Flux pinning and improved critical current density in superconducting boron doped diamond films

Dinesh Kumar1, Shibnath Samanta2, K Sethupathi1 and M S Ramachandra Rao1

1 Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai-600036, India
2 Low Temperature Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India

E-mail: msrrao@iitm.ac.in

Keywords: superconductivity, upper critical field, pinning potential, critical current density

Abstract
The ability to carry transport current in a magnetic field is the most important aspect of a superconductor. We present a detailed analysis of the upper critical field ($H_c(0)$) and vortex dynamics in superconducting boron doped diamond (BDD) films. $H_c(0)$ measured on the samples of different doping levels revealed a high critical field of up to 7.3 T. Pinning potential U_0, estimated using thermally activated flux-flow (TAFF) model shows that U_0 is of the order of 10^7 K. Self-field critical current density (J_c) estimated for the superconducting BDD films showed large $J_c \sim 10^7$ A/cm2 due to enhanced flux trapping.

1. Introduction

Owing to some extraordinary physical properties such as high hardness (100 GPa) and high thermal conductivity (2000 Wm$^{-1}$K$^{-1}$), diamond has the potential for a wide range of applications. The possibility of growing diamond and doped diamond in thin film form further enhances its area of applications [1–3]. Of all the features of diamond, properties exhibited as a result of bandgap engineering by virtue of impurity doping are the most significant. This aspect has a particular interest in the field of superconductivity.

Superconductivity in high pressure high temperature (HPHT) grown boron doped diamond (BDD) was first reported by Ekimov et al [4] and then shortly after, superconductivity in chemical vapour deposited (CVD) BDD films was demonstrated by Tokano et al [5, 6]. Discovery of superconductivity in diamond was immediately followed by theoretical works from various groups stressing on the study of the mechanism of superconductivity in BDD. Ab-initio calculations [7, 8] have revealed that beyond the critical concentration n_c, an insulator to metal transition (IMT) sets in and the impurity band merges with the valence band driving the Fermi level into the valence band. Thus, it was pointed out that superconductivity in BDD is due to a phonon mediated pairing mechanism. An alternative theory proposed by Baskaran suggests the existence of resonant valence bond (RVB)-type mechanism in the rigid impurity band of superconducting BDD [9, 10].

In addition to the aforementioned theoretical works, many noteworthy experimental works have been carried out. Among these works, mention can be made of the work by Bustarret et al [11], which showed the dependence of T_c on the doping level in high quality single crystalline diamond and Klein et al [12] studied boron doping induced IMT where the dependence of T_c on boron concentration (n_B) in granular BDD was demonstrated. The work by Willem et al [13] and Zhang et al [14], showed the microscopically inhomogeneous nature of superconductivity in BDD. Importance of spin ordering and disorder have been highlighted by Zhang et al, revealing ferromagnetism [15] and anomalous resistance peak [16, 17] in superconducting diamond. Furthermore, the spectroscopic studies that showed existence of hole states near the valence band maximum (VBM) using x-ray absorption spectroscopy (XAS) [18] and the angle resolved photoelectron spectroscopy (ARPES) studies of homoepitaxial BDD films by Yokoya et al which demonstrated merging of the impurity band into valence band in the metallic side of IMT [19].
Here, we present details of vortex dynamics in the superconducting BDD films. Despite extensive studies on the evolution of IMT with n_h in BDD and the exhaustive research on the electrical transport properties, work on magnetic properties of BDD in the superconducting regime is scarce. Discussions on the vortex phase diagram in the superconducting regime and existence of the possible effect of spin paramagnetism on pair breaking mechanism needs immediate attention. Critical information such as vortex dynamics and effect of disorder on flux pinning is still not understood. One of the reasons for this is because of the tremendous difficulties faced by the experimentalist in synthesizing samples with high T_c. It is, therefore, important for one to understand the flux dynamics in highly inhomogeneous and granular samples. Unlike in the case of high T_c and intermediate T_c superconductors \cite{20}, the issue of intrinsic vortex pinning in BDD has not been probed.

