Tumor cells have the ability to induce platelet activation and aggregation. This has been documented to be involved in tumor progression in several types of cancers, such as lung, colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect circulating tumor cells from the deleterious effects of shear forces, shield tumor cells from the immune system, and provide growth factors, facilitating metastatic spread and tumor growth at the original site as well as at the site of metastasis. Herein, we present a wider view on the induction of platelet aggregation by specific factors primarily developed by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins. These factors may be presented on the surface of tumor cells as well as in their microenvironment, and some may trigger more than just one simple receptor–ligand mechanism. For a better understanding, we briefly discuss the physiological role of the factors in the platelet activation process, and subsequently, we provide scientific evidence and discuss their potential role in the progression of specific cancers. Targeting tumor cell-induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new treatment modalities. On the one hand, it may affect patients’ prognosis by enhancing known therapies in advanced-stage tumors. On the other hand, the use of drugs that are mostly easily accessible and widely used in general practice may be an opportunity to propose an unparalleled antitumor prophylaxis. In this review, we present the recent discoveries of mechanisms by which cancer cells activate platelets, and discuss new platelet-targeted therapeutic strategies.

Keywords: TCIPA, platelets, aggregation, activation, cancer
INTRODUCTION

The primary hemostatic function of platelets is well known; however, increasing evidence supports the crucial role of platelets in cancer biology (1, 2). In 1865 Armand Trousseau first described cases of thrombophlebitis in patients with cancer. He emphasized the association of malignancies with the creation of venous and arterial platelet–rich microthrombi in the vasculature (3). Further studies demonstrated that tumor cells can induce platelet activation and aggregation. This mechanism is now called tumor cell–induced platelet aggregation (TCIPA) (4). TCIPA has been documented to be involved in tumorigenesis in several types of cancers including breast (5), lung (6), and pancreatic (7). During TCIPA platelets protect circulating tumor cells from the deleterious effects of shear forces and also preserve the tumor cells from the immune system by creating a physical barrier around cancer cells (8). These actions may contribute to metastatic spread and tumor growth (2). One of the reasons why TCIPA is in the spotlight of current research is the explored possibility to involve antiplatelet drugs in cancer therapy. Targeting TCIPA with antiplatelet drugs may open new ways to affect cancer environment and develop new treatment modalities. In this review we present the recent discoveries of mechanisms explaining platelet activation by cancer cells. Moreover we discuss new platelet–targeted therapeutic strategies as potential inhibitors of TCIPA (Figure 1).

CLOTTING FACTORS

Thrombin

Thrombin is a serine protease playing a pivotal role in blood coagulation (9). It converts fibrinogen into fibrin and activates various coagulation factors including VVIII, IX, XI, and XIII and the protease–activated receptors (PAR) on platelets, endothelial cells, myocytes, and neurons (2). In this process, receptors such as PAR–1, PAR–3, and PAR–4 are activated (1). PAR–1 is the most effective receptor for thrombin (10). There is increasing evidence suggesting a crucial role of thrombin in cancer biology (11). Thrombin is proven to be generated by lung cancer cells (6). Thrombin–activated platelets express factors that facilitate...
contact with tumor cells and inducement to enhance TCIPA through full activation of specific membrane receptors on platelets (12). Similarly, overexpression of the PAR–1 receptor was associated with cancer progression and development. As demonstrated by Cisowski et al., silencing or pharmacologic blocking of PAR–1 results in a significant decrease in motility of the lung cancer cell lines A549 and HOP62 (13). PAR–4 is overexpressed in colorectal and prostate cancer and PAR–3 in kidney and liver cancer (1, 4). Thrombin also increases the surface exposure of GPIIb–IIIa on platelets and tumor cells thereby enhancing the interactions between tumor cells and platelets (15). Another potential mechanism linking thrombin with tumorogenesis is its major function during fibrinogen activation and conversion to fibrin. Thrombin may promote abnormal and upregulated fibrin deposition within the tumor matrix. Fibrin itself has also binding motifs for numerous integrins like GPIIb–IIIa and αVβ3 making it capable of influencing numerous cell types including platelets and tumor cells (12). Interestingly, thrombin may also contribute to breast cancer metastasis via other factors unrelated to the TCIPA mechanism. It cleaves osteopontin (OPN) and thus increases its biological activity. Schulze et al. reported that inhibition of thrombin in breast cancer cells overexpressing OPN leads to its more indolent behavior (16).

Tissue Factor
Tissue factor (TF) is a membrane glycoprotein that is crucial to initiate the extrinsic coagulation cascade (17). Expression of TF has been detected in several types of cancers including breast cancer (18), prostate cancer (19), and lung cancer (20). TF is expressed on the cell membrane to activate the plasmatic coagulation cascade (21) that causes the generation of thrombin which in turn induces platelet activation (22). Furthermore, it has been discovered that TF plays an important role in tumor angiogenesis and progression as well as in metastasis (22). TF expression is under the control of E-cadherin/PTEN–ras and p53. The activation of E-cadherin and K-ras or the loss–of–function of PTEN and p53 results in the implication of the mitogen–activated protein kinase (MAPK)/phosphoinositide–3 kinase (PI3K) signaling pathway and the subsequent increase of TF expression (23–25). High TF expression is correlated with the histological grade and poor prognosis in some tumor types including non–small–cell lung carcinoma (26) and breast cancer (27). In bladder cancer patients, high TF serum levels were previously shown to be associated with rapid disease progression (28). A study by John et al. has shown that despite the high expression of TF in bladder cancer cells, the plasmatic coagulation was not induced. The authors explained this phenomenon by the comparably high levels of thrombomodulin that binds and inactivates thrombin on the cell surface (29). The TF–bearing extracellular vesicles (EVs) can be secreted by cancer cells and thus may trigger TCIPA (30). For instance, Sasano et al. demonstrated that TF–expressing EVs from ovarian cancer cells impact platelet aggregation and thrombosis (31). TF+ EVs from two human pancreatic adenocarcinoma cell lines affect resting platelets and activate them via thrombin generation (30). Geddings and colleagues presented that patients with advanced breast cancer had elevated levels of TF–bearing EVs compared with healthy controls (30).

von Willebrand Factor
von Willebrand factor (vWF) is an adhesive and multimeric glycoprotein present in plasmasynthesized by endothelial cells and megakaryocytes. vWF has a central role in primary hemostasis where it mediates platelet adhesion to the exposed extracellular matrix at the site of vascular damage (32, 33). vWF promotes platelet accumulation in the classical first wave of hemostasis by binding the platelet glycoprotein Ib–IX–V (GPIb–IX–V) complex (32). Monomers of pro–vWF undergo dimerization in the endoplasmic reticulum through C–terminal disulfide bonds and then undergo multimerization in the Golgi apparatus through N–terminal disulfide bonds (34). The newly synthesized vWF multimers are stored in the Weibel–Palade bodies (WPB) of endothelial cells and in the α–granules of megakaryocytes and platelets. vWF occurs in a range of sizes referred to as vWF multimers including ultra–large high–intermediate and low molecular weight forms. In addition to endothelial and platelet–derived vWF, there is also another pool of circulating large heterogeneous multimers composed of repeating monomeric units up to 40,000 kDa in length that are the most biologically active form of vWF. This pool is reported to be released upon endothelial cell activation in response to inflammatory and ischemic injuries (35) and in response to a variety of factors such as thrombin. The high–intermediate vWF exists as a hyposialylated glycoform, rendering it less susceptible to ADAMTS13–mediated proteolysis (37). Intriguingly, tumors may also sequester circulating vWF from plasma into the tumor stroma. It is reported that the main role in this process is played by the collagen–binding motif within the A3 domain of vWF (38). Taking into consideration these properties of vWF, it is more relevant in investigating TCIPA. It is considered that vWF is one of the major platelet adhesion ligands that may also mediate cancer progression and metastasis (39). Upon tumor–induced endothelial cell activation, the vWF within WPB is secreted into the lumen of the blood vessel as well as basolaterally into the subendothelium (40). In the tumor microenvironment, vWF can contribute to increased angiogenesis and vessel permeability and epithelial–mesenchymal transitioning which was reported in osteosarcoma cells (41). Intraluminal accumulation of vWF can result in the deposition of platelet–rich thrombin within the vasculature and serve to increase the number of metastatic foci similar to what was found in the murine melanoma cell lines Ret and B16F10 (42). Yang et al. reported that patients with late–stage gastric cancer had higher serum levels of vWF and suggested that the expression of vWF in gastric cancer cells may contribute to progression in vivo. The authors also found that this may be regulated by the vascular endothelial growth factor (VEGF)–VEGFR2 signaling pathway (43). Endothelial cell activation followed by vWF fiber formation was found to be the main culprit of platelet aggregation in malignant melanoma vasculature (44). On the other hand, Terraube et al. found...
that the presence of vWF plays a protective role against murine melanoma and lung cancer metastasis in vivo (45). Studies reported that gastric cancer cells express vWF secrete it into the circulation and thus mediate TCIPA. vWF potentiates TCIPA while inhibition of this factor reduces platelet–cancer cell interactions (46). vWF–cleaving protease (ADAMTS13) serum levels are associated with poor prognosis and metastasis (47, 48). Jurasz et al. have shown that vWF potentiates the platelet–aggregatory activity of human fibrosarcoma HT1080 cells. This effect appears to be mediated via upregulation of platelet GPIIb/IIIa (49). vWF in addition to promoting pro-inflammatory signaling can also regulate angiogenesis and vascular permeability and therefore can facilitate tumor cell growth and extravasation (50).

