Small time asymptotics for Brownian motion with singular drift

Zhen-Qing Chen1,2 Shizan Fang3 Tusheng Zhang4,5

August 8, 2018

Abstract

We establish a small time large deviation principle and a Varadhan type asymptotics for Brownian motion with singular drift on \mathbb{R}^d with $d \geq 3$ whose infinitesimal generator is $\frac{1}{2} \Delta + \mu \cdot \nabla$, where each μ_i of $\mu = (\mu_1, \cdots, \mu_d)$ is a measure in some suitable Kato class.

Keywords and Phrases: Kato class measure, heat kernel, small time large deviation, small time asymptotics

AMS Subject Classification: Primary 60H15; Secondary 93E20, 35R60.

1 Introduction

For non-divergence form elliptic operator $\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}$ on \mathbb{R}^d with bounded, symmetric and uniformly elliptic diffusion matrix $A(x) = (a_{ij}(x))$ that is uniformly H"{o}lder continuous, Varadhan showed the following small time asymptotics for the heat kernel $p(t, x, y)$ of \mathcal{L} in \cite{V1}

$$\lim_{t \downarrow 0} t \log p(t, x, y) = -d(x, y)^2/2 \quad \text{for } x, y \in \mathbb{R}^d,$$

where $d(x, y)$ is the Riemannian metric induced by $A(x)^{-1}$. Later, (1.1) is extended by Norris \cite{N} to divergence form elliptic operator

$$\mathcal{L} = \frac{1}{2\rho(x)} \sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} \left(\rho(x)a_{ij}(x) \frac{\partial}{\partial x_j} \right),$$

where $A(x) = (a_{ij}(x))$ is symmetric locally bounded and locally uniformly elliptic and $\rho(x)$ is a measurable function that is locally bounded between two positive constants. In fact, the results in \cite{N} are more general, allowing \mathbb{R}^d being replaced by a Lipschitz manifold. In \cite{AH}, Ariyoshi and Hino studied the integral version of (1.1) and showed that for heat semigroup
\{P_t; t \geq 0\} associated with any symmetric local Dirichlet form \((\mathcal{E}, \mathcal{F})\) on \(L^2(E; m)\) with \(\sigma\)-finite measure \(m\),

\[
\lim_{t \downarrow 0} t \log P_t(A_1, A_2) = -d(A_1, A_2)^2/2 \quad (1.2)
\]

for any Borel subsets \(A_i \subset E\) with \(0 < m(A_i) < \infty\) for \(i = 1, 2\). Here \(P_t(A_1, A_2) := \int_{A_2} P_t 1_{A_1}(x)m(dx)\) and \(d(A_1, A_2)\) is the intrinsic distance between \(A_1\) and \(A_2\) induced by the local Dirichlet form \((\mathcal{E}, \mathcal{F})\). The above result (1.2) has recently been extended in [HM] to lower order perturbation of symmetric strongly local Dirichlet forms. For earlier and other related work, see the references in [Zh, N, HR].

In this paper, we study pointwise asymptotic property (1.1) for Brownian motion with singular drifts in \(\mathbb{R}^d\) with \(d \geq 3\); that is,

\[
dX_t = dW_t + dA_t \quad \text{with} \quad X_0 = x, \quad (1.3)
\]

where \(A\) is a continuous additive functional of \(X\) having “Revuz measure \(\mu\).” Informally \(\{X_t, t \geq 0\}\) is a diffusion process in \(\mathbb{R}^d\) with generator \(\frac{1}{2}\Delta + \mu \cdot \nabla\), where \(\mu = (\mu_1, \cdots, \mu_d)\) is a vector-valued signed measure on \(\mathbb{R}^d\) belonging to the Kato class \(K_{d,1}\) to be introduced below. When \(\mu_i(dx) = b_i(x)dx\) for some function \(b_i, X\) is a solution to the stochastic differential equation

\[
dX_t = dW_t + b(X_t)dt \quad \text{with} \quad X_0 = x \quad (1.4)
\]

Definition 1.1 A signed measure \(\nu\) on \(\mathbb{R}^d\) with \(d \geq 3\) is said to be in the Kato class \(K_{d,k}\) (for \(k = 1, 2\)) if

\[
\lim \sup_{r \downarrow 0} \sup_{x \in \mathbb{R}^d} \int_{|x-y| \leq r} \frac{|\nu|(dy)}{|x-y|^{d-k}} = 0,
\]

where \(|\nu|\) is the total variation of \(\nu\). A measurable function \(f\) on \(\mathbb{R}^d\) is said to be in the Kato class \(K_{d,k}\) (for \(k = 1, 2\)) if \(|f(x)|dx \in K_{d,k}\).