2. Experimental details

Granular intrinsic diamond film and BDD films were deposited on Si substrate using a hot filament chemical vapour deposition (HFCVD) reactor, which is described in detail elsewhere \cite{21}. Deposition of each film was carried out for 3 h. The substrate temperature was 850 °C and the chamber pressure during the deposition was maintained at 7 Torr. The flow rates of H$_2$ and CH$_4$ during the deposition process were maintained at 3000 sccm and 80 sccm, respectively. Boron doping was achieved by inletting B(CH$_3$)$_3$ gas during the depositions. Several depositions were carried out by systematically varying the concentrations of boron in the gaseous phase viz., 7500 ppm (D1), 8750 ppm (D2) and 9500 ppm (D3).

Thickness of the deposited films were found to be ~1.5 μm, as revealed by the cross-sectional SEM images (FESEM, Quanta 3D, FEI). Temperature dependent resistivity and Hall effect measurements were performed using physical property measurement system (PPMS, Quantum Design). Electrical transport measurements were carried out in a linear four probe configuration. Hall effect measurements were performed by passing a current of 35 μA. Hall concentrations are $n_h = 1.3 \times 10^{21} \text{cm}^{-3}$ (D1), $n_h = 2.0 \times 10^{21} \text{cm}^{-3}$ (D2) and $n_h = 2.2 \times 10^{21} \text{cm}^{-3}$ (D3). Magnetic measurements were carried out using SQUID based magnetic property measurement system (MPMS, Quantum Design). In all the magnetic measurements, the field was applied perpendicular to the plane of the film.

3. Results and discussion

3.1. Upper critical field

In the following discussions, T_c denotes the onset superconducting transition temperature. Figure 1 shows the resistivity versus temperature curves of the BDD films. T_c of the BDD films are 5.3 K (D1), 6.8 K (D2) and 7.2 K (D3). The normal state resistivity of the BDD films show weakly semiconducting nature with the activation energy less than 10 meV.
In order to understand the mechanism of superconductivity in BDD films, it is important to study the upper critical field \((\mu_0 H_c^2) \). It provides information on the coherence length \(\xi_{GL} \) and reflects the details of electronic interactions with the magnetic field thereby providing insight into the origin of the pairing strength and the pair breaking mechanism.

In type II superconductors, superconductivity is destroyed when magnetic field penetrates through the material in the form of vortices resulting in the reduction of its gap function [22]. As vortices start overlapping, the superconductor is driven to its normal state. Alternatively, for certain class of superconductors [23], existence of spin paramagnetic effects can lead to suppression of the upper critical field. Critical field, solely, due to paramagnetic effects in a superconductor gives rise to the paramagnetic upper critical field, \(\mu_0 H_c^2(0) = 1.86 T_c \) (in Tesla) [24, 25]. Also, according to the single band theory by Werthamer, Helfand and Hohenberg (WHH) [26], upper critical field for a weakly coupled superconductor in the dirty limit (\(\xi_{GL} > l \)) is the mean free path (i.e., \(\mu_0 H_c^2(0) = -0.692 T_c \frac{2H_c^2}{\alpha T_c} \), when Maki parameter [27] \(\alpha \) and the spin-orbit scattering constant \(\lambda_{so} \) are neglected. The relative effect of Pauli paramagnetism, an effect of the competition between the spin Zeeman energy and the superconducting condensation energy on upper critical field is expressed by the Maki parameter, \(\alpha = 1.414 \frac{H_c^2 \mu_0}{H_c^2(0)} \). Suppression of the upper critical field in a superconductor due to \(\alpha \) is given by \(H_c^2 = \left(\frac{H_c^2(0)}{\sqrt{1 + \alpha^2}} \right) \).

