Mechanical and Electrical Properties of p-type Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and n-type Bi$_2$Se$_{0.6}$Te$_2.4$ Bulk Material for Thermoelectric Applications

A Kadhim a, A Hmood b and H A Hassanc
School of physics, Universiti Sains Malaysia, 11800, Pulau Penang, Malaysia

Email: aareejkadhim@yahoo.com, barshad.phy73@gmail.com, chaslan@usm.my

Abstract. This study reports on the fabrication of a chalcogen-based thermoelectric power generation (TEG) device using p-type Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and n-type Bi$_2$Se$_{0.6}$Te$_2.4$ bulk thermoelectric materials. The microstructure of the samples was characterized by field emission scanning electron microscopy (FESEM). The phase composition of the powders was characterized by X-ray diffraction (XRD), revealing a rhombohedral structure. The thermoelectric (TE) properties such as Seebeck coefficient (S) and the electrical conductivity (σ) of the resulting alloys were studied in the temperature range of 300 K to 523 K. The power factor (P_{factor}) for a Bi$_{0.4}$Sb$_{1.6}$Te$_3$ as p-type sample was found to be 4.96 mW/mK2 at 373 K, whereas 2.22 mW/mK2 was obtained at 383 K for a Bi$_2$Se$_{0.6}$Te$_{2.4}$ as n-type sample. Electrical power generation characteristics such as high open circuit voltage (V_{oc}) and maximum output power (P_{max}) were monitored by changing the temperature conditions required to generate maximum power. The significance of the resistances including the internal resistance (R_{in}) and contact resistance (R_{C}) between legs and electrodes, are discussed. The maximum output power obtained with the 9 p-n couples device was 39.4 mW under the thermal condition of T_H=523 K hot side temperature and ΔT = 184 K temperature difference.

1. Introduction

A thermoelectric power generation (TEG) device produces voltage when there is a temperature difference (ΔT) between the hot and the cold sides as a result of Seebeck thermoelectric effect (TE) [1]. The following are the advantages of these generators: no moving parts, small and lightweight, maintenance-free, acoustically silent and electrically “quiet”, and environmentally friendly [2]. Bi$_2$Te$_3$-based chalcogenides have attracted great interest due to their promising TE properties [3]. Yet, enhancing in the TE properties is strongly required for empirical applications. One approach to enhance the TE properties is optimization of the doping effective route. For example, recent devices use Bi$_2$Te$_3$, a semiconductor, which when alloyed with antimony (Sb) or selenium (Se) becomes an efficient TE material for power generation as a result of the variations in the carrier concentration and carrier mobility [4, 5]. As an alternate approach, researchers have attempted to improve the efficiency of materials based on Bi$_2$Te$_3$ by creating structures with one or more reduced dimensions [6]. In one case, an n-type Bi$_2$Te$_3$ has been shown to have improved Seebeck coefficient (S). However, S and electrical conductivity (σ) have a trade-off; a higher S results in decreased carrier concentrations and decreased σ [7]. The fundamental physical parameters of Bi-Sb-Te and Bi-Se-Te TE materials such as σ, S, and power factor (P_{factor}) are referred in our previous papers [5,8], which reported that the highest P_{factor} have been obtained for the compositions of Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$. For Bi$_2$Se$_{0.6}$Te$_{2.4}$ as n-type materials, the carrier concentration is adjusted by doping with tellurium (Te) which is done in the
present paper. Te atoms exhibit a donor action because they replace Se atoms in the lattice and each contributes one electron to the conduction band [9]. It appears that the ionization energy of a Te atom is very low and therefore this atom in Bi$_{2}$Se$_{0.6}$Te$_{2.4}$ is almost fully ionized. As an extension of our previous work, we fabricated in this paper 9 couples of TEG device using solid-state microwave synthesis. We focused on the thermoelectric properties of the TEG device that use Bi$_{0.4}$Sb$_{1.6}$Te$_{3}$ as p-type and Bi$_{2}$Se$_{0.6}$Te$_{2.4}$ as n-type.

