Research Article
An Improved Asymptotic on the Representations of Integers as Sums of Products

Wenjia Zhao

School of Mathematics, Shandong University, Jinan, Shandong 250100, China

Correspondence should be addressed to Wenjia Zhao; wjzhao@mail.sdu.edu.cn

Received 8 September 2021; Accepted 4 October 2021; Published 23 November 2021

Academic Editor: Jie Wu

Copyright © 2021 Wenjia Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we improve the error terms of Chace’s results in the study by Chace (1994) on the number of ways of writing an integer \(N \) as a sum of \(k \) products of \(l \) factors, valid for \(k \geq 3 \) and \(l = 2, 3 \). More precisely, for \(l = 2, 3 \), we improve the upper bound \(N^{k-1-(2(k-2)/(k-1)(l+1))\varepsilon} \), \(k \geq 3 \) for the error term, to \(N^{2-(2l+1)\varepsilon} \) when \(k = 3 \) and \(N^{k-1-(4(k-2)/(l+1)(k+l-2))\varepsilon} \) when \(k \geq 4 \).

1. Introduction

In this paper, we study the number of representations of a natural number \(N \) as a sum of \(k \) terms, each being a product of \(l \) factors. Let \(\nu(N; k, l) \) denote this number. The problem was studied by Estermann [1, 2] in the case \(k = 2 \) or \(3 \) and \(l = 2 \) by using some properties of Dirichlet L-function. His method is not easy to be generalized. Later, Chace [3] generalized Estermann’s result to \(k \geq 3 \) and \(l \geq 2 \). For such \(k \) and \(l \), he got

\[
\nu(N; k, l) = \mu(N; k, l) + E(N; k, l),
\]

where

\[
\mu(N; k, l) = N^{k-1}\log^{(l-1)} N,
\]

and

\[
E(N; k, l) \ll \begin{cases} N^{k-1-(2(k-2)/(k-1)(l+1))\varepsilon}, & \text{if } k = 3 \text{ or } l = 3, \\
N^{k-1-(3(k-2)/(k-1)(l+2))\varepsilon}, & \text{if } k \text{ and } l \geq 4.
\end{cases}
\]

Here, \(\mu(N; k, l) \) is defined in (72). The way he studied the problem is different from Estermann. The main tools he used are the Hardy–Littlewood method and some results from the divisor problem in arithmetic progressions. He got the main term \(\mu(N; k, l) \) which is a sum of terms of the form \(\mathcal{S} \mathcal{F} \), where \(\mathcal{S} \) are the “singular series” and \(\mathcal{F} \) are the “singular integrals.” They occur in the applications of the Hardy–Littlewood method. In this paper, we improve Chace’s result in the cases \(k \geq 3 \) and \(l = 2, 3 \). We get the following result.

Theorem 1. Suppose \(k \geq 3 \) and \(l = 2, 3 \). Then,

\[
\nu(N; k, l) = \mu(N; k, l) + E(N; k, l),
\]

where \(\mu(N; k, l) \) defined by (72) satisfies (2) and the error term satisfies

\[
E(N; k, l) \ll \begin{cases} N^{e-2(2l+1)\varepsilon}, & \text{if } k = 3, \\
N^{k-1-(4(k-2)/(l+1)(k+l-2))\varepsilon}, & \text{if } k \geq 4.
\end{cases}
\]

We can compare the exponents in (3) with our results (5). For \(l = 2, 3 \), we see that \(2 - 2/(2l+1) < k - 1 - (2(k-2)/(k-1)(l+1)) = 2 - 1/(l+1) \) when \(k = 3 \) and \(k - 1 - (4(k-2)/(l+1)(k+l-2)) < k - 1 - (3(k-2)/(k-1)(l+2)) \) when \(k \geq 4 \). Our error terms are better than Chace’s.

The proof of the theorem is an application of the Hardy–Littlewood method (cf. Chapter 3 of [4]), the Voronoi summation formula, and some results from the Kloosterman sums. The estimates on the minor arc were studied by Chace, and his result is sufficient for us. Hence, we will not focus on the minor arc in this paper. The main
difficulty arises in treating the error term of the major arcs. In Section 2, we make some preparations for our proof. We state the Voronoi summation formula and give some lemmas related to the Kloosterman sums in this section. In Sections 3.1 and 3.2, we obtain a bound for the contribution from the minor arcs. In I3.3, we prove our theorem.

