From Disposal to Reuse: Production of Sustainable Fatty Acid Alkyl Esters Derived from Residual Oil Using a Biphasic Magnetic Catalyst

Adriano Lima da Silva 1,*, Carlos Bruno Barreto Luna 1, Ana Flávia Félix de Farias 1, Suelen Alves Silva Lucena de Medeiros 2, Simoni Margareti Plentz Meneghetti 3, Alisson Mendes Rodrigues 1,4 and Ana Cristina Figueiredo de Melo Costa 1,4

1 Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; bruno.barreto@ufcg.edu.br (C.B.B.L.); ana.ff.farias@ufcg.edu.br (A.F.F.d.F.); alisson_mendes@ymail.com (A.M.R.); ana.costa@ufcg.edu.br (A.C.F.d.M.C.)

2 Núcleo de Pesquisa e Extensão, Laboratório de Combustíveis e Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; suelen.als@gmail.com

3 Grupo de Catálise e Reactividade Química (GCAR), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió 57072-970, AL, Brazil; simoni.plentz@gmail.com

4 Unidade Acadêmica de Engenharia de Materiais, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil

* Correspondence: adrianolimadasilva@hotmail.com

Received: 1 October 2020; Accepted: 11 November 2020; Published: 4 December 2020

Abstract: The development of technologies to promote residual oil reuse has been encouraged, aiming to reduce the environmental impact and promote sustainability. In this study, a biphasic magnetic catalyst with composition equal to ZnO-Ni0.5Zn0.5Fe2O4 was synthesized and applied to the fatty acid alkyl ester (FAAE) production from residual oil. The ZnO-Ni0.5Zn0.5Fe2O4 catalyst was synthesized by combustion reaction and characterized by X-ray diffraction (XRD), textural analysis, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetry, particle size distribution, scanning electron microscopy, magnetic measurements, quantification of acidic sites by TPD-NH3, and catalytic tests. The efficiency of catalyst synthesis was evaluated by XRD, FTIR, and Raman spectroscopy experiments. Granulometric analysis and SEM images confirmed the presence of the agglomerates and particles with a wide size range. The catalyst presented soft magnetic behavior, with high saturation magnetization. Additionally, the catalytic activity of the ZnO-Ni0.5Zn0.5Fe2O4 system showed an average conversion of 73% for the methyl route. The results indicate that the reuse of residual oil is feasible for FAAE production, contributing to sustainable fuel development. Moreover, it allows the reintroduction of waste oil into the biodiesel production chain, reducing cost after process optimization.

Keywords: residual oil; reuse; biodiesel; magnetic catalyst; sustainability

1. Introduction

There has been growing concern regarding environmental issues in recent years due to the accumulation and disposal of postconsumer residues [1,2]. In this scenario, residual cooking oil has attracted attention since when it is improperly disposed of, it can negatively impact the environment [3]. Residual cooking oil is highly polluting and causes water and soil contamination since
it presents low solubility, low density, and difficulty in degrading through the biological process [4].
Moreover, the dumping of residual oils in sinks and drains can obstruct the networks and increase
sewage treatments [5]. Thus, both economic and environmental aspects are strong justifications to
promote the reuse of residue oils.

The reusing of residue oils appears to be an alternative solution for sustainable and economic
development [6]. The problems resulting from environmental pollution generated by residue oils
have led the scientific community to reflect on possible alternatives to solving the problem [7,8].
Biodiesel production is an alternative method to reuse residue oils from homes and food industries [9].
As a consequence, there is a contribution to reducing the overall cost of manufacturing and, at the
same time, adding value to a post-consumer material [10,11]. Generally, biodiesel is produced
through transesterification and/or esterification due to the greater availability of triglyceride-rich raw
materials [12]. Transesterification and esterification processes are essential to produce the cleanest
and most environmentally safe biodiesel [13], using raw materials rich in free fatty acids present in
residues and byproducts, such as crude oils and oils used in frying [14,15]. However, such a process is
challenging due to undesirable components, mostly free fatty acids [16]. To get around this problem,
the use of magnetic catalysts for the transesterification and esterification of oils has gained prominence
for biodiesel production, with good conversion yield [17,18]. The catalyst plays an essential role in
accelerating biodiesel production, minimizing production costs [19].

Heterogeneous catalysis has been highlighted because a solid catalyst is used in this process,
which does not mix with the other reagents, facilitating the reaction medium [20]. In this context,
magnetic ferrites have stood out as advanced materials for the production of catalysts due to the
simplicity of synthesis and good chemical and physical properties that guarantee good performance
during the reaction. Moreover, they present the magnetic characteristics that favor the catalyst’s
magnetic separation [21–23].

Several studies [24–27] on biodiesel production using magnetic catalysts have been carried out. Recently,
Pontes et al. [28] developed the magnetic compound γ-Fe$_2$O$_3$/Ba$_3$Co$_2$Fe$_{24}$O$_{41}$ by combustion reaction and,
subsequently, tested it as a heterogeneous catalyst in the production of biodiesel from the reactions of methyl
esterification of residual soy oil and transesterification of refined oil. In general, the γ-Fe$_2$O$_3$/Ba$_3$Co$_2$Fe$_{24}$O$_{41}$
was catalytically active, with a conversion of 46.58% by transesterification and 31.06% by TES
reaction (a combination of esterification and transesterification reactions).

Ali et al. [29] investigated the performance of the CuFe$_2$O$_4$ magnetic system as a heterogeneous catalyst,
aiming at biodiesel’s efficient and sustainable production through the process of transesterification of
residual frying oil. The catalyst was synthesized by two routes: co precipitation (CS1) and the combination
of hydrothermal coprecipitation (CS2). Hydrothermal coprecipitation increased the catalytic activity of
the CS2 system when compared to the CS1 route, which is synthesized only by coprecipitation. The use of
3 wt% of the catalyst achieved a yield of 90.24% of biodiesel using the CS2 route. The catalyst produced
by the CS2 route was easily recoverable and reusable, and its activity was very stable for five reuses.
In general, the CuFe$_2$O$_4$ magnetic system is a promising heterogeneous catalyst for the production of
biodiesel.

The production of magnetic catalysts can contribute to sustainable development since these
catalysts can be applied to produce biodiesel from waste oils. Therefore, there is a contribution to
solving part of the problem of the inadequate destination of oil residues. The research on the
reuse of oil residues for biodiesel production, in the vast majority, uses heterogeneous magnetic
catalysts with broad technological potential. However, few studies in the literature explore biphasic
magnetic catalysts, namely, ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, for biodiesel production, thus configuring a relevant
point be explored.