ADHESION RECEPTORS

Glycoprotein Ib–IX–V

GPIb–IX–V is a membrane receptor complex originating in megakaryocytes and belonging to the leucine–rich repeat family of proteins. The complex consists of four distinct transmembrane proteins namely GPIbα, GPIbβ, GPIXα, and GPVα and is expressed on platelets. The most important component of the complex is the glycoprotein component GPIbα which contains the binding sites for vWF–selectinthrombinthrombospondinfactor XIIafactor Xkininogen and integrin αMβ2 (Mac-1). GPIb–IX–V plays a critical role in thrombosisinflammationmetastasis and the life cycle of platelets (51–55). One of its functions is the interaction with vWF on sites of vascular injury. The GPIb–IX–V complex binds to vWF and initiates signaling that results in GPIIb–IIIa activation and platelet aggregation (56, 57). Several lines of evidence implicated the role of GPIb–IX–V in TCIPA. GPIb was recently discovered to be expressed in breast cancer cells (22, 58). It plays an important role in tumor–host cell interactions. Deregulated expression of GPIbα is associated with cell transformation and global genomic destabilization (59). Interestingly inhibition of GPIb–IX–V or vWF function reduced platelet–cancer cell interactions suggesting that these receptors play a role in tumor–induced platelet aggregation (58). GPIb–IX–V has also been shown to contribute to tumor malignancy and metastasis in lung cancer (60).

Glycoprotein IIb–IIIa

Glycoprotein IIb–IIIa (GPIIb–IIIa) is an important platelet membrane receptor for fibrinogenfibronectin vWF. It provides adhesive properties and hence is necessary for platelet aggregation (58). The function of the GPIIb–IIIa receptor in TCIPA has been established for decades (61). Platelets recruited in TCIPA can attach to the surface of tumor cells by a GPIIb–IIIa–fibrinogen bridge to secure tumor cells from immune surveillance (62). It also contributes to tumor progression and metastasis (63). Studies on breast cancer cell lines show that expression of the GPIIb–IIIa subunit occurs on the surface of MCF-7 cells and plays an important role in tumor metastasis (58). As demonstrated by Zhang et al., platelet GPIIb–IIIa is involved in the formation of the human melanoma A375 cell complex with platelets. Evidence showed that blocking the function of platelet GPIIa–IIIb by antagonists or antibodies could prevent hematogenous cancer metastasis (64). This mechanism was also observed in a study on lung and prostate cancer cases (64, 65). These results suggest that GPIIa–IIIb plays a key role in tumor progression and metastasismaking it an interesting target for anticancer therapy (64–66). Apart from therapy advances in understanding the TCIPA mechanism may result in developing new highly specific diagnostic methods targeting cancer cells at the molecular level. Yap et al. introduced a specifically designed antibody that binds an activated form of the integrin receptor GPIIb–IIIa. The authors claimed that this method could be a new approach for enhancing ultrasound and PET imaging of tumors (67).

Integrin αvβ3

Integrin αvβ3 is a transmembrane heterodimer which belongs to the family of cell adhesion receptors (68). Platelets express αvβ3 integrin at their surface which binds several adhesive proteins including fibrinogenfibronectin vWF and vitronectin. It is possible that the role of αvβ3 is triggering platelet adhesion and aggregation at sites of vascular injury (69). Moreover the αvβ3 integrin is expressed in breast cancer cells and may influence TCIPA by binding tumor cells to platelets using plasma proteins such as fibrinogen (70). The platelet GPIIb– IIIa can link fibrin with tumor αvβ3 and mediate tumor cell–platelet aggregation (71). In malignant melanoma cells αvβ3 mediates platelet aggregation cell arrest during flow (72). This interaction creates a physical shield around cancer cells by protecting them from the deleterious effects of shear forces and immune cells (71, 72). Interestingly the combined blockade of platelet GPIIb–IIIa and tumor cell–expressed αvβ3 is more effective at inhibiting tumor growth when compared with the single blockade of integrin receptors (73). The role of αvβ3 in tumor biology is even more complex since it plays an important role in tumor angiogenesisprogression and metastasis (73). In recent years many studies have demonstrated that the increased expression of αvβ3 integrin is related to a metastatic phenotype in many types of cancers such as ovarian (74) prostate (75) and breast (76).

GROWTH FACTORS

Vascular Endothelial Growth Factor

VEGF is the basic regulator of vascular growth. The actions of VEGF include the regulation of proliferationmigration and permeability of endothelial cells. VEGF increases the expression of adhesion molecules and coagulation factors. It is stored in high quantities in platelet alpha granules (77). Elevated serum VEGF levels in cancer patients correlate with a poorer prognosis (78, 78). The molecules accumulated in platelets entraped within the tumor matrix are gradually released depending on the protease activity such as the matrix metalloproteinase (MMP) family (79, 80). Extracellular proteases act on VEGF in several ways: on the one hand they can release matrix–bound VEGF on the other hand they can...
supress VEGF's proangiogenic activity. As a result of platelet interaction with cancer cells VEGF is released into the tumor microenvironment and stimulates neoangiogenesis which ultimately enhances tumor growth (77). The overexpression of VEGF is one of the main factors leading to the occurrence and progression of cancer including renal cancer, breast cancer, non-small cell lung cancer, and pancreatic cancer (81). Another source of cellular hypoxia occurring in tumors rapidly overgrowing their blood supply. It induces the production of VEGF through factor-1α. The released VEGF binds to the VEGFR of endothelial cells favoring the formation of tumor-associated microvessels and thus increases tumor oxygen delivery. Decreases hypoxia and contributes to its further growth through positive feedback (82).

