Boundary conditions for AdS_2 dilaton gravity

Carlos Valcárcel

Instituto de Física, Universidade Federal da Bahia, Câmpus Universitário de Ondina, 40210-340 Salvador-BA, Brazil

E-mail: valcarcel.flores@gmail.com

Received 18 May 2022; revised 13 January 2023
Accepted for publication 24 January 2023
Published 15 February 2023

Abstract
We study a bi-parametric family of dilaton gravity models with constant and negative curvature. This family includes the Jackiw–Teitelboim gravity and the Liouville gravity model induced by a bosonic string. Furthermore, this family is conformally equivalent to the hyperbolic dilaton models. We propose boundary conditions in the Fefferman–Graham and in the Eddington–Finkelstein gauge. We check the consistency of the asymptotic conditions by computing the entropy of their black hole solution.

Keywords: dilaton gravity, AdS_2 space-time, holography

1. Introduction

The study of AdS_2 holography began in the late nineties [1–4] exploring the asymptotic symmetries of the Jackiw–Teitelboim (JT) gravity [5, 6] and dilaton models that arise from dimensional reduction. In the last years, the interest for AdS_2 holography was renewed due to the discovery of the holographic equivalence [7, 8] between JT gravity and the Sachdev–Ye–Kitaev model [9, 10] whose dynamics is described, in a certain limit, by a Schwarzian action [11]. There has also been activity on the study of the duality between JT gravity, and other dilaton theories, with random matrix models [12–14].

Another important aspect of JT gravity is that it describes a sector of the dynamics of near extremal black holes [15]. Then, several properties of JT gravity can be uplifted to higher dimensions. However, AdS_2 holography is not limited to pure JT gravity. There have been several works exploring super-symmetric [16–19] and higher-spin [20] extensions of JT as well as super-symmetric extensions of Liouville gravity [21, 22], two dimensional Einstein–Maxwell–Dilaton theory [23] and the ab–family [24, 25]. The study of flat-space holography [26, 27] is based on a twisted version of the Callan–Giddings–Harvey–Strominger (CGHS) gravity model [28] but can also be analyzed from the JT gravity perspective [29, 30].
has also been recent activity exploring the non-relativistic limits of dilaton gravity [31, 32] and building new classes of the dilaton actions [33–35].

In this work we study Hotta’s model [3], which consists in a bi-parametric family of two dimensional gravity theories with constant and negative curvature, called AdS$_2$ dilaton gravity. This model is an interesting laboratory to explore lower dimensional holography: since it has constant curvature $R = -2$ everywhere, not just asymptotically, it allow us to identify which properties of the AdS$_2$ holography are related to JT gravity. Furthermore, the AdS$_2$ dilaton gravity model is conformally related to the hyperbolic potentials [36–39] obtained from the Yang–Baxter deformation technique.

Our objective is to propose consistent boundary conditions for this model. We achieve this by solving the equations of motion in the first-order formalism, analogous to [25, 40] for other dilaton models. We use Euclidean signature in order to study the thermodynamic properties of the theory and check the validity of our boundary conditions. Our interest in working in this formalism is the following: we know that all dilaton theories can be written as a Poisson-sigma model (PSM) [41], a topological theory. Then, PSM is an unifying framework to study general properties shared by all dilaton models. More recently, in [42] was showed that we can relate asymptotic symmetries of these models by performing a target space diffeomorphism, an special symmetry of the PSM. Therefore, by proposing boundary conditions in the first-order formalism for AdS$_2$ dilaton models, we can map these conditions to other models related by target space diffeomorphisms.

This paper is organized as follows. In section 2 we build and study some properties of the AdS$_2$ dilaton gravity. In section 3, we review the first-order formulation for dilaton gravity. In section 4, we solve the first-order equations of motion in the Fefferman–Graham gauge, we propose boundary conditions and compute the asymptotic symmetries. In section 5, we propose boundary conditions in the Eddington–Finkelstein gauge using complex fields. In section 6, we compute the entropy of the black hole solutions using Wald’s formula. Finally, in section 7 we comment our results and give future perspectives of this work.

2. AdS$_2$ dilaton gravity models

A large variety of two-dimensional dilaton gravity models [43, 44] are described by the following Euclidean action

$$\begin{equation}
I[X, g_{\mu\nu}] = -\frac{k}{4\pi} \int_{\mathcal{M}} d^2x \sqrt{g} \left[X R - U(X) (\partial X)^2 - 2V(X) \right] \tag{1}
\end{equation}$$

where \mathcal{M} is a two-dimensional manifold, $g_{\mu\nu}$ is the metric, X is the dilaton field, R the curvature, U, V are dilaton potentials and k the normalization factor. Different potentials U and V describe different gravity models. We can cite, for example, the JT gravity [5, 6] ($U = 0, V = -\Lambda X$) or the CGHS model [28] ($U = 0, V = -\lambda/2$).

In [45] it was showed that all dilaton models (1) allow non-constant dilaton solution

$$\begin{equation}
ds^2 = \frac{1}{e^{Q}Q} dr^2 + e^{Q}d\theta^2, \quad \partial_r X = e^{-Q} \tag{2}
\end{equation}$$

where r is the radial coordinate and θ a coordinate. The functions Q, w and ξ are:

$$\begin{align}
Q(X) &= \int^X dy \ U(y), \quad w(X) = \int^X dy \ e^{Q(y)} V(y), \quad \xi(X) = 2C - 2w(X). \tag{3}
\end{align}$$
In (3) we introduced the Casimir C, a constant of motion. From the line element (2) it is straightforward to compute the curvature:

$$R = -e^{-2\sigma} \left[\partial^2 \xi + \xi \partial_U U + U \partial_{\xi} \xi \right].$$

(4)

