Observational Study

Evaluation of the diagnostic and therapeutic utility of retrograde through-the-scope balloon enteroscopy and single-balloon enteroscopy

Yi Jia, Majd Michael, Mohammad Bashashati, Sherif Elhanafi, Christopher Dodoo, Alok K Dwivedi, Andres F Carrion, Mohamed O Othman, Marc J Zuckerman

ORCID number: Yi Jia 0000-0003-1089-539X; Majd Michael 0000-0001-6707-2496; Mohammad Bashashati 0000-0002-3237-4715; Sherif Elhanafi 0000-0003-4560-4396; Christopher Dodoo 0000-0001-6269-1757; Alok K Dwivedi 0000-0003-4574-1761; Andres F Carrion 0000-0001-5805-6638; Mohamed O Othman 0000-0002-5888-4334; Marc J Zuckerman 0000-0002-4948-139X.

Author contributions: Jia Y contributed to acquisition of data, analysis and interpretation of data, drafting the manuscript; Michael M, Bashashati M and Elhanafi S contributed to acquisition of data, analysis and interpretation of data and critical revision of the manuscript for important intellectual content; Dodoo C and Dwivedi AK contributed to statistical analysis; Carrion AF and Othman MO contributed to critical revision of the manuscript for important intellectual content; Zuckerman MJ contributed to study concept and design, acquisition of data, analysis and interpretation of data, critical revision of the manuscript for important intellectual content, study supervision and guarantor; all authors reviewed and approved.

Yi Jia, Majd Michael, Mohammad Bashashati, Sherif Elhanafi, Marc J Zuckerman, Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, United States

Christopher Dodoo, Alok K Dwivedi, Biostatistics and Epidemiology Consulting Lab, Office of Research Resources and Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, United States

Andres F Carrion, Division of Gastroenterology and Hepatology, University of Miami Miller School of Medicine, Miami, FL 33136, United States

Mohamed O Othman, Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77082, United States

Corresponding author: Marc J Zuckerman, MD, Professor, Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, 4800 Alberta Avenue, El Paso, TX 79912, United States. marc.zuckerman@ttuhsc.edu

Abstract

BACKGROUND
Retrograde single balloon enteroscopy (SBE) is a minimally invasive procedure which is less frequently performed compared with antegrade SBE. There are few studies on the retrograde through–the-scope enteroscopy (TTSE), a novel technique for evaluation of the small bowel.

AIM
To compare the clinical utility and safety of retrograde TTSE with retrograde SBE.

METHODS
Clinical data and complications of retrograde TTSE (2014-2018) and retrograde SBE (2011-2018) performed in a community hospital were reviewed and presented as mean ± SD or frequency (%) and compared using proper statistical tests. Technical success was defined as insertion of the enteroscope > 20 cm beyond ileocecal valve.
INTRODUCTION

The small bowel used to be inaccessible and out of reach by gastrointestinal endoscopists because of its depth, length and complex loops. For many decades, the only available diagnostic and therapeutic interventions for evaluation and management of small bowel disorders were radiographic imaging, laparotomy and intraoperative enteroscopy[24]. Video capsule endoscopy (VCE) revolutionized the evaluation of small bowel disorders due to its non-invasive nature and higher diagnostic yield compared with conventional imaging modalities, but remains a purely diagnostic modality without any interventional capability[25]. While current guidelines suggest VCE to be the first-line endoluminal intervention for suspected small bowel disorders[26], deep enteroscopy may be considered as the initial diagnostic procedure in select patients with a high level of suspicion of small-bowel angioectasias or in patients with surgically altered anatomy[27].

Balloon-assisted enteroscopy provides a minimally invasive diagnostic and therapeutic approach to the small bowel allowing real-time endoscopic assessment, tissue sampling and therapeutic interventions extending beyond the diagnostic capabilities of capsule endoscopy and radiographic imaging[28]. Single-balloon enteroscopy (SBE) is now available in many centers; however, the availability of double balloon enteroscopy and spiral enteroscopy is limited[29].

