Specific heat measurements of the gap structure of the organic superconductors
\(\kappa-(ET)_2\text{Cu}[N(CN)_2]\text{Br} \) and \(\kappa-(ET)_2\text{Cu(NCS)}_2\)

O.J. Taylor, 1 A. Carrington, 1 and J.A. Schlueter 2

1 H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, United Kingdom.
2 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
(Dated: October 23, 2018)

We present high resolution heat capacity measurements for the organic superconductors \(\kappa-(ET)_2\text{Cu}[N(CN)_2]\text{Br} \) and \(\kappa-(ET)_2\text{Cu(NCS)}_2\) in fields up to 14 T. We use the high field data to determine the normal state specific heat and hence extract the behavior of the electronic specific heat \(C_{el}\) in the superconducting state in zero and finite fields. We find that in both materials for \(T/T_c \lesssim 0.3\), \(C_{el}(H = 0) \sim T^2\) indicating \(d\)-wave superconductivity. Our data are inconsistent with \(s\)-wave behavior, but may be fitted to a strong coupling \(d\)-wave model over the full temperature range.

The two most widely studied materials are \(\kappa-(ET)_2\text{Cu}[N(CN)_2]\text{Br} \) and \(\kappa-(ET)_2\text{Cu(NCS)}_2\). In both cases, the electronic structure is quasi-two-dimensional and the superconducting phase emerges from an antiferromagnetic insulating (AFI) state as the phase diagram is transversed. In the case of the cuprates, the structure is ‘tuned’ away from the AFI state either by varying the oxygen content or making non-isovalent substitutions, whereas in \(\kappa-(ET)_2\text{X} \) it is achieved either by changing the anion X or by applying external pressure. It is natural then to speculate that mechanism for superconductivity in these two materials may be related even though \(T_c\) is up to one order of magnitude higher in HTSC.

A first step towards determining if this is indeed the case is to determine the symmetry of the superconducting energy gap functions in the two families of materials. The case of the cuprates has been very well studied and the overwhelming consensus is that these materials have a gap with predominately \(d_{x^2-y^2}\) symmetry. In the organic materials the situation is more controversial.

The two most widely studied materials are \(\kappa-(ET)_2\text{Cu}[N(CN)_2]\text{Br} \) and \(\kappa-(ET)_2\text{Cu(NCS)}_2\) (hereafter abbreviated to \(\kappa\text{-Br}\) and \(\kappa\text{-NCS}\)) as these have the highest \(T_c\) at ambient pressure \((\sim 12\text{K} \) and \(\sim 9.5\text{K}\) respectively). As yet, no direct phase sensitive determinations of the gap function have been reported, however, there have been numerous experiments which have probed its anisotropy. Some early experimental determinations of the temperature dependence of the penetration depth \(\lambda(T)\) reported behavior which was consistent with a \(d\)-wave gap whereas others were consistent with \(s\)-wave. The discrepancies stem from experiments not having been carried out at sufficiently low temperature and/or with high enough precision to be conclusive. More recent measurements performed down to \(T/T_c \lesssim 0.03\) showed clearly the existence of low energy excitations which were consistent with a \(d\)-wave gap. Thermal conductivity \(\kappa(T)\) data shows a low temperature \(T\)-linear term and a four fold variation with basal plane angle in an applied magnetic field.

Both of these results indicate a \(d\)-wave gap as do tunnelling and NMR experiments.

