Development of an Interactive Module Incorporating Financial Literacy in Teaching Decimals/Fraction

Fhelmar I. Rondillas¹*, Amelia T. Buan²

¹Basic Education Department, Senior High School Discipline Coordinator, St. Michael’s College, Iligan City 9200, Philippines
²Department of Science and Mathematics Education, Faculty, Mindanao State University – Iligan Institute of Technology, Iligan City 9200, Philippines

*Corresponding author’s e-mail address: amelia.buan@g.msuiit.edu.ph

Abstract. This study sought to develop an interactive module incorporating financial literacy in teaching fraction and decimals for Grade 7 Mathematics. This study used pretest-posttest one-group design with qualitative support to distinguish the effect of the interactive module on students conceptual understanding, financial literacy and motivation to achieve. Based on the quantitative and qualitative analyses of the study, there was a significant improvement in the students’ pre-test and post-test scores on conceptual understanding, financial literacy and motivation to achieve. Results also showed that students were able to understanding the concept of fractions and decimals; see application of fraction and decimals into different fields and most specially its connection to financial literacy. In addition, students realized the importance of savings and budgeting, and even became financially wise. The developed interactive modules incorporating financial literacy were integrated with interactive websites, financial literacy videos, and online assessments. The researcher recommends the use of the interactive module incorporating financial literacy in secondary mathematics classes to facilitate the learning process in teaching fractions and decimals. Also, similar interactive modules incorporating any real life skills must be developed.

1. Introduction

Today’s generation of learners is way too different from the past generations. Most students are inert. Schools that were once a sanctuary for young minds to be developed has now become a daily battlefield for teachers trying to inculcate knowledge to these young minds effectively. Thus the need to create effective teaching materials such as interactive module is one strong defense for teachers to win this said battle for inculcation of knowledge to learners.

Learning mathematics is crucial and vital because it develops cognitive thinking in young children and it is a challenging task for parents and teachers to educate them. One of the alternatives is to provide interesting learning environment to the children, by adapting interactive multimedia application. Previous research showed that interactive multimedia influenced the effectiveness of learning process [3].

In traditional method, most of the children use exercise books as their source of information. If this method is being used as a single approach in classrooms, then it will be difficult to build their understanding and imagination towards mathematical subject matter. It believes that this method can cause them to be easily distracted and hard to pay attention, resulting in a dull and boring environment. The lack of attractive approaches in children's learning process could affect their insight.
Tedious learning environment could cause the children to lose interest in understanding mathematical problem solving. Therefore, a Mathematical Learning Courseware is developed to cater to this problem [28].

Teachers need to implement a different learning approach which includes elements of sound, text, graphic and animation in order to provide a better learning approach. These elements have been proven to be more interactive, therefore multimedia learning will improve students' performance and enhance the teaching and learning process [24]. With the pursuit of the Department of Education in the Philippines to adapt the K to 12 Curriculum which aims to upgrade the educational system of the country, it gives a chance to students to be globally competitive and develop the 21st century skills. In K to 12 Curriculum, subjects are taught from the simplest concepts to more complicated concepts through grade levels in spiral progression.

One of the least learned competencies in the national achievement test is fractions and decimals with an above mastery rating. Furthermore, the Percentage of Correct Responses (PCR) per learning competency measured by subject area showed that the pupils’ performance in Mathematics is very low. Educators confirmed that a significantly low achievement in Mathematics and a relatively low self-efficacy among students who are impatient in solving mathematical problems posed great challenges to present day Mathematics educators. Proper preparation must be done to address the needs of the students in terms of coping with the new approaches and to improve the performance of students in the national achievement test in Mathematics. As one of the tools to motivate students to react and learn independently with minimal assistance from the teacher and make learning more interesting, learning module is developed. The self-efficacy level of the respondents was also measured to determine the ability to succeed in performing a given task [2].

