Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota–Gut–Brain Axis

Elena Layunta1,2*, Berta Buey3, Jose Emilio Mesonero2,3,4 and Eva Latorre2,4,5

1 Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden, 2 Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain, 3 Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain, 4 Instituto Agroalimentario de Aragón—I2A (Universidad de Zaragoza–CITA), Zaragoza, Spain, 5 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain

Disruption of the microbiota–gut–brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut–brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota–host interactions. Despite the numerous investigations focused on the gut–brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota–gut–brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota–gut–brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.

Keywords: serotonin, 5-HT, tryptophan, microorganisms, PRRs, TLRs, NLRs

1 INTRODUCTION

The gastrointestinal (GI) tract is one of the major defensive organs in individuals because it is continuously exposed to the external environment. In this context, microbial colonization of the intestine during infancy is a major moment for the development of not only the GI tract (1) but also the brain (2) and the immune system (3). In the last years, numerous researchers have focused their efforts on understanding how intestinal microbiota have the ability to affect the brain and behavior, which has not yet been completely clarified. In this context, the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) could be the key to resolving this mystery.

The gut–brain axis is a bidirectional crosstalk between the central nervous system (CNS) and the gut. Recently, given the important role in the regulation of gut functions, microbiota are included in the axis. Then, the microbiota–gut–brain axis resides in a coordinated network composed of the CNS,
enteric nervous system (ENS), hypothalamic–pituitary–adrenal axis, gut, and microbiota. Both clinical and experimental data suggest that intestinal microbiota play a crucial role in the axis, interacting not only locally with intestinal cells and the ENS but also directly with the CNS through neuroendocrine and metabolic pathways. In fact, germ-free mice studies have proven that the absence of microbial colonization leads to defects in neuron maturation at both CNS and ENS levels, altered expression of neurotransmitters, and gut sensory and motor dysfunctions (4). Intestinal microbiota dysbiosis has been extensively studied as one of the most important factors in the pathogenesis of inflammatory bowel diseases (IBDs) (5), including Crohn’s disease (CD) and ulcerative colitis (UC). In this context, several studies have described that intestinal serotonin may shape the microbiota composition that protects against the development of IBDs (6), suggesting the critical relation between the intestinal microbiota and serotonergic system in GI pathologies. However, the role of the microbiota–serotonin interaction would not be limited locally to the gut but also to the CNS. Germ-free mice studies have reported the importance of the microbiota control of the serotonergic system in the CNS (7) or how specific intestinal microorganisms, such as *Akkermansia muciniphila*, can increase serotonin production in the hippocampus (8). In this context, recent studies have described the involvement of microbiota in serotonin signaling in CNS disorders such as Alzheimer’s or schizophrenia (9).

Serotonin is a key neurotransmitter, which substantially coordinates the GI physiology and owns critical central functions. Interestingly, serotonin is involved in each component of the microbiota–gut–brain axis, acting as an ideal language for the crosstalk. Microbiota regulate the tryptophan metabolism involved in serotonin production, serotonin acts as a key neurotransmitter in the CNS and ENS, and serotonin receptors play a pivotal role in the hypothalamic–pituitary–adrenal axis.

Here, we highlight recent findings into how microbiota regulate the intestinal and central serotonergic systems, as well as novel clinical approaches to address GI pathologies and brain disorders through the microbiota–gut–brain axis.

2 Serotonergic System

In 1940, Vittorio Erspamer discovered serotonin (5-hydroxytryptamine, 5-HT) in the GI tract in rabbits (10) and it was later discovered in the CNS (11). There are two main serotonergic systems: the central serotonergic system located in the brain and the intestinal serotonergic system in the gut. Both share the same principles of synthesis (“ON mechanism”), internalization and degradation (“OFF mechanism”), and 5-HT signaling through its specific receptors (Figure 1).

![Figure 1](image-url)
The “ON” mechanism is constituted in the gut by enterochromaffin cells and serotonergic neurons of the ENS, while in the CNS, 5-HT is produced only by serotonergic neurons. The primary source of 5-HT is the amino acid L-tryptophan that is catalyzed by the rate-limiting enzyme tryptophan hydroxylase (TPH) to synthesize 5-hydroxytryptophan (5-HTP), which then is converted into serotonin by aromatic amino acid decarboxylase (AAAD) (12). TPH reaction is a limitative step in the production of 5-HTP and, subsequently, serotonin. It has been described in two isoforms of TPH: TPH1 expressed in enterochromaffin cells and TPH2 in serotonergic neurons from both the ENS and CNS (13).

The “OFF” mechanism in the gut is formed by enterocytes because these intestinal epithelial cells (IECs) internalize 5-HT from the extracellular compartment to the cytoplasm by means of the serotonin transporter (SERT) from the apical and the basolateral membranes. At the CNS level, the “OFF” mechanism is formed by the same serotonergic neurons that synthesize 5-HT because SERT is expressed at terminals and varicosities of serotonergic neurons (14). SERT is a transmembrane protein grouped in the solute carrier transporters of the SLC6 family that uptakes 5-HT from the extracellular space for subsequent catabolization, reuse, or storage, ending 5-HT effects. SERT is a classic secondary active transporter to which 5-HT binds together with a Na+ and a Cl−. Once extracellular serotonin is attached to SERT together with Na+ and Cl−, SERT undergoes a conformational change that allows SERT translocation with the release of 5-HT, Na+, and Cl− into the cytoplasm of the cell. Once 5-HT is transported inside the cell, intracellular K+ binds to SERT and is reoriented toward the extracellular direction, where K+ is released and the uptake of 5-HT continues. Then, SERT is not only a key component for the regulation of 5-HT levels, but also an important ion transporter (15).

5-HT signaling is mediated by specific serotonin receptors that trigger intracellular 5-HT effects (Table 1). Scientific community studies on serotonin receptors have recently described a detailed work that classifies the 18 receptors grouped into seven families (5-HT1 to 5-HT7), which are widely expressed not only in the CNS and the GI tract but also in other systems such as the cardiovascular or immune system (79). As a short summary, the serotonin receptor family consists of G-protein-coupled receptors, with the exception of the 5-HT7 receptor family (80). 5-HT1 includes five subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. They are fundamentally involved in CNS disorders such as anxiety. In the case of the GI tract, the 5-HT1 family is mainly expressed in neurons of the gut submucosa and the myenteric plexus, so their main function is the modulation of GI motility (18). The 5-HT2 family involves 5-HT2A, 5-HT2B, and 5-HT2C. 5-HT2A and 5-HT2B are expressed in myenteric neurons and neurons from the submucosal plexus in the GI tract, as well as in enterocytes and smooth muscle cells in the gut (36). Thus, the effect of these receptors is mainly in the GI tract through the regulation of GI motility (81).

3 MICROBIAL PATTERN RECOGNITION RECEPTORS: EFFECTS ON SEROTONERGIC SYSTEM

Defense mechanisms in the intestine are widely developed because external agents are in continuous contact with the intestinal epithelium. Innate immunity, throughout several detectors called pattern recognition receptors (PRRs), detects external factors, triggering either tolerant or defense responses to beneficial or pathogenic molecules, respectively. The most important and studied PRRs are microbial detectors: toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) (Table 2). TLRs are transmembrane glycoproteins, whereas NLRs are cytosolic receptors. Until now, 11 different TLRs have been identified in humans (TLR1–TLR11) and expressed in both the endosomal membrane (TLR3, 7, 8, and 9) and cell membrane (TLR1, 2, 4, 5,
TABLE 1 | 5-HT receptors.

Receptor	Subtypes	Location	Mechanism	Gastrointestinal Function	CNS Function
5-HT1	5-HT1A	CNS: Hippocampus, neocortex, raphe nuclei, cerebellum, and basal ganglia (16)	G-protein-coupled receptor for 5-HT that inhibits adenylate cyclase (20)	Modulation of the intestinal motility (21).	Addiction (25)
	5-HT1B	GI: Neurons of the gut submucosa and the myenteric plexus (17)		Modulation of gastric motility and sensitivity (22)	Behavior (26, 27)
	5-HT1E	Other locations: Lymph nodes, thymus and spleen, activated T cells, but not in resting T cells (18, 19)		Degranulation of enteric mast cells and release of mediators (23)	Appetite (28)
	5-HT1F				Memory (29)
	5-HT1P				Sleep (30)
5-HT2	5-HT2A	CNS: Cerebellum, lateral septum, hypothalamus, hippocampus, middle part of the amygdala, and cortex (31)	G-protein-coupled receptor for 5-HT that activates phospholipase C (20)	Modulation of the intestinal motility (34)	Behavior (37)
	5-HT2B	GI: Myenteric neurons and neurons from the submucosal plexus at the GI tract, in enterocytes and smooth muscle cell (32)		Enterocyte secretion (35)	Memory and cognition (38)
	5-HT2C	Other locations: Heart and kidney (33)	Ligand-gated ion channels (LGIC) that mediates neuronal depolarization and excitation (42)	Development of enteric neurons (36)	Limbic system or motor behavior (39)
	5-HT2D				
	5-HT2P	GI: Enteric neurons, smooth muscle cells, vagal and spinal primary afferent neurons, and in the spinal cord (41)			
5-HT3	5-HT3A	CNS: Hippocampus, dorsal motor nucleus of the solitary tract and area postrema, olfactory bulb, the trochlear nerve nucleus, the dorsal tegmental region, the facial nerve nucleus, the nucleus of the spinal tract of the trigeminal nerve, and the spinal cord dorsal horn (40)	Ligand-gated ion channels (LGIC) that mediates neuronal depolarization and excitation (42)	Intestinal motility (43)	Release control of other neurotransmitters: dopamine, GABA or acetylcholine among others (47).
	5-HT3B	Other locations: Heart and kidney (33)		Inflammation (44)	
	5-HT3C			Colonic secretion (45)	Regulation of emesis (48)
	5-HT3D	GI: Enteric neurons, smooth muscle cells, vagal and spinal primary afferent neurons, and in the spinal cord (41)		Intestinal pain and sensitivity (46)	Neurodevelopment (49)
					Anxiety (50)
5-HT4	5-HT4A	CNS: Cortical areas, hippocampus, olfactory tubercles (51)	G-protein-coupled receptor for 5-HT that promote cyclic AMP formation (63)	Motility (54)	Memory and cognition (57, 58)
	5-HT4B	GI: Enteric neurons and smooth muscle cells (52)		Absorption (65)	Behavior (59)
		Other locations: Heart muscle and pituitary gland (Protein Atlas)		Intestinal sensitivity (56)	Feeding (60)
5-HT5	5-HT5A	CNS: Cerebral cortex, hippocampus and cerebellum (61)	G-protein-coupled receptor for 5-HT that regulates adenylate cyclase (52)	Intestinal secretion (63)	Behavior (64)
	5-HT5B	Other locations: Heart muscle and pituitary gland (Protein Atlas)		Memory and cognition (64, 65)	Sensory perception and neuroendocrine function (66)
					Pain (67)
					Learning and cognition (70)
					Release control of other neurotransmitters (71)
5-HT6		CNS: Olfactory tubercle, cerebral cortex (frontal and entorhinal regions), hippocampus, and cerebellum among others (68)	G-protein-coupled receptor for 5-HT that regulates adenylate cyclase (59)	SERT activity modulation (75)	Motor control (72)
					Inflammation and repair (77)
5-HT7		CNS: Thalamus, hypothalamus, limbic, and cortical regions (73)	G-protein-coupled receptor for 5-HT that regulates adenylate cyclase (74)	SERT activity modulation (75)	Circadian rhythm (78)
		GI: Gut-associated neurons, but also in enterocyte-like and immune cells in lymphatic tissues (74)		Intestinal motility (76)	
		Other locations: Spleen, kidney, heart, coronary artery immune cells (75)		Inflammation (74)	

Localization, mechanism, and gastrointestinal (GI) and central nervous system (CNS) functions.
TABLE 2 | Pattern recognition receptors: TLRs and NLRs.

