Adherence characteristics and reasons for abandonment of physical exercise-based interventions in older adults in Latin America: A scoping review

Características de la adherencia y motivos del abandono de las intervenciones basadas en el ejercicio físico en adultos mayores en América Latina: una revisión de alcance

Igor Cigarroa, **Rafael Zapata-Lamana, *Gonzalo Leiva-Gajardo, ***Eduardo Vásquez, ****Eva Parrado-Romero, *****Jaime Vásquez-Gómez, ******Christian Álvarez, *******Fanny Petermann-Rocha, **Daniel Reyes-Molina

*Universidad Santo Tomás (Chile), **Universidad de Concepción (Chile), ***Servicio Especializado en Psiquiatría y Adicciones (Chile), ****Universidad Autónoma de Barcelona (España), *****Universidad Católica del Maule (Chile), *******Universidad de Los Lagos (Chile), *******University of Glasgow (Reino Unido), ********Universidad Diego Portales (Chile)

Abstract. This review describes the adherence characteristics and reasons for abandonment physical exercise-based interventions in older adults in Latin America. This scoping review was conducted in accordance with the PRISMA statement. Articles were searched in MEDLINE by PubMed, ELSEVIER by SCOPUS and SciELO. The MeSH terms «Exercise», Exercise Therapy» and «Aged» were used between 2015 and 2020. We searched for articles in Spanish, English, and Portuguese carried out in people aged 65 years and over. 101 out of 4,642 randomized controlled trials (RCT) were included. A total sample of 5,013 older adults (79% women), with an average age of 68.2 years started their studies and 4,312 finished it, presenting an adherence to the interventions of 86%. Most of the studies were carried out in healthy older adults, in places enabled for the practice of physical activity, in charge of a physical activity professional, and the interventions were performed carried out through group therapeutic exercise. No article reported information on the minimum time of participation to the session to be considered as carried out. Only 30% of the articles reported the minimum participation of older adults in the intervention to include them in the study analysis, and 21% reported the average number of sessions attended to the intervention. The main reasons for abandonment were personal causes unrelated to the intervention. Only 5% of the articles reported injury of one of the participants (in two of them the injury was related to the intervention applied). This review characterized the physical exercise programs in older adults in Latin America, as well the adherence characteristics and the main reasons for abandonment to physical exercise-based interventions, by summarizing available evidence derived from RCTs.

Keywords: Aged; Exercise; Treatment Adherence and Compliance; Latin America; Scoping Review.

Introduction

Nowadays, all countries are experiencing an increase in the prevalence of older adults (OA) (United Nation, 2019a). In 2019 the number of people aged 65 years and older was 703 million worldwide; however, this is projected to rise to 1.5 billion by 2050 (i.e., from 9% to 16%) (United Nation, 2019a, 2019b). Latin America is not exempted from this phenomenon. In fact, for this same period, it is estimated an increase from 56.4 to 144.6 million, leading to an increase of 156% of OA in the region (United Nation, 2019b). Aging is a heterogeneous process related to the health condition of each individual. Thus, significant differences in health status and functional capacity have been described in people with the same chronological age (Mitnitski et al., 2002). This phenomenon is known as pathological aging. On the other hand, half of the world’s deaths are attributed to diseases associated with aging (Costantino et al., 2016; Huang et al., 2010).

Physical inactivity (PI) in the older population (i.e., less than 150 minutes of moderate-intensity aerobic physical activity or less than 75 minutes of physical...
activity vigorous-intensity aerobics per week) has been recognized as one of the main causes of physical, cognitive and functional impairment in this population (WHO, 2020). Additionally, PI is one of the most common causes of the heart disease, type 2 diabetes, chronic obstructive pulmonary disease, stroke, frailty syndrome, sarcopenia, Alzheimer’s disease, cancer, chronic kidney disease and depression (McPhee et al., 2016). Although multiple studies have reported physical exercise (PE) in OA with varied results, the majority has concluded that PE decreases with aging (Sun et al., 2013). Therefore, it is proposed that PE practice on a regular basis reduces the mortality rate from all causes, disability, cardiovascular disease, and cognitive and functional impairment in OA (Mora & Valencia, 2018).

Among the benefits of the regular practice of PE through different programs, studies have reported a lower risk of falls, improves balance and function (Hill et al., 2015), increases strength and maximum oxygen consumption (Fleg, 2012), improves and prevents sarcopenia (Landi et al., 2014). PE has also been associated with benefits in the psychosocial and cognitive aspect in this population, reducing symptoms of depression (Araque-Martínez et al., 2020; da Silva et al., 2019), preventing cognitive deterioration (Romero Ramos et al., 2020; Van Gelder et al., 2004), and increasing quality of life (Galloza et al., 2017).

Based on the above, it is proposed that all OA should perform PE to obtain the benefits that this entails - unless there are contraindications to do so. In Latin American countries, public health and PE institutions guide the community regarding PE realization to improve endurance, strength, balance, flexibility and quality of life in OA (ACEMI, 2011; Dirección de Promoción de la Salud y Control de Enfermedades No Transmisibles, 2013; Gobierno de Chile, 2017; Ministerio de Salud Pública del Ecuador, 2011; Secretaria Nacional de Deporte, 2018), proposing as alternative activities the ones in the aquatic environment (Secretaria Nacional de Deporte, 2018). Several studies have also been conducting programs using multi-component PE, where aerobic capacity, flexibility, balance, strength, and cognitive performances were increased, decreasing on the other hand symptoms of depression or anxiety (Bueno et al., 2018; Carvalho et al., 2009; Gonçalves et al., 2019; Nacional Costa Rica et al., 2018; Rico-Gallegos et al., 2020; Salinas et al., 2005).

However, to obtain the known benefits of PE, a continues participation in intervention programs is required. This is when we must understand the term «adherence», which can be understood as maintaining a regimen or exercise program for an extended period after an initial phase of adaptation has been completed (Lox et al., 2014). However, OA have a higher burden of comorbidities, lower social support, and higher disability and depression rates. These factors have been associated with lower adherence to exercise in people with specific health conditions (Picorelli et al., 2014). Other factors that have also been described as limiting the participation in PE-based interventions in this population are related to lack of time and motivation, boredom, fear of falling, and environmental factors such as accessibility, cost, and safety (Valenzuela et al., 2018).