We are interested in building a family of dilaton models with constant curvature. Let us consider a constant potential $U = 4\sigma^2$ and an unknown potential $V(X)$. Replacing these potentials in (4) for $R = -2$, i.e. AdS_2 space, we obtain a first-order partial differential equation: $\partial_U V + 8\sigma^2 V = -1$ which can be easily solved. Therefore, the AdS_2 gravity models are described by the following potentials [3]:

$$U(X) = 4\sigma^2, \quad V(X) = \frac{1}{8\sigma^2} \left(V_0 e^{-4\sigma^2 X} - 1 \right)$$

(5)

where σ, V_0 are two parameters. We can identify some interesting limits depending on the value of the parameters: for $V_0 = 1$ and $\sigma^2 \to 0$, the potential U goes to zero and $V \approx -X$. Then, the action reduces to JT gravity. For $V_0 = 0$, (5) reduces to Liouville gravity induced by a bosonic string [45, 46]. For $\sigma = 1/2$ and V_0 arbitrary, the model reduces to the Liouville gravity presented in [47] which arise from the spherical reduction of pure Einstein gravity in $2 + \varepsilon$ dimensions as ε goes to zero.

The construction of AdS_2 gravity models began with the choice of positive and constant value for the potential U. For $U = 0$, the construction lead us to the Almheiri–Polchinski model [48]. On the other hand, if we begin with negative values $U = -4\sigma^2$, we notice that the asymptotic region is located at $r \to \infty$. The latter case is ‘non–standard’ since the asymptotic region is located at $r \to -\infty$. For more general potentials U, the curvature will depend on the Casimir.

For the model (5), the linear dilaton equation $\partial_r X = e^{-4\sigma^2 X}$ has solution

$$X(r) = \frac{1}{4\sigma^2} \ln \left(4\sigma^2 r \right)$$

(6)

for $\sigma \neq 0$. This means that the asymptotic region $r \to \infty$ corresponds to $X \to \infty$. The $g_{\theta \theta}$ component of the line-element (2) is:

$$g_{\theta \theta} = e^{2\sigma \xi} (r) = \frac{1}{16\sigma^2} e^{4\sigma^2 X} + 2Ce^{4\sigma^2 X} + \frac{V_0}{16\sigma^4} r^2 - \frac{c_0}{2\sigma^2} r + \frac{V_0}{16\sigma^4}$$

(7)

where we defined a re-scaled Casimir $c_0 \equiv -16\sigma^4 C$. This can be interpreted as a black hole solution with outer and inner horizons r_{\pm} located at: $e^{2\sigma \xi} (r_{\pm}) = 0$, where $r_{\pm} = \frac{4\sigma^2}{c_0} \pm \frac{1}{4\sigma^2} \sqrt{c_0^2 - V_0}$. In order to have real and positive values for the outer horizon we need to impose that c_0 is positive and $c_0^2 > V_0$. This means that the original Casimir C is negative. Black hole solutions of this kind have been studied in the context of gravity coupled with the trace of the two-dimensional energy momentum tensor [49].

From regularity of the metric at the horizon we obtain the periodicity β_0 and the temperature T:

$$\beta_0 = \frac{16\sigma^2 \pi}{\sqrt{c_0^2 - V_0}}, \quad T = \frac{\sqrt{c_0^2 - V_0}}{16\sigma^2 \pi}.$$

(8)

We can now compute the entropy of the black hole, which is proportional to the dilaton evaluated at the horizon [50].

$$S_{\text{Wald}} = kX(r_+) = \frac{k}{4\sigma^2} \ln \left(4\sigma^2 r_+ \right) = \frac{k}{4\sigma^2} \ln \left(c_0 + \sqrt{c_0^2 - V_0} \right).$$

(9)

The logarithmic expression for the entropy is reminiscent of Liouville gravity.
It is worth noticing that the AdS$_2$ models (5) are also conformally equivalent to hyperbolic dilaton potentials [21, 36, 37]. By performing a conformal transformation $g_{\mu\nu} = e^{-2\sigma^2}g_{\mu\nu}$, the new potential \tilde{V} vanish and \tilde{V} becomes

$$\tilde{V} = -\frac{1}{8\pi^2} [(1 + V_0) \sinh 4\sigma^2 X + (1 - V_0) \cosh 4\sigma^2 X].$$

(10)

Note, however that the curvature is no longer constant

$$\tilde{R} = -\partial^2 \tilde{\xi} = - (1 + V_0) \cosh 4\sigma^2 X - (1 - V_0) \sinh 4\sigma^2 X.$$

(11)

In the limit $\sigma \to 0$, we obtain an AdS space for $V_0 = 1$ and a flat space for $V_0 = -1$, in contrast with the potentials (5) where we only obtain AdS space independently of the value of the parameter σ. Therefore, the hyperbolic potentials (10) are conformally equivalent to the AdS$_2$ models (5) but they represent different physical realities.

3. First-order formulation of dilaton gravity

For AdS$_2$ spaces, the boundary conditions are proposed after solving the equations of motion in the Fefferman–Graham gauge [51]. This can be a difficult task especially if we consider fluctuating dilaton solutions. One way to avoid the second-order equations of motion from is to consider the first-order formulation of dilaton gravity. The first-order dilaton action is:

$$I_{1sr} = \frac{k}{2\pi} \int_M \left[X^a (de_a + \epsilon^{ab}_c \omega \wedge e_b) + Xd\omega - \frac{1}{2} \nabla \epsilon^{ab}_c e_a \wedge e_b \right].$$

(12)

where the Latin indices a, b take values: 1, 2 and are raised and lowered with the Euclidean metric $\delta_{ab} = \text{diag} (1, 1)$. The Levi–Civita symbol is denoted by ϵ_{ab} ($\epsilon_{12} = 1$ by convention). The Cartan variables are the zweibein e_a and the (dualized) spin-connection ω. In (12) we also introduced auxiliary fields X^a which impose constraints on the torsion. The potential V is given by:

$$V(X, X^a X_a) \equiv V + \frac{1}{2} X^a X^b \delta_{ab} U.$$

(13)

In [45] was shown that the first-order action (12) is equivalent to the second-order one (1) up to a boundary term

$$I_{1sr} = I + \frac{k}{2\pi} \int d^2 x \, \partial_\mu (X^{a\mu} t_\nu)$$

(14)

where $t = U e_a X^a$ is the contorsion.

