The Latest Research Progress of Green Building Materials in Lead and Zinc Tailings

Qing Liu¹, Yuan Li¹*, Guodong Zhao²

¹School of Civil Engineering, University of South China, Heng Yang, Hunan, 421001, China
²School of Resource Environment and Safety Engineering, University of South China, Heng Yang, Hunan, 421001, China
*Corresponding author’s e-mail: 1786822436@qq.com

Abstract: In recent years, researchers at home and abroad have used lead-zinc tailings to prepare green building materials for analysis. The main discussion on the preparation of geopolymers and foamed ceramics from lead-zinc tailings is given. The heavy metal curing and radiation-proofing ability of lead-zinc tailings-based building materials are briefly introduced. The results show that the lead-zinc tailings-based green building materials have High strength, heavy metal curing and radiation protection. Finally, the application and prospects of lead-zinc tailings in the field of building materials are analyzed, which provides a theoretical basis for the researchers in the field.

1. Introduction

The tailings produced during the lead-zinc mining process contain heavy metal ions such as lead, zinc, copper and cadmium. Long-term open-air accumulation not only occupies land resources, but also pollutes the surrounding atmosphere, water, soil and other environment, and reduces the quality of life of the residents. Security risks [1-4]. Lead-zinc tailings have good burnability and chemical characteristics similar to those of cement and clay. Therefore, the use of lead-zinc tailings to make building materials (such as cement, concrete, wallboard) has received the attention of people from all walks of life, and the related fields are developing rapidly [5-7]. According to the physical and chemical properties of lead-zinc tailings, researchers used lead-zinc tailings to prepare green building materials such as geopolymers and ceramics, and had achieved remarkable result. The main reasons for the application of lead-zinc tailings in the preparation of green building materials include:

(1) High early strength of geopolymer [8], High temperature resistance [9], Preservative [10], Radiation resistant [11], Strong heavy metal curing ability [12], The preparation of building materials has low energy consumption, low cost and low carbon dioxide emissions;

(2) The content of silicon-aluminum elements required for the preparation of ceramics in lead-zinc tailings is high (Table 1); high ceramic strength [13], can fix heavy metal ions in tailings (Table 2).

This paper mainly discusses the preparation of geopolymers and ceramics from lead-zinc tailings, and introduces the radiation protection and heavy metal curing ability of lead-zinc tailings-based green building materials. This review predicts the development trend of lead-zinc tailings in new green building materials, and provide theoretical basis for researchers in this field.
Table 1. Chemical composition of lead and zinc tailings raw materials/%

Source of raw materials	CaO	SiO₂	Al₂O₃	Fe₂O₃	MgO	Na₂O	K₂O	MnO	TiO₂
Mining company in Nanjing [8]	36.95	22.85	4.57	9.62	2.67	14.03			
Mining company in Jiangxi [14]	2.97	48.25	14.4	9.89	1.06	0.08	2.44		
Mining company in Guangdong [15]	5.04	64.56	11.21	1.91	1.39	0.56	2.18	0.61	0.57

Table 2. Heavy metal content in soil of lead-zinc tailings mining area (unit: mg/kg)

Source of raw materials	Pb	Zn	Cu	Cd	Cr	As	Ni	Mn
Southern Shaanxi lead-zinc tailings area [2]	69.43	223.99	196.04	0.37	37.36	937.48		
Hunan Qiaokou Lead-zinc Mine Tailings Reservoir [3]	2773.5	58.8	124	3579				
Jinyuan Mining Area, Datian County, Fujian Province [4]	879	12480	132	20	11	23	3	21400

2. Application of lead and zinc tailings in geopolymers

The geopolymer forms a three-dimensional network structure of amorphous silicon tetraoxide and aluminosilicate tetrahedron by polycondensation and chain reaction, which was first developed by French scientist Davidovits, J. [16]. Davidovits, J. mixes the basic alkaline activator solvent with solid waste containing silicon-aluminum raw materials such as fly ash, slag, kaolin, and then prepares it with high strength, high temperature resistance and corrosion resistance by pouring, compression molding or ultrasonic assist. Radiation resistant to radiation and strong metal ion curing ability. In recent years, with the continuous development of geopolymers, the effective treatment of solid wastes with high levels of heavy metals has attracted enough attention from many researchers and enterprises at home and abroad. There are few studies on the preparation of geopolymers from lead-zinc tailings, but some results have been achieved in theory.

