Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

CMS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 4 December 2014 / Accepted: 27 March 2015 / Published online: 1 May 2015
© CERN for the benefit of the CMS collaboration 2015. This article is published with open access at Springerlink.com

Abstract This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb\(^{-1}\) collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant \(\alpha_S\) is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of \(\alpha_S(M_Z) = 0.1171 \pm 0.0013\) (exp) \(\pm 0.0073\) (theo).

1 Introduction

A key characteristic of highly energetic proton–proton collisions at the LHC is the abundant production of multijet events. At high transverse momenta \(p_T\), such events are described by quantum chromodynamics (QCD) in terms of parton–parton scattering. The simplest jet production process corresponds to a \(2 \rightarrow 2\) reaction with the two outgoing partons fragmenting into a pair of jets. Two cross sections, for which the leading-order (LO) predictions in perturbative QCD (pQCD) are proportional to the square of the strong coupling constant, \(\alpha_S^2\), are conventionally defined: the inclusive single-jet cross section as a function of jet \(p_T\) and rapidity \(y\), and the 2-jet production cross section as a function of the 2-jet invariant mass and a rapidity-related kinematic quantity that provides a separation of the phase space into exclusive bins. The ATLAS Collaboration usually characterizes the 2-jet system in terms of the rapidity separation of the two jets leading in \(p_T\), while CMS employs the larger of the two absolute rapidities of the two jets. Corresponding measurements by the ATLAS and CMS Collaborations can be found in Refs. [1–6].

In this paper, the inclusive 3-jet production differential cross section is measured as a function of the invariant mass \(m_3\) of the three jets leading in \(p_T\) and of their maximum rapidity \(y_{\max}\), which are defined as follows:

\[
\begin{align*}
 m_3^2 &= (p_1 + p_2 + p_3)^2, \\
 y_{\max} &= \text{sgn} \left(|\min(y_1, y_2, y_3)| - |\max(|y_1|, |y_2|, |y_3|) | \right),
\end{align*}
\]

where \(p_i\) and \(y_i\) are the four-momentum and rapidity of the \(i\)th jet leading in \(p_T\). Following Ref. [3], \(y_{\max}\) is defined as a signed quantity such that the double-differential cross section, \(d^2\sigma/dm_3 dy_{\max}\), can be written in a way similar to the inclusive jet cross section, \(d^2\sigma/dp_T dy\), including a factor of 2 for rapidity bin widths in terms of \(|y_{\max}|\) and \(|y|\), respectively. The absolute value of \(y_{\max}\) is equal to the maximum \(|y|\) of the jets, denoted \(|y|_{\max}\). A previous study of the 3-jet mass spectra was published by the D0 Collaboration [7]. Very recently, ATLAS submitted a 3-jet cross section measurement [8].

For this cross section, the LO process is proportional to \(\alpha_S^2\) and theoretical predictions are available up to next-to-leading order (NLO) [9, 10] making precise comparisons to data possible. The potential impact of this measurement on the parton distribution functions (PDFs) of the proton is studied and the strong coupling constant \(\alpha_S\) is extracted. In previous publications by CMS, the value of \(\alpha_S\) was determined to \(\alpha_S(M_Z) = 0.1148 \pm 0.0014\) (exp) \(\pm 0.0050\) (theo) by investigating the ratio of inclusive 3-jet to inclusive 2-jet production, \(R_{32}\) [11], and \(\alpha_S(M_Z) = 0.1185 \pm 0.0019\) (exp) \(\pm 0.0060\) (theo) by fitting the inclusive jet cross section [12]. The ratio \(R_{32}\) benefits from uncertainty cancellations, but it is only proportional to \(\alpha_S\) at LO, leading to a correspondingly high sensitivity to its experimental uncertainties in fits

*e-mail: cms-publication-committee-chair@cern.ch
of $\alpha_S(M_Z)$. The second observable, which is similar to the
denominator in R_{32}, is proportional to α_S^2 at LO with a sen-
sitivity to experimental uncertainties reduced by a factor of
1/2, but without uncertainty cancellations. It is interesting to
study how fits of α_S to the inclusive 3-jet mass cross section,
$\mathrm{d}^2\sigma/\mathrm{d}m_3 \mathrm{d}y_{\text{max}}$, which is a 3-jet observable similar to the
numerator of R_{32}, compare to previous results.

The data analyzed in the following were recorded by the
CMS detector at the LHC during the 2011 data-taking period
at a proton–proton centre-of-mass energy of 7 TeV and cor-
respond to an integrated luminosity of 5.0 fb$^{-1}$. Jets are clus-
tered by using the infrared- and collinear-safe anti-k_T algo-
ronym [13] as implemented in the FASTJET package [14] with
a jet size parameter of $R = 0.7$. A smaller jet size parameter
of $R = 0.5$ has been investigated, but was found to describe
the data less well. Similarly, in Ref. [15] it is shown that the
inclusive jet cross section is better described by NLO theory
for $R = 0.7$ than for $R = 0.5$.

Events are studied in which at least three jets are found up
to a rapidity of $|y| = 3$ that are above a minimal p_T threshold
of 100 GeV. The jet yields are corrected for detector effects
resulting in a final measurement phase space of $445 \text{ GeV} <
m_3 < 3270 \text{ GeV}$ and $|y|_{\text{max}} < 2$. Extension of the analysis
to larger values of $|y|_{\text{max}}$ was not feasible with the available
trigger paths.

