Practical choice for robust and efficient differentiation of human pluripotent stem cells

Mei Fang, Li-Ping Liu, Hang Zhou, Yu-Mei Li, Yun-Wen Zheng

Abstract

Human pluripotent stem cells (hPSCs) have the distinct advantage of being able to differentiate into cells of all three germ layers. Target cells or tissues derived from hPSCs have many uses such as drug screening, disease modeling, and transplantation therapy. There are currently a wide variety of differentiation methods available. However, most of the existing differentiation methods are unreliable, with uneven differentiation efficiency and poor reproducibility. At the same time, it is difficult to choose the optimal method when faced with so many differentiation schemes, and it is time-consuming and costly to explore a new differentiation approach. Thus, it is critical to design a robust and efficient method of differentiation. In this review article, we summarize a comprehensive approach in which hPSCs are differentiated into target cells or organoids including brain, liver, blood, melanocytes, and mesenchymal cells. This was accomplished by employing an embryoid body-based three-dimensional (3D) suspension culture system with multiple cells co-cultured. The method has high stable differentiation efficiency compared to the conventional 2D culture and can meet the requirements of clinical application. Additionally, *ex vivo* co-culture models might be able to constitute organoids that are highly similar or mimic human organs for...
potential organ transplantation in the future.

Key words: Human pluripotent stem cells; Three dimensional; Embryoid body; Differentiation; Efficient; Three germ layers

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Identifying a practical way to efficiently differentiate pluripotent stem cells is essential in regenerative medicine. After considering the advantages and limitations of current approaches, we summarize the ideal conditions and systems. We also provide potential choices for efficiently and robustly differentiating human pluripotent stem cells into target cells and tissues in different germ layers.

Introduction

The first five lines of human embryonic stem cells (hESCs) were obtained in 1998 from the inner cell mass of a 3- to 5-day-old fertilized embryo[7]. Subsequently, induced pluripotent stem cells (iPSCs) were created by reprogramming fibroblasts[8]. Human pluripotent stem cells (hPSCs), including hESCs and human (hi)PSCs, have the ability to self-renew and differentiate into any cell type from all germ layers[9], driving the development of regenerative medicine. The cells and organoids derived from hPSCs have various potential applications including complex diseases studies, cell-based drug screening, and limitless transplantation treatments[10-13]. With the rapid development of regenerative medicine technology, many differentiation approaches based on hPSCs have been explored. However, some challenges remain. To meet the needs of clinical application and basic research, high efficiency and stability are the key objectives during hPSC differentiation into high-quality target cells. Thus, it is important to identify an efficient and robust differentiation approach that can increase the differentiation ratio of target cells, produce stronger functions in cells, generate more complete structural organoids, or be reproduced in different cell lines or in other laboratories. Currently, there are great differences in these experimental schemes. Differentiation efficiency[11] and stability are impacted by whether the method is based on an embryoid body (EB) or a two-dimensional (2D) or 3D system, or if single or multiple cell co-cultures are used.

In this review article, we combine the experiences of our laboratory with a summary of existing mainstream approaches involving hPSC differentiation, with the goal of providing a reference and time-saving guide for future experimental design.

Differentiation induction from hPSCs

EB-based differentiation system

EB has been a very common model of *in vitro* hPSC differentiation for more than 50 years[14]. The EB-based method is widely used to differentiate majority of cell lineages from the three germ layers (Table 1) and has an excellent way to assess and manipulate developmental potential[15]. Differentiation predictions can be made in the early stage of EB to predict which germ layer hPSC is likely to differentiate into, which can save on the cost for subsequent differentiation and indirectly improve differentiation efficiency. For example, Spalt like transcription factor 3 (SALL3) expression in EB indicates a high probability of differentiating into the ectoderm and a low chance of differentiating into the mesoderm/endoderm[16]. Our study also confirmed these findings, and we found that iPSC lines that expressed...
Table 1 Summary of current approaches for human pluripotent stem cells differential direction into targeted cells or tissues

