Probing color coherence effects in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*
CERN, Geneva, Switzerland

Received: 22 November 2013 / Accepted: 14 May 2014 / Published online: 11 June 2014
© CERN for the benefit of the CMS collaboration 2014. This article is published with open access at Springerlink.com

Abstract A study of color coherence effects in pp collisions at a center-of-mass energy of 7 TeV is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb$^{-1}$. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.

1 Introduction

An important feature of the color interaction in quantum chromodynamics (QCD) is that the outgoing partons produced in the hard interaction continue to interfere with each other during their fragmentation phase. This phenomenon, called color coherence, manifests itself by the relative abundance of soft radiation in the region between the color connected final-state partons and the suppression of soft radiation elsewhere.

Color coherence phenomena were initially observed in e^+e^- collisions by several experiments at PETRA, PEP and LEP [1–8]. These experiments showed the coherence effect in $e^+e^- \rightarrow q\bar{q}g$ three-jet events through the suppression of particle production in the region between the quark and antiquark jets.

In hadron collisions, in addition to the color connection between the final-state partons, the color connection between the outgoing partons and the incoming partons must be considered. The Tevatron experiments CDF and D0 have both reported evidence for color coherence effects in measurements of the spatial correlations between neighboring jets [9,10]. These correlations were not well reproduced by Monte Carlo (MC) simulations that use incoherent parton shower models. However, the data were successfully described by simulations that include color coherence effects through the ordering of the parton emission angles [11].

The technique originally developed by the Tevatron experiments is used to study color coherence effects in pp collisions at $\sqrt{s} = 7$ TeV with the Compact Muon Solenoid (CMS) detector. Events with at least three jets (called three-jet events) are selected, and these jets are ordered by their transverse momenta $p_{T1} > p_{T2} > p_{T3}$ with respect to the beam direction. We measure the angular correlation between the second and third jet to probe the effects of color coherence.

The CMS detector has a right-handed coordinate system with its origin at the center of the detector. The z axis points along the direction of the counterclockwise beam, ϕ is the azimuthal angle in the transverse plane perpendicular to the beam, and θ is the polar angle relative to the z axis. The pseudorapidity of the ith jet is denoted by $\eta_i = -\ln(\tan(\theta_i/2))$ and its azimuthal angle by ϕ_i.

The measured observable β [10] is defined as the azimuthal angle of the third jet with respect to the second jet in (η, ϕ) space as shown in Fig. 1. Implicitly, this can be expressed by

$$\tan \beta = \frac{|\Delta \phi_{23}|}{\Delta \eta_{23}},$$

where $\Delta \phi_{23} = \phi_3 - \phi_2$ (defined so that $-\pi \leq \Delta \phi_{23} \leq \pi$), $\Delta \eta_{23} = \text{sign}(\eta_2) \cdot (\eta_3 - \eta_2)$, and $0 \leq \beta \leq \pi$. The absolute value of $\Delta \phi_{23}$ in Eq. 1 and the sign of the pseudorapidity of the second jet, sign(η_2), in the definition of $\Delta \eta_{23}$ are introduced to map symmetric configurations around $\Delta \phi_{23} = 0$ or $\eta = 0$ onto the same β value. For $\Delta \phi_{23} = 0$, β is defined to be zero or π depending on the sign of $\Delta \eta_{23}$ being positive or negative. In the case of $\Delta \eta_{23} = 0$, which cannot happen simultaneously with $\Delta \phi_{23} = 0$, β is defined to equal $\pi/2$.

In a naive leading-order model the two partons are produced back-to-back in the transverse plane. One of the two partons may radiate a third parton. In the absence of color coherence effects there is no preferred direction of
emission of this third parton around the radiating parton. In contrast, when color coherence effects are present, the third parton will tend to lie in the event plane defined by the emitting parton and the beam axis. Therefore, in the presence of color coherence, the third jet population along the event plane (in particular near $\beta \approx 0$) will be enhanced and out of the plane ($\beta \approx \pi/2$) will be suppressed. The color coherence effects are expected to become stronger in the region between the second jet and the remnant when the angle between them becomes smaller. Therefore the study of the β variable is performed in two situations: when the second jet is rather central ($|\eta_2| \leq 0.8$) and when the second jet is more forward ($0.8 < |\eta_2| \leq 2.5$).

