CASE REPORT

Pleural effusion as an atypical presentation of Kawasaki disease: a case report and review of the literature

Elif Arslanoglu Aydin, Selcan Demir, Orkun Aydin, Yelda Bilginer and Seza Ozen

Abstract

Background: Kawasaki disease is an acute, febrile vasculitis of childhood that affects medium-sized arteries, predominantly the coronary arteries. It is a multisystem disease; therefore, it may present with non-cardiac findings of disease.

Case presentation: Here, we report the case of a 7-year-old Turkish girl who presented with symptoms of fever, chest pain, and vomiting, who was diagnosed as having Kawasaki disease. We also present a literature review on pulmonary involvement due to Kawasaki disease.

Conclusion: Pediatricians should consider the diagnosis of Kawasaki disease in the presence of pneumonia and pleural effusion that is nonresponsive to antibiotic therapy. This will prevent delay in diagnosis and the adverse consequences of the disease.

Keywords: Kawasaki disease, Pleural effusion, Pulmonary involvement

Background

Kawasaki disease (KD) is one of the most common vasculitis disorders of childhood [1]. Although it is a multisystem disease that mainly affects the coronary arteries, it can, rarely, present with unusual system involvement of the pulmonary system, gastrointestinal tract, central nervous system, and genitourinary system [1]. Here, we report the case of a patient with KD who presented with an unusual form of pleural effusion. We also present a literature review on the subject.

Case presentation

A 7-year-old Turkish girl presented to a local hospital with fever, chest pain, and vomiting. At hospital admission, she was febrile with a respiratory rate of 50 per minute. On physical examination, auscultation of her lungs revealed diminished breath sounds of the lower lobe of her left lung. An anteroposterior (AP) chest X-ray and chest ultrasonography showed a left lower lobar consolidation with minimal pleural effusion. She was hospitalized and sulbactam ampicillin (SAM), ceftriaxone, and clarithromycin were initiated. On the third day, her condition worsened with increasing pleural effusion (Fig. 1). Thoracentesis was performed. SAM and ceftriaxone treatments were discontinued and meropenem and vancomycin were started. A chest tube was inserted and 130 mL of pus was drained. Light’s criteria were positive for an exudative pleural effusion; a pleural fluid culture was sterile. After 4 days, the chest tube was removed. High fever persisted for 15 days despite broad spectrum antibiotics, and acute-phase reactants remained high; therefore, she was referred to our hospital for further evaluation.

She had a fever with a temperature of 38.1 °C, her respiratory rate was 48/minute, heart rate was 125/minute, blood pressure was 90/65 mm Hg, and oxygen saturation was 95%. A physical examination revealed non-purulent conjunctivitis in both eyes, perianal peeling, and periungual desquamation on her hand, fingers, and toes. All other findings in the physical examination were unremarkable. She had unilateral cervical lymphadenopathy and a rash on her extremities while in the other hospital. Her past medical history was unremarkable, as was her
family history. Immunizations were up-to-date for her age.

On admission to our hospital, the laboratory findings were as follows: hemoglobin 10.2 g/dL, white blood cells 14,000/μL, and platelets 736,000/μL. C-reactive protein (CRP) was 4.26 mg/dL (normal, 0–0.8 mg/dL), the erythrocyte sedimentation rate (ESR) was 42 mm/hour (normal, 0–20 mm/hour), and the albumin, creatinine, aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, blood urea nitrogen, calcium, sodium, chloride, and potassium levels were normal. Urine analysis was normal.

A chest X-ray was normal. Perivascular brightness and echogenicity of her right coronary artery was noted on transthoracic echocardiography (TTE). She was diagnosed as having KD based on the presence of fever, bilateral non-purulent conjunctivitis, cervical adenopathy, perianal peeling, periungual desquamation, elevated acute-phase reactants (ESR, CRP), thrombocytosis, and coronary artery involvement (CAI). Intravenous immunoglobulin (IVIG) (2 g/kg, infusion in 12 hours) and acetylsalicylic acid (60 mg/kg per day) were initiated. The fever resolved after IVIG infusion. At a 3-month follow-up visit, the acute-phase reactants and a TTE were normal. One year after the diagnosis, a TTE was normal and she was perfectly healthy.

