INTRODUCTION

The enormous demand for crude oil and its extractions from various industrial plants is vitally essential to increase the oil production from hydrocarbon oilfields or develop new wells to supply the requested demand.\(^1\)\(^-\)\(^18\) In this regard, it should be noted that novel methods and techniques that can have a minimal environmental impact\(^19\)\(^-\)\(^31\) and virtually eliminate the unnecessary expenses have always been noticed by petroleum industries.\(^32\)\(^-\)\(^48\) Many companies and industries have proposed novel methods to capture carbon dioxide and store it. It is called carbon capture and underground storage (CCUS). This captured carbon can be injected and stored in underground formations.\(^49\)\(^-\)\(^67\) Due to the complexity of oil production from unconventional reservoirs, selecting optimum oil recovery methods would be of interest as production from conventional reservoirs would be finished in the following decades.\(^68\)\(^-\)\(^80\) Therefore, these reservoirs would be necessary for petroleum industries to be used as fundamental crude oil production.\(^80\)\(^-\)\(^90\)

Carbon dioxide (CO\(_2\)) injection is a well-known EOR method regarding its feasible application rather than other conventional methods.\(^91\)\(^-\)\(^95\) Its application in shale reservoirs is of importance in recent decades. In this method, carbon dioxide has interacted with the formation fluid (oil phase). It is adsorbed on the shale rock, which can be used as a useful guideline for developing unconventional hydrocarbon reservoirs. Thereby, pressure increase would be an essential parameter to increase CO\(_2\) storage capacity; however, temperature increase has a reverse pattern and has caused to decrease the CO\(_2\) storage capacity. The essence of the oil recovery factor from shale reservoirs is another crucial factor that depends on the pressure, temperature, and soaking time factors. CO\(_2\) injection would be a proper (EOR) method to increase the oil recovery factor for higher pressures and temperatures. Therefore, the applicability of CO\(_2\) injection in shale reservoirs could provide efficient results rather than other EOR techniques.

KEYWORDS
CO\(_2\) adsorption, CO\(_2\) injection, pressure impact, shale particle size
way to store CO₂ in underground formation. To nurture the importance of CO₂ adsorption on the oil recovery enhancement and CO₂ storage capacity, crucial parameters such as pressure, temperature, soaking time, and stimulation procedure should be considered. The methods of CO₂ injection contained huff-n-puff (cyclic CO₂ injection) or regular CO₂ injection. Using CO₂ reduces the oil viscosity that can cause the mobilization of more oil volume. Another crucial factor that plays an essential role in the performances of CO₂ is shale mineralogy (due to their high adsorption capacity), shale total organic content (TOC), and interactions of different formation and injected fluids. According to Zhao et al (2015), during the carbon dioxide displacement in low permeable reservoirs, pressure increase has caused to increase the oil mobilization through porous media. This concept was investigated for different pressures in this paper, and it is concluded that due to the more mobilization of the oil phase in higher pressures, the oil recovery factor has been increased.

Although there are few research proposal and field application has been made to improve the oil recovery factor from shale reservoirs, in this paper, it is aimed to experimentally investigate the influential factors such as pressure, shale particle size, and reservoir temperature on the CO₂ adsorption and how it affects the CO₂ storage capacity in underground formations. As pressure and temperature have a potential impact on the CO₂ adsorption, they can cause the mobilization of the oil phase and improve the oil recovery factor. Moreover, the effect of soaking time and stimulation phenomenon would be a proper guideline for the petroleum industries, which is studied and discussed in more detail in this paper.

2 | MATERIALS AND METHODS

2.1 | Materials

Core samples: as each experimental test needs a new shale core sample, about 35 samples were provided from one of the southwest Iranian oilfields. The reservoir characteristics of samples are statistically depicted in Table 1.

Core Type No.	No. of samples	Diameter and length, cm	Porosity, %	Permeability, mD
Core Type#1	10	2.54 * 25	23.12	3.25
Core Type#2	10	2.54 * 25	24.15	3.22
Core Type#3	5	2.54 * 25	23.68	3.21
Core Type#4	5	2.54 * 25	23.94	3.26
Core Type#5	5	2.54 * 25	24.35	3.24

TABLE 1 | Reservoir characteristics for studied core samples

Shale particle sizes: to consider shale particle sizes during carbon dioxide injection processes, it is necessary to investigate different particle sizes experimentally. It is given to us how different particle sizes influence carbon dioxide adsorption or if the particles can be a proper representative of the shale core samples. To do this, shale core samples pulverized into micro-sized of 50, 200, 400, and 800 μm.