Receptor	Cellular location	Tissue location	Intracellular Mechanism	MAMPs	DAMPs
TLR2	Plasma membrane	CNS: Microglia, astrocytes and oligodendrocytes (93)	TLR2 forms heterodimers with TLR1 and TLR6 to detect most of its specific ligands. Then, it generally triggers a MyD88-dependent signaling pathway to promote the translocation of nuclear factor-B that regulate the synthesis of inflammatory factors (96)	Molecules with diacyl and triacylglycerol moieties, proteins, and polysaccharides (96)	HSP60 and HSP70 (97)
TLR8	Endosomal membrane	CNS: Astrocytes, oligodendrocytes, and microglia cells (93)	TLR8 activation triggers TRIF/TICAM1 intracellular signaling that ends in the NF-kappa-B activation with IRF3 nuclear translocation and the synthesis and release of inflammatory factors (102)	Double-stranded (ds) RNA (103)	Endogenous mRNA from inflammation (104)
TLR4	Plasma membrane	CNS: Microglia cells (108), astrocytes (108)	TLR4 can trigger a Myd88-dependent signaling pathway and a Myd89-independent intracellular signaling pathway driven by TRIF to promote the translocation of nuclear factor-B that regulate the synthesis of inflammatory factors (108)	Lipopolysaccharide (109)	HMGB1 (110)
TLR5	Plasma membrane	CNS: Microglia cells (93)	TLR5 activation triggers MYD88 and TRIF intracellular signaling that leads to the translocation of NF-kappa-B and inflammatory response (114, 119)	Ragellin (116)	HMGB1 (117)
TLR6	Endosomal membrane	CNS: Microglia cells (93)	TLR6 activation triggers MYD88 and TRIF intracellular signaling that leads to the translocation of NF-kappa-B and inflammatory response (114, 119)	Lipopolysaccharide (109)	HMGB1 (110)
TLR7	Endosomal membrane	CNS: Microglia cells (93)	TLR7 activation triggers MYD88 intracellular signaling pathway that leads to the activation of NF-kappa-B and IRF7 to promote the synthesis of inflammatory factors (120)	ssRNA (121)	Guanosine and short ORNs from RNA degradation (122)
TLR8	Endosomal membrane	CNS: Microglia cells (93)	TLR8 activation recruits MYD88 intracellular signaling pathway that activates NF-kappa-B and IRF7 to promote the synthesis of inflammatory factors (124)	ssRNA (121)	ssRNA (123)
TLR9	Endosomal membrane/Plasma membrane	CNS: Microglia, neurons, and astrocytes (125)	TLR9 activation induce MYD88 and TRAF intracellular pathway downstream that leads into the activation of NF-kappa-B (126)	Unmethylated cytidine-phosphate-guanosine (CpG) dinucleotides (127)	Host DNA degradation (129)
TLR10	Plasma membrane	CNS: Microglia (130)	TLR10 may trigger intracellular responses MyD88-dependent and MyD88-independent downstream signaling (132)	Unknown MAMPs	Unknown DAMPs
NOD1	Intracellular compartment	CNS: Microglia (134), neurons, and astrocytes at prefrontal cortex, hippocampus, and cerebellum (135)	NOD1 recruits RIPK2, which promotes interactions with TRAF, and activates the expression NF-κB and MAPK involved in inflammatory responses (137)	k-d-glutamyl-meso-diaminopimelic acid (136)	Endoplasmic reticulum stress molecules (138)

(Continued)
6, 9, and 10) (107). Regarding NLRs, 22 receptors have been discovered until now, which can be classified into five groups depending on their structure: NLRA, NLRB, NLRC, NLRP, and NLRX (141).

PRRs are widely expressed in immune cells (phagocytes, neutrophils, macrophages, or lymphocytes) and nonimmune ones, such as IECs in the GI tract, as well as microglia, neurons, or astrocytes in the CNS. PRRs trigger defense-related responses by the detection of specific microbial-associated molecular patterns from microorganisms (MAMPs) or damage-associated molecular patterns (DAMPs) from tissue injury, so we can consider the PRRs the caretakers of our body.

PRRs functioning in IECs are focused on the protection of the intestinal epithelium from potential harmful agents. Thus, and through PRR signaling, the intestine continuously develops the status of physiological inflammation to prevent possible damage and maintain intestinal homeostasis (142). In the brain, the main role of the PRRs is to detect dangerous molecules that can injure the tissue and trigger repair mechanisms. The brain is protected by the skull, the fluid cerebrospinal, the meninges, and the blood–brain barrier (BBB), which isolates the CNS from the general circulation. However, under pathological conditions, harmful microorganisms can breach the BBB and access the CNS, where the PRRs can trigger defense mechanisms to eliminate the pathogen and to repair the tissue (143).

PRRs are widely expressed along the GI tract, which differs dramatically between the small intestine and colon (122). From all of them, TLR2, TLR3, TLR4, TLR5, and TLR9 seem to be critical in microbial detection and damage repair in the intestine. In the brain, the most studied PRRs, in relation with brain injury and pathogen infection, are TLR2, TLR3, TLR4, and TLR9. However, the scientific community does not discard the relevant importance of other TLRs in this location because they are expressed in several cells from the CNS (125). PRRs influence the serotonergic system activity and expression (Table 3).

3.1 Toll-Like Receptor 2

TLR2 is expressed in the GI tract in mononuclear cells of the lamina propria, goblet cells, and enterocytes (96), as well as neurons from the ENS (97). TLR2 is able to detect a broad range of MAMPs from several microorganisms, including Gram-positive bacteria through the formation of heterodimers with TLR1 (TLR2/1) and TLR6 (TLR2/6) (157), some fungi such as *Candida albicans* (158), viruses such as the hepatitis C virus (159), and some parasites such as *Trypanosoma cruzi* (160). At the CNS level, TLR2 is expressed in microglia, astrocytes, and oligodendrocytes (93). TLR2 in the brain mainly recognizes DAMPs as heat shock family proteins HSP60 and HSP70 (95) or high-mobility group box 1 proteins from dying tumor cells (HMGB1) (98), among others. However, the effect of TLR2 is not limited to immune responses. Previous results carried out in our laboratory have showed that TLR2 activation may modify the intestinal serotonergic system. TLR2 activation could decrease

Table 3 | Pattern recognition receptors on serotonergic system.

Pattern Recognition Receptor	Effects on serotonergic system	Model	References
TLR2 activation	Decreased SERT	IEC model	(144)
TLR3 activation	Upregulated TPH1 expression and 5-HT production	GF mice	(145)
TLR4 activation	Inhibited SERT	IEC model	(146)
TLR7/8 activation	Inhibited 5-HT synthesis	Dendritic cells	(150)
TLR8 activation	Regulation of SERT activity	IEC model	(131)
NOD1 activation	Decreased SERT	IEC model	(151)
NOD2 activation	Reduced SERT activity	IEC model	(152)
TLR2 deficiency	Decrement of gut 5-HT level	TLR2 KO mice	(145)
TLR4 deficiency	Increased central 5-HT level	TLR4 KO mice	(153)
TLR2/4 deficiency	Altered gut 5-HT receptors expression	TLR2/4 DKO mice	(154, 155)
NODs deficiency	Altered gut 5-HT signaling	NOD DKO mice	(156)

Effects of activation of TLRs and NLRs on serotonergic system and effects of TLRs and NLRs deficiency on different in vivo and in vitro models.
Selective 5-HT2A receptor antagonists activate glucocorticoid oxidation by reducing antioxidant enzymatic activity (168). In fact, TLR3 induces protein and lipid oxidation in the intestine by inhibiting SERT activity and expression (146). In contrast, TLR3 activation decreases extracellular 5-HT levels (147). In contrast to other TLRs, increased levels of 5-HT will not regulate TLR3 expression (148). Serotonin-TLR2 relation is not limited to the GI tract, as previous data have highlighted that 5-HT2B receptor activation downregulates TLR2 expression and TLR3-induced proinflammatory factors in the brain (150). Selective 5-HT3A receptor antagonists activate glucocorticoid receptor nuclear translocation to upregulate TLR2 and TLR4 in response to microbial phagocytosis stimulation as a novel therapy in central pathologies such as Alzheimer’s disease (163).

3.2 Toll-Like Receptor 3

TLR3 is expressed in IECs, which mainly differentiates double-stranded RNA (dsRNA) from viruses. Surprisingly, TLR3 levels are age dependent because TLR3 expression increases after the suckling-to-weaning transition so as to give protection to the individuals against the virus as a rotavirus (164). In contrast, central TLR3 expression decreases during neurogenesis of the CNS in the embryo (165). TLR3 is also able to recognize endogenous mRNA as a DAMP from necrotic cells during intestinal inflammation (102). At the CNS level, TLR3 is expressed in a broad range of cells, including astrocytes, oligodendrocytes, and microglia cells (93), which is not surprising because viruses can easily reach the brain through other ways different from the BBB, such as neural pathways. Thus, TLR3 can detect dsRNA from the virus in the brain and trigger defense responses to protect the CNS against pathogens. Actually, TLR3 may protect the brain against some viruses such as the herpes simplex virus type 1 (HSV-1) (166). However, other microorganisms such as the Zika virus can activate TLR3 and induce an exacerbated inflammation and necrosis of the natural defenses of the brain, including the BBB (167). TLR3’s role in inflammatory responses may also be exacerbated by its potential pro-oxidant effect. In fact, TLR3 induces protein and lipid oxidation by reducing antioxidant enzymatic activity (168).

TLR3 activation is involved not only in inflammatory and oxidative damage–related responses but also in the modulation of the serotonergic system in the GI tract; TLR3 activation inhibits SERT activity and expression (146). In contrast, central TLR3 may have an opposite role because recent results have shown that TLR3 activation in a mice model with a brain infection increases SERT activity in astrocytes and therefore reduces extracellular 5-HT levels (147). In contrast to other TLRs, increased levels of 5-HT will not regulate TLR3 expression (146); meanwhile, other studies have reported that the activation of 5-HT2B receptors may reduce TLR3 expression (150).

3.3 Toll-Like Receptor 4

TLR4 is one of the most studied PRRs, and its expression can be found in the apical membrane of IECs in the small intestine and in the basolateral membrane in the colon (110). In the brain, TLR4 is an important PRR in the glia because several researchers have reported its expression (105); meanwhile, TLR4 is expressed less often in astrocytes (106) and may be absent in oligodendrocytes (93). TLR4 recognizes the lipopolysaccharide (LPS), which is the fundamental component of Gram-negative bacteria walls. In this process, the myeloid differentiation factor 2 (MD-2) protein is critical because several studies have found that MD-2 deletion yields to the lack of detection of LPS by TLR4 (169), suggesting that MD-2 retains TLR4 in the cellular surface to detect LPS due to changes in TLR4 glycosylation (170). Due to the broad microorganisms that TLR4 can identify through LPS detection, TLR4 has been defined as a gate keeper of microbial homeostasis in the intestine, where it is involved in several defense mechanisms, including the zoonotic Campylobacter (171), Helicobacter pylori (172), or Salmonella (173). TLR4 could also have a regulator role in the serotonergic system. TLR4 modulates contractile response in the intestine and is mediated by serotonin receptors (154). TLR4 activation inhibits SERT activity through post-transcriptional mechanisms, leading to an increase in extracellular 5-HT (148). In addition, melatonin, a molecule linked with 5-HT synthesis, may modify intestinal microbiota composition through TLR4 signaling (174). At the CNS level, TLR4 participates in the detection of pathogens that cause meningitis, such as Neisseria meningitidis (175), where some DAMPs linked to brain damage mediate TLR4 signaling (176). Interestingly, recent results have pointed out that microbiota and TLR4 signaling are key players in Parkinson’s disease, one of the most important degenerative brain pathologies (177). In this context, previous studies have shown that the lack of TLR4 in the CNS leads to an increase in the central 5-HT level, suggesting the critical regulatory role of TLR4, not only in the GI tract but also in the central serotonergic system (153).

3.4 Toll-Like Receptor 5

TLR5 seems to be one of the most important TLRs in the GI tract because its expression and activity have been reported in all intestinal segments (122). In this context, TLR5 is expressed in the basolateral side of IECs from the colon, while in the small intestine, its expression is restricted to Paneth cells. TLR5 recognizes flagellin, a component that enables the motility of several bacteria. Several studies have indicated that flagellin origin is determinant in the defense response against bacteria because flagellin from pathogenic Salmonella typhimurium triggers a more exacerbated immune response than does flagellin from the nonpathogenic bacteria E. coli (178). In this context, TLR5 is a critical gatekeeper because it may control the intestinal microbiota composition by maintaining a physiological low grade of inflammation in the GI tract (179). Previous studies have extensively described TLR5 expression in...
microglia, where its function may be involved in the inflammatory diseases in the brain comprising bacteria that cause meningitis (180). However, TLR5 is not only involved in bacterial infection but can also be related with depression. Previous works have described how TLR3, TLR4, TLR5, TLR7, TLR8, and TLR9 mRNA expressions in peripheral blood mononuclear cells seem to be increased in patients with depression. The improvement of these patients through the use of selective serotonin reuptake inhibitors (SSRIs) indicates the implication not only of TLR5 but also other PRRs in the modulation of the serotonergic system in brain disorders (181).

