Adenosine and adenosine receptor-mediated action in coronary microcirculation

Ying Zhang1 · Bernhard Wernly2 · Xin Cao1 · S. Jamal Mustafa3 · Yong Tang1,4 · Zhichao Zhou5

Received: 17 August 2020 / Accepted: 8 March 2021 / Published online: 23 March 2021
© The Author(s) 2021

Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.

Keywords Extracellular nucleotides · Purinergic receptor · Coronary microcirculation · Adenosine · Ischemic heart disease · Diabetes

Introduction
The coronary microcirculation supplies oxygen and nutrients by determining blood flow to the myocardium through the regulation of vascular resistance. The regulation of coronary microcirculation is essential but complex and is accomplished by changes in coronary microvascular tone, i.e. in contraction and relaxation of vascular smooth muscle, through integration of factors and multiple signals from the perivascular nerves, the myocardium, the endothelium as well as circulating cells [47, 88]. Coronary microvascular dysfunction, resulting in impaired oxygenation and low-grade inflammation, likely contributes to the pathogenesis of coronary microvascular angina [70, 94]. These patients with signs and symptoms of ischemia and non-obstructive coronary artery disease are associated with elevated risk for adverse outcomes [70, 94]. However, the diagnosis of coronary microvascular dysfunction is limited, the disease mechanisms are not fully understood and the patients with non-obstructive coronary artery disease remain undertreated [6, 80].

Adenosine plays a crucial role in the regulation of coronary microvascular tone and coronary blood flow in both physiology and coronary vascular diseases [31, 36, 47]. Adenosine is an autacoid produced by the action of ecto-5′-nucleotidase on extracellular adenine nucleotides released from the parenchymal tissues including endothelium, myocardium and erythrocytes [60, 71]. Extracellular adenosine exerts its vascular effect via interaction with specific cell-surface receptors located on the smooth muscle and endothelial cells of the coronary vasculature. There are four adenosine receptor (AR) subtypes, namely A1R, A2A, R,
A2B R, A1 R, A2A R and A3 R are negatively coupled to adenylyl cyclase through the Gs/o protein alpha-subunits and activation of those receptors decreases cAMP levels, whereas A2A R and A2B R are positively coupled to adenylyl cyclase through Gs and enhance cAMP levels [119]. All four AR subtypes are found in coronary smooth muscle and endothelial cells [3, 31, 67, 76]. The distribution of ARs along the branches of coronary arteries also varies. For instance, in the porcine heart, expression of A1 R and A2A R proteins has been documented in the left anterior descending artery, while A1 R, A2A R and A2B R are expressed in coronary arterioles [35, 108]. Despite the fact that the A2B R expression is suggested to be restricted to coronary microvascular origin [27, 63], findings from studies using A2A R knockout (KO) mice suggested a functional role of A2B R in regulating larger coronary arteries than previously thought [96]. The primary effect of adenosine in coronary microcirculation is to induce vasodilation and hyperemia [31, 47]. This property of adenosine to modify coronary microvascular function has been used for diagnostic effects for many years and is widely adopted as the gold-standard method of diagnosing ischemia invasively and noninvasively. The therapeutic potential of adenosine and its ARs has also been studied.

This review summarizes important aspects of adenosine and AR-mediated actions in the coronary microcirculation. The main focus is on the evidence addressing the role of adenosine and involvement of ARs in regulation of coronary microvascular function in physiology. We also discuss the pathophysiology of coronary microvascular regulation in several cardiovascular diseases. Finally, this review briefly touches upon the possible therapeutic potential of adenosine and AR modulation. Considering the differences in heart anatomy and metabolism among different species [89], coronary arteries with the diameter below 200 µm in human and large animal models are included as microvessels in the present review [85], while the changes in flow measured in vivo and ex vivo are regarded as the vasomotor control of the resistance vessels in human, large animal models and rodents.

Adenosine generation and metabolism

Adenosine is released in coronary microcirculation from tissues including endothelium, myocardium and erythrocytes at times of cellular stress such as hypoxia, ischemia and inflammation [60]. Adenosine can be formed intracellularly from ATP, ADP or adenosine monophosphate (AMP) by cytoplasmic 5′-nucleosidase activity. The conversion of cAMP to AMP by phosphodiesterase (PDE) is responsible for adenosine production referred to as the cAMP-adenosine pathway [73]. In addition, adenosine can be produced from S-adenosylhomocysteine (SAH) via SAH hydrolase [21, 82]. Once being released extracellularly, ATP is degraded to ADP and AMP through the continuous action of NTPDase 1 (CD39) or possibly other NTPDases [119, 124]. Adenosine is then generated from AMP derived from both ATP and cAMP pathways via CD73 [73] (Fig. 1).

Alteration of the regulatory enzyme activity under (patho) physiological conditions or in response to pharmacological stimuli can affect adenosine levels and subsequently the AR-mediated vascular responses. Physical training may increase cytoplasmic 5′-nucleosidase and adenosine deaminase activity, thereby affecting adenosine concentration [46]. 5′-nucleosidase activity was thought to be inhibited during ischemia or hypoxia [29]. However, the net adenosine concentration was not measured. In a setting of reduced tissue oxygenation, the adenosine level can be elevated more than the AMP level likely via decreased activity of adenosine kinase [19]. Upon β-adrenergic stimulation, SAH-hydrolase was inhibited via a calcium-dependent mechanism [90], while CD73 activity was increased [32]. Hypoxia can also increase CD73 activity resulting in increased extracellular cardiac adenosine production [33]. α1-adrenergic stimulation, nitric oxide (NO)-donors and 8-bromo-cGMP could stimulate PKC leading to increased activity of CD73 [4, 65]. Pharmacological inhibition of adenosine deaminase and kinase in perfused mouse hearts resulted in a significant increase in coronary flow [93].

Adenosine can diffuse across cell membranes to maintain the balance between intracellular and extracellular adenosine concentrations. Extracellular adenosine is rapidly taken up by the cells via both sodium-dependent (concentrative nucleoside transporter: CNT) and sodium-independent transporters (equilibrative nucleoside transporter: ENT) for subsequent metabolism [50, 51, 53]. Further, adenosine can pass through the plasma membrane of these cells and be used intracellularly [73]. Once taken up, e.g., by the endothelial cells, adenosine is phosphorylated by adenosine kinase to form AMP or degraded to inosine by adenosine deaminase (ADA) [73] (Fig. 1). Both ENT and CNT are expressed in the heart and vessel [53]. However, ENT1 and ENT2 are the best-characterized transporters for adenosine uptake in the cardiovascular system [50]. Existing evidence has shown that targeting ENT contributes to coronary vasodilation [7, 39]. ENT1 and ENT2 are the predominant nucleoside transporters of the vascular endothelium with an approximate expression of ENT1 twice as high as that of ENT2 [51]. The human ENT1 and ENT2 differ in their sensitivities to inhibition by coronary vasodilators such as dipyridamole, dilaizep and draflazine, with ENT1 being ≈100- to 1000-fold more sensitive than ENT2 [104].

However, there are several limitations in our current understanding of adenosine metabolism. The mechanisms underlying the regulation of these enzymes and transporters are not fully understood, which deserves further investigations. In addition, more studies are needed using human...
tissues, as there are species differences with respect to adenosine metabolism [20]. Finally, how altered enzyme activity and adenosine concentration affects sensitivity and activation of ARs in coronary microcirculation remains poorly elucidated. For more details on adenosine metabolism, the reader is referred to several excellent review articles [20, 81].