Carbon dioxide: to provide high purity for CO₂, a high-pressurized cylinder was administered. It can provide CO₂ with the purity of 99.9% that used in the experiments.

Crude oil: crude oil composition for this experiment is statistically depicted in Table 2. Oil viscosity and density are 315 mPa s and 1.015 g/cm³, respectively.

2.2 | Experimental methods

To measure carbon dioxide adsorption and carbon dioxide injectivity performances on the oil recovery, two different systems were prepared, as in Figure 1.

The carbon dioxide adsorption and injection process are explicitly explained in Tables 3 and 4 in more detail.

3 | RESULTS

3.1 | CO₂ adsorption

3.1.1 | Shale particle size

Shale core samples with various sizes of 50, 200, 400, and 800 μm. It is given to us how different particle sizes influence carbon dioxide adsorption or if the particles can be a proper representative for shale core samples. The process was performed under reservoir conditions of 60°C and 1500 psi. Core type#1 was used for this experiment. According to the results of our experiments, it is evident that CO₂ adsorption for shale particle sizes of 50, 200, 400, and 800 μm is 87.4, 87, 86.7, and 86.5 SCF/ton, respectively. It is indicated that pulverized shale samples in micro-sized grains would not change the CO₂ adsorption significantly. Therefore, to save the required time for CO₂ measurement in oilfield applications, it
is recommended to use smaller-sized pulverized shale grains to obtain the results.

3.1.2 Temperature and pressure impact

To consider the considerable influence of reservoir temperature and injected pressure on the CO₂ adsorption, it is noted that 50 μm of shale particle size was selected for 6 hours to perform the experiments. Core type#1 was used for this experiment. Temperatures of 20, 60, and 100°C under 1500 Psi were implemented in the system to measure CO₂ adsorption. CO₂ adsorption is measured 90, 84, and 80 SCF/ton, respectively, indicating that temperature increase has a decreasing pattern in CO₂ adsorption. Therefore, the capacity of CO₂ storage has been decreased in hydrocarbon reservoirs that can be studied in more detail before any oilfield application processes as it has affected the oil recovery. The pressure parameter is another crucial factor in the CO₂ adsorption measurement performed under the reservoir temperature of 60°C for various 750, 1500, and 3000 psi pressures. Core type#1 was used for this experiment. It is observed that by the increase in pressure, CO₂ adsorption has been increased. It is about 93, 87, and 82 SCF/ton for 3000, 1500, 750 psi, respectively, indicating a higher capacity of CO₂ storage for higher pressures.

3.2 Oil recovery

3.2.1 Phase behavior

To perform the profound impact of gas-phase behavior on the recovery factor, supercritical gas phase, liquid phase, and gas phase with the pressures of 1500 psi, 750 psi, and 500 psi were considered in this experiment. The experiment was done under 60°C and 6 hours of soaking time and core type#3. The supercritical gas phase has provided a higher oil recovery factor due to the lower density and can be mobilized more feasible. Another reason for this issue is related to the pressure that has caused more CO₂ adsorption by increasing pressure. Although pressure is a crucial factor in increasing CO₂ adsorption and oil recovery, density would play an important role. For the liquid and gas phase, as gas has a lower density than the liquid phase, its mobilization through pores and cracks was difficult due to the lower pressure. Therefore, the oil recovery factor was lower than the liquid phase.

On the other hand, when the CO₂ is in the liquid phase with higher pressure, the oil recovery factor has been approximately reached a plateau due to the remaining some liquid volumes in the small pores, and this is why it has increased slightly. The highest oil recovery factor is about 40%, 31%, and 24% for the supercritical, liquid, and gas phases (see Figure 2). To ensure the efficiency of the measurements in the experiments, a sensitivity analysis was performed for the gas phase. This experiment was done three times to observe the oil recovery variations.

