Causal screening for dynamical systems

Søren Wengel Mogensen
Department of Mathematical Sciences
University of Copenhagen
Copenhagen, Denmark
swengel@math.ku.dk

Abstract
Many classical algorithms output graphical representations of causal structures by testing conditional independence among a set of random variables. In dynamical systems, local independence can be used analogously as a testable implication of the underlying data-generating process. We suggest some inexpensive methods for causal screening which provide output with a sound causal interpretation under the assumption of ancestral faithfulness. The popular model class of linear Hawkes processes is used to provide an example of a dynamical causal model. We argue that for sparse causal graphs the output will often be close to complete. We give examples of this framework and apply it to a challenging biological system.

1 Introduction
Constraint-based causal learning is computationally and statistically challenging. There is a large literature on learning structures that are represented by directed acyclic graphs (DAGs) or marginalizations thereof (see e.g. [10] for references). The fast causal inference algorithm, FCI, [19] provides in a certain sense maximally informative output [24], but at the cost of using a large number of conditional independence tests [2]. To reduce the computational cost, other methods provide output which has a sound causal interpretation, but may be less informative. Among these are the anytime FCI [18] and RFCI [2]. A recent algorithm, ancestral causal inference (ACI) [11], aims at learning only the directed part of the underlying graphical structure which allows for a sound causal interpretation even though some information is lost.

In this paper, we describe some simple methods for learning causal structure in dynamical systems represented by stochastic processes. Many authors have described frameworks and algorithms for learning structure in systems of time series, ordinary differential equations, stochastic differential equations, and point processes. However, most of these methods do not have a clear causal interpretation when the observed processes are part of a larger system and most
of the current literature is either non-causal in nature, or requires that there are no unobserved processes.

Analogously to testing conditional independence when learning DAGs, one can use tests of local independence in the case of dynamical systems [5, 12, 14]. In [12, 14] the authors propose algorithms for learning local independence structures. We show empirically that we can recover features of the causal structure using considerably fewer tests of local independence. This is done by first suggesting a learning target which is easier to learn, though still conveys useful causal information, analogously to ACI [11]. Second, the proposed algorithm is only guaranteed to provide a supergraph of the learning target and this also reduces the number of local independence tests drastically. A central point is that our proposed methods retain a sound causal interpretation under a faithfulness-type assumption.

In [12], the author suggests learning a directed graph to represent a causal dynamical system and gives a learning algorithm which we will describe as a simple screening algorithm. We show that this algorithm can be given a sound interpretation under a weaker faithfulness assumption than that of [12]. We also provide a simple interpretation of the output of this algorithm and we show that similar screening algorithms can give comparable results using considerably fewer tests of local independence.

For illustration of the proposed algorithms, we will use linear Hawkes processes in this paper. This model class is used in a wide range of application and is also a topic of methodological research (see e.g. [9] and references therein). All proofs are provided in the supplementary material.

2 Hawkes processes

The algorithmic results we present apply in general to local independence models. To provide a concrete causal model, we will consider the linear Hawkes processes. [9] gives an accessible introduction to this model class. On a filtered probability space, \((\Omega, \mathcal{F}, (\mathcal{F}_t), P)\), we consider an \(n\)-dimensional multivariate point process, \(X = (X^1, \ldots, X^n)\). Each coordinate process \(X^\alpha\) is described by a sequence of positive, stochastic event times \(T^\alpha_1, T^\alpha_2, \ldots\) such that \(T^\alpha_j > T^\alpha_i\) almost surely for \(j > i\). We let \(V = \{1, \ldots, n\}\). This can also be formulated in terms of a counting process, \(N\), such that \(N^\alpha_t = \sum_i \mathbf{1}(T^\alpha_i \leq t)\), \(\alpha \in V\). There exists so-called intensity processes, \(\lambda = (\lambda^1, \ldots, \lambda^n)\) such that

\[
\lambda^\alpha_t = \lim_{h \to 0} \frac{1}{h} \mathbb{P}(N^\alpha_{t+h} - N^\alpha_t = 1 \mid \mathcal{F}_t)
\]

and the intensity at time \(t\) can therefore be thought of as describing the probability of a jump in the immediate future after time \(t\) conditionally on the history until time \(t\) as captured by the \(\mathcal{F}_t\)-filtration. In a linear Hawkes model, the intensity of the \(\alpha\)-process, \(\alpha \in V\), is of the simple parametric form
\[\lambda_t^\alpha = \mu_\alpha + \sum_{\gamma \in V} \int_0^t g^{\alpha \gamma}(t - s) \, dN_s^\gamma \]

where \(\mu_\alpha \geq 0 \) and the functions \(g^{\alpha \gamma} : \mathbb{R}_+ \to \mathbb{R} \), \(\alpha, \gamma \in V \), are nonnegative. From the above formula, we see that if \(g^{\beta \alpha} = 0 \), then the \(\alpha \)-process does not enter directly into the intensity of the \(\beta \)-process, \(\alpha, \beta \in V \) and we will formalize this observation in subsequent sections.