Targeted cells or tissues	Cultural approaches	Check points of differential status	Under in vitro or in vivo	Ref.			
Neural progenitor	EB formation	2D or 3D	Multiple cells co-culture	Gene expression	Protein level		
Brain	EB 3D	Low attachment plate, Matrigel	2D Surface or 3D system	PAX6, TBR2	Nestin	In vitro	[21]
Midbrain	EB 3D	Matrigel	2D or 3D system	PAX6, SOX2, FOXG1, TBR2, ARHGAP11B	-	In vitro	[19]
Brain	- 3D	Matrigel	2D Surface or 3D system	PAX6, TBR2	Nestin	In vitro	[21]
Retinae	EB 3D	Matrigel	2D Surface or 3D system	SIX3, PAX6, RAX, OTX2, VSX2, PRK27, MITF	TJPI, LAMB1, RHO, OPN113/14, OPN115W, OPN15W	In vitro	[21]
Retinae	EB 3D	Matrigel	Low attachment plate	BRN3B, PAX6, RAX, SIX3, LHX2, CHX10, OTX2	RHO, PKCu, ARL13b, OPN115W, OPN15W	In vitro	[21]
Melanocyte	EB 3D	Matrigel	Low attachment plate	MIF, PAX3, SOX10, KIT, TYR, TYRF, DCT, PEM	Melanin	In vitro	[12]
Hepatic stellate cells	- 2D	Matrigel	-	NCAM, KDR, PDGFRα, P75NTR, ALCAM, ACTA2, COL1a1, LRAT, REN, PCDH7, PDGFRβ, SYF, GAP, PPARy, NGF, α-SMA	Desmin, PDGFRβ, P75NTR, ALCAM, PDGFRα, CD73, KDR, NCAM	In vitro	[25]
Liver	EB 3D	Microwell, bioreactor	iPSC endoderm cell, HUVEC, BM-MSC	ALB, G6PC, CYP2C9, CYP2C19, CYP3A4, CYP3A7	CYP3A4, ALB, Urea, NTCP	In vitro	[12]
Intestinal	- 3D	Matrigel	-	KLF5, ECD, SOX8, Klf6	Villin	In vitro	[25]
Enterosphere	- 3D	Matrigel	Pan-epithelium cell, HLF, HUVEC	SOX9, CR20, CD2X, NNKX2.1, LGR5, OLFM4, TACSTD2, VILI, APOA1, FABP2	E-cadherin, Cytokeratin18, α-SMA	In vitro	[14]
Cardiomyocyte	- 2D	Matrigel	-	-	TNNT2, ACTN2	In vitro	[15]
Cardiomyocyte	EB 3D	Low attachment plate	2D Surface or 3D system	TBX5, NKX2.5, GATA4	TNNT2, TNNT3, MYH6, MYL7	In vitro	[15]
Cardiomyocyte	EB 3D	Suspension bioreactor	-	-	TNNT2, α-Actinin, MLC-2v, MLC-2a	In vitro	[15]
Heart	EB 3D	Matrigel	bESC-CPC, bESC-MSC, HUVEC	KDR, MESPI1, NKX2.5, TBX5, GATA4, ISL1, PDGFR-α, MEF2C, CD90, CD73, CD105, CD44, CD31, TNT, β-MHC, MLC2v, KGN44, KGN2, KGNH3	CD34, CD43, CD45	In vitro	[15]
Hematopoietic cell	EB 3D	-	-	RUNX1, SCL/TAL1	CD34, CD43, CD45	In vitro	[15]
higher levels of SALL3 on day 7 of EB formation showed greater potential for melanocyte differentiation\[28\]. Additionally, miR-371-3 plays both a predictive and functional role in neurogenic differentiation\[29\], and the low expression of fibroblast growth factor 1 (commonly known as FGF-1), ras homolog family member U (commonly known as RHOU), and thymidine phosphorylase (commonly known as TYMP) genes are associated with low hepatic differentiation\[30\], which can be used to predict the differentiation potential in early EB. Therefore, EB-based differentiation systems not only help to increase the percentage of target cells, but also contribute to the prediction of differentiation potentials in the early stage, which improves efficiency directly and indirectly, respectively.

