (Solution Operator) For \(\lambda \in \rho(A_B) \), we define the linear operator \(S_{\lambda,B} : \text{Ran}(\Gamma_1 - B \Gamma_2) \rightarrow \text{ker}(\tilde{A}^* - \lambda) \) by

\[
(\tilde{A}^* - \lambda)S_{\lambda,B}f = 0, \quad (\Gamma_1 - B \Gamma_2)S_{\lambda,B}f = f,
\]

i.e.

\[
S_{\lambda,B} = \left((\Gamma_1 - B \Gamma_2)|_{\text{ker}(\tilde{A}^* - \lambda)}\right)^{-1}.
\]

For \(\lambda \in \rho(\tilde{A}_B) \), we define the linear operator \(\tilde{S}_{\lambda,B} : \text{Ran}(\tilde{\Gamma}_1 - B^* \Gamma_2) \rightarrow \text{ker}(A^* - \lambda) \) by

\[
(A^* - \lambda)\tilde{S}_{\lambda,B}f = 0, \quad (\tilde{\Gamma}_1 - B^* \Gamma_2)\tilde{S}_{\lambda,B}f = f.
\]

All following results have a corresponding version for the quantities \(\tilde{M}_B \), \(\tilde{S}_{\lambda,B} \), etc. obtained from the formally adjoint problem.

Remark 2.4.

1. As we are not interested in characterising all closed extensions of \(A \), in this paper we will assume for simplicity that \(B \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \). A discussion of all closed extensions of \(A \) in the boundary triple setting can be found in \cite{12}.
2. Note that \(M_B(\lambda) = \Gamma_2 S_{\lambda,B} \).
3. \(M \)-functions associated with different boundary conditions are related by the Aronszajn-Donoghue formula (cf. also \cite{13})

\[
M_B(\lambda) = (I + M_B(\lambda)(B - C))M_C(\lambda) = M_C(\lambda)(I + (B - C)M_B(\lambda)).
\]

The following lemma contains the results of \cite{13} Lemma 2.4 and Corollary 2.5.

Lemma 2.5.

1. \(S_{\lambda,B} \) is well-defined for \(\lambda \in \rho(A_B) \).
2. For each \(f \in \text{Ran}(\Gamma_1 - B \Gamma_2) \) the map from \(\rho(A_B) \rightarrow H \) given by \(\lambda \mapsto S_{\lambda,B}f \) is analytic.
3. For \(\lambda, \lambda_0 \in \rho(A_B) \) we have

\[
S_{\lambda,B} = S_{\lambda_0,B} + (\lambda - \lambda_0)(A_B - \lambda)^{-1}S_{\lambda_0,B}.
\]
The difference of two resolvents of the operator can be related to the \(M \)-function by Krein-type resolvent formulae, such as
\[
(A_C - \lambda)^{-1} - (A_B - \lambda)^{-1} = S_{\lambda,C}(I + (B - C)M_B(\lambda))(\Gamma_1 - B\Gamma_2)(A_C - \lambda)^{-1}
\]
for \(B, C \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \) and \(\lambda \in \rho(A_B) \cap \rho(A_C) \) (see [13, Theorem 2.6]).

The following formula already appears in some proofs in [13, 14], but due to its importance in our later analysis, we state and prove it here.

Lemma 2.6. For every \(F \in D(\tilde{A}^*) \) and \(v \in D(A^*) \) and \(\lambda \in \rho(A_B) \) we have
\[
\left\langle F - (A_B - \lambda)^{-1}(\tilde{A}^* - \lambda)F, (A^* - \tilde{A})v \right\rangle = \left\langle M_B(\lambda)f, (\Gamma_1 - B^*\tilde{\Gamma}_2)v \right\rangle_{\mathcal{K}} - \left\langle f, \tilde{\Gamma}_2v \right\rangle_{\mathcal{H}}
\]
where \(f = (\Gamma_1 - B\Gamma_2)F \).

Proof. Set \(w := F - (A_B - \lambda)^{-1}(\tilde{A}^* - \lambda)F \). Then \(w \in \ker(\tilde{A}^* - \lambda) \), so
\[
M_B(\lambda)(\Gamma_1 - B\Gamma_2)w = M_B(\lambda)f = \Gamma_2w \quad \text{and} \quad \Gamma_1w = (\Gamma_1 - B\Gamma_2 + B\Gamma_2)w = (I + BM_B(\lambda))f.
\]
Green’s identity [11] for any \(v \in D(A^*) \) gives
\[
-\left\langle w, (A^* - \tilde{A})v \right\rangle_{\mathcal{H}} = \left\langle (\tilde{A}^* - \lambda)w, v \right\rangle_{\mathcal{H}} - \left\langle w, (A^* - \lambda)v \right\rangle_{\mathcal{H}} = \left\langle \Gamma_1w, \tilde{\Gamma}_2v \right\rangle_{\mathcal{H}} - \left\langle \Gamma_2w, \tilde{\Gamma}_1v \right\rangle_{\mathcal{K}} = \left\langle (I + BM_B(\lambda))f, \tilde{\Gamma}_2v \right\rangle_{\mathcal{H}} - \left\langle M_B(\lambda)f, \tilde{\Gamma}_1v \right\rangle_{\mathcal{K}} = \left\langle f, \tilde{\Gamma}_2v \right\rangle_{\mathcal{H}} - \left\langle M_B(\lambda)f, (\Gamma_1 - B^*\tilde{\Gamma}_2)v \right\rangle_{\mathcal{K}}.
\]
\[\square\]

We are now ready to define one of the main concepts of the paper, the detectable subspaces, introduced in [13].

Definition 2.7. Fix \(\mu_0 \notin \sigma(A_B) \). We define the spaces
\[
\mathcal{S}_B = \text{Span}_{\delta \notin \sigma(A_B)}(A_B - \delta I)^{-1}\text{Ran}(S_{\mu_0,B}),
\]
\[
\mathcal{T}_B = \text{Span}_{\mu \notin \sigma(A_B)}\text{Ran}(S_{\mu,B}),
\]
and similarly,
\[
\tilde{\mathcal{S}}_{B^*} = \text{Span}_{\delta \notin \sigma(\tilde{A}_{B^*})}(\tilde{A}_{B^*} - \delta I)^{-1}\text{Ran}(\tilde{S}_{\tilde{\mu},B^*}),
\]
\[
\tilde{\mathcal{T}}_{B^*} = \text{Span}_{\mu \notin \sigma(\tilde{A}_{B^*})}\text{Ran}(\tilde{S}_{\mu,B^*}).
\]
We call \(\mathcal{S}_B \) and \(\tilde{\mathcal{S}}_{B^*} \) the detectable subspaces.

We now consider the dependence of these spaces on \(\mu_0 \) and \(B \).

Proposition 2.8. (1) Let \(B \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \). Assume that there is a sequence \((z_n)_{n \in \mathbb{N}}\) in \(\mathbb{C} \) with \(|z_n| \to \infty \) and \((\|z_n(A_B - z_nI)^{-1}\|)_{n \in \mathbb{N}} \) is bounded. Then we have \(\overline{\mathcal{S}_B} = \overline{T_B} \). In particular, \(\overline{\mathcal{S}_B} \) is independent of \(\mu_0 \).

(2) Let \(B, C \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \). If \(\rho(A_B) \cup \rho(A_C) \subseteq \rho(A_B) \cap \rho(A_C) \), then \(\mathcal{T}_B = \mathcal{T}_C \).

(3) Suppose that for all \(B, C \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \), we have \(\rho(A_B) \cup \rho(A_C) \subseteq \rho(A_B) \cap \rho(A_C) \). Then \(\mathcal{T}_B = \text{Span}_{\lambda \in \mathcal{A}}(\tilde{A}^* - \lambda) \), where \(\mathcal{A} = \bigcup_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \rho(A_C) \).
Proof. (1) This is shown in [13, Lemma 3.1].

(2) From [14, Proposition 4.5] we have

\[
S_{\lambda,C}(I - (C - B)\Gamma_2S_{\lambda,B}) = S_{\lambda,B},
\]

we note that \(\text{Ran} (S_{\lambda,B}) = \text{Ran} (S_{\lambda,C}) \) whenever \(\lambda \in \rho(A_B) \cap \rho(A_C) \). Now assume \(\lambda \in \rho(A_B) \cap \sigma(A_C) \). We need to show that \(\text{Ran} (S_{\lambda,B}) \subseteq \mathcal{T}' \) where

\[
\mathcal{T}' = \text{Span} \mu \in \rho(A_B) \cap \rho(A_C) \text{Ran} (S_{\mu,B}).
\]

By assumption, there exists a sequence \((\lambda_n)_{n \in \mathbb{N}}\) in \(\rho(A_B) \cap \rho(A_C) \) with \(\lambda_n \to \lambda \). Let \(u = S_{\lambda,B}f \). We have

\[
S_{\lambda_n,B} - S_{\lambda,B} = (\lambda_n - \lambda)(A_B - \lambda_n)^{-1}S_{\lambda,B}.
\]

Therefore,

\[
\|S_{\lambda_n,B}f - S_{\lambda,B}f\| \leq |\lambda_n - \lambda| \|A_B - \lambda_n^{-1}\| \|S_{\lambda,B}f\|.
\]

As \(n \to \infty \), \(\|(A_B - \lambda_n)^{-1}\| \to \|(A_B - \lambda)^{-1}\| < \infty \), so \(S_{\lambda_n,B}f \to S_{\lambda,B}f \) which completes the proof.

(3) This follows immediately from the previous part of the proposition.

\[\square\]

Remark 2.9. We note that the conditions in parts [1] and [3] of the proposition are satisfied in many interesting cases, in particular in the case of ‘weak’ perturbations of selfadjoint operators.

Throughout the remainder of this article, we will assume that the spaces \(\mathcal{S}_B \) and \(\mathcal{T}_B \) coincide, are independent of \(B \) and equal \(\text{Span}_{\lambda \in \rho} (\mathcal{A}^* - \lambda) \). To avoid cumbersome notation, we shall denote all these spaces by \(\mathcal{S} \). We shall also denote \(\mathcal{S}_B \) by \(\mathcal{S} \) and \(\mathcal{T}_B \) by \(\mathcal{T} \) when no confusion can arise. We will generally refer to \(\mathcal{S} \) as the detectable subspace.

In [13, Lemma 3.4], it is shown that \(\mathcal{S} \) is a regular invariant space of the resolvent of the operator \(A_B \): that is, \((A_B - \mu I)^{-1}\mathcal{S} = \mathcal{S} \) for all \(\mu \in \rho(A_B) \).

From (10) and Proposition 2.8 part [3] we get

\[
\mathcal{S}_\perp = \bigcap_{B,\lambda \in \rho(A_B)} \ker(S_{\lambda,B}^*).
\]

Moreover, from [14, Proposition 3.9] we have

\[
\ker(S_{\lambda,B}^*) = \ker \left(\tilde{\Gamma}_2(\mathcal{A}_B^* - \lambda)^{-1} \right).
\]

We now assume that \(h \in \mathcal{S}_\perp \). Then we have \(\tilde{\Gamma}_2(\mathcal{A}_B^* - \lambda)^{-1}h = 0 \) for all suitable \(B \) and \(\lambda \). Fixing \(B \) and \(\lambda \) and setting

\[
y_B = (\mathcal{A}_B^* - \lambda)^{-1}h,
\]

we get \(\tilde{\Gamma}_2y_B = 0 \) and hence \(\tilde{\Gamma}_1y_B = B^*\tilde{\Gamma}_2y_B = 0 \), so \(y_B \) satisfies any homogeneous boundary condition and lies in the domain of the minimal operator.

Hence,

\[
\mathcal{S}_\perp = \{ h \in H : \forall B^*, \lambda \in \rho(\mathcal{A}_B^*), \quad \tilde{\Gamma}_i(\mathcal{A}_B^* - \lambda)^{-1}h = 0, \text{ for } i = 1, 2 \}.
\]

Remark 2.10. Determining the detectable subspace \(\mathcal{S} \) is closely related to the problem of observability in systems theory. Indeed, from [14] and (16) the space \(\mathcal{S}_\perp \) (at least formally) coincides with the ‘non-observable for all time’ subspace \(N(\Theta) \) of a system \(\Theta = (A, B, C, D) \) (see [15]), in which \(A = \mathcal{A}_B^*, B = \mathcal{S}_{\lambda_0,B}^* \) for some \(\lambda_0 \in \rho(\mathcal{A}_B^*) \), \(C = \tilde{\Gamma}_2(\mathcal{A}^* - \lambda_0) \), \(D = 0 \), though there are several differences between the notions:
The corresponding system can be highly awkward to construct and requires involving unbounded operators.

(2) In systems theory the subspace of un-observable states is generated by the resolvent in one half plane only (corresponding to positive times \(t \) only). In our construction, the spectral parameter runs through the whole resolvent set. It is well known that when the resolvent set consists of several unconnected domains, developing the linear set by the resolvent essentially depends on the choice of the component.

(3) We do not require the operator \(\bar{A}_B \) to be the generator of a semigroup. In particular, the resolvent set may have a complicated geometrical structure. If \(\bar{A}_B \) is a generator, the resolvent in \([16]\) can be replaced by the positive and negative time semigroups.

Despite these differences, the similarity to the observability problem may be fruitful for analysing detectability, both in general and in particular examples. For more connections between boundary triples and systems theory, we refer to \([44]\).

3. Example operators

In this section we shall examine three different concrete operators which will be used in the following to illustrate the power and also the limitations of the theory. For the first of these we show that \(\mathfrak{S} \) is the whole underlying Hilbert space; for the second example we refer the reader to some previous work, where we show that \(\mathfrak{S} \) may or may not be the whole space; for the third example, we calculate the function \(M_B(\lambda) \), in preparation for the substantial work in Sections \([8,9]\) and the Appendix, which shows that the characterization of \(\mathfrak{S} \) may be very subtle for this seemingly innocuous model.

3.1. Schrödinger problems. For complex valued \(q \in L^\infty(0,1) \), consider

\[
Lu = \left(-\frac{d^2}{dx^2} + q \right) u \quad \text{and} \quad \tilde{Lu} = \left(-\frac{d^2}{dx^2} + \bar{q} \right) u \quad \text{on} \ [0,1].
\]

Let \(Au = Lu \) and \(\tilde{A}u = \tilde{Lu} \) with \(D(A) = D(\tilde{A}) = H^2_0(0,1) \). Then \(\tilde{A}u = Lu \) and \(A^*u = \tilde{Lu} \) with \(D(\tilde{A}^*) = D(A^*) = H^2(0,1) \) and for \(u, v \in H^2(0,1) \)

\[
\langle \tilde{A}^*u, v \rangle - \langle u, A^*v \rangle = \langle \Gamma_1 u, \Gamma_2 v \rangle - \langle \Gamma_2 u, \Gamma_1 v \rangle,
\]

where

\[
\Gamma_1 u = \begin{pmatrix} -u'(1) \\ u'(0) \end{pmatrix}, \quad \Gamma_2 u = \begin{pmatrix} u(1) \\ u(0) \end{pmatrix}.
\]

In particular, \(\Gamma_1 = \tilde{\Gamma}_1, \quad \Gamma_2 = \tilde{\Gamma}_2 \) and \(\mathcal{H} = \mathcal{K} = \mathbb{C}^2 \).

Let \(\theta(x, \lambda) \) and \(\phi(x, \lambda) \) be solutions of \(\tilde{L}u = \bar{u}u \) which satisfy \(\theta(0, \lambda) = 0, \quad \theta'(0, \lambda) = 1 \) and \(\phi(0, \lambda) = 1, \quad \phi'(0, \lambda) = 0 \). Let \(y_B \) be as in \([15]\). Then by the variation of constants formula, there exist \(C, \tilde{C} \) such that

\[
y_B(x, \lambda) = \int_0^x \phi(t, \lambda) h(t) \ dt \theta(x, \lambda) + \int_x^1 \theta(t, \lambda) h(t) \ dt \phi(x, \lambda) + C\theta(x, \lambda) + \tilde{C}\phi(x, \lambda).
\]

\(y_B \) satisfies \(\Gamma_1 y_B = 0 = \Gamma_2 y_B \). We choose \(\lambda \) so that it is not a Dirichlet eigenvalue. Then

\[
y_B(0, \lambda) = \int_0^1 \theta dt + \tilde{C} = 0, \quad y_B(1, \lambda) = \left(\int_0^1 \phi dt + C \right) \theta(1, \lambda) + \tilde{C}\phi(1, \lambda) = 0,
\]

\[
y'_B(0, \lambda) = C = 0, \quad y'_B(1, \lambda) = \left(\int_0^1 \phi dt + C \right) \theta'(1, \lambda) + \tilde{C}\phi'(1, \lambda) = 0.
\]
This simplifies to
\[
\int_0^1 \phi h dt \theta(1, \lambda) - \int_0^1 \theta h dt \phi(1, \lambda) = 0, \\
\int_0^1 \phi h dt \theta'(1, \lambda) - \int_0^1 \theta h dt \phi'(1, \lambda) = 0.
\]
As the Wronskian of \(\theta \) and \(\phi \) is non-zero, we have
\[
\int_0^1 \theta h dt = \int_0^1 \phi h dt = 0.
\]
This holds for almost all \(\lambda \). Analyticity in \(\lambda \) implies that these equations hold for all \(\lambda \). Choosing \(\lambda \) to run through the Dirichlet eigenvalues shows that \(\tilde{h} \) is orthogonal to all Dirichlet eigenfunctions and also to any possible root vectors. Hence, \(h \equiv 0 \) and we have proved the following result which is consistent with the Borg Uniqueness Theorem [10, 37].

Proposition 3.1. For the Schrödinger operator we have \(S = L^2(0, 1) \).

3.2. Hain-Lüst-type operators.

Let
\[
\tilde{A}^* = \left(\begin{array}{c} -\frac{d^2}{dx^2} + q(x) \tilde{w}(x) \\ \tilde{w}(x) \end{array} \right) \quad \text{and} \quad A^* = \left(\begin{array}{c} -\frac{d^2}{dx^2} + q(x) \frac{w(x)}{\tilde{w}(x)} \\ \frac{w(x)}{\tilde{w}(x)} \end{array} \right),
\]
where \(q, u, \tilde{w} \) and \(w \) are \(L^\infty \)-functions, and the domain of the operators is given by
\[
D(\tilde{A}^*) = D(A^*) = H^2(0, 1) \times L^2(0, 1).
\]

It is then easy to see that
\[
\left\langle \tilde{A}^* \left(\begin{array}{c} y \\ z \end{array} \right), \left(\begin{array}{c} f \\ g \end{array} \right) \right\rangle - \left\langle \left(\begin{array}{c} y \\ z \end{array} \right), A^* \left(\begin{array}{c} f \\ g \end{array} \right) \right\rangle
\]
\[
= \left\langle \Gamma_1 \left(\begin{array}{c} y \\ z \end{array} \right), \Gamma_2 \left(\begin{array}{c} f \\ g \end{array} \right) \right\rangle - \left\langle \Gamma_2 \left(\begin{array}{c} y \\ z \end{array} \right), \Gamma_1 \left(\begin{array}{c} f \\ g \end{array} \right) \right\rangle,
\]
where
\[
\mathcal{H} = \mathcal{K} = \mathbb{C}^2, \quad \Gamma_1 \left(\begin{array}{c} y \\ z \end{array} \right) = \left(\begin{array}{c} -y' (1) \\ y' (0) \end{array} \right), \quad \Gamma_2 \left(\begin{array}{c} y \\ z \end{array} \right) = \left(\begin{array}{c} y (1) \\ y (0) \end{array} \right).
\]

Some information on \(S \) for these operators is available in [13]. In particular we show there that if \(w = \tilde{w} \) then \(S \subseteq L^2(0, 1) \oplus L^2((w^{-1}(\{0\})^c) \) (where \(\Omega^c \) denotes the complement of a set \(\Omega \)) and so if \(w \) vanishes on a set of positive measure then \(\tilde{S} \) is not the whole underlying space.

3.3. The Friedrichs model.

We consider in \(L^2(\mathbb{R}) \) the operator \(A \) with domain
\[
D(A) = \left\{ f \in L^2(\mathbb{R}) \left| \right. xf(x) \in L^2(\mathbb{R}), \lim_{R \to \infty} \int_{-R}^R f(x) dx \text{ exists and is zero} \right\},
\]
given by the expression
\[
(Af)(x) = xf(x) + \langle f, \phi \rangle \psi(x),
\]
where \(\phi, \psi \) are in \(L^2(\mathbb{R}) \). Observe that since the constant function \(1 \) does not lie in \(L^2(\mathbb{R}) \) the domain of \(A \) is dense in \(L^2(\mathbb{R}) \).

We first collect some results from [13] where more details and proofs can be found:

Lemma 3.2. The adjoint of \(A \) is given on the domain
\[
D(A^*) = \left\{ f \in L^2(\mathbb{R}) \left| \exists c_f \in \mathbb{C} : xf(x) - c_f 1 \in L^2(\mathbb{R}) \right. \right\},
\]
by the formula
\[
A^* f = xf(x) - c_f 1 + \langle f, \psi \rangle \phi.
\]
Since \(c_f = \lim_{R \to \infty} (2R)^{-1} \int_{-R}^{R} xf(x) \, dx \) is uniquely determined, we can define trace operators \(\Gamma_1 \) and \(\Gamma_2 \) on \(D(A^*) \) as follows:

\[
\Gamma_1 u = \lim_{R \to \infty} \int_{-R}^{R} u(x) \, dx, \quad \Gamma_2 u = c_u.
\]

Note that \(\Gamma_1 u = \int_{\mathbb{R}} (u(x) - c_u \text{sign}(x)(x^2 + 1)^{-1/2}) \, dx \), which is the expression used in [13].

Lemma 3.3. The operators \(\Gamma_1 \) and \(\Gamma_2 \) are bounded relative to \(A^* \) and the following ‘Green’s identity’ holds:

\[
\langle A^* f, g \rangle - \langle f, A^* g \rangle = \Gamma_1 f \Gamma_2 g - \Gamma_2 f \Gamma_1 g + \langle f, \psi \rangle \langle \phi, g \rangle - \langle f, \phi \rangle \langle \psi, g \rangle.
\]

We introduce an operator \(\tilde{A} \) in which the roles of \(\phi \) and \(\psi \) are swapped:

\[
D(\tilde{A}) = \left\{ f \in L^2(\mathbb{R}) \left| \int_{-\infty}^{\infty} f(x) \, dx = 0 \right. \right\},
\]

\[
(\tilde{A}f)(x) = xf(x) + \langle f, \psi \rangle \phi(x).
\]

In view of Lemma 3.2, we immediately see that \(D(\tilde{A}^*) = D(A^*) \) and that

\[
(\tilde{A}^* f)(x) = xf(x) - c_f 1 + \langle f, \phi \rangle \psi(x).
\]

Thus \(\tilde{A}^* \) is an extension of \(A \), \(A^* \) is an extension of \(\tilde{A} \), and the following result is easily proved.

Lemma 3.4.

\[
A = \tilde{A}^*|_{\ker (\Gamma_1) \cap \ker (\Gamma_2)}; \quad \tilde{A} = A^*|_{\ker (\Gamma_1) \cap \ker (\Gamma_2)};
\]

moreover, the Green’s formula (26) can be modified to

\[
\langle A^* f, g \rangle - \langle f, \tilde{A}^* g \rangle = \Gamma_1 f \Gamma_2 g - \Gamma_2 f \Gamma_1 g.
\]

We finish our review from [13] with the \(M \)-function and the resolvent:

Lemma 3.5. Suppose that \(\Im \lambda \neq 0 \). Then \(f \in \ker (\tilde{A}^* - \lambda) \) if

\[
f(x) = \Gamma_2 f \left[\frac{1}{x - \lambda} - \frac{\langle (t - \lambda)^{-1}, \phi \rangle \psi(x)}{D(\lambda)} \right].
\]

Here \(D \) is the function

\[
D(\lambda) = 1 + \int_{\mathbb{R}} \frac{1}{x - \lambda} \psi(x) \phi(x) \, dx.
\]

Moreover the Titchmarsh-Weyl coefficient \(M_B(\lambda) \) is given by

\[
M_B(\lambda) = \left[\text{sign}(\Im \lambda) \pi i - \frac{\langle (t - \lambda)^{-1}, \psi \rangle \langle (t - \lambda)^{-1}, \phi \rangle - B}{D(\lambda)} \right]^{-1}.
\]

For the resolvent, we have that \((A_B - \lambda)f = g \) if and only if

\[
f(x) = \frac{g(x)}{x - \lambda} - \frac{1}{D(\lambda)} \psi(x) \left(\frac{g(x)}{t - \lambda}, \phi \right) + c_f \left[\frac{1}{x - \lambda} - \frac{1}{D(\lambda)} \frac{\psi(x)}{x - \lambda} \langle \frac{1}{t - \lambda}, \phi \rangle \right],
\]

in which the coefficient \(c_f \) is given by

\[
c_f = M_B(\lambda) \left[-\left\langle \frac{1}{t - \lambda}, \bar{g} \right\rangle + \frac{1}{D(\lambda)} \left\langle \frac{g(x)}{t - \lambda}, \phi \right\rangle \left\langle \frac{1}{t - \lambda}, \psi \right\rangle \right].
\]

These calculations will be needed in Sections 7 and the Appendix.
Remark 3.6. There is another approach to the Friedrichs model via the Fourier transform which may appear much more natural. It is easy to check that, denoting the Fourier transform by \(\mathcal{F} \) and \(\mathcal{F}f = \hat{f} \), we get

\[
\mathcal{F} \hat{f}^* = i \frac{d}{dx} + \left< \cdot, \hat{\phi} \right> \hat{\psi}, \quad D(\mathcal{F} \hat{f}^*) = \{ u \in H^1(\mathbb{R}) : u(0) = 0 \},
\]

\[
\mathcal{F} \tilde{\hat{f}}^* = i \frac{d}{dx} + \left< \cdot, \hat{\phi} \right> \hat{\psi}, \quad D(\mathcal{F} \tilde{\hat{f}}^*) = \{ u \in L^2(\mathbb{R}) : u_{\mathbb{R}^\pm} \in H^1(\mathbb{R}^\pm) \},
\]

and

\[
\mathcal{F} A_B f^* = i \frac{d}{dx} + \left< \cdot, \hat{\phi} \right> \hat{\psi},
\]

\[
D(\mathcal{F} A_B f^*) = \left\{ u \in L^2(\mathbb{R}) : u_{\mathbb{R}^\pm} \in H^1(\mathbb{R}^\pm), u(0^+) = \frac{B - i\pi}{B + i\pi} u(0^-) \right\},
\]

where \(u(0^\pm) \) denotes the limit of \(u \) at zero from the left and right, respectively. Moreover, \(\Gamma_1 f = \sqrt{\pi/2}(\hat{f}(0^+) + \hat{f}(0^-)) \) and \(\Gamma_2 f = i(2\pi)^{-1}(\hat{f}(0^+) - \hat{f}(0^-)) \). There are similar expressions for the adjoint operators and traces. In terms of extension theory it is much easier to use this Fourier representation. However, for our later calculations, the original model is more useful, as it facilitates the calculation of residues.

4. Relation between \(M \)-function and resolvent on \(\mathcal{S} \)

Having introduced some concrete examples in the previous sections, we now turn our attention to what can be shown in the general setting. Our aim is to study the relation between the function \(M_B \) and the bordered resolvent \(P_\mathcal{S}(A_B - \lambda)^{-1}|_\mathcal{S} \) where for any subspace \(M \), \(P_M \) denotes the orthogonal projection onto \(M \).

