Human Milk: Immunologic-Nutritional Relationships

ARMOND S. GOLDMAN AND RANDALL M. GOLDBLUM

The Departments of Pediatrics, Microbiology, Human Biological Chemistry, and Genetics, The University of Texas Medical Branch Galveston, Texas 77550

INTRODUCTION

The incidence and severity of certain bacterial and viral infections of the intestinal tract and respiratory system are significantly lower in breast-fed compared to non-breast-fed infants (TABLE 1). The protection provided by breast feeding includes a contraceptive effect and a lesser exposure of breast-fed infants to infectious agents (TABLE 2). Even when the breast-fed infant ingests pathogenic bacteria during nursing, often no enteric symptoms develop.3-5 These observations lead to the prediction that the protection afforded by human milk was due to antimicrobial agents in human milk. That prediction proved to be correct.6 It is now recognized that the spectrum of protective agents in human milk includes not only preformed direct acting antimicrobial agents but also 1) agents created through limited digestion of substrates in milk, 2) antiinflammatory factors, and 3) immunostimulants (TABLE 2).

Direct Acting Antimicrobial Agents in Human Milk

The antimicrobial system in human milk consists of a complex group of biochemical agents. Although they differ widely in their structures, they commonly occur at other mucosal sites (TABLE 3), persist throughout lactation,7-10 resist digestion in the alimentary tract, and protect by noninflammatory mechanisms.

Lactoferrin

Lactoferrin, a member of the transferrin family of iron-binding glycoproteins, has a Mr of about 80 kDa and two lobes, each of which contains a ferric iron binding site.11 Lactoferrin is one of the most prominent whey proteins in human milk.7-12 Although most of the protein is intact, a 20-kDa fragment corresponding to half of the N lobe of the protein has recently been found in human milk.12 About 80% of the iron-binding sites on human milk lactoferrin are unsaturated. The apoprotein competes with siderophilic bacteria for ferric iron and thus interferes with the multiplication of those microorganisms.13 A great deal of the apoprotein is ingested by breast-fed mature infants during the first several months of life10 (TABLE 4). A number of fecal excretion studies suggest that some

*Address for correspondence: Armond S. Goldman, M.D., Department of Pediatrics, Division of Immunology/Allergy, Room C2-35 Child Health Center, The University of Texas Medical Branch, Galveston, Texas 77550.
of the ingested apoprotein persists throughout the alimentary tract, \(^{14-16}\) although an increase in the production of lactoferrin at the mucosal site of the infant is an alternative possibility. \(^{12}\) In addition to the antimicrobial effects, lactoferrin may positively influence cell growth \(^{17}\) and negatively effect inflammation. \(^{18,19}\) Comparatively little is known, however, about the fate and functions of this factor in the recipient.

Lysozyme (N-Acetylmuramide Glyconohydralose)

Lysozyme, a 12-kDa single chain protein, is found in relatively high concentrations in external secretions including human milk (TABLE 3). Lysozyme lyses susceptible bacteria by hydrolyzing β-1,4 linkages between N-acetylmuramic acid and 2-acetylamino-2-deoxy-D-glucose residues in cell walls. \(^{20}\) Large amounts of this enzyme are provided to the infant by breastfeeding. \(^{21,22}\) The agent is relatively resistant to digestion by trypsin \(^{21}\) or denaturation due to acid. \(^{22}\) It was thus anticipated that this enzyme in human milk would persist in the gastrointestinal tract of the recipient infant. The amount of lysozyme that is excreted in the stools of human-milk-fed, low birth weight infants is in fact about eight times that in cow’s-milk-fed infants. \(^{15}\) Otherwise, the *in vivo* fate and functions of the agent remain to be determined.

