On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

Abstract
The statistical analysis and modeling of lifetime data are crucial for statisticians and research workers in almost all applied sciences including engineering, biomedical science, insurance, and finance, amongst others. The two important and popular one parameter distributions for modeling lifetime data are exponential and Lindley distributions. Shanker et al. [1] observed that there are many lifetime data where these distributions are not suitable from theoretical and applied point of view. Recently Shanker [2,3] has introduced two one parameter lifetime distribution namely “Akash distribution” and “Shanker distribution” for modeling lifetime data. In the present paper the relationships and comparative studies of Akash, Shanker, Lindley and exponential distributions, their distributional properties and estimation of parameter have been discussed. The applications, goodness of fit and theoretical justifications of these distributions for modeling life time data through various examples from engineering, medical science and other fields have been discussed and explained.

Keywords: Akash distribution; Shanker distribution; Lindley distribution; Exponential distribution; Statistical properties; Estimation of parameter; Goodness of fit

Introduction
In reliability analysis the time to the occurrence of event of interest is known as lifetime or survival time or failure time. The event may be failure of a piece of equipment, death of a person, development (or remission) of symptoms of disease, health code violation (or compliance). The modeling and statistical analysis of lifetime data are crucial for statisticians, research workers and policy makers in almost all applied sciences including engineering, medical science/biological science, insurance and finance, amongst others.

In statistics literature a number of lifetime distributions for modeling lifetime data-sets have been proposed. In this paper, the main objective is to have a critical and comparative study on one parameter lifetime distributions namely, Akash, Shanker, Lindley and exponential and their applications for modeling lifetime data-sets from engineering, medical sciences, and other fields of knowledge.

Akash, Shanker, Lindley and Exponential Distributions
Akash distribution introduced by Shanker [2] for modeling lifetime data from engineering and medical science is a two-component mixture of an exponential (θ) distribution and a gamma (2,θ) distribution with their mixing proportions $\frac{\theta}{\theta_1}$ and $\frac{1}{\theta_1}$ respectively. Shanker [2] has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker et al. [3] has detailed study about modeling of various lifetime data from different fields using Akash, Lindley and exponential distributions and concluded that Akash distribution gives better fit in most of the lifetime data. Shanker [5] has also obtained a Poisson mixture of Akash distribution named, “Poisson-Akash (PAD)” for modeling count data.

Shanker distribution introduced by Shanker [2] for modeling lifetime data from engineering and medical science is a two-component mixture of an exponential (θ) distribution and a gamma (2,θ) distribution with their mixing proportions $\frac{\theta}{\theta_2}$ and $\frac{1}{\theta_2}$ respectively. Shanker [3] has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker [6] has also obtained a Poisson mixture of Shanker distribution named, “Poisson-Shanker (PSD)” for modeling count data.

Lindley [7] distribution is a two-component mixture of an exponential (θ) distribution and a gamma (2,θ) distribution with their mixing proportions $\frac{\theta}{\theta_1}$ and $\frac{1}{\theta_1}$ respectively. A detailed study about its various mathematical properties, estimation of parameter and application showing the superiority of Lindley distribution over exponential distribution for the waiting times before service of the bank customers has been done by Ghitany et al. [8]. A number of researchers have studied in detail the
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

In statistical literature, exponential distribution was the first widely used lifetime model in areas ranging from studies on the lifetimes of manufactured to research involving survival or remission times in chronic diseases. The main reason for its wide usefulness and applicability as lifetime model is partly because of the availability of simple statistical methods for it and partly because it appeared to be suitable for representing the lifetimes of many things such as various types of manufactured items.

Let T be a continuous random variable representing the lifetimes of individuals in some population. The expressions for probability density function, $f(t)$, cumulative distribution function, $F(t)$, hazard rate function, $h(t)$, mean residual life, $m(t)$, mean μ_t, variance σ_t^2, coefficient of variation (C.V), coefficient of Kurtosis γ, and index of dispersion γ of Akash and Shanker distributions are summarized in Table 1 and that of Lindley and exponential distributions are in Table 2.

A table of values for coefficient of variation (C.V), coefficient of Skewness γ, coefficient of Kurtosis (β_2), and index of dispersion (γ) for Akash, Shanker and Lindley distributions for varying values of their parameter are summarized in the Table 3.

