Supplementary Figure S1: Sampling sites in Canada; a) West Coast, b) the Atlantic Region, and c) Eastern Canada. Adapted from Google Earth.
Supplementary Figure S2: Upset plot to visualize a few types of trees that surrounded the sample traps (including the trees from which traps were suspended). The intersection size number represents the number of times a specific tree combination was found (similar to a Venn diagram), and the set size number corresponds to the number of samples surrounded by a specific type of tree. Most samples were collected from traps placed in forested areas comprising more than one tree species.
Supplementary Figure S3: Fungal species a) evenness (Shannon) and b) true diversity (Shannon) by semiochemical type, and oomycete species c) evenness (Shannon) and d) true diversity (Shannon) by semiochemical type. The ITS1 sequences were used. Pairwise comparison significance calculated with t tests (P value < 0.05 (α)). Different letters (wxy) show a significant difference between the boxplots compared whereas shared letters represent non-significantly different boxplots.

Supplementary Figure S4: Venn diagram of a) fungal species shared or unique to the semiochemical type employed in insect traps prior to species subtraction and b) oomycete species shared or unique to the semiochemical type employed in insect traps prior to species subtraction. All were obtained by amplifying the ITS1 genic region.

Supplementary Material S1: Semiochemicals' composition and additional details.
Each lure set (i.e., C₆C₈, UHR_E_AP, General Longhorn, and Pine Sawyer) was placed on separate traps.

First semiochemical set: C₆C₈.

The first combination (C₆C₈) consisted of racemic 3-hydroxyhexan-2-one (C₆) (Bedoukian Research Inc., Danbury, CT, USA), racemic 3-hydroxyoctan-2-one (C₈) (Bedoukian Research Inc.), and ultra-high release ethanol (UHR EtoH), where each chemical was placed within individual release devices. C₆ and C₈ were verified 99% pure by gas chromatography–mass spectrometry (GC-MS) by the Canadian Forest Service, and loaded into polyethylene pouches by Contech Inc (Delta, BC, Canada). Each pouch contained 1.4 g of either C₆ or C₈. The release rates (at 20°C) were 20 mg/d for C₆, and 25 mg/d for C₈. Two C₆ and two C₈ pouches (semiochemicals) were both placed on a trap to obtain cumulative release rates of 40 to 50 mg/d.

Second semiochemical set: UHR_E_AP.

The second semiochemical set (UHR_E_AP) consisted of UHR EtoH and UHR alpha-pinene. The two chemicals were loaded into separate release devices and placed on an insect trap. The UHR ethanol (95% purity, 121.5 g loaded/pouch) and UHR alpha-pinene [95% (+) enantiomer, 172 g/pouch] lures (Contech Inc., Delta, BC, Canada) had release rates (at 20°C) of 275 mg/d and 2 g/d, respectively. The UHR ethanol and UHR alpha-pinene chemicals were exactly the same throughout this project.

Third semiochemical set: General Longhorn.

The lure set consisted of UHR EtoH, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fuscumol) and (E)-6,10-dimethyl-5,9-undecadien-2-yl (E-fuscumol acetate). Both E-fuscumol and E-fuscumol acetate were synthesized by Bedoukian Research Inc. and placed into polyethylene bubble caps by Contech Inc.; 130 mg/bubble cap of E-fuscumol (release rate = 1 mg/d), and 200 mg/bubble cap of E-fuscumol acetate (release rate = 2 mg/d).

Fourth semiochemical set: Pine Sawyer.

The Pine Sawyer lure set included four separate components consisting of 2-undecyloxy-1-ethanol (monochamol), UHR EtoH, UHR alpha-pinene and racemic 2-methyl-6-methylene-7-octen-4-ol (ipsenol). Monochamol (99.3% purity, 0.025 g/bubble cap) and racemic ipsenol (>99% purity, 0.04 g/bubble cap) were also purchased from Contech Inc. and had release rates (20°C) of 0.2 mg/d and 0.4 mg/d, respectively.

Supplementary Material S2: Fungal OTU, prior to species subtraction.

The most abundant fungi for all semiochemical treatments at the phylum, genus and species (top 10 per semiochemical) taxonomic levels are listed in Supplementary Table S4.