The replacement of cement by lead-zinc tailings or the mixing of lead-zinc tailings with solid waste to prepare geopolymers can enhance the gelation effect and improve the density and strength properties of the geopolymer. For example, when using the alkali-impregnated lead-zinc slag geopolymer mortar test block, when the modulus, alkali activator content, and slag content are 1.2, 65%, and 45%, respectively, the polycondensation reaction of the geopolymer occurs after 28 days of curing at room temperature. Na₂Al₂Si₃O₁₀·2H₂O and Na₅Si₈O₁₉, the compressive strength is up to 49.6 MPa, and the structural strength and stability of the material are obvious. Enhance [17]. Li Beixing, etc. [15] used 70% lead-zinc tailings, 30% mineral powder (Wugang S95 grade) as catalyst. The water glass modulus is 1.0 and the alkali content is 9%, under 50 °C curing, preparing a high-strength geopolymer with a compressive strength of about 55 MPa for 28 days. The mineral powder can not only effectively improve the compactness of the lead-zinc tailings geopolymer, but also increase the high silicon and aluminum oxide content of the lead-zinc tailings and promote the alkali-excited reaction. The final product microstructure is three-dimensional network (aluminum oxide The body and the silicon tetrahedron are alternately bonded).

Mechanical grinding and high temperature calcination can improve the slag activation degree and improve the structural density and structural strength of the geopolymer. Sun Shuangyue [18] On the basis of the test, desulfurization gypsum was added. The effects of pre-grinding time, mixing time, desulfurization gypsum content and water glass content were studied. XRD and SEM analysis showed that the gelatinous material structure of the standard curing for 28 days contained a large number of gels, interposed with acicular ettringite, which reduced the porosity and improved the structural compactness. The increase in compaction is due in part to the addition of desulfurized gypsum and, on the other hand, to changes in the particle size of the lead and zinc waste. For example, adding 4wt% desulfurization gypsum, 9wt% water glass, pre-grinding for 60 min, mixing for 70 min, the compressive strength of the geopolymer at the age of 28 d reaches 36.48 MPa.
Lead-zinc tailings base polymer has good heavy metal curing ability. Guo Bin prepares fly ash base polymer from lead-zinc waste residue and studies its curing effect on Pb and Cd [19]. The results of TCLP leaching toxicity indicated that the leaching concentrations of Pb and Cd in the geopolymer were in compliance with the standard. In the geopolymer, there is only physical coating of Cd, and in addition to physical coating, Pb also has an "alkali-gelling network bonding" curing mechanism, so the geopolymer has a better curing effect on Pb.

3. Application of lead-zinc tailings in foamed ceramics
Foamed ceramics have the advantages of lightweight, sound insulation, high temperature resistance and corrosion resistance, and are widely used in construction, national defense and chemical industry. According to different foaming agents, it is divided into high temperature foamed ceramics and low temperature foamed ceramics [20]. The researchers used solid waste containing silicon-aluminum oxide as a blend to prepare low-cost, high-performance foamed ceramics [21]. The use of lead-zinc tailings to prepare foamed ceramics has achieved good results, and related research has become a hot topic.

