The competition-common enemy graphs of digraphs satisfying Conditions $C(p)$ and $C'(p)$

YOSHIO SANO *

Pohang Mathematics Institute
POSTECH, Pohang 790-784, Korea
ysano@postech.ac.kr

Abstract

S. -R. Kim and F. S. Roberts (2002) introduced the following conditions $C(p)$ and $C'(p)$ for digraphs as generalizations of the condition for digraphs to be semiorders. The condition $C(p)$ (resp. $C'(p)$) is: For any set S of p vertices in D, there exists $x \in S$ such that $N^+_D(x) \subseteq N^+_D(y)$ (resp. $N^-_D(x) \subseteq N^-_D(y)$) for all $y \in S$, where $N^+_D(x)$ (resp. $N^-_D(x)$) is the set of out-neighbors (resp. in-neighbors) of x in D. The competition graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if $N^+_D(x) \cap N^+_D(y) \neq \emptyset$. Kim and Roberts characterized the competition graphs of digraphs which satisfy Condition $C(p)$.

The competition-common enemy graph of a digraph D is the graph which has the same vertex set as D and has an edge between two distinct vertices x and y if it holds that both $N^+_D(x) \cap N^+_D(y) \neq \emptyset$ and $N^-_D(x) \cap N^-_D(y) \neq \emptyset$. In this note, we characterize the competition-common enemy graphs of digraphs satisfying Conditions $C(p)$ and $C'(p)$.

Keywords: competition-common enemy graph; semiorder; interval order; Condition $C(p)$

*This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094069).
1. Introduction

J. E. Cohen \[2\] introduced the notion of a competition graph in 1968 in connection with a problem in ecology. The competition graph \(C(D)\) of a digraph \(D\) is the (simple undirected) graph \(G = (V, E)\) which has the same vertex set as \(D\) and has an edge between two distinct vertices \(x\) and \(y\) if and only if \(N^+_D(x) \cap N^+_D(y) \neq \emptyset\), where \(N^+_D(x) := \{v \in V(D) \mid (x, v) \in A(D)\}\) is the set of out-neighbors of \(x\) in \(D\). It has been one of important research problems in the study of competition graphs to characterize the competition graphs of digraphs satisfying some conditions.

Definition. A digraph \(D = (V, A)\) is called a semiorder if there exist a real-valued function \(f : V \rightarrow \mathbb{R}\) on the set \(V\) and a positive real number \(\delta \in \mathbb{R}\) such that \((x, y) \in A\) if and only if \(f(x) > f(y) + \delta\).

A digraph \(D = (V, A)\) is called an interval order if there exists an assignment \(J : V \rightarrow 2^\mathbb{R}\) of a closed real interval \(J(x) \subset \mathbb{R}\) to each vertex \(x \in V\) such that \((x, y) \in A\) if and only if \(\min J(x) > \max J(y)\).

Kim and Roberts characterized the competition graphs of semiorders and interval orders as follows:

Theorem 1.1 \([3]\). Let \(G\) be a graph. Then the following are equivalent.

(a) \(G\) is the competition graph of a semiorder,

(b) \(G\) is the competition graph of an interval order,

(c) \(G = K_r \cup I_q\) where if \(r \geq 2\) then \(q \geq 1\).

Moreover, Kim and Roberts \([3]\) introduced some conditions, which are called Condition \(C(p)\) and Condition \(C'(p)\), for digraphs as generalizations of the condition for digraphs to be semiorders, and they gave a characterization of the competition graphs of digraphs satisfying Condition \(C(p)\) to show Theorem 1.1 as its corollary.

D. D. Scott \([5]\) introduced the competition-common enemy graph of a digraph in 1987 as a variant of competition graph. The competition-common enemy graph of a digraph \(D\) is the graph which has the same vertex set as \(D\) and has an edge between two distinct vertices \(x\) and \(y\) if it holds that both \(N^+_D(x) \cap N^+_D(y) \neq \emptyset\) and \(N^-_D(x) \cap N^-_D(y) \neq \emptyset\), where \(N^-_D(x) := \{v \in V(D) \mid (v, x) \in A(D)\}\) is the set of in-neighbors of \(x\) in \(D\).

In this note, we characterize the competition-common enemy graphs of semiorders and interval orders as follows:

Theorem 1.2. Let \(G\) be a graph. Then the following are equivalent.