2. Applications of the Voronoi Summation Formula

Let $X > 0$. Suppose that $f(x)$ is a smooth function compactly supported in $(X - X^\delta, 2X + X^\delta)$ with $0 < \delta < 1$, satisfying $f(x) = 1$ in $[X, 2X]$ and

$$f^{(j)}(x) \ll X^{-\delta}, \quad j \geq 0,$$

$$\int |f^{(j)}(x)| dx \ll X^{-\delta(j-1)}, \quad j \geq 1. \quad (7)$$

Let

$$F(s) = \int_0^\infty f(x)x^{s-1} dx,$$

be the Mellin transformation of $f(x)$. To state Voronoi’s summation formula, we introduce the notations below. For $\Re s > 1$, let

$$E_i\left(s, \frac{h}{q}\right) = \sum_{n=1}^\infty d_i(n)e(nh/q) \frac{1}{n^s}, \quad (9)$$

where

$$d_i(n) = \sum_{\mathbf{n} \cdot \mathbf{n}_i = n} 1. \quad (10)$$

We define

$$A_i^+(n, a/q) = \frac{1}{2} \sum_{n_i \cdot n_i = n} (I(n_1, \ldots, n_l, a; q) \pm I(n_1, \ldots, n_l, a; q)). \quad (11)$$

We also define

$$U_i^+(x) = \frac{1}{2\pi i} \int_{\Re s = \sigma} \gamma_i^+(s) \frac{ds}{x^s}, \quad (12)$$

where

$$I(n_1, \ldots, n_l, a; q) = \sum_{s_1 \cdots s_l (\text{mod } q)} \left(\frac{n_1x_1 + \cdots + n_lx_l + ax_1 \cdots x_l}{q} \right). \quad (13)$$

By (12), it is clear that

$$\gamma_i^+(s) = \frac{I_i^+(s/2) + (1 \pm (1)/4)}{I_i^+(1-s)/2 + (1 \pm (1)/4)}. \quad (14)$$

for $x > 0$ and $0 < \Re s < (1/2) - (1/l)$. From Theorem 2 in [5], we know the following lemma.

Lemma 1 (Voronoi’s summation formula). With the above notations, we have, for $l \geq 2$,

$$\sum_{n=1}^\infty f(n)d_i(n)e\left(\frac{nh}{q}\right) = \text{Res}_{s=1} F(s)E_i\left(s, \frac{h}{q}\right) + \frac{n^{(l/2)}}{q} \sum_{n=1}^\infty A_i^+(n, h/q) \int_0^\infty f(x)U_i^+(\frac{nx}{q}) \frac{dx}{x^s} \int_0^\infty \frac{F(s)}{\sigma(s)} \frac{ds}{\sigma(s)} \gamma_i^+(s) ds. \quad (15)$$

To simplify the integrals in (15), we define

$$G_i^+(x) = \frac{1}{2\pi i} \int_{\Re s = 1-\sigma} \frac{F(s)}{s^{1-\sigma} \gamma_i^+(s)} dx, \quad (16)$$

where $\sigma > 0$. By (12), it is clear that

$$\gamma_i^+(s) = \frac{1}{y \gamma_i^+(s)}. \quad (17)$$
To use Lemma 1 in practice, we need to estimate the residue in (15), $G_t^\pm(x)$ and $A_t^\pm(n, (h/q))$. We first compute the residue. For $0 \leq j \leq l-1$, we define

$$A_j(q) = \sum_{b=1}^{q\, \text{mod}\, q} e\left(\frac{ab}{q}\right)c_{j+1}(b, q),$$

where $a > 0$ is an integer, and the coefficients $c_j(b, q)$ are sums of terms of the form

$$\sum_{b_1, b_2 = b\, \text{mod}\, q} f(b_1),$$

for some function f. The coefficients $c_j(b, q)$ are given explicitly in equation (2.13) in [6]. It has been shown in [6] that for $(a, q) = 1$, $A_j(q)$ is independent of a.

Lemma 2. Suppose $1 \leq a \leq q$, $(a, q) = 1$. We have

$$\text{Res}_{s=1} F(s)E_i\left(s, \frac{a}{q}\right) = \sum_{b=1}^{q\, \text{mod}\, q} e\left(\frac{ab}{q}\right)\int_0^\infty f(x)\frac{\log^{n+1}x}{n!} \, dx.$$

Choose (Theorem 1 and (2.16) in [6]) gave that

$$\text{Res}_{s=1} \left\{ Z(s; h, q)x^s \right\} = \sum_{n=0}^{l-1} c_{n+1}(h, q)L_n(x),$$

where

$$L_n(x) = x \sum_{j=0}^{n} (-1)^{n-j} \frac{\log^{j+1}x}{j!}.$$

Substituting this into (23), we have

$$\text{Res}_{s=1} F(s)E_i\left(s, \frac{a}{q}\right) = \sum_{n=0}^{l-1} A_n(q)\int_0^\infty f(x)\frac{\log^{n+1}x}{n!} \, dx.$$

The proof of the lemma is complete.

Our next lemma, proved by Jiang and Lü (Lemma 2.7 in [7]), is to evaluate the integrals in (15).