Adenosine-mediated actions in physiological conditions

Involvement of ARs in coronary microvascular tone control

Adenosine is a potent coronary vasodilator in all species studied, including human [15, 60, 69, 109, 126]. It can arise directly from cardiomyocytes after intracellular breakdown of ATP and after extracellular breakdown of ATP released from endothelial cells and erythrocytes [71]. The involvement of ARs in adenosine-mediated coronary vasodilation is species dependent. Several lines of evidence have shown that both A2AR and A2BR mediate exogenous adenosine-induced coronary vasodilation in mice [59, 86, 93], while A2AR is the predominant receptor subtype contributing to coronary vasodilation in swine and dogs [9, 35, 52, 125]. Involvement of ARs in human coronary vascular tone is not consistent. Activation of A2AR has been shown to regulate human coronary vascular tone [79], whereas another study indicates an involvement of A2BR in adenosine-induced relaxation in small arteries isolated from human [42]. ARs also interact with each other to regulate coronary vascular tone. Both A1R and A3R have been found to negatively modulate coronary vasodilation induced by A2AR and/or A2BR activation [92, 95]. The A2BR expression is upregulated in coronary arteries isolated from mice lacking A2AR. As a functional consequence, the A2BR-mediated increase in coronary flow is enhanced in mice lacking A2AR [96]. Further, the A2AR-mediated increase in coronary flow is enhanced in mice lacking A2BR [78] (Fig. 2). Whether ARs play a significant role in the regulation of coronary basal tone remains controversial. In isolated rat hearts, the coronary baseline flow is significantly reduced by non-selective AR inhibition [49]. A2AR activation has been observed to contribute to coronary basal NO release and basal tone in isolated hearts of mice [28, 117, 120] (Fig. 2). In contrast, the effect of AR blockade on coronary blood flow in vivo is rather small in human [25, 26] and swine [24], and even absent in dogs and mice [5, 99, 115].

As mentioned earlier, upon induction of hypoxia or ischemia in various tissues, adenosine together with ATP and ADP is released from cells or tissues, all of which significantly contribute to reactive hyperemia [68, 81]. It has been proposed that adenosine and adenosine-mediated ARs predominantly account for the mid- to late-phase of reactive hyperemia [68]. Existing evidence demonstrates that
activation of A_2A_R plays a pivotal role in reactive hyperemia in mice and dogs [9, 86, 117, 122]. Other receptors play a lesser role. For instance, A_1R has been shown to negatively modulate coronary reactive hyperemia mediated by A_2A_R. A_2B_R and A_3R can compensate for each other, while A_1R and A_2R negatively modulate the A_2A_R- and A_2B_R-mediated coronary vasodilation. A_2A_R plays a role in coronary reactive hyperemia. A_1R negatively modulates coronary reactive hyperemia mediated by A_2A_R. There are endothelium-dependent and -independent regulations of adenosine-mediated coronary microvascular function. Nitric oxide (NO) is involved in A_2A_R-mediated basal tone control and reactive hyperemia, as well as adenosine-mediated A_2A_R activation. NO is also involved in A_2A_R-KATP axis for reactive hyperemia. Activation of A_2A_R can stimulate NADPH oxidase 2 (NOX2) resulting in H_2O_2 production, which leads to smooth muscle cell (SMC) KATP opening and coronary vasodilation. Activation of A_2A_R by reactive hyperemia also involves downstream H_2O_2-KATP axis accounting for coronary vasodilation. Hypoxia can directly activate KATP channels. Involvement of SMC Kv and $K_{Ca_{2+}}$ is coupled to activation of A_2A_R. EC endothelial cells

Fig. 2 Adenosine and adenosine receptor (AR)-mediated action in coronary microcirculation in physiology. a Adenosine is generated via extracellular breakdown of ATP released from various cells upon stimulation like hypoxia or ischemia. Adenosine-mediated coronary microvascular tone is mainly through activation of A_2A_R and A_2B_R. A_2A_R and A_2B_R can compensate for each other, while A_1R and A_2R negatively modulate the A_2A_R- and A_2B_R-mediated coronary vasodilation. A_2A_R plays a role in coronary reactive hyperemia. A_1R negatively modulates coronary reactive hyperemia mediated by A_2A_R. There are endothelium-dependent and -independent regulations of adenosine-mediated coronary microvascular function. Nitric oxide (NO) is involved in A_2A_R-mediated basal tone control and reactive hyperemia, as well as adenosine-mediated A_2A_R activation. NO is also involved in A_2A_R-KATP axis for reactive hyperemia. Activation of A_2A_R can stimulate NADPH oxidase 2 (NOX2) resulting in H_2O_2 production, which leads to smooth muscle cell (SMC) KATP opening and coronary vasodilation. Activation of A_2A_R by reactive hyperemia also involves downstream H_2O_2-KATP axis accounting for coronary vasodilation. Hypoxia can directly activate KATP channels. Involvement of SMC Kv and $K_{Ca_{2+}}$ is coupled to activation of A_2A_R. EC endothelial cells

Endothelium-dependent and -independent regulation

It has been suggested that both A_2A_R and A_2B_R mediate endothelium-dependent coronary relaxation and NO release from coronary artery endothelium [1]. Indeed, adenosine-5’-N-ethylcarboxamido (NECA), a nonselective adenosine agonist, and 2-[p-(2-carboxyethyl)] phenethylamino-5’-N-ethylcarboxamidoadenosine (CGS-21680), a selective A_2A_R agonist, produced relaxation in isolated porcine coronary
small arteries, which were attenuated by the endothelium-denudation or NO synthase inhibition [34]. Using two different NO synthase inhibitors L-NAME and L-NMA in isolated hearts from wild-type (WT) and A2R KO mice, both inhibitors attenuated the NECA- or CGS-21680-induced increases in coronary flow in WT, but not A2R KO mice, indicating a role for NO in the A2R-mediated coronary vasodilation [96]. NO blockade or endothelium denudation also attenuated adenosine-induced vasodilation in porcine coronary arterioles [44]. Interestingly, adenosine-A2R pathway has been shown to regulate coronary basal tone through NO release in isolated mouse hearts [120]. There is also evidence showing that NO release is in part triggered by A2AR accounting for reactive hyperemia in mice [117]. The role of A2R in NO release remains to be determined.

In contrast, many other studies have observed that adenosine mediates endothelium-independent relaxation in coronary microvasculature. Thus, adenosine-induced vasodilation in human coronary small arteries was not affected by endothelium denudation [79] or NO blockade [42]. NO synthase inhibition failed to affect adenosine-induced vasodilation in canine coronary arterioles [41]. Endogenous adenosine and NO work in a parallel manner to regulate vascular tone in isolated canine coronary small arteries [116]. NO does not contribute to the A2R-mediated increase in reactive hyperemia in A1R KO mice [122]. Numerous pieces of evidence obtained in denuded porcine coronary small arteries clearly demonstrated that A2R plays a predominant role in endothelial-independent coronary vasodilation, while A3R may play a minor role [91, 98, 125]. The discrepancies on the role of endothelium in the adenosine-mediated coronary microvascular regulation are not readily explained, but may be determined by the different expression and distribution of ARs between the endothelium and smooth muscle cells in the different vascular segments of the microcirculation. It may also depend on different species studied, as NO seems to be involved in adenosine-induced coronary vasodilation in swine, but not dogs [41]. Further studies are warranted to address this issue.

