An overview of the ant fauna (Hymenoptera: Formicidae) of the state of Maranhão, Brazil

Lívia Pires do Prado¹; Rodrigo Machado Feitosa²; Stefania Pinzón Triana³; Jhonatan Andrés Muñoz Gutiérrez³; Guillaume Xavier Rousseau³;†; Raimunda Alves Silva⁴; Glicério Machado Siqueira⁴;†; Ciro Libio Caldas dos Santos⁴; Francisco Veras Silva⁵; Thiago Sanches Ranzani da Silva⁶; Alexandre Casadei-Ferreira⁷; Rogério Rosa da Silva⁸ & Joudellys Andrade-Silva⁹

¹ Museu Paraense Emílio Goeldi (MPEG), Coordenação de Ciências da Terra e Ecologia (COCTE), Laboratório de Morfologia e Ecologia Funcional de Formigas (AntMor), Programa de Pós-Graduação em Zoologia (PPGZOOL). Belém, PA, Brasil.
² Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Sistemática e Biologia de Formigas (LSBF). Curitiba, PR, Brasil.
³ Universidade Estadual do Maranhão (UEMA), Programa de Pós-Graduação em Agroecologia. São Luís, MA, Brasil.
⁴ Universidade Federal do Maranhão (UFMA), Departamento de Geociências (DEGEO). São Luís, MA, Brasil.
⁵ Universidade Federal do Maranhão (UFMA). Imperatriz, MA, Brasil.
⁶ ORCID: http://orcid.org/0000-0003-1819-8767. E-mail: livia.pires7@gmail.com (corresponding author)
⁷ ORCID: http://orcid.org/0000-0001-9042-0129. E-mail: rsmfeitosa@gmail.com
⁸ ORCID: http://orcid.org/0000-0002-7160-0826. E-mail: guilirous@yahoo.ca
⁹ ORCID: http://orcid.org/0000-0002-0380-8190. E-mail: ray-234@hotmail.com
10 ORCID: http://orcid.org/0000-0002-3513-2658. E-mail: gleciosiqueira@hotmail.com
11 ORCID: http://orcid.org/0000-0002-9873-3620. E-mail: cirob@gmail.com
12 ORCID: http://orcid.org/0000-0003-0507-6467. E-mail: fveras_silva@hotmail.com
13 ORCID: http://orcid.org/0000-0002-4239-1500. E-mail: tsranzanidasilva@gmail.com
14 ORCID: http://orcid.org/0000-0002-2977-8348. E-mail: alexandreferreira@gmail.com
15 ORCID: http://orcid.org/0000-0002-0599-2155. E-mail: rogeriorosas@gmail.com
16 ORCID: http://orcid.org/0000-0002-5393-6502. E-mail: joudellys@gmail.com

Abstract. The state of Maranhão, located in northeastern Brazil, comprises three biomes: Amazonian, Caatinga, and the Cerrado. To date, 99 ant species have been recorded in the literature from the state. In the present work, we provide for the first time a profile of the ant fauna in the state based on data from the historical literature and Brazilian institutional collections. The updated records on ant diversity for the state of Maranhão revealed a total of 279 species, belonging to 71 genera and 10 subfamilies. In total, 180 species are recorded for the first time in the state, of which four species recorded for the first time in Brazil. In summary, apart from documenting the ant fauna of the region, these results provide a basis for further studies and may contribute to future conservation efforts for the biomes present in this complex landscape.

Key-Words. Distribution, Amazon, Caatinga, Cerrado, Checklist.

INTRODUCTION

Understanding the distribution of species is essential to determine regional and global patterns of biodiversity (Dalzochio et al., 2018). In this sense, taxonomic inventories contribute to characterize areas of endemism, reveal taxonomic novelties and improve scientific collections (Moura et al., 2014; Freitas et al., 2017). Further, the analysis of species distribution databases can help to identify gaps in sampling and species records, and can also be used in macroecological studies, species distribution modeling and to promote conservation strategies (Gasper et al., 2016).

Maranhão is a northeastern state in Brazil and comprises a total area of 329,642.170 km² (IBGE, 2018). Its political boundaries are the Atlantic Ocean to the north, the state of Tocantins to the south, the state of Piauí to the east, and the state of Pará to the west (Chaves et al., 2016). The state...
is located in a heterogeneous landscape area under the influence of three biomes: Amazon, Cerrado, and the Caatinga. The vegetation cover – encompassing 14 different vegetation types – reflects the transition between super-humid and semi-arid climates (Santos et al., 2010; IBGE, 2018).

Similar to other states in Brazil, Maranhão has suffered with high human impact, mainly from the early 1960s, through the construction of highways, agricultural and mining projects (Celentano et al., 2017). Impacts include large-scale forest conversion to pasture or by “babaçu” palm trees (Orbignya phalerata Mart.) (Santos et al., 2010), and the expansion of agroindustry has converted large natural areas into grain crops (Brasil, 2009; Santos et al., 2010). In addition, other human activities, such as occupation, recreation and tourism (Chaves et al., 2016) have also a negative impact and have caused severe loss of biodiversity, resulting in drastic changes of the landscape.

The biodiversity of Maranhão is extremely diverse (Chaves et al., 2016; Desidério et al., 2017). Compared to other Brazilian states, however, the ant diversity is poorly known. The most recent information on ant species diversity in the state recorded 99 species, belonging to 37 genera and seven subfamilies (Janicki et al., 2016). This represents about ¼ of ant diversity in the state of Goiás and 35% of the ant species richness described for the state of Mato Grosso do Sul (Janicki et al., 2016), two other Brazilian states comparable in size to Maranhão.

Since the end of the 20th century, collective efforts of several research groups, carrying out inventories in different areas and employing complementary sampling methodologies, resulted in a significant increase in our knowledge about ant diversity in this state. Thus, the aim of this study is to present an updated list of the ant species in the state of Maranhão, considering recent field expeditions as well as material deposited in the main Brazilian ant collections. We also discuss some relevant aspects about the profile of the ant fauna, recovering the history of ant studies historically carried out in the state. Overall, our findings should be of great help in creating measures for species preservation and species recovery plans and represent the basis for future research.

MATERIAL AND METHODS

Data from collections and literature

We listed material obtained from six Brazilian ant collections (Table 1), which have historically acted as main depositary institutions for samples collected in the state of Maranhão. We also compiled data from literature, including collection events focused on partial surveys of Maranhão ant fauna (Table 2).

Identifications and taxonomic validation

Ants were identified by the authors of the present study using taxonomic keys, comparing specimens with myrmecological collections, or by sending them to specialists (see “Acknowledgements”). The final list containing all specimens was verified by authors of this study (JAS, LPP and RMF). Species with dubious identification were carefully examined and, when necessary, have been removed from final data set.

Distribution and maps

The biomes present in Maranhão are the Amazon Forest, characterized by tall trees and periodic to permanently flooded plains; this biome is present in the north and, essentially, in the west portion of the state. The Cerrado covers the south, central and northeast areas of the state, formed by open grasslands (Cerrado aberto) to patches of dense vegetation (Cerradão). Finally, Maranhão presents a small and fragmented portion of...
the Caatinga biome, in the extreme east of the state, characterized by the presence of bushy vegetation with deep roots, cacti and bromeliads (Spinelli-Araujo et al., 2016).

We used shapefiles from the state of Maranhão made available by the Ministério do Meio Ambiente (MMA) (http://mapas.mma.gov.br/i3geo/datadownload.htm#). We used a classification in “meso-regions” pre-established by the government agency, in order to describe and discuss our results. We also used shapefiles provided by MMA for the three main biomes present in the state, to overlap sampling points and the main ecosystems in Maranhão.

