Role of oxidative stress in calcific aortic valve disease and its therapeutic implications

Harry Z.E. Greenberg¹, Guoan Zhao², Ajay M. Shah¹, and Min Zhang¹*

¹Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK; and ²Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China

Abstract

Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.

Keywords
Aortic valve • Calcification • Reactive oxygen species • Oxidative stress • NADPH oxidases

1. Introduction

Calcific aortic valve disease (CAVD) is a progressive condition in which a normal tricuspid aortic valve or a congenitally abnormal bicuspid aortic valve becomes thickened, fibrosed, and calcified. The nature of this remodelling results in a spectrum of disease ranging from mild aortic sclerosis to severe aortic stenosis (AS). CAVD is currently the third most prevalent cardiovascular disease after coronary artery disease and hypertension.¹ The prevalence of CAVD increases with age. Aortic valve sclerosis affects a quarter of over 65 years old,¹ and progression from sclerosis to stenosis occurs in ~2% of individuals per year.²–⁴ Most patients with established AS then develop moderate-to-severe symptoms requiring treatment.¹,⁵ It is expected that in the absence of any preventative therapy, CAVD will represent an increasing disease burden as populations in developed countries age⁵ and as the prevalence of the associated cardiometabolic risk factors for CAVD namely obesity, type 2 diabetes, dyslipidaemia, and hypertension increase.⁶,⁷ Consequently, understanding the mechanisms underlying the initiation and progression of CAVD is vital for developing novel therapeutic targets.⁸

Amongst the various reported mediators of fibrocalcific valvular changes, there is emerging evidence of a critical, causative role for reactive oxygen species (ROS).⁹–¹³ This review will focus on the specific sources of ROS or ROS-mediated stress signalling driving CAVD, and examine their potential as novel therapeutic targets for this debilitating disease.

2. ROS in normal physiology

ROS are a group of highly reactive chemical forms of molecular oxygen, divided into free radical species (with at least one free electron) and non-radical (two electron) species.¹⁴ The most important examples of these are superoxide and hydrogen peroxide, respectively. Superoxide anions derive from the reduction of molecular oxygen in a reaction mediated by a variety of different enzymes at the cell membrane, cytoplasm, and in organelles, such as mitochondria, peroxisome, and endoplasmic reticulum.¹⁵,¹⁶ Subsequent spontaneous dismutation of superoxide or dismutation by superoxide dismutase (SOD) enzymes produces
hydrogen peroxide. In turn, catalase converts hydrogen peroxide to water, although when partially reduced, hydrogen peroxide is converted to hydroxide ion and hydroxyl radical.

At physiological concentrations, ROS regulate cell growth, differentiation, senescence, migration, apoptosis, and autophagy.16–18 They also modulate a variety of metabolic processes including glycolysis, oxidative phosphorylation, and fatty acid synthesis.15,19 These responses are predominantly mediated via the oxidation of cysteine thiolate groups by hydrogen peroxide and of iron–sulphur clusters by superoxide on a wide-range of target proteins.20,21 These modifications regulate protein localization and function, as well as intermolecular and protein–protein interactions.22 Cysteine thiolate oxidation, in particular, leads to disulfide formation, cysteine persulfidation, and glutathionylation, which serve as important modulators of protein activity.22

Several mechanisms maintain ROS at physiological concentrations, including subcellular compartmentalization, SOD and catalase, peroxiredoxins, and the thioredoxin and glutathione systems which reverse the aforementioned cysteine residue modifications.23,24 The NRF2–KEAP1 system is also an important oxidant sensor in which oxidation of residues on KEAP1 leads to the up-regulation of NRF2 nuclear translocation where it acts as a transcription factor for a series of antioxidant proteins.25

3. ROS in cardiovascular diseases
Numerous cardiovascular disorders and diseases including endothelial dysfunction, hypertension, vascular calcification, atherosclerosis, cardiac remodelling, stroke, and diabetes are associated with an oxidative stress state in which ROS-producing enzyme activity and expression levels are up-regulated, whilst the expression and activity of antioxidant mechanisms are down-regulated.26–28 Within the cardiovascular system, three major sources of ROS are uncoupled nitric oxide synthases (NOS), reduced nicotinamide adenine dinucleotide phosphate oxidases 2 proteins, and mitochondria.29–31 The roles of these sources of ROS in cardiovascular diseases, extensively reviewed elsewhere,15,26–28,30,32,33 are briefly described here.

3.1 Uncoupled NOS
NOS function as dimers which catalyse the transformation of L-arginine and molecular oxygen to nitric oxide (NO) and L-citrulline, requiring NADPH-derived electrons. NOS uncoupling occurs when there is a depletion of tetrahydrobiopterin (BHH), an obligatory co-factor that actions as an auxiliary electron donor in the above reaction.34,35 Uncoupling results in the production of superoxide as the enzyme switches from its classical NO synthase function to that of an NADPH-dependent oxidase.36 In turn, superoxide combines with NO to produce peroxynitrite, thereby reducing the bioavailability of NO.11,34,37,38 In the case of the endothelial NOS isoform (eNOS), in particular, this leads to impaired endothelial-derived NO-mediated relaxation of vascular smooth muscle with an associated increase in systemic vascular resistance and hypertension.39,40 Reduced NO bioavailability also results in detrimental vascular remodelling, impaired platelet aggregation, and leukocyte adhesion.37 Endothelial dysfunction secondary to BH4 deficiency is an early marker of, and a critical step in the development of atherosclerosis, as well as in diabetic micro- and macrovascular disease.15,41–49 Superoxide release from uncoupled eNOS and nNOS (neuronal NOS) has also been implicated in pressure-overload left ventricular hypertrophy and diastolic dysfunction.42,50–53

3.2 Nox proteins
NOXs generate ROS as their primary function, catalysing electron transfer from NADPH to O2.54–56 There are seven mammalian NOX homologues (NOX1 to NOX5, Duox1, and Duox2) with NOX2 (also termed gp91phox) and NOX4 most widely expressed within the cardiovascular system.31,55 NOX2 is acutely activated by agonists such as angiotensin II, mechanical stimulation, and metabolic factors in a process that requires intracellular association between the transmembrane NOX2-p22phox complex and the cytosolic subunits p47phox, p67phox, p40phox, and Rac1 to generate ROS.54,57 By contrast, NOX4 is constitutively active and regulated mainly by its own expression level,58–61 whilst it may also be activated by mechanical stretch and agonists such as TGF-β.62,63 Moreover, while NOX2 generates superoxide, NOX4 predominantly generates H2O2.31,61,64,65

Overwhelming evidence indicates that the pathophysiological roles of the NOXs are isofrom and cell-type specific. NOX2 mediates the development of adverse cardiac fibrosis, cardiomyocyte hypertrophy, contractile dysfunction, and cardiomyocyte death induced by angiotensin II, pressure overload, or myocardial infarction.30,31,35,66–75 In the vasculature, NOX2 may also have important roles driving the initiation and progression of atherosclerosis.15,32,76–81

In contrast to the largely deleterious roles of NOX2, NOX4 may mediate protective signalling in the heart and vasculature.60,82–87 NOX4 protects against pressure overload-induced cardiac remodelling and dysfunction through paracrine preservation of myocardial capillary density,60,88 NRF2-dependent modulation of redox state,89 and enhancement of the integrated stress response.90 Cardiomyocyte NOX4 also maintains optimal mitochondrial function and cardiac performance during physiological exercise.91 Endothelial NOX4 protects against chronic pressure-overload induced cardiac remodelling,84,86 and AngII-stimulated myocardial fibrosis.92 In the vasculature, NOX4 protects against endothelial dysfunction, leukocyte adhesion, inflammation, and atherosclerosis.82,87 However, up-regulated vascular smooth muscle cell (VSMC) NOX4 correlates with VSMC dysfunction and plaque instability, whilst VSMC NOX4 deletion attenuates western-diet-induced atherosclerosis.93,94

3.3 Mitochondria
Mitochondria generate ROS (mitoROS) as natural by-products of oxidative phosphorylation and basal metabolic activity.95,96 MitoROS are tightly regulated by a number of mechanisms including the glutaredoxin, glutathione, and thioredoxin systems which support thiol redox
Role of ROS in CAVD

4.1 Initiation of CAVD

The progressive processes of leaflet fibrosis and calcification are initiated by damage to the endothelial cells lining the aortic valve. This damage, triggered by diverse risk factors including ageing, obesity and hypertension, systemic inflammation, and mechanical and shear stress, permits the infiltration, deposition, retention, and subsequent oxidation of lipoproteins, such as low-density lipoprotein (LDL) and lipoprotein(a) (Lp(a)). These events result in a chronic inflammatory response mediated by innate and adaptive immune responses, and in increased mitoROS scavenging, genetic inhibition of mitoROS, or mitotargeted catalase each attenuate lesion progression and reduce inflammatory signalling and immune cell infiltration.

