Synthesis and evaluation of β-hydroxytriazoles and related compounds as antitubercular agents

Christophe Menendez,a,b Giorgia Mori,c Mathilde Maillot,a,b Isabelle Fabing,a,b Chantal Carayon,a,b Béatrice Silvia Orena,c Maria Rosalia Pasca,c Zoia Voitenko,d Christian Lherbet,*a,b Michel Baltas*,a,b

a CNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068; 118 Route de Narbonne, F-31062 Toulouse cedex 9, France

b Université de Toulouse; UPS; Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB; 118 route de Narbonne, F-31062 Toulouse cedex 9, France

c University of Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, via Ferrata 1, 27100 Pavia, Italy

d Taras Shevchenko National University of Kyiv, Department of Chemistry, 64 str. Volodymyrska, Kyiv, 01033, Ukraine

contacting e-mails: lherbet@chimie.ups-tlse.fr, baltas@chimie.ups-tlse.fr

Keywords: Mycobacterium tuberculosis, β-hydroxytriazole, α,β-diketotriazole, oxidation, IBX, inhibition

A new series of β-hydroxytriazoles were synthesized and evaluated as Mycobacterium tuberculosis inhibitors. Our strategy implied the synthesis of alkyne precursors through a Barbier reaction between benzaldehydes and propargyl bromide followed by click chemistry to afford substituted β-hydroxyl benzyltriazoles. These compounds are also key intermediates either for oxidation reactions leading to α,β-diketotriazoles or for elimination reactions affording styryl triazoles. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv resulted in compounds with MIC up to 7 µM.

Introduction

Tuberculosis (TB) is a highly contagious bacterial disease. It remains with malaria and AIDS, one of the biggest causes of death worldwide. For illustration, around 2 million deaths occur each year as a result of this disease [1]. Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), and current chemotherapeutic treatments are based on the use of antibiotics, the most important are: isoniazid (INH), rifampicin, pyrazinamide, ethambutol and streptomycin. Their efficiency was severely compromised by the emergence of multi- and extensively drug-resistant tuberculosis [2]. In the last 10 years, the research on M. tuberculosis has progressed with the genome unrevealed, facilitating the discovery of new targets [3]. Nevertheless, there is an urgent need for new anti-TB drug candidates.
Azole derivatives showed high potency as antimycobacterial drugs [4]. Among them, econazole was very promising to replace the most potent frontline antitubercular drugs namely rifampicin and isoniazid [5]. Recently, different groups reported the synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents [6-7]. Among them, nine hydroxyl-triazoles were evaluated and particularly one compound bearing a n-butyl substituent at position 4 of the triazole (Figure 1, middle) showed the best activity with a MIC of 25 µM. Our group also reported the synthesis of triazole derivatives and their evaluation as *M.tb* inhibitors [8-11]. Among them, several compounds showed interesting MIC values when tested against *M.tb* and *M.tb* antibiotic-resistant strains.

As shown in Scheme 1, β-hydroxytriazoles are synthesized in two steps from commercially available benzaldehydes according to a two-step procedure. α,β-Diketotriazoles and styryltriazoles could be obtained accordingly by oxidation or elimination of the β-hydroxytriazoles.

It has to be noted that this method is more convenient for obtaining α,β-diketotriazoles, the number of commercially available benzaldehydes being significantly higher than that of phenyl acetic acid derivatives [9].

Adopting this synthetic strategy, the first step was the Barbier condensation of propargyl bromide with different commercial benzaldehydes in the presence of zinc in a solution of THF/NH₄Cl (2/1) (Scheme 2). However, the alkyne product was always accompanied, even after flash chromatography purification, by a side product identified as the corresponding ketene (<5% after purification). The triazole intermediates were then readily available by copper-catalyzed alkyne-azide cycloaddition reaction (CuAAC) [13-14]. The results are shown in Table 1. The yields remained good regardless of the different alkyl or benzyl groups bearing various electron-donating or electron-withdrawing substituents.

Chemistry

Results and discussion

Figure 1. Left: Econazole. Middle: Hydroxyl-triazoles tested on *Mycobacterium tuberculosis* H37Rv strain (Kim *et al.*, 2012); Right: Our work: β-hydroxytriazole and related scaffolds with modifications on indicated sites (R, R¹, R² and R³)
In the case of the synthesis of compounds 2r and 2s, the corresponding azides were obtained from commercially available Z and E mixture of geranyl bromide (20% Z isomer by 1H NMR). Then “click” products 2r and 2s were isolated with both stereochemistries Z and E, separable by flash chromatography.

The oxidation of the alcohol derivatives was also investigated to afford α,β-diketotriazoles in one step. A quick check in the literature showed that the conversion of 1,2-diphenylethanol derivatives to the corresponding diketone compound was not fully exploited. Indeed, a few examples showed the formation of benzil analogues through this pathway. In 2011, Urgoitia et al. used two palladacycles in the presence of molecular oxygen in PEG-400, a sustainable reaction media [15]. With a different substrate, diketone product could be obtained also when either MnO₂ or Pd(OAc)₂ was employed as the oxidant [16]. In a different way, 4,7-di-tert-butyl-acenaphthen-1-ol was oxidized to diketone in the presence of SeO₂ (13.5 equiv.) in dioxane under reflux [17].

We used alcohol 2a as a model compound to examine the feasibility of a fully complete oxidation reaction to obtain α,β-diketotriazoles. The results are described in Table 2.

While oxidants like PCC, MnO₂, Döering reagent, Cul/TBHP afforded the desired product only in low or very low yields, 2-iodoxybenzoic acid (IBX) was found to allow the complete conversion of the starting alcohol compound within 2 h (Table 2). The α,β-diketo-derivative was isolated in 64% yield (table 2, entry 5).

Table 1 Synthesis of triazoles.

Alcohols	Yield (%)	Diketones	Yield (%)
2a	70	3a	65
2b	62	3b	78
2c	64	3c	35
2d	40	3d	35
2e	71	3e	26
2f	75	3f	N/A
2g	70	3g	49
2h	71	3h	61
2i	76	3i	82
2j	53	3j	83
2k	67	3k	74
2l	58	3l	N/A
2m	68	3m	N/A
2n	55	3n	N/A
2o	80	3o	N/A
2p	86	3p	N/A
2q	65	3q	N/A
2r	27	3r	N/A
2s	17	3s	N/A
2t	72	3t	50
2u	78	3u	67
A higher amount of IBX did not permit to increase the yield of the reaction (entry 7), while, changing the solvent for DMSO led to a much lower yield (28%) (entry 6). The generation of IBX in situ with 2-iodobenzoic acid (2IBA, 0.6 eq) and oxone (2.4 eq) afforded the oxidation product in 65% (entry 9).

Finally, decreasing the quantity of reactants or lowering the temperature is detrimental to the yield, even after 20 h (entries 8, 10). With this method in hand (entry 9), several \(\beta \)-alcohols were oxidized allowing the obtention of the corresponding \(\alpha,\beta \)-diketotriazoles in good yields as shown in Table 1. However, in the presence of alkoxy substituents on the aromatic moiety, the reaction led to the desired diketo compounds 3c-3e and 3g in poor yields. Furthermore, the product 3f bearing 3,4-dimethoxy substituents was not observed.