Increasing the sintering temperature can improve the closed porosity, thermal conductivity and mechanical properties of foamed ceramics. Taoyong Liu and others used powder metallurgy technology to prepare foam ceramic materials with lead and zinc tailings, red mud and silica sand as main raw materials, and sodium borate (Na$_2$B$_4$O$_7$) as flux. The results show that the proper sintering temperature can promote the formation of closed pores inside the foamed ceramic. When the sintering temperature is increased to 970 °C, the foamed ceramic has the advantages of porous, low thermal conductivity and good heat insulation effect. Due to its low thermal conductivity and wide pore distribution, the prepared foamed ceramic materials are widely used in insulated building boards [22]. Taoyong Liu, etc. [23] The lead-zinc tailings (also used as a foaming agent), red mud and fly ash were used as the main raw materials, and the porous foamed ceramic material was prepared by using Na$_2$B$_4$O$_7$ as a flux. Through characterization and crystallization phase analysis, the best performance porous ceramics can be prepared by incorporating 18wt% lead-zinc tailings and sintering temperature of 980 °C. The test results show that the bulk density and porosity of the material are 0.67 g/cm3 and 69.2%, respectively; the compressive strength is above 7 MPa, and the flexural strength exceeds 6 MPa.

4. Heavy metal curing and radiation protection of lead-zinc tailings-based building materials
The large amount of lead-zinc tailings produced lacks the short board of construction materials. Considering the high content of heavy metals in lead-zinc tailings, before applying it to building materials, theoretical research on heavy metal solidification must be carried out to explore the feasibility of using lead and zinc tailings in building materials. Secondly, building materials containing heavy metal elements High-energy ray shielding effect, γ-ray shielding effect is more significant [24]. The following is a detailed description of the heavy metal curing and radiation protection properties of lead-zinc tailings-based building materials.

4.1 Heavy metal curing building materials
The calcination temperature of clinker is the main influencing factor of the solidification ability of heavy metals in lead-zinc tailings-based cement clinker. The content of heavy metals varies with the type and proportion of cement raw materials; the calcination temperature is different, the solidification rate of heavy metals in cement clinker is different; and the solidification rate refers to the change of heavy metal content after clinker calcination; The higher the curing rate, the higher the heavy metal content in the clinker; on the contrary, the lower the heavy metal content, so that the heavy metals lost during the calcination process pollute the environment. Before the lead-zinc tailings-based building materials are put into production, the experimental study on leaching toxicity must be carried out; and the concentration of each heavy metal leaching solution must meet the technical parameters of GB5085.3-2007. In order to reduce the discharge of heavy metal elements with the exhaust gas or the
infiltration of rainwater into the groundwater; the production of cement clinker with lead-zinc tailings as raw material has been initially developed (see Table 3).

Table 3. Analysis of Heavy Metal Curing Ability of Lead-Zinc Tailings Based Building Materials

Material style	Maximum cure rate/%	Ref.				
	Zn	Pb	Cu	Cd	As	
cement Calcination temperature	98.23	14.97	29.68		[24]	
	86.41	14.60	35.74		[25]	
	89.76	15.19	73.20	83.62	[26]	
	91.43	21.16		87.61	[27]	

Lead-zinc tailings-based cement material with good Pb$^{2+}$ ion hardening performance can be prepared under alkaline environment. Dan Zhang, etc. [28] Cement-based cementitious materials were prepared by using lead-zinc smelting slag and tailings as main raw materials; the ability of pH and leaching time to cure Pb$^{2+}$ of cementitious materials was investigated. The experimental results show that Pb$^{2+}$ is easy to form a metal compound in an acidic environment, resulting in a large amount of leaching of Pb$^{2+}$ ions; in an alkaline environment (pH 12.0), the elution amount of Pb$^{2+}$ is only about 2.5 mg/g.

4.2 Radiation protection building materials

At present, the research and application fields of radiation-proof cement at home and abroad are mainly concentrated in concrete, concrete, and boron-containing cement [29]. These cements have the disadvantages of a single anti-radiation effect and poor thermal stability. Lead-zinc tailings contain heavy metal element Pb$^{2+}$. In the field of radiation-proof building materials, the utilization of lead-zinc tailings has far-reaching research significance and broad development prospects.

