Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT

Polina LEMENKOVA

Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis. Building L, Campus de Solbosch, Avenue Franklin Roosevelt 50, Brussels 1000, Belgium
polina.lemenkova@ulb.be or pauline.lemenkova@gmail.com (ORCID: 0000-0002-5759-1089)

Abstract. Ghana is a country exceptionally rich in geologic mineral resources with contrasting topographic relief and varied geophysical setting. This paper evaluated the geological and geophysical setting of Ghana with a special focus on the impact of the geologic setting and topography on gravity. Specifically, it assessed how variations in geology, topography, landscapes and the environment control the geophysical parameters and how these vary among the major regions of the country – the Volta Basin, Northern Plains, Ashanti-Kwahu (Kumasi) and Coastal Plains in the Accra surroundings. Previous studies utilizing traditional Geographic Information System (GIS) approaches have documented the geologic evolution of Ghana evolved as a part of the West African Craton. As a contribution to the existing research, this paper presents a regional analysis of Ghana by integrated mapping of geology, geophysics and topography of the country. The technical approach of this research focuses on utilizing the console-based scripting cartographic toolset Generic Mapping Tools (GMT) integrated with QGIS for processing and mapping the datasets: General Bathymetric Chart of the Oceans (GEBCO), Earth Gravitational Model 2008 (EGM-2008), gravity grids. The theoretical background is based on the geologic research of West Africa supported by high-resolution data. The paper defines a conceptual cartographic framework for integrated geologic and geophysical visualization in a regional-scale mapping project on Ghana.

Keywords: Ghana, Africa, geophysics, cartography, GMT, QGIS

1 Introduction

Progress in geologic and geophysical analysis relies on advanced cartographic visualization. This deep ontological, conceptual and technical connection between the Earth science disciplines has led to a variety of developed cartographic software, algorithms and methods which help geologic and geophysical data modeling and mapping. The epoch of big geospatial data presents new technical challenges in contemporary cartography which aims at effective and precise data processing and visualization with minimized handmade routines and increased speed of mapping. Therefore, the use of scripting console-based mapping in addition to a menu-based Geographic Information System (GIS), as presented in this paper, opens up new ways in the geological and geophysical mapping of Ghana.

Up to now there were only GIS-based applications in mapping Ghana at the regional country-level scale. Existing geological and environmental maps of Ghana for the purpose of environmental assessment are provided by relevant publications at the national scale. These include studies of flood hazards (Amoako and Boamah 2015, Ansah et al. 2020), investigations on gold deposits with geological maps,
Geofizičko kartiranje Gane pomoću naprednog kartografskog alata GMT

Polina LEMENKOVA

Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, Laboratorij za sintezu i analizu slika. Building L, Campus de Solbosch, Avenue Franklin Roosevelt 50, Bruxelles 1000, Belgija
polina.lemenkova@ulb.be ili pauline.lemenkova@gmail.com (ORCID: 0000-0002-5759-1089)

Članak je na hrvatski jezik preveo V. Lapaine.
The paper was translated into Croatian by V. Lapaine.

Sažetak. Gana je zemlja iznimno bogata geološkim mineralnim resursima s kontrastnim topografskim reljefom i raznolikim geofizičkim okruženjem. U ovom se članku procjenjuje geologija i geofizika Gane s posebnim naglaskom na utjecaj geološkog okruženja i topografije na gravitaciju. Konkretno, procjenjuje se kako varijacije u geologiji, topografiji, krajolicima i okolišu kontroliraju geofizičke parametre i kako se oni razlikuju među glavnim regijama zemlje – bazen Volte, Sjeverne ravnice, Ashanti-Kwahu (Kumasi) i obalne ravnice u okruženju Akre. Prethodne studije, koje su koristile tradicionalne pristupe s pomoću geoinformacijskih sustava (GIS), dokumentirale su geološku evoluciju Gane koja je evoluirala kao dio zapadnoafričkog kratona. Kao doprinos postojećem istraživanju, ovaj članak daje regionalnu analizu Gane integriranim kartiranjem geologije, geofizike i topografije te zemlje. Tehnički se pristup ovog istraživanja fokusira na upotrebu kartografskog skupa alata za skriptiranje na konzoli (Generic Mapping Tools – GMT) integriranog s QGIS-om za obradu i kartiranje skupova podataka: Opća batimetrijska karta oceana (General Bathymetric Chart of the Oceans – GEBCO) i Gravitacijski model Zemlje 2008 (Earth Gravitational Model 2008 – EGM-2008). Teorijska pozadina temelji na geološkim istraživanjima zapadne Afrike potkrijepljenim podacima visoke razlučivosti. Rad definira konceptualni kartografski okvir za integriranu geološku i geofizičku vizualizaciju u projektu kartiranja na regionalnoj razini u Gani.

Ključne riječi: Gana, Afrika, geofizika, kartografija, GMT, QGIS
geochemical plots and diagrams (Amponsah et al. 2015), hazard and risk disaster mapping (Adu-Gyamfi et al. 2021), civil engineering and road construction (Ahenkorah et al. 2018).

Through this research, we were able to use the powerful functionality of both GMT and Quantum GIS (QGIS) to reflect the geophysical and geologic setting of the country from various data sources based on integrated approaches for accurate semi-automated mapping of Ghana, which is one of the significant advantages of this paper. Thus, this paper presented the combined cartographic method using GMT and QGIS for handling geospatial data to represent topographic, geologic and geophysical phenomena in Ghana with a twofold goal:

- The cartographic goal is to present a series of the five new thematic maps on Ghana prepared by the sequential use of the QGIS and GMT techniques: a topographic raster layer representing terrain relief and geophysical layers of geoid and gravity grids, an overlay and geologic vector map prepared in the QGIS environment.
- The geophysical goal is to analyze the gravity anomaly fields, geoid and topographic elevations to demonstrate the effects of the geology on the surface topographic and geophysical setting. The comparative analysis of maps aims to illustrate the correlation between the topography, geophysics and geology of Ghana.

2 Mapping Software

Recently, geologic research has focused on advanced solutions for data analysis and mapping (Sylvester and Attoh 1992, Attoh 1998, Lindh and Lemenkova 2021, Allibone et al. 2002, Lemenkov and Lemenkova 2021b). However, previous studies used traditional methods of plotting for data visualization with limited functionality to perform mapping by automated approaches, such as Generic Mapping Tools (GMT). Among various methods in geosciences, data analysis and mapping are the most widely used approaches (Klaučo et al. 2013, Lemenkov and Lemenkova 2021c). As for GIS, it remains a major method in mapping (Owusu-Nimo et al. 2018, Osei et al. 2021, Lemenkova et al. 2012, Suetova et al. 2005, Lemenkova 2021c, Gohl et al. 2006, Schenke and Lemenkova 2008). In contrast to the traditional GIS mapping methods, the GMT technique is less subjective and more functional, as it can perform mapping using repetitive scripts. However, due to the increased functionality of the scripting techniques for data processing, in particular in relation to the large datasets with global coverage, using a GMT cartographic toolset might be an effective way of cartographic data visualization (Wessel et al. 2019).

Although GIS software based on the conventional Graphical User Interface (GUI) can be used for mapping large amounts of geospatial data due to an easy interface and simpler functionality (Appiah 1991, Boher et al. 1992, Verutes et al. 2012, Eisenlohr and Hirdes 1992, Engstrom et al. 2013), there is an inherent potential for human-induced errors because of the workflow routine of mapping. Therefore, it is uncertain whether GIS will function effectively when processing multi-source large spatial data as is often the case in geologic mapping of Africa (Black and Fabre 1983, Loh and Hirdes 1996, 1999, Perrouty et al. 2012). The traditional GIS has a straightforward way of mapping through GUI and an extended menu with a variety of functions for vector and raster types of data. At the same time, a complex mapping project functions best when adopting all the available data formats which might include native .shp formats finely readable by a compatible and open source QGIS.