Table 2 Screening of reaction conditions for the oxidation to \(\alpha,\beta \)-diketotriazole.

Entry	Oxidant	Solvent	Conditions	Yield (%)
1	PCC (2 eq)	CH\(_2\)Cl\(_2\)	RT, 4 h	23
2	MnO\(_2\) (6 eq)	CH\(_3\)CN	reflux, 7 h	18
3	Doering	CH\(_3\)CN	reflux, 3 h	6
4	CuI (0.1 eq), TBHP (2 * 4 eq)	CH\(_3\)CN	reflux, 20 h	12
5	IBX (1.5 eq)	CH\(_3\)CN	70°C, 20 h	64
6	IBX (1.5 eq)	DMSO	70°C, 20 h	28
7	IBX (3 eq)	CH\(_3\)CN	70°C, 20 h	60
8	2IBA (0.3 eq) + oxone (1.2 eq)	CH\(_3\)CN/H\(_2\)O (2/1)	70°C, 7 h	30
9	2IBA (0.6 eq) + oxone (2.4 eq)	CH\(_3\)CN/H\(_2\)O (2/1)	70°C, 3 h	65
10	2IBA (0.6 eq) + oxone (2.4 eq)	CH\(_3\)CN/H\(_2\)O (2/1)	50°C, 20 h	53

Styryl triazole derivatives are scaffolds possessing various biological properties. For example, they were evaluated as potential ligands for angiogenic growth factors FGF-1, FGF-2 and VEGF [18] but also as candidates for \(\beta \)-amyloid (A\(\beta \)) plaque imaging [19]. The synthesis of styryl derivatives 4a-e was performed in two steps from the corresponding alcohol as shown in Table 3. Formation of the bromide derivative combining triphenyl phosphine and carbon tetrabromide with 2, followed by an elimination step using DBU at room temperature afforded 4a-4e in good yields.

Table 3 Synthesis of styryl derivatives.

Compounds	Yield (%)
4a	37
4b	82
4c	25
4d	52
4e	73

The assignment of \(E \) stereochemistry for all styryl compounds was based on the \(J \) \(\text{CH-CH} \) coupling constant of 16-17 Hz.
Biology

Bacterial growth experiments against M. tuberculosis H37Rv strain

The minimal inhibitory concentration (MIC) values (µg/mL and µM) of all of the synthesized compounds and one standard antitubercular drug (Isoniazid) were determined in triplicate and are shown in Table 4.

Looking first to the results of triazole alcohol systems we evaluated the influence of the substitution on the aromatic ring of the benzyl hydroxyl frame. Among the alkyl or alkoxy substituents the best activity was observed for the compound bearing a p-propoxy one (2d) with a MIC of 14 µM. Halogenation of the aromatic ring leads to compounds with activities depending on the positioning of the halogen. Thus when only the positions 4 (2h, 2t, 2u) or 2 (2i) or 2,6 (2j) of the aromatic ring are halogenated, the activity is weak whatever the halogen. In fact, compounds bearing a 2,4 dichloro substitution on the aromatic ring presented the best inhibitory activities. This indicates the strong influence of the 2,4-dichloro substitution on the MIC activities of all compounds tested, the best inhibitor in this series showing a MIC of 7.2 µM (2k).

Upon examining the different systems attached to the nitrogen atom of the triazole frame, we can notice that any substitution on the benzylic frame is detrimental to the activity. This is also the case for compound 2q bearing a lipophilic C-8 chain. Finally, the best result was obtained for compound 2s, bearing the Z-geranyl chain. It is noteworthy to point out that the E-geranyl analogue is much less active. All these results indicate the fine tuning and the great susceptibility upon activity for any substitution on the nitrogen atom of the triazole frame. Considering the diketo compounds, we can observe that substitution pattern is not as crucial as before.

Table 4 Compounds tested as inhibitory agents of M. tuberculosis growth.

Cpd	MIC (µg/ml)/(µM)	Cpd	MIC (µg/ml)/(µM)
2a	>40/135.4	3a	40/130.1
2b	10/32.3	3b	40/124.5
2c	>40/122.9	3c	5/15.6
2d	5/14.1	3d	40/109.4
2e	>40/122.9	3e	40/118.5
2f	40/112.5	3f	---
2g	40/111.7	3g	20/53.8
2h	>40/121.3	3h	40/117.0
2i	20/60.64	3i	20/60.64
2j	40/109.8	3j	20/53.1
2k	2.5/7.2	3k	5/13.9
2l	>20/52.9	3l	---
2m	20/49	3m	4/9.5
2n	20/52.3	3n	---
2o	20/51	3o	5/13.4
2p	20/55.2	3p	---
2q	20/54	3q	32/80.7
2r	5/12.7	3r	---
2s	>20/50.7	3s	---
2t	40/127.6	3t	40/123.0
2u	20/53.4	3u	40/103.5

Isoniazid 0.05/0.4

In fact, the benzylic moiety can afford substituents on the aromatic ring such as methoxy, 2,4-dichloro, but also substituents on

\(^a\) Reference [11]
the N-1 position of the triazole such as substituted benzylic, phenylethyl and still maintain good inhibitory activity. In that respect, the diketo compounds can afford more flexibility concerning the substitution on both sides of the triazole ring than the corresponding triazolo alcohol derivatives.

Table 5 Activities of the styryl derivatives.

Cpds	MIC (µg/ml)/(µM)
4a	40/112.2
4b	10/28.9
4c	>40/>125.2
4d	>40/>118.5
4e	>40/>130.1

The styryl triazole derivatives were also evaluated. The results showed that they are not good inhibitors of M. tuberculosis excepted for compound 4b with a MIC of 29 µM, bearing the n-propoxy substituent on the aromatic ring. It is also noteworthy to point out that the 2,4-dichloro compound is not active while the corresponding hydroxyl and diketo analogue possess good MIC values.

Cytotoxicities of some selected compounds

Finally, the cytotoxicity of three different compounds was evaluated on two human cell lines, the colon cancer cell line HCT116 and the fibroblast cell line GM637 (Table 6). The two alcohols 2d and 2k are not cytotoxic when tested at 100 µM. For comparison with 2k, the diketo and the styryl derivatives 3k and 4b have no cytotoxicity below 50 µM.

Table 6 Cytotoxicities of compounds 2d, 2k and 3k.

Cpds	IC₅₀ (µM)	IC₅₀ (µM)
	HCT116 strain	GM637H strain
2d	>100	>100
2k	>100	>100
3k	>50	>50
4b	50 < IC₅₀ < 100	50 < IC₅₀ < 100

Conclusions

In summary, the synthesis of a new series of β-hydroxytriazole, α,β-diketotriazole and styryl derivatives and their evaluation as antitubercular inhibitors are reported. Additionally, a convenient method to afford α,β-diketotriazoles from β-hydroxytriazoles was developed in which the key step was the double oxidation of the benzylic moieties using IBX generated \textit{in situ} as oxidant. The antimicrobial activities against \textit{M. tuberculosis} H37Rv of all compounds showed selective trends on the substitution patterns of the triazole ring for the benzylic compounds and to a much lesser extent to the diketo ones. Several derivatives displayed promising MIC values in the range of 7-15 µM with best one (2k) at 7.2 µM.