2.1 A dynamical causal model

We will in this section define what is meant by a causal model and also define a graph \((V, E)\) which represents the causal structure of the model. The node set \(V \) is the index set of the coordinate processes of the multivariate Hawkes process, thus identifying each node with a coordinate process. If we first consider the case where \(X = (X_1, \ldots, X_n) \) is a multivariate random variable, it is common to define a causal model in terms of a DAG, \(D \), and a structural causal model [15, 16] by assuming that there exists functions \(f_i \) and error terms \(\epsilon_i \) such that

\[X_i = f_i(X_{\text{pa}_D(X_i)}, \epsilon_i) \]

for \(i = 1, \ldots, n \). The causal assumption amounts to assuming that the functional relations are stable under interventions. This idea can be transferred to dynamical systems (see also [17, 14]). If we consider the model described above, we can consider intervening on the \(\alpha \)-process and e.g. enforce events in the \(\alpha \)-process at the deterministic times \(t_1, \ldots, t_k \), and these times only. In this case, the causal assumption amounts to assuming that the distribution of the intervened system is governed by the intensities

\[\lambda_t^\beta = \mu_\beta + \int_0^t g^{\beta \alpha}(t - s) \, d\bar{N}_s^\alpha + \sum_{\gamma \in V \setminus \{\alpha\}} \int_0^t g^{\beta \gamma}(t - s) \, dN_s^\gamma \]

for all \(\beta \in V \setminus \{\alpha\} \) and where \(\bar{N}_t^\alpha = \sum_{i=1}^k I_{(t \leq t_i)} \). We will not go into a discussion of the existence of these intervened stochastic processes. The above is a hard intervention in the sense that the \(\alpha \)-process is fixed to be a deterministic function of time. Note that one could easily imagine other types of interventions such as soft interventions where the intervened process is not deterministic. It holds that \(N_{t \pm h}^\alpha - N_t^\alpha \sim \text{Pois}(\lambda_t^\alpha \cdot h) \) in the limit \(h \to 0 \), and we can think of this as a simulation scheme in which we generate the points in one small interval in accordance with some distribution depending on the history of the process. As such the intensity describes a structural causal model at infinitesimal time steps.

We use the set of functions \(\{g^{\beta \alpha}\}_{\alpha, \beta \in V} \) to define the causal graph of the Hawkes process. A graph is a pair \((V, E)\) where \(V \) is a set of nodes and \(E \) is a set of edges between these nodes. We assume that we observe the Hawkes process in the time interval \(J = [0, T] \), \(T \in \mathbb{R} \). The causal graph has node set \(V \) (the index set of the coordinate processes) and the edge \(\alpha \to \beta \) is in the causal
2.2 Parent graphs

In principle, we would like to recover the causal graph, \mathcal{D}, using local independence tests. Often, we will only have partial observation of the dynamical system in the sense that we only observe the processes in $O \subseteq V$. We will then aim to learn the parent graph of \mathcal{D}.

Definition 1 (Parent graph). Let $\mathcal{D} = (V,E)$ be a causal graph and let $O \subseteq V$. The parent graph of \mathcal{D} on nodes O is the graph (O,F) such that for $\alpha, \beta \in O$, the edge $\alpha \rightarrow \beta$ is in F if and only if the edge $\alpha \rightarrow \beta$ is in the causal graph or there is a path $\alpha \rightarrow \delta_1 \rightarrow \ldots \rightarrow \delta_k \rightarrow \beta$ in the causal graph such that $\delta_1, \ldots, \delta_k \notin O$, for some $k > 0$.

The parent graph thus encodes whether or not an observed process is a 'causal ancestor' of another. We denote the parent graph of the causal graph by $P_O(\mathcal{G})$, or just $P(\mathcal{G})$ if the set O used is clear from the context. In applications, a parent graph may provide answers to important questions as it tells us the causal relationships between the observed nodes. A similar idea was applied in [11]. In large systems, it can easily be infeasible to learn the complete independence structure of the observed system, and we propose instead to estimate the parent graph which can be done efficiently. In the supplementary material, we give another characterization of a parent graph. Figure 1 contains an example of a causal graph and a corresponding parent graph.

2.3 Local independence

Local independence has been studied by several authors and in different classes of continuous-time models as well as in time series [1, 3, 4, 6]. We give an abstract definition of local independence, following the exposition in [13].
Definition 2 (Local independence). Let X be a multivariate stochastic process and let V be an index set of its coordinate processes. Let \mathcal{F}_t^D denote the complete and right-continuous version of the σ-algebra $\sigma(\{X_{s}^{\alpha} : s \leq t, \alpha \in D\})$. Let λ be a multivariate stochastic process (assumed to be integrable and càdlàg) such that its coordinate processes are indexed by V. For $A, B, C \subseteq V$, we say that X^B is λ-locally independent of X^A given X^C (or simply B is λ-locally independent of A given C) if the process

$$t \mapsto E(\lambda_{t}^{\beta} | \mathcal{F}_{t}^{C \cup A})$$

has an \mathcal{F}_t^C-adapted version for all $\beta \in B$. We write this as $A \not\rightarrow \lambda B \mid C$, or simply $A \not\rightarrow B \mid C$.

In the case of Hawkes processes, the intensities will be used as the λ-processes in the above definition. See [13, 14] for technical details on the definition of local independence.

2.3.1 Local independence and the causal graph

To make progress on the learning task, we will in this subsection describe the link between the local independence model and the causal graph.

Definition 3 (Pairwise Markov property). We say that a local independence model satisfies the pairwise Markov property with respect to a DG, $G = (V, E)$, if the absence of the edge $\alpha \rightarrow \beta$ in G implies $\alpha \not\rightarrow \lambda \beta \mid V \setminus \alpha$ for all $\alpha, \beta \in V$.

We will make the following technical assumption throughout the paper. In applications, the functions $g_{\beta \alpha}$ are often assumed to be of the below type (see e.g. [9] for common choices of $g_{\beta \alpha}$-functions).

Assumption 4. Assume that N is a multivariate Hawkes process and that we observed N over the interval $J = [0, T]$ where $T > 0$. For all $\alpha, \beta \in V$, the function $g_{\beta \alpha} : \mathbb{R}^+ \rightarrow \mathbb{R}$ is continuous on J.

