A Single Pair of Neurons Modulates Egg-Laying Decisions in *Drosophila*

Chia-Lin Wu¹,²,³ *, Tsai-Feng Fu⁴, Yen-Yun Chou¹, Sheng-Rong Yeh⁵

¹ Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ² Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ³ Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ⁴ Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan, ⁵ Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan

* clwu@mail.cgu.edu.tw

Abstract

Animals have to judge environmental cues and choose the most suitable option for them from many different options. Female fruit flies selecting an optimum site to deposit their eggs is a biologically important reproductive behavior. When given the direct choice between ovipositing their eggs in a sucrose-containing medium or a caffeine-containing medium, female flies prefer the latter. However, the neural circuits and molecules that regulate this decision-making process during egg-laying site selection remain poorly understood. In the present study, we found that amnesiac (*amn*) mutant flies show significant defects in egg-laying decisions, and such defects can be reversed by expressing the wild-type *amn* transgene in two dorsal paired medial (DPM) neurons in the brain. Silencing neuronal activity with an inward rectifier potassium channel (*Kir2.1*) in DPM neurons also impairs egg-laying decisions. Finally, the activity in mushroom body αβ neurons is required for the egg-laying behavior, suggesting a possible “DPM-αβ neurons” brain circuit modulating egg-laying decisions. Our results highlight the brain circuits and molecular mechanisms of egg-laying decisions in *Drosophila*.

Introduction

Drosophila females selecting a suitable site to deposit their eggs is a biologically important behavior that allows the study of a simple decision-making process [1,2,3,4]. Female flies have to judge and select a proper site for laying eggs to ensure that the environment is optimal for survival of their offspring [1,2,4]. The specific molecular mechanisms and neural circuits that control egg-laying decisions in *Drosophila* are poorly understood.

The *amnesiac* (*amn*) gene encodes a neuropeptide (AMN) whose function was first identified in the context of olfactory associative memory in *Drosophila* [5]. An *amn* mutant can associate specific odors with an electrical foot shock or a sugar reward, but will forget this information quickly, which suggests that *amn* is specifically involved in memory instead of initial learning [5,6,7]. A remarkable study demonstrates that the *amn* gene product is strongly
expressed in two dorsal paired medial (DPM) neurons that innervate all lobes of the mushroom body [6]. Targeted expression of the amn gene in two DPM neurons rescues olfactory associative memory in an amn mutant background [6]. The Drosophila mushroom body is a paired neuropil structure crucial for olfactory associative memory and can be structurally divided into the αβ, α′β′, and γ neurons according to their axonal fiber distributions. The dendrites of the mushroom body form a calyx and project their axons anteriorly to form the peduncle and extend to the αβ, α′β′, and γ lobes in the middle brain [8]. Numerous studies on the behavior and brain-anatomy of fruit flies have identified that the mushroom body is crucial for olfactory associative memory [9,10,11,12,13,14], sleep [15,16], and temperature-preference behavior [17,18].

In this study, we first identified that the amn gene product is essential for normal egg-laying decisions by analyzing a collection of amn mutant flies. In addition, genetically silencing the neuronal activity in DPM neurons disrupts this behavior. Targeting the expression of the amn transgene in two DPM neurons can fully reverse this behavioral defect in amn mutant flies. Finally, we demonstrated that neuronal activity in the mushroom body αβ neurons is required for normal egg-laying decisions suggesting that the possible “DPM-αβ neuron” circuit controls this behavior via AMN neuropeptide release.

Results
Aged flies exhibit normal egg-laying decisions

It has been reported that female flies avoid laying eggs on a medium containing sucrose, and that this egg-laying site selection relies on a simple decision-based behavioral process [1]. We took advantage of this behavioral assay to explore the molecules and brain circuits underlying egg-laying decisions. A plastic egg-laying chamber was placed in a sweet (sucrose-containing) and a bitter (caffeine-containing) 1% soft agarose medium, and the two media were separated by a region of 3% hard agarose, which contained a small gap in the middle to prevent diffusion of sucrose or caffeine to the opposite site [2](Fig. 1A). Consistent with the previous findings, female flies prefer to deposit their eggs on a bitter substrate (Fig. 1B) [1]. Decision-making processes involve neuronal function in the brain, and aging significantly alters the functioning of
the nervous system [19,20]. We first tested whether egg-laying decisions changed with aging. The 21-day old female flies were used for the behavioral assays [21], and we found that aged flies still executed normal egg-laying decisions compared to young flies (5-day old) (Fig. 1B).

