Remote Closed-Loop Automatic Oxygen Control in Preterm Infants

CURRENT STATUS: UNDER REVIEW

BMC Pediatrics BMC Series

Mohammad Reza Moradi
Tehran University of Medical Sciences

Sharareh R. Niakan Kalhori
Tehran University of Medical Sciences

Marian Ghazi Saeedi
Tehran University of Medical Sciences

Mohammad Reza Zarkesh zarkesh@tums.ac.ir
Tehran University of Medical Sciences
Corresponding Author

Abbas Habibelahi
Iran Ministry of Health and Medical Education

Amir Hossein Panahi
Royandegan Rah Saadat CO.

DOI: 10.21203/rs.2.19536/v1

SUBJECT AREAS Pediatrics

KEYWORDS Remote Closed-Loop Automatic Oxygen Control, Preterm Infants, arterial oxygen saturation, fraction of inspired oxygen
Abstract

Background Different automated systems have been developed to improve maintenance of target range of arterial oxygen saturation (SPO2) in premature infants with respiratory distress. This study aimed to develop a Remote Closed-Loop Automatic Oxygen Control (RCLAC) as an efficient monitoring device. Then the mean of fraction of inspired oxygen (FIO2) and SPO2 by routine manual control (RMC) and RCLAC were compared.

Methods A developmental-descriptive study was carried out in an Iranian hospital (Tehran-Iran; 2015-2017). Eighteen preterm infants with gestational age 24-28 weeks entered the study. A database was prepared based on pulse oximeter parameters. A Wi-Fi module was implemented to receive data from pulse oximeter and send inputs to user's mobile. Vibrate alarm was implemented for high or low FIO2. After receiving notifications associated with increase or decrease of FIO2 levels and user's confirmation; the alterations were applied on the ventilator.

Results The mean FIO2 in RMC system was significantly higher than RCLAC system (98.1± 2.67 vs. 79.5±16.03; p = 0.0001). According to the results, when the SPO2 reached close to target SPO2 range and consequently FIO2 changed (decreased or increased based on target SPO2), heart rate showed a regular beating with decrease in the numbers.

Conclusion Remote Closed-Loop Automatic Oxygen Control system as a simple device could prevent preterm neonates from sustained hypo-hyperoxemic and arrhythmia episodes. Moreover by using RCLAC, there was no need for continuous monitoring that may reduce workload of NICUs medical staff. Collecting reliable data and recording information in digital forms were also other benefits.
Introduction

Oxygen therapy for premature infants with respiratory distress is a critical subject. Hypoxemia can lead to permanent nervous system damage or organ failure resulting high morbidity and mortality rates. On the other hand, hyperoxemia in some cases may lead heart, lungs, brain, retina and hearing system damages. Maintenance of adequate blood oxygen concentration to minimize the risks of both hypoxemia and hyperoxemia are the main goal related mechanical ventilation in hospitalized premature infants (1–4).

Maintenance of oxygen saturation targets is monitored by pulse oximetry which detects arterial oxygen saturation (SPO_2) and fraction of inspired oxygen (FIO_2) indices. Adjustment of respiratory support within the clinically intended range of SPO_2 is affected by some factors like routine manual control (RMC) by clinical staff and their respond to SPO_2 frequent fluctuations. It is clear that a higher nurse-to-patient ratio can improve achievement of oxygenation targets by preventing neonate from spending long time above the clinically intended range of SPO_2 (1, 5).

Different automated systems have been developed to improve maintenance of target range of SPO_2 and decrease of limitations related routine manual control. Kwok et al. extracted basic rules to improve control respiratory devices by using adaptive neuro-fuzzy inference system (ANFIS) with multilayer perceptron (MLP) and the FAVeM algorithms. They could reduce the workload of physician resulting better decision making (6). Another control system was developed to automatically adjust the frequency of breaths and tidal volume of lungs. Proportional-integral-derivative (PID) control algorithm, feedback data from devices, and some physiological data were used to reduce fluctuations of arterial oxygen (7). An AUTOPILOT-BT control
ventilator system was also designed based on a set of Fuzzy controllers combined with explicit physiological modeling and a neural network. This model could enhance mechanical ventilation therapy and decrease workload of intensivists (8). Another investigation demonstrated that a closed-loop automatic control (CLAC) could improve oxygen administration to preterm infants while reduced workload related to RMC (2).