A version of the following result is also stated in [7] but no proof is given. If $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ are graphs, we say that G_1 is a proper subgraph of G_2 if $E_1 \subseteq E_2$.

Proposition 5. The local independence model of a linear Hawkes process satisfies the pairwise Markov property with respect to the causal graph of the process and no proper subgraph of the causal graph has the property.

3 Graph theory and independence models

In order to give full proofs of the statements of the paper, we need a number of graph-theoretical concepts that are otherwise not central to our presentation. We have included these in the supplementary material and in this section we only introduce the most central concepts.
A graph is a pair (V, E) where V is a finite set of nodes and E a finite set of edges. An edge can be of different types, and we will use \sim to denote a generic edge of any type. Each edge is between a pair of nodes (not necessarily distinct), and for $\alpha, \beta \in V$, $e \in E$, we will write $\alpha \sim e \beta$ to denote that the edge e is between α and β. We will in particular consider the class of directed graphs (DGs) where between each pair of nodes $\alpha, \beta \in V$ one has a subset of the edges $\{\alpha \rightarrow \beta, \alpha \leftarrow \beta\}$, and we say that these edges are directed.

Let $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ be graphs. We say that G_2 is a supergraph of G_1, and write $G_1 \subseteq G_2$, if $E_1 \subseteq E_2$. For a graph $G = (V, E)$ such that $\alpha, \beta \in V$, we write $\alpha \rightarrow_G \beta$ to indicate that the directed edge from α to β is contained in the edge set E. In this case we say that α is a parent of β. We let $\text{pa}_G(\beta)$ denote the set of nodes in V that are parents of β. We write $\alpha \not\rightarrow_G \beta$ to indicate that the edge is not in E. For simplicity, we will throughout the paper assume that all loops, i.e. self-edges $\alpha \rightarrow \alpha$, are present in the graphs we consider. This graphical assumption corresponds to implicitly assuming that every process of the dynamical system depends on its own past in a direct fashion.

A walk is a finite sequence of nodes, $\alpha_i \in V$, and edges, $e_i \in E$, $(\alpha_1, e_1, \alpha_2, \ldots, \alpha_n, e_n, \alpha_{n+1})$ such that e_i is between α_i and α_{i+1} for all $i = 1, \ldots, n$ and such that an orientation of each edge is known. We say that a walk is nontrivial if it contains at least one edge. A path is a walk such that no node is repeated. A directed path from α to β is a path such that all edges are directed and point in the direction of β.

Definition 6 (Trek, directed trek). A trek between α and β is a (nontrivial) path $(\alpha, e_1, \ldots, e_n, \beta)$ with no colliders \[8\]. We say that a trek between α and β is directed from α to β if e_n has a head at β. We use $\text{dt}(\beta)$ to denote the set of nodes γ such that there exists a directed trek from γ to β.

As an example, we note that a directed path from α to β is a trek and it is also a directed trek from α to β. However, it is not a directed trek from β to α.

We will formulate the following properties using a general independence model, \mathcal{I}, on V. Let $\mathbb{P}(\cdot)$ denote the power set of some set. An independence model on V is simply a subset of $\mathbb{P}(V) \times \mathbb{P}(V) \times \mathbb{P}(V)$ and can be thought of as a collection of independence statements that hold among the processes/variables indexed by V. In subsequent sections, the independence models will be defined using the notion of local independence. In this case, for $A, B, C \subseteq V$, $A \sim \lambda B | C$ is equivalent with writing $(A, B \mid C) \in \mathcal{I}$ in the abstract notation, and we use the two interchangeably. In the following, we also use μ-separation which is a ternary relation and a dynamical model (and asymmetric) analogue to d-separation or m-separation. A definition and references are given in the supplementary material. For $G = (V, E)$ and $A, B, C \subseteq V$ we write $A \perp_{\mu} B \mid C \{G\}$ to denote that B is μ-separated from A given C in the graph G.

Definition 7 (Global Markov property). We say that an independence model \mathcal{I} satisfies the global Markov property with respect to a DG, $G = (V, E)$, if $A \perp_{\mu} B \mid C \{G\}$ implies $(A, B \mid C) \in \mathcal{I}$ for all $A, B, C \subseteq V$.

From Proposition \[5\] we know that the local independence model of a linear Hawkes process satisfies the pairwise Markov property with respect to the causal
graph of the process, and using the results in [14] it also satisfies the global
Markov property with respect to this graph.

Definition 8 (Faithfulness). We say that \(\mathcal{I} \) is *faithful* with respect to a DG, \(\mathcal{G} = (V, E) \), if \(\langle A, B \mid C \rangle \in \mathcal{I} \) implies \(A \perp_{\mu} B \mid C \mathcal{G} \) for all \(A, B, C \subseteq V \).

4 Learning algorithms

In this section, we will define a faithfulness-type assumption that will be used to ensure the soundness of the learning algorithms. We then state a very general class of algorithms which is easily seen to provide sound causal learning and we describe some specific algorithms.

We throughout assume that there is some underlying DG, \(\mathcal{D}_0 = (V, E) \), describing the causal model and we wish to output \(\mathcal{P}_O(\mathcal{D}_0) \). However, this graph is not in general identifiable from the local independence model. In the supplementary material, we argue that for an equivalence class of parent graphs, there exists a unique member of the class which is a supergraph of all other members. Denote this unique graph by \(\mathcal{D} \). Our algorithms will output supergraphs of \(\mathcal{D} \), and the output will therefore also be supergraphs of the true parent graph.