amn expression in two DPM neurons is essential for egg-laying decisions

amn encodes a preproenkephalin with limited similarity to pituitary-adrenyl-cyclase-activating peptide (PACAP) [22]. It has been reported that AMN plays a critical role in behaviors of *Drosophila* such as olfactory memory and sleep [5,7,23]. To examine the role of the *amn* gene in egg-laying decisions, a collection of *amn* mutants were analyzed for their egg-laying preference in the behavioral chambers. Interestingly, we found that *amn*1, *amn*^{28A}, *amn*^{657}, and *amn*^{X8} mutants showed significant defects in egg-laying preference compared to wild-type flies (Fig. 2A). We further examined the egg-laying preference in the chamber containing sucrose or caffeine substrate in one side and a plain substrate in the opposite side. Consistent with the previous findings, wild-type female flies avoided laying eggs on sucrose (Fig. 2B) or caffeine (Fig. 2C) substrates when the other option was a plain substrate [1]. All the *amn* mutants show significant difference in egg-laying preference in sucrose/plain or caffeine/plain chambers compared to wild-type flies (Fig. 2B and 2C). These results indicate the *amn* gene is critical for egg-laying decisions in sucrose/caffeine, sucrose/plain, and caffeine/plain mediums.

Although the *amn* gene is expressed throughout the fly brain, targeting expression of the *amn* gene in two DPM neurons restores the olfactory memory in *amn* mutant flies [6]. We therefore tested whether the *amn* gene product in DPM neurons is involved in egg-laying decisions. We used a GAL4/UAS system to target expression of the wild-type *amn* transgene (*amn*+) in DPM neuron by applying three independent DPM specific GAL4 drivers, the C316-GAL4, VT6412-GAL4, and VT64246-GAL4 (Figs. 3A, 3B, and 3C). *amn*^{1} is an EMS-induced mutation in the allele of the *amn* gene that causes a significant reduction in the *amn* transcript [24]. Therefore, we chose *amn*^{1} to perform the following rescue experiment. Flies carrying the *amn*^{1}/*amn*^{1};+/++; C316-GAL4/UAS-*amn*^{+}, or *amn*^{1}/*amn*^{1};+/++; VT6412-GAL4/UAS-*amn*^{+}, or *amn*^{1}/*amn*^{1};+/++; VT64246-GAL4/UAS-*amn*^{+} showed normal egg-laying preferences compared to wild-type flies, indicating that targeting expression of the *amn* transgene in DPM neurons restored typical egg-laying preference (Fig. 3D). In addition, acute silencing of the neuronal activity in DPM neurons by an inward rectifier potassium channel (Kir2.1) disrupts egg-laying preferences (Fig. 3E), suggesting a role of neurotransmission in DPM neurons for execution of normal egg-laying preference.

Mushroom body αβ neurons are required for egg-laying decisions

The fibers of DPM neurons innervate the mushroom body, and both axons and dendrites are evenly distributed in the lobes and the anterior peduncle of the mushroom body [6,25]. Therefore, we examined the role of the mushroom body neurons in egg-laying preferences of female flies. The *Drosophila* mushroom body consists of 2000 neurons in each hemisphere of the brain, and the neurons in the mushroom body can be classified into the γ, α', β', and αβ subsets [8,26]. We examined the effects of acute inhibition of activity in different subsets of mushroom body neurons by tubP-GAL80^{ts}; UAS-Kir2.1 combined with R16A06-GAL4 (γ neurons; Fig. 4A) or VT30604-GAL4 (α' β' neurons; Fig. 4B) or VT49246-GAL4 (αβ neurons; Fig. 4C). Surprisingly, we found that only inhibiting the neuronal activity in the αβ neurons disrupted the normal female egg-laying preference (Fig. 4D). These data suggest that the release of the AMN neuropeptide from DPM neurons onto the mushroom body αβ neurons regulates egg-laying preference in female flies.
Discussion

