Raquitismo hipofosfatêmico ligado ao X: uma nova mutação

X-linked hypophosphatemic rickets: a new mutation

Autores
Patrícia Maio¹
Lia Mano¹
Sara Rocha³
Rute Baeta Baptista¹
Telma Francisco¹
Helena Sousa⁵
João Parente Freixo⁶
Margarida Abranches⁴

¹Hospital do Espírito Santo de Évora, Évora, Portugal.
²Centro Hospitalar e Universitário de Lisboa Central, Hospital Dona Estefânia, Lisboa, Portugal.
³Hospital de Santarém, Santarém, Portugal.
⁴Centro Hospitalar e Universitário de Lisboa Central, Hospital Dona Estefânia, Unidade de Nefrologia Pediátrica, Lisboa, Portugal.
⁵Hospital de Vila Franca de Xira, Vila Franca de Xira, Lisboa, Portugal.
⁶Centro Hospitalar e Universitário de Lisboa Central, Hospital Dona Estefânia, Departamento de Genética Médica, Lisboa, Portugal.

DOI: https://doi.org/10.1590/2175-8239-JBN-2020-0027

Data de submissão: 10/02/2020.
Data de aprovação: 10/06/2020.

Correspondência para:
Patrícia Maio
E-mail: patriciaspmaio@gmail.com

O raquitismo fosfopênico pode ser causado por mutações no gene PHEX (ligado ao X do homólogo da endopeptidase que regula o fosfato). Atualmente, mais de 500 mutações no gene PHEX causam raquitismo hipofosfatêmico. Os autores relatam um caso clínico de uma menina de 4 anos com histórico familiar sem relevância, que apresentou falha no crescimento e arqueamento das pernas. Os exames laboratoriais mostraram hipofosfatemia, fosfatase alcalina elevada, cálcio normal, PTH levemente elevado e níveis normais de 25(OH)D e 1,25(OH)D. O estudo radiológico mostrou deformidades ósseas no rádio e no fêmur. O diagnóstico clínico do raquitismo fosfopênico foi realizado e o estudo genético detectou uma provável variante patogênica heterozigótica do gene PHEX: c.767_768del (p.Thr256Serfs*7). Esta variante não foi descrita anteriormente na literatura ou nas bases de dados. O conhecimento sobre novas mutações pode melhorar o desfecho de pacientes. A análise genética pode ajudar a estabelecer uma correlação genótipo-fenótipo.

Descritores: Raquitismo hipofosfatêmico; Mutação; PHEX.

Introdução
O raquitismo fosfopênico ocorre como resultado de anormalidades herdadas ou adquiridas no manuseio tubular proximal do fósforo. O raquitismo hipofosfatêmico ligado ao X (XLH) é a forma herdada mais comum de raquitismo, com incidência de 1: 20.000 indivíduos. Esse distúrbio é causado pela inativação de variantes patogênicas no gene PHEX (homólogo da endopeptidase reguladora de fosfato ligado ao X), localizado no lócus do cromossomo Xp22.1 e contém 22 exons.

Essas variantes inativadoras resultam em excesso de FGF-23 circulante (fator de crescimento de fibroblastos 23), que prejudica a reabsorção renal de fosfato nas células dos túbulos proximais via FGFR1 (receptor de crescimento de fibroblastos 1) e seu co-receptor KLOTHO.

Embora o raquitismo XLH seja herdado de maneira dominante ligada ao X, a gravidade de suas manifestações é variável. Suspeita-se do diagnóstico de XLH com base em manifestações clínicas, anormalidades laboratoriais e achados radiológicos.
Pode ser confirmado pela identificação de uma variante patogênica hemizigótica (no sexo masculino) ou heterozigótica (no sexo feminino) no PHEX por meio de testes genéticos moleculares. Uma história familiar positiva pode facilitar o diagnóstico; porém, novas mutações ocorrem com frequência.