Experimental section/Computational details

Material

All chemicals were obtained from Aldrich or Acros Organics and used without further purification. Nuclear magnetic resonance spectra were recorded on a Bruker AC 300 spectrometer (¹H and ¹³C NMR). Mass spectrometry (MS) data were obtained on a ThermoQuest TSQ 7000 spectrometer, high-resolution mass spectra (HRMS) were performed on a ThermoFinnigan MAT 95 XL spectrometer using electrospray ionization.
(ESI) methods. IR spectra were recorded on a Perkin Elmer 1725.

Synthesis and characterizations

Synthesis of 1-phenylbut-3-yn-1-ol derivatives:

Zinc (9.4 mmol, 2 eq) was added to a solution of benzaldehyde (4.7 mmol, 1 eq) and propargyl bromide (9.4 mmol, 2 eq) in a mixture (2/1) of THF and a solution of saturated aqueous NH₄Cl. The reaction was stirred vigorously at room temperature for 5 h. Then the reaction mixture was diluted with AcOEt and washed with H₂O. The solvent was dried with MgSO₄, filtered and evaporated under reduced pressure. The desired product was purified on a silica gel column by flash chromatography. These compounds are known for most of them and the spectroscopic data match those reported (1-phenylbut-3-yn-1-ol (1a, 60%) [20], 1-(4-methylphenyl)but-3-yn-1-ol (1b, 66%) [21], 1-(4-methoxyphenyl)but-3-yn-1-ol (1c, 48%) [20], 1-(3-methoxyphenyl)but-3-yn-1-ol (1d, 60%) [20], 1-(3,4-dimethoxyphenyl)but-3-yn-1-ol (1f, 41%) [22], 1-(4-chlorophenyl)but-3-yn-1-ol (1h, 75%) [20], 1-(2-chlorophenyl)but-3-yn-1-ol (1i, 24%) [20], 1-(3,4-dimethoxyphenyl)but-3-yn-1-ol (1f, 41%) [22], 1-(4-propoxyphenyl)but-3-yn-1-ol (1e).

Yield: 57%. ¹H NMR (CDCl₃) δ 7.26 (d, J = 8.4 Hz, 2H); 6.86 (d, J = 8.7 Hz, 2H); 4.78 (t, J = 6.3 Hz, 1H); 3.90 (t, J = 6.6 Hz, 2H); 2.62 (m, 2H); 2.04 (t, J = 2.6 Hz, 1H); 1.79 (m, 2H); 1.03 (t, J = 7.4 Hz, 3H).

1-(3-Chloro-4-methoxyphenyl)but-3-yn-1-ol (1g).

Yield: 61%. ¹H NMR (CDCl₃) δ 7.33 (d, J = 2.2 Hz, 1H); 7.16 (dd, J = 8.5 Hz, 2.1 Hz, 1H); 6.84 (d, J = 8.5 Hz, 1H); 4.71 (t, J = 6.3 Hz, 1H); 3.83 (s, 3H); 2.99 (br s, 1H); 2.53 (dd, J = 6.4 Hz, 2.6 Hz, 2H); 2.04 (t, J = 2.6 Hz, 1H).

Procedure for the synthesis of triazole derivatives:

CuSO₄ (0.2 equiv) and sodium ascorbate (0.4 equiv) were added to a solution of alkyne (0.7 mmol, 1 eq) and azide (0.84 mmol, 1.2 eq) in tBuOH/H₂O (1/1) at room temperature. Then the reaction mixture was diluted with AcOEt and washed with H₂O. The solvent was dried with MgSO₄, filtered and evaporated under reduced pressure. The desired product was purified on a silica gel column by flash chromatography.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-phenylethanol (2a).

White powder. Yield 70%. M.p. 104 °C. M.p.:102 °C. IR (neat, ν/cm⁻¹) 3238; 3119; 1551; 1454; 1425; ¹H NMR (CDCl₃) δ 7.12-7.31 (m, 11H); 5.38 (d, J = 14.9 Hz, 1H); 5.32 (d, J = 14.9 Hz, 1H); 4.96 (t, J = 6.3 Hz, 1H); 3.95 (br s, 1H); 3.03 (d, J = 6.3 Hz, 2H); 13C NMR (CDCl₃) δ 145.0; 143.5; 134.6; 128.8; 128.4; 128.1; 127.7; 127.2; 125.6; 122.1; 72.8; 53.7; 35.3; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₈N₃O:280.1450. Found: 280.1444.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-p-tolylethanol (2b).

White powder. Yield 62%. M.p.: 105 °C. IR (neat, ν/cm⁻¹) 3150; 2921; 1606; 1558; 1497; 1452; ¹H NMR (CDCl₃) δ 7.34 (m, 3H); 7.19 (m, 5H); 7.09 (d, J = 7.9 Hz, 2H); 5.47 (d, J =
14.9 Hz, 1H); 5.41 (d, $J = 14.9$ Hz, 1H); 4.97 (t, $J = 6.3$ Hz, 1H); 3.39 (br s, 1H); 3.05 (d, $J = 6.3$ Hz, 2H); 2.31 (s, 3H); 13C NMR (CDCl$_3$) δ 145.2; 140.6; 137.0; 134.6; 128.93; 128.90; 128.5; 127.8; 125.6; 122.0; 72.9; 53.9; 35.4; 21.0; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{20}$N$_3$O: 294.1606. Found: 294.1609.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(4-methoxyphenyl)ethanol (2c).

White powder. Yield 64%. M.p.: 92 °C. IR (neat, ν/cm$^{-1}$) 3126; 1610; 1584; 1510; 1248; 1H NMR (CDCl$_3$) δ 7.32 (m, 3H); 7.22 (d, $J = 8.7$ Hz, 2H); 7.17 (m, 3H); 6.81 (d, $J = 8.6$ Hz, 2H); 5.43 (d, $J = 8.6$ Hz, 2H); 5.46 (d, $J = 15.1$ Hz, 1H); 5.4 (d, $J = 15.1$ Hz, 1H); 4.96 (br s, 1H); 3.76 (s, 3H); 3.56 (br s, 1H); 3.03 (m, 2H); 13C NMR (CDCl$_3$) δ 158.8; 135.8 (br.); 134.7; 128.9; 128.5; 127.8; 113.6; 72.7; 55.1; 53.9; 35.4; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{20}$N$_3$O$_2$: 310.1556. Found: 310.1556.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(4-propoxyphenyl)ethanol (2d).

