Salinity Affects Quality Parameters of ‘SeaDwarf’ Seashore Paspalum

William L. Berndt
Division of Professional and Technical Studies, Edison College, 8099 College Parkway S.W., P.O. Box 60210, Building C-101, Fort Myers, FL 33906-6210

Abstract. Irrigating salt-tolerant grasses with nonpotable water, like salt water, conserves fresh water resources. Advertising suggests that ‘SeaDwarf’ seashore paspalum (Paspalum vaginatum O. Swartz) is salt-tolerant and that it resists the effects of salinity on growth typically observed when irrigating other turf types with salty water. As a result, it is now being used on golf courses and home lawns in an effort to help conserve fresh water. Commensurate with the use of nonpotable irrigation, however, would be an expectation of high turf quality. This study was done to determine if the quality of ‘SeaDwarf’ seashore paspalum was affected by irrigating it with nonpotable water having high levels of salinity. Seven irrigation water sources created by blending tap water and ocean water and ranging in salinity from 0.52 to 49.40 dS m⁻¹ were used to flood-irrigate containerized ‘SeaDwarf’ seashore paspalum once daily for 50 consecutive days. Turf quality gradually decreased as salinity increased but improved with time except at the highest level of salinity. Effect of water source on turf quality was attributed to salinity-induced changes in quality parameters, including leaf texture, color, stolon growth, and shoot yield. The observed effect of salinity on quality parameters likely resulted from osmotic stress associated with high levels of salinity. The salt tolerance of ‘SeaDwarf’ seashore paspalum in this study was moderately good, but irrigating it with water having lower levels of salinity resulted in better quality turf.

‘SeaDwarf’ seashore paspalum is now being used as a golf course turf in many different warm season locations, including the United States, Mexico, the Caribbean, and Spain (Duncan and Carrow, 2005). ‘SeaDwarf’ seashore paspalum is a halophytic, dwarf cultivar originating at Alden Pines golf course in Bokeelia, Fla., during the 1980s (Duncan, 2001; Saltscape Solutions, 2006). It is marketed by Environmental Turf of Fort Pierce, Fla., and sold through licensed growers (Environmental Turf, 2006; Zinn, 2004a, 2004b). It is a fine-textured turfgrass used primarily for putting greens but is now being used for greens, tees, fairways, approaches, and roughs on six golf courses in Florida (Lou Conzelmann, WCI, pers. comm., Oct. 2006) as well as for residential lawns and sports fields at a variety of locations (Zinn, 2004a, 2004b). The popularity of ‘SeaDwarf’ seashore paspalum has resul ted, in part, from research citing seashore paspalum as being the most salt-tolerant turfgrass (Duncan and Carrow, 2000) along with an intensive, private-sector marketing campaign (Environmental Turf, 2006; Zinn, 2004a, 2004b). ‘SeaDwarf’ seashore paspalum is advertised to be tolerant to levels of salinity of up to 34.4 dS m⁻¹ or higher (Environmental Turf, 2006). It has been said that sea spray will not affect it and that sea water can be used for irrigating it (Environmental Turf, 2006). Irrigating ‘SeaDwarf’ seashore paspalum using nonpotable water such as brackish water would help to conserve potable water resources. Commensurate with the use of nonpotable irrigation, however, would be an expectation of high turf quality.

Little if any information specific to ‘SeaDwarf’ seashore paspalum and salinity-related quality exists in the scientific literature. No published record of data could be found for ‘SeaDwarf’ seashore paspalum and apparently there is no published university-oriented comparative research with currently available cultivars (Duncan, 2001). Public information on the diversity of salinity tolerance of cultivars of seashore paspalum in general is also limited (Lee et al., 2005). With this in mind, a container-oriented investigation involving established ‘SeaDwarf’ seashore paspalum was conducted at Edison College in Fort Myers, Fla., in 2002. The objectives of this research were 1) to determine if the quality of ‘SeaDwarf’ seashore paspalum was affected as a result of irrigating it with water having high levels of salinity, and 2) to provide researchers and end users with basic information regarding the effects that high levels of salinity may have on the quality of ‘SeaDwarf’ seashore paspalum.

