DON as a source of bioavailable nitrogen for phytoplankton
D. A. Bronk, J. H. See, P. Bradley, L. Killberg

To cite this version:
D. A. Bronk, J. H. See, P. Bradley, L. Killberg. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences Discussions, European Geosciences Union, 2006, 3 (4), pp.1247-1277. <hal-00297839>

HAL Id: hal-00297839
https://hal.archives-ouvertes.fr/hal-00297839
Submitted on 7 Aug 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DON as a source of bioavailable nitrogen for phytoplankton

D. A. Bronk¹, J. H. See², P. Bradley¹, and L. Killberg¹

¹Department of Physical Sciences, The College of William and Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA
²Geo-Marine Inc., 550 East 15th Street, Plano, TX 75074, USA

Received: 26 June 2006 – Accepted: 14 July 2006 – Published: 7 August 2006

Correspondence to: D. A. Bronk (bronk@vims.edu)
Abstract

Relative to inorganic nitrogen, concentrations of dissolved organic nitrogen (DON) are often high, even in regions believed to be nitrogen-limited. The persistence of these high concentrations led to the view that the DON pool was largely refractory and therefore unimportant to plankton nutrition. What DON is utilized was believed to fuel bacterial production. More recent work, however, indicates that rates into and out of the DON pool can be large, and that the constancy in concentration is a function of tightly coupled production and consumption processes. Evidence is also accumulating that indicates phytoplankton, including a number of harmful species, may obtain a substantial part of their nitrogen nutrition from organic compounds. Ongoing research is investigating ways to discriminate between autotrophic and heterotrophic utilization, as well as a number of mechanisms such as cell surface enzymes and photochemical decomposition, that could facilitate phytoplankton use of DON components.

1 Introduction

The largest pool of fixed nitrogen (N) in most aquatic systems is dissolved organic N (DON, Bronk, 2002). This is true even in oligotrophic environments where primary production is limited by available N. The persistence of DON in areas believed to be N-limited led to the traditional dogma that DON is largely refractory and therefore unimportant to phytoplankton N nutrition. The second part of this DON dogma is that DON is used to fuel bacterial, rather than phytoplankton, production and does so with relatively long turnover times. The objective of this paper is to highlight recent work on DON composition and bioavailability that illustrates the traditional dogmas should be discarded. Research has shown that even highly refractory compounds can be a source of bioavailable N to plankton as well as a vehicle to transport N through the coastal ocean ecosystem. Recent findings and new approaches also indicate that DON fuels a significant amount of autotrophic production.
2 Is DON largely refractory?

2.1 The black box of DON and the elusive doughnut

Concentrations of DON are generally highest within the euphotic zone and then decrease to a low and constant value deeper in the water column (e.g. Bronk and Ward, 2005). The DON pool is generally treated like a “black box”, the composition of which is unknown but is expected to change over small space and time scales. The largest fraction within the DON box likely includes the truly refractory components that persist for months to hundreds of years (reviewed in Bronk, 2002). This fraction contains compounds such as humic and fulvic acids, porphorins, and amides and is responsible for DON’s reputation as a poor source of N (Table 1). Using terminology from the dissolved organic carbon (DOC) literature, a second fraction of the pool can be described as semi-labile (Carlson and Ducklow, 1995). This fraction likely includes compounds such as proteins, dissolved combined amino acids (DCAA), and amino polysaccharides, which turnover on annual time scales. Mixed in with the refractory background, however, are the “doughnuts” of the DON world – highly labile moieties including urea, dissolved free amino acids (DFAA), and nucleic acids (reviewed in Bronk, 2002). These doughnuts turnover on timescales of minutes for amino acids (e.g. Fuhrman, 1987) to days for urea (e.g. Bronk et al., 1998) and DNA (e.g. Jørgensen et al., 1993).

The bulk of research on DON availability has focused on the labile doughnut fraction. Recent work, however, has also shown that even humic substances, considered to be highly refractory, can be a source of N. Humic substances, one of the least understood classes of aquatic DOM, make up 40 to 80% of DON in seawater (e.g. Alberts and Takács, 1999). They are operationally defined as dissolved organic material that adheres to a macroporous resin (i.e. XAD-8 or DAX-8; Peuravuori et al., 2002) at a pH of 2 (Aiken, 1988). Humic substances can be further categorized into 1) fulvic acids, which tend to be smaller (500–2000 Daltons) and are soluble in water at any pHs, 2) humic acids, which are larger (2000–5000 Daltons or larger) and precipitate from solution at pHs lower than 2 (Thurman et al., 1982), and 3) humins, which are insoluble at
Natural humic substances, isolated with XAD extraction, have been shown to contain 0.5 to 6% N (Rashid, 1985; Thurman, 1985; Hedges and Hare, 1987). Amino acids, amino sugars, ammonium \(\text{NH}_4^+ \), and nucleic acid bases comprise 46 to 53% of the N associated with humic acids and 45 to 59% of fulvic acids (Schnitzer, 1985) with the remaining approximately 50% of humic-N unidentified (Carlsson and Granéli, 1993). Previous work indicates that the C to N (C:N) ratio of aquatic humic substances, isolated with XAD resin, ranges from 18 to 30:1 for humic acids and 45 to 55:1 for fulvic acids, but can vary considerably (Thurman, 1985; See, 2003). The C:N of humic substances isolated with macroporous resins, however, may not reflect the C:N ratios of humic substances in situ. During the isolation procedure humic substances are acidified to a pH of 2, thus bombarding the solution with free protons. These free protons can bump off loosely associated amino groups such that humics isolated using resins have a C:N ratio higher than humics isolated by slightly elevating the pH of the solution (thereby converting soluble \(\text{NH}_4^+ \) to volatile \(\text{NH}_3 \)) and then blowing off the volatile \(\text{NH}_3 \) in a SpeedVac concentrator (See and Bronk, 2005). The presence of these dissociable amino groups is likely the bioavailable fraction of humic-N we discuss below.

2.2 Results from bioassays

The unknown composition of the DON pool makes determining its bioavailability difficult. Isotopic tracers are available for only a small fraction of the pool. As a result, bioassay approaches have been used to monitor the decrease in DON concentrations over time. One problem with the bioassay approach is it requires the ability to measure relatively small concentration changes in a large pool. Bioassays also only measure net flux within a pool, such that even large DON uptake rates could be unmeasurable if rates of DON regeneration are also high. Despite these drawbacks, a number of studies have used dark bioassays in aquatic systems to measure heterotrophic bacterial utilization of DON. In general, this work suggests that 12 to 72% of the DON pool is bioavailable on the order of days to weeks (reviewed in Bronk, 2002). In the Delaware
and Hudson Rivers, 40 to 72% of the DON was consumed during 10 to 15 day dark bioassays (Seitzinger and Sanders, 1997). In two streams in Sweden, 19 to 55% of the bulk DON is bioavailable in short-term bioassays (Stepanauskas et al., 2000); only 5 to 18% of the DON was identified as urea, DCAA or DFAA indicating that bacteria also utilize additional organic N compounds. In the Gulf of Riga, 13% of the DON is bioavailable during 7 to 8 day bioassay experiments (Jørgensen et al., 1999).

In another study water samples were collected from rivers and estuaries along a continuum of anthropogenic modification (Wiegner et al., 2006). Dark bioassays were performed with a single bacterial inoculum to compare DON and DOC lability across a range of systems that varied with the amount of forest cover. As much as 40% of the DON was consumed over a dark 6 day incubation and up to 80% of the total N utilized by the inoculum was organic in form. Simply classifying DON as refractory clearly overlooks an important source of available N in the marine environment.