Matrigel-mediated system

Matrigel, a natural extracellular matrix, is widely used in hPSC maintenance and can also be used in 2D and 3D hPSC differentiation (Table 1). During 2D differentiation, the culture vessels are first coated with Matrigel, followed by single cell or cell cluster inoculation. The role of Matrigel in 2D is adherence of cells or cell clumps to a culture vessel. Furthermore, the major component of Matrigel is laminin, which promotes the formation of a rigid neuroepithelial structure\[29\]. Laminin-positive basement membranes are crucial for continuous epithelial integrity\[31\]. A massive volume increase of the human neocortex results from expansion of the cortical area and the related emergence of extensive cortical folding\[32\], which is thought to be due to the increase of the proliferative potential of neural progenitors (NPs)\[33\]. As this study shows, two human ESC lines were differentiated into NPs in Matrigel-coated 2D adherent culture. Jaenisch and his colleagues constituted human cerebral organoids in an EB-based 3D system, which displayed markedly increased outgrowth of neuroepithelial tissue surrounding ventricle-like structures\[34\]. Other desired cells can also be differentiated in a Matrigel-coated 2D culture system such as hepatocytes\[35\], hepatic stellate cells\[36\], intestinal epithelium\[37\], mesenchymal cells\[38\], cardiomyocytes (CMs)\[39\], monocytes, and macrophages\[40\]. Thus, the Matrigel-based 2D culture approach is a basic method for the directed induced differentiation of hPSCs.

Matrigel can also be used for 3D differentiation of hPSCs. In addition to coating the substrate, the Matrigel-based 3D construct is formed by adding mixed Matrigel and special differentiation medium\[41\] in the hPSC differentiation process, resulting in differentiation in the solution of a suspended system. A 3D differentiation system provides enough space for establishing an organoid, and promotes cellular communication and interaction among cells compared to a 2D approach. Currently, many target cell lineages or tissues can be differentiated in this way including the brain\[42\], retina\[43\], intestinal organoids\[44,45\], and heart\[46\]. Interestingly, after adding Matrigel, retinal induction cells increase by up to 30%-70% of the total cells in the low cell adhesion plate\[47\]. Because this gel promotes the epithelialization of hPSCs toward retinal differentiation, researchers have tried to use 3D Matrigel methods for differentiating hPSCs. Epithelialized cysts are obtained by floating culture clumps of Matrigel/hESCs and the subsequent floating culture results in self-formation of retinal organoids\[48\]. This includes patterned neuroretina, ciliary margin, and retinal pigment epithelium, which autonomously generates stratified retinal tissues, comprising photoreceptors with ultrastructure of outer segments in long-term culture.
has been validated in two lines of human hPSCs51,52. Clearly, the use of Matrigel is common in 2D or 3D differentiation of hPSCs into target cells. However, the Matrigel-embedded 3D differentiation system has distinct advantages in self-organizing and generating organoids with a more complete structure when compared to a 2D culture.

3D suspension system

During hPSC differentiation, there are many decisions in creating a 3D floating state such as a non- or ultra-low attachment plate, microwell plate, and suspended bioreactors. At present, a variety of cell lineages have been generated by using 3D suspension system such as eye53-55, skin56, brain57,58, liver59,60, heart61-63 and blood64. For example, during the 3D differentiation process, the authors generated iPSC-derived fully functional hepatocyte-like organoids in gene expression, protein secretion, and biotransformation65. Likewise, iPSC-derived platelets can be harvested by using a 3D differentiation system, and it is very similar to human platelets in terms of both ultrastructural features and in vivo and in vitro functional characterizations66. Thus, the 3D differentiation system can produce cells with ideal functions. The yield of differentiated cells is also important. The omni-well-array culture platform can produce massive and miniaturized iPSC-derived liver buds on a clinically relevant large scale (> 106). Hama et al67 designed a protocol that generated > 90\% hiPSC-derived CMs that yielded on average 72 million cells per 100 mL in a 3D bioreactor. These results show that the yield from the 3D suspension system is remarkable in contrast to the 2D system. To test the reproducibility of the CM 3D differentiation protocol, a previous study compared biologically independent experiments with various passage numbers of iPSCs, and found minor inter-experimental variations68. Overall, the 3D differentiation culture appears to have advantages in differentiation efficiency and stability over the 2D system. This indicates that the 3D differentiation method is optimal when hPSCs differentiation experiments are conducted.