In contrast to the traditional GIS, GMT provides a console-based machine learning approach for spatial processing (Lemenkova, 2021a, 2021d). Flexibly combining these mapping approaches enables taking the advantages of both and increases mapping functionality. The sophisticated scripting of GMT is particularly well suited to cartographic visualization due to the extended functionality of the individual modules controlling map elements: finely adjusted colour palettes, legend placement and depiction, graticule ticks, clipping and translucency, compatibility with the Geospatial Data Abstraction Library (GDAL), hierarchical annotations using a variety of fonts, operating with various data formats, etc. For this reason, GMT is widely used in geophysics (Gauger et al. 2007, Lemenkova 2021a, 2019b, 2019c, Kuhn et al. 2006, Gorman et al. 2008).

3 Study Area and Dataset

Ghana, located in west Africa (Figure 1), is a country exceptionally rich in resources. These include both mineral resources of precious geologic deposits - gold, diamonds, bauxite, manganese ore, oil, aluminium (Amankwah and Anim-Sackey 2003, Nyame 2008, Ayanoore 2020) and environmental resources of high commercial value –
Slika 1. Topografska karta Gane izrađena s pomoću podataka GEBCO. Kartiranje: GMT. Izvor: autorica.

Fig. 1 Topographic map of Ghana using the GEBCO dataset. Mapping: GMT. Source: author.
Fig. 2 Geologic map of Ghana based on USGS data. Mapping: QGIS. Source: author.

Slika 2. Geološka karta Gane izrađena na temelju podataka USGS-a. Kartiranje: QGIS. Izvor: autorica.
na procjenu okoliša objavljene su na nacionalnoj razini. To su studije opasnosti od poplava (Amoako i Boamah 2015, Ansah i sur. 2020), istraživanja nalazišta złata s geološkim kartama, geokemijskim crtežima i dijagramima (Amponsah i sur. 2015), kariranje opasnosti i rizika od katastrofa (Adu-Gyamfi i sur. 2021) te za građevinarstvo i cestogradnju (Ahenkorah i sur. 2018).

Kroz ovo smo istraživanje uspjeli upotrijebiti moćnu funkcionalnost i GMT-a i Quantum GIS-a (QGIS) kako bismo prikazali geofizičko i geološko stanje zemlje na temelju različitih izvora podataka uz integrirani pristup za točno poluautomatizirano kariranje Gane, što je jedna od značajnih prednosti ovoga rada. Ovaj rad, stoga, opisuje kombiniranu kartografsku metodu upotrebom GMT-a i QGIS-a za rukovanje geoprostornim podacima i prikaz topografskih, geoloških i geofizičkih fenomena u Gani s dvostrukim ciljem:

- Kartografski je cilj prikazati niz od pet novih tematskih karata Gane pripremljenih s pomoću QGIS-a i GMT-a: topografski rasterijski sloj prikazuje reljef terena, a geofizički slojevi geoid i gravitacijsku mrežu, preklop i geološku vektorsku kartu pripremljenu s pomoću QGIS-a.
- Geofizički je cilj analizirati polja gravitacijskih anomalija, geoid i topografske elevacije kako bi se demonstrirali utjecaji geologije na topografsko i geofizičko stanje površine. Komparativna analiza karata ima za cilj ilustrirati korelaciju između topografije, geofizike i geologije Gane.

2. Softveri za kartiranje

U posljednje su se vrijeme geološka istraživanja usredotočila na napredna rješenja za analizu podataka i kartiranje (Sylvester i Attoh 1992, Attoh 1998, Lindh i Lemenkova 2021, Allibone i sur. 2002, Lemenkov i Lemenkova 2021b). Međutim, prethodne studije koristile tradicionalne metode crtanja za vizualizaciju podataka s ograničenom funkcionalnošću za kartiranje, kao što je Generic Mapping Tools (GMT). Među različitim metodama u geonaznanstima najčešće su u upotrebi analiza podataka i kartiranje (Klačić i sur. 2013, Lemenkov i Lemenkova 2021c).

Što se tiče GIS-a, on ostaje glavna metoda u kartiranju (Owusu-Nimo i sur. 2018, Osei i sur. 2021, Lemenkova i sur. 2012, Suetova i sur. 2005, Lemenkova 2021c, Gohl i sur. 2006, Schenke i Lemenkova 2008). Za razliku od tradicionalnih GIS-a, GMT pruža pristup strojnog učenja baziran na konzoli za geoprostornu obradu (Lemenkova, 2021a; 2019b). Fleksibilno kombiniranje tih pristupa kartiranju omogućuje iskorištavanje prednosti obaju i povećanje funkcionalnosti kartiranja. Softver GMT-je pogodan za kartografsku vizualizaciju zbog pruženih funkcionalnosti pojedinačnih modula koji kontroliraju elemente karte: fino prilagođene paletе boja, postavljanje i prikaz legende, oznake na mreži, izrezivanje i prozirnost, kompatibilnost s Geospatial Data Abstraction Library (GDAL), hijerarhijalne napomene koje koriste različite fontove, rad s različitim formatima podataka itd. To je razlog zbog kojega se GMT široko koristi u geofizici (Gaugeri sur. 2007, Lemenkova 2021a, 2019b, 2019c, Kuhn i sur. 2006, Gohl i sur. 2006, Gohl i sur. 2006).

3. Područje i podatci

Smještena u zapadnoj Africi (slika 1), Gana je zemlja iznimno bogata resursima. To su mineralni resursi dragocjenih geoloških nalazišta – złata, dijamanata, boksita, manganove rude, naftne, aluminija (Amankwah i Anim-Sackey 2003, Nyame 2008, Ayanunnor 2020) i ekološki resursi visoke komercijalne vrijednosti – šumskog drvra, biljaka, poljoprivrednih skripti. Štoviše, zbog povećane funkcionalnosti tehničke skrpletiranja za obradu podataka, posebno u odnosu na velike skupove podataka s globalnom pokrivenošću, upotreba GMT-a može biti učinkovit način vizualizacije kartografskih podataka (Wessel i sur. 2019).

Iako se GIS softver baziran na konvencionalnom grafičkom korisničkom sučelju (GUI) može koristiti za kartiranje velikih količina geoprostornih podataka, zahtijevajući jednostavnosti korištenja i jednostavnosti korisničke interakcije (Appiah 1991, Boher i sur. 1992, Verutes i sur. 2012, Eisenlohr i Hirdes 1992, Eisenlohr i Hirdes 2013), postoji inherentni potencijal za pogreške uzrokovane ljudskim djelovanjima zbog rutine tijekom kartografiranja. Stoga je neizvjesno hoće li GIS učinkovito funkcionirati pri obrađivanju velike količine prostornih podataka, što je često slučaj u geološkom kartiranju Afrike (Black i Fabre 1983; Loh i Hirdes 1996, 1999; Perroux i sur. 2012). Tradicionalni GIS ima jednostavan način kartiranja s pomoću GUI-a i prepoznate funkcionalnosti za vektorske i rasterne vrste podataka. Istodobno, složeni projekt kartiranja najbolje funkcionira kada se prihvate svi dostupni formati podataka koji mogu sadržavati izborne .shp datoteke fino čitljive kompatibilne s GIS-om otvorenog koda.

Za razliku od GIS-a, GMT pruža pristup strojnom usavršenju baziran na konzoli za geoprostornu obradu (Lemenkova, 2021a; 2021d). Fleksibilno kombiniranje tih pristupa kartiranju omogućuje iskorištavanje prednosti obaju i povećanje funkcionalnosti kartiranja. Softicirano skrpletiranje GMT-a posebno je pogodno za kartografsku vizualizaciju zbog pruženih funkcionalnosti pojedinačnih modula koji kontroliraju elemente karte: fino prilagođene paletе boja, postavljanje i prikaz legende, oznake na mreži, izrezivanje i prozirnost, kompatibilnost s Geospatial Data Abstraction Library (GDAL), hijerarhijalne napomene koje koriste različite fontove, rad s različitim formatima podataka itd. To je razlog zbog kojega se GMT široko koristi u geofizici (Gaugeri sur. 2007, Lemenkova 2021a, 2019b, 2019c, Kuhn i sur. 2006, Gohl i sur. 2006, Gohl i sur. 2006).