The egg-laying site selection by female fruit flies provides a suitable system to study the cellular mechanisms of a simple decision-making behavior [1,2]. When given the direct choice between a sucrose-containing medium and a caffeine-containing medium, flies prefer to lay eggs on the

Fig 2. amn mutants show defects in egg-laying decisions. (A) In sucrose/caffeine chamber, amn1, amn28A, amnC651, and amnX8 flies showed significant difference in egg-laying decisions compared to wild-type flies. amnX8 showed significant difference compared to the other amn mutants. Each value represents mean ± SEM (n = 34–35, ***P < 0.001). (B) In sucrose/plain chamber, amn1, amn28A, amnC651, and amnX8 flies showed significant difference in egg-laying decisions compared to wild-type flies. amnX8 showed significant difference compared to the other amn mutants. Each value represents mean ± SEM (n = 20, ***P < 0.001, **P < 0.01). (C) In caffeine/plain chamber, amn1, amn28A, amnC651, and amnX8 flies showed significant difference in egg-laying decisions compared to wild-type flies. Each value represents mean ± SEM (n = 23–27, ***P < 0.001).
latter. This decision-making process during egg-laying site selection is unchanged in aged animals, suggesting that aging does not dramatically alter the neural activity involved in egg-laying decisions (Fig. 1).

amn

is the first amnesiac mutant isolated from the behavioral screening for olfactory memory mutants by Quinn et al [5]. Here, we identified the crucial role of the *amn* gene on egg-laying decisions in female flies. The egg-laying preference is altered in *amn*

, *amn*, and *amnX* mutants compared to wild-type flies, implying that the *amn* gene product is important for normal egg-laying decisions (Fig. 2). Interestingly, we observed that the *amn* showed significant difference in egg-laying preference in sucrose/caffeine or sucrose/plain medium compared to the other *amn* mutants (Figs. 2A and 2B). The original *amn* is an EMS-induced mutant allele in the *amn* gene while *amn* and *amnX* are P-element-induced mutations in the *amn* gene [5,6,24]. The *amnX* was made by imprecise excision of the P-element from *amn*, and a significant increase in ethanol-sensitive phenotype was found in *amnX* compared to *amn* and *amn* [24]. It is noteworthy that *amnX* contains possibly other GAL4.
insertions elsewhere in the genome left after excision of amn^{28A} (Josh Dubnau unpublished data), which may cause a significant negative value of egg-laying preference index in sucrose/caffeine medium (Fig. 2A). Genetic expression of the wild-type amn transgene in DPM neurons of amn^{-} mutant flies restores the deficiency of egg-laying preference, suggesting that the expression of AMN in DPM neurons is sufficient for normal egg-laying decisions (Fig. 3D). The AMN neuropeptide is a homologue of the vertebrate PACAP that mediates several
physiological functions through stimulation of cAMP production [22,27], implying that the cAMP-signaling pathway is important for decision-making processes during egg-laying site selection in Drosophila.

Both the axons and dendrites of DPM neurons are evenly distributed in different lobes of the mushroom body, suggesting that DPM neurons receive from and transmit to the mushroom body [25,28]. It has been reported that the neurotransmissions from DPM or mushroom body α′ β′ neurons are required for olfactory memory consolidation [13,28]. In addition, the projections of DPM neurons to the α′ β′ lobes of the mushroom body are sufficient for stabilizing olfactory memory [28]. These data suggest the possible reciprocal feedback circuits between DPM-mushroom body α′ β′ neurons for olfactory memory consolidation [13,28,29]. Our data indicate that AMN release from DPM neurons is critical for normal egg-laying decisions. Silencing the activity in mushroom body αβ neurons also affects this behavior, suggesting that the neural circuitry downstream of DPM neurons modulates egg-laying decisions (Figs. 3E and 4D). However, the neural activity in mushroom body α′ β′ neurons is not required for normal egg-laying decisions (Fig. 4D), which indicates the involvement of separate subsets of mushroom body neuron during olfactory memory consolidation and egg-laying decisions. In addition to the AMN neuropeptide, it has been shown that DPM neurons also release serotonin (5HT) onto the mushroom body αβ neurons via the action of the 5HT1A receptor [30]. Whether 5HT and the 5HT1A receptor are required for egg-laying decisions is still unknown.

