Molecular characterization of plasmid-mediated quinolone resistance (PMQR) and ESBLs-producing Klebsiella pneumonia isolated from an Iranian teaching hospital

Hamid Talebzadeh
Isfahan University of Medical Sciences

Hamid Mellali
Isfahan University of Medical Sciences

hamid solgi (✉ hamid.solgi@gmail.com)
Isfahan University of Medical Sciences

Research

Keywords: K. pneumoniae, ESBL, PMQR and MLST

DOI: https://doi.org/10.21203/rs.3.rs-197852/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The spread of plasmid-mediated multidrug resistance in *Klebsiella pneumonia* is a serious threat to the public health. We investigated the clinical characteristics and molecular epidemiology of *K. pneumoniae* isolated at a teaching hospital in Iran.

Methods

A total of 50 third-generation cephalosporins resistant *K. pneumoniae* strains were collected from patients’ clinical cultures. Antibiotic susceptibility testing and determination of MIC values for ceftazidime, cefotaxime and ciprofloxacin were performed. PCR and DNA sequencing were used to assess the presence of ESBL genes (*bla*_{CTX-M}, *bla*_{TEM}, *bla*_{SHV}) and PMQR genes (*qnrA, qnrB, qnrS, qepA, oqxA, oqxB and aac(6)-lb-cr*). Multilocus sequence typing (MLST) was performed on the strains to assess homology.

Results

Our results showed that the rates of resistance to all of antibiotics is high. All 50 *K. pneumoniae* strains harboured at least one of the ESBL resistance determinants. The *bla*_{CTX-M-15} gene was the major ESBLs determinant found in *K. pneumoniae* (88%; 44/50). PMQR was detected in 96% of the isolates and *aac(6′)-lb-cr* was the most common (78% 39/50) followed by *oqx A* 36 (72%), *oqxB 34 (68%), qnrS 20 (40%), *qnrB 14 (28%) and *qepA 1 (2%)*. MLST identified seven sequence types (STs), with the most common being ST11 (19/39). There was a strong association between PMQR genes (especially *aac(6′)-lb-cr*) and ESBL genes.

Conclusion

The widespread detection of ESBLs-producing *K. pneumoniae* that co-carried PMQR determinants has become a threat to the treatment of infections in Isfahan Province of center Iran. Our findings suggest that *K. pneumoniae* ST11 and ST893 has a clonal distribution in our hospital. Therefore, this study highlighted the crucial need for implementing strict control measures to prevent cross transmission of these endemic clones.

Introduction

Klebsiella pneumoniae is a common pathogen causing nosocomial and community-acquired infections that is responsible for various infections such as pneumonia, septicemia, liver abscess, meningitis, urinary tract infections, and bacteremia, whose mortality rates are high [1]. Most of such infections are caused by multidrug-resistant (MDR) strains that interrupt the treatment processes. MDR *K. pneumoniae* acquires various resistance mechanisms that confer antibiotic resistance to commonly used antibiotics [2]. One of the important resistance mechanisms of *Enterobacterales*, including *K. pneumoniae*, is the production of extended-spectrum beta-lactamases (ESBLs), and plasmid-mediated quinolone resistance (PMQR) genes that have been detected in clinical isolates. ESBLs are plasmid-mediated enzymes that hydrolyze oxyimino-β-lactam agents such penicillins, cephalosporins, and monobactams [3, 4]. ESBL genes are classified in several types including *bla*_{CTX-M}, *bla*_{SHV}, and *bla*_{TEM}-CTX-M-15-type ESBL-producing strains have especially increased in recent years [5–7]. Presence of PMQR determinants
including \(qnr \) genes, \(aac \text{ (6')}\text{-Ib-cr} \), and efflux pumps genes \(qepA, qepA2 \), and \(oqxAB \) confer reduced susceptibility to fluoroquinolones and facilitate selection of fluoroquinolone resistance in \(K. pneumoniae \) [4, 8].

