Quantum-ionic features in the absorption spectra of homonuclear diatomic molecules

A. Crawford-Uranga† D. J. Mowbray‡ and D. M. Cardamone∗

Nano-Bio Spectroscopy group and ETSF Scientific Development Center, Departamento de Física de Materiales, Centro de Física de Materiales CSIC–MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E–20018, San Sebastián, Spain

(Dated: February 3, 2015)

We show that additional features can emerge in the linear absorption spectra of homonuclear diatomic molecules when the ions are described quantum mechanically. In particular, the widths and energies of the peaks in the optical spectra change with the initial configuration, mass, and charge of the molecule. We introduce a model that can describe these features and we provide a quantitative analysis of the resulting peak energy shifts and width broadenings as a function of the mass.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

Molecular spectroscopy deals with the response of a molecule interacting with an external electromagnetic field. The development of attosecond sources [1–3] allows one to probe in real time coupled electron-ion dynamics after photoionization processes. Two types of processes are seen in these experiments. The motion of the ions is associated with chemical transformations such as dissociation [4] in the femtosecond domain. The motion of the electrons is associated with electronic rearrangement processes such as charge redistribution [5, 6], localization [7, 8] as well as ionization processes such as tunneling [9] in the attosecond domain.

Modeling coupled electronic-ionic dynamics in photoionization processes is a formidable challenge for most systems. For this reason, previous studies have been limited to one (H\textsubscript{2}+) and two (H\textsubscript{2}) electron benchmark systems [8, 10–13]. A full coupled electronic-ionic 3D treatment has only been achieved for the one electron system H\textsubscript{2}+, where the ionic motion is confined to the direction of the laser’s polarization [10, 14]. For a full quantum mechanical treatment of two electron two ion systems (H\textsubscript{2}), it is necessary to confine both the electronic and ionic motion to the laser’s polarization direction. This is a reasonable semiclassical approximation, as the electronic and ionic motion should be predominantly along this direction [10]. Therefore, for most molecules, any quantum-ionic features are typically neglected by instead using classical approximations, e.g., the Born Oppenheimer approximation (BOA) and Ehrenfest dynamics (ED). These approaches rely on a weak coupling between the electronic and ionic wave functions. However, the validity of such approximations breaks down for light atoms, when hybridization between the electronic and ionic wave functions must be included. A quantum versus classical treatment of the ions has been previously used to investigate the localization [8], nonsequential double ionization [10], and harmonic generation [11] of H\textsubscript{2}, as well as the dissociation [12] and proton kinetic energies [13] for H\textsubscript{2}.

The aim of this paper is a comparison between a quantum mechanical (QMI) and classical (BOA/ED) treatment of the ionic motion to describe coupled electronic and ionic processes [15]. In particular, we consider three and four body systems of electrons and ions for which a fully quantum mechanical treatment of the coupled electron-ion system is feasible. This comparison with respect to the QMI solution is performed both for the static spectra and for the time dependent linear response spectra. In fact, we find significant differences between the QMI and BOA/ED spectra. These features can be quantitatively analyzed using a simple two-level two-parameter model based on the BOA electronic energy levels and the electron-ion mass ratio. The results of our work will help us to determine the domain of applicability of the simplified BOA and ED approaches to interpret coupled electron-ion experiments for more complicated systems.

II. THEORETICAL BACKGROUND

A. Quantum electron-ion approach

A many-body system composed of \(N\) ions and \(n\) electrons, where both the electrons and ions are treated quantum mechanically (QMI), is described by the total electron-ion time-dependent Hamiltonian

\[
\hat{H}(t) = \hat{T}_e + \hat{T}_i + \hat{V}_{li} + \hat{V}_{li} + \hat{V}_{ee} + \hat{V}_{ext}(t),
\]

where \(\hat{T}_e\) and \(\hat{T}_i\) are the ionic and electronic kinetic energy operators, respectively, and \(\hat{V}_{li}, \hat{V}_{ei}, \hat{V}_{ee}\) and \(\hat{V}_{ext}(t)\) are the ion-ion, ion-electron, electron-electron, and external potential...
energy operators, respectively. The kinetic energy operators take the form
\[\hat{T}_i = \sum_{\alpha=1}^{N} \frac{1}{2M_\alpha} \nabla^2_{\alpha}, \]
where \(M_\alpha \) is the mass of ion \(\alpha \), and
\[\hat{T}_e = \sum_{i=1}^{n} \frac{1}{2} \nabla^2_i. \]

The interaction between the ions is given by
\[\hat{V}_H = \frac{1}{2} \sum_{\alpha,\beta=1}^{N} \frac{Q_\alpha Q_\beta}{|\mathbf{r}_\alpha - \mathbf{r}_\beta|}, \]
where \(Q_\alpha \) and \(Q_\beta \) are the corresponding charges and positions of ion \(\alpha \) and \(\beta \). Similarly, the electron-electron repulsion is
\[\hat{V}_{ee} = \frac{1}{2} \sum_{i,j=1}^{n} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}. \]

Finally, \(\hat{V}_{ei}(t) \) describes the interaction of the system of electrons and ions with an external electromagnetic time-dependent field, defined explicitly in Sec. III B.

The time-dependent Schrödinger equation takes the form
\[i \frac{\partial\psi}{\partial t} = \hat{H}(t)\psi(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ... \mathbf{R}_N S_N; \mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n, t), \]
where \(\psi \) is the time-dependent electron-ion wavefunction. This depends on the positions \(\mathbf{R}_i \) and \(\mathbf{r}_i \) and on the spin coordinates \(S_\alpha \) and \(s_i \) of ion \(\alpha \) and electron \(i \), respectively.

For time-independent problems (\(\hat{V}_{ei}(t) = 0 \)), the general solution of the time-dependent Schrödinger equation can be written as
\[\psi = \sum_k \varepsilon_k e^{-i\omega t} \psi_k(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ... \mathbf{R}_N S_N; \mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n), \]
where \(\varepsilon_k \) and \(\psi_k \) are the \(k^{th} \) eigenvalue and eigenstate of the electron-ion stationary Schrödinger equation
\[\hat{H}_k \psi_k = \hat{H}_k \psi_k(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ... \mathbf{R}_N S_N; \mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n), \]
with
\[\hat{H} = \hat{T}_I + \hat{T}_e + \hat{V}_H + \hat{V}_{ei} + \hat{V}_{ee}. \]
We will next focus on the time-independent solution until introducing an external field in Sec. III B.

Solving the QMI problem is very demanding computationally for many-body systems. In fact, it quickly becomes unfeasible for systems with more than three independent variables. For this reason, we restrict consideration herein to one or two-electron diatomic molecules whose motion is confined to one direction (see Sec. III D). By applying an appropriate coordinate transformation, such systems may be modeled with only two or three independent variables (see Appendix A). In Secs. III B and III C we introduce two of the most widely used approximations to simplify the general many-body electron-ion problem.

B. Born-Oppenheimer approximation

Within the Born-Oppenheimer approximation (BOA) [16], the total electronic-ionic wavefunction \(\psi \) is assumed to be separable into an ionic \(\chi \) and electronic \(\varphi \) part. As the electrons move much faster than the ions, we assume that the kinetic energy of the ions does not cause the excitation of the electrons to another electronic state, i.e., an adiabatic approximation. Such an approximation is valid so long as the ratio of vibrational to electronic energies, \(E_{vib}/E_{elec} \), which goes as the root of the electron-ion mass ratio, i.e., \(E_{vib}/E_{elec} \approx \sqrt{m_e/M_\alpha} \), is small [16] (see Appendix B for details). Since for a proton \(M_\alpha \approx 1836 m_e \) and \(E_{vib}/E_{elec} \approx 0.02 \), the BOA is expected to work quite well for our molecules. We thus may neglect \(\hat{T}_I = 0 \) from Eq. (10), although the electrons still feel the static field of the ions (\(\hat{V}_{ei}, \hat{V}_{ee} \neq 0 \)).

The separable BOA solution \(\psi \) of the electron-ion stationary Schrödinger equation (3) is given by [12]
\[\psi = \chi(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ... \mathbf{R}_N S_N) \varphi(\mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n), \]
where \(\chi \) depends on the ionic coordinates only and \(\varphi \) depends on both the electronic coordinates and on the ionic coordinates which, however, only enter into the electronic wavefunctions as parameters. As shown in Ref. [12], this may be done for the Hamiltonian of Eq. (1) without loss of generality.

