Hydroxylated PCB Metabolites and PCBs in Serum from Pregnant Faroese Women

Britta Fängström,1 Maria Athanasiadou,1 Philippe Grandjean,2,3 Pál Weihe,2,4 and Åke Bergman1

1Department of Environmental Chemistry, Stockholm University, Stockholm, Sweden; 2Institute of Public Health, University of Southern Denmark, Odense, Denmark; 3Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA; 4Faroese Hospital System, Tórshavn, Faroe Islands

In the Faroe Islands in the North Atlantic, the traditional diet includes pilot whale meat and blubber and other marine food. Fatty fish and blubber of mammals may have high concentrations of organohalogen substances (OHSs). Elevated levels of OHSs have been reported from the Faroe Islands, first documented in breast milk samples obtained in 1987. The aim of this study was to determine the concentrations of hydroxylated polychlorinated biphenyls (OH-PCBs) and polychlorinated biphenyls (PCBs) in serum samples from pregnant Faroese women known to differ in their dietary habits. High concentrations of OH-PCBs and PCBs were found in part of the human serum samples analyzed, and the relative OH-PCB and PCB congener distributions were similar to those observed elsewhere. There was a wide span between the lowest and highest OH-PCB and PCB concentrations in the serum samples analyzed, with ranges of 19–1,800 ng/g lipid weight (lw) and 150–22,000 ng/g lw, respectively. The ratio of ΣOH-PCB/ΣPCB averaged about 10% and varied little. 4-Hydroxy-2,2’,3,4,5,5’-hexachlorobiphenyl was the most abundant OH-PCB metabolite in all samples analyzed, with four other OH-PCB congeners as dominating metabolites in the serum. More than 25 additional OH-PCBs were indicated. This study confirms the presence of high concentrations of organohalogen substances in populations or areas far removed from their sources. Key words: Faroe Islands, marine foods, polychlorinated biphenyls, polychlorobiphenyls, pregnancy. Environ Health Perspect 110:895–899 (2002). [Online 26 July 2002] http://ehpnet1.niehs.nih.gov/docs/2002/110p895-899fangstrom/abstract.html

Polychlorinated biphenyls (PCBs) remain an important class of environmental contaminants even though major legislative measures were taken by most industrialized countries in the early 1970s to stop their production and to restrict most their uses thereof (1,2,2-Bis(4-chlorophenyl)-1,1,1-trichloroethane (4,4’-DDE) and persistent PCB congeners are in general and still the most abundant pollutants in wildlife and humans, although recent decreases have been reported (2,3). High concentrations of these substances have been determined even in populations living in remote areas (4,5), including people from the Faroe Islands, as first documented by analyses of four pools of human breast milk sampled from a birth cohort in 1987 (6). Similarly high PCB and 4,4’-DDE concentrations were obtained from a second Faroese birth cohort from 1994 (7). People who have a high consumption of fatty fish and live closer to the sources of contamination have high levels of PCBs and DDE (8).

Halogenated phenolic compounds (HPCs) are known to be strongly retained in human and wildlife blood (9), and these metabolites may be present in concentrations only slightly lower than those of the parent compounds (10–12). Among those compounds, a large number of polychlorobiphenyls (OH-PCBs) have earlier been reported in blood from humans, birds, seals, and polar bears (9–17). The concentration of the OH-PCBs may exceed 10% of the total PCB concentration in human serum (5,9,12). As many as 38 OH-PCBs have been identified in human plasma (10), but only a few of these make up the major proportion of the OH-PCB concentrations in the human blood. OH-PCBs are formed via cytochrome P450-mediated oxidation of individual PCB congeners, and those being retained in the blood are metabolites of those that are most strongly accumulated in lipids—the most persistent PCB congeners. Several of the OH-PCBs compete with thyroxine (T4) for its binding to transthyretin (TTR) (18). One of the major OH-PCBs, 2,3,3’,4’,5-pentachloro-4-biphenyl (4-OH-CB107), which has been identified in human blood (9), appears to possess adverse endocrine-related toxicity (19). OH-PCB metabolites are generally more hydrophilic than the parent compound and are therefore more easily eliminated from the body than their parent PCB congeners. Still, the physicochemical properties of some of the OH-PCBs suggest retention rather than excretion (9). However, it is not known whether the OH-PCBs occur along with the parent PCB congeners at similarly increased concentrations in subjects with high exposure to lipophilic contaminants from seafood as those with a lower exposure.

