Human or Machine?
It Is Not What You Write, But How You Write It

Luis A. Leiva
Aalto University, Finland
name.surname@aalto.fi

Moises Diaz
Universidad del Atlantico Medio, Spain
moises.diaz@atlanticomedical.es

Miguel A. Ferrer
Universidad de Las Palmas de Gran Canaria, Spain
miguelangel.ferrer@ulpgc.es

Réjean Plamondon
Polytechnique Montréal, Canada
rejean.plamondon@polymtl.ca

Abstract—Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify whether a user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.

Index Terms—Handwriting; Biometrics; Verification; Classification; Liveness Detection; Kinematic Models; Deep Learning

I. INTRODUCTION

Online fraud often involves identity theft, and most of today’s security measures are weak or can be spoofed. Passwords can be guessed or are jotted down imprudently. Two-factor authentication can be broken with SIM swap attacks [1]. Newer phones, tablets, and laptops often include fingerprint and facial recognition, but these can be spoofed as well [2]. A plausible next level of security is to identify people using behavioral information, since it is much harder to copy or imitate. On the web, for example, it is possible to analyze mouse movements at no cost and at large scale [3]. Furthermore, some websites are starting to ask their users to solve some form of handwritten captcha [4]–[6], based on the assumption that handwriting input is very natural for humans. Indeed, today’s mobile devices have a touchscreen, so users can simply handwrite with their fingers or a stylus both quickly and effortlessly.

In this context, we can think of a new form of biometric verification for online services based on handwritten symbols such as gestures (geometric shapes or marks), characters, digits, and signatures that users would have to enter on some touch-sensitive surface such as a mobile phone or tablet. The main advantage of entering handwriting symbols, as opposed to regular handwriting, is that they are short and easy to articulate. In addition, gestures and digits are language-independent, so they are equally easy to learn for everyone. Finally, signatures comprise ballistic movements that people articulate almost without thinking [7]. Therefore, we can expect an increasing adoption of some form of handwriting-based verification in the future [8]. But then a practical question remains: is it possible to tell human and machine-generated handwriting movements apart? Previous work [9]–[16] showed that users are unable to distinguish between them, however the data were presented as static images, i.e. only spatial information was available to the users for assessment. Therefore, it is unclear if a computer can do better in this classification task. Furthermore, research on signature forgery detection and handwriting recognition [17], [18] has suggested that incorporating temporal information often improves classification performance. If online services are to rely on behavioral data to prevent online fraud, then we have to ensure that it is possible to distinguish between human and synthetic data reliably. This idea is similar to the concept of “liveness detection” in the biometrics community [19]–[21]. To the best of our knowledge, we are the first to tackle this problem in generic handwriting movements using deep learning models.

In this paper, we contribute computational models that can tell human and machine-generated handwriting apart. We build and contrast convolutional and recurrent neural networks to handle both off-line and on-line handwritten symbols articulated on different devices (smartphone and tablet) using different input methods (stylus and finger). We find that legitimate handwriting is hard to distinguish in off-line form even for a computer (near 75% accuracy in the best case), however it is possible to achieve remarkable classification performance in on-line form (95% accuracy in the average case). In other words, what really matters it is not what you write but how you write it. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security that contributes to keeping attackers at bay. Our code, models, and datasets are publicly available at https://github.com/luileito/handwriting-biometrics.
II. RELATED WORK

Previous work that has investigated handwriting input as on-line verification has been based on some form of CAPTCHAs (Completely Automated Public Turing Tests to Tell Computers and Humans Apart). In Highlighting CAPTCHA [4] the user must trace an obfuscated word with a stylus, however relying on precise user handwriting is cumbersome to perform on a mobile device due to the inaccuracy of user input [18], [22]. Other approaches require the user to trace a symbol with their mouse or finger, for example a gesture\(^1\) or a math equation [5], arguing that these symbols are language-independent. Finally, BeCAPTCHA-Mouse [23] analyzes mouse pointing behavior when the user clicks on different CAPTCHA images.