This paper is divided into seven parts. Section 2 presents
an overview of the CMS detector and the event reconstruc-
tion. Sections 3 and 4 discuss the event selection and present
the measurement. Theoretical ingredients are introduced in
Sect. 5 and are applied in Sect. 6 to determine $\alpha_S(M_Z)$ from
a fit to the measured 3-jet production cross section. Conclu-
sions are presented in Sect. 7.

2 Apparatus and event reconstruction

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the superconducting solenoid volume
are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintil-
lator hadron calorimeter (HCAL), each composed of a bar-
rel and two endcap sections. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid. Extensive forward calorimetry com-
plements the coverage provided by the barrel and endcap
detectors.

The first level (L1) of the CMS trigger system, composed
of custom hardware processors, uses information from the
calorimeters and muon detectors to select the most interesting
events in a fixed time interval of less than 4 μs. The high level
trigger (HLT) processor farm further decreases the event rate
from around 100 kHz to around 400 Hz, before data storage.

The particle-flow algorithm reconstructs and identifies
each particle candidate with an optimized combination of all
subdetector information [16,17]. For each event, the recon-
structed particle candidates are clustered into hadronic jets
by using the anti-k_T algorithm with a jet size parameter of
$R = 0.7$. The jet momentum is determined as the vector-
ial sum of all constituent momenta in this jet, and is found
in the simulation to be within 5–10 % of the true momen-
tum over the whole p_T spectrum and detector acceptance.
An offset correction is applied to take into account the extra
energy clustered into jets due to additional proton–proton
interactions within the same or neighbouring bunch crossings
(pileup). Jet energy corrections are derived from the simula-
tion, and are confirmed with in situ measurements with the
energy balance of dijet, photon+jet, and Z+jet events [18,19].
The jet energy resolution amounts typically to 15 % at
10 GeV, 8 % at 100 GeV, and 4 % at 1 TeV. A more
detailed description of the CMS apparatus can be found in
Ref. [20].

3 Event selection

The data set used for this analysis contains all events that
were triggered by any of the single-jet triggers. A single-jet
trigger accepts events if at least one reconstructed jet sur-
passes a transverse momentum threshold. During the 2011
data-taking period, triggers with eight different thresholds
ranging from 60 to 370 GeV were employed. They are listed in
Table 1 with the number of events recorded by each trigger
and the corresponding turn-on threshold $p_T,99\%$, where the
trigger is more than 99 % efficient.

The different triggers are used to measure the 3-jet mass
spectrum in mutually exclusive regions of the phase space,
declared in terms of the p_T of the leading jet: the p_T inter-
val covered by a single-jet trigger starts at the corresponding
turn-on threshold $p_T,99\%$ and ends at the turn-on threshold
of the trigger with the next highest threshold. The final 3-
jet mass spectrum is obtained by summing the spectra mea-
sured with the different triggers while taking trigger prescale
factors into account. Apart from the prescaling, the trigger
efficiency is more than 99 % across the entire mass range
studied.

In the inner rapidity region, most single-jet triggers con-
tribute up to 50 % of the final event yield, with the exception
of the two triggers with the lowest and highest threshold,
which contribute up to 80 and 100 % respectively, depend-
ing on m_3. In particular, starting at 1100 GeV, the majority
of the events are taken from the highest unprescaled trigger.
In the outer rapidity region, each jet trigger contributes over
a large range of three-jet masses to the measurement. With
the exception of the two triggers with the lowest and highest

 Springer
Thresholds, each trigger contributes around 25% to the final event yield.

The recorded events are filtered with tracking-based selections [21] to remove interactions between the circulating proton bunches and residual gas particles or the beam collimators. To further reject beam backgrounds and off-centre parasitic bunch crossings, standard vertex selection cuts are applied [21]. To enhance the QCD event purity, events in which the missing transverse energy E_T^{miss} amounts to more than 30% of the measured total transverse energy are removed. The missing transverse energy is calculated by requiring momentum conservation for the reconstructed particle flow candidates [19].

Jet identification (jet ID) selection criteria [22] are developed to reject pure noise or noise enhanced jets, while keeping more than 99% of physical jets with transverse momentum above 10 GeV. In contrast to the previous selection criteria, which reject complete events, the jet ID removes only individual jets from the event. The jet ID applied to the particle-flow jets requires that each jet should contain at least two particles, one of which is a charged hadron. In addition, the jet energy fraction carried by neutral hadrons and photons must be less than 90%. These criteria have an efficiency greater than 99% for hadronic jets.

4 Measurement and experimental uncertainties

The double-differential 3-jet production cross section is measured as a function of the invariant 3-jet mass m_3 and the maximum rapidity y_{max} of the three jets with the highest transverse momenta in the event:

$$\frac{d^2\sigma}{dm_3 \ dy_{\text{max}}} = \frac{1}{\epsilon \mathcal{L} \Delta m_3 (2\Delta |y|_{\text{max}})} \frac{N}{\Delta m_3 \ (2\Delta |y|_{\text{max}})}.$$

(2)

Here, \mathcal{L} is the integrated luminosity and N is the number of events. The efficiency ϵ is the product of the trigger and event selection efficiencies, and differs from unity by less than one percent for this jet analysis. Differences in the efficiency with respect to unity are included in a systematic uncertainty. The width of a 3-jet mass bin is based on the 3-jet mass resolution, which is derived from a detector simulation. Starting at $m_3 = 50$ GeV, the bin width increases progressively with m_3. In addition, the phase space is split into an inner, $|y|_{\text{max}} < 1$, and an outer, $1 \leq |y|_{\text{max}} < 2$, rapidity region. The bin widths in y_{max} are equal to 2. Events with $|y|_{\text{max}} \geq 2$ are rejected.