In the last years, studies show that an increase in the prevalence of hospital-acquired ESBL- \(K. pneumoniae \) infections in our area [7, 9, 10]. Most of these clinical isolates harbored \(bla_{CTX-M-15} \) gene. Previous reports have identified an association between ESBL-encoding genes and genes encoding PMQR, as they can sometimes be found on the same plasmids or mobile genetic elements [3, 11]. The aim of this study was to investigate the presence of PMQR in ESBL-producing \(K. pneumoniae \) isolated from an Iranian teaching hospital. The secondary aim was to determine the genetic relatedness between these isolates by molecular typing.

Materials And Methods

Identification of strains

The 50 independently isolates of third-generation cephalosporins resistant \(K. pneumoniae \) were collected from a local general hospital. This hospital has more than 220 beds and includes a medical education center in Isfahan, Iran. The isolates were identified by use of API 20E (bioMe’rieux, Marcy-l’E’toile, France) and 5 biochemical tests which include Triple Sugar Iron test, Mannitol motility test, Simmons citrate agar test, Indole test, Urease test.

Antimicrobial susceptibility testing and determination of MIC values

The antimicrobial susceptibility testing for different antibiotic agents, cefotaxime (30 \(\mu g \)), ceftazidime (30 \(\mu g \)), ceftriaxon (30 \(\mu g \)), cefepime (30 \(\mu g \)), ciprofloxacin (5 \(\mu g \)), levofloxacin (5 \(\mu g \)), amikacin (30 \(\mu g \)), gentamicin (10 \(\mu g \)) (BD Diagnostics, Franklin Lakes, NJ, USA) was done by the Kirby-Bauer standard disk diffusion method. The MIC values (mg/L) of ceftazidime, cefotaxime and ciprofloxacin were determined using Etest strips (AB Biodisk, Solna, Sweden). All the values were interpreted according to CLSI guideline [12]. The reference strain \(E. coli \) ATCC 25922 was used as a control.

Molecular detection of ESBL and PMQR genes

Genomic DNA was extracted using the DNA genomic extraction kit (Thermo scientific, Lithuania). All isolates were screened for the presence of the of ESBL genes including \(bla_{CTX-M}, bla_{TEM}, bla_{SHV} \) and PMQR genes including \(qnrA, qnrB, qnrS, qepA, oqxA, oqxB and aac(6)-Ib-cr \), by PCR and DNA sequencing [13-15].

Multilocus Sequence Typing (MLST)

Genetic relatedness of the isolates was investigated by multilocus sequence typing. MLST was conducted according to previously published methods using primers of seven housekeeping genes listed in the PubMLST website (https://bigsdb.pasteur.fr/klebsiella/klebsiella.html). Alleles and sequence types were assigned by using the MLST database.

Results

Clinical characteristics of \(K. pneumoniae \) isolates

A total of 50 non-reduplicate \(K. pneumoniae \) were collected from September 1st, 2019 to February 30th, 2020. Analyzing of 50 \(K. pneumonia \) isolates showed a prevalence of 27 (54%) and 23 (46%) for males and females, respectively. The mean age of participants was 52 years. Most of the strains (n = 23) were detected from tracheal
samples followed by urine (n=14), wound (n=5), CSF (n=3), blood (n=2), access (n=1), sputum (n=1), catheter (n=1) samples (Tables 1).

Antimicrobial susceptibility testing

All experimental strains were classified as MDR (Tables 1 and 2). All strains were resistant to cefotaxim, ceftazidim and ceftriaxone. Resistance was 98% for cefepim, 88% for gentamicin and 50% for amikacin. The resistance rates to fluoroquinolones were 88% and 78% for ciprofloxacin and *levofloxacin*, respectively. The range of MIC for ciprofloxacin was 0.064 mg/L to > 32 mg/L. Whereas, MIC against ceftazidime and cefotaxime in all isolates was > 32 mg/L.

