NV-Diamond Magnetic Microscopy using a Double Quantum 4-Ramsey Protocol

Connor A. Hart,1,2,3,4,∗ Jennifer M. Schloss,5,6,7,∗ Matthew J. Turner,1,2,3,4,7
Patrick J. Scheidegger,8 Erik Bauch,9 and Ronald L. Walsworth2,3,4,7,9,†

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Computer and Electrical Engineering, University of Maryland, College Park, MD 20742, USA
3Department of Computer and Electrical Engineering, University of Maryland, College Park, MD 20742, USA
4Quantum Technology Center, University of Maryland, College Park, MD 20742, USA
5Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA
6Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
7Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
8Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
9Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

(Dated: September 8, 2020)

We introduce a double quantum (DQ) 4-Ramsey measurement protocol that enables wide-field magnetic imaging using nitrogen vacancy (NV) centers in diamond, with enhanced homogeneity of the magnetic sensitivity relative to conventional single quantum (SQ) techniques. In a demonstration experiment employing a 1 micron thick NV layer in a macroscopic diamond chip, the DQ 4-Ramsey protocol provides volume-normalized DC magnetic sensitivity of $\eta^V = 38 \text{nT Hz}^{-1/2} \mu\text{m}^{3/2}$ across a 125μm×125μm field of view, with about 5\times less spatial variation in sensitivity across the field of view compared to a SQ measurement. The DQ 4-Ramsey protocol employs microwave-phase alternation across four consecutive Ramsey (4-Ramsey) measurements to isolate the desired DQ magnetic signal from any residual SQ signal induced by MW pulse errors. The improved robustness and magnetic sensitivity homogeneity of the DQ 4-Ramsey protocol enable imaging of dynamic, broadband magnetic sources such as integrated circuits and electrically-active cells.

I. INTRODUCTION

Nitrogen-vacancy (NV) color centers in diamond constitute a leading quantum sensing platform, with particularly diverse applications in magnetometry [1]. The negatively-charged NV− center has an electronic spin-triplet ground state with magnetically-sensitive spin resonances, offers all-optical spin-state preparation and readout under ambient conditions, and can be engineered at suitably high densities in favorable geometries [2, 3]. These properties make ensembles of NV− centers particularly advantageous for wide-field magnetic microscopy of physical and biological systems with micrometer-scale spatial resolution, a modality known as the quantum diamond microscope (QDM) [4]. QDM applications to date include imaging magnetic fields from remnant magnetization in geological specimens [5], domains in magnetic memory [6], iron mineralization in chiton teeth [7], current flow in graphene devices [8, 9] and integrated circuits [10], populations of living magnetotactic bacteria [11], and cultures of immunomagnetically labeled tumor cells [12].

Despite this progress, QDM magnetic imaging applications have been largely restricted to mapping of static magnetic fields exceeding several microteslas due to shortcomings of conventional single quantum (SQ) magnetometry. SQ schemes sense changes in the frequency or phase accumulation between the $|0\rangle$ and either of the $|\pm1\rangle$ sublevels using, e.g., optically detected magnetic resonance (ODMR). In particular, the sensitivity of QDMs using continuous wave (CW) ODMR is impaired by competing effects of the optical and microwave (MW) control fields applied during the sensing interval [3, 4]. Pulsed-ODMR schemes, which separate the optical spin-state preparation and readout from the MW control and sensing interval, offer improved sensitivity, but cannot exceed the performance achievable with SQ Ramsey magnetometry [3].

Furthermore, any SQ magnetometry scheme is vulnerable to diamond crystal stress inhomogeneities and temperature variations, which shift and broaden the NV− spin resonances. Such stress gradients are particularly pernicious for QDM applications, with typical gradient magnitudes comparable to NV− resonance linewidths (0.1 – 1 MHz) and spatial structure spanning the sub-micron to millimeter scales [13]. Stress-induced resonance shifts or broadening may be mistaken for magnetic signals of interest. Stress gradients can also degrade per-pixel sensitivity and sensitivity homogeneity across an image. While protocols such as sequentially sampling the ODMR spectrum at multiple frequencies [5] or employing four-tone MW control [14, 15] can separate magnetic and non-magnetic signals, the worsened, inhomogeneous magnetic sensitivity caused by stress gradients remains unaddressed.

Here, we demonstrate a double quantum (DQ) 4-Ramsey protocol that overcomes the shortcomings of SQ CW- and pulsed-ODMR measurement techniques. This protocol expands upon the advantageous pulsed Ramsey scheme, which temporally separates the spin state control, optical readout, and sensing intervals. The scheme thus enables use of increased laser and MW intensity compared to CW-ODMR, allowing for improved mea-

∗ These authors contributed equally to this work
† walsworth@umd.edu
FIG. 1. Energy Level Diagram and Experimental Apparatus. (a) Energy level diagram for the negatively-charged nitrogen vacancy (NV−) in diamond with zero field splitting D between the ground state spin levels $|m_s=0\rangle$ and $|m_s=\pm 1\rangle$. The expanded views depict single (SQ) and double quantum (DQ) coherence. To induce a DQ coherence, the $|0\rangle \rightarrow \pm 1$ transitions are simultaneously irradiated with a two-tone resonant microwave (MW) pulse. (b) QDM apparatus overview including 532 nm excitation of a micron-scale layer of NV centers in a macroscopic diamond chip, using total internal reflection (TIR). NV fluorescence is collected using a 20x objective onto a camera or photodiode. 647 nm and 532 nm long-pass (LP) optical filters partially isolate NV− fluorescence from background NV0 fluorescence. MW control fields are synthesized using two signal generators with phase control on both tones and applied via a millimeter-scale shorted coaxial loop. A bias magnetic field of 5 mT is aligned with NV centers oriented along a single crystallographic axis. (c) Typical NV− Rabi frequency variation across the $125\mu m \times 125\mu m$ field of view used in this work. The effect of inhomogeneous, stress-induced NV− resonance shifts on the Rabi frequency are visible in addition to a quasi-linear Rabi gradient due to spatial variation in the MW amplitude.

measurement contrast and higher fluorescence count rates without broadening the NV− spin resonances. Furthermore, the protocol exploits the benefits of DQ coherence magnetometry, which leverages a DQ superposition of the $m_s = \pm 1$ ground-state sublevels in combination with an applied bias magnetic field, to cancel common-mode resonance shifts and broadening from stress, electric fields, and temperature variations [16–19]. This DQ Ramsey-based scheme therefore can disentangle magnetic and non-magnetic signals while also enabling improved, homogeneous per-pixel magnetic sensitivity across an image.

