Mouse-Hamster Chimeric Prion Protein (PrP) Devoid of N-Terminal Residues 23-88 Restores Susceptibility to 22L Prions, but Not to RML Prions in PrP-Knockout Mice

Keiji Uchiyama¹ ¹, Hironori Miyata² ², Masashi Yano¹, Yoshitaka Yamaguchi¹, Morikazu Imamura³, Naomi Muramatsu¹, Nandita Rani Das¹, Junji Chida¹, Hideyuki Haran¹, Suehiro Sakaguchi¹ ¹*

¹ Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan, ² Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan, ³ Influenza and Prion Disease Research Center, National Institute of Animal Health, Tuskuba, Ibaraki, Japan

Abstract

Prion infection induces conformational conversion of the normal prion protein PrP^C, into the pathogenic isoform PrP^Sc, in prion diseases. It has been shown that PrP^C knock-out (Prnp^−/−) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp^−/− mice, neither developed the disease nor accumulated MHM2^ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp^−/− mice developed the disease with abundant accumulation of MHM2^ScΔ23-88 in their brains. These results indicate that MHM2^ScΔ23-88 itself might either lose or greatly reduce the converting capacity to MHM2^ScΔ23-88, and that the co-expressing wild-type PrP^C can stimulate the conversion of MHM2Δ23-88 to MHM2^ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp^−/− mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp^−/−Prp^RD mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2^ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2^ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp^−/− mice. However, wild-type PrP^Sc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp^−/− mice, compared with RML- and 22L-inoculated Prp^RD mice. These results show that MHM2Δ23-88 itself can convert into MHM2^ScΔ23-88 without the help of the trans-acting PrP^C, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrP^C stimulates the conversion of MHM2Δ23-88 into MHM2^ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrP^C into PrP^Sc.

Introduction

Prions are causative agents of transmissible spongiform encephalopathies, or prion diseases, a group of fatal neurodegenerative disorders, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals [1,2]. It is believed that prions mainly consist of the abnormally folded, relatively protease K (PK)-resistant pathogenic isoform of prion protein, designated PrP^Sc [1,2]. PrP^Sc is produced by conformational conversion of the normal cellular isoform of PrP, PrP^C, via intermolecular interaction of both molecules [1,2]. PrP^C is a membrane glycoprotein tethered to the cell surface via a glycosylphosphatidylinositol moiety and expressed most abundantly in the central nervous system, particularly by neurons [3,4]. We and others have shown that mice devoid of PrP^C (Prnp^−/−) are resistant to prions, neither developing the disease nor producing PrP^Sc or propagating the prions even after inoculation with the prions [5,6,7,8]. These results indicate that the conversion of PrP^C into PrP^Sc is an essential event in the pathogenesis of prion disease.

A reverse genetic approach using reconstituted Prnp^−/− mice with transgenes encoding various deletion mutants of PrP^C is useful to investigate the structure-function relationship of PrP^C conversion to PrP^Sc. Prnp^−/− mice expressing mouse PrP with N-terminal residues 23-88 deleted, or Tg(PrPΔ23-88)/Prnp^−/− mice, developed prion disease after inoculation with RML scrapie prions, with accumulation of PrP^ScΔ23-88 in their brains [9].

Citation: Uchiyama K, Miyata H, Yano M, Yamaguchi Y, Imamura M, et al. (2014) Mouse-Hamster Chimeric Prion Protein (PrP) Devoid of N-Terminal Residues 23-88 Restores Susceptibility to 22L Prions, but Not to RML Prions in PrP-Knockout Mice. PLoS ONE 9(10): e109737. doi:10.1371/journal.pone.0109737

Editor: Noriyuki Nishida, Nagasaki University Graduate School of Biomedical Sciences, Japan

Received April 18, 2014; Accepted September 9, 2014; Published October 16, 2014

Copyright: © 2014 Uchiyama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was partly supported by a Grant-in-Aid from the bovine spongiform encephalopathy (BSE) and other Prion Disease Control Project of the Ministry of Agriculture, Forestry and Fisheries of Japan, and Grants-in-Aid from the Research Committee of Prion Disease and Slow Virus infection, the Ministry of Health, Labour and Welfare of Japan. HM is partly supported by a Cooperative Research Grant of the Institute for Enzyme Research, the University of Tokushima. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declared that no competing interests exist.

* Email: sakaguchi@tokushima-u.ac.jp

† Current address: Department of Food Science, Faculty of Human Life Science, Mimasaka University, Okayama, Japan

These authors contributed equally to this work.
However, onset of the disease was delayed and the conversion of PrPA23-88 into PrPsC Δ23-88 was inefficient [9]. These results indicate that the N-terminal residues affect the conversion of PrPsC into PrPsCΔ. Delayed onset of the disease was also observed in Tg(MHM2Δ23-88) mice inoculated with RML prions. MHM2 is a mouse (M)-hamster (H) chimeric PrP, with hamster PrP-derived methionine residues at 108 and 111 instead of leucine and valine residues of mouse PrP, indicating that the chimeric region also affects the conversion. MHM2Δ23-88 is chimeric MHM2 with the deletion of N-terminal residues 23-88. Interestingly, Tg(MHM2Δ23-88)/Prnp0/+ mice were reported to remain healthy for more than 300 days after inoculation with RML prions [9,10]. No MHM2Δ23-88 was accumulated in their brains [9,10]. In contrast, MHM2Δ23-88 was easily detectable in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice [10]. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2Δ23-88, and that the co-expressing wild-type PrPsC can stimulate the conversion of MHM2Δ23-88 to MHM2Δ23-88 in trans.

In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/+ mice remained resistant to RML prions for more than 730 days after inoculation. Neither MHM2Δ23-88 nor prion infectivity was detected in their brains. However, we found that Tg(MHM2Δ23-88)/Prnp0/+ mice were susceptible to 22L scrapie prions, developing prion disease around ~330 days after inoculation. MHM2Δ23-88 and prion infectivity were detected in the brains of terminally ill Tg(MHM2Δ23-88)/Prnp0/+ mice. These results clearly demonstrate that MHM2Δ23-88 can convert to MHM2Δ23-88 without the help of the co-expressing wild-type PrPsC. We also found that the conversion of MHM2Δ23-88 into MHM2Δ23-88 was accelerated and the conversion of wild-type PrPsC into PrPsCΔ was contrarily decelerated in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. These results indicate that the co-expressing wild-type PrPsC stimulates the conversion of MHM2Δ23-88 into MHM2Δ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPsC into PrPsCΔ, irrespective of prion strains inoculated.

