Polytope structures for Greenberger–Horne–Zeilinger diagonal states

Kyung Hoon Han1,∗∗ and Seung-Hyeok Kye2

1 Department of Data Science, The University of Suwon, Gyeonggi-do 445-743, Republic of Korea
2 Department of Mathematics and Institute of Mathematics, Seoul National University, Seoul 151-742, Republic of Korea

E-mail: kyunghoon.han@gmail.com and kye@snu.ac.kr

Received 21 May 2021, revised 27 September 2021
Accepted for publication 1 October 2021
Published 19 October 2021

Abstract
We explore the polytope structures for genuine entanglement, biseparability, full biseparability and Bell inequality of multi-qubit GHZ diagonal states. We first show that biseparable GHZ diagonal states make hypersimplices inside the simplices consisting of all GHZ diagonal states. Next, we consider full biseparability which is equivalent to positive partial transpose for GHZ diagonal states, and show that they make the convex hulls of simplices and cubes. We also visualize which part of the simplex violates multipartite Bell inequality. Finally, we compute precise volumes for genuine entanglement, biseparability, full biseparability and states violating Bell inequality among all GHZ diagonal states.

Keywords: Greenberger–Horne–Zeilinger diagonal state, polytope, bi-separable, fully bi-separable, Mermin inequality, volume

1. Introduction

The notion of entanglement arising from quantum mechanics is now recognized as one of the most important resources in the current quantum information and computation theory. The Greenberger–Horne–Zeilinger states [1, 2] are key examples of genuine entanglement in multi-qubit systems, and have many applications in various fields of quantum information theory. See survey articles [3, 4]. They also play important roles in the classification of entanglement in multi-qubit systems [5–7].

∗ Both KHH and SHK were partially supported by NRF-2020R1A2C1A01004587, Korea.
∗∗ Author to whom any correspondence should be addressed.
A mixed state is called separable if it is a mixture of product states, and entangled if it is not separable. In the multi-partite systems, the notion of entanglement depends on partitions of systems. A multi-partite state is called biseparable if it is a mixture of separable states with respect to bipartitions of systems, and called genuinely entangled if it is not biseparable. On the other hand, a state is called fully biseparable if it is biseparable with respect to any bipartitions of systems.

The GHZ diagonal states are mixtures of GHZ states [5, 8]. The mixture with the uniform distribution gives rise to the maximally mixed states, that is, the scalar multiples of the identity. By the results in [9–12], we have now complete criteria for biseparability and full biseparability of GHZ diagonal states. We first note that those criteria are given by finitely many linear inequalities, and so the resulting convex sets are polytopes. We recall that a convex set in a finite dimensional space is called a polytope if it has finitely many extreme points. It is well known that this is equivalent to the condition that it has finitely many facets, that is, maximal faces given by hyperplanes. See [13–16] for examples.

The main purpose of this note is to explore the polytope structures for biseparable and fully biseparable GHZ diagonal states. We recall [12] that a GHZ diagonal state is fully biseparable if and only if it is of PPT. We also visualize which GHZ diagonal states violate Bell type inequalities. We first note that the convex set G_n of all n-qubit GHZ diagonal states is the regular simplex of dimension $d - 1$ with the side length $\sqrt{2}$, where we retain the notation $d = 2^n$ throughout this note. The GHZ states correspond to vertices and the maximally mixed state is located at the center of the simplex. We show that the convex set B_n consisting of all biseparable GHZ diagonal states is a truncation polytope [13], that is, a polytope obtained from a simplex by successive truncations of vertices. Genuine entanglement among GHZ diagonal states are located in the truncated parts which consist of d pieces of $(d - 1)$ regular simplices with the side length $\frac{1}{\sqrt{2}}$. The remaining polytope S_n is the convex hull of midpoints of edges of G_n, which is the half sized hypersimplex $\Delta_{d-1}(2)$ [15, 16]. On the other hand, the convex set F_n of all fully biseparable GHZ diagonal states is the convex hull of the $\frac{d}{4}$ regular simplex and the $\frac{d}{4}$ regular cube which locate in the perpendicular position and share only the maximally mixed state. We note that $B_2 = F_2$ holds for the two qubit case, and their polytope structures are already known in [17]. We consider Mermin inequality as a multipartite Bell inequality, and see that the part of G_n satisfying the inequality is also a truncation polytope by a single truncation.