3.5 Toll-Like Receptor 7 and Toll-Like Receptor 8

TLR7 and TLR8 are closely related PRRs expressed in endosomal membranes that can detect single-stranded RNA (ssRNA) (120). Previous works have described the lack of TLR7 expression in IECs, being mainly expressed in plasmacytoid dendritic cells (pDCs), in B cells at the lamina propria (122), and in the myenteric and submucous plexuses of murine intestine and human ileum (104). Meanwhile, TLR8 can be found in macrophages and monocyte-derived DCs (120). In both cases, it seems that TLR7 and TLR8 could have more importance in other organs, such as the respiratory system, than in the GI tract by recognizing respiratory viruses and triggering inflammatory responses (182). At the CNS level, TLR7 and TLR8 are mainly expressed in microglia cells. TLR7 acts by regulating the inflammation (183) and modulation of TLR9 expression (184); meanwhile, TLR8 is related with the attenuation of the outgrowth of neurons and the induction of apoptosis (185). In the GI tract, 5-HT can act by regulating TLR7 in DC through the 5-HT2B receptor (150). Moreover, SSRIs seem to decrease the expression of both TLR7 and TLR8 in the CNS (181).

3.6 Toll-Like Receptor 9

TLR9 is included, together with TLR3, TLR7, and TLR8, in the group of TLRs that is classically expressed in membranes of intracellular organelles such as the endoplasmic reticulum, endosomes, and lysosomes. However, TLR9 can also be detected in endosomal locations (186). In the GI tract, TLR9 can be expressed in the apical and basolateral membrane of IECs to control homeostasis by means of various intracellular signaling (187). The intestinal map of TLRs describes TLR9 expression mainly in the lamina propria, and at low levels in GI epithelial cells (122). TLR9 recognizes unmethylated DNA found generally in microorganisms such as viruses and bacteria (127). However, TLR9 can also detect host DNA in aberrant locations, such as a DAMP of tissue damage (129), and it participates in the protection against GI damage and in GI repair (188). Moreover, TLR9 seems to act as an inhibitor of antimicrobial peptides in the intestine to avoid the colonization of pathogens (189). Because pathogen-free mice display a higher TLR9 expression in the intestine than germ-free mice do, it has been suggested that beneficial bacteria could modulate TLR9 expression in the GI tract (190). At the CNS level, TLR9 is expressed in microglia, neurons, and astrocytes (125), mediates immune responses related with brain infections, such as the herpes simplex virus (191), and attenuates brain injury (192). Little research has been carried out in the influence of TLR9 over the serotonergic system, and only a few works have indicated that SSRIs may modulate TLR9 mRNA expression in the peripheral blood mononuclear cells of depression patients (181) and will be implicated in the tryptophan catabolism (i.e., the main 5-HT resource) (193). In fact, preliminary data from our research group indicate that TLR9 could affect SERT activity and expression in an IECs model (194).

3.7 Toll-Like Receptor 10

TLR10 is the only PRR without known ligand specificity and biological function. Human TLR10 is encoded on chromosome 4 within the TLR2 gene cluster, together with TLR1, TLR2, and TLR6, suggesting a possible heterodimer TLR2/TLR10 (195). It has been described that TLR10 could act as an inhibitory receptor that essentially controls TLR2-driven signals (196). TLR10 is predominantly expressed in tissues rich in immune cells, such as the spleen, lymph node, thymus, tonsil, and lung (197). Genetic variations found in the TLR10 gene may cause a shift in the levels of pro- and anti-inflammatory responses and enhance the susceptibility to autoimmune diseases, cancers, and infections at the GI tract (198–200). Recently, TLR10 has been described in multiple mucosal sites, such as the small intestine, fallopian tubes, eyes, or stomach (198, 201, 202), suggesting a key role as a pathogen sensor in the mucosa. In the GI tract, TLR10 seems to be a chief component in the immune response to Listeria monocytogenes in IECs. In this context, previous studies have shown that L. monocytogenes affects SERT activity mediated by TLR10, which triggers the activation of a MyD88-dependent intracellular pathway (which may increase 5-HT uptake), and by a MyD88-independent downstream signaling (which may decrease 5-HT uptake), proving a deep involvement of TLRs in the serotonergic mechanism (131). At the CNS level, TLR10 could be critical for macrophage activity. In fact, microglial cells express TLR10, and this receptor inhibits M1 macrophage cytokines but promotes M2 cytokines, indicating that TLR10 may have a protective role in the brain (130).

3.8 NOD-Like Receptors

Like the TLRs, the NLRs are PRRs that detect both DAMPs and MAMPs triggering immune-related responses to protect the host. However, NLRs differentiate from TLRs with regard to the quality of being cytosolic receptors. NLRs can be classified into two big groups: the NLRC subfamily that encompasses the most popular, including NOD1, NOD2, and NLRC4, and the NLRP subfamily that includes up to 14 PRRs (203).

3.8.1 NOD1

NOD1 is an intracellular PRR widely expressed in the organism with special relevance in the IECs and in the immune cells from lamina propria in the GI tract, where this PRR detects κ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) from bacterial peptidoglycan, which can be found in most of the bacterial
wall (136). NOD1 has been involved in the protection of the GI tract against pathogens such as *S. typhimurium* (204), *Citrobacter rodentium* (205), or *H. pylori* (206), among others. Previous works have described the expression of NOD1 in the CNS but at a lower level compared with TLRs (207), where one of the main functions is the protection against bacterial infections (208). Interestingly, NOD1 and NOD2 defense effects are only related with immunity because an elegant study has demonstrated that the lack of both receptors in mice leads to signs of stress-induced anxiety, cognitive impairment, and depression, together with increased GI permeability and altered serotonin signaling in the gut, suggesting that NOD1 and NOD2 are novel therapeutic targets for gut–brain axis disorders (156). Supporting these results, NOD1 activation may decrease SERT activity in IECs due to the diminishment of SERT expression. In turn, 5-HT levels seem also to upregulate NOD1 expression. However, NOD1 could also regulate other PRR expression such as TLR2 and TLR4 (151).

3.8.2 NOD2

NOD2 is one of the most studied NLRs in the GI tract because polymorphisms in the gene that encodes NOD2 have been strongly associated with IBDs (209) and colorectal cancer (210). NOD2 is an intracellular PRR expressed in all IECs in the GI tract, which explains its implication in the protection of the intestine against the mentioned pathologies (211). NOD2 detects the bacterial peptidoglycan named muramyl dipeptide (MDP), which allows the identification of several pathogens, including *Yersinia* (212), *Campylobacter* (213), and *Listeria* (214). At the CNS level, NOD2 seems to play a similar role by detecting pathogens, triggering immune-related responses, and protecting the host (215). Like NOD1, NOD2 would be an important PRR in the gut–brain axis, especially because of its relation with the serotonergic system in both the CNS and the GI tract (156). In this sense, bacterial activation of NOD2 may decrease SERT activity and expression, thus leading to an increase in extracellular serotonin, and then serve as a negative feedback modulation of NOD2. In addition, NOD2 not only modulates the serotonergic system directly but also through its interdependence with TLR2 and TLR4 (152). In fact, the increase of extracellular 5-HT by NOD2 is not only for the downregulation of SERT but also for the increase of enterochromaffin cells that are responsible for 90% of the total 5-HT (216).

4 INTESTINAL MICROBIOTA: DIRECT EFFECTS ON SEROTONERGIC SYSTEM

In recent years, intestinal microbiota involvement has gained high importance in numerous pathologies, including gut–brain disorders such as IBDs (217), depression (218), or Alzheimer’s disease (219). In this context, several studies have indicated that 5-HT and serotonergic system modulation by intestinal microbiota are critical in the maintenance of the gut–brain axis (220–223). Microbiota can produce tryptophan and tryptamine, directly affecting central 5-HT production (223). GF mice display a reduction in anxiety-like behavior compared with specific pathogen-free mice, showing a decreased expression of serotonin receptor 1A in the hippocampus (224). In the GI tract, microbiota increase the production of intestinal 5-HT by increasing TPH1 expression (225), and, more interestingly, microbiota can also synthesize 5-HT on their own (226). In agreement with this study, the alteration of microbiota composition and diversity seems to reduce host serotonin levels, increase tryptamine levels, and disrupt the GI immune system (227). However, it seems that microbiota not only influence 5-HT synthesis and SERT expression but also modulate the expression of some 5-HT receptors (228).

Some pathogenic bacteria such as *E. coli* can downregulate the activity and expression of SERT in the intestine (229), and an increase of extracellular 5-HT may induce an adherent-invasive *E. coli* colonization (230). Moreover, it has been described that *E. coli* can produce tryptophan, which will affect 5-HT production (231). Similarly, some beneficial bacteria such as *Lactobacillus* seem to degrade tryptophan, affecting central and intestinal 5-HT production (232). Several studies have shown that germ-free animals have a lower number of enterochromaffin cells compared to those with a standard microbiota (233). Specific pathogen-free mice display lower 5-HT levels (234), concluding that microbiota can regulate host 5-HT production not only at the intestinal level but also in the CNS (235). Apart from that, intestinal microbiota can produce tryptamine, the precursor of 5-HT, independently of the host (226), which introduces new strategies as to how microbiota will not only modify the intrinsic serotonergic system but also externally modify the levels of 5-HT in the host.

Moreover, intestinal microbiota can modify serotonergic systems by means of their metabolites and affect behavior through the modulation of 5-HT signaling (236). In this context, some metabolites, including the short-chain fatty acids (SCFAs), are a key component in this modulation and directly affect the gut–brain axis (237). SCFAs are metabolites from dietary fiber fermentation. They are characterized by having less than six carbon atoms, so they can easily cross membranes, including the BBB. Although studies on the physiological concentrations of SCFAs in the brain are scarce, the three main SCFAs—acetate, propionate, and butyrate—have been detected in cerebrospinal fluid (Human Metabolome Database. Available online at: http://www.hmdb.ca/). In fact, SCFAs could have a critical role in the maintenance and integrity of the BBB (238). SCFAs seem to regulate the expression levels of TPH1 in the intestine (239). In our lab, we have described that SCFAs can regulate intestinal SERT activity and expression (240). Similarly, other bacterial metabolites such as L-lactate seem to control the expression of 5-HT receptors 1B, 1D, and 4 in the CNS (241). In fact, there is a growing interest in the involvement of microbiota metabolites in the modulation of multiple neurochemical pathways through the highly interconnected gut–brain axis, which could be open novel approaches for gut–brain axis disorders (242).
5 CONCLUSIONS AND FUTURE PERSPECTIVES

The serotonergic system is the chief mechanism in the intestine that controls the GI tract (243) and the CNS physiology (244), with serotonin being one of the most important neurotransmitters in these organs. In addition, 5-HT modulates not only the GI tract and CNS functions, but also their interconnection (i.e., the gut–brain axis). In this context, numerous researchers have claimed that either 5-HT or tryptophan (main 5-HT resource) could be a key factor in gut–brain axis regulation (245) and that its imbalance could trigger pathologies in any of these organs (246). Interestingly, intestinal microbiota participate directly in 5-HT production, and by means of PRRs activation, microbiota can also affect SERT and regulate 5-HT levels. Moreover, changes in the extracellular 5-HT level may affect PRRs expression in a feedback regulation in order to maintain homeostasis (Figure 2).

Interestingly, various pathologies within the gut–brain axis that are apparently unrelated seem to have three common aspects: changes in intestinal microbiota, alterations of the intestinal serotonergic system, and dysfunction of the PRRs (Table 4). In the GI tract, IBDs, including CD and UC, are characterized by changes in the microbiota (345), alterations in the serotonergic system (346, 347), and dysfunction of the innate immune system, including TLRs (109) and NLRs (348). In recent years, novel IBD therapy has focused on treatment to reestablish these three components. Classical control of the intestinal microbiota has focused on antibiotics treatment. However, long-term use of antibiotics in IBDs seems not to resolve the inflammation and is associated with more harm than benefits (349). Fecal microbial transplantation is one of the most promising novel treatments in IBDs (350), together with the use of probiotics (351). In the last century, the use of anti-TNF has also been the most important drug intervention in IBD patients (352). However, this therapy may be...