Fraction and decimal arithmetic are crucial for later mathematics achievement and for ability to succeed in many professions. Unfortunately, these capabilities pose large difficulties for many children and adults, and students’ proficiency in them has shown little sign of improvement over the past three decades. To summarize what is known about fraction and decimal arithmetic and to stimulate greater amounts of research in the area, we devoted this review to analyzing why learning fraction and decimal arithmetic is so difficult. We identified and discussed two types of difficulties: (1) inherent difficulties of fraction and decimal arithmetic and (2) culturally contingent difficulties that could be reduced by improved instruction and prior knowledge of learners. We concluded the review by discussing commonalities among three interventions that have helped children overcome the challenges of mastering fraction and decimal arithmetic [15].

In this study the researcher developed an interactive module incorporating financial literacy. Modules, like interactive type, present logical representation of a subject matter using effective learning activities complete with a clear related instruction that could be easily followed by the students in solving his/her own problem. The interactive module that is developed in this study incorporated financial literacy for students to see its application in every topic being inculcated in the module. Knowing the real life application on financial aspects of the topic is one effective technique to catch students’ attention and increase their motivation towards learning the subject matter since students will directly see its importance to the society upon using the module. Utilization of an interactive module for a lesson is now considered an effective instructional technique. Hence, interactive modules are packages of learning activities that have to be completed by the learners.

2. Objectives of the Study
The main objective of the study is to develop an interactive module incorporating financial literacy to help enhance the conceptual understanding of the Grade 7 students in fractions and decimals.

Specifically, the study seeks to:
1. describe the process in the development and validation of the interactive module;
2. compare the performance of the students in the pretest and posttest in terms of:
 a. Achievement Test.
b. Financial Literacy Test
 i. Management Skills
 ii. Financial Attitude
 iii. Peer Influences

c. Motivation to Achieve
 i. Intrinsic Value
 ii. Test Anxiety
 iii. Self-efficacy

3. determine the students’ perception towards on the use of interactive module.

Null Hypothesis

H_0: There is no significant difference between the pretest and posttest performance of students in terms of:

a. Achievement Test
b. Financial Literacy Test
 i. Management Skills
 ii. Financial Attitude
 iii. Peer Influences
c. Motivation to Achieve
 i. Intrinsic Value
 ii. Test Anxiety
 iii. Self–efficacy

3. Conceptual Framework

This study employed the pretest-posttest one group design with qualitative support. The research paradigm in Figure 1 depicts a detailed guide for the progress of this endeavor. It shows that this study was divided into three phases: (1) determination of prior knowledge of students on decimals and fractions, financial literacy and motivation to achieve; (2) development and validation of the interactive module through classroom utilization of the module; and (3) developed interactive module on Decimals/fraction, analysis of the learners’ conceptual understanding in terms of knowledge, financial literacy and motivation to achieve.

![Conceptual Framework Diagram](image_url)

Figure 1. Conceptual Framework

It shows in figure 1 the research paradigm of the study. It was divided into two phases: the implementation of the pre-test in terms of conceptual understanding, financial literacy and Motivation to achieve and the Development of the interactive module.

The interactive module was then evaluated by panel of experts to determine its readiness for utilization. After the ratings, comments and suggestions of the panel, the researcher did the revision of the module. An interactive module was then developed. After its face and content validity were established, it was then implemented in the classroom. The researcher took note of challenges that
was encountered and come up with ways to address them. These modifications were then reflected in
the revised module.

Conceptual understanding of students was checked by evaluating student performance in the
achievement test. Development of financial literacy was measured through assessment methods, such
as financial literacy test, student journals and anecdotal notes. Motivation towards the subject prior to
the utilization of the module was compared to respondents’ responses after the utilization of the
module through the use of a motivation scale. Qualitative data derived from student journals and
interviews were subjected to in-depth analysis to support quantitative data.

4. Theoretical Background

This study is anchored on Constructivist theory by Jerome Bruner and E-learning theory by
Richard E. Mayer and Roxana Moreno.

A major theme in the theoretical framework of Bruner is that learning is an active process in which
learners construct new ideas or concepts base upon their current/past knowledge. The learner selects
and transforms information, constructs hypotheses, and makes decisions, relying on a cognitive
structure to do so [7].

Constructivism is a approach in education which explains how learners construct their own
understanding and knowledge from their experience so that the role of teaching is not to lecture, explain
mathematical concept, but to let students to construct their own understanding that will develop their
critical thinking [7].