2.3 The special case of humics

The refractory nature of humic substances has also recently been challenged, and accumulating evidence indicates that coastal phytoplankton may have the ability to take up humic-N, either directly or after remineralization by bacteria (Carlsson et al., 1995, 1998, 1999). More recently, the uptake of laboratory-produced 15N-labeled humic compounds by the $>0.7\,\mu m$ size fraction has been observed in both riverine and coastal ecosystems (Bronk et al., unpubl. data), humic substances have been implicated as a potential source of C and N to the toxic dinoflagellate Alexandrium catenella (Doblin et al., 2000), and growth of another toxic dinoflagellate A. tamarense was shown to increase when exposed to humic substances (Gagnon et al., 2005). Uptake of humic-N into phytoplankton biomass was also measured using 15N-labeled humic substances produced in the laboratory (See and Bronk, 2005). In this experiment, non-axenic cultures of 17 recently isolated estuarine and coastal phytoplankton strains took up 15N-labeled humic-N (See et al., 2006), however, high rates of humic-N uptake were not sustained over long periods of time suggesting that a finite pool of labile N is as-
associated with these compounds (See et al., 2006). Two of the cultures examined were also available in axenic form. No uptake of 15N-labeled humic-N was detected in the axenic cultures suggesting that in at least these two cultures, bacterial remineralization was required to make the humic-N bioavailable.

2.4 Why should we care?

In a review of DON in rivers, Seitzinger and Sanders (1997) estimate that 14 to 90% of the total N in a suite of rivers around the world is organic in form. This DON represents a large source of N to the coastal zone that is currently ignored in most N loading budgets. This is especially troubling when one considers that effluent from even the most efficient wastewater treatment plants contain approximately 285 μM N with roughly two thirds of that being organic in form (Pehlivanoglu and Sedlak, 2006). Its exclusion from loading budgets is based on the traditional view that DON is not bioavailable and therefore will not contribute to eutrophication. The brief review of recent studies above suggests that this traditional view is incorrect. Collectively, data from bioassays suggest that bioavailable DON can be utilized within estuaries with water residence times on the order of weeks to months. In systems where residence times are shorter, riverine DON will pass through the estuary and be a source of bioavailable N to coastal waters. Results from studies with individual organic compounds indicate that some fractions of DON have much quicker turnover times and consequently contribute to plankton nutrition even in systems with very short residence times. It is becoming increasingly evident that a significant fraction of DON is bioavailable and contributes to coastal eutrophication and, as such, should be included in N loading budgets.

3 Are bacteria the primary users of DON?

Phytoplankton DON use has traditionally been neglected in favor of the view that bacteria are the primary consumers of DON for a number of reasons. First, phytoplankton
are known to have specific metabolic pathways for the uptake and assimilation of inorganic N substrates such as NH$_4^+$ and nitrate (NO$_3^-$, e.g. Syrett, 1988). It is unlikely that they would evolve similar specific uptake mechanisms for the suite of organic substrates that likely exist in very low concentrations at any given time. Second, early studies of plankton uptake of 14C-labeled organics indicate that the substrates enter into the bacterial-size fraction; the assumption was made that the N followed the C. More recent work has shown that some phytoplankton possess cell-surface enzymes that allow them to take up the N fraction of amino acids while leaving the C backbone available for subsequent uptake by bacteria (e.g. Palenik and Morel, 1990a, b). In other words, the N does not always follow the C. The presence of these cell-surface enzymes provides a likely mechanism whereby phytoplankton can access a broad range of organic N substrates without developing a specific uptake pathway. This discovery merits a reevaluation of the phytoplankton use of DON. Here we review methods for distinguishing bacterial uptake from phytoplankton uptake, discuss the use of tracers to measure DON uptake, and briefly review some of the more recent work on DON uptake in the field, particularly in reference to harmful algal bloom species (HABs).

3.1 Methods to measure phytoplankton and bacterial nitrogen uptake rates

Marine phytoplankton and heterotrophic bacteria are known to utilize similar pools of inorganic and organic N substrates, and this use of shared resources can result in a competitive interaction that could potentially control phytoplankton community composition. To distinguish between autotrophic and heterotrophic N uptake in an experiment, it is necessary to separate the two plankton groups. Each of the various methods that have been employed has its advantages and drawbacks. The most commonly utilized technique has been size fractionation, in which filters (in the size range of 0.7 to 1.2 μm) target the size differences between bacteria and phytoplankton (e.g. Wheeler and Kirchman, 1986; Kirchman et al., 1989; Mulholland et al., 2002; Rodrigues and Williams, 2002). Size fractionation may be easier and more time-efficient than other approaches, but can lead to inaccurate estimates of N use by phytoplankton due to...
the size overlap between bacteria and phytoplankton. Studies from a range of marine ecosystems have shown that GF/F filters can retain as much as 93% (40 to 75% on average) of the bacterial community (Lee and Fuhrman, 1987; Lee et al., 1995; Gasol and Morán, 1999; Berg et al., 2001), yet 15N uptake measured on GF/F filters has traditionally been attributed to phytoplankton. Other researchers have attempted to avoid this methodological problem through the use of metabolic inhibitors such as streptomycin and cycloheximide, which block the function of ribosomes in prokaryotes and eukaryotes, respectively (Wheeler and Kirchman, 1986; Middelburg and Nieuwenhuize, 2000a, b; Veuger et al., 2004). However, this method can introduce artifacts to uptake rate measurements due to the lack of specificity and incomplete inhibition of target organisms (Oremland and Capone, 1988; Lee et al., 1992). Dark nutrient bioassays have also been used to a limited extent in field, mesocosm, and culture experiments to distinguish between phytoplankton and bacterial N uptake despite the fact that many phytoplankters are known to take up N in the dark (Gobler et al., 2002; Joint et al., 2002; Glibert et al., 2004). Finally, molecular approaches have recently gained popularity as a means of qualitatively describing the N utilization capabilities of marine phytoplankton and bacteria by measuring the activity of enzymes involved in N assimilation, such as nitrate reductase, urease, and aminopeptidase (Collier et al., 1999; Allen et al., 2001; Lopez-Lozano et al., 2002; Zehr and Ward, 2002; Dyhrman and Anderson, 2003; Fan et al., 2003b; Lomas, 2004). It is important to note, however, that the molecular techniques do not provide quantitative estimates of N uptake. It is clear, therefore, that none of the approaches described above can quantitatively distinguish between autotrophic and heterotrophic N uptake.

A promising newer approach is the use of flow cytometric sorting to physically separate phytoplankton from bacteria following tracer-addition experiments. Originally introduced into marine planktology to rapidly and precisely estimate abundance of pico- and nanophytoplankton in marine food web studies (e.g. Olson et al., 1983, 1985, 1988; Yentsch et al., 1983; Chisholm et al., 1988), flow cytometry now has a wide variety of applications in aquatic microbial ecology (e.g. Wallner et al., 1997; Dubelaar and
Jonker, 2000; Reckermann, 2000; Veldhuis and Kraay, 2000; Vives-Rego et al., 2000; Campbell, 2001; Collier, 2004), including routine analysis of the abundance of marine heterotrophic bacteria (e.g. Monger and Landry, 1993). Using the sorting capability of a flow cytometer, researchers can isolate cells of interest based on unique optical properties conveyed by the presence of pigments, such as the red autofluorescence of chlorophyll. Following traditional 15N tracer incubations, chlorophyll-containing phytoplankton can be sorted and analyzed on a mass spectrometer to directly quantify phytoplankton N uptake. This approach to measuring N uptake was pioneered by Lipschultz (1995), who used flow cytometric sorting to measure uptake rates of 15N-labeled NH$_4^+$ and NO$_3^-$ by coastal phytoplankton, consequently removing the effects of detritus and heterotrophs on uptake rate measurements. Similarly, Zubkov and Tarran (2005) used 35S-labeled methionine and cell sorting to estimate DFAA uptake in Prochlorococcus and Synechococcus sampled from oligotrophic surface waters of the South Atlantic. Others have employed flow cytometric sorting in a similar manner to measure the primary production of specific ultraphytoplankton groups (Li, 1994) and to examine the growth rates and 13C isotopic signatures of freshwater cyanobacteria and other algal groups (Pel et al., 2004). One important consideration to using flow cytometric sorting to measure plankton activity is the effect of the sorting method on the health and integrity of individual cells. To this end, Rivkin et al. (1986) examined the incorporation of radioactively-labeled compounds into phytoplankton cells both before and after sorting, and found that sorting did not affect cellular radioactivity when performed after incubations, but did in fact lead to diminished primary production estimates when cells were sorted prior to incubation. Thus, flow cytometric sorting of autotrophic cells represents a feasible approach to measure rates of phytoplankton specific N uptake.

