Molecular mechanisms governing Pcdh-γ gene expression: Evidence for a multiple promoter and cis-alternative splicing model

Xiaozhong Wang,1 Hong Su,1 and Allan Bradley1,2,3

1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

The genomic architecture of protocadherin (Pcdh) gene clusters is remarkably similar to that of the immunoglobulin and T cell receptor gene clusters, and can potentially provide significant molecular diversity. Pcdh genes are abundantly expressed in the central nervous system. These molecules are primary candidates for establishing specific neuronal connectivity. Despite the extensive analyses of the genomic structure of both human and mouse Pcdh gene clusters, the definitive molecular mechanisms that control Pcdh gene expression are still unknown. Four theories have been proposed, including (1) DNA recombination followed by cis-splicing, (2) single promoter and cis-alternative splicing, (3) multiple promoters and cis-alternative splicing, and (4) multiple promoters and trans-splicing. Using a combination of molecular and genetic analyses, we evaluated the four models at the Pcdh-γ locus. Our analysis provides evidence that the transcription of individual Pcdh-γ genes is under the control of a distinct but related promoter upstream of each Pcdh-γ variable exon, and posttranscriptional processing of each Pcdh-γ transcript is predominantly mediated through cis-alternative splicing.

[Key Words: Protocadherin, alternative splicing, trans-splicing, DNA recombination]

Received May 3, 2002; revised version accepted June 11, 2002.
the three constant exons encode the rest of the cytoplasmic domain shared by all members of the same cluster. This unique genomic organization of Pcdh gene clusters and its resemblance to Ig and TCR gene clusters suggested that a novel mechanism may be involved in the generation of protocadherin diversity and their cell-specific expression pattern in the brain [Wu and Maniatis 1999].

Pcdh genes are abundantly expressed in the central nervous system during embryonic development and in adulthood [Sano et al. 1993; Kohmura et al. 1998; Obata et al. 1998; Hirano et al. 1999; Wu and Maniatis 1999]. Pcdh-γ proteins have been shown to mediate homophilic cell adhesion in transfected L1 cells [Sano et al. 1993; Obata et al. 1995]. Some Pcdh-α proteins [CNR1] have been localized at synapses [Kohmura et al. 1998]. Pcdh-γ proteins have also been identified by mass spectrometry in a “presynaptic web” preparation [Phillips et al. 2001]. The unique genomic structure of Pcdh gene clusters can generate a significant amount of molecular diversity that is required for establishment and maintenance of complex neural networks in the brain [Wu and Maniatis 1999]. All these observations have led to the hypothesis that Pcdh proteins are primary candidates for establishing specific neuronal connectivity and synapse formation [Serafini 1999, Shapiro and Colman 1999, Bruses 2000; Yagi and Takeichi 2000; Benson et al. 2001].

Expression studies using in situ hybridization have demonstrated that individual neurons can express an overlapping but distinct subset of Pcdh genes [Kohmura et al. 1998]. Therefore, the subset of protocadherins which individual neurons express may provide specific molecular codes for neuron–neuron connections. If Pcdh proteins function in establishing the specificity of neural circuitry, a key question is: How is the cell-specific expression pattern of Pcdh genes achieved? Maniatis and his colleagues proposed four models [Wu and Maniatis 1999, Wu et al. 2001] for the cell-specific Pcdh gene expression, including [1] DNA recombination, [2] single promoter and cis-alternative splicing, [3] multiple promoters and cis-alternative splicing, and [4] multiple promoters and trans-splicing. These models have provided a framework to investigate the mechanism of the cell-specific expression of Pcdh genes.

Here, we used a combination of genetically modified alleles at the mouse Pcdh-γ locus to distinguish the four possible mechanisms of Pcdh gene expression. Although Pcdh gene clusters share striking similarity with Ig and TCR gene clusters, somatic DNA recombination does not appear to be involved in the regulation of Pcdh gene expression. Trans-splicing between putative RNA precursors only contributes a minor portion of functional Pcdh mRNAs. The transcription of each Pcdh-γ variable exon initiates at sequences immediately upstream of each translational start site without a common 5’UTR sequence, arguing against a single promoter scenario. Furthermore, a common DNA motif upstream of each variable exon is essential for the transcription of individual Pcdh-γ members. Thus, our data are most consistent with the multiple promoters and cis-alternative splicing model for the cell-specific Pcdh gene expression.

Results

Multiple genetically modified alleles at the mouse Pcdh-γ locus

To investigate the molecular mechanisms of cell-specific expression of Pcdh genes, we focused on the mouse Pcdh-γ locus and generated multiple genetically modified alleles in mice or in mouse ES cells. These alleles are summarized in Figure 1: [1] A deletion allele that removed all Pcdh-γ coding sequences from variable exon A1 to constant exon 3; [2] An IRES-GFP/LacZ fusion reporter was targeted into constant exon 3 to generate a gene expression reporter allele; [3] A GFP cDNA was fused in-frame with the constant exon 3 to encode Pcdh-γ-GFP fusion proteins; [4] A transgene carrying the B6 variable exon from the CBA/J strain was inserted at the end of Pcdh-γ locus; [5] A mutant transgene similar to the fourth allele, but with a deletion of the putative promoter sequence was inserted at the same location as the wild-type transgene; and [6] A 5-kb sequence upstream of constant exon 1 including the fragment encoding the last variable exon (C5) was deleted by gene targeting. We used combinations of these alleles to distinguish the four possible models for cell-specific Pcdh gene expression.

Multiple Pcdh-γ members are expressed from a single Pcdh-γ allele in a single neuron

The genomic structure of Pcdh gene clusters is strikingly similar to that of the immunoglobulin genes; therefore, it has been postulated that similar somatic DNA recombination may occur at the Pcdh locus and control Pcdh gene expression in a cell-specific manner [Wu and Maniatis 1999]. Using a combination of these alleles, we first addressed the question of whether DNA recombination similar to Ig genes occurs at the Pcdh-γ locus. The DNA recombination model makes two predictions [Fig. 2A]. First, cell-specific somatic recombination brings a distal variable exon to the proximity of a hypothetical enhancer and activates the transcription of the closest variable exon, implying that only one specific form of variable exon is transcribed from each functional allele. Second, since both variable and constant exons are transcribed in the same orientation, somatic recombination should lead to the deletion of intervening sequences.