Clearly any bounded measurable functions are in the Kato class \(K_{d,k}\) for \(k = 1, 2\). By Hölder inequality, it is easy to see that \(L^p(\mathbb{R}^d; dx) \subset K_{d,1}\) for \(p > d\) and \(L^p(\mathbb{R}^d; dx) \subset K_{d,2}\) for \(p > d/2\). But a measure in \(K_{d,1}\) can be quite singular. It is shown in [BC] Proposition 2.1] that for a Borel measure \(\mu\) on \(\mathbb{R}^d\), if there are constants \(\kappa > 0\) and \(\gamma > 0\) so that \(\mu(B(x, r)) \leq \kappa r^{d-1+\gamma}\) for all \(x \in \mathbb{R}^d\) and \(r \in (0, 1]\), then \(\mu \in K_{d,1}\). Thus in particular, if \(A \subset \mathbb{R}^d\) is an Alfors \(\lambda\)-regular set with \(\lambda \in (d-1, d]\), then the Hausdorff measure \(\mathcal{H}^\lambda\) restricted to \(A\) is in \(K_{d,1}\).

To recall the precise definition of a Brownian motion with a measure drift \(\mu = (\mu_1, \cdots, \mu_d)\) with \(\mu_i \in K_{d,1}\) for \(1 \leq i \leq d\), fix a non-negative smooth function \(\varphi\) in \(\mathbb{R}^d\) with compact support and \(\int \varphi(x)dx = 1\). For any positive integer \(n\), we put \(\varphi_n(x) = 2^{nd}\varphi(2^n x)\). For \(1 \leq i \leq d\), define

\[
b_i^{(n)}(x) = \int \varphi_n(x-y)\mu_i(dy)
\]

Put \(b^{(n)} = (b_1^{(n)}, \cdots, b_d^{(n)})\). The following definition is taken from [BC].
Definition 1.2 A Brownian motion with drift μ is a family of probability measures $\{P_x, x \in \mathbb{R}^d\}$ on $C([0, \infty), \mathbb{R}^d)$, the space of continuous functions on $[0, \infty)$, such that under each P_x the coordinator process X has the decomposition

$$X_t = x + W_t + A_t$$

where

(a) $A_t = (A_t^{(1)} \cdots, A_t^{(d)}) = \lim_{n \to \infty} \int_0^t b_n(X_s)ds$ uniformly in t over finite intervals, where the convergence is in probability;

(b) there exists a subsequence $\{n_k\}$ such that for every $t > 0$,

$$\sup_{k \geq 1} \int_0^t |b^{nk}(X_s)|ds < \infty \quad a.s.$$

(c) W_t is a standard Brownian motion in \mathbb{R}^d starting from the origin.

It is established in [BC] that, when each μ_i is in the Kato class $K_{d,1}$, Brownian motion with drift $\mu = (\mu_1, \cdots, \mu_d)$, denoted by $\{X_t, t \geq 0\}$, exists and is unique in law for every starting point $x \in \mathbb{R}^d$. Moreover, it is shown there that $X = \{X_t, t \geq 0; P_x, x \in \mathbb{R}^d\}$ forms a conservative Feller process on \mathbb{R}^d. Later, it is obtained in [KS] that X has a jointly continuous transition density function $q(t, x, y)$ which admits the following Gaussian type estimate:

$$C_1e^{-C_2t}t^{-d/2}e^{-C_3|x-y|^2/t} \leq q(t, x, y) \leq C_4e^{C_5t}t^{-d/2}e^{-C_6|x-y|^2/t} \quad (1.5)$$

for all $(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$, where $C_i, 1 \leq i \leq 6$, are some positive constants.

In this paper, we are concerned with the precise Varadhan type small time asymptotics of the transition density function $q(t, x, y)$ of X:

$$\lim_{t \to 0} t \log q(t, x, y) = -\frac{|x - y|^2}{2} \quad (1.6)$$

for every $x, y \in \mathbb{R}^d$. Note that since the drift measure μ is merely assumed to be in Kato class $K_{d,1}$, the law of X can be singular with respect to the law of Brownian motion. Moreover, it is not clear if Brownian motion with drift μ can be constructed via sectorial non-symmetric Dirichlet form (see [BC, p.793]). One can not even apply the result from [HM] to get the integral version of small time asymptotics result (1.2) for our Brownian motion with drift μ. Hence a new approach is needed.

For each $x \in \mathbb{R}^d$, denote by ν^x the law of $\{X_t, 0 \leq t \leq 1\}$ on $C([0, 1], \mathbb{R}^d)$ under P_x. It is known (see [V1, V2]) that the Varadhan small time asymptotics (1.6) is closely related to the small time large deviation principle of the family $\{\nu^x, \varepsilon > 0\}$. In fact, in this paper, we will establish a small time large deviation principle for $\{\nu^x, \varepsilon > 0\}$ for every $x \in \mathbb{R}^d$ by showing that $\{\nu^x, \varepsilon > 0\}$ is exponentially equivalent to the corresponding laws of Brownian motion. This is done in Section [2]. The upper bound small time
asymptotics of (1.6) is obtained by the construction of heat kernel of \(X \) and their pointwise upper bound estimates. This is carried out in Proposition 3.3. To establish the lower bound small time asymptotics of (1.6) of transition density \(q(t, x, y) \), we will use a crucial estimate (Proposition 2.2) of the Laplace transform of the drift \(A \) to get a lower bound of the probability that the process \(X \) belongs to a small ball. This is the content of Proposition 3.4 of Section 3.

