INSECT VENOM TOXINS/POTENTIAL IMMUNE-ALLERGIC RESPONSES, DIAGNOSIS AND THERAPEUTICS

KRISHNA KUMAR PRAJAPATI, RAVI KANT UPADHYAY

Immunobiological laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, U. P. India

*Email: rkuupadhy@yahoo.com

Received: 05 Sep 2020, Revised and Accepted: 21 Dec 2020

ABSTRACT

Present article explains insect toxins, its immune allergic, pharmaceutical and therapeutic effects. Insect venom glands generate enzymatic and non-enzymatic toxins and are inflicted by the stings. Insect’s envenomation are highly painful, inflamed and life-threatening. It causes breathing difficulties, bronchospasm, hypotension and arrhythmia, cardiopulmonary problems, and imposes allergic reactions. Wasp venom toxins generate strong T-cell responses in hypersensitivity patients and stimulate the production of IgE antibody molecules. Massive envenomations causes the death of victims due to the toxic effects of the venom toxins if clinical treatment is delayed. This article also emphasizes the role of natural and recombinant toxins for the development of highly sensitive immune-assays for diagnosis of allergen-specific tolerance, its early and delayed effects in patients to avoid fatal anaphylactic reactions. It also directs about the essentiality of immune diagnostics, vaccines and antiserum therapy in high population density regions where incidences of wasp and bee envenomations are more frequently occur. Venom immunotherapy can restore normal immunity against venom allergens and may also provide lifetime tolerance against venoms. This article highlights the major effects of insect venom allergens, its diagnosis and venom immunotherapy.

Keywords: Wasps and honeybee, Allergens, Immune-hypersensitivity, Venom immunotherapy

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ijpps.2021v13i1.39650. Journal homepage: https://innovareacademics.in/journals/index.php/ijpps

INTRODUCTION

Hymenoptera is an order of the class Insecta comprises important families, i.e. Apidae, Vespidae, and Myrmicidae. These represent venomous insects, including honeybees, bumblebees, paper wasps, hornets, ants. These insects possess specialized stinging apparatus that is used to inject venom into prey’s or intruder’s body. Stinging by wasps, bees and hornets could be life-threatening for people sensitive to the venom. Members of family Apidae and Vespidae inflict stings very fast and results in allergic reactions and display fast to delayed hypersensitivity reactions. Bumblebees are allergic, but relatively less aggressive than wasps and honey bees and largely assist in plant pollination [1]. Fire ants are representative of the family Myrmicidae and cause local inflammation and its venom is less sensitive than other bees and wasps [2]. Hymenopteran stinging evokes hypersensitivity that causes a number of deaths in the world than any other envenomations [3]. Envenomation by hymenoptera imposes anaphylactic effects such as generalized urticaria, bronchospasm, hypotension, cardiovascular collapse and loss of consciousness.

Venom toxins also impose systemic toxic reactions such as edema, vomits, diarrhea, headache, hypotension, seizures, altered mental status and any unusual reactions such as cardiac ischemia and encephalomyelitis that usually lasts for 1-2 d [4]. Anaphylaxis is life-threatening, as imposing cardiopulmonary collapse and generates breathing difficulties, bronchospasm, hypotension and arrhythmia [5]. In extreme cases, anaphylaxis appeared as systemic symptoms involving the gastrointestinal tract, genitourinary tract, or the nervous system. It generates a severe systemic reaction in children as they display mild eosinophilia, female sex and concomitant atopic diseases [6]. Severity of allergy depends on immune tolerance as it is seen in beekeepers, but in normal people, it shows an increased risk of sting anaphylaxis due to intense allergen exposure, allergy and low-grade systemic reactions [7] (table 1). But most deaths occur due to the occurrence of immediate hypersensitivity reactions and anaphylaxis. In the present review, pharmacological and therapeutic effects of major insect venom toxins have been broadly explained for management after stings.

Source of information

For writing this comprehensive research review on hymenoptera insect toxins/allergens, various databases were searched. For the collection of relevant information specific terms such as medical subject headings (MeSH) and key text words, such as “venom allergens”, “biological and pharmaceutical effects”, venom immunotherapy drug development published till 2020 were used in MEDLINE. Most especially for retrieving all articles pertaining to the use of VIT for insect venom allergy, electronic bibliographic databases were searched and abstracts of published studies with relevant information on the venom toxins/allergens were collected. Furthermore, additional references were included through searching the references cited by the studies done on the present topic. Relevant terms were used individually and in combination to ensure an extensive literature search. For updating the information about a subject and incorporation of recent knowledge, relevant research articles, books, conference proceedings and public health organization survey reports were selected and collated based on the broader objective of the review. This was achieved by searching databases, including SCOPUS, Web of Science, and EMBASE, Pubmed, Swissprot, Google searches. From this common methodology, discoveries and findings were identified and summarized in this final review.

Physiological effects

Physiologically animal toxins are highly active natural substances which bind to various channels and break the normal barrier to the free movement of molecules across cell membranes. Venom toxins cause enormous hemolysis of RBCs and damage nerve cells. These specifically act upon neurons, nicotinic acetylcholine receptors and neuromuscular junctions. Hymenopteran venom toxins cause hypotensive effects, while a non-enzymatic neurotoxic peptide fraction produced the hypertensive effects Phospholipase A, an enzymatic toxin, severely acts upon motor nerve terminals and muscle cells. It damages skeletal muscles and inhibits cell regeneration. Bee venom contains melittin (membranous toxin), albumin (neurotoxin), tertiapin, MCD-peptide (mast cell degranulating peptide), acidic phosphatase, as well as phospholipase A2 and hyaluronidase, both possessing allergenic properties (table 1). Melatonin is an enzymatic toxin that hydrolyzes membrane phospholipids and form channels through which small molecules may pass. Protease inhibitors found in venom bind to protease...
Various venom toxins isolated from bees, wasps and scorpion induces immuno-modulatory, cardio-respiratory, analgesic and homeopathic effects. These venom toxins cause sudden inflammation in body cells with severe pain and do massive inhibition of axonal transmission in neurons. Toxins also change the orientation and affinity of ion binding sites and change ion permeability mediated by the nicotinic ACh receptors. Different animal groups have different channel inhibitors. Some toxins are inhibitors of metabolic enzymes and have hydrophobic pockets in their secondary structure by which the venom bind at specific substrate binding sites. The toxicity of venom depends upon the sequence of amino acid residues present in the active site regions, topological folding, hydrophobic pockets and binding affinity. The mode of action of animal toxins and their physiological consequences varies greatly according to the structural variability in the active site region (table 1).