4.1. Information on the \(M \)-function contained in the resolvent. We first look at gaining information on the \(M \)-function from knowledge of the resolvent.

Theorem 4.1. Let \(\lambda \in \rho(A_B) \). Then \(P_\mathcal{S}(A_B - \lambda)^{-1}|_\mathcal{S} \) uniquely determines \(M_B(\lambda) \).

In particular, if also \(\lambda \in \rho(A_C) \), then \(P_\mathcal{S}(A_B - \lambda)^{-1}|_\mathcal{S} = P_\mathcal{S}(A_C - \lambda)^{-1}|_\mathcal{S} \) implies that \(M_B(\lambda) = M_C(\lambda) \), and, if additionally \(\lambda \in \rho(A_\infty) \), then \(B = C \). Here, \(A_\infty = \tilde{A}^*|_{\ker \Gamma_2} \).

Proof. Assume \(\tilde{M}_B(\lambda) \) is a different \(M \)-function for the same problem. By surjectivity of the trace operators there exist \(F \in D(\tilde{\hat{A}}^*) \) and \(v \in D(A^*) \) such that

\[
\left< M_B(\lambda)(\Gamma_1 - B\Gamma_2)F, (\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)v \right>_K \neq \left< \tilde{M}_B(\lambda)(\Gamma_1 - B\Gamma_2)F, (\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)v \right>_K.
\]

Setting \(h = S_{\mu,B}(\Gamma_1 - B\Gamma_2)F \in \mathcal{S} \) and \(\tilde{h} = \tilde{S}_{\mu,B}(\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)v \in \tilde{\mathcal{S}} \) and using \(\tilde{S} \), we find that

\[
\left< (I - (A_B - \lambda)^{-1}(\mu - \lambda))h, (\bar{\mu} - \bar{\lambda})\tilde{h} \right>
\]

has two different values. Therefore, \(\left< (A_B - \lambda)^{-1}h, \tilde{h} \right> \) has two different values yielding a contradiction.

If \(P_\mathcal{S}(A_B - \lambda)^{-1}|_\mathcal{S} = P_\mathcal{S}(A_C - \lambda)^{-1}|_\mathcal{S} \), then by the argument above

\[
\left< M_B(\lambda)(\Gamma_1 - B\Gamma_2)F, (\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)v \right>_K = \left< M_C(\lambda)(\Gamma_1 - B\Gamma_2)F, (\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)v \right>_K.
\]

Choosing \(F \) and \(v \) such that \(\Gamma_2 F = \tilde{\Gamma}_2 v = 0 \) and \(\Gamma_1 F \) and \(\tilde{\Gamma}_1 v \) are arbitrary, we obtain

\[
\left< M_B(\lambda)\Gamma_1 F, \tilde{\Gamma}_1 v \right>_K = \left< M_C(\lambda)\Gamma_1 F, \tilde{\Gamma}_1 v \right>_K.
\]
Hence, \(M_B(\lambda) = M_C(\lambda) \). If \(\lambda \in \rho(A_\infty) \), then \(\text{Ran} \, M_B(\lambda) = \mathcal{K} \) and \(\ker M_C(\lambda) = \{0\} \), so from \([5]\) we get \(B = C \).

Note that from the knowledge of the resolvent and the range of one solution operator we can explicitly reconstruct \(\mathcal{S} \). With some extra knowledge of the problem we can reconstruct \(\text{Ran} \, M_B(\lambda) \) from knowledge of the bordered resolvent on \(\mathcal{S} \).

Theorem 4.2. Assume we know \(\mathcal{S} \), \(P_\mathcal{S}(A_B - \lambda)^{-1} \mathcal{S} \) and \(\text{Ran}(S_{\mu,B}) \), \(\overline{\text{Ran}}(\tilde{S}_{\mu,B'}) \) for some \((\mu, \tilde{\mu}) \) with \(\mu, \tilde{\mu} \in \rho(A_B) \). Then we can reconstruct \(\text{Ran} \, M_B(\lambda) \) uniquely if \(B \) is known.

Proof. For \(h \in \text{Ran}(S_{\mu,B}) \), \(\tilde{h} \in \overline{\text{Ran}}(\tilde{S}_{\mu,B'}) \), consider

\[
H(h, \tilde{h}) = \left\langle (I - (A_B - \lambda)^{-1}(\mu - \lambda))h, (\tilde{\mu} - \tilde{\lambda})\tilde{h} \right\rangle.
\]

By assumption, we know \(H(h, \tilde{h}) \). Varying \(h \) throughout \(\text{Ran}(S_{\mu,B}) \), we have that \((\Gamma_1 - B\Gamma_2)h\) runs through the whole of \(\mathcal{H} \); varying \(\tilde{h} \) throughout \(\overline{\text{Ran}}(\tilde{S}_{\mu,B'}) \), the values \((\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)\tilde{h}\) run through the whole of \(\mathcal{K} \) and \(\tilde{\Gamma}_2\tilde{h} \) through the whole of \(\mathcal{H} \). Using Lemma \([26]\) we have for a dense set of \(h, \tilde{h} \) that

\[
H(h, \tilde{h}) = \left\langle \left(M_B(\lambda)(\Gamma_1 - B\Gamma_2)h, (\tilde{\Gamma}_1 - B^*\tilde{\Gamma}_2)\tilde{h}\right) \right\rangle _{\mathcal{K}} - \left\langle (\Gamma_1 - B\Gamma_2)h, \tilde{\Gamma}_2\tilde{h} \right\rangle _{\mathcal{H}},
\]

which allows reconstruction of the \(M \)-function.

We look into the question of how strong the condition of knowledge of the closed ranges of solution operators needed in the theorem is. We first look at the Friedrichs model.

Proposition 4.3. Assume we know \(\text{Ran} \, S_{\lambda,B} \) and \(\overline{\text{Ran}} \tilde{S}_{\mu,B'} \) for some \(\lambda, \mu \) for the Friedrichs model. Moreover, assume \(\text{Ran} \, S_{\lambda,B} \neq \text{Span} \{ \frac{1}{x-\lambda} \} \) and \(\overline{\text{Ran}} \tilde{S}_{\mu,B'} \neq \text{Span} \{ \frac{1}{x-\mu} \} \) (which is true for generic \(\phi, \psi \)). Then the operator is uniquely determined.

Proof. Assume we know \(\text{Ran} \, S_{\lambda,B} \) and \(\overline{\text{Ran}} \tilde{S}_{\mu,B'} \) for some \(\lambda, \mu \). Choosing the elements \(u \) and \(v \) in the ranges with \(c_u = 1 \) and \(c_v = 1 \) we have from \([32]\) that

\[
u(x) = \frac{1}{x - \lambda} - \frac{(t - \lambda)^{-1}, \phi}{D(\lambda)} \cdot \psi(x) \quad \text{and} \quad v(x) = \frac{1}{x - \mu} - \frac{(t - \mu)^{-1}, \psi}{D(\mu)} \cdot \phi(x).
\]

As one of the functions \(\phi, \psi \) is only determined up to a scalar factor, we may normalize \(\phi \) such that

\[
\frac{(t - \lambda)^{-1}, \phi}{D(\lambda)} = 1.
\]

This allows us to determine \(\psi \) from the first expression, which also gives us \((t - \mu)^{-1}, \psi\), so \(\phi(x)/D(\mu) \) is known. Solving \(v(x) \) for \(\phi(x) \), we get

\[
(37) \quad \phi(x) = (1 - (x - \mu)v(x)) \frac{D(\mu)}{(t - \mu)^{-1}, \psi}.
\]

Multiplying by \((x - \lambda)^{-1}D(\lambda)^{-1}\) and integrating over \(x \), we can determine \(D(\mu)D(\lambda)^{-1} \) from our normalisation of \(\phi \).

Inserting our expression \([37]\) into \(D(\lambda) = 1 + (x - \lambda)^{-1}, \overline{\psi}\phi \), we get a second equation relating \(D(\lambda) \) and \(D(\mu) \), allowing us to determine \(D(\mu) \) and hence \(\phi(x) \). \(\square \)

Remark 4.4. Note that, if \(\text{Ran} \, S_{\lambda,B} = \text{Span} \{ \frac{1}{x - \lambda} \} \) or \(\overline{\text{Ran}} \tilde{S}_{\mu,B'} = \text{Span} \{ \frac{1}{x - \mu} \} \), it is clear from \([32]\) and \([34]\) that the \(M \)-function in general does not contain sufficient information to recover \(\phi \) and \(\psi \).
The following result shows that nothing like the result of Proposition 4.3 holds for Hain-Lüst operators and therefore no similar result can hold in the abstract setting.

Proposition 4.5. Assume we know \(\text{Ran} S_{\lambda,B} \) and \(\text{Ran} \tilde{S}_{\mu,B} \) for some \(\lambda, \mu \) for the Hain-Lüst operator
\[
\begin{pmatrix}
-\frac{d^2}{dx^2} + q(x) & w(x) \\
\tilde{w}(x) & u(x)
\end{pmatrix}.
\]
Then the operator is not uniquely determined.

Proof. It is sufficient to show the claim for the case when the coefficients of the operator are real. Knowing the ranges of the solution operators corresponds to knowing kernels of the maximal operators and hence two linearly independent solutions each to both of the following equations:
\[
\begin{pmatrix}
-\frac{d^2}{dx^2} + q(x) & w(x) \\
\tilde{w}(x) & u(x)
\end{pmatrix} \begin{pmatrix} y_1 \\ z_1 \end{pmatrix} = \lambda \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}
\]
and
\[
\begin{pmatrix}
-\frac{d^2}{dx^2} + q(x) & w(x) \\
\tilde{w}(x) & u(x)
\end{pmatrix} \begin{pmatrix} y_2 \\ z_2 \end{pmatrix} = \mu \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}.
\]
Write the pairs of solutions as \((y_1, z_1), (\tilde{y}_1, \tilde{z}_1)\), and \((y_2, z_2), (\tilde{y}_2, \tilde{z}_2)\), respectively. Since
\[
z_1 = \frac{\tilde{w}y_1}{u-\lambda}, \quad \tilde{z}_1 = \frac{\tilde{w}\tilde{y}_1}{u-\lambda}, \quad z_2 = \frac{wy_2}{u-\mu}, \quad \tilde{z}_2 = \frac{w\tilde{y}_2}{u-\mu},
\]
setting \(\alpha = \frac{\tilde{w}}{u-\lambda}\) and \(\beta = \frac{w}{u-\mu}\), this can be written in the form
\[
\begin{pmatrix}
y_1 & \alpha y_1 & 0 & 0 \\
\tilde{y}_1 & \alpha \tilde{y}_1 & 0 & 0 \\
y_2 & 0 & \beta y_2 & 0 \\
\tilde{y}_2 & 0 & \beta \tilde{y}_2 & 0 \\
0 & 0 & y_1 & \alpha y_1 \\
0 & 0 & \tilde{y}_1 & \alpha \tilde{y}_1 \\
y_2 & 0 & \beta y_2 & 0 \\
\tilde{y}_2 & 0 & \beta \tilde{y}_2 & 0
\end{pmatrix} \begin{pmatrix}
y_1 \\
\tilde{y}_1 \\
y_2 \\
\tilde{y}_2 \\
y_1 \\
\tilde{y}_1 \\
y_2 \\
\tilde{y}_2
\end{pmatrix} = \begin{pmatrix}
\lambda y_1 + y_1'' \\
\lambda \tilde{y}_1 + \tilde{y}_1'' \\
\mu y_2 + y_2'' \\
\mu \tilde{y}_2 + \tilde{y}_2'' \\
\lambda z_1 \\
\lambda \tilde{z}_1 \\
\mu z_2 \\
\mu \tilde{z}_2
\end{pmatrix} = \begin{pmatrix}
w \\
\tilde{w}
\end{pmatrix}.
\]
A calculation shows that the matrix on the left hand side of the equation does not have full rank for any \(\alpha\) and \(\beta\), so the system is not uniquely solvable.

\[\square\]

4.2. **Reconstruction from two bordered resolvents.** Although we are primarily concerned with inverse problems, it is still interesting to consider some forward problems with partial data arising from the restriction of the resolvent operators to the detectable subspace.

Theorem 4.6. Assume \(P_{\mathcal{H}}(A_B - \lambda)^{-1}\mid_{\mathcal{F}}\) and \(P_{\mathcal{H}}(A_C - \lambda)^{-1}\mid_{\mathcal{F}}\) are known. In addition, assume that
\[(i) \Gamma_2(A_C - \lambda)^{-1}\mathcal{F} \text{ and } \Gamma_2(A_C - \lambda)^{-1} \tilde{\mathcal{F}} \text{ are known},
(ii) \Gamma_2(A_C - \lambda)^{-1}\mathcal{F} \text{ is dense in } \mathcal{H} \text{ and } \Gamma_2(A_C - \lambda)^{-1} \tilde{\mathcal{F}} \text{ is dense in } \mathcal{K},
(iii) \text{Ran}(B - C) \text{ is dense in } \mathcal{H} \text{ and ker}(B - C) = \{0\}. \text{ Then } M_B(\lambda) \text{ can be recovered.}
\]

Proof. Let \(\lambda \in \rho(A_B) \cap \rho(A_C)\). Then the Krein formula (i) gives
\[
(A_B - \lambda)^{-1} - (A_C - \lambda)^{-1} = S_{\lambda,C}(I + (B - C)M_B(\lambda))(B - C)\Gamma_2(A_C - \lambda)^{-1}.
\]
Now let \(f \in \tilde{\mathcal{F}}\) and \(g \in \mathcal{F}\). Then we know
\[
\langle f, (A_B - \lambda)^{-1}g \rangle - \langle f, (A_C - \lambda)^{-1}g \rangle.
\]
Using (7), we obtain
\[
\langle f, (A_B - \lambda)^{-1}g \rangle - \langle f, (A_C - \lambda)^{-1}g \rangle \\
= \langle f, S_{\lambda}C(I + (B - C)M_B(\lambda))(B - C)\Gamma_2(A_C - \lambda)^{-1}g \rangle \\
= \langle \tilde{\Gamma}_2(A_C - \lambda)^{-*}f, (I + (B - C)M_B(\lambda))(B - C)\Gamma_2(A_C - \lambda)^{-1}g \rangle \\
= \langle \tilde{\Gamma}_2(A_C - \lambda)^{-*}f, (B - C)\Gamma_2(A_C - \lambda)^{-1}g \rangle + \\
\langle (B - C)^*\tilde{\Gamma}_2(A_C - \lambda)^{-*}f, M_B(\lambda)(B - C)\Gamma_2(A_C - \lambda)^{-1}g \rangle.
\]

Our assumptions now allow us to recover \(M_B(\lambda)\). \(\square\)

Remark 4.7. Alternatively, knowing the projection to \(\tilde{S}\) of the derivative of the resolvent w.r.t. the boundary condition and one resolvent restricted to \(\tilde{S}\) will suffice, as, for \(C = B + \varepsilon D\) we have from [7]
\[
\frac{(A_B - \lambda)^{-1} - (A_C - \lambda)^{-1}}{\varepsilon} \to S_{\lambda}B\Gamma_2(A_B - \lambda)^{-1} \quad \text{as} \ \varepsilon \to 0.
\]

If we now have the assumption of density of \(D\Gamma_2(A_B - \lambda)^{-1}\tilde{S}\), then for \(f \in \tilde{S}\), \(g \in \tilde{S}\), since
\[
\langle S_{\lambda}B\Gamma_2(A_B - \lambda)^{-1}f, g \rangle = \langle D\Gamma_2(A_B - \lambda)^{-1}f, \tilde{\Gamma}_2(A_B - \lambda)^{-*}g \rangle,
\]
and \(\langle S_{\lambda}B\Gamma_2(A_B - \lambda)^{-1}f, g \rangle\) is known from the derivative, while \(D\Gamma_2(A_B - \lambda)^{-1}f\) is known from the restricted resolvent, knowing the projection of the derivative to \(\tilde{S}\) corresponds to knowing \(\tilde{\Gamma}_2(A_B - \lambda)^{-*}|_\tilde{S}\).

4.3. Information on the resolvent from the \(M\)-function. The following result gives some insight to the inverse problem of reconstructing \(A_B\) from \(M_B(\lambda)\). From examples later, we will see that knowledge of the \(M\)-function does not allow reconstruction of the bordered resolvent (see Remark 8.17).

Theorem 4.8. Assume we know \(M_B(\lambda)\) for all \(\lambda \in \rho(A_B)\), \(\text{Ran} (S_{\mu,B})\) for all \(\mu \in \Lambda\) and \(\text{Ran} (\tilde{S}_{\mu,B}^*)\) for all \(\bar{\mu} \in \bar{\Lambda}\), where \(\Lambda \subseteq \rho(A_B)\) and \(\bar{\Lambda} \subseteq \rho(A_B^*)\) are dense subsets. Then we can reconstruct \(P_S(A_B - \lambda)^{-1}P_S\) for all \(\lambda \in \rho(A_B)\).

Proof. Let \(\mu \in \Lambda\) and \(\bar{\mu} \in \bar{\Lambda}\). Consider [8] for any \(F \in \text{Ran} (S_{\mu,B})\) and \(v \in \text{Ran} (\tilde{S}_{\mu,B}^*)\). Then
\[
\langle F - (A_B - \lambda)^{-1}(A^* - \lambda)F, (A^* - \lambda I)v \rangle = \langle F - (A_B - \lambda)^{-1}(\mu - \lambda)F, (\bar{\mu} - \bar{\lambda} I)v \rangle \\
= -\langle (\Gamma_1 - B\Gamma_2)F, \tilde{\Gamma}_2v \rangle_{\tilde{H}} + \langle M_B(\lambda)(\Gamma_1 - B\Gamma_2)F, (\bar{\Gamma}_1 - B^*\bar{\Gamma}_2)v \rangle_K.
\]

We know the r.h.s. of this equation for any \(F \in \text{Ran} (S_{\mu,B}), v \in \text{Ran} (\tilde{S}_{\mu,B}^*)\) and \(\lambda \in \rho(A_B)\), so we know
\[
\langle F - (A_B - \lambda)^{-1}(\mu - \lambda)F, (\bar{\mu} - \bar{\lambda} I)v \rangle.
\]
Choosing \(\lambda \neq \mu\) and \(\lambda \neq \bar{\mu}\), we know
\[
\langle (A_B - \lambda)^{-1}F, v \rangle = \langle P_S(A_B - \lambda)^{-1}P_S F, v \rangle
\]
for any \(F \in \text{Ran} (S_{\mu,B}), v \in \text{Ran} (\tilde{S}_{\mu,B}^*)\) and \(\lambda \in \rho(A_B) \setminus \{\mu\} \cup \{\bar{\mu}\}\). By continuity, we know it for all \(\lambda \in \rho(A_B)\).
Since \(\text{Span} \{ \text{Ran} (S_{\mu,B}) : \mu \in \Lambda \} \) is dense in \(\mathcal{S} \) and \(\text{Span} \{ \text{Ran} (\tilde{S}_{\tilde{\mu},B^*}) : \tilde{\mu} \in \tilde{\Lambda} \} \) is dense in \(\tilde{\mathcal{S}} \), using boundedness of \(P_{\mathcal{S}} (A_B - \lambda)^{-1} P_{\mathcal{S}} \) gives the result.

\[
\square
\]

5. Analytic continuation

In preparation for the discussion in Section 6 of jumps in \(M_B(\lambda) \) and of the bordered resolvent across the essential spectrum, we now discuss the relationship between the analytic continuation of \(M_B(\lambda) \) and analytic continuation of the bordered resolvent of \(A_B \), both initially defined on the resolvent set of \(A_B \).

Theorem 5.1. Let \(\mu, \tilde{\mu} \in \rho(A_B) \). Assume that for any \(F \in \text{Ran} (S_{\mu,B}) \), \(v \in \text{Ran} (\tilde{S}_{\tilde{\mu},B^*}) \),

\[
\left\langle (A_B - \lambda)^{-1} |_{\mathcal{S}} F, v \right\rangle
\]

admits an analytic continuation to some region \(D \) of the complex plane (possibly on a different Riemann sheet). Then \(M_B(\cdot) \) admits an analytic continuation to the same region \(D \).

Proof. Given \(f \in \mathcal{H} \) and \(\tilde{f} \in \mathcal{K} \), choose \(F = S_{\mu,B} f \) and \(v = \tilde{S}_{\tilde{\mu},B^*} \tilde{f} \). Then (8) becomes

\[
\left\langle F - (\mu - \lambda)(A_B - \lambda)^{-1} F, (\tilde{\mu} - \lambda)v \right\rangle = -\left\langle f, \tilde{\Gamma}_2 v \right\rangle_{\tilde{\mu}} + \left\langle M_B(\lambda)f, \tilde{f} \right\rangle_{\mathcal{K}}
\]

and the l.h.s. admits analytic continuation, so the r.h.s. does as well. \(\square \)

Lemma 5.2. For \(\mu \in \rho(A_B) \),

\[
\left(\frac{d}{d\lambda} S_{\lambda,B} \right)(\mu) = (A_B - \mu)^{-1} S_{\mu,B}.
\]

Proof. From (6), we have

\[
\frac{S_{\lambda,B} f - S_{\mu,B} f}{\lambda - \mu} = (A_B - \lambda)^{-1} S_{\mu,B} f,
\]

which immediately proves the result. \(\square \)

Theorem 5.3. Assume \(M_B(\cdot) \) admits an analytic continuation to some region \(D \) of the complex plane (possibly on a different Riemann sheet). Let \(\mu, \tilde{\mu} \in \rho(A_B) \). Then

\[
\left\langle (A_B - \lambda)^{-1} |_{\tilde{\mathcal{S}}} F, v \right\rangle
\]

admits an analytic continuation to the same region \(D \) for any \(F \in \text{Ran} (S_{\mu,B}) \), \(v \in \text{Ran} (\tilde{S}_{\tilde{\mu},B^*}) \), apart from possible simple poles at \(\mu \) and \(\tilde{\mu} \). If \(\mu = \tilde{\mu} \), a pole of order 2 is possible at this point.

Proof. Let \(F \in \text{Ran} (S_{\mu,B}) \), \(v \in \text{Ran} (\tilde{S}_{\tilde{\mu},B^*}) \). By assumption the r.h.s. of (8) admits analytic continuation, hence so does the l.h.s., given by

\[
\left\langle F - (\mu - \lambda)(A_B - \lambda)^{-1} F, (\tilde{\mu} - \lambda)v \right\rangle.
\]

Since \(\left\langle F, (\tilde{\mu} - \lambda)v \right\rangle \) is clearly analytic, we have that

\[
(\mu - \lambda)(\tilde{\mu} - \lambda) \left\langle (A_B - \lambda)^{-1} F, v \right\rangle
\]

is analytic which gives the desired result. \(\square \)

Remark 5.4. We can extend the set of those vectors for which \(\left\langle (A_B - \lambda)^{-1} |_{\mathcal{S}} F, v \right\rangle \) admits analytic continuation by developing vectors on both sides by taking linear combinations and using the resolvents of \(A_B \) and \(\tilde{A}_{B^*} \) respectively. However, we should not expect the result to extend to the whole of \(\mathcal{S} \) (or \(\tilde{\mathcal{S}} \)) and therefore the bordered resolvent will not necessarily admit analytic continuation.
It is interesting to note that poles of $\langle (A_B - \lambda)^{-1}\mathcal{F},v \rangle$ at μ and $\bar{\mu}$ do arise in concrete examples, though they may sometimes be cancelled by other terms.

Example 5.5. Let $\mu \in \mathbb{C}^-, \bar{\mu} \in \mathbb{C}^+$. Consider an example of the Friedrichs model from Section 3.3, where $\phi \in H_2^-$, $\psi \in H_2^+$ are rational functions with poles in suitable half-planes such that $\psi(\lambda)\phi(\bar{\lambda})$ does not have poles at μ or $\bar{\mu}$. Then

$$F_\mu := \frac{1}{x - \mu} \in H_2^+ \cap \ker (\bar{A}^* - \mu) \quad \text{and} \quad v_\mu := \frac{1}{x - \mu} \in H_2^+ \cap \ker (A^* - \bar{\mu}).$$

We consider the analytic continuation of the functions $M_B(\cdot)$ and $\langle (A_B - \cdot)^{-1}F_\mu, v_\mu \rangle$ from the upper to the lower half-plane.

From (48), we get for $\lambda \in \mathbb{C}^+$

$$\langle (A_B - \lambda)^{-1}F_\mu, v_\mu \rangle = -\left(M_B(\lambda)(\Gamma_1 - B\Gamma_2)F_\mu, (\bar{\Gamma}_1 - B^*\bar{\Gamma}_2)v_\mu \right) + \left((\Gamma_1 - B\Gamma_2)F_\mu, \bar{\Gamma}_2v_\mu \right) + \left(F_\mu, (\mu - \bar{\lambda})v_\mu \right).$$

Now,

$$\langle F_\mu, v_\mu \rangle = \left\langle \frac{1}{x - \mu}, \frac{1}{x - \mu} \right\rangle = 0,$$

$$(\Gamma_1 - B\Gamma_2)F_\mu = (\Gamma_1 - B\Gamma_2)\frac{1}{x - \mu} = -\pi i - B$$

$$(\bar{\Gamma}_1 - B^*\bar{\Gamma}_2)v_\mu = \pi i - B^* \quad \text{and} \quad \bar{\Gamma}_2v_\mu = 1.$$

Thus (41) gives

$$(\lambda - \mu)(\lambda - \bar{\mu})\langle (A_B - \lambda)^{-1}F_\mu, v_\mu \rangle = -M_B(\lambda)(-\pi i - B)(-\pi i - B) + (-\pi i - B) = -\pi i - B + M_B(\lambda)(\pi i + B + 1),$$

or

$$\langle (A_B - \lambda)^{-1}F_\mu, v_\mu \rangle = -\frac{(\pi i + B)(M_B(\lambda)(\pi i + B) + 1)}{(\lambda - \mu)(\lambda - \bar{\mu})} = \frac{-2\pi i}{\pi i + B} - 2\pi i\psi(\lambda)\phi(\bar{\lambda})^{-1}.$$

From (34) we get

$$M_B(\lambda) = \left[\pi i + \frac{4\pi^2\psi(\lambda)\phi(\bar{\lambda})}{1 + 2\pi i\psi(\lambda)\phi(\bar{\lambda})} - B \right]^{-1} = \left[-\pi i - B + \frac{2\pi i}{1 + 2\pi i\psi(\lambda)\phi(\bar{\lambda})} \right]^{-1}.$$

This $M_B(\cdot)$ admits an analytic continuation to the lower half-plane while the analytic continuation of $\langle (A_B - \cdot)^{-1}F_\mu, v_\mu \rangle$ given by (42) has poles at μ and $\bar{\mu}$.

In the case when $B \neq -\pi i$, to cancel the poles in (42) we need to chose poles of the analytic continuation of $\psi(\lambda)\phi(\bar{\lambda})$ to lie at μ and $\bar{\mu}$. Note that the poles appearing in Theorem 5.3 should not be confused with resonances (poles of the analytic continuation of M_B). Here the resonances are due to zeroes of $\frac{\pi i - B}{\pi i + B} - 2\pi i\psi(\lambda)\phi(\bar{\lambda})$ in formula (42).
6. Abstract Theory: Relation Between Jumps of M_B and Bordered Resolvent

We consider the case in which A_B and A_B^* have essential spectrum lying on the real axis; we wish to examine in what sense $M_B(\lambda)$ jumps across the real axis, and how this may be related to a jump in the resolvent $(A_B - \lambda)^{-1}$.