Post-receptor pathways and end-effectors

The coronary microvascular tone is ultimately determined by the interaction between actin and myosin in the vascular smooth muscle cells. This is regulated by the intracellular Ca2+ concentration. Opening status of one of the important modes voltage-operated Ca2+ channels in vascular smooth muscle is regulated by membrane potential, which in turn is determined by the activation of K+ channels [24]. Many vasoactive substances including H2O2 influence coronary microvascular function through K+ channels [64, 75, 78, 86, 118]. The limited evidence regarding the mechanisms is pointed to a possible activation of both transcription and translation of K+ channels located at the plasma membrane of the coronary smooth muscle cells [64]. The three main types of K+ channels that have been investigated in relation to regulation of coronary vasomotor tone are KATP, KCa2+, and KV channels [23]. Despite information indicating that adenosine receptors and KATP work as parallel vasodilator pathways to control coronary blood flow in swine [56], both A2R- and A2B-mediated increase in coronary flow in isolated mouse hearts have been observed to be through activation of KATP channels [78]. The adenosine/A2R stimulation- or the adenosine analogue-induced relaxation in isolated porcine coronary arterioles or the A2R-induced increase in coronary blood flow in open-chest dogs is mediated via activation of KATP channels [8, 9, 34]. Adenosine has been shown to potentiate the flow-mediated dilation in porcine coronary arterioles via activation of KATP channels in endothelium [44]. There is NO and KATP channel-dependent effects of A2R contributing to reactive hyperemia in mouse [117]. Of further interest, recent evidence has shown that A2R activation promotes NADPH oxidase 2-derived reactive oxygen species and subsequently leads to H2O2 production contributing to the increase in coronary flow in isolated mouse hearts [126]. The interaction between A2R, H2O2 and KATP has been demonstrated in delicate models of A2R KO and A2R/A2B double KO mice. Thus, patch-clamp experiments demonstrated that adenosine can activate glibenclamide-sensitive KATP current in smooth muscle cells from WT, but not A2R KO or A2R/A2B double KO mice [86]. H2O2 can activate KATP current in smooth muscle cells [86]. Further, adenosine-mediated increase in coronary flow is blunted by catalase, while H2O2 increases coronary flow which is attenuated by the KATP blocker glibenclamide [86]. Finally, both H2O2 and KATP activation are involved in A2R-mediated coronary reactive hyperemia [86, 122]. Altogether, these observations indicate that adenosine-mediated A2R is coupled to smooth muscle KATP channels in coronary reactive hyperemia in mice via the production of H2O2 as a signaling intermediate. Earlier studies have also shown an involvement of KATP channels in hypoxia-induced coronary vasodilation as well as dipyridamole-mediated increase in coronary vasodilation in perfused guinea pig hearts [18, 106], suggesting that adenosine could hyperpolarize smooth muscle cell membrane by opening KATP channels under hypoxic condition.

There is also evidence showing the involvement of KV and KCa2+ channels in adenosine- or the A2R agonist-mediated coronary vasodilation. Adenosine-mediated increases in coronary blood flow in dogs and relaxation in isolated canine coronary arteries, the adenosine analogue-induced relaxation in isolated porcine coronary arterioles, as well as the adenosine/the A2R agonist-induced relaxation in coronary arteries isolated from rats are attenuated by KV channel inhibition [8, 9, 22, 43]. Moreover, adenosine-mediated
vasodilation in pressurized human and canine coronary small arteries and in perfused rat hearts were blunted by KCa2+ channel inhibition [11, 58, 79]. Collectively, adenosine-mediated coronary microvascular tone and reactive hyperemia are through complex mechanisms mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving the interaction of different ARs (Fig. 2). Regarding the post-receptor mechanism, KATP, Kv, and KCa2+ channels appear to act as final effectors for the adenosine-mediated coronary microvascular tone regulation. However, the mechanisms underlying how adenosine or the A2AR-mediated coronary vasodilation activates H2O2-KATP axis remains incompletely understood. Moreover, whether adenosine-H2O2-KATP axis can be extrapolated to human condition deserves further investigations. Table 1 summarizes important evidence regarding the role of adenosine- and AR-mediated actions in coronary microcirculation in physiology.

Adenosine and adenosine receptor-mediated actions in pathological conditions

Hypertension

Hypertension is associated with structural and functional abnormalities in coronary microcirculation including coronary endothelial cell dysfunction, coronary microvascular remodeling and an impaired coronary flow reserve induced by adenosine observed in both human and animals [62, 105]. Arterial hypertension can lead to an increase in the vascular pericyte coverage, which is interestingly not accompanied by a gain in capillary density [127]. In addition, this cell type also undergoes a transformation into a more vascular smooth muscle cell like phenotype showing a more contractile property [127]. Both adenosine and the selective A2AR agonist produce concentration-dependent relaxation of coronary arteries isolated from control rats via activation of Kv7 channels but not hypertensive rats [43]. There is downregulation of A1R expression and the A1R-mediated coronary vasodilation in perfused hearts from spontaneously hypertensive rats [38]. In hypertensive swine, the transmural spatial density of microvessels is twice as much as in normotensive animals, and myocardial levels and expression of endothelium-derived growth factors, e.g., FGF (in vascular smooth muscle cells and myocytes) and VEGF (in endothelial cells) are significantly increased. Functionally, the increase in blood volume and myocardial blood flow in response to intravenous adenosine application was blunted in these animals [74]. It seems that activation of downstream potassium channels plays a role. In high-salt diet-induced hypertensive rats, application of nicorandil, an activator of KATP channels, restores NO synthase and attenuates enhanced VEGF

Diabetes

Diabetes is an important risk factor for the development of cardiovascular disease including atherosclerosis and ischemic heart disease. The increased morbidity and mortality are significantly attributed to diabetes-induced microvascular dysfunction in the heart [119]. The coronary flow in hearts isolated from type 1 diabetic mice is observed to be significantly increased by the stimulation of non-selective agonist of ARs and the selective A2AR agonist. In addition, in vivo injection of the A2AR agonist enhances the efficiency in increasing coronary flow in type 1 diabetic mice [45]. The functional observations are in accordance with the increased A2AR expression in coronary arteries as compared to non-diabetic control mice [45]. In contrast, the coronary flow in response to adenosine is significantly blunted in isolated hearts of type 2 diabetic Goto-Kakizaki (GK) rats as compared to age-matched control rats [58]. The impaired adenosine-induced coronary flow in GK rats can be restored by endothelial KCa2+ opening [58]. In obese rats with insulin resistance, the coronary microvascular perfusion is impaired in response to adenosine infusion [102]. A similar clinical observation was found in a recent study where the adenosine-induced coronary flow reserve is blunted in type 2 diabetic patients without obstructive coronary artery disease [48] (Table 2). The different responses to adenosine stimulation may be due to different etiologies of diabetes, which warrants further investigations.

In a swine model with early-stage metabolic syndrome and hyperglycemia, despite both adenosine-induced increase in coronary blood flow in vivo and the adenosine analogue-mediated relaxation in isolated coronary arterioles did not differ from control swine [8], there was a shift from the A2AR-mediated coronary relaxation to enhanced A2B-mediated coronary vasorelaxation in swine with early-stage metabolic syndrome [8] (Table 2). However, the A2B expression level was lower in coronary arterioles isolated from swine with metabolic syndrome. This may suggest that the sensitivity of A2B upon stimulation by the adenosine analogue is increased thereby maintaining the coronary blood flow [8]. Moreover, the involvement of Kv channels in AR-mediated coronary relaxation was not affected by early-stage metabolic syndrome, whereas there was a reduced KATP channel function [8]. Activation of A2AR has been shown to be coupled to KATP channel to regulate coronary
Species	Age/weight, sex	Coronary function assessment method	Receptor/pathways	Coronary effect	Reference
Human	Not stated	Isolated coronary arterioles (internal diameter 0.4 μm) in pressurized myograph	A1R, A2AR, IKCa2+	↓ Ado-mediated vasodilation + DMPX or Clotrimazole	[79]
			↓ Ado-mediated vasodilation + DPCPX	- Ado-induced vasodilation + endothelium denudation	
Human	64.4 ± 1.7 years, either sex	Isolated coronary arteriolar (diameter: ~ 200 μm) in wire myograph	A2BR	↓ Ado-induced relaxation + DMPX	[42]
			- Ado-induced relaxation + LNAME or Glibenclamide	- Ado and CGS21680-mediated vasodilation + ZM241385 or Glibenclamide	
Swine	8–12 weeks, either sex	Isolated coronary arterioles (diameter 50–100 μm) in pressurized myograph	A2AR, K_{ATP}	↑ Ado, NECA, ENBA, CGS21680, IB-MECA-induced vasodilation	[34]
Swine	8–12 weeks, either sex		NO, K_{ATP}	↓ Ado-induced vasodilation + ZM241385 but not CPX and MRS1191	[35]
Swine	8–12 weeks, either sex		NO, K_{ATP}	↓ Ado and CGS21680-induced vasodilation + LNAME or endothelium denudation	
Swine	8–12 weeks, either sex		NO, K_{ATP}	↓ Ado and CGS21680-induced vasodilation in denuded vessel + Glibenclamide	
				↓ Ado-potentiated flow-induced vasodilation + Glibenclamide	[44]
Swine	2–3 months, either sex	Catherization in the anterior interventricular vein	ARs	↓ P_{VO2} + 8PT + Glibenclamide or 8PT + LNAME vs. 8PT	[56]
Miniature Swine	9–12 months, male	Isolated coronary arterioles (diameter: 50–150 μm) in pressurized myograph	A_{2A}R, A_{2B}R, Kv, K_{ATP}	↓ 2-CAD-induced vasodilation + ZM241385 or 4AP or Glibenclamide	[8]
Miniature Swine	14 ± 4 months	in vivo intravascular ultrasound	A_{2A}R	↑ Ado-induced increase in CBF + ZM241385	[52]
Dog	4–11 kg, either sex	Isolated coronary arterioles (diameter ~ 81 μm) in pressurized myograph	A_{2A}R	- Ado-induced vasodilation + LNAME	[41]
Dog	10–25 kg, either sex		ARs	↓ Coronary vasodilation with LNAME + Catalase + 8PT vs. LNAME + Catalase	[116]
Dog	Not stated		ARs, BKCa²⁺	↓ Ado-induced vasodilation + TEA or iberiotoxin	[11]
Dog	20–30 kg, male	CBF measurement in open-chest dog	A_{2A}R, A_{2B}R, Kv, K_{ATP}	↓ Ado-induced increase in CBF + SCH58261 or Alloxazine	[9]
				↓ CGS21680-mediated increase in CBF + 4AP or Glibenclamide	
Dog	Not stated		AR, Kv	↓ RH-induced increase in CBF + SCH58261	[22]
Dog	Not stated	CBF measurement in open-chest dog, isolated arterioles (diameter: ~ 150 μm) in pressurized myograph	A1R, A_{2A}R	↓ RH-induced increase in CBF with 8PT + 4AP but not 8PT	
Dog	Not stated			↓ Ado-induced increase in CBF in vivo and relaxation ex vivo + 4AP	
Table 1 (continued)

