The role of disorder in the synthesis of metastable ternary nitrides

Rachel Woods-Robinson*,1,2,3, Vladan Stevanović4,3, Stephan Lany3, Karen N. Heinselman3, Kristin A. Persson1,2, Andriy Zakutayev*,3
1Applied Science and Technology Graduate Group, University of California at Berkeley, Berkeley, CA, 94720 USA, 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA, Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado, 80401 USA 3Department of Physics, Colorado School of Mines, Golden, Colorado, 80401 USA, 4Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720 USA
(Dated: September 1, 2021)

In materials science, it is often assumed that ground state crystal structures predicted by density functional theory are the easiest polymorphs to synthesize. Ternary nitride materials, with many possible metastable polymorphs, provide a rich materials space to study what influences thermodynamic stability and polymorph synthesizability. For example, ZnZrN₂ is theoretically predicted at zero Kelvin to have an unusual layered “wurtsalt” crystal structure with compelling optoelectronic properties, but it is unknown whether this structure can be realized experimentally under practical synthesis conditions. Here, we use combinatorial sputtering to synthesize hundreds of ZnₓZr₁₋ₓNₓ thin film samples, and find metastable rocksalt-derived or boron-nitride-derived structures rather than the predicted wurtsalt structure. Using a statistical polymorph sampler approach, it is demonstrated that although rocksalt is the least stable polymorph at zero Kelvin, it becomes the most stable polymorph at effective temperatures ≥ 1150 K, corroborating experimental results since sputtering yields high effective temperatures. Additional calculations show that this temperature-induced change in phase stability is due to both entropic and enthalpic stabilization effects. Rocksalt- and boron-nitride-derived structures become the most stable polymorphs in the presence of disorder because of higher tolerances to cation cross-substitution and off-stoichiometry than the wurtsalt structure. This understanding of the role of disorder tolerance in the synthesis of competing polymorphs can enable more accurate predictions of synthesizable crystal structures and their achievable material properties.

I. INTRODUCTION

Computational materials discovery is a rapidly progressing research field, with the potential to revolutionize how materials are designed and developed. However, determining whether a given predicted crystalline material is actually experimentally synthesizable remains a key challenge. One common assumption in computational materials research is that the ground state structure predicted by density functional theory (DFT), or structures with energies near the ground state energy, are the most likely to be experimentally realized. Conversely, another assumption is that increased energetic instability (i.e. formation energy farther away from the ground state energy) correlates with an increased difficulty to synthesize. However, neither of these assumptions necessarily hold, as demonstrated by multiple experimental and computational studies.[1] Recent work has emerged to further explore synthesizability in metastable materials,[2][5] but so far computational materials researchers still cannot confidently answer the following question: “can this predicted material be synthesized?”[6] Thus, as materials databases grow and structure predictions yield new predicted compounds for high-throughput screenings, it is increasingly pertinent that the computational materials discovery community develops comprehensive methods for assessing synthesizability so that misleading false positives and negatives can be avoided.

Nitrides provide a compelling class of materials through which to examine synthesizability, in part because they are more likely than any other anion class to crystallize in metastable phases.[3][4][7][8] Recent computational predictions have yielded a multitude of new ternary nitride materials to explore,[9][10] yet an understanding of which polymorphs are experimentally synthesizable remains elusive. The chemical and structural richness of this emerging class of materials, including their mixed ionic-covalent nature compared to oxides, provides new candidates for various applications such as hydrogen storage, photovoltaic (PV) devices, and light-emitting diodes (LEDs). One such emerging class of ternary nitrides is the II-IV-N₂ family, ternary analogs of GaN and promising candidate for PV absorbers and green LEDs. II-IV-N₂ materials are commonly studied in two prototypical classes: (1) wurtzite-derived (WZ) structures, with four-fold coordinated cations (e.g. Zn-based ZnSnN₂, ZnGeN₂, ZnSnP₂, ZnSiP₂)[11] and (2) rocksalt-derived structures (RS), with six-fold coordinated cations (e.g. MgTMN₂).[12] Some compounds (e.g. MgSnN₂) have been shown to co-crystallize in both of these configurations at certain growth conditions, such as at ambient temperature at Mg-rich stoichiometries or at increased synthesis temperature on GaN substrates.[13][14] However, these two structure classes are just a small subset of possible structure classes in the rich space of ternary nitrides; it remains unknown which other II-IV-N₂ polymorph structures and chemistries are stabilizable.

Of particular interest to this study is the experimentally empty region of phase space in the zinc zirconium nitride (Zn-Zr-N) material system, in particular at its II-
IV-N$_2$ composition ZnZrN$_2$, which serves as a case study to gain insight for ternary nitrides as a whole. In contrast to other II-IV-N$_2$ materials, ZnZrN$_2$ (as well as isoelectronic ZnHfN$_2$) has a DFT-predicted P3m1 (156) space group ground state structure—a layer of Zn atoms tetrahedrally coordinated by N (wurtzite-like), a layer of Zr atoms octahedrally coordinated by N (rocksalt-like), and alternating Zn and Zr layers (abab)—which has been corroborated by three different computational studies using three distinct structure prediction algorithms with DFT relaxations.[10, 15, 16] This structure is analogous to sulfosalt ScCuS$_2$, though a corresponding mineral name could not be located.[17, 18] thus, we herein refer to this structure type as “wurtsalt” (WS), an amalgam of wurtzite and rocksalt, and depict the ZnZrN$_2$ WS structure in the top left of Figure 1(a), alongside other polymorphs. Despite these predictions, no semiconducting nitride materials in the $\text{Zn}_x\text{Zr}_{1-x}\text{N}_y$ ternary space have ever been stabilized experimentally, and it has not yet been investigated whether any other polymorphs exist.

In this study, we demonstrate that certain polymorphs can be preferentially stabilized or destabilized due to their tolerance to disorder. First, a set of 28 possible ZnZrN$_2$ polymorphs are predicted and investigated computationally. Next, combinatorial sputter synthesis is used to explore the full cation phase space of $\text{Zn}_x\text{Zr}_{1-x}\text{N}_y$, heterovalent heterostructural alloys (note that for simplicity, “alloy” will be used herein to represent this system), focusing on the region where $y \approx 1$ and $x \approx 0.5$ close to the ZnZrN$_2$ stoichiometry. Under this range of experimental sputtering conditions, the cation-ordered WS ground state structure predicted by DFT at zero Kelvin is not synthesized. Instead, a disordered metastable rocksalt (RS) polymorph is synthesized close to the ZnZrN$_2$ stoichiometry, and a metastable hexagonal boron-nitride-derived (BN) phase is observed at higher Zn concentrations ($x \gtrsim 0.5$). We note that the term “metastable” herein refers to solids that are metastable with respect to computed DFT energies at zero temperature (0 K). To understand the effects of disorder on the synthesis of ZnZrN$_2$, a series of computational methods are then applied that take into account configurational entropy and enthalpy, as well as off-stoichiometry. These ZnZrN$_2$ results suggest that it is necessary to consider the effects of disorder tolerance on energetic stabilization in possible polymorphs when investigating other new ternary nitrides, and new computationally predicted materials in general.

II. METHODS

A. Synthesis

Thin film samples were grown using radio frequency (RF) co-sputter deposition and the combinatorial method, with a total of 24 thin film combinatorial “libraries” of $\text{Zn}_x\text{Zr}_{1-x}\text{N}_y$ deposited on 50 × 50 mm fused silica substrates in two different sputter chambers, with various experimental conditions. After exploratory depositions, 11 libraries are reported here, all grown in the same chamber. The chamber setup consists of 2 inch precursor sputter targets of metallic Zr and Zn, with sputter guns pointed towards one another to result in a gradient in cation composition, as depicted in the SM. The samples reported in this study are deposited in an Ar/N$_2$ environment, with a chamber base pressure of $\sim 2 \times 10^{-7}$ Torr, growth pressure of 5 mTorr, and gas flow rates of Ar and N$_2$ both of 6 sccm. In an attempt to increase nitrogen chemical potential, a nitrogen cracker is operated during growth at 300 W with 0 W reflected power, as described elsewhere. RF power is varied from 30–100 W on the gun with the Zn target, and 20–100 W on the gun with the Zr. Temperature gradient methodology and associated temperature calibrations are described elsewhere[19, 20] and in the SM.