If we insert Eq. (11) directly into Eq. (9), we obtain the general coupled electron-ion BOA problem
\[\hat{H}_k \varphi_k = -\sum_{a=1}^{N} \frac{\nabla^2_{a} \varphi}{2M_a} - \chi \sum_{a=1}^{N} \frac{\nabla\varphi}{M_a} - \sum_{a=1}^{N} \frac{\nabla\varphi \cdot \nabla\varphi}{M_a} \]
\[+ \chi \left(\sum_{i=1}^{n} \frac{\nabla^2_i}{2} + \hat{V}_{ei} + \hat{V}_{ee} + \hat{\varphi} \right) \varphi = E_k \varphi_k. \]
However, one normally separates Eq. (12) into an electronic problem only in \(\varphi \) and an ionic problem only in \(\chi \). To do so, one first solves the electronic-only BOA frozen ion Schrödinger equation, where the ionic coordinates \(\mathbf{R}_\alpha \) only enter as fixed parameters in \(\chi \):
\[\hat{H}_e \varphi_i = \hat{H}_e \varphi_i(\mathbf{R}_1, \mathbf{R}_2, ... \mathbf{R}_N)(\mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n) \]
\[= E_i(\mathbf{R}_1, \mathbf{R}_2, ... \mathbf{R}_N) \varphi_i(\mathbf{r}_1 s_1, \mathbf{r}_2 s_2, ..., \mathbf{r}_n s_n). \]
where
\[\hat{H}_e = T_e + \hat{V}_e + \hat{V}_{ee} + \hat{V}_{II}. \] (14)

In this way, one may find the so-called \(i \)th potential energy surfaces \(E_i(\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_N) \) (PES). These are representations of the electronic energy landscape as a function of the ionic coordinates.

In the next step, the ionic BOA Schrödinger equation is solved by adding the previously neglected kinetic energy of the ions to the potential energy surfaces obtained from the frozen ion Schrödinger equation
\[\hat{H}_I \chi_{ij}(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ..., \mathbf{R}_N S_N) = E_{ij} \chi_{ij}(\mathbf{R}_1 S_1, \mathbf{R}_2 S_2, ..., \mathbf{R}_N S_N), \] (15)

where
\[\hat{H}_I = \sum_{a=1}^{N} -\frac{1}{2M_a} \nabla_a^2 + E_i(\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_N), \] (16)

and the ionic excitations \(j \) depend on the electronic excitations, \(i \).

Comparing Eq. (12) with Eq. (16) we realize that the second and third terms of Eq. (12) are neglected in the BOA. This is because we assume that the kinetic energy of the ions is not affecting the electronic part \(\psi \), i.e., \(\nabla_a \psi \approx 0 \).

C. Ehrenfest dynamics

Within the Ehrenfest dynamics (ED) scheme [17], we solve the coupled evolution of the electrons and ions. The electrons evolve quantum mechanically, whereas the ions evolve classically on a mean time-dependent PES \(\varphi_i(t) \) weighted by the different BOA PES \(\varphi_i \) in Eq. (13)
\[\varphi_i(\mathbf{R}_a(t)) = \sum_{c_i} c_i(t) \varphi_i \] (17)
The ions are evolved according to Newton’s equation of motion
\[\mathbf{F}_{\mathrm{ED}}(\mathbf{R}_a(t)) = M_a \frac{d^2 \mathbf{R}_a(t)}{dt^2} \] (18)
which satisfies the following potential energy derivative condition
\[\mathbf{F}_{\mathrm{ED}}(\mathbf{R}_a(t)) = -\sum_{i} |c_i(t)|^2 \nabla_a E_i(\mathbf{R}_a(t)) \]
\[= -\langle \varphi(t) | \nabla_a H_e(\mathbf{R}_a(t)) | \varphi(t) \rangle \] (19)

where Eq. (17) and the Hellmann-Feynman theorem have been employed. The Ehrenfest electron-ion scheme consists of the time propagation of the coupled Eqs. (13) and (19).

D. Model systems: Initial configurations and Hamiltonians

We model the positively charged one electron \(\text{H}_2^+ \) and neutral two electron \(\text{H}_2 \) homonuclear diatomic molecules, assuming their motion is confined to one direction. Such a model should provide a reasonable description of a molecule excited by a laser field, where the electronic and ionic motion are confined to the polarization axis of the laser field [12]. In this case the QMI problem described in Sec. IIIA where both electrons and ions are treated quantum mechanically, can be solved exactly. Furthermore, by working in center of mass coordinates, the computational effort required to solve Eq. (7) is significantly reduced.

However, the singularity in the bare Coulomb interaction of Eqs. (4, 5), and (9) in 1D makes the direct numerical solution of the Schrödinger equation (7) unfeasible. Instead, one employs the so-called “soft Coulomb interaction” [12, 18]. For two particles \(i \) and \(j \) with charges \(Q_i \) and \(Q_j \), the soft Coulomb interaction \(V_{\text{int}} \) has the general form
\[V_{\text{int}}(s) = \frac{Q_i Q_j}{\sqrt{s^2 + \Delta^2}}, \] (20)
where \(s \) is the separation between the two charges and \(\Delta \) is the soft Coulomb parameter [18]. Typically, \(\Delta = a_0 \), although other values can also be used [10].

In essence, the soft Coulomb interaction amounts to a displacement of the trajectories of the two particles in an orthogonal direction. So for a hydrogen atom, a soft Coulomb interaction of
\[V_{\text{int}}(s) = -\frac{1}{\sqrt{s^2 + a_0^2}}, \] (21)
is equivalent to having a bare Coulomb interaction with the electron and proton trajectories required to be parallel, with a minimum separation of \(a_0 \). This is a quite reasonable assumption, as the most probable electron-proton separation in a hydrogen atom is the Bohr radius \(a_0 \). Soft Coulomb parameters correspond to the separation between the 1D trajectories that each electron and ion will move along in 3D with a bare Coulomb interaction. We may directly map the 1D soft Coulomb problem to a bare Coulomb problem in 3D where the electrons and ions are separated by the soft Coulomb parameter distances shown in Fig. [1] while their motion is confined in one direction. In this way, one clearly sees that constraint rotations of the molecules are possible in 3D, while their motion is still confined to 1D. As discussed in Sec. IIIB the molecules will be perturbed by a kick confined in one direction.

In Fig. [1] we show the various configurations we have employed to model an \(\text{H}_2^+ \) or \(\text{H}_2 \) molecule whose electronic and ionic motion is confined to one direction. These configurations are specified by the soft Coulomb parameters between the ions \(\Delta_{ij} \), the electrons \(\Delta_{ee} \) and the ions and electrons \(\Delta_{le} \). One such configuration has been used previously [10] to study the dynamics of a one-dimensional \(\text{H}_2 \) model molecule in strong laser fields by means of QMI.
The classical energies of positively charged and neutral homonuclear diatomic molecules whose motion is confined to one direction are given by

\[E = \frac{1}{2} M V_1^2 + \frac{M V_2^2}{2} + \frac{1}{2} V_1^2 - \frac{1}{\sqrt{(x_1 - X_1)^2 + \Delta_{le}^2}} + \frac{1}{\sqrt{(x_2 - X_2)^2 + \Delta_{ee}^2}} \]

and

\[E = \frac{1}{2} M V_1^2 + \frac{M V_2^2}{2} + \frac{1}{2} V_1^2 - \frac{1}{\sqrt{(x_1 - X_1)^2 + \Delta_{le}^2}} - \frac{1}{\sqrt{(x_2 - X_2)^2 + \Delta_{ee}^2}} \]

for positively charged and neutral homogeneous diatomic molecules, respectively, after removing the center of mass term. Here \(X \) and \(x \) are the ionic and electronic separations along the direction in which their motion is confined.

The spatial configuration of positively charged or neutral homogeneous diatomic molecules in 1D does not change if the particle positions are translated uniformly. This reduces our three- and four-body coordinate problems into two- and three-body ones, respectively.