Secretory IgA

Secretory IgA comprises over 90% of the immunoglobulin in human milk. \(^{7-10}\) This immunoglobulin is formed through two intricate processes. The first is the entero-bron-
TABLE 3. Characteristics of Host Protective Agents in Human Milk

1. Diverse group of compounds common to mucosal sites.
2. Agents adapted to survive in the alimentary tract.
3. Agents interact with each other and with defense factors in the infant.
4. Factors protect by noninflammatory mechanisms.
5. Agents decrease attack rate and/or lessen the injurious effects of infections.

cho-mammary pathway for the migration of B lymphocytes that mature into polymeric IgA-producing plasma cells that populate the subepithelial zones. The second is the binding of polymeric IgA to polymeric immunoglobulin receptors (membrane bound secretory component) located on the basolateral plasma membranes of epithelial cells of the mammary gland and the subsequent transport of polymeric IgA complexed with a major fragment of its receptor through the epithelial cell and secretion of the assembled complex into milk. These processes may be regulated by hormones produced late in pregnancy or during lactation and by cytokines. The specificities of secretory IgA antibodies in human milk are a reflection of the enteric and respiratory antigens that trigger the migration of B lymphocytes into the entero- and broncho-mammary pathways. For example, a bacterial antigen taken up by M cells overlying Peyer's patches is recognized by B cells that bear specific antibodies against the antigen. Under the influence of interleukin 5, the isotype of the cell surface antibodies switches from IgM to IgA. These IgA-bearing B cells then enter afferent lymphatics and migrate sequentially to mesenteric lymph nodes, the cisterna chyli, thoracic duct, and systemic circulation and then home to the mammary gland where they undergo terminal maturation to plasma cells that produce polymeric IgA antibodies against the original eliciting antigen. Therefore, secretory IgA antibodies are directed against many important epitopes of enteric and respiratory pathogens. Considerable amounts of these antibodies are ingested by the nursing infant particularly during the first months of complete breast feeding. Furthermore, evidence is mounting that protection by breast feeding against enteric pathogens such as enteropathogenic Escherichiae coli or Vibrio cholerae is in large part due to specific secretory IgA antibodies in human milk.

Fibronectin

Fibronectin, a high molecular weight protein that facilitates the uptake of many types of particulates by phagocytic cells, is present in human milk (mean concentrations in colostrum, 13.4 mg/L).

TABLE 4. Major Antiinflammatory Agents in Human Milk

1. Agents that double as direct protective agents.
2. Antioxidants.
3. Enzymes that degrade inflammatory mediators.
4. Anti-enzymes.
5. Cytoprotective agents.
6. Modulators of leukocyte activation.
Oligosaccharides-Glycoconjugates

Human milk is rich in carbohydrate moieties, some of which protect against bacterial pathogens.35--39 They include monosialogangliosides that are receptor analogues for the heat labile toxins from \textit{E. coli} and \textit{V. cholerae}, fucose containing oligosaccharides that inhibit the binding of the classical strain of \textit{V. cholerae}, and mannose containing high molecular weight glycoproteins block the binding of the El Tor Strain of \textit{V. cholerae}. Glycoproteins as well as glycolipids interfere with the binding of CFA/II fimbriae on enterotoxigenic \textit{E. coli} onto epithelial cells. Moreover, human milk oligosaccharides interfere with the adherence of \textit{Streptococcus pneumoniae} and \textit{Haemophilus influenzae}. GlcN\textsubscript{R}c(1\textendash 3) Gal-disaccharide units may aid in blocking the attachment of \textit{Streptococcus pneumoniae}. The nonnutritive functions of other carbohydrate compounds in human milk is still undetermined.

Leukocytes

Living white blood cells are present in human milk. The concentrations of these leukocytes are highest in the earliest phase of lactation and gradually decline during the next 2--3 months of milk production.7 Neutrophils and macrophages are the most prominent cells in human milk. Although human milk neutrophils are phagocytic, they are unable to adhere to common substrata, move as rapidly as neutrophils from venous blood,40--43 or respond to chemotactic agents.42 In contrast, macrophages in milk are far more motile than their counterparts, the blood monocytes.43 Human milk macrophages have also been found to produce toxic oxygen radicals44 and the protein products of the class I and II genes in the major histocompatibility complex.45

Lymphocytes are also found consistently in human milk. They are principally T cells and the relative frequencies of the major subsets of T cells (CD3+4+ and CD3+8+ cells) in human milk are similar to those in human blood.46 The cytotoxic responses of these cells are poor,47 but the cells are capable of generating certain lymphokines including interferon-\textgamma and monocyte chemotactic factor.48,49 The \textit{in vivo} role of these cells remains to be explored.