Transforming Growth Factor Beta

Platelets are a potent reservoir of transforming growth factor–beta (TGF–β) carrying a higher proportion of this molecule in the blood (up to 40%). Its release from TCIPA is widely described in the literature (83, 84). However, there is no available research on the TGF–β mechanism primarily triggering TCIPA, leaving a promising field for further studies. TGF–β is one of the most pleiotropic cytokines belonging to the transforming growth factor superfamily that includes three different mammalian isoforms (1-3) and many other signaling proteins. TGF–β proteins are produced by all white blood cell lineages. They are secreted in a latent form in which they bind with two other polypeptides: latent TGF–β-binding protein (LTBP) and latency–associated peptide (LAP). Therefore, the regulation of TGF–β levels is unique among other cytokines as they are not dependent on transcription factors but rather on proteases (such as plasmin) catalyzing the release of its active form (85). In this situation, TGF–β may be upregulated by bypassing the transcription factors’ alterations. Activated TGF–β complexes form a serine/threonine kinase complex that binds to TGF–β receptors. These receptors are composed of both type 1 and type 2 receptor subunits. After binding of TGF–β, the type 2 receptor kinase phosphorylates and activates the type 1 receptor kinase that activates different downstream substrates and regulatory proteins. Inducing the transcription of several target genes that promote differentiation, chemotaxis, proliferation, and activation of immune cells (86). Recently, some authors have focused on the role of TGF–β in the downstream activation of VEGF in tumor stroma leading to settling in an environment that is both nutritious through angiogenesis (87) and immunotolerant (88). However, the initial clinical experience with drugs selectively targeting the tumor neovascularization such as bevacizumab, sunitinib, and sorafenib has been sobering: the major clinical responses to these drugs are rare and have minimal effects on overall survival after long-term follow-up (89–91). Some authors have explained that these effects were due to the promotion of compensatory angiogenic pathways (92) as well as to NK attenuation or activation of other intracellular pathways. Another mechanism of TGF–β-related tumorigenesis is the promotion of epithelial–mesenchymal transition (EMT) (93).

Platelet–Derived Growth Factor

Platelet–derived growth factor (PDGF) is a two-chain polypeptide which belongs to the family of growth factors (94) and is a potent cell–cycle regulator acting on multiple levels and affecting numerous tissues and structures. Originally, PDGF was discovered in platelet and PDGF–like peptides have been recognized in various normal and malignant cells encompassing the bone matrix and osteosarcoma cell (95, 96). The mechanism of action of PDGF is mediated by a specific membranous receptor—the platelet–derived growth factor receptor (PDGFR). The receptor belongs to a large family of tyrosine kinases regulating cellular function and proliferation. PDGF is stored in the α–granules of platelets (97). Platelet–tumor cell crosstalk in the tumor microenvironment leads to platelet activation and secretion of stored growth factors. Platelet aggregation induced through the thrombin pathway leads to the release of the whole content from α–granules of platelets including PDGF–β and VEGF (94, 98–100). In addition to its main role of inducing tumor growth, it can also promote angiogenesis and neovascularization (101). On the other hand, PDGF stimulation triggers the repression of platelet aggregation (102). Niitsu et al. demonstrated that the human cell line of fibrosarcoma proliferated more rapidly in a medium containing platelet lysate with PDGF alone, substantially promoting growth activity (103). Tsuuo et al. proved that stimulation with PDGF can affect the growth of metastatic clones of mouse colon adenocarcinoma in a concentration–dependent way. They hypothesized that the PDGF pathway might be engaged in the promotion of metastasis. Accordingly, migrating tumor cells that get arrested in microvessels may attract platelet adherence and activation, ultimately leading to their aggregation and formation of a “safe cuff” (104). It was proven that PDGF can play an important role in the EMT of prostate cancer cells. Overexpression of PDGF–D (a variant of PDGF) in prostate cancer cells was related to enhanced adhesive and invasive behaviors and increased tumor growth (105). An additional example of the impact of PDGF on EMT was demonstrated in hepatic cellular carcinoma and was linked with TGF–β–mediated progression (106). Activation of PDGFR with PDGF was proven to stimulate cellular proliferation in autocrine and paracrine ways (107). A couple of studies have shown that intraplatelet PDGF concentrations were significantly elevated in patients with colorectal cancer when compared to healthy individuals which may indicate an even more important in vivo interaction between platelet–produced PDGF and the tumor microenvironment (108–109). Interestingly, it was shown that PDGF–producing platelets are expressing PDGFR on their own surface allowing autocrine feedback regulation of PDGF release. A study has shown the inhibitory influence of the activated PDGFR–alpha variant on platelet activation (108). The findings presented lead us to the hypothesis that PDGF plays a substantial role in tumor progression and metastasis.

Cysteine Proteases

Cathepsins

Cathepsins are a family of globular proteases that primarily were discovered as intracellularly functioning peptide hydrolases. However, multiple cathepsins have extracellular activity (109). The cathepsin family consists of a number of proteases named from “A” to “X” (110). Cathepsins play different
physiological roles such as bone remodeling and activation of granymes and mast cell proteases triggered by cathepsin K and C respectively. In tumors cathepsins contribute to the maintenance of inflammatory processes. Nevertheless their main function is associated with tumor progression and metastasis. Cysteine cathepsins function in concert with serine proteases and matrix metalloproteinases (111). The expression of human cysteine cathepsins is highly upregulated in numerous cancers such as melanomacolorectal carcinogiblastomaprostate carcinomabreast carcinomalung cancerbladder cancerand gastric cancer (111–113). Cathepsin G seems to be involved in platelet activation in Trousseau syndrome (114): circulating mucins trigger granulocyte activation and in turn granulocytes release cathepsin G which splits syndecan-associated with tumor progression and metastasis. Cysteine cathepsins of the PAR family are secreted to an extracellular matrix as soluble enzymes and B are secreted to an extracellular matrix as soluble enzymes which where they remain in the active form (116–119). It has been found that overactivity of cathepsin K stimulates the initiation of the mTOR signal transduction pathway and thus the proliferation/migration and invasion of NSCLC cells (120). Under physiological conditions cathepsin B participates in the maintenance of cellular metabolism (106). Cathepsin B acts as a cysteine cathepsin often associated with tumor progression (121). Overexpressed cathepsin B level was associated with the notably shorter overall survival of colon cancer patients (122). A strong correlation between cathepsin B expression and tumor angiogenesis/invasion and metastasis has been widely described in the literature (123). Cathepsin B and cancer procoagulant factor (9) were widely described to participate in TCIPA (124–126).

MATRIX METALLOPROTEINASES

MMPs are structurally similar zinc–dependent endopeptidases. The major function of the MMP family is controlled degradation of the extracellular matrix (127). Their influence extends from embryonic development morphogenesis and tissue remodeling to the regulation of vascular reactions and leukocyte and platelet activity (128). MMPs are involved in all steps of cancer progression: from primary tumor development to distant metastasis (129). The expression of MMP-2 on the surface of cancer cells was described in studies conducted on fibrosarcoma and colorectal and breast cancer where the authors have revealed that platelet and MMP-2 manifested by cancer cells contribute to TCIPA (130). Other MMPs of similar function include the membrane type I–matrix metalloproteinase (MT1–MMP). MMP-1 and MMP-9 also involved in platelet aggregation and TCIPA (131–134). MMP-1 expressed on breast cancer cells interacts with both GPIb–α and GPIIIa–β and integrin αvβ3 is responsible for the MMP–mediated stimulation of platelets and tumor cells (135–137) however the mechanism of action is still not completely understood (134). MMPs have presented the ability to stimulate TCIPA in vitro which is similar to cathepsin B (133). MMPs can be released from both platelets and tumor cells in vivo (138).

SIALOMUCIN GLYCOPROTEINS

Podoplanin

Podoplanin (PDPN) is a mucin–type protein that mediates effects on cell migration and adhesion through its multiple partners. During embryonic development it plays a role in blood and lymphatic vessel separation by binding platelet C–type lectin–like receptor 1B (CLEC1B) triggering CLEC1B and MMP2 activation in platelets and leading to platelet activation and/or aggregation (139, 140). PDPN directly interacts with the CLEC2 which promotes platelet aggregation and activation. Although elevated levels of PDPN have been correlated with increased malignancy in different tumors its relevance for tumor progression is still unclear. Recently a hypothesis of two different mechanisms of PDPN–related TCIPA in brain tumor patients has emerged:

1. PDPN may be released into the circulation either in soluble form or on the surface of tumor–derived microvesicles.
2. Circulating tumor cells may be a source of circulating PDPN. Trapping of tumor cells in the venous system might lead to further local platelet activation and aggregation (141).