As manifestações clínicas incluem retardo de crescimento, mineralização óssea anormal, osteomalácia, dor óssea e deformidade dos membros inferiores (genu varo ou valgus). Geralmente, o comprimento é normal ao nascimento, mas a taxa de crescimento diminui na infância. As manifestações clínicas geralmente se tornam aparentes nos dois primeiros anos de vida, principalmente quando a criança começa a andar, causando curvatura nas pernas e baixa estatura.

Os indivíduos afetados podem apresentar mau posicionamento dentário e abscesso perirradicular devido à dentina defeituosa ou câmaras pulpares e canais radiculares aumentados. Sinostose craniana prematura pode ocorrer com dolicocefalia, achatamento parietal e formação de bossa frontal. Os adultos podem apresentar pseudo-fraturas, osteoartrite, osteófitos ou entesopatia.

Os achados laboratoriais incluem hipofosfatemia com hiperfosfatúria, níveis séricos normais de cálcio, calcúria normal ou reduzida e níveis normais de D-(OH)-vitamina D. Os níveis séricos de PTH são normais ou discretamente elevados e a fosfatase alcalina plasmática está elevada. Há resistência a altas doses de vitamina D. Elevados níveis séricos de FGF-23 podem ser encontrados.

Os achados radiológicos incluem deformidades do membro inferior e metáfises alargadas, desgastadas ou em forma de concha. Calcificações dos tendões ou ligamentos podem estar presentes em pacientes adultos.

Neste relato de caso descrevemos um paciente com raquitismo hipofosfatêmico como resultado de uma provável nova variante patogênica no gene PHEX.

**Descrição do Caso**

Uma menina de quatro anos de idade, com história familiar normal, nascida a termo, com peso e comprimento adequados, apresentou falha de desenvolvimento desde o primeiro ano de vida (altura no quinto percentil até os dois anos de idade, e com quatro de idade estava abaixo do quinto percentil).

O arqueamento das pernas foi observado aos 18 meses de idade. Ao exame físico, apresentava bossa frontal, hiperlordose, pernas arqueadas (genu varo bilateral), pulsos espessados, dentes e cabelos normais (Figura 1). Não foram referidas queixas de dor muscular.

**Figura 1.** Probando aos 4 anos de idade, apresentando pernas arqueadas, genu varum bilateral, e punhos aumentados.

O exame de sangue mostrou hipofosfatemia (2,4 mg/dL), fosfatase alcalina elevada (495 U/L), calcemia normal, PTH levemente elevado (97,2 pg/mL; RR <68,3) e níveis normais de D-(OH)-vitamina D e 1,25-(OH)-vitamina D. A avaliação radiológica mostrou deformidades ósseas no rádio e no fêmur.

Após o diagnóstico de raquitismo fosfofénico, ela iniciou o tratamento com calcitriol 125 mcg/a e fósforo de 2500 mg/dia.

Atualmente, aos 11 anos de idade, a paciente não apresenta sinais clínicos ou radiográficos de raquitismo. A idade óssea está de acordo com a idade cronológica e houve um aumento considerável na taxa de crescimento (15º percentil), o que corresponde à sua altura alvo (Figura 2). O ultrassom renal mostrou sinais incipientes de nefrocalcinose desde os nove anos de idade. O exame de sangue mostrou PTH 53,20 pg/mL, fosfatase alcalina 291 U/L, fosfatemia 2,7 mg/dL e calcemia 10,2 mg/dL.
A análise genética detectou uma provável variante patogênica heterozigótica do gene PHEX: variante c.767_768del (p.Thr256Serfs*7). Essa variante não foi descrita anteriormente na literatura ou em bancos de dados. No entanto, uma vez que introduz um códon de parada prematuro, resultando em uma proteína truncada, que é um mecanismo mutacional conhecido de XLH, é muito provável que seja uma variante patogênica. O estudo genético dos pais ainda está em andamento.

**Discussão**

Os autores relatam o caso de uma menina com achados clínicos, bioquímicos e radiológicos de raquitismo fosfopênico. A paciente recebeu tratamento com fósforo e calcitriol, com melhora do crescimento. O estudo genético identificou uma nova variante patogênica provável no gene PHEX, que produz um códon de parada prematuro, resultando em uma proteína aberrante.

