Antimicrobial Activity and Chemical Composition of Momordica Charantia: A Review

Víctor Eduardo Villarreal-La Torre1,*, William Sagástegui Guarniz1, Carmen Silva-Correa1, Lizardo Cruzado-Razco1, Raúl Siche2

ABSTRACT

Momordica charantia L. (bitter melon) is a plant belonging to the Cucurbitaceae family and is widely distributed in tropical and subtropical areas around the world, mainly in Asia, India, China and Brazil, where it is traditionally used as a medicinal plant, and the fruits of some varieties of M. charantia are consumed as food. Studies have determined that this plant contains a great diversity of bioactive compounds with therapeutic potential like charantin, α-momorcharin and MAP30, and highlighting its properties as anti diabetic, antiulcer, antioxidant, antimicrobial, antihelmintic, antihyperglycemic and anticancer. Review shows the complete botanical description of the plant (fruits, leaves, stem, etc.), the bioactive chemical compounds reported in the plant species, the antimicrobial activity of the extracts or fractions of M. charantia, emphasizing the antibacterial and antifungal activities, with respective values of MIC (Minimum Inhibitory Concentration) reported according to the methodology used in each study. The review seeks to update the phytochemical and pharmacological knowledge of M. charantia, which would be useful for researchers in their search for new chemical compounds of the plant, studies of its safety and efficacy, as well as the evaluation of its possible synergistic action in combination with other antimicrobials, in order to find new therapeutic alternatives against bacterial resistance.

Key words: Cucurbitaceae; Phytochemicals; Antifungal; Antibacterial; Charantin; Cucurbitane.

INTRODUCTION

Plants are a very rich source of new chemical entities, so much so that, to date, new prototypes with various therapeutic potentials are still being sought. No stranger to it, bitter melon (Momordica charantia L.) is a plant species that has attracted researchers’ interest in recent years (Figure 1). Chemical and pharmacological studies on the Momordica charantia L. (M. Charantia) plant have been in existence since 1963 and have had a growing interest, deduced by the increase in the amount of research work over the years to the present; since 1993, investigations were initiated on its antibacterial activity and since 1997, on its antifungal activity (Figure 1).

The fruits of M. Charantia are consumed daily as a food and as a medicinal plant for traditional use in Southeast Asia, Indo-China, as well as in Brazil. M. Charantia is a plant belonging to the Cucurbitaceae family and is widely distributed in tropical and subtropical areas around the world. Studies have determined that this plant contains a great diversity of primary and secondary metabolites with therapeutic potential as antitumor properties, antioxidant, antimicrobial, antihelmintic, antidiabetic, anti-inflammatory, antihyperglycemic and anticancer, and nutritional as antilipolytic.

Bacterial resistance is one of the main problems around the world, it is thought that by 2050 bacterial resistance will be one of the leading causes of death in the world. Currently there are bacteria that are resistant to almost all existing antibacterials. That is why the search for new entities with antibacterial potential is a worldwide research focus and M. Charantia is a species with great possibilities. Several studies have demonstrated antifungal and antibacterial activity in M. Charantia, as well as antimicrobial activity in leaves and fruit.

In the last two years there has been a significant increase in publications of scientific articles on M. charantia Figure 1, generating a large amount of information about it and its antimicrobial activity, which is why the organization and selection of this information become necessary and important in order to provide interested researchers with updated information on this species.

Taxonomic classification

M. charantia is an annual or perennial, mono-climber, herbaceous, 3-4 m long plant, which belongs to the Cucurbitaceae family. It contains almost sixty species that grow in tropical and subtropical regions.

Botanical description

Bitter melon, bitter cucumber or bitter gourd are some of the names given to M. charantia. It belongs to the Cucurbitaceae family. M. charantia is a vegetable with many culinary uses, especially in Asia and Africa, and is commonly cultivated in Africa, India, Malaysia, China and South America.
charantia is a slender and slightly hairy or hairless plant that can be grown at high altitude. A description of each part of the M. charantia is shown in Table 1.