For the confirmation of sampled sites (Table 3) and maps preparation, the geographical coordinates, when not available on the specimens’ label, were obtained from the IBGE (2011) or georeferenced using Google Earth Pro. In those cases, because we did not have access to the exact point of the sample site, we adapted a classification by the IBGE. Whenever the IBGE classified a municipality covering two biomes, we used the “transition” term after the government classification. For instance, the municipality of Imperatriz, which is classified by IBGE as “Amazon/Cerrado” biomes, becomes for the purpose of this study, “Amazon-Cerrado transition”. For specific sites and localities for which names have been historically altered, we consulted Vanzolini & Papavero (1968) and Vanzolini (1992). The geographical records were mapped using QGIS v2.18.2 (QGIS Development Team, 2019).

RESULTS

Based on data from Brazilian collections (Table 1) and published literature (Table 2), we recorded a total of 279 ant species for the state of Maranhão, belonging to 71 genera and 10 subfamilies (Table 4), and sampled across 65 localities (Table 3). The subfamily Myrmicinae was the most diverse, with 126 species, followed by Ponerinae (36 species), Formicinae (35 species), Dolichoderinae (27 species), Ectatomminae (25 species), Pseudomyrmecinae (16 species), Dorylinae (10 species), Amblyoponinae (2 species), and Paraponerinae and Proceratiinae (1 species each).

The majority of records (214 species) was concentrated along the Amazon region, followed by the Cerrado (129 species), the Amazon-Cerrado transition regions (80 species) and finally the Cerrado-Caatinga transition region where only one species was recorded (Fig. 1). A total of 180 ant species were recorded for the first time in the state, and four species were recorded for the first time in Brazil (Table 4).

DISCUSSION

The first expeditions focused on studying the ant fauna of the state of Maranhão were performed in the late 1940s, with collections in the Cerrado areas undertaken by the myrmecologists Cincinnati Gonçalves and Walter W. Kempf. During the next three decades, collections by researchers, enthusiasts, and professional collectors had pursued the same goal – discovering new taxa and increasing the coverage of ants in scientific collections (Kempf, 1972a). Differently, from the 1980s until the beginning of the 21st century, the main purpose of the expeditions was to carry out environmental impact assessment programs (Brandão et al., 2011). On the other hand, from the late 20th century, with the hiring of researchers at universities in the state of Maranhão, several expeditions have been conducted focusing on ecological studies and reporting faunal inventories (Ramos et al., 2015; Gutiérrez et al., 2017; Silva et al., 2017).

Museums, scientific collections, and historical published literature all contain important information on species distributions recorded as presence data (Newbold, 2010). The accuracy of the distribution data is important for several applications in biology and for species conservation planning (Graham et al., 2008). Despite the concern to accurately document of species distribution that began in the first half of the 19th century (Vanzolini, 2004), for the ants this occurred in the second half of the 20th century. In the case of the records analysed in this work, the specific localities and geographic coordinates became available in the late 20th century.

Most of the ant records for the state of Maranhão remained unavailable to the specialized public for a long time, while many other records remained unidentified at a specific level. In this sense, our study has analyzed both the material deposited in Brazilian collections (Table 1) and the records in the published literature (Table 2), revealing that 64% of species were recorded in the state for the first time. Further, we made an additional effort.
Table 3. Information from the sampled sites for the state of Maranhão. The abbreviations are as follows: (Am) Amazon, (Ce) Cerrado, (ACT) Amazon-Cerrado transition, (CCT) Cerrado-Caatinga transition. (*) For the geographic coordinates attributed in this work.

Locality	Coordinate	Physiognomy	Code
15 km E of Canindé, Aldeia Araçu, Igarapé Gurupi-Uma	02°34'S, 46°02'W*	Am	1
Açailândia	04°52'30"S, 47°17'40"W	Am	2
Açailândia, Fazenda Pedro Maranhão	04°56'48"S, 47°30'17"W	Am	3
Açailândia, Horto Fazenda Pompeia	04°52'30"S, 47°17'40"W	Am	4
Alcântara	02°20'56"S, 44°29'01"W*	Am	5
Alcântara, Só Assim	02°20'38"S, 44°28'30"W*	Am	6
Aldeia do Ponto	05°07'01.21"S, 45°08'59.99"W*	Ce	7
Alto Turiaçu	01°39'46"S, 45°22'19"W*	Am	8
Alto Turiaçu, Aldeia Gurupiuna	02°51'44.66"S, 46°15'29.79"W*	Am	9
Bacabal	04°13'30"S, 44°46'48"W*	ACT	10
Balsas	08°34'19.6"S, 46°42'28.2"W	Ce	11
Balsas, Córrego Xupé	07°31'58"S, 46°02'09"W	Ce	12
Balsas, Fazenda Unha de Gato	08°34'06"S, 46°42'38"W	Ce	13
Balsas, Gerais de Balsas, Rio Mandacaru	08°32'32"S, 46°36'18"W	Ce	14
Balsas, Mata do Capão do Catulé	08°32'32"S, 46°36'18"W	Ce	15
Barão de Grajaú, Bem Quer	06°07'01.21"S, 45°08'59.99"W*	Ce	16
Barão do Corda	05°50'43"S, 42°12'20"W*	Ce	17
Boa Esperança	05°50'43"S, 42°12'20"W*	Ce	18
Carolina	07°19'58"S, 47°28'09"W*	Ce	19
Carolina, Pedra Caída	07°02'30.39"S, 47°26'35.95"W*	Ce	20
Cassia	04°31'32"S, 45°21'21"W	Ce	21
Centro Novo do Maranhão	04°30'35.70"S, 46°40'40.73"W	Am	22
Chapadinha, Anapurus	03°40'19"S, 43°17'40"W	Am	23
Chapadinha, Fazenda Unha de Gato	03°41'34"S, 43°17'40"W	Am	24
Codó	04°27'18"S, 43°53'09"W*	Ce	25
Estreito	06°50'45"S, 43°53'09"W*	Ce	26
Estreito, Fazenda Planalto	06°35'59.3"S, 43°53'09"W*	Ce	27
Estreito, Ilha do Cabral, Rio Tocantins	06°31'54.1"S, 43°53'09"W*	Ce	28
Grajaú, Rio Santana	05°49'08"S, 43°53'09"W*	Ce	29
Gurupi	04°22'09.04"S, 45°26'35.92"W	Ce	30
Imperatriz	05°50'43"S, 42°12'09"W*	Ce	31
Imperatriz, Ribeirãozinho	05°30'38"S, 47°28'46"W*	Ce	32
Imperatriz, Reserva do 50º Batalhão de Infantaria e Selva	05°35'59.3"S, 43°53'09"W*	Ce	33
Imperatriz, Sítio Moisés	03°36'44.00"S, 45°19'59.90"W	Ce	34
Imperatriz, Tocantinópolis	05°30'38"S, 47°28'46"W*	Ce	35
Itinga do Maranhão	05°07'01.21"S, 45°08'59.99"W*	Ce	36
João Lisboa	05°19'46.30"S, 47°19'13.00"W	Ce	37
Lagoa Grande do Maranhão	04°31'54.4"S, 43°26'32.6"W	Ce	38
Lagoa Verde	03°50'43"S, 45°58'48"W*	Ce	39
Lagoa Grande do Maranhão	04°31'54.4"S, 43°26'32.6"W	Ce	40
Lagoa Grande do Maranhão	04°31'54.4"S, 43°26'32.6"W	Ce	41
Livramento	04°31'54.4"S, 43°26'32.6"W	Ce	42
Livramento	04°31'54.4"S, 43°26'32.6"W	Ce	43
Livramento	04°31'54.4"S, 43°26'32.6"W	Ce	44
São Francisco do Brejão	05°17'19.0"S, 47°15'01.7"W	Ce	45
São José de Ribamar, Sítio Aguahy	02°38'59.30"S, 44°08'49.63"W	Ce	46
São Luís	02°31'48"S, 44°18'10"W*	Ce	47
São Luís, Maracana, Sítio Mangalhão	02°31'48"S, 44°18'10"W*	Ce	48
São Luís, Maracana, Sítio Mangalhão	02°31'48"S, 44°18'10"W*	Ce	49
São Luís, Reserva Alumar	02°31'48"S, 44°18'10"W*	Ce	50
São Luís, Reserva da CAEMA	02°31'48"S, 44°18'10"W*	Ce	51
São Mateus	02°31'48"S, 44°18'10"W*	Ce	52
São Mateus	02°31'48"S, 44°18'10"W*	Ce	53
São Mateus	02°31'48"S, 44°18'10"W*	Ce	54
São Mateus	02°31'48"S, 44°18'10"W*	Ce	55
São Mateus	02°31'48"S, 44°18'10"W*	Ce	56
São Mateus	02°31'48"S, 44°18'10"W*	Ce	57
São Mateus	02°31'48"S, 44°18'10"W*	Ce	58
São Mateus	02°31'48"S, 44°18'10"W*	Ce	59
São Mateus	02°31'48"S, 44°18'10"W*	Ce	60
São Mateus	02°31'48"S, 44°18'10"W*	Ce	61
São Mateus	02°31'48"S, 44°18'10"W*	Ce	62
São Mateus	02°31'48"S, 44°18'10"W*	Ce	63
São Mateus	02°31'48"S, 44°18'10"W*	Ce	64
São Mateus	02°31'48"S, 44°18'10"W*	Ce	65
Table 4. List of taxa recorded in the state of Maranhão and the occurrence data of the species in the literature and localities and biome present in the state. The codes of localities follow Table 3. (*) new record for Maranhão, (**) new record for Brazil, (Am) Amazon, (Ce) Cerrado, (ACT) Amazon-Cerrado transition, (CCT) Cerrado-Caatinga transition.