With this information, we compute precise values of volumes, relative volumes and relative volume radii for genuine entanglement, biseparability, full biseparability and violation of Mermin inequality among all GHZ diagonal states. We also find the largest balls inside the polytopes G_n, B_n and F_n. It is interesting to note that all of them coincide.

2. Polytopes

Throughout this note, we denote by I_n the set of all n-bit indices which are, by definition, functions from $\{1, 2, \ldots, n\}$ into $\{0, 1\}$. Therefore, they are $\{0, 1\}$ strings of length n. For examples, we have $I_2 = \{00, 01, 10, 11\}$, $I_3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$, and so, I_n may be considered as the set of natural numbers from 0 to $2^n - 1$ with the binary expression. For a given index $i \in I_n$, the index $\bar{i} \in I_n$ is defined by $\bar{i}(k) = i(k) + 1 \mod 2$. For an example, we have $0101 = 101$.

2
2.1. GHZ diagonal states

For each index \(i \in I_n \), the GHZ state is given by
\[
|\text{GHZ}_i\rangle = \frac{1}{\sqrt{2}} (|i\rangle + (-1)^k |\bar{i}\rangle).
\]

For example, we have \(|\text{GHZ}_{00}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \) and \(|\text{GHZ}_{101}\rangle = \frac{1}{\sqrt{2}} (|101\rangle - |010\rangle) \). An \(n \)-qubit state is called GHZ diagonal if it is a convex combination of the above states. We remind the readers of our convention \(d = 2^n \). Because the above states are orthonormal, we see that the convex set \(G_n \) of all \(n \)-qubit GHZ diagonal states is the regular \((d-1)\) simplex with \(d \) vertices
\[
v_i := |\text{GHZ}_i\rangle (|\text{GHZ}_i\rangle^*), \quad i \in I_n,
\]
and every GHZ diagonal state is uniquely written by
\[
\rho_p := \sum_{i \in I_n} p_i v_i
\]
with a probability distribution \(p \) over \(I_n \). For a given fixed index \(i \), we note that the convex hull
\[
G^i_n := \text{conv} \{ v_j : j \neq i \} = \{ \rho_p \in G_n : p_i = 0 \}
\]
is a facet of \(G_n \) which is given by the hyperplane \(p_i = 0 \), and every facet of \(G_n \) arises in this way. If we endow the index set \(I_n \) with the lexicographic order, then the GHZ diagonal state \(\rho_p \) may be expressed by the following \(d \times d \) matrix
\[
X(a, z) := \begin{pmatrix}
 a_{00...0} & a_i & z_{01...0} \\
 a_i & \ddots & \ddots \\
 z_{11...1} & \ddots & a_i \\
 & \ddots & \ddots \\
 & & a_{11...1}
\end{pmatrix},
\]
with \(a_i = \frac{1}{2} (p_i + p_{\bar{i}}) \) and \(z_i = \frac{(-1)^k}{2} (p_i - p_{\bar{i}}) \).

With the uniform distribution, we have the center point \(c := \frac{1}{d} \sum v_i = \frac{1}{d} I_d \) of the simplex \(G_n \), which is the maximally mixed state. The center of the facet \(G^i_n \) is given by \(c^i := \frac{1}{d-1} \sum_{j \neq i} v_j \). We note that the three points \(v_i, c \) and \(c^i \) are collinear. We also see that the ‘height’ of the simplex \(G_n \) is the distance between \(v_i \) and \(c^i \), which is given by \(\sqrt{d/(d-1)} \) with respect to the Hilbert–Schmidt norm. The center point \(c \) divides the height by the ratio \(1 - \frac{1}{d} \), and so it approaches \(c^i \) as the number of qubit increases. See figure 1.