For models with $U \neq 0$, i.e. models with non-vanishing contorsion, it is convenient to write the equations of motion in term of the (dualized) Levi–Civita connection $\Omega = \omega - t$:

$$dX = e^a_b X^b e_a$$

(15)

$$dX^a = -\epsilon^{ab}_c \left[\Omega X_b + V e_b - \frac{1}{2} U (X^c X_b e_c - 2X_b X^c e_c) \right]$$

(16)

$$d e_a = -\epsilon_{ab} \Omega \wedge e^b$$

(17)

$$d \Omega = \frac{1}{2} e^{c b} \left[\partial_X^c w - (\mathcal{C} - w) \partial_X U + U \partial_X w \right] e^{ab} e_a \wedge e_b.$$

(18)

From the equations of motion we can identify the Casimir:

$$\mathcal{C} \equiv w + \frac{1}{2} e^{c b} X^c X^b \delta_{ab}$$

(19)
a constant of motion $dC = 0$ which was previously presented in (3).

For dilaton gravity in Euclidean signature it is also convenient to define complex fields

\begin{align}
Y &\equiv \frac{1}{\sqrt{2}} (Y^1 + iY^2), \quad \bar{Y} \equiv \frac{1}{\sqrt{2}} (Y^1 - iY^2), \\
e &\equiv \frac{1}{\sqrt{2}} (e_1 + ie_2), \quad \bar{e} \equiv \frac{1}{\sqrt{2}} (e_1 - ie_2).
\end{align}

In this formulation the complex fields are considered to be independent. Then, we can rewrite the action (12) in terms of these new variables and compute the equations of motion. For the Cartan variables, these equations are:

\begin{enumerate}
\item \[de = i\Omega \wedge e\]
\item \[d\bar{e} = -i\Omega \wedge \bar{e}\]
\item \[d\Omega = -ie^{-Q} \left[\partial^2_{\rho}w - (C - w) \partial_{\rho}U + U\partial_{\rho}w \right] \bar{e} \wedge e.\]
\end{enumerate}

For the dilaton and auxiliary fields, the equations of motion are

\begin{enumerate}
\item \[dX = i\bar{Y}e - iYe,\]
\item \[dY = i\Omega Y - iVe + iUY\bar{Y}e,\]
\item \[d\bar{Y} = -i\Omega \bar{Y} + iV\bar{e} - iU\bar{Y}e.\]
\end{enumerate}

From the dilaton equations we can also identify the Casimir: $C \equiv w + e^Q Y\bar{Y}$.

We have explicitly written the equations for Y, \bar{Y} and e, \bar{e} to reinforce that these variables are independent. The only real variables are the Levi-Civita connection and the dilaton field. The first-order formulation of dilaton gravity, in real or complex variables, can be recast as a Poisson-sigma model [41].

4. Boundary conditions in the Fefferman–Graham gauge

In this section we solve the first-order equations of motion (15)–(18) in order to propose boundary conditions for the AdS$_2$ gravity models. Let us consider that the two-manifold \mathcal{M} has the topology of a disk with coordinates (ρ, τ). The radial coordinate is ρ and the boundary $\partial \mathcal{M} = S^1$ is located at $\rho = \rho_b \to \infty$. The boundary coordinate is τ, with periodicity β: $\tau \sim \tau + \beta$. The line element in the Fefferman–Graham gauge is

\[ds^2 = d\rho^2 + h^2 d\tau^2\]

where $h = h(\rho, \tau)$. Equivalently, we can choose the following ansatz for the zweibein

\[e_{1\rho} = 0, \quad e_{1\tau} = h, \quad e_{2\rho} = 1, \quad e_{2\tau} = 0,\]

and from (17) we obtain the components of the Levi–Civita spin-connection

\[\Omega_{\rho} = 0, \quad \Omega_{\tau} = \partial_{\rho}h.\]

Replacing (28) and (29) in (18) we obtain the simple equation $\partial^2_{\rho}h = h$. Let us consider the particular solution

\[h = e^\rho - \mathcal{L}(\tau)e^{-\rho}\]
with fixed leading order. This choice is common in holography, however, it can be generalized, as showed in [52]. With this solution we determine all components for the zweibein and Levi–Civita spin-connection. We request that the Cartan variables approach to

\[e_{2\rho} = 1, \quad e_{1\tau} = e^\rho - L e^{-\rho}, \quad \Omega_\tau = e^\rho + L e^{-\rho} \]

in the asymptotic region, i.e. at \(\rho \to \infty \). These are our boundary conditions which, in the metric variables are equivalent to

\[g_{\rho\rho} = 1, \quad g_{\rho\tau} = 0, \quad g_{\tau\tau} = (e^\rho - L e^{-\rho})^2. \]

It is quite remarkable that these boundary conditions are the same that the ones proposed for JT gravity in [40].

Now, let us solve the radial components of the equations of motion for the dilaton and the auxiliary fields:

\[\partial_\rho X = -X_1 \]

\[\partial_\rho X_1 = \frac{1}{8\sigma^2} \left(V_0 e^{-8\sigma^2 X} - 1 \right) + 2\sigma^2 (X_1)^2 - 2\sigma^2 (X_2)^2 \]

\[\partial_\rho X_2 = 4\sigma^2 X_1 X_2. \]

Furthermore, the Casimir (19) is

\[C = -\frac{c_0}{16\sigma^4} = \frac{1}{32\sigma^4} \left(V_0 e^{-4\sigma^2 X} + e^{4\sigma^2 X} \right) + \frac{1}{2} e^{4\sigma^2 X} \left((X_1)^2 + (X_2)^2 \right). \]

The strategy to solve the system of equations is the following: We use (36) to write \((X_2)^2\) as function of the Casimir, the dilaton and \(X_1\). We then introduce this expression in (34). Since \(X_1\) is essentially the derivative of the dilaton we can obtain a second-order differential equation for the dilaton

\[\partial_\rho^2 X = \frac{1}{4\sigma^2} - 4\sigma^2 (\partial_\rho X)^2 - \frac{c_0}{4\sigma^2} e^{-4\sigma^2 X}. \]

Note the presence of the Casimir \(c_0 \) in this equations. It is convenient to define a transformed dilaton field \(\tilde{X}\):

\[X = \frac{1}{4\sigma^2} \ln \tilde{X}. \]

Then, dilaton equation (37) takes a very simple form

\[\partial_\rho^2 \tilde{X} = \tilde{X} - c_0 \]

with solution

\[\tilde{X} = x_+ e^\rho + c_0 + x_- e^{-\rho} \]

where \(x_\pm\) and \(c_0\) are functions of \(\tau\). We must prove, latter, that \(c_0 = 0\) is conserved on-shell.