Species	Age/weight, sex	Coronary function assessment method	Receptor/pathways	Coronary effect	Reference
Rat	11–16 weeks, male	Isolated coronary small arteries (diameter: ~ 200 μm) in wire myograph	A2AR, Kv7	Ado and CGS21680-induced relaxation + linopirdine	[43]
Rat	280–380 g, male	ex vivo perfused hearts Langendorff technique	A1R	↓ Baseline CF + 8PT	[49]
Rat	6–8 weeks and 16–18 weeks and 52–54 weeks, male	ex vivo perfused hearts Langendorff technique	A3AR	↓ APNEA-induced increase in CF + MRS1191 or Alloxazine	[40]
Rat	10–12 and 18–20 weeks	ex vivo perfused hearts Langendorff technique	ARs, IKCa2+, SKCa2+	Ado-induced increase in CF + TRAM34 or TRAM34 + Amin	[58]
Guinea pig	350–450 g, male	ex vivo perfused hearts Langendorff technique	A1R, A2AR, A3R	↑ ADAC, CCPA and APNEA-induced decrease in perfusion pressure	[76]
Guinea pig	200–300 g	ex vivo perfused hearts Langendorff technique	ARs, KATP	↓ Hypoxia-induced vasodilation + Glibenclamide	[106]
Mouse	Adult male and female	ex vivo perfused hearts Langendorff technique	A2AR, A2BR	↓ Ado or NECA-mediated increase in CF in A2AR KO mice	[59]
Mouse	10–14 weeks, male	ex vivo perfused hearts Langendorff technique	A2AR, H2O2, NO, KATP	↓ RH-induced increase in CF in A2AR KO mice	[86]
Mouse	Adult male and female	ex vivo perfused hearts Langendorff technique	A2AR, A2BR	↓ RH-induced increase in CF in A2AR KO mice + Glibenclamide	[93]
Mouse	Adult male and female	ex vivo perfused hearts Langendorff technique	A2AR, A3R	↑ Adenosine and CGS21680-induced increase in CF in A2AR KO vs. WT mice	[92]
Mouse	Adult male and female	ex vivo perfused hearts Langendorff technique	A1R, A2AR	↑ Basal CF in A1R KO vs. WT mice	[95]
Species	Age/weight, sex	Coronary function assessment method	Receptor/pathways	Coronary effect	Reference
------------------	----------------	-------------------------------------	------------------	--	-----------
Mouse	Adult male and female	ex vivo perfused hearts Langendorff technique	A$_{2A}$R, A$_{2B}$R, NO	↓ NECA-induced increase in CF in WT but not A$_{2A}$R KO mice + LNAME ↑ BAY606583-mediated increase in CF in A$_{2A}$R KO vs. WT mice	[96]
Mouse	10–14 weeks, male	ex vivo perfused hearts Langendorff technique	A$_{2A}$R, A$_{2B}$R, K$_{ATP}$	↓ NECA-induced increase in CF in A$_{2B}$R KO mice + SCH58261 ↓ NECA-induced increase in CF in A$_{2A}$/A$_{2B}$R KO mice ↑ CGS21680-induced increase in CF in WT, A$_{2A}$R and A$_{2B}$R KO mice + Glibenclamide ↓ NECA-induced increase in CF in WT, A$_{2A}$R and A$_{2B}$R KO mice + Glibenclamide	[78]
Mouse	12–16 weeks, either sex	ex vivo perfused hearts Langendorff technique	A$_{2A}$R, A$_{2A}$/A$_{2B}$R, H$_2$O$_2$, K$_{ATP}$	↑ RH-induced increase in CF in A$_{2A}$/A$_{2B}$R KO vs. A$_{2A}$R KO mice ↓ RH-induced increase in CF in A$_{2A}$/A$_{2B}$R KO mice + SCH58261 or Catalase or Glibenclamide but not LNAME	[122]
Mouse	14–18 weeks, either sex	ex vivo perfused hearts Langendorff technique	A$_{2A}$R, NOX$_2$, H$_2$O$_2$	↓ Ado and CGS21680-induced increase in CF in WT, A$_{2A}$/A$_{2B}$R but not A$_{2A}$R KO mice + gp91 ds-tat or EUK134 ↓ Ado-induced increase in H$_2$O$_2$ formation in WT, A$_{2B}$R but not A$_{2A}$R KO mice + gp91 ds-tat	[126]
Mouse	7–12 weeks	ex vivo perfused hearts Langendorff technique	A$_{2A}$R	↓ Baseline CF + 8-CSC	[28]
Mouse	8–12 weeks, male	ex vivo perfused hearts Langendorff technique	A$_{2A}$R, NO, K$_{ATP}$	↓ Baseline CF + SCH58261 ↓ RH-induced increase in CF in WT mice + SCH58261 or LNAME or Glibenclamide	[117]
Mouse	20–22 weeks, either sex	ex vivo perfused hearts Langendorff technique	A$_{2A}$R	↓ Baseline CF in WT mice + SCH58261 ↓ RH-induced increase in CF in ApoE KO + HFD vs. WT mice + SCH58261	[120]
Mouse	Adult male and female	In vivo ultrasound CBF measurement	A$_{2A}$/A$_{2B}$R	↓ i.v. bolus Ado-induced increase in CBF in A$_{2A}$/A$_{2B}$R, A$_{2B}$R, and A$_{2A}$/A$_{2B}$R KO mice	[99]

AR agonist: Adenosine (Ado), NECA; A$_{2A}$/A$_{2B}$R agonist: ENBA, CCPA, ADAC; A$_{2A}$R agonist: CGS21680, DPMA; A$_{2B}$R agonist: 2-CAD, BAY606583; A$_{2A}$/A$_{2B}$R antagonist: APNEA, CI-IB-MECA; AR antagonist: DMPX, 8PT; A$_{2A}$/A$_{2B}$R antagonist: DPCPX, CPX; A$_{2A}$R antagonist: 8-CSC; A$_{2A}$/A$_{2B}$R antagonist: ZM241385, SCH58261; A$_{2B}$/A$_{2B}$R antagonist: Alloxazine; A$_{3}$R antagonist: MRS1191; ApoE: Apolipoprotein E; Adenosine deaminase inhibitor: EHNA; Adenosine kinase inhibitor: ITU; Big conductance calcium-activated potassium channel blocker: Amin; Calcium-activated potassium channel blocker: Clostrimazole; Coronary blood flow; Coronary flow; HFD: High fat diet; H$_2$O$_2$: Decomposition catalyst; Catalase; Intermediate conductance calcium-activated potassium channel blocker: TRAM34; K$_{ATP}$ channel blocker: Glibenclamide; Kv channel blocker: 4AP; Kv7 channel blocker: Linopirdine; NADPH oxidase 2 inhibitor: gp91 ds-tat; Non-selective potassium blocker: TEA; Nitric oxide (NO) synthase inhibitor: LNAME; PvO$_2$: Coronary venous O$_2$ pressure; Reactive oxygen species (ROS) scavenger: EUK134; RH: Reactive hyperemia; Small conductance calcium-activated potassium channel blocker: Apamin; SMC: Smooth muscle cells

↑ enhanced effect; ↓ reduced effect; --: the effect is not different
microcirculation [78, 86]. The reduced K_{ATP} function by early-stage metabolic syndrome can be affected by the shift of vasodilator $A_{2\text{A}}$.R.

