In a previous study it was found that the therapeutic effects of QLT0267, a small molecule inhibitor of integrin-linked kinase (ILK), were influenced by Her2/neu expression. To understand how inhibition or silencing of ILK influences Her2/neu expression, Her2/neu signaling was evaluated in six Her2/neu-positive breast cancer cell lines (LCC6her2, MCF7her2, SKBR3, BT474, JIMT-1 and MB Bally1,2,7,8). Treatment with QLT0267 engendered suppression (32–87%) of total Her2/neu protein in these cells. Suppression of Her2/neu was also observed following small interfering RNA-mediated silencing of ILK expression. Time course studies suggest that ILK inhibition or silencing caused transient decreases in P-AKTSer473, which were not temporally related to Her2/neu downregulation. Attenuation of ILK activity or expression was, however, associated with decreases in YB-1 (Y-box binding protein-1) protein and transcript levels. YB-1 is a known transcriptional regulator of Her2/neu expression, and in this study it is demonstrated that inhibition of ILK activity using QLT0267 decreased YB-1 promoter activity by 50.6%. ILK inhibition was associated with changes in YB-1 localization, as reflected by localization of cytoplasmic YB-1 into stress granules. ILK inhibition also suppressed TWIST (a regulator of YB-1 expression) protein expression. To confirm the role of ILK on YB-1 and TWIST, cells were engineered to overexpress ILK. This was associated with a fourfold increase in the level of YB-1 in the nucleus, and a 2- and 1.5-fold increase in TWIST and Her2/neu protein levels, respectively. Taken together, these data indicate that ILK regulates the expression of Her2/neu through TWIST and YB-1, lending support to the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors.

Keywords: integrin-linked kinase; QLT0267; Her2/neu; YB-1; TWIST; STAT-3

Introduction

Increased integrin-linked kinase (ILK) expression and/or activity (Graff et al., 2001; Bravou et al., 2003; Obara et al., 2004; Takanami, 2005; Sawai et al., 2006) has been documented in many cancers types, including lung (Takanami, 2005), brain (Obara et al., 2004), prostate (Graff et al., 2001), pancreatic (Sawai et al., 2006), colon (Bravou et al., 2003, 2006), gastric (Ito et al., 2003) and ovarian (Ahmed et al., 2003) cancers and malignant melanomas (Dai et al., 2003). Overexpression of ILK in epithelial cells has been shown to induce epithelial–mesenchymal transition (Li et al., 2003, 2007; Oloumi et al., 2004, 2006) and deregulated growth, whereas targeted inhibition of ILK induces apoptosis and cell cycle arrest (Persad et al., 2000; Persad and Dedhar, 2003; Duxbury et al., 2005; McDonald et al., 2008a). In normal mammary cells, overexpression of ILK stimulates anchorage-independent cell growth (Hannigan et al., 1997; Radeva et al., 1997; Kumar et al., 2004), and causes constitutive upregulation of cyclin D and A expression while promoting cell cycle progression (Radeva et al., 1997), hyperplasia and tumor formation in vivo (White et al., 2001). Given the importance of ILK in cancer development and progression, it is anticipated that ILK inhibition and/or silencing may be an effective way of treating cancer. Preclinical studies completed to date support this idea (Edwards et al., 2008; Kalra et al., 2009).

A recent study from our lab using preclinical breast cancer models highlighted the therapeutic benefits associated with targeting ILK (Kalra et al., 2009). However, the results clearly indicated that Her2/neu-positive breast cancer cell lines responded uniquely when compared with cell lines that expressed low levels of Her2/neu. For example, Her2/neu-positive tumors were more sensitive to treatment with QLT0267. The
studies summarized here investigated Her2/neu expression in six cell lines where Her2/neu overexpression was a result of gene amplification (SKBR3, BT474, JIMT-1 and KPL-4) or gene transfection (LCC6Her2, MCF7Her2). The results presented demonstrate that ILK inhibition (with a small molecule ILK inhibitor, QLT0267) or silencing (using small interfering RNA (siRNA)) suppressed Her2/neu protein expression. Evidence is provided to suggest that ILK-mediated regulation of Her2/neu appears to act through signaling pathways involving the transcription factors Y-box binding protein-1 (YB-1) and TWIST.

Results

QLT0267 or ILK-targeted siRNA suppress total Her2/neu expression in multiple breast cancer cell lines

In an effort to better understand the effects of QLT0267 on Her2/neu-positive breast cancer cells, the expression of total Her2/neu was examined in cell lines that were treated with QLT0267 at various doses for a 24 h time point that was selected based on Alamar Blue assay (Medicorp Inc., Montreal, QC, Canada) that demonstrate no decreases in cell viability at this time (Figure 1). All six breast cancer cell lines examined, including LCC6Her2 (Figure 1a), MCF7Her2 (Figure 1b), BT474 (Figure 1c), KPL4 (Figure 1d), SKBR3 (Figure 1e) and JIMT-1 (Figure 1f), showed a reduction in total Her2/neu protein levels in response to exposure to QLT0267. Her2/neu levels in cells treated with QLT0267 were qualitatively assessed by densitometry (average of three independent experiments) and the results indicated that in all cell lines 42 μM QLT0267 resulted in suppression of total Her2/neu. Levels were decreased by 69, 86.5, 49, 47, 63 and 32% in LCC6Her2, MCF7Her2, BT474, KPL4, SKBR3 and JIMT-1 cells, respectively. To understand why LCC6Her2 cells showed significant downregulation of Her2/neu at a concentration up to fourfold lower than the other cell lines tested, we performed reverse transcriptase–PCR to compare the level of Her2/neu mRNA in SKBR3 cells relative to LCC6Her2 cells. The analysis showed that SKBR3 cells have 48-fold more Her2/neu transcript than the LCC6Her2 cell line.

To determine if the suppression of Her2/neu was a direct or indirect effect of QLT0267, SKBR3 were transiently nucleofected with 2 μg ILK siRNA or a universal siRNA control (Neg) and ILK, AKT P-AKTser473 and Her2/neu levels were determined at 24, 48, 72 and 96 h (see representative blots in Figure 2). ILK expression was decreased by an average of 49, 66, 66 and 79% at 24, 48, 72 and 96 h, respectively. Total Her2/neu expression was decreased by 71% at 96 h (Figure 2a).

An analysis of phosphorylation of AKT at serine 473 was done to elucidate whether the mechanism through which ILK modulates the expression of Her2/neu involves its downstream target, AKT. The results demonstrate that ILK silencing is associated with significant decreases in P-AKTser473 levels, but the effect is transient.