Previously, DQ Ramsey magnetic imaging has been hindered by the technical challenge of producing sufficiently uniform, strong MW fields to avoid spatially-varying errors in MW pulse duration and hence the NV measurement protocol. Such pulse errors result in residual SQ coherence that remains sensitive to common-mode shifts of the $|\pm 1\rangle$ sublevels, degrading the robustness of DQ magnetometry to stress-induced shifts and temperature drifts.

The present work circumvents this challenge with a DQ 4-Ramsey protocol specifically designed to suppress the contribution of residual SQ coherence. By properly selecting the spin-1 rotations applied in four consecutive Ramsey measurements (4-Ramsey), the DQ signal from each Ramsey measurement is preserved while the residual SQ signals cancel. This scheme is broadly applicable to both NV− ensemble imaging and bulk sensing modalities where robustness to temperature-induced drifts is often critical [20–22]. Since the 4-Ramsey protocol is a straightforward extension of established phase-alternation schemes, implementation in an existing system does not typically require additional MW components.

After describing the NV− center and experimental apparatus in Sec. II, we outline and experimentally demonstrate the DQ 4-Ramsey protocol (Sec. III). In Sec. IV, we use SQ and DQ Ramsey fringe imaging to characterize, pixel by pixel, the reduced spatial variation in T_2^* and NV− resonance frequency when using the DQ sensing basis. Using the same field of view as in Sec. IV, we then measure a 1.5× improved median per-pixel sensitivity and a 4.7× narrower spatial distribution of per-pixel sensitivity using the the DQ sensing basis compared to the SQ basis (Sec. V). In Sec. VI we highlight next steps to further improve DC magnetic sensitivity and temporal resolution; provide an outlook describing envisioned applications for high-sensitivity, broadband magnetic microscopy using the DQ 4-Ramsey protocol.

II. EXPERIMENTAL METHODS

The NV center is a C_{3v} symmetric color centers in diamond formed by substitution of a nitrogen atom adjacent to a vacancy in the carbon lattice. We restrict attention to the negatively charged NV− center, which has an electronic spin-triplet ($S=1$) ground state with a zero-field-splitting at room temperature $D \approx 2.87 \text{ GHz}$ between the $m_s = |0\rangle$ and $m_s = |\pm 1\rangle$ magnetic sublevels as shown in Fig. 1(a). Application of an external magnetic field splits the $|\pm 1\rangle$ sublevels by the Zeeman effect. In the presence of a magnetic field \vec{B} exceeding $\approx 1\text{ mT}$ aligned with the NV− symmetry axis z, the NV− ground-state Hamiltonian can be approximated as [5, 13]:

$$H \approx |D(T) + M_z|S_z^2 + \gamma B_z S_z,$$

(1)

where S_z is the dimensionless spin-1 operator, M_z is the axial spin-stress coupling parameter, $D(T)$ is the temperature-dependent zero-field-splitting, B_z is the projection of the external magnetic field \vec{B} along the NV− symmetry axis, and $\gamma = 28.03 \text{ GHz T}^{-1}$ is the
NV* gyromagnetic ratio. Transverse magnetic, electric, and crystal stress terms are neglected as motivated in Refs. [13, 16, 23] (see the Supplemental Materials [24] for further discussion of the crystal stress terms). Under these assumptions, the observed spatial variations in NV* resonance frequency and linewidth are attributed to axial stress gradients arising from stress inhomogeneity in the host diamond crystal. Note that for DQ coherence magnetometry, the relative phase accumulated between the $|±1\rangle$ sublevels is not only immune to common-mode shifts (proportional to S_2^2 in Eq. 1) but also doubly sensitive to magnetic fields [16–18].

The present study employs a QDM to image spin-state-dependent fluorescence from a 1 µm thick nitrogen-doped CVD diamond layer ($[N_{\text{total}}] \approx 20$ ppm, 13C = 99.995%, natural abundance nitrogen) grown by Element Six Ltd. on a $(2 \times 2 \times 0.5)$ mm3 high purity diamond substrate. Post-growth treatment via electron irradiation and annealing increased the NV* concentration in the nitrogen-doped layer to ≈ 2 ppm. The magnitude and distribution of stress inhomogeneity in the selected sample is representative of typical diamonds fabricated for NV-based magnetic imaging (see Refs. [13, 25] for additional examples).

An approximately 150 µm by 300 µm region of the NV layer is illuminated with 1 W of 532 nm laser light in a total internal reflection (TIR) geometry [see Fig. 1(b)]; and the associated NV* fluorescence is collected onto either a Heliotis heliCam C3 camera or a Hamamatsu C10508 avalanche photodiode. The heliCam operates by subtracting alternate exposures in analog and then digitizing the resultant background-subtracted signal. This procedure enables the detected magnetic-field-dependent NV* fluorescence to fill each pixel’s 10-bit dynamic range for modulated magnetometry sequences synchronized with the camera exposures. With an external frame-rate of up to 3.8 kHz, the heliCam provides sub-millisecond temporal resolution; while the internal exposure rate of up to 1 MHz enables the accumulation of signal from multiple Ramsey measurements, each a few µs in duration, per frame (Supplemental Materials [24]). Two signal generators with phase control synthesize the dual-tone MW control fields required for DQ coherence magnetometry in the presence of a bias magnetic field (Appendix A). Control over the relative phase between the two MW tones enables selective coupling to different DQ superposition states as described in the following section.

