Hidden local recurrence of colorectal adenocarcinoma diagnosed by endoscopic ultrasound: A case series

Hussein Hassan Okasha, Mahmoud Wahba, Eva Fontagnier, Abeer Abdellatef, Hani Haggag, Sameh AbouElenin

Background
Almost half of the patients with colorectal cancer (CRC) will experience local-regional recurrence after standard surgical excision. Many local recurrences of colorectal cancer (LRCC) do not grow intraluminally, and some may be covered by a normal mucosa so that they could be missed by colonoscopy. Early detection is crucial as it offers a chance to achieve curative reoperation. Endoscopic ultrasound (EUS) is mainly used in CRC staging combined with cross-section imaging study. EUS can provide an accurate assessment of sub-mucosal lesions by demarcating the originating wall layer and evaluating its echostructure. EUS fine-needle aspiration (FNA) provides the required tissue examination and confirms the diagnosis.

Case Summary
We report a series of five cases referred to surveillance for LRCC with negative colonoscopy and/or negative endoscopic biopsies. EUS-FNA confirmed LRCC implanted deep into the third and fourth wall layer with normal first and second layer.

Conclusion
Assessment for LCRR is still problematic and may be very tricky. EUS and EUS-FNA may be useful tools to exclude local recurrence.
INTRODUCTION

In patients with curatively resected colorectal cancer (CRC), local recurrence is often considered a clinical dilemma difficult to treat, may cause markedly disabling symptoms, and usually has a bad prognosis[1,2]. Several factors were incriminated in the recurrence as positive surgical margins, especially with inadequate excision, inadequate nodal dissection, implantation of exfoliated malignant cells into the deep layers, and changed biological characters at the site of large bowel anastomosis[3]. However, while colonoscopy remains the gold standard method of detecting local recurrences of colorectal cancer (LRCC) and metachronous lesions, it is considered an imperfect tool even in the best hands, with missing rates of adenocarcinoma ranging from 1% to 3%[4,5]. Unfortunately, not all local recurrences are detectable at the mucosal surface with false-negative colonoscopy. In these cases, endoscopic ultrasound (EUS) plays an irreplaceable role allowing highly detailed visualization of all the bowel wall layers with all the surrounding structures[6].

The great value of EUS in the evaluation for possible CRC recurrence nowadays comes from its ability to direct fine-needle aspiration (FNA) and fine needle biopsy, thus allowing the acquisition of tissue samples for histological and immunohistochemical examination, and providing a definitive diagnosis.

There are two studies on EUS FNA that showed its high accuracy in the diagnosis of subepithelial and extra-luminal lesions of the colon and rectum[7,8]. In both studies, the accuracy of EUS-FNA was 90%-95% compared with an 82% accuracy for imaging alone[8].

CASE PRESENTATION

All patients gave their informed written consent before the procedure. All patients had MRI examination before EUS examination.

All examinations were done under deep sedation with IV propofol. All cases had ano-rectal lesions, maximum 15-20 cm from the anal verge, which are easy to be scanned by the side view scope. No right hemicolon masses were included as they are very difficult to be approached by the side view scope. For EUS-FNA, we used Cook 22G needles (Echotip, Wilson-Cook) (Figure 1).

Chief complaints

Case 1: This was a 70-year-old male patient. During LRCC surveillance, no lesions were detected by colonoscopy. The patient experienced unexplained weight loss and was referred for EUS assessment.

Case 2: This was a 45-year-old male patient. LRCC surveillance colonoscopy revealed a submucosal lesion at the rectal anastomotic line, and multiple endoscopic biopsies got negative results repeatedly. The patient was referred for EUS examination.

Case 3: This was a 45-year-old female patient who presented with difficult defecation. Colonoscopy revealed narrowed rectal anastomotic line, but biopsies were negative.

Case 4: This was a 48-year-old male patient. During LRCC surveillance, submucosal elevation at the sigmoido-colonic anastomotic line was noticed by colonoscopy, and endoscopic biopsies showed...
negative results.

Case 5: This was a 46-year-old male patient. During LRCC surveillance, colonoscopy showed a submucosal lesion with negative endoscopic biopsies.

History of present illness
Case 1: The patient experienced unexplained weight loss and was referred for EUS assessment.
Cases 2, 4, and 5: The patients underwent LRCC surveillance.
Case 3: The patient presented with difficult defecation.

History of past illness
Cases 1-5: The patients had a history of CRC surgical excision.

Personal and family history
Cases 1-5: No notable personal or family medical history.

Physical examination
Case 1: Unremarkable apart from unexplained weight loss.
Cases 2-5: Unremarkable physical examination.

Laboratory examinations
Case 1: No other abnormalities were noted apart from mild microcytic hypochromic anemia.
Cases 2-5: No other abnormalities noted.

Imaging examinations
Case 1: EUS assessment revealed a 2.8 cm × 4 cm homogenous mass at the rectal anastomotic line, arising from the fourth wall layer. FNA was performed, and pathological examination confirmed adenocarcinoma.

