Dear Editor

The aim of the ICARIA-MM Phase 3 study (ClinicalTrials.gov, number NCT02990338) was to determine the progression-free survival benefit of isatuximab plus pomalidomide and dexamethasone compared with pomalidomide and dexamethasone alone in patients with relapsed and refractory multiple myeloma [1]. Results from this study demonstrated that the addition of isatuximab to pomalidomide and dexamethasone provides a significant benefit for progression-free survival over pomalidomide and dexamethasone alone. Additionally, results showed a positive treatment effect in all subgroups, including revised international staging system (R-ISS) stage at study entry [1].

The R-ISS, as defined by the international myeloma working group (IMWG), combines the original ISS (beta-2 microglobulin and albumin) with chromosomal abnormalities (del[17p] and/or t[4;14] and/or t[14;16]; determined by fluorescence in situ hybridization) and lactate dehydrogenase (LDH) results [2]. Like the ISS, the R-ISS is based on three stages; patients with beta-2 microglobulin <3.5 mg/L and albumin ≥3.5 g/dL, standard-risk for cytogenetics abnormalities and normal LDH (≤upper limit of normal) are allocated as stage I; patients with beta-2 microglobulin ≥5.5 mg/L and either high-risk for cytogenetics abnormalities or high LDH (> upper limit of normal) are allocated to stage III; and patients who do not meet criteria for stage I or stage III are allocated to stage II.

In the original analysis of the ICARIA-MM study results, the interpretation of the IMWG criteria for R-ISS allocated patients with unknown cytogenetic abnormalities or missing beta-2 microglobulin at baseline as R-ISS stage I or stage II (Table 1) [1]. R-ISS was allocated based on several parameters measured at baseline, including beta-2 microglobulin, albumin, LDH and cytogenetic abnormalities (characterized by central laboratory fluorescence in situ hybridization testing of purified CD138+ plasma cells from baseline bone marrow aspirate). Among patients for whom the cytogenetic abnormalities status was unknown, but other variables were available and allowed the R-ISS status to be determined, 19 patients were allocated as R-ISS stage I and nine patients as R-ISS stage II. In addition, six patients with missing beta-2 microglobulin were allocated as R-ISS stage II, following the R-ISS definition that suggests this stage when a patient does not meet criteria to be allocated as stage I or stage III (Table 1).

A more conservative way of allocating the R-ISS status would be to separate the patients with unknown cytogenetic abnormalities and missing beta-2 microglobulin at baseline into a fourth category named ‘unclassified’. In the ICARIA-MM study, a total of 34 patients (19 R-ISS stage I and 15 R-ISS stage II according to the original allocation) would have been allocated to ‘unclassified’ (Table 2).

To further investigate if this alternative R-ISS allocation approach would lead to different conclusions about the ICARIA-MM study, the authors conducted a post hoc analysis to assess the progression-free survival benefit using the alternative R-ISS staging allocation in which the 34 patients with unknown cytogenetics and missing beta-2 microglobulin at baseline were allocated to an ‘unclassified’ R-ISS stage at study entry. A comparison of the results from this post hoc analysis is shown in Table 3. The hazard ratios for progression-free survival remain in favour of isatuximab plus pomalidomide and dexamethasone compared with pomalidomide and dexamethasone alone.
Table 1
R-ISS stage at study entry according to beta-2 microglobulin, albumin, LDH and cytogenetic abnormalities results measured at baseline (original allocation used in ICARIA-MM), intent-to-treat population

Beta-2 microglobulin (mg/L)	Albumin (g/dL)	LDH	Cytogenetic abnormalities (FISH)	R-ISS	Number of patients
<3.5	≥3.5	≤ULN	High-risk	Stage II	11
			Standard-risk	Stage I	51
			Unknown		19
≥3.5–<5.5			High-risk	Stage II	15
			Standard-risk	Stage I	32
			Unknown		28
≥5.5			High-risk	Stage III	20
	>ULN		Standard-risk	Stage I	15
			Unknown		5
Missing			Standard-risk	Stage II	28
			Unknown		9
			High-risk	Stage II	14
			Standard-risk	Stage I	51
			Unknown		17

Abbreviations: FISH, fluorescence in situ Hybridization; LDH, lactate dehydrogenase; R-ISS, revised international staging system; ULN, upper limit of normal.

Table 2
R-ISS stage at study entry according to the original allocation used in ICARIA-MM and to the alternative allocation method, intent-to-treat population

	Isa-Pd (n = 154)	Pd (n = 153)	All (N = 307)
R-ISS stage at study entry, original allocation, n (%)			
Stage I	39 (25.3)	31 (20.3)	70 (22.8)
Stage II	99 (64.3)	98 (64.1)	197 (64.2)
Stage III	16 (10.4)	24 (15.7)	40 (13.0)
Unknown	0	0	0
R-ISS stage at study entry, alternative allocation, n (%)			
Stage I	31 (20.1)	20 (13.1)	51 (16.6)
Stage II	91 (69.1)	91 (69.5)	182 (69.3)
Stage III	16 (10.4)	24 (15.7)	40 (13.0)
Unclassified	16 (10.4)	18 (11.8)	34 (11.1)

Abbreviations: d, dexamethasone; Isa, isatuximab; P, pomalidomide; R-ISS, revised international staging system.

dexamethasone in all R-ISS stage subgroups, independently of the R-ISS allocation method used.

