Inhibition Behavior of PCDD/Fs Congeners by Addition of N-containing Compound in the Iron Ore Sintering

Yifan Wang¹, Lixin Qian¹, Zhengwei Yu¹*, Tiejun Chun¹*, Hongming Long¹,², Xuejian Wu¹, Jiaxin Li¹

¹ School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, China
² Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling, Anhui University of Technology, Ma’anshan 243002, China

ABSTRACT

PCDD/Fs are typical toxic persistent aromatic compounds that greatly reduce air quality and harm human health. In this study, urea’s suppressive effect on PCDD/Fs and their congener emissions was investigated via sintering pot tests, and the inhibition mechanisms were studied. The results showed that the I-TEQ values for the total PCDD/Fs decreased from 0.50 to 0.20, 0.12 and 0.20 ng I-TEQ Nm⁻³ after adding solid 0.02, 0.035 and 0.05 wt.% urea particles, respectively, to the iron ore sintering mixture, but these values increased for the low-chlorinated TeCDFs (from 0.003 to 0.009, 0.006 and 0.006 ng I-TEQ Nm⁻³) and TeCDDs (from 0.014 to 0.020, 0.018 and 0.020 ng I-TEQ Nm⁻³). Moreover, the average I-TEQ values for the chlorine substituents in the PCDFs and PCDDs decreased, indicating that urea inhibited chlorination or enhanced dechlorination. The potential mechanisms by which urea suppresses the total PCDD/Fs and hydrodechlorinates the high-chlorinated PCDD/Fs are discussed.

Keywords: PCDD/Fs; Congeners; Urea; Active radical; Iron ore sintering.

INTRODUCTION

In 1977, Dutch scientists first detected the presence of dioxins in the exhaust gas and fly ash of waste incineration, which aroused widespread concern and in-depth research in the environmental field (Kasai et al., 2008). Dioxins are typical toxic persistent aromatic compounds, including polychlorinated dibeno-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), also referred to as “PCDD/Fs” (Dvořák et al., 2010; Yabars and Liao et al., 2016; Zhan et al., 2019). PCDD/Fs are highly toxic that can cause reproductive and developmental problems, damage the immune system, interfere with hormones, and induce cancer as well (Shen et al., 2018). Studies have shown that the average concentrations of PCDD/Fs in the air of some cities in China were between 0.036 and 0.060 pg I-TEQ Nm⁻³ (Tang et al., 2017; Xing et al., 2017). Owing to the great harm of PCDD/Fs to the ecological environment, air quality, and human health, PCDD/Fs have been included into the Annex C compounds of the Stockholm Convention (Yu et al., 2016; Li et al., 2018; Xu et al., 2019). Previous studies generally concluded that the formations of PCDD/Fs are a heterogeneous reaction (200–500°C) and a homogeneous reaction (500–800°C) (Chen et al., 2018). Furthermore, three general formation pathways were proposed as follow: (i) de novo synthesis by catalytic metals (Cu/Fe); (ii) precursor pathway; (iii) the rearrangement reactions of chlorophenols and chlorobenzenes (Harjanto et al., 2002; Zhang et al., 2016; Xuan et al., 2017; Chen et al., 2019; Ma et al., 2019). So far, municipal waste incineration, iron ore sintering industry, electric steelmaking industry, non-ferrous metal recycling industry, cement production industry, etc. are the potential sources of PCDD/Fs emission (Kuo et al., 2011; Yang et al., 2019).

Among them, iron ore sintering is an essential process in the long steelmaking process and the primary emission source of pollutants as well (Chen et al., 2016; Chun et al., 2017; Rezvanipour et al., 2018). The process of the iron ore sintering is presented in Fig. 1. As shown in this figure, first of all, the raw materials including iron ores, fuels, fluxes, solid waste, recirculated material, etc. are mixed and pelletized with water, then placed on a slow-moving bed to sinter into a lump at temperatures over 1300°C (Thompson et al., 2016; Kumar et al., 2018). Utilizing a high-power draft fan to draw the exhaust gas from the sintering bed, then the exhaust gas passes through a series of wind boxes and enters an electrostatic
precipitator for dust removal. Afterward, the exhaust gas is desulfurized and released via a stack (Ooi et al., 2008a; Abreu et al., 2015; Ji et al., 2017). Meanwhile, the pollutants, like NOx, PCDD/Fs, etc., are released into the atmosphere as well.

Previous studies showed that PCDD/Fs formed in the sintering process exhibited typical characteristics of de novo synthesis (Drage et al., 2014; Liu et al., 2017; Yang et al., 2017). PCDD/Fs can be generated in the drying zone, where the temperature between 200 and 650°C, a large amount of carbon source, chlorides and catalytic metal (Cu+/Fe2+) are essential for the de novo synthesis (Nakano et al., 2005). According to the formation mechanism of PCDD/Fs in the sintering process, injection inhibitors have been extensively studied and confirmed to be an effective method to control the formation of PCDD/Fs (Yan et al., 2014). At present, there are three types of inhibitors, i.e., nitrogen (N)-containing inhibitors, S-containing inhibitors, and alkaline inhibitors. However, due to the negative effect on SO2 emission levels in the flue gas and quality of sinter, S-containing and alkaline inhibitors were restricted in utilization during the sintering process (Qian et al., 2018). The N-containing inhibitors, especially urea, added in sintering raw mixture have no negative impact on the production process and product quality. Hence, it was widely used to reduce the emission of PCDD/Fs during the iron ore sintering (Nakano et al., 2005). Several studies reported that the addition of 0.02–0.05 wt.% urea into the iron ore sintering mixtures could reduce the emission of PCDD/Fs by about 50–65% (Southern et al., 2000; Xhouwet and Pauw, 2005; Anderson et al., 2007; Ooi et al., 2008b). Furthermore, in our previous studies, we also indicated that the PCDD/Fs emission reduction rate was 72.1% after adding 0.5 wt.% urea aqueous solution into the sintering mixtures in sintering pot tests (Long et al., 2011).