Within 24 h of treatment using ILK-targeted siRNA, there was 79% suppression of P-AKTser473. These values returned to control levels by 72 h (Figure 2a). P-AKTser473 levels in SKBR3 cells were also determined following treatment with QLT0267 (Figure 2b). Significant decreases in P-AKTser473 were observed at 6 and 18 h; however, P-AKTser473 levels began to increase by 24 h (Figure 2b). Similar results were seen in the LCC6Her2 cell line. Transient decreases in P-AKTser473 levels following inhibition or silencing of ILK is consistent with the initiation of compensation mechanisms as reported by others (Troussard et al., 2006; McDonald et al., 2008a). Interestingly, although JIMT-1 cells experience a decrease in Her2/neu levels after
treatment with 42 μM of QLT0267, these cells do not show decreased P-AKT at any of the time points tested (data not shown).

In order to determine whether ILK silencing by siRNA or inhibition by QLT0267 affected Her2/neu transcription, RNA was isolated from SKBR3 cells treated with QLT0267 or transfected with ILK siRNA. Her2/neu mRNA was measured using PCR and the results, based on three independent experiments, indicated that inhibition (QLT0267) or silencing (siRNA) of ILK was associated with 9.8- and 2.5-fold decreases in Her2/neu transcript levels, respectively (Figure 2c).

Influence of ILK inhibition or silencing on YB-1 expression and intracellular localization
ILK silencing/suppression decreased Her2/neu expression in both SKBR3 cells, where overexpression is because of c-erbB2 gene amplification, and in LCC6Her2 cells, where Her2/neu expression is the result of c-erbB2 gene transfection driven by the RSV-LTR (long terminal repeat of Rous sarcoma virus) promoter; thus, in our minds, the potential mechanisms through which ILK modulates Her2/neu were not limited to transcriptional control. Rather, mechanisms that could influence Her2/neu expression in these different cell types might therefore involve transcription factors such as activator protein-2 and Pseudomonas exotoxin A, stabilization factors such as heat shock proteins 70 and 90 and translational mechanisms such as YB-1. There was a strong rationale for examining whether ILK regulates YB-1 expression and/or cellular localization, as both could trigger changes in Her2/neu expression (Kohno et al., 2003; Bergmann et al., 2005; Berquin et al., 2005; Kedersha and Anderson, 2007; Lo et al., 2007; Take moto et al., 2009; Chernov et al., 2008a, b, 2009; Evdokimova et al., 2006a, b; Pontier et al., 2010). SKBR3 cells were transiently nucleofected with ILK siRNA. Subsequently, RNA was isolated from cells and reverse transcribed. Her2/neu was amplified from complementary DNA (cDNA) using quantitative reverse transcriptase-PCR (RT-qPCR) and PCR. A 9.8- and 2.5-fold decrease of Her2/neu transcript was observed when cells were treated using QLT0267 or ILK siRNA.
more, ILK silencing (siRNA) and inhibition (QLT0267) engendered a 9.9- and 6.8-fold decrease in YB-1 transcript levels, respectively (Figure 3b). Similar results were seen in LCC6Her2 cell lines (Supplementary Figure 2B).

To determine whether ILK inhibition can influence transcription of YB-1, the activity of the YB-1 promoter region was evaluated using dual luciferase reporter assay (Stratford et al., 2007, 2008). SKBR3 cells were transfected with a YB-1 promoter/luciferase construct and treated with QLT0267 or vehicle control (PTE) for 24h. A significant reduction in YB-1 promoter activity of 50% is achieved when cells are treated with QLT0267 when compared with untreated controls ($P<0.05$) (d) SKBR3 cells grown on coverslips were treated with 42 μM QLT0267 for 24 h, fixed with 4% paraformaldehyde (PFA) and then stained for YB-1. Immunofluorescent images show that treatment of SKBR3 cells trigger a decrease in YB-1 protein (red) as well as a change in localization to granular structures in the cytoplasm (white arrows). Hoechst staining was used to counter stain nuclei (blue). Bar, 5 μm.

Representative images of untreated SKBR3 cells compared with cells treated with QLT0267 are shown in Figure 3d. QLT0267-treated cells exhibited lower levels of immunofluorescence, consistent with the western blot data. In addition, the fluorescence imaging clearly demonstrated localization of YB-1 into well-defined puncta (Figure 3d, white arrows). Similar results were seen in other cell lines including LCC6Her2 cells (Supplementary Figure 2C).

Influence of ILK overexpression on YB-1 and Her2/neu levels
To assess how ILK influences the expression of YB-1 and Her2/neu, SKBR3 cells were stably transfected with the wild-type ILK (ILKWT) gene as described in the Materials and methods. Exogenous expression of ILK in SKBR3ILKWT cells (Figure 4a) caused a small, but reproducible, decrease in native ILK expression. In order to assess whether there were changes in YB-1 levels or distribution, the ILKWT-transfected cells were plated on coverslips fixed and

![Figure 3](image_url)
stained for YB-1 (red) and nuclei (blue) (Figure 4b). When comparing SKBR3ILK cells with SKBR3vector cells, SKBR3ILK cells exhibited increased levels of YB-1 (Figure 4b). To confirm immunofluorescence results, and to determine whether the subcellular distribution of YB-1 was changed, cytoplasmic and nuclear protein fractions (see Materials and methods) prepared from the SKBR3vector and SKBR3ILK cells were used in western blot analysis. As shown in Figure 4c, representative western blot analysis of YB-1 in SKBR3 cells transfected with ILK showed a 254% increase (compared with vector-transfected cells) in YB-1 when considering protein levels in the nucleus and cytoplasmic fractions. CREB (marker for the nuclear fraction) and Vinculin (marker for the cytoplasmic fraction) were used to verify purity of the fractions (Figure 4c). The amount of YB-1 in the nucleus increased fourfold when comparing cells transfected with ILK with cells transfected with the vector. It should be noted that similar studies were completed in MCF7 cells. Forced overexpression of ILK in MCF7 cells, which express basal levels of Her2/neu, did not influence total YB-1 or Her2/neu protein levels. However, increases in YB-1 and Her2/neu transcript were observed (Supplementary Figure 3).

