Selective herbicides to control Sosnowsky's hogweed (Heracleum sosnowskyi Manden.) in pine and spruce plantations

A Postnikov*, A Partolina, A Egorov, I Pavlyuchenkova and A Bubnov
Saint-Petersburg Forestry Research Institute, 21 Institutsky Avenue, Saint-Petersburg 194021, Russian Federation

*Corresponding email: cucule88@gmail.com

Abstract. In recent years, in the European part of Russia, massive and extremely negative distribution of Sosnowsky's hogweed (Heracleum sosnowskyi Manden.) on various land categories has been observed. On the lands of the forest fund, there is also a threat of a rapid spread of hogweed, mainly in low-density stands, open spaces, forest plantations, and in fresh clearings. As a result, the growth of woody plants, first of all conifers, is suppressed, their death is observed, and environmental, aesthetic and industrial damage increases. Mechanical measures to combat hogweed are not effective enough and are very laborious. The article presents the results of a field experiment carried out in the Leningrad region in 2019–2020. The aim of the study was to assess the effectiveness of herbicides towards Sosnowsky's hogweed and accompanying herbaceous species, as well as to evaluate their selectivity towards seedlings of Scots pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.). The herbicides studied were Anchor-85, Mortyra, Deimos, Lontrel-300 and Magnum in various combinations and application rates. The herbicides Anchor-85, Mortyra and Magnum showed high efficiency in suppressing Sosnowsky's hogweed, however, only Anchor-85 and Mortyra turned out to be selective enough in relation to conifers.

1. Introduction

Due to the high invasiveness of Sosnowsky's hogweed, it quickly spreads in areas not covered by tall vegetation, rapidly occupies uncultivated agricultural lands, gets established in settlements, and on the road sides. On the lands of the forest fund, there is also a threat of a rapid spread of hogweed, mainly in low-density stands, open spaces, in forest plantations, and in fresh clearings. It spreads, as a rule, from adjacent territories already heavily overgrown with hogweed. This can lead to inhibition of the development and growth, or even death of economically valuable tree species.

It is possible to prevent or limit the distribution of hogweed on the lands of the forest fund thanks to measures aimed at destroying this plant in adjacent territories already occupied by it [1]. Most authors, both Russian and international, believe that with a massive spread of hogweed, mechanical control measures do not ensure its complete suppression. The most effective method of hogweed control is the chemical method [2, 3].

There is a number of studies describing the effect of herbicides on hogweed in areas with its massive distribution. The most effective herbicides and their mixtures are based on glyphosate (Roundup, Glyphos, etc.), picloram (Thordon), clopyralid (Lontrel), dicamba (Banvel), imazapyr (Arsenal), triclopyr (Garlon), as well as sulfonylureas (chlorosulfuron, metsulfuron -methyl,
sulfometuron-methyl, triasulfuron, prosulfuron, flazasulfuron) [4–14]. To achieve the maximum effect in elimination of hogweed, as well as to further limit its spread, some researchers believe that it is necessary to introduce "replacement" crops [15–17]. In this regard, it is promising to use selective herbicides that have an effect on dicotyledonous plants, including hogweed, but not toxic or slightly toxic to grasses. In the Russian Federation, selective herbicides Lontrel-300 (active ingredient clopyralid), Deimos (active ingredient dikamba), Mortira (active ingredient tribenuron-methyl), Magnum (active ingredient metsulfuron-methyl) and others have been registered and used in agriculture against dicotyledonous weeds on loans, hayfields and cereal fields [18, 19]. However, the data on the effectiveness of these herbicides against Sosnovsky's hogweed are limited. In particular, there are no experimental data on their use in forestry and their selectivity in relation to conifers.

Therefore, the main goal of the present study was to determine the biological effectiveness of selected herbicides and their mixtures in eradication of Sosnovsky's hogweed and other types of undesirable herbaceous plants, as well as their selectivity in pine and spruce plantations created by seedlings with a closed root system (CRS).