To remove the impact of detector effects from limited acceptance and finite resolution, the measurement is corrected with the iterative d’Agostini unfolding algorithm [23] with four iterations. Response matrices for the unfolding algorithm are derived from detector simulation by using the two event generators PYTHIA version 6.4.22 [24] with tune Z2 [25] and HERWIG++ version 2.4.2 [26] with the default tune. (The PYTHIA 6 Z2 tune is identical to the Z1 tune described in [25] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.) Differences in the unfolding result are used to evaluate the uncertainties related to assumptions in modelling the parton showering [27,28], hadronization [29–32], and the underlying event [27,33,34] in these event generators. Additional uncertainties are determined from an ensemble of Monte Carlo (MC) experiments, where the data input and the response matrix are varied within the limits of their statistical precision before entering the unfolding algorithm. The unfolding result corresponds to the sample mean, while the statistical uncertainty, which is propagated through the unfolding procedure, is given by the sample covariance. The variation of the input data leads to the statistical uncertainty in the unfolded cross section, while the variation of the response matrix is an additional uncertainty inherent in the unfolding technique because of the limited size of simulated samples.

The systematic uncertainty related to the determination of the jet energy scale (JES) is evaluated via 16 independent sources as described in Ref. [3]. The modified prescription for the treatment of correlations as recommended in Ref. [12] is applied. To reduce artifacts caused by trigger turn-ons and prescale weights, the JES uncertainty is propagated to the cross section measurement by employing an ensemble of MC experiments, where the data input is varied within the limits of the systematic uncertainty and where average prescale weights are used.

The luminosity uncertainty, which is fully correlated across all m_3 and y_{max} bins, is estimated to be 2.2% [35].

Residual jet reconstruction and trigger inefficiencies are accounted for by an additional uncorrelated uncertainty of 1% as in Ref. [3].

Figure 1 presents an overview of the experimental uncertainties for the 3-jet mass measurement. Over a wide range of 3-jet masses, the JES uncertainty represents the largest contribution. At the edges of the investigated phase space, i.e. in the low and high 3-jet mass regions, statistical and unfold-
ing uncertainties, which are intrinsically linked through the unfolding procedure, become major contributors to the total uncertainty.

![Graph](image)

Fig. 1 Overview of the measurement uncertainties in the inner rapidity region $|y|_{\text{max}} < 1$ (top) and the outer rapidity region $1 \leq |y|_{\text{max}} < 2$ (bottom). All uncertainty components, including the 1% uncorrelated residual uncertainty, are added in quadrature to give the total uncertainty.

5 Theoretical predictions and uncertainties

The theoretical predictions for the 3-jet mass cross sections consist of an NLO QCD calculation and a nonperturbative (NP) correction to account for the underlying event modelled by multiparton interactions (MPI) and for hadronization effects. Electroweak corrections to inclusive and dijet cross sections have been calculated in Ref. [36], where they are found to be limited to a few percent at the highest dijet masses accessible with the CMS data at 7 TeV centre-of-mass energy. For 3-jet quantities these corrections are not known and hence cannot be considered in the present analysis.

The NLO calculations are performed by using the NLO-JET++ program version 4.1.3 [9,10] within the framework of the FASTNLO package version 2.1 [37]. The partonic events are subjected to the same jet algorithm and phase space selections as the data events, where at least three jets with $|y| \leq 3$ and $p_T > 100$ GeV are required. The number of massless quark flavours, N_f, is set to five. The impact of jet production via massive top-antitop quark pairs is estimated to be negligible. The renormalization and factorization scales, μ_r and μ_f, are identified with $m_3/2$. With this choice, which is identical to the jet p_T in case of dijet events at central rapidity with $m_2/2$ as scale, the NLO corrections to the LO cross sections remain limited between 1.2 and 1.6. The uncertainty in the predicted cross section associated with the renormalization and factorization scale choice is evaluated by varying μ_r and μ_f from the default by the following six combinations: $(\mu_r/(m_3/2), \mu_f/(m_3/2)) = (1/2, 1/2), (1/2, 1), (1, 1/2), (1, 2), (2, 1),$ and $(2, 2)$.

Comparisons to the NLO predictions are performed for five different PDF sets, each with NLO and NNLO PDF evolutions, from the LHAPDF package [38]. They are listed in Table 2 together with the corresponding number of active flavours, N_f, the default values of the strong coupling constant $\alpha_S(M_Z)$, and the ranges in $\alpha_S(M_Z)$ available for fits.

