CHEMICAL COMPOSITION IMPROVEMENT OF ALUMINUM-IRON BRONZE INDUSTRIAL CASTING

DZIUBINA A.V.¹, Postgrad. Stud., MAZORCHUK V.F.², Cand. Sc. (Tech.), Assoc. Prof., UZLOV K.I.³, Dr. Sc. (Tech.), Prof., REPYAKH S.I.⁴, Dr. Sc. (Tech.), Prof.

¹Material Science Department named after Yu.N. Taran-Zhovnir, National Metallurgical Academy of Ukraine, 4 Haharina Ave., 49600, Dnipro, Ukraine, tel. +38 (093) 205-29-37, e-mail: alinadzubina@gmail.com, ORCID ID: 0000-0002-2215-7231
²Foundry Department, National Metallurgical Academy of Ukraine, 4, Haharina Ave., 49600, Dnipro, Ukraine, tel. +38 (067) 631-50-01, e-mail: mazorchukv@gmail.com
³Material Science Department named after Yu.N. Taran-Zhovnir, National Metallurgical Academy of Ukraine, 4, Haharina Ave., 49600, Dnipro, Ukraine, tel. +38 (097) 950-14-08, e-mail: konst.uzlov@gmail.com, ORCID ID: 0000-0003-0744-9890
⁴Foundry Department, National Metallurgical Academy of Ukraine, 4, Haharina Ave., 49600, Dnipro, Ukraine, tel. +38 (050) 592-70-95, e-mail: 123rs@ua.fm, ORCID ID: 0000-0003-0203-4135

Abstract. Introduction. Interstate standard GOST 493 provides for the maximum allowable zinc content in bronze BrA9Zh3L not more than 1 (wt.) %. Zinc in aluminum-iron bronze composition has controversial influence on casting technological and mechanical properties. The specified element improves material castability, but, in certain amount, leads to product embrittlement. Problem statement. In the present work the problem of effective amount of zinc determination for casting bronze BrA9Zh3L properties improving without negative affecting the plastic and impact characteristics of foundry products has been solved. Purpose. The purpose of this study was an evaluation of Zn content influence on BrA9Zh3L bronze structure and mechanical properties and determination of its rational doping. Materials and Methods. Aluminum-iron bronze BrA9Zh3L according to GOST 493, alloyed with zinc in an amount 0...4 (wt.) %. Fractography of destroyed impact samples surfaces and the products microstructure have been studied according to ASTM E3 − 11 (2017) requirements. Mechanical static tensile tests were carried out according to GOST 1497, impact toughness according to GOST 9454. Results. It has been established that the zinc content increasing over then 0,2 % by weight in bronze BrA9Zh3L composition effects not only on significant strength decreasing, but also on sharp ductility dropping. The reason for such regularity is the number of eutectoid component in BrA9Zh3L structure increasing. Conclusions. Active loosing of BrA9Zh3L bronze plasticity and ductility, associated with alloy structural state changing, has been recorded in the range of 0,2...0,6 (wt.) % Zn. For industrial cast products maximum Zn content in bronze BrA9Zh3L has been recommended to limit by 0,2 (wt.) % against normatively stipulated 1,0 (wt.) % as per GOST 493.

Keywords: bronze; zinc; standard; chemical composition; strength; plasticity; ductility; brittleness; microstructure; eutectoid

УДОСКОНАЛЕННЯ ХІМІЧНОГО СКЛАДУ БРОНЗОВОГО ПРОМИСЛОВОГО ЛІТВА

ДЗЮБІНА А. В.¹, аспір., МАЗОРЧУК В. Ф.², канд. техн. наук, доц., УЗЛОВ К. І.³, докт. техн. наук, проф., РЕП'ЯХ С. І.⁴, докт. техн. наук, проф.

