Behavior of observables for neutral meson decaying to two vectors in the presence of T, CP, and CPT violation in mixing only

Anirban Karan1,* and Abinash Kumar Nayak5,†

1Department of Physics, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
2Department of Theoretical Physics, The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

(Received 3 September 2019; published 30 January 2020)

When a neutral meson (\bar{P}^0 or P^0) decays to two vector particles, a large number of observables can be constructed from the differential decay rate based on the polarization of the final state. But, theoretically, all of them are not independent to each other and hence, some relations among observables emerge. These relations have been well studied in the scenario with no T and CP violations in neutral meson mixing and no direct CP violation as well. In this paper, we have studied the relations among observables in the presence of T, CP, and CPT violating effects in mixing only. We find that except for four of them, all the other old relations get violated and new relations appear if T and CPT violations in mixing are present. The invalidity of these relation will signify the presence of direct violation of T, CP, and CPT (i.e., a violation in the decay itself).

DOI: 10.1103/PhysRevD.101.015027

I. INTRODUCTION

CPT invariance is believed to be a sacred principle of any locally Lorentz invariant quantum field theory. In any axiomatic quantum field theory, this discrete symmetry emerges to be exact up to any order. It has a direct connection with the preservation of Lorentz symmetry [1,2]. Because of its great theoretical importance, it is necessary to test the validity of this principle experimentally. CPT invariance predicts the masses or lifetimes of any particle and its anti-particle to be the same, which has been tested for lots of particles through direct experiments [3].

When a neutral meson (ϕ) decays to two vector particles, a large number of observables can be constructed from the differential decay rate based on the polarization of the final state. But, theoretically, all of them are not independent to each other and hence, some relations among observables emerge. These relations have been well studied in the scenario with no T and CP violations in neutral meson mixing and no direct CP violation as well. In this paper, we have studied the relations among observables in the presence of T, CP, and CPT violating effects in mixing only. We find that except for four of them, all the other old relations get violated and new relations appear if T and CPT violations in mixing are present. The invalidity of these relation will signify the presence of direct violation of T, CP, and CPT (i.e., a violation in the decay itself).

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

*kanirban@iith.ac.in
†abinashkn@imsc.res.in

Published by the American Physical Society
final state. But, all of these observables will not be independent to each other and hence there emerge various relations among them. In Refs. [23,24], these relations have been discussed in the context of the SM scenario only for the modes B_d^0 or \bar{B}_d^0 decaying to two vectors. In this paper, we study these relations in the presence of T, CP, and CPT violations in mixing only. We have confined our analysis to the case where CPT violation is small compared to the SM amplitude, which is justified based on the data from several experiments [7,8,12,18,21]. Since independent theoretical parameters for this case are more in number than the SM scenario, it is expected to obtain a fewer number of relations among observables. We find that except for four, all the other old relations in the SM get violated and new relations appear if T and CPT violations in mixing are present. These new relations will hold true even if the T, CP, and CPT violations become zero; however, they will not form the complete set of relations in that case as they are fewer in number. These new relations will break down only if T, CP, and CPT violating effects are present in decay too (i.e., direct violation).

The paper is organized as follows. In the next section, we briefly describe the theoretical formalism for CPT violation in $P^0 - \bar{P}^0$ mixing and express the time dependent differential decay rate of P^0 and \bar{P}^0 in terms of the mixing parameters. In Sec. III, we construct helicity-dependent observables from the differential decay rates and express them in terms of T, CP, and CPT violating parameters assuming T and CPT violations in mixing to be very small. We also solve for all the unknown theoretical parameters as functions of the observables. In Sec. IV, we establish the independent relations among these observables in the SM case and the scenario with the presence of T and CPT violations in mixing separately. We also discuss how these relations can help us in distinguishing three different scenarios: (a) the SM case; (b) T, CP, and CPT violation in mixing; and (c) direct violation of T, CP, and CPT. Finally, we summarize and conclude in Sec. V.

II. THEORETICAL FORMALISM

We begin by reviewing the most general formalism for $P^0 - \bar{P}^0$ mixing, in which CPT and T violations are incorporated. This formalism has already been discussed in Ref. [19]; however, for the sake of completeness we present it in this section. In the $(P^0 - \bar{P}^0)$ basis, the generic mixing Hamiltonian can be expressed in terms of two 2×2 Hermitian matrices M and Γ, respectively, the mass and decay matrices, as $M - (i/2) \Gamma$. It should be noticed that the mixing matrix $M - (i/2) \Gamma$ is non-Hermitian and it is justified as the probability of finding P^0 and P^0 decreases with time due to the presence of the non-null decay matrix Γ. Now, since any 2×2 matrix can be expanded in terms of three Pauli matrices σ_i and identity matrix I with complex coefficients, we can write

$$M - \frac{i}{2} \Gamma = E \sin \theta \cos \phi \sigma_1 + E \sin \theta \sin \phi \sigma_2 + E \cos \theta \sigma_3 - iD I$$

(1)

where E, θ, ϕ, and D are complex entities in general. Comparing both sides of this equation, we obtain

$$D = \frac{i}{2} \left(M_{11} + M_{22} \right) + \frac{1}{4} \left(\Gamma_{11} + \Gamma_{22} \right),$$

$$E \cos \theta = \frac{1}{2} \left(M_{11} - M_{22} \right) - \frac{i}{4} \left(\Gamma_{11} - \Gamma_{22} \right),$$

$$E \sin \theta \cos \phi = \text{Re} M_{12} - \frac{i}{2} \text{Re} \Gamma_{12},$$

$$E \sin \theta \sin \phi = -\text{Im} M_{12} + \frac{i}{2} \text{Im} \Gamma_{12},$$

(2)

where M_{ij} and Γ_{ij} are (i,j)-th elements of M and Γ matrices, respectively.