2. Methods and Materials

To achieve the above goal, on August 27, 2019, in the Gatchinsky district of the Leningrad region, an experiment was set up according to generally accepted methods [20, 21]. The experimental plot was located in an oxalis type of forest growing conditions and heavily overgrown with hogweed. The herbicides registered for use in forestry and agriculture on the territory of the Russian Federation were used: Anchor-85 (VDG, 750 g / kg sulfometuron-methyl, potassium salt), Magnum (VDG, 600 g/kg metsulfuron-methyl), Lontrel-300 (BP, 300 g/l clopyralid), Deimos (VRK, 480 g/l dicamba acid), and Mortyra (EDG, 750 g/kg tribenuron-methyl) [19]. The experiment comprised eight variants of herbicide application, with different application rates and in different combinations, as well as a control variant without treatment. There were two replications. The area of the experimental plot was 25 m². Spraying was carried out on May 7, 2020. A hand-held knapsack sprayer "Solo" was used for the treatment. The flow rate of the working fluid was 300 l/ha. In addition to hogweed, herbaceous vegetation was represented by species typical for these forest growing conditions. Monocotyledonous species were represented by Calamagrostis purpurea (Trin.) Trin. s. 1., Dactylis glomerata L., Phleum pretense L., Eletrigia repens (L.) Nevski, Deschampsia caespitosa (L.) Beauv., and Agrostis capillaries L. The following dicotyledonous species were present: Chamaenerion angustifolium (L.) Scop., Rubus idaeus L., Cirsium arvense (L.) Scop., Aegopodium podagraria L., Anthriscus sylvestris (L.) Hoffm., Urtica dioica L., Filipendula ulmaria (L.) Maxim., and Hypericum perforatum L.

On the day of treatment, adult hogweed specimens were in the phase of a 15–25 cm tall rosette, and hogweed seedlings were 4–16 cm tall in an amount of 50–60 specimens/m². Other types of unwanted herbaceous plants were 6–10 cm tall, in the rosette and tillering phases. There was no unwanted woody vegetation.

On August 27, 2019, seedlings of Scots pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.) with closed root systems were planted. The planting material was sown in 2018 and grown in one rotation in Plantek-81 cassettes. Planting was carried out manually using Kolesov's sword without mechanical tillage. We planted 60 specimens of each species per variant of the experiment (30 specimens per plot). The planting step was 30 cm. In total, 540 pine seedlings and 540 spruce seedlings were planted in the experiment. During the growing season of 2020, the state of conifers and the effectiveness of herbicides for control of hogweed and other types of herbaceous plants were surveyed three times.

3. Results and Discussion

According to the results of the first survey carried out in June, the greatest efficiency of suppression (70%) of all types of herbaceous vegetation was recorded in variant 7 where a mixture of herbicides (Magnum, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha) was used (table 1). A slightly lower level of biological efficiency was recorded in variants 2 (Anchor-85, 100 g/ha + Mortyra, 25 g/ha) and 3.
(Mortyra, 25 g / ha + Deimos 2 l / ha), 57% and 64%, respectively. The lowest efficiency (24%) was observed in variant 5 (Deimos 2 l/ha + Lontrel-300, 0.6 l/ha). One month after chemical treatment, the largest percentage (68–77%) of suppression of hogweed was observed in variants 3, 4 and 7, and the lowest (30%), in variant 5. When the effect of herbicides on undesirable monocotyledonous species was considered, in variants 3–6 an active growth of these species was observed, and the total projective soil cover exceeded the control values by 2–4 times. This is due to the fact that selective herbicides which suppress only dicotyledonous species were used in these mixtures. When applied in its pure form, Magnum as well as a mixture of Magnum, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha did not cause an active growth of grass species during the first reporting period, although these herbicides are known to suppress dicotyledonous species.

According to the results of the second inventory, the best suppression of all types of herbaceous vegetation was observed in the variants where Anchor-85 was used in its pure form or in a mixture with Mortyra. In other variants of the experiment where selective herbicides were used an active growth of grass species was observed. Thus, in variant 3, the projective soil cover of grass species increased almost by seven times compared to the control. The effectiveness of suppressing hogweed in variants 1, 2, 4, 7, and 8 was relatively high and amounted to 74–84%. The worst result was observed in variant 5, where at the time of inventory the projective soil cover of hogweed was 71%.