Materials and Methods

Forty-two plugs of ‘SeaDwarf’ seashore paspalum were obtained from Alden Pines Golf Course in Bokeelia, Fla., using a 10.8-cm diameter cup cutter (Par Aide, Lino Lakes, Minn.). Experimental units were created by first washing plugs with water to remove soil, then transplanting clean plugs into No. 6 clay pots containing equal volumes of sand (No. 200 construction grade sand; Rymatt Golf, Naples, Fla.) having >70% of particles in the 1.00- to 0.25-mm fraction. Experimental units were then placed in full sun for 45 d to allow turf to spread and completely cover the surface of the sand inside each pot. During the 45-d period, turf was maintained in a manner similar to the care of turf in field conditions. It was clipped daily at a height of cut of 6 cm, fertilized weekly by drenching with soluble 20-16.6-8.8 at a rate of 12.2 kg ha⁻¹ and irrigated as needed with tap water having an electrical conductivity (ECₜₖ) of 0.52 dS m⁻¹.

Experimental units were then randomly arranged into seven groups of six pots each. Each group was randomly assigned to be irrigated with one of seven experimental irrigation water sources, each having a differing EC (ECₜₖ), sodium adsorption ratio, and so on. Water sources (treatments) consisted of sea water taken from the Gulf of Mexico at Fort Myers Beach, Fla. (26.4500⁰N, 81.9508⁰W), potable tap water from Lee County, Fla., utilities, and five blends of these two waters created by mixing one part sea water with from one to five parts tap water (Table 1). Potable tap water was considered a control. Values presented in Table 1 are the results of irrigation water suitability analyses conducted by A & L Southern Agricultural Laboratories (Fort Lauderdale, Fla.).

Each experimental unit was brought to its field capacity each day by flood irrigating with 250 mL of water, according to treatment, for 50 consecutive days beginning 11 Feb. 2002. This was done to ensure water was not limiting for turf growth. Excess water drained freely. Mowing and fertilization were discontinued. Quality ratings were taken four times during the 50-d treatment period. Rating dates were 14 Feb., which was 3 d after the onset of the study, and then again on 21 Feb., 12 Mar., and 21 Mar. Perfect quality turf was given a score of 10.0, whereas a score of 1.0 was given to dead turf. For this study, quality was defined as a composite of visible turfgrass traits and factors and was a function of the turf’s overall appearance (Beard, 1973; Turgeon, 2002). Quality ratings considered elements of both visual quality and functional quality (Beard, 1973), including leaf texture, color, growth habit, and shoot growth.

A leaf texture rating (10 = coarse; 1 = fine) was taken on day 50 of the study. The total number (n) and corresponding length (mm) of each visible stolon was also determined. Shoot tissue from each pot was then harvested using shears. Moisture content (g kg⁻¹) was determined for a portion of fresh shoot tissue by oven-drying for 24 h at 104 °C (Undersander et al., 2003). Remaining tissue was oven-dried at 60 °C for 48 h and then weighed (g). Chlorophyll concentrations

Received for publication 2 Nov. 2006. Accepted for publication 20 Nov. 2006. E-mail lberndt@edison.edu.

HORTSCIENCE VOL. 42(2) APRIL 2007 417
Table 1. Results of water quality analyses for seven experimental irrigation water sources.

Water source descriptor	Tap*	5:1*	4:1	3:1	2:1	1:1	Sea*
EC_{iw}, dS m⁻¹	0.52	10.10	11.70	14.70	19.10	27.40	49.40
TDS_{iw} mg·L⁻¹	332	6464	7488	9408	12,224	17,536	31,616
Salinity hazard*	Medium	Very high					
Na⁺ mg·L⁻¹	53	1700	2100	2500	3200	4200	7000
Ca²⁺ mg·L⁻¹	35	80	90	100	130	200	300
Mg²⁺ mg·L⁻¹	8	260	260	340	400	640	1180
Cl– mg·L⁻¹	2.08	20.43	24.99	26.36	30.86	32.12	39.76
SO₄– mg·L⁻¹	145	2780	3110	4050	5920	7890	18,500
CO₃– mg·L⁻¹	62	180	390	450	780	1680	2220
HCO₃– mg·L⁻¹	64	90	98	112	119	123	156
pH	7.3	7.7	7.8	7.8	7.9	7.9	7.7
TDS_w mg·L⁻¹	6	75.67	78.01	0.09	2.38	3.38	0.77
Water class*	C2-S1	C4-S4	C4-S4	C4-S4	C4-S4	C4-S4	C4-S4
S	1.05	0.01	0.01	0.01	0.10	0.15	0.09
Na⁺ kg·L⁻¹	0.66	0.30	0.40	0.56	1.00	1.62	4.96
K⁺ kg·L⁻¹	0.06	0.30	0.40	0.56	1.00	1.62	4.96
Water source descriptor	Tap	5:1	4:1	3:1	2:1	1:1	Sea
Tap water	6.9	7.8	8.4	9.2	8.1	0.5	
5:1 blend	6.6	7.2	8.0	8.9	7.7		
4:1 blend	7.5	7.9	8.5	8.9	8.2		
3:1 blend	6.7	6.8	7.6	8.7	7.5		
2:1 blend	6.4	6.4	7.5	8.7	7.2		
1:1 blend	5.9	5.3	5.8	7.5	6.1		
Sea water	5.1	3.0	2.3	2.1	3.1		
LSD_{p = 0.01}	1.1	1.1	0.8	0.4	0.8		

*Potable tap water provided by Lee County, Fla., utilities.
*Five parts tap water blended with one part sea water.
*Sea water taken from the Gulf of Mexico at Fort Myers Beach, Fla.
*Total dissolved solids.
*Richards, 1954.
*Sodium adsorption ratio.

