Fatores associados ao conteúdo mineral ósseo em adultos: estudo de base populacional

Kátia Josiany Segheto, Leidjaira Lopes Juvanhol, Cristiane Junqueira de Carvalho, Danielle Cristina Guimarães da Silva, Adriana Maria Kakehasi, Giana Zarbato Longo

1 Universidade Federal de Viçosa, Viçosa, MG, Brasil.
2 Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil.
3 Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

DOI: 10.31744/einstein_journal/2020AO4694

RESUMO

Objetivo: Verificar a associação entre o conteúdo mineral ósseo e fatores sociodemográficos, antropométricos, comportamentais e condições de saúde em adultos brasileiros. Métodos: Estudo transversal, de base populacional, realizado com 701 indivíduos de ambos os sexos, com idade entre 20 e 59 anos. A variável dependente foi avaliada por DEXA. As associações foram avaliadas por modelos de regressão linear estratificados baseados no sexo dos indivíduos. Resultados: Quando comparados os valores médios do conteúdo mineral ósseo, observamos diferença estatisticamente significante em relação aos sexos e para todas as variáveis independentes avaliadas. Nos modelos ajustados, identificamos associação inversa entre o conteúdo mineral ósseo e a idade em ambos os sexos. Entre os homens, sobrepeso e obesidade, alta escolaridade e suficiência de 25(OH)D foram associados a maiores valores de conteúdo mineral ósseo. Entre as mulheres, por sua vez, cor da pele não branca, sobrepeso e obesidade foram associados a melhor saúde óssea. Os principais fatores associados à baixa massa óssea total foram idade avançada, cor da pele branca, baixa escolaridade, eutrofia e deficiência de 25(OH)D. Conclusão: Esses resultados podem auxiliar na identificação de adultos com maior risco e que devem ser alvo de medidas de prevenção e diagnóstico precoce.

Descritores: Densidade óssea; Adulto; Fatores de risco; Densitometria; Epidemiologia

Como citar este artigo:
Segheto KJ, Juvanhol LL, Carvalho CJ, Silva DC, Kakehasi AM, Longo GZ. Fatores associados ao conteúdo mineral ósseo em adultos: estudo de base populacional. einstein (São Paulo). 2020;18:eAO4694. http://dx.doi.org/10.31744/einstein_journal/2020AO4694

Autor correspondente:
Kátia Josiany Segheto
Avenida Peter Henry Rolfs, s/n
Campus Universitário
CEP: 36570-900 – Viçosa, MG, Brasil
Tel.: (32) 3234-2016
E-mail: kaseghetto@gmail.com

Data de submissão: 12/7/2018
Data de aceite: 30/1/2019
Conflitos de interesse: não há.

Copyright 2019

Esta obra está licenciada sob uma Licença Creative Commons Atribuição 4.0 Internacional.

ABSTRACT

Objective: To determine the association among bone mineral content, sociodemographic, anthropometric and behavioral factors, and health status of Brazilian adults. Methods: This was a cross-sectional, population-based study including 701 individuals from both sexes aged between 20 and 59 years. DEXA was used to evaluate dependent variable. The associations were evaluated using linear regression models stratified by sex. Results: When mean bone mineral content values were compared, we found significant differences related to sex and all the independent variables evaluated. In the adjusted models, we identified an inverse association between bone mineral content and age in both sexes. Among men, to be overweight and/or obese, be highly educated, and have almost sufficiency of 25(OH)D were associated with higher bone mineral content values. On the other hand, among women, to be non-white skin color, overweight and/or obese were associated with better bone health. The main factors associated with low total bone mineral density were advanced age, white skin color, low level of formal education, eutrophy, and 25(OH)D deficiency. Conclusion: Our results may help to identify adults who are at higher risk, and these findings should be used as guidelines for prevention and early diagnosis.

