The role of hydro-mechanical vegetation in slope stability: A review

Yulia Amirul Fata1*, Hendrayanto1, Kukuh Murtialaksono2, Erizal3
1Department of Forest Management, IPB University, Indonesia
2Department of Soil and Land Resources Science, IPB University, Indonesia
3Department of Civil and Environmental Engineering, IPB University, Indonesia

*Corresponding author: yuliaamirul@gmail.com

Abstract. Vegetated slopes have various levels of slope stability. Variation of slope stability is affected by characteristics of vegetation, slopes, and soils which are shown by hydrological and mechanical (hydro-mechanical) effects. This article presents a review of the role of hydro-mechanical vegetation on slope stability as an explanation of landslide mechanism on vegetated slopes. The review showed that the hydro-mechanical effects from roots enhance matric suction by evapotranspiration (u_a – u_w), change of volumetric water content by plant water uptake (χ), and enhanced effective soil cohesion due to root matrix reinforcement (CR), while vegetation and wind load can enhance surcharge (Sw) and enhance wind load force parallel to the slope (F_{wind}). Hydro-mechanical vegetation effects can increase or decrease slope stability depending on factors of slope steepness, root diameter, root depth, root area ratio, root morphology, soil aggregate, season or weather (wet, dry, snow), vegetation type, slope shape, location, and vegetation spacing.

Keyword: hydro-mechanical, vegetation, slope, stability

1. Introduction
Vegetation is widely used to control shallow landslide [24, 34, 35]. Shallow landslides are landslides that have depth between 1.5 m and 10 m[17]. Shallow landslides have a smaller area than those of deep landslides and generally occur on mountainous slopes [9].

Mountainous slopes have various levels of slope stability which are affected by vegetation characteristics [29] based on hydro-mechanical effect. [40] explained that hydrological effect had a more significant effect on shallow slope stability, whereas [23] stated otherwise. Increase of slope steepness can decrease the hydrological effect in unsaturated conditions, while in saturated conditions after rain the mechanical effect dominates the slope stability. However, mechanical effects can increase slope stability in the root zone, while hydrological effects increase slope stability up to fourfold of the root depth [10].

Vegetation affects slope stability through hydro-mechanical effects [27]. Hydro-mechanical vegetation effects can increase or decrease slope stability [15]. The vegetation effects are (1) mechanical reinforcement of the soil by the root system, (2) surcharge due to weight of vegetation, (3) wind load force parallel to the slope, and (4) modification of soil moisture and groundwater levels by evapotranspiration [6].

The hydro-mechanical vegetation effects on the slope stability model reviewed in this paper are enhanced matric suction by evapotranspiration, change of volumetric water content by plant water
uptake, surcharge due to weight of vegetation, wind load force parallel to the slope, and enhanced effective soil cohesion due to root matrix reinforcement by vegetation [10, 19, 21, 24, 34, 35].

Many studies have reviewed the hydrological and mechanical vegetation effects, but few studies have reviewed the effect of both on slope stability. Considering the importance of information about the landslides mechanism on vegetated slopes, it is important to review the hydro-mechanical vegetation effect on slope stability. Therefore, this article presents a review of the role of hydro-mechanical vegetation on slope stability as an explanation of landslide mechanism on vegetated slopes.

2. The role of vegetation
Slope stability of vegetated slopes is an important issue for land and ecosystem management. Vegetation can influence the hydrological mechanism through interception by canopy and stem, affecting soil moisture by evapotranspiration, and is able to affect the soil shear strength by the root system. The hydro-mechanical vegetation effect is presented in Figure 1.

![Figure 1. The hydro-mechanical vegetation effect on slope stability, Source: Modifications from [8, 15, 17].](image)

Vegetation can influence slope stability. Slopes which look identically by vegetation can have multiple landslide type. This is because there are differences in vegetation type, position on the slopes, land degradation, soil shear strength, lithology, slope steepness, and dynamic factors causing landslides such as cumulative rainfall and earthquakes.