Although there is recent evidence global focused on adherence to PE-based interventions, this evidence focused only on particular health conditions or programs of certain characteristics (Di Lorito et al., 2020; Hong et al., 2008; Medina-Mirapeix et al., 2009; Nicolson et al., 2017; Valenzuela et al., 2018). Currently, there is no review of the literature that reveals the available evidence on adherence and reasons for the abandonment of PE-based interventions for OA in Latin America. Therefore, this review aimed to describe the adherence characteristics and reasons for abandonment to PE-based interventions in OA in Latin America.

Survey methodology

The scoping review was carried out under the guidelines established by PRISMA declaration (Liberati et al., 2009). The PRISMA checklist can be found in the supplementary article files (Appendix 1). The manuscript was not registered in PROSPERO. PROSPERO does not currently accept registrations for scoping reviews, literature reviews or mapping reviews.

Search strategy for identifying articles

The following databases were reviewed and presented in the following order: MEDLINE by PubMed, ELSEVIER by SCOPUS and SciELO. The search covered the period from 2015 to 2020. For the development of the research, the MeSH terms were used: «Exercise», Exercise Therapy» and «Aged». The search strategy followed the guideline of Peer Review of Electronic Search Strategies (PRESS) (McGowan et al., 2016).

The general search syntax was: «Exercise» OR «Exercise Therapys» AND «Aged» and was adapted to each database by applying the following filters: a) PubMed: Type of article: randomized controlled essay,
Publication date: five years, Languages: English, Spanish and Portuguese, Age: aged: 65+ years and 80 and over.

b) Scopus: Exclusion: Medline, Year of publication: 2015 to 2020, Publication status: final, Document type: article, Country: Latin American countries, Languages: English, Spanish and Portuguese, Keywords: words related to the subject under study. c) SciELO: Country: Brazil, Colombia and Chile, Year of publication: 2015 to 2020, Literature type: article.

Search strings for all databases is shown in the supplementary material (Appendix 2).

Study selection

The inclusion criteria were as follow: I) Intervention; Ia) Type of intervention: Endurance, strength, multi-component, concurrent, multidomain, HIIT or neuromotor, or other related to physical activity or exercise, Ib) Distinctive intervention: Must be the only intervention to use based on physical activity or exercise (no other interventions), Ic) Period of time: last at least for four weeks. II) Age: men and women 60 years and older who are community-dwelling older adults, living in long-term care, residential homes, or have been hospitalized with different health status. III) Type of article: Randomized controlled clinical trial, IV) Country of origin: Only Latin-American countries, V) Languages: English, Spanish and Portuguese. Revisions, editorial documents, protocols, or thesis were excluded.

Data extraction

In the first step, duplicate articles were removed from databases using Mendeley. According to the inclusion and exclusion criteria, all titles and abstracts were screened for suitability by two reviewers (G. L-G and I.C). In the next step, articles that met the inclusion criteria were selected, and, when decisions could not be taken using only the title and abstract of the article, the full-text was retrieved. The included articles were independently verified by the two reviewers (G. L-G and I.C); however. A consensus was achieved when there was a disagreement. The flowchart proposed by the PRISMA was used to show the search for articles (Figure 1). A standardized questionnaire was applied by the reviewers to extract the data from the included articles, in order to synthesize the evidence.

Risk of bias assessment tool

The Cochrane Tool «The Cochrane Manual of Systematic Reviews of interventions» (Sterne et al., 2019) was used to assess risk of bias. This tool allowed an assessment of the methodological validity of the 101 articles included in this review (Figure 2). The instrument consists in six items that evaluate: a) selection bias, b) completion bias, c) detection bias, d) wear bias and e) notification bias and f) other biases. However, for this review, the item «other Biasess» was not considered due to characteristics of the interventions analyzed. Each article was scored independently by two reviewers (G. L-G and I.C), and scores were compared. When there was a disagreement, a consensus was achieved. A detailed description of the analysis is presented in the results section, along with a graphic representation. The risk of bias was measured using three categories: low risk (green color), unclear risk (yellow color), high risk (red color) according of weighted bar plot of the distribution of risk-of-bias judgements within each bias domain of Cochrane tool (Sterne et al., 2019).

Strategy for narrative synthesis

A summary of the articles’ main findings included, related to adherence and grounds for abandonment of OA in PE-based interventions in Latin America, was provided. The main information is presented in figures and summary tables. The information extracted included: (a) general characteristics of articles and OA (Table 1); (b) Characteristics of PE-based intervention associated with adherence (Table 2); (c) reasons for the abandonment of PE-based interventions (Table 3); (d) characteristics of PE-based intervention associated with adherence and reasons for abandonment (Table 4); (e) Profile of PE-based intervention with adherence of 100% and less than 70% (Table 5).

Results

Literature research

Figure 1 shows the flowchart proposed by the PRISMA Declaration. A total of 4,642 potential articles on
physical activity and physical exercise were identified in OA from Latin American. Following the exclusion of duplicates in the databases, the screening and eligibility criteria were applied. 101 articles were finally included for the narrative synthesis in this review (Figure 1).

Risk of bias assessment

Regarding the analysis by type of bias, it can be seen that the distribution of biases classified as low risk or unclear risk was similar, except for the performance bias that presented an 86% unclear risk, and the reporting bias, which presented 100% low risk. Only three types of components had high-risk of bias (selection, performance and detection), although for all cases, it was less than 10% (Figure 2).

General characteristics of the articles and Older Adults (OA)

A total of 101 articles were included in this scoping review corresponding to 5,013 individuals (79% women) with an average age of 68.2 years (age ranged from 63.6 to 84.8). A total of 91 studies were conducted in Brazil, live in Chile, two in Colombia, two in Mexico and one in Ecuador. Regarding the distribution of the age range of the selected OA, 97% of the articles included OA from 60 years or more, of these 70.83% included OA between 71 and 80 years, and 16% included OA older than 80 years. A total of 72% of the studies were conducted in OA without underlying pathology as the objective of the study, while 28% of the articles reported having performed intervention on OA with a particular health status. Among this health status, non-communicable diseases (NCDs) were those reported in the majority of the studies (53.6%), followed by neurodegenerative diseases (32.1%), musculoskeletal diseases, and cancer (10.7% and 0.69%, respectively) (Table 1).
Characteristics of PE-based interventions associated with adherence

A total of 67% of the articles reported the exclusion criteria used to delimit the sample, 5,013 older adults started their studies and 4,312 finished it, presenting an adherence to the interventions of 86%. A total of 88% of the articles (n=30) had complete adherence to the interventions equal to or greater than 70%. Of these, only 40% of the articles (n=36) reported complete adherence to the intervention (100%). No article reported information on the minimum time of participation to the session to be considered completely. On the other hand, 30% (n=30) of the articles reported the minimum requirements for participation in the interventions, to be considered in their analyses. In this sense, on average the minimum percentage of participation required by the studies was 77%. This percentage was lower compared to the effective percentage of attendance to the interventions (87%). However, this information was declared only in 21% of the articles (n=21) (Table 2).