The role of TWIST and STAT-3 in regulating YB-1 and Her2/neu expression
Changes in YB-1 levels and localization following ILK inhibition/silencing or forced overexpression provide an explanation for how ILK expression may influence Her2/neu expression in cell lines that overexpress Her2/neu because of gene amplification or transfection. The results suggest that if ILK is inhibited or suppressed, there will be a decrease in YB-1 mRNA and protein levels. It is not clear, however, how ILK would regulate the expression of YB-1, and for this reason studies were initiated to assess how ILK expression/inhibition influenced expression of the transcription factor TWIST. This protein is known to bind to the E-box regions within the YB-1 promoter and thus regulate YB-1 expression (Shiota et al., 2008a, b, 2009). SKBR3 cells were treated with QLT0267 or transfected with ILK siRNA and the resulting cell lysates were blotted and
Inhibition of ILK activity or expression regulates TWIST expression. (a) SKBR3 cells were treated with 42 μM QLT0267, Neg siRNA or ILK siRNA. Subsequently, cells were lysed, protein was isolated and then separated on a 10% SDS-PAGE gel. Resulting western blots were probed for ILK, TWIST and β-actin. TWIST protein is reduced by 98% in SKBR3 cells treated with QLT0267 or nucleofected with ILK siRNA when compared with controls (untreated or Neg siRNA, respectively). (b) SKBR3 cells were transiently nucleofected with Control or 4 μg TWIST siRNA for 96 h. Subsequently, cells were lysed, protein was isolated from samples, separated on a 10% SDS-PAGE gel and probed for Her2/neu, YB-1, TWIST and β-actin. Silencing of TWIST is seen at 96 h. With a 40% silencing of TWIST, YB-1 is decreased by 47% and Her2/neu total protein is reduced by 70%.

Figure 5

Discussion

It has recently been shown that the activity of QLT0267, whether used alone or in combination, was dependent on whether the breast cancer cell lines used expressed Her2/neu (Kalra et al., 2009). It was therefore important to gain a better understanding of how ILK inhibition influenced Her2/neu signaling and the studies described here were undertaken to address this issue. Our results demonstrate for the first time that ILK inhibition causes significant decreases in Her2/neu expression and that this is regulated through a previously unrecognized mechanism involving the transcription factors YB-1 and TWIST.

To date, no direct relationship between ILK expression and Her2/neu signaling has been documented; however, very recently, Pontier et al. (2010) showed that decreased tumor induction was observed with disruption of ILK in Her2/neu-positive mammary epithelial tissue. Furthermore, silencing of ILK in Her2/neu-positive cells in vitro was able to block invasion and induce apoptosis (Pontier et al., 2010), indicating that ILK can at the very least modulate the effects of Her2/neu signaling.

It is clear from the results in this report that ILK-targeted siRNA or inhibition with QLT0267 engenders significant decreases in total Her2/neu protein levels (Figures 1 and 2). Initially, a clue to the mechanism governing this effect was identified because suppression of Her2/neu (because of ILK silencing/inhibition) was observed in cell lines transfected with the c-erbB2 gene as well as in cells that overexpress Her2/neu because of c-erbB2 gene amplification. Thus, it was first thought that the regulation of Her2/neu via ILK would involve a factor that would act at a translational level. YB-1 was previously identified as an important transcription/translation factor that participates in the formation of messenger ribonucleoprotein complexes (mRNPs; Kedersha and Anderson, 2007; Chernov et al., 2008a, b, 2009) and in the regulation of mRNA translation and degradation (Kohno et al., 2003; Evdokimova et al., 2006a, b). YB-1 is an oncogene that is overexpressed in a variety of cancers and its forced expression induces the development of breast cancers (Bergmann et al., 2005; Berquin et al., 2005). Previous studies indicate that normally about 90% of YB-1 protein is localized in the cytoplasm and when YB-1 is phosphorylated on serine 102, by AKT or RSK, the protein translocates to the nucleus (Sutherland et al., 2005; Basaki et al., 2007; Stratford et al., 2008). Nuclear localization of YB-1 is associated with increased expression of Her2/neu and epidermal growth factor receptor (EGFR; Wu et al.,...
2006; Fujii et al., 2008; Kashihara et al., 2009). Furthermore, it has been shown that knockdown of YB-1 with siRNA reduces Her2/neu expression (Lo et al., 2007). RNA interference strategies targeting ILK have been shown to interfere with nuclear translocation of YB-1 in human ovarian cancer cells (Basaki et al., 2007), and it was postulated that this effect occurred through decreased phosphorylation of AKT. Thus, inhibition of ILK and associated suppression of phosphorylation of AKT could act to maintain levels of YB-1 in the cytoplasm. In the cytoplasm, YB-1 can act as a translation factor binding to mRNA (Ozer et al., 1990; Chernov et al., 2008a, b, 2009). Messenger RNA is normally bound to proteins, forming polysomes and mRNPs. Messenger RNA released from disassembled polysomes and mRNPs are sorted and remodeled in stress granules (SGs), from which selected transcripts are delivered to processing bodies for degradation. SGs are cytoplasmic aggregates of protein and RNA approximately 100–200 nm in diameter and they are thought to be sites of stalled translation (for example, pre-initiation complexes; Yamasaki and Anderson, 2008; Balagopal and Parker, 2009; Anderson and Kedersha, 2009a, b). Furthermore, Kedersha and Anderson (2007) established that YB-1 is a useful marker of SGs and processing bodies and YB-1 modulates the formation of SGs and translation of mRNA.

In this study, using immunofluorescent localization of YB-1 in SKBR3 cells, we demonstrated decreases in YB-1 nuclear staining and cytosolic sequestration of YB-1 into intracellular puncta following treatment with QLT0267 (see Figure 4c). This effect was also observed in the other breast cancer cell lines that were studied here. The formation of SGs may have a role in the translational regulation of both Her2/neu and YB-1. As suggested above, decreases in phosphorylation of AKT (serine 473) caused by ILK inhibition or silencing could lead to accumulation of YB-1 in the cytoplasm where it may form SGs and processing bodies, leading to the degradation of Her2/neu and...
ILK inhibition suppresses Her2/neu expression
J Kalra et al

YB-1 transcript. The results presented in Figure 2 demonstrated decreases in P-AKT serotonin following treatment with QLT0267 or ILK silencing by siRNA. Although this effect was transient, it remains a possible mechanism through which ILK may regulate the localization of YB-1 and thus impact Her2/neu expression. It is important to note that previous reports suggest that the LTR-RSV promoter used to drive c-erbB2 gene expression in the MCF7 and LCC6 cells has a binding site for YB-1 (Ozer et al., 1990), which could also support a transcriptional regulatory mechanism of Her2/neu via ILK and YB-1.

YB-1 is also associated with increased expression of EGFR. Thus, as a follow-up to the studies evaluating Her2/neu signaling, EGFR expression was analyzed after treatment with QLT0267. Our data show that total EGFR expression in SKBR3 cells is significantly decreased by approximately 87% when using QLT0267 when compared with vehicle control (that is, PTE (polyethylene glycol, Tween 80, 95% ethanol and citric acid) see Supplementary Figure 4). These studies have interesting implications, particularly with the use of ILK inhibition or silencing in combination with EGFR and Her2/neu inhibitors. Furthermore, cell viability experiments were initiated to evaluate combinations of QLT0267 with Lapatinib, a dual kinase small molecule inhibitor targeting Her2/neu and EGFR. Our preliminary results indicate that at low effect levels the interactions between QLT0267 and Lapatinib are synergistic, but at the desirable high effect levels the QLT0267/Lapatinib interactions are strongly antagonistic, perhaps owing to the loss of EGFR and Her2/neu expression with higher doses of QLT0267.

