Case report

Benign metastasizing leiomyoma presenting with miliary pattern and fatal outcome: Case report with molecular analysis & review of the literature

Kenneth Ofori, Helen Fernandes, Matthew Cummings, Thomas Colby, Anjali Saqi

Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, USA
Mayo Clinic, Arizona, USA

ARTICLE INFO
Keywords:
Benign metastasizing leiomyoma
Miliary
MED 12

ABSTRACT
Benign metastasizing leiomyoma (BML) is a rare benign smooth muscle neoplasm that originates in the uterus and metastasizes to distant sites—most commonly the lungs. BMLs are often found incidentally in patients with a history of uterine leiomyoma(s) and tend to be indolent. Occasionally they may be symptomatic and rarely follow an aggressive clinical course.

We report an unusual case of BML presenting in a 46-year-old woman as a miliary nodular pattern bilaterally in the lungs and progressive respiratory failure. Her past medical history was significant for uterine "leiomyomas" of at least 9 years’ duration. Post mortem histologic evaluation of the uterine and lung lesions revealed benign smooth muscle neoplasms (leiomyomas and BMLs, respectively), and molecular analyses demonstrated identical clonal MED12 mutation, though with greater mutant allelic frequency in the uterus. We document a rare aggressive clinical course in a patient with BML, which presented as a miliary radiologic pattern mimicking an infectious etiology or interstitial lung disease.

1. Introduction
Benign metastasizing leiomyoma (BML) is a rare condition that was first described in 1939 by Steiner as "metastasizing fibroleiomyomas" comprised of benign-appearing smooth muscle cells in the uterus and metastatic sites. Typically BML is found incidentally in the lungs in a patient with a history of hysterectomy for leiomyomas, but there are reports of associated cough, chest pain, dyspnea, hemoptysis, hemothorax and pneumothorax.

Though pulmonary manifestation is most common, BAL may occur in the pelvis, lymph nodes, breast, bones and heart amongst other sites. BML(s) may manifest as a solitary pulmonary nodule, but the pattern of involvement is bilateral (macro-) nodules in most instances. We illustrate a rapidly fatal presentation of BML with a miliary pattern, which to the best of our knowledge has not been previously reported and also describe the results of next generation sequencing of the uterine and lung lesions.

2. Case report
A 46-year-old woman with a past medical history significant for hypertension presented to the emergency department (ED) with three days of fatigue, chills, decreased appetite, dry cough and progressive dyspnea. Review of systems was notable for intermittent fatigue and dyspnea on exertion for the preceding three months. Upon initial evaluation, she was in multi-system organ failure characterized by hypoxemic respiratory failure, shock and severe lactic acidosis. Following endotracheal intubation and volume resuscitation, her cardio-pulmonary status initially stabilized; low-dose vasopressors and broad spectrum antimicrobials were initiated. Shortly thereafter, she suffered cardiopulmonary arrest with pulseless electrical activity. Following return of spontaneous circulation, gas exchange and hemodynamics deteriorated rapidly, and required high-levels of mechanical ventilatory support, vasopressors and inotropic agents, renal replacement therapy and emergent cannulation onto venoarterial extracorporeal membrane oxygenation. Despite these measures, she progressed to catastrophic multi-organ failure (severe acute respiratory distress syndrome, refractory shock and cardiac failure, and disseminated intravascular coagulation) and passed approximately 12 hours following presentation to the ED.

Approximately 5 years prior, she had presented to the ED with menorrhagia without anemia. Her gynecological/obstetrical history...
(G4P4; mode of delivery—vaginal vs C-section—unavailable) and exam were significant for a palpable anterior “fibroid” and 10 week size uterus. A transvaginal ultrasound was notable for 3 intramuscular “fibroids” and 1 cm thick endometrial stripe. Both ovaries were within normal limits and no free fluid was seen.

Imaging reports as part of 2nd/3rd trimester fetal evaluations 9 years earlier describe 2 suspected leiomyomata measuring up 3.5 cm in greatest dimension with a follow-up scan one year later showing increase to 3.7 cm.