In constructivist instruction, students are encouraged to use their own methods for solving
problems. They are not asked to follow others thinking but encouraged to process their own. Through
interaction with mathematical tasks and other students, the student's own mathematical thinking
becomes more abstract and powerful. The role of the constructivist teacher is to guide and support
students' mathematical concept. Constructivist in teaching approach, teachers believe that students
learn improving knowledge that students already know in previous [7].

Meanwhile, e-learning theory established within the scientific literature a set of multimedia
instructional design principles that promote effective learning [20].

This theory enables the learners to integrate learning with the help of technologies and provide
positive feedback towards achieving common goal and advancement to school implementation [22].

5. Research Design and Methodology

This study presents in detail the methods and procedures in the development and validation of the
interactive module incorporating financial literacy in teaching decimals and fractions. Specifically, it
comprises the locale of the study, the type of respondents, the research design, the instruments used,
the procedure used in gathering data, the statistical tool used in interpreting data and reliable
statements concerning the hypothesis, and the coding of qualitative data.

Research Design

This study employed a pretest-posttest one group design with qualitative support. In order to evaluate
the effect of the interactive module incorporating financial literacy on students’ understanding, skill
and motivation to learn, students answered the achievement test and were asked to answer the lesson
closure at the end of the module.

Specifically, this study used a nonequivalent dependent variable design (NEDV) wherein there was
only one group of subjects but there were other dependent variables, namely:

(1) Achievement Test
(2) Financial Literacy Test
(3) Motivation to Achieve

The primary independent variable in this study was the interactive module that will be implemented in
the class for the duration of the experimentation.
Research Setting
This study was conducted in one of the private schools located in Northern Mindanao for S.Y. 2017-2018. The school is a Catholic institution of higher learning; it was administered by the Religious of the Virgin Mary (RVM), the first Filipino religious congregation founded by Mother Ignacia del Espiritu Santo. The school was well known as the oldest school in Lanao area and is a PAASCU Level III grantee.

Research Instrument
Interactive Module
The interactive module was one of the instruments used by the researcher in this study. The researcher made the interactive module based on the learning competencies found in the K to 12 Curriculum guide for Mathematics. The interactive module was then evaluated by panel of experts to determine its readiness for utilization. In gathering the data, a rating scale served as Evaluation Questionnaire by the researcher. This was adapted from the study of Richa [29] and revised by the researcher. This contains the characteristics of the interactive module that was rated by the evaluators. The highest rating is “4” which means “excellent” and the lowest is “1” that means “needs for improvement”.
After the ratings, comments and suggestions of the panel, the researcher revised the module and an interactive module was then developed. After its face and content validity were established, it was then implemented in the classroom. The researcher took note of challenges that were encountered and came up with ways to address them. These modifications were then reflected in the revised module.
The interactive module was incorporated with financial literacy where students reflected their knowledge of decimals and fractions through their responses in the lesson closure and process questions after watching the Cha-Ching videos. Each unit contained the objectives, lesson proper, self-assessment questions, and the references. Two (2) modules were prepared by the researcher for the duration of the learning process for decimals and fraction. To make it more interactive, Cha-Ching videos from Youtube were incorporated in the lesson proper wherein students enjoyed watching while learning about financial literacy.
The student will have to correctly answer 75% of the given assessment test before they can proceed to the next module. In case they can’t reach 75%, students will have to repeat the activities inculcated in the module.
Achievement Test
The Achievement Test Questionnaire was designed by the researcher to evaluate students’ conceptual understanding of decimals and fractions and respondents’ knowledge and skill in financial literacy. The achievement test was a 15-item multiple choice test which served as the pre-test and post-test given to the respondents. The test went through face validation, reliability test, item analysis and pilot testing before it was given to the respondents. To ensure content validity, a table of specifications was made prior to test construction.
Achievement Motivation Scale in Secondary Mathematics
The Achievement Motivation Scale used by Villadolid [33] was modified by the researcher to suit Grade 7 students. The motivation scale was administered to the students before and after the module to determine if there had been a change in students’ motivation to achieve.
Interview Guide
Interviews were conducted by the researcher on the randomly selected respondents to have a qualitative support to quantitative data obtained from the questionnaire and motivation scale. Questions in the interview were concerning to students’ insights about the module, their conceptual understanding of decimals/ fraction and financial literacy. Interviews was recorded and undergone content/ thematic analysis in order to categorize the responses of the students.
Data Gathering
The development of an interactive module incorporating financial literacy underwent some process. First, learning objectives aligned to the competencies from the K to 12 curriculum were identified.
Assessment tools were formulated (Achievement Test, Financial Literacy Test and Motivation to Achieve Test) after which was the development of the interactive module. The module was then evaluated by a panel of experts using a rating form and revision of the module was made based on their comments and suggestions.

