Supratentorial convexity schwannoma unrelated to cranial nerves: Case report and review of the literature

Daisuke Wajima, Shuta Aketa, Taiji Yonezawa

INTRODUCTION

The majority of intracranial schwannomas arises from the cranial nerves and usually occurs in the middle decades of life. Intracranial schwannoma not associated with cranial nerves is infrequent and usually involves in neurofibromatosis, and occurs among children or young adults. \(^{14}\) However, schwannoma, not related to cranial nerves nor neurofibromatosis Type I, is very rare entity. We describe a middle-age man with a supratentorial convexity schwannoma, and we review the previous reports about such cases, and then discuss the characteristics of these cases and their magnetic resonance image (MRI) findings.

CASE REPORT

A 48-year-old man experienced a sudden onset of seizures in his left lower limb. He had never previously experienced such an episode. Gadolinium-enhanced MRI (Gd-MRI) revealed a small, homogenous-enhancing mass in the peripheral aspect of the right parieto-frontal lobe. The
patient was referred to our hospital for further evaluation. The results of the physical examination performed at the time of admission were unremarkable. No cutaneous stigmata of neurofibromatosis Type I was observed. A neurological examination revealed no significant findings.

The lesion appeared as a well-defined, isosignal intensity area on T1-weighted MRI [Figure 1a], was hyperintense on T2-weighted MRI [Figure 1b], and also hyperintense on fluid attenuation inversion recovery MRI [Figure 1c]. The lesion demonstrated homogenous enhancement on Gd-T1-weighted MRI [Figure 1d-f]. Curvilinear enhancement was observed beneath the parietal bone but was unlikely to represent a “dural tail sign;” however, these findings are similar to convexity meningioma. T2-weighted MRI showed definite evidence of perilesional edema. Digital subtraction angiography showed some feeding arteries (right middle cerebral artery branch) [Figure 2a and b], right anterior cerebral artery branch [Figure 2c and d], and right middle meningeal artery (MMA) branch [Figure 2e and f]. Preoperative feeder embolization targeted to the right MMA branch was performed [Figure 2g and h].

Our preoperative diagnosis was an extra-axial tumor, such as convexity meningioma or other tumors. A whole-body evaluation revealed no evidence of malignancy. The patient underwent a parietal craniotomy, with total resection of the tumor. During surgery, tumoral invasion beyond the dura mater was observed [Figure 3a]. When the dura was opened, a well-demarcated, firm, spherical tumor was observed beneath the arachnoid membrane. The tumor was elastic, hard, grayish in color, and loosely adherent to but separable from the dura mater [Figure 3b]. The tumor was totally removed piece by piece, with the adjacent brain tissue and dura [Figure 3c]. Postoperative MRI showed the total removal of the tumor [Figure 3d-f]. The postoperative course was uneventful, and the patient was discharged without neurological deficits.

In light-microscopic assessments, the tumor was composed predominantly of Antoni Type A, and intermingled with Antoni Type B [Figure 4a]. Immunohistochemical staining was positive for S-100 protein [Figure 4b] but negative for glial fibrillary acidic protein, cluster of differentiation 34, epithelial membrane antigen [Figure 4c], signal transducer and activator of transcription 6 [Figure 4d], progesterone receptor, and synaptophysin. The histopathological diagnosis was schwannoma. The tumor was observed to be in the subarachnoid space extending to outer space of dura mater, intimately attached to the pia mater [Figure 4e and f]. Electron-microscopic studies were not performed.

DISCUSSION

Intracranial schwannomas are benign tumors that typically arise from the Schwann cells en-sheathing the axons beginning at the point of their exit from the pia mater. They usually develop among middle-age adults. Intracranial schwannomas comprise 6 to 8% of intracranial tumors. Intracranial schwannomas not related to cranial nerves have

Figure 1: Preoperative magnetic resonance images (MRI). Preoperative MRI showed right frontal mass lesion. The lesion was isointense in T1-weighted MRI (a), hyperintense in T2-weighted MRI (b), hyperintense in fluid attenuation inversion recovery image (c), and homogenous enhanced with gadolinium intravenous injection (d: Axial image, e: Coronal image, and f: Sagittal image).
been reported to exhibit a predilection for occurrence among children and young adults.[14]