For the present samples, to reduce ambiguity due to the surface superconductivity and effects of vortex motion in the determination of upper critical field, we have used the 0.5\(\rho_0 \) criterion, where \(\rho_0 \) is the normal state resistivity just above \(T_c \). Superconducting parameters obtained from the resistive transitions in applied magnetic field are listed in table 1. Figure 2(a) shows dc resistivity of the BDD films as a function of temperature under applied field up to 5 T with an increment of 0.5 T. Clearly, \(\rho \) versus \(T \) broadens in the presence of applied magnetic field and \(T_c \) shifts to lower temperatures with increasing field. Field-induced broadening of superconducting transition width, remains almost constant for the samples and for the entire range of the applied field. \(\mu_0 H_c^2 \) scales with \(T_c \) which in turn is dependent on \(n_e \).

In figure 2(b), we show \(H_c^2(T) \) versus \(T \). Here, \(H_c^2(0) \) is shown by the continuous curve in olive. Evidently, WHH curves fit well to the experimental data and any further attempt to invoke spin paramagnetic effect (i.e. \(\alpha = 0 \)) leads to deviation of the fit from the experimental values as shown by the solid curves in red. Thus, by considering \(H_c^2(0) \) as the best value for upper critical field in the BDD films we have estimated Ginzburg-Landau coherence length for the films using \(\xi_{GL} = \left(\frac{\phi_0}{2\pi H_c^2(0)} \right)^{1/2} \), where \(\phi_0 \) is the flux quantum, this is listed in table 1. Our findings are in complete agreement with earlier reports in BDD, where upper critical fields were estimated using WHH theory [28], although no attempt was made to investigate spin paramagnetic effects in these reports [14, 29, 30]. Note that \(H_c^2(0) \) is larger than \(H_c^2(0) \), this further points to the fact that superconductivity in BDD is of a conventional BCS type. Spin paramagnetic effect is found to be important for superconductors with high critical fields. For instance, in A15 compounds [31] and in 11 Fe based systems [32], critical fields were found to be suppressed significantly due to spin paramagnetic effects and could be explained only when WHH models with \(\alpha = 0 \) is invoked. However, in the case of BDD, given the relatively low \(H_c^2(0) \) values, paramagnetic effects may not be important. In the above analysis, the effect of orbital pair breaking (\(\lambda_{orb} \)) is ignored as contribution from spin-orbit scattering is effective only in the case of large Z elements [33]. A conclusive test of \(\alpha \) and \(\lambda_{orb} \) effects in BDD, can be conveniently verified by similar studies at ultra-low temperatures in the milli-Kelvin temperature range.

Broadening of resistivity transitions in applied magnetic field is due to the flux motion, an indication of transition from the vortex lattice or vortex glass state into a vortex liquid state. To understand vortex dynamics in the superconducting BDD films, it is desirable to estimate pinning potential \(U_p \). In this section, we discuss thermally activated flux flow (TAFF) model first proposed by Anderson [34] and Kim [35] that became popular only after the work by Graybeal [36]. This model is employed to calculate pinning potential and to understand the role of thermal fluctuations in vortex dynamics. The necessary condition for applicability of this model is \(U_p > k_B T \). According to this model, even though thermal energy is significantly less than pinning potential energy, the flux bundles have finite probability to overcome a pinning energy barrier. Temperature and