![Figure 2: Serotonin (5-HT) communication pathways of the microbiota–gut–brain axis.](image-url)

Serotonin (5-HT) can modulate gastrointestinal (GI) and central nervous system (CNS) functions and is a key network for the gut–brain axis. Microorganisms produce tryptophan, and degrade tryptophan, affecting the central and intestinal 5-HT production. Intestinal microbiota modulate the synthesis of 5-HT and produce 5-HT independently of the host. Microbial associated molecular patterns from microorganisms (MAMPs) through toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) affect directly the serotonergic system. TLR/NLR signaling seems to modulate the activity and the expression of serotonin transporter (SERT) and serotonin receptors (5-HTRs), as well as the 5-HT synthesis in the GI tract. However, this interconnection between TLRs/NLRs and serotonergic system exists in the CNS. In a feedback regulation, 5-HT affects pattern recognition receptor (PRR) expression. In addition, microbial metabolites, such as short chain fatty acids (SCFAs), can promote 5-HT synthesis by enterochromaffin (EC) cells and regulate SERT activity and expression. In the same way, these metabolites can migrate into the bloodstream to reach the brain, and some of them such as L-acetate can modulate the nervous serotonergic system, controlling the expression of 5-HT receptors.
Bacteria phyla	Bacteria family	Intestinal disorders	Central neurodegenerative pathologies	5-HT alterations	Therapeutic approach
Actinobacteria	Bifidobacteriaceae	Decreased in IBS (247, 248)	Increased in Parkinson’s disease (253–255)	Increases TPH1 and decreases SERT expression (260)	Microbial manipulation: prebiotic and probiotics in GI disorders (264–266)
		Decreased in IBD (249, 250)	Decreased in Alzheimer’s disease (251)	Increases 5-HT in CNS (261)	Probiotic supplementations in neurodegenerative disorders (267, 268)
		Decreased in UC and CD (251)	Decreased in autism spectrum disorder (256, 257)	Increases mucosal 5-HT, and expression of SERT; 5-HT\textsubscript{2} and 5-HT\textsubscript{4} (237)	Microbial manipulation: microbiota transplant in GI disorders (269–272)
			Increased in bipolar disorder (258)	Bifidobacterium are decreased in SERT-/- mouse (262)	Microbial manipulation: microbiota transplant in neurodegenerative disorders (273–276)
	Coriobacteriaceae	Increased in IBS (248)	Decreased in Parkinson’s disease (259)	Correlated with increased levels of serotonin (263)	Natural products in neurodegenerative disorders (277, 278)
		Decreased in IBD (249)	Increased in bipolar disorder (258)	Increases SERT expression (298)	Natural products in GI disorders (279, 280)
		Increased in UC and CD (252)		Intact in SERT-/- mouse (262)	Dietary fibers in GI disorders (281)
	Firmicutes	Clostridiaceae	Decreased in IBS (291)	Increased in Parkinson’s disease (284, 294)	Correlated with increased levels of serotonin (263)
			Increased in IBD (292, 293)	Increased in autism spectrum disorder (256, 257)	Natural products in neurodegenerative disorders (277, 278)
			Increased in CD (293)	Decreased in bipolar disorder (258)	Natural products in GI disorders (279, 280)
		Lachnospiraceae	Decreased in IBS (291)	Decreased in Parkinson’s disease (259, 299, 300)	Increases SERT expression (298)
			Decreased in IBD (293, 297)	Decreased in autism spectrum disorder (257, 301)	Intact in SERT-/- mouse (262)
			Decreased in UC and CD (298)	Not modified in CD (252)	Dietary fibers in GI disorders (281)
		Ruminococcaceae			Oxidized phospholipids (285, 286)
			Increased in UC (252)	Intact in SERT-/- mouse (262)	Dietary fibers in GI disorders (281)
			Reduced in IBD (293, 297)	Increased in Parkinson’s disease (259)	Oxidized phospholipids (285, 286)
					SCFAs in GI inflammatory disorders (287–289)
			Increased in IBS (248, 302)	Increased in Alzheimer’s disease (300)	CD36 in Alzheimer’s disease (290)
			Increased in UC (252) and in CD (293)		
			Reduced in CD (252, 298)	Decreased in autism spectrum disorder (301)	Natural products in neurodegenerative disorders (277, 278)
				Decreased in bipolar disorder (258)	Natural products in GI disorders (279, 280)
		Veillonellaceae	Increased in IBS (304, 305)	Decreased in autism spectrum disorder (256)	Correlated with increased levels of serotonin (307)
			Increased in IBD (305, 306)		
					Nanotechnology and nanotheranostic approach in neurodegenerative disorders (282–284)
		Lactobacillaceae	Increased in UC and CD (252)	Decreased in autism spectrum disorder (300)	Correlated with increased levels of serotonin (307)
			Increased in IBS (248)	Correlated with increased levels of serotonin (307)	
			Increased in IBD (297)	Decreased in Alzheimer’s disease (300)	
			Decreased in IBD (Lactobacillus) (250)	Decreased in Alzheimer’s disease (251)	
					Decreases TPH1, 5-THR\textsubscript{3} and 5-HT\textsubscript{4} expression; and increases SERT expression (260)
					Natural products in neurodegenerative disorders (277, 278)
					Microbial manipulation: microbiota transplant in GI disorders (269–272)
					Microbial manipulation: microbiota transplant in neurodegenerative disorders (273–276)

(Continued)
Bacteria phyla	Bacteria family	Intestinal disorders	Central neurodegenerative pathologies	5-HT alterations	Therapeutic approach
Enterococccae	Decreased in IBS (291)	Increased in Parkinson’s disease (299, 314)	Increased in SERT^{−/−} mouse (262)		
	Increased in IBD (250, 311)	Increased in Alzheimer’s disease (251)			
	Increased in CD (312) and UC (313)	Increased in autism spectrum disorder (257)			
Staphylococccae	Increased in IBD (315)		Induces 5-HT release (316)		
Listeriacae	Increased in IBD (318)	Increased in Parkinson’s disease (255, 259)		5-HT producers (317)	
Bacteroidetes	Increased in IBS (319)			SERT inhibition (132)	
Tannerelliacae	Reduced in IBD (297)	Decreased in autism spectrum disorder (257, 321)	Increased in state of anxiety (322)		
Rikenelliacae	Decreased in UC (252)			Increases 5-HT in hippocampus (324)	
Prevotelliacae	Decreased in IBS (248)	Decreased in Parkinson’s disease (254, 257)		Correlated with levels of serotonin (303)	
Proteobacteria	Increased in UC and CD (252)				
Enterobactericaceae	Increased in IBS (302)	Increased in Parkinson’s disease (259)			
	Increased in IBD (292, 306)	Increased in Alzheimer’s disease (320)	Decreases 5-HT and SERT protein (329)		
	Increased in UC and CD (252)	Increased in autism spectrum disorder (300)	Increase 5-HT bioavailability (330)		
Campylobactericaceae	Increased in IBD (334)	Increased in autism spectrum disorder (257)		Increases EC cells (331)	
Helicobactericaceae	Risk factor of IBS (335)	Increased in Alzheimer’s disease (251)		Serotonin-producing bacterial strains (Escherichia coli K-12) (332), (Morganella morganii, Klebsiella pneumonia, Hafnia alvei) (333)	
Fusobacteria	Increased in IBS (339)			5-HT modulates Campylobacter jejuni physiology (336)	
	Increased in IBD (250, 306)			Increases 5-HT levels (338)	
	Increased in CD (340) and UC (341)				
Table 4 | Continued

Bacteria phyla	Bacteria family	Intestinal disorders	Central neurodegenerative pathologies	5-HT alterations	Therapeutic approach
Verrucomicrobia Akkermansiaceae	Reduced in IBD (297, 311)	Increased in Parkinson’s disease (254, 255, 327)	Increases SERT expression (296)		
	Reduced in UC (342)	Increased in autism spectrum disorder (256)	Increases 5-HT in colon and hippocampus (9)		Akkermansia are decreased in SERT−/− mouse (262)

The table summarizes the alterations of bacteria belonging to different bacterial families that are included in the six major phyla of the human gut microbiota (343, 344) in relation to inflammatory intestinal disorders (IBD, IBS, UC, and CD) and neurodegenerative pathologies (Alzheimer, Parkinson, etc.). Likewise, the table indicates the observed effects of the different bacteria on components of the serotonergic system or the bioavailability of serotonin. The last column lists some examples of therapeutic approaches related to the intestinal microbiota for the treatment of intestinal and neurodegenerative pathologies. IBD, inflammatory bowel disease; IBS, inflammatory bowel syndrome; UC, ulcerative colitis; CD, Crohn’s disease; CNS, central nervous system; GI, gastrointestinal; EC, enterochromaffin; TPH, tryptophan hydroxylase; SERT, serotonin transporter.

insufficient, and novel studies have indicated that more treatments addressing innate immunity should be carried out. In this context, several studies have indicated that TLR (353) and NLR (354) modulation may help in the treatment of these chronic pathologies. Finally, serotonergic system modulation has been one of the main targets for IBD therapeutics in recent years. In this context, the inhibition of mucosal serotonin (355) or the use of inhibitors for SERT (356) may help in IBDs and thus be considered as a novel therapy for IBDs.

Irritable bowel syndrome (IBS) has been described as a gut–brain disorder, where the serotonergic system may be altered in both the intestine and the CNS (357). Interestingly, intestinal microbiota (358), as well as SCFAs and 5-HT, are altered in IBS patients (359). In addition, TLRs and NLRs play a chief role in the pathogenesis of IBS. In fact, several studies have indicated that some PRRs serve as predictive markers for the disease (360) because their expression is increased in the mucosa from IBS patients (361). Thus, it is not surprising that gut–brain axis modulation in IBS seems to be the most effective therapy in this pathology. Previous studies have shown that SERT regulation (362, 363) and the synthesis of 5-HT (364) may be important in the treatment of IBS. Moreover, serotonin therapy efficiency in IBS is improved through the modulation of microbiota (365, 366), and previous studies have suggested the immunomodulation of PRRs in this GI disease (367).

Surprisingly, disorders in the CNS may share the same alterations as the GI pathologies. In this context, serotonergic system alteration may be involved not only in depression and anxiety (368) but also in Parkinson’s disease (369), multiple sclerosis (370), amyotrophic lateral sclerosis (370), and autism spectrum disorder (371), among others. In fact, conventional treatment for CNS disorders, especially depression, has focused on the modulation of the serotonergic system by means of SSRIs (372). Important findings have been published in the last years regarding the changes of intestinal microbiota in the CNS pathologies. Recent data have shown that intestinal microbiota may be a critical susceptibility factor in the development of neurological disorders such as Alzheimer’s disease, autism spectrum disorder, multiple sclerosis, Parkinson’s disease (373), and depression in particular, where the modulation of the intestinal serotonin by the microbiota seems to be an important trigger (138, 374). In fact, certain bacteria families modulate tryptophan levels in blood plasma that can cross the BBB and thus influence the central serotonergic system (375). Within this context, novel therapies of brain pathologies, such as Alzheimer’s disease, are focused on the modulation of intestinal microbiota to prevent and ameliorate the development of the pathology (376). These new studies have shown that the balance of the gut–brain axis is critical in preventing the development of GI and brain disorders mediated by 5-HT (377). Innate immune receptors, including TLRs and NLRs, could also be a key component in the correct function of the microbiota–gut–brain axis. Previous works have shown that TLR modulation by means of intestinal microbiota may be a critical factor in the development of brain disorders such as Parkinson’s disease (177, 378); in addition, NLRs may be involved in CNS inflammation and neurodegenerative diseases (379). New therapeutics have shown that the use of antidepressants may improve the negative regulation of PRRs in some CNS disorders such as depression (380), especially for TLR4 (381).

Based on the numerous studies focusing on the gut–brain axis, it is clear that the balance of this bidirectional communication may be important in the prevention of GI and CNS disorders, where the intermodulation of the microbiome, serotonergic system, and innate immunity is critical in maintaining homeostasis. However, more studies are needed to understand the implication of these elements, as well as their modulation as novel therapeutic targets, for the GI and CNS pathologies.

AUTHOR’S NOTE

In memoriam: This paper is dedicated to the memory of Professor Ana Isabel Alcalde, a brilliant and enthusiastic
scientist, professor, and colleague, as well as our director and mentor, who dedicated her last 20 years to the study of the serotonergic system.