To verify legitimate human presence on websites and online services, a more fundamental and straightforward approach is the one we envision in this paper: Just ask the user to handwrite any symbol and verify (computationally) if a human actually produced it. A key aspect of this kind of handwritten data is that it is of sequential nature, therefore we can assume spatiotemporal sequences of \((x, y, t)\) tuples. In this context, recent advancements on generative models have shown impressive results on handwriting [24], sketching [25], and gesturing [26], but so far they have ignored the temporal information. This relevant aspect was highlighted by Elarian et al. [27], who concluded that on-line handwriting velocity is particularly difficult to simulate reliably, specially for trajectories comprising several strokes [23].

One of the most successful techniques to generate handwriting data are movement simulation approaches, which are mainly based on the human neuromotor control system and feed-forward models of locomotion. To this aim, the oscillatory theory [28] has been employed to generate handwriting as a result of horizontal and vertical oscillations (i.e., constrained modulation); see e.g. [29], [30]. Another notable approach is the Kinematic Theory of rapid human movements [31], [32] and its associated Sigma-Lognormal (\(\Sigma \Lambda\)) model [33]. According to this theory, \textit{aimed} human movements (i.e. “movements with a purpose”) are defined by elementary movement units that are superimposed to produce the resulting trajectory [15]. The main idea is that the neuromuscular system involved in the production of an aimed movement can be considered as a linear system made up of coupled subsystems, and the impulse response of such a system converges toward a lognormal function. The \(\Sigma \Lambda\) model has been successfully used for synthesizing stroke gestures [14], [16], [34] and signatures [10], [35], [36], among other types of human movements [15], [37] with high levels of realism. In addition, the \(\Sigma \Lambda\) model is the only approach we are aware of that can generate human-like \textit{generic} spatio-temporal handwriting sequences. Therefore, we adopted this model to create synthetic data in this paper.

Previous work has analyzed the quality of synthetic data from several angles, including e.g. input device and size of symbol vocabulary [34], and reproducing wrist movement and eye saccades [32]. However, no previous work has attempted to differentiate human and synthetic on-line handwriting data from a computational modeling perspective. This is an essential issue to prevent spoofing attacks, i.e., when a malicious attacker tries to defeat a biometric system through the introduction of fake biometric samples. In fact, it has been shown that it is feasible to use the \(\Sigma \Lambda\) model to attack biometric systems through the generation of synthetic signatures [36].

III. METHOD AND EXPERIMENTS

Previous work analyzed the “look and feel” of off-line machine-generated handwritten symbols [9]–[12] with the \(\Sigma \Lambda\) model, by conducting online surveys where users were shown one symbol image at a time and had to tell if it was human or machine-generated. The results revealed that users were unable to tell them apart most of the time (around 50% of classification accuracy, which is essentially random performance). In this paper, we implement several state-of-the-art convolutional neural nets to see if a trained computer can do better than regular users. We also implement several recurrent neural nets that are able to handle both spatial and temporal information, to see if incorporating movement dynamics contributes to improving classification performance.

A. Handwriting Datasets

We analyze several handwriting datasets in order to cover a range of different application domains. Specifically, we analyze two datasets of handwritten gestures, a dataset of isolated characters and digits, and a dataset of signatures. In all datasets, users could see their own handwriting while articulating the symbols. All datasets are publicly available in synthetic form [34], [35], an example of each is shown in Figure 1.

\textbf{1-GDS:} The dataset comprises 16 unistroke gesture classes, 5,280 samples in total [38]. Ten users provided 10 samples per symbol class using an iPAQ Pocket PC (stylus as input device).

\textbf{N-MMG:} The dataset comprises 16 multistroke gesture classes, 9,600 samples in total [39]. Twenty users provided 10 samples per symbol class using either finger (half of the users) or stylus as input devices on a Tablet PC.

\textbf{Chars74k:} The dataset comprises 62 handwritten classes (0-9, A-Z, a-z), unistrokes and multistrokes, 3,410 samples in total. Fifty-five users provided 1 sample per class using a Tablet PC at a constant sampling rate of 100Hz.