III. DQ 4-RAMSEY MEASUREMENT PROTOCOL

We designed a measurement protocol consisting of four consecutive Ramsey sequences that, when combined, isolate the desired DQ magnetometry signal from residual SQ signal by modulating the MW pulse phases (see Fig. 2). SQ protocols commonly employ sets of two Ramsey sequences (2-Ramsey), alternating the phase of the final $\pi/2$ pulse in successive sequences by 180°, to modulate the NV* fluorescence and cancel low-frequency noise, such as $1/f$ noise [26]. In such a SQ 2-Ramsey protocol, the magnetometry signal alternately maps to positive and negative changes in NV* fluorescence, such that subtracting every second detection from the previous yields a rectified magnetometry signal.

An analogous DQ 2-Ramsey protocol exists: two-tone MW pulses couple the $|0\rangle$ state to equal-amplitude superpositions of the $|±1\rangle$ states, with a phase relationship $((|+1\rangle + e^{i\Delta \phi}|−1\rangle)/2$ determined by the relative phase $\Delta \phi$ between the two MW tones [17]. By modulating $\Delta \phi = (0^\circ, 180^\circ)$ between the tones in the final $\pi/2$ pulse, the $|0\rangle$ state can be alternately coupled to the orthogonal superposition states $|±\text{DQ}\rangle = (|+1\rangle ± |−1\rangle)/\sqrt{2}$.

Although the DQ 2-Ramsey protocol effectively mitigates noise at frequencies below the phase modulation frequency, it does not disentangle the desired DQ signal from unwanted SQ signal arising from MW pulse errors. In NV* ensemble measurements, MW pulse errors commonly arise from spatial gradients in the Rabi frequency across an interrogated ensemble or field of view. As an example, Fig. 1(c) depicts the typical Rabi gradient for a mm-scale shorted coaxial loop. Although the spatial properties of the MW control field depend upon setup-specific MW synthesis and delivery approaches, the 4-Ramsey protocol universally relaxes requirements on MW-field uniformity. The hyperfine splitting of the NV* resonances and stress-induced NV* resonance shifts can also introduce MW pulse errors via the detuning-dependent effective Rabi frequency. In this work, errors induced by the hyperfine splitting (2.2 MHz splitting between the $m_I = \{-1, 0, +1\}$ 14N nuclear spin states) are comparable to the Rabi gradient of ± 200 kHz and uniform across the field of view. In addition, the spatially-correlated Rabi frequency variations on the 1-10 micron length-scales in Fig. 1(c) are attributed to stress-induced shifts on the order of 100’s of kHz (see Sec. IV and Supplemental Materials [24]).

We now describe the phase alternation pattern used in the DQ 4-Ramsey protocol to isolate DQ magnetic signals; and present an experimental demonstration using photodiode-based measurements. Fig. 2(a) depicts the resulting DQ rotations applied in the $\{|0\rangle, |−\text{DQ}\rangle, |+\text{DQ}\rangle\}$ basis for a particular implementation of the DQ 4-Ramsey protocol, where the choice of relative phases has been restricted to 0° or 180° (generalized phase requirements can be found in the Supplemental Material [24]). While the initial pulse in each Ramsey sequence prepares the $|+\text{DQ}\rangle$ state, the final pulse alternately couples to the $|+\text{DQ}\rangle$ and $|−\text{DQ}\rangle$ states, similar to the DQ 2-Ramsey protocol. If the signal from each of the four measurements $i = 1 - 4$ is denoted by S_i then the rectified DQ signal S_{4R} is given by:

$$S_{4R} = S_1 - S_2 + S_3 - S_4$$ \hspace{1cm} (2)

where, as shown in Fig. 2(a), S_2 and S_4 contain DQ signals with opposite sign compared to S_1 and S_3. When implementing these DQ rotations, we have flexibility in choosing the absolute phases of each tone. For example,
FIG. 2. DQ 4-Ramsey Measurement Protocol. (a) Representation of the DQ 4-Ramsey measurement protocol to cancel residual single quantum (SQ) signals resulting from MW pulse errors. The two-tone DQ pulses applied during each Ramsey sequence are depicted above the DC magnetometry curve associated with that choice of phases. The net DQ magnetometry signal S_{4R} is shown on the right. (b) The applied MW pulses are decomposed into effective SQ rotations for each pseudo-two-level system. The resultant DC magnetometry signals for each Ramsey sequence are depicted and shown to produce no net SQ signal under Eqn. 2. (c) The applied two-tone MW field frequencies are detuned from the NV' resonances in common mode by δ_{cm} to emulate stress- and temperature-induced shifts. (d) Single-channel (photodiode) measurements of the NV' response to common-mode shifts of the |0⟩ → |−1⟩ and |0⟩ → |+1⟩ spin resonances. For each sensing protocol, δ_{cm} = 0 indicates the point of maximum slope after calibration (see Appendix B). The DQ 4-Ramsey response to common-mode shifts is suppressed by 96× compared to the SQ 2-Ramsey response. (e) The applied two-tone MW field frequencies are detuned from the NV' resonances differentially by ±δ_{diff} to emulate axial-magnetic-field-induced shifts. (f) Single-channel measurements of the NV' response to differential shifts of the |0⟩ → |−1⟩ and |0⟩ → |+1⟩ spin resonances. For each measurement protocol, δ_{diff} = 0 indicates the point of maximum slope after calibration, which determines the optimal magnetometer sensitivity.

