Variation in outcome of invasive mechanical ventilation between different countries for patients with severe COVID-19: a systematic review and meta-analysis

Hany Hasan Elsayed (✉ hanyhassan77@hotmail.com)
Ain Shams University Faculty of Medicine

Aly Sherif Hassaballa
Ain Shams University

Taha Aly Ahmed
Ain Shams University Faculty of Medicine

Mohamed Gumaa
Ain Shams University

Hazem Youssef Sharkawy
Ain Shams University

Research

Keywords: COVID 19, invasive, mechanical ventilation

DOI: https://doi.org/10.21203/rs.3.rs-52224/v1

License: ☎️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: COVID-19 is the most recent cause of Adult respiratory distress syndrome ARDS. Invasive mechanical ventilation IMV can support gas exchange in patients failing non-invasive ventilation, but its reported outcome is highly variable between countries. We conducted a systematic review and meta-analysis on IMV for COVID-associated ARDS to study its outcome among different countries.

Methods: CENTRAL, MEDLINE/PubMed, Cochrane Library, and Scopus were systematically searched from June 8 2019 to June 8, 2020. Studies reporting five or more patients with end point outcome for severe COVID-19 infection treated with IMV were included. The main outcome assessed was mortality. Baseline, procedural, outcome, and validity data were systematically appraised and pooled with random-effect methods. Subgroup analysis for different countries was performed. Meta-regression for the effect of study timing and patient age were tested. Publication bias was examined. This trial was registered with PROSPERO under registration number CRD42020190365

Findings: Our electronic search retrieved 4770 citations, 103 of which were selected for full-text review. Twenty-one studies with a combined population of 37359 patients with COVID-19 fulfilled the inclusion criteria. From this population, 5800 patients were treated by invasive mechanical ventilation. Out of those, 3301 patients reached an endpoint of ICU discharge or death after invasive mechanical ventilation while the rest were still in the ICU. Mortality from IMV was highly variable among the included studies ranging between 21% and 100%. Random-effect pooled estimates suggested an overall in-hospital mortality risk ratio of 0.70 (95% confidence interval 0.608 to 0.797; I² = 98%). Subgroup analysis according to country of origin showed homogeneity in the 8 Chinese studies with high pooled mortality risk ratio of 0.97 (I² = 24%, p=0.23) (95% CI = 0.94-1.00), similar to Italy with a low pooled mortality risk ratio of 0.26 (95% CI 0.08-0.43) with homogeneity (p=0.86) while the later larger studies coming from the USA showed pooled estimate mortality risk ratio of 0.60 (95% CI 0.43-0.76) with persistent heterogeneity (I² = 98%, p<0.001). Meta-regression showed that outcome from IMV improved with time (p<0.001). Age had no statistically significant effect on mortality (p= 0.102). Publication bias was excluded by visualizing the funnel plot of standard error, Egger’s test with p=0.714 and Begg&Mazumdar test with p=0.334

Interpretation: The study included the largest number of patients with outcome findings of IMV in this current pandemic. Our findings showed that the use of IMV for selected COVID-19 patients with severe ARDS carries a high mortality, but outcome has improved over the last few months and in more recent studies. The results should encourage physicians to use this facility when indicated for severely ill COVID-19 patients.

Introduction

Coronavirus disease 2019 (COVID-19) is a viral respiratory tract infection caused by a coronavirus which was first documented in Wuhan, China, in December 2019 (1)

After then, this outbreak spread globally and has been considered as a pandemic and an international public health emergency by the WHO on March 11, 2020. As of 14th of July 2020, a cumulative total of 13,560,323 confirmed cases of coronavirus disease 2019 (COVID-19) were reported with total 583,523 deaths in 203 countries and territories worldwide (2). Currently, there is neither a proven effective medication nor a vaccine has been discovered for the COVID-19 infection.

Although most patients with COVID-19 infection have only mild or uncomplicated course, around 10-20% will develop a severe disease that necessitates hospitalization and oxygen therapy or even ICU admission and progression to acute respiratory distress syndrome (ARDS). The prevalence of ARDS caused by COVID-19 is around 8.2% who will require mechanical ventilation and prone positioning (3).

