NOTE ON THE COVERING THEOREM FOR COMPLEX POLYNOMIALS

ALEXEY SOLYANIK

In this note we will give the answer to the questions posed in [D1] and [D2] concerning covering properties of complex polynomials. These questions attract our attention when we study stability properties of dynamical systems stabilized by the feedback control. It was discovered recently [DH], that these properties play the central role in the matter.

We start with the simple observation on the stable polynomials. From this observation we deduce the variant of Koebe One-Quarter Theorem for complex polynomials and from the last statement we obtain the sharp constant in the Theorem 1 from [D1] (Theorem 3.8 in [D2]).

Let \(\Delta = \{ z : |z| < 1 \} \) be the open unit disk and \(\overline{\Delta} \) its closure.

Let \(\chi(z) = a_0 + a_1 z + \ldots + a_n z^n \) be a given polynomial of degree at most \(n \). We would like to define it \(n \)-inverse by the formula

\[
\chi^*(z) = a_n + a_{n-1} z + \cdots + a_0 z^n
\]

Since \(\chi^*(z) = z^n \chi(1/z) \), polynomial \(\chi^*(z) \) "inverse" the ranges \(\chi(\Delta) \) and \(\chi(\mathbb{C} \setminus \overline{\Delta}) \).

We shall use this definition even in the case when \(a_n = 0 \). For example the 4-inverse of the polynomial \(z \) is \(z^3 \) and vice versa.

So defined \(n \)-inversion is an \textit{involution} on the set of polynomials of degree at most \(n \), i.e. \(\chi^{**}(z) = \chi(z) \).

The problem of \textit{stability} of polynomial \(\chi(z) \), which means, that all roots of \(\chi(z) \) lie in \(\Delta \), is equivalent to the problem of the description of the \textit{image} of \(\overline{\Delta} \) by the map \(\chi^* \).

Indeed, if all zeros of some polynomial \(\chi(z) \) lie in the disc \(\Delta \), then no one lies outside, which simply means, that \(0 \notin \chi^*(\overline{\Delta}) \).

To be more precise we write the last observation like a lemma.

Lemma 1. Let \(\chi(z) = a_0 + a_1 z + \ldots + a_n z^n \) be a polynomial with \(a_n \neq 0 \). Then

\[
(2) \quad \text{all zeros of } \chi(z) \text{ lie in } \Delta
\]

if and only if

\[
(3) \quad 0 \notin \chi^*(\overline{\Delta})
\]

Proof. Let \(\chi(z) = a_n z^m (z - z_{m+1}) \ldots (z - z_n) \), where \(0 \leq m < n \) (the case \(m = n \) is trivial). Then

\[
(4) \quad \chi^*(z) = z^n \chi(1/z) = a_n (1 - z_{m+1} z) \ldots (1 - z_n z)
\]

\[\text{Date: 24 October 2014 .}\]
Thus, from (2) we conclude that all zeros of $\chi^*(z)$ lie outside of $\bar{\Delta}$, which implies (3). On the other hand, if (3) holds, then (1) implies (2). □

The statement of lemma 1 is also holds if we change Δ and $\bar{\Delta}$. We shall state here corresponding lemma in a little different (inversion) form and without proof, which is exactly the same.

Lemma 2. Let $\chi(z) = a_0 + a_1z + \ldots + a_nz^n$ be a polynomial with $a_0 \neq 0$. Then,

$$0 \notin \chi(\Delta)$$

if and only if

$$\text{all zeros of } \chi^*(z) \text{ lie in } \bar{\Delta}$$

It is a well known phenomenon in Geometric Function Theory, that some restrictions on the range $f(\Delta)$ implies estimates of Taylor coefficients of f.

For example, for

$$f(z) = z + c_2z^2 + \ldots + c_kz^k + \ldots$$
defined in the unit disk Δ: if f maps Δ into the half-plane $\{z : \Re z > -1/2\}$ then $|c_k| \leq 1$ (Caratheodori) and if the function is schlicht, i.e. maps Δ in one to one way to the simply connected domain, then $|c_k| \leq k$ (de Brange).

The simplest proposition, which reflect this phenomenon (for complex polynomials) is the following

Lemma 3. Let $q(z) = \hat{q}(1)z + \hat{q}(2)z^2 + \ldots + \hat{q}(n)z^n$ and

$$w \notin q(\Delta).$$

Then

$$|\hat{q}(k)| \leq \binom{n}{k}|w|$$

Proof. Let $\chi(z) = q(z) - w$ and $\chi^*(z) = \hat{q}(n) + \hat{q}(n-1)z + \ldots + \hat{q}(1)z^n - wz^n$ is it n-inverse. Then, $0 \notin \chi(\Delta)$ and, according to lemma 2, all roots of $\chi^*(z) = -w(z - \zeta_1)\ldots(z - \zeta_n)$ lie in $\bar{\Delta}$. Hence, by Vieta’s formulas,

$$|\hat{q}(k)| = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} (-1)^{k+1}w\zeta_{i_1}\zeta_{i_2}\ldots\zeta_{i_k} \leq |w| \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} 1 = \binom{n}{k}|w|$$