B. Characterization

Material composition and structure was characterized with customized combinatorial measurement tools, as de-
scribed elsewhere, with a 4x11 mapping grid projected onto each sample library resulting in 44 data points per library and thus >400 unique compositional data points total in this study. Analysis is conducted using the customized COMBilog software package.[21] Film cation composition, i.e. x in Zn$_x$Zr$_{1-x}$N, and film thickness were determined using mapping style X-ray fluorescence (XRF) spectroscopy and Dektak profilometry. Since nitrogen (as well as spurious oxygen) cannot be resolved with XRF, a select number of samples are measured using Rutherford backscattering spectrometry (RBS) to confirm cation composition and to measure the anion content in films. RBS was performed at NREL on a National Electrostatics Corporation 3S-MR10 instrument with a 2 MeV alpha particle beam at a current of 70 nA. The total accumulated charge was 320 μC, and the RBS detector was mounted in a backscatter configuration at 140°. Analysis was performed with the RUMP package. Structural analysis mapping was performed for all libraries with X-ray diffraction (XRD) on a Bruker D8 Discover with a θ–2θ geometry, Cu Kα radiation, and a proportional 2D detector. Measurements are complimented for 11 libraries of interest at Beam Line 1-5 at the Stanford Synchrotron Radiation Lightsource (SSRL) with Wide Angle X-ray Scattering (WAXS). 2D scattering was collected with a Rayonix 165 CCD Camera at grazing incidence at an incident energy of 12.7 keV.

C. Polymorph structure generation

Candidate ordered polymorphs were generated using kinetically limited minimization (KLM) [22] and ionic substitution of prototypes from other ternary nitrides.[14] Unique structures that emerged from the polymorph sampler random structure searching were also included as ordered polymorphs.[2] To create a set of ordered prototype “alloys” across the ZrN–ZnN tieline (i.e. Zn$_x$Zr$_{1-x}$N), we performed cation substitution in each of the ordered ZnZrN$_2$ polymorph structures where $y = 1$ and $x = 0, 0.25, 0.50,$ and 0.75. Details and structure matching are described in the SM.

To account for configurational degrees of freedom and associated entropic contributions to free energy, the “polymorph sampler” statistical approach of Stevanović et al.[2] was modified to include cation lattice disorder in the ZnZrN$_2$ system. The modification pertains mainly to structure classification and the statistical treatment (see SM). Using random structure sampling, we generated a set of 5,000 random superlattice (RSL) ZnZrN$_2$ structures with 24-atom cells.

ZnZrN$_2$ structures approximating random disorder were simulated using the special quasirandom structure (SQS) method, which models random atomic decorations on a lattice in unit cells larger than most ordered structures but small enough to converge reliably with DFT.[25] This is achieved by searching for unit cells that reproduce or approximate pair (or higher order) correlation functions by minimizing an objective function (see SM). We calculated a set of SQS structures with 64 atoms for each ZnZrN$_2$ structure class using the aTAT package,[26,28] selecting only structures with the lowest objective functions.

D. First principles calculations

Density functional theory (DFT) calculations were performed using the projector augmented wave (PAW) method[29,30] as implemented in the Vienna Ab Initio Simulation Package (VASP) [31,32], first within the Perdew-Burke-Enzerhof (PBE) Generalized Gradient Approximation (GGA) formulation of the exchange-correlation functional.[33] Cutoff, convergence, and correction criteria are described elsewhere.[34,35]

The ordered ZnZrN$_2$ polymorph structures, 64-atom SQS structures, and alloy calculations ($x = 0, 0.25, 0.5, 0.75$), were relaxed first with a PBE functional, then with PBE using a Hubbard U correction (“PBE+U”) of 3 eV/atom for Zr as benchmarked by Stevanović and coworkers,[36] and also with the SCAN meta-GGA functional, which has been demonstrated to more accurately predict polymorph orderings with the trade-off of a higher computational cost.[14,37,38] The SCAN results are reported for all calculations herein, except for the polymorph sampler structures which were relaxed using PBE+U since SCAN is too computationally expensive for 5,000 structures.

III. RESULTS

A. Identification of possible ZnZrN$_2$ polymorphs

Although only the WS phase is reported in the Materials Project database (ZnZrN$_2$, “mp-1014244”),[33,39] this unexplored Zn-Zr-N phase space could in principle host a variety of different structures. Many methods exist to determine possible polymorphs and predict synthesizeable compounds.[40] ranging from simple ionic substitution,[41] to kinetically limited minimization (KLM)[22], ab initio random structure searches (AIRSS),[42] or more expensive evolutionary and genetic algorithms.[43] Since no
gle method is fully representative of configurational space, we use the combined methods of KLM,[22] random structure searching, and ionic substitution[13] to predict 28 unique possible ordered ZnZrN₂ polymorphs (three of which have been added to the NREL MatDB[30][4][15]). Most of these polymorphs have unit cells of 16 atoms or fewer and represent various orderings, and thus are referred to as “ordered” polymorphs herein.

The resulting 28 polymorphs are classified into six distinct structure prototype classes, with representative crystals for each of these structure prototypes depicted in Figure 1(a), and adopt a naming convention from binary analogs as follows: rocksalt-derived (“RS”) is an fcc anion sublattice with cations in O_h-coordinated voids, wurtzite-derived (“WZ”) exhibits a structurally face-centered tetragonal anion lattice with tetrahedral coordinated cations, zincblende-derived (“ZB” i.e. chalcopyrite) is an fcc anion sublattice with cations in every other tetrahedral void, wursalt (“WS”) presents alternating layers of octahedrally coordinated Zr and tetrahedrally coordinated Zn (as discussed previously), and boron-nitride-derived (“BN”) exhibits hexagonal sheets of various stackings (similar to graphite, but a 3D structure with M-N bonds between c-axis layers and the key distinction that the c-axis bonds lengths are nearly equal to the in-plane bond lengths[10]). An additional compound, with alternating 2D layers corresponding to layers of the mineral lathite (PhO, with a space group P4/nmm) and the mineral massicot (PhO, with a space group P2₁/c) respectively, we name with the amalgam “lithicot” (“LC”); we were also unable to locate an existing mineral name). The heavily distorted versions of three of these prototypes are categorized separately, with the prefix “d-”, using a tolerance developed from a structure matching algorithm; see Supplemental Materials (SM) for classification scheme details. The structure class “d-HX” (HX = hexagonal) represents structures that are distortions between BN and WZ, which are commensurate to one another. Zn₃N₂ crystallizes in an anti-bixbyite-derived phase (“BX”), which is observed experimentally, but this structure is not included in our set of prototypes since deriving an analogous topotactic ZnZrN₂ BX structure requires removing atoms and is not trivial.

The resulting formation energy of a given ordered polymorph in structure class, k, is referred to as ΔH_k^{ord} (e.g. ΔH_{WS}^{ord}, ΔH_{RS}^{ord}, etc.). Figure 1(b) plots the resulting energy ordering of the 28 ordered structures, with polymorphs grouped by structure type and “E_{bull}” indicating the energy above the convex hull, i.e. the difference between the computed ΔH_k^{ord} and the ground state hull. The SCAN functional confirms a predicted ground state WS (P3m1) that lies on the convex hull, corroborating the literature.[3][15] Other WS polymorphs (P6₃mc, P3m1) are low in energy, ranging from 0 to 0.025 eV/atom, and the LC structures (Pco2₁, Iba2) are the next-lowest in energy. RS polymorphs are the highest in energy, with E_{bull} values ranging from 0.080 to 0.156 eV/atom. PBE and PBE+U yield similar energy orderings (see SM), although LC is the predicted ground state for PBE without a Hubbard U correction (see SM).