\textbf{SUSIGv:} This is the visual subcorpus of the SUSIG database [40], 1,880 samples in total. Ninety-four users provided 20 executions of their own signature using a stylus on an Interlink Electronics’ ePad-ink tablet at a constant sampling rate of 100Hz. As we focused on genuine handwriting, the skilled forgeries were not analyzed.

The following procedure was adopted to create a machine-generated movement execution for a given human sample in each of these datasets. First, each human sample is modeled (reconstructed) with the ScriptStudio stroke extractor [41]. Then, the \(\Sigma \Lambda\) model parameters of the reconstructed sample

\(^1\)http://fosscrewcroft.com/demos/motioncaptcha/
are perturbed using an additive noise distribution [34] whose values were derived in previous work [35], [42]. After these perturbations, a new synthetic sample is obtained, which simulates a new articulation instance of the original human sample. Figure 1 provides some examples of human and synthetic samples, and Figure 4 provides examples both in visual and temporal form.

B. Convolutional Neural Nets

We analyze a static representation of human and machine-generated data, to compare against previous work that used this representation with end-users [9], [11], [12]. We investigate different convolutional neural network (CNN) architectures. CNNs have emerged as the master algorithm in computer vision in recent years [43] and have spurred further breakthroughs in machine learning. Concretely, we tested the following popular architectures: VGG16 [44], ResNet50 [45], DenseNet [46], Inception [47], and Xception [43].

All these CNN architectures are publicly available and have provided state-of-the-art performance in image classification tasks. These models were trained on the ImageNet database [48], so we fine-tune them to our datasets via transfer learning [49]. To this aim: (1) the input layer is modified to accept images of any size; (2) all layers from the pre-trained architecture are frozen so that they become non-trainable; (3) a global average pooling (GAP) layer is added after the last of the pre-trained layers, followed by a fully connected (FC) layer of 4096 neurons with ReLU activation and Dropout rate $q = 0.5$; and (4) the last softmax layer is replaced by an FC layer with one neuron and sigmoid activation. A key advantage of GAP layers is that they enforce correspondences between feature maps and output categories, which feels much more native to the convolution structure and help to prevent overfitting [50]. Our additional layers are trained with backpropagation, as usual in neural nets. Figure 2 conceptually illustrates our pre-trained CNN architectures.

We also train a custom CNN model from scratch, aiming for a straightforward but high-performance classifier. The model has two stacked Convolutional layers with 64 and 32 filters of 3x3 kernel size and ReLU activation, followed by a GAP layer, an FC layer of 2048 neurons with ReLU activation and Dropout rate $q = 0.25$, and an FC layer of one neuron with sigmoid activation as output layer. This model thus promotes 3Alternatively, an FC layer with 2 neurons and softmax activation can be used. However, since we are interested in determining if a movement is human or not, a single neuron with sigmoid activation is a more elegant design choice.

Fig. 1: Randomly selected examples of human and machine-generated specimens from each of the analyzed datasets.

Fig. 2: Conceptual representation. Our CNN models were built on top of existing pre-trained network architectures, which we extended and fine-tuned for our classification task.
a rather simple architecture with several but small receptive fields, inspired by the human feed-forward vision system [51]. Note that the FC layer has significantly less neurons that in our pre-trained CNNs and the Dropout rate is less aggressive since this architecture is much simpler.

All CNN models are trained with the popular Adam optimizer [52] with learning rate $\eta = 0.0005$ and decay rates $\beta_1 = 0.9, \beta_2 = 0.999$. The loss function to minimize is binary cross-entropy, since our task is a two-class classification problem. We feed all CNN models with images of 160x160 px resolution, which did not cause noticeable pixel distortions after resizing, as can be seen in Figure 1. The models are trained up to 400 epochs in batches of 64 images. We use early stopping with patience of 40 epochs, to prevent overfitting, i.e., if some monitoring metric (in our case, classification accuracy) does not improve in 40 consecutive epochs, training is finalized and the best model weights are retained. We train the models on 70% of the data, validate on 10% of the data, and test on the remaining 20% of the data. The results of these experiments are shown in the top rows of Table I.

