Note: An alternative proof of the vulnerability of k-NN classifiers in high intrinsic dimensionality regions

Teddy Furon
Univ Rennes, Inria, CNRS, IRISA - France

Abstract

This document proposes an alternative proof of the result contained in article [1]. The proof is simpler to understand (I believe) and leads to a more precise statement about the asymptotical distribution of the relative amount of perturbation.

I. CONTEXT

Let us consider a collection of n points $\{x_i\}_{i=1}^n \in \mathbb{R}^d$, plus a query point q everywhere in this space. Suppose that an artificial intelligent program bases its decision on the collection points neighbouring the query. Especially, the decision will take collection point x_i into account if it is one of the k_t nearest neighbours of q.

Suppose that this is not the case for that query q and this collection point x. In other words x is only the k_x nearest neighbour of q with $1 \leq k_t < k_x \leq n$. Let us rename by t the collection point which is the k_t nearest neighbour of q, we have that $t < x$, with $t := \|t - q\|$ and $x := \|x - q\|$.

We are interested in the amount of perturbation to be applied to collection point x so that the program takes it into account. This perturbation pushes x to a new point y so that its neighbour rank is $k_y \leq k_t$, at a distance $y \leq t$ away from q.

The amount of perturbation is evaluated by the ratio $\delta := \|x - y\|/\|x - q\|$, with $\delta \in (0, 1)$. Obviously, this ratio is set to the minimum if x is pushed onto y in a direct line towards q: $y \in [x, q]$. This implies that:

$$k_y < k_t \iff y < t \iff \delta > 1 - \frac{t}{x}.$$

(1)

Note that this quantity depends on the configuration of the collection points locally around q. From now on, we will consider that this collection of points is indeed random. This means that distances t and x are occurrences of absolutely continuous random variables T_n and X_n (note that $0 < T_n < X_n$), and so is the relative amount of perturbation δ w.r.t. r.v. $\Delta_n := 1 - T_n/X_n$. The subscript n stresses that the size of the collection is a major factor: as the size increases, we expect that the k_t (resp. k_x) neighbour comes closer to q.

We do not impose a specific distribution of the collection points in \mathbb{R}^d, but only of their distances from q.

Assumption 1. The distances of collection point w.r.t. the query q are independent and identically distributed, whose c.d.f. is denoted by $F: \mathbb{R}^+ \to [0, 1]$ and p.d.f. $f: \mathbb{R}^+ \to \mathbb{R}^+.$
Then

\int_{0}^{1} g(\xi) e^{h(\xi)} d\xi < +\infty

\Rightarrow 0^+ \implies \frac{A\xi}{\alpha} \sim \alpha > -1 \quad (11)

\frac{A\beta}{\beta} \sim \beta > 0 \quad (12)

Then

\int_{0}^{1} g(\xi) e^{h(\xi)} d\xi \sim \frac{A\alpha}{\beta} \frac{\alpha + 1}{\beta} e^{\alpha n(\alpha n)^{-\frac{\alpha + 1}{\beta}}} \quad as \ n \to +\infty \quad (13)
Before applying this lemma, we need the following assumption:

Assumption 2. The c.d.f. $F(\cdot)$ is a regularly varying function around 0^+ (as defined by J. Karamata).

This assumption holds from the theory of extreme values. As n increases, the distances of the k_x and k_t nearest neighbour tap into the lower tail of the distribution, which ought to be regularly varying because it is lower bounded by 0. This implies that, there exists a parameter $\ell > 0$ (so-called index of regular variation, or intrinsic dimensionality in \cite{1}) s.t.

$$
\lim_{x \to 0^+} \frac{F((1 - \delta)x)}{F(x)} = \lim_{\xi \to 0^+} \frac{F((1 - \delta)F^{-1}(\xi))}{\xi} = (1 - \delta)^\ell.
$$

(14)

We then rewrite \cite{9} in the form

$$
\int_0^1 g(\xi) e^{nh(\xi)} \, dx / B(k_x, n - k_x + 1)
$$

(9) with

$$
h(\xi) = \log(1 - \xi)
$$

(15)

$$
g(\xi) = \left(1 - I_{(1 - \delta)\ell}^{-1}(\xi)(k_t, k_x - k_t)\right) \xi^{k_x - 1}(1 - \xi)^{-k_t},
$$

(16)

in order to instantiate the constants of Lemma 1 as

$$
a = 0, \quad c = 1, \quad \beta = 1, \quad A = 1 - I_{(1 - \delta)\ell}^{-1}(k_t, k_x - k_t), \quad \alpha = k_x - 1.
$$

(17)

This leads to the following asymptotical expression and limit: $\forall \delta \in (0,1)$

$$
F_{\Delta_n}(\delta) \sim I_{1 - (1 - \delta)\ell}(k_x - k_t, k_t)\frac{n!}{n^{k_x}(n - k_x)!} n^{-\frac{1}{2}} I_{1 - (1 - \delta)\ell}(k_x - k_t, k_t).
$$

(18)

This can be restated as follows:

Proposition 1. As the size n of the collection increases, the relative amount of perturbation Δ_n converges in distribution to $\Delta := 1 - (1 - B)^{1/\ell}$ with $B \sim \text{Beta}(k_x - k_t, k_t)$.

I did not find any close-form expression for $E[\Delta]$. Knowing that:

$$
E[B] = \frac{k_x - k_t}{k_x},
$$

(19)

$$
\forall[B] = \frac{E[B](1 - E[B])}{(k_x + 1)},
$$

(20)

we see that B concentrates around its expectation as k_x becomes large. Thanks to a second order Taylor series, we obtain

$$
E[\Delta] \approx 1 - \left(\frac{k_t}{k_x}\right)^{1/\ell} \left(1 - \frac{\ell - 1}{2\ell^2} \frac{k_x - k_t}{k_t(1 + k_x)}\right).
$$

The term $1 - \left(\frac{k_t}{k_x}\right)^{1/\ell}$ is the main result contained in article \cite{1}. It outlines that “the amount of perturbation required to subvert neighborhood rankings diminishes” with the local intrinsic dimensionality ℓ of this neighborhood. For instance, for large ℓ, this further simplifies into $E[\Delta] \approx \log(k_t/k_x)/\ell$, which shows that ℓ has a bigger impact than the ratio k_t/k_x.

On the contrary, translating quantiles of B to quantiles of Δ is easier as $x \to 1 - (1 - x)^{1/\ell}$ is a monotonic function. For instance, the median of Δ is approximately, for $k_t \geq 2$ and $k_x \geq k_t + 2$:

$$
\Delta_m \approx 1 - \left(\frac{3k_t - 1}{3k_x - 2}\right)^{1/\ell}.
$$

(21)
REFERENCES

[1] L. Amsaleg, J. Bailey, A. Barbe, S. M. Erfani, T. Furon, M. E. Houle, M. Radovanović, and N. X. Vinh, “High intrinsic dimensionality facilitates adversarial attack: Theoretical evidence,” *IEEE Transactions on Information Forensics and Security*, pp. 1–1, 2020.

[2] V. Bonnaillie-Noël, “Méthode de Laplace et de la phase stationnaire,” ENS de Cachan, Tech. Rep., 2004.