Coupled $\Lambda N - \Sigma N$ and $\Lambda NN - \Sigma NN$ systems and hyperon-nucleon interactions

K. Miyagawa1, H. Kamada2, W. Glöckle2, H. Yamamura1, T. Mart3, C. Bennhold4

1 Department of Applied Physics, Faculty of Science, Okayama University of Science, Okayama 700, Japan
2 Institut für theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
3 Jurusan Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
4 Center for Nuclear Studies, Department of Physics, The George Washington University, Washington, D.C. 20052, USA

Abstract. This paper summarizes our studies of the hypertriton and describes our findings on the hyperon-nucleon interaction, especially on the role of the $\Lambda N - \Sigma N$ coupling and the strengths of the S-wave YN interactions. We briefly comment on our ongoing analyses with electromagnetic probes.

1 Introduction

One of the most prominent features of the ΛN interaction is the lack of the one-pion-exchange process1 so that shorter range effects are more important than in the NN interaction. In addition, the presence of the $\Lambda N - \Sigma N$ coupling influences the nature of the interaction. The mass difference between Λ and Σ is about 80 MeV and this coupling can cause significant effects in hypernuclei. Unfortunately, these features of the YN interaction have not been well examined, mainly because YN scattering data are scarce. Even S-wave ΛN scattering lengths have yet to be determined.

Since 1993, we have analyzed the hypertriton2, the lowest-mass hypernucleus, using various meson-theoretical YN interactions. These analyses have clarified properties of the S-wave YN interactions as well as confirmed the structure of the hypertriton as an extremely loosely bound system. Our findings are twofold: First, the binding energy is sensitive to the strengths of the 3S_1 and especially the 1S_0 YN forces. The analyses combined with the ΛN elastic total cross section data restrict the balance between the two force com-
ponents to a small range. Second, the $\Lambda N - \Sigma N$ coupling plays the decisive role in the binding of the hypertriton. The expectation value of the $\Lambda N - \Sigma N$ coupling potential amounts to about half of the total YN potential.

Our another interest is in the behavior of the $\Lambda N - \Sigma N$ coupling around the ΣN threshold. Predictions of the ΛN elastic total cross sections based on various YN interaction models show an enhancement just around the ΣN threshold. Reference [3] demonstrates that this is not a simple threshold effect but is caused by a t-matrix pole around the threshold. This enhancement is being investigated by photo- and electroproduction processes of a K meson and a hyperon on the deuteron and 3He targets. We are pursuing such studies [4], and report a part of them in this conference (See H.Yamamura). This paper briefly surveys our recent results.

2 Analyses of the hypertriton

We solve the exact Faddeev equations for the coupled $ANN - \Sigma NN$ system. The formulation has appeared in several articles[2], to which we would like to refer the reader. For the YN system, various modern meson-theoretical interactions are used, the Jülich $A[5]$ model, and the soft core models of the Nijmegen group, NSC89[6] and NSC97[7]. The model NSC97 has six different versions, namely a, b, c, d, e and f, which contain varying relative strengths between the 1S_0 and 3S_1 force components. Among these models, only NSC89 and NSC97f bind the hypertriton at the correct binding energy. (The experimental Λ separation energy is 0.13 ± 0.05 MeV.) The Jülich A interaction cannot generate a bound state. This, as shown below, originates from a defect in their 1S_0 force.

For the NN sector, we use the Paris, Bonn B and Nijmegen93 interactions, but the results above do not depend on the choice of these potentials. It is the 1S_0 and $^3S_1 - ^3D_1$ partial waves in the NN and YN subsystems that dominate the hypertriton binding energy. The convergence with increasing number of partial waves is demonstrated in Ref. [2].