Similarly, experiments to reduce exhaust gas pollutant emission in municipal solid waste incineration showed that adding a certain amount of urea could achieve PCDD/Fs emission reduction (Peng et al., 2016; Ma et al., 2018). A previous study in a full-scale municipal solid waste incinerator indicated that urea concentration in the splayed water was set at 0.1 wt.% with a splaying rate of 2000 kg h⁻¹, the international toxic equivalent (I-TEQ) value of the PCDD/Fs in the flue gas was reduced by about 50% (Kasai et al., 2008). Ruokojärvi et al. (2001) also reported that total PCDD/Fs concentration decreased by a maximum of 74% when 1 wt.% of the fuel input of urea was injected into the flue gas in a pilot-scale plant. Moreover, Ruokojärvi et al. (2001) discovered that the emission ratios of low-chlorinated TeCDD and TeCDF were increased by 34% and 52%, respectively, when 0.1 wt.% urea was added in the flue gas of municipal solid waste incineration.

In view of the above, the present papers showed that the addition of urea within the formation temperature range of PCDD/Fs can reduce the total PCDD/Fs emissions in municipal solid waste incineration and urea has a different suppression efficiency on PCDD/Fs congeners. However, most studies focused on the total PCDD/Fs emissions after the addition of urea during the iron ore sintering, the different inhibitory behavior of urea on PCDD/Fs congeners and the differential inhibition mechanism of PCDD/Fs was still unclear. To fill the current knowledge gap, in this study, the suppression effect of the addition of urea into the sintering mixture on PCDD/Fs emission was analyzed. The influence of urea on the suppression efficiency differences of PCDD/Fs congeners was investigated. Finally, the studies allowed demonstrating the dechlorination mechanism of urea on PCDD/Fs molecules.

MATERIAL AND METHODS

Materials

In this study, a commercial sintering plant (located in Jiangsu Province, China) provided the raw materials for the sintering pot tests. The main chemical compositions and the added mass ratio of the raw materials were shown in Table 1. The ferrous materials were the iron ore fines (including Cara ore, Pilbara blend ore, Yankee ore, SFHT ore and Meishan concentrate) and recycling materials (blast furnace dust and miscellaneous ore or other by-products). Fluxes included
limestone, dolomite, and active lime. Fuel was the coke fine. The binary basicity (wt(CaO)/wt(SiO₂)) and coke fine content were fixed at 1.90 and 3.63 wt.%, respectively. Industrial solid urea (containing 46.7 wt.% nitrogen) was used as an inhibitor in the experiments, and its average particle size was 1–2 mm. The solid urea particle was directly added into the mixing process at the rates of 0.020, 0.035 and 0.050 wt.% of the total sintering mixtures.

Methods

Sintering Pot Tests

The sintering pot tests were carried out to simulate a commercial sintering process. Sintering pot process included proportioning, mixing, granulation, charging, ignition, sintering, cooling and PCDD/Fs detection, as shown in Fig. 2. During the mixing, the solid urea was injected into the sintering mixtures according to the set mass proportion and mixed evenly. Next, the mixtures were granulated to large particles with the addition of water. After the granulation process completed, 3 kg sinter pot mixtures with the diameter of 10–16 mm were added into the bottom of the sintering pot as hearth layer, then and approximately 98 kg sintering mixtures with the moisture of 6.8 ± 0.2% were charged into a sintering pot with the height of 720 mm and the diameter of 300 mm. After charging, the mixtures in the sintering pot were ignited by a liquefied gas burner for 2 min with draft fan negative pressure of 7 kPa at the temperature of 1100 ± 50°C. Simultaneously, PCDD/Fs testing devices were conducted. The igniter was moved away after ignition completing, the negative pressure of thedraft fan was raised to 14 kPa and the temperature of the flue gas at the bottom of the grate was measured during the sintering and maintained till the end of the sintering process. When the temperature of the flue gas reached its maximum value, PCDD/Fs testing devices were closed and the sintering pot test ended (Jiang et al., 2015; Cheng et al., 2017). Compared with the commercial sintering process, the sintering pot test was a discontinuous process and one sintering time was about 30 min. The collection time of PCDD/Fs for one sample was 1 h. Therefore, to ensure reproducibility, four identical sintering pot tests were done for each group of samples and the sampling of PCDD/Fs lasts for 2 h (1 h for one sample).

Mechanism for Sampling

In this experiment, PCDD/Fs sampling device for flue gas in the iron ore sintering process adopted the instrument recommended in HJ 77.2–2008 and the specific method for taking samples from the sintering process refers to the previous research (Qian et al., 2016). The sampling and analysis of PCDD/Fs samples were completed by the Centre Testing International Group Co., Ltd. (CTI). The CTI was a laboratory accredited by the China National Accreditation Service for Conformity Assessment (CNAS) and has the China Metrology Accreditation (CMA) qualification. The sampling device mainly included a sampling tube, gas adsorption unit, filter membranes, condensing device, flow measurement, control device, etc. The specific introduction could refer to our previous study (Long et al., 2011).

Using adsorption materials and filter membranes to collect the PCDD/Fs, including gas-, solid- and liquid-phase samples. In addition, four sampling internal standard substances (13C-123478-HxCDD, 13C-23478-PeCDF, 13C-123478-HxCDF, and 13C-1234789-HpCDF) were added before sampling and the recovery rate of the internal standard substances was required to be 70–130%, otherwise, the sample needed to be resampled.

Analysis Method

The collected PCDD/Fs were transported to the dioxin test laboratory under dark for analysis after each sintering pot test. Before sample extraction, several purified internal standard substances, like 13C-2378-TCDF, 13C-12378-PCDF, etc., were added into the sample. The mean recoveries of internal standard substances were required to be 40–130%. For each collected sample, first of all, it was pre-treated with toluene extraction, concentrated to 3 mL by using a rotary evaporator (Eyela, Tokyo, Japan) and then purified with a multilayer silica gel, which was composed of acid, alkali, and neutral silica gel. Finally, the purified extract was condensed to 20 µL by a nitrogen blower, and then further condensed to near-dryness with using a nitrogen stream, readied for analysis. PCDD/F detection congeners adopted isotope dilution high-resolution gas chromatography/high-resolution mass spectrometry, using a 6890 Series Gas Chromatograph (Hewlett-Packard, USA), coupled to an

Table 1. Chemical compositions and the mass ratio of all raw materials (mass fraction, %).