From the 2439 different species OTU detected prior to the species subtraction, 1057 (43%) were common to all semiochemical types, 228 species (9%) were unique to the UHR_E_AP semiochemical, 112 (4.6%) were unique to General Longhorn, 105 (4.3%) were unique to Pine Sawyer, and 118 (4.8%) were unique to the C₆C₈ semiochemical (Supplementary Figure S4a).
To visualize sampling depth, examples of the rarefaction curves obtained for the spore traps (negative control) and their respective original insect dataset, and subtracted insect dataset are shown in Supplementary Figure S5. The spore trap data demonstrated the highest sequencing depth as saturation was obtained for all of the samples tested with a sequence number per species ranging between approximately 5,000 and 25,000 (sequences). The lowest species number obtained by all samples tested was just below 150. In contrast, only part of the samples from both the original insect and the subtracted data reached saturation in their respective rarefaction curves.

Supplementary Material S3: Oomycetes OTU, prior to species subtraction.

The most abundant oomycetes for all semiochemical treatments at the phylum, genus and species (top 10 per semiochemical) taxonomic levels can be found in Supplementary Table S6. Prior to species subtraction, of the total 54 different OTU, there were 21 species detected in all semiochemical types but few were unique to each treatment (Supplementary Figure S4b). *Pythium monospermum* was unique to traps baited with the UHR_E_AP semiochemical. *Pythium oligandrum* was unique to traps baited with the Pine Sawyer semiochemical. Five species were unique to traps baited with the General Longhorn semiochemical (*Peronospora* sp. UPS F-119986, *P. flava*, *P. sparsa*, *Pythium carolinianum*, and *Phytophthora* spp.). No unique species were recovered from traps baited with the C6C8 semiochemical. Within the top ten most abundant species identified, all semiochemicals except C6C8 (0.67%) had a high percentage of *Peronospora manshurica* (Supplementary Table S6). The UHR_E_AP (26.1%) and C6C8 (26.6%) semiochemicals had a considerably higher number of OTU unclassified below genus compared with General Longhorn (traces) and Pine Sawyer (3.02%). Additionally, ATP9-NAD9 OTU from the original dataset generated prior to the species subtraction could only recover *Phytophthora* spp. from traps baited with the C6C8 and UHR_E_AP semiochemicals. *Phytophthora cryptogea* could only be detected from traps baited with the UHR_E_AP semiochemical, whereas *P. foliorum*, *Phytophthora* sp. “kelmania” [87] and *P. syringae* were associated with both C6C8 and UHR_E_AP lures.
Supplementary Table S1: Summary of the samples collected from 2013 to 2015. Specific details associated with samples available upon request.

Semiochemical^a	Year	Number of samples	Canadian provinces
UHR_E_AP	2013	13	British Columbia, New Brunswick, Newfoundland and Labrador, Ontario and Quebec
	2014	26	Ontario and Quebec
CaCs	2013	13	British Columbia, New Brunswick, Newfoundland and Labrador, Ontario and Quebec
	2014	23	
General Longhorn	2015	17	British Columbia, New Brunswick, Newfoundland and Labrador, Ontario and Quebec
Pine Sawyer		16	
Total:	3	**108**	5 Canadian provinces

^aUHR_E_AP = Combination of two semiochemicals (ultra-high release (UHR) ethanol and UHR alpha-pinene) that attract a wide range of bark and wood-boring insects [50,56,57].

CaCs = Combination of three semiochemicals (racemic 3-hydroxyhexan-2-one, racemic 3-hydroxyoctan-2-one, and UHR ethanol). The first two chemicals are aggregation pheromones of some longhorned beetles in the Cerambycinae subfamily [55] but, the addition of UHR ethanol increases attraction to other wood-boring insects.

General Longhorn = Combination of three semiochemicals (UHR ethanol, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fuscumol), and (E)-6,10-dimethyl-5,9-undecadien-2-yl (E-fuscumol acetate)) used to attract Spondylidinae, Lamiinae, and Scolytinae beetles [58,59,72].

