The Radioisotope Strengths of the Mineral Deposits in Lands of the West Timor Island-Indonesia

Bartholomeus Pasangka1*, Kirbani Sri Brotopuspito2, and Abdul Wahid1

1Department of Physics Faculty of Sciences and Engineering Nusa Cendana University, Kupang 85001, INDONESIA; 2Department of Physics/Geophysics Faculty of Mathematical and Natural Sciences, Gadjah Mada University, Yogyakarta, INDONESIA

ABSTRACT

The objective of this work was to investigate the radioisotope distribution and centered accumulation in mineral deposits in lands of West Timor Island. The procedures consisted of observation and identification of the potential regions and planning the plot gridding; calibration of necessary equipment, measurement of counting background around the survey location and the nuclear radiation in the survey location, planning the plotting of three-dimensional curves and contours. Based on geology information (drilling data), the three depth levels (about 20 m, 40 m and 60 m) were determined. Radiation powers were calculated to estimate the accumulation centers of the radioisotopes in mineral deposits. Thereafter, the contour and three-dimensional curves of radiation powers and the radioisotopes were plotted. Based on three-dimensional curves and contour mapping of the radioisotopes, the radiation counts and radiation powers of those three land depth levels were found at a width area of 3.00 x 104 m2 and 1.56 x 104 m2, respectively. The interval of radiation counts of radioisotopes in the mineral deposit were 10 to 137 counts per min. In conclusion: the strengths of the radioisotope decays of the mineral deposits from the land areas of the West Timor Island of Indonesia are in range of 14,400 to 197,280 counts per day.

Keywords: Measurement, radioisotope, mineral, deposits
*Corresponding author: bpasangka15@gmail.com, Tel./fax: (0380) 881597/881557, HP: (+62)82237044338

1. Introduction

The decay of the radioisotope or radioactivity was an incident caused by the changing process in the unstable atomic nucleus with processing goes on spontaneous. The nucleus stabilization of an atomic was established by a combination of proton and neutron number. The stable light elements have ratio N/Z equal to 1.00, while the stable heavy elements have N/Z until 1.50 (1.0<N/Z≤1.5). On the changing process, N/Z is change accompanied with alpha and beta emission and followed with gamma emission. The emission event of radiation accompanied with electron capture was called radioactive decay (Krane, 1988). The spontaneous change of elements can directly produce the stable daughter (single decay) and can also on a series process like as series of Uranium and Thorium decay (series decay). Both the radioactive decays process fulfills the continual equation:

\[N = N_0 e^{-\lambda t} \]
\[N_n = C_1 e^{-\lambda_1 t} + C_2 e^{-\lambda_2 t} + \ldots + C_n e^{-\lambda_n t}, \]

Where: \(C_1 = \frac{\lambda_1 N_0}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\ldots)(\lambda_n - \lambda_1)}\), \(C_2 = \frac{\lambda_1 \lambda_2 \ldots \lambda_n - 1 N_0}{(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)(\ldots)(\lambda_n - \lambda_2)}\), etc.

\(N\) was the number of atomic elements after the decay during \(t\) time, \(N_0\) was the number of initial atomic elements, \(t\) was the length of decay time (in second), \(\lambda\) was decay constant.

The layer composition of the earth’s crust consists of the earth’s outer crust, cover, and mantle which can be characterized of solid, liquid, and gas. The solid material was called rocks in the composition of minerals. Based on it’s formed, the rocks consist of igneous, sedimentary, and metamorphic rocks. The composition of rocks on the earth surfaces generally was dominated by sedimentary rocks that approximately 66% on the surface, intrusion rocks 8%, intrusion rocks 9%, and metamorphic rocks 17% (Munir, 1996). The rocks composition was created simultaneously by the natural radioisotopes at the time of the earth and universe forming. The primordial radionuclides that have been present simultaneously with forming of the earth and
rocks, generally, consist of Potassium-40 and a row of nuclides as a product of radionuclide decay occurred in natural like as series of Uranium (4n+2), Thorium (4n), and Actinium (4n+3). The others primordial radionuclides were found in natural included Rb-87, La-136, Lu-176, Ln-115, Re-187, and C-14 (Munir, 1996). Burnett (1986) give an expression that the abundance of radioisotopes such as Potassium, Thorium, and Uranium can be found in the several kinds of rocks i.e. as meteorites. Terrestrial that consist of Olivine Hornblende, Plagioclase (Granite), and Basalt. Furthermore, Langford (1987) proposes the accumulation of the Uranium, and many other radioisotope elements were existed within several rock minerals as Pegmatites, Carnotite, Tazin Gneiss. The research result from Hanson et al. (1987) give the report that the anomaly of radioisotope element deposit was accumulated at the alluvial area which is rich of Granite, Carnotite, Tyuyamunite, Asphaltic Sandstones, Moccasin Creek Gypsum, Carbonate, and generally in sedimentary rocks. Accumulation anomaly of radioisotope deposit within the rock’s mineral physically was influenced by the several factors include depth, the permeability of rocks, rainfall, flow dynamic, and association with non-radioisotope rocks (Huang, 1988). These factors are unique for the Timor Island.