The aims of this paper are

- To measure the β distributions, normalized to the total number of events in each region, as a function of β separately in the central ($|\eta_2| \leq 0.8$) and forward region ($0.8 < |\eta_2| \leq 2.5$):

$$F_{\eta_2,i}(\beta) = \frac{N_{\eta,i}}{N_\eta},$$

where N_η is the total number of events in the η_2 region, $N_{\eta,i}$ the number of events in the given ith β bin of the η_2 region. The choice of this normalization significantly reduces the impact of experimental systematic uncertainties such as the uncertainty in the luminosity.

- To gauge the sensitivity of the variable β to color coherence effects.

- To compare our measurements to the predictions of MC event generators with various implementations of color coherence.

2 The CMS detector

A detailed description of the CMS experiment can be found elsewhere [12]; so here we describe the detector systems most relevant to the present analysis. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume, a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter (HCAL) are installed. The central tracking system provides coverage up to $|\eta| = 2.5$ in pseudorapidity and the calorimeters up to $|\eta| = 3.0$. An iron and quartz-fiber Cherenkov forward hadron calorimeter (HF) covers the pseudorapidity range $3.0 < |\eta| < 5.0$.

3 Event selection

The CMS detector records events using a two-level trigger system consisting of a hardware-based level-1 (L1) trigger and a software-based high-level trigger (HLT). For this study, single jet triggers that reconstruct jets from calorimeter energy deposits at L1 and HLT are used to select events based on different p_T jet thresholds. Five different triggers with p_T thresholds of 30, 50, 70, 100, and 140 GeV are used to select the events. The triggers were prescaled during the 2010 run when the associated rate exceeded the allocated band width except the highest-threshold one. Therefore, the events are split into five different bins in p_T with each bin containing the events collected during a period when the appropriate trigger was not prescaled. Each bin starts at $p_{T_{\text{min}}}$ defined in such a way that the associated trigger efficiency exceeds 99 %. Table 2 lists the binning in $p_{T_{\text{min}}}$, and, for each bin, it gives the associated trigger, the number of selected events, and the integrated luminosity for the period during which the given trigger was not prescaled.

Jets are reconstructed with the anti-k_T algorithm [13], which is implemented in the FASTJET package [14] using a distance parameter $R = 0.5$, from a list of particle candidates reconstructed using the particle-flow (PF) algorithm. This PF algorithm [15] reconstructs all particle candidates in each event using an optimized combination of information from all CMS subdetector systems: muons, electrons (with associated bremsstrahlung photons), photons (unconverted and converted), and charged/neutral hadrons. The four-vectors of the neutral particles are computed by assuming that they come from the primary vertex, which is defined as the vertex with the highest sum of transverse momenta of all reconstructed tracks pointing to it. The reconstructed jet energy E is defined as the scalar sum of the energies of the constituents, and the jet momentum p is the vector sum of the momenta of the constituents. The jet transverse momentum p_T is the component of p perpendicular to the beam. The E and p values

![Fig. 1 Visualization of the observable β in (η, ϕ) space using a simulated three-jet event. The sizes of the rectangular boxes are proportional to the number of events in each region.](image-url)
The selections used in the analysis are summarized in Table 1. The numbers of events passing the selection criteria in each \(p_{T1} \) bin are summarized in Table 2. The measured \(\Delta \eta_{23} \) and \(\Delta \phi_{23} \) distributions are compared to various MC models in Figs. 2 and 3. In general a reasonable agreement is observed with the different models. A study of the amount of energy collected by the HF detector indicated that there is no diffractive component in the data sample.

4 Monte Carlo models

The reconstructed jets are compared to the predictions of four different Monte Carlo generators that simulate jet production in pp collisions at \(\sqrt{s} = 7 \) TeV. The numbers of events for all generator samples is much higher than the number of collected data events so the statistical uncertainties in the MC predictions are not visible in the figures.