\{0^\circ, 0^\circ\} and \{180^\circ, 180^\circ\} both couple to |+DQ⟩ while \{0^\circ, 180^\circ\} and \{0^\circ, 180^\circ\} couple to |−DQ⟩. We leverage this degree of freedom to ensure that residual SQ signals are canceled by Eqn. 2. The effective SQ pulses applied to each two-level subsystem transition (|0⟩ → |+1⟩ and |0⟩ → |−1⟩) are illustrated in Fig. 2(c) as Bloch sphere rotations about the axes x and −x.

If pulse errors arise, leading to residual SQ coherence, then the resultant SQ signal contained in the summation S_{2} + S_{4} is the same as S_{1} + S_{3} (so long as the errors are constant over the ~10μs measurement duration). By subtracting these summations, S_{4R} from Eq. 2 eliminates this spurious SQ signal. When using the heliCam, Eqn. 2 is physically implemented by the on-chip circuitry, which subtracts alternating exposures in analog before digitization. For photodiode-based measurements, which provide access to S_{1−4} directly, the right hand side of Eqn. 2 can be divided by the sum of S_{1−4} to cancel the effects of multiplicative noise sources such as laser intensity drift.

Figures 2(c-f) illustrate the benefit of the DQ 4-Ramsey protocol over SQ and DQ 2-Ramsey protocols by comparing the measured change in contrast in response to differential (magnetic-field-like) and common-mode (temperature, axial-stress-like) shifts when operating with a free precession interval τ and detuning from the center hyperfine resonance optimized for magnetic sensitivity (see Appendix B). For the data presented in Figs. 2(d,f), NV fluorescence from the same field of view as shown in Fig. 1(c) is collected onto a photodiode while sweeping the applied MW tones. By approximating the change in fluorescence about the optimal detuning (δ_{cm} = δ_{diff} = 0) using a linear fit, we find that DQ Ramsey measurements using the conventional 2-Ramsey protocol (with residual SQ signal) suppress the response to common-mode shifts δ_{cm} compared to SQ 2-Ramsey measurements by a factor of 7. Although this suppression factor depends on both the particular setup and diamond, the factor of 7 reported in this work is similar to that in Ref. [18] for a single NV', which also attributes the residual observed response to MW pulse imperfections. Meanwhile, under the same experimental conditions, the DQ 4-Ramsey protocol suppresses the common shift response by about a factor of 100 compared to SQ Ramsey measurements. As depicted in Fig. 2(f), the DQ 4-Ramsey and DQ 2-Ramsey responses exhibit about a cumulative 25% increase in slope (and hence magnetometer sensitivity) compared to the SQ 2-Ramsey response, after accounting for the increased effective gyromagnetic ratio in the DQ basis and the loss of DQ contrast due to pulse errors.

IV. RAMSEY FRINGE IMAGING

We employed SQ 2-Ramsey and DQ 4-Ramsey measurements to image the NV' ensemble spin properties relevant for DC magnetic field sensitivity across a 125 μm by 125 μm field of view. The photon-shot-noise-limited sensitivity of a Ramsey-based measurement η_{ramsey} de-
pends upon the NV− ensemble dephasing time T_2, the contrast C, and the average number of photons collected per measurement N \cite{3}:

$$
\eta_{\text{ramsey}} = \frac{1}{\gamma} \frac{1}{\Delta m} C e^{-\left(\frac{\tau}{T_2}\right)^p} \sqrt{\frac{\tau + tr,i}{\tau}}
$$

where Δm accounts for the difference between the m_s states used for the sensing basis ($\Delta m = 1, 2$ for the SQ, DQ bases), τ is the free precession interval per measurement, p describes the decay shape, and tr,i indicates the duration of time dedicated to readout/initialization per measurement. The optimal free precession interval is determined by the NV− ensemble dephasing time T_2^*, which is proportional to the inverse of the natural linewidth Γ ($T_2^* = 1/\pi \Gamma$ assuming a Lorentzian lineshape). Axial stress gradients within a pixel degrade η_{ramsey} by decreasing T_2^*; stress-induced resonance shifts across an image both worsen η_{ramsey} by ensuring that the chosen MW frequency is sub-optimal for all but a subset of pixels and introduce spatially-varying, non-magnetic offsets in the Ramsey signal that can complicate data analysis \cite{13}.

We imaged the NV− ensemble spin properties by sweeping the free precession time in the SQ and DQ Ramsey sequence and fitting the fringes to a sum of oscillations with a common decay envelope:

$$
S_{\text{ramsey}}(\tau) = e^{-\tau/T_2} \sum_{i=m_I} A_i \sin(2\pi f_i + \delta_i)
$$

where each oscillatory term, indexed by $m_I = \{-1, 0, 1\}$ (for an 14N ensemble), has an amplitude A_i, frequency f_i, phase shift δ_i, and decay shape fixed to $p = 1$. A purposeful detuning of 3 MHz from the resonance corresponding to the $m_I = 0$ hyperfine population was introduced in order to more easily extract all three frequencies and the decay envelope. Eqn. 4 was rapidly fit to the data pixel-by-pixel using open source, GPU-accelerated non-linear least-squares fitting software, GPUIfit \cite{27}. The typical 95\% confidence intervals (C.I.) for the extracted dephasing times T_2 and amplitudes A_i discussed below are less than 5\%, while the typical C.I. for f_i are about 0.5\%.