Reasons of OA for abandonments during the PE-based interventions

A total of 66% of the articles reported the abandonment one or more OA during the PE-based intervention. On average, 13% of OA that initiated the intervention left for different causes. The main causes include lack of time, moving to another city, and lack of motivation (336 OA). Health reasons were indicated as reasons for abandonment in 35% of the articles (140 OA), followed by attendance to other intervention (181 OA). Additionally, two studies reported death of participants during the intervention period, none related to the intervention while five studies reported injury of one of the participants (in two of them, the injury was related to the intervention applied) (Table 3).

Characteristics of PE-based intervention associated with adherence and reasons of abandonment

Only 36 studies reported where the intervention took place and categorized into places enabled or not enabled for PE practice. A total of 88.6% of these articles (n=31) involved...
Profile of PE-based interventions with adherence of 100% and less than 70%

About 36% of the articles had a 100% adherence to the intervention, while 11% had an adherence <70%. For both adherence conditions, OA’s predominant characteristics were similar, between 60 and 70 years, with the presence of underlying pathology during the intervention period. As for the characteristics of the intervention, it was evident in both interventions that the...
The key findings of this review were that total adherence to the intervention was 87%. No article reported adherence to the session. Only 30% of the articles reported the minimum percentage required to be included in the study analysis. The main reasons of abandonment to the PE-based interventions were personal causes unrelated to the intervention. Additionally, a low percentage of OA deaths was observed during the intervention, none related to exercise programs and a low percentage of injured OA was detected. On the other hand, most of the PE-based interventions were developed in spaces set up for PE practice, in charge of a physical activity professional, in a group modality and using therapeutic exercise as a base intervention. The most frequently used parameters for PE-based interventions included intervention length of three or fewer months, with an intervention frequency of three or fewer times a week, and a session length of 60 minutes.

Discussion

Main results of this review
What was already known and contrasted with the findings of this review?

Regarding the general characteristics of the articles, it should be noted that they were developed in only five countries in Latin America, where 91% correspond to Brazil, which could be associated with the fact that it is the country that develops the most research in the region (Grupo Banco Mundial, 2019). Only 16% of the interventions included OA over 80 years old, a fact that attracts attention as it is known that the PE brings both physical and psychosocial benefits in OA no matter the age of subjects (Mora & Valencia, 2018; Van Gelder et al., 2004). This could be because as age progresses, the health condition changes and the presence of chronic diseases increases in OA (Peranovich, 2016), which could lead to an increased risk of unwanted side effects associated with PE practice, although these should be minimized by adapting interventions individually to the needs and characteristics of participating subjects (Van Gelder et al., 2004). In terms of sex distribution of each intervention, studies included more women (79%) than men. Regarding OA’s health condition recruited for interventions, the highest prevalence was a 15% of chronic NCDs, followed by neurodegenerative diseases, which is consistent with the phenomenon of progressive ageing population (Peranovich, 2016). In terms of remaining conditions, only 3% and 1% developed OA interventions with musculoskeletal diseases and cancer, respectively. This could be due to some key factors common in subjects with these conditions, such as physical discomfort and fatigue, among others (Buffart et al., 2014). Other reviews have also managed to identify very few studies in these particular health conditions in OA (Forbes et al., 2020; Nicolson et al., 2017), which draws attention due to the high prevalence of these diseases today.

A total of 67% of the articles report exclusion criteria. This is consistent with previous reviews that demonstrated exclusion criteria defined in 69 out of 101 selected articles (Porzsolt et al., 2019). The importance of correctly defining exclusion criteria in clinical trials lies in integrating characteristics of subjects prone to lose during intervention or follow-up for various reasons, which, if not applied correctly, could increase the risk of both adverse events and biased results (Patino & Ferreira, 2018). The average adherence to PE intervention was 87%, using as a measurement method the percentage of subjects who completed the intervention, values identical to previous studies (Hong et al., 2008). However, other studies have highlighted the varied methodology used to measure adherence to interventions (Findorff et al., 2009; Picorelli et al., 2014), including the percentage of subjects who completed the intervention, the percentage of attendance at available sessions and the average number of attendance sessions per week. Concerning session adherence, no article in this review reported adherence to the session, which is in agreement with previous systematic reviews where this factor is not considered (Hong et al., 2008; Picorelli et al., 2014). Besides, only 21% of the articles detailed the average percentage of sessions attended, which averaged 87%, which is consistent with averages obtained in previous reviews (Hong et al., 2008; Picorelli et al., 2014). On the other hand, only 30% of articles reported the minimum percentage required to be included in the data analysis, information of great value to know the effective participation of OA, which should be recorded in future interventions.

A low percentage of OA deaths was observed during the intervention. None related to exercise programs and a low percentage of injured OA was detected, which could indicate that the PE-base interventions in Latin America interventions are safe, reliable and potentially replicable (Peranovich, 2016). The reason for abandonment corresponding to personal causes was reported in 49% of the articles, where they were considered in the same line as previous studies, aspects such as lack of time, traveling problems or lack of motivation (Hancox et al., 2019; Picorelli et al., 2014) as well as health reasons (cause reported in 35% of the articles), but which, as it has highlighted, not derived from the intervention applied. For attendance, 25% of the articles reported excluding OA for this reason and, finally, only 5% of the articles reported OA exclusion whose abandonment was motivated by the intervention.

While elimination by attendance is not considered a barrier to adherence to the PE-based interventions, it would be logical to infer that the non-attendance could...
be due to reasons not informed by the OA and related to both personal characteristics and sociodemographic factors presented in their environment (Findorff et al., 2009).