Therefore, this work aims to develop a biphasic magnetic catalyst with a composition equal
to ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, aiming to evaluate its technological potential for FAAE production frying
oil residue, allowing the use of waste oil into the biodiesel production chain after process optimization.
2. Materials and Methods

2.1. Materials

In this research, the Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} magnetic catalyst was synthesized via a combustion reaction from the following chemical reagents: nickel nitrate hexahydrate (Ni(NO\textsubscript{3})\textsubscript{2}6H\textsubscript{2}O), hexahydrate zinc nitrate (Zn(NO\textsubscript{3})\textsubscript{2}6H\textsubscript{2}O), iron (II) nitrate nonahydrate (Fe(NO\textsubscript{3})\textsubscript{3}9H\textsubscript{2}O), and urea. All chemical reagents used were purchased from the Dinâmica (Brazil), with purities between 98% and 99% [30]. The catalyst’s performance was evaluated on its ability to convert frying oil residual into FAAE via simultaneous transesterification and esterification reactions (TES reactions). The residual soybean oil used, originating from fried pasta, with temperatures close to 180 °C and an average usage time of 3 h, was collected from pastry shops in Campina Grande, located in Paraíba state, Brazil. The oil was filtered using white strip filter paper. The physicochemical parameters of the residual oil were accomplished in agreement with the AOCS Cd 3d-63 standard, and the result showed a value of 14.8 ± 0.005 mg of KOH/g of the sample, methyl alcohol (CH\textsubscript{3}OH)—purity 99.8% (Dinâmica), and ethyl alcohol (CH\textsubscript{3}CH\textsubscript{2}OH)—purity 99.5% (Dinâmica) [30].

2.2. Methods

2.2.1. Catalyst Synthesis

The combustion reactions were accomplished in a pilot plant built in agreement with the patent BR 10 2012 002181-3 [30,31]. The pilot plant comprised a stainless-steel container connected to a conical reactor with a 200 g/batch capacity. The system reaches a maximum temperature equal to 350 °C after 60 min.

Before the synthesis of the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} magnetic catalyst, the initial composition of the precursor solution was calculated based on the total valence of oxidizing agents and reducing reagents using propellant and explosive chemistry concepts. The autoignition procedure (combustion) was performed in the stoichiometric mixture of metallic nitrates and urea allocated in a stainless-steel container in a conical reactor, with a production capacity of 200 g/batch [32].

2.2.2. Catalyst Heat Treatment

The catalyst obtained from the combustion reaction in polyphasic form was subjected to a thermal treatment at different temperatures (650, 700, and 800 °C), with a heating rate of 30 °C/min and 5 min of a burning level using an EDG 3000 oven, to evaluate the evolution of crystalline phases of the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4}-Fe\textsubscript{2}O\textsubscript{3} system [30].

2.2.3. Catalytic Test

The performance of the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4}-Fe\textsubscript{2}O\textsubscript{3} magnetic catalyst was evaluated in the synthesis of FAAEs from residual oil via the TES reaction. Before synthesis, the residual oil was filtered (filter paper 15.00 ± 0.15 cm) to remove the suspended particulate matter. The catalytic tests were conducted in duplicates using a pressurized stainless-steel reactor equipped with a pressure gauge, a thermocouple inlet duct, and a borosilicate glass (80 mL). The experiment conditions were 30 g oil mass, time 1 h, and an alcohol/oil ratio of 15:1. The heating and agitation of the system were carried out with the aid of an IKA C-MAG HS 7 plate model, external electrical resistance, and a magnetic bar of approximately 2.5 cm. After the reactions, the catalytic tests’ products were centrifuged to separate the catalyst, purified, and dried in an oven at 110 °C for 20 min, with manual stirring at 5-min intervals [30].

2.2.4. Characterization of the Catalyst

The ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} magnetic catalyst synthesized was characterized by X-ray diffraction (XRD) using a BRUKER X-ray diffractometer (model D2 PHASER, Cu-Kα radiation), operating at
30 kV and 10 mA. The angular step and counting time used were 0.016° and 44 min, respectively [33]. The crystallite size was calculated with the aid of the Scherrer equation [30,34] and from the peak of the most intense basal reflection, see Equation (1).

\[D = \frac{K \lambda}{\beta \cos \theta} \]

(1)

where \(\theta \) is the wavelength of the X-ray beam, \(\beta \) is full width at half maximum (FWHM), h is the Bragg scattering angle, and \(K (=0.89) \) is the shape factor.

The crystallite size was calculated with the aid of the Scherrer equation [30,33] and from the peak of the most intense basal reflection, see Equation (1).

The identification of the main crystalline phases was made with the DiffraPlus Suite Eva software and Joint Committee on Powder Diffraction Standards (JCPDS). The quantification of each main crystalline phase was carried out by Rietveld refinement [30,35] with the aid of DIFFRACplus TOPAS Version 3.0 (Bruker AXS). The residual error of the Rietveld refinement was calculated from Equation (2).

On Equation (2), \(I_{\text{Obs}} \) and \(I_{\text{Calc}} \) are the observed and calculated intensities for each step, respectively. The \(W_i \) parameter is calculated from the equation

\[W_i = \frac{1}{I_{\text{Obs}}} \]

\[S_y = \sum_i W_i (I_{\text{Obs}} - I_{\text{Calc}})^2 \]

(2)

The catalyst surface was characterized using the nitrogen gas adsorption and desorption technique. All experiments were carried out in Quantachrome model NOVA 3200 equipment. The surface area and pore diameter were calculated using the Brunauer, Emmett, and Teller (BET) and Brunauer, Joyner, and Halenda (BJH) methods, respectively [30].

The morphological aspects of the catalyst sample were acquired by scanning electron microscopy (SEM; brand Tescan, model Vega3). The laser diffraction technique was used to measure particle size distribution using an SZ-100 series (HORIBA Scientific) nanoparticle analyzer [30].

Hysteresis plots were measured at room temperature using a vibrating sample magnetometer (VSM, Lake Shore model 7404), with a maximum applied magnetic field of 13700 G. Saturation magnetization (\(M_s \)), remaining magnetization (\(M_r \)), and coercive field (\(H_c \)) were the properties obtained from this experiment [30].

