Quantum coherence of steered states

Xueyuan Hu1, Antony Milne2, Boyang Zhang1 & Heng Fan3

Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schrödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.

Quantum coherence, originating from the quantum pure state superposition principle, is one of the most fundamental properties of quantum mechanics. It is increasingly recognized as a vital resource in a range of scenarios, including quantum reference frames1–3, transport in biological systems4–6 and quantum thermodynamics7–9. How to measure coherence is an essential problem in both quantum theory and quantum information and has recently attracted much attention10–14. The quantification of coherence in a single quantum system depends on both the quantum state and a fixed basis for the density matrix of the system10,11. The fixed basis is usually chosen as the eigenbasis of the Hamiltonian or another observable. In either case, the quantified coherence is not an intrinsic property of the single-party quantum state itself. The dynamics of quantum coherence under certain noisy channels has also attracted a lot of research attention15,16 and is connected to the dynamics of quantum correlations17.

When Alice and Bob share a correlated quantum system, a measurement by Alice can ‘steer’ the quantum state of Bob. Quantum steering, especially Einstein-Podolsky-Rosen (EPR) steering, has long been noted as a distinct nonlocal quantum effect18 and has attracted recent research interest both theoretically and experimentally19–22. The quantum steering ellipsoid (QSE)23–27, defined as the whole set of Bloch vectors to which Bob’s qubit can be steered by a positive-operator valued measurement (POVM) on Alice’s qubit, provides a faithful geometric presentation for two-qubit states. Using the QSE formalism we have studied a class of two-qubit states whose quantum discord can be increased by local operations28. Interestingly, arbitrarily small mutual information is sufficient for the QSE of a pure two-qubit state to be the whole Bloch ball. Since mutual information is an upper bound of quantum correlation measures such as entanglement and discord, the power that one qubit has to steer another cannot be fully characterized by the quantum correlation between the two qubits. A measure that quantifies the power of generating quantum coherence by steering is therefore necessary.

In this paper we consider a bipartite quantum state ρ with non-degenerate reduced state ρB and study the coherence of Bob’s steered state, which is obtained by Alice’s POVM. Here the eigenbasis of ρB is employed as the fixed basis in which to calculate the coherence of the steered state. The significance of this choice of basis is that Bob’s initial state is incoherent. When Alice performs a local measurement, she can steer Bob’s state to one that is coherent in the eigenbasis of ρB, i.e. Alice generates Bob’s coherence. By ℃(ρ) we denote the maximum coherence that Alice can generate through local measurement and classical communication. In contrast to existing quantifiers of coherence, ℃ is an intrinsic property of the bipartite quantum state ρ, because the reference basis of coher-

1School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan, 250100, P. R. China. 2Controlled Quantum Dynamics Theory, Department of Physics, Imperial College London, London SW7 2AZ, UK. 3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Correspondence and requests for materials should be addressed to X.H. (email: xyhu@sdu.edu.cn)
ence, chosen as the eigenbasis of ρ_B is inherent to the bipartite state. Furthermore, we find that C gives a different ordering of states compared to quantum entanglement or discord; this indicates that C describes remote quantum properties distinct from these measures of quantum correlation. Properties of C are also studied. The maximal steered coherence is found to vanish only for classical states and can be created and increased by local quantum channels. Given that coherence plays a central role in a diverse range of quantum information processing tasks, we can also consider how steered coherence might be used as a resource. We close our discussion by presenting one such scenario.

We note that, shortly after this paper first appeared, Mondal et al. presented a study on the steerability of local quantum coherence29. We consider our works to be complementary: though examining a similar topic, our approaches are very different (Mondal et al. consider steering from the existence of a local hidden state model rather than from the perspective of the QSE formalism).

Results

Definition. We consider a bipartite quantum state ρ, where the reduced state ρ_B is non-degenerate with eigenstates $\Xi = \{|\xi\rangle\}$. When Alice obtains the POVM element M as a measurement outcome, Bob's state is steered to $\rho_B := \text{tr}(M \otimes I)\rho_B$ with probability $p_M := \text{tr}(M \otimes I)\rho_B$, where I denotes the single qubit identity operator. Baumgratz et al.18 gives the the quantum coherence C of ρ_B in the basis $\{|\xi\rangle\}$ as the summation of the absolute values of off-diagonal elements:

$$C(\rho_B, \{|\xi\rangle\}) = \sum_{i,j} |\langle \xi_i | \otimes \langle \xi_j |\rangle| \text{tr}(M \otimes I)\rho_B |\xi_i \rangle \langle \xi_j |.$$

Here we maximize the coherence $C(\rho_B, \{|\xi\rangle\})$ over all possible POVM operators M and define the maximal steered coherence as

$$\mathcal{C}(\rho) := \max_{M \in \text{POVM}} \sum_{i,j} |\langle \xi_i | \otimes \langle \xi_j |\rangle| \text{tr}(M \otimes I)\rho_B |\xi_i \rangle \langle \xi_j |.$$

