Clear cell adenocarcinoma of the colon is a unique morphological variant of intestinal carcinoma: Case report with molecular analysis

Marta Barisella, Andrea Lampis, Federica Perrone, Antonino Carbone

Abstract
Here we report a new case of clear cell adenocarcinoma (CCA) of the colon in a 54-year-old Caucasian man. Despite of the previous reported cases, the lesion was located in the right colon and was not associated with the conventional adenoma. We performed immunohistochemical and molecular analyses in order to explore whether the CCA had the molecular features generally associated with conventional colorectal carcinoma. The immunohistochemical and molecular analyses showed that the different morphology of CCA does not reflect a distinct biological entity but only an unusual morphological variant of intestinal carcinoma.

© 2008 The WJG Press. All rights reserved.

Key words: Clear cell carcinoma; Colon carcinoma; Beta-catenin; KRAS; Molecular analysis

Peer reviewer: Kevin J Spring, PhD, Conjoint Gastroenterology, RBWHF-CRC & QIMR, PO Royal Brisbane Hospital, Herston, Brisbane 4029, Australia

Barisella M, Lampis A, Perrone F, Carbone A. Clear cell adenocarcinoma of the colon is a unique morphological variant of intestinal carcinoma: Case report with molecular analysis. World J Gastroenterol 2008; 14(42): 6575-6577 Available from: URL: http://www.wjgnet.com/1007-9327/14/6575.asp DOI: http://dx.doi.org/10.3748/wjg.14.6575

INTRODUCTION
Clear cell adenocarcinomas (CCAs) are very rare in the colon[1-3]. They generally affect elderly men, are preferentially located in the left colon and almost all form part of a larger conventional adenoma[4,5].

It is not known whether they are biologically different from morphologically conventional colorectal adenocarcinomas[6-9].

Here, an intriguing variant of CCA, unusual in term of location and morphology is described. Moreover, we have evaluated some pathways reported as deregulated in the conventional colorectal adenocarcinoma[10]. To this, we performed an extensive immunohistochemical analysis and for the first time a molecular analysis, including the genomic sequencing of KRAS gene and the main deregulated genes belonging to the Wnt pathway such as APC and β-catenin.

CASE REPORT
In September, 2000, a 54-year-old Caucasian man with a family history of gastrointestinal cancer and a personal 7-year history of multiple colon polyps, came to our Institution for a routine annual control colonoscopy. On this occasion 14 flat lesions with a diameter of 5-15 mm were found extending throughout the large intestine, some of which were endoscopically removed and histologically analysed, including one located in the left colon that was histologically a tubulo-villous adenoma with extensive clear cell aspects. The patient underwent subsequent colonoscopies with polyp resections in 2001, 2002, 2003, 2004 and 2005. All of these lesions were tubular adenomas. At the time of the last control colonoscopy in September 2005, a flat 0.9 cm lesion of the hepatic flexure was endoscopically revealed and biopsied, and was found to be a high-grade dysplastic adenoma with extensive clear cell features. The same
lesion was re-biopsied in 2006 and 2007 with the same result. No conventional adenoma was identified. After undergoing total colectomy in June, 2007, the patient now feels well.

The gross specimen was a total colectomy of 115 cm with the flat, previously biopsied 0.9 cm lesion at the hepatic flexure and other pedunculated lesions in the rest of the colon. Microscopic examination showed that the pedunculated lesions were multiple tubular adenomas, and the 0.9 cm lesion of the hepatic flexure was a CCA invading the muscularis propria (Figure 1A). The CCA had a solid growth at the surface and a tendency to grow as single cells at the periphery (cellular budding); there was neither intratumoral inflammatory infiltration nor vascular invasion and no residual classic adenoma at the periphery (Figure 1B). Nodes were negative.

Five-micrometer thick, formalin-fixed (10% buffered formalin), paraffin-embedded tissue sections were immunohistochemically studied for CK20 (mouse KS20.8, BiOptica; 1:100; 6 min 95°C heated in 0.01 mol/L citrate buffer, pH 6.0), CEA polyclonal antibody (rabbit poly, DAKO; 1:4000; 0.1% trypsin 15 min), CK7 (clone K72.7, NeoMarkers; 1:400; 0.1% trypsin 15 min), alpha-feto protein (rabbit poly, DAKO; 1:2000; 0.1% trypsin 15 min), CD10 (mouse 56C6, Neo Markers, 1:20, 6 min 95°C heated in 0.1 mol/L citrate buffer, pH 6.0), CD10 and vimentin, thus supporting the intestinal origin of the CCA. They also showed p53 focal nuclear positivity, strong β-catenin nuclear positivity in the glands (Figure 1C) and nuclear positivity for hMLH1 and hMSH2 (Figure 1D to E). The proliferation index was high (> 90%).

After genomic DNA extraction (QIAmp DNA mini Kit, Qiagen, Chatsworth, CA, USA), exon 1 of the KRAS gene was amplified by means of polymerase chain reaction (PCR) in order to seek potential mutations on the two foremost codons, which have been reported to be mutated in morphologically conventional colorectal carcinoma. Given the strong β-catenin nuclear positivity revealed by immunohistochemistry, exon 3 of the β-catenin gene was sequenced. The PCR amplifications were carried out using a standard method.