The position of Timor Island is approximately located on 8°-11° south latitude and 123°-126° east longitude in East Nusa Tenggara Indonesia. The region of Timor Island is rich with any kinds of mining mineral like the natural gas, petroleum, geothermal, iron, coal, and tin/lead (A group minerals), aluminum, gold, silver, nickel, copper, manganese, and radioisotope (B group minerals), limestone, sulfur, barite, gypsum, marble, granite, and dolomite (C group minerals). Our pre-survey gave a result that radiation counts and specific activities of radioisotope in deposit mineral in West Timor-subdistrict of middle Kupang respectively were 32 to 138 counts per min and 1.4 x 10^5 μCi - 6.20 x10^4 μCi (Pasangka, 2003). Radioisotope content in mineral deposit at these regions was estimated to occur since Timor Island formed. The forming of Timor Island resulted of uplift caused by a collision between Banda Arc and Continental Australian Shelf on the processing of tectonic (Hamilton, 1981).

Numerous authors suggest that rocks association and structure in the Timor Island were originally uplift a part of Continental Australian Shelf deformation, and others masses enclosed up to cover of all rocks in Timor Island (Audley-Charles et al. 1972; Gageonnet et al. 1958; Grunau 1953, 1957; Hamilton, 1981). From this case can be proposed that radioisotope in mineral deposit in Timor Island was directly involved with earth material that came from continental Australian Shelf. The accumulation of radioisotope in rocks mineral caused by several migrations processes like as migration of radioisotope during formation of the earth’s zonation, migration during tectonic activity (migration during orogeny, migration via volcanic activity), migration via taphrogeny, and migration via hydrothermal solutions.

Radioisotope was an energy source on Electric Generator of Nuclear Power. Currently is considering that energy source from petroleum will more decrease on future time. The nuclear power planning has been begun on 1997 which will be developed in Indonesia located at Jepara Middle Java. Therefore, this report has a meaningful function in line with the Government planning. The research was to investigate the accumulation center and distribution of radioisotope in mineral deposits. The specific problems inspected were distribution of radioisotope in mineral deposit in the land of west Timor Island, estimates the accumulation center of radioisotope in mineral deposits, and counts the range of nuclear radiation at the center region of the radioisotope. The research procedure was conducted by mapping the distribution of radioisotope in the mineral deposit, estimating area of accumulation center of radioisotope in the mineral deposits, and establishes a range of nuclear radiation at the center region of radioisotope in mineral deposits.