The eigenvectors of the mixing Hamiltonian $M - (i/2) \Gamma$ are the mass eigenstates ($|P_L\rangle$ and $|P_H\rangle$) and they can be expressed as linear combinations of the flavor eigenstates ($|P^0\rangle$ and $|\bar{P}^0\rangle$) as follows:

$$|P_L\rangle = p_1 |P^0\rangle + q_1 |\bar{P}^0\rangle,$$

$$|P_H\rangle = p_2 |P^0\rangle - q_2 |\bar{P}^0\rangle,$$

(3)

where $p_1 = N_1 \cos \theta, q_1 = N_1 e^{i\phi} \sin \theta, p_2 = N_2 \sin \theta$, and $q_2 = N_2 e^{i\phi} \cos \theta$ with N_1, N_2 being two normalization factors and the L, H tags indicate light and heavy physical states, respectively. Since, the physical states, as given by Eq. (3), depend only on the parameters θ and ϕ, they are called the mixing parameters for the $P^0 - \bar{P}^0$ system. It should be noticed that the physical states are not orthogonal in general since the mixing matrix is non-Hermitian.

The time evolution of flavor states ($|B^0\rangle \equiv |B^0(t=0)\rangle$ and $|\bar{B}^0\rangle \equiv |\bar{B}^0(t=0)\rangle$) are given by

$$|P^0(t)\rangle = h_+ |P^0\rangle + h_- \cos \theta |P^0\rangle + h_- e^{i\phi} \sin \theta |\bar{P}^0\rangle,$$

$$|\bar{P}^0(t)\rangle = h_+ |\bar{P}^0\rangle - h_- \cos \theta |\bar{P}^0\rangle + h_- e^{-i\phi} \sin \theta |P^0\rangle,$$

(4)

where

$$h_+ = e^{-i(M-\Gamma/2)t} \cos \left[\frac{(\Delta M - i \Delta \Gamma)}{2} \frac{t}{2} \right],$$

$$h_- = e^{-i(M-\Gamma/2)t} i \sin \left[\frac{(\Delta M - i \Delta \Gamma)}{2} \frac{t}{2} \right].$$

(5)

Here $M = (M_H + M_L)/2$, $\Delta M = M_H - M_L$, $\Gamma = (\Gamma_H + \Gamma_L)/2$, and $\Delta \Gamma = \Gamma_H - \Gamma_L$ with $M_{L,H}$ and $\Gamma_{L,H}$ to be masses and decay widths of the light and heavy mass eigenstates, respectively.

Let us now consider a final state f to which both P^0 and \bar{P}^0 can decay. Using Eq. (4), the time-dependent decay amplitudes for the neutral mesons are given by
where \(\mathcal{A}_f = \langle f | \mathcal{H}_{\Delta F=1} | P^0 \rangle \) and \(\tilde{\mathcal{A}}_f = \langle f | \mathcal{H}_{\Delta F=1} | \bar{P}^0 \rangle \). Hence, the decay rates \(\Gamma_f(P^0(t) \to f) \) and \(\bar{\Gamma}_f(\bar{P}^0(t) \to f) \) can be expressed as

\[
\frac{d\Gamma}{dt}(P^0(t) \to f) = \frac{1}{2} e^{-\Gamma t} \{ \sinh(\Delta \Gamma t/2) \{ 2 \text{Re}(\cos\theta |A_f|^2) + e^{i\phi} \sin\theta |A_f|^2 \} + \cosh(\Delta \Gamma t/2) \{ |A_f|^2 + |\cos\theta|^2 |A_f|^2 + |e^{i\phi} \sin\theta|^2 |\overline{A}_f|^2 + 2 \text{Re}(e^{i\phi} \cos\theta \sin\theta |A_f| |\\overline{A}_f|) \} \}
\]

\[
+ \cos(\Delta M t) \{ |A_f|^2 - |\cos\theta|^2 |A_f|^2 - |e^{i\phi} \sin\theta|^2 |\overline{A}_f|^2 - 2 \text{Re}(e^{i\phi} \cos\theta \sin\theta |A_f| |\\overline{A}_f|) \} - \sin(\Delta M t) \{ 2 \text{Im}(\cos\theta |A_f|^2 + e^{i\phi} \sin\theta |A_f| |\\overline{A}_f|) \} \} \}
\]

(7)

\[
\frac{d\bar{\Gamma}}{dt}(\bar{P}^0(t) \to f) = \frac{1}{2} e^{-\bar{\Gamma} t} \{ \sin(\Delta \bar{\Gamma} t/2) \{ 2 \text{Re}(-\cos\theta' |\overline{A}_f|^2) + e^{i\phi'} \sin\theta' |\overline{A}_f|^2 \} + \cosh(\Delta \bar{\Gamma} t/2) \{ |\overline{A}_f|^2 + |\cos\theta'|^2 |\overline{A}_f|^2 + |e^{i\phi'} \sin\theta'|^2 |A_f|^2 + 2 \text{Re}(e^{i\phi'} \cos\theta' \sin\theta' |A_f| |\\overline{A}_f|) \} \}
\]

\[
+ \cos(\Delta M t) \{ |\overline{A}_f|^2 - |\cos\theta'|^2 |\overline{A}_f|^2 - |e^{i\phi'} \sin\theta'|^2 |A_f|^2 + 2 \text{Re}(e^{i\phi'} \cos\theta' \sin\theta' |A_f| |\\overline{A}_f|) \} + \sin(\Delta M t) \{ 2 \text{Im}(-\cos\theta' |\overline{A}_f|^2 + e^{i\phi'} \sin\theta' |\overline{A}_f|^2) \} \} \}
\]

(8)

III. OBSERVABLES

A. Decay rates

Any final state consisting of two vectors can have three different values for the orbital angular momentum quantum number \(\{0, 1, 2\} \) corresponding to the polarization states \(\{0, \perp, \parallel\} \), respectively. As we are not considering CPT violation in decay, we can express the decay amplitudes for modes and conjugate modes in terms of transversity amplitudes as [22–24,26]

\[
\mathcal{A}_f(P^0) \to V_1 V_2 = \mathcal{A}_{0g_0} + \mathcal{A}_{\parallel} g_\parallel + i \mathcal{A}_{\perp} g_\perp = \sum_g \mathcal{A}_g g_g \zeta_g,
\]

\[
\tilde{\mathcal{A}}_f(\bar{P}^0) \to V_1 V_2 = \tilde{\mathcal{A}}_{0g_0} + \tilde{\mathcal{A}}_{\parallel} g_\parallel - i \tilde{\mathcal{A}}_{\perp} g_\perp = \sum_g \tilde{\mathcal{A}}_g g_g \zeta_g,
\]

