Активация свободнорадикального окисления является одним из основных механизмов повреждения клетки при стрессорном воздействии на организм [1, 2], что обусловливает актуальность поиска эффективных подходов к цитопротекции при стрессе.

Одним из перспективных направлений в решении обозначенной выше проблемы может быть использование пептидных молекул [3, 4]. Преимуществом применения препаратов на основе регуляторных пептидов является отсутствие у них токсичности и аллергенности при...
наличии широкого спектра физиологического и фармакологического действия [5]. К числу таких молекул принадлежат регуляторные пептиды из группы N-концевых аналогов адренокортикотропного гормона (АКТГ). Известно, что препарат семакс, действующей субстанцией которого является синтетический пептид АКТГ(4-7)-Pro-Gly-Pro, у стрессированных крыс оказывает корригирующее действие на гистоархитектонику и процессы свободнорадикального окисления в печени, а также на уровень сывороточных трансаминаз [6]. Кроме того, в условиях шизофении комплекс семакс оказывает нейропротективное действие за счет повышения уровня экспрессии мозгового нейротропного фактора (BDNF) [7].

Структурно и функционально родственным семаксу пептидом является His-Phe-Arg-Trp-Pro-Gly-Pro (AKTГ (6-9)-Pro-Gly-Pro). Последовательность His-Phe-Arg-Trp, соответствующую участку АКТГ(6-9), является активным центром АКТГ, который взаимодействует со всеми типами меланокортиновых рецепторов (МCR), кроме MC2R [8]. При этом присоединение трипептида Pro-Gly-Pro к C-концу этой молекулы повышает ее устойчивость к действию карбоксипептидаз на фоне сохранения нейротропных эффектов. Подобно семаксу, АКТГ(6-9)-Pro-Gly-Pro обладает широким спектром нейротропных эффектов, в т.ч. и на моделях со стрессорной нагрузкой, и в сопоставимых дозах способен проявлять более выраженную активность [9].

В связи с этим целью исследования было изучить влияние пептид с АКТГ(6-9)-Pro-Gly-Pro на процессы свободнорадикального окисления у крыс в условиях хронического иммобилизационного стресса (ХИС).

Материалы и методы

Животные

В опыте были использованы 55 крыс-самцов Вистар массой 280–300 г. В помещении, где содержали животных, поддерживали температуру воздуха 22 ± 2 °С, влажность 60 ± 5% и 12-часовой режим (свет с 8:00 до 20:00). Животные были обеспечены комфортом и водой ad libitum. Крыс разделили на пять групп по 11 особей в каждой: 1 — интактные животные (введение физиологического раствора без стрессирования), 2 — контрольная группа (ХИС + ФР), 3 — ХИС + АКТГ(6-9)-Pro-Gly-Pro 5 мкг/кг, 4 — ХИС + АКТГ(6-9)-Pro-Gly-Pro 50 мкг/кг, 5 — ХИС + АКТГ(6-9)-Pro-Gly-Pro 500 мкг/кг.

Хронический иммобилизационный стресс

ХИС моделировали путем помещения крыс в тесные прозрачные пластиковые боксы с отверстиями для дыхания и взвешивания, размер которых подбирали индивидуально под каждое животное. Животных подвергали стрессу в течение 2 ч (с 11:00 до 13:00 ч) на протяжении 14 дней (рис. 1) [10].

Пептид

В исследовании использовали N-концевой аналог AKТГ, АКТГ(6-9)-Pro-Gly-Pro (His-Phe-Arg-Trp-Pro-Gly-Pro), синтезированный в Институте молекулярной генетики НИЦ «Курчатовский институт» РАН, который растворяли в ФР и вводили внутривенно в дозах 5, 50 и 500 мкг/кг ежедневно за 12−15 мин. до начала каждого стрессорного воздействия в объеме из расчета 1 мл на 1 кг массы тела. Интактные и контрольные животные ежедневно получали эквивалентные объемы ФР. Использованные в эксперименте дозы пептида и протокол введения были выбраны в соответствии с имеющимися литературными данными об их эффективности [9, 11].

Получение сыворотки крови

Через 24 ч после заключительного стрессорного воздействия проводили эвтаназию животных путем забора крови из правого желудочка сердца после двусторонней парааортальной торакотомии под эфирным наркозом с помощью вакуумной системы S-Monovette с проколом иглой (SARSTEDT; Германия). Проводили забор 7,0–7,5 мл крови, положение иглы вакуумной системы оценивали визуально. Собранную кровь центрифугировали при 1500 г в течение 15 мин. Полученную сыворотку аликвотировали по 200 мкл в индивидуальные чистые микропробирки и замораживали при −20 °C, затем хранили при −80 °C для дальнейшего исследования. Перед анализом аликвоты размораживали при комнатной температуре в течение 4 ч.