Keywords: Bone density; Adult; Risk factors; Densitometry; Epidemiology
INTRODUÇÃO
De acordo com a Organização Mundial da Saúde (OMS), a expectativa de vida tem aumentado gradualmente e, com base nos dados divulgados recentemente, a expectativa mundial em relação à idade para pessoas nascidas em 2015 é de 71 anos para mulheres e 69 para homens. Esse quadro de envelhecimento populacional causa impacto importante na saúde pública, com aumento significativo da mortalidade por doenças crônicas não transmissíveis, como as relacionadas à baixa densidade mineral óssea (DMO). (1)

É importante entender o processo de maturação e o consequente declínio da saúde óssea ao longo do desenvolvimento, principalmente na fase adulta, uma vez que essa deterioração osteometabólica altera a microarquitetura do tecido e também pode aumentar a probabilidade de ocorrência de fraturas. (2)

Doenças relacionadas à baixa DMO são multifatoriais, e ainda não há associações bem estabelecidas em pacientes adultos. Sobre a idade e o sexo dos indivíduos, (3,4) tem sido apontado que o metabolismo ósseo também é influenciado por genética, (5) reposição hormonal, uso de medicamentos, (6,7) deficiência de exposição à luz solar e insuficiência de vitamina D, (8,9) composição corporal, (10,11) tabagismo, (12) alcoolismo, (13) atividade física (14) e nível educacional, (15,16) Entretanto, a maioria dos estudos tem avaliado a associação entre DMO, e fatores associados em indivíduos mais velhos e mulheres menopausadas, essencialmente. (17,18)

Estudos avaliando o conteúdo mineral ósseo (CMO) em adultos são escassos. (19,20) Embora o CMO não seja usado com frequência na prática clínica para avaliar a saúde óssea em adultos, o uso de DMO total e seus respectivos fatores é importante, pois o CMO consiste em parâmetro fundamental de avaliação. Além disso, a avaliação desse parâmetro permite desenvolver estratégias para o diagnóstico precoce e prevenção da perda óssea grave.

OBJETIVO
Verificar a associação entre o conteúdo mineral ósseo e as condições sociodemográficas, antropométricas, comportamentais e de saúde em adultos brasileiros.

MÉTODOS
Trata-se de estudo transversal, de base populacional, conduzido de 2012 a 2014, incluindo indivíduos de ambos os sexos. A idade dos participantes variou de 20 a 59 anos, e todos eram moradores de área urbana do município de Viçosa (MG).

O processo de amostragem foi feito por conglomerados em dois estágios. As unidades de primeiro estágio foram compostas pelos setores censitários, e as unidades de segundo estágio, por domicílios. Uma vez que o setor censitário e os blocos foram sorteados, os procedimentos da pesquisa foram informados aos moradores, que preencheram os critérios de inclusão.

Os seguintes parâmetros foram utilizados para calcular a amostra: prevalência desconhecida de 50% para o desfecho (CMO expresso em g); e efeito do desenho de conglomerado estimado em 1,50, percentagem de perda estimada em 10% e consideração de mais 10%, para controle de fatores de confusão. Assim, estimou-se um mínimo de 692 indivíduos para realização do estudo. Dividindo o valor pelo número de setores censitários sorteados, foram necessárias 23 pessoas para a investigação em cada setor, o que foi alcançado a cada 3 domicílios visitados. (22) A amostra final foi composta por 701 indivíduos.

O CMO foi avaliado using o dispositivo Lunar Prodigy Advance Sistema DXA de absorciometria por raios X de dupla energia (DEXA; GE Healthcare, Brasil). Trata-se de um sistema de imagem de alta tecnologia com baixa radiação, boa reprodutibilidade e não invasivo, considerado padrão-ouro para avaliação da saúde óssea e recomendado pela OMS. (22) A precisão e a segurança do dispositivo DEXA foram avaliadas antes e os testes foram realizados com o indivíduo em decúbito dorsal e por mapeamento da densidade óssea total dos indivíduos. Os resultados foram compilados por profissionais médico e apresentados aos voluntários em formato de relatório. Os valores absolutos de CMO (g) foram adotados para análises estatísticas.