PDPN is known to contribute to tumor progression by inducing cancer cell migration and tumor invasion connected to the EMT mechanism (145–146) and in the absence of EMT markers (142). High PDPN expression in primary brain tumors is correlated with an increased risk of venous thromboembolism (VTE) (141) cancer progression and overall poor prognosis (143, 144). Therefore PDPN–CLEC2 axis is a potential drug target for both reducing the risk of VTE and improving prognosis (141). Anti–PDPN therapies are expected to be of robust potential for future treatment strategies (145). In recent preclinical studies a few anti–PDPN factors were targeted including types of recombinant immunotoxin NZ (146–148) and CD99a inhibitor of Aggrus/PDPN–induced platelet aggregation recognized to reduce the metastatic potential of HT1080 cells (149).

SOLUBLE MEDIATORS

Adenosine Diphosphate

ADP is a strong proaggregatory factor accumulated in platelet–dense granules and constitutes a secondary mediator of platelet aggregation (124). ADP has the capacity to communicate with platelet receptors P2Y12 and P2Y1 resulting in the activation of platelet aggregation and changes of shape as well as the release of
thromboxane A2 (TXA2) by platelets (150) and other multiple
growth factors (151–153). ADP has been found to be expressed
on cancer cells and involved in TCIPA. The P2Y12 receptor plays
the main role in the process (134, 154). ADP–induced platelet
activation is connected normally to VEGF release. Bambace et al.
proved this by the termination of platelet activation by selective
repression of the P2Y12 receptor (155). Interestingly deregulation
of ADP molecules may influence the reduction of metastases.
Ulucan et al. examined the mouse models of breast cancer and
melanoma metastases treating them with acetylsalicylic acid and
APT102 (a soluble apyrase/ADPase). Their results stand in favor
of anti–ADP therapy in cancer (156).

Thromboxane A2
TXA2 is considered a powerful modulator of platelet activation
and aggregation as well as a stimulator of vascular constriction
which acts via binding to the thromboxane prostaglandin receptor (TP)
(157). TXA2 is considered a crucial molecule associated with
tumor metastasis. Some evidence supported this hypothesis: 1) TXA2
is a strong platelet–aggregatory eicosanoid facilitating the
binding of tumor cell–platelet aggregates to the surface of
endothelial cells (158). 2) TXA2 enhanced the migration and
angiogenesis of endothelial cells in both in–vivo and in–vivo
models (164,165). Furthermore TXA2 and ADP are recognized as
“soluble stimulators” of platelet aggregation (159–161). TXA2
is similar to ADPis secreted in an autocrine/paracrine
manner and triggers platelet activation through positive feedback
(162). The release of both TXA2 and ADP factors stimulates the
conversion of the GPIIb/IIIa receptor into an active form
mediating platelet aggregation. Lian et al. have noticed that both
TXA2 and ADP signaling pathways are prompted during the
MCF–7 cell–initiated TCIPA (162). TXA2 synthesis is catalyzed by
cyclooxygenase 1 (COX–1). COX–1 in platelets enzymatically
converts arachidonic acid into PGG2 and then into PGH2 and
generates prothrombotic TXA2. Lucotti and colleagues have
provided evidence that aspirin reduces the metastasis of different
murine tumors (melanobast breast cancercolorectal cancer) by
inhibition of platelet COX–1 and its product TXA2. High and
medium doses of aspirin reduced the number of metastatic lung
nodules by more than 50%. However the authors concluded that
the use of more specific TXA2 inhibitors such as picotiamide
could be more beneficial since they do not affect gastroprotective
COX–1 products (163). Recent meta–analyses of 88 cohort trials have
revealed that routine aspirin administration correlates with
diminished risk of several types of cancers including
colorectalgastrointestinal breast and prostate. Unexpectedly there was no
correlation with the risk of lung cancer (164).

SELECTINS
P–selectin
P–selectin is a Ca2+-dependent receptor for myeloid cells that binds
to carbohydrates on neutrophils and monocytes (165). It mediates the
interaction of activated endothelial cells or platelets with leukocytes.
The ligands recognized are sialyl–Lewis X (sLeX) and P–selectin
glycoprotein ligand 1 (PSGL–1) (166). P–selectin functions as a cell
adhesion molecule (CAM) on the surfaces of activated endothelial
cells and activated platelets. In inactive endothelium and platelet
is stored within the Weibel–Palade bodies and α–granules respectively.
It is responsible for rapid leukocyte rolling over vascular surfaces
during the initial steps of inflammation. It is widely known that P–
selectin induces TCIPA and thinsupromotes tumor growth (167). The
rapid mobilization of P–selectin primarily to TCIPA was observed in
tumor blood vessels in different species such as oil mice57BL6
mice and nude mice and in different tumor types like lung
carcinomacolon carcinnobreast carcinoma and gliomas in
response to radiotherapy. In contrast normal tissue did not reveal
increased post–treatment expression (168). This may suggest that the
tumor and its environment can stimulate P–selectin to be in a closely
preactivated state ready to externalize when a non–specific trigger
occurs (such as radiation therapy). Other authors noticed P–selectin
upregulation to be triggered by contact with the tumor cell–surface
mucin (169) and non–mucin ligands (170). Mucins associated with
cancer progression are MUC1MUC2MUC4and MUC16. As
demonstrated by Kim et al.large mucin molecules on the surface of
tumor cells bearing multiple P–selectin–binding sites could bridge
tumor cells and P–selectin–expressing platelets (167). These
interactions protect tumor cells within the bloodstream hiding them
from NK cells (1) which could influence metastatic spread and may
also contribute to tumor progression (171). Studies on mice show that
platelet–tumor cell interactions are significantly reduced in P–
selectin–deficient mice and consequently the attenuation of metastasis is
observed. Furthermore enzymatic removal of carcinoma mucins
results in attenuated metastasis comparable to the absence of P–
selectin (172).

An abbreviated description of all aforementioned factors is
gathered in Supplementary Table 1.

TCIPA TARGETING IN CANCER MANAGEMENT
In recent years the successful adoption and implementation of
selective cancer therapies in clinical practice has increased
research efforts aimed to identify and target various anticancer
mechanisms. TCIPA is one of the pathways explored in the
search for new options for cancer treatment. The crosstalk
between plateletstheir receptors released molecules and clotting
factors is subject to extensive and long–time research from
different medical fields. These extensive studies resulted in the
development of blockbuster therapies in cardiology and vascular
medicine. The major principle of those protocols is to affect
aggregation and clotting in a safe and controlled manner on
different regulatory levels. The rich experience gained in the
design of antiplatelet and antithrombotic treatment modalities
may be transferred to oncology. For instance TCIPA is a
mechanism worthy of further studies as it demonstrates the
involvement of platelets in carcinogenesis. It is highly probable
that TCIPA inhibition would be beneficial for patients due to
reduced risk of cancer–related thrombosis and associated clinical
conditions such as strokepulmonary embolism and deep vein
Thrombosis. However, this article focused on exposing antitumor effects mediated by influencing TCIPA. The proof of concept is several studies reporting the potential benefit of targeting TCIPA in various tumors.

Thrombin and Factor X

In pancreatic cancer the expression of the PAR-1 receptor in the tumor microenvironment was proven to drive progression and induce chemoresistance (173). Therefore the next step was to use a thrombin inhibitor in cancer therapy. In a study on mice a direct thrombin inhibitor dabigatran widely used as an anticoagulant drug in numerous indications was employed. The study showed that it significantly potentiated gemcitabine-induced growth inhibition of pancreatic cancer (174).

