Critical Review

A Patient-Level Data Meta-analysis of the Abscopal Effect

Steven J. Hatten Jr, BS,a Eric J. Lehrer, MD, MS,b Jenn Liao, BA,a Congzhou M. Sha, MS,a Daniel M. Trifiletti, MD,c Shankar Siva, MD, PhD,d Sean M. McBride, MD, MPH,e David Palma, MD,f Sheldon L. Holder, MD, PhD,g and Nicholas G. Zaorsky, MD, MSa,h,*

aDepartment of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania; bDepartment of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York; cDepartment of Radiation Oncology, Mayo Clinic, Jacksonville, Florida; dSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; eDepartment of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; fDepartment of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; gDivision of Hematology and Oncology, Brown University Warren Alpert School of Medicine, Providence, Rhode Island; hDepartment of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, Ohio

Received April 15, 2021; accepted January 12, 2022

Abstract

Purpose: The abscopal effect is defined when a form of local therapy causes tumor regression of both the target lesion and any untreated tumors. Herein cases of the abscopal effect were systematically reviewed and a patient-level data analysis was performed for clinical predictors of both duration of response and survival.

Methods and Materials: The Population, Intervention, Control, Outcome, Study (PICOS) design approach, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) literature selection process, and Meta-analysis of Observational Studies in Epidemiology (MOOSE) were used to find articles published before September 2019 in MEDLINE/PubMed and Google Scholar. Inclusion criteria were (1) population: patients with reported abscopal response; (2) intervention: documented treatment(s); (3) control: none; (4) outcomes: overall and progression-free survival; and (5) setting: retrospective case reports. Time from treatment until abscopal response and time from abscopal response until progression/death were calculated. Univariate and multivariate analyses were conducted for survival outcomes.

Results: Fifty studies (n = 55 patients) were included. Median age was 65 years (interquartile range [IQR], 58-70) and 62% were male. Fifty-four (98%) patients received radiation therapy, 34 (62%) received radiation therapy alone, 5 (9.1%) underwent surgery, 4 (7.3%) received chemotherapy, and 11 (20%) received immunotherapy. Median total dose was 32 Gy (IQR, 25.5-48 Gy) and median dose per fraction was 3 Gy (IQR, 2-7.2). Median time until abscopal response was 4 months (IQR, 1-5; min 0.5, max 24). At 5 years, overall

Sources of support: This work had no specific funding.

Disclosures: Dr Zaorsky is supported by startup funding from the Penn State Cancer Institute and Penn State College of Medicine, and is funded by the National Institutes of Health Grant LRP 1 L30 CA231572-01 and by the American Cancer Society — Tri State CEOs Against Cancer Clinician Scientist Development Grant, CSGD-20-013-01-CCE. Dr Zaorsky and Dr Trifiletti received remuneration from Springer Nature for the textbook, Absolute Clinical Radiation Oncology Review. Dr Siva is supported by the Cancer Council Victoria Colebatch Fellowship and Peter MacCallum Discovery Partner Fellowship. Dr McBride is supported by funding from Genentech, Janssen, and Stand-Up-to-Cancer.

Data sharing statement: All data generated and analyzed during this study are included in this published article (and its supplementary information files).

*Corresponding author: Nicholas G. Zaorsky, MD, MS; E-mails: nzaorsky@pennstatehealth.psu.edu, nicholaszaorsky@gmail.com

https://doi.org/10.1016/j.adro.2022.100909
2452-1094/© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Survival was 63% and distant progression-free survival was 45%. No variables had statistical significance in predicting duration of response or survival.

Conclusions: Almost all reported cases of the abscopal response are after radiation therapy; however, there are no known predictors of duration of response or survival.

© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The abscopal effect is defined when a form of local therapy (eg, radiation therapy [RT]) causes tumor regression of both the target lesion and any untreated tumors. Precise biological mechanisms are unknown, but the immune system may be integral in abscopal responses (Fig. 1).1,13 Owing to promising preclinical data, interest exists in combining immunotherapy with hypofractionated RT to stimulate abscopal responses4-7 and improve patient outcomes.1,8-19

Various mechanisms have been proposed to explain how radiation interacts with the immune system.10-12,20 Synergistic RT and immunotherapy have been shown to promote local immune responses4-7,13 and have been hypothesized to improve the probability of tumor control.11 As a brief review, high dose per fraction RT has been shown to stimulate tumor associated antigen presentation and causes an increased ratio of immunologic cell death to tolerogenic responses, which stimulates CD8+ T lymphocytes, dendritic cells, and natural killer cells.11 Immune checkpoint inhibitors prevent immune tolerance of tumor cells by blocking cellular targets (ie, Programmed Cell Death-1 and Cytotoxic T-Lymphocyte Antigen-4), which are expressed by tumor suppressor cells (CD4+ T lymphocytes, CD8+ T lymphocytes, dendritic cells, and natural killer cells).4-7,11,13 These synergistic effects were thought to prime the immune system and induce an abscopal response.

Previous systematic reviews have examined the abscopal effect2,9; however, data on progression-free survival, distant metastasis, and overall survival were not reported; use of systemic therapies (including immune checkpoint inhibitors) were not routinely mentioned; and analyses for predictors of response were not performed. The hypothesis was that certain clinical covariates might predict for survival of patients with an abscopal response. Thus, we performed the first patient-level data meta-analysis for predictors of response.

Methods and Materials

Literature selection

The Population, Intervention, Control, Outcome, Study (PICOS) design approach was used to define the inclusion criteria (Table 1). A systematic search was...
performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) literature selection process (Fig. 2) of studies in MEDLINE (PubMed) and Google Scholar. Inclusion criteria were (1) population: patients with reported abscopal response, which was defined by any form of local therapy causing regression of both the target lesion and any untreated tumors; (2) intervention: documented treatment(s); (3) control: none; (4) outcomes: overall and progression-free survival; and (5) setting: retrospective case reports.

Table 1	PICOS inclusion criteria
Population	Case reports of the abscopal effect published before September 26, 2019.
Intervention	Clearly defined cancer therapy at time of abscopal response and prior courses of treatment (eg, radiation therapy, immunotherapy, chemotherapy, target therapy).
Control	None.
Outcomes	Overall and progression-free survival. Time from treatment until abscopal response and time from abscopal response until progression or death were calculated. For overall and progression-free survival, the start time was calculated from the time of abscopal effect.
Study design	Case reports and case series published in the English literature.

Abbreviation: PICOS = Population, Intervention, Control, Outcome, Study.

Figure 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
This method of a patient-level data meta-analysis has been described previously in the literature. Relevant case reports were systematically identified through a search of PubMed/MEDLINE and Google Scholar with the broad term “abscopal effect.” The initial search yielded 701 articles. Reports that were cited or linked from any review articles and the individual case reports were included. After identifying 98 articles, 4 were rejected because they were not case reports. The remaining articles were screened by the first author (S.J.H.) and were included based upon the aforementioned criteria. Patients could receive any combination of treatment: surgery, RT, immunotherapy, chemotherapy, or targeted therapy for any malignancy. Finally, 50 studies including 55 patients were included.

Data abstraction and analysis

The definition for the start time of an abscopal effect was marked by any regression at an untreated tumor site as noted by imaging, per the report of primary authors from each case report. Individual case reports were reviewed by authors and information was manually extracted and coded into a database. The following data were coded from each case report: characteristics about patients (ie, age, sex), cancer (ie, type [per National Comprehensive Cancer Network guidelines], histology, mutation, stage), treatments received at any point before an abscopal response (ie, surgery, radiation, chemotherapy, immunotherapy), radiation dose (ie, Gy, dose/Gy, biologically effective dose with an α/β of 10), treatment received during the abscopal response (eg, radiation, chemotherapy, immunotherapy, target therapy), time from radiation to an abscopal effect, interval of follow-up/recurrence, and outcomes (ie, overall survival and distant progression-free survival at last known contact date). Unknown/missing variables were coded as missing in the database.