Оценка интенсивности свободнорадикальных процессов и выраженности стресс-реакции

В качестве маркера окислительного повреждения клеточной ДНК был выбран метаболит нуклеиновых кислот 8-оксо-2’-дезоксигуанозин (8-OHdG), который исследовали методом иммуноферментного анализа (ИФА) с использованием набора DNA/PNA Oxidative Damage (High Sensitivity) ELISA Kit (SB9320, Cayman Chemical; США). Кроме того, определяли концентрацию экстрацеллюлярной супероксиддисмутазы (СОД3) методом ИФА с использованием набора ELISA Kit For Superoxide Dismutase 3, Extracellular (SEA117Fa, Cloud-Cline Corp.; США) и продуктов, реагирующих с тиобарбитуровой кислотой (ТБК-РП), флуориметрическим методом с помощью набора TBARS (TCA Method) Assay Kit (700870, Cayman Chemical; США). Для оценки выраженности стресс-реакции определяли содержание кортикостерона в сыворотке крови иммуноферментным методом с использованием набора Corticosterone ELISA kit (ADI-900-097, Enzo Life Sciences; США).

Все исследования проводили в соответствии с протоколами производителей. Абсорбцию и флуоресценцию регистрировали и анализировали с помощью многофункционального планшетного анализатора Variskan Flash (Thermo Fisher Scientific; США) и программного обеспечения SkanIt (Thermo Fisher Scientific; США).

Статистический анализ

Статистическую обработку полученных данных проводили с использованием языка программирования R v.4.1.0 [12] в интегрированной среде разработки RStudio Desktop v. 1.4.1717 (RStudio, PBC; США; https://www.rstudio.com). Для подтверждения гипотезы о нормальности распределения применяли критерий Штюдента с поправкой Уэлча, а для подтверждения гипотезы о равенстве дисперсий — критерий Левене. В случае подтверждения гипотезы для сравнения двух групп использовали t-критерий Стьюдента с поправкой Уэлча, а для четырех групп — однофакторный дисперсионный анализ (one-way ANOVA) с апостериорным тестом Ньюмана–Кейлса. При отклонении применяем
ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ ПАТОФИЗИОЛОГИЯ

ВЕСТНИК РГМУ 6, 2021 VESTNIKRGMU.RU

U-критерий Манна–Уитни для двух групп, а критерий Краскела–Уоллиса с апостериорным тестом Данна — для четырех групп. Для снижения эффекта множественных сравнений использовали поправку Бенжамини–Хохберга. Различия считаются значимыми при \(p < 0,05 \).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследования установлено, что ХИС приводит к развитию окислительного стресса (рис. 2). Так, на фоне ХИС отмечалось значимое повышение уровня 8-OHdG на 18,4% \((p = 0,01) \) на фоне значимого снижения содержания СОД3 на 14,3% \((p = 0,01) \). При этом концентрация ТБК-РП не изменялась \((p = 0,43) \).

При этом показано, что АКТГ(6-9)-Pro-Gly-Pro корригирует вызванный ХИС окислительный стресс. Отмечены достоверные различия уровней 8-OHdG в сыворотке \((p = 0,0004) \) между контрольными стрессированными животными и теми, кому вводили пептид. Однако значимые различия уровня СОД3 \((p = 0,2) \) не обнаружены.

Апостериорный анализ установил, что при введении АКТГ(6-9)-Pro-Gly-Pro в дозах 5 и 50 мкг/кг содержание 8-OHdG в сыворотке \((p = 0,004) \) соответственно. При этом уровень содержания 8-OHdG \((p = 0,72) \).