3. The role of hydro-mechanical vegetation on slope stability
Vegetation parameters that affect slope stability are matric suction [15], volumetric water content [3, 4, 38], surcharge due to weight of vegetation [6, 8], wind load force [22], enhanced shear strength by roots (enhanced cohesion and tensile strength by roots) [7, 11, 30, 36, 39]. The effect of vegetation on slope stability is presented in Figure 2.
3.1. Enhanced matric suction by evapotranspiration \((u_a - u_w)\)

The matric suction is one of the hydrological vegetation effects. The matric suction is pressure exerted by unsaturated soil to the surrounding soil to equalize the water content of the entire soil block. The matric suction affects water flow conditions which can increase soil strength. On vegetated slopes, the matric suction is threefold higher than those of bare slopes [15]. The presence of roots on vegetated slopes maintains a higher suction, resulting in higher shear strength, after rainfall, as compared to bare slopes [28]. [26] states that the matric suction equation is as follows equation (1):

\[
u = -\frac{1}{\alpha} \ln \left(\frac{1 + \frac{q}{Ks} e^{-\gamma w z}}{\frac{q}{Ks}} \right)
\]

Where \(u_a - u_w\) is the matric suction (kN/m²), \(\alpha\) is the inverse of the incoming air pressure (kN/m²)\(^{-1}\), \(q\) is the infiltration (-) or evapotranspiration (+), \(Ks\) is the unsaturated hydraulic conductivity (m/sec), \(\gamma w\) is the volumetric soil water content (kN/m³), and \(z\) is the soil depth from the groundwater level (m).

The relationship between the shear strength of unsaturated soil and the matric suction, ranges from being not directly related to non-linear relation [38], where it is influenced by external stress, humidity, soil type, soil structure, and testing techniques [16].

3.2. Change of volumetric water content by plant water uptake \((\chi)\)

The volumetric water content is the second hydrological effect on slope stability. The model simulates the hydrological vegetation effect which reduces soil water content through root water uptake, resulting in increasing slope stability [3]. The volumetric water content is presented in equation (2) [3, 4, 38].

\[
\chi = \left(\frac{\theta}{\theta_s} \right)^k = \frac{\theta - \theta_r}{\theta_s - \theta_r}
\]

Where \(\chi\) is the degree of saturation, \(\theta\) is the volumetric water content, \(\theta_s\) is the saturated volumetric water content, \(\theta_r\) is the residual volumetric water content, and \(k\) is the constant parameter.

[3] had compared the volumetric water content between trees and shrubs on slope stability. When the water content decreases, there is an increase in the matric suction which increases the safety factor. The increasing safety factor in trees is greater than that in shrub vegetation due to increases of matric suction. The higher matric suction causes lower water infiltration and increases shear strength.
However, in such condition, it can cause the slope to become vulnerable to landslides by the appearance of cracks in the soil surface and the decaying of the root [4].

3.3. Surchage due to the weight of vegetation (S_v)

The surcharge due to weight of vegetation (S_w) can increase or decrease slope stability. The vegetation surcharge effects are creating slope pressure (destabilization) [15], increasing normal stress which increases soil resistance to movement, and increasing mass on slopes which are potential to undergo landslides [33],[18] stated that the vegetation surcharge equations are as the following equations:

$$S_w = \sum_{i=1}^{n} b_m (1 + \omega)$$

$$b_m = e^{(\beta_0 + \beta_1 \ln \text{DBH})}$$

Where S_w is the vegetation surcharge, bm is the total aboveground biomass for each tree (kg), ω is the moisture content of the wood (%), n is the number of trees on the slope, A is the slope area (m^2), DBH is the tree’s diameter at the breast height (cm), and the parameter β_0 and β_1 are the coefficient of tree species [20]. Meanwhile, [33] explained that the vegetation surcharge equation using a different equation (equation 5) is as follows:

$$V = L \pi (d_1^2 + d_2^2) / 8$$

Where V is the volume of wood (m^3), d_1 is the diameter of the lower stem (m), d_2 is the diameter of the upper stem (m), L is the length of the stem. The volume value is then converted into mass using the average density of trees based on species.

