Cost of hospital management of Clostridium difficile infection in United States - a meta-analysis and modelling study

Citation for published version:
Zhang, S, Palazuelos-Munoz, S, Balsells, E, Nair, H, Chit, A & Kyaw, MH 2016, 'Cost of hospital management of Clostridium difficile infection in United States - a meta-analysis and modelling study' BMC Infectious Diseases. DOI: 10.1186/s12879-016-1786-6

Digital Object Identifier (DOI):
10.1186/s12879-016-1786-6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Infectious Diseases

Publisher Rights Statement:
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Cost of hospital management of Clostridium difficile infection in United States—a meta-analysis and modelling study

Shanshan Zhang1,2*, Sarah Palazuelos-Munoz3, Evelyn M. Balsells1, Harish Nair1, Ayman Chit4,5 and Moe H. Kyaw4

Abstract

Background: Clostridium difficile infection (CDI) is the leading cause of infectious nosocomial diarrhoea but the economic costs of CDI on healthcare systems in the US remain uncertain.

Methods: We conducted a systematic search for published studies investigating the direct medical cost associated with CDI hospital management in the past 10 years (2005–2015) and included 42 studies to the final data analysis to estimate the financial impact of CDI in the US. We also conducted a meta-analysis of all costs using Monte Carlo simulation.

Results: The average cost for CDI case management and average CDI-attributable costs per case were $42,316 (90 % CI: $39,886, $44,765) and $21,448 (90 % CI: $21,152, $21,744) in 2015 US dollars. Hospital-onset CDI-attributable cost per case was $34,157 (90 % CI: $33,134, $35,180), which was 1.5 times the cost of community-onset CDI ($20,095 [90 % CI: $4991, $35,204]). The average and incremental length of stay (LOS) for CDI inpatient treatment were 11.1 (90 % CI: 8.7–13.6) and 9.7 (90 % CI: 9.6–9.8) days respectively. Total annual CDI-attributable cost in the US is estimated US$6.3 (Range: $1.9–$7.0) billion. Total annual CDI hospital management required nearly 2.4 million days of inpatient stay.

Conclusions: This review indicates that CDI places a significant financial burden on the US healthcare system. This review adds strong evidence to aid policy-making on adequate resource allocation to CDI prevention and treatment in the US. Future studies should focus on recurrent CDI, CDI in long-term care facilities and persons with comorbidities and indirect cost from a societal perspective. Health-economic studies for CDI preventive intervention are needed.

Keywords: Clostridium Difficile, Economic analysis, Systematic review, Meta-analysis

Abbreviations: CDI, clostridium difficile infection; CIs, confidence intervals; CO CDI, community-onset CDI; HCF, healthcare facility; HIV, human immunodeficiency virus; HO-CDI, hospital-onset cd; ICD-9-CM, the international classification of diseases, ninth revision, clinical modification; ICUs, intensive care units; IQR, interquantile range; LTCF, long-term care facility; NIS, national independent sample; SD, standard deviation; US, United States

* Correspondence: Shanshan.zhang@ed.ac.uk
1Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG, UK
2Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Clostridium difficile is the leading cause of infectious nosocomial diarrhoea in the United States (US) [1] and the incidence and severity of *C. difficile* infection (CDI) are increasing [2]. CDI is associated with significant morbidity and mortality; it represents a large clinical burden due to the resultant diarrhoea and potentially life-threatening complications, including pseudomembranous colitis, toxic megacolon, perforations of the colon and sepsis [3–5]. Up to 25 % of patients suffer from a recurrence of CDI within 30 days of the initial infection. Patients at increased risk of CDI are those who are immuno-compromised, such as those with human immunodeficiency virus (HIV) or who are receiving chemotherapy [6–8], patients receiving broad-spectrum antibiotic therapy [9, 10] or gastric acid suppression therapy [9, 11], patients aged over 65 years [10], patients with serious underlying disease [12], patients in intensive care units (ICUs) [10], or patients who have recently undergone non-surgical gastrointestinal procedures or those being tube-fed [10].

CDI represents a significant economic burden on US healthcare systems. Infected patients have an increased length of hospital stay compared to uninfected patients, besides there are significant costs associated with treating recurrent infections. A few systematic reviews of cost-of-illness studies on CDI cost are available [13–21]. These reviews mainly listed the range of reported cost of their respective observation period or were limited by the small number of included studies or inadequate control for confounding factors. No meta-analysis of large number of cost data in the US has been conducted to date. The cost for patients discharged to long-term care facility (LTCF) and recurrent CDI management are understudied. The cost of case management and total financial burden of CDI treatment in the US is therefore underestimated and remains controversial.

The aim of the current study is to conduct a systematic review and meta-analysis of currently available data to identify and quantify the financial burden attributable to CDI, and to further estimate the total economic burden of CDI hospital management in the US.

Methods

Search strategy

English-language databases with online search tools were searched for to offer maximum coverage of the relevant literature: Medline (via the Ovid interface 1946 to July 2015); EMBASE (via the Ovid interface 1980 to July 2015); The Centre for Review and Dissemination Library (incorporating the DARE, NHS EED, and NHS HTA databases); The Cochrane Library (via the Wiley Online Library) and Health Technology Assessment Database (1989 to July 2015).

We supplemented our data by searching relevant published reports from: National epidemiological agencies, Google search for grey literature and hand searched the reference lists of the included studies. The general search headings identified were: *Clostridium difficile*, economic, costs, cost analysis, health care costs, length of stay, hospitalization. Examples of the strategy for Medline and EMBASE are listed in Additional file 1.

Study selection

All studies that reported novel direct medical cost and/or indirect costs related to CDI management were included. Review articles, comments, editorials, letters, studies of outbreaks, case reports, posters and articles reporting results from economic modelling of a single treatment measure (i.e. cost effectiveness of faecal transplantation) were excluded in the final analysis. All relevant publications from January 2005 to July 2015 were included in the search. We included the following healthcare settings: hospitals, long-term care facilities and community. Geographical scope covered the US. We did not apply any language restriction. Our predefined inclusion and exclusion criteria are shown in Additional file 1.

Data extraction

Two reviewers (SP, SZ) independently selected the included articles and extracted data. After combining their results, any discrepancies were solved by discussion with HN and MK.

The primary outcomes were CDI-related costs (total costs of those with CDI and other comorbidities) and CDI-attributable costs (total costs of CDI management only, after controlling for the confounders). For studies with control groups (e.g. matched patients without CDI), the CDI-attributable cost extracted was either the cost provided by the articles or calculated by reviewers using the CDI-related cost minus the treatment cost of control groups. The secondary outcome was resource utilization associated with CDI, i.e. CDI-related length of stay (LOS) in hospital and CDI-attributable LOS. The study characteristics of each article were extracted. These included basic publication information, study design, statistical methods, economic data reporting characteristics and population information.

When multiple cost data were presented in a study, we included only one cost estimate for each population subgroup as per the priority below:

a. Matched data > Unmatched data.
b. Adjusted model results > Unadjusted model results.
c. Regression model results > Calculated difference.
d. Total cost/charges > Subgroup cost/charge (i.e. survivors, died).
e. Median (Interquantile Range: IQR) > Mean
(Standard Deviation, SD).

All costs/charges data were inflated to 2015 US$ equivalent prices adjusted for the Consumer Price Index. If the price year was not reported, it was assumed to be the last year of the data collection period. In cases where charges were reported without cost-to-charge given, costs were estimated using a cost-to-charge ratio of 0.60, which is commonly used value in US health economic studies [22].