На основании полученных данным также установлено, что при моделировании ХИС имело место значимое повышение уровня кортикостерона на 27% \((p = 0,003) \). Проведенный апостериорный анализ показал, что АКТГ(6-9)-Pro-Gly-Pro в дозах 5, 50 и 500 мкг/кг приводил к значимому снижению содержания кортикостерона на 34,9% \((p = 0,004) \), 16,4% \((p = 0,04) \) и 28,6% \((p = 0,01) \) соответственно.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В ходе настоящего исследования было изучено влияние пептида АКТГ(6-9)-Pro-Gly-Pro на процессы свободнорадикального окисления у кролика в условиях ХИС. Выбор маркеров свободнорадикального окисления, использованных в исследовании, связан с их диагностическим и патофизиологическим значением. Так, 8-OHdG является надежным биомаркером генерализованного и клеточного окислительного стресса, выступающим в качестве важного индикатора окислительного повреждения мозга при острым ишемическом инсульте, атеросклерозе, сердечно-сосудистых заболеваниях, нейродегенеративных расстройствах, таких как болезнь Альцгеймера и болезнь Паркинсона, а также психических расстройствах, таких как шизофрения и т. д. [13]. Другим выбранным маркером окислительного стресса является малоновый диальдегид (МДА) — продукт перекисного окисления полиненасыщенных жирных кислот и индикатор опосредованного активными формами кислорода повреждения клеточных мембран, уровни которого измеряют посредством оценки ТБК-РП [14]. СОД является антиоксидантом первой линии, инициирующим активацию процессов защиты от активных форм кислорода [15]. Описаны три изоформы СОД, однако преобладающим антиоксидантным ферментом в сыворотке является внеклеточная СОД3, а ее роль не ограничивается только удалением радикалов, но включает влияние на иммунные реакции и передачу клеточного сигнала [16]. В связи с этим для оценки изменений концентрации СОД3 в условиях ХИС и на фоне введения пептида в качестве надежного и специфического метода исследования, позволяющего точно идентифицировать именно данную изоформу фермента, использовали ИФА.
В ходе исследования было показано, что ХИС привел к значительному увеличению содержания продуктов свободнорадикального окисления ДНК/РНК в сыворотке экспериментальных животных. Подобные результаты были получены в аналогичной модели хронического стресса на мышах C57BL/6J [17]. Кроме того, ХИС привел к снижению содержания СОД3. Следует отметить, что активация свободнорадикального окисления и снижение концентрации СОД3 происходили на фоне повышенного содержания в крови кортикостерона. Известно, что повышенный уровень кортикостерона сопровождается снижением активности ферментов антиоксидантной системы [18]. Таким образом, использованная в исследовании модель хронического стресса вызвала активацию процессов свободнорадикального окисления.

Было установлено, что ХИС не вызвал достоверных изменений уровня TBK-РП. При этом в литературе имеются противоречивые данные о содержании этого маркера в сыворотке крови при продолжительном стрессовом воздействии. Так, в ряде исследований хронический стресс вызывал значительное повышение концентрации TBK-РП [19, 20]. Однако отмеченные изменения происходили на фоне хронического непредсказуемого стресса, характеризующегося раздражителями различной силы, в то время как нами была использована модель с мононучным стрессорным воздействием. В то же время имеются работы, в которых уровень TBK-РП в сыворотке крови в сходных с нашими экспериментальных условиях не изменялся [18, 21]. Также важно отметить, что, несмотря на быстроту и простоту, флуориметрические и спектрофотометрические методы определения TBK-РП не всегда надежны в гетерогенных системах в силу способности альдегидов, отличных от МДА, генерировать производные, поглощающие свет в том же диапазоне длин волн [14]. В то же время отсутствие значимых сдвигов TBK-РП в сыворотке крови в условиях хронического стресса также может быть связано с повышением к окончанию эксперимента активности антиоксидантных механизмов, не изученных в нашей работе. Поэтому для более полного выявления механизмов установленных нами изменений в процессах свободнорадикального окисления необходимо в дальнейшем выполнить определение ряда дополнительных маркеров в сыворотке крови.

АКТГ(6-9)-Pro-Gly-Pro в дозах 5 и 50 мкг/кг снизил интенсивность процессов свободнорадикального окисления, что отразилось в значимом снижении уровня 8-OHdG. В связи с этим следует отметить, что имеющий близкие с АКТГ(6-9)-Pro-Gly-Pro структурные и функциональные свойства АКТГ(4-7)-Pro-Gly-Pro (семакс) в сопоставимых дозах оказывает цитопротективное действие на нейроны головного мозга в условиях ишемии, в частности, за счет повышения его экспрессии BDNF [6, 22, 23]. Учитывая, что инсульт сопровождается активацией окислительного стресса [24, 25], установление нами корреляции процессов свободнорадикального окисления при применении АКТГ(6-9)-Pro-Gly-Pro также может иметь определенное значение в цитопroteкции.