Results

The data of both patient and cancer characteristics are in Table 2. Fifty studies (n = 55 patients) published from 1954 to 2019 met inclusion criteria and were used. The median patient age was 65 years (interquartile range [IQR], 57-70), and there were 34 (62%) men and 21 (38%) women. Although all patients had metastatic disease at the time of the abscopal effect, only 17 (31%) patients initially presented with a metastatic tumor, and all others had recurrences after initially localized disease. Sixty-seven percent of patients had 5 cancer types: non-small cell lung cancer (NSCLC) (10, 18%), kidney (9, 16%), melanoma (7, 13%), lymphoma (6, 11%), and hepatobiliary (5, 9.1%).

Data pertinent to treatment characteristics are in Table 2. Treatment analysis was broken up into 3 phases: (1) prior treatment course, (2) treatment course leading up to an abscopal response, and (3) treatment during or after an abscopal response. All but 1 patient received RT either at the time of an abscopal response or in prior courses of therapy. (1) Prior treatment courses were as follows (treatments in this phase were not mutually exclusive): 9 (16%) had RT28,33,38,41,46,53,63,72,74 26 (47%) had surgery,23,24,28,31,33,38-42,45,48,53-55,60,66,70,74,76 23 (42%) had chemotherapy,23,27,28,31,32,35,36,38,40-42,48,49,51,53,56,59,63,67,68,70,72,74 and 14 (25%) had immunotherapy.20,29,32,39,41,45,53,54,65,67,68,70,72,76 (2) During the course of treatment leading up to an abscopal response, 34 (62%) patients received RT alone,24,32,34,36,37,40,43-45,46,49,51-53,55,56,57-59,62,64,66-69,71,73,74,76 5 (9.1%) underwent surgery with RT25,27,28,35,54 4 (7.3%) received chemotherapy with RT28,39,45,51, and 11 (20%) received immunotherapy with RT.29,31,38,41,42,54,60,65,66,70,72 (3) Treatments during or after the abscopal response were as follows: 22 (40%) patients received RT only to their primary tumor72,79,31,35,37,39,42,43,45,46,49,52,57,59,68,71,73,76 and 29 (53%) received RT only to a metastasis.23,25,28,32,33,38,40,41,43-45,48,51,53-56,60,64,67,69,70,71,72,74 Three (5.5%) patients received RT to both the primary tumor and a metastasis,24,30,62 but still experienced the abscopal response at a distant site from radiation (Table 2). Only 1 (1.8%) patient did not receive RT during the course of treatment leading to an abscopal response, but had a history of prior RT (Table 2).63 Targeted therapy was documented in 8 (15%) cases.24,43,48,53,64,67,68 The median reported radiation dose and dose per fraction were 32 Gy (IQR, 25.5-48 Gy; min 12 Gy, max 73.6 Gy) and 3 Gy per fraction (IQR, 2-7.2 Gy per fraction; min 1.5 Gy per fraction, max 48 Gy per fraction).

Ninety-six percent of the articles selected in this work demonstrated a clear abscopal effect as defined by the result of any local therapy affecting a distant, untreated tumor (Table 2). The median time until an abscopal effect was 3 months (IQR, 1-5; min 0.5, max 24). Median follow-up time after the abscopal effect was 18.5 months.23,27,28,36,58,67,69,72,74 New metastases occurred in 16 (29%) patients postabsopal effect,24,31,32,38,45,49,51,54,60,64,66,67,69,71,72,74 whereas the rest of the 39 (71%) patients had stable disease during case follow-up Figure 3. depicts Kaplan-Meier curves showing a 5-year overall survival of 63% and a 5-year progression-free survival of 45%. Univariate analysis was performed to explore factors that correlate to patient survival and development of new metastases. No variables had statistical significance in predicting duration of response or survival (Table 3).