Chemical composition

M. charantia contains triterpenoids, saponins, polypeptides, flavonoids, alkaloids, and sterols, which are distributed throughout the entire plant. The seed is not edible, it contains extractable oils, mostly a conjugated triene cis-9, trans-11, trans-13 (c9, t11, r13) conjugated isomer of linolenic acid, known as α-essential acid (α-ESA). It is known that α-ESA has anti-cancer and anti-obesity properties.

Research on M. charantia has revealed that its components with pharmaceutical importance are phenolic compounds (such as phenylpropanoids and flavonoids), triterpenes and carotenoids. Several bioactive compounds of the fruit of M. charantia have been registered in the literature; they are classified into carbohydrates, proteins, lipids and more.

Cucurbitane-type triterpenoids such as charantin have been related to antimicrobial activity. Charantin is a 1:1 mixture of two steroidal saponins (Figure 3), stigmasterol glycoside and β-sitosterol glycoside. Although cucurbitane-type triterpenoids have been found in almost the entire plant, charantin has only been located in the root, leaves and fruit.

Proteins such as α-momorcharin (Leaf and seed) and MAP30 (fruit and seed) have also been linked to antimicrobial activity. MAP30 and α-momorcharin (Figure 4) are ribosome inactivating proteins (RIP) and have demonstrated antibacterial and antiviral activities.

Antimicrobial activity

Sankaranarayanan and Jolly (1993) have clinically demonstrated the existence of antimicrobial activity on leaf extracts of M. charantia. This activity of M. charantia is attributed to its content of antimicrobial proteins, seed oil, tannins, triterpenoids, alkaloids, cardiac glycosides and steroids. The bioactive components of M. charantia showed antimicrobial activity against Helicobacter pylori, Sindbis, Herpes simplex virus type 1 and anthelmintic activity against Caenorhabditis elegans.

The leaf and stem extracts of M. charantia in methanol have a remarkable activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Klebsiella pneumonia, while leaf extracts in ethanol showed antimicrobial activity against Trypanosoma cruzi, in addition to enhancing the antifungal effect of metronidazole, E. coli, Salmonella paratyphi, Shigella dysenteriae.
Villarreal-La Torre, et al.: Antimicrobial Activity and Chemical Composition of Momordica Charantia: A Review

Table 1: Botanical description of M. charantia.

Part	Description	Image	Reference
Stem	Round, well branched, internodes 5-6 cm, thin, corrugated and has unbranched tendrils in the axillae of the leaf	![Stem Image](image1.png)	4,46
Root	It has a primary root that extends to the vertex where the stem is born	![Root Image](image2.png)	4
Leaves	Palmately-lobed, alternating, rounded edge with 3–7 lobes deeply separated and with quite small marginal points. They are distributed individually in petioles 1.5–5 cm long and have no stipules. When they are crushed, they give off a rather unpleasant smell.	![Leaves Image](image3.png)	4,10
Flowers	Solitary, pubescent and with 5 yellow petals and 5 central stamens. The male flowers have thinner stems and larger petals than the female flowers and, while the male flower sepals are oval-elliptical, those of the female flowers are narrow and oblong lanceolate.	![Flowers Image](image4.png)	4,42
Fruit	Pendular discoid with ovoid shape, 2 to 10 cm in length, covered with broken or continuous longitudinal ridges and warts. The young fruit is white or emerald green that turns orange when ripe, and its white pulp becomes scarlet during ripening.	![Fruit Image](image5.png)	4,6,42
Seed	8–15 mm long, rectangular squares, corrugated on the margin, sculpted on both sides, but covered with a white pulp when green and red when ripe.	![Seed Image](image6.png)	4,42,46

Figure 4. Amino acid sequence of MAP30 and α-momorcharin (FASTA sequence obtained from National Center for Biotechnology Information – NCBI).
and Colletotrichum musae. An extract of the whole plant has shown antiprotozoal activity against Entamoeba histolytica, Salmonella typhi, Staphylococcus aureus, Streptococcus pyogenes and Mycobacterium tuberculosis, and an extract of isolated proteins from leaves demonstrated an antifungal effect. MAP30 is an isolated protein of M. charantia that can be used in combination with chloramphenicol or erythromycin, and be beneficial in terms of reducing the side effects of antibiotics, as lower concentrations of antibiotics are required due to their antibacterial ability. A synergistic effect has also been demonstrated between ethanolic extract and aminoglycosides, chlorpromazine, kanamycin and amikacin, indicating the participation of an efflux system in the resistance to these aminoglycosides. This represents a new weapon against bacterial resistance to antibiotics. In addition, silver nanoparticles have been studied with antibiotics, as lower concentrations of antibiotics are required and are beneficial in terms of reducing the side effects.

