Contribution of NKX2-3 Polymorphisms to Inflammatory Bowel Diseases: A Meta-Analysis of 35358 subjects

XiaoCheng Lu*, Linjun Tang*, Kai Li, JinYu Zheng, Penglai Zhao, Yi Tao & Li-Xin Li

Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.

Polymorphisms in NKX2-3 gene have been inconsistently associated with Crohn’s disease (CD) and ulcerative colitis (UC). To generate large-scale evidence on whether NKX2-3 polymorphisms are associated with CD or UC susceptibility, we have conducted a meta-analysis of 17 studies involving 17329 patients and 18029 controls. A significantly increased CD or UC risk was observed in persons carrying a G allele at rs10883365 polymorphism (A/G) compared with those with an A allele. (OR 1.226, 95%CI: 1.177–1.277 and OR 1.274, 95%CI: 1.175–1.382 respectively). In the subgroup analysis, a significantly increased CD risk was found in both Europeans and Asians. For rs11190140 polymorphism (C/T) and CD risk, the risk estimate for the allele contrast was OR 1.201 (1.136–1.269). This meta-analysis provided a robust result that persons with a G or T allele may have a moderately increased risk of CD, and suggested that rs10883365 polymorphism was also a candidate gene polymorphism for UC susceptibility.

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by chronic relapsing inflammation of the gastrointestinal tract that affect 0.1% of Western populations, comprising two major forms, Crohn’s disease (CD) and ulcerative colitis (UC). In Crohn’s disease, the inflammation is often transmural, whereas in ulcerative colitis, the inflammation is typically confined to the mucosa. Additionally, Crohn’s disease can be associated with intestinal granulomas, strictures, and fistulas, but these are not typical findings in ulcerative colitis. Although our understanding of disease pathogenesis remains incomplete, accumulating evidence suggests that IBD is a complex, multifactorial disease partly determined by a genetic predisposition. Strong familial aggregation, twin studies, and established genetic associations indicate that there is a genetic component to the disease susceptibility in IBD. Recently, sequence variations associated with IBD have been reported for several genes, including NOD2, IL23R, IRGM, ATG16L1, PTPN2, and NK2 transcription factor related and locus 3 (NKX2-3).

NKX2-3, located on 10q24, is a member of a family of genes that encode transcription factors containing homeodomains and, therefore, is implicated in basic developmental functions. During development, NKX2-3 is expressed in midgut and hindgut mesoderm and spleen, as well as in pharyngeal endoderm. The association between the NKX2-3 polymorphism and susceptibility of IBD was first reported in Caucasian patients. After the first report of the association, several studies confirmed the association of tag-SNPs (rs10883365 and rs1190140) in the NKX2-3 gene with CD and UC in Caucasian or Asian populations. However, several studies could not replicate the genetic association between IBD and NKX2-3 polymorphisms.

Thus, a quantitative synthesis may help to provide clearer evidence on the association of such genetic polymorphisms with IBD. In the present study, we conducted a meta-analysis of all eligible studies to quantitatively assess the associations between three common polymorphisms (rs10883365 and rs1190140) in the NKX2-3 gene and IBD susceptibility.