Raw material	TFe*	SiO₂	CaO	MgO	Al₂O₃	P₂O₅	C	Mass ratio
Pilbara blend ore	62.10	3.45	0.08	0.10	2.33	0.23	–	13.04
Yankee ore	58.84	4.64	0.09	0.12	1.58	0.11	–	14.30
SFHT ore	59.74	11.06	0.09	0.17	1.20	0.11	–	3.15
Cara ore	66.27	2.05	0.11	0.12	1.41	0.09	–	15.56
Meishan concentrate	56.10	4.84	3.48	1.21	0.95	0.27	–	9.68
Return fines	56.80	5.30	10.12	1.77	1.80	0.18	–	27.81
Blast furnace dust	38.48	7.46	2.74	1.34	2.98	0.14	30.63	1.61
Mixed ore	47.65	4.22	13.22	2.47	1.16	0.48	11.78	3.19
Dolomite	0.35	3.37	30.80	19.60	0.68	0.23	–	3.84
Limestone	2.91	3.10	53.10	0.30	0.64	0.02	–	0.96
Lime	0.51	3.76	82.00	0.84	1.81	0.02	–	3.23
Coke fines	1.07	5.49	0.78	0.15	4.10	0.07	88.20	3.63

*The total Fe in the raw material; C is the fixed carbon.

References

1. Qian et al., Aerosol and Air Quality Research, 20: 2568–2579, 2020
2. Wang et al., Aerosol and Air Quality Research, 20: 2570–2579, 2020
3. Cheng et al., Aerosol and Air Quality Research, 20: 2579, 2020
4. Long et al., Aerosol and Air Quality Research, 20: 2580–2582, 2020
5. Jia et al., Aerosol and Air Quality Research, 20: 2588–2590, 2020
6. Li et al., Aerosol and Air Quality Research, 20: 2591–2593, 2020
AutoSpec Premier (Waters, USA). Besides, a DB-5 quartz capillary column was used to carry out the chromatographic separations. Injections were done using the splitless mode with a column oven temperature program. The temperature could be adjusted between 50–350°C. The initial temperature was 150°C (kept 3 min), 20°C min⁻¹ to 230°C (kept 18 min), 5°C min⁻¹ to 235°C (kept 10 min), then 4°C min⁻¹ to 330°C (kept 3 min). The carrier gas was the helium (99.999% purity) (Xhrouet et al., 2001; Kuo et al., 2012; Wu et al., 2016). The I-TEQ values were calculated using I-TEF_{WHO:05} (Van den Berg et al., 2006).

Statistical Methods

The emission concentration of PCDD/Fs calculated in this paper was the arithmetic mean value of two parallel samples for each group of samples.

The removal rate (δ) of PCDD/Fs was calculated through Eq. (1):

\[
\delta = \frac{C_1 - C_2}{C_1} \times 100\%
\]

where C1 is the PCDD/Fs concentration without urea (ng I-TEQ Nm⁻³); C2 is the PCDD/Fs concentration with urea (ng I-TEQ Nm⁻³).

The chlorination degree of PCDD/Fs (q_c, average I-TEQ number of chlorine atom) was calculated according to Eq. (2):

\[
q_c = \sum \frac{w_i \times n_i}{C_1}
\]

where w_i is the I-TEQ weight percentage of PCDDs and PCDFs; n_i is the number of the chlorine atom.

RESULTS AND DISCUSSION

Concentrations of PCDD/Fs

For all experiment samples, the recovery rates of sampling internal standard substances were 87.1–102.4% (non-urea), 96.7–106.0% (0.02% urea), 96.3–105.0% (0.035% urea), 76.8–88.5% (0.05% urea) within 70–130%. The internal standard substance recovery rates of all samples after purification were in the range of 40–130%. The results of the analysis showed that the samples were not significantly contaminated.

The effect of urea addition on PCDD/Fs emission concentration and the detection results of 17 targeted PCDD/Fs congeners were analyzed according to the accumulation of international toxic equivalency factors (I-TEFs), as listed in Table 2. The I-TEQ value without urea was 0.5 ng I-TEQ Nm⁻³. After 0.020, 0.035 and 0.050 wt.% urea added into the sintering mixtures, the emission of I-TEQ values reduced to 0.20, 0.12 and 0.20 ng I-TEQ Nm⁻³ respectively, and the reduction efficiencies were 60.0, 76.0 and 60.0%, separately, which was similar to the results of previous studies (Anderson et al., 2007; Ooi et al., 2008a). The results showed that urea has an obvious inhibitory effect on the emission of PCDD/Fs, which further proves that the addition of urea in mixtures can reduce the FCDD/Fs emission during the iron ore sintering.

Different Inhibition of PCDFs and PCDDs

The emission I-TEQ values of PCDFs and PCDDs were presented in Fig. 3(a). In the case of non-urea, the value of PCDFs and PCDDs were 0.380 and 0.120 ng I-TEQ Nm⁻³, the ratio of PCDFs/PCDDs was 3.15, which was a typical emission distribution of PCDF/Fs during the iron ore sintering process (Xhrouet and Pauw, 2005). Previous studies showed that the formation of PCDFs congeners was dominated by de novo synthesis (Huang and Buekens, 1995; Chen et al., 2019) and most PCDDs were synthesized through the precursor pathway (Weber and Hagenmaier, 1999). Therefore, the de novo synthesis was the primary formation route of PCDFs/PCDDs during the iron ore sintering process.