The PYTHIA [21] (version 6.422) event generator uses leading-order (LO) matrix elements to generate the \(2 \rightarrow 2 \) hard process in perturbative QCD (pQCD) and the parton shower (PS) model to simulate higher-order processes [22–24]. The PS model gives a good description of parton emission when the emitted partons are close in phase space. Events are generated with the Z2 tune for the underlying event. This Z2 tune is identical to the Z1 tune described in Ref. [25], except that Z2 uses the CTEQ6L1 [26] parton distribution functions (PDFs) of the proton in which the parton showers are ordered in \(p_{T} \). The hadronization is simulated using the Lund string model [27,28]. The older D6T tune [29–31], where parton showers are ordered in \(Q^{2} \), is considered for comparison. The D6T tune was designed to describe the lower-energy results of UA5 and CDF. The color coherence effects are implemented in PYTHIA 6 by means of an angular ordering algorithm where the effects can be switched on and off via the steering parameters MSTP(67) and MSTJ(50), which control the initial-state and the final-state showers, respectively.

The PYTHIA 8 [32] (version 8.145) event generator, used with tune 4C [33], orders the parton showers in \(p_{T} \) and models the underlying event using the multiple-parton interaction

Table 1: Summary of the event selection

Selection criteria	Number of events				
\(p_{T1} > 100 \) GeV, \(p_{T3} > 30 \) GeV, \(\eta_1	,	\eta_2	\leq 2.5 \)	193 131
\(M_{12} > 220 \) GeV	87 510				
\(0.5 < \Delta R_{23} < 1.5 \)	105 621				

Table 2: The binning in \(p_{T1} \) and, for each bin, the associated trigger, the integrated luminosity for the period during which the given trigger was not prescaled, and the number of selected events. The selection criteria are described in Table 1.

\(p_{T1} \) bin edges (GeV)	Trigger online threshold (GeV)	\(L_{\text{int}} \) (fb\(^{-1}\))	Number of events	
100–120	30	0.35	4511	
120–160	50	4.5	67 086	
160–200	70	9.2	50 071	
200–250	100	20	39 464	
\(> 250 \)	140	36	31 999	
All			193 131	87 510

The numbers of events for \(|\eta_2| \leq 0.8 \) and \(0.8 < |\eta_2| \leq 2.5 \) are shown in the table.
model from PYTHIA 6 including initial- and final-state QCD radiation. The color coherence effects are implemented in a similar manner as for the \(p_T \)-ordered showers in PYTHIA 6. The HERWIG++ [11,34] (version 2.4.2) event generator takes LO matrix elements and simulates parton showers using the coherent branching algorithm with angular ordering of showers. The cluster hadronization model [35] is used in the formation of hadrons from the quarks and gluons produced in the parton shower. The underlying event is simulated using the eikonal multiple partonic scattering model [36]. The color coherence effects are implemented by the angular ordering of emissions in the parton shower using the coherent branching algorithm [37].

The MadGraph 4 [38] (version 2.24) event generator is interfaced with PYTHIA 6 for the parton showering and the hadronization using the D6T tune and uses fixed-order matrix element calculations for the multiparton topologies. From two to four partons are considered in the final state. The

Fig. 2 Observed \(\Delta \eta_{23} \) distributions, corrected for detector effects, compared to MC predictions by PYTHIA 6, PYTHIA 8, HERWIG++, and MADGRAPH + PYTHIA 6. The MC samples are normalized to the total number of events in data.

Fig. 3 Observed \(\Delta \phi_{23} \) distributions, corrected for detector effects, compared to MC predictions by PYTHIA 6, PYTHIA 8, HERWIG++, and MADGRAPH + PYTHIA 6. The MC samples are normalized to the total number of events in data.
Typical systematic and statistical uncertainties in the normalized β spectrum and the statistical errors

| Uncertainty sources | | ≤ 0.8 | 0.8 < | ≤ 2.5 |
|--------------------------------------|--------|-------|-------|
| Jet energy scale (JES) | 1.0 % | 1.0 % |
| Jet energy resolution (JER) | 0.4 % | 0.5 % |
| Jet angular resolution (JAR) | 0.5 % | 0.6 % |
| Physics model (PM) used in unfolding | 0.6 % | 0.7 % |
| Statistical uncertainty | 4.0 % | 3.7 % |

The measurement of the normalized β distribution and systematic uncertainties

The measurement of the β distribution is performed in two regions defined by the pseudorapidity of the second jet: the central region | | ≤ 0.8 and the forward region 0.8 < | ≤ 2.5. The angular correlation effects considered in this analysis appear to have a reduced sensitivity to the transverse momentum of the leading jet . Consequently different bins are merged into one single bin.