3. Imaging

A chest x-ray taken two days prior to presentation to the ED showed a diffusely granular pattern without consolidation bilaterally suggestive of infection (e.g., viral pneumonia, pneumocystis). At presentation to the ED, the chest computed tomography (CT) scan demonstrated diffuse, randomly-distributed, innumerable punctate nodules mostly ≤5 mm. Additionally, mild interstitial septal thickening, mildly heterogeneous diffuse ground-glass opacification of the lungs with lower lobe predominance and mediastinal lymphadenopathy were noted (Fig. 1). No honeycombing, significant confluent consolidation or mass(es) were seen. The differential included infectious/inflammatory conditions such as atypical pneumonia (e.g., military tuberculosis, fungus) and acute pneumonitis (e.g., hypersensitivity pneumonitis). Interstitial lung disease and sarcoidosis were less likely considerations in light of the acute presentation.

4. External & gross examination

Consent for an autopsy, excluding the head, was granted. Serosanguineous fluid was noted in the pericardial sac (75 cc), pleural cavities (50 cc and 75 cc in the right and left lungs, respectively) and peritoneal cavity (300 cc). Vague nodularity was noted on the surface of the lungs; the left and right lungs weighed 1000 g and 1190 g, respectively. The heart weighted 390 g; the right ventricle was grossly dilated with the wall measuring 0.3 cm.

Gross sectioning of the lungs demonstrated diffuse consolidation and numerous whitish nodules bilaterally spanning between 0.5 cm and 0.8 cm without predilection for any specific region (Fig. 2). Mediastinal lymphadenopathy, with lymph nodes ranging from 1.0 to 1.5 cm, was also noted. There was dilatation of the right heart and left ventricular hypertrophy (1.3 cm thickness).

The uterus weighed 860 g and measured 13.5 × 9.0 × 6.0 cm. Myometrial sectioning revealed multiple 0.5 cm–4 cm white, well-circumscribed and firm nodules with a whorled appearance resembling leiomyomata in the subserosal, intramuscular and intramucosal locations. The endometrial lining, ovaries and fallopian tubes were unremarkable.

Other than hepatomegaly (2040 g), gross examination of the other sites, including breast, gastrointestinal organs, pancreas, spleen, adrenal, kidneys, bladder and bone was unremarkable and without any additional masses.

5. Methods

Routine histologic evaluation was performed. Immunohistochemistry [cytokeratin (CK), estrogen receptor (ER), progesterone receptor (PR), Ki-67, HMB45, Melan A, Tyrosinase, c-Kit, DOG-1, CD34, CD31, D2-40, desmin and human herpesvirus-8 (HHV-8)] was performed on paraffin-embedded tissue. Molecular analysis of the neoplasms in the lung and uterus were performed to assess for a clonal relationship, if any, between the two, and identify the mutation(s).

DNA sequencing of the coding regions from 467 cancer-associated genes was used for sequencing the tumors. Basically, a minimum of 50 ng of sheared DNA, from paraffin-embedded tumor sections was subject to capture using Sure Select reagents from Agilent (Santa Clara, CA). Sequencing was performed on the Illumina HiSeq 2500 (San Diego, CA) NGS platform. Variant calling and interpretation was performed as previously reported [7].
6. Results

6.1. Histology

Sections of lung demonstrated > 25% of the parenchyma comprised of numerous inter-anastomosing cords and nodules throughout all lobes (Fig. 3a and b). No specific anatomic distribution (e.g., centrilobular, interlobular septa, lymphatic, subpleural) was noted. The tissue cords and nodules were composed of spindle-shaped cells arranged mostly as whorls. On higher magnification, the cells were homogenously distributed without hypercellular areas. With the exception of rare isolated fields of slightly larger cells (Fig. 3c), no pleomorphism was seen. Additionally, no mitotic activity or necrosis were appreciated. Several uterine nodules were sampled and showed a smooth muscle proliferation, compatible with leiomyomata. No pleomorphism, necrosis, appreciable mitotic activity or hemorrhage were noted (Fig. 4). No histological evidence of acute lung injury, such as hyaline membranes or fibrin, was identified.

6.2. Immunohistochemistry

The lesional cells in the lung stained with only desmin and PR (weak); Ki67 was present in < 5% nuclei. All other markers, including HMB45, Melan A, tyrosinase, ER, HHV-8, c-Kit, Dog 1, CD34, CD31 and D2-40, were negative. The morphology and staining pattern were consistent with a smooth muscle neoplasm, with benign metastasizing leiomyomas (BMLs) leading the differential based on the histology. The uterine leiomyomata stained with ER and PR; Ki67 was seen in < 1% cells. Microscopic examination of the other organs and sampled lymph nodes was unremarkable.