Although some studies have shown good results in terms of adherence and impact of OA interventions carried out both at home and in residential centers (Faber et al., 2006; Hill et al., 2015), it was not possible to establish relationships between the place of intervention and OA adherence due to a large number of articles that did not report this information, coupled with the fact that only one article used an PE-based intervention performed at the home of the OA. As for the intervention format, the preference for using group interventions may be given by the social support that could occur between OA, which is an important factor in promoting adherence to the PE-based interventions in this population (Fraser & Spink, 2002), in addition to the reduced use of time and resources of this format compared to individual interventions. Finally, concerning the type of intervention used, 63% of the articles used structured PE-based interventions, which is characterized by being a planned and structured activity, to improve or maintain physical fitness or any of its components (WHO, 2020), 25% of the articles used interventions based on therapeutic exercise, which is characterized by being used to recover function in subjects with certain health conditions (Taylor et al., 2007). Only 13% of the articles made interventions through recreational activities, which could be based on researchers’ interest in knowing the effects of structured and therapeutic PE on elderly, controlling the different variables that could affect the results obtained with the interventions.

The interventions’ design–mainly group session in those who reported a 100% adherence versus individual session in those with 70% - might explain the adherence difference. Apparently doing physical activity in other OA companies and receiving their support and companionship would be an important factor in increasing adherence (Fraser & Spink, 2002).

What are the contributions and scope of this review?

This scoping review provides a broad and updated view of the characteristics of PE-based interventions that are being developed in Latin America, which made it possible to generate a profile of the OA that most benefit from PE programs, the characteristics of adherence and most frequent reasons for abandoning these interventions. In addition, this review allowed us to know the existing gaps in relation to the attendance record and reasons for abandoning the OA to PE-base interventions, being able to encourage the development of future studies in this area, as well as their inclusion as relevant factors when designing and prescribing PE-base intervention for this population.

Strengths and limitations

The work was conducted according to the PRISMA guidelines and it was not limited to one language only; therefore, the language bias risk was minimal. We found that the search was restricted to the last five years to find the latest and updated available evidence among the limitations. We are aware that there may be high-quality evidence in previous years that was not included. Furthermore, this scoping review lacked meta-analysis due to the studies’ heterogeneity, so there is only a qualitative analysis of the phenomenon studied.

Conclusions

Total adherence to interventions was 87%. No article reported information on the minimum time of participation to the session to be considered as done. Only 30% of the articles reported the minimum participation of the OA in the intervention to include them in the study analysis and 21% reported the average session attendance to the intervention. The main reasons for abandonment were personal causes unrelated to the intervention. A low percentage of OA deaths was observed during the intervention, none related to exercise programs and only 5% of the articles reported injury of one of the participants (in two of them the injury was related to the intervention applied). Most of the PE-based interventions were developed in spaces set up for the practice of PE, in charge of a physical activity professional, in a group modality and using therapeutic exercise as a base intervention. The most frequently used parameters for PE-based interventions included intervention length of three or fewer months, with an intervention frequency of three or fewer times a week, and a session length of 60 minutes.

References

ACEMI. (2011). Sé activo físicamente y sientete bien. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/se-activo-fisicamente-sientete-bien.pdf
Agner, V. F. C., Garcia, M. C., Taffarel, A. A., Mourão, C. B., da Silva, I. P., da Silva, S. P., Peccin, M. S., & Lombardi, I. (2018). Effects of concurrent training on muscle strength in older adults with metabolic syndrome: A randomized controlled clinical trial. *Archives of Gerontology and Geriatrics, 75*, 158–164. https://doi.org/10.1016/j.archger.2017.12.011

Alves, W. M., Alves, T. G., Ferreira, R. M., Lima, T. A., Pimentel, C. P., Sousa, E. C., Abrainh, O., & Alves, E. A. (2019). Strength training improves the respiratory muscle strength and quality of life of elderly with Parkinson disease. *Journal of Sports Medicine and Physical Fitness, 59*(10), 1756–1762. https://doi.org/10.23736/S0022-4707.19.09509-4

Antunes, H. K. M., De Mello, M. T., De Aquino Lemos, V., Santos-Galduróz, R. F., Galdieri, L. C., Bueno, O. F. A., Tufik, S., & D’Almeida, V. (2015). Aerobic physical exercise improved the cognitive function of elderly males but did not modify their blood homocysteine levels. *Dementia and Geriatric Cognitive Disorders Extra, 5*(1), 13–24. https://doi.org/10.1159/000369160

Aragão-Santos, J. C., De Resende-Neto, A. G., Nogueira, A. C., Feitosa-Neta, M. de L., Brandão, L. H., Chaves, L. M., & Da Silva-Grigolotto, M. E. (2019). The effects of functional and traditional strength training on different strength parameters of elderly women: A randomized and controlled trial. *Journal of Sports Medicine and Physical Fitness, 59*(3), 380–386. https://doi.org/10.23736/S0022-4707.18.08227-0

Arantes, P. M. M., Dias, J. M. D., Fonseca, F. F., Oliveira, A. M. B., Oliveira, M. C., Pereira, L. S. M., & Dias, R. C. (2015). Effect of a Program Based on Balance Exercises on Gait, Functional Mobility, Fear of Falling, and Falls in Prefrail Older Women. *Topics in Geriatric Rehabilitation, 31*(2), 113–120. https://doi.org/10.1097/TGR.000000000000056

Araque-Martínez, M. Á., Ruiz-Montero, P. J., & Artés-Rodríguez, E. M. (2020). Efectos de un programa de ejercicio físico multicomponente sobre la condición física, la autoestima, la ansiedad y la depresión en personas adultas-mayores: Efectos de un multicomponente de ejercicios físicos sobre la autoestima, la ansiedad y la depresión. *Retos, 39*, 1024–1028. https://doi.org/10.47197/retos.039.83382

Aveiro, M. C., Avila, M. A., Pereira-Baldon, V. S., Cecatto Oliveira, A. S. B., Gramani-Say, K., Oishi, J., & Driusso, P. (2017). Water-versus land-based treatment for postural control in postmenopausal osteoporotic women: A randomized, controlled trial. *Climacteric, 20*(5), 427–435. https://doi.org/10.1111/1369-7173.1325460