Discussion

This is the first patient-level data meta-analysis of reported abscopal effects. We found that 67%
Study	Year	True defined*	Sex	Age	Cancer type	RT to primary	RT to metastasis	RT at multiple sites	RT total dose (Gy)	RT fx	Average RT dose/ fx (Gy)	BED	RT only	RT + surgery	RT + chemotherapy	RT + IT	Follow-up time (mo)	Outcome	New met	
-------------------------------	------	---------------	-----	-----	-------------	---------------	-------------------	---------------------	-------------------	------	------------------------	------	----------	--------------	-------------------	--------	----------------------	---------	---------	
Cotter et al†⁴	2011	Y	M	70	39	N	Y	N	12	2	6	19.2	Y	N	N		25	Alive	Y	
Ebner et al⁹⁹	2017	Y	M	75	13	N	Y	N	73.6	16	4.6	107	Y	N	N		46	Dead	Y	
Golden et al⁷²	2013	Y	M	64	41	N	Y	N	30	5	6	48	N	N	N		10	Alive	Y	
Antoniades et al⁷³	1977	Y	M	44	55	Y	N	N	30	20	1.5	34.5	Y	N	N		-	Alive	N	
Fairlamb⁶⁶	1981	Y	M	40	55	Y	N	N	30	20	1.5	34.5	Y	N	N		-	Alive	N	
Cong et al⁸⁸	2017	Y	F	64	41	Y	N	N	37.5	5	7.5	65.6	N	N	N		-	Alive	N	
Desar et al⁷⁰	2016	Y	M	19	47	N	Y	N	30	10	3	39	Y	N	N		6	Dead	Y	
Joe et al⁵¹	2017	Y	F	57	14	Y	Y	Y	54	30	1.8	63.7	N	N	Y		48	Alive	N	
Lakshmanagowda et al⁶⁶	2009	Y	F	65	55	Y	N	N	24	12	2	28.8	Y	N	N		6	Alive	N	
MacManus et al⁵⁸	1994	Y	M	58	23	Y	N	N	20	10	2	24	Y	N	N		9	Dead	N	
Nam et al⁴⁴	2005	Y	M	65	21	N	Y	N	30	-	-	-	Y	N	N		15	Alive	N	
Ohba et al⁵⁶	1998	Y	M	76	21	N	Y	N	36	-	-	-	Y	N	N		25	Alive	N	
Okuma et al⁵⁷	2011	Y	M	63	21	N	Y	N	60.8	27	2.2	74.4	Y	N	N		54	Alive	N	
Postow et al⁷⁰	2012	Y	F	33	25	N	Y	N	28.5	3	9.5	55.5	N	N	N		10	Alive	N	
Rees and Ross⁶²	1983	Y	M	49	16	Y	N	N	40	20	2	48	Y	N	N		20	Dead	-	
Robins et al⁵¹	1981	Y	F	59	55	N	Y	N	20	10	2	24	Y	N	N		4	Dead	Y	
Stammel et al⁷¹	2012	Y	M	67	25	Y	N	N	24	3	8	43.2	Y	N	N		84	Alive	Y	
Takaya et al⁴⁶	2007	Y	F	69	10	Y	N	Y	22	10	2.2	26.8	Y	N	N		12	Alive	N	
Wersäll et al⁵⁹	2009	Y	F	83	23	Y	N	N	32	4	8	57.6	Y	N	N		-	Alive	N	
		Y	F	64	23	N	Y	N	-	-	-	-	N	Y	N		54	Alive	N	
		Y	M	69	23	N	Y	N	30	2	15	75	Y	N	N		24	Alive	Y	
		Y	F	55	23	Y	N	N	32	4	8	57.6	Y	N	N		-	Alive	N	
Sullivan et al⁵⁸	2013	Y	M	68	25	N	Y	N	-	-	-	-	N	N	N		13	Alive	N	
Hiniker et al⁵⁵	2012	Y	-	-	25	N	Y	N	-	-	-	-	N	N	N		Y	Alive	N	
Isobe et al⁵³	2009	N	F	65	55	N	N	N	40	-	-	-	N	N	N		60	Alive	N	
Joe et al⁶¹	2018	Y	M	74	16	Y	Y	Y	30	10	3	39	Y	N	N		14	Alive	N	
Kodama et al⁶⁰	2013	Y	M	74	41	N	Y	Y	48	24	2	57.6	N	N	Y		61	Dead	Y	
Nakanishi et al⁵⁷	2008	Y	M	79	21	Y	N	N	48	1	48	278	Y	N	N		-	Alive	N	