Diagnostic and therapeutic enteroscopy has two major routes, antegrade and retrograde enteroscopy. The technically easier route, antegrade SBE, is usually performed first for small bowel disorders of uncertain location. Retrograde SBE is...
more difficult and less commonly performed than antegrade, but can approach average insertion depths proximal to the ileocecal valve from 73 to 199 cm\(^{11-13}\).

A new enteroscopy device has been designed to allow deep enteroscopy with a novel through-the-scope balloon [NaviAid (SMART Medical Systems Ltd, Ra’anan, Israel)]\(^{14-16}\). This technique was introduced as a safe and effective way to perform deep enteroscopy by using a conventional colonoscope without the need for an enteroscope or an overtube. The ASGE guideline has not sufficiently elaborated on this newly introduced technique due to limited data regarding the use of this device for deep enteroscopy\(^{17}\). We conducted the current study to evaluate the clinical utility of retrograde TTSE and its impact on the diagnosis and management of small-bowel disorders and to compare both clinical and procedure characteristics of retrograde TTSE with retrograde SBE.

MATERIALS AND METHODS

Subjects

We collected data from consecutive adult patients (> 18 years old) who underwent retrograde balloon-assisted enteroscopy procedures at the University Medical Center in El Paso, a general hospital along the United States-Mexico border. The retrograde SBE studies were performed in the period from September 2011 to December 2018. The TTSE device was introduced after June 2014 and procedures were reviewed to December 2018. After June 2014, every other case was done with alternating retrograde enteroscopy methods depending on equipment availability. There were no preset criteria to prefer one technique over the other. This resulted in an approximately one to one allocation assignment. Double-balloon enteroscopy or the spiral-assisted enteroscopy system were not available at this institution. The study was approved by the Texas Tech University Health Sciences Center Institutional Review Board.

Procedure

Patient demographics, clinical characteristics, endoscopy procedure data and complications were reviewed. The electronic medical record was used to obtain information about patient demographics and clinical characteristics, use of prior VCE and documented adverse effects, enteroscopy procedure data (routes, duration of procedures, depth of insertion for successful endoscopy cases, diagnostic yield, findings, and interventions) and complications. The indications for enteroscopy included iron deficiency anemia, overt gastrointestinal bleeding, abdominal pain, chronic diarrhea, familial adenomatous polyposis screening, and previous abnormal imaging. Depth of insertion was estimated on withdrawal by counting in 10 cm intervals as the endoscope was slowly withdrawn.

All enteroscopy procedures were performed by an experienced gastroenterologist (Zuckerman MJ). Single balloon enteroscopy was done with the Olympus SIF-Q180 enteroscope (Olympus, Melville, NY, United States) (Figure 1A), the balloon overtube system and the inflation/deflation external device. The through-the-scope (NaviAid) balloon system (SMART Medical Systems Ltd.) consisted of a single-use catheter-based inflatable balloon inserted through the instrument channel of a standard adult colonoscope (Olympus CF-180 or CF-190) (Figure 1B) and the external inflation/deflation system\(^{19}\). Depth of insertion was estimated on withdrawal by counting 10 cm intervals as the endoscope was slowly withdrawn, similar to the technique previously described by Efthymiou et al\(^{17}\) and utilized by Christian et al\(^{18}\). Technical success was defined as insertion of the endoscope greater than 20 cm beyond the ileocecal valve\(^{18}\). Procedure time was defined as the time from insertion to the time of complete withdrawal. All patients were monitored for complications. All patients were monitored for complications including uncontrolled bleeding (defined as need for blood transfusion), gastrointestinal perforation, infection, abdominal pain, fever, nausea and vomiting throughout the procedures and for 24 h afterward.

Statistical analysis

Continuous variables were described using mean and standard deviation while categorical variables were described using frequencies and percentages. Baseline characteristics were compared between groups using either Student’s \(t\)-test or Wilcoxon sum rank test, for continuous data and Fisher’s exact test for categorical data. Furthermore, primary and secondary outcomes between groups were also compared using Student’s \(t\)-test or Wilcoxon rank sum test or Fisher’s exact test depending on the type and distribution of outcome. One way analysis of variance was
used to compare the differences in the durations over the time periods while two way analysis of variance was used to compare the differences in the durations between two groups accounting for time period differences as well. Correlations were assessed using linear regression model.