4.2 Propagation of CAVD

In the propagation phase of the disease fibrosis and calcification become the driving forces. Cytokines secreted from macrophages and T cells, such as TNFα, IL-1β, IL-6, IL-8x, insulin-like growth factor-1, and TGF-β, induce the transition of the predominant aortic valve cell type, namely valve interstitial cells (VICs), into myofibroblasts and osteoblasts. VICs are a heterogeneous population of fibroblast-like cells which are important physiological regulators of valve structure. Cytokines induce VIC differentiation by up-regulating the expression of several osteogenesis pathway genes including runt-related transcription factor 2 (Runx2), low-density lipoprotein receptor-related protein 5 (Lrp5), distal-less homeobox 5 (Dlx5), SRY-box 9 (SOX9), and muscle homeobox protein MSX2, as well as bone morphogenic protein 2 (BMP2)—a potent osteogenic differentiation factor, and the osteoblast marker proteins osteopontin (OPN), osteocalcin, and osteonectin. Direct activation of Toll-like receptors 2 and 4 by oxidized LDL also induces VIC BMP2 expression.

Osteogenic VIC transformation is then promoted further by the down-regulation of and/or mutations in NOTCH1, which impair the ability of NOTCH1 to suppress Runx2 and SOX9 expression. Furthermore, up-regulated WNT/β-catenin signaling, reductions in anti-osteogenic microRNAs, such as miRNA-30b, and increased receptor activator of nuclear factor kappa B (RANK)/RANK ligand interactions all serve to promote the differentiation of VICs into osteoblast-like cells by up-regulating the expression of osteoblast-related genes.

Differentiated VICs then secrete microvesicles containing ectonucleotidases, promoting calcium phosphate nucleation within valve leaflets. VIC overexpression of ectonucleotidases, such as Ectonucleotide pyrophosphatase 1 (ENPP1), alkaline phosphatase (ALP) and 5'-nucleotidase also drive valvular mineralization by generating inorganic phosphate and adenosine, and in the case of ALP, by hydrolyzing inorganic pyrophosphate and de-phosphorylating OPN, natural inhibitors of calcium phosphate deposition.

Apoptotic bodies released from VICs driven to programmed cell death by inflammatory cytokines, such as TGF-β1 and ENPP1-mediated depletion of the key-cell survival signal ATP, also act as a nidus for calcium and phosphorous crystal deposition. In a subset of patients, heterotopic ossification mediated by the recruitment of bone-marrow-derived circulating osteogenic progenitor cells and endothelial progenitor cells occurs resulting in the formation of lamellar bone within the aortic valve leaflets.

Alongside this mineralization process, leaflet thickening and fibrosis occur. This is mediated by the differentiation of VICs into myofibroblasts that induce extracellular matrix (ECM) remodelling by secreting excess collagen and increasing their expression of matrix metalloproteinases. These changes form a vital scaffold upon which hydroxyapatite nucleation and progressive amorphous deposition occur. Fibrotic changes are driven, in particular, by RANK/RANKL stimulation and by angiotensin II which is produced by chymase released from mast cells and by ACE delivered via LDL infiltration. The resulting extracellular matrix has relatively decreased elastin content and excessive disorganized collagen content which significantly alters leaflet biomechanics, leading to a higher mechanical load that in itself directly encourages further myofibroblastic differentiation in a positive feedback loop.

4.3 Systemic inflammation and oxidative stress in CAVD

Analysis of plasma from patients with known AS reveals evidence of a systemic pro-inflammatory state within which oxidative stress occurs. Accordingly, reduced levels of C4 indicating active complement pathway activation are observed alongside increased circulating pyroglutamic acid, an intermediate only generated when levels of the antioxidant glutathione are depleted.

In a recent cohort study using thiobarbituric acid to assess systemic lipid peroxidation and 2,4-dinitrophenylhydrazine to assess for the oxidative modification of plasma proteins, elevated oxidative stress was observed to correlate with the severity of AS, as reflected by mean aortic valve area and mean and maximum aortic gradients. Levels of oxidative stress also correlate with impaired systemic fibrinolysis, again
Experimental models/tissues	In vitro/in vivo/ex vivo	Observations	Sources of ROS	Inhibitors tested	ROS assay	Ref
Animal studies						
LDLr\(^{-}/\)ApoB\(^{100/100}\) mice fed normal chow	In vivo and in vitro	Hypercholesterolaemia induces CAVD in a subset of mice. Stenotic valves in hypercholesterolaemic mice demonstrate increased superoxide levels.	–	–	DHE	9
LDLr\(^{-}/\)ApoB\(^{100/100}\) mice fed a western-type diet	In vivo and in vitro	Western-type diet induces hypercholesterolaemia and aortic valve lipid infiltration and deposition, and apoptosis leading to CAVD.	NOX2	Pioglitazone	–	223
Chronic Ang II infusion mice fed a hypercholesterolaemic diet	In vivo and in vitro	Chronic infusion of Ang II and hypercholesterolaemia induce oxidative stress within AVs, resulting in leaflet thickening, and ECM remodelling.	–	MnBuOE	–	205
Cultured porcine aortic valve interstitial cells	In vitro	TGF-β1 induces ROS production and calcium nodule formation via Smad and MAPK pathways.	–	–	DCF	203
Cultured porcine aortic valve interstitial cells	In vitro	TGF-β1 induces superoxide production which partly mediates in vitro calcification. Co-application with NO donors scavenges superoxide, reducing calcification.	–	DETA-NONOate SNP peg-SOD	DHE	247
Cultured porcine aortic valve interstitial cells	In vitro	Application of osteogenic medium induces valvular fibrosis and calcification mediated by ROS, collagen deposition, and up-regulation of fibronectin, OPN and Runx2, β-catenin accumulation.	NOX2	Celastrol	DHE	13
Cultured porcine aortic VECs and porcine aortic valve tissue	Ex vivo and in vivo	TNFα increases VEC intracellular oxidative stress, as well as superoxide and H₂O₂ synthesis. TNFα or H₂O₂ decrease nitric oxide synthase by reducing eNOS expression. This results in myofibroblastic activation, calcification and changes in ECM composition and structure.	Uncoupled NOS and NOX2	L-NAME BH4	DCF	209
Rabbits fed high cholesterol diet + vitamin D	In vivo and in vitro	Superoxide and H₂O₂ levels are increased around calcifying foci and potentiates the progression of AV calcification. AV calcification improves by reducing H₂O₂ levels with lipoic acid.	NOX2, NOX4 Lipic acid	Tempol	DHE	10
Rabbits fed high cholesterol diet + vitamin D	In vivo and in vitro	High cholesterol + vitamin D induces celastrol-sensitive increases in ROS which drives the development of CAVD and maladaptive cardiac remodelling.	NOX2	Celastrol	DHE	13
Cultured bovine aortic VICS	In vitro	Application of LPS induces oxidative stress, ALP overexpression, VIC calcification and ECM remodelling.	XOS	Allopurinol L-arginine	–	236

Human studies

Continued
Experimental models/tissues	In vitro/in vivo	Observations	Sources of ROS	Inhibitors tested	ROS assay	Ref
AV tissue from patients undergoing valve replacement surgery for symptomatic AS	In vitro	Superoxide and H_2O_2 levels are increased near calcified regions. SOD activity, expression of all 3 SOD isoforms, and catalase are significantly decreased in pericalcific regions.	Uncoupled NOS	L-NAME	DHE	11
AV tissues from patients with stenosis or sclerosis collected at surgery or autopsy	In vitro	Increases in ROS production are noted around calcifying foci in human sclerotic or stenotic AV.	NOX2	peg-SOD, peg-Catalase	DHE	10
AV tissue and isolated cultured human VICs from patients with CAVD	In vitro	CAVD tissue demonstrates nitrotyrosine accumulation and increased peroxynitrite levels. SOD and catalase expression and activity are down-regulated. H_2O_2 induces impaired DNA-damage responses, profibrotic and pro-osteogenic signalling leading to osteogenic differentiation and calcification in isolated VICs	–	Adenoviral delivery of SOD/Catalase	–	12
AVs and isolated VICs from patients undergoing heart transplantation, valve replacement, or from deceased donor hearts.	In vitro	In sclerotic and stenotic valves, nitrotyrosine is diffusely distributed with areas of higher intensity. Dityrosine is only observed in stenotic tissue. TGF-β induces α-SMA up-regulation and aortic valve remodelling.	–	MnBuOE	–	205
Human VICs obtained from a normal healthy donor and two donor patients with calcified aortic valves	In vitro	In isolated human VICs reduction in antioxidant enzymes results in H_2O_2-induced increases in RUNX2 and OPN mRNA expression.	–	CNPs	DCF	204
Calcified human aortic valves obtained from adults undergoing valve replacement surgery	Ex vivo	Superoxide accumulates in calcified regions of the valves and in the fibrosa endothelium. Fibrosa-specific loss of SOD1 expression confers the fibrosa as the preferential site of superoxide accumulation.	–	–	DHE	209
Isolated aortic valve endothelial cells isolated from bicuspid valves explanted from patients with AS undergoing valve replacement	In vitro	Reduced expression of the antioxidants GPX3 and SRXN1 are observed in ECs isolated from BAVs leading to increased oxidative stress susceptibility.	–	–	–	206