Discussion and conclusion

The most important complication of KD is CAI, which leads to enlargement, aneurysm, ischemic heart disease, and sudden death [1]. The clinical course of KD is highly variable. There are no pathognomonic clinical or laboratory findings to help diagnose KD. The diagnosis of KD in this case was made using the criteria of the American Heart Association [1]. In the presence of at least 5 days of fever, if there are at least four of the five principal criteria (cervical adenopathy, bilateral non-purulent conjunctivitis, oropharyngeal mucosal changes, polymorphous rash, erythema of the palms or soles, and edema of the hands or feet) the patient is diagnosed as having KD [1].

KD may present with uncommon symptoms such as pneumonia, pleural effusion, diarrhea, vomiting, sterile pyuria, gallbladder hydrops, acute cholestatic hepatitis, arthritis, and aseptic meningitis [2–7]. Pulmonary system involvement of KD is very rare; KD can present as pneumonia, pulmonary nodules, bronchopneumonia, hydropneumothorax, and pleural effusion [6, 8, 9]. Singh et al. showed that 1.3% of patients had pulmonary involvement and pleural effusion was seen in 54.5% of these patients [6]. Ugi et al. reported the case of an adult patient who presented with pulmonary involvement, specifically bilateral massive pleural effusions [10]. Occasionally, pleural effusion may be associated with bacterial agents such as Mycoplasma pneumoniae and Streptococcus [11, 12]. Pulmonary symptoms are mostly initially treated with antibiotics. However, if fever and accompanying signs ensue, the diagnosis of KD should be considered. Patients with pulmonary involvement may be more likely to have CAI due to delays in diagnosing KD and administration of IVIG [12–17].
We performed a review of the literature using PubMed and the search terms: Kawasaki disease AND pulmonary involvement; OR Kawasaki disease AND pulmonary presentation; OR Kawasaki disease AND pleural effusion. The searches were limited to the English language and pediatric patients. Case series and single case reports involving pediatric patients with KD with pulmonary involvement were included. Inconsistencies were resolved through discussion with the author SO, who also reviewed the literature. The authors EAA and OA searched the literature and manually screened titles and abstracts for relevance. Inconsistencies were resolved through discussion with the author SO.

Figure 2 lists the schematic analyses of the systematic literature review. At first, 25 related articles were found, but nine articles were excluded because of duplication,
Table 2: Demographic parameters and clinical presentations of patients who had pulmonary involvement associated with Kawasaki disease