Taxon name	Locality	Biome	Source
Amblyoponinae Forel, 1893*	—	—	—
Fulakora Mann, 1919*	—	—	—
Fulakora degenerata (Borgmeier, 1957)**	4, 41	Am	Collection
Prionopelta Mayr, 1866*	—	—	—
Prionopelta antillana Forel, 1909*	46	Am	Collection
Dolichoderinae Forel, 1878	—	—	—
Azteca Forel, 1878*	—	—	—
Azteca antillana	13, 37	Ce, ACT	Collection
Azteca chartifex	57	Am	Collection
Azteca schimperi	57, 57	Am	Collection
Dolichoderus Lund, 1831	—	—	—
Dolichoderus abruptus (Smith, 1858)*	8	Am	Collection
Dolichoderus attelaboides (Fabricius, 1775)*	1, 2, 56	Am	Collection
Dolichoderus bidens (Linnaeus, 1758)*	19	Am	Collection
Dolichoderus bispinosus (Olivier, 1792)*	5, 24, 35, 37, 39	Am, Ce, ACT	Collection
Dolichoderus debilis Emery, 1890*	19	Am	Collection
Dorymyrmex Mayr, 1866	—	—	—
Dorymyrmex biconis Forel, 1912*	52	Am	Collection
Dorymyrmex brunneus Forel, 1908	5, 13, 40, 52, 59, 61	Am, Ce	Andrade-Silva et al., 2015; Pereira et al., 2017; Collection
Dorymyrmex chartifex Emery, 1896*	57	Am	Collection
Dorymyrmex chartifex	57	Am	Collection
Dorymyrmex jheringi Forel, 1912	11, 13	Ce	Brandão et al., 2011; Collection
Dorymyrmex jheringi	11, 13	Ce	Brandão et al., 2011; Collection
Dorymyrmex pyramicus (Roger, 1863)	11	Ce	Brandão et al., 2011; Collection
Dorymyrmex spurius Santschi, 1929	11, 13	Ce	Brandão et al., 2011; Collection
Forelius Emery, 1888	—	—	—
Forelius brassilensis (Forel, 1908)	11, 13	Ce	Brandão et al., 2011; Collection
Forelius mananhoaenus Cuezzo, 2000	11, 13, 35, 37, 57, 62	Am, Ce, ACT	Cuezzo, 2000; Brandão et al., 2011; Ulysséa et al., 2017; Collection
Forcipomyrma Emery, 1898	—	—	—
Forcipomyrma manicata (Emery, 1930)	13	Ce	Collection
Gracilidris Wild & Cuezzo, 2006	—	—	—
Gracilidris pombero Wild & Cuezzo, 2006	11, 13	Ce	Wild & Cuezzo, 2006; Brandão et al., 2011; Collection
Linepithema Mayr, 1866	—	—	—
Linepithema ceramadene Wild, 2007	11	Ce	Brandão et al., 2011; Collection
Linepithema neotropiscum Wild, 2007	11, 13, 45	Ce	Wild, 2007; Brandão et al., 2011; Collection
Tapinoma Foerster, 1850*	—	—	—
Tapinoma melanoccephalum (Fabricius, 1793)*	5, 34, 40, 52, 57, 60	Am	Collection
Dorylinae Leach, 1815	—	—	—
Acanthostichus Mayr, 1887*	—	—	—
Acanthostichus brevicornis Emery, 1894*	34, 52	Am	Collection
Eciton Latreille, 1804	—	—	—
Eciton burchelli (Westwood, 1842)*	1, 21, 31, 33	Am, Ce, ACT	Collection
Eciton mexicanum Roger, 1863*	60	Am	Collection
Eciton quadrinotatum (Haliday, 1836)	1, 35, 45	Am, Ce, ACT	Kempf, 1972a; Watkins, 1976; Collection
Eciton napus Smith, 1855*	3, 31	Am, Ce	Collection
Labidus Jurine, 1807	—	—	—
Labidus forficatus (Latreille, 1802)*	5, 11, 13, 14, 37, 41, 52, 56, 57	Am, Ce, ACT	Brandão et al., 2011; Collection
Labidus mars (Forel, 1912)*	34	Am	Collection
Labidus praedator (Smith, 1858)	45	Ce	Borgmeier, 1955; Watkins, 1976; Kempf, 1972a; Collection
Neocerapachys Borowiec, 2016*	—	—	—
Neocerapachys splendens (Borgmeier, 1957)*	5, 31, 40	Am, Ce	Collection
Nomamyrmex Bergmeier, 1936*	—	—	—
Nomamyrmex esenbeckii (Westwood, 1842)*	23	Ce	Collection
Ectatomminae Emery, 1895	—	—	—
Ectatomma Smith, 1858	—	—	—
Taxon name	Locality	Biome	Source
----------------------------------	----------	-------	--
Camponotus brunneus Smith, 1858	2, 4, 5, 10, 11, 12, 13, 17, 19, 21, 34, 35, 37, 43, 48, 49, 54, 56, 57, 59	Am, Ce, ACT	Kempf, 1972a; Brandão et al., 2011; Dáttilo et al., 2012; Andrade-Silva et al., 2015; Pereira et al., 2017; Collection
Camponotus edentatum Roger, 1863	11, 13, 44	Am, Ce	Brandão et al., 2011; Collection
Camponotus lagus Emery, 1894*	3, 19, 34, 40	Am	Collection
Camponotus maximus Mayr, 1870	11, 13, 22, 24, 35, 45	Ce, C	Kempf, 1972a; Brandão et al., 2011; Collection
Camponotus opaciventris (Roger, 1861)	11, 13	Ce	Brandão et al., 2011; Collection
Camponotus permannum Forel, 1906*	35, 37	Ce	Collection
Camponotus planidens Borgmeier, 1939	11, 13	Ce	Brandão et al., 2011; Collection
Camponotus ruidum (Roger, 1860)*	5	Am	Collection
Camponotus szaz S. Almeida Filho, 1986*	37, 56	Am, ACT	Collection
Camponotus tuberculatum (Olivier, 1792)	2, 3, 5, 21, 37, 40, 41, 56, 57, 59	Am, Ce, ACT	Andrade-Silva et al., 2015; Collection
Gnamptogenys Roger, 1863	—	—	—
Gnamptogenys acuminatus (Emery, 1896)*	31, 40, 57, 58	Am, Ce	—
Gnamptogenys ammpholita Kempf, 1967	11, 13	Ce	—
Gnamptogenys annulata (Mayr, 1887)*	60	Am	—
Gnamptogenys caelata Kempf, 1967	34	Am	—
Gnamptogenys haemsci (Emery, 1902)*	5, 6, 34, 40	Am	—
Gnamptogenys horri (Santschi, 1929)*	5, 37, 40, 52	Am, ACT	—
Gnamptogenys laeni Kempf, 1960*	40	Am	—
Gnamptogenys mina (Brown, 1956)*	34, 57	Am	—
Gnamptogenys minuta (Emery, 1896)	30, 41, 52	Am, Ce	Dias & Lattke, 2019 Collection
Gnamptogenys moellerei (Forel, 1912)*	30, 41, 52, 57, 63	Am, Ce, ACT	—
Gnamptogenys rastrata (Mayr, 1866)*	30	Ce	—
Gnamptogenys stratiula Mayr, 1884*	30, 32, 34, 41	Ce, ACT	—
Gnamptogenys sulcata (Smith, 1858)*	34, 37	Am, ACT	—
Gnamptogenys triangularis (Mayr, 1887)*	40	Am	—
Typhlomyrmex Mayr, 1862*	—	—	—
Typhlomyrmex rogenhoferi Mayr, 1862*	1	Am	—
Formicinae Latreille, 1809	—	—	—
Acropyga Roger, 1862*	—	—	—
Acropyga geoldi Forel, 1893*	57	Am	—
Acropyga smithi Forel, 1893*	4	Am	—
Brachymyrmex Mayr, 1868	—	—	—
Brachymyrmex australis Forel, 1901	11, 13	Ce	—
Brachymyrmex heeri Forel, 1874*	5, 34, 37, 40, 46, 52, 56, 57	Am, ACT	—
Brachymyrmex patagonicus Mayr, 1868	11, 13	Ce	—
Camponotus Mayr, 1861	—	—	—
Camponotus arboreus (Smith, 1858)	10, 45	Ce, ACT	Mann, 1916; Kempf, 1972a; Collection
Camponotus atriceps (Smith, 1858)	9, 29, 37, 38, 53, 57	Am, Ce, ACT	Dáttilo et al., 2012; Collection
Camponotus baizai Emery, 1894*	37	AST	—
Camponotus bidens Mayr, 1870*	5, 31, 34	Am, Ce	—
Camponotus blandus (Smith, 1858)	5, 11, 17, 24, 28, 31, 34, 35, 40, 43, 56, 57, 59, 65	Am, Ce, ACT	Brandão et al., 2011; Andrade-Silva et al., 2015; Collection
Camponotus cameranoi Emery, 1894*	34	Am	—
Camponotus chartifex (Smith, 1860)*	5	Am	—
Camponotus crossus Mayr, 1862	5, 10, 11, 30, 31, 35, 37, 40, 45, 52, 56, 57	Am, Ce, ACT	Kempf, 1972a; Brandão et al., 2011; Collection
Camponotus fastigatus Roger, 1863*	37, 56	Am	—
Camponotus fenestratus Fabricius, 1804*	4	Am	—
Camponotus godmani Forel, 1899*	5, 34, 60	Am	—
Camponotus latangulus Roger, 1863*	5, 34, 40, 52, 58	Am	—
Camponotus lyriformy Forel, 1886	5, 10, 17, 40, 43, 44, 45, 47, 53, 56	Am, Ce, ACT	Kempf, 1972a; Collection
Camponotus melancotics Emery, 1894	37, 36, 57, 59	Am, ACT	Andrade-Silva et al., 2015; Collection
Camponotus novogranadensis Mayr, 1870*	5, 35, 37, 57	Am, ACT	—
Camponotus personatus Emery, 1894	11	Ce	—
Camponotus rectangularis Emery, 1890*	62	Am	—