Кроме того, механизмы цитопротективных эффектов пептида могут быть связаны с модуляцией активности...
генов NF-κB и активация редокс-чувствительного NRF2-сигнального пути, которые были установлены при исследовании защитного действия ACTH(6-9)-Pro-Gly-Pro на клетки SH-SYSY в условиях цитотоксичности, вызванной пероксидом водорода [26].

Кроме того, известно, что гипоталамо-гипофизарно-надпочечниковая ось, которая регулирует выработку и высвобождение кортизола, может увеличивать окисительный стресс за счет модуляции генерации активных форм кислорода и митохондриального кальциевого гомеостаза. При этом уровень кортизола имеет положительную корреляцию с концентрацией 8-OHdG в плазме крови [27]. Учитывая имеющуюся у ACTH(6-9)-Pro-Gly-Pro нейротропную активность [9], можно предположить, что его противострессорные эффекты также могут быть связаны с модуляцией стресс-реакции уже на уровне центральной нервной системы, что подтверждается установленном в настоящем исследовании одновременным снижением уровней кортизола и 8-OHdG.

Различие в эффектах ACTH(6-9)-Pro-Gly-Pro в зависимости от введенной дозы, в частности, отсутствие активности в максимальной использованной дозе (500 мкг/кг), характерно для регуляторных пептидов [5, 9]. Так, для меланокортинов показано, что передача сигнала с МСР осуществляется за счет взаимодействия с аденилатциклазой и активации цАМФ-сигнального пути[28]. Однако пути передачи сигнала могут зависеть от концентрации лиганда и передаваться с включением других систем вторичных мессенджеров, что может отражаться на направленности и выраженности эффектов. Например, сигнал с МСЗР может передаваться по фосфоинозитольному пути [29], а с сигналом с МССР — с участием Jak/STAT [30].

ВыВОДы

Проведенное исследование показало, что хронический (14-дневный) иммобилизационный стресс приводит к активации процессов свободнорадикального окисления у животных. Введение ACTH(6-9)-Pro-Gly-Pro в дозах 5 и 50 мкг/кг снижало выраженность стресс-реакции и оказывало ингибиторное влияние на стресс-индукированные процессы свободнорадикального окисления. Результаты настоящей работы и данные других исследований эффектов N-концевых аналогов ACTH свидетельствуют о необходимости продолжения изучения механизмов их влияния на состояние стресс-индукированного свободнорадикального окисления с использованием комплексной оценки более широкого спектра маркеров про- и антиоксидантных систем.

Литература

1. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017; 86: 715–48. DOI: 10.1146/annurev-biochem-061516-045037. PubMed PMID: 28441057.
2. Sies H. Oxidative stress: concept and some practical aspects. Antioxidants (Basel). 2020; 9 (9): 852. DOI: 10.3390/antiox9090852. PubMed PMID: 32927924.
3. Хависон В. Х. Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина. 2020; 98 (3): 165–77. DOI: https://doi.org/10.30296/0023-2149-2020-98-3-165-177.
4. Perlikowska R. Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides. 2021; 140: 170528. DOI: 10.1016/j.peptides.2021.170528. PubMed PMID: 3376091.
5. Koroleva SV, Myasoedov NF. Sermak as a universal drug for therapy and research. Biol Bull. 2018; (45): 589–600. DOI: 10.1134/S1062359018060055.
6. Бобынцев И. И., Крюков А. А., Шепелева О. М., Иванов А. В. Различие в эффектах АКТГ(6-9)-Pro-Gly-Pro в зависимости от введенной дозы, в частности, отсутствие активности в максимальной использованной дозе (500 мкг/кг), характерно для регуляторных пептидов [5, 9]. Так, для меланокортинов показано, что передача сигнала с МСР осуществляется за счет взаимодействия с аденилатциклазой и активации цАМФ-сигнального пути[28]. Однако пути передачи сигнала могут зависеть от концентрации лиганда и передаваться с включением других систем вторичных мессенджеров, что может отражаться на направленности и выраженности эффектов. Например, сигнал с МСЗР может передаваться по фосфоинозитольному пути [29], а с сигналом с МССР — с участием Jak/STAT [30].

Материалы и методы

В исследовании использовали животных и здоровых мужчин. Оценку стресс-реакций проводили с помощью анкетирования, физической и психологической нагрузки. Результаты исследований были обработаны с использованием комплексной оценки более широкого спектра маркеров про- и антиоксидантных систем.
References

1. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017; 86: 715–48. DOI: 10.1146/annurev-biochem-061516-045037. PubMed PMID: 28441057.