The acidity of the catalyst was determined through desorption analysis at the programmed ammonia temperature (TPD-NH\(_3\)) in the SAMP3 multipurpose analysis system. Approximately 100 mg of sample was pretreated at 400 °C under a helium atmosphere (30 mL·min\(^{-1}\)). Then, the temperature was reduced to 100 °C, and the sample was subjected to an ammonia current for chemical adsorption for 45 min. In the final step of the adsorption process, NH\(_3\) molecules were removed at 100 °C for 1 h, with the helium flow rate at 30 mL·min\(^{-1}\). The thermograms were obtained on heating (from 100 to 800 °C) at 10 °C·min\(^{-1}\) under a helium flow rate of 30 mL·min\(^{-1}\) [30].

Thermogravimetric analysis (TG/DTG) was performed using Perkin Elmer STA 6000 TG-DTA equipment in an N\(_2\) atmosphere, with the flow of 20 mL·min\(^{-1}\) and heating rate of 10 °C·min\(^{-1}\), using 10 mg of sample in an alumina crucible, and a temperature range from 30 to 850 °C [30,36–38].

FTIR spectra were obtained using a BRUKER Vertex 70 spectrometer, with 64 scans. The FTIR spectra were recorded in transmittance units in the wavenumber range.

Raman spectra were recorded on a RENISHAW spectrophotometer (model InVia Raman microscope) using an Ar\(^+\) laser, with a power of 100 mW and a wavelength of 514 nm. The 50x objective was used.

The percentages of methyl or ethyl esters were determined via gas chromatography, using a chromatograph (VARIAN 450c) instrument with a flame ionization detector and a capillary column as the stationary phase (Varian Ultimetal “Select Biodiesel Glycerides RG”; dimensions: 15 m × 0.32 mm × 0.45 mm). The initial injection temperature was 100 °C, the oven temperature was 180 °C, and the detector operated at a temperature of 380 °C [30].

The acidity index (official AOCS method, Cd 3d-63) was used to characterize both the residual oil and the products resulting from the catalytic tests. It was possible to quantify the mass yield of synthesized FAAEs, considering the initial mass of the residual oil in the TES reaction, assuming that
the complete reaction of a specified amount \(x \) of residual oil leads to the achievement of 100% yield mass \(X \) of FAAEs. Therefore, the percentages of mass yields were defined and calculated as the values that express the reactions’ final products’ masses after the purification processes [30].

3. Results and Discussion

3.1. Characterization of the ZnO-Ni\(_{0.5}\)Zn\(_{0.5}\)Fe\(_2\)O\(_4\) Catalyst

3.1.1. X-ray Diffraction

Figure 1 shows the X-ray diffractograms of the ZnO-Ni\(_{0.5}\)Zn\(_{0.5}\)Fe\(_2\)O\(_4\) catalyst heat-treated at different temperatures (650, 700, and 800 °C). In summary, the synthesized catalyst showed a heterogeneous composition, confirming its polyphasic character (Figure 1a). It was also observed that the reverse spinel phase of Ni-Zn ferrite was a major phase, and there is an evolution in this phase with an increase in the firing temperature (Figure 1b,c). When the firing temperature increased from 650 to 700 °C, there was a decrease in the secondary phases of ZnO (Z) and Fe\(_2\)O\(_3\) (H), as well as a significant crystallization of the Ni-Zn phase. However, the catalysts treated at these temperatures (650 and 700 °C) were still polyphasic, with discrete peaks in the secondary phases (ZnO and Fe\(_2\)O\(_3\)). The Fe\(_2\)O\(_3\) phase was identified using the standard JCPDS 40-1139 card, while the ZnO phase was detected according to the standard card JCPDS 36-1451.

![Figure 1. X-ray diffractograms of the catalyst ZnO-Ni\(_{0.5}\)Zn\(_{0.5}\)Fe\(_2\)O\(_4\): (a) without heat-treatment; (b) 650 °C heat-treatment; (c) heat-treatment of 700 °C; (d) heat-treatment of 800 °C.](image-url)
Figure 1 shows that the phase of interest was synthesized at relatively low temperatures since Olhero et al. [39] synthesized Ni-Zn ferrite by coprecipitation and evaluated the evolution of the crystalline phases of the system. The authors found that the phase of interest only formed at 1200 °C. On the other hand, Hajalilou et al. [40] developed a Ni-Zn system by high-energy grinding; however, the experimental procedure has a relatively high cost and takes a long time since that the samples wait for an estimated time of 30 h to be subjected to a high-energy grind in a controlled atmosphere of oxygen for 2 h, with the phase of interest being obtained at 500 °C.

Still, in Figure 1, it was observed that a firing temperature equal to 800 °C was enough to obtain a catalyst with a composition formed mostly of the ZnO-Ni0.5Zn0.5Fe2O4 phase (Figure 1d). It is worth mentioning that the firing time used was only 5 min. The synthesis was simple, fast, and does not add high energy expenditure nor high costs, as described in the literature [39,40]. The heat treatment performed at 800 °C was sufficient to obtain the ZnO-Ni0.5Zn0.5Fe2O4 biphasic catalyst, with a high degree of crystallinity. Thus, it is possible to conclude that the experimental procedure (combustion reaction in pilot-scale) used to obtain the biphasic catalyst has technological potential. The crystallite size and crystallinity of the ZnO-Ni0.5Zn0.5Fe2O4 biphasic catalyst, heat-treated at different temperatures (650, 700, and 800 °C), are listed in Table 1.

Table 1. Crystallinity and crystallite size of the ZnO-Ni0.5Zn0.5Fe2O4 biphasic catalyst without heat treatment and heat-treatment at 650, 700, and 800 °C, respectively.

Sample Medium Crystallinity (%)	Average Crystallite Size (nm)	
ZnO-Ni0.5Zn0.5Fe2O4 - Fe2O3	43.0	25.0
ZnO-Ni0.5Zn0.5Fe2O4-Fe2O3 (650 °C)	46.5	22.8
ZnO-Ni0.5Zn0.5Fe2O4 - Fe2O3 (700 °C)	44.4	26.5
ZnO-Ni0.5Zn0.5Fe2O4 (800 °C)	54.7	32.0

The ZnO-Ni0.5Zn0.5Fe2O4 catalyst, heat-treated at 800 °C, presented an average crystallinity of 54%, close to the experimental values found in the literature [41]. The crystallite size, determined from the XRD data, was 32 nm, indicating its nanometric character (≤100 nm) [12]. The crystallite size of the ZnO-Ni0.5Zn0.5Fe2O4 catalyst is within the crystallite size range of 7.23–46 nm, as reported by Li et al. [42], who studied a similar system (ZnFe2O4) synthesized by the combustion method. It is also possible to notice that the heat treatment applied slightly increased the structural parameters of the catalyst, evolving from 43.0% to 54.7% in crystalline percentage and from 25.0 to 32 nm in terms of crystallite size.