¹Кафедра матеріалознавства ім. Ю. М. Тарана-Жовніра, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (093) 205-29-37, e-mail: alinadzubina@gmail.com, ORCID ID: 0000-0002-2215-7231
²Кафедра ливарного виробництва, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (067) 631-50-01, e-mail: mazorchukv@gmail.com
³Кафедра матеріалознавства ім. Ю. М. Тарана-Жовніра, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (097) 950-14-08, e-mail: konst.uzlov@gmail.com, ORCID ID: 0000-0003-0744-9890
⁴Кафедра ливарного виробництва, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (050) 592-70-95, e-mail: 123rs@ua.fm, ORCID ID: 0000-0003-0203-4135
Анотація. Вступ. Міждержавний стандарт ГОСТ 493 передбачає максимально допустимий вміст цинку в бронзі БрА9Ж3Л масовою частиною не більше 1 %. Цинк у складі алюмінієво-залізної бронзи має неоднозначний вплив на технологічні і механічні характеристики лиття. Зазначений елемент поліпшує рідкоплинність матеріалу, але, в певних кількостях, спричинює окрихчування виробу. Проблематика. У роботі вирішувалась проблема вибірку ефективної кількості цинку, який сприяє поліпшенню ливарних властивостей бронзи БрА9Ж3Л без негативного впливу на пластичні й ударні характеристики лиття. Мета дослідження – оцінення впливу Zn на структуру і механічні властивості бронзи БрА9Ж3Л і визначення раціонального її легування. Матеріали і методи. Алюмінієво-залізна бронза БрА9Ж3Л по ГОСТ 493, легована цинком у кількості масової частки від 0 до 4 %. Фрактографію поверхонь руйнування ударних зразків і мікроструктуру виробів вивчали за вимогами ASTM Е3 – 11 (2017). Механічні випробування на статичний розтяг проводили за ГОСТ 1497, на ударний вигин за ГОСТ 9454. Результат. Установлено, що збільшення вмісту цинку понад 0,2 % в складі бронзи БрА9Ж3Л не тільки суттєво зменшує її міцність й різко зменшує пластичність. Причина такої закономірності – збільшення в структурі БрА9Ж3Л кількості евтектоїдної складової. Висновки. Активна втрата пластичності і в'язкості бронзи БрА9Ж3Л, пов'язана зі зміною структурного стану сплаву, зафіксована в інтервалі 0,2...0,6 % Zn. Для литих деталей індустріального призначення максимальний вміст Zn у бронзі БрА9Ж3Л рекомендовано обмежити масовою частиною 0,2 % проти нормативно передбаченого 1,0 %.

Ключові слова: бронза; цинк; міцність; пластичність; мікроструктура; крихкість; евтектоїд

УСОВЕРШЕНСТВОВАНИЕ ХИМИЧЕСКОГО СОСТАВА БРОНЗОВОГО ПРОМЫШЛЕННОГО ЛИТЬЯ

ДЗЮБИНА А. В. 1, аспир.,
МАЗОРЧУК В. Ф. 2, канд. техн. наук, доц.,
УЗЛОВ К. И. 3, докт. техн. наук, проф.,
РЕПЯХ С. И. 4, докт. техн. наук, проф.

Введение. Межгосударственный стандарт ГОСТ 493 предусматривает максимально допустимое содержание цинка в бронзе БрА9Ж3Л массовой долей не более 1 %. Цинк в составе алюминиево-железной бронзы оказывает неоднозначное влияние на технологические и механические характеристики лития. Указанный элемент улучшает жидкотекучесть материала, но, в определенных количествах, приводит к охрупчиванию изделия. Проблематика. В настоящей работе решалась проблема выбора эффективного количества цинка, способствующего улучшению литейных свойств бронзы БрА9Ж3Л без негативного воздействия на пластические и ударные характеристики отливок. Цель исследования – оценка влияния Zn на структуру и механические свойства бронзы БрА9Ж3Л и определение рационального ее легирования. Материалы и методы. Алюминиево-железная бронза БрА9Ж3Л по ГОСТ 493, легированная цинком массовой долей от 0 до 4 %. Фрактографию поверхностей разрушения ударных образцов и микроструктуру изделий изучали по требованиям ASTM Е3 – 11 (2017). Механические испытания на статическое растяжение проводили по ГОСТ 1497, на ударный изгиб – по ГОСТ 9454. Результат. Установлено, что увеличение содержания цинка более 0,2 % в составе бронзы БрА9Ж3Л приводит не только к существенному уменьшению её прочности, но и к резкому уменьшению пластичности. Причины такой закономерности – увеличение в структуре БрА9Ж3Л количества эвтектоидной составляющей. Выводы. Активная потеря пластичности и вязкости бронзы БрА9Ж3Л, связанная с изменением структурного состояния сплава, зафиксирована в интервале 0,2…0,6 % Zn. Для литых деталей индустриального назначения максимальное содержание Zn у бронзы БрА9Ж3Л рекомендовано ограничить массовой долей 0,2 % против нормативно предусмотренного 1,0 %.