\textbf{Dephasing times} – The extracted T_2 values for the SQ and DQ sensing bases are shown as images in Fig. 3(a,b) and plotted as a histogram in Fig. 3(c). To quantify the spread in T_2 values, we report the median value and the relative inter-decile range (RIDR):

$$
\text{RIDR} = \frac{D_{90} - D_{10}}{\text{median}}
$$

where 80\% of the measured values fall between the first decile D_{10} and ninth decile D_{90}. In Fig. 3(a), the extracted T_2 {SQ} values have a median of 0.910 (0.710, 1.03) μs, where the values in parentheses correspond to the deciles (D$_{10}$, D$_{90}$). As shown in Tab. I, the calculated RIDR for the extracted T_2 {SQ} values is 35\%. We attribute the spatially-correlated variations in T_2 {SQ} to axial stress gradients within pixels \cite{13, 16}. The observed stress features are likely due to polishing-induced imperfections in the substrate surface upon which the NV− ensemble layer was grown \cite{25}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Imaging Ensemble Spin Properties. (a) Image of the single quantum (SQ) T_2 extracted by fitting the SQ 2-Ramsey fringe decay to Eqn. 4. The field of view is 125 μm by 125 μm. Spatial variations in T_2 {SQ} are due to stress-induced broadening of the NV− resonances within the 3-dimensional volume imaged onto a pixel. (b) Image of the double quantum T_2 {DQ} measured using the DQ 4-Ramsey protocol across the same field of view as shown in (a). In pixels with minimal stress gradients, the T_2 {DQ} is half the T_2 {SQ}, as expected due to the effectively doubled dipolar coupling to surrounding paramagnetic spin bath, which dominates the NV− dephasing \cite{16}. (c) Histogram of T_2 {SQ} and T_2 {DQ} values from the pixels in (a) and (b). (d) Image of the relative SQ resonance shifts δ_{rel} {SQ} from the median SQ Ramsey fringe frequency. Variations in δ_{rel} {SQ} are attributed predominantly to axial-stress-induced shifts of the NV− resonance frequencies between pixels. (e) Image of the relative DQ detuning δ_{rel} {DQ} across the same field of view as shown in (a, b, d). The axial-stress-induced shifts apparent in (c) are mitigated. Inhomogeneity in the magnitude of the applied bias magnetic field B_0 results in a residual gradient of less than 40 kHz after accounting for the doubled gyromagnetic ratio in the DQ sensing basis. (f) Histogram of the extracted SQ and DQ δ_{rel} values from the pixels in (d) and (e). The distribution of DQ δ_{rel} values with the setup-specific B_0-gradient contribution corrected is shown in grey.}
\end{figure}
negligible and the dominant contribution to T_2^* is dipolar coupling to an electronic spin bath (of predominantly neutral substitutional nitrogen) [16].

Fringe frequencies — Figures 3(d-f) display the extracted SQ and DQ Ramsey fringe frequencies associated with the detuning of the applied MW pulses from the spin transition frequency for the $m_f = 0$ hyperfine population. The relative detuning δ_{rel} from the median Ramsey fringe frequency f_0 is shown in Figures 3(d-f) to highlight the inhomogeneity across the field of view. The median SQ fringe frequency, $f_0\{SQ\}$, is 3.09 (2.94, 3.22) MHz with a relative spread of 9.2% across the field of view. The absolute spread in $f_0\{SQ\}$, $|D_{90^\circ}-D_{10^\circ}| = 280 (14)$ kHz, is comparable to the median NV$^+$ resonance linewidth and attributed to stress gradients spanning multiple pixels [13].

The DQ fringe frequencies exhibit a 7x narrower distribution about a median $f_0\{DQ\}$ of 6.00 (5.96, 6.04) MHz (RIDR = 1.3%). Note that the factor of two between the median detunings $f_0\{SQ\} \approx 3$ MHz and $f_0\{DQ\} \approx 6$ MHz is consistent with the doubled effective gyromagnetic ratio for the DQ sensing basis. The absolute spread in $f_0\{DQ\}$ is $\approx 3.6 \times$ smaller than the spread in $f_0\{SQ\}$, with the remaining variation dominated by a quasi-linear ≈ 40 kHz gradient due to residual inhomogeneity in the 5 mT applied bias magnetic field. In Fig. 3(f), a histogram of the relative shifts $\delta_{rel}\{DQ\}$ with a linear B_0-gradient contribution subtracted is included in grey and exhibits a reduced RIDR of 0.26%.

Contrast — In the present work, inhomogeneity in the measurement contrast C is largely independent of the choice of sensing basis (SQ or DQ) and is attributed to the Gaussian intensity profile of the excitation beam and fixed exposure duration. The extracted amplitudes A_i for the measured Ramsey fringes, which are proportional to C, are reported in digital units (d.u.) of accumulated difference as measured by the heliCam C3. The median amplitudes $A_0\{SQ\}$ and $A_0\{DQ\}$ [72.1 (61.8, 76.6) d.u. and 73.5 (66.5, 77.0) d.u.] as well as the RIDR (21% and 14%) are comparable and included in Table I. Images of $A_0\{SQ\}$ and $A_0\{DQ\}$ are provided in the Supplemental Material [24] for reference.

V. MAGNETIC SENSITIVITY ANALYSIS

We now compare the magnetic sensitivity of the SQ 2-Ramsey and DQ 4-Ramsey protocols across the same field of view described in Sec. IV. The narrower distribution of $T_2^*\{DQ\}$ and resonance shifts $\delta_{rel}\{DQ\}$ translate into improved, more homogeneous magnetic sensitivity. For both sensing bases, we selected an optimal free precession interval τ and applied MW frequency (or frequencies) f_{AC} to maximize the median NV$^+$ response to a change in magnetic field, dS/dB (see Appendix B). Under these conditions, a series of measurements was collected and used to calculate the magnetic sensitivity pixel-by-pixel.