The conditions under which Akash, Shanker and Lindley distributions are over-dispersed ($\mu^2 < \sigma^2$), equi-dispersed ($\mu^2 = \sigma^2$), and under-dispersed ($\mu^2 > \sigma^2$) are summarized in Table 5.

The graphs of C.V, $\sqrt{\beta_1}$, β_2 and γ of Akash, Shanker and Lindley distributions for varying values of the parameter θ are shown in Figure 1.

Parameter Estimation

Estimation of the parameter of Akash distribution

Assuming $(t_1, t_2, t_3, ..., t_n)$ be a random sample of size n from Akash distribution, the maximum likelihood estimate (MLE) $\hat{\theta}$ and the method moment estimate (MOME) $\hat{\theta}$ of θ is the solution of the following cubic equation.

$T\theta^3 - 6T\theta^2 - 6 = 0$, where T is the sample mean

Estimation of the parameter of Shanker distribution

Let $(t_1, t_2, t_3, ..., t_n)$ be a random sample of size n from Shanker distribution. The maximum likelihood estimate (MLE) $\hat{\theta}$ of θ is the solution of the following non-linear equation.

$2T \theta^2 - 2T \theta + \frac{\sum_{i=1}^{n} (\theta + t_i)}{n} = 0$

The method of moment estimate (MOME) $\hat{\theta}$ of θ is the solution of the following cubic equation.

$T \theta^3 - \theta^2 + T \theta - 2 = 0$, where T is the sample mean.

Estimation of the parameter of Lindley distribution

Assuming $(t_1, t_2, t_3, ..., t_n)$ be a random sample of size n from Lindley distribution, the maximum likelihood estimate (MLE) $\hat{\theta}$ and the method moment estimate (MOME) $\hat{\theta}$ of θ is given by

$\hat{\theta} = -\frac{(T-1)^2 + 8T}{2T} = \frac{1}{T}$, where T is the sample mean.

Applications and Goodness of Fit

In this section the goodness of fit test of Akash, Shanker, Lindley and exponential distributions for following sixteen real lifetime data-sets have been discussed.

In order to compare the goodness of fit of Akash, Shanker, Lindley and exponential distributions, $-2 \ln L$, AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC (Bayesian Information Criterion), and K-S Statistics (Kolmogorov-Smirnov Statistics) for all sixteen real lifetime data-sets have been computed and presented in Table 5. The formulae for computing AIC, AICC, BIC, and K-S Statistics are as follows:

$AIC = -2 \ln L + 2k$, $AICC = AIC + \frac{2k(k+1)}{(n-k-1)}$, $BIC = -2 \ln L + k \ln n$ and $D=\sup_{x} |F_n(x) - F_0(x)|$, where k is the number of parameters, n is the sample size and $F_n(x)$ is the empirical distribution function.

The best distribution is the distribution which corresponds to lower values of $-2 \ln L$, AIC, AICC, BIC, and K-S statistics.

The best fitting has been shown by making $-2 \ln L$, AIC, AICC, BIC, and K-S Statistics in bold.

Conclusions

In this paper an attempt has been made to find the suitability of Akash, Shanker, Lindley and exponential distributions for modeling real lifetime data from engineering, medical science and other fields of knowledge. A table for values of the various characteristics of Akash, Shanker, and Lindley distributions has been presented for varying values of their parameter which reflects their nature and behavior. The conditions under which Akash, Shanker, Lindley and exponential distributions are over-dispersed, equi-dispersed, and under-dispersed have been given. The goodness of fit test of Akash, Shanker, Lindley and exponential distributions for sixteen real lifetime data-sets have been presented using Kolmogorov-Smirnov test to test their suitability for modeling lifetime data.

Citation: Shanker R, Fesshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 00084. DOI: 10.15406/bbij.2016.03.00084
Table 1: Characteristics of Akash and Shanker Distributions.