AUTHOR CONTRIBUTIONS

Conceptualization: EL and BB. Investigation: EL and BB. Writing—Original Draft Preparation: EL. Writing—Review and Editing: JM and EvL. Supervision: EvL. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Obermajer T, Grabnar I, Benedik E, Tusar T, Robic Pikel T, Fidler Mis N, et al. Microbes in Infant Gut Development: Placing Abundance Within Environmental, Clinical and Growth Parameters. *Sci Rep* (2017) 7(1):11230. doi: 10.1038/s41598-017-10244-x

2. Asma M, Anwar F, Zadaj F, Rafter J, Petterson S. Gut Microbial Communities Modulating Brain Development and Function. *Gut Microbes* (2012) 3(4):366–73. doi: 10.4161/gmic.21287

3. Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bouny S, Dejaardin F, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. *Immunity* (2019) 50(5):1276–88.e5. doi: 10.1016/j.immuni.2019.02.014

4. Carabotti M, Scirocco A, Maselli MA, Severi C. The Gut-Brain Axis: Interactions Between Enteric Microbiota, Central and Enteric Nervous Systems. *Annu Gastroenterol* (2015) 28(2):203–9.

5. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut Microbiota in the Pathogenesis of Inflammatory Bowel Disease. *Clin J Gastroenterol* (2018) 11(1):1–10. doi: 10.1007/s13237-017-0813-5

6. Kwon YH, Wang H, Denou E, Ghia JE, Rossi L, Fontes ME, et al. Modulation of Serotonin Signaling/Metabolism by Akkermansia Coriunseps. *Modul Dec* (2020) 4(2):109. doi: 10.1016/B978-008055232-3.60196-2

7. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal Gut Microbiota Modulates Brain Development and Behavior. *Proc Natl Acad Sci USA* (2011) 108(7):3047–52. doi: 10.1073/pnas.1010529108

8. Yaghoubfar R, Behrouzi A, Ashrafi A. 5-HT1A Receptor: Signaling to Behavior. *J Neuroinflammation*(2017) 14:1–4. doi: 10.1186/s12974-018-1015

9. Zhuang Z, Yang R, Wang W, Qi L, Huang T. Associations Between Gut Microbiota and 5-Hydroxytryptamine. *Cell Mol Gastroenterol Hepatol* (2019) 7(4):709–28. doi: 10.1016/j.cjme.2019.01.004

10. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal Gut Microbiota Modulates Brain Development and Behavior. *Proc Natl Acad Sci USA* (2011) 108(7):3047–52. doi: 10.1073/pnas.1010529108

11. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal Gut Microbiota Modulates Brain Development and Behavior. *Proc Natl Acad Sci USA* (2011) 108(7):3047–52. doi: 10.1073/pnas.1010529108

12. Lv J, Liu F. The Role of Serotonin Beyond the Central Nervous System During Embryogenesis. *Front Cell Neurosci* (2017) 11:74. doi: 10.3389/fncel.2017.00074

13. Walther DJ, Bader M. A Unique Central Tryptophan Hydroxylase Isoform. *Biochem Pharmacol* (2003) 66(9):1673–80. doi: 10.1016/s0002-9265(02)05556-2

14. Rudnick G. “SERT, Serotonin Transporter”, in xPharm: The Comprehensive Pharmacology Reference, eds. Enna SJ, Bylund DB, Ed. Elsevier; Amsterdam, the Netherlands: (2007) pp. 1–5. doi: 10.1007/B978-008055232-3.60442-8

15. Murphy DL, Lerner A, Rudnick G, Lech KP. Serotonin Transporter: Gene, Genetic Disorders, and Pharmacogenetics. *Mol Interv* (2004) 4(2):109–23. doi: 10.1124/mi.4.2.8

FUNDING

This work was funded by grants from the Foundation for the Study of Inflammatory Bowel Diseases in Aragón (ARAINF 2012/0567) and the Aragón Regional Government (A20_20 R).

ACKNOWLEDGMENTS

Figures 1 and 2 were created with BioRender.com. We also acknowledge Papercheck Proofreading and Editing Services.
Fiorica-Howells E, Hen R, Gingrich J, Li Z, Gershon MD. 5-HT(2A) Receptors: Location and Functional Analysis in Intestines of Wild-Type and 5-HT(2A) Knockout Mice. *Am J Physiol Gastrointest Liver Physiol* (2002) 282(5):G877–93. doi: 10.1152/ajpgi.00435.2001

Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, et al. Serotonin 5-HT2B Receptors Are Required for 3,4-Methylenedioxymethamphetamine-Induced Hyperlocomotion and 5-HT Release In Vivo and In Vitro. *J Neurosci* (2008) 28(11):2933–40. doi: 10.1523/JNEUROSCI.5723-07.2008

Imada-Shirakata Y, Kotera T, Ueda S, Okuma M. Serotonin Activates Electrolyte Transport via 5-HT2A Receptor in Rat Colonic Crypt Cells. *Biochim Biophys Acta* (1997) 230(2):437–41. doi: 10.1016/ bbr.1996.05.5912

Meneses A. 5-HT System and Cognition. *Neurosci Biobehav Rev* (1999) 23(8):1111–25. doi: 10.1016/s0149-7634(99)00067-5

Borman RA, Tilford NS, Harmer DW, Day N, Ellis ES, Sheldrick RL, et al. 5-HT(2B) Receptors Play a Key Role in Mediating the Excitatory Effects of 5-HT in Human Colon *In Vivo*. *Br J Pharmacol* (2002) 135(5):1144–51. doi: 10.1038/bjp.0704571

Fiorica-Howells E, Maroteaux L, Gershon MD. Serotonin and the 5-HT(2B) Receptor Family mRNAs: Comparison Between 5-HT2A and 5-HT2C Receptors. *Brain Res Mol Brain Res* (2008) 169(283):94–223–2

Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, et al. Human-Derived Gut Microbiota Modulates Colonic Secretion in Mice by Regulating 5-HT3 Receptor Expression via Acetate Production. *Am J Physiol Gastrointest Liver Physiol* (2017) 313(1):G80–7. doi: 10.1152/ajpgi.00448.2016

Engel M, Smidt MP, van Hooft JA. The Serotonin 5-HT3 Receptor: A Novel Neurodevelopmental Target. *Front Cell Neurosci* (2013) 7:66. doi: 10.3389/fncel.2013.00076

Gershon MD. Serotonin and Its Implication for the Management of Irritable Bowel Syndrome. *Rev Gastroenterol Disord* (2003) 3(Suppl2):S25–34.

O’Leary OF, Codogno MG, Cryan JF. “Chapter 38 - Revisiting the Behavioral Genetics of Serotonin: Relevance to Anxiety and Depression” in Handbook of Behavioral Neuroscience, volume 31, eds. Müller CP, Cunningham KA. Ed. Elsevier: Amsterdam, The Netherlands: (2020) pp. 665–709. doi: 10.1016/B978-0-444-44125-0.00038-4

Manuel-Apolidar L, Rocha L, Pascoe D, Castillo E, Castillo C, Meneses A. Modifications of 5-HT4 Receptor Expression in Rat Brain During Memory Consolidation. *Brain Res* (2005) 1042(1–2):73–81. doi: 10.1016/j.brainres.2005.02.020

Hoyer D. “5-HT-4 Receptor”, in iPharm: The Comprehensive Pharmacology Reference, eds. Enna SJ, Bylund DB. Ed. Elsevier: Amsterdarn, The Netherlands: (2008) pp. 1–16. doi: 10.1086/978-080552322-3.63759-9

Hoffman JM, Tyler K, MacEachern SJ, Calebda OB, Johnson AC, Brooks EM, et al. Activation of Colonic Mucosal 5-HT(4) Receptors Accelerates Propulsive Motility and Inhibits Visceral Hypersensitivity. *Gastroenterology* (2012) 142(4):844–54.e4. doi: 10.1053/j.gastro.2011.12.041

Marchetti E, Dumais A, Boettcher J, Soumire-Mourot R, Roman FS. Differential Modulation of the 5-HT(4) Receptor Agonists and Antagonist on Rat Learning and Memory. *Neuropharmacology* (2000) 39(11):2017–27. doi: 10.1016/s0028-3908(00)00283-1

King MV, Mardsen CA, Fone KC. A Role for the 5-HT(1A), 5-HT4 and 5-HT6 Receptors in Learning and Memory. *Trends Pharmacol Sci* (2008) 29(9):482–92. doi: 10.1016/j.tips.2008.07.001

Liu M, Geddis MS, Wen Y, Sellik W, Gershon MD. Expression and Function of 5-HT4 Receptors in the Mouse Enteric Nervous System. *Am J Physiol Gastrointest Liver Physiol* (2005) 289(6):G1148–63. doi: 10.1152/ajpgi.00245.2005

Park CJ, Armenia SJ, Zhang L, Cowles RA. The 5-HT4 Receptor Agonist Prucalopride Stimulates Mucosal Growth and Enhances Carbohydrate Absorption in the Ileum of the Mouse. *J Gastrointest Surg* (2019) 23(6):1198–205. doi: 10.1007/s11605-018-3907-5

Amigo J, Diaz A, Pilar-Cuellar, Fidal R, Martinez A, Compan V, et al. The Absence of 5-HT4 Receptors Modulates Depression- and Anxiety-Like Responses and Influences the Response of Fluoxetine in Off Label Bicombined Mice: Adaptive Changes in Hippocampal Neuroplasticity Markers and 5-HT1A Autoreceptor. *Neuropharmacology* (2016) 111:47–58. doi: 10.1016/j.neuropharm.2016.08.037

Coffin B, Farmachidi JP, Rueegg P, Bastie A, Bouhassira D, Tegaserod, a 5-HT4 Receptor Partial Agonist, Decreases Sensitivity to Rectal Distension in Healthy Subjects. *Aliment Pharmacol Ther* (2003) 17(4):577–85. doi: 10.1046/j.1365-2036.2003.01449.x

Compan V, Charnay Y, Dustinier N, Dazsuta A, Hen R, Boettcher J. Feeding Disorders in 5-HT4 Receptor Knockout Mice. *J Soc Biol* (2004) 198(1):37–49. doi: 10.1510/jbio.200419801037

Paszquelli M, Ori M, Nardi I, Castagna M, Cassano GB, Marazziti D. Distribution of the 5-HT5A Serotonin Receptor mRNA in the Human Brain. *Mol Brain Res* (1998) 56(1):1–8. doi: 10.1016/S0169-328X(98)00003-5

Fransen BC, Juzlik M, van Hauwe JW, Leyens JF, The Human 5-HT5A Receptor Couples to Gq/Go Proteins and Inhibits Adenylate Cyclase in HEK 293 Cells. *Eur J Pharmacol* (1998) 361(3–4):299–309. doi: 10.1016/S0014-283X(98)00744-4

Tuo BG, Sellers Z, Paulus P, Barrett KE, Isenberg JL. 5-HT Induces Duodenal Mucosal Bicarbonate Secretion via cAMP and Ca2+-Dependent Signaling Pathways and 5-HT4 Receptors in Mice. *Am J Physiol Gastrointest Liver Physiol* (2004) 286(3):G444–51. doi: 10.1152/ajpgi.00105.2003

Oliver KR, Kinsey AM, Wainwright A, Siriathong NJ. Localization of 5-HT5A Receptor-Like Immunoreactivity in the Rat Brain. *Brain Res* (2000) 867(1):131–42. doi: 10.1016/S0006-8993(00)02273-3

Gonzalez R, Chavez-Pascacio K, Meneses A. Role of 5-HT5A Receptors in the Consolidation of Memory. *Behav Brain Res* (2013) 252:246–51. doi: 10.1016/j.bbr.2013.05.051

Kinsey AM, Wainwright A, Heavens R, Siriathong NJ, Oliver K. Distribution of 5 HT5A, 5HT-B, 5HT-D and 5HT7 Receptor mRNAs in the Rat Brain. *Brain Res Mol Brain Res* (2001) 88(1):194–9. doi: 10.1016/S0169-328X(01)00034-7

Avila-Rojas SH, Velazquez-Lagunas I, Salinas-Abarca AB, Barragan-Iglesias P, Pineda-Farias JB, Granados-Soto V. Role of Spinal 5-HT3A, and 5-HT1A/1B,1D Receptors in Neuropathic Pain Induced by Spinal Nerve Ligation in Rats. *Brain Res* (2015) 1622:377–85. doi: 10.1016/j.brainres.2015.06.043

Kohen R, Metcalf MA, Khan N, Druck T, Huebner K, Lachowicz JE, et al. Cloning, Characterization, and Chromosomal Localization of a Human 5-HT6 Serotonin Receptor. *J Neurochem* (1996) 66(1):47–56. doi: 10.1046/j.1471-4159.1996.00047.x
Layunta et al. Serotonin in the Microbiota—Gut-Brain Axis