2. Sies H. Oxidative stress: concept and some practical aspects. Antioxidants (Basel). 2020; 9 (9): 862. DOI: 10.3390/antiox9090862. PubMed PMID: 32972924.

3. Khavinson VKh. Peptide medicines: past, present, future. Pharmacology. 2021; 7 (1): 27–32. DOI: 10.3897/pharmacology.7.62479.

4. Khavinson VKh. Peptide medicines: past, present, future. Pharmacology. 2021; 7 (1): 27–32. DOI: 10.3897/pharmacology.7.62479.

5. Perlikowska R. Whether short peptides are good candidates for ACTH antagonists, Front Endocrinol (Lausanne). 2016; (7): 101. DOI: 10.3389/fendo.2016.00101. PubMed PMID: 27547198.

6. Konda Y, Gantz I, DeValle J, Shimoto Y, Miwa H, Yamada T. Interaction of dual intracellular signaling pathways activated by the melanocortin-3 receptor. J Biol Chem. 1994; 269 (18): 13626–6. PubMed PMID: 9015395.

7. Ghalwash M, Elmasry A, Omar NMA. Possible cardioprotective role of NaHS on ECG and oxidative stress markers in an unpredictable stress model Wistar rats. J Basic Clin Physiol Pharmacol. 2019; 30 (5). DOI: 10.1515/jbcpp-2018-0215. PubMed PMID: 31469653.

8. Ghalwash M, Elmasry A, Omar NMA. Possible cardioprotective role of NaHS on ECG and oxidative stress markers in an unpredictable chronic mild stress model in rats. Can J Physiol Pharmacol. 2021; 99 (3): 321–7. DOI: 10.1139/cjpp-2019-0646. PubMed PMID: 33175584.

9. Liu Z, Cai Y, Deng J, Li W, Liu L, Ma Y, Jiang Y, Wei T. The association between three major physiological stress systems and oxidative DNA and lipid damage. Psychoneuroendocrinology. 2017; 80: 56–66. DOI: 10.1016/j.psyneuen.2017.03.003.

10. Chook AJ, Forfar R, Hussain M, Jackson J, Moler E, Taylor D, Chan L. ACTH antagonists, Front Endocrinol (Lausanne). 2016; (7): 101. DOI: 10.3389/fendo.2016.00101. PubMed PMID: 27547198.

11. Liu Z, Cai Y, He J. High serum levels of 8-OHdG are an independent predictor of post-stroke depression in Chinese stroke survivors. Neuropsychiatr Dis Treat. 2018; 14: 587–96. DOI: 10.2147/NDT.2017.155144. PubMed PMID: 29597754.

12. Katerji M, Filipova M, Duersken-Hughes P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid Med Cell Longev. 2019; 2019: 1279250. DOI: 10.1155/2019/1279250. PubMed PMID: 30992736.

13. Ighodaro OM, Akinotye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018; 54 (4): 287–93. DOI: https://doi.org/10.1016/j.ajme.2017.09.001.

14. Ściskalska M, Ołtałkowska M, Marek G, Milerowicz H. Changes in the Activity and concentration of superoxide dismutase isoenzymes (Cu/Zn SOD, MnSOD) in the blood of healthy subjects and patients with acute pancreatitis. Antioxidants (Basel). 2020; 9 (10): 948. DOI: 10.3390/antiox9100948. PubMed PMID: 33019780.

15. Yisireyli M, Alimujiang A, Aili A, Li Y, Yisireyli S, Abudureyimu K. Chronic stress induced gastric mucosal inflammation with enhanced oxidative stress in a murine model. Psychol Res Behav Manag. 2020; 13: 389–93. DOI: 10.2147/PREMJ.S205945. PubMed PMID: 32440237.

16. Ranhar B, Radahmadi M, Reisi P, Alaei H. Effects of electrical lesioning of basolateral amygdala nucleus on rat anxiety-like behaviour under acute, sub-chronic, and chronic stresses. Clin Exp Pharmacol Physiol. 2017; 44 (4): 470–9. DOI: 10.1111/1440-244X.12727. PubMed PMID: 28063155.

17. Gokul M, Arun Kumar N, Durgadas Kini R, et al. Evaluation of biomarkers of stress in chronic stress-exposed comborbid depression model Wistar rats. J Basic Clin Physiol Pharmacol. 2019; 30 (5). DOI: 10.1515/jbcpp-2018-0215. PubMed PMID: 31469653.