To evaluate the recombination model, we performed a single-cell RT-PCR analysis from Pcdh-γ^{del/GFP} mice carrying only one functional Pcdh-γ-GFP allele. Mouse cerebellum was dissociated into a single-cell suspension. Single cells were isolated and the RT-PCR analysis was initiated using a GFP-specific primer. The PCR primer pairs and subsequent nested primers were designed to span exon-exon junctions, excluding possible contamination from genomic DNA. As shown in Figure 2B, all cells [neurons] expressed Pcdh-γ [γC-GFP panel]. Individual Pcdh variable exons [A12, A11, and B2] were only expressed in a subpopulation of neurons, and some of the neurons expressed multiple variable exons. Because the cells were obtained from mice carrying only one allele of
Pcdh-γ, this result demonstrated that more than one variable exon can be transcribed from a single allele, providing evidence that is inconsistent with the first prediction of the DNA recombination model.

Deletion of common intervening sequences at the Pcdh-γ cluster is not detected

Pcdh genes are primarily expressed in the central nervous system. Neurons are postmitotic cells that cannot be propagated as clones; therefore, we searched for a population of cells that express Pcdh-γ. Expression studies using both the LacZ allele [Fig. 3A] and the GFP allele [Fig. 3B,C] showed that in adult mouse brains the majority of cells in the cortex region expressed Pcdh-γ. We reasoned that if somatic DNA recombination is required for the expression of Pcdh-γ in neurons, a significant portion of cells would share a common deletion of intervening sequence in a population of cells that almost all express Pcdh-γ. Therefore, we dissected a region of the cortex from adult mouse brains and compared the gene dosage around the Pcdh-γ locus by Southern blot analyses. The analysis focused on the sequences upstream of the constant region that are more likely to be deleted and shared by different individual cells. In this experiment, we used the mice that carry only one Pcdh-γ allele to emphasize any dosage difference, should such differences exist. As shown in Figure 3D, the comparison of hybridization signals between liver DNA (nonPcdh-γ-expressing tissue) and cortex DNA (Pcdh-γ-expressing tissue) showed no significant change in gene dosage with three probes that lie immediately upstream from constant exon 1 (C5-1), further upstream from variable exon C3 [i], and within the A12 variable exon [A12]. This line of investigation suggested that the deletion of common intervening sequences upstream of the constant region does not occur in a population of neurons that express Pcdh-γ, providing evidence against the second prediction of the DNA recombination model.

We also detected a low level of Pcdh-γ-GFP fusion proteins in undifferentiated ES cells with a targeted GFP fusion allele [Fig. 3E, Western blot, left]. RT-PCR analysis showed that multiple forms of spliced Pcdh-γ mRNAs were expressed in mouse ES cells carrying only one Pcdh-γ allele [Fig. 3E, right]. LacZ staining of ES cells with a targeted IRES-LacZ allele showed that a significant portion of cells expressed a low level of Pcdh-γ, suggesting that the detected Pcdh-γ expression was not due to a minor contribution from differentiated ES cells (data not shown). Pcdh-γ mRNAs were also detected in different cell types of testis, including the mature germ cells [Johnson et al. 2000]. These observations suggested

Figure 1. Mouse Pcdh-γ locus and genetically modified alleles. Multiple modified Pcdh-γ alleles used in this study are shown in relation to the endogenous locus. Deletion allele, IRES-LacZ reporter allele, GFP fusion allele, WT-B6⁷⁷ transgene allele, Mut-B6⁷⁷ transgene allele, and C5 deletion allele.
Individual Pcdh-γ variable exons are expressed under the control of their own promoter

Having obtained evidence that no common promoter exists for the Pcdh-γ gene cluster, we explored the existence of promoters for individual variable exons. We identified Pcdh-γ cDNAs from a mouse hypothalamic cDNA library that was derived from C57BL6/CBA/J F1 hybrid mice. From sequence analysis of 50 Pcdh-γ cDNA clones, we identified three single-nucleotide polymorphisms (SNPs) and one restriction fragment-length polymorphism (RFLP) in one Pcdh-γ variable exon, B6 variable exon [Fig. 5A]. Analysis of genomic DNAs amplified from different mouse strains confirmed that these RFLP and SNP markers are also informative between 129S and CBA/J strains [Fig. 5A, inset].

Taking advantage of the RFLP marker in the B6 exon, we generated a transgene from the CBA/J strain that contains 2.5 kb of 5’ upstream sequence, the B6 coding exon, and 2.1 kb of 3’ intronic sequence. We inserted this transgene at the end of constant exon 3 of the Pcdh-γ gene cluster by gene targeting in mouse ES cells (129S strain) [Fig. 5B]. This transgene is transcribed in the same direction as the endogenous locus. An SspI RFLP was used to distinguish the B6 exon encoded by the transgene from the endogenous B6 exon encoded by the 129S allele. RT-PCR was used to recover B6 exon cDNAs from the transgene-targeted ES clones (undifferentiated). RFLP analysis on these cDNAs revealed that the expression of the CBA/J B6 exon was at a similar level compared to the 129S B6 exon from the endogenous locus [Fig. 5B]. Thus the 2.5-kb upstream sequences used for this transgene include the promoter cis-elements necessary for transcription of the CBA/J B6 exon.

Interspecies comparative sequence analysis also suggests that individual exons have their own promoters [Wu et al. 2001]. This analysis identified a correlation between the distribution of CpG islands and the locations of Pcdh variable exons, significant sequence identity within the 5’ flanking sequences of orthologous variable exons and the existence of a common DNA sequence motif upstream of each individual Pcdh gene. We noticed that this sequence motif is located immediately upstream of the transcription start sites we identified in the 5’ RACE analysis [Fig. 4B].

To evaluate the role of the conserved DNA motif, we generated a mutant CBA/J B6 transgene with a deletion of this DNA motif [20 bp] [Fig. 6A]. The mutant transgene was targeted to the same location as the wild-type transgene [Fig. 6A] so that we were able to compare the expression levels of the B6 exon independent of any positional effect commonly associated with the integra-
ES cells carrying different transgenes were differentiated into neurons in vitro, and RT-PCR was used to recover Pcdh-γ cDNAs. RFLP analysis on these cDNAs showed that the representation of the CBA/J B6 exon encoded by the mutant transgene was significantly decreased [Fig. 6B]. The relative ratio of the expressed CBA/J B6 exon to the 129S B6 exon was decreased to approximately 25% of the levels observed from the wild-type transgene [Fig. 6C]. A similar result was also obtained in the undifferentiated ES clones (Fig. 3).
all Pcdh-γ members (Wu and Maniatis 1999). Furthermore, from a 5'RACE analysis using primers in the constant exons, we identified a number of alternatively spliced transcripts between the last variable exon C5 and the constant exons [Fig. 7D, I–VI]. Northern blot analysis using the intronic probe confirmed that the intron-containing transcripts are present in the mouse brain [Fig. 7E, right]. To exclude the possibility that these alternatively spliced transcripts originated from a larger intermediate RNA, we identified representative cDNA clones by screening duplicate filters of a mouse hypothalamic cDNA library with both intronic and constant exon 3 probes. Sequence analysis of double-positive cDNA clones confirmed that the constant exons of these transcripts were spliced and terminated at an authentic poly A site. The existence of both nonspliced variable exon transcripts and alternatively spliced C5-constant exon transcripts is consistent with the hypothesis that trans-splicing occurs at the Pcdh locus.