The β distribution in a given region is obtained as a sum of the events weighted by the luminosity collected by the trigger used in the associated bin. In case of MC samples the β distribution is obtained by summing together the events weighted by their generation level weight in a given region. The normalized β distribution is then obtained by dividing the weighted number of events in a given bin of β by the total weighted number of events in the given region.

In order to correct for the smearing effects induced by the detector resolution, an unfolding procedure is performed using the response matrices obtained from MC event generators. For this purpose the events generated with the MC programs (PYTHIA 6, PYTHIA 8, MADGRAPH + PYTHIA 6, and HERWIG++) are processed through a full CMS detector simulation package based on GEANT 4 [40].

Particle-level jets are built from the four-vectors of the MC generated particles with hadronization, but without detector effects. These jets are obtained using the same jet algorithm as for the reconstructed events. The resolutions in Δη and

Table 3: The unfolded β distributions and their uncertainties for the central region | | ≤ 0.8. All uncertainties are symmetric and given in percent (%)

β (degree)		(β)	Stat	JES	JER	JAR	PM	Syst
0–10	0.0549	3.5	1.0	0.3	0.4	0.6	1.3	
10–20	0.0535	3.9	1.1	0.4	0.6	0.6	1.4	
20–30	0.0544	4.2	0.5	0.5	0.3	0.6	1.0	
30–40	0.0538	4.0	1.1	0.2	0.3	0.6	1.3	
40–50	0.0525	3.8	0.5	0.5	0.5	0.6	1.1	
50–60	0.0515	4.4	0.6	0.7	0.7	1.3		
60–70	0.0515	4.3	0.6	0.4	0.6	1.1		
70–80	0.0519	4.1	0.5	0.3	0.4	0.6	0.9	
80–90	0.0511	4.2	0.4	0.4	0.5	0.6	1.0	
90–100	0.0515	4.3	0.5	0.3	0.6	0.6	0.9	
100–110	0.0528	4.3	0.5	0.4	0.5	0.6	1.0	
110–120	0.0543	4.3	0.6	0.6	0.3	0.6	1.1	
120–130	0.0580	4.1	1.2	0.5	0.4	0.6	1.5	
130–140	0.0583	3.7	0.5	0.6	0.3	0.6	1.0	
140–150	0.0616	4.2	0.6	0.5	0.5	0.6	1.1	
150–160	0.0622	3.9	0.9	0.6	0.5	0.6	1.3	
160–170	0.0626	3.6	0.7	0.5	0.6	0.6	1.2	
170–180	0.0638	3.2	0.5	0.7	0.6	0.6	1.2	

Fig. 4: Observed β distributions for the data, corrected for detector effects, and for the MC generators (PYTHIA 6, PYTHIA 8, HERWIG++, and MADGRAPH + PYTHIA 6) in the central (| | ≤ 0.8) and forward (0.8 < | ≤ 2.5) regions. The uncertainty bands correspond to the combined systematic uncertainty.
Table 5 The unfolded β distributions and their uncertainties for the forward region $0.8 < |\eta_2| \leq 2.5$. All uncertainties are symmetric and given in percent (%).

β (degree)	$F_{\beta}(\beta)$	σ_{Stat}	σ_{JES}	σ_{JER}	σ_{JAR}	σ_{PM}	σ_{Syst}
0–10	0.0388	3.9	1.6	0.5	0.5	0.7	1.9
10–20	0.0391	4.6	0.6	0.5	0.6	0.7	1.2
20–30	0.0406	4.4	0.7	0.4	0.5	0.7	1.2
30–40	0.0404	4.6	0.5	0.4	0.5	0.7	1.1
40–50	0.0414	4.2	0.6	0.5	0.7	0.7	1.2
50–60	0.0438	3.9	0.7	0.4	0.7	0.7	1.1
60–70	0.0430	4.4	0.8	0.5	0.7	0.7	1.3
70–80	0.0476	4.2	0.5	0.6	0.7	0.7	1.2
80–90	0.0491	4.0	1.2	0.4	0.7	0.7	1.5
90–100	0.0520	3.9	0.8	0.5	0.7	0.7	1.2
100–110	0.0567	3.6	0.8	0.5	0.7	0.7	1.3
110–120	0.0625	3.5	0.7	0.5	0.7	0.7	1.2
120–130	0.0662	3.2	0.8	0.5	0.7	0.7	1.3
130–140	0.0692	3.2	0.7	0.4	0.6	0.7	1.2
140–150	0.0736	3.1	0.6	0.6	0.7	0.7	1.2
150–160	0.0774	2.9	0.7	0.4	0.6	0.7	1.2
160–170	0.0795	2.9	0.8	0.5	0.7	0.7	1.3
170–180	0.0791	2.6	0.8	0.6	0.5	0.7	1.3

$\Delta \phi_{23}$ are found to be of the order of 0.005 to 0.01, depending on the transverse momentum and pseudorapidity of the jets.