Specific heat \(C\) has an advantage over many other techniques in that it is a bulk thermodynamic probe. For example, it is largely insensitive to surface contamination (or thin layers of damaged material) which may adversely affect probes such as \(\lambda(T)\) (in the Meissner state) or tunnelling. A disadvantage is that the electronic component \(C_{el}\) is often only a few percent of the total at \(T_c\). It is difficult to accurately extract \(C_{el}\) from the total which is dominated by phonon contributions. In Ref. 10 \(C_{el}\) of \(\kappa\text{-Br}\) was determined by subtracting an estimate of the phonon contribution obtained from a non-superconducting quenched cooled deuterated version of the same compound. These authors found that \(C_{el} \sim T^2\) as expected for a \(d\)-wave gap. However, this approach was criticized by Elsinger et al. 11 and Müller et al. 12 who instead determined the phonon contribution by applying a high magnetic field to destroy the superconductivity. These authors claimed that their data for both \(\kappa\text{-Br}\) and \(\kappa\text{-NCS}\) were well described by an \(s\)-wave gap. It should be mentioned however, that in neither of these two reports were attempts made to explicitly fit their data to a \(d\)-wave model.

Here we report high resolution measurements of \(C_{el}\) for \(\kappa\text{-Br}\) and \(\kappa\text{-NCS}\) which are well described by a strong coupling \(d\)-wave form of the superconducting gap. The low temperature behavior is inconsistent with an \(s\)-wave gap.

Samples of both compounds were grown by the usual electrochemical method in Argonne, and had masses in the range of 80-600 \(\mu g\). Specific heat measurements were conducted in a purpose built calorimeter which uses a long relaxation method similar to that described in Ref. 14. Briefly, a Cernox chip resistor (CX-1030-Br) is suspended by silver coated glass fibers in vacuum. The Cernox material acts as both thermometer and heater. The sample was attached to the calorimeter chip with Apiezon N grease. The addenda (chip, grease, and leads) was determined in a separate run immediately prior to the main experiment. The thermometer was cal-
is shown in Fig. 1 and is seen to saturate at $\gamma^2 \mu J/mol K^2$ in the normal state in zero field (i.e., the only field dependence assumption that the 14T data is equivalent to that of the BCS theory is inadequate to describe in detail the physical properties. A full solution to the strong coupling theory is complicated, and dependent on microscopic details, but it is found that many properties can be explained satisfactorily with the so-called α-model [17].

FIG. 1: (Color online) Left panel: Zero field specific heat data for κ-Br (abbreviated Br) and κ-NCS (abbreviated NCS). Upper right panel: C/T versus T^2 for for both compounds in fields of 0 and 14T. The upper curve for each field is κ-NCS. Lower right panel: Field dependence of γ for both compounds.

Heat capacity data for both materials is shown in Fig. 1. In this raw data the $\sim 3\%$ anomaly at T_c is barely discernable. In order to subtract the large phonon contribution we have made measurements in magnetic fields up to 14T, applied perpendicular to the basal plane. For both materials, the maximum field is significantly in excess of the upper critical field H_{c2}, and so at 14T both materials are in the normal state. In Fig. 1 we show the low temperature portion of the 14T data plotted as C/T versus T^2. Fitting this with a second order polynomial, we determine the Sommerfeld coefficient γ as well as the coefficients of the leading phonon terms, β_3 and β_5 ($C = \gamma T + \beta_3 T^3 + \beta_5 T^5$). The field dependence of γ is shown in Fig. 1 and is seen to saturate at $\gamma = 28 \pm 2$ mJ/mol K2 for $\mu_0 H \gtrsim 8$T in κ-Br and $\gamma = 35 \pm 2$ mJ/mol K2 for $\mu_0 H \gtrsim 3$T in κ-NCS. In what follows we make the assumption that the 14T data is equivalent to that of the normal state in zero field (i.e., the only field dependence in C is due to the superconductivity). In principle, there could be magnetic contributions which vary with field. However, the insensitivity of C to H at high fields indicates that these contributions are negligible. Indeed, in Ref. [16] a sizable magnetic contribution in high field was only found for T well below 1K.

In Figs. 2 and 3 we show $\Delta C = C(0) - C(14T)$ versus T for κ-Br, along with several fits. The thin solid line is a fit to the strong coupling d-wave model, whereas the thick solid line is the same fit convoluted with a Gaussian. Similarly the dashed lines are fits to the strong coupling s-wave model. Bottom panel: Enlarged view of the low temperature part of the upper panel (the convoluted fits are indistinguishable and are omitted for clarity).