2 Small time large deviations

In this section, we will establish a small time large deviation principle for Brownian motion with measure drift \(\mu \). For a signed measure \(\mu \) on \(\mathbb{R}^d \), define

\[
N_t^\alpha(\mu) := \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} s^{-(d+1)/2} \exp \left(-\frac{\alpha \|x - y\|^2}{s} \right) |\mu|(dy)ds, \tag{2.1}
\]

where \(|\mu| \) denotes the measure of total variation. Recall (see e.g. [KS]) that \(\mu \in K_{d,1} \) if and only if

\[
\lim_{t \to 0} N_t^\alpha(\mu) = 0 \quad \forall \alpha > 0.
\]

For the transition kernel \(q(t, x, y) \) and a signed measure \(\mu \) on \(\mathbb{R}^d \), we also introduce

\[
\Lambda_t(\mu) := \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} \frac{q(s, x, y)}{\sqrt{s}} |\mu|(dy)ds. \tag{2.2}
\]

As a consequence of the two-sided Gaussian bounds of the transition density (1.5), it is easy to see that \(\mu \) is in the Kato class \(K_{d,1} \) if and only if

\[
\lim_{t \to 0} \Lambda_t(\mu) = 0.
\]

For a function \(f \) in \(K_{d,1} \), we write \(\Lambda_t(f) \) for \(\Lambda_t(fdx) \).

Let \(X \) be the Brownian motion with measure drift \(\mu \) stated in Section 1 and \(P_x \) the distribution of \(X \) starting from \(x \). For \(x \in \mathbb{R}^d \) and \(\varepsilon > 0 \), denote by \(\nu_x^\varepsilon \) the distribution of \(\{X_{\varepsilon t}; t \in [0, 1]\} \) under \(P_x \) on the path space \(C([0, 1], \mathbb{R}^d) \). We have the following large deviation result.

Theorem 2.1 For each fixed \(x \in \mathbb{R}^d \), \(\{\nu_x^\varepsilon, \varepsilon > 0\} \) satisfies a large deviation principle with rate function

\[
I(f) = \begin{cases} \frac{1}{2} \int_0^1 |\dot{f}(t)|^2 dt & \text{if } f \text{ is absolutely continuous,} \\ \infty & \text{otherwise,} \end{cases}
\]

where \(\dot{f} \) stands for the derivative of \(t \to f(t) \). Namely,

(i) for any closed subset \(C \subset C([0, 1], \mathbb{R}^d) \),

\[
\limsup_{\varepsilon \to 0} \varepsilon \log \nu_x^\varepsilon(C) \leq - \inf_{f \in C(x)} I(f),
\]

where \(C(x) = \{f \in C : f(0) = x\} \);

(ii) for any open subset \(G \subset C([0, 1], \mathbb{R}^d) \),

\[
\liminf_{\varepsilon \to 0} \varepsilon \log \nu_x^\varepsilon(G) \geq - \inf_{f \in G(x)} I(f),
\]

where \(G(x) = \{f \in G : f(0) = x\} \).
To prove Theorem 2.1 we need the following crucial estimate for the Laplace transform of an additive functional.

Proposition 2.2 Let \(b(\cdot) \) be a positive function in the Kato class \(K_{d,1} \). Then, for any \(\lambda > 0 \)

\[
\mathbb{E}_x \left[e^{\lambda \int_0^t b(X_s)ds} \right] \leq \left(1 + \lambda \sqrt{t} \Lambda_t(b) \right) \exp \left(\lambda^2 t \Lambda_t(b)^2 \right) \leq 2 \exp \left(2 \lambda^2 t \Lambda_t(b)^2 \right),
\]

where \(\Lambda_t(b) \) is defined as in (2.2).

Proof. We claim that for non-negative integer \(n \geq 0 \),

\[
\mathbb{E}_x \left[\left(\int_0^t b(X_s)ds \right)^n \right] \leq n! \alpha_n \left(\sqrt{t} \Lambda_t(b) \right)^n,
\]

where \(\alpha_0 = \alpha_1 = 1, \alpha_n = \prod_{k=2}^n (1 - \frac{1}{k})^{(k-1)/2} \left(\frac{1}{k} \right)^{1/2} \) for \(n \geq 2 \). Indeed, for \(n \geq 1 \), we have by the Markov property of \(X \),

\[
\begin{align*}
\mathbb{E}_x \left[\left(\int_0^t b(X_s)ds \right)^n \right] &= n! \int_0^t ds_n \int_0^{s_n} ds_{n-1} \cdots \int_0^{s_2} ds_1 \mathbb{E}_x \left[b(X_{s_1})b(X_{s_2}) \cdots b(X_{s_n}) \right] \\
&= n! \int_{\{0 \leq s_1 < s_2 < \cdots < s_n \leq t\}} ds_1 \cdots ds_n \int_{\mathbb{R}^d} b(y_1) \cdots b(y_n) q(s_1, x, y_1) q(s_2 - s_1, y_1, y_2) \\
&\quad \cdots q(s_n - s_{n-1}, y_{n-1}, y_n) dy_n \cdots dy_1.
\end{align*}
\]

