Systematic comparison of ranking aggregation methods for gene lists in experimental results

Citation for published version:
Wang, B, Law, A, Regan, T, Parkinson, N, Cole, J, Russell, CD, Dockrell, DH, Gutmann, MU & Baillie, JK 2022, 'Systematic comparison of ranking aggregation methods for gene lists in experimental results', Bioinformatics, vol. 38, no. 21, pp. 4927-4933. https://doi.org/10.1093/bioinformatics/btac621

Digital Object Identifier (DOI):
10.1093/bioinformatics/btac621

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Bioinformatics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Systematic comparison of ranking aggregation methods for gene lists in experimental results

Bo Wang 1,∗, Andy Law 1, Tim Regan 1, Nicholas Parkinson 1, Joby Cole 2, Clark D. Russell 3, David H. Dockrell 3, Michael U. Gutmann 4,∗ and J. Kenneth Baillie 1,∗

1 Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
2 University of Sheffield, Sheffield, UK
3 Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
4 School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK.

∗To whom correspondence should be addressed.

Abstract

Motivation: A common experimental output in biomedical science is a list of genes implicated in a given biological process or disease. The gene lists resulting from a group of studies answering the same, or similar, questions can be combined by ranking aggregation methods to find a consensus or a more reliable answer. Evaluating a ranking aggregation method on a specific type of data before using it is required to support the reliability since the property of a dataset can influence the performance of an algorithm. Such evaluation on gene lists is usually based on a simulated database because of the lack of a known truth for real data. However, simulated datasets tend to be too small compared to experimental data and neglect key features, including heterogeneity of quality, relevance and the inclusion of unranked lists.

Results: In this study, a group of existing methods and their variations which are suitable for meta-analysis of gene lists are compared using simulated and real data. Simulated data was used to explore the performance of the aggregation methods as a function of emulating the common scenarios of real genomic data, with various heterogeneity of quality, noise level, and a mix of unranked and ranked data using 20000 possible entities. In addition to the evaluation with simulated data, a comparison using real genomic data on the SARS-CoV-2 virus, cancer (NSCLC), and bacteria (macrophage apoptosis) was performed. We summarise the results of our evaluation in a simple flowchart to select a ranking aggregation method, and in an automated implementation using the meta-analysis by information content (MAIC) algorithm to infer heterogeneity of data quality across input data sets.

Availability: The code for simulated data generation and running edited version of algorithms: https://github.com/baillielab/comparison_of_RA_methods.

Code to perform an optimal selection of methods based on the results of this review, using the MAIC algorithm to infer the characteristics of an input dataset, can be downloaded here: https://github.com/baillielab/maic.

An online service for running MAIC: https://baillielab.net/maic.

Contact: bowang.rex@gmail.com; michael.gutmann@ed.ac.uk; j.k.baillie@ed.ac.uk

Supplementary information: Supplementary file 1 is available at Bioinformatics online. Supporting data 1-7 (supporting results and collected real genomic data) are available on GitHub at: https://github.com/baillielab/comparison_of_RA_methods.

1 Introduction

In biology, there are usually many results from different sources for the same or a similar problem. Many results take the form of a list of genes or proteins, especially for screens of genes, transcripts and proteins related
Bo Wang et al.

Unranked lists are common in biology. Examples include annotated pathways (e.g. KEGG (Kanehisa et al., 2019), Reactome (Jassal et al., 2020), WikiPathways (Slentzer et al., 2018)), co-expression clusters (e.g. FANTOMS (Andersson et al., 2014), STRING database (Szklarczyk et al., 2016)) and reports providing a group of entities as the positive result of a study without ranking them. However, unranked lists are not explicitly accommodated by many aggregation methods and are often either excluded from meta-analyses or incorporated in an ad-hoc manner.

All methods investigated in this study can deal with ranked lists as input (reported genes with order information), irrespective of whether each list includes all possible entities or not. However, only a few methods among them can accept unranked lists as input. Some approaches like MAIC (Li et al., 2020) and VoteCounting (Li et al., 2020) explicitly claim that they can deal with unranked data. Some methods which are designed only for ranked lists can also tackle this type of input with a slight change to the algorithm, such as Borda’s methods (Brancotte et al., 2015). An unranked source can be a special case of ranking with ties (entities with the same ranking) (Brancotte et al., 2015) so that methods that can deal with ranking with ties can also accept unranked sources. An example can be RepeatChoice (Alion, 2010), which breaks ties starting from an input ranking using order information of other sources. A study (Brancotte et al., 2015) on ranking with ties modelled some methods to adapt them to ties, like Borda’s methods. Borda’s methods have variations using statistics like mean value (MEAN, GEO) or median (MED) (de Borda, 1781; Lin, 2010) and can accept an unranked list by assigning the same ranking to entities within the list, which is intuitively reasonable for unranked sources.