Protective Factors Produced by Limited Enzymatic Digestion of Substrates from Human Milk

Human milk may also protect by supplying substrates that are partially digested in the recipient’s alimentary tract to produce defense factors. Fatty acids and monoglycerides
produced from milk fats by lipases in milk or from the recipient are able to disrupt enveloped viruses.50,51 These antiviral lipids may aid in preventing coronavirus infections of the intestinal tract.52 They may also defend against intestinal parasites such as \textit{Giardia lambdia}.53 Similar antimicrobial lipids are generated from fat found in cow’s milk. The second example is the production of \(\beta\)-casomorphins from ingested human \(\kappa\)-casein.54 These peptide fragments have opioid effects,55 but the agent has also been found to be an immunostimulant.56

Fragments of human lactoferrin have also been demonstrated in the stools of human milk-fed infants.15 A 20-kDa fragment of lactoferrin has been described in human milk,12 but the multiplicity of fragments in the stools suggests that apolactoferrin from human milk feedings or produced in the alimentary tract is partially cleaved in the gastrointestinal tract of the recipient. Similar fragments of lactoferrin have been demonstrated in the urine of those infants57 suggesting that they originated from those produced in the gastrointestinal tract. The role of these fragments in those excreta is undetermined.

Finally, it is also possible that other immunologic factors are compartmentalized in human milk and are released during intestinal digestion. This is likely given the complex physical structure of human milk.

Promotion of Protective Microflora

It has been known for many years that human milk contains growth promoters of the dominant resident bacteria in the lower intestinal tract of breast-fed infants.58 Certain oligosaccharides promote the growth of lactobacilli in the lower intestinal tract of the infant. Acetic acid produced by those bacteria in turn inhibits the multiplication of bacterial pathogens such as \textit{E. coli}, \textit{salmonella}, or \textit{shigella}.

Antiinflammatory Effects of Human Milk

One of the extraordinary features of the protection afforded by human milk is the virtual absence of clinical signs of inflammation during the process. This may be due in part to the more rapid elimination or neutralization of microbial pathogens by defense agents from human milk, but other features of human milk suggest that this is not the sole explanation. Phlogistic agents and the biochemical systems that give rise to them are poorly represented in human milk.59,60 Moreover, human milk contains a host of anti-inflammatory agents59,60 (TABLE 4). Some of these antiinflammatory agents, such as lactoferrin, secretory IgA, and lysozyme, double as antimicrobial factors. Like the antimicrobial factors, they are well adapted to operate in the hostile environment of the alimentary tract. In addition, two of the agents, \(\alpha\)-tocopherol61 and \(\beta\)-carotene62 are absorbed into the circulation where they may have systemic effects.

Inducers of Immunity in Human Milk

A number of experimental observations suggest that human milk actively as well as passively protects the recipient infant. Several reports claim that the production of IgA at mucosal sites is enhanced by human milk.15,57,63–66 Although in most of those studies it has been difficult to exclude the effect of passively transferred secretory IgA, in two investigations the excretion of IgA was increased in the urinary tract,57,66 a system far removed from direct contact with human milk. Furthermore, in one report the urinary excretion of secretory component was also remarkably increased in infants fed human
milk. Since the Mr of these proteins far exceeds the size of molecules filtered by glomeruli, and since neither secretory component nor secretory IgA are specifically transported from the systemic circulation into epithelial cells, it is most likely that human milk feedings stimulated the synthesis of secretory component by epithelial cells in the urinary tract and that this in turn enhanced the transport of secretory IgA into the urine of the infants. The components in human milk that may be responsible for such an enhancement are undetermined at this time.

The second piece of evidence is the response of breast-fed infants to respiratory syncytial virus (RSV). As compared to infants who were not breast fed, serum levels of interferon-α were strikingly increased in breast fed infants in the first 2–4 weeks after RSV infection. Since there is little interferon-α in human milk, it seems likely that human milk is able to prime leukocytes in the host to produce that cytokine. In addition, there is some evidence that the plasma concentrations of fibronectin appear to be higher in breast-fed than non-breast-fed infants (237 and 17/mg/L, respectively). Since the amount of ingested fibronectin is not sufficient to account for the increment in plasma fibronectin that has been observed, it seems likely that human milk induces the synthesis of that opsonic protein in the infant.