Authors, year, reference number	Patients (n)	Sex	Age at onset of disease (months)	Initial symptoms	Fever duration (days)	Chest X-ray findings
Singh et al., 2018, [6]	11	F, M	30	Fever, cough, tachypnea	14.1 b	Consolidation, pleural effusion, empyema, pneumothorax, 2 a
Alhammadi and Hendaus, 2013, [12]	1	F	36	Fever, cough, sore throat	18	Consolidation, pleural effusion
Lee et al., 2011, [11]	54	NA	NA	NA	NA	Reticulonodular, consolidation, pleural effusion, diffuse interstitial, atelectasis, 2 a
Lee et al., 2010, [14]	1	M	22	Fever, cough rhinorhea	6	Infiltration, pleural effusion
Falcini et al., 2009, [15]	1	F	30	Fever, cough	12	Pleural effusion
Elizabeth et al., 2007, [16]	1	F	36	Fever, gum bleeding	21	Pleural effusion
Yavuz et al., 2007, [17]	1	M	11	Fever, pharyngeal erythema, dyspnea	> 5	Pleural effusion
Sittiwangkul and Pongprot, 2004, [13]	1	F	11	Fever, jaundice, diarrhea, dyspnea	15	Pleural effusion
de Magalhães et al., 2012, [21]	1	F	3	Fever	10	Infiltration
Hamada et al., 2005, [18]	1	F	60	Fever, abdominal pain, knee joint pain	15	Pleural effusion
D’Souza et al., 2006, [20]	1	M	5	Fever, diarrhea, dyspnea	7	Pleural effusion
Case 1	1	M	8	Fever, sore throat	8	Consolidation
Case 2	1	F	11	Febrile seizure, sore throat, cough	14	Consolidation
Case 3	1	F	23	Fever, cough	10	Consolidation
Freeman et al., 2003, [23]						
Case 1	1	M	4	Fever, cough, rash	21	NA
Case 2	1	M	6	Fever	60	Normal; thorax CT, pulmonary nodule
Case 3	1	NA	5	Fever cough, rash	4	Infiltration, multiple pulmonary nodules
Kobayashi et al., 2006, [24]						
Case 1	1	F	24	Fever, cracked lips, rash	5	Infiltration, pleural effusion
Case 2	1	F	24	Fever, cough, nasal discharge	4	Atelectasis
Vaidya et al., 2017, [8]	1	F	3	Fever, rash, dyspnea	32	Hydropneumothorax, consolidation, pneumatoceles
Akagi et al., 2017, [19]						
Case 1	1	F	4	Fever, erythema of the lips, rash	NA	NA; thorax MRI, bilateral multiple pulmonary nodules
Case 2	1	F	5	Fever, erythema of the lips, rash	9	Infiltration; thorax CT, bilateral pulmonary nodules

*Number of the patients who had noted findings

*Values are expressed as mean for 11 patients

CT computed tomography, F female, M male, MRI magnetic resonance imaging, NA not available
non-English language, and adult age, which left 16 articles [6, 8, 11–24]. The characteristics of these patients are summarized in Tables 1, 2, and 3. Finally, 20 patients with pleural effusions due to KD were identified [6, 11–18, 20, 24]. Of the 20 reviewed patients, TTE results were available in nine patients and seven had CAI [6, 12–17, 24]. Eleven patients presented with respiratory symptoms such as cough, dyspnea, and tachypnea [6, 12–15, 20]. Only four patients [14, 17, 18, 24] had complete KD, 10 patients [6, 13, 15, 16, 20] had incomplete KD, and six patients’ [11, 12] presentations were not available. Although a definite infectious agent could be shown for two patients [18, 24], all of the patients received antibiotics except one [14]. Two patients [6, 17] received a second dose of IVIG, and five patients received a second dose of IVIG and corticosteroid treatment for KD [13–16, 18].

In this case, our patient initially had an exudative, noninfectious pleural effusion and no response to antibiotics. CAI was also noticed and IVIG was administered on the 15th day of fever. After IVIG treatment, our patient’s clinical and laboratory findings improved dramatically, and the fever and acute-phase reactants returned to normal. It remains unclear as to whether the KD was triggered by the infection of the pleural space or if the pulmonary finding was a feature of the inflammation of KD.

Table 3
Treatment, coronary artery involvement, follow-up, and outcomes of patients who had pulmonary involvement associated with Kawasaki disease