C. Recurrent Neural Nets

We investigate different recurrent neural network (RNN) architectures, which are designed to process sequential data, such as the handwriting movements we analyze in this paper, and can model temporal dynamic behavior, so they seem ideal candidates for this classification task. Currently there are no pre-trained deep learning architectures for handwriting movements, so we designed our own RNN models from scratch. We tested the vanilla RNN cell as well as the popular LSTM [53] and GRU [54] cells, together with their bi-directional variant [55], where the input sequence is processed in both forward and backward direction.

Since velocity is considered the fundamental control variable in human handwriting [56], [57] our RNN models use velocity as single input feature, which is computed as the point-wise Euclidean distance (in px) divided by the time offset (in ms) between two consecutive timesteps:

$$v_i = \frac{\sqrt{\Delta x_i^2 + \Delta y_i^2}}{t_i - t_{i-1}}$$

where $\Delta x_i = x_i - x_{i-1}$ and $\Delta y_i = y_i - y_{i-1}$, $\forall i > 1$. In sum, input data are converted from $(x, y, t)_i$ sequences to velocity sequences v_i at every ith timestep. Among other benefits, velocity is both rotation and translation invariant, and is rather challenging to simulate reliably [27].

The model architecture of our RNNs is rather simple: an input layer followed by a recurrent layer (either vanilla, LSTM, or GRU) with hyperbolic tangent activation, embedding size of 100 units, and Dropout rate $q = 0.25$, followed by a FC layer with one neuron and sigmoid activation as output layer. We set a maximum capacity for our RNNs to be 400 timesteps, so that longer sequences are truncated to 400 sequence points before feeding them to the input layer. Figure 3 shows that this is an adequate cap for the datasets analyzed in this paper. We noticed that the synthetic sequences in the Chars74k and SUSIGv datasets were sampled at twice the frequency of the human sequences. Consequently, we downsamplled them by half, i.e., by removing one point every two consecutive points, to ensure that both human and synthetic sequences have about the same length, as it happens in 1-GDS and N-MMG.

All RNN models are trained with the Adam optimizer using the same hyperparameters (η, β_1, β_2) used in the CNN models. The loss function is also binary cross-entropy, as the task remains the same (two-class classification). We feed the RNN models in batches of 128 sequences each and use up to 400 epochs for training, as we did with the CNN models. We also use early stopping with patience of 40 epochs, to prevent overfitting, with classification accuracy as monitoring metric. Finally, we also train the models on 70% of the data, validate on 10% of the data, and test on the remaining 20% of the data. The results of these experiments are shown in the bottom rows of Table I.

IV. Results

Classification accuracy is not the only relevant performance metric. Area Under the ROC curve (AUC), for example, helps to determine the discriminatory power of any classifier. Further, assuming that human data are the positive cases and that synthetic data are the negative cases, we report the classic Precision and Recall metrics as well. On the one hand, Precision quantifies the number of positive class predictions that actually belong to the positive class. On the other hand, Recall quantifies the number of positive class predictions made out of all positive cases in a dataset. For completeness, we also report the F-measure, or balanced F1 score, which is the harmonic mean of Precision and Recall [58].

We begin by determining the most suitable data representation (i.e. images or sequences) and the most suitable neural network architecture for classification. We experiment with the 1-GDS dataset, since it is large enough and is available both in off-line and on-line form [12]. Table I shows the results of these experiments. Top rows are CNN-based image classifiers that use spatial information only. Bottom rows are RNN-based sequence classifiers that use both spatial and temporal information: at every timestep the RNN is fed with the velocity of the pen tip (see Equation 1). Notice that by switching from a spatial to a spatiotemporal domain the RNN classifiers achieve remarkable classification performance. We also consider the 1-nearest neighbor classifier with dynamic time warping (1NN-DTW) as a baseline model. Arguably, 1NN-DTW has proven itself to be an exceptionally strong baseline for time series classification [59].
TABLE I: Experiment results for the 1-GDS dataset. Top rows are CNN-based image classifiers. Bottom rows are RNN-based sequence classifiers.