Camponotus renggeri Emery, 1894	11, 19, 27, 37, 42, 43, 45, 53, 56, 64	Am, Ce, ACT	Kempf, 1972a; Brandão et al., 2011; Collection
Camponotus rutipes (Fabricius, 1775)	57, 59	Am	—
Camponotus sexen (Smith, 1858)	57, 59	Am	—
Camponotus sinyuttatus (Fabricius, 1793)*	58	Am	—
Camponotus silvestri Emery, 1906	35	ACT	—
Camponotus substitutus Emery, 1894*	4, 10, 30, 41, 57	Am, Ce, ACT	—
Taxon name	Locality	Biome	Source
------------	----------	-------	--------
Camponotus teniscoptus Roger, 1863*			
Camponotus trapeziceps Forel, 1908*			
Camponotus trapezoideus Mayr, 1870*			
Gigantiosci Roger, 1863			
Gigantiosci destructor (Fabricius, 1804)	12, 13, 14, 45, 57	Am, Ce	Forel, 1904; Wheeler, 1922; Kempf, 1972a; Collection
Hylanderia Emery, 1906			
Hylanderia fulva (Mayr, 1862)*	5, 10, 13, 52, 57	Am, Ce, ACT	
Hylanderia guatemalensis (Forel, 1885)*	34, 40	Am	
Paratrechina Motschulsky, 1863			
Paratrechina longissima (Lairetelle, 1802)*			
Myrmicinae Lepeletier de Saint-Fargeau, 1835			
Acromyrmex Mayr, 1865			
Acromyrmex hystru (Lairetelle, 1802)	29	Ce	Dmitri, 2010
Acromyrmex landolti (Forel, 1885)	11, 45, 57	Am, Ce	Gonçalves, 1961; Kempf, 1972a; Brandão et al., 2011; Collection
Acromyrmex laticeps (Emery, 1905)*	22	Ce	
Acromyrmex nigrosetosus (Forel, 1908)	22, 45	Ce	Gonçalves, 1961; Kempf, 1972a; Collection
Acromyrmex rugosus (Smith, 1858)	4, 11, 22, 45, 57, 59	Am, Ce	Gonçalves, 1961; Brandão et al., 2011; Andrade-Silva et al., 2015; Collection
Acromyrmex subteraneus (Forel, 1893)*	40	Am	Collection
Apterostigma Mayr, 1865			
Apterostigma robustum Emery, 1896*	34, 40, 52	Am	Collection
Atta Fabricius, 1804			
Atta cephalotes (Linnaeus, 1758)	45	Ce	Kempf, 1972a; Collection
Atta laevigata (Smith, 1858)	45	Ce	Kempf, 1972a; Collection
Atta opaciceps Borgeimeier, 1939*	35, 37, 63	Am, ACT	Collection
Atta sexdens (Linnaeus, 1758)	11, 31, 45, 57	Am, Ce	Gonçalves, 1942, 1947; Kempf, 1972a; Brandão et al., 2011; Collection
Basileus Schulz, 1906			
Basileus miltantis (Weber, 1950)	4, 34, 55	Am	Janchick et al., 2016; Collection
Basileus scamnognathus (Brown, 1949)	30	Ce	Fettos et al., 2007; Collection
Blepharidatta Wheeler, 1915			
Blepharidatta canopas Kempf, 1967	11, 13, 30, 32	Ce	Silva, 2007; Brandão et al., 2011; Pereira et al., 2014; Brandão et al., 2015; Collection
Cardiocondyla Emery, 1869			
Cardiocondyla emeryi Forel, 1881*	10, 13	Ce, ACT	Collection
Cardiocondyla obscurior Wheeler, 1929*	52	Am	Collection
Carabera Westwood, 1840			
Carabera angulata Fernández, 2010*	4	Am	
Carabera brevipilosa Fernández, 2004*	4	Am	Collection
Carabera urichi (Wheeler, 1922)*	34, 40	Am	Collection
Cephalotes Latreille, 1802			
Cephalotes atroctus (Linnaeus, 1758)			
Cephalotes clypeatus (Fabricius, 1804)	13, 9, 3, 30	Am, Ce	De Andrade & Baroni Urbani, 1999; Brandão et al., 2011; Collection
Cephalotes condatus (Smith, 1853)	45, 57	Am, Ce	Kempf, 1972a; Kempf, 1960a; Brandão, 1991; Collection
Cephalotes edwardi (Forel, 1921)*	10	ACT	Collection
Cephalotes grandinosus (Smith, 1860)*	63	Am	Collection
Cephalotes maculatus (Smith, 1876)*	5, 57	Am	Collection
Cephalotes marginatus (Fabricius, 1804)	45, 57	Ce	De Andrade & Baroni Urbani, 1999; Collection
Cephalotes minutus (Fabricius, 1804)	11, 13, 45, 52	Am, Ce	Kempf, 1972a; Kempf, 1960a; Brandão, 1991; Collection
Cephalotes pilosus (Emery, 1896)*	35, 43, 64	Ce, ACT	Collection
Cephalotes pusillus (Klug, 1824)	1, 4, 16, 17, 27, 33, 51, 52, 57, 60	Am, Ce, ACT	Kempf, 1972a; Kempf, 1960a; Brandão, 1991; De Andrade & Baroni Urbani, 1999; Collection
Cephalotes serraticeps (Smith, 1858)	9	Am	De Andrade & Baroni Urbani, 1999; Collection
Cephalotes unimaculatus (Fabricius, 1804)*	57	Am	Collection
Crematogaster Lund, 1831			
Crematogaster abietina Forel, 1899*	13, 30	Am, Ce	Collection
Crematogaster acuta (Fabricius, 1804)*	3	Ce	Collection
Crematogaster brasilensis Mayr, 1878*	63	Am	Collection
Crematogaster curvispinosa Mayr, 1862*	10	ACT	Collection
Crematogaster erecta Mayr, 1866	5, 13, 40, 45, 52, 57	Am, Ce	Kempf, 1968; Kempf, 1972a; Collection
Crematogaster euripus Forel, 1907*	13, 57	Am, Ce	Collection
Crematogaster kiliat Smith, 1858*	34, 35, 37, 40, 52, 57, 63	Am, ACT	Collection
Crematogaster luctuosa Forel, 1904*	5, 34, 35, 37, 52, 57, 60	Am, ACT	Collection
Crematogaster victoriae Smith, 1858	57, 59	Am	Andrade-Silva et al., 2015; Collection
Taxon name	Locality	Biome	Source
-----------------------------	----------	-------	-------------------------
Cyphomyrmex Mayr, 1862	—	—	—
Cyphomyrmex laevigatus Weber, 1938	4, 40	Am	Collection
Cyphomyrmex major Forel, 1901	5, 40	Am	Collection
Cyphomyrmex minutus Mayr, 1862	4, 30, 31	Ce	Collection
Cyphomyrmex peltatus Kempf, 1966	4, 30, 4, 34, 37, 40, 57, 60	Am, Ce, ACT	Collection
Cyphomyrmex transversus Emery, 1894	5, 37, 40, 62	Am, ACT	Collection
Dacetum Perty, 1833	—	—	—
Dacetum armigerum (Latreille, 1802)	4, 19	Am	Collection
Hylocnemi Mayr, 1812	—	—	—
Hylocnemi balzani (Emery, 1894)	34, 37, 40, 57	Am, ACT	—
Hylocnemi immans Kempf, 1973	4	Am	Collection
Hylocnemi longiscapa Kempf, 1961	4	Am	Collection
Hylocnemi poecilus Kempf, 1973	55	Am	Collection
Hylocnemi reginae Kutter, 1977	55	Am	Collection
Megalomyrmex Forel, 1885	—	—	—
Megalomyrmex drifti Kempf, 1961	60	Am	Collection
Monomorium Mayr, 1855	—	—	—
Monomorium flavicans (Jerdon, 1851)	5, 40, 43, 52	Am, Ce	Collection
Monomorium pharaonis (Linnaeus, 1758)	37, 57	Am, ACT	—
Mycocepurus Forel, 1893	—	—	—
Mycocepurus goeldii (Forel, 1893)	11, 37, 56, 57	Am, Ce, ACT	Brandão et al., 2011; —
Mycocepurus smithii (Forel, 1893)	4, 63	Am	—
Ochetomyrmex Mayr, 1878	—	—	—
Ochetomyrmex neopolitus Fernández, 2003	4, 37	Am, ACT	—
Ochetomyrmex semispilota Mayr, 1878	11, 12, 13, 45	Ce	—
Octotrama Forel, 1912	—	—	—
Octotrama balzani (Emery, 1894)	30, 45, 60	Am, Ce	—
Octotrama sheringi (Emery, 1888)	34, 40	Am	Collection
Oxyepoc Santschi, 1926	—	—	—
Oxyepoc veyrenyi (Forel, 1907)	15	Ce	—
Pheidole Westwood, 1839	—	—	—
Pheidole allamata Wilson, 2001	34, 52	Am	—
Pheidole dolon Wilson, 2003	34	Am	—
Pheidole fallax Mayr, 1870	5, 37	Am, ACT	—
Pheidole fimbriata Roger, 1863	4	Am	—
Pheidole flavens Roger, 1863	45	Ce	—
Pheidole fracticip Wilson, 2003	31	Ce	—
Pheidole gauthieri Forel, 1901	34	Am	Collection
Pheidole impressa Mayr, 1870	10, 57	Am, ACT	—
Pheidole jeannei Wilson, 2003	37	ACT	—
Pheidole microps Wilson, 2003	41	Am	—
Pheidole midas Wilson, 2003	41, 52	Am	—
Pheidole obscurothorax Naves, 1985	29	ACT	—
Pheidole nadzkowksi Mayr, 1884	5, 34, 35, 37, 40, 52, 56, 57, 59	Am, ACT	Andrade-Silva et al., 2015; —
Pheidole scalicpes Wilson, 2003	4, 37	Am, ACT	—