Meta-analysis and estimation of national impact
We carried out meta-analysis for cost studies following a Monte Carlo simulation approach, as reported by Jha et al [23] and Zimlichman et al [17], bearing in mind the heterogeneity of the included studies. For each subgroup of CDI, we synthesized the data and reported a point estimate and 90 % confidence intervals (CIs) for the CDI-related cost, CDI-attributable cost and their respective LOS. For each included study, we simulated distribution with pooled results weighted by sample size. We fitted a triangular distribution for each of the included studies based on their reported measures of central tendency and dispersion, i.e. mean and 95 % CI, median and IQR, or median and range. Then we simulated 100,000 sample draws from the modeled distribution of each study. At each iteration, we calculated the weighted average of all included studies. Finally, we reported the mean and 90 % CI from the resulting distribution of the 100,000 weighted average of CDI. This approach facilitated the combination of cost data and eliminated the limitation of combining non-normally distributed data. Monte Carlo simulations were conducted using the Monte Carlo simulation software @RISK, version 7.0 (Palisade Corp).

We estimated the national financial impact of CDI on the US healthcare system, by determining the potential boundaries. The higher boundary was the total number of CDI cases in the US in 2011 extracted from Lessa et al [24], while the lower boundary was the result from a meta-analysis to estimate the total burden of CDI cases in the US [25] (For detailed results see Additional file 1). The total annual cost of CDI management was calculated multiplying the average cost of management per case of CDI, with the total number of CDI cases per year in the US (Fig. 1). We assumed that all CDI cases received treatment in hospital. A point estimate of the final cost (with range) was reported based on a Monte Carlo simulation of 100,000 sample draws.

Sensitivity analysis
We extracted the total number of CDI patients and CDI-attributable costs from previous studies [25] and reviews [17, 26] to carry out a sensitivity analysis of our total cost estimates.

Quality assessment
The quality of the studies included was assessed mainly based on the complexity of the statistical method (Fig. 2). All studies were included in the final analyses.

Results
Search results
The search strategy identified 2671 references from databases. Seven additional references were identified through other sources. After screening the titles, abstracts and relevant full texts (Fig. 3), a total of 42 studies were included in this review.

Study characteristics
The characteristics of the 42 included studies [27–68] are summarized in Table 1. Cost data collection periods ranged from 1997 to 2012. Most studies (n = 27) used national level databases, with 17 used National Independent Sample (NIS) database and the remaining 10 studies extracted data from various national databases. Fifteen studies were conducted at state level, of which 6 studies only collected data in single hospital. All studies reported cost in hospital level of care, no articles identified in LTCF and community. Nearly all identified references were retrospective hospital database studies (n = 40) and only 1 study was a prospective observational study [29] and another study was a decision tree model [48].

Most studies (n = 15) investigated economic outcomes in all age inpatients. Three studies reported cost data in children less than 20 years old. The mean/median age of the CDI patient groups ranged from 47.4 to 73.0 years. Other studies investigated complicated CDI in high-risk patient groups, such as those with major surgery (n = 16), inflammatory bowel diseases (n = 2), liver or renal disease (n = 4), elderly (n = 2) and ICU patients (n = 1). There was 1 study each in non-surgical inpatients, sepsis

![Fig. 1 Formula for total annual cost calculation](image-url)
When a study used matching methods combined with adjusted regression(s), the statistical method was judged of high quality.

When a study used either matching methods or adjusted regression(s), the statistical method was judged of medium quality.

When a study used neither matching methods nor adjusted regression(s), the statistical method was judged of low quality.

Fig. 2 Quality Assessment Method

Fig. 3 PRISMA diagram of economic burden search of C. difficile

Main reasons for exclusion (2028)
- No cost data for primary outcome of interest = 1191
- Data reported not for C. Difficile = 758
- Ineligible type of publications or study design (e.g. letters, comments, posters, abstracts) = 53
- No primary cost data (e.g. review articles, economic modelling of one treatment) = 26

Main reasons for exclusion of full text articles (53)
- Cost data reported for single management of C.Difficile (e.g. antibiotics only) = 37
- No primary cost data reported not for C.Difficile = 10
- Ineligible type of study design (e.g. review articles) = 6
| ID | Reference | State, city | Data collection period | Type of CDI | Population Sample size (Total) | Sample size (CDI cases) | Age of CDI patients Mean ± SD or (Range), years | CDI definition (short) | Quality assessment | Statistical methodology | Data source |
|-----|-----------------------|------------------------------|------------------------|----------------------|------------------------------|--------------------------|---|-----------------------|---------------------|-----------------------|---|
| 1 | Ali 2012 [27] | National | 2004–2008 | Comp. Liver transplant | 193,714 | 5159 | >18 | ICD-9; 008.45 (Primary Diagnosis-PD, Secondary Diagnosis-SD) | Low | No matching; no regression | Nationwide Inpatient Sample (NIS) |
| 2 | Ananthakrishnan 2008 [28] | National | 2003 | Comp. IBD | 124,570 | 2804 | >18 CDI: 73; CDI-IBD: 54 | ICD-9; 008.45 (PD) | Medium | No matching; regression | NIS |
| 3 | Arora 2011 [29] | Houston | 2007–2008 | Req. General | 85 | 85 | Horn's Index Score 1&2: 64 ± 19; Horn's Index Score 3&4: 65 ± 15 | Toxin assay | Low | No matching; no regression | St Luke's Episcopal Hospital |
| 4 | Bajaj 2010 [30] | National | 2005 Tertiary; 2002–2006 | Both Cirrhosis | 83,230 | 1165 | CDI: 69 ± 20; Cirrhosis-CDI: 61 ± 15 | ICD-9; 008.45 (PD, SD) | Medium | No matching; regression | NIS |
| 5 | Campbell 2013 [31] | National | 2005–2011 | Comp. General | NR | 4521 | Renal impairment: 72.9 ± 13.4; Advanced Age: 78.7 ± 7.4; Cancer/BMT 69.2 ± 14.0; IBD 61.2 ± 18.3; Cabx exposure 61.2 ± 14.8 | Toxin assay | High | Matching; regression | Health Facts electronic health record (HER) database |
| 6 | Damle 2014 [14] | National | 2008–2012 | Comp. Colorectal surgery | 84,648 | 1266 | >18 CDI: 63 ± 17 | ICD-9; 008.45 (PD, SD) | Medium | No matching; regression | University Health System Consortium database |
| 7 | Dubberke 2008 [33] | Missouri | 2003–2003 | Both Non-Surgical | 24,691 | 439 | 67(18–101) | Toxin assay | High | Matching; regression | Barnes-Jewish Hospital Electronic record |
| 8 | Dubberke 2014 [2, 34, 71] | Missouri | 2003–2009 | Both Recurrent CDI | 3958 | 421 | >18 | Toxin assay or clinical diagnosis for recurrent CDI | High | Matching; regression | Barnes-Jewish Hospital Electronic record |
| 9 | Egorova 2015 [35] | National | 2000–2011 | Comp. Vascular surgery | NR | 2808 | 68.4 | ICD-9; 008.45 (PD, SD) | High | Matching; regression | NIS |
| 10 | Flagg 2014 [36] | National | 2004–2008 | Comp. Cardiac surgery | 349,112 | 2581 | All age band | ICD-9; 008.45 (PD, SD) | High | Matching; regression | NIS |
| 11 | Fuller 2009 [37] | Maryland and California | 2007–2008 for Maryland 2005–2006 for California | Comp. General | 3760 | 3760 | – | Clinical diagnosis | Medium | No matching; regression | Health Services and Cost Review Commission, Maryland; The Office of State-wide Planning and Development, California |
| 12 | Glance 2011 [38] | National | 2005–2006 | Comp. Trauma | 149,648 | 768 | 69(45–82) | Clinical diagnosis | Medium | No matching; regression | NIS |
| 13 | Jiang 2013 [39] | Rhode Islands | 2010–2011 | Comp. General | 225,999 | 6053 | >18 714 ± 15.8 | ICD-9; 008.45 (PD, SD) | Medium | Matching; no regression | Rhode Island's 11 acute-care hospitals |
Table 1 Overview of selected references that assessed economic burden attributable to CDI by type of CDI considered in the US (Continued)