Sample	\(\frac{dH_c^2}{dT} \) (TK\(^{-1}\))	\(\mu_0 H_c^2(0) \) (T)	\(\mu_0 H_c^2(0) \) (T)	\(\mu_0 H_c^2(0) \) (T)	\(\alpha \)	\(\xi_{GL} \) (nm)
D1	1.87	6.3	9.0	4.48	0.98	7.2
D2	1.77	7.2	10.9	5.2	0.93	6.7
D3	1.66	7.3	11.9	5.38	0.86	6.7
magnetic field dependence of resistivity $\rho(T, H)$ can be described by, $\rho = \rho_{0f} \exp \left(-\frac{U(T, H)}{kT} \right)$, where ρ_{0f} is a parameter and $U(T, H)$ is activation energy required for a vortex bundle to get depinned from a pinning centre of potential U_0. We assume that ρ_{0f} is independent of temperature and $U = U_0 \left(1 - \frac{T}{T_c} \right)$. The linear temperature dependence of activation energy U is valid only for the case in which applied current density for the measurement is sufficiently small. Then we have, $\ln \rho = \ln \rho_0 - \frac{U_0}{T}$ and $\ln \rho = \ln \rho_0 + \frac{U_0}{T}$. We show plots of $\ln \rho$ versus $\frac{1}{T}$ in figure 3, where it can be seen that below $10^{-2} \rho_0$, $\ln \rho$ versus $\frac{1}{T}$ is linear, clearly, representing a thermally activated region. The slopes U_0 are represented by the solid lines and its y intercept is $\ln \rho_0$. Each solid lines representing the slopes of the thermally activated regime under various fields, intersects at T_c for all the samples under investigation.

From the slopes of the experimental data, we get, $U_0 = 187$ K, 280 K, and 313 K for D1, D2 and D3, respectively, at the lowest applied field of 0.5 T. The sample with the highest n_h has the largest U_0 and decreases with decreasing n_h (or decreasing T_c). From the present findings, it is compelling to believe that the rigidity of the vortex lattice at low fields in BDD films is due to the inhomogeneity of boron content in the grains and due to the presence of grain boundaries.

Dependence of U_0 on H is expected to be inversely proportional, $U_0 \propto \frac{1}{H^{0.44}}$. In the presence of thermal fluctuations, however, field dependence of U_0 gets modified as $U_0 \propto H^{-\alpha}$. This phenomenon has been previously reported in various classes of superconductors [36, 38, 39]. Figure 4 depicts the field dependence of U_0. For applied magnetic fields less than 2.5 T, the magnetic field dependency is weak and it varies as, $U_0 \propto H^{-0.44}$ and for fields greater than 2.5 T, there is a strong magnetic field dependency with $U_0 \propto H^{-1.22}$. Such a crossover is due to changeover from a single vortex pinning regime to a regime where interactions between flux lines become significant, a result of weakening of pinning potential as the applied magnetic field is increased. Taking into consideration the field dependencies, field and temperature dependent resistivity can be written as $\rho \sim \rho_{0f} \exp \left(\frac{U_0 \left(1 - \frac{T}{T_c} \right)}{kT} \right)$, for fields less than 2.5 T and $\rho \sim \rho_{0f} \exp \left(\frac{U_0 \left(1 - \frac{T}{T_c} \right)}{kT H^{1.22}} \right)$ for fields greater than 2.5 T.
3.2. Magnetization and the critical current density

Figure 5 shows magnetization versus temperature curves obtained using an applied field of 10 Oe. Samples cooled below \(T_{\text{c,zero}} \) without applied field and then turning on the field during heating through \(T_{\text{c,zero}} \), results in the low temperature zero-field-cooled (ZFC) flux exclusion curves. Whereas, cooling through \(T_{\text{c,zero}} \) in the field results in the low-temperature field-cooled (FC) flux expulsion. Diamagnetic response starts to drop at 3.6 K for D1, 5.5 K for D2 and at 5.8 K for D3. Clearly, there are inconsistencies in \(T_{\text{c,zero}} \) obtained from magnetization and resistivity measurements. This is due to the fact that the superconducting network for channelling of Cooper pairs in the resistivity measurement is developed much earlier compared to the establishment of bulk

![Figure 3](image3.png)

Figure 3. Arrhenius plots of BDD films derived from the resistivity versus temperature curves under applied field in the superconducting region. Each solid line represents the slope in thermally activated regime in the region of \(\rho < 10^{-2} \rho_n \). The point of intersection of the slopes is \(T_c \).