Materials and Methods

Ethics statements

The Ethics Committee of Animal Care and Experimentation of the University of Occupational and Environmental Health, Kitakyushu, Japan, approved this study (approval number AE08-013). Animals were cared for in accordance with The Guiding Principle for Animal Care and Experimentation of the University of Occupational and Environmental Health and Japanese Law for Animal Welfare and Care.

Animals

Tg(MHM2Δ23-88)/Prnp0/+ mice with the C57BL/6 x 129sv/vFVB mixed background were produced elsewhere [11]. Tg(MHM2Δ23-88)/Prnp0/+ and Prnp0/+ mice [12] were obtained by mating Tg(MHM2Δ23-88)/Prnp0/+ mice with C57BL/6 mice (CLEA Japan, Tokyo, Japan). ICR mice were purchased from Charles River Laboratories, Japan.

Prion inoculation

Brains were removed from terminally ill C57BL/6 mice infected with RML or 22L prions. A single brain was homogenized (10%, w/v) in phosphate-buffered saline (PBS) by passing it through 18 to 26 gauge needles and then diluted to 1% with PBS. Four to five week-old mice were intracerebrally inoculated with a 20 μl- aliquot of the homogenates.

Prion titration

10% (w/v) brain homogenates of RML- or 22L-infected, terminally ill C57BL/6 mice were serially diluted 10-fold with PBS, ranging from 10⁻¹ to 10⁻⁸ in PBS, and a 20 μl- aliquot of 10⁻¹, 10⁻², 10⁻³, and 10⁻⁴-diluted homogenates was intracerebrally inoculated into C57BL/6 mice aged 4–5 weeks. The mice were observed until 1 year after inoculation. The ID5₀/gram of the tissue was determined according to the method of Reed and Muench [13]. The data were statistically analyzed using logistic regression analysis.

Western blotting

Tissue homogenates (10%, w/v) were prepared in lysis buffer containing 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 0.5% Triton X-100, 0.5% sodium deoxycholate, 1 mM EDTA, and protease inhibitor mixture (Nakalai Tesque Co., Kyoto, Japan) using a Multi-beads shocker (Yasuiki Kikai Co., Osaka, Japan). Protein concentrations were determined using the BCA protein assay kit (Pierce, Rockford, USA.). Total proteins were treated with or without PK (Wako Pure Chemical Industries, Ltd., Osaka, Japan) at 20 μg/ml for 30 min at 37°C, electrophoresed through an SDS-polyacrylamide gel, and electrically transferred to an Immobilon-P PVDF membrane (Millipore Corp., MA, USA). The membrane was immersed in 5% non-fat dry milk-containing TBST (0.1% Tween-20, 100 mM NaCl, 10 mM Tris-HCl, pH 7.6) for 1 h at room temperature (RT), and incubated with M20 goat polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), 3F4 monoclonal antibody (Signet Laboratories Inc., Dedham, MA), or anti-β-actin monoclonal antibody (Sigma-Aldrich, Inc., St. Louis, MO) for 2 h at RT or overnight at 4°C in 1% non-fat dry milk-containing TBST. The membrane was washed in TBST several times. Signals were visualized using horseradish peroxidase-conjugated anti-mouse IgG antibodies (Amersham Biosciences Inc., Piscataway, NJ) and anti-goat IgG antibodies (CHEMICON International, Inc., Temecula, CA) and Immobilon Western Chemiluminescent HRP substrate (Millipore), and then detected using a chemiluminescence image analyzer, LAS-4000 mini (Fujifilm Co., Tokyo, Japan).

Hematoxylin-eosin staining

Paraffin-embedded sections were sectioned at 5 μm. The sectioned samples were deparaffinized, rehydrated, and stained with Mayer’s hematoxylin solution (Wako Pure Chemical Industries, Ltd.) and 1% Eosin Y solution (Wako Pure Chemical Industries, Ltd.) and then detected using a chemiluminescence image analyzer, LAS-4000 mini (Fujifilm Co., Tokyo, Japan).

Vector constructions

The DNA fragment encoding mouse PrP residues 104–254 with methionine substitutions at codons 108 and 111 was first amplified by polymerase chain reaction (PCR) with a sense primer (5’-ccccaaaaaccaatgacagaca-3’) and an antisense primer (5’-cctataagactcatccagacgga-3’); the underlined sequence is an XbaI site; the bold sequence is a stop codon) using pcDNA3.1-moPrP plasmid [14] as a template. The resulting DNA fragment was then utilized as a 3’ primer together with a sense primer (5’-tgctagacatgtggccacgctcggg-3’; the underlined sequence is a BamHI site; the bold sequence is a start codon) to amplify a DNA fragment encoding full-length mouse PrP with the methionine substitutions using the pcDNA3.1-moPrP template plasmid. After
confirmation of the DNA sequences, the DNA fragment was digested by BamHI and XhoI and introduced into a pDNA3.1 vector (Invitrogen, Carlsbad, CA) to generate pDNA3.1-MHM2. Finally, to construct E. coli expression vectors for recombinant full-length MHM2 and MHM2Δ23-88, the corresponding DNA fragments were amplified by Phusion High-Fidelity DNA Polymerase (Thermo Scientific, Waltham, MA) using pDNA3.1-MHM2 plasmid template with sense primers (5’-ctggtcagagaagatgatcaggaagat-3’ for MHM2, the underlined sequence is a BamHI site; the italic sequence, residues 23–29 of mouse PrP; 5’-ctggtcagagaagatgaggaagatgag-3’ for MHM2Δ23-88, the underlined sequence is a BamHI site; the italic sequence, residues 89–95 of mouse PrP; and an antisense primer (5’-ctggtcagagaagatgatcaggaagat-3’, the underlined sequence is a Hind III site; the bold sequence is a stop codon; the italic sequence, residues 249–254 of mouse PrP). After confirmation of the DNA sequences, the DNA fragments were digested by BamHI and Hind III and introduced into a pQE30 vector (Qiagen, Hilden, Germany) to generate pQE30-MHM2 and pQE30-MHM2Δ23-88.