3.2.2 Pressure and temperature

As explained in Section 3.1, the CO₂ adsorption has increased by the increase in pressure. Therefore, the CO₂ storage capacity has been increased, helping to mobilize more oil volume through porous media. This section wants to experimentally investigate various pressures and their impact on the oil recovery factor. Core type#4 was used for this experiment. The experiments were done under 60°C, 6 hours of soaking time for pressures of 500, 1500, 2500, and 3000 psi to observe the total number of cycles needed for each pressure and measure the oil recovery factor. Due to the higher adsorption and storage capacity of CO₂ in higher pressures (higher CO₂ diffusion through the porous medium), it needs more CO₂ cycles by the pressure increase. Recovery factor is 62 (12 CO₂ cycles), 52 (10 CO₂ cycles), 44 (8 CO₂ cycles), and 28 (6 CO₂ cycles) % for 3000, 2500, 1500, and 500 psi in the maximum point (see Figure 3). To ensure the efficiency of the measurements in the experiments, a sensitivity analysis was performed for 2500 psi. This experiment was done three times to observe the oil recovery variations.

Temperature is another crucial factor in determining CO₂ adsorption and oil recovery factor; in this part, we experimentally investigate the effect of various temperatures. Therefore, the experiments were performed under 1500 psi, 6 hours of soaking time, by utilizing core type#5 for 20, 60, 100, and 120°C. As explained in section 3.1, temperature increase has caused a decrease in CO₂ adsorption; however, it is a reverse pattern with oil recovery. The temperature increase increases it. The reason for this phenomenon is related to the pore size expansion and viscosity reduction in higher temperatures. Moreover, as carbon dioxide has been changed its phase to

Table 2: Crude oil composition
Composition
C₁
C₂
C₃
C₄
C₅
C₆
C₇+
CO₂
H₂S
N₂

Crude oil composition	Mole%
C₁	79.4
C₂	8.51
C₃	4.6
C₄	3.54
C₅	1.2
C₆	0.35
C₇+	0
CO₂	0
H₂S	0
N₂	2.4
FIGURE 1 (A) Carbon dioxide adsorption system and (B) carbon dioxide injection system
supercritical and liquid phase in higher temperatures, it can vaporize retrograde hydrocarbon due to the more content of CO2. Thereby, oil density has been reduced, and it can mobilize more feasible through porous media (see Figure 4). In initial CO2 cycles, the gas might be in the liquid phase, and the reason for the oil recovery factor increase at low temperatures corresponds to the more mobilization of the liquid phase, and then it decreased slightly. Maximum oil recovery factor is 62 (12 CO2 cycles), 47 (10 CO2 cycles), 37 (8 CO2 cycles), and 27 (6 CO2 cycles) for 120, 100, 60, and 20°C. To ensure the efficiency of the measurements in the experiments, a sensitivity analysis was performed for 60°C. This experiment was done three times to observe the oil recovery variations. As temperature increase would be a good point for oil recovery increase, there is an inverse pattern in CO2 storage capacity. Thereby, the reservoir should be studied in more detail that might not be a good choice for CO2 storage.

3.2.3 | Soaking time

To select the optimum soaking time (appropriate interaction time between CO2-oil), different soaking times were considered in the system to observe the oil recovery factor (RF) for each soaking time. All the experiments were done under 60°C, and 1500 Psi and core type#2 were used for this experiment. Soaking time of 4, 8, 12, and 24 hours were performed in the system for 12 CO2 cycles. It is observed that an increase in soaking time has caused to increase in the oil recovery factor. It corresponds to the more interaction time between oil and CO2 that can cause the mobilization of more oil volumes through the porous medium. Another finding of this observation is the soaking time of 12 and 24 hours that there is no significant alteration in recovery factor. It can be used as a guideline for petroleum industries to eliminate the extra expenses of soaking time as the performances can be done in 12 hours and provide relevant results. The highest recovery factor is 58%, 58%, 43%, and 30% for 24, 12, 8, and 4 hours of soaking time, respectively (see Figure 5). To ensure the efficiency of the measurements in the experiments, a sensitivity analysis was performed for 8 hours soaking time.97-107 This experiment was done three times to observe the oil recovery variations.

3.2.4 | Stimulation phenomenon

Due to the fracture’s conductivity impact on more oil mobilization through the shale core samples, it should be noted that making new fractures in the core could provide a higher recovery factor in the less CO2 cycles. The stimulation phenomenon is known as hydraulic fracturing, which can be done by injecting a fracturing fluid to create new fractures or reopening the blocked fractures.105,106 It can provide better conductivity between rock and production point in the shale core samples. The experiments were done under 60°C, and 1500 Psi and core type#2 were used for this experiment. Therefore, it can be concluded that if the cores have more fractures or are stimulated before CO2 injection, it has provided better results by performing fewer CO2 cycles (see Figure 6). To ensure the efficiency of the measurements in the experiments, a sensitivity analysis was performed for unstimulated cores. This experiment was done three times to observe the oil recovery variations.

