INTRODUCTION

Colistin is a critically important antimicrobial for last-line treatment of multi-drug-resistant Gram-negative infections in humans (WHO, 2017), but also for treating gastrointestinal infections in livestock, including poultry (Apostolakos & Piccirillo, 2018; Kempf et al., 2016; Poirel et al., 2017; Rhouma et al., 2016). Colistin use in animals varies between countries, with reports indicating high use in Asia, Europe and South America (Kempf et al., 2013; Webb et al., 2017). The discovery of mobilized colistin resistance elements from E. coli in pigs
Chromatographic analyses were performed on an Acquity ultra-performance liquid chromatography system with a BEH C_{18} separation column (1.7 µm particle size, 2.1 × 50 mm) (Waters). The column and autosampler were maintained, respectively, at 50°C and 10°C, and the injection volume was 20 µl. Mobile phases consisted of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The flow rate and solvent gradient varied according to Table S1.

The UHPLC system was coupled to a Xevo TQS-Micro triple quadrupole mass spectrometer (Waters). The mass spectrometer was operated with positive electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode (full method in supplementary materials, Table S2). Colistin concentration was calculated as the ratio of the sum of peak areas of colistin A and B over the internal standard polymyxin B, peak area.

A total of 112 samples were analysed using the validated method: 100 LIC, four PIC, four LCC and four PCC. Samples were collected postmortem from chickens dosed (between 13 and 16 days old) with colistin sulphate, via drinking water or oral gavage at the approved clinical dose of 75,000 IU/kg. Birds were fed baby chick crumbs (Small holder Range), a feed free of coccidiostats, designed to feed from hatching to 6–8 weeks. A matrix-matched calibration curve was prepared with each batch of samples for quantification. This study was approved by the local ethical committee and completed in accordance with ASPA (1986) legislation (PPL number: PCCBD6D98).

Calibration curves were obtained by least-squares quadratic regression with a weighting factor (1/x²) and excluding the origin. The correlation coefficients R² of the calibration curves were above 0.99 for the 5 validation days, and regression was assessed by ANOVA (Table S3). Specificity was acceptable, with negligible carry over of 0.02 mg/kg, far below LOQ (1.1 mg/kg). Accuracy and precision at the LOQ, within run (RSDr) and between-run (RSDR) precision and accuracy were acceptable (Tables S4 and S5). Colistin spiked samples showed acceptable stability at 4°C, long-term frozen storage, stability during analysis and multiple freeze/thaw cycles, indicating that storage up to fifteen weeks was achievable and that freeze/thawing had no significant impact on recovery (Tables S6–S8).

FIGURE 1 Measurement of colistin in incurred samples of luminal intestinal content (LIC), parietal intestinal content (PIC), luminal caecal content (LCC) and parietal caecal content (PCC) from chickens dosed via drinking water and oral gavage at 75,000 IU/kg.
Quantification of total colistin from samples collected during and after dosing is shown in Figure 1 (Tables S9 and S10). A gradual increase in LIC during dosing was observed, followed by a rapid decline in line with expected transit time for poultry digesta, along with measurable concentrations in PIC, LCC and PCC. This demonstrates method suitability for the purposes of colistin quantification for pharmacokinetics in complex intestinal matrices relevant to its clinical use for enteric treatment.

Accurate measurement of colistin concentration within the digesta tract is key for pharmacokinetics, devising accurate and effective dosing profiles, and making policy decisions. Colistin presents several challenges for HPLC: high binding affinity is problematic for sample preparation and column loading, and it lacks native fluorescence and presents a weak UV signal. It is composed of many compounds, making individual compound separation difficult, although methods utilizing the combination of HPLC with tandem mass spectrometry have accurately separated and quantified polymyxin E₁ and E₂ (Gobin et al., 2010, van den Meersche et al., 2016).