3. Područje i podatci

Smještena u zapadnoj Africi (slika 1), Gana je zemlja iznimno bogata resursima. To su mineralni resursi dragocjenih geoloških nalazišta – złata, dijamant, boksita, manganove rude, naftne, aluminija (Amankwah i Anim-Sackey 2003, Nyame 2008, Ayanunnor 2020) i ekološki resursi visoke komercijalne vrijednosti – šumskog drvra, biljaka, poljoprivrednih...
forest timber, plants, agricultural products, cocoa, horticultural crops (Ahoa et al. 2020, Williams et al. 2019, Abdulai et al. 2017).

Ghana was ranked the 1st country in Africa according to gold deposits in 2019 with 130 t of yearly gold production (Mining.com 2019). The orogenic gold deposits of Ghana were formed as a result of the long-term geologic evolution of the region which included the meta-sedimentary successions of Ghana form part of the Birimian Paleoproterozoic West African Craton (Chudasama et al. 2016, Kalsbeek et al. 2020, Davis et al. 1994, Feybesse et al. 2006, Block et al. 2016).

Established gold belts of Ghana include the regions of Ashanti Fault, Kumasi Basin and Sefwi–Bibiani. The orogenic gold mineral deposits in southern Ghana were extensively studied and resulted in regular reports on the distribution and origin of gold (see inter alia Adu-Baffour et al. 2021, Harcouët et al. 2007, Perroux et al. 2016, Dzigbodi-Adjimah and Nana Asamoah 2009, Hillson 2002, Benshall-Tolonen et al. 2019).

Other natural resources of Ghana include renewable energy potential presented by a variety of sources (Ankrah and Lin 2020). The most significant is the hydropower sector, presented by the hydroelectric Akosombo (Volta) Dam on the Volta River which enabled the completion of construction of a plant for producing aluminium from bauxite at the supplemented Kpong Dam. Other hydro-energy resources of Ghana include the Lower Pra River Basin and Volta tributaries (Arthur et al. 2020). In addition, solar, geothermal and wind energy may be developed to become important energy sources in Ghana (Essandoh-Yeddu 1997, Danso et al. 2021, Nuru et al. 2021).

Central challenges in this study include the two-fold aspects of cartographic data processing.

First, the present study is a data-driven project based on the open-source datasets covering Ghana. Recent technical progress in data capture and organized geological surveys resulted in the available materials, such as high-resolution GEBCO (Figure 1), USGS geologic data (Figure 2), geoid (Figure 3) or gravity grids (Figures 4 and 5), that enable the use of reliable Earth observation datasets. The accuracy of mapping is therefore ensured through the high-quality raw datasets. Using high-resolution EGM-2008 data facilitates detection of variation in geoid undulations with unprecedentedly high details. High-resolution satellite-derived gravity grids provide a source for fine-resolution mapping of geophysical fields and analysis of variations with respect to the topography of Ghana. Since the geoid reflects variations in the land masses that correspond well to the topography of the terrain with unique patterns, it can be compared with the topographic and gravity maps.

Second, this study employs GMT scripting methods for mapping several maps. Automatic data processing and plotting are the major challenges in digital cartography. Automated visualization is an important task because of the increased speed of data processing, accuracy and precision of visualization and fewer human-induced errors. Besides, the advantages of scripts consist in code repeatability so it can be reused in similar studies. This enables rapid processing of large volumes of data. Automated GMT techniques facilitate the cartographic workflow and enable focusing on geographical analysis. Thus, a comparative analysis of maps reveals similar geological and geophysical features on the visualized maps through an analysis of isolines contouring fields and distribution of objects. By contrast, GIS mapping can result in human-induced mistakes and accidental errors during plotting, because traditional mapping is a time-consuming and subjective process. Therefore, accurate automated mapping is a challenging problem in modern cartography, demonstrated in the Methodology section. Thus, using GMT presents a breakthrough in contemporary cartography applied in geologic, topographic and geophysical analysis.

The datasets used in this paper include the following materials:

- General Bathymetric Chart of the Oceans (GEBCO) gridded data covering the topography and bathymetry of the Earth with unprecedentedly high resolution of 15 arc-second, i.e. ca. 450 m (Schenke 2016, GEBCO Compilation Group 2020).
- Earth Gravitational Model of 2008 (EGM-2008) by the National Geospatial-Intelligence Agency (NGA) EGM Development Team (Pavlis et al. 2012).
- Gravity satellite derived data from the CryoSat-2 and Jason-1 showing Faye’s and Bouguer reduction models (Sandwell et al. 2014).
- Geologic layers in ArcGIS .shp file formats showing the surficial geology and geologic provinces of Africa by the United States Geological Survey (USGS) datasets (Persits et al. 1997).
- The research also references the Digital Chart of the World (DCW) developed in 1992 by the U.S. Defense Mapping Agency’s (DMA) and National Imagery and Mapping Agency (NIMA) as a vector data product representing the borders of the World’s countries (Defense Mapping Agency 1992) and evaluated for Africa (Goff 1994). The DCW was used for clipping the area of Ghana over the transparent background and for a global insert map in Figure 1.
proizvoda, kakaa, hortikulturnih usjeva (Ahoa i sur. 2020, Williams i sur. 2019, Abdulai i sur. 2017).

Gana je bila prva zemlja u Africi po nalazištima žlata u 2019. sa 130 tona godišnje proizvodnje žlata (Mining.com, 2019). Orogena ležišta žlata u Gani nastala su kao rezultat dugotrajne geološke evolucije regije koja je uključivala metasedimentne sukcesije Gane koje čine dio birmskog paleo-proterozojskog zapadnoafričkog kratona (Chudasama i sur. 2016, Kalsbeek i sur. 2020, Davis i sur. 1994, Feybesse i sur. 2006, Block i sur. 2016).

Poznati su zlatni pojasevi Gane regije: Ashanti Fault, Kumasi Basin i Sefwi-Bibiani. Orogena su ležišta minerala žlata u južnoj Gani opsežno proučavana i rezultirala su redovitim izveštajima o distribuciji i podrijetlu žlata (vidi npr. Adu-Baffour i sur. 2021, Harcouët i sur. 2007, Perroux i sur. 2016, Dzigbodi-Adjimah i Nana Samoah 2009, Hilson 2002, Bensha-ul-Tolon 2019).

Ostali prirodni resursi Gane uključuju potencijal obnovljive energije predstavljen iz raznih izvora (Ankrah i Lin 2020). Najznačajniji je hidroenergetski sektor koji predstavlja hidroelektrana Akosombo (Volta), brana na rijeci Volti, koja je omogućila završetak izgradnje postrojenja za proizvodnju aluminiuma iz boksita na dodatnoj brani Kpong. Ostali su hidroenergetski resursi Gane donji sliv rijeke Pra i pritoke Volte (Arthur i sur. 2020). Osim toga, solarna se, geotermalna energija i energija vjetra mogu razviti kako bi postali važni izvori energije u Gani (Essandoh-Yeddu 1997, Danso i sur. 2021, Nuru i sur. 2021).

Središnji je izazov ovoga rada dvostruki aspekt obrade kartografskih podataka. Prvo, ovaj je rad projekt vođen skupovima podataka otvorena koda koji se odnose na Ganu. Nedavni tehnički napredak u prikupljanju podataka i organiziranim geološkim istraživanjima rezultirali su dostupnim materijalima, kao što su GEBCO visoke razlučivosti (slika 1), geološki geofizički polja i analizu varijacija sa obzirom na topografiju Gane. Budući da geoid odražava varijacije u kopnim masama koje dobro odgovaraju topografiji terena sjedinjenim uzorcima, može se usporediti s topografskim i gravitacijskim kartama.