To elucidate a mechanism of transcriptional regulation of YB-1 via ILK, the studies described here also evaluated the transcription factor TWIST. TWIST is known to bind to E-box regions within the YB-1 promoter and thus regulate its expression (Shiota et al., 2008a, b, 2009). TWIST is considered oncogenic and is overexpressed in breast cancer (Watanabe et al., 2004; Martin et al., 2005). Entirely consistent with a role for TWIST in ILK-mediated regulation of Her2/neu expression, decreased ILK expression or activity led to a near-complete inhibition of TWIST expression (Figure 5a), suggesting that ILK may be able to regulate TWIST expression. Moreover, silencing of TWIST was associated with decreased expression of both YB-1 and Her2/neu (see Figure 5b). Finally, overexpression of ILK in SKBR3 cells resulted in increased TWIST expression (see Figures 6a and b), suggesting for the first time that TWIST is a downstream target of ILK. Preliminary studies are already underway to determine whether transfection of cells with a YB-1 construct is able to rescue Her2/neu expression and in the same vein it would be interesting to determine whether forced overexpression of TWIST could potentially recover YB-1 and Her2/neu expression after ILK inhibition.

Figure 7 details the possible pathways through which ILK may modulate the expression and activity of TWIST and therefore YB-1 and Her2/neu. TWIST expression is known to be regulated by two transcription factors that can be directly linked to the pathways influenced, in part, by ILK. These include STAT-3 (Ling and Arlinghaus, 2005; Lo et al., 2007; Cheng et al., 2008b) and hypoxia-inducible factor-z (Gort et al., 2008; Peinado and Cano, 2008; Yang and Wu, 2008; Yang et al., 2008). In this paper we examine the role of ILK in the activation of STAT-3. We show that ILK overexpression is associated with increased levels of phosphorylated and thus activated STAT-3 (Figure 6c). Activation of STAT-3 allows for its nuclear translocation and thus induction of gene transcription. Where ILK activity or expression is attenuated, this pathway is shut down. Inactive STAT-3 is no longer able to promote transcription of TWIST, which thereafter is unable to initiate transcription of YB-1. It is interesting to note that phenotypic changes seen with TWIST overexpression mimic those seen with ILK overexpression and include increased epithelial–mesenchymal transition (Karreth and Tuveson, 2004; Anseau et al., 2008; Cates et al., 2009), increased VEGF secretion (Mironchik et al., 2005; Niu et al., 2007), increased propensity for invasion and migration (Karreth and Tuveson, 2004; Elias et al., 2005; Luo et al., 2008; Cheng et al., 2008a; Matsuo et al., 2009; Valdes-Mora et al., 2009), evasion of apoptosis (Maestro et al., 1999; Dupont et al., 2001; Zhang et al., 2007), drug resistance (Kajiyama et al., 2007; Pham et al., 2007; Zhuo et al., 2008) and deregulated growth (Maestro et al., 1999; Kwok et al., 2005; Puisieux et al., 2006; Hu et al., 2008; Shiota et al., 2008a; Hasselblatt et al., 2009). TWIST has been labeled as the master regulator of epithelial–mesenchymal transition, and thus the previously unrecognized role of ILK in regulating TWIST expression is very relevant in the context of managing cancer development and progression. Studies are now underway to further explore the relationship between ILK and TWIST in vivo.

Conclusion
This study shows for the first time that ILK can regulate the expression of Her2/neu through a pathway that involves TWIST and YB-1. The broader implication of this study is support for the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors.

Materials and methods
Chemicals and reagents
QLT0267 (267) was a generous gift from QLT Inc. (Vancouver, BC, Canada) and was diluted in PTE. QLT0267 is a second-generation ILK inhibitor derived from KP-392. Among 150 kinases tested, QLT0267 is highly specific, showing 1000-fold selectivity over kinases including CK2, CSK, DNA-PK, PIM-1, PKB/Akt and PKC, and 100-fold selectivity over other kinases such as Erk-1, GSK-3b, LCK, PKA, p70S6K and RSK1 (Troussard et al., 2006; Younes et al., 2007). It has also been established that the effects of QLT0267 are similar to those of dominant-negative ILK mutants and to the effects seen using ILK-targeted siRNA sequences. QLT0267 was evaluated as being more potent than KP-392 and was found to inhibit ILK kinase activity in cell-free systems at 26 nmol/l (QLT Inc., unpublished data). These
studies were preformed using highly purified recombinant ILK, and the lower concentrations of QLT0267 required to inhibit ILK in these cell-free systems likely reflects the fact that QLT0267 is not very membrane permeable. Moreover, the in vitro activity of QLT0267 is dependent on the cell line being used, its metabolism and growth, among other factors. This is consistent with in vitro studies using other small molecule inhibitors. Previous work done by our lab and others has shown that optimal concentrations of QLT0267, which inhibits activation of downstream effectors of ILK, occur in cells between 1 and 50 μM (Supplementary Figure 1).

Despite the specificity of the QLT0267 small molecule inhibitor, we were concerned that the concentrations used may elicit off target effects, and for this reason silencing of ILK expression via siRNA was used to confirm results obtained with QLT0267. Negative control siRNA (low guanine–cytosine content; Neg), siRNA sequences against human TWIST1 mRNA (Genbank accession no. NC:000007) and ILK mRNA (Genbank accession no. GI:3150001) were generated by Invitrogen (Burlington, ON, Canada).

The pIRES-hrGFP (Stratagene, La Jolla, CA, USA) vectors containing a FLAG-tagged full-length human normal ILK (ILKWT) gene were a generous gift from Dr Shoukat Dedhar. All other chemicals, unless specified, were purchased from Sigma Chemical Company (Oakville, ON, Canada).