White powder. Yield 40%. M.p.: 99 °C. IR (neat, ν/cm$^{-1}$) 2935; 2835; 1516; 1455; 1263; 1138; 1H NMR (CDCl$_3$) δ 7.35 (m, 3H); 7.21 (m, 3H); 6.91 (s, 1H); 6.84 (d, $J = 8.3$ Hz, 1H); 6.77 (d, $J = 8.2$ Hz, 1H); 5.49 (d, $J = 15.0$ Hz, 1H); 5.44 (d, $J = 15.0$ Hz, 1H); 4.98 (br s, 1H); 3.84 (s, 3H); 3.8 (s, 3H); 3.06 (m, 1H); 13C NMR (CDCl$_3$) δ 148.9; 148.3; 136.8; 136.3; 136.2; 129.0; 128.7; 117.9; 110.8; 108.9; 73.0; 55.84; 55.77; 54.0; 35.5; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{20}$H$_{24}$N$_3$O$_2$: 338.1869. Found: 338.1879.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(3-methoxyphenyl)ethanol (2e).

White powder. Yield 71%. M.p. 73 °C. IR (neat, ν/cm$^{-1}$) 3343; 3124; 1611; 15861493; 1432; 1266; 1H NMR (CDCl$_3$) δ 7.32 (m, 3H); 7.19 (m, 4H); 6.89 (d, $J = 2.1$ Hz, 1H); 6.86 (d, $J = 7.6$ Hz, 1H); 6.76 (dd, $J = 8.1$ Hz, 2.7 Hz, 1H); 5.44 (d, $J = 15.0$ Hz, 1H); 5.38 (d, $J = 15.0$ Hz, 1H); 4.96 (t, $J = 6.3$ Hz, 1H); 3.73 (s, 3H); 3.38 (br s, 1H); 3.04 (m, 2H); 13C NMR (CDCl$_3$) δ 159.5; 145.0; 134.6; 129.2; 128.9; 128.5; 127.8; 122.1; 118.0; 113.0; 11.0; 72.9; 55.0; 53.8; 35.3; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{20}$N$_3$O$_2$: 310.1556. Found: 310.1549.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(3,4-dimethoxyphenyl)ethanol (2f).

Brown gum. Yield 75%. IR (neat, ν/cm$^{-1}$) 2935; 2835; 1516; 1455; 1263; 1138; 1H NMR (CDCl$_3$) δ 7.35 (m, 3H); 7.21 (m, 3H); 6.91 (s, 1H); 6.84 (d, $J = 8.3$ Hz, 1H); 6.77 (d, $J = 8.2$ Hz, 1H); 5.49 (d, $J = 15.0$ Hz, 1H); 5.44 (d, $J = 15.0$ Hz, 1H); 4.98 (br s, 1H); 3.84 (s, 3H); 3.8 (s, 3H); 3.06 (m, 1H); 13C NMR (CDCl$_3$) δ 148.9; 148.3; 136.8; 136.3; 136.2; 129.0; 128.7; 117.9; 110.8; 108.9; 73.0; 55.84; 55.77; 54.0; 35.5; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{19}$H$_{21}$N$_3$O$_3$: 339.1583. Found: 339.1586.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(3-chloro-4-methoxyphenyl)ethanol (2g).

White powder. Yield 70%. M.p.: 118 °C. IR (neat, ν/cm$^{-1}$) 3218; 2935; 1516; 1455; 1260; 1H NMR (CDCl$_3$) δ 7.09-7.35 (m, 8H); 6.78 (d, $J = 8.3$ Hz, 2H); 5.42 (d, $J = 15.6$ Hz, 1H); 5.37 (d, $J = 15.6$ Hz, 1H); 4.91 (br s, 1H); 3.81 (s, 3H); 2.98 (br s, 2H); 13C NMR (CDCl$_3$) δ 153.9; 137.2; 137.1; 136.9; 134.5; 128.9; 128.5; 127.7; 127.6; 125.1; 121.9; 111.6; 72.0; 56.0; 53.9; 35.2; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{19}$N$_3$O$_2$: 344.1166. Found: 344.1173.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(3-chlorophenyl)ethanol (2h).

White powder. Yield 71%. M.p.: 115 °C. IR (neat, ν/cm$^{-1}$) 3207; 2929; 1515; 1456; 1435; 1H NMR (CDCl$_3$) δ 7.33 (m, 3H); 7.19 (m, 4H); 7.15 (m, 3H); 5.43 (d, $J = 14.9$ Hz, 1H); 5.37 (d,
$J = 14.9 \text{ Hz}, 1\text{H); } 4.97 \text{ (t, } J = 6.1 \text{ Hz, } 1\text{H); } 4.02 \text{ (br s, } 1\text{H); } 3.00 \text{ (d, } J = 6.2 \text{ Hz, } 2\text{H); } ^{13}\text{C NMR (CDCl}_3\text{) } \delta \text{ 144.7; 142.1; 134.5; 132.8; 128.9; 128.6; 128.2; 127.8; 127.1; 72.2; 53.9; 35.2;}$

HRMS: (DCI/CH$_4$, m/z) calc. for C$_{17}$H$_{17}$N$_3$OCl: 314.1060. Found: 314.1045.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(2-chlorophenyl)ethanol (2i).

White powder. Yield 76%. M.p. 136 °C. IR (neat, ν/cm$^{-1}$) 3207; 2928; 1552; 1455; 1H NMR (CDCl$_3$) δ 7.53 (dd, $J = 7.5$ Hz, 1.9 Hz, 1H); 7.34 (m, 3H); 7.28 (dd, $J = 7.6$ Hz, 1.6 Hz, 1H); 7.13-7.24 (m, 5H); 5.46 (s, 2H); 5.38 (dd, $J = 8.2$ Hz, 1H); 3.68 (br s, 1H); 3.20 (dd, $J = 15.1$ Hz, 8.3 Hz, 1H); 13C NMR (CDCl$_3$) δ 145.0; 140.8; 134.5; 131.4; 129.1; 128.6; 128.3; 127.9; 127.2; 126.9; 121.9; 69.7; 54.0; 53.4; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{17}$H$_{17}$N$_3$OCl: 314.1060. Found: 314.1049.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(2,6-dichlorophenyl)ethanol (2j).

White powder. Yield 53%. M.p.: 110 °C. IR (neat, ν/cm$^{-1}$) 3214; 2923; 1601; 1493; 1467; 1325; 1261. 1H NMR (CDCl$_3$) δ 7.45 (d, $J = 8.4$ Hz, 1H); 7.36 (m, 3H); 7.20 (s, 1H); 7.16 (dd, $J = 8.4$ Hz, 2.1 Hz, 1H); 6.88 (dd, $J = 8.3$ Hz, 2.4 Hz, 1H); 6.77 (m, 2H); 5.42 (s, 2H); 5.33 (dd, $J = 8.0$ Hz, 3.3 Hz, 1H); 3.77 (s, 3H); 13C NMR (CDCl$_3$) δ 139.4; 134.7; 134.3; 129.3; 129.02; 128.96; 128.5; 127.9; 71.1; 54.0; 53.2; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{17}$H$_{16}$N$_3$OCl$_2$: 348.0670. Found: 348.0678.

1-(2,4-Dichlorophenyl)-2-(1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)ethanol (2l).

