Abstract: Chronic kidney disease (CKD) is described as a complex and progressive condition that arises from both non-communicable diseases (NCD) and communicable diseases (CD). Approximately a tenth of adults are affected worldwide, but the global prevalence of paediatric CKD remains unknown. Unfortunately, advanced diagnostic techniques and interventions are not readily available in most developing countries. This review seeks to create more awareness about paediatric CKD in a developing country like Nigeria and the need to intensify efforts to make new technologies for its diagnosis available and more affordable.

Keywords: diagnostic techniques, paediatric chronic kidney disease.

Conflict of interest statement. The authors declare no competing interests.

© Ndu I.K., Ohayi S.R., Edelu B.O., 2021. All rights reserved.

Correspondence should be addressed to Ikenna Kingsley Ndu: Ikennandu@gmail.com
Introduction. Chronic kidney disease (CKD) is described as a complex and progressive condition that arises from both non-communicable diseases (NCD) and communicable diseases (CD) [1, 2]. Ultimately, it culminates in end-stage renal disease (ESRD) after passing through five distinct phases at a pace determined by the presence of comorbidities [2-4]. Approximately a tenth of adults are affected worldwide, but the global prevalence of paediatric CKD remains unknown [5, 6]. However, it is relatively low among the paediatric age group compared to adults as suggested by available population-based data [5, 7-10]. It is particularly challenging to assess the impact of pediatric kidney disease in Nigeria because of the time gaps between the few available studies, which are primarily hospital-based [11].

The rising number of non-communicable diseases worldwide has been linked to the global surge in CKD prevalence [2, 5, 12, 13]. Most children with CKD have congenital or inherited kidney disorders, with obstructive uropathy reported as the commonest in US children [7, 12, 14]. Similarly, Ladapo et al. in Nigeria reported congenital anomalies of the kidney and urinary tract (CAKUT) as the leading cause of CKD [11]. More often than not, as countries become more advanced, diseases tend to move from infectious to chronic conditions [15]. A similar pattern has become more noticeable among a lot of impoverished countries [2]. Although infectious causes of CKD in low to medium-income countries (LMICs) are still less common than the non-communicable causes, they remain a major cause of public health concern and contribute significantly to CKD [5, 13, 16, 17].

Although CKD occurs more commonly in adults and aged individuals [5, 6, 18], it is now evident that its aetiology can be traced back to prenatal events [12, 19, 20]. For instance, uteroplacental insufficiency or maternal malnutrition may result in small for gestational age infants who may have a paucity of nephrons and develop increased blood pressure with the potential risk of progressive renal injury [21]. Knowledge of these possible risk factors may facilitate measures that can reduce the rate of development of chronic kidney disease [12].

As research to understand the role of these risk factors continues, genetics is being explored for associations with CKD, which may provide possible interventional and prognostic tools for determining genetic risk factors for CKD progression in children [7].

Accurately calculating the glomerular filtration rate (GFR) is key to staging CKD [7, 22]. There is agreement about the inaccuracy of measurement of GFR by a timed urine collection because of variable creatinine clearance [7, 22]. While GFR measurement by inulin clearance is accepted as the gold standard, and it is an arduous assay to perform, particularly in children [7, 23]. Thus, innovative methods of GFR estimation, such as the iohexol plasma disappearance method, validated by the Chronic Kidney Disease in Children (CKiD) study in North American pediatric nephrology centers, are now used to help clinicians assess those at risk for progressive kidney injury [12, 23-26].

Due to the correlative nature of renal pathology diagnosis, other investigation modalities such as electron microscopy (EM) and antibodies to localize antigens in tissue sections from percutaneous needle
biopsies are essential [3, 27, 28]. Unfortunately, because of multiple challenges in developing nations, most renal biopsies are reported with light microscopic examination alone [27-29].

Paediatric cases of chronic kidney disease (CKD), especially those from LMICs who often have unrecognized and untreated CKD, progress to ESRD [27, 29]. This requires life-saving renal replacement therapy (RRT), which unfortunately is very expensive and therefore unaffordable in most of these developing countries [3, 5, 30-32].

Unfortunately, these advanced diagnostic techniques and interventions are not readily available in most developing countries. Therefore, this review was done by the authors to create more awareness about the need for early identification and prevention of known risk factors of CKD while intensifying efforts to make new technologies for its diagnosis available and more affordable.

