PB-Motif—A Method for Identifying Gene/Pseudogene Rearrangements With Long Reads: An Application to CYP21A2 Genotyping

Zachary Stephens¹, Dragana Milosevic², Benjamin Kipp², Stefan Grebe², Ravishankar K. Iyer¹ and Jean-Pierre A. Kocher*²

¹ Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
² Mayo Clinic, Rochester, MN, United States

Long read sequencing technologies have the potential to accurately detect and phase variation in genomic regions that are difficult to fully characterize with conventional short read methods. These difficult to sequence regions include several clinically relevant genes with highly homologous pseudogenes, many of which are prone to gene conversions or other types of complex structural rearrangements. We present PB-Motif, a new method for identifying rearrangements between two highly homologous genomic regions using PacBio long reads. PB-Motif leverages clustering and filtering techniques to efficiently report rearrangements in the presence of sequencing errors and other systematic artifacts. Supporting reads for each high-confidence rearrangement can then be used for copy number estimation and phased variant calling. First, we demonstrate PB-Motif's accuracy with simulated sequence rearrangements of PMS2 and its pseudogene PMS2CL using simulated reads sweeping over a range of sequencing error rates. We then apply PB-Motif to 26 clinical samples, characterizing CYP21A2 and its pseudogene CYP21A1P as part of a diagnostic assay for congenital adrenal hyperplasia. We successfully identify damaging variation and patient carrier status concordant with clinical diagnosis obtained from multiplex ligation-dependent amplification (MLPA) and Sanger sequencing. The source code is available at: github.com/zstephens/pb-motif.

Keywords: long reads, pseudogene, structural variation, congenital adrenal hyperplasia, CYP21A2, bioinformatics, computational biology

1. INTRODUCTION

Next-generation sequencing technologies have become ubiquitous in a wide range of diagnostic assays at many clinical laboratories. Targeted capture of gene regions, whole exome sequencing, and whole genome sequencing are increasingly used for patient genotyping. While conventional short read platforms are the most widely used for reporting clinically relevant genetic variation, they are poorly equipped to characterize regions of the genome with low complexity, large repeated elements, or with structural organization significantly different from that of the reference genome (Lee and Schatz, 2012; Mandelker et al., 2016).

Many genes are difficult to characterize due to the presence of highly homologous pseudogenes. Pseudogenes are nonfunctional genomic DNA sequences with high similarity to functional genes,
often originating from retrotransposition of mRNA or from ancestral duplications of functional genes (Bischof et al., 2006). Proximal gene/pseudogene pairs are of particular interest because rearrangements between the two regions, typically from unequal crossing over or gene conversion events, can render the gene nonfunctional (Bischof et al., 2006). This mechanism has been shown to be a driver in many diseases, including Lynch syndrome (van der Klift et al., 2010), Hunter syndrome (Zhang et al., 2011), chronic granulomatous disease (Moens et al., 2014), among others (Bischof et al., 2006; Sen and Ghosh, 2013).

Studies in genome “mappability” have highlighted the difficulty of uniquely aligning short reads to different genes (Derrien et al., 2012; Lee and Schatz, 2012; Li et al., 2014; Stephens and Iyer, 2018). This challenge has been mostly overcome with the development of longer read sequencing platforms, such as those from Oxford Nanopore or PacBio’s Single Molecule Real Time (SMRT) technologies. These platforms are capable of generating reads long enough to uniquely map many gene/pseudogene regions. Despite this, comprehensive genotyping (including variant phasing and copy number estimation) is still complex and labor intensive due to the increased frequency of structural rearrangements in these regions (Sen et al., 2010). Conventional variant and structural variant calling workflows often perform poorly in these regions, with multi-mapped and mismapped reads hindering the detection of breakpoints and variant sites. This challenge is further complicated by copy number variation and gene/pseudogene chimeras which are difficult to accurately align in the presence of sequencing errors.