Table 2

Base set	Refs.	Evol.	N_f	M_1 (GeV)	M_2 (GeV)	$\alpha_S(M_Z)$	$\alpha_S(M_Z)$ range
ABM11	[39]	NLO	5	180	91.174	0.1180	0.110–0.130
ABM11	[39]	NNLO	5	180	91.174	0.1134	0.104–0.120
CT10	[40]	NLO	≤5	172	91.188	0.1180	0.112–0.127
CT10	[40]	NNLO	≤5	172	91.188	0.1180	0.110–0.130
HERAPDF1.5	[41]	NLO	≤5	180	91.187	0.1176	0.114–0.122
HERAPDF1.5	[41]	NNLO	≤5	180	91.187	0.1176	0.114–0.122
MSTW2008	[42,43]	NLO	≤5	10^{10}	91.1876	0.1202	0.110–0.130
MSTW2008	[42,43]	NNLO	≤5	10^{10}	91.1876	0.1171	0.107–0.127
NNPDF2.1	[44]	NLO	≤6	175	91.2	0.1190	0.114–0.124
NNPDF2.1	[44]	NNLO	≤6	175	91.2	0.1190	0.114–0.124

(Springer)
All PDF sets include a maximum of five active flavours N_f except for NNPDF2.1, which has $N_{f,\text{max}} = 6$. Only the ABM11 PDF set employs a fixed-flavour number scheme in contrast to variable-flavour number schemes favoured by all other PDF sets. The PDF uncertainties in the cross section predictions are evaluated according to the prescriptions recommended for the respective PDFs. More details are available in the references listed in Table 2.

For the NP corrections, the multijet-improved MC event generators SHERPA version 1.4.3 [45] and MADGRAPH 5 version 1.5.12 [46] are used to simulate 3-jet events. SHERPA employs a dipole formulation for parton showering [47,48], a cluster model for hadronization [49], and an MPI model for the underlying event that is based on independent hard processes similar to PYTHIA [33,45]. In the case of MADGRAPH, the steps of parton showering, hadronization, and multiple parton scatterings come from PYTHIA version 6.4.26 with default settings using the Lund string model for hadronization [29–31] and a multiple-interaction model for the underlying event that is interleaved with the parton shower [27]. The 3-jet mass is determined for a given event before and after the MPI and hadronization phases are performed. This allows the derivation of correction factors, which are applied to the theory prediction at NLO. The correction factor is defined as the mean of the corrections from the two examined event generators and ranges in value from 1.16 for the low mass range to about 1.05 at high 3-jet mass. The systematic uncertainty in the NP correction factors is estimated as plus or minus half of the spread between the two predictions and amounts to roughly ±2%. The NP correction factors and their uncertainties are shown in Fig. 2 for both rapidity bins.

An overview of the different theoretical uncertainties is given in Fig. 3.
6 Results and determination of the strong coupling constant

Figure 4 compares the measured 3-jet mass spectrum to the Theory prediction. This prediction is based on an NLO 3-jet calculation, which employs the CT10-NLO PDF set and is corrected for nonperturbative effects. Perturbative QCD describes the 3-jet mass cross section over five orders of magnitude for 3-jet masses up to 3 TeV. The ratios of the measured cross sections to the theory predictions are presented in Fig. 5 to better judge potential differences between data and theory. Within uncertainties, most PDF sets are able to describe the data. Some deviations are visible for small m_3. Significant deviations are exhibited when using the ABM11 PDFs, which therefore are not considered in our fits of $\alpha_S(M_Z)$.

In the following, the PDFs are considered to be an external input such that a value of $\alpha_S(M_Z)$ can be determined. Potential correlations between $\alpha_S(M_Z)$ and the PDFs are taken into account by using PDF sets that include variations in $\alpha_S(M_Z)$ as listed in Table 2. Figure 6 demonstrates for the example of the CT10-NLO PDF set the sensitivity of the theory predictions with respect to variations in the value of $\alpha_S(M_Z)$ in comparison to the data and their total uncertainty.

A value of $\alpha_S(M_Z)$ is determined by minimizing the χ^2 between the N measurements D_i and the theoretical predictions T_i. The χ^2 is defined as

$$\chi^2 = \sum_i \frac{(D_i - T_i)^2}{\Delta D_i^2 + \Delta T_i^2}$$
\[\chi^2 = \sum_{ij} (D_i - T_i) C_{ij}^{-1} (D_j - T_j), \] (3)

where the covariance matrix \(C_{ij} \) is composed of the following terms:

\[C = \text{cov}_{\text{unf/stat}} + \text{cov}_{\text{uncor}} + \sum_{\text{sources}} \text{cov}_{\text{JES}} + \text{cov}_{\text{lumi}} + \text{cov}_{\text{PDF}}, \] (4)

and the terms in the sum represent

1. \(\text{cov}_{\text{unf/stat}} \): statistical and unfolding uncertainty including correlations induced through the unfolding;
2. \(\text{cov}_{\text{uncor}} \): uncorrelated systematic uncertainty summing up small residual effects such as trigger and identification inefficiencies, time dependence of the jet \(p_T \) resolution, and the uncertainty on the trigger prescale factor;
3. \(\text{cov}_{\text{JES}} \): systematic uncertainty for each JES uncertainty source;
4. \(\text{cov}_{\text{lumi}} \): luminosity uncertainty; and
5. \(\text{cov}_{\text{PDF}} \): PDF uncertainties.

The first four sources constitute the experimental uncertainty. The JES and luminosity uncertainty are treated as fully correlated across the \(m_3 \) and \(|y|_{\text{max}} \) bins, where for the JES uncertainty the procedure recommended in Ref. [12] is applied. The derivation of PDF uncertainties follows prescriptions for each individual PDF set. The CT10 and MSTW PDF sets both employ the Hessian or eigenvector method [50] with upward and downward variations for each eigenvector. As required by the use of covariance matrices, symmetric PDF uncertainties are computed following Ref. [51]. For the HERAPDF1.5 PDF set, which employs a Hessian method for the experimental uncertainties, complemented with model and parameterization uncertainties, the prescription from Ref. [41] is used. The NNPDF2.1 PDF set uses the technique of MC pseudo-experiments instead of the eigenvector method to provide PDF uncertainties. The ensemble of replicas, whose averaged predictions give the central result, are evaluated following the prescription in Ref. [52] to derive the PDF uncertainty for NNPDF. The JES and luminosity uncertainties are assumed to be multiplicative to avoid the statistical bias that arises from uncertainty estimations taken from data [53–55]. The uncertainty in a result for \(\alpha_s(M_Z) \) from a \(\chi^2 \) fit is obtained from the \(\alpha_s(M_Z) \) values for which the \(\chi^2 \) is increased by one with respect to the minimum value.