When \(n = 1 \),

\[
\sup_{x \in \mathbb{R}^d} \mathbb{E}_x \left[\int_0^t b(X_s)ds \right] = \sup_{x \in \mathbb{R}^d} \int_0^t b(y) q(s, x, y) dy ds \\
\leq \sqrt{t} \sup_{x \in \mathbb{R}^d} \int_0^t b(y) \frac{q(s, x, y)}{\sqrt{s}} dy \\
= \sqrt{t} \Lambda_t(b).
\]

So (2.4) holds for \(n = 0 \) and \(n = 1 \) as claimed. When \(n = 2 \), by (2.5) and (2.6),

\[
\begin{align*}
\sup_{x \in \mathbb{R}^d} \mathbb{E}_x \left[\left(\int_0^t b(X_s)ds \right)^2 \right] &= 2 \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} b(y_1) q(s_1, x, y_1) \left(\int_{\mathbb{R}^d} b(y_2) q(s_2 - s_1, y_1, y_2) ds_2 dy_2 \right) ds_1 dy_1 \\
&= 2 \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} b(y_1) q(s_1, x, y_1) \left(\int_0^{t-s_1} \int_{\mathbb{R}^d} b(y_2) q(r, y_1, y_2) dr dy_2 \right) ds_1 dy_1 \\
&\leq 2 \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} b(y_1) q(s_1, x, y_1) \sqrt{t-s_1} \Lambda_t(b) ds_1 dy_1 \\
&= 2 \Lambda_t(b) \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} \sqrt{t-s_1} b(y_1) \frac{q(s_1, x, y_1)}{\sqrt{s_1}} ds_1 dy_1 \\
&\leq 2! \cdot \frac{1}{2} \left(\sqrt{t} \Lambda_t(b) \right)^2,
\end{align*}
\]
as \(\max_{s_1 \in [0,t]} \sqrt{s_1(t-s_1)} = t/2 \). This shows that (2.4) holds for \(n = 2 \). Now assuming (2.4) holds for \(n = k \geq 2 \), we next show it holds for \(n = k + 1 \). By (2.4) for \(n = k \),

\[
\sup_{x \in \mathbb{R}^d} E_x \left[\left(\int_0^t b(X_s) ds \right)^{k+1} \right] \\
\leq (k + 1) \cdot k! \int_0^t \sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} b(y_1)q(s_1, x, y_1) \left(\int_{\{0 < s_2 - s_1 < \cdots < s_k - s_1 \leq t - s_1\}} ds_2 \cdots ds_n \right) \\
\cdot \int_{(\mathbb{R}^d)^k} b(y_2) \cdots b(y_k)q(s_2 - s_1, y_1, y_2) \cdots q(s_n - s_{n-1}, y_{n-1}, y_k) dy_k \right) ds_1 dy_1 \\
\leq (k + 1)! \alpha_k A_t(b)^k \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} b(y_1) \frac{q(s_1, x, y_1)}{\sqrt{s_1}} s_1^{1/2} (t-s_1)^{k/2} ds_1 dy_1 \\
\leq (k + 1)! \alpha_k \left(\frac{k}{k + 1} \right)^{k/2} \left(\frac{1}{k + 1} \right)^{1/2} t^{(k+1)/2} A_t(b)^{k+1} \\
= (k + 1)! \alpha_{k+1} \left(\sqrt{t} A_t(b) \right)^{k+1},
\]

as \(\max_{s_1 \in [0,t]} s_1^{1/2} (t-s_1)^{k/2} = \left(\frac{k}{k+1} \right)^{k/2} \left(\frac{1}{k+1} \right)^{1/2} t^{(k+1)/2} \). This shows that (2.4) holds for \(n = k + 1 \). By induction, we have established that (2.4) holds for all \(n \geq 1 \).

Observe that \(\alpha_n \leq \frac{1}{\sqrt{n!}} \). We have by (2.4) that for \(\lambda > 0 \),

\[
E_x \left[e^{\lambda \int_0^t b(X_s) ds} \right] = \sum_{n=0}^{\infty} \frac{1}{n!} E_x \left[\left(\lambda \int_0^t b(X_s) ds \right)^n \right] \\
\leq \sum_{n=0}^{\infty} \frac{(\lambda \sqrt{t} A_t(b))^n}{\sqrt{n!}}. \tag{2.7}
\]

Since \((2n + 1)! \geq (2n)! \geq (n!)^2 \) for integer \(n \geq 0 \), we have for \(z \geq 0 \),

\[
\Phi(z) := \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n + 1)!} \\
\leq \sum_{n=0}^{\infty} \frac{z^{2n}}{n!} + z \sum_{n=0}^{\infty} \frac{z^{2n}}{n!} = (1 + z)e^{z^2}. \tag{2.8}
\]

This combined with (2.7) yields that

\[
E_x \left[e^{\lambda \int_0^t b(X_s) ds} \right] \leq \left(1 + \lambda A_t(b) \sqrt{t} \right) e^{\lambda^2 A_t(b)^2t}. \tag{2.9}
\]