2.2. Biseparable states

It is known [9] that the GHZ diagonal state \(\rho_p \) of (1) is biseparable if and only if the inequality
\[
|z_i| \leq \frac{1}{2} \sum_{j \neq i} a_j
\]
holds for every \(i \in I_n \). The inequality can be written as \(|p_i - p_{\bar{i}}| \leq \sum_{j \neq i} p_j \),
Figure 1. The triangle and its base represent the simplex G_n and the facet G^i_n, respectively. The center c of the simplex approaches the center c^i of the facet G^i_n as the dimension increases.

of which the right-hand side is equal to $1 - p_i - p_{\bar{i}}$. Hence, ϱ_p is biseparable if and only if

$$p_i \leq \frac{1}{2}, \text{ for every } i \in I_n.$$ \hfill (2)

In other words, a GHZ diagonal state ϱ_p is genuinely entangled if and only if $p_i > \frac{1}{2}$ for some $i \in I_n$. From this, we see that genuine entanglement is detected by the hyperplanes $p_i = \frac{1}{2}$, which also determine facets

$$B^i_n := \{ \varrho_p \in G_n : p_i = \frac{1}{2} \}$$

of the convex set B_n consisting of all n-qubit biseparable GHZ diagonal states. Especially, we see that B_n is a polytope; it has finitely many facets. For each $i \in I_n$, the region $\{ \varrho_p \in G_n : p_i > \frac{1}{2} \}$ contains only one vertex v_i, and so B_n is a truncation polytope. Genuine entanglement consists of such regions through indices $i \in I_n$. We note that an algebraic formula for genuinely multipartite concurrence for GHZ diagonal states in [11] is given by

$$C_{GM}(\varrho_p) = \max \{0, 2(\max_{i} p_i) - 1 \}.$$ \hfill (3)

Therefore, we see that a level set of $C_{GM}(\varrho)$ is parallel to a facet B^i_n of the convex set B_n, and $C_{GM}(\varrho)$ takes the maximum at vertices of G_n.

In order to understand the polytope structures of B_n, we proceed to search for all extreme points. First of all, we consider the case when ϱ_p satisfies $p_i = 0$ or $p_i = \frac{1}{2}$ for each i. In this case, there exist exactly two indices i, j such that $p_i = p_j = \frac{1}{2}$, and so we see that the resulting state

$$\varrho_p = \frac{1}{2}(v_i + v_j) := m_{ij}$$

is the midpoint of the edge of G_n connecting two vertices v_i and v_j. It is also clear that m_{ij} is an extreme point of B_n since it is the unique point of B_n on this edge by (2). Note that m_{ij} is a diagonal state with two nonzero diagonal entries. Conversely, suppose that $\varrho_p \in B_n$ satisfies $0 < p_i < \frac{1}{2}$ for some i. Then we take the largest p_i and the second largest $p_{\bar{i}}$, and consider the line segment $\varrho = (1 - t)m_{i\bar{i}} + t\varrho_p$. Since $p_{i\bar{i}}, p_{\bar{i}} > 0$ and $p_i < \frac{1}{2}$ for $i \neq i_1, i_2$, we see that $\varrho_{i+\varepsilon}$ satisfies (2) for small $\varepsilon > 0$, and so ϱ_p is not an extreme point of B_n. Therefore, we conclude that the polytope B_n is the convex hull of mid points of edges, as they are listed in
Figure 2. The polytope G_2 has four vertices v_{00}, v_{01}, v_{10} and v_{11} which make the regular three simplex. The polytope B_2 of biseparable states has six vertices which are midpoints of edges of G_2. In this picture, we have the vertex v_{00} on the top level, the facet B^{00}_2 of B_2 on the middle level and the facet $G^{00}_2 \cap B_2$ on the bottom level. The facet B^{00}_2 is the regular two simplex, and $G^{00}_2 \cap B_2$ is the half sized hypersimplex $\Delta_d(2)$ sitting in the two simplex G^{00}_2.

