Helicobacter pylori infection in Ontario: Prevalence and risk factors

Farah Naja MSc, Nancy Kreiger MPH PhD, Terrence Sullivan PhD

BACKGROUND: *Helicobacter pylori* has been classified by the World Health Organization as a type I carcinogen. Nearly 50% of the world’s population is estimated to be infected with *H. pylori*. Prevalence patterns of the infection are different between developing and developed countries. The present study had two objectives – to estimate the prevalence of *H. pylori* infection in Ontario, and to evaluate the relationship between the infection and various demographic characteristics and selected lifestyle factors.

METHODS: Ten microlitres of plasma were aliquoted from stored blood of 1306 men and women, 50 to 80 years of age, from Ontario. The blood samples belonged to control patients of a colorectal cancer population-based study group. Serological testing was used to detect *H. pylori* infection; information was obtained on dietary intake and lifestyle habits, as well as past and present medical history, education, income, number of siblings, ethnicity and place of birth.

RESULTS: The overall weighted seroprevalence of *H. pylori* was 23.1% (95% CI 17.7% to 29.5%), with men having higher infection rates (29.4%, 95% CI 21.1% to 39.3%) than women (14.9%, 95% CI 10.1% to 21.4%). Seroprevalence of the infection increased significantly with age and number of siblings. Increased risk was also associated with being nonwhite, being born outside of Canada and immigrating at 20 years of age or older. An inverse association with seroprevalence was found for education and alcohol consumption.

CONCLUSION: The prevalence of *H. pylori* infection in Ontario is comparable with that of other developed countries. Age, sex, number of siblings, ethnicity, place of birth and age at immigration are among the factors associated with *H. pylori* infection.

Key Words: Age; Helicobacter pylori; Seroprevalence; Sex

In Canada, few studies have estimated the prevalence of *H. pylori* **infection. In Nova Scotia, the seroprevalence of this infection increased from 21% for subjects in their thirties, to 50% for those in their eighties (7). However, there are certain populations in Canada with much higher infection rates. One study found that 95% of a First Nations community in Manitoba was infected (8), and 67% of children from this community tested positive for *H. pylori* by two years of age (9). The Canadian Adult Dyspepsia Empiric Treatment – Prompt Endoscopy (CADET-PE) study found that approximately 30% of dyspeptic patients were infected (10). The results of the aforementioned studies could not be applied to the general Canadian population due to their limitations in sample size and the types of populations studied.**

Among the risk factors associated with *H. pylori* **infection, poor socioeconomic status, crowded living conditions, smoking, alcohol ingestion,**

©2007 Pulsus Group Inc. All rights reserved
TABLE 1

	Total, n	% positive (95% CI)	% positive* (95% CI)
Men			
Age, years^1			
<60	218	29.4 (23.7–35.8)	27.7 (17.6–41.0)
60 to 70	321	32.1 (27.2–37.4)	31.96 (27.0–37.4)
>70	194	38.7 (32.0–45.7)	38.7 (32.0–45.6)
Total	733	33.0 (29.7–36.5)	29.4 (21.1–39.3)
Women			
Age, years^1			
<60	191	17.3 (12.5–23.3)	10.5 (5.9–18.0)
60 to 70	243	24.3 (19.3–30.1)	24.3 (19.3–30.1)
>70	139	36.0 (28.4–44.3)	36.8 (29.3–45.3)
Total	573	24.8 (21.4–28.5)	14.9 (10.1–21.4)

*Weighted values presented; ^Average age of the population studied was 64.04 years, with men being slightly older than women: 64.7±8.0 years versus 63.2±9.4 years, respectively

The relationships between the prevalence of infection and the various sociodemographic factors were assessed by calculating age-adjusted ORs and 95% CIs, using logistic regression with incidence of infection as the outcome measure. In all the regression analyses, age was used as a categorical variable because the reference population that was used for weighting the estimates was weighted by age and sex.

In multivariate analyses, the dependent variable was seropositivity for H pylori, and covariate variables included available sociodemographic and lifestyle factors. The stepwise solution was used, which combined forward and backward solutions and therefore overcame the limitations associated with each. Stratified analyses suggested potential effect modification by sex on the association between H pylori seropositivity and various factors; thus, interaction terms for such factors were tested in multivariate logistic models. Intervariable correlations were evaluated before modeling. Place of birth and age at immigration were significantly correlated (r^2=0.98) and were combined. The new variable had three categories: born in Canada, immigrated to Canada at younger than 20 years of age and immigrated to Canada at 20 years of age or older. The associations between H pylori infection and the various factors considered in the present study were not weighted.