Assumption 1. We assume that there exist countable families $\{f_i\}_{i \in I}$, $\{w_j\}_{j \in \tilde{I}}$ in \mathcal{H} and \mathcal{K} respectively, whose closed linear spans are \mathcal{H} and \mathcal{K}, and that for these families the inner products $\langle M_B(\lambda)f_i, w_j \rangle$ lie in both the Nevanlinna classes $N(\mathbb{C}_\pm)$. This implies that they have non-tangential boundary values $\langle M_B(k \pm i0)f_i, w_j \rangle$ for a.e. $k \in \mathbb{R}$. The class $N(\mathbb{C}_\pm)$ consists of all meromorphic functions on \mathbb{C}_\pm which can be represented as the quotient of two bounded analytic functions in the corresponding half-plane (see [29]).

Our first result is that this assumption is equivalent to an assumption on the resolvent.

Lemma 6.1. The functions $\langle M_B(\lambda)f_i, w_j \rangle$ lie in $N(\mathbb{C}_\pm)$ if and only if, for every $\mu \notin \sigma(A_B)$ and $\tilde{\mu} \notin \sigma(\tilde{A}_B)$, the functions $\langle (A_B - \lambda)^{-1}S_{\mu,B}f_i, \tilde{S}_{\tilde{\mu},B^*}w_j \rangle$ lie in $N(\mathbb{C}_\pm)$.

Proof. Starting with the fundamental identity

$$\langle (\tilde{A}^* - \lambda)u, v \rangle - \langle u, (A^* - \lambda)v \rangle = \langle \Gamma_1u, \tilde{\Gamma}_2v \rangle - \langle \Gamma_2u, \tilde{\Gamma}_1v \rangle$$

and making the choices $u = (A_B - \lambda)^{-1}S_{\mu,B}f_i$, $v = \tilde{S}_{\tilde{\mu},B^*}w_j$ leads to

$$\langle S_{\mu,B}f_i, w_j \rangle - \langle (A_B - \lambda)^{-1}S_{\mu,B}f_i, (\tilde{\mu} - \lambda)\tilde{S}_{\tilde{\mu},B^*}w_j \rangle = \langle \Gamma_2(A_B - \lambda)^{-1}S_{\mu,B}f_i, \tilde{\Gamma}_1\tilde{S}_{\tilde{\mu},B^*}w_j \rangle - \langle \Gamma_2(A_B - \lambda)^{-1}S_{\mu,B}f_i, \tilde{\Gamma}_1\tilde{S}_{\tilde{\mu},B^*}w_j \rangle. \quad (44)$$

If the functions $\langle M_B(\lambda)f_i, w_j \rangle$ lie in $N(\mathbb{C}_\pm)$ then, thanks to the identity

$$M_B(\lambda) = \Gamma_2(I + (\lambda - \mu)(A_B - \lambda)^{-1})S_{\mu,B}, \quad (45)$$

the terms $\langle \Gamma_2(A_B - \lambda)^{-1}S_{\mu,B}f_i, \cdot \rangle$ appearing in (44) also lie in $N(\mathbb{C}_\pm)$, so

$$\langle (A_B - \lambda)^{-1}S_{\mu,B}f_i, (\tilde{\mu} - \lambda)\tilde{S}_{\tilde{\mu},B^*}w_j \rangle$$

lies in $N(\mathbb{C}_\pm)$. This implies that $\langle (A_B - \lambda)^{-1}S_{\mu,B}f_i, \tilde{S}_{\tilde{\mu},B^*}w_j \rangle$ lies in $N(\mathbb{C}_\pm)$.

The converse result is immediate from equation (45): if inner products of the form

$$\langle (A_B - \lambda)^{-1}S_{\mu,B}f_i, \tilde{S}_{\tilde{\mu},B^*}w_j \rangle$$

lie in $N(\mathbb{C}_\pm)$ then so do the inner products $\langle M_B(\lambda)f_i, w_j \rangle$.

Theorem 6.2. Suppose that Assumption [7] holds and that $\varepsilon|\langle M_B(k \pm i\varepsilon)f, w \rangle| \to 0$ as $\varepsilon \to 0$, for a.e. $k \in \mathbb{R}$ for f, w in a dense countable subset of the boundary spaces. Choose sets $\{\mu_i\}_{i \in I}$, $\{\tilde{\mu}_j\}_{j \in \tilde{I}}$ non-real and outside $\sigma(A_B)$. Let $F_i = S_{\mu_i,B}f_i$, $v_j = \tilde{S}_{\tilde{\mu}_j,B^*}w_j$. Then for a.e. $k \in \mathbb{R}$,

$$\text{rank} \left(\frac{P_{\langle w_j \rangle}(A_B - \lambda)^{-1}P_{\{F_i\}}}{\lambda = k} \right) = \text{rank} \left(\frac{P_{\langle w_j \rangle}M_B(\lambda)P_{\{F_i\}}}{\lambda = k} \right).$$

where by $P_{\langle w_j \rangle}$ and $P_{\{w_j\}}$ we denote the projections onto the indicated one-dimensional spaces, and $\left[\cdot \right]_{\lambda = k}$ denotes the jump between $\lambda = k + i\varepsilon$ and $\lambda = k - i\varepsilon$ as $\varepsilon \to 0$.

In order to prove Theorem 6.2 we require the following lemma.

Lemma 6.3. The collections $\{F_i\}_{i \in I}$ and $\{v_j\}_{j \in \tilde{I}}$ are both linearly independent.
Proof. We give the proof for the collection \(\{F_i\}_{i \in I} \); the remaining case is similar. Assume that there are some constants \(\alpha_i \) such that \(\sum_i \alpha_i F_i = 0 \). Let \(\zeta \in \mathbb{C} \): applying \((A^* - \zeta)^k\) for some \(k \in \mathbb{N} \) we get \(\sum F_i \alpha_i (\mu_i - \zeta)^k F_i = 0 \). First, assume all the \(\mu_i \) are distinct. Then we can choose \(i_0 \) and \(\zeta \) such that \(|\mu_{i_0} - \zeta| > |\mu_i - \zeta| \) for \(i \neq i_0 \). Letting \(k \to \infty \) we deduce that \(\alpha_{i_0} F_{i_0} = 0 \). Proceeding in this way we get \(\alpha_i = 0 \) for all \(i \) as long as the \(\mu_i \) are distinct.

If we have a collection of \(\mu_i \) which are all equal, say for \(i \in J \), where \(J \) is some index set, then we can prove that for some appropriately chosen \(\zeta \) we have \(0 = \sum_{i \in J} \alpha_i (\mu_i - \zeta)^k S_{\mu_i, B} f_i \), giving, for \(\ell \in J \), \(S_{\mu_i, B} \sum_{i \in J} \alpha_i f_i = 0 \). This implies that \(\sum_{i \in J} \alpha_i f_i = 0 \) and hence that \(\alpha_i = 0 \) for all \(i \in J \), by linear independence of the \(\{f_i\} \).

\[\square \]

Corollary 6.4. The collections \(\{\mu_i - k\} F_i \) and \(\{\mu_j - k\} v_j \) are both linearly independent as long as \(\mu_i \neq k, \mu_j \neq k \), for all \(i, j \).

Proof of Theorem 6.2. We use the fundamental identity (8), which yields

\[\langle F_i - (A_B - \lambda)^{-1}(\tilde{A}^* - \lambda) F_i, A^* - \bar{\lambda} I \rangle v_j \rangle = \langle f_i, \bar{\Gamma}_2 v_j \rangle_H + \langle M_B(\lambda) f_i, w_j \rangle_K \]

for all \(i \in I, j \in \bar{I} \) and \(\lambda = k + i \varepsilon \). The jump at \(k \) of the right hand side is clearly given by \([M_B(k)] f_i, w_j \rangle_K \), which for convenience we denote by \([M_B(k)] f_i, w_j \rangle_K \). By our assumptions on the \(\{f_i\} \) and \(\{w_j\} \), this is nonzero if and only if \([M_B](k) \neq 0 \).

Now consider the left hand side of (46). Clearly, \(\langle F_i, (A^* - \bar{\lambda} I) v_j \rangle \) has no jump. Defining

\[G(\lambda) := \langle (A_B - \lambda)^{-1} F_i, A^* v_j \rangle + \langle (A_B - \lambda)^{-1} \tilde{A}^* F_i, v_j \rangle \]

the negative of the remaining term on the left hand side of (46) is

\[\langle (A_B - \lambda)^{-1}(\tilde{A}^* - \lambda) F_i, (A^* - \bar{\lambda} I) v_j \rangle = \langle (A_B - \lambda)^{-1} \tilde{A}^* F_i, A^* v_j \rangle - \lambda G(\lambda) \]

\[+ |\lambda|^2 \langle (A_B - \lambda)^{-1} F_i, v_j \rangle. \]

Observe that \([\lambda G(\lambda)] = k[G](k) + \lim_{\varepsilon \to 0} i\varepsilon (G(k + i\varepsilon) + G(k - i\varepsilon)) \). We shall prove later that

\(\lim_{\varepsilon \to 0} \varepsilon \langle (A_B - \lambda)^{-1} F_i, v_j \rangle = 0 \) for a.e. \(k \).

This implies \([\lambda G(\lambda)] = k[G](k) \) and that

\[|\lambda|^2 \langle (A_B - \lambda)^{-1} F_i, v_j \rangle = k^2 \langle [(A_B - \lambda)^{-1}] F_i, v_j \rangle; \]

hence, from (48), the formula

\[- \left(\langle (A_B - \lambda)^{-1}(\tilde{A}^* - \lambda) F_i, (A^* - \bar{\lambda} I) v_j \rangle \right) = \langle [(A_B - \lambda)^{-1}(\tilde{A}^* - k) F_i, (A^* - k) v_j \rangle \]

gives the jump of the left hand side of (46). We therefore have

\[-(\mu_i - k)(\bar{\mu}_j - k) \langle [(A_B - \lambda)^{-1}] F_i, v_j \rangle = \langle [M_B](k) f_i, w_j \rangle_K, \]

from which our result follows.

It remains to establish (49). Returning to (46) we have

\[-(\mu_i - \lambda)(\bar{\mu}_j - \lambda) \langle (A_B - \lambda)^{-1} F_i, v_j \rangle = \langle \bar{\mu}_j - \lambda \rangle \langle F_i, v_j \rangle - \langle f_i, \bar{\Gamma}_2 v_j \rangle_H + \langle M_B(\lambda) f_i, w_j \rangle_K \]

whence

\[\left| \langle (A_B - \lambda)^{-1} F_i, v_j \rangle \right| \leq \frac{|\bar{\mu}_j - \lambda| \left| \langle F_i, v_j \rangle \right| + \left| \langle f_i, \bar{\Gamma}_2 v_j \rangle_H \right| + \left| \langle M_B(\lambda) f_i, w_j \rangle_K \right|}{|\mu_i - \lambda||\bar{\mu}_j - \lambda|}. \]
Thus (49) is an immediate consequence of the hypothesis that $\varepsilon|\langle MB(k \pm i\varepsilon)f, w\rangle| \to 0$ as $\varepsilon \searrow 0$, for a.e. $k \in \mathbb{R}$.

Theorem 6.5. Let $\{f_i\}_{i \in I}$ and $\{w_j\}_{j \in J}$ be linearly independent vectors whose spans are dense in \mathcal{H} and \mathcal{K} respectively. Let $\{\mu_i\}_{i \in I}$ and $\{\tilde{\mu}_i\}_{i \in \tilde{I}}$ be collections of distinct strictly complex numbers dense in $\mathbb{C} \setminus \sigma(A_B)$ and $\mathbb{C} \setminus \sigma(A_{\tilde{B}})$ respectively. Define $F_{i,\ell} = S_{\mu_i,B}f_i$, $v_{j,\nu} = \tilde{S}_{\tilde{\mu}_j,B}w_j$.

1. The collections $\{F_{i,\ell}\}_{i \in I, \ell \in J}$ and $\{v_{j,\nu}\}_{j \in J, \nu \in \tilde{J}}$ are both linearly independent and their spans are dense in $\overline{\mathcal{S}}$ and \mathcal{S} respectively.

2. For $N, M \in \mathbb{N}$ let $P_{N,\mathcal{S}}$ and $P_{M,\mathcal{S}}$ denote projections onto N- and M-dimensional subspaces of $\overline{\mathcal{S}}$ and \mathcal{S} respectively, spanned by N of the $F_{i,\ell}$ and M of the $v_{j,\nu}$ respectively, chosen such that $\lim_{N \to \infty} P_{N,\mathcal{S}} = I$ and $\lim_{M \to \infty} P_{M,\mathcal{S}} = I$, in the sense of strong convergence. Put

$$E_1 = \left\{ k \in \mathbb{R} \mid [MB](k) \text{ exists in the weak topology} \right\},$$

$$E_2 = \left\{ k \in \mathbb{R} \mid \lim_{\varepsilon \searrow 0} \varepsilon|\langle MB(k \pm i\varepsilon)f, w\rangle| = 0 \text{ for all } i, j \right\}.$$

For any $k \in E_1 \cap E_2$ we have that $[P_{M,\mathcal{S}}(AB - \lambda)^{-1}P_{N,\mathcal{S}}](k)$ exists; moreover

$$\lim_{N, M \to \infty} \text{rank}([P_{M,\mathcal{S}}(AB - \lambda)^{-1}P_{N,\mathcal{S}}]|_{\lambda=k})$$

exists and is equal to $\text{rank}([MB](k))$.

Proof.

1. The fact that the closed linear spans of the sets $\{F_{i,\ell}\}_{i \in I, \ell \in J}$ and $\{v_{j,\nu}\}_{j \in J, \nu \in \tilde{J}}$ are $\overline{\mathcal{S}}$ and \mathcal{S} follows immediately from the definitions of $\overline{\mathcal{S}}$ and \mathcal{S} together with the fact that the closed linear spans of $\{f_i\}_{i \in I}$ and $\{w_j\}_{j \in J}$ are \mathcal{H} and \mathcal{K} respectively. It remains only to establish linear independence. Assume that there exist constants $\alpha_{i,\ell}$ such that $\sum_{i,\ell} \alpha_{i,\ell} F_{i,\ell} = 0$. This means that $\sum_{i,\ell} \alpha_{i,\ell} S_{\mu_i,B}f_i = 0$. Applying A^* k times yields

$$\sum_{i,\ell} \alpha_{i,\ell} \mu_i^k F_{i,\ell} = \sum_{\ell} \mu_i^k \sum_{i} \alpha_{i,\ell} F_{i,\ell} = 0, \quad k = 0, 1, 2, \ldots .$$

Since the μ_i are distinct this yields $\sum_i \alpha_{i,\ell} F_{i,\ell} = 0$ for all ℓ. This means $S_{\mu_i,B} \sum_i \alpha_{i,\ell} f_i = 0$, and since $S_{\mu_i,B}$ has a left inverse this implies $\sum_i \alpha_{i,\ell} f_i = 0$. But the $\{f_i\}$ are linearly independent, so we deduce that $\alpha_{i,\ell} = 0$ for all i and ℓ.

2. Let $P_{N,\mathcal{S}}$ denote projection onto N of the $F_{i,\ell}$ and $P_{M,\mathcal{S}}$ denote projection onto M of the $v_{j,\nu}$, chosen in each case to be such that $P_{N,\mathcal{S}}$ and $P_{M,\mathcal{S}}$ converge strongly to the identity. Let $P_{N'}$ and $\tilde{P}_{M'}$ denote projections onto the spaces spanned by the corresponding f_i, of which there will be $N' \leq N$, and w_j, of which there will be $M' \leq M$. Since $k \in E_1 \cap E_2$ we may invoke (50) from the proof of Theorem 6.2 and deduce that

$$-(\mu_\ell - k)(\tilde{\mu}_\nu - k) \left\langle [P_{M,\mathcal{S}}(AB - \lambda)^{-1}P_{N,\mathcal{S}}]|_{\lambda=k} F_{i,\ell}, v_{j,\nu} \right\rangle = \left\langle [\tilde{P}_{M'} MB(\lambda)P_{N'}]|_{\lambda=k} f_i, w_j \right\rangle.$$

As $k \in \mathbb{R}$ we know that $\mu_\ell \neq k$ and $\tilde{\mu}_\nu \neq k$, so we define

$$X_{i,\ell} = (\mu_\ell - k) F_{i,\ell}, \quad Y_{j,\nu} = -(\tilde{\mu}_\nu - k) v_{j,\nu}.$$

The vectors $\{X_{i,\ell}\}$ and $\{Y_{j,\nu}\}$ are both linearly independent, and for each $\ell \in J, \nu \in \tilde{J}$ we have

$$\left\langle [P_{M,\mathcal{S}}(AB - \lambda)^{-1}P_{N,\mathcal{S}}]|_{\lambda=k} X_{i,\ell}, Y_{j,\nu} \right\rangle = \left\langle [\tilde{P}_{M'} MB(\lambda)P_{N'}]|_{\lambda=k} f_i, w_j \right\rangle.$$
Define M_1 to be the matrix with entries
\[
\left\langle \left[P_{M,S}(A_B - \lambda)^{-1} P_{N,S} \right]_{\lambda=k} X_{i,\ell}, Y_{j,\nu} \right\rangle,
\]
ordered by incrementing ℓ and ν before i and j, and M_2 to be the matrix with entries
\[
\left\langle \left[\hat{P}_{M'} M_B(\lambda) P_N \right]_{\lambda=k} f_i, w_j \right\rangle.
\]
It follows from the definition of the Kronecker product that
\[
M_1 = M_2 \otimes E
\]
in which E is a matrix whose entries are all equal to 1. By consideration of the singular values of the Kronecker product (E has only one non-zero singular value) it follows that M_1 and M_2 have the same rank, and hence that
\[
\text{rank}(\left[P_{M,S}(A_B - \lambda)^{-1} P_{N,S} \right]_{\lambda=k}) = \text{rank}(\left[\hat{P}_{M'} M_B(\lambda) P_N \right]_{\lambda=k}).
\]
If we define
\[
\text{rank}(\left[P_{S}(A_B - \lambda)^{-1} P_{S} \right]_{\lambda=k}) := \lim_{M,N \to \infty} \text{rank}(\left[P_{M,S}(A_B - \lambda)^{-1} P_{N,S} \right]_{\lambda=k})
\]
and exploit the fact that the $\{ f_i \}_{i \in I}$ and $\{ v_j \}_{j \in J}$ exhaust \mathcal{H} and \mathcal{K} respectively, then it follows that
\[
\text{rank}(\left[P_{S}(A_B - \lambda)^{-1} P_{S} \right]_{\lambda=k}) = \text{rank}(\left[M_B(\lambda) \right]_{\lambda=k}).
\]
\[\square\]

As a final remark, we mention that $\text{rank}(\left[P_{S}(A_B - \lambda)^{-1} P_{S} \right]_{\lambda=k})$ is the multiplicity of the absolutely continuous spectrum of $A_B|_{\mathcal{S}}$.

7. Friedrichs model: reconstruction of $M_B(\lambda)$ from one restricted resolvent $(A_B - \lambda)^{-1}|_{\mathcal{S}}$

We have now finished our abstract considerations and the remainder of the paper is devoted to a detailed analysis of the Friedrichs model.

In this section we show how to reconstruct $M_B(\lambda)$ explicitly from the restricted resolvent. The fact that even the bordered resolvent determines $M_B(\lambda)$ uniquely was proved in the abstract setting in Theorem 4.1 but of course methods of reconstruction depend on the concrete operators under scrutiny.

We introduce the notation $\hat{\phi}$ for the Cauchy or Borel transform given by
\[
\hat{\phi}(\lambda) = \left\langle \frac{1}{t - \lambda}, \phi \right\rangle, \quad \hat{\psi}(\lambda) = \left\langle \frac{1}{t - \lambda}, \psi \right\rangle
\]
and $P_\pm : L^2(\mathbb{R}) \to H_2^\pm(\mathbb{R})$ for the Riesz projections given by
\[
P_\pm f(k) = \pm \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \hat{f}(k \pm i\varepsilon) = \pm \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \int_{\mathbb{R}} f(x) \frac{1}{x - (k \pm i\varepsilon)} \, dx,
\]
where the limit is to be understood in $L^2(\mathbb{R})$ (see [28]). Here, $H_2^+(\mathbb{R})$ and $H_2^-(\mathbb{R})$ denote the Hardy spaces of boundary values of p-integrable functions in the upper and lower complex half-plane, respectively. To simplify notation, we also sometimes write $(f)_\pm(k) = \hat{f}(k \pm i0) := 2\pi i P_\pm f(k)$.

Theorem 7.1. For the Friedrichs model, assume that $(A_B - \lambda)^{-1}|_{\mathcal{S}}$ is known for all $\lambda \in \rho(A_B) \setminus \mathbb{R}$. Then $M_B(\lambda)$ can be recovered.
Remark 7.2. We assume that \((A_B - \lambda)^{-1}|_{\mathfrak{F}}\) is known for all \(\lambda \in \mathcal{F}(A_B) \setminus \mathbb{R}\), though it is certainly sufficient to know it at one point in each connected component of \(\mathbb{C} \setminus \sigma(A_B)\). If \(\sigma(A_B)\) does not cover all of either half-plane \(\mathbb{C}_\pm\) then it is enough to know \((A_B - \lambda)^{-1}|_{\mathfrak{F}}\) at two points, one in each of \(\mathbb{C}_\pm\). If, additionally, \(\sigma(A_B)\) does not cover \(\mathbb{R}\), then it suffices to know \((A_B - \lambda)^{-1}|_{\mathfrak{F}}\) for just one value of \(\lambda\).

Proof of Theorem 7.1. 1. Recovering the function \(\psi\). Take non-zero \(g \in \mathfrak{F}\) and \(\lambda \in \mathbb{C} \setminus (\mathbb{R} \cup \sigma(A_B))\). Observe that (55) may be rewritten in the form

\[
(53) \quad f(x) - \frac{g(x)}{x - \lambda} - \frac{c_f}{x - \lambda} = \frac{\psi(x)}{x - \lambda} A(\lambda),
\]

in which

\[
A(\lambda) = -\frac{1}{D(\lambda)} \left[\left\langle \frac{g(t - \lambda, \phi)}{t - \lambda}, \phi \right\rangle + c_f \left\langle \frac{1}{t - \lambda}, \phi \right\rangle \right]
\]

and \(D(\lambda)\) is given by (33). The left hand side of (53) is known as a function of \(\lambda\), at least for \(g \in \mathfrak{F}\). To determine \(\psi\) up to a scalar multiple it is therefore sufficient to find \(g\) and \(\lambda\) so that \(A(\lambda)\) is non-zero: in other words, find \(g\) such that the function \(A(\cdot)\) is not identically zero.

We proceed by contradiction. Suppose we have a non-trivial Friedrichs model (i.e. neither \(\phi\) nor \(\psi\) is identically zero). If \(A(\cdot)\) is identically zero then multiplying by \(M_B(\lambda)^{-1}\) from (34) and using (36) we obtain

\[
\begin{align*}
\left[i\pi \text{sign}(3\lambda) - \frac{1}{D(\lambda)} \left\langle \frac{1}{t - \lambda}, \phi \right\rangle \left\langle \frac{1}{t - \lambda}, \psi \right\rangle - B \right] & \left\langle \frac{g}{t - \lambda}, \phi \right\rangle \\
& + \left[- \left\langle \frac{1}{t - \lambda}, \psi \right\rangle + \frac{1}{D(\lambda)} \left\langle \frac{g}{t - \lambda}, \phi \right\rangle \left\langle \frac{1}{t - \lambda}, \psi \right\rangle \right] \left\langle \frac{1}{t - \lambda}, \phi \right\rangle \equiv 0,
\end{align*}
\]

from which it follows

\[
(54) \quad (i\pi \text{sign}(3\lambda) - B) \left\langle \frac{g}{t - \lambda}, \phi \right\rangle - \left\langle \frac{1}{t - \lambda}, \psi \right\rangle \left\langle \frac{1}{t - \lambda}, \phi \right\rangle \equiv 0.
\]

For all non-real \(\mu\) such that \(D(\mu)\) is nonzero (this is true for a.e. non-real \(\mu\) by analyticity), there exists \(g \in \mathfrak{F}\) in the range of the solution operator \(S_{\mu,B}\). We know from (32) that such \(g\) have the form

\[
(55) \quad g(x) = \frac{1}{x - \mu} - \frac{1}{D(\mu)} \left\langle \frac{1}{t - \mu}, \phi \right\rangle \frac{\psi(x)}{x - \mu},
\]

though we do not know the function \(\psi\) or the value of \(\frac{1}{D(\mu)} \left\langle \frac{1}{t - \mu}, \phi \right\rangle\). Substituting (56) into (55) yields

\[
(57) \quad (i\pi \text{sign}(3\lambda) - B) \left[\left\langle \frac{1}{(t - \mu)(t - \lambda)}, \phi \right\rangle - \frac{1}{D(\mu)} \left\langle \frac{1}{t - \mu}, \phi \right\rangle \left\langle \frac{\psi}{(t - \mu)(t - \lambda)}, \phi \right\rangle \right] \left\langle \frac{1}{t - \lambda}, \phi \right\rangle \equiv 0.
\]

If we use the identity

\[
(58) \quad \frac{\lambda - \mu}{(t - \lambda)(t - \mu)} = \frac{1}{t - \lambda} - \frac{1}{t - \mu}
\]
and use the notations from (51) then multiplying by \((\lambda - \mu)\), (57) becomes
\[
(i\pi \text{sign}(3\lambda) - B) \left[\tilde{\phi}(\lambda) - \tilde{\phi}(\mu) - \frac{1}{D(\mu)} \tilde{\phi}(\mu)(D(\lambda) - D(\mu)) \right]
\]
\[
\equiv \tilde{\phi}(\lambda) \left[\int_{\mathbb{R}} \frac{\lambda - \mu}{(t - \lambda)(t - \mu)} dt - \frac{\tilde{\phi}(\mu)}{D(\mu)} (\hat{\psi}(\lambda) - \hat{\psi}(\mu)) \right].
\]
(59)

Performing the integral for the case in which \(3\lambda \cdot 3\mu < 0\), we obtain
\[
(i\pi \text{sign}(3\lambda) - B) \left[\tilde{\phi}(\lambda) - \frac{D(\lambda)}{D(\mu)} \tilde{\phi}(\mu) \right] \equiv \tilde{\phi}(\lambda) \left[\pm 2\pi i - \frac{\tilde{\phi}(\mu)}{D(\mu)} (\hat{\psi}(\lambda) - \hat{\psi}(\mu)) \right].
\]
(60)

Fix \(\lambda\) and let \(\mu \to i\infty\), so that \(D(\mu) \to 1\) and \(\tilde{\phi}(\mu) \to 0\). This yields
\[
(i\pi \text{sign}(3\lambda) - B) \tilde{\phi}(\lambda) \equiv \pm 2\pi i \tilde{\phi}(\lambda).
\]
(61)

If, on the other hand, we consider \(3\lambda \cdot 3\mu > 0\) in (59) then the value of the integral is zero, and we obtain, upon letting \(\mu \to i\infty\),
\[
(i\pi \text{sign}(3\lambda) - B) \tilde{\phi}(\lambda) \equiv 0.
\]
(62)

Equations (61, 62) together imply that \(\tilde{\phi}\) is identically zero, and hence so is \(\phi\). In this case the function \(\psi\) is irrelevant and so our Friedrichs model is trivial, a contradiction. Thus (53) determines \(\psi\) up to a constant multiple. We may choose this (non-zero) multiple arbitrarily, since \(\phi\) can be rescaled if necessary to obtain the correct Friedrichs model.