In contrast, unranked sources are not explicitly accommodated by some relatively complicated methods although ideas about dealing with absent ranking information especially for ranked top-d partial lists are sometimes proposed. Examples can be Bayesian methods like BiG (Li et al., 2018) and BARD (Deng et al., 2014), with a solid Bayesian theoretical framework and an estimated distribution instead of only a ranking as the result for each algorithm.

The dataset and the problem at hand can influence the applicability of an algorithm a lot. For example, the inclusion of unranked sources can make methods that only accept ranked sources unusable. Noise level and heterogeneity of the noise are also important properties of the data sources and not every method can perform well on very noisy partial ranked data (Kolde et al., 2012). Optimising a metric which treats all sources equally in the calculation, such as the MEAN method of Borda’s methods, is not suitable when significant noise is included (Kolde et al., 2012). Moreover, a large number of elements (e.g. around 20000 genes for humans) also makes methods like Cross Entropy Monte Carlo (CEMC) (Lin and Ding, 2009) unsuitable because of the computational cost Li et al. (2019). Considering the features of the genomic datasets, specific evaluation of ranking aggregation methods is thus required to establish their performance.

Ranking aggregation methods usually use simulated datasets for evaluation (Li et al., 2019; Kolde et al., 2012; Deng et al., 2014; Yi et al., 2016) as there is a lack of large genomic real datasets with definitive answers. In contrast, simulated data provide ground truth values and can also be used to investigate the effect that specific properties of the real data, like the amount of noise or heterogeneity in the source quality, have on the different algorithms.

In many existing studies, including RRA (Kolde et al., 2012), BARC (Yi et al., 2016), BIG (Li et al., 2018), BIRRA (Badgley et al., 2015) and MAIC (Li et al., 2020), simulated data was used. Existing research explored datasets with some features of genomic data, including various partial cases to cut lists, noise levels, heterogeneity of source quality (Li et al., 2019, 2020), and the way of setting top 5% as truth (Kolde et al., 2012; Badgley et al., 2015). But some important features for genomic data, including the difference between the top-ranked genes in the truth set and a large number of entities (like over 20,000 genes for humans), have not been systematically explored. To evaluate MAIC (Li et al., 2020), 500 entities were used in the simulated data, and the evaluations in Li et al. (2019, 2020) used 1000 entities for the simulated data.

Assigning a score for each entity subject to noise from some pre-defined distributions is a common way to generate simulated data. The expected mean score of each entity is an arbitrarily defined constant to show the

![Diagram](https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac621/6696211)
difference in the significance of genes for the simulation. These scores rank genes from top-ranked genes to bottom, or classify genes into truth group and noise group (Koldke et al., 2012; Yi et al., 2016; Li et al., 2018).

In previous research about the MAIC algorithm (Li et al., 2020), the data set used in the evaluation is generated by ranking Z scores sampled from independent normal distributions given a list specified precision (inverse covariance). This data generation model can control the heterogeneity of list quality and average noise level but was in previous research only used to generate small data sets and short lists (500 potential entities) in order to compare the RRA, MAIC, and Vote Counting (VC) method. It has a high potential to generate well-simulated data and forms the basis of the new data simulation method proposed in this study.

As summarised in Figure 1a, we first generated realistic synthetic datasets to simulate real features of biological experimental results. We then used these synthetic data, together with real data from selected fields of biology, to systematically evaluate aggregation methods in a range of conditions expected to be encountered in real-world conditions (mixed vs. ranked data, large data set sizes, heterogeneity, noise).