Drugo, u ovom se radu koristi metoda GMT skrip-tiranja za izradu nekoliko karata. Automatska obrada podataka i iscravanje glavini su izazovi u digitalnoj kartografiji. Automatizirana je vizualizacija vazan zadatak zbog povećane brzine obrade podataka, točnosti i preciznosti vizualizacije te smanjenih pogrešaka uzrokovanih ljudskim djelovanjem. Osim toga, prednost skript je kod koji se može ponovno koristiti u sličnim radovima. To omogućuje brzu obradu velike količine podataka. Automatizirane GMT tehnike olakšavaju kartografski tijek rada i omogućuju usredotočenje na geografsku analizu. Dakle, komparativna analiza karata otkriva slična geološka i geofizička obilježja na kartama s pomoću analize izolacija i distribucije objekata. S druge strane, GIS kartiranje može rezultirati ljudskim greškama i slučajnim pogreškama tijekom crtanja jer je tradicionalno kartiranje dugotrajan i subjektivan proces. Točno automatizirano kartiranje je izazovan problem u modernoj kartografiji koji se prikažan u poglavlju Metodologija. Stoga upotreba GMT-a u geološkoj, topografskoj i geofizičkoj analizi predstavlja iskorak u suvremenoj kartografiji.

Skupovi podataka upotrijebljeni u ovom radu su:

- podatci s Opće batimetrijske karte oceana (GEBCO) koji pokrivaju topografiju i batimetriju Zemlje s nevidenom visokom razlučivosti od 15 lunijskih sekundi, tj. oko 450 m (Schenke 2016, GEBCO Compilation Group 2020)
- Earth Gravitational Model iz 2008 (EGM-2008) što je izradio EGM Development Team of the National Geospatial-Intelligence Agency (Nga) (Pavlis i sur. 2012)
- podatci satelitske gravimetrije dobiveni od CryoSat-2 i Jason-1 koji prikazuju Fayeove i Bougerove modele (Sandwell i sur. 2014)
- geološki slojevi u ArcGIS .shp formatima datoteka koji prikazuju površinsku geologiju i geološke provinije Afrike prema skupovima podataka Geološkog zavoda Sjedinjenih Američkih Država (United States Geological Survey – USGS) (Persist i sur. 1997)
- Digitalna karta svijeta (Digital Chart of the World – DCW) koju su 1992. razvile Američka agencija za obrambeno kartiranje (U.S. Defense Mapping Agency's - DMA) i Nacionalna agencija za slike i kartiranje (National Imagery and Mapping Agency - NIMA) kao proizvod vektorskih podataka koji predstavljaju granice država (Defence Mapping Agency 1992), a procijenjen je za Afriku (Goff 1994) te korišten za izrezivanje područja Gane preko prozirne pozadine i za globalnu kartu umetnutu na slici 1.
4 Analysis of Geophysical Features over Ghana

The geologic mapping was performed using QGIS software (QGIS.org 2021). First, a GIS project was generated in a QGIS environment, where the input vector layers were uploaded (Persits et al. 1997) in the European Petroleum Survey Group (EPSG) standard EPSG:4326 – World Geodetic System (WGS) of 1984 WGS-84 projections, and the layout (Figure 2) was generated using the Layout Manager options. The Digital Chart of the World (DCW) was used as a clipping mask layer for Ghana as a comprehensive reliable vector cartographic layer (Goff 1994).

4.1 Mapping geologic units

The geologic provinces of Ghana visualized in Figure 2 include the outcrops of rocks from the following geologic period units: Ordovician Cambrian (OCm), Precambrian and Cambrian (pCm), Cretaceous (K), Quaternary Tertiary (QT), Quaternary eolian (Qe) and Tertiary (T). The eolian fraction of the late Quaternary (Qe) sediments points at climate variations and change in the tropical region of Ghana since the Quaternary enabling the reconstruction of the regional climate changes based on the geological records of the past sediments.

The disposition of the geologic units shows the tectonic and stratigraphic correlations between the Precambrian and Lower Paleozoic Volta River Basin and the Pan African orogenic belt of West Africa. Moreover, the location of the Early Proterozoic Birimian Supergroup of Ghana is largely associated with gold mineralization in Ghana.

4.2 Mapping geologic provinces

The geologic provinces of Ghana include the Gulf of Guinea, Nigerien Massif, Taoudeni Basin, Volta River Basin and the West African Shield. The Volta Basin presents the structural geologic core of the region, while the Nigerien Massif is distributed on the east of the country and the West African Shield on the west, respectively. A three-phase geodynamic evolution of the Volta Basin of Ghana (light green colour in Figure 2) was structured by Affaton (1990) divided into three groups: i) deposition of craton-margin sandstones (Bombouaka Supergroup), ii) sedimentation marginal to a Pan-African oceanic domain (Pendjari-Oti Supergroup), iii) development of a foreland basin where molassic sediments of the Tamale Supergroup were poured. Deynoux et al. (2006) discussed the geologic properties of the 3 major units (megasequences) of the Volta Basin (green colour in Figure 2): 1) Bombouaka, 2) Pendjari-Oti, 3) Tamale, serving as marker horizons to constrain inter-basin correlations between the geologic units of Ghana. However, the period of the sequential evolution from the rift to collision-related sedimentation in these provinces of Ghana differed regionally.

The GMT consists in a console-based scripting approach, which differs from traditional GIS, such as QGIS. Parameters are set in special GMT modules to allow the cartographic elements on all plots to be visualized based on the settings (flags) in the shell script for each element (colour palette, grid specification, annotations, layers translucency and order of appearance). The specific commands used for mapping Figures 1, 3, 4 and 5 are provided with explanations below.

| No. | GMT module | GMT code |
|-----|------------|----------|
| 1   | grdcut     | gmt grdcut GEBCO_2019.nc -R-4/2/4/12 -Ggh_relief.nc |
| 2   | makecpt    | gmt makecpt -Cgeo.cpt -V -T 4696/915 > pauline.cpt |
| 3   | pscoast    | gmt pscoast -R-4/2/4/12 -JMS.01 -DH -M -EGH > Ghana.txt |
| 4   | psscale    | gmt psscale -Dg-4/3.4+w12.0c/0.15i+h+o0/3/0i+ml+e -R-j-Cpauline.cpt -Bg500f50a500 +"Colormap:’geo’..." relief [R=4696/915, H, C=RGB] -10.2 -By+lm -O -K => $ps |
| 5   | ptext      | gmt ptext -R-j -N -O -K -Ff10,p13,white+JLB => $ps << EOF -1.1 10.6 30.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | !EOF |
| 6   | psbasemap  | gmt psbasemap -R-j -O -K -DJTR+w3.2c+o-0.2c/-e-2c+stmp => $ps |
| 7   | pscoast    | gmt pscoast -Rg-1.0/8.0N/$w-Da-Glightgoldenrod1-A5000-Bga-Wfaint-EGH-gred -Sdodgerblue -O-K-X$x0 -Y$y0 => $ps |
4. Analiza geofizičkih svojstava Gane

Geološko je kartiranje izvedeno s pomoću softvera QGIS (QGIS.org 2021). Prvo, generiran je GIS pročelje u QGIS okruženju, gdje su ulazni vektorski slojevi učitani (Persits i sur. 1997) u standardu EPSG: 4326 European Petroleum Survey Group (EPSG) – Svjetski geodetski sustav (WGS) iz 1984., a izgled je generiran s pomoću opcija Layout Managera. Digitalna karta svijeta (DCW) upotrijebljena je kao sloj maske za izrezivanje za Ganu kao sveobuhvatni vektorski kartografski sloj (Goff 1994).

4.1. Kartiranje geoloških jedinica

Geološke provincije Gane prikazane su na slici 2 sadrže izdanke stijena iz sljedećih jedinica geoloških razdoblja: ordovicij kambrij (OCm), prekambrij i kambrij (pCm), kreda (K), kvartarni tercijarni (QT), kvartarni eol (Qe) i tercijarni (T). Eolski dio kasnokvartarnih (Qe) sedimenata ukazuje na klimatske varijacije i promjene u tropskoj regiji Gane od kvartara, što omogućuje rekonstrukciju regionalnih klimatskih promjena na temelju geoloških zapisa starih sedimenata.

