Ex-PRESS® surgery versus trabeculectomy for primary open-angle glaucoma with low preoperative intraocular pressure

Mitsuya Otsuka · Atsushi Hayashi · Naoki Tojo

Received: 9 January 2022 / Accepted: 18 April 2022 / Published online: 10 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Purpose To compare surgical outcomes between Ex-PRESS® surgery (EXP) and trabeculectomy (Trab) for primary open-angle glaucoma (POAG) with low preoperative intraocular pressure (IOP).
Patients and methods This was a retrospective non-randomized study. We included POAG patients with preoperative IOP ≤ 16 mmHg who were taking tolerance glaucoma medications. We compared the surgical outcomes, postoperative IOP, number of glaucoma medications, reduction rate of corneal endothelial cell density (ECD), visual acuity, and postoperative complications between POAG patients who underwent EXP (34 eyes) or Trab (38 eyes) and could be followed up for > 2 years.
Results Both surgeries significantly decreased IOP (p < 0.001): At 2 years, EXP provided decreases from 13.4 ± 2.3 to 10.2 ± 3.1 mmHg, and Trab provided decreases from 13.5 ± 2.0 to 8.9 ± 3.2 mmHg. No significant differences were observed in the postoperative IOP (p = 0.076), number of postoperative medications (p = 0.263), success rate (p = 0.900), reduction rate of ECD (p = 0.410), or difference in visual acuity (p = 0.174). The reduction rate of IOP was significantly high in the Trab group (p = 0.047).

Conclusions Both surgeries significantly decreased IOP and were useful surgical methods for low-IOP glaucoma. Our results suggest that trabeculectomy can decrease IOP more than Ex-PRESS surgery but might have more complications.

Keywords Ex-PRESS · Glaucoma · Low IOP · NTG · Trabeculectomy

Introduction
Various surgical methods for glaucoma have been created since the 2000s. For example, minimally invasive glaucoma surgery (MIGS) and tube shunt surgeries are performed worldwide. Many MIGS results in intraocular pressure (IOP) that is in the mmHg range of mid-teens values [1], and it might be difficult to achieve postoperative IOP at values lower than the mid-teens. Tube shunt surgery is difficult to perform for patients with low preoperative IOP, due to the risk of hypotony [2]. For these reasons, there are limited surgical options for glaucoma patients with low preoperative IOP.

Patients with progressive visual field impairment despite low IOP are more common in Japan [3]. Trabeculectomy (Trab) is the most common glaucoma surgery for patients with low IOP. In a Trab, a bleb is formed in the sub-tenon space to receive the outflow of aqueous humor, thereby lowering the IOP. In addition, in cases in which a Trab is performed, the
postoperative IOP can be adjusted with suture lysis, suturing, or needling. In patients with low preoperative IOP in particular, strict IOP control is required after a Trab is conducted. Trabeculectomy was reported to be effective for low IOP glaucoma, with an improvement in the deterioration of the visual field [4–9].

With another surgical method, i.e., Ex-PRESS® (Alcon Laboratories, Fort Worth, TX) (EXP) surgery, the postoperative IOP can also be adjusted [10]. The EXP is a stainless-steel filtration device designed to shunt the aqueous humor from the anterior chamber to the sub-tenon space. EXP has some similarities to Trab, but there are some important differences between these two types of surgery. With the EXP, trabecular meshwork and the peripheral iris do not have to be excised. The EXP is also thought to be less invasive than a Trab. Generally, the EXP has the merits of low risks of hypotonic maculopathy, choroidal detachment, and shallow anterior chamber because the amount of aqueous humor exiting the bleb from the anterior chamber is limited [11]. However, due to the limited outflow of aqueous humor, it is unclear whether the IOP can be sufficiently reduced for a long term [12]. There are few reports of surgical outcomes of EXP for low-IOP glaucoma [13–15].

Many investigations have compared the surgical outcomes of Trab and EXP, and several reports state that these surgeries’ ability to lower IOP is comparable [16–18]. We have found no reports of comparisons of these surgeries for low-IOP glaucoma patients. In the present study, we compared the surgical outcomes between EXP and Trab surgery for patients with low preoperative IOP. We evaluated seven factors: (1) the postoperative IOP, (2) the number of postoperative glaucoma medications, (3) the rate of the reduction of IOP from the preoperative IOP, (4) the postoperative surgical success rate, (5) the reduction rate of corneal endothelial cell density (ECD), (6) visual acuity (VA), and (7) postoperative complications.

