ORIGINAL ARTICLE

GB virus C infection: Clinical significance

Xiang Wei Meng MD1, Masafumi Komatsu MD1, Shigetoshi Ohshima MD1, Kunio Nakane MD1, Tomoo Fujii MD1, Takashi Goto MD1, Kazuo Yoneyama MD1, Tomoyuki Kuramitsu MD1, Motokazu Mukaide PhD2

In 1995 and 1996, respectively, Simons et al (1) reported GB virus C (GBV-C) and Linnen et al (2) reported hepatitis G virus as new hepatitis viruses capable of causing non-A through -E hepatitis. These two viruses were concluded to be identical because they belong to the species Flaviviridae and show 86% homology at the nucleotide level and 95% at the amino acid level (3). This virus infects humans, inducing acute hepatic injury and sustaining infection. However, its clinical significance remains largely unclear.

To address this uncertainty, we examined rates of GBV-C RNA positivity in patients with fulminating hepatitis, acute hepatitis, chronic hepatitis, liver cirrhosis and hepatocellular carcinoma.

Key Words: Clinical study; GB virus C; Hepatitis G virus; Interferon therapy
GBV-C infection

TABLE 1

Disease	HbsAg-positive	HCV RNA-positive	HBsAg and HCV RNA-positive	Non-A through -C*	Total
Fulminant hepatitis	0/3	0	0/1	0/8	0/12
Acute hepatitis	1/2 (50%)	0/2	0	1/4 (25%)	2/8 (25%)
Total	1/5 (20%)	0/2	0/1	1/12 (8.3%)	2/20 (10%)

*Immunoglobulin M antihapatitis A-negative, hepatitis B surface antigen (HBSAg)-negative and hepatitis C virus (HCV) RNA-negative

PATIENTS AND METHODS

Patients: A total of 231 patients (151 males, 80 females; mean age 51.8±1.3 years) with viral hepatitis were selected randomly. They were hospitalized in the authors' department between January 1987 and December 1996: 12 with fulminant hepatitis, eight with acute hepatitis, 127 with chronic hepatitis, 40 with liver cirrhosis and 44 with hepatocellular carcinoma. All patients with chronic hepatitis and 28 with cirrhosis were diagnosed histologically. Patients with fulminant hepatitis and acute hepatitis, and 12 patients with liver cirrhosis were diagnosed by blood chemistry tests and hepatic imaging (ultrasound, computed tomography or magnetic resonance imaging). Patients with hepatocellular carcinoma were diagnosed histologically or by hepatic imaging including angiography.

For interferon (IFN) therapy, IFN-α was used in six cases, and a combination of IFN-β and IFN-α was used in five others. In all cases, therapy continued for six months. The total IFN dose was 702 to 780 MU. The trial of IFN therapy conformed to the ethical guidelines of the Declaration of Helsinki; treated patients gave informed consent.

The effect of IFN therapy was evaluated virologically as follows. Patients in whom GBV-C RNA or hepatitis C (HCV) RNA was negative six months after cessation of IFN therapy were defined as having a sustained response; others were considered nonresponders. In a similar fashion, patients in whom alanine aminotransferase (ALT) levels were normal for more than six months after cessation of IFN therapy were defined as having a sustained response; all others were categorized as nonresponders.

Detection of GBV-C RNA: Serum RNA was extracted from 100 µL serum using the Sepa Gene RV-R kit (Sanko, Tokyo, Japan). cDNA was synthesized from the RNA sample at 37°C for 1 h using Moloney murine leukemia virus reverse transcriptase (GIBCO BRL, Gaithersberg, Maryland) and a random primer. GBV-C RNA was detected by reverse transcription-nested polymerase chain reaction (PCR) with specific primers derived from the 5′ untranslated subgenomic region (4,5). First round PCR was performed with the sense primer 5g2: 5′-GTTGAGTACCGTTGCTAAATCCCGGT CA-3′ and the antisense primer 5r2: 5′-ACATGTTGGTTCGTTGGAT-3′, for 35 cycles under the same conditions as for first round PCR. Amplicons were analyzed by electrophoresis on 3% agarose gels stained with ethidium bromide. Nucleotide sequences in PCR-positive subjects were determined by the dideoxy chain termination method using the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems Division, Foster City, California).