We rewrite the classical energies in Eqs. (22) and (23) in terms of the center-of-mass transformation [20] (see Appendix A) to obtain the following two-body \((X, \xi)\) and three-body \((X, x, \xi)\) Hamiltonians

\[\hat{H}(X, \xi) = -\frac{1}{M} \frac{\partial^2}{\partial X^2} + \frac{2M + 1}{4M} \frac{\partial^2}{\partial \xi^2} - \frac{1}{\sqrt{(\xi + \xi')^2 + \Delta_{le}^2}} \]

and

\[\hat{H}(X, x, \xi) = -\frac{1}{M} \frac{\partial^2}{\partial X^2} - \frac{1}{M} \frac{\partial^2}{\partial x^2} - \frac{1}{4M} \frac{\partial^2}{\partial \xi^2} \]

An analysis of the effect of the initial configuration on the optical spectra is shown in Sec. XV. The classical energies of positively charged and neutral homonuclear diatomic molecules whose motion is confined to one direction are given by

\[\hat{H}(X, \xi) = -\frac{1}{M} \frac{\partial^2}{\partial X^2} + \frac{2M + 1}{4M} \frac{\partial^2}{\partial \xi^2} - \frac{1}{\sqrt{(\xi + \xi')^2 + \Delta_{le}^2}} + \frac{1}{\sqrt{X^2 + \Delta_{ee}^2}} \]

and

\[\hat{H}(X, x, \xi) = -\frac{1}{M} \frac{\partial^2}{\partial X^2} - \frac{1}{M} \frac{\partial^2}{\partial x^2} - \frac{1}{4M} \frac{\partial^2}{\partial \xi^2} - \frac{1}{\sqrt{X^2 + \Delta_{ee}^2}} + \frac{1}{\sqrt{(\xi + \xi')^2 + \Delta_{le}^2}} \]
Although the electrons are treated quantum mechanically along their direction of motion, the confinement of their motion and position along one direction is inherently classical. For this reason, our treatment herein is essentially semiclassical: quantum mechanical along the direction of motion, and classical perpendicular to the direction of motion. This has important repercussions for the \(H_2 \) configurations shown in Fig. 1(a) and (b). For these cases, the Hamiltonian of Eq. (25) is no longer symmetric under ion or electron exchange, since \(\Delta k_2 = e \) is either \(\frac{1}{2} \Delta k_0 \) or \(\frac{1}{2} \Delta k_0 \). This reflects the limitations of such a semiclassical treatment. So although the Hamiltonian of Eq. (25) is still symmetric under ion or electron exchange for the \(H_2 \) configurations shown in Fig. 1(e), (f), and (i), the confinement of the electron’s position perpendicular to its motion may still have an important impact for these configurations.

Our aim here is to assess the accuracy of the approximations introduced in Secs. II B and II C, in which the ions are treated classically. To accomplish this, we vary the ionic mass \(m \), in our homogeneous diatomic molecules for the many-body problem, while fixing the the ionic charge \(e \). Furthermore, this allows us to directly compare the antisymmetric contributions of our \(H_2 \) and \(H_2 \) molecules, respectively.

E. Symmetries of the many-body wavefunction

Since for our positively charged homogeneous diatomic molecules there are one electron and two ions, the antisymmetry of the many-body wavefunction must be enforced for the ions only as

\[
\psi(X_1 S_1, X_2 S_2, x_s) = -\psi(X_2 S_2, X_1 S_1, x_s),
\]

for the triplet and

\[
\psi(X_1 S_1, X_2 S_2, x_s) = \psi(X_2 S_2, X_1 S_1, x_s),
\]

for the singlet.

For our neutral homogeneous diatomic molecules there are two electrons and two ions. Therefore, the antisymmetry of the many-body wavefunction must be enforced both for the ions and the electrons as

\[
\psi(X_1 S_1, X_2 S_2, x_1 s_1, x_2 s_2) = -\psi(X_2 S_2, X_1 S_1, x_1 s_1, x_2 s_2),
\]

for the ionic triplet,

\[
\psi(X_1 S_1, X_2 S_2, x_1 s_1, x_2 s_2) = \psi(X_2 S_2, X_1 S_1, x_1 s_1, x_2 s_2),
\]

for the ionic singlet,

\[
\psi(X_1 S_1, X_2 S_2, x_1 s_1, x_2 s_2) = -\psi(X_1 S_1, X_2 S_2, x_2 s_2, x_1 s_1),
\]

for the electronic triplet, and

\[
\psi(X_1 S_1, X_2 S_2, x_1 s_1, x_2 s_2) = -\psi(X_1 S_1, X_2 S_2, x_2 s_2, x_1 s_1),
\]

for the electronic singlet, respectively.

Therefore, due to the exchange symmetry of the many-body wavefunction, in order to have a total antisymmetric many-body wavefunction, the spatial part of the ionic and electronic wavefunction must be odd for the triplet and even for the singlet under the exchange of two identical particles. Consequently, we will only be concerned with the spatial part of the wavefunction, with the spin part already being separated off due to the exchange symmetry of the many-body wavefunction.

III. METHODOLOGY

A. Ground state

The QMI eigenvalues are obtained by inserting Eqs. (24) and (25) into Eq. (9) for the \(H_2^+ \) and \(H_2 \) molecules, respectively.

To obtain the PES within the BOA and ED we would insert Eqs. (24) and (25), neglecting the first term, into Eq. (13) for the \(H_2^+ \) and \(H_2 \) molecules, respectively. For the BOA and ED ground state electron-ion level, we do not compute Eq. (15). Instead, we fit the ground state PES around its minimum energy at the inter-ionic distance \(X_{eq} \) using a harmonic approximation \(E_{eq} = \frac{1}{2} k_1 (X - X_{eq})^2 \), where \(k_1 = \omega_1^2 \mu_p \) is the harmonic constant, \(\omega_1 \) is the harmonic oscillator vibrational frequency and \(\mu_p \) is the ionic reduced mass defined in Eq. (A3). From \(\omega_1 \), we obtain the ground state electron-ion eigenvalue of a harmonic oscillator \(E_{eq}^{BOA/ED} = E_{eq} (X_{eq}) + \frac{1}{2} \omega_1 \) in the BOA and ED PES picture.

The inversion symmetry with respect to the inter-ionic \(X \) coordinate of the potential in Eqs. (24) and (25), leads to a doubly-degenerate solution \(\psi_k \) for each state \(\psi_k \) in Eq. (9), for sufficiently bound global ground state potentials. The inversion symmetry with respect to the inter-electronic \(x \) coordinate of the potential in Eqs. (24) and (25) is not related to the statistics of the ions, but to the symmetry of the electronic molecular orbital.

B. Time dependent linear response spectra

To obtain the linear response photoabsorption spectra we apply an initial impulsive perturbation, or “kick”

\[
\mathcal{K}(H_2^+) = e^{iK(X_1 + X_2 - x)},
\]

\[
\mathcal{K}(H_2) = e^{iK(X_1 + X_2 - x)},
\]

for the ground state wavefunctions \(\psi_{gs} \) of our \(H_2^+ \) and \(H_2 \) molecules, respectively, for the BOA and QMI approaches. \(K \) is the measure of the strength of the kick. We employ a converged kick strength of \(K = 0.001 \), for which the linear response spectra does not change if it is decreased further. Using the center of mass coordinates defined in Appendix A the
terms in Eq. (32) become
\begin{align}
\mathcal{K}(H_1^x) &= e^{iK(X_{CM_1} - \dot{\xi}(t))}, \\
\mathcal{K}(H_2) &= e^{-iK\xi},
\end{align}

(33)

where X_{CM_1} is the global center of mass coordinate, and ξ is the separation between the ionic and electronic centers of mass along the direction in which their motion is confined. The perturbative kick \mathcal{K} will only induce polarization on the coordinates ξ defined for H_1^x and H_2 in Eqs. (A3) and (A3) for the BOA and QMI methods.

In linear response, we expand Eq. (33) in terms of K, neglecting higher order terms
\begin{align}
\mathcal{K}(H_1^x) &\approx 1 + iK\left(X_{CM_1} - \frac{2M + 2}{2M + 1}\xi\right), \\
\mathcal{K}(H_2) &\approx 1 - iK\xi.
\end{align}

(34)

For the ED approach one should follow the same procedure starting from Eq. (32), but substituting the electronic coordinates x for $\frac{-2M^2 + 2}{2M^2}\xi \approx -\xi$ when $M \gg 1$ for H_1^x and $x_2 + x_1$ for -2ξ for H_2. During the time propagation the ions are not kicked, but evolve as parameters according to Eq. (19). In this case, the electron is kicked relative to the center of mass of the ions for the H_1^x molecule, and the two electrons are kicked relative to their distance to the ions for the H_2 molecule. However, the linear response absorption spectra does not depend on uniform translations of the ions and electrons.

The enforced time-reversal symmetry evolution operator (22) we apply to propagate our equations after this external perturbation has been applied is given by

$$U(t + \Delta t, t) = e^{-i\hat{H}(t)\Delta t} \times e^{-i\hat{H}(t)}$$

(35)

where the Hamiltonian $H(t + \Delta t)$ is calculated from

$$\psi(t + \Delta t) = e^{-i\Delta H(t)}\psi(t),$$

(36)

and the kicked initial state we propagate is

$$\psi(\Delta t) = e^{-i\Delta H_0}\mathcal{K}\psi_{gs},$$

(37)

where ψ_{gs} is the ground state eigenstate of the time independent Hamiltonian H_0 of Eqs. (24) and (25) for H_1^x and H_2^x, respectively.