Intracranial schwannomas not related to cranial nerves are relatively rare; 74 cases have been reported,[1-32,34-41,43,45-60] in the English literature since the first article was published by Gibson et al. in 1966.[3] The previous reports are reviewed in [Table 1]. There are 74 cases (Age: 0.5–84 years [average 31.7 years], male 42 cases/female 32 cases) reported previously. Cyst formation was observed in more than half of cases. Lesion location is dominant in intraparenchymal region (Convexity schwannoma (Left frontal: one case, Left temporal: two cases, Right frontal: three cases, Right parietal: one case, and Right occipital: one case), intraparenchymal schwannoma (Left frontal: four cases, Left temporal: eight cases, Left parietal: three cases, Left occipital: four cases, Right frontal: three cases, Right temporal: six cases, Right parietal: five cases, Right occipital: three cases, and Cerebellum: ten cases), Brain stem: two cases, Pons: four cases, Medulla:
Table 1: Clinical features of intracranial schwannomas (convexity) unrelated to the cranial nerves.

Authors	Year	Age	Gender	Symptoms	Cystic	Size	Location	Extent of Resection	Follow-up	Postoperative state
Ghosh et al.	1992	27	Male	Seizure	No	3.0 cm	Right frontal convexity	Total	N/A	N/A
Frim et al.	1992	11	Female	Seizure	Yes	4.0 cm	Left temporal convexity	Total	15 Months	No symptoms
Nakayama et al.	2002	53	Male	Seizure	Yes	1.5 cm	Left frontal convexity	Total	N/A	No symptoms
Paredes et al.	2012	19	Male	Seizure	No	1.0 cm	Right occipital convexity	Total	2 Years	No symptoms
Ma et al.	2013	24	Female	Seizure	Yes	8.0 cm	Right frontal convexity	Subtotal	N/A	N/A
Wilson et al.	2016	34	Male	Incidental	No	2.4 cm	Left temporal convexity	Total	2.5 Years	No symptoms
Raswan et al.	2017	70	Male	Seizure	No	8.0 cm	Right frontal convexity	Total	N/A	No symptoms
Present case	2019	48	Male	Seizure	Yes	3.0 cm	Right parieto-frontal convexity	Total	N/A	No symptoms

It is reasonable to consider the possibility that intracranial schwannomas not related to cranial nerves may develop from ectopic Schwann cells, because there are no Schwann cells in the central nervous system. Proposed hypotheses include: (1) the presence of Schwann cells in the autonomic nerves of the subarachnoid vessels, (2) the conversion of pial cells into

three cases, intraventricle (Lateral ventricle: six cases, Third ventricle: one case, and Fourth ventricle: five cases)). Total removal was performed in 57 cases, and in 33 cases out of these 57 cases, good outcome was reported postoperatively. Especially, postoperative course in all cases of the convexity schwannomas is good (data shown in Table 2).
Schwann cells, and (3) the presence of sensory nerves in the meninges of the convexity.

Although several hypotheses have been proposed to explain the origin of ectopic Schwann cells within the central nervous system, the histological origin of these tumors remains controversial. Proposed hypotheses include:

Schwann cell hyperplasia

Riggs and Clary proposed Schwann cell hyperplasia as the origin of intracranial neurinomas; nonneoplastic Schwann cells accompanied by the perivascular nerve plexus, especially autonomic nerves, proliferate in certain chronic diseases of the spinal cord and may give rise to schwannomas.

Schwannosis

The term “Schwannosis” was introduced by Russell and Rubinstein, to indicate a hamartomatous lesion consisting of Schwann cells and related reticulin fibers in the substance of the spinal cord and pons.

Reactive changes after injury

Nelson and Rennels stated that nonneoplastic Schwann cells are sometimes observed in certain pathological conditions, such as multiple sclerosis, old infarctions, and certain experimental conditions, and they suggested that differentiated Schwann cells might arise as a result of tissue injury.

The possible differentiation of multipotent mesenchymal cell into Schwann cells (Neural crest origin)

Feigin and Ogata postulated that Schwann cells might be derived from multipotential mesenchymal cells of the neural crest.

In our case, the tumor was present not within the brain parenchyma but in the subarachnoid space, extending to epidural space. It is possible that schwannomas could arise from small nerves in the subarachnoid space or the leptomeninges. Although several cases of schwannomas attached to the dura have been reported, including our case, no authors confirmed that the tumors arose from dural nerves.