Interestingly, a recent study identified that different subsets of dopaminergic neurons play opposing roles in egg-laying preference on ethanol substrate in a concentration-dependent manner [3]. Neuronal activity in the mushroom body α′ β′ neurons and the ellipsoid body R2 neurons is also required for normal egg-laying preference for ethanol in female flies [3]. We speculate that egg-laying decisions on different substrates (i.e. different concentrations of ethanol-containing foods or sucrose/caffeine containing medium) are mediated by independent subsets of mushroom body neurons. Further study is needed to establish the molecular and neural circuits in the mushroom body involved in decision-making processes during egg-laying site selection in Drosophila.

Materials and Methods

Fly strains

All the fly stocks were raised on standard cornmeal food at 25°C and 70% relative humidity on a 12:12 h light: dark cycle. The “Cantonized” w^{1118} w(CS10) was used as the wild-type control. The C316-GAL4 (Bloomington stock number: 30830), amn^{t} (Bloomington stock number: 5954), amn^{m28A}, amn^{C651}, amn^{X8}, and UAS-amn^{+} flies have been described previously [6,7,21,24]. VT64246-GAL4 and VT30604-GAL4 flies have been described previously [25,30]. VT6412-GAL4 and VT49246-GAL4 flies were obtained from the Vienna Drosophila Resource Center (VDRC), Vienna Tile. The R16A06-GAL4 (Bloomington stock number: 48709) flies were obtained from Bloomington stock center. The tubP-GAL80ts (Bloomington stock number: 7019); UAS-Kir2.1, and UAS-mCD8::GFP (Bloomington stock number: 5137); UAS-mCD8::GFP (Bloomington stock number: 5130) flies were gifts from Dr. Ann-Shyn Chiang.

Whole-mount immunostaining

Fly brain samples were dissected in phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde for 20 min at room temperature. After fixation, the brain samples were incubated in PBS containing 1% Triton X-100 and 10% normal goat serum (PBS-T) and degassed in a vacuum chamber to expel tracheal air with six cycles (depressurize to 270 mmHg then hold for 10 min). Next, the brain samples were blocked and penetrated in PBS-T at 25°C for 2 h and
then incubated in PBS-T containing 1:10 mouse 4F3 anti-discs large (DLG) monoclonal antibody (Developmental Studies Hybridoma Bank, University of Iowa) at 25°C for one day. After washing in PBS-T three times, the samples were incubated in 1:200 biotinylated goat anti-mouse or rabbit IgG (Molecular Probes) at 25°C for one day. Next, brain samples were washed and incubated in 1:500 Alexa Fluor 635 streptavidin (Molecular Probes) at 25°C for one day. After extensive washing, the brain samples were cleared and mounted in FocusClear (CelExplorer) for confocal imaging.

Confocal microscopy
Sample brains were imaged under a Zeiss LSM 700 confocal microscope with a 40X C-Apochromat water-immersion objective lens. To overcome the limited field of view, some samples were imaged twice, one for each hemisphere, with overlaps in between. We then combined the two parallel image stacks into a single dataset with an on-line stitch of ZEN software, using the overlapping region to align the two stacks.

Behavioral apparatus
First, 2.5 ml of 3% agarose (with 1% v/v of acetic acid and ethanol) was placed into the behavioral chambers (2.4 cm L X 2.4 cm W X 1.5 cm H plastic container). After the 3% hard agarose solidified, 200 μl of sucrose medium (100 mM sucrose in 1% agarose that contains 1% v/v ethanol) and 200 μl of caffeine medium (100 μM of caffeine in 1% agarose that contains 1% v/v ethanol) were added to opposite sides of a chamber. A small gap (0.1 cm) was made to separate two mediums to prevent a diffusion problem between the two mediums. For the sucrose/plain or caffeine/plain assays, 200 μl of sucrose or caffeine medium were added in one sides and 200 μl of plain medium (1% agarose that contains 1% v/v ethanol) were added to opposite sides of the chamber.

