THERMAL INFRARED IMAGE INPAINTING VIA EDGE-AWARE GUIDANCE

Zeyu Wang\(^a\), Haibin Shen\(^a\), Changyou Men\(^b\), Quan Sun\(^b\), Kejie Huang\(^a,\ast\)

\(^a\)Zhejiang University, Hangzhou, China
\(^b\)Hangzhou Vango Technologies, Inc., Hangzhou, China

ABSTRACT

Image inpainting has achieved fundamental advances with deep learning. However, almost all existing inpainting methods aim to process natural images, while few target Thermal Infrared (TIR) images, which have widespread applications. When applied to TIR images, conventional inpainting methods usually generate distorted or blurry content. In this paper, we propose a novel task—Thermal Infrared Image Inpainting, which aims to reconstruct missing regions of TIR images. Crucially, we propose a novel deep-learning-based model TIR-Fill. We adopt the edge generator to complete the canny edges of broken TIR images. The completed edges are projected to the normalization weights and biases to enhance edge awareness of the model. In addition, a refinement network based on gated convolution is employed to improve TIR image consistency. The experiments demonstrate that our method outperforms state-of-the-art image inpainting approaches on FLIR thermal dataset.

Index Terms— Thermal Infrared Image Inpainting, Edge Awareness, Gated Convolution, State-Of-The-Art.

1. INTRODUCTION

Image inpainting refers to filling missing regions of broken images, which has excellent usage in image processing. Driven by the advances of Deep Learning (DL), this technique has progressed significantly in the past few years [1, 2, 3, 4, 5, 6, 7]. However, most inpainting methods aim to reconstruct natural images in the visible spectrum.

Recently, Thermal Infrared (TIR) technology has been increasingly vital in remote sensing [8], medicine [9], and so on. Unlike visible-spectrum cameras, TIR cameras can capture infrared radiation at the wavelength of \(2 - 1000\)\(\mu\)m, enabling them to detect low-light objects. In this paper, we propose a novel task—Thermal Infrared Image Inpainting, which aims to fill the missing regions of broken TIR images. This technique can contribute to image editing, artifact repair, and object removal for TIR images, as shown in Fig. 1.

However, conventional DL-based inpainting methods are not applicable to TIR image inpainting, as they aim to reconstruct natural images but usually create distorted or blurry structures for TIR images. Compared with natural images, TIR images have lower chromatic contrast but contain richer thermal information and sharper edge contours. Therefore, we propose a novel DL-based model TIR-Fill. We first extract the canny edges of broken TIR images and build an edge generator to reconstruct them. The completed edges are inserted into our Edge-Aware Guidance (EAG) normalization in TIR-Fill, which enhances the model awareness of edge information. A refinement network based on gated convolution is employed to improve the generated TIR image quality and consistency. We demonstrate that our method quantitatively outperforms state-of-the-art image inpainting approaches and generates visually appealing results on FLIR thermal dataset [10], as shown in Fig. 1(c).

2. RELATED WORKS

2.1. Image Inpainting

Traditional image inpainting methods include diffusion-based methods [11] and patch-based methods [12]. In recent years, Deep Learning (DL) has exhibited superior performance in
image inpainting. Conventional DL-based inpainting methods are based on Convolutional Neural Network (CNN) [1, 2, 3, 4, 6] and Transformer [7, 5]. The majority of these works are proposed for natural image inpainting.

2.2. Thermal Infrared Image Processing

TIR image processing has attracted extensive research for its vital and widespread applications. Previous works targeted at TIR image super-resolution [13] and semantic segmentation [14]. Currently, some works aim to tackle TIR image colorization, which maps a single-channel grayscale TIR image to an RGB image [15]. To our knowledge, no DL-based work has been proposed for TIR image inpainting.

3. METHODS

3.1. Overview

To perform the task of Thermal Infrared Image Inpainting, we propose the novel DL-based model TIR-Fill, which is illustrated in Fig. 2. It comprises three stages: Edge connection, TIR image completion, and TIR image refinement. Given the mask M, the goal of the task is to reconstruct the ground-truth TIR image I_{gt} based on the input $I_{in} = I_{gt} \odot M$. The mask M is a binary matrix, where 0 and 1 denote the hole and valid pixels, respectively.