Detection of drug-resistant genes

The ESBL genes were analyzed in the 50 *K. pneumonia* isolates as listed in Table 1. All of isolates harbored at least one of the ESBL genes tested in the present study. Out of the 50 strains encoding ESBL genes, 88% (44/50) carried *bla*$_{CTX-M-15}$, 78% (39/50) *bla*$_{TEM}$ and 86% (43/50) *bla*$_{SHV}$ genes. Overall 96% (48/50) isolates were confirmed to carry at least one of the PMQRs. The most common PMQR gene was *aac*(6$'$)-Ib-cr (39 (78%) followed by *oqxA* 36 (72%), *oqxB* 34 (68%), *qnrS* 20 (40%), *qnrB* 14 (28%) and *qepA* 1 (2%). None of the isolates carried *qnrA* gene (Table 2).

Molecular characteristics of *K. pneumonia* isolates

In our study, MLST analysis was performed for 39 isolates. Seven sequence types (STs) were identified among the 39 isolates, with nineteen (48.7%) isolates of ST11, thirteen (33.3%) isolates of ST893, two (5.1%) isolates of ST147, two (5.1%) isolates of ST16 and one (2.5%) isolate each of ST377, ST13, and ST392.

Discussion

Our study demonstrated that quinolone agents were not effective against ESBL-producing *K. pneumoniae* isolated inpatients in Iran. ESBL-producing *K. pneumoniae* showed high resistant rates not only to cephalosporins but also ciprofloxacin (88%) and *levofloxacin* (78%). Amikacin was indicated to be effective for about 50% of the strains in our study. In Indonesia and China, ESBL-positive *K. pneumoniae* strains were > 90% and > 70% susceptible to amikacin, respectively [16, 17]. We also found that, among the resistant strains *bla*$_{CTX-M-15}$ were the predominant ESBL gene. Therefore, we demonstrated that *bla*$_{CTX-M-15}$, which is a widespread public health problem around the world, was the most common ESBL gene in ESBL-producing *K. pneumoniae* in Iran. The finding is in agreement with recent studies in Iran and other parts of the world [11, 17, 18]. In accordance to other studies [7, 11], our results also showed that the prevalence rates of *bla*$_{TEM}$ and *bla*$_{SHV}$ genes were high.

In the present study, a significant number of isolates (96%) carried at least one of the PMQR genes. The *aac*(6$'$)-Ib-cr gene was the most prevalent PMQR gene, in agreement with other studies[9, 19, 20]. It is suggested that *aac*(6$'$)-Ib-cr has epidemiologically strong associations with CTX-M-15 [21]. Among the *qnr* genes, *qnrS* 20 (40%) was the most predominant, followed by *qnrB* 14 (28%), the occurrence of *qnr* alleles with *aac*(6$'$)-Ib-cr gene was in accordance with previous studies [9, 20]. Analysis of the data also revealed that the prevalence of *oqxA* was highest (72%) followed by *oqxB* (68%). Frequencies of *oqxA* and *B* genes found in this study are higher than those reported by Azargun in Tabriz, Iran in 2018 which were 33.7 for *oqxA* and 20.6% for *oqxB* [9]. Previous studies have found that the prevalence of PMQR genes is more common in ESBL-producing *K. pneumoniae* [4, 9, 20]. We found that PMQR genes (*aac*(6$'$)-Ib-cr, *qnrS*, *qnrB*) were also be detected in strains containing ESBL determinants. Among the isolates
containing ESBL genes, 96% were producers of PMQR. It is to be noted that ESBLs are highly prevalent in the study isolates and could have contributed to the spread of PMQRs.

In the present study MLST was used for homology analysis. ST11 international high-risk clone, the most prevalent sequence type in this collection, has been described in outbreaks of ESBL-producing K. pneumoniae in some countries such as Iran, China, Sweden and detected in a OXA-48-producing isolates from Iran and Spain [2, 11, 22, 23]. In our study, ST11 co-carried multiple resistance determinants such as blaCTX-M-15, blaTEM, blaSHV and PMQR genes including qnrB, qnrS, oqxA, oqxB and aac(6)-lb-cr, that correlates well with earlier reports as the dominant global ESBLs are the CTX-M type beta-lactamases in K. pneumoniae [2, 22]. The presence of quinolone resistance genes aac(6)lb-cr and qnrB was recently reported in ST11 K. pneumoniae strains from Colombia [24]. The second most common endemic sequence type K. pneumoniae in our study was ST893 which co-harbored both ESBLs and PMQR genes. In recent years, the emergence of ST893 have been reported from several Iranian hospitals [11, 25] which are strongly associated with the carriage of blaNDM, blaOXA-48 and ESBLs genes. Our results suggest that, ST893 is most likely endemic in Iran. ST11 and ST893 were mainly concentrated in the ICU ward, which suggests these strains may have originated in this ward and then spread to other wards in our hospital. These results suggest more attention is required in the ICU ward to avoid dissemination outbreaks of infection.