4.2. Kartiranje geoloških provincija

Geološke pokrajine Gane sadrže Gvinejski zaljev, Nigerijski masiv, bazen Taoudenija, sliv rijeke Volte i Zapadnoafrički štit. Bazen Volte predstavlja stanište geološke i stratigrafske korelacija između pretkambrijskog i donjepaleozojskog sliva rijeke Volte i panafričkog orogenog pojasa zapadne Afrike. Štoviše, položaj ranoproterozojske birimijske superskupine u Gani u velikoj mjeri povezan je s mineralizacijom zlata u Gani.

4.3. Topografsko kartiranje

Karta na slici 1 izrađena je na temelju mreže GECO-a koja sadrži informacije o topografiji Gane. Primjeri GMT kodova upotrijebljenih za kartu na slici 1 prikazani su u tablici 1. Konkretno, slika je određena upotrebom koordinatnog raspona države izrezivanjem iz globalne mreže (kod br. 1). Paleta boja definirana je upotrebom ekstremnih visina uz 'geo' ugrađene palete boja GMT-a (kod br. 2). Maska vektorskog sloja generirana je iz poligona države DCW-a (kod br. 3). Tumačenje navodno je podijeljeno na tri skupine: I. taloženje pješčenjaka na rubu kratona (Bombouaka Supergroup) II. sedimentacija marginalna u odnosu na panafričku oceansku domenu (Pendjari-Oti Supergroup) III. razvoj bazena u koji su se izlišeli melsani sedimenti superskupine Tamale. Deynoux i sur. (2006) raspravljali su o geološkim svojstvima triju glavnih jedinica (megasekvencije) bazena Volte (zelena boja na slici 2): 1) Bombouake, 2) Pendjari-Oti, 3) Tamale koji služe kao horizonti markera za ograničavanje međubazenske korelacije

4.4. Geofizičko kartiranje

Kartiranje geoida i gravitacije slobodnog zraka u Fayeovim Bougerovim korekcijama ima sličnu shemu uz opće module GMT-a kao što su 'pscoast', 'makecpt', 'grdimage', 'pscoast', 'psbasemap' i 'pscompose' te istu Mercatorovu projekciju. Kodovi koji se koriste za iscrivanje geofizičkih karata (slike 3, 4 i 5) prikazani su u tablici 2. Ovdje je modul 'grdconvert' primijenjen za ponovno formatiranje podataka EGM-2008 korištenjem kodova 1 slijedećih primjer Lemenkove (2020a). Izolinije na karti geoida (slika 3) ugrađene su u razmaku od 0,25 m kodom br. 2. Vrijednosti izolinija daje informacije o raspodjeli polja na području, što omogućuje procjenu blizine vrijednosti koje su određene geološkim i geofizičkim parametrima regije među kojima su gustoća stijena, topografijski i tektonski lineamenti. Dozvoljava izredno u svojstvu manje vrijednosti koje su određene geološkim i geofizičkim parametrima regije među kojima su gustoća stijena, topografijski i tektonski lineamenti. Dozvoljava izredno u svojstvu manje vrijednosti koje su određene geološkim i geofizičkim parametrima regije među kojima su gustoća stijena, topografijski i tektonski lineamenti.
Geoid gravitational model of Ghana

World geoid image EGM2008 vertical datum 2.5 min resolution

Fig. 3 Geoid model of Ghana using the EGM-2008 dataset. Mapping: GMT. Source: author.

Slika 3. Geoidni model Gane izrađen na temelju podataka EGM-2008. Kartiranje: GMT. Izvor: autor.
slobodnog zraka u Fayeovoj redukciji (slika 4) ekstrahirana je kao podsкуп img datoteke u Mercatorovoj projekciji kodom br. 4. Ta je datoteka zatim izrezana upotrebom raspona koordinata područja istraživanja i spremljena u formatu netCDF s pomoću koda br. 5. Isti postupak ponovljen za Bougerovu korekciju (slika 5). Ekstremi gravitacijske mreže zatim su procijenjeni s pomoću uslužnog programa GDAL ’gdalinfo’ (kod br. 6). Biblioteka GDAL koristi se i za rukovanje i za preformatiranje geoprostornih podataka (Lemenkova 2020b, 2021b). Rezultati procjene su sljedeći: minimum=−66,055, maksimum=92,523, srednja vrijednost=7,462, standardna devijacija=20,665. Jednak je postupak primijenjen i na Bougerovu mrežu (slika 5) sa sljedećim rezultatima: minimum=−126,055, maksimum=157,26, srednja vrijednost=0,267, standardna devijacija=12,482.

Prema opsegu podataka i objesu mreže (slike 4 i 5) vizualiziran je s pomoću paleta boja 'jet' i 'seis'. Logo je GMT-a ucrtan na sve karte upotrebom kodabr.7.

Tablica 2. GMT kodovi upotrijebljeni za geofizičko kartiranje (slike 3, 4 i 5).

| Br. No. | GMT module | GMT kod |
|--------|------------|---------|
| 1      | grdconvert | gmt grdconvert n00e00/w001001.adf geoid_ET.grd |
| 2      | grdcontour | gmt grdcontour geoid_ET.grd -R -J -C0.25 -A0.5 -Fp25, black -Withinner,dimgrey=O K>> $ps |
| 3      | pscoast    | gmt pscoast -R -J -P -fa/thinnest,blue -N1/thickest,white -Withinner -Df -O -K >> $ps |
| 4      | img2grd    | gmt img2grd grav_27.1.img -R -4/2/4 -Dgrav_grav -T1 -I -E -S0.1 -V |
| 5      | grdcut     | gmt grdcut grav.grd -R -4/2/4/12 -Ggh_grav.nc |
| 6      | gdalinfo   | gdalinfo -stats gh_grav.nc |
| 7      | logo       | gmt logo -Dx5.0/-3.0-o+0.1i/0.1i+w2c-O-K>>$ps |

II. Modeliranje gravitacije slobodnog zraka u Fayeovim i Bougerovim redukcijama odražava velike topografske strukture (npr. duga visoravan Kwahu koja se proteže dijagonalno u južnoj Gani).

III. Topografska je ogleda u prostornoj distribuciji geoloških cjelina i bazena (sliv Volte, Bijela Volta, Crna Volta, rijeka Oti).

5. Rezultati i rasprava

Nekoliko je aspekata rezultata ovog rada koje treba posebno istaknuti:

I. Modeliranje geoida pokazuje varijabilnost valovitosti geoida u regiji Gane s povećanim vrijednostima u smjeru jugozapada.
4.3 Topographic mapping

Figure 1 was mapped based on the GEBCO grid which contains information about the topography of Ghana. The examples of the GMT codes used for Figure 1 are presented in Table 1. Specifically, the image was determined using the coordinate extent of the country using clipping from the global grid, using code No. 1. The colour palette was defined using the extremes of the elevations using ‘geo’ embedded color palette of GMT, using code No. 2. The vector layer mask was generated from the DCW of the country’s polygon using code No. 3. The legend was placed below the main map using the ‘psscale’ module using code No. 4. The annotations were added using the example of code No. 5. The global insert map was defined using the combination of ‘psbasemap’ and ‘pscoast’ modules as follows using code No. 6. The country code for Ghana was accepted from the ISO 3166-1 alpha-2 standard. The drawing of the insert map was done using code No. 7 in Table 1.

4.4 Geophysical mapping

Mapping geoid and free-air gravity in Faye’s and Bouguer corrections followed a similar scheme using the general GMT modules such as ‘pscoast’, ‘makecpt’, ‘gridimage’, ‘pstext’, ‘psbasemap’ and ‘psscale’ using the same Mercator projection. The codes using for plotting geophysical maps (Figures 3, 4 and 5) are presented in Table 2. Here the ‘grdcconvert’ module was applied for the EGM-2008 data re-formatting using code No. 1, following the example (Lemenkova, 2020a). The isolines on the geoid map (Figure 3) were plotted with an interval of 0.25 m by code No. 2. Plotting isolines provides information on the distribution of fields over the area enabling the assessment of the proximity of values, which are determined by the geologic and geophysical setting of the region, including rock density, topography and tectonic lineaments. Adding coastlines, borders and a river network was performed using the GMT ‘pscoast’ by code No. 3. The free-air gravity in Faye’s reduction (Figure 4) was extracted as a subset of an img file in the Mercator projection by code No. 4. The same procedure was repeated for the Bouguer correction (Figure 5).

