Geochemistry of organic carbon in surface sediments of a summer hypoxic region in the coastal waters of northern Shandong Peninsula

Bo Yanga,b, Xuelu Gaoa,b,⁎, Qianguo Xinga

a CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
b University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Keywords:
Sediment analysis
Sedimentary organic matter
Stable carbon and nitrogen isotopes
Coastal environment
Spatiotemporal distribution
Shelf sea

ABSTRACT

The geochemistry of sedimentary organic matter (SOM) in coastal areas is complex due to its multiple sources and intricate hydrological features. In this study, the biogenic element concentrations and stable carbon (δ^{13}C) and nitrogen (δ^{15}N) isotopic compositions in the coastal surface sediments of northern Shandong Peninsula, along with some parameters related to water quality, were analyzed to investigate the temporal-spatial variations in SOM and the processes that control its distribution. The results revealed that marine autogenous organic matter is a major contributor to SOM, accounting for 75.4 ± 3.3%, 60.8 ± 6.6% and 67.4 ± 10.3% in August and November 2015 and March 2016, respectively. In summer, TOC and TN concentrations were significantly higher than those in autumn and spring. The relatively high abundances of SOM were found in the offshore areas in summer and spring, which was contrary to those in autumn. Riverine discharge, nutrients, primary productivity and dissolved oxygen (DO) dynamics could all influence the composition and contents of SOM in different seasons. In summer, high primary productivity and hypoxia condition led to high SOM values. In comparison, SOM contents were relatively low due to sufficient DO in bottom water in autumn and spring. Dissolved nutrients in seawater could affect the accumulation of autogenous organic matter by impacting upon primary production. In summer, nitrate in surface water had the most obvious effects on autogenous organic carbon (AOC) and may be the principal factor of limiting the growth of phytoplankton. In autumn, nitrate as well as dissolved silicate had more effects on AOC storage. However, phosphate had the most obvious influence on AOC storage in spring.

1. Introduction

As a main connection between the continents and the oceans, coastal zones and estuaries trap significant quantities of allochthonous and autochthonous organic matter (OM) through a series of complex physical, chemical and biological processes during transport, deposition and burial (Thornton and Mcmanus, 1994), resulting in the accumulation of more than 90% of the global marine organic carbon in continental margin sediments (Emerson and Hedges, 1988). Characterizing the distribution and sources of sedimentary organic matter (SOM) can provide a better understanding of the mechanisms controlling the dispersal, preservation and fate of marine organic matter (Gordon and Goñi, 2003).

The proxies of total organic carbon (TOC) and total nitrogen (TN), including their molar ratios (TOC/TN or C/N) and stable isotopes (δ^{13}C and δ^{15}N) have been used extensively in the identification of the sources (allochthonous and autochthonous sources) and the cycles of OM in different aquatic environments (Kristensen et al., 2008), such as the Changjiang Estuary in China (Liu et al., 2006), the Cochin Estuary in India (Gireeshkumar et al., 2013), the coastal Bohai Bay in China (Gao et al., 2012; Liu et al., 2015), the Winyah Bay in the United States (Goñi et al., 2003), and the Harbor of Naples in Italy (Rumolo et al., 2011).

The Yellow Sea (YS) is a semi-enclosed shallow sea of the northwestern Pacific boarded by the Bohai Sea in the west, which has offshore characteristics. No large river discharges directly into the YS. However, parts of the Yellow River-derived fine-grained sediments could resuspend, be transported by the longshore current from the Bohai Sea, and deposit in the YS over a long-time scale (Alexander et al., 1991; Martin et al., 1993; Bi et al., 2011). The north coast of the...
Shandong Peninsula, located in the North Yellow Sea (NYS), with a history of over 60 years of marine raft culture (mainly including scallop, mussel and seaweed) in the coastal waters, is one of the fastest developing areas in China. Millions of people live along the north coast of the Shandong Peninsula. Over the last two decades, due to the rapid economic and industrial development in this region, copious amounts of organic and inorganic pollutants have been discharged into its coastal waters. It is estimated that approximately 150 tons of phosphorus and 1910 tons of nitrogen are released into the coastal areas near Yantai from sewage discharge every year (Han and Liu, 2014), resulting in serious environmental issues. For example, hypoxia in the bottom water occurs in summer. Algae blooms frequently appear from spring to autumn (Zhai et al., 2014). These changes have the potential to alter the nature and content of SOM (Owen and Lee, 2004). There are many reports on the ecological aspects of the NYS (Zhang et al., 2013; Zhai et al., 2014; Chen et al., 2015). However, detailed information on the temporal-spatial variability of SOM distribution in the coastal waters of northern Shandong Peninsula is scarcely documented. Thus, the main objectives of this study, based on the hydrogeological investigation of this region and multiple geochemical data obtained from the analysis of its surface sediments, including TOC, TN, grain size, δ13C and δ15N, were to (1) explore the spatial-temporal variations in organic carbon and nitrogen, (2) determine the factors controlling the SOM distribution and accumulation, and (3) assess the relative contribution of allochthonous and autochthonous sources of SOM.

2. Materials and methods

2.1. Study area

The research area, which lies in the coastal waters of northern Shandong Peninsula (Fig. 1), along with the Yantai-Weihai coastline, is one of the intensively maricultured areas in China with a maximum water depth of about 22 m. There are 7 small rivers flowing into the coastal waters (i.e. Xin’an River, Yu’niao River, Qinshui River, Han River, Guang River, Nian River and Yangting River). The water salinity ranges from 30 to 32, and the temperature varies from 8 °C (February) to 26 °C (September). Seasonal hypoxia phenomenon in bottom water usually occurs in this study area in summer.

2.2. Sampling location

The field data and samples used in this study were obtained through three cruises being conducted in August (summer) 2015 and November (late autumn) 2015 and March (early spring) 2016. As shown in Fig. 1, a total of 26 stations were covered in six transects. Water and surface 0-2 cm sediment samples were collected using a Niskin sampler and a Van Veen style stainless steel grab sampler. Two layers of water samples were obtained, i.e. surface (1 m under the sea surface) and bottom (1 m above the seabed) waters. After collection, about 100 ml of each water sample were filtered through pre-acid-cleaned and pre-combusted (500 °C for 5 h), 0.7 μm pore size Whatman GF/F filters. The filtrates were gathered in acid-cleaned polyethylene bottles (100 ml) and stored at –20 °C until further analysis in the laboratory. The sediment samples were homogenized and placed into sterile polyethylene bags, and stored at –20 °C until further analysis.

Seawater temperature, salinity and dissolved oxygen (DO) values were continuously determined using a SeaBird 911 plus CTD equipped with a DO sensor (membrane electrode) at precision of ± 0.01 °C (temperature), ± 0.01 (salinity) and ± 0.01 mg l⁻¹ (DO).

2.3. Sample preparation and analysis

The values of seawater nitrate (NO₃⁻), nitrite (NO₂⁻), ammonium (NH₄⁺), dissolved inorganic phosphorus (PO₄³⁻) and dissolved inorganic silicate (DSi) were measured with a Skalar nutrient autoanalyser using the standard colorimetric methods according to Aydin-Onen et al. (2012). The detection limits were 0.02, 0.02, 0.03, 0.01 and 0.02 μmol l⁻¹ for NO₃⁻, NO₂⁻, NH₄⁺, PO₄³⁻ and DSi, respectively. The relative standard deviations (RSD) of both repeatability and reproducibility for nutrient analysis were less than 5%.