If human milk stimulates certain defense systems in the infant, one might predict that the effects might lead to long lasting resistance. Supporting epidemiologic evidence for that premise has been mounting for the past several years. The incidence of juvenile diabetes mellitus appears to be less among children who have been breast fed during infancy. In addition, a recent retrospective analysis suggests that breast feeding lessens the risk from lymphomas. In each of these retrospective studies, considerable reliance has been placed upon the ability of mothers to recall the type and duration of feeding given to their offspring; yet recall of events that transpired many years beforehand may be suspect. Undoubtedly, prospective studies of the possible long-term protective role of human milk will be required to further explore the possible long-term immunologic benefits of human milk.

The last piece of evidence comes from the discovery of immunostimulators in human milk. It was previously noted that human milk contains a high concentration of α-tocopheral. In addition to its antioxidant effects, the vitamin is known to stimulate the development of immunity. More recently it was reported that agents in the human milk activate the random motility of human monocytes. The discovery eminated from observations that macrophages from human milk are more motile than monocytes from human blood. It was therefore predicted that human milk would contain chemokinetic agents for human monocytes. In subsequent investigations, it was found that the rate of movement of blood monocytes was increased by incubating them in human milk. The activators of monocytes were heat-sensitive, acid-resistant proteins. Three peaks of chemokinetic activity were found by column chromatography to correspond to 50–55, 20–25, and 15–20 kDa. Furthermore, the chemokinetic activities were significantly decreased by antibodies to one of the major monokines, tumor necrosis factor-α. The identity of these chemokinetic agents is still uncertain, but it is possible that one or more of the activators may be tumor necrosis factor-α, immunologically similar agents, or agents that stimulate the production of that cytokine.

Coda

Human milk emerges as a complex system of nutrients, some of which double as defense agents; preformed host defense agents that are comparatively resistant to digestion; defense agents produced by partial digestion of substrates from human milk; anti-inflammatory factors; growth factors for protective microflora; and agents that speed the
maturation of defense systems. The results of metabolic balance studies in breast-fed infants provide an insight into the ultimate fate of the members of the defense systems in human milk. It appears that the bulk of these lipids, carbohydrates, and proteins must be utilized to meet the nutritional requirements of the breast-fed infant. Given the resistance of many of the components to digestive processes, it appears that the agents are not completely degraded until they reach the more distal regions of the alimentary tract, or after they are absorbed for systemic use. The precise ways in which these efficient defense systems in human milk operate in the recipient to directly fend off infections, minimize phlogistic reactions, or speed the maturation of the infant's defense systems should be the subject of intense study during the next decade. These investigations may well include the binding of defense agents to epithelial receptors, the consequences of receptor binding, the systemic absorption of certain components and their distribution and fate in the body, the site of and rate of digestion of the components, the specificity of the in vivo actions of the components directly upon microbial pathogens, the in vivo role of antiinflammatory agents, and the nature of and short- and long-term effects of immunologic stimulators upon the recipient.