Dabigatran and a direct factor Xa inhibitor rivaroxaban are known as novel oral anticoagulants (NOACs) and have gained widespread use in medicine. The latter was found to inhibit cancer stem cell (CSC) activity in the in-vitro functional CSC assay of mammosphere formation (175). Then in 2020 it was included in a clinical trial to evaluate the impact of rivaroxaban on tumor progression in ER-negative stage I-III early breast cancer patients. Up to date the results of the trial are still concealed. Another indirect antitumor mechanism of antithrombotic drugs is the reduction of angiogenic potential by limiting the VEGF platelet release (176).

Adhesion Receptors

The inhibition of adhesion receptors using monoclonal antibodies has been already the subject of several studies. Qi et al revealed that inhibition of GPIba leads to reduced interaction between platelets and tumor cells which results in the diminished metastatic potential of lung cancer cells. The study was performed in vitro and in vivo on animal models (177). Another study by Zhang et al. has demonstrated the promising effect of the anti–GPIIIa antibody on lung carcinoma cells in rat models. The mechanism of action was based on the fragmentation of activated platelets (178). The inhibition of GPIIb/IIIa in breast cancer cells was studied by Kononcuzk et al. They have used specific antagonists of GPIIb/IIIa—abciximab and epifibatide—to observe their proapoptotic effect on human breast cancer cells (179). Their promising results encouraged further trials. Another experimental anti–GPIIb/IIIa antagonist is the newly synthesized XV454 tested for its anticancer properties against lung cancer in rats. The results indicated a significant influence of this drug on tumor cell–platelet interaction and metastasis (65).

PDPN and CLEC2

The PDPN–CLEC2 axis might provide a potential drug target for both reducing the risk of VTE and improving prognosis. Anti-PDPN therapies are expected to be of robust potential for future treatment strategies. In recent preclinical studies several molecules were evaluated to interfere with the PDPN–CLEC2 pathway. CD9an inhibitor of PDPN–induced platelet aggregation was recognized to reduce the metastatic potential of human fibrosarcoma cells (149). The recombinant immunotoxin NZ–1–(scdsFv)–PE38KDEL was recognized to delay the growth of glioblastoma and medulloblastoma tumor cells (144). The first synthesized selective inhibitor of PDPN–CLEC2 interaction is the 5-nitrobenzoate compound 2CP. Chang et al. proved its selective TCIPA inhibition on osteosarcoma and glioma cells and cisplatin therapy efficacy augmentation (180).

Soluble Mediators

Another potential target is the ADP receptor P2Y12. The study of Cho et al. has shown that the growth of ovarian cancer in murine models was reduced with the specific P2Y12 inhibitor ticagrelor (181). Aspirin’s effect on platelet–mediated tumor progression is another potential therapeutic target: the study of Guillem–Llobat et al. has proven that COX–1 inhibition by aspirin could lower the metastatic potential of human colon adenocarcinoma cells (182). Ifetrobana potent selective TXA receptor antagonist presumed to be decreasing cancer metastatic potential has been recently included in a second phase clinical trial involving patients with malignant solid tumors at high risk of metastatic recurrence. The results of that trial are planned to be available after 2025 (183).

P–selectin

Studies reported that heparin is an outstanding inhibitor of P–selectin which binds to its natural ligand thus inhibiting the initial platelet–tumor cell interactions. Even a single heparin dose that transiently blocks this interaction is sufficient to prevent long-term organ colonization. These discoveries indicate that P–selectin and its ligands could be a potential therapeutic target (169).

The therapeutic targets among the TCIPA mechanisms are shown in Supplementary Table 2.

CONCLUSION AND FUTURE PERSPECTIVES

Among the unorthodox mechanisms of tumor progression TCIPA has established by far a genuine target for potential therapies. The discussed studies demonstrated the encouraging influence of newly manufactured as well as widely used antiplatelet drugs on the inhibition of tumorogenesis progression and metastasis. These revelations should lay the groundwork for next-level clinical trials to optimize and determine the oncological efficiency of antiplatelet treatment. However because of the simultaneous influence on blood coagulation and the wide variety of individual sensitivity to antiplatelet drugs is still difficult to specify the optimal criteria for such studies. Hopefully further research in the field of TCIPA will soon give us another instrument for aiding antitumor therapies.

AUTHOR CONTRIBUTIONS

The first draft of the manuscript was written by WS, JJ, JD, BK, MK, and AK. Supervision and review were exercised by DG, TD, and JA. All authors contributed to the article and approved the submitted version.
FUNDING

This research was funded by Nicolaus Copernicus University in ToruńFaculty of MedicineCollegium Medicum in Bydgoszcz (Research Task No. 141 within the framework of the Basic Research Activity).

