Thompson Sampling for Factored Multi-Agent Bandits

Timothy Verstraeten¹, Eugenio Bargiacchi¹, Pieter JK Libin¹, Diederik M Roijers¹,², and Ann Nowé¹

¹Artificial Intelligence Lab Brussels, Vrije Universiteit Brussel, Brussels, Belgium, email: {tiverstr,plibin,ebargiac,anowe}@vub.be

²HU University of Applied Sciences Utrecht, Utrecht, Netherlands, email: diederik.yamamoto-roijers@hu.nl

November 25, 2019

Abstract

Multi-agent coordination is prevalent in many real-world applications. However, such coordination is challenging due to its combinatorial nature. An important observation in this regard is that agents in the real world often only directly affect a limited set of neighboring agents. Leveraging such loose couplings among agents is key to making coordination in multi-agent systems feasible. In this work, we focus on learning to coordinate. Specifically, we consider the multi-agent multi-armed bandit framework, in which fully cooperative loosely-coupled agents must learn to coordinate their decisions to optimize a common objective. As opposed to in the planning setting, for learning methods it is challenging to establish theoretical guarantees. We propose multi-agent Thompson sampling (MATS), a new Bayesian exploration-exploitation algorithm that leverages loose couplings. We provide a regret bound that is sub-linear in time and low-order polynomial in the highest number of actions of a single agent for sparse coordination graphs. Finally, we empirically show that MATS outperforms the state-of-the-art algorithm, MAUCE, on two synthetic benchmarks, a realistic wind farm control task, and a novel benchmark with Poisson distributions.

1 INTRODUCTION

Multi-agent decision coordination is prevalent in many real-world applications, such as traffic light control [32], warehouse commissioning [10] and wind farm control [31]. Often, such settings can be formulated as coordination problems in which agents have to cooperate in order to optimize a shared team reward [5].
Handling multi-agent settings is challenging, as the size of the joint action space scales exponentially with the number of agents in the system. Therefore, an approach that directly considers all agents’ actions jointly is computationally intractable. This has made such coordination problems the central focus in the planning literature [20, 13, 14, 15]. Fortunately, in real-world settings agents often only directly affect a limited set of neighboring agents. This means that the global reward received by all agents can be decomposed into local components that only depend on small subsets of agents. Exploiting such loose couplings is key in order to keep multi-agent decision problems tractable.

In this work, we consider learning to coordinate in multi-agent systems. For example, consider a wind farm comprised of a set of wind turbines. The objective is to maximize the farm’s total productivity. When upstream turbines directly face the incoming wind stream, energy is extracted from wind. This reduces the productivity of downstream turbines, potentially damaging the overall power production. However, turbines have the option to rotate, in order to deflect the turbulent flow away from turbines downwind [29]. Due to the complex nature of the aerodynamic interactions between the turbines, constructing a model of the environment and deriving a control policy using planning techniques is extremely challenging [24]. Instead, a joint control policy among the turbines can be learned to effectively maximize the productivity of the wind farm. The system is loosely coupled, as redirection only directly affects adjacent turbines.

While most of the literature only considers approximate reinforcement learning methods, it has recently been shown [4] that one can achieve theoretical bounds on the regret (i.e., how much reward is lost due to learning). In this work, we use the multi-agent multi-armed bandit problem, and improve upon the state of the art. Specifically, we propose the Multi-Agent Thompson sampling (MATS) algorithm, which exploits loosely-coupled interactions in multi-agent systems. The loose couplings are formalized as a coordination graph, which defines for each pair of agents whether their actions depend on each other. We assume the graph structure is known beforehand, which is the case in many real-world applications with sparse agent interactions (e.g., wind farm control).

Our method leverages the exploration-exploitation mechanism of Thompson sampling (TS). TS has been shown to be highly competitive to other popular methods, e.g., UCB [8]. Recently, theoretical guarantees on its regret have been established [1], which renders the method increasingly popular in the literature. Additionally, due to its Bayesian nature, problem-specific priors can be specified. We argue that this has a strong relevance in many practical fields, such as advertisement selection [8] and influenza mitigation [22].

We provide a finite-time Bayesian regret analysis and prove that the upper regret bound of MATS is low-order polynomial in the number of actions of a single agent for sparse coordination graphs (Corollary [1]). This is a significant improvement over the exponential bound of classic TS, which is obtained when the coordination graph is ignored [1]. We show that MATS improves upon the
state-of-the-art in various synthetic settings. Moreover, MATS achieves high performance on a realistic wind farm control task, in which multiple wind turbines have to be jointly aligned to maximize the power production.

We define the problem setting, the multi-armed multi-agent bandit, in Section 2 and describe our method, MATS, in Section 3. We provide a theoretical and empirical analysis of MATS in Sections 4 and 5 respectively. We discuss the results in Section 6. Finally, we compare with related work in Section 7 and conclude that MATS achieves state-of-the-art performance, both empirically and theoretically, in Section 8.