The motivational level of the respondents in Mathematics was determined through the modified motivational scale of Villadolid [33]. Before students started using the interactive module, a pretest was administered. Multiple methods of assessment as indicated in the assessment timeline of the interactive module employed throughout the duration of using the module. Data on students’ conceptual understanding after the use of the module was derived from the posttest through the achievement test and financial literacy test.

Data Analysis

All quantitative and qualitative data was analyzed to answer the questions raised in the study. Related sample t-test was used by the researcher to compare the scores in the pretest and posttest. Thematic analysis was applied to qualitative data in order to categorize the responses of the respondents. In thematic analysis the researcher identified themes or patterns that have emerged from the qualitative data. The researcher defined each theme sufficiently so that it is clear in categorizing the responses of the students.

6. Results and Discussion

Development of the Interactive Module

The development of an interactive module incorporating financial literacy was anchored on Backward Curriculum Design of Wiggins [34] as cited by Rodriguez [30] and underwent a strategic process as shown in figure 2 below. The procedure included: a.) Identifying of the learning objectives aligning to the competencies from K-12 curriculum; b) Formulating of the assessment tools: Achievement Test, Financial Literacy Test and Motivation to achieve Test; c) Developing of the interactive module; d) Evaluating the interactive module by the panel of experts using a rating form; after which e) revising the module was done based on the comments and suggestions of the panel of experts.

![Figure 2. Strategic Process of Developing the Module](image-url)
Identifying Learning Objectives. From the K to 12 Curriculum guide for Mathematics, the researcher identified specific learning competencies on fractions and decimals. The researcher chose fractions and decimals since it is one of the least learned competencies in the national achievement test with an above mastery rating [2].

Formulation of Assessment Tools. After identifying the learning competencies, the researcher made the assessment tools: Achievement Test, Financial Literacy Test and Motivation to Achieve Test. The 15-item multiple choice achievement test was designed by the researcher to evaluate students’ conceptual understanding of decimals and fractions and respondents’ knowledge and skill in financial literacy. To ensure content validity, a table of specifications was made prior to test construction. The Financial Literacy Test consists of three components: management skill, financial attitude and peer influence. It was designed by the researcher and underwent validation by the experts and paper adviser. The Achievement Motivation scale used by Villadolid [33] was modified by the researcher to suit Grade 7 students. The motivation scale was administered to the students before and after the module, to determine if there had been a change in students’ motivation to achieve. All assessment tests went through face validation, reliability test, item analysis and pilot testing before it was given to the respondents.

Evaluation and Revision of the Module. The interactive module was evaluated by two Mathematics teachers of a private school teaching in the Junior High School as presented in Table 1. A rating or score sheet was used by the evaluators, giving “4” as the highest rating (meaning “excellent”) and “1” as the lowest (representing “needs for improvement”). The evaluators also gave their comments and suggestions for further improvement of the module. Changes were then made in the Interactive Module based on the suggestions and comments of the evaluators.

Evaluation of the Developed Module

Content of the Module	Mean for the Faculty Rating	Description
Overview	3.33	Excellent
Lesson Proper	3.59	Excellent
Layout	3.33	Excellent
Over-all Content	3.75	Excellent
Writing Mechanism	3.5	Excellent
Self-Assessment Questions	3.78	Excellent
Citation	3.84	Excellent
Average	3.58	Excellent

Revision of the Module

The module made by the researcher was revised based on the comments and suggestions of the teacher evaluators. The revision was mostly on the physical appearance of the module making the pictures and illustrations more attractive and appealing using appropriate colors aside from black and white. The researcher double-checked and tested the embedded websites in the modules making it easier for the students to open. Lastly, the researcher added self-reflection questions and process questions in the interactive module to make it more engaging, enabling the students to integrate their knowledge to real-life situation.