Pheidole sensitiva Borgmeier, 1959	30	Ce	—
Pheidole susanann Forel, 1886	37	ACT	—
Pheidole synanamata Wilson, 2003	57, 59	Am	Andrade-Silva et al., 2015; Pereira et al., 2017; —
Pheidole transversususter Mayr, 1887	37	ACT	—
Pogonomyrmex Mayr, 1868	—	—	—
Pogonomyrmex nangeli Emery, 1878	14	Ce	—
Procyrtocerus Emery, 1887	—	—	—
Procyrtocerus goeldii Forel, 1899	45, 45	Sa	Kempf, 1972a
Procyrtocerus hyleus Kempf, 1951	10, 45	Ce, ACT	Longino & Snelling, 2002; —
Taxon name	Locality	Biome	Source
----------------------------------	----------	-------	-----------------------------
Proctocerus pictipes Emery, 1896*	5, 40	Am	Collection
Rogeria Emery, 1894			
Rogeria azatesi Kugler, 1994*	5, 34, 52, 57	Am	Collection
Rogeria besucheti Kugler, 1994*	40	Am	Collection
Rogeria germaini Emery, 1894*	40	Am	Collection
Rogeria lizata Kugler, 1994*	58	Am	Collection
Rogeria scabinate Kugler, 1994	11	Ce	Brandão et al., 2011; Collection
Sericomyrmex Mayr, 1865			
Sericomyrmex mayri Kugler, 1994*	5, 34, 37, 45	Am, Ce, ACT	Jesovnik & Schultz, 2017; Collection
Solenopsis Westwood, 1840			
Solenopsis globularia Smith, 1858	5, 45, 52, 59, 61	Am, Ce	Wauters et al., 2018; Collection
Strumigenys Smith, 1860*			
Strumigenys alberti Kugler, 1994	4	Am	Collection
Strumigenys crassinissimus Mayr, 1887*	30, 32, 55	Am, Ce	Jesovnik & Schultz, 2017; Collection
Tetramorium Mayr, 1855*			
Tetramorium similimum Smith, 1851	10	ACT	Kempf, 1972a; Andrade-Silva et al., 2015; Collection
Trachymyrmex Mayr, 1893			
Trachymyrmex bugnioni (Forel, 1912)	11, 30	Ce	Brandão et al., 2011; Collection
Trachymyrmex hirtula Borgmeier, 1934*	34, 35, 37, 40, 52, 57, 61	Am	jesovnik & Schultz, 2017; Collection
Tranopelta Mayr, 1866*			
Tranopelta gilva Mayr, 1866*	5, 57	Am	Collection
Wasmannia Mayr, 1893			
Wasmannia aurantipunctata (Roger, 1863)	5, 11, 12, 13, 15, 30, 31, 32, 34, 35, 37, 40, 52, 55, 57, 61	Am, Ce, ACT	Brandão et al., 2011; Collection
Ponerinae Lepeletier de Saint-Fargeau, 1835			
Paraponerinae Emery, 1901			
Paraponera Smith, 1858			
Paraponera clavata (Fabricius, 1775)	3, 7, 19, 36, 38, 42, 45, 50	Am, Ce, ACT	Ward & Downie, 2005; Ward, 2007; Collection
Dinoponera Roger, 1861			
Taxon name	Locality	Biome	Source
-------------------------------------	----------	-------	--
Dinoponera gigantea (Perty, 1833)	1, 11, 13, 33, 45	Am, Ce, ACT	Kempf, 1971, 1972a; Monnin et al., 2003; Brandão et al., 2011; Collection
Hypoponera Santschi, 1938*			
Hypoponera distinguenda (Emery, 1890)*	34	Am	Collection
Hypoponera opacior (Forel, 1893)*	61	Am	Collection
Hypoponera trigona (Mayr, 1887)*	5, 34, 52, 57	Am	Collection
Leptogenys Roger, 1861			
Leptogenys guianensis Wheeler, 1923*	57	Am	Collection
Leptogenys unstimulosa Roger, 1863	30, 63	Am, Ce	Lattke, 2011; Collection
Mayoponera Schmidt & Shattuck, 2014			
Mayoponera constricta (Mayr, 1884)*	5, 30, 35, 37, 40, 60	Am, Ce, ACT	Collection
Neoponera Emery, 1901			
Neoponera commutata (Roger, 1860)	7, 21, 45, 56	Am, Ce	Kempf, 1959; Kempf, 1972a; Collection
Neoponera marginata (Roger, 1861)*	57	Am	Collection
Neoponera striatodis (Emery, 1890)*	5	Am	Collection
Neoponera unidentata (Mayr, 1862)*	34	Am	Collection
Neoponera venter Forel, 1922*	34, 37	Am, ACT	Collection
Neoponera villosa (Fabricius, 1804)	11, 13, 19, 60	Am, Ce	Brandão et al., 2011; Fernandes et al., 2014; Collection
Odontomachus Lateville, 1804			
Odontomachus bauri Emery, 1892*	11, 22, 35, 37, 57, 59, 60	Am, Ce, ACT	Brandão et al., 2011; Andrade-Silva et al., 2015; Collection
Odontomachus brunneus (Paton, 1894)*	22	Ce	Collection
Odontomachus cheilifer (Lateville, 1802)*	57, 26	Am, Ce	Collection
Odontomachus haematodus (Linnaeus, 1758)	1, 45, 57	Am, Ce	Janicki et al., 2016; Collection
Odontomachus meiereti Forel, 1905*	34, 52	Am	Collection
Odontomachus opaciventris Forel, 1899	29	ACT	Dattilo et al. 2012
Odontomachus sculpitus Brown, 1978*	5	Am	Collection
Pachycondyla Smith, 1858*			
Pachycondyla crossoidea (Lateville, 1802)*	5, 30, 32, 35, 37, 52, 57, 60	Am, Ce, ACT	Collection
Pachycondyla harpax (Fabricius, 1804)*	5, 30, 31, 32, 34, 35, 37, 40, 46, 52, 55, 56, 57	Am, Ce, ACT	Collection
Pachycondyla impressa (Roger, 1861)*	5	Am	Collection
Pachycondyla lenis Kempf, 1961*	34	Am	Collection
Platythyrea Roger, 1863			
Platythyrea angusta Forel, 1901	45	Ce	Forel, 1904; Kempf, 1964, 1972a; Collection
Platythyrea pilosula (Smith, 1858)*	60	Am	Collection
Pseudoponera Emery, 1900*			
Pseudoponera giberti (Kempf, 1960)*	5, 34, 40, 52, 61	Am	Collection
Pseudoponera stigma (Fabricius, 1804)*	41	Am	Collection
Rasopone Schmidt & Shattuck, 2014*			
Rasopone arhuaca (Forel, 1901)*	5, 34, 41, 52, 55, 57	Am, ACT	Collection
Rasopone ferruginea (Smith, 1858)*	5, 30, 31, 34, 40, 55	Am, Ce	Collection
Proceratiinae Emery, 1895*			
Discothyrea Roger, 1863*			
Discothyrea sexarticulata Borgenmeier, 1954*	4, 5	Am	Collection
Pseudomyrmecinae Smith, 1952			
Pseudomyrmex Lund, 1831			
Pseudomyrmex curassensis (Forel, 1912)	5, 10, 40, 45, 52	Am, Ce, ACT	Ward, 1989; Brandão, 1991; Collection
Pseudomyrmex elongatus (Mayr, 1870)	10, 45	Ce, ACT	Kempf, 1972a; Ward, 1989; Collection
Pseudomyrmex ethicus (Forel, 1911)*	4	Am	Collection
Pseudomyrmex filiformis (Fabricius, 1804)*	5, 34	Am	Collection
Pseudomyrmex flavidus (Smith, 1858)	11, 13	Ce	Brandão et al., 2011; Collection
Pseudomyrmex gracilis (Fabricius, 1804)	5, 16, 38, 40, 45, 46, 56, 57, 63	Am, Ce, CCT	Janicki et al., 2016; Collection
Pseudomyrmex kuenckeli (Emery, 1890)	35, 43	Am, ACT	Ward, 1999; Collection
Pseudomyrmex oculatus (Smith, 1855)	5, 34, 40, 45, 56, 57, 63	Am, Ce	Kempf, 1972a; Collection
Pseudomyrmex penetrator (Smith, 1877)*	3	Am	Collection
Pseudomyrmex pupa (Forel, 1911)*	56, 40	Am	Collection
Pseudomyrmex schappi (Forel, 1901)	52, 57, 59	Am	Andrade-Silva et al., 2015; Collection
Pseudomyrmex sericus (Mayr, 1870)*	5, 40	Am	Collection
Pseudomyrmex tenuis (Fabricius, 1804)	5, 13, 20, 27, 34, 37, 40, 45, 47, 56, 58, 60, 61, 62, 63	Am, Ce, ACT	Forel, 1904; Kempf, 1960b, 1972a; Ward & Downie, 2005; Collection
Pseudomyrmex tenuissimus (Emery, 1906)	5, 10, 45	Am, Ce, ACT	Mann, 1916; Kempf, 1972a; Ward, 1989; Brandão, 1991; Collection
Pseudomyrmex tenuissimus (Smith, 1855)	5, 13, 27, 43, 45, 47	Am, Ce	Kempf, 1972a; Brandão et al., 2011; Collection
Pseudomyrmex urbanus (Smith, 1877)	13, 45	Ce	Ward, 1989; Brandão, 1991; Collection
to identify the morphospecies in ant collections. For instance, 73 ant morphospecies, belonging to 31 ant genera and two subfamilies were here identified at the specific level for the first time (Table 4).