This completes the proof of the proposition as \(1 + a \leq 2e^{a^2} \) for every \(a \geq 0 \).

\[\blacksquare\]

Proof of Theorem 2.1 Fix \(x \in \mathbb{R}^d \). Let \(\mu_x^\varepsilon \) denote the law of the Brownian motion \(\{x + W_{\varepsilon t}; t \in [0,1]\} \) on the path space \(C([0,1], \mathbb{R}^d) \). Then it is well known that \(\{\mu_x^\varepsilon, \varepsilon > 0\} \) obeys a large deviation principle with a rate function \(I(\cdot) \) defined as in the statement of Theorem 2.1. Note that

\[X_{\varepsilon t} = x + W_{\varepsilon t} + A_{\varepsilon t}. \]
According to [DZ, Theorem 4.2.13], to prove that ν_ε^x satisfies a large deviation principle with the same rate function as μ_ε^x it is sufficient to show that the two families $\{\nu_\varepsilon^x\}, \{\mu_\varepsilon^x\}$ are exponentially equivalent, namely for any $\delta > 0$,

$$\limsup_{\varepsilon \to 0} \varepsilon \log P_x \left(\sup_{0 \leq t \leq 1} |A_{\varepsilon t}| = \sup_{0 \leq t \leq 1} |X_{\varepsilon t} - (x + W_{\varepsilon t})| > \delta \right) = -\infty. \quad (2.10)$$

To this end, we first deduce an estimate similar to (2.3) for the Laplace transform of the process A, namely, for any $\lambda > 0$

$$E_x \left[e^{\lambda \sup_{0 \leq s \leq t} |A_s|} \right] \leq 2 \exp \left(2\lambda^2 t C_1^2 e^{2C_5 N_t^{C_6}} \left(\sum_{i=1}^d |\mu_i| \right)^2 \right). \quad (2.11)$$

For $1 \leq i \leq d$, recall the following function defined in Section 1

$$b_i^{(n)}(x) = \int \varphi_n(x - y) \mu_i(dy).$$

We claim that

$$\Lambda_t(|b_i^{(n)}|) \leq C_4 e^{C_5 N_t^{C_6}(|\mu_i|)}, \quad (2.12)$$

where $N_t^{C_6}(|\mu_i|)$ was defined in (2.1). Note that

$$|b_i^{(n)}|(x) \leq \int \varphi_n(x - y)|\mu_i|(dy).$$

Using the upper Gaussian-type estimate (1.5) for $q(s, x, y)$, we have for $t \leq 1$,

$$\begin{align*}
\Lambda_t(|b_i^{(n)}|) &\leq \sup_x \int_0^t \int_{\mathbb{R}^d} q(s, x, y, z) \left(\int_{\mathbb{R}^d} \varphi_n(y - z)|\mu_i|(dz) \right) dy \, ds \\
&\leq \sup_x \int_0^t \int_{\mathbb{R}^d} |\mu_i|(dz) \left(\int_{\mathbb{R}^d} q(s, x, y' + z) \varphi_n(y')dy' \right) ds \\
&\leq \sup_x \int_0^t \int_{\mathbb{R}^d} |\mu_i|(dz) \left(\int_{\mathbb{R}^d} C_4 e^{C_5 s - d/2} e^{-C_6 |x - y' - z|^2/s} \varphi_n(y')dy' \right) ds \\
&\leq C_4 e^{C_5} \int_{\mathbb{R}^d} \varphi_n(y')dy' \sup_{x, y'} \int_0^t \left(\int_{\mathbb{R}^d} s^{d+1/2} e^{-C_6 |x - y' - z|^2/s} |\mu_i|(dz) \right) ds \\
&\leq C_4 e^{C_5} N_t^{C_6}(|\mu_i|),
\end{align*}$$

where the fact $\int_{\mathbb{R}^d} \varphi_n(y')dy' = 1$ was used in the last inequality. This proves the claim (2.12). We have by the definition of the process A, Fatou’s Lemma, Proposition 2.2 and (2.12) that for every $\lambda > 0$,