(9)

where the helicity index \(\lambda \) takes the value \(\{0, \parallel, \perp\} \) and \(\zeta_g \) takes the value \(\{1, 1, i\} \) for these three helicities, respectively. The factors \(g_g \) are the coefficients of helicity amplitudes (\(\mathcal{A}_g \) or \(\tilde{\mathcal{A}}_g \)) in the linear polarization basis and only depend on kinematic angles [27]. In the absence of a direct violation for \(CP, T, \) and \(CPT \), these helicity amplitudes can be expressed as

\[
\mathcal{A}_g = \tilde{\mathcal{A}}_g = a_\lambda e^{i \delta_\lambda},
\]

(10)

where \(a_\lambda \) and \(\delta_\lambda \) are two real quantities indicating the magnitudes and phases for different helicity amplitudes.

Now, using Eqs. (7)–(10), the time-dependent decay rates for \(P^0 \to V_1 V_2 \) and \(\bar{P}^0 \to V_1 V_2 \) modes can be written as [22–26]

\[
\frac{d\Gamma}{dt}(P^0(t) \to V_1 V_2) = e^{-\Gamma t} \sum_{\lambda, \sigma} \left[\Lambda_{\lambda\sigma} \cosh \left(\frac{\Delta \Gamma t}{2} \right) + \eta_{\lambda\sigma} \sinh \left(\frac{\Delta \Gamma t}{2} \right) + \Sigma_{\lambda\sigma} \cos(\Delta M t) - \rho_{\lambda\sigma} \sin(\Delta M t) \right] g_\lambda g_\sigma.
\]

(11)

\[
\frac{d\bar{\Gamma}}{dt}(\bar{P}^0(t) \to V_1 V_2) = e^{-\bar{\Gamma} t} \sum_{\lambda, \sigma} \left[\tilde{\Lambda}_{\lambda\sigma} \cosh \left(\frac{\Delta \bar{\Gamma} t}{2} \right) + \tilde{\eta}_{\lambda\sigma} \sinh \left(\frac{\Delta \bar{\Gamma} t}{2} \right) + \tilde{\Sigma}_{\lambda\sigma} \cos(\Delta M t) + \tilde{\rho}_{\lambda\sigma} \sin(\Delta M t) \right] g_\lambda g_\sigma.
\]

(12)

where both \(\lambda \) and \(\sigma \) take the value \(\{0, \parallel, \perp\} \).

From Eq. (11) we see that for each helicity combination, there are four observables (\(\Lambda_{\lambda\sigma}, \eta_{\lambda\sigma}, \Sigma_{\lambda\sigma}, \rho_{\lambda\sigma} \)) and six such helicity combinations are possible. Hence, we get a total 24 observables for the \(P^0 \to V_1 V_2 \) mode. Similarly, there will be 24 different observables (\(\tilde{\Lambda}_{\lambda\sigma}, \tilde{\eta}_{\lambda\sigma}, \tilde{\Sigma}_{\lambda\sigma}, \tilde{\rho}_{\lambda\sigma} \)) for the \(\bar{P}^0 \to V_1 V_2 \) mode too. These observables can be measured by performing a time-dependent angular analysis of \(P^0(t) \to V_1 V_2 \) and \(\bar{P}^0(t) \to V_1 V_2 \) [22–24]. The procedure described in Ref. [26] can be helpful in this regard. On the other hand,
probing polarizations of the final state particles may also aid in the measurement of these observables. One important point to notice here is that Refs. [22–24] did not consider \(\sinh(2\Delta_i) \) terms in the decays of \(B_d^0 \) and \(B_s^0 \) since \(\Delta_i^\tau \) is consistent with zero [3] for these modes. In that case, \(\eta_{\tau\rho} \) and \(\epsilon_{\tau\rho} \) remain undetermined and one should work with the remaining \((18 + 18) = 36 \) observables for a mode and its conjugate mode. However, since we are considering a general scenario here, we keep all the terms and proceed.

B. Parametric expansion

In Ref. [28], T. D. Lee discusses the CPT and \(T \) properties of \(\mathbf{M} \) and \(\mathbf{G} \) matrices. First, if the CPT invariance holds, then, independently of the \(T \) symmetry,

\[
M_{i1} = M_{22}, \quad \Gamma_{i1} = \Gamma_{22} \Rightarrow \theta = \frac{\pi}{2} \quad \text{[Using Eq. (2)]}.
\]

(13)

In addition, if the \(T \) invariance holds, then, independently of the CPT symmetry,

\[
\frac{\Gamma_{12}}{\Gamma_{12}} = \frac{M_{12}'}{M_{21}} \Rightarrow \text{Im} \phi = 0 \quad \text{[Using Eq. (2)]}.
\]

(14)

Hence, incorporating the \(T, CPT \), and CPT violations in \(P^0 - \bar{P}^0 \) mixing, we parametrize \(\theta \) and \(\phi \) as [19]

\[
\theta = \frac{\pi}{2} + \epsilon_1 + i\epsilon_2 \quad \text{and} \quad \phi = -2\beta + i\epsilon_3
\]

(15)

where \(\beta \) is the CP violating weak phase, \(\epsilon_1 \) and \(\epsilon_2 \) are CPT violating parameters, and \(\epsilon_3 \) is a \(T \) violating parameter. The notations of Belle, BABAR, and LHCb Collaborations [7,8,12,18] are a bit different from ours; however, the two notations are related to each other by the following transformation [19]:

\[
\frac{\cos \theta}{\sqrt{1 - z^2}}, \quad \frac{\sin \theta}{\sqrt{1 - z^2}}, \quad \frac{e^{i\phi}}{p},
\]

(16)

or, equivalently: \(\epsilon_1 = \text{Re}(z), \quad \epsilon_2 = \text{Im}(z), \quad \epsilon_3 = 1 - \left| \frac{q'}{p'} \right| \).