The time dependent Hamiltonian $H(t)$ is then obtained by time propagation at each time step self consistently according to Eq. (56), starting from the kicked initial state given in Eq. (37). The expectation value of the dipole moment d at time t is

$$d(t) = \langle \psi(t)\hat{\xi}\psi(t) \rangle.$$

(38)

If we assume that the Hamiltonian does not evolve in time and we insert Eq. (34) into Eq. (37), using the completeness relation $\sum_k |\psi_k\rangle\langle\psi_k| = 1$ and Eq. (38) we get

$$|\psi(t)\rangle \approx e^{-i\xi t}|\psi_{gs}\rangle - iK \sum_k e^{-i\xi t}\left(\frac{2M + 2}{2M + 1}\xi\right)|\psi_k\rangle |\psi_{gs}\rangle,$$

(39)

for the H_1^x molecule and

$$|\psi(t)\rangle \approx e^{-i\xi t}|\psi_{gs}\rangle - iK \sum_k e^{-i\xi t}\left(\frac{2M + 2}{2M + 1}\xi\right)|\psi_k\rangle |\psi_{gs}\rangle,$$

(40)

for the H_2 molecule. From Eqs. (39) and (40), we see that only the ψ_{gs} to odd k dipole moment matrix elements are non-zero by symmetry, i.e parity, since ξ is an odd operator.

Eq. (38) can be written as

$$d(t) \approx -2K^2 \sum_{\xi} \sin \omega_{\xi t}\left|\langle \psi_{\xi}\xi|\psi_{gs}\rangle\right|^2,$$

(41)

for the H_1^x molecules using Eq. (39) and

$$d(t) \approx -4K^2 \sum_{\xi} \sin \omega_{\xi t}\left|\langle \psi_{\xi}\xi|\psi_{gs}\rangle\right|^2,$$

(42)

for the H_2 molecules using Eq. (40), where $d(t)$ depends linearly on K and $\omega_{\xi t} \approx \epsilon_{\xi} - \epsilon_{gs}$. However, in the ED approach the ionic coordinates are updated at each time step. This makes ξ and the Hamiltonian time dependent. For this reason, the dipole moment from the ED approach does not necessarily have the form of Eqs. (41) and (42). As we will show in Sec. IV A the time-dependent effects of zero-point motion within ED, which are incorporated into the coordinate $\xi(t) = x - X_{CM_1}$, have an important impact on the spectra.

The optical photoabsorption cross section spectra σ_{abs} is obtained by performing a discrete Fourier transform of $d(t)$ (23). More precisely,

$$\sigma_{abs} = 4\pi\alpha\omega\text{Im}\left[\frac{1}{K} \sum_{t=0}^{T} \Delta t e^{-i\omega t} f\left(\frac{t}{T}\right)[d(t) - d(0)]\right],$$

(43)

where

$$f(x) = e^{-25x^2},$$

(44)

is a Gaussian damping applied to improve the resolution of the photoabsorption peaks, ω is the frequency of the oscillations of $d(t)$, α is the fine structure constant, $T = 1000$ is the total propagation time, and $\Delta t = 0.01$ is the time step.

C. Computational details

All numerical calculations have been performed using the real space electronic structure code Octopus (24). We discretize the configuration space of the H_1^x and H_2 molecules, using a finite set of values (i.e. a so-called grid) for the coordinates X, x and ξ in the box intervals $X \in [-Lx, Lx]$, $x \in [-L_x, L_x]$ and $\xi \in [-L_\xi, L_\xi]$. These are discretized as

$$X_i = -Lx + i\Delta X$$

for $i = 0, 1, 2...N_x$,

$$x_j = -L_x + j\Delta x$$

for $j = 0, 1, 2...N_x$,

$$\xi_k = -L_\xi + k\Delta \xi$$

for $k = 0, 1, 2...N_\xi$,
using N_X, N_z, and N_ξ equally spaced points, respectively. The spacing between two adjacent points in the X, z and ξ directions are $\Delta X = \frac{2L_x}{N_x}$, $\Delta z = \frac{2L_z}{N_z}$, $\Delta \xi = \frac{2L_\xi}{N_\xi}$. Convergence is achieved when a decrease in ΔX, Δz, $\Delta \xi$ and an increase in L_x, L_z, L_ξ does not change the electron-ion static and time propagation linear response spectra.

For the H_2^+ type molecules, ground state convergence is achieved for $L_x = L_z = 10a_0$, $\Delta X = 0.05a_0$ and $\Delta \xi = 0.1a_0$. To obtain the PES we have used $L_\xi = 100a_0$ and $\Delta \xi = 0.1a_0$. Generally, the convergence of the QMI optical spectra requires $L_x = 30a_0$, $L_z = 80a_0$, $\Delta X = 0.01a_0$ and $\Delta \xi = 0.5a_0$. However, for the ionic mass M of μ case, convergence required $L_x = 100a_0$, $L_z = 80a_0$, $\Delta X = 0.03a_0$ and $\Delta \xi = 0.5a_0$. Finally, for the ED and BOA optical spectra we have used $L_\xi = 500a_0$ and $\Delta \xi = 0.1a_0$.

For the H_2 type molecules, ground state convergence is achieved for $L_x = L_\xi = L_z = 10a_0$, $\Delta X = 0.07a_0$, $\Delta \xi = 0.2a_0$ and $\Delta z = 0.5a_0$. To obtain the PES we have used $L_\xi = L_z = 40a_0$ and $\Delta \xi = \Delta z = 0.2a_0$. The convergence of the QMI optical spectra requires $L_x = 10a_0$, $L_z = 80a_0$, $\Delta X = 0.07a_0$, $\Delta z = 0.5a_0$ and $\Delta \xi = 0.6a_0$. Finally, for the ED and BOA optical spectra we have used $L_\xi = L_z = 200a_0$, $\Delta \xi = \Delta z = 0.5a_0$.

Within the BOA and ED, the X coordinate does not need to be discretized quantum mechanically. It is either fixed as a parameter in BOA or it changes according to the dynamic equations in ED. As a consequence, the two and three variable bare Coulomb QMI problems confined to 1D trajectories for the H_2^+ and H_2 molecules respectively, become one and two variable BOA and ED problems. These are easier to compute numerically, thus providing a more attractive alternative.

IV. RESULTS AND DISCUSSION A. H_2^+ and H_2 results

In Fig. 2 we show how the H_2^+ and H_2 BOA ground state PES change as a function of the ionic separation $\sqrt{X^2 + \Delta_{\xi \xi}^2}$ for each configuration shown in Fig. 1. The PES fitted minimum energies at X_{eq}, $E_0(X_{eq})$ and positions $\sqrt{X_{eq}^2 + \Delta_{\xi \xi}^2}$ are shown in Table 1 for the H_2^+ and H_2 molecules with the configurations shown in Fig. 1.

The ground state PESs (dotted black lines in Fig. 2) have been obtained by solving the stationary Schrödinger equation in 3D using basis sets within the BOA. Here, the electronic and ionic positions were allowed to vary in all spatial directions. The overall shape of these 3D PES is reproduced qualitatively by configurations (b) and (c) for H_2^+ and (g) for H_2 from Fig. 1.

The experimental bond lengths of H_2^+ and H_2 are $2a_0$ [26] and $\sqrt{2a_0}$ [25], respectively. The equilibrium distance is best reproduced by configuration (d) for H_2^+ and (g) for H_2 from Fig. 1.

The Hamiltonian for configuration (g) for H_2 in Fig. 1(b) is not invariant under electron exchange. Yet, we still consider this configuration, as the H_2 configurations which are invariant under electron exchange (Fig. 1(e,f,i)), yield PES that differ qualitatively from the 3D PES, as shown in Fig. 2(b).

The ions sometimes undergo a strong inter-ionic repulsion for larger and small X, depending on the initial configuration. For the strongly repulsive configurations for small X, the ions

TABLE I. H_2^+ and H_2 ground state PES fitted ground state energies $E_0(X_{eq})$ and positions $\sqrt{X_{eq}^2 + \Delta_{\xi \xi}^2}$ obtained from a harmonic fit around X_{eq} for the configurations shown in Fig. 1.

Species	Δ_H	$\Delta_{\xi \xi}$	Δ_{ee}	$E_0(X_{eq})$ (eV)	$\sqrt{X_{eq}^2 + \Delta_{\xi \xi}^2}$ (Å)
H_2^+	0.5	1	0	-45.757	0.5627
	1	1	1	-21.431	1.3510
	2	1	1	-21.969	1.2697
H_2	$\sqrt{3}$	1	1	-45.856	0.8241
are farther apart because the repulsion between the ions is stronger than the attraction between the ions and electrons. For the strongly attractive configurations for larger X, the ions are closer together because the repulsion between the ions is weaker than the attraction between the ions and electrons. For the latter configurations, more energy is required to dissociate the molecule.