Lead-zinc tailings can increase the density, strength and gamma radiation shielding properties of building materials. Alwaeli M. [30] used 50wt% scaly lead-zinc waste and 50wt% granulated lead-zinc waste instead of natural sand to prepare concrete. The results show that the compressive strength of lead-zinc waste slag concrete is about 20% higher than that of ordinary concrete; and when the density increases by 30%, the linear attenuation coefficient increases by about 23%, and the γ-radiation shielding ability is significantly improved. In addition, under the same gamma radiation shielding strength, the concrete shield prepared by the lead-zinc waste slag is thinner, and is applied to the radiation-proof building material, which can effectively reduce the space. The enhancement of radiation protection is mainly due to primary lead slag and barite; Saca N, et al. studied the use of primary lead slag as admixture to prepare heavy concrete and prepared a compressive strength of 50 MPa. High-intensity gamma radiation shielding performance with linear attenuation coefficient up to 0.35 cm$^{-2}$ [31]. The apparent density of the material is closely related to the γ-ray shielding performance. The research shows that the higher the apparent density of the lead-zinc tailings radiation-proof concrete, the stronger the γ-ray shielding performance [32]. According to the strong γ-ray shielding performance of lead-zinc tailings anti-radiation concrete, it can be promoted and applied as a protective body in the field of strong radiation such as medical and nuclear industries.

5. Acknowledgments

Lead and zinc tailings have high levels of heavy metals, and non-standard stacking treatment will pose a safety hazard to residents’ quality of life. Studies have shown that the use of lead-zinc tailings to produce green building materials is one of the effective ways to deal with solid waste and turn waste into treasure. In order to further deepen the application of lead and zinc tailings in building materials and ensure that there will be no secondary pollution to the environment, the following aspects need further study:

1) Preliminary theoretical research shows that the lead-zinc tailings base polymer has superior performance; however, it lacks research on reaction mechanism, internal structure, heavy metal solidification mechanism and radiation protection performance.
(2) A more systematic study on the properties of heat insulation, thermal conductivity and corrosion resistance of porous foamed ceramics prepared by using lead-zinc tailings. High-durability inorganic porous foamed ceramics are prepared under the premise of environmentally friendly production and simple process.

(3) Lead-zinc tailings can be used to prepare radiation-proof building materials. Lead-zinc tailings with high heavy metal content have the active constituents of silicoalumina for preparing geopolymers; combined with strong solidification ability of heavy metals and little research on radiation prevention; in the new field of geopolymers, utilization Lead-zinc tailings preparation of a high-weight metal solidification rate, strong radiation protection performance, low-cost building materials to be studied.