Lemma 3. Let $G_t^\pm(x)$ be defined as in (16). Then, we have, for $l \geq 2$,

$$\text{Res}_{s=1} F(s)E_i\left(s, \frac{a}{q}\right) = \sum_{n=0}^{l-1} A_n(q)\int_0^\infty f(x)\frac{\log^{n+1}x}{n!} \, dx.$$

Proof. By (13), we obtain

$$\text{Res}_{s=1} F(s)E_i\left(s, \frac{a}{q}\right) = \sum_{n=0}^{l-1} A_n(q)\int_0^\infty f(x)\frac{\log^{n+1}x}{n!} \, dx.$$

Proof. By (9), we can rewrite $E_i(s, (a/q))$ as

$$E_i\left(s, \frac{a}{q}\right) = \sum_{n=0}^{l-1} e\left(\frac{ah}{q}\right)Z(s; h, q),$$

where

$$Z(s; h, q) = \sum_{n \geq 1} \frac{d_i(n)}{n^s}.$$

for Re$s > 1$. Therefore,

$$\text{Res}_{s=1} F(s)E_i\left(s, \frac{a}{q}\right) = \sum_{n=0}^{l-1} A_n(q)\int_0^\infty f(x)\frac{\log^{n+1}x}{n!} \, dx.$$

Proof. This can be proved by taking $J = X^{1-\delta}$ with $0 < \delta < 1$ in Lemma 2.7 of [7].

The following two lemmas give estimates for $A_t^\pm(n, (a/q))$. This two lemmas play an important role in our proof. We use some results for the Kloosterman sum to obtain the power saving in the q aspect.

Lemma 4. Suppose $1 \leq a \leq q$, $(a, q) = 1$, and let $A_t^\pm(n, (a/q))$ be defined as in (11). We have

$$\sum_{a \equiv q^{-1} \mod q} A_t^\pm\left(n, \frac{a}{q}\right)e\left(-\frac{aN}{q}\right) \ll q^{(l+1)/2+\varepsilon}\varepsilon^\delta n^\varepsilon.$$
\[
\sum_{a \equiv q \pmod{(a,q)}} \sum_{x_1, \ldots, x_l \pmod{q}} e\left(\frac{-aN}{q}\right) = \sum_{x_1, \ldots, x_l \pmod{q}} e\left(\frac{m_1 x_1 + \cdots + m_l x_l}{q}\right) \sum_{a \equiv q \pmod{(a,q)}} e\left(\frac{ax_1 \cdots x_l - aN}{q}\right),
\]

\[(a,q) = 1\]

\[
= \sum_{d | q} \mu\left(\frac{q}{d}\right) \sum_{x_1, \ldots, x_l \pmod{q}} e\left(\frac{m_1 x_1 + \cdots + m_l x_l}{d}\right)
\]

\[(29)\]

\[
= \sum_{d | q} \mu\left(\frac{q}{d}\right) \sum_{d | m} \left(\frac{m}{q}\right) S_l\left(\frac{d}{q}; N, d\right).
\]

where

\[
S_l\left(m; N, d\right) := \sum_{x_1, \ldots, x_l \pmod{d}} e\left(\frac{m_1 x_1 + \cdots + m_l x_l}{d}\right),
\]

for \(m = (m_1, \ldots, m_l) \in \mathbb{Z}^l\). Here, the notation \(d | m\) means that \(d\) divides each component of \(m\). Then, we obtain that the left hand side of the desired equation in our lemma equals to

\[
\frac{1}{2} \sum_{m, \quad m \equiv n \pmod{d}} \sum_{d | q} \mu\left(\frac{q}{d}\right) \sum_{m, \quad m \equiv n \pmod{d}} \left(\frac{m}{q}\right) S_l\left(\frac{m}{q}; N, d\right) + S_l\left(\frac{-m}{q}; -N, d\right)
\]

\[(31)\]

\[
= \frac{1}{2} \sum_{d | q} \mu\left(\frac{q}{d}\right) \sum_{m, \quad m \equiv n \pmod{d}} \left(\frac{m}{q}\right) S_l\left(m; N, d\right) + S_l\left(-m; -N, d\right).
\]

Now, we define

\[
K_{l-1}\left(m; w\right) = \sum_{x_1, \ldots, x_{l-1} \pmod{w}} e\left(\frac{m_1 x_1 + \cdots + m_{l-1} x_{l-1} + m_l x_1 \cdots x_{l-1}}{w}\right).
\]

\[(32)\]
for \(m = (m_1, \ldots, m_l) \in \mathbb{Z}^l \) and \(w \in \mathbb{Z} \). Here, \(\bar{x} \) denotes the multiplicative inverse of \(x \) modulo \(w \). In Section 6 in [8], Smith gave that

\[
\sum_{m_i | m, n_i | n} S_i(m, N, d) = \sum_{b \mid b'} 2^{-1} d_b \left\{ Nw' \right\}_1 \left[e \left[Nw' \right] / (db) \right],
\]

where \(e[t] = (1, \ldots, 1, t) \in \mathbb{Z}^l \) for all \(t \in \mathbb{Z} \). Therefore, (31) can be written as

\[
\sum_{q = d, b} d_q q)^3 \left\{ K_{l-1} \left(e \left[Nnq \right] / (dq) \right) \right\}.
\]