Pine Sawyer = Combination of four semiochemicals (2-undecyloxy-1-ethanol (monochamol), UHR ethanol, UHR alpha-pinene, and racemic 2-methyl-6-methylene-7-octen-4-ol (ipsenol)) used to attract longhorned beetles (*Monochamus*) and bark and ambrosia beetles due to the added ethanol and alpha-pinene [48,60,61].
Supplementary Table S2: Presence or absence of amplification as detected by gel electrophoreses using barcoded bidirectional PCR products from 108 environmental insect samples by targeted organisms, and the percentages of positive reactions obtained respectively with each bidirectional primer used.

Primer used to append barcodes	Organism	Target region	Positive PCR	Total PCR	Positive (%)
ITS1-Forward	Fungi	ITS1	90	108	84
ITS1-Reverse	Fungi		98	108	91
ITS1-Forward	Oomycete		12	108	11
ITS1-Reverse	Oomycete		12	108	11
ATP9-NAD9- forward	*Phytophthora* sp.	ATP9-NAD9	8	20	40
Total	220	452	**Average: 47**

*Each PCR included a set of primers but, as presented by Tremblay et al. [62], bidirectional sequencing required one primer per direction to append the sample and organism index (i.e., barcode).

*ITS1 = internal transcribed spacer 1 and ATP9-NAD9 = adenosine triphosphate synthase subunit 9-nicotinamide adenine dinucleotide dehydrogenase subunit 9 spacer.

*Percentage of the number of positive PCR over the total number of reactions done.
Supplementary Table S3: Exotic and native fungal species of interest that are unique to a semiochemical (i.e., post species subtraction), and grouped by the potential damage (= trophic status of concern) associated with those fungi. Also included is a risk level scale in terms of virulence. Identifications based on the ITS1 sequences obtained.

Species	Known damage	Semiochemicals	Presence status	Risk level	Known host(s)	References
Ambrosiella ferruginea	galleries and wounds caused by insect vector (mycangia)	x	N, C	2	conifers and deciduous trees	[135]
Ciborisia whetzelii	anthracnose and ink spot disease	x	N, C	2	aspen and cottonwood	[136-138]
Colletotrichum fructi	anthracnose	x	N	2	grapevine, pepper, black locust, strawberry, water lily, apple, crab apple and protea	[139,140]
Colletotrichum nymphaeae	anthracnose, leaf spot, and bitter rot	x	N	2	citrus orthezia	[141-144]
Devriesia americana	insect pathogen unknown	x	N	2[^1]	citrus orthezia	[145]
Devriesia strelitziiola	death of leaves	x	E	2	Strelitzia spp.	[146,147]
Erysiphe adunca	death of leaves	x	N, C	2	Populus spp. and willow	[148-151]
Erysiphe convolvuli	powdery mildew	x	N, C	2	Calystegia spp. and Convolvulus spp.	[94,152]
Erysiphe cruciferarum x N, C 2 mustard, cabbage, bok choy, and turnip soybean and legumes [153]

Erysiphe diffusa x N 2 flowering trees [154,155]

Erysiphe elevata x N 2 numerous plants in the Asteraceae family [156,157]

Golovinomyces depressus x E 2 wild basil, nettle, white turtlehead, and mint serviceberry, hawthorn, purple loosestrife, crab apple, apricot, cherry, plum, peach and spirea apple, and crab [102,136,158]

Neoerysiphe galeopsidis x N, C 2 [136,153,158,159]

Podosphaera clandestina x N, C 2 [102,136,158]

Podosphaera leucotricha x N, C 2 [102,136,153]

Podosphaera lini x E 2 flowering shrubs [127,152,160]

Podosphaera negeri x E 2 [127,152,161]

Echinodontium tinctorium heart rot and brown stringy rot blue stain and sapstain x N, C 3 hemlock, fir, and cedar [102,136,162,163]

Leptographium sp. needle cast x N, C 1? conifer and hardwood [104-108,164]

Lirula macrosora eyespot of cereal areolate mildew x N, C 3 spruce [136,165]

Meria laricis x N, C 3 larch [102,166]

Mollisia dextrinospora Mycosphaerella areola eyespot of cereal areolate mildew x E 2 cereals [167-169]