Contribution

- Viral infection (SARS-CoV-2), cancer (non-small cell lung cancer; NSCLC), and bacterial infection (modulation of macrophage apoptosis) datasets were collected. Each set used in the assessment is extracted from sources either more highly related to the research question of the corresponding meta-analysis or published in a closer time and is considered to be highly reliable.
- A new simulation data generation method is proposed by analysing 3 real datasets in terms of list number, length, order information, quality of sources, heterogeneity of quality, absent genes, and also the relationship between each significant gene.
- Implementation of investigated ranking aggregation methods and variations of them that are suitable for dealing with genomic data was carried out based on existing source code, enabling them to use the data with the same format easily and providing the ability of using unranked lists as input for some algorithms. They are evaluated systematically on both the real and the simulated datasets.
- The overall evaluation results are condensed in a practical flowchart to select appropriate ranking aggregation methods depending on the ranking information, the number of included sources and the heterogeneity in the quality of the data sources.

2 Methods

2.1 Real data collection

Three real datasets are collected, corresponding to virus (SARS-CoV-2), bacteria (macrophages apoptosis) and cancer (NSCLC), as shown in Table 1. The detailed description of it is in Supplementary file 1 - Section 1.

2.2 Simulated data and experiment design

In order to better explore the properties of real data, which usually includes a large number of entities, a new stochastic generative model that emulates real data is proposed. It includes 20000 potential entities (human genome scale) in total and incorporates heterogeneity in the lengths of lists. The top 1000 (5%) entities will be considered as signal/significant entities, which corresponds to the number of top-ranked genes being focused on in real research.

For list \(L_i \), entity \(E_k \) (k=1…20000), mean noise scale \(M_i \), mean cutting point \(m_k \), heterogeneity of noise \(D_i \), heterogeneity of cutting point \(D_k \), range for each list length \([L_i, U_i]\), entity significance \(\mu_k \) for entity \(E_k \), the score \(Z_{ek} \) for entity \(E_k \) in list \(L_i \) is

\[
Z_{ek} \sim N(\mu_k, \sigma^2_k)
\]

\[
\ln(\sigma^2_i) \sim N(\ln(M_i), D_i)
\]

where \(\mathcal{N}(\mu, \sigma^2) \) denotes a Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \). The number of entities which will be finally included in list \(L_i \) is denoted by \(N_i \in [L_i, U_i] \) and generated as follows:

\[
N_i = \min([C_i + L_i, U_i])
\]

\[
\ln(C_i) \sim \mathcal{N}(\ln(m_k), D_k^2)
\]

\([C_i + L_i \) is the cutting point for list \(L_i \) to only keep the top \(N_i \) entities in the list and \(N_i \in [L_i, U_i] \). \(\ln(C_i) \) is used instead of \(C_i \) to make the perturbation on a larger scale easier than a smaller scale, because the difference on a larger scale of length is considered to be less significant. For example, the difference between length 2 and 102 are more significant than the difference between length 19000 and 19100. After the generation, all the potential entities within list \(L_i \) are ranked by score \(Z_{ek} \). Then, \(X \) entities will be removed randomly from list \(L_i \) as controlled by a ratio \(\gamma \),

\[
X = \lceil \gamma \times (20000 - N_i) \rceil
\]

followed by removing the bottomed ranked entities until there are only \(N_i \) entities left. Then list \(L_i \) is labeled as “RANKED” or “UNRANKED” to indicate whether the order information for these \(N_i \) entities are provided or not. The settings of hyperparameters of the model, i.e. \(L_i, U_i, m_k, D_i, M_i, D_k, \gamma \), the number of the lists and whether each list is ranked or unranked, are discussed in the Section 2 of Supplementary file 1.

In a real study, the length of the reported list is usually a result of two factors. The first one is that bottom-ranked genes are removed and not reported, whereas the second one is that some genes are not included in the study in the first place when the study is not genome-wide. These two situations were both explored by Li et al. (2019) (Li et al., 2019) and the new proposed model outlined above. The first case is emulated by removing bottomed entities for simulated lists whereas the second case is emulated by removing entities (uniformly) at random.

The details about the exploration and parameter settings are included in Section 2 of Supplementary file 1. List number, order information, list length, frequency decay of top-ranked entities, list quality and absent genes of 3 collected real datasets were assessed and the model parameters were set such that the simulated data can well emulate the real scenarios. Depending on the number of sources in a dataset (Large or Small) and whether unranked lists are included (Mix or Rank), 4 groups of datasets were generated. For each of the 4 types of data, various values for \(M_i, D_i, \) and \(\gamma \) are used to generate different datasets that cover different scenarios of noise levels, heterogeneity and absent gene rates. A “Mix” dataset has exactly the same ranked lists as the corresponding “Rank” dataset and the only difference between them is the inclusion of additional unranked entities. It enables the comparison of results between datasets with and without unranked lists to explore the effects of including unranked lists for methods which can accept unranked input sources.