Taking the change of variables that \(m = q_b \), we get

\[
\sum_{\bar{a} \bmod q} A_l^+ \left(n, a/q \right) e \left(-anq \right) = \frac{q}{2} d_q \left(n \right) \left(K_{l-1} \left(e \left[Nnq \right] / q \right) \pm K_{l-1} \left(e \left[-Nnq \right] / q \right) \right).
\]

From Theorem 6 in [9], we know that

\[
\left| K_{l-1} \left(e \left[t \right] / q \right) \right| \leq q^{-l-1/2} d_q \left(q \right).
\]

The lemma follows immediately. \(\square \)

Lemma 5. Suppose \(1 \leq a \leq \bar{q} \), \((a, q) = 1 \), and \(l = 2, 3 \). Let \(A_l^+ \left(n, a \bmod q \right) \) be defined as before. Then, we have

\[
I(n_1, n_2, a; q) = \sum_{x_1, x_2 \bmod q} e \left(\frac{n_1 x_1 + n_2 x_2 + ax_1 x_2}{q} \right) = \sum_{x_1, x_2 \bmod q} e \left(\frac{n_1 x_1}{q} \right) \sum_{x_1, x_2 \bmod q} e \left(\frac{(n_2 + ax_1) x_2}{q} \right) = q \sum_{x_1, x_2 \bmod q} e \left(\frac{n_1 x_1}{q} \right) \ll q.
\]

For \(l = 3 \), one has

\[
I(n_1, n_2, n_3, a; q) = q \sum_{d \mid n_1, n_2, n_3} dS \left(n_1, \frac{n_1 n_3 \bar{a}}{d}, \frac{q}{d} \right).
\]

Now, if we use Weil’s classical bound

\[
|S(m, n; c)| \leq (m, n, c)^{1/2} d_2 (c) c^{1/2},
\]

then it follows from (39) that

\[
I(n_1, n_2, n_3, a; q) \ll q^{(3/2) + x} \sum_{d \mid (n_1, n_2, n_3)} \ll q^{(3/2) + x}.
\]

For \(d \mid (n_1, n_2, n_3) \) and \((a, q) = 1 \), noting that \(n = n_1 n_2 n_3 \) by (11), we have \((n_1, n_2, n_3) \leq (n_1, n_2, n_3) = (n, q) \) and \((n, q) \).

Therefore, the proof of the lemma is complete. \(\square \)

3. Proof of Theorem 1

In this section, we prove Theorem 1. The main difficulty arises in treating the major arcs. The results from Kloosterman’s sums will play a role in our proof. Throughout this section, \(1 \leq X \leq (N/2) \). We choose a smooth function \(f \) compactly supported in \([X - X^\delta, 2X + X^\delta]\) with \(0 < \delta < 1 \), satisfying \(f(x) = 1 \) in \([X, 2X]\) and (6) and (7). To apply the circle method, we choose the parameters \(P \) and \(Q \) such that
\[P^q = N, \quad P \leq N^{(1/\theta)}. \] (44)

By Dirichlet's lemma on rational approximations, each \(a \in I = [(1/\theta), 1 + (1/\theta)] \) may be written in the form as follows:

\[\alpha = \frac{a}{q} + \beta, \]
\[|\beta| < \frac{1}{qQ}. \] (45)

for some integers \(a \) and \(q \) with \(1 \leq a \leq q \leq Q \) and \((a, q) = 1\).

We denote by \(\mathcal{M}(q, a) \) the set of \(a \) satisfying (45) and define the major arc by

\[\mathcal{M} = \bigcup_{1 \leq q \leq P} \bigcup_{q \leq a \leq q} \mathcal{M}(a, q). \] (46)

It follows from \(P \leq N^{(1/\theta)} < (Q/2) \) that the major arcs \(\mathcal{M}(q, a) \) are disjoint. The union \(\mathcal{M} \) of minor arcs is just the complement of \(\mathcal{M} \) in \(I \). We denote

\[S_\alpha(a) = \sum_{n \leq N} d_i(n)e(\alpha n). \] (47)

Then, we have

\[\nu(N; k, l) = \int_I S^k_\alpha(a)e(-Na)da, \]
\[= \int_{\mathcal{M}} S^k_\alpha(a)e(-Na)da + \int_{\mathcal{m}} S^k_\alpha(a)e(-Na)da. \] (48)

The upper bound of the integral of \(S^k_\alpha(a) \) on \(\mathcal{m} \) is given by Chace [3].