2 PROBLEM STATEMENT

In this work, we adopt the multi-agent multi-armed bandit (MAMAB) setting [4]. A MAMAB is similar to the multi-armed bandit formalism [28], but considers multiple agents factored into groups. When the agents have pulled a joint arm, each group receives a reward. The goal shared by all agents is to maximize the total sum of rewards. Formally,

Definition 1. A multi-agent multi-armed bandit (MAMAB) is a tuple \(\langle D, A, f \rangle \) where

- \(D \) is the set of \(m \) enumerated agents. This set is factorized into \(\rho \), possibly overlapping, subsets of agents \(D^e \).
- \(A = A_1 \times \cdots \times A_m \) is the set of joint actions, or joint arms, which is the Cartesian product of the sets of actions \(A_i \) for each of the \(m \) agents in \(D \). We denote \(A^e \) as the set of local joint actions, or local arms, for the group \(D^e \).
- \(f(a) \) is a stochastic function providing a global reward when a joint arm, \(a \in A \), is pulled. The global reward function is decomposed into \(\rho \) noisy, observable and independent local reward functions, i.e., \(f(a) = \sum_{e=1}^{\rho} f^e(a^e) \). A local function \(f^e \) only depends on the local arm \(a^e \) of the subset of agents in \(D^e \).

We denote the mean reward of a joint arm as \(\mu(a) = \sum_{e=1}^{\rho} \mu^e(a^e) \). For simplicity, we refer to the \(i^{th} \) agent by its index \(i \).

The dependencies between the local reward functions and the agents are described as a coordination graph [13].

Definition 2. A coordination graph is a bipartite graph \(G = \langle D, \{ f^e \}_{e=1}^{\rho}, E \rangle \), whose nodes \(D \) are agents and components of a factored reward function \(f = \sum_{e=1}^{\rho} f^e \), and an edge \((i, f^e) \in E \) exists if and only if agent \(i \) influences component \(f^e \).

The dependencies in a MAMAB can be described by setting \(E = \{(i, f^e) \mid i \in D^e \} \).
In this setting, the objective is to minimize the expected cumulative regret \(R_T \), which is the cost incurred when pulling a particular joint arm instead of the optimal one.

Definition 3. The expected cumulative regret of pulling a sequence of joint arms until time step \(T \) according to policy \(\pi \) is

\[
\mathbb{E}[R(T, \pi)] \triangleq \mathbb{E}\left[\sum_{t=1}^{T} \Delta(a_t) \bigg| \pi \right]
\]

with

\[
\Delta(a_t) \triangleq \mu(a_*) - \mu(a_t) = \sum_{e=1}^{\rho} \mu_e^*(a_e^*) - \mu_e(a_e^t),
\]

where \(a_* \) is the optimal joint arm and \(a_t \) is the joint arm pulled at time \(t \). For the sake of brevity, we will omit \(\pi \) when the context is clear.

Cumulative regret can be minimized by using a policy that considers the full joint arm space, thereby ignoring loosecouplings between agents. This leads to a combinatorial problem, as the joint arm space scales exponentially with the number of agents. Therefore, loose couplings need to be taken into account whenever possible.

3 MULTI-AGENT THOMPSON SAMPLING

We propose the Multi-Agent Thompson sampling (MATS) algorithm for decision making in loosely-coupled multi-agent multi-armed bandit problems. Consider a MAMAB with groups \(D_e \) (Definition 1). The local means \(\mu_e(a^e) \) are treated as unknown. According to the Bayesian formalism, we exert our beliefs over the local means \(\mu_e(a^e) \) in the form of a prior, \(Q_{a^e}^e(\cdot) \). At each time step \(t \), MATS draws a sample \(\mu_t^e(a^e) \) from the posterior for each group and local arm given the history, \(H_{t-1}^e \), consisting of local actions and rewards associated with past pulls:

\[
\mu_t^e(a^e) \sim Q_{a^e}^e(\cdot | H_{t-1}^e)
\]

\[H_{t-1}^e \triangleq \{(a_{e_i}^t, f_e(a_{e_i}^t))\}_{i=1}^{t-1}. \]

Note that during this step, MATS samples directly the posterior over the unknown local means, which implies that the sample \(\mu_t^e(a^e) \) and the unknown mean \(\mu_e(a^e) \) are independent and identically distributed at time step \(t \).

Thompson sampling (TS) chooses the arm with the highest sample, i.e.,

\[
a_t = \arg \max_a \mu_t(a).
\]
However, in our case, the expected reward is decomposed into several local means. As conflicts between overlapping groups will arise, the optimal local arms for an agent in two groups may differ. Therefore, we must define the argmax-operator to deal with the factored representation of a MAMAB, while still returning the full joint arm that maximizes the sum of samples, i.e.,

\[a_t = \arg \max_a \sum_{e=1}^{\rho} \mu^e_t(a^e). \] (5)

To this end, we use variable elimination (VE), which computes the joint arm that maximizes the global reward without explicitly enumerating over the full joint arm space [14]. Specifically, VE consecutively eliminates an agent from the coordination graph, while computing its best response with respect to its neighbors. VE is guaranteed to return the optimal joint arm and has a combinatorial complexity in terms of the induced width of the graph, i.e., the amount of neighbors of an agent at the time of its elimination. However, as the method is typically applied to a loosely-coupled coordination graph, the induced width is generally much smaller than the size of the full joint action space, which renders the maximization problem tractable [14, 15].

Finally, the joint arm that maximizes Equation 5, \(a_t \), is pulled and a reward \(f^t_e(a^e_t) \) will be obtained for each group. The method is formally described in Algorithm 1.