6.3. Molecular analysis

A missense mutation in the MED12 gene (c.131G > A (pG44D)) was detected in both the uterine and lung nodules with mutant allele frequency of 48.3% and 3.9% respectively (Fig. 5a and b). In addition, six missense variants of uncertain significance, including ARID1A (c.5770G > A, p E1924K), NOTCH2 (c.492C > A, pN164K), ETV6 (c.985G > A, p A329T), MSH2 (c.2260A > T, p T754S), and TOPBP1 (c.3616C > T, p R1206C) and splice site mutations in U2AF1 (c.240-5G > T) and U2AF2 (c.186-4C > G) were identified in both lesions. The detection of same MED12 mutations in both lung and uterine nodules, is consistent with a common clonal origin for both lesions. The lower MED12 mutant allele fraction in the lung nodule was most likely due to the small size and reduced neoplastic cellularity in the tumor that was sequenced.

7. Discussion

Benign metastasizing leiomyomas (BMLs) represent a relatively uncommon entity morphologically similar to uterine leiomyomas. Since the initial publication, at least 161 cases have been described in the English literature, all in women [2]. Most affected women have a history of myomectomy/hysterectomy (at a mean age of 38.5 years; range 18–72 years) and subsequent diagnosis of BML (at a mean age 47.3 years; range 22–77 years) [2]. Though often noted incidentally and asymptomatic, some BMLs may cause respiratory symptoms. The presentation of BML(s) in the lung is variable with some occurring as a solitary pulmonary nodule and others as multiple bilateral nodules—it has been reported that in 70% of cases, there was a mean number of 6 nodules with an average size of 1.8 cm [8]. Rare pulmonary presentation of BML imaging include cystic/cavitary lesions [9] and a miliary pattern [10,11]. Therapeutic options (surgical resection, hormonal therapy, chemotherapy) hinge upon the extent of disease and symptomology. Depending on the pattern, the differential includes metastatic disease, infectious etiology (e.g., tuberculosis) and interstitial lung disease (e.g., sarcoidosis). Despite the “malignant” designation, BMLs usually follow a stable/indolent course with progression reported only in isolated cases [8].

Akin to our case, a miliary pattern has been reported rarely [10–13]. Lipton et al. illustrated a case of a 30-year-old woman with abnormal preoperative imaging for a hysterectomy for leiomyomas following metomenorrhagia [10]. Based on the miliary pattern, tuberculosis was a consideration; additional history revealed dyspnea on exertion but no cough or other systemic signs. A transbronchial biopsy showed multiple mitotically inactive BMLs, while the uterus was diagnosed with an atypical cellular leiomyoma. Orejola et al. noted 2–3 mm scattered nodules spread evenly and bilaterally in a 41-year-old woman following hysterectomy with leiomyoma; during the course of a limited follow-up, the patient was symptom free [11]. Another 32-year-old woman with labored breathing was treated for tuberculosis based on the miliary

![Fig. 3. Lung parenchyma with (a) anastomosing bands and nodules (b) without mitoses and necrosis, and (c) focal pleomorphism.](image-url)