There were two steps on radiometric survey i.e observation step and field survey step. Observation was to identify the regions that potentially contain the radioisotope and state the area where the most potential area as the survey location (Bell and Dlouhy, 1994, ElBaradei and Na, 2004, ElBaradei et al., 2006). Fields survey was started on local area appropriate to survey location which has been chosen and then expanded for regional mapping. Local survey was proposed to accurately identify distribution anomaly of radioisotope in mineral deposit. The region area for the local survey was only several kilometers square (Johnson, 1984., Bell and Dlouhy, 1994). Radiometric survey on local state was done on foot with using Geiger-Muller portable detector. Radiation counts in units counter per min. This equipment detects total counts (alpha, beta, and gamma radiation) from radioisotope sources. Gamma radiation was an electromagnetic wave in order that it was easy to be measured. Radioisotope radiation was detected at 100 feet distance (approximately 30 meters) above source surface with using airborne survey (Johnson, 1984). Measurement of radiation count can be done based on measure point on each line (grid) which had been planned to obtain the best mapping on survey location. Actually, measurement of radiation counted on the radiometric survey was done randomly according to the author (Johnson, 1984). The radiometric local survey was expanded for regional mapping and continuously expanded for more areas of the region. Target reconstruction of rock mineral was predicted based on the profile of content anomaly of radioisotope in the mineral deposit, in generally appropriate with magnetic anomaly profile of rock (Telford et al., 1976., Aiken et al., 1981). For dry region and relatively homogeneous rock structure, content anomaly profile of radioisotope in the
mineral deposit, in generally, appropriate with temperature anomaly profile produced by the decay of radioisotope. If radioisotope Uranium contained in the mineral deposit with a composition of U$_2$O$_6$, standard classification characteristics for ore deposit quality (ore grade deposit) were low if < 0.15% U$_2$O$_6$, middle: 0.15% up to 0.50% U$_2$O$_6$, and high if > 0.50% U$_2$O$_6$ (Dahlkamp, 1989).

Based on those facts and reports, the hypothesis of the research was composition and distribution of radioisotopes in the mineral deposits, contents of radioisotope in accumulated center of the rock minerals and the range of radiations counted were higher than prospect standard.

2. Materials and Procedures

2.1. Materials

Radioisotope distributed in mineral deposits. The main instruments (Laboratory of nuclear Physics Faculty of Sciences and Technology Nusa Cendana University) used in this research consist of Portable Geiger Muller Counter, GPS, Computer with surfer 11 and MATLAB software, and others add equipment.

2.2. Experimental procedures

The methods were used in the research comprises of observation/ surveying, mapping, analysis, and interpretation. Detail procedures of research as follow: 1) prepare and calibrate Geiger-Muller counter with using Cs-137 standard on energy 662 keV. The Geiger Muller Counter was calibrated on count was 1050 counts per min, 2) observe for determining measurement points and measurement lines (gridding), 3) measure background counts around field survey to correct of field data, 4) measure count of radioisotope in mineral deposit, 5) contour and three-dimensional curves of radioisotope content in mineral deposit plot, 6) plot profile curve based on contour slice for geometry modeling to calculate radiation power, 7) calculate radiation power of radio-isotope content in mineral deposit with using MATLAB program and matrix formula, 8) plot contour and three-dimensional curves of radiation power, 9) interpret and conclusion. Distribution and accumulation of radioisotope in the mineral deposit was estimated with plotting profile curve and contour of modeling. The target modeling of radioisotope content was cleared with to paint a profile of contour slice on several directions. Target modeling was done with earlier or previous to estimate the depth of radioisotope content based on geology information. The average depth of radioisotope content in mineral deposit estimated 20 m (previously geology information). Furthermore, to calculate radiation power (P keV/s) used MATLAB program and taken three layers of mineral deposit with depth respectively 20 m, 40 m, and 60 m. The construction of ore deposit anomaly of radioisotope was estimated with using the principal that nuclear radiation of radioisotope source emitted to all directions. Furthermore, the construction form consists of a small ball. Accumulation of radioisotope in the mineral deposit was shown by the unions of all small balls. For calculating of radiation power of radioisotope in the mineral deposit was began with plotting profile curve from contour slice of radiation counts.

The depth of ore deposit of radioisotope can be determined by using the equation:

$$d = F\left(\frac{X}{Z}\right)$$... (3)

Where: d is the depth of ore deposit, $X_{1/2}$ is the half value of x maximum anomaly profile of ore deposit, F are geometry factors. $F = 1.990$ for ball, and $F = 1.000$ for infinite (Telford, 1986). Radiation power calculated with using several geometry mathematic models (Fig. 1 for one dimension, Fig. 3 for three dimensions):

$$P = I_o (4\pi r_o^2 e^{\mu r_o})$$... (4)

$$P = I_n (4\pi r_n^2 e^{\mu r_n}) = I_n [4\pi (r_o^2 + x_n^2)] e^{\mu r_n}$$ (5)

Where: $r = \sqrt{r_o^2 + x_1^2}$ and $r_n = \sqrt{r_o^2 + x_n^2}$.

