Formation of the $S = 1$ paramagnetic centers in the bond-diluted spin-gap magnet

V N Glazkov1,2, Yu V Krasnikova1,2, D Hüvonen3,4 and A Zheludev4

1 P.L. Kapitza Institute for Physical Problems RAS, Kosygin str. 2, 119334 Moscow, Russia
2 Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
3 National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
4 Neutron Scattering and Magnetism, Laboratory for Solid State Physics, ETH Zürich, 8006 Zürich, Switzerland

E-mail: glazkov@kapitza.ras.ru

Received 8 December 2015, revised 5 March 2016
Accepted for publication 4 April 2016
Published 27 April 2016

Abstract

Electron spin resonance experiment reveals that non-magnetic bond doping of the spin-gap magnet (C$_4$H$_{12}$N$_2$)Cu$_2$Cl$_6$ (abbreviated PHCC) results in the formation of $S = 1$ paramagnetic centers that dominate low-temperature ESR response. We have followed evolution of this signal with doping impurity content and have found that the concentration of these centers is quadratic over the impurity content. We also observe coexistence of the ESR responses from these local centers and from delocalized triplet excitations over a certain temperature range.

Keywords: quantum spin liquids, low dimensional magnets, spin-gap magnets, electron paramagnetic resonance

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin-gap magnets have been actively studied during the last decades. These systems are characterized by the presence of a nonmagnetic singlet ($S = 0$) ground state separated from the excited triplet ($S = 1$) states by an energy gap Δ of exchange origin. One of the most striking features of these systems is that despite strong exchange coupling they do not order magnetically down to the lowest temperatures.

Stability of the singlet ground state against various perturbations: additional spin–spin interactions, external magnetic field, pressure and introduction of impurities is a long discussed problem. Magnetic field lifts degeneracy of the triplet states and splits triplet sublevels. At the critical field $H_c = \Delta/(g\mu_B)$ energy of one of the triplet sublevels becomes lower than the energy of the singlet ground state. At this point phase transition occurs which was actively discussed in the context of Bose–Einstein condensation of magnons [1, 2].

Impurities can substitute magnetic ions depleting a magnetic system (site-doping) or alternate superexchange pathes (bond-doping). Impurity ions vary material properties locally disturbing and sometimes even destroying the spin-gap state of the parent material. This leads to the variety of known effects. Formation of the impurity induced magnetic order was observed in a spin-Peierls magnet CuGeO$_3$ [3, 4], Haldane magnet [5] or a prototypical dimer magnet TlCuCl$_3$ [6, 7]. Randomization of the exchange couplings through bond-doping allows for the possibility of realizing a Bose-glass state [8, 9] or universal low-energy physics of a random spin chain [10–12].

Violation of the gapped state in the impurity vicinity can lead to the formation of multi-spin defects with total non-zero spin. These defects (or spin clusters) can demonstrate unusual properties: spin clusters in Ni-doped spin-Peierls magnet CuGeO$_3$ demonstrated an unusual (as small as 1.4) and highly anisotropic g-factor [13–15]. Spin clusters formed at the ends of the chain fragment of a Haldane $S = 1$ magnet are shown both theoretically [16] and experimentally [17–19] to carry total spin $S = 1/2$ each.

Our recent study [20] demonstrated that bond-doping in the quasi-2D spin-gap magnet (C$_4$H$_{12}$N$_2$)Cu$_2$Cl$_6$ (abbreviated...
PHCC) leads to the formation of yet another type of defect: a local $S = 1$ defect. This is a surprising outcome, as magnetic ions of PHCC are antiferromagnetically coupled $S = 1/2$ Cu$^{2+}$ ions. The effect of bond-doping in this case can be interpreted as a variation of the effective potential acting on the triplet quasiparticles (which are freely moving quasiparticles in a pure system). As there is always a bound state in a 2D potential well, one can expect that some of the triplet excitations could be trapped in the defect vicinity if this effective potential is attractive. In the case of bromine-substituted PHCC this potential turns out to be not only attractive, but also strong enough to yield a low-lying bound state. In the present report we demonstrate new experimental findings that provide additional proof of this effect.

2. Samples and experimental details

Samples of Br-substituted PHCC (C$_{2}$H$_{3}$N$_{2}$)(Cu$_{2}$Cl$_{6-\gamma}$Br$_{\gamma}$) were grown from the solution as described in [21]. We used samples from the same set as were used in [20, 25–28]. We will use nominal Br concentration x for sample identification as used in earlier papers.