The E_{bull} values of the lowest energy ordered structure in each prototype class, as well as their calculated band gaps (E_G) and electron and hole effective masses (m_e^* and m_h^*) from SCAN, are reported in Table I with the full list in the SM (note that reported E_G are Kohn-Sham gaps calculated with SCAN, which systematically underestimates the true band gap[17]). Optoelectronic properties vary significantly by structure. Most polymorphs have indirect gaps except for the LC structures, most of the BN, some distorted structures, and one RS. The WZ Pna2₁ polymorph exhibits the largest band gap (E_G ≈ 2.99 eV with SCAN, see SM), followed by d-HX, WS, ZB, d-RS and d-WS with E_G > 2 eV, while RS has among the lowest band gaps (~0.1-1.67 eV, depending on cation ordering). Notably, the lowest-energy WS P3m1 polymorph has an exceptionally low m_e^* (<2) compared to m_h^* (<7) while retaining a wide direct band gap, E_G > 3 eV. This combination of electronic structure properties is unique among all the considered polymorphs, and is rare for other chemistries outside of the ZnZrN₂ material system.

B. Synthesis of metastable phases

Despite the existence of at least 19 predicted polymorphs with lower 0 K DFT formation energies, an RS phase with a high E_{bull} is experimentally synthesized at low deposition temperatures (T_{dep}) and ZnZnN₂ stoichiometry. Using combinatorial sputter synthesis,[18] a set of approximately 400 samples in the Zn₁₋ₓZrₓ⁺₂N_y ternary alloy system is grown, with cation concentration ranging from 0 ≤ x ≤ 1 and growth temperature T_{dep} ranging from ambient to 500°C. Figure 2(a) depicts RBS anion-to-cation ratio, y = anion/(Zn+Zr) with anion = (O+N), N, or O, as a function of cation ratio, x = Zn/(Zn+Zr), for a set of representative samples grown at ambient temperature. RBS corroborates the cation concentration measured by XRF and indicates N-rich compositions in Zn-poor samples, N-poor compositions in Zn-rich samples, and approximately stoichiometric N at the ZnZnN₂ composition of interest. Additionally, a small but nonzero presence of O is detected, likely substituting for N and plausibly residing on the film surface (~0.3 at. % in Zn-poor samples, ~5 at. % in Zn-rich samples due to reaction of zinc nitride with ambient atmosphere; see SM). An exponential fit suggests our samples have crystallized near the Zr₁₋ₓN₁₋ₓN_y≈₂₋ₓ_y composition to the crossed markers, with an approximate stoichiometry of Zn₁₋ₓZr₁₊₂N_y where y ≈ (4 – 2x)/3. This system could alternately be expressed as “Zn₁₋ₓZr₁₊₂N₂₋ₓ_y”, to emphasize off-stoichiometry from ZnZnN₂ (see SM). For simplicity and generality we will refer to experimental alloys as “Zn₁₋ₓZr₁+xN_y” herein since multiple experimental phases are observed, and focus on varying x since the anion composition y is not intentionally tuned.

Using high-throughput synchrotron XRD, and referencing the XRD patterns from the set of predicted polymorphs, the structural phase space is mapped in Figure 2(b) by linking the structure of each of the ~400 samples to its corresponding ternary composition and calibrated deposition temperature, T_{dep}. Rather than crystallizing in its predicted ground state WS structure at and around the ZnZrN₂ (x = 0.5) composition, synchrotron
XRD demonstrates predominantly an RS crystal structure, corresponding to an E_{hull} of at least 0.08 eV/atom according to Figure 1. The transformation to a second phase is observed at higher x compositions, a hexagonal structure corresponding to BN (or possibly d-HX), and a third anti-bixbyite-derived phase (“BX”) is observed at the highest x concentrations near Zn_3N_2 (simulating BX ZnZrN_2) is beyond our scope). At higher T_{dep}, there are regions of mixed phases of these three polymorphs, perhaps due to miscibility or Zn volatility. We attempted to synthesize Zn-rich samples at $T_{\text{dep}} > 250^\circ$C, but no such samples were realized due to the high vapor pressure of Zn under our growth conditions (see SM).

Figures (b) and (c) represent the key structural observations in $\text{Zn}_x\text{Zr}_{1-x}\text{N}_y$. First, an RS-derived phase dominates from $x = 0$ up to a threshold x value, which is approximately $x \approx 0.66$ at ambient temperature growth conditions ($T_{\text{dep}} \approx 65^\circ$C, bottom of figure) and which drops as T_{dep} increases. An XRD pattern for a representative RS sample of $x \approx 0.45$ is depicted in (c) in dark teal, compared to a modeled RS XRD pattern in light teal, simulated as ensemble-averages from the polymorph sampler. The RS-derived phase at $x = 0$ is more N-rich than RS ZrN, so we refer to it as ZnN$_y$ ($y > 1$). This could in principle be a single or mixed phase of RS ZnN$_y$ ($y > 1$), Zn$_3$N$_4$, Zr_2N_2, Zr_3N_2, or Zr_2N_3 with possible defect-mediated or oxygen-induced stabilization. In-depth investigation of this phase is beyond our scope. As the Zn content increases, the XRD peaks occur at $Q = 2.3$ and 2.65 Å, which correspond to RS (111) and (200), respectively (indices from the ZrN RS structure; see SM), shift to higher Q values, with the former strengthening and the latter weakening. This trade-off is likely due to shifts in texturing, as also commonly observed in other ternary nitrides.

At a threshold composition ($x \approx 0.66$ at ambient temperature), there is a phase transformation to a hexagonal BN-derived structure. Figure 2(c) depicts a representative BN diffraction pattern for a sample with $x \approx 0.56$ in dark red, with diffraction peaks at Q values of $\sim 2.10, 2.45$, and 2.55 Å corresponding to BN (002), (100), and (101) reflections, respectively. This transformation occurs at lower x values for samples grown in the approximate range 100°C $\lesssim T_{\text{dep}} \lesssim 225^\circ$C, with a large region of mixed phase RS and BN (“RS + BN”).

At a second threshold composition ($x \gtrsim 0.8$ at ambient temperature, and lower x for high T_{dep}), a second phase transition occurs to the BX phase that phase holds until $x = 1$ with a stoichiometry of approximately Zn$_3$N$_2$. The presence of BX Zn$_3$N$_2$ corroborates literature reports and may be enabled by Zr$_{\text{Zn}}$ antisite stabilization across phase space. There are several regions of phase-segregated BX as well, in particular at $T_{\text{dep}} > 250^\circ$C. Here, films are likely completely phase-separating into binaries of RS ZnN_y and BX Zn$_3$N$_2$; though it is also plausible that a BX-derived phase of ZnN_y or Zn-rich Zn-Zr-N has formed and is responsible for the BX reflections.

In summary, RS and BN are synthesized near the ZnZn$_3$ composition ($x = 0.5$) and BX at high x, but no WS phase is observed. The measured and simulated XRD patterns correspond very well, except for offsets in Q that are a consequence of errors in DFT lattice constants or experimental artifacts (e.g. off-stoichiometry, possible residual strain, sample misalignment). It is notable that in this alloy system Zn$_x$Zr$_{1-x}$N$_y$, the presence of a lower-density hexagonal phase (BN, here) located between two higher density cubic phases (RS and BX, here) is indicative of a phenomenon in heterovalent heterostructural al-

Figure 2: (a) RBS measurements of anion composition as a function of cation composition, with exponential fits polotted. (b) Map of over 400 samples in Zn-Zr-N experimental phase space, with cation composition $x = \text{Zn}/(\text{Zn}+\text{Zr})$ on the x-axis and calibrated deposition temperature T_{dep} on the y-axis. (c) Representative XRD patterns for 3 samples marked with rectangles in (b), with “modeled” ZnZn$_3$, RS and BN from ensemble averages of XRD patterns from the polymorph sampler method for ZnZn$_3$ compositions, and “standard” Zn$_3$N$_2$ anti-bixbyite (BX) from the Materials Project database plotted with a smearing bandwidth of 0.05.
loys called “negative pressure” polymorphs,[55,56] and this space warrants further exploration.