4 | DISCUSSION

CO2 adsorption is considered one of the critical issues in CO2 storage capacity. It is affected by pressure and temperature. The pressure increase can provide higher CO2 adsorption as CO2 has changed to a supercritical phase, and its density would become lower. Therefore, it can reduce the oil viscosity, and the oil recovery factor has been increased. According to the findings of Davarpanah A. and Mirshekari B. (2019), the solubility of CO2 in crude oil can help to increase oil
Table 4

Carbon dioxide injection procedure
Step
1
2
3
4
5

Figure 2 Oil Recovery factor measurement vs CO₂ cycles for different gas-phase behavior

Figure 3 Oil Recovery factor measurement vs CO₂ cycles for different pressures
mobilization and oil recovery factors due to the oil viscosity reduction. This paper observed that pressure increase would be crucial for the CO₂ storage capacity and oil recovery factor. Thereby, it is concluded that high-pressurized wells would be a good choice for CO₂ storage and performing the CO₂ injection as more oil volumes can be produced.

In contrast, temperature increase has provided a reverse pattern for oil recovery and CO₂ storage capacity. By the
temperature increase, CO₂ adsorption has been decreased, while oil recovery has increased. Therefore, it is indicated that whether a hydrocarbon reservoir might be a good choice for CO₂ injection to improve the oil recovery factor should be checked for CO₂ storage capacity as it might not be a good choice for CO₂ storage capacity. The number of cycles and soaking time effect is another important factor during CO₂ adsorption and injection, which is utterly dependent on the pressure and temperature. Gamadi et al (2013 and 2014) experimentally investigated the soaking time impact on the pressure and temperature. They concluded that soaking time increase has caused to increase the oil recovery factor as the interaction time between oil-CO₂ has been increased. Therefore, the oil phase can be mobilized more feasible, and the oil recovery factor has been increased. In this paper, we observed that the soaking time increase has a limit, and after that, there is no significant increase in the oil recovery enhancement. This point can be used as an oilfield application guideline to reduce the soaking time during operational performances. Furthermore, it is concluded that increasing the number of cycling would propose an industrial point for petroleum industries to produce more oil volumes.

5 | CONCLUSION

Due to the importance of oil production from shale reservoirs, it is vital to provide efficient enhanced oil recovery techniques to improve the oil recovery factor. As CO₂ adsorption is a crucial factor in CO₂ storage and oil recovery, influential factors that affect these phenomena are experimentally investigated in this paper. The main findings of this study are as follows:

- Pulverized shale samples in micro-sized grains would not change the CO₂ adsorption significantly. CO₂ adsorption is measured 90, 84, and 80 SCF/ton for 20, 60, and 100°C, respectively, indicating that temperature increase has a decreasing pattern in CO₂ adsorption. CO₂ adsorption is about 93, 87, and 82 SCF/ton for 3000, 1500, 750 psi, respectively, indicating a higher capacity of CO₂ storage for higher pressures.
- The supercritical gas phase has provided a higher oil recovery factor due to the lower density and can be mobilized more feasible. Due to the higher adsorption and storage capacity of CO₂ in higher pressures (higher CO₂ diffusion through the porous medium), it needs more CO₂ cycles by the pressure increase. The temperature increase has caused to decrease the CO₂ adsorption; however, it is a reverse pattern with an oil recovery factor.
- If the cores have more fractures or are stimulated before CO₂ injection, it has better results by performing fewer CO₂ cycles.