Figure 2 shows the X-ray diffractogram and Rietveld analysis of the ZnO-Ni0.5Zn0.5Fe2O4 catalyst synthesized at 800 °C. The experimental points (blue and black) were adjusted to the intensity (red line) with the aid of the TOPAS program, according to ICDD card 184163 for Ni-Zn ferrite and ICSD card 26170 for ZnO. It was observed that the ZnO-Ni0.5Zn0.5Fe2O4 catalyst (800 °C) presented peaks that are characteristic of the major phase of spinel (Ni-Zn ferrite). However, the ZnO-Ni0.5Zn0.5Fe2O4 system presented a higher percentage of the Ni-Zn phase and, at the same time, a nonsignificant amount of zinc oxide (0.46%).

The network parameters and percentage quantities of the phases in the ZnO-Ni0.5Zn0.5Fe2O4 catalyst (800 °C) are shown in Table 2. It was observed that the calculated value of the lattice parameter was 8.38 Å, which is close to the theoretical (8.3827 Å; JCPDS card 52-0278) and experimental values (8.35 Å; [43]) already reported. Additionally, it was possible to observe the maintenance of the unit cell with cubic symmetry, suggesting that there was no structural change due to the high proportion of Ni-Zn ferrite. Regarding phase quantification, the presence of the Ni-Zn ferrite phase in high quantity (99.54%) and segregated ZnO phases (0.46%) were identified in the ZnO-Ni0.5Zn0.5Fe2O4 catalyst that was heat-treated at 800 °C, which is in agreement with the XRD results (see Figure 1).
Figure 2. Refined X-ray diffractogram for the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C).

Table 2. Quantification of phases presents in the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C), with refinement by Rietveld.

Sample	Lattice Parameters	Crystal System	Percentage of Phases Present (%)	R$_{wp}$	R$_{exp}$	GOF
ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ (800 °C)	a = b = c = 8.38	Cubic (Ni-Zn) ferrite	99.54	0.92	0.35	2.61
	$a = 3.24$ e c = 5.19	Hexagonal ZnO	0.46			

The goodness-of-fit (GOF) and the weighted (Rwp) and expected (Rexp) indices are the parameters that indicate quality for Rietveld refinement. When R$_{wp}$ and R$_{exp}$ values are close, they have the same trend, so it is possible to consider the refinement as satisfactory. Finally, refinement is considered satisfactory if the goodness-of-fit (GOF) is less than 1.7. In practice, values below 5 reflect an optimized refinement, as reported in the literature [44,45]. Therefore, based on the refinement results showed in Table 2, it can be considered that the results obtained were satisfactory for the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst.

3.1.2. Texture Analysis

Figure 3 shows the adsorption/desorption isotherms of N$_2$ due to the textural characterization of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C). It is observed that the catalyst presented a subtle hysteresis, which is characteristic of mesoporous materials. Besides the existence of hysteresis, mesoporous materials are also characterized by the absence of nitrogen adsorption limitation, i.e., P/P0 value is high [41,46]. According to the classification recommended by IUPAC, this isotherm behavior is of type III, which characterizes an adsorption process that occurs in nonporous or macroporous materials [30].

Concerning the hysteresis cycle (Figure 3), it is possible to observe a practically constant level for P/P0 values up to 0.2 cm3/g. After that, a branch of hysteresis in the region of high relative pressure, with a very steep slope, is observed. Such behavior is characteristic of an H$_3$ type loop profile, generally associated with the nonrigid aggregates of particles, as seen later in the SEM imaging, originating pores in the slits. The literature [46] indicates that when the isotherm presents an inflection
of approximately 0.2 cm3/g (relative pressure (P/P$_0$)), it indicates the presence of micropores in the morphological structure.

![Figure 3. Adsorption/desorption isotherm measured from the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C).](image)

The average value of the specific surface area of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C) was around 14.8 m2/g, which is lower than the experimental values reported in the literature for NiFe$_2$O$_4$ [47]. However, for the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst, when subjected to heat treatment, large particles are formed. This occurs due to the diffusion of atoms and the formation of the neck between the small and large particles, generating the growth of the particles [48,49]. Moreover, the pore diameter (3.37 nm) and the isotherms' profiles corroborate to indicate that the synthesized catalyst has a disorderly surface characteristic, with nonporous regions and other regions that present mesopores or macropores of different shapes and sizes [50].

3.1.3. Scanning Electron Microscopy (SEM)

Figure 4 shows the SEM images acquired from the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst that was heat-treated at 800 °C. It was observed that the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst presented irregular agglomerates (Figure 4a) with pores in its surface. Clusters (Figure 4a) and particles (Figure 4b) were observed in the SEM images, with sizes close to 100 and 10 μm, respectively. The diffusion of small particles occurred with the consequent agglomeration of them on the large particles' surface. This indicates that the heat treatment caused the diffusion of small particles and, consequently, caused the growth of the agglomerates, corroborating with the results of the specific surface area presented in the textural analysis.

3.1.4. Granulometric Analysis

Figure 5 shows the distribution and accumulated distribution curves measured from the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst synthesized at 800 °C. It was observed that the accumulative distribution curve of the clusters (blue curve) and the frequency histogram of the distribution of the populations of clusters present the same particle diameter (histogram in black). In summary, the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst, heat-treated at 800 °C, showed a relatively wide particle size distribution, corroborating with the SEM images (Figure 4). In addition, symmetrical and
monomodal behavior was identified, with an average diameter (50% in the accumulated curve) of 39.58 nm. When this value is compared with the crystallite size (32 nm), it appears that the value obtained in the particle size distribution for D50 was higher. This indicates that the synthesized material has irregular nanometer-sized clusters.

Figure 4. SEM images acquired from the ZnO-Ni0.5Zn0.5Fe2O4 catalyst, heat-treated at 800 °C. The magnifications used were 500× (a) and 5000× (b).

Figure 5. The particle size distribution of the ZnO-Ni0.5Zn0.5Fe2O4 catalyst, heat-treated at 800 °C.