Purification of recombinant proteins

E. coli was transformed by pQE30-MHM2 and pQE30-MHM2Δ23-88 and cultured at 37°C overnight in the presence of 1 mM isopropyl β-D-thiogalactoside to induce expression of recombinant full-length MHM2 and MHM2Δ23-88, both of which are His-tagged. The E. coli cells cultured in 1 L medium were harvested by centrifugation (3,000 x g, 20 min, 4°C) and the resulting pellet was suspended in 30 mL of 6 M GdnHCl solution (0.1 M NaH2PO4, 0.01 M Tris, 6 M guanidine hydrochloride, pH 8.0). The cells were lysed by rotating the suspension for 30 min at RT followed by sonication for 1 min at intervals of 1 min 4 times. The suspension was again subjected to rotation for 30 min at RT and then centrifuged (12,000 x g, 20 min, 25°C). The resulting supernatant was mixed with 0.5 mL (bed volume) of Ni-NAT agarose (Qiagen) and rotated for 2 h at RT. The Ni-NAT agarose was collected by centrifugation (500 x g, 3 min, 25°C) and washed 3 times with 10 mL of 8 M urea solution (0.1 M NaH2PO4, 0.01 M Tris, 8 M urea, pH 6.3). To decrease the urea concentration in the suspension in a stepwise fashion, the Ni-NAT agarose pellet was suspended in 9 mL of the 8 M urea solution and 1 mL of dilution solution (0.1 M NaH2PO4, 0.01 M Tris, pH 6.3). The suspension was rotated at 4°C for 30 min and centrifuged (500 x g, 3 min, 4°C). 1 mL of the resulting supernatant was removed, 1 mL of the dilution solution was instead added to the supernatant, and the diluted supernatant was rotated at 4°C for 30 min and centrifuged (500 x g, 3 min, 4°C). This dilution procedure was repeated 13 times in total. After the last dilution step, the Ni-NAT agarose was washed 3 times with 10 mL of 2 M Urea solution (0.1 M NaH2PO4, 0.01 M Tris, 2 M urea, pH 6.3) containing 0.2% Triton X-100 and 3 times with 10 mL of 10 mM imidazole solution (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) containing 0.2% Triton X-100. Finally, recombinant proteins were eluted from the Ni-NAT agarose in 5×0.4 mL of 0.5 M imidazole solution (50 mM NaH2PO4, 300 mM NaCl, 0.5 M imidazole, pH 8.0) containing 0.2% Triton X-100. The eluted proteins were further purified with a Superdex 200 gel filtration column (Life Technologies, Carlsbad, CA) with GF buffer [20 mM 4-2-hydroxyethyl-1-piperazineethanesulfonic acid, 0.15 M KCl, 1 mM dithiothreitol, 5% glycerol, 0.2% Triton X-100].

Pull-down assay

Clariﬁed brain homogenate was prepared as follows. 5% (w/v) brain homogenate in PBS was sonicated for 1 min and centrifuged at 500×g for 15 min at 4°C. The supernatant was collected and diluted with PBS to 3 mg-protein/mL. Anti-His4 ab-Protein G beads were prepared as follows. Anti-His4 antibody (Qiagen) (0.3 mg) was incubated with 10 mL of Dynabeads Protein G (Life technologies) in 200 mL of binding bufer (PBS containing 1% Triton X-100 and 1% Tween 20) at RT. After 1 h-incubation, the beads were washed with the binding buffer to remove unbound antibody. The purified His-tagged recombinant PrP was incubated with 75 μg of the clariﬁed brain homogenate in the binding buffer containing 2 M urea at 4°C for 1 h. The anti-His4 ab-Protein G beads were added and the mixture was rotated at 4°C for 4 h. The immune complexes were collected using a magnetic separation rack and washed with wash buffer (PBS containing 0.05% Triton X-100 and 0.05% Tween 20). After washing, the complexes were incubated in 30 mL of lysis buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.5, 0.5% Triton X-100, 0.5% sodium deoxycholate, 1 mM EDTA) containing 50 μg/ml of PK at 37°C for 30 min. The PK-treated samples were subjected to Western blotting.

Results

Tg(MHM2Δ23-88)/Prnp0/0 mice develop prion disease after inoculation with 22L prions, but not with RML prions

We intracerebrally inoculated RML and 22L prions into Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/0, and Prnp0/0 mice. We previously reported that Prnp0/0 mice used in this study developed cerebellar ataxia at 469±46 days after birth due to ectopic expression of a PrP-like molecule Dpl in their brains [12,14], and that the ataxia was not rescued in Tg(MHM2Δ23-88)/Prnp0/0 mice [11]. Therefore, to avoid false diagnosis of symptoms specifically developed in inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice, we reared the inoculated mice together with un-inoculated age-matched Prnp0/0 mice at the same time and carefully compared the symptoms appearing in inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice to those in un-inoculated Prnp0/0 mice. No specific symptoms other than the ataxia were observed in Tg(MHM2Δ23-88)/Prnp0/0 mice more than 730 days post-inoculation (dpi) with RML prions (Table 1). In contrast, Tg(MHM2Δ23-88)/Prnp0/0 mice inoculated with 22L prions developed specific symptoms, such as decreased locomotion, urinary incontinence, ruffled body hair and, in some male cases, priapism with incubation times at 538±29 dpi (Table 1). Tg(MHM2Δ23-88)/Prnp0/0 and Prnp0/0 mice also developed the disease at 347±16 and 393±13 dpi with RML prions and at 272±2 and 272±1 dpi with 22L prions, respectively (Table 1). We repeated the same experiments with increased numbers of mice and obtained consistent results (Table 1).

There is a possibility that the different susceptibility of Tg(MHM2Δ23-88)/Prnp0/0 mice to RML and 22L prions might not be due to different responsiveness of MHM2Δ23-88 to RML and 22L prions, but rather due to different infectious doses of RML and 22L prions inoculated. To rule out this possibility, we determined infectious titers in the brain homogenates from RML- or 22L-infected, terminally ill C57BL/6 mice that were similarly prepared as the brain homogenates used as inocula. The serially diluted brain homogenates were intracerebrally inoculated into C57BL/6 mice. No significant difference was detected in the number of diseased mice between the groups inoculated with each dilution of RML- and 22L-infected brain homogenates (Logistic regression analysis, p = 0.083, Table 2), indicating that infectious titers are not different in the RML- and 22L-infected brain homogenates used (Table 2). According to the method of Reed and Muench [13], ID50/gram of the brain tissue was calculated as
MHM2Δ23-88 is detectable in the brains of terminally ill, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice

We investigated PK-resistant PrP in the brains of 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/+ and Prnp0/+ mice using Western blotting. MHM2Δ23-88 was reported to be overexpressed in brains about 4-times more than wild-type PrP in the hamster brain [10], thus giving rise to stronger signals for total PrP in Tg mice than in non-Tg Prnp0/+ mice on Western blotting with M20 anti-PrP antibodies (Fig. 2 and 3, 1st panel). M20 antibodies were raised against a C-terminal peptide of PrP, and are therefore able to detect both wild-type PrP and MHM2Δ23-88. M20 antibodies also detected PK-resistant PrP in the brains of 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/+ and Prnp0/+ mice (Fig. 2, 2nd panel). The PK-resistant PrP in Tg(MHM2Δ23-88)/Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/+ mice was recognized by 3F4 anti-PrP antibody (Fig. 2, 4th panel), which is able to detect only the mutant protein (Fig. 2, 3rd panel), indicating that MHM2Δ23-88 was converted into MHM2Δ23-88 in 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/+ mice.