3.2. Edge Connection

We first extract the canny edge C_{in} of the broken image I_{in}. The CNN-based edge generator E_{θ} [4] is adopted for the edge connection, as illustrated in Fig. 2(a). The goal of this stage is to reconstruct the ground-truth edge C_{gt} based on M, I_{in}, and C_{in}, as formulated below:

$$C_{pred} = \varepsilon(E_{\theta}(M, I_{in}, C_{in}) - t_0) \tag{1}$$

where $t_0 = 0.5$ and $\varepsilon(\cdot)$ denotes the unit step function: if $t < t_0$, $\varepsilon(t - t_0) = 0$, else $\varepsilon(t - t_0) = 1$.

The predicted edge C_{pred} is recomposed with C_{in} into $C_{rec} = C_{in} + C_{pred} \odot (1 - M)$, which will be adopted for enhancing the edge awareness.

3.3. TIR Image Completion

The TIR image completion network G_{ϕ} takes M, I_{in}, and C_{rec} as inputs to generate I_{C}^C, as illustrated in Fig. 2(d).

$$I_{C}^C = G_{\phi}(M, I_{in}, C_{rec}) \tag{2}$$

In detail, the intermediate layers of G_{ϕ} are our Edge-Aware Guidance (EAG) ResBlocks, as illustrated in Fig. 2(b). Compared with conventional ResNet Block, EAG ResBlock replaces conventional normalization with our EAG normalization for semantic synthesis. The predicted coarse result is recomposed into $I_{rec}^C = I_{in} + I_{C}^C \odot (1 - M)$.

![Illustration of our proposed TIR-Fill](image-url)
3.4. TIR Image Refinement

Based on coarse recomposed result \(I_{\text{rec}}^C \), a refinement network \(R_\psi \) is employed to further improve the TIR image quality, as shown in Fig. 2(e).

\[
I^R = R_\psi(M, I_{\text{rec}}^C)
\]

(4)

The refinement network \(R_\psi \) consists of stacked gated convolutional layers [3], which can learn dynamic feature gating for each channel and each spatial location:

\[
F_{\text{out}} = \sigma(W_g \ast F_{\text{in}}) \odot \phi(W_f \ast F_{\text{in}})
\]

(5)

where \(W_g \) and \(W_f \) denote two different convolutional filters, \(\sigma \) denotes Sigmoid activation, and \(\phi \) denotes Swish activation. The predicted \(I^R \) is further recomposed with the input into the final result \(I_{\text{rec}}^R = I_{\text{in}} + I^R \odot (1 - M) \).

3.5. Loss Functions

To train \(E_\theta \), we adopt adversarial training with Patch-GAN discriminator \(D_{\text{patch}} \) [17] and hinge loss.

\[
\mathcal{L}_{E_\theta} = \mathcal{L}_{\text{adv}}(C_{\text{pred}}) = -E[D_{\text{patch}}(C_{\text{pred}})]
\]

(6)

\[
\mathcal{L}_{D_{\text{patch}}} = E[\text{relu}(1 - D_{\text{patch}}(C_{\text{gt}}))] \\
+ E[\text{relu}(1 + D_{\text{patch}}(C_{\text{pred}}))]
\]

(7)

To train \(G_\phi \) and \(R_\psi \), we define a reconstruction loss consisting of \(\ell_1 \) loss, perceptual loss [18], and style loss [19].

\[
\mathcal{L}_{\text{rec}}(I, I_{\text{gt}}) = \ell_1(I, I_{\text{gt}}) + \sum_j ||F_j(I) - F_j(I_{\text{gt}})||_1 \\
+ \sum_j ||G_j(I) - G_j(I_{\text{gt}})||_1
\]