3.1.5. Fourier Transform Infrared Spectroscopy (FTIR) and Raman

Figure 6a,b shows the FTIR and Raman spectrums measured from the ZnO-Ni0.5Zn0.5Fe2O4 catalyst, heat-treated at 800 °C. Figure 6a shows bands below 1000 cm⁻¹, characteristic of ferrites with a spinel-like crystalline structure [51]. Bands at 537 and 449 cm⁻¹ were also observed and are attributed to the...
tetrahedral and octahedral forms of ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, which is in agreement with the XRD experiments (see Figure 1). As shown in the literature [52], the vibrational frequency around 600–500 cm$^{-1}$ is related to the Fe$^{3+}$ O$^{2-}$ complex at the tetrahedral site. On the other hand, the vibrational frequency around 450–350 cm$^{-1}$ is related to the Fe$^{2+}$ O$^{2-}$ and M$^{2+}$ O$^{2-}$ complexes (where M$^{2+}$ = Zn$^{2+}$, Mn$^{2+}$, Fe$^{2+}$) at the octahedral site.

In Figure 6b, the bands near 200 (F$_{2g1}$), 310 (E$_g$), 467 (F$_{2g2}$), and 672 (A$_{1g}$) cm$^{-1}$ are characteristic of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst [53]. The A$_{1g}$ mode is related to the symmetrical stretching of the oxygen atoms in the Fe-O bonds (tetrahedral bonds). The E$_g$ and F$_{2g1}$ bands are related to the symmetrical flexion of oxygen concerning Fe and the entire tetrahedron’s translational movement. Lastly, the F$_{2g2}$ band occurs due to the asymmetric elongation of the Fe-O bond. Raman spectrum agrees with the XRD results since it was also possible to identify the major presence of ferrite. However, unlike the Rietveld analysis, bands related to the ZnO phase were not identified. This is probably related to the low concentration of that phase in the synthesized catalyst at 800 °C.

3.1.6. Thermogravimetry (TG)

Figure 7 shows the TG and DTG curves measured from the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst, heat-treated at 800 °C. The thermal profile showed that it was possible to identify three decomposition stages, with a total loss of mass of 2.1%. The first stage occurred in the range of 36–100 °C and is related to spontaneous evaporation of the free water absorbed on the catalyst surface. The second stage occurred at 211–314 °C and corresponded to the loss of mass due to the continuous oxidation of organic matter and inorganic salt decomposition. The third stage occurred between 546 and 596 °C, corroborating the mass loss seen in the literature [54].

3.1.7. Magnetic Evaluation

The magnetic behavior of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst, heat-treated at 800 °C, was evaluated from the magnetization (M) versus magnetic field (H) curve (see Figure 8). Due to the low values of remaining magnetization (6.0 mT/g) and coercivity (0.06 G), it is possible to see that the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst presents a soft magnetic behavior (i.e., easily magnetizes and demagnetizes. The hysteresis curve presents a well-defined S shape and a very narrow internal area, suggesting the catalyst studied has ferrimagnetic behavior [55]. The maximum saturation magnetization was 59.4 emu/g, higher than the values already
reported in the literature [12]. The heat treatment applied to synthesize the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} catalyst favored a considerable increase in saturation magnetization.

![Graph of TGA and DTG curves.](image)

Figure 7. Thermal stability of the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} catalyst, heat-treated at 800 °C.

![Graph of magnetic hysteresis curve.](image)

Figure 8. The magnetic hysteresis curve measured from the ZnO-Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} catalyst, heat-treated at 800 °C.

In general, Ni-Zn-based ferrites are ferrimagnetic; that is, they exhibit magnetic properties in the presence of an external magnetic field. However, when the external magnetic field is removed, it is impossible to observe coercivity or the remaining magnetization. In this way, Ni-Zn-based ferrites are easily removed from the suspension by applying an external magnetic field during the product separation process. Magnetic separation is a relevant alternative to filtration and/or centrifugation.
since it prevents the catalyst’s loss and increases the capacity for reuse. As a consequence, there is a cost-benefit of the catalyst for industrial-scale production.

3.1.8. NH$_3$ Temperature Programmed Desorption Analysis (TPD)

The active acid sites of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C) were determined using TPD-NH$_3$ analysis (see Figure 9). It is possible to see two NH$_3$ desorption peaks in the TPD-NH$_3$ analysis, where the first peak (~218 °C, corresponding to weak and moderate acidic sites) and the second peak (~525 °C) are attributed to acidic sites of a strong nature. These results are in agreement with the literature [56,57].

![TPD-NH$_3$ analysis of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst (800 °C).]

The acidity of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst, heat-treated at 800 °C, was calculated by integrating the deconvolution area from the TPD-NH$_3$ curve. The result indicated two types of NH$_3$ desorption sites: the first peak refers to weak and moderate acid sites, with a temperature range between 100 °C and 350 °C; the other peak refers to the strong acidity sites that were identified between 450 °C and 650 °C, corroborating with the literature [58]. Finally, the results obtained from the TPD-NH$_3$ curve indicate a concentration of weak-moderate and strong acid sites, with 8.59 μmol/g and 10.13 μmol/g of NH$_3$, respectively. Therefore, the studied Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst showed a total acidity of 18.72 μmol/g of NH$_3$. Thus, it is possible to conclude that the Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ magnetic catalyst has an acidic character.

3.1.9. Catalytic Performance

Figure 10 shows the catalytic performance, acidity reduction, and mass yield of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst in TES reactions of the residual oil, performed in the presence of ethanol and methanol. At this moment, the dependent variable is the alcoholic route, with the following reaction conditions fixed—alcohol/oil ratio of 1/15, residual oil mass of 30 g, the reaction time of 1 h, temperature 200 °C, and 3% catalyst percentage (0.9 g). The ester conversion was 73%, and the mass yield was around 80% for the methyl alcoholic route. The ethyl route showed lower conversions, with 59.1% for the ester conversion and mass yield in approximately 70%. The acidity of the FAAEs produced reduced significantly when using the methyl alcoholic route (reaching ~90%), while the ethyl route reached ~41%, suggesting that a large part of the available raw material reacted to the test conditions.
In the TES reactions tested, there was a difference of approximately 14.29% in the conversion values in favor of methanol. Such behavior is probably due to the physical and chemical nature (short-chain and polarity) of methanol, leading to higher conversions than alcohol. Therefore, the type of alcohol used can be one factor for the disparity in the conversions resulting from the transesterification and esterification reactions since the other parameters involved in the processes, such as temperature and time, were kept unchanged [59]. Methanol is frequently used to obtain short-chains and polar, and the fact that it is free of water makes it easier to separate esters and glycerin, culminating in greater conversions. Thus, it is possible that the water present in ethanol interfered, for example, in the TES reaction by ethyl route, reducing the final reaction product (fatty acid ethyl esters). Consequently, it provided the formation of an emulsion in the mixture of esters due to the formation of insoluble fatty acids during the reaction process.

