We present preliminary measurements of time-dependent CP-violation parameters in the decays $B^0 \to \omega K^0_S$, $B^0 \to \eta' K^0_S$, $B^0 \to \pi^0 K^0_S$, $B^0 \to \phi K^0_S \pi^0$, and $B^0 \to K^+ K^- K^0_S$, which includes the resonant final states ϕK^0_S and $J_0(980)K^0_S$. The data sample corresponds to the full BABAR dataset of $467 \times 10^6 B \bar{B}$ pairs produced at the PEP-II asymmetric-energy e^+e^- collider at the Stanford Linear Accelerator Center.

1. INTRODUCTION

Measurements of time-dependent CP asymmetries in B^0 meson decays through $b \to c\bar{c}s$ amplitudes have provided crucial tests of the mechanism of CP violation in the Standard Model (SM) [1]. These amplitudes contain the leading b-quark couplings, given by the Cabibbo-Kobayashi-Maskawa [2] (CKM) flavor mixing matrix, for kinematically allowed transitions. Decays to charmless final states such as ϕK^0, $\pi^0 K^0$, $\eta' K^0$, and ωK^0 are CKM-suppressed $b \to q\bar{q}s$ ($q = u, d, s$) processes dominated by a single loop (penguin) amplitude. This amplitude has the same weak phase $\beta = \arg(-V_{tb}^* V_{cb}/V_{td}^* V_{ub})$ of the CKM mixing matrix as that measured in the $b \to c\bar{c}s$ transition, but is sensitive to the possible presence of new heavy particles in the loop [3]. Due to the different non-perturbative strong-interaction properties of the various penguin decays, the effect of new physics is expected to be channel dependent.

The CKM phase β is accessible experimentally through interference between the direct decay of the B meson to a CP eigenstate and B^0/\bar{B}^0 mixing followed by decay to the same final state. This interference is observable through the time evolution of the decay. In the present study, we reconstruct one B^0 from $Y(4S) \to B^0\bar{B}^0$, which decays to the CP eigenstate ωK^0_S, $\eta' K^0_S$, ηK^0_L, $\pi^0 K^0_S$, $\phi K^0_S \pi^0$, or $K^+ K^- K^0_S$ (B_{CP}). From the remaining particles in the event we also reconstruct the decay vertex of the other B meson (B_{tag}) and identify its flavor. The difference $\Delta t \equiv t_{CP} - t_{tag}$ of the proper decay times t_{CP} and t_{tag} is obtained from the measured distance between the decay vertices of the B_{CP} and B_{tag} and the boost ($\beta\gamma = 0.56$) of the $Y(4S)$ system. In the $\pi^0 K^0_S$ analysis we compute Δt and its uncertainty with a geometric fit to the $Y(4S) \to B^0\bar{B}^0$ system taking into account the reconstructed K^0_S trajectory, the knowledge of the average interaction point (IP) [4], and the average B meson lifetime. The distribution of Δt is given by

$$F(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 + \Delta w (1 - 2w) \left[-\eta_f S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t)\right]\right],$$

where η_f is the CP eigenvalue of final state f, the upper (lower) sign denotes a decay accompanied by a B^0 (\bar{B}^0) tag, τ is the mean B^0 lifetime, Δm_d is the mixing frequency, w is the mistag rate, and $\Delta w \equiv w(B^0) - w(\bar{B}^0)$ is the difference in mistag rates for B^0 and \bar{B}^0 tag-side decays. The tagged flavor and mistag parameters w and Δw are determined with a neural network based algorithm [5].