![Figure 4](image4.png)

Figure 4. Field dependence of the pinning potential \(U_0 \) for the superconducting boron doped diamond films D1, D2 and D3.
superconductivity, as required for the measurable diamagnetic response from the films. Difference between the temperature at which the onset of superconducting diamagnetic response is observed and the irreversible temperature at which ZFC and FC curves bifurcate during the temperature cycle of the measurement is 0.5 K. Shielding fraction as evidenced from ZFC diamagnetic susceptibility is 74% and 80% for D2 and D3 respectively. Certainly, an overestimation of the superconducting volume fraction as the presence of normal precipitates in the form of non-homogeneity and grain boundaries is appreciable in granular BDD films. Since D1 has a lower T_c, zero, it was not possible to obtain saturation in the diamagnetic response up to 2 K.

To further understand the magnetic response of the superconducting films, field dependence of magnetization measurements were carried out. We show the isothermal magnetic hysteresis loops (MHLs) of the BDD films in figure 6(a). MHLs were obtained with a perpendicular field up to 500 Oe at 2 K, 3.5 K, and 5 K for D2 and D3, and for D1, it was obtained at 2 K. Irreversible magnetization decreases monotonously with an increase in the applied field and the MHLs are nearly symmetric about $M = 0$ axis. Critical current density, a technologically important parameter is estimated from the MHLs using critical state Bean model [40]. This model assumes that a superconductor is driven to a critical state as soon as magnetic field enters into it and $F_L = F_P$, where F_L and F_P are Lorentz force and pinning force, respectively. Although this model is constructed on simplistic assumptions, results obtained using this model are realistic in estimating the critical current density of superconductors. In the present calculations for critical current density of the BDD films, we have used the expression for J_c as $J_c = \frac{20\Delta M}{a^2d(1-\frac{b}{a})}$, here, $a = 2.5$ mm and $b = 2$ mm are the sides of the film, $d = 1.5$ μm is the thickness of the film, ΔM is the difference of magnetization between the increasing and decreasing field and represents the degree of hysteresis [41]. As shown in figure 6(b), the measured self-field J_c is of the order of 10^3 A/cm2 and it decreases monotonously with increasing field for all of the films under investigation. The significantly large self-field $J_c (= 30 \times 10^3$ A/cm2) in the present samples as compared to the self-field J_c ($\sim 10^4$ A/cm2) of polycrystalline BDD samples [14, 42] can be attributed to (1) relatively high T_cs in the present samples, (2) larger grain boundary content and the smaller grain sizes (average grain size 300 nm) that can enhance effective flux pinning and (3) the orientation of the film with respect to the applied magnetic field, as the effective number of vortices are expected to be maximum for the field applied perpendicular to the plane of the film.

4. Conclusions

In conclusion, we have synthesized boron doped diamond (BDD) films by systematically varying the boron concentrations and established their bulk superconductivity by electrical transport and magnetization
measurements. Investigation of the upper critical field revealed that the effect of Pauli paramagnetism is not important for the BDD films. The film with the highest boron concentration ($n_B = 2.2 \times 10^{21} \text{cm}^{-3}$ (D3)) showed a T_c of 7.2 K and the upper critical field, $H_{c2}(0) = 7.3$ T. Pinning potential of BDD films were obtained using TAFF model and was found to be of the order of 10^2 K. We estimated the critical current using the critical state Bean model and found that the self-field $J_c \sim 10^7 \text{A/cm}^2$.

Acknowledgments

Authors would like to thank the financial support from Department of Science and Technology (DST) that led to the establishment of Nano Functional Materials Technology Centre (NFMT) (SR/NM/NAT/02–2005).