The extremes of the gravity grid were then assessed using the ‘gdalinfo’ GDAL utility using code No. 6. The GDAL Library is used both for handling and re-formatting geospatial data (Lemenkova, 2020b; 2021b). The results of the evaluation revealed the following data: Minimum=−66.055, Maximum=92.523, Mean=7.462, StdDev=20.665. The same process was repeated for the Bouguer grid (Figure 5) with the following outcome: it takes values from Minimum=−126.055 to Maximum=157.26, Mean=0.267, StdDev=12.482. According to the data scope, both grids (Figures 4 and 5) were visualized using the ‘jet’ and ‘seis’ colour palettes. The GMT logo was plotted on all the maps using code No. 7.

To summarize the methodology, the GMT console-based scripting method for cartographic data processing is to a certain extent similar to programming such as in Python or R (Lemenkova, 2019d, 2019a). It adds the lines of code using modules processed by the GMT syntax, and then executes the scripts from the console and presents the graphical output of the map. The final maps are saved by the ‘psconvert’ module using the Post-Script format into the graphical standard output (JPG, TIFF).

5 Results and Discussion

There are several aspects of the results of this work that should be pointed out separately:

i. Modelling the geoid shows the variability of the geoid undulations over the region of Ghana with increased values in the SW.

ii. Modelling free-air gravity in Faye’s and Bouguer reductions mirrors the large topographic structures (e.g. the long Kwahu Plateau extending diagonally in the southern Ghana).

iii. The topography is reflected in the spatial distribution of the geologic units and basins (Volta Basin, White Volta, Black Volta, Oti River).

Hence, the developed maps were used to study the relationships and comparisons between the geophysical fields, geologic units and provinces, and topographic structures of the country based on the input of high-resolution data. For each of these maps, data were processed using the Mercator projection for compatibility of the grids.

The topography data (Figure 1) after inspection had the data extremes ranging from −4696 m (Atlantic Ocean, Gulf of Guinea) up to 915 m (including elevations of the neighbouring countries: Togo, Burkina Faso, Ivory Coast), with a mean of −206.102 m and standard deviation at 1146.375 m. The highest point of Ghana was noted at the summit of Mt. Afadjia at 885 m according to the GEBCO grid, located in the east of the country on the border with Togo in the Volta Lake region.
Fig. 4. Free-air gravity (Faye's) model of Ghana using CryoSat-2 and Jason-1 satellite derived data. Mapping: GMT. Source: author.
Fig. 5 Vertical free-air gravity (Bouguer) model of Ghana using CryoSat-2 and Jason-1 satellite derived data. Mapping: GMT. Source: author.

Slika 5. Vertikalni model gravitacije slobodnog zraka (Bouguer) Gane na temelju satelitskih podataka CryoSat-2 i Jason-1. Kartiranje: GMT. Izvor: autor
uključujući Gvinejski zaljev. Uglavnom se nalaze u sjeveroistočnom području zemlje, što odgovara kambrijskim stijenama bazena Volte. Mora se istaknuti da se nastojanje proučavanja geološkog i geofižičkog stanja Gane, uključujući vizualizaciju geoidnih i gravitacijskih anomalija, mora ugraditi u sveobuhvatniji okvir upotrebom detaljnijih podataka. U ovom se radu, koristeći metode kartografskog prikazivanja, došlo do zaključka da geologija utječe i na geofizičko i topografsko stanje zemlje opažanjem da razlike u tim vrijednostima nisu univerzalne i da umjesto toga ovise o regionalnoj i lokalnoj geologiji. Niz istraživanja o utjecaju geologijskih razvoja na geofizičko i topografsko stanje Gane, počevši od vizualizacije topografskog reljefa u objemu mrežama. Numeričke su vrijednosti modelirane, uspoređene i vizualizirane za interpolaciju Bouguerovih i Fayeovih gravitacijskih anomalija na području Gane. Veće su vrijednosti (veće od 60 mGal) zabilježene za područja i u podmorskom i kopnom režiju, a izrazito negativne vrijednosti (−80 mGal) zabilježene su u vodenim područjima Gvinejskog zaljeva. Većinu terena Gane pokrivaju vrijednosti od −10 do −20 mGal (boja akvamarin na slici 4) s jasno vidljivim područjem proširenja visoravni Kwahu (25−30 mGal, narančasta boja na slici 4). Negativne su vrijednosti gravitacije uzrokovane učinkom izostazije budući daje gustoćastijen apnenjmanju odnosu jednosti gravitacije uzrokovane učinkom izostazije.

Fayeove gravitacijske anomalije slobodnog zraka su u snažnoj korelaciji s topografskom visinom. Interpolacijom Bouguerovih anomalija i sekvencijsnom transformacijom mogu se dobiti Fayeove anomalije slobodnog zraka.

**6. Zaključci i preporuke**

Ovaj rad predlaže da opisana kombinacija tradicionalnog GIS-a (s primjerom QGIS-a) i GMT metodologije skrteiranja za integrirano tematsko kartiranje Gane, počevši od visualizacije topografskog reljefa, a zatim dodavanjem niza geofizičkih i geoloških karata, nije samo funkcionalna alternativa metodama GIS-a za kartografsku obradu podataka u više formata i izradu kartata, nego također omogućuje brže kartiranje zbog skrteiranja ljske temeljene na konzoli. Upotreba sintakse GMT-a za pisanje kodova za modeliranje podataka, kartiranje i kartografsku vizualizaciju zahtjeva pristup sličan programiranju (Lemenkov 2020e, Lemenkov i Lemenkova 2021a). Naredbe GMT koda potrebne su za kontrolu specifičnih postavki postavljenih u skrte za svaki element visualiziran na karti za svaku rastersku mrežu, za razliku od standardne metodologije (Klauš i sur. 2014, 2017) GISA primijenjene u dijelu ovog istraživanja s pomoću QGIS-a. Dostupne tehnike za unakrsnu provjeru (cross-validation) i računanje rezultata dobivenih geološkim kartiranjem opisane su u prethodnim radowima i mogu se primijeniti u istraživanjima za usporedbu rezultata u sličnim situacijama (Malvić i sur. 2019, Ivšinović i Malvić 2020). Ovaj rad pokazuje

KIG Br. 36, Vol. 20, 2021, https://doi.org/10.32909/kg.20.36.2
The obtained results for geoid undulations (Figure 3) were checked using the 'gdalinfo' utility using the command: "gdalinfo geoid_GH.grd -stats". The data ranges from minimum=−32.535 m to a maximum=65.174 with mean=24.730 and standard deviation (StdDev)=21.013. In order to check the calculated values with respect to the geologic map (Figure 2), the maps were compared by overlaying the polygons of the geologic provinces on the basis of which the distribution of the geoid fields was determined were marked they cross and overlap the geologic units and provinces of Ghana. It was detected that the maximal geoid values (values >27 m, coloured pink in Figure 3) mostly extend over the Precambrian outcrops, while the minimal terrestrial values (22–23 m), not including the Gulf of Guinea, are mostly located in the NE region of the country, which corresponds to the Cambrian rocks of the Volta Basin.

It must be pointed out that in an effort to study the geologic and geophysical setting of Ghana visualization of geoid and gravity anomalies must be embedded into a more comprehensive framework using more detailed data. In this study, using cartographic representation methods, geology is reported to affect both the geophysical and topographic setting of the country by observing that the differences in those values are not universal and tend to be dependent on regional and local geology instead. A series of investigations on the impact of geology and geologic development on the geophysical setting and topography can further be continued using this study as a basis to explore the existence of bias phenomenon on comparative analysis of the topography and geology of the west African region. Both GMT and GIS in this study have shown that both scripting and traditional techniques consistently tend to perform well in the cartographic workflow, however, the GMT demonstrates more automation in techniques.