Patients and methods

Patients

This was a retrospective, non-randomized observational study. Seventy-two patients (76 eyes) underwent glaucoma surgeries. Four patients underwent surgery for both eyes; we used the unilateral data of the eye that was operated earlier. We analyzed the cases of a final total of 72 consecutive patients who underwent EXP (EXP group: 34 eyes) surgery or Trab (Trab group: 38 eyes) for the first time at Toyama University Hospital and were followed for >2 years. We performed these surgeries for patients with primary open-angle glaucoma (POAG) and the mean preoperative IOP ≤ 16 mmHg. We defined the preoperative IOP as the mean IOP of the patient’s three visits just before he or she underwent preoperative treatment.

All cases during the period from September 2014 to January 2020 were recruited. We performed EXP from September 2014 to March 2018, and after that we performed Trab in all cases. We included patients who simultaneously underwent cataract surgery. Glaucoma patients other than those with POAG and who had undergone other glaucoma surgery were also excluded. Two glaucoma specialists (N.T. and A.H.) diagnosed the cases of POAG.

All patients underwent a comprehensive ophthalmic examination including refraction, Goldmann gonioscopy, Goldmann applanation tonometry (GAT), a fundus examination, automated perimetry (Humphrey Field Analyzer; Carl Zeiss Meditec, Dublin, CA), measurement with optical coherent tomography (OCT) RS-3000 (Nidek; Aichi, Japan), the measurement of central corneal ECD with an EM-4000 specular microscope (Tomey; Nagoya, Japan) and the measurement of the central corneal thickness (CCT) with AS-OCT (CASSIA SS-1000; Tomey, Nagoya, Japan). We did not fix the time point for the measurement of IOP.

The patients had already used maximally tolerated glaucoma medications but required further treatment to lower their IOP due to the progression of their visual-field disorder. The surgical indication was judged by one glaucoma specialist (N.T.). The research protocol was approved by the Institutional Review Board of the University of Toyama, and the procedures used conformed to the tenets of the Declaration of Helsinki. After the nature and possible consequences of the study were explained to the patients, written informed consent was obtained from all individual participants included in the study.
Surgical techniques

All patients were operated on by one surgeon (N.T.), who has abundant experience performing EXP and Trab. The EXP surgical technique in all cases was as follows. Retrobulbar anesthesia was administered. A standard fornix-based conjunctival incision was made to gain exposure to the scleral bed adjacent to the limbus. A single 3.5 × 3.5 mm square scleral flap was created. Mitomycin C (MMC) solution (0.04 mg/ml) was applied below the conjunctiva and below the scleral flap for 4 min. At this point, the eye was a completely enclosed space, and thus, the MMC solution could not flow into the anterior chamber. The treated area was then irrigated with approx. 100 ml of balanced salt solution. If the patient needed simultaneous cataract surgery, the cataract surgery was performed at this time. Phacoemulsification was performed with a Whitestar Signature system (Abbott Medical Optics, Santa Ana, CA), and an intraocular lens (IOL) was implanted from the clear temporal cornea. Regarding the surgical indications for cataract surgery, since the present study was a retrospective analysis, no clear criteria were established for visual acuity (VA), the Emery grade, or patient age; cataract surgery was performed based on the operator’s judgment.

The scleral flap was lifted, and a 25-ga. needle was horizontally inserted into the anterior chamber at the surgical limbus to create a path for the Ex-PRESS® (model P50); the 25-ga. needle was inserted into the anterior chamber from the sclera-cornea transition zone parallel with the iris. The Ex-PRESS shunt was then inserted into the anterior chamber. The scleral flap was sutured using 10-0 nylon, while the tension on the sutures was adjusted to maintain the anterior chamber depth with a slow flow of aqueous humor around the margins of the scleral flap. Most of the cases were sutured with two stitches. The conjunctiva was meticulously closed with 10-0 nylon sutures. We confirmed that there was no leakage from the blebs.

The Trab surgical technique was as follows, in all cases. The differences from the EXP were that: (1) a 3.5 × 3.5 mm square scleral flap consisting of a double (superficial and deep) layer was created; (2) the trabecular meshwork was excised (about 3.5 mm width); and (3) the peripheral iris was incised. Most of the cases were sutured with four stitches.

Postoperative medication

The postoperative treatment protocol was the same in both the EXP and Trab groups. The postoperative treatments consisted of topical steroids, antibiotics, and non-steroidal anti-inflammatory drugs (NSAIDs). The antibiotics were applied for 4–6 weeks after the surgery. The steroid and NSAIDs were reduced over a 12 weeks period after the interventions. After the surgeries, glaucoma medications were stopped in all cases. Glaucoma medications were added at the discretion of the patients’ physicians. We counted a compounded agent as two medications.