To address this challenge, we present PB-Motif, a new methodology leveraging long reads for the de novo identification of arbitrary structural rearrangements confined to a pair of genomic regions. PB-Motif is applicable to PacBio long reads from targeted sequencing, e.g., by capture-probes, PCR, or other methods to selectively enrich regions of interest. We demonstrate PB-Motif’s effectiveness on both simulated data and real clinical samples. We use PB-Motif as part of a diagnostic assay for 21-hydroxylase-deficient congenital adrenal hyperplasia (21-OHD CAH) using PacBio long reads. Specifically, we sequenced 26 samples and reported structural rearrangements and small variants known to affect CYP21A2 function. The copy number estimates and phased variants were concordant with results from multiplex ligation-dependent amplification (MLPA) and Sanger sequencing. Based on these results, we believe this PB-Motif could be widely applied to many clinically relevant gene/pseudogene pairs in the human genome that cannot be easily characterized with short reads.

2. MATERIALS AND METHODS

PB-Motif leverages polymorphic mutations in pseudogenes to discriminate between gene and pseudogene sequences and to infer structural reorganizations between these regions, if present. To begin, PB-Motif aligns gene and pseudogene reference sequences against each other, enumerating kmers of a specified size (default: 11) which are found in one region but not the other. These kmers are centered on nucleotides which differentiate gene and pseudogene at given positions, and anchored on either side by sequence which is identical in both regions. We refer to kmers that are unique to the gene (i.e., do not occur in the pseudogene) as gene motifs, and conversely kmers unique to pseudogene are referred to as pseudogene motifs (Figure 1). PB-Motif takes as input a set of gene/pseudogene motifs alongside long reads (in FASTQ format) sequenced from the corresponding regions (Figure 2).

Finding Motifs in Long Reads

We define $G = [g_1, g_2, \ldots, g_N]$ and $P = [p_1, p_2, \ldots, p_N]$ as the sequence of gene and pseudogene motifs, respectively, sorted by genomic coordinate. We define $\hat{G} = [\hat{g}_1, \hat{g}_2, \ldots, \hat{g}_N]$ and $\hat{P} = [\hat{p}_1, \hat{p}_2, \ldots, \hat{p}_N]$ as the positions where these motifs occur in the reference sequence.

To begin, each read is scanned for exact matches to all motifs in G and P, with the requirement that all matching positions are above a specified base-call quality score (default: 10). Next, we require that multiple consecutive motifs are found in groups

![Figure 1](image_url)

FIGURE 1 | PB-Motif uses gene and pseudogene “motifs” which are kmers centered on sites which differentiate gene and pseudogene reference sequences when aligned to each other.
of 2 or greater. For example, if \(g_n \) is found in a read, it will only be retained if either \(g_{n-1} \) or \(g_{n+1} \) are also found within the same read. Further, we require that the expected distance between consecutive motifs differs by no more than \(D \) from their distance in the reference genome (default: 10). For example, if \(g_1 \) and \(g_2 \) were found at read coordinates \(r_1 \) and \(r_2 \), they would be discarded as errors if \(|(r_2 - r_1) - (\hat{g}_2 - \hat{g}_1)| > D \). We justify these constraints with the assumption that structural rearrangements between a gene and its pseudogene will involve enough sequence to span multiple motif sites. That is, we choose not to interpret an isolated pseudogene-derived variant in an otherwise unaltered gene to be a consequence of a structural rearrangement.

Motif matches are often confounded by sequencing errors or genetic variants, preventing them from being detected via an exact search. In an effort to recover motifs missed due to random errors, we allow the motif group requirement described above to be loosened by a user-specified parameter \(M \). If a motif \(g_n \) is found, but neither \(g_{n-1} \) or \(g_{n+1} \) are present, we continue searching up to \(g_{n+M} \). For example, if a sample’s genome had motifs \(g_1, g_2, g_3 \) consecutively, but a particular read sequenced has a base-call error that prevents \(g_2 \) from being found, \(g_1 \) and \(g_3 \) would be retained as a motif group for \(M \geq 2 \).

All groups of motifs are then tested for overlap with each other in read coordinates, and if a conflict is found (i.e., a particular span of read coordinates supports multiple motif groups) we apply a graph search approach similar to our previous methodology (Stephens et al., 2018), discarding groups that do not belong to the highest scoring path of motifs through the read.