Os voluntários dos domicílios responderam um questionário semiestruturado aplicado por entrevistadores treinados para coletar informações sobre condições sociodemográficas, de saúde e comportamentais. As variáveis desse estudo foram sexo (homem e mulher), idade (estratificada em 20 a 29, 30 a 39, 40 a 49 e 50 a 59 anos), cor da pele (branca e não branca), nível educacional (zero a 4, 5 a 8, 9 a 11 e > 12 anos de estudo), menopausa, uso de contraceptivos e terapia de reposição hormonal (sim e não), consumo de álcool (dividido em três categorias, de acordo ao consumo semanal de bebidas alcoólicas, que foi de zero, 1 a 7 e >8 bebidas) e tabagismo (não fumantes, ex-fumantes e fumantes).

Dados referentes ao nível de atividade física (NAF) e índice de massa corporal (IMC) foram coletados em laboratório. O NAF foi medido por meio do International Physical Activity Questionnaire (IPAQ), versão 6 completa, validado para ser aplicado à população brasileira adulta jovem. (23) O escore do NAF foi calculado pela soma do
tempo gasto com atividade física de intensidade moderada (incluindo caminhada) e intensidade vigorosa, obtida pelo tempo gasto com atividade física vigorosa multiplicado por dois \((NAF = \text{atividade física + moderada} + \text{atividade física} \times 2 \text{ vigorosa}) \). A partir desse resultado, o NAF dos indivíduos avaliados foi calculado de acordo com domínio 4 no IPAQ, referente às atividades recreativas, esportivas e exercício físico. O NAF foi categorizado em irregularmente ativo \((<150 \text{ minutos por semana})\) e fisicamente ativo \((>150 \text{ minutos por semana})\). O IMC foi calculado pela fórmula \(\text{[peso (kg)/ altura}^2 \text{ (m²)]} \) e categorizado em eutrófico \((<24,9 \text{kg/m²})\), sobrepeso \((25,0 \text{kg/m²} \text{ a} 29,9 \text{kg/m²})\) e obeso \((>30,0 \text{kg/m²})\).

A massa corporal total (kg) para o cálculo do IMC foi obtida por pesagem em balança digital (TANITA, modelo BC-554) com os indivíduos usando o mínimo possível de roupas e descalços. A altura (cm) foi medida diretamente utilizando estadiômetro na parede com indivíduos em pé, descalços, com os calcanhares juntos, tocando a barra de medição e com os braços estendidos naturalmente ao longo do corpo.

As amostras de sangue, que necessitaram de 12 horas de jejum, foram coletadas das 7h às 10h, em laboratório, com uso de sistema descartável de coleta a vácuo. A 25-hidroxic vitamina D \((25(OH)D) \) foi avaliada por quimiluminescência com reagentes ARCHITECT 25(OH)D (Abbott Architect I Instrument, Illinois, USA). O status da \(25(OH)D \) foi determinado de acordo com os valores de referência: suficiente se \(>30,0 \text{ng/mL} \), insuficiente se \(21,0 \text{ng/mL} \text{ a} 29,9 \text{ng/mL} \), e deficiente se \(<20,9 \text{ng/mL} \). Embora exista nova proposta para os valores de referência: suficiente se \(>30,0 \text{ng/mL} \) a \(49,9 \text{ng/mL} \), e deficiente se \(<30,0 \text{ng/mL} \), além disso, os homens apresentaram menor proporção de deficiências de \(25(OH)D \) do que as mulheres, sendo essa diferença também foi significativa (Tabela 1).