Evaluation of the factors

We used two success criteria. We defined a successful surgery as a postoperative reduction in the IOP >20% (Criterion A) or >30% (Criterion B) from the preoperative IOP. We did not use the absolute value of postoperative IOP for the definition of success. We defined failure as meeting one of the following conditions: (1) postoperative IOP reduced <20% or 30% from the preoperative IOP on two consecutive visits after the first postoperative month; (2) postoperative IOP <5 mmHg on two consecutive visits after the first postoperative month; (3) requiring additional glaucoma surgery; or (4) phthisis or loss of light perception. The definition of success did not include the use or non-use of glaucoma medications.

We examined the ECD at the center of the cornea with the EM-4000 specular microscope, which automatically calculates the density value. The measured values were obtained only once before the surgery and at 1 and 2 years after the surgery. We defined the reduction rate of ECD as the ratio of postoperative ECD from pre-operative ECD. Since cataract surgery is known to affect ECD, we compared the survival rate in ECD, excluding cases that underwent simultaneous cataract surgery.

We measured the patients’ VA with decimal visual acuity. We converted the values to the logMAR (minimum angle of resolution) and evaluated the change of VA. Since cataract surgery is known to affect postoperative VA, we compared the difference of preoperative VA and postoperative VA, excluding cases that underwent simultaneous cataract surgery.

We evaluated the postoperative complications as (1) shallow anterior chamber (subjectivity observed
with a slit lamp), choroidal detachment, hypotony maculopathy (fold in macula due to hypotony), hyphema (leveled macroscopic hyphema), vitreous hemorrhage (bleeding from the iris spreads to the vitreous cavity), vitreous prolapse, leaking bleb (needed surgical treatment), visual acuity aggravation (aggravated more than 0.2 with logMAR), and bullous keratopathy (the ECD could not be measured with the EM-4000 microscope).

Statistical analysis

A Wilcoxon signed-rank test was used for comparison of IOP and the number of glaucoma medications of the same patients. Student’s t test and Pearson’s Chi-square test were used for the comparison of two groups. A log-rank test was used for the comparison of the results of a Kaplan–Meier analysis. All of the statistical analyses were performed with JMP Pro 14 software (SAS, Cary, NC). Assuming that the standard deviation of the postoperative IOP was 3.0 mmHg, we found that a total of 34 pairs of values was necessary to detect a meaningful difference of 2.0 mmHg with respect to the IOP daily variation with 80% power and the two-sided significance level of 0.05. Significance was defined as p-values < 0.05.

Results

Ophthalmic data

We analyzed 72 patients. The surgeries were conducted without intraoperative complications such as expulsive hemorrhage. There was no case of complications related to cataract surgery as posterior capsule rupture or wound leak. All cases were followed up without additional glaucoma surgery within 2 years. The characteristics of the EXP and Trab groups are summarized in Table 1. No ophthalmic parameters were significantly different between the two groups.

Postoperative IOP

Both surgeries could significantly decrease IOP at any time point (Wilcoxon test; p < 0.0001). The postoperative IOP and the number of postoperative glaucoma medications data are summarized in Table 2. The means of the postoperative IOPs at 1, 3, 6, and 18 months were significantly higher in the EXP group compared to the Trab group. In the EXP group, the

Table 1	Patients’ characteristics
ECD endothelial corneal cells density	
*Student’s t test, **Pearson’s Chi-square test	

Ex-PRESS (34 eyes)	Trab (38 eyes)	p-value	
Age, years	70.1 ± 12.2	68.4 ± 10.0	0.519*
Gender male	19/34 (52.9%)	13/38 (34.2%)	0.144**
Simultaneous cataract surgery, eyes	11/34 (32.3%)	17/38 (44.7%)	0.242**
CCT, mm	523 ± 33	518 ± 28	0.527*
Preoperative IOP, mmHg	13.4 ± 2.3	13.5 ± 2.0	0.860
Preoperative medications	3.9 ± 0.6	3.5 ± 0.9	0.145
1 mos IOP, mmHg	13.4 ± 2.3	13.5 ± 2.0	0.860
1 mos medications	0 ± 0	0 ± 0	1.000
2 mos IOP, mmHg	9.4 ± 4.0	7.5 ± 3.9	0.051
2 mos medications	0 ± 0	0 ± 0	1.000
3 mos IOP, mmHg	9.6 ± 3.7	7.6 ± 3.0	0.010
3 mos medications	0.3 ± 1.0	0.2 ± 0.6	0.459
6 mos IOP, mmHg	9.1 ± 2.2	7.6 ± 3.2	0.028
6 mos medications	0.9 ± 1.4	0.5 ± 1.2	0.221
12 mos IOP, mmHg	9.5 ± 2.8	8.3 ± 3.3	0.084
12 mos medications	1.4 ± 1.7	0.6 ± 1.3	0.024
18 mos IOP, mmHg	10.0 ± 2.2	8.6 ± 3.2	0.035
18 mos medications	1.8 ± 1.9	1.2 ± 1.5	0.140
24 mos IOP, mmHg	10.2 ± 3.1	8.9 ± 3.2	0.076
24 mos medications	1.9 ± 1.8	1.4 ± 1.6	0.263