Table I Continued
Experimental models/tissues	In vitro/in vivo/ex vivo	Observations	Sources of ROS	Inhibitors tested	ROS assay	Ref
Human aortic VICs isolated from patients undergoing AVR	In vitro	VICs incubated with Lp(a) develop increased ROS formation and undergo significant calcium deposition.	Mitochondria	–	DHE mitoSOX™ Red	225
Primary and cultured human VICs isolated from stenotic AVs from patients undergoing valve replacement	In vitro	DRP1 overexpression, indicative of mitochondrial dysfunction, is observed, mediating OGM-induced VIC calcification.	Mitochondria	–	–	228
Myocardial biopsies from patients with AS undergoing elective valve replacement	Ex vivo	Myocardial biopsies demonstrate increased markers of the mitochondrial UPR, potentially indicating the presence of oxidative stress.	Mitochondria	–	–	226
Isolated human VICs obtained from valves explanted from patients undergoing aortic valve replacement	In vitro	Application of Inorganic phosphate induces calcification of isolated human VICs.	SSAO	LJP1586	–	234
suggesting that the oxidative stress in CAVD patients might not simply reflect a localized phenomenon. Evidence from animal models of CAVD also supports a putative role for systemic inflammation in CAVD. In both wild-type mice and in the atherosclerotic ApoE*3Leiden mouse model, intraperitoneal LPS induces AV thickening, but not calcification, suggesting a role for systemic inflammation in the early stages of CAVD. There are conflicting data on the association between serum levels of C-reactive protein (CRP), a marker of systemic inflammation, and CAVD. Several relatively small cohort studies (n ≤ 141) have identified a correlation between CRP levels and the presence and, in some studies, the severity of CAVD. However, a significantly larger cohort study (n = 5621) performed over a 5-year period, found that C-reactive protein is in fact not associated with baseline incidence of AS, progression to aortic sclerosis, or progression to AS.

4.4 Localized valvular ROS signalling in CAVD

The majority of the evidence demonstrating roles for oxidative stress in CAVD derives from studies using aortic valve tissue and isolated VICs that together indicate a localized inflammatory response within which ROS signalling occurs. Indeed, a study that used computed tomography–positron emission tomography on patients with varying degrees of CAVD, observed localized valvular uptake of the tracers 18F-sodium fluoride and 18F-fluorodeoxyglucose that assessed for valvular calcification and inflammation, respectively. The degree of local valvular tracer uptake was observed to be correlated with the severity of disease. Pre-clinical and human studies reportedly demonstrate increased local ROS levels in CAVD. Many of these use fluorescent dyes to indicate ROS accumulation which possess varying degrees of specificity. Thus, whilst dihydroethidium (DHE) is a relatively specific indicator of...
superoxide, 2′,7′-dichlorofluorescein diacetate (DCFH-DA) reacts with hydrogen peroxide and itself induces superoxide production, dismuta-
tion of which leads to self-amplification of DCF fluorescence. Caution is, therefore, required when interpreting results using this assay. The spec-
cificity of the commonly used chemiluminescence-based techniques, such as lucigenin-enhanced chemiluminescence for superoxide, have also been questioned, although when low concentrations are used, concerns regarding redox cycling in which lucigenin can react with oxygen to produce superoxide, are mitigated. The variety of assays used by the studies reviewed in this article are summarized in Table 1.

Around 30% of hypercholesterolaemic LDLr-/-ApoB100/100 mice fed a normal diet develop AS, with elevated aortic valve superoxide present both prior to CAVD developing, and more abundant in mice that subsequently develop AS. In isolated cultured porcine VICs, TGF-β1 induces ROS production subsequently leading to calcium nodule formation in a signalling cascade involving P38 MAPK and MEK1/2/ERK1/2 pathways. These findings are replicated by exogenous ROS application, which promotes VC calcium precipitation by up-regulating fibrotic and osteogenic gene expression, indicating that oxidative stress may precede the differentiation of VICs to an osteoblastic phenotype. In rabbits fed a high cholesterol diet, both superoxide and H2O2 levels are increased in and around calcify-
ing aortic valve, with AV calcification reversed by reducing H2O2 levels with lipoic acid.

Importantly, ROS have also been implicated in human CAVD. In explanted valves from patients with established AS, superoxide and H2O2 levels are markedly increased near the calcified regions of the valve. This accumulation is in part due to a marked reduction in the peri-calcific activity and expression of all three SOD isoforms as well as catalase. Along similar lines, reduction in antioxidant enzymes results in hydrogen peroxide-induced increases in Runx2 and OPN mRNA ex-
pression in isolated human VICs.

Increased ROS levels are also seen in valves from patients with aortic sclerosis. Here, peroxynitrite and nitrogen dioxide-generated nitroty-
sine levels are increased alongside superoxide and hydrogen peroxide. Together, these induce DNA damage, trigger dysfunctional DNA-repair mechanisms, and promote early VIC phenotypic alteration via up-regulation of AKT signalling leading to Runx2 and MSX2 overexpression as well as in vitro calcification. These changes are reversed with adenosine delivery of superoxide dismutase and catalase. In explanted AV from patients with CAVD, nitrotyrosine is distributed throughout the sclerotic leaflets, with localized areas of high intensity also noted. In contrast, dityrosine is only observed in stenotic valves indicating more advanced oxidation occurring as disease progresses.

Finally, in bicuspid aortic valves (BAV) from patients with AS undergo-
ing surgical replacement, application of hydrogen peroxide triggers DNA damage and apoptosis in isolated valvular endothelial cells (ECs). Interestingly, increased levels of DNA damage and sustained apoptosis signalling are observed in bicuspid compared with tricuspid valves, sec-
ondary to molecular differences in oxidative stress susceptibility with re-
duced expression of the antioxidants glutathione peroxidase 3 and sulfiredoxin noted in BAV ECs.

4.5 NOS-derived ROS in CAVD

Since uncoupled NOS primarily generate superoxide, it is feasible that the pro-inflammatory milieu in the initiation of CAVD may drive NOS uncoupling and thereby contribute to increases in superoxide levels ob-
served in CAVD. Indeed, proteomic analyses of calcified aortic valves reveal decreased expression of HSP90, part of a complex with endothelial NOS, the dissociation of which can cause uncoupling of eNOS, leading to the production of ROS and endothelial dysfunction.

In support of this hypothesis, the arginine analogue L-NAME, a NOS inhibitor, reduces superoxide production by over 50% in calcified human aortic valves. Data from animal models likewise support a role for uncoupled NOS-derived ROS in CAVD. In cultured porcine aortic valve ECs and in porcine aortic valve leaflets, exogenous TNFα and H2O2 in-
duce eNOS uncoupling leading to increases in superoxide and H2O2 lev-
els. Application of TNFα and H2O2 also reduces eNOS expression resulting in a reduction in NO synthesis as measured using the Griess as-
say. This in turn drives disorganization of the extracellular matrix and val-
cular calcification. These changes are partially reversed in the presence of the NOS inhibitor L-NAME, NOX inhibitor apocynin, or PEG-SOD and are fully reversed by the eNOS co-factor BH4, confirming NO uncoupling as a key mediator in this model of CAVD.

Reduced NO bioavailability within diseased valve leaflets further increases the burden of ROS by decreasing NO-mediated quenching of superoxide. Indeed, alongside eNOS uncoupling, several other mecha-

isms are responsible for reducing NO synthesis in CAVD including me-

chano-stress-induced down-regulation of eNOS expression, and vascular endothelial-mesenchymal transition which occurs as a result of TGF-β1 stimulation, the constituent elements of the ECM, shear and mechanical stress, and protein S-glutathionylation—the consequence of an imbalance between reduced and oxidized glutathione.

Hypercholesterolaemia also decreases the expression and activity of eNOS, and therefore taken together these mechanisms reduce the availability of NO, resulting in increased superoxide levels driving val-

ular myofibroblast proliferation and extracellular matrix produc-

tion. Moreover, enhanced levels of superoxide from other sources such as NOX2 (described in detail below) result in increased peroxynitrite formation as it reacts with residual NO. In a positive feedback loop, this induces further eNOS uncoupling via peroxynitrite-mediated oxidation of BH4 and NOX4. Peroxynitrite is also implicated in evoking DNA damage and dysregulated DNA repair responses within cultured human aortic VICs leading to the up-regulated expression of Runx2 and MSX2 and subsequent in vitro calcification.

4.6 NOX-derived ROS in CAVD

Recent evidence has emerged that NOX-derived ROS are critically in-
volved in the development of CAVD. This is particularly so in animal models of CAVD, although conflicting evidence emerges with regards to the specific isoforms involved. In hypercholesterolemic mice fed a Western-type diet in order to induce CAVD, increases in NOX2 and p22phox mRNA levels are observed within harvested valve leaflets, whilst no changes are observed for NOX4, eNOS, catalase, or SOD.

Our recent studies with cultured primary porcine aortic VICs reveal that application of osteogenic medium (OGM) results in marked fibrosis and calcification associated with increased expression of NOX2, collagen, fibronectin, pro-osteogenic β-catenin accumulation, OPN, and Runx2. Additionally, in vivo evidence for NOX2-mediated CAVD is also shown in a rabbit model of CAVD fed cholesterol-enriched chow and vitamin D (HC + VitD). HC + VitD-treated rabbits develop thick-

ened and fibrosed valve leaflets with increased calcium deposits. Phenotypically, this translates into significant decreases in AV area ac-
companied by enhanced transvalvular peak and mean jet velocity, ven-
icular dilatation, and contractile impairment as well as exaggerated cardiac hypertrophy.