Akash Distribution	Shanker Distribution
\(f(t) = \frac{\theta^2}{\theta^2 + 2} \left(1 + \frac{1}{\theta^2 + 2}\right) e^{-\theta t} \)	\(f(t) = \frac{\theta^2}{\theta^2 + 1} e^{-\theta t} \)
\(F(t) = 1 - \left[1 + \frac{\theta t(\theta + 1)}{\theta^2 + 2}\right] e^{-\theta t} \)	\(F(t) = 1 - \left[1 + \frac{\theta t}{\theta^2 + 1}\right] e^{-\theta t} \)
\(h(t) = \frac{\theta^2}{\theta^2 + 1 + \theta t^2} \)	\(h(t) = \frac{\theta^2}{\theta^2 + 1 + \theta t^2} \)
\(m(t) = \frac{\theta^2 + 4 \theta t + \theta^2 + 6}{\theta^2 + 1 + \theta t^2} \)	\(m(t) = \frac{\theta^2 + 4 \theta t + \theta^2 + 6}{\theta^2 + 1 + \theta t^2} \)
\(\mu'_1 = \frac{\theta^2 + 6}{\theta^2 + 1} \)	\(\mu'_2 = \frac{\theta^2 + 4 \theta^2 + 2}{\theta^2 + 1} \)
\(\mu'_2 = \frac{\theta^2 + 16 \theta^2 + 12}{\theta^2 + 1 + \theta t^2} \)	\(\mu'_2 = \frac{\theta^2 + 16 \theta^2 + 12}{\theta^2 + 1 + \theta t^2} \)
\(C.V = \frac{\sigma}{\mu'_1} \)	\(C.V = \frac{\sigma}{\mu'_2} \)
\(\sqrt{\beta_1} = \frac{2(\theta^6 + 30 \theta^4 + 36 \theta^2 + 24)}{(\theta^4 + 16 \theta^2 + 12)^{1/2}} \)	\(\sqrt{\beta_1} = \frac{2(\theta^6 + 30 \theta^4 + 36 \theta^2 + 24)}{(\theta^4 + 16 \theta^2 + 12)^{1/2}} \)
\(\beta_2 = \frac{3(3 \theta^8 + 128 \theta^6 + 408 \theta^4)}{(576 \theta^4 + 240)} \)	\(\beta_2 = \frac{3(3 \theta^8 + 128 \theta^6 + 408 \theta^4)}{(576 \theta^4 + 240)} \)
\(\gamma = \frac{\sigma^2}{\mu'_1} \)	\(\gamma = \frac{\sigma^2}{\mu'_1} \)
Table 2: Characteristics of Lindley and Exponential Distributions.

Lindley Distribution	Exponential Distribution
\(f(t) = \frac{\theta^2}{\theta+1} \frac{1}{t+1} e^{-\theta t} \)	\(f(t) = \theta e^{-\theta t} \)
\(F(t) = 1 - \frac{\theta+1}{\theta+1} e^{-\theta t} \)	\(F(t) = 1 - e^{-\theta t} \)
\(h(t) = \frac{\theta^2 (1+t)}{\theta+1+\theta t} \)	\(h(t) = \theta \)
\(m(t) = \frac{\theta+2+\theta t}{\theta (\theta+1+\theta t)} \)	\(m(t) = \frac{1}{\theta} \)
\(\mu_1' = \frac{\theta+2}{\theta (\theta+1)} \)	\(\mu_1' = \frac{1}{\theta} \)
\(\mu_2 = \frac{\theta^2 + 4\theta + 2}{\theta^2 (\theta+1)^2} \)	\(\mu_2 = \frac{1}{\theta^2} \)
\(CV = \frac{\sqrt{\theta^2 + 4\theta + 2}}{\mu_1} \)	\(CV = \frac{\sigma}{\mu_1} = 1 \)
\(\sqrt{\beta_1} = \frac{2 \left(\theta^2 + 6\theta^2 + 6\theta + 2 \right)}{\left(\theta^2 + 4\theta + 2 \right)^{3/2}} \)	\(\sqrt{\beta_1} = 2 \)
\(\beta_2 = \frac{3 \theta^4 + 24\theta^3 + 84\theta^2 + 32\theta + 8}{\left(\theta^2 + 4\theta + 2 \right)^2} \)	\(\beta_2 = 9 \)
\(\gamma = \frac{\sigma^2}{\mu_1} = \frac{\theta^2 + 4\theta + 2}{\theta (\theta+1)(\theta+2)} \)	\(\gamma = \frac{\sigma^2}{\mu_1} = \frac{1}{\theta} \)
Table 3: Values of μ_1, $\sqrt{\beta_1}$, $\sqrt{\beta_2}$, β_2, and γ of Akash, Shanker and Lindley distributions for varying values of the parameter θ.