3.2 Tracers for DON uptake

Using bioassays to quantify uptake rates of individual DON compounds is prone to the same problems encountered with bioassays that monitor the uptake of the bulk DON pool. To avoid these problems, substrates labeled with 15N can be used to measure
uptake rates even in systems where uptake and regeneration are tightly coupled. Urea and amino acids are the most frequently studied DON forms, not only because of their importance to phytoplankton and bacterial N nutrition, but because they are readily available in labeled form. These two organic substrates can also be purchased dually labeled (\(^{15}\)N and \(^{13}\)C), and numerous individual amino acids can also be obtained. Other labeled organic tracers available include whole algal hydrolysate and lyophilized algal cells (i.e. combined amino acids), purines (e.g. guanine), pyrimidines (e.g. uracil), DNA nucleotides (e.g. guanosine monophosphate, adenosine triphosphate [ATP]), acetamide, and creatine. In addition, some researchers have examined the uptake of in situ produced \(^{15}\)N-labeled DON derived from plankton cells grown on \(^{15}\)NH\(_4^+\) or \(^{15}\)NO\(_3^-\) (Bronk and Glibert, 1993; Veuger et al., 2004), or labeled humic material derived from \textit{Spartina alterniflora} that was grown with \(^{15}\)N-labeled NH\(_4^+\) added to the sediment (See and Bronk, 2005; See et al., 2006).

3.3 Phytoplankton versus bacterial uptake

Traditionally the inorganic forms were thought to exclusively support primary production. Research over the past three decades, however, has shown not only that bacteria balance their DON consumption with uptake of inorganic nutrients (Wheeler and Kirchman, 1986; reviewed in Kirchman, 2000), but also that phytoplankton from various marine ecosystems use DON to meet their cellular N demands (reviewed in Antia et al., 1991; Bronk, 2002; Berman and Bronk, 2003; Veuger et al., 2004). DON uptake by phytoplankton was reported as early as 1957 (Hattori, 1957), and examined further by McCarthy in the 1970s (McCarthy, 1972a, b); however, these early studies of phytoplankton DON use focused mainly on the metabolism and kinetics of urea uptake. In contrast to an early emphasis on urea uptake at the cellular to individual species level, research has more recently focused on the ecological implications at a community level (Lomas et al., 2002).

In general, phytoplankton prefer NH\(_4^+\) over other N sources because this reduced form requires the least amount of energy to assimilate. Nonetheless, NH\(_4^+\) is not al-
ways the dominant N substrate utilized by marine phytoplankton; DON uptake has been shown in some studies to satisfy a large portion of the autotrophic N requirement. For example, the contribution of urea and DFAA to total measured N uptake by coastal phytoplankton assemblages varies, but has been shown to reach as high as 80% (Harrison et al., 1985; Glibert et al., 1991; Berg et al., 2001; Veuger et al., 2004; Bradley and Bronk, unpub. data). In addition, phytoplankton communities appear to rely more heavily on reduced N, including DON, during summer months when ambient NO$_3^-$ concentrations are typically minimal (Paerl, 1991; Berg et al., 2003a). This apparent increase in autotrophic DON use during summer could also be the result of a high bacterial demand on available dissolved inorganic N (DIN), which has been demonstrated to suppress phytoplankton biomass (Joint et al., 2002) and may even exert a selective pressure on phytoplankton species capable of exploiting available organic substrates.

Attributing the uptake of different types of dissolved N to specific phytoplankton groups in the field has been difficult at best, however, some general trends have emerged. For example, large and/or rapid inputs of NO$_3^-$ are known to stimulate blooms of diatoms, which are physiologically suited to take advantage of and grow quickly with the onset of NO$_3^-$-rich conditions (Goldman, 1993; Lomas and Glibert, 1999a). Berg et al. (2003a) used linear regression analysis to link the abundance of diatoms in the Gulf of Riga (Baltic Sea) with NO$_3^-$ uptake during spring. A negative correlation with DFAA uptake during the summer suggests that diatoms are not among the phytoplankton that exploit DON sources. Dinoflagellates and cyanobacteria, on the other hand, are typically associated with increased availability of reduced N, such as NH$_4^+$ and urea, relative to NO$_3^-$ (Berg et al., 1997, 2003a; Lomas and Glibert, 1999b). In comparison, heterotrophic bacteria tend to rely predominantly on DFAA and NH$_4^+$ (Keil and Kirchman, 1991; Kroer et al., 1994; Hoch and Kirchman, 1995; Middelburg and Nieuwenhuize, 2000a, b), although other studies have shown substantial bacterial uptake of NO$_3^-$ in various marine ecosystems (Kirchman et al., 1991; Kirchman and Wheeler, 1998; Allen et al., 2002).
3.4 The special case of harmful algal blooms (HABs)

With increased evidence that a portion of the DON pool is labile it has been suggested that specific DON components could exert selective pressure over phytoplankton community composition (Paerl, 1997; Seitzinger and Sanders, 1997; Berman and Chava, 1999). Phytoplankton species capable of utilizing DON may have a competitive advantage in organically enriched environments where the DIN supply is limited. In particular, it appears that some harmful algae species are capable of using DON for nutrition and may prefer it to inorganic sources (e.g. Lomas et al., 1996; Berg et al., 1997). Specifically, dinoflagellates seem to have an affinity for organic N (Berg et al., 1997). One example is the case of the brown tide alga, *Aureococcus anophagefferens*, commonly found off the coast of Long Island, NY. Natural and additional inputs of DON, particularly urea, stimulate its growth (Gobler and Sanudo-Wilhelmy, 2001). Additionally, approximately 70% of the total N utilized during an *A. anophagefferens* bloom event was identified to be organic N (Berg et al., 1997). A high affinity for urea by another dinoflagellate, *Prorocentrum minimum*, contributed significantly to a bloom in the Neuse River estuary (Fan et al., 2003a).

Bronk et al. (2004) quantified the ability of the red tide former, *Karenia brevis*, to utilize 15N labeled inorganic (NH$_4^+$, NO$_3^-$) as well as organic substrates (urea and glutamate) and showed that although all the substrates could be utilized, the uptake of organic substrates did not exhibit Michaelis-Menten kinetic curves. At low substrate concentrations, there was an increase in the specific uptake rates as substrate concentrations decreased further. A similar situation was observed in an earlier study in which urea uptake rates at the lowest concentrations were relatively high; those results were attributed to error in the determination of ambient nutrient concentrations, which were approaching the limit of detection (Eppley et al., 1977). In the *K. brevis* study, however, ambient concentrations were fairly high such that substantial analytical error is unlikely. Another possibility is that the range of atom % enrichments that produced the elevated urea and glutamate rates were lower than the atom % enrichments used...
in the inorganic uptake, which would contribute to the elevated rates at low concentra-
tions. However, the atom % enrichment range for the organics used in the K. brevis
study were within the range of substrate enrichments used in numerous other studies
where no increase in uptake at low concentrations has been observed. Furthermore,
uptake experiments have been performed where the concentration of the substrate was
held constant and the atom % enrichment was varied down to 0.01 atom % with no in-
crease in uptake (Mulholland and Capone, unpubl. data). Another theory is that the
increased rates at low concentrations are the result of a bimodal uptake mechanism.
More research is necessary to define the mechanisms behind the observed deviation
from Michaelis-Menten kinetics.