Os valores médios de CMO foram significativamente maiores entre os homens. Foi observada melhor saúde óssea entre os indivíduos com sobrepeso e obesidade, comparados aos eutróficos de ambos os sexos. Um CMO médio mais elevado foi encontrado apenas entre mulheres mais jovens (grupo de 20 a 29 anos) comparado com mulheres mais velhas (grupo de 50 a 59 anos), que se autoidentificaram como não brancas, não menopausadas, e que não faziam uso de contraceptivos. Em relação à comparação das proporções entre os sexos, 62,0% das mulheres não consumiram bebidas alcoólicas e 23,2% dos homens consumiram oito ou mais doses de bebida alcoólica. Por esse motivo, as diferenças nessas categorias foram significativas.

Os resultados foram incluídos duas vezes no banco de dados EpiData, versão 3.1. Após verificação da consistência dos dados, as análises foram realizadas por meio de pacote estatístico Stata 13.1. A análise foi ponderada com base no sexo, na idade e educação formal dos indivíduos. Os pesos foram determinados pela razão entre os pesos por semana). O IMC foi calculado pela fórmula \(\text{[peso (kg)/ altura}^2 \text{ (m²)]} \) e categorizado em eutrófico, sobrepeso e obeso. O CMO diminui com a idade em ambos os sexos (homens: p=0,008; mulheres: p<0,001), e esta associação foi mais pronunciada após o ajuste (homens: p=0,007; mulheres: p<0,001). A variável estado nutricional também foi associada à CMO nos modelos ajustados para ambos os sexos (homens: p<0,001; mulheres: p<0,001), constituindo uma associação positiva. Observou-se associação significativa entre o alto
Tabela 1. Caracterização da população do estudo, de acordo com variáveis sociodemográficas, comportamentais e condições de saúde, estratificada por sexo

Variáveis	Total	Homens	Mulheres	
	% IC95%	% IC95%	% IC95%	
Sexo	49,7	45,6-54,2	50,3	45,8-56,4
Faixa etária, anos				
20-29	24,3	17,4-33,4	28,9	19,1-41,2
30-39	26,2	21,8-31,0	26,6	20,4-34,0
40-49	24,0	19,1-29,7	21,9	15,2-30,4
50-59	25,5	20,3-31,7	22,6	16,1-30,8
Cor da pele				
Branco	38,6	31,7-45,9	40,2	32,9-51,7
Não branco	61,4	54,1-68,3	58,0	48,3-67,1
Educação formal, anos				
0-4	20,1	12,8-29,1	16,7	7,7-32,8
5-8	18,3	11,9-21,7	15,7	10,4-23,0
9-11	20,8	17,4-24,7	20,0	14,1-27,3
≥12	42,8	30,8-55,7	47,7	32,6-63,1
Estado nutricional				
Eutrófico	50,3	43,2-57,4	47,7	38,7-56,8
Sobrepeso	33,4	28,3-38,8	39,6	31,6-48,2
Obesidade	16,3	12,7-20,5	12,7	8,8-17,9
NAF				
IA	72,6	66,8-78,4	73,13	63,5-80,9
FA	27,4	21,6-33,9	26,86	19,0-36,5
Tabagismo				
Não fumante	65,1	57,9-71,6	61,9	50,5-72,1
Fumante	13,0	9,9-16,5	15,2	9,6-22,7
Ex-fumante	21,9	15,8-29,5	22,9	13,5-36,3
Consumo de álcool, doses/semana				
0	45,9	41,7-50,2	29,8	23,8-36,6*
1-7	40,3	35,1-45,7	47,0	38,1-55,0
≥8	13,8	10,0-18,4	23,2	17,4-30,3*
Menopausa				
Não	-	-	35,3	28,3-343,1
Sim	-	-	35,3	28,3-343,1
Terapia de reposição hormonal				
Não	-	-	35,3	28,3-343,1
Sim	-	-	35,3	28,3-343,1
Contraceptivo				
Não	-	-	19,0	15,4-23,1
Sim	-	-	35,3	28,3-343,1
25(OH)D				
Suficiente	49,0	42,5-55,5	55,7	47,4-63,6
Insuficiente	37,5	32,7-42,6	35,3	28,9-42,3
Deficiente	13,5	10,5-17,1	9,0	6,3-12,7*

* Diferença estatisticamente significante (p<0,05) para comparação entre sexo.