θ	Values of θ for Akash Distribution	Values of θ for Shanker Distribution	Values of θ for Lindley Distribution
0.01	μ_1 299.990, $\sqrt{\beta_1}$ 1.155, β_2 5.000, γ 100.007	μ_1 199.990, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 100.005	μ_1 199.010, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 100.493
0.05	μ_1 59.950, $\sqrt{\beta_1}$ 1.153, β_2 4.997, γ 20.033	μ_1 39.950, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 20.005	μ_1 39.048, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 20.493
0.1	μ_1 29.900, $\sqrt{\beta_1}$ 1.149, β_2 4.987, γ 10.066	μ_1 19.901, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 10.033	μ_1 19.091, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 10.049
0.3	μ_1 9.713, $\sqrt{\beta_1}$ 1.115, β_2 4.897, γ 3.522	μ_1 34.208, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 3.465	μ_1 5.897, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 3.668
0.5	μ_1 5.556, $\sqrt{\beta_1}$ 1.084, β_2 4.785, γ 2.284	μ_1 12.691, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 2.178	μ_1 3.333, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 2.267
1	μ_1 2.333, $\sqrt{\beta_1}$ 1.165, β_2 4.834, γ 1.381	μ_1 3.222, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 1.167	μ_1 1.500, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 1.167
1.5	μ_1 1.294, $\sqrt{\beta_1}$ 1.388, β_2 5.473, γ 1.009	μ_1 1.306, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 0.775	μ_1 0.833, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 0.781
2	μ_1 0.833, $\sqrt{\beta_1}$ 1.614, β_2 6.391, γ 0.776	μ_1 0.639, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 0.567	μ_1 0.600, $\sqrt{\beta_1}$ 1.414, β_2 6.000, γ 0.583
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

Table 4: Over-dispersion, equi-dispersion and under-dispersion of Akash, Shanker, Lindley and exponential distributions for varying values of their parameter θ.

Distribution	Over-Dispersion $\left(\mu<\sigma^2\right)$	Equi-Dispersion $\left(\mu=\sigma^2\right)$	Under-Dispersion $\left(\mu>\sigma^2\right)$
Akash	$\theta<1.515400063$	$\theta=1.515400063$	$\theta>1.515400063$
Shanker	$\theta<1.171535555$	$\theta>1.171535555$	$\theta>1.171535555$
Lindley	$\theta>1.170086487$	$\theta>1.170086487$	$\theta>1.170086487$
Exponential	$\theta<1$	$\theta=1$	$\theta>1$

Figure 1: Graphs of C.V, $\sqrt{\beta_1}$, γ and γ of Akash, Shanker and Lindley distributions for varying values of the parameter θ.

Citation: Shanker R, Fesshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 00084. DOI: 10.15406/bbij.2016.03.00084
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

Table 5: MLE’s, -2ln L, AIC, AICC, BIC, K-S Statistics of the fitted distributions of data-sets 1-16.

Data 1	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	1.355445	163.73	165.73	165.79	169.93	0.355	
Shanker	0.956264	162.28	164.28	164.34	166.42	0.346	
Lindley	0.996116	162.56	164.56	164.62	166.70	0.371	
Exponential	0.663647	177.66	179.66	179.73	181.80	0.402	

Data 2	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.043876	950.97	952.97	953.01	955.58	0.184	
Shanker	0.029252	980.97	982.97	983.01	985.57	0.238	
Lindley	0.028859	983.11	985.11	985.15	987.71	0.242	
Exponential	0.014635	1044.87	1046.87	1046.91	1049.48	0.357	

Data 3	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.041510	227.06	229.06	229.25	230.20	0.107	
Shanker	0.027675	231.06	233.06	233.25	234.19	0.145	
Lindley	0.027321	231.47	233.47	233.66	234.61	0.149	
Exponential	0.013845	242.87	244.87	245.06	246.01	0.263	

Data 4	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.013514	1255.83	1257.83	1257.87	1260.43	0.110	
Shanker	0.009009	1251.19	1253.34	1253.38	1255.60	0.097	
Lindley	0.008970	1251.34	1253.34	1253.38	1255.95	0.098	
Exponential	0.004505	1280.52	1282.52	1282.56	1285.12	0.190	