Venoms also cause acute and chronic inflammatory responses in laboratory animals. These affect ATP as driven Na+-K+ATPase pumps, that plays a key role in maintaining cell volume and energy stored in molecules of ATP to move K+ and Na+ outside the cell and K+ inside the cell. This actively transports ions across the cell membrane, helps in the excitation of nerves, and does phosphorylation and dephosphorylation in muscle cells. In this mechanism some transmembrane proteins/enzymes utilize the energy stored in molecules of ATP to move K+ into the neuron. Na+-K+ pump assists the neurons in maintain of resting potential for which pump allows interior negative charge and exterior positive charge on neurons by pumping Na+ outside the cell and K+ inside the cell. Both Na+ and K+ channels are competitively blocked by these toxins, induce the release of transmitter and cause repetitive firing of the axons and cause repetitive firing of the axons. Wasp and bee envenomation causes severe pain, redness, swelling, heavy inflammation, fever, problem in breathing and severe cardiovascular problems. Reactions to Hymenoptera stings are classified into inflammation, fever, problem in breathing and severe cardiovascular pathology. These are categorized into four levels or grades. Upon infliction, venom causes large local allergic reactions or systemic reactions [28] i.e., displayed in form of intradermal lesion 10 mm in diameter which depends on the individual sensitization pattern [29]. This is highly painful and surrounded by swelling of subcutaneous tissue, up to 10 cm in diameter that persists for a long time. Moderate local swelling with redness around the sting site, warmth, urticaria, Angio-oedema, rhinitis, nausea, intense pain, mild to moderate local swelling with redness around the sting site, warmth or inflammation at the site of envenomation include anaphylactic shock. The wasp venom allergen shows cross-reactivity [20]. Similar cross-reactivity is also detected between the venoms of yellow jacket wasps and hornets [24]. Wasp venom generates immediate and delayed hypersensitivity reactions that resulted in fatal IgE-mediated anaphylactic reactions in allergic individuals [26]. Insect venoms also cause non-allergic local reactions such as pain, small demo, and redness at the site of the sting. First contact with the allergen present in the venom leads to the synthesis of specific IgE antibodies by allergen sensitized B lymphocytes during generation of humoral response. As soon as antigens interact with antibodies bound to the surface of mast cells, results in degranulation of these cells. They start the release of preformed mediators mainly histamine. Some of the other important mediators are prostaglandins, leukotrienes which are synthesized de novo. The release of these molecules accelerates permeability of capillaries, dilatation of venous vessels, and start constriction of bronchial and alimentary tract muscular membrane. It, further, reflected by the cascade of clinical signs leading to the anaphylactic reaction. Mechanisms leading to the activation of mast cells. This reaction leads to the synthesis of antibodies against T-cell dependent antigens and inhibits the apoptosis of B lymphocytes [27].

Venom toxins are primary actors for toxicity in animal venoms [14]. These generate severe allergic effects in vectors [15]. Wasp sting shows neurotoxicity and impose cortical necrosis (CAN) in the brain [16], severe lung hemorrhage [17], fever [18] systemic reactions includes anaphylactic shock [19] and genotoxic or mutagenic effects [20]. Insect venom also possesses vasoactive and thrombogenic substances cause vasospasm and coronary thrombosis [21]. Stinging by two insects of two different species show cross-reactivity and show severe allergic reaction because their venom has different epitopes of antigens. Bee and bumblebee venom allergen show cross-reactivity [23]. Similar cross-reactivity is also detected between the venoms of yellow jacket wasps and hornets [24]. This cross-reactivity might be due to the similarity of epitopes of antigens contained in venoms of various insect species. Most common observation about bees, they die immediately after injecting venom, while the wasp can sting several times. Bees sting a single time, but wasp inflicts venom repetitively but an allergic reaction is lower than in the bee [25].

Immune allergic responses

Wasp and bee venom is immunogenic in nature. It induces type I reaction, a most common type of immune response which generate by IgE mediated mechanism in initial stage of allergy. The wasp venom generates immediate and delayed hypersensitivity reactions that resulted in fatal IgE-mediated anaphylactic reactions in allergic individuals [26]. Insect venoms also cause non-allergic local reactions such as pain, small demo, and redness at the site of the sting. First contact with the allergen present in the venom leads to the synthesis of specific IgE antibodies by allergen sensitized B lymphocytes during generation of humoral response. As soon as antigens interact with antibodies bound to the surface of mast cells, results in degranulation of these cells. These start the release of preformed mediators mainly histamine. Some of the other important mediators are prostaglandins, leukotrienes which are synthesized de novo. The release of these molecules accelerates permeability of capillaries, dilatation of venous vessels, and start constriction of bronchial and alimentary tract muscular membrane. It, further, reflected by the cascade of clinical signs leading to the anaphylactic reaction. Mechanisms leading to the activation of mast cells. This reaction leads to the synthesis of antibodies against T-cell dependent antigens and inhibits the apoptosis of B lymphocytes [27].

Pathological signs and symptoms

Upon envenomation, venom causes local allergic reactions or systemic reactions [28] i.e., displayed in form of intradermal lesion an itchy wheal, up to 2 cm in diameter which depends on the individual sensitization pattern [29]. This is highly painful and surrounded by swelling of subcutaneous tissue, up to 10 cm in diameter that persists for a long time. Moderate local swelling with redness around the sting site, warmth, urticaria, Angio-oedema, rhinitis, nausea, intense pain, mild to moderate local swelling with redness around the sting site, warmth or inflammation at the site of stinging. Level I or stage I causes systemic reactions includes anaphylactic shock. The wasp venom allergen shows cross-reactivity [20]. Similar cross-reactivity is also detected between the venoms of yellow jacket wasps and hornets [24]. This cross-reactivity might be due to the similarity of epitopes of antigens contained in venoms of various insect species. Most common observation about bees, they die immediately after injecting venom, while the wasp can sting several times. Bees sting a single time, but wasp inflicts venom repetitively but an allergic reaction is lower than in the bee [25].

Immune allergic responses

Wasp and bee venom is immunogenic in nature. It induces type I reaction, a most common type of immune response which generate by IgE mediated mechanism in initial stage of allergy. The wasp venom generates immediate and delayed hypersensitivity reactions that resulted in fatal IgE-mediated anaphylactic reactions in allergic individuals [26]. Insect venoms also cause non-allergic local reactions such as pain, small demo, and redness at the site of the sting. First contact with the allergen present in the venom leads to the synthesis of specific IgE antibodies by allergen sensitized B lymphocytes during generation of humoral response. As soon as antigens interact with antibodies bound to the surface of mast cells, results in degranulation of these cells. These start the release of preformed mediators mainly histamine. Some of the other important mediators are prostaglandins, leukotrienes which are synthesized de novo. The release of these molecules accelerates permeability of capillaries, dilatation of venous vessels, and start constriction of bronchial and alimentary tract muscular membrane. It, further, reflected by the cascade of clinical signs leading to the anaphylactic reaction. Mechanisms leading to the activation of mast cells. This reaction leads to the synthesis of antibodies against T-cell dependent antigens and inhibits the apoptosis of B lymphocytes [27].