When ρ_B is degenerate, Ξ is not uniquely defined; however, we can take the infimum over all possible eigenbases for Bob and define the maximal steered coherence as

$$\mathcal{C}(\rho) := \inf_{\Xi} \max_{M \in \text{POVM}} \sum_{i,j} |\langle \xi_i | \otimes \langle \xi_j |\rangle| \text{tr}(M \otimes I)\rho_B |\xi_i \rangle \langle \xi_j |.$$

It is worth noting that \mathcal{C} is an intrinsic property of the bipartite quantum state ρ. When fixing the basis in which to calculate the coherence, we need not choose an observable that is independent of the state; the basis $\{|\xi\rangle\}$ we choose here is inherent to the state ρ.

Properties. We prove that the following important properties hold for maximal steered coherence.

(E1) \mathcal{C} vanishes if and only if ρ is a classical state (zero discord for Bob), i.e. can be written as

$$\rho = \sum_{i=1}^{d_B} p_i \rho_{A,i} \otimes |\xi_i \rangle \langle \xi_i |.$$

The proof of this is given in Methods.

(E2) \mathcal{C} reaches a maximum for all pure entangled states with full Schmidt rank, i.e. states that can be written in as $|\Psi\rangle = \sum_{i=1}^{d_B} \lambda_i |\phi_i^A \rangle \otimes |\xi_i \rangle$ with $\lambda_i > 0 \forall i$. Here d_B is the dimension of Bob’s state. For a single quantum system of dimension d_B, the maximally coherent state is $|\phi_{\max}^A \rangle = \frac{1}{\sqrt{d_B}} \sum_{i=1}^{d_B} |\phi_i^A \rangle$; Bob is steered to this when Alice obtains the measurement outcome $M = |\phi_{\max}^A \rangle \langle \phi_{\max}^A |$ after normalisation.

(E3) \mathcal{C} is invariant under local unitary operations. When the unitary operator $U = U_A \otimes U_B$ acts on a bipartite state ρ, the eigenbasis of ρ_B is rotated by U_B, so that the off-diagonal elements of ρ_B^{M} become

$$\langle \xi_i | U_B^\dagger \text{tr}(M \otimes I \otimes U_B^U) U_B |\xi_j \rangle = \langle \xi_i | \text{tr}(U_A^\dagger M U_A \otimes I \otimes U_B^U) U_B |\xi_j \rangle.$$

From Eq. (2) it is clear that $\mathcal{C}(U \rho \rho U^\dagger) = \mathcal{C}(\rho)$.

(E4) \mathcal{C} can be increased by Bob performing a local quantum channel prior to Alice’s steering.Property (E4) holds owing to the fact that a local channel Λ_B, under certain conditions20, can transform a classical state with vanishing \mathcal{C} into a discordant state with strict positivity \mathcal{C}. Note, however, that a channel Λ_A performed by Alice prior to steering cannot increase \mathcal{C}. (This follows because Λ_A can be performed by applying a unitary operation to A and an ancilla A'; and then discarding A', the unitary operation does not affect the set of Bob’s steered states, while discarding A' may limit Alice’s ability to steer Bob’s state. Thus Λ_A performed by Alice does not alter Bob’s reduced state ρ_B but shrinks the set of his steered states; such a channel cannot increase \mathcal{C}.)

Let us also note an important consequence of property (E2): \mathcal{C} is distinct from the entanglement E^3 and discord-type quantum correlations D^3. In fact, \mathcal{C} gives a different ordering of states from E or D. We demonstrate this by considering states $\rho_1 = |\Psi_1\rangle \langle \Psi_1 |$ and $\rho_2 = (1 - \delta) |\Psi_2\rangle \langle \Psi_2 | + \delta |\Psi_3\rangle \langle \Psi_3 |$, where
\[|\psi\rangle = \sqrt{1 - (d - 1)\delta} |00\rangle + \sqrt{\delta} \sum_{j=1} f |j\rangle \text{ and } |\psi_2\rangle = \frac{1}{\sqrt{\delta}} \sum_{j=1}^{d-1} |j\rangle \] are both pure entangled states with full Schmidt rank of dimension \(d \), and \(0 < \delta \ll 1 \). According to (E2), \(\mathcal{C}(\rho) \) reaches the maximum; whereas for \(\rho_2 \), Bob's steered state is always mixed and hence not maximally coherent state in any given basis. We therefore have \(\mathcal{C}(\rho_1) > \mathcal{C}(\rho_2) \). Meanwhile, \(\mathscr{D}(\rho_1) \) and \(\mathcal{E}(\rho_1) \) can be made arbitrarily small by taking \(\theta \) to be small enough, whilst \(\mathscr{D}(\rho_2) \) and \(\mathcal{E}(\rho_2) \) approach 1 for small \(\delta \). Hence \(\delta \) exists such that \(\mathcal{E}(\rho_1) < \mathcal{E}(\rho_2) \) and \(\mathcal{E}(\rho_1) < \mathcal{E}(\rho_2) \).