RESULTS

A total of 81 retrograde enteroscopy procedures were performed in 75 patients during the study period. Overall, 54 retrograde SBE in 49 patients and 27 retrograde TTSE in 26 patients were performed. From 81 procedures, 74 was under general anesthesia, 6 under monitored anesthesia care and one under moderate sedation. There were no statistically significant differences in age, body mass index (BMI), gender, ethnicity, and history of abdominal surgery between the retrograde SBE and retrograde TTSE groups (Table 1). The main indications for both groups were iron deficiency anemia in 41 (50.6%), overt gastrointestinal bleeding in 37 (45.7%), abdominal pain in 17(21.0%), chronic diarrhea in 7 (8.6%), and FAP screening in 2 (2.5%). There were no differences in distribution of indications between two groups (Table 1). Thirty-nine patients and 19 patients underwent VCE before SBE and TTSE, respectively. The positive findings (35/39 and 17/19) were higher on VCE, but lower on both types of enteroscopy (15/54, 6/27) (Table 2). Other patients had abnormal imaging studies (CT abdomen, CT enterography, small bowel series) suggesting a distal small bowel lesion and would have gone straight to retrograde enteroscopy without VCE.

Retrograde enteroscopy was successful (> 20 cm beyond ileocecal valve) in 23/27 (85.2%) with TTS compared with 41/54 (75.9%) retrograde SBEs ($P = 0.33$). No specific trend was observed for the failure rate by time. Terminal ileal intubation was not achieved in 9/81 procedures [8 (14.8%) retrograde SBE and 1 (3.7%) TTSE]. The mean duration of procedures was longer in retrograde SBE (91.9 ± 34.2 min) compared with retrograde TTSE (70.5 ± 30.7 min) ($P = 0.04$). The mean depth of insertion beyond the ileocecal valve was not statistically different in retrograde SBE (92.5 ± 70.0 cm) compared with retrograde TTSE (64.6 ± 49.0 cm), but there was a trend for TTSE to have shorter depth of insertion ($P = 0.08$) (Table 3). There was no correlation between the depth of insertion and the duration of the procedure in retrograde SBE (linear regression $R^2 = 0.01; P = 0.56$) and retrograde TTSE (linear regression $R^2 = 0.11; P = 0.23$) groups. Analyzing the depth of endoscope insertion in successful procedures in consecutive time periods did not indicate any significant change from 2011 to 2018 (Figure 2).

Positive findings were detected in 21 (32.8%) of all retrograde enteroscopies, including angioectasia in 8, erosion or ulcers in 7, foreign body in 3, polyps in 2, strictures in 2, mass/gastrointestinal stromal tumor in 1, congestion/nonspecific inflammation in 1, and blood in the lumen in 1. Intervention was performed in 16/81 (19.8%) procedures or 16/21 (76.2%) of procedures with findings. Some findings did not require intervention. Small intestinal sampling was performed in 4 patients. The hemostasis procedures consisted of argon plasma coagulation (APC) in 7, hemoclip in 1, both APC and hemoclip in 1. There were no complications, such as uncontrolled
Table 1 Patient demographics and clinical characteristics

Enteroscope device	Entire cohort	Retrograde SBE¹	Retrograde TTSE²
Number of patients	75	49	26
Mean (standard deviation)	61.2 (17.6)	62.6 (16.5)	58.4 (19.6)
Age (yr)³	29.0 (6.1)	28.7 (6.3)	29.6 (5.9)
Body mass index³	43 (57.3)	27 (55.1)	16 (61.5)
Female	32 (42.7)	22 (44.9)	10 (38.5)
Male	27 (36.0)	18 (36.7)	9 (34.6)
Hispanic	10 (13.3)	7 (14.3)	3 (11.5)
Other non-hispanic	38 (50.7)	24 (49.0)	14 (53.9)
Indication³	41 (50.6)	28 (51.9)	13 (48.2)
Iron deficiency anemia	37 (45.7)	23 (42.6)	14 (51.9)
Overt GI bleeding	17 (21.1)	7 (13.0)	10 (37.0)
Abdominal pain	7 (8.6)	4 (7.4)	3 (11.1)
Diarrhea	2 (2.5)	2 (3.7)	0 (0)

¹Single balloon enteroscopy.
²Through the scope.
³Some patients have 2 indications. GI: Gastrointestinal; FAP: Familial adenomatous polyposis; SBE: Single balloon enteroscopy; TTSE: Through-the-scope enteroscopy.