PHCC crystallizes in a triclinic structure, as-grown crystals are elongated along the c-axis and has a well developed plane orthogonal to $a^* $ direction. As PHCC became almost non-magnetic at low temperatures, large crystals (approx. $2 \times 3 \times 6$ mm3) were used which limited mounting possibilities in our experimental setup. To compare data with earlier work, we mounted samples in the $H \parallel [a^*]$ orientation (field applied orthogonal to the natural plane of the crystal).

Magnetic ions Cu$^{2+}$ form planes in the (ac) crystallographic plane of PHCC. Inelastic neutron scattering studies [22, 23] indicate the presence of 6–8 relevant in-plane exchange bonds. Geometry of the exchange bonds can be envisioned as a set of strongly coupled ladders with dominating in-run exchange and some frustrating couplings. Thus, a dimer Cu$_{2}$Cl$_{6}$ with the strongest antiferromagnetic exchange coupling located on the rung of the ladder (bond 1 in terms of [23]) can be considered as a building block of the PHCC magnetic structure. Intra-dimer exchange is mediated by two halogen ions. Bond angles Cu–Cl–Cu within the dimer are equal to 95.8° [24].

Crystals remain single-phase with nominal bromine concentration of up to 12%. Detailed structural analysis of [25] has demonstrated that occupancy of different halogen sites differs from the nominal concentration. However, actual occupancy of all sites is linear with nominal concentration of the bromine. Average actual bromine concentration is [25] $y = 0.63 \times x$.

ESR absorption was studied using a set of homemade transmission type spectrometers in the temperature range from 400 mK to 20 K. Microwave power transmitted through the microwave cavity with the sample depends upon the imaginary part of susceptibility as $P_{\text{trans}}(H) \propto 1/(1 + A \chi''(H))^2$, here factor A depends on experimental conditions (cavity Q-factor and sample position inside the cavity) and is the same within given experiment. ESR absorption can be scaled with static magnetization data since paramagnetic resonance integral intensity $I = \int \chi''(H)dH$ is proportional to the static susceptibility.

ESR is a sensitive tool to probe low-energy dynamics of a magnet. In the case of a 1 magnetic ion or a triplet excitation of the spin-gap magnet, anisotropic interactions lead to the zero-field splitting of the triplet level. This splitting is described by the term DS_2^2 in the spin Hamiltonian in the axial case and by $E(S_2^2 - S_1^2)$ in a general case. In the case of weak zero field splitting $(D, E \ll g\mu_B H)$ magnetic field direction is a quantization axis and effective anisotropy constants D_{eff} and E_{eff} are orientation dependent. We will assume axial anisotropy (i.e. $E = 0$) in the qualitative discussions of this paper.

As a result of zero-field splitting resonance fields in the fixed-frequency experiment differ for $|S_z = +1 \rangle \rightarrow |S_z = 0 \rangle$ and $|S_z = -1 \rangle \rightarrow |S_z = 0 \rangle$ transitions as $H_{1,2} = H_0 \pm D_i (g\mu_B)$, here $H_0 = h\omega/(g\mu_B)$ is a paramagnetic resonance field for the given g-factor. At low temperatures, intensities of these components are different, and the component corresponding to the transition from the low-energy sublevel dominates. At $H \parallel z$, the left component $(H = H_0 - |D_i| (g\mu_B))$ is more intense at $D < 0$, while the right component dominates at $D > 0$. Additionally, a characteristic ‘two-quantum’ absorption corresponding to $|S_z = +1 \rangle \rightarrow |S_z = -1 \rangle$ transition appears in the field $H_{\text{eq}} = H_0/2$. This transition is forbidden in the axial case but it becomes allowed if magnetic field deviates from the anisotropy axis or if $E \neq 0$. The ‘two-quantum’ absorption is a fingerprint of an $S = 1$ magnetic center.

3. Experimental results and discussion

3.1. Summary of the earlier results

The energy spectrum of the doped PHCC was studied by means of inelastic neutron scattering [27, 28]. INS study demonstrates that the excitation spectrum of the bromine substituted PHCC remains gapped, the energy gap increases with doping being equal to 1 meV for the pure PHCC and 1.5 meV for $x = 7.5\%$ [27]. Energy gap can be reduced by applied hydrostatic pressure [29–31]. Recent INS study [31] demonstrated that energy gap is closed at 9 kbar. Gap closing is the result of exchange couplings’ modification, INS spectra proves that intra-dimer coupling is most susceptible to external hydrostatic pressure [31].