General expression for two-qubit states. We now derive the general form of \(\mathcal{C} \) for two-qubit states. The state of a single qubit can be written as \(\rho_b = \frac{1}{2} \sum_{i=0}^{2} b_i \sigma_i \), where \(\sigma_0 = 1, \sigma_i \) with \(i = 1, 2, 3 \) are Pauli matrices, \(b_i = \text{tr}(\rho_b \sigma_i) \), and \(b = (b_1, b_2, b_3)^T \) is Bob's Bloch vector. The norm of the vector \(b \) is denoted by \(b \). The quantum coherence of \(\rho_b \) in a given basis \(|n, -n\rangle \), where \(|n\rangle = 1 \), is

\[
C(\rho_b, n) = |b \times n|. \tag{6}
\]

Let \(B \) and \(N \) be the points associated with the vectors \(b \) and \(n \) respectively, and let \(O \) be the origin. Since \(\frac{1}{2} |b \times n| \) is the area of \(\Delta OBN \) and the line segment \(ON \) is unit length, \(C(\rho_b, n) \) is simply the perpendicular distance between the point \(B \) and the line \(ON \).

Similarly, we can write a two-qubit state in the Pauli basis as \(\rho = \frac{1}{4} \sum_{i=0}^{3} \otimes \Theta_i \sigma_i^A \otimes \sigma_i^B \), where the coefficients \(\Theta_i = \text{tr}(\rho \sigma_i^A \otimes \sigma_i^B) \) form a block matrix \(\Theta = \begin{pmatrix} a & T \\ b & T \end{pmatrix} \). Here \(a \) and \(b \) are Alice and Bob's Bloch vectors respectively, and \(T \) is a \(3 \times 3 \) matrix. Note that when \(\rho_b \) is non-degenerate we have \(b \neq 0 \). We ignore the trivial case that \(a = 1 \), when \(\rho_b \) is pure and hence \(\rho \) is a product state.

When the POVM operator \(M = \frac{1}{2} (\sigma_0 + m \cdot \sigma) \) is obtained on Alice's qubit, Bob's state becomes

\[
b_M = b + T^T m \frac{1}{1 + a \cdot m}. \tag{7}
\]

Here \(\sigma = (\sigma_0, \sigma_2, \sigma_3)^T \), and \(m = (m_1, m_2, m_3)^T \) can be any point on or inside the Bloch sphere. The set of \(b_M \) forms the QSE \(\mathcal{E}_B \). When \(\rho_b \) is non-degenerate, we have \(b_M \neq 0 \). According to (E6), the coherence of \(b_M \) in the basis \(\{|\xi\rangle\} \) is \(\mathcal{C}(\rho_B^M, n_B) = \frac{1}{2} |b_M \times n_B| \), with \(n_B = b/b \); this represents the perpendicular distance from the point \(B \) to the line \(OB \) (Fig. 1a). Hence the maximal steered coherence \(\mathcal{C}(\rho) \), as defined in Eq. (2), is the maximal perpendicular distance between a point on the surface of \(\mathcal{E}_B \) and \(OB \). Explicitly, we have

\[
\mathcal{C}(\rho_B, n_B) = \max_{m \in \mathbb{R}^3, m = 1} \left| \frac{T^T m \times n_B}{1 + a \cdot m} \right| \tag{8}
\]

The maximization needs to be performed only over all projective measurements with \(m = 1 \) because steered states on the surface of \(\mathcal{E}_B \) correspond to measurements \(m \) on the surface of the Bloch sphere.

When \(\rho_b \) is degenerate, \(b = 0 \) and \(n_B \) is arbitrary; the infimum can then be taken over all \(n_B \) to give the maximal steered coherence of a two-qubit state as

\[
\mathcal{C}(\rho) = \inf_{n_B \in \mathbb{R}^3, n_B = 1} \left(\max_{m \in \mathbb{R}^3, m = 1} \left| \frac{T^T m \times n_B}{1 + a \cdot m} \right| \right). \tag{9}
\]

Properties for two-qubit states. We now study two-qubit states in more detail; this allows us to identify some important features of the maximal steered coherence, as well as giving a clear geometric interpretation of \(\mathcal{C} \) using the steering ellipsoid formalism.