(continued on next page)
Study	Year	True defined	Sex	Age	Cancer type	RT to primary	RT to metastasis	RT at multiple sites	Total dose (Gy)	RT fx	Average RT dose/ fx (Gy)	BED	RT only	RT + surgery	RT + chemotherapy	RT + IT	Follow-up time (mo)	Outcome	New met
Okwan-Duodu et al	2015	Y	F	50	25	N	Y	N	-	-	-	N	Y	N	Y	20	Alive	Y	
Hamilton et al	2018	Y	M	47	21	N	Y	N	25	5	37.5	N	Y	N	N	7	Alive	N	
Gutkin et al	2018	Y	M	57	25	N	Y	N	54	3	18	151	N	N	N	78	Alive	Y	
Chino et al	2018	Y	M	58	41	N	Y	N	60	8	7.5	105	Y	N	N	18	Alive	N	
Leung et al	2018	Y	F	65	7	Y	Y	Y	225	15	15	562	Y	N	N	60	Alive	N	
Sperduto et al	2017	Y	F	36	25	N	Y	Y	25	5	5	37.5	Y	Y	N	120	Alive	N	
Van de Walle et al	2016	Y	F	66	23	N	Y	N	39	13	3	50.7	Y	N	N	17	Alive	Y	
Zhao et al	2018	Y	M	65	16	N	Y	N	42	6	7	71.4	Y	N	N	15	Alive	N	
Katayama et al	2017	Y	M	63	41	N	Y	Y	45	15	3	58.5	Y	N	N	9	Alive	N	
Britschgi et al	2018	Y	M	47	41	N	Y	N	18	3	6	28.8	N	N	N	24	Alive	N	
Kim and Kim	2019	Y	M	70	21	Y	N	N	48	4	12	105	Y	N	N	21	Alive	N	
Bitran	2019	Y	F	62	41	Y	N	N	27	9	3	35.1	N	N	N	54	Alive	N	
Shinde et al	2019	Y	M	75	20	Y	N	Y	14.8	2	7.4	25.7	N	N	N	10	Alive	N	
Lin et al	2019	Y	M	71	41	N	Y	N	48	8	6	76.8	Y	N	N	19	Alive	Y	
Brenneman et al	2019	Y	F	67	47	Y	N	N	50	25	2	60	Y	N	N	18	Alive	N	
Sato et al	2016	Y	M	54	18	Y	N	N	48	24	2	57.6	N	N	N	5	Dead	Y	
Shi et al	2017	Y	F	67	43	Y	N	N	45	15	3	58.5	N	Y	N	1	Dead	N	
Hidaka et al	2017	Y	M	88	55	Y	N	Y	32	8	4	44.8	Y	N	N	6	Dead	N	
Barsky et al	2019	Y	M	67	24	Y	N	N	30	10	3	39	N	Y	N	7	Dead	N	
Siva et al	2013	Y	F	78	41	Y	N	Y	60	30	2	72	Y	N	N	2	Alive	Y	
Ishiyama et al	2012	Y	M	61	23	N	Y	Y	18	1	18	50.4	Y	N	N	34	Alive	Y	
Poon and Wong	2017	Y	M	79	45	N	Y	Y	24	4	6	38.4	Y	N	N	6	Alive	N	
Azami et al	2018	Y	F	64	7	Y	Y	Y	60	30	2	72	Y	N	N	21	Alive	N	
Masue et al	2007	N	M	58	23	N	N	N	-	-	-	-	N	N	N	46	Alive	N	
Agyeman et al	2019	Y	M	56	47	Y	N	N	40	20	2	48	Y	N	N	17	Alive	N	

*Abbreviations: BED = biologically effective dose, assuming an α/β ratio of 10; fx = fraction; IT = immunotherapy; met = metastasis; RT = radiation therapy.