Data 5	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.030045	794.70	796.70	796.76	798.98	0.184	
Shanker	0.020031	788.57	790.57	790.63	792.28	0.133	
Lindley	0.019841	789.04	791.04	791.10	793.32	0.134	
Exponential	0.010018	806.88	808.88	808.94	811.16	0.198	

Data 6	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.119610	981.28	983.28	983.31	986.18	0.393	
Shanker	0.079746	1033.10	1035.10	1035.13	1037.99	0.442	
Lindley	0.077247	1041.64	1043.64	1043.68	1046.54	0.448	
Exponential	0.040060	1130.26	1132.26	1132.29	1135.16	0.525	

Data 7	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.013263	803.96	805.96	806.02	810.01	0.298	
Shanker	0.008843	764.62	766.62	766.69	768.06	0.246	
Lindley	0.008804	763.75	765.75	765.82	767.81	0.245	
Exponential	0.004421	744.87	746.87	746.94	748.93	0.166	

Data 8	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.013423	609.93	611.93	612.02	613.71	0.280	
Shanker	0.008949	579.51	581.51	581.60	583.29	0.220	
Lindley	0.008910	579.16	581.16	581.26	582.95	0.219	
Exponential	0.004475	564.02	566.02	566.11	567.80	0.145	

Data 9	Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Akash	0.310500	887.89	889.89	889.92	892.74	0.198	
Shanker	0.210732	847.37	849.37	849.40	852.22	0.132	
Lindley	0.196045	839.06	841.06	841.09	843.91	0.116	
Exponential	0.106773	828.68	830.68	830.72	833.54	0.077	

Citation: Shanker R, Fesshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 0084. DOI: 10.15406/bbij.2016.03.0084
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

| Data Set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are taken from Smith & Naylor [19]. |

Data 10	Akash	0.050293	354.88	356.88	357.02	358.28	0.421
Shanker	0.033569	325.74	327.74	327.88	329.14	0.351	
Shanker	0.033021	323.27	325.27	325.42	326.67	0.345	
Shanker	0.016779	305.26	307.26	307.40	308.66	0.213	

Data 11	Akash	1.165719	115.15	117.15	117.28	118.68	0.156
Shanker	0.033569	325.74	327.74	327.88	329.14	0.351	
Shanker	0.033021	323.27	325.27	325.42	326.67	0.345	
Shanker	0.016779	305.26	307.26	307.40	308.66	0.213	

Data 12	Akash	0.024734	658.04	660.04	660.08	662.65	0.163
Shanker	0.016492	635.26	637.26	637.30	639.86	0.042	
Shanker	0.016360	638.07	640.07	640.12	642.68	0.058	
Shanker	0.016245	658.04	660.04	660.08	662.65	0.163	

Data 13	Akash	0.050293	354.88	356.88	357.02	358.28	0.421
Shanker	0.033569	325.74	327.74	327.88	329.14	0.351	
Shanker	0.033021	323.27	325.27	325.42	326.67	0.345	
Shanker	0.016779	305.26	307.26	307.40	308.66	0.213	

Data 14	Akash	1.165719	115.15	117.15	117.28	118.68	0.156
Shanker	0.033569	325.74	327.74	327.88	329.14	0.351	
Shanker	0.033021	323.27	325.27	325.42	326.67	0.345	
Shanker	0.016779	305.26	307.26	307.40	308.66	0.213	

Data 15	Akash	0.024734	658.04	660.04	660.08	662.65	0.163
Shanker	0.016492	635.26	637.26	637.30	639.86	0.042	
Shanker	0.016360	638.07	640.07	640.12	642.68	0.058	
Shanker	0.016245	658.04	660.04	660.08	662.65	0.163	

Data 16	Akash	0.024734	658.04	660.04	660.08	662.65	0.163
Shanker	0.016492	635.26	637.26	637.30	639.86	0.042	
Shanker	0.016360	638.07	640.07	640.12	642.68	0.058	
Shanker	0.016245	658.04	660.04	660.08	662.65	0.163	

Citation: Shanker R, Fesshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 00084. DOI: 10.15406/bbij.2016.03.00084
Data Set 2: The data is given by Birnbaum & Saunders [20] on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data (X × 10^{-3}) are presented below (after subtracting 65).