![Fig. 4. Uterine leiomyoma without atypia, mitotic activity or necrosis.](image-url)
Fig. 5. (a) MED12 exon 2 c.131G > A (pG44D) missense mutation in uterine nodule. Allele frequency of 48.3% and (b) MED12 exon 2 c.131G > A (pG44D) missense mutation in lung nodule. Allele frequency of 3.9%.
To the best of our knowledge, this represents the first case of BML presenting initially with a rapidly progressive abruptly fatal outcome. Most BMLs are indolent, but an aggressive clinical course resulting in death has been described [1]. In 1939, Steiner reported the first case of BML. Two years later, she developed multiple abdominal lesions leading to death 18 months following uterine surgical procedures [15], but presence of BML in the metastases and eventually passed from cancer cachexia. Identical molecular signatures (mutations in MED12, BLMH, LRP2, SMAD2, UGT1A8) were noted in the uterine and BML with the exception of an MED12 gene G44D mutation, which was reported to be associated with uterine leiomyomata. Of the six variants of unknown significance (VOUS) that were present in both tumors, some of which were reported to be associated with uterine leiomyomata. The morphological differential diagnoses include primary and metastatic spindle cell/smooth muscle neoplasms (Table 1) [e.g. lymphangioleiomyomatosis (LAM), metastatic leiomyosarcoma, gastrointestinal stromal tumor (GIST), malignant melanoma] and interstitial lung disease (sarcoidosis). Like BML, LAM is seen mostly in women of reproductive age and occurs either sporadically or in a setting of tuberous sclerosis. Dyspnea and pneumothorax in a setting of thin-walled cysts with nodules are among the common presentations. Like BML, smooth muscle markers, ER and PR are expressed in LAM; however, LAM is also positive for melanocytic markers (HMB45 and Melan A). Metastatic leiomyosarcoma is the most frequent tumor specific alteration in uterine leiomyoma, with 49% of mutations occurring in codon 44 and has been reported in 25% of leiomyosarcomas [21]. The MED12 gene G44D mutation is pathogenic and likely leads to loss of function of the protein [22] and has been reported in 37%–85.5% uterine leiomyomas [18], was seen. Detection of same MED12 mutation and the same variant alleles in the lung and uterine nodules is consistent with derivation of the lesions from the same clone. MED12, which resides on the long arm of chromosome X (Xq12.1), is a component of the mediator complex, which regulates the initiation of transcription of RNA polymerase II [19]. MED12 mutation is the most frequent tumor specific alteration in uterine leiomyoma, with 49% of mutations occurring in codon 44 and has been reported in 25% of leiomyosarcomas [21]. The MED12 gene G44D mutation is pathogenic and likely leads to loss of function of the protein [22] and has been frequently reported in uterine leiomyoma [23,24]. NGS also identified six variants of uncertain significance (VOUS) that were present in both tumors, some of which were reported to be associated with uterine leiomyomata. Of the VOUS that were present in both the uterus and lung tumors, upregulation of MSH2 gene expression, may be considered as a marker for early detection of uterine fibroids [25]. However, without a matched normal, to rule out germline variants, the significance of these variants is not clear.

The morphological differential diagnoses include primary and metastatic spindle cell/smooth muscle neoplasms (Table 1) [e.g. lymphangioleiomyomatosis (LAM), metastatic leiomyosarcoma, gastrointestinal stromal tumor (GIST), malignant melanoma] and interstitial lung disease (sarcoidosis). Like BML, LAM is seen mostly in women of reproductive age and occurs either sporadically or in a setting of tuberous sclerosis. Dyspnea and pneumothorax in a setting of thin-walled cysts with nodules are among the common presentations. Like BML, smooth muscle markers, ER and PR are expressed in LAM; however, LAM is also positive for melanocytic markers (HMB45 and Melan A). Metastatic leiomyosarcoma is another smooth muscle tumor that may present in the lung as single or multiple nodules with a staining pattern similar to that of BML. Unlike their benign counterpart, metastatic uterine leiomyosarcomas tend to occur in slightly older women and...
have greater pleomorphism, mitotic activity (high Ki67 indices) necrosis and/or hemorrhage. The clinical history and staining pattern are useful in excluding metastatic GIST (c-kit, DOG-1 positive) and amelanotic spindle cell melanoma (S100, HMB45, Melan-A and tyrosinase positive). Finally, the inter-anastomosing nodular pattern is concerning for sarcoidosis. Lesions of sarcoidosis tend to have be hypocellular, have greater hyalinization and most importantly, are associated with granulomas.

In summary, we describe a case of BML with an unusual presentation clinically, radiographically and pathologically. This case highlights the potential for BML, what is typically an indolent disease, to have a fulminant clinical course either by itself or due to superimposed respiratory insults. Since the initial description 1939, a clonal relationship between uterine leiomyomas and BMLs has been established. However, additional studies to identify molecular signature(s) to separate BMLs with indolent and aggressive clinical course are necessary to determine appropriate management.

Conflicts of Interest and Source of Funding

None were declared.