(3). This also tells us that B_n is obtained by maximal truncations of all vertices with the same size. The polytope B_n can be considered as the half sized hypersimplex $\Delta_{d-1}(2)$, whose vertex coordinates consist of 0 and 1, where the numbers of 0 and 1 are $(d-2)$ and 2, respectively.

Note that the vertex coordinates of G_n also consists of $(d-1)$ number of 0’s and one 1.

We will bipartition extreme points into two groups. To do this, we fix an index i. We note that an extreme point $m_{i,j}$ belongs to the facet B^i_n for every j different from i. If $j, k \neq i$, then $m_{i,k}$ belongs to the another facet

$$G^i_n \cap B_n = \{ \sigma_p \in B_n : p_i = 0 \}$$

of B_n which is determined by the hyperplane $p_i = 0$. Therefore, we see that extreme points of B_n are bipartitioned into two groups, one group in the facet B^i_n and other group in the facet $G^i_n \cap B_n$. Therefore, we conclude that B_n is the convex hull of two parallel facets B^i_n and $G^i_n \cap B_n$. We note that B^i_n is the $(d-2)$ simplex. On the other hand, $G^i_n \cap B_n$ is the half sized hypersimplex $\Delta_{d-2}(2)$ sitting in G^i_n. Every index i corresponds to such a bipartition of extreme points, and corresponding two facets. Therefore, the number of facets is given by $2d$. See figure 2 for two-qubit case. We finally note that every extreme point $m_{i,j}$ is contained in exactly d facets; B^i_n, B^j_n and $G^k_n \cap B_n$ for $k \neq i,j$.

Our geometric approach also gives rise to a simple proof for the characterization [9] of biseparability among GHZ diagonal states. For the nontrivial part to prove that the condition (2) implies biseparability, it is enough to show that extreme points $m_{i,j}$ are biseparable. To do this, let S and T be the set of natural numbers $k = 1, 2, \ldots, n$ such that $i(k) = j(k)$ and $i(k) \neq j(k)$, respectively. Then it is easily seen that $m_{i,j}$ is separable with respect to the bipartition $S \cup T$ of systems, as in the two qubit case.

2.3. Fully biseparable states

Now, we turn our attention to full biseparability. It was shown in [12] that a GHZ diagonal state is fully biseparable if and only if it is of PPT with respect to any bi-partition of parties. Therefore, a GHZ diagonal state ρ_p of (1) is fully biseparable if and only if the following

$$|z_j| \leq a_i, \quad \text{for every } i, j \in I_n$$

(4)
holds. Note that the above inequalities are combinations of linear inequalities, and so the convex set F_n of all fully biseparable GHZ diagonal states is also a polytope.

For a given $\varrho_p \in F_n$ in (1), we denote by $\lambda = \max |z_i|$. Then we see that ϱ_p is the sum of the diagonal unnormalized state $\sum_i (a_i - \lambda) |\bar{i}\rangle |\bar{i}\rangle$ and another unnormalized state $X(\lambda, z)$ with the notation in (1), where $I_1 = 1$ for each $i \in I_n$. Since $a_i = a_\bar{i}$ and $m_{ij} = \frac{1}{d} (|i\rangle |j\rangle + |j\rangle |i\rangle)$, we have

$$\varrho_p = \sum_{i \in I_n} (a_i - \lambda) m_{ij} + \lambda d X \left(\frac{1}{d} I, w \right)$$

with $w = \frac{\lambda}{d}$ satisfying $-\frac{1}{d} \leq w \leq \frac{1}{d}$ and $w_1 = w_1$ for each index $i \in I_n$. Therefore, we see that F_n is the convex hull of the following two polytopes

$$F_n^\triangle := \text{conv} \{ m_{ij} : i \in I_n \},$$

$$F_n^{\square} := \left\{ X \left(\frac{1}{d} I, w \right) : -\frac{1}{d} \leq w_1 \leq \frac{1}{d}, w_1 = w_1 \right\}.$$

We note that F_n^{\triangle} consisting of diagonal states is the regular $(\frac{d}{2} - 1)$ simplex with the unit side length since $\{ m_{ij} \}$ is an orthogonal family with the uniform norm $1/\sqrt{d}$. It is clear that F_n^{\triangle} is the regular $\frac{d}{2}$ cube with the side length $2\sqrt{d}/d$.