C. Statistical sampling of thermodynamically accessible polymorphs

The synthesis of metastable polymorphs (RS and BN) rather than the predicted ground state (WS) is not particularly surprising; DFT is a 0 K, thermodynamic equilibrium modeling approach of bulk systems while sputtering is a high effective-temperature, non-equilibrium synthesis approach of thin films, and so the two methods are not necessarily compatible. Despite these incompatibilities, DFT often does correctly predict sputtered crystal structures, for example in other ternary nitrides[10] or in numerous oxide compounds, and thus is commonly used for simulating such materials. However, there are also other cases in the literature where the predicted DFT ground state is not synthesizable via sputtering or where sputtering can access metastable states. For example, ternary nitride ZnMoN₂ is predicted in a layered structure but synthesized in a WZ structure,[57] Mg₂NbN₃ is predicted in a layered structure but synthesized in a RS structure,[12] and Zn₂SbN₃ and Mg₂SbN₃ are metastable with respect to decomposition into N₂ yet both can be made by sputtering.[58,59]

It is still not understood, for a given system, whether the DFT ground state will ultimately be synthesizable as a sputtered thin film or whether a higher-energy polymorph will crystallize instead, and in each case why or why not. Modeling sputtering from first principles is computationally difficult (e.g. time-dependent simulations, Monte Carlo analysis), further complicated since sputtered films tend to decompose before equilibrium is reached, and thus such simulations are beyond our scope. The computational analysis herein seeks to contextualize our experimental findings by approximating whether metastable states could be accessible experimentally using non-equilibrium synthesis techniques such as sputtering. These computational methods and the following discussion are not aimed to show that WS cannot be synthesized — it may very well be possible to synthesize WS under different conditions — but rather, we provide a rationale for why metastable phases have been stabilized under these experimental conditions.

It has previously been shown that treating a spectrum of structures generated by random structure sampling[12] as a proper statistical ensemble can determine the experimental realizability of metastable crystalline polymorphs phases (e.g. MgO, ZnO, SnO₂, and Si)[2,23] as well as the structural features of glasses.[24] Here, 5,000 ZnZrN₂ RSL structures are generated with random structure sampling, and the resulting spectrum of polymorph structures is split into prototype classes with the same underlying space group (see SM). Next, the ensemble probability P_k of every individual class is evaluated as:

\[P_k = \frac{\sum_{n=m}^{n+k} \omega_n e^{-\frac{E_{\text{hull},n}}{k_B T}}}{\Xi} = \frac{\Xi_k}{\Xi} \]

(1)

where k represents different prototype classes, n counts polymorph structures within a given class, \(\omega_n \) is the frequency of occurrence of a structure n belonging to class k, and \(E_{\text{hull},n} \) is the formation energy per atom relative to the ground state. \(\Xi_k \) and \(\Xi \) are the partial and the full partition functions, respectively. The former pertains only to the k-class of structures, while the latter is evaluated for all RSL structures.

The thermodynamic density of states (TDOS; i.e., number of structures per energy unit) resulting from the random structure sampling, normalized and resolved by structure class, is shown in [Figure 3](a). Two features become immediately apparent. First, consistent with [Figure 3](b) and literature reports, the ground state WS structure is correctly identified (dark grey), but its corresponding frequency of occurrence and associated TDOS are very small. Second, RS structures have the largest TDOS peak (blue), concentrated in the narrow window of 0.08–0.12 eV/atom. This suggests the flexibility of RS to accommodate cation disorder in a relatively narrow energy interval. Additional classes of disordered structures with more significant oc-
currence are the BN (red) and the two highly distorted d-RS and d-WS classes (striped), with the latter also including structures with more than one tetrahedral layer sandwiched between the octahedrally-coordinated layers of the WS structures. It is also important to note that none of the other previously discussed structure classes appear in the RSL structures, including the LC and WZ classes with DFT formation energies lower than that of RS. This indicates that all possible structures in these absent classes exhibit very “narrow” local minima in configurational energy space, leading to a very low probability of occurrence. The same is true for a relatively large number of very low symmetry structures (space groups $P1$ and $P1$) typically obtained in random structure sampling, but since none of these structures occur in large numbers they become statistically insignificant compared to those depicted in Figure 3.

The TDOS from Figure 3(a) allows evaluating ensemble probabilities per Equation 1 and associated partial partition functions $\bar{\Xi}_k$. These are used to evaluate the “configurational” free energies G_k of the corresponding structure types using the standard statistical mechanics equation:

$$G_k(T_{\text{eff}}) = -k_B T_{\text{eff}} \ln \bar{\Xi}_k$$

(2)

where k_B is the Boltzmann constant and T_{eff} is the “effective temperature,” defined in the literature as the thermodynamic temperature where a material grown in equilibrium would have the same degree of disorder as the same material grown out of equilibrium (e.g. by sputtering). The temperature dependence of the free energy G_k, displayed in Figure 3(b), clearly shows that at low T_{eff} the lowest free energy structure is the ground state WS structure, consistent with Figure 1. However, at $T_{\text{eff}} \gtrsim 1100$ K, the disordered RS becomes the most favorable structure due to the large gain in configurational entropy. In the temperature range 1300–1600 K, the WS structure gives way to disordered BN as the second most favorable structure, while at still higher temperatures the d-RS becomes the most favorable. This structure, if mixed with RS, would be difficult to distinguish from RS using XRD because of their similar diffraction patterns.

In summary, at higher effective temperatures the polymorph sampler ensemble treatment suggests the following ordering of structures according to G_k: (1) disordered RS, (2) distorted RS (d-RS), (3) BN, and (4) distorted WS (d-WS). This is consistent with experimentally observed XRD patterns that are compared with the ensemble-averaged patterns in Figure 2(c). We reiterate that T_{eff} is representative of effective temperature rather than T_{dep}, the substrate temperature during sputter synthesis. Previous studies have suggested that sputter deposition occurs at T_{dep} higher than 1100 K in ternary nitrides; in fact, T_{dep} has been shown to scale inversely with T_{eff} for sputtered films (where $T_{\text{dep}} \lesssim 600^\circ$C) since strong kinetic limitations at low T_{dep} induce a high degree of disorder (see SM). Therefore, since computed phases at high T_{eff} correspond to phases grown at low T_{dep} in Figure 2, these ensemble probabilities and free energies support the observed behavior in sputter-deposited samples: the RS phase is stabilized and the WS phase is destabilized.

IV. DISCUSSION AND IMPLICATIONS

We have synthesized the RS-derived and BN-derived ZnZrN$_x$ structures rather than WS, which is the DFT-predicted ground state at 0 K, and have used a statistical polymorph sampler to explain these results by demonstrating that RS becomes the lowest energy polymorph at high effective temperatures. However, this does not explain the physical principle behind why certain structures are stabilized or destabilized upon disorder, nor why BN is synthesized at Zn-rich compositions. Inspection of structures in Figure 1(a) indicates that the ordered polymorph structures with lowest ΔH_{ord}^o exhibit unique, inequivalent cation coordination environments for Zr and Zn (WS, LC), while higher formation energy structures have similar, equivalent coordination environments for all cation sites (RS, BN, WZ, ZB). This is demonstrated in Figure 4(a) with partially occupied WS and RS structures.

Figure 4: (a) Schematic of the WS and RS derived structures with cation site disorder as an example of structures with inequivalent and equivalent cation sites respectively. (b) Comparison of formation energies of the lowest energy ordered polymorph structure (ΔH_{ord}^o) and of the random disordered structure (ΔH_{rdp}^o) for each prototype class plotted in Figure 3. The E_{rdp} descriptor is shown, with a lower E_{rdp} correlating to the higher disorder tolerances in the BN and RS structures that are observed experimentally (see SM).