Behavioral assay
We use a protocol modified from that of Yang et al. [1]. Ten virgin females of specific genotypes and 20 male wild-type flies were placed in empty food vials that only contained wet yeast paste for 24 h to allow them to mate. After mating, all the males were removed and three females were transferred into one behavioral chamber for a 2-h egg-laying preference assay. After 2 h, all the females were removed and the number of eggs on each side of the chamber were counted using a light microscope. The calculation of the performance index followed the method described in Yang et al [1]. The preference index is calculated using the following formula: \[
\text{Preference index} = \frac{\text{number of eggs on caffeine medium} - \text{number of eggs on sucrose medium}}{\text{number of eggs on caffeine medium} + \text{number of eggs on sucrose medium}} \times 100
\]
For sucrose/plain chamber assays (Fig. 2B), the preference index is calculated using following formula: \[
\text{Preference index} = \frac{\text{number of eggs on plain medium} - \text{number of eggs on sucrose medium}}{\text{number of eggs on plain medium} + \text{number of eggs on sucrose medium}} \times 100
\]
For caffeine/plain chamber assays (Fig. 2C), the preference index is calculated using following formula: \[
\text{Preference index} = \frac{\text{number of eggs on plain medium} - \text{number of eggs on caffeine medium}}{\text{number of eggs on plain medium} + \text{number of eggs on caffeine medium}} \times 100
\]

Heat shock protocol
For acute Kir2.1 expression with tubP::GAL80ts, flies were kept at 18°C throughout development. After eclosion, virgin female flies were collected and housed at 23°C or 30°C for 5 days. On the 4th day, 10 virgin females and 20 male wild-type flies were placed in empty food vials
that only contained wet yeast paste for 1 day at either 23°C or 30°C to allow them to mate. After mating, the female flies were separated from males, housed at 25°C for an 8-h incubation and then transferred into the behavioral chamber for the 2-h egg-laying preference assay at 25°C.

Statistics
All the raw data were analyzed parametrically with JMP5.1 statistical software (SAS Institute Inc.). The data were evaluated by one- or two-way ANOVAs, except for the two-group comparisons in Figs. 1B, 2A (+/+ and amnX8), and 2B (+/+ and amnX6), for which paired t-tests were used. Subsequent pairwise planned comparisons were adjusted for experiment-wise error (α), keeping the overall α at 0.05. All data are presented as the mean ± SEM.

Acknowledgments
We thank Dr. Ann-Shyn Chiang, Bloomington fly stock centers, and VDRC stock centers for the fly stocks. We thank Fu-Yuan Cheng for the detailed instructions on the behavioral assay. We thank Dr. Josh Dubnau for helpful discussions of unpublished findings of his research group. We also thank Wei-Huan Hsu for generating Fig. 1A.

Author Contributions
Conceived and designed the experiments: C-LW. Performed the experiments: C-LW Y-YC S-RY. Analyzed the data: C-LW T-FF. Contributed reagents/materials/analysis tools: C-LW T-FF. Wrote the paper: C-LW.