MHM2Δ23-88 was undetectable in the brains of asymptomatic Tg(MHM2Δ23-88)/Prnp0/0 mice, which were sacrificed at 337 dpi with 22L prions (Fig. 2, 4th panel). In contrast, terminally ill Tg(MHM2Δ23-88)/Prnp0/0 mice, which were sacrificed at 272–285 dpi with 22L prions, already accumulated MHM2Δ23-88 in their brains (Fig. 2, 4th panel). These results indicate that the conversion of MHM2Δ23-88 into MHM2Δ23-88 was enhanced.

Table 1. Incubation times of different mouse lines intracerebrally inoculated with RML and 22L prions.

Mouse lines	Protein expression levelsa	Incubation times (average ± standard deviation in days)			
	Full-length PrP C	Mutant PrP	RML	22L	
First experiment	Prnp0/+	0.5 x	-	393 ± 13 (7/7)	272 ± 1 (5/5)
MHM2Δ23-88/Prnp0/+	0.5 x	4 x		347 ± 16 (6/6)	277 ± 2 (7/7)
MHM2Δ23-88/Prnp0/0	-	4 x		>730 (5/3)	538 ± 29 (3/3)
Second experiment	Prnp0/+	0.5 x	-	387 ± 14 (13/13)	261 ± 1 (9/9)
MHM2Δ23-88/Prnp0/+	0.5 x	4 x		365 ± 12 (14/14)	265 ± 8 (10/10)
MHM2Δ23-88/Prnp0/0	-	4 x		>672 (6/6)	527 ± 59 (7/7)

aExpression levels of full-length PrP or mutant PrP are compared with those of PrPC in wild-type mice (ref 10).

Table 2. Titration of the brain homogenates of RML- or 22L-infected terminally ill C57BL/6 wild-type mice.

Dilution of brain homogenates	Incubation timesb (No. of diseased mice/No. of inoculated mice)	
	RML	22L
10-1	135±1 (6/6)	133±2 (6/6)
10-4	220±14 (4/5)	228±15 (5/5)
10-5	251±49 (3/6)	262±31 (5/6)
10-6	>365 (0/6)	308 (1/6)

| Infectious titers (ID50/gram of tissue)c | 10^-7 | 10^-8 |

aID50/gram of the tissue was calculated by the method of Reed and Muench [13].
bIncubation times are indicated as average ± standard deviation (days).

doi:10.1371/journal.pone.0109737.t002
in Tg(MHM2Δ23-88)/Prnp0/0 mice after inoculation with 22L prions.

MHM2Δ23-88 is undetectable in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice

We also investigated PK-resistant PrP in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/0 mice using Western blotting with M20 and 3F4 antibodies. The PK-resistant MHM2Δ23-88, or MHM2ScΔ23-88, is detectable in Tg(MHM2Δ23-88)/Prnp0/0 mice, but not in asymptomatic, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice. β-actin is an internal control.

doi:10.1371/journal.pone.0109737.g003

Figure 3. Western blotting of the brains of different genotypic mice inoculated with RML prions. Brains from terminally ill, RML-inoculated Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/0, and Tg(MHM2Δ23-88)/Prnp0/0 mice, and from asymptomatic, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice (sacrificed at 419, 757, and 782 dpi) were subjected to Western blotting with M20 and 3F4 antibodies after treatment with or without PK. MHM2Δ23-88 is detectable in Tg(MHM2Δ23-88)/Prnp0/0 mice, but not in asymptomatic, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice. β-actin is an internal control.

doi:10.1371/journal.pone.0109737.g003

Figure 2. Western blotting of the brains of different genotypic mice inoculated with 22L prions. Brains from terminally ill, 22L-inoculated Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/0, and Tg(MHM2Δ23-88)/Prnp0/0 mice, and from asymptomatic, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice (sacrificed at 337 dpi) were subjected to Western blotting using M20 and 3F4 anti-PrP antibodies after treatment with or without PK. M20 antibodies detect wild-type and mutant PrPs. 3F4 antibody recognizes only the mutant PrP. The PK-resistant MHM2Δ23-88, or MHM2Δ23-88, is detectable in terminally ill, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0, and Tg(MHM2Δ23-88)/Prnp0/0 mice, but not in asymptomatic, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice. β-actin is an internal control.

doi:10.1371/journal.pone.0109737.g002

Figure 1. HE-stained brain sections from different genotypic mice inoculated with prions. (A) Spongiosis is milder in the cerebral cortex, hippocampus, thalamus and cerebellum from 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/0 mice than in 22L-inoculated, terminally ill Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/0 mice. (B) Spongiosis is observed in the cerebral cortex, hippocampus, thalamus and cerebellum from RML-inoculated, terminally ill Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/0 mice, but not from RML-inoculated, symptom-free Tg(MHM2Δ23-88)/Prnp0/0 mice. Vacuoles were counted in 0.1 mm2 in each brain area of different genotypic mice (n = 3–4/each genotype) and evaluated by Student’s t-test. Scale bar, 100 μm. *, p < 0.05; **, p < 0.01.

doi:10.1371/journal.pone.0109737.g001

MHM2Δ23-88 is undetectable in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice

We also investigated PK-resistant PrP in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/0 and Tg(MHM2Δ23-88)/Prnp0/0 mice using Western blotting with M20 and 3F4 antibodies. The PK-resistant MHM2Δ23-88, or MHM2ScΔ23-88, is detectable in Tg(MHM2Δ23-88)/Prnp0/0 mice, but not in asymptomatic, 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/0 mice.
3F4 antibodies. Western blotting with M20 antibodies revealed PK-resistant PrP accumulated in the brains of RML-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/0 and Prnp0/+ mice (Fig. 3, 2nd panel). The PK-resistant PrP in Tg(MHM2Δ23-88)/Prnp0/0 mice was also detected with 3F4 antibody (Fig. 3, 4th panel), indicating that MHM2Δ23-88 was converted into MHM2Δ23-88 in Tg(MHM2Δ23-88)/Prnp0/0 mice inoculated with RML prions. No PK-resistant PrP was observed in the brains of Tg(MHM2Δ23-88)/Prnp0/0 mice, which were inoculated with RML prions and sacrificed 419, 755, and 782 dpi, by Western blotting with M20 and 3F4 antibodies (Fig. 3, 2nd and 4th panels).