Lemma 6. Suppose \(k \geq 3 \) and \(l \geq 2 \) are integers. Then,

\[\int_{\mathcal{m}} S^k_\alpha(a)e(-Na)da \ll \gamma N^{k-1}e^{-\theta} \] (49)

This estimate on the minor arc is sufficient for us. It remains to consider the integral of \(S_\alpha(a) \) on the major arc. Let

\[S_\alpha(a, X) = \sum_{X < n \leq 2X} d_i(n)e(\alpha n). \] (50)

Now, for \(a = a/q + \beta \in \mathcal{M} \), we have

\[S_\alpha(a, X) = \sum_{n=1}^{\infty} f_\beta(n)d_i(n)e\left(\frac{an}{q}\right) + R_{1, \alpha}(a, X), \] (51)

where \(f_\beta(x) = f(x)e(x\beta) \) and

\[R_{1, \alpha}(a, X) = \left(\sum_{X \leq x \leq 2X} \sum_{\varepsilon \leq \delta \leq x} f(n)d_i(n)e(\alpha n) \right) \cdot X^{1-\delta}. \] (52)

It is clear that \(f_\beta(x) \) is a smooth function compactly supported in \([X - X^\delta, 2X + X^\delta]\). Moreover, it satisfies

\[f_\beta^{(r)}(x) \ll \frac{|\beta X + X^{1-\delta}|^v}{X}, \] (53)

for any \(v \geq 0 \), and

\[\int \left| f_\beta^{(r)}(x) \right| dx \ll \sum_{0 \leq j \leq r} |\beta|^{-j} \int f^{(j)}(x) dx, \]
\[\ll |\beta|^{-j} \sum_{0 \leq j \leq r} \left(\frac{X^{1-\delta}}{|\beta X|} \right)^{j-1}, \]
\[\ll (1 + |\beta| X) \left(\frac{|\beta X + X^{1-\delta}|}{X} \right)^{-1}, \] (54)

for any \(v \geq 1 \). Now, by Lemma 1, we get

\[\sum_{n=1}^{\infty} f_\beta(n)d_i(n)e\left(\frac{an}{q}\right) = \text{Res}_{s=1} F_\beta(s) E_1\left(\frac{a}{q}\right) + R_2\left(\frac{a}{q} + \beta, X\right), \] (55)

where

\[F_\beta(s) = \int_0^{\infty} f_\beta(x)x^{s-1} dx, \] (56)

is the Mellin transformation of \(f_\beta(x) \) and

\[R_2\left(\frac{a}{q} + \beta, X\right) = \frac{\pi^{(l/2)}}{q} \sum_{n=1}^{\infty} A_1\left(\frac{n}{q}, \frac{a}{q}\right) \int_0^{\infty} f(x)U_1\left(\frac{nx}{q}\right) dx \]
\[+ \frac{\pi^{(l/2)}}{q} \sum_{n=1}^{\infty} A_1\left(\frac{n}{q}, \frac{a}{q}\right) \int_0^{\infty} f(x)U_1\left(\frac{nx}{q}\right) dx. \] (57)

It follows from Lemma 2 that

\[\text{Res}_{s=1} F_\beta(s) E_1\left(\frac{a}{q}\right) = \sum_{n=0}^{l-1} A_n(q) \int_0^{\infty} f_\beta(s) \log^n x \cdot n! \cdot ds. \] (58)

From Equation (4.8) in [3], we know that

\[A_j(q) \ll \epsilon q^{-1+\epsilon}. \] (59)
\[R_{3J}(\alpha, X) \ll q^{-1+\epsilon}X^{\delta+\epsilon}. \quad (61) \]

Now, for \(\alpha = a/q + \beta \in \mathbb{M} \), by (51), (55), and (60), we write
\[S_j(\alpha, X) = T_j(\alpha, X) + R_j(\alpha, X), \quad (62) \]
where
\[T_j\left(\frac{a}{q} + \beta, X \right) = \sum_{n=0}^{l-1} A_n(q) \int_x^{2X} e(\beta x) \frac{\log^nx}{n!} dx, \quad (63) \]
\[R_j(\alpha, X) = R_{1J}(\alpha, X) + R_{2J}(\alpha, X) + R_{3J}(\alpha, X). \quad (64) \]

Hence, by dyadic analysis, for \(\alpha = a/q + \beta \in \mathbb{M} \), formally, we write
\[S_j(\alpha) = T_j(\alpha) + R_j(\alpha), \quad (65) \]
where
\[R_j(\alpha) = \sum_{j=1}^{\log_2 N} \sum_{i=1}^3 R_{ij}(\alpha, (N/2)) + O(1), \quad (66) \]
\[T_j\left(\frac{a}{q} + \beta \right) = \sum_{n=0}^{l-1} A_n(q) I_n(\beta), \quad (67) \]
with
\[I_n(\beta) = \int_1^N e(\beta x) \frac{\log^nx}{n!} dx, \quad (68) \]
for \(n = 0, 1, \ldots, l - 1 \). Therefore, we have
\[\int_{\mathbb{M}} S_j(\alpha) e(-Na)d\alpha = \sum_{j=0}^{k} \binom{k}{j} M_{jJ}(N), \quad (69) \]
where
\[M_{jJ}(N) = \int_{\mathbb{M}} T^{k-j}_j(\alpha) R^{l}_j(\alpha) e(-Na)d\alpha. \quad (70) \]