The effects of vegetation surcharges on slopes are determined by soil or slope conditions [12], stress-strain properties of the slope material, soil permeability, slope geometry, and presence of cohesion [15]. The effect of vegetation surcharges will be advantageous if the slope has low cohesion, high groundwater level, and slope angle is relatively small as compared to the friction angle of the material [37]. However, in many cases, it will be harmful if the slopes have steep slope [33], especially in a potential landslide area. [23] stated that vegetation surcharge has little effect, except for mature trees which can increase slope stability when the slope angle is lower than the internal soil friction angle. Otherwise, these vegetation surcharge decrease slope stabilities.

3.4. Wind load force parallel to the slope (F_{wind})

The wind load on the trees is transmitted as moments and forces through the branches to the trunk towards the ground by the root system [22]. The effect of lateral wind loads generally reduces slope stability [12],[22] states the lateral wind load equation as the following equation (6):

$$F_{wind} = \frac{1}{2} \rho \pi v^2 C_D \pi$$

Where F_{wind} is the wind force (kN), ρ_{air} is the air density (kN/m3), v is the wind speed (m/sec), C_D is the drag coefficient, and A is the area of trunk and crown of vegetation stricken by the wind (m^2).

The effects of lateral wind loads have complex interactions that are generally modelled on a laboratory scale. Laboratory scale modelling has a weakness in experimental to study the effect of roots on soil. The presence of roots penetrating the soil or rock masses along the cracks is an important factor in the effect of lateral wind loads [11].

3.5. Enhanced effective soil cohesion due to root matrix reinforcement by vegetation (C_R)

The effect of effective cohesion by vegetation roots was first identified by [40], and the results showed an increase in the safety factor on some slopes [7]. Some studies present the equation of the increase in
cohesion by the roots with the (C_R) symbol [3, 11, 23, 24, 30, 36, 37], while other studies present the equation of the increase in cohesion as the increase in shear strength by the roots (ΔS) [4, 7, 11, 25, 35]. In this paper, the symbol (C_R) will be used as an increase in cohesion by the roots presented in equation (7) through equation (10) as follows:

\[C_R = t_R (\sin \alpha + \cos \alpha \tan \varphi) \]

(7)

\[t_R = T_R \left(\frac{A_R}{A} \right) \]

(8)

\[C_R = T_R \frac{A_R}{A} (\sin \alpha + \cos \alpha \tan \varphi) \]

(9)

\[C_R = 1.2 T_R \frac{A_R}{A} \]

(10)

Where \(C_R \) is the increase in cohesion by the roots, \(t_R \) is the increase in tensile strength by the roots, \(T_R \) is the average tensile strength of the root fibers, \(\frac{A_R}{A} \) the ratio of the root area, \((\sin \alpha + \cos \alpha \tan \varphi) \) is a value that is not too affected, so that it is changed to value 1.2 as given according to [40].

The effect of effective cohesion by roots is the most dominant mechanical effect of vegetation on a slope [23]. This is also shown by many studies that consider using the effective cohesion parameter by roots rather than by other parameters. The effect of strengthening root cohesion has varying values where generally shrubs have a greater strengthening contribution than trees [24]. This effect is not absolute because it is affected by the root area ratio (RAR) [21] and the root depth [34]. The greater the RAR value and the deeper the root, the higher will be the increase in the effective cohesion by the roots.

4. Slope Stability Model

The hydro-mechanical vegetation effect on slope stability depends on vegetation characteristics, cropping patterns, spacing, position on a slope, and slope steepness. The vegetation characteristics are type of vegetation, shape of the canopy, stems, and root systems. Several studies have modelled the hydro-mechanical effects on various vegetation presented in Table 1.