Figure 4. Semi-quantification of wild-type PrPSc and MHM2Δ23-88 in brains of different genotypic mice inoculated with prions. PK-treated brain homogenates from different genotypic mice inoculated with 22L (A) and RML prions (B) were analyzed for signal densities of total PK-resistant PrP and MHM2Δ23-88 on Western blotting with M20 and 3F4 anti-PrP antibodies, respectively. Purified recombinant MHM2 protein was used as a reference to estimate the amounts of total PK-resistant PrP and MHM2Δ23-88. Amounts of wild-type PrPSc were calculated by subtraction of the amounts of MHM2Δ23-88 from those of total PK-resistant PrP. Data were analyzed by Student’s t-test. doi:10.1371/journal.pone.0109737.g004

3F4 antibodies. Western blotting with M20 antibodies revealed PK-resistant PrP accumulated in the brains of RML-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/0 and Prnp0/+ mice (Fig. 3, 2nd panel). The PK-resistant PrP in Tg(MHM2Δ23-88)/Prnp0/0 mice was also detected with 3F4 antibody (Fig. 3, 4th panel), indicating that MHM2Δ23-88 was converted into MHM2Δ23-88 in Tg(MHM2Δ23-88)/Prnp0/0 mice inoculated with RML prions. No PK-resistant PrP was observed in the brains of Tg(MHM2Δ23-88)/Prnp0/0 mice, which were inoculated with RML prions and sacrificed 419, 755, and 782 dpi, by Western blotting with M20 and 3F4 antibodies (Fig. 3, 2nd and 4th panels).
Conversion of wild-type PrPC into PrPSc is reduced in the brains of Tg(MHM223-88)/Prnp0/0 mice inoculated with 22L and RML prions.

We investigated whether MHM2Δ23-88 could affect the conversion of wild-type PrPC into PrPSc by semi-quantifying wild-type PrPSc and MHM2Δ23-88 accumulated in the brains of RML- and 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/+ mice. Purified recombinant MHM2 protein with a 6×His tag was used as a reference to estimate the amounts of M20-positive total PK-resistant PrP and 3F4-positive MHM2ScΔ23-88. Amounts of wild-type PrPSc were calculated by subtraction of the amounts of MHM2ScΔ23-88 from those of total PK-resistant PrP. As a result, the amount of wild-type PrPSc was reduced in the brains of 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/+ mice, compared to those in 22L-inoculated, terminally ill Prnp0/+ mouse (p = 0.0298, Fig. 4A). Wild-type PrPSc was also reduced in the brains of RML-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/+ mice, compared to those in RML-inoculated, terminally ill Prnp0/+ mice (p = 0.00375, Fig. 4B). These results indicate that, in contrast to the conversion of MHM2Δ23-88 into MHM2ScΔ23-88 being enhanced, the conversion of wild-type PrPSc into PrPSc was decelerated in the brains of Tg(MHM2Δ23-88)/Prnp0/0 mice inoculated with RML and 22L prions.

Prion infectivity in the brains of Tg(MHM2Δ23-88)/Prnp0/0 mice inoculated with 22L and RML prions

To investigate whether the MHM2ScΔ23-88-associated prions could be transmissible to wild-type mice, we intracerebrally inoculated single brain homogenate from 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/0 mouse into wild-type indicator ICR mice. Single brain homogenates from 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/+ and Prnp0/+ mice were also inoculated into indicator mice. Indicator mice developed the disease at 175±10, 153±5, and 159±7 days after inoculation with the homogenates from Tg(MHM2Δ23-88)/Prnp0/0, Tg(MHM2Δ23-88)/Prnp0/+, and Prnp0/0 mice, respectively (Table 3). All diseased indicator mice exhibited indistinguishable symptoms including ataxia, and accumulated PrPSc, with the same PK-resistant fragments and glycosylation patterns, in their brains (Fig. 5). These results indicate that the MHM2ScΔ23-88-associated prions were transmissible to wild-type mice probably with the same pathogenic properties as the original 22L prions. However, the incubation times of the indicator mice inoculated with the Tg(MHM2Δ23-88)/Prnp0/0 brain homogenate were significantly longer than those inoculated with the Prnp0/0 or Tg(MHM2Δ23-88)/Prnp0/+ brain homogenate (Table 3), suggesting that MHM2ScΔ23-88-associated prions are slightly less transmissible to wild-type mice than wild-type PrPSc-associated prions.

We also investigated prion infectivity in the brain of a Tg(MHM2Δ23-88)/Prnp0/0 mouse, which was inoculated with

Table 3. A bioassay for elucidation of prion infectivity in the brains of different mouse lines intracerebrally inoculated with RML and 22L prions.

Donor mouse lines of brain homogenate	Recipient indicator mice	Strain	Protein expression levels*	Incubation timesb (No. of diseased mice/No. of inoculated mice)
22L-inoculated Prnp0/+	ICR wild-type	1 x	159±7 (6/6)	
22L-inoculated MHM2Δ23-88/Prnp0/+	ICR wild-type	1 x	153±5 (5/5)	
22L-inoculated MHM2Δ23-88/Prnp0/0	ICR wild-type	1 x	175±10 (5/5)*	
RML-inoculated Prnp0/0	ICR wild-type	1 x	147±5 (5/5)	
RML-inoculated MHM2Δ23-88/Prnp0/+	ICR wild-type	1 x	144±5 (5/5)	
RML-inoculated MHM2Δ23-88/Prnp0/+	ICR wild-type	1 x	>365 (4/4)	

*Expression levels of full-length PrPC in wild-type mice are estimated as 1.

Incubation times are indicated as average ± standard deviation (days).