NOX2, p22phox, and its regulator protein disul-
fide isomerase are strongly expressed around calcification foci in HC+VitD rabbit aortic valves, coincident with the sites of highest
Role of ROS in CAVD

4.7 Mitochondrial ROS in CAVD

Recent evidence indicates a potential role for mitoROS in the development of CAVD. In isolated cultured human VICs, application of Lp(a) generates superoxide production from mitochondria as indicated by an increase in mitoSOX™ Red fluorescence, with Lp(a) application subsequently inducing in vitro VIC calcification. Notably, MitoSOX™ Red fluorescence transiently increases after 1 h incubation with Lp(a), and then normalizes at 4 h. Thus, the significance of this observation is unclear given the temporary nature of the finding, although mitoROS might be important in the initiation of VIC calcification. Moreover, whether inhibiting mitoROS abrogates Lp(a)-induced VIC calcium deposition was not examined.

In isolated porcine aortic VICs, application of TNFα induces acute, pegan-SOD-sensitive increases in mitochondrial ROS indicated by an increase in MitoSOX Red fluorescence, with the peak effect observed at 30 min. Moreover, in ex vivo porcine aortic valve leaflets, 21-day treatment with TNFα likewise induces pegan-SOD-sensitive increases in mitoROS production in VECs located in the ventricular endothelium. Importantly, this study did not produce any direct experimental evidence implicating mitoROS as a propagator of CAVD and thus the observed increases in mitoROS may simply represent associations.

Myocardial biopsies from patients with AS demonstrate increased markers of the mitochondrial unfolded protein response, indicating a dysfunctional mitochondrial protein-folding environment. This environment is likely the result of cellular stress conditions, including up-regulated ROS and oxidative stress that results from and contributes to mitochondrial dysfunction in CAVD. Myocardial biopsies from patients with AS also demonstrate reduced expression of fatty acid translocase—a key enzyme involved in fatty acid oxidation, and the increased expression of glucose transporters 1 and 4. Decreases are also observed in the expression of the fatty acid binding proteins FABP and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase, and the oxidative phosphorylation protein ATP synthase. Complex I of the electron transport chain is also down-regulated. Together these changes suggest a metabolic shift from fatty acid to glucose utilization, and, more generally, suggest further evidence of general mitochondrial dysfunction in patients with CAVD. However, the extent to which this metabolic shift results from and/or contributes to mitoROS in initiating CAVD remains unclear with no direct data linking the two. Moreover, it is important to point out that these data derive from myocardial tissue alone and thus whether similar abnormalities occur in the aortic valve tissue of these patients likewise requires further investigation.

In primary human VICs obtained from patients with established AS undergoing valve replacement surgery, DRP1 immunoreactivity is detected in calcified valve tissue. Similarly, in cultured human VICs treated with OGM containing inorganic phosphate and L-ascorbic acid for three weeks, DRP1 mRNA is significantly increased. DRP1 siRNA reduces human osteogenic medium-induced VIC calcification, indicating an important role for this mitochondrial regulator protein in regulating VIC calcification in vitro. These findings together intimate that mitochondrial dysfunction is an important feature of CAVD.
4.8 Other sources of ROS in CAVD

Several studies have identified semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 as an additional deleterious source of ROS in CAVD. SSAO generates H2O2 from endogenous amines such as histamine and dopamine, with their activity and expression up-regulated in atherosclerosis, obesity, and diabetes.232-234 SSAO expression and activity are also increased in human CAVD where serum and valvular expression levels correlate with disease severity.232,233 Here, enzyme activity is up to seven times higher than it is in healthy parts of the same valves as assessed by H2O2 production following the application of the SSAO substrate benzylamine.234 In addition, a significant correlation of SSAO expression with oxidative stress is observed, where the enzyme is co-localized with calcified regions of aortic valve tissue. SSAO mRNA levels are positively correlated with mRNA levels of the NOX subunit p22phox and the nuclear enzyme poly(ADP-ribose) polymerase which is activated following DNA damage and oxidative stress.235 In addition, inhibition of SSAO activity with LJP1586 attenuates calcification induced by high concentrations of phosphate in primary cultures of aortic VICs isolated from aortic valves of CAVD patients.234

In bovine aortic VICs, application of LPS induces increased ALP expression and VIC calcification.236 This is associated with increased expression of xanthine oxidase (XOS), which, under oxidative stress, produces superoxide.237 Co-application of allopurinol which inhibits XOS, reverses LPS-induced ALP overexpression.236

5. Targeting ROS in CAVD

There is a major unmet clinical need for novel pharmacological treatments capable of preventing or slowing the progression of CAVD. Several avenues using existing therapies have failed to show benefit in large randomized controlled trials (RCTs) including treatment with statins, antihypertensives, and drugs targeting phosphate and calcium metabolism.113,117,244-246 This failure partially results from the fact that by the time patients present with CAVD, the multifactorial, and self-perpetuating cellular mechanisms driving the disease have already been set in motion.113,117,244-246 As described above, specific ROS sources and ROS-mediated signalling may represent novel therapeutic targets given their roles in the initiation and propagation of the cellular mechanisms driving CAVD. Proposed strategies for inhibiting ROS-induced oxidative stress either systemically or locally in CAVD are therefore outlined below and summarized in Table 1 and Figure 3.

5.1 Impairing lipid oxidation

As described, lipid oxidation is a key trigger of inflammation in the initiation of CAVD.248 Oxidized LDLs are increased in valves removed from patients with AS, with an association between the level of oxidized LDL and the extent and pace of aortic valve fibrosis and calcification.189,245,249-251 As carriers of oxidized phospholipids (OxPL), Lp(a) also have an important role in the initiation of inflammation seen in CAVD. Approximately one-third of patients with AS have elevated plasma Lp(a), with large genetic and cohort studies revealing that the higher the level, the faster CAVD progresses, with marked increases in the risk of requiring valve replacement or death from the disease.189,141,225,245,252,253

In vitro studies have demonstrated that LDL and Lp(a) oxidation promote the expression of osteogenic differentiation genes but also ROS-mediated VIC calcification. Isolated human aortic VICs cells incubated with either LDL or Lp(a) demonstrate calcification, with those treated with Lp(a) displaying a higher burden of calcium deposition and ROS formation.225 Moreover, progression of CAVD is significantly impaired in transgenic Ldlr-/- mice that express a single-chain variable fragment of E06, a natural antibody which binds to the phosphocholine headgroup of OxPL and blocks the uptake of oxidized low-density lipoprotein by macrophages.234

These data, therefore, suggest that diminishing the extent of lipid/phospholipid oxidation by lowering plasma LDL and/or Lp(a) levels might represent a therapeutic avenue for treating CAVD. Indeed, in Ldlr-/-ApoB100/100 mice, inactivation of the mttp gene significantly impairs hypercholesterolaemia-induced oxidative stress, thereby reducing aortic valve lipid deposition, osteogenic signalling, and valvular calcification.225 Nevertheless, despite promising associations between statin use and lower prevalence of CAVD in observational studies,256-262 RCT data demonstrate no benefit for statin use in CAVD.240,241,244-246,263-266 Randomization to statin use is not only of no benefit in halting the
progression of established CAVD but also does not reduce the incidence of CAVD in patients with no established diagnosis at the start of the clinical trials. In addition, as yet there are no RCT data on specific Lp(a)-lowering therapy, although an antisense oligonucleotide that specifically lowers Lp(a) levels is currently under investigation.

The synthetic compound probucol, purported to inhibit LDL oxidation, has also been proposed as a novel treatment for CAVD. Indeed, probucol has been clinically proven to arrest the progression of atherosclerosis in the vasculature and in coronary artery restenosis following angioplasty. However, it is now clear that probucol likely mediates most of its effects via the induction of HO-1, rather than through direct inhibition of lipid oxidation.

5.2 Antioxidants

Broad ROS scavenging with natural and synthetic ‘antioxidant’ compounds has been attempted by several groups for attenuating atherosclerosis and vascular calcification. These studies, reviewed extensively elsewhere, have investigated a variety of compounds, such as diosgenin, vitamin A–E, quercetin, 10-DHGD, and curcumin, each of which have been shown in vitro to scavenge ROS and/or up-regulate endogenous antioxidant mechanisms, subsequently attenuating inflammation and vascular calcification.

Moreover, several large observational studies have suggested an inverse relationship between dietary ‘antioxidant’ intake such as α-tocopherol, β-carotene, and vitamins C and E, with cardiovascular morbidity and mortality. However, meta-analyses of randomized control trial data on the effects of vitamins B, C, E, and S or β-carotene have found identical rates of cardiovascular morbidity and mortality in the placebo and antioxidant groups.