Atherosclerosis

Atherosclerosis is generally predominant in large coronary arteries. However, long-term exposure to hypercholesterolemia can activate endothelial cells and thus induce leukocyte recruitment, oxidative stress and loss of pericytes in the microcirculation [12]. This alteration may lead to capillary rarefication due to a decrease in capillary surface area resulting in a dysfunctional downstream vessel system and a drastic decrease in overall capillary diameter [127]. Moreover, in atherosclerotic areas, relative anoxia, inflammation and oxidative stress promote release of angiogenic factors resulting in angiogenesis and vasculogenesis [57]. It has been estimated that local adenosine may mediate 50–70% of the angiogenic response to hypoxia/ischemia [2]. A_1R, $A_{2\text{B}}$R and A_3R were involved in angiogenesis surroundings and downstream vessels of the atherosclerotic plaque, and A_1R and $A_{2\text{B}}$R were reported to promote endothelial progenitor cell homing to coronary microvascular endothelium for the genesis of capillary networks [77].

Table 2: Adenosine and adenosine-mediated coronary microvascular function in cardiometabolic disease

Disease	Species	Agent	Administration route	Receptor	Coronary effect	Reference
Hypertension	Human	Adenosine	Intracoronary infusion		Coronary flow reserve ↓	[105]
	Swine	Adenosine	Intravenous infusion		Myocardial microvascular function ↓	[74]
	Rat	Adenosine	Bolus injection in isolated arteries (diameter: ~200 μm)		Coronary relaxation ↓	[43]
	Rat	CGS21680	Bolus injection in isolated arteries (diameter: ~200 μm)	$A_{2\text{A}}$R	Coronary relaxation ↓	[43]
	Rat	APNEA	Infusion in isolated hearts	A_3R	Coronary relaxation ↓	[38]
	Rat	Cl-IB-MECA	Infusion in isolated hearts	A_3R	Coronary relaxation ↓	[38]
Diabeteis	Human with T2D	Adenosine	Intravenous infusion		Coronary flow reserve ↓	[48]
	Swine with MS	Adenosine	Intracoronary infusion	$A_{2\text{B}}$R	Coronary blood flow ↓	[8]
	Swine with MS	2-CAD	Bolus injection in pressurized arterioles (diameter: 50–150 μm)	$A_{2\text{B}}$R	Coronary relaxation -	[8]
	Rats with insulin resistance	Adenosine	Intravenous infusion		Myocardial microvascular function ↓	[102]
	Mouse with T1D	CGS21680	Infusion in isolated hearts	$A_{2\text{A}}$R	Coronary flow ↑	[45]
	Mouse with T2D	Adenosine	Infusion in isolated hearts	$A_{2\text{A}}$R	Coronary flow ↓	[58]
	Human	Adenosine	Intracoronary infusion		Coronary flow reserve ↓	[72]
	Monkey	Adenosine	Bolus injection in pressurized arterioles (diameter 122–220 μm)	$A_{2\text{A}}$R	Coronary relaxation -	[84]
	Mouse	CGS21680	Infusion in isolated hearts	$A_{2\text{A}}$R	Coronary flow ↑	[97]
	Mouse	Occlusion in isolated hearts	$A_{2\text{A}}$R	Baseline flow and RH ↓	[120]	
Ischemic heart disease	Swine	Up1A	Bolus injection in isolated hearts	$A_{2\text{B}}$R	Coronary relaxation ↓	[123]
	Dog	DPMA	Intravenous infusion	$A_{2\text{A}}$R	Increase in coronary blood flow ↓	[16]
	Dog	Adenosine	Intracoronary infusion	$A_{2\text{A}}$R	Increase in coronary flow ↓	[103]

$A_{2\text{A}}$R agonist: CGS21680; DPMA: $A_{2\text{B}}$R agonist; 2-CAD; A_3R agonist: APNEA, Cl-IB-MECA; MS: metabolic syndrome; T1D: type 2 diabetes; T2D: type 2 diabetes

↑ enhanced effect, ↓ reduced effect; – the effect is not different
in patients with atherosclerosis risk [72]. Reactive hyperemia-induced increase in coronary flow was lower in female atherosclerotic mice, and the less increase in coronary flow was inhibited by the A2A receptor antagonist to a greater extent in atherosclerotic than control groups [120]. In contrast, an enhanced response in coronary flow to A2A receptor stimulation in hyperlipidemic/atherosclerotic mice was reported [97]. It has been suggested that upregulation of A2A is a compensatory mechanism to maintain NO-dependent endothelial function as evaluated by coronary vasodilation in a mouse model of atherosclerosis [120]. One study indicates that responses of isolated coronary arterioles to adenosine are identical in atherosclerotic and control monkeys [84] (Table 2). The experimental evidence may suggest that the diagnosis of coronary artery disease in patients using adenosine as a stimulator can be underestimated.

Ischemic heart disease

Among complex pathophysiological components, e.g. obstructive coronary atherosclerosis, more and more evidence has shown that coronary microvascular dysfunction significantly plays a role in the etiology of ischemic heart disease [54, 70, 94]. On the other hand, the coronary vasculature itself is also a victim of ischemia–reperfusion injury and myocardial infarction [30, 37]. The majority of experimental and clinical studies have focused on the effects of adenosine more on cardiomyocytes as compared to the coronary vasculature, as dissecting the effects of adenosine or AR activation on the coronary microcirculation from cardiomyocytes is challenging, given the causal relationship between injuries to the coronary vasculature and cardiomyocytes following the myocardial infarction.

Existing data demonstrated that there seems to be a reduced sensitivity to adenosine in the coronary microvasculature in ischemic heart [103, 128], the A1 receptor agonist-induced coronary vasodilation was attenuated by the ischemia–reperfusion in anesthetized dogs [16]. The A2A-mediated relaxation to the novel dinucleotide UTP was found to be blunted in swine with myocardial infarction [123] (Table 2). More studies are needed to further elucidate the specific AR involvement in coronary microvascular function following myocardial infarction and how alteration of AR sensitivity is associated with ischemic heart disease.

Perspective on indirect adenosine modulation as therapeutic strategy

Adenosine and AR modulations may serve as therapeutic strategy in cardiovascular medicine in two manners. First, both endogenous and exogenous adenosine and adenosine-activated ARs per se have been evaluated in various preclinical and clinical settings. However, the effect of adenosine and AR modulation in myocardial injury and heart failure has shown inconsistent effects on cardiac function and myocardial perfusion. The exact mechanisms are not readily explained, but one possibility may rely on whether the modulation takes place. For instance, endogenous generation of interstitial, but not venous adenosine, is critical to protect myocardium against infarction [83, 87], which could be induced by ischemic preconditioning, but not coronary microembolization [87]. Moreover, none of the pharmacological tools targeting ARs that entered clinical trials have emerged as drug candidates due to lower efficacy, kinetics issues or adverse events reported. Better rational design and development of other agonists and antagonists may lead to successful clinical drug candidates in the future. Readers are referred to several review articles on this topic for more details [14, 61, 111]. Second, other drugs can initiate secondary effects through generation of adenosine and activation of AR-mediated signaling. It is important to note that AR-mediated actions may affect both coronary vasculature and cardiomyocytes, making it difficult to separate vascular effect from cardio-protection. This section focuses on the discussion of the indirect adenosine modulation for a potential therapeutic strategy.