We assume we are in the 'oracle case', i.e. have access to a local independence oracle that provides the correct answers. We will say that an algorithm is *sound* if it in the oracle case outputs a supergraph of \(\mathcal{D} \) and that it is *complete* if it outputs \(\mathcal{D} \). We let \(\mathcal{I}^O \) denote the local independence model restricted to subsets of \(O \), i.e. this is observed part of the local independence model.

4.1 Ancestral faithfulness

Under the faithfulness assumption, every local independence implies \(\mu \)-separation in the graph. We assume a weaker, but similar, property to argue that the our algorithms are sound. For learning marginalized DAGs, weaker types of faithfulness have also been explored, see e.g. [25, 22, 23].

Definition 9 (Ancestral faithfulness). Let \(\mathcal{I} \) be an independence model and let \(\mathcal{D} \) be a DG. We say that \(\mathcal{I} \) satisfies *ancestral faithfulness* with respect to \(\mathcal{D} \) if for every \(\alpha, \beta \in V \) and \(C \subseteq V \setminus \{\alpha\} \), \(\langle \alpha, \beta \mid C \rangle \in \mathcal{I} \) implies that there is no \(\mu \)-connecting directed path from \(\alpha \) to \(\beta \) given \(C \) in \(\mathcal{D} \).

It follows from the definition that faithfulness implies ancestral faithfulness and for general independence models ancestral faithfulness is a strictly weaker property than faithfulness. We conjecture that local independence models of linear Hawkes processes satisfy ancestral faithfulness with respect to their causal graphs. Heuristically, if there is a directed path from \(\alpha \) to \(\beta \) which is not blocked by any node in \(C \), then information should flow from \(\alpha \) to \(\beta \), and this cannot be 'cancelled out' by other paths in the graph as the linear Hawkes processes are self-excitatory, i.e. no process has a dampening effect on any process.
4.2 Simple screening algorithms

As a first step in describing a causal screening algorithm, we will define a very general class of learning algorithms that simply test local independences and sequentially remove edges. It is easily seen that under the assumption of ancestral faithfulness every algorithm in this class gives sound learning in the oracle case. The complete DG on nodes V is the DG with edge set $\{\alpha \rightarrow \beta \mid \alpha, \beta \in V\}$.

Definition 10 (Simple screening algorithm). We say that a learning algorithm is a simple screening algorithm if it starts from a complete DG on nodes O and removes an edge $\alpha \rightarrow \beta$ only if a conditioning set $C \subseteq O \setminus \{\alpha\}$ has been found such that $\langle \alpha, \beta \mid C \rangle \in I^0$.

The following results give a clear and causally sound interpretation of the output of a simple screening algorithm.

Proposition 11. Assume that I satisfies ancestral faithfulness with respect to $D_0 = (V, E)$. The output of any simple screening algorithm is sound in the oracle case.

Corollary 12. Assume ancestral faithfulness of I with respect to D_0 and let $A, B, C \subseteq O$. If every directed path from A to B goes through C in the output graph of a simple screening algorithm, then every directed path from A to B goes through C in D_0.

Corollary 13. If there is no directed path from A to B in the output graph, then there is no directed path from A to B in D_0.

4.3 Parent learning

In the previous section, it was shown that if edges are only removed when a separating set is found the output is sound under the assumption of ancestral faithfulness. In this section we give a specific algorithm. The key observation is that we can easily retrieve structural information from a rather small subset of local independence tests.

Let D^t denote the output from Subalgorithm 1 (see below). The following result shows that under the assumption of faithfulness, $\alpha \rightarrow_{D^t} \beta$ if and only if there is a directed trek from α to β in D_0.

Proposition 14. There is no directed trek from α to β in D_0 if and only if $\alpha \perp_{\mu} \beta \mid \beta [D_0]$.

We will refer to running first Subalgorithm 1 and then Subalgorithm 2 (using the the output DG from the first as input to the second) as the causal screening (CS) algorithm. The following proposition follows directly from the definitions of the subalgorithms.

Proposition 15. The CS algorithm is a simple screening algorithm.
It is of course of interest to understand under what conditions the edge $\alpha \to \beta$ is guaranteed to be removed by the CS algorithm when it is not in the underlying target graph. In the supplementary material we state and prove a result describing one such a condition.

Subalgorithm 1: Trek step

Subalgorithm 2: Parent step

4.4 Ancestry propagation

In this section, we describe an additional step which propagates ancestry by reusing the output of Subalgorithm 1 to remove further edges. This comes at a price as one needs to assume faithfulness in order to guarantee that the result will be sound. The idea is similar to ACI [11] that also uses that ancestry is transitive.

Subalgorithm 3: Ancestry propagation

In ancestry propagation, we exploit the fact that any trek between α and β composed with the edge $\beta \to \gamma$ gives a directed trek from α to β. We only use the trek between α and β 'in one direction' and this is because we should be slightly careful if γ is actually on the trek between α and β. In Subalgorithm 4 in the supplementary material, we exploit a trek between α and β twice, but at the cost of an additional local independence test.
We can construct an algorithm by first running Subalgorithm 1, then Subalgorithm 3, and finally Subalgorithm 2 (using the output of one subalgorithm as input to the next). We will call this the CSAPC algorithm. If we use Subalgorithm 4 instead of Subalgorithm 3 we will call this the CSAP.

Proposition 16. If I is faithful with respect to D_0, then the CSAP and CSAPC algorithms both provide sound learning.

5 Application and simulations

When evaluating the performance of a sound screening algorithm, the output graph is guaranteed to be a supergraph of the true parent graph, and we will say that edges that are in the output but not in the true graph are excess edges. For a node in a directed graph, the indegree is the number of directed edges adjacent with and pointed into the node, and the outdegree is the number of directed edges adjacent with and pointed away from the node.