2. Recovering the boundary condition parameter \(B\). Returning to the parameter \(c_f\) in (36) and using the notation (51), we have
\[
\left[i\pi \text{sign}(3\lambda) - B - \frac{1}{D(\lambda)} \tilde{\phi}(\lambda) \hat{\psi}(\lambda) \right] c_f = \left[-\left\langle \frac{1}{t - \lambda}, g \right\rangle + \frac{1}{D(\lambda)} \left\langle \frac{g}{t - \lambda}, \phi \right\rangle \left\langle \frac{1}{t - \lambda}, \hat{\psi} \right\rangle \right]
\]
\[
= -\left\langle \frac{1}{t - \lambda}, g \right\rangle + O\left(\|g\|_2 |3\lambda|^{-3/2} \right),
\]
as \(3\lambda \to \infty\), and uniformly in \(g\). Now choose an element
\[
g(x) \equiv g_\mu(x) := \frac{1}{x - \mu} - \sigma(\mu) \frac{\psi(x)}{x - \mu},
\]
\(\mu \in \mathbb{C} \setminus \mathbb{R}, \ D(\mu) \neq 0\), with some \(\sigma(\mu) = O(|3\mu|^{-1/2})\). We know that such \(\sigma(\mu)\) exists, and indeed may be chosen as \(\tilde{\phi}(\mu)/D(\mu)\), but we do not yet know \(\phi\) and therefore do not claim that our particular choice of \(\sigma\) is given by this formula. We fix some choice of \(\sigma\), so that \(g = g_\mu\) is determined and \(c_f\) is known as a function of \(\lambda\) and \(\mu\). We have
\[
(i\pi \text{sign}(3\lambda) - B + O(|3\lambda|^{-1})) c_f
\]
\[
= \left[-\left\langle \frac{1}{t - \lambda}, \frac{1}{t - \mu} \right\rangle + \sigma(\mu) \left\langle \frac{1}{t - \lambda}, \frac{\psi}{t - \mu} \right\rangle + O(|3\lambda|^{-3/2}) \|g_\mu\|_2 \right]
\]
\[
= -\int_{\mathbb{R}} \frac{1}{(t - \lambda)(t - \mu)} dt + O(|3\mu|^{-3/2}) O(|3\lambda|^{-1/2})
\]
\[
+ O(|3\lambda|^{-3/2}) \left(O(|3\mu|^{-1/2}) + \|\psi\|_2 \frac{\|\sigma(\mu)\|}{|3\mu|} \right).
\]
Assuming that $\Im \lambda \cdot \Im \mu < 0$, we know that
\[
- \int_{\mathbb{R}} \frac{1}{(t - \lambda)(t - \mu)} dt = \frac{\pm 2\pi i}{\lambda - \mu}.
\]
Put $\lambda = -\mu$ and letting $\Im \mu \to \infty$, we obtain
\[
(i\pi \text{sign}(\Im \lambda) - B)c_f = \frac{\pm 2\pi i}{2\lambda} + O(|\lambda|^{-2}).
\]
For one choice of $\text{sign}(\Im \lambda)$ at least, $i\pi \text{sign}(\Im \lambda) - B \neq 0$ and so we can recover B from the asymptotic behaviour of c_f as $\Im \lambda \to \infty$.

3. Recovering $\hat{\phi}(\lambda)/D(\lambda)$. Once again we choose $g = g_\mu$ of the form \[63\). Returning to \[53\] and indicating the μ-dependence of f by writing $f = f_\mu = (A_B - \lambda)^{-1}g_\mu$, we have
\[
(A_B - \lambda)^{-1}g_\mu - \frac{g_\mu(x)}{x - \lambda} - \frac{c f_\mu(\lambda)}{x - \lambda} = - \frac{\psi(x)}{x - \lambda D(\lambda)} \left[\left< \frac{g_\mu}{t - \lambda}, \phi \right> + c f_\mu(\lambda) \left< \frac{1}{t - \lambda}, \phi \right> \right].
\]
Since the left hand side of this equation is known and since ψ is known, this implies that
\[
\frac{1}{D(\lambda)} \left[\left< \frac{g_\mu}{t - \lambda}, \phi \right> + c f_\mu(\lambda) \left< \frac{1}{t - \lambda}, \phi \right> \right]
\]
is known. Substituting the known choice of g_μ we discover that
\[
\frac{1}{D(\lambda)} \left[\left< \frac{1}{(t - \lambda)(t - \mu)}, \phi \right> - \sigma(\mu) \left< \frac{\psi}{(t - \lambda)(t - \mu)}, \phi \right> + c f_\mu(\lambda) \left< \frac{1}{t - \lambda}, \phi \right> \right](\lambda - \mu)
\]
is known too. Using identity \[58\] this means that
\[
\frac{1}{D(\lambda)} \left[\hat{\phi}(\lambda) - \hat{\phi}(\mu) - \sigma(\mu)(D(\lambda) - D(\mu)) + (\lambda - \mu)c f_\mu(\lambda)\hat{\phi}(\lambda) \right]
\]
is known. We shall now fix λ and let $\Im \mu \to \infty$, for which purpose we need to know how $(\lambda - \mu)c f_\mu(\lambda)$ will behave. From \[36\], we have
\[
c f_\mu(\lambda)(\lambda - \mu) = (\lambda - \mu)M_B(\lambda) \left[- \left< \frac{1}{t - \lambda}, \frac{1}{t - \mu} \right> + \sigma(\mu) \left< \frac{\bar{\psi}}{t - \lambda}, \frac{1}{t - \mu} \right> \right] + \frac{\hat{\psi}(\lambda)}{D(\lambda)} \left[\left< \frac{1}{(t - \lambda)(t - \mu)}, \phi \right> - \sigma(\mu) \left< \frac{\psi}{(t - \lambda)(t - \mu)}, \phi \right> \right].
\]
Choosing $\mu \neq \lambda$ with $\Im \lambda \cdot \Im \mu > 0$ causes the integral term $\left< \frac{1}{t - \lambda}, \frac{1}{t - \mu} \right>$ to vanish. This yields
\[
c f_\mu(\lambda) = M_B(\lambda) \left[\sigma(\mu)(\hat{\psi}(\lambda) - \hat{\psi}(\mu)) + \frac{\hat{\psi}(\lambda)}{D(\lambda)}(\hat{\phi}(\lambda) - \hat{\phi}(\mu)) - \sigma(\mu)(D(\lambda) - D(\mu)) \right]
\]
\[
\to M_B(\lambda) \frac{\hat{\psi}(\lambda)}{D(\lambda)}\hat{\phi}(\lambda), \ \Im \mu \to \infty.
\]
Letting $\Im \mu \to \infty$ in \[64\] therefore yields that
\[
\frac{1}{D(\lambda)} \left[\hat{\phi}(\lambda) + M_B(\lambda)\frac{\hat{\psi}(\lambda)}{D(\lambda)}\hat{\phi}(\lambda) \right]^2
\]
is known. However from \[34\] we have
\[
M_B(\lambda) = \left[i\pi \text{sign}(\Im \lambda) - \frac{1}{D(\lambda)}\hat{\phi}(\lambda)\hat{\psi}(\lambda) - B \right]^{-1}
\]
and so the known quantity appearing in (67) is
\[M_B(\lambda) \frac{\hat{\phi}(\lambda)}{D(\lambda)} [i\pi \text{sign}(\Im \lambda) - B]. \]
This means that
\[\alpha := M_B(\lambda) \frac{\hat{\phi}(\lambda)}{D(\lambda)} \]
is known, and simple algebra shows that
\[(68) \quad \frac{\hat{\phi}(\lambda)}{D(\lambda)} (1 + \alpha \hat{\psi}(\lambda)) = \alpha (i\pi \text{sign}(\Im \lambda) - B), \]
which determines \(\frac{\hat{\phi}(\lambda)}{D(\lambda)} \) and hence \(M_B(\lambda) \) provided the factor \(1 + \alpha \hat{\psi}(\lambda) \) is not identically zero; equivalently, provided \(i\pi \text{sign}(\Im \lambda) - B \) is not zero.

We are therefore left to rule out just one pathological case: the case in which \(B = i\pi \text{sign}(\Im \lambda) \) in one half-plane and \(\hat{\phi} \hat{\psi} \equiv 0 \) in the same half-plane. This can only happen if \(M_B(\lambda)^{-1} \) is zero in this half-plane, which means that every point in the half-plane is an eigenvalue of \(A_B \) and the corresponding \(g_\lambda \) given by
\[g_\lambda(x) = \frac{1}{x - \lambda} - \frac{\hat{\phi}(\lambda)}{D(\lambda)} \frac{\psi(x)}{x - \lambda} = \frac{1}{x - \lambda} \]
belong to \(L^2(\mathbb{R}) \) and also satisfies the conditions to lie in the domain of \(A_B \):
\[i\pi \text{sign}(\Im \lambda) = i\pi \text{sign}(\Im \lambda) - \frac{\hat{\phi}(\lambda) \hat{\psi}(\lambda)}{D(\lambda)} = \Gamma_1 g_\lambda = B \Gamma_2 g_\lambda = B \]
(see (6.16) in [13]). \(\square \)

Remark 7.3. (Uniqueness of \(g_\mu \)). An alternative approach can be found by examining the uniqueness of the function \(g_\mu \) in \(\mathcal{S} \) defined in (63). If we know that the choice of \(\sigma(\mu) \) is unique then we can immediately determine \(\frac{\hat{\phi}(\mu)}{D(\mu)} \), which must be equal to \(\sigma(\mu) \). This is determined by \(g_\mu \) if \(g_\mu \) is unique with its required properties. We examine this now.

Definition 7.4. The non-uniqueness set is the set
\[(69) \quad \Omega = \left\{ \mu \in \mathbb{C} \setminus \mathbb{R} \mid \exists \sigma_1(\mu) \neq \sigma_2(\mu) : \frac{1}{x - \mu} + \sigma_j(\mu) \frac{\psi(x)}{x - \mu} \in \mathcal{S}, \ j = 1, 2 \right\}. \]
Equivalently,
\[\Omega = \left\{ \mu \in \mathbb{C} \setminus \mathbb{R} \mid \frac{1}{x - \mu} \in \mathcal{S} \text{ and } \frac{\psi(x)}{x - \mu} \in \mathcal{S} \right\}. \]

We also let \(\Omega_\pm = \mathbb{C}_\pm \cap \Omega \). We can ignore the condition \(D(\mu) \neq 0 \) since it can be removed by taking a closure. We can also assume that \(\mathcal{S} \neq L^2(\mathbb{R}) \) since otherwise we know the whole resolvent \((A_B - \lambda)^{-1} \), which means we know \(A_B \) and hence \(M_B \). We consider two cases in \(\mathbb{C}_+ \) (the situation in \(\mathbb{C}_- \) is similar):

- **(I)**: \(\mathbb{C}_+ \setminus \Omega_+ \) has measure 0;
- **(II)**: \(\mathbb{C}_+ \setminus \Omega_+ \) has positive measure.
In case (II) the uniqueness set in \mathbb{C}_+, where we can recover $\hat{\phi}(\mu)/D(\mu)$ immediately from g_μ, will have an accumulation point in \mathbb{C}_+ and thus $\hat{\phi}(\mu)/D(\mu)$ is uniquely determined in \mathbb{C}_+, by analyticity.

In case (I) we have that for almost all $\mu \in \mathbb{C}_+$, the function $x \mapsto (x - \mu)^{-1}$ lies in \mathcal{S}. However $\sqrt{|\mu|} > 0$ is the Hardy space H_2^-, and hence $\mathcal{S} \supset H_2^-$. Consider the situation in \mathbb{C}_-. If we are in the case $|\Omega_-| > 0$ then

$$\mathcal{S} \supset \bigvee_{\mu \in \Omega_-} \frac{1}{x - \mu} = H_2^+, \quad \text{and so we have proved the following.}$$

Lemma 7.5.

1. If $\mathbb{C}_+ \setminus \Omega_\pm$ has measure zero, then \mathcal{S} contains H_2^\pm, respectively.
2. If $\mathbb{C}_+ \setminus \Omega_\pm$ has positive measure then one can recover $\hat{\phi}(\mu)/D(\mu)$ uniquely, for $\mu \in \mathbb{C}_\pm$.

Corollary 7.6. Assume that the function $\hat{\phi}(\mu)/D(\mu)$ in \mathbb{C}_+ coincides with the analytic continuation of $\hat{\phi}(\mu)/D(\mu)$ in \mathbb{C}_-. (This happens, for instance, if ϕ has compact support or is zero on an interval.) Then either $\mathcal{S} = L^2(\mathbb{R})$ or we can reconstruct $\hat{\phi}(\mu)/D(\mu)$ in $\mathbb{C} \setminus \mathbb{R}$ uniquely from $(A_B - \lambda)^{-1}|\mathcal{S}$.

8. **Determining \mathcal{S} for the Friedrichs model**

This section is devoted to a detailed analysis of the space \mathcal{S} for the Friedrichs model. We shall demonstrate how different aspects of complex analysis are brought into the problem of determining \mathcal{S} and we compute the defect number

$$\text{def}(\mathcal{S}) = \dim(\mathcal{S}^\perp)$$

for various different choices of the functions ϕ and ψ which determine the model. The proofs are almost all in the appendix, as the calculations are sometimes elaborate.

We first give a characterisation of the space \mathcal{S}, or more precisely, its orthogonal complement.

Proposition 8.1. Let P_\pm be the Riesz projections defined in [52] and $D(\lambda)$ be as in [33]. Denote by $D_\pm(\lambda)$ its restriction to \mathbb{C}_\pm and by D_\pm the boundary values of these functions on \mathbb{R} (which exist a.e., cf. [28, 41]).

1. Let $\phi, \psi \in L^2$.

$$g \in \mathcal{S}^\perp \iff \begin{cases} P_+ \bar{g} + \frac{2\pi i}{D_+} (P_+ \bar{\phi}) P_+ (\psi \bar{g}) = 0, \\
- \bar{g} - \frac{2\pi i}{D_-} (P_- \bar{\phi}) P_- (\bar{\psi} g) = 0. \end{cases}$$

2. If $\phi \in L^2, \psi \in L^2 \cap L^\infty$ or $\phi, \psi \in L^2 \cap L^4$, then

$$g \in \mathcal{S}^\perp \iff \begin{cases} [D_+ - 2\pi i (P_+ \bar{\phi}) \psi] \bar{g} = 2\pi i \bar{\phi} [\psi P_- \bar{g} - P_- (\psi \bar{g})] \quad (a.e.), \\
[D_+ - 2\pi i (P_+ \bar{\phi}) \psi] \bar{g} = 2\pi i \bar{\phi} [-\psi P_+ \bar{g} + P_+ (\psi \bar{g})] \quad (a.e.), \\
[D_+ - 2\pi i (P_+ \bar{\phi}) \psi] \bar{g} = 2\pi i \bar{\phi} [P_+ (\psi P_- \bar{g}) - P_- (\psi P_+ \bar{g})] \quad (a.e.). \end{cases}$$
Remark 8.2. (1) The second part of the proposition allows us to replace all three conditions (i)-(iii) in (71) with a single pointwise condition under mild extra assumptions on ϕ and/or ψ.

(2) Note that the operator $[P_+(\psi P_- g) - P_-(\psi P_+ g)]$ in the last characterisation of \mathcal{S}^\perp is the difference of two Hankel operators.

As an immediate consequence of (72), we get

Theorem 8.3. Assume $\phi \in L^2, \psi \in L^2 \cap L^\infty$ or $\phi, \psi \in L^2 \cap L^4$. Define the operator L on $L^2(\mathbb{R})$ by

$$Lu = [-P_+(\psi \bar{\phi}) + P_+(\bar{\phi}) \psi]u + \bar{\phi}[\psi P_- - P_- \psi]u$$

with the maximal domain $D(L) = \{ u \in L^2(\mathbb{R}) : Lu \in L^2(\mathbb{R}) \}$. Then $\mathcal{S} \neq L^2(\mathbb{R})$ iff $1/(2\pi i) \in \sigma_p(L)$ and $\mathcal{S}^\perp = \ker (L - 1/(2\pi i))$.

Furthermore, let $\eta \in L^\infty(\mathbb{R})$ be a function such that $\eta(k) \neq 0$ a.e. and $\eta[-P_+(\psi \bar{\phi}) + P_+(\bar{\phi}) \psi], \eta \psi \bar{\phi}, \eta \bar{\phi} \in L^\infty(\mathbb{R})$. Define the operator \mathcal{L} on $L^2(\mathbb{R})$ by

$$\mathcal{L}u = \eta \left[-\frac{1}{2\pi i} - P_+(\psi \bar{\phi}) + P_+(\bar{\phi}) \psi \right] u + \bar{\phi}[\psi P_- - P_- \psi]u$$

with dense domain $D(\mathcal{L}) = \{ u \in L^2(\mathbb{R}) : \eta \bar{\phi}P_-(\psi u) \in L^2(\mathbb{R}) \}$. Then $\mathcal{S} \neq L^2(\mathbb{R})$ iff $0 \in \sigma_p(\mathcal{L})$.

Moreover, $\mathcal{S}^\perp = \ker \mathcal{L}$. Note that if $\psi \in L^\infty$, then $D(\mathcal{L}) = L^2(\mathbb{R})$.

Remark 8.4. Replacing ψ by $\alpha \psi$, we denote the corresponding detectable subspace by \mathcal{S}_α. Then, under the conditions in the second part of Proposition 8.1, we get $g \in \mathcal{S}_\alpha^\perp$ iff

$$\frac{1}{2\pi i \alpha} \bar{g} = [-P_+(\psi \bar{\phi}) + P_+(\bar{\phi}) \psi] \bar{g} + \bar{\phi}[P_+ \psi P_- - P_- \psi P_+] \bar{g} = L \bar{g},$$

where the right hand side is the sum of a multiplication operator and the difference of two Hankel operators multiplied by $\bar{\phi}$. As in the theorem, we then get $\mathcal{S}_\alpha^\perp \neq \{0\}$ iff $1/(2\pi i \alpha) \in \sigma_p(L)$ and \mathcal{S}_α^\perp is given by the corresponding kernel.

We now consider various special cases that illustrate the different situations that can arise. The proofs of the results can be found in the appendix.

8.1. **Results depending on the support of ϕ and ψ.**

8.1.1. **The case of disjoint supports.** In this part we assume that $\phi \cdot \psi = 0$ almost everywhere, in particular, $D(\lambda) \equiv 1$, and that either

$$\phi \in L^2 \text{ and } \psi \in L^2 \cap L^\infty \text{ or } \phi, \psi \in L^2 \cap L^4.$$

In some cases (which will be mentioned in the text), we will require the slightly stronger condition

$$\phi \in L^2 \cap L^{2+\varepsilon} \text{ for some } \varepsilon > 0 \text{ and } \psi \in L^2 \cap L^\infty \text{ or } \phi, \psi \in L^2 \cap L^4.$$

Theorem 8.5. Define the sets $\Omega_\psi = \{ x \in \mathbb{R} : \psi(x) \neq 0 \}$, $\Omega_\phi = \{ x \in \mathbb{R} : \phi(x) \neq 0 \}$

and $\Omega = \mathbb{R} \setminus (\Omega_\psi \cup \Omega_\phi)$. Then $g \in \mathcal{S}^\perp$ iff $g \in L^2$ and

$$\chi_{\Omega_\psi} \bar{g}(k) = \bar{\phi}(k) \psi \chi_{\Omega_\psi} \bar{g}(k + i0),$$

1Under our assumptions, for any $u \in L^2$ we have $Lu \in L^1$ (where we mean the expression L in (75) rather than the operator L).

2Note that the sets Ω_ψ, Ω_ϕ are only defined up to a set of Lebesgue measure zero, but this is sufficient for our purpose. Also, they may be much smaller than the support of the functions.
Assume Theorem 8.8.

Let Example 8.7.

(80) \(\chi_{\Omega_{\psi}} \overline{\mathcal{Y}}(k) \left(1 - \widehat{\phi}(k - i0)\psi(k) \right) = 0 \),

(81) \(g|_\Omega = 0. \)

Let \(\Omega_{\psi,0} = \{ k \in \mathbb{R} : \widehat{\phi}(k - i0)\psi(k) = 1 \} \). Then, additionally,

(i) if \(\Omega_{\psi,0} \) has zero measure, then \(\mathcal{S} = L^2(\mathbb{R}) \).

(ii) Assume \((78) \). If \(\Omega_{\psi,0} \) has non-zero measure, then \(\mathcal{S}^\perp \neq \{0\} \). Moreover, we have that

\(\mathcal{S} \subseteq \{ f \in L^2(\mathbb{R}) : f = \psi \left(\widehat{f\phi} \right) \text{ on } \Omega_{\psi,0} \} \).

(iii) Assume \(\phi, \psi \in L^2 \cap L^\infty \). Then

\(\mathcal{S} = \{ f \in L^2(\mathbb{R}) : f = \psi \left(\widehat{f\phi} \right) \text{ on } \Omega_{\psi,0} \} \).

Remark 8.6. (1) Note that, from \((79) \) we have that \(g|_{\Omega_{\psi}} \) completely determines \(g|_{\Omega_{\phi}} \).

(2) Condition \((79) \) gives an additional restriction on \(g|_{\Omega_{\psi}} \), requiring \(\phi(k)\psi(\chi_{\Omega_{\psi}})(k + i0) \in L^2(\Omega_{\phi}) \).

(3) The condition \((78) \) implies (via the Hölder inequality and boundedness of \(P_+ : L^p \to L^p \) for \(1 < p < \infty \)) that for \(g \in (L^2 \cap L^\infty)(\Omega_{\psi}) \) we have \(\phi(k)\psi(\chi_{\Omega_{\psi}})(k + i0) \in L^2(\Omega_{\phi}) \).

Example 8.7. Let \(I \) and \(I' \) be disjoint closed intervals in \(\mathbb{R} \). Choose \(\phi \in L^\infty \) with \(\text{supp } \phi \in I \) such that

\(\int_{\mathbb{R}} \overline{\phi(x)} \frac{dx}{x - k} \neq 0 \quad \text{for} \quad k \in I' \).

Define \(\psi \) by

\(\psi(k) = \begin{cases} \left(\int_{\mathbb{R}} \overline{\phi(x)} \frac{dx}{x - k} \right)^{-1}, & k \in I' \\ 0, & \text{otherwise.} \end{cases} \)

Then \(\psi \in L^\infty \), \(\phi \cdot \psi = 0 \) and \(\widehat{\phi}(k - i0)\psi(k) = 1 \). Therefore, by Theorem 8.5 (ii), \(\mathcal{S}^\perp \neq \{0\} \).

Theorem 8.8. Assume \((78) \). Then \(\mathcal{S} = L^2 \iff 1 - \psi(\widehat{\phi})(k + i0) \neq 0 \) for a.e. \(k \in \mathbb{R} \). Moreover,

\[\text{def } \mathcal{S} = \dim \mathcal{S}^\perp = \begin{cases} 0, & \text{if } \mathcal{S} = L^2, \\ \infty, & \text{otherwise.} \end{cases} \]

We have the following results on complete detectability, i.e. \(\mathcal{S} = L^2(\mathbb{R}) \).

Theorem 8.9. (1) Complete detectability is generic in the following sense. Replace \(\psi \) by \(\alpha \psi \) for \(\alpha \in \mathbb{C} \) (or \(\phi \) by \(\pi \phi \)), then for all \(\alpha \) outside a countable set \(E_\alpha \) we have \(\mathcal{S}_\alpha = L^2(\mathbb{R}) \), where \(\mathcal{S}_\alpha \) is as defined in Remark 8.4.

(2) For small perturbations, we have that if \(\psi \in L^\infty \) and \(P_+ \phi \) or \(P_- \phi \in L^\infty \), replacing \(\psi \) by \(\alpha \psi \) where \(\alpha \in \mathbb{C} \), we get \(\mathcal{S}_\alpha = L^2(\mathbb{R}) \) for sufficiently small \(|\alpha| \).

We next analyse a specific example with disjoint supports where we consider some questions in more detail.

Theorem 8.10. Assume \(I \) and \(I' \) are disjoint closed intervals such that \(I' \) lies to the left of \(I \). Let

\(\phi = \chi_I \quad \text{and} \quad \psi(x) = \chi_{I'}(x) \cdot \left(\int_{I} \frac{dt}{t - x} \right)^{-1}. \)

(1) In this case \(\mathcal{S} \neq L^2(\mathbb{R}) \) with \(\text{def } \mathcal{S} = \infty \), while \(\mathcal{S} = L^2(\mathbb{R}) \).
(2) The jump of the \(M \)-function across the real axis at \(k \) is given by

\[
[M_B^{-1}(k)] = \begin{cases}
2\pi i, & k \in \mathbb{R} \setminus (I \cup I'), \\
2\pi i(1 - \hat{\psi}(k)), & k \in I, \\
0, & k \in I'.
\end{cases}
\]

Moreover, the bordered resolvent \(P_\Sigma(A_B - \lambda)^{-1}P_\Sigma \) jumps at \(k \in \mathbb{R} \) iff \(k \notin I' \), i.e. the location of the jumps of the bordered resolvent coincides with the jumps of \(M_B \). (Compare to Theorem 6.5, where we can only border the resolvent by finite dimensional projections.)

8.1.2. Results when \(\phi \) and \(\psi \) are not disjointly supported.

We consider a more general case when \(\phi \) and \(\psi \) do not necessarily have disjoint supports.

Theorem 8.11.

1. Let \(\Omega^c = \{ x : \phi(x) \neq 0 \} \cup \{ x : \psi(x) \neq 0 \} \). Then \(g \in S^\perp \) implies \(\{ x : g(x) \neq 0 \} \subseteq \Omega^c \) (up to a set of measure zero). In particular, \(S^\perp \subseteq L^2(\Omega^c) \) and \(S \supseteq L^2(\Omega) \).

2. Consider \(\psi = \alpha \chi_I \) for some constant \(\alpha \) and a set \(I \) of finite measure and assume \(\phi|_{I^c} = 0 \) a.e. Then \(S = L^2(\mathbb{R}) \).

We finish this subsection by showing that in a our situation we can improve on Theorems 4.1 and 7.1 by recovering the \(M \)-function from one bordered resolvent.

Theorem 8.12. As before, let \(\Omega_\phi = \{ x \in \mathbb{R} : \psi(x) \neq 0 \} \) and \(\Omega_\psi = \{ x \in \mathbb{R} : \phi(x) \neq 0 \} \). Let \(\Omega = \mathbb{R} \setminus (\Omega_\phi \cup \Omega_\psi) \) and assume that we know a set of non-zero measure \(\Omega' \subseteq \Omega \). Then the \(M \)-function can be recovered from one bordered resolvent.

Remark 8.13. The converse is not possible. The asymptotics of the \(M \)-function at \(i\infty \) allow us to recover \(B \) and thus \(\hat{\psi}(\lambda)\hat{\phi}(\lambda) \) for any \(\lambda \). However, only knowing the product for example makes it impossible to distinguish the expression for \(A \) from the operator expression obtained by replacing \(\psi \) by \(\phi \) and \(\phi \) by \(\psi \), respectively.

8.2. Results with \(\phi, \psi \in H^+_2 \).

We note that in the Fourier picture described in Remark 3.6, the condition that \(\phi, \psi \in H^+_2 \) corresponds to \(F\phi, F\psi \) being supported in \(\mathbb{R}^- \) (by the Paley-Wiener Theorem 28). A similar remark applies to the next subsection when \(\phi, \psi \in H^+_2 \) where the Fourier transforms will be supported on different half lines. Moreover, similar results will hold if both \(\phi, \psi \in H^-_2 \).