An indirect, but clinically important, effect on AR-mediated signaling was recently postulated for ticagrelor [17]. Ticagrelor is the P2Y12R antagonist primarily targeting platelets and its application is clinically well established to prevent thromboembolic complications after acute coronary syndrome [107]. Of note, ticagrelor can induce substantial amount of ATP release from erythrocytes via anion channels and target the ENT1 transporter in erythrocytes which inhibits adenosine uptake by erythrocytes [86, 110]. Together with adenosine degraded from ATP in this pathway, ticagrelor, by targeting erythrocytes, leads to increases in circulating adenosine levels [101]. Considering the beneficial effects of adenosine on cardiovascular function [110], ticagrelor could have pleiotropic effects beyond its platelet inhibitory effects, as treatment with ticagrelor reduced major cardiovascular adverse events (MACE) compared to clopidogrel, another P2Y12R antagonist that does not have impact on erythrocytes for purinergic activation, in patients with acute coronary syndrome [13]. Indeed, increased adenosine concentrations by ticagrelor reduced anti-inflammatory responses, improved vascular function and attenuated ischemia–reperfusion injury [13]. Moreover, ticagrelor significantly enhanced adenosine-increased coronary blood flow in human and adenosine-mediated hyperemia in dogs [101, 112]. Of note, a clinical study evaluating the effects of ticagrelor in stable multivessel ischemic heart disease is ongoing [17]. However, how much adenosine-mediated secondary effect of ticagrelor contributes to overall cardiovascular outcomes remains unclear.
In addition to ticagrelor, magnesium has been applied in patients for possible treatment of acute myocardial infarction [113]. Evidence has shown that the beneficial effect of magnesium in an animal model of myocardial infarction on the infarct size is by adenosine through enhancement of S'-nucleosidase activity [55]. It is of interest to monitor the effect of magnesium on the coronary microvascular function. Further studies are required to better elucidate the extent to which enhanced adenosine responses contribute to the clinical profile of those compounds. More studies aiming at pinpointing ARs and manipulating receptor sensitivity in coronary microvasculature are also needed to evaluate the possible therapeutic potential.

Conclusions and perspectives
Adenosine is an endogenous purine nucleoside that functions as an extracellular signaling molecule via activation of ARs. Adenosine and adenosine-mediated ARs play a significant role in the regulation of coronary microcirculation in certain conditions in physiology and pathophysiology. Adenosine mediates coronary microvascular tone and reactive hyperemia mainly through A2A R activation on both endothelial and smooth muscle cells and also via interaction with other ARs. ARs further activate the downstream effectors including H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation.

Adenosine-mediated AR activation also plays a role in several cardiovascular diseases. Downregulation of A2A R, A3 R and potential downstream potassium channels play a crucial role in coronary dysfunction in hypertension. A1 R, A2B R and A3 R are thought to be involved in the angiogenesis and microvascular growth in coronary atherosclerosis. The coronary microvascular responses to adenosine are not consistent in atherosclerosis, which may underestimate diagnosis of coronary artery disease using adenosine as a stimulator. There is a decreased A2 R sensitivity in coronary microcirculation after ischemia–reperfusion and myocardial infarction. The adenosine effect on coronary flow regulation in diabetes is not consistent and may depend on the etiology of diabetes. More studies are needed to evaluate the adenosine and AR modulation for the treatment. Indirect modulation of adenosine by a compound like ticagrelor may be of potential for the improvement of coronary microvascular function in certain cardiovascular disorders.

Collectively, there is a complexity of adenosine and AR-mediated effects in coronary microcirculation. Many aspects are still not fully understood due to a number of discrepant observations. The discrepancy arises from (1) endogenous adenosine vs. exogenous adenosine effects and adenosine concentration vs. AR sensitivity, (2) different conditions/stimuli (basal condition, ischemia, hypoxia, exercise/pacing and diseases) and (3) differences in AR expression and distribution in different microvascular segments of different species. Better understanding of these aspects will help with elucidation of the role of adenosine and AR in the regulation of coronary microcirculation and development of novel therapeutic strategies.

Acknowledgment This work was supported by the Swedish Heart and Lung Foundation (20190341 and 20200326) (to ZZ), the Karolinska Institutet Grant (2018-01837 and 2020-02285) (to ZZ), the Loo and Hans Østermans Stiftelse (2018-01213 and 2020-01209) (to ZZ), and the Lars Hiertas Minne Foundation (FO2018-0156) (to ZZ), the National Key R&D Program of China (2019YFC1709101) (to YT), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) (to YT), the National Natural Science Foundation of China (81904306) (to XC), and the Science and Technology Program of Sichuan Province, China (20GJHZ0036) (to XC). We acknowledge many of those who have made significant contributions to adenosine and coronary microcirculation field that are not included in the present study.

Funding Open access funding provided by Karolinska Institute.