Students’ Pretest and Posttest Results

Table 2 shows the mean difference and t – value of the pretest and posttest scores measuring the students’ conceptual understanding of fractions and decimals.
Table 2. Achievement Test Result for Pretest and Posttest

Achievement Test	Mean Difference	t – value	P-value	
Pretest Mean	8.4583	-2.6806	-12.1297	.000 < .01
Posttest Mean	11.1389			

Results of the pretest and posttest of the achievement test showed significant difference in students’ conceptual understanding (mean difference = -2.8056). A t-value of -12.12976 (p-value = 0.000) indicates that there was a significant increase in the posttest scores of the students. This improvement in content knowledge is consistent with the results of Villadolid [33] where the respondents exhibited positive conceptual understanding after research employ project-based unit incorporating entrepreneurial skills in the teaching of percent to elementary pupils.

The financial literacy test is a test that measures the management skills, attitude and level influences of the students. The mean difference and t-values of the pretest and posttest scores are shown in Table 3.

Table 3. Pretest and Posttest for Students’ Financial Literacy Test

	Mean Difference	t – value	P-value	
Management Skills				
Pretest Mean	18.0556	-0.6111	-0.1707	.000 < .01
Posttest Mean	18.6667			
Financial Attitude				
Pretest Mean	14.8333	-0.8334	-0.1874	.000 < .01
Posttest Mean	15.6667			
Peer Influences				
Pretest Mean	14.6161	-4.5179	-1.8348	.000 < .01
Posttest Mean	19.1349			

Table 4 shows the mean difference and t – value of the students’ pretest and posttest motivation to achieve.

Table 4. Pretest and Posttest for students’ motivation to achieve

	Mean Difference	t – value	P-value	
Intrinsic Value				
Pretest Mean	14.4000	-0.1067	-0.0214	.000 < .01
Posttest Mean	14.5067			
Test Anxiety				
Pretest Mean	15.2250	0.4250	0.7486	.000 < .01
Posttest Mean	14.8000			
Self – efficacy				
Pretest Mean	16.8438	-0.3437	-0.2919	.000 < .01
Posttest Mean	17.1875			
Based on the result of the paired t-test, there is a significant difference between the pretest and posttest scores on students’ motivation to achieve. The negative t-values for intrinsic value (-0.0214) and self-efficacy (-0.2919) point to an increase in the importance ascribed by students to Mathematics as well as in their confidence in their own capabilities in the said field. On the other hand, the positive value for test anxiety (0.7486) shows that there was a decrease in the students’ discomfort when performing mathematical tasks. Analogous results can be found in the studies of Reibman [27] where a positive relationship between conscientiousness and academic achievement motivation was established. Also, the results are similar with the findings of Villadolid [33] which specified that students become more self-confident and motivated to learn and their test anxiety decreased.

Students’ Perceptions on the Interactive Module
The students were asked to write what they have learned upon using the module and how they can apply their learnings in real life situation. Responses of the students commonly revolved around the following themes: (a) understanding the concept of fractions and decimals; (b) application of fraction and decimals; and (c) connection to financial literacy.

Understanding the concept of Fractions and Decimals
Most of the students expressed that they understood the concept of ordering and comparing fractions and decimals, converting fractions and decimals, application of fractions and decimals in real-life and its connection to financial literacy. Students emphasized that they learned how to convert fractions to decimals and vice versa, solve real-world problems involving fractions and decimals and also on how to compare and order a set of fractions or decimals. Students also realized the connection of fractions and decimals to financial matters in which they highlighted in their responses that it made them more knowledgeable about real-life applications of the concept most specially on financial matters.