The two K. pneumoniae isolates in our study belonged to ST16 which is one of the two isolates were positive for blaCTX-M-15, blaSHV, blaTEM, aac(6)lb-cr and qnrS genes, whereas other isolates carried blaCTX-M-15, blaSHV and blaTEM. ST16 has been reported worldwide, showing multiple resistance determinant profiles. ST16 has been identified as a carbapenemase producer in many parts of the world and reported as an ESBL producer in Iran, Denmark and Sweden [6, 11].

Another detected ST, ST147 which is an internationally successful clone, has been reported from different parts of Iran [11, 26]. In our study, ST147 (2 isolates) has been associated with blaCTX-M-15, blaSHV, blaTEM, aac(6)lb-cr and oqxB. ST147 has been described in India, Greece, and Italy [27] and has been associated with blaVIM, blaNDM-1, blaCTX-M-15, aac(6)lb-cr with qnrB and armA in that country.

One isolate belonging to ST13 co-carried multiple antibiotic resistance genes such as blaCTX-M-15, blaSHV, blaTEM and aac(6)lb-cr. ST13 is a SLV of ST327, that has been reported to harbour blaNDM-1, blaCTX-M-15 and blaSHV in Iran [28]. The ST392, identified in this study in one patient, ST392 was sporadically observed in different countries related to NDM-1, OXA-48 and ESBLs in Iran[10] and to aac(6)lb-cr, oqxAB, blSHV, blacTX-M-15, blatEM-1 in Tunisia [29]. Finally, one SHV-producing K. pneumoniae in our study belonged to ST377 and were positive for qnrS, aac(6)lb-cr, oqxA and qepA genes. Previously, K. pneumoniae ST377 strain carrying blaoXA-48 and ESBLs was described in Russia and Iran [11, 30]. The complexity and diversity of ESBLs and PMQR combinations detected among K. pneumoniae isolates especially successful international clones ST11 and endemic clone ST893 in this study and their potential for spread poses a real threat to the management of infections by this species in Iran.

In conclusion, this study showed high prevalence of fluoroquinolone-resistance genes in ESBL-producing K. pneumonia strains. Clonal dissemination of ESBLs carrying K. pneumonia that co-harbour PMQR determinants have been observed. We identified the epidemiologically significant international and endemic STs of K. pneumoniae ST11, ST147 and ST893. Therefore, on the one hand, there is an urgent need for epidemiological and molecular studies to understand the dynamics of antibiotic resistance transmission and on the other hand, careful programs need to be implemented to prevent the spread of these strains in healthcare facilities.
Abbreviations

MDR: Multidrug-resistant; ESBLs: Extended-spectrum beta-lactamases; PMQR: Plasmid-mediated quinolone resistance; MLST: Multilocus sequence typing; STs: Sequence types.

Declarations

Acknowledgements

None.

Authors’ contributions

HS and HT designed the study and drafted the manuscript. HS performed the experimental work and analyzed the data. All authors read and approved the final manuscript.

Funding

This work was funded by research grants from the Isfahan University of Medical Sciences (project no. 50485).

Availability of data and materials

All data generated or analyzed during this study are included in this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

References

1. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019; 46:1-22.

2. Brañas P, Villa J, Viedma E, Mingorance J, Orellana MA, Chaves F. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital in Madrid: successful establishment of an OXA-48 ST11 clone. Int J Antimicrob Agents. 2015;46:111-116.