Ключевые слова: бронза; цинк; прочность; пластичность; микроструктура; хрупкость; эвтектоид

Introduction. According to GOST 493 [1] maximum acceptable Zn content in bronze BrA9Zh3L is 1 (wt.) %. Usually zinc gets into bronze BrA9Zh3L accidentally as a result of
using raw materials containing this component [2; 3] or as a result of its targeted addition into the bronze melt to increase its castability [4].

Practice of bronze castings manufacturing from BrA9Zh3L indicates that the presence of Zn in the bronze composition often leads to its embrittlement. As a result, such castings can be destroyed not only during their cooling and knocking out from the molds, but also during mechanical processing, as well as exploitation as part of components and assemblies [5; 6].

Problem Statement. At present, data on the effect of Zn on BrA9Zh3L bronze structure and mechanical properties are missing or fragmentary. Therefore, investigation aimed to discovering the reasons of bronze BrA9Zh3L embrittlement with Zn content increasing is relevant [7].

Purpose. The aim of this study was an evaluation of Zn content (up to 4, 0 (wt.) %) influence on BrA9Zh3L bronze structure and mechanical properties and determination of its rational doping.

Materials and Methods. In this study castings of cylindrical from BrA9Zh3L bronze as per GOST 493 [1] without heat treatment have been investigated. Castings have been obtained as a result of pre-deoxidized melt of bronze (the melt overheating 100 ± 15 °C), pouring into single steel chill mold (without protective surface coating) with an initial temperature 200 ± 10 °C. Size of chill mold cavity – $\varnothing 16\times100$ mm.

Subsequently, samples have been prepared from these cylindrical castings for mechanical tensile testing [8]. For impact toughness determination samples were cast “in size” into quartz ceramic shell forms (CFS) with an initial temperature 950 ± 15° C. Mesnager-type U-notched specimens for impact testing have been mechanically manufactured [9] after castings separation from pouring gating system. Table 1 demonstrates content of chemical elements in bronze test pieces.

| Content of chemical elements in bronze test pieces (wt. %) |
| Cu | Al | Fe | Zn | Impurities (no more) | P | Ni, Mn, Sn, Si, Pb, Sb |
| 82,8...88,8 | 8,7...9,5 | 2,5...3,7 | 0,0...4,0 | 0,02 | 0,01 |

Results and Discussion. Results of the study of Zn effect (up to 4, 0 (wt.) %) on the properties of bronze BrA9Zh3L indicate that with Zn content in bronze BrA9Zh3L increasing (Figure 1, a) the level of tensile strength (σ_B) monotonously decreases. But with Zn content increasing up to 2, 5 (wt.) % the values of yield strength ($\sigma_{0,2}$) and elasticity ($\sigma_{0,05}$) increase. At the same time the difference between σ_B and $\sigma_{0,2}$ values continuously decreases with zinc content increasing in bronze reaching a minimum at content Zn = 4 (wt.) %. This regularity suggests that Zn content in bronze increasing leads to its fragility.

This conclusion is also confirmed by dependences δ, ψ and KCU = f (Zn) profiles, presented in Figure 1 a, b. Sharp decreasing of bronze plastic properties and toughness levels has observed (see Fig. 1 a, b) at zinc content 0, 2...0, 6 (wt.) %.

![Fig. 1. Dependence of bronze BrA9Zh3L ultimate tensile, yield strengths, elasticity, elongation, reduction area (a – σ_B, $\sigma_{0,2}$, $\sigma_{0,05}$, δ, ψ) and impact toughness (b – KCU) vs. Zn content](image-url)
Zn, wt. %	Fracture surfaces of impact toughness specimens	Microstructures, ×80
0	![Fracture surface](image1.png)	![Microstructure](image2.png)
0,2	![Fracture surface](image3.png)	![Microstructure](image4.png)
0,6	![Fracture surface](image5.png)	![Microstructure](image6.png)
1,4	![Fracture surface](image7.png)	![Microstructure](image8.png)
2,5	![Fracture surface](image9.png)	![Microstructure](image10.png)

Fig. 2. Fractography of impact toughness specimens’ surfaces and microstructures of cast tested samples of BrA9Zh3L bronze without heat treatment alloyed with different Zn content (Specimens casted into CFS with initial temperature 950 ± 15 °C)
Changing in the fracture character of impact toughness specimens occurs accordingly (Fig. 2). Fractography analysis [10] of BrA9Zh3L bronze fracture surfaces (see Fig. 2) in specimens with Zn content up to 0, 2 (wt.) % indicates viscous nature of destruction with typical breaking ridges, main winding cracks and crushing up zones (in the case Zn = 0,0...0,2 (wt.) %).