Application of Fractions and Decimals
Students responded on how they can apply the concept of fractions and decimals in real life situations through self-reflection and their life experiences. Based on the responses, there are four most cited applications of fraction and decimals; financial problems, the monetary system, life experiences and savings. Respondents stated that they can solve any financial problem applying their knowledge in fractions and decimals. They cited a clear application of fractions and decimals in the monetary system as it helped them identify the differences in bills and coins. Also, students used their knowledge in fractions and decimals to compute prices while buying goods in the store. In daily life experiences the concept of fractions and decimals is very useful such as in budgeting time and money, measuring any quantity (for example in cooking), and buying goods for daily living. Saving money is one of the primary skills that a child must learn while growing up. Respondents gave strong statements on how they learned more about saving while working with the modules. One respondent stated, “I can use the concepts in real life for depositing money in my bank account or withdrawing salary or allowance.”

Connection to Financial Literacy
Through the different financial literacy videos students responded on how fractions and decimals can be used in financial aspects. Respondents also shared on how fractions and decimals as applied in the videos aided them to realize the importance of savings, budgeting and becoming wiser in dealing with money. Upon knowing the application of fractions and decimals in financial matters, students learned that saving money could make their future brighter and more successful. Also, saving will help students to become financially secure and will provide safety and security in case of emergency. Aside from that, students also stated that saving will help them buy things they wanted but their parents can’t provide. Respondents gave an idea on how they will apply savings while they are still students. Their daily allowances will be divided into how much they will save and how much they will spend every day.
Random Interviews
The researcher conducted an interview and confirmed that students appreciated the module because it gave them the opportunity to understand the concept of fractions and decimals. Students shared that using the module made them realize the positive effects of learning online. They also expressed that after using the module they are now mindful of how they are dealing with money. Most of the students responded that using the module made them grasp the importance of savings and budgeting, and on how to divide or balance things specially about money.

However, students also encountered some challenges upon using the module. Some answered that they found it hard to open the links in the module due to compatibility with computer they are using. Others also stated that sometimes they found it hard to express their ideas since they do all tasks alone.

In general, the students had positive responses toward the module and they are looking forward for other learning opportunities applying different ways of learning a topic specially using computer or online activities.

7. Summary of Findings, Conclusions and Recommendations
Findings of the Study
Based on the quantitative and qualitative analyses of the study, the following findings were highlighted:

1. The interactive module incorporating financial literacy was developed through a systematized process involving Identifying the learning objectives aligning to the competencies from K-12 curriculum; formulating the assessment tools, namely, Achievement Test, Financial Literacy Test and Motivation to Achieve Test; developing of the interactive module; evaluating the interactive module by the panel of experts using a rating form and; lastly, revising the module based on the comments and suggestions of the panel of experts. Changes were made of the Interactive Module incorporating the given suggestions/comments of the evaluators. The developed interactive modules incorporating financial literacy were integrated with interactive websites, financial literacy videos, and online assessments.

2. There is a significant difference in the students’ pretest and posttest results in terms of conceptual understanding, financial literacy and motivation to achieve in mathematics.
 a. Results show that students scored higher in the posttest on the conceptual understanding of fractions and decimals.
 b. Peer influence is a big impact on students’ financial literacy test. Hence, there was an improvement in students’ management skills, financial attitude and peer influence based on the result.
 c. The intrinsic value students gave to mathematics and their discernment of their own efficacy was increased while their test anxiety decreased.

3. Students’ perceptions of the interactive module revealed that it helped them understand fractions and decimals. In the real-life application of the concept, responses of the students commonly revolved around the following themes: (a) understanding the concept of fractions and decimals; (b) application of fraction and decimals; and (c) connection to financial literacy. Students also learned to solve problems involving fractions and decimals and apply their knowledge to financial matters. Through the different financial literacy videos, respondents express how fractions and decimals aided them to realize the importance of savings, budgeting and economically wise.

4. In interviews, students shared on how the module gave them the opportunity for a new learning and strategy most specially in understanding fractions and decimals. While completing the module, students faced various challenges such as opening the links, checking compatibility of the interactive module in their own computer, answering the questions alone and expressing one’s ideas. Students gave their diverse reactions on how the module made them realize the application of fractions and decimals to financial aspects. Respondents grasped the importance of savings, budgeting and dividing or balancing things specially about money.
Conclusions
Based on the findings of the study, the following conclusions are drawn:

1. The interactive module incorporating financial literacy enhanced students conceptual understanding of fractions and decimals, increased financial knowledge and improved motivation to achieve in mathematics.
2. Through the interactive module, students realized the importance of savings, budgeting and becoming financially wise.