Table 2 Prior video capsule endoscopy

Entire cohort	Retrograde SBE¹	Retrograde TTSE²	
Number of procedures	81	54	27
Prior video capsule, n (%)	1.00		
No	23 (28.4)	15 (27.8)	8 (29.6)
Yes	58 (71.6)	39 (72.2)	19 (70.4)
Video capsule positive finding, n (%)	0.30		
No	6 (10.3)	4 (10.3)	2 (7.4)
Yes	52 (89.7)	35 (89.7)	17 (92.6)

¹Single balloon enteroscopy.
²Through the scope enteroscopy. SBE: Single balloon enteroscopy; TTSE: Through-the-scope enteroscopy.

bleeding, gastrointestinal perforation, infection, abdominal pain, fever, nausea and vomiting, reported and all of the patients tolerated the procedure.

DISCUSSION

In this study, we evaluated and compared the clinical utility and procedure
Table 3 Procedure data including routes, diagnostic yield, findings, and interventions

Enteroscope device	Entire cohort	Retrograde SBE	Retrograde TTSE
Number of procedures	81	54	27
Duration of procedure	86.2 (34.2)	91.9 (34.2)	70.5 (30.7)
Depth of the scope insertion	82.1 (64.1)	92.5 (70.0)	64.6 (49.0)
Successful procedure with diagnostic yield, n (%)	n = 64	n = 41	n = 23
Normal	43 (67.2)	26 (63.4)	17 (73.9)
Positive finding	21 (32.8)	15 (36.6)	6 (26.1)
Intervention performed, n (%)			0.38
No	65 (80.3)	45 (83.3)	20 (74.1)
Yes	16 (19.8)	9 (16.7)	7 (25.9)
Terminal ileum not intubated	17 (21.0)	13 (24.1)	4 (14.8)
Insertion < 20 cm	9 (11.1)	8 (14.8)	1 (3.7)
Years			
2011-2012	5/14	5/14	-
2013-2014	4/27	4/22	0/5
2015-2016	6/26	3/11	3/15
2017-2018	2/14	1/7	1/7

1 Single balloon enteroscopy.
2 Through the scope enteroscopy.
3 Compares retrograde single balloon enteroscopy and retrograde through-the-scope enteroscopy.

Figure 2 Depth of endoscope insertion beyond the ileocecal junction based on the endoscopic technique (bars represent mean ± SEM; two-way ANOVA; F (2, 45) = 0.1851; *P* = 0.83). SBE: Single balloon enteroscopy; TTSE: Through-the-scope enteroscopy.

Characteristics of retrograde SBE and retrograde TTSE. We found that both interventions were safe with comparable diagnostic yield. Our study had an overall positive findings of 21/81 procedures (25.9%). The major findings included angioectasia 27 (33.3%) and erosions or ulcers 18 (22.2%). Interventions were performed in 20 (24.7%) procedures with most of them being hemostasis procedures.
Previous studies reported similar distributions with vascular lesions as the most common endoscopic findings. Our study had a lower diagnostic yield compared with others reporting 41%-65% and variable intervention rate for SBE ranging from 7%-54%.[12-19]. The discrepancy between the higher yield on capsule endoscopy than on retrograde enteroscopy could be attributed to two factors. Not all procedures were successful and most importantly, retrograde enteroscopy depth of insertion may not have been sufficient to reach the abnormality seen on capsule endoscopy. Additionally, due to the time elapsed between capsule endoscopy and enteroscopy and the nature of some of the abnormalities seen, they may have no longer been present. Based on a new study, urgent enteroscopy might be associated with higher diagnostic and therapeutic yield with a lower small bowel rebleeding[10].