(8)

where \(F_j(i \in \{2, 7, 12, 21, 30\}) \) denotes the intermediate feature map of the \(i \)-th layer in the VGG-19 [20], and \(G_j(\cdot) = F_j(\cdot)F_j(\cdot)^T(j \in \{9, 18, 27, 32\}) \) denotes the Gram matrix [19]. Based on \(\mathcal{L}_{\text{rec}} \), the loss functions of \(G_\phi \) and \(R_\psi \) are formulated as:

\[
\mathcal{L}_{G_\phi} = \mathcal{L}_{\text{rec}}(I^C, I_{\text{gt}})
\]

(9)

\[
\mathcal{L}_{R_\psi} = \mathcal{L}_{\text{rec}}(I^R, I_{\text{gt}}) + \mathcal{L}_{\text{adv}}(I^R)
\]

(10)

where another Patch-GAN discriminator is implemented, along with the adversarial loss \(\mathcal{L}_{\text{adv}}(I^R) = -E[D_{\text{patch}}(I^R)] \) and the same discriminator loss as Eq. 7.

4. EXPERIMENTS

4.1. Dataset

We adopt FLIR thermal dataset [10], which consists of 8862 training images and 1366 testing images. For training images, we randomly crop and resize them to 256 × 256. For testing images, we resize them to 300 × 375 and crop them from the center to 256 × 256 for evaluation. The irregular masks with arbitrary mask ratios provided by Liu et al. [2] are adopted.

4.2. Experimental Settings

We implement TIR-Fill with PyTorch 1.8.1 on one NVIDIA RTX A6000 GPU with 40G memory. The low and high thresholds of canny edge detection are set to 80 and 160, respectively. The learning rates for training \(E_\theta, G_\phi, \) and \(R_\psi \) are set to \(1e^{-3}, 1e^{-4}, \) and \(1e^{-4} \), respectively. The Adam optimizer with \(\beta_1 = 0.5 \) and \(\beta_2 = 0.9 \) is employed.

4.3. Quantitative Comparison

We report PSNR, SSIM, LPIPS, and FID for quantitative comparison. The results of our TIR-Fill and the baseline inpainting methods are shown in Table 1. Among the baseline methods, DFv2 (DeepFillv2) performs well in PSNR, and even outperforms our coarse result under large mask ratios. TFill is the SOTA method for natural image inpainting, but it performs poorly for TIR image inpainting. By contrast,
Table 1. Quantitative comparison between our TIR-Fill and the baseline inpainting methods on FLIR dataset.

Mask Ratio	1-10%	10-20%	20-30%	30-40%	40-50%	50-60%
GLCIC [1]	36.61	31.02	27.53	25.11	23.04	20.28
PConv [2]	37.87	31.79	28.56	26.50	24.90	22.85
DFv2 [3]	37.82	32.24	29.20	27.23	25.72	23.69
EC [4]	38.21	32.25	29.01	26.92	25.31	23.21
MADF [6]	37.99	31.87	28.78	26.84	25.11	23.06
TFill [7]	36.49	30.51	28.20	26.43	25.07	23.31
Ours-Coarse	39.36	32.96	29.45	27.13	25.38	23.17
Ours-Refine	39.65	33.48	30.06	27.79	26.06	23.82

Table 2. Quantitative results of the ablation study. The results are shown as the average scores under all mask ratios.

Model	Stage	PSNR↑	SSIM↑	LPIPS↓	FID↓
w/o EAG	Coarse	29.24	0.844	0.135	25.61
w/o EAG	Refine	29.73	0.849	0.133	21.42
TIR-Fill	Coarse	29.57	0.867	0.124	18.37
TIR-Fill	Refine	30.14	0.873	0.122	16.06

Fig. 4. Qualitative results of the ablation study and visualization of the reconstructed canny edges.

4.5. Ablation Study

We conduct the ablation study to illustrate the effectiveness of our EAG normalization. The variant “w/o EAG” denotes another TIR-Fill which replaces the EAG normalization with conventional instance normalization. The results shown in Table 2 demonstrate that EAG normalization dramatically improves the quantitative performance, especially the FID score. In Fig. 4, we aim to remove the pedestrians on the road. The visualization of the reconstructed edge C_rec shows that the edges of the pedestrians are naturally removed and completed. The qualitative comparison between the variant and the complete TIR-Fill demonstrates that TIR-Fill can generate more delicate structures.