Pathological signs and symptoms

Upon envenomation, venom causes local allergic reactions or systemic reactions [28] i.e., displayed in form of intradermal lesion an itchy wheal, up to 2 cm in diameter which depends on the individual sensitization pattern [29]. This is highly painful and surrounded by swelling of subcutaneous tissue, up to 10 cm in diameter that persists for a long time. Moderate local swelling with redness around the sting site, warmth, urticaria, Angio-oedema, rhinitis, nausea, intense pain, mild to moderate local swelling with redness around the sting site, warmth or inflammation at the site of stinging. Level I or stage I causes systemic reactions includes anaphylactic shock. The wasp venom allergen shows cross-reactivity [20]. Similar cross-reactivity is also detected between the venoms of yellow jacket wasps and hornets [24]. This cross-reactivity might be due to the similarity of epitopes of antigens contained in venoms of various insect species. Most common observation about bees, they die immediately after injecting venom, while the wasp can sting several times. Bees sting a single time, but wasp inflicts venom repetitively but an allergic reaction is lower than in the bee [25].

Immune allergic responses

Wasp and bee venom is immunogenic in nature. It induces type I reaction, a most common type of immune response which generate by IgE mediated mechanism in initial stage of allergy. The wasp venom generates immediate and delayed hypersensitivity reactions that resulted in fatal IgE-mediated anaphylactic reactions in allergic individuals [26]. Insect venoms also cause non-allergic local reactions such as pain, small demo, and redness at the site of the sting. First contact with the allergen present in the venom leads to the synthesis of specific IgE antibodies by allergen sensitized B lymphocytes during generation of humoral response. As soon as antigens interact with antibodies bound to the surface of mast cells, results in degranulation of these cells. These start the release of preformed mediators mainly histamine. Some of the other important mediators are prostaglandins, leukotrienes which are synthesized de novo. The release of these molecules accelerates permeability of capillaries, dilatation of venous vessels, and start constriction of bronchial and alimentary tract muscular membrane. It, further, reflected by the cascade of clinical signs leading to the anaphylactic reaction. Mechanisms leading to the activation of mast cells. This reaction leads to the synthesis of antibodies against T-cell dependent antigens and inhibits the apoptosis of B lymphocytes [27].

Pathological signs and symptoms

Upon envenomation, venom causes local allergic reactions or systemic reactions [28] i.e., displayed in form of intradermal lesion an itchy wheal, up to 2 cm in diameter which depends on the individual sensitization pattern [29]. This is highly painful and surrounded by swelling of subcutaneous tissue, up to 10 cm in diameter that persists for a long time. Moderate local swelling with redness around the sting site, warmth, urticaria, Angio-oedema, rhinitis, nausea, intense pain, mild to moderate local swelling with redness around the sting site, warmth or inflammation at the site of stinging. Level I or stage I causes systemic reactions includes anaphylactic shock. The wasp venom allergen shows cross-reactivity [20]. Similar cross-reactivity is also detected between the venoms of yellow jacket wasps and hornets [24]. This cross-reactivity might be due to the similarity of epitopes of antigens contained in venoms of various insect species. Most common observation about bees, they die immediately after
or anaphylaxis with swelling of face, throat, lips and tongue, restlessness, anxiety, sharp drop in blood pressure, fast pulse and dizziness. The patient also griped in wheezing, dizziness, and lower blood pressure, and light-headedness, loss of consciousness, nausea or vomiting. Usually, the systemic reaction develops within 10 min of stinging [31].

Venom composition

The venom of hymenopterans (bees and wasps) is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. It contains enzymes, non-enzymatic constituents. Hymenoptera venom quality (w/v) differs from species to species, age of the insect. On average the protein content per single injection of venom amounts to 50–70 μg in the bee, 4.0–16 μg in the wasp, and 10–30 μg in the bumblebee [31]. The venom protein of the hymenopteran is categorized in 3 groups. Group A consists of enzymatic components such as hyaluronidases, phospholipases, Group B Non-enzymatic components (peptide components) such as antigen-5, mastoparans, wasp Kinase while group C represents phospholipases, hyaluronidases and mastoperans and non-peptidic components like alkaloids and polyamines. Hymenoptera venom each contain a variety of protein allergens. Solitary and social wasp venoms include hyaluronidase, phospholipase A2, A, B, C, C2, D, D2, and some endopeptidases. Enzymes phospholipase A1, phospholipase A2, acid phosphatase, hyaluronidase, serine protease and antigen 5 are common venom allergens of hymenopterans [32] (table 1). Many types of enzymes found in the Polistes flavus venom such as hydrolases (proteases, hyaluronidases, phospholipases and nucleotides) all these; enzymes are grouped into hydrolases as well as allergens [33] and toxins [34]. The most abundant proteins identified in parasitoid venom are hydrolases, such as proteases, peptides, esterases, glycolipids, hydrolase and endo-γ-cyclases. Few parasitoid venom proteins functions as extracellular superoxide dismutase-3, serine protease inhibitor and calreticulin [35]. Fewer toxins possess highly stable inhibitors cysteine knot (CkK) motif2 and 4 disulfide bonds. These were found ion channel blockers (neurotoxins) and hemolytic agents [36].

Component specific allergic reactions

(i) **Hyaluronidases**

Hyaluronidases are glycoproteins found in the venom of honey bees, wasps and snake venom. These are a family of enzymes that catalyze the degradation of hyaluronic acid. Hyaluronidases function in almost all venomous and non-venomous insects, including some of the most dangerous allergens. It contains N-glycans, which are responsible for allergenicity. It is a glycoside hydrolase that breaks β-14 glycosidic bonds between N-acetylglucosamine and D-glucuronic acids of the hyaluronic acids [37]. Hyaluronidases mainly hyalurononcaglucosidases (EC 3.2.1.35), i.e., cleave the (→4)-linkages between N-acetylglucosamine and glucuronic acid. These are allergenic factors in the bee and wasp venoms and induce severe anaphylactic and IgE-mediated reactions in mammals [38]. It initiates the release of histamine from mast cells that is responsible for the immediate type of hypersensitivity reactions [39]. The hyaluronidases in vespid venoms are similar to bee venom hyaluronidase [40]. The enzymes contain significant amounts of N-linked carbohydrate [41]. These possess three groups of hyaluronidases i.e. endo-β-N-acetyl-D-hexosaminidases that hydrolyze the higher molecular weight substrates to tetrasaccharides as the main end products. Second is β-endoglycoridases group that is detected in leeches and the hookworms. The third groups of the loss that act via β-elimination yielding disaccharides as the main products reported in bacterial hyaluronidases (table 1).

(ii) **Phospholipases**

Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds into fatty acids and other lipophilic substances. Phospholipases are widespread in nature and play very diverse roles, from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. There are four major classes, termed A, B, C and D, which are distinguished by the type of reaction which they catalyze. Phospholipase A2 acts on the intact lecithin molecule and hydrolyzes the fatty acid esterified to the second carbon atom. The resulting products are lyssolecithin and a fatty acid. Phospholipase A2 is an enzyme present in the venom of bees and viper snakes. Phospholipases are enzymes that hydrolyze the ester bonds of the phospholipids and fatty acids.