* Refers to whether or not the article demonstrates a true abscopal response (as defined by the result of any local therapy affecting a distant, untreated tumor).
of abscopal responses were reported in NSCLC, kidney cancer, melanoma, lymphomas, and hepatobiliary cancers. Five years after an abscopal response, 55% of patients had disease progression and 63% were alive, which suggested these patients with metastatic cancer had a relatively favorable and indolent biology. All reported cases of the abscopal response were after RT, but not other local treatments like surgery. There

Figure 3 Kaplan-Meier curves. (A) Overall survival at 5 years was 63%. (B) Progression-free survival at 5 years was 45%.

Table 3 Predictors of overall survival and progression-free survival after abscopal response

	Overall survival	Progression-free survival				
	Univariate hazard ratio 95% CI P value	Multivariate hazard ratio 95% CI P value				
Overall survival						
Surgery						
No	Ref	Ref				
Yes	0.9	0.12-7.60	.96	1.16	0.11-12.13	.9
Chemotherapy						
No	Ref	Ref				
Yes	0.63	0.08-5.01	.66	0.46	0.04-4.79	.51
Immunotherapy						
No	Ref	Ref				
Yes	0.68	0.14-3.22	.63	0.6	0.12-2.92	.52
BED 10 Gy increase	0.99	0.96-1.01	.29	0.99	0.96-1.01	.3
Progression-free survival						
Surgery						
No	Ref	Ref				
Yes	0.46	0.06-3.57	.46	3.7 × 10^{-9}	0-Inf	.99
Chemotherapy						
No	Ref	Ref				
Yes	0.32	0.04-2.42	.27	0.93	0.11-7.73	.95
Immunotherapy						
No	Ref	Ref				
Yes	1.97	0.70-5.59	.2	1.21	0.39-3.80	.74
BED 10 Gy increase	0.99	0.98-1.01	.42	0.99	0.98-1.01	.36

Abbreviations: BED = biologically effective dose; CI = confidence interval; Ref = reference value.
were no known predictors of duration of response or survival.

Preclinical data suggested surgery did not boost the abscopal response\(^\text{27}\) nor did it induce antigen-specific immune responses in patients with prostate cancer, whereas radiation did.\(^\text{78}\) Furthermore, preclinical data combining focal RT with anti-programmed cell death protein 1 (anti-PD1/PDL1) agents (PD-1 is an immune checkpoint) demonstrated abscopal responses more reliably with higher doses per fraction than without combination.\(^\text{6}\) In clinical reports, patients with dramatic changes to their T-cell repertoire were more likely to be responders.\(^\text{15}\) Although these effects were hypothesized, 25% of patients in this work received immunotherapy but did not appear to have improvement in progression-free survival or overall survival, compared with patients who did not receive immunotherapy. Additionally, there was no apparent effect of radiation dose, dose per fraction, or treatment location (primary vs metastasis vs both) on outcomes.

Several case reports and retrospective studies have shown relationships between RT and immunotherapy in certain cancer types.\(^\text{16,17}\) Prospective trials in metastatic head and neck squamous cell carcinoma by McBride et al.\(^\text{79}\) found the combination of stereotactic body RT (SBRT) and checkpoint blockade did not improve objective response rate in nonirradiated lesions or overall survival in unselected patients with metastatic disease. Yet, this approach was moderately predictive for overall survival in patients based on human papilloma virus status and PD1 status. A study by Theelen et al.\(^\text{80}\) examined the effects of pembrolizumab in activating the tumor microenvironment in NSCLC. They discovered that administering SBRT before pembrolizumab doubled the overall response rate, but did not meet the prespecified endpoint, so larger studies are needed to fully examine this relationship.