Bacha, J. M. R., Gomes, G. CV, De Freitas, T B, Viveiro, J. A. P. Da Silva, K. G., Bueno, G. C., Varise, E. M., Torriani-Pasin, C., Alonzo, A. C., Luna, N. M. S., D’andrea Greve, J. M., & Pompeu, J. E. (2018). Effects of Kinect adventures games versus conventional physical therapy on postural control in elderly people: A randomized controlled trial. *Games for Health Journal, 7*(1), 24–36. https://doi.org/10.1089/ghs.2017.0065

Barbalho, M. de S. M., Gentil, P., Izquierdo, M., Fisher, J., Steele, J., & Raiol, R. de A. (2017). There are no no-responders to low or high resistance training volumes among older women. *Experimental Gerontology, 99*, 18–26. https://doi.org/10.1016/j.exger.2017.09.003

Barbosa Rezende, A. A., Fernandes De Miranda, E., Souza Ramalho, H., Borges Da Silva, J. D., Silva Carlotto Herrera, S. D., Rossonne Reis, G., & Martín Dantas, E. H. (2015). Effects of sensory motor training of lower limb in sedentary elderly as part of functional autonomy. *Revista Andaluza de Medicina Del Deporte, 8*(2), 61–66. https://doi.org/10.1016/j.ramd.2014.05.001

Botton, C. E., Umphierre, D., Rech, A., Pfeifer, L. O., Machado, C. L. F., Teodoro, J. J. L., Dias, A. S. S., & Pinto, R. S. (2018). Effects of resistance training on neuromuscular parameters in elderly with type 2 diabetes mellitus: A randomized clinical trial. *Experimental Gerontology, 113*, 141–149. https://doi.org/10.1016/j.exger.2018.10.001

Brandão, G. S., Gomes, G. S. F., Brandão, G. S., Callou Sampaio, A. A., Donner, C. F., Oliveira, L. F. V., & Camelher, A. A. (2018). Home exercise improves the quality of sleep and daytime sleepiness of elders: A randomized controlled trial. *Multidisciplinary Respiratory Medicine, 13*(1). https://doi.org/10.1186/s40248-017-0114-3

Bueno, G. A. S., Menezes, R. L. de, Vilela Lemos,T., & Gervásio, F. M. (2018). Relationship of muscle strength with static balance in elderly—comparison between pilates and multimodalities. *Revista Brasileira de Ciencias Do Esporte, 40*(4), 435–441. https://doi.org/10.1016/j.rbce.2018.04.008

Bufill, L. M., Galvão, D. A., Brag, J., Chinapaw, M. J. M., & Newton, R. U. (2014). Evidence-based physical activity guidelines for cancer survivors: Current guidelines, knowledge gaps and future research directions. In *Cancer Treatment Reviews* (Vol. 40, Issue 2, pp. 327–340). Elsevier. https://doi.org/10.1016/j.ctrv.2013.06.007

Cadore, E. L., Menger, E., Teodoro, J. J. L., da Silva, L. X. N., Boeno, F. P., Umphierre, D., Botton, C. E., Ferrari, R., Cunha, G. dos S., Izquierdo, M., & Pinto, R. S. (2018). Functional and physiological adaptations following concurrent training using sets with and without concentric failure in elderly men: A randomized clinical trial. *Experimental Gerontology, 110*, 182–190. https://doi.org/10.1016/j.exger.2018.06.011

Campos De Oliveira, L., Gonçalves De Oliveira, R., & De Almeida Pires-Oliveira, D. A. (2015). Effects of pilates on muscle strength, postural balance and quality of life of older adults: A randomized, controlled, clinical trial. *Journal of Physical Therapy Science, 27*(3), 871–876. https://doi.org/10.1589/jpts.27.871

Carvalho, I. F. De, Leme, G. L. M., & Scheicher, M. E. (2018). The Influence of Video Game Training with and without Subpatellar Bandage in Mobility and Gait Speed in Elderly Female Fallers. *Journal of Aging Research, 2018*. https://doi.org/10.1155/2018/9415093

Carvalho, M. J., Marques, E., & Mota, J. (2009). Training and detraining effects on functional fitness after a multicomponent physical exercise program on fitness, physiological adaptations following concurrent training using sets with and without concentric failure in elderly men: A randomized clinical trial. *Revista Brasileira de Ciencias Do Esporte, 40*(4), 435–441. https://doi.org/10.1016/j.rbce.2018.04.008
(2019). Effects of functional and traditional training in body composition and muscle strength components in older women: A randomized controlled trial. *Archives of Gerontology and Geriatrics*, 84. https://doi.org/10.1016/j.archger.2019.103902

De Resende Neto, A. G., De Lourdes Feitosa Neta, M., Santos, M. S., La Scala Teixeira, C. V., De Silva, C. A., & Da Silva-Grigoletto, M. E. (2016). Functional training versus traditional strength training: Effects on physical fitness indicators in pre-frail elderly women. *Motricidade*, 12(December), 44–53.

Di Lorito, C., Bosco, A., Booth, V., Goldberg, S., Harwood, R. H., & Van der Wardt, V. (2020). Adherence to exercise interventions in older people with mild cognitive impairment and dementia: A systematic review and meta-analysis. In *Preventive Medicine Reports* (Vol. 19, p. 101139). Elsevier Inc. https://doi.org/10.1016/j.pmedr.2020.101139

Dias, C. P., Toscan, R., de Camargo, M., Pereira, E. P., Griebler, N., Baroni, B. M., & Tiggemann, C. L. (2015). Effects of eccentric-focused and conventional resistance training on strength and functional capacity of older adults. *Age*, 37(5). https://doi.org/10.1007/s11357-015-9838-1

Dirección de Promoción de la Salud y Control De Enfermedades No Transmisibles. (2013). *Manual director de actividad física y salud de la república de Argentina*. https://cesni-biblioteca.org/wp-content/uploads/2020/04/manu001-de-la-plenitudDDD_optimize.pdf

Dos Santos, L., Ribeiro, A. S., Cavalcante, E. F., Naboaco, H. C., Antunes, M., Schoenfeld, B. J., & Cyrino, E. S. (2018). Effects of Modified Pyramid System on Muscular Strength and Hypertrophy in Older Women. *International Journal of Sports Medicine*, 39(8), 613–618. https://doi.org/10.1055/a-0634-6454