As demonstrated by property (E4), a trace-preserving channel \(\Lambda_B \) performed by Bob may increase \(\mathcal{C} \); we now study an explicit example. Say that Alice and Bob share the classical two-qubit state

\[
\rho_c = |\pm\rangle \langle \pm| + (1 - t) |\pm\rangle \langle \pm| - \gamma |\pm\rangle \langle \pm| - \gamma |\pm\rangle \langle \pm|. \tag{10}
\]

with \(\frac{1}{2} < t < 1 \) and \(|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle) \). When Bob applies the single-qubit amplitude damping channel, the state transforms as \(\rho’ = \frac{1}{2} \otimes \Lambda_B(\rho) \), where \(\Lambda_B(\cdot) = \sum E_i |i\rangle \langle i| E_i^\dagger \) with \(E_0 = |0\rangle \langle 0| + \sqrt{1 - \gamma} |1\rangle \langle 1| \) and \(E_1 = -\sqrt{\gamma} |0\rangle \langle 1| \). We then find that the maximal steered coherence of the transformed state is

\[
\mathcal{C}(\rho’) = \frac{2t \gamma \sqrt{1 - \gamma}}{(1 - 2t^2)(1 - \gamma) + \gamma^2}. \tag{11}
\]

\(\mathcal{C}(\rho’) \) vanishes when \(\gamma = 0 \), becomes positive for \(0 < \gamma < 1 \), and then vanishes again at \(\gamma = 1 \).

Maximal steered coherence can be increased by Bob's local amplitude damping channel even when Alice and Bob share a non-classical state. Consider the two-qubit state

\[
\rho_p = |\psi\rangle \langle \psi| + \frac{1 - p}{4} \sigma_0 \otimes \sigma_0, \tag{12}
\]
where $0 < p < 1$ and $|\Psi\rangle = \cos \frac{\theta}{2} |++\rangle + \sin \frac{\theta}{2} |--\rangle$. The QSE for such a state is an ellipsoid centered at $(0,0,0)$ with semiaxes of length $c_1 = \frac{p(1-p\cos \theta)}{1-(p\cos \theta)^2}$, $c_2 = c_3 = \frac{p\sin \theta}{\sqrt{1-(p\cos \theta)^2}}$, aligned with the coordinate axes (δ_B is in fact a prolate spheroid as $c_1 > c_2 = c_3$). Bob’s Bloch vector is $b = (p\cos \theta, 0, 0)$, which lies on the x axis. The maximal steered coherence is therefore

$$\mathcal{C}(\rho_B) = \frac{p\sin \theta}{\sqrt{1-(p\cos \theta)^2}}$$

(13)

For $p < \frac{1}{2\sin \theta + 1}$ the state ρ_B has zero entanglement but nonzero \mathcal{C}. Note also that $\mathcal{C}(\rho_B')$ is related to both the fraction of $|\Psi\rangle$ and the entanglement associated with $|\Psi\rangle$.

Figure 2 shows the evolution of \mathcal{C} under the channel Λ_B^{AB}, i.e. $\mathcal{C}(\rho_B')$, where $\rho_B' = I_A \otimes \Lambda_B^{AD}(\rho_B)$. By altering p and θ we alter the ratio of the axes c_2/c_1. The results indicate that the potential for increasing \mathcal{C} under Bob’s local amplitude damping is related to the ratio c_2/c_1: the smaller the ratio, the stronger the local increase of \mathcal{C}. In other words the effect is strongest when the QSE δ_B is highly prolate (`baguette-shaped').

In fact, it is possible to formulate a necessary and sufficient condition for the increase of maximal steered coherence for two-qubit states.

Theorem 1. Bob’s local qubit channel Λ_B can increase maximal steered coherence for some input two-qubit state if and only if Λ_B is neither unital nor semi-classical.

The proof is given in Methods. We therefore see that the behavior of maximal steered coherence \mathcal{C} under local operations is similar to that of quantum discord \mathcal{D}. The set of local channels that can increase \mathcal{C} for some two-qubit state is the same as the set of local channels that can increase \mathcal{D}. Moreover, \mathcal{C} can be increased when the QSE δ_B is very prolate; we showed in Reference 28 that the quantum discord of Bell-diagonal states with such
baguette-shaped \mathcal{E}_B can be increased by the local amplitude damping channel. We therefore conjecture the local increase in quantum correlations originates from the increase in steered coherence.

We now investigate the set of so-called canonical states, which have particular significance in the steering ellipsoid formalism\(^{24,25,33}\). Here, a canonical state ρ_{can} corresponds to one for which Alice's marginal is maximally mixed ($a = 0$). This implies that the QSE \mathcal{E}_B is centered at B (Fig. 1a). Let c_1, c_2 and c_3 be the lengths of the semiaxes of \mathcal{E}_B ordered such that $c_1 \geq c_2 \geq c_3$.

Theorem 2. For any canonical state ρ_{can} the maximal steered coherence is bounded by the longest semiaxis. This in turn is bounded by the length of Bob's Bloch vector as $C_{\rho_{\text{can}}} \leq c_1 \leq \sqrt{1 - b^2}$. (14)

The bound is saturated if and only if \mathcal{E}_B is a chord perpendicular to b meeting the surface of the Bloch sphere at $|\chi\rangle$ and $|\chi'\rangle$. This represents a canonical state of the form

$$\rho_{\text{can}} = \frac{1}{2} |\psi\rangle \langle \psi| \otimes |\chi\rangle \langle \chi| + \frac{1}{2} |\chi\rangle \langle \chi| \otimes |\psi\rangle \langle \psi|,$$

(15)

where $\langle \psi| \sqrt{\rho} \rangle = 0$.