Algorithm 1: MATS

\begin{algorithm}
\begin{algorithmic}
\State **Data:** Prior \(Q^e_a \) per group \(D^e \) and local action \(a^e \)
\State \(H_0 \leftarrow \{ \} \)
\For {\(t \in [1..T] \)}
\For {\(e \in [1..\rho] \), \(a^e \in A^e \)}
\State \(\mu^e_t(a^e) \sim Q^e_a(\cdot | H_{t-1}) \)
\State \(a_t \leftarrow \arg \max_a \sum_{e=1}^{\rho} \mu^e_t(a^e) \) using VE
\State \(\langle f^t_e(a^e_t) \rangle_{e=1}^{\rho} \leftarrow \text{Pull joint arm } a_t \)
\State \(H_t \leftarrow H_{t-1} \cup \{ \langle a^e_t, f^t_e(a^e_t) \rangle_{e=1}^{\rho} \} \)
\EndFor
\EndFor
\end{algorithmic}
\end{algorithm}

MATS belongs to the class of probability matching methods [21].

Definition 4. Given history \(H_{t-1} \), the probability distribution of the pulled arm \(a_t \) is equal to the probability distribution of the optimal arm \(a^* \). Formally,

\[P(a_t = \cdot | H_{t-1}) = P(a^*_t = \cdot | H_{t-1}) \] (6)

Intuitively, MATS samples the local mean rewards according to the beliefs of the user at each time step, and maximizes over those means to find the optimal joint arm according to Definition 1. This process is conceptually similar to traditional TS [28].
4 BAYESIAN REGRET ANALYSIS

Many multi-agent systems are composed of locally connected agents. When formalized as a MAMAB (Definition 1), our method is able to exploit these local structures during the decision process. We provide a regret bound for MATS that scales sublinearly with a factor $\tilde{A}T$, where \tilde{A} is the number of local arms.

Consider a MAMAB $\langle D, A, f \rangle$ with ρ groups and the following assumption on the rewards:

Assumption 1. The global rewards have a mean between 0 and 1, i.e.,
$$\mu(a) \in [0, 1], \forall a \in A.$$

Assumption 2. The local rewards shifted by their mean are σ-subgaussian distributed, i.e.,
$$E[\exp(t(f^e(a^e) - \mu^e(a^e)))] \leq \exp(0.5\sigma^2t^2).$$

We maintain the pull counters $n^e_{t-1}(a^e)$ and estimated means $\hat{\mu}^e_{t-1}(a^e)$ for local arms a^e.

Consider the event E_T, which states that, until time step T, the differences between the local sample means and true means are bounded by a time-dependent threshold, i.e.,
$$E_T \triangleq (\forall e, a^e, t : |\hat{\mu}^e_{t-1}(a^e) - \mu^e(a^e)| \leq c^e_t(a^e)) \quad (7)$$
with
$$c^e_t(a^e) \triangleq \sqrt{\frac{2\sigma^2 \log(\delta^{-1})}{n^e_{t-1}(a^e)}}, \quad (8)$$
where δ is a free parameter that will be chosen later. We denote the complement of the event by $\overline{E_T}$.

Lemma 1. (Concentration inequality) The probability of exceeding the error bound on the local sample means is linearly bounded by $\tilde{A}T\delta$. Specifically,
$$P(\overline{E_T}) \leq 2\tilde{A}T\delta. \quad (9)$$

Proof. Using the union bound (U), we can bound the probability of observing event $\overline{E_T}$ as
$$P(\overline{E_T}) \leq \sum_{t=1}^{T} \sum_{e=1}^{\rho} \sum_{a^e \in A^e} P(|\hat{\mu}^e_{t-1}(a^e) - \mu^e(a^e)| > c^e_t(a^e)) \quad (10)$$
The estimated mean $\hat{\mu}_{t-1}(a^e)$ is a weighted sum of $n_{t-1}(a^e)$ random variables distributed according to a σ-subgaussian with mean $\mu^e(a^e)$. Hence, Hoeffding’s inequality (H) is applicable [30].

\[
P\left(\left|\hat{\mu}_{t-1}(a^e) - \mu^e(a^e)\right| > c^e_{t-1}(a^e)\right) \leq 2 \exp\left(-\frac{n^e_{t-1}(a^e)}{2\sigma^2} (c^e_{t-1}(a^e))^2\right)
\]

\[
\overset{(8)}{=} 2 \exp\left(-\frac{n^e_{t-1}(a^e)}{2\sigma^2} \log(\delta^{-1})\right)
\]

\[
= 2 \exp\left(-\log(\delta^{-1})\right)
\]

\[
= 2 \delta
\]

Therefore, the following concentration inequality on E_T holds:

\[
P(E_T) \leq \sum_{t=1}^{T} \sum_{e=1}^{\rho} \sum_{a^e \in A^e} 2\delta = 2\tilde{A}T\delta.
\]

Lemma 2. (Bayesian regret bound under E_T) Provided that the error bound on the local sample means is never exceeded until time T, the Bayesian regret bound, when using the MATS policy π, is of the order

\[
\mathbb{E}[R(T, \pi) | E_T] \leq \sqrt{32\sigma^2 \tilde{A}\rho T \log(\delta^{-1})}.
\]