Dueñas, E. P., Ramírez, L. P., Ponce, E., & Curcio, C. L. (2019). Effect on fear of falling and functionality of three intervention programs. A randomised clinical trial. *Revista Española de Geriatría y Gerontología*, 54(2), 68–74. https://doi.org/10.1016/j.regg.2018.09.013

Faber, M. J., Boscher, R. J., Chin A Paw, M. J., & van Wieringen, P. (2020). The Effects of Functional Training, Bicycle Exercise, and Exergaming on Walking Capacity of Elderly Patients With Parkinson Disease: A Pilot Randomized Controlled Single-blinded Trial. *Archives of Physical Medicine and Rehabilitation*, 99(5), 826–833. https://doi.org/10.1016/j.apmr.2017.12.014

Ferreira, C. B., Teixeira, P. D. S., Alves Dos Santos, G., Fantas May, A.T., Americano Do Brasil, P., Souza, V. C., Córdova, C., Ferreira, A. P., Lima, R. M., & Nobrega, O. D. T. (2018). Effects of a 12-Week Exercise Training Program on Physical Function in Institutionalized Frail Elderly. *Journal of Aging Research*, 2018. https://doi.org/10.1155/2018/7218102

Ferreira, R. M., Alves, W. M. G. da C., Lima, T. A., Alves, T. G. G., Alves Filho, P. A. M., Pimentel, C. P., Sousa, E. C., & Cortinhas-Alves, E. A. (2018). The effect of resistance training on the anxiety symptoms and quality of life in elderly people with parkinson’s disease: A randomized controlled trial. *Arquivos de Neuro-Psiquiatria*, 76(8), 499–506. https://doi.org/10.1590/0004-282x20180071

Findorff, M. J., Wyman, J. F., & Gross, C. R. (2009). Predictors of long-term exercise adherence in a community-based sample of older women. *Journal of Women’s Health*, 18(11), 1769–1776. https://doi.org/10.1089/jwh.2008.1265

Fleg, J. L. (2012). Aerobic exercise in the elderly: A key to successful aging. *Discovery Medicine*, 13(70), 223–228. http://europepmc.org/article/med/22463798

Forbes, C. C., Swan, F., Greenley, S. L., Lind, M., & Johnson, M. J. (2020). Physical activity and nutrition interventions for older adults with cancer: a systematic review. In *Journal of Cancer Survivorship* (Vol. 14, Issue 5, pp. 689–711). Springer. https://doi.org/10.1007/s11764-020-00883-x

Franco, M. R., Sherrington, C., Tiedemann, A., Pereira, L. S., Ferracini, M. R., Faria, C. R. S., Pinto, R. Z., & Pastre, C. M. (2016). Effectiveness of Senior Dance on risk factors for falls in older adults (DanSE): A study protocol for a randomised controlled trial. *BMJ Open*, 6(12), 13995. https://doi.org/10.1136/bmjopen-2016-013995

Fraser, S. N., & Spink, K. S. (2002). Examining the Role of Social Support and Group Cohesion in Exercise Compliance. *Journal of Behavioral Medicine*, 25(3), 233–249. https://doi.org/10.1023/A:1015328627304

Gaideho, A. B., Paiva, F. M. L., Gauche, R., de Oliveira, R. J., & Lima, R. M. (2016). Effects of resistance training on sarcopenia: Obesity index in older women: A randomized controlled trial. *Archives of Gerontology and Geriatrics*, 65, 168–173. https://doi.org/10.1016/j.archger.2016.03.017

Galloza, J., Castillo, B., & Micheo, W. (2017). Benefits of Exercise in the Older Population. In *Physical Medicine and Rehabilitation Clinics of North America* (Vol. 28, Issue 4, pp. 659–669). W.B. Saunders. https://doi.org/10.1016/j.pmr.2017.06.001

Gambassi, B. B., Almeida, F. F., Sauaia, B. A., Novais, T. M. G., Furtado, A. E. A., Chaves, L. F. C., Rodrigues, B., Silva, A. R. M., Melo, L. P., & Mostarda, C. T. (2015). Resistance training contributes to variability in heart rate and quality of sleep in elderly women without comorbidities. *Journal of Exercise Physiology Online*, 18(6), 112–123.

Gobierno de Chile. (2017). *Recomendaciones para la práctica de*...
Effects of Static Stretching on Functional Capacity in Older Women: Randomized Controlled Trial. 18.

Hill, K. D., Hunter, S.W., Batchelor, F. A., Cavalheri, V., & Burton, E. (2015). Individualized home-based exercise programs for older people to reduce falls and improve physical performance: A systematic review and meta-analysis. In Maturitas (Vol. 82, Issue 1, pp. 72–84). Elsevier Ireland Ltd. https://doi.org/10.1016/j.maturitas.2015.04.005

Hong, S. Y., Hughes, S., & Prohaska, T. (2008). Factors affecting exercise attendance and completion in sedentary older adults: A meta-analytic approach. Journal of Physical Activity and Health, 5(3), 385–397. https://doi.org/10.1123/jpah.5.3.385

Huang, C. Q., Dong, B. R., Lu, Z. C., Yue, J. R., & Liu, Q. X. (2010). Factors influencing adherence to regular exercise attendance and completion in sedentary older adults: A meta-analytic approach. Journal of Physical Activity and Health, 7(1). https://doi.org/10.1123/jpah.5.3.385

Lee, L. C. P., Abrahim, O., Rodrigues, R. P., da Silva, M. C. R., Araújo, A. P. M., de Sousa, E. C., Pimentel, C. P., & Cortinhas-Alves, E. A. (2019). Low-volume resistance training improves the functional capacity of older individuals with Parkinson’s disease. Geriatrics and Gerontology International, 25(6), 635–640. https://doi.org/10.1111/ggi.13682

Leandro, M. P. G., de Moura, J. L. S., Barros, G. W. P., da Silva Filho, A. P., Farias, A. C. de O., & Carvalho, P. C. R. (2019). Effect of the aerobic component of combined training on the blood pressure of hypertensive elderly women. Revista Brasileira de Medicina Do Esporte, 25(6), 469–473. https://doi.org/10.1590/1517-869220192506214228