The wasp venom belongs to a different superfamilies than those of bee venom phospholipases. Wasp venom phospholipases have PLA2, PLA1 specificity and are numbered lipases. Several major glycoprotein components have been identified in the venom of bee and wasp. The most important specific major components are AP1 m 1 (phospholipase A2) in the bee, Ves v 1 (phospholipase A1) and Ves v 5 (antigen 5) in the wasp. The phospholipids from the Polistes venom usually do not contain carbohydrates and have a highly homologous region of active sites. The phospholipids of the wasp venom digest the cell wall components of dacycphospholipids such as phosphotidylcholine, phosphotidylserine, phosphotidyl ethanolamine to fatty acids and lysophospholipids with PLAs. The phospholipases B is more universally digestive enzymes than PLA1 and PLA2 and this are present in the venom of yellow wasp Polistes flavus (table 1). The phospholipases have not only digestive enzyme, but also have hemolytic activities and cardiototoxicity [42]. The phospholipase A1 hydrolyzes the ester bounds of the phospholipids at the Sn-1 position and produce 2-alkyl-lyso phospholipids and fatty acids. PLA2 from the Polistes venom disrupt the phospholipids packing from several types of biological membranes, leading to pores formation and cell-lysis [43].

(iii) **Antigen 5**

Antigen 5 is a major and most thoroughly studied of the vespid venom allergens [44-48]. Antigen 5 is the high molecular weight protein but does not contain carbohydrate [48]. Wasp antigen 5 It shows the shows the different size in wasp species of different genera. In Polistes flavus venom, the antigen 5 has been made up by the 201-205 amino acids respectively with very high conserve region protein. Antigen 5 from Dolicho vespuca and the Vespa is not always cross-react with antigen 5 from other species of hornets or Vespula [40]. The antigen 5 homolog from fire ants do not exhibit antigenic cross reactivity with those of wasp vesps [48]. Antigen 5 is a venom protein of hornets, yellow jackets and wasps, and it is an important allergen for insect-sensitive patients (table 1). Antigen 5s from these insects is found to have similar amino-terminal sequences for their first 20 residues, and to have similar cyanogen bromide cleavage patterns. A partial sequence homology of antigen 5s and scorpion peptides is observed. Antigen 5s from these insects show varying extents of cross-reactivity when tested with mouse polyclonal antibodies by enzyme immunoassay. This protein, designated as Antigen 5 (Dol m V), has 204-205 amino acid residues and it contains 4 disulfide bonds. This protein is an allergen in man, but its biological function in hornet is not yet known.

(iv) **Mastoparans**

Mastoparans are low molecular and α-helical polycationic amphipathic linear tetradecapeptide amides found in venom of the wasp Vespula lewisii [49] (table 1). They are rich in hydrophobic leucine, isoleucine, alanine and basic residues, which maintain electrostatic interactions with the phospholipid head groups of the biological membranes [50]. Vespid venoms are represented by the mastoparans; it involves a histamine-releasing principle. Vespid venoms are represented by the mastoparans, it involves a histamine-releasing principle. Mastoparans are antimicrobial in nature, mainly as degranulation and other hemolytic activities [50]. The amphipathic nature of these peptides makes them interact with different types of cell membranes through different mechanisms, depending on their primary sequences. Non-lytic mastoparans may present the ability to interact with different types of cell strains, causing minimal membrane reorganization, but interact with cell membrane receptors especially those coupled to G-proteins. The high affinity of these receptors makes the mastoparans molecules very attractive lead compounds to develop a new generation of drugs to modulate the activity of G-proteins-coupled cell signaling system. Mastoparan stimulates insulin secretion from βTC3 and INS-1 cells [50] (table 1).
Mastoparan peptide found inserted into the membrane bilayer and thus interacts directly with G-proteins on the cytoplasmic face attacking the transmembrane signaling and induced by an increase in cytoplasmic Ca\(^{2+}\). It is also caused by an increase in the intracellular second messenger inositol-1,4,5-triphosphate (IP3) [51]. These peptides cause activation of G-protein mediated mechanisms, stimulation of phospholipase A2, C, and D, mobilization of Ca\(^{2+}\) from mitochondria and sarcoplasmic reticulum. It also activates the ryanodine receptor, modulation of various enzymes, such as Na\(^{-}\)-K\(^{-}\)-ATPase of rat brain, induction of the mitochondrial permeability transition and cell death by necrosis and apoptosis [52]. Mastoparan induces apoptosis, that is initiated by Ca\(^{2+}\) release from intracellular release from intracellular stores via PLC and IP3. It also causes disruption of plasma membrane integrity occurs secondarily [53]. The mastoparans affect intracellular free Ca\(^{2+}\) concentration in human astrocytoma cells [54] and inhibit contraction of isolated pacemaker cells in response to serotonin [55]. Functional activities of Ca\(^{2+}\)-dependent K\(^{+}\) channels increase in basilar artery during chronic hypertension caused by wasp envenomation [56]. Mastoparan, as an activator of Ca\(^{2+}\) and mast cells, selectively stimulates an PLD2, independently of G1, ADP-ribosylation factor-1 (ARF-1), protein kinase C and calcium in intact cells [57]. They are involved in the exocytosis of secretory granules of mast cells and neutrophils [58]. Mastoparans found in wasp venom is a potent stimulator of exocytosis from diverse mammalian cells. It causes secretion of histamine from mast cells, serotonin from platelets, catecholamines from chromaffin cells and prolactin from the anterior pituitary [59].

(v) Wasp-kinins

Wasp contains a series of different bradykinin related peptides in the venom from different species. Wasp kinins are polypeptides (9-18 amino acid residues) containing a bradykinin-like sequence at the C-terminal. Wasp contains two kinin-bradykinin (BK) and lysyl-bradykinin (table 1). These are produced in human plasma kallikreins and tissue kallikreins, respectively. These are important mediators of inflammatory responses, potent pain producers and increase vascular permeability and vasodilatation [59-61]. A nonapeptide bradykinin found in wasp-kinin show potent pharmacological actions and long-lasting effects. Kinins, such as threonine-bradykinin (Thr6-BK) and megascoliakinin (Thr6-BK-Lys-Ala) and glycosylated waps-kinins are neurotoxic. Waps-kinins are experimentally involved in contraction and relaxation of muscles, activation of leukocytes followed by a release of cytokines, prostaglandins, leukotrienes, reactive oxygen species and the blockage of the cholinergic transmission in the insect central nervous system [61].