With addition of 0.020, 0.035 and 0.050 wt.% urea into the iron ore sinter mixtures, the emission of I-TEQ values were 0.167, 0.098, 0.131 ng I-TEQ Nm⁻³ for PCDFs and 0.037, 0.027, 0.067 ng I-TEQ Nm⁻³ for PCDDs, separately. The PCDFs/PCDDs-ratios became 4.45, 3.68 and 1.95, respectively. Fig. 3(b) presented the inhibition efficiency of PCDFs and PCDDs calculated in different experiments. As illustrated in this figure, the reduction ratios of PCDFs (PCDDs) increased from 56.2% to 74.3% (from 68.9% to 78.0%) with augmenting urea ratio from 0.020% to 0.035%.

The inhibition effect of PCDDs was more obvious than that
Table 2. Analyzing results of PCDD/Fs (ng I-TEQ Nm⁻³).

Classification	Congener	Non-urea	0.02% urea	0.035% urea	0.05% urea
PCDFs	2378-TeCDF	0.0034	0.009	0.006	0.0064
	12378-PeCDF	0.0055	0.006	0.004	0.0045
	23478-PeCDF	0.17	0.085	0.06	0.07
	123478-HxCDF	0.039	0.018	0.0097	0.011
	123678-HxCDF	0.049	0.022	0.011	0.013
	234678-HxCDF	0.068	0.017	0.012	0.016
	123789-HxCDF	0.023	0.003	0.0026	0.0045
	1234789-HxCDF	0.019	0.0059	0.0032	0.0043
	OCDF	0.0025	0.0006	0.00051	0.00065
PCDDs	2378-TeCDD	0.014	0.02	0.005	0.02
	12378-PeCDD	0.045	0.01	0.005	0.02
	123478-HxCDD	0.014	0.0015	0.0009	0.0042
	123678-HxCDD	0.021	0.002	0.0005	0.01
	123789-HxCDD	0.013	0.0015	0.0016	0.0066
	OCDD	0.012	0.0021	0.00088	0.0054
	Total PCDD/Fs (PCDDs + PCDFs)	0.0016	0.00036	0.00016	0.00079
I-TEQ inhibition	0%	60.0%	76.0%	60.0%	
q_c-PCDFs		5.58	5.39	5.35	5.37
q_c-PCDDs		5.52	4.72	4.5	5.21

*International toxic equivalent, which is calculated by multiplying the measured value of the concentration of each PCDD/Fs congener by the international toxic equivalency factor (I-TEF) and then adding them up.

Fig. 3. Emission value and suppression efficiency of PCDD/Fs: (a) emission of I-TEQ values of PCDDs and PCDFs; (b) suppression efficiency of PCDDs and PCDFs.

Different Inhibition Behavior of PCDD/Fs Congeners

Distribution of PCDD/Fs Congeners

The PCDFs congeners emission concentration and their homologous profiles of 2,3,7,8-substituted PCDFs were showed in Fig. 4. As shown in the figure, the emission concentration of PeCDFs and HxCDFs occupied the dominant position of PCDFs emission in all samples. Compared with the non-urea test, the emission I-TEQ values of HxCDFs reduced from 0.179 ng I-TEQ Nm⁻³ to 0.060, 0.035 and 0.045 ng I-TEQ Nm⁻³ with adding 0.02, 0.035 and 0.05% urea. The corresponding distribution proportions dropped from 47.1% to 36.0, 36.1 and 34.1%. The HpCDFs and OCDF emission concentrations and distribution ratios of PCDFs. However, when the addition ratio of urea increased to 0.050%, the reduction efficiency of PCDFs (PCDDs) reduced to 65.7% (44.5%), and the inhibition effect of PCDFs was more obvious than that of PCDDs. This phenomenon can be explained by two reasons: (i) When the proportion of urea added is low (0.020 and 0.035%), urea preferentially inhibits PCDD/Fs formation of dioxins precursors, like chlorobenzenes, chlorophenols, etc., and (ii) with the increase in the addition amount of urea (0.050%), more urea molecules and their decomposition products can inhibit the activity of the catalyst that catalyzes the formation of PCDD/Fs and reduce the number of Cl ions, thereby inhibiting the de novo synthesis of PCDD/Fs (Ruokojärvi et al., 2004).
were also significantly decreased. For PeCDFs, the emission I-TEQ values also reduced from 0.176 ng I-TEQ Nm$^{-3}$ (in non-urea test) to 0.091, 0.054 and 0.075 ng I-TEQ Nm$^{-3}$, while their distribution ratios have increased. Nevertheless, the emission I-TEQ values of low-chlorinated TeCDF increased from 0.003 ng I-TEQ Nm$^{-3}$ (in non-urea test) to 0.009, 0.006 and 0.006 ng I-TEQ Nm$^{-3}$ respectively, and the distribution ratios also augmented from 0.89% to 5.4, 6.1 and 4.9%. These results were similar to the previous study on inhibition congeners of PCDD/Fs from fly ash by the addition of urea (Yan et al., 2013).

The effectual trend of urea on the emission concentrations and the congener profiles of 2,3,7,8-substituted PCDDs were the same as that of PCDFs, as shown in Fig. 5. The PeCDD and HxCDDs were the dominant congeners and the emissions of I-TEQ values were 0.045 and 0.048 ng I-TEQ Nm$^{-3}$ in the non-urea test. The emission of I-TEQ values and distribution proportions of PeCDD, HxCDDs, HpCDD, and OCDD were significantly decreased after adding urea. Among them, the percentages of PeCDD reduced from 37.3% to 26.7, 18.8 and 29.9% and HxCDDs declined from 39.8% to 13.3, 9.4 and 31.0%. However, emission concentration and distribution proportions of low-chlorinated TeCDD have increased. The I-TEQ values increased from 0.014 ng I-TEQ Nm$^{-3}$ (in the non-urea test) to 0.020, 0.018 and 0.020 ng I-TEQ Nm$^{-3}$, respectively, and their distribution proportions augmented from 11.6% to 53.4, 67.8 and 29.9%. The distribution proportions occupied the dominant position of PCDDs.