Proof. Consider this upper bound on the sample means:

\[
u_t(a) \triangleq \sum_{e=1}^{\rho} \hat{\mu}_{t-1}(a^e) + c^e_{t-1}(a^e).
\]

Given history H_{t-1}, the statistics $\hat{\mu}_{t-1}(a^e)$ and $n_{t-1}(a^e)$ are known, rendering $\nu_t(\cdot)$ a deterministic function. Therefore, the probability matching property of MATS (Equation 6) can be applied as follows:

\[
\mathbb{E}\left[u_t(a_t) | H_{t-1}\right] = \mathbb{E}\left[u_t(a_*) | H_{t-1}\right].
\]
Hence, using the tower-rule (T), the regret can be bounded as

\[
E \left[\sum_{t=1}^{T} \Delta(a_t) \mid E_T \right] \leq \sum_{t=1}^{T} E \left[\mu(a_t) - \mu(a_*) \mid H_{t-1}, E_T \right] = E \left[\sum_{t=1}^{T} E \left[\mu(a_t) - u_t(a_t) \mid H_{t-1}, E_T \right] + E \left[u_t(a_t) - \mu(a_t) \mid H_{t-1}, E_T \right] \right] \leq \sum_{t=1}^{T} E \left[\mu(a_*) - u_t(a_*) \mid H_{t-1}, E_T \right] + E \left[u_t(a_t) - \mu(a_t) \mid H_{t-1}, E_T \right]
\]

Equation 16)

Note that the expression \(\mu(a_*) - u_t(a_*) \) is always negative under \(E_T \), i.e.,

\[
\mu(a_*) - u_t(a_*) \geq \sum_{e=1}^{\rho} c^e_t(a_*) - c^e_t(a_*) = 0,
\]

while \(u_t(a_t) - \mu(a_t) \) is bounded by twice the threshold \(c_t^e(a^e) \), i.e.,

\[
u_t(a_t) - \mu(a_t) \leq \sum_{e=1}^{\rho} c^e_t(a^e) + c^e_t(a^e) = 2 \sum_{e=1}^{\rho} c^e_t(a^e).
\]

Thus, Equation 16 can be bounded as

\[
E \left[\sum_{t=1}^{T} \Delta(a_t) \mid E_T \right] \leq 2 \sum_{t=1}^{T} c^e_t(a^e)_t \leq 2 \sum_{t=1}^{T} \sqrt{\frac{2\sigma^2 \log(\delta^{-1})}{n^e_{t-1}(a^e)_t}} = 2 \sum_{a^e \in A^e} \sum_{t=1}^{T} I\{a^e_t = a^e\} \sqrt{\frac{2\sigma^2 \log(\delta^{-1})}{n^e_{t-1}(a^e)}}
\]

8
where $\mathcal{I}\{\cdot\}$ is the indicator function. The terms in the summation are only non-zero at the time steps when the local action a^e is pulled, i.e., when $\mathcal{I}\{a^e_t = a^e\} = 1$. Additionally, note that only at these time steps, the counter $n_t(a^e)$ increases by exactly 1. Therefore, the following equality holds:

$$
\sum_{t=1}^{T} \mathcal{I}\{a^e_t = a^e\} \sqrt{(n_{t-1}(a^e))^{-1}} = \sum_{k=1}^{n_T(a^e)} \sqrt{k^{-1}}.
$$

(20)

The function $\sqrt{k^{-1}}$ is decreasing and integrable. Hence, using the right Riemann sum,

$$
\sqrt{k^{-1}} \leq \int_{k-1}^{k} \sqrt{x^{-1}} dx.
$$

(21)

Combining Equations (19)(21) leads to a bound

$$
\mathbb{E} \left[\sum_{t=1}^{T} \Delta(a_t) \mid \mathcal{E}_T \right] \\
\overset{(19)}{=} 2 \sum_{a^e \in A^e} \sum_{t=1}^{T} \mathcal{I}\{a^e_t = a^e\} \sqrt{\frac{2\sigma^2 \log(\delta^{-1})}{n_{t-1}(a^e)}} \\
\overset{(20)}{=} \sqrt{8\sigma^2 \log(\delta^{-1})} \sum_{a^e \in A^e} \sum_{k=1}^{n_T(a^e)} \sqrt{k^{-1}} \\
\overset{(21)}{\leq} \sqrt{8\sigma^2 \log(\delta^{-1})} \sum_{a^e \in A^e} \int_{0}^{n_T(a^e)} \sqrt{x^{-1}} dx \\
= \sqrt{8\sigma^2 \log(\delta^{-1})} \sum_{a^e \in A^e} \sqrt{4n_T(a^e)}.
$$

(22)

We use the relationship $||x||_1 \leq \sqrt{n}||x||_2$ between the 1- and 2-norm of a vector x, where n is the number of elements in the vector, as follows:

$$
\sum_{\epsilon=1}^{\rho} \sum_{a^e \in A^e} \sqrt{n_T^\epsilon(a^e)} \leq \sqrt{A} \sum_{\epsilon=1}^{\rho} \sum_{a^e \in A^e} \left(\sqrt{n_T^\epsilon(a^e)}\right)^2.
$$

(23)