The Faroe Islands in the North Atlantic have a relatively uniform population of about 45,000 inhabitants. Besides fish (mainly cod), pilot whale blubber and meat have traditionally been part of their diet (6). Seabirds and their eggs may also be included in the Faroese diet for part of the year. Certain types of marine food, especially fatty fish and blubber of mammals living in polluted waters, contain high concentrations of organohalogen substances (OHSs) (7). People who frequently consume contaminated seafood therefore exhibit increased concentrations of OHSs in serum and adipose tissue (8,12).

Our aim in this study was to determine the concentrations of OH-PCBs and PCBs in serum samples from pregnant Faroese women. Women were therefore selected to represent different exposure levels associated with different intakes of traditional food.

Materials and Methods

Samples. Serum samples were collected at the National Hospital in Tórshavn, Faroe Islands, in connection with the formation of a cohort of 182 mother–child pairs in 1994–1995. We collected maternal serum samples at the last antenatal consultation, approximately the 32nd week of pregnancy. Milk was obtained at 3–4 days postpartum and analyzed for major PCB congeners (7). Based on these results, we selected 36 subjects to represent the full range of PCB exposures. Stored serum was retrieved for analysis. We used a brief nutritional questionnaire to obtain information about the frequency of blubber and whale meat meals during pregnancy (number of meals per month). Although we made no attempt to assess lifetime intake levels, we categorized the subjects with respect to their recent consumption of...
pilot whale blubber as follows: none/low = 0–1 blubber meals/month (n = 21); moderate/high = 2–8 blubber meals/month (n = 15). This stratification provided reasonable numbers of subjects in each category.

Chemicals. The reference compounds, the abbreviations by which they are designated, and their sources of origin are given in Table 1. Hexane (Hx) and dichloromethane (DCM) were pesticide grade (Fisher Scientific, Leicestershire, UK). Potassium chloride, hydrochloric acid, sulfuric acid (Merck, Darmstadt, Germany), and potassium hydroxide (Eka Nobel, Bohus, Sweden) were all of pesticide grade (Fisher Scientific, Waltham, MA, USA). Hexane (Hx) and dichloromethane (DCM) were added together, and median concentrations and 80th percentile ranges are given in Table 2. The ΣOH-PCB concentrations are reported both on a fresh-weight and a lipid-weight basis because these metabolites are not retained in the blood lipids like their parent compounds (Tables 2 and 3). The ΣOH-PCBs in serum from a pregnant Faroese woman is shown in Figure 1. The structures of the five OH-PCBs for which concentrations are reported (Table 2) are superimposed on the chromatogram. At least 20 other peaks have been described in detail elsewhere (21).

Table 1. Reference substances and internal surrogate standard (IS) used for quantification of PCBs and OH-PCBs in the human serum samples.

Substances	Abbreviation	Source
Polychlorinated biphenyls (PCBs)		
2,3,3´,4,4´-Pentachlorobiphenyl	CB105	
2,3,4,4´,5-Pentachlorobiphenyl	CB118	
2,2´,3,3´,4,4´-Hexachlorobiphenyl	CB138	
2,2´,3,3´,4,4´,5,5´-Hexachlorobiphenyl	CB146	
2,2´,4,4´,5,5´-Hexachlorobiphenyl	CB153	
2,3,3´,4,4´,5,5´-Hexachlorobiphenyl	CB156	
2,3,3´,4,4´,5,6,6´-Hexachlorobiphenyl	CB157	
2,3,3´,4,4´,5,5´,6-Heptachlorobiphenyl	CB167	
2,2´,3,3´,4,4´,5,5´-Heptachlorobiphenyl	CB170	
2,2´,3,3´,4,5,5´-Heptachlorobiphenyl	CB172	
2,2´,3,3´,4,5,6,6´-Heptachlorobiphenyl	CB173	
2,2´,3,3´,4,5,5´,6-Heptachlorobiphenyl	CB177	
2,2´,3,3´,4,5,6,6´-Heptachlorobiphenyl	CB178	
2,2´,4,4´,5,5´,5`-Heptachlorobiphenyl	CB180	
2,2´,3,3´,4,5,6,6´-Heptachlorobiphenyl	CB183	
2,2´,3,3´,4,5,5´,6-Heptachlorobiphenyl	CB185	
4-Methoxy-2,2´,3,4,4´,5,6-Octachlorobiphenyl	CB194	
4-Methoxy-2,2´,3,4,4´,5,5´,6-Octachlorobiphenyl	CB195	
4-Methoxy-2,2´,3,3´,4,4´,5,6-Octachlorobiphenyl	CB196	