Phaeoacremonium inflatipes wilt and decline x N 1? [19,127,171-173]

Phoma glomerata blight, leaf spots, and fruit rot x N, C 2 cotton [127,170]

Quercus spp., Nectandra spp., whitebeam, vine, and quince over 80 different plants [127,136,174-176]
Organism	Disease	Host	Source Codes			
Pucciniastrum circaeae	rust	E	2	shrubs, fir and **Circaea** spp.	[127,177]	
Septoria gladioli	leaf spot and hard rot	x	N, C	2	flowers and corn	[102,136,178]
Siroccoccus conigenus	shoot blight	x	N, C	2	pine, spruce, fir, and hemlock	[102,179,180]
Siroccoccus piceicola	shoot blight	x	N, C	2	spruce	[180,181]
Stagonospora pseudopaludosa	leaf spot	x	E	3	grass	[182]
Teratosphaeria xenocryptica	leaf spot	x	E	2	eucalyptus	[183,184]
Phyllosticta minima	sooty blotch	x	E	3	apple and vine	[187-189]
Sirococcus conigenus	sooty blotch	x	E	3	cherry	[190-192]
Strelitziana mali	sooty blotch	x	E	3	artichoke, tomato, spinach, lettuce, cauliflower, eggplant, pepper, and strawberry	[118,193]
Verticillium isaacii	sooty blotch	x	N	2	handsome fungus beetle	[194]

Loss of wood value

Organism	Disease	Host	Source Codes			
Donkioporia albidofusca	white rot	x	U	5	decaying wood	[94,195]
Melastiza chateri	white rot	x	U	5	decaying wood	[94]
Perenniporia luteola	white rot	x	U	5	decaying wood	[196]
Phlebiopsis sp.	white rot	x	N, C	5	decaying wood	[197,198]
Pleurotus ostreatus	white rot	x	N, C	5	decaying wood	[102,136,138,158,199]
Pluteus eludens	white rot	x	U	5	decaying wood	[94]
Pluteus phlebophorus	white rot	x	U	5	decaying wood	[94]
Ramaria pinicola	white rot	x	U	5	decaying wood	[94]
Steccherinum oreophilum	white rot	x	N, C	5	decaying wood	[136,200]
Trametes cubensis	white rot	x	N	5	decaying wood	[94,201-203]
Antrodia albobrunnea	white rot	x	N, C	5	decaying wood	[204,205]
Sidera lunata	white rot	x	E	5	decaying wood	[94,206]
Species	**Common Name**	**Status**	**VIRULENCE**	**Hosts**	**Reference**	
---------------------------------	--------------------------	------------	---------------	------------------	---------------	
Diatrype disciformis	beech barkspot	x	N, C	3	[136,158,207]	
Hyphodontia microspora	other wood rots	x	E	5	[208,209]	
Phellinus ferruginovelutinus			N, C	3	[102,210,211]	

C.Cs = Racemic 3-hydroxyhexan-2-one (K6), racemic 3-hydroxyoctan-2-one (K8), and ultra-high release ethanol.

General Longhorn = Ultra-high release ethanol, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fascumol), and (E)-6,10-dimethyl-5,9-undecadien-2-y1 (E-fascumol acetate).

Pine Sawyer = 2-undecyloxy-1-ethanol (monocharol), ultra-high release ethanol, ultra-high release alpha-pinene, and racemic 2-methyl-6-methylene-7-octen-4-ol (ipsenol).

b N = the organism is native or reported to be present in North America, C = the organism is native or reported to be present in Canada, E = the organism is not reported or present in North America (exotic), and U = unknown status because information is lacking for Canada and North America.

c Risk associated with the organism on a 1 to 5 scale. 5 = a riskless saprophyte fungus, 4 = a saprophyte fungus capable of causing damages to plants 3 = a weakly-virulent pathogenic fungus, 2 = a moderate virulent pathogenic fungus but common in Canada, and 1 = a highly-virulent pathogenic fungus.

d Assumption based on the impact of species within the same genus.

e Not applicable.