Description of the literature search. The literature search was conducted through PubMed and Google web search for articles on pediatric chronic kidney disease. The following search terms were employed: “chronic renal disease definition,” “chronic renal disease diagnosis,” “chronic renal disease in Nigeria,” “chronic renal disease challenges.” Studies relevant to the objectives of this narrative review were subsequently selected and reviewed.

Pathophysiology of paediatric chronic kidney disease. The pathological features accompanying paediatric chronic kidney diseases are complex and interrelated by their pathophysiologic mechanisms. As such, this clinical syndrome of paediatric CKD is seen as a definite class of illness [33]. By nature, PCKD is associated with long-term complications with resulting in higher mortality and lower life expectancy than in the general population [34]. Certain general physiologic principles of renal function underlie the various injuries associated with CKD, namely: i) high perfusion rate of the kidney, which exposes the kidney to a higher amount of circulating harmful substances ii) high intratubular pressure necessary for effective glomerular filtration expose glomerular capillaries to haemodynamic injuries. iii) interconnection between the glomerular and peritubular capillaries facilitates the transfer of glomerular injuries to the tubulointerstitial space. iv) nephron as an integrated complex that damages one part likely to affect other components [34]. Ultimately, the derangement in renal function progress to ESRD whilst also leading to various pathophysiologic problems in different organ systems of the body, which includes the following.

Poor growth/Growth failure. Typically, children with CKD have growth derangement [35, 36]. A 2006 North American Paediatric Transplant Cooperative Study (NAPTCS) showed that over 35% of children with PCKD attained only a final height below the third percentile or exhibited -1.88 median standard deviation score (HtSDS) and that glomerular filtration rate correlated positively with HtSDS [37, 38]. Growth retardation is also positively correlated with the age of onset of Paediatric CKD/age of enrolment with average HtSDS for respective age groups with scores in infancy, young childhood and adolescence as -2.33, -1.65 and -0.93, respectively [38].

In general, growth retardation in CKD is due to the following conditions: CKD mineral and bone diseases (CKD-MBD) through poor bone growth etc., metabolic acidosis by degradation of proteins, endogenous production or corticosteroids, and suppression of appetite leading to malnutrition; chronic anaemia which causes poor appetite and cardiac dysfunction and fluid and electrolyte disturbances [35, 39-41]. Other associated factors include cardiac complications, end-organ resistance to GH and abnormalities of the GH-IGF-1 pathway, and the malnutrition-inflammation complex [41, 42]. According to Rees [35], in infancy and early childhood, nutrition affects growth much more than the GH-IGF-1 axis, suggesting that malnutrition may be the most critical factor contributing to growth impairment at that age. In children who develop CKD at infancy, boosting calorie intake during early childhood leads to improved growth [35]. As summarized by Silverstein [43], in addition to impairment of general development in PCKD, dysregulation of the hypothalamic-pituitary axis with resultant hypergonadotrophic hypogonadism leads to delayed puberty for up to 2 years [36]. This affects children requiring renal transplants before age 13 the most [44, 45].

Bone disease [chronic kidney disease-mineral and bone disease (CKD-MBD)]. Bone disease is one of the earliest pathophysiologic problems to occur in paediatric CKD [42]. It occurs as part of a complex called chronic kidney disease-mineral and bone disease (CKD-MBD) characterized by one or more abnormalities of calcium, phosphate, parathyroid hormone and vitamin D metabolism, renal osteodystrophy (ROD), plus calcification of vascular or other soft tissue. ROD consists of abnormalities in bone histology, linear growth, strength, and pathological fractures [36, 42, 45].

Renal osteodystrophy of paediatric CKD follows a complex interaction between several factors, including derangement in the production of active vitamin D with resultant poor intestinal absorption of calcium and then secondary hyperparathyroidism with consequent mobilization of calcium from bones [36, 42, 43]. Also, renal function derangement leads to metabolic acidosis, which in turn blunts trophic effects of growth hormone on bones [36, 43]. Also, it reduces the renal generation of active vitamin D with resultant mobilization of Calcium from bones, thereby worsening bone disease [36, 43].