The free-air gravity maps visualized in Figures 4 and 5 for Faye’s and Bouguer reductions, respectively. In each case, the correlation between the fields and topographic values of the Ghanian relief was noted. The grid for the free-air gravity was used in Faye’s reduction (Figure 4).

In the area where the Kwahu Plateau extends between 0.15°W−1.0°W, 6.00°N–7.20°N, the free-air gravity values are above 40 mGal (dark red colour in Figure 5), that is, higher compared to the plain surrounding areas (between −5 to 1 mGal, coloured yellow in Figure 5). Selected depressions in the topography of the Volta Basin coincide and are in correspondence with the lower values of gravity (−30 to −20 mGal, green colours in Figure 5). The correspondence between the submarine relief in the coastal area of the Gulf of Guinea also demonstrates comparability between the elevated relief and higher free-air gravity values.

The comparison between Faye’s and Bouguer reductions gives the following results. The data range for Faye’s gravity (grav_27.1.img) extends from the minimum=−66.055 to a maximum=92.523, with a mean of 7.462 and standard deviation (StdDev)=20.665. For the same grid extent, the vertical gravity in the Bouguer reduction (curv_27.1.img) demonstrates the following data range: minimum=−126.055, maximum=157.265, mean=0.267 and the standard deviation (StdDev)=12.482. It indicates that Faye’s gravity reduction shows a more compact data range and general extent which is higher for the Bouguer gravity due to the differences in the data processing algorithm.

The free-air Faye gravity anomalies are strongly correlated with topographic height and can be achieved by the interpolation of Bouguer anomalies and sequential transformation to the free-air (Faye’s) anomalies.

Local linear correlation with the topographic heights of the relief in Ghana are demonstrated in both grids. Numerical values are modelled, compared and visualized for the interpolation of both Bouguer and Faye’s gravity anomalies on Ghana. Higher values (over 60 mGal) are recorded for the elevated areas both in the submarine and terrestrial relief, while strongly negative values (<−80 mGal) are noted in the water areas of the Gulf of Guinea. The majority of the Ghana terrain is covered by the values −10 to −20 mGal (aquaamarine colour in Figure 4) with clearly visible region of the extension of the Kwahu Plateau (25–30 mGal, orange colour in Figure 4). The negative values in gravity are caused by the isostasy effect, as rock density of the mountains is lower, compared with the surrounding Earth’s mantle. Hence, positive gravity values may indicate metallic ores and help in geologic prospecting.

6 Conclusions and Recommendations

The presented paper proposes that the described combination of the traditional GIS (with an example of QGIS) and scripting GMT methodology for an integrated thematic mapping of Ghana, starting with topographic relief visualization and then adding a series of geophysical and geologic maps, is not only a functional alternative to the GIS methods for cartographic multi-format data processing and map producing, but may also be significantly faster due to the console-based shell scripting applied for mapping.
doprinos razvoju kartografskih metoda. Osim toga, nizom tematskih karata naglašava se korelacija između geofizičkih, geoloških i topografskih svojstava Gane uz upotrebu nekoliko skupova podataka (gravitacijske mreže, geoidni model, geološki slojevi i topografski raster) kako bi se prikazala raspodjela geofizičkih polja na području Gane na temelju uspoređene analize kartografskih podataka obrađenih integrimanim pristupom dvaju geomskeh alata otvorenog koda: skupa kartografskih alata za skriptiranje na GMT konzoli i softverskog proizvoda QGIS.

Preporuke za buduća istraživanja mogu se sažeti na sljedeći način:
1. GMT se može upotrijebiti za proširene regije Gane prema dostupnim skupovima geoloških podataka ili terenskim podacima. Mogu se primijeniti i drugi moduli GMT-a (Lemenkova 2020c, 2020d). QGIS ili drugi GIS otvorenog koda može se uzeti u obzir za kartiranje, npr. sustav za automatiziranje geoznanstvene analize (System for Automated Geoscientific Analyses GIS – SAGA GIS) ili GIS okruženje za vizualizaciju slika (Environment for Visualizing Images – ENVIGIS).
2. Kvalitetu geoloških podataka treba pažljivo procijeniti. To uključuje kontrolu pouzdanosti i porijekla, formata i rezolucije, prostornog opsega i relevantnosti podataka. Prije rukovanja skupovima podataka i donošenja odluka o njihovoj prihvatljivosti za kartiranje mora se ispitati kvaliteta podataka. To bi obično trebalo sadržavati procjenu postavljenih metapodataka i relevantnih komentara koji često prate skupove podataka. Što više, analiza podataka sadrži kontrole vremena generiranja skupa podataka ili vremenske linije geološkog terenskog rada i relevantne tehničke specifikacije.
3. Za usporednu kartu s prethodno izrađenima preporuča se retrospektivna analiza rezultata. Ona bi trebala temeljiti na različitim prethodno izrađenim kartama Gane i prethodnim geološkim istraživanjima.
4. Proširenje istraživanja prema multidisciplinarnom projektu o geologiji Gane uključuje prirodne i društvene aspekte istraživanja mineralnih resursa. Buduća istraživanja također mogla razmotriti razvoj saznaja o geološkim zajednicama i proširiti projekte na nastojajućim geološkim područjima Gane. Dodatna studija mogla bi sadržavati procjenu podataka o okolišu i klimatskim pitanjima (poplave, suše), društvenom razvoju i koristima za lokalno stanovništvo.
5. Statistički bi podatci ažurirali i donijeli nova pitanja u geofizičkim istraživanjima Gane integrirajući prirodne i društvene znanosti. Kombinacija statističkih podataka i kartiranja mogla bi se postići korištenjem jezika R ili Pythona koji sadrže niz biblioteka za obradu i vizualizaciju tabličnih podataka.

Zahvala

Autorica zahvaljuje anonimnim recenzentima, lektoru i uredniku na pažljivom pregledu, detaljnim komentarima i prijedlogima koji su poboljšali početnu verziju ovog rukopisa.
In particular, using GMT syntax to write codes for data modelling, mapping and cartographic visualization appears to require an approach similar to programming (Lemenkova 2020e, Lemenkov and Lemenkova 2021a). These GMT code lines are needed to control the specific settings in a script for each element visualized on a map for each raster grid as opposed to the standard GIS methodology (Klaučo et al. 2014, 2017) presented by the GIS where the settings were defined for the maps as undertaken in the QGIS part of this research. The available techniques for the cross-validation and calculation of the results received in geological mapping are described in previous studies and can be applied in research for comparison of results in similar studies (Malvić et al. 2019, Ivšinović and Malvić 2020).

This paper demonstrates a contribution to the development of mapping methods in cartography. Moreover, through a series of thematic maps it highlights the correlations between the geophysical, geological and topographic setting of Ghana using several datasets (gravity grids, geoid model, geologic layers and topographic raster) to show the distribution of the geophysical fields over the terrain relief of Ghana based on comparative cartographic data analysis processed by an integrated approach of the two open source geomatic tools: the GMT console-based scripting cartographic toolset and the QGIS software product. The recommendations for future studies can be summarized as follows:

1. Using GMT scripting is beneficial for enlarged regions of Ghana using the available geological datasets or fieldwork data. Other GMT modules can be applied as well (Lemenkova 2020c, 2020d). QGIS or other open-source GIS may be considered for mapping, e.g. System for Automated Geoscientific Analyses GIS (SAGA GIS) or the Environment for Visualizing Images GIS (ENVI GIS).

2. Geologic data quality should be assessed carefully. This includes controlling the data reliability and origin, format and resolution, spatial extent and relevance. Before handling datasets and making decisions about their acceptability for mapping, data quality has to be examined. It should normally include the inspection of settings using metadata and the relevant comments often accompanying a dataset. Moreover, data analysis includes controlling the dataset generation time or the timeline of the geologic fieldwork and relevant technical specifications.

3. Retrospective analysis of the results is advised for the comparison of maps with previously made ones. This should be based on different maps of Ghana of an earlier origin and made by geological surveys in order to control the quality of the new maps using previously made ones.