For H_2^+, when $\Delta_{te} = a_0$, the potential becomes less repulsive for small X as Δ_{tt} increases. However, when $\Delta_{tt} = 0.5a_0$, the potential becomes strongly attractive for larger X.

For H_2, the potential becomes strongly repulsive for small X for the linear configuration (g). When $\Delta_{tt} = a_0$ and $\Delta_{te} \neq a_0$, configuration (d) in Fig. 1 the ground state PES is unbound. As the electrons are necessarily very close to each other ($\Delta_{ee} = \frac{1}{2}a_0$) when the molecule is bound, their repulsion forces the dissociation of the H_2 molecule into two isolated stabler H atoms. For this reason we will disregard this configuration from henceon.

In Fig. 3 we compare the H_2^+ and H_2 optical spectra we obtain by classically fixing and letting the ions evolve according to ED in time from X_{eq}. Essentially, including the classical movement of the ions hardly changes the spectra. However, new peaks appear before the first electronic excitation for both the H_2^+ and H_2 molecule, at 1 and 12 eV, respectively. For H_2^+, the new peak corresponds to the frequency of the ionic zero-point motion around X_{eq}, which vanishes for large masses ($M_p \times 10^4$) because heavy ions hardly move around X_{eq}. On the other hand, H_2’s higher energy peak does not overlap completely. We explain the origin of this peak in Sec. IV C.

The inset of Fig. 3(a) illustrates the time-dependent effects of zero-point motion. In the BOA the ionic center of mass X_{CM} is fixed, so the electron can only oscillate about it. ED (and QMI), however, allow ionic motion, so long as the global center of mass X_{CM} is conserved. The increasing difference Δd between the ED and BOA dipole moments thus demon-
strates the ions move, e.g., \(\Delta d(24fs) \approx 0.7mD \)

In Fig. 4 we show how a quantum mechanical treatment of the ions (QMI) affects the optical absorption spectra for \(\text{H}_2 \) and \(\text{H}_2 \) molecules in the configurations of \(\Delta h \), \(\Delta e \), and \(\Delta r \) shown in Fig. 1. We see that new features emerge in the spectra when the ions are treated quantum mechanically instead of classically. The peaks are broadened, become asymmetric, and their amplitudes and energies change as a function of the initial configuration and charge of the molecule. In particular, comparing the BOA and QMI spectra shown in Fig. 4 we find that each peak splits into a lower and higher energy contribution. Depending on the energy shift and amplitude of each contribution, these can appear as separate peaks or shoulders in the spectra. The shoulders are giving rise to an asymmetry that can be seen for almost every peak. These quantum features are not as strong for the neutral \(\text{H}_2 \) homonuclear diatomic molecule, regardless of the initial configuration. With a classical description of the ions, we do not obtain these quantum mechanical features in the optical spectra.

Generally, we find treating the ions quantum mechanically substantially affects both the peak positions and widths in the absorption spectra for most of the configurations considered. For inter-ionic potentials which are less repulsive (Fig. 4(b) and (e)), the line shape of the QMI peaks is narrowed, and approaches the fixed-ion at \(X_{eq} \) limit. For potentials which are attractive for larger \(X \) (Fig. 4(d) and (f)), all the QMI peaks are blue shifted with respect to the fixed-ion at \(X_{eq} \) spectra. In this case, the peak excitation energies are larger because more energy is required to excite these transitions.

B. Mass dependency

To provide a quantitative analysis of the differences between a classical (BOA/ED) or quantum (QMI) treatment of the ions, we will compare the total ground state energies and the peak positions and widths in the absorption spectra as we vary the ionic mass over seven orders of magnitude.

The accuracy of the static BOA and ED calculations can be understood from a perturbation theory argument in terms of the small parameter \(\kappa = (m_e/M)^{b/4} \), defined as the ratio between the ionic and electronic displacement [29], where \(X = X_{eq} + \kappa \xi \). We illustrate this in detail in Appendix B.

To test the accuracy of the BOA and ED approximations, we first compare the BOA and ED ground state electron-ion eigenvalues to those obtained from QMI. We expect that the BOA and ED approaches should be accurate around the minimum of the ground state PES, as the exact eigenvalues of the electron-ion problem can be interpreted in terms of the ionic vibrational levels for the electronic ground state PES. As discussed in Sec. II A, the ionic contribution comes from the ground state level of a quantum harmonic oscillator where the mass is included via \(\omega_i \).

The ground state electron-ion eigenvalue for \(\text{H}_2 \) and \(\text{H}_2 \) molecules whose motion is confined in one direction is given by

\[
\epsilon_{gs}^{BOA} \approx \epsilon^{(0)} + \epsilon^{(2)}(\kappa^2) + O(\kappa^4),
\]

where \(\epsilon^{(0)} \) and \(\epsilon^{(2)} \) correspond to the electronic and ion motion eigenvalues, and \(\epsilon^{(1)} \) and \(\epsilon^{(3)} \) are equal to zero by symmetry (see Appendix B). The first order correction to the ground state energy for the full electron-ion problem using the BOA/ED is the term of fourth order in \(\kappa \).

To check the dependence of the static ground state eigenvalue accuracy of the BOA and ED approaches, on the ionic mass ratio, we use the following power law relation

\[
\epsilon_{gs}^{BOA/ED} - \epsilon_{gs}^{QMI} \approx a\kappa^{b} = a \left(\frac{m_e}{M} \right)^b.
\]

Note that most of the molecules used in this analysis are fictitious because we do not change the charge of the ions as explained in Sec. II D, except for H, D, and T, as these have a positive electric charge of \(\epsilon \).

Fitting the ground state error from Eq. (47) to the data in Tables II and III we obtain a power law of \(b \approx 0.92(2) \) and \(b \approx 1.05(2) \) for the BOA/ED approaches, as shown in Fig. 5. This means the BOA and ED energy expression gives the correct total ground state energy of the full electron-ion problem up
shown in Figs. 1(b) and (c), and the H in Fig. 1(g).

In Fig. 6(a) and (b) (ϕ are allowed by the symmetry of the electronic wavefunctions and fifth peaks (ε are not)), shown as insets. For every allowed transition in Figs. 6(a) and (b), we see that in the large mass limit (M ≈ 10^4 × M_p), the QMI spectra exhibit even to odd transitions which are allowed by the symmetry of the electronic wavefunctions ϕ(ξ), shown as insets. For every allowed transition in Figs. 6(a) and (b), we have a red shifted and a blue shifted contribution.

The position of the first, second and fourth peaks in Fig. 6(a) and (b) (ω_1, ω_2, and ω_4) are red-shifted and the third and fifth peaks (ω_3 and ω_5) are blue-shifted with respect to the fixed-ion at X_{eq} spectra. As the mass increases, all peaks tend towards the fixed-ion at X_{eq} limit. In Fig. 6(b) all the peaks are red-shifted, although the second peak is also a classical peak as shown in Fig. 6(b), which disappears for smaller masses.

In Fig. 8 we show the symmetry of the occupied electronic wavefunction ϕ_0(ξ, x) and the first ten unoccupied electronic wavefunctions ϕ_l(ξ, x) for H_2. Only transitions to unoccupied electronic wavefunctions that are even functions of x and odd functions of ξ should contribute to the absorption spectra by symmetry, i.e. 〈ϕ_l(ξ, x)〈ϕ_0(ξ, x)〉 > 0. However, Fig. 8 shows there is an absorption peak in the BOA spectra for the ϕ_0 → ϕ_3 transition, despite ϕ_3(ξ, x) being an odd function of x, as shown in Fig. 8. This is because the Hamiltonian for the configuration Δ_H = 1/2 a_0, Δ_x = a_0, and Δ_ξ = 1/2 a_0 is not invariant under electronic exchange.

From the ED spectra in Fig. 8(b), we also have an additional peak at a lower energy. The ions are fixed, this peak is less intense than when they are allowed to evolve. In this case, the peaks’ energy is given by the first excited transition (ϕ_0 → ϕ_1) as seen from the energy of the vertical dotted frozen ion lines in Fig. 8(b). However, the unoccupied wavefunction ϕ_l(ξ, x) is even with respect to ξ and odd with respect to x, as shown in Fig. 8. This suggests such a transition should initially be parity forbidden.

To calculate the dipole moment for H_2 and different M, we only kick our molecules along ξ, as shown in Sec. IIIB.
When calculating the spectra in the BOA, the ionic coordinate is frozen at \(X_{eq} \) and cannot evolve in time. The electronic coordinate \(x \) forms part of the integral, but can evolve in time. When we apply a kick along \(\xi \), the distribution of the charge in the molecule will change with time. The electrons and ions will feel the charge distribution of the other particles. Thus, the electronic coordinate \(x \) can evolve in time, although this effect is not taken into account when the dipole moment is calculated. Essentially, the \((\xi, x) \) basis is rotated by the kick to a \((\xi', x') \) basis.