REFERENCES

1. He L, Chen Y, Zhao H, Tian P, Xue Y, Chen L. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci Total Environ. 2018;627:1585-1601. https://doi.org/10.1016/j.scitotenv.2018.02.004
2. He L, Chen Y, Li J. A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. Resour Conserv Recycl. 2018;133:206-228. https://doi.org/10.1016/j.resconrec.2018.02.015
3. Cheng X, He L, Lu H, Chen Y, Ren L. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J Hydrol. 2016;540:412-422. https://doi.org/10.1016/j.jhydrol.2016.06.041
4. Chen Y, He L, Li J, Zhang S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput Chem Eng. 2018;109:216-235. https://doi.org/10.1016/j.compchemeng.2017.11.014
5. Yang Y, Yao J, Wang C, et al. New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J Nat Gas Sci Eng. 2015;27:496-503. https://doi.org/10.1016/j.jngse.2015.08.017
6. Zhang K, Huo Q, Zhou YY, et al. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl Mater Interfaces. 2019;11(19):17368-17374. https://doi.org/10.1021/acsami.9b01734
7. Zhang K, Yang Z, Mao X, Chen XL, Li HH, Wang YY. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl Mater Interfaces. 2020;12(49):55316-55323. https://doi.org/10.1021/acsami.0c18147
8. Zheng L, Yu P, Zhang Y, et al. Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int J Biol Macromol. 2021;176:13-25. https://doi.org/10.1016/j.ijbiomac.2021.01.103
9. Alvarado V, Manrique E. Enhanced oil recovery: An update review. Energies. 2010;3(9):1529-1575. https://doi.org/10.3390/en3091529
10. Azamifar A, Yousefi SH, Rashidi F. Effect of components composition of condensate reservoirs on well test analysis: An experimental design approach. J Nat Gas Sci Eng. 2014;18:368-376. https://doi.org/10.1016/j.jngse.2014.03.015
11. Awan B, Sabeen M, Shaheen S, Mahmood Q, Ebadi A, Toughani M. Phytoextraction of zinc contaminated water by Tagetes minuta L. Central Asian J Environ Sci Technol Innovat. 2020;1(3):150-158. https://doi.org/10.22034/CAJESTI.2020.03.04
12. Bafkar A. Kinetic and equilibrium studies of adsorptive removal of sodium-ion onto wheat straw and rice husk wastes. Central Asian J Environ Sci Technol Innovat. 2020;1(6):310-329. https://doi.org/10.22034/CAJESTI.2020.06.04
13. Maina Y, Kyari B, Jimme M. Impact of household fuel expenditure on the environment: the quest for sustainable energy in Nigeria.
17. Rostamijavanani A, Ebrahimi MR, Jahedi S. Thermal post-buckling analysis of laminated composite plates embedded with shape memory alloy fibers using semi-analytical finite strip method. J Fail Anal Prev. 2020;21(1):290-301. https://doi.org/10.1007/s11668-020-01068-5

18. Nabavi M, Elveny M, Danshina SD, Behroyan I, Babanezhad M. Velocity prediction of Cu/water nanofluid convective flow in a circular tube: Learning CFD data by differential evolution algorithm based fuzzy inference system (DEFIS). Int Commun Heat Mass Transfer. 2021;126:105373.

19. Masoudi Nejad R, Berto F, Wheatley G, Tohidi M, Ma W. On fatigue life prediction of Al-alloy 2024 plates in riveted joints. Struct. 2021;33:1715-1720. http://dx.doi.org/10.1016/j.istruc.2021.05.055

20. Yang HQ, Li Z, Jie TQ, Zhang ZQ. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn Undergr Sp Tech. 2018;81:112-120. http://dx.doi.org/10.1016/j.tust.2018.07.023

21. Liu B, Yang H, Karekal S. Effect of water content on argillization of mudstone during the tunnelling process. Rock Mech Rock Eng. 2020;53(2):799-813. http://dx.doi.org/10.1007/s00603-019-01947-w

22. Yang HQ, Xing SG, Wang Q, Li Z. Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides. Eng Geol. 2018;239:119-125. http://dx.doi.org/10.1016/j.enggeo.2018.03.023

23. Yang HQ, Zeng YY, Lan YF, Zhou XP. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. Int J Rock Mech Min. 2014;69:59-66. http://dx.doi.org/10.1016/j.ijrmms.2014.03.003

24. Yang H, Wang Z, Song K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng Comput. 2020;1-17. http://dx.doi.org/10.1007/s00603-019-01947-w

25. Khafaei M, Sadeghi Hajibadi M, Abdolmaleki A. Role of 1,25-dihydroxycholecalciferol in immunological and molecular pathways involved in Multiple Sclerosis. Cent Asian J Medical Pharm Sci Innov. 2021;1(2):55-66. https://dx.doi.org/10.22034/CAJMPSI.2021.02.02

26. Miki A, Kiani E, Habibi S, Khafaei M. Triple-negative breast cancer: biology, pathology, and treatment. Cent Asian J Medical Pharm Sci Innov. 2021;1(2):81-96. https://dx.doi.org/10.22034/CAJMPSI.2021.02.05

27. Sabernezhad M. Quantitative analysis of p53 substitution mutation and breast cancer: An informative study in Iranian population.
42. Wang S, Yue T, Wahab MA. Multiscale analysis of the effect of debris on fretting wear process using a semi-coupled method. *Comput Mater Continua*. 2020;62(1):17-36.