Most of the data analyses were performed using SPSS version 12.1 (SPSS Inc, USA). STATA version 8.0 (StataCorp LP, USA) was used to calculate the weighted prevalence estimates and their 95% CIs.

RESULTS

In the study sample, the overall H pylori seroprevalence was 29.4% (95% CI 27.5% to 31.9%). Seroprevalence rates were different between sexes; male subjects had significantly higher seroprevalence rates (33.0% 95% CI 29.7% to 36.5%) than female subjects (24.8%, 95% CI 21.4% to 28.5%). Weighted analysis yielded an overall lower estimate than the unweighted analysis (23.1%, 95% CI 17.7% to 29.5%), with male subjects still having higher prevalence (29.4%, 95% CI 21.1% to 39.9%) than female subjects (14.9%, 95% CI 10.1 to 21.4). For both sexes, prevalence rates increased with age and peaked after 70 years of age (Table 1).

Analysis of the factors associated with infection is shown in Table 2. With regard to place of birth, prevalence rates were higher among male subjects born outside Canada than those born in Canada (OR 2.2, 95% CI 1.6 to 3.0). Furthermore, the pattern of H pylori prevalence in relation to age was different in regions, with higher prevalence in those born in Canada (OR 2.2, 95% CI 1.6 to 3.0) compared to those born in the Middle East and Asia. Low

higher number of siblings and a lower consumption of fruits are the most cited in the literature (11-13).

The present study had two objectives – to estimate the prevalence of H pylori infection in Ontario, and to evaluate the relationship between H pylori infection and a number of demographic characteristics and selected lifestyle habits.

METHODS

The present study was approved by the Research Ethics Boards of the University of Toronto (Toronto, Ontario) and Mount Sinai Hospital (Toronto, Ontario). Blood samples from the Ontario Familial Colon Cancer Registry (OFCCR) were used to estimate the prevalence of H pylori infection. The OFCCR collects family history information, epidemiologic data and blood samples from a population-based sample of colorectal cancer patients and controls. Population controls are identified using random selection through Info-direct (Bell Canada, Canada), a service of Bell Canada that provides a listing of residential telephone numbers in Ontario. If there is more than one eligible household member (matched by sex and five-year age group with OFCCR case distribution), then one person is randomly selected and asked to participate. The methodology for the OFCCR has been described in detail elsewhere (14). For the purpose of the present study, the blood samples taken from the control population, which were stored in the biospecimen repository of Mount Sinai Hospital, were used. Ten microlitres of plasma were aliquoted from each of the 1306 samples (adults aged 50 to 80 years). H pylori-specific immunoglobulin G antibody titres were measured by a validated ELISA using the DRG kit (DRG International Inc, USA) in the robotics laboratory at Mount Sinai Hospital. Performance data for this kit showed a sensitivity and specificity of 99% and 97%, respectively (A Azad, personal communication).

Using family history and epidemiologic questionnaires, information was obtained on past and present medical history, smoking and drinking habits, socioeconomic status, number of siblings, education level, ethnicity and place of birth, as well as the consumption of fruits, vegetables and meat. Nonwhites included blacks (from Africa, the Caribbean and North America) and those from the Middle East and Asia. Low education levels corresponded to completion of high school or lower, moderate education levels corresponded to completion of technical school or college, and higher education levels corresponded to completion of bachelor's degree or higher. Data on fruit, vegetable and meat intake referred to patient diets two years before completion of the questionnaire. The alcohol consumption for patients between 30 and 40 years of age, 41 and 59 years of age and 60 years of age or older referred to the consumption during their 20s, 30s and 40s, and since they had turned 50 years of age, respectively.

The prevalence of H pylori infection was estimated separately for each sex. Weighted prevalence estimates were obtained using sampling weights calculated as the inverse of the sampling fractions to correct for the sampling strategy. In weighting, the distribution of the 2003 Ontario population by sex and five-year age group was used as a reference (Statistics Canada, 2003).