Colorless oil. Yield 58%. IR (neat, ν/cm$^{-1}$) 3214; 2923; 1601; 1493; 1467; 1325; 1261. 1H NMR (CDCl$_3$) δ 7.43 (d, $J = 8.4$ Hz, 1H); 7.28 (m, 2H); 7.20 (s, 1H); 7.16 (dd, $J = 8.4$ Hz, 2.1 Hz, 1H); 6.88 (dd, $J = 8.3$ Hz, 2.4 Hz, 1H); 6.77 (m, 2H); 5.42 (s, 2H); 5.33 (dd, $J = 8.0$ Hz, 3.3 Hz, 1H); 3.77 (s, 3H); HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{18}$N$_3$O$_2$Cl$_2$: 378.0776. Found: 378.0777.

1-(2,4-Dichlorophenyl)-2-(1-(3,5-dimethoxybenzyl)-1H-1,2,3-triazol-4-yl)ethanol (2m).

Colorless oil. Yield 68%. IR (neat, ν/cm$^{-1}$) 3214; 2923; 1601; 1493; 1467; 1325; 1261. 1H NMR (CDCl$_3$) δ 7.46 (d, $J = 8.4$ Hz, 1H); 7.30 (d, $J = 2.1$ Hz, 1H); 7.21 (s, 1H); 7.19 (dd, $J = 8.5$ Hz, 2.1 Hz, 1H); 6.43 (t, $J = 2.2$ Hz, 1H); 6.36 (d, $J = 2.2$ Hz, 2H); 5.40 (s, 2H); 5.35 (dd, $J = 8.0$ Hz, 3.3 Hz, 1H); 3.76 (s, 6H); 13C NMR (CDCl$_3$) δ 161.3; 144.7; 139.4; 136.5; 133.4; 132.0; 128.9; 128.3; 127.2; 121.9; 106.1; 100.2; 69.4; 55.4; 54.2; 33.0; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{19}$H$_{20}$N$_3$O$_3$Cl$_2$: 408.0882. Found: 408.0880.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(2,4-dichlorophenyl)ethanol (2k).

White powder. Yield %. M.p.: 132 °C. IR (neat, ν/cm$^{-1}$) 3172; 2929; 1604; 1588; 1497; 1461. 1H NMR (CDCl$_3$) δ 7.45 (d, $J = 8.4$ Hz, 1H); 7.36 (m, 3H); 7.29 (d, $J = 2.1$ Hz, 1H); 7.15-7.25 (m, 4H); 5.48 (s, 2H); 5.34 (m, 1H); 4.23 (br s, 1H); 3.17 (dd, $J = 15.0$ Hz, 2.3 Hz, 1H); 2.93 (dd, $J = 15$ Hz, 7.9 Hz, 1H); 13C NMR (CDCl$_3$) δ 139.4; 134.5; 133.3; 131.9; 129.1; 128.9; 128.3; 128.0; 127.2; 69.4; 54.1; 33.0; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{18}$H$_{18}$N$_3$OCl$_2$: 348.0670. Found: 348.0663.

1-(2,4-Dichlorophenyl)-2-(1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)ethanol (2l).
Colorless oil. Yield 55%. IR (neat, v/cm⁻¹) 2927; 1580; 1466; 1323; 1223. ¹H NMR (CDCl₃) δ 7.43 (d, J = 8.4 Hz, 1H); 7.30 (m, 3H); 7.23 (s, 1H); 7.19 (m, 2H); 7.08 (dt, J = 6.8 Hz, 1.8 Hz, 1H); 5.43 (s, 2H); 5.34 (dd, J = 7.9 Hz, 3.5 Hz, 1H); 3.57 (brs, 1H); 3.18 (dd, J = 15.1 Hz, 3.4 Hz, 1H); 2.95 (dd, J = 15.2 Hz, 7.8 Hz, 1H); 13C NMR (CDCl₃) δ 144.8; 139.4; 136.4; 134.9; 133.4; 131.9; 130.3; 128.9; 128.8; 128.3; 127.9; 127.2; 126.0; 69.2; 53.3; 33.1; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₅N₃OCl₃: 382.0281. Found: 382.0271.

1-(2,4-Dichlorophenyl)-2-(1-phenethyl-1H-1,2,3-triazol-4-yl)ethanol (2o).

Colorless oil. Yield 80%. IR (neat, v/cm⁻¹) 3030; 1587; 1559; 1464; 1382; 1215. ¹H NMR (CDCl₃) δ 7.49 (d, J = 8.4 Hz, 1H); 7.20-7.33 (m, 5H); 7.08 (m, 3H); 5.30 (dd, J = 8.2 Hz, 3.0 Hz, 1H); 4.55 (t, J = 7.1 Hz, 2H); 3.39 (brs, 1H); 3.18 (t, J = 7.1 Hz, 2H); 3.14 (dd, J = 15.1 Hz, 3.1 Hz, 1H); 2.95 (dd, J = 15.1 Hz, 8.3 Hz, 1H); 13C NMR (CDCl₃) δ 144.1; 139.5; 133.3; 132.0; 130.5; 129.2; 128.9; 128.3; 127.2; 127.1; 122.3; 69.5; 51.6; 33.0; 30.9; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₁₈N₃OCl₂: 392.0827. Found: 392.0826.

1-(2,4-Dichlorophenyl)-2-(1-octyl-1H-1,2,3-triazol-4-yl)ethanol (2q).

Colorless oil. Yield 65%. IR (neat, v/cm⁻¹) 2954; 2926; 2856; 1589; 1561; 1467; 1380; 1219. ¹H NMR (CDCl₃) δ 7.51 (d, J = 8.4 Hz, 1H); 7.32 (d, J = 2.1 Hz, 1H); 7.22 (dd, J = 8.4 Hz, 2.1 Hz, 1H); 5.35 (dd, J = 8.2 Hz, 3.0 Hz, 1H); 4.30 (t, J = 7.2 Hz, 2H); 3.20 (dd, J = 15.1 Hz, 3.1 Hz, 1H); 2.93 (dd, J = 15.1 Hz, 8.2 Hz, 1H); 1.86 (m, 2H); 1.26 (m, 10H); 0.87 (t, J = 6.7 Hz, 3H); ¹³C NMR (CDCl₃) δ 157.4; 144.0; 139.5; 133.3; 132.0; 130.6; 128.9; 128.5; 128.3; 127.2; 125.1; 122.1; 120.6; 110.3; 69.5; 55.2; 49.9; 33.0; 32.0; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₂₆N₃OCl₂: 370.1453. Found: 370.1446.

(E)-1-(2,4-dichlorophenyl)-2-(1-(3,7-dimethylocta-2,6-dienyl)-1H-1,2,3-triazol-4-yl)ethanol (2r).

Colorless oil. Yield 27%. IR (neat, v/cm⁻¹) 2921; 2850; 1589; 1562; 1467; 1382; 1211. ¹H NMR (CDCl₃) δ 7.54 (d, J = 8.4 Hz, 1H); 7.33 (d, J = 2.1 Hz, 1H); 7.22-7.26 (m, 2H); 5.37 (m, 2H); 5.05 (m, 1H); 4.93 (dd, J = 7.3 Hz, 2H); 3.20 (dd, J = 15.2 Hz, 3.0 Hz, 1H); 2.91 (dd, J = 15.1 Hz, 8.2 Hz, 1H); 2.11 (m, 4H); 1.76 (s, 3H); 1.67 (s, 3H); 1.59 (s, 3H); ¹³C NMR (CDCl₃) δ 144.4; 143.5; 139.5; 133.4; 132.2; 132.0; 128.9; 128.4; 127.2; 121.7; 69.5; 50.3; 33.0; 31.7; 30.2; 29.0; 28.9; 26.4; 22.6; 14.0; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₂₆N₃OCl₂: 394.1453. Found: 394.1438.