Shear strength	Shear stress	Vegetation	Source						
\(u_a - u_w \)	\(X \)	\(S_c \)	\(F_{sec} \)	\(C_R \)	\(u_a - u_w \)	\(X \)	\(S_c \)	\(F_{sec} \)	\(C_R \)
Silver wattle (Acacia dealbata)	Abernethy and Rutherfurd 2000								
Spanish broom (Spartium junceum L.) and heachestnut tree (Castanea sativa)	Arnone et al. 2015								
Schefflera heptaphylla and grass species (Axonopus compressus)	Bordoloi and Ng 2020								
Grass and shrubs	Bordoni et al 2016								
Not specific	Chok et al. 2004								
Alder (Alnus incana (L.) Moench) and fungal mycelium	Frei 2009								
Salix viminalis and Salix caprea	Gonzalez-Ollauri et al 2017								
Not specific	Hayati et al. 2018								
Deciduous tree cover, coniferous tree cover, and grass cover	Hardiyatmo 2012								
Agonis flexuosa, Casuarina cunninghamiana, and Acacia floribunda	Hubble et al. 2013								
Robinia pseudocacia and Platycladus orientalis	Ji et al. 2012								
Khaya senegalensis, Syzygium grandis, and Samanea saman	Kim et al. 2020								
Grass (turf vegetation), shrubs, young forest, and mature forest	Kokutse et al. 2016								
Rhodomyrtus tomentosa, elastomasangilineum	Leung et al. 2015								
The hydrological effect of vegetation affects soil water content and soil moisture. The effect is a modification of the rainfall through the ground by interception, evaporation, and root water uptake. The hydrological effect by tree vegetation is greater than that of grass, where [33] stated that trees increase slope stability by up to 71%, whereas grassed decrease slope stability by up to 10%. The root water uptake reduces the soil water content by the matric suction process. In unsaturated conditions, the matric suction is threefold higher than in saturated conditions, while in saturated conditions the effect of interception is greater [15]. In saturated conditions, the low matric suction indicates a greater infiltration, which decreases slope stability [25]. Meanwhile, in unsaturated conditions, low infiltration results in increased slope stability (Table 1). However, when the high matric suction results in permanent wilting, it causes cracks and root damage in the withering vegetation [4].

The mechanical effect of vegetation is affected by vegetation surcharges, lateral wind loads on vegetation, and root systems. Vegetation surcharges can increase or decrease slope stability, if the slope angle is less than the internal friction angle, the vegetation surcharges increase slope stability, and vice versa [23]. The lateral wind load on vegetation generally reduce slope stability [12], where it can also be seen in Table 1 which shows that the lateral wind load is a function of shear stress. The root system is a function of shear strength (Table 1) which increases slope stability by increased cohesion by roots [3, 7, 24]. The increase of root cohesion of tree was greater than that of shrubs [3], but other studies have shown the contrary [24]. Cohesion enhancement is generally effective in the topsoil layer [23] or 0.5 m from the surface [28], where a large proportion of root biomass is present.

Based on the description above, it can be seen that both hydrological and mechanical effects can increase and decrease slope stability. This is due to several factors such as slope steepness [2, 23, 37], root diameter, root depth, root area ratio, root morphology [3, 7, 19, 21, 34, 37], soil aggregate [11], season or weather (wet, dry, snow) [3, 5, 15], vegetation type [3, 18, 22, 24], slope shape, location of vegetation [21], and spacing [34].

The slope steepness affects the vegetation surcharge and slope stability. When the slope steepness is less than the soil internal friction angle [23], <30° [37], and <48° [2], the vegetation surcharges increase slope stability, and vice versa.

Root diameter <10 mm increases slope stability more than that of root diameter >10 mm, and this is shown by tensile strength of the roots which decreases with increasing root diameter [37]. At shallow root depths, slope stability of shrubs is greater than trees [3], because the shrubs root area ratio is larger [21], and at increasing root depth, soil shear strength will decrease [37]. Based on the limited root depth, vegetation plays only a little role in the occurrence of deep landslides [7].
The soil aggregates can increase slope stability. The stability of soil aggregates can be increased by the presence of vegetation which strengthens the soil internal friction angle [11].