Recommendations
The researcher, therefore, recommends the following based on the findings of the study:

1. Since the interactive module incorporating financial literacy enhanced students conceptual understanding of fractions and decimals, increased financial knowledge and improved motivation to achieve in mathematics, it is highly recommended for use in Grade 7 Mathematics classes.
2. From the difficulties encountered by the students while complying the interactive module, clearer instruction and proper citation of the links must be considered. Additional interactive links incorporating financial literacy aside from videos to show more application of fraction and decimals to real life scenario be incorporated.
3. Since there was a progressive effect of the interactive module on students’ management skills, financial attitude and peer influence, a continued study be conducted to measure how the students apply their financial knowledge in action.
4. Having known the positive effects of the interactive module on students, similar interactive modules incorporating real life skills be developed.

References
[1] Acelajado, Maxima J. (2005). “‘The Modular Teaching Approach in College: An Alternative to Improving the Learner’s Achievement, Persistence and Confidence in Mathematics.’” Experimental study at De La Salle University, Manila.
[2] Adora, Nelia M. (2017). Mathematics Performance of Grade Six Pupils in the National Achievement Test, Division of Northern Samar: Basis in Developing a Workbook in Elementary Mathematics VI. International Journal of Science and Research (IJSR) ISSN (Online) : 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391
[3] Ahmad, S. ; Rosmani, A. ; Ismail, M. and Shakeri, S. ’’An Introductory of Mental Arithmetic Using Interactive Multimedia for Pre-School Children’’ 2010. Online May 4, 2015. http://www.ccsenet.org/journal/index.php/cis/article/view/6553/6115
[4] Alsmadi, I. ; Nusir, S. ; Al-kabi, M. ; Sharadgah, F. ; Acta Didactica Napocencia ; Cluj-Napoca. “Studying the Impact of Using Multimedia Interactive Programs at Children Ability to Learn Basic Math Skills” 2012. Online: May 4, 2015. http://search.proquest.com/pqcentral/docview/839765673/5C4E035D67174A73PQ/4?accountid=141440#
[5] Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is - or might be - the role of curriculum materials in teacher learning and instructional reform? Educational Reseacher, 25(9), 6–8, 14. doi:10.3102/0013189X025009006
[6] Bicoy and Teopez (2013). Enhancement and Implementation of Cosinometer on Laws of Sine and Cosine. CED, MSU – IIT. Tibanga, Iligan City.
[7] Bruner J. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University Press.
[8] Buan, Amelia T. (2010). Utilization of Web 2.0 Tools for Learning. The Mindanao Forum. vol. 23 no. 1.
[9] Cagas and Padua (2002). Development of Instructional Module on Human Nervous System and Sense Organs. CED. MSU-IIT. Tibanga, Iligan City.
[10] Cales and Velasco (2013). Development and Validation of a Laboratory Activity and Teacher’s Guide in Teaching Radiant Energy Using Modified (DIY) Differential Radioscope. CED. MSU-IIT, Tibanga, Iligan City.

[11] Capilitan, Diamer B. (2010). Development of an Interactive Instruction System in Science and Health VI. CED-SGS, MSU – IIT, Tibanga, Iligan City.

[12] Crisostomo, Ricardo M., et. al. (2013). Our World of Math 7. Vibal Publishing House, Inc.

[13] Daguan, Jeanie O. et.al (2000). Development of Modular Instruction Materials for Basic Architectural Drafting and Design, Iligan City; CED, MSU-IIT.

[14] Fonseca, Jaime R. S., and Margarida G.M.S. Cardoso. (2007). Mixture-Model Cluster Analysis using Information Theoretical Criteria, Intelligent Data Analysis.

[15] Forgues, H., Tian, J., and Siegler, R. (2015). Why is learning fraction and decimal arithmetic so difficult? Online: April 21, 2018. http://www.psy.cmu.edu/~siegler/2015-LF-etal.pdf

[16] Germata, Jeanylyn R., Rusam Brechie M. Ongue, Junry U. Narbasa (2008) Development and Validation of Module in Wood Finishing. Unpublished Undergraduate Thesis. Bachelor in Industrial Arts Technology, CED, MSU-IIT, Tibanga, Iligan City.