Multiple cells co-culture system

Each organ has a variety of cell components with a certain structure and its own specific functions. Because of the communication and interaction among cells, co-culturing with different supportive and tissue-constructive cells has become more attractive. The benefits of co-culturing multiple cells are that they can facilitate communication and interaction among different cells, enhance the hPSCs differentiation efficiency69, and better simulate the environment in vivo. It can bring surprises when used in a co-culture system to self-organize and generate an organoid. For example, to recapitulate hepatitis B virus-host interactions in liver organoids, Nie et al70 co-cultured iPSC endoderm cells, human umbilical cord vein endothelial cells (HUVECs), and human bone marrow mesenchymal stem cells to form liver organoids in a 3D microwell plate, which exhibits stronger hepatic functions than iPSC-derived hepatic like cells. Furthermore, the co-culture pattern also has a higher differentiation yield71 and organoids with more complex functions72,73. There are co-culture combinations in other studies such as co-culturing hPSC-derived neurons and astrocytes74; co-culturing iPSC-derived hepatic parenchymal and non-parenchymal cells75; co-culturing hiPSC-derived retinal pigment epithelium and retinal organoids76; and co-culturing HUVECs, hESC-derived MSCs, and hESC-derived cardiac progenitor cells77. Human PSC-derived organoids with multiple cell components have a complete structure and sturdy function similar to a human organ, which may provide an alternative source for organ transplantation. Therefore, the 3D culture method is a better choice for organoid generation.

Transcription factor-directed differentiation

Transcription factors (TFs) play an important role in pluripotent stem cell induction and transdifferentiation80. Recently, they have been used to differentiate hPSCs into desired cells or tissues such as neural81, liver82,83, and cardiac muscle84-86. A growing body of TF-directed differentiation method of hPSCs has demonstrated that efficient cell fate is reprogrammed via forced expression of single or multiple TFs87. Sun et al88 used the technique to design a single-step protocol for forebrain GABAergic neuron differentiation, which could generate cells similar to rodent cortical interneurons with > 80\% efficiency, and the target cells showed mature functional properties within 6-8 wk. By contrast, other process takes as long as 30 wk89. The TF-mediated method can differentiate hPSCs into terminal cells directly, and the experimental procedure is relatively brief.
LIMITATION AND CHOICE

Current methods for hPSC differentiation described above have various limitations. 2D differentiation culturing is performed on the surface of the culture vessel and the limited contact area limits the yield of the target cells. Furthermore, all structural components of organoids cannot be generated\[2,6\]. Without 3D contact with Matrigel, Lowe et al\[24\] reported that most cells died and the few surviving cells formed solid cell masses on 2D culturing. Most 3D culture methods involve various intermediate stages requiring varying combinations of recombinant factors and small molecules\[3,6\], thus rendering the method cumbersome to repeat. Although TF-mediated methods improve the differentiation efficiency of hPSCs, numerous tools for TF transfection, including plasmids and viruses, have led to the integration of exogenous genes\[3,5\] into the target cells, thus presenting a remote prospect for their clinical application\[3,5\]. In this situation, EB-based 3D culture systems allow for large-scale directional differentiation of hPSCs, and the co-culture method seems to constitute highly functional organoids in vitro to compensate for organ transplantation insufficiency.