Recently, several studies focused on mobile Health (m-Health) as a help in collecting more and easier information, constant monitoring, and reducing unnecessary medical interventions. Over 3.1 billion mobile around the world have the ability to connect wirelessly. This intended software algorithm with multi services providers may influence sooner clinical diagnosis and better medical management with lower costs and less time consuming (9-12).

Keeping arterial oxygen saturation (SPO2) in a standard range for premature infants is of importance. On the other hand, continuous monitoring constrains extra workload for NICUs medical staff especially in crowded wards with undeveloped medical infrastructures. It is supposed that a Closed-Loop Automatic Oxygen Control system conducting a remote monitoring device may facilitate managing target SPO2 with features such as acoustic, exhibition and vibrating alert. Moreover, collection of reliable data in digital form may reduce staff’s workload. This study aimed to develop a Remote Closed-Loop Automatic Oxygen Control (RCLAC) as a quick and efficient monitoring device. Then the mean of FIO2 and SPO2 by RMC and RCLAC were compared.

Materials and methods

Study design:
A developmental-descriptive study carried out in the NICU of Yas Women Hospital affiliated to Tehran University of Medical Sciences in collaboration with School of Allied Medical Science and Saadat CO. (Tehran-Iran) from October 2015 to July 2017. Twenty preterm infants with gestational age 24-28 weeks entered the study. Congenital diaphragmatic hernia, cyanotic heart disease, severe apnea, perfusion index (PI) < 0.4 and any medical conditions with deviation from the usual SPO₂ target range was considered as exclusion criteria.

Firstly, a checklist was prepared according to literature review to define some important demographic and physiologic parameters related maintaining of PaO₂ in a target range (gestational age, sex, temperature, heart rate, results of arterial blood gas test, FIO₂, SPO₂, PI, PH, pCO₂, pO₂, Hct,...). In the next step, eight expert neonatologists and pediatric intensivists were asked to prioritizethese parameters by score 1 to 10. Of 19 variables, 4 criteria had the greatest scores. The efficiency index (from 1 to 5) was calculated for each important criterion (Table 1). Hence, alterations of these important variables should be constantly considered and all decisions should be made based on them. After determining the significant variables associated arterial oxygen status, physicians were asked to design a medical algorithm (Figure 1).

Development and implementation of devices

After algorithm design, database software was prepared based on pulse oximeter parameters. A Wi-Fi module (designed by Saadat CO.) was implemented to receive data from pulse oximeter and send inputs to user's mobile. Moreover, a mobile application was also developedwith a particular service for reading input data from the module. Different mobile alerting approaches including text message, sound
alarm and vibrating alarm detected different variables; vibrate alarm was
implemented for high or low FIO₂ and sound-vibrate alarm was designed for
demonstrating heart rate, temperature, PI, sudden fluctuations or device
disconnection from patient. It should be noted that all of these alarms type were
optional for staff to set for each patient's events based on the importance of the
events.

Mobile phone was connected through Wi-Fi network. User (neonatologist or NICU
nurse) could receive information related patient's situation to perform or order the
necessary cares. Using this new algorithm could provide a controlling system to
change FIO₂ under the direct supervision of medical specialist. After receiving
notifications associated increase or decrease of FIO₂ levels and user's confirmation;
the alterations were applied on the ventilator. If this alarm was not confirmed by
user, the alterations were not applied, as well (Figure 2, 3).

Sample size
First, a pilot experimental study was carried out on 10 participants to compare FIO₂
between RMC and RCLAC groups. A significant difference was observed between
groups regarding to FIO₂ (in RMC group= 97.4 ±3.2 vs. in RCLAC group= 74.1±19;
p= 0.0001). Then, based on using Compare Means formula; with the proposed
sample size of 8, the study had a power of 90% and an alpha error of 0.05. Finally,
according an investigation by Hallenberger et al. (2), 18 subjects entered the study
for better data analysis with appropriate power.

Protocol
In the present study, two approaches (RMC and RCLAC) in twenty-four-hour periods
were compared. Nurses were asked to pay special attention to signs and warnings.
With software alerts, the nurse should increase or decrease the amount of FIO2.

After nurse confirmation, the alerts were applied on ventilator. If the alarm was not confirmed by nurse, alerts would not be applied on ventilator. Similarly, the software did not change the amount of FIO2. The nurse-patient ratio at NICU was 1:2 to 1:3.