Figure 1(a) illustrates baryon-baryon correlation functions in the hypertriton, the probability to find the two particles at a distance r. The NN correlation function is quite similar to the one for the deuteron which demonstrates that the NN state in the hypertriton is close to the deuteron. The correlation functions multiplied by r^2 are displayed in Fig. 1(b), showing that the ΛN correlation function has a large range. (The functions ρ are normalized as $\int r^2 \rho_{NN} = 1$ and $\int r^2 [\rho_{NA} + \rho_{NN}] = 1$.) Thus, as expected with the small Λ separation energy, the hypertriton is a loosely bound system where the Λ barely clings to a deuteron.

Table 1 shows expectation values for the kinetic and potential energies in the hypertriton. Using the Nijmegen93 NN and NSC89 YN potentials we see that the NN subsystem is less bound than in the deuteron, and the relative kinetic energy of the Λ with respect to the two nucleons $< T_{\Lambda-NN} >$ is larger than its potential energy $< V_{\Lambda\Lambda} >$. It is due to the $\Lambda - \Sigma$ conversion that the hyperon is bound to the two nucleons. The expectation value $< V_{\Lambda N,\Sigma N} >$
Figure 1. (a) Correlation functions for the NN, AN, and ΣN pairs in the hypertriton. The correlation function in the deuteron is also shown for comparison. (b) Correlation functions multiplied by r^2.

amounts to more than half of the total YN potential energy. In Table 2, we show the contributions from the 1S_0 and $^3S_1 - ^3D_1$ components to various YN potential energies. The 1S_0 component dominates the expectation value of the direct potential $<V_{AN,AN}>$, while the $^3S_1 - ^3D_1$ component dominates the coupling potential $<V_{AN,\Sigma N}>$.

Table 1. Expectation values for the various kinetic and potential energies in the hypertriton using the NSC89 YN and Nijmegen93 NN interactions.

	$<T_{NN}>$	$<T_{AN,NN}>$	$<T_{\Sigma NN}>$
$<V_{NN}>$	-22.32	-1.65	-2.05
$<V_{AN,AN}>$	-2	-0.40	0.03
$<V_{AN,\Sigma N}>$	0.02	-1.61	-0.06

Table 2. Contributions from the 1S_0 and $^3S_1 - ^3D_1$ force components to the expectation values of the YN potential energies.

	$<V_{AN,AN}>$	$<V_{AN,\Sigma N}>$	$<V_{\Sigma N,\Sigma N}>$
1S_0	-1.67	-0.40	0.03
$^3S_1 - ^3D_1$	0.02	-1.61	-0.06

Let us discuss the strengths of the 1S_0 and 3S_1 force components in relation to the restriction imposed by the binding of the hypertriton. In Fig. 2, the AN elastic total cross sections are shown for the various force models. All of the curves are adjusted to the sparse experimental data which have large error bars.
Figure 2. The ΛN elastic total cross sections σ predicted by the various YN interactions as a function of the Λ lab momentum.

![Graph showing the elastic total cross sections as a function of the lab momentum for different potentials.](image)

Figure 3. Partial ΛN elastic total cross sections (a) for 1S_0, and (b) for 3S_1, which are defined as $\sigma = \frac{1}{4}\sigma_s + \frac{3}{4}\sigma_t$.

![Graph showing the partial elastic total cross sections for different potentials.](image)

Among these potentials, NSC89 and NSC97f bind the hypertriton. The NSC97 potential, as mentioned, has six versions with different magnitudes between the 1S_0 and 3S_1 force components. Here, we take NSC97d as an example which does not bind the hypertriton. In Figs. 3(a) and 3(b), the separate contributions from the 1S_0 and 3S_1 states to the ΛN elastic total cross sections are shown. They are defined as $\sigma = \frac{1}{4}\sigma_s + \frac{3}{4}\sigma_t$. As is seen in Figs. 3(a) and 3(b), the two potentials with the largest 1S_0 and small 3S_1 cross sections at low energies.
reproduce the hypertriton. From that we deduce that the scattering lengths are restricted to within $-2.7 \sim -2.4$ fm for 1S_0 and $-1.6 \sim -1.3$ fm for 3S_1.