Theorem 8.14. Let \(\phi, \psi \in H^+_2 \). Then

\[
S = \bigvee_{\mu \in \mathbb{C}^+} \frac{1}{x - \mu} + \bigvee_{\mu \in \mathbb{C}^-} \frac{D(\mu) + 2\pi i\phi(\mu)\psi(x)}{x - \mu}.
\]

Moreover, if

\[
(82) \quad \psi(x) = \sum_{j=1}^{N} \frac{c_j}{x - z_j}
\]

with \(c_j \neq 0 \), \(\Im z_j < 0 \) and \(z_i \neq z_j \) for \(i \neq j \), then

\[
\text{def } (S) = N - P - M - M_0,
\]

where \(P = \sum p_k \) and \(p_k \) is the order of poles of \(\frac{\phi(\mu)}{D(\mu)} |_{\mathbb{C}^- \setminus \{z_j\}} \) \(j=1 \), \(M = \sum m_i \), where \(m_i \) are the ‘order of the poles’ of \(\frac{\phi(x)}{D(x)} \) in \(\mathbb{R} \) (i.e. \(m_i \) is the minimum integer such that
\(\phi(x)/D_+(x)(x-x_i)^{m_i} \) is square integrable, \(M_0 \) corresponds to a degenerated case and is given by

\[
M_0 = \{ j : \phi(z_j) = 0 \text{ and } \lim_{\mu \to z_j} \frac{2\pi i \phi(\mu) c_j}{D_+(\mu)(\mu - z_j)} \neq 1 \}
\]

and

\[
D_+(\mu) := 1 + 2\pi i \sum_{j=1}^{N} \frac{c_j \phi(z_j)}{\mu - z_j}
\]

for \(\mu \in \mathbb{C} \) is a meromorphic continuation of the rational function \(D(\mu), \mu \in \mathbb{C}_+ \) to the lower half plane. (Note that this will not coincide with \(D(\mu) \) in the lower half plane and that for generic \(\phi \in H^2_+ \) the continuation of \(D_- \) to \(\mathbb{C}_+ \) will not even exist).

Proposition 8.15. Any values can be realized for the defect numbers of \(S \) and \(\tilde{S} \) by suitably choosing rational \(\phi \) and \(\psi \) in \(H^2_+ (\mathbb{R}) \).

We conclude this part with an example.

Example 8.16. Let

\[
\psi(x) = \frac{\alpha}{x - z_1} \text{ with } z_1 \in \mathbb{C}_-, \alpha \in \mathbb{C} \setminus \{0\} \quad \text{and} \quad \overline{\phi(x)} = \frac{1}{x - w_1} \text{ with } w_1 \in \mathbb{C}_+.
\]

The root of \(D(\lambda) \) in \(\mathbb{C}_+ \) or its analytic continuation \(D_+(\lambda) \) in \(\mathbb{C}_- \) is \(\lambda_0 = z_1 + \frac{2\pi i \alpha}{w_1 - z_1} \). We have three cases for \(N, P, M, M_0 \) as in Theorem [8.14]

1. If \(\lambda_0 \in \mathbb{C}_+ \) then \(N = 1, P = M = M_0 = 0 \),
2. if \(\lambda_0 \in \mathbb{C}_- \) then \(N = P = 1, M = M_0 = 0 \),
3. if \(\lambda_0 \in \mathbb{R} \) then \(N = M = 1, P = M_0 = 0 \).

Therefore, \(S^\perp \) is non-trivial if and only if \(\lambda_0 = z_1 + \frac{2\pi i \alpha}{w_1 - z_1} \in \mathbb{C}_+ \). In this case, \(S^\perp \) is one dimensional. Moreover,

\[
S^\perp = \left\{ \text{const} \left(t - \overline{w_1} \right) \left(t - \overline{z_1} + \frac{2\pi i \alpha}{w_1 - z_1} \right) \right\} \quad \text{and} \quad \overline{S} = \{ f \in L^2(\mathbb{R}) : (P_+ f)(w_1) = (P_+ f)(\lambda_0) \}.
\]

Similarly, \(\tilde{S}^\perp \) is non-trivial if and only if \(\tilde{\lambda}_0 := w_1 + \frac{2\pi i \alpha}{w_1 - z_1} \in \mathbb{C}_- \) (and therefore \(D(\tilde{\lambda}_0) = 0 \)). Note that if \(\lambda_0 \in \mathbb{C}_+ \), then also \(\tilde{\lambda}_0 \in \mathbb{C}_+ \), whilst if \(\tilde{\lambda}_0 \in \mathbb{C}_- \), then also \(\lambda_0 \in \mathbb{C}_- \). Therefore, at least one of \(S \) and \(\tilde{S} \) is the whole space.

Moreover, we see that the bordered resolvent does not detect the singularities at the eigenvalues \(\lambda_0 \in \mathbb{C}_+ \) or \(\tilde{\lambda}_0 \in \mathbb{C}_- \):

For \(\lambda \approx \lambda_0 \in \mathbb{C}_+ \) we have from \([35]\) and \([36]\) that

\[
(A_B - \lambda)^{-1} = \text{regular part at } \lambda_0 + \frac{\mathcal{P}_{\lambda_0}}{\lambda - \lambda_0},
\]

with the Riesz projection \(\mathcal{P}_{\lambda_0} \) given by

\[
\mathcal{P}_{\lambda_0} = \langle \cdot, u_1 \rangle u_2,
\]

where

\[
u_1 = \frac{\phi}{x - \overline{\lambda}_0} \quad \text{and} \quad u_2 = \alpha(z_1 - \lambda_0) \psi(x) - 2\pi i M_B(\lambda_0) \psi(\lambda_0) \frac{x - \lambda_0}{x - \lambda_0}.
\]

Since \(u_1 \in S^\perp \), the singularity is cancelled by \(\mathcal{P}_{\overline{S}} \). \(u_2 \) is the eigenvector of \(A_B - \lambda_0 \) (see [27]).
For $\lambda \approx \widetilde{\lambda}_0 \in \mathbb{C}_-$ we have again from (35) and (36) that
\[(87) \quad (A_B - \lambda)^{-1} = \text{regular part at } \lambda_0 + \frac{\mathcal{P}_{\lambda_0}}{\lambda - \lambda_0},\]
with
\[(88) \quad \mathcal{P}_{\lambda_0} = \left\langle \cdots \left(\frac{\phi(x) - 2\pi i M_B(\widetilde{\lambda}_0) \overline{\phi(\widetilde{\lambda}_0)}}{x - \lambda_0} \right) - \frac{\alpha \psi}{x - \lambda_0}, \right. \]
where $\frac{\psi}{x - \lambda_0}$ is an eigenvector of A_B for all (!) B and lies in \mathcal{S}_1^\perp, so the singularity of the resolvent is cancelled by \mathcal{P}_{λ_0}.

We note that this behaviour of the bordered resolvent is in accordance with Theorem 3.6 in [13].

Remark 8.17. We note that in the case when $\phi, \psi \in H_2^+$ taking $\lambda, \mu \in \mathbb{C}_+$, the M-function and the ranges of the solution operators $S_{\lambda,B}$ and \widetilde{S}_{μ,B^*} do not depend on ϕ and ψ (see (34) and (32)). In fact, $M_B(\lambda) = [\text{sign}(\Im \lambda) \pi i - \mu]^{-1}$, $S_{\lambda,B} f = (\Gamma_2 f)(x - \lambda)^{-1}$ and $\widetilde{S}_{\mu,B^*} f = (\Gamma_2 f)(x - \mu)^{-1}$. In this highly degenerated case, only the boundary condition B can be obtained. Therefore, in this case a Borg-type theorem allowing recovery of the bordered resolvent from the M-function is not possible, even with knowledge of the ranges of the solution operators in the whole of the suitable half-planes. On the other hand, knowledge of the ranges of the solution operators in both half-planes, together with the M-function at one point allows reconstruction by Theorem 4.3.

8.3. Analysis for the case $\overline{\phi}, \psi \in H_2^+$

Theorem 8.18. Let $\overline{\phi}, \psi \in H_2^+$. Then if $B \neq -\pi i$, we have $\text{def} (S_B) = 0$. Similar results hold for \widetilde{S}_B by taking adjoints.

Remark 8.19. We note that the space \mathcal{S}_B as defined in (9) can depend on the boundary condition. In the degenerate case $B = -\pi i$ we have
\[\mathcal{S}_B = \bigvee_{\mu \in \mathbb{C}_+} \left(\frac{D(\mu) - 2\pi i \overline{\phi(\mu)} \psi(x)}{x - \mu} \right).\]
If ϕ or ψ additionally lies in L^∞, then this gives $\text{def} (S_B) = +\infty$. However, we consider this choice of B as a degenerate case, since the hypotheses of Proposition 2.8 are not satisfied.

8.4. The general case $\psi, \phi \in L^2$

We conclude this section by studying the general case. Without assumptions on the support, or the Hardy class of ϕ and ψ, the results are rather complicated. Therefore, in what follows we will not worry about imposing slightly stronger regularity conditions on ϕ and ψ. We first define the following set
\[(89) \quad E_0 := \{ \alpha \in \mathbb{C} : \exists \text{ a set of positive measure } E \subseteq \mathbb{R} \}
\text{ s.t. } 1 + 2\pi i \alpha (P_+(\overline{\phi}) - \psi(P_+(\overline{\phi}))) = 0 \text{ on } E \}.
\]
Note that E_0 consists of those α such that the factor $[D_+ - 2\pi i (P_+ \overline{\phi})]$ appearing in (72) - (74) vanishes on some non-null set E when ψ is replaced by $\alpha \psi$.

Theorem 8.20. Assume (78). Let $\alpha \in E_0$, then $\text{def} S_\alpha = +\infty$.

Remark 8.21. When considering the corresponding \widetilde{S}_α note that the set
\[\widetilde{E}_0 := \{ \alpha : 1 + 2\pi i \alpha (P_+(\overline{\psi}) - \phi(P_+(\overline{\psi}))) = 0 \text{ on a set of positive measure} \}
\]
does not need to coincide with E_0, so it is possible to have $\text{def} S_\alpha \neq \text{def} \widetilde{S}_\alpha$ even for $\alpha \in E_0$.

This happens in Example 8.7, where (if ψ is multiplied by a suitable constant) $\text{def} S_\alpha = \infty$, while $\text{def} \widetilde{S}_\alpha = 0$.
Theorem 8.22. Let $\phi \in L^2 \cap L^\infty$ and $\psi \in L^2 \cap C_0(\mathbb{R})$, where $C_0(\mathbb{R})$ is the space of continuous functions vanishing at infinity, and assume $\alpha \notin E_0$.

(1) Then $\text{def } S_\alpha > 0$ iff $(2\pi i\alpha)^{-1} \in \sigma_p(\mathcal{M} + \mathcal{K})$, where

$$
\mathcal{M} = ((P_+\bar{\phi})\psi - P_+(\psi\bar{\phi}))
$$

is a possibly unbounded multiplication operator and

$$
\mathcal{K} = \bar{\phi}[P_+\psi P_- - P_-\psi P_+]
$$

is the difference of two compact Hankel operators multiplied by $\bar{\phi}$. Note that $D(\mathcal{M} + \mathcal{K}) = D(\mathcal{M})$, where $D(\mathcal{M})$ is the canonical domain of the multiplication operator.

Moreover,

$$
S^\perp_\alpha = \ker \left(\mathcal{M} + \mathcal{K} - \frac{1}{2\pi i\alpha} \right),
$$

so

$$
\text{def } S_\alpha = \dim \ker \left(\mathcal{M} + \mathcal{K} - \frac{1}{2\pi i\alpha} \right).
$$

If $(2\pi i\alpha)^{-1} \notin \text{essran}_{k \in \mathbb{R}} \mathcal{M}(k)$, then

$$
\text{def } S_\alpha = \dim \ker \left(I + \mathcal{K} \left(\mathcal{M} - \frac{1}{2\pi i\alpha} \right)^{-1} \right) < \infty.
$$

(2) Additionally assume $\mathcal{M}(k)$ is continuous. Then $\mathbb{C} \setminus \overline{\text{Ran } \mathcal{M}(k)}$ is a countable union of disjoint connected domains. Set $\mu = (2\pi i\alpha)^{-1}$. Then in each of these domains we have either

(a) $\text{def } S_\alpha = 0$ whenever μ is in this domain except (possibly) a discrete set, or

(b) $\text{def } S_\alpha \neq 0$ is finite and constant for any μ in the domain except (possibly) a discrete set.

Moreover, for μ sufficiently large, we have $\text{def } S_\alpha = 0$.

Although this theorem gives a description of \mathcal{S}_α for a rather general case of ψ and ϕ, for concrete examples as investigated in previous subsections it is useful to determine the space explicitly rather than just give the description in terms of operators \mathcal{K} and \mathcal{M}. However, this theorem shows the topological properties of the function $\text{def } S_\alpha$ in the α-plane.

Example 8.23. Let

$$
\psi(x) = \alpha \left(\frac{c_1}{x - z_1} + \frac{c_2}{x - z_2} \right) \text{ with } z_1 \neq z_2 \in \mathbb{C}_-, \alpha \in \mathbb{C} \setminus \{0\}
$$

and

$$
\bar{\phi}(x) = \frac{1}{x - w_1} \text{ with } w_1 \in \mathbb{C}_+.
$$

We wish to analyse the defect as a function of α. By Theorem 8.14, we need to determine the number of roots of the analytic continuation $D_+(\lambda)$ of $D(\lambda)$ in \mathbb{C}_-. Now,

$$
D_+(\lambda) = 1 - 2\pi i\alpha \left(\frac{c_1}{(z_1 - w_1)(z_1 - \lambda)} + \frac{c_2}{(z_2 - w_1)(z_2 - \lambda)} \right).
$$

After setting $\hat{\mu} := \frac{2\pi i\alpha}{(z_1 - w_1)(z_2 - w_1)}$ a short calculation shows that the roots of $D_+(\lambda)$ solve

$$
\lambda^2 + \lambda(d_1\hat{\mu} - z_1 - z_2) + d_2\hat{\mu} + z_1z_2 = 0,
$$

where

$$
d_1 = c_1(z_2 - w_1) + c_2(z_1 - w_1) \quad \text{and} \quad d_2 = -c_1z_2(z_2 - w_1) - c_2z_1(z_1 - w_1).
$$
In particular, for \(\hat{\mu} = 0 \) the roots are \(z_1, z_2 \in \mathbb{C}_- \). By continuity, for small \(|\alpha|\), by Theorem \[8.14\] we have \(\text{def} \mathcal{S}_\alpha = 0 \).

For a polynomial \(\lambda^2 + p\lambda + q = 0 \), an elementary calculation shows that it has a real root iff
\[
(3q)^2 = (3p)(\Re p3q - \Re q3p) \quad \text{and} \quad 4\Re q \leq |p|^2.
\]

We now analyse the defect in a few examples.

(A) We first make the specific choice
\[
\psi(x) = \alpha \left(\frac{-2}{x + i} + \frac{3}{x + 2i} \right) \quad \text{and} \quad \overline{\psi}(x) = \frac{1}{x - i}.
\]
Then \(d_1 = 0, d_2 = -6 \) and the equation in \((94)\) becomes
\[
(3\hat{\mu})^2 = \frac{1}{2}(1 + 3\Re \hat{\mu}).
\]
All \(\hat{\mu} \) satisfying \((95)\) satisfy the inequality in \((94)\). This gives a parabola in the \(\alpha \)-plane (or equivalently the \(\hat{\mu} \)-plane) with \(\text{def} \mathcal{S}_\alpha = 0 \) inside or on the parabola and \(\text{def} \mathcal{S}_\alpha = 1 \) outside. In the \(1/\alpha \)-plane this gives a curve whose interior is a petal-like shape with \(\text{def} \mathcal{S}_\alpha = 0 \) for \(1/\alpha \) outside or on the curve and \(\text{def} \mathcal{S}_\alpha = 1 \) for \(1/\alpha \) inside the curve.

(B) We now return to the formula for \(D_+ \) in \((92)\). Setting \(\mu = (2\pi i \alpha)^{-1} \), we have
\[
\mu = \frac{c_1}{(z_1 - w_1)(z_1 - \lambda)} + \frac{c_2}{(z_2 - w_1)(z_2 - \lambda)}.
\]
Clearly for \(\lambda \to \pm \infty \), we have that \(\mu = 0 \). We now choose \(c_1, c_2 \) to get another real root at \(\lambda = 0 \). Consider
\[
\psi(x) = \alpha \left(\frac{-1}{x + i} + \frac{3}{x + 2i} \right) \quad \text{and} \quad \overline{\psi}(x) = \frac{1}{x - i}.
\]
In the \(\mu \)-plane this leads to one petal. As \(\lambda \) runs through \(\mathbb{R} \), this curve is covered twice (once for \(\lambda < 0 \) and once for \(\lambda > 0 \)). We have \(\text{def} \mathcal{S}_\alpha = 0 \) for \(\mu \) outside the curve and \(\text{def} \mathcal{S}_\alpha = 2 \) for \(\mu \) inside the curve. On the curve we have \(\text{def} \mathcal{S}_\alpha = 0 \). The double covering of the curve allows the jump of 2 in the defect when crossing the curve.

(C) More generally, if \(\psi \) has \(N \) terms, then the problem of finding real roots of \(D_+(\lambda) \) leads to studying the real zeroes of
\[
\xi(\lambda) := \sum_{k=1}^{N} \frac{a_k}{z_k - \lambda}, \quad \text{where} \quad a_k = c_k \overline{\psi}(z_k).
\]
Generically \(\xi \) will not have real zeroes and we will only get one petal in the \(\mu \)-plane. However, we can arrange it that \(\xi \) has \(N - 1 \) real zeroes which leads to \(N \) petals in the \(\mu \)-plane. Assume \(a_N \neq 0 \). Then to do this, we need to solve the linear system,
\[
Z \begin{pmatrix} a_1 \\ \vdots \\ a_{N-1} \end{pmatrix} = \begin{pmatrix} -\frac{a_N}{z_N - \lambda_1} \\ \vdots \\ -\frac{a_N}{z_N - \lambda_{N-1}} \end{pmatrix},
\]
where the matrix \(Z \) has \(jk \)-component given by \(z_{jk} = (z_k - \lambda_j)^{-1} \). \(Z \) is invertible whenever all \(z_k \in \mathbb{C}_-, \lambda_j \in \mathbb{R} \) are distinct.

For the example in Figure 7, the defect in each of the components is given by \(4 - \nu_- \) where \(\nu_- \) denotes the number of roots of \(D_+ \) in \(\mathbb{C}_- \) (by Theorem \[8.14\]). At each curve precisely one of the roots crosses from the lower to the upper half-plane, thus increasing the defect by 1. On the curve itself, one root is on the real axis and by Theorem \[8.14\] the defect coincides with the smaller of the defects on the components on each side of the
curve. By a similar reasoning at the three non-zero points of self-intersection of the curve the defect coincides with the smallest defect of the neighbouring components.

This example displays the analytical nature of finding the defect in terms of the location of roots of \(D_+ \) using Theorem 8.14. On the other hand, it also displays the topological nature of the same situation mentioned in Theorem 8.22. The complex \(1/\alpha \)-plane is separated into components in which the defect is constant everywhere (in this example the exceptional discrete set is empty). The curves are the range of \(2\pi i M(t) \) on the real axis.

9. Spectra of Toeplitz operators and detectability

In Section 8 Hankel operators played a special role in the analysis (see e.g. Theorem 8.22). However, for another class of examples of the Friedrichs model, the theory of Toeplitz operators is the main instrument of our analysis. We will discuss this type of examples and the related detectability problem here. The proofs and some auxiliary results can be found in Appendix B.

We will study the operator \(T := \overline{\phi} P_+ \psi \) acting on \(L^2 \). It is closely related to the Toeplitz operator \(T_a : H_2^+ \rightarrow H_2^+ \) given by \(T_a u = P_+ a u = P_+ a P_+ u \), where \(a = \psi \overline{\phi} \).

Assumptions 9.1. For this section, we will make the following assumptions on the functions \(\phi, \psi \in L^2 \): (i) \(a(z) := \psi(z) \overline{\phi}(z) \in H^1_1 \setminus \{0\} \), (ii) \(\phi \in H_2^- \) and (iii) \(\phi, \psi \in L^\infty \).

Remark 9.2. (1) Under the above assumptions, we have \(D_+(\lambda) \equiv 1 \) and \(P_+ \overline{\phi} = \overline{\phi} \), \(P_- \overline{\phi} = 0 \).

(2) Choosing \(\phi = (x-i)^{-\frac{1}{2}+\varepsilon} \) for some \(\varepsilon > 0 \) and a suitable choice of the branch cut, we have \(\phi \in H_2^- \). To satisfy the first assumption, we then require \(\psi(x) = a(x) (x+i)^{\frac{1}{2}+\varepsilon} \in L^2 \), or \(a \in L^2(\mathbb{R}; (1+x^2)^{\frac{1}{2}+\varepsilon}) \). Therefore, the assumption that \(\phi \in H_2^- \) only imposes a mild extra condition on the decay of \(a \) at infinity.

(3) The third assumption is only introduced for the sake of convenience and may be significantly relaxed. However, this would introduce more technical details which would obscure the main results. It means that the operator \(T \) is a bounded operator in \(L^2 \) and \(T_a \) in \(H_2^+ \), in particular, they are defined on the whole space.

In the next theorem we will make use of the canonical Riesz-Nevanlinna factorization theorem (see [28] Pages 199-200). For the reader’s convenience, we state it here for functions in the lower half plane: If \(f \neq 0 \), \(f \in H^p_- \) for \(p \geq 1 \), then up to constant multiples, \(f \) can be factorized uniquely as

\[
f(z) = B(z) \Sigma(z) G(z),
\]
where

- $B(z)$ is a Blaschke product with

 $$B(z) = \prod_k \left(e^{i\theta_k} \frac{z - z_k}{\bar{z} - \bar{z}_k} \right) \quad \text{for} \quad \Im z < 0,$$

 where z_k are all the roots of f in \mathbb{C}_- and the real θ_k are chosen so that

 $$e^{i\theta_k} \frac{i - z_k}{\bar{i} - \bar{z}_k} \geq 0;$$

- $\Sigma(z)$ is the singular factor given by

 $$\Sigma(z) = \exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{1}{z - t} + \frac{i t}{t^2 + 1} \right) d\sigma(t) \right)$$

 with $d\sigma(t) \geq 0$ a singular measure (w.r.t. Lebesgue measure) such that $\int_{-\infty}^{\infty} d\sigma(t) < \infty$;

- $G(z)$ is the outer factor given by

 $$G(z) = \exp \left(-\frac{i}{\pi} \int_{-\infty}^{\infty} \left(\frac{1}{z - t} + \frac{t}{t^2 + 1} \right) \log |f(t)| \, dt \right).$$

Theorem 9.3. Define the operators T on L^2 and $T_a : H^+_2 \to H^+_2$ as above and let $\mu_\alpha = (2\pi i \alpha)^{-1}$. Then

1. $\text{def} (S_\alpha) = \dim \ker(T_a - \mu_\alpha)$. Moreover,

 $$S^\perp_\alpha = (\ker(T - \mu_\alpha))^* = \psi^{-1}[(\mu_\alpha P_+ + P_- a P_+)] \ker(T_a - \mu_\alpha)^*.$$

 Here, we use $(\ker(T - \mu_\alpha))^*$ to denote the set of complex conjugates of functions in $\ker(T - \mu_\alpha)$. This will be used to distinguish it from the closure in cases where the meaning may be ambiguous.

2. We have $S^\perp_\alpha = \phi \left(H^-_2 \ominus (a(z) - \mu_\alpha)H^-_2 \right)$. In particular, $\phi \left(H^-_2 \ominus (a(z) - \mu_\alpha)H^-_2 \right)$ is a closed subspace.

3. Consider the canonical factorisation in \mathbb{C}_- of $a(z) - \mu_\alpha = B_\alpha(z) \Sigma_\alpha(z) G_\alpha(z)$ for a fixed $\alpha \in \mathbb{C}$ where B_α is a Blaschke product containing all zeros of $a(z) - \mu_\alpha$ in \mathbb{C}_-, Σ_α is the singular part and G_α is an outer function. Then

 $$\frac{(a - \mu_\alpha)H^-_2}{H^-_2} = B_\alpha(z) \Sigma_\alpha(z) H^-_2 \equiv B_\alpha(z) \Sigma_\alpha(z) H^-_2.$$

 and

 $$\text{def} (S_\alpha) = \begin{cases} \infty & \text{if } \Sigma_\alpha \neq 1, \\ \text{number of roots of } B_\alpha(z) \text{ counted with multiplicity} & \text{if } \Sigma_\alpha \equiv 1. \end{cases}$$

Example 9.4. For fixed $\alpha \in \mathbb{C}$, we consider a canonical decomposition of $(a - \mu_\alpha)$ in \mathbb{C}_- of the following form: Choose any B_α with zeroes in a finite box and the singular measure in Σ_α with bounded support. Then $B_\alpha \Sigma_\alpha \to 1$ at infinity. Choose

$$G_\alpha(z) = -\mu_\alpha \frac{(z - a_1)(z + \sigma)}{z^2 + \tau z + \rho},$$

where $a_1 \in \mathbb{C}_+, \sigma \in \mathbb{C}_-, \tau \in \mathbb{C}_-$ and $\rho << -1$.

Being contractive in \mathbb{C}_- the product $B_\alpha \Sigma_\alpha$ behaves like $e^{b z}$ with $b \in \mathbb{C}_+$ at ∞. We can choose the constants above such that $a_1 - \sigma = b - \tau \in \mathbb{C}_+$. Therefore $a(z) = O(1/z^2)$ at ∞. Defining $\phi(z) = (z - i)^{-1} \in H^+_2$, we have $\phi \sim 1/z$ at ∞, so $\psi := a/\phi = O(1/z)$ belongs to L^2.

Choosing ρ sufficiently negative, we get that both roots of $z^2 + \tau z + \rho$, approximately $-\tau/2 \pm \sqrt{-\rho}$, lie in \mathbb{C}_+. This gives $G_\alpha \in H^\infty_-$ and since both its roots a_1 and $-\sigma$ lie in \mathbb{C}_+, G_α is outer in \mathbb{C}_-.
By Theorem 2.3, the number of roots in \(\mathbb{C}_- \) equals \(\def S \) provided \(\Sigma_\alpha \equiv 1 \) and therefore all natural numbers are possible as indices.

Appendix A. Proofs of the results of Section 8

We start with an elementary uniqueness lemma, whose proof we include for completeness.

Lemma A.1. Let

\[
G(\mu) = \begin{cases}
G_+(\mu), & \mu \in \mathbb{C}_+, \\
G_-(\mu), & \mu \in \mathbb{C}_-.
\end{cases}
\]

with \(G_\pm \in H_1^\pm + H_2^\pm := \{G_1 + G_2 : G_1 \in H_1^\pm, G_2 \in H_2^\pm\} \). Then the jump across the real axis \([G] \equiv 0 \) iff and only iff \([G] = 0 \).

Proof. We show that if the jump vanishes, then \(G \) vanishes, the other implication is trivial.