In each case, serum was collected aseptically, immediately frozen at −80°C, stored and thawed before examination.

RESULTS

The incidence of GBV-C RNA in patients with acute hepatic disease is shown in Table 1. Among patients with fulminant hepatitis, GBV-C RNA was not found in the serum initially in any case, but the serum became positive after plasma exchange in one patient. Among patients with acute hepatitis, one of two positive for hepatitis B surface antigen (HBSAg) and one of four with non-A through -C hepatitis were positive for GBV-C RNA.

Frequency of GBV-C RNA among patients with chronic hepatic disease was 18% for HBSAg-positive chronic hepatitis patients, 20% for cirrhosis patients and 16.7% for hepatitis B patients. Among HCV RNA-positive cases, prevalence of GBV-C RNA was 9.8% for chronic hepatitis, 4% for cirrhosis, 11% for hepatocellular carcinoma and 9.3% for hepatitis C. Among non-B, non-C hepatitis patients, positive cases accounted for 6.3% (Table 2).

Positivity for GBV-C RNA in blood and clinical features of patients with chronic hepatitis C are shown in Table 3. With respect to sex, mean age, history of transfusion, ALT, histology and therapeutic effect of IFN against HCV, no significant difference was observed among the 11 patients positive for GBV-C RNA and the 101 negative patients.

Eleven patients with chronic hepatitis showing combined infection with HCV and GBV-C were followed for longer than one year after IFN treatment. GBV-C RNA, HCV RNA and ALT were determined serially over time to assess the effect of IFN therapy. In three patients in whom GBV-C RNA showed a sustained response, ALT demonstrated a sustained response in one and no response in two. In eight patients in whom GBV-C RNA did not respond, ALT demonstrated a sustained response in two and no response in six. Meanwhile, in three patients in whom HCV RNA showed a sustained response, ALT demonstrated a sustained...
The course of a patient with non-A through -C acute hepatitis and GBV-C RNA positivity is summarized in Figure 2. The patient noted dark yellowish urine about one month before medical consultation. About 10 days later, cold-like symptoms commenced. Maximum serum levels of ALT reached 1200 U/L, normalizing about 12 weeks later. Total bilirubin level reached a maximum of 23 mg/dL, per-

DISCUSSION

In patients with chronic hepatic diseases, GBV-C frequently has been found to coinfect with HCV. Linnen et al (2) reported the incidence of coinfection with GBV-C in chronic hepatitis C to be 18.8%, Dawson et al (6) about 20% and Schleicher et al (7) 19%. In Japan, coinfection has been re-

In 11 patients who were GBV-C RNA-positive and 101 who were GBV-C RNA-negative, among those infected with chronic hepatitis C, no difference was observed in clinical findings, ALT or liver histology. Moreover, changes in ALT after IFN therapy frequently coincided with the changes in HCV RNA positivity but correlated less with positivity for GBV-C RNA. Therefore, we believe that HCV played the important role in hepatocellular injury in cases with coinfection. Antigenomic GBV-C RNA has recently been detected in the liver, revealing that the virus had proliferated there. However, in that report, no clinicopathological difference was found between GBV-C RNA-positive and -negative cases of chronic hepatitis C. Thus, involvement of the virus in chronic hepatic diseases was felt to be minimal, as we also concluded. All hepatocellular carcinomas associated with serum GBV-C RNA positivity were also associated with positivity for HBV- or HCV-related markers. In hepatocellular carcinoma associated with chronic non-B, non-C hepatitis, we found no patient to be positive for GBV-C RNA; Linnen et al (2) reported similar findings. Recently, an immunoassay for antibodies against a protein molecule encoded by the en-

TABLE 2

Disease	HBsAg-positive	HCV-positive	HBsAg and HCV RNA-positive	Non-A through -C*	Total
Chronic hepatitis	2/11 (18%)	11/112 (9.8%)	0/3	0/3	13/127 (10.2%)
Liver cirrhosis	1/5 (20%)	1/26 (4%)	0/2	1/7 (14%)	3/40 (7.5%)
Hepatocellular carcinoma	0/2	4/33 (11%)	1/1	0/6	5/44 (11.4%)
Total	3/18 (16.7%)	16/173 (9.3%)	1/4 (25%)	1/16 (6.3)	21/211 (10%)