Results

Characteristics of the included studies. The combined search yielded 75 references, of which 31 were duplicate studies, 9 were reviews, 4 were about cell studies, 8 were only with abstracts, 7 reported other mutations, 1 reported other disease. Finally, a total of 15 articles were finally included. Among them, one publication contained data on two different subpopulations, one included Welcome Trust Case Control Consortium (WTCCC) samples and replication Crohn’s disease (RCD) samples, and we treated them independently. In total, 17 studies comprising 17329 cases and 18029 controls were included in the present meta-analysis.
Author, Year of publication	Ethnicity	NKX2-3 variant	Phenotype Studied	Number	Males (%)	Age or Age at diagnosis	Number	Males (%)	Age	Matching
Tanaka, 2009	Asians	rs10883365	CD and UC separately	174	65.5	CD: 16–61	394	48.0	19–76	nr
Meggyesi, 2010	Europeans	rs10883365	CD and UC separately	810	53.6	CD: 37.1 ± 12.6 and 26.5 ± 10.6 at diagnosis	469	53.5	40.5 ± 11.5	Age and sex
Meggyesi, 2010	Europeans	rs10883365	CD and UC separately	428	47.2	UC: 43.7 ± 15.0 and 31.3 ± 13.4 at diagnosis	2017	nr	nr	nr
Fisher, 2008	Europeans	rs10883365	UC separately	1841	nr	nr	1841	nr	nr	nr
Franke, 2008	Europeans	rs10883365	CD and UC separately	1850	32.0	CD: mean 38 and 31.3 at diagnosis	253	nr	nr	nr
Parkes, 2007	Europeans	rs10883365	CD	1182	40.3	CD: mean 43.9 and 25.5 at diagnosis	2024	nr	nr	nr
Parkes, 2007	Europeans	rs10883365	CD	1748	39.2	CD: mean 45.7 and 26.1 at diagnosis	5740	nr	nr	nr
Yu, 2009	Europeans	rs10883365	CD	75	nr	nr	255	nr	nr	nr
Yamazaki, 2009	Asians	rs10883365	CD	484	72.8	CD: 22.4 (7–55) at diagnosis	470	50.2	38.7 (21–77)	Age and sex
Pang, 2010	Asians	rs10883365	CD	66	48.5	CD: mean 36.26 ± 11.82	243	nr	nr	nr
Arai, 2011	Asians	rs10883365	CD and UC separately	344	nr	nr	253	nr	nr	nr
Weersma, 2009	Europeans	rs10883365	CD and UC separately	1656	nr	nr	1086	nr	nr	nr
van der Heide, 2010	Europeans	rs10883365	CD	310	34.5	CD: 26.6 (7.5–73.9) at diagnosis	976	nr	nr	nr
Latano, 2011	Europeans	rs11190140	CD	1070	56%	nr	783	nr	nr	nr
Laukens, 2010	Europeans	rs11190140	CD	1051	nr	nr	676	nr	nr	nr
Peter, 2011	Europeans	rs11190140	CD	369	nr	nr	503	nr	nr	nr
Waterman, 2011	Europeans	rs11190140	CD	1144	53%	CD: 16(2–62) at diagnosis	1057	36%	nr	nr

NKX2-3: NK2 transcription factor related and locus 3; CD: Crohn’s disease, UC: ulcerative colitis, nr: not report.
The 17 separate studies consisted of 13 European and 4 Asian. The distribution of genotypes in the control groups of all studies was in agreement with HWE except for 1 study19. Summaries of all included studies were summarized in Table 1, and the flow chart of study selection process was shown in Figure 1.

Quantitative synthesis. Crohn’s disease. The summary of meta-analysis for the NKX2-3 polymorphisms with CD is shown in Table 2, Figure 2A and Supplementary Figure S1. Regarding rs10883365 polymorphism, the results of combined analyses comprising 8699 cases and 13540 controls revealed a significantly increased risk of CD in all genetic models. In addition, the OR was 1.481 (1.351–1.623) in carriers of two risk G alleles compared with non-risk allele carriers (GG vs AA), which was higher than the risk of one G allele carriers (GA vs AA, OR = 1.141 (1.055–1.234), suggesting a dose–response with increasing number of the variant allele. In the subgroup analysis, significantly increased risks were found both among European and Asian population. No between-study heterogeneity was observed in all genetic models of rs11190140 variant and CD risk.

Ulcerative colitis. Seven studies with 4996 UC patients and 5479 controls for rs10883365 polymorphism were investigated. Meta-analysis findings of associations between rs10883365 in NKX2-3 gene and the risk of UC were shown in Table 3 and Figure 2B. Significantly increased UC risk was observed in all comparisons (G vs A: OR = 1.274 (1.175–1.382), GG vs AA: OR = 1.672 (1.474–1.896), GA vs AA = 1.207 (1.084–1.343), dominant model: OR = 1.342 (1.213–1.485), and recessive model: OR = 1.470 (1.325–1.630)). (Fig. 2B) When stratified by ethnicity, significant association was found both in European and Asian subgroups except for one genetic model in Asian (GA vs AA: OR = 1.260 (0.971–1.634)). No heterogeneity was detected in major genetic models.