A small portion of each sediment sample was used for grain-size analysis, and another portion was freeze-dried, homogenized and ground in an agate mortar for the analyses of TN, TOC, δ13C and δ15N. The sample grain-size was determined using a laser particle size analyzer (Mastersizer 2000, Malven Instruments Ltd., UK) capable of analyzing particle sizes between 0.02 μm and 2000 μm after removing OM and carbonates with 15% H₂O₂ and 4 mol l⁻¹ HCl (Qiao et al., 2010). The particle size data were classified as <4 μm for clay, 4–63 μm for silt, and >63 μm for sand.

Approximately 150 mg of each sample were weighed into 5 × 8 mm tin caps for the measurement of total carbon and TN via high temperature combustion on an Elementar vario MACRO cube CHNS analyzer. Total inorganic carbon (TIC) analysis was carried out on a Shimadzu TOC-VCPH/SSM-5000A analyzer. TOC in sediment was obtained by subtracting TIC from total carbon. The precision was ± 0.02% C and ± 0.003% TN by dry weight (n = 5). For isotope analysis, carbonates in the samples were removed with 0.5 mol l⁻¹ HCl, and then the samples were rinsed with deionized water to neutral condition before drying overnight at 60 °C (Huo et al., 2002; Hu et al., 2006). Approximately 50.0 mg and 8.0 mg carbonate-free samples were accurately weighed for the measurement of δ13C and δ15N, respectively, with a Finnigan DeltaPlus XL isotope ratio mass spectrometer, and the results were expressed in δ notation as the deviation from standard reference material in parts per mil (%):

\[
\delta (\%) = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000
\]

where δ (%) stands for δ13C or δ15N, and Rsample and Rstandard are the heavy to light isotopic ratios (i.e. 13C/12C and 15N/14N) of the sample and reference, respectively. For δ13C, the reference is Peedee Belemnite (PDB), and for δ15N, it is atmospheric nitrogen. The samples were run in duplicate and the analytical precision was ± 0.2‰ for δ13C and ±
General information of temperature and salinity in the coastal waters of northern Shandong Peninsula.

Table 1

Season	Sampling depth	Temperature (°C)	Salinity		
	Range	Mean ± SD	Range	Mean ± SD	
Summer	Surface	25.4–27.6	26.9 ± 0.6	30.6–31.0	30.8 ± 0.1
	Bottom	21.0–24.9	22.7 ± 0.3	30.6–31.3	31.1 ± 0.1
Autumn	Surface	8.0–14.3	10.6 ± 2.7	27.4–31.2	29.6 ± 1.1
	Bottom	8.1–14.1	10.6 ± 2.6	30.6–31.7	31.2 ± 0.3
Spring	Surface	2.8–6.2	4.4 ± 0.9	28.3–31.9	30.0 ± 1.0
	Bottom	2.5–4.0	3.1 ± 0.4	31.6–32.1	31.8 ± 0.1

0.3‰ for δ¹⁵N.

2.4. Data processing

Statistical analyses were performed with the Origin 8.0. Contour maps were generated by the Surfer 12 (Golden Software LLC) using the kriging method. Principal component analysis (PCA) and Pearson’s correlation analysis were performed by SPSS 19.0 software to examine the relationships among SOM related parameters (e.g. TOC, TN, C/N, δ¹³C, δ¹⁵N, sand, clay and silt).

3. Results and discussion

3.1. Hydrographic features of water environment

Complex hydrographic conditions occurred during the study period (Table 1), which may influence the transport and concentration of biogenic elements. Overall, salinity was relatively stable at around 30, while the temperature ranged broadly from 2.5°C to 27.6°C. In summer, the seasonal thermal stratification in water formed, and temperature exhibited significant vertical variations, with the values of 26.9 ± 0.6°C (mean ± SD) and 22.7 ± 0.1°C in surface and bottom water, respectively. However, in late autumn and early spring, the thermal stratification disappeared and the water column became vertically well-mixed, displaying uniform temperature.

The concentrations of nutrients and DO in water are shown in Table 2. In surface water, the dissolved inorganic nitrogen (DIN = NO₂⁻ + NO₃⁻ + NH₄⁺) values were 1.65 ± 0.75 μmol l⁻¹ in summer, lower than in autumn (3.27 ± 2.15 μmol l⁻¹) and spring (11.59 ± 7.60 μmol l⁻¹). Unlike DIN, the high PO₄³⁻ and DSi values appeared in autumn with the mean of 0.28 ± 0.03 μmol l⁻¹ and 4.30 ± 2.90 μmol l⁻¹, respectively, while low values occurred in spring with the average of 0.06 ± 0.08 μmol l⁻¹ and 2.57 ± 1.62 μmol l⁻¹. Meanwhile, the high and low DO values appeared in spring (mean 341.1 ± 25.9 μmol l⁻¹) and summer (mean 199.4 ± 5.6 μmol l⁻¹). In bottom water, the concentrations of DIN, PO₄³⁻, DSi and DO were similar to those of the surface water in autumn and spring. However, in summer, the values of DIN, PO₄³⁻ and DSi in bottom water were about 1.27–3.99 folds of those in surface water, while DO were only 37.8% of the surface water, which could be attributed to the high primary production and decomposition processes of SOM. In summer, phytoplankton grows more vigorously than in other seasons with more nutrients being absorbed (Wang et al., 2003), resulting in relatively low nutrient values in surface water. Meanwhile, some SOM are decomposed (Andrieux and Aminot, 1997) with the consumption of DO and the release of nutrients (Wang et al., 1999). In addition, the vertical exchange of surface and bottom waters is hindered due to density stratification, resulting in high nutrients and low DO values in bottom water.

3.2. TOC and TN in surface sediments

Tables 3 and 4 show the TOC and TN values and particle size composition of the surface sediment samples, and their corresponding spatial variations are shown in Fig. 2. As the basic environmental parameters, TOC and TN could reflect the enrichment and bulk composition of OM in sediment and affect the nutrient cycle in overlying water. In summer, TOC contents ranged broadly from 0.34% to 0.90% with an average of 0.68 ± 0.14%; in comparison, its contents were relatively low in autumn and spring, with the values varying from 0.38% to 0.78% (mean 0.50 ± 0.09%) and 0.13–0.58% (mean 0.44 ± 0.10%). Similar to TOC, TN contents also showed a wide range of 0.043–0.103% (mean 0.083 ± 0.016%), 0.041–0.097% (mean 0.058 ± 0.012%) and 0.014–0.075% (mean 0.053 ± 0.014%) in summer, autumn and spring, respectively. In general, TN can be divided into two components in sediments, i.e. organic nitrogen (ON) and inorganic nitrogen (IN), and the plot of TOC versus TN can be used to assess the contribution of absorbed IN to SOM based on a positive TN intercept (Goñi et al., 1997; Schubert and Calvert, 2001). In this study, a significant linear correlation between TOC and TN was found with the correlation coefficient (R²) of 0.902 (P < 0.001), 0.892 (P < 0.001) and 0.930 (P < 0.001) in summer, autumn and spring, respectively (Fig. 3a, b and c). In summer, the intercept of TOC versus TN was 0.0122%, indicating the existence of IN in TN; however, the intercepts were close to zero in autumn (-0.0024%) and spring (-0.0063%), indicating that TN is predominantly of organic origin (Goñi et al., 2003) in those two seasons. Compared with other studies (Table 4), TOC values in this study in late autumn and spring were comparable to those found in the East China Sea shelf (Zhou et al., 2018) and the Yellow Sea (Hu et al., 2013), but higher than those of the Jiaozhou Bay (Dai et al., 2007) and the Bohai Bay (Hu et al., 2009). Like TOC, the TN values in this study were comparable to the Yellow Sea (Hu et al., 2013) in winter, but lower than those of the East China Sea shelf (Zhou et al., 2018) and the Pearl River estuary (Liu et al., 2012).