[17] Kell, Peter. “MoneySmart Teaching: bringing financial literacy lessons to life in the classroom.” 2012. Online: April 20, 2015. file:///C:/Users/eljane/Documents/Fhelmar/Curriculum%20&%20Leadership%20Journal%20_%20MoneySmart%20Teaching_%20Bringing%20Financial%20Literacy%20To%20Life%20in%20The%20Classroom.html

[18] Lardizabal, Amparo S. (1990). Principles and methods of teaching - 3rd ed. - Quezon City Phoenix Publishing House, Inc. - xiv, 307 p. col. ill.; 25 cm.

[19] Lusardi, Annamaria and Mitchell,2011. “Financial Literacy around the World: An Overview.” 2011. Online: April 21, 2015. https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/financial-literacy-around-the-world-an-overview/0488F901318E0FBC4C92DC6E964AB89C

[20] Mayer, Richard E. (2014). Principles for MultiMedia Learning. https://hilt.harvard.edu/blog/principles-multimedia-learning-richard-e-mayer.

[21] Melosantos, Luis Allan B., et al. (2015). Math Connections in the Digital World. Sibs Publishing House.

[22] Moreno, Roxana (2006). Learning in High-Tech and Multimedia Environments. http://journals.sagepub.com/doi/abs/10.1111/j.0963-7214.2006.00408.x

[23] Moten, James M., Jr. (2011). Examining the Disparity in Financial Literacy Between High School Seniors of Different Ethnicities and Income Level. Northcentral University, ProQuest Dissertations Publishing. https://search.proquest.com/central/docview/912191994/abstract/A6EB7DD0A305416DPQ/1?accountid=167112

[24] Nott, C., Nott, G. & Lee, C.C. (2000). Simply simulation: an interactive cd-rom-based approach for learning simulation concepts. Proceedings of the 2000 Winter Simulation Conference, Society for Computer Simulation International.

[25] Pascasio, Arlene A., et al.(2013). Math Ideas and Life Applications. Abiva Publishing House, Inc.

[26] Paschke J. & Paschke C. (2005). Flashing into a child’s mind: The educational impact of children’s multimedia on learner satisfaction. Unpublished dissertation, Mercer University.

[27] Reibman, Shayna Elizabeth (2002). Achievement motivation in Latino college students: The role of personality characteristics, acculturation, and familism. Alliant International University, Fresno, ProQuest Dissertations Publishing.

[28] Resnick, Mitchel (2007). All I Really Need to Know (About Creative Thinking) I Learned (By Studying How Children Learn) in Kindergarten. ACM Creativity & Cognition conference. Washington DC.
[29] Richa and et. al. (2010). Development and Validation of Self Learning Kit for Similarity. CED. MSU-IIT. Tibanga, Iligan City.
[30] Rodriguez, C. A. and Buan, A. T. (2018). Development of A Microlesson in Teaching Energy Levels of Atoms.
[31] Smith, E. et. al.(1968). Discoveries in Modern Mathematics Course 2. Charles E. Merril Publishing Co.pp. 126-129.
[32] Ulpina, Jisela N. and Tizon, Lydia T. (2014). Math Builders 7. Jo-es Publishing House, Inc.
[33] Villadolid, Zarina and Buan, Amelia (2012). Development of a Project – Based Unit Incorporating Entrepreneurial Skills in the Teaching of Percent to Elementary Pupils. SGS. MSU-IIT. Tibanga, Iligan City.
[34] Wiggins, G., & McTighe, J. (2011). Understanding by Design. http://www.ascd.org/ASCD/pdf/siteASCD/publications/UbD_WhitePaper0312.pdf.
[35] Ye, Stuart S. (2010). Understanding and Addressing the Achievement Gap Through Individualized Instruction and Formative Assessment. Assessment in Education: Principles, Policy & Practice, 17:2, 169-182, DOI: 10.1080/09695941003694466
[36] Zabala, Dante Joma P. (2011). Development of a Project – Based Unit Incorporating Entrepreneurial Skills in the Teaching of Percent to Elementary Pupils. SGS. MSU-IIT. Tibanga, Iligan City.