Student’s t test

Table 2	Comparison of postoperative IOP and the number of postoperative glaucoma medications between Ex-PRESS and trabeculectomy		
Preoperative IOP; mmHg	13.4 ± 2.3	13.5 ± 2.0	0.860
Preoperative medications	3.9 ± 0.6	3.5 ± 0.9	0.145
1 mo IOP; mmHg	8.8 ± 4.8	6.4 ± 3.5	0.014
1 mo medications	0 ± 0	0 ± 0	1.000
2 mos IOP; mmHg	9.4 ± 4.0	7.5 ± 3.9	0.051
2 mos medications	0 ± 0	0 ± 0	1.000
3 mos IOP; mmHg	9.6 ± 3.7	7.6 ± 3.0	0.010
3 mos medications	0.3 ± 1.0	0.2 ± 0.6	0.459
6 mos IOP; mmHg	9.1 ± 2.2	7.6 ± 3.2	0.028
6 mos medications	0.9 ± 1.4	0.5 ± 1.2	0.221
12 mos IOP; mmHg	9.5 ± 2.8	8.3 ± 3.3	0.084
12 mos medications	1.4 ± 1.7	0.6 ± 1.3	0.024
18 mos IOP; mmHg	10.0 ± 2.2	8.6 ± 3.2	0.035
18 mos medications	1.8 ± 1.9	1.2 ± 1.5	0.140
24 mos IOP; mmHg	10.2 ± 3.1	8.9 ± 3.2	0.076
24 mos medications	1.9 ± 1.8	1.4 ± 1.6	0.263

Student’s t test
mean numbers of glaucoma medications used at 6 and 12 months were significantly higher than those in the Trab group. The EXP patients thus tended to require more glaucoma medications. The reduction rate of IOP is described in Table 3. At 2 years postsurgery, the IOP reduction rate in the EXP group was a 22.8% decrease, and that in the Trab group was a 33.4% decrease. The mean of the reduction rate of IOP was significantly higher in the Trab group ($p=0.0471$).

Success rate

The results of the Kaplan–Meier analysis are illustrated in Figs. 1 and 2. The surgical outcomes were not significantly different (Criterion A, $p=0.900$; Criterion B, $p=0.150$; log-rank test). The respective success rates for Criterion A at 6, 12, 18, and 24 months were 85.3%, 79.4%, 76.5%, and 76.5% in the EXP group and 94.7%, 84.2%, 79.0%, and 76.3% in the Trab group. The respective success rates for Criterion B at 6, 12, 18, and 24 months were 67.5%, 55.9%, 44.1%, and 38.2% in the EXP group and 76.3%, 68.4%, 63.2%, and 52.6% in the Trab group.

We defined success without glaucoma medications as complete success. The ratio of complete success (Criterion A) was 32.4% (11 eyes) in EXP group and 42.1% (16 eyes) in Trab group, and there was no significant difference ($p=0.393$). The ratio of complete success (Criterion B) was 17.6% (6 eyes) in EXP group and 31.6% (12 eyes) in Trab group, and there was no significant difference ($p=0.173$).

The survival rate of ECD

The mean ECD value and survival rate of ECD are shown in Table 4. The survival rate of ECD after 2 years was not significantly different between the EXP (94.8%) and Trab (92.3%) groups ($p=0.410$). Since cataract surgery is a factor that affects ECD, we also show data excluding cases of simultaneous cataract surgery. The survival rate of ECD after 2 years was not significantly different between the EXP (92.6%) and Trab (90.5%) groups ($p=0.731$).