The relationships between the prevalence of infection and the various sociodemographic factors were assessed by calculating age-adjusted ORs and 95% CIs, using logistic regression with incidence of infection as the outcome measure. In all the regression analyses, age was used as a categorical variable because the reference population that was used for weighting the estimates was weighted by age and sex.

In multivariate analyses, the dependent variable was seropositivity for H pylori, and covariate variables included available sociodemographic and lifestyle factors. The stepwise solution was used, which combined forward and backward solutions and therefore overcame the limitations associated with each. Stratified analyses suggested potential effect modification by sex on the association between H pylori seropositivity and various factors; thus, interaction terms for such factors were tested in multivariate logistic models. Intervariable correlations were evaluated before modelling. Place of birth and age at immigration were significantly correlated (r^2=0.98) and were combined. The new variable had three categories: born in Canada, immigrated to Canada at younger than 20 years of age and immigrated to Canada at 20 years of age or older. The associations between H pylori infection and the various factors considered in the present study were not weighted.

Most of the data analyses were performed using SPSS version 12.1 (SPSS Inc, USA). STATA version 8.0 (StataCorp LP, USA) was used to calculate the weighted prevalence estimates and their 95% CIs.

RESULTS

In the study sample, the overall H pylori seroprevalence was 29.4% (95% CI 27.5% to 31.9%). Seroprevalence rates were different between sexes; male subjects had significantly higher seroprevalence rates (33.0% 95% CI 29.7% to 36.5%) than female subjects (24.8%, 95% CI 21.4% to 28.5%). Weighted analysis yielded an overall lower estimate than the unweighted analysis (23.1%, 95% CI 17.7% to 29.5%), with male subjects still having higher prevalence (29.4%, 95% CI 21.1% to 39.9%) than female subjects (14.9%, 95% CI 10.1 to 21.4). For both sexes, prevalence rates increased with age and peaked after 70 years of age (Table 1).

Analysis of the factors associated with infection is shown in Table 2. With regard to place of birth, prevalence rates were higher among male subjects born outside Canada than those born in Canada (OR 2.2, 95% CI 1.6 to 3.0). Furthermore, the pattern of H pylori prevalence in relation to age was different in regions, with higher prevalence in those born in Canada (OR 2.2, 95% CI 1.6 to 3.0) compared to those born in the Middle East and Asia.
TABLE 2

Frequency distribution, percentage seropositivities, age-adjusted OR estimates and 95% CIs in men and women

Age, years	Men	Women
<60	218	191
60 to 70	321	243
>70	194	139

Marital status	Men	Women
Not married	90	194
Married	633	374

Place of birth	Men	Women
Canada	462	396
Other	271	177

Ethnicity	Men	Women
White	676	534
Nonwhite	56	38

Age of immigration, years	Men	Women
<20	111	62
≥20	152	111

Education	Men	Women
Low	281	225
Middle	232	215
High	212	123

Income	Men	Women
<20,000	185	207
20,000 to 40,000	230	159
>40,000	19	24
Missing	299	183

Number of siblings	Men	Women
<2	316	255
2 to 4	180	139
>4	158	116
Missing	79	63

Regular use of antacids	Men	Women
No	620	480
Yes	100	88

Regular use of multivitamins	Men	Women
No	445	317
Yes	278	247

Regular use of aspirin	Men	Women
No	393	385
Yes	327	180

Regular use of acetaminophen	Men	Women
No	638	455
Yes	81	111

Fruit intake/day	Men	Women
<1	190	76
1 to 2	424	327
>2	90	151

Vegetable intake/day	Men	Women
<1	116	34
1 to 2	478	298
>2	122	232

Red meat intake servings/week	Men	Women
<3	252	241
3 to 5	309	224
>5	158	98

Continued on next page
TABLE 2 – CONTINUED
Frequency distribution, percentage seropositivities, age adjusted OR estimates and 95% CIs in men and women