By \(G(x \pm i0) \) we denote the boundary values of the functions \(G_\pm \) which exist a.e. on \(\mathbb{R} \) (see [28]). Since \([G] \equiv 0 \), we have \(G(x) := G(x + i0) = G(x - i0) \). Now, \(G(x + i0) \in H_1^+ + H_2^+ \), so for all \(\lambda \in \mathbb{C}_- \) we have

\[
\int_{\mathbb{R}} \frac{G(t)}{t - \lambda} \equiv 0.
\]

Similarly, \(G(x - i0) \in H_1^- + H_2^- \), so for all \(\lambda \in \mathbb{C}_+ \) we have

\[
\int_{\mathbb{R}} \frac{G(t)}{t - \lambda} \equiv 0.
\]

Combining this gives

\[
\int_{\mathbb{R}} \frac{G(t)}{t - \lambda} \equiv 0 \quad \text{for all } \lambda \notin \mathbb{R}.
\]

We want to show that this implies \(G(x) = 0 \) for almost every \(x \in \mathbb{R} \). Clearly, taking complex conjugates,

\[
\int_{\mathbb{R}} \Re \frac{G(t)}{t - \lambda} \equiv 0 \equiv \int_{\mathbb{R}} \Im \frac{G(t)}{t - \lambda},
\]

so we may now assume without loss of generality that \(G \) is real. Then

\[
0 = \Im \int_{\mathbb{R}} \frac{G(t)}{t - \lambda} = \Im \int_{\mathbb{R}} \frac{G(t)}{|t - \lambda|^2} = \pi P_\varepsilon(G)(k),
\]

where \(\lambda = k + i\varepsilon \) and \(P_\varepsilon \) denotes the Poisson transformation.

Now, let \(I \) be any bounded open interval in \(\mathbb{R} \) and \(k \in I \). As \(G = G_1 + G_2 \in L^1(\mathbb{R}) + L^2(\mathbb{R}) \), we have \(\chi_I G \in L^1(\mathbb{R}) \) and

\[
\varepsilon \int_{I^c} \frac{G_1(x) + G_2(x)}{|x - \lambda|^2} \, dx \leq \varepsilon \int_{I^c} \frac{|G_1(x)| + |G_2(x)|}{|x - k|^2} \, dx = o(1),
\]

where we have used that \(G_2(x)/|x - k|^2 \in L^1(I^c) \). Therefore,

\[
P_\varepsilon(G) = P_\varepsilon(\chi_I G + \chi_{I^c} G) = P_\varepsilon(\chi_I G) + o(1) \to \chi_I G \text{ as } \varepsilon \to 0.
\]

This shows that \(\chi_I G(x) = 0 \) and as \(I \) was arbitrary, we get \(G(x) = 0 \) for almost every \(x \in \mathbb{R} \). As the boundary values of \(G_\pm \) vanish identically, we have \(G_\pm \equiv 0 \). \(\square \)

We can now prove the characterisation of \(S^\perp \).
Proof of Proposition 8.1. (1) Noting the form of elements from \(\text{Ran} S_{\lambda,B} \) from (32), we get that
\[
\mathcal{S}^\perp = \left\{ g \in L^2(\mathbb{R}) : \text{ for all } \mu \notin \mathbb{R} \right\}
\]
\[
F_\pm(\mu) := \left\langle \frac{1}{x - \mu}, g \right\rangle - \frac{1}{D(\mu)} \left\langle \frac{1}{x - \mu}, \phi \right\rangle \left\langle \frac{1}{x - \mu}, \psi, g \right\rangle = 0 \right\}.
\]
Here the index \(\pm \) indicates which half plane \(\mu \) lies in. Then
\[
F_\pm(\mu) = \hat{\gamma}(\mu) - \frac{1}{D(\mu)} \phi(\mu)\psi(\mu).
\]
First assume \(g \in \mathcal{S}^\perp \). Let \(\mu \in C_+ \setminus \{ D(\mu) = 0 \} \). Then \(F_+(\mu) = 0 \) is equivalent to
\[
(P_+\hat{\gamma})(\mu) = \frac{2\pi i}{D_+(\mu)}(P_+\phi)(\mu)P_+(\psi)(\mu).
\]
Similarly, if \(\mu \in C_- \setminus \{ D(\mu) = 0 \} \), then \(F_-(\mu) = 0 \) is equivalent to
\[
(P_-\hat{\gamma})(\mu) = \frac{2\pi i}{D_-(\mu)}(P_-\phi)(\mu)P_-(\psi)(\mu).
\]
This proves the first implication in the statement.

Now, as the zeroes of \(D(\mu) \) in \(C_\pm \) form a discrete set, the right hand sides of (101) and (102) must lie in \(H_2^+ \) and \(H_2^- \), respectively, showing (i) and (ii). Since \(\hat{\gamma} = P_+\hat{\gamma} + P_-\hat{\gamma} \), we also get (iii). For the reverse implications, simply apply \(P_+ \) and \(P_- \) to \(\hat{\gamma} \) as given in (iii).

(2) We first show the equivalence in (72). Let \(g \in \mathcal{S}^\perp \) and apply \(P_\pm \) to (71), part (iii), keeping (71) parts (i) and (ii) in mind. Then
\[
P_+\hat{\gamma} - \frac{2\pi i}{D_+}(P_+\phi)P_+(\psi) = 0 \quad \text{and} \quad P_-\hat{\gamma} + \frac{2\pi i}{D_-}(P_-\phi)P_-(\psi) = 0.
\]
Since \(D_\pm \) only have discrete zeroes, this is equivalent to
\[
D_\pm P_\pm(\hat{\gamma}) \mp 2\pi i(P_\pm\phi)P_\pm(\psi) = 0.
\]
In particular, on \(\mathbb{R} \) we have
\[
D_+P_+(\hat{\gamma}) - 2\pi i(P_+\phi)P_+(\psi) = -D_-P_-(\hat{\gamma}) - 2\pi i(P_-\phi)P_-(\psi) \quad (a.e.).
\]
Since for the boundary values on \(\mathbb{R} \) we have \(D_- = 1 - 2\pi iP_-(\psi) = D_+ - 2\pi i\psi\phi \) a.e., this is equivalent to
\[
D_+(P_+(\hat{\gamma}) + P_-(\hat{\gamma})) - 2\pi i(P_+\phi)P_+(\psi) = 2\pi i\psi\phi P_-(\hat{\gamma}) - 2\pi i(P_-\phi)P_-(\psi) \quad (a.e.)
\]
which can be rewritten as
\[
D_+\hat{\gamma} - 2\pi i(P_+\phi)\psi = 2\pi i\psi\phi P_-(\hat{\gamma}) - 2\pi i\phi P_-(\psi) \quad (a.e.),
\]
giving the right hand side of (72).

On the other hand, assume the right hand side of (72) holds. Retracing our steps above, this gives
\[
\hat{F}_+ := D_+P_+(\hat{\gamma}) - 2\pi i(P_+\phi)P_+(\psi) = -D_-P_-(\hat{\gamma}) - 2\pi i(P_-\phi)P_-(\psi) =: \hat{F}_- \quad (a.e.).
\]
Using Hölder’s inequality and boundedness of the Riesz projections \(P_\pm : L^p \to L^p \) for \(1 < p < \infty \) for the cases \(p = \frac{4}{3} \), \(p = 2 \) and \(p = 4 \) (see proof of Proposition A.2 for more details), our conditions on \(\psi \) and \(\phi \) guarantee that \(\hat{F}_\pm \in H_1^\pm + H_2^\pm \). Moreover, (103) states that \(\hat{F} = 0 \). By Lemma A.1 we have \(\hat{F} = 0 \) and so
\[
D_+P_+(\hat{\gamma}) - 2\pi i(P_+\phi)P_+(\psi) = 0 \quad \text{and} \quad D_-P_-(\hat{\gamma}) + 2\pi i(P_-\phi)P_-(\psi) = 0.
\]
Therefore all conditions on the right hand side of (70) are satisfied and \(g \in S^\perp \).

Using the identity \(P_\pm = I - P_\mp \) then gives (73) and a similarly simple calculation leads to (74).

\[\square \]

A.1. Results depending on the support of \(\phi \) and \(\psi \).

Proposition A.2. Let either \(\phi \in L^2 \) and \(\psi \in L^2 \cap L^\infty \) or \(\phi, \psi \in L^2 \cap L^4 \) be such that \(\phi \psi = 0 \). Then

\[
\begin{align*}
&g \in S^\perp \quad \iff \quad \overline{g} - 2\pi i (P_\overline{\phi} P_+ (\psi \overline{g}) + 2\pi i (P_{\overline{\phi}} P_- (\psi \overline{g}) = 0 \ (a.e.) \\
&\text{(104)}
\end{align*}
\]

\[
\begin{align*}
&g \in S^\perp \quad \iff \quad \overline{g} - 2\pi i \overline{\phi} P_+ (\psi \overline{g}) + 2\pi i (P_{\overline{\phi}} P_- (\psi \overline{g}) = 0 \ (a.e.) \\
&\text{(105)}
\end{align*}
\]

Define \(L_0 = 2\pi i (\overline{\phi} P_+ \psi - (P_\overline{\phi}) \psi) \equiv 2\pi i (\overline{\phi} P_+ \psi + (P_\overline{\phi}) \psi) \) on its maximal domain \(D(L_0) = \{ u \in L^2 : L_0 u \in L^2 \} \). Then we have \(S = L^2 (\mathbb{R}) \) if and only if \(1 \) is not an eigenvalue of the operator \(L_0 \) on \(L^2 (\mathbb{R}) \).

Proof. In this case, \(D(\lambda) \equiv 1 \), so (104) is equivalent to condition (iii) on the right hand side of (71) and one implication is trivial. By Proposition 8.1 it is sufficient to show that conditions (i) and (ii) on the right hand side of (71) hold. In our case, this simplifies to

\[
(\text{i}') \quad (P_+ \overline{\phi}) P_+ (\psi \overline{g}) \in H^+_2 \quad \text{and} \quad (\text{ii}') \quad (P_{\overline{\phi}}) P_- (\psi \overline{g}) \in H^-_2.
\]

In the case when \(\phi \in L^2 \) and \(\psi \in L^2 \cap L^\infty \), we have that \(P_+ \overline{\phi} \in L^2 \) and \(P_- (\psi \overline{g}) \in L^2 \) by boundedness of the Riesz projection \(P_+ : L^2 \to L^2 \), so the product lies in \(H^+_1 \) (see [28]). On the other hand, if \(\phi, \psi \in L^2 \cap L^4 \), then \(\overline{\psi} \in L^{4/3} \) by Hölder’s inequality, so \(P_+ (\psi \overline{g}) \in L^{4/3} \). Also \(P_+ \overline{\phi} \in L^4 \), so by Hölder’s inequality, we again get that the product lies in \(H^+_1 \). Similarly \((P_{\overline{\phi}}) P_- (\psi \overline{g}) \in H^-_1 \).

From (104), \(g = 2\pi i (P_+ \overline{\phi}) P_+ (\psi \overline{g}) - 2\pi i (P_{\overline{\phi}}) P_- (\psi \overline{g}) \) which gives a decomposition of \(\overline{g} \in L^2 \) into its unique \(H^+ \) and \(H^- \) components, whence we obtain (i’) and (ii’).

Now,

\[
\overline{g} = 2\pi i (P_+ \overline{\phi}) P_+ (\psi \overline{g}) - 2\pi i (P_{\overline{\phi}}) P_- (\psi \overline{g}) = 2\pi i \left[(P_+ \overline{\phi}) P_+ \psi - (P_{\overline{\phi}}) P_- \psi \right] \overline{g} = 2\pi i \left[\overline{\phi} P_+ \psi - (P_{\overline{\phi}}) (P_+ \psi + P_- \psi) \right] \overline{g} = L_0 \overline{g},
\]

which shows (105) and the statement about \(L_0 \). \(\square \)

Remark A.3. Note that \(D(L_0) \) is dense in \(L^2 \) if \(\phi, \psi \in L^2 \cap L^4 \) or if \(\phi \in L^{2+\varepsilon} \) for some \(\varepsilon > 0 \) and \(\psi \in L^2 \cap L^\infty \), as it contains \(L^2 \cap L^\infty \).

Proof of Theorem 8.5. We recall that \(\mathbb{R} = \Omega_\phi \cup \Omega_\psi \cup \Omega \). Without loss of generality, we may assume \(\Omega_\phi \cap \Omega_\psi = \emptyset \). Suppose \(g \in S^\perp \). Using (105), we then have three cases:

(1) \(k \in \Omega_\phi \): we have \(0 = \overline{g}(k) - \overline{\phi}(k) \psi \chi_{\Omega_\psi} \overline{g}(k + i 0) \). Hence,

\[
\text{(106)} \quad \chi_{\Omega_\phi} \overline{g}(k) = \overline{\phi}(k) \psi \chi_{\Omega_\psi} \overline{g}(k + i 0)
\]

and so \(g|_{\Omega_\phi} \) completely determines \(g|_{\Omega_\phi} \).

(2) \(k \in \Omega_\psi \): we have \(0 = \overline{g}(k) - \overline{\phi}(k - i 0) \psi(k) \overline{g}(k) \). Hence, almost everywhere we have

\[
\text{(107)} \quad \chi_{\Omega_\psi} \overline{g}(k) \left[1 - \overline{\phi}(k - i 0) \psi(k) \right] = 0.
\]

(3) \(k \in \Omega \): we have

\[
\text{(108)} \quad g|_\Omega = 0.
\]
This gives three necessary and sufficient conditions for \(g \) to lie in \(\mathcal{S}^\perp \).

We now prove the statements (i)-(iii).

(i) If \(\hat{\psi}(k-i0)\psi(k) \neq 1 \) for almost every \(k \in \Omega_\psi \), [80] implies that \(g|_{\Omega_\psi} = 0 \), and so by [79] we have \(g|_{\Omega_\psi} = 0 \) whence \(g \equiv 0 \) and \(\mathcal{S} = L^2(\mathbb{R}) \).

(ii) Choose \(g \) on \(\Omega_{\psi,0} \) to be an arbitrary non-zero \((L^2 \cap L^\infty)(\Omega_{\psi,0}) \) function (in the case when \(\phi \in L^{2+\epsilon}, \psi \in L^\infty \), we may even choose \(g \) arbitrary in \((L^2 \cap L^{\frac{2d+\epsilon}{d}})(\Omega_{\psi,0}) \)). Extending \(g \) by zero to \(\Omega_\psi \) and then using Hölder’s inequality and boundedness of \(P_+ \), we automatically get that \(\overline{\psi} \hat{\chi}_{\Omega_\psi} \) is bounded. The calculation in (ii) can then be repeated for a dense set of \(g \) in \(\mathcal{S}^\perp \) which gives the needed equality of the two sets.

\[\square \]

Proof of Theorem 8.8 From [105], we have

\[
(109) \quad g \in \mathcal{S}^\perp \iff \overline{g}(k) - \hat{\phi}(k)(\hat{\psi}g)_+ - (\hat{\phi})_- \hat{\psi}g = 0 \text{ a.e.} \iff (1 - \psi(\hat{\phi})_+)(g - \overline{\phi} \hat{\psi}g)_+ = 0 \text{ a.e.}
\]

We have two cases: In the first case, \(\overline{g} - \hat{\phi} \hat{\psi}g)_+ = 0 \text{ a.e.} \). Then multiplying by \(\psi \) and using the condition on the supports, we get \(\psi \overline{g} = 0 \) and hence \(g = 0 \).

In the second case, \(\overline{g} - \hat{\phi} \hat{\psi}g)_+ = 0 \text{ a.e.} \). Then there exists a set \(E \) of positive measure such that \(\overline{g} - \hat{\phi} \hat{\psi}g) \neq 0 \text{ on } E \) and \((1 - \psi(\hat{\phi}))_+ = 0 \text{ a.e.} \).

We now show that if there exists a set \(E \) of positive measure such that \((1 - \psi(\hat{\phi}))_+ = 0 \text{ a.e.} \), then \(\mathcal{S}^\perp \neq \{0\} \). Note first that \(E \subset \Omega_\psi \). Choose any non-zero \(\tilde{g} \in (L^2 \cap L^\infty)(E) \), \(\tilde{g} \neq 0 \) and continue it to \(\mathbb{R} \) by zero.

Define

\[
\overline{g}(k) = \begin{cases} \overline{g}(k), & k \in E, \\ 0, & k \in \Omega_\psi \setminus E, \\ \overline{\phi} 2\pi i P_+ (\hat{\psi}g), & k \notin \Omega_\psi. \end{cases}
\]
By (109), to show \(g \in \mathcal{S} \perp \) we only require \(g \in L^2 \). This follows immediately from the condition (78). From the freedom in the choice of \(\tilde{g} \), it is clear that \(\text{def } \mathcal{S} \) is infinite. \(\square \)

Lemma A.4. Let \(f : \mathbb{R} \to \mathbb{C} \) be measurable. Consider the set \(E_\alpha \subset \mathbb{R} \) given by \(E_\alpha = \{ x \in \mathbb{R} : f(x) = \alpha \} \), \(\alpha \in \mathbb{C} \). Then \(\{ \alpha \in \mathbb{C} : |E_\alpha| > 0 \} \) is countable.

Proof. \(\{ \alpha \in \mathbb{C} : |E_\alpha| > 0 \} = \bigcup_{n=1}^{\infty} \{ \alpha \in \mathbb{C} : |E_\alpha| > 1/n \} \). Assume the set is not countable. Then there exists \(\varepsilon_0 \) such that \(J := \{ \alpha \in \mathbb{C} : |E_\alpha| > \varepsilon_0 \} \) is uncountable. Moreover if \(\alpha \neq \alpha' \), \(E_\alpha \cap E_{\alpha'} = \emptyset \). Now \(\mathbb{C} \supset \bigcup_{\alpha \in J} E_\alpha \) is a disjoint union of uncountably many sets of measure greater than \(\varepsilon_0 \). Choose \(\tilde{f}_\alpha = \chi_{\tilde{E}_\alpha} \) where \(\tilde{E}_\alpha \subseteq E_\alpha \) with \(|\tilde{E}_\alpha| = \varepsilon_0 \). Then \(\| \tilde{f}_\alpha \| = \sqrt{\varepsilon_0} \) and \(\tilde{f}_\alpha \perp \tilde{f}_{\alpha'} \) for \(\alpha \neq \alpha' \). This contradicts separability of \(L^2(\mathbb{R}^2) \). Therefore, \(\{ \alpha \in \mathbb{C} : |E_\alpha| > 0 \} \) must be countable. \(\square \)

Proof of Theorem 8.9. (1) This is immediate from Theorem 8.8 with the help of Lemma A.4.

(2) From (105), we have \(g \in \mathcal{S} \perp \) if and only if

\[
\bar{g}(k) - \bar{\phi}(k)\psi \bar{g}(k + i0) - \bar{\phi}(k - i0)\psi(k)\bar{g}(k) = 0.
\]

Multiplying by \(\psi(k) \), and setting \(g_\psi := \psi \bar{g} \) we get

\[
g_\psi(k) = \psi(k)\bar{\phi}(k - i0)g_\psi(k).
\]

Hence, unless \(\psi(k)\bar{\phi}(k - i0) = 1 \) on a set of non-zero measure, we have \(g_\psi \equiv 0 \) which by (110) gives \(g \equiv 0 \) and therefore \(\mathcal{S} = L^2(\mathbb{R}) \).

Now, as \(\bar{\phi} \psi = 0 \),

\[
\alpha \psi(k)\bar{\phi}(k - i0) = -2\pi i\alpha \psi(k)P_+\bar{\phi} = 2\pi i\alpha \psi(k)P_-\bar{\phi}.
\]

Assuming, that \(\psi \in L^\infty \) and \(P_+\phi \) or \(P_-\bar{\phi} \in L^\infty \), we see that \(\mathcal{S}_\alpha = L^2(\mathbb{R}) \) for sufficiently small \(|\alpha| \), as \(|\alpha \psi(k)\bar{\phi}(k - i0)| < 1 \) and (111) implies \(g_\psi \equiv 0 \).

\(\square \)

Proof of Theorem 8.10. Clearly, \(\phi \) and \(\psi \) are both bounded and compactly supported, so (78) is satisfied. We have

\[
\bar{\phi}(k + i0)\psi(k) = \left(\int_I \frac{dt}{t - k} \right) \chi_I(k) \left(\int_I \frac{dt}{t - k} \right)^{-1} = \chi_I(k)
\]

and by Theorem 8.8 we have \(\mathcal{S} \neq L^2(\mathbb{R}) \) and \(\text{def } \mathcal{S} = \infty \). On the other hand,

\[
\bar{\psi}(k + i0)\phi(k) = \chi_I(k) \int_{I'} \frac{1}{t - k} \left(\int_I \frac{du}{u - t} \right)^{-1} dt \neq 1 \ a.e. \ on \ I,
\]

since the inner integral is positive and the outer one negative. Hence, by Theorem 8.8 \(\mathcal{S} = L^2(\mathbb{R}) \), and the first part of the theorem is proved.

For part (ii) we investigate the relationship between the \(M \)-function and the bordered resolvent in this example. As a first step, we investigate jumps of the \(M \)-function across the real axis. Recall that

\[
M_B(\lambda) = \left(\text{sign}(3\lambda)\pi i - \hat{\psi}(\lambda)\hat{\phi}(\lambda) - B \right)^{-1}
\]

and that here we have

\[
\hat{\phi}(\lambda) = \int_I \frac{dt}{t - \lambda} \quad \text{and} \quad \hat{\psi}(\lambda) = \int_{I'} \frac{1}{t - \lambda} \left(\int_I \frac{du}{u - t} \right)^{-1} dt.
\]
Suppose $k \in \mathbb{R} \setminus (I \cup I')$. Then both $\hat{\phi}$ and $\hat{\psi}$ are analytic near k and the jump of M_B is given by the jump coming from the $\text{sign}(\Im \lambda)\pi i$ term.

Now suppose $k \in I$. Then the difference $\hat{\phi}(k + i\varepsilon) - \hat{\phi}(k - i\varepsilon)$ can be found using a contour integral and we get

$$\hat{\phi}(k + i0) - \hat{\phi}(k - i0) = 2\pi i \chi_I(k).$$

Moreover,

$$\lim_{\varepsilon \to 0} \hat{\psi}(k \pm i\varepsilon) = \hat{\psi}(k) = \int_I \frac{1}{t - k} \left(\int_I \frac{du}{u - t} \right)^{-1} dt < 0$$

is analytic on I. Therefore, the jump of M_B^{-1} at k is $2\pi i (1 - \hat{\psi}(k))$ and since $\hat{\psi}(k) < 0$, the M-function will jump at k.

Finally, let $k \in I'$. Then $\hat{\phi}(\lambda) = \int_I \frac{dt}{t - \lambda}$ is analytic in k, so does not jump, while

$$\left[\hat{\psi}(k) \right] = 2\pi i \left(\int_I \frac{du}{u - k} \right)^{-1}.$$

Therefore, $\left[\hat{\phi}(k) \hat{\psi}(k) \right] = 2\pi i$. This cancels the jump from the $\text{sign}(\Im \lambda)\pi i$ term, and the formula for the jump of M_B^{-1} in the second part is proved.

We next examine the bordered resolvent. Note that, since $\mathcal{S} = L^2(\mathbb{R})$, only one projection is necessary here. We first consider the resolvent. Let $(A_B - \lambda)u = v$. Then (noting that $D(\lambda) = 1$ in our situation) we have from (36)

$$u(x) = \frac{v(x)}{x - \lambda} - \frac{\psi(x)}{x - \lambda} \left(\frac{1}{x - \lambda} - \frac{\psi(x)}{x - \lambda} \right) + c_u \left(\frac{1}{x - \lambda} - \frac{\psi(x)}{x - \lambda} \hat{\phi}(\lambda) \right).$$

We see immediately from (113) that the non-bordered resolvent (as the sum of a multiplication operator with a jump and finite rank operators) has a non-trivial jump across the whole real axis. Moreover, we get

$$\Gamma_1 u = \hat{\nu}(\lambda) - \hat{\psi}(\lambda) \left[\left(\frac{1}{t - \lambda} - \hat{\phi}(\lambda) \right) + c_u \hat{\phi}(\lambda) \right] + c_u \lim_{R \to \infty} \int_{-R}^R dx \frac{dx}{x - \lambda},$$

where the value of the limit of the integrals in the last term is given by $\pi i \text{sign}(\Im \lambda)$. From (36) we have

$$c_u = M_B(\lambda) \left(\hat{\nu}(\lambda) + \left(\frac{1}{t - \lambda} - \hat{\phi}(\lambda) \right) \hat{\psi}(\lambda) \right).$$

Since we are only interested in the restricted resolvent, we now fix $v \in \mathcal{S}$. In this example both $\phi, \psi \in L^2 \cap L^\infty$, so we may apply the final part of Theorem 8.5 to obtain that

$$v|_{I'} = \frac{\pi i}{\chi_I(k + i0)} \left(\int \frac{dt}{t - x} \right)^{-1} \bigg|_{I'},$$

while v is an arbitrary L^2-function outside I'.
Now consider the jump of \(u(x, \lambda) = (A_B - \lambda)^{-1}v(x) \) for \(k \in I' \):
\[
u(x, k + i0) - u(x, k - i0) = \begin{aligned}
&= \psi(x)2\pi i\delta(x - k) - \psi(x)2\pi i\delta(x - k)v\phi(k + i0) - \psi(k)x - k \frac{2\pi iv(k)\phi(k)}{x - k} = 0 \\
&= c_u(k + i0) \left(2\pi \delta(x - k) - 2\pi \delta(x - k)\psi(x)\phi(k) \right) = 0, \text{ as } \psi(k)\phi(k) = 1 \text{ in } I' \\
&= \left(\frac{1}{x - k} - \frac{\psi(x)}{x - k}\phi(k) \right) M_B(k) \left(-2\pi iv(k) + v \left< \frac{v}{t - k} , \phi \right> 2\pi i\psi(k) \right) = 0 \text{ due to } (116) \\
&= 0 \text{ on } I'.
\]

Here, we have used that \([M_B(k)] = 0 \text{ for } k \in I'\).
We now consider the jump for \(k \in I \), where \(\psi \) is zero.
\[
(117) \quad u(x, k + i0) - u(x, k - i0) = \nu(x)2\pi i\delta(x - k) + \left(\frac{c_u(k)}{x - k - i0} + c_u(k - i0)2\pi i\delta(x - k) \right).
\]

Next, we use that for any function \(f \),
\[
[(1/f)(k)] = -\left[\frac{f(k)}{f(k + i0)f(k - i0)} \right]
\]
to obtain
\[
(118) \quad c_u(k) = -\left[(1/c_u)(k) \right] c_u(k + i0)c_u(k - i0) - \left[M_B^{-1} \right] c_u(k + i0)c_u(k - i0) - \phi(k - i0) + \psi(k - i0)2\phi(k - i0) - c_u(k + i0)c_u(k - i0) \left[\frac{1}{\phi(k - i0)2\phi(k - i0)} \right] (k)
\]
\[
= \left[M_B^{-1} \right] M_B(k + i0)M_B(k - i0) \left(2\pi iv(k) - \psi(k)\phi(k + i0) \right) + M_B(k - i0) \left(2\pi iv(k) - \psi(k)\phi(k + i0) \right).
\]

Here, we have used the notation \([F(\lambda)](k)\) for the jump of the function \(F \) of \(\lambda \) at the point \(k \).
To show that the restricted resolvent has a jump, it is sufficient to show that there exists \(v \in \overline{S} \) such that the righthand side of (117) does not vanish identically. Since \(\frac{1}{x + \frac{1}{2}} = \pi i\delta(x) + v.p.(\frac{1}{2}) \) and the delta-functions cannot cancel the principal value, it is sufficient to show that there exists \(v \in \overline{S} \) such that \(c_u(k) \neq 0 \). To do this, choose \(v = 0 \) on \(I \cup I' \), but \(v \in L^2 \) not identically zero and sufficiently smooth. Then \(v \in \overline{S} \) and (118) becomes
\[
[c_u(k)] = \left[M_B^{-1}(k) \right] M_B(k + i0)M_B(k - i0)\phi(k + i0) \neq 0,
\]
as all terms of the product are non-zero. \(M_B(k + i0) \) and \(M_B(k - i0) \) are non-zero a.e. in \(k \), as they are boundary values of a non-zero analytic function (see [28]).
Now, let $k \in \mathbb{R} \setminus I \cup I'$. Then

$$u(x, k + i0) - u(x, k - i0) = 2\pi i v \delta(x - k) - \psi(x) 2\pi i \delta(x - k) v \hat{\phi}(k + i0)$$

$$- \frac{\psi(k)}{x - k} 2\pi i v \tilde{\phi}(k) + c_a(k + i0) \left(2\pi i \delta(x - k) - 2\pi i \delta(x - k) \frac{\psi(x)}{x - k} \right)$$

$$+ \left[M_B(k + i0) \left(-2\pi i v \delta(x - k) + \left(\frac{v}{x - k}, \phi \right) 2\pi i \psi(k) \delta(x - k) \right) \right]$$

$$+ [M_b(k)] \left(-\hat{v}(k - i0) + \tilde{v} \phi(k - i0) \hat{\psi}(k - i0) \right) \left(\frac{1}{x - k - i0} - \frac{\psi(x)}{x - k - i0} \right)$$

$$= -2\pi i v \delta(x - k) + c_a(k + i0) 2\pi i \delta(x - k) - 2\pi i v(x) \delta(x - k) \frac{1}{x - k - i0} M_B(k + i0)$$

$$- M_B(k + i0) M_B(k - i0) 2\pi i (1 - \hat{\psi}(k)) (-\hat{v}(k) + \tilde{v} \phi(k) \hat{\psi}(k)).$$

Therefore, the most singular term is $-2\pi i v(x) M_B(k + i0) \frac{\delta(x - k)}{x - k - i0}$ which cannot be cancelled. Clearly the coefficient does not vanish for any v supported outside $I \cup I'$ with $k \in \{ x \in \mathbb{R} : v(x) \neq 0 \}$.