Our hypothesis is that cation disordering during synthesis—enabled by rapid condensation from the vapor state to the solid state in physical vapor deposition (PVD) techniques such as sputtering—favors structures with similar cation coordination environments, thus lowering the probability of the formation of WS. To examine this hypothesis and explore how the polymorph sampler results pertain to other systems, we pursue two high-throughput computational approaches. First, we develop a descriptor to interpret the results of the polymorph sampler within the framework of random cation disorder, and second, we estimate formation energies of ordered Zn$_x$Zr$_{1-x}$N$_y$ with varied cation ratios x to assess the effects of off-stoichiometry in relation to experimental phase space.
A. Tolerance to disorder influences synthesizability at high effective temperatures

In practice, cation disorder is ubiquitous in ternary nitrides, especially in materials synthesized at high effective temperatures (as present in sputtering). Thus, modeling small, cation-ordered unit cells as in Figure 3 may not adequately capture energetic information in these systems. Here, the energetic effects of random cation disorder in ZnZrN₂ polymorph structures are explicitly considered by generating random disordered structures in each structure class using the SQS method, as described previously. For each structure class k, these resulting formation energies all are within ∼0.010 eV/atom of one another; these energies are then ensemble-averaged to best represent the formation energy of a randomly disordered phase, referred to as ΔH_k^{dis}.

Figure 3(b) compares ΔH_k^{dis} to the ΔH_k^{ord} of the lowest energy ordered structures for the five structure classes that emerge from the polymorph sampler (see SM for others), referenced to $\Delta H_{\text{WS}}^{\text{ord}}$ and reported as E_{null}. The random disordered WS and d-WS structures have high formation energies, with $\Delta H_{\text{WS}}^{\text{dis}}$ over 0.17 eV/atom. In contrast, $\Delta H_{\text{BN}}^{\text{dis}}$ is lowest of all disordered structures. Although RS does not have the lowest $\Delta H_{\text{RS}}^{\text{dis}}$, $\Delta H_{\text{RS}}^{\text{ord}}$ is very similar (within 0.025 eV/atom) to $\Delta H_{\text{RS}}^{\text{dis}}$, and thus has a lower energetic penalty to disorder. To assess this “disorder tolerance” for a given structure class k, we introduce a new descriptor, the “random disordered polymorph energy” E_{rdp}: $E_{\text{rdp}}(k) = \Delta H_k^{\text{dis}} - \Delta H_k^{\text{ord}}$. (3)

RS and BN, the structures that have been experimentally synthesized, have the lowest E_{rdp} values. Physically, since the 0 K DFT formation energy is an approximation of formation enthalpy, the E_{rdp} represents the additional enthalpy that is introduced for each structure as a result of cation disorder. This is the change in enthalpy as a result of geometric distortions and high energy bonds induced by disorder, rather than entropic effects. Thus, we have shown that in the ZnZrN₂ polymorph structures with inequivalent cation sites (WS, LC), cation disordering significantly increases enthalpy, whereas in the ZnZrN₂ structures with equivalent cation sites (RS, BN) cation disordering only negligibly increases enthalpy.

Three computational methods and resulting sets of energies have been considered so far: ordered structures in Figure 1(b) (ΔH_k^{ord}), random disordered structures from SQS in Figure 4(b) (ΔH_k^{dis}), and the polymorph sampler ensemble in Figure 3(b) (G_k). Since an SQS structure approximates configurational disorder, it is also representative of a structure that would be observed at high T_{eff}. Thus, the ΔH_k^{dis} represent similar disordered structures as the G_k at high T_{eff} (e.g. at $T_{\text{eff}} = 2000$ K; referred to as G_k^{2000K}), with the former accessing enthalpy degrees of freedom and the latter accessing enthalpy and entropy. Figure 5 shows that the relative polymorph ordering changes across the three methods: WS is lowest in ΔH_k^{ord}, the disordered BN class is lowest in ΔH_k^{dis}, and the RS class is lowest in G_k^{2000K}.

Since G_k^{2000K} includes both enthalpic and entropic degrees of freedom, and ΔH_k^{dis} includes only enthalpic degrees of freedom, this suggests that the RS phase is entropically stabilized compared to BN. Meanwhile, the WS phase is enthalpically destabilized compared to the RS and BN phase. We acknowledge that the SQS disordered structures that determine ΔH_k^{dis} are estimates (a cluster expansion should be fit to rigorously account for short-range order), but ultimately these estimates support the hypothesis that disorder tolerance stabilizes the RS and BN phases over other considered polymorphs at high effective temperatures. Additionally, we have distinguished which stabilization effects are due to changes in enthalpy and which are due to changes in configurational entropy.

B. Tolerance to off-stoichiometry informs phase transitions

It has been suggested why RS and BN are stabilized with sputtering, but it is not yet understood why RS is synthesized at Zr-rich compositions and BN at Zn-rich compositions. Another plausible explanation for the absence of WS ZnZrN₂ is that it is a “line compound,” a phenomena observed in other ternary nitride systems such as ZnSnN₂:ZnO. A line compound is stable only in a very narrow region of configurational space such that it may be missed using combinatorial growth. Figure 6 plots ternary Zn-Zr-N phase space, which constitutes configurational space in this system, and shows approximately where experimental samples lie with respect to computed phases. To explore this hypothesis, we perform cation substitution in each of the ordered ZnZrN₂ polymorph structures from Figure 1 to create a set of prototypes across the ZrN–ZnN tie-line — i.e. $Zn_xZr_{1-x}N_y$.

\[
\begin{align*}
\text{ZnZrN}_2 \text{ polymorph ordering by method} \quad & \quad T_{\text{eff}} \quad \text{d.o.f.} \quad \text{accessed} \\
\text{low} & \quad \text{high} & \quad \text{high} \\
\text{enthalpy} & \quad \text{enthalpy} & \quad \text{enthalpy + entropy} \\
\text{ordered structures (} \Delta H_k^{\text{ord}}) & \quad \text{random disordered structures (} \Delta H_k^{\text{dis}}) & \quad \text{polymorph sampler ensemble at 2000 K} (G_k) \\
\text{RS} & \quad \text{d-RS} & \quad \text{BN} & \quad \text{d-WS} & \quad \text{WS} \\
\end{align*}
\]

Figure 5: Comparison of relative polymorph energy orderings by calculation method — ordered ΔH_k^{ord}, disordered ΔH_k^{dis}, and the polymorph sampler free energy at 2000 K (G_k^{2000K}) — with qualitative effective temperature T_{eff} and accessed degrees of freedom (d.o.f.) considered for each calculation. Energy is normalized with respect to the lowest formation energy on the y-axis, and arrows connect the energy changes for a given structure class.
where $y = 1$ and $x = 0.25, 0.50, 0.75$ ($x = 0$ in SM) — and then relax the structures (note that these are small ordered unit cells, not SQS cells). This constitutes a very rough alloy approximation, since sputtered films are N-rich for $x < 0.5$ and N-poor for $x > 0.5$; the experimental alloy is closer to the $\text{Zr}_3\text{N}_4 - \text{Zn}_3\text{N}_4$ tieline, but this heterovalent alloy is far trickier to model due to defect compensation and is beyond the scope here.

Relative polymorph stability for relevant structure classes with $E_{\text{hull}} < 0.15 \text{ eV/atom}$ is depicted for ZnZr$_3$N$_4$, ZnZrN$_2$, and Zn$_3$ZrN$_4$ in Figure 6 (see SM for hull stability plots and all classes). WS is highly destabilized in Zn-poor and Zn-rich cases, suggestive of a line compound. RS is the lowest energy polymorph for a wide window of Zn-poor compositions and BN is the lowest energy polymorph in Zn-rich compositions (see SM). Since the LC, ZB, and WZ phases do not emerge in the polymorph sampler and WS is highly metastable at high T_{eff} (see Figure 3), at high T_{eff} we would expect a phase change from RS to BN somewhere within approximately 0.45 $< x < 0.55$ (see SM), which corroborates experimental findings. These calculations use the nominal valence of the cations, namely, Zn$^{2+}$ and Zr$^{4+}$; we do not perform defect calculations or vary cation oxidation states. Rigorous examination of alloy phase space would require an in-depth calculation of a temperature-dependent phase diagram, which is beyond our scope. However, this simple approximation is sufficient to explain our experimental observation of a phase change from RS to BN as x increases in Zn$_x$Zr$_{1-x}$N$_y$ at high T_{eff}.