Primary/ Secondary outcomes:

The FIO\textsubscript{2} algorithm was tested and compared among premature neonates with RMC and RCLAC to keep SPO\textsubscript{2} in the target range as the primary outcomes. Heart rate alterations following decrease or increase of SPO2 and FIO2 were also sassed as our secondary outcomes.

Ethical considerations:

The present study was taken from a medical student thesis with ID; IR290-441. Ethics approval was obtained from the institutional review board of Tehran University of Medical Sciences according to Helsinki declaration (IR.TUMS.SPH.REC.1395.1537). All participants' parents gave written consent before enrollment. All gathered data were considered confidential and no extra cost was imposed on our participants.

Data Acquisition and Analysis

RCLAC software had the ability to record and save data correlated demographic characteristics, respiratory or heart co-morbidities, FIO2, SPO2, PI, temperature, and ABG results on the mobile phone. Moreover, this database had the potential to be connected to central database. Local database from the mobile phone were transferred to a PC-Computer. Then information was extracted from database with SQL query. All data were classified by patients file numbers. Recorded data were
analyzed to compare the FIO2 between RMC and RCLAC groups. All statistical analyses were conducted using SPSS 19. Data were presented as mean±standard deviation for continuous variables and n (%) for categorical variables. Kolmogorov-Smirnov Test and T-Test were used for analyzing the relationships between variables.

Results

After storing information in the database, reliable and classified data had been available. Table 2 presents the summary of patient’s demographic characteristics. Twenty two preterm infants with gestational age 24-28 weeks entered the study. Of all, 4 neonates with severe apnea or PI < 0.4 were excluded. Eighteen neonates (10 males and 8 females) with the mean birth weight 865±241 gr were included. The Kolmogorov-Smirnov Test showed normal distributions in all variables including birth weight (p=0.991), gestational age (p=0.991, age (p=0.957), RMC FIO2 (p=0.084), RCLACFiO2 (p=0.123) and PI (p=0.389).

T-Test analysis showed that the mean FIO2 in RMC system was significantly higher than RCLAC system (98.1±2.67 vs. 79.5±16.03; p = 0.0001).

Comparing FIO2 and target SPO2 in RCLAC and RMC systems, a box and whisker plot demonstrates (Figure 4) a fall in FIO2 level based on target SPO2 by applying RCLAC. The mean of FIO2 value decreased from 97 to 79%. Moreover, regarding to SPO2 setting by physician’s recommendations, the mean of SPO2 level dropped from >98% to approximately 88%.

According to the results, when the SPO2 reached close to target SPO2 range and consequently FIO2 changed (decreased or increased based on target SPO2), heart
rate showed a regular beating with decrease in the numbers. As detailed data are shown in Figure 5; after setting the target SPO$_2$ on 93%, FIO$_2$ dropped from 100 to 82% at 1:52 PM and heart rate decreased undergoing to 90 bpm.

Figure 6 indicates when the target SPO$_2$ was set on 90% (after 1:49 PM), the FIO$_2$ decreased to below 60%, and the SPO$_2$ value reached close to 90%. After reaching to desirable SPO$_2$ level, the chart showed a decrease in heart rate fluctuation with regular rhythms. At that time the heart rate was shown close to 140 bpm.

Figure 7 shows that the lungs were able to supply oxygen and the patient did not need any supplementary oxygen. Decreasing FIO$_2$ from 100 to below 80% caused no SPO$_2$ alterations. Slight fluctuations in heart rate and SPO$_2$ were observed with reducing FIO$_2$ to about 50%. This trend continued until the natural environment (21% oxygen) was achieved. However, after 1:04 PM, the heart rate was regular and its rate reduced to below 140 bpm.

Discussion

In the present study we designed a Remote Closed-Loop Automatic Oxygen Control system as a simple device to keep arterial oxygen saturation (SPO$_2$) in a standard range for premature infants. Moreover by using RCLAC besides managing target SPO$_2$, there was no need for continuous monitoring that may reduce workload of NICUs medical staff. Collecting reliable data and recording information in digital forms were also other benefits. The strength of our study was consideration of neonate's heart rate during FIO$_2$-SPO$_2$ controlling.