The imaging findings in our case were similar to convexity meningioma; however, there were no evident findings of “dural tail sign,” but the enhanced lesion extending along the meningeal or subarachnoid space; this location for schwannomas is exceedingly rare.

The differential diagnosis includes subdural, epidural, or leptomeningeal nodular brain metastasis, meningioma, glioma, and some granulomatous lesions (such as tuberculoma, fungal infections, and parasitic infections) when a well-demarcated spherical lesion associated with ring enhancement is observed adjacent to the cerebral convexity.

Sites	Cases	Average ages	Male/Female ratio (%)	Symptoms (%)	Cyst formation (%)	Average size (cm)	Detailed sites (%)	Total resection (%)	Postoperative ratio of no symptom or improved (%)	
Convexity	8	35.75 years old	75	Seizure 87.5	50	3.86	Frontal 50	87.50	100	
							Temporal 25			
							Occipital 12.5			
							Parietal 12.5			
							Frontal 22.2			
							Temporal 36.1			
							Occipital 13.9			
							Parietal 27.8			
							Cerebellar hemisphere 66.7			
							Vermis 33.3			
Parenchymal	36	23.63 years old	55.60	Seizure 55.6	Headache 27.8	61.10	4.18	Frontal 22.2	88.90	87.50
							Temporal 36.1			
							Occipital 13.9			
Cerebellar	9	56 years old	44.40	Gait disturbance 55.6	58.30	3.18	Cerebellar hemisphere 66.7	66.70	88.90	
Brain stem	9	34 years old	66.70	Gait disturbance 88.9	55.60	1.79	Vermis 33.3	66.70	88.90	
Ventricle	12	31.1 years old	58.30	Headache 33.3	Visual disturbance 50	83.30	3.19	Pons 44.4	44.40	77.80
							Medulla 44.4			
							Midbrain 11.1			
							Lateral ventricle 50			
							Third ventricle 8			
							Fourth ventricle 42			

Table 2: Clinical features of intracranial schwannomas unrelated to the cranial nerves.
These lesions are uncommon, except for meningiomas, gliomas, and metastases.