(17)

Now, comparing Eq. (7) to Eq. (11), one can easily infer that all of the observables will be functions of the complex quantities \(\theta \) and \(\phi \). As \(T \) and CPT violations are expected to be very small [7,8,12,18,21], we can expand all the observables in terms of \(\epsilon_j \) \((j \in \{1, 2, 3\})\). So, using Eqs. (10) and (15), we expand all of the 24 helicity-dependent observables for \(P^0 \to V_1 V_2 \) in terms of \(\epsilon_j \) \((j \in \{1, 2, 3\})\) keeping up to the linear terms as follows:

\[
\Lambda_{ii} = a_i^2(1 - \epsilon_3 - \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),
\]

\[
\Lambda_{i\perp} = a_i^2(1 - \epsilon_3 + \epsilon_1 \cos 2\beta - \epsilon_2 \sin 2\beta),
\]

\[
\Lambda_{0\parallel} = 2a_0a_{\parallel} \cos(\Delta_0 - \Delta_\parallel) \times (1 - \epsilon_3 - \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),
\]

\[
\Lambda_{1\perp} = 2a_1a_i((\epsilon_2 \cos 2\beta + \epsilon_1 \sin 2\beta) \cos \Delta_i + \epsilon_3 \sin \Delta_i),
\]

(18)

\[
\eta_{ii} = -a_i^2(\epsilon_1 - \cos 2\beta + \epsilon_3 \cos 2\beta),
\]

\[
\eta_{i\perp} = -a_i^2(\epsilon_1 + \cos 2\beta - \epsilon_3 \cos 2\beta),
\]

\[
\eta_{0\parallel} = -2a_0a_{\parallel} \cos(\Delta_0 - \Delta_\parallel)(\epsilon_1 - \cos 2\beta + \epsilon_3 \cos 2\beta),
\]

\[
\eta_{1\perp} = -2a_1a_i((1 - \epsilon_3) \sin 2\beta \cos \Delta_i + \epsilon_1 \sin \Delta_i),
\]

(19)

\[
\Sigma_{ii} = a_i^2(\epsilon_3 + \epsilon_1 \cos 2\beta - \epsilon_2 \sin 2\beta),
\]

\[
\Sigma_{i\perp} = a_i^2(\epsilon_3 - \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),
\]

\[
\Sigma_{0\parallel} = 2a_0a_{\parallel} \cos(\Delta_0 - \Delta_\parallel) \times (\epsilon_3 + \epsilon_1 \cos 2\beta - \epsilon_2 \sin 2\beta),
\]

\[
\Sigma_{1\perp} = -2a_1a_i((\epsilon_2 \cos 2\beta + \epsilon_1 \sin 2\beta) \cos \Delta_i - (1 - \epsilon_3) \sin \Delta_i),
\]

(20)

\[
\rho_{ii} = -a_i^2(\epsilon_2 + \sin 2\beta - \epsilon_3 \sin 2\beta),
\]

\[
\rho_{i\perp} = -a_i^2(\epsilon_2 - \sin 2\beta + \epsilon_3 \sin 2\beta),
\]

\[
\rho_{0\parallel} = -2a_0a_{\parallel} \cos(\Delta_0 - \Delta_\parallel)(\epsilon_2 + \sin 2\beta - \epsilon_3 \sin 2\beta),
\]

\[
\rho_{1\perp} = -2a_1a_i((1 - \epsilon_3) \cos 2\beta \cos \Delta_i + \epsilon_2 \sin \Delta_i),
\]

(21)

where \(i \in \{0, \parallel\} \) and \(\Delta_i = \delta_i - \delta_{\parallel i} \). Similarly, it is also possible to expand the observables of the conjugate mode \(\bar{P}^0 \to V_1 \bar{V}_2 \) in terms of \(\epsilon_j \) (given in the Appendix).

C. Solutions

As can be seen from the expansion of the observables given by Eqs. (18)–(21), there are a total of nine unknown parameters (i.e., three of \(a_j \), three of \(\epsilon_j \), two of \(\Delta_j \), and \(\beta \)). In the SM case, there are six unknown parameters (three of \(a_j \), two of \(\Delta_j \), and \(\beta \)) as stated in Refs. [23,24]; however, for our scenario, we have three extra parameters emerging due to \(T \) and CPT violation in mixing, namely, \(\epsilon_{1,2,3} \), thus resulting in nine theoretical parameters. It should be noted that Refs. [23,24] originally deal with the SM scenario plus CP violation in decay, not \(T \) and CPT violations in mixing; hence, in addition to six unknown SM parameters, they have three more amplitudes (\(b_\lambda \)), three more strong phases (\(\delta_j^\lambda \)), and one extra weak phase related to the \(CP \) violating part of the decay amplitudes (\(\Delta A_j \) or \(\Delta \bar{A}_j \)). Now, we go back to our scenario and solve the nine theoretical parameters in terms of the observables as follows:
\[a_{i} = \sqrt{\Lambda_{ii} + \Sigma_{ii}}, \]
(22)

\[e_1 = -\frac{1}{2} \left(\frac{\eta_{ii}}{\Lambda_{ii} + \Sigma_{ii}} + \frac{\eta_{\perp\perp}}{\Lambda_{\perp\perp} + \Sigma_{\perp\perp}} \right), \]
(23)

\[e_2 = -\frac{1}{2} \left(\frac{\rho_{ii}}{\Lambda_{ii} + \Sigma_{ii}} + \frac{\rho_{\perp\perp}}{\Lambda_{\perp\perp} + \Sigma_{\perp\perp}} \right), \]
(24)

\[e_3 = \frac{1}{2} \left(\frac{\Sigma_{ii}}{\Lambda_{ii} + \Sigma_{ii}} + \frac{\Sigma_{\perp\perp}}{\Lambda_{\perp\perp} + \Sigma_{\perp\perp}} \right), \]
(25)

\[\sin 2\beta = -\frac{1}{2} \left(\frac{\rho_{ii} - \rho_{\perp\perp}}{\Lambda_{ii} + \Sigma_{ii}} \right), \]
(26)

\[\cos 2\beta = \frac{1}{2} \left(\frac{\eta_{ii} - \eta_{\perp\perp}}{\Lambda_{ii} + \Sigma_{ii}} \right), \]
(27)