3.5 Why should we care where the DON goes?

Although research on DIN and DON uptake by phytoplankton and bacteria has been
fairly extensive, relatively little is known about how these two groups compete for lim-
ting N resources and how this interaction affects the community composition in the
marine ecosystem. Such interactions are driven primarily by the absolute and relative
availability of different N substrates in the euphotic zone, but the extent to which other
factors such as light and temperature, as well as biological and physical processes,
affect the outcome of this interaction remains a key area for future research. Furth-
more, the relevant temporal and spatial scales at which this question is addressed will
have implications with respect to the significance of phytoplankton versus bacterial N
use.

In estuarine and coastal ecosystems, the relative use of organic N by autotrophs
and heterotrophs will potentially affect plankton community composition, energy trans-
fer to higher trophic levels, benthic-pelagic coupling, and the stimulation of harmful
algal blooms. As discussed above, specific types of N tend to favor dominance by
particular phytoplankton groups, which will affect how primary production is transferred
to higher trophic levels. For example, inputs of NO$_3^-$ into a N-limited coastal system
tend to promote diatom blooms, which are either consumed by grazers or sink out of
the water column promoting benthic-pelagic coupling. On the other hand, cyanobacteria and dinoflagellates appear to prefer reduced N substrates such as NH$_4^+$, urea, and DFAA; members of these phytoplankton groups (especially toxic species) are commonly considered to be nutritionally inferior to grazers than diatoms, and thus represent a diminished supply of energy to upper trophic levels. Finally, the ability of bacteria to capitalize on available DIN during N-limited conditions may intensify cycling within the microbial loop and disconnect surface production from benthic micro- and macrofauna. Clearly, the type of N entering coastal and estuarine waters can play a significant role in altering plankton community structure, but may also affect broader scale processes determining overall ecosystem health.

In oceanic systems, the fate of N into phytoplankton versus bacterial biomass has significant implications with respect to N and C cycling on both ecosystem and global scales. New production, which is defined as primary production derived from “new” or allochthonous sources of N, has been used to quantify the energy available to support higher trophic levels (Dugdale and Goering, 1967). The f-ratio, which is the ratio of new to total (new plus regenerated) production (Eppley and Peterson, 1979). For example, the f-ratio has traditionally been calculated by dividing 15NO$_3^-$ uptake (i.e. new production) by the summed uptake of 15NH$_4^+$ (i.e. regenerated production) and 15NO$_3^-$ (e.g. Harrison et al., 1987). However, this method does not reflect the various organic compounds potentially utilized by phytoplankton, and also must clearly distinguish autotrophic uptake from that of heterotrophic bacteria. Following the traditional calculation, the f-ratio will be overestimated when phytoplankton are using DON sources to meet their N needs. Similarly, measuring NO$_3^-$ uptake using GF/F filters and attributing this solely to phytoplankton will lead to overestimates in the f-ratio if bacteria are also using this inorganic substrate. Use of such biased estimates of new production in models of the global C cycle, for example, could therefore overstate the potential drawdown of anthropogenic C dioxide by the oceans.
4 Mechanisms for accessing DON

With the accumulation of evidence that indicates phytoplankton use DON, additional effort has been directed at defining the likely mechanisms used to access this large but heterogeneous pool. In specific we review data on enzymatic breakdown, pino- and phagocytosis, and photochemical decomposition.

4.1 Enzymatic breakdown

Forms of DON are made available to phytoplankton via a number of mechanisms. For smaller molecules, such as urea and some amino acids, uptake can occur by active transport driven by a sodium ion pump or through facilitated diffusion if the concentrations outside the cell are in high enough concentrations (mM) to create a concentration gradient, something unlikely in the field. For larger compounds (>1 kDa) such as proteins, polypeptides, and humic acids, direct uptake through the use transport proteins cannot occur and phytoplankton must find other mechanisms of accessing the nutrients such as proteolytic enzymes. These enzymes are able to break down large polymers into their smaller constituent molecules, which can then be taken up by the cell. Proteolytic enzymes can be found intracellularly, attached to the outside of the cell or can be released from the cell into the surrounding media; the latter two are termed extracellular enzymes. Traditionally, it has been thought that proteolytic enzyme activity was strictly a characteristic of heterotrophic bacteria. Recent studies have shown that phytoplankton can utilize these mechanisms of nutrient acquisition, with the two primary types of proteolytic enzyme activities being amino acid oxidation and peptide hydrolysis (Mulholland et al., 2003).

Amino acid oxidases are enzymes that cleave off free amino acids and primary amines to produce extracellular H$_2$O$_2$, NH$_4^+$, and α-keto acids or aldehydes; the free NH$_4^+$ is then taken up by the cell. This pathway has been quantified using the fluorescently labeled amino acid, LYA-lysine (Pantoja and Lee, 1994; Mulholland et al., 1998). One study found that three different species of phytoplankton possessed cell-
surface L-amino acid oxidases that produced NH_4^+, which was subsequently taken up and used for growth (Palenik and Morel, 1991). Several other species of phytoplankton are also known to possess amino acid oxidases (Palenik and Morel, 1991; Mulholland et al., 2003) and this process occurs across a range of systems (Mulholland et al., 1998). One estimate is that 20% of the DON utilization in coastal and oceanic environments may be due to phytoplankton utilization of amino acid oxidases (Mulholland et al., 1998).

Peptide hydrolysis is another proteolytic process in bacteria and phytoplankton whereby the peptide bonds of proteins and polypeptides are broken, liberating smaller peptides and amino acids. A study by Mulholland et al. (2002) found high rates of peptide hydrolysis in axenic cultures of $A. \text{anophagefferen}$. Leucine aminopeptidase (LAP) is one class of proteolytic enzyme capable of hydrolyzing peptide bonds. LAP is capable of breaking down a number of substrates, but has a preference for the terminal N of non-polar amino acids such as leucine (Langheinrich, 1995). Even if phytoplankton are incapable of producing their own extracellular enzymes, they may still benefit from those released by bacteria or by liberation of bacterial intracellular enzymes. Proteolytic enzymes may be freed from bacteria by cell lysis or released due to grazing on bacteria (Chrost, 1991). There is some evidence that phytoplankton, in association with bacteria, may be able to utilize monomers derived from bacterial enzymatic activity. For example, high aminopeptidase activity (10 to 90% of activity) has been found in 0.2 μm filtrates (Jacobsen and Rai, 1991), indicating that the enzymes were liberated from the bacteria but could still have the capability to break off free amino acids that could then be used for uptake by other organisms.

In a more general sense, the use of cell surface enzymes capable of cleaving amino groups is also a potential mechanism used to access the approximately 50% of humic-N that is in the form of amino acids, amino sugars, NH_4^+, and nucleic acid bases (Schnitzer, 1985). It is likely that these enzymes are capable of cleaving the N from a wide range of additional DON compounds allowing phytoplankton to, in effect, “farm” N from these compounds while leaving the remainder of the compound external to the
4.2 Pinocytosis and phagocytosis

DON can also be taken up by some phytoplankton by two similar processes: pinocytosis and phagocytosis. Pinocytosis is a process where the cells ingest dissolved macromolecules from the medium outside the cell. Phagocytosis is an engulfing of particulate material from outside the cell. Cells undergoing pinocytosis expand a vesicle from the plasma membrane that engulfs the molecule and brings it inside the cell. The molecules can then be accumulated inside a vacuole. Prior studies with dinoflagellates, euglenoids, and chlorophytes have found pinocytosis to be a common method for ingesting dissolved macromolecules (Kivic and Vest, 1974; Klut et al., 1987). In one case, the HAB-forming dinoflagellate, *Alexandrium catenella* directly took up fluorescently labeled dextran (Legrand and Carlsson, 1998). Other similar markers like lectins and peroxidases have also demonstrated pinocytosis in the flagellates *Amphidinium carterae* and *Prorocentrum micans* (Klut et al., 1987). Phagocytosis by marine and freshwater phytoflagellates is well documented (e.g. Sanders and Porter, 1988) and occurs under a wide range of light and nutrient regimes. In phytoplankton, phagotrophy is also seen in the photosynthetic bloom-forming dinoflagellates *Heterocapsa triqueta* and *Ceratium furca* (Legrand et al., 1998; Smalley et al., 1999). Supplementing their nutrition in this manner could give some phytoplankton a competitive advantage over other strictly photoautotrophic organisms and would allow nutrient acquisition even during unfavorable conditions (Li et al., 2000a, b). The ability to utilize additional modes of nutrient acquisition could make one species more successful than another leading to bloom formation (Smayda, 1997; Stoecker et al., 1997). As a result pino- and phagocytosis are of particular interest for those studying HABs.