REFERENCES

1. KRAMER, M. S. 1987. Breast feeding and child health: Methodologic issues in epidemiologic research. In Human Lactation 3. The Effects of Human Milk on the Recipient Infant. A. Goldman, S. A. Atkinson & L. A. Hanson, Eds. 339–360. Plenum Press. New York & London.
2. CUNNINGHAM, A. S. 1981. Breast-feeding and morbidity in industrialized countries: An update. In Advances in International Maternal and Child Health. D. B. Jelliffe & E. F. P. Jelliffe, Eds. 128–168. Oxford University Press. New York, NY.
3. MATA, L. J., J. J. URRUTIA & J. E. GORDON. 1967. Diarrheal disease in a cohort of Guatemalan village children observed from birth to age two years. Trop. Geogr. Med. 19: 247–257.
4. MATA, L. J., J. J. URRUTIA, B. GARCIA, P. FERNANDEZ & M. BEHAR. 1969. Shigella infection in breast-fed Guatemalan Indian neonates. Am. J. Dis. Child. 117: 142–146.
5. WYATT, R. G. & L. J. MATA. 1969. Bacteria in colostrum and milk of Guatemalan Indian women. J. Trop. Pediatr. 15: 159–162.
6. GOLDMAN, A. S. & C. W. SMITH. 1973. Host resistance factors in human milk. J. Pediatr. 82: 1082–1090.
7. GOLDMAN, A. S., C. GARZA, B. L. NICHOLS & R. M. GOLDBLUM. 1982. Immunologic factors in human milk during the first year of lactation. J. Pediatr. 100: 563–567.
8. GOLDMAN, A. S., R. M. GOLDBLUM & C. GARZA. 1983. Immunologic components in human milk during the second year of lactation. Acta Paediatr. Scand. 72: 461–462.
9. GOLDMAN, A. S., C. GARZA, C. A. JOHNSON, B. L. NICHOLS & R. M. GOLDBLUM. 1983. Immunologic components in human milk during weaning. Acta Paediatr. Scand. 72: 133–134.
10. BUTTE, N. F., R. M. GOLDBLUM, L. M. FEHL, K. LOFTIN, E. O. SMITH, C. GARZA & A. S. GOLDMAN. 1984. Daily ingestion of immunologic components in human milk during the first four months of life. Acta Paediatr. Scand. 73: 296–301.
11. ANDERSON, B. F., H. M. BAKER, E. J. DOODSON, G. E. NORRIS, S. V. RUMBALL, J. M. WATERS & E. N. BAKER. 1987. Structure of human lactoferrin at 3.2–Å resolution. Proc. Natl. Acad. Sci. USA 84: 1769–1773.
12. MONTI, J. C., A.-F. MERMOUD & P. JOLLES. 1989. Anti-bovine β-lactoglobulin antibodies react with a human lactoferrin fragment and bovine β-lactoglobulin present in human milk. Experientia 45: 178–180.
13. STEPHENS, S., J. M. DOLBY, J. MONTREUIL & G. SPIK. 1980. Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactoferrin and secretory immunoglobulin A isolated from human milk. Immunology 41: 597–603.
14. SPIK, G., B. BRUNET, C. MAZURIER-DEHAINE, G. FONTAINE & J. MONTREUIL. 1982. Characterization and properties of the human and bovine lactotransferrins extracted from the feces of newborn infants. Acta Paediatr. Scand. 71: 979–985.

15. SCHANLER, R. J., R. M. GOLDBLUM, C. GARZA & A. S. GOLDMAN. 1986. Enhanced fecal excretion of selected immune factors in very low birth weight infants fed fortified human milk. Pediart. Res. 20: 711–714.

16. PRENTICE, A., G. EWING, S. B. ROBERTS, A. LUCAS, A. MACCARTHY, L. M. A. JARJOU & R. G. WHITEHEAD. 1987. The nutritional role of breast-milk IgA and lactoferrin. Acta Paediatr. Scand. 76: 592–598.

17. NICHOLS, B. L. K. S. MCKEE, J. F. HENRY & M. PUTMAN. 1987. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediart. Res. 21(6): 563–567.

18. Kulstra, A. & S. H. M. Jeurissen. 1982. Modulation of classical C3 convertase of complement tear lactoferrin. Immunology 47: 263–270.

19. RICHE, E. R., J. K. HILIARD, R. GILMORE & D. J. GILLESPIE. 1987. Human milk-derived lactoferrin inhibits mitogen and alloantigen induced human lymphocyte proliferation. J. Reprod. Immunol. 12: 137–148.

20. Chipman, D. M. & N. SHARON. 1969. Mechanism of lysozyme action. Science 165: 454–465.

21. Jolles, J. & P. JOLLES. Human tear and human milk lysozymes. 1967. Biochemistry 6: 411–417.

22. Haneberg, B. & P. FINNE. 1974. Lysozymes in feces from infants and children. Acta Paediatr. Scand. 63: 588–594.

23. WEIZ-CARRINGTON, P., M. E. ROUX, M. McWILLIAMS, J. M. PHILIPS-QUAGLITA & M. E. LAMM. 1978. Hormonal induction of the secretory immune system in the mammary gland. Proc. Natl. Acad. Sci. USA 75: 2928–2932.