\[\cos(\Delta_0 - \Delta_\|) = \frac{1}{2} \left[\frac{\Lambda_{0\|} + \Sigma_{0\|}}{\sqrt{\Lambda_{00} + \Sigma_{00} \sqrt{\Lambda_{\|\|} + \Sigma_{\|\|}}} \right], \]
(28)

\[\sin \Delta_i = \frac{1}{2} \left[\frac{\Lambda_{ii} + \Sigma_{ii}}{\sqrt{\Lambda_{ii} + \Sigma_{ii} \sqrt{\Lambda_{\perp\perp} + \Sigma_{\perp\perp} + 2 \Lambda_{\perp\perp} \Lambda_{ii}}} \right], \]
(29)

\[\cos \Delta_i = X_i \Lambda_{ii} \Lambda_{\perp\perp} \left[\frac{\sqrt{\Lambda_{ii} + \Sigma_{ii} \sqrt{\Lambda_{\perp\perp} + \Sigma_{\perp\perp}}}}{\Lambda_{\perp\perp} \Lambda_{ii} + 2 \Lambda_{\perp\perp} \Lambda_{ii} + 2 \Lambda_{\perp\perp} \Lambda_{\perp\perp}} \right], \]
(30)

where
\[X_i = \frac{\left((\Lambda_{ii} - \Sigma_{ii})(\Lambda_{ii} + \Sigma_{ii} + \Lambda_{ii} \Sigma_{\perp\perp} + \Sigma_{\perp\perp}) + 2(\Lambda_{ii} \Lambda_{\perp\perp} \Lambda_{ii} - \Sigma_{ii} \Sigma_{\perp\perp} \Sigma_{\perp\perp}) \right)}{(\eta_{\perp\perp} \rho_{ii} - \eta_{\|\|} \rho_{\perp\perp})(\Lambda_{ii} + \Sigma_{ii})(\Lambda_{\perp\perp} + \Sigma_{\perp\perp}) \right)}, \]
(31)

with \(\lambda \in \{0, \|, \perp\} \) and \(i \in \{0, \|\} \). In principle, we should present only nine equations as the solutions for nine unknown parameters. But, we have listed more than nine relations from Eq. (22) to Eq. (30) because the observables involve several angular parameters. Actually, to specify any angular variable without any ambiguity, one must quantify both \(\sin \) and \(\cos \) of that angle. However, as can be seen in Sec. IV B, the extra equations will result in some relations among observables by applying various trigonometric identities.

IV. OBSERVABLE RELATIONS

A. SM relations

In the SM scenario, all three \(e_j \) become zero and there remain only six unknown parameters (3 of \(a_{ii} \), 2 of \(\Delta_i \), and \(\beta \)) in the theory. But the number of observables for the \(P^0 \to V_1 V_2 \) mode is 24. Hence, 18 independent relations among observables must emerge and they are the following:

\[\Sigma_{\perp\perp} = 0, \quad \Sigma_{0\|} = 0, \quad \Lambda_{\perp\perp} = 0, \]
(32)

\[\frac{\rho_{ii}}{\Lambda_{ii}} = \frac{\rho_{0\|}}{\Lambda_{0\|}} = \frac{\rho_{\perp\perp}}{\Lambda_{\perp\perp}}, \]
(33)

\[\frac{\rho_{ii}^2}{4 \Lambda_{\perp\perp} \Lambda_{ii} - \Sigma_{ii}^2} = \frac{\Lambda_{0\|}^2 - \rho_{0\|}^2}{\Lambda_{0\|}^2}, \]
(34)

\[\Lambda_{0\|} = \frac{1}{2 \Lambda_{\perp\perp}} \left[\Sigma_{0\|} \Sigma_{\perp\perp} + \rho_{0\|} \rho_{\perp\perp} \left(\frac{\Lambda_{0\|}^2}{\Lambda_{0\|}^2 - \rho_{0\|}^2} \right) \right]. \]
(35)

\[\frac{\eta_{ii}}{\Lambda_{ii}} = \frac{\eta_{0\|}}{\Lambda_{0\|}} = \frac{\eta_{\perp\perp}}{\Lambda_{\perp\perp}}, \]
(36)

\[\frac{\eta_{\perp\perp}}{\rho_{\perp\perp}} = \frac{\eta_{0\|}}{\rho_{0\|}} = 0, \]
(37)

\[\frac{\eta_{\perp\perp}^2 + \rho_{\perp\perp}^2}{\Lambda_{\perp\perp}}, \]
(38)

with \(\lambda \in \{0, \|, \perp\} \) and \(i \in \{0, \|\} \). Here, Eq. (32) contains six relations (for three different \(\lambda \) and two different \(i \)), Eqs. (33) and (36) contain three relations each (for two different \(i \)) whereas there are two relations (for two different \(i \)) inside of Eqs. (34) and (37).

However, for vanishing \(\Delta \Gamma \), only 18 observables will be accessible to us (as discussed in the Sec. III A) and hence, in that case, we should obtain 12 independent relations.
among observables. Those 12 relations are given by Eqs. (32)–(35), as discussed in Refs. [23,24].

One important point to state is that one can use the solutions, given by Eqs. (22)–(29), in the SM scenario also. But, X_i, given by Eq. (31), takes the form $\frac{\eta_0}{\sqrt{\Lambda_{ii}}}$ in this case and it causes problems in finding $\cos \Delta_i$ from Eq. (30). Still, one can express $\cos \Delta_i (i \in \{0, ||\})$ in this scenario as follows:

$$\cos \Delta_i = - \left(\frac{\Lambda_{0i} \rho_{ii}}{2\eta_{0i} \sqrt{\Lambda_{ii} \Lambda_{\perp \perp}}} \right),$$

which can easily be verified by substituting vanishing ϵ_j into Eqs. (18)–(21). Hence, using Eqs. (30), (32), and (39), one can write $X_i (i \in \{0, ||\})$ in the limit $\epsilon_j \rightarrow 0 (j \in \{1, 2, 3\})$ as

$$X_i = - \left(\frac{\Lambda_{0i} \rho_{ii}}{\eta_{0i} \Lambda_{ii} \Lambda_{\perp \perp}} \right).$$

Nevertheless, we shall see in the next section that most of these 18 relations from Eqs. (32)–(38) will get violated if T and CPT violations in mixing are also present. On the other hand, if there exists direct violation of T, CP, or CPT instead of T and CPT violating effects in mixing, then most of these relations also get violated. Hence, it is impossible to infer from this set of relations whether CPT violation (if it exists at all) is present in mixing or in decay.