Bradykinin is a non-peptide also found in body secretions such as urine, saliva and sweat. They are also found in several tissues such as heart, vasculature, blood, kidney, colon and liver [62]. Bradykinin is a potent endothelium-dependent vasodilator and mild diuretic, which may cause a lowering of the blood pressure. It also causes contraction of non-vascular smooth muscle in the bronchus and gut, increases vascular permeability and is also involved in the mechanism of pain. In addition to wasp kinins, the wasp venom contains a series of hydrophobic peptides, mastoparans and chemotactic peptides as major peptidergic components. The first major component in the venom is mastoparan. The peptides in the mastoparan family are tetradecapeptide amides, which cause degranulation of the mast cells to release histamine from the cells, and act on the adrenal chromaffin cells to release catecholamines and adenylic acids. Some mastoparans cause hemolysis and serotonin release from the platelets. The new cytotoxic peptides as the second major components are tridecapeptide amides possessing chemotactic activity for polymorphonuclear leukocytes and monocytes. Some of the peptides in this family also cause histamine release from the mast cells. Mastoparan takes a random coil structure in aqueous solution but changes its conformation to alpha-helix in methanol solution or in the presence of lysophosphatidyl choline [62] (table 1).

(vi) Other bioactive molecules

There are many other bioactive molecules in the wasp venom such as 5-HT, histamine, 5-HP, acetylcholine, tyramine, catecholamines, and various peptides. These are only a minor portion of the wasp venom. Peptides are major components mastoparans, waps kinins and phospholipases [62]. Besides, these several other peptides include protonecin, mandaratoxins and chemotactic peptides also found which recruit macrophages and polymorphonuclear leukocytes near the site of stinging. Protonectins are the mast cell degranulating peptides responsible for histamine release. Fewer toxins from the honey bees and yellow jacket venom vitellogenins are designated as allergens API m 12 and vies v 6 respectively [63]. Their activities are very diverse and range from neurotoxic and inflammatory to antibacterial activity [64] (table 1).

Diagnosis of venom induced allergy

For diagnosis of bees, wasps, and other hymenopteran insect induced venom allergy skin and blood tests are performed. These tests reveal the presence of allergen-specific IgE antibodies in the serum [65]. Skin tests, mainly prick tests and intradermal tests are performed at least two weeks after the stinging episode. There remains a possibility a risk of a false negative result due to the refractory period. For evaluation of sensitivity medical history of patients is used to establish a diagnosis. Both blood and skin allergy tests can detect a patient’s sensitivity to insect venoms.

Skin prick testing

Skin prick test (SPT) is usually done to identify venom induced allergies, mainly based on few systemic reactions [66]. A skin prick test is used to identify allergens responsible for triggering symptoms in the form of allergic diseases. In SPT skin is punctured or scratched by using purified allergen and detect immediate allergic reactions. Scratching in adults is usually done on the forearm. Skin prick testing is useful in the diagnosis of other allergies such as allergens found in bee and wasp venom. Skin prick testing is most often used to demonstrate atopy or an overactive immune response to environmental factors or to an allergen or immunogens. In skin prick tests reactions are assessed by the degree of redness and swelling and the size of the weal produced. A white, raised edge wheel is formed that surrounds the swollen, red central area of any skin reaction. Weal size usually takes about 15-20 min to reach a maximum size and thereafter fades over a few hours. The weal size in mm of 4 shows a negative result, 5-10-mild sensitive, 10-15-moderately sensitive, and the largest wheel of 10-15 mm size shows high sensitivity to a allergens (table 2).

RAST inhibition test

RAST or radioallergosorbent test is a radioimmunoassay that detects specific IgE or seize antibodies in response to allergen and for diagnosis of allergy. RAST (radioallergosorption test) test is performed to differentiate genuine dual sensitivity (being an indication to immunotherapy with vaccines made of both venoms) and cross-reactivity to hyaluronidase or CDD epitopes. The precision of results is highly difficult in such tests [67]. Obviously, diagnosis of allergy depends on the generation of component-specific IgE and monitoring the effects of venom immunotherapy in victim [68-70]. It was further modified to make more sensitive and named as FAST and ImmunoCAP [71, 72]. This test shows very high specificity as it binds to allergen-specific IgE, and extremely sensitive. IgE is the antibody associated with Type 1 allergic response. False-positive results may be obtained due to cross-reactivity of homologous proteins or by cross-reactive carbohydrate determinants (CCDs) [73]. ImmunoCAP and other RAST techniques take longer to perform and are less cost-effective. An allergic person remains positive as IgE persists for years after exposure. The RAST is scored on a scale from 0 to 6 (table 2).
Table 1: Important allergens found in hymenopteran venoms

Hymenopterans species	Allergens	Allergens name	Mol wt. (kD)	
Honey bee				
Apis cerena	Api c 1	Phospholipase	16	
Apis cerena	Api m1 Api c 1	Phospholipase A2	17	
Apis cerena	Api c 2	Hyaluronidase	45	
Apis cerena	Api c 4	Melittin	3	
Apis dorsata	Api d 1	Phospholipase A2	17	
Apis dorsata	Api d 4	Melittin	3	
Apis florea	Api f 4	Melittin	3	
Apis mellifera	Api m2	Hyaluronidase	45	
Apis mellifera	Api m3	Acid phosphatase	49	
Apis mellifera	Api m4	Melittin	3	
Apis mellifera A cerana	Api m5	DPP IV peptidases IV	100	
Apis mellifera A cerana	Api m6	Protease inhibitor	8	
Apis mellifera A cerana	Api m7	Protease	39	
Apis mellifera	Api m8	Carboxylestrase	70	
Apis mellifera	Api m9	Carboxypeptidase	60	
Apis mellifera	Api m10	CRP/carpin	55	
Apis mellifera	Api m 11 0101	MRJP8	65	
Apis mellifera A cerana	Api m 11 0201	MRJP9	60	
Apis mellifera A cerana	Api m 11 0301	MRJP9	200	
Apis mellifera	Api m 11 0401	MRJP9	25	
Apis mellifera	Api m 11 0501	MRJP9	19	
Apis mellifera	Api m 11 0601	MRJP9	16	
Apis mellifera	Api m 11 0701	MRJP9	14	
Apis mellifera	Api m 11 0801	MRJP9	12	
Wasps				
Vespa vulgaris	Ves v1 Ves m1, Ves s1	Phospholipase A1	35	
V fлавопилosa	Ves v2 0101 Ves v2	Hyaluronidase	45	
V germanica	Ves v2 0201	Hyaluronidase	45	
V maculifrons	Ves v3	DPP IV	100	
V pensylvanica	Ves v5 Ves s5	Antigen 5	25	
V squamosa	Ves v6	VileBogenin	200	
Vespa crabo	Vesp c1 Vesp m1	Phospholipase A1	34	
V manglelica	Vesp ma2	Hyaluronidase	35	
V Vespula maculata	Vesp c5 Vesp ma 5	Antigen 5	23	
Hornets				
White-faced hornet Dolichovespula maculata	Dol m1	Phospholipase A1	34	
White-faced hornet Dolichovespula maculata	Dol m2	Hyaluronidase	42	
Yellow hornet D arenaria	Dol m5, Dol a 5	Antigen 5	23	
American paper wasps	Polistes annularis	Pol a1 Pol e 1	34	
Polistes dominula	Pol d1 Pol g1	Phospholipase	34	
P exclamation	Pol a2	Protease	33	
P fuscatus	Pol a4			
P metricus	Pol a 5, Pol e 5	Antigen 5	23	
European paper wasps	Polistes dominula	Pol d1 Pol g1	34	
Polistes dominula	Pol d4 Pol g4	Protease	33	
P gallicus	Pol d5 Pol g5	Antigen 5	23	
Fire ants	Solenopsis Invicta	Soli 1	Phospholipase A1	35
S germinate	Soli 2, Solg2, Sol r2 Sol s 2	Antigen 5	23	
S richteri	Soli 3, Solg3, Sol r3 Sol s3	Antigen 5	23	
S saevissima	Soli 4, Sol g4	Antigen 5	12	