*Immunoglobulin M antihepatitis A-negative, hepatitis B surface antigen (HBsAg)-negative and hepatitis C virus (HCV) RNA-negative

TABLE 3

Clinical data	Chronic hepatitis patients with GBV-C coinfected (n=11)	Chronic hepatitis patients with HCV infection (n=101)
Age (years)	42±9.5	47±13
Male/female	7/4	59/42
Transfusion history	2 (18.2%)	16 (21%)
Alanine aminotransferase (U/L)	107±78	102±107
Histology	Chronic persistent hepatitis	9.3%
	Chronic aggressive hepatitis 2a	90.1%
	Chronic aggressive hepatitis 2b	71%
	HCV-related response to interferon	9.9%
	Sustained response	3 (27.3%)
	No response	8 (72.7%)

All values are not significant

reported to range from 3% to 10% (4,8,9). In the present study, the incidence of coinfection was 9.8%.

In 11 patients who were GBV-C RNA-positive and 101 who were GBV-C RNA-negative, among those infected with chronic hepatitis C, no difference was observed in clinical findings, ALT or liver histology. Moreover, changes in ALT after IFN therapy frequently coincided with the changes in HCV RNA positivity but correlated less with positivity for GBV-C RNA. Therefore, we believe that HCV played the important role in hepatocellular injury in cases with coinfection. Antigenomic GBV-C RNA has recently been detected in the liver, revealing that the virus had proliferated there. However, in that report, no clinicopathological difference was found between GBV-C RNA-positive and -negative cases of chronic hepatitis C. Thus, involvement of the virus in chronic hepatic diseases was felt to be minimal, as we also concluded. All hepatocellular carcinomas associated with serum GBV-C RNA positivity were also associated with positivity for HBV- or HCV-related markers. In hepatocellular carcinoma associated with chronic non-B, non-C hepatitis, we found no patient to be positive for GBV-C RNA; Linnen et al (2) reported similar findings. Recently, an immunoassay for antibodies against a protein molecule encoded by the envelope 2 segment of the GBV-C genome was developed. Detection of these antibodies seems to exclude the viral genome from serum (11). Our study detects the presence of GBV-C; we did not perform the immunoassay for antibodies. Existing reports on hepatocellular injury by GBV-C can be divided into two groups – one suggesting that the virus induces serious hepatic disorders and the other group concluding that resulting hepatic injury is mild. The former view was first reported by Yoshiba et al (12) with respect to fulminant hepatitis of unknown etiology, three of six such patients were GBV-C RNA-positive. However, Kuroki et al (13) suggested that GBV-C could not be considered the cause of fulminant hepatitis because, of seven patients with fulminant hepatitis studied, no patient’s serum was GBV-C RNA-positive. These results suggest that infection with GBV-C and onset of fulminant non-A through -C hepatitis show little correlation.
Figure 1 Efficacy of interferon (IFN) therapy against GB virus C (GBV-C) in chronic hepatitis patients with GBV-C and hepatitis C virus (HCV) coinfection. Panel A Serial determinations of alanine aminotransferase (ALT) in three patients with virologic sustained responses according to GBV-C RNA. Panel B ALT in eight patients who were virologically nonresponsive according to GBV-C RNA. Correlation is relatively poor between GBV-C virologic response and the changes in ALT after cessation of IFN therapy. Panel C Serial determinations of ALT in three patients showing a sustained virologic response with respect to HCV. Panel D Serial profile of ALT concentration in eight patients with nonresponding HCV RNA positivity. A good correlation is seen between HCV virologic response and changes in ALT after cessation of IFN therapy.