Reference	Location	Year	Type	CDI Count	SEI	SEI SD	SEI PD	SEI Diagnosis	SEI SD Diagnosis	SEI PD Diagnosis	Methodology	Data Source
14 Kim 2012 [40]	National	2001–2008	Comp. Cystectomy	10,856	153	>18	68.49 ± 10.52	ICD-9 ; 008.45 (SD)	Medium	No matching; regression	NIS	
15 Kuntz 2012 [41]	Colorado	2005–2008	Comp. General	3067	3067	All age band, Outpatient 62.8 ± 19.4; Inpatient 69.9 ± 16.3	ICD-9 + toxin assay	Medium	No matching; regression	Kaiser Permanente Colorado and Kaiser Permanente Northwest members		
16 Lagu 2014 [42]	Massachusetts, Boston one hospital	2004–2010	Comp. Sepsis	218,915	2348	>18	70.9 ± 15.1	ICD-9 ; 008.45 (SD) + toxin assay	Medium	Matching; no regression	Baystate Medical Center (Premier Healthcare Informatics database, a voluntary, fee-supported database)	
17 Lameire 2015	National	2002–2009	Comp. Cardiac surgery	512,217	421,294	>40	65.4 ± 10.5 VS 66.1 ± 12.3	ICD-9; 008.45 (PD, SD) + toxin assay	Medium	No matching; regression	NIS	
18 Lawrence 2007 [44]	Missouri	1997–1999	Both	1872	76	Primary 68.9 (34–93); Secondary 58.7 (16–91)	Toxic assay	Medium	No matching; regression	A 19-bed medical ICU in a Midwestern tertiary care referral center.		
19 Lesperance 2011 [45]	National	2004–2006	Comp. Elective colonic resections	695,010	10,077	>18	All 69.8; Surgery-CDI 68.7	ICD-9; 008.45 (SD)	Medium	No matching; regression	NIS	
20 Lipp 2012 [46]	New York	2007–2008	Comp. General	4,853,800	3883	>17	ICD-9; 008.45 (SD)	Medium	No matching; regression	- The SPARCS database-acute care non-federal hospitals in New York State		
21 Maltenfort 2013 [47]	National	2002–2010	Both	NR	NR	All age band	ICD-9; 008.45 (PD, SD)	Low	No matching; no regression	NIS		
22 McGlone 2012 [48]	National	2008	Comp. General	NR	NR	>65	ICD-9; 008.45 (SD)	Low	No matching; no regression	Decision tree model		
23 Nguyen 2008 [49]	National	1998–2004	Comp. IBD	527,187	2372	47.4 ± 0.2	ICD-9; 008.45 (secondary diagnosis)	Medium	No matching; regression	NIS		
24 Nylund 2011 [50]	National	1997,2000, 2003,2006	Both	Children	10,495,728	21,274	CDI 9.5 ± 0.07(SEM)	ICD-9; 008.45 (PD, SD)	High	Matching; regression	Healthcare Cost and Utilization Project Kids'Inpatient Database	
25 O'Brien 2007 [51]	Massachusetts	1999–2003	Req. General	3692	1036	Primary 70 ± 17.6; Secondary 70 ± 17.2	ICD-9; 008.45 (PD, SD)	Low	No matching; no regression	Massachusetts hospital discharge data		
26 Pakyz 2011 [52]	National	2002–2007	Comp. General	30,071	10,857	CDI 61 ± 17	ICD-9; 008.45 (SD)	High	Matching; regression	University Health System Consorssoum (UHC)		
27 Pant 2012 [53]	National	2009	Both	Organ transplant (OT)	244,955	6451	>18, OT-CDI 58 ± 16, CDI-only 73 ± 22	ICD-9; 008.45 (PD, SD)	Medium	No matching; regression	NIS	
28 Pant 2012 (2) [54]	National	2009	Both	Renal disease	184,139	5151	>18, ESRD + CDI 66 ± 14 CDI ONLY 70 ± 17	ICD-9; 008.45 (PD, SD)	Medium	No matching; regression	NIS	
29 Pant 2013 [55]	National	2009	Both	Children with IBD	12,610	447	<20, 15.1 ± 4.1	ICD-9; 008.45 (PD, SD)	Medium	No matching; regression	The Healthcare Cost and Utilization Project Kids’	
Table 1 Overview of selected references that assessed economic burden attributable to CDI by type of CDI considered in the US (Continued)

Reference	Location	Year	Type	Subgroups	Age Band	Diagnosis	LOV	Regression	Database
Peery 2012 [56]	National	2009	Req.	General	All age band	ICD-9: 008.45 (PD)	Low	No matching; no regression	Inpatient Database (HCUP-KID)
Quimbo 2013 [57]	National	2005–2010	Comp.	High Risk subgroup	>18 67.5 ± 17.6	ICD-9: 008.45 (PD, SD)	High	Matching; regression	National Ambulatory Medical Care Survey (NAMCS) and NIS
Reed 2008	Pennsylvania	2002–2006	Comp.	High Risk subgroup	>17	Hospital acquired CDAD	Low	No matching; no regression	HealthCare Integrated Research Database
Sammons 2013 [59]	National	2006–2011	Both	Children	1–18 6 (2–13)	ICD-9: 008.45 (PD, SD) + toxin assay	High	Matching; regression	Free-standing children’s hospitals via the Paediatric Health Information System (PHIS)
Singal 2014 [60]	National	2007	Comp.	Cirrhosis	All age band	ICD-9: 008.45 (PD, SD)	Medium	No matching; regression	NIS
Song 2008 [61]	Maryland	2000–2005	Both	General	>18 unmatched 57.6 matched 60.3	Toxin assay	High	Matching; regression	The Johns Hopkins hospital
Stewart 2011 [62]	National	2007	Both	General	All age band, 70	ICD-9: 008.45 (PD, SD)	Medium	Matching; no regression	NIS
Tabak 2013 [63]	Pennsylvania	2007–2008	Comp.	General	All 64.8 ± 17.6 CDX 71.1 ± 14.8	Toxin assay	High	Matching; regression	Six Pennsylvania hospitals via a clinical research database
VerLee 2012	Michigan	2002–2008	Req.	General	All age band	ICD-9: 008.45 (PD)	Low	No matching; no regression	All Michigan acute care hospitals
Wang 2011 [65]	Pennsylvania	2005–2008	Both	General	All age band	ICD-9: 008.45 (PD, SD)	High	Matching; regression	The Pennsylvania Health Care Cost Containment Council (PHC4) database
Wilson 2013 [66]	National	2004–2008	Comp.	Ileostomy	All age band	ICD-9: 008.45 (SD)	High	Matching; regression	NIS
Zerey 2007 [67]	National	1999–2003	Both	Surgical	All age band 70 70 m	ICD-9: 008.45 (PD, SD)	Medium	No matching; regression	NIS
Zilberberg 2009 [68]	National	2005	Both	Prolonged acute mechanical ventilation	>18 66.7 ± 15.9	ICD-9: 008.45 (PD, SD)	Medium	Matching; no regression	NIS

Abbreviations: NR not reported, IBD inflammatory bowel disease, LOS length of stay, ICU intensive care unit, retrosp. retrospective, Comp. complicating, Req. requiring, both requiring and complicating, PD primary diagnosis, SD secondary diagnosis

Median (Range)
inpatients and patients with prolonged acute mechanical ventilation. There was 1 study focusing only on recurrent CDI in the general population.

The sample sizes of included studies ranged from 85 to 7,227,788, with a median sample size of 83,939. A total of 28.8 million inpatient hospital-days were analysed, of which 1.31 million inpatient hospital-days were CDI patients. The median sample size of CDI population was 2938.

The methods to identify CDI varied according to the type of CDI that was assessed in the study. CDI cases were identified either with laboratory test, i.e. positive C. difficile toxin assay, or hospital discharge diagnosis of C. difficile (primary and/secondary) from administrative datasets using the International Classifications of diseases, Ninth, Clinical Modification, ICD-9-CM 008.45. Clinical diagnosis was also used in two studies.