As \(\xi \) is time dependent within ED, the \(\varphi_1(x', x') \) rotated basis has a mixture of even and odd components in both \(x \) and \(\xi \), removing the parity constraint on the \(\varphi_0 \rightarrow \varphi_1 \) transition.

As shown in Fig. 4b), this extra parity forbidden peak is not as intense as the other peaks which are allowed by symmetry. This peak is rather weak because the electrons and ions are close to each other, but not on the same plane, for the configuration shown in Fig. 11. Additionally, as the \(\varphi_0 \rightarrow \varphi_1 \) transition is initially forbidden by symmetry for both \(x \) and \(\xi \), the rotated contribution with even and odd symmetry in \(x \) and \(\xi \) is small.

Overall, heavier ions have narrower peaks as we approach the classical limit. Figure 9 presents this effect in the time domain. Energy transfer between the excited electrons and the ionic system is already clearly seen after a few fs. Even in the large-mass limit \((M_d \times 10^4) \) energy transfer is clearly evident. Oscillatory behavior, including beat frequencies, is still present 24 fs after the initial kick.

When the ions evolve quantum mechanically, the electrons can transfer part of their dipole moment to the ions. The amplitude of the dipole moment thus decreases at different rates depending on the ionic mass. This process will take longer as the mass of the ions increases and it becomes more difficult to displace the ions. For very large ion masses, the interaction with the electronic motion becomes nearly elastic. This allows the electrons to oscillate back and forth without the influence of any external ionic displacements. Since the widths of the absorption peaks are proportional to the energy transfer from the electrons to the ions, we expect the widths to scale as the electron-ion mass ratio to the one fourth, as discussed in Section 11B and Appendix 13.
To ensure that the optical spectra we obtain is only affected by the external perturbation K, we have used a symmeterized initial wavefunction

$$\psi_{\text{symm}}(X, \xi) = \frac{\psi(X, \xi) + \psi(-X, \xi)}{\sqrt{2}}.$$ \hspace{1cm} (50)

Thus, we always excite from a ground state which is symmetric in the ionic coordinate. In Fig. 10, we show that symmeterizing the wavefunction does not change the calculated optical absorption spectrum. This means that we already obtain a nearly symmetric ground state starting configuration from the stationary Schrödinger equation (9). However, the data shown in Fig. 9b) has been symmeterized for every M.

D. Model

To explain why a quantum treatment of the ions has such a strong effect on the absorption spectra for H_2^+, we propose a simple two level model. Using this model, we will show how strong effect on the absorption spectra for H_2^+, i.e., the Franck-Condon transitions $\varphi_0 \rightarrow \varphi_{2i+2}$ are forbidden so long as φ_{2i+2} is an even function of ξ.

This is the case when the ions are treated classically. In fact, Figs. 4a–d clearly show that the peaks in the absorption spectra obtained from a classical BOA treatment are always aligned with the energies of odd-parity unoccupied electronic levels ε_{2i+1}, i.e., the Franck-Condon transitions $\varphi_0 \rightarrow \varphi_{2i+1}$.

When the ions are treated quantum mechanically, every allowed transition is split into red and blue shifted contributions, with the shifts increasing as the mass decreases. The level splitting we observe in Fig. 3 is reminiscent of level hybridization.

This motivates us to employ a simple two-level model to describe the energies and widths of the QMI peaks.

To do so, for each odd-parity unoccupied electronic level φ_{2i+1} at \tilde{e}_{2i+1}, we artificially introduce a level at \tilde{e}_{2i+1} to which it couples.

As mentioned in Section II B and Appendix B, the ratio between the vibrational and electronic energies, $E_{\text{vib}}/E_{\text{elec}}$, scales as the square of the ratio between the ionic and electronic displacement (δ/a_0) \cite{29}. This means the ionic displacement scales as the electron-ion mass ratio to the one fourth $\delta \approx (m_e/M)^{1/4}$. Since the probability of coupling is directly related to the quantum ionic displacement, we expect the coupling between the energy levels to scale as $\delta \approx (m_e/M)^{1/4}$. Further, the width of the peaks in the absorption spectra should also be related to the ionic displacement. We thus assume the coupling between the energy levels is proportional to the ionic displacement $\delta \sim M^{-1/4}$, i.e, $\alpha M^{-1/4}$ where α is the constant of proportionality.

The resulting two-level Hamiltonian

$$\left[\begin{array}{c} \epsilon_{2i+1} \\ \frac{\alpha}{M^{1/4}} \tilde{e}_{2i+1} \end{array} \right]$$

has a solution for the \tilde{e}_{2i+1} allowed peak’s energy of

$$\omega_{2i,2i+1} \approx \frac{\epsilon_{2i+1} + \tilde{e}_{2i+1}}{2} - \sqrt{\left(\frac{\epsilon_{2i+1} - \tilde{e}_{2i+1}}{2}\right)^2 + \left(\frac{\alpha}{M^{1/4}}\right)^2}. \hspace{1cm} (51)$$

This two-level model yields two peaks that are lower and higher in energy, through level repulsion. As the mass decreases, ionic displacements become larger. This leads to a greater coupling. The coupling between the energy levels will be larger when the mass decreases and the energy separation between the two coupling energy levels will also increase.

In Figs. 11 and 12 we use the two-level model to fit the calculated QMI peaks for various ionic masses M. Specifically, we employ Eqs. (51) to fit ω_1, ω_2, and ω_3 for H_2^+ and H_3. In general, the calculated peak positions are within 0.1 eV of the two-level model fit, which is also the expected accuracy of such calculations. In each case, we find the coupling between the transitions has a constant of proportionality of $\alpha \approx 11 \text{ eV}$. Furthermore, the artificial level $\tilde{e}_1 \approx 23.5 \text{ eV}$ for both configurations of H_2^+.

For H_2^+, we find the first peak depends on $M^{-1/4}$, since $\alpha^2/M^{1/4} \ll \tilde{e}_1 - \epsilon_1 \approx 9.7 \text{ eV}$. In other words,

$$\omega_1 \approx \epsilon_1 - \frac{\alpha^2/M^{1/4}}{\tilde{e}_1 - \epsilon_1}.$$ \hspace{1cm} (52)
diatomic molecule with ionic mass using only two parameters, the artificial level’s energy to decouple the two peaks’ red and blue shifted contributions configuration and the decoupled levels are obtained from the ground state electronic eigenenergies. Gray regions denote a ±0.1 eV estimated accuracy.

where \(\bar{\varepsilon}_3 \approx 20 \text{ eV} \).

For the second and third peaks, so long as \(\varepsilon_3 - \bar{\varepsilon}_3 \ll 2\alpha/M^{1/4} \), we may further approximate the peaks by

\[
\omega_{2,3} \approx \frac{\varepsilon_3 + \bar{\varepsilon}_3}{2} \pm \frac{\alpha}{M^{1/4}} + \frac{(\varepsilon_3 - \bar{\varepsilon}_3)^2 M^{1/4}}{8\alpha},
\]

(53)

As we see in Fig. [11] this is indeed the case for the second and third peaks in the absorption spectra, \(\omega_2 \) and \(\omega_3 \), of \(\text{H}_2^+ \) in the configuration \(\Delta_L = a_0 \) and \(\Delta_H = \frac{1}{2}a_0 \), as \(\varepsilon_1 - \bar{\varepsilon}_1 \approx 0.4 \text{ eV} \).

Essentially, all the peak positions in the QMI spectra are fit using only two parameters, the artificial level’s energy \(\bar{\varepsilon}_{2+1} \), and the coupling constant \(\alpha \). However, we are not always able to decouple the two peaks’ red and blue shifted contributions because of their overlap due to their finite width. This is particularly true for \(\text{H}_2 \). As a result, we have fewer data points for the \(\text{H}_2 \) peaks, as shown in Fig. [12], reducing the reliability of the fit to Eq. [51].

In Fig. [13] we also show that the width of the first and third peaks for the configurations shown in Fig. [1] (b) and (c) scale as the electron-ion mass ratio to the one fourth, i.e. FWHM \(\approx (m_e/M)^{1/4} \), as expected from our model. The FWHM for the first peak has a larger constant of proportionality than the third peak, but the widths for both configurations may be fit simultaneously. Altogether, this demonstrates the predictive power of the simple two-level model for describing the QMI spectra as a function of the ionic mass.
V. CONCLUSIONS

We have shown that additional features may appear in the linear response spectra of charged H$_2^+$ and neutral H$_2$ homonuclear diatomic molecules when the ionic motion is described quantum mechanically. Such features are strongly dependent on the molecules' configuration, i.e., the shape of the PES. The widely used classical ionic motion BOA and ED approaches fail to describe such features. We also demonstrate that these features may be understood using a predictive two-level model. These results demonstrate how for light atoms, the quantum nature of the ions may play an important role when describing absorption processes.