ESR absorption in pure and bond-diluted PHCC was reported in [20, 26]. Magnetic resonance response of a spin-gap magnet is a combination of a signal from triplet excitations and paramagnetic defects. These two contributions can be resolved due to their characteristic temperature dependences.

At temperatures above 10 K magnetic resonance absorption spectra in pure and doped PHCC is dominated by a Lorentzian line with anisotropic g-factor slightly above 2.0, as is typical for a Cu$^{2+}$ ion. On cooling below 10 K intensity of the ESR absorption decreases as triplet excitations freeze out. At low temperatures (below approximately 4 K) gas of triplet excitations is diluted, effects of quasiparticles interaction are switched off and ESR absorption spectrum transforms into a multi-component absorption typical for the $S = 1$ object in the presence of anisotropy. This spectrum consists of two
intense components shifted to the left and to the right from the higher temperature resonance position and of one weaker component at approximately half of the higher temperatures’ resonance field (‘two-quantum’ absorption). For the pure PHCC these split components continue to lose intensity on cooling and ESR absorption at the lowest temperatures consists of paramagnetic impurities (termed uncontrolled defects for the remainder of the paper) response only [26].

In the case of strongly doped PHCC with nominal bromine concentration \(x = 10\% \), low temperature evolution of ESR absorption was quite distinct. ESR absorption typical for a \(S = 1 \) object was observed down to 500 mK. Temperature dependence of the intensity of this low-temperature absorption was described assuming the presence of approximately 0.4% of gapless \(S = 1 \) centers (gapless triplets) per molecule of PHCC [20]. These gapless triplets were interpreted as localized triplet modes caught in the potential well created by double substitution of chlorine ions by bromine in a dimer.

While ESR absorption spectra of the \(x = 5\% \) Br-substituted sample above 1.7 K have demonstrated similar tendency [20], there were no low-temperature (below 1 K) data to prove it unambiguously. Also data for an intermediate bromine concentration were missing. In the following sections we will close these lacunas.

3.2. Coexistence of ESR absorption from local \(S = 1 \) centers and delocalized triplets

Firstly, we will demonstrate here that ESR absorption spectra of the intermediately bromine-substituted sample with \(x = 7.5\% \) provides evidences for coexistence of the triplet absorption from the gapped delocalized triplets and local \(S = 1 \) centers over a certain temperature range. Such coexistence indicates that gapped triplets and local \(S = 1 \) centers are actually different objects decoupled at low temperatures.

Evolution of the ESR absorption in the 7.5% nominally substituted sample is presented in figure 1. At 10 K, the main absorption signal is almost a single-component paramagnetic resonance with remnants of the ‘two-quantum’ absorption visible. On cooling ESR absorption shape became distorted. At 4.2 K ‘two-quantum’ absorption becomes more pronounced, irregularly shaped paramagnetic absorption appears and the main absorption signal broadens and splits. Boundaries of paramagnetic resonance absorption due to uncontrolled

Figure 1. Temperature dependence of the ESR absorption in a Br-substituted PHCC with nominal Br concentration \(x = 7.5\% \). Left panel: representative data in the broad temperature range. The shaded area marks the position of absorption due to uncontrolled defects as estimated from 3.0 K data. Right panel: selection of low-temperature (below 4.5 K) ESR absorption curves illustrating development of ESR response from local \(S = 1 \) centers. Components of the ESR absorption related to local \(S = 1 \) centers are denoted as ‘A1’ and ‘A2’, components of the ESR absorption corresponding to gapped triplet excitations are denoted as ‘B1’ and ‘B2’. Inset to the right panel: scheme of the zero-field splitting of the triplet state for the triplet excitations (solid lines) and for the local \(S = 1 \) centers (dashed), the position of the singlet state is not shown, magnetic field is assumed parallel to the anisotropy axis for both types of triplets. Broad vertical arrows mark possible ESR transitions, filled arrows correspond to the transitions from the lowest sublevel. ESR transitions are marked as the corresponding absorption components.
defects can be estimated from low temperature data, this signal has a quite distinguishable powder-like shape (see also data for the nominally pure sample in figure 2 for comparison). These boundaries are shaded in figure 1. On further cooling, components of the main absorption signal continue to lose intensity and at around 2 K they are replaced by another more narrow signal. The same evolution can be traced for the ‘two-quantum’ transition.