Small bowel enteroscopy is an effective diagnostic and therapeutic intervention for management of small bowel diseases, especially in patients with overt or occult gastrointestinal bleeding and chronic diarrhea[10-13]. DBE is a well-tolerated and safe procedure with a high diagnostic yield[10], but is somewhat laborious, requires a substantial operator learning curve, and requires relatively long procedure times[12-13]. On the other hand, SBE is a relatively newer procedure than DBE with shorter procedure time and comparable diagnostic yield, but with less probability to achieve total enteroscopy using both antegrade and retrograde routes. Retrograde SBE is technically more difficult compared with antegrade SBE[11-13]. Recently, a novel through-the-scope balloon system (NaviAid) was introduced as an enteroscopy device to allow deep enteroscopy insertion using standard colonoscopes[14,15,20]. Data on retrograde TTSE are very limited. According to a letter published in 2013, Rubin and Goepftring[16] used the NaviAid balloon device in 6 patients for the diagnosis of ileal Crohn's disease. In all patients, TTSE permitted retrograde intubation of extra 15 to 60 cm of the ileum, which clarified disease activity in all patients, without any reported adverse events. Subsequently, Kumbhari et al[14] published a letter indicating they had successfully performed retrograde enteroscopy using TTS in 24 patients, 3 for the diagnosis and management of suspected ileal Crohn's disease. Initial concerns about the use of this device included advancing the balloon in a blind fashion through potentially inflamed ileal mucosa; however, complications in this setting have not been reported[14]. In 2015, a multicenter study was published that included reporting retrograde TTSE in 33 cases with an average depth of insertion of 89 cm (range: 20-150 cm) beyond the ileocecal valve and overall diagnostic yield of 44% with no procedure-related adverse events. The average advancement time for the enteroscopy cases was 15.5 min in this study[14]. In this multicenter study[15], there were no adverse events reported, including no mucosal injury or perforation and it has been used in patients with small bowel diverticula. We did not encounter adverse events in our study with either modality, but there is a possibility that since the TTSE balloon is inflated without direct vision, there could be a problem when there is a stricture or diverticulum in the proximal segment, despite the soft flexible nature of the balloon catheter and controlled inflation-deflation system.

In a large retrospective study of 136 retrograde SBE procedures conducted with an overtube enteroscopy system, Christian found a mean depth of insertion of 68.3 cm and mean time to completion of 41.7 min[14]. In another study of 36 patients who underwent retrograde SBE using a single-balloon technique, median procedure time was 54 min, with a mean insertion depth of 68 cm beyond the ileocecal valve. The technical success rate was 86%. The diagnostic and therapeutic yields were 61% and 25%, respectively[20].

Several factors may affect the success rate of retrograde enteroscopy, procedure time, and depth of insertion, including endoscopist experience, patient anatomy, the severity of symptoms/complaints as well as patient setting (inpatient vs outpatient). Shorter procedure time which we observed in this study would increase technical feasibility and cost-effectiveness of retrograde TTSE. Previous studies report a range of retrograde SBE procedure time of 48-78 min and a range of depth of insertion from 73-199 cm[12,15,20,21]. Our overall failure rate of 21% is similar to the 10%-30% failure rate reported by others[12,15,20,21].

Depth of insertion in our study tended to be longer with SBE. This was assessed using the visualization estimation method on withdrawal described by Ethymiou et al[14] and utilized in the large study of retrograde SBE by Christian et al[14]. There is no agreed upon accurate method for measurement of insertion depth. Another method proposed is the fold-counting method on withdrawal, which May et al[22] found to correlate in their study with the visual estimate method. The first validated method for measuring insertion depth was the Erlangen method used with double-balloon enteroscopy by estimating the net advancement of the enteroscope at each cycle of overtube advancement, after training with the model. This technique may be more
difficult to use in measuring the insertion depth in SBE than in double-balloon enteroscopy. However, depth of insertion always involves an estimate by the endoscopist\(^\text{[27]}\). Furthermore, we used the same technique developed for SBE to estimate depth of insertion using the TTSE system to provide consistency between results.