IC95%: intervalo de confiança de 95%; NAF: nível de atividade física; IA: irregularmente ativo; FA: fisicamente ativo; 25(OH)D: 25-hidroxivitamina D.

Tabela 2. Conteúdo mineral ósseo, de acordo com variáveis sociodemográficas, comportamentais e de condição de saúde, estratificadas por sexo

Variáveis	Homens	Mulheres
	Média IC95%	Média IC95%
Sexo	3,040	2,972-3,109
Faixa etária, anos		
20-29	3,122	3,025-3,219
30-39	3,042	2,929-3,154
40-49	3,031	2,894-3,169
50-59	2,944	2,816-3,073
Cor da pele		
Branca	2,985	2,895-3,075
Não branca	3,081	2,976-3,186
Educação (anos)		
0-4	2,878	2,716-3,040
5-8	2,968	2,830-3,106
9-11	3,094	2,950-3,238
≥12	3,101	3,006-3,196
Estado nutricional		
Eutrófico	2,835	2,744-2,927*
Sobrepeso	3,175	3,043-3,307*
Obesidade	3,423	3,307-3,539*
NAF		
IA	2,392	2,923-3,060
FA	3,174	3,032-3,166
Tabagismo		
Não fumante	3,041	2,962-3,130
Fumante	3,105	2,994-3,217
Ex-fumante	2,996	2,894-3,098
Consumo de álcool, doses/semana		
0	2,999	2,866-3,133
1-7	3,038	2,945-3,131
≥8	3,098	2,963-3,243
Menopausa		
Não	-	-
Sim	-	-
Terapia de reposição hormonal		
Não	-	-
Sim	-	-
Contraceptivo		
Não	-	-
Sim	-	-
25(OH)D		
Suficiente	3,100	3,019-3,181
Insuficiente	2,994	2,874-3,113
Deficiente	2,861	2,693-3,028

* Símbolo igual indica diferença estatisticamente significante (p<0,05) para as comparações entre as médias de conteúdo mineral ósseo segundo as categorias das variáveis dentro de cada sexo.

IC95%: intervalo de confiança de 95%; NAF: nível de atividade física; IA: irregularmente ativo; FA: fisicamente ativo; 25(OH)D: 25-hidroxivitamina D.
nível de educação formal e o aumento do CMO observado apenas entre homens (p=0,003) e deficiência de 25(OH) D que se associou significativamente ao baixo CMO (p<0,001). O CMO também foi significativamente maior entre as mulheres que se autoidentificaram não brancas (p=0,010).

DISCUSSÃO

Em nosso estudo, o CMO médio nos homens foi significativamente maior que entre as mulheres. Além disso, em relação à diferença entre os sexos, os principais fatores associados ao CMO foram idade e estado nutricional. Outra observação foi que a associação entre educação formal e 25(OH)D entre os homens. Nas mulheres, esta associação esteve relacionada com a cor da pele.

Nossos achados sobre a associação entre sexo e saúde óssea para mulheres apresentaram CMO média significativamente menor, o que é consistente com outros estudos. Identificou-se que, à medida que a idade aumenta, o equilíbrio entre a formação e a absorção óssea alterado, e o CMO diminui progressivamente. Essa perda é mais pronunciada após o pico de massa óssea, que ocorre por volta dos 30 anos, e então se reduz gradualmente, intensificando-se com o avanço da idade. Portanto, o metabolismo ósseo balanceado, durante a vida adulta, proporciona manutenção adequada à saúde óssea e pode ser fator importante no controle de perda de CMO e para se evitar o risco de fraturas em indivíduos mais velhos.