Methoxy-PCBs		
4-Methoxy-2,2´,3,3´,4,4´,5-pentachlorobiphenyl	4-MeOCB107	(38)
3-Methoxy-2,2´,2,2´,3,3´,4,4´-hexachlorobiphenyl	3-MeOCB138	(38)
4-Methoxy-2,2´,3,3´,4,5,5´,5´-hexachlorobiphenyl	4-MeOCB146	(38)
3-Methoxy-2,2´,2,2´,4,4´,5,5´-hexachlorobiphenyl	3-MeOCB153	(38)
4-Methoxy-2,2´,3,3´,4,5,5´,6-heptachlorobiphenyl	4-MeOCB187	(38)
4-Methoxy-2,2´,3,3´,4,5,5´,6-heptachlorobiphenyl	4-MeOCB193	(38)

*Abbreviation according to PCB numbering system (37); MeO-PCBs were numbered according to Letcher et al. (9).

Results

The concentrations of the major OH-PCBs, 4-OH-CB107, 4-OH-CB118, 4-OH-CB146, 3-OH-CB138, and 4-OH-CB187, were added together, and median concentrations and 80th percentile ranges are given in Table 2. The ΣOH-PCB concentrations are reported both on a fresh-weight and a lipid-weight basis because these metabolites are not retained in the blood lipids like their parent compounds (Tables 2 and 3). A typical GC/ECD chromatogram for OH-PCBs in serum from a pregnant Faroese woman is shown in Figure 1. The structures of the five OH-PCBs for which concentrations are reported (Table 2) are superimposed on the chromatogram. At least 20 other peaks have been described in detail elsewhere (21).

Table 2. Concentrations (ng/g lipid weight and ng/g fresh weight) of OH-PCBs in serum from pregnant women from the Faroe Islands according to recent pilot whale blubber consumption.

Compound	Lipid (%)	Median (ng/g lipid weight)	80%*	20%*	Median (ng/g fresh weight)	80%*	20%*	
4-OH-CB107	0.78	0.67–0.97	0.83	0.64–1.00	0.094	0.041–0.63	0.49	0.29–1.7
3-OH-CB118	13	4.0–75	71	41–230	0.10	0.031–0.58	0.49	0.11–1.3
4-OH-CB146	23	9.8–170	120	13–270	0.15	0.081–1.4	1.1	0.14–1.8
3-OH-CB138	13	3.5–100	96	47–170	0.11	0.033–0.84	0.64	0.34–1.4
4-OH-CB187	37	18–210	190	23–470	0.27	0.14–1.6	1.6	0.23–3.0
ΣOH-PCB	96	39–590	560	36–1300	0.75	0.34–4.8	5.0	0.37–8.1

*Abbreviation according to PCB numbering system (37); MeO-PCBs were numbered according to Letcher et al. (9).

*Concentrations are reported both on a fresh-weight and a lipid-weight basis because these metabolites are not retained in the blood lipids like their parent compounds (Tables 2 and 3). The ΣOH-PCBs in serum from a pregnant Faroese woman is shown in Figure 1. The structures of the five OH-PCBs for which concentrations are reported (Table 2) are superimposed on the chromatogram. At least 20 other peaks have been described in detail elsewhere (21).
were detected, representing other OH-PCBs and dihydroxylated PCB congeners (10).