Additional Read Filtering

Amplicon-based long reads are known to be prone to certain artifacts (Smyth et al., 2010; Laver et al., 2016), including palindromic reads, off-target reads, and in-vitro PCR recombination (also called PCR chimerism).

Palindrome artifacts result from PacBio circular reads where adapter sequences are not properly identified and the sequence string in the FASTQ contains both the forward and reverse strand of the template sequence (appended to each other, separated by an adapter sequence). While there exist tools to prune these reads (Warris et al., 2018), we found it equally effective and less computationally intensive to implement a filter in PB-Motif directly. Each read is tested by aligning its sequence of detected motifs against itself backwards. Specifically, a read is discarded if > 50% of its length is comprised of motif groups that align to their reverse complement. In our applications this filter typically removes 1–2% of the total reads.

Off-target reads, despite not originating from the gene or pseudogene regions of interest, may contain spurious motif matches that pass initial detection filters. Under the assumption that such reads will likely contain large spans of sequence where no motifs are found, we implement a filter to discard reads if the amount of sequence unexplained by known gene or pseudogene motifs exceeds a user-specified portion of its length (default: 30%).

Identifying and Clustering Breakpoints

If the sequence of motifs found in a read differ from their expected order in the reference genome, they provide evidence for potential structural rearrangements. Mixtures of gene and pseudogene motifs in a the same read provide evidence for junctions between the two regions. We notate each read as a sequence of observed motifs \(R = [\hat{r}_1, \hat{r}_2, \ldots, \hat{r}_n], \hat{r}_i \in G \cup P \), with read coordinates \(R = [\hat{r}_1, \hat{r}_2, \ldots, \hat{r}_n], \hat{r}_i \in [0, l_r - 1] \) where \(l_r \) is the length of the read.

For each read \(R \), we define \(t(R) = [\hat{r}_1, \hat{r}_2, \ldots] \) to be the sequence of tuples representing the starting and ending reference coordinates of all contiguous motif groups in the read. A contiguous motif group is a subsequence of motifs which all belong to the same set \(G \) or \(P \) and are strictly increasing by no more than \(M \). As an example, consider a hypothetical read \(R = [g_1, g_2, g_3, \hat{g}_1, g_2, g_3, p_8, p_9, p_{10}] \) which has three contiguous
motif groups: \([g_1, g_2, g_3], [g_1, g_2, g_4],\) and \([p_8, p_9, p_{10}]\). In this case
\[t(R) = (g_1, g_2, g_3, (g_1, g_2), (p_8, p_9, p_{10})).\]

PB-Motif’s clustering step begins by first grouping reads with
equivalent motif sequences, producing a weight matrix \(W_{1 \times N}\)
specifying the number each reads supporting each of the \(N\)
observed sequences. Next we apply hierarchal clustering using
the distance function:

\[
D(R_i, R_j) = \begin{cases}
\sum_{n=1}^{t(R_i)} || t(R_i)_n - t(R_j)_n ||_1, & |t(R_i)| = |t(R_j)| \\
\infty, & |t(R_i)| \neq |t(R_j)|
\end{cases}
\]

This distance function is 0 for reads with identical motif
sequences, infinite for reads with differing numbers of motif
groups, and finite for reads with the same number of groups (but
the groups themselves are not identical). With this we compute
the distance between all \(N\) observed motif sequences, yielding
a pairwise distance matrix \(D_{N \times N}\).

With \(W\) and \(D\) we perform greedy intermediate-linkage
clustering (Algorithm 1). In practice this strategy tends to
produce a limited number of clusters supported by a
large number of reads, and many weakly-supported clusters
corresponding to artifacts such as PCR chimeras or off-target
reads. This algorithm has two parameters: \(\alpha\), the maximum
tolerated distance a read can be from a candidate cluster, and \(\beta\),
the proportion of reads in an existing cluster that need to be close
off a new read for it to be added. By default PB-Motif uses
\(\alpha = 10\) and \(\beta = 0.5\).