REFERENCES

1. Palacios-Acedo AL, Mégé D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Platelets, Thrombo-Inflammation, and Cancer: Collaborating With the Enemy. *Front Immunol* (2019) 31:1805. doi: 10.3389/fimmu.2019.01805
2. Mezouar S, Frère C, Darbousset R, Mégé D, Crescence L, Dignat-George F, et al. Role of Platelets in Cancer and Cancer-Associated Thrombosis: Experimental and Clinical Evidences. *Thromb Res* (2016) 139:65–76. doi: 10.1016/j.thromres.2016.01.006
3. Contursi A, Sacco A, Grande R, Dovizio M, Patrignani P, Platelets as Crucial Partners for Tumor Metastasis: From Mechanistic Aspects to Pharmacological Targeting. *Cell Mol Life Sci* (2017) 74(19):3491–507. doi: 10.1007/s00018-017-2536-7
4. Jurasz P, Alonso-Escolano D, Radomski MW. Platelet-Cancer Interactions: Mechanisms and Pharmacology of Tumour Cell-Induced Platelet Aggregation. *Br J Pharmacol* (2004) 143(7):819–26. doi: 10.1038/sj.bjp.0706013
5. Zarà M, Canobbio I, Visconte C, Canino J, Torti M, Guidetti GF. Molecular Mechanisms of Platelet Activation and Aggregation Induced by Breast Cancer Cells. *Cell Signal* (2018) 48:45–53. doi: 10.1016/j.cellsig.2018.04.008
6. Heimöller E, Weinel RJ, Heidmann HH, Salge U, Seitz R, Schmitz I, et al. Studies on Tumor-Cell-Induced Platelet Aggregation in Human Lung Cancer Lines. *J Cancer Res Clin Oncol* (1996) 122(12):735–44. doi: 10.1007/BF01209121
7. Heimöller E, Schropp T, Kisker O, Simon B, Seitz R, Weinel RJ, Tumor Cell-Induced Platelet Aggregation In Vitro By Human Pancreatic Cancer Cell Lines. *Encycl Cancer*. (1995) 30(10):1008–16. doi: 10.3109/003652905096346
8. Schlesinger M. Role of Platelets and Platelet Receptors in Cancer Metastasis. *J Hematol Oncol* (2011) 8:125. doi: 10.1186/s13045-018-0669-2
9. Danckwadt S, Hentze MW, Kulozik AE. Pathologies at the Nexus of Blood Coagulation and Inflammation: Thrombin in Hemosiderosis, Cancer, and Beyond. *J Mol Med* (2013) 91(11):1257–71. doi: 10.1007/s00109-013-1074-5
10. Tantry US, Liu F, Chen G, Gurbel PA. Voraparax in the Secondary Prevention of Atherothrombosis. *Expert Rev Cardiovasc Ther* (2015) 13(12):1293–305. doi: 10.1586/14797972.2015.1109447
11. Mitragua A, Yung SL, Sylman JL, Zilberman-Rudenko J, Shirai T, Hebert JF, et al. The Role of Coagulation and Platelets in Colon Associated Cancer Metastasis. *Am J Physiol Cell Physiol* (2019) 316(2):264–74. doi: 10.1152/ajpcell.00367.2018
12. Adams GN, Rosenfeld L, Frederick M, Miller W, Wultz D, Kombrink K, et al. Colon Cancer Growth and Dissemination Reaches Upon Thrombin Stroma PAR1 and Fibrinogen. *Cancer Res* (2015) 75(19):4235–43. doi: 10.1158/0008-5472.CAN-15-0964
13. Ciowski J, O’Callaghan K, Kulopulos A, Yang J, Nguyen N, Deng Q, et al. Targeting Protease-Activated Receptor-1 With Cell-Penetrating Peptide in Lung Cancer. Am J Pathol (2011) 179(1):153–23. doi: 10.1016/j.ajpath.2011.03.025
14. Zhang H, Jiang P, Zheng C, Lee S, Wang W, Zou H. PAR4 Overexpression Promotes Colon Cancer Cell Proliferation and Migration. *Oncol Lett* (2018) 16(5):5745–52. doi: 10.3892/ol.2018.9407
15. Wójcikiewicz MZ, Tang DG, Nelson KK, Wa1 DA, Diglio CA, Hoon KV. Thrombin Enhances Tumor Cell Adhesive and Metastatic Properties Via Increased cxibβ3 Expression on the Cell Surface. *Thromb Res* (1992) 68(3):233–45. doi: 10.1016/0049-3848(92)90081-k
16. Schulze EB, Hedley BD, Goodale D, Postenka CO, Al-Katib W, Tuck AB, et al. The Thrombin Inhibitor Argatroban Reduces Breast Cancer Malignancy and Metastasis via Osteopontin-Dependent and Osteopontin-Independent Mechanisms. *Breast Cancer Res Treat* (2008) 112(2):243–54. doi: 10.1007/s10549-007-9865-4
17. Cole M, Bromberg M. Tissue Factor as a Novel Target for Treatment of Breast Cancer. *OncoLogic*. (2013) 18:14–8. doi: 10.1634/theoncolig.2012-0322
18. Contrino J, Hair G, Kreutzer DL, Rickles FR. *In Situ* Detection of Tissue Factor in Vascular Endothelial Cells: Correlation With the Malignant Phenotype of Human Breast Disease. *Nat Med* (1996) 2(2):209–15. doi: 10.1038/nm296-209
19. Lwaled BA, Lam L, Lasebi M, Cooper AJ. Expression of Tissue Factor and Tissue Factor Pathway Inhibitor in Microparticles and Subcellular Fractions of Normal and Malignant Prostate Cell Lines. *Blood Coagul Fibrinolysis* (2013) 24(3):339–43. doi: 10.1097/MBC.0b013e32835e98a6
20. Eiserenreich A, Zakrzewicz A, Huber K, Thierbach H, Pepke W, Golding-Lan P, et al. Regulation of Pro-Angiogenic Tissue Factor Expression in Hypoxia-Induced Human Lung Cancer Cells. *Oncol Rep* (2013) 30(1):462–70. doi: 10.3892/or.2013.2413
21. Auwerda JRA, Yuana Y, Osanto S, De Maat MPM, Sonneveld P, Bertina RM, et al. Microparticle-Associated Tissue Factor Activity and Venous Thrombosis in Multiple Myeloma. *Thromb Haemost*. (2011) 105(1):14–20. doi: 10.1160/TH10-03-0187
22. Suter CM, Hogg PJ, Price JT, Chong BH, Ward RL. Identification and Characterisation of a Platelet GPIb/V/IX-Like Complex on Human Breast Cancers: Implications for the Metastatic Process. *Japanese J Cancer Res* (2001) 92(10):1082–92. doi: 10.1111/j.1349-7006.2001.tb01636.x
23. Rao B, Gao Y, Huang J, Gao X, Fu X, Huang M, et al. Mutations of P53 and K-Ras Correlate TF Expression in Human Colorectal Cancers: TF Downregulation as a Marker of Poor Prognosis. *Int J Colorectal Dis* (2011) 26(5):593–601. doi: 10.1007/s00384-011-1164-1
24. Lao MT, Klauser C, Leung PCK. E-Cadherin Inhibits Tumor Cell Growth by Suppressing P13K/Akt Signaling via Cat-Eatin-Gfr1-Mediated PTEN Expression. *Oncogene* (2011) 30(24):2753–66. doi: 10.1038/onc.2011.6
25. Rong Y, Belozerov VE, Tucker-burden C, Chen G, Donald L, Olson JJ, et al. Epidermal Growth Factor Receptor and PTEN Modulate Tissue Factor Expression in Glioblastoma Through JunD/Activator Protein-1 Transcriptional Activity. *Cancer Res* (2009) 69(6):2540–9. doi: 10.1158/0008-5472.CAN-08-1547
26. Koomagi R, Volm M. Tissue-Factor Expression and Serum Levels of Human Tissue Factor in Patients With Urological Cancer. *Am J Pathol* (2000) 83(2):164. doi: 10.1016/0002-7832(00)00115-4
27. Ueno T, Toi M, Koike M, Nakamura S, Tominaga T. Tissue Factor-Positive Tumor Microvesicles Activate Platelets and Enhance Thrombosis in Mice. *J Thromb Haemost*. (2016) 14(1):153–66. doi: 10.1111/jth.13181

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.909767/full#supplementary-material
31. Sasano T, Cho MS, Rodriguez-Aguayo C, Bayraktar E, Taki M, Afshar-Kharghan V, et al. Role of Tissue-Factor-Bearing Extracellular Vesicles Released From Ovarian Cancer Cells in Platelet Aggregation In Vitro and Venous Thrombosis in Mice. *Thromb. Updated*. (2021) 2:1–8. doi: 10.1016/j.tu.2020.100020

32. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, et al. A Mouse Model of Severe Von Willebrand Disease: Defects in Hemostasis and Thrombosis. *Proc Natl Acad Sci U.S.A.* (1998) 95 (16):9524–9. doi: 10.1073/pnas.95.16.9524

33. Schick PK, Walker J, Profta B, Denisova I, Bennett V, Synthesis and Secretion of Von Willebrand Factor and Fibroectin in Megakaryocytes at Different Phases of Maturation. *Arterioscler Thromb Vasc Biol* (1997) 17 (2):797–801. doi: 10.1161/01.ATV.17.4.797

34. Katsurazi A, Tuley EA, Bodo I, Saldier J.E. Localization of Disulfide Bonds in the Cystine Knot Domain of Human Von Willebrand Factor. *J Biol Chem* (2000) 275(33):25585–94. doi: 10.1074/jbc.M002654200

35. Gragnano F, Sperlongano S, Golia E, Natale F, Bianchi R, Crisci M, et al. The Role of Von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. *Mediators Inflamm.* (2017) 2017:1–13. doi: 10.1155/2017/5620314

36. De Ceunynck K, De Meyer SF, Vanhoorebeke K. Unwinding the Von Willebrand Factor Strings Puzzle. *Blood* (2013) 121(2):270–7. doi: 10.1182/blood-2012-07-442285

37. McPhetris VT, Van den Begaalde M, Byrne B, O’Sullivan M, Rawley O,’Kenny R, et al. Altered Glycosylation of Platelet-Derived Von Willebrand Factor Confers Resistance to ADAMTS13 Proteolysis. *Blood* (2013) 122(25):4107–10. doi: 10.1182/blood-2013-04-496851

38. Ishihara J, Ishihara A, Sasaki K, Lee SSY, Williford JM, Yasui M, et al. Feedback Modulation of Tumor-Platelet Adhesion In Vitro and Metastasis In Vivo. *J Clin Invest* (1991) 87(1):239–44. doi: 10.1172/jci11976

39. Ware J, Russell S, Ruggeri ZM. Generation and Rescue of a Murine Model of Platelet Dysfunction: The Bernard-Soulier Syndrome. *Proc Natl Acad Sci U.S.A.* (2000) 97(6):2803–8. doi: 10.1073/pnas.050582097