Furthermore, pinocytosis and phagocytosis are two processes that could potentially be used to access N associated with large humic compounds. Experiments have been conducted using dual-labeled humic substances (*¹⁵N, *¹³C) based on the assumption that if pino- or phagocytosis was used to take up the humics, both *¹⁵N and *¹³C would
be taken up in the same stoichiometric ratio as they appear in the labeled humics. In experiments with three coastal phytoplankton strains known to take up humic-N, *Synechococcus* sp., *Amphidinium carterae*, and *Thalassiosira cf. miniscula*, no uptake of 13C was measured indicating that the humics were not taken up whole (See et al., 2006).

4.3 Photochemical decomposition

An alternative method for the acquisition of N from humic substances is photooxidation followed by uptake of the N photoproducts. Due to their aromatic nature, humic substances are particularly photoreactive to ultraviolet (UV) light and release inorganic N (Bushaw et al., 1996; Bushaw-Newton and Moran, 1999; Kieber, 2000) and small labile organic molecules (e.g., amino acids and urea) into the surrounding environment when exposed to UV radiation (Amador et al., 1989; Jørgensen et al., 1998; Bushaw-Newton and Moran, 1999). Of these compounds, NH$_4^+$ generally has the greatest observed rates of production (Bushaw et al., 1996; Gao and Zepp, 1998). Photochemical release has been observed in a number of locations including an estuary in Georgia (Bushaw et al., 1996; Gao and Zepp, 1998) and a humic-rich lake in Venezuela (Gardner et al., 1998). Photodegradation of DOM increases the availability of more labile N sources to phytoplankton and bacteria.

4.4 Possible humic shuttle

In addition to the direct utilization of DON compounds, it is possible for some high molecular weight compounds to act as a transport mechanism. Humic acids contain a high concentration of cation exchange sites, allowing them to retain and exchange numerous ions from the surrounding waters. For example, humic compounds in marine clay sediments can account for a large percentage of the cation exchange capabilities of the marine benthic environment (Rashid, 1969). Additional studies show that NH$_4^+$ can be adsorbed to humics in the estuarine and nearshore environment (Rosenfeld,
In coastal systems, humic and NH$_4^+$ concentrations are often high in the low salinity upland river marshes. In these locations, NH$_4^+$ can adsorb to the cation binding sites found on the humic structure. As humic compounds are flushed downriver and interact with more saline waters the adsorbed NH$_4^+$ can be replaced with salt ions on the humic structure making the newly released inorganic N directly available to phytoplankton and bacteria for uptake. Studies of aquatic humics collected from three U.S. east coast rivers (York, Altamaha, and Satilla) confirmed the ability of humic material to adsorb and subsequently release NH$_4^+$ to the environment along an estuarine salinity gradient, thus acting as a “shuttle” delivering labile N to more N-limited mid-saline regions of the estuary and coastal ocean (See, 2003; See and Bronk 2005). Preliminary results indicate that this “humic shuttle” is capable of releasing approximately 1 µmol of N per liter of water passing through the estuary over the course of the year (~77*106 g of N into the Altamaha estuary) and is a previously unrecognized source of N to the mid-saline estuary and coastal ocean (Beck et al., 1974; Alberts and Takács, 1999).

5 Conclusions

In the past DON was viewed as a large refractory pool that only contributed to bacterial production over relatively long time scales. Today the DON pool is more accurately envisioned as being composed of at least two distinct pools – a large refractory pool, which likely turns over on timescales of months to years and the “doughnut” fraction composed of highly labile compounds, such as amino acids and urea, that likely turns over in minutes to days. This labile fraction has been shown to contribute to autotrophic production, in addition to the more traditionally viewed bacterial fraction. Recent findings on DON utilization argue strongly for inclusion of DON in N loading budgets to
coastal zones and estuaries, particularly as they may contribute to growth of the primary producers.

Acknowledgements. The writing of this manuscript was supported by NSF grant OCE-02218252 to D. A. Bronk. This is contribution number 2760 of the Virginia Institute of Marine Science, The College of William and Mary.

References

Aiken, G. R.: A critical evaluation of the use of macroporous resins for the isolation of aquatic humic substances, John Wiley and Sons, New York, 1988.

Alberts, J. J. and Takács, M.: Importance of humic substances for carbon and nitrogen transport into southeastern United States estuaries, Organ. Geochem., 30, 385–395, 1999.

Allen, A. E., Booth, M. G., Frischer, M. E., Verity, P. G., Zehr, J. P., and Zani, S.: Diversity and detection of nitrate assimilation genes in marine bacteria, Appl. Environ. Microbiol., 67, 5343–5348, 2001.

Allen, A. E., Howard-Jones, M. H., Booth, M. G., Frischer, M. E., Verity, P. G., Bronk, D. A., and Sanderson, M. P.: Importance of heterotrophic bacterial assimilation of ammonium and nitrate in the Barents Sea during summer, J. Mar. Systems, 38, 93–108, 2002.

Amador, J. A., Alexander, M., and Zika, R. G.: Sequential photochemical and microbial degradation of organic molecules bound to humic acid, Appl. Environ. Microbiol., 55, 2843–2849, 1989.

Antia, N. J., Harrison, P. J., and Oliveira, L.: Phycological reviews 2: The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology, Phycologia, 30, 1–89, 1991.

Beck, G. M., Reuter, J. H., and Perdue, E. M.: Organic and inorganic geochemistry of some coastal plain rivers of the southeastern United States, Geochim. Cosmochim. Acta, 38, 341–364, 1974.

Berg, G. M., Glibert, P. M., Lomas, M. W., and Burford, M. A.: Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event, Mar. Biol., 129, 377–387, 1997.

Berg, G. M., Glibert, P. M., Joergensen, N. O. G., Balode, M., and Purina, I.: Variability in
inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea, Estuaries, 24, 204–214, 2001.
Berg, G. M., Balode, M., Purina, I., Bekere, S., Béchemin, C., and Maestrini, S. Y.: Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen, Aquat. Microb. Ecol., 30, 263–274, 2003a.
Berg, G. M., Repeta, D. J., and La Roche, J.: The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high-molecular weight dissolved organic nitrogen, Limnol. Oceanogr., 48, 1825–1830, 2003b.
Berman, T., Chava, S., Kaplan, B., and Wynne, D.: Dissolved organic substrates as phosphorus and nitrogen sources for axenic batch cultures of freshwater green algae, Phycologia, 30, 339–345, 1991.
Berman, T. and Chava, S.: Algal growth on organic compounds as nitrogen sources, J. Plankton Res., 21, 1423–1437, 1999.
Berman, T. and Bronk, D. A.: Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems, Aquat. Microb. Ecol., 31, 279–305, 2003.
Bronk, D. A.: Dynamics of DON, in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., pp. 153–249, Academic Press, San Diego, 2002.
Bronk, D. and Glibert, P.: Application of a 15N tracer method to the study of dissolved organic nitrogen uptake during spring and summer in Chesapeake Bay, Mar. Biol., 115, 501–508, 1993.
Bronk, D. A. and Ward, B. B.: Inorganic and organic nitrogen cycling in the Southern California Bight, Deep Sea Res. I., 52, 2285–2300, 2005.
Bronk, D. A., Glibert, P. M., Malone, T. C., Banahan, S., and Sahlsten, E.: Inorganic and organic nitrogen cycling in Chesapeake Bay: autotrophic versus heterotrophic processes and relationships to carbon flux, Aquat. Microb. Ecol., 15, 177–189, 1998.
Bronk, D. A., Sanderson, M. P., Mulholland, M. R., Heil, C. A., and O’Neil, J. M.: Organic and inorganic nitrogen uptake kinetics in field populations dominated by Karenia brevis, in: Harmful Algae 2002, edited by: Steidinger, K., Vargo, G. A., and Heil, C. A., pp. 80–82, Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg, FL, 2004.
Bushaw-Newton, K. L. and Moran, M. A.: Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems, Aquat. Microb. Ecol.,
Bushaw, K. L., Zepp, R. G., Tarr, M. A., Schulz-Jander, D., Bourbonniere, R. A., Hodson, R., Miller, W. L., Bronk, D. A., and Moran, M. A.: Photochemical release of biologically labile nitrogen from dissolved organic matter, Nature, 381, 404–407, 1996.