To test whether trans-splicing can occur between these candidate Pcdh-γ intermediate RNAs, we coexpressed the nonspliced variable exon B6 and the C5γC I transcript in COS cells. RT-PCR analysis detected the spliced B6γC transcript [Fig. 7F, lanes 4,5]. Although this result was positive, this is not conclusive because trans-splicing can occur between separate transcripts harboring 5’ and 3’ splicing sites in this type of in vitro assay [Bruzik and Maniatis 1995; Chiara and Reed 1995].

Interallelic trans-splicing is infrequent

In search of in vivo evidence for trans-splicing of Pcdh-γ, we utilized allelic differences in both variable and constant exons. As shown in Figure 8, in a 129S allele, the SspI RFLP marks the B6 variable exon and the constant exon 3 is tagged with GFP by gene targeting [Fig. 1]. Mice with the 129S Pcdh-γ-GFP reporter allele were crossed to CBA/J mice to generate heterozygous mice carrying both the reporter allele and the CBA/J-B6 variant. Both Pcdh-γ alleles are actively transcribed in mouse brain, as shown by Northern blot analysis [Fig. 8B] and in single cells as shown by in situ hybridization using allele-specific probes [Fig. 8C]. Consequently, intermediate transcripts encoded from each allele coexist in a single cell, allowing us to test whether trans-splicing between intermediates from different alleles can occur [Fig. 8D]. From brain RNA, we amplified spliced B6γC cDNAs by RT-PCR, using a common primer in the B6 exon and an allele-specific primer in the constant region. For each type of spliced B6γC cDNA identified, RFLP analysis revealed that the vast majority originated from the same allele [Fig. 8D]. To quantify this result, we subcloned the PCR products by TA cloning. Clonal PCR and SspI digestion followed by sequence analysis identified just two interallelic transcripts out of 392 inserts. Thus, interallelic trans-splicing does not occur frequently.

Low level of Pcdh-α/γ chimeric transcripts

In addition to the Pcdh-γ transcripts containing a γ variable exon and γ constant exons, we identified chimeric
transcripts containing Pcdh-γ variable exons (B2 or A12) and Pcdh-α constant exons from the 3'RACE analysis [Fig. 7C]. The Pcdh-α, Pcdh-β, and Pcdh-γ gene clusters are located on the same chromosome and are transcribed in the same direction [Fig. 9A]. These transcripts can be explained by two possible mechanisms: intermolecular trans-splicing and intramolecular exon scrambling [Nigro et al. 1991]. We confirmed the existence of these products by RT-PCR on mouse brain RNA and demonstrated the existence of trans-splicing products between Pcdh-γ variable exons and Pcdh-α constant exons for all the members we tested [Fig. 9B]. Furthermore, we identified transcripts containing a Pcdh-α variable exon and Pcdh-γ constant exons [Fig. 9C].

To assess the relative abundance of these transcripts, we screened both unamplified and amplified mouse hypothalamic cDNA libraries. From two million recombinants, we obtained over 500 positive clones with a Pcdh-γ 3'UTR probe and over 100 positive clones with a Pcdh-α 3'UTR probe. Screening duplicate filters with probes to α variable exons (α4, α6, α7, and α10) and γ constant exons identified only one double-positive clone. Thus, the α/γ chimeric transcripts are expressed at a much lower level (0.2%) compared to the regular Pcdh transcripts. Sequence analysis confirmed that all chimeric transcripts have an in-frame fusion, for instance, between the Pcdh-α 4 exon and Pcdh-γ constant exons, or between the Pcdh-γ B2 exon and Pcdh-α constant exons [Fig. 9D]. Overexpression of the α4γC cDNA in COS cells gave rise to a protein of the expected size [Fig. 9E]. To determine whether the α/γ chimeric transcripts originated from the different alleles or the same allele, we performed an interallelic trans-splicing assay using an α10 variable exon SNP between 129S and CBA/J.
C57BL6 strains (Fig. 9F). Sequence analysis confirmed that /H9251 transcripts predominantly originated from the same allele. Chimeric transcripts between different Pcdh gene clusters occurred at a frequency similar to those generated by interallelic trans-splicing, favoring the interpretation that these transcripts are generated through trans-splicing rather than exon scrambling. However, analysis of the chimeric /H9251 transcripts suggested that trans-splicing must have occurred from intermediates from the same chromosome, presumably through a transcription-coupled mechanism if these transcripts were indeed generated by trans-splicing.

To test the idea of trans-splicing on the same chromosome within the same gene cluster, we again used the CBA/J B6 transgene-targeted ES cells. The transgene mimics the configuration of γ variable exons spliced to α constant exons. Although the CBA/J-B6 exon was expressed at a similar level to the endogenous B6 exon mRNA in the targeted ES cells (Fig. 5B), most of the spliced B6γC transcripts were still generated from the endogenous 129S-B6 exon (Fig. 9G). RFLP and sequence analyses of spliced B6γC cDNAs showed that only 0.4% were generated by trans-splicing from the CBA/J B6 exon. Since the targeted CBA/J-B6 transgene was actively transcribed, it should contribute 50% of the spliced mRNA species from the same allele. This result does not support the idea that trans-splicing is a major mechanism in generating spliced Pcdh-γ mRNA. However, this assay could not rule out the possibility that trans-splicing occurs in a highly transcription-coupled fashion and can only proceed efficiently in its native configuration.
Cis-splicing of Pcdh-γ in the absence of possible promoter(s) for the constant region

The interallelic trans-splicing and CBA/J B6 transgene assays suggested that trans-splicing is rare, but did not completely rule out this possibility. Therefore, we designed another allele to disprove the trans-splicing model. An essential component of the trans-splicing hypothesis is that a putative promoter somewhere upstream of the constant region drives the expression of constant exon-containing intermediate transcripts (Fig. 7A). These intermediates are essential for the trans-splicing to occur. The likely locations of the promoter include the region upstream of the constant exon 1, and the promoter for the last variable exon. Highly conserved DNA sequences between mouse and human exist a few hundred basepairs upstream of constant exon 1 of Pcdh-a and Pcdh-γ [Wu et al. 2001], suggesting the possibility that these sequences may function as a transcription regulatory element. From 5’ RACE analysis, we observed that some constant exon-containing cDNAs initiated downstream of the conserved sequences (Fig. 7D, IV). However, we do not know whether these cDNAs were derived from incomplete cDNA synthesis of a larger RNA species. Other cDNAs identified from 5’ RACE contained the conserved DNA sequences or extended further 5’ to the C5 variable exon (Fig. 7D, I–III). This led to the speculation that the promoter for the C5 variable exon may serve as a promoter to generate constant exon-containing intermediates.