40. Ravantan C, Strassell C, Hechler B, Schuhler S, Chiancone G, Payrastre B, et al. A Central Role of GPIIb-IX in the Procoagulant Function of Platelets That Is Independent of the 45-kDa Gpib-IX-Ter Expressed Extracellular Domain. *Blood* (2010) 116(7):1157–64. doi: 10.1182/blood-2010-01-266080

41. Kato K, Martinez C, Russell S, Norden P, Norden A, Fiering S, et al. Genetic Deletion of Mouse Platelet Glycoprotein IIb Produces a Bernard-Soulier Phenotype With Increased Collagen and Granule Size. *Blood* (2004) 104(8):2339–44. doi: 10.1182/blood-2004-03-114271

42. Kaidi M, Geng JG. P-Selectin Mediates Adhesion of Leukocytes, Platelets, and Cancer Cells in Inflammation, Thrombosis, and Cancer Growth and Metastasis. *Arch Immunol Ther Exp (Warsz)* (2006) 54(2):75–84. doi: 10.1083/jimmunol.2005005-006-0010-6

43. Sakariassen KS, Nievelstein PF, Coller BS, Sixma JJ. The Role of Platelet Membrane Glycoproteins Ib and IIb-IIIa in Platelet Adherence to Human Artery Subendothelium. *Br J Haematol.* (1996) 83(4):681–91. doi: 10.1111/j.1365-2141.1996.tb07552.x

44. Nesbitt WS, Gidiano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP. Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth. *J Cell Biol* (2003) 160:7111–1161. doi: 10.1083/jcb.200207119

45. Oleksowicz L, Mrowiec Z, Schwartz E, Khoshrudi M, Dutcher JP, Puskin E. Characterization of Tumor-Induced Platelet Aggregation. The Role of Immuno-related GPIb and GPIIb IIIa Expression by MCF-7 Breast Cancer Cells. *Thromb Res* (1995) 79(3):261–74. doi: 10.1016/0049-3848(95)00113-6

46. Li Y, Lu J, Cohen D, Prochownik EV. Transformation, Genomic Instability and Senescence Mediated by Platelet/Megakaryocyte Glycoprotein Ibb. *Oncogene* (2008) 27(11):1599–609. doi: 10.1038/onc.1210794

47. Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero J.A, et al. Platelet Glycoprotein Ibb Supports Experimental Lung Metastasis. *Proc Natl Acad Sci U.S.A.* (2007) 104(21):9024–8. doi: 10.1073/pnas.070625104

48. Grossi IM, Taylor JD, Honn KV, Kendall A, Sloane BF, Fitzgerald LA. Inhibition of Human Tumor Cell Induced Platelet Aggregation by Antibodies to Platelet Glycoproteins Ib and IIb-IIIa. *Exp Cell Res* (1987) 186(3):378–83. doi: 10.1016/0014-4827(87)90191-3

49. Lou XL, Sun J, Gong SQ, Yu XF, Gong R, Deng H. Interaction Between Circulating Cancer Cells and Platelets: Clinical Implication. *Clin J Cancer Res* (2015) 25(3):450–60. doi: 10.3978/j.issn.1660-9604.2015.04.10

50. Honn KV, Chen YQ, Timar J, Onoda JM, Hatfield JS, Fligel SEG, et al. αIIbβ3 Integrin Expression and Function in Subpopulations of Murine Tumors. *Exp Cell Res* (2012) 201(1):23–32. doi: 10.1016/j.expGER.92004.07.9344-8

51. Zhang L, Shan X, Meng X, Gu T, Lu Q, Zhang J, et al. The First Integrins β3-Mediated Cellular and Nuclear Targeting Therapeutics for Prostate Cancer. *Biomaterials* (2019) 223:1–10. doi: 10.1016/j.biomaterials.2019.119471

52. Amirkhosravi A, Mousa SA, Amaya M, Blaydes S, Desai H, Meyer T, et al. Inhibition of Tumor Cell-Induced Platelet Aggregation and Lung Metastasis by the Oral Gpilb/IIIa Antagonist XV454. *Thromb Haemost.* (2003) 90:549–63. doi: 10.1160/TH03-02-0102

53. Zhang CM, Liu Y, Gao YG, Shen J, Zheng S, Wei M, et al. Modified Heparins Inhibit Integrin αIIbβ3 Mediated Adhesion of Melanoma Cells to Platelets In
Vitro and In Vivo. *Int J Cancer* (2009) 125(9):2058–65. doi: 10.1002/ijc.24561

67. Yap ME, McFadyen JD, Wang X, Zia NA, Hohmann JD, Ziegler M, et al. Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. *Theranostics* (2017) 7(10):2565–74. doi: 10.7150/thno.19900

68. Stucci S, Tucci M, Passarelli A, Silvestris F. Avß3 Integrin: Pathogenic Role in Osteotropic Tumors. *Crit Rev Oncol Hematol* (2015) 96(1):183–93. doi: 10.1016/j.critrevonc.2015.05.018

69. Lavergne M, Janus-Bell E, Schaff M, Gachet C, Margin PH. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? *Cancers (Basel)* (2017) 9:10. doi: 10.3390/cancers9100133

70. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, et al. Integrin Activation Controls Metastasis in Human Breast Cancer. *Proc Natl Acad Sci U.S.A.* (2001) 98(4):1853–68. doi: 10.1073/pnas.98.4.1853

71. Felding-Habermann B, Habermann R, Felding-Habermann B. Unique Ability of Integrin αβ3 Integrins in Melanoma Cell Adhesion to Activated Platelets Under Flow. *J Biol Chem* (1996) 271(10):5892–900. doi: 10.1074/jbc.271.10.5892

72. Pilch J, Habermann R, Felding-Habermann B. Unique Ability of Integrin Alphav(β3) to Support Tumor Cell Stump Under Dynamic Flow Conditions. *J Biol Chem* (2002) 277(24). doi: 10.1074/jbc.M201630200

73. Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The Relationship Between Bone Metastasis From Human Breast Cancer and Integrin ß3 Expression. *Anticancer Res* (2005) 25(1A):79–83.

74. Battinelli EM, Markens BA, Italiano JE. Release of Angiogenesis Regulatory Proteins From Platelet Alpha Granules: Modulation of Physiologic and Pathologic Angiogenesis. *Biol Blood* (2011) 188(5):1359–69. doi: 10.1182/blood-2011-02-334524

75. Ikeda M, Furukawa H, Imamura H, Shimizu J, Ishida H, Masutani S, et al. Poor Prognosis Associated With Thrombocytopathy in Patients With Gastric Cancer. *Ann Surg Oncol* (2002) 9(3):287–91. doi: 10.1007/BF02573067

76. Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argea V, Lara-Riegos J, et al. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. *Front Oncol* (2019) 6:1370. doi: 10.3389/fonc.2019.01370

77. Vizovicsek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. *Int J Mol Sci* (2021) 22(5):1–30. doi: 10.3390/ijms22052514

78. Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Săftoiu A. VEGF Expression in Pancreatic Cancer and Other Malignancies: A Review of the Literature. *Rom J Intern Med* (2015) 53(3):199–208. doi: 10.1515/rjim-2015-0027

79. Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ. Hyposxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape. *Front Immunol* (2012) 3:21(21). doi: 10.3389/fimmu.2012.00021

80. Takemoto A, Okitaka M, Takagi S, Takami M, Sato S, Nishio M, et al. A Critical Role of Platelet TGF-ß Release in Podoplanin-Mediated Tumor Invasion and Metastasis. *Sci Rep* (2017) 7:1–12. doi: 10.1038/srep42186

81. Labelle M, Begum S, Hynes RO. Direct Signaling Between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. *Cancer Cell* (2011) 20(5):576–90. doi: 10.1016/j.ccr.2011.09.009

82. Labelle M, Begum S, Hynes RO. Direct Signaling Between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. *Cancer Cell* (2011) 20(5):576–90. doi: 10.1016/j.ccr.2011.09.009