Phase 3 trials studying patients with relapsed/refractory multiple myeloma since the R-ISS was developed [2] started reporting survival by R-ISS stages I–III subgroups if high-risk cytogenetics data were available. However, these results are not calculated for the R-ISS unclassified subgroup. For example, in APOLO, the Phase 3 study of daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone, the median progression-free survival for R-ISS stage I was not estimable in the daratumumab arm versus 10.4 months in the control arm, with a hazard ratio (95% confidence interval) of 0.51 (0.24–1.10). The median progression-free survival for R-ISS stages II and III were 12.3 months and 2.8 months in the daratumumab arm versus 6.5 and 3.4 months in the control arm, with hazard ratios (95% confidence intervals) of 0.58 (0.39–0.85) and 1.38 (0.62–3.11), respectively [3].

It is important to note that with the original R-ISS allocation method used in the ICARIA-MM study, patients with R-ISS stage III were not inappropriately allocated to either stage II or stage I. Additionally, the number of patients in each unclassifiable cohort in the alternative R-ISS allocation approach, that is, n = 16 for isatuximab plus pomalidomide and dexamethasone and n = 18 for the pomalidomide and dexamethasone, is low. Assuming that a truly random population of patients is part of these cohorts, it is also likely that only a significant randomization error could produce a real difference in outcome, such as having all patients in stage I in one cohort and stage III in another. Since this is an unlikely event, the alternative R-ISS allocation approach then reflects the whole population regardless of R-ISS stage. Because the conclusion of the trial is that all stages improve outcomes, then the whole population should equally do so. Although the original R-ISS allocation method used in ICARIA-MM did not ultimately change the interpretation of the results, in studies where the missing data are larger than it was in ICARIA-MM, it might be important to avoid using the original R-ISS allocation approach described in this letter. Finally, the conclusions of ICARIA-MM results did not change, supporting the
use of these different methodologies and the data derived as part of the broader conclusions from this Phase 3, approval-finding study [4].

ACKNOWLEDGEMENTS
The ICARIA study was sponsored by Sanofi. The authors thank the participating patients and their families, the study centres and investigators for their contributions to the study, the members of the Steering Committee and the members of the Data Monitoring Committee. Medical writing support was provided by Stephanie Brillhart and Camile Semighini Grubor of Elevate Medical Affairs, contracted by Sanofi Genzyme for publication support services.

CONFLICT OF INTEREST
Dr. Richardson has received the research funding from Bristol-Myers Squibb, Celgene, Oncopetides and Takeda and reports honoraria from Janssen, Karyopharm, Oncopetides, Sanofi and Takeda. Prof. Perrot has received honoraria from Amgen, Bristol-Myers Squibb/Celgene, Janssen, Sanofi and Takeda. Prof. Takamatsu has received research funding from Bristol-Myers Squibb and Janssen and reports honoraria from Adaptive Biotechnologies, Bristol-Myers Squibb, Janssen, Onco and Sanofi.

AUTHOR CONTRIBUTIONS
Paul G. Richardson and Aurore Perrot were coprimary investigators of the ICARIA-MM study. Hiroyuki Takamatsu contributed to the analysis plan, and dataset specifications. Patient-level data will be anonymised, and study documents will be redacted to protect the privacy of trial participants. Further details on Sanofi’s data-sharing criteria, eligible studies, and process for requesting access are at: https://www.clinicalstudydatarequest.com.

ORCID
Paul G. Richardson https://orcid.org/0000-0002-7426-8865
Aurore Perrot https://orcid.org/0000-0003-0131-8689
Hiroyuki Takamatsu https://orcid.org/0000-0001-9515-0017

REFERENCES
1. Attal M, Richardson PG, Rajkumar SV, San-Miguel J, Bekas M, Špičká I, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–107.
2. Palumbo A, Avet-Loiseau H, Orlowski RZ, Dimopoulos MA, Laubach JP, et al. Interpreting clinical trial data in multiple myeloma (APOLLO): a report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9.
3. Dimopoulos MA, Terpos E, Boccadoro M, Delimpasi S, Bekas M, Kato-dritou E, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(6):801–12.
4. Richardson PG, San Miguel JF, Moreau P, Hajek R, Dimopoulos MA, Laubach JP, et al. Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting. Blood Cancer J. 2018;8(11):109.

How to cite this article: Richardson PG, Perrot A, Takamatsu H. Revised international staging system allocation in the ICARIA-MM study: Practical challenges and impact on outcome. eJHaem. 2022;3:168–170.
https://doi.org/10.1002/jha2.328