Algorithm 1: Greedy intermediate-linkage clustering

1. \(\text{clusters} \leftarrow \emptyset;\)
2. \(\text{for } i = 1 \ldots N \text{ do}\)
3. \(\text{foundCluster} \leftarrow \text{False};\)
4. \(\text{foreach } c \in \text{clusters do}\)
5. \(\text{clusterSize} \leftarrow \sum_{j \in c} W_j;\)
6. \(\text{passFraction} \leftarrow \sum_{j \in D_{ij}} W_j;\)
7. \(\text{if } \text{passFraction/clusterSize} \geq \beta \text{ then}\)
8. \(\text{foundCluster} \leftarrow \text{True};\)
9. \(\text{clusters[assignedCluster].Add(i)};\)
10. \(\text{clusters.Add(i)};\)

Variant Calling and Annotation

For clinical CAH samples, we annotate rearrangements reported
by PB-Motif based on their impact on CYP21A2 function.
Specifically, we bin read clusters into five categories based on
their configuration of gene and pseudogene sequences:

- Normal CYP21A2 sequence
- Normal CYP21A1P sequence
- A1P\rightarrow A2 (e.g., chimeras resulting from unequal
crossing over)
- A2\rightarrow A1P (e.g., results of gene conversion)
- Other (e.g., rearrangements with > 2 breakpoints).

Copy numbers for each cluster are estimated using read
count proportions and variant allele frequencies. For our 26
clinical samples, copy numbers were validated using MLPA
(Supplementary Figure 1).

Small variants are called on clusters of reads corresponding
to normal CYP21A2 sequence using a genotyping workflow
with minimap2 (Li, 2018) and Mutect2 (DePristo et al., 2011;
Cibulskis et al., 2013). Mutect2 was chosen because the copy
number in each cluster is unknown \textit{apriori}, and thus we cannot
use a variant caller that requires ploidy to be specified
at runtime. Variants known to be associated with CAH are
annotated using variant lists extracted from existing CAH
literature (Simonetti et al., 2018).

In inherited diseases like CAH variant phasing is crucial
to determining carrier status if multiple damaging variants are
present. As a final step we phase damaging variation using a
clustering methodology similar to the popular tool Whatshap
(Patterson et al., 2015). Given \(m\) reads and \(n\) variant sites,
we construct an allele matrix \(A_{m \times n}\) by locally realigning reads
around each variant site and choosing the allele to which the
read sequence aligns with the lowest edit distance. Hierarchal
clustering is performed using Ward’s method on the pairwise
hamming distance between all reads. The dendrogram is then cut
at a user-specified value and the phased variants from each cluster
are written to an output VCF file.

Sample Selection

In total we selected 26 samples from our clinical labs spanning
a range of CAH phenotypes. All analysis was performed
on deidentified DNA under the approval of Mayo Clinic
Institutional Review Board (Application number 21-002875).
Samples were selected predominantly on the basis of whether we
believed variant phasing and copy number estimations from long
reads would supplement existing MLPA and Sanger results to
help resolve ambiguous or challenging cases. As such, we expect
our cohort to be enriched for samples with unusual genotypes.

Sequencing

The traditional methodology for 21-OHD CAH genotyping
uses combinations of primers specific to the 5' and 3' ends of
CYP21A1P and CYP21A2, with Sanger sequencing and MLPA
for variant calling and copy number assessment, respectively
(Greene et al., 2014; Kluge et al., 2020). However, this approach
is complex and labor intensive, yields ambiguous results in
some cases, and does not provide information on variant
phasing across an entire gene, which is informative in assessing
carrier status.

Our sequencing approach uses a single primer pair
for amplifying CYP21A2 and CYP21A1P simultaneously.
Specifically, we use primers placed in the promoter and 3' tail
regions that flank both CYP21A2 and CYP21A1P (Table 1,
Supplementary Figure 2). The resulting PCR yields a mixture
of amplicons that include (i) normal gene sequence, (ii) normal
pseudogene sequence, (iii) any sequence that begins in the gene
and ends in the pseudogene, and (iv) any sequence that begins in
the pseudogene and ends in the gene. The amplicons underwent
a second round of PCR, which utilized a universal priming
site introduced in the first PCR, to add a barcoded adapter
sequence (16 bp) that uniquely labeled the sample and allowed
for multiplexing during sequencing. Samples were then pooled
together in equal mass, and a SMRTbell library was prepared
for sequencing on a PacBio Sequel using the SMRTbell Template
Prep Kit 1.0, following manufacturer protocol. Sequencing of the
primer binding and polymerase annealing were done using the
Sequel Binding Kit 2.1 and sequencing primer v3 in accordance
to instructions provided in SMRTlink 7.0. An overview of SMRTbell
sequencing is presented in Travers et al. (2010) and Rhoads and
Au (2015). The Circular Consensus Sequences application was
used to generate FASTQ data (referred to as “HiFi” reads) which
averaged 3.7 kb in length and had minimum predicted accuracy
of 90%.