We constructed a targeting vector that was designed to generate a 5-kb deletion, which removed both the conserved DNA sequence and the whole C5 gene including the promoter (Fig. 10A). This modification was generated in the ES cells in which one allele of the Pcdh-γ gene cluster had been deleted. We were able to directly measure the effect of this mutation on the splicing of Pcdh-γ mRNAs. In the feeder-free C5-deleted ES cells, the C5/H9253 cDNA was absent as expected (Fig. 10B, C5 panel, lane 1). However, other individual variable exons were still spliced to constant exons (Fig. 10B), suggesting that the expression of constant exon containing...
intermediates is not necessary for the generation of spliced Pcdh-γ mRNAs. One possible argument against this interpretation is that the upstream C4 promoter might substitute for the function of the original promoter(s) for the constant region in the C5-deleted cells. However, this did not appear to be the case. Although the C4 expression was significantly decreased in the C5-deleted clones prior to Cre excision of the PGK-Neo cas-sette (possibly due to the transcription of Neo cassette in the opposite orientation), other distal variable exons were still efficiently spliced to the constant exons [data not shown]. These results provided strong evidence against trans-splicing as a major mechanism for generating spliced mRNAs. Therefore, functional Pcdh-γ mRNA is most likely generated through cis-alternative splicing in vivo.

Discussion

A model for cell-specific expression of individual Pcdh-γ genes

A combination of molecular and genetic analyses led us to conclude that each Pcdh-γ variable exon is under the control of its own promoter. Trans-splicing between variable exon-containing and constant exon-containing intermediates exists, but only occurs at a very low frequency compared to cis-splicing events. Therefore, the major mechanism for the generation of functional transcripts is through cis-alternative splicing. In this model [Fig. 11], cell-specific expression of protocadherins is determined by a combination of differential promoter activation and cis-alternative splicing.
Figure 9. *Pcdh*-α/γ chimeric transcripts. (A) Schematic diagram of the mouse *Pcdh* gene clusters. Note that all three clusters are transcribed in the same direction, and two additional genes illustrated by ovals are transcribed in the opposite direction. (B) RT-PCR analysis identified chimeric transcripts between the *Pcdh*-γ variable exons A11, A12, B2, B6, and C4 and the *Pcdh*-α constant exons α4C from mouse brain RNA. (C) RT-PCR analysis identified chimeric transcripts between the *Pcdh* variable exons α4, α6, and α7 and the *Pcdh*-γ constant exons γC1. (D) The chimeric proteins α4γC and B2γC encoded by the chimeric transcripts. (E) Western blot analysis confirmed the expression of an in-frame α4γC protein in transfected cells. The * indicates a background band serving as the loading control. (F) Interallelic trans-splicing assay of α10γC chimeric transcripts [similar to Fig. 8]. An SNP (red C on 129S strain α10 exon) and the targeted IRES-LacZ cassette define allelic differences in both α10 variable exon and γ constant exon 3. Sequence analysis of two different types of α10γC cDNAs showed that each originated from its original allele, suggesting that trans-splicing might have occurred on the same chromosome. (G) Trans-splicing is infrequent on the same chromosome within the *Pcdh*-γ cluster. The CBA/J-B6 transgene was targeted to the end of the *Pcdh*-γ locus and is transcribed in the same orientation as the endogenous locus. This mimics the configuration of the γ variable exon spliced to the α constant exons in (B). RT-PCR was used to amplify spliced B6γC cDNA from the undifferentiated ES cells using a specific primer for the constant exon. RFLP analysis of the RT-PCR products showed that splicing predominantly occurred from the endogenous 129S-B6 exon to the γ constant exons but not from the CBA/J-B6 exon (lanes 1 and 2, cf. lane 3 of control ES cells).
Alternative splicing, a mechanism generating molecular diversity in the nervous system

It is a general notion that the large neuronal diversity and staggering complexity of neuronal processes and connections in the nervous system require significant diversity of cell surface molecules to specify a neuronal type and its connectivity. The understanding of molecular diversity and the mechanisms generating it may provide a guideline to unveil sophisticated neural networks. The discovery of Drosophila DSCAM, an axon guidance molecule, is a remarkable demonstration of the enormous number of distinct mRNAs and proteins that can be generated by alternative splicing (Schmucker et al. 2000). In this case, alternative splicing could potentially produce a total of 38,016 different DSCAM proteins if all combinations of these exons were used. Protocadherin gene clusters (Pcdh) represent another example of a genomic structure that could generate significant diversity in the nervous system. Of the possible mechanisms, our present analysis demonstrated that cis-alternative splicing is the one utilized to generate functional Pcdh mRNAs. The number of protocadherins that can be generated from the Pcdh gene cluster is greatly reduced compared to the Drosophila DSCAM gene. However, from earlier studies of Pcdh-α [CNR] (Kohmura et al. 1998) and our study of Pcdh-γ gene products, it is clear that single neurons express an overlapping but distinct subset of Pcdh molecules. This raises the possibility that a significant number of combinatorial protocadherin codes could impart connection specificity. It appears that alternative splicing is widely used to generate large mRNA and protein diversity in the nervous system. However, it remains a challenge to explain what might control DSCAM or Pcdh splicing, since the mechanisms of regulating alternative splicing are poorly understood.

DNA recombination in the nervous system?

Of all the proposed mechanisms for generating protocadherin diversity, the most intriguing one is somatic DNA recombination. The possible involvement of DNA recombination for neural development came from the observation that mice lacking functional XRCC4 and LigIV genes, which are required for double-stranded DNA break repair, die during embryogenesis, largely due to massive apoptosis of postmitotic neurons (Gao et al. 1998; Chun and Schatz 1999). The resemblance of the Pcdh gene clusters to the Ig and TCR genes made this possibility very intriguing (Wu and Maniatis 1999). However, it was clear at the outset that RAG1/2 recognition sequences are not present in the Pcdh locus (Wu and M.