(chlorophyll A and B mg g⁻¹ tissue) were determined for samples of oven-dried shoot tissue (Johnson, 1974). This procedure specifically called for the drying of clippings at 60 °C. The EC of a 1:1 extract or EC_{iw} (Richards, 1954) of the soil was determined using a Hanna DIST WP4 conductivity cell (Hanna Instruments, Woonsocket, R.I.). For this, duplicate 50-g samples of soil were suspended in 50 mL distilled, deionized water and allowed to equilibrate for 24 h. Values of EC_{iw} were reported in dS m⁻¹.

This experiment was conducted as a completely randomized design with six replications of each treatment. All data were subject to analysis of variance (ANOVA) or regression analysis. Quality rating scores compiled for each rating date were analyzed by ANOVA for a split plot in time (Steel and Torrie, 1980) to determine the effect of time on turf quality as affected by water source. For this, water sources (W) were considered whole plots with 6 df, and error terms (D) were subplots with 3 df, 18 df for the subplot error term.

Analysis of variance

Variation	df	MS	F	P = 0.05	P = 0.01		
Water (W)	6	75.67	78.01	**	2.38	3.38	0.77
Error (W)	35	0.97	**				
Date (D)	3	15.18	168.67	**	2.70	4.00	0.17
W × D	18	4.39	48.78	**	1.68	2.07	

***Significant at the 5% level and the 1% level, respectively.
*Value of LSD P = 0.01 for any 2 means within water sources.
*Value of LSD P = 0.01 for any 2 means within rating date.
*Five parts tap water blended with one part sea water.
LSD = least significant difference.

Results and Discussion

With respect to quality ratings, the interaction between irrigation water source and rating date was highly significant (Table 2). As a result, the turf response to water source was presented by regression analysis (Fig. 1). Significant differences in turf quality were apparent for the first rating event, which occurred only 3 d after irrigation treatments were initiated. This meant that the onset of the effect of water source on turf quality happened very quickly. Differences in quality among water sources became more distinct with time, causing turf color to fade slightly. Leaf texture also became much finer. Together, it was evident that the chlorophyll content of shoots and leaves gradually decreased in response to increasing salinity causing turf color to fade slightly. Leaf texture also became much finer. Together, color and texture are highly important determinants of turf quality (Beard, 1973).

The effect of water source on turf quality was attributed to salinity-induced changes in parameters of turf quality, including chlorophyll content, leaf texture, aerial shoot yield, and the number and corresponding length of lateral stems as stolons (Table 3). For example, it was evident that the chlorophyll content of shoots and leaves gradually decreased in response to increasing salinity causing turf color to fade slightly. Leaf texture also became much finer. Together, color and texture are highly important determinants of turf quality (Beard, 1973).

The effect salinity had on shoot yield was presented by regression analysis of shoot yield means on EC_{iw} (R² = 0.98; Y = 387.14 – 13.52X + 0.1308X²), the predicted value in which shoot yield was reduced by 50% compared with the control (EC_{iw} 50) was 17.4 dS m⁻¹. This result was similar with
the EC_{iw} value for top growth predicted by inverse regression analysis for ‘Adalayd’ seashore paspalum grown in solution culture in a glasshouse experiment (Dudeck and Peacock, 1985). The ‘Adalayd’ exhibited 50% top growth reduction at 18.4 dS·m$^{-1}$ and was deemed the most salt sensitive cultivar in that study. The predicted value of EC_{iw}^{50}, where shoot yield of ‘SeaDwarf’ was reduced by 25% was 8 dS·m$^{-1}$, which was identical to the value for EC_{iw}^{25} shoot yield of ‘Adalayd’ as published by Lee et al. (2002). The salinity tolerance of ‘SeaDwarf’ in this study was similar to ‘Adalayd’ and would be considered moderate (Duncan, 2001).