The levels of flavonoids and phenols such as catechin, myricetin, quercetin, gallic acid, chlorogenic acid, gentisic acid and salicylic acid, increase considerably in hair roots in vitro growth compared to unprocessed roots, although metabolites such as ferulic acid, rutin, naringenin and naringin decreased significantly in the hair roots. Due to these metabolic variations, antimicrobial activity increases in hair roots in vitro growth compared to non-transformed roots.

Fresh fruits extracts have exhibited similar antibacterial properties against strains of Bacillus subtilis, Pseudomonas aeruginosa andSaccharomyces cerevisiae, also have shown activity against E. coli, Staphylococcus, Pseudomonas, Salmonella and Streptococcus. Application of M. charantia fruit powder at wound sites is equally effective in stimulating tissue regeneration and wound healing in rats. Fruit extracts have shown a better activity compared to leaf extracts and seeds, with methanol extracts having the best antibacterial activity.

Recombinant α-momorcharin inhibits the growth of F. solani, causing deformation of cells with irregular outbreaks, integrity loss of the cell wall, rupture of the fungal cell membrane, DNA fragmentation, in vivo. In addition to affecting macromolecular synthesis and organelles functions, RK29, the active lectin isolated from ripe fruit and seed, inhibits HIV-1 viral reverse transcriptase. Cucurbitane triterpenoids (kuguacins F-S), pentanocurbitacin, octanocurbitacin and trinocurbitacins exhibit weak anti-HIV-1 activities. The triterpene glycosides momordicines I and II are anthelmintic but not antiviral.

Current and future challenges

There is a growing interest in investigating the antimicrobial activity of M. charantia (Figure 1) motivated by the search for new sources of chemical entities with therapeutic potential. Antimicrobial activity has been reported in isolation from fruits (Table 3) so it is recommended to conduct studies of the efficacy of isolated cucurbite, such as charantin found in almost all parts of the plant (Table 2), in vivo. In addition, cucurbitane are attributed antidiabetic activity, an effect that could enhance treatments against infections in diabetic foot.

Table 2. Bioactive compounds reported in M. charantia.

Part of Plant	Kind of Compound	Bioactive Compounds	References
Root Flavonoids	Myricetin; Quercetin; Kaempferol; Catechin; Rutin	51	
Phenolic compounds	Caffeic acid; p-Coumaric acid; Ferulic acid; o-Coumaric acid; Chlrogeric acid; m-Coumaric acid; p-hydroxybenzoic acid; Gallic acid; Protocatechuic acid; β-Resorcylic acid; Vanillic acid; Sringic acid; Gentisic acid; Salicylic acid; Vanillin; Veratric acid; Hesperidin; Naringenin; Biochanin A; Homogentisic acid; t-cinnamic acid; Naringin	51	
Cucurbitane-type triterpenoids	Charantin*; kuguacins A; kuguacins B; kuguacins C; kuguacins D; kuguacins E; 3β,7β,25-trihydroxycurcurbita-5(23E)-diene-19-αl; 3β,25-dihydroxy-5β,19-epoxy-cucurbita-6,23(25)-diene; Momordicine I	18,47	
Leaf and Stem Phenolic compounds	4-Hydroxybenzoic acid; 4-O-Caffeoylquinic acid derivative; 4-O-Feruloylquinic acid; 5-O-Feruloylquinic acid; Caffeic acid; Chlrogeric acid; Ferulic acid; p-Coumaric acid; sinapinic acid; 2,4-bis (2-phenylpropan-2-yl) phenol	8,14,39,50	
Flavonoids	Isotherhamnetin-3-O-glucoside; Isotherhamnetin-3-O-acetylguloside; Kaempferol-3-O-glucoside; Kaempferol-3-O-rutinoside; Kaempferol-3,5-O-diacetyletheroside; Kaempferol-O-pentosyletheroside; Quercetin-3-O-glucoside; Quercetin-3-O-rutinoside; Quercetin-3-O-acetylguloside; Quercetin-O-dihexoside; Quercetin-O-pentosyletheroside; Rutin	8,13,14,50,64	
Cucurbitane-type triterpenoids	Cucurbitane I; Cucurbitane II; Cucurbitane III; Karavilagenin F; Karavilose II; Karavilose XII; Kugucin F-S; Momordicine I; Momordicine II; Momordicine VI; Momordicine VII; Momordicine VIII; Momordicidoses; Charantal; Charantin*	11,18,39,64,65	
Iridoid lactone	Plumericin*	66	
Tannins	Not Identified	52	
Alkaloids	Not Identified	52	
Protein	α-momorcharin*	49	
Flower Phenolic compounds