Figure 10. Cis-splicing in the absence of upstream sequence from constant exon 1. (A) Deletion of C5 and conserved upstream DNA sequences from constant exon 1. A 5-kb sequence containing the entire C5 gene and the conserved DNA sequences upstream of constant exon 1 was deleted by gene targeting in ES cells carrying only one Pcdh-γ allele. (B) RT-PCR analysis showed that individual variable exons (C3, C4, B2, B6, and A12) were efficiently spliced to γ constant exons in the absence of the 5-kb upstream sequence from constant exon 1.

Figure 11. Cell-specific expression of a subset of Pcdh genes: Differential promoter activation and cis-alternative splicing. In this model, individual cells express a distinct subset of protocadherins. The expression of the specific combination of protocadherins is achieved by differential promoter activation, followed by cis-alternative splicing.
Our analysis revealed that the Pcdh locus is different from the immunoglobulin locus in many ways. Both Pcdh-γ alleles are active in a single cell, clearly different from allelic exclusion in the immune system. A single allele can encode multiple forms of Pcdh genes. Somatic recombination has not been detected. Moreover, mice deficient for the entire Pcdh-γ locus exhibit relatively late and regional onset of neuronal cell death and degeneration [X. Wang, J.A. Weiner, S. Levi, A. Craig, A. Bradley, and J.R. Sanes, in prep.], clearly different from early extensive postmitotic neuronal death observed in mice deficient in XRCC4 and IgIV genes. In summary, we did not obtain any evidence suggesting that DNA recombination occurs at the Pcdh locus.

The significance of trans-splicing and Pcdh-chimeric transcripts

Trans-splicing, a process of joining two RNA precursors [Konarska et al. 1985; Solnick 1985; Agabian 1990], is used to generate mRNA and protein diversity in many organisms, including trypanosoma, nematodes, plants, and fruit flies [Bonen 1993; Dorn et al. 2001]. In mammalian cells, trans-splicing has been described mostly as a way to duplicate exons, and often occurs at a low frequency [Chapdelaine and Bonen 1991; Eul et al. 1995; Akopian et al. 1999, Frantz et al. 1999, Chatterjee and Fisher 2000; Takahara et al. 2000]. Our present findings show that trans-splicing between two distinct Pcdh gene clusters does generate a novel set of chimeric transcripts but at a low frequency. The functional significance if any of this low level of trans-spliced protocadherins remains to be determined. Nevertheless, it is worth mentioning that a trans-spliced protocadherin shares the same homophilic cadherin-like domain as its cis-spliced counterpart, but the cytoplasmic domains encoded by Pcdh-α and Pcdh-γ constant exons respectively are distinct in their sequences and mostly likely in their functions. For example, the cytoplasmic domain of Pcdh-α [CNR] has been shown to bind to Fyn tyrosine kinase, but Pcdh-γ’s does not (Kohmura et al. 1998). Therefore, homophilic interactions between cis- and trans-spliced protocadherins may provide a basis for asymmetric signaling at presynaptic and postsynaptic terminals of synapses [Sudhof 2001]. Alternatively, such molecules may provide a crosslink between two distinct intracellular signaling pathways.

The unresolved questions

In this study, we obtained evidence that is most consistent with a model of multiple promoters and cis-alternative splicing for achieving cell-specific Pcdh gene expression. Several issues remain to be resolved. At the transcriptional level, how does each cell selectively express one particular subset of Pcdh genes? Two possible nonexclusive mechanisms might be involved. First, the context of the proximal promoter for each variable exon may determine the transcription activity in a cell-specific manner. Second, a distal enhancer [e.g., locus control region, LCR] may contribute to the specific expression of individual variable exons. A rational step to advance our understanding of the transcriptional regulation of Pcdh gene expression is to identify transcription factors that bind to the common DNA motif upstream of each variable exon. The identification of such factors and cell-specific proteins that interact with the factors may eventually shed light on our understanding of how the cell-specific Pcdh expression pattern is achieved. At the posttranscriptional level, the mechanism of alternative splicing that enables individual transcripts to be unresponsive to downstream splicing sites and efficiently assemble functional Pcdh mRNAs remains unknown.

Materials and methods

Gene targeting

To target the Pcdh-γ constant exon 3, we constructed a targeting vector. The 5′ homology arm is a NotI/SalI-digested 6.4-kb fragment [corresponding to genomic sequence between constant exons 3 and 3 including part of constant exon 3] generated by long-range PCR with two primers (3774, 5′-CTTATGGCGGC CGAGATGATCAGCTCACTCCAGTGGACG-3′; 3775, 5′-CAT ATGTGACATCGAGCGCTCACAGCCCATGTTG-3′). An IRES-GFP/LacZ fusion gene reporter and floxed PGK-neo positive selection marker was placed downstream of the 5′ homology arm. The 3′ homology arm is a Nheli/EcoRI-digested 1.6-kb PCR fragment amplified using two primers (3776; 5′-ACTAT GCTAGCCTTACCCACACGCGCCAG-3′; 3777, 5′-CGATGA ATTCAGGAGCTACGTGACTATG-3′). Downstream of the 3′ arm is a PolIII TK negative selection marker. We identified two targeting events by long-range PCR using the primer pairs: 3769 (5′-CGATGAAATTCCAGGAGCTACGTGACTATG-3′) and 3984 (5′-CGAGATGACAGCCTCCTGTTCCACATA C-3′) to detect recombination on the 3′ side, and the primer pairs 3755 (5′-GATAGCAGATGCTGCAAGCCATGATCT TGGCCCTCT-3′) and 3744 (5′-GGTIACTGCGGCCGTCCAGCT CGAC-3′) to detect 5′ recombination.

To target the CBA/J-B6 transgene to the 3′ end of the Pcdh-γ constant region, we constructed an insertion targeting vector. The homology region is a HincII/SalI-digested 5-kb fragment generated by PCR with the primer pairs (5466, 5′-CGACCCCTC CCTGACTGACTTCTCTA-3′; 5473, 5′-CGAGATGACAGCCTCCTGTTCCACATACA C-3′) to detect recombination on the 3′ side, and the primer pairs 3755 (5′-GATAGCAGATGCTGCAAGCCATGATCT TGGCCCTCT-3′) and 3744 (5′-GGTIACTGCGGCCGTCCAGCT CGAC-3′) to detect 5′ recombination.