A nonzero value of the parameter C_f would indicate direct CP violation. In these modes we expect $C_f = 0$ and $-\eta_f S_f = \sin 2\beta$, assuming penguin dominance of the $b \to s$ transition and neglecting other CKM-suppressed amplitudes with a different weak phase. However, these CKM-suppressed amplitudes and the color-suppressed tree diagram introduce additional weak phases whose contributions may not be negligible [6, 7, 8, 9]. As a consequence, the measured S_f may differ from $\sin 2\beta$ even within the SM. This deviation $\Delta S_f = S_f - \sin 2\beta$ is estimated in several theoretical approaches: QCD factorization (QCDF) [6, 10], QCDF with modeled rescattering [11], soft collinear effective theory [12], and SU(3) symmetry [2, 4, 14]. The estimates are channel dependent. Estimates of ΔS from QCDF are in the ranges ($0.0, 0.2), (-0.03, 0.03), and (0.01, 0.12)$ for $\omega K^0, \eta' K^0, \omega K^0_S, \phi K_S \pi^0$, respectively [10, 12, 13]; SU(3) symmetry provides bounds of $(-0.05, 0.09)$ for $\eta' K^0$ and $(-0.06, 0.12)$ for $\pi^0 K^0_S$ [14]. Predictions that use isospin symmetry to relate several amplitudes, including the $I = \frac{3}{2}$ $B \to K\pi$ amplitude, give an expected value for $S_{\pi^0 K^0_S}$ near 1.0 instead of $\sin 2\beta$ [15]. The modification of the CP asymmetry due to the presence of suppressed tree

ArXiv:0810.2966v1 [hep-ex] 16 Oct 2008

34th International Conference on High Energy Physics, Philadelphia, 2008

CP Violation in Hadronic Penguins at BABAR

James F. Hirschauer (for the BABAR Collaboration)
University of Colorado, Boulder, CO 80309, USA

We present preliminary measurements of time-dependent CP-violation parameters in the decays $B^0 \to \omega K^0_S$, $B^0 \to \eta' K^0_S$, $B^0 \to \phi K^0_S \pi^0$, and $B^0 \to K^+ K^- K^0_S$, which includes the resonant final states ϕK^0_S and $J_0(980)K^0_S$. The data sample corresponds to the full BABAR dataset of $467 \times 10^6 B \bar{B}$ pairs produced at the PEP-II asymmetric-energy e^+e^- collider at the Stanford Linear Accelerator Center.
amplitudes in $B^0 \to \phi(K^+K^-)K^0$ is at $O(0.01)$ \cite{13, 17}, while at higher K^+K^- masses a larger contribution at $O(0.1)$ is possible \cite{18}.

In these proceedings, we summarize preliminary measurements of time-dependent CP parameters in the aforementioned $b \to q\bar{q}\gamma$ penguin-dominated B^0 decays. The ωK^0_S, $\eta' K^0_S$, $\pi^0 K^0_S$, and $K^+ K^- K^0_S$ results are updates of previous measurements \cite{19, 20, 21, 22}, while the $\phi K^0_S \pi^0$ results are first measurements. Detailed descriptions of each analysis are given in Refs. \cite{23, 24, 25}.

2. DETECTOR AND DATASET

The data used in this analysis were collected with the BaBar detector at the PEP-II asymmetric-energy e^+e^- storage ring operating at the Stanford Linear Accelerator Center. We analyze the entire BaBar dataset collected at the $\Upsilon(4S)$ resonance, corresponding to an integrated luminosity of 426 fb$^{-1}$ and $(467 \pm 5) \times 10^6 B\bar{B}$ pairs.

A detailed description of the BaBar detector can be found elsewhere \cite{26}. Charged particle (track) momenta are measured with a 5-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) coaxial with a 1.5-T superconducting solenoidal magnet. Neutral cluster (photon) positions and energies are measured with an electromagnetic calorimeter, which also provides partial K^0_L reconstruction. Charged hadrons are identified with a detector of internally reflected Cherenkov light and specific ionization measurements (dE/dx) in the tracking detectors (DCH, SVT). Finally, the instrumented flux return of the magnet allows discrimination of muons from pions and additional detection of K^0_L mesons.