- 4-Hydroxybenzoic acid; Caffeic acid; Catechin hydrate; Chlorogenic acid; Epicatechin; Ferulic acid; Gallic acid; p-Coumaric acid; t-Cinnamic acid

Flavonoids

- Kaempferol; Rutin

Cucurbitane-type triterpenoids

- (23E)-3β-Hydroxy-7β,25-dimethoxycucurbita-5,23-dien-19-β-al; (23E)-7β-methoxycucurbita-5,23,25-trien-3β-ol; (23E)-Cucurbita-5,23,25-triene-3a,3α,7α-diol; 19-dimethoxycucurbita-5(10),6,22(E),24-tetraen-3β-ol
- 23E-3β-hydroxy-7β,25-22-hydroxy-23,24,25,26,27- pentanocurbit-5-en-3-one; 25,26,27-trinocurbit-5-en-3,7,23-triene; 25α-Isoprenylcucurbita-5(6)-ene 3α,β-D-glucopyranoside; 3β,7β,23-trihydroxycurbita-5,24-diene-7β-β-D-glucoside; 3β,7β,25-22-hydroxycurbita-5,23(E)-diene-19-αL; 5β,19-epoxy-19,25-dimethoxy-curbita-6,24-diene-3β-ol; 5β,19-epoxy-25-methoxy-curbita-6,23-diene-3β-ol; 5β-23-(4-hydroxyphenyl)curbita-5,24-diene-3β-ol; 5β-23-epoxycurbita-5,24-diene-3β-ol

Fruit Phenolic compounds

- Caffeic Acid; Chlorogenic acid; Ferulic acid; Gallic acid; p-Coumaric acid; t-Cinnamic acid; Vanyl acid; 2,5-dihydroxybenzoic acid

Flavonoids

- Kaempferol; Rutin

Carotenoids

- 5,6-Monoepoxy-β-Carotene; 9'-Z-neoxanthin; all-E-violaxanthin; Cryptoxanthin; Lutein; Lycopene; Mutatochrome; Phytofluene; Rubixanthin; Zeaxanthin; Zeinoxanthin; β-Carotene; α-Carotene; γ-Carotene; δ-Carotene; ζ-Carotene; α-tocopherol

Phytosterols

- Diosgenin; β-sitosterol; Stigmasterol; Campesterol; 3-O-[6'-O-stearyl-β-D-glucosyl]-stigmasta-5,25(27)-diene; 3-O-[6'-O-palmitoyl-β-D-glucosyl-stigmasta-5,25(27)-dien

Carbohydrates

- Arabinose; Galactose; Glucose; Mannose; Pectin; Rhamnose; Ribose; Xylose

Table 3. Antimicrobial activity of extracts or fractions of M. charantia.