ORCID iDs

Dinesh Kumar @ https://orcid.org/0000-0002-7505-5984
Shibnath Samanta @ https://orcid.org/0000-0003-3662-1514
K Sethupathi @ https://orcid.org/bp0000-0002-2948-4737
M S Ramachandra Rao @ https://orcid.org/0000-0002-7806-2151

References

[1] Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K and Jackman R B 2008 Growth, electronic properties and applications of nanodiamond Diamond. Relat. Mater. **17**, 1080–8
[2] Haenen K, Lazea A, Barjon J, D’Haen J, Habka N, Teraji T, Koizumi S and Mortet V 2009 P-doped diamond grown on (110)-textured microcrystalline diamond: growth, characterization and devices J. Phys. Condens. Matter. **21**, 364204
[3] Cai H et al 2015 Analysis of the spectroscopy of a hybrid system composed of a superconducting flux qubit and diamond NV-centers J. Phys. Condens. Matter. **27**, 345012
[4] Ekimov E A, Sidorov V A, Bauer E D, Mel’Nik N N, Curro N J, Thompson J D and Stishov S M 2004 Superconductivity in diamond Nature **428**, 542–5
[5] Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T, Kobayashi K, Umezawa H and Kawarada H 2004 Superconductivity in diamond thin films well above liquid helium temperature Appl. Phys. Lett. **85**, 2851–3
[6] Takano Y 2009 Superconductivity in CVD diamond films J. Phys. Condens. Matter. **21**, 253201
[7] Boeri L, Kortus J and Andersen O K 2004 Three-Dimensional MgB₂-Type Superconductivity in Hole-Doped Diamond Phys. Rev. Lett. 93 237002
[8] Blase X, Adessi C and Connetable D 2004 Role of the dopant in the superconductivity of diamond Phys. Rev. Lett. 93 237004
[9] Baskaran G 2008 Resonating valence bond mechanism of impurity band superconductivity in diamond J. Supercond. Nov. Magn. 21 45–9
[10] Baskaran G 2006 Strongly correlated impurity band superconductivity in diamond: x-ray spectroscopic evidence Sci. Tech. Adv. Mater 7 549–53
[11] Bustarret E, Kačmarčík J, Marcenat C, Gheeraert E, Cytermann C, Marcus J and Klein T 2004 Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films Phys. Rev. Lett. 93 237005
[12] Klein T et al 2007 Metal-insulator transition and superconductivity in boron-doped diamond Phys. Rev. B. 75 165313
[13] Willems B L et al 2009 Intrinsic granularity in nanocrystalline boron-doped diamond films measured by scanning tunnelling microscopy Phys. Rev. B. 80 224518
[14] Zhang G et al 2014 Global and Local Superconductivity in Boron-Doped Granular Diamond Adv. Mater. 26 2034–40
[15] Zhang G et al 2017 Superconducting ferromagnetic nanodiamond ACS Nano 11 5358–66
[16] Zhang G et al 2016 Bosonic anomalies in boron-doped polycrystalline diamond Phys. Rev. Appl. 6 064011
[17] Zhang G, Zolemnik M, Vanacken J, May P W and Moshchalkov V V 2013 Metal bosonic insulator superconductor transition in boron-doped granular diamond Phys. Rev. Lett. 110 077001
[18] Nakamura I et al 2008 Holes in the valence band of superconducting boron-doped diamond film studied by soft x-ray absorption and emission spectroscopy J. Phys. Soc. Jpn. 77 054710/1-4711
[19] Yokota T, Nakamura T, Matsushita M, Muro T, Takano Y, Nagao M, Takenouchi T, Kawarada H and Oguchi T 2005 Origin of the metallic properties of heavily boron-doped superconducting diamond Nature 438 647–50
[20] Kumar D, Muralidhar M, Higuchi M, Rao M R and Murakami M 2017 Raman spectroscopy of carbon doped MgB₂ prepared using carbon encapsulated boron as precursor J. Alloy. Compd. 723 753–6