3. ANALYSIS TECHNIQUE

In the $\eta' K^0_S$ and $K^+ K^- K^0_S$ analyses we reconstruct the K^0_S in the final states $\pi^+\pi^- (K^0_{\pi^+\pi^-})$ and $\pi^0\pi^0 (K^0_{\pi^0\pi^0})$; in the other analyses we use only the $\pi^+\pi^-$ final state. Other B-daughter candidates are reconstructed with the following decays: $\pi^0 \to \gamma\gamma$; $\eta \to \gamma\gamma$ ($\eta(\gamma\gamma)$); $\eta \to \pi^+\pi^-\pi^0$ ($\eta_{3\pi}$); $\eta' \to \eta(\gamma\gamma)\pi$ ($\eta'_{\gamma\gamma}\pi$); $\eta' \to \eta_{3\pi}\pi$ ($\eta'_{3\pi}$); $\eta' \to \rho^0\pi$ ($\eta'_{\rho\pi}$), where $\rho^0 \to \pi^+\pi^-$; and $\omega \to \pi^+\pi^-\pi^0$. The five final states used for $B^0 \to \eta' K^0_S$ are $\eta'_{\gamma\gamma}\pi K^0_{\pi^+\pi^-}$, $\eta'_{3\pi}\pi K^0_{\pi^+\pi^-}$, $\eta'_{\gamma\gamma}\pi K^0_{\pi^0\pi^0}$, $\eta'_{3\pi}\pi K^0_{\pi^0\pi^0}$, and $\eta'_{\rho\pi} K^0_{\pi^0\pi^0}$. For the $B^0 \to \eta' K^0_S$ channel we reconstruct the η' in two modes: $\eta'_{\gamma\gamma}\pi\pi$ and $\eta'_{3\pi}\pi\pi$.

After applying loose selection criteria to reduce the dominant continuum $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$) background, we perform an unbinned maximum likelihood (ML) fit to the data to separate signal from background and obtain the CP-violation parameters for each decay channel. As input to the ML fit, we use two kinematic variables, an event-shape Fisher discriminant, and, in the ωK^0_S, $\phi K^0_S \pi^0$, and $K^+ K^- K^0_S$ analyses, resonance masses and decay angles.

In all analyses but $\pi^0 K^0_S$ and $\eta' K^0_L$, we use, as kinematic variables, the beam-energy-substituted mass $m_{\text{ES}} \equiv \sqrt{\left(\frac{1}{2}p_B + p_L^0\right)^2 / E_0^2 - p^2_B}$ and the energy difference $\Delta E \equiv E^*_B - \frac{1}{2}E_0^*$, where (E_0, p_0) and (E_B, p_B) are the laboratory four-momenta of the $\Upsilon(4S)$ and the B_{CP} candidate, respectively, and the asterisk denotes the $\Upsilon(4S)$ rest frame. In the $\pi^0 K^0_S$ analysis we use m_B, the invariant mass of the reconstructed B_{CP}, and m_{miss}, the invariant mass of the B_{tag} computed from the known beam energy and the measured B_{CP} momentum with mass of B_{CP} constrained to the nominal B meson mass \cite{27}. In the $\eta' K^0_L$ analysis we use only the ΔE variable because a mass constraint on the B meson during the vertex fit leaves m_{ES} and ΔE completely correlated.

Further discrimination from continuum background is obtained with the combination of four event-shape variables in a Fisher discriminant: the angle with respect to the beam axis of the B momentum, the angle with respect to the beam axis of the B thrust axis, and the angle and second momentum-weighted angular moments L_0 and L_2, defined as $L_i = \sum_j p_j \times |\cos \theta_j|^i$, where θ_j is the angle with respect to the B thrust axis of daughter particle j, p_j is its momentum, and the sum excludes the daughters of the B candidate. In the $\eta' K^0_L$ analysis we also use the continuous output of the flavor tagging algorithm as input to the discriminant.
Table I: Preliminary fit results for signal yields and CP parameters. The first errors are statistical and the second are systematic. See Sec. 4 for explanation of results.