Cells and cell culture
All cell lines were tested to ensure that they were mycoplasma free. Cells used for studies were derived from original stocks that had been expanded and frozen. They were maintained in culture for no more than 20 passages and at that time were replaced with frozen stock. MDA-MB-435/LCC6 (Leonessa et al., 1996) breast cancer cells were a gift from Dr Robert Clarke (Georgetown University, Washington, DC, USA) and were derived from the parental cell line MDA-MB-435. The origin of this cell line is controversial (Chambers, 2009) but we believe it is justifiable to use these cells as a model breast cancer cell line (Dragowska et al., 2004). LCC6 cells were transfected via electroporation with the mammalian expression vector.
lysates were harvested by incubation in lysis buffer (50 mM Tris/HC1, pH 8.5, 150 mM NaCl, 0.02% sodium azide, 0.1% SDS, 1% NP-40 and 0.5% sodium deoxycholate) and then pelleted. The supernatant was collected as the nuclear fraction, and the pellet was collected as the cytoplasmic fraction, and the pellet was stored at -80°C. The supernatant was re-suspended in extraction buffer (0.42 mM NaCl, 20 mM HEPES, 1.5 mM MgCl2, and 20% glycerol). Cells were pelleted and the supernatant was collected as the nuclear fraction. Samples were separated on 10% SDS-PAGE gels. Protein was transferred to Nitrocellulose membrane (Millipore, Bedford, MA, USA) and blocked in Odyssey blocking buffer (Licor Biosciences, Lincoln, NE, USA). The blots were labeled with mouse polyclonal anti-ILK (Transduction Laboratories, BD Biosciences, Franklin Lakes, NJ, USA), rabbit polyclonal anti-TWIST, anti-AKT, anti-pAKT (Cell Signaling Technology, Beverly, MA, USA), rabbit polyclonal anti-YB-1 (Abcam, Cambridge, MA, USA) or rabbit polyclonal anti-CREB (Millipore (Upstate, Ettobicoke, ON, USA) antibodies. Primary antibody binding was detected by further incubations with anti-rabbit IRDYE 680 (red) and anti-rabbit IRDYE 800 (near-infrared) secondary antibodies (Li-Cor Biosciences, Lincoln, NE, USA). The blots were labeled with Renilla-expressing plasmid (pRL-thymidine kinase, 10:1 luciferase:Renilla; Promega). After 24 h, cells were treated with vehicle (PTE) or QLT0267 (42 M) for 24 h before harvesting in 1 × passive lysis buffer (Promega). Luciferase activity was measured using the Lumat LB 9507 Luminometer (Berthold)

Nucleofection of siRNA or plasmid DNA
SKBR3, LLC6Her2 and JIMT-1 cells were transiently nucleofected with ILK siRNA as previously described (Verreault and Bally, 2009). MCF7 and SKBR3 cells were stably nucleofected with a plasmid encoding ILKWT. The nucleofection protocols for siRNA and plasmid DNA were similar. Briefly, the nucleofector technology (Amazza Biosystems) was used according to the manufacturer’s protocol. Optimal conditions were first determined using a GFP plasmid or Cy5 siRNA and analysis of cell labeling by FLOW cytometry. Once the protocols were defined, 1 × 10⁶ cells (per well) were suspended in nucleofection buffer containing 1–4 µg of either siRNA or plasmid DNA and placed in the nucleoector for electro-poration. Programs E09 (buffer C), D010 (buffer R), T020 (buffer R) and P020 (buffer R) were used in SKBR3, LCC6Her2 and MCF7 cells, respectively. Cells were re-suspended in Dulbecco’s modified Eagle’s medium and allowed to recover at 37°C and 5% CO2 in a humidified atmosphere. For plasmid nucleofection, cells were selected for using G418 (Invitrogen, Molecular Probes, Burlington, ON, Canada) and signal was detected and quantified using the Odyssey Infrared Detection System and associated software (Odyssey v1.2; Licor). Protein loading was determined by re-probing membranes for β-actin (Sigma-Aldrich, Oakville, ON, Canada). The absorbance of specific protein bands in a square region of interest surrounding each band, after background subtraction, was normalized to actin bands measured in the same way. Studies were conducted at least three times. Where indicated, absorbance data were expressed as mean absorbance values ± s.d. and parametric analysis was done using an unpaired Student’s t-test.

Immunofluorescent imaging
Cells grown on coverslips were fixed using a 2.5% paraformaldehyde solution in phosphate-buffered saline (PBS), permeabilized with Triton X-100 and blocked in a 2.5% bovine serum albumin solution in PBS for 1 h at room temperature before staining for YB-1 using a polyclonal rabbit primary antibody (1:25) or TWIST, a polyclonal rabbit primary antibody (1:50). All antibodies were diluted in bovine serum albumin PBS. Coverslips were washed three times for 5 min using PBS. Primary antibody binding was detected by further incubations with anti-rabbit Alexa546 or Alexa488. To ensure that there was no nonspecific antibody binding, a secondary antibody control coverslip was used for each experiment where coverslips were stained with either Alexa546 or Alexa488 alone (data not shown). Hoechst (Molecular Probes, Eugene, OR, USA; 1:1000) was used to identify nuclei. The coverslips were then mounted to a microscope slide using a 9:1 solution of glycerol and 1 × PBS. Cells were viewed using a Leica fluorescent microscope (Wetzlar, Germany) with a × 100 oil immersion lens under the ZS6RDC filter set (Chroma, Rockingham, VT, USA) to visualize Alexa 546 and ultraviolet lamp to visualize Hoechst. Images were captured using DC100 digital camera and Open Lab software (Improvision, Lexington, MA, USA).

Dual luciferase reporter assay
SKBR3 cells were plated in six-well plates (4 × 10⁵ cells/well) and transfected with a luciferase construct (pGL3 backbone vector; Promega, Madison, WI, USA) containing the core promoter and the partial first exon of the YB-1 gene (courtesy of Dr Kimitoshi Kohno, Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushi, Japan). Cells were transfected with a total of 1.0 µg DNA using FuGene (Roche, Toronto, ON, Canada). To assess transfection efficiency, cells were co-transfected with a Renilla-expressing plasmid (pRL-thymidine kinase, 10:1 luciferase:Renilla; Promega). After 24 h, cells were treated with vehicle (PTE) or QLT0267 (42 µM) for 24 h before harvesting in 1 × passive lysis buffer (Promega). Luciferase activity was measured using the Lumat LB 9507 Luminometer (Berthold}

SDS–PAGE and western blot
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed according to the method of Laemmli (1970). Proteins were transferred to nitrocellulose membrane (Millipore, Bedford, MA, USA) and blocked in Odyssey blocking buffer (Licor Biosciences, Lincoln, NE, USA). The blots were labeled with mouse polyclonal anti-ILK (Transduction Laboratories, BD Biosciences, Franklin Lakes, NJ, USA), rabbit polyclonal anti-TWIST, anti-AKT, anti-pAKT (Cell Signaling Technology, Beverly, MA, USA), rabbit polyclonal anti-YB-1 (Abcam, Cambridge, MA, USA) or rabbit polyclonal anti-CREB (Millipore (Upstate, Ettobicoke, ON, USA) antibodies. Primary antibody binding was detected by further incubations with anti-rabbit IRDYE 680 (red) and anti-rabbit IRDYE 800 (near-infrared) secondary antibodies (Li-Cor Biosciences, Lincoln, NE, USA). The blots were labeled with Renilla-expressing plasmid (pRL-thymidine kinase, 10:1 luciferase:Renilla; Promega). After 24 h, cells were treated with vehicle (PTE) or QLT0267 (42 µM) for 24 h before harvesting in 1 × passive lysis buffer (Promega). Luciferase activity was measured using the Lumat LB 9507 Luminometer (Berthold}