The serum concentrations, medians, and 80th percentile ranges of 18 PCB congeners, along with the ΣPCB (sum of detected congeners), are presented in Table 3. CB153 shows a concentration range of 35–2,200 ng/g lw and 58–5,700 ng/g lw in the low and moderate/high pilot whale blubber consumption groups, respectively, while ΣPCB ranges are 150–9,000 ng/g lw and 280–22,000 ng/g lw.

Discussion

This study amplifies previous evidence that increased PCB exposures occur in the Faroe Islands. In addition, new evidence is presented that OH-PCBs occur in conjunction with the PCB congeners normally observed as a result of dietary exposure to OHSs. As recently reported, likely sources of OHS exposures in the Faroe Islands are pilot whale blubber and muscle, wild birds, and bird eggs (22,23). This study did not attempt to quantify lifetime intakes of blubber or alternative exposure sources.

Instead, subjects were divided into two groups in relation to their recent consumption of pilot whale blubber, the only dietary-related parameter available describing potentially different exposures to persistent organic pollutants and their metabolites. This division provided reasonable numbers of subjects in each category. When more information becomes available on OHS concentrations in Faroese subsistence foods and the actual intake of these foods, it will be possible to improve the exposure assessment. Nonetheless, the present study shows a major difference in exposures of OH-PCBs and PCBs depending on the recent intake of pilot whale blubber.

Table 3. Concentrations (ng/g lipid weight) of 18 PCB congeners in serum from pregnant women from the Faroe Islands.

Compound	Low (0–1 meals/month)	Moderate/high (2–8 meals/month)
Lipid (%)	0.78	0.83
Polychlorinated biphenyls		
CB118	48	360
CB146	28	210
CB153	280	1,500
CB105	11	78
CB138	360	1,100
CB178	65	85
CB187	66	520
CB183	15	130
CB167	9.9	68
CB177	17	140
CB156	18	130
CB157	5.0	37
CB172	7.8	56
CB180	120	880
CB170	46	300
CB196	11	110
CB195	4.8	34
CB194	20	120
ΣPCBb	750	5,900

The PCB congeners are listed in elution order on a DB5 GC-column.

*80% range (10th–90th percentiles). *Sum of the PCBs shown.

![Figure 1. Gas chromatogram (GC/ECD) demonstrating the presence of hydroxylated polychlorinated biphenyls (OH-PCBs) in a serum sample from a Faroese woman with a recent moderate/high pilot whale blubber intake. The concentrations of the six most abundant OH-PCBs [4-OH-CB107, 3-OH-CB153, 4-OH-CB146, 3’-OH-CB138, 4-OH-CB187, and 4-OH-CB193 (IS)] were determined as their corresponding methyl ethers. The structures of the six most abundant OH-PCBs are superimposed in the figure.](image-url)
The major OH-PCBs identified in the serum samples were 4-OH-CB107, 3-OH-CB153, 4-OH-CB146, 3′-OH-CB138 and 4-OH-CB187, the latter being the predominant hydroxylated PCB metabolite. The same metabolites have previously been reported as the major OH-PCBs present in human blood (5,9,12), with 4-OH-CB187 being the most abundant OH-PCB (12). However, other studies have reported that 4-OH-CB107 was the main metabolite (5,12). The OH-PCB peak pattern is shown in Figure 1. Estimation of the total OH-PCB concentrations in the samples indicate that the levels of the five major OH-PCBs account for 90% of the compounds. The 80th percentile of OH-PCBs in the moderate/high consumption group (36–1,300 ng/g lw) is almost in the same as the 80th percentile for CB153 in the low consumption group (130–1,500 ng/g lw; Tables 2 and 3).