Methods quantifying colistin demonstrate LOQs of 38.1 µg/L in urine (Zhao et al., 2016) 68.9 µg/kg in muscle tissue (Boison et al., 2015), and 117.3 µg/kg in manure (van den Meersche et al., 2016). The higher limits reported here are attributed matrix complexity. Batch matching colistin for analytical and animal phases provides that the MS response and colistin ratio are equivalent, regardless of proportion. The sum of polymyxins E₁ and E₂ ensures accurate quantification when reporting a digestive PK profile although low antimicrobial effects of other components represent a limitation of the UHPLC-MS/MS method when compared with microbiological methods utilizing antimicrobial effect (Guyonnet et al., 2010; Sato et al., 1972). Although UHPLC-MS/MS methods provide more precise measurements, the preprocessing purification and deproteinisation results in total colistin measurements, which require further analysis of the protein binding fraction to account for ‘free’ and unbound colistin.

Although absorption of colistin is negligible, impact of protein binding/binding to materials within the digesta may limit ‘free’ colistin, the subsequent antimicrobial efficacy, and how the dose is related to the pharmacokinetics in the GI tract. Guyonnet et al. (2010) demonstrated that for pig gut liquor, the apparent ratio between antimicrobial effect and colistin as measured by HPLC was 0.8:1. However, this may be different in chicken intestinal matrix due to differences in digesta, which cannot be accounted for without further study. Varying constitution of the intestinal matrix, due to dietary conditions, may impact on the accuracy of this method. A secondary study (not reported here) successfully used this method to quantify colistin in LIC with older birds (35 days old) fed a grower feed (complete flour-based feed), but further validation is needed to explore the robustness of this technique between different feeding profiles and laboratories.

Results from samples tested here show that the method is suitable to quantify colistin for developing a digestive PK profile. Compared with the profile published by Sato et al. (1972), which showed high concentrations within the small intestine at eight hours, our study shows a more rapid elimination, with colistin levels below the LOQ within four hours of dosing cessation. This is likely related to physiological differences in gut transit time between the 6-month-old layer hens and 16-day-old broiler chicks, and impacted by methodological differences between reporting total colistin via UHPLC-MS/MS and ‘free’ colistin using a microbiological method.

Determination of colistin pharmacokinetics is vital for designing efficacious treatments. This paper describes a UHPLC-MS/MS method that is specific, accurate, precise and suitable for quantifying colistin in chicken intestinal matrices. Its limit of quantification was validated at 1.1 mg/kg, corresponding to the lower end of typical MIC values for pathogenic E. coli. This method is suitable for optimizing PK data and future PK/PD predictions and informing colistin usage.

ACKNOWLEDGEMENTS
This study was funded by Dopharma, V.M.D. Livestock pharma and Virbac through TransPharm and supported by the Biotechnology and Biological Sciences Research Council (BBSRC).

CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ANIMAL WELFARE AND ETHICS STATEMENT
This study was reviewed and approved by Royal Veterinary College ethics and welfare committee in accordance with ASPA (1986) legislation (PPL number: PCCBD6D98).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.

ORCID
Andrew Mead https://orcid.org/0000-0003-3550-3030
Ludovic Pelligand https://orcid.org/0000-0001-6005-1975

REFERENCES
Apostolakos, I., & Piccirillo, A. (2018). A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathology, 47(6), 546–558.
Boison, J. O., Lee, S., & Matus, J. (2015). A multi-residue method for the determination of seven polypeptide drug residues in chicken muscle tissues by LC-MS/MS. Analytical and Bioanalytical Chemistry, 407, 4065–4078.
Brink, A. J., Richards, G. A., Colombo, G., Bortolotti, F., Colombo, P., & Jehl, F. (2014). Multicomponent antibiotic substances produced by fermentation: Implications for regulatory authorities, critically ill patients and generics. International Journal of Antimicrobial Agents, 43, 1–6.
Cangemi, G., Barco, S., Castagnola, E., Tripodi, G., Favata, F., & D’Avolio, A. (2016). Development and validation of UHPLC-MS/MS methods for the quantification of colistin in plasma and dried plasma spots. Journal of Pharmaceutical and Biomedical Analysis, 129, 551–557.
Chepyala, D., Tsai, I. L., Sun, H. Y., Lin, S. W., & Kuo, C. H. (2015). Development and validation of a high-performance liquid chromatography-fluorescence detection method for the accurate quantification of colistin in human plasma. *Journal of Chromatography B*, 980, 48–54.