Suppose that σ is a collection of 2^{n-1} indices which has exactly one index among i and \bar{i}. In case of two qubit, we have four such choices; $\{00, 01\}$, $\{00, 10\}$, $\{11, 01\}$ and $\{11, 10\}$. In general, we have $2^d/2$ choices for the n-qubit case. We denote by v_σ^{\sqcup} the GHZ diagonal state with the uniform distribution over σ, that is, we define

$$v_\sigma^{\sqcup} := \frac{2}{d} \sum_{i \in \sigma} v_i = X \left(\frac{1}{d} I, w \right),$$

where $w_1 = w_1 = (-1)^{k \bar{i}} \frac{1}{d}$ for $i \in \sigma$. These states v_σ^{\sqcup}s are vertices of the cube F_n^{\sqcup}. In fact, v_σ^{\sqcup} is an extreme point of F_n since it is the only one point of F_n in the face G_σ^ν of G_n generated by v_i with $i \in \sigma$ by the PPT condition. Therefore, there are exactly $\frac{d}{2} + 2d/2$ extreme points of F_n. Note that extreme points of F_1, together with B_1, have been found in [18, 19].

In conclusion, the polytope F_n of all fully biseparable GHZ diagonal states is the convex hull of the regular $(\frac{d}{2} - 1)$ simplex F_n^\triangle and the regular $\frac{d}{2}$ cube F_n^{\sqcup}. Two polytopes F_n^\triangle and F_n^{\square} are perpendicular, and share only one point which is the maximally mixed state. We see by [20, proposition 3.1] that every face of F_n is the convex hull of a (possibly empty) face of F_n^\triangle and a (possibly empty) face of F_n^{\square}. Because both F_n^\triangle and F_n^{\square} contain the maximally mixed state which is an interior point of F_n, we see that every facet of F_n is given by the convex hull of proper faces of F_n^\triangle and F_n^{\square}. On the other hand, facets of F_n^\triangle and F_n^{\square} are given by

$$\text{conv} \{ m_{ik} : k \neq i, \bar{i} \} \quad \text{and} \quad \left\{ X \left(\frac{1}{d} I, w \right) \in F_n^{\sqcup} : w_1 = (-1)^{k \bar{i}} \frac{1}{d} \right\},$$

for choices of indices i and j, respectively, and their convex hull is the collection of $X(a, w) \in F_n$ satisfying $a_i = (-1)^{k \bar{i}} w_1$ determined by the identity in (4). Therefore, we conclude that the convex hull of facets of F_n^{\triangle} and F_n^{\square} is a facet of F_n, and every facet of F_n arises in this way. We note that facets of F_n^\triangle and F_n^{\square} are determined by choices of $\{i, \bar{i}\}$ and j, respectively. They
give rise to the facet \(F_{ij} \) of the polytope \(F_n \), which is the convex hull of two convex sets in (6). This facet is also given by the equation

\[
F_{ij} = \{ \varrho_p \in F_n : p_i + \bar{p}_i = p_j - \bar{p}_j \}
\]

in terms of probability distribution by (4). We also note that the number of facets of the polytope \(F_n \) is given by \(\frac{d^2}{2} \). See figure 3 for the two qubit case.

Using the geometry, we may also give a simple proof of the equivalence between PPT and full biseparability for GHZ diagonal states. For the nontrivial part to show every GHZ diagonal state of PPT is fully biseparable, it suffices to consider an extreme point \(v_\sigma \) of \(F_n \). We fix a bipartition \(S \cup T \), and denote by \(\bar{S} \) the index obtained by changing \(k \)th symbols for \(k \in S \), and similarly for \(\bar{T} \). Then, for each \(i \in \sigma \), either \(\bar{S} \in \sigma \) or \(\bar{T} \in \sigma \) holds. Thus, \(v_\sigma \) is the average of states of the form \(m_i, \bar{S} \) or \(m_i, \bar{T} \) by (5). For example, if \(\sigma = \{000, 001, 011, 101\} \) and the bipartition is \(A-BC \), then \(v_\sigma \) is the average of \(m_{000,001} \) and \(m_{001,101} \) which are \(A-BC \) separable as in the two qubit case.