$$\begin{align*}
E_x \left[e^{\lambda \sup_{0 \leq s \leq t} |A_s|} \right] &\leq E_x \left[e^{\lambda \sum_{i=1}^d |A_i^{(n)}|} \right] \\
&\leq \liminf_{n \to \infty} E_x \left[e^{\lambda \int_0^t \sum_{i=1}^d |b_i^{(n)}|(X_s)ds} \right] \\
&\leq 2 \exp \left(2\lambda^2 t \Lambda_t \left(\sum_{i=1}^d |b_i^{(n)}| \right)^2 \right) \\
&\leq 2 \exp \left(2\lambda^2 t C_4^2 e^{2C_5 N_t^{C_6}} \left(\sum_{i=1}^d |\mu_i| \right)^2 \right).
\end{align*}$$
This establishes the claim (2.11). We are now ready to prove (2.10). For any \(\delta, \lambda > 0 \), we have by (2.11),
\[
\mathbb{P}^x \left(\sup_{0 \leq t \leq 1} |A_{\varepsilon t}| > \delta \right) = \mathbb{P}^x \left(\sup_{0 \leq s \leq \varepsilon} |A_s| > \delta \right) \\
\leq e^{-\lambda \delta} \mathbb{E}^x \left[e^{\lambda \sup_{0 \leq s \leq \varepsilon} |A_s|} \right] \\
\leq 2e^{-\lambda \delta} \exp \left(2\lambda^2 \varepsilon^2 C_4^2 e^{2C_5 \varepsilon C_6} \left(\sum_{i=1}^d |\mu_i| \right)^2 \right). \tag{2.13}
\]
Taking
\[
\lambda = \frac{\delta}{4\varepsilon C_4^2 e^{2C_5 \varepsilon C_6} \left(\sum_{i=1}^d |\mu_i| \right)^2}
\]
yields
\[
\mathbb{P}^x \left(\sup_{0 \leq t \leq 1} |A_{\varepsilon t}| > \delta \right) \leq 2 \exp \left(-\frac{\delta^2}{8\varepsilon C_4^2 e^{2C_5 \varepsilon C_6} \left(\sum_{i=1}^d |\mu_i| \right)^2} \right). \tag{2.14}
\]
Hence
\[
\limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P}^x \left(\sup_{0 \leq t \leq 1} |A_{\varepsilon t}| > \delta \right) \\
\leq \limsup_{\varepsilon \to 0} \left(\varepsilon \log 2 - \frac{\delta^2}{8C_4^2 e^{2C_5 \varepsilon C_6} \left(\sum_{i=1}^d |\mu_i| \right)^2} \right) \\
= -\infty,
\]
where the last inequality is due to the fact that \(\lim_{\varepsilon \to 0} N_\varepsilon C_6 \left(\sum_{i=1}^d |\mu_i| \right) = 0 \). This completes the proof of Theorem 2.1. \qed

3 Small time asymptotics

Recall that \(q(t, x, y) \) denotes the transition density of the Markov process \(\{X_t, t \geq 0\} \). In this section we aim to establish the following Varadhan’s asymptotics.

Theorem 3.1
\[
\lim_{t \to 0} t \log q(t, x, y) = -\frac{|x - y|^2}{2} \tag{3.1}
\]
uniformly in \(x, y \in \mathbb{R}^d \) such that \(|x - y| \) is bounded.

We will establish the upper bound and the lower bound separately. For \(a > 0 \), let
\[
G_a(s, x, y) = s^{-d/2} \exp \left(-\frac{a|x - y|^2}{2s} \right).
\]
Recall the following result from [Z1, Lemma 3.1].
Lemma 3.2 Suppose $0 < a_1 < a_2$. There exist positive constants C_0 and α only depending on a_1, a_2 such that

$$\int_0^t \int_{\mathbb{R}^d} G_{a_1}(t-s,x,z)b(z)|\nabla_z G_{a_2}(s,z,y)|z|s^{1/2}dzds \leq C_0 N_t^{\alpha}(|b|)G_{a_1}(t,x,y).$$

Proposition 3.3 Assume the drift measure $\mu = (\mu_1, \cdots, \mu_d)$ belongs to $K_{d,1}$. Then

$$\limsup_{t \to 0} t \log q(t,x,y) \leq -\frac{|x-y|^2}{2}$$

uniformly in $x, y \in \mathbb{R}^d$ such that $|x-y|$ is bounded.

Proof. We will prove the proposition by showing that for any $\delta > 0$, there exist constants $T_{\delta} > 0, C_{2,\delta}$ such that for $t \in (0, T_{\delta}]$,

$$q(t,x,y) \leq C_{2,\delta} t^{-d/2} \exp \left(- (1-\delta) \frac{|x-y|^2}{2t} \right). \quad (3.2)$$

Using the approximation arguments as in [KS], it suffices to show that (3.2) holds for drift measure μ given by $\mu(dy) = b(y)dy$ and that the constant T_{δ} is determined only by the quantity $N_t^\alpha(\mu)$. From now on we suppose $\mu(dy) = b(y)dy$ for some function $b = (b_1, \ldots, b_d) \in K_{d,1}$. Note that for $0 < \delta < 1$, we have

$$|\nabla_z G_1(s,z,y)| = |z-y|s^{-1/2}G_{(1-\delta/2)}(s,z,y) \leq m_\delta s^{-1/2}G_{(1-\delta/2)}(s,z,y), \quad (3.3)$$

where $m_\delta := \sup_{r>0} re^{-\delta r^2/2} = 1/\sqrt{\epsilon_0}$. Hence for every $0 < \delta < 1$, by Lemma 3.2 (with $a_1 = 1-\delta$ and $a_2 = 1-(\delta/2)$), there are positive constants C_δ and c_δ depending only on δ so that

$$J(t,x,y) := \int_0^t \int_{\mathbb{R}^d} G_{(1-\delta)}(t-s,x,z)b(z)|\nabla_z G_1(s,z,y)|dzds \leq C_\delta N_t^{c_\delta}(|b|)G_{(1-\delta)}(t,x,y). \quad (3.4)$$