Após o período de pico de massa óssea procedimentos preventivos devem ser iniciados para evitar declínio ósseo acentuado em idades mais avançadas. Nesse sentido, a atividade física regular é fator importante, que pode atuar como alternativa não farmacológica para prevenir as consequências decorrentes do baixa massa óssea. Apesar de não terem sido observadas diferenças significativas relacionadas com essa variável em nosso estudo, um CMO médio elevado foi encontrado entre os indivíduos fisicamente ativos. Assim, são necessárias mais investigações relacionando o CMO e o histórico dos indivíduos em relação ao NAF durante todo seu desenvolvimento.

Neste estudo, o estado nutricional (sobrepeso e obesidade) foi fator positivamente associado ao CMO, tanto nos homens quanto nas mulheres. Esse resultado é consistente com achados relatados por outro estudo com adultos jovens e essa associação positiva pode ser explicada pela maior sobrecarga mecânica entre indivíduos com excesso de peso. Tais achados reforçam a teoria de que o tecido ósseo precisa sofrer estresse mecânico para a formação e remodelação óssea, mantendo o metabo-
lismo ósseo ativo.\(^{(11)}\) Por outro lado, deve-se reforçar que existem consequências hormonais de alto peso corporal, que podem prejudicar a saúde óssea, como diabetes tipo 2, síndrome metabólica, resistência à insulina e hiperlipidemia, entre outras.\(^{(32)}\)

As associações positivas entre nível de educação formal e CMO também foram identificadas entre os homens, indicando que quanto maior o tempo de estudo, melhor a saúde óssea. Esses dados corroboram os de outros estudos que incluíram adultos.\(^{(15,16)}\) Essa associação positiva supõe que, para doenças relacionadas à saúde óssea, quanto maior o nível de escolaridade, maiores o acesso à informação e o conhecimento sobre cuidados preventivos e atitudes, como prática de atividade física regular e dieta equilibrada, o que pode refletir positivamente na saúde óssea de indivíduos com idade mais avançada.\(^{(15,16)}\)

Outro achado do nosso estudo foi a relação direta entre a suficiência de 25(OH)D e o CMO entre os homens. Resultados semelhantes foram relatados em outros estudos.\(^{(8,9)}\) Dada a importância da 25(OH)D para o metabolismo ósseo (absorção e manutenção dos níveis séricos de cálcio e fosfato),\(^{(27)}\) se, durante a idade adulta, o metabolismo desta vitamina estiver equilibrado, pode-se manter a saúde óssea adequada nesse estágio de desenvolvimento, e este pode ser fator importante para controlar a perda de CMO e evitar o risco de fratura em indivíduos com idade mais avançada.

Identificamos a cor da pele como fator de associação para as mulheres, estando as mulheres não brancas positivamente associadas ao CMO. Existe grande variação nas concentrações de 25(OH)D de acordo com a cor da pele. Conforme relatado por outros estudos, indivíduos não brancos apresentam 25(OH)D insuficiente, mas apresentam melhor saúde óssea e menor risco para fratura.\(^{(33)}\)

Esses achados requerem mais estudos, pois ainda existem lacunas na literatura quanto à associação entre cor da pele, metabolismo de 25(OH)D e saúde óssea nas diferentes populações.

Os aspectos positivos deste estudo são sua abordagem de base populacional, o uso de instrumentos validados, a padronização de procedimentos de coleta de dados, e a adoção de estratégias de controle de qualidade. Além disso, nosso estudo avaliou os fatores de risco para saúde óssea reduzida em homens saudáveis, o que é diferente da maioria dos estudos que avaliaram mulheres no período pós-menopausa, indivíduos com idade avançada e a relação desses grupos com doença especifica.