43. El-Aziz MA, Aly AM. Entropy generation for flow and heat transfer of sisko-fluid over an exponentially stretching surface. *Comput Mater Continua*. 2020;62(1):37-59.

44. Shoaib Arif M, Raza A, Rafiq M, et al. Numerical simulations for stochastic computer virus propagation model. *Comput Mater Continua*. 2020;62(1):61-77.

45. Papagianni D, Wahab MA. Multi-scale analysis of fretting fatigue in heterogeneous materials using computational homogenization. *Comput Mater Continua*. 2020;62(1):79-97.

46. Fan Q, Zhang Y, Wang Z. Improved teaching learning based optimization and its application in parameter estimation of solar cell models. *Intellig Autom Soft Comput*. 2020;26(1):1-12.

47. Abdullah M, Khan SA, Alenez M, Almustafa K, Iqbal W. Application of bioremediation to mitigate bandwagon utilization in datacenters. *Intellig Autom Soft Comput*. 2020;26(1):13-25.

48. Shi D, Wang S, Cai Y, et al. Model predictive control for nonlinear energy management of a power split hybrid electric vehicle. *Intellig Autom Soft Comput*. 2020;26(1):27-39.

49. Zhang H, Guan W, Zhang L, Guan X, Wang S. Degradation of an organic dye by bisulfite catalytically activated with iron manganese oxides: the role of superoxide radicals. *ACS Omega*. 2020;5(29):18007-18012. https://doi.org/10.1021/acsomega.0c01257

50. Xue X, Zhang K, Tan KC, et al. Affine transformation-enhanced multifactorial optimization for heterogeneous problems. *IEEE Trans Cybern*. 2020;7:1-22. https://doi.org/10.1109/TCYB.2020.3036393

51. Zhang H, Sun M, Song L, Guo J, Zhang L. Fate of NaClO and membrane fouls during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge. *Biochem Eng J*. 2019;147:146-152. https://doi.org/10.1016/j.bej.2019.04.016

52. Sun M, Yan L, Zhang L, Song L, Guo J, Zhang H. New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. *Process Biochem*. 2019;78:108-113. https://doi.org/10.1016/j.procbio.2019.01.004

53. Zhang K, Zhang J, Ma X, et al. History matching of naturally fractured reservoirs using a deep sparse autoencoder. *SPE J*. 2021:1-22. https://doi.org/10.2118/205340-pa

54. Kazemi A, Yang S. Atomic study of the effect of magnesium dopants on the strength of nanocrystalline aluminum. *JOM*. 2019;71(4):1209-1214. https://doi.org/10.1007/s11837-019-03373-3

55. Mao Q-F, Shang-Guan Z-F, Chen H-L, Huang K. Immunoregulatory role of IL-2/STAT5/CD4+CD25+Foxp3 Treg pathway in the pathogenesis of chronic osteomyelitis. *Ann Transl Med*. 2019;7(16):384. https://doi.org/10.21037/atm.2019.07.45

56. Nocito F, Dibenedetto A. Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. *Curr Opin Green Sustain Chem*. 2020;21:34-43. https://doi.org/10.1016/j.cogsc.2019.10.002

57. Huang J, Shiva Kumar G, Ren J, Sun Y, Li Y, Wang C. Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties. *Int J Pavement Eng*. 2021;1:1-13. https://doi.org/10.1080/10298436.2021.1905809

58. Ajayi T, Gomes JS, Bera A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. *Pet Sci*. 2019;16(5):1028-1063. https://doi.org/10.1007/s12182-019-0340-8

59. Ebadi A, Toughani M, Najafi A, Babaee M. A brief overview on current environmental issues in Iran. *Central Asian J Environ Sci Technol Innovat*. 2020;1(1):1-11. https://doi.org/10.22034/CAJESTI.2020.01.08

60. Nnaemeka A. Environmental pollution and associated health hazards to host communities (Case study: Niger delta region of Nigeria). *Central Asian J Environ Sci Technol Innovat*. 2020;1(1):30-42. https://doi.org/10.22034/CAJESTI.2020.01.04

61. Odili JB, Noraziah A, Helmy M. African buffalo optimization algorithm for collision-avoidance in electric fish. *Intellig Autom Soft Comput*. 2020;26(1):41-51.