Differences in Inhibition of PCDD/Fs Congeners

The inhibitory efficiencies of urea on PCDDs and PCDFs congeners were compared in Figs. 6(a) and 6(c), in which the inhibitory efficiencies on the low-chlorinated TeCDF and TeCDD were negative, while, in contrast, the inhibitory efficiencies for other congeners were above 50%. This phenomenon can be inferred that the urea or its decomposition products promoted the dechlorination reaction of high-chlorinated PCDFs or PCDDs, which resulted in the formation of TeCDF and PeCDFs so that the distribution proportions were significantly increased. Moreover, compared with the
non-urea test, the average I-TEQ number of chlorine substituents of PCDFs and PCDDs decreased after the addition of urea, indicating that the chlorination process of PCDD/Fs was inhibited by urea, as shown in Figs. 6(b) and 6(d). To conclude, the dechlorination reaction might be a possible reason for the decrease in the average I-TEQ number of chlorine substituents.

Inhibition Mechanisms

Reduction Emission Mechanism of PCDD/Fs

The inhibition mechanisms of urea have investigated in our previous reports (Long et al., 2011; Qian et al., 2018). The mechanisms can be summed up into three aspects: (1) The passivation of Cu⁺, (2) the decrease of Cl₂ amount, and (3) active radicals impede the formation of PCDD/Fs or attack the molecular bonds of PCDD/Fs. For the first mechanism, it is identified that the urea reacted with Cu⁺ to generate some stable complexes, such as [urea-Cu⁺] or [(urea)₂-Cu⁺], thereby weakening the activity of metal catalysis (Luna et al., 2000). For the second mechanism, the NH₃ formed by urea can react with Cl₂ through Reaction (1) (Long et al., 2011). The NH₃ can also react with HCl through Reaction (2). The decrease of HCl concentration is beneficial to suppress the Deacon reaction (Eq. (3)) (Chen et al., 2019), thereby inhibiting the generation of Cl₂. A decrease in the amount of Cl₂ will significantly affect the de novo synthesis.

Urea can be decomposed at 135°C through Reactions (4)–(7) and the effective decomposition reaches 100% at 600°C (Guerrero et al., 2009; Okamoto, 1999). Reactions (4)–(6) shows that the active radicals, including N-containing active group (NH₂⁻) and hydrogen radical (H·), are formed during the urea pyrolysis process (Chen and Isa, 1998; Koebel and Strutz, 2003). Therefore, the third mechanism is that the active edge sites on the surface of the fly ash can be replaced by the N-containing active group (NH₂⁻), which prevents the generation of PCDD/Fs, as shown in Fig. 7. Meanwhile, the C-O bond on the PCDD/Fs molecules can be attacked by hydrogen radical (H·), then the C-O bond is broken to form polychlorinated biphenyl or Polystream (Okamoto, 1999), as shown in Fig. 8.

R1: 8NH₃ + 3Cl₂ → 6NH₄Cl + N₂
R2: NH₃ + HCl → NH₄Cl
Fig. 7. Schematic diagram of active group (NH$_2^-$) inhibited the formation of PCDD/Fs.

Fig. 8. Schematic diagram of the hydrogen radical (H·) attacked C-O bond on PCDD/Fs molecular.

4HCl + O$_2$ → 2Cl$_2$ + H$_2$O
CO(NH$_2$)$_2$ → (NH$_2^-$) + (H·) + HNCO
H$_3$NCO → (H·) + HNCO·
HNCO → (H·) + NCO·
(NH$_2^-$) + (H·) → HN$_3$

In addition, the remaining NH$_3$ can be enriched in the over-wet layer and react with SO$_2$ through Reactions (8–9). In this work, after adding urea, the desulfurization efficiencies were 56.3 (0.02% urea), 58.0 (0.035% urea) and 56.4% (0.05% urea), respectively.

2NH$_3$ + H$_2$O + SO$_2$ + 1/2O$_2$ = (NH$_2$)$_2$SO$_4$
NH$_3$ + H$_2$O(g) + SO$_2$ + 1/2O$_2$ = NH$_3$HSO$_4$

Mechanism of Dechlorination Reaction

The hydrogen radical generated directly in the pyrolysis process of urea has a strong activity, H· can attack the C-Cl bond in the polychlorinated biphenyl molecules to promote the hydrodechlorination reaction (Fuens et al., 2002; Altarawneh et al., 2009). The molecular structures of PCDD/Fs include C=C bond, C-C bond, C-H bond, C-Cl bond and C-O bond, and their bond energies are showed in Fig. 9. Among them, the energy of the C=C bond is the highest (611 kJ mol$^{-1}$), while the C-Cl bond is the lowest (326 kJ mol$^{-1}$) (Qian et al., 2004; Altarawneh et al., 2009). Therefore, when the PCDD/Fs molecules are attacked by H·, C-Cl bonds will be easier to break than other bonds.

Studies indicated that there are many chlorine atoms in the benzene ring of high-chlorinated PCDD/Fs, causing the increase of steric hindrance and weakening the interaction between C and Cl atoms so that the C-Cl bond is vulnerable by the hydrogen radical (Zhang et al., 2004; Yang et al., 2006). In addition, a previous study (Lu et al., 2010) suggested that the chlorine atoms in the longitudinal (1,4,6,9) positions are preferentially removed than the chlorine atoms on lateral (2,3,7,8) positions. However, the Cl atoms of low-chlorinated PCDD/Fs are mainly distributed in lateral positions among the 17 congeners of PCDD/Fs, so it is difficult for low-chlorinated PCDD/Fs to dechlorinate the Cl atoms. In comparison, the chlorine atom numbers of high-chlorinated
Fig. 9. The dissociated energy of the chemical bond of PCDD/Fs.