3. RESULTS
Simulated Data
As an initial assessment of PB-Motif, we analyze synthetic
data where ground truth rearrangements are known a
priori. The purpose for this is two-fold: (i) to identify read
error rates at which PB-Motif can no longer confidently
identify rearrangements, even under ideal conditions, and
(ii) to demonstrate PB-Motif’s theoretical extensibility to
gene/pseudogene pairs beyond CYP21A2/CYP21A1P. To do
this we generate synthetic datasets containing rearrangements
of PMS2 and its pseudogene PMS2CL. We enumerate 30 motifs
across a 6 kbp homology and generate synthetic PacBio reads
spanning this region using the NEAT simulator (Stephens et al.,
2016). We imputed five classes of rearrangements: Deletions,
gene/pseudogene chimeras, pseudogene/gene chimeras, tandem
duplications, and dispersed duplications. Read error rates were
swept from 0 to 15% and each simulation was replicated 10
times, resulting in a total of 800 synthetic datasets. Each dataset
was then processed by PB-Motif, and accuracy was computed
as the proportion of reads supporting the correct simulated
rearrangement (Figure 3).

Clinical CAH Samples
We processed 26 CAH samples with PB-Motif and reported
gene/pseudogene rearrangements and SNVs (Table 2). Rearrangements and small variants were phased for each
color, but we report aggregated genotypes for each sample
group (CAH, NCCAH, and carriers) in compliance with
deidentification requirements. Variant calling was performed
on clusters of reads corresponding to normal gene sequence (or
rearranged sequences that are comprised mostly normal gene
sequence), because it is in these clusters that the presence of
damaging variation could render a gene nonfunctional and thus
be of clinical interest. The reported genotypes were compared
against results from MLPA and Sanger sequencing as well
as clinical notes accompanying each sample, which generally
included physical examination and 17α-Hydroxyprogesterone
(17-OHP) measurements. Specifically, copy numbers for normal
gene, normal pseudogene, and chimeras were compared against
MLPA (example shown in Supplementary Figure 3), and
variation in gene regions were validated with Sanger sequencing
(example shown in Supplementary Figure 4). Small variant
calling was restricted to damaging variants only (as identified by
existing CAH literature; Simonetti et al., 2018), and every variant
presented in Table 2 was confirmed by Sanger.

For each sample we observe that CAH phenotype can be
plausibly explained by either a complete loss of CYP21A2, a
rearrangement that causes loss of gene function, or damaging

| TABLE 1 | Forward and reverse primer sequences for amplicon sequencing of
| CYP21A2 and CYP21A1P. |
|---|---|
| Forward | 5’ CAGAAAGCTGACTCTGGATGCAGG 3’ |
| Reverse | 3’ AACTGCCACTACGCCAACCTCAAC 5’ |

| FIGURE 3 | Mean and standard deviation detection accuracy for simulated PMS2/PMS2CL rearrangements.
small variants (Table 2). Of the samples with structurally normal
CYP21A2 genes, we found that those with CAH diagnosis had
damaging variants that were either homozygous or heterozygous
in trans configuration, thus the individuals can be inferred to
have no fully functional copy of the gene. Each CAH carrier was
found to have damaging heterozygous variants or heterozygous
deletion of CYP21A2. In one particular carrier, damaging variants
g.655C>G and g.2444G>A were observed in cis configuration,
with the other copy of the gene unaffected.