The magnetic-field sensitivity is defined as $\delta B/\sqrt{T}$,

$$\eta = \frac{\sigma_B}{\sqrt{2\Delta f}}$$

where T is the measurement duration and δB is the minimum detectable magnetic field, i.e., the field giving a signal-to-noise ratio (SNR) of 1 [28–31]. A measurement with duration T and sampling frequency $f_s = 1/T$ has a Nyquist-limited single-sided bandwidth of $\Delta f = f_s/2$. When the measurement bandwidth is sampling-rate limited, the noise level of the magnetic-field sensor, σ_B, is given by the standard deviation of a series of measurements such that σ_B is equal to the minimum detectable field δB. Therefore, the sensitivity can be expressed as [20]:

$$\eta = \frac{\sigma_B}{\sqrt{2\Delta f}}$$

In the present work, $f_s = 1.25$ kHz, set by the camera’s external frame rate. Each frame contains the accumulated difference signal of multiple Ramsey sequences (see Supplemental Material [24]). The standard deviation of each pixel was calculated from 1250 consecutive frames (1 s of acquired data) and converted to magnetic field units using the calibration dS/dB measured for each pixel. Allan deviations of measurements using the SQ and DQ sensing bases are provided in the Supplemental Material [24]. Although the fixed time required to transfer data from the camera’s 500-frame buffer (≈ 5 s, neglected in the above analysis) prevents continuous field monitoring at the calculated sensitivity for arbitrarily long times, the buffer still allows sets of high-bandwidth imaging data to be acquired over 0.4 s.

The resulting sensitivities η_{DQ} and η_{SQ} are plotted in Fig. 4(a, b). The median DQ 4-Ramsey magnetic per-pixel magnetic sensitivity $\eta_{DQ} = 16 (15, 17)$ nT Hz$^{-1/2}$.
provides a factor of about 1.5× improvement compared to the SQ 2-Ramsey per-pixel magnetic sensitivity, \(\eta_{SQ} = 24 \) (20, 36) nT Hz\(^{-1/2} \) with voxel dimensions of \((2.5 \times 2.4 \times 1) \mu m^3 \). The upper and lower deciles, \(D_{10} \) and \(D_{90} \), are reported in parentheses. The typical uncertainty in the calculated per-pixel magnetic sensitivity, about 6%, is dominated by the uncertainty in determining the parameters extracted from fitting the DC magnetometry curve in each pixel.

The median volume-normalized sensitivities are therefore \(\eta_{DQ}^V = 38 \) (35, 41) nT Hz\(^{-1/2} \)\ mu m\(^{3/2} \) and \(\eta_{SQ}^V = 60 \) (47, 85) nT Hz\(^{-1/2} \)\ mu m\(^{3/2} \). We observe about a 4.7× reduction in the RIDR for \(\eta_{DQ} \) (≈ 14%) compared to the RIDR of \(\eta_{SQ} \) (≈ 67%). The improved median sensitivity and reduced spread across the field of view are attributed to the elimination of axial-stress-induced dephasing and resonance shifts for the DQ 4-Ramsey protocol, such that it is possible to operate at the optimal \(\tau \) and applied MW frequencies \(f_{AC} \) for an increased fraction of pixels simultaneously.

As illustrated in Fig. 4(c), all pixels exhibit improved magnetic sensitivity in the DQ sensing basis. Order-of-magnitude sensitivity improvements in the DQ basis are seen for the pixels corresponding to regions of diamond with higher stress gradients. In pixels with minimal stress-related effects, the improved magnetic sensitivity is attributed to (a) values of \(f_{AC} \) and \(\tau \) that are more optimal for an increased fraction of the pixels (see Appendix B) and (b) the effectively doubled gyromagnetic ratio in the DQ sensing basis. The latter enables faster measurements (increased \(F_x \) because \(T_2^* \{DQ\} \), and thus the optimal free precession interval \(\tau \), is reduced) for the same phase accumulation. The residual 14% spread in \(\eta_{DQ} \) is a consequence of the Gaussian intensity profile of the excitation laser beam spot, which highlights the potential utility of optical beam-shaping techniques to enable further improvements.

The median volume-normalized magnetic sensitivity \(\eta_{DQ}^V = 38 \) nT Hz\(^{-1/2} \)\ mu m\(^{3/2} \) demonstrated in this work compares favorably to the value of 34 nT Hz\(^{-1/2} \) reported in Ref. [21], which used photodiode-based CW-ODMR measurements to detect the single-neuron action potential from a living marine worm, \(M. infundibulum \). Critically, the present work achieves a similar sensitivity while operating in an imaging modality, with degraded optical collection efficiency, and using NV\(^+ \) centers along only a single crystal axis; whereas the non-imaging apparatus employed in Ref. [21] overlapped two NV\(^+ \) axes and had \(\approx 16 \times \) higher optical collection efficiency.

VI. OUTLOOK

The demonstrated magnetic imaging method using the DQ 4-Ramsey protocol enables uniform magnetic sensitivity across a field of view independent of inhomogeneity in the host diamond material and applied microwave control fields. In particular, the MW phase alternation scheme of the 4-Ramsey protocol (Fig. 2(a)) isolates the double quantum magnetic signal from residual single quantum signal, decoupling the measurement from common-mode frequency shifts induced by axial stress and temperature drift. The achieved 100× reduction in sensitivity to common-mode shifts is broadly advantageous, not only for magnetic imaging but also for single-channel applications such as magnetic navigation [32].

These methods provide a path toward imaging a range of dynamic magnetic phenomena, including nanoscale fields from single mammalian neurons or cardionyocytes, as well as fields from integrated circuits and condensed matter systems. Increased optical excitation intensity and further diamond material development could yield additional improvements in volume-normalized magnetic sensitivity. Although pulsed magnetometry protocols favor operating near the NV\(^+ \) center’s saturation intensity (1-3 mW \mu m\(^{-2} \) [33]) to minimize the initialization and readout durations [3], this work achieved optimal sensitivity when operating at an average intensity \(\sim 45 \times \) below saturation. The lower intensity allowed the NV ensemble to maintain a favorable charge state fraction by reducing optical ionization of NV\(^+ \) to NV\(^0 \) [34, 35]. For this reason, future material development improving and stabilizing the NV charge fraction, for example by reducing the density of other parasitic defects that can act as charge acceptors [36], is critical.