Persistent PCB congeners, such as CB118, CB138, CB153, and CB187, have been shown to form OH-PCB metabolites that are retained in blood (24). Overall, the ΣOH-PCB concentrations correspond to about 10% of the ΣPCB concentration in the blood serum samples, within a range of about 5–20%. This finding agrees with previous reports at lower OH-PCB/PCB exposures, where average ratios of 10% (5,12) have been observed (9). This ratio may possibly be higher for persons with relatively low levels of PCB, as indicated in Figure 2. The concentration dependence of the OH-PCB/PCB ratio indicates a faster elimination of OH-PCBs in humans at higher levels of PCB exposures, which may be explained by induction of phase II enzymes and conjugation reactions (9). However, the possibility also exists that dietary habits may influence the levels of OH-PCB in the body. Marine food such as pilot whale predominantly contains persistent PCB congeners and less of the lower chlorinated and the more rapidly metabolized PCB congeners. The formation of the OH-PCBs depends on the metabolism and differences in metabolic capacity between individuals and may thus influence the pattern of OH-PCBs and their concentrations (9,25). Any conclusions in this regard are hampered by not knowing to what degree the OH-PCBs are only generated in humans or whether they are also retained from ingested food that contains these compounds, as is the case with eggs (22).

Some toxicologic data have become available on at least one of the OH-PCBs, 4-OH-CB107, which is one of the major OH-PCBs present in the blood (9,12,19). Thus, low-dose levels of 4-OH-CB107 induce in vivo disturbances in rats, influencing the estrous cycle and behavior of the offspring (19). Current exposure levels of OH-PCBs as determined in the present study appear to be close to the levels at which effects were observed in the rats. This conclusion is based on the assumption that all halogenated phenolic compounds are as toxic as 4-OH-CB107, an assumption that cannot be confirmed or rejected at this time.

Because of the possible interaction of OH-PCBs with transthyretine and thyroid metabolism (18), questions regarding the thyroid function have been addressed in the Faroese studies. In the full cohort of children born in 1994, thyroid function was assessed by analysis of serum from the mothers and from the umbilical cord. No association of thyroid hormone parameters with PCB exposure was found (7). In a previous cohort, no association was found between PCB concentrations in cord tissue and thyroxine and thyroid-stimulating hormone in neonatal serum (26). The Faroese rely heavily on a seafood diet, and their iodide intake would therefore likely be in the optimal range, but it is not known whether a high iodide intake may protect against adverse thyroid effects.

Possible adverse health effects have been considered in clinical examinations of Faroese children exposed to PCBs and related OHSs prenatally. Because of concomitant exposure to methylmercury, any neurotoxic effects of PCB have not been readily detectable (27). However, stratified analyses suggest that PCB-associated neurotoxicity may be more apparent when exposure to methylmercury is increased, thus suggesting a possible additive effect (26). In this regard, ΣPCB was used as a marker, which reflects a complex exposure that also includes OH-PCBs.

In the serum samples analyzed, CB153 was the most abundant PCB congener, followed by CB138 and CB180. The CB153 concentrations correlate well with the ΣPCB concentration (r = 0.999), with CB153 accounting for 25% of the ΣPCBs. Similar correlations have also previously been reported (28), although the relative CB153 concentration...
and the Baltic Sea, but a worldwide problem. Contaminated areas, such as the Great Lakes, are higher in many of the other groups and also exceed the concentrations from the Inuit population from northern Québec (5.29, 30). Both the Inuit and the Faroese consume a seafood diet that includes marine mammals and seabirds (4, 29). However, the PCB concentrations in blubber from ringed seal (0.96–5.6 μg/g lw) and beluga whale (0.31–1.5 μg/g lw), which are part of the Inuit diet, are only moderately high (25, 31) when compared to PCB levels reported for pilot whale blubber (10–40 μg/g lw) in the Faroese diet (32). Thus, even occasional intake of pilot whale blubber could cause a substantial exposure to PCBs. In this regard, it should be noted that the Faroese intake groups were based on recent dietary habits and that the Faroese may eat whale blubber for dinner (usually with whale meat or dried cod) but also eat thin slices of whale blubber as a snack.

Because of the potential adverse health effects caused by OHS contaminants, a recommendation was issued in 1998 by the Faroese health authorities: “The best way to protect fetuses against the potential harmful effects of PCBs, is if girls and women do not eat blubber until they have given birth to their children” (33). The present results, from samples collected before this recommendation was issued, reinforce this recommendation. However, further investigations are needed to qualify the present recommendation and to improve the risk assessment.