Declarations

Conflict of interest None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Abebe W, Hussain T, Olanrewaju H, Mustafa SJ (1995) Role of nitric oxide in adenosine receptor-mediated relaxation of porcine coronary artery. Am J Physiol 269:H1672-1678. https://doi.org/10.1152/ajpheart.1995.269.5.H1672
2. Adair TH (2005) Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 289:R283–R296. https://doi.org/10.1152/ajpregu.00840.2004
3. Ansari HR, Teng B, Nadeem A, Roush KP, Martin KH, Schneider J, Mustafa SJ (2009) A(1) adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 297:H1032-1039. https://doi.org/10.1152/ajpheart.00374.2009
4. Ashton KJ, Nilsson U, Willems L, Holmgren K, Headrick JP (2003) Effects of aging and ischemia on adenosine receptor transcription in mouse myocardium. Biochem Biophys Res Commun 312:367–372. https://doi.org/10.1016/j.bbrc.2003.10.127
8. Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laugh-7. Belardinelli L, Shryock JC, Snowdy S, Zhang Y, Monopoli A,11. Cabell F, Weiss DS, Price JM (1994) Inhibition of adenosine-9. Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD12. Camare C, Pucelle M, Negre-Salvayre A, Salvayre R (2017)14. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine recep-15. Cobbin LB, Einstein R, Maguire MH (1974) Studies on the coro-18. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther19. Decking UK, Arens S, Schleiper G, Schulze K, Schrader J (1997)20. Deussen A (2000) Metabolic flux rates of adenosine in the heart.21. Deussen A, Lloyd HG, Schrader J (1989) Contribution of S-aden-22. Dick GM, Bratx IN, Borbouse L, Payne GA, Dincer UD, Knud-23. Dick GM, Tune JD (2010) Role of potassium channels in coro-24. Hein TW, Belardinelli L, Kuo L (1999) Adenosine A(2A) recep-25. Hein TW, Belardinelli L, Kuo L (2001) Functional and molecular26. Edlund A, Sollevi A (1995) Theophylline increases coronary27. Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L,28. Flood AJ, Willems L, Headrick JP (2002) Coronary function and29. Gustafson LA, Kroll K (1998) Downregulation of 5'-nucle-o-30. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P,31. Heusch G (2019) The coronary circulation in acute myocardial32. Hein TW, Belardinelli L, Kuo L (2013) Cardiovacular adenosine33. Hein TW, Belardinelli L, Kuo L (2001) Differential expression of34. Hein TW, Belardinelli L, Kuo L (1999) Adenosine A(2A) recep-35. Hein TW, Belardinelli L, Kuo L (2001) Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol 33:271–282. https://doi.org/10.1016/j.mcc.2000.1298.36. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myths and misconceptions in the assessment of...
coronary reserve. Basic Res Cardiol 105:1–5. https://doi.org/10.1007/s00395-009-0074-7
37. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-0203-y
38. Ho MF, Low LM, Rose’ Meyer RB (2016) Pharmacology of the Adenosine A3 Receptor in the Vascularature and Essential Hypertension. PLoS ONE 11:e0150021. https://doi.org/10.1371/journal.pone.0150021
39. Hyde RJ, Cass CE, Young JD, Baldwin SA (2001) The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membr Biol 18:53–63
40. Jenner TL., Rose’meyer RB (2006) Adenosine A(3) receptor mediated coronary vasodilation in the rat heart: changes that occur with maturation. Mech Ageing Dev 127:264–273. https://doi.org/10.1016/j.mad.2005.10.005
41. Jones CJ, Kuo L, Davis MJ, DeFil DV, Chilian WM (1995) Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation 91:1807–1813. https://doi.org/10.1161/01.cir.91.6.1807
42. Kemp BK, Cocks TM (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol 126:1796–1800. https://doi.org/10.1038/sj.bjp.0702462
43. Khannimiri S, Soltyssinska E, Jeppss TA, Bentzen BH, Chadha PS, Schmidt N, Greenwood IA, Olesen SP (2013) Contribution of Kv7 channels to basal coronary flow and active response to ischemia. Hypertension 62:1090–1097. https://doi.org/10.1161/HYPERTENSIONAHA.113.01244
44. Kuo L, Chorlanob JD (1995) Adenosine potentiates flow-induced dilation of coronary arteries by activating KATP channels in endothelium. Am J Physiol 269:H541-549. https://doi.org/10.1152/ajpheart.1995.269.H541
45. Labazi H, Teng B, Zhou Z, Mustafa SJ (2016) Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. J Mol Cell Cardiol 90:30–37. https://doi.org/10.1016/j.yjmcc.2015.11.033
46. Langfort J, Czarnowksi D, Pilis W, Wojcik B, Gorski J (1996) Effect of various types of exercise training on 5’-nucleotidase and adenosine deaminase activities in rat heart: influence of a single bout of endurance exercise. Biochem Mol Med 59:28–32. https://doi.org/10.1016/1096.0060
47. Layland J, Carrick D, Lee M, Oldroyd K, Berry C (2014) Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv 7:581–591. https://doi.org/10.1016/j.jcin.2014.02.009
48. Levelet E, Piechin SK, Liu A, Wijesurendra RS, Mahmoud M, Ariga R, Francis JM, Greiser A, Clarke K, Neubauer S, Ferreira VM, Karamitos TD (2017) Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson 19:81. https://doi.org/10.1186/s12968-017-0397-8
49. Lewis CD, Hounam SM (1997) Involvement of functional antagonism in the effects of adenosine antagonists and L-NAMe in the rat isolated heart. Gen Pharmacol 29:421–427. https://doi.org/10.1016/s0306-3623(96)00466-1
50. Li RW, Yang C, Sit AS, Lin SY, Ho EY, Leung GP (2012) Physiological and pharmacological roles of vascular nucleoside transporters. J Cardiovasc Pharmacol 59:10–15. https://doi.org/10.1097/FJC.0b013e31820be788
51. Loffler M, Morote-Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK (2007) Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 27:1004–1013. https://doi.org/10.1161/ATVBAHA.106.126714
52. Long X, Mokelke EA, Neeb ZP, Alloosh M, Edwards JM, Sturek M (2016) Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J Pharmacol Exp Ther 335:781–787. https://doi.org/10.1124/jpet.117.170803
53. Lu, Chen C, Klaassen C (2004) Tissue distribution of concentrative and equilibrative nucleoside transporters in male and female rats and mice. Drug Metab Dispos 32:1455–1461. https://doi.org/10.1124/dmd.104.001123
54. Marzilli M, Merz CN, Boden WE, Bonow RO, Capozza PG, Chilian WM, DeMaria AN, Guarini G, Huqi A, Morrone D, Patel MR, Weintraub WS (2012) Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol 60:951–956. https://doi.org/10.1016/j.jacc.2012.02.082
55. Matusasa T, Hasebe N, Jin YT, Kawabe J, Kikuchi K (2002) Magnesium reduces myocardial infarct size via enhancement of adenosine mechanism in rabbits. Cardiovasc Res 54:568–575. https://doi.org/10.1016/s0008-6363(02)00253-5
56. Merkus D, Haisuma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ (2003) Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 285:H424-433. https://doi.org/10.1152/ajpheart.00916.2002
57. Michel JB, Thuanot P, Houard X, Meilhac O, Nicolletti A (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb. 30:236–243. https://doi.org/10.1016/j.vascn.2006.09.008
58. Michel JP, Cornhill AC, Belliveau JW, Clouston D, Unger T (2012) Magnetic resonance imaging of microvascular function in peripheral vascular disease. J Magn Reson Imaging 35:787–797. https://doi.org/10.1002/jmri.23188
59. Michel JP, Cornhill AC, Belliveau JW, Clouston D, Unger T (2012) Magnetic resonance imaging of microvascular function in peripheral vascular disease. J Magn Reson Imaging 35:787–797. https://doi.org/10.1002/jmri.23188
60. Michel JP, Cornhill AC, Belliveau JW, Clouston D, Unger T (2012) Magnetic resonance imaging of microvascular function in peripheral vascular disease. J Magn Reson Imaging 35:787–797. https://doi.org/10.1002/jmri.23188
61. Navarese EP, Buffon A, Andreotti F, Gurbel PA, Kozinski M, Kubica A, Musumeci G, Cremonesi A, Tavazzi L, Kubica J, Catriola F (2012) Adenosine improves post-procedural coronary flow but not clinical outcomes in patients with acute coronary syndrome: a meta-analysis of randomized trials. Atherosclerosis 222:1–7. https://doi.org/10.1016/j.atherosclerosis.2011.11.001
62. Neglia D, Fommei E, Varela-Carver A, Mancini M, Ghione S, Lombardi M, Pisani P, Parker H, D’Amati G, Donato L, Camici PG (2011) Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens 29:364–372. https://doi.org/10.1097/01.hjh.000032840a08e
63. Nguyen DK, Montesinos MC, Williams AJ, Kelly M, Cronstein BN (2003) Th1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells. J Immunol 171:3991–3998. https://doi.org/10.4049/jimmunol.171.8.3991
64. Nishijima Y, Cao S, Chabowski DS, Korishettar A, Ge A, Zheng X, Sparapani R, Gutterman DD, Zhang DX (2017) Contribution of KV1.5 channel to hydrogen peroxide-induced human arterial dilation and its modulation by coronary artery disease. Circ Res 120:658–669. https://doi.org/10.1161/CIRCRESAHA.116.309491
65. Obata T, Sato T, Yamanaka Y, Arita M (1998) NO and cGMP facilitate adenosine production in rat hearts via activation of
70. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive adverse outcome in women evaluated for suspected ischemia. J Am Coll Cardiol 55:2825–2832. https://doi.org/10.1016/j.jacc.2010.01.054

71. Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsos SE, DeLeon J (2019) Adenosine and the cardiovascular system. Am J Cardiovasc Drugs 19:449–464. https://doi.org/10.1007/s40256-019-00345-5

72. Rodriguez-Porcel M, Zhu X, Chade A, Amores-Arriaga B, Capillic N, Ritman E, Lerman A, Lerman LJ (2006) Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. AJOPH Physiol 290:H978-984. https://doi.org/10.1152/ajophys.00538.2005

73. Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM (2007) H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292:H1404-1411. https://doi.org/10.1152/ajpheart.00696.2006

74. Rubio R, Ceballos G (2003) Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature. Am J Physiol Heart Circ Physiol 284:H204-214. https://doi.org/10.1152/ajpheart.00068.2002

75. Ryzhov S, Solenkova NV, Goldstein AE, Lamparter M, Fleenor T, Young PP, Greeshill JP, Byrne JG, Vaughan DE, Biaggioni I, Hatzopoulos AK, Feoktistov I (2008) Adenosine receptor-mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circ Res 102:356–363. https://doi.org/10.1161/CIRCRESAHA.107.158147

76. Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ (2011) Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 301:H2322-2333. https://doi.org/10.1152/ajpheart.00052.2011

77. Sato A, Terata K, Miura H, Toyama K, Loberonza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD (2005) Mechanism of vasodilation to adenosine in coronary arteries from patients with heart disease. Am J Physiol Heart Circ Physiol 288:H1633-1640. https://doi.org/10.1152/ajpheart.00575.2004

78. Schindler TH, Dilsizian V (2020) Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging 13:140–155. https://doi.org/10.1016/j.jcmg.2018.11.036