Finally, note that the sum of all counts $n_T^\epsilon(a^e)$ is equal to the total number of local pulls done by MATS until time T, i.e.,

$$
\sum_{\epsilon=1}^{\rho} \sum_{a^e \in A^e} n_T^\epsilon(a^e) = \rho T.
$$

(24)
Using the Equations 22-24, the complete regret bound under \mathcal{E}_T is given by

$$
\mathbb{E} \left[\sum_{t=1}^{T} \Delta(a_t) \mid \mathcal{E}_T \right] \overset{22}{\leq} \sqrt{8\sigma^2 \log(\delta^{-1}) \sum_{a^e \in A^e} \sqrt{4n_T^e(a^e)}}
$$

$$
\overset{23}{\leq} \sqrt{8\sigma^2 \log(\delta^{-1})} \sqrt{A} \sqrt{\sum_{e=1}^{p} \sum_{a^e \in A^e} \left(n_T^e(a^e) \right)^2}
$$

$$
\overset{24}{=} \sqrt{8\sigma^2 \log(\delta^{-1})} \sqrt{A} \sqrt{\rho T}
$$

(25)
Theorem 1. Let $\langle D, A, F \rangle$ be a MAMAB. If Assumptions 1 and 2 hold, then the MATS policy π satisfies a Bayesian regret bound of

$$
E \left[R(T, \pi) \right] \leq \sqrt{64\sigma^2 \tilde{A}\rho T \log(\tilde{A}T)} + \frac{2}{AT}
$$

$$
\in O \left(\sqrt{\sigma^2 \tilde{A}\rho T \log(\tilde{A}T)} \right).
$$

Proof. Using the law of excluded middle (M) and the fact that $\Delta(a_t)$ and $P(\mathcal{E}_T \mid \mathcal{H}_{t-1})$ are between 0 and 1 (B), the regret can be decomposed as

$$
E \left[\sum_{t=1}^{T} \Delta(a_t) \right] \overset{(M)}{=} E \left[\sum_{t=1}^{T} \Delta(a_t) \mid \mathcal{E}_T \right] P(\mathcal{E}_T)
$$

$$
+ E \left[\sum_{t=1}^{T} \Delta(a_t) \mid \overline{\mathcal{E}}_T \right] P(\overline{\mathcal{E}}_T)
$$

$$
\overset{(B)}{\leq} E \left[\sum_{t=1}^{T} \Delta(a_t) \mid \mathcal{E}_T \right] + P(\overline{\mathcal{E}}_T).
$$

Then, according to Lemmas 1 and 2 (L), we have

$$
E \left[\sum_{t=1}^{T} \Delta(a_t) \right] \overset{\text{(L)}}{\leq} E \left[\sum_{t=1}^{T} \Delta(a_t) \mid \mathcal{E}_T \right] + P(\overline{\mathcal{E}}_T)
$$

$$
\leq \sqrt{32\sigma^2 \tilde{A}\rho T \log(\delta^{-1})} + 2\tilde{A}T\delta
$$

Finally, choosing $\delta = (\tilde{A}T)^{-2}$, we conclude that

$$
E \left[R(T, \pi) \right] \leq \sqrt{32\sigma^2 \tilde{A}\rho T \log(\delta^{-1})} + 2\tilde{A}T\delta
$$

$$
\leq \sqrt{64\sigma^2 \tilde{A}\rho T \log(\tilde{A}T)} + \frac{2}{AT}
$$

$$
\in O \left(\sqrt{\sigma^2 \tilde{A}\rho T \log(\tilde{A}T)} \right)
$$

Corollary 1. If $|A_i| \leq k$ for all agents i, and if $|D^e| \leq d$ for all groups D^e, then

$$
E \left[R(T, \pi) \right] \in O \left(\rho \sqrt{\sigma^2 k^dT \log(\rho k^d T)} \right)
$$

Proof. $\tilde{A} = \sum_{e=1}^{\rho} |A^e| = \sum_{e=1}^{\rho} \prod_{i \in D^e} |A_i| \leq \rho k^d$.

\square
Corollary 1 tells us that the regret is sub-linear in terms of time T and low-order polynomial in terms of the largest action space of a single agent when the number of groups and agents per group are small. This reflects the main contribution of this work. When agents are loosely coupled, the effective joint arm space is significantly reduced, and MATS provides a mechanism that efficiently deals with such settings. This is a significant improvement over the established classic regret bounds of vanilla TS when the MAMAB is ‘flattened’ and the factored structure is neglected [26, 21]. The classic bounds scale exponentially with the number of agents, which is unfeasible in many multi-agent environments.

5 EXPERIMENTS

We evaluate the performance of MATS on the benchmark problems proposed in the paper that proposed MAUCE [4], which is the current state-of-the-art algorithm for multi-agent bandit problems, and one novel setting that falls outside the domain of the theoretical guarantees for both algorithms.

The first set of benchmarks comprise two synthetic settings (i.e., Bernoulli 0101-Chain and Gem Mining) and a wind farm control task. We compare against a random policy (rnd), Sparse Cooperative Q-Learning (SCQL) and the state-of-the-art algorithm, MAUCE. For SCQL and MAUCE, we use the same exploration parameters provided for those settings [4]. For MATS, we always use non-informative Jeffreys priors.