PCDD/Fs are more significant than that of low-chlorinated PCDD/Fs in longitudinal positions. Therefore, the longitudinal chlorine atoms of high-chlorinated PCDD/Fs are easy to remove by the hydrodechlorination reaction under the attack of hydrogen radical. Then the high-chlorinated PCDD/Fs was continuously converted to low-chlorinated PCDD/Fs after gradual dechlorination. The above demonstrated why urea had a more obvious inhibitory efficiency on high-chlorinated than that of low-chlorinated and the concentrations of TeCDD and TeCDF were increased after the addition of urea into the iron ore sintering mixture. Taking the high-chlorinated OCDD and OCDF as examples, a dechlorination reaction occurred when the hydrogen radical attacks Cl atom of PCDD/Fs, as shown in Fig. 10. Therefore, based on the results that the addition of urea reduced the average I-TEQ number of chlorine substituents, it was suggested that the hydrodechlorination reaction might be the main mechanism for the increase of low-chlorinated PCDD/Fs.

CONCLUSIONS

In this study, urea was selected as an inhibitor to reduce the emission of PCDD/Fs during iron ore sintering. The I-TEQ values for the PCDD/Fs were evaluated, and the inhibition mechanisms were identified. The following conclusions were drawn:

1. After adding 0.02–0.05 wt.% urea particles into the iron ore sintering mixture, the I-TEQ values for the total PCDD/Fs were reduced by 60.0–76.0%, and the average I-TEQ value for the chlorine substituents decreased, indicating that urea inhibits the chlorination of PCDD/Fs.

2. The mechanisms driving the reduction in PCDD/F emission can be divided into three categories: (i) the poisoning of Cu⁺; (ii) the decrease in Cl₂ and (iii) the effect of active radicals, which impedes the formation or weakens the molecular bonds of PCDD/Fs.

3. With the incorporation of urea, the I-TEQ values for the emitted high-chlorinated PCDD/Fs decreased sharply, whereas those for the low-chlorinated ones rose, suggesting that the hydrodechlorination reaction may be the primary mechanism driving the increase in low-chlorinated PCDD/Fs.

ACKNOWLEDGMENTS

This work was supported by the Key Program of National Natural Science Foundation of China (U1660206 and 51674002). One of the authors (L.X. Qian) also acknowledges the scholarship offered by the China Scholarship Council (CSC) via the Joint-Training Ph.D. Program (Grant No. 201908340086).
REFERENCES
Abreu, G.C., de Carvalho, Jr., J.A., de Silva, B.E.C. and Pedrini, R.H. (2015). Operational and environmental assessment on the use of charcoal in iron ore sinter production. J. Cleaner Prod. 101: 387–394. https://doi.org/10.1016/j.jclepro.2015.04.015
Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M. and Mackie, J.C. (2009). Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. 35: 245–274. https://doi.org/10.1016/j.pecs.2008.12.001
Anderson, D.R., Fisher, R., Johnston, S., Aries, E., Fray, T.A. and Ooi, T.C. (2007). Investigation into the effect of organic nitrogen compounds on the suppression of PCDD/Fs in iron ore sintering. Organohalogen Compd. 69: 2470–2473.
Chen, J.P. and Isa, K. (1998). Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J. Mass Spectrom. Soc. Jpn. 46: 299–303. https://doi.org/10.5702/massspec.46.299
Chen, S.D., Cui, K.P., Zhao, Y.X., Yin, Z.M., Chao, H.R. and Chang-Chien, G.P. (2018). Sensitivity analysis of atmospheric PM$_{2.5}$-bound content and dry deposition of total PCDD/Fs-TEQ: In the case of Xiamen and Zhangzhou, China. Aerosol Air Qual. Res. 18: 3096–3114. https://doi.org/10.4209/aaqrr.2018.11.0393
Chen, Y.C., Kuo, Y.C., Chen, M.R., Wang, Y.F., Chen, C.H., Lin, M.Y., Yoon, C. and Tsai, P.J. (2016). Reducing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) emissions from a real-scale iron ore sinter plant by adjusting its sinter raw mix. J. Cleaner Prod. 112: 1184–1189. https://doi.org/10.1016/j.jclepro.2015.07.013
Chen, Z.L., Lin, X.Q., Lu, S.Y., Li, X.D. and Yan, J.H. (2019). Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators. Chem. Eng. J. 359: 1391–1399. https://doi.org/10.1016/j.cej.2018.11.039
Cheng, Z.L., Wei, S.S., Guo, Z.G., Yang, J. and Wang, Q.W. (2017). Improvement of heat pattern and sinter strength at high charcoal proportion by applying ultra-lean gaseous fuel injection in iron ore sintering process. J. Cleaner Prod. 161: 1374–1384. https://doi.org/10.1016/j.jclepro.2017.07.017
Chun, T.J., Long, H.M., Di, Z.X., Zhang, X.Y., Wu, X.J. and Qian, L. (2017). Novel technology of reducing SO$_2$ emission in the iron ore sintering. Process Saf. Environ. Prot. 105: 297–302. https://doi.org/10.1016/j.psep.2016.11.012
Drage, D.S., Aries, E. and Harrad, S. (2014). Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process. Sci. Total Environ. 485-486: 497–507. https://doi.org/10.1016/j.scitotenv.2014.03.093
Dvořák, R., Chlápek, P., Jecha, D., Puchýř, R. and Stelhlik, P. (2010). New approach to common removal of dioxins and NO, as a contribution to environmental protection. J. Cleaner Prod. 18: 881–888. https://doi.org/10.1016/j.jclepro.2010.01.024
Fueno, H., Tanaka, K. and Sugawa, S. (2002). Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin. Chemosphere 48: 771–778. https://doi.org/10.1016/s0045-6535(02)00141-8
Guerriero, E., Bianchini, M., Gigliucci, P.F., Guarnieri, A., Mosca, S., Rossetti, G., Varde, M. and Rotatori, M. (2009). Influence of process changes on PCDD/Fs produced in an iron ore sintering plant. Environ. Eng. Sci. 26: 71–80. https://doi.org/10.1089/ees.2007.0053
Harjanto, S., Kasai, E., Terui, T. and Nakamura, T. (2002). Behavior of dioxin during thermal remediation in the zone combustion process. Chemosphere 47: 687–693. https://doi.org/10.1016/s0045-6535(02)00012-7
Huang, H. and Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. Chemosphere 31: 4099–4117. https://doi.org/10.1016/0045-6535(95)80119-9
Ji, Y.Z., Gan, M., Fan, X. H., Chen, X.L., Li, Q., Lv, W., Tian, Y., Zhou, Y. and Jiang, T. (2017). Characteristics of PM$_{2.5}$ from iron ore sintering process: Influences of raw materials and controlling methods. J. Cleaner Prod. 148: 12–22. https://doi.org/10.1016/j.jclepro.2017.01.103
Jiang, T., Yu, Z.W., Peng, Z.W., Rao, M.J., Zhang, Y.B. and Li, G.H. (2015). Preparation of BF burden from titanomagnetite concentrate by composite agglomeration process (CAP). ISIJ Int. 55: 1599–1607. https://doi.org/10.2355/isijinternational.ISIJINT-2015-094
Kasai, E., Kuzuhara, S., Goto, H. and Murakami, T. (2008). Reduction in dioxin emission by the addition of urea as an aqueous solution to high-temperature combustion gas. ISIJ Int. 48: 1305–1310. https://doi.org/10.2355/isijinternational.48.1305
Koebel, M. and Strutz, E.O. (2003). Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects. Ind. Eng. Chem. Res. 42: 2093–2100. https://doi.org/10.1021/ie0209500
Kumar, T.K.S., Simonsson, M., Viswanathan, N.N., Ahmed, H., Andersson, C., El Geassy, A.H.A. and Bjorkman, B. (2018). Establishing a novel methodology to correlate the macroscopic and microscopic degree of sintering in magnetite pellets during induration. Steel Res. Int. 89: 1700366. https://doi.org/10.1002/srin.201700366
Kuo, Y.C., Chen, Y.C., Yang, C.W., Mou, J.L., Shih, T.S. and Tsai, P.J. (2011). Identification the content of the windbox dust related to the formation of PCDD/Fs during the iron ore sintering process. Aerosol Air Qual. Res. 11: 351–359. https://doi.org/10.4209/aaqrr.2011.03.0024
Kuo, Y.C., Chen, Y.C., Yang, J.H., Tsai, P.J., Wang, L.C. and Chang-Chien, G.P. (2012). Correcting the gas and particle partitioning of PCDD/F congeners in the flue gas of an iron ore sinter plant. J. Hazard. Mater. 209–210: 402–407. https://doi.org/10.1016/j.jhazmat.2012.01.045
Li, J.F., Zhang, Y., Sun, T.T., Hao, H.W., Wu, H., Wang, L.L., Chen, Y.X., Xing, L.M. and Niu, Z.G. (2018). The health risk levels of different age groups of residents living in the vicinity of municipal solid waste incinerator posed by PCDD/Fs in atmosphere and soil. Sci. Total Environ. 631–632: 81–91. https://doi.org/10.1016/j.scitotenv.2018.03.009
Liao, J.H., Buekens, A., Olie, K., Yang, J., Chen, T. and Li, X.D. (2016). Iron and copper catalysis of PCDD/F formation. Environ. Sci. Pollut. Res. 23: 2415–2425. https://doi.org/10.1007/s11356-015-5437-z