(a) \(G\) is the competition-common enemy graph of a semiorder,
2. Main Results

2.1. Conditions $C(p)$ and $C'(p)$

Definition. Let D be a digraph. For a set S of vertices in D, we define the following:

- $F_D^+(S) := \{ x \in S \mid N_D^+(x) \subseteq N_D^+(y) \text{ for all } y \in S \}$,
- $F_D^-(S) := \{ x \in S \mid N_D^-(x) \subseteq N_D^-(y) \text{ for all } y \in S \}$,
- $H_D^+(S) := \{ x \in S \mid N_D^+(x) \supseteq N_D^+(y) \text{ for all } y \in S \}$,
- $H_D^-(S) := \{ x \in S \mid N_D^-(x) \supseteq N_D^-(y) \text{ for all } y \in S \}$.

(Note that, in [3], an element in $F_D^+(S)$ is called a *foot* of S and an element in $H_D^+(S)$ is called a *head* of S.)
Figure 2: Elements x in $\mathcal{F}^+_D(S)$, $\mathcal{F}^-_D(S)$, $\mathcal{H}^+_D(S)$, and $\mathcal{H}^-_D(S)$

Let p be a positive integer with $p \geq 2$. We say that D satisfies Condition $C(p)$ (resp. Condition $C''(p)$, Condition $C^*(p)$, Condition $C^{**}(p)$) if the set $\mathcal{F}^+_D(S)$ (resp. $\mathcal{F}^-_D(S)$, $\mathcal{H}^+_D(S)$, $\mathcal{H}^-_D(S)$) is not empty for any set S of p vertices in the digraph D.

Proposition 2.1 ([3]). Let $2 \leq p < q$. If a digraph D satisfies Condition $C(p)$, then the digraph D also satisfies Condition $C(q)$.

Lemma 2.2. Let D be a digraph and T, U be sets of vertices in D. If $\mathcal{F}^-_D(T) \cap U \neq \emptyset$, then $\mathcal{F}^-_D(U) \subseteq \mathcal{F}^-_D(T \cup U)$.

Proof. Take $t \in \mathcal{F}^-_D(T) \cap U$. Then $N^-_D(t) \subseteq N^-_D(t')$ for any $t' \in T \setminus U$. If $\mathcal{F}^-_D(U)$ is empty, then the lemma trivially holds. So we assume that
\(F_D(U) \neq \emptyset \). Take any \(u \in F_D(U) \). Then \(N_D^{-}(u) \subseteq N_D^{-}(u') \) for any \(u' \in U \).

Since \(t \in U \), we have \(N_D^{-}(u) \subseteq N_D^{-}(t) \). Therefore, \(N_D^{-}(u) \subseteq N_D^{-}(t') \) for any \(t' \in T \setminus U \). Thus \(N_D^{-}(u) \subseteq N_D^{-}(s) \) for any \(s \in (T \setminus U) \cup U = T \cup U \). Hence the lemma holds. \(\square \)

Proposition 2.3. Let \(2 \leq p < q \). If a digraph \(D \) satisfies Condition \(C'(p) \), then the digraph \(D \) also satisfies Condition \(C'(q) \).

Proof. It is enough to show that \(D \) satisfies Condition \(C'(p+1) \). Let \(S \) be any set of \(p+1 \) vertices of \(D \), and let \(T \) be a subset of \(S \) with \(|T| = p \). Then \(F_D(T) \neq \emptyset \) since \(D \) satisfies Condition \(C'(p) \). Take an element \(x \) in \(F_D(T) \). Let \(U \) be a subset of \(S \) such that \(|U| = p \) and \(x \in U \). Since \(p \geq 2 \), it holds that \(T \cup U = S \). By Lemma 2.2, we have \(F_D(U) \subseteq F_D(T \cup U) = F_D(S) \). Since \(D \) satisfies Condition \(C'(p) \), \(F_D(U) \neq \emptyset \). Thus \(F_D(S) \) is not empty. \(\square \)

For a graph \(G \), we denote the set of all isolated vertices in \(G \) by \(I_G \). Then the graph \(G - I_G \) is the union of the nontrivial connected components of \(G \).

Proposition 2.4. Let \(G \) be the competition-common enemy graph of a digraph \(D \) which satisfies Conditions \(C(p) \) and \(C'(p) \) for some \(p \geq 2 \). Suppose that \(G - I_G \) has at least \(p \) vertices. Then \(G - I_G \) is a clique of \(G \).