From (33) and (35) we obtain the auxiliary fields \(X^a\) in terms of the transformed dilaton \(\tilde{X}\):

\[X_1 = -\frac{1}{4\sigma^2} \tilde{X}^{-2} \partial_\rho \tilde{X} \quad \quad \quad \quad X_2 = \tilde{X}^{-1} g \]

where \(g = g(\tau)\) is an additional boundary function. From equation (40) we obtain the following asymptotic expansion for the auxiliary fields:

\[X_1 = -\frac{1}{4\sigma^2} + \frac{1}{4\sigma^2} c_0 x_+^{-1} e^{-\rho} + \frac{1}{2\sigma^2} x_-^{-1} e^{-2\rho} + O(e^{-3\rho}) \]
\[X_2 = g \left[x e^{-\rho} - c_0 x^2 e^{-2\rho} + O(e^{-3\rho}) \right]. \] (43)

Equations (40), (42) and (43) represent our boundary conditions for the dilaton and the auxiliary fields, respectively.

The boundary equations of motion are obtained by replacing our boundary conditions in the \(\tau \)-components of equations (15) and (16). We obtain

\[g = \frac{1}{4\sigma^2} x'_+, \] (44)
\[x'_- = -4\sigma^2 g L, \] (45)
\[2\sigma^2 g' = x'_- - x'_+ L, \] (46)
\[c'_0 = 0 \] (47)

where the prime denotes derivative with respect to \(\tau \). From equations (44)–(46) we obtain a Schwarzian derivative

\[\frac{1}{2} x'''' + 2x'_+ L + x'_+ L' = 0 \] (48)

which is the first hint of a conformal field theory (CFT). Equation (47) states that the Casimir is conserved. Furthermore, by replacing the boundary conditions in the Casimir (36), we obtain

\[c_0^2 = 4x_+ x_- - 16\sigma^4 g^2 + V_0 = 2x_+ x''_+ + 4x_+^2 L - (x'_+)^2 + V_0. \] (49)

Note that the first three terms at the right hand side of the equation resemble the Casimir from JT gravity [52]. We can also obtain (48) by taking the derivative of (49) and use the conservation of the Casimir.

Boundary conditions partially break the original symmetries of dilaton gravity, i.e. invariance under diffeomorphism (in the second-order formalism (1)) or the non-linear gauge symmetry (in the first-order formalism (12)). Only a reduced group remains as symmetries, they are called asymptotic symmetries. Therefore, to obtain the asymptotic symmetries of the AdS\(_2\) gravity models, we need to know how the boundary conditions affect the original invariance under diffeomorphism:

\[\delta \xi g_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\nu} \partial_\alpha \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha \] (50)
\[\delta \xi X = \xi^\alpha \partial_\alpha X \] (51)

where \(\xi^\mu \) are the diffeomorphism parameters.

From the boundary condition (32) we obtain that the diffeomorphism parameters are

\[\xi^\rho = -\eta', \quad \xi^\tau = \eta - \frac{1}{2} \eta'' e^{-2\rho} + O(e^{-3\rho}). \] (52)

By decomposing into Fourier modes, we obtain that these vectors close the Witt algebra. Furthermore, the field \(\mathcal{L} \) transforms with an infinitesimal Schwarzian derivative:

\[\delta \eta \mathcal{L} = \eta \mathcal{L}' + 2\mathcal{L} \eta' + \frac{1}{2} \eta'''. \] (53)

where \(\eta = \eta(\tau) \). Therefore, \(\mathcal{L} \) behaves like a CFT stress tensor.

Since \(\tilde{X} \) also transforms as (51), we obtain the following transformations:

\[\delta \eta x_+ = \eta x'_+ - \eta' x_+ \] (54)
\[\delta \eta c_0 = \eta c'_0 \] (55)
The transformation for the dilaton leading order x_+ is similar to a boundary vector. The transformations for the Casimir c_0 and x_- are similar to the JT case. Note that on-shell, the transformation for the Casimir is zero, since $c_0' = 0$.

5. Boundary conditions in the Eddington–Finkelstein gauge

As we mentioned in the introduction, AdS$_2$ holography can also be explored in the Eddington–Finkelstein gauge [25, 29, 30, 53]. In this section we explore this gauge using the first–order formalism in complex variables. Let us begin writing the line element

$$ds^2 = 2i du dr + 2B(r, u) du^2$$

(57)

where r is the radial coordinate, u is the retarded time and B an arbitrary function. Equivalently, we can choose the following ansatz for the complex zweibein and Levi–Civita connection

$$e_r = 0, \quad \bar{e}_r = i, \quad e_u = 1, \quad \bar{e}_u = B, \quad \Omega_r = 0, \quad \Omega_u = -\partial_r B.$$

(58)

The above choice is consistent with equations (21) and (22). Replacing (58) in (23) for the AdS$_2$ dilaton gravity models, we obtain the following equation:

$$\partial_r^2 B = \frac{1}{l^2},$$

with solution

$$B(r, u) = \frac{1}{2} r^2 + \mathcal{P}(u) r + \mathcal{T}(u)$$

(59)

where \mathcal{P} and \mathcal{T} are function of the retarded time. Since we have obtained the function B, we have now determined all components of the complex Cartan variables. We request that in the asymptotic region $r \to \infty$, the Cartan variables tend to (58) with B given by (59). These are our boundary condition in the Eddington–Finkelstein gauge.