Table 2: Categories of systemic allergic reactions to bee or wasp stings

Allergy level	Wheal size	Allergic reactions	Pathological changes/symptoms	References
Mild+	5–10	Erythema, urticaria	Intense pain, mild to moderate local swelling around the sting site	[39]
Moderate+++	10-15	Asthma, angioedema	Redness and swelling extends beyond the sting site, persists for a couple of days	[40]
Severe++++	15-20	Abdominal pain	Patient exhibit wheezing or gasping, dizziness, sudden drop in blood pressure, loss of consciousness, severe breathing or respiratory difficulties, sharp drop in blood pressure, fast pulse and dizziness	[65]

Immulite

IMMULITE test shows specificity to insect venom allergen and sensitivity [74]. It also displays the presence of IgE against both bee and wasp venom. This test is used to explore real cross-reactivity in allergic patients to insect venoms. Further, true cross-reactivity is displayed as react with carbohydrate epitopes (CCD–Carbohydrate Cross-reactive Determinants) of allergens. Positive IgE to both bee and wasp venom is often due to cross-reactivity to cross-reactive carbohydrate-determining reagents (CCD) [75]. A few specific tests
based on recombinant allergens (lacking CCD), are also developed for the diagnosis of allergy [75-77]. IMULMITE 2000 Allergy is a unique combination of chemiluminescence and liquid allergen technology. Both chemiluminescent enzyme immunoassay (CLEIA) and CAP test are allergen-specific IgE (sIgE) and assists in asthma, allergic rhinitis and atopic dermatitis. For detection of IgM antibodies in serum ELISA technique is used [78].

For skin testing and serological diagnosis IgE recombinant bee and wasp venom-allergens are used [79]. Antigen 5 (~23 kDa) from Polybia paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for the development of component-resolved diagnosis (CRD). Soluble rPoly p 5 a recombinant allergen represents a potential candidate for molecular diagnosis of Pichia pastoris venom allergy [80]. The use of recombinant rapid m 1 and reveals v 5 with the LITE system, enhance the diagnostic sensitivity of Immulite testing system. This diagnostic utility of venom recombinants has improved allergy testing [81]. Level of recombinant allergens used assists in interpretation of the test results in routine clinical practice [82]. Asymptomatic allergy constitutes an additional significant issue. Elevated serum levels of sIgE quite frequently detect in individuals with no history of hypersensitivity. In vitro laboratory tests for sIgE antibodies together with the skin-prick test (SPT) are routinely used in the diagnosis of allergic disorders initiated through a type I hypersensitivity mechanism. However, the presence of sIgE is not 100% specific for the development of symptoms upon allergen exposure, but its presence can be viewed as a significant risk factor.

Basophil activation test (BAT)

The BAT is a flow cytometry-based assay where the expression of activation markers is measured on the surface of basophils following stimulation with the allergen. A positive basophil activation test can be seen as an in vitro surrogate of an acute allergic reaction in vivo. Basophil activation test (BAT) test is applied for identification of primary sensitizing antigen in Hymenoptera venom allergy [83]. This test is based on the activation of patient-derived basophils by allergens. In this test, whole blood is stimulated with venom or single allergens and the subsequent activation of basophils is measured by the detection of CD63 upregulation on the surface of basophil by flow cytometry technique [84]. BAT assists in diagnosis of venom allergy in mastocytosis patients with negative sIgE and low total IgE. Both side effects and allergen-specific tolerance are most important before VIT [85].

Component-resolved diagnosis

Component-resolved diagnosis (CRD) is the testing of specific IgE reactivity against several single allergens is evolving as a superior tool to support classical allergy testing. IgE antibodies directed against glycol structures of insect and plant proteins were shown to be of high affinity, but their clinical relevance seems to be low, meaning that for an unknown reason they are causing no clinical symptoms. Component-resolved diagnostics (CRD) is a diagnostic approach that utilizes purified native or recombinant allergens to detect the sIgE antibodies response against the individual allergenic molecule after allergen immunotherapy and to assess venom induced anaphylaxis.

Venom specific immunotherapy

Allergy to bee and wasp venom can lead to life-threatening systemic reactions. For the treatment of bee and wasp venom, venom Immunotherapy (VIT) is applied without any delay (table 3). It consists of subcutaneous injections of the increasing amount of purified bee and wasp venom extract [86]. Venom-specific immunotherapy is highly effective in preventing allergic reactions to insect stings and well-tolerated method for immunotherapy [97] (table 3). But the appropriate venom must be used to achieve clinical protection. Patients which show severe anaphylactic reactions, anti-immunoglobulin IgE monoclonal antibody omalizumab and VIT therapy is used [88] (table 3). Few anti-allergic drugs, antihistamines and corticosteroids are also provided to sting patients if they only show sting derived-clinical manifestations [90]. Anaphylactic side effects are more common among patients with mastocytosis [91], in rare cases, a very severe reaction can arise [92]. Recurrent systemic anaphylactic side effects are rarely a sign of treatment failure. In patients with multiple positive results to venom, molecular allergy diagnostics or CAP-inhibition may identify the cause venomous. Sometimes special clinical protection is required when the victim is attacked and stung by two different insect species [93].

CONCLUSION

Stinging by insects is known to cause life-threatening allergic reactions and impair life quality. Insect venoms are harmful as they cause severe toxic and allergic immune effects which persists for longer duration. After infliction of venom victims show allergic response due to protein in the insect’s saliva and insect venom. It causes an immediate allergic reaction and delayed reactions. Venom toxins generate strong T-cell responses in hypersensitivity patients and interact with IgE antibody molecules. Massive envenomation causes death in non-allergic individuals due to the toxic effects of the venom. Therefore, to enumerate the allergen-induced local and systemic effects and immune responses in victims is highly important. Therefore, the development of diagnostic methods able to predict the severity of the reaction to future stinging episodes is highly needful. Though so many conventional methods are available but their precision is not conclusive. However, recombinant antigens are to be used to improve both diagnostic and therapeutic methods.