In our data compilation, we found a number of species that were recorded for the first time in the state of Maranhão, but are widely distributed in Brazil (Janicki et al., 2016), as is the case of Dolichoderus imitator Emery, 1894 and Gnamptogenys striatula Mayr, 1884, among others (Table 4). On the other hand, some hyperdiverse and taxonomically challenging genera, such as Pheidole, had a considerable increase in the number of new records. Of the 19 species of Pheidole known to the state, 12 were recorded for the first time in the state of Maranhão, and three species were recorded for the first time in Brazil.

Not surprisingly, the data obtained from the ant literature clearly indicates that taxonomy is the discipline that most contributed to the knowledge of the ant fauna in the state. This is especially true for taxonomic revisions, which deal with large numbers of specimens (e.g., De Andrade & Baroni Urbani, 1999; Lattke, 2011). The high number of taxonomic publications in our survey is justified by the fact that this discipline was the first area of myrmecology to be developed in Brazil, allowing the formation of large repositories. However, although taxonomy is the discipline with the greatest number of published studies in relation to other areas, in the last 20 years the potential of ant fauna data has been explored in different study areas (Table 2).

Other factors that have contributed to increasing our knowledge of the ant fauna in the state of Maranhão are online tools, which provide high definition images of species (AntWeb, 2019), taxonomic literature (Bolton, 2019), geographic distribution of ant specimens (Janicki et al., 2016), and general information on ant taxa (AntWiki, 2019). These tools facilitate the identification of specimens and provide a fast and effective access to information. In addition, the improvement and development of collection methodologies (Figueiredo et al., 2013) has made the sampling more efficient.