Now we have to solve the dilaton equations:

$$dX = i\bar{Y} e - iY e$$

(60)

$$dY = i\Omega Y - \frac{1}{8\sigma^2} i \left(V_0 e^{-8\sigma^2 X} - 1 \right) e + 4i\sigma^2 \bar{Y} Y e$$

(61)

$$d\bar{Y} = -i\Omega \bar{Y} + \frac{1}{8\sigma^2} i \left(V_0 e^{-8\sigma^2 X} - 1 \right) \bar{e} - 4i\sigma^2 \bar{Y} \bar{e}.$$

(62)

In appendix we solve the system for the particular case $V_0 = 1$ and $\sigma \to 0$, i.e, JT gravity. In general, for $\sigma \neq 0$ the radial components of (60)–(62) are

$$\partial_r X = Y$$

(63)

$$\partial_r Y = -4\sigma^2 Y^2$$

(64)

$$\partial_r \bar{Y} = -\frac{1}{8\sigma^2} \left(V_0 e^{-8\sigma^2 X} - 1 \right).$$

(65)

We can combine (63) with (64) to obtain

$$\partial_r^2 X + 4\sigma^2 (\partial_r X)^2 = 0.$$

(66)

Note that this equation does not depend on the Casimir, in contrast with the dilaton equation in the Fefferman–Graham case (37). In order to solve (66) we define $X = \frac{1}{4\sigma^2} \ln \Phi$. Then, the equation reduces to $\partial_r^2 \Phi = 0$, with solution

$$\Phi(r, u) = \varphi_1(u) r + \varphi_0(u)$$

(67)
where \(\varphi_{1,0} \) are arbitrary functions of the retarded time. We can obtain \(Y \) from equation (63):

\[
Y = \frac{1}{4\sigma^2} \Phi^{-1} \partial_t \Phi = \frac{1}{4\sigma^2} \left[r^{-1} - \varphi_0 \varphi_1^{-1} r^{-2} + \mathcal{O} \left(r^{-3} \right) \right]
\]

(68)

and, from (65) we obtain the following equation for \(\bar{Y} \):

\[
\partial_t \bar{Y} = \frac{1}{8\sigma^2} - \frac{1}{8\sigma^2} V_0 \Phi^{-2} = \frac{1}{2} - \frac{1}{8\sigma^2} V_0 \varphi_1^{-2} r^{-2} \left(1 - 2 \varphi_1^{-1} \varphi_0 r^{-1} + \ldots \right).
\]

(69)

This expression can be integrated

\[
\bar{Y} = \frac{1}{8\sigma^2} \left[r + \ell \left(u \right) + V_0 \varphi_1^{-2} r^{-1} + \mathcal{O} \left(r^{-2} \right) \right].
\]

(70)

where \(\ell \) is a function of the retarded time, this function is introduced at the moment of integration. The expressions (68)–(70) represent our boundary conditions for the auxiliary complex fields.

Since we have the boundary condition for the dilaton part, we can now compute the Casimir. In this case we obtain the following finite expression

\[
c_0 = -16 \sigma^4 \mathcal{C} = \frac{1}{2} \left(\varphi_0 - \ell \varphi_1 \right).
\]

(71)

From the temporal components of (60)–(62) we obtain the boundary equations of motion

\[
i \dot{\varphi}_1 = -\frac{1}{2} \varphi_0 - \frac{1}{2} \varphi_1 \ell + \mathcal{P} \varphi_1
\]

(72)

\[
i \dot{\varphi}_0 = -\frac{1}{2} \varphi_0 \ell + \mathcal{T} \varphi_1 - \frac{1}{2} V_0 \varphi_1^{-1}
\]

(73)

\[
i \dot{\ell} = \mathcal{T} + \frac{1}{2} \ell^2 - \ell \mathcal{P} + \frac{1}{2} V_0 \varphi_1^{-2}
\]

(74)

where the dot denotes partial derivative with respect to the retarded time: \(\partial_t \). From these equations we can show that the Casimir (71) is conserved \(\partial_t c_0 = 0 \). Furthermore, by a simple manipulation of the equations we can write the Casimir as a function of \(\varphi_1, \mathcal{P}, \mathcal{T} \) and their derivatives:

\[
c_0^2 = 2 \varphi_1 \dot{\varphi}_1 - \varphi_1^2 + 4 \varphi_1^2 \left(\frac{1}{2} i \mathcal{P} + \frac{1}{4} \mathcal{P}^2 - \frac{1}{2} \mathcal{T} \right) + V_0.
\]

(75)

This expression is similar to (49) if we identify \(\varphi_1 \rightarrow x_+ \) and \(\mathcal{L} \rightarrow \frac{1}{2} i \mathcal{P} + \frac{1}{4} \mathcal{P}^2 - \frac{1}{2} \mathcal{T} \). Therefore, if we derive (75) and use the conservation of the Casimir, we obtain a Schwarzian derivative for the field \(\varphi_1 \). For JT gravity, this identification can be derived by relating the solution space of Eddington–Finkelstein and Fefferman–Graham gauge.