If a region with topography was not flat, topography correction use geometry model on Fig. 2.

$$P = I_s (4\pi r^2 e^{\mu r})$$... (6)

where: $d = r = r_o + d_1$, d_1 and i_n is measured with altimeter, $r_n = r_o + r_d$.

$$P = I_s (4\pi r_o^2 e^{\mu r_o}) \rightarrow (r_o + r_t) = \left[\delta_o + x_0^2 + (r_o + a_n)^2\right]$$

$$P = I_n [4\pi (x_n + x_p)^2 + (r_o + d_n)^2] e^{\mu r_n}$$... (7)

$$P = I_o (4\pi r_o^2 e^{\mu r_o})$$... (8)

$$P = I_s (4\pi r_o^2 e^{\mu r_o}) = 4\pi I_s (r_o^2 + x_n^2) e^{\mu r_o}$$... (9)

$$P = I_d (4\pi r_do^2 e^{\mu r_do}) = 4\pi I_d (r_o^2 + y_o^2) e^{\mu r_do}$$... (10)
\[P = I_{dn}(4\pi r_{dn}^2 e^{\mu r_{dn}}) = 4\pi I_{dn}(r_o^2 + D_n^2) e^{\mu r_o} = 4\pi I_{dn}[r_o^2 + (y_n^2 + x_n^2)] e^{\mu r_o} \] \hspace{1cm} (11)

Where: \(r_{dn} = r_o^2 + y_n^2 \), \(r_n = r_o^2 + x_n^2 \), \(D_n^2 = y_n^2 + x_n^2 \), \(r_{dn} = r_o^2 + D_n^2 \), \(r_n = d^2 + x_n^2 \).

For determining of radiation power decided several points (for example 10 points) on the profile of field data with certain counts. \(P \) was calculated by using matrix MATLAB program. \(P \) can be calculated by matrix formula:

\[
\begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_n
\end{bmatrix} =
\begin{bmatrix}
G_{11} & G_{21} & \cdots & G_{m1} \\
G_{12} & G_{22} & \cdots & G_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
G_{1n} & G_{2n} & \cdots & G_{mn}
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
\vdots \\
C_n
\end{bmatrix}
\hspace{1cm} (12)
\]

Where: \(G \) was a variable defined by:

\[
G = \frac{1}{4\pi r_{mn}^2 e^{\mu r_{mn}}} \hspace{1cm} (13)
\]

Where: \(\mu \) is absorption coefficient of matter or medium. In this case was taken the average of the absorption coefficient of the medium was 0.5 (approach).

3. Results and Discussion

3.1. Measurement result

The radiation power calculated using geometry mathematic models according to Eq. 4 and 5 reported continually at Fig. 1 and Fig. 3 (Fig. 1 for one dimension, while Fig. 3 for the three dimensions).

Table 1 shows measurement results of nuclear radiation counts of radioisotope in mineral deposit at sub-district of middle Kupang West Timor Island, which appropriated with a total area of survey location. Radiation counts of radioisotope in mineral deposit ranged between 10 counts per minute up to 137 counts per minute. There was 43 (18.86%) data of radiation counts was lower than standard counts (33 cpm) and 185 (81.14%) data of radiation counts was larger than standard counts.

3.2. Curves and profile plotting

Based on data in Table 1, contour and three-dimensional curves of radiation counts were plotted like as shown in Fig. 5 and Fig. 6. Fig. 7 show profile curve of radiation counts of radioisotope in mineral deposit with plotting from AB and CD contour slices on Fig. 5. High radiation counts were distributed to north direction of survey location dominated by sedimentary rocks (alluvial) and the low radiation counts were distributed to south direction of survey location dominated by sandstone and metamorphic rocks. This case appropriates with the theory of composition of radioisotope in rocks mineral.
3.3. Determination of radiation intensities

From the profile, the curve was determined radiation intensities which appropriated with radiation counts of radioisotope in mineral deposit and included in Table 2. Based on geology data (previously research of drilling), the composition of radioisotope in deposit mineral was located on depth 20 meters from land surface.