2. Experimental

Bi, Sb, Se, and Te that were used in this study were highly pure powders (99.999%). The typical element ratio for the preparation of p-type Bi$_{0.4}$Sb$_{1.6}$Te$_{3}$ is as follows: 0.2528g Bi, 0.5892 g Sb, and 1.1580 g Te. The n-type Bi$_{2}$Se$_{0.6}$Te$_{2.4}$ with excess Te was prepared by mixing 1.0834g Bi, 0.1228g Se, and 0.7938g Te. The p-type and n-type ingots were grown using a solid-state microwave synthesis that was described in a previous literature [5, 8]. After grinding, the samples were then characterized to determine their crystallization via X-ray diffraction (XRD, PANalytical X’Pert PRO MRD PW3040, Almelo, The Netherlands). Both types of powders were pressed into disk shapes (5 mm diameter and 3.5 mm thickness) through cold pressing at 10 tons. Selected regions of the samples were imaged using field emission scanning electron microscopy (FESEM) (Leo-Supra 50VP, Carl Zeiss, Germany).

σ as a function of temperature was measured via the standard 4-terminal DC method under a vacuum of 10^{-3} mbar, whereas, S was determined by the slope of the linear relationship between the thermoelectromotive force (e.m.f.) and ΔT between the two ends of each sample. As shown in Fig.1, the assemblies of 9 (p-n) couples from these pellets were placed between two alumina plates with the corresponding dimensions of 50 mm × 25 mm, which served as hot and cold ends for the relevant TE pellets. By using Ag paste and Cu plates, the Ag paste–Cu plates–Ag paste electrodes were made on the inner surface of the alumina substrates. The device was then dried at room temperature for one day to metalize the electrodes on the devices.

![Figure 1.](image)

Figure 1. (a) connection of p- and n-type samples by Cu plates, and (b) schematic diagram of the thermoelectric generation device.

To evaluate device performance, the top alumina plate was heated up to 523 K by one brass block as a heater for the device, and the bottom plate was cooled by another brass block with circulated cooling water. ΔT between the hot and the cold sides was measured by two digital K-type E0 Sun (ECS820C) thermocouples near the inner surface of the alumina substrates. The current-voltage (I-V) lines and the current-power (I-P) curves of power generation were performed in air by sweeping the load resistance (R_L) using the variable resistance box. The open circuit voltage (V_{oc}) and many other voltages at the condition of power generation were measured by a voltage meter (Keithley 197).
3. Results and discussion

Typical SEM images of the surface morphology of the samples (ingots and pellets) Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$ are shown in Figure 2(a) to 2(d). In Fig.2 (a), most of the grains were uniformly arranged and formed by the assembly of micro-sheet grains (Bi$_{0.4}$Sb$_{1.6}$Te$_3$ as an ingot). In Fig.2 (b), the FESEM observations revealed the appearance of a typical layered and well-packed structure (Bi$_2$Se$_{0.6}$Te$_{2.4}$ as an ingot). In Fig.2 (c) and (d), small pores notice at the grains boundaries in the samples, explaining that the compact texture was obtained. Therefore, the surfaces show uniform grains and high density (Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$ as pellets).

![Figure 2](image)

Figure 2. (a) and (b) are the FESEM images of Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$ ingots, respectively, whereas (c) and (d) are the FESEM images of Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$ pellets, respectively.

XRD experiments were carried out to determine the structure of the powder samples, and the results are shown in Figs. 3 (a) and (b). XRD spectra for Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and Bi$_2$Se$_{0.6}$Te$_{2.4}$ powders indicate that the powders are polycrystalline and characterized by a rhombohedral structure, with a dominant peak representing the plane (0 1 5). All of the diffraction peak positions and (hkl) values match very well with the standard diffraction data of pure Bi$_2$Te$_3$ and Sb$_2$Te$_3$ (JCPDS 15-0863 and 15-0874, respectively) for Bi$_{0.4}$Sb$_{1.6}$Te$_3$ (Fig.3 (a)), whereas Bi$_2$Te$_3$ and Bi$_2$Se$_3$ (JCPDS15-0863 and 33-0214, respectively) for Bi$_2$Se$_{0.6}$Te$_{2.4}$ (Fig.3 (b)).
Figure 3. (a) and (b) are the XRD patterns of Bi$_{0.4}$Sb$_{1.6}$Te$_{3}$ and Bi$_{2}$Se$_{0.6}$Te$_{2.4}$ powders, respectively.