The results obtained in this work corroborate with those reported by Dantas et al. (2017) [60], in which 85% ester conversions were verified for transesterification of soybean oil. Mapossa et al. (2017) [12] found a low conversion to fatty acid ethyl esters when they tested the alcoholic ethyllic route by esterifying the mixture of soybean oil oleic acid, showing conversions in the ester of 44.49, 43.09, and 43.95%, respectively.

It is important to note that the quality standards of Brazilian biodiesel are established according to ANP 07/2008 (Brazil) and EN 14214 (European Union). These two standards determine the minimum and maximum concentration values for the different species present in the biodiesel produced. The ester content determined by following Brazilian and European standards is at least 96.5% of the FAAEs. Therefore, this study has shown that the maximum conversion of the ester content obtained was 73%, which is close to the value established by regulatory standards, leading to the belief that if the reaction conditions used are changed, such as the molar ratio of alcohol:oil, amount of catalyst, and time and temperature, they can be potential candidates to optimize the biodiesel production process. Through this work, it was possible to develop the final product with a wide range of applications, contributing to the discovery and expansion of heterogeneous magnetic catalysts on a nanoscale, where the cost is relatively low, especially when using technological products aimed at society itself.

Figure 11 presents profiles of the percentage values of glyceride composition that was not converted in the reaction. The values were identified and quantified by gas chromatography analysis.
The ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ profiles of triglyceride residues not consumed in the reaction (Figure 11) suggest that the ethyl route has more significant reaction interference in transesterification, directing the reaction to the formation stages of mono- and diacylglycerides in higher percentages than the methyl route. Similar behavior was reported by Dantas et al. 2016 [12], who studied similar heterogeneous magnetic catalytic systems in a TES reaction performed by a mixture of refined soybean oil with oleic acid, which simulates the high acidity characteristic of residual oils due to large quantities of free fatty acids, tested by methyl and ethyl routes, which showed 91.4% and 77.8% conversion to methyl and ethyl esters, respectively.

4. Conclusions

The combustion reaction was sufficient to obtain the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ magnetic catalyst and, subsequently, the heat-treatment at 800 °C favored a biphasic transformation. X-ray diffraction confirmed the inverse spinel majority phase’s presence, with an average crystallite size of 32 nm. The morphology was investigated by SEM images, which showed the clusters formed by irregular particles, confirming the particle size distribution. The catalyst revealed the typical ferrimagnetic behavior of soft materials, with a high saturation magnetization of 59.4 emu/g. The ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ system was more catalytically active for the methyl route, with an average conversion of 73%, while the ethyl route achieved a conversion of 59.1% into biodiesel. The use of the ZnO-Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ catalyst for biodiesel production derived from residual oil was effective, with the viability of industrial production. In general, the transformation of an oil residue into biodiesel is important since it adds value to a discarded material. Additionally, the reuse of residual oil minimizes the environmental and social impacts, contributing to sustainable development.

Author Contributions: Conceptualization, C.B.B.L.; data curation, A.L.d.S., A.F.F.d.F., S.A.S.L.d.M., and S.M.P.M.; formal analysis, A.F.F.d.F., S.A.S.L.d.M., and S.M.P.M.; funding acquisition, A.C.F.d.M.C.; investigation, A.L.d.S. and C.B.B.L.; methodology, A.L.d.S.; project administration, A.C.F.d.M.C.; supervision, A.C.F.d.M.C.; validation, A.F.F.d.F., S.M.P.M., and A.C.F.d.M.C.; writing—review and editing, A.L.d.S., C.B.B.L., S.M.P.M., and A.M.R. All authors have read and agreed to the published version of the manuscript.

Funding: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Acknowledgments: The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luna, C.B.B.; Siqueira, D.D.; Ferreira, E.d.S.B.; da Silva, W.A.; Nogueira, J.A.d.S.; Araújo, E.M. From disposal to technological potential: Reuse of polypropylene waste from industrial containers as a polystyrene impact modifier. *Sustainability* 2020, 12, 5272. [CrossRef]

2. Sales, H.B.; Menezes, R.R.; Neves, G.A.; Souza, J.J.N.d.; Ferreira, J.M.; Chantelle, L.; Oliveira, A.L.M.d.; Lira, H.d.L. Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents. *Sustainability* 2020, 12, 7393. [CrossRef]

3. Yadav, M.; Singh, V.; Sharma, Y.C. Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: Process optimization and homogeneity study of catalyst. *Energy Conv. Manag.* 2017, 148, 1438–1452. [CrossRef]

4. De Campos, T.M.P.; Antunes, M.C. Cadeia reversa do óleo de cozinha residual: O papel do Ponto de Entrega Voluntária (PEV). *Dig. Re Vista* 2018, 3, 96–111.

5. Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. *Biotechnol. Adv.* 2010, 28, 500–518. [CrossRef] [PubMed]

6. Tsai, W.T. Mandatory recycling of waste cooking oil from residential and commercial sectors in Taiwan. *Resources* 2019, 8, 38. [CrossRef]

7. Said, N.H.; Ani, F.N.; Said, M.F.M. Review of the production of biodiesel from waste cooking oil using solid catalysts. *J. Mech. Eng. Sci.* 2015, 8, 1302–1311. [CrossRef]

8. Li, M.; Chen, J.; Huang, Y.; Li, M.; Lin, X.; Qiu, T. Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids. *Energy* 2020, 211, 118631. [CrossRef]

9. Gopan, S.N.; Rajan, A.V.; Krishnan, B.R. Review of Bio-diesel production from waste cooking oil and analyze the IC engine performance. *Mater. Today Proc.* 2020. [CrossRef]

10. Mandolesi De Araújo, C.D.; De Andrade, C.C.; De Souza, E.; Silva, E.; Dupas, F.A. Biodiesel production from used cooking oil: A review. *Renew. Sustain. Energy Rev.* 2013, 27, 445–452. [CrossRef]

11. Wallace, T.; Gibbons, D.; O’Dwyer, M.; Curran, T.P. International evolution of fat, oil and grease (FOG) waste management—A review. *J. Environ. Manag.* 2017, 187, 424–435. [CrossRef] [PubMed]

12. Mapossa, A.B.; Dantas, J.; Diniz, V.C.S.; Silva, M.R.; Kiminami, R.H.G.A.; Costa, A.C.F.M.; Federal, U.; Grande, D.C.; Grande, C.; Africa, S. Síntese e caracterização do ferroespínélio Ni$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$: Avaliação de desempenho na esterificação metálica e etílica. *Cerâmica* 2017, 63, 223–232. [CrossRef]