Additionally, we introduce a novel variant of the 0101-Chain with Poisson-distributed local rewards. A Poisson distribution is supergaussian, meaning that its tails tend slower towards zero than the tails of any Gaussian. Therefore, both the assumptions made in Theorem 1 and in the established regret bound of MAUCE are violated. Additionally, as the rewards are highly skewed, we expect that the use of symmetric exploration bounds in MAUCE will often lead to either over- or underexploration of the local arms. We assess the performance of both methods on this benchmark.

5.1 Bernoulli 0101-Chain

The Bernoulli 0101-Chain consists of n agents and $n - 1$ local reward distributions. Each agent can choose between two actions: 0 and 1. In the coordination graph, agents i and $i + 1$ are connected to a local reward $f^i(a_i, a_{i+1})$. Thus, each pair of agents should locally coordinate in order to find the best joint arm. The local rewards are drawn from a Bernoulli distribution with a different success probability per group. These success probabilities are given in Table 1. The optimal joint action is an alternating sequence of zeros and ones, starting with 0.

To ensure that the assumptions made in the regret analyses of MAUCE and MATS hold, we divide the local rewards by the number of groups, such that the global rewards are between 0 and 1.
Table 1: Bernouilli 0101 Chain – The unscaled local reward distributions of agents \(i \) and \(i+1 \), where \(i \) is even. Each entry shows the success probability for each local arm of agents \(i \) and \(i+1 \), where \(i \) is even. The table is transposed for the case where \(i \) is odd.

\(f^i \sim B \)	\(a_{i+1} = 0 \)	\(a_{i+1} = 1 \)
\(a_i = 0 \)	0.75	1
\(a_i = 1 \)	0.25	0.9

We provide non-informative Jeffreys priors on the unknown means to MATS, which for the Bernoulli likelihood is a Beta prior, \(B(\alpha = 0.5, \beta = 0.5) \) [23]. The results for the Bernoulli 0101-chains are shown in Figure 1(a).

Figure 1: Cumulative normalized regret averaged over 100 runs for the (a) Bernoulli 0101-Chain, (b) Gem Mining and (d) Poisson 0101-Chain, and over 10 runs for the (c) Wind Farm. Both the mean (line) and standard deviation (shaded area) are plotted.
5.2 Gem Mining

Figure 2: Example of a coordination graph in the Gem Mining problem. The red nodes are the mines (rewards), while the blue nodes are the villages (agents).

In the Gem Mining problem, a mining company wants to excavate a set of mines for gems (i.e., local rewards). The goal is to maximize the total number of gems found over all mines. However, the company’s workers live in separate villages (i.e., agents), and only one van per village is available. Therefore, each village needs to decide to which mine its workers should be sent to (i.e., local action). Moreover, workers can only commute to nearby mines (i.e., coordination graph). Hence, a group can be constructed per mine, consisting of all agents that can travel toward the mine. An example of a coordination graph is given in Figure 2.

The reward is drawn from a Bernoulli distribution, where the probability of finding a gem at a mine is $1.03^{w-1}p$ with w the number of workers at the mine and p a base probability that is sampled uniformly random from the interval $[0,0.5]$ for each mine. When more workers are excavating a mine, the probability of finding a gem increases. Each village is populated by a number sampled uniformly random from $[1..5]$. The coordination graph is generated by sampling for each village i a number of mines m_i in $[2..4]$ to which it should be connected. Then, each village i is connected to the mines i to $(i+m_i-1)$. The last village is always connected to 4 mines.

We provide non-informative Jeffreys priors on the unknown means to MATS, which for the Bernoulli likelihood is a Beta prior, $B(\alpha = 0.5, \beta = 0.5)$ [23]. The results for the Gem Mining problem are shown in Figure 1(b).

5.3 Wind Farm Control Application

A wind farm consists of a group of wind turbines, instantiated to extract energy from wind. From the perspective of a single turbine, aligning with the incoming wind vector usually ensures the highest productivity. However, translating this control policy directly towards an entire wind farm may be sub-optimal. As wind passes through the farm, downstream turbines observe
a significantly lower wind speed. This is known as the wake effect, which is due to the turbulence generated behind operational turbines.

In recent work, the possibility of deflecting wake away from the farm through rotor misalignment is investigated [29]. While a misaligned turbine produces less energy on its own, the group’s total productivity is increased. Physically, the wake effect reduces over long distances, and thus, turbines tend to only influence their neighbors. We can use this domain knowledge to define agent groups, and organize them in a graph structure. Note that the graph structure depends on the incoming wind vector. Nevertheless, atmospheric conditions are typically discretized when analyzing operational regimes [17], thus, a graph structure can be made independently for each possible incoming discretized wind vector. We construct a graph structure for one possible wind vector.

![Wind farm layout](image)

Figure 3: Wind farm layout – Dependency graph where the nodes are the turbines and the edges describe the dependencies between the turbines. The incoming wind is denoted by an arrow.

We demonstrate our method on a virtual wind farm, consisting of 11 turbines, of which the layout is shown in Figure 3. We use the state-of-the-art WISDEM FLORIS simulator [25]. For MATS, we assume the local power productions are sampled from Gaussians with unknown mean and variance, which leads to a Student’s t-distribution on the mean when using a Jeffreys prior [16]. The results for the wind farm control setting are shown in Figure 1(c).