C. Implications for materials discovery

Although neglected in this analysis, it is important to acknowledge the role of dynamic and kinetic effects in this ternary phase space. Dynamic instabilities could be assessed by computing phonon contributions to the entropy, though according to the Dulong-Petit law, vibrational free energy differences between solids cancel to a large degree so should not significantly change phase ordering. As has been demonstrated in other II-IV-N$_3$ systems, spurious oxygen incorporation from the growth chamber can influence phase stability and result in impurity phases,[14] though our O/(Zn+Zr) values below 1% from Figure 2(a) suggest that a phase-segregated oxide is not observed here. Additionally, the elemental Zr used in our sputter target contains ~ 10 at. % Hf, which could influence relative phase stability. Finally, surface morphology, templating during growth, and kinetic effects could be assisting in restricting the formation of WS, and in enabling the preferential formation of RS and BN. Even though these films are grown on amorphous fused silica, we also acknowledge the possibility of preferential nucleation. These factors are all important to take into account in materials discovery studies.

There are many new predicted ternary nitrides and pnictides to explore beyond ZnZrN$_2$.[10] However understanding of which polymorphs are actually synthesizable remains elusive. An assessment of the role of cation disorder tolerance in emerging ternary pnictide systems is presented in Figure 7, with the set of II-IV-V$_3$ pnictide semiconductors considered in (a) where II = (Ba, Mg, Ca, Be, Sr, Zn, Cd), IV = (Si, Ge, Sn, Pb, Ti, Zr, Hf), and V = (N, P, As). Theoretically, this set includes 147 unique compositions; as shown in (b), to date only 31 of these compositions have been confirmed experimentally and only 43 other predicted compositions are in the Materials Project (MP) database, leaving 73 II-IV-V$_3$ compositions not yet in the database at this time. Within the set of predicted but not-yet-synthesized compounds (yellow), (c) shows that at least two other systems other than ZnZrN$_2$ have computed ground states where cations occupy symmetrically inequivalent lattice sites: SrGeN$_2$ ($P6_3mc$) and ZnHfN$_2$ ($P3m1$). This is also feasible for the 73 ternary pnictide compositions still missing from the MP database, leading to the experimental realizability of new metastable compounds with promising properties to be explored.

V. CONCLUSION

In summary, we have grown the first Zn$_x$Zr$_{1-x}$N$_y$ samples (a set of approximately 400 thin films) using combinatorial sputter synthesis, demonstrating the crystallization of metastable rocksalt-derived (RS) and boron nitride-derived (BN) phases with cation-disordered structures, rather than the predicted cation-ordered “wurtzite” (WS) ground state phase. These findings have been explained using first-principles computational methods. By statistically sampling configurational degrees of freedom
Figure 7: Assessment of the role of cation disorder tolerance in emerging ternary pnictides. (a) Elements within the II-IV-V₂ composition space. (b) The distribution of composition spaces within the Materials Project (MP) database. (c) Three example systems from the “predicted in MP” category where cations occupy symmetrically inequivalent lattice sites.

of polymorphs generated by random structure sampling, we demonstrate energetic destabilization of the predicted DFT WS ground state at high temperatures and stabilization of RS and BN phases that support our experimental results. It is shown that this stabilization can be attributed to the increased disorder tolerance in the RS and BN phases due to only minor gains in configurational enthalpy, suggesting that the RS phase is entropically stabilized to a higher degree than BN. Ordered alloy calculations of varying cation composition suggest that RS and BN have a higher tolerance to cation off-stoichiometries compared to WS, predicting a phase transformation from RS to BN as x increases that corroborates our experimental findings. These results demonstrate the utility of sputtering in accessing high effective temperatures and synthesizing polymorphs predicted to be metastable within the DFT approximation at 0 K.

However, we acknowledge that growth methods and deposition conditions matter significantly in phase stabilization, and sputtering of thin films is just one synthesis approach. Although WS is energetically destabilized here by sputter synthesis, its realizability is not definitively ruled out. Future work on targeted synthesis of WS phases (e.g. low effective temperature, epitaxial, on-stoichiometry synthesis) is needed to assess whether WS is indeed synthesizable. If synthesizable, WS ZnZrN₂ holds promise as a piezoelectric material and for optoelectronic applications. Furthermore, in-depth structural analysis and optoelectronic properties of the RS and BN polymorphs in this system remain to be investigated.

Table I indicates promising properties for device applications such as contact materials, solar cell absorbers, photocatalysts, piezoelectric and ferroelectric materials. In particular, the synthesized BN-derived polymorph has >2 eV band gap and low (<1.5) well-matched electron and hole effective masses, making it interesting for electronic devices that can operate at elevated temperatures. Additionally, this non-polar BN polymorph is the transition state between two variants of the polar WZ structure, suggesting a pathway to tuning its predicted and measured ferroelectric response.

The results of this work suggest that other thermodynamically “metastable” materials according to 0 K DFT may be possible to synthesize. Presently DFT is one of the most popular methods to generate high-throughput thermochemistry data with reasonably accuracy, despite the fact that zero temperature formation energies provide only a rough estimate of actual material stability. In extended inorganic solids, a general rule-of-thumb is that entropy contributes on the order of ~0.05–0.1 eV/atom to the free energy. Accordingly, many high-throughput computational screening studies discard materials that have an E_{hull} above a cutoff of ~0.05–0.1 eV/atom. However, this study demonstrates synthesis of a RS polymorph phase with E_{hull} in the range of 0.08–0.15 eV/atom using a common PVD technique, suggesting stabilization due to disorder tolerance. Since this phase would have been ruled out as not-synthesizable by a typical high-throughput computational screening, it may be important to revisit what other metastable but synthesizable phases have been overlooked in such studies.

A contemporary challenge in materials science research is to bridge the gap between computationally predicted materials and experimental materials that can actually be grown in the laboratory with desired properties. The ZnZrN₂ results presented in this study are interesting beyond this specific material system because there may be many accessible energetic states that neither scientists nor nature have realized yet. In the Zn-Zr-N material system, it appears that tolerance to disorder and off-stoichiometry contribute to the realization of high formation energy phases, and this study has introduced a new descriptor to assess disorder tolerance, E_{rdp}. However, in other material systems there may be different physical mechanisms enabling synthesis of metastable polymorphs. In general, the computational materials discovery community needs to continue to redefine the metrics by which phase stability and synthesizability are assessed in order to yield experimentally realizable predictions that enable new functional materials.

ACKNOWLEDGMENTS

This work was authored in part at the National Renewable Energy Laboratory, operated by Alliance for Sus-
taining Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by the Office of Science (SC), Office of Basic Energy Sciences (BES), Materials Chemistry program, as a part of the Early Career Award “Kinetic Synthesis of Metastable Nitrides”. R.W.R. acknowledges financial support from the U.C. Berkeley Chancellor’s Fellowship and the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE1106400 and DGE175814. V.S. acknowledges financial support from NSF Career Award No. DMR-1945010 for polymorph sampler ensemble calculations. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by DOE’s Office of Science (SC), Basic Energy Sciences (BES) under Contract No. DE-AC02-76SF00515. The authors thank Dr. Sage Bauers, Dr. Kevin Talley, Valerie Jacobson, and Rachel Sherbondy for experimental assistance, Dr. Matthew K. Horton, Dr. Shyam Dwarkanath, Eric Sivonxay, and Matthew McDermott for computational assistance, Dr. John Perkins and Dr. Apurva Mehta with characterization assistance, and Dr. Adele Tamboli and Dr. Wen-hao Sun for insightful discussions. This work used high-performance computing resources located at NREL and sponsored by the Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

SUPPLEMENTARY MATERIALS

The following supplemental material (SM) is included:

- S1 Synthesis details
- S2 Characterization details
- S3 Polymorph and DFT ordering
- S4 Computational methods details

AUTHOR CONTRIBUTIONS

Conceptualization, R.W.R., A.Z., K.A.P.; Methodology, R.W.R., V.S., S.L., K.N.H.; Computational investigation, R.W.R., V.S., S.L.; Experimental investigation, R.W.R., K.N.H., A.Z.; Writing, R.W.R., V.S.; Funding Acquisition, R.W.R., A.Z., V.S., K.A.P.; Supervision, A.Z., V.S., K.A.P.