2.3 Selection and implementation of existing methods

As shown in Figure 1b, 18 methods and their typical variations are selected to include various properties of ranking aggregation methods and are suitable to deal with genomic data. They were implemented based on existing code if accessible. The implementation language for MAIC (Li et al., 2020), VC, and RepeatChoice is Python whereas it is R for all other investigated methods except for BARD (Deng et al., 2014), which has available code implemented in C++.

RepeatChoice and VC
are implemented based on the algorithms introduced in (Alon, 2010) and (Li et al., 2020) respectively, whereas other investigated methods are all implemented based on the available code. Similar to the research by Li et al. (2019), Borda’s methods (de Borda, 1781; Lin, 2010) are labelled with ‘r’ and ‘t’ to show different implementations from the RobustRankAggreg package and TopKList package. BiGbottom (treating absent genes as bottom-ranked) and BiGtop (treating the order information of absent genes as unknown) are two different versions of BiG (Li et al., 2018). For Borda’s methods and Stuart algorithm (Stuart et al., 2003) from R package - RobustRankAggreg, each of them can easily be edited to enable the input of unranked lists. They are edited by setting genes in unranked lists to have the same ranking, which is half of the list length. The new names for them are rMixMED, rMixMEAN, rMixGEO and MixStuart. For algorithms which are not able to deal with unranked lists, they only take ranked lists as the input for the evaluation in this study. In terms of an evaluation on a mix of ranked and unranked sources, the unranked lists are not used when they are available for these algorithms, which emulates the real usage case of these algorithms. The details of methods selection and implementation are shown in Supplementary file 1 - Section 3.

3 Results

This section includes the results of experiments on real and simulated data. Only the best-performing methods and some methods with interesting methodology or performance are shown in Figure 2 for important experiments to avoid clutter in the figure. Full details of the results are provided in Supplementary file 1 and Supporting data with all investigated methods included.

3.1 Performance measurements

The measurement used to show the accuracy of methods in gene data should be able to weight top-ranked genes more than bottom ones since they are usually more important in biological research. But how important each position is compared with others is not known. Weighting each position can be used when comparing two lists, like average overlap (AO) (Wu and Crestani, 2003; Webber et al., 2010) which provides a score with built-in importance of each position. But the result can be largely influenced by the way a measurement weighs each position. To cover the various scenarios in biological research and provide easily understandable results, coverage rates for various cut-offs are selected as the measurements, similar to the measurements used in (Li et al., 2019, 2018). Specifically, it is the accuracy value for experiments on simulated data since the ranking for truth is known. Recall-value is used to measure the coverage rate in real data experiments since only unranked truth sets are available. All simulated datasets are generated with 100 repeats for each combination of parameters and 95% confidence intervals are plotted using shading in Figures 2. The result with top-1000 cutoff is mainly explored, together with a comparison with other smaller cutoffs in Section 4 of Supplementary file 1 and Supporting data.

3.2 Result for datasets with a mix of ranked and unranked sources

It can be seen from Figure 2a that MAIC gives the best performance on a large dataset with both ranked and unranked lists like dataset type MixLarge which emulates SARS-CoV-2 dataset, especially when there is a relatively large heterogeneity of list quality (shown as D in simulation). It also gives the best performance for nearly all the cutoffs from top-1 to top-1000 in the evaluation of SARS-CoV-2 datasets as shown in Figure 2e. Another one of the best-performing methods for the SARS-CoV-2 dataset is rMixGEO, which reaches the best level to have similar performance as MAIC when heterogeneity is small in the simulated data, like D = 0.1. As a method using simple statistics, rMixGEO wins against most more complicated methods in this scenario, but it is not as robust as MAIC when heterogeneity is high.

In terms of a relatively small dataset with a mix of ranked and unranked sources (MixSmall in the simulation as shown in Figure 2b), MAIC and rMixGEO follow the same performance pattern as for large datasets. MAIC still reaches the highest performance level whereas rMixGEO experiences a decreasing performance ranking among the investigated methods as the heterogeneity increases. One interesting point is that the performance ranking of BIRRA is influenced a lot by both mean noise and heterogeneity, becoming top-ranked when heterogeneity is high and mean noise is low for small datasets (see Supplementary file 1 - Figure 9).