[21] Chandran M, Tiwari B, Kumaran C R, Samji S K, Bhattacharya S S and Ramachandra Rao M R 2012 Integration of perovskite PZT thin films on diamond substrate without buffer layer J. Phys. D: Appl. Phys. 45 202001
[22] Abrahams E and Si Q 2011 Quantum criticality in the iron pnictides and chalcogenides J. Phys. Condens. Matter. 23 223201
[23] Lee H S, Bartkowiak M, Park J H, Lee J Y, Kim J Y, Sung N H, Cho B K, Jung C U, Kim J S and Han H J 2009 Effects of two gaps and paramagnetic pair breaking on the upper critical field of SmFeAsO₁₋ₓ, SmFe₃As₁₋ₓOₓ, single crystals Phys. Rev. B 80 144512
[24] Clogston A M 1962 Upper limit for the critical field in hard superconductors Phys. Rev. Lett. 9 266
[25] Chandrasekhar B S 1962 A note on the maximum critical field of high-field superconductors Appl. Phys. Lett. 1 7–8
[26] Wettlamer N R, Helfand E and Hohenberg P C 1966 Temperature and purity dependence of the superconducting critical field, H_{c2}, III. Electron spin and spin-orbit effects Phys. Rev. 147 295
[27] Maki K 1966 Effect of Pauli paramagnetism on magnetic properties of high-field superconductors Phys. Rev. 148 362
[28] Abdel-Hafia M et al 2017 High-pressure behavior of superconducting boron-doped diamond Phys. Rev. B 95 174519
[29] Zhang G et al 2011 Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD Phys. Rev. B. 84 214517
[30] Okazaki H, Wakita T, Muro T, Nakamura T, Muraoka Y, Yokoya T, Kurihara S I, Kawarada H, Oguchi T and Takano Y 2012 Signature of high T_c above 25 K in high quality superconducting diamond Appl. Phys. Lett. 106 052601
[31] Otto G, Sauer E and Wiigall H 1969 Critical data of some A15 type superconductors in transverse fields up to 230 kOe J. Low Temp. Phys. 5 19–28
[32] Iida T, Matsunaga T, Hagiwara M, Mizuguchi Y, Takano Y and Kindo K 2009 Upper critical fields of the 11-system iron–chalcogenide superconductor FeSe₀₋ₓ Te₀₋ₓ Phys. Rev. Lett. 103 117001
[33] Neuringer I J and Shapira Y 1966 Effect of spin–orbit scattering on the upper critical field of high-field superconductors Phys. Rev. Lett. 17 81
[34] Anderson P W 1962 Theory of flux creep in hard superconductors Phys. Rev. Lett. 9 309
[35] Kim Y B, Hemstead C F and Straun A R 1963 Flux creep in hard superconductors Phys. Rev. 131 2486
[36] Graybeal J M and Beasley M R 1986 Observation of a new universal resistive behavior of two-dimensional superconductors in a magnetic field Phys. Rev. Lett. 56 173
[37] Tinkham M 1988 Resistive transition of high-temperature superconductors Phys. Rev. Lett. 61 1658
[38] Wang X L et al 2010 Very strong intrinsic flux pinning and vortex avalanches in (Ba, K)Fe₂As₂ superconducting single crystals Phys. Rev. B. 82 024525
[39] Palstra T T M, Batlogg B, Van Der R B, Schneemeyer I F and Waszczak J V 1990 Dissipative flux motion in high-temperature superconductors Phys. Rev. B. 41 6621
[40] Bean C P 1964 Magnetization of high-field superconductors Rev. Mod. Phys. 36 31
[41] Muralidhar M and Murakami M 2000 Effect of matrix composition on the flux pinning in a (Nd, Eu, Gd)Ba₂Cu₃Oᵧ superconductor Phys. Rev. B. 62 1391
[42] Matsui K, Yamamoto T, Watanabe T, Kamihara Y and Einaga Y 2013 Modulation of critical current density in polycrystalline boron-doped diamond by surface modification Phys. Status Solidi B 250 1943–9