The uncertainty in \(\alpha_s(M_Z) \) due to the NP uncertainties is evaluated by looking for maximal offsets from a default fit. The theoretical prediction \(T \) is varied by the NP uncertainty \(\Delta \text{NP} \) as \(T \cdot \text{NP} \rightarrow T \cdot (\text{NP} \pm \Delta \text{NP}) \). The fitting procedure is repeated for these two variations, and the deviation from the central \(\alpha_s(M_Z) \) values is considered as the uncertainty in \(\alpha_s(M_Z) \). Finally, the uncertainty due to the \(\mu_r \) and \(\mu_f \) scales is evaluated by applying the same method as for the NP corrections, varying \(\mu_r \) and \(\mu_f \) by the six scale factor combinations as described in Sect. 5.

The shape of the predicted 3-jet mass cross section depends on the QCD matrix elements and kinematic constraints. Because each of the leading three jets is required to have a \(p_T \) larger than 100 GeV, some event configurations, possible with respect to the QCD matrix elements, are kinematically forbidden at low \(m_3 \). In the spectra shown in Fig. 4, this fact is visible in the form of a maximum in the 3-jet mass cross section, which is shifted to higher \(m_3 \) values for the outer compared to the inner \(|y|_{\text{max}} \) bin because the larger differences in the jet rapidities allow higher \(m_3 \) to be reached.
Table 3 Determinations of \(\alpha_S(M_Z) \) in the considered \(m_3 \) ranges. The relevant scale in each 3-jet mass range is calculated from the cross section-weighted average as given by the theory prediction using the CT10 PDF set with NLO evolution. The three bottom rows present fits using the whole 3-jet mass range above 664 GeV in both rapidity regions either separately or combined (last row). Uncertainties are quoted separately for experimental sources, the PDFs, the NP corrections, and the scale uncertainty.

\(m_3 \) (GeV)	\(\langle Q \rangle \) (GeV)	\(\chi^2/\text{n}_{\text{dof}} \)	\(\alpha_S(M_Z) \)	\(\pm(\text{exp}) \)	\(\pm(\text{PDF}) \)	\(\pm(\text{NP}) \)	\(\pm(\text{scale}) \)		
664–794	361	4.5/3	0.1232	+0.0040	+0.0019	+0.0008	+0.0079		
794–938	429	7.8/3	0.1143	+0.0034	+0.0019	+0.0006	+0.0042		
938–1098	504	0.6/3	0.1171	+0.0033	-0.0004	±0.0022	±0.0007		
1098–1369	602	2.6/5	0.1152	±0.0026	±0.0027	±0.0008	±0.0027		
1369–2172	785	8.8/13	0.1168	+0.0018	±0.0027	±0.0007	±0.0068		
2172–2602	1164	3.6/5	0.1167	±0.0037	±0.0040	±0.0008	±0.0065		
2602–3270	1402	5.5/7	0.1120	±0.0043	±0.0056	±0.0008	±0.0088		
\(y	_{\text{max}} < 1 \)	413	10.3/22	0.1163	+0.0018	±0.0027	±0.0007	±0.0059
\(1 \leq	y	_{\text{max}} < 2 \)	441	10.6/22	0.1179	+0.0018	±0.0021	±0.0007	±0.0067
\(y	_{\text{max}} < 2 \)	438	47.2/45	0.1171	±0.0013	±0.0024	±0.0008	±0.0040

Table 4 Same as Table 3 but showing the fit result in terms of \(\alpha_S(Q) \) for each range in \(Q \).

\(m_3 \) (GeV)	\(\langle Q \rangle \) (GeV)	\(\chi^2/\text{n}_{\text{dof}} \)	\(\alpha_S(Q) \)	\(\pm(\text{exp}) \)	\(\pm(\text{PDF}) \)	\(\pm(\text{NP}) \)	\(\pm(\text{scale}) \)
664–794	361	4.5/3	0.1013	+0.0027	+0.0013	±0.0005	±0.0052
794–938	429	7.8/3	0.0933	±0.0022	±0.0012	±0.0005	±0.0048
938–1098	504	0.6/3	0.0934	±0.0021	±0.0014	±0.0005	±0.0028
1098–1369	602	2.6/5	0.0902	±0.0016	±0.0016	±0.0005	±0.0027
1369–2172	785	8.8/13	0.0885	+0.0010	±0.0017	±0.0004	±0.0017
2172–2602	1164	3.6/5	0.0848	+0.0029	+0.0040	±0.0004	±0.0038
2602–3270	1402	5.5/7	0.0807	+0.0022	+0.0028	±0.0004	±0.0044

with lower \(p_T \) jets. For fits of \(\alpha_S(M_Z) \) the \(m_3 \) region limited through kinematical constraints is unsuited, since close to the phase space boundaries fixed-order pQCD calculations might be insufficient and resummations might be required. To avoid this region of phase space as done in Ref. [11], only \(m_3 \) bins beyond the maximum of the 3-jet mass cross section in the outer \(|y|_{\text{max}} \) bin are considered. This corresponds to a minimum in \(m_3 \) of 664 GeV. Including one bin more or less induces changes in the measured \(\alpha_S(M_Z) \) below the percent level. To study the running of the strong coupling, the comparison between data and theory is also performed in several 3-jet mass regions above 664 GeV as shown in Table 3.