Proof of Theorem 8.11.

(1) Let

$$F_{\pm} := P_\pm \bar{g} + \frac{2\pi i}{D_{\pm}} (P_\pm \bar{\phi}) P_\pm (\psi \bar{g}) = 0.$$

We consider the condition (119). Then $g \in S^+$ implies $F_{\pm} \equiv 0$ and $[F] = 0$. On Ω we have

$$\frac{\left\langle \frac{1}{x - \mu}, \phi \right\rangle \left\langle \frac{1}{x - \mu}, \psi, g \right\rangle}{1 + \left\langle \psi, x - \mu, \phi \right\rangle} = 0 a.e.$$

and g vanishes a.e. on Ω. Moreover, since our conditions are symmetric in ϕ and ψ, we immediately get that also $\tilde{S}^+ \subseteq L^2(\Omega^c)$.

(2) Consider F_{\pm} from (119). We need to show that if F vanishes, then so does g. We have

$$D_{\pm}(\mu) = 1 + \alpha \int_I \frac{\bar{\phi}}{x - \mu} \ dx,$$

so

$$F_{\pm}(\mu) = \left\langle \frac{1}{x - \mu}, g \right\rangle - \frac{\alpha \int_I \frac{\bar{\phi}}{x - \mu} \ dx \int_I \frac{\bar{g}}{x - \mu} \ dx}{1 + \alpha \int_I \frac{\bar{\phi}}{x - \mu} \ dx}.$$

Since $g \in S^+$, the first part of the theorem implies $g|_{ce} = 0$ a.e., so

$$F_{\pm}(\mu) = \int_I \frac{\bar{g}}{x - \mu} \ dx - \frac{1}{1 + \alpha \int_I \frac{\bar{\phi}}{x - \mu} \ dx}. $$
Clearly, \((1 + \alpha \int_\Omega \frac{\overline{g}}{x - \mu} \, dx)^{-1} \neq 0\) for a.e. \(\mu\), so we have that for all \(\mu \notin \mathbb{R}\)

\[
\int_\Omega \frac{g}{x - \mu} \, dx = \left\langle \frac{1}{x - \mu}, \overline{g} \right\rangle = 0.
\]

As in the proof of Lemma A.1, this implies \(g \equiv 0\).

\(\square\)

Proof of Theorem 8.12. From Theorem 8.11, we know that \(L^2(\Omega') \subseteq \mathfrak{S} \cap \overline{\mathfrak{S}}\). Choose \(v, \tilde{v} \in L^2(\Omega')\). By assumption, we know \(\langle (A - \lambda)^{-1} v, \psi \rangle = 0\). Noting that \(v \phi = 0\) and \(\tilde{v} \psi = 0\), we get from (35) and (36) that

\[
\langle (A - \lambda)^{-1} v, \tilde{v} \rangle - \left\langle \frac{v}{x - \lambda}, \tilde{v} \right\rangle = -M_B(\lambda) \left\langle \frac{v}{x - \lambda}, 1 \right\rangle \left\langle \frac{1}{x - \lambda}, \tilde{v} \right\rangle.
\]

Choosing \(v, \tilde{v} \geq 0\) and not identically zero, we can divide \(\lambda\)-a.e. and obtain

\[
M_B(\lambda) = \frac{\left\langle \frac{v}{x - \lambda}, \tilde{v} \right\rangle - \langle (A - \lambda)^{-1} v, \tilde{v} \rangle}{\left\langle \frac{v}{x - \lambda}, 1 \right\rangle \left\langle \frac{1}{x - \lambda}, \tilde{v} \right\rangle}.
\]

\(\square\)

A.2. Results with \(\phi, \psi \in H^+_2\).

Proposition A.5. Let \(\phi, \psi \in H^+_2\). Then

\[
g \in \mathcal{S} \iff \begin{cases}
(I) & g \in H^+_2, \\
(II) & \overline{g} = -\frac{2\pi i}{\overline{\phi}} P_- (\psi \overline{g}) \text{ (a.e.).}
\end{cases}
\]

Proof. We consider the conditions in (70). As \(\overline{\phi} \in H^+_2\), we have \(P_+ \overline{\phi} = 0\), giving \(P_+ \overline{g} = 0\), hence \(\overline{g} \in H^+_2\) and \(g \in H^+_2\). Since \(P_- \overline{g} = \overline{g}\) and \(P_- \overline{\phi} = \overline{\phi}\), the second condition in (70) becomes (II). \(\square\)

Proof of Theorem 8.14 (outline). We use the fact that \(\overline{\mathcal{S}} = \overline{T}\) where \(T\) is as defined in (10); the elements of \(T\) are found by solving \((\overline{A} - \mu)u = 0\) and varying \(\mu\) over the resolvent set of some appropriate operators \(A_B\). We therefore start by solving

\[
(\overline{A} - \mu)u = (x - \mu)u - c_u 1 + \langle u, \phi \rangle \psi = 0
\]

where \(\phi, \psi \in H^+_2\). Dividing by \((x - \mu)\) we find that

\[
u = \frac{c_u 1 - \langle u, \phi \rangle \psi}{x - \mu}.
\]

Taking the inner product with \(\phi\) we get

\[
D(\mu) \langle u, \phi \rangle - \left\langle \frac{c_u}{x - \mu}, \phi \right\rangle = 0.
\]

There are two cases to consider.

(1) \(\mu \in \mathbb{C}_+\). This means \(\left\langle \frac{1}{x - \mu}, \phi \right\rangle = 0\), and therefore \(D(\mu) \langle u, \phi \rangle = 0\). There are two subcases to consider.

(1a) \(D(\mu) \neq 0\) which implies \(\langle u, \phi \rangle = 0\), giving \(u = \frac{1}{x - \mu}\) up to arbitrary constant multiples.
(1b) \(D(\mu) = 0 \) giving \(u = \frac{c_u 1 - \tilde{c} \psi}{x - \mu} \) for arbitrary values \(c_u \) and \(\tilde{c} \). For any boundary condition \(B \), by suitable choice of the two constants we see that \(\mu \) belongs to the spectrum of \(A_B \). Therefore these functions need not be added to the space \(\mathcal{S} \). However, functions \(\frac{1}{x - \mu} \) are in \(\mathcal{S} \) due to being able to approximate them using neighbouring values of \(\mu \).

(2) We take \(\mu \in \mathbb{C}_- \). Then

\[
\langle u, \phi \rangle D(\mu) = \left\langle \frac{c_u}{x - \mu}, \phi \right\rangle = -2\pi i c_u \tilde{\phi}(\mu).
\]

There are some subcases to consider.

(2a) \(D(\mu) \neq 0 \) which implies \(u = c_u \frac{1 + (2\pi i \tilde{\phi}(\mu)/D(\mu)) \psi}{x - \mu} \) for arbitrary \(c_u \);

(2b) \(D(\mu) = 0 \), \(\tilde{\phi}(\mu) = 0 \) giving by explicit calculation a two dimensional kernel: \(u = \frac{c_u 1 - \tilde{c} \psi}{x - \mu} \) for arbitrary values \(c_u \) and \(\tilde{c} \);

(2c) \(D(\mu) = 0 \), \(\tilde{\phi}(\mu) \neq 0 \) giving \(c_u = 0 \) and \(u = \tilde{c} \frac{\psi}{x - \mu} \) for any \(\tilde{c} \).

In the case (2b) for any boundary condition \(B \), by suitable choice of the two constants we see that \(\mu \) belongs to the spectrum of \(A_B \). Therefore these functions need not be added to the space \(\mathcal{S} \). In the case (2c) the function \(\frac{\psi}{x - \mu} \) should be included in \(\mathcal{S} \). There is only one \(B \) for which it is an eigenfunction (formally \(B = \infty \)), but even for this choice of \(B \) it can be approximated by elements from neighbouring kernels with \(D(\mu) \neq 0 \). Note that this means that \(\mathcal{S} \) is independent of \(B \) as it should be by Proposition 2.8. This proves the formula for \(T = \mathcal{S} \) in the theorem.

We now obtain the expression for the dimension of \(S^\perp \), in the generic case \(M = 0 = M_0 \), when \(\psi(x) = \sum_{j=1}^n c_j/(x - z_j) \), where the \(z_j \) are distinct, lie in \(\mathbb{C}_- \) and the \(c_j \) are all non-zero. We know that \(g \in S^\perp \) if and only if \(g \) satisfies both conditions (I) and (II) in Proposition A.5. Using the fact that \(P_- = I - P_+ \) the second condition becomes

\[
(1 - 2\pi i P_- (\psi \tilde{\phi} + 2\pi i \tilde{\phi} \psi) \tilde{g} - 2\pi i \tilde{\phi} P_+ (\psi \tilde{g}) = 0.
\]

The first bracket on the left gives \(D_+ \) and by (I) we know that \(\tilde{g} \in H_2^- \) and so (122) becomes

\[
D_+(x) \tilde{g} - 2\pi i \tilde{\phi} \sum_{j=1}^N c_j P_+ \left(\frac{1}{x - z_j} \tilde{g} \right) = 0, \quad g \in H_2^+, \quad x \in \mathbb{R}
\]

in which \(D_+(x) \) are the boundary values on the real line of the function \(D_+(\mu) = 1 + \int_{\mathbb{R}} \frac{\psi(x) \phi(x)}{x - \mu} dx \), \(\mu \in \mathbb{C}_+ \). Thus by the Residue Theorem,

\[
g \in H_2^+, \quad g(x) = \frac{2\pi i \tilde{\phi}(x)}{D_+(x)} \sum_{j=1}^N c_j \frac{\tilde{g}(z_j)}{x - z_j}, \quad x \in \mathbb{R}
\]

Therefore, by unique continuation of the meromorphic function to the lower half plane (see [28]) \(\tilde{g} \) is given by

\[
g \in H_2^+, \quad \tilde{g}(\mu) = \frac{2\pi i \tilde{\phi}(\mu)}{D_+(\mu)} \sum_{j=1}^N c_j \frac{\tilde{g}(z_j)}{\mu - z_j}, \quad \mu \in \mathbb{C}_-.
\]

from which it is immediately clear that the space of all such \(g \) is at most \(N \)-dimensional. Note that the expression on the right hand side of the equality sign in (124) is not clearly an element of
\[D_+(\mu) = 1 - 2\pi i \sum_{j=1}^{N} \frac{\phi(z_j)}{z_j - \mu}, \quad \mu \in \mathbb{C}. \]

If \(D_+(\mu) \) has no zeros in \(\mathbb{C}_- \) and if \(\phi(z_j) \neq 0 \) for all \(j \) then we get
\[\bar{g}(\mu) = 2\pi i \bar{\phi}(\mu) \sum_{j=1}^{N} \frac{c_j \bar{g}(z_j)}{D_+(\mu)(\mu - z_j)}, \quad \mu \in \mathbb{C}_- \]
and the condition that \(\lim_{\mu \to z_j} \bar{g}(\mu) = \bar{g}(z_j) \) gives no additional restrictions, as can be confirmed by a simple explicit calculation. In this case, therefore, the defect of \(\mathcal{S} \) is \(N \).

Now suppose \(D_+ \) has zeros in \(\mathbb{C}_- \); for simplicity we are assuming that they all lie strictly below the real axis. We let \(\mu_1, \ldots, \mu_\nu \) be the distinct poles of \(\phi/D_+ \), with orders \(p_1, \ldots, p_\nu \) and set \(P = \sum_{j=1}^{\nu} p_j \). In order to ensure that \(g \) given by (124) lies in \(H^+_2 \) we need that the conditions
\[\sum_{j=1}^{\nu} \frac{c_j}{(\mu_k - z_j)^n} \bar{g}(z_j) = 0, \quad n = 1, \ldots, p_k, \quad k = 1, \ldots, \nu, \]
all hold - a total of \(P \) linear conditions on the numbers \(\bar{g}(z_1), \ldots, \bar{g}(z_N) \). We now check that this is a full-rank system. Suppose for a contradiction that there is a non-trivial set of constants \(\alpha_{i,k} \) such that
\[\sum_{k=1}^{\nu} \sum_{n=1}^{p_k} \frac{\alpha_{i,k}}{(\mu_k - z_j)^n} = 0, \quad j = 1, \ldots, N. \]

Define a rational function by \(F(z) = \sum_{k=1}^{\nu} \sum_{n=1}^{p_k} \frac{\alpha_{i,k}}{(\mu_k - z)^n} \) so that \(F \) has zeros at \(z_1, \ldots, z_N \). Observe that \(Q(z) := F(z) \prod_{k=1}^{\nu} (\mu_k - z)^{p_k} \) is a polynomial of degree strictly less than \(P = \sum_{k=1}^{\nu} p_k \), having \(N \) zeros. Now \(D_+(\mu) \to 1 \) as \(\Im(\mu) \to \infty \), so \(D_+ \) has the same number of zeros as poles. In particular, \(D_+ \) has at least as many poles in \(\mathbb{C} \) as it has zeros in \(\mathbb{C}_- \), giving \(N \geq P \). Thus \(Q \) is a polynomial of degree \(< P \leq N \) having \(N \) zeros. This means \(Q \equiv 0 \), so \(F \equiv 0 \), and the constants \(\alpha_{i,k} \) must all be zero. This contradiction shows that the set of linear constraints on the \(N \) values \(\bar{g}(z_j) \) has full rank \(P \), and so the set of allowable values for \((\bar{g}(z_1), \ldots, \bar{g}(z_N)) \) has dimension \(N - P \).

The degenerated case leading to non-zero \(M \) and \(M_0 \) can be analysed similarly by considering the local behaviour of \(\phi/D_+ \) around zeros of \(D_+(x) \) on the real axis. \(\square \)

Proof of Proposition 8.15. We follow the construction of Theorem 8.14, assuming additionally now that \(\bar{\phi} \) has the same form as \(\psi \):
\[\bar{\phi}(x) = \sum_{k=1}^{\tilde{N}} \frac{d_k}{x - w_k}, \quad w_k \in \mathbb{C}_+ \text{ distinct and } d_k \neq 0. \]
We shall construct \(\psi \) and \(\phi \) so that the defect number \(N - P \) of Theorem 8.14 takes any value between 0 and \(N - 1 \), while the corresponding defect number \(\tilde{N} - \tilde{P} \) for \(\mathcal{S} \) takes any value between 0 and \(\tilde{N} - 1 \), independently of the value of \(N - P \).

In addition to the function \(D(\mu) \) appearing in the proof of Theorem 8.14 we now have a function \(\hat{D} \) which, following (125), has the form
\[\hat{D}(\mu) = 1 - 2\pi i \sum_{k=1}^{\tilde{N}} \frac{d_k \bar{\psi}(w_k)}{w_k - \mu}. \]
The expressions \((125,127)\) can be further developed using the explicit formulae for \(\phi\) and \(\psi\) to obtain

\[
D(\mu) = 1 - 2\pi i \sum_{j=1}^{N} \frac{c_j}{z_j - \mu} \sum_{k=1}^{\tilde{N}} \frac{d_k}{z_j - w_k},
\]

\[
\tilde{D}(\mu) = 1 - 2\pi i \sum_{k=1}^{\tilde{N}} \frac{d_k}{w_k - \mu} \sum_{j=1}^{N} \frac{c_j}{w_k - z_j}.
\]

We choose the points \(z_j\) and \(w_k\) so that \(z_j - w_k \gg 1\) and \(|z_j| \gg |w_k|\) for all \(j, k\). Then

\[
D(\mu) \approx 1 - 2\pi i \sum_{j=1}^{N} \frac{c_j}{z_j - \mu} \sum_{k=1}^{\tilde{N}} \frac{d_k}{z_j - w_k}; \quad \tilde{D}(\mu) \approx 1 + 2\pi i \sum_{k=1}^{\tilde{N}} \frac{d_k}{w_k - \mu} \sum_{j=1}^{N} \frac{c_j}{w_k - z_j}.
\]

From these expressions we can find approximations to the zeros \(\mu_j\) of \(D\) and \(\tilde{\mu}_k\) of \(\tilde{D}\),

\[
\mu_j \approx z_j - 2\pi i \frac{c_j}{z_j} \sum_{k=1}^{\tilde{N}} \frac{d_k}{z_j - w_k}, \quad \tilde{\mu}_k \approx w_k + 2\pi i d_k \sum_{j=1}^{N} \frac{c_j}{w_k - z_j};
\]

these expressions can be written in the form

\[
\mu_j \approx z_j - 2\pi i \alpha_j \tilde{d}, \quad \tilde{\mu}_k \approx w_k + 2\pi i d_k \tilde{\alpha}; \quad a = \sum_{j=1}^{N} \alpha_j, \quad d = \sum_{k=1}^{\tilde{N}} d_k, \quad \alpha_j = c_j/d_j.
\]

Inspecting these expressions one may deduce that it is possible to assign independently any value in \(\{1, \ldots, N\}\) to the number \(P\) of \(\mu_j\) in \(\mathbb{C}_-\) and any value in \(\{1, \ldots, \tilde{N}\}\) to the number \(\tilde{P}\) of \(\tilde{\mu}_k\) in \(\mathbb{C}_-\). Thus \(N - P\) may take any value in \(\{0, \ldots, N - 1\}\) and \(\tilde{N} - \tilde{P}\) may take any value in \(\{0, \ldots, \tilde{N} - 1\}\). Since \(N\) and \(\tilde{N}\) are arbitrary, the proof is complete. \(\square\)

\textbf{Proof. (Statements in Example 8.16.)} In this example, for \(\lambda \in \mathbb{C}^+\) we have by the residue theorem

\[
D_+(\lambda) = 1 + \alpha \int \left(\frac{1}{x - z_1} \cdot \frac{1}{x - w_1} \right) \frac{1}{x - \lambda} \, dx = 1 + \frac{2\pi i \alpha}{(z_1 - w_1)(\lambda - z_1)} = \frac{\lambda_0 - \lambda}{z_1 - \lambda}.
\]

Clearly, this formula also gives the meromorphic continuation of \(D_+\) to the lower half plane. We remark that this differs from \(D_-\) which is given by

\[
D_-(\lambda) = 1 + \frac{2\pi i \alpha}{(z_1 - w_1)(w_1 - \lambda)}.
\]

We now calculate the numbers \(N, P, M, M_0\) from Theorem 8.14. \(\psi\) has a simple pole at \(z_1 \in \mathbb{C}_-\), hence \(N = 1\). As \(\phi\) has no zeroes, \(M_0 = 0\). The function \(D_+\) has one pole at \(z_1 \in \mathbb{C}_-\), \(\phi\) has a simple pole at \(w_1 \in \mathbb{C}_+\). Thus all poles of \(\bar{\phi}/D_+\) in \(\mathbb{C}_-\) stem from zeroes of \(D_+\). The only zero of this function is at

\[
\lambda_0 = z_1 + \frac{2\pi i \alpha}{w_1 - z_1}.
\]

Thus, if \(\lambda_0 \in \mathbb{C}_+\) then \(P = M = 0\); if \(\lambda_0 \in \mathbb{C}_-\) then \(P = 1, M = 0\); if \(\lambda_0 \in \mathbb{R}\) then \(P = 0, M = 1\).

We next show the form of \(S^\perp\) and \(\mathcal{S}\) in the case \(\lambda_0 \in \mathbb{C}_+\). Using \(\bar{\phi} \in H^+_2\), from (70), we have \(\bar{g} \in H^+_2\) and

\[
\bar{g} = \frac{2\pi i}{D_-} \bar{\phi} P_-(\psi \bar{g}).
\]
Hence,
\[
1 + \frac{2\pi i\alpha}{(z_1 - w_1)(\lambda - w_1)} \bar{g} = -\frac{2\pi i\alpha}{\lambda - w_1} P_- \left(\frac{\bar{g}}{\lambda - z_1} \right) = -\frac{2\pi i\alpha}{\lambda - w_1} \left(\frac{\bar{g} - \bar{g}(z_1)}{\lambda - z_1} \right). \tag{133}
\]
Noting that \(\bar{g}(z_1)\) is a free parameter, a short calculation shows that
\[
\bar{g} = \frac{-2\pi i\bar{g}(z_1)}{(\lambda - w_1)(\lambda - \lambda_0)} \quad \text{or} \quad g(x) = \frac{\text{const}}{(x - \bar{w}_1)(x - \bar{\lambda}_0)}.
\]
Now, \(f \in \mathcal{S}\) iff
\[
0 = \int f\bar{g} = \text{const} \int f(t) \left(\frac{1}{t - \bar{w}_1} - \frac{1}{t - \bar{\lambda}_0} \right). \tag{134}
\]
This is equivalent to \((P_+ f)(w_1) = (P_+ f)(\lambda_0)\). \(\Box\)

A.3. Analysis for the case \(\bar{\phi}, \psi \in H^+_2\).

Proof of Theorem 8.18. We use the characterisation of \(\mathcal{S}^\perp\) given in (70):
\[
g \in \mathcal{S}^\perp \iff \begin{cases} P_+ \bar{g} - \frac{2\pi i}{D_+} \bar{\phi} P_+ (\psi \bar{g}) = 0, \\ P_- \bar{g} = 0. \end{cases}
\]
\[
\iff \bar{g} \in H^+_2 \quad \text{and} \quad \bar{g} = \frac{2\pi i}{D_+} \bar{\phi} \psi \bar{g}.
\]
Since \(D_+ = 1 + 2\pi i\bar{\phi}\) on \(\mathbb{R}\) we have
\[
\bar{g} \in H^+_2 \quad \text{and} \quad (1 + 2\pi i\bar{\phi}) \bar{g} = 2\pi i\bar{\phi} \psi \bar{g},
\]
so \(\bar{g} = 0\). \(\Box\)

A.4. The general case \(\psi, \phi \in L^2\).

Proposition A.6. The set \(E_0\) defined in (89) is countable.

Proof of Proposition A.6. Let \(\alpha \in E_0 \setminus \{0\}\) and \(E\) be the set of positive measure on which \(1 + 2\pi i\alpha(P_+ (\bar{\phi} \psi) - \psi (P_+ (\bar{\phi}))) = 0\). Set \(f = 2\pi i (P_+ (\bar{\phi} \psi) - \psi (P_+ (\bar{\phi})))\). As \(1 + \alpha f|_E = 0\) then \(f|_E = -1/\alpha\); this can only be true for a countable set of \(\alpha\), as Lemma A.4 shows. \(\Box\)

Proof of Theorem 8.20. Without loss of generality, we assume \(\alpha = 1\). Let \(E\) be the set of positive measure from (89). For \(\phi \in L^{2+\varepsilon}\), choose \(h \in L^2(E) \cap L^\infty(E)\), while if \(\phi \in L^4\), then choose \(h \in L^2(E) \cap L^4(E)\). Now, set
\[
\bar{g} = (P_+ \bar{\phi}) \chi_E h - \bar{\phi} P_-(\chi_E h). \tag{135}
\]
By our assumptions on \(h\) and in (78), we have \(g \in L^2\).

We next show that \(\bar{g}\) satisfies the right hand side of (72) pointwise. Note that here and in several other places in this proof we use that \(P_- P_+ f = 0\). This is justified as our assumptions on \(h\) and in (78) guarantee that the functions \(f\) we apply this to are in appropriate function classes. We have
\[
P_- \bar{g} = P_- ((P_+ \bar{\phi}) \chi_E h - \bar{\phi} P_-(\chi_E h)) = P_- (P_+ \bar{\phi}) P_-(\chi_E h) - \bar{\phi} P_-(\chi_E h)) = P_-(P_+ \bar{\phi} - \bar{\phi}) P_-(\chi_E h))
\]
\[
= P_- (P_+ \bar{\phi}) P_-(\chi_E h) = -(P_+ \bar{\phi}) P_-(\chi_E h). \tag{136}
\]
Multiplying by $2\pi i\psi$ and using that $D_+ - D_- = 2\pi i\psi\overline{\phi}$ on the real axis by the Sohocki-Plemelj Theorem (see [28]), gives
\[2\pi i\psi P_- g = -2\pi i\psi(P_-\overline{\phi})P_-(\chi_Eh) = 2\pi i\psi(-\overline{\phi} + (P_+\overline{\phi}))P_-(\chi_Eh) = -(D_+ - D_-) + 2\pi i\psi(P_+\overline{\phi}))P_-(\chi_Eh). \]
(137)

We rewrite the D_--term as follows.
\[D_-P_-(\chi_Eh) = P_-(D_+P_-(\chi_Eh)) = P_-(D_+P_-(\chi_Eh) + P_-(D_+P_-(\chi_Eh))) = P_-(D_+P_-(\chi_Eh)). \]
\[(138) \]
Inserting this in (137), and rearranging gives the identity
\[2\pi i\psi P_- g - P_-(D_+P_-(\chi_Eh)) = -(D_+ + 2\pi i\psi(P_+\overline{\phi}))P_-(\chi_Eh). \]
Multiplying by $2\overline{\phi}$ and using that on E we have $D_+ = 2\pi i\psi(P_+\overline{\phi})$ this gives
\[2\pi i\psi\psi P_- g - P_-(\psi P_+\overline{\phi}P_-(\chi_Eh)) = -(D_+ - 2\pi i\psi(P_+\overline{\phi}))\overline{\phi}P_-(\chi_Eh), \]
which, noting that $(D_+ - 2\pi i\psi(P_+\overline{\phi}))\chi_Eh = 0$, is the equation on the right hand side of (72).