24. GOLDBLUM, R. M., S. AHLSTEDT, B. CARLSSON, L. A. HANSON, U. JODAL & G. LINDBJANSON. 1975. Antibody-forming cells in human colostrum after oral immunization. Nature 257: 797–799.

25. Roux, M. E., M. McWILLIAMS, J. M. PHILIPS-QUAGLIATA, P. WEISZ-CARRINGTON & M. E. LAMM. 1977. Origin of IgA-secreting plasma cells in the mammary gland. J. Exp. Med. 146: 1311–1322.

26. Fishaut, M., D. Murphy, M. Neffert, K. Mcintosh & P. L. Ogura. 1981. Bronchomammary axis in the immune response to respiratory syncytial virus. J. Pediatr. 99: 186–191.

27. Mostov, K. E. & G. A. Blobel. 1982. A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J. Biol. Chem. 257: 11816–11821.

28. SOLARI, R. & J. P. KRAEHENBUHL. 1984. Biosynthesis of the IgA antibody receptor: A model for the transepithelial sorting of a membrane glycoprotein. Cell 36: 61–71.

29. SOLID, L. M., D. KVALE, P. BRANDTZAEGER, G. MARKVUSSEN & E. THORSBY. 1987. Interferon-γ enhances expressing of secretory component, the epithelial receptor for polymeric immunoglobulins. J. Immunol. 138: 4303–4306.

30. KVALE, D., D. LOVHAUG, L. M. SOLID & P. BRANDTZAEGER. 1983. Tumor necrosis factor-α upregulates expression of secretory component of the epithelial receptor for polymeric Ig. J. Immunol. 140: 3086–3089.

31. GOLDMAN, A. S. & R. M. GOLDBLUM. 1986. Immunoglobulins in human milk. In Natural Antimicrobial Systems. R. G. Board, Ed. 7–17. International Dairy Federation, Brussels, Belgium & Bath University Press, Bath, U.K.

32. Glass, R. I., A-M. SVENNERHOLM, B. J. STOLL, M. R. KHAN, K. M. Belayet HOSSAIN, M. IMADUL HUQ & J. HOLMGREN. 1983. Protection against cholaera in breast-fed children by antibodies in breast milk. N. Engl. J. Med. 308: 1389–1392.

33. CRUZ, J. R., L. GIL, F. CANO, P. CACERES & G. PAREJA. 1988. Breast milk anti-Escherichia coli heat-labile toxin IgA antibodies protect against toxin-induced infantile diarrhea. Acta Paediatr. Scand 77: 658–662.

34. H. E. FRISS, L. G. RUBIN, S. CARSON, J. BARANOWSKI & P. J. LIPSHITZ. 1988. Plasma fibronectin concentrations in breast fed and formula fed neonates. Arch. Dis. Child. 63: 528–532.

35. Holmgren, J., A-M. SVENNERHOLM & C. AHREN. 1981. Nonimmunoglobulin fraction of
human milk inhibits bacterial adhesion (hemagglutination) and enterotoxin binding of *Escherichia coli* and *Vibrio cholerae*. Infect. Immun. 33: 136–141.

36. OTNAESS, A-B. & A-M. SVENNERHOLM. 1982. Non-immunoglobulin fraction of human milk protects against enterotoxin-induced intestinal fluid secretion. Infect. Immun. 35: 738–740.

37. OTNAESS, A. K., A. LAEGREID & K. ERTRESVAG. 1983. Inhibition of enterotoxin from *Escherichia coli* and *Vibrio cholerae* by gangliosides from human milk. Infect. Immun. 40: 563–569.

38. CLEARY, T. G., J. P. CHAMBERS & L. K. PICKERING. 1983. Protection of suckling mice from the heat-stable enterotoxin of *Escherichia coli* by human milk. J. Infect. Dis. 148: 1114–1119.