(Z)-1-(2,4-dichlorophenyl)-2-(1-(3,7-dimethylocta-2,6-dienyl)-1H-1,2,3-triazol-4-yl)ethanol (2s).

Colorless oil. Yield 17%. IR (neat, v/cm⁻¹). 2923; 2851; 1590; 1562; 1467; 1380; 1220. ¹H
NMR (CDCl₃) δ 7.53 (d, J = 8.4 Hz, 1H); 7.33 (m, 1H); 7.22-7.27 (m, 2H); 5.36 (m, 2H); 5.11 (m, 1H); 4.91 (d, J = 6.9 Hz, 2H); 3.22 (d, J = 15.1 Hz, 1H); 2.94 (m, 1H); 2.21 (d, J = 15.1 Hz, 1H); 1.84 (s, 3H); 1.71 (s, 3H); 1.64 (s, 3H); 13C NMR (CDCl₃) δ 144.4; 143.2; 139.6; 133.4; 132.7; 132.0; 128.9; 128.4; 127.3; 123.1; 121.2; 117.7; 69.5; 47.7; 33.1; 32.0; 26.2; 25.7; 23.4; 17.7; HRMS: (DCI/CH₄, m/z) calc. for C₂₀H₂₆N₃OCl₂: 394.1453. Found: 394.1447.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(4-fluorophenyl)ethanol (2t).

White powder. Yield 72%. M.p.: 100 °C. IR (neat, v/cm⁻¹) 3364; 1603; 1557; 1508; 132; 1177; 1H NMR (CDCl₃) δ 7.30 (m, 3H); 7.15 (m, 5H); 6.88 (t, J = 8.6 Hz, 2H); 5.39 (d, J = 15.1 Hz, 1H); 5.33 (d, J = 15.1 Hz, 1H); 4.95 (m, 1H); 4.35 (br s, 1H); 2.98 (s, 3H); 13C NMR (CDCl₃) δ 161.7 (J_C-F = 245.0 Hz); 139.4; 134.5; 128.8; 128.4; 127.6; 127.3; 127.2; 114.8 (J_C-F = 21.3 Hz); 72.1; 53.7; 35.3; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₇N₃OF: 298.1356. Found: 298.1360.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(4-chlorophenyl)ethane-1,2-dione (3b).

White powder. Yield 78%. M.p.: 137 °C. IR (neat, v/cm⁻¹) 3123; 2920; 1677; 1661; 1604; 1518; 1245; 1H NMR (CDCl₃) δ 8.21 (s, 1H); 7.89 (d, J = 8.3 Hz, 2H); 7.38 (m, 3H); 7.26-7.33 (m, 4H); 5.59 (s, 2H); 4.41 (s, 1H); 3.00 (d, J = 14.9 Hz, 1H); 4.96 (d, J = 6.2 Hz, 2H); 13C NMR (CDCl₃) δ 191.6; 185.7; 146.2; 144.4; 133.3; 130.3; 129.8; 129.6; 129.3; 129.2; 128.4; 128.3; 54.5; 21.9; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₁₆N₃O₂: 306.1243. Found: 306.1244.

Procedure for the synthesis of α,β-diketotriazole derivatives.

2-Iodobenzoic acid (0.6 equiv), oxone (2.4 equiv) were added to a solution of alcohol (mmol, 1 equiv) in 3 mL of AcCN/H₂O (2/1) at room temperature. The reaction mixture was warmed to reflux and was stirred under air for 20 h. Then the solvent was evaporated under reduced pressure and the residue was dissolved in AcOEt. The organic layer was washed with water (3 x 20 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography.

The compounds 3a, 3c and 3k are known for most of them and the spectroscopic data match those reported.[9]

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-p-tolylethane-1,2-dione (3b).

White powder. Yield %. M.p. 98 °C. IR (neat, v/cm⁻¹): 3100; 2943; 1675; 1660; 1595; 1567; 1268; 1H NMR (CDCl₃) δ 8.17 (s, 1H); 8.00 (d, J = 9.0 Hz, 2H); 7.89 (d, J = 9.0 Hz, 2H); 7.13-7.32 (m, 5H); 6.95 (d, J = 9.0 Hz, 2H); 5.60 (s, 2H); 4.00 (t, J = 6.6 Hz, 2H); 1.83 (m, 2H); 1.04 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl₃) δ 190.3; 185.6; 164.7; 144.5; 133.3; 132.8; 129.4; 129.3; 128.4; 114.7; 69.9; 54.5; 22.3; 10.4; HRMS: (DCI/CH₄, m/z) calc. for C₂₀H₂₀N₃O₃: 350.1505. Found: 315.1496.
White powder. Yield 26%. M.p.: 120 °C. IR (neat, v/cm⁻¹) 3101; 2939; 1597; 1461; 1281; 1H NMR (CDCl₃) δ 8.19 (s, 1H); 7.55 (m, 2H); 7.30-7.42 (m, 6H); 7.19 (ddd, J = 8.2 Hz, 2.5 Hz, 1.1 Hz, 1H); 5.60 (m, 2H); 3.84 (s, 3H); 13C NMR (CDCl₃) δ 191.9; 185.6; 159.9; 144.5; 133.5; 133.2; 129.9; 129.4; 129.3; 128.4; 128.1; 123.4; 122.0; 113.1; 55.5; 54.6; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₁₆N₃O₃: 322.1192. Found: 322.1184.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(3-chloro-4-methoxyphenyl)ethane-1,2-dione (3g).

White powder. Yield 49%. M.p.: 139 °C. IR (neat, v/cm⁻¹) 3122; 2926; 1679; 1668; 1593; 1278; 1H NMR (CDCl₃) δ 8.22 (s, 1H); 8.05 (d, J = 2.1 Hz, 1H); 7.93 (dd, J = 8.7 Hz, 2.1 Hz, 1H); 7.29- 7.40 (m, 5H); 6.98 (d, J = 8.7 Hz, 1H); 5.60 (s, 2H); 3.97 (s, 3H); 13C NMR (CDCl₃) δ 189.3; 184.9; 160.2; 144.2; 133.3; 132.0; 131.2; 129.3; 128.5; 128.4; 125.8; 123.5; 111.6; 56.5; 54.5; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₁₅N₃O₃Cl: 356.0802. Found: 356.0801.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(4-chlorophenyl)ethane-1,2-dione (3h).

White powder. Yield 61%. M.p.: 125 °C. IR (neat, v/cm⁻¹) 3119; 2923; 1674; 1587; 1531; 1H NMR (CDCl₃) δ 8.24 (s, 1H); 7.95 (d, J = 8.6 Hz, 2H); 7.46 (d, J = 8.6 Hz, 2H); 7.39 (m, 3H); 7.31 (m, 2H); 5.60 (s, 2H); 13C NMR (CDCl₃) δ 190.5; 184.9; 144.2; 141.6; 133.2; 131.5; 130.6; 129.34; 129.28; 128.42; 128.38; 54.5; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₃N₃O₂Cl: 326.0710. Found: 326.0710.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(2-chlorophenyl)ethane-1,2-dione (3i).