3. Nematzadeh S, Shahcheraghi F, Iversen A, Giske CG. Successful international clones of blaCTX-M-15-producing Klebsiella pneumoniae with coexpression of plasmid-mediated quinolone resistance (PMQR) determinants in Tehran hospitals. Diag Microbiol Infect Dis. 2015;83:371-374.

4. Vaziri S, Afsharian M, Mansouri F, Azizi M, Nouri F, Madadi-Goli N, et al. Frequency of qnr and aac(6′)Ib-cr Genes Among ESBL-Producing Klebsiella pneumoniae Strains Isolated from Burn Patients in Kermanshah, Iran. Jundishapur J Microbiol. 2020;13:100348.

5. Aghamohammad S, Badmasti B, Solgi H, Aminzadeh Z, Khodabandelo Z, Shahcheraghi F. First Report of Extended-Spectrum Betalactamase-Producing Klebsiella pneumoniae Among Fecal Carriage in Iran: High Diversity of Clonal Relatedness and Virulence Factor Profiles. Microb Drug Resist. 2018;26:1-9
6. Espinal P, Nucleo E, Caltagirone M, Mattioni Marchetti V, Fernandes MR, Biscaro V, et al. Genomics of *Klebsiella pneumoniae* ST16 producing NDM-1, CTX-M-15, and OXA-232. Clinic Microbiol Infect. 2019;25:385.e381e385.

7. Moghadampour M, Rezaei A, Jamshid. F. The emergence of *bla*OXA-48 and *bla*NDM among ESBL-producing *Klebsiella pneumoniae* in clinical isolates of a tertiary hospital in Iran. Acta Microbiologica et Immunologica Hungarica. 2018;65:335-344.

8. Higashino M, Murata M, Morinaga Y, Akamatsu N, Matsuda J, Takeda K, et al. Fluoroquinolone resistance in extended-spectrum b-lactamase-producing *Klebsiella pneumoniae* in a Japanese tertiary hospital: silent shifting to CTX-M-15-producing *K. pneumoniae*. J Med Microbiol. 2017;66:1476-1482.

9. Azargun R, Sadeghi MR, Hossein M, Barhaghi S, Samadi Kafil H, et al. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect Drug Resist. 2018;11:1007-1014.

10. Solgi H, Shahcheraghi F, Bolourchi N, Ahmadi A. Molecular characterization of carbapenem-resistant serotype K1 hypervirulent *Klebsiella pneumoniae* ST11 harbouring *bla*NDM-1 and *bla*OXA-48 carbapenemases in Iran. Microb Pathog. 2020;149:104507.

11. Solgi H, Nematzadeh S, Giske CG, Badmasti F, Westerlund F, Lin YL, Goyal G, Nikbin VS, et al. Molecular Epidemiology of OXA-48 and NDM-1 Producing Enterobacterales Species at a University Hospital in Tehran, Iran, Between 2015 and 2016. Front Microbiol. 2020;11:1-13.

12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Clinical Laboratory Standard Institute. 2018; M100-S28.

13. Yang H, Duan G, Zhu J, Zhang W, Xi Y, Fan Q. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among *Shigella* isolates from Henan, China, between 2001 and 2008. Int J Antimicrob Agents. 2013;42:173-177.

14. Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, et al. Prevalence of *qnr*, *aac(6′)-Ib-cr*, *qepA*, and *oqxAB* in *Escherichia coli* isolates from humans, animals, and the environment. Antimicrob Agents Chemother. 2012;56:3423-3427.

15. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Nasiri S, Owlia P, Nikbin VS, et al. First report of New Delhi metallo-b-lactamase-1-producing *Klebsiella pneumoniae* in Iran. Microb Drug Resist. 2013;19:30-36.

16. Zhang H, Yang Q, Liao K, Ni Y, Yu Y, Hu B, et al. Update of incidence and antimicrobial susceptibility trends of *Escherichia coli* and *Klebsiella pneumoniae* isolates from Chinese intra-abdominal infection patients. BMC Infect Dis. 2017;17:776.

17. Yamasaki S, Shigemura K, Osawa K, Kitagawa K, Ishii A, Kuntaman K, et al. Genetic analysis of ESBL-producing *Klebsiella pneumoniae* isolated from UTI patients in Indonesia. J Infect Chemother. 2021;27:55-61.