Liberati, A., Altman, D. G., Tetzlafl, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS
Martins, W. R., Safons, M. P., Bottaro, M., Blasczyk, J. C., Diniz, L. M. L., Aidar, F. J., Costa Moreira, O., Gama De Matos, McPhee, J. S., French, D. P., Jackson, D., Nazroo, J., Pendleton, N., Martinez, A., Selaive, R., Astorga, S., & Olivares, P. (2018). Impact of a dual task intervention on physical performance of older adults who practice physical exercise. Revista Brasileira de Cineantropometria e Desempenho Humano, 20(1), 10–19. https://doi.org/10.5007/1980-0037.2018v20n1p10

Medina-Mirapeix, F., Escobar-Reina, P., García-Cánovas, J. J., Montilla-Herrador, J., & Collins, S. M. (2009). Personal characteristics influencing patients’ adherence to home exercise during chronic pain: A qualitative study. Journal of Rehabilitation Medicine, 41(5), 347–352. https://doi.org/10.2340/16501977-0338

Ministerio de Salud Pública del Ecuador. (2011). Guía de actividad física dirigida al personal de salud. II. https://aplicaciones.msp.gob.ec/salud/archivosdigitales/documentosDirectrices/dhnm/archivos/ARCHIVOS DE ACTIVIDAD FISICA 2.pdf

Miranda-Aguilar, D., Valdés-Badilla, P., Herrera-Valenzuela, T., Guzmán-Muñoz, E., Branco, B. H. M., Méndez-Rebolledo, G., & López-Fuenzalida, A. (2019). Elastic bands or gym equipment for the training of older adults? Retos, 40(9), 370–378. https://doi.org/10.47197/RETOs.V47I97.73009

Mitsuiishi, A. B., Graham, J. E., Mogilner, A. J., & Rockwood, K. (2002). Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatrics, 2(1), 1–8. https://doi.org/10.1186/1471-2318-2-1

Monteiro-Junior, R. S., Figueiredo, L. F. d. S., Maciel-Pinheiro, P. de T., Abud, E. L. R., Engedal, K., Barca, M. L., Nascimento, O. J. M., Laks, J., & Deslandes, A. C. (2017). Virtual Reality– Based Physical Exercise With Exergames (PhysEx) Improves Mental and Physical Health of Institutionalized Older Adults. In Journal of the American Medical Directors Association (Vol. 18, Issue 5, pp. 454.e1-454.e9). Elsevier Inc. https://doi.org/10.1016/j.jamda.2017.01.001

Mora, J. C., & Valencia, W. M. (2018). Exercise and Older Adults. In Clinics in Geriatric Medicine (Vol. 34, Issue 1, pp. 145–162). W.B. Saunders. https://doi.org/10.1016/j.cger.2017.08.007

Moreira-Antunes, H., Santos-Galdurzo, R. F., De Aquino Lemos, V., Bueno, O. F. A., Rezak, P., de Santana, M. G., & De Mello, M. T. (2015). The influence of physical exercise and leisure activity on neuropsychological functioning in older adults. Age, 37(4). https://doi.org/10.1007/s11357-015-9815-8

Moreira, N. B., Gonçalves, G., da Silva, T., Zanardini, F. E. H., & Bento, P. C. B. (2018). Multisensory exercise programme: improves cognition and functionality in institutionalized older adults: A randomized control trial. Physiotherapy Research International, 23(2). https://doi.org/10.1002/pri.1708

Nacional Costa Rica, U., Valenzuela, C., Elena, M., Jacobo, B., Fernández, G., Ardondo, D., Vega, F., de los Ángeles, M., Perkins, O., Ernesto, C., Del Cid, M., Eduardo, E., Ruiz, H., & Aplicación De Un Programa De Intervención Para El Beneficio De La Salud FísicaI, G. L. A. (2018). La aplicación de un programa de...
Santana, M., Pina, J., Duarte, G., Neto, M., Machado, A., & Domínguez-Ferraz, D. (2016). Nintendo Wii effects on cardiorespiratory fitness in older adults: A randomized clinical trial. A pilot trial. *Fisioterapia*, 38(2), 71–77. https://doi.org/10.1016/j.ft.2015.03.003

Santiago, L., Ingelo M., Neto, L. G. L., Pereira, G. B., Leite, R. D., Mostarda, C. T., De Oliveira Brito Monzani, J., Sousa, W. R., Pinheiro, A. J. M. R., & Navarro, F. (2018). Effects of resistance training on immunoinflammatory response, TNF-alpha gene expression, and body composition in elderly women. *Journal of Aging Research*, 2018. https://doi.org/10.1155/2018/1467025

Santos, G. D., Nunes, P. V., Stella, F., Brum, P. S., Yasuda, M. S., Ueno, L. M., Gattaz, W. F., & Forlenza, O. V. (2015). Multidisciplinary rehabilitation program: Effects of a multimodal intervention for patients with Alzheimer’s disease and cognitive impairment without dementia. *Revista de Psiquiatria Clinica*, 42(6), 153–156. https://doi.org/10.1590/0101-60830000000066

Santos, G. O. R., Wolf, R., Silva, M. M., Rodacki, A. L. E., & Pereira, G. (2019). Does exercise intensity increment in exergame promote changes in strength, functional capacity and perceptual parameters in pre-frail older women? A randomized controlled trial. *Experimental Gerontology*, 116, 25–30. https://doi.org/10.1016/j.exger.2018.12.009

Santos, S. M., Da Silva, R. A., Terra, M. B., Almeida, I. A., De Melo, L. B., & Ferraz, H. B. (2017). Balance versus resistance training on postural control in patients with Parkinson’s disease: A randomized controlled trial. *European Journal of Physical and Rehabilitation Medicine*, 53(2), 173–183. https://doi.org/10.23736/S1973-9087.16.04313-6

Scarabottolo, C. C., García Júnior, J. R., Gobbo, L. A., Alves, M. J., Brescianini, S. M. S., Effting, P. S., Thirupathi, A., Nesi, R. T., Silveira, P. C. L., & Pinho, R. A. (2017). The effects of physical training are varied and occur in an exercise type-dependent manner in elderly men. *Aging and Disease*, 8(6), 887–898. https://doi.org/10.14336/AD.2017.0209

Secretaria Nacional Del Deporte. (2018). *Programa Nacional de Educación Física para Personas Adultas Mayores*. Lima, Peru: Ministerio de Educación, Secretaría Nacional del Deporte.
Lima, F. F. de, Ramos, D., & Ramos, E. M. C. (2018). Functionality of patients with Chronic Obstructive Pulmonary Disease at 3 months follow-up after elastic resistance training: a randomized clinical trial. In Pulmonology (Vol. 24, Issue 6, pp. 354–357). Elsevier España S.L.U. https://doi.org/10.1016/j.pulmoe.2018.09.005