Invasive mechanical ventilation is lifesaving in severe respiratory failure not responding to other less invasive modalities, and few medical therapies equal its power. While some COVID-19 patients can be managed with supplemental oxygen and non-invasive mechanical ventilation, patients with the most severe respiratory failure demand insertion of an endotracheal tube.
An endotracheal tube facilitates control over an unstable airway and enables precise regulation of oxygen, pressure and volume but inevitably, the endotracheal tube brings in its wake a list of complications aggravated by the morbidity of the patient's other system failures. Each day of mechanical ventilation exposes patients to complications and increases mortality (4).

In view of the current growing pandemic and the fact that there is high variability in published data for the outcome of invasive mechanical ventilation IMV to support COVID-19 patients, we aimed to estimate the effect of IMV on mortality from COVID-19 patients with respiratory failure via all available studies by performing a systematic review and meta-analysis.

Methods

Search strategy and selection criteria

This systematic review complies with the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We electronically ran a search on CENTRAL, MEDLINE/PubMed, Cochrane Library, and Scopus. On Pubmed the word search used was (COVID OR SARS COV2 OR pandemic) AND (ARDS) OR (acute respiratory distress syndrome) (Intensive care unit) OR (ICU) OR (Intensive therapy unit) OR (ITU) OR (acute lung injury) OR (respiratory failure) OR (respiratory insufficiency) OR (mechanical ventilation) OR (invasive ventilation)).

We searched trial registries, included the grey literature, and used studies accepted and ahead of print. We did our search up to 8th of June 2020 using a one-year filter option without language restrictions. We used both subject headings and text word terms to search for articles about mechanical ventilation with ARDS in COVID-19 patients. Inclusion criteria were (all criteria should be concomitantly met for study inclusion): a) study reporting on 5 or more patients with nal outcomes; b) with confirmed COVID 19 infection; c) receiving invasive mechanical ventilation. Exclusion criteria were (one criterion was sufficient for study exclusion): a) inclusion of <5 patients with COVID-19 infection treated with IMV (thereby, any study reporting on fewer than 5 patients or case reports treated with IMV were excluded); b) duplicate publication (in which case only the most recent report from the same study group was included in the systematic review). Use of a sample size cut-off was chosen to limit the risk of imprecision and publication bias c) studies with insufficient data about the outcome endpoints (mortality and ICU discharge). AH, TA and HY independently reviewed the titles and abstracts of all citations. Then, they independently reviewed the full text of both definite and potentially eligible studies for inclusion. Disagreements were reviewed by a fourth reviewer HE, who had a deciding vote. The study protocol link is at www.crd.york.ac.uk/PROSPERO under registration number CRD42020190365

Data analysis

A single arm meta-analysis was conducted to examine the mortality incidence in invasive mechanical ventilation treatment for COVID 19. Data were summarized using the risk ratio (95% confidence interval (CI)). The data were pooled using DerSimonian-Laird random effects model (5). P value of 0.05 or less was statistically significant. Cochran Q and I2 were used to assess heterogeneity between studies. The degree of heterogeneity was categorized as either low (I2 < 25%), moderate (I2 = 25%–75%), or high (I2 > 75%) (6). A P value of ≤ 0.05 indicated significant heterogeneity. A subgroup meta-analysis according to the study's country of origin was conducted to investigate the high heterogeneity detected. The data used in the meta-analysis in each study were the number of mortality events and the number of closed cases (either ICU discharged or dead). The study of the outcome in relation to the time of each study was performed by calculating a median number representing the central timing of the study. Timing was calculated over 180 days (from 1-180) starting at the beginning of December 2020 to the end of May 2020 (6 x 30 days) and each study was given a range of days starting from the first to the last day as recorded in the study duration. A median number was calculated for the time range of each study (available for 20 out of 21 studies). This was done to avoid time overlap and duration bias between different studies. Publication bias was
examined by visual inspection of the funnel plot and tested by Egger’s test and Begg and Mazumdar test. A P value of ≤ 0.05 indicated the existence of publication bias. All analyses were performed using Open Meta Analyst software Windows 10 version.

Role of funding source

There was no funding source for this study. The corresponding author of this study had full access to all the study data and had final responsibility for the decision to submit the manuscript for publication.