Liu, X.L., Ye, M., Wang, X., Liu, W. and Zhu, T.Y. (2017). Gas-phase and particle-phase PCDD/F congener distributions in the flue gas from an iron ore sintering plant. J. Environ. Sci.-China 54: 239–245. https://doi.org/10.1016/j.jes.2016.01.023

Long, H.M., Li, J.X., Wang, P., Gao, G. and Tang, G.W. (2011). Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor. Ironmaking Steelmaking 38: 258–262. https://doi.org/10.1179/1743281121Y.0000000008

Lu, G.N., Dang, Z., Fennell, D.E., Huang, W., Li, Z. and Liu, C.Q. (2010). Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems. J. Hazard. Mater. 177: 1145–1149. https://doi.org/10.1016/j.jhazmat.2009.12.051

Luna, A., Amekraz, B., Morizur, J.P., Tortajada, J., Mó, O. and Yanez, M. (2000). Reactions of urea with Cu in the gas phase: An experimental and theoretical study. J. Phys. Chem. A 104: 3132–3141. https://doi.org/10.1021/jp993634

Ma, H.T., Du, N., Lin, X.Y., Li, C.F., Zhang, J.Y. and Miao, Z.Z. (2018). Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste. Sci. Total Environ. 633: 1263–1271. https://doi.org/10.1016/j.scitotenv.2018.03.282

Ma, Y.F., Lin, X.Q., Chen, Z.L., Chen, T., Zhan, M.X., Xu, S.X., Wu, H.L., Li, X.D. and Yan, J.H. (2019). Emission characteristics and formation pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans from a typical pesticide plant. Aerosol Air Qual. Res. 19: 1390–1399. https://doi.org/10.4209/aaq.2019.04.0224

Nakano, M., Hosotani, Y. and Kasai, E. (2005). Observation of behavior of dioxins and some relating elements in iron ore sintering bed by quenching pot test. ISIJ Int. 45: 609–617. https://doi.org/10.2355/isijinternational.45.609

Okamoto, Y. (1999). A new dioxin decomposition process based on a hybrid density-functional calculation. Chem. Phys. Lett. 310: 355–360. https://doi.org/10.1016/S0009-2614(99)00761-7

Ooi, T.C., Aries, E., Anderson, D.R., Fray, R. and Thompson, D. (2008a). Melamine as suppressant of PCDD/F formation in the sintering process. Organohalogen Compd. 70: 58–61.