It has been proved by Chace (Section 5 in [3]) that
\[M_{0J}(N) = \mu(N; k, l) + O\left(N^{k-1+\epsilon}p^{-k+2} \right), \quad (71) \]
where
\[\mu(N; k, l) = \sum_{q=1}^{\infty} C_q(N) \int_{-\infty}^{\infty} \left| \sum_{a} A_n(q) l_n(\beta) \right|^k e(-N\beta)d\beta, \quad (72) \]
satisfying
\[\mu(N; k, l) \ll N^{k-1} \log^{(l-1)} N. \quad (73) \]

In the following subsections, we will estimate \(M_{jJ}(N) \) for \(1 \leq j \leq k \).

3.1. The Estimate of \(M_{1J}(N) \). In this section, we give the upper bound of \(M_{1J}(N) \).

Lemma 7. Let \(l = 2 \) or 3. We have
\[M_{1J}(N) \ll \begin{cases} N^{1+\epsilon} & \text{if } k = 3, \\ N^{k-2+\epsilon} & \text{if } k \geq 4. \end{cases} \quad (74) \]

Proof. By our definition of major arc (46), we have
\[M_{1J}(N) = \sum_{q \leq P} \sum_{\alpha \mod q} \int_{|\beta| \leq Q} T^{k-1}_j\left(\frac{a}{q} + \beta \right) R^{l}_j\left(\frac{a}{q} + \beta \right) e(-Na)d\beta. \quad (75) \]

Because for \(\alpha = a/q + \beta \in \mathbb{M} \), \(T_j(\alpha, X) \) is independent of \(\alpha \), and we can interchange the order of summation over \(a \) and the integral and then take the summation of \(R_j(\alpha, N)e(-Na) \) over \(a \) first. Therefore,
By (59) and (68), it is clear that
\[T_j \left(\frac{a}{q} + \beta \right) \ll q^{-\epsilon} N^\delta \min \{ N, |\beta|^{-1} \}. \] (77)

By the definition of \(R_l(\alpha) \) in (66), we have
\[\sum_{\mathclap{a \mod q \atop (a,q)=1}} R_{l,j} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{aN}{q} \right) \ll \sum_{t=1}^{3} \max_{1 \leq \varepsilon \leq (N/2)} \sum_{\mathclap{a \mod q \atop (a,q)=1}} R_l \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{aN}{q} \right) + q. \] (78)

We deduce that
\[\sum_{\mathclap{a \mod q \atop (a,q)=1}} R_{l,j} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{aN}{q} \right) = \sum_{X-X^\delta \leq \varepsilon \leq X} d_l(n) \sum_{\mathclap{a \mod q \atop (a,q)=1}} \sum_{\alpha \in [2\varepsilon, X] \cap \mathbb{Z}} f(n) e(\alpha n) e(n \beta) \ll X^{\delta+\epsilon}. \] (79)

It is obvious from (61) that
\[\sum_{\mathclap{a \mod q \atop (a,q)=1}} R_{l,j} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{aN}{q} \right) = \ll X^{\delta+\epsilon}. \] (80)

It remains to consider the summation of \(R_{2,j} \). We write \(G_{l,\beta}^+ \) be \(G_{l}^+ \) with \(F \) replaced by \(F_{\beta} \) in (16). Similar to the assertions of Lemma 3, we have
\[G_{l,\beta}^+ (x) \ll \begin{cases} X^{-A} & \text{if } x > (|\beta|X + X^{1-\delta})^{l-1} X^{-1}, \\ (1 + |\beta|X)(XX^{(l-1)/2}) & \text{if } X^{-1} \ll x \leq (|\beta|X + X^{1-\delta})^{l-1} X^{-1}, \\ (1 + |\beta|X)(XX^{(1/2)}(|\beta|X + X^{1-\delta})^t & \text{if } x \ll X^{-1}. \end{cases} \] (81)
Notice that
\[
\int_0^\infty f_y (x) U_t^+ (x y) \, dx = -\frac{1}{y} \mathcal{G}^+_{\beta} (y).
\]

Then, by Lemma 4, we have
\[
q^{-l} \sum_{m=1}^\infty \sum_{a \equiv (a, q)} A_m^t \left(n, \frac{a}{q} \right) e \left(-\frac{a N}{q} \right) \int_0^\infty f_y (x) U_t^+ \left(\frac{n' x}{q} \right) \, dx \ll q^\left(-l + 1 \right) \sum_{m=1}^\infty n' \frac{q}{n} \left| \mathcal{G}^+_{\beta} \left(\frac{n'}{q} \right) \right|
\]

\[
\ll q^{\left(l + 1 \right) / 2} (1 + |\beta| X) \left(|\beta X + X^{-1} \delta \right)^{\left(l - 1 \right)/2} \left(1 + |\beta| X \right).
\]