FIG. 2: (Color online) Top panel: $\Delta C/C(0)$ versus T for κ-Br, along with several fits. The thin solid line is a fit to the strong coupling d-wave model, whereas the thick solid line is the same fit convoluted with a Gaussian. Similarly the dashed lines are fits to the strong coupling s-wave model. Bottom panel: Enlarged view of the low temperature part of the upper panel (the convoluted fits are indistinguishable and are omitted for clarity).
sions vary in the fit, so the free parameters are α, γ_n, and T_c. As can be seen in the top panels of Figs. 2 and 3, at normal temperatures the fits to the s and d models are virtually indistinguishable and both fit the data very well. Close to T_c, the superconducting transition is broadened by inhomogeneity and fluctuation effects and the fit is considerably improved by convolution with a Gaussian (of width $\sigma = 0.65$ K and 0.43 K for κ-Br and κ-NCS respectively).

At lower temperature (bottom panels of Figs. 2 and 3) there is a very significant difference between the two models. The d-wave model fits the data almost exactly over the full temperature range whereas the s-wave model completely fails at low temperature. The parameters derived from the fits are given in Table I. In both materials, for the d-wave fit γ_n is found to be very close to the value found from the direct fit to the 14T data γ_{14}, whereas the s-wave fit is about 30% smaller. If γ_n were fixed at γ_{14} the s-wave fit would be considerably worse. Clearly, optimizing γ_n for a fit to the low temperature data will not significantly improve the s-wave fit. The values of α found show that the d-wave coupling is rather strong.

The difference between the s-wave and d-wave fits is

Here, the temperature dependence of the energy gap Δ is approximated by the weak-coupling behavior but the value at zero temperature is an adjustable parameter. This model has been used to describe a wide range of superconductors including 'exotic' materials such as MgB$_2$ [18] and NbSe$_2$ [19].

Within the α-model, the entropy S in the superconducting state for a two dimensional cylindrical Fermi surface, is given by

$$S = \frac{3}{\pi^3} \int_0^{2\pi} \int_0^{\infty} f \ln f + [1 - f] \ln [1 - f] d\varepsilon d\phi \quad (1)$$

where the Fermi function $f = [\exp(E/k_B T) + 1]^{-1}$, the quasiparticle energy $E^2 = \varepsilon^2 + \Delta^2(\phi)$, γ_n is the normal state γ and the energy gap Δ is function of the in-plane angle ϕ. The specific heat $C_\text{el} = T \frac{\partial S}{\partial T}$. For conventional isotropic s-wave superconductivity the gap function $\Delta(\phi, T) = \alpha \Delta_{BCS}(T)$, whereas in the simplest case for d-wave $\Delta(\phi) = \alpha \Delta_{BCS}(T) \cos 2\phi$. In these expressions Δ_{BCS} takes the usual s or d-wave weak coupling form.

To allow for the possibility of any part of the sample being non-superconducting (and metallic) we allow γ_n to vary in the fit, so the free parameters are α, γ_n and T_c. As can be seen in the top panels of Figs. 2 and 3 at high temperatures the fits to the s and d models are virtually indistinguishable and both fit the data very well. Close to T_c the superconducting transition is broadened by inhomogeneity and fluctuation effects and the fit is considerably improved by convolution with a Gaussian (of width $\sigma = 0.65$ K and 0.43 K for κ-Br and κ-NCS respectively).

At lower temperature (bottom panels of Figs. 2 and 3) there is a very significant difference between the two models. The d-wave model fits the data almost exactly over the full temperature range whereas the s-wave model completely fails at low temperature. The parameters derived from the fits are given in Table I. In both materials, for the d-wave fit γ_n is found to be very close to the value found from the direct fit to the 14T data γ_{14}, whereas the s-wave fit is about 30% smaller. If γ_n were fixed at γ_{14} the s-wave fit would be considerably worse. Clearly, optimizing γ_n for a fit to the low temperature data will not significantly improve the s-wave fit. The values of α found show that the d-wave coupling is rather strong.