The present study shows some high concentrations of OH-PCBs and PCBs in human serum, possibly the highest so far reported in a population. The main source of OHS exposures in the Faroe Islands is pilot whale blubber, but consumption of seabirds and their eggs may also contribute to exposure, at least in some cases. It is notable that the Faroese population living in an Atlantic archipelago far away from OHS pollution sources show much higher OHS burdens as reported in this study. The PCB exposure problem is thus not only a matter of the most contaminated areas, such as the Great Lakes and the Baltic Sea, but a worldwide problem linked to dietary habits.

REFERENCES AND NOTES
1. de March BGE, de Wit CA, Muir DCG. Persistent organic pollutants. In: Environmental Assessment Report; Pollution Issues. Oslo, Norway: Arctic Monitoring and Assessment Programme, 1998:183–371.
2. Binger A, Olsson M, Persson W, Jensen S, Zakrisson S, Liljén EK. Temporal trends of organochlorines in northern Europe, 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environ Polut 98:177–198 (1998).
3. Norén K, Maloney D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20–30 years. Chemosphere 40:1111-1123 (2000).
4. Ayotte P, Dewailly É, Ryan JJ, Bruneau S, Lebel G. PCBs and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (arctic Québec). Chemosphere 34:1459–1466 (1997).
5. Sandau CD, Ayotte P, Dewailly É, Dufle J, Norstrom RJ. Analysis of hydroxylated PCB metabolites of PCBs and other chlorinated phenolic compounds in whole blood from Canadian Inuit. Environ Health Perspect 34:3871–3877 (2000).
6. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
7. Steenweuld U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinizow B, Budtz-Jorgensen E, Grandjean P. Maternal seafood diet, methymercury exposure, and neonatal neurologic function. J Pediatrics 136:599–605 (2000).
8. Asplund L, Svensson B-G, Nilsson A, Eriksson U, Jansson LA, Giesy JP. Hydroxylated and methylsulfonyl polychlorinated biphenyls in human breast milk. Environ Res 79:25–36 (1998).
9. Sandau C. Personal communication. 2003.315–359.
10. Hovander L, Athanasiadou M, Bergman Å, Unpublished data.
11. Sjödin A, Hagmar L, Utam C. Monitoring of polychlorinated biphenyls in human breast milk: methodological developments and influence of age, lactation and fish consumption. Arch Environ Contam Toxicol 22:35–40 (1991).
12. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic), Chemosphere 34:1459–1466 (1997).
13. Sandau CD, Ayotte P, Dewailly É, Dufle J, Norstrom RJ. Analysis of hydroxylated PCB metabolites of PCBs and other chlorinated phenolic compounds. Arch Environ Contam Toxicol 34:3871–3877 (2000).
14. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
15. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
16. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
17. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
18. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
19. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
20. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
21. Hovander L, Athanasiadou M, Bergman Å, Unpublished data.
22. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic). Chemosphere 34:1459–1466 (1997).
23. Sandau C. Personal communication. 2003.315–359.
24. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic). Chemosphere 34:1459–1466 (1997).
25. Sandau C. Personal communication. 2003.315–359.
26. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic). Chemosphere 34:1459–1466 (1997).
27. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
28. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
29. Grandjean P, Weihe P, Needham LL, Burse W, Patterson JG, Sampson EJ, Jorgensen PJ, Vaher M. Relation of a seafood diet to mercury, selenium, and polychlorinated biphenyls in newborns. Arch Environ Contam Toxicol 40:219–226 (2001).
30. Sandau C. Personal communication. 2003.315–359.
31. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic). Chemosphere 34:1459–1466 (1997).
32. Sandau C. Personal communication. 2003.315–359.
33. Sjödin A, Hagmar L, Osterman J. Polychlorinated aromatic hydrocarbons and dioxin-like compounds in plasma of adult Inuit living in Nuuvik (Canadian Arctic). Chemosphere 34:1459–1466 (1997).
34. Sandau C. Personal communication. 2003.315–359.