Best corrected visual acuity

The mean difference from the preoperative VA to the postoperative VA was 0.037 ± 0.228 in EXP group and 0.176 ± 0.409 in Trab. There was no significant difference ($p=0.174$). Since cataract surgery is a factor that affects VA, we also investigated postoperative VA excluding cases of simultaneous cataract surgery. The mean difference from the preoperative VA to the

Table 3	Rate of IOP decline	Ex-PRESS	Trab	p-value
3 mos	27.0 ± 27.5	44.1 ± 21.3	0.0042	
6 mos	30.4 ± 20.1	43.0 ± 23.9	0.0188	
12 mos	28.0 ± 20.6	37.8 ± 25.6	0.0825	
18 mos	23.0 ± 23.2	35.6 ± 25.1	0.0349	
24 mos	22.8 ± 21.1	33.4 ± 24.2	0.0471	

Student’s t test. The data are percentages

ECD: endothelial corneal cells density

Fig. 1 Kaplan-Meier survival plots comparing Ex-PRESS and trabeculectomy patients with Criterion A

Fig. 2 Kaplan-Meier survival plots comparing Ex-PRESS and trabeculectomy patients with Criterion B

 Springer
postoperative VA was 0.088 ± 0.214 (23 eyes) in EXP group and 0.253 ± 0.641 (21 eyes) in Trab. There was no significant difference (p = 0.251).

Complications

The postoperative complications are summarized in Table 5. There was no significant difference in complications related to low IOP such as shallow anterior chamber, choroidal detachment, and hypotony maculopathy. Since the Trab procedure requires the excision of the trabecular meshwork and the incision of the peripheral iris, the rates of vitreous hemorrhage were significantly higher in the Trab group (p = 0.047).

Discussion

The Ex-PRESS surgery and the trabeculectomy both significantly reduced IOP even in cases of low preoperative IOP. The trabeculectomy reduced IOP more compared to the EXP. There was no significant between-group difference in the surgeries’ success rates.

There have been several reports that both EXP and Trab are useful for treating low-IOP glaucoma. Naito et al. [4] reported that Trab lowered the IOP from 13.9 to 8.1 mmHg at 2 years, and Schultz et al. [9] stated that Trab lowered the IOP from 13.1 to 8.5 mmHg. The present surgical outcomes are equivalent to these previous reports, which also indicated that Trab could suppress the progression of visual field deterioration [4, 9].

In a study by Aihara et al. [15], the use of EXP lowered the IOP from 14.8 to 10.0 mmHg in one year, achieving a 31.1% reduction of IOP. In our present study, the IOP reduction provided by EXP was equivalent to 28.0% at 1 year postsurgery. The Collaborative NTG study reported that a 30% reduction was recommended for normal-tension glaucoma (NTG) [19]. In our present patient series, the reduction in the EXP group at 2 years was 22.8%, whereas that in

Table 4 Corneal endothelial cell density and survival rate

	Total	Ex-PRESS (34 eye)	Trab (38 eyes)	p-value
Preoperative ECD, cells/mm²	2294 ± 441	2350 ± 362	0.677	
12 mos ECD, cells/mm²	2194 ± 565	2305 ± 471	0.470	
24 mos ECD, cells/mm²	2182 ± 502	2178 ± 477	0.663	
12 mos survival rate, %	95.4 ± 14.2	98.3 ± 14.2	0.629	
24 mos survival rate, %	94.8 ± 14.1	92.3 ± 20.8	0.410	

Excluding the cases of simultaneous cataract surgery

	Ex-PRESS (23 eye)	Trab (21 eyes)	p-value
Preoperative ECD, cells/mm²	2247 ± 507	2309 ± 422	0.662
12 mos ECD, cells/mm²	2077 ± 532	2292 ± 501	0.185
24 mos ECD, cells/mm²	2117 ± 640	2098 ± 497	0.917
12 mos survival rate, %	92.6 ± 12.1	99.7 ± 15.1	0.104
24 mos survival rate, %	92.6 ± 13.4	90.5 ± 25.0	0.731

Table 5 Complications

	Ex-PRESS	Trab	p-value
Shallow anterior chamber	5	6	0.898
Choroidal detachment	6	6	0.833
Hypotony maculopathy	0	0	1.000
Hyphema	5	6	0.898
Tube occlusion	0	0	1.000
Vitreous hemorrhage	0	3	0.047
Vitreous prolapse	0	2	0.256
Leaking bleb	1	4	0.190
Visual acuity aggravation	9	10	0.988
Bullous keratopathy	1	1	0.936

Pearson’s Chi-square test
the Trab group was 33.4%. The reason for this difference is that in the EXP procedure, a small amount of aqueous humor can flow out, and as a result, the IOP might be higher than that achieved with a Trab. We reported that the volume of filtered blebs after EXP declined by 26% per year [20]. Maintaining low IOP for long time requires large blebs. The trabeculectomy has the advantage of lowering the IOP to a greater degree compared to EXP. Trab had a double-layer scleral flap, which could decrease IOP more.