A number of reasons for these disappointing findings have been proposed including the inadequate length of follow-up periods and the dosing of antioxidants tested. In addition, given that ROS also mediate important physiological processes, generalized scavenging of ROS is unlikely to prove beneficial if it interrupts cellular homeostasis and cardiovascular physiology such as endothelial-mediated control of vascular tone by superoxide and hydrogen peroxide as well as platelet aggregation, angiogenesis, and immune cell activity. It is, therefore, plausible to hypothesize that the failure of these compounds in atherosclerosis and vascular calcification, that they are unlikely to prove beneficial for those with CAVD.

5.3 Enhancing SOD and catalase activity

Reductions in antioxidant enzyme levels are observed in calcified aortic valve leaflets. Adenoviral delivery of SOD or catalase significantly reduces ROS-induced human VIC DNA damage, osteoblast differentiation, and valvular calcification. Similarly, application of the cell-permeable polyethylene glycol-SOD (peg-SOD) or peg-catalase significantly decreases superoxide and H2O2 levels respectively in human stenotic and vascular calcification, that they are unlikely to prove beneficial for those with CAVD.

5.4 Increasing NO bioavailability

Several studies have attempted to reduce the overall burden of ROS within the aortic valve by increasing the bioavailability of NO. Increasing NO bioavailability not only reduces the burden of ROS but also regulates Notch1 signalling and its nuclear localization to reduce the expression of osteogenic markers in VICs.

In isolated porcine VICS, application of TGF-β1 induces superoxide production which partly mediates valve calcification. However, co-application with the NO donors DETA-NONOate and sodium nitroprusside (SNP) scavenges superoxide, reducing in vitro calcification. DETA-NONOate also inhibits OGM-induced VIC differentiation and matrix calcification in isolated porcine VICS. Moreover, pre-treatment with L-arginine, the precursor for NO synthesis, significantly attenuates the osteogenic differentiation of bovine aortic VICs exposed to the endotoxin LPS. In the presence of L-arginine, LPS-induced ALP expression and subsequent matrix calcification are reduced, alongside reductions in LPS-induced TNF-alpha, IL-6, and IL-1β expression. Pre-treatment with L-arginine also reduces xanthine oxidase expression, and markers of ECM remodelling including ADAMTSL4, basigin, and COL3A1.

Finally, in calcified ex vivo human aortic valves exposed to TNFα, co-treatment with B-H4 mitigates eNOS uncoupling, increasing NO bioavailability which reduces superoxide levels, thereby attenuates the expression of osteogenic genes.

The above findings support, at least in principle, the proposal that increasing NO bioavailability might represent a novel approach for treating and/or slowing the progression of CAVD. Nevertheless, there is currently no clinical trial evidence on the effectiveness of this approach. In addition, part of the pleiotropic nature of statins is their ability to increase NO bioavailability via the stabilization of eNOS mRNA and in a rabbit model of CAVD, statins reduce AV calcification via this mechanism. Given the aforementioned failure of statin therapy in clinical trials, different approaches to increasing NO bioavailability require further investigation. These might include organic nitrate therapy, administration of L-arginine or B-H4, or using the KATP channel opener nicorandil, which also possesses a nitric oxide moity. Renin-angiotensin system inhibitors such as ACE inhibitors might also slow the progression of CAVD by increasing NO bioavailability via up-regulating eNOS expression, reducing bradykinin breakdown, and by suppressing NOX-generated superoxide.
5.5 Inhibiting NOX2

Specific inhibition of only the deleterious sources of ROS in CAVD represents a more nuanced approach than the broad ROS scavenging approaches described above. To this end, inhibitors of NOX2 signalling have been used in animal models of CAVD, but with varying results. In porcine aortic valves, apocynin, which blocks phosphorylation of the obligatory NOX2 cystolic component p47phox,58,295,296 but may also have non-specific antioxidant activity, only partly reduces TNFa-induced increases in superoxide and hydrogen peroxide.209 This is in contrast to isolated mice aortic myofibroblasts where apocynin markedly impairs TNF- and IL-1β-induced NOX2 ROS generation, a finding that is recapitulated with antisense oligonucleotides targeted against NOX2.137

In hypercholesterolaemic LDLr-/-/apoB100/100 mice fed a western diet, pioglitazone reduces aortic valve osteogenic signalling, aortic valve calcification, and improves cusp mobility, possibly due to a reduction of inflammation and oxidative stress that is associated with down-regulated NOX2 expression.223 The specific contribution of NOX2 to this improvement is not however clear, given that multiple other inflammatory mediators including TNF and IL-6 are also down-regulated by pioglitazone therapy.222

Interestingly, in isolated porcine VICs, treatment with celastrol, a pentacyclic triterpene naturally extracted from the roots of Tripterygium wilfordii, and a potent NOX inhibitor with higher potency against NOX2,297 decreases NOX2 and Runx2 protein levels, VIC ROS levels, and reduces calcium deposition.13 Pro-osteogenic accumulation of β-catenin is also reversed with celastrol, impairing NOX2-mediated inactivation of GSK3β, which in turn enables β-catenin degradation. These findings are replicated when isolated aortic VICs are transfected with adenoviral vectors expressing a short hairpin sequence targeted against NOX2.223 An important observation given that NOX-independent effects of celastrol are also described in the cultured cell line PLB-985.298 Of note, celastrol may have other global beneficial effects, such as anti-obesity and anti-inflammation properties,299,300 which are comorbidities of CAVD likewise characterized by an increase in ROS production mediated, at least in part, by NOX2 activation.17

Moreover, in a rabbit model of CAVD fed with HC + VitD, dietary celastrol markedly alleviates the degree of AS and improves cardiac dilatation, contractility, and function.13 Celastrol treatment also improves rabbit AV fibro-calcification, as indicated by decreases in collagen deposition, the expression of fibronectin, OPN, and the number of calcium deposits.13

Recently, celastrol has also been shown to suppress Runx2 and OPN expression and reverse calcification in cultured porcine aortic VICs exposed to a medium containing high concentrations of calcium and phosphate.301 Here, celastrol reverses calcium-induced up-regulation of BMP2-BMPRII-Smad1/5 and Wnt/β-catenin signalling pathways, preventing their respective nuclear translocation and modulation of osteogenic gene expression. These findings are replicated in vivo by intraperitoneal injection of celastrol in mice fed adenine to induce CKD and intraperitoneal vitamin D to induce valvular calcification.301 However, NOX2 involvement in this model of CAVD remains to be investigated.301

Together, these data suggest that NOX2 represents a novel therapeutic target in the treatment of CAVD with further work required to delineate its role in human CAVD. Given the role played by NOX2 in neutrophil function,302 future work targeting NOX2 in CAVD will need to consider whether this compromises innate immune responses, although previous work demonstrates that this only occurs with substantial NOX2 inhibition,303 thus safe therapeutic targeting of cardiovascular NOX2 could be feasible.

6. Conclusions and perspectives

CAVD is the end result of multiple active cellular and molecular mechanisms converging on the phenotypic change of aortic VICs. Oxidative stress is an important driver of these processes and targeted inhibition of the deleterious sources of ROS, particularly NOX2 and uncoupled eNOS, represent important avenues in the search for novel therapies. This targeted approach theoretically avoids interfering with the wide variety of normal cellular processes dependent on ROS signalling and may therefore yield better results for preventing or slowing the progression of CAVD than approaches non-specifically inhibiting redox signalling trialled thus far. Notably, in cancer medicine, a number of drugs targeting excessive ROS signalling that broadly up-regulate antioxidant mechanisms have thus far proved unsuccessful with unexpected toxic side effects often observed in normal tissues.304

Presently there is a lack of in vivo and clinical data on human CAVD investigating roles and sources of adverse ROS signalling driving the disease. Specifically, there is a need for adequately powered cohort observational studies that might establish if there is a relationship between the extent of valvular oxidative stress, the pace of disease progression, and its relation to clinical severity. Novel imaging modalities that assess the in vivo burden of valvular oxidative stress using redox-sensitive probes may therefore represent important tools.305,306 In addition, larger scale in vitro studies examining roles and sources of ROS in human CAVD will also be necessary given the relatively small number of patients recruited to each of the studies described in this review. These in vitro studies may wish to make use of novel, and more-specific fluorescent ROS probes307 and ROS-targeting nanotechnologies,308,309 when exploring roles of ROS signalling in human CAVD.

Despite evidence of a role for mitoROS in a range of cardiovascular diseases,15,27,105 there remains no direct evidence of a pathophysiological role for these in CAVD. Future work might seek to identify whether mitoROS indeed play a role and whether targeting these ROS with recently developed site-specific mitochondrial ROS inhibitors, such as MitoQ effects the development and/or progression of the disease whilst maintaining the range of normal metabolic functions reliant on normal levels of mitoROS.310 Importantly, excessive ROS production by non-mitochondrial sources (such as uncoupled NOS enzymes or NOXs) can trigger mitochondrial dysfunction and further ROS production—sometimes termed ROS-induced ROS release.311,312 Therefore, further work is needed to explore the cross-talk between ROS at distinct subcellular compartment in aortic valve cells and its contribution to CAVD.