B. T and CPT violation

In addition to the CP violating weak phase, if there exists T and CPT violation in mixing, we have nine unknown theoretical parameters (three of ϵ_j, three of a_{ij}, two of Δ_i, and β). But the number of observables is still 24. So, there should appear $(24 - 9) = 15$ relations among observables. In order to find them we substitute the solutions of unknown parameters, given by Eqs. (22)–(30), back to the expansion of observables, given by Eqs. (18)–(21). Thus we get 11 independent relations, which are given below:

$$\frac{\Lambda_{0i}}{\Lambda_{ii}} = \frac{\Sigma_{0i}}{\Sigma_{ii}} = \frac{\rho_{0i}}{\rho_{ii}} = \frac{\eta_{0i}}{\eta_{ii}},$$

$$\rho_{0i} = \frac{\rho_{\perp \perp}}{\Lambda_{\perp \perp}} \left(\frac{\rho_{\perp \perp}}{\Lambda_{\perp \perp}} \right)^2 + \left(\frac{\eta_{00}}{\Lambda_{00}} \right)^2 = 4.$$

$$X_i = \frac{\rho_{\perp \perp}}{\Lambda_{\perp \perp}} \left(\frac{\rho_{\perp \perp}}{\Lambda_{\perp \perp}} \right)^2 + \left(\frac{\eta_{00}}{\Lambda_{00}} \right)^2 = 4.$$

with $i \in \{0, ||\}$. Equation (47) contains two relations (for two different i). However, it should be noticed that though $\sin 2\beta$ and $\cos 2\beta$ can be expressed in two ways using the helicities 0 and $||$ separately [as shown in Eqs. (26) and (27)], we obtain only one relation among observables from the trigonometric identity: $\sin^2 \beta + \cos^2 \beta = 1$. It happens because Eq. (41) ensures the following: $(\rho_{00}/\Lambda_{00}) = (\rho_{||\perp\perp}/\Lambda_{||\perp\perp})$ and $(\eta_{00}/\Lambda_{00}) = (\eta_{||\perp\perp}/\Lambda_{||\perp\perp})$.

$$\rho^2_{\parallel\parallel} + \eta^2_{\parallel\parallel} = \rho^2_{\perp\perp} + \eta^2_{\perp\perp},$$

$$\eta_{\parallel\parallel} = \frac{1}{2} \left[\frac{\Sigma_{\parallel\parallel}}{\Lambda_{\parallel\parallel}} \{ \eta_{\perp\perp} (\Lambda_{\parallel\parallel} + \Sigma_{\parallel\parallel}) + \eta_{\parallel\parallel} (\Lambda_{\perp\perp} + \Sigma_{\perp\perp}) \} \right] + X_i \{ \Lambda_{\parallel\perp} \rho_{\parallel\perp} - \Lambda_{\perp\parallel} \rho_{\perp\parallel} \},$$

$$\rho_{\parallel\perp} = \frac{1}{2} \left[\frac{\Sigma_{\parallel\perp}}{\Lambda_{\parallel\perp}} \{ \rho_{\perp\parallel} (\Lambda_{\parallel\parallel} + \Sigma_{\parallel\parallel}) + \rho_{\parallel\perp} (\Lambda_{\perp\perp} + \Sigma_{\perp\perp}) \} \right] - X_i \{ \Lambda_{\perp\parallel} \eta_{\parallel\perp} - \Lambda_{\parallel\perp} \eta_{\perp\parallel} \},$$

with $i \in \{0, ||\}$. It should be noticed that there are six independent relations in Eq. (41), two relations in Eq. (43), and two relations in Eq. (44).

There are four more such independent relations among observables which emerge due to the following trigonometric identities:

$$\sin^2 \alpha + \cos^2 \alpha = 1 \ 	ext{(where } \alpha = \Delta_0, \Delta_\parallel \text{ or } 2\beta),$$

$$\cos(\Delta_0 - \Delta_\parallel) = \cos \Delta_0 \cos \Delta_\parallel + \sin \Delta_0 \sin \Delta_\parallel.$$
However, one should keep in mind that the relations in Eqs. (41)–(46) will not hold true for all orders in ϵ_j as we are computing the observables perturbatively up to the first order in ϵ_j. The corrections to these relations are quadratic or of higher order in ϵ_j and hence can be neglected for sufficiently small values of ϵ_j. Now, if one wants to check the validity of the 18 relations of last section [given by Eqs. (32)–(38)] in this scenario, he/she would find ϵ_j order correction terms in 14 of them. The four relations, which remain intact in both the scenarios are (41) and (42). It should be noted that the 15 relations of this section [Eqs. (41)–(44) and Eqs. (47)–(49)] hold true even if all ϵ_j become zero. It can be verified straightforwardly by setting $\epsilon_j = 0$ in a parametric expansion of observables [Eqs. (18)–(21)] and then substituting those expressions for observables into these 15 relations. But it does not mean that we have 15 more independent relations in the SM case. One can easily check that the 18 relations in last section automatically satisfy the 15 relations of this section. In other words, the 18 relations of the previous section are embedded in a complicated form inside the 15 relations of the present section. However, as discussed in last section, one has to be careful in dealing with X_i while verifying since it takes the $\frac{3}{6}$ form in SM scenario.

Now, if direct violations of T, CP, and CPT are present in the decay mode, most of these 15 relations will not hold true and that can be used as a smoking gun signal of confirming those effects. In that case, the 18 relations of the SM scenario will be disobeyed too. On the other hand, if these 15 relations are satisfied, then one becomes sure that there is no direct violations of T, CP, and CPT, but it cannot be confirmed whether T and CPT violations in mixing are present or not since those 15 relations are satisfied on both the occasions. In this circumstance, the validity of the 18 relations in the last section should be examined. If those 18 relations hold true, it would signify the absence of T and CPT violation in mixing and if they get violated, the presence of them will be confirmed.