Authors, year, reference number	Infectious agent	Antibiotic treatment	CAI	Treatment	Follow-up and outcome
Singh et al., 2018, [6]	No	Yes	Yes	Second dose of IVIG, 2nd dose of IVIG	Normal, NA
Alhammadi and Hendaus, 2013, [12]	No	Yes	No	Normal	Normal
Lee et al., 2011, [11]	No	No	No	Second dose of IVIG and corticosteroid	Normal
Lee et al., 2010, [14]	No	No	No	Second dose of IVIG and corticosteroid	Normal
Falcini et al., 2009, [15]	No	Yes	No	Normal	Normal
Elizabeth et al., 2007, [16]	No	Yes	Yes	Second dose of IVIG and corticosteroid	Normal
Yavuz et al., 2007, [17]	No	Yes	Yes	Second dose of IVIG and corticosteroid	Aneurysm persisted in 2 years
Sittiwangkul and Pongprot, 2004, [13]	No	Yes	No	Second dose of IVIG and corticosteroid	Aneurysm decrease but persisted
de Magalhães et al., 2012, [21]	No	Yes	Yes	Second dose of IVIG, corticosteroid, MTX, and ETN	Normal
Harnada et al., 2005, [18]	No	Yes	No	Second dose of IVIG and corticosteroid	Normal
D’Souza et al., 2006, [20]	No	Yes	No	IVIG	Normal
de Maddi et al., 2009, [22]	Case 1	No	Yes	No	IVIG
	Case 2	No	Yes	Not given IVIG	Normal
	Case 3	No	Yes	No	IVIG
Freeman et al., 2003, [23]	Case 1	No	Yes	Yes	IVIG
	Case 2	NA	Yes	NA	IVIG
	Case 3	No	Yes	Yes	IVIG
Kobayashi et al., 2006, [24]	Case 1	Yes	Yes	NA	IVIG
	Case 2	Yes	Yes	NA	IVIG
Vaidya et al., 2017, [8]	No	Yes	Yes	IVIG	NA
Akagi et al., 2017, [19]	Case 1	No	No	Yes	IVIG
	Case 2	No	Yes	Yes	IVIG

*Number of the patients

CAI coronary artery involvement, ETN etanercept, IVIG intravenous immunoglobulin, MTX methotrexate, NA not available
KD can affect various systems as well as the coronary arteries, and may present with an unusual clinical picture. The diagnosis of KD with atypical presentations may be difficult for pediatricians. Early diagnosis and treatment can prevent complications.

Abbreviations
AP: Anteroposterior; CAI: Coronary artery involvement; CRP: C-reactive protein; ESR: Erythrocyte sedimentation rate; IMV: Intravenous immunoglobulin; KD: Kawasaki disease; SAM: Sulbactam ampicillin; TTE: Transthoracic echocardiography

Acknowledgements
Not applicable.

Authors’ contributions
EAA, OA, and SD drafted the initial manuscript. EAA and OA retrieved the pertinent literature. SD, YB, and SO contributed to the patient management. SO critically reviewed the manuscript. All authors have read and approved the final submitted manuscript.

Funding
No funding.

Availability of data and materials
Data sharing is not applicable to this article because no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
No ethical committee approval is required for this case report.

Consent for publication
Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Department of Pediatrics, Hacettepe University Faculty of Medicine, 06100 Ankara, Turkey. 2. Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, 06100 Ankara, Turkey. 3. Department of Pediatric Emergency, Hacettepe University Faculty of Medicine, 06100 Ankara, Turkey.

Received: 12 May 2019 Accepted: 9 October 2019
Published online: 25 November 2019

References
1. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation. 2017;135(17):e927–e990.

2. Kaman A, Aydin-Teke T, Gayretli-Aydin ZG, Oz FN, Metin-Akcan O, Eris D, et al. Two cases of Kawasaki disease presented with acute febrile jaundice. Turk J Pediatr. 2017;59(1):64–6.

3. Du Z. A case of neonatal incomplete Kawasaki disease complicated with aseptic meningitis. Zhonghua Er Ke Za Zhi. 2014;52(1):63–4.

4. Sun Q, Zhang J, Yang Y. Gallbladder Hydrops Associated With Kawasaki Disease: A Case Report and Literature Review. Clin Pediatr (Phila). 2018;57(3):341–3.

5. Saviour MJ, Hassan S. Kawasaki Disease Presenting with Bloody Diarrhea and Acute Renal Failure: First Case. Pediatr Rep. 2017;9(2):7163.

6. Singh S, Gupta A, Jindal AK, Gupta A, Suri D, Rawat A, et al. Pulmonary presentation of Kawasaki disease-A diagnostic challenge. Pediatr Pulmonol. 2018;53(1):103–7.

7. Pilania RK, Bhattarai D, Singh S. Controversies in diagnosis and management of Kawasaki disease. World J Clin Pediatr. 2018;7(1):27–35.