VI. ACKNOWLEDGEMENTS

The authors thank Angel Rubio, Stefan Kurth and Lorenzo Stella for useful discussions. We acknowledge financial support from the European Research Council Advanced Grant DYNaMo (ERC-2010-AdG-267374), Spanish Grants (FIS2013-46159-C3-1-P and PIB2010US-00652), and Grupo Consolidado UPV/EHU del Gobierno Vasco (IT578-13). A. C.-U. acknowledges financial support from the Departamento de Educación, Universidades e Investigación del Gobierno Vasco (Ref. BFI-2011-26) and DIPC.

Appendix A: Center of mass transformation

Here we present in detail the coordinate transformations applied in our description of a homonuclear diatomic molecule whose electronic and ionic motion has been confined to one direction. First, we perform a center of mass transformation of the two ionic coordinates X_1 and X_2

$$X_{CM} = \frac{X_1 + X_2}{2}; \quad V_{CM} = \frac{V_1 + V_2}{2}, \quad (A1)$$

where X_{CM} is the center of mass coordinate of the ions and X is the distance between the ions. Here the velocities are the time derivatives of the positions.

1. Positively charged homonuclear diatomic molecule

For a positively charged homonuclear diatomic molecule with one electron, the electronic coordinate and velocity are simply

$$x = x_1; \quad v = v_1. \quad (A2)$$

Next, we perform a global center of mass transformation of the center of ionic mass and electronic coordinates X_{CM}, and x, keeping the ionic separation X fixed

$$X_{CM} = \frac{2MX_{CM} + x}{2M + 1}; \quad V_{CM} = \frac{2MV_{CM} + v}{2M + 1}, \quad (A3)$$

where X_{CM} is the global center of mass coordinate and x is the distance between the electron x and the ionic center of mass X_{CM}. Here the velocities are the time derivatives of the positions.

By substituting Eqs. (A1), (A2), and (A3) into Eq. (22) we obtain for the classical energy of a positively charged homonuclear diatomic molecule

$$E = \frac{1}{2}(2M + 1)V_{CM}^2 + \frac{1}{2}\mu_p V_X^2 + \frac{1}{2}\mu_e V_{\xi}^2$$

$$- \frac{1}{\sqrt{(\frac{X}{2} + \xi)^2 + \Delta_e^2}} - \frac{1}{\sqrt{(\frac{X}{2} - \xi)^2 + \Delta_e^2}} + \frac{1}{\sqrt{X^2 + \Delta_M^2}}. \quad (A4)$$

where μ_e is the reduced mass of the two ions plus electron system and μ_p is the reduced mass of the two ions

$$\mu_e = \frac{2M}{2M + 1}; \quad \mu_p = \frac{M}{2}. \quad (A5)$$

If we rewrite Eq. (A4) in terms of the momenta given by

$$\hat{P}_{X_{CM}} = (2M + 1)V_{CM} = -i\frac{\partial}{\partial X_{CM}},$$

$$\hat{P}_X = \mu_p V_X = -i\frac{\partial}{\partial X},$$

$$\hat{P}_{\xi} = \mu_e V_{\xi} = -i\frac{\partial}{\partial \xi},$$

we obtain the two-body Hamiltonian in Eq. (24).

2. Neutral homonuclear diatomic molecule

For a neutral homonuclear diatomic molecule with two electrons, we also perform a center of mass transformation of the two electronic coordinates x_1 and x_2

$$x_{CM} = \frac{x_1 + x_2}{2}; \quad v_{CM} = \frac{v_1 + v_2}{2}, \quad (A7)$$

where x_{CM} is the center of mass coordinate of the electrons and x is the distance between the electrons. Here the velocities are the time derivatives of the positions.

We now perform a global center of mass transformation of the two ionic and electronic center of mass coordinates X_{CM} and x_{CM}, keeping the ionic and electronic separations X and x fixed

$$X_{CM} = \frac{2MX_{CM} + 2x_{CM}}{2M + 2}; \quad V_{CM} = \frac{2MV_{CM} + 2v_{CM}}{2M + 2}, \quad (A8)$$

where X_{CM} is the global center of mass coordinate and ξ is the distance between X_{CM} and x_{CM}. Here the velocities are the time derivatives of the positions.
By substituting Eqs. (A1), (A7), and (A8) into Eq. (A9) we obtain for the classical energy of a neutral homonuclear diatomic molecule
\[
E = \frac{1}{2}(2M + 2)\nu_{CM}^2 + \frac{1}{2}\mu_p\nu_X^2 + \frac{1}{2}\mu_p\nu_\xi^2 + \frac{1}{2}\bar{\mu}_e\nu_v^2
- \frac{1}{\sqrt{\left(\frac{X}{2} - \frac{X}{2} - \xi\right)^2 + \Delta_{fe}^2}} - \frac{1}{\sqrt{\left(\frac{X}{2} + \frac{X}{2} + \xi\right)^2 + \Delta_{fe}^2}} + \frac{1}{\sqrt{X^2 + \Delta_{Ly}^2}} + \frac{1}{\sqrt{\nu_v^2 + \Delta_{le}^2}},
\]
where \(\mu_p\) is the reduced mass of the two ions, \(\mu_{ep}\) is the reduced mass of the two ions plus two electron system, and \(\bar{\mu}_e\) is the reduced mass of the two electrons
\[
\mu_p = \frac{M}{2}, \quad \mu_{ep} = \frac{2M}{1 + M}, \quad \bar{\mu}_e = \frac{1}{2}.
\]
If we rewrite Eq. (A9) in terms of the momenta given by
\[
\hat{P}_{X_{CMz}} = (2M + 2)\nu_{CMz} = -i\frac{\partial}{\partial X_{CMz}},
\]
\[
\hat{P}_X = \mu_p\nu_X = -i\frac{\partial}{\partial X},
\]
\[
\hat{P}_\xi = \mu_{ep}\nu_\xi = -i\frac{\partial}{\partial \xi},
\]
\[
\hat{P}_v = \bar{\mu}_e\nu_v = -i\frac{\partial}{\partial v},
\]
we obtain the three-body Hamiltonian \((X, x, \xi)\) in Eq. (25).