5	25	31	32	34	35	38	39	40	42	43	43	
43	44	44	47	48	48	49	49	49	51	54	55	55
55	56	56	56	58	59	59	59	59	63	63	64	
64	65	65	65	66	66	66	66	67	67	67	68	
69	69	69	71	71	72	73	73	73	74	74	76	
76	77	77	77	77	77	79	79	80	81	83	83	
84	86	86	87	90	91	92	92	92	92	93	94	97
98	98	99	101	103	105	109						

Data Set 3: The data set is from Lawless (1982, p-228). The data given arose in tests on endurance of deep groove ball bearings. The data are the number of million revolutions before failure for each of the 23 ball bearings in the life tests.

17.88	28.92	33.00	41.52	42.12	45.60	48.80	51.84	55.56	67.80			
68.44	68.64	68.88	84.12	93.12	98.64	105.12	127.92	128.04	173.40			

Data Set 4: The data is from Picciotto [21] and arose in test on the cycle at which the Yarn failed. The data are the number of cycles until failure of the yarn.

86	146	251	653	98	249	400	292	131	169	175	176	76
264	15	364	195	262	88	264	157	220	42	321	180	198
38	20	61	121	282	224	149	180	325	250	196	90	229
166	38	337	65	151	341	40	40	135	597	246	211	180
93	315	353	571	124	279	81	186	497	182	423	185	229
400	338	290	398	71	246	185	188	568	55	55	61	244
20	284	393	396	203	829	239	236	286	194	277	143	198
264	105	203	124	137	135	350	193	188				

Data Set 5: This data represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal [22].

12	15	22	24	24	32	32	33	34	38	38	43	44
48	52	53	54	54	55	56	57	58	59	60	60	
60	60	61	62	63	65	65	67	68	70	70	72	73
75	76	76	81	83	84	85	87	91	95	96	98	99
109	110	121	127	129	131	143	146	146	175	175	211	233
258	258	263	297	341	341	376						

Data Set 6: This data is related with behavioral sciences, collected by Balakrishnan N et al. [23]: The scale "General Rating of Affective Symptoms for Preschoolers (GRASP)" measures behavioral and emotional problems of children, which can be classified with depressive condition or not according to this scale. A study conducted by the authors in a city located at the south part of Chile has allowed collecting real data corresponding to the scores of the GRASP scale of children with frequency in parenthesis.

19(16)	20(15)	21(14)	22(9)	23(12)	24(10)	25(6)	26(9)					
27(8)	28(5)	29(6)	30(4)	31(3)	32(4)	33	34	35(4)	36(2)	37(2)		
39	42	44										
Data Set 7: The data set reported by Efron [24] represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using radiotherapy (RT).

6.53	7	10.42	14.48	16.10	22.70	34	41.55	42	45.28	49.40	53.62	63
64	83	84	91	108	112	129	133	133	139	140	140	146
149	154	157	160	160	165	146	149	154	157	160	160	165
173	176	218	225	241	248	273	277	297	405	417	420	440
523	583	594	1101	1146	1417							

Data Set 8: The data set reported by Efron [24] represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT).

12.20	23.56	23.7	25.9	31.98	37	41.35	47.38	55.46	58.36	63.47	68.46	78.3
74.5	81.43	84	92	94	110	112	119	127	130	133	140	146
155	159	173	179	194	195	209	249	281	319	339	432	469
519	633	725	817	1176								

Data set 9: This data set represents remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee & Wang [25].

0.08	2.09	3.48	4.87	6.94	8.66	13.11	23.63	0.20	2.23	3.52	4.98	6.97
9.02	13.29	0.40	2.26	3.57	5.06	7.09	9.22	13.80	25.74	0.50	2.46	3.64
5.09	7.26	9.47	14.24	25.82	0.51	2.54	3.70	5.17	7.28	9.74	14.76	6.31
0.81	2.62	3.82	5.32	7.32	10.06	14.77	32.15	2.64	3.88	5.32	7.39	10.34
14.83	34.26	0.90	2.69	4.18	5.34	7.59	10.66	15.96	36.66	1.05	2.69	4.23
5.41	7.62	10.75	16.62	43.01	1.19	2.75	4.26	5.41	7.63	17.12	46.12	1.26
2.83	4.33	5.49	7.66	11.25	17.14	79.05	1.35	2.87	5.62	7.87	11.64	17.36
1.40	3.02	4.34	5.71	11.79	18.10	18.10	1.46	4.40	5.85	8.26	11.98	19.13
1.76	3.25	4.50	6.25	8.37	12.02	2.02	3.31	4.51	6.54	8.53	12.03	
20.28	2.02	3.36	6.76	12.07	21.73	2.07	3.36	6.93	8.65	12.63	22.69	

Data Set 10: This data set is given by Linhart & Zucchini [26], which represents the failure times of the air conditioning system of an airplane.