Campbell, L.: Flow cytometric analysis of autotrophic picoplankton, in: Marine Microbiology, edited by: Paul, J. H., pp. 317–343, Academic Press, San Diego, 2001.

Carlson, C. A. and Ducklow, H. W.: Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations, Deep-Sea Res. II, 42, 639–656, 1995.

Carlsson, P. and Granéli, E.: Availability of humic bound nitrogen for coastal phytoplankton, Est. Coast. Shelf Sci., 36, 433–447, 1993.

Carlsson, P., Granéli, E., Tester, P., and Boni, L.: Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community, Mar. Ecol. Prog. Ser., 127, 213–221, 1995.

Carlsson, P., Edling, H., and Bechemin, C.: Interactions between a marine dinoflagellate (Alexandrium catenella) and a bacterial community utilizing riverine humic substances, Aquat. Microb. Ecol., 16, 65–80, 1998.

Carlsson, P., Granéli, E., and Segatto, A. Z.: Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate, Aquat. Microb. Ecol., 18, 23–36, 1999.

Chisholm, S. W., Olson, R. J., Zettler, E. R., Goerick, R., Waterbury, J. B., and Welschmeyer, N. A.: A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 334, 340–343, 1988.

Chrost, R. J.: Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, in: Microbial Enzymes in Aquatic Environments, edited by: Chrost, R. J., pp. 25–59, Springer, New York, 1991.

Collier, J. L.: Flow cytometry and the single compound in plankton ecology, J. Phycol., 40, 805–807, 2004.

Collier, J. L., Brahamsha, B., and Palenik, B.: The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme, Microbiology-Sgm, 145, 447–459, 1999.

Doblin, M., Legrand, C., Carlsson, P., Hummert, C., Granéli, E., and Hallegraeff, G.: Uptake
Of Humic Substances By the Toxic Dinoflagellate *Alexandrium Cantenella*, in: Harmful Algal Blooms, edited by: Hallegraeff, G. M., Blackburn, S. I., Bolch, C. J., and Lewis, R. J., pp. 336–339, Intergovernmental Oceanographic Commission of Unesco, Paris, 2000.

Dubelaar, G. B. J. and Jonker, R. R.: Flow cytometry as a tool for the study of phytoplankton, Scientia Marina, 64, 135–156, 2000.

Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanog., 12, 196–206, 1967.

Dyhrman, S. T. and Anderson, D. M.: Urease activity in cultures and field populations of the toxic dinoflagellate, *Alexandrium*, Limnol. Oceanogr., 48, 647–655, 2003.

Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G.: Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central north Pacific Ocean, Mar. Biol., 39, 111–120, 1977.

Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.

Fan, C., Glibert, P., and Burkholder, J.: Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for *Prorocentrum minimum* in natural blooms and laboratory cultures, Harmful Algae, 2, 283–299, 2003a.

Fan, C., Glibert, P. M., Alexander, J., and Lomas, M. W.: Characterization of urease activity in three marine phytoplankton species, *Aureococcus anophagefferens*, *Prorocentrum minimum*, and *Thalassiosira weissflogii*, Mar. Biol., 142, 949–958, 2003b.

Fuhrman, J.: Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser, 37, 45–52, 1987.

Gagnon, R., Levasseur, M., Weise, A. M., and Fauchot, J.: Growth stimulation of *Alexandrium tamarense* (Dinophyceae) by humic substances from the Manicouagan River (eastern Canada), J. Phycol., 41, 489–497, 2005.

Gao, H. and Zepp, R. G.: Factors influencing photoreactions of dissolved organic matter in a coastal river of the Southeastern United States, Environ. Sci. Tech., 32, 2940–2946, 1998.

Gardner, W. S., Seitzinger, S. P., and Malczyk, J. M.: The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux?, Estuaries, 14, 157–166, 1991.

Gardner, W. S., Cavaletto, J. F., Bootsma, H. A., Lavrentyev, P. J., and Tanvone, F.: Nitrogen cycling rates and light effects in tropical Lake Maracaibo, Venezuela, Limnol. Oceanogr., 43, 1814–1825, 1998.
Gasol, J. M. and Moran, X. A. G.: Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry, Aquat. Microb. Ecol., 16, 251–264, 1999.

Glibert, P. M., Garside, C., Fuhrman, J. A., and Roman, M. R.: Time-dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs, Limnol. Oceanogr., 36, 895–909, 1991.

Glibert, P. M., Heil, C. A., Hollander, D., Revilla, M., Hoare, A., Alexander, J., and Morasko, S.: Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay, Mar. Ecol. Prog. Ser., 280, 73–83, 2004.

Gobler, C. J. and Sañudo-Wilhelmy, S. A.: Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom, Mar. Ecol. Prog. Ser, 209, 19–34, 2001.

Gobler, C. J., Renaghan, M. J., and Buck, N. J.: Impacts of nutrients and grazing mortality on the abundance of *Aureococcus anophagefferens* during a New York brown tide bloom, Limnol. Oceanogr., 47, 129–141, 2002.

Goldman, J. C.: Potential role of large oceanic diatoms in new primary production, Deep-Sea Res. I, 40, 159–168, 1993.

Harrison, W. G., Head, E. J. H., Conover, R. J., Longhurst, A. R., and Sameoto, D. D.: The distribution and metabolism of urea in the eastern Canadian Arctic, Deep-Sea Res. I, 32, 23–42, 1985.

Harrison, W. G., Platt, T., and Lewis, M. R.: f-Ratio and its relationship to ambient nitrate concentration in coastal waters, J. Plankton Res., 9, 235–248, 1987.

Hattori, A.: Studies on the metabolism of urea and other nitrogenous compounds in Chlorella ellipsoidea. I. Assimilation of urea and other nitrogenous compounds by nitrogen-starved cells, Journal of Biochemistry (Tokyo), 44, 253–273, 1957.

Hedges, J. I. and Hare, P. E.: Amino acid adsorption by clay minerals in distilled water, Geochim. Cosmochim. Acta., 51, 255–259, 1987.

Hoch, M. P. and Kirchman, D. L.: Ammonium uptake by heterotrophic bacteria in the Delaware Estuary and adjacent coastal waters, Limnol. Oceanogr., 40, 886–897, 1995.

Jacobsen, T. and Rai, H.: Aminopeptidase activity in lakes of differing eutrophication, in: Microbial Enzymes in Aquatic Environments, edited by: Chrost R., pp. 155–164, Springer-Verlag, New York, 1991.