5.4 Poisson 0101-Chain

We introduce a novel benchmark with Poisson distributed local rewards, for which the established regret bounds of MATS and MAUCE do not hold. Similar to the Bernoulli 0101-Chain, agents need to coordinate their actions in
order to obtain an alternating sequence of zeroes and ones. However, as the
rewards are highly skewed and supergaussian, this setting is much more chal-
lenging. The means of the Poisson distributions are given in Table 2. We
also divide the rewards by the number of groups, similar to the Bernoulli
0101-Chain.

$$f^i \sim \mathcal{P} \quad a_{i+1} = 0 \quad a_{i+1} = 1$$

$a_i = 0$	$a_i = 1$
0.1	0.2
0.3	0.1

Table 2: Poisson 0101 Chain – The unscaled local reward distributions of
agents i and $i + 1$. Each entry shows the mean for each local arm of agents i
and $i + 1$.

For MAUCE, an exploration parameter must be chosen. This exploration
parameter denotes the range of the observed rewards. As a Poisson distribu-
tion has unbounded support, we rely on percentiles of the reward distribution.
Specifically, as 95% of the rewards when pulling the optimal arm falls below
1, we choose 1 as the exploration parameter of MAUCE. For MATS we use
non-informative Jeffreys priors on the unknown means, which for the Poisson
likelihood is a Gamma prior, $\mathcal{G}(\alpha = 0.5, \beta = 0)$ [23]. The results are shown in
Figure 1(d).

6 DISCUSSION

While both MAUCE and MATS achieve sub-linear regret in terms of time and
low-order polynomial regret in terms of the number of local arms for sparse
coordination graphs, MATS consistently outperforms MAUCE empirically, as
well as SCQL. Especially in the wind farm control task, we can see that the
cumulative regret of MATS converges to about 2, while the cumulative regret
of MAUCE continues increasing past 10 (see Figure 1(c)). We argue that the
high performance of MATS is due to the ability to seamlessly include domain
knowledge about the shape of the reward distributions and treat the prob-
lem parameters as unknowns. To highlight the power of this property, we
introduced the Poisson 0101-chain. In this setting, the reward distributions
are highly skewed, for which the mean does not match the median. There-
fore, in our case, since the mean falls well above 50% of all samples, it is
expected that for the initially observed rewards, the true mean will be higher
than the sample mean. Naturally, this bias averages out in the limit, but may
have a large impact during the early exploration stage. The high standard
deviations in Figure 1(d) support this impact. Although the established re-
gret bounds of MATS and MAUCE do not apply for supergaussian reward
distributions, we demonstrate that MATS exploits density information of the
rewards to achieve more targeted exploration. In Figure 1(d), the cumulative re-
ret of MATS stagnates around 7500 time steps, while the cumulative re-
gret of MAUCE continues to increase significantly. As MAUCE only supports symmetric exploration bounds, it is challenging to correctly assess the amount of exploration needed to solve the task.

Throughout the experiments, exploration constants had to be specified for MAUCE, which were challenging to choose and interpret in terms of the density of the data. In contrast, MATS uses either statistics about the data (if available) or, potentially non-informative, beliefs defined by the user. For example, in the wind farm case, the spread of the data is unknown. MATS effectively maintains a posterior on the variance and uses it to balance exploration and exploitation, while still outperforming MAUCE with a manually calibrated exploration range (see Figure 1(c)).

7 RELATED WORK

Multi-agent reinforcement learning and planning with loose couplings has been investigated in sequential decision problems [15, 18, 11, 27]. In sequential settings, the value function cannot be factorized exactly. Therefore, it is challenging to provide convergence and optimality guarantees. While for planning some theoretical guarantees can be provided [27], in the learning literature the focus has been on empirical validation [18]. In this work, we focus on MAM-ABs, which are single-shot stateless problems. In such settings, the reward function is factored exactly into components that only depend on a subset of agents.

The combinatorial bandit [6, 7, 12, 9] is a variant of the multi-armed bandit, in which, rather than one-dimensional arms, an arm vector has to be pulled. In our work, the arms’ dimensionality corresponds to the number of agents in our system, and similarly to combinatorial bandits, the number of arms exponentially increases with this quantity. We consider a variant of this framework, called the semi-bandit problem [3], in which local components of the global reward are observable. [9] constructed an algorithm for this setting that assumes access to an \((\alpha, \beta)\)-oracle, which provides a joint action that outputs a fraction \(\alpha\) of the optimal expected reward with probability \(\beta\). Instead, we assume the availability of a coordination graph, which we argue is a reasonable assumption in many multi-agent settings.

Sparse cooperative Q-learning is an algorithm that also assumes the availability of a coordination graph [19]. However, although strong experimental results are given, no theoretical guarantees were provided. Later, the Multi-Agent Upper-Confidence Exploration algorithm was introduced [4]. The authors provide a tight problem-dependent regret bound for MAMABs, and demonstrate high performance on a variety of benchmarks. Both methods leverage the coordination graph and use variable elimination to find the optimal joint action, given the local rewards per group of agents. Our method builds upon this idea, but provides a Bayesian alternative based on Thompson sampling (TS).
8 CONCLUSIONS

We proposed Multi-Agent Thompson Sampling (MATS), a novel Bayesian algorithm for multi-agent multi-armed bandits. The method exploits loose connections between agents to solve multi-agent coordination tasks efficiently. Specifically, we proved that, for σ-subgaussian rewards with bounded means, the expected cumulative regret decreases sub-linearly in time and low-order polynomially in the highest number of actions of a single agent when the coordination graph is sparse. Empirically, we showed a significant improvement over the state-of-the-art algorithm, MAUCE, on several synthetic benchmarks and on a realistic wind farm control task.