In many samples we observe A1P/A2 chimeras resulting
from a common ∼ 30 kb deletion caused by misalignment
during meiosis (Chen et al., 2011; Hannah-Shmouni et al.,
2017). Following conventions in existing CAH literature, the
chimeras are labeled based on the position where the A1P→A2
junction occurs (Hannah-Shmouni et al., 2017) [e.g., “CH2” (Lee
et al., 2004) or “CH7” (Vrzalová et al., 2011)]. One of the salt-
wasting CAH samples was observed to have three copies of
A1P/A2 chimeras and no normal gene or pseudogene sequence
(Figure 4). The 3x copy number was corroborated by variant
allele fractions (VAF) in the long reads, where in an alignment of
the chimeric reads heterozygous variants were identified at VAFs
of ∼ 33 and ∼ 66%.

4. DISCUSSION

From Figure 3, we see that PB-Motif is highly sensitive in
detecting gene/pseudogene rearrangements for read error rates
< 8%. Within this range, nearly every read is correctly found
to support the simulated structural variation. The performance
drops off substantially at higher error rates, as it becomes less
likely to encounter motif kmers unaffected by base-call errors.
Variance in detection accuracy increases substantially above 7%
error, which may also be a result of non-uniform motif density
across the simulated PMS2/PMS2CL homology. Based on these
results, we suggest that PB-Motif is best used with HiFi PacBio
reads or other long reads that have been corrected to < 8% error.

In several of the CAH samples we observe what appears to
be a migration of CYP21A2 exons 8–10 into the pseudogene
sequence (Figure 5). While numerous gene-derived variants have
been reported in CYP21A1P, to our knowledge this particular
intergenic recombination is not widely known, and could lead to
false positives for methods that rely on distinguishing gene from
pseudogene using CYP21A2-specific priming sites. It has been
previously reported that the reference sequence for CYP21A1P
may not be wholly representative of what is found in populations
at large. Specifically, healthy individuals in German and Chinese
populations have been found to have CYP21A2-like sequence
within CYP21A1P, suggesting that what appears to be a structural
rearrangement with respect to human reference hg38 may be
more accurately characterized as a sequence belonging to an
alternative reference assembly (Greene et al., 2014).

PCR Chimeras

On average we observe that ∼ 5% of the reads per sample
exhibit false-positive fusions of gene/pseudogene sequences. For
example, in control samples known to contain solely normal
CYP21A2 and CYP21A1P sequences, these 5% of reads start in
one region and end in the other, but otherwise pass all filtering
criteria. We attribute this primarily to chimeric sequences
formed during amplification (in-vitro PCR recombination),
which is frequently observed when highly similar DNA are being
amplified together (Smyth et al., 2010).

The breakpoints in these false-positives appear to be
distributed randomly, and thus there are generally not enough
reads for PB-Motif to report them as a rearrangement.
However, in samples that do have chimeric gene/pseudogene
rearrangements, these false positives slightly inflate the
proportion of total reads that support chimeric patterns.
FIGURE 4 | A1P/A2 chimeras observed in a SW CAH sample (CH2 on the top, CH7 on the bottom). Alignments in the left halves of the plots indicate sequences of pseudogene motifs, and the right halves correspond to gene motifs. CYP21A2 exon regions are shaded and numbered.

FIGURE 5 | A1P→A2→A1P rearrangement found in several samples.
Because of this, it is crucial to consider both variant allele frequencies in addition to read counts when estimating copy numbers of gene/pseudogene chimeras.

Applicability to Other Genes

PB-Motif is theoretically extensible to any pair of highly similar (but not identical) genomic regions. Such applications would require enumerating new motif kmers and designing a new capture strategy for the targeted gene/pseudogene regions.

To enumerate gene/pseudogene pairs to which PB-Motif might be applicable, we aligned protein-coding genes from RefSeq (release 90) with unprocessed pseudogenes from GENCODE (release 29). We restricted our attention to the pairs of regions that are > 1 kbp in size, > 90% homologous, and within 1Mbp of each other on the same chromosome. We applied these heuristics in order to identify regions that have the potential for exchanging damaging sequence content through gene conversion or crossover events, and are large enough such that they require long reads to genotype with high sensitivity. This exercise yielded 430 large, highly homologous gene/pseudogene pairs. By intersecting these 430 pairs with ClinVar (release 2018/09/30) we found 59 genes in which pathogenic variation has been observed, a subset of which is presented in Table 3 (full table in Supplementary Materials).