CONCLUSION

Although only a few articles have compared the differences between 2D and 3D differentiation, it can be concluded that 3D system with EB has obvious advantages for hPSC differentiation compared to 2D culture. The details of the differentiation approaches are shown in the “cultural approaches” of Table 1. Regarding future studies, there are some key recommendations. First, the ability of EB not only can scale up culture systems and differentiation, but also predict the fate of hPSCs studies, there are some key recommendations. First, the ability of EB not only can scale up culture systems and differentiation, but also predict the fate of hPSCs differentiation for reducing unnecessary waste. Second, the 3D differentiation system also has significant improvement in differentiation efficiency, and 3D space is necessary for organoid formation. Finally, it is a promising and challenging task that also has significant improvement in differentiation efficiency, and 3D space is necessary for organoid formation. Therefore, it is expected that EB-based 3D differentiation culture system is an efficient and powerful choice for hPSCs to meet the demand in clinical applications and basic research.

ACKNOWLEDGEMENTS

We thank the kind support and help suggestions from Drs. Ning-Ning Guo and Qian Zhang, and other Lab members.

REFERENCES

1. Croze RH, Clegg DO. Differentiation of pluripotent stem cells into retinal pigment epithelium. Dev Ophthalmol 2014; 53: 81-96 [PMID: 24732763 DOI: 10.1159/000357361]
2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872 [PMID: 18035408 DOI: 10.1016/j.cell.2007.11.019]
3. Studer L. Derivation of dopaminergic neurons from pluripotent stem cells. Prog Brain Res 2012; 200: 243-263 [PMID: 23195422 DOI: 10.1016/B978-0-444-59575-1.00011-9]
4. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Ginike A, Egkan G, Meissner A. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011; 144: 439-452 [PMID: 21295703 DOI: 10.1016/j.cell.2010.12.032]
5. Liu LP, Zheng YW. Predicting differentiation potential of human pluripotent stem cells: Possibilities and challenges. World J Stem Cells 2019; 11: 375-382 [PMID: 31396366 DOI: 10.4252/wjssc.v11.i7.375]
6. Ohta S, Imaiizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, Amagai M, Matsuzaka Y, Yamanaka S, Okano H, Kawakami Y. Generation of human melanocytes from induced pluripotent stem cells. PloS One 2011; 6: e16182 [PMID: 21249204 DOI: 10.1371/journal.pone.0016182]
7. Brickman JM, Serup P. Properties of embryoid bodies. Wiley Interdiscip Rev Dev Biol 2017; 6 [PMID: 27911036 DOI: 10.1002/wdev.259]
8. Hirschhaeuer F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010; 148: 3-15 [PMID: 20097238 DOI: 10.1016/j.jbiotec.2010.01.012]
9. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 2008; 3: e1565 [PMID: 18270562 DOI: 10.1371/journal.pone.0001565]
Guo NN, Liu LP, Zheng YW, Li YM. Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. World J Stem Cells 2020; 12: 25-34 [PMID: 32110273 DOI: 10.4252/wjsc.v12.i12.25]

Buchrieser J, James W, Moore MD. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages. Stem Cells Reports 2017; 8: 334-345 [PMID: 28111278 DOI: 10.1016/j.stemcr.2016.12.020]

Liu LP, Li YM, Guo NN, Li S, Ma X, Zhang YX, Gao Y, Huang JL, Zheng DX, Wang LY, Xu H, Hui L, Zheng YW. Therapeutic Potential of Patient iPSC-Derived iMelanocytes in Autologous Transplantation. Cell Rep 2019; 27: 455-466.e5 [PMID: 30970249 DOI: 10.1016/j.celrep.2019.03.046]

Hamad S, Derichsweiler D, Papadopoulos S, Nguemo F, Saric T, Sachindis A, Brockmeier K, Hescheler J, Boukens BJJ, Plänckenke K. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 2019; 9: 7222-7238 [PMID: 31695764 DOI: 10.7150/thno.32058]