69. Yun HM, Kim S, Kim HJ, Kostenis E, Kim JJ, Seong JY, et al. The Novel Cellular Mechanism of Human 5-HT6 Receptor Through an Interaction With Gy6*. J Biol Chem (2007) 282(8):5496–505. doi: 10.1074/jbc.M606631200

70. Glennon RA, Siriprapu U, Roth BL, Kolanos R, Bondarey ML, Sikazwe D, et al. The Medicinal Chemistry of 5-HT6 Receptor Ligands With a Focus on Arylsulfonyltryptamine Analogs. Curr Top Med Chem (2010) 10(5):579–95. doi: 10.2174/156720101031110111542

71. Lacroix LP, Dawson LA, Hagan JJ and Heidbreder CA. 5-HT6 Receptor Antagonist SB-271046 Enhances Extracellular Levels of Monoamines in the Rat Medial Prefrontal Cortex. Synapse (2004) 51(2):158–64. doi: 10.1002/syn.20288

72. Gerard C, Martres MP, Lefevre K, Miquel MC, Verge D, Lanfumey L, et al. Immuno-Localization of serotonin 5-HT6 Receptor-Like Material in the Rat Central Nervous System. Brain Res (1997) 746(1-2):207–19. doi: 10.1016/s0006-8993(96)01224-3

73. Glennon RA. Higher-End Serotonin Receptors: 5-HT(5), 5-HT(6), and 5-HT(7). J Med Chem (2003) 46(14):2795–812. doi: 10.1021/jm020036n

74. Quintero-Villegas A, Valdés-Ferrer SL. Role of 5-HT7 Receptors in the Immune System in Health and Disease. Mol Med (2019) 26(1):2. doi: 10.1016/s1090-5875(19)30016-9

75. Iceta R, Mesonero JE, Aramayona JY, Alcalde AI. Expression of 5-HT1A and 5-HT7 Receptors in Caco-2 Cells and Their Role in the Regulation of Transporter Activity. J Physiol Pharmacol (2009) 60(1):157–84.

76. Mahe C, Loetscher E, Dev KK, Bobirinac I, Otten U, Schoeffter P. Serotonin 5-HT7 Receptors Coupled to Induction of Interleukin-6 in Human Microglial MC-3 Cells. Neuropharmacology (2005) 49(1):40–7. doi: 10.1016/0028-3908(04)00419-4

77. Kim JJ, Khan WI. 5-HT7 Receptor Signaling: Improved Therapeutic Strategy. J Neuroinflamm (2015) 12:277. doi: 10.1186/s12974-016-0486-x

78. Cario E, Microbiota and Innate Immunity in Intestinal Inflammation and Neoplasia. Curr Opin Gastroenterol (2013) 29(1):85–91. doi: 10.1097/MOG.0b013e32835a670e

79. Ved R, Sharouf F, Harari B, Muzzaffar S, Manivannan S, Ormonde C, et al. Disulfide HMGB1 Acts via TLR2/4 Receptors to Reduce the Numbers of Oligodendrocyte Progenitor Cells After Traumatic Injury. In Vitro Sci Rep (2021) 11(1):6181. doi: 10.3898/vitrim.2012.0218932–0

80. Ved R, Sharouf F, Harari B, Muzzaffar S, Manivannan S, Ormonde C, et al. Disulfide HMGB1 Acts via TLR2/4 Receptors to Reduce the Numbers of Oligodendrocyte Progenitor Cells After Traumatic Injury. J Neuroinflamm (2015) 12:277. doi: 10.1186/s12974-016-0486-x

81. Gershon MD. 5-HT (Serotonin) Physiology and Related Drugs. Curr Opin Gastroenterol (2013) 29(1):85–91. doi: 10.1097/MOG.0b013e32835a670e

82. Reynolds MT, Jiang Z, George P, Crozat K, Croker B, Rutschmann S, et al. Genetic Analysis of Host Resistance: Toll-Like Receptor Signaling and Immunity at Large. Annu Rev Immunol (2016) 24:353–89. doi: 10.1146/annurev-immunol-021616-030155

83. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T. TICAM-1, an Adaptor Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat Immunol (2003) 4(2):161–7. doi: 10.1038/immunol.2002.160

84. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T. TICAM-1, an Adaptor Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat Immunol (2003) 4(2):161–7. doi: 10.1038/immunol.2002.160

85. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T. TICAM-1, an Adaptor Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat Immunol (2003) 4(2):161–7. doi: 10.1038/immunol.2002.160

86. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T. TICAM-1, an Adaptor Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat Immunol (2003) 4(2):161–7. doi: 10.1038/immunol.2002.160

87. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T. TICAM-1, an Adaptor Molecule That Participates in Toll-Like Receptor 3-Mediated Interferon-Beta Induction. Nat Immunol (2003) 4(2):161–7. doi: 10.1038/immunol.2002.160

88. Motavalli A, Minaiyan M, Rabbani M, Andalib S, Mahzoumi P. Involvement of SHT3 Receptors in Anti-Inflammatory Effects of Tropisetron on Experimental TNBS-Induced Colitis in Rat. Bioimpacts (2013) 3(4):169–76. doi: 10.5681/bi.2013.021

89. Hoyer D, Hannon JP, Martin GR. Molecular, Pharmacological and Functional Diversity of 5-HT7 Receptor Antagonists. Pharmacol Biochem Behav (2002) 71(4):533–4. doi: 10.1016/s0091-3057(01)00746-8

90. Plassat JL, Boscuret U, Amlaiky N, Hen R. The Mouse 5HT5 Receptor Reveals a Remarkable Heterogeneity Within the SHT1D Receptor Family. EMBO J (1992) 11(13):4779–86. doi: 10.1002/j.1460-2075.1992.tb05583.x

91. Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H. Selective 5-HT6 Receptor Ligands: Progress in the Development of a Novel Pharmacological Approach to the Treatment of Obesity and Related Metabolic Disorders. Pharmacol Ther (2008) 117(2):207–31. doi: 10.1016/j.pharmthera.2007.08.006

92. Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, et al. Genetic Knockout and Pharmacological Blockade Studies of the 5-HT7 Receptor Suggest Therapeutic Potential in Depression. Neuropharmacology (2005) 48(4):492–502. doi: 10.1016/j.neuropharm.2004.11.015

93. Bulski M, Ravid R, Gveric D, van Noort JM. Broad Expression of Toll-Like Receptors in the Human Central Nervous System. J Neuropathol Exp Neurol (2002) 61(11):1013–21. doi: 10.1093/jnen/61.11.1013

94. Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Inflammation and Immunity. Front Immunol (2012) 3:79. doi: 10.3389/fimmu.2012.00079

95. Swaroop S, Sengupta N, Suryawanshi AR, Adakha YK, Basu A. HSPI Plays a Regulatory Role in IL-1-beta-Induced Microglial Inflammation via TRP4 PAMX Axis. J Neuroinflamm (2013) 16:277. doi: 10.1186/s12974-016-0486-x
MAPK, and Jak1/Stat Pathways. *Glia* (2011) 59(2):242–55. doi: 10.1002/glia.21094

107. Ito S, Kikuchi T, Kawai T. Toll-Like Receptor Signaling Pathways. *Front Immunol* (2014) 5:461. doi: 10.3389/fimmu.2014.00461

108. Park BS, Lee JO. Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. *Exp Mol Med* (2013) 45(12):e66. doi: 10.3838/emm.2013.97

109. Aucott H, Sowinska A, Harris HE, Lundback P. Ligation of Free HMGBl to TLR2 in the Absence of Ligand Is Negatively Regulated by the C-Terminal Tail Domain. *Mol Med* (2018) 24(1):19. doi: 10.1186/s10020-018-0202-x

110. Ortega-Cava CF, Ishihara S, Rumi MA, Kawashima K, Ishimura N, Kazumori S, et al. TLR5 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. *Front Immunol* (2019) 10:482. doi: 10.3389/fimmu.2019.00482

111. Al-o, Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, et al. Identiﬁcation of Small Heat Shock Protein B8 (HSP22) as a Novel TLR4 Ligand and Potential Involvement in the Pathogenesis of Rheumatoid Arthritis. *J Immunol* (2006) 176(11):7021–7. doi: 10.4049/jimmunol.176.11.7021

112. Choi YJ, Im E, Chung HK, Pothoulakis C, Rhee SH. TRIF Mediates Toll-Like Receptor 5-Induced Signaling in Intestinal Epithelial Cells. *J Biol Chem* (2010) 285(48):37570–8. doi: 10.1074/jbc.M110.158394

113. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting Edge: Bacterial Flagellin Activates Basolaterally Expressed TLR5 to Induce Epithelial Proinflammatory Gene Expression. *J Immunol* (2001) 167(4):1882–5. doi: 10.4049/jimmunol.167.4.1882

114. Yoon SJ, Kurnason O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al. Structural Basis of TLR5-Flagellin Recognition and Signaling. *Science* (2012) 335(6070):859–64. doi: 10.1126/science.1215584

115. Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, et al. HMGB1 Participates in the TLR4 Receptor Complex and Promotes MyD88-Dependent Signaling in Environmental Lung Injury. *Participates in the TLR4 Receptor Complex and Promotes MyD88-Dependent Signaling in Environmental Lung Injury. Particell Med* (2018) 24(1):19. doi: 10.1186/s10020-018-0021-x

116. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al. Structural Analysis Reveals That Toll-Like Receptor 7 Is a Dual Receptor for Diverse Stimuli: A Possible Role for Sensing Pathogen-Induced Endoplasmic Reticulum Stress. *Infect Immun* (2020) 88(7):e00898–19. doi: 10.1128/IAI.00898-19

117. Girardin SE, Boneca IG, vida JA, Chamaillard M, Labigne A, Thomas G, et al. Intestinal TLR2 Recognition Links ER Stress With Inflammatory Properties and Potential Use as a Target in Therapeutics. *Immune Netw* (2020) 20(3):e21. doi: 10.4110/inm.2020.20.e21

118. Munir MH, Klein HM, Plancher SR, Rosenbaum JT, NLRs in Immune Privileged Sites. *Curr Opin Pharmacol* (2011) 11(4):423–8. doi: 10.1016/j.coph.2011.07.002

119. Arens Tsen, Tyan Q, Gkotsis S, Femenia T, Wang T, Udekwu K, et al. The Bacterial Peptidoglycan-Sensing Molecule Pglyrp2 Modulates Brain Development and Behavior. *Mol Psychiatry* (2017) 22(2):257–66. doi: 10.1038/mp.2016.182

120. Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, et al. Toll-Like Receptor 9 Controls Anti-DNA Autoantibody Production in Murine Lupus. *J Exp Med* (2005) 202(2):321–31. doi: 10.1084/jem.20050338

121. Takeshita S, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, et al. Cutting Edge: Role of Toll-Like Receptor 9 in CpG DNA-Induced Activation of Human Cells. *J Immunol* (2001) 167(7):3555–8. doi: 10.4049/jimmunol.167.7.3555

122. Henrick BM, Yao XD, Zahoor MA, Abimiku A, Osawe S, Rosenthal KL. TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. *Front Immunol* (2019) 10:482. doi: 10.3389/fimmu.2019.00482

123. Xu Y, Kanegae S, Miyashita S, Hidaka C, Sato N, Monji T, et al. Recognition of Lipopolysaccharide Pattern by TLR4 Activates Monocytes in Pre-Eclamptic Patients. *J Reprod Immunol* (2006) 70(1):49–56. doi: 10.1016/j.jri.2005.0338

124. Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollon F, et al. Structural Basis of TLR5-Flagellin Recognition and Signaling. *Immunity* (2016) 45(4):737–80. doi: 10.1016/j.immuni.2016.09.011

125. Ortega-Cava CF, Ishihara S, Rumi MA, Kawashima K, Ishimura N, Kazumori S, et al. TLR5 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. *Front Immunol* (2019) 10:482. doi: 10.3389/fimmu.2019.00482

126. Mendoza C, Matheus N, Latorre E, Castro M, Mesonero JE, Alcalde AI, et al. Listeria Monocyctogenes Inhibits Serotonin Transporter in Human Intestinal Caco-2 Cells. *Microb Ecol* (2016) 72(3):780–9. doi: 10.1007/s00248-016-0809-6

127. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-Like Receptor Recognizes Bacterial DNA. *Nature* (2000) 408(6813):745–. doi: 10.1038/35047121
and Triggers Neural Injury. Acta Neuropathol Commun (2020) 8(1):159. doi: 10.1186/s40478-020-01031-3