The difference between the s-wave and d-wave fits is

TABLE I: Parameters derived from the s and d wave fits to the data in Figs. 2 and 3. The units of γ are mJ/mol K2. γ_{14} is the value of γ_n derived from a fit to the 14T data. The maximum gaps at zero temperature $\Delta_0 = 2.14 \alpha k_B T_c$ for the d-wave fits.

Compound	T_c (K)	γ_{14}	α	γ_n	Δ_0 (mJ/mol K)	
κ-Br	12.25	28 ± 2	1.73	26.6	1.47	20.0
κ-NCS	9.56	35 ± 2	1.45	33.3	1.34	22.8

FIG. 4: (Color online) $\Delta C/T$ versus (T/T_c) for κ-Br and κ-NCS. The solid lines are fits to the d-wave model and the dashed and dotted lines are the s-wave fits for each compound respectively.
perhaps shown more clearly in Fig. 1 where we have plotted \(\Delta C/T \) versus \(T/T_c \). In the low temperature limit, the clean \(d \)-wave model predicts \(C_{el} \sim T^2 \) so we expect \(\Delta C/T \sim aT - \gamma_n \). The \(s \)-wave model predicts \(\Delta C/T \sim a'T^{-\frac{3}{2}} \exp(-\frac{\Delta_0}{\kappa_T}) - \gamma_n \). The lines on the figure are the same fits as in Figs. 2 and 5. Fig. 4 shows that below \(T/T_c \approx 0.3 \) \(\Delta C/T \) varies linearly with \(T \), and the full \(d \)-wave model fits the data over the full temperature range. Again, clearly the \(s \)-wave model does not fit the at low temperature. A linear fit to the \(\Delta C/T \) for \(T/T_c < 0.3 \) gives \(a = 2.33 \pm 0.03 \, \text{mJ/mol K}^3 \) and \(a = 4.21 \pm 0.04 \, \text{mJ/mol K}^3 \) for \(\kappa \)-Br and \(\kappa \)-NCS respectively.

The data in this paper is representative of results taken on a large number of different crystals. In total 6 samples of \(\kappa \)-Br (with \(T_c \) values in the range 11.5K< \(T_c \)<12.4K) and 3 samples of \(\kappa \)-NCS (with \(T_c \) values in the range 9.3K< \(T_c \)<9.6K) were measured and all were found to have the same behavior as that reported here. For \(\kappa \)-Br it is known that fast cooling through the temperature region 60-85K depresses \(T_c \). The sample reported here was cooled very slowly (at 0.72 K/hr) through this region. Data was also taken for higher cooling rates, which we find significantly decreases \(\gamma_n \) and \(T_c \) but leaves the \(T \) dependence of \(C \) unchanged, except close to \(T_c \). These results will be reported in detail separately.

Within the \(d \)-wave model, by linearizing the angle dependence of the gap near the nodes it can be shown that at low temperature, for a two dimensional cylindrical Fermi surface, \(C_{el} \approx \frac{54\pi^2}{9}k_B\gamma_n}{\kappa^2\Delta_0} \), where \(\mu\Delta_0 = \frac{d\Delta(\phi)}{d\phi} \) at the nodes. Hence, the coefficient of the \(T^2 \) term in the specific heat determines only the slope of the energy gap near the nodes, \(\mu\Delta_0 \). In general, the energy gap may not simply vary like \(\cos(2\phi) \) and so \(\mu \) may differ from 2. We have considered this possibility by fitting the data to a linearized gap model, where \(\Delta(\phi) = \mu_0\Delta_0 \) for \(|\phi - \frac{\pi}{2}| < \frac{\pi}{4} \) and \(\Delta(\phi) = \Delta_0 \) otherwise. The behavior of the data at \(T/T_c \approx 0.3 \) constrains the values of \(\mu = 2.0 \pm 0.4 \), although clearly this depends, to some extent, on our assumed weak-coupling form of \(\Delta(T) \).