Mode	Signal Yield	$-\eta_f S_f$	C_f
ωK_S^0	163 ± 18	$0.55^{+0.26}_{-0.29} \pm 0.02$	$-0.52^{+0.22}_{-0.20} \pm 0.03$
$\eta' K^0$	2515 ± 69	$0.57 \pm 0.08 \pm 0.02$	$-0.08 \pm 0.06 \pm 0.02$
$\eta' K_S^0$	1950 ± 58	$0.53 \pm 0.08 \pm 0.02$	$-0.11 \pm 0.06 \pm 0.02$
$\eta' K_L^0$	556 ± 38	$0.82 \pm 0.19 \pm 0.02$	$0.09 \pm 0.14 \pm 0.02$
$\pi^+ K_S^0$	556 ± 32	$0.55 \pm 0.20 \pm 0.03$	$0.13 \pm 0.13 \pm 0.03$

Mode	Signal Yield	β_{eff}	A_{CP}
$K^+ K^- K_S^0$	1011 ± 39	$0.52 \pm 0.08 \pm 0.03$	$0.05 \pm 0.09 \pm 0.04$
ϕK_S^0 (see text)		$0.13 \pm 0.13 \pm 0.02$	$0.14 \pm 0.19 \pm 0.02$
$f_0(980)K_S^0$ (see text)		$0.15 \pm 0.13 \pm 0.03$	$0.01 \pm 0.26 \pm 0.07$
$\phi K_S^0 \pi^0$	58 ± 3	$0.97^{+0.03}_{-0.52}$	(see text)
$\phi (K^+)\pi^0$ (see text)		$0.20 \pm 0.14 \pm 0.06$	
$\phi K^0(892)^0$ (see text)	535 ± 38		$0.01 \pm 0.06 \pm 0.03$
$\phi K_S^0(1430)^0$ (see text)	167 ± 21		$-0.08 \pm 0.12 \pm 0.04$

The $K^+ K^- K_S^0$ analysis is designed to account for variations of CP structure and interference over the Dalitz plot. We use an isobar model that includes the $K^+ K^-$ resonances $f_0(980)$, $\phi(1020)$, $X_0(1550)$, and χ_{c0} to extract β_{eff} and A_{CP} ($-C_f$) from the amplitude and phase information over the Dalitz plot. In the $\phi K\pi$ analysis we measure 27 parameters that characterize the interference of S, P, and D $K\pi$ partial wave amplitudes. We are able to measure the single mixing-induced CP-violation parameter β_{eff}, which is accessible only through the $\phi K_S^0 \pi^0$ CP eigenstate in which we reconstruct just ~ 60 events, by constraining the other 26 parameters, including A_{CP} for each partial wave, with ~ 800 events from the $\phi K^+ \pi^-$ self-tagging final state.

4. RESULTS

The preliminary fit results for signal event yields and CP parameters are shown in Table I. We report separate results for $\eta' K_S^0$ and $\eta' K_L^0$ in addition to the combined $\eta' K^0$ results. The $K^+ K^- K_S^0$ results come from the high-mass, non-resonant region of the Dalitz plot ($m_{K^+ K^-} > 1.1$ GeV). The total yield in the low-mass region of the Dalitz plot ($m_{K^+ K^-} < 1.1$ GeV), which are mostly ϕK_S^0 and $f_0(980)K_S^0$ events, is 421 \pm 25. The $\phi K_S^0 \pi^0$ yield is the total for all partial waves; each ϕK^+_f yield is the sum of $\phi K_S^0 \pi^0$ and $\phi K^+ \pi^-$ final states events since both contribute to the determination of each direct CP parameter A_{CP}.