Finally, it would appear likely that any effective therapy preventing or slowing the progression of CAVD needs to be initiated early in the evolution of the disease, rather than at the stage where a patient presents with severe AS. Identifying and targeting pivotal molecular pathways essential for these in CAVD will prove challenging, and may require the use of state-of-the-art technologies, such as network medicine analysis and multi-omics mapping that generate transcriptional and protein expression signatures for the different stages of CAVD.113 Indeed, the feasibility of this approach has recently been demonstrated for CAVD,314 potentially an important step in characterizing the large number of cellular and molecular changes occurring as the disease develops and progresses.
Conflict of interest: none declared.

Funding
This study was supported by the British Heart Foundation (PG/17/39/33027 to M.Z.; CH/1999001/11735 to A.M.S.), the National Natural Science Foundation of China (81470506), and Key Research Project of the Heart Center of Xinhua Medical University (2017360).

References
1. Lindman BR, Clavel MA, Matheu P, Jung B, Lancellotti P, Otto CM, Pibarot P. Calcific aortic stenosis. Nat Rev Dis Prim 2016;2:16006.
2. Coffey S, Cox B, Williams MA. The prevalence, incidence, progression, and risks of aortic valve sclerosis: a systematic review and meta-analysis. J Am Coll Cardiol 2014;63:2852–2861.
3. Eveborn GW, Schirmer H, Heggelund G, Lunde P, Rasmussen K. The evolving epidemiology of valvular aortic stenosis. The Tromsø Study. Heart 2013;99:396–400.
4. Nikomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Incidence and progression of aortic valve calcium in the multi-ethnic study of atherosclerosis (MESA). Am J Cardiol 2010;105:701–708.
5. Katz R, Wong ND, Kronmal R, Takasu J, Nishimura RA, O’Brien KD. Incidence and progression of aortic valve calcium in the elderly in Iceland and predictions for the coming decades: the AGES-Reykjavik study. Int J Cardiol 2014;176:916–922.
6. Owens DS, Katz R, Takasu J, Kronmal R, Budoff MJ, O’Brien KD. Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in themulti-ethnic study of atherosclerosis. Circulation 2006;113:2113–2119.
7. Hutcheson JD, Aikawa E, Merryman WD. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol 2014;11:218–231.
8. Weiss RM, Ohashi M, Miller JD, Young SG, Heistad DD. Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation 2006;114:2065–2069.
9. Liberman M, Bassi E, Martinatti MK, Lario FC, Pomerantzeff PM, Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pea-Silva R, Heistad DD. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol 2008;28:463–470.
10. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pea-Silva R, Heistad DD. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol 2008;52:843–850.
11. Branchetti E, Sanger R, Poggio P, Grau JB, Patterson-Fortin J, Bavaro JE, Chomy M, Lai E, Gorman RC, Levy RJ, Ferrari G. Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler Thromb Vasc Biol 2013;33:666–674.
12. Liu H, Wang L, Pan Y, Wang X, Ding Y, Zhou C, Shah AM, Zhao G, Zhang M. Celastrol alleviates aortic valve calcification via inhibition of NADPH oxidase 2 in valvular interstitial cells. JACC Basic Trans Sci 2020;5:35–49.
13. Ses H, Jones DP. Reactive oxygen species (ROS) as a pleotropic physiological signaling agent. Nat Rev Mol Cell Biol 2006;7:413–420.
14. Wilcox JN, Subramanian RR, Sundell CL, Ross Tracey W, Pollock JS, Harrison DG, Marsden PA. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1997;17:2479–2488.
15. Tiefenbacher CP, Bleeker T, Vahli C, Amann K, Vogt A, Kübler W. Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in ath- erosclerosis. Circulation 2011;123:2172–2179.
16. Zhou ZW, Xie XL, Zhou SF, Li CM. Generation of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EAhy926. Eur J Pharmacol 2012;697:85–90.
17. Hattori Y, Hattori S, Wang X, Sato H, Nakashiki N, Kashi K. Oral administration of tetrahydrobiopterin slows the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005;25:131–136.
18. Kobayashi T, Kondoh K, Suzuki H, Nakamura M, Fujiwara K, Asahi M. Consequences of oxidant stress in vascular and metabolic diseases. Jpn Circ J 2010;74:131–142.
19. Wilcox JN, Subramanian RR, Sundell CL, Ross Tracey W, Pollock JS, Harrison DG, Marsden PA. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1997;17:2479–2488.
20. Tiefenbacher CP, Bleeker T, Vahli C, Amann K, Vogt A, Kübler W. Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in ath- erosclerosis. Circulation 2011;123:2172–2179.
21. Zhou ZW, Xie XL, Zhou SF, Li CM. Generation of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EAhy926. Eur J Pharmacol 2012;697:85–90.
22. Weidig P, McMaster D, Bayraktutan U. High glucose mediates pro-oxidant and anti- oxidant enzyme activities in coronary endothelial cells. Diabetes Obes Metab 2004;6:32–44.
23. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997;96:25–28.
24. Moens AL, Kietzios D, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011;51:559–563.
25. Mønsted T, Gori T, Keaney JF, Maack C, Diabber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur J Heart J 2015;36:555–564.
26. Doi ND, Ren J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul Pharmacol 2012;57:168–172.
27. Silberman GA, Fan THM, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulton BM, Widder J, Freud J, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC.
Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 2012; 121:519–528.

54. Lambert JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4:181–189.

55. Brown DL, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med 2009; 47:1239–1253.

56. Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 2003; 35:1105–1115.

57. Ambasta RK, Kumar P, Griendling KK. Schmidt HHHW, Dikalova A, Seidel-Rogol B, Lasseigue B, Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative and inflammatory effects and endothelial-mesenchymal transition. Autophagy 2015; 11:239–1253.

58. Zeng C. Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. Atherosclerosis 2018; 298:271–281.

59. Wang M, Murdoch CE, Brewer AC, Schroeder K, Shah AM. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. Eur Heart J 2016; 37:288–294.

60. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lasseigue B, Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative and inflammatory effects and endothelial-mesenchymal transition. Autophagy 2015; 11:239–1253.

61. Xu S, Chamseddine AH, Carrell S, Miller FJ. Nox4 NADPH oxidase contributes to protective reactive oxygen species generation. Circ Res 2012; 110:1217–1225.

62. Langbein H, Brunson C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Zeng C. Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. Atherosclerosis 2018; 298:271–281.