Results

Our electronic search retrieved 4770 citations, 103 of which were selected for full-text review (Figure 1). Twenty-one studies (7-27) with a combined population of 37359 patients fulfilled the inclusion criteria. From this population, 5800 patients were treated by invasive mechanical ventilation. Out of those, 3301 patients reached an endpoint of ICU discharge or death after invasive mechanical ventilation while the rest were still in the ICU (regardless of mechanical ventilation state). All studies are summarized in Table 1.

Mortality from IMV was highly variable among the included studies ranging between 21% and 100%. Random-effect pooled estimates suggested an overall in-hospital mortality risk ratio of 0.70 (95% confidence interval 0.608 to 0.797; I² = 98%) (Figure 2). Most of the preliminary studies were from China (eight studies with 203 patients with endpoints). Larger studies then followed from the USA, Italy, Denmark, UK, Canada, Japan and France (thirteen studies with 3098 patients with endpoints). Only six studies (29%) (9,14,16-19) reported complete outcome endpoints for all patients who received IMV while the rest of studies had patients who did not reach an endpoint.

To investigate the overall inter-study heterogeneity, a subgroup analysis was performed according to the country of origin of each study (Figure 3). This showed homogeneity in the 8 Chinese studies with high pooled mortality risk ratio of 0.97 (I² = 24%, p=0.23) (95% CI = 0.94-1.00), similar to Italy with a low pooled mortality risk ratio of 0.26 (95% CI 0.08-0.43) with homogeneity (p=0.86) while the later larger studies coming from the USA showed pooled estimate mortality risk ratio of 0.60 (95% CI 0.43-0.76) with persistent heterogeneity (I² = 98%, p<0.001).

To investigate the effect of the study time on the outcome, a meta-regression analysis of the median day of the study duration showed that mortality was lower as the study time was more recent (p<0.001) (Figure 4). Analysis of the effect of age on mortality showed no statistical significance (p=0.102). Publication bias was excluded by visualizing the funnel plot of standard error (Figure 5), Egger’s test with p=0.714 and Begg&Mazumdar test with p=0.334.

Discussion

The mortality of IMV related for COVID-19 patients reported from different studies may vary according to the denominator used. For example, in the study by Richardson and colleagues from New York, the denominators excluded patients who were still mechanically ventilated in the ICU (11), but Graselli and his colleagues (12) from Italy, included those in the ICU in the denominator and the abstract for the data by Richardson and his colleagues has since been corrected to report the percentage of patients alive, dead, and still in the ICU to try to avoid this misinterpretation.

Preliminary reports from China regarding IMV for COVID-19 patients were obviously dismal as shown by our subgroup analysis with a median mortality of 97% (95% CI 94-100%). All the following studies apart from Richardson et al (11) showed acceptable mortality rates (21%-69%) and this should change the perception for this crucial intervention. The misconception that all patients on IMV will die is the rule for all COVID-19 patients does not do good for anyone. Our headlines extolling that IMV mortality rate for COVID-19 are in the range of 90-100% makes the medical team wonder if it’s worth risking their lives while dealing with such a futile intervention. The concern of families seeing their beloved ones ventilated after being infected...
will turn into nothing but terror. Additionally, countries with limited resources and ICU beds might not even bother procuring their ventilators in the era of an accelerating pandemic.

The outcome of IMV for patients with COVID-19 was not much worse than the previous respiratory virus pandemics. In a pooled mortality calculation from 3 studies (28-30) the outcome of invasive mechanical ventilation for treating patients with Middle East Respiratory syndrome MERS was a mortality of 77% (647/840).

Timing of placing patients with severe COVID-19 on mechanical ventilation will vary. Mortality may have been lower if patients were placed on a ventilator earlier in their disease course. On the other hand, the denominator may be smaller where patients with respiratory failure were not offered mechanical ventilation in severe COVID-19. This may be due to family wishes, generous use of noninvasive ventilation or the scarcity of ventilator beds in a hastening pandemic. We have never been able to agree on triggers for ventilatory support, even with diseases that are much better known and understood than COVID-19.