Our study had some limitations including nonrandomized design (patients were not randomized to be done with either TTSE or SBE), modest sample size, and lack of a gold standard for measurement of depth of insertion as discussed above. The post-study statistical power was 12% for the success rate and 10% for the diagnostic yield. Although the sample size was relatively modest in our study for success rate and diagnostic yield, the clinical difference in outcomes was within ± 10% indicating a comparable performance of two procedures for the success rate and diagnostic yield outcomes. This reflects that it is unlikely to observe significant differences in these outcomes even after substantially inflating the sample size for this study. The current sample size was sufficient to detect a statistically significant difference for the duration of procedures with 80% power at a 5% level of significance using an unpaired \(t\)-test. Other limitations of this study were the procedure which was performed by only one operator and the retrospective design. On the other hand, this is one of the few studies looking at efficacy and safety of retrograde TTSE and has the advantage of looking at this in the context of a center also doing retrograde SBE.

CONCLUSION

Both retrograde TTSE and SBE are feasible and safe. We demonstrate that the TTSE balloon system has comparable technical success and reduces enteroscopy time compared with SBE, but has a lower capacity of small bowel insertion. Larger prospective randomized studies are needed to further assess the diagnostic and therapeutic potential of the TTSE system and its role relative to other modalities available for evaluation of the small bowel.

ARTICLE HIGHLIGHTS

Research background
A new device has been introduced and designed to allow deep enteroscopy with a through-the-scope balloon which can be used for the more difficult retrograde approach.

Research motivation
To compare safety, feasibility and outcomes of retrograde enteroscopy performed by the novel through-the-scope enteroscopy (TTSE) and traditional single balloon enteroscopy (SBE) techniques.

Research objectives
To describe how retrograde enteroscopy with the novel TTSE differs from the traditional SBE and to provide an in-depth overview of both techniques with detailed description of clinical findings, success rate and outcomes.

Research methods
We performed a retrospective cohort study comparing clinical data and complications of retrograde TTSE and retrograde SBE in a community hospital. Technical success was considered as insertion of the enteroscope > 20 cm beyond the ileocecal valve.

Research results
Retrograde enteroscopy was safe and feasible using both systems. TTSE had comparable technical success, and reduced enteroscopy time compared with SBE, but with a lower capacity of small bowel insertion.

Research conclusions
TTSE is a promising method for retrograde examination of the small bowel in adults.
Research perspectives
Prospective multicenter studies to understand whether the findings of this study can be observed in other centers with different levels of experience and to compare the learning curve of TTSE vs SBE by different endoscopists.

ACKNOWLEDGEMENTS
The preliminary results of this project were partially presented as an abstract at World Congress of Gastroenterology at ACG2017 Meeting, Orlando, FL, United States in 2017.