4. Expanding the research towards a multidisciplinary project on the geology of Ghana includes both natural and social aspects of mineral resource exploration. Future research might also consider collaborative works with local geologic communities and expand projects towards emerging or geologically promising areas of Ghana. Additional studies can include environmental data assessment on climate issues (floods, droughts), social development and benefits for the local population from geologic exploration (e.g., increased employment, social facilities, mobility and possibilities for people).

5. Statistical data would update and bring new issues in geologic research on Ghana, integrating natural and social sciences. The combination of statistical data and mapping could be achieved by the use of R or Python languages that have a variety of libraries for tabular data processing and visualization.

To conclude, it is important to note the significance of scripting methods in contemporary cartography. Since the first scripting applications in cartographic routine, the emphasis has been placed on increasing both the quality and the speed of mapping achieved by machine learning algorithms in data processing. The first issue concerns the precision and aesthetics of maps. The second one concerns the automatization that increases the speed of data processing compared to the traditional GIS.

Hence, research on the geology and geophysics of Ghana should consider an integrated mapping methodology as a challenge for expanding technical cartographic tools into other geologic studies of Ghana in similar projects. While this emphasis is justified by the importance of automatization and machine learning in Earth sciences as technical tools, it also arises from the reason that the interest towards the geology of Ghana is consistently growing due to the exceptional richness of the country’s mineral resources.

**Acknowledgements**

The author would like to thank the anonymous reviewers, corrector and the editor for their careful review, detailed critical comments and suggestions that improved the initial version of this manuscript.
References / Literatura

Abdulai J, Nimoh F, Darko-Koomson S, Kassoh K F S (2017) Performance of vegetable production and marketing in peri-urban Kumasi, Ghana. Journal of Agricultural Science, vol. 9, no. 3, 202-218. doi:10.5539/jas.v9n3p202

Adu-Baffour F, Daum T, Bimer R (2021) Governance challenges of small-scale gold mining in Ghana: Insights from a process net-map study. Land Use Policy, vol. 105, 2021. doi:10.1016/j.landusepol.2021.104668

Adu-Gyamfi B, Shaw R, Ofosu B (2021) Identifying exposures of health facilities to potential disasters in the Greater Accra Metropolitan Area of Ghana. International Journal of Disaster Risk Reduction, vol. 54, 1-2028. doi:10.1016/j.ijdrr.2021.102628

Affaton P (1990) Le basin des Volta (Afrique de l’Ouest): un marge passive, d’age proterozoique superieur, tectonissee au Panafricain (600+ 50 Ma). These Docteur ès Sciences en Géologie. Faculté des Sciences et Techniques, St-Jerome, Marseille, France, 462 pp

Ahonor K, Awusua EM, Ewuasi A, Affam M (2018) Geotechnical and petrographic characterisation of the Birimian granitoids in southern Ghana as an aggregates for sustainable road construction. International Journal of Advanced Engineering Research and Science, vol. 5, no. 3, 40-49. doi:10.22161/jaers.5.3.7

Ahao E, Kassahun A, Tekinerdogan B (2020) Business processes and information systems in the Ghana cocoa supply chain: A survey study. NJAS – Wageningen Journal of Life Sciences, vol. 92, 100323. doi:10.1016/j.njas.2020.100323

Allbone A, Tassdale J, Cameron G, Etheridge M, Uttley P, Soboh A, Apipah-Kubi J, Adanu A, Arthur R, Mamphay J, Odom B, Zuta J, Tsikata A, Pataye F, Famijeh S, Lamb E (2002). Timing and structural controls on gold mineralization at the Bogoso Gold Mine, Ghana, West Africa. Economic Geology, vol. 97, 949-969

Anaman-Krah R K, Anim-Sackey C (2003) Strategies for sustainable development of the small-scale gold and diamond mining industry of Ghana. Resources Policy, vol. 29, no. 3-4, 131-138. doi:10.1016/S0920-9202(03)00010-8

Amoako B, Boahen E F (2015) The three-dimensional causes of flooding in Accra, Ghana. International Journal of Urban Sustainable Development, vol. 7, no. 1, 109-129. doi:10.1080/19463138.2014.984720

Amponsah P O, Salvi S, Bézat D, Siebenaller L, Baratoux L, Jessell M W (2015) Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana. Journal of African Earth Sciences, vol. 112, part B, 505-523. doi:10.1016/j.jafrearsci.2015.06.013

Ankrah I, Lin B (2020) Renewable energy development in Ghana: Beyond potentials and commitment. Energy, vol. 198, 117356. doi:10.1016/j.energy.2020.117356

Ansaq S O, Ahlatuku M A, Yorke C K, Otur-Larbii F, Bashiru Yahaya Lamptey P N L, Tanu M (2020) Meteorological Analysis of Floods in Ghana. Advances in Meteorology, Article ID 4230627, 1-14. doi:10.1155/2020/4230627

Appiah H (1991) Geology and mine exploration trends of Prestea Goldfields, Ghana. Journal of African Earth Sciences (and the Middle East). Vol. 13, no. 2, 1991, 235-241 https://doi.org/10.1016/0899-5362(91)90008-8

Arthur E, Anyemedu FO K, Gyamfi C, Asante-Tannor P, Adjei KA, Anornu G K, Odai SN (2020) Potential for small hydropower development in the Lower Pra River Basin, Ghana. Journal of Hydrology: Regional Studies, vol. 32, 100757. doi:10.1016/j.jhr.2020.100757

Attoh K (1998) High-Pressure Granulite Facies Metamorphism in the Pan-African Dahomyside Orogen, West Africa. The Journal of Geology, vol. 106, no. 2, 236-246

Ayanoore I (2020) The politics of local content implementation in Ghana’s oil and gas sector. The Extractive Industries and Society, vol. 7, no. 2, 283-291. doi:10.1016/j.exis.2019.11.004

Benshaul-Tolonen A, Chuhan-Pole P, Bandalu A, Kotsadam A, Sanoh A (2019). The local socioeconomic effects of gold mining: Evidence from Ghana. The Extraterrrestrial Industries and Society, vol. 6, no. 4, 1254-1255. doi:10.1016/j.exis.2019.07.008

Black R, Fabre J. (1983) A brief outline of the geology of West Africa. In: Fabre J (Ed.). West Africa-geological introduction and stratigraphic terms. Pergamon Press, Oxford, 17-26. https://doi.org/10.1016/B978-0-08-030277-5.50006-7

Boher M, Abouchami W, Michard A, Abarade F, Ande N T (1992) Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, vol. 287, 1-30. doi:10.1016/j.precamres.2016.10.011

Bohmer M, Abouchami W, Michard A, Abarade F, Ande N T (1992) Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, vol. 97, no. 81, 345-369. doi:10.1029/91JB01640

Chudasama B, Porwal A, Kreuzer O P, Butera K (2016) Geology, geodynamics and orogenic gold prospectivity modelling of the Paleoproterozoic Kumasi Basin, Ghana, West Africa. Ore Geology Reviews, vol. 78, 692-711. doi:10.1016/j.oregeorev.2015.08.012

Danso D K, François B, Hingray B, Dieudhiou A (2021) Assessing hydropower flexibility for integrating solar and wind energy in West Africa using dynamic programming and sensitivity analysis. Illustration with the Akosombo reservoir, Ghana. Journal of Cleaner Production, vol. 287, 1-30. doi:10.1016/j.jclepro.2020.125559

Davis D W, Hirdes W, Schaltegger U, Nunoo EA (1994) U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa. Precambrian Research, vol. 67, no. 1–2, 89–107. doi:10.1016/0301-9268(94)90006-X

Defence Mapping Agency (1992) Development of the Digital Chart of the World. Washington, D.C., U.S. Government Printing Office.

Deynoux M, Affaton A, Trompette R, Villeneuve M (2006) Pan-African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian and foreland basins of West Africa. Journal of African Earth Sciences, vol. 46, 397–426

Eiseleinoh B N, Hirdes W (1992) The structural development of the early Proterozoic Birimian and tarkwaian rocks of southwest Ghana, West Africa. Journal of African Earth Sciences (and the Middle East). Vol. 14, no. 3, 313–325. doi:10.1016/0899-5362(92)90035-B