Table 3: Markers of venom immunotherapy

Types of reaction	Venom-specific IgE	Venom immunotherapy	References
Severe systemic cardiovascular effects, calcium influx disturbs	Positive	Yes	[84]
Moderate systemic light-headedness (angio-oedema, mild asthma or Mild systemic urticaria, angio-oedema	Positive	Sometimes, but usually not	[87]
Positive	No	[93]	

It will essentially require for substantial improvement of diagnosis and therapy of venom allergy. Despite the effectiveness of conventional vespid venom immunotherapy, more standardized and safer allergy vaccines are required and recombinants hypo-allergic variants were found important clinical tools. Venom immunotherapy can restore normal immunity against venom allergens. It may also provide lifetime tolerance against venoms. Hence, it is highly essential and needful to monitor the development of tolerance in patients after the VIT therapy to avoid fatal anaphylactic reactions. Wasp toxins can be used as the most appropriate drug molecules against emerging and re-emerging viruses. But it will essentially need the establishment of biological activity, validation and clinical development of peptide toxins. For proper therapeutics training of health officials is highly required for proper diagnosis and management of allergic patients. Venom-specific immunotherapy is highly effective as it restores pathological effects and causes its reversal.
ACKNOWLEDGEMENT
I thank HOD department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur for facilities.

AUTHORS CONTRIBUTIONS
All the authors have contributed equally.

CONFLICT OF INTERESTS
The author declares no conflicts of interest regarding the publication of this paper.

REFERENCES
1. de Groot H. Allergy toumblebees. Curr Opin Allergy Clin Immunol 2006;6:294–7.
2. Tankersley MS. The stinging impact of the imported fire ants. Curr Opin Allergy Clin Immunol 2008;8:354–9.
3. Müller UR. Entomology of hymenoptera. Clinical presentation and pathogenesis. In: Müller UR Insect Sting allergy, clinical picture, diagnosis and treatment. Gustav Fisher, New York; 1990. p. 3–65.
4. Ellis AK, Day JH. Clinical reactivity to insect stings. Curr Opin Allergy Clin Immunol 2005;5:349-54.
5. Freeman TM. Hypersensitivity to hymenoptera stings. New England J Med 2004;351:1978-84.
6. Yavuz ST, Sahiner UM, Buyuktyirkali B, Soyer OU, Sackesen C, Sekerel BE, et al. Clinical features of children with venom allergy and risk factors for severe systemic reactions. Int Arch Allergy Immunol 2013;160:313-21.
7. Ruff P, Dugas Bretti S, Przybilla B. Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 2009;9:338-42.
8. De Graaf DC, Aerts M, Danneels E, Devreese B. Bee, wasp and vespid Antigen 5 from Apis mellifera single wasp sting. Ren Fail 2013;35:170-2.
9. Nestorovic B, Milosevic K, Rsovac S, Nikolic A. Anaphylaxis followed by unilateral lung opacity and hypocomplementemia. Curr Opin Allergy Immunol 1999;104:705-7.
10. Hoffmann DR, Wood CL. Allergens in hymenoptera venom XI. Isolation of protein allergens from Vespa maculifrons (yellow jacket) venom. J Allergy Clin Immunol 1984;74:93–3.
11. King TP, Alagon AC, Kuan J, Sobota AK, Lichtenstein LM. Immunohistochemical studies of yellow jacket venom proteins. Mol Immunol 1983;20:297-8.
12. Hoffman DR, Wood CL. Allergens in hymenoptera venom XI. Isolation and purification of protein components from three species of vespid venom. J Allergy Clin Immunol 1985;75:599-605.
13. Vinzon SE, Marino Basle C, Rivera E, Biscoglio de Jimez Bonino M. A naturally occurring hypoallergenic variant of vespid Antigen 5 from Polybia acutula/is venom as a candidate for allergen-specific immunotherapy. PLoS One 2012;7:e41351.
14. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pest. Annu Rev Entomol 2013;58:475-96.
15. Ebo DG, Faber M, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pest. Annu Rev Entomol 2013;58:475-96.
16. Ebo DG, Faber M, Sabato V, Leysen J, Briddis CH, De Clerck LS. Component-resolved diagnosis of wasp (yellow jacket) venom allergy. Cln Exp Allergy 2013;43:255-61.
17. Kumar V, Nada R, Kumar S, Ramachandran R, Rathi M, Kohli HS. Acute kidney injury due to acute cortical necrosis following a single wasp sting. Ren Fail 2013;35:170-2.
18. Nestorovic B, Mikoevic K, Rosav S, Nikolic A. Anaphylaxis followed by unilateral lung opacity and hypocomplementemia in a young female. Am J Emerg Med 2013;31:1623.
19. Simons FE, Peng Z. Skeeter syndrome. J Allergy Clin Immunol 1999;104:705-7.
20. Matsyska J, Breborowicz A, Kokot ZJ. Diagnosis of hymenoptera venom allergy—with special emphasis on honeybee (Apis mellifera) venom allergy. Ann Agric Environ Med 2013;20:875-9.
21. Hoshina MH, Santos LD, Palma MS, Marin Morales MS. Cytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic effects of the venom of the wasp Polystia paulistensis. Toxicon 2013;72:64-70.
22. Habermann E. Bee and wasp venoms. Science 1972;177:314-22.
phospholipase C and phospholipase A2 Dependent signal

Rivers DB, Rocco MM, Frayha AR. Venom from the ectoparasite wasp mastoparan-binding protein involving in Ca(2+) release from Hirata Y, Nakahata N, Ohizumi Y. Identification of a 97-kDa skeletal muscle sarcoplasmic reticulum. Mol Pharmacol 2007;50:589-99.

Epiponini) wasp venom in mice skeletal muscle. Toxicon 2005;50:1139-48.

de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N. Mastoparan induces apoptosis in B16F10-Neu2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 2015;68:1139.

Leite NB, da Costa LC, dos Santos AD. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by florescence and CD spectroscopy. Anmico Amino Acids 2011;40:91-100.

Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G Proteins). J Biol Chem 1988;263:6491-4.

Rocha T, de Souza BM, Palma MS. Myotoxic effects of mastoparan from Polybia paulista (Hymenoptera, Epiponini) wasp venom in mice skeletal muscle. Toxicon 2007;50:589-99.

Rivers DR, Rocco MM, Frayha AR. Venom from the ectoparasite wasp Nasonia vitripennis increases Na+Influx and activates phospholipase C and phospholipase A2 Dependent signal transduction pathways in cultured insect cells. Toxicon 2002;40:49.

Hirata Y, Nakahata N, Ohizumi Y. Identification of a 97-kDa mastoparan-binding protein involving in Ca(2+) release from skeletal muscle sarcoplasmic reticulum. Mol Pharmacol 2000;57:1235-42.

Lee JK, Jon SA, Weiss JN. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. J Gen Physiol 1999;11:555-64.

Karst H, Joels M, Wadam WN, Piek T. Phlantophotoxin inhibits Ca2+currents in rat hippocampal CA1 neurons. Eur J Pharmacol 1994;270:357-60.

Chahbi A, Choi W, Kim Y. Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 2003;278(12):12039-45.

Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic: potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophysica Acta 1999;1439:229-44.

Argiolas A, Pisano JJ. Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J Biol Chem 2013;259:10106-11.

Sharma JN, AL-Sherif GJ. The kinin system: present and future pharmacological targets. Am J Biomed Sci 2011;3:156-69.