We have also considered the possibility of a mixed order parameter where the gap does not go to zero at the ‘nodes’, for example, \(d_{xy} + i\phi \). Our data constrains \(\epsilon \leq 0.1 \), so the minimum gap at the ‘nodes’ is \(\leq 10\% \) of the maximum.

The low temperature \((0.3 \leq T \leq 2 \, \text{K}) \) \(C_{el} \) data of Nakazawa et al. report \(d \)-wave gap with \(\Delta_0 \) in the range 3.0–5.7 meV. The lower end of this range compares reasonably well to that found here (\(\Delta_0 = 2.6 \) meV, see Table I).

Le et al. have reported measurements of the temperature dependence of the superfluid density by the muon spin relaxation (\(\mu \)SR) technique. We have fitted their data to the same \(d \)-wave model used above (again assuming a cylindrical Fermi surface), and find \(\alpha = 1.7 \pm 0.2 \) and \(\alpha = 1.4 \pm 0.2 \) for \(\kappa \)-Br and \(\kappa \)-NCS respectively. This compares favorable to the values found here. A quantitative analysis of the penetration depth data of Ref. 4 is complicated by uncertainties in the assumed value of the penetration depth at zero temperature, however the measured temperature dependence of \(\lambda \) is in very good agreement with predictions from the current model, once impurity effects are included.

In conclusion, we have measured the specific heat of an extensive set of samples of \(\kappa \)-Br and \(\kappa \)-NCS and find that in all cases the data are well fitted by a strong coupling \(d \)-wave model. Our data firmly rule out an isotropic \(s \)-wave gap in these samples.

Work at Argonne National Laboratory is sponsored by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Contract DE-AC02-06CH11357.

[1] R. H. Mckenzie, Science 278, 820 (1997).
[2] D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
[3] M. Lang and J. Müller, The Physics of Superconductors, vol. 2 (Springer-Verlag, Berlin, 2003), edited by K. H. Bennemann and J. B. Ketterson (ISBN 3540442324).
[4] A. Carrington, et al., Phys. Rev. Lett. 83, 4172 (1999).
[5] L. P. Le, et al., Phys. Rev. Lett. 88, 1923 (1992).
[6] S. Belin, K. Behnia, and A. Deluzet, Phys. Rev. Lett. 81, 4728 (1998).
[7] K. Izawa, H. Yamaguchi, T. Sasaki, and Y. Matsuda, Phys. Rev. Lett. 85, 027002 (2002).
[8] T. Arai, et al., Phys. Rev. B 63, 104518 (2001).
[9] H. Mayaffre, P. Wizetek, D. Jerome, C. Lenoir, and P. Batail, Phys. Rev. Lett. 75, 4122 (1995).
[10] Y. Nakazawa and K. Kanoda, Phys. Rev. B 55, R8670 (1997).
[11] H. Elsinger, et al., Phys. Rev. Lett. 84, 6098 (2000).
[12] J. Müller, M. Lang, R. Helfrich, F. Steglich, and T. Sasaki, Phys. Rev. B 65, 140509(R) (2002).
[13] A. M. Kini, et al., Inorg. Chem. 29, 2555 (1990).
[14] Y. X. Wang, T. Plackowski, and A. Junod, Physica (Amsterdam) C355, 179 (2001).
[15] Lakeshore Cryotronics, Ohio, USA.
[16] Y. Nakazawa, H. Taniguchi, A. Kawamoto, and K. Kanoda, Phys. Rev. B 61, R16295 (2000).
[17] H. Padmanab, J. E. Neihbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).
[18] F. Bouquet, et al., Europhys. Lett. 56, 856 (2001).
[19] J. M. Fletcher, et al., Phys. Rev. Lett. 98, 057003 (2007).
[20] M. Tokumoto, N. Kinoshita, Y. Tanaka, T. Kinoshita, and H. Anzai, Synth. Met. 103, 1971 (1999).