Smoking, years	Total, n	% positive (95% CI)	OR (95% CI)	Total, n	% positive (95% CI)	OR (95% CI)
Never smoked	259	32.4 (27.4–39.0)	1	293	24.6 (20.0–29.8)	1
<10	82	29.0 (19.1–41.5)	0.8 (0.5–1.6)	53	17.0 (9.1–29.6)	0.7 (0.3–1.4)
10 to 25	164	34.1 (27.3–41.7)	1.1 (0.7–1.6)	70	25.7 (16.8–37.2)	1.2 (0.6–2.2)
26 to 40	134	35.1 (27.5–43.5)	1.1 (0.7–1.7)	83	26.5 (18.1–37.0)	1.3 (0.7–2.2)
>40	68	30.9 (21.1–42.8)	0.8 (0.5–1.5)	50	36.0 (23.0–50.1)	1.4 (0.7–2.7)
Number of cigarettes/day						
Never smoked	259	32.4 (27.4–38.4)	1	293	24.6 (20–29.8)	1
<10	130	32.3 (24.8–40.8)	0.9 (0.6–1.5)	113	18.6 (12.4–26.9)	0.7 (0.4–1.2)
10 to 20	189	36.0 (29.4–43.1)	1.1 (0.8–1.7)	88	30.7 (21.9–41.1)	1.4 (0.8–2.5)
>20	124	29.8 (22.4–38.5)	0.9 (0.5–1.4)	57	28.1 (17.9–41.1)	1.4 (0.7–2.7)
Alcohol intake, drinks/week						
Never	140	45 (32.0–48.9)	1	237	31.2 (27.6–39.4)	1
<10	362	28.7 (24.4–34.9)	0.5 (0.3–0.7)	172	19.1 (13.7–26.6)	0.5 (0.4–0.8)
>10	187	30.5 (22.9–36.7)	0.5 (0.3–0.8)	43	20.9 (2.3–30.0)	0.6 (0.3–1.4)
Polyps						
No	629	32.8 (29.2–36.5)	1	497	23.9 (20.4–27.9)	1
Yes	89	30.6 (26.7–40.4)	1.1 (0.7–1.8)	56	35.7 (24.3–49.0)	1.6 (0.9–3)

Smoking, fruit and vegetable intake, and incidence of diabetes were included because they were associated with *H pylori* seropositivity in other studies. None of these variables had an effect, and the models discussed above were not changed.

DISCUSSION

To our knowledge, the present study is the first of its kind to offer an estimate of *H pylori* prevalence in an adult, asymptomatic population in Ontario. We found an overall weighted seroprevalence of 23.1%, with men having higher rates of infection than women (29.4% versus 14.9%). The unweighted seroprevalence was 29.4%, which was comparable with prevalence estimates from other developed countries, such as 32.5% in the United States (15) and 32% in Australia (16). In Canada, the CADET-PE study found that approximately 30% of dyspeptic patients were infected (13).

Our results indicated a significant effect of sex on prevalence. Men were found to have significantly higher infection rates than women. The literature regarding the relationship between sex and *H pylori* infection is conflicting (17-22). It is possible that women are more likely to have infection eradicated with antimicrobials used for other illnesses (23,24). In British Columbia, women consumed 17% more antibiotics than men (25).

Worldwide, two characteristic, age-specific patterns of *H pylori* seroprevalence have been described. In developing countries, infection appears to occur early in life with chronic infection continuing into adulthood, while in developed countries, the prevalence among children is low but rises in proportion throughout adult life at a rate of approximately 1% per year (26). In our study, seroprevalence rates followed the pattern of other developed countries and increased with age to peak after 70 years. This increase may be explained by a constant infection rate over time or by a birth cohort effect, with decreasing rates in subsequent generations. When considering place of birth, we
found that prevalence rates were higher among immigrants. These findings resonate with findings from the United States, where it was shown that being born outside the country increased infection odds 2.53-fold (15). When we looked at the effect of age at immigration, we found that higher prevalence estimates were observed in those who immigrated at 20 years of age or older. This finding points to the importance of age at immigration, we found that higher prevalence rates were higher among immigrants. Educational programs could be planned and implemented on topics such as personal hygiene, nutritional hygiene, transmission routes of *H pylori* and relevant preventive measures. Further research is needed to study the effectiveness of screening and treating immigrants upon landing in Canada.

Whether the observed increase of infection rates with age is a result of a higher rate of acquisition or a birth cohort effect is still to be determined. Future cohort studies looking at infection rates over time may answer the question. Women tend to have lower infection rates and lower gastric cancer incidence; however, to date, we have no explanation for this observation. Therefore, research on both physiological and behavioural levels is warranted.