For the evolution of \(\alpha_S(Q) \) in the fits of \(\alpha_S(M_Z) \), the Glück–Reya–Vogt formula [56] is used at 2-loop order as implemented in FASTNLO. The capability of FASTNLO to replace the \(\alpha_S(Q) \) evolution of a PDF set by such alternative codes is exploited to interpolate cross section predictions between the available fixed points of \(\alpha_S(M_Z) \) listed in Table 2. Limited extrapolations beyond the lowest or highest values of \(\alpha_S(M_Z) \) provided in a PDF series are accepted if necessary for uncertainty evaluations, up to a limit of \(|\Delta \alpha_S(M_Z)| = 0.003 \). This extrapolation method can be necessary in some cases to fully evaluate the scale uncertainty. The procedure has been cross-checked using the original \(\alpha_S(Q) \) grid of each PDF within LHAPDF and with the evolution code of the HOPPET toolkit [57] and of RUNDEc [58, 59].

The CT10-NLO PDF set is chosen for the main result for two reasons: The range in available \(\alpha_S(M_Z) \) values is wide enough to evaluate almost all scale uncertainties within this range and the central value of \(\alpha_S(M_Z) \) in this set is rather close to the combined fit result.

The fit results for \(\alpha_S(M_Z) \) and \(\alpha_S(Q) \) for all considered \(m_3 \) ranges are presented in Tables 3 and 4, respectively. Fits over the total \(m_3 \) range above 664 GeV are shown for each \(y_{\text{max}} \) bin separately and for both combined in the bottom three rows of Table 3.

For comparison, the combined fit was also tried for alternative PDF sets listed in Table 5. For the ABM11 PDFs, which predict 3-jet mass cross sections that are too small, fits are technically possible. However, to compensate for this discrepancy, the \(\alpha_S(M_Z) \) results take unreasonably high values that are far outside the \(\alpha_S(M_Z) \) values that are given by the PDF authors. For the NNPDF2.1-NLO and HERAPDF1.5-
Table 5 Determinations of $\alpha_S(M_Z)$ with different PDF sets using all 3-jet mass points with $m_3 > 664$ GeV. Uncertainties are quoted separately for experimental sources, the PDFs, the NP corrections, and the scale uncertainty.

PDF set	χ^2_{min}	$\alpha_S(M_Z)$ (exp)	$\alpha_S(M_Z)$ (PDF)	$\alpha_S(M_Z)$ (NP)	$\alpha_S(M_Z)$ (scale)	
CT10-NLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066
CT10-NNLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066
MSTW2008-NLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066
MSTW2008-NNLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066
HERAPDF1.5-NLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066
NNPDF2.1-NNLO	52.8/45	0.1155	-0.0011	0.0002	0.0008	+0.0066

NLO PDF series, a central value for $\alpha_S(M_Z)$ can be calculated, but the range in $\alpha_S(M_Z)$ values is not sufficient for a reliable determination of uncertainty estimations. In all other cases the fit results for $\alpha_S(M_Z)$ are in agreement between the investigated PDF sets and PDF evolution orders within uncertainties.

Figure 7 shows the $\alpha_S(Q)$ evolution determined in this analysis from all measurement bins with $m_3 > 664$ GeV (solid curve with light grey uncertainty band; colour version: red curve with yellow uncertainty band) to the world average (dashed curve with dark grey uncertainty band) [60]. The error bars on the data points correspond to the total uncertainty. In addition, an overview of measurements of the running of the strong coupling $\alpha_S(Q)$ from electron–positron [65–67], electron–proton [69–72], and proton–(anti)proton collider experiments [11,61,62,68] is presented. The results of this analysis extend the covered range in values of the scale Q up to ≈ 1.4 TeV.

7 Summary

The proton–proton collision data collected by the CMS experiment in 2011 at a centre-of-mass energy of 7 TeV were used to measure the double-differential 3-jet production cross section as a function of the invariant mass m_3 of the three jets leading in p_T, and of their maximum rapidity $|y_{\text{max}}|$. The measurement covers a 3-jet mass range from 445 GeV up to 3270 GeV in two bins of rapidity up to $|y_{\text{max}}| = 2$. Within experimental and theoretical uncertainties, which are of comparable size, the data are in agreement with predictions of perturbative QCD at next-to-leading order.

The strong coupling constant has been determined in multiple regions of 3-jet mass for values of the scale Q between 0.4 and 1.4 TeV from a comparison between data and theory. The results are consistent with the evolution of the strong coupling as predicted by the renormalization group equation and extend the range in Q where this could be tested up to 1.4 TeV. A combined fit of all data points above a 3-jet mass of 664 GeV gives the value of the strong coupling constant $\alpha_S(M_Z) = 0.1171 \pm 0.0013$ (exp) ± 0.0024 (PDF) ± 0.0008 (NP) ± 0.0006 (scale).

This result, achieved with 3-jet production cross sections, is consistent with determinations previously reported by CMS using the inclusive jet cross section [12] and the ratio of inclusive 3-jet to inclusive 2-jet production cross sections [11]. It is also consistent with a recent determination of $\alpha_S(M_Z)$ by CMS at the top production threshold using theory at NNLO [68] and with the latest world average of $\alpha_S(M_Z) = 0.1185 \pm 0.0006$ [60].

Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de
References

1. ATLAS Collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. JHEP 05, 059 (2014). doi:10.1007/JHEP05.1401. arXiv:1312.3524

2. ATLAS Collaboration, Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV and comparison to the inclusive jet cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector. Eur. Phys. J. C73, 2509 (2013). doi:10.1140/epjc/s10052-013-2509-4. arXiv:1304.4739

3. CMS Collaboration, Measurements of differential jet cross sections in proton–proton collisions at $\sqrt{s} = 7$ TeV with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi:10.1103/PhysRevD.87.112002

4. CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Rev. Lett. 107, 132001 (2011). doi:10.1103/PhysRevLett.107.132001

5. CMS Collaboration, Measurement of the differential dijet production cross section in proton–proton collisions at $\sqrt{s} = 7$ TeV. Phys. Lett. B 700, 187 (2011). doi:10.1016/j.physletb.2011.05.027

6. ATLAS Collaboration, Measurement of inclusive jet and dijet cross sections in proton–proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur. Phys. J. C 71, 1512 (2011). doi:10.1140/epjc/s10052-011-1512-2. arXiv:1009.5908

7. D0 Collaboration, Measurement of three-jet differential cross sections $d^3\sigma/dM_{3jet}$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Phys. Lett. B 704, 434 (2011). doi:10.1016/j.physletb.2011.09.048. arXiv:1104.1986

8. ATLAS Collaboration, Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. Eur. Phys. J. C (2014, submitted). arXiv:1411.1855

9. Z. Nagy, Three-jet cross sections in hadron–hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315

10. Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron–hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268

11. CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at $\sqrt{s} = 7$ TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). doi:10.1140/epjc/s10052-013-2604-6

12. CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J. C (2014, Submitted). arXiv:1400.7695

13. M. Cacciari, G.P. Salam, G. Soyez, The anti-k_T jet clustering algorithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189

14. M. Cacciari, G.P. Salam, G. Soyez, Fastjet user manual. Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097

15. CMS Collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-k_T algorithm with radius parameters $R = 0.5$ and 0.7 in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Rev. D 90, 072006 (2014). doi:10.1103/PhysRevD.90.072006. arXiv:1406.0324

16. CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and E_T^{miss}. In: CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
60. Particle Data Group, K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

61. D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Phys. Rev. D 80, 111107 (2009). doi:10.1103/PhysRevD.80.111107. arXiv:0911.2710

62. D0 Collaboration, Measurement of angular correlations of jets at $\sqrt{s} = 1.96$ TeV and determination of the strong coupling at medium momentum transfers. Phys. Lett. B 718, 56 (2012). doi:10.1016/j.physletb.2012.10.003. arXiv:1207.4957

63. ZEUS Collaboration, Jet-radius dependence of inclusive-jet cross-sections in deep inelastic scattering at HERA. Phys. Lett. B 649, 12 (2007). doi:10.1016/j.physletb.2007.03.039. arXiv:hep-ex/0701039

64. H1 Collaboration, Deep inelastic inclusive ep scattering at low x and a determination of α_S. Eur. Phys. J. C 21, 33 (2001). doi:10.1007/s100520100720. arXiv:hep-ex/0012053

65. JADE Collaboration, Measurement of the strong coupling α_S from the four-jet rate in e^+e^- annihilation using JADE data. Eur. Phys. J. C 48, 3 (2006). doi:10.1140/epjc/s2006-02625-4. arXiv:0707.0392

66. DELPHI Collaboration, The measurement of α_S from event shapes with the DELPHI detector at the highest LEP energies. Eur. Phys. J. C 37, 1 (2004). doi:10.1140/epjc/s2004-01889-x. arXiv:hep-ex/0406011

67. S. Martí i García, Review of α_s measurements at LEP 2 (1997). arXiv:hep-ex/9704016

68. CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the tt production cross section in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Lett. B 728, 496 (2014). doi:10.1016/j.physletb.2013.12.009. arXiv:1307.1907

69. H1 Collaboration, Jet production in ep collisions at high Q^2 and determination of α_s. Eur. Phys. J. C 65, 363 (2010). doi:10.1140/epjc/s10052-009-1208-7. arXiv:0904.3870

70. H1 Collaboration, Jet production in ep collisions at low Q^2 and determination of α_s. Eur. Phys. J. C 67, 1 (2010). doi:10.1140/epjc/s10052-010-1282-x. arXiv:0911.5678

71. ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of α_S. Nucl. Phys. B 864, 1 (2012). doi:10.1016/j.nuclphysb.2012.06.006. arXiv:1205.6153

72. H1 Collaboration, Measurement of multijet production in EP collisions at high Q^2 and determination of the strong coupling α_s. Eur. Phys. J. C (2014). arXiv:1406.4709

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E. A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussels, Belgium

F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G. P. Van Onsem, I. Villetta

Université Libre de Bruxelles, Bruxelles, Belgium

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A. P. R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perníè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crusc, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A. A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Cerdal, G. G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Fonthomme, A. Giannamore, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaître, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J. M. Vizan García

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G. H. Hammad
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W. L. Aldá Júnior, G. A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Mora Herrera, M. E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato6, A. Custódio, E. M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nagima, W. L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E. J. Tonelli Manganote6, A. Vilela Pereira