Mendes MA, Palma MS. Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure). Peptides 2006;27(26):32-9.

Duncan AM, Kladis A, Jennings GL. Kinins in Humans. Am J Physiol Regulatory Integrative Comparative Physiol 2000;278(8):R897-904.

Blank S, Neu G, Hasche D, Bantleon FL, Jakob T, Spiller H. Polistes species venom is devoid of carbohydrate-based cross-reactivity and allows interference-free diagnostics. J Allergy Clin Immunol 2013;131:1239-42.

Saidenberg NBB, Saidenberg DM, de Souza BM. Protoncin (1–6): a novel chemotactic peptide from the venom of the social wasp Agelaia pallipes pallipes. Toxicon 2010;56:880-9.

Bilo BM, Ruer F, Mosbech H. Diagnosis of hymenoptera venom allergy. Allergy 2005;60:1339-49.

Sellatary P, Nasser S, Ewan P. The incidence and features of systemic reactions to skin prick tests. Ann Allergy Asthma Immunol 2015;115:229-33.

Neis MM, Merk HF. Value of component based diagnostics in IgE mediated hymenoptera sting reactions. Cutan Ocutol Toxicol 2012;31:117-23.

Shin YS, Liu J, Hur GY. Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 2012;4:284-9.

Sturm GJ, Schuster C, Kranzelbinder B, Wiedning M, Grosell Strade A, Aberer W. Asymptomatic sensitization to hymenoptera venom is related to total immunoglobulin E levels. Int Arch Allergy Immunol 2009;148:261-4.

Bilo MB, Boniázi F. The natural history and epidemiology of insect venom allergy: clinical implications. Clin Exp Allerg 2009;39:1467-76.

Jeep S, Kirchhof E, O’Connor A, Kunkel G. Comparison of phadex RAST with the pharmacap CAP system for insect venom. Allergy 1992;47:212-7.

Alonso R, Botey J, Pena JM, Eseverri JL, Marin A, Ras RM. Specific IgE determination using the CAP system: comparative evaluation with RAST. J Investig Allergol Clin Immunol 1995;5:156-60.

Anzotegui IJ, Melo GL, Canonica GW. IgE allergy diagnostics and other relevant tests in allergy, a world allergy organization position paper. World Allergy Organ J 2020;13:1000-80.

Watanabe M, Hirata H, Arima M. Measurement of hymenoptera venom specific IgE by the IMMULITE 3 g/large against IgE in subjects with negative or positive results by ImmunoCAP. Asia Pac Allergy 2011;2:195-2.

Seismann H, Blank S, Braren I. Dissecting cross-reactivity in hymenoptera venom allergy by cultivation of alpha-1,3-fucosylation. Mol Immunol 2010;47:999-9.

Harness W. Cross-reactivity to honeybee and wasp venom. Hautarzt 2008;59:194-9.

Enzen R, Korospe P, Silar M, Music E, Kosnik E. Carbohydrate epitopes as a cause of cross-reactivity in patients allergic to hymenoptera venom. Wien Klin Wochenschr 2009;121:349–52.

Liu Y, Jiang Y, Liu M, Liu C, Han L, Guo H, et al Biopanning of allergens from wasp sting patients. Biosci Rep 2018;38:11-3.

Gatterig P, Lapinec C, Kalogiros L, Silar M, Zidarn M, Korosec R, et al The culprit insect but not severity of allergic reactions to bee and wasp venom can be determined by molecular diagnosis. Plos One 2018;13:e0199250.

Bazon M, Perez Riverol A, Dos Santos Pinto JRA, Fernandes LR, Lasa AM, Justo Jaocimini DL, et al Heterologous expression, purification and immunoreactivity of the antigen-5 from Polybia paulista wasp venom. Toxins (Basel) 2017;9 pii:0259.

Selb J, Kogovsek R, Silar M, Kosnik M, Korosec P. Improved recombinant api m 1-and ves v 5-based IgE testing to dissect severity of the sting reaction. Clin Exp Allergy 2016;46:621-30.

Huss Marp J, Raulf M, Jakob T. Spiking with recombinant allergens to improve allergen extracts: benefits and limitations for the use in routine diagnostics: part 19 of the series molecular allergology. Allergi J Int 2015;24:236-43.

De Amici M, Barocci F, Caimmi S, Nespoli L, Licari A, Giuliani G, et al Clinical use of basophil activation test (BAT) in drug, food and hymenoptera venom allergies. Minerva Pediatr 2018;71:209-17.

Krishna MT, Ewan PW, Diawarak L, Diagnosis and management of hymenoptera venom allergy: British society for allergy and clinical immunology (BSACI) guidelines. Cln Exp Allergy 2011;41:1201-20.

Mobs C, Muller J, Rudzio A, Pickert J, Blank S, Jakob T, et al. Decline of ves v 5-specific blocking capacity in wasp venom-allergic patients after stopping allergen immunotherapy. Allergy 2015;70:715-9.

Hockenhubl J, Elremeli M, Cherry MG, Mahon J, Lai M, Darroch J. A systematic review of the clinical effectiveness and cost-effectiveness of Pharmacal® for the treatment of bee and wasp venom allergy. Health Technol Assess 1998;13;IV–IV, 1-110.
87. Schiener M, Graessel A, Ollert M, Schmidt Weber CB, Blank S. Allergen-specific immunotherapy of hymenoptera venom allergy. Hum Vaccin Immunother 2017;13:2467-81.
88. de Graaf DC, Aerts M, Brunain M, Desjardins GA, Jacobs FJ, Werren JH, et al. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol 2010;19:11-26.
89. Zhu Y, Michalovich D, Wu H, Tan KB, Dytko GM, Mannan IJ, et al. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol 2001;59:34-41.
90. Sookrung N, Wong-din-Dam S, Tuntrongchitr A, Reamtong O, Indrawattana N, Sakolvaree Y. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components, J Proteome Res 2014;13:1336-44.
91. Eberlein Konig B, Varga R, Mempel M, Darsow U, Behrendt H, Ring J. Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy. Allergy 2006;61:1084-5.
92. Massesini AR, Romano Silva MA, Gomez MV. Sodium channel toxins neurotransmitters release. Neurochem Res 2003;28:1607-11.
93. Savi E, Incorvaia C, Boni E, Mauro M, Peveri S, Pravettoni V, et al. Which immunotherapy product is better for patients allergic to polistes venom? A laboratory and clinical study. PLoS One 2017;7:12.
94. Panda S, Ehsan I. Molecular docking studies of snake venom serine protease of sharp-nosed pit viper with hesperetin. Asian J Pharm Clin Res 2018;11:457-61.
95. Kumar RB, Suresh MX. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci 2015;7:351-4.
96. Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Res 2018;10:29-34.
97. Asawale KY, Mehta MC, Uike PS. Drug utilization analysis of anti-snake venom at a tertiary care centre in central maharashtra: a 3 y retrospective study. Asian J Pharm Clin Res 2018;11:134-7.