Improving Prediction Performance For Sepsis Using Random Forest Approach

K.Parameshwari¹, V.sasireka²

¹PG Student, Department of Computer Science and Engineering, Arunai Engineering College, Tamilnadu, India.
²Professor, Department of computer Science and Engineering, Arunai Engineering College, Tamilnadu, India.

Abstract: Sepsis which is also known as Septicemia, is a life threatening condition that results from both infection and the body’s response to infection, ultimately causing injury to ones tissues and organs, and finally leads to death. Undetected sepsis can progress to severe sepsis and septic shock. The main drawback is that there is much delay in predicting the diseases and identifying the various stages. Usually this is done through culture test. It may at least take two to three days to get the result. By the time the organs starts to dysfunction. Adults are mostly affected by sepsis, but children are affected by the diseases very rapidly. Children, particularly newborns and young infants, can be more susceptible in developing Sepsis. It is not an easy task to identify the disease. Then many machines used to monitor body function such as heart rate, blood pressure etc, and ventilator to help the child breathe. It must be treated very fast. As every hour when Sepsis is not treated it increases the rate of death. Therefore we have narrowed down our project in paediatrics department (1-12 years). In existing system, the medical teams diagnose the disease from the patient’s medical history, symptoms, a physical exam and test. It’s not possible to prevent Sepsis. But preventing infection can reduce the chance of Sepsis. In order to avoid the delay we use Machine Learning concept. It is a method used to solve complex models and algorithms that lend themselves to prediction. Early detection of sepsis can improve patient outcomes and reduce health care costs. The algorithm may allow clinicians enough time to intervene before the patients suffer the most damaging effects of Sepsis. Thus by using this method the performance of prediction has been increased to 60% and the mortality rate can be reduced.

Keywords: - Septicemia, Dysfunction, Severe Sepsis, Septic Shock, Life –Threaten.

I.INTRODUCTION

Sepsis as indicated by national establishment of wellbeing characterize as an ailment where a body has a serious reaction to microbial diseases. In excess of 90,000 individuals bite the dust each year in India because of SEPSIS. What's more, 34 percent of sepsis patients in India pass on in the emergency unit.

Sepsis itself is an actual existence threading organ brokenness brought about by a deregulated resistant reaction to disease. Critically, there isn’t one a single microbe or infection that causes sepsis, rather any sort of pathogenic contamination. This can make its treatment staggeringly troublesome, especially in territories where human services foundation isn't satisfactory enough to manage the different complexities. This has brought about sepsis harvesting a far higher loss of life in low to centre salary nations. There are three phases in sepsis-1.1_sepsis, 1.2_severe sepsis, and 1.3_septic shock 1.1_sepsis-influenced because of certain side effects like fever (more than 102’c) and heartbeat (more than 72 for every min) and breathing rate (more than 20 for every min).1.2_severe sepsis-Severe sepsis happens when there's organ failure(e.g. urinary tract contaminations, etc..).1.3_septic stun incorporates the side effects of serious sepsis, in addition to a
very weight. What's more, we can just counteract the sepsis since it's anything but reparable ailments.

The primary methodology of this investigation is to give early notice to patients and make mindfulness among the individuals about the sepsis and its key elements for this, we are utilizing the idea called machine learning, it is otherwise called subset of computerized reasoning. There are four sorts of AI module is there, 2.1_supervised learning, 2.2_unsupervised learning, 2.3_semi regulated learning, 2.4_reinforcement learning. In this investigation we are utilizing 2.1 managed learning this methodology relies upon an enormous number of marked datasets. We proposed grouping calculation (Random Forest) so as to order the outcome and anticipate the sepsis of patients and people groups.

There are numerous orders calculations are there, however why we are proposed arbitrary backwoods here means, Random woodland calculation can utilize both for characterization and the relapse sort of issues. At the point when contrast with other grouping and relapse calculation arbitrary woods gives more precision in light of the fact that there are enormous of choice trees happens in irregular woodland that is y it gives higher exactness results more when contrast with other order and relapse calculations.

Thusly, Early acknowledgment of sepsis will bolster the patient and people to envision sepsis and to give indications of progress treatment for sepsis, with the objective that passing pace of sepsis can be consistently reduces.

1.1 Physiological data stream:
Physiological data streams of all patients are collected using sliding time windows. That is, at each time interval (e.g., each minute), as new observations are collected at the bedside, the time window moves forward and the earliest observations are discarded from the time windows to maintain their lengths.

1.2 Feature Extraction:
Features are extracted from the data collected by each of these time windows. These features are used in real-time as an input to the model in Layer 1 to continuously predict the likelihood of developing sepsis for patients. At this point, using a hard threshold on the model-estimated probabilities, allows for predicting sepsis. For instance, for the patient. Features are extracted from the probability streams collected by each of the secondary time windows. These features are used in real-time as an input to the model in Layer 2 to continuously predict the likelihood of developing sepsis for patients. This online approach to feature extraction highlights the novelty in our approach, apart from existing cascading classifiers. At this point, we use a hard threshold of 0.5 to determine if a patient has sepsis.