Kuroda T, Yasuda S, Tachi S, Matsuyama S, Kusakawa S, Tano K, Miura T, Matsuyama A, Sato Y. SALL3 expression balance underlies lineage biases in human induced pluripotent stem cell differentiation. Nat Commun 2019; 10: 2175 [PMID: 31092818 DOI: 10.1038/s41467-019-09511-4]

Guo NN, Liu LP, Zhang YX, Cai YT, Guo Y, Zheng YW, Li YM. Early prediction of the differentiation potential during the formation of human iPSC-derived embryoid bodies. Biochem Biophys Res Commun 2019; 516: 673-679 [PMID: 31248595 DOI: 10.1016/j.bbrc.2019.06.081]

Kim H, Lee G, Gnan Y, Papapetrous EP, Lichchina I, Socci ND, Sadelain M, Studer L. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 2011; 8: 695-706 [PMID: 21624813 DOI: 10.1016/j.stem.2011.04.002]

Yanagihara K, Liu Y, Kanic K, Takayama K, Kukumugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells. Stem Cells Dev 2016; 25: 1884-1897 [PMID: 27733097 DOI: 10.1089/scd.2016.0099]

Eiraku M, Sasaki Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 2011; 7: 69-79 [PMID: 22179557 DOI: 10.1038/nprot.2011.429]

Fujiwara H, Hayashi Y, Sanzen N, Kobayashi R, Weber CN, Emoto T, Futaki S, Niwa H, Murray P, Edgar D, Sekiguchi K. Regulation of mesodermal differentiation of mouse embryonic stem cells by basement membranes. J Biol Chem 2007; 282: 29701-29711 [PMID: 17690109 DOI: 10.1074/jbc.M70014203]

Sun T, Heverne RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 2014; 15: 217-232 [PMID: 24646670 DOI: 10.1038/nrn3707]

Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, Gehrke L, Knoblich JA, Jaenisch R. Induction of Ontogeny with MYB-Independent Tissue-Resident Macrophages. Dev Cell 2016; 40: 385-396.e3 [PMID: 26041895 DOI: 10.1016/j.devcel.2016.11.017]

Calabrese D, Roma G, Bergling S, Carbone M, Bine A, Clarke J, Tschöp J, Bouwmeester T, Wieland S, Heim MH. Liver biopsy derived induced pluripotent stem cells provide unlimited supply for the generation of hepatocyte-like cells. PLoS One 2019; 14: e0221762 [PMID: 31465481 DOI: 10.1371/journal.pone.0221762]

Coll M, Pereira L, Boon R, Leite SB, Vallverdú J, Manuera I, Smout A, El Taghoudgui A, Blaya D, Rodrigo-Torres D, Graupera I, Aguilar-Breto B, Chesne C, Najimi M, Sokal E, Lozano JJ, van Grunsven LA, Verfaille CM, Sancho-Bru P. Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables In Vitro Modeling of Liver Fibrosis. Cell Stem Cell 2018; 23: 101-113.e7 [PMID: 30049452 DOI: 10.1016/j.stem.2018.05.027]

Münera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallverdú J, Manuera I, Smout A, El Taghoudgui A, Blaya D, Rodrigo-Torres D, Graupera I, Aguilar-Breto B, Chesne C, Najimi M, Sokal E, Lozano JJ, van Grunsven LA, Verfaille CM, Sancho-Bru P. Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables In Vitro Modeling of Liver Fibrosis. Cell Stem Cell 2018; 23: 101-113.e7 [PMID: 30049452 DOI: 10.1016/j.stem.2018.05.027]

Chin CJ, Li S, Corselli M, Casero D, Zhu Y, He CB, Hardy R, Pélault B, Crooks GM. Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10: 436-446 [PMID: 29307583 DOI: 10.1016/j.stemcr.2017.12.005]

Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ, Bornot A, Ding M, Andersson H, Polla M, Dalton DA, Drowley L, Clausen M, Park H, Shin J, Kim J, Lennon CL, Lee YK, Kim J, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, Gehrke L, Knoblich JA, Jaenisch R. Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell 2019; 24: 895-907.e6 [PMID: 30930147 DOI: 10.1016/j.stem.2019.03.069]