CONCLUSION

We have reported on a middle-age man with a schwannoma located in the subarachnoid space and have presented computed tomography and MRI findings. Although there was no diagnostic clue indicating a convexity schwannoma (because of the rarity and nonspecific imaging features of such tumors), it should be recognized that schwannomas may arise in such rare locations as the subarachnoid space.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. AlbBatly AA, ZAkkouk RS, Alhaidey AK. An atypical case of intracerebral schwannoma. Pan Afr Med J 2014;18:342.
2. Aryanpur J, Long DM. Schwannoma of the medulla oblongata. Case report. J Neurosurg 1989;70:446-9.
3. Bardosa MD, Rebelo O, Barbosa P, Goncalves J, Fernandes R. Cystic intraventricular schwannoma: Case report and review of the literature. Neurocirugia (Astur) 2001;12:56-60.
4. Benedict WJ Jr., Brown HG, Sivarajan G, Prabhu VC. Intraventricular schwannoma in a 15-year-old adolescent: A case report. Childs Nerv Syst 2008;24:529-32.
5. Casadei GP, Komori T, Scheithauer BW, Miller GM, Parisi JE, Kelly PJ. Intracranial parenchymal schwannoma. A clinicopathological and neuroimaging study of nine cases. J Neurosurg 1993;79:217-22.
6. Celikoglu E, Hakan T, Bozbuga M. Cystic schwannoma of the falx cerebri. J Clin Neurosci 2007;14:589-92.
7. Consales A, Rossi A, Nozza P, Ravegnani M, Garre ML, Cama A. Intracranial schwannoma in a child. Br J Neurosurg 2010;24:306-8.
8. Di Basi C, Trasimeni G, Iannilli M, Polettini E, Gualdi GF. Intracerebral schwannoma: CT and MR findings. AJNR Am J Neuroradiol 1994;15:1956-8.
9. Dow GR, Hussein A, Robertson IJ. Supratentorial intraventricular schwannoma. Br J Neurosurg 2004;18:561-2.
10. Erdogan E, Onguru O, Bulakbas N, Baysefer A, Gezen F, Timurkaynak E. Schwannoma of the lateral ventricle: Eight-year follow-up and literature review. Minim Invasive Neurosurg 2003;46:50-3.
11. Erongun U, Ozkal E, Acar O, Uygun A, Kocaogullar Y, Gungor S. Intracerebral schwannoma: Case report and review. Neurosurg Rev 1996;19:269-74.
12. Ezura M, Ikeda H, Ogawa A, Yoshimoto T. Intracerebral schwannoma: Case report. Neurosurgery 1992;30:97-100.
13. Feigin I, Ogata J. Schwann cells and peripheral myelin within human central nervous tissues: The mesenchymal character of Schwann cells. J Neuropathol Exp Neurol 1971;30:603-12.
14. Frim DM, Ogilvy CS, Vonsattal JP, Chapman PH. Is intracerebral schwannoma a developmental tumor of children and young adults? Case report and review. Pediatr Neurosurg 1992;18:190-4.
15. Gao Y, Qin Z, Li D, Yu W, Sun L, Liu N, et al. Intracerebral schwannoma: A case report and literature review. Oncol Lett 2018;16:2501-10.
16. Ghatak NR, Norwood CW, Davis CH. Intracerebral schwannoma. Surg Neurol 1975;3:45-7.
17. Ghosh S, Chandy MJ. Solitary ectopic intracerebral schwannoma. Br J Neurosurg 1992;6:163-6.
18. Gibson AA, Hendrick EB, Copen PE. Case reports. Intracerebral schwannoma. Report of a case. J Neurosurg 1966;24:552-7.
19. Gokay H, Izgi N, Barlas O, Erseven G. Supratentorial intracerebral schwannomas. Surg Neurol 1984;22:69-72.
20. Guha D, Kiehl TR, Krings T, Valiante TA. Intracerebral schwannoma presenting as classic temporal epilepsy. J Neurosurg 2012;117:136-40.
21. Ishihara M, Miyagawa-Hayashino A, Nakashima Y, Haga H, Takahashi JA, Manabe T. Intracerebral schwannoma in a child with infiltration along perivascular spaces resembling meningioangiomatosis. Pathol Int 2009;59:583-7.
22. Jaimovich R, Jaimovich SG, Arakaki N, Sevlever G. Supratentorial intraventricular solitary schwannoma. Case report and literature review. Childs Nerv Syst 2013;29:499-504.
23. Jung JM, Shin HJ, Chi JG, Park IS, Kim ES, Han JW. Malignant intraventricular schwannoma. Case report. J Neurosurg 1995;82:121-4.
24. Kasantikul V, Brown WJ, Cahan LD. Intracerebral neurilemmoma. J Neurol Neurosurg Psychiatry 1981;44:1110-5.
25. Landouceur D, Bergeron D, Lamarche JB, Lamontagne L. Cystic schwannoma of the brainstem. Can J Neurol Sci 1989;16:357-60.
26. Lee S, Park SH, Chung CK. Supratentorial intracerebral schwannoma: Its fate and proper management. J Korean Neurosurg Soc 2013;54:340-3.
27. Lin J, Feng H, Li F, Guo Q. Intraparenchymal schwannoma of the medulla oblongata. Case report. J Neurosurg 2003;98:621-4.
28. Ma L, Yang SX, Wang YR. Intracerebral schwannoma mimicking parasagittal meningioma. J Craniofac Surg 2013;24:e541-3.
29. Maiuri F, Colella G, D’Acunzi G, De Caro M, del B. Malignant intracerebellar schwannoma. J Neurooncol 2004;66:191-5.
30. Messing-Junger AM, Riemenschneider MJ, Reifenberger G. A 21-year-old female with a third ventricular tumor. Brain Pathol 2006;16:87-8.
31. Muzzafar S, Ketonen L, Weinberg JS, Schllingerhout D. Imaging and clinical features of an intra-axial brain stem schwannoma. AJNR Am J Neuroradiol 2010;31:567-9.
32. Nakayama K, Nakayama T, Matsuoka Y, Kono K. Supratentorial convexity leptomeningeal schwannoma: Case report. Neurosurgery 2002;51:1295-8.
How to cite this article: Wajima D, Aketa S, Yonezawa T. Supratentorial convexity schwannoma unrelated to cranial nerves: Case report and review of the literature. Surg Neurol Int 2020;11:143.