White powder. Yield 82%. M.p.: 125 °C. IR (neat, v/cm⁻¹) 3148; 2922; 1677; 1566; 1H NMR (CDCl₃) δ 8.24 (s, 1H); 7.83 (dd, J = 8.2 Hz, 2.0 Hz, 1H); 7.52 (m, 1H); 7.30-7.45 (m, 7H); 5.61 (m, 2H); 13C NMR (CDCl₃) δ 192.0; 183.5; 143.7; 134.5; 134.0; 133.3; 133.1; 132.0; 130.4; 129.3; 129.2; 128.4; 127.2; 54.5; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₅N₃O₂F: 360.0310. Found: 360.0316.

1-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2-(4-fluorophenyl)ethane-1,2-dione (3t).

White powder. Yield 83%. M.p.: 116 °C. IR (neat, v/cm⁻¹) 3121; 1712; 1690; 1677; 1577; 1430; 1H NMR (CDCl₃) δ 8.50 (s, 1H); 8.06 (d, J = 8.6 Hz, 1H); 8.04 (d, J = 8.7 Hz, 1H); 7.33 (m, 5H); 7.29-7.40 (m, 8H); 5.65 (s, 2H); 13C NMR (CDCl₃) δ 189.7; 178.0; 141.6; 134.6; 133.4; 132.6; 132.2; 130.0; 129.3; 129.2; 128.3; 128.1; 54.5; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₂N₃O₂Cl: 360.0307. Found: 360.0316.

White powder. Yield 83%. M.p.: 125 °C. IR (neat, v/cm⁻¹) 3121; 1712; 1690; 1677; 1577; 1430; 1H NMR (CDCl₃) δ 8.50 (s, 1H); 8.06 (d, J = 8.6 Hz, 1H); 8.04 (d, J = 8.7 Hz, 1H); 7.33 (m, 5H); 7.29-7.40 (m, 8H); 5.65 (s, 2H); 13C NMR (CDCl₃) δ 189.7; 178.0; 141.6; 134.6; 133.4; 132.6; 132.2; 130.0; 129.3; 129.2; 128.3; 128.1; 54.5; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₂N₃O₂Cl: 360.0307. Found: 360.0316.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1-(4-bromophenyl)ethane-1,2-dione (3u).

Yellow powder. M.p.: 130 °C. Yield %. IR (neat, v/cm⁻¹) 3131; 2953; 1690; 1671; 1578; 1515; 1245; 1H NMR (CDCl₃) δ 8.24 (s, 1H); 7.86 (d, J = 8.7 Hz, 2H); 7.62 (d, J = 8.7 Hz, 2H); 7.29-7.40 (m, 5H); 5.60 (s, 2H); 13C NMR (CDCl₃) δ 190.7; 184.8; 144.1; 133.2; 131.4; 131.0; 130.5; 129.3; 129.2; 128.4; 128.3; 54.5;
HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₃N₃O₂Br: 370.0191. Found: 370.0209.

General procedure for elimination reaction.

A mixture of PPh₃ (1.4 equiv.), CBr₄ (1.25 equiv.) and alcohol (0.3 mmol, 1 equiv.) in anhydrous dichloromethane (4 mL) was stirred at room temperature. The progress of the reaction was followed by TLC. The solvent was removed under vacuum and the product was purified by silica gel chromatography using a mixture of petroleum ether/ethyl acetate. The product was used directly for the next step.

DBU (1.5 equiv.) was added in dichloromethane at 4°C and the mixture was stirred at room temperature for 1 h. When the reaction was complete by TLC, the mixture was washed with HCl (1N), brine and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the corresponding styryl derivatives.

(E)-1-Benzyl-4-(4-methoxystyryl)-1H-1,2,3-triazole (4a).

White powder. Yield 37%. M.p.: 183 °C. IR (neat, ν/cm⁻¹): 3107; 3037; 2835; 1606; 1509; 1435; 1260; ¹H NMR (CDCl₃) δ 7.49 (s, 1H); 7.42 (m, 5H); 7.30 (m, 2H); 7.22 (d, J = 16.5 Hz, 1H); 6.92 (d, J = 16.4 Hz, 1H); 6.88 (m, 2H); 5.53 (s, 2H); 3.81 (s, 3H); 13C NMR (CDCl₃) δ 159.5; 147.0; 134.7; 130.3; 129.5; 129.1; 128.7; 128.0; 127.7; 119.8; 114.6; 114.1; 55.3; 54.1; HRMS: (DCI/CH₄, m/z) calc. for C₁₈H₁₈N₃O: 292.1450. Found: 292.1461.

(E)-1-Benzyl-4-(4-propoxystyryl)-1H-1,2,3-triazole (4b).

White powder. Yield 82%. M.p.: 163 °C. IR (neat, ν/cm⁻¹): 3091; 2965; 2878; 1605; 1509; 1253; 1239; ¹H NMR (CDCl₃) δ 7.45 (s, 1H); 7.42 (m, 5H); 7.29 (m, 2H); 7.21 (d, J = 16.5 Hz, 1H); 6.91 (d, J = 16.5 Hz, 1H); 6.87 (d, J = 8.8 Hz, 2H); 5.53 (s, 2H); 3.93 (t, J = 6.6 Hz, 2H); 1.80 (m, 2H); 1.03 (t, J = 7.4 Hz, 3H); ¹C NMR (CDCl₃) δ 159.1; 147.0; 134.7; 130.4; 129.3; 129.1; 128.7; 128.0; 119.7; 114.7; 114.4; 69.5; 54.1; 22.5; 10.5; HRMS: (DCI/CH₄, m/z) calc. for C₂₀H₂₂N₃O: 320.1763. Found: 320.1775.

(E)-1-Benzyl-4-(3,4-dimethoxystyryl)-1H-1,2,3-triazole (4c).

Yellow powder. Yield 25%. M.p.: 194 °C. IR (neat, ν/cm⁻¹): 3104; 2965; 1599; 1581; 1512; 1264; ¹H NMR (CDCl₃) δ 7.46 (s, 1H); 7.28 (m, 2H); 7.19 (d, J = 16.4 Hz, 1H); 7.02 (d, J = 1.9 Hz, 1H); 6.99 (dd, J = 8.3 Hz, J = 1.9 Hz, 1H); 6.93 (d, J = 16.4 Hz, 1H); 6.83 (d, J = 8.2 Hz, 1H); 5.52 (s, 2H); 3.90 (s, 3H); 3.88 (s, 3H); ¹C NMR (CDCl₃) δ 159.1; 147.0; 134.6; 130.4; 129.8; 129.1; 128.7; 128.0; 119.9; 119.8; 114.9; 111.1; 108.5; 55.9; 55.8; 54.1; HRMS: (DCI/CH₄, m/z) calc. for C₁₉H₂₀N₃O₂: 322.1556. Found: 322.1566.