63. Cyclin D1, Brewer AC, Brown DI, Nabel EG, Griendling KK, Schmidt HHHW, Dikalova A, Seidel-Rogol B, Lasseigue B, Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative and inflammatory effects and endothelial-mesenchymal transition. Autophagy 2015; 11:239–1253.
100. Maack C, Dabeil Er, Hohl M, Schaefers HJ, Boehm M. Endogenous activation of mito-
chondrial KATP channels protects human failing myocardium from hydroxyl radical-
induced stunning. J Am Coll Cardiol 2009;55:811–817.
101. Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG.
Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase func-
tion and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 2006;
281:2061–2070.
102. AkaFG, Aon MA, Tomaselli GF, O’Rourke B. The mitochondrial origin of posti-
schismic arrhythmias. J Clin Invest 2005;115:3527–3535.
103. Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury.
Cardiovasc Res 2006;70:181–190.
104. Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation.
Circ Res 2014;114:524–537.
105. Wang Y, Wang W, Wang N, Tall AR. Tabas I. Mitochondrial oxidative stress pro-
motes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler-
Thromb Vasc Biol 2012;32:99–e107.
106. Liao X, Szufranczyck JC, Wang Y, Subramanian M, Brown K, Patterson JS, Robbins J,
Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced ath-
erosclerosis. Cell Metab 2012;15:545–553.
107. Wang Y, Wang GZ, Rabivochts PS, Tabas I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ Res 2014;114:421–433.
108. Mercier JY, Yu E, Figueroa KK, Prine TA, Griffin JL, Massodi M, Vidal-Puig A,
Murphy MP, Bennett MR. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM−/+ApoE−/− mice. Free Radic Biol Med 2012;52:841–849.
109. Gomez-Stallons MV, Trettet JT, Hassel K, Gonzalez-Ramos O, Amofa D, Ollberding
M. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase func-
tion in aortic valve myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve disease. Arterioscler Thromb Vasc Biol 2014;34:2387–2393.
110. Cho KL, Sakuma I, Sohn I, Jo SH, Koh KK. Inflammatory and metabolic mechanisms underlying the aortic calsequestrin disease. Atherosclerosis 2016;270:60–65.
111. Patawe NY, Baker FG, Younes MR. Calculation in aortic stenosis: the skeleton-
key. J Am Coll Cardiol 2015;66:561–577.
112. Towler DA. Molecular and cellular aspects of aortic valve calcification. Circ Res 2013;113:198–208.
113. Bowler MA, Merriman WD. In vitro models of aortic valve calcification: solidifying a system. Cardivas Pathol 2015;2:4–10.
114. Alushi B, Curini L, Christpher MR, Grubitzch H, Landmesser U, Amedei A, Lauten A.
Calcific aortic valve disease: natural history and future therapeutic strategies. Front Pharmacol 2020;11:685.
115. Goody PR, Hosen MR, Christman D, Nieppmann ST, Zietzer A, Adam M, Bonner F,
Zimmer S, Nickeng G, Jansen F. Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol 2020;40:885–900.
116. Rajamannan NM, Evans F, Akaiwa E, Grande-Allen KJ, Demer LL, Heistad DD,
Simmons CA, Masters KS, Mathieu P, O’Brien KD. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute aortic stenosis working group. Circulation 2011;124:1783–1791.
117. Otto CM, Kuusisto J, Reichenbach DD, Gown AM. Calcific aortic valve disease: anatomical and biological considerations. Circulation 1994;90:844–853.
118. Otto CM, Reichenbach DD, Marcevican JJ, Kuusisto J, Alpers CE, Otto CM.
Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘de-
gerative’ valvular aortic stenosis. Circulation 1994;90:165–168.
119. Rajamannan NM, Bosse Y, Miqdad A, Fournier D, Pepin A, Pibarot P. Refining molecular pathways leading to calcific aortic valve disease by studying expression gene profile of normal and calcified stenotic human aortic valves. Circ Cardiovasc Genet 2007;2:1489–1499.
120. Syva¨Ranta S, Helske S, Laine M, Lappalainen J, Kupari M, Ma ¨Yra¨Npa¨A¨ MI, Lindstedt
KA. Aortic valve disease. Vascular endothelial growth factor-secretin mast cells and myofi-
brasts: a novel self-perpetuating angioimyogenic pathway in aortic valve disease. Arterioscler Thromb Vasc Biol 2010;30:1220–1227.
121. Mazzone A, Epistatou MC, Caterina R, De Storti S, Vittorini S, Sbrana S, Sannetti J,
Bevilacqua S, Glauber M, Biagini A, Tanganelli P. Neointimal activation, T-lymphocyte in-
filtration, and heat shock protein-60 are biological hallmarks of an immunomodulated inflammatory process in end-stage calcific aortic valve stenosis. J Am Coll Cardiol 2004;43:1670–1676.
122. Ghasias NK, Foley JB, O’Brien DS, Crean P, Kelleher D, Walsh M. Adhesion mole-
cules in nonaortic valve disease: endothelial expression, serum levels and effects of valve replacement. J Am Coll Cardiol 2000;36:2527–2562.
123. New SEP, Akaiwa E. Molecular imaging insights into early inflammatory stages of ar-
terial and aortic valve calcification. Circ Res 2011;108:1381–1391.
124. Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells.
J Cell Biol 2005;169:921–933.
125. Rajamannan NM, Bonow RO, Rahimtoola SH. Calcific aortic stenosis: an update.
J Heart Valve Dis 2011;20:1151–1159.
126. Wallby L, Janerot-Sjo¨berg B, Steffensen T, Sj¨o¨berg KA, Kovanen PT. Vascular endothelial growth factor-secretin mast cells and myofib-
brasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler Thromb Vasc Biol 2010;30:1220–1227.
127. Vasan R, Tsao JS, Behrman A, Gruntza K, Cheng SL, Towler DA. TNFR1-activated reactive oxidative species signals up-regulate osteogenic Msn2 proteins in aortic myofibroblasts. Endocrinology 2012;153:3897–3906.
128. Alves J, Bruette G, Grang M, Greco G, Benedetto A, Mori G, Culici S, Zalone A,
Parella D, Grano M. Aortic valvular interstitial cells apoptosis and calcification are mediated by TNFR-related apoptosis-inducing ligand. Int J Cardiol 2013;169:296–304.
129. Akaiwa E, Nahrendorn M, Figueiredo JR, Swirski FK, Shatland T, Kohler RH, Jaffer
FA, Akaiwa M, Weisleder R. Osteogenesis associates with inflammation in early-
stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007;116:
2841–2850.
130. Bofta MB, Koschmich ML. Oxidized phospholipids as a unitying theory for lipopro-
tein(s) and cardiovascular disease. Nat Rev Cardiol 2019;16:305–318.
131. Tsimikas S. Potential causality and emerging medical therapies for lipoprotein(a) and its associated oxidized phospholipids in calcific aortic valve stenosis. Circ Res 2019;124:605–415.
132. Rajamannan NM, Bonow RO, Rahimtoola SH. Calcific aortic stenosis: an update.
Nat Clin Pract Cardiovasc Med 2007;4:254–262.
133. Garg V, Muth AN, Ransom JR, Schultemass KM, Barnes R, King IG, Grossfeld PD,
Srinivasata D. Mutations in NOTCH1 cause aortic valve disease. Nature 2005;437:
270–274.
134. Nigam V, Srinivasata D. Notch1 regulates osteogenic pathways in aortic valve cells. J
Cell Biol 2009;47:828–834.
135. Nagy E, Andersson DC, Caidahl K, Eriksson MJ, Eriksson P, Franco-Cereceda A,
Hansson GK, Back M. Upregulation of the S-lexipogenase pathway in human aortic valves correlates with severity of stenosis and leads to leukotriene-induced damage on valvular myofibroblasts. Circulation 2011;123:1316–1325.
136. Albanese I, Yu B, Al-Kindi H, Barratt B, Ott L, Al-Raiﬁ M, Varennnes B, De Shum-
ck S, Cerruti M, Gourgos O, Rhaeuma E, Tarﬁd JC, Schwartani A. Role of nonna-
canonical Wnt signaling pathway in human aortic valve calcification. Arterioscler Thromb Vasc Biol 2017;37:543–552.
137. O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Gachelli C, Alpers CE, Otto
CM. Osteopontin is expressed in human aortic valvular lesions. Circulation 1995;92:
2163–2168.
148. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orzeszak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification associated with an osteoblast phenotype. Circulation 2003;107:2181–2184.

149. Kaden JJ, Kliic R, Sankocli A, Hagi S, Lang S, Hoffmann U, Brueckmann M. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med 2005;16:869–872.

150. Yu Z, Seya K, Daitoku K, Motomura S, Fukuda I, Furukawa KI. Tumor necrosis factor-alpha accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther 2013;347:16–23.

151. Yang X, Jeong X, Su M, Mauchley DC, Ao L, Cleveland JC, Fullerton DA. Bone morphogenetic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg 2009;138:1008–1015.

152. Guaque-Olarte S, Messika-Zeitoun D, Droit A, Lamontagne M, Tremblay-Marchand J, Lavoe-Charland E, Gaudreault N, Arsenault BJ, Dube M-P, Tardif J-C, Desprejs J, Goudreau N, Arsenault BJ, Despres J. Calcium signaling pathway genes RUNX2 and LACHNIC are associated with calcific aortic valve disease. Circ Cardiovasc Genet 2015;8:812–822.

153. Husseini D, El Boulanger MC, Mahmut A, Bouchareb R, Laflamme MH, Fournier D, Weiss RM, Lund DD, Chu Y, Brooks RM, Zimmerman KA, Accaoui R, El Davis MK, Rajamannan NM. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia and therapeutic approaches. J Mol Cell Cardiol 2016;99:1–100.

154. Grau JB, Poggio P, Sainger R, Vernick WJ, Seefried WF, Branchetti E, Field BC, Barnes MA, Ferrari G. Analysis of osteopontin levels for the identification of asymptomatic patients with calcific aortic valve disease. Ann Thorac Surg 2012;93:79–86.

155. Caira FC, Stock SR, Gleason TG, McCoy EG, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 2006;47:1707–1712.

156. Li X, Lim J, Lu J, Pedego TM, Demer L, Tintut Y. Protective role of Smad6 in inflammation-induced valvular cell calcification. J Cell Biochem 2011;116:2354–2364.

157. Derbali H, Bossé Y, Côté N, Pibarot P, Audet A, Pépin A, Arsenault B, Couture C, Després JP, Mathieu P. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via toll-like receptor 2. J Am Heart Assoc 2010;9:e3638–2645.

158. Zeng Q, Song R, Ao L, Weyant MJ, Lee J, Xu D, Fullerton DA, Meng X. Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of erk1/2 and nuclear factor-kB activation. Arterioscler Thromb Vasc Biol 2013;33:1580–1590.

159. Acharya A, Hans CP, Koenig SN, Nichols HA, Bouchareb R, Fournier D, Merrill WH, Koenig SN, Nichols HA, Bouchareb R, Fournier D, Merrill WH, Yang X, Fullerton DA, Su X, Ao L, Cleveland JC, Fullerton DA. Bone morphogenetic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg 2009;138:1008–1015.

160. Acharya A, Hans CP, Koenig SN, Nichols HA, Bouchareb R, Fournier D, Merrill WH, Yang X, Fullerton DA, Su X, Ao L, Cleveland JC, Fullerton DA. Bone morphogenetic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells obtained from patients with calcific aortic stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther 2013;347:16–23.

161. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orzeszak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification associated with an osteoblast phenotype. Circulation 2003;107:2181–2184.
osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice. Proc Natl Acad Sci U S A 2017; 114:1631–1636.

195. Aikawa E, Nahrendorf M, Sorovik D, Lok VM, Jaffer FA, Akawa M, Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 2007;115:377–386.

196. Gunduz H, Akdemir R, Binak E, Tamer A, Kesar N, Uyan C. Can serum lipid and CRP levels predict the ‘severity’ of aortic valve stenosis? Acta Cardiol 2003;58:321–326.