As can be seen from Fig. 2a, b, and c, the spatial patterns of TOC in the surface sediments in summer and spring were similar to some extent, with relatively low values observed near to the river mouths, such as the Yellow River delta and the Bohai Bay.
as sites H1 (0.50%), sites H2 (0.47%) in summer and sites Y-1 (0.13%) and sites S-1 (0.19%) in spring. In autumn, even the spatial pattern of TOC was different from that in summer and spring with a seaward decreasing trend. Like the spatial distribution of TOC, relatively low TN values occurred in the inshore areas in summer and spring, while low TN values appeared in the offshore areas in autumn. Generally, SOM is mainly derived from the watershed or in situ production. Eutrophication, urban/industrial/agricultural pollution and sedimentary characteristics can affect SOM through biogeochemical processes such as nutrient recycling. In summer, appropriate temperature and sunlight provide suitable conditions for phytoplankton breeding, thus increasing the OM values in sediments to some extent. However, it is not easy for OM to deposit in the places near to river mouths due to complicated hydrodynamics conditions. Moreover, primary production is limited due to high turbidity in the places near to river mouths, resulting in low phytoplankton-derived OM deposition rates. Thus, relatively low OM concentrations were found in the places near to river mouths in summer. This phenomenon is also observed in other estuaries, e.g. the Yangtze, Pearl, and Ayeyarwady Rivers (Keil et al., 1994, 1998; Keil et al., 2006). Silt was the dominant fraction at most sampling stations (except site Q-1), with the average accounting for 65.4 ± 8.4% in summer, 64.2 ± 11.5% in autumn and 63.8 ± 13.7% in spring (Table 3). As for spatial variations (Fig. 2), fine-grained sediments (silt and clay) were mainly distributed in the offshore waters (Fig. 2g to l), whereas the coarser deposits mainly occurred in the places near to river mouths (especially at site Q-1) (Fig. 2m, n and o). In summer, a significant linear correlation between fine-grained sediments (clay and silt) and either of TOC and TN was found with the R² of 0.500 (0.01 < P < 0.05) and 0.558 (0.01 < P < 0.05), respectively (Fig. 3d and g), suggesting the high accumulation of OM in fine fraction of sediment. However, there was no significant correlation between fine-grained sediments and either of TOC and TN (P > 0.05, Fig. 3e, f, h and i) in autumn and spring, which could be attributed to the decomposition of SOM and complex hydrodynamic conditions in two seasons.

3.3. Sources of organic matter in surface sediments

The δ13C, δ15N and TOC/TN ratios could identify the sources (allochthonous and autochthonous sources) and the cycle of OM in aquatic environments (Kao and Liu, 2000). In this study, the general information of TOC/TN ratios, δ13C and δ15N is summarized in Table 4 and their corresponding spatial variations are shown in Fig. 5.

Table 4

Location	Sampling time	TOC (%)	TN (%)	TOC/TN	δ13C(‰)	δ15N(‰)	Reference	
Coastal waters of northern	Aug., 2015	0.34–0.90	0.043–0.103	7.05–9.07	–22.56 to –21.72	5.55–8.51	This study	
Shandong Peninsula	Nov., 2015	0.68 ± 0.14	0.083 ± 0.016	8.20 ± 0.55	–22.10 ± 0.21	6.69 ± 0.71	This study	
	Mar., 2016	0.13–0.58	0.014–0.075	7.77–9.59	–23.84 to –22.33	5.12–6.79	This study	
	2007–2008	0.08–1.07	0.020–0.003	5.04–14.00	–21.26 to –21.26	na	Hu et al. (2013)	
Bohai Bay	2006	0.04–0.69	0.01–0.09	3.3–7.7	–23.9 to –21.7	na	Hu et al. (2009)	
Sishili Bay	Nov., 2008	0.38 ± 0.17	na	na	na	na	Dai et al. (2007)	
Pearl River Estuary	Mar., 2005	0.48–1.60	0.09–0.2	8.50–15.32	na	na	Liu et al. (2012)	
Jiaozhou Bay	Sep., 2003	0.07–0.45	0.016–0.048	na	na	na	Diao et al. (2007)	
Changjiang Estuary and adjacent	2006–2007	0.19–0.92	na	–23.8 to –20.7	na	na	Yang et al. (2015)	
sea	Jun., 2010	0.50	na	na	–21.8 to –20.7	na	na	
East China Sea shelf	May to Jun., 2014	0.15–0.75	0.022–0.151	4.69–9.12	–22.08 to –19.99	3.67–6.28	Zhou et al. (2018)	
	Oct. to Nov., 2014	0.17–0.75	0.027–0.137	4.78–8.89	–21.97 to –20.10	4.60–6.13		
	Mean	0.43	0.077	6.7	–21.00	5.3		
estuaries (salinity > 25) and river plumes for 73 rivers in SE mainland of China, Taiwan and SE Asia (Pan et al., 2015). As shown in Table 4, the TOC/TN ratios varied from 7.05 to 9.07 (mean 8.20 ± 0.55), 7.77–9.59 (mean 8.66 ± 0.54) and 7.26–13.69 (mean 8.47 ± 1.20) in summer, autumn and spring, respectively, suggesting the mixed contribution from both marine and terrestrial origins. Compared with other studies (Table 4), the observed TOC/TN ratios in this study were comparable to those found in the coastal areas of the Yellow Sea (Hu et al., 2013), but higher than those of the East China Sea shelf (Zhou et al., 2018) and the Bohai Bay (Hu et al., 2009). As shown in Fig. 5a, b and c, the TOC/TN ratios had seaward increasing trends in summer and spring, which were different from those in autumn. Among the sampling stations, the highest value was recorded at site S-1 near to the Yangting river mouth in spring, which was consistent with the lowest TOC and TN contents and coarse-grained sediment, indicative of the impact of land-derived input.

In general, mineralization and oxidation can all impact the TOC/TN ratios as a source indicator for OM (Andrews et al., 1998; Kuwae et al., 2007). For example, early diagenesis could increase the TOC/TN ratios. However, sometimes, TOC/TN ratios tend to decrease due to the release of CO₂ or CH₄ as degradation products, ammonia preservation and the addition of microbially-associated nitrogen. Moreover, organic-rich

Fig. 2. Spatial distribution of TOC, TN and clay, silt and sand sediment grain sizes in surface sediments in the coastal waters of northern Shandong Peninsula.
sediments from high surface productivity areas could elevate the TOC/TN ratios to be higher than typical algal values (Meyers, 1997). The relationships between TOC/TN ratios and $\delta^{13}C$ can help determine whether TOC/TN ratios could be used to discriminate the sources of OM due to the stability of $\delta^{13}C$ values in OM (Gearing et al., 1984; Ramaswamy et al., 2008; Gireeshkumar et al., 2013). As shown in Fig. 4a, b and c, by excluding only one data point, which was recorded at station S-1 in spring (13.69 for TOC/TN and -24.42‰ for $\delta^{13}C$), TOC/TN ratios against $\delta^{13}C$ had no pronounced relationship in all the three seasons, indicating that the TOC/TN ratios were not suitable as source indicators. This could be attributed to the decomposition processes of OM (Wu et al., 2003).