Joint, I., Henriksen, P., Fonnes, G. A., Bourne, D., Thingstad, T. F., and Riemann, B.: Competi-
tion for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms, Aquat. Microb. Ecol., 29, 145–159, 2002.
Jørgensen, N. O. G., Kroer, N., Coffin, R. B., Yang, X.-H., and Lee, C.: Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria, Mar. Ecol. Prog. Ser., 98, 135–148, 1993.
Jørgensen, N. O. G., Tranvik, L., Edling, H., Granéli, E., and Lindell, M.: Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake waters, FEMS Microbiol. Ecol., 25, 217–227, 1998.
Jørgensen, N. O. G., Kroer, N., Coffin, R. B., and Hoch, M. P.: Relations between bacterial nitrogen metabolism and growth efficiency in an estuarine and an open-water ecosystem, Aquat. Microb. Ecol., 18, 247–261, 1999.
Keil, R. G. and Kirchman, D. L.: Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton, Mar. Ecol. Prog. Ser., 73, 1–10, 1991.
Kieber, D. J.: Photochemical production of biological substrates, in: The effects of UV radiation in the marine environment, edited by: de Mora, S., Demers, S., and Vernet, M., pp. 131–148, Cambridge University Press, Cambridge, 2000.
Kirchman, D. L., Keil, R. G., and Wheeler, P. A.: The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep-Sea Res., 36, 1763–1776, 1989.
Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, H. W.: High turnover rates of dissolved organic carbon during a spring phytoplankton bloom, Nature, 352, 612–614, 1991.
Kirchman, D. L. and Wheeler, P. A.: Uptake of ammonium and nitrate by heterotrophic bacteria and phytoplankton in the sub-Arctic Pacific, Deep-Sea Res. I, 45, 347–365, 1998.
Kirchman, D. L.: Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria, in: Microbial Ecology of the Oceans, edited by: Kirchman, D. L., pp. 261–288, Wiley-Liss, Inc., New York, 2000.
Kivic, P. A. and Vesk, M. J.: Pinocytotic uptake of protein from the reservoir in Euglena, Arch. Microbiol., 96, 155–159, 1974.
Klut, M., Bisalputra, T., and Anita, N. J.: Some observations on the structure and function of the dinoflagellate pusule, Canadian J. Botany, 65, 736–744, 1987.
Kroer, N., Joergensen, N. O. G., and Coffin, R. B.: Utilization of dissolved nitrogen by heterotrophic bacterioplankton: A comparison of three ecosystems, Appl. Env. Microbiol., 60,
Phytoplankton DON uptake

D. A. Bronk et al.

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Langheinrich, U.: Plasm membrane-associated aminopeptidase activities of *Chlamydomonas reinhardtii* and their biochemical characterization, Biochim. Biophysica Acta, 12 491, 45–57, 1995.

Lee, C., Hedges, J. I., Wakeham, S. G., and Zhu, N.: Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers, Limnol. Oceanogr., 37, 117–130, 1992.

Lee, S. and Fuhrman, J. A.: Relationship between biovolume and biomass of naturally derived bacterioplankton, Appl. Env. Microbiol., 53, 1298–1303, 1987.

Lee, S., Kang, Y.-C., and Fuhrman, J. A.: Imperfect retention of natural bacterioplankton cells by glass fiber filters, Mar. Ecol. Prog. Ser., 119, 285–290, 1995.

LeGrand, C. and Carlsson, P.: Uptake of high molecular weight dextran by the dinoflagellate *Alexandrium catenella*, Aquat. Microb. Ecol, 16, 81–86, 1998.

LeGrand, C., Graneli, E., and Carlsson, P.: Induced phagotrophy in the photosynthetic dinoflagellate *Heterocapsa triquetra*, Aquat. Microb. Ecol., 15, 65–75, 1998.

Lewitus, A. J.: Osmotrophy in marine microalgae, in: Algal cultures analogues and blooms, edited by: Subba Rao, D. V., Science Publishers, Inc., Enfield, New Hampshire, 2005.

Li, A., Stoecker, D. K., and Coates, D. W.: Spatial and temporal aspects of *Gyrodinium galatheanum* in Chesapeake Bay: distribution mixotrophy, J. Plankton Res., 22, 2105–2124, 2000a.

Li, A., Stoecker, D., and Coates, D.: Mixotrophy in *Gyrodinium galatheanum* (Dinophyceae); responses to light intensity and inorganic nutrients, J. Phycol., 36, 33–45, 2000b.

Lipschultz, F.: Nitrogen-specific uptake rates of marine phytoplankton isolated from natural populations of particles by flow cytometry, Mar. Ecol. Prog. Ser., 123, 245–258, 1995.

Lomas, M. and Glibert, P.: Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms, Limnol. Oceanogr., 44, 556–572, 1999a.

Lomas, M. W., Glibert, P. M., Berg, G. M., and Burford, M.: Characterization of nitrogen uptake by natural populations of *Aureococcus anaphagefferens* (Chrysophyceae) as a function of incubation duration, substrate concentration, light, and temperature, J. Phycol., 32, 907–916, 1996.
Lomas, M. W. and Glibert, P. M.: Interactions between NH$_4^+$ and NO$_3^-$ uptake and assimilation:
Comparison of diatoms and dinoflagellates at several growth temperatures, Mar. Biol., 133, 541–551, 1999b.

Lomas, M. W., Trice, T. M., Glibert, P. M., Bronk, D. A., and McCarthy, J. J.: Temporal and
spatial dynamics of urea uptake and regeneration rates and concentrations in Chesapeake
Bay, Estuaries, 25, 469–482, 2002.

Lomas, M. W.: Nitrate reductase and urease enzyme activity in the marine diatom Thalassiosira
weissflogii (Bacillariophyceae): interactions among nitrogen substrates, Mar. Biol., 144, 37–
44, 2004.

Lopez-Lozano, A., Diez, J., El Alaoui, S., Moreno-Vivian, C., and Garcia-Fernandez, J. M.:
Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non-
axenic cultures, FEMS Microbiol. Ecol., 41, 151–160, 2002.

McCarthy, J. J.: Uptake of urea by natural populations of marine phytoplankton, Limnology and
Oceanography, 17, 738–748, 1972a.

McCarthy, J. J.: Uptake of urea by marine phytoplankton, J. Phycol., 8, 216–222, 1972b.

Middelburg, J. J. and Nieuwenhuize, J.: Uptake of dissolved inorganic nitrogen in turbid, tidal
estuaries, Mar. Ecol. Prog. Ser., 192, 79–88, 2000a.

Middelburg, J. J. and Nieuwenhuize, J.: Nitrogen uptake by heterotrophic bacteria and phyto-
plankton in the nitrate-rich Thames estuary, Mar. Ecol. Prog. Ser., 203, 13–21, 2000b.

Monger, B. C. and Landry, M. R.: Flow cytometric analysis of marine bacteria with Hoechst
33342, Appl. Environ. Microbiol., 59, 905–911, 1993.

Mulholland, M. R., Glibert, P. M., Berg, G. M., Van Heukelem, L., Pantoja, S., and Lee, C.:
Extracellular amino acid oxidation by microplankton: a cross-system comparison, Aquat.
Microb. Ecol., 15, 141–152, 1998.

Mulholland, M. R., Gobler, C. J., and Lee, C.: Peptide hydrolysis, amino acid oxidation, and
nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens, Lim-
nol. Oceanogr., 47, 1094–1108, 2002.

Mulholland, M. R., Lee, C., and Glibert, P. M.: Extracellular enzyme activity and uptake of
carbon and nitrogen along as estuarine salinity and nutrient gradient, Mar. Ecol. Prog. Ser.,
258, 3–17, 2003.

Olson, R. J., Frankel, S. L., and Chisholm, S. W.: An inexpensive flow cytometer for the analysis
of fluorescence signals in phytoplankton: Chlorophyll and DNA distributions, J. Exp. Mar.
Biol. Ecol., 68, 129–144, 1983.
Olson, R. J., Vaulot, D., and Chisholm, S. W.: Marine phytoplankton distributions measured using shipboard flow cytometry, Deep-Sea Res., 32, 1273–1280, 1985.

Olson, R. J., Chisholm, S. W., Zettler, E. R., and Armbrust, E. V.: Analysis of ze pigment types in the sea using single and dual beam flow cytometry, Deep-Sea Res. I, 35, 425–440, 1988.