198. Dahal S, Huang P, Murray BT, Mahler GJ. Endothelial to mesenchymal transformation in human aortic valve disease. Am J Pathol 2016;186:1746–1757.

199. Acquaye RA, Gould ST, Hajj GP, Sun H, Ni B, Shao Y. Integrated bioinformatics analysis predicts the role of oxidative stress in Lrp5 bone formation. Cardiovasc Pathol 2011;20:168–176.

200. Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Am J Heart Fail Circ Physiol 2014;306:H1302–H1313.

201. Rajamanickam NM. Bicuspid aortic valve disease: the role of oxidative stress in Lrp5 bone formation. Cardiovasc Pathol 2011;20:168–176.

202. van de Vooren EJ, Huntley GD, Butcher J. Endothelial-derived oxidative stress drives myofibroblasts. J Cell Physiol 2003;198:213–219.

203. Das D, Holmes A, Murphy GA, Mishra K, Rosenkranz AC, Horowitz JD, Kennedy NA, Rudd JHF, Newby DE. Assessment of valvular calcification and inflammation by poly(ADP-ribose) polymerase (PARP-1) in aortic valve lesions in mice. J Am Coll Cardiol 2012;60:1723–1729.
observation: measuring effects of rosvastatin (Astronomer) trial. Circulation 2010; 121:56–61.

Linden-Vidé, Yaf Kamp DJ, Van Balsem D, Desmet PV, Burghuis F, Der Der, MJ. Witsenburg M, Cuyvers JAAE, Lindemans J, Takkenberg JM, Roos-Hesselink JW. Effects of rosvastatin on progression of stenosis in adult patients with congenital aortic stenosis (PROCAS Trial). Am J Cardiol 2011;108:265–271.

Arsenault BJ, Boekholt SM, Mora S, Deminco DA, Bao W, Tarid JC, Amarenco P, Pedersen T, Barter P, Watters DI. Impact of high-dose atorvastatin therapy and clinical factors on incident aortic valve stenosis in patients with cardiovascular disease (from TNT, IDEAL, and SPARC). Am J Cardiol 2014;113:1378–1382.

Viney NJ, Capellevjon JC, van Geery RS, Xia S, Tarni JR, Yu RZ, Marcovina SM, Hughes SG, Graham MJ, Crooke RM, Crooke ST, Witztum JL, Stroes ES, Tsimikas S. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipopro-tein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 2014;383:2329–2338.

Stacker R. Molecular mechanisms underlying the antiatherosclerotic and antiinflammatory effects of propyl, succinilpropyl, and other propyl analogue curron. Opiol Lipid 2009;52:227–235.

Lönn ME, Dennis JM, Stocker R. Actions of antioxidants in the protection against atherosclerosis. Free Radic Biol Med 2012;53:863–884.

Levonen AL, Vahlahangis E, Koponen JK, Yla-Herttuala S. Antioxidant gene therapy for cardiovascular disease: current status and future perspectives. Circulation 2008; 117:3142–2150.

Tardif JC, Côté G, Lepérance J, Bourassa M, Lambert J, Doucet S, Bilodeau L, Nattel S, Guise PD. Procalcitonin and multivitamins in the prevention of restenosis after coronary angioplasty. N Engl J Med 1999;341:365–372.

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in random- ized trials of antioxidant supplements for primary and secondary prevention: sys- tematic review and meta-analysis. J Am Med Assoc 2007;297:842–857.

Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardio 2008;101: 140–199.

Wu BJ, Katir K, Witting PK, Beck K, Chey K, Li C, Croft KD, Moni TA, Tanous D, Adams MR, Lau AK, Stocker R. Antioxidants protect from atherosclerosis by a hemocyte oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med 2004;200:1157–1172.

Chao CT, Yeh HY, Tsai TT, Chuang PH, Yuan TH, Huang JW, Chen HW. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascu- lar calcification. Cell Death Discov 2015;9:145.

Knekt P, Reunanen A, Juvonen R, Seppänen R, Heliovaara M, Aromaa A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 1994;139:1180–1189.

Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther 2010;17: e56–e65.

Bleys J, Miller ER, Pastor-Barriuso R, Appel LJ, Guallar E. Vitamin-mineral supplementa- tion and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2006;84:880–887.

Vivekananthan DP, Penn MS, Sapp SK, Hus A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003;362:2107–2123.

Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant vitamin E, carotenoids, and cardiovascular disease: a meta-analysis of randomized controlled trials. Am J Epidemiol 2004;159:1190–1198.

Rajamannan NM. Rosuvastatin affecting aortic valve endothelium to slow the pro- gression of aortic stenosis. Am J Cardiol 2009;103:1922–1931.

Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, LaHaye S, Tao G, Schuster M, Tardif JC. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis a meta-analysis of the randomized placebo-con- trolled trials of rosuvastatin (Astronomer) trial. Circulation 2010;121:2034–2044.
290. Ancion A, Tridetti J, Nguyen Trung M-L, Oury C, Lancellotti P. A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: focus on perindopril. Cardiol Ther 2019;8:179–191.

291. Goel SS, Kleiman NS, Zoghbi WA, Reardon MJ, Kapadia SR. Renin-angiotensin system blockade in aortic stenosis: implications before and after aortic valve replacement. J Am Heart Assoc 2020;9:e016911.

292. Comini L, Bachetti T, Cargnoni A, Bastianon D, Gitti GL, Ceconi C, Ferrari R. The role of ROS in CAVD. Antioxidants Redox Signal 2017;26:262–273.

293. Wassmann S, Hilgers S, Laufs U, Bo¨hm M, Nickenig G. Angiotensin II type 1 receptor blockade in aortic stenosis: implications before and after aortic valve replacement. Trends Endocrinol. Metab 2019;30:507–520.

294. Bull S, Loudon M, Francis JM, Joseph J, Gerry S, Karamitsos TD, Prendergast BD, Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in cardiovascular disease? Trends Endocrinol. Metab 2014;25:452–463.

295. Stolj J, Hiltermann TJ, Dijkstra JR, Verhoeven AJ. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 1994;11:95–102.

296. Jaquet V, Marcoux J, Forest E, Leidal KG, McCormick S, Westermaier Y, Perozzo R, Plastre O, Fioraso-Cartier L, Diebold B, Scapezza L, Nauseef WM, Fieschi F, Krause KH, Bedard K. NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action. Br J Pharmacol 2011;164:507–520.

297. Rees J, Massan M, Marchese S, Cecconi M, Astburn FS, Corana F, Valiente S, Mai A, Magnani F, Mattevi A. A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action. Redox Biol 2020;32:101466.

298. Liu J, Lee J, Hernandez MAS, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell 2015;161:999–1011.

299. Hu M, Luo Q, Alingtonbke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, Ye X, Cai L, Zhang F, Chen H, Jiang F, Fang H, Yang S, Liu J, Diaz-Meco MT, Su Y, Zhou H, Moscat J, Lin X, Zhang X, K. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell 2017;66:141–153.e6.

300. Su Z, Zong P, Chen J, Yang S, Shen Y, Lu Y, Yang C, Kong X, Sheng Y, Sun W. Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling. J Cell Mol Med 2020;24:12476–12490.

301. Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem 2016;85:765–792.

302. Kuhrs DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marziano BE, Uzel G, DeRavin SS, Priel DAL, Soule BP, Zarember KA, Malech HL, Holland SM, Gallin JJ. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 2010;363:2600–2610.

303. Kirkpatrick DL, Powis G. Clinically evaluated cancer drugs inhibiting redox signaling. Antioxidants Redox Signal 2017;26:877–900.

304. Shah SA, Cui SX, Winters CD, Sano S, Wang Y, Daviak H, Lear J, Walsh K, French BA, Epstein FH. Nitroxide-enhanced MRI of cardiovascular oxidative stress. NMR Biomed 2020;33:e4359.

305. Lazarova D, Semkova S, Zlateva G, Tatsuya H, Aoki I, Bakalova R. Quantum sensors to track total redox-status and oxidative stress in cells and tissues using electron-paramagnetic resonance, magnetic resonance imaging, and optical imaging. Anal Chem 2021;93:2828–2837.

306. Fernández-Puente E, Sánchez-Martín MA, Andrés J, Rodríguez-Izquierdo L, Méndez L, Palomero J. Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Sci Rep 2020;10:871.

307. Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 2019;119:4881–4985.

308. Adhihini A, Mondal S, Darbar S, Kumar Pal S. Role of nanomedicine in redox mediated healing at molecular level. Biomol Concepts 2019;10:160–174.

309. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2016;17:863–886.

310. Zorov DB, Jabezova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014;94:909–950.

311. Koju N, Taleb A, Zhou J, Lv G, Yang J, Cao X, Lei H, Ding Q. Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomol Pharmacother 2019;111:1478–1498.

312. Barabási AL, Guibas L, Nosalgao J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2015;16:56–68.

313. Schlotter F, Halu A, Goto S, Blaser MC, Body SC, Lee LH, Higashi H, Delaughter DM, Hutcheson JD, Vyss P, Pham T, Rogers MA, Sharma A, Seidman CE, Loscalzo J, Seidman JG, Aikawa M, Singh SA. Aikawa E. Spatiotemporal multi-omics mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Circulation 2018;138:377–393.