Silva, M. R., Alberton, C. L., Portella, E. G., Nunes, G. N., Martin, D. G., & Pinto, S. S. (2018). Water-based aerobic and combined training in elderly women: Effects on functional capacity and quality of life. Experimental Gerontology, 106, 54–60. https://doi.org/10.1016/j.exger.2018.02.018

Simao, A. P., Mendonça, V. A., Avelar, N. C. P., Fonseca, S. F. Da, Santos, J. M., Oliveira, A. C. C., Tissoge-Gomes, R., Ribeiro, V. G. C., Neves, C. D. C., Balthazar, C. H., Leite, H. F., Figueiredo, P. H. S., Bernardo-Filho, M., & Lacerda, A. C. R. (2019). Whole body vibration training on muscle strength and brain-derived neurotrophic factor levels in elderly woman with knee osteoarthritis: A randomized clinical trial study. Frontiers in Physiology, 10(JUN). https://doi.org/10.3389/fphy.s.2019.00756

Souza, D., Barbalho, M., Vieira, C. A., Martins, W. R., Cadore, E. L., & Gentil, P. (2019). Minimal dose resistance training with elastic tubes promotes functional and cardiovascular benefits to older women. Experimental Gerontology, 115, 132–138. https://doi.org/10.1016/j.exger.2018.12.001

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Bourtron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Elderidge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Juni, P., Kirkham, J. J., Lasserson, T. J., Li, T., ... Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. The BMJ, 366. https://doi.org/10.1136/bmj.l4898

Sun, F., Norman, I. J., & While, A. E. (2013). Physical activity in older people: A systematic review. BMC Public Health, 13(1), 449. https://doi.org/10.1186/1471-2458-13-449

Suzuki, E. S., Evangeliosta, A. L., Teixeira, C. V. L. S., Paulesusi, M. R. R., Rica, R. L., Evangeliosta, R. A. G. de T., João, G. A., Doro, M. R., Sita, D. M., Serra, A. J., Figueira Junior, A. J., Alonso, A. C., Peterson, M., & Boccalini, D. S. (2018). Effects of multicomponent exercise program on the functional in elderly women. Revista Brasileira de Medicina Do Esporte, 24(1), 36–39. https://doi.org/10.1590/1517-869220182401179669

Taglietti, M., Faci, L. M., Trella, C. S., de Mello, F. C., da Silva, D. W., Sawczuk, G., Ruivo, T. M., de Souza, T. B., Sforza, C., & Cardoso, J. R. (2018). Effectiveness of aquatic exercises compared to patient-education on health status in individuals with knee osteoarthritis: a randomized controlled trial. Clinical Rehabilitation, 32(6), 766–776. https://doi.org/10.1177/0269215517754240

Taylor, N. F., Dodd, K. J., Shield, N., & Bruder, A. (2007). Therapeutic exercise in physiotherapy practice is beneficial: A summary of systematic reviews 2002–2005. Australian Journal of Physiotherapy, 53(1), 7–16. https://doi.org/10.1016/S0004-9514(07)00057-0

Teodoro, J. L., da Silva, L. X. N., Fritsch, C. G., Baroni, B. M., Grazioli, R., Boeno, F. P., Lopez, P., Gentil, P., Bottaro, M., Pinto, R. S., Esaquiro, M., & Cadore, E. L. (2019). Concurrent training performed with and without repetitions to failure in older men: A randomized clinical trial. Scandinavian Journal of Medicine and Science in Sports, 29(8), 1141–1152. https://doi.org/10.1111/smss.13451

Tiggemann, C. L., Dias, C. P., Radaelli, R., Massa, J. C., Bortoluzi, R., Schoenfeld, C. M., Noll, M., Alberton, C. L., & Kruel, L. F. M. (2016). Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance. Age, 38(2). https://doi.org/10.1007/s11357-016-9904-3

Tomeleri, C. M., Ribeiro, A. S., Souza, M. F., Schiavioni, D., Schoenfeld, B. J., Venturini, D., Barbosa, D. S., Landucci, K., Sardinha, L. B., & Cyrino, E. S. (2016). Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: A randomized controlled trial. Experimental Gerontology, 84, 80–87. https://doi.org/10.1016/j.exger.2016.09.005

Tomeleri, C. M., Souza, M. F., Burini, R. C., Cavaglieri, C. R., Ribeiro, A. S., Antunes, M., Nunes, J. P., Venturini, D., Barbosa, D. S., Sardinha, L. B., & Cyrino, E. S. (2018). Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. Journal of Diabetes, 10(4), 328–337. https://doi.org/10.1111/1753-0407.12614

United Nation. (2019a, June 17). World Population Prospects 2019: Highlights | Multimania Library - United Nations Department of Economic and Social Affairs. https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html

United Nation. (2019b). World Population Ageing 2019 Highlights. UN. https://doi.org/10.18356/9df3caed-en

Valenzuela, T., Okubo, Y., Woodbury, A., Lord, S. R., & Delbaere, K. (2018). Adherence to Technology-Based Exercise Programs in Older Adults: A Systematic Review. Journal of Geriatric Physical Therapy, 41(1), 49–61. https://doi.org/10.1519/JPT.0000000000000095

Van Gelder, B. M., Tijhuis, M. A. R., Kalmijn, S., Giampaoli, S., Nissinen, A., & Kromhout, D. (2004). Physical activity in relation to cognitive decline in elderly men: The FINE study. Neurology, 63(12), 2316–2321. https://doi.org/10.1212/01.WNL.0000147474.29994.35

Vargas, M. Á., & Rosas, M. E. (2019). Impact of an aerobic physical activity program in hypertensive elderly adults. Revista Latinoamericana de Hipertensao, 14(2), 142–149.

WHo. (2020). WHO Guidelines on physical activity and sedentary behaviour. In World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/325147/WHO-NMH-PND-2019.4-eng.pdf?sequence=1&isAllowed=y

WHo. (2020). WHO Guidelines on physical activity and sedentary behaviour. In World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/325147/WHO-NMH-PND-2019.4-eng.pdf?sequence=1&isAllowed=y