In saturated conditions, the hydrological effect is generally less than the mechanical effect. This is due to the phenomenon that in saturated conditions the mechanical effect of the root system increases slope stability [3], while in unsaturated conditions the hydrological effect of higher root water uptake increases slope stability [15].

Vegetation type in the form of trees has greater hydrological effect than shrubs in unsaturated conditions, whereas shrubs have a greater mechanical effect in saturated conditions [3, 24]. Meanwhile, in winter, coniferous vegetation has greater slope stability than tree and shrub vegetation types [18]. Vegetation type affects the various slope stability which is influenced by tree geometry (stem diameter, canopy type, root depth) and modulus of elasticity of trees and soil [22].

Slope shape affects slope stability. In multilevel slopes, the slope stability is greater than that of rectangular slopes. Vegetation at foot-slope can increase slope stability greater than those at other positions [21]. However, the shorter the vegetation spacing, the greater the slope stability [34].

5. Conclusion
There are five hydro-mechanical vegetation effects on slope stability, namely enhanced matric suction by evapotranspiration, change of volumetric water content by plant water uptake, surcharge due to the weight of vegetation, wind load force parallel to slope, and enhanced effective soil cohesion due to root matrix reinforcement by vegetation. Hydro-mechanical effects can increase or decrease slope stability depending on factors of slope steepness, root diameter, root depth, root area ratio, root morphology, soil aggregates, season or weather (wet, dry, snow), vegetation type, slope shape, location of vegetation, and spacing.

