The northernmost Palearctic scorpion

Самый северный скорпион Палеарктики

Nikita M. Poverennyi1, Matthew R. Graham2, Victor Ya. Fet3

1 Department of Biology, N.G. Chernyshevsky Saratov State University, Astrakhanskaya Str. 93, Saratov, 410012 Russian Federation. E-mail: nikitapov64@yandex.ru
2 Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut 06226, USA. E-mail: grahamm@easternct.edu
3 Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755–2510, USA. E-mail: fet@marshall.edu

© ARTHROPODA SELECTA, 2022

Abstract. This note addresses the northernmost (above 51°N) Palearctic scorpion population of the Aituar Steppe in the Orenburg Nature Reserve, Russia. According to our original COI mtDNA analysis, this population is Mesobuthus bogdoensis (Birula, 1896) (Buthidae).

How to cite this paper: Poverennyi N.M., Graham M.R., Fet V.Ya. 2022. The northernmost Palearctic scorpion // Arthropoda Selecta. Vol.31. No.2. P.213–216. doi: 10.15298/arthsel.31.2.09

KEY WORDS: Mesobuthus, Buthidae, scorpions, northernmost range, Palearctic, Orenburg, Aituar.

Material and methods

The field collection was performed by the first author (N.P.). On 13 August 2021, 10 scorpion specimens were collected with the help of UV light at night on a slope of the Karagashta Ravine, 1 km from Aituar Village, Kuvandyk District, Orenburg Province, Russian Federation (51.1072°N, 57.6606°E), within the Aituar Steppe area of the Orenburg Nature Reserve. The specimens were found in dry grass-tussock stony steppe habitat (Fig. 2). DNA extraction, amplification, and sequencing of the COI gene for this population were also performed by the first author (N.P.) according to the methods published earlier [Poverennyi, Anikin, 2020a, b]. The new single Aituar COI sequence was deposited in GenBank under accession number OM905082. This sequence was added to 23 sequences belonging to five other congeneric species, which represented a subset of 98 sequences recently used for revision of genus Mesobuthus [Kovařík et al., 2022] (see Fig. 1 legend for details). The phylogenetic analysis of the combined dataset was performed by the second author (M.R.G.) The mitochondrial COI sequence data were aligned using MUSCLE [Edgar, 2004] in the AliView 1.7.1 software package [Larsson, 2014] using default parameters. Successful alignment of the sequences was confirmed visually and ends were trimmed manually in AliView. Phylogenetic relationships were estimated by implementing the criteria of Maximum Likelihood (ML) and Bayesian Inference (BI). In the ML analysis, IQTREE version 1.6.6 [Nguyen et al., 2015] was used, allowing the software to select optimum substitution models with ModelFinder [Kalyaanamoorthy et al., 2017]. Node support was calculated...
Fig. 1. A time-calibrated phylogenetic tree generated using Bayesian Inference (BI). Values above nodes are posterior probabilities from the BI analysis. Values below nodes indicate bootstrap values, where applicable, from a Maximum Likelihood (ML) analysis of the same samples. The species of *Mesobuthus* included in this analysis are: *M. afghanus* (Pocock, 1889) (Turkmenistan, TU1, TU3, TU11-12), *M. barszczevskii* (Birula, 1904) (Uzbekistan, UZ1a), *M. bogdoensis* (Birula, 1896) (Russia; RU1-RU5), *M. eupeus* (C.L. Koch, 1839), s.str. (Armenia, AR1; Turkey, TR1), *M. fomichevi* Kovařík et al., 2022 (Uzbekistan, UZ3), *M. thersites* (C.L. Koch, 1839) (Kazakhstan, KZ1, KZ2a, KZ3, KZ4a-b, KZ5, KZ7, KZ9, KZ10), *M. zarudnyi* Navruzov et al., 2022 (Azerbaijan, AZ). Outgroup: *Olivierus parthorum* (Pocock, 1889). The northernmost sample from the Aituar Steppe is in bold. For more detail, see Kovařík et al. [2022].