Despite the increased understanding of biodiversity in this region, sampling coverage of ant fauna in Maranhão is strongly irregular (Fig. 1). Our study showed that the Amazon is the better sampled biome and also houses the largest number of species recorded in the state (Table 4). Most collection points are concentrated in the northern region of the state (Fig. 1), which corresponds to the Coastal region of Maranhão, with the highest population density (Chaves et al., 2016), and where the main research centers are located.

While the Cerrado, which corresponds to the biome with the highest coverage in the state (64%) (MMA, 2011; Stella, 2011), remains poorly sampled with extremely sparse collections (Fig. 1). In relation to this biome, it is in the southern part of the state where most of the collection points are concentrated, which in most cases came from samples derived from environmental impact assessment programs (e.g., Brandão et al., 2011).

The Amazon–Cerrado transition regions are also undersampled in the state, with few records available from taxonomic papers (Kempf, 1972a; Brandão, 1991) and collections. If we want to understand the association between species and forest formations it is essential to characterize species diversity in ecotones, as already observed by other groups (Santos et al., 2010; Maracahipes-Santos et al., 2018).

The Caatinga biome remains largely unknown in Maranhão, represented in our study by a single record in the Cerrado-Caatinga transition region (Fig. 1). Although the biome presents a small and fragmented spatial coverage (1% of the state territorial area) (Stella, 2011), the scarcity of information about the ant fauna in the Caatinga has also been observed in other regions of Brazil (Santos et al., 1999; Ulysséa & Brandão, 2013; Leal et al., 2017). This result illustrates the need for greater collection effort to understand and preserve biodiversity in the Caatinga and, consequently, in the state of Maranhão.

One of the main limitations of the data available to date on the ant fauna in Maranhão was a strong sampling bias, with most samples being collected near the main roads (Fig. 2). This pattern of biased sampling near highways, rivers, coasts, and cities has been reported in several taxonomic groups (Hijmans et al., 2000; Kadmon et al., 2003; Reddy & Dávalos, 2003; Newbold, 2010; Santos & Hoppe, 2018), which is explained by the ease access, researchers’ interest in certain areas or taxa, and limited financial resources. However, further studies are required to reduce this sampling bias by using different collection methodologies and accessing previously unexplored sites.

Low levels of sampling in conservation areas of the state were also observed (Fig. 3). Conservation areas (i.e., national parks, ecological stations, extractive reserves,
national forests, biological reserves, among others) are of fundamental importance for biodiversity conservation (Peres, 2005) and preserving ecosystem (Hallmann et al., 2017).

To the best of our knowledge, this is the first compilation focused on studying the ant fauna of Maranhão, one of the largest geopolitical regions of Brazil. Our study significantly increase the number of ant species recorded in the state and demonstrates the importance of carrying out planned inventories for a more detailed understanding of the regional ant fauna. Finally, our data provide the baseline information to further explore the ant fauna in Maranhão, to improve current knowledge and to accurately determine the occurrence of several species.

CONCLUSION

This paper represents an updated record of the ant species occurring in the state of Maranhão, with numbers increasing from 99 to 279 species. Further collection efforts in different biomes are essential for a better understanding of the biodiversity of the state, and for planning long-term conservation action. Ongoing studies on taxonomy, natural history, and ecology are certainly expected to contribute to this.

ACKNOWLEDGMENTS

We thank the researchers Emília Z. Albuquerque (Arizona State University), Fabricio Baccaro (Universidade Federal do Amazonas), Jacques Delabie (Comissão Executiva do Plano da Lavoura Cacaueira), Mônica Ulysséa (Museu de Zoologia da Universidade de São Paulo), Phil Ward (University of California) and, Ricardo Vicente (Universidade do Estado de Mato Grosso) for their help with the identification/confirmation of the ant species. ACF and RMF were financed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (processes 140260/2016-1 and 1302462/2016-3, respectively). LPP, JAS and SPT were financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. TSRS was financed by CAPES (process 40001016005PS). JAMG and GXR were financed by the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) - Finance Code 03135/13.

REFERENCES

Andrade-Silva, J.; Pereira, E.K.C.; Silva, O.; Santos, C.L.C.; Delabie, J.H.C. & Rebelo, J.M.M. 2015. Ants (Hymenoptera: Formicidae) associated with pig carcasses in an urban area. Sociobiology, 62(4): 527-532.

AntWeb. 2019. AntWeb. Available at: http://www.antweb.org. Access in: 03/01/2019.

AntWiki. 2019. AntWiki. Available at: http://www.antwiki.org. Access in: 19/01/2019.

Bolton, B. 2019. An online catalog of the ants of the world. Available at: http://www.antcat.org. Access in: 10/02/2019.

Borgmeier, T. 1955. Die Wanderameisen der neotropischen Region. Studia Entomologica, 3: 1-720.

Brandão, C.R.F. 1991. Adenos ao catálogo abreviado das formigas da região neotropical (Hymenoptera: Formicidae). Revista Brasileira de Entomologia, 35: 319-412.

Brandão, C.R.F.; Feitosa, R.M. & Diniz, J.L.M. 2015. Taxonomic revision of the Neotropical Myrmicinae ant genus Blepharidatta Wheeler. Zootaxa, 4012(1): 33-56.

Brandão, C.R.F.; Silva, R.R. & Feitosa, R.M. 2011. Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia, 28(3): 379-387.

Brazil. 2009. Ministério do Meio Ambiente. Relatório técnico de monitoramento do desmatamento no bioma Cerrado, 2002 a 2008: dados revisados. Brasília: MMA, 67p. Available at: http://www.mma.gov.br/estruturas/sbf/chm_rbbio/arquivos/relatorio_tecnico_monitoramento_desmate_bioma_cerrado_cr_ibama_2002_2008_rev_72.pdf. Access in: 08/12/2018.

Carvalho, A.P.R.; Silva, C.G. & Fonseca, A.R. 2011. Diversidade de formigas em um hospital público no município de Chapadinha, Maranhão, Brasil. Revista de Biologia e Ciências da Terra, 11: 67-73.

Celentano, D.; Rousseau, G.X.; Engel, V.L.; Zelarayán, M.; Oliveira, E.C.; Araújo, A.C.M. & De Moura, E.G. 2017. Degradation of riparian forest affects soil properties and ecosystem services provision in eastern amazon of Brazil. Land Degradation & Development, 28: 482-493.

Chaves, L.P.F.A.; Silva, R.A.; Amaral, Y.T.; Costa, M.K.L. & Siqueira, G.M. 2016. Biogeographical diversity of north mesoregion of the Maranhão state (Brazil). Journal of Geospatial Modelling, 1: 19.

Cuezzo, F. 2000. Revisión del género Forelius (Hymenoptera: Formicidae: Dolichoderinae). Sociobiology, 35: 197-275.

Dalozchio, M.S.; Renner, S.; Spanzerla, C.; Prass, G.; Ely, G.J.; Salvi, L.C.; Dametto, N. & Périco, E. 2018. Checklist of Odonata (Insecta) in the state of Rio Grande do Sul, Brazil with seven new records. Biota Neotropica, 18: 1-14.
Dattilo, W.; Vicente, R.E.; Nunes, R.V. & Carvalho, M.S.G. 2010. First Record of the Neotropical ant genus Cephalotes (Hymenoptera: Formicidae) for Maranhão State, Brazil. Entomobrasiensis, 1: 73-82.