References

[1] P.E. Steiner, Metastasizing fibroleiomyosarcoma of the uterus: report of a case and review of the literature, Am. J. Pathol. 15 (1) (1939) 89–110, 117.
[2] E. Barnas, M. Kozak, R. Ras, A. Skret, J. Skret-Majerlo, E. Dmoch-Gajzlerska, Benign metastasizing leiomyoma: a review of current literature in respect to the time and type of previous gynecological surgery, PLoS One 12 (4) (2017) e0175875.
[3] G. Yoon, T.J. Kim, C.O. Sung, et al., Benign metastasizing leiomyoma with multiple lymph node metastasis: a case report, Cancer Res. Treat. 43 (2) (2011) 131–133.
[4] J.H. Jo, J.H. Lee, D.C. Kim, et al., A case of benign metastasizing leiomyoma with multiple metastases to the soft tissue, skeletal muscle, lung and breast, Korean J. Intern. Med. 21 (3) (2006) 199–201.
[5] E.N. Consamus, M.J. Reardon, A.G. Ayalz, M.R. Schwartz, J.Y. Ro, Metastasizing leiomyoma to heart, Methodist DeBakey Cardiov. J. 10 (4) (2014) 251–254.
[6] M. Meddeb, R.D. Chow, R. Whippis, R. Haque, The heart as a site of metastasis of benign metastasizing leiomyoma: case report and review of the literature, Case Rep. Cardiol. 2018 (2018) 7231326.
[7] A.N. Sireci, V.S. Aggarwal, A.T. Turk, T. Gindin, M.M. Mansukhani, S.J. Hsiao, Clinical genomic profiling of a diverse array of oncology specimens at a large academic cancer center: identification of targetable variants and experience with reimbursement, J. Mol. Diagn. 19 (2) (2017) 277–287.
[8] J. Miller, M. Shoni, C. Siegert, A. Lebenthal, J. Godleski, C. McNamee, Benign metastasizing leiomyomas to the lungs: an institutional case series and a review of the recent literature, An. Thorac. Surg. 101 (1) (2016) 253–258.
[9] Y.H. Choe, S.Y. Jeon, Y.C. Lee, et al., Benign metastasizing leiomyoma presenting as multiple cystic pulmonary nodules: a case report, BMC Women's Health 17 (1) (2017) 81.
[10] J.H. Lipton, T.C. Fong, K.R. Burgess, Miliary pattern as presentation of leiomyomatosis of the lungs, Chest 91 (5) (1987) 781–782.
[11] W.C. Orjela, A.P. Vaidya, E.M. Elmann, Benign metastasizing leiomyomatosis of the lungs presenting a miliary pattern, Am. Thorac. Surg. 98 (5) (2014) e113–114.
[12] S. Chen, R.M. Liu, T. Li, Pulmonary benign metastasizing leiomyoma: a case report and literature review, J. Thorac. Dis. 6 (6) (2014) E92–E98.
[13] J.A. Riverz, S. Christopoulos, D. Small, M. Trifiro, Hormonal manipulation of benign metastasizing leiomyomas: report of two cases and review of the literature, J. Clin. Endocrinol. Metab. 89 (7) (2004) 3183–3188.
[14] J. Jiang, M. He, X. Hu, C. Ni, L. Yang, Deep sequencing reveals the molecular pathology characteristics between primary uterine leiomyoma and pulmonary benign metastasizing leiomyoma, Clin. Transl. Oncol. 20 (8) (2018) 1080–1086.
[15] N.R. Abu-Rustum, J.P. Curtin, M. Burt, W.B. Jones, Regression of uterine low-grade smooth-muscle tumors metastatic to the lung after oophorectomy, Obstet. Gynecol. 89 (5 Pt 2) (1997) 850–852.
[16] G. Takekura, Y. Takatsu, K. Kaitani, et al., Metastasizing uterine leiomyoma. A case with cardiac and pulmonary metastasis, Pathol. Res. Pract. 192 (6) (1996) 622–629.
[17] J.M. Bowem, J.M. Cates, S. Kash, et al., Genomic imbalances in benign metastasizing leiomyoma: characterization by conventional karyotypic, fluorescence in situ hybridization, and whole genome SNP array analysis, Cancer Genet. 205 (5) (2012) 249–254.
[18] M.R. Nucci, R. Drapkin, P. Dal Cin, C.D. Fletcher, J.A. Fletcher, Distinctive cyto- genetic profile in benign metastasizing leiomyosarcoma: pathogenetic implications, Am. J. Surg. Pathol. 31 (5) (2007) 737–743.
[19] C.M. Thompson, A.J. Koleske, D.M. Chao, R.A. Young, A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast, Cell 73 (7) (1993) 1361–1375.
[20] N. Makinen, M. Meihzine, J. Tolvannen, et al., MEDI2, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas, Science 334 (6053) (2011) 252–255.
[21] G. Perez, S. Croce, A. Ribeiro, et al., MEDI2 alterations in both human benign and malignant uterine leiomyomas: report of a case, BMC Women's Health 17 (1) (2017) 287.