Therefore, we get
\[
\sum_{a \equiv (a, q)} R_{a, t} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{a N}{q} \right) \ll q^{\left(l + 1 \right) / 2} (1 + |\beta| X) \left(|\beta X + X^{-1} \delta \right)^{\left(l - 1 \right)/2} \left(1 + |\beta| X \right).
\]

Hence, by (79), (80), and (84), for \(l = 2, 3 \), one has
\[
\sum_{a \equiv (a, q)} R_{a, t} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{a N}{q} \right) \ll q^{\left(l + 1 \right) / 2} (1 + |\beta| N) + N^{d \epsilon}.
\]

Substituting this and (77) into (76), we obtain
\[
M_{1, l} (N) \ll \sum_{q \leq P} \left| \mathcal{T}_i \left(\frac{a}{q} + \beta \right) \right|^{-l} \sum_{a \equiv (a, q)} R_{a, t} \left(\frac{a}{q} + \beta, X \right) e \left(-\frac{a N}{q} \right) \, da
\]

\[
\ll \sum_{q \leq P} q^{-k \left(l + 1 \right) / 2} N^\epsilon \int_{|\beta| < \frac{q}{Q}} 1 \min \left\{ N, |\beta|^{-1} \right\} \left(|\beta| N + N^{-1} \delta \right)^{\left(l - 1 \right)/2} \left(1 + |\beta| X \right) d \beta
\]

\[
+ \sum_{q \leq P} q^{-k \left(l + 1 \right) \epsilon} \int_{|\beta| < \frac{q}{Q}} 1 \min \left\{ N, |\beta|^{-1} \right\} \left(|\beta| N + N^{-1} \delta \right)^{\left(l - 1 \right)/2} N^{d \epsilon} d \beta.
\]
By some elementary calculations, we get the desired result. □

3.2. Integral of $M_{j,l}(N)$, $2 \leq j \leq k$, on the Major Arcs. The way we treat for $M_{j,l}(N)$ for $j \geq 2$ is different from that of $M_{1,l}(N)$. We get the following lemma.

Lemma 8. Let $M_{j,l}(N)$ and $2 \leq j \leq k$ be defined as before. We have, for $l = 2, 3$,

\[
\sum_{j=2}^{k} \binom{k}{j} M_{j,l}(N) \ll \varepsilon \left\{ P^{k+1} N^{(1-\delta)(l-1)+\epsilon} + P^{k+2} N^{l} + P N^{2k+\epsilon}, \right. \\
\left. N^{k-3+\epsilon} (P^{l+1} + P^{k+1}) + N^{k-3+2k+\epsilon}, \right. \\
\left. \text{if } k = 3, \quad \text{if } k \geq 4. \right.
\]

Proof. The strategy is similar to that of Section 5 in [3]. Note that

\[
\sum_{j=2}^{k} \binom{k}{j} M_{j,l}(N) \ll \left| T_l(a) R_l(a) \right| ^{k-2} \left| T_l(a) R_l(a) \right| ^{k-2} \left(S_l(a) \right) ^{k-2} + \left| T_l(a) \right| ^{k-2}.
\]

We obtain

\[
\sum_{j=2}^{k} \binom{k}{j} M_{j,l}(N) \ll \left(\sum_{j=2}^{k} \binom{k}{j} \right) \left| T_l(a) R_l(a) \right| ^{k-2} \left(S_l(a) \right) ^{k-2} + \left| T_l(a) \right| ^{k-2}.
\]

(88)

Similar to (83), by (81) and Lemma 5, we have, for $l = 2, 3$ and $a = \alpha q + \beta \in \mathfrak{N}$,

\[
R_{2,l}(a, X) \ll q^{(l/2)+\epsilon} \left(|\beta| X + j \right) ^{(l-1)/2+\epsilon} (1 + |\beta| X).
\]

(90)

Hence, by (52), (61), (64), (90), and (66), we have

\[
\max_{a \in \mathfrak{N}} \left| R_l(a) \right| \ll \max_{a \in \mathfrak{N}} \max_{a \in \mathfrak{N}} \left(\sum_{j=1}^{3} R_{j,l}(a, X) + 1 \right) + \varepsilon \max_{a \in \mathfrak{N}} \left(q^{(l/2)+\epsilon} (1 + |\beta| N) \left(|\beta| N + N^{1-\delta} \right) ^{(l-1)/2+\epsilon} + N^{\delta+\epsilon} \right)
\]

\[
\ll \varepsilon P N^{(1-\delta)(l-1)/2+\epsilon} + P (l+1/2+\epsilon) + N^{\delta+\epsilon}.
\]