39. HOLMGREN, J., A-M. SVENNERHOLM, M. LINDBLAD & G. STRECKER. 1987. Inhibition of bacterial adhesion and toxin binding by glycoconjugate and oligosaccharide receptor analogues in human milk. In *Human Lactation 3: The Effects of Human Milk on the Recipient Infant*. A. S. Goldman, S. A. Atkinson & L. A. Hanson, Eds. 251–259. Plenum Press. New York & London.

40. KHAN, A. J., W. ROSENFELD, M. VADAPALLI, J. BIAGTON, P. KHAN, A. HUG & H. E. EVANS. 1980. Chemotaxis and random migration of human milk cells. J. Pediatr. 96: 879–882.

41. HAWES, C. S. & W. R. JONES. 1985. Human milk cell migration and production of monocyte chemotactic factor: Lack of activity. Pediatr. Res. 19: 996–999.

42. THORPE, L. W., H. E. RUDLOFF, L. C. POWELL & A. S. GOLDMAN. 1986. Decreased response of human milk leukocytes to chemoattractant peptides. Pediatr. Res. 20: 373–377.

43. ÖZKARAGOZ, F., H. E. RUDLOFF, S. RAJARAMAN, F. C. SCHMALSTIEG & A. S. GOLDMAN. 1988. The motility of human milk macrophages in collagen gels. Pediatr. Res. 23: 449–452.

44. TSUDA, H., K. TAKESHIUGE, Y. SHIBATA & S. MINAKAMI. 1984. Oxygen metabolism of human colostral macrophages. J. Biochem. 95: 1237–1245.

45. LEYVA-COBIAN, F. & J. CLEMENTE. 1984. Phenotype characterization and functional activity of human milk macrophages. Immunol. Lett. 8: 249.

46. KELLER, M. A., J. FAUST, L. J. ROLEWIC & D. D. STEWART. 1986. T cell subsets in human colostrum. J. Pediatr. 108: 439–443.

47. KOHL, S., M. M. MALLOY, L. K. PICKERING, F. MORRISS, E. W. ADCOCK & D. L. WATERS. 1978. Human colostral cytotoxicity. I. Antibody-dependent cellular cytotoxicity against herpes simplex viral-infected cells mediated by colostral cells. J. Clin. Lab. Immunol. 1: 221–224.

48. EMODI, G. & M. JUST. 1974. Interferon production by lymphocytes in human milk. Scand. J. Immunol. 3: 157–160.

49. KELLER, M. A., R. M. KIDD, Y. J. BRYSON, J. L. TURNER & J. CARTER. 1981. Lymphokine production by human milk leukocytes. Infect. Immun. 32: 632–636.

50. WELSH, J. K. & J. T. MAY. 1979. Anti-infective properties of breast milk. J. Pediatr. 94: 1–9.

51. WELSH, J. K., M. ARSENAKIS, R. J. COELEN & J. T. MAY. 1979. Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk. J. Infect. Dis. 140: 332–338.

52. RESTA, S., J. P. LUBY, C. R. ROSENFELD & J. D. SIEGEL. 1985. Isolation and propagation of a human enteric coronavirus. Science 229: 978–981.

53. GILLIN, F. D., D. S. REINER & C-S. WANG. 1983. Human milk kills parasitic protozoa. Science 221: 1290–1292.

54. TESCHMACHER, H. 1987. β-Casomorphins: Do they have physiological significance? In *Human Lactation 3: The Effects of Human Milk on the Recipient Infant*. A. S. Goldman, S. A. Atkinson & L. A. Hanson, Eds. 213–225. Plenum Press. New York & London.

55. BRANZL, V. C. 1984. Novel opioid peptides derived from human β-casein: human β-casomorphins. Eur. J. Pharmacol. 106: 213–214.

56. SVEDBERG, J., J. DE HAAS, G. LEIMENSTOLL, F. PAUL & H. TESCHMACHER. 1985. Demonstration of β-casomorphin immunoreactive materials in *in vitro* digests of bovine milk and in small intestinal contents after bovine milk ingestion in adult humans. Peptides 6: 825–830.