181. Hung YY, Huang KW, Kang HY, Huang GY, Huang TL. Antidepressants Normalize Elevated Toll-Like Receptor Profile in Major Depressive Disorder. *Psychopharmacol (Berl)* (2016) 233(9):1707–14. doi: 10.1007/s00213-015-4087-7

182. Khanmohammadi S, Rezaei N. Role of Toll-Like Receptors in the Pathogenesis of COVID-19. *J Med Virol* (2021) 93(5):2735–9. doi: 10.1002/jmv.26826

183. Olson JK, Miller SD. Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses Through Multiple TLRs. *J Immunol* (2004) 173(6):3916–24. doi: 10.4049/jimmunol.173.6.3916

184. Butchi NR, Du M, Petersen KE. Interactions Between TLR7 and TLR9 Agonists and Receptors Regulate Innate Immune Responses by Astrocytes and Microglia. *Glia* (2010) 58(6):650–64. doi: 10.1002/glia.20952

185. Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lu J, et al. Toll-Like Receptor 8 Functions as a Negative Regulator of Neurite Outgrowth and Inducer of Neuronal Apoptosis. *J Cell Biol* (2006) 175(2):209–15. doi: 10.1083/jcb.200606016

186. Guerrier T, Pochard P, Lahiri A, Youinou P, Pers JO, Jamin C. TLR9 Expressed on Plasma Membrane Acts as a Negative Regulator of Human B Cell Response. *J Autoimmun* (2010) 34:51–3. doi: 10.1016/j.jaut.2010.04.005

187. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, et al. Maintenance of Colonic Homeostasis by Distinctive Apical TLR9 Signalling in Intestinal Epithelial Cells. *Nat Cell Biol* (2006) 8(12):1327–36. doi: 10.1038/ncb1500

188. Rose WA2nd, Sakamoto K, Leifer CA. TLR9 Is Important for Protection Against Intestinal Damage and for Intestinal Repair. *Sci Rep* (2012) 2:574. doi: 10.1038/srep00574

189. Yang H, Yu HB, Bhinder G, Ryz NR, Lee J, Yang H, et al. TLR9 Limits Enteric Antimicrobial Responses and Promotes Microbiota-Based Colonisation Resistance During Citrobacter Rodentium Infection. *Cell Microbiol* (2019) 21(7):e13026. doi: 10.1111/cmi.13026

190. Burgueno JF, Abreu MT. Epithelial Toll-Like Receptors and Their Role in Gut Homeostasis and Disease. *Nat Rev Gastroenterol Hepatol* (2020) 17(5):263–78. doi: 10.1038/s41575-019-0261-4

191. Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. TLR2 and TLR9 Synergistically Control Herpes Simplex Virus Infection in the Brain. *J Immunol* (2008) 181(12):8604–12. doi: 10.4049/jimmunol.181.12.8604

192. Matsuda T, Murao N, Katoano Y, Juliani B, Kohyama J, Akira S, et al. TLR9 Signalling in Microglia Attenuates Seizure-Induced Aberrant Neurogenesis in the Adult Hippocampus. *Nat Commun* (2015) 6:6514. doi: 10.1038/ncomms7514

193. Vallati F, Paccetti P. Toll-Like Receptor 9-Mediated Induction of the Immunosuppressive Pathway of Trypotosphalam. *Eur J Immunol* (2006) 36(1):1–8. doi: 10.1002/eji.200535667

194. Layunta et al. Serotonin in the Microbiota–Gut–Brain Axis

195. Chuang T, Ulevitch RJ. Identification of Htr1b: A Novel Human Toll-Like Receptor Preferentially Expressed in Immune Cells. *Biochim Biophys Acta* (2001) 1518(1-2):157–61. doi: 10.1016/s0005-2760(00)00289-x

196. Hart KM, Murphy AJ, Barrett KT, Wira CR, Guyre PM, Pioli PA. Functional Expression of Pattern Recognition Receptors in Tissues of the Human Female Reproductive Tract. *J Reprod Immunol* (2009) 80(1-2):33–40. doi: 10.1016/j.jri.2008.12.004

197. Ravishankar Ram M, Goh KL, Leow AH, Poh BH, Loke MF, Harrison R, et al. Polymorphisms at Locus 4p14 of Toll-Like Receptors TLR-1 and TLR-10

Confer Susceptibility to Gastric Carcinoma in Helicobacter Pylori Infection. *PloS One* (2015) 10(11):e0141865. doi: 10.1371/journal.pone.0141865

200. Tongtawee T, Bartpho T, Kaewpitoon N, Dechsukhum C, Leenansaksiri W, et al. Genetic Polymorphisms in TLR1, TLR2, TLR4, and TLR10 of Helicobacter Pylori-Associated Gastritic: A Prospective Cross-Sectional Study in Thailand. *Eur J Cancer Prev* (2018) 27(2):118–23. doi: 10.1097/CEJ.0000000000000347

201. Nagashima H, Iwatsui S, Cruz M, Jimenez Abreu JA, Uchida T, Machaih v, et al. Toll-Like Receptor 10 in Helicobacter Pylori Infection. *J Infect Dis* (2015) 212(10):1666–76. doi: 10.1093/infdis/jiv270

202. Mohammed I, Abedin A, Sintkas A, Abedin SA, Orti AM, Hopkinson A, et al. Increased Expression of Hepadxin and Toll-Like Receptors 8 and 10 in Viral Keratitis. *Cornea* (2011) 30(8):899–904. doi: 10.1097/ICO.0b013e31820126e5

203. Clas AK, Zhou Y, Philpott DJ. NOD-Like Receptors: Guardians of Intestinal Mucosal Barriers. *Physiol (Bethesda)* (2015) 30(3):241–50. doi: 10.1152/physiol.00025.2014
219. Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. *J Neurogastroenterol Motil* (2019) 25(1):48–60. doi: 10.5056/jnm18087

220. Israelyan N, Margolis KG. Reprint of: Serotonin as a Link Between the Gut-Brain-Microbiome Axis in Autism Spectrum Disorders. *Pharmacol Res* (2019) 140:115–20. doi: 10.1016/j.phrs.2018.12.023

221. Martin CR, Osadchy I, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. *Cell Mol Gastroenterol Hepatol* (2018) 6(2):133–48. doi: 10.1016/j.jcmgh.2018.04.003

222. Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota. *Front Microbiol* (2017) 8(1):765–85. doi: 10.3389/fmicb.2017.00504

223. Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L, Grover M, et al. Gut Microbiota-Produced Tryptamine Activates an epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. *Cell Host Microbe* (2018) 23(6):775–85. doi: 10.1016/j.chom.2018.05.004

224. Clarke G, Grencham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The Microbiome-Gut-Brain Axis During Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. *Mol Psychiatry* (2013) 18(6):666–73. doi: 10.1038/mp.2012.77

225. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous Microbiota Modulates the Host Microbial Metabolite 5-Hydroxyindoleacetic Acid. *Proc Natl Acad Sci USA* (2009) 106(10):3698–703. doi: 10.1073/pnas.0812874106

226. Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan and 5-HT3 Signaling Cascade. *Cell Host Microbe* (2018) 16(4):495–503. doi: 10.1016/j.chom.2018.09.001

227. Esmaili A, Nazir SF, Borthakur A, Yu D, Turner JR, Saksena S, et al. A Microbial Metabolite Decarboxylases That Can Produce the Neurotransmitter Tryptamine. *FEBS Lett* (2018) 592(1):288–93. doi: 10.1002/1338-7841(2018)592:1

228. Chang EB, Rao MC. A New Role for Microbiota? Dull the Threat of Serotonin and 5-HT3 Signaling Cascade. *Am J Physiol Gastrointest Liver Physiol* (2017) 313(1):G14–5. doi: 10.1152/ajpgi.00166.2017

229. Del Colle A, Israelyan N, Vassilis GM, Pero D, Di Capua M, Ruggiero M, et al. Discovery and Characterization of Gut Microbiota Decarboxylases That Can Produce the Neurotransmitter Tryptamine. *Cell Host Microbe* (2014) 16(4):495–503. doi: 10.1016/j.chom.2014.09.001

230. Banskota S, Regmi SC, Gautam J, Gurung P, Lee YJ, Ku SK, et al. Serotonin Transporter Function and Expression. *Frontiers in Endocrinology* (2021) 11(1):221. doi: 10.3389/fendo.2020.00205

231. Saraf MK, Piccolo BD, Bowlin AK, Mercer KE, LeRoith T, Chintapalli SV, et al. Antibiotics-Induced Changes of Intestinal Flora in Elderly Patients With Alzheimer Disease and Parkinson’s Disease Patients Versus Control Subjects, and Effects of FFTY720 and FFTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models. *J Parkinsons Dis* (2020) 10(1):185–92. doi: 10.3233/JPD-191693

232. Agius A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. *Cell Host Microbe* (2018) 23(6):714–26. doi: 10.1016/j.chom.2018.05.003

233. Roager HM, Licht TR. Microbial Tryptophan Catabolites in Health and Disease. *Nat Commun* (2018) 9(1):3294. doi: 10.1038/s41467-018-05040-4

234. Reigstad CS, Salmonson CE, Rainey JF3rd, Szurszewski JH, Linden DR, Boldt DM, et al. Human-Derived Biobiofilm Synergizes With Endogenous Serotonin to Trigger C. Elegans Thermotaxis. *J Pers Med* (2021) 11(1):35. doi: 10.3390/jpm11010035

235. Reigstad CS, Salmonson CE, Rainey JF3rd, Szurszewski JH, Linden DR, Boldt DM, et al. Human-Derived BiobiofilmSynergizes With Endogenous Serotonin to Trigger C. Elegans Thermotaxis. *J Pers Med* (2021) 11(1):35. doi: 10.3390/jpm11010035

236. Chen YC, Seyedsayamdost MR, Ringstad N. A Microbial Metabolite Synergizes With Endogenous Serotonin to Trigger C. Elegans Reproductive Behavior. *Proc Natl Acad Sci USA* (2020) 117(48):30589–98. doi: 10.1073/pnas.2012791187

237. Engevik MA, Luck B, Visuthrakul C, Ihekwazu FD, Engevik AC, Shi Z, et al. Human-Derived Bifidobacterium Dentium Modules the Mammalian Serotonergic System and Gut-Brain Axis. *Cell Mol Gastroenterol Hepatol* (2021) 11(1):221–48. doi: 10.1016/j.jcmgh.2020.08.002

238. Braniste V, Al-Assmaik M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. *Sci Transl Med* (2014) 6(263):263ra158. doi: 10.1126/scitranslmed.3009759

239. Reigstad CS, Salmonson CE, Rainey JF3rd, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut Microbes Promote Colonic Serotonin Production Through an Effect of Short-Chain Fatty Acids on Enterochromaffin Cells. *FASEB J* (2013) 29(4):1303–43. doi: 10.1096/fj.12-225998
Layunta et al. Serotonin in the Microbiota—Gut-Brain Axis

Liver Cancer and Its Correlation With Abnormal Gastrointestinal Motility. J Oncol (2021) p:7513739. doi: 10.1155/2021/7513739

Agusti A, Moya-Perez A, Castigllo I, Montserrat de la Paz S, Cerrudo V, Perez-Vilalba A, et al. Bifidobacterium Pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated With an Exaggerated Stress Response and Anhedonia in Obese Mice. Mol Neurobiol (2018) 55 (6):5337–52. doi: 10.1007/s12032-017-0768-z

Fattorussu A, Di Genova L, Dell’Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients (2019) 11(3):521. doi: 10.3390/nu11030521

Lasheras I, Serall P, Lorre E, Barroso E, Gracia-Garcia P, Santabarbara J. Microbiota and Gut-Brain Axis Dysfunction in Autism Spectrum Disorder: Evidence for Functional Gastrointestinal Disorders. Asian J Psychiatr (2020) 47:101874. doi: 10.1016/j.ajp.2019.101874

Rainold A, Morki S, Kashiower K, Halwachs B, Dallkner N, Bengeesser S, et al. A Step Ahead: Exploring the Gut Microbiota in Inpatients With Bipolar Disorder During a Depressive Episode. Bipolar Disord (2019) 21(1):40–9. doi: 10.1111/bip.12682

Singhal M, Turturici BA, Manzella CR, Ranjan R, Metwally AA, Theorell J, et al. Serotonin Transporter De
cient in Irritable Bowel Syndrome in a Randomised, Double-Blind, Placebo-Controlled Study. Adv Ther (2020) 37(5):859. doi: 10.1007/s12261-019-00945-8

Donato I, Alibrandi S, Scimone C, Castagnetti A, Rao G, Sidoti A, et al. Gut-Brain Axis Cross-Talk and Limbic Disorders as Biological Basis of Secondary TMAU. J Pers Med (2021) 11(2):87. doi: 10.3390/jpm11020087