At the intermediate temperatures, coexistence of these two sorts of signals can be followed (see right panel of figure 1): with cooling narrow components (labeled as ‘A1’ and ‘A2’) gain intensity and broad components (labeled as ‘B1’ and ‘B2’) lose intensity. Both sorts of signals correspond to the $S = 1$ objects, ‘two-quantum’ transition being the main fingerprint. Signals ‘B1’ and ‘B2’ disappearing with cooling are naturally related to the gapped delocalized triplet excitations. Signals that gain intensity with cooling are due to the local $S = 1$ centers formed in a bromine-diluted sample.

At the lowest temperature of 1.7 K spectral weight is shifted to the left from the paramagnetic resonance position. This is in agreement with earlier observations on pure and 10% nominally doped PHCC: for the pure compound (delocalized triplets only), the right component of the split signal is more intense, while low-temperature absorption in the 10% doped sample (which was due to the local $S = 1$ centers) was dominated by its left component. This difference in the position of the more intense component correspond to different signs of the effective anisotropy constant for the delocalized triplets and local $S = 1$ centers. Note, that there is no single-ion anisotropy effects for the $S = 1/2$ copper ions of PHCC—thus, these effective anisotropy constants both for the delocalized excitations and for the local $S = 1$ centers are due to some anisotropic spin–spin interactions.

3.3. Concentration dependence of the low-temperature absorption

Here we will compare low-temperature absorption from different samples below 1 K, when all absorption is due to the uncontrolled defects and local $S = 1$ centers. Low-temperature ESR absorption spectra are shown in figure 2. We observe several absorption components: characteristic powder-like absorption due to uncontrolled defects, split absorption due to the $S = 1$ centers and weaker ‘two-quantum’ absorption signal at approximately half of the paramagnetic resonance field. Uncontrolled paramagnetic impurities yield an irregularly shaped absorption signal at almost the same fields, which complicates the extraction of
the localized triplets response. However, boundaries of this absorption are approximately the same (at the same microwave frequency) and can be reliably established from the analysis of all data (see shaded area in figure 2(c)).

To compare absorption curves measured on different samples we have extracted the imaginary part of the susceptibility and scaled its integral at a temperature of 3–5 K to the known static susceptibility data. This procedure allowed recalculation of absorption for different samples to the same scale. Scaled curves demonstrate regular increase of absorption to the left of the paramagnetic resonance field with increase of bromine concentration. This absorption corresponds to one of the split components of local $S = 1$ centers.

To analyze intensity of the split components we have to separate the contribution from uncontrolled defects, which is complicated at low bromine content. Weaker ‘two-quantum’ signal is well separated from the paramagnetic impurities signal, however it is impossible to compare its intensity in different samples as the intensity of this ‘almost forbidden’ transition strongly depends on excitation conditions, which were not reproducible. Absorption in the vicinity of paramagnetic resonance on the contrary is excited by usual transverse microwave polarization which allows it to be scaled with static magnetization data. To exclude an uncontrolled impurities signal, we simply ignored data in its vicinity (shaded area in figures 1 and 2) during the fit.

As a result of the fit, intensities of the ESR absorption due to the localized triplets were found. Accuracy of intensity determination is about 20% being hindered by uncertainties of the scaling procedure and some arbitrariness in the paramagnetic signal exclusion. To check the reliability of this procedure we made a similar fit for the nominally pure sample, which yielded possible contribution tenfold smaller than for the $x = 5\%$ sample.

Intensity of the split component is proportional to the concentration of $S = 1$ objects. It approximately follows x^2 dependence thus supporting the model of double substitution in a dimer suggested in [20].

Position of the intense split component to the left from paramagnetic resonance position again corresponds to the inversion of effective anisotropy constant sign for the local $S = 1$ centers as compared to triplet excitations (see the energy level scheme in figure 1). Magnitude of the shift from the paramagnetic resonance position is slightly concentration dependent: splitting increases with increasing bromine content. Variation of this splitting with bromine content is not unexpected: doping slightly modifies lattice parameters [25] which could lead to modification of anisotropic spin–spin couplings.