3.3.2. $\delta^{13}C$ and $\delta^{15}N$ values

Stratigraphic fluctuations in $\delta^{13}C$ and $\delta^{15}N$ values of SOM could reflect a combination of influence factors, including a shift in the relative contribution of autochthonous or allochthonous OM, changing autochthonous primary productivity, and relative microbial biomass and activity (Torres et al., 2012). Marine OM typically has $\delta^{13}C$ values ranging from -19‰ to -21‰ (Fry and Sherr, 1989). Terrestrial C$_3$ plants have an average $\delta^{13}C$ value of -27‰ (-22‰ to -33‰), while for the C$_4$ plant, it is from -9‰ to -16‰ with a mean value of -13‰ (Pancost and Boot, 2004). Guo et al. (2006) reported that C$_3$ plant ecosystems dominate in North China, thus terrestrial OM is mainly derived from C3 vascular plants in the coastal waters of northern Shandong Peninsula. As shown in Table 4, the $\delta^{13}C$ values of SOM ranged from -22.56‰ to -21.72‰ (mean -22.10 ± 0.21‰), -23.84‰ to -22.33‰ (mean -23.05 ± 0.43‰) and -24.56‰ to -21.94‰ (mean -22.62 ± 0.67‰) in summer, autumn and spring, respectively, indicative of a main algal OM source, especially in summer. Compared with other studies (Table 4), the $\delta^{13}C$ values in this study were comparable to those of the Yellow Sea (Hu et al., 2013), the Bohai Bay (Hu et al., 2009) and the Sishili Bay (Liu et al., 2012), but lower than those of the coastal areas of the East China Sea and East China Sea shelf (Zhou et al., 2018).

As shown in Fig. 5d, e and f, the trend of a seaward rise in $\delta^{13}C$ values in spring reflects a relative increase in the contribution of marine-derived OM over the river-derived terrestrial fraction. Among them, two exceptionally depleted $\delta^{13}C$ values were found at sites Y-1 (near Yangmadao Island) and S-1 (off Han River mouth), which could be ascribed to the anthropogenic influence. In autumn, the higher values were observed in the inshore places, which were contrary to those for the C$_4$ plant, it is from -9‰ to -16‰ with a mean value of -13‰ (Pancost and Boot, 2004). Guo et al. (2006) reported that C$_3$ plant ecosystems dominate in North China, thus terrestrial OM is mainly derived from C3 vascular plants in the coastal waters of northern Shandong Peninsula. As shown in Table 4, the $\delta^{13}C$ values of SOM ranged from -22.56‰ to -21.72‰ (mean -22.10 ± 0.21‰), -23.84‰ to -22.33‰ (mean -23.05 ± 0.43‰) and -24.56‰ to -21.94‰ (mean -22.62 ± 0.67‰) in summer, autumn and spring, respectively, indicative of a main algal OM source, especially in summer. Compared with other studies (Table 4), the $\delta^{13}C$ values in this study were comparable to those of the Yellow Sea (Hu et al., 2013), the Bohai Bay (Hu et al., 2009) and the Sishili Bay (Liu et al., 2012), but lower than those of the coastal areas of the East China Sea and East China Sea shelf (Zhou et al., 2018).
of spring. Meanwhile, the $\delta^{13}C$ values at most stations in the western region were higher than those of the eastern region. Contrary to autumn, the $\delta^{13}C$ values in summer were higher in the eastern region than those in the western region. These may be due to an integrated influence of biological activities, hydrodynamic conditions and human activities.

The data of $\delta^{15}N$ can also reflect the sources of sedimentary OM, as terrestrial and marine primary producers are different in their means of sequestering inorganic nitrogen. Marine primary producers mainly use nitrate, while terrestrial plants acquire both ammonium and nitrate from soil through root uptake. Generally, the $\delta^{15}N$ values of marine OM usually range from 3‰ to 12‰ (mean 5–7‰) (Brandes and Devol, 2002; Lamb et al., 2006), while terrestrial OM vary from −10‰ to 10‰, with a mean of 2‰ (Gearing, 1988).

In this study, the $\delta^{15}N$ values ranged from 4.95‰ to 8.51‰ (Table 4), indicating the OM from marine organism had a more significant influence on its spatial distribution than from terrigenous input. In summer, the average value of $\delta^{15}N$ was 6.69 ± 0.71‰ and significantly higher than in autumn (mean 5.51 ± 0.33‰) and spring (mean 5.43 ± 0.24‰). In comparison (Table 4), the $\delta^{15}N$ values in this study were higher than those of the East China Sea shelf (Zhou et al., 2018) but comparable to those of the Shishili Bay (Liu et al., 2012). Similar to the distribution of $\delta^{13}C$, the $\delta^{15}N$ values in the places near to river mouths were lower than in the offshore waters in spring (Fig. 5i), and the $\delta^{15}N$ values at most stations in the eastern region were higher than those in the western region in summer (Fig. 5g). In autumn, the higher values were observed in the inshore places and relatively lower $\delta^{15}N$ values were found at two spots in a central east-west strip of the study area (Fig. 5h). During these three seasons, the lowest $\delta^{15}N$ value of 4.95‰ occurred at site Y-1 in spring reflecting a potential influence of terrigenous input from the Yangmaidao Island.

On the whole, $\delta^{15}N$ values are affected more by biogeochemical processes than $\delta^{13}C$ (Prahl et al., 1997). Wastewater can also change $\delta^{15}N$ values (Mckinney et al., 2001). Nitrate delivered from farm runoff and human sewage has elevated $\delta^{15}N$ values varying from 10‰ to 25‰ (Kendall, 1998). In Baltic rivers, Voss et al. (2006) estimated that farmland and wastewater effluents contribute 60–70% of nitrate. In Cape Cod, $\delta^{15}N$ values in the groundwater that is impacted by wastewater input are generally in a range of 6–8‰ (Cole et al., 2006). Liu et al. (2015) also reported that river input contribute significantly to sedimentary nitrogen in the Bohai Sea. In this study, a significant positive linear correlation between $\delta^{13}C$ and $\delta^{15}N$ was found in summer ($R^2 = 0.259$, $0.01 < P < 0.05$; Fig. 4d) and autumn ($R^2 = 0.272$, $0.01 < P < 0.05$; Fig. 4e); while a weak positive correlation between them ($R^2 = 0.205$, $P > 0.05$; Fig. 4f) appeared in spring, indicating that other factors such as mineralization of organic matter or wastewater input might affect the $\delta^{15}N$ values. Therefore, only $\delta^{13}C$ was used for the further exploration of the OM provenance in this study.