9 ACKNOWLEDGMENTS

Timothy Verstraeten, Eugenio Bargiacchi and Pieter J.K. Libin were supported by an FWO PhD grant (Fonds Wetenschappelijk Onderzoek - Vlaanderen). Diederik M. Roijers was a Postdoctoral Fellow with the FWO (grant #12J0617N).

References

[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In Conference on Learning Theory, pages 39–1, 2012.

[2] S. Agrawal and N. Goyal. Further optimal regret bounds for thompson sampling. In Artificial intelligence and statistics, pages 99–107, 2013.

[3] J.-Y. Audibert, S. Bubeck, and G. Lugosi. Minimax policies for combinatorial prediction games. In COLT, volume 19, pages 107–132, 2011.

[4] E. Bargiacchi, T. Verstraeten, D. M. Roijers, A. Nowé, and H. Hasselt. Learning to coordinate with coordination graphs in repeated single-stage multi-agent decision problems. In International Conference on Machine Learning, pages 491–499, 2018.

[5] C. Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK 1996: Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge, pages 195–210, 1996.

[6] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and non-stochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

[7] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System Sciences, 78(5):1404–1422, 2012.
[8] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In Advances in neural information processing systems, pages 2249–2257, 2011.

[9] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework, results and applications. In Proceedings of the 30th international conference on machine learning, pages 151–159, 2013.

[10] D. Claes, F. Oliehoek, H. Baier, and K. Tuyts. Decentralised online planning for multirobot warehouse commissioning. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pages 492–500. International Foundation for Autonomous Agents and Multiagent Systems, 2017.

[11] Y.-M. De Hauwere, P. Vrancx, and A. Nowé. Learning multi-agent state space representations. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’10, pages 715–722, 2010.

[12] Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking (TON), 20(5):1466–1478, 2012.

[13] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored MDPs. In Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages 673–682, 2001.

[14] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored mdps. In Advances in neural information processing systems, pages 1523–1530, 2002.

[15] C. Guestrin, S. Venkataraman, and D. Koller. Context-specific multiagent coordination and planning with factored mdps. In AAAI/IAAI, pages 253–259, 2002.

[16] J. Honda and A. Takemura. Optimality of thompson sampling for gaussian bandits depends on priors. In Artificial Intelligence and Statistics, pages 375–383, 2014.

[17] International Electrotechnical Commission. Wind turbines – Part 4: Design requirements for wind turbine gearboxes (No. IEC 61400-4), 2012. accessed 6 March 2019.

[18] J. Kok and N. Vlassis. Using the max-plus algorithm for multiagent decision making in coordination graphs. In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, editors, RoboCup 2005: Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.
[19] J. R. Kok and N. Vlassis. Sparse cooperative q-learning. In *Proceedings of the Twenty-first International Conference on Machine Learning*, ICML ’04, New York, NY, USA, 2004.

[20] D. Koller and R. Parr. Policy iteration for factored MDPs. In *Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence*, pages 326–334, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[21] T. Lattimore and C. Szepesvári. Bandit algorithms. *preprint*, 2018.

[22] P. J. Libin, T. Verstraeten, D. M. Roijers, J. Grujic, K. Theys, P. Lemey, and A. Nowé. Bayesian best-arm identification for selecting influenza mitigation strategies. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 456–471. Springer, 2018.

[23] D. Lunn, C. Jackson, N. Best, D. Spiegelhalter, and A. Thomas. *The BUGS book: A practical introduction to Bayesian analysis*. Chapman and Hall/CRC, 2012.

[24] J. R. Marden, S. D. Ruben, and L. Y. Pao. A model-free approach to wind farm control using game theoretic methods. *IEEE Transactions on Control Systems Technology*, 21(4):1207–1214, 2013.

[25] NREL. FLORIS. Version 1.0.0, 2019.

[26] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. *Mathematics of Operations Research*, 39(4):1221–1243, 2014.

[27] J. Scharpff, D. M. Roijers, F. A. Oliehoek, M. T. Spaan, and M. M. de Weerdt. Solving transition-independent multi-agent MDPs with sparse interactions. In *AAAI 2016: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence*, 2016.

[28] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

[29] M. T. Van Dijk, J. W. Wingerden, T. Ashuri, Y. Li, and M. Rotea. Yaw-misalignment and its impact on wind turbine loads and wind farm power output. *Journal of Physics: Conference Series*, 753(6), 2016.

[30] R. Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge University Press, 2018.

[31] T. Verstraeten, A. Nowe, J. Keller, Y. Guo, S. Sheng, and J. Helsen. Fleetwide data-enabled reliability improvement of wind turbines. *Renewable and Sustainable Energy Reviews*, 109:428–437, 2019.
[32] M. Wiering. Multi-agent reinforcement learning for traffic light control. In *Machine Learning: Proceedings of the Seventeenth International Conference (ICML’2000)*, pages 1151–1158, 2000.