57. GOLDBLUM, R. M., R. J. SCHANLER, C. GARZA & A. S. GOLDMAN. 1989. Human milk feeding enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr. Res. 25: 184–188.
58. GYÖRGY, P., R. W. JEANLOZ, H. VON NICOLAI & F. ZILLIKEN. 1974. Undialyzable growth factors for Lactobacillus bifidus var. Pennsylvanicus. Eur. J. Biochem. 43: 29–33.
59. GOLDMAN, A. S., L. W. THORPE, R. M. GOLDBLUM & L. Â. HANSON. 1986. Anti-inflammatory properties of human milk. Acta Paediatr. Scand. 75: 689–695.
60. GOLDMAN, A. S. & R. M. GOLDBLUM. 1989. Anti-inflammatory systems in human milk. In Antioxidant Nutrients and the Immune Response. A. Bendich, M. Phillips & R. Tengerdy, Eds. Plenum Press. New York, NY. In press.
61. CHAPELL, J. E., T. FRANCIS & M. T. CLANDININ. 1985. Vitamin A and E content of human milk at early stages of lactation. Early Hum. Dev. 11: 157–167.
62. OSTREA JR., E. A., J. E. BALUN, R. WINKLER & T. PORTER. 1986. Influence of breast-feeding on the restoration of the low serum concentration of vitamin E and β-carotene in the newborn infant. Am. J. Obstet. Gynecol. 154: 1014–1017.
63. SAVILAHTI, E., A. L. JARVENPAA & N. C. R. RAIHA. 1983. Immunoglobulins in preterm infants: Comparison of human milk and formula feedings. Pediatrics 72: 312–316.
64. STEPHENS, S., C. R. KENNEDY, P. K. LAKHANI & M. K. BRENNER. 1984. In-vivo immune responses of breast- and bottle-fed infants to tetanus toxoid antigen and to normal gut flora. Acta Paediatr. Scand. 73: 426–432.
65. STEPHENS, S. 1986. Development of secretory immunity in breast fed and bottle fed infants. Arch. Dis. Child. 61: 263–269.
66. PRENTICE, A. 1987. Breast feeding increases concentrations of IgA in infants' urine. Arch. Dis. Child. 62: 792–795.
67. CHIBA, Y., T. MINAGAWA, K. MITO, A. NAKANE, K. SUGA, T. HONJO & T. NAKO. 1987. Effect of breast feeding on responses of systemic interferon and virus-specific lymphocyte transformation in infants with respiratory syncytial virus infection. J. Med. Virol. 21: 7–14.
68. MAYER, E. J., R. F. HAMMAN, E. C. GAY, D. C. LEZOTTE, D. A. SAVITZ & G. J. KLINKENSIGHTH. 1988. Reduced risk of insulin dependent diabetes mellitus (IDDM) among breast fed children: A case control study. Diabetes 47: 1625–1632.
69. DAVIS, M. K., D. A. SAVITZ & B. GRAUFORD. 1988. Infant feeding in childhood cancer. Lancet 2: 365–368.
70. Tengerdy, R. P., M. M. Mathias & C. F. Nockels. 1981. Vitamin E, immunity and disease resistance. In Diet and Resistance to Disease. M. Phillips & A. Baetz, Eds. 27–42. Plenum Press, New York, NY.
71. BENDICH, A., P. D'APOLITO, E. GABRIEL & L. J. MACHLIN. 1983. Modulation of the immune system function of guinea pigs by dietary vitamins E and C following exposure to 100% O2. Fed. Proc. 42: 923.
72. BENDICH, A., P. D'APOLITO, E. GABRIEL & L. J. MACHLIN. 1984. Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens. J. Nutr. 114: 1588–1593.
73. BENDICH, A., E. GABRIEL & L. J. MACHLIN. 1986. Dietary vitamin E requirement for optimum immune responses in the rat. J. Nutr. 116: 675–681.
74. MUSHTAHA, A. A., F. C. SCHMALSTIEG, T. K. HUGHES, S. RAJARAMAN, H. E. RUDLOFF & A. S. GOLDMAN. 1989. Chemokinetic agents for monocytes in human milk: Possible role of tumor necrosis factor-a. Pediatr. Res. In press.
75. GARZA, C., R. J. SCHANLER, N. F. BUTTE & K. J. MOTIL. 1987. Special properties of human milk. Clin. Perinatol. 14: 104–128.