Part	Extract or Fraction	Activity	MIC	Technique	Reference
Leaf	Methanolic extract	*Escherichia coli*	10 mg/mL	Agar cup well technique	83
		Staphylococcus aureus	100 mg/mL	disc diffusion method	84
		Escherichia coli	100 mg/mL	microdilution	64
	Ethanol extract	*Escherichia coli*	125 µg/mL	microdilution	64
	Aqueous Extract	*Escherichia coli*	100 mg/mL	microdilution	64
	Acetone Extract	*Escherichia coli*	2 µg/mL	microdilution	64

*MCL M. charantia lectin
*MAP30 a 30 kDa M. charantia anti-HIV protein;
*RIP ribosome inactivating protein;
*relevant for antimicrobial activity.
On the other hand, studies of its safety and efficacy have been carried out in combination with antimicrobials such as aminoglycosides, with the intention of being able to cope with bacterial resistance as well as a decrease in side effects; Therefore, it is recommended to continue studies on proteins such as α-momorcharin and MAP30 which is located in leaves, stems, fruits and seeds (Table 2), which have demonstrated very good antimicrobial metabolites as well as some protein fractions. Although there are a large number of articles that corroborate the antimicrobial activity, the mechanism of this therapeutic activity is not yet known.

CONCLUSIONS

Although a large number of medicinal plants have been reported with antimicrobial activity, studies that corroborate their efficacy and safety are still needed. The phytochemical analysis and demonstration of the in vivo and in vitro antimicrobial activity of M. charantia, promotes the need to study the probable mechanisms by which bioactive compounds such as charantin, α-momorcharin and MAP30 act.

REFERENCES

1. Salim AA, Chin YW, Kinghorn AD. Drug Discovery from Plants. In: Bioactive Molecules and Medicinal Plants. Berlin, Heidelberg: Springer; 2008. p. 1-24.
2. Vambe M, Aremu AO, Chukwuogbu JC, Finnie JF, Van S.J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and -resistant microbial strains. S Afr J Bot. 2018;114:250-9.
3. Mumtaz A, Ashfaq UA, Tahir M, Gulzar F, Ali MA, Saari N, et al. MPD3: a useful medicinal plants database for drug designing. Nat Prod Res. 2016;31(11):1228-36.
4. Poolperm S, Jiraungkoorskul W. An update review on the anthelmintic activity of bitter gourd, Momordica charantia. Pharmacogn Rev. 2017;11(21):314-53.
5. Magalhães KDN, Guarniz WAS, Sá KM, Freire AB, Monteiro MP, Násota RT, et al. Medicinal plants of the Caatinga, northeastern Brazil: Ethnopharmacopoeia (1980-1990) of the late professor Francisco José de Abreu Matos. J Ethnopharmacol. 2019;237:314-53.
6. Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am J Heal Sys.t Pharm. 2003;60(4):356-359.
7. Salim AA, Chin YW. Drug Discovery from Plants. In: Bioactive Molecules and Medicinal Plants. Berlin, Heidelberg: Springer; 2008. p. 1-24.
20. Peter EL, Kasali FM, Deyno S, Mtewa A, Nagendrappa PB, Tolo CU, et al. Antifungal potential of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J Exp Microbiol 2019;8:920-9.

21. Adeyemi AO, Adeyinka AV, Olawande FT. Antibacterial activities of aqueous seed extracts of Terminalia catappa, Exu. Afr J Microbiol Res 2010;4:1523-4.

22. Zeng Y, Guan M, Li C, Xu L, Zheng Z, Li J, et al. Bitter melon (Momordica charantia Linn. fruit) grown in northern parts of Turkey: A case study for adaptation. Nat Prod Res 2019;23:969-53.

23. Tang MM, Chu WW, Wang Z, Chen J, Li H, et al. Identification and analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia Linn. fruit. Int J Biol Macromol 2016;92:246-53.

24. Karaman K, Dalkılıç-İkerci A, Yerisir H, Gülsen O, Coskun ÖF. Molecular, morphological and biochemical characterization of some Turkish bitter melon (Momordica charantia L.) genotypes. Ind Crop Prod 2012;38:129-37.

25. Perez JL, Jayaprakash GA, Patil BS. Metabolite profiling and in vitro biological activities of two commercial bitter melon (Momordica charantia Linn.) cultivars. Food Chem 2019;288:179-86.

26. Upadhyay A, Agrahari P Singh DK. A review on salient pharmacological features of Momordica charantia. Int J Pharm 2015;118:405-13.