According to the results, by implementing RCLAC system, the mean FIO$_2$ (considering target SPO$_2$) was kept in a lower range compared with RMC system.
Using such an adaptive model could responsible for setting the minimum FIO\textsubscript{2} for the target SPO\textsubscript{2} keeping preterm neonates from high O\textsubscript{2} exposure, sustained hyperoxemic episodes or fluctuations in SPO\textsubscript{2} levels resulting enhanced outcomes. Compatible to our finding, Hallenberger et al. designed a Closed-Loop Automatic Oxygen Control system (CLAC) using a laptop computer executing the FIO2 software connected to pulse oximeter and ventilator. They demonstrated that by implementation of system, oxygen administration to preterm infants was improved and optimized. The percentage of time spent within the SPO\textsubscript{2} target range (Target %) in CLAC group was significantly higher in comparison with RMC group. They concluded that by using such systems, unnecessarily high or low O\textsubscript{2} exposure could be prevented (2).

Another point associated RCLAC system in comparison with RMC system was maximum and minimum feedback times for inhaling oxygen. The results of present study have shown that the maximum time to reduce FIO2 was 3 minutes and the mean of 20 seconds was needed to increase FIO2 levels. Morozoff et al. have illustrated that by using adaptive control modes, within two or five minute periods, the controller could adjust the FiO2-SPO2 relationship resulting normoxemia (14). Tehrani et al. demonstrated that the time less than 20 seconds was required for returning the arterial oxygen saturation to the normal safe range by implementation of their proposed closed-loop automatic control system (15).

Based on the results, after adjusting desirable FIO2-SPO\textsubscript{2} levels by our proposed controller system, a decrease and regularity in heart rate chart were notable. Decrease of heart rate fluctuation with regular rhythms not only protect neonate from arrhythmia and its related adverse outcome but also can decrease NICU staff's
stress. Moreover, this benefit could prevent patient from more medical interventions that may affect respiratory function. Up to our knowledge, our study was the only investigation that evaluated participants' heart rates during maintenance of FiO₂-SPO₂ in the normal ranges.

Former studies have confirmed that manually administering oxygen therapy is difficult and time consuming (1-3, 14,15). Results of present study demonstrated that by using RCLAC system, the workloads of the staff related to full FiO₂ control were reduced. Furthermore, with the systematization of daily reports related with RCLAC system, clinical staff did not waste lots of time for completing patient's medical records. RCLAC software had the ability to record and save all demographic characteristics data. This database had the potential to be connected to central database that facilitated availability of data for medical staff. By adjusting FiO₂, the patient and NICU's stresses could be alleviated that may influence the prognosis of disease and personnel efficiency. Finally, RCLAC system as an easy applicable and not-complex system was designed to warn NICU nurse based on patients' condition. Staff by alarms related to the patients' status was being promptly informed.

Our study had some limitations. We did not design the sensors controlling PEEP and PIP under Wi-Fi network. Therefore, the data associated sensors detecting increase or decrease of FiO₂ was not considered. Use of PEEP and PIP control sensors was strongly suggested in

Strengths of study

The previous studies have shown some risks related to development of mechanized control systems in oxygen therapy for respiratory complicated patients (1, 3, 5).
Therefore, a system was designed and implemented that could easily and promptly warn nurses based on patients’ condition. Besides that, this system would be helpful for staff; they were informed by alarms related to the patients' status instead of full control monitoring.

Conclusion

Remote Closed-Loop Automatic Oxygen Control system as a simple device could keep preterm neonates from sustained hypo-hyperoxemic and arrhythmia episodes. Moreover by using RCLAC, there was no need for continuous monitoring that may reduce workload of NICUs medical staff. Collecting reliable data and recording information in digital forms were also other benefits.

abbreviations

Arterial oxygen saturation; SPO$_2$
Remote Closed-Loop Automatic Oxygen Control; RCLAC
Fraction of inspired oxygen; FIO$_2$
Routine manual control; RMC
Neonatal intensive care unit; NICU

declarations

Ethics approval and consent to participate

The present study was taken from a medical student thesis with ID; IR290-441.
Ethics approval was obtained from the institutional review board of Tehran University of Medical Sciences according to Helsinki declaration
(IR.TUMS.SPH.REC.1395.1537). All participants' parents gave written consent before enrollment.

Consent for publication

The present manuscript contains no individual person’s data.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that there is no conflict of interests.

Funding

This study was supported by Tehran University of medical sciences (TUMS). We acknowledge the parent for their participation in this study.