5.1 C. elegans neuronal network

Caenorhabditis elegans is a roundworm in which the network between neurons has been mapped completely [20]. We apply our methods to this network as an application to a highly complex network. It consists of 279 neurons which are connected by both non-directional gap junctions and directional chemical synapses. We will represent the former as an unobserved process and the latter as a direct influence. From this network, we sampled subnetworks of 75 neurons each (details in the supplementary material) and computed the output of the CS algorithm. These subsampled networks had on average 1109 edges (including bidirected edges representing unobserved processes, see the supplementary material) and on average 424 directed edges. The output graphs had on average 438 excess edges which is explained by the fact that there are many unobserved nodes in the graphs. To compare the output to the true parent graph, we computed the rank correlation between the indegrees of the nodes in the output graph and the indegrees of the nodes in the true parent graph, and similarly for the outdegree (indegree correlation: 0.94, outdegree correlation: 0.52). Finally, we investigated the method’s ability to identify the observed nodes of highest directed connectivity (i.e. highest in- and outdegrees). The neuronal network of c. elegans is inhomogeneous in the sense that some neurons are extremely highly connected while others are only very sparsely connected. Identifying such highly connected neurons is of interest, and we considered the 15 nodes of highest indegree/outdegree (out of the 75 observed nodes). On average, the CS algorithm placed 13.4 (in) and 9.2 (out) of these 15 among the 15 most connected nodes in the output graph.

From the output of the CS algorithm, we can easily find areas of the neuronal network which mediates the information from one area to another, e.g. using Corollary 12.
5.2 Comparison of algorithms

In this section we compare the proposed causal screening algorithms with previously published algorithms that solve similar problems. In [14], the authors propose two algorithms, one of which is sure to output the correct graph. The authors note that this complete algorithm is computationally very expensive and adds little extra information, and therefore we will only consider their other algorithm for comparison. We will call this algorithm dynamical FCI (dFCI) as it resembles the FCI algorithm as noted by the authors of [14]. The algorithm actually solves a harder learning problem and provides more information (see details in the supplementary material), however it is computationally infeasible for many problems.

The Causal Analysis (CA) algorithm of [12] is a simple screening algorithm and we have in this paper argued that it is sound for learning the parent graph of the underlying graph under the weaker assumption of ancestral faithfulness. Note that even though this algorithm uses a large number of tests, it is not guaranteed to provide complete learning as there may be inseparable nodes that are not adjacent [13, 14].

For the comparison of these algorithms, two aspects are important. As they are all sound, one aspect is the number of excess edges. The other aspect is of course the number of tests needed to provide their output. The CS and CSAPC algorithms use at most $2n(n-1)$ tests and empirically the CSAP uses roughly the same number as the two former. This makes them feasible in even large graphs. The quality of their output is dependent on the sparsity of the graph, though the CSAP and CSAPC algorithms can deal considerably better with less sparse graphs (Subfigure 2b).

Figure 2: Comparison of performance.
6 Discussion

We suggested inexpensive constraint-based methods for learning causal structure based on testing local independence. An important observation is that local independence is asymmetric while conditional independence is symmetric. In a certain sense, this may help when constructing learning algorithms as there is no need of something like an ‘orientation phase’ as in the FCI. This facilitates using very simple methods to give sound causal learning as we do not need the independence structure in full to give interesting output.

The level of information in the output graph of the causal screening algorithms is dependent on the sparsity of the graph. However, even in examples with very little sparsity, as in the c.elegans neuronal network, interesting structural information can be learned using these simple methods.

By outputting only the directed part of the underlying causal structure, we may be able to answer structural questions, but not other questions e.g., relating to causal effect estimation. However, by restricting the scope we can provide a sound algorithm which can reveal interesting information about the causal structure.

We showed that the proposed algorithms have a large computational advantage over previously published algorithms within this framework. This makes it feasible to consider causal learning even in large networks with unobserved processes and the CS algorithms thus provide methods for sound screening in causal dynamical models.

7 Acknowledgments

This work was supported by research grant 13358 from VILLUM FONDEN. The author thanks Niels Richard Hansen for his helpful suggestions and comments.
Supplementary material

This supplementary material contains additional graph theory, results, and definitions, as well as the proofs of the main paper.

A Graph theory

The additional graph theory is useful in the proofs, and we can also give an alternative definition of the parent graph using a graphical marginalization operation that we will describe.

In the main paper, we introduce the class of DGs to represent causal structures. One can represent marginalized DGs using the larger class of DMGs. A directed mixed graph (DMG) is a graph such that any pair of nodes $\alpha, \beta \in V$ is joined by a subset of the edges $\{\alpha \to \beta, \alpha \leftarrow \beta, \alpha \leftrightarrow \beta\}$.

We say that edges of the types $\alpha \to \beta$ and $\alpha \leftarrow \beta$ are directed, and that $\alpha \leftrightarrow \beta$ is bidirected.

We also introduced a walk $\langle \alpha_1, e_1, \alpha_2, \ldots, e_n, \alpha_{n+1} \rangle$. We say that α_1 and α_{n+1} are endpoint nodes. A nonendpoint node α_i on a walk is a collider if e_{i-1} and e_i both have heads at α_i, and otherwise it is a noncollider. A cycle is a path $\langle \alpha, e_1, \ldots, \beta \rangle$ composed with an edge between α and β. We say that α is an ancestor of β if there exists a directed path from α to β. We let $\text{an}(\beta)$ denote the sets of nodes that are ancestors of β.

For DAGs d-separation is often used for encoding independences. We use the analogous notion of μ-separation which is a generalization of δ-separation [3, 4, 12, 13].