UHR_E_AP = Ultra-high release ethanol and ultra-high release alpha-pinene.
Supplementary Table S4: Operational Taxonomic Units: fungal identification proportion (%) by semiochemical type at the phylum, genus and species (Top 10) taxonomic level using the ITS1 genic region. Data obtained prior to species subtraction.

Semiochemicala	UHR_E_AP	CsCs	General Longhorn	Pine Sawyer
Phylum				
Ascomycota	39.6	41.6	63.9	68.5
Basidiomycota	39.5	40.9	24.2	23.0
Unidentified OTU	17.5	14.2	9.3	5.6
OTU unclassified below				
kingdom	3.1	3.1	2.4	2.4
Chytridiomycota	0.3	0.1	0.1	0.2
Zygomycota	0.1	0.1	0.1	0.2
Glomeromycota	tracesb	1.0	traces	traces
Rozellomyctota	traces	0.5	absent	traces
Genus				
Unidentified OTU	40.5	34.2	29.5	30.0
Rhodotorula	10.0	11.0	traces	3.2
Cystobasidium	7.5	5.5	traces	traces
Cryptococcus	4.3	4.1	5.5	6.1
OTU unclassified below				
family	3.1	3.1	2.4	2.4
Alternaria	2.9	traces	traces	traces
Epicoccum	2.5	5.2	3.3	2.2
Phoma	2.2	3.2	traces	traces
Scopuloides	1.8	traces	traces	traces
Verticillium	1.8	2.2	traces	traces
Hannaella	traces	2.3	traces	traces
Wickerhamomyces	traces	1.8	traces	traces
Aureobasidium	traces	traces	5.3	traces
Leptographium	traces	traces	5.2	4.4
Cladosporium	traces	traces	3.9	7.3
Neurospora	traces	traces	3.2	traces
Kluyveromyces	absent	traces	3.0	traces
Torulaspora	traces	traces	2.3	traces
Candida	traces	traces	traces	8.0
Mycosphaerella	traces	traces	traces	3.1
Geopyxis	traces	traces	traces	2.0
Species				
fungi sp.	17.5	14.2	9.3	5.6
Rhodotorula mucilaginosa	8.2	8.5	tracesb	2.7
Cystobasidium slooffiae	6.4	3.3	traces	traces
Species	C6C8	C6C8 and General Longhorn		
-------------------------------	------	---------------------------		
Ascomycota sp.	5.3	4.5		
OTU unclassified below genus	9.6	3.1		
Epicoccum nigrum	2.5	5.2		
Alternaria alternata	2.5	traces		
Scopuloides hydnoides	1.8	traces		
Verticillium dahliae	1.8	2.2		
Cystobasidium pinicola	traces	2.2		
Hannaella luteola	traces	1.9		
Wickerhamomyces anomalus	traces	1.8		
Leptographium piriiforme	traces	traces		
Aureobasidium pullulans	traces	traces		
Cladosporium exasperatum	traces	traces		
Neurospora terricola	traces	traces		
Kluyveromycetes wickerhamii	absent	absent	2.9	traces
Torulaspora delbrueckii	absent	absent	2.3	traces
Candida sp.	traces	traces		
Mycosphaerellaceae sp.	traces	traces		

*UHR_E_AP – Ultra-high release ethanol and ultra-high release alpha-pinene.\n
*C6C8 = Racemic 3-hydroxyhexan-2-one (K6), racemic 3-hydroxyoctan-2-one (K8), and ultra-high release ethanol.\n
General Longhorn – Ultra-high release ethanol, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fuscumol), and (E)-6,10-dimethyl-5,9-undecadien-2-yl (E-fuscumol acetate).\n
Pine Sawyer – 2-undecyloxy-1-ethanol (monochamol), ultra-high release ethanol, ultra-high release alpha-pinene, and racemic 2-methyl-6-methylene-7-octen-4-ol (ipsenol).\n
*Below 0.01% or not in the top 10 for this semiochemical.

Supplementary Table S5: Unique oomycete species detected in the different semiochemicals after proceeding with species subtraction and using the ITS1 genic region.