There are several ways to define success after glaucoma surgery [21]. Since the present patients’ preoperative IOP was low, we did not use a cutoff IOP value for the definition of surgical success. There was no significant difference between the Trab and EXP surgeries when the > 20% or > 30% reductions in IOP were successful. Considering that a 30% reduction in the IOP is sufficiently effective, Oie et al. [22] reported that there was a correlation between the IOP reduction ratio and the speed of deterioration in the visual field.

We observe that the postoperative VA was less deteriorated in the EXP group. Since our study included cases of simultaneous cataract surgery, we could not investigate the changes in VA affected by glaucoma surgery without this factor. In the Trab group, the VA was more likely to deteriorate despite the inclusion of more patients with simultaneous cataract surgeries in this group. This might have contributed to the decrease in the IOP being too low. Naito et al. [4] reported that an IOP < 7 mmHg posed a risk of a decline in the VA. An investigation by Beltran et al. [23] revealed that patients who underwent a Trab were more likely to lose ≥ 2 Snellen lines compared to those who underwent an EXP. Astigmatism is likely to occur when the IOP is low [24], and astigmatism might affect VA. Several studies reported that VA recovery after EXP was more rapid than that after Trab [18, 23, 25]. EXP might therefore have an advantage concerning postoperative VA.

In the present study, there was no significant between-group difference in the reduction ratio of ECD at 2 years postsurgery, but the reduction of ECD was slightly greater in the Trab group. Several studies reported that Trab or EXP reduced the ECD by 2.2–23.0% in a 2-years period [13, 17, 26, 27]; however, in one of the studies the EXP surgery reduced the ECD rapidly [13], whereas others observed that EXP could not reduce ECD rapidly [17, 28]. We reported that postoperative ECD varies depending on the insertion position of the EXP [29]. If the EXP is inserted in the correct position (the trabecular meshwork), it might prevent ECD loss more effectively. The EXP procedure does not require the resection of the iris and trabecular meshwork, and it results in less inflammation compared to a Trab. Strong inflammation might decrease the ECD more rapidly [30, 31].

There are many reports that EXP has fewer complications than Trab [11, 17, 18]. In the present study as well, the vitreous hemorrhage and vitreous prolapse that are characteristic of a Trab did not occur in the EXP group. For these reasons, EXP might pose a lower risk of complications. The EXP also has a characteristic complication of tube obstruction [32], but this did not occur in the present series of patients.

The preoperative IOPs of our patients were very low, and surgeries that require further IOP reduction could pose a high risk of complications associated with low IOP such as shallow anterior chamber, choroidal detachment, and hypotony maculopathy. Notably, the Trab results in more outflow to outside of the eye, and we thus suspected that the Trab might result in more complications associated with low IOP. However, there was no between-group difference in complications associated with low IOP. Arimura et al. [17] reported that EXP caused choroidal detachment in 18% of their patients, whereas Trab caused it in 12.5%, which was not a significant difference. Our present results are similar. Appropriate laser suture lysis could lower the risk of complications.

In terms of medical economy, Patel et al. [33] reported that EXP was associated with greater surgical cost compared with Trab.

There are some study limitations to address. This was a retrospective analysis. There is a risk that the results would vary greatly depending on the preoperative IOP values. We did not consider IOP fluctuations. Our patient population included cases with simultaneous cataract surgery, and it has been reported that simultaneous cataract surgery has poorer surgical results and is more likely to reduce the ECD rapidly [34, 35]. We did not define the indications for glaucoma surgery, cataract surgery, and additional
glaucoma medications. We did not investigate the change of corneal curvature or astigmatism in detail might affect visual acuity. The number of patients was small, and the follow-up period was short.

Even in an era when many glaucoma devices are available, the number of surgical methods for patients with low preoperative IOP might be limited. Since both EXP and Trab could adjust the postoperative IOP to some extent, these surgeries were considered first for our patients. Trab has a greater ability to lower the IOP. Since the surgical results of glaucoma focus on the postoperative IOP, it seems that Trab is the better surgical method. However, we cannot recommend surgery that has a high possibility of postoperative complications, even if the IOP decreases more. Both surgeries were useful for patients with low preoperative IOP, and both have advantages and disadvantages. It is necessary to judge these surgeries by the outcomes over a long-term follow-up.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MO and NT. The first draft of the manuscript was written by MO and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding No funding was received for this research.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethical approval All procedures were performed in accord with the ethical standards of the Institutional Review Board of the University of Toyama (Toyama, Japan) and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Formal patient consent was not required for the present retrospective analysis.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. Lavia C, Dallorto L, Maule M, Ceccarelli M, Fea AM (2017) Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: a systematic review and meta-analysis. PLoS ONE 12(8):e0183142. https://doi.org/10.1371/journal.pone.0183142