CONCLUSION AND RECOMMENDATIONS

The weighted prevalence of *H pylori* infection in a sample of Ontario adults aged 50 to 80 years was 29.4% for men and 14.9% for women.

Given its complications (eg, atrophic gastritis and gastric cancer), *H pylori* infection endangers public health. The results of the present study helped to define a high-risk population of older immigrants from large families. Educational programs could be planned and implemented on topics such as personal hygiene, nutritional hygiene, transmission routes of *H pylori* and relevant preventive measures. Further research is needed to study the effectiveness of screening and treating immigrants upon landing in Canada.

ACKNOWLEDGEMENTS: The present work was supported by the National Cancer Institute and the National Institutes of Health under RFA #CA-95-011 (grant #U01-CA74783). The authors thank Peggy Sloan for her guidance throughout the statistical analysis of the data and Eva Díosua for her assistance with manuscript preparation. The present work was funded by a grant from AstraZeneca.
REFERENCES

1. Lambert R, Guilloux A, Oshima A, et al. Incidence and mortality from stomach cancer in Japan, Slovenia and the USA. Int J Cancer 2002;97:811-8.

2. The International Agency for Research on Cancer. Schistosomes, Liver, Flukes and Helicobacter pylori: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France: IARC Press, 1994.

3. Figueiredo C, Machado JC, Yamaoka Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 2005;10:14-20.

4. Pounder RE, Ng D. The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther 1995;9:33-9.

5. Cave DR. How is Helicobacter pylori transmitted? Gastroenterology 1997;113:S9-14.

6. French RW Jr, Clemens J. Helicobacter in the developing world. Microbes Infect 2003;5:705-13.

7. Veldhuyzen Van Zanten S, Lauritsen K, Delchier JC, et al. One-week triple therapy with esomeprazole provides effective eradication of Helicobacter pylori in duodenal ulcer disease. Aliment Pharmacol Ther 2000;14:1605-11.

8. Bernstein CN, McKewon I, Embil JM, et al. Seroprevalence of Helicobacter pylori infection, incidence of gastric cancer, and peptic ulcer-associated hospitalizations in a Canadian Indian population. Dig Dis Sci 1999;44:668-74.

9. Sinha SK, Martin B, Sargent M, McConnell JP, Bernstein CN. Age of acquisition of Helicobacter pylori in a pediatric Canadian First Nations population. Helicobacter 2002;7:76-85.

10. Thomson AB, Barkun AN, Armstrong D, et al. The prevalence of clinically significant endoscopic findings in primary care patients with uninvestigated dyspepsia: The Canadian Adult Dyspepsia Empiric Treatment – Prompt Endoscopy (CADET-PE) study. Aliment Pharmacol Ther 2003;17:1481-91. (Erratum in 2004;20:702).

11. Mozayeni P, Anson AT, Felbrower R, et al. Relation of adult lifestyle and socioeconomic factors to the prevalence of Helicobacter pylori infection. Int J Epidemiol 2002;31:624-31.

12. Woodward M, Morrison C, McColl K, et al. Investigation into the aetiology and ecology of Helicobacter pylori infection. J Clin Epidemiol 2000;53:175-81.

13. Olafsson S, Berstad A. Changes in food tolerance and lifestyle factors after eradication of Helicobacter pylori. Scand J Gastroenterol 2003;38:288-76.

14. Cottereau M, McKewon-Eysen G, Sutherland H, et al. Ontario familial colon cancer registry: Methods and first-year response rates. Chronic Dis Can 2000;21:81-6.

15. Everhart JE, Krusson-Moran D, Perez-Perez GI, Traika TS, McQuillan G. Seroprevalence and ethnic differences in Helicobacter pylori infection among adults in the United States. J Infect Dis 2000;181:1359-63.

16. Robertson MS, Cade JE, Savoa HE, Clancy RL. Helicobacter pylori infection in the Australian community: Current prevalence and lack of association with ABO blood groups. Intern Med J 2003;33:163-7.

17. Replego ML, Glaser SL, Hiatt RA, Parsonnet J. Biologic sex as a risk factor for Helicobacter pylori infection in healthy young adults. Am J Epidemiol 1995;142:856-63.