CDI was classified in three types: Community-onset CDI (CO-CDI) requiring hospitalization, Hospital-onset CDI (HO-CDI) complicating other diseases, or both CDI (Table 2). Most of included studies considered HO-CDI (n = 23) or both CDI types (n = 17). Only four studies investigated CO-CDI only. However, subgroup data of CO-CDI is also available in studies that reported both CDI types.

CDI costs and LOS

The mean CDI-attributable costs per case of CO-CDI were $20,085 (Range: $7513–$29,662), lower than HO-CDI $34,149 (Range: $1522–$122,318). HO-CDI showed a wider range within which the additional cost for CDI in the general population ranged from $6893 to $90,202 and in high risk groups ranged from $7332 in congestive heart failure patients to $122,318 in renal impairment patients. The mean CDI-attributable LOS was 5.7 days (Range: 2.1–33.4) for CO-CDI, 7.8 (Range: 2.3–21.6) days for HO-CDI, and 13.6 (Range: 2.2–16) days for both groups. Cost data and LOS for individual studies are presented in Tables 3 and 4.

Table 2 Classification of CDI Cases by Setting of Acquisition

Case definition	Criteria for classification
CO-CDI	Discharge code ICD-9-CM 008.45 as Primary diagnosis
HO-CDI	Discharge code ICD-9-CM 008.45 as secondary diagnosis, without a primary diagnosis of a CDI-related symptom (e.g. diarrhea)
	Study population ≥48 h of hospitalization
	Symptom onset and/or positive laboratory assay at least ≥48 h hospitalization
Both CDI	No distinction of settings of acquisition
	Discharge code ICD-9-CM 008.45 in any position

Abbreviations: CO-CDI community-onset CDI, HO-CDI hospital-onset CDI, ICD-9-CM The International Classification of Diseases, Ninth Revision, Clinical Modification

Using a Monte Carlo simulation, we generated point estimates and 90 % CI for both cost and LOS; the meta-analysis results are shown in Table 5. The total cost of inpatient management of CDI-related disease was $42,316 (90 % CI: $39,886–$44,765) per case, of which the total CDI-attributable cost was $21,148 (90 % CI: 21,152–21,744) per case. For the inpatient management, the attributable cost for those HO-CDI was $34,157 (90 % CI: $33,134–$35,180), which was 1.5 times as much as CO-CDI management $20,095 (90 % CI: $4991–$35,204).

Similar patterns were observed in LOS data. The total CDI-related LOS was 11.1 days (90 % CI: 8.7–13.6) and CDI-attributable LOS was 9.7 (90 % CI: 9.6–9.8). The HO-CDI patients had longer CDI-attributable LOS 9.7 days (90 % CI: 9.7–9.7) than CO-CDI patients 5.7 days (90 % CI: 4.1–7.3).

CDI annual national impact estimate

The total burden of healthcare facility CDI in US was estimated 293,300 (Range: 264,200–453,000) cases per year [25]. The total financial burden of CDI inpatient management was estimated to be US$6.3 (Range: $1.9–$7.0) billion in 2015, which required 2.4 million days of hospital stay. The total CDI related disease management cost was nearly doubled at US$12.4 (Range: $3.7–$14.4) billion in 2015 (Table 6). A sensitivity analysis showed that the total CDI-attributable cost ranged from $1.31 to $13.61, which covers our estimates (Additional file 1).

Quality assessment

A summary of the quality assessment for statistical methods in included studies is shown in Additional file 1. There were 13 studies of high quality, 21 studies with medium quality and 8 low quality studies.

Discussion

We systematically reviewed 42 published cost studies of CDI case management in the past 10 years (2005–2015) and found a significant financial burden associated with CDI in the US. The total CDI-attributable cost was US$6.3 billion, which is higher than previously reported (range US$1.1–4.8 billion) [14, 16, 17]. The mean cost for CDI-attributable hospitalized patients per case was US$21,448, nearly half of the mean CDI-related inpatient cost.

This review facilitated a meta-analysis of a large number of cost studies for costs related to CDI management and provided an uncertainty range. Zimlichman et al [17] applied this method to calculate CDI cost based on cost data from two cost-of-illness studies (O’Brian 2007 [51] & Kyne 2002 [69]) and obtained a lower cost [2012US $11,285 ($9118–$13,574)] than ours. Our review combined 100-point estimates and ranges from 42 individual studies, which provided more accurate and
Table 3 CDI-attributable costs/charges and CDI-related management costs/charges

