DISCONTINUITY POINTS OF A FUNCTION WITH A CLOSED AND CONNECTED GRAPH

MICHAL STANISŁAW WÓJCIC

ABSTRACT. The main result of this paper states that for a function $f : \mathbb{R}^2 \to Y$ with a closed, connected and locally connected graph, where Y is a locally compact, second-countable metrisable space, the graph over discontinuity points remains locally connected.

Motivation. It is a classic result that for a function $f : X \to Y$ with a closed graph and Y Hausdorff, a sufficient and necessary condition for being continuous is sub-continuity [Fuller 68, 3.4]. However, it is an interesting question how, for various spaces X and Y, additional topological properties of a closed graph are related to the continuity of a function. It is known that, for a function $f : \mathbb{R} \to \mathbb{R}$ with a closed graph, a sufficient and necessary condition for being continuous is the connectedness of the graph [Burgess 90].

In 2001, Michał R. Wójcik and I stated the question whether this result can be extended to $f : \mathbb{R}^2 \to \mathbb{R}$ [Wójcik 2004, 9] – this problem was then propagated by Cz. Ryll-Nardzewski. The answer to this question is negative. The first known discontinuous function $f : \mathbb{R}^2 \to \mathbb{R}$ with a connected and closed graph was shown by J. Jelínek in [Jelínek 2003]. It can be shown that the graph of Jelínek’s function in not locally-connected [Mrwphd 2008, A4]. Therefore a new question was stated, whether connectedness together with the local connectedness of the graph is a sufficient and necessary condition of being continuous for a function $f : \mathbb{R}^2 \to \mathbb{R}$ with a closed graph. This question, as far as I know, remains open.

In this paper, I show some properties of the set of discontinuity of a function $f : \mathbb{R}^2 \to \mathbb{R}$ with a closed, connected and locally connected graph, hoping that they might be useful in the main research.

Result. The main result of this paper states that for a function $f : \mathbb{R}^2 \to Y$ with a closed, connected and locally connected graph, where Y is a locally compact, second-countable metrisable space, the graph over discontinuity points remains locally connected. This result is given as Corollary 16 as a consequence of some deep topological properties of the real plane and the more generic Theorem 13.

1. Notation and terminology

Definition 1. Let X,Y be topological spaces and $f : X \to Y$ be an arbitrary function.

(1) We will denote by $C(f)$ or C_f the set of all points of continuity,
(2) by $D(f)$ or D_f – set of all points of discontinuity,
(3) We will denote by π a projection operator $\pi : X \times Y \to X$ and $\pi(x, y) = x$.
(4) For $A \subset X$, by $f|A$ we will denote a restriction of f to the subdomain A.

1
In the context of function \(f : X \to Y \), we will not use a separate symbol to denote the graph of \(f \), for \(f \) itself, in terms of Set Theory, is a graph. So when we use Set Theory operations and relations with respect to \(f \), they should be understood as operations and relations with respect to the graph. Whenever this naming convention might be confusing, we will add the word “graph”, e.g. “\(f \) has a closed graph”.

Definition 2. Let \(Y \) be a topological space and \(y_n \in Y \) be an arbitrary net. We will write \(y_n \to \emptyset \) or \(\lim y_n = \emptyset \) iff \(y_n \) has no convergent subnet.

2. Functions with a closed graph

It will be helpful to cite two well-known theorems concerning functions with a closed graph:

Theorem 3. If \(X \) is a topological space, \(Y \) is a compact space, \(f : X \to Y \) and the graph of \(f \) is closed, then \(f \) is continuous.

(for proof: e.g. [Wójcik 2004, T2])

Theorem 4. If \(X \) is a Bair and Hausdorff space, \(Y \) is a \(\sigma \)-locally compact space, \(f : X \to Y \) and the graph of \(f \) is closed, then \(C(f) \) is an open and dense subset of \(X \).

(for proof: e.g. [Dobos 85, T2])

3. Graph over discontinuity points

I will begin with several well-known facts:

Fact 5. Every non-empty metrisable compact space is a continuous image of the Cantor set.

(for proof e.g. [Engelking 89, 4.5.9])

Fact 6. If \(X \) is a connected and locally arcwise-connected metrisable space, \(F \) is a closed subset of \(X \), \(C \subset [0,1] \) is the Cantor set and \(f : C \to F \) is continuous and \(f(C) = X \), then \(f \) has a continuous extension \(f^* : [0,1] \to X \).