Uma variante patogênica do gene PHEX foi descrita pela primeira vez em 1995. Atualmente, mais de 500 variantes patogênicas nesse gene foram relatadas como causadoras de XLH (HGMD professional 2019.4). Diferentes defeitos genéticos, incluindo *missense*, *non-sense*, local de emenda, deleções pequenas e inserções estão descritas na literatura, no Human Gene Mutation Database e no banco de dados de mutações PHEX.

O gene PHEX codifica uma endopeptidase ligada à membrana que é expressa na membrana da superfície celular de osteoblastos, osteócitos, odontoblastos, pulmão, fígado, músculo e gônadas. As variantes patogênicas do PHEX aumentam a produção de FGF-23, que promove um efeito fosfatúrico, levando à hipofosfatemia. Apesar disso, o mecanismo fisiopatológico através do qual a perda de PHEX das variantes funcionais aumenta os níveis de FGF-23 não é totalmente compreendido.

Em pacientes com XLH, a perda renal de fosfato deve ser avaliada calculando-se a reabsorção tubular máxima de fosfato por taxa de filtração glomerular (TmP/TFG).

O tratamento convencional de crianças com raquitismo hipofosfatêmico inclui uma combinação de doses orais de preparações de fosfato (quatro a cinco vezes por dia) e análogos ativos de vitamina D (calcitriol ou alfacalcidol). Os objetivos do tratamento também incluem a normalização da fosfatase alcalina e a tentativa de manter a cálcium na faixa normal, para evitar a deposição de cálcio no parênquima renal; no entanto, a normalização dos níveis séricos de fosfato não é um objetivo da terapia convencional, pois seria difícil de alcançar e também promoveria nefrocalcinose.

Neste relato, a paciente apresenta sinais incipientes de nefrocalcinose desde os nove anos de idade. Este efeito adverso do tratamento foi controlado com ultrassonografia renal e ajustes da terapia, evitando grandes doses de suplementos de fosfato e mantendo níveis normais de cálcium. Se necessário, o uso de citrato de potássio pode ajudar a prevenir a precipitação do cálcio, mas aumenta o risco de precipitação de fosfato. Portanto, o citrato de potássio deve ser usado com cautela.

A terapia com burosumab deve ser considerada se a nefrocalcinose piorar.

O burosumab (Crysvita®), um anticorpo monoclonal IgG1 recombinante, totalmente humano, direcionado ao fator de crescimento de fibroblastos 23 (FGF23) foi aprovado pela Agência Europeia de Medicamentos (EMA) em fevereiro de 2018 para o tratamento de XLH com doença óssea radiológica em crianças ≥ 1 ano de idade e em adolescentes com o esqueleto em crescimento. Também foi aprovado pela Food and Drug Administration (FDA) dos EUA em abril de 2018 para o tratamento da XLH em adultos e crianças ≥ 1 ano. A dose inicial é de 0,4 mg/kg, com uma dose de manutenção de 0,8 mg/kg (até uma dose máxima de 90 mg) administrada como terapia subcutânea uma vez a cada 2 semanas.

A decisão de aprovar o burosumab no tratamento da XLH em adultos e crianças foi baseada nos resultados de vários ensaios. Dois ensaios clínicos não controlados e abertos, testando o burosumab em 65
crianças de 1 a 12 anos com XLH grave demonstraram que em 12 a 16 meses o burosumab resultou em um aumento estatisticamente significativo na TmP/TFG, com subsequentes níveis séricos de fosfato mais altos, 1,25(OH)2 níveis de vitamina D, uma redução significativa na gravidade do raquitismo, uma notável melhora na capacidade física e uma redução significativa na dor relatada pela paciente e na incapacidade funcional13.

Nesse caso, o burosumab foi considerado, mas adiado devido à resposta bem-sucedida à terapia convencional.