Semiochemical*	General Longhorn	C6C8	C6C8 and General Longhorn
Species			
Peronospora farinosa	**Pythium sp. CAL-2011e**	**Pythium sp. BG01**	
Peronospora sp. isolate 079405,59			**Pythium sp. P3862**
Peronospora sp. UPS F-119986			No blast hit
Peronospora sparsa			
Peronospora viciae

Pythium aff. hypogynum

Pythium sp. AvdB-2012

Pythium sp. BP2013k

Pythium sp. CAL-2011f

Pythium sp. P19300/1/3

Saprolegnia sp. SAP1

Total:	11	1	3

a General Longhorn = Ultra-high release ethanol, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fuscumol), and (E)-6,10-dimethyl-5,9-undecadien-2-yl (E-fuscumol acetate).

CcCs = Racemic 3-hydroxyhexan-2-one (K6), racemic 3-hydroxyoctan-2-one (K8), and ultra-high release ethanol.

Supplementary Table S6: Operational taxonomic units: oomycete identification proportion (%) by semiochemical type at the phylum, genus and species (top 10) taxonomic levels using the ITS1 genic region.

Semiochemicala	UHR_E_AP	CcCs	General Longhorn	Pine Sawyer	
Phylum					
Oomycota	73.9	73.4	99.9	96.9	
OTU unclassified	below kingdom	26.1	26.6	0.01	3.02

Genus					
Peronospora	38.7	8.55	64.1	9.39	
OTU unclassified	below family	26.1	26.6	0.01	0.30
Phytophthora	18.4	46.5	16.3	absent	
Pythium	13.1	14.4	17.5	0.14	
Hyaloperonospora	1.90	2.68	0.87	0.15	
Plasmopara	1.72	absent	0.13	absent	
Basidiophora	0.13	1.34	1.07	0.01	
Saprolegnia	absent	absent	tracesb	traces	

Species					
Peronospora					
manshurica	26.7	0.67	61.3	84.9	
OTU unclassified	below genus	26.1	26.6	tracesb	3.02
Phytophthora sp.	18.04	46.2	16.3	traces	
Peronospora aestivalis	8.20	2.82	1.36	1.47	
Species	C6	C8	C9	C10	C11
Pythium sp. CAL-2011e	4.61	11.4	NAc	NA	NA
Pythium hypogynum	4.14	1.63	traces	traces	traces
Peronospora alta	2.11	4.59	0.002	3.16	
Pythium sp. BG01	1.80	NA	17.1	NA	
Plasmopara viticola	1.72	NA	traces	traces	traces
Hyaloperonospora brassicae	1.42	traces	0.75	0.39	
Hyaloperonospora parasitica	traces	2.43	0.001	1.10	
Basidiophora entospora	traces	1.34	1.07	traces	
Pythium catenulatum	NA	0.32	0.23	traces	
Peronospora polygoni	0.01	traces	0.49	2.95	
Peronospora variabilis	traces	traces	0.40	0.83	
Peronospora sepium	traces	traces	0.19	traces	
Pythium sp. 3862	traces	traces	traces	0.96	
Peronospora arthuri	traces	NA	traces	0.29	

aUHR_E_AP = Ultra-high release ethanol and ultra-high release alpha-pinene.

bGCs = Racemic 3-hydroxyhexan-2-one (K6), racemic 3-hydroxyoctan-2-one (K8), and ultra-high release ethanol.

cGeneral Longhorn = Ultra-high release ethanol, (E)-6,10-dimethyl-5,9-undecadien-2-ol (E-fuscumol), and (E)-6,10-dimethyl-5,9-undecadien-2-yl (E-fuscumol acetate).

dPine Sawyer = 2-undecyloxy-1-ethanol (monochamol), ultra-high release ethanol, ultra-high release alpha-pinene, and racemic 2-methyl-6-methylene-7-octen-4-ol (ipsenol).

eBelow 0.01% or not in the top 10 for this semiochemical.

fNot applicable or not in the top 10 for this semiochemical.

Supplementary Figure S5: Rarefaction curves (number of sequences obtained for each species) for a) spore trap samples and their respective b) insect trap samples (original data), and c) insect trap samples (subtracted data) to visualize sequencing depth.