By the end of the growing season, the best suppression of all types of unwanted vegetation was recorded in variants 1 and 2: 92% and 84%, respectively. In variant 8 (Magnum, 100 g/ha), there was a slight increase in efficiency. In the rest of the experimental variants, it significantly decreased, mainly due to the growth of grass species. It was not possible to achieve complete suppression of hogweed in any of the experimental variants. In variants 1, 2, 7 and 8, the highest degree of suppression of hogweed was recorded, 81–97%. In all other variants, by the end of the growing season it significantly decreased and was below the acceptable level (10–64%). According to the results of the first inventory of pine seedlings planted before the chemical treatment, their condition was good only in variants 1 and 2, where Anchor-85 was used in its pure form or in a mixture with Mortyra (table 2). Moreover, while in variant 1 there was a slightly larger amount of damaged seedlings in comparison with the control, in variant 2 their number was even lower. In variant 8, 76% of pine seedlings did not have any signs of damage one month after the chemical treatment. In all other variants, the number of damaged and dead seedlings exceeded 60%. In variants 1 and 2, the state of spruce seedlings was good by the time of the first inventory and did not differ in any way from the control; not a single seedling with herbicide-specific damage was found. In all other variants, a large number of damaged seedlings was observed; in variant 8, only 8% were classified as “undamaged” (“healthy”).

By the time of the second inventory, in the part of the plantation treated by Anchor-85 and its mixture with Mortyra the condition of pine seedlings remained the same as in the first inventory. A somewhat higher percentage of slightly damaged seedlings in the part of the plantation where Anchor-85 was used in its pure form can be explained by the stress from planting, since a visual examination of seedlings did not reveal any damage associated with the use of herbicides. In variant 4, the percentage of healthy seedlings increased slightly, but the increase from 36% to 42% could not be considered substantial. In all other variants, the condition of pine deteriorated significantly. In the variants where the mixture Mortyra, 25 g/ha + Deimos, 2 l/ha was used, the percentage of dead seedlings increased by more than four times since the first inventory, and in the variant with Magnum, 100 g / ha, by more than two times. In addition, in many variants of the experiment, the number of seedlings that suffered damage of varying degrees increased substantially. For example, in variant 7 after the first inventory, 34% of the seedlings were classified as healthy, and after the second inventory, only 9%. According to the results of the second survey, spruce seedlings in variants 1 and 2 continued to show high survival rates; 92% and 91% of the seedlings, respectively, were classified as healthy. In other variants of the experiment, their condition continued to deteriorate. After applying the mixtures Mortyra, 25 g/ha + Deimos, 2 l/ha and Mortyra, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha, the number of spruce seedlings classified as “undamaged”, decreased by 2–2.5 times compared with the results of the first inventory. On plots treated with Magnum (100 g/ha) and its
mixture with Deimos and Lontrel-300, the number of dead seedlings increased fourfold compared to the numbers recorded during the first inventory.

Table 1. The effect of herbicides on hogweed and other types of undesirable herbaceous vegetation in a field experiment carried out in a pine and spruce plantation (treatment carried out on May 7, 2020).

Experimental variant	Survey date	Projective cover of herbaceous plants, %	Suppression efficiency for herbaceous plants, %						
		total	Sosnovsky’s hogweed	dicotyledons	grasses	all species Sosnovsky’s hogweed	dicotyledons	grasses	
1. Anchor-85, 100 g/ha	16.06.20	49	38	7	4	49	58	-250	0
	31.07.20	17	14	3	0	83	84	0	100
	09.09.20	8	4	4	0	92	95	-300	100
2. Anchor-85, 100 g/ha+ Mortyra, 25 g/ha	16.06.20	42	36	3	3	57	60	-50	25
	31.07.20	24	20	2	2	76	78	33	67
	09.09.20	15	10	2	3	84	89	-100	50
3. Mortyra, 25 g/ha + Deimos 2 l/ha	16.06.20	35	21	3	11	64	77	-50	-175
	31.07.20	67	23	3	41	32	74	0	-583
	09.09.20	91	32	5	54	4	64	-400	-800
4. Mortyra, 25 g/ha + Lontrel-300, 0,6 l/ha	16.06.20	54	29	6	19	44	68	-200	-375
	31.07.20	63	35	4	24	36	61	-33	-300
	09.09.20	90	52	2	36	5	41	-100	-500
5. Deimos 2 l/ha + Lontrel-300, 0,6 l/ha	16.06.20	74	64	0	10	24	30	100	-150
	31.07.20	83	71	2	10	15	20	33	-67
	09.09.20	92	79	2	11	3	10	-100	-83
6. Mortyra, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0,6 l/ha	16.06.20	62	51	2	9	36	44	0	-125
	31.07.20	75	50	9	16	23	44	-200	-167
	09.09.20	92	61	14	17	3	31	-1300	-183
7. Magnum, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0,6 l/ha	16.06.20	29	24	1	4	70	74	50	0
	31.07.20	47	21	5	21	52	76	-67	-250
	09.09.20	65	17	9	39	32	81	-800	-550
8. Magnum, 100 g/ha	16.06.20	52	48	2	2	46	47	0	50
	31.07.20	40	23	3	14	59	74	0	-133
	09.09.20	32	3	3	32	66	97	-200	-333
9. Nontreated check	16.06.20	97	91	2	-	-	-	-	-
	31.07.20	98	89	3	-	-	-	-	-
	09.09.20	95	88	1	-	-	-	-	-