Sensitivity analyses and cumulative meta-analysis. Sensitivity analysis showed no single study qualitatively changed the pooled ORs. (see Supplementary Fig. S2 and S3) Moreover, there was a study which deviated from HWE, when excluded, the estimated

Figure 1 | Study selection procedures for a meta-analysis of NKX2-3 polymorphisms and risk of CD or UC. NKX2-3: NK2 transcription factor related and locus 3; CD: Crohn’s disease; UC: ulcerative colitis.
and C. Do rU Cr i s k. indicate any evidence of obvious asymmetry for rs10883365 variant polymorphism in CD. (see Supplementary Fig. S6) As shown in publication bias was detected for T vs C contrast of rs11190140 5 1.56, p 0.04, p = 0.966 and t = 1.56, p = 0.181 in CD and UC, respectively). Similarly, no publication bias was detected for T vs C contrast of rs11190140 polymorphism in CD. (see Supplementary Fig. S6) As shown in Supplementary Figure S5, the shapes of the funnel plots did not indicate any evidence of obvious asymmetry for rs10883365 variant and CD or UC risk.

Discussion

Presently the mechanisms of the etiology and progression of IBD are far from clear. Several genes have been identified to be associated with IBD risk, including NOD2, NKKX2-3 and IL-23. Recently, accumulating meta-analysis has been performed to investigate the association of genetic variants with susceptibility to CD or UC. Polymorphisms in several genes, including ATG16L1 T300A34, TGF-α G308A35, MIF G173C36, OCTN1 C1672T37, CD14 C260T38 and MDR1 C3435T39, were identified as risk factors of CD or UC. Patients with mutant allele of NOD1 rs695857140 and PPARγ Pro12Ala41 might have a decreased susceptibility to IBD. Additionally, some genetic variants were not association with CD or UC risk, such as MDR1 C12367T42 and IL10 G1082A43 and IL18 A607C44. Therefore, we saw the need to perform pooled analyses with larger sample size by summarizing previous case–control or cohort studies in order to better understand the association between the NKKX2-3 variants and IBD risk.

NKKX2-3, located on chromosome 10q24, is predominantly expressed in mesoderm of midgut and hindgut during embryonic mouse development45. Postnatally, NKKX3-expression continues in gut mesenchyme and in spleen. In addition, mice lacking Nkkx3-exhibit severe defects in gut development; primarily in the epithelium of the small intestine46. The perturbations of the gut tissue architecture lead to early postnatal death presumably due to digestive malfunctions. Moreover, analysis of Nkkx2-3-deficient mice has revealed a critical role for Nkkx2-3 in spleen development and in establishing the correct environment for normal B cell development and T cell dependent immune response40,46. Recently, associations between the two common polymorphisms (rs10883365 and rs11190140) in NKKX2-3 gene and susceptibility of CD or UC have been reported in several studies.

Table 2 | Pooled analysis for the associations between the polymorphism of NKX2-3 and the risk of Crohn’s disease

