Order Independence in Asynchronous Cellular Automata

Matthew Macauley
(Joint work with Jon McCammond & Henning Mortveit)

Department of Mathematics
University of California, Santa Barbara

Network Dynamics and Simulation Science Laboratory
Virginia Bioinformatics Institute
Virginia Polytechnic Institute and State University

Automata 2007, August 27–29
The Fields Institute
Toronto, Ontario
Outline

1 Sequential Dynamical Systems
 ■ Definitions & terminology
 ■ Asynchronous CAs

2 Main result
 ■ Theorem statement
 ■ Proof of main theorem

3 Dynamics of the 104 rules
 ■ Periodic points
 ■ Dynamics groups

4 Summary
 ■ Classification of w-independent rules
 ■ Future research
Sequential Dynamical Systems – Definitions

► An SDS is a triple consisting of:

- A graph Y with vertex set $\{1, 2, \ldots, n\}$.
- A vertex function f_i such that $f_i(y_i) = y_{i-1}$.
- A word w of length m over $v[Y] = \{1, 2, \ldots, n\}$.

The SDS map generated by the triple $(Y, (F_i)_1^n, w)$ is

$$[[\delta_Y, w] = F_w(m) \circ F_w(m-1) \circ \cdots \circ F_w(1).$$
Let \(Y = \text{Circ}_n \), the circular graph on \(n \) vertices.

If \(k = a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0 \) in binary, then \textit{Wolfram rule} \(k \) is defined by \(\text{wolf}^{(k)} : (y_{i-1}, y_i, y_{i+1}) \mapsto z_i \) by the following table.

\(y_{i-1} y_i y_{i+1} \)	111	110	101	100	011	010	001	000
\(z_i \)	\(a_7 \)	\(a_6 \)	\(a_5 \)	\(a_4 \)	\(a_3 \)	\(a_2 \)	\(a_1 \)	\(a_0 \)

Let \(\text{Wolf}^{(k)} : \mathbb{F}_2^n \to \mathbb{F}_2^n \) be the corresponding local function, and \(\mathcal{W}\text{olf}_n^{(k)} = (\text{Wolf}^{(k)}) \) the sequence of local functions of \(\text{Circ}_n \).

The SDS map \([\mathcal{W}\text{olf}_n^{(k)}, \pi] \), where \(\pi \in S_Y \), is an \textit{asynchronous cellular automata} \textsc{(ACA)}.
Tags of Wolfram rules

We can arrange the binary digits of k in the following table.

There are 4 possibilities for each pair:

- ‘1’ = \[
\begin{array}{c}
1 \\
1
\end{array}
\]
- ‘0’ = \[
\begin{array}{c}
0 \\
0
\end{array}
\]
- ‘-’ = \[
\begin{array}{c}
1 \\
0
\end{array}
\]
- ‘x’ = \[
\begin{array}{c}
0 \\
1
\end{array}
\]

The tag of Rule k is $p_4p_3p_2p_1$, where each $p_i \in \{0, 1, -, x\}$.

The substring p_4p_1 represents the symmetric part of Rule k, and p_3p_2 represents the antisymmetric part.
w-independence

A sequence \mathcal{F}_Y is π-independent (w-independent) if $\text{Per}[\mathcal{F}_Y, w] = \text{Per}[\mathcal{F}_Y, w']$ for all w and w' in S_Y (fair words in W_Y).

Proposition

\mathcal{F}_Y is π-independent iff it is w-independent.
Main theorem

Theorem (Hansson, Mortveit, Reidys, 2005)

Of the 16 symmetric Wolfram rules, exactly 11 are w-independent for all $n > 3$.

Theorem (Macauley, McCammond, Mortveit, 2007)

Of the 256 Wolfram rules, exactly 104 are w-independent. More precisely, $\text{Wolf}_n^{(k)}$ is w-independent for all $n > 3$ iff $k \in \{0, 1, 4, 5, 8, 9, 12, 13, 28, 29, 32, 40, 51, 54, 57, 60, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 92, 93, 94, 95, 96, 99, 102, 105, 108, 109, 110, 111, 124, 125, 126, 127, 128, 129, 132, 133, 136, 137, 140, 141, 147, 150, 152, 153, 156, 157, 160, 164, 168, 172, 184, 188, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 216, 218, 220, 221, 222, 223, 224, 226, 228, 230, 232, 234, 235, 236, 237, 238, 239, 248, 249, 250, 251, 252, 253, 254, 255\}.

These 104 rules constitute 41 distinct classes up to equivalence (inversion and reflection).
Major classes of w-independent Wolfram rules

- The 104 Wolfram rules fall into one of three categories:
 - Invertible rules
 - Rules of the following form:

 \[
 \begin{array}{c|cc|c}
 * & 0 & 0 \\
 0 & * & 0 \\
 0 & 1 & 1 \\
 0 & 0 & 0 \\
 \end{array}
 \]

 - One of 6 exceptional cases: 32, 40, 152, 184, 28, 29.