An iterative Bayesian unfolding technique [41] implemented in the RooUnfold package [42] is used to derive the unfolding corrections to the measured β distributions from the detector effects. The response matrix used to unfold the data is built using herwig++. The impact of the unfolding on the normalized distributions is typically of the order of 1%.

Most of the systematic effects cancel out in the normalized β distribution, but the residual influence of several sources of systematic uncertainty has been considered:

- The jet energy scale uncertainty is evaluated varying the jet response by 2.5–5 %, depending on the η and p_T of the jets [43]. The impact of this source of systematic uncertainties is below 1%.
- The jet energy and angular resolutions are accounted for by varying them by \pm10 % [44] and rebuilding the response matrices for the unfolding accordingly. The observed impact from both sources is in the range of 0.4–0.6%.
- The uncertainty due to the unfolding procedure is estimated by the dependence of the response matrix on the choice of MC generator. Alternative response matrices are built using alternative generators: PYTHIA 6, PYTHIA 8 and MADGRAPH + PYTHIA 6. The observed effect is of the order of 0.5%.

The measurement is found to be insensitive to the number of pileup interactions within statistical fluctuations. In the data corresponding to this analysis the average number of pileup events per bunch crossing was around two. The total systematic uncertainties for each bin are about 2%, and a list of the major uncertainties is summarized in Table 3. Each systematic source was found to be fully correlated between β and η_2 bins [43,44]. However, the various systematic sources are uncorrelated among themselves.

6 Results

The unfolded β distributions are shown in Fig. 4 together with the predictions from the various MC models for the central ($|\eta_2| \leq 0.8$) and forward ($0.8 < |\eta_2| \leq 2.5$) regions.

![Fig. 5](image_url)
The values of the unfolded β distributions and their uncertainties are presented in Tables 4 and 5.

The ratios of the various MC predictions to the measured β distributions are shown in Fig. 5. The data exhibit a clear enhancement of events compared to the pythia and MadGraph generators near the event plane ($\beta = 0$) and a suppression in the transverse plane ($\beta = \pi/2$). The χ^2 comparisons of data with MC simulation, taking into account the statistical and systematic correlations between different data points, are shown separately for the central and forward regions in Table 6. The number of degrees of freedom (NDF) is 17, which is the number of bins minus one to account for the constraint imposed by the normalization.

None of the models used in the analysis describes the data satisfactorily. Even though PYTHIA 6 was adjusted with the Tevatron data, it fails to describe the LHC data since the χ^2/NDF is large. No significant difference is observed between the tunes D6T and Z2. The PYTHIA 8 tune 4C generator describes the data better than PYTHIA 6 over the entire phase space, but the disagreement in the forward region is not negligible. The HERWIG++ event generator describes the data better than the other MC generators in the central region, but the agreement is poor in the forward region. Finally, when MADGRAPH is used with the exact $2 \rightarrow 3$ matrix element calculations at LO, the global description of the data is improved with respect to PYTHIA 6 alone.

The impact of the color coherence effects is studied by switching them on and off for the first emission in the initial- and final-state showers in PYTHIA 6. One can observe in Fig. 6 that the agreement between the data and the simulation deteriorates when the color coherence effects in the MC events are suppressed. More quantitatively, the χ^2 divided by the number of degrees of freedom increases up to 7.7 in the central region and 11.5 in the forward region. The first emission in the initial- and final-state showers contributes roughly the

| MC event generator | χ^2/NDF | $|\eta_2| \leq 0.8$ | $0.8 < |\eta_2| \leq 2.5$ |
|--------------------|-------------|------------------|------------------|
| PYTHIA 6 Z2 | 2.5 | 8.1 | |
| PYTHIA 8 4C | 1.7 | 6.4 | |
| HERWIG++ 2.3 | 1.2 | 3.5 | |
| MADGRAPH + PYTHIA 6 | 1.6 | 3.3 | |

Table 6 Values of χ^2 for comparisons of the β distribution for the data with the predictions of various MC generators. The number of degrees of freedom for both regions is 17.