18. Hansen DS, Schumacher H, Hansen F, Stegger M, Hertz FB, Schønning K, et al. Extended-spectrum beta-lactamase (ESBL) in Danish clinical isolates of *Escherichia coli* and *Klebsiella pneumoniae* prevalence, beta-lactamase distribution, phylogroups, and co-resistance. Scand J Infect Dis. 2012;44:174-181.

19. Yang HY, Nam YS, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible *Escherichia coli* and *Klebsiella pneumoniae* isolated from blood cultures in Korea. 25 Can J Infect Dis Med Microbiol. 2014;25:163-169.

20. Zeng L, Zhang J, Li C, Fu Y, Zhao Y, Wang Y, et al. The determination of *gyrA* and *parC* mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant *Klebsiella pneumoniae* ST11 and ST76 strains isolated from patients in Heilongjiang Province, Chin. Infect Genet Evol. 2020;82:104219.
21. Park KS, Kim MH, Park TS, Nam YS, Lee HJ, Shu JT. Prevalence of the plasmid-mediated quinolone resistance genes, \textit{aac(6')-Ib-cr}, \textit{qepA}, and \textit{qoxAB} in clinical isolates of extended-spectrum \textit{b-lactamase} (ESBL)-producing \textit{Escherichia coli} and \textit{Klebsiella pneumoniae} in Korea. Ann Clin Lab Sci. 2012;42:191-197.

22. Liu J, Du SX, Zhang JN, Liu SH, Zhou YY. Spreading of extended-spectrum \textit{b-lactamase}-producing \textit{Escherichia coli} ST131 and \textit{Klebsiella pneumoniae} ST11 in patients with pneumonia: a molecular epidemiological study. Chinese Medical Journal. 2019;1-9.

23. Marcade G, Brisse S, Bialek S, Marcon E, Leflon-Guibout V, Passet VV, et al. The emergence of multidrug resistant \textit{Klebsiella pneumoniae} of international clones ST13, ST16, ST35, ST48 and ST101 in a teaching hospital in the Paris region. Epidemiol Infect. 2013;141:1705-1712.

24. Garcia-Fulgueirasa V, Zapata Y, Papa-Ezdraa R, Ávilaa P, Caiataa L, Seijac V, et al. First characterization of \textit{K. pneumoniae} ST11 clinical isolates harboring \textit{bla}_{KPC-3} in Latin America. Revista Argentina de Microbiología. 2020;52:211-216.

25. Solgi H, Badmasti F, Giske CG, Aghamohammad S, Shahcheraghi F. Molecular epidemiology of NDM-1- and OXA-48-producing \textit{Klebsiella pneumoniae} in an Iranian hospital: clonal dissemination of ST11 and ST893. J Antimicrob Chemother. 2018;73:1517-1524.

26. Pajand O, Darabi N, Arab M, Ghorbani R, Bameri Z, Ebrahimi A, et al. The emergence of the hypervirulent \textit{Klebsiella pneumoniae} (hvKp) strains among circulating clonal complex 147 (CC147) harbouring \textit{bla} NDM/OXA-48 carbapenemases in a tertiary care center of Iran. Ann Clin Microbiol Antimicrob. 2020;19:1-9.

27. Lascols C, Peirano G, Hackel M, Laupland KB, Pitout JDD. Surveillance and Molecular Epidemiology of \textit{Klebsiella pneumoniae} Isolates That Produce Carbapenemases: First Report of OXA-48-Like Enzymes in North America. Antimicrob Agents Chemother. 2013;57:130-136.

28. Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadvand S, et al. Identification of Carbapenem-Resistant \textit{Klebsiella pneumoniae} with Emphasis on New Delhi Metallo-\textit{b-lactamase}-1 (\textit{bla}_{NDM-1}) in Bandar Abbas, South of Iran. Microb Drug Resist. 2018;24:447-454.

29. Jaidane N, Bonnin RA, Mansour W, Girlich D, Creton E, Cotellon G, et al. Genomic Insights into Colistin-Resistant \textit{Klebsiella pneumoniae} from a Tunisian Teaching Hospital. Antimicrob Agents Chemother. 2018;62:e01601-01617.