2.4. Bell inequalities

In this subsection, we consider multipartite Bell inequalities and figure out which parts violate the inequalities. See [21] for a survey on Bell inequalities. We begin with the Mermin inequality [22], which considers two settings on each side. Following [3], we put

\[
M_n := \sum_{i} X_i X_2 X_3 X_4 X_5 \cdots X_n - \sum_{i} Y_1 Y_2 X_3 X_4 X_5 \cdots X_n + \sum_{i} Y_1 Y_2 Y_3 Y_4 X_5 \cdots X_n - \cdots,
\]

where \(X_i \) and \(Y_i \) represent the Pauli matrices \(\sigma_x, \sigma_y \) on the \(i \)th qubit, and \(\sum_{i} \) represents the sum of all possible permutations of the qubits that give distinct terms. Then the Mermin inequality is given by

\[
\langle M_n \rangle_\varrho := \text{Tr}(M_n \varrho) \leq \mu_n := \begin{cases}
2^{n/2}, & n \text{ even}, \\
2^{(n-1)/2}, & n \text{ odd}.
\end{cases}
\]
Recall the notation $\mathbf{1}$ given by $\mathbf{1}_i = 1$ for each $i \in I_n$. We also use the notation $\mathbf{0}$ given by $\mathbf{0}_i = 0$ for each $i \in I_n$. We have

$$M_n|\mathbf{0}\rangle = |\mathbf{1}\rangle - \sum_\pi i^\pi |\mathbf{1}\rangle + \sum_\pi i^\pi |\mathbf{1}\rangle - \sum_\pi i^\pi |\mathbf{1}\rangle + \cdots = (a C_0 + a C_2 + a C_4 + \cdots) |\mathbf{1}\rangle = 2^{n-1} |\mathbf{1}\rangle$$

and $M_n|\mathbf{1}\rangle = 2^{n-1} |\mathbf{0}\rangle$ similarly. Since $\{\frac{1}{\sqrt{2}} \sigma_x, \frac{1}{\sqrt{2}} \sigma_y\}$ is orthonormal, we have

$$\|M_n\|_2^2 = 2^n \left(\frac{1}{\sqrt{2}}\right)^n M_n |\mathbf{1}\rangle = 2^n (a C_0 + a C_2 + a C_4 + \cdots) = 2^{2n-1}.$$}

On the other hand, we also have

$$|\langle 0|M_n|\mathbf{1}\rangle|^2 + |\langle 1|M_n|\mathbf{0}\rangle|^2 = 2^{2n-1} = \|M_n\|_2^2,$$

which implies $\langle i|M_n|j\rangle = 0$ whenever $\{i, j\} \neq \{0, 1\}$. Therefore, we have

$$\langle i|M_n|j\rangle = \begin{cases} 2^{n-1}, & (i, j) = (0, 1), (1, 0), \\ 0, & \text{otherwise} \end{cases}$$

and so it follows that

$$\langle M_n \rangle_{\varphi} = 2^{n-1} (p_0 - p_1),$$

for a GHZ diagonal state φ_p.

Now, we conclude that a GHZ diagonal state φ_p violates the Mermin inequality if and only if

$$p_0 - p_1 > \nu_n := \begin{cases} 2/\sqrt{d}, & n \text{ even} \\ \sqrt{2}/\sqrt{d}, & n \text{ odd} \end{cases}$$

and the GHZ state φ_0 violates the inequality maximally. The hyperplane

$$H_M := \{ \varphi_p \in G_n : p_0 - p_1 = \nu_n \}$$

is perpendicular to the edge $\overline{w_1w_2}$ of the simplex G_n of all GHZ diagonal states, and meets the edges $\overline{w_1w_i}$ for $i \neq 0$ at the points

$$w_1 := \left(\frac{1}{2} + \frac{1}{2} \nu_0\right)v_0 + \left(\frac{1}{2} - \frac{1}{2} \nu_0\right)v_1, \quad w_i := \nu_i v_0 + (1 - \nu_i)v_i, \quad i \neq 0, 1. \quad (8)$$