27. Chen JC, Lu L, Zhang XM, Zhou L, Li ZR, Qiu MH. Eight new cucurbital glycosides, kuguaglycosides A-H, from the root of Momordica charantia Linn. Helv Chim Acta 2008;91:920-9.

28. Popovich DG, Li L, Zhang W. Bitter melon (Momordica charantia Linn. fruit) reduces prediabetes condition in wild-type models of obesity. J Sci Food Agric 2010;90:1619-26.

29. Wang S, Zhang Y, Liu H, He Y, Yan J, Wu Z, et al. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momordicin) from Momordica charantia Linn. Appl Microbiol Biotechnol 2012;96:393-5.

30. Cuong DM, Kwon SJ, Jeon J, Park YJ, Park JS, Park SU. Identification and characterization of phenylpropanoid biosynthetic genes and their accumulation in bitter melon (Momordica charantia). Molecules 2018;23(2):469.

31. Thiruvengadam M, Praeven N, Maria John KM, Yang YS, Kim SH, Chung IM. Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Organ Cult 2014;118:545-57.

32. Ajitha B, Reddy YAK, Reddy PS. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. J Photochem Photobiol B 2015;146:1-9.

33. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 2013;3:92-102.

34. Gouveia AP, Lim-Sylvano CY, Dayrit FM, Finch P. Acylglycosyl sterols from Momordica charantia. Phytochemistry 1989;28(6):1721-4.

35. Park P, Moon B, Kim S. Antioxidant and a-glucosidase inhibitory activities of fresh bitter melon and charantin of lutein content upon blinging and blanching treatments of picking. Korean J Food Sci Technol 2018;50(4):430-6.

36. Rohajatien U, Harirjo H, Estiasih T, Sriwahyuni E. Bitter melon (Momordica charantia) and its effect on liver function in typhoid-infected rats. J Pharmacogn Phytother 2013;23(1):77-88.

37. Ching-Dong C, Ping-Yuan L, Yo-Chia C, Han-Hsiang H, Wen-Ling S. Novel purification method and antibiotic activity of recombinant Momordica charantia MAP30. J Biotech 2017;7:113-7.
81. Beloin N, Gbeassor M, Apekagana K, Hudson J, de Soussa K, Kounaglo K, et al. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytotoxicity and biological activity. J Ethnopharmacol. 2005;96(1-2):49-55.

82. Lu YL, Liu YH, Chyuah HJ, Cheng CT, Liang WL, Hou WC. Antibacterial and cytotoxic activities of different wild bitter gourd cultivars (Momordica charantia L. var. abbreviata Serringle). Bot Stud. 2011;52(4):427-34.

83. Leelaprakash G, Rose J, Govtham B, Javvaji PK, Prasad S. In vitro Antimicrobial and Antioxidant Activity of Momordica Charantia Leaves. Pharmacope. 2011;24(4):244-52.

84. Santos KKA, Matias EFF, Socraal-Souza CE, Tintino SR, Morais-Braga MFB, Guedes GM, et al. Trypanocidic, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol. 2012;50(2):162-6.

85. Omorgbe RE, Ikuebe OM, Ihimire IG. Antimicrobial activity of some medicinal plants extracts on Escherichia coli, Salmonella paratyphi and Shigella dysenteriae. Afr J Med Med Sci. 1996 Dec;25(4):373-5.

86. Celoto MIB, Papa MFS, Sacramento LVS, Celoto FJ. Atividade antifúngica de extratos de Momordica charantia L. sobre Colletotrichum musae. Rev Bras Plantas Med. 2011;13(3):337-41.

87. Sankaranarayanan J, Jolly C. Phytochemical, antibacterial and pharmacological investigations on Momordica charantia linn. Emblica officinalis gaertn. and Curcuma longa linn. Indian J Pharm Sci. 1993;55(1):6-13.

88. Qiao Y, Song L, Zhu C, Wang Q, Guo T, Yan Y, et al. Dataset on preparation and characterization of the phosphorylated counterparts of a Momordica charantia protein for studying antifungal activities against susceptible dose-dependent C. albicans to antymycotics. Data Br. 2017;15:370-5.