We now need to choose $h \in L^2(E)$ suitably to obtain an infinite dimensional subspace for the corresponding \overline{g}. Choose $E' \subset E$ with $|E'| > 0$ and sufficiently small such that $\Omega_\phi \not\subset E'$ (as E has positive measure and ϕ is not identically zero this is always possible). Consider
\[(139) \]
By the above arguments, $g \in S^\perp$. Moreover,
\[\overline{g}|_{(E')}^c = -\chi((E')^c)\overline{\phi}P_-(\chi_{E'h}). \]
As $\chi((E')^c)\overline{\phi} \neq 0$ and $P_-(\chi_{E'h})$ are the boundary values of an analytic function and therefore non-zero a.e. on \mathbb{R}, we have $\overline{g} \neq 0$ whenever $P_-(\chi_{E'h}) \neq 0$ (see [28]), which gives an infinite dimensional set of such functions. \hfill \square

Proof of Theorem 8.22 (outline). This follows easily from (74) in Proposition 8.1 and standard results on compact operators. The compactness of the difference of Hankel operators follows from [38, Corollary 8.5].

Consider the analytic operator-valued function
\[I + (\mathcal{M} - \mu I)^{-1}\mathcal{K} \]
which is a compact perturbation of I. We need to know the values $\mu \in \mathbb{C}$ for which this operator has non-trivial kernel. Each connected component of $\mathbb{C}\setminus\text{essran } \mathcal{M}$ either contains only discrete (countable) spectrum or else lies entirely in the spectrum. However for large μ, $\{0\} = \ker (I + (\mathcal{M} - \mu I)^{-1}\mathcal{K})$, so by the Analytic Fredholm Theorem (see [12]), outside some bounded set there is no spectrum of $\mathcal{M} + \mathcal{K}$. \hfill \square

Appendix B. Proofs of the results of Section 9

In this appendix, we collect spectral results for an operator $T := \overline{\phi}P_+\psi$ acting on L^2. These are closely related to the corresponding results for the Toeplitz operator $T_a : H_2^+ \to H_2^+$ given by $T_au = P_au = P_+aP_+u$ which can be found, e.g. in [11].

Assumptions 9.1 are assumed to hold throughout.

Proposition B.1. Define the operators T on L^2 and $T_a : H_2^+ \to H_2^+$ as above. Then
\[\begin{align*}
(1) & \quad \sigma_p(T) \supseteq \{a(z)|z \in \mathbb{C}_-\}, \\
(2) & \quad \sigma_p(T) = \{\mu \in \mathbb{C} \mid (a - \mu) \text{ is not an outer function in } \mathbb{C}_-\} \cup \{0\}.
\end{align*} \]
(3) $\mu \notin \overline{\text{Ran}_{z \in \mathbb{C}_-} a(z)}$ implies $\mu \in \rho(T)$.

(4) $\sigma(T) = \sigma_p(T) = \overline{\text{Ran}_{z \in \mathbb{C}_-} a(z)}$.

(5) $\sigma_p(T) \setminus \{0\} = \sigma_p(T_a) \setminus \{0\}$.

Remark B.2. The proofs of (i)-(iv) are very similar to the standard proofs for Toeplitz operators which can be found, e.g. in [11].

Proof. Proof of [1] Take $u(k) = \frac{\bar{\phi}(k)}{k - z_1}$, $z_1 \in \mathbb{C}_-$. Then

$$Tu = \bar{\phi}P_+ \left(\frac{\bar{\psi}\bar{\phi}}{k - z_1} \right) = \bar{\phi}P_+ \left(\frac{a(k)}{k - z_1} \right)$$

$$= \bar{\phi}P_+ \left(\frac{a(k) - a(z_1)}{k - z_1} \right) + \frac{a(z_1)}{k - z_1} \bar{\phi}(k) = a(z_1)u(k)$$

since the first term acted on by P_+ is analytic in \mathbb{C}_- and in $L^2(\mathbb{R})$ and the second is in H^+_2 since $z_1 \in \mathbb{C}_-$.

Proof of [2] We first consider $\mu = 0$. Choosing $\bar{g} = \bar{\phi}h$ for $h \in H^+_2$, we get

$$T\bar{g} = \bar{\phi}P_+ \bar{\psi}\bar{h} = 0,$$

since $\bar{\psi}\bar{h} \in H^-_2$. Hence all functions in $\bar{\phi}H^-_2$ are eigenfunctions to the eigenvalue 0.

Now let $\mu \neq 0$ and assume that $(a - \mu)$ is an outer function in \mathbb{C}_-. We use that if $f \in H^-_{\infty}$, then f is outer iff $\int f^2 = H^2_-$ (Beurling Theorem, see [28]) and that the functions $(k - z_0)^{-1}$ for $z_0 \in \mathbb{C}_+$ span H^-_2. Therefore

$$\bigvee_{z_0 \in \mathbb{C}_+} (a(k) - \mu) \frac{1}{k - z_0} = H^+_2.$$

Now assume there exists $g \in L^2 \setminus \{0\}$ with $T\bar{g} = \mu \bar{g}$ and set $h = \psi \bar{g}$. Then $h \in L^1 \setminus \{0\}$ and $aP_+h = \mu h$, or $(a - \mu)P_+h = \mu P_-h$. Let $z \in \mathbb{C}_+$, then

$$\int_{\mathbb{R}} (a - \mu)P_+h \frac{dk}{k - z} = \mu \int_{\mathbb{R}} P_-h \frac{dk}{k - z} \equiv 0.$$

Therefore, $P_+h \perp \frac{\bar{a} - \bar{\mu}}{k - \bar{z}}$ for all $z \in \mathbb{C}_+$, i.e.

$$P_+h \perp \bigvee_{\pi \in \mathbb{C}_-} \frac{\bar{a} - \bar{\mu}}{k - \bar{z}} = H^+_2.$$

This implies $P_+h = 0$, giving $P_-h = 0$, so $h = 0$ and, as ψ is non-zero a.e. (due to condition (i) in Assumptions 9.1), we have $g = 0$, so μ is not an eigenvalue of T.

Next let $\mu \neq 0$ and assume that $(a - \mu)$ is not an outer function in \mathbb{C}_-. This implies that there exists $h \in H^+_2 \setminus \{0\}$ such that $h \perp (a - \mu)H^-_2$. Now

$$h \perp (a - \mu)H^-_2 \iff \bar{h} \perp (\bar{a} - \bar{\mu})H^+_2 \iff (a - \mu)\bar{h} \in H^-_2,$$

so $P_+(a - \mu)\bar{h} = 0$ and $P_+a\bar{h} = \mu P_+\bar{h} = \mu \bar{h}$ (as $\bar{h} \in H^+_2$). This implies

$$\bar{\phi}P_+ \psi \bar{\phi}h = \mu \bar{\phi}h.$$
We want to calculate the resolvent of T shows equality of the point spectra of T. Consider $(T - \mu)g = v$. Since $\psi \neq 0$ a.e. and $(a - \mu)|\mathbb{R}$ is invertible we get (all equalities hold a.e.)

\[
(T - \mu)g = v \quad \iff \quad \psi \delta P_\psi \psi g - \mu \psi g = \psi v \quad \iff \quad (a - \mu)P_\psi (\psi g) - \mu P_\psi (\psi g) = \psi v
\]

(140)

\[
P_\psi (\psi g) = \frac{\psi}{a - \mu} v + \frac{\mu}{a - \mu} P_\psi (\psi g).
\]

Note that, as $\frac{\mu}{a - \mu} \in H_\infty$, the last term lies in H_2^-. Applying P_ψ and P_ψ to (140), we get

\[
P_\psi (\psi g) = \psi \frac{\psi v}{a - \mu}, \quad 0 = P_\psi (\psi v) - \frac{a - \mu}{a - \mu} P_\psi (\psi v).
\]

Thus,

\[
\psi g = P_\psi (\psi g) + P_\psi (\psi g) = P_\psi \psi v - \frac{a - \mu}{\mu} P_\psi \psi v
\]

and

\[
g = \frac{1}{\psi} P_\psi \psi v - \frac{a - \mu}{\mu} P_\psi \psi v = \frac{v}{a - \mu} - \frac{a}{\mu} P_\psi \psi v.
\]

Formally, we have

\[
(141)
\]

\[
g = (T - \mu)^{-1} v = \frac{v}{a - \mu} - \overline{\delta} \frac{\psi v}{a - \mu}.
\]

Since $\phi, \psi \in L^\infty$, the linear operator defined by the r.h.s. is bounded in $L^2(\mathbb{R})$. We check the formal calculation of the resolvent:

\[
(T - \mu) \left(\frac{v}{a - \mu} - \frac{\overline{\delta}}{\mu} P_\psi \psi v \right) = \overline{\delta} P_\psi \psi v - \frac{\mu v}{a - \mu} - \frac{\overline{\delta}}{\mu} P_\psi a P_\psi \psi v + \frac{\overline{\delta}}{\mu} P_\psi \psi v = 0
\]

\[
= \overline{\delta} \frac{\psi v}{a - \mu} - \frac{\mu v}{a - \mu} = v.
\]

Similarly,

\[
\frac{(T - \mu)v}{a - \mu} - \frac{\overline{\delta}}{\mu} P_\psi (T - \mu)v = v,
\]

so $T - \mu$ is invertible.

Now, [4] follows from [1] and [3] as

\[
\sigma(T) \subseteq \text{Ran}_{z \in \mathbb{C}} a(z) \subseteq \sigma_p(T) \subseteq \sigma(T),
\]

so all three sets must coincide.

Proof of [5] We again solve $T \overline{g} = \mu \overline{g}$. As $\psi \neq 0$ a.e., this is equivalent to $aP_\psi \overline{g} = \mu \overline{g}$. Setting $h = \overline{\psi g}$ this gives $aP_\psi h = \mu h$.

Note that if $h \in L^2$ and $\mu \neq 0$ with $aP_\psi h = \mu h$, then $h = \overline{\delta P_\psi h} \in \psi L^2$, so $\overline{g} = h/\psi \in L^2$. Thus $T \overline{g} = \mu \overline{g}$ is equivalent to $aP_\psi h = \mu h$. This reduces the problem to considering Toeplitz operators:

\[
aP_\psi h = \mu h \iff \frac{(1 - \mu P_\psi h)}{P_\psi aP_\psi h} = \frac{\mu P_\psi h}{P_\psi aP_\psi h} \iff \frac{(1 - \mu P_\psi h)}{P_\psi aP_\psi h} = \frac{\mu P_\psi h}{P_\psi aP_\psi h}
\]

Thus, $P_\psi h$ determines $P_\psi h$ uniquely and we only need to consider the first equation in H_2^+ which shows equality of the point spectra of T and T_a away from 0. □
Example B.3. We illustrate Proposition B.1 with an example: We consider a case where we have no non-zero eigenvalues on the boundary of $\sigma_p(T)$, as $(a - \mu)$ is outer. Let $\phi(k) = (k + i)^{-1}$ and $\psi(k) = (k + i)(k - i)^{-4}$. Then $\phi, \psi \in L^2 \cap L^{\infty}$, $\phi \in H_2^-$ and $a(z) = (z - i)^{-4} \in H_1^-$, so Assumptions 9.1 are satisfied. To determine $\text{Ran}_{z \in \mathbb{C}_-} a(z)$, we consider $a(t), t \in \mathbb{R}$ and take the inside of the curve.

![Figure 2](image-url)

Figure 2. The range of $a(t) = (t - i)^{-4}$ for $t \in \mathbb{R}$ with the section around the origin enlarged.

Let

$$x + iy := \frac{1}{(t-i)^4} = \frac{(t+i)^4}{(t^2+1)^4} = \frac{t^4 - 6t^2 + 1}{(t^2 + 1)^4} + i \frac{4t(t^2 - 1)}{(t^2 + 1)^4}.$$

We first check that all non-zero points inside the inner curve are in the range. Now, if x is small and negative and $y = 0$, then

$$\frac{1}{(z-i)^4} = x \iff (z-i)^4 = \frac{1}{x} \iff z - i = \frac{1}{\sqrt{-x}} e^{i \frac{\pi + 2\pi m}{4}}, \ m \in \mathbb{Z},$$

so, e.g. for $m = 2$, $z = i + \frac{1}{\sqrt{-x}} e^{\frac{5\pi i}{4}} \in \mathbb{C}_-$, so the point x lies in $\text{Ran}_{z \in \mathbb{C}_-} a(z)$. Similarly, we see that all points between the inner and outer curve lie in $\text{Ran}_{z \in \mathbb{C}_-} a(z)$. Next, we check the points on the inner curve (corresponding to $|t| > 1$): Let $t > 1$ and $(t - i)^{-4} = (z - i)^{-4}$. Then $z - i = (t - i)e^{i \frac{2\pi m}{4}}, \ m \in \mathbb{Z}$. With $m = 3$, $z = i + (t - i)(-i) = -1 + (1-t)i \in \mathbb{C}_-$.

Therefore, the boundary of the set $\text{Ran}_{z \in \mathbb{C}_-} a(z)$ consists of the outer curve ($|t| \leq 1$) together with the isolated point 0. For these μ, the function $(a - \mu)$ is outer in \mathbb{C}_-. For $\mu = 0$ this is clear. For all other such μ, $(a - \mu)$ takes values outside a cone. This implies that $(a - \mu)^k$ is outer for some sufficiently small positive k which implies that $(a - \mu)$ is outer, since any Herglotz function (i.e. analytic functions on \mathbb{C}_+ with positive imaginary part) is outer.

We finally consider the behaviour at $t = \pm 1$ and $t = \pm \infty$. As $t \to \pm \infty$, $x \sim t^{-4}$ and $y \sim 4t^{-5}$, so $y \sim 4x^{5/4}$. At $t = 1$, $x \sim -\frac{4}{16}(t-1), \ y \sim \frac{8(t-1)}{16}$, so $y \sim -x \sim -\frac{1}{4}$, and using symmetry of the range of a w.r.t. complex conjugation, we get a cone of angle $\pi/2$ at this point.

Example B.4. The next example shows that in statement 2 of Proposition B.1, it is necessary to add the point $\{0\}$, as it is not always contained in the set $\{\mu : (a - \mu) \text{ is outer}\}$: Let $\alpha_0 \in \mathbb{R}$ and...
consider
\[
\psi(z) = \frac{(z - \alpha_0)(z + i)}{(z - i)^3} e^{\frac{z}{i}}, \quad \overline{\phi}(z) = \frac{1}{z + i}, \quad \Im z \leq 0.
\]

Then \(\phi \in H_2^\perp \),
\[
a(z) = \frac{z - \alpha_0}{(z - i)^3} e^{\frac{z}{i}} \in H_1^- \cap H_\infty
\]
and \(0 \notin \text{Ran}_{z \in \mathbb{C}} a(z) \). Due to the singular exponential factor, \(a = (a - 0) \) is not an outer function.

Proof of Theorem 9.3. Proof of [1] As \(a(z) \in H_1^\perp \setminus \{0\} \), we have \(\phi, \psi \neq 0 \) a.e. Moreover for \(g \in L^2 \) we have from (70) and using \(\overline{\phi} \in H_\infty^+ \)
\[
(142) \quad g \in S_\alpha^{\perp} \iff P_+ \overline{g} = 2\pi i \alpha \overline{\phi} P_+ (\psi \overline{g}) \quad \text{and} \quad P_- \overline{g} = 0 \iff \overline{g} = 2\pi i \alpha \overline{\phi} P_+ (\psi \overline{g}).
\]
We rewrite this as
\[
(143) \quad T \overline{g} = \overline{\phi} P_+ (\psi \overline{g}) = \mu_\alpha \overline{g},
\]
giving \(S_\alpha^\perp = (\ker (T - \mu_\alpha))^* \).

Next let \(g \in S_\alpha^\perp \) and set \(h = \psi \overline{g} \). Then, as \(\psi \in L^\infty \) we have \(h \in L^2 \) and
\[
g \in S_\alpha^\perp \iff \psi \overline{\phi} P_+ h = \mu_\alpha h, h \in L^2 \iff a P_+ h = \mu_\alpha h \iff \begin{cases} \quad P_+ a P_+ h = \mu_\alpha P_+ h, \\ P_- a P_+ h = \mu_\alpha P_- h. \end{cases}
\]
For the first equivalence, we note that any \(L^2 \)-solution of \(\psi \overline{\phi} P_+ h = \mu_\alpha h \) with \(\mu_\alpha \neq 0 \) is divisible by \(\psi \) and \(h/\psi \in L^2 \).

This shows that \(P_+ h \) uniquely determines \(P_- h \) via \(P_- h = \frac{1}{\mu} (P_- a P_+) P_+ h \) and it is sufficient to consider \(P_+ a P_+ h = \mu_\alpha P_- h \) which gives \(S_\alpha^\perp \subset \psi^{-1} [(\mu_\alpha P_+ + P_- a P_+)] \ker (T_\alpha - \mu_\alpha)^* \). On the other hand, given \(h_+ \in \ker (T_\alpha - \mu_\alpha) \), set \(\overline{g} = \overline{\phi} h_+ \). Then
\[
T \overline{g} = \overline{\phi} P_+ (\psi \overline{g}) = \overline{\phi} P_+ ah_+ = \mu_\alpha \overline{\phi} h_+ = \mu_\alpha \overline{g}
\]
gives the reverse inclusion, since \(S_\alpha^\perp = (\ker (T - \mu_\alpha))^* \).

Proof of 2. Using the characterisation (143), we need to study the equation
\[
(T - \mu_\alpha) \overline{g} = (\overline{\phi} P_+ \psi - \mu_\alpha) \overline{g} = 0.
\]
We consider the equation pointwise and multiply by \(\psi \). Setting \(h = \psi \overline{g} \), we get \(h \in L^2 \) and
\[
(144) \quad a P_+ h - \mu_\alpha h = 0.
\]
By virtue of (144), the fact that \(a \) is divisible by \(\psi \) and \(\mu_\alpha \neq 0 \), \(h/\psi = \overline{g} \in L^2 \). Now, using \(h = P_+ h + P_- h \), we find
\[
(a - \mu_\alpha) P_+ h = \mu_\alpha P_- h.
\]
Thus \((a - \mu_\alpha) P_+ h \perp H_2^\perp \), or \(P_+ h \perp (\overline{a} - \overline{\mu_\alpha}) H_2^+ \), which implies \(P_+ h \in H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \). From (144), this implies
\[
h \in \frac{a}{\mu_\alpha} \left(H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \right)
\]
and dividing by \(\psi \) (which is non-zero a.e.), we get
\[
\overline{g} \in \frac{\overline{\phi}}{\mu_\alpha} \left(H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \right) = \frac{\overline{\phi}}{\mu_\alpha} \left(H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \right).
\]
Taking complex conjugates and using \((H_2^+)^* = H_2^- \) implies one set inclusion. Conversely, let \(\overline{g} \in \frac{\overline{\phi}}{\mu_\alpha} \left(H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \right) \). Then \(\overline{g} = \overline{\phi} f_+ \) for some \(f_+ \in H_2^+ \ominus (\overline{a} - \overline{\mu_\alpha}) H_2^+ \). Then
\[
(\overline{\phi} P_+ \psi - \mu_\alpha) \overline{g} = \overline{\phi} P_+ \psi \overline{\phi} f_+ - \mu_\alpha \overline{\phi} f_+ = \overline{\phi} (P_+ a - \mu_\alpha) f_+ = \overline{\phi} P_+ (a - \mu_\alpha) f_+ = 0,
\]
as \((a - \mu_\alpha) f_+ \in H_2^- \). Hence \(g \in S_\alpha^\perp \) by part (i).
Proof of 3: Since \((a - \mu_\alpha) \in H_\infty\) we have the canonical factorisation
\[
a(z) - \mu_\alpha = B_\alpha(z)\Sigma_\alpha(z)G_\alpha(z).
\]
In \(\mathbb{C}_-\), \(B_\alpha\Sigma_\alpha\) is an inner function and \(G_\alpha\) is an outer function. As \(G_\alpha\) is outer, by Beurling’s Theorem, the closure
\[
(a - \mu_\alpha)H_2 = B_\alpha(z)\Sigma_\alpha(z)H_2.
\]
Thus, by part 2 \(S_\alpha = \phi \left(H_2 \oplus B_\alpha(z)\Sigma_\alpha(z)H_2 \right) \). This gives \([99]\), since \(\phi \neq 0\) a.e. \(\square\)

REFERENCES

[1] H. Abels, G. Grubb and I. Wood, Extension theory and Krein-type resolvent formulas for nonsmooth boundary value problems, preprint, [arXiv:1008.3281].
[2] D. Alpay and J. Behrndt, Generalized \(Q\)-functions and Dirichlet-to-Neumann maps for elliptic differential operators, J. Funct. Anal., 257, 2009, 6, 1666–1694.
[3] W.O. Amrein and D.B. Pearson, \(M\) operators: a generalisation of Weyl-Titchmarsh theory. J. Comp. Appl. Math, 171:1–26, 2004.
[4] J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains. J. Funct. Anal. 243, 536–565 (2007).
[5] J. Behrndt and M. Langer, Elliptic operators, Dirichlet-to-Neumann maps and quasi-boundary triples. London Math Soc. Lecture Note Series, 404:121–160, 2012.
[6] J. Behrndt, M. Langer and V. Lotoreichik, Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators. J. Lond. Math. Soc., 88:319–337, 2013.
[7] J. Behrndt, M. Langer and V. Lotoreichik, Spectral estimates for resolvent differences of self-adjoint elliptic operators. Integral Equations Operator Theory, 77:1–37, 2013.
[8] J. Behrndt and T. Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems. [arXiv:1307.7501]
[9] J. Behrndt and J. Rohleder, An inverse problem of Calderón type with partial data. Comm. Partial Differential Equations, 37, 2012, 1141–1159.
[10] G. Borg, Uniqueness theorems in the spectral theory of \(y'' + (\lambda - q(x))y = 0\). Den 11th Skandinaviske Matematikerkongress, Trondheim, 1949; pp. 276–287. John Grundt Tanums Forlag, Oslo, 1952.
[11] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators. Second edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.
[12] B. M. Brown, G. Grubb and I. Wood, \(M\)-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary value problems, Math. Nachr., 3 (2009), 314 - 347.
[13] B. M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko and I. Wood, The abstract Titchmarsh-Weyl \(M\)-function for adjoint operator pairs and its relation to the spectrum, Int. Eq. Oper. Th., 63 (2009), 297 - 320.
[14] B. M. Brown, M. Marletta, S. Naboko and I. Wood, Boundary triplets and \(M\)-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices. J. London Math. Soc. (2) 77 (2008), 700–718.
[15] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc., 358, 2006, 5351–5400.
[16] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys., 16, 2009, 17–60.
[17] V. Derkach and M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1991), 1–95.
[18] F. Gesztesy, M. Mitrea and M. Zinchenko, Variations on a theme by Jost and Pais. J. Funct. Anal. 253 (2007) 399–448.
[19] F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In Perspectives in partial differential equations, harmonic analysis and applications, volume 79 of Proc. Sympos. Pure Math., pages 105–173. Amer. Math. Soc., Providence, RI, 2008.
[20] F. Gesztesy and M. Mitrea, Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Diff. Eq., 247:2871–2896, 2009.
[21] F. Gesztesy and M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. Oper. Theory Adv. Appl., 191:81–113, Birkhäuser Verlag, Basel, 2009.
[22] F. Gesztesy and M. Mitrea, A description of all selfadjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains. J. Analyse Math., 113:53–172, 2011.

[23] G. Grubb, Krein resolvent formulas for elliptic boundary problems in nonsmooth domains. Rend. Sem. Mat. Univ. Pol. Torino, 66:13–39, 2008.

[24] G. Grubb, Spectral asymptotics for nonsmooth singular Green operators. arXiv:1205.0094. To appear in Comm. Part. Diff. Eq.

[25] S. Hassi, M. Malamud and V. Mogilevskii, Unitary Equivalence of Proper Extensions of a Symmetric Operator and the Weyl Function, Integral Equations Operator Theory, 77, 2013, 449–487.

[26] V. Isakov, Inverse problems for partial differential equations. Applied Mathematical Sciences, 127. Springer-Verlag, New York, 1998.

[27] T. Kato, Perturbation theory for linear operators, Grundlehren der mathematischen Wissenschaften (vol. 132), Springer, New York, 1976.

[28] P. Koosis, Introduction to H_p spaces. Second edition. Cambridge Tracts in Mathematics, 115. Cambridge University Press, Cambridge, 1998.

[29] P. Koosis, The Logarithmic Integral Volume I. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998.

[30] N.D. Kopachevski˘ı and S.G. Kre˘ın, Abstract Green formula for a triple of Hilbert spaces, abstract boundary value and spectral problems. Ukr. Math. Bull. (1) 1 , 77–105, 2004.

[31] V.E. Lyantze and O.G. Storozh, Methods of the Theory of Unbounded Operators, (Russian) (Naukova Dumka, Kiev, 1983).

[32] M.M. Malamud, Spectral theory of elliptic operators in exterior domains. Russ. J. Math. Phys. 17:96–125, 2010.

[33] M. Malamud and V. Mogilevskii, On extensions of dual pairs of operators. Dopovidi Nation. Akad. Nauk Ukrainy 1 (1997) 30–37.

[34] M. Malamud and V. Mogilevskii, On Weyl functions and Q-function of dual pairs of linear relations. Dopovidi Nation. Akad. Nauk Ukrainy 4 (1999) 32–37.

[35] M. Malamud and V. Mogilevskii, Kre˘ın type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topology (4) 8 (2002) 72–100.

[36] V.A. Mikhailets and A.V. Sobolev, Common eigenvalue problem and periodic Schrödinger operators. J. Funct. Anal. 165 (1999), no. 1, 150–172.

[37] V.A. Marchenko, Concerning the theory of a differential operator of the second order. (Russian) Doklady Akad. Nauk SSSR. (N.S.) 72 (1950) 457–460.

[38] V. Peller, Hankel operators and their applications. Springer Monographs in Mathematics. Springer, New York, 2003.

[39] A. Posilicano, Self-adjoint extensions of restrictions, Oper. Matrices, 2, 2008, 4, 483–506.

[40] A. Posilicano and L. Raimondi, Krein’s Resolvent Formula for Self-Adjoint Extensions of Symmetric Second Order Elliptic Differential Operators. J. Phys. A: Math. Theor., 42, 015204 (11 pp.), 2009.

[41] I.I. Privalov, Graničnye svoístva analitičeskich funkcii. (Russian) (Boundary properties of analytic functions), 2nd ed. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950. 336 pp.

[42] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. 4: Analysis of operators, Academic Press, New York, 2005.

[43] V. Ryzhov, A general boundary value problem and its Weyl function. Opuscula Math. (2) 27 (2007) 305–331.

[44] V. Ryzhov, Weyl-Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control, Complex Anal. Oper. Theory, 3, 2009, 1, 289–322.

[45] O. Staffans, Well-posed linear systems, Encyclopedia of Mathematics and its Applications, 103, Cambridge University Press, 2005.
Cardiff School of Computer Science and Informatics, Cardiff University, Queen’s Buildings,
5 The Parade, Cardiff CF24 3AA, UK
E-mail address: Malcolm.Brown@cs.cardiff.ac.uk

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
E-mail address: MarlettaM@cardiff.ac.uk

Department of Math. Physics, Institute of Physics, St. Petersburg State University, 1 Ulianovskaia,
St. Petergoff, St. Petersburg, 198504, Russia
Current address: School of Mathematics, Statistics and Actuarial Science, University of Kent,
Cornwallis Building, Canterbury CT2 7NF, UK
E-mail address: sergey.naboko@gmail.com

School of Mathematics, Statistics and Actuarial Science, University of Kent, Cornwallis
Building, Canterbury CT2 7NF, UK
E-mail address: i.wood@kent.ac.uk