Figure 2 Clinical course of a patient with acute hepatitis associated with GB virus C (GBV-C) RNA positivity. This patient showed relatively severe jaundice with complete biochemical resolution of hepatitis. However, GBV-C RNA was persistent. ALT Alanine aminotransferase; T.Bil Total bilirubin.
Infection with GBV-C was found in one patient with acute non-A through -C hepatitis. Hepatitis D virus coinfects with hepatitis B virus, and hepatitis E virus is not present in Japan. These findings indicate that the above patient was considered to have acute non-A through -E hepatitis. The patient complained of severe symptoms and demonstrated marked jaundice. This patient seemed to be infected with GBV-C alone, but viral RNA was still detected after clinical hepatitis had resolved. Alter et al (14) studied 10 patients with acute hepatitis in whom GBV-C RNA was positive, reporting that total bilirubin concentrations showed no elevation and that any changes associated with GBV-C were mild, unlike the apparent situation of the patient we report here.

GBV-C is classified into three types by molecular analysis: one found predominantly in Africa, another dominant in America and the third most prevalent in Asia. The strain infecting the patient reported here was identified as the Asian type (4). Heringlake et al (15) reported characteristic base-substitution mutations commonly seen in the NS 3 region in patients with fulminant hepatitis and GBV-C RNA positivity. Accordingly, further study of the relationship between acute hepatic disorders and genetic variation among viruses is necessary.

REFERENCES
1. Simons JN, Leary TP, Dawson GJ, et al. Isolation of novel virus-like sequences associated with human hepatitis. Nat Med 1995;1:564-9.
2. Linnen J, Wages J Jr, Zhang-Keck ZY, et al. Molecular cloning and disease association of hepatitis G virus: a transfusion-transmissible agent. Science 1996;271:505-8.
3. Leary TP, Muerhoff AS, Simons JN, et al. Sequence and genomic organization of GBV-C: a novel member of the flaviviridae associated with human non-A-E hepatitis. J Med Virol 1996;48:60-7.
4. Orito E, Mizokami M, Nakano T, et al. GB virus C/hepatitis G virus infection among Japanese patients with chronic liver diseases and blood donors. Virus Res 1996;46:89-93.
5. Meng XW, Komatsu M, Ohshima S, et al. Efficacy of interferon therapy to GBV-C/HGV in patients with GBV-C/HGV and HCV coinfection. Hepatol Res 1996;50:97-103.
6. Dawson GJ, Schlauder GG, Pilot-Matias TJ, et al. Prevalence studies of GB virus-C infection using reverse transcriptase-polymerase chain reaction. J Med Virol 1996;50:97-103.
7. Schleicher S, Chaves RL, Dehmer T, Gregor M, Hess G, Flehmig B. Identification of GBV-C Hepatitis G RNA in chronic hepatitis C patients. J Med Virol 1996;50:714.
8. Sugai Y, Nakayama H, Fukuda M, et al. Infection with GB virus C in patients with chronic liver disease. J Med Virol 1997;51:175-81.
9. Zhang XH, Shinzawa H, Shao L, et al. Detection of hepatitis G virus RNA in patients with hepatitis B, hepatitis C, and non-A-E hepatitis by RT-PCR using multiple primer sets. J Med Virol 1997;52:385-90.
10. Madejon A, Fogeda M, Bartolome J, et al. GB virus C RNA in serum, liver, and peripheral blood mononuclear cells from patients with chronic hepatitis B, C, and D. Gastroenterology 1997;113:571-8.
11. Tacke M, Kiyosawa K, Stark K, et al. Detection of antibodies to a putative hepatitis G virus envelope protein. Lancet 1997;349:318-20.
12. Yoshih M, Okamoto H, Mishiro S. Detection of the GBV-C hepatitis virus genome in serum from patients with fulminant hepatitis of unknown aetiology. Lancet 1995;346:1131-2.
13. Kuroki T, Nishiguchi S, Tanaka M, Enomoto M, Kobayashi K. Does GBV-C cause fulminant hepatitis in Japan? Lancet 1996;347:908.
14. Alter HJ, Nakatsui Y, Melpolder J, et al. The incidence of transfusion-associated hepatitis G virus infection and its relation to liver disease. N Engl J Med 1997;336:747-54.
15. Heringlake S, Osterkamp S, Trautwein C, et al. Association between fulminant hepatic failure and a strain of GBV virus C. Lancet 1996;348:1626-9.
Submit your manuscripts at http://www.hindawi.com