The proof is given in Methods, and an example QSE for an optimal state of the form (15) is shown in Fig. 1b).

Note that this bound is remarkably simple and geometrically intuitive: it depends only on the longest semiaxis of \mathcal{E}_B and not on the orientation or position of the QSE. Theorem 2 is in the same vein as bounds presented in Reference\(^{33}\) that relate several other measures of quantum correlation to geometric features of QSEs.

We also note that optimal states of the form (15) have the highest quantum discord among discordant states with a given b that are obtained from classical states by a local trace-preserving channel. As shown in Reference\(^{34}\), when we take a two-qubit B-side classical (zero discord) state and apply a channel Λ_B to Bob's qubit, in order to create maximal B-side quantum discord in the output state, the optimal input state is of the form

$$\frac{1}{2} |\psi\rangle \langle \psi| \otimes |\phi\rangle \langle \phi| + \frac{1}{2} |\chi\rangle \langle \chi| \otimes |\psi\rangle \langle \psi|,$$

and the channel Λ_B should have Kraus operators $E_0 = |\chi\rangle \langle \phi|$, $E_1 = |\chi\rangle \langle \phi|$, where $|\chi\rangle$ and $|\phi\rangle$ are determined by b.

Examples. Let us now examine some interesting classes of two-qubit states for which maximal steered coherence is easy both to find analytically and to interpret geometrically using QSEs.

X states. When n_B lies along an axis of the QSE \mathcal{E}_B it is straightforward to see that $C(\rho)$ is simply the length of the longest of the other two semiaxes (Fig. 1c). All ρ which are X states, i.e. have non-zero entries only in the characteristic X shape in the computational basis\(^{19}\), will have such QSEs\(^{35}\).

Werner states. As a special case of the above, when \mathcal{E}_B is a ball of radius r centered on O' and n_B is collinear with OO', we have $C(\rho) = r$. Furthermore, when \mathcal{E}_B is an origin-centered ball, we have $C(\rho) = r$ regardless of the value of b. This allows us to evaluate C for Werner states\(^{36}\), which do not in fact satisfy the non-degenerate
condition $b \neq 0$. For a Werner state $\rho _W = p |\Psi ^+\rangle \langle \Psi ^+ | + \frac{1-p}{4} \sigma _0 \otimes \sigma _0$ with $|\Psi ^+\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$, $\delta _W$ is an origin-centered ball of radius p and hence $\mathcal{C} (\rho _W) = p$ (Fig. 1d).

Discordant states locally created from a classical state. We know from property (E1) that \mathcal{C} vanishes for classical states; for a classical two-qubit state, all steered states must have the same orientation, and the QSE $\delta _b$ is therefore a radial line segment. For a state obtained locally from a classical state, $\rho _{b\text{loc}}$, the QSE $\delta _b$ is the nonradial line segment25. b can be any point on this segment except for the two ends of $\delta _b$, which we call b_1 and b_2, where $b_1 \geq b_2$. By definition $\mathcal{C} (\rho _{\text{dloc}})$ varies for different b; in general, we find that

$$b_1 \sin \theta _1 \leq \mathcal{C} (\rho _{\text{dloc}}) \begin{cases} < b_2 \sin \theta , & \text{for } \theta \leq \frac{\pi}{2}, \\
\leq b_1 , & \text{for } \theta > \frac{\pi}{2}, \end{cases}$$

(16)

where θ is the angle between b and b_1 and $\theta _1$ is determined by $b_1 \sin \theta _1 = b_2 \sin (\theta - \theta _1)$. From Eq. (16), we see that $\mathcal{C} (\rho _{\text{dloc}})$ is strictly larger than zero. In fact, $\mathcal{C} (\rho _{\text{dloc}})$ can reach unity when $b_1 = 1$ and $\theta > \frac{\pi}{2}$.

Maximally obese states. The general form of a maximally obese state is given by33

$$\rho _{\text{mo}} = \left(1 - \frac{b}{2} \right) |\Psi_b \rangle \langle \Psi_b | + \frac{b}{2} |00\rangle \langle 00 |,$$

(17)

where $|\Psi_b \rangle = \frac{1}{\sqrt{2}} (\sqrt{1-b} |01\rangle + |10\rangle)$. This is a canonical state ($a = 0$) with $\delta _b$ centered at $(0,0,b)$ and semiaxes of length $c_1 = c_2 = \sqrt{1-b}$, $c_3 = 1 - b$ aligned with the coordinate axes. We therefore have $\mathcal{C} (\rho _{\text{mo}}) = \sqrt{1-b}$.