The high-sensitivity, pulsed imaging method demonstrated here also enables applications beyond broadband magnetic microscopy such as parallelized, high-resolution NV\(^+ \) ensemble NMR using AC magnetic field detection protocols. Additionally, the MW phase control utilized for the DQ 4-Ramsey protocol is sufficient to implement magnetically-insensitive measurement pro-

parameter	SQ	DQ
\(\eta \)	\(0.907 (0.710, 1.03) \)	\(0.621 (0.605, 0.643) \)
Fringe Freq., \(f_0 \) (MHz)	3.09 (2.94, 3.22)	6.00 (5.96, 6.04)
Fringe Freq., \(f_0 \) (B0-corr.) (MHz)	0.10 (2.95, 3.21)	6.00 (5.99, 6.01)
Fringe Amplitude, \(A_0 \) (\(d.u. \))	72.1 (61.8, 76.6)	73.5 (66.5, 77.0)
RIDR	35%	6.0%

TABLE I. Median extracted fit parameters (\(\tilde{\eta} \)) using Eqn. 4 for SQ and DQ Ramsey fringe imaging. The lower and upper deciles, \(D_{10} \) and \(D_{90} \), are given in parentheses (80% of the pixels exhibit values between \(D_{10} \) and \(D_{90} \)). The SQ and DQ relative inter-decile ranges (RIDR) calculated using Eqn. 5 are included.
tocols [37, 38] as recently suggested by Ref. [39] for imaging the lattice damage induced by colliding weakly-interacting massive particles (WIMPs).

ACKNOWLEDGEMENTS

This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-15-1-0548; the Army Research Laboratory MAQP program under Contract No. W911NF-19-2-0181; the DARPA DRINQS program (Grant No. D18AC0003); the National Science Foundation (NSF) Physics of Living Systems (PoLS) program under Grant No. PHY-1504610; the Air Force Office of Scientific Research Award No. FA9550-17-1-0371; the Department of Energy (DOE) Quantum Information Science Enabled Discovery (QuantISED) program under Award No. DE-SC0019396; Lockheed Martin under Contract No. A32198; and the University of Maryland Quantum Technology Center. J.M.S. was supported by a Fannie and John Hertz Foundation Graduate Fellowship and a National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

AUTHOR CONTRIBUTIONS STATEMENT

C.A.H, J.M.S, M.J.T, and E.B conceived the experiments. C.A.H and P.J.S conducted the experiments. C.A.H and J.M.S analyzed the results. All authors contributed to and reviewed the manuscript. R.W. supervised the work.

Appendix A: Experimental Details

An Aglient E9310A with built-in IQ modulation and a Windfreak SynthHD signal generator in combination with an external Marki-1545LMP IQ mixer provided the two-tone MW control fields and requisite phase control employed in this work. A Pulseblaster ESR-Pro with a 500 MHz clock controlled the synchronization of applied MW pulses, optical pulses, and camera exposures (or photodiode readouts when applicable). Samarium cobalt ring-shaped magnets (as described further in [16]) applied a 5 mT bias magnetic field used to split the $|0\rangle$ and $|±1\rangle$ transitions.

Appendix B: NV$^-$ Ensemble Magnetometer

For the measurements in this work, the optimal free precession interval τ and applied MW frequency f_{AC} are chosen to maximize the NV$^-$ response S to changes in magnetic-field $dB/d\tau$ (i.e., minimize the sensitivity η). Although the optimal τ is approximately T_2^* [3], the Ramsey fringe beating introduced by the hyperfine splitting of the NV$^-$ restricts the possible choices of τ to discrete values. As a consequence, we select the nearest available τ to T_2^* for each sensing basis. With the free precession interval τ fixed, the optimal f_{AC} is determined by sweeping the applied MW frequency to emulate a change in magnetic field, producing a DC magnetometry curve from which f_{AC} is chosen to maximize the slope $dB/d\tau$. To determine the optimal MW frequencies for DQ Ramsey measurements, f_{AC}^*, the two applied MW tones are swept differentially (one tone with positive detuning $+\delta$ and an equal but opposite detuning $-\delta$ for the second tone). As with the SQ calibration, the values of f_{AC}^* are chosen to maximize the NV$^-$ response $dB/d\tau$. For all measurements using the heliCan, the free precession interval and MW frequency (or frequencies) are chosen to minimize the median per-pixel sensitivity across the field of view.