To target the CBA/J-B6 transgene to the 3′ end of the Pcdh-γ constant region, we constructed an insertion targeting vector. The homology region is a HinII/SalI-digested 5-kb fragment generated by PCR with the primer pairs (5466, 5′-CGACCCCTC CCTGACTGACTTCTCTA-3′; 5473, 5′-CGAGATGACAGCCTCCTGTTCCACATACA C-3′) to detect recombination on the 3′ side, and the primer pairs 3755 (5′-GATAGCAGATGCTGCAAGCCATGATCT TGGCCCTCT-3′) and 3744 (5′-GGTIACTGCGGCCGTCCAGCT CGAC-3′) to detect 5′ recombination.

To target the CBA/J-B6 genomic sequences amplified by PCR primer pair 5473 (5′-GGTIACTGCGGCCGTCCAGCT CGAC-3′), 5′-CTCAGGAGCCGCGCCAC TATAATTTTACGACAAATGC-3′). A PGK-Neo selection cassette was placed in the opposite orientation to the transgene. The vector was linearized by Asp718/MfeI double digestion to generate the gap [also used as a probe to detect the targeted insertion]. The targeted clones were identified by PCR with primer set 1 (5′-CTTATGGCGGC CGAGATGATCAGCTCACTCCAGTGGACG-3′) and primer set 2 (5′-CGAGATGACAGCCTCCTGTTCCACATACA C-3′) and vector primer, 5′-CCTGACTTCTCTGAAGCCATCAT-3′ and primer set 2 (5′-CGACCCCTC CCTGACTGACTTCTCTA-3′; and 3984, 5′-CGAGATGACAGCCTCCTGTTCCACATACA C-3′). The PCR positive clones were con-
firmed by Southern blot analysis with the gap probe [Asp718/Mfet fragment]. The deletion of the conserved motif in the CBA/J-B6 transgene was carried out using overlapping PCR.

To detect the upstream sequences of constant exon 1, we constructed a targeting vector that contained an Asp987/Nhe f-digested 3.9-kb genomic fragment generated by PCR with the primers (5616, 5'-CGTATTGACCAGATCTCGATGACCA C-3'), and 5617, 5'-GGGTTGAGCCAACTGAGTCCTAG GTT-3'), a floxed PGK-Neo selection marker, and a BamHI/NotI-digested 3.1-kb fragment amplified by the primers (5619, 5'-CGTATTCGCGCGCTGGAATCTTCACCCT CGTT-3', and 5221, 5'-CTGTCCCCAGTGAGAGCGTGT-3'), followed by an HSV-TK negative selection marker. The targeting events were identified by long-range PCR. Transient expression of Cre in ES cells removed the PGK-Neo cassette. The Pcdh-γ-GFP allele and Pcdh-γ deletion allele were generated as described elsewhere [X. Wang, J.A. Weiner, S. Levi, A. Craig, A. Bradley, and J.R. Sanes, in prep.). Gene targeting, blastocyst injection, and chimeric mouse production were carried out as described [Ramirez-Solis et al. 1993]. The targeted allele was generated in AB2.2 129S7 ES cells, and the germline-transmitted allele has been maintained in a C57BL/6J/129S7 hybrid background. Invitro neuronal differentiation of ES cells was carried out as described [Bain et al. 1995; Gajovic et al. 1997].

Histology

For LacZ staining, anesthetized mice were perfused with ice-cold 4% paraformaldehyde in phosphate-buffered solution. Vi brato me- cryostat-cut brain sections were collected and stained with X-gal overnight at room temperature to visualize the β-galactosidase activity. For immunofluorescent staining, frozen sections were stained using rabbit anti-GFP (Molecular Probes) and mouse anti-SV2 [Developmental Studies Hybridoma Bank]. For in situ hybridization, allelic specific riboprobes were synthesized using T3/T7 RNA polymerase (Invitrogen) labeled with [α-35S]UTP (750 nM) and sub sequent PCR amplification of the tailed cDNA with the same oligo-dT primer used in the 3' RACE analysis. In the 3' RACE reaction, 3 µg of total RNA was used for cDNA synthesis with a gene-specific primer (γ2AS, 5'-CAAGTAAAGGAGAGCTG GACT-3'). Primers used in three rounds of PCR amplifications were: γ2AS (5' -TCCGATTCGCGCCAGACCCATACTG-3'), 4AS (5'-GAATGAGGAGGGTGGTATGG tag-3'), 6AS (5' -CAAGGGTCTCAGGAGGTAACAC-3'), and 8AS (5' -GCCACCTAAGCAGCAAGT-3'). To identify transcription start sites for A12 and B2 variable exons, the following primers were used in the 5' RACE analysis. A12 5' RACE 2AS 5'-GAGCTCTGTCACGTAAGG GACT-3', 4AS (5'-GAATGAGGAGGGTGGTATGG tag-3'), 6AS (5' -CAAGGGTCTCAGGAGGTAACAC-3'), and 8AS (5' -GCCACCTAAGCAGCAAGT-3').

In the RT-PCR analysis, 2 µg of total RNA was used in cDNA synthesis with oligo-dT or a gene-specific primer. To detect the RFLP in the B6 exon, B6.1S (5'-TTGTAATCGTCAACAGTACGAGCGCTC-3') and B6.2AS (5'-CACTAATCTGTAATATTTGCTGAGGTTG-3') were used to amplify the B6 sequence from either genomic DNA or cDNA. To detect the Bovγ transcripts shown in Figure 7F, cDNAs were synthesized with the primers B6.5360 (5' -CTCTAGATCTGTCCTGAC-3') and amplified with primer pairs [B6.35, 5'-GCTTCCTCAATCCAGAGAAGACG-3', and γ8AS, see above]. To detect Bovγ transcripts (Fig. 8D), cDNA was synthesized with the primers B6.6AS (5' -TGAGGAATGGCCATCAT-3').

RNA isolation

Total RNAs from mouse tissues or cultured cells were prepared with an RNase“A Total RNA Isolation System [Promega]. To eliminate DNA contamination, some RNA samples were treated with RNase-free DNase (Roche) followed by second purification using the QIAGEN RNeasy Mini Kit.

Cell transfection and RNA, DNA, and protein analysis

COS-7 cells were purchased from ATCC. The DEAE-Dextran transfection, Northern blot, Southern blot, and Western blot analyses were performed as described [Wang et al. 1998].