Liu S, Li E, Sun Z, Fu D, Duan G, Jiang M, et al. Altered Gut Microbiota and Short Chain Fatty Acids in Children With Autism Spectrum Disorder. Sci Rep (2021) 11(9):287. doi: 10.1038/s41598-021-08909-6

Alam MT, Amos GCA, Murphy AJR, Murch S, Wellington EMH, Arasaradnam RP. Microbial Imbalance in Inflammatory Bowel Disease Patients at Different Taxonomic Levels. Gut Pathog (2020) 12:1. doi: 10.1186/s13099-019-00341-6

Lee SM, Kim N, Yoon H, Kim YS, Choi SI, Park JH, et al. Compositional and Functional Changes in the Gut Microbiota in Irritable Bowel Syndrome Patients. Gut Liver (2021) 15(1):253–61. doi: 10.1111/gtlv.13937

Satapathy MK, Yen TL, Jan JS, Wang JY, Avuthu N, Singh AB, et al. Serotonin Transporter Expression in Intestinal Epithelial Cells. J Diabetes Metab Disord (2020) 21(1):5–5. doi: 10.1007/s40200-020-00539-8

Liu A, Zheng W, He Y, Tang W, Wei X, He R, et al. Gut Microbiota in Patients With Parkinson’s Disease in Southern China. Parkinsonism Relat Disord (2018) 53:82–8. doi: 10.1016/j.parkreldis.2018.05.007

Garcez ML, Jacobs KR, Guillen GJ. Microbiota Alterations in Alzheimer’s Disease: Involvement of the Kynurenine Pathway and Inflammation. Neurotox Res (2019) 36(2):424–36. doi: 10.1007/s12640-019-00057-3

Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, et al. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules (2021) 26 (17):5327. doi: 10.3390/molecules26175327

Les F, Valero MS, Mollner C, Weinkek D, Lopez G, Gomez-Rincon C. Janson glutinosa (L.) DC, a Traditional Herbal Tea, Exerts Antioxidant and Neuroprotective Properties in Different In Vitro and In Vivo Systems. Biol (Basel) (2021) 10(5):443. doi: 10.3390/biology10050443

Lo Presti A, Zorzì F, Del Chierico F, Altomare A, Cocco S, Avola A, et al. Fecal and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease. Front Microbiol (2019) 10:1655. doi: 10.3389/fmicb.2019.01655

Rodino-Janeiro BK, Vicario M, Alonso-Cotoner C, Pascua-Garcia R, Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorder. Front Mol Biosci (2019) 6(1):40. doi: 10.3389/fmolb.2019.00040

Cao F, Liu J, Sha BX, Pan HF. Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy. Curr Pharm Des (2021) 27(46):9893–913. doi: 10.2174/138161282566619121615424

Valero MS, Gonzalez M, Ramon-Gines M, Andrade PB, Moreo E, Les F, et al. Fasonia glutinosa (L.) DC, a Traditional Herbal Medicine, Reduces Inflammation, Oxidative Stress and Protects the Intestinal Barrier in a Murine Model of Colitis. Inflammopharmacology (2020) 28(6):1717–34. doi: 10.1007/s10787-019-00626-0

Kim YM, Snijders AM, Brislawn CJ, Stratton KG, Zink EM, Fansler SJ, et al. Light-Stress Influences the Composition of the Murine Gut Microbiome, Memory Function, and Plasma Metabolome. Front Mol Biosci (2019) 6:108. doi: 10.3389/fmolb.2019.00108

So D, Gibson PR, Muir JG, Yao CK. Dietary Fibres and IBS: Translating Functional Characteristics to Clinical Value in the Era of Personalized Medicine. Gut (2021) gutjnl-2021-324891. doi: 10.1136/gutjnl-2021-324891
of Escherichia Coli K-12. Prikl Biobhim Mikrobiol (2009) 45(5):550–4. doi: 10.1134/S0003683809050068

330. Choong F, Prendergast SJ. Biogenic Amines by Morganella Morganii. Klebsiella Pneumoniae and Hafnia Alvei Using a Rapid HPLC Method. Food Anal Test Method (2004) 219(5):465–9. doi: 10.1007/s00217-004-0988-0

331. Castano-Rodriguez N, Kaakoush NO, Lee WS, Mitchell HM. Dual Role of Helicobacter and Campylobacter Species in IBD: A Systematic Review and Meta-Analysis. Gut (2017) 66(2):235–49. doi: 10.1136/gutjnl-2015-310545

332. Lyte JM, Shrestha S, Wagle BR, Lyngance R, Martinez DA, Donoghue AM, et al. Serotonin Modulates Campylobacter jejuni Physiology and In vitro Interaction With the Gut Epithelium. Poult Sci (2021) 100(3):100944. doi: 10.1016/j.psj.2020.12.041

333. Berumen A, Lennon R, Breen-Lyles M, Griffith J, Patel P, Boxrud D, et al. Characteristics and Risk Factors of Post-Infusion Irritable Bowel Syndrome After Campylobacter Enteritis. Clin Gastroenterol Hepatol (2021) 19 (9):1853–63.e1. doi: 10.1016/j.cgh.2020.07.033

334. Yu Y, Zhu S, Li P, Min L, Zhang S. Helicobacter Pylori Infection and the Gut Microbiota in Patients With Irritable Bowel Syndrome. A Systematic Review and Meta-Analysis. Front Microbiol (2019) 10:2259. doi: 10.3389/fmicb.2019.02259

335. Porter RJ, Kalla R, Ho GT. Ulcerative Colitis: Recent Advances in the Pathogenesis. Liver Physiol (2019) 66(2):235–51. doi: 10.1007/s00217-019-01280-1

336. Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, et al. Administration of Akkermansia Muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Microbiol (2019) 10:2259. doi: 10.3389/fmicb.2019.02259

337. Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol (2018) 9:900. doi: 10.3389/fphys.2018.00900

338. Rinnemilla E, Raos P, Cintoni M, Franceschi F, Migjano GAD, Gasbarrini A, et al. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem Across Age, Environment, Diet, and Diseases. Microorganisms (2017) 5(1):13. doi: 10.3390/microorganisms5010013

339. Glassner KL, Abraham BP, Quisig EM. The Microbiome and Inflammatory Bowel Disease. J Allergy Clin Immunol (2020) 145(1):16–27. doi: 10.1016/j.jaci.2019.11.003

340. Khan WI. The Role of 5-HT Dysregulation in Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) (2013) 9(4):259–61.

341. Jorandli JW, Thorsvik S, Skovdahl HK, Kornfeld B, Saeterstad S, Gustafsson M. Inflammatory Bowel Disease: The Ef

342. Porter RJ, Kalla R, Ho GT. Ulcerative Colitis: Recent Advances in the Pathogenesis. Liver Physiol (2019) 66(2):235–51. doi: 10.1007/s00217-019-01280-1

343. Zmudzka E, Salaciak K, Sapa J, Pytka K. Serotonin Receptors in Depression and Anxiety: Insights From Animal Studies. Handb Clin Neurosci (2020) 31:487–79. doi: 10.1007/978-0-444-64125-0.00050-5

344. Malinova TS, Dijkstra CD, de Vries HE. Serotonin: A Mediator of the Gut-Brain Axis in Multiple Sclerosis. Mult Scler (2018) 24(9):1144–50. doi: 10.1177/1352458517739975

345. Abdulamir HA, Abdul-Rasheed OF, Abdulghani EA. Serotonin and Serotonin Transporter in the Pathogenesis of Irritable Bowel Syndrome. World J Gastroenterol (2016) 22(36):8137–48. doi: 10.3748/wjg.v22.i36.8137

346. Bundeff AW, Woods CB. Selective Serotonin Reuptake Inhibitors for the Treatment of Irritable Bowel Syndrome. Curr Med Chem (2014) 21(4):510–1. doi: 10.2174/0929867137886137

347. Herndon CC, Wang YP, Lu CL. Targeting the Gut Microbiota for the Treatment of IBD. Br J Pharmacol (2013) 170(13):3813–19. doi: 10.1111/bph.12327

348. Jorandli JW, Thorsvik S, Skovdahl HK, Kornfeld B, Saeterstad S, Gustafsson M. Inflammatory Bowel Disease: The Ef

349. Heinemann M, Paul J, Bleich I, Timm L, Grunert J, Heltweg J, et al. Serotonin Transporter in the Pathogenesis of Irritable Bowel Syndrome. Interaction With the Gut Epithelium. Poult Sci (2021) 100(3):100944. doi: 10.1016/j.psj.2020.12.041

350. Bell HC, Wouters M, Boeckxstaens G. Targeting Serotonin Receptors for the Treatment of Irritable Bowel Syndrome. Br J Pharmacol (2013) 170(13):3813–19. doi: 10.1111/bph.12327

351. Kohl Z, Winkler J. "Chapter 50 - Serotonin in Parkinson’s Disease" in Handbook of Behavioral Neuroscience, volume 31, eds. Müller CP, Ed. Elsevier: Amsterdam, The Netherlands. (2020). pp. 969–79. doi: 10.1016/B978-0-444-64125-0.00050-5

352. Malina T, Beutheu Yomba S, Bertiaux-Vandaele N, Antonietti M, Lecleire S, Zalar A, et al. Role of Toll Like Receptors in Irritable Bowel Syndrome: Differential Mucosal Immune Activation According to the Disease Subtype. PloS One (2012) 7(8):e42777. doi: 10.1371/journal.pone.0042777

353. Zmudzka E, Salaciak K, Sapa J, Pytka K. Serotonin Receptors in Depression and Anxiety: Insights From Animal Studies. Life Sci (2018) 210:106–24. doi: 10.1016/j.lfs.2018.08.050

354. Kohl Z, Winkler J. "Chapter 50 - Serotonin in Parkinson’s Disease" in Handbook of Behavioral Neuroscience, volume 31, eds. Müller CP, Ed. Elsevier: Amsterdam, The Netherlands. (2020). pp. 969–79. doi: 10.1016/B978-0-444-64125-0.00050-5

355. Malina T, Beutheu Yomba S, Bertiaux-Vandaele N, Antonietti M, Lecleire S, Zalar A, et al. Role of Toll Like Receptors in Irritable Bowel Syndrome: Differential Mucosal Immune Activation According to the Disease Subtype. PloS One (2012) 7(8):e42777. doi: 10.1371/journal.pone.0042777

356. Zmudzka E, Salaciak K, Sapa J, Pytka K. Serotonin Receptors in Depression and Anxiety: Insights From Animal Studies. Life Sci (2018) 210:106–24. doi: 10.1016/j.lfs.2018.08.050

357. Abdulamir HA, Abdul-Rasheed OF, Abdulghani EA. Serotonin and Serotonin Transporter Levels in Autistic Children. Saud Med J (2018) 39 (3):487–94. doi: 10.15377/smj.2018.5.21751

358. Morrissette DA, Stahl SM. Modulating the Serotonin System in the Treatment of Major Depressive Disorder. CNS Spectr (2014) 19 Suppl 7:qui5-7, qui5-8. doi: 10.1017/S1092852914000613

359. Cryan JF, ORiordan KJ, Sandhu K, Peterson V, Dinan TG. The Gut Microbiome in Neurological Disorders. Lancet Neurol (2020) 19(2):179–94. doi: 10.1016/S1474-4422(19)30356-4
374. Huang F, Wu X. Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. *Front Cell Dev Biol* (2021) 9:649103. doi: 10.3389/fcell.2021.649103

375. Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. *Front Neurosci* (2021) 15:616883. doi: 10.3389/fnins.2021.616883

376. Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M, et al. Microbiota Modulation as Preventative and Therapeutic Approach in Alzheimer’s Disease. *FEBS J* (2021) 288(9):2836–55. doi: 10.1111/febs.15571

377. Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. *Gastroenterology* (2021) 160(5):1486–501. doi: 10.1053/j.gastro.2020.10.066

378. Caputi V, Giron MC. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease. *Int J Mol Sci* (2018) 19(6):1689. doi: 10.3390/ijms19061689

379. Singh S, Jha S. NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. *Mol Neurobiol* (2018) 55(10):8154–78. doi: 10.1007/s12035-018-0957-4

380. Hung YY. Antidepressants Improve Negative Regulation of Toll-Like Receptor Signaling in Monocytes From Patients With Major Depression. *Neuroimmunomodulation* (2018) 25(1):42–8. doi: 10.1159/000489562

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Layunta, Buey, Mesonero and Latorre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.