3.4. Possible origins of $S = 1$ centers

Electron spin resonance, being a bulk technique, does not provide direct insight into the microscopic origin of formation of the $S = 1$ centers in the bond-diluted PHCC. Detailed analysis of the effect of bromine substitution on the parameters of exchange coupling in the affected pair of copper spins requires some local probe or complicated quantum chemistry calculations, which lies beyond the scope of the present manuscript. However, we can deduce certain conclusions from our results to shed some light on this subject.

The strongest exchange bond in PHCC is an antiferromagnetic bond inside a Cu$_2$Cl$_6$ dimer [22, 23]. Intra-dimer bond angle is equal to 95.8$^{\circ}$ [24], i.e. fairly close to 90$^{\circ}$. The intra-dimer bond is also the most susceptible to hydrostatic pressure [31]. The analysis of intensity of absorption by $S = 1$ centers in nominally 10% doped PHCC [20] proved that this intensity correspond to the amount of $S = 1$ centers practically equal to actual bromine concentration squared. This dependence, $I \propto x^2$, is supported by our present study as well (figure 2).

Thus, we can assume that $S = 1$ centers are formed when two of the bridging intra-dimer chlorine ions are substituted by bromine ions. Intra-dimer bond angles can be sensitive to local chemical pressure. Since bond angles are close to 90$^{\circ}$, small variation of the bond angle can lead to a strong change in the exchange coupling constant. As a result, exchange coupling in such a doubly substituted dimer can vary strongly from the parent compound and even, as an extreme scenario, can become ferromagnetic. The transformation of the antiferromagnetic bonds to the ferromagnetic ones under pressure was observed in a molecular magnet Mn$_6$ [32], macroscopic change of antiferromagnetic order into ferromagnetic order under hydrostatic [33] or chemical [34] pressure is also known.

Formation of ferromagnetically coupled spin pair in a double substituted dimer is, in fact, an extreme scenario. PHCC is a quasi-2D magnet, its excitations are $S = 1$ triplet quasiparticles. Non-zero energy gap is a result of interplay of numerous exchange couplings. Strong local variation of the exchange coupling can be considered as a potential well for a triplet quasiparticles (attractive character of potential is evidenced by formation of low-lying $S = 1$ states). Two-dimensional potential well always has a bound state, its exact position is a matter of potential well parameters. In principle, we cannot exclude a priori possibility to construct an $S = 1$ bound state at very low energy by some local modifications of the exchange couplings without changing sign of the intra-dimer coupling. Note, even when the energy gap is closed by hydrostatic pressure intra-dimer coupling remains antiferromagnetic and decreases by a factor of two [31].

4. Conclusions

We have demonstrated that $S = 1$ centers are formed in a spin-gap magnet PHCC with non-magnetic bond-doping. These centers are presumably formed by a couple of $S = 1/2$ Cu$^{2+}$ ions on double substitution of intra-dimer chlorine by bromine. We have shown that at low temperatures these centers are decoupled from the triplet excitations and that the effective anisotropy constant for local $S = 1$ centers differs from that for the triplet excitations.

Acknowledgments

The work was supported by Russian Foundation for Basic Research Grant No.15-02-05918, Russian Presidential Grant for the Support of the Leading Scientific Schools. This work
was partially supported by the Swiss National Science Foundation, Division 2, the Estonian Ministry of Education and Research under grant No. IUT23-03, the Estonian Research Council grant No. PUT451 and the European Regional Development Fund project TK134.