All S_f and β_{eff} results are consistent with the value of $\sin 2\beta$ measured in $b \to c\bar{c}s$ decays [28, 29]. The current world averages are $\sin 2\beta = 0.67 \pm 0.02$ and $\beta = 0.37 \pm 0.02$. All C_f and A_{CP} results are consistent with zero direct CP-violation. These $K^+ K^- K_S^0$ results favor $\beta_{\text{eff}} \simeq 0.37$ and rule out at 4.8σ the solution $\frac{\pi}{2} - \beta$ from the trigonometric ambiguity of β from the measurement of $\sin 2\beta$. All results are statistics limited. The dominant systematic uncertainty in the $\eta' K^0$ analysis is related to CP structure in the $B\bar{B}$ background; the dominant systematic uncertainty in the $K^+ K^- K_S^0$ analysis is related to the Dalitz model.

5. CONCLUSIONS

We present preliminary updates of our measurements of mixing-induced CP-violation parameters in several $b \to q\bar{q}s$ penguin-dominated B^0 decays and the first measurement in the $B^0 \to \phi K_S^0 \pi^0$ decay. The $\phi K_S^0 \pi^0$ analysis demonstrates a novel technique for extracting CP parameters from interfering amplitudes with relatively few signal
events. Significant changes to previous analyses include twice as much data for ωK^0, 20% more data for other analyses, and improved track reconstruction.

Acknowledgments

I thank the organizers of ICHEP 08 for a well-organized and interesting conference. I also thank my BaBar collaborators for their support, especially my thesis advisors, Bill Ford and Jim Smith.

References

[1] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002); Belle Collaboration, K. Abe et al., Phys. Rev. D 66, 071102(R) (2002).
[2] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997); M. Ciuchini et al., Phys. Rev. Lett. 79, 978 (1997).
[4] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131805 (2004).
[5] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[6] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[7] C.-W. Chiang, M. Gronau, and J. L. Rosner, Phys. Rev. D 68, 074012 (2003); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Lett. B 596, 107 (2004).
[8] D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
[9] Y. Grossman, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 68, 015004 (2003).
[10] M. Beneke, Phys. Lett. B 620, 143 (2005).
[11] H. Y. Cheng, C-K. Chua, and A. Soni, Phys. Rev. D 72, 014006 (2005), Phys. Rev. D 71, 014030 (2005); S. Fajfer, T. N. Pham, and A. Prapotnik-Brdnik Phys. Rev. D 72, 114001 (2005).
[12] A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006).
[13] H-Y. Cheng, C-K. Chua, and A. Soni, Phys. Rev. D 72, 014006 (2005).
[14] M. Gronau, J. L. Rosner, and J. Zupan, Phys. Rev. D 74, 093003 (2006).
[15] A. J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab, Phys. Rev. Lett. 92, (2004) 101804; R. Fleischer, S. Jager, D. Pirjol, and J. Zupan. arXiv:0806.2900 [hep-ph]; M. Gronau and J. L. Rosner arXiv:0807.3080 [hep-ph].
[16] M. Beneke, Phys. Lett. B 620, 143 (2005) [arXiv:hep-ph/0505075].
[17] G. Buchalla, G. Hiller, Y. Nir and G. Raz, JHEP 0509, 074 (2005) arXiv:hep-ph/0503151.
[18] H. Y. Cheng, C-K. Chua and A. Soni, Phys. Rev. D 72, 094003 (2005) [arXiv:hep-ph/0506268].
[19] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 74, 011106 (2006).
[20] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 98, 031801 (2007).
[21] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 77, 012003 (2008).
[22] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 99, 161802 (2007).
[23] BaBar Collaboration, B. Aubert et al., arXiv:0806.4419 [hep-ex]
[24] BaBar Collaboration, B. Aubert et al., arXiv:0809.1174 [hep-ex]
[25] BaBar Collaboration, B. Aubert et al., arXiv:0808.0700 [hep-ex]
[26] BaBar Collaboration, B. Aubert et al., Nucl.Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[27] Particle Data Group, Y.-M. Yao et al., J. Phys. G33, 1 (2006).
[28] BaBar Collaboration, B. Aubert et al., arXiv:0808.1903v1 [hep-ex]
[29] Belle Collaboration, K.F. Chen et al., Phys. Rev. Lett. 98, 031802 (2007).