We note that $\nu_n = \frac{1}{2}$ for $n = 3, 4$ and $\nu_n < \frac{1}{2}$ for $n \geq 5$. This means that the hyperplane H_M is tangent to the facet B_3 of the convex set B_n for $n = 3, 4$. Therefore, we see that three or four qubit biseparable GHZ diagonal states never violate the Mermin inequality. On the other hand, there exists n qubit biseparable GHZ diagonal states which violate the inequality for $n \geq 5$. See figure 4.

As for fully biseparable states or equivalently PPT states, we see that $\langle M_n \rangle_{\varphi} = 0$ and $\langle M_n \rangle_{\varphi} = \pm 1$ for extreme points of F_n. Therefore, we see that no GHZ diagonal state of PPT
violates the Mermin inequality. Using the Lagrange method, the distance from the hyperplane H_M to the convex set F_n is calculated by
\[
\text{dist}(H_M, F_n) = \frac{1}{\sqrt{2}} \left(\nu_n - \frac{2}{d} \right).
\]

We also consider the Ardehali inequality [23], which is another multi-partite Bell inequality. The exactly same argument may be applied for Ardehali inequality in [3], to see that the hyperplane determining the violation of Ardehali inequality is a translation of H_M. In this case, we also see that this hyperplane meets the interior of B_n when and only when $n \geq 4$.

3. Volume

We note that the whole n-qubit GHZ diagonal states are trisected by the following three parts:
- $G_n \setminus B_n$: genuine entanglement,
- $B_n \setminus F_n$: biseparable but not fully biseparable states,
- F_n: fully biseparable states.

We first compute precise volumes for the above parts with respect to the Hilbert Schmidt norm. We note that there are lots of estimates for the volumes of separable states in various situations in the literature. See [24–30] for examples.

When two convex sets C_1 and C_2 with a common point are perpendicular to each other, we denote by $C_1 \oplus C_2$ the convex hull of them. Since they are perpendicular, the common point is unique. When Δ_p is the regular p simplex with the side length ℓ and C is a q-dimensional convex body with volume V_0, we will compute the volume V_p of the convex set $\Delta_p \oplus C$.

When $p = 1$, the volume V_1 of $\Delta_1 \oplus C$ is given by $V_1 = \frac{1}{1+q} \cdot \ell \cdot V_0$. We also note that $\Delta_p = [h_p \Delta_1] \oplus \Delta_{p-1}$, where $h_p = \frac{1}{\sqrt{2}} \sqrt{\frac{p+1}{p}}$ is the ‘height’ of the p simplex with the unit side length. We translate C so that it meets Δ_{p-1}. Since Δ_p and C are perpendicular, the volume V_p does not change. Therefore, we have the following inductive formula

\[
V_p = \text{vol} \left([h_p \Delta_1] \oplus (\Delta_{p-1} \oplus C) \right) = \frac{1}{p+q} \cdot h_p \cdot \ell \cdot V_{p-1},
\]
from which we have

$$\text{vol} (\Delta_p \Theta C') = \frac{q! \sqrt{p+1}}{(p+q)!} \cdot \left(\frac{\ell}{\sqrt{2}} \right)^p \cdot \text{vol} (C').$$

With this formula, we have the following volumes:

$$\text{vol} (G_n) = \frac{\sqrt{d}}{(d-1)!},$$

$$\text{vol} (F_n) = \text{vol} (F^d_n \Theta F^c_n) = \frac{(d/2)! \sqrt{d}}{(d-1)!} \left(\frac{2}{d} \right)^{d/2}.$$

Because $G_n \setminus B_n$ consists of d pieces of simplices with the side length $1/ \sqrt{2}$, we also have

$$\text{vol} (G_n \setminus B_n) = d \cdot \left(\frac{1}{2} \right)^{d-1} \cdot \text{vol} (G_n) = \frac{(d/2)!}{(d/2)^{d/2}}.$$

Therefore, we have the following relative volumes with respect to the whole simplex G_n:

$$\frac{\text{vol} (G_n \setminus B_n)}{\text{vol} (G_n)} = \frac{d \cdot (1/2)^{d-1}}{(d-1)!}, \quad \frac{\text{vol} (F_n)}{\text{vol} (G_n)} = \frac{(d/2)!}{(d/2)^{d/2}}.$$

Both of them tend to zero, as the number of qubits tends to infinity.