There is another way to confirm the existence of T, CP, and CPT violation in decay. In this analysis, we have used the observables of the $P^0 \rightarrow V_1 V_2$ mode only for solving all of the nine unknown parameters, as shown in Eqs. (22)–(30). Similarly, it is also possible to solve them by using the observables of the $\bar{P}^0 \rightarrow V_1 V_2$ mode, as given in the Appendix. These two sets of solutions should match numerically in the absence of new physics effects in decay. Hence, significant deviations in the numerical values of the nine unknown parameters from these two sets of solutions will definitely indicate sizeable contributions of T, CP, and CPT violations in decay.

V. CONCLUSION

In conclusion, we have studied the behavior of observables for neutral meson decaying to two vectors in the presence of T, CP, and CPT violation in mixing. Polarizations of the final state with two vectors provide us with a large number of observables in these modes. We choose the final state in such a way that both P^0 and \bar{P}^0 can decay to it. We establish the complete set of 15 relations among observables which must be obeyed if there do not exist any direct violations of T, CP, and CPT and these relations can be used as the smoking gun signal to confirm their presence or absence. In addition to that we also listed the full set of 18 relations among observables which should be satisfied if there is no violation of T and CPT in the mixing of $P^0 - \bar{P}^0$ and these relations can be used to probe their existence unambiguously.

ACKNOWLEDGMENTS

The authors thank Rahul Sinha, Nita Sinha, and David London for useful discussions. A. K. thanks SERB India, Grant No. SERB/PHY/F181/2018-19/G210, for support.

APPENDIX: OBSERVABLES FOR $\bar{P}^0 \rightarrow V_1 V_2$ AND THE SOLUTIONS

The expansion of observables for the $\bar{P}^0 \rightarrow V_1 V_2$ mode in terms of ϵ_j ($j \in \{1, 2, 3\}$) is given by

$$\tilde{\Lambda}_{ii} = a_i^2(1 + \epsilon_3 + \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),$$

$$\tilde{\Lambda}_{1\perp} = a_1^2(1 + \epsilon_3 - \epsilon_1 \cos 2\beta - \epsilon_2 \sin 2\beta),$$

$$\tilde{\Lambda}_{0\parallel} = 2a_0a_{\parallel} \cos(\Delta_0 - \Delta_{\parallel})(1 + \epsilon_3 + \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),$$

$$\tilde{\Lambda}_{1\perp} = 2a_1a_{\parallel}(\epsilon_2 \cos 2\beta - \epsilon_1 \sin 2\beta) \cos \Delta_i + \epsilon_3 \sin \Delta_i, \quad (A1)$$

$$\tilde{\eta}_{ii} = a_i^2(\epsilon_1 + \cos 2\beta + \epsilon_2 \cos 2\beta),$$

$$\tilde{\eta}_{1\perp} = a_1^2(\epsilon_1 - \cos 2\beta - \epsilon_2 \cos 2\beta),$$

$$\tilde{\eta}_{0\parallel} = 2a_0a_{\parallel}(\epsilon_1 + \cos 2\beta + \epsilon_2 \cos 2\beta),$$

$$\tilde{\eta}_{1\perp} = -2a_1a_{\parallel}(1 + \epsilon_3) \sin 2\beta \cos \Delta_i + \epsilon_1 \sin \Delta_i, \quad (A2)$$

$$\tilde{\Sigma}_{ii} = -a_i^2(\epsilon_3 + \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),$$

$$\tilde{\Sigma}_{1\perp} = -a_1^2(\epsilon_3 - \epsilon_1 \cos 2\beta - \epsilon_2 \sin 2\beta),$$

$$\tilde{\Sigma}_{0\parallel} = -2a_0a_{\parallel} \cos(\Delta_0 - \Delta_{\parallel})(\epsilon_3 + \epsilon_1 \cos 2\beta + \epsilon_2 \sin 2\beta),$$

$$\tilde{\Sigma}_{1\perp} = -2a_1a_{\parallel}(\epsilon_2 \cos 2\beta - \epsilon_1 \sin 2\beta) \cos \Delta_i + (1 + \epsilon_3) \sin \Delta_i, \quad (A3)$$
\[\hat{\rho}_{ii} = -a_i^2 (e_2 + \sin 2 \beta + e_3 \sin 2 \beta), \]
\[\hat{\rho}_{\perp \perp} = -a_i^2 (e_2 - \sin 2 \beta - e_3 \sin 2 \beta), \]
\[\hat{\rho}_{00} = -2a_i a_i \cos(\Delta_0 - \Delta_i)(e_2 + \sin 2 \beta + e_3 \sin 2 \beta), \]
\[\hat{\rho}_{\perp i} = -2a_i a_i (1 + e_3) \cos 2 \beta \cos \Delta_i - e_2 \sin \Delta_i. \]

with \(i \in \{0, ||, \perp \} \) and \(i \in \{0, || \} \).

The solutions for nine unknown parameters (i.e., three of \(a_i \), three of \(e_i \), two of \(\Delta_i \), and \(\beta \)) in terms of the observables of the \(P^0 \rightarrow V_1 V_2 \) mode are given by

\[a_i = \sqrt{\Lambda_{ii} + \Sigma_{ii}}, \]
\[e_1 = \frac{1}{2} \left(\frac{\hat{\eta}_{ii}}{\Lambda_{ii} + \Sigma_{ii}} + \frac{\hat{\eta}_{\perp \perp}}{\Lambda_{\perp \perp} + \Sigma_{\perp \perp}} \right), \]
\[e_2 = \frac{1}{2} \left(\frac{\hat{\rho}_{ii}}{\Lambda_{ii} + \Sigma_{ii}} + \frac{\hat{\rho}_{\perp \perp}}{\Lambda_{\perp \perp} + \Sigma_{\perp \perp}} \right), \]
\[\cos \Delta_i = \bar{X}_i \hat{\Lambda}_{ii} \hat{\Sigma}_{ii} \left(\frac{\sqrt{\Lambda_{ii} + \Sigma_{ii}}}{\Lambda_{\perp \perp} + \Sigma_{\perp \perp} + 2 \Lambda_{\perp \perp} \Lambda_{ii}} \right) \]

where, \(\bar{X}_i = \left(\hat{\Lambda}_{\perp \perp} \hat{\Sigma}_{ii} + \hat{\Lambda}_{ii} \hat{\Sigma}_{\perp \perp} + 2(\hat{\Lambda}_{ii} \hat{\Lambda}_{\perp \perp} \hat{\Sigma}_{\perp \perp} - \hat{\Sigma}_{ii} \hat{\Sigma}_{\perp \perp}) \right) / (\hat{\eta}_{\perp \perp} \hat{\rho}_{ii} - \hat{\eta}_{ii} \hat{\rho}_{\perp \perp}) (\hat{\Lambda}_{ii} + \Sigma_{ii} / (\Lambda_{\perp \perp} + \Sigma_{\perp \perp})). \]

with \(\lambda \in \{0, ||, \perp \} \) and \(i \in \{0, || \} \).