Considerando que o pico de massa óssea ocorre por volta dos 30 anos em ambos os sexos e que um declínio gradual ocorre posteriormente, também avaliamos se os fatores associados à CMO diferem em indivíduos mais jovens comparados com aqueles com mais de 30 anos. No entanto, não foram observadas mudanças significativas em relação à magnitude, direção e significância estatística das associações nas análises estratificadas.

Outra questão considerada em nossa análise foi a possível limitação do IMC como método para avaliar o sobrepeso e a obesidade. Por esse motivo, ao introduzir a percentagem de gordura, consideramos as categorias do modelo final, com base no protocolo triplo,\(^{(34,35)}\) que substituiu a variável IMC. Nessa análise, identificamos que o modelo final permaneceu inalterado, e os resultados dos apresentaram os mesmos fatores de associação, tanto para homens quanto para mulheres. Nosso estudo avaliou os fatores associados ao CMO, e os resultados são apresentados pelo IMC, por ser uma medida prática recomendada pela OMS, de fácil aplicação e de baixo custo\(^{(26)}\) para classificação do estado nutricional em indivíduos saudáveis com sobrepeso ou baixo peso.

Este é um estudo transversal e, como tal, as associações identificadas não podem ser interpretadas como relação causal. Nossos resultados podem contribuir para melhor compreender a saúde óssea em adultos, bem como para o desenvolvimento de estratégias de prevenção relacionadas à saúde óssea.

CONCLUSÃO

Os achados deste estudo indicam que os principais fatores associados ao baixo conteúdo mineral ósseo foram idade avançada, cor da pele branca, baixa escolaridade, eutrofia e deficiência de 25(OH)D. Diferenças foram observadas entre homens e mulheres. Indivíduos adultos com tais características devem ser considerados e aconselhados sobre as estratégias de prevenção e diagnóstico precoce. Outros estudos são necessários para aprofundar os entendimentos sobre os parâmetros comportamentais, como nível de atividade física, tabagismo e alcoolismo, pois a literatura ainda é escassa quanto à associação desses parâmetros com a saúde óssea.

INFORMAÇÃO DOS AUTORES

Segheto KJ: http://orcid.org/0000-0003-4605-0823
Juvanhol LL: http://orcid.org/0000-0001-8012-6006
Carvalho CJ: http://orcid.org/0000-0001-8574-6669
Silva DC: http://orcid.org/0000-0001-5456-0853
Kakehasi AM: http://orcid.org/0000-0001-9411-7493
Longo GZ: http://orcid.org/0000-0001-7666-5007
REFERÊNCIAS

1. World Health Organization (WHO). World report on ageing and Health. [Internet]. Geneva: WHO; 2015 [cited 2018 Sep 9]. Available from: http://apps.who.int/iris/bitstream/handle/10665/186463/9789240694111_eng.pdf?sequence=1

2. World Health Organization (WHO). Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992] [Internet]. Geneva: WHO; 1994 [cited 2018 Sep 9]. Available from: http://apps.who.int/iris/handle/10665/39142

3. Shanbhogue VV, Brixen K, Hansen S. Age-and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J Bone Miner Res. 2016;31(8):1541-9.

4. Chin KY, Hammond AJ, Peirson RA, Rodgers CD. The associations of exposure to combined hormonal contraceptive use on bone mineral content and areal bone mineral density accrual from adolescence to young adulthood: a longitudinal study. Bone Rep. 2016;5:0-333-e41.

5. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Vitamin D and bone health. Osteoporos Int. 2006;17(4):275-95. Review.

6. Ferrer CE, Maeda SS, Batista MC, Lazaretti-Castro M, Vasconcellos LS, Batista LC. An association between body mass index, calcium intake and vitamin D status with bone mineral density in young adults: a longitudinal study. Bone Rep. 2016;5:e-333-e-41.

7. Silva TR, Franz R, Maturana MA, Spritzer PM. Associations between body mass index, calcium intake and vitamin D status with bone mineral density according to time since menopause in women from Southern Brazil: a cross-sectional study. Bone Rep. 2016;5(1):107-13.