3.3.3. Terrestrial versus autogenous contribution to organic carbon

Since the $\delta^{13}C$ of marine and terrestrial origins are different, the relative proportions of terrestrial organic carbon (Ter-OC) and marine autogenous organic carbon (AOC) present in sediments can be assessed with the $\delta^{13}C$-based two end-member mixing model based on the work...
of Calder and Parker (1968). The δ13C of −20.5‰ was chosen as the marine end-member based on δ13C of phytoplankton in the north China Sea (Cai et al., 2000). Meanwhile, −27‰ was chosen as the terrestrial end-member, which is close to that of the C3 plants, which are the dominant species of terrestrial vegetation in northern China (Guo et al., 2006). The calculation of terrestrial organic carbon contribution (f) is gained based on the following equation:

\[f(\%) = \left(\frac{\delta^{13}C_{\text{marine}} - \delta^{13}C_{\text{measured}}}{\delta^{13}C_{\text{marine}} - \delta^{13}C_{\text{terrestrial}}} \right) \times 100 \]

The contribution of AOC (f\text{'}) was obtained from:

\[f'(\%) = 100 - f \]

The contents of AOC, expressed as the percentage of dry sediment weight, were obtained based on the following equation:

\[\text{AOC} = \text{TOC} \times f' \%

The estimated results for the contribution of the terrestrial and autogenous organic carbon are summarized in Table 3. Taken as a whole, the surface sediments in this study area were dominated by marine derived organic carbon. In summer, the calculated f’ ranged from 68.3% to 81.2% with a mean of 75.4 ± 3.3%. In autumn, the f’ ranged from 48.7% to 71.9% with a mean of 60.8 ± 6.6%, and it varied from 37.5% to 77.8% with a mean of 67.4 ± 10.3% in spring. Similar to δ13C, in summer and spring (Fig. 5j and l), the relatively lower f’ values mainly appeared in the places close to river mouths, and the lowest value (37.56%) occurred at site Y-1 near Yangmadao Island in spring, suggesting a possible impact of land-derived input. However, a generally seaward decreasing tendency of f’ values appeared in autumn (Fig. 5k), which was different from that in summer and spring.

As for AOC, it can form locally or be transported from other coastal areas, however, part of AOC could be due to laterally transported. In this study, the values in summer were significantly higher than those in autumn and spring (Table 3). This could be explained by the growth of the marine primary producers in response to favorable temperature and the input of nutrients to this area transported from the land by the surrounding rivers. However, the high terrestrial organic carbon values appeared in autumn. The relative proportion of autogenic and terrestrial organic carbon in sediments is a integrated result of any natural and anthropogenic processes that influence the biogeochemical cycle of TOC such as waste discharge, hydrodynamic conditions, primary production in the overlying water body and early diagenesis (Duarte and Cebrian, 1996; Vizzini and Mazzola, 2006). Hence, it is essential to
understand the relationship between those factors and SOM.

3.4. Relationship between SOM and environmental changes

The accumulation of SOM is controlled by the supply, degradation and burial rates of OM. Various factors, such as temperature, DO and nutrients in water and sediment type, which vary seasonally and spatially, can affect the composition and content of SOM. Meanwhile, sediment biogeochemical processes are the main determinant of variations in physicochemical properties in overlying water, such as acidification and hypoxia. Thus, the Pearson’s correlation and PCA were performed based on the water (temperature, salinity, DO and nutrients) and sedimentary (δ13C, δ15N, TOC, TN, and sediment grain size components) parameters to explain the interaction between environmental factors and biogeochemical variations of SOM (Tables 5-7, and Fig. 6).

Three principal components (PC1-PC3) were distinguished, which explains 55.3% (summer), 61.4% (autumn) and 76.1% (spring) of the total variance, respectively. In summer (Fig. 6a and b), PC1 accounts for 55.3% (summer), 61.4% (autumn) and 76.1% (spring) of the total variance with high positive loadings for AOC, TOC, and δ13C, indicating that organisms in bottom water could stimulate nutrients release from them, the positive loadings for T (S) and DO (S), and negative loadings for T (B) and NH4+ (B), and the negative loadings for DO (B), NO2− (S), and PO43− (S) show that phytoplankton photosynthesis could lead to the increase of DO values and the decrease of NO3−, DSI and PO43− values in surface water. Meanwhile, the positive loadings for T (B) and NH4+ (B), and the negative loadings for DO (B) and NO3− (B) suggest SOM can use the DO available in bottom water. With the decrease in DO concentration, nitrate ammonification may play a significant role in nitrogen cycling over nitrification, leading to the decrease of NO3− and increase of NH4+.

Previous research shows that organisms in bottom water could stimulate nutrients release from sediment (Reddy et al., 1988) and NH4+ is the main form of DIN under 0.576 (0.001 < P < 0.01) and slight positive correlation between AOC and NO3− (r = 0.228, P = 0.183) indicate that NO3− in surface water may be a limiting factor in the growth of phytoplankton. Typically, fresh SOM could not be preserved for a long time, and most of them would decompose (Andreix and Aminot, 1997; Rydin, 2000; Zhang et al., 2008) leading to the release of nutrients (Sinkko et al., 2013), and only about 10% AOC could be stored permanently in sediment (Nielsen et al., 2010). The significant positive correlation between AOC and bottom water DSI (r = 0.386, 0.01 < P < 0.05; Table 6) and NO3− (r = 0.377, 0.01 < P < 0.05; Table 6) in summer suggests that decomposition of marine autogenous OM may be an important supplement to the DSI and NO3− in deep water leading to the appearance of their high values (Table 2).

PC2 explains 17.4% of the total variance with high positive loadings for the variables of T (S), T (B) and DO (S), and high negative loadings for DO (B), NO2− (S), DSI (S) and NO3− (B) (Fig. 6a). This component shows that the variations in water physicochemical parameters were associated with photosynthesis and decomposition of OM. Among them, the positive loadings for T (S) and DO (S) and negative loadings for NO2− (S), DSI (S) and PO43− (S) show that phytoplankton photosynthesis could lead to the increase of DO values and the decrease of NO2−, DSI and PO43− values in surface water. Meanwhile, the positive loadings for T (B) and NH4+ (B), and the negative loadings for DO (B) and NO3− (B) suggest SOM can use the DO available in bottom water. With the decrease in DO concentration, nitrate ammonification may play a significant role in nitrogen cycling over nitrification, leading to the decrease of NO3− and increase of NH4+.

Table 5 Relationship between sediment carbon and nitrogen parameters and surface water environmental factors (n = 26).

Season	Temperature	Salinity	NO2−	NO3−	NH4+	DIN	PO43−	DSI	DO	
Summer	δ13C	0.143	0.405	−0.004	0.576	−0.406	0.483	0.005	−0.205	−0.246
	δ15N	0.024	0.063	−0.050	0.380	−0.258	0.306	0.073	0.224	−0.401
	AOC	0.166	0.222	−0.076	0.228	−0.116	0.085	−0.095	0.012	−0.260
Autumn	δ13C	−0.202	0.327	−0.014	0.052	−0.001	0.036	−0.009	0.018	0.100
	δ15N	0.292	0.119	0.009	0.135	−0.057	0.055	0.197	−0.125	−0.304
	AOC	−0.082	−0.060	0.017	0.334	0.056	0.276	0.056	0.297	0.145
	Ter-OC	0.178	−0.630	0.059	0.276	0.072	0.248	−0.007	0.247	0.062
Spring	δ13C	0.180	−0.259	−0.475	0.022	0.051	0.033	−0.299	0.027	−0.097
	δ15N	0.165	−0.397	−0.240	0.251	0.376	0.366	−0.306	0.179	0.332
	AOC	0.228	−0.201	−0.416	−0.095	0.056	−0.029	0.538	−0.032	−0.072
	Ter-OC	−0.185	−0.004	−0.180	−0.247	0.067	−0.104	0.164	−0.091	−0.126

	a 0.001 < P < 0.05.
	b 0.001 < P < 0.001.
	c P < 0.001.
an anaerobic conditions (Ye et al., 2006; Qiu et al., 2011). Besides, a slight negative correlation between DO in bottom water and AOC (r = -0.114, P = 0.558; Table 6) indicates that the concentration of DO in bottom water can influence the preservation of AOC to some extent. It also provides a clue that the decomposition of AOC could promote the formation of hypoxia in bottom water in summer. Some studies show anoxia as the principal factor in controlling the preservation of SOM (Paropkari et al., 1992, 1993; Van der Weijden et al., 1999). That is because low oxygen levels could prevent redox reaction of the deposited OM to some extent and reduce the effects of bottom-dwelling organisms that most likely depend on oxygen for respiration from scavenging the deposited OM as food (Brailer and Thierstein, 1984).

