Coal quality characterization in East Kalimantan Province, Indonesia: review from proximate, ultimate and calorific value analyses

R Rahman¹, S Widodo², B Azikin³ and D Tahir⁴

¹Graduate Student of Earth and Environmental Technology, Geological Engineering Department, Faculty of Engineering, Hasanuddin University 90245, Indonesia
²Mining Engineering Department, Faculty of Engineering, Hasanuddin University 90245, Indonesia
³Geological Engineering Department, Faculty of Engineering, Hasanuddin University 90245, Indonesia
⁴Physics Sciences, Faculty of Science FMIPA, Hasanuddin University 90245, Indonesia

E-mail: niarrassamaniarrahman@gmail.com

Abstract. This study discussed the characterization of the different qualities of coal in Kalimantan. The chemical and physical characterization of Kalimantan coal aimed to find the level of coal quality through proximate, ultimate and calorific value analysis. Based on the results of the study, the coal obtained from PT. Kideco Jaya Agung (KJA) had a moisture content of 17.86%, a fixed carbon of 36.56%, ash of 2.94%, volatile matter of 42.64%, carbon of 44.86%, sulfur of 0.079% and calorific value of 4462.67 cal/gram. PT. Indemix Coalindo (IC) had coals with the moisture content of 25.94%, fixed carbon of 32.48%, ash of 3.78%, volatile matter of 38.26%, carbon of 45.03%, sulfur of 0.436% and calorific value of 4468.65 cal/gram. Based on the results of the study, the efforts were needed to improve the quality of coal so that the coal collected could become an alternative energy-source with its highest quality and calorific value. Thus, it could compete in the international market.

1. Introduction
Indonesia is an archipelago and has more than 17,000 islands from Sabang to Merauke. Besides, Indonesia is also around 5,200 km from the equator, has many active volcanoes, and is located in a tropical climate [1,2]. Therefore, Indonesia is rich in mineral and coal resources. Coal in Indonesia is potential. From the total reserve of around 28 billion tons, Indonesia has 7 billion tons; so far, it has been proven there are around 10 billion tons. Total coal reserves in Indonesia reached 49.44%, spread in South Sumatra (38.01%), South Kalimantan (7.68%), and East Kalimantan (3.75%) [3].

One of the second-largest coal-producing regions in Indonesia is Kalimantan island with a total of around 37.5 billion tons; after Sumatra with 42.6 billion tons in total [4-7]. Some of the biggest coal producers in Indonesia are Bumi Resouce, Adaro, Kideco, Berau Coal, Banpu, and PTBA, which have 75% of production. Bituminous and Sub-bituminous is the type of coal mostly produced in Indonesia [8]. Coal is an alternative energy source that substitutes oil and gas which is economically valuable.
Coal is beneficial to meet daily fuel needs, especially in industry. The highest quality of coal is more efficient and effective. Coal quality is strongly influenced by several factors namely moisture content, ash, volatile matter, fixed carbon, which can reduce the quality for fuel, calorific value, sulfur, and carbon content [9]. To find out the best coal quality, the characteristics of the content in coal must be checked through the analysis of physical and chemical characterization [10]. This study aimed to determine the quality and identify the physical and chemical characteristics of coal so that the feasibility of its use could be determined as alternative energy. The analysis of coal characterization included proximate, ultimate, and calorific value analysis.

2. Samples and method
The following (figure 1) the the coal sampling locations in East Kalimantan Province:

![Figure 1. Location Map of Coal Sampling of PT. Kideco Jaya Agung and PT. Indemix Coalindo in East Kalimantan Province, Indonesia.](image)

Coal samples were collected from PT. Indexim Coalindo (IC). This company, administratively, is located in Kaliorang Village, Sangkulirang District, East Kutai Regency, East Kalimantan Province. Moreover, the samples were also obtained from PT. Kideco Jaya Agung (KJA) in Paser Regency, East Kalimantan Province, precisely located in Batu Kajang Village, Batu Sopang District. Kideco's location is about 130 km from Balikpapan city to the south of East Kalimantan Province. The location can be reached by speedboat for ± 20 minutes to cross the Balikpapan bay and then use a 2-wheeled or 4-wheeled vehicle with a travel time of ± 3 hours [11].
Before conducting a physical and chemical characterization analysis, the researcher first applied a crushing process to reduce the size of coal grains to facilitate the grinding process. Milling and sifting aimed to obtain finer grain sizes; a coal mesh size of 200 was required for each sample analysis [12]. After that, physical and chemical analysis was applied to determine the quality of coal. The Proximate Analysis Process (direct analysis) included four stages, namely: Moisture Testing (Moisture Content) (%) (ASTM D.3173-03) [13] [14], Ash Content Testing (%) (ASTM D.3174-12) [13] [15], Volatile Material Testing (%) (ASTM D.3175-07) [13] [16], and Fixed Carbon Levels (%) (ASTM D.5142) [13] [17].