Em conclusão, relatamos uma nova variante, provavelmente patogênica, do gene PHEX em uma garota com achados clínicos, laboratoriais e radiológicos de raquitismo. O diagnóstico genético é extremamente importante, pois pode determinar decisões precisas de tratamento e possibilitar o aconselhamento genético e o diagnóstico pré-natal genético17. O conhecimento sobre o espectro mutacional de doenças genéticas é importante para uma melhor caracterização genotípica e pode melhorar o desfecho para o paciente. A análise genética pode ajudar a estabelecer uma correlação genótipo-fenótipo13.

AGRADECIMENTOS

Os autores gostariam de agradecer ao Departamento de Genética Médica do Hospital Dona Estefânia, CHULC - Lisboa, Portugal.

CONTRIBUIÇÃO DO AUTOR

Todos os autores participaram da redação do manuscrito e aprovação final da versão a ser publicada. Os autores Telma Francisco, Helena Sousa, João Parente Freixo e Margarida Abranches foram responsáveis pelo diagnóstico e acompanhamento da paciente.

CONFLITO DE INTERESES

Os autores declaram que não têm conflito de interesses.

REFERÊNCIAS

1. Carpenter T. Overview of rickets in children. UpToDate [Internet]. 2020 Apr; [access in 2018 Mar 03]. Available from: https://www.uptodate.com/contents/overview-of-rickets-in-children
2. Acar S, Demir K, Shi Y. Genetic causes of rickets. J Clin Res Pediatr Endocrinol. 2017 Dec;9(Suppl 2):88-105.
3. Chandran M, Ching CL, Zhao Y, Bee YM, Phua LY, Clarke BL. Novel PHEX gene mutation associated with X linked hypophosphatemic rickets. Nephron Physiol. 2010;116(3):17-21.
4. Tencenhous HG. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant. 1999 Feb;14(2):333-41.
5. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009 Mar;160(3):491-7.
6. Rowe PS, Goulding JN, Francis F, Oudej C, Econs MJ, Hanauer A, et al. The gene for X-linked hypophosphataemic rickets maps to 200-300 kb region in Xp22.1, and is located on a single YAC containing a putative vitamin D response element (VDRE). Hum Genet. 1996;97:345-52.
7. Sako S, Niida Y, Shima KR, Takeshita Y, Ishii K, Takamura T. A novel PHEX mutation associated with vitamin D-resistant rickets. Hum Genome Var. 2019;6:9.
8. Emma F, Cappa M, Antoniazzi F, Bianchi ML, Chiiodini I, Vainich CE, et al. X-linked hypophosphatemic rickets: an Italian experts’ opinion survey. Ital J Pediatr. 2019 May;45(1):67.
9. Christov M, Jüppner H. Phosphate homeostasis disorders. Best Pract Res Clin Endocrinol Metab. 2018 Oct;32(5):685-706.
10. Penido MG, Alon US. Hypophosphatemic rickets due to perturbations in renal tubular function. Pediatr Nephrol. 2014 Mar;29(3):361-73.
11. Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, et al. Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesisopathy and dental disease. J Clin Endocrinol Metab. 2015 Oct;100(10):3625-32.
12. Murthy AS. X-linked hypophosphatemic rickets and craniosynostosis. J Craniofac Surg. 2009 Mar;20(2):439-42.
13. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabl D, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019 Jul;15(7):433-53.
14. HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995 Oct;11(2):130-6.
15. Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, et al. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 1997 Jun;7(6):573-85.
16. European Medicines Agency. CRYSVITA® (burosumab): summary of product characteristics [Internet]. Tokyo, Japan; 2019 Nov; [access in 2018 Apr 04]. Available from: http://ec.europa.eu/}
17. Liao H, Zhu HM, Liu HQ, Li LP, Liu SL, Wang H. Two novel variants of the PHEX gene in patients with X-linked dominant hypophosphatemic rickets and prenatal diagnosis for fetuses in these families. Int J Mol Med. 2018;41(4):2012-20.