Define recursively $I_k(t,x,y)$ as follows:

$$I_0(t,x,y) = p(t,x,y) = (2\pi t)^{-d/2} \exp \left(- \frac{|x-y|^2}{2t} \right),$$

$$I_{k+1}(t,x,y) = \int_0^t \int_{\mathbb{R}^d} I_k(t-s,x,z)b(z) \cdot \nabla_z p(s,z,y)dzds \quad \text{for } k \geq 0.$$

Recall the following identity (see, e.g., [KS, Z1]):

$$q(t,x,y) = \sum_{k=0}^\infty I_k(t,x,y). \quad (3.5)$$
We next show that for any $\delta \in (0, 1)$, it holds that

$$|I_k(t, x, y)| \leq (C_\delta N^{\delta/2}_t(|b|))^k t^{-d/2} \exp \left(-\frac{1 - \delta}{2} \frac{|x - y|^2}{2t} \right). \quad (3.6)$$

In view of (3.4), (3.6) clearly holds for $k = 0, 1$. Suppose (3.6) holds for $k \geq 1$. By induction and (3.4), we have

$$I_{k+1}(t, x, y) \leq (C_\delta N^{\delta/2}_t(|b|))^k \int_{\mathbb{R}^d} G_{1-\delta}(t - s, x, y)|b(z)||\nabla z G_1(s, z, y)|dzds $$

$$\leq (C_\delta N^{\delta/2}_t(|b|))^k C_\delta N^{\delta/2}_t(|b|) G_{1-\delta}(t, x, y) $$

$$= (C_\delta N^{\delta/2}_t(|b|))^{k+1} t^{-d/2} \exp \left(-\frac{1 - \delta}{2} \frac{|x - y|^2}{2t} \right).$$

Since $\mu = b(x)dx \in K_{d,1}$, there exists a constant $T_\delta > 0$ such that $C_\delta N^{\delta/2}_t(|b|) \leq \frac{1}{2}$ for $t \leq T_\delta$. This together with (3.5), (3.6) gives that

$$q(t, x, y) \leq 2t^{-d/2} \exp \left(-\frac{1 - \delta}{2} \frac{|x - y|^2}{2t} \right).$$

From the proof above, we see that the constant T_δ only depends on the rate at which $N^{\delta/2}_t(|b|)$ tends to zero. Consequently,

$$t \log q(t, x, y) \leq -(1 - \delta) \frac{|x - y|^2}{2} - (d/2)t \log(2t) \quad \text{for } t \in (0, T_\delta].$$

It follows that

$$\limsup_{t \to 0} t \log q(t, x, y) \leq -\frac{|x - y|^2}{2}$$

uniformly on compact subsets of $\mathbb{R}^d \times \mathbb{R}^d$. By an approximation procedure as in [KS], we assert that the Proposition hold also for $\mu \in K_{d,1}$. \hfill \square

Proposition 3.4 Suppose $\mu = (\mu_1, \ldots, \mu_d) \in K_{d,1}$. Then

$$\liminf_{t \to 0} t \log q(t, x, y) \geq -\frac{|x - y|^2}{2} \quad (3.7)$$

uniformly in $x, y \in \mathbb{R}^d$ such that $|x - y|$ is bounded.

Proof. For $\epsilon > 0$, set $B(y, \epsilon) = \{z; |z - y| < \epsilon\}$. Let $r > 0$. We first like to give an estimate for the probability $P_x(X_r \in B(y, \epsilon))$. Let $\delta \in (0, \epsilon)$. We have

$$P_x(W_r + x \in B(y, \epsilon - \delta)) = P_x(X_r - A_r \in B(y, \epsilon - \delta))$$

$$\leq P_x(X_r - A_r \in B(y, \epsilon - \delta), |A_r| < \delta) + P_x(|A_r| \geq \delta)$$

$$\leq P_x(X_r \in B(y, \epsilon)) + P_x(|A_r| \geq \delta). \quad (3.8)$$

In view of (2.14),

$$P_x(|A_r| \geq \delta) \leq 2 \exp \left(-\frac{\delta^2}{8rC_T^2 \epsilon^2 c_b N^{\epsilon/6}_r \sum_{i=1}^{d} |\mu_i|^2} \right). \quad (3.9)$$

$$10$$
On the other hand,

$$
P_x(W_t + x \in B(y, \varepsilon - \delta)) = \int_{B(0, \varepsilon - \delta)} (2\pi r)^{-\frac{d}{2}} e^{-\frac{|x-(y-x)|^2}{2r}} dz$$

$$\geq (2\pi r)^{-d/2} \omega_d(\varepsilon - \delta)^d \exp\left(-\frac{(|x-y| + \varepsilon - \delta)^2}{2r}\right), \quad (3.10)$$

where \(\omega_d\) is the volume of the unit ball in \(\mathbb{R}^d\). Thus for \(0 < \delta < \varepsilon\),

$$P_x(X_t \in B(y, \varepsilon)) \geq (2\pi r)^{-d/2} \omega_d(\varepsilon - \delta)^d \exp\left(-\frac{(|x-y| + \varepsilon - \delta)^2}{2r}\right)$$

$$- 2 \exp\left(-\frac{\delta^2}{8rC_4^2 C_{\varepsilon}^{2C_5} N_{\varepsilon} (\sum_{i=1}^d |\mu_i|)^2}\right). \quad (3.11)$$