System	Precision	Recall	F-measure	Accuracy	AUC
VGG16	68.50	68.45	68.45	68.48	75.39
ResNet50	68.97	68.95	68.95	68.95	76.34
Xception	71.15	71.03	70.98	71.03	79.58
DenseNet	71.41	71.41	71.41	71.41	78.74
Inception	75.09	74.69	74.57	74.69	82.82
Custom CNN	74.32	74.28	74.27	74.28	82.50
INN-DTW	85.32	83.97	83.80	83.97	83.88
Vanilla RNN	94.93	94.51	94.49	94.51	94.46
LSTM	95.66	95.27	95.25	95.27	97.45
Bi-LSTM	95.14	94.73	94.72	94.73	96.98
GRU	95.78	95.39	95.38	95.39	98.20
Bi-GRU	95.62	95.20	95.19	95.20	97.76

TABLE II: Experiment results with our GRU classifier.

Dataset	Precision	Recall	F-measure	Accuracy	AUC
1-GDS	95.78	95.39	95.38	95.38	98.20
SN-MMG	87.41	86.98	86.94	86.98	92.07
Chars74k	97.06	97.04	97.04	97.04	99.30
SUSIGv	93.68	93.35	93.34	93.35	95.43

The perceptual experiments conducted on the gesture datasets [11], [12] concluded that participants were unable to judge whether gesture images were produced by a human or by a machine, with classification rates close to 50%. In this paper, we can see that it is possible to tell human and synthetic data apart using spatial information only (top rows in Table I) with higher accuracy than previous work, ranging from 68% to 75%. Note that our custom CNN model is substantially less complex than the other CNNs (it has only 72K weights and takes up 1.8M of memory, see Table III) but performs very similarly to the best pre-trained model (Inception: 30M weights, 347M of memory). Nevertheless, we believe this accuracy range is not competitive enough for a real-world biometric application. It is only when we incorporate temporal information that we start to observe noticeable improvements. For example, the INN-DTW classifier outperforms all CNNs. Furthermore, using velocity as the only input feature to a GRU architecture, all our performance metrics are above 94%. Of special mention is the AUC of 98%, which indicates a highly discriminative power of the model.

Now that we know that RNN models outperform CNN models for this classification task, we repeat the experiments for the remaining datasets. We use the very same model architectures, hyperparameters, and configuration. Table II summarizes the results for our GRU classifier, which is the overall best performer. We report results for all RNN models in the Appendix. We can see that our GRU model is able to distinguish between human and machine handwriting with remarkable accuracy, ranging from 93% to 97%, except for the SN-MMG dataset which was 87%. Precision, Recall, and F-measure also suggest excellent performance. In any case, the AUC score is above 92%, which indicates an outstanding discriminative power. Nevertheless, there is still some room for improvement regarding the SN-MMG dataset. Interestingly, most symbols in this dataset comprise multi-stroke sequences, and the time between those sequences (in-air strokes) is not taken into account by the ΣΛ model. We argue that this introduces additional noise in the velocity distribution and therefore the synthetic and human SN-MMG trajectories are a bit more difficult to distinguish. A closer look at Table VI, which splits the N-MMG dataset according to the two input devices available, reveals that gestures articulated with the stylus are more difficult to classify than gestures articulated with the finger. This happens when the model is trained either on stylus-only or finger-only samples. We elaborate more in ‘Effect of input device’ section.

V. DISCUSSION AND FUTURE WORK

Synthetic handwritten generators such as the ΣΛ model can produce human-like movements that are almost indistinguishable from actual human movements if those are represented as off-line images. However, if handwriting data are represented as on-line point sequences it is possible to tell human and machine-generated movements apart with remarkable accuracy. In other words, the distinctive badge of a human action is not what it is written but how it is written. Our approach allows distinguishing next-generation impersonators of human handwriting from genuine human writers. It thus has important implications for biometric and forensics systems, human behavior analysis, and motor control understanding. Crucially, different data generation methods deserve to be considered to demonstrate the generalization ability of our GRU classifier. So far, the ΣΛ model is the only model we are aware of that can reconstruct generic, human-like spatio-temporal sequences. We are aware of many other competing models that unfortunately ignore the temporal information [24]–[26].