![Fig. 6](image_url) The MC predictions for the β distribution from PYTHIA 6, with and without color coherence effects in the first branching of the initial- and final-state showers, compared to the measurement. The error bars show the uncorrelated statistical uncertainty of the data. The yellow band represents the systematic uncertainty, while the green band represents the total uncertainty.
Color coherence effects in multijet events have been studied in a sample of pp collisions corresponding to an integrated luminosity of 36 pb$^{-1}$, collected with the CMS detector at $\sqrt{s} = 7$ TeV. Distributions of the variable β, which was previously used in similar analyses at the Tevatron, are used to measure the angular correlation between the second and third jets in transverse-momentum order, in the pseudorapidity and azimuthal angle space. The measurements, unfolded for detector effects, are compared to the predictions of the MC event generators PYTHIA 6, PYTHIA 8, HERWIG++, and MADGRAPH + PYTHIA 6 in the central and forward rapidity regions. We have shown that the variable β is sensitive to color coherence effects, and insensitive to the hadronization and underlying event. It is necessary to implement the color coherence effects in MC simulations to better describe the data. Although the MC models in the analysis include this effect by default, none of them describes the data satisfactorily for all β values. The PYTHIA 6 expectations predict weaker color coherence effects than those observed, while PYTHIA 8 exhibits a better agreement with the data. The MADGRAPH MC generator, which uses the exact $2\to3$ matrix element calculations at LO matched to PYTHIA 6 for parton showering, improves the agreement with data with respect to PYTHIA 6 alone, while HERWIG++ describes the data in the central region better than the other MC generators but shows discrepancies in the forward region.

Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); PCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CNPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