(for proof: e.g. [Kuratowski II 66, 50.I.5])

Fact 7. If \(X \) is a topological space and \(A, B \subset X \) are both closed and locally connected, then \(A \cup B \) is locally connected.

(for proof: e.g. [Kuratowski II 66, 49.I.3])

Fact 8. If \(X \) is a compact and locally connected space, \(Y \) is a Hausdorff space, \(f : X \to Y \) is continuous and \(f(X) = Y \), then \(Y \) is compact and locally connected.

(for proof: notice that since \(X \) is compact and \(Y \) is Hausdorff, \(f \) is a quotient mapping and local connectedness is invariant under quotient mappings [Whyburn 52, T2])

Lemma 9. If \(X \) is a connected metrisable space, and \(F \) is a connected and closed subset, \(X \setminus F = A \cup B \), where \(\text{Clo}(A) \cap B = \text{Clo}(B) \cap A = \emptyset \), then \(F \cup A \) is connected and closed.

Proof. [Kuratowski II 66, 46.II.4] □
Lemma 10. If X is a locally connected metrisable space, F is a locally connected and closed subset and S is a sum of some connected components of $X \setminus F$, then $S \cup F$ is locally connected.

Proof. [Kuratowski II, 66, 49.II.11] \hfill \Box

Theorem 11. If X is a connected and locally connected, locally compact, second-countable metrisable space, E is a continuum in X and U is an arbitrary open neighbourhood of E, then there exists a locally connected continuum F such that $E \subset F \subset U$ and $X \setminus F$ has finitely many connected components.

Proof. Since X is locally compact, Hausdorff and locally connected, there exists an open neighbourhood V_x of the point x such that $\text{Cl}(V_x)$ is a continuum and $\text{Cl}(V_x) \subset U$ for each $x \in E$. Since E is compact, there exist $x_1, x_2, \ldots, x_n \in E$ such that $E \subset \bigcup_{i=1}^{n} V_{x_i}$. Let $V = \bigcup_{i=1}^{n} V_{x_i}$. Notice that $\text{Cl}(V)$ is compact and $E \subset V \subset \text{Cl}(V) \subset U$. By Fact \ref{fact:continuum} there is a continuous function $f : C \to E$, where C is the Cantor set and $f(C) = E$. Since X is metrisable and locally compact, it is completely metrisable and therefore, by the Mazurkiewicz-Moore theorem, X is locally arcwise-connected, and thus V is locally arcwise-connected. V is connected by construction. Therefore by Fact \ref{fact:extension} there is a function f^* that is a continuous extension of f such that $f^* : [0,1] \to V$. Let $F_0 = f^*([0,1])$. By Fact \ref{fact:continuum} F_0 is a locally connected continuum and $E \subset F_0 \subset V$. Let S_V be a family of all the connected components of $X \setminus F_0$ that are subsets of V. Let S_∞ be a family of all the other connected components of $X \setminus F_0$. Notice that, due to the connectedness of S, (1) $S \cap \partial V \neq \emptyset$ for any $S \in S_\infty$. Since X is locally connected, all the connected components of $X \setminus F_0$ are open in X. Since $\partial V \subset \bigcup S_\infty$, by virtue of (1) and the compactness of ∂V, the family S_∞ is finite. Let $F = F_0 \cup \bigcup S_V$. By Lemma \ref{lemma:connected} (F, V) is connected and closed. Since $F \subset \text{Cl}(V)$, F is a continuum. By Lemma \ref{lemma:local} F is locally connected. Obviously, $E \subset F \subset V \subset U$. Since $X \setminus F = \bigcup S_\infty$ and S_∞ is finite, the proof is complete. \hfill \Box

Lemma 12. If X is a Hausdorff space, Y is a topological space, $f : X \to Y$ is a function with a closed graph, $D = D(f)$, E is a compact subset of the graph and U is a relatively open subset of the graph such that $U \subset E \subset f$, then $U \cap f[D] = U \cap f[\partial f(E)]$. Moreover, if $(x, f(x)) \in U \cap f[D]$ and $X \setminus \pi(E) \ni x_n \to x$, then $f(x_n) \to \emptyset$.