Figure 1 HE and KRAS sequencing. A: The 0.9 cm diameter lesion at the hepatic flexure was a CCA with surface erosion, focal invasion of the muscularis propria, and an abrupt transition from the normal adjacent mucosa (HE, × 4); B: Clear cells with a solid growth on the surface and budding with single-cell growth at the periphery; no conventional adenoma was seen near to the CCA (HE, × 2); C: Strong β-catenin nuclear positivity (× 20); D: Nuclear hMLH1 positivity (× 40); E: Nuclear hMSH2 positivity (× 40); F: KRAS sequencing revealed the point mutation GGT>GTT that leads to the activating aminoacid substitution Gly12Val.
protocol, and previously described primers and conditions[11,13]. In addition, specific primers were designed by means of Primer3 software to amplify codons 1368-1679 located in exon 15 of the \emph{APC} gene and encompassing the mutation cluster region (MCR), where more than 60\% of \emph{APC} mutations have been detected in conventional colorectal cancer[14]. All of the PCR products were directly sequenced using an ABI Prism 377 (Applied Biosystems, Foster City, CA, USA) and evaluated by means of Sequence Navigator software (Applied Biosystems, Foster City, CA, USA). \emph{KRAS} sequencing revealed the previously described point mutation GGT>GTT at codon 12, which leads to the activating aminoacid substitution Gly12Val (Figure 1F), whereas no mutations were found in the MCR of the \emph{APC} gene or in the \emph{β-catenin} gene.

DISCUSSION

Colon CCAs are rare, usually affect the left colon of elderly men, and are treated by means of polypectomy (in most cases) or segmental resection. Almost all CCAs form part of a larger conventional adenoma, thus supporting the hypothesis of a linear carcinogenetic sequence from conventional adenoma, to clear cell-type adenomas and CCAs.

However, our patient was a middle-aged man, the lesion was located in the right colon (hepatic flexure) and was not accompanied by a conventional adenoma, although many other tubular adenomas affected the whole colon, and the patient underwent total colectomy. Histologically, the CCA showed superficial solid growth and diffuse cellular budding at the periphery, but no vascular invasion. Immunohistochemistry ruled out other possible origin from extracolonic primary tumors, including renal clear cell carcinoma and carcinoma arising from the mullerian system.

We subsequently undertook immunohistochemical and molecular analyses in order to explore whether the CCA had the molecular features generally associated with conventional colorectal carcinoma. The positive nuclear immunostaining for hMLH1 and hMSH2 was consistent with microsatellite stability; the focal p53 nuclear immunoreactivity strongly suggested the absence of disabled p53 protein; and the \emph{β-catenin} nuclear immunostaining was in line with activation of the Wnt pathway reported in conventional colorectal carcinoma[13]. However, neither \emph{APC} nor \emph{β-catenin} mutations were found, a result that we are inclined to attribute to the incomplete sequencing of \emph{APC} exon 15 due to the very small amount of tumour tissue available.

However, molecular analysis of the KRAS gene by means of genomic DNA automatic sequencing revealed the activating KRAS mutation Gly12Val. This suggests that the analyzed CCA shares the KRAS genotype characterizing most (approximately 40\%) conventional colorectal carcinomas.

The different morphology of CCA, therefore, does not seem to reflect a distinct biological entity, but an unusual morphological variant with similar molecular profile of conventional colorectal carcinoma.

REFERENCES

1. Hamilton SR, Aaltonen LA (eds): World Health Organization Classification of Tumors. Pathology and Genetics of Tumours of the Digestive System. Lyon: IARC Press, 2000: 110
2. Hellstrom HR, Fisher ER. Physaliferous variant of carcinoma of colon. Cancer 1964; 17: 259-263
3. Soga K, Konishi H, Tatsumi N, Konishi C, Nakano K, Wakabayashi N, Mitsuufaji S, Kataoka K, Okanoue T, Mukaisho K, Hattori T. Clear cell adenocarcinoma of the colon: a case report and review of literature. World J Gastroenterol 2008; 14: 1137-1140
4. Suzuki H, Ohta S, Tokuchi S, Moriya J, Fujioka Y, Nagashima K. Adenoma with clear cell change of the left intestine. J Surg Oncol 1998; 67: 182-185
5. Domoto H, Terahata S, Sennoh A, Sato K, Aida S, Tamai S. Clear cell change in colorectal adenomas: its incidence and histological characteristics. Histopathology 1999; 34: 250-256
6. Hao LS, Zhu X, Zhao LH, Qian K, Zhou Y, Bu J, Wu XT. Clear cell adenocarcinoma of colorectum: a case report and review of the literature. Acta Gastroenterol Belg 2007; 70: 235-238
7. Ko YT, Baik SH, Kim SH, Min BS, Kim NK, Cho CH, Lee SK, Kim HG. Clear cell adenocarcinoma of the sigmoid colon. Int J Colorectal Dis 2007; 22: 1543-1544
8. Braumann C, Schwabe M, Ordemann J, Jacobi CA. The clear cell adenocarcinoma of the colon: case report and review of the literature. Int J Colorectal Dis 2004; 19: 264-267
9. Rubio CA. Clear cell adenocarcinoma of the colon. J Clin Pathol 1995; 48: 1142-1144
10. Frattini M, Balestra D, Suardi S, Oggiionni M, Alberici P, Radice P, Costa A, Daidone MG, Leo E, Pilotti S, Bertario L, Pierotti MA. Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res 2004; 10: 4015-4021
11. Signoroni S, Frattini M, Negri T, Pastore E, Tamborini E, Casieri P, Orsenigo M, Da Riva L, Radice P, Sala P, Gronchi A, Bertario L, Pierotti MA, Pilotti S. Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin Cancer Res 2007; 13: 5034-5040
12. D’Amato A, Gentili V, Santella S, Pronio A, Montesani C. [Synchronous neoplasms of the colon and kidney: analysis of 2 case reports] Chim Ital 2000; 52: 83-86
13. Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P, Bongarzone I, Collini P, Gariboldi M, Pilotti S, Pierotti MA, Greco A. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 2004; 23: 7436-7444
14. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet 2001; 10: 721-733
15. Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006; 25: 7531-7537

S-Editor Li DL E-Editor Yin DH

www.wjgnet.com