Proof. Take any two vertices \(a \) and \(b \) in \(G - I_G \). Then \(a \) and \(b \) are not isolated. Let \(S \) be a set of \(p \) vertices in \(G - I_G \) containing the vertices \(a \) and \(b \). Since \(D \) satisfies Conditions \(C(p) \) and \(C'(p) \), there exist \(x \in F_D^+(S) \) and \(y \in F_D^-(S) \). Note that \(x \) and \(y \) are not isolated vertices. Take \(u \in N_D^+(x) \) and \(v \in N_D^-(y) \). By Condition \(C(p) \), we have \(u \in N_D^+(a) \cap N_D^-(b) \). By Condition \(C'(p) \), we have \(v \in N_D^-(a) \cap N_D^+(b) \). Therefore \(a \) and \(b \) are adjacent in \(G - I_G \). Hence the proposition holds. \(\square \)

2.2. Classification

Theorem 2.5. Let \(G \) be a graph and \(p \geq 2 \). Suppose that \(G - I_G \) has at least \(p \) vertices. Then \(G \) is the competition-common enemy graph of a loopless digraph satisfying Conditions \(C(p) \) and \(C'(p) \) if and only if \(G = K_r \cup I_q \) with \(r \geq p \) and \(q \geq 2 \).

Proof. First, we show the “only if” part. Let \(G \) be the competition-common enemy graph of a loopless digraph \(D \) satisfying Conditions \(C(p) \) and \(C'(p) \). Proposition 2.4 shows that \(G = K_r \cup I_q \) with \(r \geq p \) and \(q \geq 0 \). Suppose that \(q = 0 \) or \(q = 1 \). Since \(r \geq p \), by Propositions 2.1 and 2.3 \(D \) satisfies Conditions \(C(r) \) and \(C'(r) \). Let \(x \in F_D^+(S) \) and \(y \in F_D^-(S) \) where \(S := \)
we have $N_D^+(x) \neq \emptyset$ and $N_D^-(y) \neq \emptyset$. Let $u \in N_D^+(x)$ and $v \in N_D^-(y)$. If $u = v$, then $(s, u) \in A(D)$ and $(u, s) \in A(D)$ for any $s \in S$. Let S' be a set of p vertices containing the vertex u. Note that $S' \setminus \{u\} \subseteq S$ since $q \leq 1$. By Condition $C(p)$, $F_D^+(S') \neq \emptyset$. If $u \in F_D^+(S')$, then we have $s \in N_D^+(u) \subseteq N_D^+(s)$ for $s \in S' \setminus \{u\}$, i.e., $(s, s) \in A(D)$, which contradicts that D is loopless. If $s \in F_D^+(S')$ for some $s \in S' \setminus \{u\}$, then we have $u \in N_D^+(s) \subseteq N_D^-(u)$, i.e., $(u, u) \in A(D)$, which contradicts that D is loopless. Therefore u and v must be distinct. Since $q \leq 1$, at least one of u and v is in $S = V(G - I_G)$. If $u \in S$, then we have $u \in N_D^+(x) \subseteq N_D^+(u)$, i.e., $(u, u) \in A(D)$. If $v \in S$, then we have $v \in N_D^-(y) \subseteq N_D^-(v)$, i.e., $(v, v) \in A(D)$. In any case, we reach a contradiction. Thus we have $q \geq 2$.

Second, we show the “if” part. Let $G = K_r \cup I_q$ with $r \geq p$ and $q \geq 2$. Let a and b be distinct vertices in I_q. We define a digraph D by $V(D) := V(G)$ and $A(D) := \{(a, x) \mid x \in V(K_r)\} \cup \{(x, b) \mid x \in V(K_r)\} \cup \{(a, b)\}$. Then D is loopless, D satisfies Conditions $C(p)$ and $C'(p)$, and the competition-common enemy graph of D is equal to G. □

The double competition number $dk(G)$ of a graph G is the minimum number k such that G with k new isolated vertices is the competition-common enemy graph of an acyclic digraph.