Other mechanisms of bone disease include the increase in circulating FGF23 following hyperphosphataemia from decreasing excretion of phosphate as a result of falling GFR. FGF23 causes bone
cysts, marrow fibrosis, and reduced or no production of bone marrow, known as osteitis fibrosa cystica [36, 42]. Prolonged stimulation of the parathyroid gland by prolonged hyperphosphataemia and hypocalcaemia will make the gland autonomous. This tertiary hyperparathyroidism further worsens the mobilization of calcium from bones [36, 42].

Reduced Haemoglobin concentration/anaemia. Anaemia is quite common in paediatric CKD patients, with prevalence increasing with the advancement of the disease [33, 42]. As summarized by Kaspar [36] and Becherucci [33], it occurs in 45% of cases and negatively affects outcomes, quality of life, and neurocognitive development and functions [46]. Unlike in adults, diagnosis of anaemia in paediatric CKD is not straightforward since diagnostic parameters depend on age range and sex [47].

The pathophysiologic mechanisms that lead to anaemia in paediatric CKD include decreased production and secretion of erythropoietin [36, 42, 48], reduced or no RBC production in osteitis fibrosa cystica [42] and red blood cell (RBC) fragility and high turnover of immature RBC associated with uremia [42, 49]. Other causes of anaemia include intestinal loss of RBC, which is highest in patients undergoing hemodialysis, blood loss to hemodialysis equipment and tubing, and loss of RBC-iron homeostasis [36].

Hypertension. Hypertension has been reported to occur very early in paediatric CKD, with an increasing prevalence as GFR worsens [50]. It is caused by salt retention that results from derangement of GFR and also by continuing renin secretion by the kidney in some diseases [42]. According to Becherucci’s review [33], 54% of children with CKD had high blood pressure (HBP) when they enrolled in a CKiD study group study. In comparison, BP in 48% remained elevated despite antihypertensive treatment. In addition, the BP in these patients has characteristics associated the increased cardiac morbidity in adulthood. HBP further damages the kidney, thus expediting a decline in renal function.

Cardiovascular disease is an important cause of mortality in paediatric CKD, conferring a 1000 times higher risk of death in ESRD than in age-matched non-ESRD children [36, 50, 51]. Cardiovascular complications begin early in PKD and progress rapidly following the onset of dialysis [51]. A combination of hypertension causes PCKD-related cardiovascular disease, elevated circulating PTH, FGF 23, 25-OHVitD, and deposition of calcium phosphate in the heart and coronary artery [42, 50, 52]. The pathophysiologic mechanisms underlying PCKD CVD include left ventricular hypertrophy, endothelial dysfunction, and arterial thickening from uremia-induced medial calcification [42, 50, 53]. The leading cause of cardiovascular disease-related death in PKD includes arrhythmias, valvular diseases, cardiomyopathy, and cardiac arrest [54].

Poor neurocognitive development and quality of life. As summarized by Becherucci et al. [33], and Kaspar et al. [36], childhood-onset CKD leads to poor neurocognitive development and quality of life in adulthood. These patients have low physical, social, and health-related quality of life (HRQOL) parameters and exhibit low energy, weakness, daytime sleepiness, anxiety, and depression. GFR varies in direct proportion to HRQOL, while treatment with GH improves associated parameters also [55]. According to the CKiD study, a significant proportion of children with CKD has a risk for dysfunction in IQ, educational performance, and executive functioning of up to 1 standard deviation below the mean [46].

Comorbidities & other factors that affect CKD progression in children. Researchers have identified that certain factors are associated with the rapid progression of CKD to ESRD. As summarized by Kaspar et al. [36], these include severe proteinuria, glomerular aetiology, older age, non-Caucasian race, and presentation with stage 4 CKD, while for non-glomerular PCKD, the factors include dyslipidaemia, male gender, hypoalbuminaemia, urinary protein – creatinine ratio of >2mg/mg, and anaemia. Based on these identified factors, the risk for progression has been classified into low, medium, and high-risk groups with renal survival times of 135, 80, and 16.3 months. Other conditions which hasten the progression of CKD include hypertension [36, 56], concomitant cardiovascular disease, and puberty [57, 58].

Diagnosis of chronic kidney disease. Traditionally, blood and serum-based biochemical measurements of substances secreted through the kidney are used to diagnose renal diseases, including paediatric CKD. These tests have, over time, proven not to be sufficiently sensitive and specific for this purpose.