18. Perez-Perez GI, Wikkin SS, Decker MD, Blaser MJ. Seroprevalence of Helicobacter pylori infection in couples. J Clin Microbiol 1999;37:642-4.

19. Fawcett JP, Shaw JP, Cockburn M, Brooke M, Barbezat GO. Seroprevalence of Helicobacter pylori in a birth cohort of 21-year-old New Zealanders. Eur J Gastroenterol Hepatol 1998;365-9.

20. Staats MA, Krusson-Moran D, McQuillan GM, Kaslow RA. A population-based serologic survey of Helicobacter pylori infection in children and adolescents in the United States. J Infect Dis 1996;174:1120-3.

21. Graham DY, Malaty HM, Evans DO, Evans DJ Jr, Klein PD, Adam E. Epidemiology of Helicobacter pylori in an asymptomatic population in the United States. Effect of age, race, and socioeconomic status. Gastroenterology 1991;100:1495-501.

22. Lin SK, Lambert JR, Nicholson L, Lukito W, Wahlqvist M. Prevalence of Helicobacter pylori in a representative Anglo-Celtic population of urban Melbourne. J Gastroenterol Hepatol 1998;13:503-10.

23. Lukmarova N, Slezakova M, Blahutova A. Antibiotic consumption in relation to sex and age. Cesk Farm 1992;41:162-5.

24. Vanden Eng J, Marcus R, Hadler JL, et al. Consumer attitudes and use of antibiotics. Emerg Infect Dis 2003;9:1128-35.

25. Patrick DM, Marra F, Hutchinson J, Monnet DL, Ng H, Bowie WR. Per capita antibiotic consumption: How does a North American jurisdiction compare with Europe? Clin Infect Dis 2004;39:11-7.

26. Parsonnet J, Harris RA, Hack HM, Owens DK. Modelling cost-effectiveness of Helicobacter pylori screening to prevent gastric cancer: A mandate for clinical trials. Lancet 1996;348:150-4.

27. Goodman KJ, Correa P. Transmission of Helicobacter pylori among siblings. Lancet 2000;355:358-62.

28. Oghara A, Kikuchi S, Hasegawa A, et al. Relationship between Helicobacter pylori infection and smoking and drinking habits. J Gastroenterol Hepatol 2000;15:271-6.

29. Brenner H, Bode G, Adler G, Hoffmeister A, Koenig W, Rothenbacher D. Alcohol as a gastric disinfectant? The complex relationship between alcohol consumption and current Helicobacter pylori infection. Epidemiology 2001;12:209-14.

30. Murray LJ, Lane AJ, Harvey JM, Donovan JL, Nair P, Harvey RF. Inverse relationship between alcohol consumption and active Helicobacter pylori infection: The Bristol Helicobacter project. Am J Gastroenterol 2002;97:2750-5.

31. Kuepper-Nybelen J, Rothenbacher D, Brenner H. Relationship between lifetime alcohol consumption and Helicobacter pylori infection. Ann Epidemiol 2005;15:607-13.

32. Weisse ME, Eberly B, Person DA. Wine as a digestive aid: Comparative antimicrobial effects of bismuth salicylate and red and white wine. BMJ 1995;311:1657-60.

33. Sipponen P, Kosunen TU, Samloff IM, Heimonen OP, Siurala M. Rate of Helicobacter pylori acquisition among Finnish adults: A fifteen year follow-up. Scand J Gastroenterol 1996;31:229-32.

34. Rothenbacher D, Inceoglu J, Bode G, Brenner H. Acquisition of Helicobacter pylori infection among Finnish children: Incidence of gastric cancer, and prevalence of Helicobacter pylori infection within the first 2 years of life. J Pediatr 2000;137:744-8.

35. Xia HH, Talley NJ. Natural acquisition and spontaneous elimination of Helicobacter pylori infection: Clinical implications. Am J Gastroenterol 1997;92:1780-7.

36. Logan RP, Walker MM. ABC of the upper gastrointestinal tract: Epidemiology and diagnosis of Helicobacter pylori infection. BMJ 2001;323:920-2.

37. Sullivan T, Ashbury FD, Fallone CA, et al. Helicobacter pylori and the prevention of gastric cancer. Can J Gastroenterol 2004;18:295-302.