However, it is also believed that primary productivity in overlying water is also a key factor in the preservation of OM (Pedersen and Calvret, 1991). In this study, the positive correlation between AOC and NO3 in surface water (Table 5) and the negative correlation between AOC and DO in bottom water (Table 6) indicate the primary productivity and the DO dynamics could together control the preservation of AOC in summer.

For PC3 (13.8% of the total variance), high positive loadings for NO3 (S), DIN (S) and S (S), and negative loadings for Ter-OC were identified. This component could be interpreted as the terrestrial OM decomposition could be limited. So, terrestrial OM is less decomposed in summer. This may be explained from two aspects. On one hand, the decomposition of terrestrial OM showed a negative correlation with AOC, but it showed a slight negative correlation with Ter-OC (r = -0.215, P = 0.312; Table 6), suggesting that DO is not a key factor in controlling the preservation of marine autogeneous OM while it has a potential influence on the preservation of terrestrial OM, which is different from that in summer. Generally, SOM decomposition is mediated by a variety of aerobic and anaerobic microbial processes, which could progressively modify the OM composition because different fractions of OM degrade at different rates. Compared with terrestrial OM, marine autogeneous OM is more easily decomposed. When DO is insufficient, terrestrial OM decomposition could be limited. So, terrestrial OM is less decomposed in summer. When DO is relatively sufficient, the decomposition of terrestrial OM and marine autogeneous OM could be different. As shown in the autumn results (Table 6), the decomposition of marine autogeneous OM was not subject to the DO effect with no negative correlation between DO and AOC; in contrast, the Ter-OC seemed to be affected by the concentration of DO, that is, the higher the DO values are, the more obviously the Ter-OC decomposes. With the decomposition of OM, some nutrients can be released from surface sediment to bottom water (Schultz and Urban, 2008). However, although the low TOC values appeared in autumn (Table 4), the nutrients in bottom water did not increase but was lower than in summer (Table 2), which are different from previous studies (Wen et al., 2009; Zhao et al., 2012). This may be explained from two aspects. On one hand, the decomposition of OM in autumn could be relatively weak due to the low temperature and OM values in surface sediment. On the other hand, this study area is affected by ocean circulation obviously in late autumn (Li et al., 2016), and nutrients in bottom water could be diluted by external water.

PC2, which accounts for 18.7% of the total variance, has high positive loadings for NO3 (S), DIN (S) and S (S), and negative loadings for Ter-OC were identified. This component could be interpreted as the terrestrial OM was more resistant to further degradation in marine environment (Boer et al., 2009) and thus the decomposition of marine autogeneous OM is dominant in summer. In autumn (Fig. 6c and d), PCI explains 26.5% of the total variance, with high positive loadings for DO (S), DO (B), DSI (S), S (B), DIN (B), NH4 (B) and sand, and negative loadings for T (B), T (S), PO4 (S), PO4 (B) and silt. Like PC2 in summer, this component reflects the variation in water physicochemical parameters associated with photosynthesis and decomposition of OM. In surface water, the photosynthesis is of phytoplankton could reduce the PO4 values. On the contrary, in bottom water, the decomposition of OM could release DSI and DIN (NH4, NO3 and NO2), which is similar to that in summer. However, low primary productivity and high decomposition rate of OM occurred in autumn, resulting in the less preservation of OM in surface sediment (Table 4). The DO in bottom water had no negative correlation with

Season	\(\delta^{13}C \)	Clay	Silt	Sand	TN	TOC/TN	TOC	\(\delta^{13}C \)	\(\delta^{15}N \)
Summer	0.230	0.230	0.230	0.265	0.041	0.242	1.00	-	-
Autumn	-0.052	0.295	0.295	0.272	0.143	0.292	0.413	-	-
Spring	0.406	0.630	0.630	0.952	0.465	0.496	0.119	-	-

*0.01 < P < 0.05.
**0.001 < P < 0.001.
***0.001 < P < 0.01.

Table 7
Relationship among sediment carbon and nitrogen parameters and related environmental factors (n = 26).

AOC, but it showed a slight negative correlation with Ter-OC (r = -0.215, P = 0.312; Table 6), suggesting that DO is not a key factor in controlling the preservation of marine autogeneous OM while it has a potential influence on the preservation of terrestrial OM, which is different from that in summer. Generally, SOM decomposition is mediated by a variety of aerobic and anaerobic microbial processes, which could progressively modify the OM composition because different fractions of OM degrade at different rates. Compared with terrestrial OM, marine autogeneous OM is more easily decomposed. When DO is insufficient, terrestrial OM decomposition could be limited. So, terrestrial OM is less decomposed in summer. When DO is relatively sufficient, the decomposition of terrestrial OM and marine autogeneous OM could be different. As shown in the autumn results (Table 6), the decomposition of marine autogeneous OM was not subject to the DO effect with no negative correlation between DO and AOC; in contrast, the Ter-OC seemed to be affected by the concentration of DO, that is, the higher the DO values are, the more obviously the Ter-OC decomposes. With the decomposition of OM, some nutrients can be released from surface sediment to bottom water (Schultz and Urban, 2008). However, although the low TOC values appeared in autumn (Table 4), the nutrients in bottom water did not increase but was lower than in summer (Table 2), which are different from previous studies (Wen et al., 2009; Zhao et al., 2012). This may be explained from two aspects. On one hand, the decomposition of OM in autumn could be relatively weak due to the low temperature and OM values in surface sediment. On the other hand, this study area is affected by ocean circulation obviously in late autumn (Li et al., 2016), and nutrients in bottom water could be diluted by external water.

PC2, which accounts for 18.7% of the total variance, has high positive loadings for the combined variables NO3 (S), DIN (S), DIN (S), NO3 (S), NH4 (S), TN and AOC, reflecting the importance of those nutrients in the accumulation of AOC, which was somewhat different from that of the PCI in summer. The slight positive correlation between AOC and DSI (r = 0.297, P = 0.149; Table 5) and NO3 (r = 0.334, P = 0.101; Table 5) in surface water suggests that primary productivity may be a possible factor in the preservation of AOC. PC2 has negative loadings for NO3 (B) and NH4 (B) suggesting that the additional NO3 and NH4 in bottom water had a common source, which could be derived from the decomposition of OM.

PC3 explains 16.2% of the total variance and has high positive loadings for the combined variables of AOC, TOC, TN, \(\delta^{13}C \) and sand, and negative loading of clay and S (B). This component shows that AOC content was low in fine-grained sediment, which was different from that of PCI in summer. A significant negative correlation between AOC and clay (r = -0.451, 0.01 < P < 0.05; Table 7) was found in autumn indicating that fine-grained sediment is not conducive to the preservation of marine autogeneous OM, which is unusual and contradicts
the finding in Keil et al. (1994), and is hard to be well explained. A possible explanation is that the hydrodynamic conditions are strong in autumn; the fine particles in sediments are easily resuspended, which is beneficial to the decomposition of autogenous marine OM in fine-grained sediment.