Author, Year	Population	Outcome	Statistic	Incremental CDI-attributable cost/charges	CDI-related cost/charges	Note					
				Sample size	Attributable cost 2015 $	SD or 95 % CI	Sample size	CDI only cost 2015 $	SD, 95 % CI or IQR		
CO-CDI Inpatient Cost				Sample size	Attributable cost 2015 $	SD or 95 % CI	Sample size	CDI only cost 2015 $	SD, 95 % CI or IQR		
Arora 2011 [29]	General	Cost	Median	85	25,436		85	25,436			
O'Brien 2007 [51]	General	Cost	Mean	4015	14,736		4015	14,736			
Peery 2012 [56]	General	Cost	Median	110,553	7513		110,553	7513			
VeerLee 2012 [64]	General	Charges	Mean	68,686	74,211	120,156	88,686	74,211	120,156		
Kuntz 2012 [41]	General	Cost	Mean	1650	929	4800	1650	929	4800		
Kuntz 2012 [41]	General	Cost	Mean	1316	11,877	35,923	1316	11,877	35,923		
O'Brien 2007 [51]	General	Cost	Median	1036	7263		1036	7263			
VeerLee 2012 [64]	General	Charges	Mean	17,413	27,463	40,484	17,413	27,463	40,484		
O'Brien 2007 [51]	General	Cost	Mean	3327	16,946	34,655	3327	16,946			
Sammons 2013 [59]	General	Cost	Mean	2060	19,993	24,013	2060	19,993	24,013		
Ananthakrishnan 2008 [28]	IBD	Charges	Median	12,610	12,761	6868	18,655	447	50,050		
Pant 2013 [55]	IBD	Charges	Mean	12,610	12,761	6868	18,655	447	50,050		
Bajaj 2010 [30]	Cirrhosis	Charges	Mean	12,610	12,761	6868	18,655	447	50,050		
VeerLee 2012 [64]	General	Charges	Mean	12,610	12,761	6868	18,655	447	50,050		
McGlone 2012 [48]	General	Cost	Median	54,046	10,016	8547	12,055	933	63,641		
McGlone 2012 [48]	General	Cost	Median	54,046	11,116	9476	13,366	9476	13,366		
McGlone 2012 [48]	General	Cost	Median	54,046	12,194	10,146	14,896	10,146	14,896		
O'Brien 2007 [51]	General	Cost	Median	26,566	6630		26,566	6630			
VeerLee 2012 [64]	General	Charges	Mean	51,273	90,202	146,767	51,273	90,202	146,767		
Jiang 2013 [39]	General	Cost	Median	72,640	11,689		1121	21,751			
Pakyz 2011 [52]	General	Cost	Mean	30,071	31,180		8,857	64,732			
Study Year	Study Type	Disease	Cost Type	Median/Mean	Adjusted Cost	Coefficient	Regression	Adjusted/Unadjusted	Notes		
------------	------------	---------	------------	-------------	---------------	-------------	------------	---------------------	-------		
Pakyz 2011	General		Median	30,071	24,456	10,857	39,598	22,400	Unadjusted		
Pakyz 2011	General		Mean	30,071	31,169	10,857	64,000	63,541	Adjusted		
Tabak 2013	General		Mean	1020	6893	1365	13,617	255	22,992	12,222	42,470
Campbell 2013	General	Age >= 65	Mean	3064	7536	4302	10,771	3064	48,932	67,727	
Quimbo 2013	Elderly		Median	34,732	45,749	43,279	48,359	10,933	83,004	78,548	87,713
Sammons 2013	Children		Mean	2414	99,012	84,626	113,398	2414	99,012	84,626	113,398
Ananthakrishnan 2008	IBD		Median	80,170	7655	9467	19,270	–			
Ananthakrishnan 2008	IBD		Mean	80,170	14,368	1206	42,035	35,918	49,191		
Campbell 2013	IBD		Mean	84	1522	–14,932	11,888	84	40,194	44,845	
Quimbo 2013	IBD		Cost	3618	11,825	9851	14,181	1206	42,035	35,918	49,191
Ananthakrishnan 2008	Ulcerative colitis (UC)		Median	14,368	1843	26,750	–				
Nguyen 2008	UC		Charges	43,645	14,749	196	43,381	44,845	Regression		
Ananthakrishnan 2008	Crohn’s disease (CD)		Charges	961	22,738	–	–				
Nguyen 2008	CD	Digestive disorders	Charges	73,197	14,316	329	41,453	8068	–		
Reed 2008		colorectal surgery	Median	84,648	14,444	13,700	15,589	1266	38,218	–	
Kim 2012	Cystectomy	Cystectomy	Mean	10,856	23,014	153	57,379	50,204	64,534		
Lesperance 2011	Elective colonic resection		Charges	695,010	84,899	10,077	158,401	35,918	49,191		
Reed 2008	Major bowel procedures		Charges	1035	25,476	45	47,064	31,302	–		
Wilson 2013	Ileostomy		Charges	13,462	20,727	217	35,076	31,302	–		
Wilson 2013	Ileostomy		Coefficient	13,462	17,513	14,106	20,921	–			
Egorova 2015	Vascular surgery		Median	450,251	14,250	4708	36,847	22,912	62,903		
Flagg 2014	Cardiac surgery		Median	5160	19,524	2580	213,661	72,730	–		
Flagg 2014	Cardiac surgery		Median	349,122	38,320	2580	72,730	–	106,141		
Lemaire 2015	Cardiac surgery		Median	421,294	35,968	–	72,685	106,141	–		
Lemaire 2015	Cardiac surgery		Median	90,923	59,696	–	35,524	25,498	–		
Reed 2008	OR procedure for infectious/parasitic diseases		Charges	449	7462	32	35,524	25,498	–		
Study	Condition	Cost Type	Median	Mean	SD	1st Quartile	3rd Quartile	Total Numbers/Weighted Mean	Recurrent CDI Cost Mean	Recurrent CDI Cost Median	Total Cost Difference
----------------------	----------------------------	------------	--------	------	----	--------------	--------------	----------------------------	-------------------------	--------------------------	-------------------------
Glance 2011 [38]	Trauma	Cost	149,656	24,131		768	39,296	3,020,827	34,149	207,801	49,712
Campbell 2013 [31]	CAbx	Cost	1641	18,567		10,448	26,687	1641	78,948	99,739	
Quimbo 2013 [57]	Sepsis	Cost	17,716	38,413		35,195	41,922	24,131	78,948	60,780	
Lagu 2014 [42]	Sepsis	Cost	4736	5792		4933	6665	2,111	78,948	16,496	
Reed 2008	Septicaemia	Charges	1211	9141		92	22,378	1241	78,948	20,591	
Campbell 2013 [31]	Renal impairment	Cost	3236	5024		1118	8928	3,111	78,948	72,180	
Quimbo 2013 [57]	RI	Cost	22,132	122,318		111,315	134,405	201,212	183,706	220,386	
Ali 2012 [27]	Liver transplant	Charges	193,714	77,361		5159	158,038	5159	158,038		
Singal 2014 [60]	Cirrhosis	Charges	89,673	23,310		89,673	99,739	3,111	78,948	59,145	
Reed 2008	Congestive Heart Failure	Charges	2542	7332		35	14,738	2542	78,948	13,841	
Quimbo 2013 [57]	Immunocompromised	Cost	14,344	33,632		30,151	73,612	77,948	183,706	82,041	
Campbell 2013 [31]	Cancer/BMT	Cost	782	687		782	48,280	782	72,605		
Total numbers/Weighted mean			3,020,827	34,149		207,801	49,712	207,801	49,712		
Dubberke 2014 [2, 34, 71]	Recurrent CDI	Cost	3958	12,163		3958	11,523	4728	26,167		
Dubberke 2014 [2, 34, 71]	Recurrent CDI	Cost	3958	12,692		9752	15,919	15,919	15,919		Adjusted
Song 2008 [61]	General	Cost	1260	373		630	30,305	207,801	49,712		
Stewart 2011 [62]	General	Cost	82,414	9670		41,207	26,790	207,801	49,712		
Wang 2011 [65]	General	Cost	7,227,788	4914		78,273	12,081	78,273	12,081		
Nylund 2011 [50]	Children	Charges	3565	15,937		35,65	25,549	11,348	97,822	2003	
Nylund 2011 [50]	Children	Charges	4356	20,750		4356	31,858	11,348	97,822	2003	
Nylund 2011 [50]	Children	Charges	5574	23,627		5574	33,625	11,348	97,822	2003	
Nylund 2011 [50]	Children	Charges	7779	23,362		7779	35,444	11,348	97,822	2003	
Sammons 2013 [59]	Children	Cost	698,616	51,304		44,746	57,969	698,616	57,969		
Dubberke 2008 [33]	Non-surgical	Cost	24,691	11,749		439	20,569	439	20,569		Raw data
Dubberke 2008 [33]	Non-surgical	Charges	24,691	23,961		439	42,154	439	42,154		Raw data
Dubberke 2008 [33]	Non-surgical	Cost	24,691	3173		3078	3815	342	18,842		Linear regression
Dubberke 2008 [33]	Non-surgical	Cost	24,691	4190		342	18,842	342	18,842		Matched cases
Study	Disease	Type	Cost Measure	Mean/Cost	Median/Cost	Coefficient/Cost	Other Details				
----------------	----------------------------------	---------------	--------------	-----------	-------------	------------------	---				
Dubberke 2008	Non-surgical	Cost	Mean	24,691	6520	4910	8381 Linear regression, 180 days				
Dubberke 2008	Surgical	Charges	Median	24,691	9284	342	35,414 Matched cases, 180 days				
Zerey 2007	Surgical	Charges	Median	1,553,597	59,424	8113	81,708 Multivariate regression analysis				
Zilberberg 2009	PAMV	Cost	Median	64,910	48,065	3468	190,188 107,689 333,290 Unadjusted				
Lawrence 2007	ICU	Cost	Median	1872	7043	76	15,016 ICU stay				
Lawrence 2007	ICU	Cost	Median	1872	36,095	76	60,723 Entire hospital stay				
Bajaj 2010	Cirrhosis	Charges	Mean	83,230	49,460	1165	96,678				
Maltenfort 2013	Arthroplasty	Charges	Median	–	43,648	–	84,877 52,498 142,827				
Pant 2012	Organ transplant	Charges	Mean	49,198	77,246	73,412	81,080 63,651 42,054 69,033				
Pant 2012 (2)	Renal disease	Charges	Coefficient	184,139	69,679	68,338	71,020 59,793 87,982				
Pant 2013	IBD	Charges	Mean	12,610	39,453	32,470	46,436				
Total numbers/Weighted Mean				10,012,927	14,403	981,005	45,421				