Cao X, Yakala GK, van den Hl FE, Cochrane A, Mummery CL, Orlova VV. Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives. Stem Cell Reports 2019; 12: 1282-1297 [PMID: 31189095 DOI: 10.1016/j.stemcr.2019.05.003]

Lee CY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4: 359-365 [PMID: 17398617 DOI: 10.1038/nmeth1035]

Kim H, Park JJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lennon CL, Lee YK, Kim J, Lennon CL, Lee YK, Kim J, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, Gehrke L, Knoblich JA, Jaenisch R. Induction of Ontogeny with MYB-Independent Tissue-Resident Macrophages. Dev Cell 2016; 40: 385-396.e3 [PMID: 26041895 DOI: 10.1016/j.devcel.2016.11.017]

Low A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular Adhesion-Dependent Cell Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Fatination of a Retinal Organoid. Stem Cell Reports 2016; 7: 745-756 [PMID: 27132890 DOI: 10.1016/j.stemcr.2016.03.011]

Akhtar T, Xie H, Khan MI, Zhao H, Bao J, Zhang M, Xue T. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res 2019;
Fang M et al. Efficient differentiation of hPSCs

39: 101491 [PMID: 31326746 DOI: 10.1016/j.scr.2019.101491]

Miura S, Suzuki A. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming. Cell Stem Cell 2017; 21: 456-471.e5 [PMID: 28943029 DOI: 10.1016/j.stem.2017.08.020]

Nadkarni RR, Abed S, Cox BJ, Bhatia S, Lau JT, Surette MG, Draper JS. Functional Enterospheres Derived In Vitro from Human Pluripotent Stem Cells. Stem Cell Reports 2017; 9: 897-912 [PMID: 28867347 DOI: 10.1016/j.stemcr.2017.07.024]

Vazirzadeh F, Pahlavan S, Ansari H, Halvaei M, Kostin S, Feiz MS, Latifi H, Aghdami N, Braun T, Baharvand H. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials 2019; 192: 537-550 [PMID: 30529872 DOI: 10.1016/biomaterials.2018.11.033]

Parfitt DA, Lane A, Ramsden CM, Carr AJ, Munro PM, Jovanovic K, Schwarz N, Kanuga N, Muthiah MN, Hull S, Gallo JM, da Cruz L, Moore AT, Hardcastle AJ, Coffey PJ, Cheetham ME. Identification and Correction of Mechanisms Underlying Inherited Blindness in Human iPSCE-Derived Optic Cups. Cell Stem Cell 2016; 18: 769-781 [PMID: 27151457 DOI: 10.1016/j.stem.2016.03.021]

Deng WL, Gao ML, Lei XL, Lv JN, Zhao H, He KW, Xia XX, Li LY, Chen YC, Li YP, Pan D, Xue T, Jin ZB. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPS-Carried Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Reports 2018; 12: 1267-1281 [PMID: 29526738 DOI: 10.1016/j.stemcr.2018.02.003]

Völkner M, Zschätzch M, Rostovtseva M, Overall RW, Busskamp V, Anastassiou K, Karl MO. Retinal Organoids from Pluripotent Stem Cells Efficiently Replicate Retinogenesis. Stem Cell Reports 2016; 6: 525-538 [PMID: 27059498 DOI: 10.1016/j.stemcr.2016.03.001]

Lee J, Booscke R, Tang PC, Hartman BH, Heller S, Koehler KR. Hair Follicle Development in Mouse Pluripotent Stem Cell-Derived Skin Organoids. Cell Rep 2018; 22: 242-254 [PMID: 29298425 DOI: 10.1016/j.celrep.2017.12.007]

Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo L, Nene A, Wynshaw-Boris A, Kriegstein AR. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 2017; 20: 435-449.e4 [PMID: 28111201 DOI: 10.1016/j.stem.2016.12.007]

Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, Marsoner F, Brändl B, Müller FJ, Koch P, Ladewig J. An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wet Signaling Contributing to Miller-Dicker Syndrome. Cell Rep 2017; 19: 50-59 [PMID: 28380362 DOI: 10.1016/j.celrep.2017.03.047]

Linkous A, Balamatsias D, Snuderl M, Edwards L, Miyagaki K, Milner KR, Reich B, Cohen-Gould L, Storaska A, Nakayama Y, Schenkein E, Singhania R, Cirigliano S, Magdeldin T, Lin Y, Nakanjagud S, Gao ML, Lei XL, Lv JN, Zhao H, He KW, Xia XX, Li LY, Chen YC, Li YP, Pan D, Xue T, Jin ZB. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPS-Carried Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Reports 2018; 12: 1267-1281 [PMID: 29526738 DOI: 10.1016/j.stemcr.2018.02.003]
Fang M et al. Efficient differentiation of hPSCs

Efficient differentiation of hPSCs to improve their use in cancer immunotherapy. E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Minagawa A, Toyoda T, Koseki H, Nakauchi H, Iwama A. Role of SOX17 in hematopoietic development from human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Stem Cell Reports 2017; 9: 1745-1753 [PMID: 29198827]. DOI: 10.1016/j.stemcr.2017.10.020

Kou Yi Y, Kido T, Ito T, Oyama H, Chen SW, Katou Y, Shirahige K, Miyajima A. An in vitro human liver model by iPSC-Derived Parenchymal and Non-parenchymal Cells. Stem Cell Reports 2017; 9: 490-498 [PMID: 28757162]. DOI: 10.1016/j.stemcr.2017.06.010

Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: time to deliver. J Control Release 2018; 269: 24-35 [PMID: 29113792]. DOI: 10.1016/j.jconrel.2017.11.004

Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiani V, Marro S, Siddhott C, Wernig M. Induction of human neuronal cells by defined transcription factors. Nature 2011; 476: 220-223 [PMID: 21617664]. DOI: 10.1038/nature10202

Tomizawa M, Shimoraki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Transcription Factors and Medium Suitable for Initiating the Differentiation of Human-Induced Pluripotent Stem Cells to the Hepatocyte Lineage. J Cell Biochem 2016; 117: 2001-2009 [PMID: 26773721]. DOI: 10.1002/jcb.25494

Takayama K, Inamura M, Kawabata K, Sugawara M, Kikuchi K, Higuchi M, Nagamoto Y, Watanabe H, Tashiro K, Sakurai F, Hayakawa T, Furue MK, Mizuguchi H. Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1a transduction. J Hepatol 2012; 57: 628-636 [PMID: 22659344]. DOI: 10.1016/j.jhep.2012.04.038

Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D. A regulatory pathway involving Notch1/beta-catenin/Iso1 determines cardiac progenitor cell fate. Nat Cell Biol 2009; 11: 951-957 [PMID: 19620909]. DOI: 10.1038/rcb1906

Bai F, Ho Lim C, Jia J, Santostefano K, Simmons C, Kasahara H, Wu W, Terada N, Jin S. Directed Differentiation of Embryonic Stem Cells Into Cardiomyocytes by Bacterial Injection of Defined Transcription Factors. Cell Stem Cell 2018; 23: 628-636 [PMID: 30183041]. DOI: 10.1016/j.stem.2018.08.014

Sharma A, McKeirnan WL, Serrano R, Kitani T, Burridge PW, Del Álamo JC, Mercola M, Wu JC. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc 2018; 13: 3018-3041 [PMID: 30413799]. DOI: 10.1038/s41596-018-0076-6

Nakajima-Takagi Y, Osawa M, Oshima M, Takagi H, Miyagi S, Endoh M, Endo TA, Takayama N, Eko T, Toyoda T, Koseki H, Nakauchi H, Iwama A. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood 2013; 121: 447-458 [PMID: 23169777]. DOI: 10.1182/blood-2012-05-431403

Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriuguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakamichi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S. Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell 2018; 23: 850-858.e4 [PMID: 30449714]. DOI: 10.1016/j.stem.2018.10.005