Authors' contributions

Dr. Zarkesh and Kalhori carried out the design and coordinated the study, participated in most of the experiments. Dr Saeedi and Mr. Habibelahi coordinated and carried out all the experiments, Analysis of data and participated in manuscript preparation. Dr Panahi and Mr. Moradi designed the device and provided assistance for all experiments and prepared the manuscript. All authors have read and approved the content of the manuscript.

references

1. Claure N, Bancalari E. Automated closed loop control of inspired oxygen concentration. Respiratory care. 2013;58(1):151-61.

2. Hallenberger A, Poets CF, Horn W, Seyfang A, Urschitz MS. Closed-Loop
automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics. 2014;133(2):379-85.

3. Claure N, Bancalari E. Oxygen saturation targeting by automatic control of inspired oxygen in premature infants. NeoReviews. 2015;16(7):406-12.

4. Bancalari E, Claure N. Respiratory Instability and Hypoxemia Episodes in Preterm Infants. Am J Perinatol. 2018;35(6):534-36. doi: 10.1055/s-0038-1637760. Epub 2018 Apr 25.

5. Claure N, Bancalari E. Role of automation in neonatal respiratory support. J Perinat Med. 2013;41(1):115-8

6. Kwok H, Linkens DA, Mahfouf M, Mills GH. Rule-base derivation for intensive care ventilator control using ANFIS. Artificial intelligence in medicine. 2003;29(3):185-201.

7. Tehrani F, Rogers M, Lo T, Malinowski T, Afuwape S, Lum M, et al. A dual closed-loop control system for mechanical ventilation. Journal of Clinical Monitoring and Computing. 2004;18(2):111-29.

8. Zhu H, Moller K, editors. Ventilator control based on a fuzzy-neural network approach. Bioinformatics and Biomedical Engineering, 2008 ICBBE 2008 The 2nd International Conference on; 2008: IEEE.

9. Cortez NG, Cohen IG, Kesselheim AS. FDA Regulation of Mobile Health Technologies. New England Journal of Medicine. 2014;371(4):372-9.

10. Steinhubl SR, Muse ED, Topol EJ. Can mobile health technologies transform health care? Jama. 2013;310(22):2395-6.

11. Shortliffe EH, Cimino JJ. Biomedical informatics: computer applications in health care and biomedicine: Springer Science & Business Media 2013.

12. Steinhubl SR, Muse ED, Topol EJ. Can mobile health technologies transform
health care? Jama. 2013;310(22):2395-6.

13. WHO. Pulse oximetry training manual. WHO Press, World Health Organization: Geneva, Switzerland; 2011

14. Morozoff EP, Smyth JA, editors. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates. Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE; 2009: IEEE.

15. Tehrani F, Rogers M, Lo T, Malinowski T, Afuwape S, Lum M, Grundl B, Terry M. Closed-loop control if the inspired fraction of oxygen in mechanical ventilation. J Clin Monit Comput. 2002;17(6):367-76.

tables

Table 1: Scoring of important variables by physicians

Variables	Physicians scores; n=8	Mean scores	Efficiency
FIO2	10 9 9 9 10 9 9 9	9.2	4.6
SPO2	9 9 8 10 10 8 9 10	9.1	4.8
Temperature	8 6 9 7 9 9 7 8	7.8	2.6
Perfusion Index	7 8 6 9 9 6 7 8	7.5	4.7
Heart rate	4 3 2 3 3 4 5 7	3.8	3.6

Table 2: Demographic and clinical characteristics of 18 participants
Variables	Total n		
Gender (n %)			
Male	10		
Female	8		
Mean birth weight (Grams)	86		
Mean gestational age (Weeks)	27		
FIO2 at study entry [Median% (min-max)]	98		
FIO2 in RMC group (Mean)	98.1		
FIO2 in RCLAC group (Mean)	79.5		
Ventilation mode (n %)			
Mechanical ventilation	12		
CPAP*	6		
Surfactant treatment (n %)			
No	11		
yes	7		
History of multiple gestations (n %)			
No	4		
yes	14		
PI [Median (min-max)]	0.78		
Age [Days; median (min-max)]	27		

*Continuous positive airway pressure **perfusion index

Figures
Flow chart of clinical approach to the treatment A: Heart rate drops in deep sleep.
Figure 2

General algorithm

Figure 3

Equipment setup
Figure 4
Box and whisker plot comparing FIO2 and target SPO2 in RCLAC and RMC systems

Figure 5
Example of RCLAC control of process-target SPO2 (93%)
Figure 6
Example of RCLAC treatment process-target SPO2 (90%)

Figure 7
Example of RCLAC treatment process-target SPO2 (95%)