3.4. Calculation and plotting of contour and three dimension curves of radiation power

Table 3 shows calculation results of radiation power for 60 points according to equation (12) on three layers (20 m, 40 m, and 60 m) and use MATLAB program. For estimating of accumulation center of radioisotope in mineral deposit has been plotted contour and three-dimensional curves of radiation power and shown in Fig. 8.

Table 1. Measurement results of radiation counts in the region of radioisotope source at Sub-district of Middle Kupang West Timor Island

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
L1	55	47	27	42	41	47	44	62	60	61	59	47	56	61	41	40	68	49	41
L2	37	38	39	30	56	44	53	55	61	56	69	63	40	47	60	71	49	63	55
L3	26	33	15	21	34	59	42	93	74	68	69	81	95	81	114	98	78	107	98
L4	23	35	16	27	48	42	25	29	35	49	48	46	59	71	52	66	45	49	
L5	26	19	53	42	41	53	51	47	65	48	41	42	38	61	67	63	57	67	45
L6	28	36	47	39	18	21	33	48	23	32	45	47	51	48	52	59	64	66	61
Passanga et al. /J Applied Chem. Sci. 4 (2017) 330-337

Continue Table

No		cpm																						
L1		41	22	53	48	47	58	37	56	47	35	37	36	41	19	34	21	15	17	19	19	21	23	28
L2		67	42	75	55	47	63	77	39	33	26	19	29	25	18	32	26	33	23	28	28	32	33	23
L3		77	89	79	109	117	137	105	58	45	48	46	37	37	43	39	26	26	34	39	26	37	43	39
L4		82	55	68	52	53	46	43	45	33	38	32	34	41	38	28	29	25	17	21	17	21	25	17
L5		41	44	36	49	55	47	42	55	48	37	37	17	24	17	28	15	24	17	28	15	24	17	28
L6		63	47	50	69	57	48	43	65	39	40	55	31	42	47	10	13	19	15	21	15	21	19	15

Where: (L1, L2, L3, ……L6 were measurement lines, cpm was count per minute)

Table 2. Radiation intensities (C keV/m²s) were determined from the profile curves which appropriated with radiation counts of radioisotope in mineral deposit on three layers (20 m, 40 m, 60 m)

C	1	2	3	4
1	37	77	46	107
2	55	99	43	94
3	69	83	78	98
4	27	41	148	49
5	69	58	99	48

C	1	2	3	4
1	158	105	84	171
2	55	109	65	182
3	218	115	123	165
4	167	81	189	85
5	112	63	213	56

Table 3. Calculation results of radiation power (P keV/s) for 60 points according to equation (10) on three layers and MATLAB program

P	1	2	3	4
1	0.52	0.52	0.72	1.15
2	0.31	0.54	0.58	1.48
3	0.31	0.28	2.23	1.07
4	0.26	0.87	0.84	0.78
5	1.33	0.46	1.58	0.57

P	1	2	3	4
1	0.88	0.83	0.94	1.67
2	0.67	0.86	0.87	2.34
3	0.68	0.51	2.56	1.23
4	0.29	1.14	0.96	0.93
5	2.24	0.76	2.36	0.94

Continue
and Fig. 9. Distribution and accumulation center of radioisotope content in the mineral deposit was estimated from this profile curve and contour of radiation power. The measured data of the radiations counted in the region of radioisotope source are stated in Table 1.

The measurement results of radiation counts in the region of radioisotope source at Sub district of Middle Kupang West Timor Island radioisotope in mineral deposit was estimated 4.5×10^6 m2 (1,500 m x 3,000 m) and accumulation center of radioisotope content in mineral deposit estimated to be distributed on area 6×10^3 m2 (200 m x 300 m) with depth range 20 m up to 60 m which detected. Accumulation of radioisotope in mineral deposit initially follows of basic rocks layer dominated by Tersier sediment rocks from Permian to Jurassic which forms of Timor Island. The new accumulation of radioisotope in the mineral deposit was formed by tectonic processing that causes faulting, folding, and dynamic motion of rocks. The content of radioisotope detected in the mineral deposit was very small, if it observed on the surface, except there was a large accumulation on the layer in more depth. The prospecting of radioisotope content in mineral deposit for exploration was necessary espoused by others data like as drilling data, gamma logging, magnetic, and seismic data which can give information on layer thickness, the depth of rocks mineralization, and the total form of content accumulation of rocks mineralization.