13. Enweremadu, C.C.; Mbarawa, M.M. Technical aspects of production and analysis of biodiesel from used cooking oil-A review. *Renew. Sustain. Energy Rev.* 2009, 13, 2205–2224. [CrossRef]

14. Tan, Y.H.; Abdullah, M.O.; Nolasco-Hipolito, C. The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and engine performance. *Renew. Sustain. Energy Rev.* 2015, 47, 589–603. [CrossRef]

15. Wang, L.; Dong, X.; Jiang, H.; Li, G.; Zhang, M. Ordered mesoporous carbon supported ferric sulfate: A novel catalyst for the esterification of free fatty acids in waste cooking oil. *Fuel Process. Technol.* 2014, 128, 10–16. [CrossRef]

16. Lou, W.Y.; Zong, M.H.; Duan, Z.Q. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. *Bioresour. Technol.* 2008, 99, 8752–8758. [CrossRef]

17. Gardy, J.; NouraKan, E.; Osatiashtiani, A.; Lee, A.F.; Wilson, K.; Hassanpour, A.; Lai, X. A core-shell SO$_4$/Mg-Al-Fe$_3$O$_4$ catalyst for biodiesel production. *Appl. Catal. B Environ.* 2019, 259, 118093. [CrossRef]
18. Liu, Y.; Zhang, P.; Fan, M.; Jiang, P. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe$_2$O$_4$@CaO. *Fuel* **2016**, *164*, 314–321. [CrossRef]

19. Quah, R.V.; Tan, Y.H.; Mubarak, N.M.; Khalid, M.; Abdullah, E.C.; Nolasco-Hipolito, C. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. *J. Environ. Chem. Eng.* **2019**, *7*, 103219. [CrossRef]

20. Dantas, J.; Leal, E.; Mapossa, A.B.; Silva, A.S.; Costa, A.C.F.M. Synthesis, characterization and catalytic performance of mixed nanoferrites submitted to transesterification and esterification reaction using methyl and ethyl route for biodiesel production. *Rev. Mater.* **2016**, *21*, 1080–1093. [CrossRef]

21. Zhang, P.; Shi, M.; Liu, Y.; Fan, M.; Jiang, P.; Dong, Y. Sr doping magnetic CaO parcel ferrite improving catalytic activity on the synthesis of biodiesel by transesterification. *Fuel* **2016**, *186*, 787–791. [CrossRef]

22. Ashok, A.; Kennedy, L.J.; Vijaya, J.J. Structural, optical and magnetic properties of Zn$_{1-x}$Mn$_x$Fe$_2$O$_4$ (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil. *J. Alloys Compd.* **2019**, *780*, 816–828. [CrossRef]

23. Ashok, A.; Kennedy, L.J. Magnetically Separable Zinc Ferrite Nanocatalyst for an Effective Biodiesel Production from Waste Cooking Oil. *Catal. Lett.* **2019**, *149*, 3525–3542. [CrossRef]

24. Salimi, Z.; Hosseini, S.A. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO$_3$ nano magnetic catalyst. *Fuel* **2019**, *239*, 1204–1212. [CrossRef]

25. Sano, N.; Yamada, K.; Tsunauchi, S.; Tamon, H. A novel solid base catalyst for transesterification of triglycerides toward biodiesel production: Carbon nanohorn dispersed with calcium ferrite. *Chem. Eng. J.* **2017**, *307*, 135–142. [CrossRef]

26. Ashok, A.; Ratnaji, T.; John Kennedy, L.; Judith Vijaya, J.; Gnana Pragash, R. Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: Process optimization, kinetic and thermodynamic analysis. *Renew. Energy* **2020**, *163*, 480–494. [CrossRef]

27. El-Batal, A.I.; Farrag, A.A.; Elsayed, M.A.; El-Khawaga, A.M. Biodiesel production by aspergillus Niger lipase immobilized on barium ferrite magnetic nanoparticles. *Bioengineering* **2016**, *3*, 14. [CrossRef]

28. Pontes, J.R.M.; Leal, E.; Costa, A.C.F.M. Estudo da atividade catalítica do compósito cerâmico magnético γ-Fe$_2$O$_3$/Ba$_3$Co$_2$Fe$_{24}$O$_{41}$ para produção de biodiesel. *Rev. Eletr. Mater. Process.* **2020**, *15*, 43–49.

29. Ali, R.M.; Elkatory, M.R.; Hamad, H.A. Highly active and stable magnetically recyclable CuFe$_2$O$_4$ as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. *Fuel* **2020**, *268*, 117297. [CrossRef]

30. Da Silva, A.L.; Farias, A.F.E.; Pontes, J.R.M.; Rodrigues, A.M.; Costa, A.C.F.M. Synthesis of the ZnO-Ni$_{3.5}$/ZnO$_{0.5}$Fe$_2$O$_4$-Fe$_2$O$_3$ magnetic catalyst in pilot-scale by combustion reaction and its application on the biodiesel production process from oil residual. *Arab. J. Chem.* **2020**, *13*, 314–321. [CrossRef]

31. Costa, A.C.F.M.; Kiminamin, R.H.G.A. Dispositivo para a produção de nanocompósito cerâmicos em larga escala por reação de combustão e processo contínuo de produção de nanocompósito. *Rev. Propr. Ind. RPI* **2012**, *15* (3), 002181-3.

32. Jain, S.R.; Adiga, K.C.; Pai Verneker, V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. *Combust. Flame* **1981**, *40*, 71–79. [CrossRef]

33. Avila, P.R.T.; da Silva, E.P.; Rodrigues, A.M.; Aristizabal, K.; Pineda, F.; Coelho, R.S.; Garcia, J.L.; Soldera, F.; Walczak, M.; Pinto, H.C. On manufacturing multilayer-like nanostructures using misorientation gradients in PVD films. *Sci. Rep.* **2019**, *9*, 15898. [CrossRef] [PubMed]

34. Klug, H.P.; Alexander, L.E. *X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials*, 2nd ed.; Wiley: New York, NY, USA, 1974; ISBN 978-0-471-49369-3.

35. Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. *Acta Crystallogr.* **1967**, *22*, 151–152. [CrossRef]

36. Pereira da Costa, F.; Rodrigues da Silva Morais, C.; Rodrigues, A.M. Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite. *Ceram. Int.* **2020**, *46*, 17957–17961. [CrossRef]

37. Costa, F.P.; Morais, C.R.d.S.; Pinto, H.C.; Rodrigues, A.M. Microstructure and physico-mechanical properties of Al$_2$O$_3$-doped sustainable glass-ceramic foams. *Mater. Chem. Phys.* **2020**, *256*, 123612. [CrossRef]

38. Fernandes, J.V.; Rodrigues, A.M.; Menezes, R.R.; Neves, G.d.A. Adsorption of Anionic Dye on the Acid-Functionalized Bentonite. *Materials* **2020**, *13*, 3600. [CrossRef]
39. Olhero, S.M.; Soma, D.; Amaral, V.S.; Button, T.W.; Alves, F.J.; Ferreira, J.M.F. Co-precipitation of a Ni-Zn ferrite precursor powder: Effects of heat treatment conditions and deagglomeration on the structure and magnetic properties. J. Eur. Ceram. Soc. 2012, 32, 2469–2476. [CrossRef]

40. Hajalilou, A.; Hashim, M.; Mohamed Kamari, H. Structure and magnetic properties of Ni$_{0.64}$Zn$_{0.36}$Fe$_2$O$_4$ nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 2015, 26, 1709–1718. [CrossRef]

41. Mapossa, A.B.; Dantas, J.; Kiminami, R.H.G.A.; Silva, M.R.; Costa, A.C.F.M. Síntese do ferroespinelio ZnFe$_2$O$_4$ e avaliação do seu desempenho em reações de esterificação e transesterificação via rota metálica. Rev. Eletr. Mater. Process. 2015, 10, 137–143.

42. Li, J.; Ng, D.H.L.; Song, P.; Song, Y.; Kong, C. Bio-inspired synthesis and characterization of mesoporous ZnFe$_2$O$_4$ hollow fibers with enhancement of adsorption capacity for acid dye. J. Ind. Eng. Chem. 2015, 23, 290–298. [CrossRef]

43. Abdullah Dar, M.; Shah, J.; Siddiqui, W.A.; Kotnala, R.K. Study of structure and magnetic properties of Ni-Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl. Nanosci. 2014, 4, 675–682. [CrossRef]

44. Salvador, V.L.R. Separação de Efeitos de Sobrepoxação de Espectros Obtidos por WdXRF Usando o Método de Rietveld Vera Lucia Ribeiro Salvador; Instituto de Pesquisas Energéticas e Nucleares: São Paulo, Brazil, 2005.

45. Pauluk, S. Estudo da Estrutura Cristalina de Pigmentos de Zirconitas a Partir dos Sistemas ZrSiO$_4$-Co$_3$O$_4$ e ZrSiO$_4$-Cr$_2$O$_3$ Utilizando o Método de Rietveld; Universidade de Ponta Grossa: Ponta Grossa, Brazil, 2008.

46. ALOthman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [CrossRef]

47. Dantas, J.; Silva, A.S.A.; Costa, A.C.F.M.; Freitas, N.L. Síntese, caracterização dos espinelios NiFe$_2$O$_4$ e CoFe$_2$O$_4$ e avaliação do desempenho no transesterificação e esterificação do óleo de algodão. Rev. Eletr. Mater. Process. 2012, 7, 174–179.

48. Silva, A.L.; Luna, C.B.B.; Chaves, A.C.; Neves, G.A. Avaliação de novos depósitos de argilas provenientes da região sul do Amapá visando aplicação na indústria cerâmica. Ceramica 2018, 64, 69–78. [CrossRef]

49. Da Silva, A.L.; Luna, C.B.B.; Chaves, A.C.; Neves, G.d.A. Caracterização tecnológica de novos depósitos de argilas da região sul do Amapá visando aplicações na indústria Cerâmica. Rev. Mater. 2017, 22. [CrossRef]

50. Michot, L.J.; Bihannic, I.; Thomas, F.; Lartiges, B.; Waldvogel, Y.; Caillet, C.; Thieme, J.; Funari, S.S.; Levitz, P. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir 2013, 29, 3500–3510. [CrossRef]

51. Dumitrescu, A.M.; Samoila, P.M.; Nica, V.; Doroftei, F.; Iordan, A.R.; Palamaru, M.N. Study of the chelating/fuel agents influence on NiFe$_2$O$_4$ samples with potential catalytic properties. Powder Technol. 2013, 243, 9–17. [CrossRef]

52. Jandl, S.; Deslandes, J. Infrared spectra of HfS$_3$. Phys. Rev. B 1955, 99, 1727–1735. [CrossRef]

53. Lazarević, Z.Z.; Jovalekic, C.; Milutinović, A.; Sekulić, D.; Slankamenac, M.; Romčević, M.; Romčević, N.Z. Study of nife$_2$O$_4$ and ZnFe$_2$O$_4$ spinel ferrites prepared by soft mechanochemical synthesis. Ferroelectrics 2013, 448, 1–11. [CrossRef]

54. Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnumasam, S.; Muthamizhchelvan, C. Preparation and properties of nickel ferrite (NiFe$_2$O$_4$) nanoparticles via sol-gel auto-Combustion method. Mater. Res. Bull. 2011, 46, 2204–2207. [CrossRef]

55. Vieira, D.A.; Diniz, V.C.S.; Cornejo, D.R.; de Melo Costa, A.C.F.; Kiminami, R.H.G.A. Study of the Reproducibility of Ni-Zn Nano-ferrite Obtained by Combustion Reaction. Mater. Sci. Forum 2014, 775–776, 415–420. [CrossRef]

56. Lima, D.S.; Perez-Lopez, O.W. Conversão catalítica do etanol sobre catalisadores suportados em ZSM-5. Ceramica 2018, 64, 1–9. [CrossRef]

57. Sawa, M.; Niwa, M.; Murakami, Y. Relationship between acid amount and framework aluminum content in mordenite. Zeolites 1990, 10, 532–538. [CrossRef]

58. Masiero, S.S.; Marcilio, N.R.; Perez-Lopez, O.W. Aromatization of methane over Mo-Fe/ZSM-5 catalysts. Catal. Lett. 2009, 131, 194–202. [CrossRef]
59. Holanda, A. Biodiesel e Inclusão Social; Coordenação de Publicações: Brasília, Brazil, 2004; Volume 26.
60. Dantas, J.; Leal, E.; Mapossa, A.; Cornejo, D.; Costa, A. Magnetic nanocatalysts of Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} doped with Cu and performance evaluation in transesterification reaction for biodiesel production. *Fuel* **2017**, *191*, 463–471. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).