*Indicates a significant difference (p = 0.0206, Log-rank test) compared to the incubation times of indicator mice inoculated with the Prnp0/0 and MHM2Δ23-88/Prnp0/+ brain homogenates.
Prion Susceptibility in Transgenic Mice for MHM2Δ23-88

Discussion

In the present study, we showed that intracerebral inoculation with the brain homogenate from RML-infected, terminally ill wild-type mice never caused the disease in Tg(MHM2Δ23-88)/Prnp-/- mice for up to 730 days. No MHM2Sc was detectable in their brains. We also failed to detect any prion infectivity in the brain of a Tg(MHM2Δ23-88)/Prnp-/- mouse sacrificed at 591 days after inoculation. These results are consistent with those previously reported by others [9,10]. In contrast, we found that Tg(MHM2Δ23-88)/Prnp-/- mice developed prion disease after intracerebral inoculation with the brain homogenate from 22L-infected, terminally ill wild-type mice, with abundant accumulation of MHM2Sc and high prion infectivity present in their brains. These results show that MHM2Δ23-88 is converted into MHM2Sc in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp-/- mice after inoculation with 22L prions. We also showed that the similarly prepared brain homogenates from terminally ill, RML- and 22L-inoculated wild-type mice contained similar infectious doses of RML and 22L prions. This excludes the possibility that unsuccessful detection of MHM2Sc in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp-/- mice might be due to lower infectious doses of RML prions being inoculated. It rather suggests that MHM2Δ23-88 is converted into MHM2Sc less efficiently by RML prions than by 22L prions.

Wild-type indicator mice intracerebrally inoculated with the brain homogenate from a 22L-inoculated, terminally ill wild-type mouse became sick by 365 dpi. In contrast, single brain homogenates from 22L-infected brain homogenates [hereafter referred to as PrPSc(22L)] were undetectable in the brains of indicator mice sacrificed at 365 dpi (Fig. 5). In contrast, single brain homogenates from RML-inoculated, terminally ill Prnp-/- and Tg(MHM2Δ23-88)/Prnp-/- mice caused the disease in indicator mice at 147±5 and 144±5 dpi, respectively (Table 3), with abundant accumulation of PrPSc in their brains (Fig. 5). These results are consistent with MHM2ScΔ23-88 being undetectable in the brains of RML-inoculated Tg(MHM2Δ23-88)/Prnp-/- mice.

Binding of recombinant MHM2 and MHM2Δ23-88 to RML- and 22L-associated PrPSc molecules

We finally investigated recombinant full-length MHM2 and MHM2Δ23-88 for their binding to PrPSc from RML-infected brain homogenates [hereafter referred to as PrPSc(RML)] or PrPSc from 22L-infected brain homogenates [hereafter referred to as PrPSc(22L)]. We purified recombinant full-length MHM2 and MHM2Δ23-88, both of which were tagged with 6×His (Fig. 6A). They were incubated with RML- or 22L-infected brain homogenates, in which similar amounts of PrPSc(RML) and PrPSc(22L) were included (Fig. 6B), and then subjected to a pull-down assay using Protein G-coupled antibodies against the 6×His tag. Full-length MHM2 pulled down both PrPSc(RML) and PrPSc(22L) (Fig. 6B). However, PrPSc(22L) was pulled down more abundantly than PrPSc(RML) (Fig. 6B). Recombinant MHM2Δ23-88 also pulled down PrPSc(RML) and PrPSc(22L) (Fig. 6B). However, only a tiny amount of PrPSc(22L) was pulled down with MHM2Δ23-88 (Fig. 6B). In contrast, recombinant MHM2Δ23-88 pulled down a much higher amount of PrPSc(22L) (Fig. 6B).
residues in MHM2Δ23-88 might be responsible for the longer incubation times.

PrnpΔ44 mice used in this study ectopically express Dpl in their brains [16,17]. It was reported that transgenic overexpression of Dpl did not modify incubation times and brain pathologies in PrnpΔ44 mice infected with RML prions [19]. PrnpΔ44 mice with and without the ectopic expression of Dpl were also reported to display indistinguishable pathologies after infection with 301V BSE prions [19]. It is thus unlikely that Dpl affects the susceptibility of Tg(MHM2Δ23-88)/PrnpΔ44 mice to RML and 22L prions.

Tg(MHM2Δ23-88)/PrnpΔ44 mice inoculated with RML and 22L prions showed longer incubation times. Particularly, RML-inoculated Tg(MHM2Δ23-88)/PrnpΔ44 mice were free of the disease-specific symptoms for up to 730 days. It is known that sequence differences between PrPΔC in recipient animals and PrPΔS in an inoculum create a prion transmission barrier, causing elongation of incubation times [20]. If a prion transmission barrier is responsible for longer incubation times in primarily inoculated mice, secondarily inoculated mice with the same genotype may result in shorter incubation times. Tg(PrPΔ23-31)/PrnpΔ44, Tg(PrPA3Δ23-93)/PrnpΔ44, and Tg(MHM2)/PrnpΔ44 mice primarily inoculated with RML prions were reported to show prolonged incubation times, but secondarily inoculated mice did not show shorter incubation times [9,21,22]. These results indicate that the N-terminal deletion or the chimeric residues in PrPΔC does not create a prion transmission barrier for wild-type PrPΔC, suggesting that no prion transmission barrier is present between MMH2Δ23-88 and wild-type PrPΔS. Rather, we found that, in spite of overexpression of MMH2Δ23-88, MMH2Δ23-88 was detectable in the brains of 22L-inoculated Tg(MHM2Δ23-88)/PrnpΔ44 mice later than wild-type PrPΔC in the 22L-inoculated PrPΔ44 mice, indicating that MMH2Δ23-88 converts into MMH2Δ23-88 less efficiently than wild-type PrPΔC into PrPΔS. It is therefore conceivable that the longer incubation times of Tg(MHM2Δ23-85)/PrnpΔ44 mice could be due to the decreased conversion of MMH2Δ23-88 into MMH2Δ23-88. We showed that recombinant MMH2Δ23-88 pulled down PrPΔS(22L) and PrPΔS(RML) less than full-length recombinant MMH2 in a pull-down assay. Thus, the decreased conversion of MMH2Δ23-88 into MMH2Δ23-88 might be attributable to the lower binding of PrPΔS(22L) and PrPΔS(RML) to MMH2Δ23-88.