DATA AVAILABILITY STATEMENT

All ordered crystal structures will be uploaded to the Materials Project database and available free of charge. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

[1] W. Sun, A. Holder, B. Orvañanos, E. Arca, A. Zakutayev, S. Lany, and G. Ceder, “Thermodynamic routes to novel metastable nitrogen-rich nitrides,” Chemistry of Materials, vol. 29, no. 16, pp. 6936–6946, 2017.
[2] V. Stevanović, “Sampling polymorphs of ionic solids using random superlattices,” Physical Review Letters, vol. 116, no. 7, p. 075503, 2016.
[3] W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, and G. Ceder, “The thermodynamic scale of inorganic crystalline metastability,” Science Advances, vol. 2, no. 11, p. e1600225, 2016.
[4] M. Aykol, S. S. Dwarkanath, W. Sun, and K. A. Persson, “Thermodynamic limit for synthesis of metastable inorganic materials,” Science Advances, vol. 4, no. 4, p. eaau0148, 2018.
[5] M. Aykol, V. I. Hegde, L. Hung, S. Suram, P. Herrin, C. Wolverton, and J. S. Hummelshøj, “Network analysis of synthesizable materials discovery,” Nature Communications, vol. 10, no. 1, pp. 1–7, 2019.
[6] M. Horton, S. Dwarkanath, and K. A. Persson, “Perils and promise of materials databases,” Nature Computational Science, vol. 1, no. 1, 2021.
[7] P. Kroll, “Pathways to metastable nitride structures,” Journal of Solid State Chemistry, vol. 176, no. 2, pp. 530–537, 2003.
[8] A. L. Greenaway, C. L. Melamed, M. B. Tellekamp, R. Woods-Robinson, E. S. Toberer, J. R. Neilson, and A. C. Tamboli, “Ternary nitride materials: Fundamentals and emerging device applications,” Annual Review of Materials Research, vol. 51, 2020.
[9] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, and F. Oba, “Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis,” Nature Communications, vol. 7, no. 1, pp. 11962, 2016.
[10] W. Sun, C. J. Bartel, E. Arca, S. R. Bauers, B. Matthews, B. Orvañanos, B.-R. Chen, M. F. Toney, L. T. Schelhas, W. Tumas, et al., “A map of the inorganic ternary metal nitrides,” Nature Materials, vol. 18, no. 7, p. 732, 2019.
[11] A. D. Martinez, A. N. Fioretti, E. S. Toberer, and A. C. Tamboli, “Synthesis, structure, and optoelectronic properties of II-IV-V$_2$ materials,” Journal of Materials Chemistry A, vol. 5, no. 23, pp. 11418–11435, 2017.
[12] S. R. Bauers, A. Holder, W. Sun, C. L. Melamed, R. Woods-Robinson, J. Mangum, J. Perkins, W. Tumas, B. Gorman, A. Tamboli, et al., “Ternary nitride semiconductors in the rocksalt crystal structure,” Proceedings of the National Academy of Sciences, vol. 116, no. 30, pp. 14829–14834, 2019.
[13] F. Kawamura, M. Iimura, H. Murata, N. Yamada, and T. Taniguchi, “Synthesis of a novel rocksalt-type ternary nitride semiconductor MgSnN$_2$ using the metathesis reaction under high pressure,” European Journal of Inorganic Chemistry, vol. 2020, no. 5, pp. 446–451, 2020.
[14] A. L. Greenaway, A. L. Loutris, K. N. Heinselman, C. L. Melamed, R. R. Schneip, M. B. Tellekamp, R. Woods-Robinson, R. Sherbodny, D. Bardgett, S. Bauers, et al., “Combinatorial synthesis of magnesium tin nitride semiconductors,” Journal of the American Chemical Society, vol. 142, no. 18, pp. 8421–8430, 2020.
[15] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, et al., “Discovery of earth-abundant
nitride semiconductors by computational screening and high-pressure synthesis,” Nature Communications, vol. 7, no. 1, pp. 1–10, 2016.

[16] C. Tholander, C. Andersson, R. Armenti, F. Tasnadi, and B. Alling, “Strong piezoelectric response in stable TiZnN$_2$, ZrZnN$_2$, and HfZnN$_2$ found by ab initio high-throughput approach,” Journal of Applied Physics, vol. 120, no. 22, p. 225102, 2016.

[17] J. Dismukes, R. Smith, and J. White, “Physical properties and crystal structure of a new semiconductor i-iii-iii$_2$ compound, CuScS$_2$,” Journal of Physics and Chemistry of Solids, vol. 32, no. 4, pp. 913–922, 1971.

[18] D. O. Scanlon and G. W. Watson, “Stability, geometry, and electronic structure of an alternative i-iii-iii$_2$ material, CuScS$_2$: A hybrid density functional theory analysis,” Applied Physics Letters, vol. 97, no. 13, p. 131904, 2010.

[19] A. Subramaniam, J. D. Perkins, R. P. O’Hayre, S. Lany, V. Stevanovic, D. S. Ginley, and A. Zakutayev, “Non-equilibrium deposition of phase pure Cu$_2$O thin films at reduced growth temperature,” APL Materials, vol. 2, no. 2, p. 022105, 2014.

[20] A. N. Fioretto, A. Zakutayev, H. Moutinho, C. Melamed, J. D. Perkins, A. G. Norman, M. Al-Jassim, E. S. Toberer, and A. C. Tamboli, “Combinatorial insights into doping control and transport properties of zinc tin nitride,” Journal of Materials Chemistry C, vol. 3, no. 42, pp. 11017–11028, 2015.

[21] K. R. Talley, S. R. Buehrs, C. L. Melamed, M. C. Papac, K. N. Heinselman, I. Khan, D. M. Roberts, V. Jacobson, A. Mis, G. L. Brennecke, et al., “COMB1gor: data analysis package for combinatorial materials science,” ACS Combinatorial Science, 2019.

[22] A. Sharan and S. Lany, “Computational discovery of stable and metastable ternary oxynitrides,” The Journal of Chemical Physics, vol. 154, no. 23, p. 234706, 2021.

[23] E. B. Jones and V. Stevanovic, “Polymorphism in elemental silicon: Probabilistic interpretation of the realizability of metastable structures,” Physical Review B, vol. 96, no. 18, p. 184101, 2017.

[24] E. B. Jones and V. Stevanovic, “The glassy solid as a statistical ensemble of crystalline microstates,” npj Computational Materials, vol. 6, no. 1, pp. 1–6, 2020.

[25] A. Zunger, S.-H. Wei, L. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Physical Review Letters, vol. 65, no. 3, p. 353, 1990.

[26] A. Van De Walle, “Multicomponent multiusublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit,” Calphad, vol. 33, no. 2, pp. 266–278, 2009.

[27] A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad, vol. 42, pp. 13–18, 2013.

[28] A. Van De Walle, The Alloy-Theoretic Automated Toolkit (ATAT): A User Guide. Brown Engineering.

[29] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24, p. 17953, 1994.

[30] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758–1775, 1999.

[31] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, 1993.

[32] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, p. 11169, 1996.

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, p. 3865, 1996.

[34] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymatgen): A robust, open-source python library for materials analysis,” Comput. Mater. Sci., vol. 68, no. Supplement C, pp. 314–319, 2013.

[35] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, et al., “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” APL Materials, vol. 1, no. 1, p. 011002, 2013.

[36] V. Stevanović, S. Lany, X. Zhang, and A. Zunger, “Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies,” Physical Review B, vol. 85, no. 11, p. 115104, 2012.

[37] J. Sun, A. Rusinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Physical Review Letters, vol. 115, no. 3, p. 036402, 2015.

[38] J. H. Yang, D. A. Kitchaev, and G. Ceder, “Rationalizing accurate structure prediction in the meta-GGA SCAN functional,” Physical Review B, vol. 100, no. 3, p. 035132, 2019.

[39] Materials Project, “Materials data on ZrZnN$_2$ by the Materials Project,” 5 2017.