Universidade Estadual Paulistaa, Universidade Federal do ABCb, São Paulo, Brazil
C. A. Bernardesb, S. Dograa, T. R. Fernandez Perez Tomeia, E. M. Gregoresb, P. G. Mercadanteb, S. F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, R. Du, C. H. Jiang, R. Plestina7, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, B. Gomez Moreno, J. C. Sanabria

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Puliak, I. Puljak

Faculty of Science, University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.8

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, A. Ellithi Kamel10, M. A. Mahmoud11, A. Radi12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M. J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy
S. Belfortea, V. Candelisea,\textb, M. Casarsaa, F. Cossuttia, G. Della Riccaa,\textb, B. Gobboa, C. La Licataa,\textb, M. Maronea,\textb, A. Schizzia,\textb, T. Umera,\textb, A. Zanettia

Kangwon National University, Chunchon, Korea
S. Chang, T. A. Kropivnitskaya, S. K. Nam

Kyungpook National University, Taegu, Korea
D. H. Kim, G. N. Kim, M. S. Kim, D. J. Kong, S. Lee, Y. D. Oh, H. Park, A. Sakharov, D. C. Son

Chonbuk National University, Chonju, Korea
T. J. Kim

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J. Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. S. Lee, S. K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J. H. Kim, I. C. Park, G. Ryu, M. S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y. K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J. R. Komaragiri, M. A. B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz29, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H. A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P. H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H. R. Hoorani, S. Khalid, W. A. Khan, T. Khurshid, M. A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluji, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak
M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G. I. Veres, N. Wardle, H. K. Wöhrli, H. Wollny, W. D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, M. A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dürrer, P. Eller, C. Grab, D. Hits, J. Hoss, W. Lustermann, M. Mangano, A. C. Marini, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, C. Nägeli, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H. A. Weber

Universität Zürich, Zurich, Switzerland

C. Amsler, M. F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F. J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan

M. Cardaci, K. H. Chen, C. Ferro, C. M. Kuo, W. Lin, Y. J. Lu, R. Volpe, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y. H. Chang, Y. W. Chang, Y. Chao, K. F. Chen, P. H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K. Y. Kao, Y. J. Lei, Y. F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y. M. Tzeng, R. Wilken

Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

A. Adiguzel, M. N. Bakirci, S. Cerici, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E. E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerici, B. Tall, H. Topakli, M. Vergili

Physics Department, Middle East Technical University, Ankara, Turkey

I. V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar, K. Ocalan, S. Sekmen, U. E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Istanbul Technical University, Istanbul, Turkey

K. Cankocak, F. I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk, P. Sorokin

University of Bristol, Bristol, UK

J. J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G. P. Heath, H. F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D. M. Newbold, S. Paramesvaran, A. Poll, S. Senkin, V. J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, UK

K. W. Bell, A. Belyaev, C. Brew, R. M. Brown, D. J. A. Cockeirll, J. A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, W. J. Womersley, S. D. Worm

Imperial College, London, UK

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, N. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D. M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee, S. C. Zenz
Brunel University, Uxbridge, UK
J. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I. D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S. I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P. T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mullhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J. W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O. R. Long, A. Luthra, M. Malberti, H. Nguyen, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J. G. Branson, G. B. Cerati, S. Cittolin, R. T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H. B. Newman, C. Penberth, P. Rogan, M. Spiropulu, V. Timciuc, J. R. Vilimant, R. Wilkinson, S. Xie, R. Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J. P. Cumalat, W. T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J. G. Smith, K. Stenson, K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J. R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W. D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, G. Bolla, K. Burkett, J. N. Butler, H. W. K. Cheung, F. Chlebana, S. Cihangir, V. D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R. M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J. M. Marraffino, V. I. Martinez Outschoorn, S. Maruyama, D. Mason, Springer
University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D. R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G. R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverton, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. M. Morse, D. Nash, T. Orimoto, D. Trocino, R. J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K. A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K. M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D. J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L. S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T. Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B. L. Winer, H. Wolfe, H. W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, P. Hebda, A. Hunt, S. A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland2, C. Tully, J. S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J. E. Ramirez Vargas

Purdue University, West Lafayette, USA
V. E. Barnes, D. Benedetti, D. Bortoletto, M. De Mattia, L. Gutay, Z. Hu, M. K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, D. H. Miller, N. Neumeister, B. C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H. D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K. M. Ecklund, F. J. M. Geurts, W. Li, B. Michlin, B. P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J. P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali56, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon57, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov
Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P. R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S. W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A. G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M. W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P. E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichehane, J. Sturdy

University of Wisconsin, Madison, USA
D. A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G. A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W. H. Smith, D. Taylor, P. Verwilligen, C. Vuosalo, N. Woods

† Deceased

1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Sultan Qaboos University, Muscat, Oman
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Ilia State University, Tbilisi, Georgia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Ruhuna, Matara, Sri Lanka
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Sharif University of Technology, Tehran, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS)-IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at California Institute of Technology, Pasadena, USA
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Rome, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Anadolu University, Eskisehir, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Necmettin Erbakan University, Konya, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Marmara University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Rutherford Appleton Laboratory, Didcot, UK
50: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
51: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
52: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
53: Also at Argonne National Laboratory, Argonne, USA
54: Also at Erzincan University, Erzincan, Turkey
55: Also at Yildiz Technical University, Istanbul, Turkey
56: Also at Texas A&M University at Qatar, Doha, Qatar
57: Also at Kyungpook National University, Daegu, Korea