Table 3 | Highly homologous gene/pseudogene regions to which our method might be applicable.

Gene	Pseudogene	Largest homology	% identity	Clinical relevance
AGBL1	ADAMS7P14	1,476	94.72	Fuchs’ corneal dystrophy
ARMC4	ARMC4P1	8,412	95.23	Ollary dyskinesia. and Kartagener syndrome
BCR	BCRP1	3,851	93.38	Chronic myelogenous leukemia
CD46	CD46P1	3,972	90.26	Atypical hemolytic uremic syndrome
CEL	CELP	3,218	97.02	Maturity-onset diabetes
CYP21A2	CYP21A1P	2,722	97.65%	21-OHD CAH
CYP2B6	CYP2B7P	5,336	92.77	Related to efavirenz response
CYP2D6	CYP2D8P	2,779	90.82	Related to the metabolism of multiple drugs
DIS3L2	DIS3L2P1	2,309	96.80	Nephroblastoma
GBA	GBAP1	1,024	97.66	Gaucher's disease, Parkinson's disease
LPA	LPAL2	1,670	93.59	Lipoprotein deficiency
NCF1	NCF1C	11,668	99.37	Chronic granulomatous disease
PMS2	PMS2CL	8,192	97.27	Lynch syndrome
RNF216	RNF216P1	7,078	96.00	Gordon Holmes syndrome
STRC	STRCP1	15,275	99.16	Non-syndromic hearing loss and deafness
TNXB	TNXA	2,373	99.49	Ehlers-Danlos syndrome, vesicoureteral reflux

DATA AVAILABILITY STATEMENT

We have uploaded the simulated PacBio long reads used to assess our methodology to the Sequence Read Archive (SRA), under BioProject ID PRJNA736407.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Mayo Clinic IRB Application #: 21-002875. Feasibility of using PacBio long reads-based sequencing chemistry for genotyping of the CYP21A2 gene. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

ZS designed and implemented PB-Motif. J-PK and RI contributed to experiment design. DM, BK, and SG conducted sample selection, sequencing, and clinical analysis. ZS and J-PK wrote the manuscript. All authors read and approved the final manuscript.

FUNDING

This work was funded by the Mayo Clinic Center For Individualized Medicine. This study is the authors’ independent work, and the funding agency only provides relevant financial support.

ACKNOWLEDGMENTS

We would like to thank the Mayo Clinic Center For Individualized Medicine.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.716586/full#supplementary-material.
REFERENCES

Bischof, J. M., Chiang, A. P., Scherertz, T. E., Stone, E. M., Casavant, T. L., Sheffield, V. C., et al. (2006). Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum. Mutat. 27, 545–552.
doi: 10.1002/humu.20335

Chan, W., Xu, Z., Sullivan, A., Finkelstein, G. P., Van Ryzin, C., Merke, D. P., et al. (2011). Junction site analysis of chimeric cyp21a1p/cyp21a2 genes in 21-hydroxylase deficiency. Clin. Chem. 58, 421–430.
doi: 10.1373/clinchem.2011.174037

Cibulskis, K., Lawrence, M. S., Mihalek, M. M., et al. (2013). Sensitivity detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31:213.
doi: 10.1038/nbt.2514

DePristo, M. A., Banks, E., poplin, R., Garmire, K. V., Maguire, J. R., Hartl, C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:491.
doi: 10.1038/ng.806

Derrien, T., Estellé, J., Sola, S. M., Knowles, D. G., Raineri, E., Guigó, R., et al. (2012). Fast computation and applications of genome mappability. PLoS ONE 7:e30377.
doi: 10.1371/journal.pone.0030377

Fukasawa, Y., Ermini, L., Wang, H., Carty, K., and Cheung, M.-S. (2020). LongQC: a quality control tool for third generation sequencing long read data. G3 10, 1193–1196.
doi: 10.1534/g3.119.400864

Greene, C. N., Cordovado, S. K., Turner, D. P., Keong, L. M., Shulman, D., and Mueller, P. W. (2014). Novel method to characterize CYP21A2 in Florida patients with congenital adrenal hyperplasia and commercially available cell lines. Mol. Genet. Metab. Rep. 1, 312–323.
doi: 10.1016/j.ymgmr.2014.07.002