In the Eddington–Finkelstein gauge the diffeomorphism parameters are:

\[
\xi^a = \alpha, \quad \xi^\alpha = -\dot{\alpha} r + \beta
\]

(76)

where \(\alpha \) and \(\beta \) are independent functions of the retarded time. Performing a decomposition into Fourier modes, we notice that these vectors close a warped Witt algebra. Furthermore, they produce the following transformation on the fields \(\mathcal{P}, \mathcal{T} \) and in the dilaton components

\[
\delta_\xi \mathcal{P} = \alpha \dot{\mathcal{P}} + \mathcal{P} \dot{\alpha} - i \dot{\beta} + \beta
\]

(77)

\[
\delta_\xi \mathcal{T} = \alpha \dot{\mathcal{T}} + 2 \mathcal{T} \dot{\alpha} + i \dot{\beta} + \mathcal{P} \beta
\]

(78)

\[
\delta_\xi \varphi_1 = \alpha \dot{\varphi}_1 - \varphi_1 \dot{\alpha}
\]

(79)
\[\delta \xi \phi_0 = \phi_1 \beta + \dot{\phi}_0 \alpha. \] (80)

By performing a shift \(\mathcal{P} \rightarrow i \mathcal{P}, \beta \rightarrow i \beta, \phi_0 \rightarrow i \phi_0 \), we notice that the transformation of the fields \(\mathcal{P} \) and \(T \) coincide with the ones of a warped Virasoro, whenever \(\beta \) is a total derivative, and that the leading order of the dilaton \(\Phi \) transforms as a boundary vector.

6. Thermodynamics

A good test of consistency for our boundary conditions is the computation of the thermodynamic properties of the black hole solutions. These solutions are obtained for static configurations after performing a Wick rotation.

Let us begin with our solution in the Fefferman–Graham gauge where the static configuration is given by:

\[x^+ = \bar{x} = \text{cte} \quad \text{and} \quad L = \bar{L} = \text{cte}. \]

Performing a Wick rotation \(\tau \rightarrow i \tau \) we notice that (27) represents a black hole with a single horizon \(\rho_h \) located at \(e^{\rho_h} = \sqrt{\bar{L}} \). This solution is different from the one obtained in section 2 which possess inner and outer horizon. Wald’s formula states that the entropy is proportional to the value of the dilaton at the horizon. Then:

\[S_{\text{Wald}} = k X(\rho_h) = \frac{k}{4 \sigma^2} \ln \tilde{X}_h \] (81)

where \(\tilde{X}_h \) denotes the value of the transformed dilaton at the horizon. For static configuration the boundary equations of motion reduce to

\[x^- = \bar{L} \bar{x}, \quad c_0^2 = 4 \bar{L} \bar{x}^2 + V_0 \] (82)

and, as a consequence, \(\tilde{X}_h = c_0 + 2 \sqrt{\bar{L}} = c_0 + \sqrt{c_0^2 - V_0} \). Therefore, the entropy (81) is given by

\[S_{\text{Wald}} = \frac{k}{4 \sigma^2} \ln \left(c_0 + \sqrt{c_0^2 - V_0} \right). \] (83)

This result coincides with our previous computation (9).

We now follow a similar procedure for the solution in the Eddington–Finkelstein gauge. We perform a Wick rotation \(u \rightarrow i u \) and consider static configuration: \(\varphi_1 = \bar{\varphi} = \text{cte}, \mathcal{P} = \bar{\mathcal{P}} = \text{cte} \) and \(T = \bar{T} = \text{cte} \). This solution represents a black hole with outer horizon located at \(r_h = -\bar{\mathcal{P}} + (\bar{\mathcal{P}}^2 - 2\bar{T})^{1/2} \). For this configuration, the boundary equations of motion are

\[\varphi_0 = c_0 + \bar{\mathcal{P}} \bar{\varphi}, \quad c_0^2 = \bar{\varphi}^2 \left(\bar{\mathcal{P}}^2 - 2\bar{T} \right) + V_0. \] (84)

Then, the value of the dilaton at the horizon is

\[X_h = \frac{1}{4 \sigma^2} \ln [\bar{\varphi} r_h + \bar{\varphi}_0] = \frac{1}{4 \sigma^2} \ln \left[\bar{\varphi} \left(-\bar{\mathcal{P}} + \sqrt{\bar{\mathcal{P}}^2 - 2\bar{T}} \right) + c_0 + \bar{\mathcal{P}} \bar{\varphi} \right]. \] (85)

Using the Casimir expression in (84), we notice that (85) leads to the same Wald’s entropy (83).

These results show that our boundary conditions in Fefferman–Graham and Eddington–Finkelstein gauge are consistent since they reproduce the correct entropy.

7. Final remarks

In this work we proposed new boundary conditions for the AdS\(_2\) gravity models [3]. We showed that for a constant potential \(U \) this model can be built from (4) as the most general
dilaton gravity with constant curvature. If we repeat this procedure for flat space, we obtain a particular Liouville gravity model [45]: $U = 4\sigma$ and $V = V_0 e^{-8\sigma X}$.

Our boundary conditions are different from the ones proposed in [3]. The main difference is the gauge choice: In section 4 we worked in the Fefferman–Graham gauge, which is the preferred gauge to study asymptotically AdS spacetimes, and in section 5 we worked in the Eddington–Finkelstein which can be adapted to asymptotically flat or asymptotically AdS spacetimes (see [54]), while in [3] the model (5) was studied in the conformal gauge. Since we are dealing with a bi-parametric family of models with negative and constant curvature, our gauge choices are more natural for the study of AdS holography. In the Fefferman–Graham gauge we have a field L that belongs to the coadjoint orbit of the Virasoro group ([53]) and in the Eddington–Filkenstein gauge, we have two quantities $(\mathcal{P},\mathcal{T})$ that belong to the coadjoint representation of the warped Virasoro group ([77], [78]). These results are known for JT gravity and now we are generalizing them for the family of models (5). Another difference with [3] is that we propose boundary conditions for the Cartan variables, the dilaton and auxiliary fields after solving the first-order equations of motion, rather than the second-order ones: this procedure allows generalizations, following a similar approach to [52], leading to different sets of boundary conditions and consequently, to new set of asymptotic symmetries. We also applied a consistency check to our boundary conditions: since we are working in Euclidean signature, we computed the correct entropy of our black hole solutions from Wald’s formula.

As future perspectives of this work, it would be interesting to explore if the entropy can be computed through a Cardy or Cardy-like formula. To achieve this we first need to compute the boundary charges. The integrability of the charges, in the Bondi gauge, has been studied in [53] and applied for models with $U = 0$. Then, it would be illustrative to check the integrability for models with constant U, such as the AdS$_2$ models.