(91)

Now, for $k = 3$, by Cauchy’s inequality, the definition of major arc (46), and Parseval’s identity, we obtain

\[
\int_{\mathfrak{N}} |S_l(a)|^2 \, da \ll |\mathfrak{N}|^{(1/2)} \left(\int_{\mathfrak{N}} |S_l(a)|^2 \, da \right)^{(1/2)} \ll \varepsilon P N^{\epsilon}.
\]

(92)

For $k \geq 4$, we have

\[
\int_{\mathfrak{N}} |S_l(a)|^2 \, da \ll \max_{a \in \mathfrak{N}} |S_l(a)|^{k-4} \int_{\mathfrak{N}} |S_l(a)|^2 \, da \ll \varepsilon N^{k-3+\epsilon},
\]

by the fact that $S_l(a) \ll \varepsilon N^{1+\epsilon}$. One then shows that

\[
\int_{\mathfrak{N}} |T_l(a)|^2 \, da \ll \left\{ \begin{array}{ll} PN^{\epsilon}, & \text{if } k = 3, \\
N^{k-3+\epsilon}, & \text{if } k \geq 4, \end{array} \right.
\]

(93)

by using the definition of the major arc and (77). Combining these results, we complete the proof of the lemma. □

3.3. Proof of Theorem 1. By Lemma 6 and (69)–(73), we have, for $k \geq 3$, $l = 2, 3$,

\[
\nu(N; k, l) = \mu(N; k, l) + k M_{1,l}(N) + \sum_{j=2}^{k} \binom{k}{j} M_{j,l}(N) + O(N^{k-1+\epsilon} P^{-k+2}),
\]

(95)
where
\[\mu(N; k, l) = \sum_{q=1}^{\infty} C_q(N) \int_{Q} \left[\sum_{\beta=0}^{l-1} A_n(q) I_n(\beta) \right] e(-N\beta) d\beta , \]
\[= \sum_{q=1}^{\infty} C_q(N) \int_{Q} \left[\sum_{\beta=0}^{l-1} A_n(q) I_n(\beta) \right] e(-N\beta) d\beta , \]
(96)
satisfying
\[\mu(N; k, l) \approx N^{k-1} \log^k(l-1) N. \]
(97)

Now, by Lemmas 7 and 8, taking
\[\delta = \begin{cases} 2l - 1 & \text{if } k = 3, \\ \frac{2l - 1}{2l + 1} & \text{if } k = 3, \\ l - 1 & \text{if } k \geq 4, \\ \frac{l - 1}{l + 1} & \text{if } k \geq 4, \end{cases} \]
and
\[P = \begin{cases} N^{2/(2l+1)} & \text{if } k = 3, \\ N^{4/(4l+1)(k+l-2)} & \text{if } k \geq 4. \end{cases} \]
(98)
we have, for \(l = 2, 3, \)
\[\nu(N; k, l) = \begin{cases} \mu(N; 3, l) + O(N^{2 - 2/(2l+1)+\epsilon}) & \text{if } k = 3, \\ \mu(N; k, l) + O(N^{k-1-(4l-2)/(4l+1)(k+l-2)+\epsilon}) & \text{if } k \geq 4. \end{cases} \]
(99)

We complete the proof of Theorem 1.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] T. Estermann, "On the representations of a number as the sums of three products," *Proceedings of the London Mathematical Society*, vol. 29, no. 2, pp. 453–378, 1929.
[2] T. Estermann, "On the representations of a number as the sum of two products," *Proceedings of the London Mathematical Society*, vol. 31, no. 2, pp. 123–133, 1930.
[3] C. E. Chace, "Writing integers as sums of products," *Transactions of the American Mathematical Society*, vol. 345, no. 1, pp. 367–379, 1994.
[4] R. C. Vaughan, "The hardy-littlewood method," *Cambridge Tracts in Mathematics*, vol. 80, 1981.
[5] A. Ivić, "On the ternary additive divisor problem and the sixth moment of the zeta-function," in *Sieve Methods, Exponential Sums, and Their Applications in Number Theory (Cardiff, 1995)*, pp. 205–243, Cambridge University Press, Cambridge, UK, 1997.
[6] C. E. Chace, "The divisor problem for arithmetic progressions with small modulus," *Acta Arithmetica*, vol. 61, no. 1, pp. 35–50, 1992.
[7] Y. Jiang and G. Lü, "Shifted convolution sums for higher rank groups. (English summary)," *Forum Mathematicum*, vol. 31, no. 2, pp. 361–383, 2019.
[8] R. A. Smith, "The generalized divisor problem over arithmetic progressions," *Mathematische Annalen*, vol. 260, no. 2, pp. 255–268, 1982.
[9] R. A. Smith, "On n-dimensional Kloosterman sums," *Journal of Number Theory*, vol. 11, no. 3, pp. 324–343, 1979.