[40] S. M. Woodley and R. Catlow, “Crystal structure prediction from first principles,” Nature Materials, vol. 7, no. 12, pp. 937–946, 2008.

[41] G. Hautier, C. Fischer, V. Ehrlicher, A. Jain, and G. Ceder, “Data mined ionic substitutions for the discovery of new compounds,” Inorganic Chemistry, vol. 50, no. 2, pp. 656–663.

[42] C. J. Pickard and R. Needs, “Ab initio random structure searching,” Journal of Physics: Condensed Matter, vol. 23, no. 5, p. 053201, 2011.

[43] A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works and why,” Accounts of Chemical Research, vol. 44, no. 3, pp. 227–237, 2011.

[44] S. Lany, “Band-structure calculations for the 3d transition metal oxides in GW,” Physical Review B, vol. 87, no. 8, p. 085112.

[45] S. Lany, “Semiconducting transition metal oxides,” Journal of Physics: Condensed Matter, vol. 27, no. 28, p. 283203.

[46] S. Limpijummong and W. R. Lambrecht, “Theoretical study of the relative stability of wurzite and rocksalt phases in mgo and gan,” Physical Review B, vol. 63, no. 10, p. 104103, 2001.

[47] P. Borlido, T. Aull, A. W. Huran, F. Tran, M. A. Marques, and S. Botti, “Large-scale benchmark of exchange–correlation functionals for the determination of electronic band gaps of solids,” Journal of Chemical Theory and Computation, vol. 15, no. 9, pp. 5069–5079, 2019.

[48] M. L. Green, I. Takeuchi, and J. R. Hattrick-Simpers, “Application of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials,” Journal of Applied Physics, vol. 113, no. 23, p. 231101, 2013.

[49] Q.-X. Guo, W.-K. Kwan, X.-L. Cheng, and H. Zhang, “First-principles study of the structural and electronic properties of the cubic zr3n4 under high pressure,” physica status solidi (b), vol. 247, no. 1, pp. 67–71, 2010.
[50] P. Klumdoung, A. Buranawong, S. Chaiyakun, and P. Lim-suwon, “Variation of color in zirconium nitride thin films prepared at high ar flow rates with reactive de magnetron sputtering,” Procedia Engineering, vol. 32, pp. 916–921, 2012.

[51] S. Yu, Q. Zeng, A. R. Oganov, G. Frapper, B. Huang, H. Niu, and L. Zhang, “First-principles study of zr–n crystalline phases: phase stability, electronic and mechanical properties,” RSC Advances, vol. 7, no. 8, pp. 4697–4703, 2017.

[52] S. Clarke, C. Michie, and M. Rosseinsky, “Structure of zn2on2 by neutron powder diffraction: The absence of nitride–oxide ordering,” Journal of Solid State Chemistry, vol. 146, no. 2, pp. 399–405, 1999.

[53] S. R. Bowers, D. M. Hamann, A. Patterson, J. D. Perkins, K. R. Talley, and A. Zakutayev, “Composition, structure, and semiconducting properties of Mg5Zr2,8N2 thin films,” Japanese Journal of Applied Physics, vol. 58, no. SC, p. SC1015, 2019.

[54] D. Partin, D. Williams, and M. O’Keeffe, “The crystal structures of Mg3N2 and Zn3N2,” Journal of Solid State Chemistry, vol. 132, no. 1, pp. 56–59, 1997.

[55] S. Siol, A. Holder, J. Steffes, L. T. Schelhas, K. H. Stone, L. Garten, J. D. Perkins, P. A. Parilla, M. F. Toney, B. D. Huey, et al., “Negative-pressure polymorphs made by heterostructural alloying,” Science Advances, vol. 4, no. 4, p. eaq1442, 2018.

[56] R. Woods-Robinson, Y. Han, J. S. Mangum, C. L. Melamed, B. P. Gorman, A. Mehta, K. A. Persson, and A. Zakutayev, “Combinatorial tuning of structural and optoelectronic properties in Cu2Zn1–xS,” Matter, vol. 1, no. 4, pp. 862–880, 2019.

[57] E. Arca, S. Lany, J. D. Perkins, C. Bartel, J. Mangum, W. Sun, A. Holder, G. Ceder, B. Gorman, G. Teeter, et al., “Redox-mediated stabilization in zinc molybdenum nitrides,” Journal of the American Chemical Society, vol. 140, no. 12, pp. 4293–4301, 2018.

[58] E. Arca, J. D. Perkins, S. Lany, A. Mis, B.-R. Chen, P. Dippo, J. L. Partridge, W. Sun, A. Holder, A. C. Tamboli, et al., “Zn 2 sbn 3: Growth and characterization of a metastable photoactive semiconductor,” Materials Horizons, vol. 6, no. 8, pp. 1669–1674, 2019.

[59] K. N. Heinsemann, S. Lany, J. D. Perkins, K. R. Talley, and A. Zakutayev, “Thin film synthesis of semiconductors in the mg–sb–n materials system,” Chemistry of Materials, vol. 31, no. 21, pp. 8717–8724, 2019.

[60] P. F. Ndione, Y. Shi, V. Stevanovic, S. Lany, A. Zakutayev, P. A. Parilla, J. D. Perkins, J. J. Berry, D. S. Ginley, and M. F. Toney, “Control of the electrical properties in spinel oxides by manipulating the cation disorder,” Advanced Functional Materials, vol. 24, no. 5, pp. 610–618, 2014.

[61] J. J. Cordell, J. Pan, A. C. Tamboli, G. J. Tucker, and S. Lany, “Probing configurational disorder in zngen 2 using cluster-based monte carlo,” Physical Review Materials, vol. 5, no. 2, p. 024604, 2021.

[62] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J.-P. Maria, “Entropy-stabilized oxides,” Nature Communications, vol. 6, no. 1, pp. 1–8, 2015.

[63] A. N. Fioretti, J. Pan, B. R. Ortiz, C. L. Melamed, P. C. Dippo, L. T. Schelhas, J. D. Perkins, D. Kuciauskas, S. Lany, A. Zakutayev, et al., “Exciton photoluminescence and benign defect complex formation in zinc tin nitride,” Materials Horizons, vol. 5, no. 5, pp. 823–830, 2018.

[64] S. Lany, A. N. Fioretti, P. P. Zawadzki, L. T. Schelhas, E. S. Toberer, A. Zakutayev, and A. C. Tamboli, “Monte Carlo simulations of disorder in ZnSnN2 and the effects on the electronic structure,” Physical Review Materials, vol. 1, no. 3, p. 035401, 2017.

[65] P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. He, L. Han, H. Zhao, J. Shan, W. R. Lambrecht, and K. Kash, “Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors: The importance of the octet rule,” Physical Review B, vol. 91, no. 20, p. 205207, 2015.

[66] R. R. Schnefp, J. J. Cordell, M. B. Tellekamp, C. L. Melamed, A. L. Greenaway, A. Mis, G. L. Brennecka, S. Christensen, G. J. Tucker, E. S. Toberer, et al., “Utilizing site disorder in the development of new energy-relevant semiconductors,” ACS Energy Letters, vol. 5, no. 6, pp. 2027–2041, 2020.

[67] J. Pan, J. J. Cordell, G. J. Tucker, A. Zakutayev, A. C. Tamboli, and S. Lany, “Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2: ZnO system,” npj Computational Materials, vol. 6, no. 1, pp. 1–6, 2020.

[68] H. Ling, S. S. Dwarkanath, and K. A. Persson, “Origin of disorder tolerance in piezoelectric materials and design of polar systems,” Chemistry of Materials, vol. 32, no. 7, pp. 2836–2842, 2020.

[69] C. E. Dreyer, A. Janotti, C. G. Van de Walle, and D. Vanderbilt, “Correct implementation of polarization constants in wurtzite materials and impact on iiii-nitrides,” Physical Review X, vol. 6, no. 2, p. 021038, 2016.

[70] S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, “Alscn: A iii-v semiconductor based ferroelectric,” Journal of Applied Physics, vol. 125, no. 11, p. 114103, 2019.