Mortality from COVID-19 has been reported to be age-dependent, and variations in population age or the age of admitted patients are likely to have a significant influence on mortality. Similar arguments may apply for comorbidities (31) As we have only summary statistics, with variable reporting, we were unable to explore these factors in detail, though meta regression by the crude measure of average age was not significantly associated with reported mortality in our analysis. Reporting of such data in future cohort studies and trials would be beneficial

The current indication to place a patient with severe COVID-19 on invasive mechanical ventilation is not a clear-cut one and neither are the outcomes. Most published reports (15/21 = 71%) in our analysis did not include full endpoints for all patients receiving IMV as they were still receiving IMV or still in the ICU so the assessment of the final outcome of IMV for these centres is not possible. We may not fully understand how or why these outcome data from each country look different but as our understanding of the COVID-19 improves over months, this may improve the outcome as our meta regression has shown.

So, while we scrutinize these published reports and try to extract what is universal and can be applied to our understanding and care of patients locally, we need to recognize and report on the enormous drivers of differences and be vigilant in presentation of data to minimize confusion in interpretation. The variability of findings has always existed in studies of IMV for critically ill patients and COVID-19 is not an exception, merely an amplifier of these differences.

Limitations

In our interpretation we excluded all patients still receiving care in the ICU to avoid the use estimated mortality with all its drawbacks and included only patients discharged from the ICU in the denominator. Obviously, this carries the risk of not including patients deteriorating outside the ICU after discharge or needing readmission after ICU discharge. A proportion of patients surviving ICU will die before hospital discharge and the survival rate we report will modestly overestimate survival to hospital discharge. To put this in context, the long-running ICNARC case mix registry reports a 5.7% in-hospital mortality rate for all patients after discharge from ICU (32). Whether this finding is replicated after ICU discharge with COVID-19 is worthy of future research, as are the longer-term outcomes of these patients. Bias from mortality results can be due different "inclusion/exclusion" criteria for mechanical ventilation across institutions resulting in different populations being compared and varying availability of resources including mechanical ventilators affecting outcomes in undetermined ways. Several studies in our analysis were excluded as they did not specifically report ICU outcome data; rather they included outcome data for the entire inpatient population, or outcome data were not yet available. It is possible that the ICU outcomes in these studies may have differed from the studies we were able to include in this analysis.

Conclusion
In conclusion, the study included the largest number of patients with outcome findings of IMV in this current pandemic. Our findings showed that the use of IMV for selected COVID-19 patients with severe ARDS carries a high mortality, but outcome has improved over the last few months and in more recent studies indicating a probable better understanding of the disease management. The results could encourage physicians to use this facility when indicated for severely ill COVID-19 patients to save lives despite marked differences in practice and outcomes between different countries.

Abbreviations

ARDS: Adult respiratory distress syndrome, IMV: Invasive mechanical ventilation

ICU: Intensive care unit, MERS: Middle east respiratory syndrome

Declarations

Consent for publication

All authors consent for publication

Author contribution

HHE conceived the study, which was overseen by MG. ASH, TA, and HY devised the search strategy, executed the search, and selected the studies for inclusion. ASH, TH, HY and HHE extracted the data, which were analysed by MG. All authors were involved in development of the methodological approach. HHE, ASH, TA and HY wrote the article, which was reviewed and revised by all authors.

Declaration of interests

None

Acknowledgments

None

Availability of data and material

All data and material available on request

Ethics approval and consent to participate

Not applicable

Funding

No funding source

References
1. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41: 145–51.

2. Coronavirus disease (COVID-19) Situation Report – 107. World Heal Organ 2020; 2019: 2633.

3. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41: 145–51.

4. Tobin MJ. Basing respiratory management of COVID-19 on physiological principles. Am J Respir Crit Care Med. 2020;201(11):1319–20

5. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.

6. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327: 557–560.

7. Wang J, Lu F, Zhou M, Qi Z, Chen Z. [Tracheal intubation in patients with severe and critical COVID-19: analysis of 18 cases]. Nan Fang Yi Ke Da Xue Xue Bao 2020; 40: 337–41.

8. Pedersen HP, Hildebrandt T, Poulsen A, et al. Initial experiences from patients with COVID-19 on ventilatory support in Denmark. Dan Med J 2020; 67.

9. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368. DOI:10.1136/bmj.m1091.

10. Yu Y, Xu D, Fu S, et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study. Crit Care 2020; 24: 219.

11. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020; published online April. DOI:10.1001/jama.2020.6775.

12. Grasselli G, Zanigrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; published online April. DOI:10.1001/jama.2020.5394.