We have investigated computational models to exploit the main differences between real and synthetic handwriting specimens in both images and sequences to great advantage. We found that RNNs outperform CNNs in this task. Still, our RNN models could rely on other features as well such as the raw signal, pen-tip position, or even pressure information (if available), which could be combined to improve further the classification results. In addition, adversarial training could help to make our models more robust, provided that temporal data can be generated alongside spatial data, which is rather challenging nevertheless [27]. We leave these analyses as an interesting opportunity for future work.
Our work has the potential to enhance the security, reliability, and effectiveness of computer systems susceptible to spoof attacks. Used wisely, a biometric-like handwriting verification system based on our findings can make users’ life more comfortable. Calm technology [60] can toil quietly in the background, for example continuously authenticating account-holders without badgering them for additional passwords or two-factor authentication. Used unwisely, however, the system could become yet another electronic spy on people’s privacy, permitting strangers to monitor the user’s every move.

It has been proposed recently that mobile devices could become our Personal Digital Bodyguards (PDBs) [8], [61], taking advantage of human movement control models and handwriting recognition technologies. It is expected that, in a near future, PDBs will protect people’s sensitive data with strong verification measures, provide equipment security with writer authentication and recognition (e-security) to monitor the user’s fine motor control, which can detect stress, aging and health problems (e-health). In the hands of children, these tools will turn into interactive toys helping them to learn and master their fine motricity and become better writers and students (e-learning). Such a vision might look out of reach, according to the current status of handheld technology, though it is expected that breakthroughs made in these research domains will put pressure on device vendors in the forthcoming years in order to catch up and incorporate these e-applications “by default” in their operating systems.

VI. CONCLUSION

We have contributed computational models to tackle the liveness detection problem via handwriting symbols (isolated characters, digits, gestures, and signatures) and deep learning architectures. We have found that if symbols are presented as off-line images, they can fool state-of-the-art classifiers but can be distinguished with remarkable accuracy if they are presented as on-line sequences. We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive feedback. L. A. Leiva acknowledges support from the Finnish Center for Artificial Intelligence (FCAI). This research is supported by the Spanish MINECO (TEC2016-77791-C4-1-R project), the European Union (FEDER program), and the NSERC (grant RGPIN-2015-06409).

APPENDIX

A. Models complexity

Table III summarizes the complexity of our models, informed by the usual proxy metrics in deep learning. The ‘Params’ column denotes the number of trainable model weights, the ‘FLOPS’ (Floating Point Operations Per Second) column denotes the number of multiply-and-accumulate operations (higher FLOPS denote more complexity), and the ‘Memory’ column denotes the model operational footprint.

B. Models performance

Given that RNN models outperformed CNN models in our liveness detection tasks, we report in Table IV the performance of all the RNNs over all our evaluated datasets. Notice that the performance of GRU and Bi-GRU models is very similar. Therefore we decided to use GRU as the main RNN classifier in this paper, since it is a simpler architecture.
TABLE III: Deep learning models complexity.

System	Params	FLOPS	Memory
VGG16	16M	33M	81M
ResNet50	32M	63M	367M
Xception	30M	58M	336M
DenseNet	20M	51M	302M
Inception	30M	60M	347M
Custom CNN	72K	289K	1.8M

TABLE IV: RNN models performance on all datasets. We also include the 1NN-DTW classifier as a baseline model.