The final count, carried out at the end of the growing season (September 9), four months after the chemical treatment, confirmed high rates of pine survival in variants 1 and 2. In variant 1, at the time
of inventory the number of healthy seedlings was the same as in the control. This was due to the fact, that some of the seedlings that experienced stress from planting moved from the category of "slightly damaged" to the category of "undamaged". On the plots where the mixture Mortyra, 25 g/ha + Lontrel-300, 0.6 l/ha was used, a significant number of seedlings were classified as healthy, due to the fact that some of the previously damaged specimens had recovered. However, this variant cannot be considered successful, since by this time 28% of the seedlings were classified as "dead". In other variants, the number of damaged and dead seedlings increased. For example, in variants 3 and 7, only 6% and 8% of pine seedlings were classified as healthy, respectively.

Table 2. Condition of pine and spruce seedlings by category (% of the total amount on the day of treatment) in a field experiment with herbicides (planting carried out on August 27, 2019; and treatment, on May 7, 2020).

Experimental variant	Survey date	Pine	Spruce						
		Undamaged	Slightly damaged	Severely damaged	Dead	Undamaged	Slightly damaged	Severely damaged	Dead
1. Anchor-85, 100 g/ha	16.06.20	80	13	6	1	92	4	2	2
	31.07.20	81	12	5	2	92	5	1	2
	09.09.20	90	5	1	4	93	4	0	3
2. Anchor-85, 100 g/ha + Mortyra, 25 g/ha	16.06.20	91	4	3	2	93	4	3	0
	31.07.20	91	6	0	3	91	6	0	3
	09.09.20	92	5	0	3	90	5	1	4
3. Mortyra, 25 g/ha + Deimos, 2 l/ha	16.06.20	26	34	34	6	19	10	63	8
	31.07.20	14	29	31	26	10	12	51	27
	09.09.20	6	36	23	35	4	14	40	42
4. Mortyra, 25 g/ha + Lontrel-300, 0.6 l/ha	16.06.20	36	28	12	24	56	21	11	12
	31.07.20	42	27	7	24	59	22	7	12
	09.09.20	58	11	3	28	71	7	8	14
5. Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha	16.06.20	30	27	14	29	33	18	33	16
	31.07.20	14	18	37	31	23	24	35	18
	09.09.20	12	14	39	35	18	36	15	31
6. Mortyra, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha	16.06.20	28	15	29	28	35	12	36	17
	31.07.20	13	22	34	31	14	40	25	21
	09.09.20	10	18	41	31	12	43	22	23
7. Magnum, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha	16.06.20	34	18	20	28	15	63	19	3
	31.07.20	9	22	41	28	10	16	62	12
	09.09.20	8	14	48	30	6	12	64	18
8. Magnum, 100 g/ha	16.06.20	76	12	6	6	8	19	64	9
	31.07.20	60	18	8	14	7	26	27	40
	09.09.20	52	23	9	16	8	17	21	54
9. Nontreated check	16.06.20	90	6	0	4	94	4	0	2
	31.07.20	91	1	2	6	93	4	1	2
	09.09.20	90	2	2	6	93	4	1	2
Similarly to pine, spruce was in a good condition and had a high survival rate during the entire growing season only in variants 1 and 2 (table 2). By the time of the final inventory, in variant 4 the number of healthy seedlings increased slightly (up to 71%). In other variants, an increase in the number of damaged and dead specimens was observed during the growing season. The lowest rate were recorded in variant 3, where only 4% of spruce seedlings remained healthy, and 42% died.