Variant	Comparison	Variables	No. of studies	Case	Control	OR (95% CI)	P-value	Model	P-value	Test of heterogeneity
rs10883365 G vs A	Overall		12	8699	13540	1.226 (1.177–1.277)	<0.001	F	0.0	0.968
& All in HWE	9	4883	9661	1.215 (1.154–1.280)	<0.001	F	0.0	0.913		
& European	8	761	12367	1.226 (1.174–1.280)	<0.001	F	0.0	0.944		
& Asian	4	1068	1173	1.223 (1.082–1.382)	0.001	F	0.0	0.613		
GG vs AA	Overall		10	6733	11478	1.481 (1.351–1.623)	<0.001	F	0.0	0.936
& All in HWE	9	4883	9661	1.476 (1.328–1.639)	<0.001	F	0.0	0.893		
& European	6	5665	10305	1.481 (1.342–1.635)	<0.001	F	0.0	0.905		
& Asian	4	1068	1173	1.477 (1.148–1.901)	0.002	F	0.0	0.566		
GA vs AA	Overall		10	6733	11478	1.414 (1.055–2.34)	0.001	F	0.0	0.836
& All in HWE	9	4883	9661	1.159 (0.599–2.68)	0.001	F	0.0	0.807		
& European	6	5665	10305	1.116 (0.242–1.215)	0.012	F	0.0	0.796		
& Asian	4	1068	1173	1.280 (0.555–1.533)	0.012	F	0.0	0.807		
GG + GA vs AA	Overall		10	6733	11478	1.241 (1.153–1.336)	<0.001	F	0.0	0.887
& All in HWE	9	4883	9661	1.254 (1.152–1.365)	<0.001	F	0.0	0.846		
& European	6	5665	10305	1.328 (1.106–1.595)	0.002	F	0.0	0.814		
& Asian	4	1068	1173	1.362 (1.263–1.468)	0.001	F	0.0	0.960		
GG vs GA + GA	Overall		10	6733	11478	1.345 (1.235–1.465)	<0.001	F	0.0	0.948
& All in HWE	9	4883	9661	1.345 (1.235–1.465)	<0.001	F	0.0	0.927		
& European	6	5665	10305	1.373 (1.268–1.486)	<0.001	F	0.0	0.927		
& Asian	4	1068	1173	1.297 (1.024–1.598)	0.030	F	0.0	0.710		
rs11190140 T vs C	Over(Europeans)		5	5484	4836	1.201 (1.136–1.269)	<0.001	F	0.0	0.773
& All in HWE	2	2121	1426	1.190 (1.080–1.311)	<0.001	F	0.0	0.544		
TT vs CC	Over(Europeans)		3	3971	3276	1.485 (1.297–1.700)	<0.001	F	0.0	0.631
& All in HWE	2	2121	1426	1.412 (1.162–1.716)	0.001	F	0.0	0.516		
TC vs CC	Over(Europeans)		3	3971	3276	1.535 (1.259–1.898)	<0.001	F	0.0	0.478
& All in HWE	2	2121	1426	1.427 (1.032–1.458)	0.020	F	0.0	0.430		
TT + TC vs CC	Over(Europeans)		3	3971	3276	1.253 (1.122–1.398)	<0.001	F	0.0	0.867
& All in HWE	2	2121	1426	1.289 (1.095–1.516)	0.002	F	0.0	0.785		
TT vs TC + CC	Over(Europeans)		3	3971	3276	1.344 (1.204–1.501)	<0.001	F	0.0	0.135
& All in HWE	2	2121	1426	1.239 (1.061–1.446)	0.007	F	45.4	0.176		

NKX2-3: NK2 transcription factor related and locus 3; R: Random-effects model; F: fixed-effects model; HWE: Hardy-Weinberg equilibrium; OR: odds ratio; CI: confidence interval.
Table 1: OR estimates with the corresponding 95% CI for the association between rs10883365 polymorphism in NKX2-3 gene and CD or UC risk.

(a): rs10883365 polymorphism and CD risk (G vs. A), (b): rs10883365 polymorphism and UC risk (G vs. A). The sizes of the squares reflect the weighting of included studies. OR: odds ratio; CI: confidence interval.

a. OR estimates for CD risk

First author (year)	OR (95% CI)	Weight (%)
Asians		
Tanaka (2009)	1.08 (0.83, 1.41)	2.56
Yamazaki (2009)	1.29 (1.07, 1.54)	4.94
Pang (2010)	1.03 (0.64, 1.67)	0.78
Arai (2011)	1.29 (1.02, 1.63)	2.90
Subtotal (I-squared = 0.0%, p = 0.613)		
	1.22 (1.08, 1.38)	11.18

Europeans

First author (year)	OR (95% CI)	Weight (%)
Meggyesi (2010)	1.20 (0.97, 1.48)	3.73
Meggyesi (2010)	1.31 (1.03, 1.68)	2.63
Franke (2008)	1.21 (1.11, 1.33)	19.59
Parkes (2007)	1.22 (1.13, 1.31)	29.10
Parkes (2007)	1.18 (1.05, 1.32)	13.85
Yu (2009)	1.44 (1.00, 2.07)	1.15
Weersma (2009)	1.27 (1.14, 1.42)	13.79
van der Heide (2010)	1.27 (1.06, 1.53)	4.99
Subtotal (I-squared = 0.0%, p = 0.944)		
	1.23 (1.17, 1.28)	88.82

Overall

First author (year)	OR (95% CI)	Weight (%)
	1.23 (1.18, 1.28)	100.00

b. OR estimates for UC risk

First author (year)	OR (95% CI)	Weight (%)
Asians		
Tanaka (2009)	1.39 (1.12, 1.73)	6.00
Arai (2011)	1.54 (1.20, 1.99)	4.18
Subtotal (I-squared = 0.0%, p = 0.540)		
	1.45 (1.23, 1.71)	10.18