23	261	87	7	120	14	62	47	225	71	246	21	42	20
5	12	120	11	3	14	71	11	14	11	16	90	1	
16	52	95											

Data Set 11: This data set used by Bhaumik et al. [27], is vinyl chloride data obtained from clean up gradient monitoring wells in mg/l.

5.1	1.2	1.3	0.6	0.5	2.4	0.5	1.1	8	0.8	0.4	0.6	0.9	0.4
2	0.5	5.3	3.2	2.7	2.9	2.5	2.3	1	0.2	0.1	0.1	1.8	
0.9	2	4	6.8	1.2	0.4	0.2							

Data set 12: This data set represents the waiting times (in minutes) before service of 100 Bank customers and examined and analyzed by Ghitany et al. [8] for fitting the Lindley [7] distribution.

0.8	0.8	1.3	1.5	1.8	1.9	1.9	2.1	2.6	2.7	2.9	3.1	3.2
3.3	3.5	3.6	4.0	4.1	4.2	4.2	4.3	4.3	4.4	4.4	4.6	4.7
4.7	4.8	4.9	4.9	5.0	5.3	5.5	5.7	5.7	6.1	6.2	6.2	6.2
6.3	6.7	6.9	7.1	7.1	7.1	7.1	7.4	7.6	7.7	8.0	8.2	8.6
8.6	8.6	8.8	8.8	8.9	8.9	9.5	9.6	9.7	9.8	10.7	10.9	11.0
11.0	11.1	11.2	11.2	11.5	11.9	12.4	12.5	12.9	13.0	13.1	13.3	13.6
13.7	13.9	14.1	15.4	15.4	17.3	17.3	18.1	18.2	18.4	18.9	19.0	19.9
20.6	21.3	21.4	21.9	23.0	27.0	31.6	33.1	38.5				

Citation: Shanker R, Fesshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 00084. DOI: 10.15406/bbij.2016.03.00084
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

Data Set 13: This data is for the times between successive failures of air conditioning equipment in a Boeing 720 airplane, Proschan [28].

Data	Value
74	57
48	29
502	12
21	29
386	59
27	153
26	
326	

Data set 14: This dataset represents the lifetime's data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark [29].

Data	Value
1.1	1.4
1.3	1.7
1.9	1.8
1.6	2.2
1.7	2.7
4.1	1.8
1.5	1.2
1.4	3
1.7	2.3
1.6	2

Data Set 15: This data set is the strength data of glass of the aircraft window reported by Fuller et al. [30].

Data	Value
18.83	20.8
21.657	23.03
23.23	24.05
24.321	25.5
25.52	25.8
26.69	26.77
26.78	
27.05	26.77
29.9	31.11
33.2	33.73
33.76	33.89
34.76	35.75
35.91	36.98
37.08	
39.58	44.045
45.29	45.381

Data Set 16: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm Bader & Priest [31,32].

Data	Value
1.312	1.314
1.479	1.552
1.700	1.803
1.861	1.865
1.944	2.006
2.021	2.027
2.055	2.063
2.098	2.140
2.179	2.224
2.240	2.270
2.253	2.272
2.274	
2.301	2.301
2.359	2.382
2.426	2.434
2.435	2.478
2.490	2.511
2.514	2.535
2.535	
2.554	2.566
2.570	2.586
2.629	2.633
2.642	2.648
2.684	2.697
2.726	2.770
2.773	
2.800	2.809
2.818	2.821
2.848	2.880
2.954	3.012
3.067	3.084
3.090	3.096
3.128	
3.233	3.433
3.585	3.858

Acknowledgement

None.

Conflict of Interest

None.