References
[1] Alsubal S, Sapari NB, Harahap ISH, Al-Bared MAM 2019A review on mechanism of rainwater in triggering landslidesIOP Conf. Series: Materials Science and Engineering
[2] Arbernethy B, Rutherford ID 2000 Does the weight of riparian trees destabilize riverbanks?. Regul. Rivers: Res. Mgmt16 565–576
[3] Arnone E, Caracciolo D, Noto LV, Preti F, Bras RL 2015 Modeling the hydrological and mechanical effect of roots on shallow landslidesAGU pubs
[4] Bordoloi S, Ng CWW 2020The effects of vegetation traits and their stability functions in bioengineered slopes: A perspective reviewEngineering Geology
[5] Bordoni M, Meisina C, Valentino R, Persichilo MG, Bittelli M, Chersich S 2016 The impact of hydrological parameters on modelling slope safety factor towards shallow landslides: a case study from Oltrepo PavesePaveseE3S Web of Conferences
[6] Brown CB, Sheu MS 1975 Effects of Deforestation on Slope. Journal of the geotechnical engineering division 101147–165
[7] Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV 2004 Modelling the effects of vegetation on stability of slopes 9th Australia New Zealand Conference on Geomechanics391-397
[8] Coppin NJ, Richards IG 2007 Use of vegetation in civil engineeringLondon (UK): Ciria
[9] Dou J, Paudel U, Oguchi T, Uchiyama S, Hayakawa YS 2015 Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, JapanTerr. Atmos. Ocean. Sci 26(2) 227–239
[10] Feng S, Liu HW, Ng CWW 2020 Analytical analysis of the mechanical and hydrological effects of vegetation on shallow slope stabilityComputers and Geotechnics 1–9
[11] Frei M 2009 Validation of a new approach to determine vegetation effects on superficial soil movements [dissertations]Pfaffnau (LU): ETH Zurich
[12] Gray DH 2009 Effect of Woody Vegetation removal on the hydrology and stability of slopesLiterature Review Greenbelt Consulting 1-23
[13] Greenway DR, Anderson MG, Brian-Boys KC 1987 Vegetation and slope stability. In Slope
Stability, Anderson MG, Richards KS (eds) Wiley: Chichester 187–230
[14] Ghestem M, Sidle RC, Stokes A 2011 The influence of plant root system on subsurface flow: implications for slope stability BioScience 61 869-879
[15] Gonzalez-Ollauri A, Mickovski SB 2017 Hydrological effect of vegetation against rainfall-induced landslides Journal of Hydrology
[16] Han Z, Vanapalli SK 2016 Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils Canadian Geotechnical Journal 54(5) 646–663
[17] Hardiyatmo HC 2012 Tanah longsor dan erosi: kejadian dan penanganan UGM Pr
[18] Hayati E, Abdi E, Saravi MM, Nieber JL 2018 Soil water dynamics under different forest vegetation cover: Implications for hillslope stability Earth Surface Processes and Landforms
[19] Hubble TCT, Airey DW, Sealey HK, Carli EVD, Clarke SL 2013 A little cohesion goes a long way: Estimating appropriate values of additional root cohesion for evaluating slope stability in the Eastern Australian highlands Ecological Engineering 61P 621–632
[20] Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA 2004 Comprehensive database of diameter-based biomass regressions for North American tree species Rep NE-319 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station 45
[21] Ji J, Kokutse N, Genet M, Fourcaud T, Zhang Z 2012 Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China Catena 92:139–154
[22] Kim Y, Rahardjo H, Tieng LDT 2020 Stability analysis of laterally loaded trees based on tree-root-soil interaction Springer
[23] Kokutse NK, Temgoua AGT, Kavazovic Z 2016 Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects Ecological Engineering 86 146–153
[24] Leung FTY, Yang WM, Hau BCH, Tham LG 2015 Root systems of native shrubs and trees in Hong Kong and their effects on enhancing slope stability Catena 125 102–110
[25] Lin DG, Huang BS, Lin SH 2010 3-D numerical investigations into the shear strength of the soil-root system of Makino bamboo and its effect on slope stability Ecological Engineering
[26] Lu N, Griffiths DV 2004 Profiles of Steady-State Suction Stress in Unsaturated Soils Journal Of Geotechnical And Geoenvironmental Engineering
[27] Mulyono A, Subardja A, Ekasari I, Lailati M, Sudirja R, Ningrum W 2018 The Hydromechanics of Vegetation for Slope Stabilization IOP Conf. Series: Earth and Environmental Science
[28] Ni JJ, Leung AK, Ng CWW, Shao W 2017 Modelling hydro-mechanical reinforcements of plants to slope stability Computers and Geotechnics 1–11
[29] Osman N, Barakbah SS 2006 Parameters to predict slope stability-Soil water and root profiles Ecological Engineering 28 90–95
[30] O’Loughlin C, Ziemer RR 1982 The importance of root strength and deterioration rates upon edaphic stability in steepland forests Proceedings of I.U.F.R.O. Workshop P.1.07-00 Ecology of Subalpine Ecosystems as a Key to Management. 1982: Oregon (USA): USDA 70–78
[31] Schmaltz EM, Steger S, Glade T 2017 The influence of forest cover on landslide occurrence explored with spatio-temporal information Geomorphology 290 250-264
[32] Sidle CR, Ziegler AD 2017 The canopy interception–landslide initiation conundrum: insight from a tropical secondary forest in northern Thailand Hydrology Earth System Science 21 651-667
[33] Simon A, Collison A JC 2002 Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability Earth Surface Processes and Landforms 27 527–546
[34] Temgoua AGT, Kokutse NK, Kavazovic Z 2016 Influence of forest stands and root morphologies on hillslope stability Ecological Engineering 95 622–634
[35] Tosi M 2007 Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy) Geomorphology 87 268–283
[36] Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, Deckers J, Bievre BD 2002 Lingking hydrological, infinite slope stability and land use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds Geomorphology Elsevier Science 52 299-315

[37] Wilkinson PL, Anderson MG, Lloyd DM 2002 An integrated hydrological model for rain-induced landslide prediction Earth Surface Processes and Landforms 27 1285–1297

[38] Wu L, Huang R, Li X 2020 Hydro-mechanical analysis of rainfall-induced landslides Springer Science Press: Beijing

[39] Wu TH 1984 Effect of vegetation on slope stability Transportation Research Record 37-46

[40] Wu TH, McKinnell III WP, Swanston DN 1979 Strength of tree roots and landslides on Prince of Wales Island, Alaska Can Geotech J 16(1) 19–33