The Ultimate Analysis Phase in the form of carbon and sulfur analysis was determined through elemental analysis; Sulfur Level (S) (ASTM D.3177) [13, 18]. The sulfur analysis used the High Combustion Method, which utilized the SC-144DR Dual Range Sulfur Analyzer. In the carbon content analysis (C) (ASTM D.3178-89) [19], the researcher determined it using the same method as the sulfur content determination process. Calorie Value Measurement (ASTM D-2015-96) [20] to analyze the calorific value was using the Hilton C200 PA digital bomb calorimeter.

3. Results and discussion

3.1. Proximate Analysis
The result of the proximate analysis in both coal samples is shown in Table 1.

Samples ID	Moisture Content (%)	Ash Content (%)	Volatile Matter (%)	Fixed Carbon (%)
KJA	17.86	2.94	42.64	36.56
IC	25.94	3.78	38.26	32.48

Information:
KJA : PT. Kideco Jaya Agung
IC : PT. Indemix Coalindo

Figure 2. Graph of Proximate Analysis of Coal Samples
Table 2. Results of Ultimate Analysis in both of Coal Samples.

Samples ID	Carbon (C) (%)	Sulfur (S) (%)
KJA	43.52	0.079
IC	45.03	0.436

Based on the proximate physics test in the graph of Fig. 2, PT. Kideco Jaya Agung and PT. Indemix Coalindo had a significant difference. Kideco held the lowest moisture content (KJA = 17.86%), while the IC produced a high moisture content of about 25.94%. The lowest ash value was generated by KJA (2.94%) and the highest was from IC (3.78%). The lowest volatile matter was shown by IC (38.26%), while KJA was 42.64%. IC obtained the lowest fixed carbon (32.48%), while KJA was 36.56%. Based on Fig. 2, KJA was shown low moisture and ash content, while IC indicated the lowest volatile matter as well as fixed carbon.

3.2. Ultimate Analysis

The result of ultimate analysis in both coal samples are shown in Table 2.

The ultimate analysis is a method to find out the elements contained in coal, as shown in Fig. 3. In the sulfur analysis, the lowest sulfur content found in the IC was very much different from the KJA (0.079%) and IC (0.436%). Even so, the two coals were still considered safe or include into the low sulfur category of < 1 % [21] [22]. IC carbon analysis provided high carbon at 45.03% while for KJA indicated 43.52%, and the difference between the two coal samples was not too significant.
3. **Ultimate Analysis**

The result of ultimate analysis in both coal samples are shown in Figure 4.

![Figure 4](image-url)

Figure 4. Graph of the result of the analysis of the calorific value of IC and KJA coal samples.

The graph in Figure 4 shows the calorific value obtained from the two sites of coal. The analysis found the calorific value was not so much different from the details of KJA (4468.65 cal/gram) and IC of 4462.67 cal/gram. Based on the domestic market, the calorific value of the two coals was still sufficient to meet the standards, which generally ranged from 4.000 to 6.500 cal/gram; including the medium quality of coal. Both of these coals were sub-bituminous coals with a calorific value of 3.700 - 4.200 cal/gram [23].

4. **Conclusion**

Based on the results of the proximate analysis of the two coal samples at PT. Kideco Jaya Agung, it showed inversely proportional results for moisture content (17.86%) and ash (2.94%), while PT. Indemix Coalindo on volatile matter and fixed carbon produced low volatile matter of 38.26% and fixed carbon of 32.48%. In the ultimate analysis, the lowest sulfur content was shown at PT. Kideco Jaya Agung by 0.079% while at PT. Indemix Coalindo had 0.436%.

The sulfur content in both coals was still included in the safe category or low sulfur of <1 %. The lowest carbon content was in PT. Kideco Jaya Agung of 43.52% and PT. Indemix Coalindo of 45.03%. The calorific values produced by these two samples were not so much different; at PT. Kideco Jaya Agung was 4462.67 cal/gram and PT. Indemix Coalindo was 4468.85 cal/gram. The calorific value generated is met the domestic market standard and included in medium-rank lignite (sub-bituminous) because the calorific value was 4.000-6.500 cal/gram. Based on the analysis of coal characterization in this study, the efforts were needed to improve the quality of coal so that the coal obtained could be an alternative of energy source with the best quality and high calorific value. Thus, Indonesian coal can compete in the international market.