[1] L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, and V. Jacques, Reports on Progress in Physics 77, 056503 (2014).
[2] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, Physics Reports 528, 1 (2013).
[3] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020).
[4] E. V. Levine, M. J. Turner, P. Kehayias, C. A. Hart, N. Langellier, R. Trubko, D. R. Glenn, R. R. Fu, and R. L. Walsworth, Nanophotonics 8, 1945 (01 Nov. 2019).
[5] D. R. Glenn, R. R. Fu, P. Kehayias, D. Le Sage, E. A. Lima, B. P. Weiss, and R. L. Walsworth, Geochimetry, Geophysysics, Geosystems 18, 3254 (2017).
[6] D. A. Simpson, J. P. Tetienne, J. M. McCoey, K. Ganesan, L. T. Hall, S. Petrou, R. E. Scholten, and L. C. Hollenberg, Scientific Reports 6, 1 (2016).
[7] J. M. McCoey, M. Matsuoaka, R. W. Gille, L. T. Hall, J. A. Shaw, J. Tetienne, D. Kaisilus, L. C. L. Hollenberg, and D. A. Simpson, Small Methods 4, 1900754 (2020).
[8] J.-P. Tetienne, N. Dontschuk, D. A. Broadway, A. Stacey, D. A. Simpson, and L. C. L. Hollenberg, Science Advances 3, e1602429 (2017).
[9] M. J. H. Ku, T. X. Zhou, Q. Li, Y. J. Shin, J. K. Shi, C. Burch, L. E. Anderson, A. T. Pierce, Y. Xie, A. Hamo, U. Vool, H. Zhang, F. Casola, T. Taniguchi, K. Watanabe, M. M. Fogler, P. Kim, A. Yacoby, and R. L. Walsworth, Nature 583, 537 (2020).
[10] M. J. Turner, N. Langellier, R. Bainbridge, D. Walters, S. Meesala, T. M. Babinec, P. Kehayias, A. Yacoby, E. Hu, M. Loncar, R. L. Walsworth, and E. V. Levine, Physical Review Applied 14, 014097 (2020).
[11] D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. Walsworth, *Nature* **496**, 486 (2013).

[12] D. R. Glenn, K. Lee, H. Park, R. Weisssleder, A. Yacoby, M. D. Lukin, H. Lee, R. L. Walsworth, and C. B. Connolly, *Nature Methods* **12**, 736 (2015).

[13] P. Kehayias, M. J. Turner, R. Trubko, J. M. Schloss, C. A. Hart, M. Wesson, D. R. Glenn, and R. L. Walsworth, *Phys. Rev. B* **100**, 174103 (2019).

[14] Z. Kazi, I. M. Shelby, H. Watanabe, K. M. Itoh, V. Shuththanandan, P. A. Wiggins, and K.-M. C. Fu, (2020), arXiv:2002.06237.

[15] I. Fescenko, A. Jarmola, I. Savukov, J. Smits, J. Damron, N. Ristoff, N. Mosavian, and V. M. Acosta, (2019), arXiv:1911.05070.

[16] E. Bauch, C. A. Hart, J. M. Schloss, J. F. Barry, P. Kehayias, S. Singh, and R. L. Walsworth, *Phys. Rev. X* **8**, 031025 (2018).

[17] H. J. Mamin, M. H. Sherwood, M. Kim, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, *Physical Review Letters* **113**, 1 (2014).

[18] K. Fang, V. M. Acosta, C. Santori, Z. Huang, K. M. Itoh, H. Watanabe, S. Shikata, and R. G. Beausoleil, *Physical Review Letters* **110**, 2 (2013).

[19] P. Jamonneau, M. Lesik, J. P. Tetienne, I. Alvizu, L. Mayer, A. Dréau, S. Kosen, J.-F. Roch, S. Pezzagna, J. Meijer, T. Teraji, Y. Kubo, P. Bertet, J. R. Maze, and V. Jacques, *Physical Review B* **93**, 024305 (2016).

[20] J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, *Physical Review Applied* **10**, 1 (2018).

[21] J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, *Proceedings of the National Academy of Sciences of the United States of America* **113**, 14133 (2016).

[22] T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, *Physical Review X* **5**, 1 (2015).

[23] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, *Nature Physics* **7**, 459 (2011).

[24] Additional details are included in the Supplemental Material.

[25] I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, *Diamond and Related Materials* **18**, 808 (2009).

[26] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, *Nature communications* **4**, 1743 (2013).

[27] A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, *Scientific Reports* **7**, 15722 (2017).

[28] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, *Nature Physics* **4**, 810 (2008).

[29] D. Le Sage, L. M. Pham, N. Bar-Gill, C. Belthangady, M. D. Lukin, A. Yacoby, and R. L. Walsworth, *Physical Review B* **85**, 121202 (2012).

[30] M. Bal, C. Deng, J. L. Orgiazzi, F. R. Ong, and A. Lupascu, *Nature Communications* **3**, 1 (2012), arXiv:1301.0778.

[31] R. S. Schoenfeld and W. Harneit, *Physical Review Letters* **106**, 1 (2011), arXiv:1009.4138.

[32] A. Canciani and J. Raquet, *Navigation* **63**, 111 (2016).

[33] T. L. Wee, Y. K. Tzeng, C. C. Han, H. C. Chang, W. Fann, J. H. Hsu, K. M. Chen, and E. C. Yu, *Journal of Physical Chemistry A* **111**, 9379 (2007).

[34] S. T. Alsld, J. F. Barry, L. M. Pham, J. M. Schloss, M. F. O’Keeffe, P. Cappellaro, and D. A. Braje, *Physical Review Applied* **12**, 044003 (2019).

[35] D. Aude Craik, P. Kehayias, A. Greenspon, X. Zhang, M. Turner, J. Schloss, E. Bauch, C. Hart, E. Hu, and R. Walsworth, *Physical Review Applied* **14**, 014009 (2020).

[36] A. M. Edmonds, C. A. Hart, M. J. Turner, P.-O. Colard, J. M. Schloss, K. Olsson, R. Trubko, M. L. Markham, A. Rathmill, B. Horne-Smith, W. Lew, A. Manickam, S. Bruce, F. G. Kaup, J. C. Russo, M. J. DiMario, J. T. South, J. T. Hansen, D. J. Twitchen, and R. L. Walsworth, (2020), arXiv:2004.01746.

[37] D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, *Proceedings of the National Academy of Sciences* **110**, 8417 (2013).

[38] J. S. Hodges, N. Y. Yao, D. Maclaurin, C. Rastogi, M. D. Lukin, and D. Englund, *Physical Review A* **87**, 032118 (2013).

[39] S. Rajendran, N. Zobrist, A. O. Sushkov, R. Walsworth, and M. Lukin, *Physical Review D* **96**, 1 (2017).