Ooi, T.C., Aries, E., Ewan, B.C.R., Thompson, D., Anderson, D.R., Fisher, R., Fray, T. and Tognarelli, D. (2008b). The study of sunflower seed husks as a fuel in the iron ore sintering process. Miner. Eng. 21: 167–177. https://doi.org/10.1016/j.mineng.2007.09.005

Peng, Y.Q., Chen, J.H., Lu, S.Y., Huang, J.X., Zhang, M.M., Buekens, A., Li, X.D. and Yan, J.H. (2016). Chlorophenols in municipal solid waste incineration: A review. Chem. Eng. J. 292: 398–414. https://doi.org/10.1016/j.cej.2016.01.102

Qian, L.X., Long, H.M., Wu, X.J., Chun, T.J. and Wang, Y.F. (2016). Detection of dioxin emitted during the iron ore sintering process. Environ. Pollut. Control 38: 34–38.

Qian, L.X., Chun, T.J., Long, H.M., Li, J.X., Di, Z.X., Meng, Q.M. and Wang, P. (2018). Emission reduction research and development of PCDD/Fs in the iron sintering. Process Saf. Environ. Prot. 117: 82–91. https://doi.org/10.1016/j.pspes.2018.04.014

Qian, Y.J., Wu, Z.S. and Li, F.J. (2004). Dioxins formation conditions and control measures in garbage incineration. China Environ. Prot. Ind. S1: 80–83.

Rezvani-pour, H., Mostafavi, A., Ahmadi, A., Karimimobarakabadi, M. and Khezri, M. (2018). Desulfurization of iron ores: Processes and challenges. Steel Res. Int. 89: 1700568. https://doi.org/10.1002/srin.201700568

Ruokojärvi, P., Aatamila, M., Tuppurainen, K. and Ruuskanen, J. (2001). Effect of urea on fly ash PCDD/F concentrations in different particle sizes. Chemosphere 43: 757–762. https://doi.org/10.1016/S0045-6535(00)00430-6

Ruokojärvi, P.H., Asikainen, A.H., Tuppurainen, K.A. and Ruuskanen, J. (2004). Chemical inhibition of PCDD/F formation in incineration processes. Sci. Total Environ. 325: 83–94. https://doi.org/10.1016/j.scitotenv.2003.11.006

Shen, X., Chen, L.G., Xia, S.J., Xie, Z.H. and Qin, X.Y. (2018). Burdening proportion and new energy-saving technologies analysis and optimization for iron and steel production system. J. Cleaner Prod. 172: 2153–2166. https://doi.org/10.1016/j.jclepro.2017.11.204

Southern, S., Edmundson, J. and Hakimian, M. (2000). Environmental improvement from the sintering process. Proceedings 4th European Coke and Ironmaking Congress, pp. 380–386.

Tang, H.Y., Cui, K.P., Xing, J., Zhu, J.N., Lee, W.J., Mwangi, J.K. and Lee, Y.C. (2017). Part I: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of southern China. Aerosol Air Qual. Res. 17: 1550–1569. https://doi.org/10.4209/aaqr.2017.03.0117

Thompson, D., Ooi, T.C., Anderson, D.R., Fisher, R. and Bcr, E. (2016). The polychlorinated dibenzofuran fingerprint of iron ore sinter plant: Its persistence with suppressant and alternative fuel addition. Chemosphere 154: 138–147. https://doi.org/10.1016/j.chemosphere.2016.03.066

Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A. and Haws, L. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93: 223–241. https://doi.org/10.1093/toxsci/kfl055

Weber, R. and Hagenmaier, H. (1999). PCDD/PCDF formation in fluidized bed incineration. Chemosphere 38: 2643–2654. https://doi.org/10.1016/S0045-6535(98)00490-X

Wu, X.J., Long, H.M. and Chun, T.J. (2016). Emission reduction of PCDD/Fs in iron ore sintering process by adding urea. Environ. Pollut. Control 38: 61–66.

Xhrouet, C. and Pauw, E.D. (2005). Formation of PCDD/Fs in the sintering process: Role of the grid-Cr2O3 catalyst in
the de novo synthesis. Chemosphere 59: 1399–1406. https://doi.org/10.1016/j.chemosphere.2004.12.027

Xhouet, C., Pirard, C. and De, P.E. (2001). De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a sintering process. Environ. Sci. Technol. 35: 1616–1623. https://doi.org/10.1021/es000199f

Xing, J., Cui, K.P., Tang, H.Y., Lee, W.J., Wang, L.C., Zhu, J.N. and Huang, Q.L. (2017). Part II: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of northern China. Aerosol Air Qual. Res. 17: 2010–2026. https://doi.org/10.4209/aaqr.2017.06.0211

Xu, P.W., Chen, Z.J., Wu, L.Z., Chen, Y., Xu, D.D., Shen, H.T., Han, J.L., Wang, X.F. and Lou, X.M. (2019). Health risk of childhood exposure to PCDD/Fs emitted from a municipal waste incinerator in Zhejiang, China. Sci. Total Environ. 689: 937–944. https://doi.org/10.1016/j.scitotenv.2019.06.425

Xuan, Z.Q., Bi, C.L., Li, J.F., Nie, J.H. and Chen, Z.H. (2017). Source contributions to total concentrations and carcinogenic potencies of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air: A case study in Suzhou City, China. Environ. Sci. Pollut. Res. 24: 23966–23976. https://doi.org/10.1007/s11356-017-0505-y

Yabar, H., Uwasu, M. and Hara, K. (2013). Tracking environmental innovations and policy regulations in Japan: Case studies on dioxin emissions and electric home appliances recycling. J. Cleaner Prod. 44: 152–158. https://doi.org/10.1016/j.jclepro.2012.10.045

Yan, M., Yang, J., Li, X.D., Hu, Y.J. and Yan, J.H. (2013). Inhibition of PCDD/Fs formation from fly ash by ammonium sulfate and urea. CIESC J. 64: 4196–4202.

Yan, M., Qi, Z.F., Yang, J., Li, X.D., Ren, J.L. and Xu, Z. (2014). Effect of ammonium sulfate and urea on PCDD/F formation from active carbon and possible mechanism of inhibition. J. Environ. Sci.-China 26: 2277–2282. https://doi.org/10.1016/j.jes.2014.09.012

Received for review, February 3, 2020
Revised, May 13, 2020
Accepted, May 15, 2020