Definition 17 (μ-separation). Let $G = (V, E)$ be a DMG, and let $\alpha, \beta \in V$ and $C \subseteq V$. We say that a (nontrivial) walk from α to β, $\langle \alpha, e_1, \ldots, e_n, \beta \rangle$, is μ-connecting given C if $\alpha \notin C$, the edge e_n has a head at β, every collider on the walk is in $\text{an}(C)$ and no noncollider is in C. Let $A, B, C \subseteq V$. We say that B is μ-separated from A given C if there is no μ-connecting walk from any $\alpha \in A$ to any $\beta \in B$ given C. In this case, we write $A \perp \mu B \mid C [G]$ if we wish to emphasize the graph to which the statement relates.

We use the class of DGs use to represent the underlying, data-generating structure. When only parts of the causal system is observed, the class of DMGs can be used for representing marginalized DGs [13]. This can be done using latent projection [21] which is a map that for a DG (or more generally, for a DMG), $D = (V, E)$, and a subset of observed nodes/processes, $O \subseteq V$, provides a DMG, $m(D, O)$, such that for all $A, B, C \subseteq O$,

$$A \perp \mu B \mid C [D] \Leftrightarrow A \perp \mu B \mid C [m(D, O)].$$

See [13] for details on this graphical marginalization. We say that two DMGs, $G_1 = (V, E_1), G_2 = (V, E_2)$, are Markov equivalent if

13
A ⊥ µ B | C [G_1] ⇔ A ⊥ µ B | C [G_2],

for all \(A, B, C \subseteq V\), and we let \([G_1]\) denote the Markov equivalence class of \(G_1\). Every Markov equivalence class of DMGs has a unique maximal element \([13]\), i.e. there exists \(G \in [G_1]\) such that \(G\) is a supergraph of all other graphs in \([G_1]\).

For a DMG, \(G\), we will let \(D(G)\) denote the directed part of \(G\), i.e. the DG obtained by deleting all bidirected edges from \(G\).

Proposition 18. Let \(D = (V, E)\) be a DG, and let \(O \subseteq V\). Consider \(G = m(D, O)\). For \(\alpha, \beta \in O\) it holds that \(\alpha \in \text{an}_D(\beta)\) if and only if \(\alpha \in \text{an}_{D(G)}(\beta)\). Furthermore, the directed part of \(G\) equals the parent graph of \(D\) on nodes \(O\), i.e. \(D(G) = \mathcal{P}_O(D)\).

Proof. Note first that \(\alpha \in \text{an}_D(\beta)\) if and only if \(\alpha \in \text{an}_{D(G)}(\beta)\) \([13]\). Ancestry is only defined by the directed edges, and it follows that \(\alpha \in \text{an}_G(\beta)\) if and only if \(\alpha \in \text{an}_{D(G)}(\beta)\). For the second statement, the definition of the latent projection gives that there is a directed edge from \(\alpha\) to \(\beta\) in \(G\) if and only if there is a directed path from \(\alpha\) to \(\beta\) in \(D\) such that no nonendpoint node is in \(O\). By definition, this is the parent graph, \(\mathcal{P}_O(D)\).

In words, the above proposition says that if \(G\) is a marginalization (done by latent projection) of \(D\), then the ancestor relations of \(D\) and \(D(G)\) are the same among the observed nodes. It also says that our learning target, the parent graph, is actually the directed part of the latent projection on the observed nodes. In the next subsection, we use this to describe what is actually identifiable from the induced independence model of a graph.

A.1 Maximal graphs and parent graphs

Under faithfulness of the local independence model and the causal graph, we know that the maximal DMG is a correct representation of the local independence structure in the sense that it encodes exactly the local independences that hold in the local independence model. From the maximal DMG, one can use results on equivalence classes of DMGs to obtain every other DMG which encodes the observed local independences \([13]\) and from this graph one can find the parent graph as simply the directed part. However, it may require an infeasible number of tests to output such a maximal DMG. This is not surprising, seeing that the learning target encodes this complete information on local independences.

Assume that \(D_0 = (V, E)\) is the underlying causal graph and that \(G_0 = (O, F), O \subseteq V\) is the marginalized graph over the observed variables, i.e. the latent projection of \(D_0\). In principle, we would like to output \(\mathcal{P}(D_0) = D(G_0)\), the directed part of \(G_0\). However, no algorithm can in general output this graph by testing only local independences as Markov equivalent DMGs may not have the same parent graph. Within each Markov equivalence class of DMGs, there is a unique maximal graph. Let \(\tilde{G}\) denote the maximal graph which is Markov equivalent of \(G_0\). The DG \(D(\tilde{G})\) is a supergraph of \(D(G_0)\) and we will say that a
learning algorithm is complete if it is guaranteed to output $D(\tilde{G})$ as no algorithm testing local independence only can identify anything more than the equivalence class.

B Complete learning

The CS algorithm provides sound learning of the parent graph of a general DMG under the assumption of ancestral faithfulness. For a subclass of DMGs, the algorithm actually provides complete learning. It is of interest to find sufficient graphical conditions to ensure that the algorithm removes an edge $\alpha \rightarrow \beta$ which is not in the true parent graph. In this section, we will simply state and prove one such condition which can be understood as 'the true parent set is always found for unconfounded processes'. We let D denote the output of the CS algorithm.

Proposition 19. If $\alpha \not\rightarrow G_0 \beta$ and there is no $\gamma \in V \setminus \{\beta\}$ such that $\gamma \leftrightarrow G_0 \beta$, then $\alpha \not\rightarrow D \beta$.