2. Coleman AL, Hill R, Wilson MR et al (1995) Initial clinical experience with the Ahmed Glaucoma Valve implant. Am J Ophthalmol 120(1):23–31. https://doi.org/10.1016/s0002-9394(14)73755-9

3. Iwase A, Suzuki Y, Araie M et al (2004) The prevalence of primary open-angle glaucoma in Japanese: the Tajimi study. Ophthalmology 111(9):1641–1648. https://doi.org/10.1016/j.ophtha.2004.03.029

4. Naito T, Fujiwara M, Miki T et al (2017) Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure <15 mmHg. PLoS ONE 12(8):e0184096. https://doi.org/10.1371/journal.pone.0184096

5. Aoyama A, Ishida K, Sawada A, Yamamoto T (2010) Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma. Jpn J Ophthalmol 54(2):117–123. https://doi.org/10.1007/s10384-009-0779-z

6. Iverson SM, Schultz SK, Shi W, Feuer WJ, Greenfield DS (2016) Effectiveness of single-digit IOP targets on decreasing global and localized visual field progression after filtration surgery in eyes with progressive normal-tension glaucoma. J Glaucoma 25(5):408–414. https://doi.org/10.1097/IJG.0000000000002240

7. Yuasa Y, Sugimoto Y, Hirooka K et al (2020) Effectiveness of trabeculectomy with mitomycin C for glaucomatous eyes with low intraocular pressure on treatment eye drops. Acta Ophthalmol 98(1):e81–e87. https://doi.org/10.1111/aos.14195

8. Nakajima K, Sakata R, Ueda K et al (2021) Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg. Graefes Arch Clin Exp Ophthalmol 259(8):2309–2316. https://doi.org/10.1007/s10384-021-05215-y

9. Schultz SK, Iverson SM, Shi W, Greenfield DS (2016) Safety and efficacy of achieving single-digit intraocular pressure targets with filtration surgery in eyes with progressive normal-tension glaucoma. J Glaucoma 25(2):217–222. https://doi.org/10.1097/IJG.000000000000145

10. Wamsley S, Moster MR, Rai S, Alvim HS, Fontanarosa J (2004) Results of the use of the Ex-PRESS miniature glaucoma implant in technically challenging, advanced glaucoma cases: a clinical pilot study. Am J Ophthalmol 138(6):1049–1051. https://doi.org/10.1016/j.ajo.2004.06.024

11. Wang L, Sha F, Guo DD et al (2016) Efficacy and economic analysis of Ex-PRESS implantation versus trabeculectomy in uncontrolled glaucoma: a systematic review and meta-analysis. Int J Ophthalmol 9(1):124–131. https://doi.org/10.18240/ijo.2016.01.21

12. Nicolai M, Franceschi A, Pelliccioni P, Pirani V, Mariotti C (2020) EX-PRESS glaucoma filtration device: Management of complications. Vision 4(3):39. https://doi.org/10.3390/vision4030039

13. Ishida K, Moroto N, Murata K, Yamamoto T (2017) Effect of glaucoma implant surgery on intraocular pressure reduction, flare count, anterior chamber depth, and corneal endothelium in primary open-angle glaucoma.
Jpn J Ophthalmol 61(4):334–346. https://doi.org/10.1007/s10384-017-0512-2

Kato N, Takahashi G, Kumegawa K, Kabata Y, Tsuneoka H (2015) Indications and postoperative treatment for EX-PRESS® insertion in Japanese patients with glaucoma: comparison with standard trabeculectomy. Clin Ophthalmol 9:1491–1498. https://doi.org/10.2147/OPTH.S86504

Aihara M, Kuwayama Y, Miyata K et al (2019) Twelve-month efficacy and safety of glaucoma filtration device for surgery in patients with normal-tension glaucoma. Jpn J Ophthalmol 63(5):402–409. https://doi.org/10.1007/s10384-019-06682-7

Wagschal LD, Trope GE, Jinapriya D, Jin YP, Buys YM (2015) Prospective randomized study comparing EXPRESS to trabeculectomy: 1-year results. J Glaucoma 24(8):624–629. https://doi.org/10.1097/IJG.000000000000029

Arimura S, Takihara Y, Miyata K et al (2016) Randomized clinical trial for early postoperative complications of EX-PRESS implantation versus trabeculectomy: complications postoperatively of EX-PRESS versus trabeculectomy study (CPETS). Sci Rep 6:26080. https://doi.org/10.1038/srep26080