Europeans

First author (year)	OR (95% CI)	Weight (%)
Meggyesi (2010)	1.25 (0.98, 1.58)	5.26
Meggyesi (2010)	1.54 (1.14, 2.07)	2.97
Fisher (2008)	1.19 (1.08, 1.31)	31.70
Franke (2008)	1.33 (1.19, 1.48)	25.24
Weersma (2009)	1.13 (1.01, 1.26)	24.64
Subtotal (I-squared = 41.1%, p = 0.147)		
	1.23 (1.16, 1.30)	89.82

Overall

First author (year)	OR (95% CI)	Weight (%)
	1.25 (1.18, 1.32)	100.00

Figure 2: OR estimates with the corresponding 95% CI for the association between rs10883365 polymorphism in NKX2-3 gene and CD or UC risk. (a): rs10883365 polymorphism and CD risk (G vs. A), (b): rs10883365 polymorphism and UC risk (G vs. A). The sizes of the squares reflect the weighting of included studies. OR: odds ratio; CI: confidence interval.
Table 3 | Pooled analysis for the associations between the polymorphism of NKX2-3 and the risk of ulcerative colitis

Variant	Comparison	Variables	No. of studies	Sample Size	Test of association	Test of heterogeneity	
rs10883365	G vs A	Overall	7	4996	5479	1.274 (1.175–1.382)	<0.001 R 44.5 0.094
		All in HWE	5	2818	2576	1.268 (1.174–1.369)	<0.001 F 36.5 0.178
		Europeans	5	4447	4842	1.225 (1.156–1.298)	<0.001 F 41.1 0.147
		Asians	2	549	637	1.452 (1.232–1.712)	<0.001 F 0.0 0.176
GG vs AA		Overall	6	3921	4393	1.672 (1.474–1.896)	<0.001 F 20.1 0.282
		All in HWE	5	2818	2576	1.619 (1.387–1.889)	<0.001 F 30.5 0.218
		Europeans	4	3372	3756	1.609 (1.404–1.844)	<0.001 F 26.0 0.255
		Asians	2	549	637	2.078 (1.500–2.878)	<0.001 F 0.0 0.654
GA vs AA		Overall	6	3921	4393	1.207 (1.084–1.343)	<0.001 F 0.0 0.901
		All in HWE	5	2818	2576	1.242 (1.090–1.416)	<0.001 F 0.0 0.905
		Europeans	4	3372	3756	1.196 (1.063–1.345)	0.003 F 0.0 0.814
		Asians	2	549	637	1.260 (0.971–1.634)	0.082 F 0.0 0.466
GG + GA vs AA		Overall	6	3921	4393	1.342 (1.213–1.485)	<0.001 F 0.0 0.801
		All in HWE	5	2818	2576	1.356 (1.199–1.533)	<0.001 F 0.0 0.688
		Europeans	4	3372	3756	1.317 (1.179–1.472)	<0.001 F 0.0 0.767
		Asians	2	549	637	1.467 (1.151–1.869)	0.002 F 0.0 0.454
GG vs GA + GA		Overall	6	3921	4393	1.470 (1.325–1.630)	<0.001 F 43.9 0.112
		All in HWE	5	2818	2576	1.391 (1.223–1.581)	<0.001 F 41.2 0.146
		Europeans	4	3372	3756	1.455 (1.202–1.761)	<0.001 R 53.9 0.089
		Asians	2	549	637	1.534 (1.160–2.028)	<0.001 F 0.0 0.894

NKX2-3: NK2 transcription factor related and locus 3; R: Random-effects model, F: fixed-effects model, HWE: Hardy-Weinberg equilibrium; OR: odds ratio; CI: confidence interval.
OR was determined by the Z-test; a P-value of <0.05 was considered significant. The Hardy-Weinberg equilibrium (HWE) in the control group was assessed, and a P < 0.05 was considered as significant disequilibrium. For rs10883365 polymorphism, the pooled ORs were estimated for G versus A, GG versus AA, GA versus AA, dominant model (GG + GA versus AA), and recessive model (GG versus GA + AA). Because of only three studies available for the association between rs11190140 variant and UC risk, we have performed meta-analysis of correlation between rs11190140 polymorphism and CD risk. Subgroup analysis was performed according to ethnicity. Between-study heterogeneity was evaluated by using the Chi-square based Q test and I² test. Heterogeneity was considered significant for P < 0.10, and a random-effects model was used, otherwise, fixed-effects model was used. In addition, if heterogeneity was detected, Galbraith plots were used to visualize the impact of individual studies on the overall homogeneity, which spot the outliers as the possible major sources of heterogeneity. Moreover, a meta-regression was used to delineate the major sources of between-study heterogeneity.