(E)-1-Benzyl-4-(2,4-dichlorostyryl)-1H-1,2,3-triazole (4d).

White powder. Yield 52%. M.p.: 109°C. IR (neat, ν/cm⁻¹): 3099; 2922; 2852; 1554; 1472; 1389; ¹H NMR (CDCl₃) δ 7.57 (s, 1H); 7.55 (d, J = 7.1 Hz, 1H); 7.51 (d, J = 15.9 Hz, 1H); 7.38 (m, 3H); 7.31 (m, 2H); 7.22 (dd, d J = 8.5 Hz, J = 2.1 Hz, 1H); 7.05 (d, J = 16.5 Hz, 1H); 5.55 (s, 2H); ¹C NMR (CDCl₃) δ 146.2; 134.5; 133.83; 133.77; 129.6; 129.2; 128.8; 128.1; 127.3; 127.1; 125.5; 120.6; 120.0; 54.2; HRMS: (DCI/CH₄, m/z) calc. for C₁₇H₁₄N₃Cl₂: 330.0565. Found: 330.0574.

(E)-1-Benzyl-4-(4-bromostyryl)-1H-1,2,3-triazole (4e).

White powder. Yield 73%. M.p.: 180 °C. IR (neat, ν/cm⁻¹): 3090; 3046; 1805; 1487; 1457;
1223; 1H NMR (CDCl$_3$) δ 7.26-7.48 (m, 10H); 7.21 (d, $J = 16.5$ Hz, 1H); 7.02 (d, $J = 16.4$ Hz, 1H); 5.53 (s, 2H); 13C NMR (CDCl$_3$) δ 146.2; 135.6; 134.5; 131.8; 129.3; 129.1; 128.8; 128.0; 127.9; 121.6; 120.4; 117.3; 54.1; HRMS: (DCI/CH$_4$, m/z) calc. for C$_{17}$H$_{15}$N$_3$Br: 340.0449. Found: 340.0461.

Growth conditions and minimum inhibitory concentration (MIC) determination in M. tuberculosis

H37Rv was used as the reference strain. The strains were grown at 37 °C in Middlebrook 7H9 broth (Difco), supplemented with 0.05% Tween 80, or on solid Middlebrook 7H11 medium (Difco) supplemented with oleic acid-albumin-dextrose-catalase (OADC). MICs for the new compounds were determined by means of the micro-broth dilution method. Dilutions of M. tuberculosis wild-type (about 105–106 cfu/ml) were streaked onto 7H11 solid medium containing a range of drug concentrations (0.25 µg/mL to 40 µg/mL). Plates were incubated at 37 °C for about 21 days and the growth was visually evaluated. The lowest drug dilution at which visible growth failed to occur was taken as the MIC value. Results were expressed as the average of at least three independent determinations.

Cytotoxicities.

Human colon cancer cell line HCT116 (ATCC) and human fibroblasts (GM637 cell line) were cultured in DMEM supplemented with 10% fetal calf serum. For cytotoxicity evaluation, 3000 cells were seeded per well in 96-wells plates and, 24 h later, were treated with concentrations ranging from 100 nM to 50 µM (8 replicates for each). After 4 days of treatment, the cytotoxicity of each compound was measured by using the WST-1 kit (Roche).

Acknowledgments

We thank the CNRS and Université Paul Sabatier for financial support.

References

[1] WHO (World Health Organization): http://www.who.int/tb/publications/global_rep ort/2010/en/index.html
[2] S. E. Haydel, Pharmaceuticals 2010, 3, 2268-2290.
[3] S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eigelmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M. A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, B. G. Barrell, Nature 1998, 393, 537-544.
[4] A. Zahoor, S. Sharma, G. K. Khuller, FEMS Microbiol. Lett. 2005, 251, 19-22.
[5] A. Zahoor, S. Sharma, G. K. Khuller, FEMS Microbiol. Lett. 2006, 261, 181-186.
[6] D. Castagnolo, M. Radi, F. Dessi, F. Manetti, M. Saddi, R. Meleddu, A. De Logu, M. Botta, Bioorg. Med. Chem. Lett. 2009, 19, 2203-2205.
[7] S. Kim, S.-N. Cho, T. Oh, P. Kim, Bioorg. Med. Chem. Lett. 2012, 22, 6844-6847.
[8] C. Menendez, S. Gau, C. Lherbet, F. Rodriguez, M. R. Pasca, M. Baltas, Eur. J. Med. Chem. 2011, 46, 5524-5531.
[9] C. Menendez, S. Gau, S. Ladeira, C. Lherbet, M. Baltas, Eur. J. Org. Chem. 2012, 409-416
[10] C Menendez, A Chollet, F Rodriguez, C Inard, MR Pasca, C Lherbet, M Baltas, Eur. J. Med. Chem. 2012, 52, 275-283
[11] C. Menendez, F. Rodriguez, A. L. Ribeiro, F. Zara, C. Frongia, V. Lobjois, N. Saffon, M. R. Pasca, C. Lherbet, M. Baltas, Eur. J. Med. Chem. 2013, 69, 167-173.
[12] T. Matviiuk, F. Rodriguez, N. Saffon, S. Mallet-Ladeira, M. Gorichko, A. L. de Jesus Lopes Ribeiro, M. R. Pasca, C. Lherbet, Z. Voitenko, M. Baltas, *Eur. J. Med. Chem.* **2013**, 70, 37-48.

[13] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, *Angew. Chem. Int. Ed.* **2002**, 41, 2596-2599.

[14] C. W. Tornoe, C. Christensen, M. Meldal, *J. Org. Chem.* **2002**, 67, 3057–3064.

[15] G. Urgoitia, R. SanMartin, M. T. Herrero, E. Dominguez, *Green Chem.* **2011**, 13, 2161-2166.

[16] S. Krishnan, J. T. Bagdanoff, D. C. Ebner, Y. K. Ramtohul, U. K. Tambar, B. M. Stoltz, *J. Am. Chem. Soc.* **2008**, 130, 13745-13754.

[17] H. S. Gill, M. Harmjanz, J. Santa-Maria, I. Finger, M. J. Scott, *Angew. Chem. Int. Ed.* **2004**, 43, 485-490.

[18] L. Liu, C. Li, S. Cochran, S. Jimmink, V. Ferro, *Chem. Med. Chem.* **2012**, 7, 1267-1275.

[19] I. Lee, Y. S. Choe, J. Y. Choi, K.-H. Lee, B.-T. Kim, *J. Med. Chem.* **2012**, 55:883-892.

[20] J.-X. Wang, X. Jia, T. Meng, L. Xin, *Synthesis* **2005**, 17, 2838-2844.

[21] Y. Han, Z. Chi, Y.-Z. Huang, *Synth. Comm.* **1999**, 29, 1287-1296.

[22] A. S. K. Hashmi, T. L. Ruppert, T. Knofel, J. W. Bats, *J. Org. Chem.* **1997**, 62, 7295-7304.

[23] X. Ma, J.-X. Wang, S. Li, K.-H. Wang, D. Huang, *Tetrahedron* **2009**, 65, 8683-8689.