Nigeria, being a developing country, has several challenges, of which the availability of modern diagnostic equipment in our hospitals is not excluded. Most diagnoses of renal diseases in the healthcare facilities are clinical, with the support of the baseline investigations such as urinalysis, full blood count, serum and urinary electrolytes, urea and creatinine estimations, and the few available radiological imaging diagnostic equipment. Routine radiological imaging is only helpful for diagnosing gross anatomical abnormalities e.g., renal stones and other causes of obstruction, tumours, etc [59]. These limitations arise because of the nature of renal diseases. A variety of renal morphologic patterns can result in the same clinical syndrome e.g., nephritic syndrome from hereditary nephropathy, MPGN, IgA nephropathy etc.; nephrotic syndrome from minimal change disease, FSGS, membranous glomerulonephropathy while one disease may cause more than one distinct pattern of renal injury e.g., SLE can cause glomerular &/or parenchymal injuries. Also, different conditions can cause or be associated with one specific pathologic process e.g., SLE, HCV infection & proliferative GN [59, 60].

The implication of using such limited methods in the diagnosis of chronic kidney disease is the inability
to correctly identify the cause of the problem or the true nature and extent of the pathology. As such novel methods of diagnosis that can detect anatomical, molecular, and functional changes in the kidney are being developed and deployed in developed countries. Improved investigative techniques will afford the opportunity of early diagnosis, in which case reversible diseases can be treated; progression of CKD may be halted or slowed; comorbid conditions can be treated; renal replacement therapy can be arranged ahead of deterioration to end-stage kidney disease [61].

Novel diagnostic methods for chronic kidney disease:

- **Laboratory investigation/Biochemical testing.** Cystatin-C is progressively replacing creatinine as an endogenous marker for glomerular filtration function, having been found to have more reliability than creatinine [62].

- **Imaging.** Imaging studies of the kidneys are used to study both anatomical, renal perfusion, and glomerular filtration abnormalities. As summarized by Thuman and Gueler [59], like USS used to study structural abnormalities, the more sophisticated imaging methods, namely Doppler imaging, CT scan, and MRI used to assess renal blood flow, also have their limitations. The contrast media for the first two are known to be nephrotoxic, while that for MRI causes nephrogenic systemic fibrosis in patients with CKD [59]. However, newer contrasts for MRI, namely gadobenate dimeglumine or gadobutrol, proven to be safe in CKD, have been developed [63, 64]. Additionally, arterial spin labeling (ASL), which uses magnetically tagged intrinsic water as a contrast for MRI, has also been designed for the evaluation of renal perfusion [65]. Also, Thuman and Gueler [59] summarized new modalities being used as follows:
 1. Use of imaging probes: agents that can detect specific molecules or biologic processes as indicators of distinct kidney structural and functional abnormalities
 2. Blood oxygen level-dependent (BOLD) MRI: determines tissue oxygenation and, therefore disease. Tissue relaxation rate, R2* is inversely proportional to tissue oxygen concentration. BOLD MRI has shown that R2* is higher in paediatric CKD patients than in the healthy population.
 3. Dynamic contrast-enhanced (DCE) MRI: uses renal perfusion and glomerular filtration of gadolinium-based contrast agents (GBCAs) to assess CKD.
 4. Sodium (23Na) MRI: quantifies and localizes sodium in the kidney and other tissues. This technique has shown that there is high sodium concentration in tissues in people with end-stage renal diseases than in others.
 5. Hyperpolarized MRI: uses specific hyperpolarized molecules to assess the transport and metabolic functions of the kidney. By using hyperpolarized 13C pyruvate, the metabolism of pyruvate to lactate is altered in models of diabetic nephropathy.

- **6. Elastography (Acoustic radiation force impulse imaging):** studies the stiffness of the kidney and, therefore degree of fibrosis by measuring the shear wave velocity (SWV) when an impulse is applied to a tissue. Elastography performed in CKD patients has shown that SWV correlated with the degree of kidney disease. MR elastography has been developed and is being standardized.

- **7. Diffusion-weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI):** both MRI-based imaging methods use the direction of movement of water molecules in tissues to determine the degree of renal fibrosis.

Imaging facilities such as CT scans and MRI for diagnosis of renal and other diseases are available in the country but sparsely distributed and unaffordable to the average Nigerian. This has led to the limited use of these diagnostic facilities to diagnose chronic renal diseases in children.