Oremland, D. S. and Capone, D.: Use of specific inhibitors in biogeochemistry and microbial ecology, Adv. Microb. Ecol., 10, 285–383, 1988.

Paerl, H. W.: Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton, Appl. Environ. Microbiol., 57, 473–479, 1991.

Paerl, H. W.: Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources, Limnol. Oceanogr., 42, 1154–1165, 1997.

Palenik, B. and Morel, F. M. M.: Comparison of cell-surface L-amino acid oxidases form several marine phytoplankton, Mar. Ecol. Prog. Ser., 59, 195–201, 1990a.

Palenik, B. and Morel, F. M. M.: Amino acid utilization by marine phytoplankton: A novel mechanism, Limnol. Oceanogr., 35, 260–269, 1990b.

Palenik, B. and Morel, F. M. M.: Amine oxidases of marine phytoplankton, App. Environ. Microbiol., 57, 2440–2443, 1991.

Pantoja, S., Lee, C., Marecek, J. F., and Palenik, B. P.: Synthesis and use of fluorescent molecular probes for measuring cell-surface enzymatic oxidation of amino acids and amines in seawater, Anal. Biochem., 211, 210–218, 1993.

Pantoja, S. and Lee, C.: Cell-surface oxidation of amino acids in seawater, Limnol. Oceanogr., 39, 1718–1726, 1994.

Pehlivanoglu-Mantas, E. and Sedlak, D. L.: Wastewater-Derived Dissolved Organic Nitrogen: Analytical Methods, Characterization, and Effects: A Review, Crit. Rev. Env. Sci. Technol., 36, 261–285, 2006.

Pel, R., Floris, V., Gons, H. J., and Hoogveld, H. L.: Linking flow cytometric cell sorting and compound-specific 13C-analysis to determine population-specific isotopic signatures and growth rates in cyanobacteria-dominated lake plankton, J. Phycol., 40, 857–866, 2004.

Peravuori, J., Lohtonen, T., and Pihlaja, K.: Sorption of aquatic humic matter by DOX-8 and XAD-8 resins. Comparative study using pyrolysis gas chromatography, Anal. Chim. Acta, 471, 219–226, 2002.

Rashid, M. A.: Contribution of humic substances to the cation exchange capacity of different marine sediments, Maritime Sediments, 5, 44–50, 1969.
Rashid, M. A.: Geochemistry of Marine Humic Compounds, Springer, New York, 1985.
Reckermann, M.: Flow sorting in aquatic ecology, Scientia Marina, 64, 235–246, 2000.
Rivkin, R. B., Phinney, D. A., and Yentsch, C. M.: Effects of flow cytometric analysis and cell sorting on photosynthetic carbon uptake by phytoplankton in cultures and from natural populations, Appl. Environ. Microbiol., 52, 935–938, 1986.
Rodrigues, R. M. N. V. and Williams, P. J. B.: Inorganic nitrogen assimilation by picoplankton and whole plankton in a coastal ecosystem, Limnol. Oceanogr., 47, 1608–1616, 2002.
Rosenfeld, J. K.: Ammonium adsorption in nearshore anoxic sediments, Limnol. Oceanogr., 24, 356–364, 1979.
Sanders, R. and Porter, K.: Phagotrophic phytoflagellates, Adv. Microb. Ecology, 10, 167–192, 1988.
Schnitzer, M.: Nature of nitrogen in humic substances, in: Humic substances in soil, sediment, and water, edited by: Aiken, G. R., McKnight, D. M., and Wershaw, R. L., pp. 303–328, John Wiley and Sons, New York, 1985.
See, J. H.: Availability of humic nitrogen to phytoplankton, in: Physical Sciences, p. 164, The College of William and Mary, Williamsburg, 2003.
See, J. H. and Bronk, D. A.: Changes in molecular weight distributions, C:N ratios, and chemical structures of estuarine humic substances with respect to season and age, Mar. Chem., 97, 334–346, 2005.
See, J. H., Bronk, D. A., and Lewitus, A. J.: Uptake of Spartina-derived humic nitrogen by estuarine phytoplankton in nonaxenic and axenic culture, Limnol. Oceanogr., 51, 2290–2299, 2006.
Seitzinger, S. and Sanders, R.: Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication, Mar. Ecol. Prog. Ser., 159, 1–12, 1997.
Smalley, G., Coats, D., and Adam, E.: A new method using fluorescent microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate Ceratium furca, Aquat. Microb. Ecol., 17, 167–179, 1999.
Smyda, T. J.: Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea, Limnol. Oceanogr., 42, 1137–1153, 1997.
Stepanauskas, R., Laudon, H., and Jørgensen, N. O. G.: High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 1298–1307, 2000.
Stoecker, D. K., Li, A., Coats, D. W., Gustafson, D. E., and Nannen, M. K.: Mixotrophy in the dinoflagellate Prorocentrum minimum, Mar. Ecol. Prog. Ser., 152, 1–12, 1997.
Stoecker, D. K. and Gustafson, D. E.: Cell-surface proteolytic activity of photosynthetic dinoflagellates, Aquat. Microb. Ecol., 30, 175–183, 2003.

Syrett, P. J.: Uptake and utilization of nitrogen compounds, in: Biochemistry of the Algae and Cyanobacteria, edited by: Rogers, L. J. and Gallon, J. R., pp. 23–39, Oxford University Press, New York, 1988.

Thurman, E. M., Wershaw, R. L., Malcolm, R. L., and Pinckney, D. J.: Molecular size aquatic humic substances, Organic Geochem., 4, 27–35, 1982.

Thurman, E. M.: Organic Geochemistry of Natural Waters, Niyhoff/Junk, Boston, 1985.

Veldhuis, M. J. W. and Kraay, G. W.: Application of flow cytometry in marine phytoplankton research: current applications and future perspectives, Scientia Marina, 64, 121–134, 2000.

Veuger, B., Middelburg, J. J., Boschker, H. T. S., Nieuwenhuize, J., van Rijswijk, P., Rocchelle-Newall, E. J., and Navarro, N.: Microbial uptake of dissolved organic and inorganic nitrogen in Randers Fjord, Est. Coast. Shelf Sci., 61, 507–515, 2004.

Vives-Rego, J., Lebaron, P. and Nebe-von Caron, G.: Current and future applications of flow cytometry in aquatic microbiology, FEMS Microbiol. Rev., 24, 429–448, 2000.

Wallner, G., Fuchs, B., Spring, S., Beisker, W., and Amann, R.: Flow sorting of microorganisms for molecular analysis, Appl. Environ. Microb., 63, 4223–4231, 1997.

Wheeler, P. A. and Kirchman, D. L.: Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31, 998–1009, 1986.

Wiegner, T. N., Seitzinger, S. P., Glibert, P., and Bronk, D. A.: Bioavailability of dissolved organic nitrogen and carbon from nine rivers in the Eastern United States, Aquat. Microb. Ecol., 43, 277–287, 2006.

Yentsch, C. M., Horan, P. K., Muirhead, K., Dortch, Q., Haugen, E., Legendre, L., Murphy, L. S., Perry, M. J., Phinney, D. A., Pomponi, S. A., Spinrad, R. W., Wood, M., Yentsch, C. S., and Zahuranec, B. J.: Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles, Limnol. Oceanogr., 28, 1275–1280, 1983.

Zehr, J. P. and Ward, B. B.: Nitrogen cycling in the ocean: new perspectives on processes and paradigms, Appl. Environ. Microb., 68, 1015–1024, 2002.

Zubkov, M. V. and Tarran, G. A.: Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front, Aquat. Microb. Ecol., 40, 241–249, 2005.
Table 1. Labile, semi-labile and refractory components of the DON pool.

Labile	Semi-labile	Refractory
Urea	Proteins	Humic acids
DFAA	DCAA	Fulvic acids
Nucleic acids	Amino polysaccharides	Porphorins
Methylamines	(e.g. chitins and peptidoglycans)	Amides