Case 2: EUS examination showed a 1.9 cm × 2.9 cm homogenous mass, arising from the fourth layer. FNA was performed, and pathological assessment confirmed adenocarcinoma recurrence.

Case 3: EUS was conducted and revealed a homogeneous mass measuring 3 cm × 3.3 cm, arising from the fourth layer. FNA was carried out, and adenocarcinoma local recurrence into the deep submucosal layers confirmed.

Case 4: EUS revealed a heterogeneous mass measuring 2.3 cm × 4.2 cm arising from the third layer. FNA was performed, and pathological studies confirmed adenocarcinoma recurrence.

Case 5: EUS was carried out and revealed a 1.2 cm × 2.4 cm homogeneous mass, arising from the fourth layer at the ano-rectal anastomotic line. FNA was performed, and the result confirmed adenocarcinoma.
FINAL DIAGNOSIS

We report five case series referred to surveillance for LRCC with negative colonoscopy and/or negative endoscopic biopsies. EUS-FNA confirmed LRCC implanted deep into the third and fourth wall layer with normal first and second layer.

TREATMENT

Case 1: The patient underwent Lt hemi-colectomy for local recurrence and was referred to medical oncology.

Case 2: Partial colectomy was carried out.

Case 3: The patient received chemotherapy for cancer colon.

Case 4: The patient was referred to medical oncology.

Case 5: The patient received chemo-radiotherapy for ano-rectal cancer.

OUTCOME AND FOLLOW-UP

In all cases, the patients were referred to medical cancer institute.

DISCUSSION

CRC is one of the common and lethal malignancies worldwide and is considered the second leading cause of cancer deaths in the United States[9]. Most of CRC patients underwent surgical excision aiming at curative treatment, and up to 40% of patients with the locoregional disease will develop recurrent cancer, of which 90% will occur within 5 years[10,11].

The postoperative surveillance of patients treated for CRC is a clinical challenge, first due to distorted anatomy and scarring and second because of intent to prolong survival by diagnosing recurrent and metachronous cancers at a curable stage. LRCC surveillance strategies combined different modalities, including clinical assessment, tumor marker carcinoembryonic antigen, computed tomography (CT) scans, and endoluminal imaging, including colonoscopy, sigmoidoscopy, EUS, and CT colonography. The optimal surveillance strategy is still not clearly defined.

A number of studies have shown EUS to be very accurate in detecting LCRR, with EUS-FNA being able to provide tissue confirmation[12,13].

Several guidelines and organizations recommend EUS in post-treatment surveillance for resected colon and rectal cancer. The NCCN guidelines state that flexible sigmoidoscopy with EUS or MRI should be done every 3 to 6 mo for 2 years, then every 6 mo to complete 5 years for patients with rectal cancer undergoing transanal excision only[14]. The United States Multi-Society Task Force include EUS as an alternative to sigmoidoscopy in the testing strategy for patients at higher risk of recurrence[15].

In patients with a curative resection for rectal cancer, the current US Multi-Society Task Force recommendation suggests EUS at 3-6 mo for the first 2 years after resection as a reasonable option[16]. It is noteworthy that not all recurrences are evident at the mucosal surface, so in those cases the benefit of EUS will be restricted in highly detailed visualization and assessment of all the bowel wall layers with all the surrounding structures[6].

Our study showed a rare clinical scenario of hidden implanted adenocarcinoma in the third and fourth layer with an intact mucosal layer, so it was not evident intraluminally and missed by colonoscopy, and endoscopic biopsies were false-negative repeatedly. This may be explained by the presence of cancer cells at the anastomotic line or trapping of cancer cells in the staple line, resulting in local recurrence, especially in patients who underwent double-stapling anastomosis[6,17].

Therefore, EUS-FNA gained the optimal diagnostic procedure and defined the proper treatment plan.

EUS can act not only as a method for the evaluation of precancerous polyps and subepithelial lesions found during screening of CRC, but also it has a great role in follow-up after resection of rectal carcinoma for early detection and tissue confirmation of locally recurrent cancer colon, by allowing the collection of specimens for histological and immuno-histochemical analysis, and overcoming some of the inherent user bias[18].
CONCLUSION
Assessment for LCRR is still problematic and may be very tricky, so we recommend using EUS-FNA to exclude local recurrence, since it could be deeply implanted and missed by routine imaging tools and colonoscopy.

FOOTNOTES

Author contributions: Wahba M and Abdellatif AA were involved equally in writing the manuscript; Fontagnier E and Haggag H were involved equally in collecting the data; Elenin SA read and revised the manuscript; Okasha HH revised and approved the final manuscript; all authors have read and approved the final manuscript.

Informed consent statement: The study was approved by our institution’s Research Ethical Committee, and all patients gave their informed written consent before inclusion in the study, according to the ethical guidelines of the 1975 Declaration of Helsinki.