Limitations of this analysis are as follows: first, recognizing a true abscopal effect as an example of clear systemic response may be obscured by bias in how the abscopal effect is reported. Distinguishing abscopal effects from spontaneous regression and the bystander effect can be highly subjective, and may cause underreporting or misreporting of abscopal responses by clinicians. There is heterogeneity for how an abscopal effect can be highly subjective, and may cause underreporting or misreporting of abscopal responses by clinicians. To better study the abscopal effect in the future, there must be an emphasis on standardizing how the abscopal response is reported and monitoring for reporting bias within case reports. It has been reported that the peak PD1 upregulation can occur 4 to 6 days after tumor irradiation. Afterward, the expression of PD1 will decrease gradually.\(^\text{11}\) More work remains to be done for how to place various immunologic, pharmacologic, and radiotherapeutic mechanisms on a definitive abscopal effect timeline. To completely assess abscopal effects, a full timeline of disease evolution must be determined, and potential confounders must be accounted for in addition to evaluating the type of RT administered (SBRT vs conventionally fractionated RT). Future research should also consider investigating biomarkers, clinical parameters, and other methods to guide studies into the abscopal effect.

Conclusion

This is the first patient-level data meta-analysis of reported abscopal effects. We found that 67% of abscopal responses were reported in NSCLC, kidney cancers, melanomas, lymphomas, and hepatobiliary cancers. Ninety-six percent of the articles selected in this work demonstrated a clear abscopal effect as defined by the result of any local therapy affecting a distant, untreated tumor. Five years after an abscopal response, 55% of patients had disease progression and 63% were alive. Almost every reported case of the abscopal effect was after RT, and only rarely in other local treatments like surgery. There were no known clinical predictors of duration of response or survival.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.adro.2022.100909.

References

1. Liu Y, Dong Y, Kong L, Shi F, Zhu H, Yu J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol. 2018;11:104.

2. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25–37.
3. Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett. 2015;356:82–90.

4. Marciscano AE, Haimovitz-Friedman A, Lee P, et al. Immunomodulatory effects of stereotactic body radiation therapy: Preclinical insights and clinical opportunities. Int J Radiat Oncol Biol Phys. 2021;110:35–52.

5. Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.

6. Deng L, Liang H, Burnett B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687–695.

7. Lan J, Li R, Yin LM, et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101:74–87.

8. Wani SQ, Dar IA, Khan L, Afroz F. Radiation therapy and its effects beyond the primary target: an abscopal effect. Cancers. 2019;11:e4100.

9. Dagoglu N, Karaman S, Caglar HB, Oral EN. Abscopal effect of radiotherapy in the immunotherapy era: Systematic review of reported cases. Cancers. 2019;11:e4103.

10. Reynolds K, Illidge T, Siva S, Chang JY, De Ruyscher D. The abs copal effect of local radiotherapy: Using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41:503–510.

11. Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol. 2020;85:106663.

12. Xing D, Siva S, Hanna GG. The abs copal effect of stereotactic radiotherapy and immunotherapy: Fool’s gold or El Dorado? Clin Oncol. 2019;31:432–443.

13. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abs copal effect. Trends Immunol. 2018;39:644–655.

14. Luke JJ, Lemons JM, Harrison TG, et al. Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol. 2018;36:1611–1618.

15. Formenti SC, Rudqvist NP, Golden E, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 2018;24:1845–1851.

16. Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.

17. Koller KM, Mackley HB, Liu J, et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biol Ther. 2017;18:36–42.

18. Parker CC, James ND, Brawley CD, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised controlled phase 3 trial. Lancet. 2018;392:2353–2366.

19. Ngwa W, Ibrar OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abs copal effect. Nat Rev Cancer. 2018;18:313–322.

20. Brooks ED, Chang JY. Time to abandon single-site irradiation for inducing abs copal effects. Nat Rev Clin Oncol. 2019;16:123–135.

21. Lehrer EJ, Peterson J, Brown PD, et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data. Radiother Oncol. 2019;130:104–112.

22. Cummings M, Lehrer EJ, Drabick JJ, Gusani NJ, Trifiletti DM, Zaorsky NG. Exceptional responders in oncology: A systematic review and meta-analysis of patient level data. Am J Clin Oncol Cancer Clin Trials. 2019;42:624–635.