- **Renal biopsy.** Renal biopsy for CKD is usually a percutaneous procedure consisting of using specialized needles to obtain biopsies from the kidney. It is generally performed under ultrasound guidance where facilities are available. Indications for renal biopsy include nephrotic range renal impairment without a precise diagnosis by other methods, as a guide for management and prognostication of certain diagnosed conditions e.g., lupus nephritis, vasculitis etc. and in established diagnosis e.g., diabetic nephropathy but with unexplained deterioration in renal function [59, 61]. Examination of renal biopsy specimens by routine haematoxylin and eosin method has a minimal diagnostic value. Specialized techniques have therefore been developed, namely immunofluorescence staining and electron microscopy.

- **The situation in Nigeria.** Despite the availability of these newer methods of diagnosis, most Nigerian researchers still diagnose chronic kidney disease based on the glomerular filtration rate of <60 ml/min/1.73 m2 for ≥ 3 months, Kidney Disease Outcomes Quality Initiative (KDOQI) diagnostic and staging criteria, and the International Study of Kidney Disease in Children guidelines. Imaging techniques such as computerized tomography scan (CT scan), ultrasonography, micturating cystourethrogram, intravenous urogram, and magnetic resonance imaging (MRI) are also employed in some cases. Pathologic abnormalities on percutaneous biopsy, presence of markers of damage in urine, blood, or congenital anomalies of the kidneys and urinary tract (CAKUT) are sometimes employed in diagnoses [11, 31, 66, 67]. The implication of the use of such limited methods in the diagnosis of chronic kidney disease is the inability to correctly identify the cause of the problem or the true nature and extent of the pathology.

It's also important to note that most Nigerians fund healthcare from out-of-pocket expenses despite the minimal income and over 70% living below the poverty line. This becomes a limiting factor to the use of
modern diagnostic facilities even in centres where they are available.

Despite these drawbacks, physicians managing children suspected to have chronic renal diseases should try and maximize the available basic investigative techniques in the country. Percutaneous biopsies should be done whenever indicated. This will enable researchers and paediatricians to know the prevalent causes of chronic renal diseases among children in our environment and thus help in finding preventive measures. The few available radiological imaging studies should be utilized whenever possible. This will help to properly define the scope and the cause of the CKD in some cases. The use of c-cystine should be encouraged in all facilities where children with CKD are managed for paediatric CKD in Nigeria. There is an urgent need for advocacy by health care providers to create more awareness about this condition. Public-private partnership arrangements are key to making new technologies for its diagnosis available and more affordable.

Conclusion. In conclusion, advanced diagnostic techniques and interventions are not readily available for paediatric CKD in Nigeria. There is an urgent need for advocacy by health care providers to create more awareness about this condition. Public-private partnership arrangements are key to making new technologies for its diagnosis available and more affordable.

Conflicts of Interest. The authors report no conflicts of interest in this work

Contributions. This study was conceived by NIK, OSR and EBO. Abstract and Introduction were written by NIK. Pathophysiology and diagnosis of paediatric chronic kidney disease was written by OSR. The situation in Nigeria and conclusion were written by EBO. All authors reviewed the final draft of the paper. NIK, OSR, EBO are equal contributors.

References

1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1-266.

2. Nugent RA, Fathima SF, Feigl AB, Chyung D. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. Nephron Clin Pract. 2011;118(3):c269-77. doi:10.1159/000321382.

3. Schaefer F, Borzych-Duzalka D, Azocar M, Munarriz RL, Sever L, Aksu N, et al. Impact of global economic disparities on practices and outcomes of chronic peritoneal dialysis in children: insights from the International Pediatric Peritoneal Dialysis Network Registry. Perit Dial Int. 2012;32(4):399-409. doi:10.3747/pdi.2012.00126.

4. Vachvanichsanong P, Dissaneewate P, McNeil E. Childhood chronic kidney disease in a developing country. Pediatr Nephrol. 2008;23(7):1143-7. doi:10.1007/s00467-008-0775-4.

5. Harambat J, Ekuo PM. Inequalities in access to pediatric ESRD care: a global health challenge. Pediatr Nephrol. 2016;31(3):353-8. doi:10.1007/s00467-015-3263-7.

6. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88(5):950-7. doi:10.1038/ki.2015.230.

7. Staples A, Wong C. Risk factors for progression of chronic kidney disease. Curr Opin Pediatr. 2010;22(2):161-169. doi:10.1097/MOP.0b013e328336ebb0.

8. Ardissino G, Dacc V, Testa S, Bonardo R, Clariss-Appiani A, Taioli E, Marra G, Edefonti A, Sereni F; ItalKid Project. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):e382-7. doi:10.1542/peds.111.4.e382.

9. Soylermezoglu O, Duzova A, Yal inkaya F, Arinsoy T, Sليمانر G. Chronic renal disease in children aged 5-18 years: a population-based survey in Turkey, the CREDIT-C study. Nephrol Dial Transplant. 2012;27 Suppl 3:i1146-51. doi:10.1093/ndt/gfs366.

10. Bukabau JB, Makulo JR, Pakasa NM, Cohen EP, Lepira FB, Kayembe PK, et al. Chronic kidney disease among high school students of Kinshasa. BMC Nephrol. 2012;13:24. doi:10.1186/1471-2369-13-24.

11. Ladapo TA, Esezobor CI, Lesi FE. Pediatric kidney diseases in an African country: prevalence, spectrum and outcome. Saudi J Kidney Dis Transpl. 2014;25(5):1110-6. doi:10.4103/1319-2442.139976.

12. Baum M. Overview of chronic kidney disease in children. Curr Opin Pediatr. 2010;22(2):158-160. doi:10.1097/MOP.0b013e32833695cb.

13. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013 Jul 13;382(9887):170-9. doi:10.1016/S0140-6736(13)60647-9.

14. Warady BA, Chadda V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22(12):1999-2009. doi:10.1007/s00467-006-0410-1.
15. Ezzati M, Vander Hoorn S, Lawes CM, Leach R, James WP, Lopez AD, et al. Rethinking the “diseases of affluence” paradigm: global patterns of nutritional risks in relation to economic development. PLoS Med. 2005;2(5):e133. doi:10.1371/journal.pmed.0020133.

16. Sumaili EK, Cohen EP, Zinga CV, Krzesinski JM, Pakasa NM, Nseka NM. High prevalence of undiagnosed chronic kidney disease among at-risk population in Kinshasa, the Democratic Republic of Congo. BMC Nephrol. 2009;10:18. doi:10.1186/1471-2369-10-18.

17. Hossain MP, Goyer EC, Rigby JE, El Nahas M. CKD and poverty: a growing global challenge. Am J Kidney Dis. 2009;53(1):166-74. doi:10.1053/j.ajkd.2007.10.047.

18. Haileamlak A. Chronic Kidney Disease is on the Rise. Ethiop J Health Sci. 2018;28(6):681-682. doi:10.4314/ejhss.v28i6.1.

19. Vehaskari VM, Woods LL. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545-56. doi:10.1681/ASN.2005030300.

20. Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol. 2010;298(2):F235-F247. doi:10.1152/ajprenal.00288.2009.

21. Vehaskari VM. Prenatal programming of kidney disease. Curr Opin Pediatr. 2010;22(2):176-82. doi:10.1097/MOP.0b013e32833ecb69.

22. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al; National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111(6 Pt 1):1416-21. doi:10.1542/peds.111.6.1416.

23. Schwartz GJ, Furth S, Cole SR, Warady B, Mu oz A. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006 Jun;69(11):2070-7. doi:10.1038/sj.ki.5000385.

24. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, et al. Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol. 2006;1(5):1006-15. doi:10.2215/CJN.01941205.

25. Gaspari F, Perico N, Ruggiogentil P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6(2):257-63. doi:10.1681/ASN. V62257.

26. Gaspari F, Thakar S, Carrara F, Perna A, Trillini M, Aparicio MC, et al. Safety of Iohexol Administration to Measure Glomerular Filtration Rate in Different Patient Populations: A 25-Year Experience. Neprhon. 2018;140(1):1-8. doi:10.1159/000489898.

27. Mubarak M. Practicing quality nephropathology in a developing country; challenges and solutions. J Nephropathol. 2015;4(3):59-61. doi:10.12860/jnp.2015.12.