5. CONCLUSION

In this work, we propose a novel image processing task—TIR-Fill, which aims to reconstruct missing regions of TIR images. In addition, we propose an effective model TIR-Fill to deal with the novel task, which integrates our EAG normalization for enhancing edge awareness. The experiments demonstrate that our TIR-Fill outperforms the baseline inpainting methods. Its visually appealing inpainted results demonstrate its ability in TIR image editing. The ablation study illustrates that EAG normalization performs better than conventional normalization. In the future, we expect the worth-discussing task will attract extensive research and contribute to widespread applications.
6. REFERENCES

[1] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa, “Globally and locally consistent image completion.” *ACM Transactions on Graphics (ToG)*, vol. 36, no. 4, pp. 1–14, 2017.

[2] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro, “Image inpainting for irregular holes using partial convolutions,” in *Proceedings of the European conference on computer vision (ECCV)*, 2018, pp. 85–100.

[3] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang, “Free-form image inpainting with gated convolution,” in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2019, pp. 4471–4480.

[4] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi, “Edgeconnect: Structure guided image inpainting using edge prediction,” in *Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops*, 2019, pp. 0–0.

[5] Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao, “High-fidelity pluralistic image completion with transformers,” in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2021, pp. 4692–4701.

[6] Manyu Zhu, Dongliang He, Xin Li, Chao Li, Fu Li, Xiao Liu, Errui Ding, and Zhaoxiang Zhang, “Image inpainting by end-to-end cascaded refinement with mask awareness,” *IEEE Transactions on Image Processing*, vol. 30, pp. 4855–4866, 2021.

[7] Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai, and Dinh Phung, “Bridging global context interactions for high-fidelity image completion,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022, pp. 11512–11522.

[8] John M Norman and Francois Becker, “Terminology in thermal infrared remote sensing of natural surfaces,” *Agricultural and Forest Meteorology*, vol. 77, no. 3-4, pp. 153–166, 1995.

[9] EFJ Ring and Kurt Ammer, “Infrared thermal imaging in medicine,” *Physiological measurement*, vol. 33, no. 3, pp. R33, 2012.

[10] F.A.Group, “Flir thermal dataset for algorithm training,” https://www.flir.co.uk/oem/adas/adas-dataset-form/, 2019.

[11] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester, “Image inpainting,” in *Proceedings of the 27th annual conference on Computer graphics and interactive techniques*, 2000, pp. 417–424.

[12] Maxime Daisy, David Tschumperlé, and Olivier Lézoray, “A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting,” in *SIGGRAPH Asia 2013 Technical Briefs*, pp. 1–4. 2013.

[13] Kalpesh Prajapati, Vishal Chudasama, Heena Patel, Anjali Sarvaiya, Kishor P Upla, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch, “Channel split convolutional neural network (chasnet) for thermal image super-resolution,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021, pp. 4368–4377.

[14] Qishen Ha, Kohei Watanabe, Takumi Karasawa, Yoshitaka Ushiku, and Tatsuya Harada, “Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes,” in *2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. IEEE, 2017, pp. 5108–5115.

[15] Fuya Luo, Yijun Cao, and Yongjie Li, “Nighttime thermal infrared image colorization with dynamic label mining,” in *International Conference on Image and Graphics*. Springer, 2021, pp. 388–399.

[16] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu, “Semantic image synthesis with spatially-adaptive normalization,” in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019, pp. 2337–2346.

[17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in *Proceedings of the IEEE international conference on computer vision*, 2017, pp. 2223–2232.

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in *European conference on computer vision*. Springer, 2016, pp. 694–711.

[19] Leon A Gatys, Alexander S Ecker, and Matthias Bethge, “Image style transfer using convolutional neural networks,” in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 2414–2423.

[20] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale image recognition,” *CoRR*, vol. abs/1409.1556, 2015.