In spring (Fig. 6e and f), PCI explains 34.8% of the total variance, and shows high positive loadings for AOC, TOC, TN, δ¹³C, δ¹⁵N, clay and silt, PO₄³⁻ (S), DSI (S), NH₄⁺ (B), NO₃⁻ (B), DIN (B), PO₄³⁻ (B) and S (B). The variables with negative PCI loadings include sand, DO (S), DO (B), and NH₄⁺ (S). This component could help describe marine autochthonous OM in surface sediments and relevant environmental factors. Consistent with summer, more AOC was accumulated in fine-grained sediment (Keil et al., 1994; Zhou et al., 2016). The significant positive correlation between AOC and surface water PO₄³⁻ (r = 0.538, 0.001 < P < 0.01; Table 5) indicates that primary productivity could control the preservation of AOC and PO₄³⁻ could be a key factor in the growth of phytoplankton, which was different from that in summer and autumn. Like in autumn, DO in bottom water had no negative correlation with AOC, but it had a slight negative correlation with terrestrial OC (r = -0.148, P = 0.470; Table 6).

PC2 accounts for 26.4% of the total variance. δ¹³C, NO₃⁻ (S), NO₂⁻ (B), DIN (S), DIN (B), DSI (S) and DSI (B) are characterized by high positive loadings. Negative loadings are evident for Ter-OC, S (B) and T (B). This component could help describe terrestrial OM and the source of nutrients. It seems that water NO₃⁻ and DSi had a common source, which could come from the terrestrial input. In bottom water, a significant positive correlation between Ter-OC and PO₄³⁻ (r = 0.405, 0.01 < P < 0.05; Table 6) were found indicating that some of the
bottom water PO4³⁻ could be derived from the terrestrial input. A weak negative correlation between Ter-OC and bottom water DO (r = -0.148, P = 0.470; Table 6) indicated the bottom water DO levels could influence the preservation of terrestrial OM to some extent.

PC3, which explains 14.9% of the total variance, has high positive loadings for the combined variables of NO3⁻ (S), DIN (S), NH4⁺ (S), DO (S) and TN, and negative loading for TOC/TN. This component could explain that NO3⁻ (S), DIN (S) and NH4⁺ (S) in the surface water played an important role in the accumulation of TN. The OM synthesized by marine primary producers was the main source of TN in surface sediment, and NO3⁻ and NH4⁺ in surface water were raw materials for photosynthesis in spring.

4. Conclusions

This study gives insights into the sources and fate of SOM and their controlling factors in the coastal waters of northern Shandong Peninsula. In summer, the amounts of TOC and TN were significantly higher than that in autumn and spring due to the fact that high OM supply was derived from high primary production. The relatively high abundance of SOM was found in the offshore areas in summer and spring, which was contrary to autumn. TOC had a good relationship with TN during this investigation, suggesting that they were homologous. However, the intercept of their linear regression equation was > 0 in summer, indicating that a considerable fraction of TN was inorganic. The values of δ¹⁸O, δ¹³C and TOC/TN ratios indicated a mixed contribution of marine and terrestrial origins to SOM. Marine autochthonous organic carbon was estimated to be account for 75.4 ± 3.3%, 60.8 ± 6.6% and 67.4 ± 10.3% of the TOC contents in autumn, summer and spring, respectively.

Pearson’s correlation and PCA were performed based on the data of water and sediment parameters to explain the interaction between environmental factors and biogeochemical features of SOM. The results show that DO dynamics and primary productivity were important factors in controlling the preservation of SOM. In summer, the high primary productivity in surface water and the low DO values in bottom water could together control the preservation of SOM, and nitrate in surface water had the most obvious effects on autochthonous organic carbon (AOC) and may be a principal factor in promoting the growth of phytoplankton. Different from those in summer, the SOM values were relatively low in autumn and spring, due to the high decomposition rate and high oxygen level in bottom water. The decomposition of marine autochthonous OM was dominant in summer, which could be a main contributor to hypoxia in bottom water. In contrast, some of terrestrial OM could be decomposed in autumn and spring, and DO dynamics in bottom water could influence the preservation of terrestrial OM to some extent. In summer and spring, SOM was more enriched in fine-grained sediment. However, AOC was significantly negatively correlated with clay sediment fraction in autumn, which is hard to be well explained based on the evidence gained in this research. With the decomposed OM, some nutrients could be released from surface sediment, which seemed to be a key determinant of high DSI, NO3⁻ and NH4⁺ values in bottom water in summer.

Acknowledgments

This work was financially supported by the Aoshan Technology Innovation Program of the Qingdao National Laboratory for Marine Science and Technology (2016ASKJ02-4), the Joint Fund of National Natural Science Foundation of China and Shandong Province (U1606404) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11020702). The assistance of Kai Liu in the sample collection is greatly appreciated.