Results and Discussion

According to our phylogenetic analysis (Fig. 1), the Aituar population clearly belongs to *Mesobuthus bogdoensis* (Buthidae), forming a lineage that is sister to four lower Volga populations of this species analyzed recently in our phylogeny of the genus [Kovařík et al., 2022]. The sample from Aituar represents a unique haplotype but is only slightly divergent. Uncorrected p-distances between this sample and the other *M. bogdoensis* haplotypes range from

using ultrafast bootstrap resampling [Hoang et al., 2018]. The BI analyses followed that of Kovařík et al. [2022]. MEGA X [Kumar et al., 2018] was used to determine the best-fit substitution model (HKY+G), which was used in BEAST 1.8.0 [Drummond et al., 2012] to conduct two MCMC runs of 50 million generations each, sampling every 5,000 generations. The Yule tree prior was selected and an uncorrelated log-normal clock was calibrated by using a normal mean rate prior (ucld.mean) with the mean set to 0.007 and Stdev set at 0.00146. Tracer 1.7 [Rambaut et al., 2018] was used to confirm convergence among runs and adequate ESS values, and tree files were combined with TreeAnnotater (BEAST package). The consensus tree (Fig. 1) was visualized with Figtree 1.4.0 (http://tree.bio.ed.ac.uk/software/).

Results and Discussion

According to our phylogenetic analysis (Fig. 1), the Aituar population clearly belongs to *Mesobuthus bogdoensis* (Buthidae), forming a lineage that is sister to four lower Volga populations of this species analyzed recently in our phylogeny of the genus [Kovařík et al., 2022]. The sample from Aituar represents a unique haplotype but is only slightly divergent. Uncorrected p-distances between this sample and the other *M. bogdoensis* haplotypes range from
The northernmost Palearctic scorpion

215

The northernmost Palearctic scorpion (Aituar Steppe, Orenburg Nature Reserve). Photo by Nikita M. Poverennyi, 13 May 2021.

Рис. 2. Местообитание самого северного скорпиона Палеарктики — Айтuarская степь, заповедник «Оренбургский». Фото: Н.М. Поваренный, 13.05.2021.

0.012 to 0.016, which is consistent with levels of within species haplotype diversity in other buthid scorpions (i.e. Pedroso et al. [2013]; Coelho et al. [2014]; Alqahtani & Badry [2020]).

Mesobuthus bogdoensis was originally described from the Maloe Bogdo hill (now in Bokeyorda District, West Kazakhstan Province, Kazakhstan) (48.46°N, 47.08°E). For a detailed history of study and discussion of this species and its congeners, see Kovařík et al. [2022]. Mesobuthus bogdoensis was represented in the DNA phylogeny of Kovařík et al. [2022] by five sequences from Russia (Volgograd and Saratov provinces; see also Anikin & Poverennyi [2017]; Poverennyi & Anikin [2020a, b]). This species was listed (as either M. eupeus or M. e. volgensis) in the Red Data Books of endangered species of the Astrakhan, Saratov, and Volgograd Provinces of Russia. It is protected there in the Shcherbakovsky Nature Park, Nizhne-Bannovskiy Reserve, and Bogdo-Baskunchak Reserve, all three localities represented in our DNA data (see also Kovařík et al. [2022]).

The existence of scorpions in the Orenburg Province of Russia has been confirmed in literature only recently [Davygora, Rusakov, 2001, as “M. eupeus”], although a sample allegedly from the Guberli Mts (in the east of the Orenburg Province) has been known for more than a century [Fet, 1989]. The presence of a population in the Aituar Steppe (as “M. eupeus”) was confirmed by Fet [2010], after a personal communication by Sergei Esyunin.

The Aituar record of Mesobuthus bogdoensis extends the range of this species considerably to the northeast. Most likely, Mesobuthus records forming a continuous range from western Kazakhstan between
Volga and Ural Rivers (West Kazakhstan and Atyrau Provinces of Kazakhstan) [Fet, 1989] belong to the same species. *Mesobuthus bogoensis* appears to represent an interesting palaeo-Caspian relict; its closest extant relatives are *M. barscezovskii* (Birula, 1904) and *M. fomichevi* Kovářik et al., 2022 from southern Uzbekistan (Fig. 1).