Immunofluorescent imaging
Cells grown on coverslips were fixed using a 2.5% paraformaldehyde solution in phosphate-buffered saline (PBS), permeabilized with Triton X-100 and blocked in a 2.5% bovine serum albumin solution in PBS for 1 h at room temperature before staining for YB-1 using a polyclonal rabbit primary antibody (1:25) or TWIST, a polyclonal rabbit primary antibody (1:50). All antibodies were diluted in bovine serum albumin PBS. Coverslips were washed three times for 5 min using PBS. Primary antibody binding was detected by further incubations with anti-rabbit Alexa546 or Alexa488. To ensure that there was no nonspecific antibody binding, a secondary antibody control coverslip was used for each experiment where coverslips were stained with either Alexa546 or Alexa488 alone (data not shown). Hoechst (Molecular Probes, Eugene, OR, USA; 1:1000) was used to identify nuclei. The coverslips were then mounted to a microscope slide using a 9:1 solution of glycerol and 1 × PBS. Cells were viewed using a Leica fluorescent microscope (Wetzlar, Germany) with a × 100 oil immersion lens under the ZS6RDC filter set (Chroma, Rockingham, VT, USA) to visualize Alexa 546 and ultraviolet lamp to visualize Hoechst. Images were captured using DC100 digital camera and Open Lab software (Improvision, Lexington, MA, USA).

Dual luciferase reporter assay
SKBR3 cells were plated in six-well plates (4 × 10⁵ cells/well) and transfected with a luciferase construct (pGL3 backbone vector; Promega, Madison, WI, USA) containing the core promoter and the partial first exon of the YB-1 gene (courtesy of Dr Kimitoshi Kohno, Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushi, Japan). Cells were transfected with a total of 1.0 µg DNA using FuGene (Roche, Toronto, ON, Canada). To assess transfection efficiency, cells were co-transfected with a Renilla-expressing plasmid (pRL-thymidine kinase, 10:1 luciferase:Renilla; Promega). After 24 h, cells were treated with vehicle (PTE) or QLT0267 (42 µM) for 24 h before harvesting in 1 × passive lysis buffer (Promega). Luciferase activity was measured using the Lumat LB 9507 Luminometer (Berthold
polymerase and 0.5 sample purity was determined by assessing the A260/A280 ratio, photometer (Thermo Scientific, Wilmington, DE, USA) and sample was measured using the Nanodrop ND1000 spectrogen Superscript III kit (Invitrogen, Canada) according to the Germany). RNAs were reverse transcribed using the Invitrogen mini kit (Qiagen, Hilden, Germany).

PCR products were run out on a 1.5% agarose gel containing 0.004% ethidium bromide, and detected using the Eagle Eye II Cabinet detection system (Stratagene).

Quantitative real-time PCR

Quantitative SYBR green PCR assays for YB-1 and Her2/neu was performed in a ABI Prism 7700 Sequence detection system (Applied Biosystems, Streetsville ON, Canada) using the SYBR Green Kit supplied by Applied Biosystems. PCR amplification were carried out in a 20 μl volume under the following conditions: an enzyme activation step at 95 °C for 2 min, followed by 45 cycles consisting of 30 s of denaturation at 95 °C, 20 s of annealing at 60 °C and 20 s of elongation at 72 °C. The specificity of the amplified products was verified by melting curve analysis and agarose gel electrophoresis. Ct values were converted to fold change.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

Funding for this research was from the Canadian Breast Cancer Research Alliance (CBCRA) and the Canadian Breast Cancer Foundation (BC/Yukon Chapter). JK is the recipient of the Pacific Century Graduate Scholarship and the University of British Columbia University Graduate Fellowship. We acknowledge BC Cancer Agency’s Cancer Integrative Oncology Department (Mykola Maydan, Paul MacDonald and Iveta Dobreva) as well as Hong Yan for excellent management of the departmental tissue culture facilities.

References

Ahmed N, Riley C, Oliva K, Stutt E, Rice GE, Quinn MA. (2003). Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. J Pathol 201: 229–237.

Anderson P, Kedersha N. (2009a). RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10: 430–436.

Anderson P, Kedersha N. (2009b). Stress granules. Curr Biol 19: R397–R398.

Ansicau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14: 79–89.

Bader AG, Vogt PK. (2008). Phosphorylation by Akt disables the anti-oncogenic activity of YB-1. Oncogene 27: 1179–1182.

Balagopal V, Parker R. (2009). Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21: 403–408.

Basaki Y, Hosoi F, Oda Y, Fotovati A, Maruyama Y, Oie S et al. (2007). Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene 26: 2736–2746.

Bergmann S, Royer-Pokora B, Fietze E, Jurchott K, Hildebrandt B, Trost D et al. (2005). YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 65: 4078–4087.

Berguin IM, Pang B, Dziubinski ML, Scott LM, Chen YQ, Nolan GP et al. (2005). Y-box-binding protein 1 confers EGF independence to human mammary epithelial cells. Oncogene 24: 3177–3186.

Bravou V, Kilironomos G, Papadaki E, Stefanou D, Varakis J. (2006). Integrin-linked kinase (ILK) expression in human colon cancer. Br J Cancer 99: 2340–2341.

Bravou V, Kilironomos G, Papadaki E, Taraviras S, Varakis J. (2008). ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208: 91–99.

Cates JM, Byrd RH, Fohn LE, Tatsas AD, Washington MK, Black CC. (2009). Epithelial-mesenchymal transition markers in pancreatobiliary ductal adenocarcinoma. Pancreas 38: e1–e6.

Chambers AF. (2009). MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69: 5292–5293.

Cheng GZ, Zhang W, Wang LH. (2008a). Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 68: 957–960.

Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M et al. (2008b). Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 283: 14665–14673.

Chernov KG, Barbet A, Hamon L, Ovchinnikov LP, Curmi PA, Pastre D. (2009). Role of microtubules in stress granule assembly:...
ILK inhibition suppresses Her2/neu expression
J Kalra et al

microtubule dynamical instability favors the formation of microtubule stress granules in cells. *J Biol Chem* **284**: 36569–36580.

Chernov KG, Carmi PA, Hamon L, Mechulam A, Ovchinnikov LP, Pastre D. (2008a). Atomic force microscopy reveals binding of mRNA to microtubules mediated by two major mRNP proteins YB-1 and PABP. *FEBS Lett* **582**: 2875–2881.

Chernov KG, Mechulam A, Popova NV, Pastre D, Nadezhdina ES, Skabkina OV et al. (2008b). YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules. *BMC Biochem* **9**: 23.

Coles LS, Luscher T, Burrows J, Hunter J, Diamond P, Bert AG et al. (2005). Phosphorylation of cold shock domain Y-box proteins by ERK2 and GSK3beta and repression of the human VEGF promoter. *FEBS Lett* **579**: 5332–5378.