Proof. Let D_1, D_2, \ldots, D_N denote the DGs that are constructed when running the algorithm by sequentially removing edges, starting from the complete DG, D_1. Consider a walk from α to β in G_0. It must be of the form $\alpha \sim \ldots \sim \gamma \rightarrow \beta$, $\gamma \neq \alpha$. Under ancestral faithfulness, the edge $\gamma \rightarrow \beta$ is in D_i for all D_i that occur during the algorithm, and therefore when $\langle \alpha, \beta \mid \text{pa}_{D_i}(\beta) \setminus \{\alpha\} \rangle$ is tested, the walk is closed. Any walk from α to β is of this form, thus also closed, and we have that $\alpha \perp \beta \mid \text{pa}_{D_i}(\beta)$ and therefore $\langle \alpha, \beta \mid \text{pa}_{D_i}(\beta) \setminus \{\alpha\} \rangle \in I$. The edge $\alpha \rightarrow_{D_i} \beta$ is removed and thus absent in the output graph, D. \qed

C Ancestry propagation

We state Subalgorithm 4 here.

```plaintext
input : a local independence oracle for $I^0$ and a DG, $\mathcal{D} = (O, E)$
output : a DG on nodes $O$
initialize $E_r = \emptyset$ as the empty edge set:
foreach $(\alpha, \beta, \gamma) \in V \times V \times V$ such that $\alpha, \beta, \gamma$ are all distinct do
  if $\alpha \sim_D \beta$, $\beta \rightarrow_D \gamma$, and $\alpha \not\rightarrow_D \gamma$ then
    if $\langle \alpha, \gamma \mid \emptyset \rangle \in I^0$ then
      update $E_r = E_r \cup \{\beta \rightarrow \gamma\}$
    end
  end
Update $\mathcal{D} = (V, E \setminus E_r)$;
return $\mathcal{D}$
```

Subalgorithm 4: Ancestry propagation
Composing Subalgorithm 1, Subalgorithm 4, and Subalgorithm 2 is referred to as the causal screening, ancestry propagation (CSAP) algorithm. If we use Subalgorithm 3 instead of Subalgorithm 4, we call it the CSAPC algorithm (C for cheap as this does not entail any additional independence tests compared to CS).

D Application and simulations

In this section, we provide some additional details about the c. elegans neuronal network and the simulations.

D.1 C. elegans neuronal network

For each connection between two neurons a different number of synapses are present (ranging from 1 to 37). We only consider connections with more than 4 synapses when we define the true underlying network. When sampling the subnetworks, highly connected neurons were sampled with higher probability to avoid a fully connected subnetwork.

D.2 Comparison of algorithms

As noted in the main paper, the dFCI algorithm solves a strictly harder problem. By using the additional graph theory in the supplementary material, we can understand the output of the dFCI algorithm as a supergraph of the maximal DMG, \tilde{G}. There is also a version of the dFCI which is guaranteed to output not only a supergraph of \tilde{G}, but the graph \tilde{G} itself. Clearly, from the output of the dFCI algorithm, one can simply take the directed part of the output and this is a supergraph of the underlying parent graph.

E Proofs

In this section, we provide the proofs of the result in the main paper.

Proof of Proposition 5. Let D denote the causal graph. Assume first that $\alpha \not \rightarrow_D \beta$. Then $g^{\beta \alpha}$ is identically zero over the observation interval, and it follows directly from the functional form of λ^β that $\alpha \not \rightarrow \beta | V \setminus \{\alpha\}$. This shows that the local independence model satisfies the pairwise Markov property with respect to D.

If instead $g^{\beta \alpha} \neq 0$ over J, there exists $r \in J$ such that $g^{\beta \alpha}(r) \neq 0$. From continuity of $g^{\beta \alpha}$ there exists a compact interval of positive measure, $I \subseteq J$, such that $\inf_{s \in I} g^{\beta \alpha}(s) \geq g^{\beta \alpha}_{\min} \geq 0$. Let i_0 and i_1 denote the endpoints of this interval, $i_0 < i_1$. We consider now the events

$$D_k = (N^\alpha_{T-i_0} - N^\alpha_{T-i_1} = k, N^\gamma_T = 0 \text{ for all } \gamma \in V \setminus \{\alpha\})$$ (1)
$k \in \mathbb{N}_0$. Then under Assumption 4, for all k

$$
\lambda_T^\beta \mathbb{I}_{D_k} \geq \mathbb{I}_{D_k} \int g^{\beta \alpha}(T - s) \, dN_s^\alpha \geq g^{\beta \alpha}_{\min} \cdot k \cdot \mathbb{I}_{D_k}.
$$

Assume for contradiction that β is locally independent of α given $V \setminus \{\alpha\}$. Then

$$
\lambda_T^\beta = E(\lambda_T^\beta | F_{V^{\setminus \{\alpha\}}}^T) = E(\lambda_T^\beta | F_{V^{\setminus \{\alpha\}}}^T) \text{ is constant on } \cup_k D_k \text{ and furthermore } P(D_k) > 0 \text{ for all } k. \text{ However, this contradicts the above inequality when } k \to \infty.
$$

Proof of Proposition 11. Let D denote the DG which is output by the algorithm. We should then show that $P(D_0) \subseteq D$. Assume that $\alpha \rightarrow P(D_0) \beta$. In this case, there is a directed path from α to β in D_0 such that no nonendpoint node on this directed walk is in O (the observed coordinates). Therefore for any $C \subseteq O \setminus \{\alpha\}$, there exists a directed μ-connecting walk from α to β in D_0 and by ancestral faithfulness it follows that $\langle \alpha, \beta | C \rangle \notin \mathcal{I}$. The algorithm starts from the complete directed graph, and the above means that the directed edge from α to β will not be removed.