1.3 Random Forest:
Random forest (RF) is a supervised learning algorithm that uses an ensemble of decision trees to build a ‘forest.’ An aggregated majority vote across trees can be used for classification. Contrary to conventional decision trees, the algorithm uses a random subset of features when splitting decision nodes which result, in general, in better and more stable performance compared to decision tree learning and bagging techniques.
II. SYSTEM IMPLEMENTATION

2.1 Data collection and Preprocessing:
Data collection is the process of collecting every details about the sepsis like symptoms and the rate of possible counts (heart rate, respiratory rate, bilurumin count etc.,). After collecting the every data we have to prepare our data set according to the symptoms. We have to prepare three dataset for the three model. Because preparing the three possibilities at the same time is not a good dataset we have to prepare the dataset separately for everything. It will increase the accuracy rate as well as the perfect model. Preprocessing is the process of preparing the data's that can be understandable by machine. Preprocessing of selecting the features that will affect our model and which won’t change in output. After the selection of the Features we will use that data to train our model.

2.2 Creating Sepsis and Severe Sepsis Model:
After the preprocessing of the data we will use the dataset for training. We will split the dataset as features and label after that we will use that for training the model. Sklearn is the package for calling the algorithm. We will use different algorithm like random forest, SVM, naive bayas and many. After that we will finalize which algorithm has greater accuracy we will use that algorithm for final model. In this we are going to create two module for sepsis and severe sepsis so that we can predict the sepsis with our model. The stages are sepsis, severe sepsis and septic shock. In this module we are preparing models for sepsis and severe sepsis.

2.3 Creating Septic shock and Interface with UI
After the Sepsis and Severe sepsis we need to create the model for Septic shock. In this we will split the data set into train and test. we will apply train set for training and test for predicting. After the prediction find the accuracy for every algorithm and finalize the perfect model.

we need the web application to see the prediction results. But the machine learning and Web development is different domain. We are going to create the pipeline for interacting machine learning and machine learning model using the pickle package. The pickle package will store the machine learning model in the stage of prediction. After that user can give input and can get the output results..
2.5 Advantages:
1. In this approach accuracy of the datasets will be increasing frequently and the outcomes of each modules also getting more accurate.
2. Prediction of sepsis have been done through different stages so that we implement several stages for prediction which will provide better output.
3. We providing interactive models and that are interfaced with web application.

2.6 Disadvantages:
1. Data analysis and data gathering is challenging task here.
2. This prediction needs more amount of data to be trained and test.

III. CONCLUSIONS
In this analysis, the Sepsis definition was used to build three predictive models of sepsis in adult patients. Ultimately, the success of the models is determined by their utility in a clinical setting, in which constraints on operational quantities, such as model size and performance, must be satisfied and correct identification of sepsis before onset is emphasized.

REFERENCES
I. A Salcedo-Bernal, M. P. Villamil-Giraldo, and A. D. Moreno-Barbosa. Clinical Data Analysis: An opportunity to compare machine learning methods. Procedia Computer Science,100,731-7382016.

II. C. W. Seymour, V. X. Liu, T. J. Iwashyna, F. M. Brunskhorst, T. D. Rea, A. Scherag, and C. S. Deutschman. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).Jama,315(8),762-774.2016.

III. D. Andaluz and R. Ferrer. SIRS, qSOFA, and organ failure for assessing sepsis at the emergency department. Journal of thoracic disease, 9(6),1459, 2017.

IV. E. Gultepe, J.P. Green, H. Nguyen, J. Adams, T. Albertson, and I. Tagkopoulos, 2013. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association,21(2), pp.315-325.

V. E.P. Raith, A.A. Udy, M. Bailey, S. McLoughlin, C. MacIsaac, R. Bellomo, D.V. Pilcher. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit.Jama,317(3),pp.290-300.2017.

VI. F. van Wyk, A.Khojandi, R. Kamaleswaran, O. Akbilgic, S. Nemati, R.L Davis, How Much Data Should We Collect? A Case Study in Sepsis Detection Using Deep Learning”. IEEE NIH Special Topics Conference on Healthcare Innovations and Point-of-Care Technologies.2017.

VII. F. Van Wyk, A. Khojandi, R.L. Davis, R. Kamaleswaran. Physiomarkers in Real-Time Continuous Physiological Data Streams Predicts Adult Sepsis Onset Earlier Than Clinical Practice.2018.doi:10.13140/RG.2.2.23671.52640/1.

VIII. M. Ikhsan, K.K. Tan, A.S. Putra, T.H.S Chew, and C.F. Kong. Automatic identification of blood vessel cross-section for central venous catheter placement using a cascading classifier. In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE (pp. 1489-1492). IEEE, 2017

IX. K.E. Henry, D.N. Hager, P.J. Pronovost and S. Saria. A targeted real-time early warning score (TREWScore) for septic shock. Science translational medicine, 7(299), pp.299ra122-299ra122.2015.

X. M.Singer, C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M.Coopersmith, and R.S. Hotchkiss. The third international consensus definitions for sepsis and septic shock(Sepsis-3).Jama,315(8),pp.801-810.2016.

XI. N. Dhungel, G. Carneiro, and A. P. Bradley. Automated mass detection in programs using cascaded deep learning and random forests. In Digital Image Computing: Techniques and Applications (DICTA), International Conference on (pp. 1-8). IEEE, 2015.

XII. P. Viola, and M. Jones, Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-I). IEEE, 2001.