It should be noted that the Aituar population represents the northernmost (above 51°N) scorpion record in the Palearctic realm. This could be also the northernmost boundary of the order Scorpiones worldwide, depending on the imprecisely defined northern range of *Paruroctonus boreus* (Girard, 1854) (Vaejovidae) in the Nearctic [Johnson, 2004; Fet, 2010].

Conflict of Interests

The authors declare no potential conflict of interest.

Acknowledgements

We thank all friends and colleagues who collaborated in our studies of the genus *Mesobuthus*, including (but not limited to): Vasily Anikin, Sergey Esyunin, Benjamin Gantenbein, František Koňařík, Victor Krivokhatsky, Yuri Marusik, Kirill Mikhailov, František Šťáhlavský, and Ersen A. Yağmur.

References

Alqahtani A.R., Badry A. 2020. Genetic diversity among different species of the genus Leirus (Scorpiones: Buthidae) in Saudi Arabia and the Middle East // Saudi Journal of Biological Sciences. Vol.27. No.12. P.3348–3353.

Anikin V.V., Poverennyi N.M. 2017. [Establishing the taxonomic status of scorpions of the genus Mesobuthus (Arachnida: Scorpiones) from the Lower Povolzhье based on coxl DNA sequence analysis] // Entomologicheskie i parazitologicheskie issledovaniia v Povolzhye. No.17. P.12–17 [in Russian].

Birula A.A. 1896. Miscellanea scorpilogaica. I. Zur Synonymie der russischen Skorpione // Annaire du Musée Zoologique de l’Académie Impériale des Sciences de St.-Pétersbourg. T.1. P.229–245.

Coelho P., Sousa P., Harris D.J., van der Meijden A. 2013. Phylogeography of *Buthus* Leach, 1815 (Scorpiones: Buthidae): a multigene molecular approach reveals a further complex evolutionary history in the Maghreb // African Zoology. Vol.48. No.2. P.298–308.

Pedroso D., Sousa P., Harris D.J., Van der Meijden A. 2013. Phylogeography of *Buthus* Leach, 1815 (Scorpiones: Buthidae): a multigene molecular approach reveals a further complex evolutionary history in the Maghreb // African Zoology. Vol.48. No.2. P.298–308.

Poverennyi N.M., Anikin V.V. 2020a. [Studies îf phylogenetic relationships of the scorpion *Mesobuthus eupeus volgensis* (Birula, 1925) from the Lower Povolzhье with the closely related species from Central Asia based on coxl DNA analysis] // Issledovaniia molodykh uchënykh v biologii i ekologii. Saratov: Amirit. P.98–101 [in Russian].

Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7 // Molecular Biology and Evolution. Vol.29. No.8. P.1969–1973.

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Research. Vol.32. No.5. P.1792–1797.

Fet V. 1989. A catalogue of scorpions (Chelicerata: Scorpiones) of the USSR. // Rivista del Museo Civico di Scienze Naturali “Enrico Caffi”. Vol.13(1988). P.73–171.

Fet V. 2010. Scorpions of Europe // Acta Zoológica Bulgarica. Vol.62. P.3–12.

Kalyaanamoorthy S., Minh B.Q., Wong T.K., Von Haeseler A., Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates // Nature Methods. Vol.14. No.6. P.587–589.

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms // Molecular Biology and Evolution. Vol.35. No.6. P.1547.

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets // Bioinformatics. Vol.30. No.22. P.3276–3278.

Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Molecular Biology and Evolution. Vol.32. No.1. P.268–274.

Pedroso D., Sousa P., Harris D.J., Van der Meijden A. 2013. Phylogeography of *Buthus* Leach, 1815 (Scorpiones: Buthidae): a multigene molecular approach reveals a further complex evolutionary history in the Maghreb // African Zoology. Vol.48. No.2. P.298–308.

Poverennyi N.M., Anikin V.V. 2020a. [Studies îf phylogenetic relationships of the scorpion *Mesobuthus eupeus volgensis* (Birula, 1925) from the Lower Povolzhье with the closely related species from Central Asia based on coxl DNA analysis] // Issledovaniia molodykh uchënykh v biologii i ekologii. Saratov: Amirit. P.98–101 [in Russian].

Responsible editor K.G. Mikhailov