30. Fursova NK, Astashkin EI, Gabrielyan NI, Novikova TS, Fedyukina GN, Kubanova MK, et al. Emergence of Five Genetic Lines ST395NDM-1, ST13OXA-48, ST3346OXA-48, ST39CTX-M-14, and Novel ST3551OXA-48 of Multidrug-Resistant Clinical \textit{Klebsiella pneumoniae} in Russia. Microb Drug Resist. 2020;26:1-10.

Tables

Table 1: Clinical characteristics, drug resistance genes and antimicrobial susceptibility testing (other than quinolones) of 50 \textit{K. pneumoniae} isolates.
Number	No	Isolation site(s)	Resistance genes	Ward	Antimicrobial susceptibility testing					
					CTX	CAZ	CRO	FEP	GM	AM
1	S15	Urine	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	Emergency	R	R	R	R	R	R
2	S16	Urine	$bla_{\text{CTX-M-15}}$	ICU	R	R	R	R	R	S
3	S19	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	S
4	S20	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	R
5	S22	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	Internal	R	R	R	R	R	R
6	S25	Tracheal	$bla_{\text{CTX-M-15}}$	Surgery	R	R	R	R	R	R
7	S32	Urine	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}$	ICU	R	R	R	R	R	S
8	S33	CSF	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	S	S	
9	S35	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	S
10	S36	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	S
11	S38	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	Infectious	R	R	R	R	R	S
12	S39	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	
13	S42	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	
14	S43	Urine	$bla_{\text{CTX-M-15}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	
15	S54	Catheter	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	
16	S55	Tracheal	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	Surgery	R	R	R	R	R	
17	S56	Access	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	ICU	R	R	R	R	R	
18	S58	Wound	$bla_{\text{CTX-M-15}}, bla_{\text{TEM}}, bla_{\text{SHV}}$	Emergency	R	R	R	R	R	
19	S61	Urine	bla_{TEM}	Internal	R	R	R	R	R	

Page 9/13
20	S68	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
21	S69	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
22	S70	CSF	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
23	S72	Urine	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
24	S73	Wound	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
25	S74	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	S	S
26	S75	Blood	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	R
27	S79	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	R
28	S80	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	R
29	S81	Tracheal	**bla**$_{\text{CTX-M-15}}$	ICU	R	R	R	R	R	S
30	S83	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	S	R	S	S
31	S84	Urine	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	R
32	S86	Urine	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	R
33	S92	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
34	S94	Blood	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	Surgery	R	R	R	R	R	S
35	S97	Urine	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$	Surgery	R	R	R	R	R	R
36	S98	Urine	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	Nephrology	R	R	R	R	R	R
37	S105	Sputum	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	Internal	R	R	R	R	R	S
38	S107	Tracheal	**bla**$_{\text{CTX-M-15}}$, **bla**$_{\text{TEM}}$, **bla**$_{\text{SHV}}$	ICU	R	R	R	R	R	S
	Sample Type	Location	Genes	Isolation Site	Resistance	Table 2: Antimicrobial susceptibility testing of quinolones and PMQR of 50 K. pneumoniae isolates.				
---	-------------	----------	-------	----------------	-------------	--				
39	S109 Wound		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Surgery	R R R R R R S					
40	S111 Tracheal		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	ICU	R R R R R R R					
41	S112 CSF		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Emergency	R R R R R S S					
42	S115 Tracheal		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Emergency	R R R R R S S					
43	S116 Urine		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	ICU	R R R R R R R					
44	S119 Wound		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Surgery	R R R R R R R					
45	S120 Urine		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	ICU	R R R R R R R					
46	S122 Tracheal		bla_{SHV}	ICU	R R R R R R S					
47	S124 Urine		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Surgery	R R R R R S S					
48	S132 Urine		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	Infectious	R R R R R R R					
49	S133 Tracheal		$bla_{CTX-M-15}, bla_{TEM}, bla_{SHV}$	ICU	R R R R R S S					
50	S134 Wound		bla_{SHV}	ICU	R R R R R R S					