62. Chaudhry AH, Bakhari F, Iqbal W, Nawaz Z, Malik MK. Laparoscopic training exercises using HTC VIVE. *Intellig Autom Soft Comput*. 2020;26(1):53-59.

63. Rhouma A, Hafi S, Bouani F. Practical application of fractional order controllers to a delay thermal system. * Comput Syst Sci Eng*. 2019;34(5):305-313.

64. Zuo L. Computer network assisted test of spoken English. *Comput Syst Sci Eng*. 2019;34(6):319-323.

65. Della Penna G, Orefice S. Using spatial relations for qualitative specification of gestures. *Comput Syst Sci Eng*. 2019;34(6):325-338.

66. Yavuz E, Yazici R, Cem Kasapbaşı M, Tugay Bilgin T. Improving initial flattening of convex-shaped free-form mesh surface patches using a dynamic virtual boundary. *Comput Syst Sci Eng*. 2019;34(6):339-355.

67. Pandey V, Saini P. Application layer scheduling in cloud: fundamentals, review and research directions. *Comput Syst Sci Eng*. 2019;34(6):357-376.

68. Yang Y, Tao L, Yang H, et al. Stress sensitivity of fractured and vuggy carbonate: an X-ray computed tomography analysis. *J Geophys Res Solid Earth*. 2020;125(3):1-12. https://doi.org/10.1029/2019JB018759

69. Yang Y, Li Y, Yao J, et al. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: impact of homogeneous versus fractured versus vuggy pore structure. *Water Resour Res*. 2020;56:1-12. https://doi.org/10.1029/2019WR026112

70. Xu J, Li Y, Ren C, Wang S, Vanapalli SK, Chen G. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess. *Cold Reg Sci Technol*. 2021;181:103183. https://doi.org/10.1016/j.coldregions.2020.103183

71. Yang M, Sowmya A. An underwater color image quality evaluation metric. *IEEE Trans Image Process*. 2015;24(12):6062-6071. https://doi.org/10.1109/TIP.2015.2491020

72. Zheng Y, Yu Y, Lin W, Jin Y, Yong Q, Huang C. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxethanol-acid pretreatment. *Bioresour Technol*. 2021;325:124691. https://doi.org/10.1016/j.biortech.2021.124691

73. Abdel Azim R. Evaluation of water coning phenomenon in naturally fractured oil reservoirs. *J Pet Explor Prod Technol*. 2016;6(2):279-291. https://doi.org/10.1007/s13205-015-0185-7

74. AlWairj M, Xia Z, Yu W, et al. Numerical study of complex fracture geometry effect on two-phase performance of shale-gas wells using the fast EDFM method. *J Pet Sci Eng*. 2018;164:603-622. https://doi.org/10.1016/j.petrol.2017.12.086
103. Gamadi TD, Sheng JJ, Soliman MY, Menouar H, Watson MC, Emadibaladehi H. An experimental study of cyclic CO2 injection to improve shale oil recovery. *SPE - DOE Improv Oil Recover Symp Proc*. 2014:1-9. https://doi.org/10.2118/169142-ms

104. Gamadi TD, Sheng JJ, Soliman MY. An experimental study of cyclic gas injection to improve shale oil recovery. *Proc - SPE Annu Tech Conf Exhib*. 2013:1-9. https://doi.org/10.2118/166334-ms

105. Davarpanah A, Mirshekari B. Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs. *J Therm Anal Calorim*. 2020;139(2):1161-1169. https://doi.org/10.1007/s10973-019-08498-w

106. Sepahvand T, Etemad V, Matinizade M, Shirvany A. Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry (*Celtis caucasica* L.) seedlings under drought stress. *Central Asian J Environ Sci Technol Innovat*. 2021;2(1):20-35. https://doi.org/10.22034/CAJES TI.2021.01.03

107. Jalali Sarvestani M, Charehjou P. Fullerene (C20) as a potential adsorbent and sensor for the removal and detection of picric acid contaminant: DFT Studies. *Central Asian J Environ Sci Technol Innovat*. 2021;2(1):12-19. https://doi.org/10.22034/CAJES TI.2021.01.02

How to cite this article: Zhang H, Khayatnezhad M, Davarpanah A. Experimental investigation on the application of carbon dioxide adsorption for a shale reservoir. *Energy Sci Eng*. 2021;9:2165–2176. https://doi.org/10.1002/ese3.938