3', 5' RACE and RT-PCR analysis

3' RACE analysis of Pcdh RNAs was performed essentially according to the Clontech SMART RACE cDNA Amplification protocol. Three µg of total RNA was primed with oligo-dT in cDNA synthesis. The oligo di primer (5' -ATTCTAGAGCC CTGATCGGCCACATGCTG30VN-3'), B2-specific primers (1S, 5'-CTACACAGAAGATTCTCCTAGGAGAAGCT-3', 3S, 5'-AGCCCGATACCCGGAATACACGACATCCAT-3', 5S, 5'-GT ATGGCCTCAGTCAGCTAAGCAGACATG-3'), and A12-specific primers (1S, 5'-CATACCTGGGCACATCACTCCAG GAATAAAC-3', 3S, 5'-CAGCTCGAAACCTGAGGCTCAC T-3', 5S, 5'GGGTGATTCGGTTTTTTCTAAAGACACTCAT GC-3') were used in three rounds of 3' RACE PCR amplification.

The 5' RACE analysis was carried out according to GIBCO BRL's 5' RACE protocol with modifications. The modification included the tailing of cDNA with dATP (750 nM) and the subsequent PCR amplification of the tagged cDNA with the same oligo-dT primer used in the 3' RACE analysis. In the 5' RACE reaction, 3 µg of total RNA was used for cDNA synthesis with a gene-specific primer (γ2AS, 5'-CAAGTAAAGGAGAGCTG GACT-3'). Primers used in three rounds of PCR amplifications were: γ2AS (5' -TCCGATTCGCGCCAGACCCATACTG-3'), 4AS (5'-GAATGAGGAGGGTGGTATGG tag-3'), 6AS (5' -CAAGGGTCTCAGGAGGTAACAC-3'), and 8AS (5' -GCCACCTAAGCAGCAAGT-3').

Molecular mechanisms generating protocadherins

GENES & DEVELOPMENT 1903
All sequences reported here have been submitted to GenBank; GenBank sequence submission pcDNA3 or pcDNA3.1 V5/His TOPO TA vector (Invitrogen).

enzyme-digested or PCR-amplified DNA fragments into either identities of all RACE and RT-PCR products in the studies were were cloned using the TOPO TA cloning kit (Invitrogen). The probes. The PCR-amplified cDNA or genomic DNA fragments thalamic/thalamic cDNA ZAPII phage library with a variety of cDNA, genomic DNA cloning, and expression vector construction To identify mouse Pcdh-γ cDNAs, we screened a mouse hypothalamic/thalamic cDNA ZAPII phage library with a variety of probes. The PCR-amplified cDNA or genomic DNA fragments were cloned using the TOPO TA cloning kit [Invitrogen]. The identities of all RACE and RT-PCR products in the studies were confirmed by sequence analysis. The expression vectors for a variety of Pcdh cDNAs were constructed by cloning restriction enzyme-digested or PCR-amplified DNA fragments into either pcDNA3 or pcDNA3.1 V5/His TOPO TA vector [Invitrogen].

GenBank sequence submission All sequences reported here have been submitted to GenBank; the accession nos. are AF464151–AF464181.

Acknowledgments

We thank S. Vaishnav, L. Arango, G. Schuster, S. Rivera, and J. Wesley for technical assistance. This work was supported by grants from the NIH to A.B.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Agabian, N. 1990. Trans splicing of nuclear pre-mRNAs. Cell 61: 1157–1160.

Akopian, A.N., Okuse, K., Souslova, V., England, S., Ogata, N., and Wood, J.N. 1999. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBs Lett. 445: 177–182.

Bair, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. 1995. Embryonic stem cells express neuronal proteins in vitro. Dev. Biol. 168: 342–357.

Benson, D.L., Colman, D.R., and Huntley, G.W. 2001. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2: 899–909.

Bonel, L. 1993. Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J. 7: 40–46.

Bozdagi, O., Shan, W., Tanaka, H., Benson, D.L., and Huntley, G.W. 2000. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28: 245–259.

Brushes, J.L. 2000. Cadherin-mediated adhesion at the interneuronal synapse. Curr. Opin. Cell Biol. 12: 593–597.

Bruzik, J.P. and Maniatis, T. 1995. Enhancer-dependent interaction between 5‘ and 3‘ splice sites in trans. Proc. Natl. Acad. Sci. 92: 7056–7059.

Carmeliet, P., Lampugnani, M.G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oostuyse, B., Dewerchin, M. et al. 1999. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147–157.

Chapdelaine, Y. and Bonen, L. 1991. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: A trans-splicing model for this gene-in-pieces. Cell 65: 465–472.

Chatterjee, T.K. and Fisher, R.A. 2000. Novel alternative splicing and nuclear localization of human RGS12 gene products. J. Biol. Chem. 275: 29660–29671.

Chiara, M.D. and Reed, R. 1995. A two-step mechanism for 5‘ and 3‘ splice-site pairing. Nature 375: 510–513.

Chun, J. and Schatz, D.G. 1999. Rearranging views on neurogenesis: Neuronal death in the absence of DNA end-joining proteins. Neuron 22: 7–10.

Dorn, R., Reuter, G., and Loewendork, A. 2001. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl. Acad. Sci. 98: 9724–9729.

Eul, J., Graessmann, M., and Graessmann, A. 1995. Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 14: 3226–3235.

Fannon, A.M. and Colman, D.R. 1996. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17: 423–434.

Frantz, S.A., Thia, A.S., Lodwick, D., Ng, L.L., Eperon, I.C., and Samani, N.J. 1999. Exon repetition in mRNA. Proc. Natl. Acad. Sci. 96: 5400–5405.

Gajovic, S., St-Onge, L., Yokota, Y., and Gruss, P. 1997. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 62: 187–192.

Gao, Y., Sun, Y., Frank, K.M., Dikkes, P., Fujiwara, Y., Seidl, K.J., Sekiguchi, J.M., Rathbun, G.A., Swat, W., Wang, J. et al. 1998. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95: 891–902.

Garcia-Castro, M.I., Vielmetter, E., and Bronner-Fraser, M. 2000. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science 288: 1047–1051.

Gumbiner, B.M. 2000. Regulation of cadherin adhesive activity. J. Cell Biol. 148: 399–404.

Hirano, S., Ono, T., Yan, Q., Wang, X., Sonta, S., and Suzuki, S.T. 1999. Protocadherin 2C: A new member of the protocadherin 2 subfamily expressed in a redundant manner with OL-protocadherin in the developing brain. Biochem. Biophys. Res. Commun. 260: 641–645.

Homayouni, R., Rice, D.S., and Curran, T. 2001. Disabled-1 interacts with a novel developmentally regulated protocadherin. Biochem. Biophys. Res. Commun. 289: 539–547.

Iwai, Y., Usui, T., Hirose, S., Steward, R., Takeichi, M., and Uemura, T. 1997. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19: 77–89.