CSF, Cerebrospinal fluid; CTX, Cefotaxime; CAZ, Ceftazidime; CRO, Ceftriaxon; FEP, Cefepime; GM, Gentamicin; AM, Amikacin; R, Resistance; S, Sensitive
Number	No	Antimicrobial susceptibility testing	PMQR	qnrA	qnrB	qnrS	aac(6')-Ib-cr	oqxA	oqxB	qepA	MLST	
			CIP	LEV								
1	S15	R	R	R	1	-	-	-	+	-	147	
2	S16	R	R	R	4	-	+	-	+	+	893	
3	S19	R	R	R	3	-	+	-	+	-	ND	
4	S20	R	R	R	4	-	-	+	+	+	11	
5	S22	R	S	R	3	-	+	+	+	-	11	
6	S25	R	R	R	4	-	+	-	+	+	893	
7	S32	R	R	R	2	-	-	-	+	-	ND	
8	S33	R	R	R	3	-	-	+	+	-	893	
9	S35	R	R	R	3	-	-	+	+	-	893	
10	S36	R	S	R	2	-	+	-	-	-	ND	
11	S38	R	R	R	5	-	+	+	+	+	893	
12	S39	R	R	R	4	-	-	+	+	+	11	
13	S42	I	S	R	2	-	+	+	-	-	ND	
14	S43	R	R	R	3	-	+	-	-	-	ND	
15	S54	R	R	R	4	-	-	+	+	-	11	
16	S55	R	R	R	4	-	-	+	+	-	11	
17	S56	R	R	R	3	-	-	+	+	-	ND	
18	S58	R	R	R	3	-	+	-	-	+	15	
19	S61	R	R	R	4	-	-	+	+	+	11	
20	S68	I	S	R	1	-	-	+	-	-	11	
21	S69	R	S	R	1	-	-	-	+	-	11	
22	S70	R	R	R	4	-	-	+	+	-	893	
23	S72	R	R	R	4	-	-	+	+	+	893	
24	S73	R	R	R	3	-	-	+	-	+	ND	
25	S74	R	S	R	1	-	-	-	+	-	915	
26	S75	R	R	R	4	-	-	+	+	+	11	
27	S79	R	R	R	3	-	-	+	+	-	11	
28	S80	R	R	R	3	-	-	+	+	-	11	
29	S81	R	R	R	3	-	-	+	+	-	893	
---	---	---	---	---	---	---	---	---	---	---	---	
31	S83	R	R	4	-	-	+	+	+	+	-	893
32	S84	R	R	3	-	-	-	+	+	+	-	11
33	S86	R	R	3	-	-	-	+	+	+	-	142
34	S92	I	S	2	-	-	-	-	+	+	-	893
35	S94	R	R	3	-	-	-	+	+	+	-	893
36	S97	R	R	2	-	-	+	+	-	-	-	16
37	S98	I	S	1	-	-	+	-	-	-	-	ND
38	S105	R	R	4	-	+	-	+	+	+	-	893
39	S107	R	R	4	-	+	-	+	+	+	-	893
40	S109	R	R	2	-	-	-	+	+	-	-	ND
41	S111	R	R	3	-	+	-	+	+	-	-	ND
42	S112	R	R	4	-	-	+	+	+	+	-	11
43	S115	R	R	2	-	-	-	-	+	+	-	11
44	S116	R	R	3	-	-	-	+	+	+	-	11
45	S119	R	R	4	-	+	-	+	+	+	-	11
46	S120	R	R	4	-	-	+	+	+	-	+	377
47	S122	R	R	4	-	+	-	+	+	+	-	11
48	S124	S	S	0	-	-	-	-	-	-	-	16
49	S132	R	R	2	-	-	-	+	-	+	-	147
50	S133	R	S	2	-	-	-	-	+	+	-	11
51	S134	S	S	0	-	-	-	-	-	-	-	ND

CIP, Ciprofloxacin; LEV, Levofoxacin; R, Resistance; S, Sensitive; I, intermediate; ND, Not-determined