The transport properties of p- and n-type samples in terms of σ, S, and P_{factor} were investigated from 300 to 523 K (Figs. 4 to 6). Both sample types had nearly the same behavior for σ, which gradually decreased as the experimental temperature increased, that is, a degenerate semiconductor (Figure 4). σ for the p-type Bi$_{0.4}$Sb$_{1.6}$Te$_{3}$ sample (σ_p) varied from 9.6×10^5 S/m at 300 K to 4.8×10^5 S/m at 523 K, whereas σ for the n-type Bi$_{2}$Se$_{0.6}$Te$_{3}$ sample (σ_n) was from 1.99×10^4 S/m at 300 K to 1.74×10^4 S/m at 523 K.

Figure 4. Temperature dependence values of σ of p-type and n-type samples.
As shown in Figure 5, S for the p-type sample (S_p) was 90 at 443 K and for n-type (S_n) was -330.6 μV/K at 423 K. The value of S increases almost rapidly with temperature from 300 to 443K for p-type (300 to 383K for n-type), which is consistent with the Mott formula [4]. Due to the thermal excitation of extrinsic charge carriers at higher temperatures a decrease in S (with rising temperatures) is observed for both types of samples.

![Figure 5](image1.png)

Figure 5. Temperature dependence values of S of p-type and n-type samples.

As evident in Figure 6, the temperature behaviors of P_{factor} for the p-type and n-type samples were similar. $P_{factor,p}$ values obtained for the p-type samples were larger than those for the n-type samples ($P_{factor,n}$) within the entire temperature range. The maximum $P_{factor,p}$ measured was 4.96 mW/mK2 at 373 K, which is larger than that reported by Li et al. [10], whilst the maximum $P_{factor,n}$ was 2.22 mW/mK2 at 383 K, which is comparable to that reported by Wang et al. [4]. These two maximum values for p- and n-type contribute to a maximum output power for our devices.

![Figure 6](image2.png)

Figure 6. Temperature dependence values of P_{factor} of p-type and n-type samples.
The output voltage and the output power of the fabricated 9 couples versus the current were measured by sweeping I at several temperature conditions, as shown in Figure 7. The V_{oc} that is equal to the intercept of the I-V line reached 355 mV at ΔT of 184 K and T_H of 523 K, which are in agreement with the expression $V=V_{oc}-R_L I$. It is lower than that calculated S-T curves (Figure 5) of both p- and n-type legs ($V_{calculated} = (S_p-S_n) \times \Delta T \times N$, where N is the number of couples). This voltage loss could have originated from many factors including low thermal conductivity of alumina substrate [11] and unfavorable junctions between the TE legs and the electrodes. I-P curves illustrated in Figure 7 exhibit the parabolic curves of the output power (P_{out}); an analysis to plots of I-V lines allows the observation of an increasing in the P_{out} with the ΔT. The explanation for this observation results from the rise of the ΔT, whose consequence is an increase in the output voltage (V_{oc}). The higher the value of this V_{oc}, the higher will be the output current (I_{out}) for a given R_L, and therefore will be the dissipated power in the external load ($P_{out} = R_L I_{out}^2$). The maximum output power (P_{max}) values were 39.4 mW at the thermal condition of 523 K T_H and $\Delta T = 184$ K, which means these results could be comparable with the results of Wang et al. [4]. It was investigated that the powers of the devices improved by increasing the temperature. The internal resistance (R_{in}) of each device which corresponds to the slope of the I-V lines was directly obtained by the measured system. The ideal internal resistance (R_{id}) was calculated by the sum of the resistance values of p-type and n-type samples. With R_{in} and R_{id}, contact resistance (R_c) can be obtained by $R_c = R_{in} - R_{id}$ [2]. The resistance values of the device ($R_{in} = 0.8 \Omega$ and $R_c = 0.4 \Omega$). This result demonstrates that, with the relationship between R_c and P_{max}, R_c should be minimized for each device because it plays a key role in TEG device performance. Based on the data obtained, the good TEG properties originally came from the relatively high electrical properties of p-type and n-type samples that were prepared by solid-state microwave synthesis. Two methods were adopted to optimize the device performance. First, the surface of the alumina plates was treated with NaOH solution to increase roughness and to enhance both mechanical strength and electrical contact between the alumina plates and the Cu electrodes. Second, the ends of p-type and n-type samples were grooved to increase the surface area, also improving the mechanical and the electrical properties of the contacts [2]. Based on these results, the device using p-type Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and n-type Bi$_2$Se$_{0.6}$Te$_{2.4}$ worked successfully and it was stable with satisfactory TE performances.