Different strain-specific susceptibility was also reported in PrnpΔ44 mice transgenically expressing mouse Dpl with a serine residue at codon 170, PrP-170S [23], or ovine PrP with a valine residue at codon 136, OvPrP-V136 [24]. Tg(PrP-170S)/PrnpΔ44 mice were highly resistant to RML and 79A prions, but susceptible to 22L and ME7 prions [23]. Only a very small number of the mice inoculated with RML and 79A prions showed brain accumulation of PrPΔS-170S [23]. In contrast, all mice inoculated with 22L and ME7 prions accumulated PrPΔS-170S in their brains [23]. Tg(OvPrP-V136)/PrnpΔ44 mice were susceptible to SSBP1 prions, but resistant to CH1641 prions [24]. OvPrPΔS-V136 was accumulated in the brains of the mice inoculated with SSBP1 prions [24]. These results suggest that strain-specific differential susceptibility in these mice is also due to different conversion efficiency of the host PrPΔS into their PrPΔ-resistant isoforms.

The primary sequence of PrPΔC is the same from different prion strains. Therefore, the different susceptibility of Tg(MHM2Δ23-85)/PrnpΔ44, Tg(PrP-170S)/PrnpΔ44, and Tg(OvPrP-V136)/PrnpΔ44 mice to different prions cannot be explained by sequence differences between PrPΔC and the host PrPΔS, or that there is a prion transmission barrier. Several lines of evidence indicate that the conversion of PrPΔC into PrPΔS involves interaction of PrPΔC with the inoculated PrPΔS [25,26]. We showed that in a pull-down assay with recombinant MMH2Δ23-88, only a tiny amount of PrPΔS(RML) was pulled down while a considerably higher amount of PrPΔS(22L) was pulled down, suggesting that different binding of MMH2Δ23-88 to PrPΔS(RML) and PrPΔS(22L) might be involved in different conversion efficiency of MMH2Δ23-88 into different prions. MMH2Δ23-88 in RML and 22L-inoculated Tg(MHM2Δ23-88)/PrnpΔ44 mice was reported that PrPA23-28 reduced the binding to PrPΔS(RML), and PrPA23-31 was insufficiently converted into PrPΔSΔ23-31 in mice inoculated with RML prions [21]. Miller et al. also reported that PrPA23-28 bound less PrPΔS(RML) and was converted very inefficiently to PrPΔSΔ23-31 in an in vitro assay [27]. MMH2Δ23-88 lacks residues 23-31, suggesting that the reduced binding of MMH2Δ23-88 to PrPΔSΔ might be partly due to the lack of residues 23-31. However, Tg(PrPA3Δ23-93)/PrnpΔ44 and Tg(MHM2)/PrnpΔ44 mice were also reported to have reduced susceptibility to RML prions [9], suggesting that the other deleted region(s) and the chimeric region also might be relevant to the binding of MMH2Δ23-88 to PrPΔSΔ. It is thus of interest to compare the binding potential of PrP-170S and OvPrP-V136 to PrPΔS from different prion strains.

The conformational selection model of prion strains also has been proposed as a mechanism to explain strain-specific susceptibility [28,29]. This model postulates that the inoculated PrPΔS selects the host PrPΔC as a substrate for conversion due to its conformational compatibility with the host PrPΔC [28,29]. Conformational incompatibility between the inoculated PrPΔS and the host PrPΔC thus leads to unsuccessful or insufficient conversion of the host PrPΔC into its PK-resistant isoform. Indeed, accumulating lines of evidence suggest that PrPΔSΔ is folded in a strain-specific conformation [30]. Nuclear magnetic resonance studies of recombinant PrPs suggest that the N-terminal domain, including the deleted residues and chimeric residues in MMH2Δ23-88, confers structural stability within the C-terminal globular domain [31,32]. It is thus possible that MMH2Δ23-88 adopts a different conformation from that of wild-type PrPΔC, and that the adopted conformation of MMH2Δ23-88 still remains compatible with PrPΔS(22L), but not with PrPΔS(RML). The conformational selection model might also explain the different responsiveness of OvPrP-V136 and PrP-170S to different prion strains [23,24].

It was shown that the region corresponding to the chimeric region is exposed in PrPΔC molecules, but hidden in PrPΔSΔ molecules [33,34,35], and that the octapeptide repeat region of residues 51–90 is trypsin-sensitive in PrPΔC, but trypsin-resistant in PrPΔSΔ [36]. These results indicate that upon the conversion of PrPΔC into PrPΔSΔ, a marked conformational change occurs within the N-terminal domain. Interestingly, the N-terminal domain of PrPΔC is highly flexible and displays a marked conformational heterogeneity [32,33,37]. It is thus also possible that lack of residues 23-88 and insertion of the chimeric residues might reduce the N-terminal conformational heterogeneity of MMH2Δ23-88, and that the reduced conformational heterogeneity might render MMH2Δ23-88 resistant to RML but still susceptible to 22L prions.

The N-terminal domain was shown to be important for internalization of PrPΔC [38]. The conversion of PrPΔC into PrPΔSΔ has been suggested to occur on the cell surface and/or along the endocytic pathway to lysosomes [39,40]. Thus, defective internalization of MMH2Δ23-88 might lead to the insufficient conversion of MMH2Δ23-88 to MMH2Δ23-88. However, it remains unknown how internalized PrPΔC can undergo strain specific conversion.

Tg(MHM2Δ23-88)/PrnpΔ44 mice showed shorter incubation times than PrnpΔ44 mice after inoculation with RML prions. This
is consistent with the previously reported results [9,10]. However, incubation times were not shortened in Tg(MHM2Δ23-88)/Prnp0/+/mice inoculated with 22L prions. It was shown that the co-expressing wild-type PrP63 trans-acts MHM2Δ23-88 to assist its conversion into MHM2Δ23-88 after infection with RML prions, by demonstrating that RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+/mice produced MHM2Δ23-88 in their brains [10]. We also observed that the conversion of MHM2Δ23-88 into MHM2Δ23-88 was enhanced in RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+/mice. Interestingly, we found that, in contrast to the conversion of MHM2Δ23-88 into MHM2Δ23-88 being enhanced, the conversion of wild-type PrP63 into PrP63 was decelerated in Tg(MHM2Δ23-88)/Prnp0/+/mice inoculated with RML and 22L prions. These results indicate that the trans-action by PrP63 and the trans-inhibition by MHM2Δ23-88 reciprocally affect the production of wild-type PrP63 and MHM2Δ23-88 in RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+/mice. Thus, investigation of detailed accumulation kinetics of wild-type PrP63 and MHM2Δ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+/mice would be helpful to understand the strain-specific disease progression in Tg(MHM2Δ23-88)/Prnp0/+/mice.