4. Conclusion

The distribution of radioisotope content in mineral deposit based on contour map, three-dimensional curves of field data of radiation counts, and contour map, three-dimensional curves of radiation power of radioisotope
estimated on area $4.5 \times 10^6 \text{ m}^2$ (1,500 m x 3,000 m) and accumulation center of radioisotope content in mineral deposit estimated $6 \times 10^4 \text{ m}^2$ (200 m x 300 m) with depth range 20 m - 60 m. The range of radiation counted in the center region of radioisotope content in mineral deposit 10 to 137 counts per min.

Acknowledgements
This research was supported and funded by Department of Mining East Nusa Tenggara Indonesia. Special thanks to all colleagues in English Training Centre who have helped to authors in technical writing of this manuscript.

References
Aiken CLV, Garvey DL, and Goodel PC. 1981. Radioactive and Magnetic Surveys can be Used to Map a Source of Uranium Deposit, AAPG El Paso, Texas.
Audley-Charles MG, Carter DJ, and Milson JS. 1972. Techtonics Development of Eastern Indonesia in Relation to Gondwanalnd Dispersal. Nature Phys. Sc., v. 239.
Bell M and Diouhy Z. 1994. International Basic Safety Standards (IBSS) for Protection Against Ionising Radiation, Safety Series No. 115-I, IAEA Vienne Austria.
Burnett DS, Lippolt J, and Wasserburg GI. 1986. The Radioisotope Survey in Terrestrial and Meteoritic Samples, Journal of Geophysical Research, vol. 71, No.4.
Dahlkamp FJ. 1989. Classification Scheme for Uranium Ore Deposit. IAEA TEC-542/3, Vienna Austria.
ElBaredei M and Na SH. 2004. Occupational Radiation Protection in the Mining and Processing of Raw Materials. ILO and IAEA Safety Standard Series, Vienna Austria.
ElBaredei M, Batandjieva B, Metcalf P. 2006. Geological Disposal of Radioactive Waste. IAEA Safety Standards Vienna Austria.
Gageonnet, Robert, Lemoine, and Marcel. 1958. Contribution a la Connaissance de la Geologie de la Province Portugaise de Timor: [Portugal] Junta Inv. Ultramar Estudos 48.
Grunau HR. 1953. Geologie von Portu-giesisch Osttimor: Eclogae Geol. Helvetiae, P. 46, No 1: 30 – 37.
Grunau HR. 1957. Neue Daten Zur Geo-logie von Portugiesisch Ost-timor: Eclogae Geol. Helvetiae v. 50.
Hamilton W. 1981. Techtonics of Indonesia Region. second printing, Washington D.C 20402.
Hanson RE, Richard TM, and Al-Shaieb Z. 1987. Uranium Potential of Permian and Pennsylvania Sandstones, the American Association of Petroleum Geologists Bulletin, vol. 61. No.3.
Huang WH. 1988. Geochemical and Sedimentologic Problems of Uranium Deposits, the American Association of Petroleum Geologists Bulletin, vol. 62. No.6.
Johnson DH. 1984. Nuclear Geology, A Symposium on Nuclear Phenomena in the Earth Science. John Wiley & Sons Inc., New Yok.
Krane KS. 1988. Introductory Nuclear Physics, John Wiley & Sons, Inc.
Langford FF. 1987. Surficial Origin of North American Pitchblende and Related Uranium Deposits, the American Association of Petroleum Geologists Bulletin, vol. 61. No.1.
Munir HM. 1996. Geology and Soil Mineralogy, Jaya Library, Jakarta.
Pasangka B. 2003. Characterization of Natural Radioisotope with Geothermal and Radiometric Survey Methods at Oesena Village, Kupang NTT, Research and Development Bulletin, Indonesia Australia Eastern Universities Project Alumni Forum, vol. 4 No. 1 Juli 2003, ISSN 1412-3703.
Telford WM, Geldart LP, Sheriff RE, Keis DA. 1976. Applied Geophysics, Cambridge University Press, New York.

Conflict of interest: Non declare