Dai DL, Makretsov N, Campos EI, Huang C, Zhou Y, Huntsman D et al. (2003). Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. *Clin Cancer Res* **9**: 4409–4414.

Delcommene M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. *Proc Natl Acad Sci USA* **95**: 11121–11126.

Dragowska WH, Warburton C, Yapp DT, Minchinton AI, Hu Y, Waterhouse DN et al. (2004). HER-2/neu overexpression increases the viable hypoxic cell population within solid tumors without causing changes in tumor vasculature. *Mol Cancer Res* **2**: 606–619.

Dupont J, Fernandez AM, Glackin CA, Helman L, LeRoith D. (2001). Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. *J Biol Chem* **276**: 26099–26707.

Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE et al. (1999). Twist is a potential oncogene that inhibits epithelial-to-mesenchymal transition in cancer cells. *Cancer Res* **59**: 3433–3438.

Edwards LA, Woo J, Huxham LA, Verreault M, Dragowska WH, Chiu G et al. (2008). Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of integrin-linked kinase (ILK). *Mol Cancer Ther* **7**: 59–70.

Elia MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS et al. (2005). TWIST is expressed in human gliomas and promotes glioma cell proliferation and migration. *Neoplasia* **7**: 824–837.

Evdokimova V, Ovchinnikov LP, Sorensen PH. (2006a). Y-box binding protein 1: providing a new angle on translational regulation. *Cell Cycle* **5**: 1143–1147.

Evdokimova V, Ruzanov P, Anglesio MS, Sorokin AV, Ovchinnikov LP, Buckley J et al. (2006b). Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. *Mol Cell Biol* **26**: 277–292.

Flugel D, Gorlach A, Michels C, Kietzmann T. (2007). Glycerol synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. *Mol Cell Biol* **27**: 3253–3265.

Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M et al. (2008). Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epithelial growth factor receptor inhibition in human hepatoma cells. *Cancer Res* **68**: 2391–2399.

Fujii T, Kawahara A, Basaki Y, Hattori S, Nakashima K, Nakano K et al. (2008). Expression of HER2 and estrogen receptor alpha depends upon nuclear localization of Y-box binding protein-1 in human breast cancer cells. *Cancer Res* **68**: 1594–1512.

Gors R, van Haaften G, Verlaan I, Groo AJ, Plasterk RH, Shvarts A et al. (2008). The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. *Oncogene* **27**: 1501–1510.

Graff JR, Deddens JA, Koniecz BK, Colligan BM, Hurst BM, Carter HW et al. (2001). Integrin-linked kinase expression increases with prostate tumor grade. *Clin Cancer Res* **7**: 1987–1991.

Hannigan GE, Bayani J, Weksberg R, Beauty B, Pandita A, Dedhar S et al. (1997). Mapping of the gene encoding the integrin-linked kinase, ILK, to human chromosome 11p15.5–p15.4. *Genomics* **42**: 177–179.

Hassellblatt M, Mertsch S, Koos B, Riesmeier B, Stegemann H, Jeibmann A et al. (2009). TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion. *Cancer Res* **69**: 2219–2223.

Hu L, Roth JM, Brooks P, Ibrahim S, Karpatkin S. (2008). Twist is required for thrombin-induced tumor angiogenesis and growth. *Cancer Res* **68**: 4296–4302.

Ito R, Oue N, Zhu X, Yoshida K, Nakayama H, Yokozaki H et al. (2003). Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma. *Virchows Arch* **442**: 118–123.

Kaiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A et al. (2007). Chemosensitivity to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. *Int J Oncol* **31**: 277–283.

Kalra J, Warburton C, Fang K, Edwards L, Daynard T, Waterhouse D et al. (2009). QLT0267, a small molecule inhibitor targeting integrin-linked kinase (ILK), and docetaxel can combine to produce synergistic interactions linked to enhanced cytotoxicity, reductions in P-AKT levels, altered F-actin architecture and improved treatment outcomes in an orthotopic breast cancer model. *Breast Cancer Res* **11**: R25.

Karreth F, Tuveson DA. (2004). Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. *Cancer Biol Ther* **3**: 1058–1059.

Katoh K, Tani M, Hattori S, Fujishita K, Iwai S. (2007). Overexpression of HER-2/neu predicts poor prognosis in breast cancer. *Breast* **14**: 69–71.

Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE. (2004). ILKAP regulates ILK signaling and inhibits anchorage-independent growth. *Oncogene* **23**: 3454–3461.

Liu M, Wang Y, Jiang X, Chen X, Zhang X et al. (2008). E2F1 overexpression is an independent predictive marker of poor survival in breast cancer patients. *Breast Cancer Res* **10**: R60.

Mackay CR, Johns M, Neve RM, Liu J, Quinn M et al. (2004). Twist: an epithelial-mesenchymal transition mediator involved in breast cancer. *Cancer Res* **64**: 395–401.

Morgan DA, Ganesan A, Butow PN, Gralow JR, Babiarz JE et al. (2000). Oncotype DX: a breast cancer gene expression assay predicts chemotherapy benefit in postmenopausal women with node-negative breast cancer. *J Clin Oncol* **18**: 2093–2104.

Moriyama CR, Wang D, Hori N, Zhao L, Zhao Y et al. (2009). ILKAP expression is required for thrombin-induced tumor angiogenesis and growth. *Cancer Res* **69**: 4296–4302.

Mortimer JE, Lotan R, Haddad R, Oberti P, Bandlow I et al. (2000). Expression of the HER2/neu oncoprotein in human breast cancer. *Oncogene* **19**: 2757–2766.

Musgrove EA, Poulakis V, Jones C, Ellis IO, Stacpoole P et al. (2000). Epithelial-mesenchymal transition in breast cancer: implications as a therapeutic target. *Breast Cancer Res* **2**: R57–R62.

Neumann J, Michel Y, Rives J, Schirrmeister H, Simon P et al. (2008). The TWIST1 gene on chromosome 12q12-13 is amplified in breast cancer. *Cancer Res* **68**: 7267–7270.

Nishikawa T, Higo K, Nakamura H, Hattori S, Inoue M et al. (2005). HER2 amplification is an independent predictor of poor prognosis in breast cancer patients. *Cancer Res* **65**: 4183–4188.

Nobin K, Kalluri R, Fidler IJ. (2001). The tumor microenvironment. *J Natl Cancer Inst* **93**: 47–60.
Matsu N, Shiraha H, Fujikawa T, Takaoaka N, Ueda N, Tanaka S et al. (2009). Twist expression promotes migration and invasion in hepatocellular carcinoma. *BMC Cancer* **9**: 240.

McDonald PC, Fielding AB, Dedhar S. (2008a). Integrin-linked kinase—essential roles in physiology and cancer biology. *J Cell Sci* **121**: 3121–3132.