References

1. JADE Collaboration, Test of fragmentation models by comparison with three-jet events produced in $e^+e^-\to$ hadrons. Phys. Lett. B 134, 275 (1984). doi:10.1016/0370-2693(84)90687-7
2. TASSO Collaboration, A study of 3-jet events in e^+e^- annihilation into hadrons at 34.6 GeV c.m. energy. Zeit. Phys. C 29, 29 (1985). doi:10.1007/BF01571375
3. TPC/2γ Collaboration, Tests of models for quark and gluon fragmentation in e^+e^- annihilation at $\sqrt{s} = 29$ GeV. Z. Phys. C 28, 31 (1985). doi:10.1007/BF01550246
4. TPC/2γ Collaboration, Tests of models for parton fragmentation using three jet events in e^+e^- annihilation at $\sqrt{s} = 29$ GeV. Phys. Rev. Lett. 54, 270 (1985). doi:10.1103/PhysRevLett.54.270
5. TPC/2γ Collaboration, Comparison of the particle flow in $q\bar{q}$ and qg events in e^+e^- annihilation. Phys. Rev. Lett. 57, 945 (1986). doi:10.1103/PhysRevLett.57.945
6. MARK2 Collaboration, Comparison of the particle flow in three-jet and radiative two-jet events from e^+e^- annihilation at $E_{\text{cm}} = 29$ GeV. Phys. Rev. Lett. 57, 1398 (1986). doi:10.1103/PhysRevLett.57.1398
7. OPAL Collaboration, A study of coherence of soft gluons in hadron jets. Phys. Lett. B 247, 617 (1990). doi:10.1016/0370-2693(90)91911-T
8. L3 Collaboration, Evidence for gluon interference in hadronic Z decays. Phys. Lett. B 353, 145 (1995). doi:10.1016/0370-2693(95)00552-V
9. CDF Collaboration, Evidence for color coherence in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys. Rev. D 50, 5562 (1994). doi:10.1103/PhysRevD.50.5562
10. D0 Collaboration, Color coherent radiation in multijet events from $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys. Lett. B 414, 419 (1997). doi:10.1016/S0370-2693(97)01190-8
11. G. Marchesini, B. Webber, Monte Carlo simulation of general hard algorithms. JHEP 3, 198 (1997). doi:10.1088/1126-6708/1997/03/001
18. M. Cacciari, G.P. Salam, Pileup subtraction using jet areas. Phys. Lett. B 659, 119 (2008). doi:10.1016/j.physletb.2007.09.077
19. CMS Collaboration, Tracking and primary vertex results in first 7 TeV collisions. CMS Physics Analysis Summary CMS-PAS-TRK-10-005 (2010)
20. CMS Collaboration, Calorimeter jet quality criteria for the first CMS collision data. CMS Physics Analysis Summary CMS-PAS-JME-09-008 (2010)
21. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026
22. M. Bengtsson, T. Sjöstrand, A comparative study of coherent and non-coherent parton shower evolution. Nucl. Phys. B 289, 810 (1987). doi:10.1016/0550-3213(87)90407-X
23. M. Bengtsson, T. Sjöstrand, Coherent parton showers versus matrix elements—implications of PETRA/PEP data. Phys. Lett. B 185, 435 (1987). doi:10.1016/0370-2693(87)91031-8
24. T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39(2), 129 (2005). doi:10.1140/epjc/s2004-02084-y
25. R. Field, Early LHC underlying event data-findings and surprises (2010). arXiv:1010.3558
26. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). doi:10.1088/1126-6708/2002/07/012
27. B. Anderson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97, 31 (1983). doi:10.1016/0370-1573(83)90080-7
28. T. Sjöstrand, The merging of jets. Phys. Lett. B 142, 420 (1984). doi:10.1016/0370-2693(84)91354-6
29. R. Field, Physics at the Tevatron. Acta Phys. Polon. B 39, 2611 (2008)
30. R. Field, in Proceedings of the First International Workshop on Multiple Partonic Interactions at the LHC MPI’08, Perugia, Italy, Oct 2009, ed. by P. Bartalini, L. Fanó. Studying the Underlying Event at CDF and the LHC (2009), p. 12 arXiv:1003.4220
31. T. Sjöstrand, M.V. Zijl, A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987). doi:10.1103/PhysRevD.36.2019
32. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). doi:10.1016/j.cpc.2008.01.036
33. R. Corke, T. Sjöstrand, Interleaved parton showers and tuning prospects. JHEP 03, 032 (2011). doi:10.1007/JHEP03(2011)032
34. M. Bähr et al., HERWIG++ physics and manual. Eur. Phys. J. C 58, 639 (2008). doi:10.1140/epjc/s10052-008-0798-9
35. B.R. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). doi:10.1016/0550-3213(84)90333-X
36. M. Bähr, S. Gieseke, M.H. Seymour, Simulation of multiple partonic interactions in Herwig++. JHEP 07, 076 (2006). doi:10.1088/1126-6708/2008/07/076
37. S. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. JHEP 12, 045 (2003). doi:10.1088/1126-6708/2003/12/045
38. J. Alwall et al., MadGraph/MadEvent v4: the new web generation. JHEP 09, 028 (2007). doi:10.1088/1126-6708/2007/09/028
39. S. Mrenna, P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA. JHEP 05, 040 (2004). doi:10.1088/1126-6708/2004/05/040. arXiv:hep-ph/0312274
40. S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instr. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
41. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A 362, 487 (1995). doi:10.1016/0168-9002(95)00274-X
42. T. Adye, in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding. CERN, Geneva, Switzerland, 17–20 Jan 2011, ed. by H.B. Prosper, L. Lyons. Unfolding Algorithms and Tests Using RooUnfold (2011), p. 313. arXiv:1105.1160
43. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002
44. CMS Collaboration, Jet performance in pp collisions at $\sqrt{s} = 7$ TeV. CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010)

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knöpfle, M. Krämer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Tauris, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerp, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E. A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck
Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. A. Abdelalim, Y. Assran, S. Elgammal, A. Ellithi Kamel, M. A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Erola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M. J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Maleles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, M. Bluj, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenaouer, P. Miné, C. Mironov, I. N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Siros, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, H. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pieta, H. Reithler, S. A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I. M. Nugent, L. Perchalla, O. Pooth, A. Stahl
INFIN Sezione di Milano-Bicocca, Milan, Italy
A. Benaglia, M. E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. T. Lucchini2, S. Malvezzi, R. A. Manzoni2, A. Martelli2, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

Università di Milano-Bicocca, Milan, Italy
M. E. Dinardo, S. Fiorendi, A. Ghezzi, P. Govoni, M. T. Lucchini2, R. A. Manzoni2, A. Martelli2, M. Paganoni, S. Ragazzi, T. Tabarelli de Fatis