The effect salinity had on stolon growth was particularly pronounced. Increasing the EC_{iw} from 0.52 dS·m$^{-1}$ (tap water) to 10.1 dS·m$^{-1}$ (2:1 blend) resulted in a 76.0% reduction in the number of stolons present after 50 d. There was also a corresponding reduction in stolon length of 64.3%. From regression analysis of stolon length means on EC_{iw} ($R^2 = 0.95; \hat{Y} = 142.53 - 7.77X$), the EC_{iw}^{50}, or salinity value where stolon length was reduced by 50%, was calculated to be 9.1 dS·m$^{-1}$. For stolon number ($R^2 = 0.96; \hat{Y} = 24.36 - 1.61X$), the calculated EC_{iw}^{50} value was 7.7 dS·m$^{-1}$. Perhaps the most interesting result from this study was that irrigating with water that had an EC_{iw} at or above 19.1 dS·m$^{-1}$ (2:1 blend, 1:1 blend, and sea water) inhibited the emergence and elongation of stolons completely. Thus, irrigating with water with a high enough level of salinity changed the growth habit of the ‘SeaDwarf’, which could negatively affect important turf characteristics such as rate of spread hence recuperative capacity.

The effect salinity had on quality parameters may have been related to development of osmotic stress producing physiological drought, direct ion toxicity from constituent ions such as B or Na*, nutrient imbalances, soil physical/chemical problems related to Na*, or combinations of these (Beard, 1973; Harivandi et al., 1992). Dissolved salts in the soil solution reduces the uptake of water in turf (Beard, 1973; Butler et al., 1985; Carrow et al., 2001; Harivandi, 1984; McCarty et al., 2003; Turgeon, 2002; Youngner, 1985). The result of reduced water uptake in plants is an internal moisture stress that has been linked to deleterious or adaptive changes (Chaves et al., 2002) leading to a number of morpho-logic modifications such as decreased tillering, decreased leaf number, thinner leaves, and reduced shoot elongation (Beard, 1973; Turgeon, 2002). In this study, plant tissue moisture level was in fact reduced from 782 g·kg$^{-1}$ to 709 g·kg$^{-1}$ as the EC_{iw} increased from 11.7 dS·m$^{-1}$ to 49.4 dS·m$^{-1}$. Whether this reduction in moisture constituted a physiological drought was unknown. The morphologic changes observed in this study might have been adaptive responses intended to help reduce the plant need for water, but this was not proven.

Conclusion

Irrigating ‘SeaDwarf’ with nonpotable water having higher levels of salinity had an observable effect on its quality, because the salinity induced changes in several important plant characteristics that collectively contribute to turf quality. These parameters changed presumably in response to osmotic stress associated with high levels of salinity. Irrigating with nonpotable water sources having a salinity level of ≥ 19.1 dS·m$^{-1}$, which was the 2:1 blend, seemed to produce the worst quality turf in terms of stolon growth and development and shoot growth. Irrigating with sources having salinity levels of < 19.1 dS·m$^{-1}$ produced better quality turf. Thus, from the results of this study, it appears that nonpotable water at a dilution of 3:1 or more can successfully be used for irrigating ‘SeaDwarf’. Whether this would be true for field situations has yet to be demonstrated. Although ‘SeaDwarf’ exhibited moderately good salt tolerance in this study, irrigating it with water having lower levels of salinity resulted in better-quality turf.

Fig. 1. The influence of seven experimental irrigation water sources on the quality of ‘SeaDwarf’ seashore paspalum. Quality rating dates were 14 Feb., 21 Feb., 12 Mar., and 21 March. DAT refers to days after irrigation treatments began.

Table 3. Analysis of variance summaries and treatment means for EC of soil (EC_i) and for select quality parameters.*

Source of variation	df	EC_i	Chlorophylla	Textureb	Yieldc	Numberc	Lengthc	Moisturec
Water source	6	2.1**	9.02**	13.1**	74.026**	2.75**	15.602**	7.7**
Error	35	0.03	0.08	0.03	2.151	11	467	12
Water source								
Tap water		0.05	3.86	6.5	383	25	143	779
5:1 blend		0.50	3.96	5.2	242	6	51	777
4:1 blend		0.78	3.79	5.2	245	4	53	782
3:1 blend		0.80	3.68	4.8	246	3	36	777
2:1 blend		1.07	3.74	4.8	174	0	769	
1:1 blend		1.23	3.50	3.8	108	0	754	
Sea water		1.96	1.10	1.7	39	0	709	
Least significant	0.27	0.40	0.3	0.73	5	34	53	

* Significant at the 5% level and the 1% level, respectively.