References
1. Yang CH, Belawat P, Hafen E, Jan LY, Jan YN. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 2008; 319: 1679–1683. doi:10.1126/science.1151842 PMID: 18356529
2. Schwartz NU, Zhong L, Bellmer A, Tracey WD. Egg laying decisions in Drosophila are consistent with foraging costs of larval progeny. PLoS One 2012; 7: e37910. doi:10.1371/journal.pone.0037910 PMID: 22693584
3. Azanchi R, Kaun KR, Heberlein U. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. Proc Natl Acad Sci U S A 2013; 110: 21153–21158. doi:10.1073/pnas.1320208110 PMID: 24324162
4. Kacsoh BZ, Lynch ZR, Mortimer NT, Schlenke TA. Fruit flies mediate offspring after seeing parasites. Science 2013; 339: 947–950. doi: 10.1126/science.1229625 PMID: 23430653
5. Quinn WG, Sziber PP, Booker R. The Drosophila memory mutant amnesiac. Nature 1979; 277: 212–214. PMID: 121760
6. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 2000; 103: 805–813. PMID: 11114336
7. DeZazzo J, Xia S, Christensen J, Velinzon K, Tully T. Developmental expression of an amn+ transgene rescues the mutant memory defect of amnesiac adults. J Neurosci 1999; 19: 8740–8746. PMID: 10516293
8. Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci 2003; 4: 266–275. PMID: 12671643
9. de Belle JS, Heisenberg M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 1994; 263: 692–695. PMID: 8303280
10. Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, Tully T, et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 1996; 274: 2104–2107. PMID: 8953046
11. Dubnau J, Grady L, Kitamoto T, Tully T. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 2001; 411: 476–480. PMID: 11373680
12. McGuire SE, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory. Science 2001; 293: 1330–1333. PMID: 11397912

13. Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 2007; 53: 103–115. PMID: 17196534

14. Wu CL, Chiang AS. Genes and circuits for olfactory-associated long-term memory in Drosophila. J Neurogenet 2008; 22: 257–284. doi: 10.1080/01677060802307755 PMID: 19012072

15. Joiner WJ, Crocker A, White BH, Sehgal A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 2006; 441: 757–760. PMID: 16760980

16. Pitman JL, McGill JJ, Keegan KP, Allada R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 2006; 441: 753–756. PMID: 16760979

17. Hong ST, Bang S, Hyun S, Kang J, Jeong K, Paik D, et al. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 2008; 454: 771–775. doi: 10.1038/nature07090 PMID: 18594510

18. Bang S, Hyun S, Hong ST, Kang J, Jeong K, Park JJ, et al. Dopamine signalling in mushroom bodies regulates temperature-preference behaviour in Drosophila. PLoS Genet 2011; 7: e1001346. doi: 10.1371/journal.pgen.1001346 PMID: 21455291

19. Wang XJ. Decision making in recurrent neuronal circuits. Neuron 2008; 60: 215–234. doi: 10.1016/j.neuron.2008.09.034 PMID: 18957215

20. Sebastiao AM, Colino-Oliveira M, Assaile-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropathobiology 2013; 64: 97–107. doi: 10.1016/j.neuropharmacol.2012.06.003 PMID: 22820274

21. Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, et al. Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 2003; 40: 1003–1011. PMID: 14659088

22. Feany MB, Quinn WG. A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 1995; 268: 689–693. PMID: 7754370

23. Liu W, Guo F, Lu B, Guo A. amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochem Biophys Res Commun 2008; 372: 798–803. doi: 10.1016/j.bbrc.2008.05.119 PMID: 18514063

24. Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U. Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 1998; 93: 997–1007. PMID: 9635429

25. Wu CL, Shih MF, Lee PT, Chiang AS. An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila. Curr Biol 2013; 23: 2346–2354. doi: 10.1016/j.cub.2013.09.056 PMID: 24239122

26. Aso Y, Grubel K, Busch S, Friedrich AB, Siwanowicz I, Tamimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 2009; 23: 156–172. doi: 10.1080/01677060802471718 PMID: 19140035

27. Bhattacharya A, Lakhman SS, Singh S. Modulation of L-type calcium channels in Drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway. J Biol Chem 2004; 279: 37291–37297. PMID: 15201281

28. Keene AC, Krashes MJ, Leung B, Bernard JA, Waddell S. Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr Biol 2006; 16: 1524–1530. PMID: 16890528

29. Wu CL, Shih MF, Lai JS, Yang HT, Turner GC, Chen L, et al. Heterotypic gap junctions between two neurons in the Drosophila brain are critical for memory. Curr Biol 2011; 21: 848–854. doi: 10.1016/j.cub.2011.02.041 PMID: 21503056

30. Lee PT, Lin HW, Chang YH, Fu TF, Dubnau J, Hirsh J, et al. Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A 2011; 108: 13794–13799. doi: 10.1073/pnas.1019483108 PMID: 21808003