83. Massagaïpt J, Tgfß in Cancer. *Cell* (2008) 134(2):215–30. doi: 10.1016/j.cell.2008.07.001

84. Ten Dijke P, Arthur HM. Extracellular Control of Tgfß Signalling in Vascular Development and Disease. *Nat Rev Mol Cell Biol* (2007) 8(11):857–69. doi: 10.1038/nrm2385

85. Czernobilsky A, Neher-Belal D, Florez L, Levacher B, Vasquez T, Brismar F, et al. TGF-ß and VEGF Cooperatively Control the Immunotolerant Tumor Environment and the Efficacy of Cancer Immunotherapies. *JCI Insight* (2016) 1(9):1–16. doi: 10.1172/jci.insight.85974

86. Hainsworth J, Heim W, Berlin J, Baron A, Grifing S, Holmgren E, et al. Bevacizumab Plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. *N Engl J Med* (2004) 350(23):2335–42. doi: 10.1056/NEJMoa060655

87. Szczylik C, Oudard S, Siebel S, Hutson TE, Pharm D, Gore M, et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. *N Engl J Med* (2007) 356(2):125–34. doi: 10.1056/NEJMoa060655

88. Motzer RJ, Hutson TE, Tomczak P, Michaelsoen MD, Bukowski RM, Rixe O, et al. Sunitinib Versus Interferon Alfa in Metastatic Renal Cell Carcinoma. *N Engl J Med* (2015) 372(6):678–96. doi: 10.1056/NEJMoa1500544

89. Casanova O, Hicklin DJ, Bergers G, Hanahan D. Drug Resistance by Evasion of Antiangiogenic Targeting of VEGF Signaling in Late-Stage Pancreatic Islet Tumors. *Cancer Cell* (2005) 8(4):299–309. doi: 10.1016/j.ccr.2005.09.005

90. Miettinen P, Ebner R, Lopez AR, Derynck R. TGF-ß Induced Transdifferentiation of Mammary Epithelial Cells to Mesenchymal Cells: Involvement of Type I Receptors. *J Cell Biol* (1994) 127(11):2021–36. doi: 10.1083/jcb.127.11.2021

91. Yap ML, McFadyen JD, Wang X, Zia NA, Hohmann JD, Ziegler M, et al. Promotes Tumor Growth in Linking Angiogenesis to Immune Escape. *Cancer Cell* (2008) 134(2):215–30. doi: 10.1016/j.cell.2008.07.001
Prostate Cancer: A Preliminary Study. *Thromb Res* (2003) 112(1–2):59–64. doi: 10.1016/j.thromres.2003.10.012

Kazes I, Ellamy I, Sayer JD, Hatmi M, Nguyen G. Platelet Release of Trimeric Complex Components MT1-MMP/TIMP2/MMP2: Involvement in MMP2 Activation and Platelet Aggregation. *Blood* (2000) 96(9):3064–9. doi: 10.1182/blood.V96.9.3064

Chung AWY, Juraz P, Hollenberg MD, Radomski MW. Mechanisms of Action of Protease-Activated Receptor Agonists on Human Platelets. *Br J Pharmacol* (2002) 135(5):1123–32. doi: 10.1038/sj.bjp.0704559

Juraz P, Sawicki G, Duszyn K, Sawicka J, Carlos Miranda IM, Radomski MW. Matrix Metalloproteinase 2 in Tumor Cell-Induced Platelet Aggregation: Regulation by Nitric Oxide. *Cancer Res* (2001) 7(4):646–51.

Alonso-Escudero D, Strongin AW, Chung AW, Deryugina EI, Radomski MW. Membrane Type-1 Matrix Metalloproteinase Stimulates Tumour Cell-Induced Platelet Aggregation: Role of Receptor Glycoproteins. *Br J Pharmacol* (2004) 141(2):241–52. doi: 10.1038/sj.bjp.0705606

Deryugina EI, Bourdon MA, Jungwirth K, Smith JW, Strongin AY. Functional Activation of Integrin αvβ3 in Tumor Cells Expressing Membrane-Type-1 Matrix Metalloproteinase. *Int J Cancer* (2000) 86(1):15–23. doi: 10.1002/(sici)1097-0215(20000401)86:1<15::aid-ijc3>3.0.co;2-b

Martinez A, Salas E, Radomski MW. Matrix Metalloproteinase-2 in Platelet Adhesion to Fibrinogen: Interactions With Nitric Oxide. *Med Sci Monit* (2001) 7(4):646–51.

Gall SW, Lindemann S, Allen L, Medd DJ, Falk JM, McIntyre TM, et al. Outside-In Signals Delivered by Matrix Metalloproteinase-1 Regulate Platelet Function. *Circ Res* (2002) 90(10):1093–9. doi: 10.1161/01.res.0000019241.12299.eb

Deryugina EI, Quigley JP. Matrix Metalloproteinases and Tumor Metastasis. *Cancer Metastasis Rev* (2006) 25(1):103–34. doi: 10.1007/s10555-006-7886-9

Christou CM, Pearce AC, Watson AA, Pollitt AY, Fenton-May AE, et al. Renal Cells Activate the Platelet Receptor CLEC-2 Through Podoplanin. *Biochem J* (2008) 411(1):133–40. doi: 10.1042/BJ20071216

Kaneko MK, Kato Y, Kameyama A, Ito H, Kuno A, Hirabayashi J, et al. Functional Glycosylation of Human Podoplanin: Glycan Structure of Platelet Aggregation-Inducing Factor. *FERS Lett* (2007) 58(2):331–6. doi: 10.1067/fj.fsb.2006.12.044

Riedl J, Preusser M, Nazari PMS, Posch F, Panzer S, Marosi C, et al. Podoplanin Expression in Primary Brain Tumors Riedl J, Preusser M, Seyed Nazari PM, Posch F, Panzer S, Marosi Ch, Birner P, Thaler J, Brostjan Ch, Lütsch D, Berger W, Hainfellner JA, Pabinger I, Ay C. Podoplanin Expression in Primary Brain Tumors Induces Platelet Aggregation and Increases Risk of Venous Thromboembolism. *Blood* (2011) 118(13):1831–9. doi: 10.1182/blood-2010-06-720714

Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor Invasion in the Absence of Epithelial-Mesenchymal Transition: Podoplanin-Mediated Remodeling of the Actin Cytoskeleton. *Cancer Cell* (2006) 9(4):261–72. doi: 10.1016/j.ccell.2006.03.010

Birner P, Posch S, Cristov C, Mihaaylova S, Tounmagnalou-Ouzer K, Natchev S, et al. Mutant IDH1 Inhibits PI3K/Akt Signaling in Human Glioma. *Cancer* (2014) 120(16):2440–7. doi: 10.1002/cncr.2928732

Chandramohan V, Yao B, Kaneko MK, Kato Y, Keir ST, Szafranski SE, et al. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Fails to Block Membrane Type-1 Matrix Metalloproteinase. *Horizons Cancer Res* (2018) 10(11):1. doi: 10.3390/cancers10110441

Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioka Y, Kunita A, et al. Mutant IDH1 Inhibits PI3K/Akt Signaling in Human Glioma. *Cancer* (2014) 120(16):2440–7. doi: 10.1002/cncr.2928732

Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioka Y, Kunita A, et al. Antitumor Activity of Chlomab-2, a Human Chimeric Mouse- Specific Antihuman Podoplanin Antibody, via Antibody-Dependent Cellular Cytotoxicity. *Cancer Med* (2017) 6(4):678–77. doi: 10.2147/camr.s141049

Kaneko MK, Abe S, Ogasawara S, Fuji Y, Yamada S, Murata T, et al. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared With NZ-8 of Kappa Light Chain. *Monoclon Antib Immunodiag Immunother.* (2017) 36(1):25–9. doi: 10.1089/mab.2016.0047