23. Zhao X, Kang J, Zhao R. Abscopal effect of radiation on lymph node metastasis in esophageal carcinoma: A case report and literature review. Oncol Lett. 2018;16:3555–3560.

24. Van de Walle M, Demol J, Staelens L, Rottey S. Abscopal effect in metastatic renal cell carcinoma. Acta Clin Belgica Int J Clin Lab Med. 2017;72:245–249.

25. Hamilton AJ, Seid J, Verdecchia K, Chuba P. Abscopal effect after radiosurgery for solitary brain metastasis from non-small cell lung cancer. Cancers. 2018;10:e3777.

26. Matsushita Y, Nakamura K, Furuse H, Ichinohe K, Miyake H. Marked response to nivolumab combined with external radiation therapy for metastatic renal cell carcinoma: Report of two cases. Int Cancer Conf J. 2019;8:29–32.

27. Shi F, Wang X, Teng F, Kong L, Yu J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy. Cancer Biol Ther. 2017;18:137–141.

28. Sperduto W, King DM, Watanabe Y, Lou E, Sperduto PW. Case report of extended survival and quality of life in a melanoma patient with multiple brain metastases and review of literature. Cancers. 2019;7:e1947.

29. Shinde A, Novak J, Freeman ML, Glaser S, Amini A. Induction of the abs copal effect with immunotherapy and palliative radiation in metastatic head and neck squamous cell carcinoma: A case report and review of the literature. Cancers. 2019;11:e4201.

30. MacManus MP, Hofman MS, Hicks RJ, et al. Abscopal regressions of lymphoma after involved-site radiation therapy confirmed by positron emission tomography. Int J Radiat Oncol Biol Phys. 2020;108:204–211.

31. Sato H, Suzuki Y, Yoshimoto Y, et al. An abs copal effect in a case of concomitant treatment of locally and peritoneally recurrent gastric cancer using adoptive T-cell immunotherapy and radiotherapy. Clin Case Reports. 2017;5:380–384.

32. Lin X, Lu T, Xie Z, et al. Extracranial abs copal effect induced by combining immunotherapy with brain radiotherapy in a patient with lung adenocarcinoma: A case report and literature review. Thorac Cancer. 2019;10:1272–1275.

33. Katayama K, Tamiya A, Koba T, Fukuda S, Atagi S. An abs copal response to radiation therapy in a patient with metastatic non-small cell lung cancer: A case report. J Cancer Sci Ther. 2017;9.

34. Leung HWC, Wang SY, Jin Jih H, Chan ALF. Abscopal effect of radiation on bone metastases of breast cancer: A case report. Cancer Biol Ther. 2018;19:20–24.

35. Kim JO, Kim CA. Abscopal resolution of a hepatic metastasis in a patient with metastatic cholangiocarcinoma following radical stereotactic body radiotherapy to a synchronous early stage non-small cell lung cancer. Cancers. 2019;11:e4082.

36. Brennan RM, Sharifai N, Fischer-Valuck B, et al. Abscopal effect following proton beam radiotherapy in a patient with inoperable metastatic retroperitoneal sarcoma. Front Oncol. 2019;9:922.

37. Hidaka Y, Takeichi T, Ishikawa Y, Kawamura M, Akiyama M. Abscopal effect of local irradiation treatment for diffuse large B-cell lymphoma. Acta Derm Venereol. 2017;97:1140–1141.

38. Gutkin PM, Hiniker SM, Swetter SM, Reddy SA, Knox SJ. Complete response of metastatic melanoma to local radiation and immunotherapy: 6.5 year follow-up. Cancers. 2018;10:e3723.

39. Barsky AR, Cengel KA, Katz SI, Sterman DH, Simone CB. First-ever abs copal effect after palliative radiotherapy and immunogene therapy for malignant pleural mesothelioma. Cancers. 2019;11:e4102.

40. Chino F, Pollio KE, Choi S, Salama JK, Palta M. Stereotactic body radiation therapy-induced abs copal effect on hepatocellular carcinoma after treatment for lung cancer: A case report. Hepatology. 2018;68:1653–1655.