Appearance of bronze samples containing more than 0,2 (wt.) %Zn fracture surfaces shows signs of brittle fracture and have cleavage zones in fragile structural component areas. This indicates a confident tendency for cold cracks in castings of such alloys occurrence.

Microstructural investigation results [11] of tested bronzes show amount of eutectoid structural component continuous increasing with Zn content in bronze rising and corresponding decreasing in α-phase amount with simultaneous changing its morphology to dendritic.

Therefore, results of metallographic analysis (see Fig. 2) indicate that exactly amount of eutectoid component and α-Cu crystals morphology are the main factors for BrA9Zh3L bronze ductile and viscous properties levels sharp decreasing when changing chemical composition in Zn.

It follows from above that level of BrA9Zh3L bronze mechanical properties are fundamentally dependent on zinc content in it and, as a result, on structural state (see Fig. 2). In this regard, maximum content of Zn, according to results of the present research, has been recommended to limit by 0,2 (wt.) % instead of normatively stipulated 1,0 (wt.) % as per GOST 493.

Conclusions

1. With Zn content (up to 4 (wt.) %) increasing, tensile strength of bronze BrA9Zh3L steadily decreases (from 600 MPa with Zn content 0,0 (wt.) % to 300 MPa with Zn content 4,0 (wt.) %), yield strength and elasticity values increase, reaching maximum at Zn content 2,5 (wt.) %.
2. When Zn content is 0, 2 ... 0,6 (wt.) % sharp decreasing of BrA9Zh3L bronze plastic properties levels has been discovered.
3. It has been shown that the reason for bronze BrA9Zh3L fragile destruction is increasing in its structure eutectoid component amount.
4. In order to avoid castings and, accordingly, cast parts for technical purposes embrittlement the maximum Zn content in bronze BrA9Ж3Л limitation to 0,2 (wt.) % has been recommended against normatively stipulated 1,0 (wt.) % as per GOST 493.

REFERENCES

1. GOST 493-79. Bronzy bezolovyannyje liteynyje. Marki (chinniy víd 1980-01-01) [GOST 493-79. Tin-free foundry bronzes. Grades]. (Valid from 1980-01-01). URL: http://docs.cntd.ru/document/1200009189
2. Mikhailov A.M., Bauman B.V. and Blagov B.N. Liteynoye proizvodstvo: Uchebnik dlya metallurgicheskikh spetsial’nostey vuzov [Foundry: a textbook for metallurgical specialties of universities]. Moscow: Mashinostroenie, 1987, 256 p. URL: https://www.twirpx.com/file/714903/ (in Russian).
3. Kurdyumov A.V. and Pikunov M.V. Proizvodstvo otlivok iz splavov tsvetnykh metallov [Production of castings from alloys of non-ferrous metals]. MISIS [National University of Science and Technology «MISIS»]. Moscow, 1996, 504 p. URL: https://www.twirpx.com/file/1831002/ (in Russian).
4. Korolkov A.M. Liteynye svojstva metallov i splavov [Foundry properties of metals and alloys]. Moscow: Science, 1967, 198 p. URL: https://www.twirpx.com/file/1036746/ (in Russian).
5. Leibenzon V.O., Pilushchenko V.L. and Kondratenko V.M. Tverdnennya metaliv i metalevykh kompozitnykh [Solid metal and metal compositions]. Kyiv: Naukova Dumka, 2009, 446 p. URL: http://irbis-nbu.gov.ua/cgi-bin/irbis64.exe?Z21ID=&I21DBN=EC&P21DBN=EC&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=0&S21COLORTERM=S-1&S21STR=Leibenzon%20BS (in Russian).
6. Boguslav V.O., Repyakh S.I. and Mogilatenko V.G. Lvarni vlastivosti metaliv i splaviv dlya presyziynoho lytva [Casting properties of metals and alloys for precision casting]. Zaporizhzhia: Promotional Society “MOTOR SICH”, 2016, 474 p. URL: http://www.irbis-nbu.gov.ua/cgi-bin/irbis_nbu/cgiirbis_64.exe?Z21ID=&I21DBN=EC&P21DBN=EC&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=A-1&S21COLORTERMS-1&S21STR=Mogilatenko%20BS (in Ukrainian).
7. Uzlov K., Repiakh S., Mazorchuk V. and Dziubina A. Phase Composition, Structure and Mechanical Properties of Industrial Bronze BrA9Zh3L Additionally Doped with Zinc. Scientific development and achievements: Monograph [Text]. LP22772, 20-22 Wenlock Road, London, N1 7GU, 2018, vol. 5, pp. 349–364. URL: https://www.google.com/search?q=Uzlov+K.%2C+Repiakh+S.%2C+Mazorchuk+V.%2C+Dziubina+A.+(2018).+Phase+Composition%2C+Structure+and+Mechanical+Properties+of+Industrial+Bronze+BrA9Zh3L+Additionally+Doped+with+Zinc.+Scientific+development+and+achievements%3A+Monograph&sourceid=chrome&ie=UTF-8
8. GOST 1497-84. Metally. Metody ispytaniy na rastyazheniye [GOST 1497-84. Metals. Methods of tension test]. (Valid from 1986-01-01). Publ. office. Moscow: Standartinform, 2005, 24 p. URL: http://docs.cntd.ru/document/gost-1497-84
9. GOST 9454-78. Metally. Metod ispytaniya na udarnyy izgib pri ponizhennykh, komnatnoy i povyshennykh temperaturakh [GOST 9454. Metals. Method for testing the impact strength at low, room and high temperature]. (Valid from 1979-01-01). Publ. office. Moscow: IPK “Издательство стандартов”, 2003, 12 p. URL: http://docs.cntd.ru/document/1200005045
10. Metals Handbook : Fractography and Atlas of Fractographs. By Editor Howard E. Boyer. Vol. 9, 8 January, 1974. American Society for Metals, Metalls Park, Ohio. URL: https://books.google.com.ua/books?id=Wp1XC3mN_2IC&pg=PA364&lpg=PA364&dq=10.%09Metals+Handbook:+Fractography+and+Atlas+of+Fractographs+20-%20January%201974&sourceid=chrome&ie=UTF-8
11. ASTM E3-11 (2017) Standard Guide for Preparation of Metallographic Specimens. ASTM International : web-site. URL: https://www.astm.org/Standards/E3.htm