89. Coutinho HDG, Costa JMG, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP. In vitro interference of Momordica charantia in the resistance to aminoglycosides. Pharm Biol. 2009;47(11):1056-9.

90. Malikozhundred B, Vasheenan B, Vijayakumar S, Sudhakaran R, Gobi N, Shanthis G. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocata Agric Biotechnol. 2016;8:189-96.

91. Rashid MMO, Akhter KN, Chowdhury JA, Hossen F, Hussain MS, Hossain MT. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract. BMC Complement Altern Med. 2017;17:336.

92. Gandhiraj V, Sathish Kumar K, Narendrakumar G. Biotic synthesis of silver nanoparticles from Momordica charantia (Cucurbitaceae) and its characterization studies. Res J Biotech. 2018;13(9):90-9.

93. Roopashree TS, Dang R, Shobha RRH, Narendra C. Antimicrobial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int J Appl Res Nat Prod. 2008;13(20-8).

94. Almehmad A, Raja G, Mahmood T, Guffraz M, Khanam A. Isolation and characterization of antifungalactivity conferring component(s) from seeds of bitter gourd (Momordica charantia). J Med Plants Res. 2012;6(4):566-73.

95. Andleeb S, Ghous T, Riaz N, Shahzad N, Ghous S, Awan UA. Assessment of antibacterial activity of Momordica charantia extracts and antibiotics against fecal contaminated water associated Enterococcus spp. Pakistan J Zool. 2013;45(2):555-8.

96. Jabeen U, Khanam A. Isolation and characterization of potential food preservative peptide from Momordica charantia L. Arab J Chem. 2017;10(2):3298-9.

97. Prasad V, Jain V, Girish D, Dole AK. Wound-Healing property of Momordica charantia L. fruit powder. J Herb Pharmacother. 2006;63(4):105-15.

98. Chen J, Tian R, Qiu M, Lu L, Zheng Y, Zhang Z. Trinorocucbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry. 2008;69(4):1043-9.

99. Darn DP, Dier MV, Than LH, Hien PTT, Tham NTT. Investigation of antimicrobial activity and chemical constituents of Momordica charantia L. var. abbreviata Ser. Vietnam J Sci Technol. 2019;5(7(2)):155-61.
VILLARREAL–LA TORRE VÍCTOR E.
Affiliation: Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo
Victor Eduardo Villarreal La Torre, a Master of Chemical Sciences, holds a degree in Pharmacy from Universidad Nacional de Trujillo (2011). Professor in the Medicinal Chemistry undergraduate program and the Molecular basis of the Action of Xenobiotics postgraduate program at the Universidad Nacional de Trujillo. He currently executes research projects aimed at the discovery of antimicrobial compounds in medicinal plants. Graduate student at Doctoral program in Pharmacy and Biochemistry since 2019.

SAGASTEGUI-GUARNIZ WILLIAM ANTONIO
Affiliation: Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo
Professor in the Department of Pharmacology of the Universidad Nacional de Trujillo, Perú since 1993 – to date. I am a graduated in Pharmacy and Biochemistry. Speaker at the graduate program of Universidad Nacional de Trujillo. Has bachelor in pharmaceutical chemistry 1988. Masters in Chemical Sciences, 1999. Doctorate in Biomedical Sciences, graduate program of the Universidad Nacional de Trujillo, 2010. Doctorate studies at Universidade Federal Do Ceará, Brazil, 2015-2018. Currently participates in research projects aimed at the phytochemical characterization of medicinal plants, focusing on antimicrobial activity, resistance to antimicrobials, and antimalarial.

SILVA–CORREA CARMEN ROSA
Affiliation: Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo
Professor in the Department of Pharmacology of the Universidad Nacional de Trujillo, holds a degree in Pharmacy and Biochemistry (2011), Master of Chemical Sciences (2017), graduate student at Doctoral program in Biomedical Sciences since 2019. Currently participates in research projects aimed at the phytochemical characterization of medicinal plants, focusing on antimalarial and leishmanicidal activity. In addition, she participates in the evaluation of the wound healing activity of traditional medicinal plants from Peru.
