UHPLC-IMS-Q-ToF-MS analysis of Maradolipids, found exclusively in *Caenorhabditis elegans* dauer larvae

Michael Witting\(^1,2, * \), Ulrike Schmidt\(^3 \), Hans-Joachim Knölker\(^3 \)

1. Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
2. Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
3. Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany

Contact:
michael.witting@helmholtz-muenchen.de

For Research Use Only. Not for use in diagnostic procedures.
• *Caenorhabditis elegans* research
 • Analytical Method development
 – Lipid analysis methods
 – Sample preparation
 – “Single Worm” methods

• “Decoding” of the *C. elegans* metabolome & lipidome
• Regulation of lipid metabolism
• Metabolic reconstructions, flux balance analysis and novel metabolic pathways
• *Caenorhabditis elegans* research
 • ~ 1 mm x 65 µm size
 • 959 (hermaphrodite)/1031 (male) cells
 • 2-3 weeks lifespan
 • Majority of human diseases genes and pathways are present in *C. elegans*
 • Model system for …
 – development
 – neurobiology
 – host-pathogen/microbe interactions
 – ageing
 – alzheimer
 – nutrition & diabetes
• *Caenorhabditis elegans* research

Organism	Advantages / Disadvantages
Mus musculus mouse	(+) Genome is available
	(+) Strong genetic, physiological overlap with humans
	(-) Ethical concerns
	(-) Expensive
	(-) Long generation time (2-3 months)
	(-) Long Lifespan
	(-) Not amenable to high-throughput screens
Drosophila melanogaster fruit fly	(+) Inexpensive/easy to grow
	(+) Genome is available
	(+) Straightforward genetic tools exist
	(+) Short generation time (~ 10 days)
	(+)/(−) 50-80% of fly genes homologous to human genes
	(-) Mutants cannot be frozen
Caenorhabditis elegans roundworm	(+) Inexpensive/easy to grow
	(+) Genome is available
	(+) Straightforward genetic tools exist
	(+) **Short generation time (2-3 days)**
	(+) Short lifespan (2-3 weeks)
	(+) Small, exactly 959 somatic cells
	(+) Invariant development
	(+) Transparent
	(+) Has organs/differentiated tissues
	(+) Mutants can be frozen
	(+)/(−) 50-80% of worm genes homologous to human genes
Primer on lipid(ome) analysis

LC-IMS-MS based lipid analysis

- Agilent 6560 IMS-Q-ToF-MS
Primer on lipid(ome) analysis

LC-IMS-MS based lipid analysis

- **UHPLC-IMS-ToF-MS**
- **RP-UPLC-UHR-ToF-MS** (Witting et al., 2014)
 - Agilent 1290 UHPLC & 6560 IMS-Q-ToF-MS
 - Waters Cortecs C18, 150 mm x 2.1 mm ID
 - A: 60% ACN / 40% H₂O + 10 mM NH₄OOCH + 0.1% HOOCH
 - B: 90% iPrOH / 10% ACN + 10 mM NH₄OOCH + 0.1% HOOCH

- Data Dependent Acquisition (QToF only)
- Data Independent Acquisition (AllIons)

- (+) / (-) ionization mode

- Extraction using Folch,MTBE, Bligh & Dyer or BUME method
- Fractionation of lipids (Bodennec et al, 2000)

Witting et al., 2014, Witting & Schmitt-Kopplin, 2013
Primer on lipid(ome) analysis

LC-IMS-MS based lipid analysis
Characterization of maradolipids in *C. elegans*

Allions fragmentation combined with ion mobility

LC-IMS-MS based characterization of maradolipids in *C. elegans*

- *Caenorhabditis elegans* is a major model organism in biomedical research
- It develops through different larval stages to reproductive adults
- Upon food scarcity L1 larvae can enter an alternative state, called „dauer“
- Dauer larvae are resistant to harsh environmental conditions and are non-feeding
- Dauer larvae produce glycolipids found only in this development stage called maradolipids
- Maradolipids have been so far only analyzed by shotgun lipidomics

![Diagram showing the development stages of *C. elegans* and the role of Dauer larvae](image)
Characterization of maradolipids in *C. elegans*

Alllons fragmentation combined with ion mobility

- Characterization of maradolipid standards

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

Allions fragmentation combined with ion mobility

Characterization of maradolipid standards

Name	adduct	m/z	CCS +/- SD (multi field)	CCS +/- SD (single field)	RT +/- SD
Mar(14:0/14:0)	[M+NH4]^+	780.5467	282.87 +/- 0.25	284.00 +/- 0.26 (-0.40 %)	12.98 +/- 0.03
Mar(15:0/15:0)		808.578	289.13 +/- 0.21	290.60 +/- 0.20 (-0.51 %)	13.90 +/- 0.02
Mar(14:0/18:1)		834.5937	293.00 +/- 0.20	294.20 +/- 0.26 (-0.41 %)	14.38 +/- 0.02
Mar(16:0/16:0)		836.6093	294.93 +/- 0.25	296.57 +/- 0.38 (-0.55 %)	15.10 +/- 0.02
Mar(15:0/17:0)		836.6093	294.93 +/- 0.25	296.63 +/- 0.15 (-0.58 %)	15.47 +/- 0.02
Mar(15:0/18:1)		848.6093	296.03 +/- 0.23	297.37 +/- 0.35 (-0.45 %)	14.78 +/- 0.02
Mar(16:0/18:1)		862.625	298.77 +/- 0.25	300.70 +/- 0.26 (-0.65 %)	15.52 +/- 0.02
Mar(17:0/18:1)		876.6406	301.67 +/- 0.15	303.17 +/- 0.23 (-0.50 %)	15.85 +/- 0.02
Mar(18:1/18:1)		888.6406	302.87 +/- 0.32	304.20 +/- 0.00 (-0.44 %)	15.56 +/- 0.02
Mar(18:1/19:1)		902.6563	306.80 +/- 0.17	307.67 +/- 0.21 (-0.28 %)	16.23 +/- 0.02

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

Allons fragmentation combined with ion mobility

- Characterization of maradolipid standards
- m/z, kendrick mass defect, retention time and CCS values can be used to filter potential candidates

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

AllIons fragmentation combined with ion mobility

- **Characterization of maradolipid standards**
- Fragmentation of maradolipid standards was studied using AllIons fragmentation
 - 10, 20 and 40 eV were used
 - Fragments include...
 - ... fatty acyls
 - ... trehalose fragments
 - ... loss of fatty acyl
 - [Trehalose-H$_2$O-H]$^-$ and [Trehalose-2H$_2$O-H]$^-$ are fragments that can be used to screen for maradolipids

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

Allions fragmentation combined with ion mobility

- Screening for maradolipid
- Use of all Allions and m/z 305 and 323 can be used to search for new maradolipids

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

AllIons fragmentation combined with ion mobility

Analysis of *C. elegans* dauer larvae

- Typical fragments from maradolipids are m/z 323 and 305 derived from trehalose

- The high collision energy channel was searched for co-elution of these fragments

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

Allions fragmentation combined with ion mobility

- Analysis of *C. elegans* dauer larvae

Witting et al., 2020, under review
Characterization of maradolipids in *C. elegans*

Allions fragmentation combined with ion mobility

- Analysis of *C. elegans* dauer larvae

Witting et al., 2020, under review
Acknowledgment

Collaboration partner related to presented work

Research Unit BGC

Habilitation Committee