[1] O.W. Greenberg, CPT Violation Implies Violation of Lorentz Invariance, Phys. Rev. Lett. 89, 231602 (2002).
[2] V.A. Kostelecky, Gravity, Lorentz violation, and the standard model, Phys. Rev. D 69, 105009 (2004).
[3] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
[4] L. Lavoura and J. P. Silva, Disentangling violations of CPT from other new physics effects, Phys. Rev. D 60, 056003 (1999).
[5] M. C. Bañuls and J. Bernabéu, Studying indirect violation of CPT, T and CPT in a B factory, Nucl. Phys. B590, 19 (2000).
[6] E. Alvarez and J. Bernabéu, Correlated neutral B meson decays into CP eigenstates, Phys. Lett. B 579, 79 (2004).
[7] B. Aubert et al. (BABAR Collaboration), Limits on the Decay-Rate Difference of Neutral B Mesons and on CP, T, and CPT Violation in B^0 \rightarrow B^0 Oscillations, Phys. Rev. Lett. 92, 181801 (2004).
[8] B. Aubert et al. (BABAR Collaboration), Limits on the decay rate difference of neutral-B mesons and on CP, T, and CPT violation in B^0 \rightarrow B^0 oscillations, Phys. Rev. D 70, 012007 (2004).
[9] E. Alvarez, J. Bernabéu, N. E. Mavromatos, M. Nebot, and J. Papavassiliou, CPT violation in entangled B^0 \rightarrow B^0 states and the demise of flavor tagging, Phys. Lett. B 607, 197 (2005).
[10] E. Alvarez and A. Szynkman, Direct test of time reversal invariance violation in B mesons, Mod. Phys. Lett. A 23, 2085 (2008).
[11] J. Bernabéu, F. Martinez-Vidal, and P. Villanueva-Perez, Time reversal violation from the entangled B^0 \rightarrow B^0 system, J. High Energy Phys. 08 (2012) 064.
[12] T. Higuchi et al. (Belle Collaboration), Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012).
[13] E. Applebaum, A. Efriati, Y. Grossman, Y. Nir, and Y. Soreq, Subtleties in the BABAR measurement of time-reversal violation, Phys. Rev. D 89, 076011 (2014).
[14] A. Kundu, S. Nandi, S. K. Patra, and A. Soni, B_s \rightarrow D, K as a probe of CPT violation, Phys. Rev. D 87, 016005 (2013).
[15] A. Kundu, S. Nandi, and S. K. Patra, Probing CPT violation in B systems, Phys. Rev. D 81, 076010 (2010).
[16] J. van Tilburg and M. van Veghel, Status and prospects for
CPT and Lorentz invariance violation searches in neutral
meson mixing, Phys. Lett. B 742, 236 (2015).
[17] J. Bernabéu, F. J. Botella, and M. Nebot, Genuine T, CP, CPT
asymmetry parameters for the entangled B_d system,
J. High Energy Phys. 06 (2016) 100.
[18] R. Aaij et al. (LHCb Collaboration), Search for Violations
of Lorentz Invariance and CPT Symmetry in B^0 Mixing,
Phys. Rev. Lett. 116, 241601 (2016).
[19] A. Karan, A. K. Nayak, R. Sinha, and D. London, Using
time-dependent indirect CP asymmetries to measure T and
CPT violation $B^0 - B^0$ Mixing, Phys. Lett. B 781, 459
(2018).
[20] F. J. Botella and M. Nebot, CPT violation in $B^0_s - \bar{B}^0_s$
mixing and the measurement of CP violation in
$B^0 \rightarrow K^+ K^-$, arXiv:1903.04542.
[21] Y. Amhis et al. (Heavy Flavor Averaging Group (HFLAV)
Collaboration), Averages of b-hadron, c-hadron, and
τ-lepton properties as of summer 2016, Eur. Phys. J. C
77, 895 (2017), and online updates at http://www.slac.
stanford.edu/xorg/hfag.
[22] D. London, N. Sinha, and R. Sinha, Extracting Weak Phase
Information from $B \rightarrow V(1)\bar{V}(2)$ Decays, Phys. Rev. Lett.
85, 1807 (2000).
[23] D. London, N. Sinha, and R. Sinha, Bounds on new physics
from $B \rightarrow V(1)\bar{V}(2)$ decays, Phys. Rev. D 69, 114013
(2004).
[24] D. London, N. Sinha, and R. Sinha, Searching for new
physics via an angular analysis of $B \rightarrow V_1V_2$ decays,
Europhys. Lett. 67, 579 (2004).
[25] A. Dighe, D. Ghosh, A. Kundu, and S. K. Patra, Reconciling
anomalous measurements in $B^0_s - \bar{B}^0_s$ mixing: The role of
CPT -conserving and CPT -violating new physics, Phys.
Rev. D 84, 056008 (2011).
[26] S. K. Patra and A. Kundu, CPT violation and triple-
product correlations in B decays, Phys. Rev. D 87,
116005 (2013).
[27] N. Sinha and R. Sinha, Determination of the Angle
Gamma Using $B \rightarrow D^*V$ Modes, Phys. Rev. Lett. 80,
3706 (1998).
[28] T. D. Lee, Particle physics and introduction to field theory,
Contemp. Concepts Phys. 1, 1 (1981).