Clench, M. H., & Mathias, J. R. (1995). The avian cecum: A review. *The Wilson Bulletin*, 107(1), 93–121.

Fu, Q., Li, X., Zheng, K., Ke, Y., Wang, Y., Wang, L., Yu, F., & Xia, X. (2018). Determination of colistin in animal tissues, egg, milk, and feed by ultra-high performance liquid chromatography-tandem mass spectrometry. *Food Chemistry*, 248, 166–172.

Gobin, P., Lemaître, F., Marchand, S., Couet, W., & Olivier, J. C. (2010). Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography-tandem mass spectrometry. *Antimicrobial Agents and Chemotherapy*, 54, 1941–1948.

Guyonnet, J., Manco, B., Baduel, L., Kaltsatos, V., Aliabadi, M. H., & Lees, P. (2010). Determination of a dosage regimen of colistin by pharmacokinetic/pharmacodynamic integration and modeling for treatment of G.I.T. disease in pigs. *Research in Veterinary Science*, 88, 307–314.

Kempf, I., Fleury, M. A., Drider, D., Bruneau, M., Sanders, P., Chauvin, C., Madec, J. Y., & Jouy, E. (2013). What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? *International Journal of Antimicrobial Agents*, 42, 379–383.

Kempf, I., Jouy, E., & Chauvin, C. (2016). Colistin use and colistin resistance in bacteria from animals. *International Journal of Antimicrobial Agents*, 48, 598–606.

Kitagawa, T., Ohtani, W., Maeno, Y., Fujiwara, K., & Kimura, Y. (1985). Sensitive enzyme immunoassay of colistin and its application to detect residual colistin in rainbow trout tissue. *Journal-Association of Official Analytical Chemists*, 68, 661–664.

Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., & Huang, X. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. *The Lancet Infectious Diseases*, 16, 161–168.

Poirel, L., Jayol, A., & Nordmann, P. (2017). Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. *Clinical Microbiology Reviews*, 30, 557–596.

Rhouma, M., Beaudry, F., Theriault, W., & Letellier, A. (2016). Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. *Frontiers in Microbiology*, 7, 1789.

Sato, H., Ouchi, M., & Koumi, J. I. (1972). Studies on distribution of colistin sulfate in the body. Distribution and change with time in chickens and pigs by oral administration. *Japanese Journal of Antibiotics*, 25, 239–245.

Shen, Z., Wang, Y., Shen, Y., Shen, J., & Wu, C. (2016). Early emergence of mcr-1 in Escherichia coli from food-producing animals. *The Lancet Infectious Diseases*, 16(3), 293–293.

van den Meersche, T., van Pamol, E., van Poucke, C., Herman, L., Heyndrickx, M., Rasschaert, G., & Daeseleire, E. (2016). Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. *Journal of Chromatography A*, 1429, 248–257.

Walsh, T. R., & Wu, Y. (2016). China bans colistin as a feed additive for animals. *The Lancet Infectious Diseases*, 16, 1102–1103.

Webb, H. E., Angulo, F. J., Granier, S. A., Scott, H. M., & Loneragan, G. H. (2017). Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin. *F1000Research*, 6, 1805.

WHO (2017). *Critically important antimicrobials for human medicine: ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use*.

Zhao, M., Wu, X. J., Fan, Y. X., Guo, B. N., & Zhang, J. (2016). Development and validation of a UHPLC-MS/MS assay for colistin methanesulfonate (CMS) and colistin in human plasma and urine using weak-cation exchange solid-phase extraction. *Journal of Pharmaceutical and Biomedical Analysis*, 124, 303–308.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.