For each of NSCLC and macrophage apoptosis data, both input lists and the gold standard truth are extracted from less than 10 sources. So the results of NSCLC and macrophage apoptosis data are likely to be quite noisy and less informative than SARS-CoV-2 result. But as the macrophage apoptosis result shows in Figure 2e, the results of these real data still identify that some methods roughly outperform others. rMixGEO and MAIC still show a relatively good performance whereas BIRRA does not perform as well as them. BIRRA and BiGbottom further produce top-ranked results when heterogeneity is high and mean noise is low for small simulated datasets, but they are not as robust to a large mean noise level as MAIC (see Supplementary file 1 - Figure 9). Plotted in Figure 2b and Supplementary file 1 - Figure 9, top performed methods including MAIC and rMixGEO are all robust to a change of noise levels under the heterogeneity where they outperform others (all investigated heterogeneity for MAIC and low heterogeneity for rMixGEO) and especially perform well for classic cases (M is 3, which is the classic case that emulates real datasets best, see Supplementary file 1 - Section 2). They are also robust to various cutoffs and absent gene rates for sources in their corresponding top performed heterogeneity scenarios (all heterogeneity for MAIC and low heterogeneity for rMixGEO), shown as Supplementary file 1 - Figure 6, and also the comparison between the result with top-1000 cutoff and top-100 cutoff plotted in Supplementary file 1 - Section 4.

Table 1. Sources of the collected real data.

Dataset	Extracted Lists	Source
SARS-CoV-2	11 ranked + 21 unranked lists	Extracted lists till 2020-07-9 from (Parkinson et al., 2020)
NSCLC	3 ranked lists	Borczuk et al. (2003); Kothare et al. (2014); Li et al. (2015); Zhou et al. (2011); Riom et al. (2012)
macrophage apoptosis	1 ranked lists	The other 2 from (Huang et al., 2020; Kantar et al., 2010)
	2 unranked lists	(MacHugh et al., 2012; Yang et al., 2019)
3.3 Result for datasets with only ranked sources

The results for large datasets with only ranked sources are shown in Figure 2c. To avoid duplicates, the rMixGEO is not shown since it is the 'Mix' version of rGEO and performs exactly the same as rGEO for ranked lists. In this figure, the ranking of BIRRA shows the best performance among investigated methods for large datasets with only ranked sources (RankLarge) when heterogeneity D reaches 1. The ranking of it tends to be robust to the mean noise level in this scenario. For smaller heterogeneity, rGEO, BiGbottom, MAIC, rMEAN (see the results of rMEAN in Supplementary file 1 and Supporting data) and MC3 are top-ranked with similar performance, whereas BiGbottom and MAIC are more robust for high heterogeneity.

Small datasets with only ranked sources (RankSmall) prefer MAIC, BIRRA, and BiGbottom for the high heterogeneity case like D is 3, showing the similar best performance for them among investigated methods for top-1000 accuracy, as shown in Figure 2d (left). Among them, the accuracy of BiGbottom is also one of the highest when heterogeneity is small (D equals 0.1), with a similar performance as rGEO and MC3 in this scenario. BiGbottom also shows better robustness in terms of a change of cutoffs than MAIC and BIRRA. Compared with the result with top-1000 cutoff where these three methods show similar performance in the high heterogeneity case, BiGbottom obviously outperforms other investigated methods for top-100 cutoff result, shown in Figure 2d (right). Whereas MAIC and BIRRA are outperformed by rGEO.

Similar to macrophage apoptosis data, NSCLC result also tends to be relatively less informative since the lack of sources for input dataset and truth set. However, MAIC, BIRRA, rGEO, MC3 and BiGbottom all perform relatively well shown as the corresponding plot in Figure 2e.

4 Discussion

The difference between the performance of investigated ranking aggregation methods on the proposed simulated datasets and 3 real datasets were compared. The results show that whether to include unranked lists for input data and the heterogeneity of quality for sources can largely influence the performance of the investigated ranking aggregation methods.
The evaluation result in this study can provide some insights on the data selection and method selection for ranking aggregation of genomic problems.