Johnson, K.J., Patel, S.R., and Boekelheide, K. 2000. Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Endocrinology 141: 675–683.

Kohmura, N., Senzaki, K., Hamada, S., Kai, N., Yasuda, R., Watanebe, M., Ishii, H., Yasuda, M., Mishina, M., and Yagi, T. 1998. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20: 1137–1151.

Konarska, M.M., Padgett, R.A., and Sharpe, P.A. 1985. Trans splicing of mRNA precursors in vitro. Cell 42: 165–171.
Molecular mechanisms generating protocadherins

Lee, C.H., Herman, T., Clandinin, T.R., Lee, R., and Zipursky, S.L. 2001. N-cadherin regulates target specificity in the Drosophila visual system. *Neuron* **30**: 437–450.

Manabe, T., Togashi, U., Uchida, N., Suzuki, S.C., Hayakawa, Y., Yamamoto, M., Toda, H., Miyakawa, T., Takeichi, M., and Chisaka, O. 2000. Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. *Mol. Cell Neurosci.* **15**: 534–546.

Marrs, J.A. and Nelson, W.I. 1996. Cadherin cell adhesion molecules in differentiation and embryogenesis. *Int. Rev. Cytol.* **165**: 159–205.

Nigro, J.M., Cho, K.R., Fearon, E.R., Kern, S.E., Ruppert, J.M., Oliner, J.D., Kinzler, K.W., and Vogelstein, B. 1991. Scrambled exons. *Cell* **64**: 607–613.

Obata, S., Sago, H., Mori, N., Davidson, M., St John, T., and Suzuki, S.T. 1998. A common protocadherin tail: Multiple protocadherins share the same sequence in their cytoplasmic domains and are expressed in different regions of brain. *Cell Adhes. Commun.* **6**: 323–333.

Obata, S., Sago, H., Mori, N., Rochelle, J.M., Seldin, M.F., Davidson, M., St John, T., Taketani, S., and Suzuki, S.T. 1995. Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins. *J. Cell Sci.* **108**: 3765–3775.

Phillips, G.R., Huang, J.K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W.S., Arndt, K., Frank, M., Gordon, R.E. et al. 2001. The presynaptic particle web: Ultrastructure, composition, dissolution, and reconstitution. *Neuron* **32**: 63–77.

Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., and Hynes, R.O. 1997. Developmental defects in mouse embryos lacking N-cadherin. *Dev. Biol.* **181**: 64–78.

Ramirez-Solis, R., Davis, A.C., and Bradley, A. 1993. Gene targeting in embryonic stem cells. *Methods Enzymol.* **225**: 855–878.

Sano, K., Tanihara, H., Heimark, R.L., Obata, S., Davidson, M., St John, T., Taketani, S., and Suzuki, S. 1993. Protocadherins: A large family of cadherin-related molecules in central nervous system. *EMBO J.* **12**: 2249–2256.

Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. *Cell* **101**: 671–684.

Serafini, T. 1999. Finding a partner in a crowd: Neuronal diversity and synaptogenesis. *Cell* **98**: 133–136.

Shapiro, L. and Colman, D.R. 1999. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. *Neuron* **23**: 427–430.

Solnick, D. 1985. Trans splicing of mRNA precursors. *Cell* **42**: 157–164.

Sudhof, T.C. 2001. The synaptic cleft and synaptic cell adhesion (eds. M. Cowan, T.C. Sudhof, and C.F. Stevens). The Johns Hopkins University Press, Baltimore, MD.

Sugino, H., Hamada, S., Yasuda, R., Tuji, A., Matsuda, Y., Fujita, M., and Yagi, T. 2000. Genomic organization of the family of CNR cadherin genes in mice and humans. *Genomics* **63**: 75–87.

Suzuki, S.T. 1996. Protocadherins and diversity of the cadherin superfamily. *J. Cell Sci.* **109**: 2609–2611.

Suzuki, S.T. 2000. Recent progress in protocadherin research. *Exp. Cell Res.* **261**: 13–18.

Takahara, T., Kanazu, S.I., Yanagisawa, S., and Akanuma, H. 2000. Heterogeneous Splicing mRNAs in human HepG2 cells include a product of homotypic trans-splicing. *J. Biol. Chem.* **275**: 38067–38072.

Takeichi, M. 1990. Cadherins: A molecular family important in selective cell–cell adhesion. *Annu. Rev. Biochem.* **59**: 237–252.

Takeichi, M. 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. *Science* **251**: 1451–1455.

Takeichi, M. 1995. Morphogenetic roles of classic cadherins. *Curr. Opin. Cell Biol.* **7**: 619–627.

Tanaka, H., Yanagisawa, S., Phillips, G.R., Arndt, K., Bozdagi, O., Shapiro, L., Huntley, G.W., Benson, D.L., and Colman, D.R. 2000. Molecular modification of N-cadherin in response to synaptic activity. *Neuron* **25**: 93–107.

Tang, L., Hung, C.P., and Schuman, E.M. 1998. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. *Neuron* **20**: 1165–1175.

Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M., and Ron, D. 1998. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. *EMBO J.* **17**: 5708–5717.

Wu, Q. and Maniatis, T. 1999. A striking organization of a large family of human neural cadherin-like cell adhesion genes. *Cell* **97**: 779–790.

Wu, Q., Zhang, T., Cheng, J.F., Kim, Y., Grimwood, J., Schmutz, J., Dickson, M., Noonan, J.P., Zhang, M.Q., Myers, R.M. et al. 2001. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. *Genome Res.* **11**: 389–404.

Yagi, T. and Takeichi, M. 2000. Cadherin superfamily genes: Functions, genomic organization, and neurologic diversity. *Genes & Dev.* **14**: 1169–1180.

Yamagata, M., Herman, J.P., and Sanes, J.R. 1995. Lamina-specific expression of adhesion molecules in developing chick optic tectum. *J. Neurosci.* **15**: 4556–4571.

Yap, A.S., Briech, W.M., and Gumbiner, B.M. 1997. Molecular and functional analysis of cadherin-based adherens junctions. *Annu. Rev. Cell Dev. Biol.* **13**: 119–146.
Molecular mechanisms governing Pcdh-γ gene expression: Evidence for a multiple promoter and cis-alternative splicing model

Xiaozhong Wang, Hong Su and Allan Bradley

Genes Dev. 2002, 16:
Access the most recent version at doi:10.1101/gad.1004802

References
This article cites 56 articles, 14 of which can be accessed free at: http://genesdev.cshlp.org/content/16/15/1890.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.