What is the mechanism for MHM2Δ23-88 to decelerate the conversion of wild-type PrP63 into PrP63? Two possibilities have been proposed for the trans-action of PrP63 on the conversion of MHM2Δ23-88 to MHM2Δ23-88 [10]. One is that PrP63 might bind to MHM2Δ23-88 and then promote the conversion of MHM2Δ23-88 into MHM2Δ23-88. In this scenario, MHM2Δ23-88 having increased conversion competence with help from the co-expressing PrP63 might compete with the co-expressing PrP63 for an as yet unidentified factor(s) important for the conversion, such as a conjectural molecule protein X, thereby decelerating the conversion of PrP63 into PrP63. The other is that PrP63 is first converted into PrP63 and the nascent PrP63 then acts on MHM2Δ23-88 to convert it into MHM2Δ23-88. In this case, since MHM2Δ23-88 converts into MHM2Δ23-88 very slowly, PrP63 participating in the conversion of MHM2Δ23-88 into MHM2Δ23-88 could not engage in other conversion events until MHM2Δ23-88 is converted into MHM2Δ23-88, ultimately causing the decreased conversion of PrP63 into PrP63. Elucidation of the trans-action of PrP63 on the conversion of MHM2Δ23-88 into MHM2Δ23-88 and the trans-inhibition of MHM2Δ23-88 on the conversion of wild-type PrP63 into PrP63 would be worthy for understanding the conversion mechanism of PrP63 into PrP63.

Supporting Information

Figure S1 Higher magnification images of HE-stained brain sections from different genotypic mice inoculated with prions. (A) Spongiosis is milder in the cerebral cortex, hippocampus, thalamus and cerebellum from 22L-inoculated, terminally ill Tg(MHM2Δ23-88)/Prnp0/+/ mice than in 22L-inoculated, terminally ill Prnp0/+/ and Tg(MHM2Δ23-88)/Prnp0/+/ mice. (B) Spongiosis is observed in the cerebral cortex, hippocampus, thalamus and cerebellum from RML-inoculated, terminally ill Prnp0/+/ and Tg(MHM2Δ23-88)/Prnp0/+/ mice, but not from RML-inoculated, symptom-free Tg(MHM2Δ23-88)/Prnp0/+/ mice. Scale bar, 100 μm. (TIF)

Acknowledgments

We thank Dr. Stanley B. Prusiner for providing Tg(MHM2Δ23-88)/Prnp0/+/ mice and Professor Koichiki Ariawa for statistical analysis of prion titration.

Author Contributions

Conceived and designed the experiments: HS SS. Performed the experiments: KU HS MY YI NM NRD JC HH. Analyzed the data: KU HM SS. Wrote the paper: KU SS.

References

1. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363–13367.
2. Weisenfels C, Enari M, Kohon PC, Rossi D, Flechsig E (2002) Molecular biology of prions. Acta Neurobiol Exp (Wars) 62: 153–166.
3. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphorylated glycoprotein. Cell 51: 229–240.
4. Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, et al. (1985) A cellular gene encodes scrapie PrP27–30. Nature 313: 300–304.
5. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, et al. (1993) Mice lacking the cellular prion protein (PrP) gene are not susceptible to scrapie. Nature 362: 647–650.
6. Moore RC, Oesch B, Westaway D, McKinley MP, Kent SB, et al. (1985) A cellular gene encodes scrapie PrP27–30. Nature 313: 300–304.
7. Manson JG, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3: 331–340.
8. Sakaguchi S, Katamine S, Shigematsu K, Nakatani A, Moriuchi R, et al. (1995) Accumulation of protease K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent. J Virol 69: 7586–7592.
9. Supattapone S, Muramoto T, Legname G, Mehlhorn I, Cohen FE, et al. (1999) Identification of two prion protein (PrP) genes in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci U S A 96: 10608–10612.
10. Mason JC, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3: 331–340.
11. Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M, et al. (2000) Prion protein (PrP) is associated with the development of cerebellar atrophy in a Doppel-deficient mouse model. J Neurosci Res 61: 276–286.
12. Moore RG, Mastrangelo P, Bouzamondo E, Heinrich C, Legname G, et al. (2001) Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci U S A 98: 13288–13293.
13. Tani M, Gell E, Melton D, Mason JC (2002) Expression of doppel in the CNS of mice does not modulate transmissible scrapie encephalopathy disease. J Gen Virol 83: 705–711.
14. Moore RG, Mastrangelo P, Bouzamondo E, Heinrich C, Legname G, et al. (2001) Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci U S A 98: 13288–13293.
15. Tani M, Gell E, Melton D, Mason JC (2002) Expression of doppel in the CNS of mice does not modulate transmissible scrapie encephalopathy disease. J Gen Virol 83: 705–711.
16. Moore RG, Mastrangelo P, Bouzamondo E, Heinrich C, Legname G, et al. (2001) Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci U S A 98: 13288–13293.
17. Tani M, Gell E, Melton D, Mason JC (2002) Expression of doppel in the CNS of mice does not modulate transmissible scrapie encephalopathy disease. J Gen Virol 83: 705–711.
25. DebBurman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci U S A 94: 13938–13943.

26. Horiuchi M, Caughey B (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. Embo J 18: 3193–3203.

27. Miller MB, Geoghegan JC, Supattapone S (2011) Dissociation of infectivity from seeding ability in prions with alternate docking mechanism. PLoS pathogens 7: e1002129.

28. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318: 930–936.

29. Wadsworth JD, Asante EA, Collinge J (2010) Review: contribution of transgenic models to understanding human prion disease. Neuropathology and applied neurobiology 36: 576–597.

30. Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a Grip on Prions: Oligomers, Amyloids, and Pathological Membrane Interactions. Annu Rev Biochem 78: 177–204.

31. James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, et al. (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94: 10086–10091.

32. Donne DG, Villas-JH, Groth D, Mehlhorn I, James TL, et al. (1997) Structure of the recombinant full-length hamster prion protein PrP(29–231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94: 13452–13457.

33. Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, et al. (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273: 614–622.

34. Safar J, Wile H, Itri V, Groth D, Serban H, et al. (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nature medicine 4: 1157–1165.

35. Serban D, Taraboulos A, DeArmond SJ, Prusiner SB (1990) Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40: 110–117.

36. Yam AY, Gao CM, Wang X, Wu P, Peretz D (2010) The octarepeat region of the prion protein is conformationally altered in PrP(Sc). Plos one 5: e9516.

37. Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231): FEBS letters 413: 282–288.

38. Taylor DR, Watt NT, Perera WS, Hoeper NM (2005) Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci 118: 5141–5153.

39. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267: 16188–16199.

40. Goold R, Rabhalian S, Sutton L, Andre R, Avara P, et al. (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nature communications 2: 281.