Conflict-of-interest statement: All authors declare no competing interests for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Egypt

ORCID number: Hussein Hassan Okasha 0000-0002-0815-1394; Mahmoud Wahba 0000-0001-5263-9103; Eva Fontagnier 0000-0001-5746-5480; Abeer Abdellatif 0000-0001-9945-9767; Hani Haggag 0000-0003-4209-1943; Sameh AbouElenin 0000-0002-0633-3004.

S-Editor: Wang LL
L-Editor: Wang TQ
P-Editor: Wang LL

REFERENCES

1 Young PE, Woneldorph CM, Johnson EK, Maykel JA, Brucher B, Stojadinovic A, Avital I, Nissan A, Steele SR. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: current status and challenges. J Cancer 2014; 5: 262-271 [PMID: 24790654 DOI: 10.71.50:jca.7988]
2 Cărtăian ET, Pârvu D, Săftoiu A. Endoscopic ultrasound: current role and future perspectives in managing rectal cancer patients. J Gastrointestin Liver Dis 2011; 20: 407-413 [PMID: 22187707]
3 Cortet M, Grimaud A, Cheynel N, Lepage C, Bouvier AM, Faivre J. Patterns of recurrence of obstructing colon cancers after surgery for cure: a population-based study. Colorectal Dis 2013; 15: 1100-1106 [DOI: 10.1111/cod.12268]
4 Van Rijn JC, Reistma JB, Stoker J. Polyp Miss Rate Determined by Tandem Colonoscopy: A Systematic Review. Am J Gastroenterol 2006; 101: 343-350
5 Kim HG, Lee SH, Jeon SR. Clinical significance of the first surveillance colonoscopy after endoscopic early colorectal cancer removal. Hepatogastroenterology 2013; 60: 1047-1052
6 Beynon J, Mortensen NJ, Foy DM, Channer JL, Rigby H, Virjee J. The detection and evaluation of locally recurrent rectal cancer with rectal endosonography. Dis Colon Rectum 1989; 32: 509-517 [PMID: 2676426 DOI: 10.1007/BF02554508]
7 Nakajima S. The Efficacy of the EUS for the Detection of Recurrent Disease in the Anastomosis of Colon. Diagn Ther Endosc 2001; 7: 149-158 [PMID: 18493559 DOI: 10.1115/DTE.7.149]
8 Sasaki Y, Niwa Y, Hirooka Y, Ohniiya N, Itoh A, Ando N, Miyahara R, Furuta S, Goto H. The use of endoscopic ultrasound-guided fine-needle aspiration for investigation of submucosal and extrinsic masses of the colon and rectum. Endoscopy 2005; 37: 154-160 [PMID: 15692931 DOI: 10.1055/s-2004-826152]
9 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29
10 Pfl Ster DG, Benson AB 3rd, Somerfield MR. Clinical practice. Surveillance strategies after curative treatment of colorectal cancer. N Engl J Med 2004; 350: 2375-2382
11 Kjeldsen BJ, Kronborg O, Fenger C. The pattern of recurrent colorectal cancer in a prospective randomised study and the characteristics of diagnostic tests. Int J Colorectal Dis 1997; 12: 329-334 [DOI: 10.1007/s003840050118]
12 Woodward T, Menke D. Diagnosis of recurrent rectal carcinoma by EUS-guided fine-needle aspiration. Gastrointest Endosc 2000; 51: 223-225 [PMID: 10650276 DOI: 10.1016/s0016-5107(00)0426-3]
13 Hüberlein M, Totkas S, Moesta KT, Handke T, Schlag PM. The role of transrectal ultrasound-guided biopsy in the postoperative follow-up of patients with rectal cancer. *Surgery* 2001; 129: 164-169 [PMID: 11174709 DOI: 10.1067/msy.2001.110428]

14 National Comprehensive Cancer Network. [cited 20 April 2022]. Available from: www.nccn.org

15 Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, Levin TR, Lieberman D, Robertson DJ. Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer. *Am J Gastroenterol* 2017; 112: 1016-1030 [PMID: 28555630 DOI: 10.1038/ajg.2017.174]

16 Kahi CJ, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, Lieberman D, Levin TR, Robertson DJ, Rex DK. Colonoscopy Surveillance after Colorectal Cancer Resection: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. *Am J Gastroenterol* 2016; 111: 337-46; quiz 347 [PMID: 26871541 DOI: 10.1038/ajg.2016.22]

17 Umpleby HC, Fermor B, Symes MO, Williamson RC. Viability of exfoliated colorectal carcinoma cells. *Br J Surg* 1984; 71: 659-663 [PMID: 6478151 DOI: 10.1002/bjs.1800710902]

18 Law WL, Chu KW. Local recurrence following total mesorectal excision with double-stapling anastomosis for rectal cancers: analysis of risk factors. *World J Surg* 2002; 26: 1272-1276 [PMID: 12205546 DOI: 10.1007/s00268-002-6560-9]