28. Furness PN, Kazi JI. Laboratory investigation of renal biopsy specimen. J Nephrol Urol Transplant. 1998;1(1):19-26.

29. Mubarak M. Practicing quality nephropathology in a developing country; challenges and solutions. J Nephropathol. 2015;4(3):59-61. doi:10.12860/jnp.2015.12.

30. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363-73. doi:10.1007/s00467-011-1939-1. Erratum in: Pediatr Nephrol. 2012;27(3):507.

31. Asinobi AO, Ademola AD, Ogunkunle OO, Mott SA. Paediatric end-stage renal disease in a tertiary hospital in South West Nigeria. BMC Nephrol. 2014;15:25. doi:10.1186/1471-2369-15-25.

32. Spearman CW, McCulloch MI. Challenges for paediatric transplantation in Africa. Pediatr Transplant. 2014;18(7):668-74. doi:10.1111/petr.12333.

33. Becherucci F, Roperto RM, Materassi M, Romagnani P. Chronic kidney disease in children. Clin Kidney J. 2016;9(4):583-91. doi:10.1093/ckj/sfw047.

34. Matovinović MS. I. Pathophysiology and Classification of Kidney Diseases. EJIFCC. 2009;20(1):2-11.

35. Rees L, Mak RH. Nutrition and growth in children with chronic kidney disease. Nat Rev Nephrol. 2011;7(11):615-23. doi:10.1038/nrneph.2011.137.

36. Kaspar CD, Bholah R, Bunchman TE. A Review of Pediatric Chronic Kidney Disease. Blood Purif. 2016;41(1-3):211-7. doi:10.1159/000441737.

37. Seikaly MG, Salhab N, Gipson D, Yiu V, Stablein D. Epidemiology of chronic kidney disease in children. Pediatr Transplant. 2006;10(12):1931-9. doi:10.1111/j.1399-5006.2006.00467.x.

38. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA. Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant. 2007;11(4):366-73. doi:10.1111/j.1399-3046.2007.00704.x.
49. Gat-Yablonski G, Phillip M. Nutritionally-induced catch-up growth. Nutrients. 2015;7(1):517-551. doi:10.3390/nu7010517.

50. Farquharson C, Ahmed SF. Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling. Pediatr Nephrol. 2013;28(4):547-56. doi:10.1007/s00467-012-2271-0.

51. Mitch WE, Price SR. Mechanisms activating proteolysis to cause muscle atrophy in catabolic conditions. J Ren Nutr. 2003 Apr;13(2):149-52. doi: 10.1053/jjren.2003.50019.

52. Quigley R. Chronic kidney disease: highlights for the general pediatrician. Int J Pediatr. 2012;2012:943904. doi:10.1155/2012/943904.

53. Silverstein DM. Growth and Nutrition in Pediatric Chronic Kidney Disease. Front Pediatr. 2018;6:205. doi:10.3389/fped.2018.000205.

54. Franke D, Winkel S, Gellermann J, Querfeld U, Pape L, Ehrlich JH, Haffner D, Paviòiò L, Ziviònjak M. Growth and maturation improvement in children on renal replacement therapy over the past 20 years. Pediatr Nephrol. 2013;28(10):2043-51. doi:10.1007/s00467-013-2502-z.

55. Wesseling-Perry K, Salusky IB. Chronic kidney disease: mineral and bone disorder in children. Semin Nephrol. 2013;33(2):169-79. doi:10.1016/j.semnephrol.2012.12.017.

56. Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL. CKiD (CKD in children) prospective cohort study: a review of current findings. Am J Kidney Dis. 2012;60(6):1002-11. doi:10.1053/j.ajkd.2012.07.018.

57. KDOQI; National Kidney Foundation. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47(Suppl 3):S1145. doi: 10.1053/j.ajkd.2006.03.010. Erratum in: Am J Kidney Dis. 2006;48(3):518.

58. Ratcliffe LE, Thomas W, Glen J, Padhi S, Pordes BA, Wonderling D, Connell R, Stephens S, Mikhail AI, Fogarty DG, Cooper JK, Dring B, Devonald MA, Brown C, Thomas ME. Diagnosis and Management of Iron Deficiency in CKD: A Summary of the NICE Guideline Recommendations and Their Rationale. Am J Kidney Dis. 2016;67(4):548-58. doi:10.1053/j.ajkd.2015.11.012.