Data selection: Using a mix of ranked and unranked data instead of giving up unranked sources can lead to a better result, as shown in the comparison between the results for sources with unranked sources (Figure 2a,b) and the results for only ranked sources (Figure 2c,d). Compared to the “Rank” datasets which only use ranked sources, the “Mix” datasets include unranked sources as additional input data for those methods which can use unranked lists. The ranked lists included in corresponding “Mix” and “Rank” datasets are the same so that the comparison between these datasets can show the effect of using additional unranked sources for methods which can accept them. When unranked lists are included, the accuracy can grow impressively especially for those top-performing methods, which is shown by the result of MAIC and rMixGEO (rMixGEO is a variation of rGEO which can accept unranked lists as input) that accept a mix of ranked and unranked data as input. Their performance improved substantially when unranked lists are included (left figures of Figure 2a,b) compared to using only ranked sources (left figures of Figure 2c,d), reaching the best performance among investigated methods with appropriate heterogeneity. It shows that unranked data has useful information to improve the meta-analysis.

Method selection. Considering all the evaluation results, a flowchart for selecting methods depending on fundamental properties of the available data is shown in Figure 3. In order to construct the flowchart, the accuracy with top-1000 cutoff for the result of simulated datasets is firstly considered to select methods in each scenario, followed with a robust checking for various mean noise levels, cutoffs used for the measurement and absent gene rates to only select methods with relatively good robustness for these properties.

MAIC and rMixGEO show the best performance among all the methods investigated when using a mix of ranked and unranked data, while MAIC is more robust for the relatively high heterogeneity case. The method rMixGEO, which is based on simple statistics, is more intuitive and easier to implement and can be selected when the heterogeneity of quality is known to be low, such as a dataset with many sources from the same repeated experiments.

If a dataset only includes ranked data, rGEO, BiGbottom, MAIC, rMEAN, MC3 and BIRRA are preferred for a large dataset with many sources (like dataset type RankLarge). Except for rMEAN, they also show a top-ranked performance for relatively small datasets with only a few sources (like dataset type RankSmall). Among them, the ranking of BiGbottom is more robust for heterogeneity whereas BIRRA performs better for high heterogeneity scenarios than low heterogeneity scenarios among investigated methods.

In terms of the relatively higher robustness to a change in quality heterogeneity for the result of BiGbottom and MAIC, the most likely reason is that they explicitly model and estimate the list quality. Usually, the quality and heterogeneity of quality for input datasets are hard to know, whereas the list type (ranked or unranked) and the number of sources are relatively obvious. So among top-performing methods in the evaluation of this study, methods like BiGbottom and MAIC that parameterize list quality and tend to be robust for various quality heterogeneity are preferred if the heterogeneity is unknown.

General noise level is another property that is usually hard to know in real data. The selected best-performing methods for each dataset type and heterogeneity level shown in Figure 3 are robust to various noise levels.
under the corresponding scenarios where they give the best performance. Similarly, these selected best-performing methods are also robust to the change of the absent gene rate (γ) for sources and the cutoffs for the results (the number of top-ranked genes in the result list used to calculate the accuracy) when calculating the accuracy, shown as Supplementary file 1 - Figure 6, with slight fluctuations of their rankings under their best-performed dataset types and heterogeneity. Comparison between top-100 accuracy, which is also plotted in Supplementary file 1 - Section 4, and top-1000 accuracy can also suggest the robustness on cutoffs of the results used to evaluate the performance for each method. It can be noticed that the performance ranking of MAIC and BiRRA shows a significant decreasing trend when the cutoff length falls for datasets with only ranked lists and high heterogeneity, especially for small datasets, whereas BiGbottom is more robust for small cutoffs (shown as Figure 3 d). So although they appear together with BiGbottom as the top-ranked methods for ranked only data with high heterogeneity depending on the results of top-1000 cutoff, BiGbottom is preferred if a study focuses on a small group of top-ranked entities within the result. Considering the robustness of cutoffs, only BiGbottom is selected as the final best-performing method in the Figure 3 where the input data only includes a few ranked lists with high heterogeneity of quality. But MAIC and BiRRA can also be expected to show the best level of performance when a study focuses on more genes in the result, like top-1000 genes.