REFERENCES
1. Jia Y, Majd M, Carrion A, Dodoo C, Dwivedi A, Othman MO, Zackerman M. Evaluation of the Diagnostic and Therapeutic Utility of Retrograde Single-balloon Enteroscopy and Through-the-Scope Balloon Enteroscopy: A Single Center Experience: 1177. Am J Gastroenterol 2017; 112: 8647 [DOI: 10.14309/00000847-201711000-01178]
2. Aktas H, Mensink PB. Small bowel diagnostics: current place of small bowel endoscopy. Best Pract Res Clin Gastroenterol 2012; 26: 209-220 [PMID: 22704565 DOI: 10.1016/j.bpcg.2012.03.007]
3. Schulz HJ, Schmidt H. Intraoperative enteroscopy. Gastrointest Endosc Clin N Am 2009; 19: 371-379 [PMID: 19647646 DOI: 10.1016/j.giin.2009.04.011]
4. El B, May A. Capsule status 2004: what is the outcome in bleeding? Endoscopy 2004; 36: 1107-1108 [PMID: 15578304 DOI: 10.1055/s-2004-826082]
5. Delvaux M, Fassler I, Gay G. Clinical usefulness of the endoscopic video capsule as the initial intestinal investigation in patients with obscure digestive bleeding: validation of a diagnostic strategy based on the patient outcome after 12 mo. Endoscopy 2004; 36: 1067-1073 [PMID: 15578296 DOI: 10.1055/s-2004-826034]
6. Gerson LB, Fidler JL, Cuve DR, Leighton JA. ACG Clinical Guideline: Diagnosis and Management of Small Bowel Bleeding. Am J Gastroenterol 2015; 110: 1265-87; quiz 1288 [PMID: 26303132 DOI: 10.1038/ajg.2015.246]
7. ASGE Standards of Practice Committee, Gurudu SR, Bruining DH, Acosta RD, Eloubeidi MA, Faulx AL, Khashab MA, Kothari S, Lighdale JR, Muthusamy VR, Yang J, DeWitt JM. The role of endoscopy in the management of suspected small-bowel bleeding. Gastrointest Endosc 2017; 85: 22-31 [PMID: 27374798 DOI: 10.1016/j.gie.2016.06.013]
8. Rondonotti E, Spada C, Adler S, May A, Despott EJ, Koulaouzidis A, Panter S, Domagk D, Fernandez-Urrien I, Rahim G, Riccioni ME, van Hooft JE, Hassan C, Pennazio M. Small-bowel capsule enteroscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. Endoscopy 2018; 50: 423-446 [PMID: 29539652 DOI: 10.1055/a-0576-0566]
9. Heine GD, Hadithi M, Groenen MJ, Kuipers EJ, Jacobs MA, Mulder CJ. Double-balloon enteroscopy: indications, diagnostic yield, and complications in a series of 275 patients with suspected small-bowel disease. Endoscopy 2006; 38: 42-48 [PMID: 16429354 DOI: 10.1055/s-2005-921188]
10. Yamamoto H, Sekine Y, Sato Y, Higashizawa T, Miyata T, Ito S, Ido K, Sugano K. Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointest Endosc 2001; 53: 216-220 [PMID: 11174299 DOI: 10.1016/mge.2001.112181]
11. ASGE Technology Committee, Chaushan SS, Manfredi MA, Abu Dayyeh BK, Enestvedt BK, Fujii-Lau LL, Komanduri S, Konda V, Maple JT, Murad FM, Pannala R, Thosani NC, Banerjee S. Enteroscopy. Gastrointest Endosc 2015; 82: 975-990 [PMID: 26388546 DOI: 10.1016/j.gie.2015.06.012]
12. Domagk D, Mensink P, Aktas H, Lenz P, Meister T, Luegering A, Ullerich H, Aabakken L, Heinicke A, Domshiche W, Kuipers E, Brethauer M. Single- vs. double-balloon enteroscopy in small-bowel diagnostics: a randomized multicenter trial. Endoscopy 2011; 43: 472-476 [PMID: 21384320 DOI: 10.1055/s-0030-1256247]
13. Ramchandani M, Reddy DN, Gupta R, Lakhhtakia S, Tandan M, Rao GV, Darisetty S. Diagnostic yield and therapeutic impact of single-balloon enteroscopy: series of 106 cases. J Gastroenterol Hepatol 2009; 24: 1631-1638 [PMID: 19866408 DOI: 10.1111/j.1440-1746.2009.05936.x]
14. Kumbhari V, Saxena P, Khashab MA. A new through-the-scope-balloon-assisted deep enteroscopy platform. Gastrointest Endosc 2014; 79: 694 [PMID: 24630087 DOI: 10.1016/j.gie.2013.10.034]
15. Ali R, Wild D, Schieff F, Dielir DL, Fischer M, Tamura W, Rubin DT, Kumbhari V, Okolo P, Storm A, Helfer Z, Neumann H, Kharis HS, Pochapin MB, Gross SA. Deep enteroscopy with a conventional colonoscope: initial multicenter study by using a through-the-scope-balloon catheter system. Gastrointest Endosc 2015; 82: 855-860 [PMID: 26092618 DOI: 10.1016/j.gie.2015.04.037]
16. ASGE Standards of Practice Committee, Khoshab MA, Pasola SF, Muthusamy VR, Acosta RD, Bruining DH, Chandrasekharan V, Chahadi KV, Eloubeidi MA, Fanelli RD, Faulx AL, Fonksalsrud L, Gurudu SR, Kelsey LR, Kothari S, Lightdale JR, Saltzman JR, Shaukat A, Wang A, Yang J, Cash BD, DeWitt JM. The role of deep enteroscopy in the management of small-bowel disorders. Gastrointest Endosc 2015; 82: 600-607 [PMID: 26253015 DOI: 10.1016/j.gie.2015.06.046]
17. Efthymiou M, Desmond PV, Brown G, La Nauze R, Kaffes A, Chua TJ, Taylor AC. SINGLE-01: a randomized, controlled trial comparing the efficacy and depth of insertion of single- and double-balloon
enteroscopy by using a novel method to determine insertion depth. Gastrointest Endosc 2012; 76: 972-980 [PMID: 22980289 DOI: 10.1016/j.gie.2012.06.033]