INFIN Sezione di Napoli, Naples, Italy
S. Buontempo, N. Cavallo, A. De Cosa, F. Fabozzi, A. O. M. Iorio, L. Lista, S. Meola2, M. Merola, P. Paolucci2

Università di Napoli ‘Federico II’, Naples, Italy
A. De Cosa, A. O. M. Iorio

Università della Basilicata, Potenza, Italy
N. Cavallo, F. Fabozzi

Università G. Marconi, Rome, Italy
S. Meola2

INFIN Sezione di Padova, Padua, Italy
P. Azzi, N. Bacchetta, M. Bellato, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, M. Galanti2, F. Gasparini, U. Gasparini, P. Giubilato, A. Gozzelino, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Margoni, A. T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, M. Sgaravatto, F. Simonetto, E. Torassa, M. Tosi, A. Triossi, P. Zotto, A. Zucchetta, G. Zumerle

Università di Padova, Padua, Italy
D. Bisello, A. Branca, R. Carlin, M. Galanti, F. Gasparini, U. Gasparini, P. Giubilato, M. Margoni, A. T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, M. Tosi, P. Zotto, A. Zucchetta, G. Zumerle

Università di Trento, Trento, Italy
K. Kanishchev, I. Lazzizzera

INFIN Sezione di Pavia, Pavia, Italy
M. Gabusi, S. P. Ratti, C. Riccardi, P. Vitulo

Università di Pavia, Pavia, Italy
M. Gabusi, S. P. Ratti, C. Riccardi, P. Vitulo

INFIN Sezione di Perugia, Perugia, Italy
M. Biasini, G. M. Bilei, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Nappi1, F. Romeo, A. Saha, A. Santocchia, A. Spiezia

Università di Perugia, Perugia, Italy
M. Biasini, L. Fanò, P. Lariccia, G. Mantovani, A. Nappi1, F. Romeo, A. Santocchia, A. Spiezia

INFIN Sezione di Pisa, Pisa, Italy
K. Androsov30, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, M. A. Ciocci, R. T. D’Agnolo2, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, M. T. Gripp30, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini30, A. Messineo, C. S. Moon31, F. Palla, A. Rizzi, A. Savoy-Navarro32, A. T. Serban, P. Spagnolo, P. Squillacioti, R. Tenchini, G. Tonelli, A. Venturi, P. G. Verdini, C. Vernieri

Università di Pisa, Pisa, Italy
A. Messineo, A. Rizzi, G. Tonelli

Scuola Normale Superiore di Pisa, Pisa, Italy
G. Broccolo, R. T. D’Agnolo2, F. Fiori, L. Foà, F. Ligabue, C. Vernieri

INFIN Sezione di Roma, Rome, Italy
L. Barone, F. Cavallari, D. Del Re, M. Diemoz, M. Grassi, E. Longo, F. Margaroli, P. Meridiani, F. Micheli, S. Nourbakhsh, G. Organtini, R. Paramatti, S. Rahatlou, C. Rovelli, L. Soffi

© Springer
Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D. W. Jang, Y. F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J. P. Cumalat, B. R. Drell, W. T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J. G. Smith, K. Stenson, K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L. K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J. R. Patterson, A. Ryd, E. Salvati, W. Sun, W. D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, V. Chetluru, H. W. K. Cheung, F. Chlebana, S. Cihangir, V. D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, D. Hare, R. M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kunori, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J. M. Marraffino, V. I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W. J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J. C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G. P. Di Giovanni, D. Dobur, A. Drozdetskiy, R. D. Field, M. Fisher, Y. Fu, I. K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J. F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J. L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K. F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M. M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M. R. Adams, L. Apanasevich, V. E. Baztterra, R. R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C. E. Gerber, D. J. Hofman, S. Khalatyan, P. Kurt, F. Lacroix, D. H. Moon, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E. A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C. R. Newsom, H. Ogul, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B. A. Barnett, B. Blumenfeld, S. Bolognesi, G. Giurgiu, A. V. Gritsan, G. Hu, P. Maksimovic, C. Martin, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R. P. Kenny III, M. Murray, D. Noonan, S. Sanders, R. Stringer, J. S. Wood

Kansas State University, Manhattan, USA
A. F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L. K. Saini, S. Shrestha, I. Svintradze