In addition to the important features of genomic data explored in previous research published by Li et al. (2019) which also compared ranking aggregation methods on genes, this study proposed a simulated data generator after analysing 3 collected real datasets to systematically include key features neglected by previous researches which can influence the result significantly, including the inclusion of unranked lists, various heterogeneity of quality, the large numbers of genes in real cases (20000), the distribution of list length, various size of lists, and relationship between each gene in the setting of ground truth. Among these features, dataset size, the inclusion of unranked lists and heterogeneity which vary from datasets can usually be available for the user of ranking aggregation algorithms to some extent and can influence the performance of the algorithms significantly, as shown in the evaluation results of this study. The result of this study is summarised as a flowchart to guide the choice of ranking aggregation methods depending on these features. Advanced methods recently proposed (MAIC and BiG) which are not included by Li et al. (2019) are included in this study and they show top-ranked performance in many scenarios.

In this study, datasets with only order information of some entities are evaluated, including the ranked or unranked list of genes. But methods like MAIC and BiG can also take the classification of sources as additional input information. Classification labels can be manually assigned to each source by classifying sources using self-defined criteria like experiment methods or cell types used. So it could be additional information that can be explored. In the future, the influence of classification on ranking aggregation methods and methods for classifying sources will be explored.

5 Acknowledgments

This work was supported in part by funds from the MRC SHIELD consortium (DHPI) investigating novel host based antimicrobial responses to antimicrobial resistant bacteria (grant number MR/N029955/1). Bo Wang is supported by Edinburgh Global Research Scholarship from the University of Edinburgh. Andy Law is supported by Institute Strategic funding provided to the Roslin Institute by the BBSRC (grant number BB/S5/D/10002070, BB/S5/D/10002071).

References

Abee, M., Doherty, T. M., Wassef, L., Asea, A., Bobshia, K., Demissie, A., Zewdie, M., Engler, H., Anderson, P., Kim, L., et al. (2010). Expression of apoptosis-related genes in an ethiopian cohort study correlates with tuberculosis clinical status. European journal of immunology, 40(1), 291–301.

Alon, N. (2010). Aggregation of partial rankings, peerings and top-m lists. Algorithmica, 57(2), 284–300.

Andersson, R., Gebel, C., Miguel-Escalada, I., Hof, I., Bomholt, J., Boyd, M., Chen, Y., Zhao, X., Schmidt, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507(7493), 455–461.

Badgerley, M. A., Sraifin, S. C., and Chikina, M. D. (2015). Hybrid bayesian-rank integration approach improves the predictive power of genomic dataset aggregation. Bioinformatics, 31(2), 206–215.

Bereczki, A. C., Gorenstein, L., Walter, K. L., Assaad, A. A., Wang, L., and Powell, C. A. (2003). Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. The American journal of pathology, 163(5), 1949–1960.

Buoncanto, B., Yang, B., Blin, G., Cohen-Boulakia, S., Denise, A., and Hamel, S. (2015). Rank aggregation with ties: Experiments and analysis. Proceedings of the VLDB Endowment, 8(11), 1202–1213.

Chen, M., Zang, M., Wang, X., and Xiao, G. (2013). A powerful bayesian meta-analysis method to integrate multiple gene set enrichment studies. Bioinformatics, 29(7), 862–869.

de Borda, J. C. (1781). Memoire sur les elections au scrutin. Histoire de l'Academie Royale des Sciences, Paris.

Deng, K., Han, S., Li, K. J., and Liu, J. S. (2014). Bayesian aggregation of ordered-based rank data. Journal of the American Statistical Association, 109(507), 1023–1039.

Huang, T., Jiang, C., Yang, M., Xiao, H., Huang, X., Wu, L., and Yan, M. (2020). Salmofinella enterica serovar typhimurium inhibits the innate immune response and promotes apoptosis in a rhomboidalmp53-dependent manner in swine neutrophils. Veterinary Research, 51(1), 1–12.

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidropoulos, K., Cook, J., Gillespie, M., Haw, R., et al. (2020). The reactome pathway knowledgebase. Nucleic acids research, 48(D1), D489–D503.

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach for understanding genome variations in kegg. Nucleic acids research, 47(1), D590–D595.

Kerkentzes, K., Laganis, V., Tsamardinos, I., Vlyberg, M., and Rae, O. D. (2014). Hidden treasures in “ancient” microarrays: gene-expression portrays biology and potential resistance pathways of major lung cancer subtypes and normal tissue. Frontiers in oncology, 4, 251.