Acknowledgment

The use of a reduced beam section on the beam flange could suppress the effect of cyclic loading; thus, the damage did not occur on the connection of beam and column flange. The damage only occurred on the column face. The experiment results show that shear failure occurred on the column face of the RBS area. This means that the castellated beam had a buckling on the beam web due to the cyclic loading, which caused damage to the RBS area.

References

[1] Belkin E H and Tewalt J S 2007 *Geochemical Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua*. Virginia: U.S Geological Survey Science for Changing the World
[2] Rahmad B, Anggayana K, Widodo S and Widayat, H A 2012 The occurrence of the n-Alkane Long Chain in the Muara Wahau Coal, Kuta Atas Basin, Indonesia. International Symposium on Earth Science and Technology, Procedia Earth and Planetary Science 38-41

[3] Rumbino Y, Purwoto S, Hidayat M and Sulistyo H 2018 Composition and Kinetics of Syngas from South Kaimantan Lignite Coal Gasification with Steam Gas WEB MATEC Conference 156, 02008

[4] Thomas L, 2002 Coal geology John Wiley & Sons, Ltd West Sussex, England 384 pages.

[5] Sukhyar R 2009 Indonesian coal resources and reserves Seminar and Workshop 'Indonesian Coal Conference Jakarta

[6] Belkin H E, Tewalt S J, Hower J C, Stucker J D and O’Keefe J M K 2009 Geochemistry and petrology from selected coal samples from Sumatra, Kalimantan, Sulawesi and Papua, Indonesia. International Journal of Coal Geology, vol.77, p. 260-268.

[7] Santoso B and Utoyo H 2012 Characteristics of East Kalimantan Sebatik Coal Petrographic According to Its Geological Aspects Journal of Mineral and Coal Technology Vol. 8, No. 2

[8] Harrington A and Trivett M 2012 Patersons Securities Limited, Indonesia Coal Review - Short-Term Options Australia: Patersons Indonesian Coal Review, ABN 69008896311

[9] Kadir R A, Widodo S and Ansariah 2016 Proximate Analysis of Coal Quality in Tanah Grogot District Paser Regency East Kalimantan Province Geomine Journal Vol. 4 No. 3 118-122

[10] Lestar D, Asy'ari A M and Hidayatullah R 2016 Coal Geochemistry for Several Industries. Jurnal POROS TEKNIK Vol. 8 No. 1 1-54.

[11] Geology Team 2018 Exploration Activities Report. Kideco PT. Kideco Jaya Agung

[12] Nursanto E, Sudaryanto and Sukamto U 2015 Coal Processing and Utilization for Energy National Proceeding Seminar on Chemical Engineering Struggle ISSN 1693-4393.

[13] Jittabut P 2015 Physical and Thermal Properties of Briquette Fuel from Rice Straw and Sugar Cane Leaves by Mixing Molasses Thailand Proram General Physics and Science Faculty of Science and Technology Nakhon Ratchasima Rajabhat University Nakhon Ratcasima 3000

[14] ASTM 2003 American Standard Test Method for Humidity in Coal and Coke Analysis Samples US American Society for Testing and Materials ASTM D 3173-03

[15] ASTM 2002 American Standard Test Method for Analysis in Coal and Coke Samples from Coal. American Society for Testing and Materials. US: American Society for Testing and Materials (ASTM D 3174-12).

[16] ASTM 2007 American Standard Test Method for Volatile Materials in Analysis of Coal and Coke Samples. US: American Society for Testing and Materials, ASTM D 3175-07.

[17] ASTM 2010 American Standard Test for Carbonization Methods in Analysis of Coal and Coke from Coal. US: American Society for Testing and Materials, ASTM D 5142.

[18] ASTM 2007 Sulfur in Coal and Coke Analysis Using the High Temperature Combustion Method. US: ASTM D 3177.

[19] ASTM 2002 American Standard Test Method for Carbon and Hydrogen in Coal and Coke Analysis Samples. US: ASTM D 3178-89.

[20] ASTM 2007 American Standard Test Method for Gross Calorific Value of Coal and Coke. US: ASTM D 2015-96.

[21] Artiningsih A, Widodo S. and Firmansyah A. 2015 Study of Sulfur Level Determination in Solid Coal of PT. Geomine Journal, Vol: 02, 68-71.

[22] Sufradiin, Widodo S and Mendaun Y 2016 Analysis of Petrography and Quality of Sinjai Coal Journal of Engineering Research, Vol: 20 No: 2 21-25

[23] Directorate General of Mineral and Coal 2016 Potential Statistics on Mineral and Coal Resource Balance Jakarta