Theorem 2.6. Let G be a graph and $p \geq 2$. If G is the competition-common enemy graph of an acyclic digraph D satisfying Conditions $C(p)$ and $C'(p)$, then G is one of the following graphs:

(a) $I_q \ (q \geq 1)$,
(b) $K_r \cup I_q \ (r \geq p, \ q \geq 2)$,
(c) $H \cup I_q$ where $|V(H)| < p$, $I_H = \emptyset$, and $q \geq dk(H)$.

Proof. Let G be the competition-common enemy graph of an acyclic digraph D satisfying Conditions $C(p)$ and $C'(p)$. If there is no nontrivial connected component in G, then (a) holds. Let H be the union of all nontrivial connected components of G. Then we have $G = H \cup I_q$ with $q \geq 0$ and $I_H = \emptyset$. If H has at least p vertices, then it follows from Theorem 2.5 that $G = K_r \cup I_q$ with $r \geq p$ and $q \geq 2$, i.e., (b) holds. Suppose that the number of the vertices of H is less than p. Since G is the competition-common enemy graph of an acyclic digraph D, the double competition number $dk(G)$ of G is equal to 0. Therefore, there must be at least $dk(H)$ vertices in I_q. Hence (c) holds. □
2.3. Proof of Theorem 1.2

Proof of Theorem 1.2. (a) ⇒ (b): Since semiorders are a special case of interval orders where every interval has the same length, (a) implies (b).

(b) ⇒ (c): We can easily check that any interval order satisfies Conditions $C(2)$ and $C'(2)$. By Theorem 2.6 with $p = 2$, we can conclude that if (b) then (c).

(c) ⇒ (a): Suppose that $G = I_q$ ($q \geq 1$) or $G = K_r \cup I_q$ ($r \geq 2, q \geq 2$). When $G = I_q$, we let $f_1(x) := 0$ for any $x \in V(G)$ and let $\delta_1 := 1$. Then G is the competition-common enemy graph of the semiorder defined by f_1 and δ_1. When $G = K_r \cup I_q$, we take a vertex a in I_q, let $f_2(x) := 0$ for any $x \in V(K_r)$, $f_2(a) := 2$, and $f_2(b) := -2$ for any $b \in V(I_q) \setminus \{a\}$, and let $\delta_2 := 1$. Then G is the competition-common enemy graph of the semiorder defined by f_2 and δ_2.

Hence Theorem 1.2 holds. \qed

3. Concluding Remarks

In this section, we present some problems for further study.

In Theorem 2.5, we gave a characterization of the competition common-enemy graphs G of digraphs satisfying Conditions $C(p)$ and $C'(p)$ if the number of the vertices of $G - I_G$ is at least p.

Problem 3.1. Characterize the competition-common enemy graphs G of digraphs satisfying Conditions $C(p)$ and $C'(p)$ when the number of the vertices of $G - I_G$ is less than p.

In this note, we didn’t consider Conditions $C^*(p)$ and $C^{*'}(p)$.

Problem 3.2. Characterize the competition-common enemy graphs of digraphs satisfying Conditions $C^*(p)$ and $C^{*'}(p)$.

Niche graphs are another variant of competition graphs and were introduced by C. Cable, K. F. Jones, J.R. Lundgren, and S. Seager [1]. The niche graph of a digraph D is the graph which has the same vertex set as D and has an edge between two distinct vertices x and y if $N^+_D(x) \cap N^-_D(y) \neq \emptyset$ or $N^-_D(x) \cap N^+_D(y) \neq \emptyset$.

Problem 3.3. What are the niche graphs of digraphs satisfying Conditions $C(p)$, $C'(p)$, $C^*(p)$, or $C^{*'}(p)$?
References

[1] C. Cable, K. F. Jones, J.R. Lundgren, and S. Seager: Niche graphs, *Discrete Applied Mathematics* **23** (1989) 231–241.

[2] J. E. Cohen: Interval graphs and food webs. A finding and a problem, RAND Corporation *Document 17696-PR*, Santa Monica, California (1968).

[3] S. -R. Kim and F. S. Roberts: Competition graphs of semiorders and Conditions $C(p)$ and $C^*(p)$, *Ars Combinatoria* **63** (2002) 161–173.

[4] J. Y. Lee and S. -R. Kim: Competition graphs of acyclic digraphs satisfying condition $C^*(p)$, *Ars Combinatoria* **93** (2009) 321–332.

[5] D. Scott: The competition-common enemy graph of a digraph, *Discrete Applied Mathematics* **17** (1987) 269–280.