Kim, S. C., Jung, Y., Park, J., Cho, S., Seo, C., Kim, J., Kim, P., Park, J., Seo, J., Kim, J., et al. (2013). A high-dimensional, deep-sequenceing study of lung adenocarcinoma in female never-smokers. PloS one, 8(2), e55996.

Kohle, R., Laar, S., Adler, P., and Vilo, J. (2012). Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28(4), 573–580.

Kumar, D., Naik, L., Kamal, M. A., Varshney, A., Jain, A., Singh, S., and Rau, K. V. (2010). Genome-wide analysis of the host intracellular network that regulates survival of mycobacterium tuberculosis. Cell, 140(5), 731–743.

Lai, Y., Babunovic, G. H., Cui, L., Dedon, P. C., Doench, J. G., Fortune, S. M., and Lu, T. K. (2020). illuminating host-mycobacterial interactions with genome-wide crispr knockout and crispri screens. Cell systems, 1(3), 239–251.

Li, B., Cholesey, S. M., Chia, B. S., Wang, B., Cui, L., Eisenhauer, T., Schwitzer, L. D., Hoover, P., Parkinson, N. J., Nachison, A., et al. (2020). Genome-wide crispr screen identifies host dependency factors for influenza a virus infection. Nature communications, 11(1), 1–18.

Li, X., Choudhary, P. K., Bowan, S., and Wang, X. (2018). A bayesian latent variable approach to aggregation of partial and top-ranked lists in genomic studies. Statistica in medicina, 37(28), 4266–4278.

Li, X., Wang, X., and Xiao, G. (2019). A comparative study of rank aggregation methods for partial and top-ranked lists in genomic applications. Briefings in bioinformatics, 20(1), 178–189.

Li, Y., Xiao, X., Li, L., Liu, B., and Ames, C. I. (2015). Rna-seq analysis of lung adenocarcinomas reveals different gene expression profiles between smoking and nonsmoking patients. Tumor Biology, 36(11), 8993–9003.

Liu, S. (2010). Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 555–570.

Liu, S. and Ding, J. (2009). Integration of ranked lists via cross entropy monte carlo with applications to mira and micora studies. Bioinformatics, 25(1), 9–18.

Liu, Y.-T., Liu, T.-Y., Qin, T., Ma, Z.-M., and Li, H. (2007). Supervised rank integration approach to aggregation of partial and top-ranked lists in genomic studies. Acta biologica sinica, 34(1), 79–89.

Lin, S. (2010). Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 555–570.

Lin, S. and Ding, J. (2009). Integration of ranked lists via cross entropy monte carlo with applications to mira and micora studies. Bioinformatics, 25(1), 9–18.

Liu, Y.-T., Liu, T.-Y., Qin, T., Ma, Z.-M., and Li, H. (2007). Supervised rank aggregation. In Proceedings of the 16th international conference on World Wide Web, pages 481–490.

Loock, V. F. and Iibrey, R. R. (2006). Nf-κb translocation prevents host cell death after low-dose challenge by legionella pneumophila. The Journal of experimental medicine, 203(9), 2177–2189.
Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. (2003). A gene coexpression network for global discovery of conserved genetic modules. *Science*, **302**(5643), 249–255.

Szklarczyk, D., Morris, J. H., Zeh, M., Bilal, E., Mertz-Liebenstein, D., McGovern, P. D., Sansone, S. A., et al. (2016). The STRING database in 2016: A general purpose knowledgebase of protein–protein interactions. *Nucleic Acids Research*, **44**(D1), D447–D452.

Yeung, A. T., Choi, Y. H., Lee, A. H., Hale, C., Ponstingl, H., Pickard, D., Goulding, D., Thomas, M., Gill, E., Kim, I. K., et al. (2013). A genome-wide knockout screen in human macrophages identifies host factors modulating salmonella infection. *MBio*, **1**(5).

Yi, D., Liu, Y., Chen, J., Li, S., and Liu, J. S. (2016). Bayesian aggregation of rank data with covariates and heterogeneous rankers. arXiv preprint arXiv:1607.06051.

Zhou, Y., Frings, O., Branca, R., Boekel, J., le Sage, C., Fredlund, E., Agami, R., and Orre, L. (2017). microRNA with aagugc seed motif constitute an integral part of an oncogenic signaling network. *Oncogene*, **36**(6), 731–745.