59. Fadrowski JJ, Pierce CB, Cole SR, Moxey-Mims M, Warady BA, Furth SL. Hemoglobin decline in children with chronic kidney disease: baseline results from the chronic kidney disease in children prospective cohort study. Clin J Am Soc Nephrol. 2008;3(2):457-62. doi:10.2215/CJN.03020707.

60. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578-585. doi:10.1681/ASN.2011111115.

61. Shroff R, Di Gi A, Kerti A, Kis, Csepregi L O, Toro K, et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol. 2013;28(6):875-84. doi:10.1007/s00467-012-2325-3.

62. Scialla JJ, Astor BC, Isakova T, Xie H, Appel LJ, Wolf M. Mineral metabolites and CKD progression in African Americans. J Am Soc Nephrol. 2013;24(1):125-35. doi:10.1681/ASN.2012070713.

63. Briet M, Boutouyrie P, Laurent S, London GM. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82(4):388-400. doi:10.1038/ki.2012.131.

64. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 201327;382(9889):339-52. doi:10.1016/S0140-6736(13)60595-4.

65. Kurella Tamura M, Vittinghoff E, Yang J, Go AS, Seliger SL, Kusek JW, et al. Anemia and risk for cognitive decline in chronic kidney disease. BMC Nephrol. 2016;17:13. doi:10.1186/s12882-016-0226-6.

66. WhI E, Schaefer F. Can we slow the progression of chronic kidney disease? Curr Opin Pediatr. 2010;22(2):170-5. doi:10.1097/MOP.0b013e3283360a5c.

67. Wilson AC, Schneider MF, Cox C, Greenbaum LA, Saland J, White CT, et al. Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(12):2759-65. doi:10.2215/CJN.03010311.

68. Ardissino G, Testa S, Dacc V, Paglialonga F, Viganò S, Felice-Civitillo C, et al. Puberty is associated with increased deterioration of renal function in patients with CKD: data from the ItalKid Project. Arch Dis Child. 2012;97(10):885-8. doi:10.1136/archdischild-2011-300685.

69. Thurman J, Gueler F. Recent advances in renal imaging. F1000Res. 2018;7:F1000 Faculty Rev-1867. doi:10.12688/f1000research.16188.1.

70. Nadasdy T, Satoskar AA, Silva FG. Adult renal diseases. In: Mills SE, Carter D, Greenson JK, Reuter VE, Stolen MH, editors. Sternberg’s diagnostic surgical pathology. Philadelphia: Lippincott Williams and Wilkins; 2010. p. 1681-756.

71. Naiker IP, Assounga AG, Meyers AM. Diagnostic approach to chronic kidney disease. S Afr Med J. 2015;105(3):236. doi:10.7196/SAMJ.9414.
62. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20-9. doi: 10.1056/NEJMoal114248. Erratum in: N Engl J Med. 2012 Aug 16;367(7):681. Erratum in: N Engl J Med. 2012 Nov 22;367(21):2060.

63. Bruce R, Wentland AL, Haemel AK, Garrett RW, Sadowski DR, Djamali A, Sadowski EA. Incidence of Nephrogenic Systemic Fibrosis Using Gadobenate Dimeglumine in 1423 Patients With Renal Insufficiency Compared With Gadodiamide. Invest Radiol. 2016;51(11):701-705. doi: 10.1097/RLI.0000000000000259.

64. Michaely HJ, Aschauer M, Deutschmann H, Bongartz G, Gutterlet M, Woitek R, et al. Gadobutrol in Renally Impaired Patients: Results of the GRIP Study. Invest Radiol. 2017;52(1):55-60. doi: 10.1097/RLI.0000000000000307.

65. Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol. 2010;2(10):384-398. doi:10.4329/wjr.v2.i10.384.

66. Olowu WA, Adefehinti O, Aladekomo TA. Epidemiology and clinicopathologic outcome of pediatric chronic kidney disease in Nigeria, a single centre study. Arab J Nephrol Transplant. 2013;6(2):105-13.

67. Odutunde OI, Okafor HU, Uwaezuoke SN, Ezeonwu BU, Adiele KD, Ukoha OM. Chronic kidney disease in children as seen in a tertiary hospital in Enugu, South-East, Nigeria. Niger J Clin Pract. 2014;17(2):196-200. doi: 10.4103/1119-3077.127553.