**Tabled values are mean squares and treatment means, respectively.

a EC of a 1:1 extract of soil:distilled water in dS·m$^{-1}$.

b Chlorophyll A + B mg·g$^{-1}$ shoot tissue.

c Leaf texture rating in which 10 = coarse and 1 = fine.

d Yield of shoots g·m$^{-2}$.

e Number of stolons-unit$^{-1}$ and corresponding stolon length (mm).

f Shoot moisture content g·kg$^{-1}$.

EC = electrical conductivity.
Literature Cited

Beard, J.B. 1973. Turfgrass: Science and culture. Prentice Hall, Englewood Cliffs, N.J.

Butler, J.D., P.E. Rieke, and D.D. Minner. 1985. Influence of water quality on turfgrasses, p. 71–84. In V.A. Gibeault and S.T. Cockerham (eds.). Turfgrass water conservation. Univ. of California Coop. Ext. Publ. 21405.

Carrow, R.N. and R.R. Duncan. 1998. Salt-affected turfgrass sites: Assessment and management. Ann Arbor Press, Chelsea, Mich.

Carrow, R.N., D.V. Waddington, and P.E. Rieke. 2001. Turfgrass soil fertility and chemical problems. Ann Arbor Press, Chelsea, Mich.

Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field: Photosynthesis and growth. Ann. Bot. (Lond.) 89:907–916.

Dudeck, A.E. and C.H. Peacock. 1985. Effects of salinity on seashore paspalum turfgrasses. Agron. J. 77:47–50.

Duncan, R.R. 2001. All seashore paspalums are not created equal. Golf Course Management 69:54–60.

Duncan, R.R. and R.N. Carrow. 2000. Seashore paspalum: The environmental turfgrass. Ann Arbor Press, Chelsea, Mich.

Duncan, R.R. and R.N. Carrow. 2005. Managing seashore paspalum greens. Golf Course Management 73:114–118.

Environmental Turf. 2006. SeaDwarf seashore paspalum. http://www.environmentalturf.com/grasses_seadwarf.html. Environmental Turf, Inc., Fort Pierce, Fla. Accessed 1 Sept. 2006.

Harivandi, M.A. 1984. Managing saline, sodic, or saline-sodic soils for turfgrasses. California Turfgrass Culture. 34:2–3.

Harivandi, M.A., J.D. Butler, and L. Wu. 1992. Salinity and turfgrass culture, p. 207–229. In D.V. Waddington, R.N. Carrow, and R.C. Shearman (eds.) Turfgrass. Agron. Mono. 32. ASA, CSSA, and SSSA, Madison, Wis.

Johnson, G.V. 1974. Simple procedure for the quantitative analysis of turfgrass color. Agron. J. 66:457–459.

Lee, G., R.R. Carrow, and R.R. Duncan. 2005. Criteria for assessing salinity tolerance of the halophytic turgrass seashore paspalum. Crop Sci. 45:251–258.

Lee, G., R.R. Duncan, and R.N. Carrow. 2002. Initial selection of salt-tolerant seashore paspalum ecotypes. USGA Turfgrass and Environmental Research Online 1:1–7.

McCarty, L.B., I.R. Rodriguez, B.T. Bunnen, and F.C. Waltz. 2003. Fundamentals of turfgrass and agricultural chemistry. John Wiley and Sons, Hoboken, N.J.

Richards, L.A. (ed.). 1954. Diagnosis and Improvement of Saline and Alkali Soils. U.S.D.A. Handb.60. U.S. Gov. Print. Office, Washington, D.C.

Saltscapes. 2006. Seashore paspalum turf grass for salt water irrigated golf courses. http://www.paspalumgrass.com/varities.asp. SaltScape Solutions, LLC, Bokeelia, Fla. Accessed 18 Aug. 2006.

Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics: A biometrical approach. McGraw-Hill Book Co., N.Y.

Turgeon, A.J. 2002. Turfgrass management. Prentice Hall, Upper Saddle River, N.J.

Undersander, D., D.R. Mertens, and N. Thieix. 2003. Forage analysis procedures. http://www.foragetesting.org/index.php?page=lab_procedures. National Forage Testing Association, Omaha, Neb. Accessed 15 July 2005.

Youngner, V.B. 1985. Physiology of water use and water stress, p. 39–43. In V.A. Gibeault and S.T. Cockerham (eds.). Turfgrass water conservation. Univ. of California Coop. Ext. Publ. 21405.

Zinn, S. 2004a. Suggestions for the care of seashore paspalum. Environmental Turf, Inc., Fort Pierce, Fla.

Zinn, S. 2004b. Deep roots, dwarf habit, salinity tolerance: ‘SeaDwarf’ paspalum looks promising. Florida Turf Digest. March/April:24–25.