Dataset	Model	Precision	Recall	F-measure	Accuracy	AUC
S-GDS	Vanilla	94.93	94.49	94.51	94.46	
	LSTM	95.66	95.27	95.27	97.45	
	GRU	95.14	94.73	94.73	96.98	
	Bi-GRU	95.78	95.39	95.38	95.90	
	INN-GRU	95.62	95.20	95.19	95.20	
	85.32	83.97	83.80	83.97	83.88	
SN-MMG	Vanilla	77.94	77.65	77.59	83.59	
	LSTM	81.84	80.08	79.79	81.25	
	GRU	87.41	86.98	86.94	92.07	
	Bi-GRU	87.52	87.01	87.01	92.14	
	INN-GRU	71.28	62.02	57.51	62.02	62.18
Chars74k	Vanilla	91.31	90.34	90.28	90.34	91.64
	LSTM	92.92	92.90	92.90	98.46	
	GRU	97.06	97.04	97.04	99.30	
	Bi-GRU	96.60	96.60	96.60	99.49	
	INN-GRU	92.55	91.52	91.47	91.52	91.53
SUSIGv	Vanilla	84.66	84.57	84.56	84.57	90.28
	LSTM	65.98	65.78	65.62	65.78	72.48
	GRU	88.37	87.41	87.32	87.41	92.71
	Bi-GRU	93.68	93.35	93.34	93.35	95.43
	INN-GRU	95.00	94.68	94.67	94.68	97.29
	72.65	65.16	61.82	65.16	64.85	

C. GRU robustness

To further demonstrate the robustness of our GRU classifier, we train it on different splits of the original training data and report the results in Table V. The ‘Train’ and ‘Test’ columns denote the number of samples in each partition. In all cases, the model is fine-tuned on 20% of the training data. The smaller the training split, the more likely that user-dependent samples will be left out. As can be observed in the table, classification performance remains about the same in all splits. Notice that when training on 99% of the data, the model (1) has almost full knowledge of the dataset distribution and (2) is tested on a small number of samples, therefore classification performance is usually higher.

D. Effect of input device

We train our GRU classifier on the SN-MMG dataset conditioned on stylus or finger articulations, since this dataset has both types of input data, and test the classifier on both types of input. The results of these experiments are shown in Table VI. It can be observed that our classifier performs much better when tested on finger-only samples, no matter if it was trained on stylus-only or finger-only samples. We argue that, in this dataset, the styles samples are of poor quality; e.g., previous work [11], [34] has indicated that many samples have sparse coordinates and duplicated timestamps. This explains the lower-than-usual performance of our GRU classifier when tested on these styles samples.

REFERENCES

[1] N. Andrews, “Can I Get Your Digits? illegal acquisition of wireless phone numbers for SIM-swap attacks and wireless provider liability,” *Nu. J. Tech. & Intel! Prop.*, vol. 16, no. 2, 2018.
[2] D. Menotti, G. Chiachia, A. Pinto, W. R. Schwartz, H. Pedrini, A. X. Falcão, and A. Rocha, “Deep representations for iris, face, and finger-print spoofing detection,” *IEEE Trans. Inf. Forensics Secur.*, vol. 10, no. 4, 2015.
[3] L. A. Leiva and R. Vivó, “Web browsing behavior analysis and interactive hypervideo,” *ACM Trans. Web*, vol. 7, no. 4, 2013.
[4] L. A. Leiva and R. Vivó, “Web browsing behavior analysis and interactive hypervideo,” *ACM Trans. Web*, vol. 7, no. 4, 2013.
[5] S. Shirali-Shahrza and M. Shirali-Shahrza, “Multilingual highlighting CAPICTHA,” in *Proc. IITNG*, 2011.
[6] L. A. Leiva and R. Vivó, “Web browsing behavior analysis and interactive hypervideo,” *ACM Trans. Web*, vol. 7, no. 4, 2013.
[7] S. Shirali-Shahrza and M. Shirali-Shahrza, “Multilingual highlighting CAPICTHA,” in *Proc. IITNG*, 2011.
[8] L. A. Leiva and R. Vivó, “Web browsing behavior analysis and interactive hypervideo,” *ACM Trans. Web*, vol. 7, no. 4, 2013.
[9] S. Shirali-Shahrza and M. Shirali-Shahrza, “Multilingual highlighting CAPICTHA,” in *Proc. IITNG*, 2011.
[10] R. Plamondon, G. Pirlo, E. Anquetil, C. Rémi, H.-L. Teuling, and M. Nakagawa, “Personal digital bodyguards for e-security, e-learning and e-health: A prospective survey,” *Pattern Recognit.*, vol. 81, 2018.