79. Schroder J, Deussen A, Smolenski RT (1990) Adenosine is a sensitive oxygen sensor in the heart. Experientia 46:1172–1175. https://doi.org/10.1007/BF01936930

80. Schroder J, Schultz W, Bardenheuer H (1981) Role of S-adenosylhomocysteine hydrolyase in adenosine metabolism in mammalian heart. Biochem J 196:65-70. https://doi.org/10.1042/bj1960065

81. Schulz R, Rose J, Post H, Heusch G (1995) Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflugers Arch 430:273–282. https://doi.org/10.1007/BF00374659

82. Sellke FW, Armstrong ML, Harrison DG (1990) Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 81:1586–1593. https://doi.org/10.1161/01.cir.81.5.1586

83. Severino P, D’Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, Netti L, Montefusco G, Chimenti C, Lalavele C, Maestrini V, Mancone M, Chilian WM, Fedele F (2020) Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms21218118

84. Sharifi-Sanjani M, Zhou X, Asano S, Tilley S, Ledent C, Teng B, Dick GM, Mustafa SJ (2013) Interactions between A(2A) adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia. Am J Physiol Heart Circ Physiol 304:H1294-1301. https://doi.org/10.1152/ajpheart.00637.2012

85. Skyschally A, Schulz R, Gres P, Konietzka I, Martin C, Haude M, Erbel R, Heusch G (2004) Coronary microembolization does not induce acute preconditioning against infarction in pigs—the role of adenosine. Cardiovasc Res 63:313–322. https://doi.org/10.1016/j.cardiores.2004.04.003

86. Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D (2017) The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 113:1035–1045. https://doi.org/10.1093/cvrr/cvx093

87. Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ (2020) Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 116:756–770. https://doi.org/10.1093/cvrr/cvaa002

88. Suarez J, Chagoya de Sanchez V (1997) Inhibition of S-adenosyl-L-homocysteine hydrolyse by adrenaline in isolated guinea-pig papillary muscles. Int J Biochem Cell Biol 29:1279–1284. https://doi.org/10.1016/s1357-2725(97)00006-9

89. Sun C, Jiao T, Merkus D, Duncker DJ, Merkus D (2017) Activation of adenosine A2A but not A2B receptors is involved in uridine adenosine tetrathosphate-induced porcine coronary smooth muscle relaxation. J Pharmaco1 Sci 141:64–69. https://doi.org/10.1016/j.jphs.2019.09.006

90. Talukder MA, Morrison RR, Jacobson MA, Jacobson KA, Ledent C, Mustafa SJ (2002) Targeted deletion of adenosine A(3) receptors augments adenosine-induced coronary flow in isolated mouse heart. Am J Physiol Heart Circ Physiol 282:H2183-2189. https://doi.org/10.1152/ajpheart.00964.2001

91. Talukder MA, Morrison RR, Ledent C, Mustafa SJ (2003) Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc...
Pharmacol 41:562–570. https://doi.org/10.1097/00005344-20030400-00008
94. Taqueti VR, Di Carli MF (2018) Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol 72:2625–2641. https://doi.org/10.1016/j.jacc.2018.09.042
95. Tawfik HE, Teng B, Morrison RR, Schnermann J, Mustafa SJ (2006) Role of A1 adenosine receptor in the regulation of coronary flow. Am J Physiol Heart Circ Physiol 291:H467-472. https://doi.org/10.1152/ajpheart.01319.2005
96. Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A2B adenosine receptor in A2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914. https://doi.org/10.1016/j.yjmcc.2008.03.003
97. Teng B, Mustafa SJ (2011) A(2A) adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE-knockout mice. J Exp Pharmacol 21:59–68. https://doi.org/10.2147/JEP.S18945
98. Teng B, Qin W, Ansari HR, Mustafa SJ (2005) Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated relaxation of coronary artery. Am J Physiol Heart Circ Physiol 288:H2574-2580. https://doi.org/10.1152/ajpheart.00912.2004
99. Teng B, Tilley SL, Ledent C, Mustafa SJ (2016) In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice. Physiol Rep. https://doi.org/10.14814/phy2.12818
100. Tune JD, Richmond KN, Gorman MW, Olsson RA, Feigl EO (2000) Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. Am J Physiol Heart Circ Physiol 278:H74-84. https://doi.org/10.1152/ajpheart.2000.278.1.H74
101. van Giezen JJ, Sidaway J, Glaves P, Kirk I, Bjorkman JA (2012) Early impairment of coronary microvascular perfusion: the second leicester intravenous magnesium intervention trial (LIMIT-2). Lancet 373:816–819. https://doi.org/10.1016/S0140-6736(12)61204-9
102. Xu J, Nagata K, Obata K, Ichihara S, Izawa H, Noda A, Nagasaki T, Iwase M, Naoe T, Murahara T, Yokota MJH (2005) Nicorandil promotes myocardial capillary and arteriolar growth in the failing heart of Dahl salt-sensitive hypertensive rats. Hypertension 46:719–724. https://doi.org/10.1161/HYP.0115HYP00815819.46698.15
103. Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO (1999) Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 276:H1425-1433. https://doi.org/10.1152/ajpheart.1999.350.1.H1425
104. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045. https://doi.org/10.1161/01.cir.0000050145.25589.65
105. Zatta AJ, Headrick JP (2005) Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144:576–587. https://doi.org/10.1038/sj.bjp.0706099
106. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkel NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arteries: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110:471–480. https://doi.org/10.1161/CIRCRESAHA.111.258871
107. Zhou R, Dang X, Sprague RS, Mustafa SJ, Zhou Z (2020) Alteration of purinergic signaling in diabetes: focus on vascular function. J Mol Cell Cardiol 140:1–9. https://doi.org/10.1016/j.yjmcc.2020.02.004
108. Zhou X, Teng B, Mustafa SJ (2015) Sex difference in coronary endothelial dysfunction in apolipoprotein E knockout mouse: role of NO and A2A adenosine receptor. Microcirculation 22:518–527. https://doi.org/10.1111/micc.12222
109. Zhou X, Teng B, Tilley S, Ledent C, Mustafa SJ (2014) Metabolic hyperemia requires ATP-sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Am J Physiol Heart Circ Physiol 307:H1046-1055. https://doi.org/10.1152/ajpheart.00421.2014
110. Zhou X, Teng B, Tilley S, Mustafa SJ (2013) A1 adenosine receptor negatively modulates coronary reactive hyperemia via...
counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts. Am J Physiol Heart Circ Physiol 305:H1668-1679. https://doi.org/10.1152/ajpheart.00495.2013

123. Zhou Z, de Wijs-Meijler D, Lankhuizen I, Jankowski J, Jankowski V, Jan Danser AH, Duncker DJ, Merkus D (2013) Blunted coronary vasodilator response to uridine adenosine tetraphosphate in post-infarct remodeled myocardium is due to reduced P1 receptor activation. Pharmacol Res 77:22–29. https://doi.org/10.1016/j.phrs.2013.08.007

124. Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D (2019) Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: an update. Pharmacol Res 141:32–45. https://doi.org/10.1016/j.phrs.2018.12.009

125. Zhou Z, Merkus D, Cheng C, Duckers HJ, Jan Danser AH, Duncker DJ (2013) Uridine adenosine tetraphosphate is a novel vasodilator in the coronary microcirculation which acts through purinergic P1 but not P2 receptors. Pharmacol Res 67:10–17. https://doi.org/10.1016/j.phrs.2012.09.011

126. Zhou Z, Rajamani U, Labazi H, Tilley SL, Ledent C, Teng B, Mustafa SJ (2015) Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal 11:263–273. https://doi.org/10.1007/s11302-015-9451-x

127. Ziegler T, Abdel Rahman F, Jurisch V, Kupatt C (2019) Atherosclerosis and the capillary network; pathophysiology and potential therapeutic strategies. Cells. https://doi.org/10.3390/cells9010050

128. Zucchi R, Limbruno U, Poddighe R, Mariani M, Ronca G (1989) The adenosine hypothesis revisited: relationship between purine release and coronary flow in isolated rat heart. Cardiovasc Res 23:125–131. https://doi.org/10.1093/cvr/23.2.125