The estimates [8] are the best possible, since for the polynomial $q(z) = w - w(1 - z)^n$ point $w \notin q(\Delta)$, but $|\hat{q}(k)| = \binom{n}{k}|w|$. □

Define the *norm* of $q(z) = \hat{q}(0) + \hat{q}(1)z + \ldots + \hat{q}(n)z^n$ by the formula

$$n(q) = \max_{0 \leq k \leq n} \frac{|\hat{q}(k)|}{\binom{n}{k}}$$

Denote $\Delta_r(z_0) = \{z : |z - z_0| < r\}$ and claim, that, because $q : \mathbb{C} \to \mathbb{C}$ is an open mapping, the range $q(\Delta_r(z_0))$ always contains some disk $\Delta_r(q(z_0))$.
It is interesting, that from lemma 3 we can obtain the (sharp) estimate of the radius of this disk and immediately conclude that \(q(z) \) is an open mapping.

It is clear, that we can suppose that \(z_0 = 0, q(z_0) = 0 \) and \(r = 1 \).

Corollary 1. For every polynomial \(q(z) = \hat{q}(1)z + \hat{q}(2)z^2 + \cdots + \hat{q}(n)z^n \) the range \(q(\Delta) \) contains the disk of radius \(n(q) \) with the center at the origin:

\[
\Delta_{n(q)} \subseteq q(\Delta).
\]

Proof. Lemma 3 implies \(|w| \geq n(q) \) for \(w \notin q(\Delta) \) and we have \(\Delta_{n(q)} \subseteq q(\Delta) \). \(\square \)

Since \(n(q) \geq 1/n \) for the polynomial \(q \) of degree \(n \), such that \(q(0) = 0 \) and \(q'(0) = 1 \) we have

Corollary 2. For every polynomial \(q(z) = z + \cdots q_n z^n \) the range \(q(\Delta) \) contains the disk of radius \(1/n \) with the center at the origin:

\[
\Delta_{1/n} \subseteq q(\Delta)
\]

If we apply Corollary 2 to the polynomial

\[
\tilde{q}(z) = \frac{1}{R}q(Rz)
\]

we can get a slight general version of this assertion which gives the answer to the question posed in [D1] and [D2].

Corollary 3. For every polynomial \(q(z) = z + \cdots q_n z^n \) the range \(q(\Delta_R) \) contains the disk of radius \(R/n \) centered at the origin:

\[
\Delta_{R/n} \subseteq q(\Delta_R)
\]

and

\[
\Delta_{R/n} \subseteq q(\Delta_R)
\]

The second statement (12) follows from (11) by the compactness arguments. Example

\[
q(z) = \frac{R}{n}((1 + \frac{z}{R})^n - 1)
\]

shows that the size of the circle is the best possible.

Corollary 3 implies the sharp constant in Theorem 1 from [D1].

Theorem 1. For every polynomial \(p(z) = p_0 + p_1 z + \cdots + p_n z^n \) and any points \(z_1 \) and \(z_2 \) there exist point \(\zeta \), such that \(p(\zeta) = p(z_2) \) and

\[
|p(z_1) - p(z_2)| \geq \frac{1}{n}|p'(z_1)||z_1 - \zeta|
\]

Proof. Let

\[
q(z) = \frac{1}{p'(z_1)}(p(z_1) - p(z_1 - z))
\]

Thus \(q(0) = 0 \) and \(q'(0) = 1 \). For any point \(z \) there is a point \(\eta \), such that \(q(z) = q(\eta) \) and

\[
|q(z)| \geq \frac{1}{n}|
\]

\[
\eta|
\]
To prove this, denote $w = q(z)$ and define $R = n|w|$ for $w \neq 0$ (if $w = 0$ there is nothing to prove). We have $w \in \Delta_R^n$ and Corollary 3 implies that there is $\eta \in \Delta_R$, such that $w = q(z) = q(\eta)$.

Now, for the given z_2 define $z = z_1 - z_2$, apply (14) and choose $\zeta = z_1 - \eta$. □

References

[DH] D. V. Dmitrishin, A. D. Hamitova, Methods of Harmonic Analysis in Control of Nonlinear Discrete Systems, Compt. Rend. Math., 351(2013), 357-370.

[D1] V. N. Dubinin, On the finite-increment theorem for complex polynomials, Math. Notes, 88:5 (2010), 647-654.

[D2] V. N. Dubinin, Methods of geometric function theory in classical and modern problems for polynomials, Russian Mathematical Surveys, 67(4) (2012), 599 - 684.

E-mail address: transbunker@gmail.com