8. Vaidya PC, Narayanan K, Suri D, Roht MK, Gupta A, Singh S, et al. Pulmonary presentation of Kawasaki disease: an unusual occurrence. Int J Rheum Dis. 2017;20(2):2227–9.

9. Leaky TR, Cohen E, Allen UD. Incomplete Kawasaki disease associated with complicated Streptococcus pyogenes pneumonia: A case report. Can J Infect Dis Med Microbiol. 2012;23(3):137–9.

10. Ugi J, Lepper PM, Witschi M, Maer V, Geiser T, Ott SR. Nonresolving pneumonia and rash in an adult pulmonary involvements in Kawasaki’s disease. Eur Respir J. 2010;35(2):452–4.

11. Lee MN, Cha JH, Ahn HM, Yoo JH, Kim HS, Sohn S, et al. Mycoplasma pneumoniae infection in patients with Kawasaki disease. Korean J Pediatr. 2011;54(3):123–7.

12. Alhammadi AH, Hendaous MA. Comorbidity of Kawasaki disease and group a streptococcal pleural effusion in a healthy child: a case report. Int J Gen Med. 2013;6:613–6.

13. Sittiwangkul R, Pongprot Y. Large pleural effusion: an unusual manifestation of Kawasaki disease. Clin Pediatr (Phila). 2004;43(4):389–91.

14. Lee SH, Jeon YH, Yang HY, Pyun BY. Pleural effusion and disseminated intravascular coagulopathy: the rarely reported complications of Kawasaki disease. Clin Pediatr (Phila). 2010;49(6):598–600.

15. Falcini F, Vitale A, La Torre F, Conti G, Fede C, Calcagno G. Refractory pneumonia and high fever. Lancet. 2009;373(9677):1818.

16. Elizabeth KE, Ahmed MZ, Praveen KS. Atypical relapsing course of Kawasaki disease with hemorrhagic serous effusions and hepatic dysfunction. Indian Pediatr. 2007;44(10):785–7.

17. Yavuz T, Nisli K, Yilmaz C, Dindar A. Large pleural effusion necessitates chest tube drainage in a patient with Kawasaki disease. J Paediatr Child Health. 2007;43(3):191–2.

18. Hamada H, Terai M, Honda T, Kohno Y. Marked pleural and pericardial effusion with elevated Vascular Endothelial Growth Factor production: an uncommon complication of Kawasaki disease. Pediatr Int. 2005;47(1):112–4.

19. Sakai K, Abe J, Tanaka K, Tomotsuki S, Iii Y, Ueda K, et al. Kawasaki disease with pulmonary nodules and coronary artery involvement: a report of two cases and a review of the literature. Int J Rheum Dis. 2017;20(11):1862–4.

20. D’Souza S, Khubchandani RP, Shetty AK. Kawasaki disease presenting with hemorrhagic pleural effusion. J Trop Pediatr. 2006;52(4):299–301.

21. de Magalhães CM, Alves NR, de Melo AV, Junior CA, Nomicronbrega YK, Gandolfi L, et al. Catastrophic Kawasaki disease unresponsive to IVIG in a 3-month-old infant: a diagnostic and therapeutic challenge. Pediatr Rheumatol Online J. 2012;10(1):28.

22. De Maddi F, Cinelli R, Rigante D, Mazzarella G, Stani P. Lung parenchymal consolidation as an uncommon presentation and cause of delayed diagnosis in atypical Kawasaki syndrome. Rheumatol Int. 2009;29(11):1373–6.

23. Freeman AF, Crawford SE, Finn LS, Lopez-Andreu JA, Ferrando-Monleon S, Gandolfi L, et al. Inflammatory pulmonary nodules in Kawasaki disease. Pediatr Pulmonol. 2003;36(2):102–6.

24. Kobayashi Y, Koke Y, Tokumori T, Kuroki Y, Todori K. Case 2: fever, rash and pulmonary involvement. Diagnosis: Kawasaki disease. Acta Paediatr. 2006;95(9):1145–8.