13. Zanigrillo A, Beretta L, Scandroglio AM, et al. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy. Crit care Resusc J Australas Acad Crit Care Med 2020; published online April.

14. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med 2020; 382: 2012–22.

15. Kato H, Shimizu H, Shibue Y, et al. Clinical course of 2019 novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship. J Infect Chemother Off J Japan Soc Chemother 2020; 26: 865–9.

16. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020; published online March. DOI:10.1001/jamainternmed.2020.0994.

17. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 2600: 1–7.

18. Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China (Intensive Care Medicine, (2020), 10.1007/s00134-020-05991-x). Intensive Care Med 2020. DOI:10.1007/s00134-020-06028-z.

19. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England) 2020; 395: 1054–62.

20. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet (London, England) 2020; 395: 1763–70.

21. Xu PP, Tian RH, Luo S, et al. Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study. Theranostics 2020; 10: 6372–83.
22. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ 2020; 369: m1996.
23. Mitra AR, Fergusson NA, Lloyd-Smith E, et al. Baseline characteristics and outcomes of patients with COVID-19 admitted to intensive care units in Vancouver, Canada: a case series. C Can Med Assoc J = J l’Association medicale Can 2020; 192: E694–701.
24. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and Ventilator Mortality Among Critically Ill Adults With Coronavirus Disease Crit Care Med 2020; published online May. DOI:10.1097/CCM.0000000000004457.
25. Hur K, Price CPE, Gray EL, et al. Factors Associated With Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19. Otolaryngol neck Surg Off J Am Acad Otolaryngol Neck Surg 2020; 163: 170–8.
26. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 2020; 369: m1966.
27. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020; 369: m1985.
28. Arabi YM, Al-Omari A, Mandourah Y, et al. Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. Crit Care Med. 2017;45(10):1683-1695.
29. Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018;197(6):757-767.
30. Arabi YM, Deeb AM, Al-Hameed F, et al. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis. 2019;81:184-190.
31. Intensive Care National Audit and Research Centre. ICNARC report on COVID-19 in critical care 29th May 2020, 2020. https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports
32. Intensive Care National Audit and Research Centre. Case Mix Programme Summary Statistics 2018-2019, 2019. https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports/Summary-Statistics

Tables
Table 1: Summary of all studies, N/A Not available
Author	Name	Country	Duration	Age	No. of patients	No. of ARDS	No. of IMV	Cure	Death					
Wang et al (7)	Tracheal intubation in patients with severe and critical COVID-19: analysis of 18 cases	China	From February 12th to February 28th	70.39±8.02	18	N/A	18	0	5					
Pedersen et al (8)	Initial experiences from patients with COVID-19 on ventilatory support in Denmark.	Denmark	From 11 March 2020 to 01 April 2020	69.5 years (range: 56-84 years)	16	16	16	4	7					
Chen et al (9)	Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study	China	From 13 January to 12 February 2020	62.0 (44.0-70.0)	274	196	17	0	17					
Yu et al (10)	Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study	China	February 26 to 27, 2020	64 (57–70)	226	161	121	0	79					
Richardson et al (11)	Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area	USA	From March 1, 2020 to April 4, 2020	63 years IQR 52-75; range	5700	N/A	1151	38	282					
Grasseli et al (12)	Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy	Italy	From February 20 and March 25, 2020	63 (56-70) years	1591	N/A	1150	256	405					
Zangrillo et al (13)	Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy.	Italy	From 20 February to 2 April 2020	61 years (interquartile range [IQR], 54-69.)	73	73	73	17	23					
Study	Title	Country	Dates	Mean Age	Survivors	Non-Survivors	Survivors:	Non-Survivors:						
------------------	--	---------	--------------------------------	----------	------------	---------------	------------	---------------						
Bhatraju et al 14	Covid-19 in Critically Ill Patients in the Seattle Region — Case Series	USA	From February 24 to March 9, 2020	Mean 64±18	24	18	18	6						
Kato et al 15	Clinical course of 2019 novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship	Japan	From March 11 to March 19, 2020	76	70	N/A	14	7						
Wu et al. 16	Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China	China	From December 25, 2019, to February 13, 2020	51 (43–60)	210	84	5	0						
Yang et al. 17	Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.	China	From late December 2019 to Jan 26, 2020	59.7 (13.3)	52	52	22	3						
Ruan et al. 18	Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China	China	N/A	Survivors: 67 (15–81)	150	62	25	0	Survivors: 50 (44–81)	150	62	25	0	25
Zhou et al 19	Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.	China	From Dec 29, 2019 to Jan 31, 2020	56 (46–67)	female 191	32	1	31						
Cummings et al 20	Epidemiology, Clinical Course, USA From 2 March to 62 years (IQR 51–72)	USA	From 2 March to 62 years (IQR 51–72)	1150	257	203	58	84						