Abbreviations: CD-CDI community-onset CDI, HO-CDI hospital-onset, PAMV prolonged acute mechanical ventilation, Cabx concomitant antibiotic use, UC ulcerative colitis, CD Crohn’s disease, IBD inflammatory bowel disease, ICU intensive care unit, CABG coronary artery bypass grafting, VS valvular surgery, BMT, PD primary diagnosis, SD secondary diagnosis, Calculated numbers were marked in italic, attributable cost = cost of CDI group - cost of control non-CDI group.
Reference	Population	Statistic	CDI VS NO CDI LOS (Days)	CDI LOS (Days)						
		Sample size	Value SD or 95% CI	Sample size	Value SD or 95% CI					
CO-CDI Inpatient days										
Arora 2011 [29]	Horn's index 1&2	Mean	33	15.1	16.2	33	15.1	16.2		
Arora 2011 [29]	Horn's index 3&4	Mean	52	33.4	33.3	52	33.4	33.3		
Kuntz 2012 [41]	General outpatient	Mean	1650	10.0	17.0	1650	10.0	17.0		
Kuntz 2012 [41]	General inpatient	Mean	1316	14.9	20.9	1316	14.9	20.9		
O'Brien 2007 [51]	General	Mean	4015	6.4	4015	6.4				
Pant 2013 [55]	IBD	Coefficient	12,610	2.1	1.4	2.8	2.1	1.4	2.8	
Peery 2012 [56]	General	Median	110,553	5.0	110,553	5.0				
Quimbo 2013 [57]	CDAO History	Mean	1866	2.9	2.4	3.6	933	8.9	7.2	11.0
Sammons 2013 [59]	General inpatient days	Median	2060	5.6	4.5	6.6	2060	6.0	4.0	13.0
Veer Lee 2012 [64]	General	Mean	68,686	7.1	7.0	68,686	7.1	7.0		
HO-CDI Inpatient days										
Jiang 2013 [39]	General	Median	7264	8.0	1211	13.0				
Lipp 2012 [46]	General	Mean	3826	12.0	3826	12.0				
Pakyz 2011 [52]	General	Mean	30,071	11.1	10,857	21.1	21.0	21.2		
Tabak 2013 [63]	General	Median	1020	2.3	0.9	3.8	255	12.0	9.0	11.0
Wang 2013	General	Median	7,227,788	7.0	78,273	6.0	4.0	11.0		
Campbell 2013 [31]	Age >= 65	Mean	3064	3.0	1.4	4.6	3064	21.3	25.3	
Quimbo 2013 [57]	Elderly	Mean	34,732	7.8	7.5	8.1	10,933	18.8	18.2	19.5
Sammons 2013 [59]	Children	Median	2414	21.6	19.3	23.9	2414	23.0	12.0	44.0
Ananthakrishnan 2008 [28]	IBD	Median	80,170	3.0	2804	7.0				
Campbell 2013 [31]	IBD	Mean	84	3.0	2.3	8.3	84	21.0	19.1	
Quimbo 2013 [57]	IBD	Mean	3618	3.3	2.9	3.7	1206	12.8	11.6	14.2
Nguyen 2008 [49]	Crohn's disease	Mean	73,197	3.8	329	9.5				
Nguyen 2008 [49]	Ulcerative colitis	Mean	43,645	3.2	196	9.9				
Reed 2008	Digestive disorders	Mean	2394	3.0	3.2	6.9	5.2			
Damle 2014 [14]	Colorectal surgery	Median	84,648	8.4	8.0	8.9	1266	13.0	18.0	
Lesperance 2011 [45]	Elective colonic resection	Mean	695,010	11.7	10,077	22.6				
Reed 2008	Major bowel procedures	Mean	1035	10.0	45	20.9	11.3			
Wilson 2013 [66]	Ileostomy	Mean	13,462	11.6	217	18.7				
Campbell 2013 [31]	Cabx exposure	Mean	1641	7.8	5.7	9.9	1641	29.3	34.7	
Quimbo 2013 [57]	Concomitant Antibiotic Use	Mean	17,716	7.8	7.4	8.3	4429	17.9	17.0	18.9
Lagu 2014 [42]	Sepsis	Mean	4736	5.1	4.4	5.7	2368	19.2		
Reed 2008	Septicemia	Mean	1211	5.0	92	10.7	7.6			
Egorova 2015 [35]	Vascular surgery	Median	450,251	6.7	4708	15.0	9.0	25.0		
Flagg 2014 [36]	Cardiac surgery	Median	349,122	10.0	2580	21.0				
Glance 2011 [38]	Trauma	Median	149,656	10.0	768	16.0				
Lemaire 2015 [43]	Cardiac surgery (CABG)	Median	421,294	12.0	19.0					
Lemaire 2015 [43]	Cardiac surgery (VS)	Median	90,923	16.0	24.0					
Reed 2008	Congestive Heart Failure	Mean	2542	5.0	35	9.7	7.0			
comprehensive data of the cost result. Despite the methodological heterogeneity in perspectives, treatment procedure and statistical analysis, each included study met our inclusion criteria, which were defined to identify studies that provided real world estimates of costs, therefore the combination of these data with uncertainty range represented a valuable and reliable summary of CDI-related cost.

Furthermore, we evaluated hospital onset CDI and community onset CDI separately. We found that CDI complicating hospitalization cost more than CDI requiring hospitalization and the former had longer attributable hospital stay. Therefore, other factors, such as comorbidity, may contribute to infections and increase the difficulty of CDI treatment.

We estimated that the total cost attributable to CDI management in the US was nearly US$6.3 (Range: $1.9–$7.0) billion, which is similar to Dubberke and Olsen’s estimates at $4.8 billion [14], but significantly higher than other studies (US$ 1.5 billion in Zimlichman et al [17] and $1.1 billion in Ghantoji et al [16]). The later studies reported lower attributable cost per case based on a limited number of studies before 2005, which arguably is out-of-date. To compare with the latest

Table 4 CDI-attributable LOS and CDI-related LOS (Continued)

Study	Procedure	Mean	SD	Median	Min-Max	
Reed 2008	OR procedure for infectious/parasitic diseases	449	2.0	32	14.7	8.6
Lawrence 2007	ICU	76	14.9	1.0	86.0	
Lawrence 2007	ICU	76	38.3	4.0	184.0	
Ali 2012	Liver transplant	89,673	1444	13.9		
Singal 2014	Cirrhosis	14,344	22.1	20.6	23.7	
Quimbo 2013	Immunocompromised	3236	27.7	28.2		
Campbell 2013	Renal impairment	22,132	37.5	35.5	39.6	
Campbell 2013	Cancer/BMT	782	21.3	18.5		
Weighted Mean		10,120	168,892			

Both CO-CDI and HO-CDI inpatient cost

Song 2008	General	1260	630	22.0	
Stewart 2011	General	82,414	41,207	13.0	
Nylund 2011	Children, 1997	3565	3565	14.0	
Nylund 2011	Children, 2000	4356	4356	15.0	
Nylund 2011	Children, 2003	5574	5574	14.0	
Nylund 2011	Children, 2006	7777	7777	15.0	
Sammons 2013	Children	698,616	698,616	10.0	
Bajaj 2010	Cirrhosis	83,230	1165	14.4	
Bajaj 2010	CDI only	58,220	12.7		
Pant 2013	IBD	12,610	447	8.2	
Dubberke 2008	Non-surgical	24,691	439	14.0	
Lawrence 2007	ICU stay	1872	76	1.0	86.0
Lawrence 2007	Hospital stay	1872	76	2.0	184.0
Maltenfort 2013	Arthroplasty	–	10.0	17.0	
Zerey 2007	Surgical	1,553,597	8113	18.0	
Pant 2012	Organ transplant	49,198	63,651		
Pant 2012	Renal disease	184,139	59,793		
Zilberberg 2009	Prolonged acute mechanical ventilation	3370	3468	40.0	
Weighted Mean		2,718,143	957,175		

Abbreviations: CO-CDI community-onset CDI, HO-CDI Hospital-onset CDI, PAMV prolonged acute mechanical ventilation, Cabx concomitant antibiotic use, UC ulcerative colitis, CD Crohn’s disease, IBD inflammatory bowel disease, ICU intensive care unit, CARG coronary artery bypass grafting, VS valvular surgery, BMT PD primary diagnosis, SD secondary diagnosis, Calculated numbers were marked in Italic, attributable cost = cost of CDI group- cost of control non-CDI group

* Q1-Q3
** Min-Max
review on global CDI cost (Nanwa et al [26]), this review identified 8 additional studies with recent data. Nanwa et al [26] found that the mean attributable CDI costs ranged from US$8911 to US$30,049, which is similar to our results.