It should be noted that maximally obese states maximize several measures of quantum correlation (CHSH non-locality, singlet fraction, concurrence and negativity) over the set of all canonical states with a given marginal for Bob.33 Interestingly, however, they do not achieve the maximum possible $\mathcal{C} = \sqrt{1-b^2}$.

Discussion

We have studied the maximal steered coherence $\mathcal{C} (\rho)$ for a bipartite state ρ. When Alice obtains a POVM outcome M, Bob's state is steered to $\rho _b (M)$. $\mathcal{C} (\rho)$ is defined as the coherence of the steered state in Bob's original basis, states that are steered coherence can be exploited. Say that Alice and Bob share a two-qubit state of the form (15) with $|\psi _\chi \rangle = \frac{1}{\sqrt{2}} (|\chi \rangle + |\chi ' \rangle)$. Suppose also that Alice's and Bob's systems are described by the local Hamiltonian $H = - \hbar \omega _\sigma _x$. We restrict Alice's and Bob's local operations to those which are covariant with respect to time-translation symmetry25. For Alice, these are the operations $\Phi (e^{-i \delta _t } \rho _A e^{i \delta _t }) = e^{-i \delta _t } \Phi (\rho _A) e^{i \delta _t }$, and similarly for Bob. Physically, this restriction corresponds to local energy-conserving unitaries with the assistance of incoherent environmental ancillas38. Alice's operation is covariant if and only if it can be written as $\Phi (\rho _A) = tr _\xi [U (\rho _A \otimes \xi _0) U ^\dagger]$, where U is a unitary, $H _\xi$ is the Hamiltonian of the ancilla, $[U , H + H _\xi] = 0$ and $[\xi _0 , H _\xi] = 0$; and similarly for Bob. The set of covariant operations is a strict subset of incoherent operations10 and a strict superset of thermal operations39.

Bob's reduced state $\rho _b = \frac{1}{2} (1 + b \sigma _x)$ is incoherent in his energy eigenbasis $\{|0\rangle , |1\rangle \}$, and his local covariant operations alone cannot generate any coherence. However, by performing a $\sigma _z$ measurement, which is a covariant operation, and classically communicating the result to Bob, Alice steers him to either $|\chi \rangle$ or $|\chi ' \rangle$, states that are manifestly coherent in the energy eigenbasis. $\mathcal{C} (\rho)$ gives a measure of the maximal coherence that Alice can induce on Bob's system by steering. In this way, Alice remotely 'activates' a coherent state for Bob that he was unable to produce himself. Bob may now use this coherence as a resource for quantum information processing tasks, e.g. work extraction by a thermal machine, which is known to be enhanced in the presence of a coherent reference system40. Given the ever-increasing number of applications for coherence found throughout quantum information science, one can envisage a range of such scenarios in which steered coherence could be used as a resource.

Methods

Proof of property (E1). The ‘if’ part is obvious: Bob's reduced state is $\rho _b = \sum _j p _j |\xi _j \rangle \langle \xi _j |$ and the steered state is $\rho _b ^\text{M} = \sum _j p _j tr (\rho _A ^m |\xi _j \rangle \langle \xi _j | \rho _A ^m)$. These are both diagonal in the basis $|\xi _j \rangle$, and hence $\mathcal{C} (\rho) = 0$.

For the ‘only if’ part, first consider a separable state $\rho _A ^m = \sum _j p _j \rho _A ^m \otimes \rho _A ^m$. Then $\mathcal{C} (\rho) = 0$, the steered states $\rho _b ^m = \sum _j p _j tr (\rho _A ^m |\xi _j \rangle \langle \xi _j | \rho _A ^m)$ for different POVM operators M should commute with each other, which is equivalent
to all ρ^b commuting with each other. So $\mathcal{C}(\rho^s)$ vanishes only if it is in the form (4). For an entangled state ρ, we express ρ in the optimal pure state decomposition form as $\rho = \sum p_i |\psi_i\rangle \langle \psi_i|$, so that the entanglement of formation is $E_{\text{F}}(\rho) = \sum p_i E_{\text{F}}(|\psi_i\rangle \langle \psi_i|)$. Since ρ_0 is entangled, at least one of the $|\psi_i\rangle$ is entangled. Hence, for ρ_0, it is not possible for all of Bob’s steered states to share the same eigenbasis; this means that $\mathcal{C}(\rho_0) = 0$ for any entangled ρ_c.

Proof of Theorem 1. A channel Λ_ρ that is neither unital nor semi-classical can increase \mathcal{C}, because such channels can transform a classical state with vanishing \mathcal{C} into a discordant state with nonzero \mathcal{C}. We now focus on the ‘only if’ part, and prove that a local unital channel or a local semi-classical channel cannot increase \mathcal{C} for any two-qubit input state.