Another topic that need further study is to obtain a Schwarzian action as the holographic dual of the AdS$_2$ gravity models, i.e. as a result of computing the complete action $\Gamma = I + I_b$ for fluctuating dilaton solution, where I is the bulk action (1) and I_b is a collection of boundary terms (see [25, 53, 55]). For JT gravity and the AdS sector of the ab–family, the bulk action is zero and a boundary term, respectively. Then, the complete action is a boundary term proportional to the Casimir, and after some manipulations, we obtain a Schwarzian action. On the other hand, the bulk action for AdS$_2$ gravity models is neither zero nor a boundary term for fluctuating dilaton solutions. We consider that for the AdS$_2$ gravity models, the most appropriated approach to obtain the Schwarzian is exploring the target space diffeomorphism in the first-order formulation, as performed in [42] for the Rindler gravity model.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgment

We thank D Vassilevich for reading the manuscript and discussions. We also thank F Ecker and D Grumiller for their collaboration on two-dimensional gravity.
Appendix. Boundary conditions for JT gravity using complex fields

Let us propose boundary conditions for the JT gravity case, i.e. \(V_0 = 1 \) and \(\sigma \to 0 \). The dilaton equations are

\[
dX = i\bar{Y}e - iYe \tag{86}
\]

\[
dY = i\Omega Y + iXe \tag{87}
\]

\[
d\bar{Y} = -i\Omega \bar{Y} - iXe. \tag{88}
\]

Replacing the conditions (58) and (59) in the radial components of equations (86)–(88) we obtain

\[
\partial_r X = Y, \quad \partial_r Y = 0, \quad \partial_r \bar{Y} = X. \tag{89}
\]

This system of equations has solution

\[
X = \phi_1 r + \phi_0, \quad Y = \phi_1, \quad \bar{Y} = \frac{1}{2} \phi_1 r^2 + \phi_0 r + \phi_{-1} \tag{90}
\]

where \(\phi_{0, \pm 1} \) are functions of the retarded time \(u \). The equations (90) represent the boundary conditions for the dilaton and auxiliary complex fields. Replacing these conditions in the temporal components of the dilaton equation (86)–(88), we obtain the following boundary equations of motion

\[
i\dot{\phi}_1 = \phi_1 P - \phi_0 \tag{91}
\]

\[
i\dot{\phi}_0 = \phi_1 T - \phi_{-1} \tag{92}
\]

\[
i\dot{\phi}_{-1} = \phi_0 T - P \phi_{-1}. \tag{93}
\]

For JT gravity, the Casimir is given by \(C = -\frac{1}{2} X^2 + YY \). Replacing our boundary conditions (90) we obtain that \(C = \phi_1 \phi_{-1} - \frac{1}{2} \phi_0^2 \), and it can be easily checked that the Casimir is conserved \(\partial_u C = 0 \). The fields \(\phi_0 \) and \(\phi_{-1} \) can be written in function of \(\phi_1, P, T \) and their derivatives. Then, the Casimir takes the following form

\[
C = \frac{1}{2} \phi_1^2 - \phi_1^2 \left(\frac{1}{2} P^2 + iP - T \right) - \phi_0 \phi_1. \tag{94}
\]

Deriving this expression we obtain a Schwarzian derivative for \(\phi_1 \). The boundary conditions are equivalent to the ones presented in [29] (in the second-order formulation).

ORCID iD

Carlos Valcárcel https://orcid.org/0000-0002-5916-4865

References

[1] Strominger A 1999 AdS\(_2\) quantum gravity and string theory J. High Energy Phys. JHEP01(1999)007

[2] Cadoni M and Mignemi S 1999 Entropy of 2D black holes from counting microstates Phys. Rev. D 59 081501