Netland PA, Sarkisian SR Jr, Moster MR et al (2014) Randomized, prospective, comparative trial of EX-PRESS glaucoma filtration device versus trabeculectomy (XVT study). Am J Ophthalmol 157(2):433–40e3. https://doi.org/10.1016/j.ajo.2013.09.014

Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505. https://doi.org/10.1016/s0002-9394(98)00272-4

Tojo N, Hayashi A, Otsuka M (2018) Factors influencing the filtration-bleb volume after Ex-PRESS® surgery. Clin Ophthalmol 12:1675–1683. https://doi.org/10.2147/OPHT.S172400

Rotchford AP, King AJ (2010) Moving the goal posts definitions of success after glaucoma surgery and their effect on reported outcome. Ophthalmol 117(1):18–23e3. https://doi.org/10.1016/j.ophtha.2009.06.014

Oie S, Ishida K, Yamamoto T (2017) Impact of intraocular pressure reduction on visual field progression in normal-tension glaucoma followed up over 15 years. Jpn J Ophthalmol 61(4):314–323. https://doi.org/10.1007/s10384-017-0519-8

Beltran-Agullo L, Trope GE, Jin Y, Wagschal LD, Jinapriya D, Buys YM (2015) Comparison of visual recovery following ex-PRESS versus trabeculectomy: results of a prospective randomized controlled trial. J Glaucoma 24(3):181–186. https://doi.org/10.1097/IJG.0b013e31829c16b8

Tanito M, Matsuzaki Y, Ikeda Y, Fujihara E (2017) Comparison of surgically induced astigmatism following different glaucoma operations. Clin Ophthalmol 11:2113–2120. https://doi.org/10.2147/OPHT.S152612

Kobayashi N, Hirooka K, Nitta E, Ukegawa K, Tsujikawa A (2018) Visual acuity and corneal higher-order aberrations after EX-PRESS or trabeculectomy, and the determination of associated factors that influence visual function. Int Ophthalmol 38(5):1969–1976. https://doi.org/10.1007/s10792-017-0685-1

Higashide T, Nishino T, Sakaguchi K, Yamada Y, Sugiyama K (2019) Determinants of corneal endothelial cell loss after trabeculectomy with mitomycin C. J Glaucoma 28(1):61–67. https://doi.org/10.1097/IJG.000000000001108

Omitesu S, Hirooka K, Nitta E, Ukegawa K (2018) Changes in corneal endothelial cells after trabeculectomy and EX-PRESS shunt: 2-year follow-up. BMC Ophthalmol 18(1):243. https://doi.org/10.1186/s12886-018-0913-0

Hirooka K, Nitta E, Ukegawa K, Sato S, Kiuchi Y (2020) Effect of trabeculectomy on corneal endothelial cell loss. Br J Ophthalmol 104(3):376–380. https://doi.org/10.1136/bjoophthal-2018-313417

Tojo N, Numata A, Hayashi A (2020) Factors influencing the reduction in corneal endothelial cells after Ex-PRESS® surgery. Int Ophthalmol 40(5):1201–1208. https://doi.org/10.1007/s10792-020-01286-8

Smith DL, Skuta GL, Lindennuth KA, Musch DC, Bergstrom TJ (1991) The effect of glaucoma filtering surgery on corneal endothelial cell density. Ophthalmic Surg 22(5):251–255

Macdonald JM, Gerosi DH, Edelhauser HF (1987) Effect of inflammation on the corneal endothelial pump and barrier. Curr Eye Res 6(9):1125–1132. https://doi.org/10.3109/02713688709034885

Chan JE, Netland PA (2015) EX-PRESS Glaucoma filtration device: Efficacy, safety, and predictability. Med Devices 8:381–388. https://doi.org/10.2147/MDER.S63350

Patel HY, Wagschal LD, Trope GE, Buys YM (2014) Economic analysis of the Ex-PRESS miniature glaucoma device versus trabeculectomy. J Glaucoma 23(6):385–390. https://doi.org/10.1097/IJG.0b013e31827a06f4

Soro-Martinez MI, Villegas-Perez MP, Sobrado-Calvo P, Ruiz-Gomez JM, de Imperial M, Mora-Figueroa J (2010) Corneal endothelial cell loss after trabeculectomy or after phacoemulsification, IOL implantation and trabeculectomy in 1 or 2 steps. Graefes Arch Clin Exp Ophthalmol 248(2):249–256. https://doi.org/10.1007/s00417-009-1185-4

Graffi S, Tiosano B, Naftali M et al (2020) Short-term anterior chamber inflammation in phacoemulsification with and without EX-PRESS glaucoma implant. Eur J Ophthalmol 30(3):533–537. https://doi.org/10.1177/1120672119839300

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.