McDonald PC, Oloymi A, Mills J, Dobrevra I, Maidan M, Gray V et al. (2008b). Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. *Cancer Res* **68**: 1618–1625.

Mironvich Y, Winnard Jr PT, Vesuna F, Kato Y, Wildes F, Pathak AP et al. (2005). Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. *Cancer Res* **65**: 10801–10809.

Mottet D, Dumont V, Deccache Y, Demarzy C, Ninane N, Raes M et al. (2003). Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. *J Biol Chem* **278**: 31277–31285.

Niu RF, Zhang L, Xi GM, Wei XY, Yang Y, Shi YR et al. (2007). Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. *J Exp Clin Cancer Res* **26**: 385–394.

Obara S, Nakata M, Takeshima H, Katagiri H, Asano T, Oka Y et al. (2004). Inhibition of integrin-linked kinase (ILK) suppression of cell viability in PTEN mutant glioblastoma and in vitro inhibition by the specific COX-2 inhibitor NS-398. *Cancer Lett* **200**: 115–122.

Oda Y, Ohishi Y,Basaki Y, Kobayashi H, Hirakawa T, Wake N et al. (2007). Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression. *Cancer Sci* **98**: 1020–1026.

Oloumi A, McPhee T, Dedhar S. (2004). Regulation of E-cadherin factor EFIA reveals a novel structural motif. *J Biol Chem* **279**: 31277–31285.

Peinado H, Cano A. (2008). A hypoxic twist in metastasis. *Nat Rev Cancer* **8**: 385–394.

Pereira N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A. (2006). Akt1 activation can augment hypoxia-inducible factor-lalpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. *Mol Cancer Res* **4**: 471–479.

Puisieux A, Valsesia-Wittmann S, Ansieau S. (2006). A twist for cancer progression. *Br J Cancer* **94**: 13–17.

Radeva G, Petrocelli T, Behrend E, Leung-Hagesteijn C, Filmus J, Slingerland J et al. (1997). Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. *J Biol Chem* **272**: 13937–13944.

Sawai H, Okada Y,Funahashi H, Matsuo Y, Takahashi H, Takeyama H et al. (2006). Integrin-linked kinase activity is associated with interleukin-1 alpha-induced progressive behavior of pancreatic cancer and poor patient survival. *Oncoogene* **25**: 3237–3246.

Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. (2008a). Twist promotes tumor cell growth through YB-1 expression. *Cancer Res* **68**: 98–105.

Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. (2008b). Twist and p53 reciprocally regulate target genes via direct interaction. *Oncogene* **27**: 5543–5553.

Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E et al. (2009). Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with TwistI to suppress cancer cell growth. *Cancer Res* **69**: 3148–3156.

Skabkina OV, Lyabin DN, Skabkin MA, Ovchinnikov LP. (2005). YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. *Mol Cell Biol* **25**: 3317–3323.

Skabkina OV, Skabkin MA, Lyabin DN, Ovchinnikov LP. (2004). Poly(A)-binding protein positively affects YB-1 mRNA translation through specific interaction with YB-1 mRNA. *J Biol Chem* **279**: 18191–18198.

Stratford AL, Fry CJ, Desilets C, Davies AH, Cho YY, Li Y et al. (2008). Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. *Breast Cancer Res* **10**: R99.

Stratford AL, Habibi G, Astanehe A, Jiang H, Hu K, Park E et al. (2007). Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. *Breast Cancer Res* **9**: R61.

Sutherland BW, Kucab J, Wu J, Lee C, Cheang MC, Yorida E et al. (2005). Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. *Oncogene* **24**: 4281–4292.

Takanami I. (2005). Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. *BMC Cancer* **5**: 1.

Takemoto S, Ushijima K, Kawano K, Yamaguchi T, Terada A, Fujii-Hashi N et al. (2009). Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. *Br J Cancer* **101**: 967–972.

To K, Zhao Y, Jiang H, Hu K, Wang M, Wu J et al. (2007). The phosphoinositide-dependent kinase-1 inhibitor 2-amino-N-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-4-phenyl]-10H-pyrazolo[4,3-b]pyridine-tame (OSU-03012) prevents Y-box binding protein-1 from inducing epidermal growth factor receptor. *Mol Pharmacol* **72**: 641–652.

Troussard AA, McDonald PC, Wederelli ED, Mawji NM, Filardo RR, Gelmon KA et al. (2006). Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival. *Cancer Res* **66**: 393–403.

Troussard AA, Tan C, Yoganathan TN, Dedhar S. (1999). Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. *Mol Cell Biol* **19**: 7420–7427.

Valdes-Mora F, Gomez del Pulgar T, Bandres E, Cejas P, Ramirez de Molina A, Perez-Palacios R et al. (2009). TWIST1 overexpression is associated with nodal invasion and male sex in primary colorectal cancer. *Ann Surg Oncol* **16**: 78–87.

Verreault M, Bally MB. (2009). siRNA-mediated integrin-linked kinase suppression: non-specific effects of siRNA/cationic liposome complexes trigger changes in the expression of phosphorylated-AKT and mTOR independently of ILK silencing. *Oligonucleotides* **19**: 129–140.
Warburton C, Dragowska WH, Gelmon K, Chia S, Yan H, Masin D et al. (2004). Treatment of HER-2/neu overexpressing breast cancer xenograft models with trastuzumab (Herceptin) and gefitinib (ZD1839): drug combination effects on tumor growth, HER-2/neu and epidermal growth factor receptor expression, and viable hypoxic cell fraction. Clin Cancer Res 10: 2512–2524.

Watanabe O, Imanura H, Shimizu T, Kinoshita J, Okabe T, Hirano A et al. (2004). Expression of twist and wnt in human breast cancer. Anticancer Res 24: 3851–3856.

White DE, Cardiff RD, Dedhar S, Muller WJ. (2001). Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene 20: 7064–7072.

Wu J, Lee C, Yokom D, Jiang H, Cheang MC, Yorida E et al. (2006). Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res 66: 4872–4879.

Yamasaki S, Anderson P. (2008). Reprogramming mRNA translation during stress. Curr Opin Cell Biol 20: 222–226.

Yang MH, Wu KJ. (2008). TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7: 2090–2096.

Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10: 295–305.

Yau CY, Wheeler JJ, Sutton KL, Hedley DW. (2005). Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 65: 1497–1504.

Younes MN, Yigitbasi OG, Yazici YD, Jasser SA, Bucana CD, El-Naggar AK et al. (2007). Effects of the integrin-linked kinase inhibitor QLT0267 on squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 133: 15–23.

Zhang X, Wang Q, Ling MT, Wong YC, Leung SC, Wang X. (2007). Anti-apoptotic role of TWIST and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells. Int J Cancer 120: 1891–1898.

Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT. (2008). Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun 369: 1098–1102.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)