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. ГОСТ 493-79. Бронзы безоловянные литейные. Марки. [Чинний від 1980-01-01].
2. Михайлов А. М. Литейное производство : учеб. для металлургических специальностей вузов. Москва : Машиностроительное, 1987. 256 с.
3. Курдюмов А. В., Пикунов М. В. Производство отливок из сплавов цветных металлов. Москва : МИСИС, 1996. 504 с.
4. Корольков А. М. Литейные свойства металлов и сплавов. Москва : Наука, 1967. 198 с.
5. Лейбензон В. О, Пилюшенко В. Л., Кондратенко В. М. Тверднення металів і металевих композицій. Київ : Наукова думка, 2009. 446 с.
6. Богуславский В. О., Реп’ях С. І., Могилєнко В. Г. Ливарні властивості металів і сплавів для прецизійного литва. Запоріжжя : АТ «МОТОР СІЧ», 2016. 474 с.
7. Uzlov K., Repiakh S., Mazorchuk V. and Dziubina A. Phase Composition, Structure and Mechanical Properties of Industrial Bronze BrA9Zh3L Additionally Doped with Zinc. Scientific development and achievements: monograph [Text]. LP22772, 20-22 Wenlock Road, London, N1 7GU, Vol. 5. Pp. 349–364.
8. GOST 1497-84. Metally. Metody ispytaniy na rastyazheniye [GOST 1497-84. Metals. Methods of tension test]. (Valid from 1986-01-01). Publ. office. Moscow: Standartinform, 2005, 24 p. URL: http://docs.cntd.ru/document/gost-1497-84
9. GOST 9454-78. Metally. Metod ispytaniya na udarnyy izgib pri ponizhennykh, komnatnoy i povyshennykh temperaturakh [GOST 9454. Metals. Method for testing the impact strength at low, room and high temperature]. (Valid from 1979-01-01). Publ. office. Moscow: IPK “Издательство стандартов”, 2003, 12 p. URL: http://docs.cntd.ru/document/1200005045
10. Metals Handbook : Fractography and Atlas of Fractographs. By Editor Howard E. Boyer. Vol. 9, 8 January, 1974. American Society for Metals, Metalls Park, Ohio. URL: https://books.google.com.ua/books?id=Wp1XC3mN_2IC&pg=PA364&lpg=PA364&dq=10.%09Metals+Handbook:+Fractography+and+Atlas+of+Fractographs+20-%20January%201974&sourceid=chrome&ie=UTF-8
11. ASTM E3-11 (2017) Standard Guide for Preparation of Metallographic Specimens. ASTM International : web-site. URL: https://www.astm.org/Standards/E3.htm

The article was received by the editors : 11.05.2020.