3 Electromagnetic probes for the YN and $YN N$ systems

YN scattering experiments would be the best way to clarify the properties of the YN interaction, but it is difficult to carry them out experimentally under present circumstances. Alternative and hopefully equally promising ways are experiments with electromagnetic probes such as $\gamma + d \rightarrow K^+ + Y + N$ and $e + d \rightarrow e' + K^+ + Y + N$, and similar experiments on 3He. One can obtain the information on the YN interaction by analyzing the final state interactions among YN or $YN N$. An inclusive $d(e, e'K^+)YN$ experiment has already been performed at TJNAF at Hall C, while the data for $d(\gamma, K^+YN)$ are being analyzed in Hall B.

What dominates the ΛN elastic total cross section curve is an enhancement around the ΣN threshold which is predicted by all force models. We have investigated the amplitude for the $\Lambda N - \Sigma N$ system and found that it has a pole close to that threshold in the complex momentum plane. This pole will have a significant influence on various observables in the reactions mentioned above.

Beginning with photoproduction, we recently studied the inclusive $d(\gamma, K^+)YN$ and exclusive $d(\gamma, K^+YN)$ processes for $\theta_K = 0^\circ$ and found sizeable effects of the YN final state interaction. This is reported by H. Yamamura in this conference. Even more pronounced are the final YN interaction effects on double polarization observables involving the recoil hyperon polarization along with a circularly polarized incoming photon. We plan to study the $e + d \rightarrow e' + K^+ + Y + N$ and $\gamma + ^3$He $\rightarrow K^+ + Y + N + N$ processes next. In the latter case, the 3H bound state just below the Λd threshold (0.13 MeV) is expected to yield significant effects on observables near threshold.

4 Summary

We have analyzed the hypertriton using various meson-theoretical YN interactions. Among them, only NSC89 and NSC97I give the correct binding energy. The hypertriton is dominated by the 1S_0 and $^3S_1 - ^3D_1$ partial waves in the NN and YN subsystems, and has a structure such that a Λ clings to a deuteron as expected from the small Λ separation energy. The $\Lambda N - \Sigma N$ coupling plays the decisive role in this binding. The expectation value $<V_{\Lambda N, \Sigma N}>$ amounts to about half of the total potential energy $<V_{YN}>$. The strengths of the 1S_0 and 3S_1 YN forces can be restricted by the combined analyses of the hypertriton and the ΛN elastic cross section data. The scattering lengths have to lie within the intervals $-2.7 \sim -2.4$ fm for 1S_0 and $-1.6 \sim -1.3$ fm for 3S_1.

For further study of the YN interaction, we believe experiments with electromagnetic probes are promising. We have studied the $\gamma + d \rightarrow K^+ + Y + N$ processes and found sizeable effects of the YN final state interaction. The anal-
yses of $e + d \rightarrow e^\prime + K^+ + Y + N$ and $\gamma^{2}\text{He} \rightarrow K^+ + Y + N + N$ processes are underway.

References

1. See for instance B. F. Gibson, Few-Body Systems, Suppl. 7, 80 (1994).

2. W. Glöckle, K. Miyagawa, H. Kamada, J. Golak, and H. Witała, Nucl. Phys. A639, 297c (1998); K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys. Rev. C51, 2905 (1995); K. Miyagawa and W. Glöckle, Phys. Rev. C48, 2576 (1993);

3. K. Miyagawa and H. Yamamura, Phys. Rev. C 60, 024003 (1999); nucl-th/9904002.

4. H. Yamamura, K. Miyagawa, T. Mart, C. Bennhold, H. Haberzettl, and W. Glöckle, Phys. Rev. C, in press; nucl-th/9907029.

5. A. G. Reuber, K. Holinde, and J. Speth, Czech. J. Phys. 42, 1115 (1992).

6. P. M. M. Maessen, Th. A. Rijken, and J. J. de Swart, Phys. Rev. C 40, 2226 (1989).

7. Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).