A semi-classical channel $\Lambda = \rho \mapsto \Lambda(\rho)$, which maps any input state ρ to a state with zero coherence in a given basis $\mathcal{N}_s(\rho) = \sum p_i |\psi_i\rangle \langle \psi_i|$, yields $\mathcal{C} = 0$ for any input state. As proved by King and Ruskai, any unital channel is equivalent to $\mathcal{N}_s(\cdot) = \sum_{s=0}^1 e_s \sigma_s(\cdot) \sigma_s$, where $0 \leq e_s \leq 1$ and $\sum_s e_s = 1$. The effect of this channel on a qubit state is shrinking the Bloch vector as $\mathcal{N}_b: b \rightarrow b' = (p_1 b_1, p_2 b_2, p_3 b_3)^T$, where $p_1 = e_0 + e_1 - e_2 - e_3$, and $p_{2,3}$ are related to e_i in a similar way. Let b_M be a steered state for the input state ρ. Then the coherence of b_M is $C(b_M, b) = |b_M \times b|/b$. Under the action of Λ^s, the steered state and Bob’s reduced state become $b_{M'}$ and b' respectively, and the coherence of $b_{M'}$ in the eigenbasis of b' is

$$C^2(b_{M'}, b') = \frac{(b_M b_3 - b_M b_3)^2}{b^2} + \frac{(b_{M'} b_2 - b_{M'} b_2)^2}{b^2} + \frac{(b_{M'} b_3 - b_{M'} b_3)^2}{b^2}$$

(18)

If the inequality

$$C(b_{M'}, b') \leq C(b_M, b)$$

(19)

holds then the maximal steered coherence for the output state $\mathcal{C}(1_A \otimes \Lambda^s(\rho)) = \mathcal{C}(b_{M'}, b') \leq \mathcal{C}(b_M, b)$, where Λ_{opt} is the optimal POVM operator to maximize (2) for the output state and $\mathcal{B}_{M, b}'$ is the corresponding input state for $b_{M'}$. Hence it is sufficient to prove that (19) holds for some b_M and b. Note that

$$\left|\frac{b_M b_3 - b_M b_3}{b^2} + \frac{b_{M'} b_2 - b_{M'} b_2}{b^2} + \frac{b_{M'} b_3 - b_{M'} b_3}{b^2}\right| \leq \frac{|b_M b_3 - b_M b_3|^3}{b^4} \frac{b_{M'} b_2 - b_{M'} b_2}{b^4} \frac{b_{M'} b_3 - b_{M'} b_3}{b^4}$$

By using the fact that $A = B < A' + B = C$ for $0 < B < D$, $0 < A < C$, $0 < A' < C'$ and $A = B$ we arrive at $C^2(b_{M'}, b') \leq C^2(b_M, b)$, which is equivalent to (19).

Proof of Theorem 2. The steered state b_M which achieves the maximum in Eq. (8) corresponds to a point B_M on the surface of δ_B^s. We have $\mathcal{C}(\rho_{\text{can}}) = C(b_M, n_B) = D(B_M, \mathcal{B}) \leq BB' \leq C_{\text{opt}}$, where $D(B_M, \mathcal{B})$ is the perpendicular distance between B_M and \mathcal{B}. To ensure that δ_B lies inside the Bloch sphere we require that $c_1 \leq 1 - b^2$. To saturate the bound we take $c_1 = \sqrt{1 - b^2}$, but we must also demonstrate that $c_2 = c_3 = 0$, i.e. that δ_B cannot be an ellipsoid or an ellipse. We know that δ_B must meet the Bloch sphere at two points, corresponding to the pure states $|\chi\rangle$ and $|\psi\rangle$. Firstly suppose that δ_B is a three-dimensional ellipsoid. Elementary geometry tells us that the surface of an ellipsoid at the end of any axis must be perpendicular to that axis. The points at the ends of the c_1 axis on δ_B lie on the surface of the Bloch sphere. Since the surface of δ_B must lie perpendicular to the c_1 axis at these points, δ_B must puncture the surface of the Bloch sphere. Such δ_B cannot represent a physical two-qubit state and so δ_B cannot be an ellipsoid. Now consider the case that δ_B is an ellipse. The nested tetrahedron condition tells us that any degenerate δ_B describing a physical state must fit inside a triangle inside the Bloch sphere. Geometrically, no ellipse that touches the Bloch sphere at two points can satisfy this, and so δ_B cannot be an ellipse. δ_B must therefore be a line, i.e. the chord going between $|\chi\rangle$ and $|\psi\rangle$; this corresponds to the state (15).