4. Conclusion
We found that:
- In a field experiment carried out on a plot heavily overgrown with hogweed, in all experimental variants herbicides acted rather slowly.
- By the end of the growing season, the most effective suppression of hogweed (89–97%) was shown by herbicides in the following variants: Anchor-85, 100 g/ha; Anchor-85, 100 g/ha + Mortar, 25 g/ha; and Magnum, 100 g/ha. The least effective suppression (10–41%) was achieved in the variants with Mortyra, 25 g/ha + Lontrel-300, 0.6 l/ha; Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha; Mortar, 25 g/ha + Deimos, 2 l/ha + Lontrel-300, 0.6 l/ha.
- In all variants of the experiment where Anchor-85 was not used an intensive growth of grasses was observed.
- Only in the variants with Anchor-85, 100 g/ha and Anchor-85, 100 g/ha + Mortyra, 25 g/ha, seedlings of both species were not damaged by herbicides. At the end of the season, after the treatment with Anchor-85 (100 g/ha), the survival rate of pine was 96%, and spruce, 97%. After the treatment with the mixture Anchor-85, 100 g/ha + Mortyra, 25 g/ha, the survival rate of pine was 97%, and spruce, 96%.
- In all other variants (3–8), conifers showed various degrees of damage, which indicates a low selectivity of the herbicides and makes them unpromising for further study and use in pine and spruce plantations.
- The herbicide Mortyra, in view of its relatively high selectivity for pine and spruce, is interesting for further study when caring for these species in plantations.

Acknowledgements
This study was funded the Federal Agency of Forestry of the Russian Federation.

References
[1] Chumakov L S, Maslovsky O M, Shevkunova A V and Sysoy I P 2015 Estimation of the distribution of Heracleum sosnowskyi Manden. under the forest canopy Problems of Biodiversity Conservation and Use of Biological Resource [Problem sohranenija biologicheskogo raznoobrazija i ispolzovaniija biologicheskih resursov – in Russian] Proc. III Int. Conf. dedicated to the 110th anniversary of the birth of N V Smolsky (Minsk: Confido)
[2] Smolin N V, Bochkarev D V and Nikolsky A N 2011 The search for ways to combat Sosnovsky's hogweed continues Plant Protection and Quarantine [Zashchita i karantin rastenij – in Russian] 8 pp 26–28
[3] Spiridonov Yu Ya and Protasova L D 2012 The effectiveness of herbicides in the fight against Sosnovsky's hogweed Plant Protection and Quarantine [Zashchita i karantin rastenij – in Russian] 9 pp 27–29
[4] Egorov A B, Pavlyuchenkova L N and Bubnov A A 1995 Efficiency and prospects of using sulfonylurea herbicides in forest nurseries State and ways of improving the integrated protection of agricultural crops from weeds [Sostojanie I puti sovershenstvovanija integrirovannoi zaschiny posevov selskohozjaistvennyh kuljurt o smoj rastitelnosti – in Russian] Proc. All-Russian scientific-product. conf., Golitsino, July 24-28, 1995 ed Yu Ya Spiridonov et al (Pushchino) pp 222–225
[5] Recommendations for the fight against Sosnovsky hogweed in the Novgorod region Available
at: https://www.boradmin.ru/tinybrowser/files/novosty.novosty/broshyura_2_borschevik.pdf

[6] Spiridonov Yu Ya, Larina G E and Raskin M S 2004 Features of the behavior of the arsenal in the soil and its biological activity in the forest Theory and practice of chemical forest care [Teorija i praktika himicheskogo uhoda za lesom – in Russian] (St. Petersburg: St. Petersburg Forestry Research Institute) 1 pp 101–109