18 Christian KE, Kapoor K, Goldberg EM. Performance characteristics of retrograde single-balloon enteroscopy: A single-center experience. World J Gastrointest Endosc 2016; 8: 501-507 [PMID: 27606042 DOI: 10.4253/wjge.v8.i15.501]

19 Silva JC, Pinho R, Ponte A, Rodrigues A, Rodrigues J, Gomes AC, Afefio E, Carvalho J. Does urgent balloon-assisted enteroscopy impact rebleeding and short-term mortality in overt obscure gastrointestinal bleeding? Scand J Gastroenterol 2020; 55: 1243-1247 [PMID: 32907435 DOI: 10.1080/00365521.2020.1813800]

20 Noujaim MG, Parish A, Raines D, Gross SA, Cave D, Vance J, Beyer D, Liu D, Hoffman B, Lawrence Z, Castillo G, Pavri T, Niedziewski D, Wild D. Use, Yield, and Risk of Device-assisted Enteroscopy in the United States: Results From a Large Retrospective Multicenter Cohort. J Clin Gastroenterol 2020 [PMID: 32947375 DOI: 10.1097/MCG.0000000000001426]

21 May A, Nachbar L, Pohl J, Ell C. Endoscopic interventions in the small bowel using double balloon enteroscopy: feasibility and limitations. Am J Gastroenterol 2007; 102: 527-535 [PMID: 17222315 DOI: 10.1097/MCG.0000000000001426]

22 Di Caro S, May A, Heine DG, Fini L, Landi B, Petruzzello L, Cellier C, Mulder CJ, Costamagna G, Ell C, Gasbarrini A; DBE-European Study Group. The European experience with double-balloon enteroscopy: indications, methodology, safety, and clinical impact. Gastrointest Endosc 2005; 62: 545-550 [PMID: 16185969 DOI: 10.1016/j.gie.2005.04.029]

23 Pennazio M, Spada C, Elakim R, Keachel M, May A, Mulder CJ, Rondonotti E, Adler SN, Albert J, Baltes P, Barbo F, Cellier C, Charton JP, Delvaux M, Despott EJ, Domagk D, Klein A, McAlindon M, Rosa B, Rowe G, Sanders DS, Saurin JC, Sidhu R, Dumonceau JM, Hassan C, Gralnek IM. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2015; 47: 352-376 [PMID: 25826168 DOI: 10.1055/s-0034-1391855]

24 Rubin DT, Goeppinger SR. Initial experience of a through-the-scope balloon device for ileal intubation in Crohn’s disease. Gastrointest Endosc 2013; 78: 669-670 [PMID: 24054746 DOI: 10.1016/j.gie.2013.05.019]

25 Dufault DL, Brock AS. Cap-assisted retrograde single-balloon enteroscopy results in high terminal ileal intubation rate. Endosc Int Open 2016; 4: E202-E204 [PMID: 26878950 DOI: 10.1055-s-0041-109541]

26 Upchurch BR, Sanaka MR, Lopez AR, Vargo JJ. The clinical utility of single-balloon enteroscopy: a single-center experience of 172 procedures. Gastrointest Endosc 2010; 71: 1218-1223 [PMID: 20409543 DOI: 10.1016/j.gie.2010.01.012]

27 May A, Färber M, Aschmoneit I, Pohl J, Manner H, Lotterer E, Möschler O, Kunz J, Gossner L, Mönkemüller K, Ell C. Prospective multicenter trial comparing push-and-pull enteroscopy with the single-and double-balloon techniques in patients with small-bowel disorders. Am J Gastroenterol 2010; 105: 575-581 [PMID: 20051942 DOI: 10.1038/ajg.2009.712]