In this study, we only assessed the quality of study emphasizing statistical methods and did not use the modified economic evaluation guideline as other COI systematic reviews. Cost and LOS estimation of healthcare-associated infections has the potential to be misleading if the confounders such as patients’ comorbidities or daily severity of illness were not properly controlled for. Using either the matching design or multivariable regression analysis allows to control known confounders and may, in part, address selection bias [70]. We found that whether advanced statistical methods were used and described was crucial for the assessment of data quality, which has not be fully captured by the existing quality assessment tool.

Therefore in this study we assessed quality of included studies using this new method. Moreover, Nanwa et al [26] has evaluated the methodological completeness of most included studies (34 out of 42); we agree with their recommendations regarding possible improvement of future cost-of-illness study. However, we need to bear in mind that cost effects or excess LOS are still likely to be overestimated if the interval to onset of HAI is not properly accounted for in the study design or analysis [70].

Our systematic review has some limitations. First, all included studies reported direct medical costs from hospital perspective, therefore indirect cost to patients and society and costs of additional care after hospital discharge, have not been captured. No studies reported indirect cost (productivity loss due to work day losses) of patients or care-givers, and we failed to identify studies assessing cost of CDI in long-term care facilities, where about 9% of CDI patients were discharged to for an average of 24 days of after-care. This would result in an additional US$141 million burden on the healthcare system and society due to LTCF transfers [14]. Second, we did not separate primary CDI from recurrent CDI cost in our review because only two studies reported cost specifically to recurrent CDI $12,592 (Range: $9752, $15,919) [2]. Moreover, we found it difficult to exactly match the CDI case definition in cost study (e.g. ICD10 Code primary diagnosis and secondary diagnosis) with the case definition in epidemiology studies (e.g. community onset, hospital onset), therefore we did not estimate CDI patients managed at outpatient and community settings due to lack of both epidemiology and economic data. The total costs of CDI management may be higher than our current estimate. Fourth, unlike other published reviews, we did not include cost studies from countries other than the US nor facilitate any international comparison. This study initially aimed to identify cost-of-illness studies in North America, but we did not find any studies reporting cost data from Canada. This is likely because we restricted our search to English language databases. Therefore the cost of CDI management in Canada remains unknown. However, we did not apply any language restrictions to the current review.

Effective prevention can reduce the burden of diseases. Strategies have been promoted such as appropriate use

Table 5 Meta analysis results of cost and LOS of CDI management

CDI category	CDI-attributable cost per case (2015 US$) Weighted mean (90% CI)	CDI-related cost per case (2015 US$) Weighted mean (90% CI)	CDI-attributable LOS per case (Days) Weighted mean (90% CI)	CDI-related LOS per case (Days) Weighted mean (90% CI)
CO-CDI	20,995 4991 35,204 23,329	12,520 34,141	5.7 4.1 7.3	5.7 4.1 7.3
HO-CDI	34,157 33,134 35,180 53,487	42,054 66,326	9.7 9.7 14.1	13.0 15.4
Both CO-CDI	20,095 5091 35,204 23,329	42,054 66,326	9.7 9.7 14.1	13.0 15.4

Table 6 Total cost of CDI management in US

Total number of HCF CDI cases per year (2011)	Mean (95% CI)
All population ≥2 years Median	293,300 (322,500)
Adults 218 Upper boundary	288,900 (316,700)
Adults ≥18 Lower boundary	133,887 (195,402)
Cost per CDI case management (2015 US$)	Weighted Mean (90% CI)
Overall CDI-attributable cost	21,448 (21,744)
Overall CDI-related cost	42,316 (44,765)
Total cost per year (in Billions, 2015 US$)	Weighted Range
Total CDI-attributable cost per year	6.29 (7.01)
Mean	6.29 (7.01)
Upper boundary	6.19 (6.88)
Lower boundary	2.87 (4.25)
Total CDI-related cost per year	12.41 (14.44)
Mean	12.41 (14.44)
Upper boundary	12.25 (14.18)
Lower boundary	5.67 (8.75)

Abbreviations: HCF healthcare facility, CDI clostridium difficile infection, CI confidence intervals
of antimicrobials, use of contact precautions and protective personal equipment to care for infected patients, effective cleaning and disinfection of equipment and the environment, and early recognition of disease as primary prophylaxis [71]. As CDI is an infectious disease, the population at risk would benefit from an effective vaccine, which is currently under development [72, 73].

More cost of illness studies for recurrent CDI, or in LTCF, and indirect cost from a societal perspective are needed in the future. We would also recommend that published studies report their methods and include point estimates with uncertainty range. Further economic studies for CDI preventive interventions are needed.

Conclusion

This review indicates that CDI places a significant financial burden on the US healthcare system. In addition, our findings suggest that the economic burden of CDI is greater than previously reported in the US. This review provides strong evidence to aid policy-making on adequate resource allocation to CDI prevention and treatment in US.

Additional files

- **Additional file 1:** Appendices-cdiff cost review.docx; Addpendix 1–5; Appendix 1: Embase and Medline searches for each topic of interest (13th July 2015), Appendix 2: Inclusion and exclusion criteria, Appendix 3: Statistical methods used in selected studies and quality assessment Appendix 4: Total number of CDI cases in United States 2011, Appendix 5: Sensitivity analysis results (DOCX 101 kb)
- **Additional file 2:** Cdi Cost Review.xlsx; Cdi cost review; CDI cost review data extraction primary results (XLSX 529 kb)

Acknowledgements

We gratefully acknowledge the comments and suggestions from Guy De Bruyn, Clarisse Demont, Kinga Borsos (Sanofi Pasteur) during manuscript preparation. We thank Sanofi Pasteur for financial support for this work. The findings and conclusions in this report are those of the authors and do not necessarily represent the official views or policies of Sanofi Pasteur.

Funding

Sanofi Pasteur funded this study.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its Additional file 2.

Authors’ contributions

Study design (MK, HN, AC); data collection (SZ, SP, EB); data analysis (SZ, EB); data interpretation (SZ, EB, HN, AC, MK); development of initial draft manuscript (SZ, EB, HN, AC, MK); development of final draft manuscript (SZ, SP, EB, HN, AC, MK); study supervision (HN, MK). All authors reviewed and approved the final draft of manuscript.

Competing interests

SP, AC, MK are employees of Sanofi Pasteur.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Author details

1. Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
2. Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China.
3. Sanofi Pasteur, Lyon, France.
4. Sanofi Pasteur, Swiftwater, PA, USA.
5. Lesli Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.