Hanna-Shmouni, F., Chen, W., and Merke, D. P. (2017). Genetics of congenital adrenal hyperplasia. Endocrinol. Metab. Clin. 46, 435–458.
doi: 10.1016/j.ecl.2017.01.008

Hufnagel, D. E., Hufford, M. B., and Seetharam, A. S. (2020). SequelTools: a suite of tools for working with pacbio sequo raw sequence data. BMC Bioinformatics 21:429.
doi: 10.1186/s12859-020-03751-8

Kluge, M. L., Graber, E., Foley, K., Hansen, L. V., Sellers, H. L., Mi losevic, D., et al. (2014). Monozygotic twins discordant for congenital adrenal hyperplasia due to mosaicism. Eur. J. Endocrinol. 182, K7–K13.
doi: 10.1530/EJE-19-0249

Laver, T. W., Caswell, R. C., Moore, K. A., Poschmann, J., Johnson, M. B., Owens, M. M., et al. (2016). Pitfalls of haplotype phasing from ampiclon-based long-read sequencing. Sci. Rep. 6:21746.
doi: 10.1038/srep21746

Lee, H., and Schatz, M. C. (2012). Genomic dark matter: the reliability of short read sequencing. PLoS ONE 7:e30377.
doi: 10.1371/journal.pone.0030377

Sen, K., and Ghosh, T. C. (2013). Pseudogenes and their composers: delving in the “debris” of human genome. Brief. Funct. Genomics 12, 536–547.
doi: 10.1093/bfgp/elq026

Sen, K., Poddar, S., and Ghosh, T. C. (2010). Insights into the genomic features and evolutionary impact of the genes configuring duplicated pseudogenes in human. FEBS Lett. 584, 4015–4018.
doi: 10.1016/j.febslet.2010.08.012

Simonetti, L., Borque, C. D., Fernández, C. S., Benavides-Mori, B., Delea, M., Kolomensenki, J. E., et al. (2018). Cyp21a2 mutation update: comprehensive analysis of databases and published genetic variants. Hum. Mutat. 39, 5–22.
doi: 10.1002/humu.23351

Smyth, R., Schlub, T., Grimm, A., Venturi, V., Chopra, A., Mallal, S., et al. (2010). Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51.
doi: 10.1016/j.gene.2010.08.009

Stephens, Z., Wang, C., Iyer, R. K., and Kocher, J.-P. (2018). Detection and visualization of complex structural variants from long reads. BMC Bioinformatics 19:508.
doi: 10.1186/s12859-018-2539-x

Stephens, Z. D., Hudson, M. E., Mainzer, L. S., Taschuk, M., Weber, M. R., and Iyer, R. K. (2016). Simulating next-generation sequencing datasets from empirical mutation and sequencing models. PLoS ONE 11:e0167047.
doi: 10.1371/journal.pone.0167047

van der Klift, H. M., Tops, C. M., Bik, E. C., Boogaard, M. W., Borgstein, A.-M., Hansson, K. B., et al. (2010). Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of lynh syndrome patients. Hum. Mutat. 31, 578–587.
doi: 10.1002/humu.21229

Vrzalová, Z., Hrubá, Z., Hrabincová, E. S., Vrábelová, S., Votava, F., Koloušková, S., et al. (2011). Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia. Eur. J. Med. Genet. 54, 112–117.
doi: 10.1016/j.ejmg.2010.10.005

War ris, S., Schijlen, E., van de Geest, H., Vegasna, R., Hesselink, T., te Lentel Hekkert, B., et al. (2018). Correcting palindromes in long reads after whole-genome amplification. BMC genomics 19, 1–12.

Zhang, H., Li, J., Zhang, X., Wang, Y., Qu, W., Ye, J., et al. (2011). Analysis of the ids gene in 38 patients with hunter syndrome: the c.879g>a (p. gln293gln) synonymous variation in a female create exonic splicing. PLoS ONE 6:e22951.
doi: 10.1371/journal.pone.0022951

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Stephens, Milosevic, Kipp, Grebe, Iyer and Kocher. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.