![Figure 7](image-url) Figure 7. The power generation characteristics of the TEG device that comprises 9 couples, where (I) $\Delta T = 27$, (II) $\Delta T = 66$, (III) $\Delta T = 104$, (IV) $\Delta T = 145$, and (V) $\Delta T = 184$ K.
4. Summary
TE materials p-type Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and n-type Bi$_2$Se$_{0.6}$Te$_{2.4}$ were prepared via solid-state microwave synthesis. TEG devices were fabricated and characterized in terms of high open circuit voltage (V_{oc}) and maximum output power (P_{max}). A maximum V_{oc} and P_{max} of 355 mV and 39.4 mW was achieved in the device with 9 p-n couples with T_H of 523 K and ΔT of 184 K. V_{oc} and P_{max} systematically increased with ΔT. As a result, the device using p-type Bi$_{0.4}$Sb$_{1.6}$Te$_3$ and n-type Bi$_2$Se$_{0.6}$Te$_{2.4}$ worked successfully and it was stable with satisfactory TE performances. The successful demonstration of good thermoelectric performances of the as-prepared device suggests the great potential of these low temperature doped thermoelectric materials towards future applications.

Acknowledgments
We are extremely grateful to the School of Physics at the University Sains Malaysia for the general funding provided for this project.

References
[1] L. Gaowei, Z. Jiemin, H. Xuezhang. Analytical model of parallel thermoelectric generator, Appl. Energy 88 (2011) 5193–5199.
[2] H. Ling, J. Yang, L. Shanying, S. Huangming, L. Xinzhe, Q. Kaixuan. et al., High temperature thermoelectric properties and energy transfer devices of Ca$_3$Co$_{4}$Ag$_4$O$_9$ and Ca$_{1-y}$Sm$_y$Mn$_3$. J. Alloys Compd. 509 (2011) 8970-8977.
[3] A. Kadhim, A. Hmood, H. Abu Hassan. Novel hexagonal rods and characterization of Bi$_{1-x}$Sb$_{1.6}$Se$_{3x}$Te$_{3(1-x)}$ using solid-state microwave synthesis, Mater. Lett. 81 (2012) 31–33.
[4] W. Shanyu, L. Xinfeng. Enhanced performances of melt spun Bi$_2$(Te,Se)$_3$ for n-type thermoelectric legs, Intermetallics 19 (2011) 1024–31.
[5] A. Kadhim, A. Hmood, H. Abu Hassan. Characterizations of solid-state microwave-synthesize Sb$_2$Te$_3$-based alloys with various compositions of bismuth in Bi$_2$Sb$_{2(1-x)}$Te$_3$. Mater. Sci. Semicond. Process. 15 (2012) 549–554.
[6] K. Joohoon, N. Jin-Seo, L. Wooyoung. Simple two-step fabrication method of Bi$_2$Te$_3$ nanowires, Nanoscale Res. Lett. 6 (2011) 277.
[7] B. Y. Yoo, C. –K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J.-P. Fleurial et al., Electrochemically deposited thermoelectric n-type Bi$_2$Te$_3$ thin films, Electrochim. Act. 50 (2005) 4371–4377.
[8] A. Kadhim, A. Hmood, H. Abu Hassan. Significant influences of selenium on the electrical properties of Bi$_2$Te$_3$ compounds synthesized using solid-state microwave irradiation, Advanced Materials Research 501 (2012) 126-128.
[9] D. M. Rowe, Thermoelectrics handbook: macro to nano, CRC Press Taylor & Francis Group, USA, 2006.
[10] D. Li, R.R. Sun, X.Y. Qin. Thermoelectric properties of p-type (Bi$_2$Te)$_{1-x}$(Sb$_2$Te$_3$)$_{1-x}$ prepared by spark plasma sintering, Intermetallics 19 (2011) 2002-2005.
[11] Z. Degang, T. Changwen, T. Shoujiu, Y. Yunteng, J. Likun and C. Lidong. Fabrication of a CoSb3-based thermoelectric module, Mater. Sci. Semicond. Process. 13 (2010) 221-224.