Note: IQR stands for Interquartile Range.
Study	Title and Source	Country	Time Frame	Age (years)	Sex Distribution	Outcomes
Xu et al (21)	Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study.	China	From January 10, 2020 and March 13	46.1 years (SD 15.2) (range from 2 months to 86 years old),	382 males, 321 females (46%)	20
Argenziano et al (22)	Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series	USA	From 11 March to 6 April 2020	63.0 IQR (50.0-75.0)	Male 596; 59.6 % Female 404; 40.4	1000 233 36 111
Mitra et al (23)	Baseline characteristics and outcomes of patients with COVID-19 admitted to intensive care units in Vancouver, Canada: a case series.	Canada	From Feb. 21 to Apr. 14, 2020	69 [IQR 60–75] years	38 (32.5%) female	117 74 34 15
Auld et al (24)	ICU and Ventilator Mortality Among Critically Ill Adults with Coronavirus Disease	USA	From March 6, 2020, to April 17, 2020	64 (54–73)	98 (45.2) FEMALE	217 165 88 59
Hur et al (25)	Factors Associated with Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19	USA	From 1 March to 8 April, 2020.	59 years (interquartile range, 47-69)	486 N/A 138 78 21	
Petrilli et al (26)	Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City:	USA	From 1 March to 5 May, 2020.	54 years (interquartile range 38-66 years)	5279 N/A 647 170 391	
prospective cohort study

Docherty et al (27) Features of 20133 UK Patients in Hospital With covid-19 Using the ISARIC WHO Clinical Characterisation Protocol: Prospective Observational Cohort Study

United Kingdom

From 6 February to 3 May 2020

73 years (interquartile range 58-82)

20133 N/A 1658 276 618

Figures

Records identified through database searching Medline/ Pubmed, Cochrane and web of science (n=4770 articles)

Records after duplicates removed (n=4770 articles)

Titles and abstracts screened (n=4770 articles)

Records excluded as they are non-relevant articles (n=3036 articles)

Record excluded as they are non-COVID 19 related (n=1681 articles)

Full-text articles assessed for eligibility (n=103 articles)

Full text excluded as they are case reports or case series < 5 patients (n=10)

Full text excluded as they are on non-invasive mechanical ventilation (n=16)

Full text excluded as they don’t have definite endpoints (n=56)

Studies included in qualitative synthesis: Systematic Review (n= 21 study)

Studies included in quantitative synthesis: Meta-analysis (n=21 study)
Figure 1

PRISMA flow diagram of study selection

- Records identified through database searching Medline/ Pubmed, Cochrane and web of science (n=4770 articles)
 - Records after duplicates removed (n=4770 articles)
 - Titles and abstracts screened (n=4770 articles)
 - Records excluded as they are non-relevant articles (n=3036 articles)
 - Record excluded as they are non-COVID 19 related (n=1631 articles)
 - Full-text articles assessed for eligibility (n=108 articles)
 - Full text excluded as they are case reports or case series < 5 patients (n=10)
 - Full text excluded as they are on non-invasive mechanical ventilation (n=16)
 - Full text excluded as they don’t have definite endpoints (n=56)
 - Studies included in qualitative synthesis: Systematic Review (n= 21 study)
- Studies included in quantitative synthesis: Meta-analysis (n= 21 study)
Figure 2

Forest plot of pooled analysis of mortality by random effect model in all studies of IMV with COVID 19 patients
Figure 3

Forest plot of pooled analysis of mortality by random effect model in all studies of IMV with COVID 19 patients with subgroup division of country of origin.
Figure 3

Forest plot of pooled analysis of mortality by random effect model in all studies of IMV with COVID 19 patients with subgroup division of country of origin
Figure 4

Meta regression for the effect of time on mortality outcome in IMV for COVID-19
Figure 5

Funnel plot of standard error

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