[7] Shestakov V G and Spiridonov Yu Ya 1995 Prospects for the use of sulfonylurea herbicides on agricultural crops in Russia State and ways of improving the integrated protection of agricultural crops from weeds [Sostojanie I puti sovershenstvovanija integrirovannoi zaschini posevov selskohozjaistvennych kultur ot sornoj rastitelnosti – in Russian] Proc. All-Russian Scientific-Product. Conf., Golitsino, July 24-28, 1995 ed Yu Ya Spiridonov et al (Pushchina) pp 118–124

[8] Yakimovich E A, Soroka S V and Ivashkevich A A 2011 Methodological recommendations for the fight against Sosnovsky's hogweed [Metodicheskie recomendatsii po borbe s borschevikom Sosnovskogo – in Russian] (Minsk)

[9] Yakimovich E A and Ivashkevich A A 2011 Prospects of the use of continuous action herbicides and their tank mixtures to combat Sosnovskov's hogweed Plant Protection [Zashchita rastenij] 35 pp 48–56

[10] Colbert D and Van Cantfort 1986 Arsenal herbicide: the first member of the imidazolinone herbicides to be introduced Proc. 38th California Weed Conf. pp 217–219

[11] Jodaugiene D, Marcinkeviene A and Sinkeviciene A 2018 Control of Heracleum sosnowsky in Lithuania Dtsch Arbeitsbesprechung über Frag der Unkrautbiologie und-bekämpfung 458 pp 2014–19

[12] Holt J S, Radosevich J S and Graves W L 1985 Long-term effects on vegetation of herbicide treatments in chaparral Weed Science 3 pp 353–357

[13] Van Cantfort 1985 Arsenal herbicide update: new species controlled, forestry and grass release Proc. 38th Annual Meeting Southern Weed Science Society p 356

[14] Sachajdakiewicz I, Mędrzycki P, Wójcik M, Pastwa J and Kłossowski E 2014 Wytyczne dotyczące zwalczania barszczu Sosnowskiego (Heracleum sosnowskyi) i barszczu Mantegazziego (Heracleum mantegazzianum) na terenie Polski (Warszawa), available at: www.gdos.gov.pl.Wytyczne_dotyczace_zwalczania_barszczu_Sosnowskiego_Heracleum_sosnowskyi_i_barszczu_Mantegazziego_Heracleum_mantegazzianum_na_terenie_Polski.pdf

[15] Chadin I F and Dalke I V 2010 Method of destruction of thickets of giant hogweed on non-agricultural land [Sposob unichtozenija zaroslej gigantskogo borschevika na zemljah neselskohozjaistvennych naznacheniya – in Russian] Patent of the Russian Federation No. 20081364227/12: appl. 09.09.2008: publ. 20.09.10, bul. 26

[16] Laman N A, Prokhorov V N and Maslovsky O M 2009 Giant hogweed is a dangerous invasive species for natural complexes and the population of Belarus [Gigantskie borscheviki – opasnye invazivnye vidy dlya prirodných kompleksov i naselenia Belorusi – in Russian] (Minsk)

[17] Methodological recommendations for combating uncontrolled spread of Sosnovsky hogweed plants [Metodicheskie recomendatsii po borbe s nekontrolliruemym rasprostraneniem rastenii borschevika Sosnovskogo – in Russian] 2008 (Syktyvkar: Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences)

[18] Egorov A B and Pavlyuchenkova L N 2013 Formation of seed birch forests using selective herbicides Proc. of the St Petersburg Forestry Res. Institute [Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo hozyajstva – in Russian] 1 pp 29–38

[19] List of pesticides and agrochemicals permitted for use on the territory of the Russian Federation 2020 Plant Protection and Quarantine [Zashchita i karantin rastenij – in Russian] 4

[20] Belkov V P, Omelyanenko A Ya and Martynov A N 1990 Methodology for testing herbicides and arboricides in forestry: guidelines [Metodika ispytaniy gerbitsidov i arboritsidov v
lesnom hozyaistve: metodicheskie rekomendatsii – in Russian] (Leningrad: LenNIILH)

[21] Dolzhenko V I 2013 Guidelines for registration tests of herbicides in agriculture

[Metodicheskie ukazanija po registratsionnym ispytaniyam gerbitsidov v selskom hozyaistve – in Russian] (St. Petersburg: All-Russian Research Institute for Plant Protection)