References
[1] Zhao Z W, Shen M, and Zhan F D 2016 Heavy metal pollution and accumulation in maize grown in arable soils located near a lead and zinc slag heap in Yunnan, Southwest China (China International Journal of Environment and Pollution)
[2] Tang Bo. 2018 Characteristics and sources of heavy metal pollution in soils of lead-zinc tailings in southern Shaanxi (China Jiangsu Agricultural Sciences)
[3] Gao Guolong, Zhang Wang, and Zhou Lianbi 2013 Study on migration and transformation of heavy metals in Xingkou lead-zinc tailings reservoir (China Nonferrous Metals Engineering)
[4] Xu Yali, Chen Feiyun, and Wu Qiuping 2017 Study on the effect of nano-CeO₂ on the dissolution characteristics of heavy metal ions in lead-zinc tailings(China Journal of Functional Materials)
[5] Nouairi J, Hajjaji W, and Costa C S 2018 Study of Zn-Pb ore tailings and their potential in cement technology (Tunisia Journal of African Earth Sciences)
[6] Fan Dingqiang, Shui He, and Yu Rui 2018 Study on the preparation of environmentally-friendly ultra-high performance concrete by lead and zinc tailings recovery (China Bulletin of Silicate)
[7] Shi Zhenwu, Xue Qunhu 2018 Progress in Research on Building Materials of Lead and Zinc Tailings in China (China Bulletin of Silicate)
[8] Pan Z, Zhang J, and Liu W. 2015 Solidification/stabilization of zinc-lead tailings by alkali activated slag cement (China Journal of Wuhan University of Technology-Mater. Sci. Ed.)
[9] Colangelo F, Cioffi R, and Roviello G 2017 Thermal cycling stability of fly ash based geopolymer mortars (Italy Composites Part B: Engineering)
[10] Aiken T A, Kwasny J, and Sha W 2018 Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack (Antrim, North Ireland Cement and Concrete Research)
[11] Montes C, Broussard K, and Gongre M 2015 Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications (USA Advances in Spacereasearch)
[12] Guo X, Zhang L, and Huang J 2017 Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents (China Construction and Building Materials)
[13] Ren Xinming, Ma Beiyue, and Li Shiming 2018 Research progress in preparation of porous ceramics from industrial waste (China Refractory)
[14] Li Beixing, Feng Zihao, and Ye Mao 2018 Preparation of geopolymers from undisturbed lead-zinc tailings (China Concrete)
[15] Sun Shuangyue, Niu Lihong, and Wang Cong 2015 Study on the preparation of polymer from lead and zinc smelting waste and tailings (China China Mining)
[16] Davidovits, J. 1994 Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement (France Journal of Materials education)
[17] Liu Qing, Tang Weibing, and Zhao Guodong 2018 Preparation and mechanical properties of alkali-leaching lead-zinc slag geopolymer (China Bulletin of Silicate)
[18] Sun Shuangyue 2017 *Orthogonal Experimental Study on Polymeric Cementitious Materials Prepared by Smelting Residues* (China China Mining Industry)

[19] Guo Bin 2018 *Preparation of glass-ceramics and geopolymers from lead and zinc smelting slag and their solidification mechanism of lead and cadmium* (China University of Science and Technology Beijing)

[20] Zhang Liusheng, Qiu Yongbin 2005 *High temperature foamed ceramics and its application* (China New Building Materials)

[21] Luo Xuewei, Shi Chaojun, and Chen Shang 2016 *Study on the Process and Properties of Lightweight Foamed Ceramic Insulation Board Prepared by Electrolytic Manganese Slag* (China China Manganese Industry)

[22] Liu T, Li X, and Guan L 2016 *Low-cost and environment-friendly ceramic foams made from lead–zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties* (China Ceramics International)

[23] Liu T, Tang Y, and Li Z 2016 *Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent* (China Materials Letters)

[24] Ding Qingjun, Wang Cheng, and Liu Yongqiang 2017 *Effect of firing system on the performance of electroplating slag mud radiation protection aggregate* (China Journal of Building Materials)

[25] Zhou Xiyan 2013 *Preparation of cement by using lead-zinc tailings as admixture* (China Central South University)

[26] Zhang Zhihai 2015 *Application of lead-zinc tailings as cement admixture* (China Beijing University of Chemical Technology)

[27] He Zhexiang, Xiao Qichun, and Zhou Xiyan 2015 *Solidification characteristics of cement clinker and heavy metals prepared from lead-zinc tailings* (China Journal of Central South University (Natural Science Edition))

[28] Zhang D, Shi S, and Wang C 2015 *Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb²⁺* (China Advances in Materials Science and Engineering)

[29] Xiong Jun, Song Tao 2010 *Research progress of radiation protection materials* (China Chinese Journal of Tissue Engineering Research and Clinical Rehabilitation)

[30] Alwaeli M. 2017 *Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes* (Poland Journal of Cleaner Production)

[31] Saca N, Radu L, and Fugaru V 2018 *Composite materials with primary lead slag content: Application in gamma radiation shielding and waste encapsulation fields* (Romania Journal of Cleaner Production)

[32] Wu Qingwen, Chen Xizi, and Chen Yanlei 2018 *Experimental study on preparation of radiation-proof concrete from lead-zinc tailings* (China Chinese Journal of Ceramics)