Appendix B: Accuracy of the BOA

Here we provide a detailed analysis of the accuracy of the Born-Oppenheimer Approximation (BOA) for the case of a homonuclear diatomic molecule whose electronic and ionic motion is confined to one direction. In general, the ratio of vibrational to electronic energies, \(E_{vib} / E_{elec}\) depends on the electron-ion mass ratio \(m_e / M\) as [31]
\[
\frac{E_{vib}}{E_{elec}} \approx \sqrt{\frac{m_e}{M}} \approx \frac{\delta^2}{a_0^2},
\]
where \(\delta\) is the length scale of vibrational motion, and \(a_0\) is the length scale of electronic motion, i.e., the Bohr radius. This means the ratio of ionic to electronic motion is of the order \(\delta / a_0 \approx (m_e / M)^{1/2}\). With this in mind, we may expand the Hamiltonian in Eq. (25) as a function of the small parameter \(\kappa \equiv (m_e / M)^{1/2}\) to third order as follows:
\[
\hat{H}(X_{eq} + \kappa \xi, x, \xi) \approx \hat{H}^{(0)} + \kappa \hat{H}^{(1)} + \kappa^2 \hat{H}^{(2)} + \kappa^3 \hat{H}^{(3)},
\]
we obtain:
\[
\hat{H}^{(0)} = -\frac{1}{2\mu_e} \frac{\partial^2}{\partial x^2} - \frac{1}{2\mu_{ep}} \frac{\partial^2}{\partial \xi^2} + V(X_{eq}, x, \xi).
\]
\[
\hat{H}^{(1)} = \kappa \frac{\partial}{\partial \xi} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi,
\]
\[
\hat{H}^{(2)} = -\kappa^2 \frac{\partial^2}{\partial \xi^2} + \frac{1}{2\mu_{ep}} \frac{\partial^2}{\partial x^2} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi^2,
\]
\[
\hat{H}^{(3)} = \frac{1}{3!} \frac{\partial^3}{\partial x^3} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi^3 + O(\kappa^4).
\]
Sorting the Hamiltonian in different powers of \(\kappa\), i.e.,
\[
\hat{H}(X_{eq} + \kappa \xi, x, \xi) \approx \hat{H}^{(0)} + \kappa \hat{H}^{(1)} + \kappa^2 \hat{H}^{(2)} + \kappa^3 \hat{H}^{(3)},
\]
we expand:
\[
\hat{H}^{(0)} = -\frac{1}{2\mu_e} \frac{\partial^2}{\partial x^2} - \frac{1}{2\mu_{ep}} \frac{\partial^2}{\partial \xi^2} + V(X_{eq}, x, \xi).
\]
\[
\hat{H}^{(1)} = \frac{\partial}{\partial \xi} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi,
\]
\[
\hat{H}^{(2)} = -\frac{\partial^2}{\partial \xi^2} + \frac{1}{2!} \frac{\partial^2}{\partial x^2} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi^2,
\]
\[
\hat{H}^{(3)} = \frac{1}{3!} \frac{\partial^3}{\partial x^3} V(X, x, \xi) \bigg|_{X = X_{eq}} \xi^3 + O(\kappa^4).
\]
Expanding the time-independent Schrödinger equation in powers of \(\kappa\) to the third order, we obtain:
\[
\sum_{n=0}^{3} (\kappa^n \hat{H}^{(n)}) [\kappa^n \psi^{(n)}] = \sum_{n=0}^{3} (\kappa^n \psi^{(n)}) [\kappa^n \psi^{(n)}].
\]
Decomposing Eq. (B3) in terms of \(\kappa\), we find
\[
O(\kappa^0) : \hat{H}^{(0)} |\psi^{(0)}\rangle = \epsilon^{(0)} |\psi^{(0)}\rangle,
\]
\[
O(\kappa^1) : \hat{H}^{(0)} |\psi^{(1)}\rangle + \hat{H}^{(1)} |\psi^{(0)}\rangle = \epsilon^{(0)} |\psi^{(1)}\rangle + \epsilon^{(1)} |\psi^{(0)}\rangle,
\]
\[
O(\kappa^2) : \hat{H}^{(0)} |\psi^{(2)}\rangle + \hat{H}^{(1)} |\psi^{(1)}\rangle + \hat{H}^{(2)} |\psi^{(0)}\rangle
= \epsilon^{(0)} |\psi^{(2)}\rangle + \epsilon^{(1)} |\psi^{(1)}\rangle + \epsilon^{(2)} |\psi^{(0)}\rangle,
\]
\[
O(\kappa^3) : \hat{H}^{(0)} |\psi^{(3)}\rangle + \hat{H}^{(1)} |\psi^{(2)}\rangle + \hat{H}^{(2)} |\psi^{(1)}\rangle + \hat{H}^{(3)} |\psi^{(0)}\rangle
= \epsilon^{(0)} |\psi^{(3)}\rangle + \epsilon^{(1)} |\psi^{(2)}\rangle + \epsilon^{(2)} |\psi^{(1)}\rangle + \epsilon^{(3)} |\psi^{(0)}\rangle.
\]
\(\hat{H}^{(0)}\) is the electronic frozen ion Hamiltonian at \(X_{eq}\) and \(\epsilon^{(0)}\) is the zeroth-order eigenvalue which corresponds to the electronic motion. Therefore, we choose the zeroth-order wavefunction as:
\[
|\psi^{(0)}(X_{eq}, \xi, \xi)\rangle = \chi(\xi) |\psi^{(0)}(X_{eq}, \xi, \xi)\rangle,
\]
where \(\psi^{(0)}\) is the electronic ground state wavefunction of \(\hat{H}^{(0)}\) and \(\chi(\xi)\) is the ionic wavefunction which will be specified later.

Based on Eqs. (B7), (B10) and the Hellmann-Feynman theorem, \(\epsilon^{(1)}\) vanishes. This is because the first derivative with
respect to the eigenvalue $\varepsilon^{(0)}$ at X_{eq} is zero. More explicitly,

$$
\varepsilon^{(1)} = \langle \psi^{(0)} | H^{(1)} | \psi^{(0)} \rangle = \left\langle \begin{array}{c}
\varepsilon^{(0)} \\
\frac{\partial}{\partial X} V(X, \ell) |_{X = X_{eq}} \end{array} \right| \langle \chi | \varphi \rangle
$$

$$
= \frac{\partial}{\partial X} \varepsilon^{(0)}(X) \langle \chi | \varphi \rangle = 0.
$$

From Eq. (B8) we obtain the second-order correction to the energy:

$$
\varepsilon^{(2)} = \langle \psi^{(0)} | H^{(2)} | \psi^{(0)} \rangle + \langle \psi^{(0)} | H^{(1)} | \psi^{(0)} \rangle
$$

$$
= \left\langle \begin{array}{c}
\psi^{(0)} \\
\frac{1}{2!} \frac{\partial^2}{\partial X^2} V(X, x, \ell) |_{X = X_{eq}} \end{array} \right| \langle \chi | \varphi \rangle \langle \varphi | \chi \rangle
$$

$$
- \sum_{n>0} \left(\frac{\varepsilon_n^{(0)}}{\varepsilon_n^{(0)} - \varepsilon_0^{(0)}} | \psi_n^{(0)} \rangle \langle \psi_0^{(0)} | \right)^2 \langle \chi | \varphi \rangle.
$$

where the first order correction to the wavefunction is obtained from Eqs. (B7) and (B10):

$$
|\psi^{(1)}\rangle = - \sum_{n>0} \left(\frac{\varepsilon_n^{(0)}}{\varepsilon_n^{(0)} - \varepsilon_0^{(0)}} | \psi_n^{(0)} \rangle \langle \psi_0^{(0)} | \right)
$$

$$
= - \sum_{n>0} \left(\frac{\varepsilon_n^{(0)}}{\varepsilon_n^{(0)} - \varepsilon_0^{(0)}} | \psi_n^{(0)} \rangle \langle \psi_0^{(0)} | \right) \langle \chi | \varphi \rangle.
$$

Finally, from Eqs. (B9), (B10) and (B13) we obtain for the third-order correction to the energy:

$$
\varepsilon^{(3)} = \langle \psi^{(0)} | H^{(3)} | \psi^{(0)} \rangle + \langle \psi^{(0)} | H^{(2)} | \psi^{(0)} \rangle + \langle \psi^{(0)} | H^{(1)} | \psi^{(0)} \rangle
$$

$$
= \left\langle \begin{array}{c}
\psi^{(0)} \\
\frac{1}{2!} \frac{\partial^2}{\partial X^2} V(X, x, \ell) |_{X = X_{eq}} \end{array} \right| \langle \chi | \varphi \rangle \langle \varphi | \chi \rangle
$$

$$
+ \frac{1}{3!} \varepsilon^{(0)} \frac{\partial^3}{\partial X^3} V(X, x, \ell) |_{X = X_{eq}} \langle \chi | \varphi \rangle.
$$

where the second-order correction to the wavefunction is from Eqs. (B8), and (B13):

$$
|\psi_0^{(2)}\rangle = \sum_{n>0} \left(\frac{\varepsilon_n^{(0)}}{\varepsilon_n^{(0)} - \varepsilon_0^{(0)}} \right)^2 | \psi_n^{(0)} \rangle | \psi_0^{(0)} \rangle
$$

$$
+ \sum_{n>0} \left(\frac{\varepsilon_n^{(0)}}{\varepsilon_n^{(0)} - \varepsilon_0^{(0)}} \right) | \psi_n^{(0)} \rangle | \psi_0^{(0)} \rangle.
$$

All the terms from Eq. (B16) using Eqs. (B13) and (B17) vanish by parity. This is because they are all proportional to $\langle \psi^{(0)} | H^{(3)} | \psi^{(0)} \rangle$ which is zero by parity since $H^{(3)}$ is odd in ζ and $\varphi^{(0)}$ is even in ζ. For this reason $\varepsilon^{(3)} = 0$, and the error in the BOA ground state energy, after including the zero-point energy correction, is $O(\kappa^4) \sim m_e/M$, as shown in Fig. 5.

For the neutral homonuclear diatomic molecule we follow the same procedure as above using Eq. (24), so that expanded in terms of κ gives the Hamiltonian

$$
\hat{H}(X_{eq} + \kappa \zeta, \ell) \approx -\frac{1}{2 \mu \ell} \frac{\partial^2}{\partial \zeta^2} + V(X_{eq}, \ell)
$$

$$
+ \kappa \frac{\partial}{\partial X} V(X, \ell) |_{X = X_{eq}} \zeta
$$

$$
+ \frac{1}{2!} \kappa^2 \frac{\partial^2}{\partial X^2} V(X, \ell) |_{X = X_{eq}} \zeta^2
$$

$$
+ \frac{1}{3!} \kappa^3 \frac{\partial^3}{\partial X^3} V(X, \ell) |_{X = X_{eq}} \zeta^3 + O(\kappa^4).
$$

Again, after including zero-point energy corrections, the error in the BOA ground state energy is $O(\kappa^4) \sim m_e/M$, as shown in Fig. 5.