Sensitivity analysis was carried out to evaluate the stability of the results after sequential removal of each study or by excluding those studies deviated from HWE. In addition, cumulative meta-analyses were carried out for each polymorphism through assortment of studies with publication time. Graphical evaluation of funnel plots and Egger’s linear regression test were performed to assess publication bias. If significant publication bias was detected, ORs and 95% CI would be adjusted by trim and fill methods. All statistical analyses were performed by STATA software, version 12 (StataCorp LP, College Station, Texas).

Figure 3 | Cumulative meta-analysis on the association between rs10883365 polymorphism and CD or UC risk. (a): rs10883365 variant and CD risk (G vs. A); (b): rs10883365 variant and UC risk (G vs. A). Pooled OR estimates with the 95% CI as information accumulates at the end of each year (left column). CD: Crohn’s disease; UC: ulcerative colitis; OR: odds ratio; CI: confidence interval.

Table 1

Firstauthor	Year	OR (95%CI)
Parkes	2007	1.22 (1.13, 1.31)
Parkes	2007	1.20 (1.13, 1.28)
Franke	2008	1.21 (1.15, 1.27)
Weersma	2009	1.22 (1.16, 1.28)
Yu	2009	1.22 (1.17, 1.28)
Yamazaki	2009	1.23 (1.17, 1.28)
Tanaka	2009	1.22 (1.17, 1.28)
Pang	2010	1.22 (1.17, 1.27)
Meggyesi	2010	1.22 (1.17, 1.27)
van der Heide	2010	1.22 (1.17, 1.27)
Meggyesi	2010	1.22 (1.17, 1.28)
Arai	2011	1.23 (1.18, 1.28)

Table 2

Firstauthor	Year	OR (95%CI)
Fisher	2008	1.19 (1.08, 1.31)
Franke	2008	1.25 (1.16, 1.34)
Weersma	2009	1.21 (1.14, 1.29)
Tanaka	2009	1.22 (1.16, 1.30)
Meggyesi	2010	1.23 (1.16, 1.30)
Meggyesi	2010	1.24 (1.17, 1.31)
Arai	2011	1.25 (1.18, 1.32)