Proof. Since E is compact, by Theorem \ref{lemma:continuity} $f|\pi(E)$ is continuous. If $x \in \text{Int}(E)$, then f is continuous in x, so $x \notin D$. Therefore $U \cap f[D] \subset U \cap f[\partial f(E)]$ is obvious. We will show inverse inclusion by contradiction. Assume that $(x, f(x)) \in U \cap f[\partial f(E)]$ and x is a continuity point of f. Since $\pi(E)$ is compact and X is Hausdorff, $\pi(E)$ is closed, so $x \in \pi(E)$. Notice that $(x, f(x)) \in U$, so by the continuity of f at point x, there is an open neighbourhood V of x, such that $f[V] \subset U$. But $U \subset E$, so $x \in V \subset \pi(E)$. This contradicts how x was chosen. Now we will show the “moreover part”. Take any $(x, f(x)) \in U \cap f[D]$ and $X \setminus \pi(E) \ni x_n \to x$. Since $U \subset E$, $(x_n, f(x_n)) \notin U$. So no subnet of $f(x_n)$ is convergent to $f(x)$. But the graph of f is closed, so $f(x_n) \to \emptyset$. \hfill \Box

Theorem 13. If X is a connected and locally connected, locally compact, second-countable metrisable space, Y is a locally compact, second-countable metrisable
space, \(f : X \to Y, \ D = D(f) \) and the graph of \(f \) is closed, connected and locally connected, then for each \(x \in D \) there is an open in the graph topology \(U \) and a locally connected continuum \(E \) such that

1. \((x, f(x)) \in U \subset E \subset f,\)
2. \(U \cap f[D = U \cap f[\partial \pi(E)] \) (so \(x \in \partial \pi(E) \)),
3. if \(X \setminus \pi(E) \ni x_n \to x, \) then \(f(x_n) \to \emptyset, \)
4. \(X \setminus \pi(E) \) has finitely many connected components.

Proof. Notice that \(f \) is a connected and locally connected, locally compact, second-countable metrisable subspace of \(X \times Y \). Take an arbitrary \(x \in D \). Choose open in the graph topology set \(U \), such that \((x, f(x)) \in U \) and \(Cl_{f}(U) \) is a continuum. By Theorem 11 there exists a locally connected continuum \(E \subset f \) such that \(f \setminus E \) has finitely many connected components and \(U \subset E \). By Lemma 12, \(f[D \cap U = f[\partial p(E) \cap U \) and for any subsequence \(X \setminus \pi(E) \ni x_n \to x \) we have \(f(x_n) \to \emptyset \). By Fact 8, \(p(E) \) is a locally connected continuum and since \(f \setminus E \) has finitely many connected components and \(\pi \) is continuous, the set \(\pi(f \setminus E) = \pi(f) \setminus \pi(E) = X \setminus \pi(E) \) also has finitely many connected components. \(\square \)

Theorem 13 has an interesting consequence for \(X = \mathbb{R}^2 \), namely \(\partial \pi(E) \) from the above theorem is locally connected, which implies (by Theorem 9) that \(f[D \) has a locally connected graph. To prove this, let me refer to the following theorem:

Theorem 14. If \(A \) is a locally connected continuum in \(\mathbb{R}^2 \), and \(S \) is a connected component of \(\mathbb{R}^2 \setminus A \), then \(\partial S \) is a locally connected continuum.

Proof. Since \(\mathbb{R}^2 \) is homeomorphic with a unit sphere without one point, it’s enough to apply [Kuratowski II 66, 61.II.4]. \(\square \)

Let’s formulate a simple consequence of the above.

Theorem 15. If \(A \) is a locally connected continuum in \(\mathbb{R}^2 \) and \(\mathbb{R}^2 \setminus A \) has finitely many connected components, then \(\partial A \) is locally connected.

Proof. Let \(S_1, S_2, \ldots S_n \) be connected components of \(\mathbb{R}^2 \setminus A \). \(S_1, S_2, \ldots S_n \) are open, since \(\mathbb{R}^2 \setminus E \) is an open subset of a locally connected space and thus locally connected. Since we’re dealing only with a finite number of open sets, the below equation holds.

\[
\partial A = \partial(\mathbb{R}^2 \setminus A) = \partial\left(\bigcup_{i=1}^{n} S_i\right) = \bigcup_{i=1}^{n} \partial S_i.
\]

By Theorem 14, \(\partial S_i \) is locally connected for \(i = 1, 2, \ldots, n \). Therefore, by Fact 7, \(\partial A \) is locally connected. \(\square \)

By applying Theorem 13, Theorem 9 and Theorem 8 we immediately get the following corollary.