Note for every \(0 < \eta < 1\) and \(\varepsilon > 0\),

$$q(t, x, y) = \int_{\mathbb{R}^d} q((1-\eta)t, x, z) q(\eta t, z, y) dz$$

$$\geq \int_{B(y, \varepsilon)} q((1-\eta)t, x, z) q(\eta t, z, y) dz$$

$$\geq \inf_{z \in B(y, \varepsilon)} q(\eta t, z, y) \int_{B(y, \varepsilon)} q((1-\eta)t, x, z) dz$$

$$= \inf_{z \in B(y, \varepsilon)} q(\eta t, z, y) P_x (X_{(1-\eta)t} \in B(y, \varepsilon)). \quad (3.12)$$

Let \(M > 0\). We have by (3.12), (1.5) and (3.11) with \(r = (1-\eta)t\) that for any \(x, y \in \mathbb{R}^d\) with \(|x-y| \leq M\),

$$t \log q(t, x, y)$$

$$\geq t \log \inf_{z \in B(y, \varepsilon)} q(\eta t, z, y) + t \log P_x (X_{(1-\eta)t} \in B(y, \varepsilon))$$

$$\geq t \log \left(C_1 e^{-C_2 t(\eta t)^{-d/2}} - \frac{C_3 \varepsilon^2}{2\eta} + t \log \left(2\pi(1-\eta)t\right)^{-d/2} \omega_d(\varepsilon - \delta)^d \right.$$

$$\left. - \frac{(|x-y| + \varepsilon - \delta)^2}{2(1-\eta)} + \log \left(1 - 2(2\pi(1-\eta)t)^{d/2} \omega_d^{-1}(\varepsilon - \delta)^{-d} \right) \right.$$

$$\times \exp\left(\frac{(M + \varepsilon - \delta)^2}{2(1-\eta)t} - \frac{\delta^2}{2(1-\eta)t} \right)$$

Since \(N_{\varepsilon} (\sum_{i=1}^d |\mu_i|)^2 \to 0\) as \(t \to 0\), it follows that

$$\lim_{t \to 0} t \log q(t, x, y) \geq - \frac{C_3 \varepsilon^2}{2\eta} - \frac{(|x-y| + \varepsilon - \delta)^2}{2(1-\eta)} \quad (3.13)$$

uniformly in \(x, y\) with \(|x-y| \leq M\). Now letting \(\varepsilon \to 0\) and then \(\eta \to 0\), we have

$$\lim_{t \to 0} t \log q(t, x, y) \geq - \frac{|x-y|^2}{2}$$

uniform in \(x, y \in \mathbb{R}^d\) with \(|x-y| \leq M\). □
Combining Propositions 3.3 and 3.4 establishes Theorem 3.1.

Acknowledgement. We thank James Norris and Renming Song for useful discussions. This work is partially supported by Simons Foundation Grant 520542, and NNSF of China (11671372, 11431014, 11401557, 11731009).

References

[AH] T. Ariyoshi and M. Hino, Small-time asymptotic estimates in local Dirichlet spaces. *Electron. J. Probab.* 10 (2005), Paper 37, 1236-1259.

[BC] R. F. Bass and Z.-Q. Chen, Brownian motion with singular drift. *Ann. Probab.* 31 (2003), 791-817.

[CZ] K. L. Chung and Z. X. Zhao, *From Brownian Motion to Schrödinger’s Equation*. Springer-Verlag, Berlin 1995.

[DZ] A. Dembo and O. Zeitouni, *Large Deviations Techniques*. Jones and Bartlett, Boston 1993.

[HM] M. Hino and K. Matsuura, An integrated version of Varadhan’s asymptotics for lower-order perturbations of strong local Dirichlet forms. *Potential Anal.* 48 (2018), 257-300.

[HR] M. Hino and J. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups. *Ann. Probab.* 31 (2003), 1254-1295.

[KS] P. Kim and R. Song, Two sided estimates on the density of Brownian motion with singular drift. *Ill. J. of Math.* 50 (2006), 635-688.

[N] J. Norris, Heat kernel asymptotics and the distance function in Lipschitz Riemann manifolds. *Acta Math.* 179 (1997), 79-103.

[V1] S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients. *Comm. Pure Appl. Math.* 20 (1967), 431-455.

[V2] S.R.S. Varadhan, Diffusion processes in small time intervals. *Comm. Pure Appl. Math.* 20 (1967), 659-685.

[Z1] Q. Zhang, Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u) + B \cdot \nabla u - u_t = 0$. *Manuscripta Math.* 93 (1997), 381-290.

[Zh] T. Zhang, On the small time asymptotics of diffusion processes on Hilbert spaces. *Ann. Probab.* 28 (2000), 537-557.