Proof of Corollary 12. Consider some directed path from α to β in D_0 on which no node is in C. Then there is also a directed path from α to β on which no nodes are in C in the graph $P(D_0)$, and therefore also in the output graph using Proposition 11.

Proof of Proposition 14. Assume that there is a μ-connecting walk from α to β given $\{\beta\}$. If this walk has no colliders, then it is a directed trek, or can be reduced to one. Otherwise, assume that γ is the collider which is the closest to the endpoint α. Then $\gamma \in \text{an}(\beta)$, and composing the subwalk from α to γ with the directed path from γ to β gives a directed trek. On the other hand, assume there is a directed trek from α to β. This is μ-connecting from α to β given $\{\beta\}$.

Proof of Proposition 16. Assume $\beta \rightarrow P(D_0) \gamma$. Subalgorithms 1 and 2 are both simple screening algorithms, and they will not remove this edge. Assume for contradiction that $\beta \rightarrow \gamma$ is removed by Subalgorithm 3. Then there must exist $\alpha \neq \beta, \gamma$ and a directed trek from α to β in D_0. On this directed trek, γ does not occur as this would imply a directed trek either from α to γ or from β to γ, thus implying $\alpha \rightarrow \gamma$ or $\beta \rightarrow \alpha$, respectively (D is the output graph). As γ does not occur on the trek, composing this trek with the edge $\beta \rightarrow \gamma$ would give a directed trek from α to γ. By faithfulness, $\langle \alpha, \gamma | \gamma \rangle \notin \mathcal{I}$, and this is a contradiction as $\alpha \rightarrow \gamma$ would not have been removed during Subalgorithm 1.

We consider instead CSAP. Assume for contradiction that $\beta \rightarrow \gamma$ is removed during Subalgorithm 4. There exists in D_0 either a directed trek from α to β or a directed trek from β to α. If γ is on this trek, then γ is not μ-separated from α given the empty set (recall that there are loops at all nodes, therefore also at γ), and using faithfulness we conclude that γ is not on this trek. Composing it with the edge $\beta \rightarrow \gamma$ would give a directed trek from α to γ and using faithfulness we obtain a contradiction.
References

[1] Odd O. Aalen. Dynamic modelling and causality. Scandinavian Actuarial Journal, pages 177–190, 1987.

[2] Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learning high-dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics, 40(1):294–321, 2012.

[3] Vanessa Didelez. Graphical Models for Event History Analysis based on Local Independence. PhD thesis, Universität Dortmnd, 2000.

[4] Vanessa Didelez. Graphical models for marked point processes based on local independence. Journal of the Royal Statistical Society, Series B, 70(1):245–264, 2008.

[5] Michael Eichler. Causal inference with multiple time series: principles and problems. Philosophical Transactions of the Royal Society, 371(1997):1–17, 2013.

[6] Michael Eichler and Vanessa Didelez. On Granger causality and the effect of interventions in time series. Lifetime Data Analysis, 16(1):3–32, 2010.

[7] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for multivariate Hawkes processes with nonparametric link functions. Journal of Time Series Analysis, 38:225–242, 2017.

[8] Rina Foygel, Jan Draisma, and Mathias Drton. Half-trek criterion for generic identifiability of linear structural equation models. The Annals of Statistics, 40(3):1682–1713, 2012.

[9] Patrick J. Laub, Thomas Taimre, and Philip K. Pollett. Hawkes processes. 2015. URL https://arxiv.org/pdf/1507.02822.pdf.

[10] Marloes Maathuis, Mathias Drton, Steffen Lauritzen, and Martin Wainwright. Handbook of graphical models. Chapman & Hall/CRC handbooks of modern statistical methods, 2019.

[11] Sara Magliacane, Tom Claassen, and Joris M. Mooij. Ancestral causal inference. In Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016), 2016.

[12] Christopher Meek. Toward learning graphical and causal process models. In CI’14 Proceedings of the UAI 2014 Conference on Causal Inference: Learning and Prediction, 2014.

[13] Søren Wengel Mogensen and Niels Richard Hansen. Markov equivalence of marginalized local independence graphs. 2019. To appear in the Annals of Statistics.
[14] Søren Wengel Mogensen, Daniel Malinsky, and Niels Richard Hansen. Causal learning for partially observed stochastic dynamical systems. In Proceedings of the 34th conference on Uncertainty in Artificial Intelligence, 2018.

[15] Judea Pearl. *Causality*. Cambridge University Press, 2009.

[16] Jonas Christopher Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference, foundations and learning algorithms*. MIT Press, 2017.

[17] Kjetil Røysland. Counterfactual analyses with graphical models based on local independence. *The Annals of Statistics*, 40(4):2162–2194, 2012.

[18] Peter Spirtes. An anytime algorithm for causal inference. In *Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics, AISTATS 2001*, 2001.

[19] Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search*. MIT Press, 2000.

[20] Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B. Chklovskii. Structural properties of the Caenorhabditis elegans neuronal network. *PLoS Computational Biology*, 7(2), 2011.

[21] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. Technical Report R-150, University of California, Los Angeles, 1991.

[22] Zhalama, Jiji Zhang, Frederick Eberhardt, and Wolfgang Mayer. SAT-based causal discovery under weaker assumptions. In *Proceedings of the 33th Conference on Uncertainty in Artificial Intelligence*, 2017.

[23] Zhalama, Jiji Zhang, and Wolfgang Mayer. Weakening faithfulness: some heuristic causal discovery algorithms. *International Journal of Data Science and Analytics*, 3:93–104, 2017.

[24] Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172:1873–1896, 2008.

[25] Jiji Zhang and Peter Spirtes. Detection of unfaithfulness and robust causal inference. *Minds & Machines*, 18:239–271, 2008.