Corollary 16. If \(Y \) is a locally compact, second-countable metrisable space, \(f : \mathbb{R}^2 \to Y \) has a closed, connected and locally connected graph, then \(f[\mathbb{R}^2] \) has a locally connected graph.

One might propose that as the local connectedness of \(f[\mathbb{R}^2] \) is a local property, it might be enough to assume only local connectedness of \(f \). Unfortunately, there is a simple example that shows that the connectedness of \(f \) is necessary in Corollary 16 and Theorem 13.
Example 17. Let \(r_n = \frac{1}{4n(n+1)} \), \(B_n = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + (y - \frac{1}{n})^2} < r_n\} \).

\[
f(x, y) = \begin{cases}
0 & \text{for } y \geq 0 \text{ and } (x, y) \notin \bigcup_{n=1}^{\infty} B_n, \\
\frac{1}{y} & \text{for } y < 0, \\
 n + \tan\left(\frac{x}{\sqrt{2}r_n}\right) \sqrt{x^2 + (y - \frac{1}{n})^2} & \text{for } (x, y) \in B_n \text{ for } n = 1, \ldots
\end{cases}
\]

Note that in the above example \(B_n \) is a sequence of pairwise disjoint open discs convergent to the point \((0, 0)\). \(f = 0 \) on the whole half plane \(\mathbb{R} \times [0, \infty) \) except discs \(B_n \). \(f \geq n \) on \(B_n \) and converges to infinity on \(\partial B_n \). Therefore, it is easy to notice that the graph of \(f \) is closed and not connected. The local connectedness of the graph is obvious everywhere except the point \((0, 0, 0)\). But as \(f \geq n \) on \(B_n \) and \(f = 0 \) on \(\mathbb{R} \times [0, \infty) \) \(\setminus \bigcup_{n=1}^{\infty} B_n \), it’s enough to see that \(\mathbb{R} \times [0, \infty) \setminus \bigcup_{n=1}^{\infty} B_n \) is locally connected at the point \((0, 0)\). Thus the graph of \(f \) is locally connected. However, \(f|D_f = (\mathbb{R} \times \{0\} \cup \bigcup_{n=1}^{\infty} \partial B_n) \times \{0\} \) and is not locally connected in \((0, 0, 0)\). It’s also easy to notice that for any open in the graph topology set \(U \) such that \((0, 0, 0)\) \(\in U \) and for any locally connected continuum \(E \) such that \(U \subset E \subset f, \mathbb{R}^2 \setminus \pi(E) \) has infinitely many connected components, since \(B_n \cap \pi(E) = \emptyset \) and \(\partial B_n \subset E \) for almost all \(n \).

References

[Burgess 90] C. E. Burgess, Continuous Functions and Connected Graphs, The American Mathematical Monthly, Vol. 97, No. 4, 337–339, 1990.

[Dobos 85] J. Dobos, On the set of points of discontinuity for functions with closed graphs, Časopis pro pěstování matematiky, Vol. 110, No. 1, 60–68, 1985.

[Engelking 89] R. Engelking, General Topology, Berlin: Heldermann, 1989.

[Fuller 68] R. V. Fuller, Relations among continuous and various non-continuous functions, Pacific Journal of Mathematics, Vol. 25, No. 3, 495–509, 1968.

[Jelinek 2003] J. Jelínek, A discontinuous function with a connected closed graph, Acta Universitatis Carolinae, 44, No. 2, 73–77, 2003.

[Kuratowski I 66] K. Kuratowski, Topology Volume I, New York 1966.

[Kuratowski II 66] K. Kuratowski, Topology Volume II, New York 1966.

[Mrwphd 2008] M. R. Wójcik, Closed and connected graphs of functions; examples of connected punctiform spaces, PhD Thesis in Institute of Mathematics University of Silesia, 2008

[Whyburn 52] G. T. Whyburn, On quasi-compact mappings, Duke Math J.19, 445–446, 1952

[Wójcik 2004] M. R. Wójcik, M. S. Wójcik, Separately continuous functions with closed graphs, Real Analysis Exchange, Vol. 30, No. 1, 23–28, 2004/2005.

[Wójcik 2007] M. R. Wójcik, M. S. Wójcik, Characterization of continuity for real-valued functions in terms of connectedness, Houston Journal of Mathematics, Vol. 33, No. 4, 1027–1031, 2007.