Received: 25 April 2016 **Accepted:** 18 August 2016

Published online: 25 August 2016

References

1. Crobach M, Dekkers O, Wilcox M, Kuiper E. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile infection (CDI). Clin Microbiol Infect. 2009;15(12):1053–66.
2. Dubberke ER, Carling P, Carroco R, et al. Strategies to prevent clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(SUPPL):S26–45.
3. Mylonakis E, Ryan E, Calderwood S. Clostridium difficile-associated diarrhea: A review. Arch Intern Med. 2001;161(4):525–33.
4. Rubin M, Bodenstein L, Kent K. Severe Clostridium difficile colitis. Dis Colon Rectum. 1995;38(4):350–4.
5. Triadafilopoulos G, Hallstone AE. Acute abdomen as the first presentation of pseudomembranous colitis. Gastroenterology. 1991;101(3):685–91.
6. Sanchez T, Brooks J, Sullivan P, et al. Bacterial diarrhea in persons with HIV infection, United States, 1992–2002. Clin Infect Dis. 2005;41(11):1621–7.
7. Bilgrami S, Feingold J, Donsky D, et al. Incidence and outcome of Clostridium difficile infection following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1999;23(10):1039–42.
8. Barbut F, Carthier G, Charpax Y, et al. Prevalence and pathogenicity of Clostridium difficile in hospitalized patients. A French multicenter study. Arch Intern Med. 1996;156(13):1449–54.
9. Cohen S, Gerding D, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(11):431–55.
10. Pignard G. Risk factors for Clostridium difficile infection. J Hosp Infect. 1998;40(1):1–15.
11. Aseeri M, Schroeder T, Kramer J, Zackula R. Gastric acid suppression by proton pump inhibitors as a risk factor for clostridium difficile-associated diarrhea in hospitalised patients. Am J Gastroenterol. 2008;103(9):2308–13.
12. Bauer M, Nettermans D, van Bentheim B, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(975):63–73.
13. Dubberke ER, Wertheimer AL. Review of current literature on the economic burden of Clostridium difficile infection. Infect Control Hosp Epidemiol. 2009;30(1):57–66.
14. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55 Suppl 2:588–92.
15. Gabriel L, Beriot-Mathiot A. Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect. 2014;88(1):12–21.
16. Ghanotij SJ, Sail K, Laison DR, Dupont HL, Garey KW. Economic healthcare costs of Clostridium difficile infection: a systematic review. J Hosp Infect. 2010;74(4):309–18.
17. Zimlichman E, Henderson D, Tamir O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173(2):2039–46.
18. Johnson S. Recurrent Clostridium difficile infection: A review of risk factors, treatments, and outcomes. J Infect. 2009;58(6):403–10.
19. Mergenhagen KA, Wojciechowski AL, Paladino JA. A review of the economics of treating Clostridium difficile infection. Pharmacoeconomics. 2014;32(7):639–50.
20. Wiegand PN, Nathwani D, Wilcox MH, Stephans J, Shellbaya A, Haidar S. Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J Hosp Infect. 2012;81(1):1–14.
21. Bouza E. Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect. 2012;18 Suppl 6:5–12.
39. Jiang Y, Viner-Brown S, Baier R. Burden of hospital-onset Clostridium difficile infection in the United States. N Engl J Med. 2015;372(24):2369–70.

40. Kim SP, Shah ND, Karnes RJ, et al. The implications of hospital acquired adverse events on mortality, length of stay and costs for patients undergoing lower-extremity arthroplasty: rare infection with major impact. Clin Orthop Relat Res. 2013;471(10):3178–85.

41. Njoku KE, Bailey RB, Zimmer SA, et al. The economic burden of Clostridium difficile infection. Clin Microbiol Infect. 2012;18(8):282–9.

42. Lagu T, Stefan MS, Haessler S, et al. The impact of hospital-onset Clostridium difficile infection: a systematic review. Am J Gastroenterol. 2015;110(4):511–9.

43. Ali M, Ananthakrishnan AN, Ahmad S, Kumar N, Kumar G, Saein K. Clostridium difficile infection in hospitalized liver transplant patients: a nationwide analysis. Liver Transpl. 2012;18(8):972–8.

44. Egorova NN, Siracuse JJ, McKinsey JF, Nowygrod R. Trend, risk factors, and outcome of incident Clostridium difficile infections identified in the outpatient setting. Infect Control Hosp Epidemiol. 2014;35(11):1400.

45. Lesperance K, Causey MW, Spencer M, Steele SR. The morbidity of Clostridium difficile infection on outcomes of hospitalized patients with sepsis. J Hosp Med (Online). 2014;9(7):411–17.

46. Lessa FC, Winston LG, McDonald LC, Emerging Infections Program C. Burden of hospital-onset Clostridium difficile infection: a systematic review. Am J Gastroenterol. 2015;110(4):511–9.

47. Lawrence SJ, Puzniak LA, Shadel BN, Gillespie KN, Kollef MH, Mundy LM. Clostridium difficile in the intensive care unit: epidemiology, costs, and colonization pressure. Infect Control Hosp Epidemiol. 2007;28(2):123–30.

48. Lesperance K, Causey MW, Spencer M, Steele SR. The morbidity of Clostridium difficile infection after elective colonic resection-results from a national population database. Am J Surg. 2011;202(1):141–8.

49. Mcglone SM, Bailey RR, Zimmer SM, et al. The economic burden of Clostridium difficile infection in a multihospital cohort of academic health centers. Pharmacotherapy: J Hum Pharmacol Drug Ther. 2011;31(6):546–51.

50. Nylund CM, Goudie A, Garza JM, Fairbrother G, Cohen MB. Clostridium difficile infection in hospitalized children in the United States. Arch Pediatr Adolesc Med. 2011;165(5):451–7.

51. O’Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infections challenge of clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol. 2007;28(11):1219–27.

52. Pakyz A, Carroll NV, Harpe SE, Oronon M, Polk RE. Economic impact of Clostridium difficile infection in a tertiary center. Infect Control Hosp Epidemiol. 2011;32(1):49–54.

53. Pant C, Anderson MP, O’Connor JA, Marshall CM, Deshpande A, Sferia TJ. Association of Clostridium difficile infection with outcomes of hospitalized solid organ transplant recipients: results from the 2009 Nationwide Inpatient Sample database. Transpl Infect Dis. 2012;14(5):540–7.

54. Pant C, Deshpande A, Anderson MP, Sferia TJ. Clostridium difficile infection is associated with poor outcomes in end-stage renal disease. J Investig Med. 2012;60(2):529–32.

55. Pant C, Anderson MP, Deshpande A, et al. Health care burden of Clostridium difficile infection in hospitalized patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(5):1080–5.

56. Peery AF, Dollen ES, Lund J, et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterol. 2012;143(5):1179–87, e1–3.

57. Quimbo RA, Pali SR, Singer J, Strauss ME, Thomas SM. Burden of Clostridium difficile-associated diarrhea among hospitalized patients at high risk of recurrent infection. J Clin Outcomes Manag. 2013;20(2):544–50.

58. Reed UF, Edris BA, Eid S, Mottiris A. Clostridium difficile: the new epidemic. Int J Infect Dis. 2009;7(1):1–5.

59. Sammons JS, Locollo R, Xiao R, Coffin SE, Zoauits T. Clostridium difficile infection is associated with increased risk of death and prolonged hospitalization in children. Clin Infect Dis. 2013;57(1):11–8.

60. Singal AK, Salameh H, Kamath PS. Prevalence and in-hospital mortality trends of infections among patients with cirrhosis: a nationwide study of hospital discharges: frequency, mortality, and charges, 2002–2008. Public Health Rep. 2012;127(1):62–71.

61. Wang L, Stewart DB. Increasing hospital costs for Clostridium difficile colitis: type of hospital matters. Surgery. 2011;150(4):727–35.

62. Wilson MZ, Hollembek C, Stewart DB. Impact of Clostridium difficile colitis following closure of a diverting loop ileostomy: results of a matched cohort study. Colorectal Dis. 2013;15(8):974–81.

63. Tabak YP, Zilberberg MD, Johannes RS, Sun X, McDonald LC. Attributable burden of hospital-onset Clostridium difficile infection: a propensity score matching study. Infect Control Hosp Epidemiol. 2013;34(6):588–96.

64. Verlee KE, Finks JL, Wilkins MJ, Wells EV. Michigan Clostridium difficile hospital discharges: frequency, mortality, and charges, 2002–2008. Public Health Rep. 2012;127(1):62–71.

65. Wang L, Stewart DB. Increasing hospital costs for Clostridium difficile colitis: type of hospital matters. Surgery. 2011;150(4):727–35.
70. de Angelis G, Murthy AR, Beyersmann J, Harbarth S. Estimating the impact of healthcare-associated infections on length of stay and costs. Clin Microbiol Infect. 2010;16(12):1729–35.
71. Dubberke E, Carling P, Carrico R, et al. Strategies to Prevent Clostridium difficile Infections in Acute Care Hospitals: 2014 Update. Infect Control Hosp Epidemiol. 2014;35(6):628–45.
72. Bruyn Gd, Foglia G, Saleh J, Workman D, Pollak R, Gesser R. A phase II study of the safety and immunogenicity of different vaccination schedules of a candidate clostridium difficile toxoid vaccine: vaccination schedule selection for phase III. 24th Annual Meeting of the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), 2014; Barcelona, Spain; 2014.
73. Foglia G, Shah S, Luxemburger C, Pietrobon PJF. Clostridium difficile: Development of a novel candidate vaccine. Vaccine. 2012;30(29):4307–9.