References

[1] Giamarchi T, Ruegg C and Tchernyshyov O 2008 Nat. Phys. 4 198
[2] Zapf V, Jaime M and Batista C D 2014 Rev. Mod. Phys. 86 563
[3] Hase M, Terasaki I, Sasago Y, Uchinokura K and Obara H 1993 Phys. Rev. Lett. 71 4059
[4] Grenier B, Renard J-P, Veillet P, Paulsen C, Dhalenne G and Revcolevschi A 1998 Phys. Rev. B 58 8202
[5] Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Böni P 1999 Phys. Rev. Lett. 83 632
[6] Oosawa A, Ono T and Tanaka H 2002 Phys. Rev. B 66 020405
[7] Fujisawa M, Ono T, Fujiwara H, Tanaka H, Sikolenko V, Meissner M, Smeibidl P, Gerischer S and Graf H A 2006 J. Phys. Soc. Japan 75 033702
[8] Nohadani O, Wessel S and Haas S 2005 Phys. Rev. Lett. 95 227201
[9] Hong T, Zheludev A, Manaka H and Regnault L-P 2010 Phys. Rev. B 81 060410
[10] Fisher D S 1994 Phys. Rev. B 50 3799
[11] Motrunich O, Damle K and Huse D A 2001 Phys. Rev. B 63 134424
[12] Shiroka T, Casola F, Glazkov V, Zheludev A, Prša K, Ott H-R and Mesot J 2011 Phys. Rev. Lett. 106 137202
[13] Glazkov V N, Smirnov A I, Petrenko O A, McK Paul D, Vetkin A G and Eremina R M 1998 J. Phys.: Condens. Matter 10 7879
[14] Glazkov V N, Eremina R M, Smirnov A I, Dhalenne G and Revcolevschi A 2001 J. Exp. Theor. Phys. 93 143

Glazkov V N, Eremina R M, Smirnov A I, Dhalenne G and Revcolevschi A 2001 Zh. Eksp. Teor. Fiz. 120 164
[15] Grenier B, Monod P, Hagiwara M, Matsuda K, Matsumura K, Clement S, Renard J-P, Barra A L, Dhalenne G and Revcolevschi A 2002 Phys. Rev. B 65 094425
[16] Miyashita S and Yamamoto S 1993 Phys. Rev. B 48 913
[17] Hagiwara M, Katsumata K, Alffleck I, Halperin B I and Renard J P 1990 Phys. Rev. Lett. 65 3181
[18] Kimura S, Ohta H, Motokawa M, Yokoo T and Akimitsu J 1998 J. Phys. Soc. Japan 67 2514
[19] Smirnov A I, Glazkov V N, Krug von Nidda H-A, Loidl A, Der Janet L N and Shapira Ya A 2002 Phys. Rev. B 65 174422
[20] Glazkov V N, Skoblin G, Hüvonen D, Yankova T S, Zheludev A 2014 J. Phys.: Condens. Matter 26 486002
[21] Yankova T et al 2012 Phil. Mag. 92 2629 (arXiv:1110.6375v1)
[22] Stone M B, Zaliznyak I, Reich D H and Broholm C 2001 Phys. Rev. B 64 144405
[23] Stone M B, Broholm C, Reich D H, Schiffer P, Tchernyshyov O, Vorderwisch P and Harrison N 2007 New J. Phys. 9 31
[24] Battaglia L P, Corradi A B, Geiser U, Willet R D, Motori A, Sandrolini F, Antolini L, Manfredini T, Menabue L and Pellacani G C 1998 J. Chem. Soc., Dalton Trans 1998 265–71
[25] Hüvonen D, Ballon G and Zheludev A 2013 Phys. Rev. B 88 094402
[26] Glazkov V N, Yankova T S, Sichelshmidt J, Hüvonen D, Zheludev A 2012 Phys. Rev. B 85 054415
[27] Hüvonen D, Zhao S, Månsson M, Yankova T, Resouche E, Niedermayer C, Laver M, Gvasaliya S N and Zheludev A 2012 Phys. Rev. B 85 100410
[28] Hüvonen D, Zhao S, Ehlers G, Månsson M, Gvasaliya S N, Zheludev A 2012 Phys. Rev. B 86 214408
[29] Hong T, Stock C, Cabrera I, Broholm C, Qiu Y, Leao J B, Poulton S J and Copley J R D 2010 Phys. Rev. B 82 184424
[30] Theede M, Mannig A, Månsson M, Hüvonen D, Khasanov R, Morenzoni E and Zheludev A 2014 Phys. Rev. Lett. 112 087204
[31] Perren G, Möller J S, Hüvonen D, Podlesnyak A A and Zheludev A 2015 Phys. Rev. B 92 054413
[32] Prescimone A et al 2008 Angew. Chem., Int. Ed. Engl. 47 2828
[33] Wang J, Feng Y, Jaramillo R, van Wezel J, Canfield P C and Ronning A and Mesot J 2011 Phys. Rev. Lett. 106 137202
[34] Shimakawa Y, Shiraki H and Saito T 2008 J. Phys. Soc. Japan 77 113702