References

1. Shanker R, Hagos F, Sujatha S (2015 a) On modeling of lifetimes data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal 2(5): 1-9.
2. Shanker R (2015 a) Akash distribution and Its Applications. International Journal of Probability and Statistics 4(3): 65-75.
3. Shanker R (2015 b) Shanker distribution and Its Applications. International Journal of Statistics and Applications 5(6): 338-348.
4. Shanker R, Hagos F, Sujatha S (2015 b) On modeling of lifetimes data using one parameter Akash, Lindley and exponential distributions. Biometrics & Biostatistics International Journal 3(2): 1-10.
5. Shanker R (2016 a) The discrete Poisson-Akash distribution. Communicated.
6. Shanker R (2016 b) The discrete Poisson-Shanker distribution. Communicated.
7. Lindley DV (1958) Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society 20(1): 102-107.
8. Ghitany ME, Atieh B, Nadarajah S (2008) Lindley distribution and its Applications. Mathematics Computing and Simulation 78: 493-506.
9. Sankaran M (1970) The discrete Poisson-Lindley distribution. Biometrics 26(1): 145-149.
10. Zakerzadeh H, Dolati A (2009) Generalized Lindley distribution. Journal of Mathematical extension 3(2): 13-25.
11. Nadarajah S, Bakouch HS, Tahmasbi R (2011) A generalized Lindley distribution. The Indian Journal of Statistics 73(2): 331-359.
12. Bakouch SH, Al-Zahrani BM, Al-Shomrani AA, Marchi VAA, Louzada F (2012) An extended Lindley distribution. Journal of Korean Statistical Society 41(1): 75-85.
13. Shanker R, Mishra A (2013 a) A quasi Lindley distribution. African journal of Mathematics and Computer Science Research 6 (4): 64 -71.
14. Shanker R, Mishra A (2013 b) A two-parameter Lindley distribution. Statistics in transition new series 14(1): 45-56.
15. Shanker R, Amanuel AG (2013) A new quasi Lindley distribution. International Journal of Statistics and systems 9(1): 87-94.
16. Shanker R, Sharma S, Shanker R (2013) A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics 4: 363-368.
17. Shanker R, Hagos F, Sharma S (2015 c) On Two Parameter Lindley distribution and Its Applications to model lifetime data. Biometrics & Biostatistics International Journal 3(1): 1-8.
18. Ghitany ME, Al-Mutairi D, Balakrishnan N, Al-Enezi I (2013) Power Lindley distribution and associated inference. Computational Statistics and Data Analysis 64: 20-33.

Citation: Shanker R, Feshaye H (2016) On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions. Biom Biostat Int J 3(6): 00084. DOI: 10.15406/bbij.2016.03.00084
On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions

19. Smith RL, Naylor JC (1987) A comparison of Maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Applied Statistics 36(3): 358-369.

20. Birnbaum ZW, Saunders SC (1969) Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability 6(2): 328-347.

21. Picciotto R (1970) Tensile fatigue characteristics of a sized polyester/viscose yarn and their effect on weaving performance, Master thesis, North Carolina State, University of Raleigh, USA.

22. Bjerkedal T (1960) Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am J Hyg 72(1): 130-148.

23. Balakrishnan N, Victor L, Antonio S (2010) A mixture model based on Birnbaum-Saunders Distributions, A study conducted by Authors regarding the Scores of the GRASP (General Rating of Affective Symptoms for Preschoolers), in a city located at South Part of the Chile.

24. Efron B (1988) Logistic regression, survival analysis and the Kaplan-Meier curve. Journal of the American Statistical Association 83(402): 414-425.

25. Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edition, John Wiley and Sons, New York, USA.

26. Linhart H, Zucchini W (1986) Model Selection. John Wiley, New York, USA.

27. Bhaumik DK, Kapur K, Gibbons RD (2009) Testing Parameters of a Gamma Distribution for Small Samples. Technometrics 51(3): 326-334.

28. Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5(3): 375-383.

29. Gross AI, Clark VA (1975) Survival Distributions: Reliability Applications in the Biometrical Sciences, John Wiley, New York, USA.

30. Fuller EJ, Frieman S, Quinn J, Quinn G, Carter W (1994) Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proc 2286, 419-430.

31. Lawless JF (1982) Statistical models and methods for lifetime data. John Wiley and Sons, New York, USA.

32. Bader MG, Priest AM (1982) Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, et al. (Eds.), Progress in Science in Engineering Composites. ICCM-IV, Tokyo, pp. 1129-1136.