[3] Hotta M 1998 Asymptotic isometry and two-dimensional Anti-de Sitter gravity (arXiv:gr-qc/9809035)
[4] Navarro-Salas J and Navarro P 2000 AdS$_2$/CFT$_1$ correspondence and near-extremal black hole entropy Nucl. Phys. B 579 250–66
[5] Teitelboim C 1983 Gravitation and Hamiltonian structure in two space-time dimensions Phys. Lett. B 126 41
[6] Jackiw R 1985 Lower dimensional gravity Nucl. Phys. B 252 343–56
[7] Maldacena J and Stanford D 2016 Remarks on the Sachdev-Ye-Kitaev model Phys. Rev. D 94 106002
[8] Jensen K 2016 Chaos in AdS$_2$ Holography Phys. Rev. Lett. 117 111601
[9] Sachdev S and Ye J 1993 Gapless spin fluid ground state in a random, quantum Heisenberg magnet Phys. Rev. Lett. 70 3339
[10] Kitaev A A simple model of quantum holography Talks at KITP, April and May 2015 (available at: https://online.kitp.ucsb.edu/online/entangled15/kitaev/)
[11] Mertens T G 2018 The Schwarzian theory—origins J. High Energy Phys. JHEP05(2018)036
[12] Saad P, Shenker S H and Stanford D JT gravity as a matrix integral (arXiv:1903.11115)
[13] Witten E 2020 Matrix models and deformations of JT gravity Proc. R. Soc. A 476 20200582
[14] Turiaci G J, Usatyuk M and Weng W W 2021 2D dilaton-gravity, deformations of the minimal string, and matrix models Class. Quantum Grav. 38 204001
[15] Maldacena J, Stanford D and Yang Z 2016 Conformal symmetry and its breaking in two dimensions near Anti-de-Sitter space Prog. Theor. Exp. Phys. 2016 12C104
[16] Astorino M, Cacciatori S, Klemm D and Zanon D 2003 AdS$_2$ supergravity and superconformal quantum mechanics Ann. Phys. 304 128–44
[17] Forste S and Golla I 2017 Newly AdS$_2$ Sugra and the super-Schwarzian Phys. Lett. B 771 157–61
[18] Cárdenas M, Fuentes-Alba O, González H A, Grumiller D, Valcárcel C and Vassilevich D 2018 Boundary theories for dilaton supergravity in 2D J. High Energy Phys. JHEP11(2018)077
[19] Fan Y and Mertens T G 2022 Supergroup structure of Jackiw-Teitelboim supergravity (arXiv:2106.09353)
[20] González H A, Grumiller D and Salzer J 2018 Towards a bulk description of higher spin SYK J. High Energy Phys. JHEP05(2018)083
[21] Mertens T G and Turiaci G J 2021 Liouville quantum gravity—holography, JT and matrices J. High Energy Phys. JHEP01(2021)073
[22] Mertens T G 2021 Degenerate operators in JT and Liouville (super)gravity J. High Energy Phys. JHEP04(2021)245
[23] Cvetič M and Papadimitriou I 2016 AdS$_2$ holographic dictionary J. High Energy Phys. JHEP12(2016)008
[24] Katanin M O, Kummer W and Liebl H 1997 On the completeness of the black hole singularity in 2D dilaton theories Nucl. Phys. B 486 353–70
[25] Ecker F, Valcárcel C and Vassilevich D 2021 2D holography beyond the Jackiw-Teitelboim model J. High Energy Phys. JHEP09(2021)182
[26] Afshar H, González H A, Grumiller D and Vassilevich D 2020 Flat space holography and the complex Sachdev-Ye-Kitaev model Phys. Rev. D 101 086024
[27] Afshar H, Esmaeili E and Safari H R 2021 Flat space holography in spin-2 extended dilaton-gravity J. High Energy Phys. JHEP07(2021)126
[28] Callan Jr C G, Giddings S B, Harvey J A and Strominger A 1992 Evanescent black holes Phys. Rev. D 45 1005–9
[29] Godet V and Marteau C 2020 New boundary conditions for AdS$_2$: J. High Energy Phys. JHEP12(2020)020
[30] Afshar H and Oblak B 2022 Flat JT Gravity and the BMS-Schwarzian (arXiv:2112.14609)
[31] Grumiller D, Hartong J, Prohazka S and Salzer J 2021 Limits of JT gravity J. High Energy Phys. JHEP02(2021)134
[32] Gomis J, Hidalgo D and Salgado-Rebolledo P 2021 Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity J. High Energy Phys. JHEP05(2021)162
[33] Grumiller D, Ruzziconi R and Zwikel C 2022 Generalized dilaton gravity in 2D SciPost Phys. 12 032
[34] Ecker F, Grumiller D and McNees R 2022 dS$_2$ as excitation of AdS$_2$ (arXiv:2204.00045)
[35] Grumiller D Laihartinger M and Ruzziconi R 2022 Minkowski and AdS ground states in general 2D dilaton gravity 4 (arXiv:2204.00264)
[36] Kyono H, Okumura S and Yoshida K 2017 Deformations of the Almheiri-Polchinski model J. High Energy Phys. JHEP03(2017)173
[37] Kyono H, Okumura S and Yoshida K 2017 Comments on 2D dilaton gravity system with a hyperbolic dilaton potential Nucl. Phys. B 923 126–43
[38] Frolov V P and Zelnikov A 2018 On the Liouville 2D dilaton gravity models with sinh-Gordon matter J. High Energy Phys. JHEP02(2018)088
[39] Okumura S and Yoshida K 2018 Weyl transformation and regular solutions in a deformed Jackiw–Teitelboim model Nucl. Phys. B 933 234–47
[40] Grumiller D, Salzer J and Vassilevich D 2015 AdS$_2$ holography is (non-)trivial for (non-)constant dilaton J. High Energy Phys. JHEP12(2015)015
[41] Schaller P and Strobl T 1994 Poisson structure induced (topological) field theories Mod. Phys. Lett. A 9 3129–36
[42] Valcarcel C and Vassilevich D 2022 Target space diffeomorphisms in Poisson sigma models and asymptotic symmetries in 2D dilaton gravities (arXiv:2202.02603)
[43] Nojiri S and Odintsov S D 2001 Quantum dilatonic gravity in d = 2, 4 and 5 dimensions Int. J. Mod. Phys. A 16 1015–108
[44] Grumiller D, Kummer W and Vassilevich D V 2002 Dilaton gravity in two dimensions Phys. Rept. 369 327–429
[45] Bergamin L, Grumiller D, Kummer W and Vassilevich D V 2005 Classical and quantum integrability of 2D dilaton gravities in Euclidean space Class. Quantum Grav. 22 1361–82
[46] Polyakov A M 1981 Quantum geometry of bosonic strings Phys. Lett. B 103 207–10
[47] Grumiller D and Jackiw R 2010 Liouville gravity from Einstein gravity Recent Developments in Theoretical Physics ed S Gosh and G Kar (Singapore: World Scientific) pp 331–43
[48] Almheiri A and Polchinski J 2015 Models of AdS$_2$ backreaction and holography J. High Energy Phys. JHEP11(2015)014
[49] Mann R B, Shiekh A and Tarasov L 1990 Classical and quantum properties of two-dimensional black holes Nucl. Phys. B 341 134–54
[50] Gegenberg J, Kunstatter G and Louis-Martinez D 1995 Observables for two-dimensional black holes Phys. Rev. D 51 1781–6
[51] Fefferman C and Graham C R 2011 The ambient metric Ann. Math. Stud. 178 1–128
[52] Grumiller D, McNees R, Salzer J, Valcárcel C and Vassilevich D 2017 Menagerie of AdS$_2$ boundary conditions J. High Energy Phys. JHEP10(2017)203
[53] Ruzziconi R and Zwikel C 2021 Conservation and integrability in lower-dimensional gravity J. High Energy Phys. JHEP04(2021)034
[54] Ruzziconi R 2020 Asymptotic symmetries in the gauge fixing approach and the BMS group PoS Modave2019 083
[55] Grumiller D and McNees R 2007 Thermodynamics of black holes in two (and higher) dimensions J. High Energy Phys. JHEP04(2007)074