References

Alexander, C.R., Demaster, D.J., Nittroer, C.A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Mar. Geol. 98 (1), 51–72.
Andrews, J., Greenaway, A., Dennis, P., 1998. Combined carbon isotope and C/N ratios as indicators of source and fate or organic matter in a poorly-flushed tropical estuary, Alexander, C.R., Demaster, D.J., Nittrouer, C.A., 2007. Seasonal variation of suspended-sediment transport through the southern Bohai strait estuarine. Estuar. Coast. Shelf Sci. 93 (3), 239–247.
Boer, P.D., Postma, G., Zwan, K.V.D., Burgess, P., Kukla, P., 2009. Modelling Source-Rock Distribution and Quality Variations: The Organic Facies Modelling Approach. Analogue and Numerical Modelling of Sedimentary Systems: From Understanding to Prediction. Wiley-Blackwell, pp. 239–274.
Bralower, T.J., Thierstein, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology 12 (10), 614–618.
Brodens, J.A., Devol, A.H., 2002. A global marine-fixed nitrogen isotopic budget: implications for holocene nitrogen cycling. Glob. Biogeochem. Cycles 16 (4), 1–14.
Cai, D., Hong, X., Mao, X., Zhang, S., Gao, S., 2000. A preliminary study on benthos food web structure of tidal zone in the Laoshan Bay by using stable carbon isotope. Acta Oceanol. Sin. 19 (4), 81–89.
Calder, J.A., Parker, P.L., 1968. Stable carbon isotope ratios as indexes of petrochemical pollution of aquatic systems. Environ. Sci. Technol. 2 (7), 535–539.
Chen, C.T.A., Lin, C.M., Huang, B.T., Chang, L.F., 1996. Stoichiometry of carbon, hydrocarbons, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas. Mar. Chem. 54 (1–2), 179–190.
Chen, H., Li, J., Xing, X., Du, Z., Chen, G., 2015. Unexpected diversity of magnetotacticocci in intertidal sediments of Xiaoshan Island in the North Yellow Sea. J. Nanometer (Article ID 902121).
Cole, M.L., Kroeger, K.D., McClelland, J.W., Valiela, I., 2006. Effects of watershed land use on nitrogen concentrations and δ¹⁵N in groundwater. Biogeochemistry 77 (2), 199–217.
Dai, J., Song, J., Li, X., Yuan, H., Li, N., Zheng, G., 2007. Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environ. Pollut. 145 (3), 656–667.
Duerst, C.M., Cebrian, J., 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41 (8), 1758–1766.
Emerson, S., Hedges, J.J., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3 (5), 621–634.
Fry, B., Sherr, E.B., 1989. δ¹³C measurements as indicators of carbon flow in marine and freshwater ecosystems. In: Rundel, P.W., Ehleringer, J.R., Nage, K.A. (Eds.), Stable Isotopes in Ecological Research. Ecological Studies (Analysis and Synthesis). 68. Springer, New York, pp. 196–229.
Gao, X.L., Yang, Y.W., Wang, C.Y., 2012. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotope signatures. Mar. Pollut. Bull. 64 (6), 1148–1155.
Gearing, J.N., 1988. The Use of Stable Isotope Ratios for Tracing the Nearsore-Offshore Exchange of Organic Matter Coastal-offshore Ecosystem Interactions. Springer, Berlin Heidelberg, pp. 69–101.
Gearing, J.N., Gearing, R.J., Rudrick, D.T., Requejo, A.G., Hutchins, M.J., 1984. Isotope variation of organic carbon in a phytoplankton-based temperate estuary. Geochim. Cosmochim. Acta 48 (5), 999–1006.
Gireeshkumar, T.R., Deepulal, P.M., Chandramohanakumar, N., 2013. Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): a baseline study. Mar. Pollut. Bull. 66 (1–2), 239–245.
Gotli, M.A., Buteenberg Amp, K.C., Eglinton, T.I., 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389 (6648), 275–278.
Gotli, M.A., Teixera, M.J., Perkey, D.W., 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar. Coast. Shelf Sci. 57 (5), 1023–1048.
Gordon, E.S., Gotli, M.A., 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochim. Cosmochim. Acta 67 (13), 2359–2375.
Guo, Z., Li, J., Feng, J., Ming, F., Yang, Z., 2006. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002. Chin. Sci. Bull. 51 (17), 2133–2140.
Han, Q.Y., Liu, B.Y., 2014. Temporal and spatial variations in the distribution of macroalgal communities along the Yantai Coast, China. Chin. J. Oceanol. Limn. 32 (3), 595–607.
Hu, P.P., Perry, P., Jia, G., Mai, B., Zhang, G., 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River Estuary and adjacent shelf, Southern China. Mar. Chem. 98 (2), 274–285.
Huo, L., Guo, Z., Feng, J., Yang, Z., Fang, M., 2009. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Mar. Chem. 113 (3), 197–211.
Hu, L., Shi, X., Guo, Z., Wang, H., Yang, Z., 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing. Mar. Geol. 335 (1), 53–63.
Huo, S., Grouset, F.E., Burdlo, D., Bardoux, G., Mariotti, A., 2002. Sources of fine-
sized organic matter in North Atlantic Heinrich Layers: 813C and 34N tracers. Geochem. Cosmochim. Acta 66 (2), 223–239.

Kao, S.J., Liu, K.K., 2000. Stable carbon and nitrogen isotope systems in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Glob. Biogeochem. Cycles 14 (1), 189–198.

Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., Hedges, J.J., 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochem. Cosmochim. Acta 58 (8), 879–893.

Keil, R.G., Tsamakis, E., Giddings, J.C., Hedges, J.J., 1998. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast. Geochem. Cosmochim. Acta 62 (8), 1347–1364.

Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. In: Kendall, C., McDowell, J.J. (Eds.), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pp. 519–576.

Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C., 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 89 (2), 201–219.

Kuwana, M., Yamaguchi, H., Tsugeki, N.K., Miyaoka, H., Fukumori, K., Ikebara, M., Genki-Kato, M., Omori, K., Sugimoto, T., Ishida, S., Takeoka, H., 2007. Spatial distribution of organic and sulfur geochemical parameters of oxic to anoxic surface sediments in Beppu Bay in southwest Japan. Estuar. Coast. Shelf Sci. 72 (1–2), 349–358.

Lamb, A.L., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using 13C and C/N ratios in organic material. Earth-Sci. Rev. 75 (1), 29–57.

Li, G.X., Qiao, L.L., Dong, P., Ma, Y.Y., Xu, J.S., Liu, S.D., Liu, Y., Li, J.C., Li, P., Ding, D., Wang, N., Olusegun, A.D.D., Liu, L., 2016. Hydrodynamic condition and suspended sediment diffusion in the Yellow Sea and East China Sea. J. Geophys. Res. 121 (8), 6024–6022.

Liu, D., Li, X., Emeis, K.C., Wang, Y., Richard, P., 2015. Distribution and sources of organic matter in surface sediments of Bohai Sea near the Yellow River Estuary, China. Estuar. Coast. Shelf Sci. 165 (5), 128–136.

Liu, D.Y., Shen, X.H., Wang, Y.J., Chen, Y.J., Li, L., 2012. Tracking the sources of organic matter in the surface sediments of Shishih Bay, Northern Yellow Sea and the environment implication. Acta Oceanol. Sin. 34 (5), 205–212.

Mai, H., Liu, J.L., Xu, S.Y., Ou, D.N., Yang, Y., Yu, J., 2006. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Mar. Pollut. Bull. 52 (12), 1625–1633.

Maksymowska, D., Richard, P., Piekarz-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdańsk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 51 (5), 585–595.

Martin, J.M., Zhang, J., Shi, M.C., Zhou, Q., 1993. Actual flux of the Huanghe (Yellow river) sediment to the Western Pacific ocean. Neth. J. Sea Res. 31 (3), 243–254.

Mayer, L.M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochem. Cosmochim. Acta 58 (4), 1271–1284.

McKinney, R.A., Nelson, W.G., Charpentier, M.A., Wgaard, C., 2001. Ribbed mussel nitrogen isotopes signature reflect nitrogen sources in coastal salt marshes. Ecol. Appl. 11 (3), 201–204.

Meyer-Reil, 1997. Organic geochemical proxies of paleooceanography, paleoecology and paleoecological processes. Org. Geochem. 27 (5–6), 213–250.

Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., Sayama, M., 2008. Organic carbon dynamics in the Baltic Sea). Estuar. Coast. Shelf Sci. 51, 219–233.

Paropkari, A.L., Babu, C.P., Mascarenhas, A., 1993. New evidence for enhanced preservation of organic matter in the water columns of lakes. Nature 362, 77–80.

Pedersen, G., Calvert, S.E. (Eds.), Isotope Tracers in Catchment Hydrology. Elsevier, 2008. C/N ratios and paleoclimatic processes. Org. Geochem. 27 (5–6), 213–233.

Qiao, S.Q., Shi, X.F., Wang, G.Q., Hu, N.J., 2010. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea. Acta Oceanol. Sin. 32 (4), 139–147.

Qiu, Z., Yan, C., Zhao, Y., Du, M., 2011. The release and oxidation of ammonia at the sediment-water interface of Jialing River Estuary wetland under different oxygen conditions. Ecol. Environ. Sci. 20 (12), 1902–1908.

Rasmussen, M., Nielsen, I., Rydin, E., 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 34 (7), 2037–2042.

Rumolo, P., Barra, M., Gherardi, S., Marsella, E., Sprovieri, M., 2011. Stable isotopes and C/N ratios in marine sediments as a tool for discriminating anthropogenic impact. J. Environ. Monit. 13 (12), 3301–3304.

Rydin, E., 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 34 (7), 2037–2042.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.

Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Res. Part I 48 (3), 789–810.