Dattilo, W.; Vicente, R.E.; Nunes, R.V. & Feitosa, R.M. 2012. Influence of cacao cultivation on ant visitation. Sociobiology, 59(2): 549-559.

De Andrade, M.L. & Baroni Urbani, C. 1999. Diversity and Adaptation in the ant genus Cephalotes, past and present. Stuttgart, Gatcher und Verlag.

Desidério, G.R.; Barcelos-Silva, P.; De Souza, W.R.M.; Pes, A.M. & Azevêdo, C.A.S. 2017. Caddisflies (Insecta: Trichoptera) from Maranhão State, Northeast Region, Brazil: A new species, checklist, and new geographical records. Zootaxa, 4221: 151-171.

Dias, A.M. & Lattke, J.E. 2019. A new species and new records of minuta group Gnamptogenys from Brazil (Hymenoptera: Formicidae). Revista Brasileira de Entomologia, 63(1): 30-34.

Feitosa, R.M.; Brandão, C.R.F. & Dietz, B.H. 2007. Basichenos scambognathus (Brown, 1949) n. comb., with the first worker and male descriptions, and a revised generic diagnosis (Hymenoptera: Formicidae: Myrmicinae). Papéis Avulsos de Zoologia, 47(2): 31-42.

Feitosa, R.M.; Brandão, C.R.F. & Diniz, J.L.M. 2008. Revisionary studies on the enigmatic Neotropical ant genus Stegomyrmex Emery, 1912 (Hymenoptera: Formicidae: Myrmicinae), with the description of two new species. Journal of Hymenoptera Research, 17: 64-82.

Fernandes, I.O.; Oliveira, M.L. & Delabie, J.H.C. 2014. Description of two new species in the Neotropical Pachycondyla foetida complex (Hymenoptera: Formicidae: Myrmicinae), with the description of two new species. Journal of Hymenoptera Research, 17: 64-82.

Ferreira, I.D.; Oliveira, M.L. & Delabie, J.H.C. 2014. Description of two new species in the Neotropical Pachycondyla foetida complex (Hymenoptera: Formicidae: Myrmicinae) and taxonomic notes on the genus. Myrmecological News, 19: 133-163.

Figueroed, C.J.; Silva, R.R.; Munha, C.B. & Morini, M.S.C. 2013. Fauna de formigas (Hymenoptera: Formicidae) atraídas a armadilhas subterrâneas em áreas de Mata Atlântica. Biota Neotropical, 13: 1-7.

Forel, A. 1904. Miscelanea myrmécològiques. Revue Suisse de Zoologie, 12: 1-52.

Freitas, M.A.; Vieira, R.S.; Entiauspe-Neto, O.M.; Sousa, T.; Souza, A.G. & Moura, G.J.B. 2017. Herpetofauna of the Northwest Amazon forest in the state of Maranhão, Brazil, with remarks on the Gurupi Biological Reserve. Zootaxa, 463: 141-155.

Gasper, A.L.; Eisenlohr, P.V. & Salino, A. 2016. Improving collection efforts to avoid loss of biodiversity: lessons from comprehensive sampling of ants. Revista Brasileira de Entomologia, 2: 209-218.

Gijhmans, R.J.; Garrett, K.A.; Huaman, Z.; Zhang, D.P.; Schreuder, M. & Bonierbale, M. 2000. Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conservation Biology, 14: 1755-65.

Gonçalves, C.R. 1947. Saúvas do sul e centro do Brasil. Revista Brasileira de Entomologia, 9: 5-32.

Gonçalves, C.R. 1947. Contribuição para o conhecimento do género Atta Fabr., das formigas saúvas. Boletim da Sociedade Brasileira de Agronomia, 5: 333-358.

Gonçalves, C.R. 1947. Saúvas do sul e centro do Brasil. Boletim Fitossanitário, 2: 183-218.

Gonçalves, C.R. 1961. O género Acromyrmex no Brasil (Hym. Formicidae). Studia Entomológica, 4: 113-180.

Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Townsend Peterson, A. & Loiselle, B.A. 2008. The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45: 239-247.

Gutiérrez, J.A.M.; Rousseau, G.X.; Andrade-Silva, P. & Delabie, J.H.C. 2017. Taxonomy of the genus Monacis Roger, from the Amazon, with further remarks on the genus (Hymenoptera, Formicidae). Studia Entomologica, 3: 385-400.

Hijmans, R.J.; Garrett, K.A.; Huaman, Z.; Zhang, D.P.; Schreuder, M. & Bonierbale, M. 2000. Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conservation Biology, 14: 1755-65.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2011. Índice de Nomes Geográficos, Escala 1:1.000.000. Base Cartográfica Continua do Brasil ao Milionésimo. Disponível em: http://www.ibge.gov.br/geociencias/cartas-e-mapsas-bases-cartograficas-continuas/15759-brasil.html?==Et==sobre. Acesso em: 03/12/2018.

Jespore, A. & Schultz, T.R. 2017. Revision of the fungus-farming ant genus Sericornymex Mayr (Hymenoptera, Formicidae, Myrmicinae). Zootaxa, 670: 1-109.

Johnson, A.D. 2015. A taxonomic revision of South American species of the genus Leptogenys (Hymenoptera: Formicidae). Part 1. Zootaxa, 4029(1): 1-142.

Kadmon, R.; Farber, O. & Danin, A. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications, 13: 853-67.

Kempf, W.W. 1959. Insecta Amapaensis. Hymenoptera: Formicidae. Studia Entomologica, 2: 209-218.

Kempf, W.W. 1960a. Insecta Amapaensis. Hymenoptera: Formicidae (segunda contribuição). Studia Entomologica, 3: 385-400.

Kempf, W.W. 1960b. Estudo sobre Pseudomyrmex l. (Hymenoptera: Formicidae). Revista Brasileira de Entomologia, 9: 5-32.

Kempf, W.W. 1964. Uma nova Platythyrea do Brasil (Hym., Formicidae). Revista Brasileira de Entomologia, 11: 141-144.

Kempf, W.W. 1968. Miscellaneous studies on Neotropical ants. IV. (Hymenoptera, Formicidae). Revista Brasileira de Entomologia, 11: 369-415.

Kempf, W.W. 1971. A preliminary review of the ponerine ant genus Dinoponera Roger (Hymenoptera: Formicidae). Studia Entomológica, 14: 369-394.

Kempf, W.W. 1972a. Catálogo abreviado das formigas da região Neotropical (Hym. Formicidae). Studia Entomológica, 15: 1-4.

Kempf, W.W. 1972b. A new species of the Dolichoderine ant genus Monacis Roger, from the Amazon, with further remarks on the genus (Hymenoptera, Formicidae). Revista Brasileira de Biologia, 32: 251-254.

Kempf, W.W. 1975. Miscellaneous studies on neotropical ants. VI. (Hymenoptera, Formicidae). Studia Entomológica, 18: 341-380.

Lattke, J.E. 2008. Review of the New World species of the genus Leptogenys Roger (Insecta: Hymenoptera: Formicidae: Ponerinae). Arthropod Systematics and Phylogeny, 69: 127-264.

Leal, L.R.; Leal, L.; Oliveira, P.P.; Arcovaro, G.B. & Andersen, A.N. 2017. Effects of human disturbance and climate change on myrmecochory in Brazilian Caatinga. In: Oliveira, P.S. & Koptur, S. (Eds.). Ant-plant interactions. Impacts of human on terrestrial ecosystems. Cambridge, UK, Cambridge University Press. p. 112-132.

Lima, W.R.S.; Marques, S.G.; Rodrigues, F.S. & Rebelo, J.M.M. 2013. Ants in a hospital environment and their potential as mechanical bacterial vectors. Revista da Sociedade Brasileira de Medicina Tropical, 46(5): 637-640.

Longino, J.T. & Snelling, R.R. 2002. A taxonomic revision of the Procrocyturus (Hymenoptera: Formicidae) of Central America. Contributions in Science, 495: 1-30.