References

1. Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007).
2. Marvian, I. & Spekkens, R. W. The theory of manipulations of pure state asymmetry: basic tools and equivalence classes of states under symmetric operations. New J. Phys. 15, 033001 (2013).
3. Marvian, I. & Spekkens, R. W. Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014).
4. Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011).
5. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y. & Nori, F. Examining non-locality and quantum coherent dynamics induced by a common reservoir. Sci. Rep. 2, 885 (2012).
6. Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10–18 (2013).
7. Narasimhachar, V. & Gour, G. Low-temperature thermodynamics with quantum coherence. arXiv:1409.7744 (2014).
8. Aberg, J. Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014).
9. Cwikliński, P., Studziński, M., Horodecki, M. & Oppenheim, J. Towards fully quantum second laws of thermodynamics: limitations on the evolution of quantum coherences. arXiv:1405.5029 (2014).
10. Baunsgaard, T., Cramer, M. & Plenio, M. B. Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).
11. Girolami, D. Observable measure of quantum coherence in finite dimension systems. Phys. Rev. Lett. 113, 170401 (2014).
12. Shao, L.-H., Xu, Z., Fan, H. & Li, Y. Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015).
13. Pires, D. P., Céleri, L. C. & Soares-Pinto, D. O. Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015).
14. Singh, U., Bera, M. N., Dhar, H. S. & Pati, A. K. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015).
15. Zhang, Y.-J., Han, W., Xia, Y.-J., Yu, Y.-M. & Fan, H. Role of initial system–bath correlation on coherence trapping. Sci. Rep. 5, 13359 (2015).
16. Chiu, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigmentprotein complexes. Nat. Phys. 9, 113 (2013).
17. Bromley, T. R., Cianciaruso, M. & Adesso, G. Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015).
18. Schrödinger, E. Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555 (1935).
19. Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).
20. Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental epr-steering using bell-local states. Nat. Phys. 6, 845 (2010).
21. Härdchen, V. et al. Observation of one-way einstein-podolsky-rosen steering. Nat. Photon. 6, 596 (2012).
22. Skrzypczyk, P., Navascués, M. & Cavalcanti, D. Quantifying einstein-podolsky-rosen steering. Phys. Rev. Lett. 112, 180404 (2014).
23. Verstraete, F. A study of entanglement in quantum information theory. Ph.D. thesis, Katholieke Universiteit Leuven (2002).
24. Shi, M., Yang, W., Jiang, F. & Du, J. Geometric picture of quantum discord for two-qubit quantum states. J. Phys. A: Math. Theor. 44, 415304 (2011).
25. Milne, A., Jevtic, S., Jennings, D., Wiseman, H. & Rudolph, T. Quantum steering ellipsoids. Phys. Rev. Lett. 110, 200402 (2014).
26. Milne, A., Jevtic, S., Jennings, D., Wiseman, H. & Rudolph, T. Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014).
27. Milne, A., Jennings, D. & Rudolph, T. Geometric representation of two-qubit entanglement witnesses. Phys. Rev. A 92, 012311 (2015).
28. Hu, X. & Fan, H. Effect of local channels on quantum steering ellipsoids. Phys. Rev. A 91, 022301 (2015).
29. Debasis Mondal, A. K. P. Tanumoy Pramanik, Steerability of local quantum coherence. arXiv:1508.03770 (2015).
30. Hu, X., Fan, H., Zhou, D. L. & Liu, W.-M. Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012).
31. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).
32. Zurek, W. H. Quantum discord and maxwells demons. Phys. Rev. A 67, 012320 (2003).
33. Milne, A., Jennings, D., Jevtic, S. & Rudolph, T. Quantum correlations of two-qubit states with one maximally mixed marginal. Phys. Rev. A 90, 024302 (2014).
34. Hu, X., Fan, H., Zhou, D. L. & Liu, W.-M. Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013).
35. Yu, T. & Eberly, J. Evolution from entanglement to decoherence of bipartite mixed “x” states. Quantum Inf. Comput. 7, 439 (2007).
36. Werner, R. F. Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989).
37. Marvian, I. & Spekkens, R. W. Extending noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014).
38. Keyl, M. & Werner, R. F. Optimal cloning of pure states, testing single clones. J. Math. Phys. 40, 3283–3299 (1999).
39. Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M. & Spekkens, R. W. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).
40. Korzekwa, K., Lostaglio, M., Oppenheim, J. & Jennings, D. The extraction of work from quantum coherence. arXiv:1506.07875 (2015).
41. Streltsov, A., Kampermann, H. & Bruß, D. Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011).
42. King, C. & Ruskai, M. B. Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theor. 47, 192 (2001).

Acknowledgements
This work was supported by NSFC under Grant No. 11441761,11504205, the Fundamental Research Funds of Shandong University under Grant No. 2014TB018, and the National Key Basic Research Program of China under Grant No. 2015CB921003. A.M. is funded by EPSRC. We thank Kamil Korzekwa, Matteo Lostaglio and Terry Rudolph for useful discussions.

Author Contributions
X.H. contributed the idea. X.H., A.M. and B.Z. performed the calculations. X.H., A.M. and H.F. wrote the paper. All authors reviewed the manuscript and agreed with the submission.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hu, X. et al. Quantum coherence of steered states. Sci. Rep. 6, 19365; doi: 10.1038/srep19365 (2016).