1. Vermeire, S., Van Assche, G. & Rutgeerts, P. Classification of inflammatory bowel disease: the old and the new. *Curr Opin Gastroenterol* **28**, 321–26 (2012).
2. Abraham, C. & Cho, J. H. Inflammatory bowel disease. *N Engl J Med* **361**, 2066–2078 (2009).
16. Parkes, M.
15. Meggyesi, N.
14. Genome-wide association study of 14,000 cases of seven common diseases and 31. Franke, A.
6. Glas, J.
29. Duerr, R. H.
10. Scharl, M.
9. Kabi, A., Nickerson, K. P., Homer, C. R. & McDonald, C.
7. Molnar, T.
3. McGovern, D. P.
27. van der Heide, F.
25. Yamazaki, K.
21. Pang, Z., Cao, K. & Wei, W. X. Correlation of rs10883365 Polymorphism in
18. Yu, W.
22. Latiano, A.
23. Yu, W.
246–252 (2011).
20. Guerra, G.,v, M. De, C. M. & G., M. A. New insights into Crohn's disease: a disease with
34. Cheng, J. F., Ning, Y. J., Zhang, W., Lu, Z. H. & Lin, L. T300A polymorphism of
32. Franke, A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci and five loci implicated in Crohn's disease.
72G-C) and susceptibility of Crohn's disease: a meta-analysis. Nat Genet 39, 1139–1145 (2011).
35. Fan, W. et al. Relationship between the polymorphism of tumor necrosis factor-alpha: 308 G > A and susceptibility to inflammatory bowel diseases and colorectal cancer: a meta-analysis. Eur J Hum Genet 19, 432–437 (2011).
36. Shen, Y. et al. The –173 G/C Polymorphism of the MIF Gene and Inflammatory Bowel Disease Risk: A Meta-Analysis. Int J Mol Sci 14, 11392–11401 (2013).
37. Xuan, C. et al. Association between OCN112/1 gene polymorphisms (1672C-T, 207G-C) and susceptibility of Crohn’s disease: a meta-analysis. Int J Colorectal Dis 27, 11–19 (2012).
38. Wang, Z., Hu, J., Fan, R., Zhou, J. & Zhong. J. Association between CD14 gene C-2607T polymorphism and inflammatory bowel disease: a meta-analysis. PLoS One 7, e51444 (2012).
39. Zintzaras, E. Is there evidence to claim or deny association between variants of the multidrug resistance gene (MDR1 or ABCB1) and inflammatory bowel disease? Inflamm Bowel Dis 18, 562–572 (2012).
40. Lu, W. G. et al. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J Gastroenterol 16, 4348–4356 (2010).
41. Zhang, J. X. et al. Associations between PTPN2 polymorphisms and susceptibility to ulcerative colitis and Crohn’s disease: a meta-analysis. Inflamm Res 63, 71–79 (2014).
42. Zhou, L., et al. The association between three promoter polymorphisms of IL-10 and inflammatory bowel diseases (IBD): A meta-analysis. Autoimmunity 47, 27–39 (2014).
43. Pan, H. F., Leng, R. X. & Ye, D. Q. Lack of association of interleukin-18 gene promoter –607 A/C polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Lupus 20, 945–951 (2011).
44. Pabst, O., Ziegelriedt, K., Engel, H. & Arnold, H. Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126, 2215–2225 (1999).
45. Pabst, O., Forster, R., Lipp, M., Engel, H. & Arnold, H. H. Nkx2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EMBO J 19, 2023–2032 (2000).
46. Tarlinton, D., Light, A., Metcalf, D., Harvey, R. P. & Robb, L. Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J Immunol 170, 4002–4010 (2003).
47. Yazdanyar, S., Weisheier, M. & Nordestgaard, B. G. Genotyping for NOD2 genetic variants and crohn disease: a meta-analysis. Clin Chem 55, 1950–1957 (2009).
48. Marquez, A. et al. Role of ATG16L1 Thr300Ala polymorphism in inflammatory bowel disease: a Study in the Spanish population and a meta-analysis. Inflamm Bowel Dis 15, 1697–1704 (2009).
49. John, G. et al. NKKX2-3 variant rs11991410 is associated with IBD and alters binding of NFAT. Mol Genet Metab Mol Metab 104, 174–179 (2011).
50. Skieceviciene, J. et al. Replication Study of Ulcerative Colitis Risk Loci in a Lithuanian-Latvian Case-Control Sample. Inflamm Bowel Dis 19, 2349–2355 (2013).
51. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat Med 21, 1539–1558 (2002).
52. Galbraith, R. F. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med 7, 889–894 (1988).
53. Huy, N. T. & et al. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care 14, R240 (2010).
54. Kriston, L., Harms, A. & Berner, M. M. A meta-regression analysis of treatment effect modifiers in trials with flexible-dose oral sildenafil for erectile dysfunction in broad-spectrum populations. Int J Impot Res 18, 559–565 (2006).
55. Tang, J. L. & Liu, J. L. Misleading funnel plot for detection of bias in meta-analysis. J Clin Epidemiol 53, 477–484 (2000).
56. Fan, W. et al. Relationship between the polymorphism of tumor necrosis factor-alpha 308 G > A and susceptibility to inflammatory bowel diseases and colorectal cancer: a meta-analysis. Eur J Hum Genet 19, 432–437 (2011).

Acknowledgments
This study was supported by grants from the National Natural Science Foundation of China (No. 81171147), "Xiangwei Project" Key Personal Medical Research Foundation of Health Department of Jiangsu Province (No. RC201156), “Six Categories of Key Person” Research Foundation of Jiangsu Province (No. 069), Program Sponsored for Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXXZ12_0583), and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. XJ201381).

Author contributions
Conceived and designed the experiments: L.X.C., L.L.X. Performed the experiments: L.X.C., T.L.I., L.K. Analyzed the data: L.X.C., Z.Y.I., Z.P.L. Contributed reagents/materials/analysis tools: L.X.C., T.L.I., T.Y. Wrote the paper: L.X.C., L.L.X.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lu, X.C. et al. Contribution of NKX2-3 Polymorphisms to Inflammatory Bowel Diseases: A Meta-Analysis of 35358 subjects. Sci. Rep. 4, 3924; DOI:10.1038/srep03924 (2014).