The main technique used in the second case was the use of potential functions.
Disregarding the constant states 0 and 1, the following are the only sets of periodic points that arise up to inversion:

\[P_{n,1} : \{ \text{No '11', '000'} \}, \]
\[P_{n,2} : \{ \text{No '11', '010'} \}, \]
\[P_{n,3} : \{ \text{No '11', '101'} \}, \]
\[P_{n,4} : \{ \text{No '000', '111', '1100'} \}, \]
\[P_{n,5} : \{ \text{No '000', '111'} \}, \]
\[P_{n,6} : \{ \text{No '101', '010'} \}, \]
\[P_{n,7} : \{ \text{No '11'} \}, \]
\[P_{n,8} : \{ \text{No '101'} \}, \]
\[P_{n,9} : \{ \text{No '111'} \} \]

Note that \{0\}, \{1\}, and \{0, 1\} also arise as periodic point sets.
Periodic point poset

- The sets of periodic points form the following poset:
Definitions

Proposition

If \(\mathcal{F}_Y \) is \(w \)-independent, then each \(F_i \) is bijective on \(P := \text{Per}(\mathcal{F}_Y) \).

Let \([\mathcal{F}_Y, \omega]^*\) denote the restriction of \([\mathcal{F}_Y, \omega]\) to the set of periodic points.

If \(W' \subseteq W_Y \) then the group

\[
H(\mathcal{F}_Y, W') = \langle [\mathcal{F}_Y, \omega]^* : \omega \in W' \rangle
\]

is called the *dynamics group* of \(\mathcal{F}_Y \) and \(W' \).

- **Full dynamics group:** \(G(\mathcal{F}_Y) := H(\mathcal{F}_Y, W_Y) = \langle F_i^* : F_i \in \mathcal{F}_Y \rangle \),
- **Permutation dynamics group:** \(H(\mathcal{F}_Y) := H(\mathcal{F}_Y, S_Y) = \langle [\mathcal{F}_Y, \pi]^* : \pi \in S_Y \rangle \).
Computation

- The dynamics group is the homomorphic image of a Coxeter group: $|F_i| \leq 2$ and $|F_i F_j| = m_{ij}$ for $m_{ij} \in \{1, 2, 3, 4, 6, 12\}$.

- Of the 41 non-equivalent rules, only 15 of them have a non-trivial dynamics group.

- $SL(n)$ or $AL(n)$: Rules 1, 9, 110, 126.
- \mathbb{Z}_2^n: Rules 28, 29, 51.
- A_n or A_{n-1}: Rules 54, 57
- $GL(n,2)$: Rule 60.
- Not sure: Rules 73, 105, 108, 150, 156
Flips

For each of the 8 neighborhood state configurations \((y_{i-1}, y_i, y_{i+1})\), Wolfram rule \(k\) can be thought of as either preserving, or “flipping” the value \(y_i\).

# flips	0	1	2	3	4	5	6	7	8
# w-independent rules	1	8	26	34	26	4	4	0	1
# of rules	1	8	28	56	70	56	28	8	1
Percentage	100%	100%	93%	61%	37%	7%	14%	0%	100%

All 5 \(w\)-independent rules with more than 5 flips are invertible.

This can be extended to SDSs. Call 0 \(\mapsto\) 1 and \textit{up-flip} and 1 \(\mapsto\) 0 a \textit{down-flip}. Define the \textit{signature} of \(\mathcal{Y}\) to be the number of up-flips minus the number of down-flips.

The signature is an indication of stability, and a good starting point for the study of update-order stochastic SDSs.
Table of the 104 rules

$p_4 p_1$	p_3	\(-\)	\(-\)	0	0	-	1	1	-	x	x
--	132	204	196	140	132	206	220	222	198	156	150
0-	4	76	68	12	4	78	92	94	70	28	
-0	128	200	192	136	128	202	216	218	194	152	
1-	164	236	228	172	164	238	252	254	230	188	
-1	133	205	197	141	133	207	221	223	199	157	
10	160	232	224	168	160	234	248	250	226	184	
01	5	77	69	13	5	79	93	95	71	29	
00	0	72	64	8	0						
x0	32	96	40	32							
0x	1	73	65	9	1						
-x	129	201	193	137	129	195	153	147			
x-	36	108		110	124	126	102	60	54		
x1	37	109		111	125	127					
1x	161			235	249	251					
11	165	237		239	253	255					
xx	33	105		99	57	51					

Table: The 104 w-independent rules arranged by symmetric and asymmetric parts of their tags.
Table of the 104 rules, arranged by m_{ij}

p_3	p_2	x	$-x$	$-x$	-0	0	-1	1	1
1		6	6	6	6	6	6	6	6
37		6	6	6	6	6	6	6	6
129	12	6	6	6	6	6	6	6	6
36	12	6	6	6	6	6	6	6	6
33	2	6	6	6	6	6	6	6	6
132	3	1	1	1	1	1	1	1	1
128	1	1	1	1	1	1	1	1	1
164	1	1	1	1	1	1	1	1	1
160	1	1	1	1	1	1	1	1	1
133	2	1	1	1	1	1	1	1	1
4	2	1	1	1	1	1	1	1	1
5	2	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1
165	1		1	1	1		1	1	1
161	1		1	1		1		1	1
32	1		1			1	1		1

Table: The 104 w-independent rules arranged by m_{ij}
Future research

- Finish analyzing the dynamics groups.
- Analyze the other 152 rules.
- Extend these ideas and techniques to general SDSs.
- Use these ideas and techniques to study stochastic systems.
- Compare to the dynamics of classical (synchronous) CAs.
SDS – Collaborators, Papers, Info

Joint work with: Jon McCammond, Henning Mortveit

Preprint: http://arxiv.org/abs/0707.2360

SDS course web page with link to papers:

```
Web: [http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html](http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html)
```

NDSSL:

```
Web: [http://ndssl.vbi.vt.edu](http://ndssl.vbi.vt.edu)
```