18. Boonytsnev II, Belykh AE, Vorvul AO. ACTH(6-9)-PGP peptide protects SH-SYSY cells from H2O2, tert-butyl hydroperoxide, and cysteine cysteine oxidation via stimulation of proliferation and induction of prosurvival-related genes. Molecules. 2021; 26 (7): 1878. DOI: 10.3390/molecules26071878. PubMed PMID: 33810344.

19. Black CN, Bot M, Rêvész D, Scheffer PG, Penninx B. The association between three major physiological stress systems and oxidative DNA and lipid damage. Psychoneuroendocrinology. 2017; 80: 56–66. DOI: 10.1016/j.psyneuen.2017.03.003.

20. Ghalwash M, Elmasry A, Omar NMA. Possible cardioprotective role of NaHS on ECG and oxidative stress markers in an unpredictable stress model Wistar rats. J Basic Clin Physiol Pharmacol. 2019; 30 (5). DOI: 10.1515/jbcpp-2018-0215. PubMed PMID: 31469653.
of NaHS on ECG and oxidative stress markers in an unpredictable chronic mild stress model in rats. Can J Physiol Pharmacol. 2021; 99 (3): 321–7. DOI: 10.1139/cjpp-2019-0646. PubMed PMID: 33175584.

21. Gorodetskaya IV, Korenevskaya NA Thyroid hormones influence on lipid peroxidation changes due to the acute and chronic stress. Izvestiya Natsional’noy akademii nauk Belarusi. Serya meditsinskikh nauk, 2010; 1: 78–84. Russian.

22. Stavchansky VV, Tvorogova TV, Botsina AY, Skvortsova VI, Limborska SA, Mysoedov NF, Dergunova LV. Effect of semax and its C-terminal peptide PGP on expression of neurotrophins and their receptors in rat brain during incomplete global ischemia. Mol Biol. 2011; 45 (6): 941–9. DOI: https://doi.org/10.1134/ S0026893311050128.

23. Kulaga EA, GavriloVA SA, Buravkov SV, Koshelev VB. Dynamics of the brain-derived neurotrophic factor (BDNF) expression in the rats cerebral cortex and the effect of the drug “Semax” for BDNF production after ischemic stroke. Regional blood circulation and microcirculation. 2013; 12 (3); 39–46. DOI: https://doi.org/10.24884/1682-6655-2013-12-3-39-46. Russian.

24. Chugunov AV, Kamchatnov PV, Mikhailova NA. Correction of free-radical oxidation as a pathogenetic approach to the treatment of acute ischemic stroke. Zhurnal nevrologii i psikhiatrii. 2009; 10 (2): 65–8. Russian.

25. Levichkin VD, Remenyakina EI, Pavlyuchenko II, Kade AKh, Trofimenko Al, Zanin SA. Influence of TES-therapy on indicators of system of pro/antioxidanty at rats with the experimental ischemic stroke. Sovremennyye problemy nauki i obrazovaniya. 2014; (2): 332. Russian.

26. Akimov MG, Fomina-Ageeva EV, Dudina PV, Andreeva LA, Myasoyedov NF, Bezuglov WV, ACTH(6-9)PGP peptide protects SH-SY5Y cells from H2O2, tert-butyl hydroperoxide, and cyanide cytotoxicity via stimulation of proliferation and induction of prosurvival-related genes. Molecules, 2021; 26 (7): 1878. DOI: 10.3390/molecules26071878. PubMed PMID: 33810344.

27. Black CN, Bot M, Révész D, Scheffer PG., Penninx B. The association between three major physiological stress systems and oxidative DNA and lipid damage. Psychoneuroendocrinology. 2017; 80: 56–66. DOI: 10.1016/j.psyneuen.2017.03.003.

28. Clark AJ, Forfar R, Hussein M, Jerman J, McIver E, Taylor D, Chan L. ACTH antagonists. Front Endocrinol (Lausanne). 2016; (7): 101. DOI: 10.3389/fendo.2016.00101. PubMed PMID: 27547198.

29. Konda Y, Gantz I, DelValle J, Shimoto Y, Mwa H, Yamada T. Interaction of dual intracellular signaling pathways activated by the melanocortin-3 receptor. J Biol Chem. 1994; 269 (18): 13162–6. PubMed PMID: 8175743.

30. Buggy JJ. Binding of alpha-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochem J. 1996; 331 (Pt 1) (Pt 1): 211–6. DOI: 10.1042/bj3310211. PubMed PMID: 9512481.