The volume radius of a set X is given by the radius of a Euclidean ball whose volume is same as that of X, as it was introduced in [25]. For subsets $X = G_n \setminus B_n, B_n \setminus F_n$ and F_n of G_n, we will consider the relative volume radius $r_{vr}(X) := \left(\frac{\text{vol} (X)}{\text{vol} (G_n)} \right)_{\text{min}}$ with respect to the whole simplex G_n. We have

$$r_{vr}(G_n \setminus B_n) = \frac{1}{2} d^{1/(d-1)},$$

$$r_{vr}(B_n \setminus F_n) = \left(1 - \frac{d}{2^{d-1}} - \frac{(d/2)!}{(d/2)^{d/2}} \right)^{1/(d-1)},$$

$$r_{vr}(F_n) = \left(\frac{(d/2)!}{(d/2)^{d/2}} \right)^{1/(d-1)},$$

and they approach $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{d}}$, respectively, as $n \to \infty$. The last follows from

$$\frac{1}{d-1} \log \frac{(d/2)!}{(d/2)^{d/2}} = \frac{1}{d-1} \sum_{k=1}^{d/2} \log \frac{k}{d/2} \to \frac{1}{2} \int_0^1 \log x \, dx = -\frac{1}{2}.$$

Now, we also consider the largest balls inside the polytopes G_n, B_n and F_n. The largest ball inside density matrices, separable states and biseparable states have been considered by several authors [31–37]. For a given fixed state ϱ_p in G_n, the radius r_p of the largest ball inside G_n around ϱ_p is given by the minimum distance from ϱ_p to facets. The distance from ϱ_p to the facet G^i_n can be obtained by the distance to the linear manifold given by $\sum_j p_j = 1$ and $p_i = 0$. Using the Lagrange method, the distance is given by $p_i \sqrt{d/(d-1)}$ whose minimum over $i \in I_n$ is just r_p. Therefore, the maximum of r_p occurs when p is the uniform distribution, and so we conclude that the largest ball inside G_n is centered at the maximally mixed state.
and the radius is given by $\sqrt{1/d(d-1)}$ which is the distance between c and c^i in figure 1. This number was shown in [31] to be the radius of the largest ball in the density matrices. Our result shows that the maximum radius also occurs within GHZ diagonal states. The exactly same argument shows that the largest ball inside the polytope B_n coincides with the largest ball inside G_n. In order to find the largest ball inside the polytope F_n, we first compute the distance from a state ψ_p to the facet $F_{i,j}^n$, the linear manifold given by $\sum_k \rho_k = 1$ and (7). If $j \in \{i, \bar{i}\}$ then the distance is given by $\sqrt{d/(d-1)}$ as before. Otherwise, we use the Lagrange method again to get the distance $\frac{1}{2}|\psi_i + \psi_j - \psi_1|\sqrt{d/(d-1)}$. From this, we conclude that the largest ball inside F_n coincides again with the largest ball inside the whole simplex G_n.

Finally, we consider the convex set M_n of all n-qubit GHZ diagonal states which violate the Mermin inequality. Because the hyperplane H_M meet edges at the points in (8), we see that the volume of M_n is given by

$$\text{vol}(M_n) = \text{vol}(G_n) \times \left(1 - \nu_n\right)^{d-2} \times \frac{(1 - \nu_n)^{d-1} \sqrt{d}}{2(d-1)!}.$$

Note that the relative volume

$$\frac{\text{vol}(M_n)}{\text{vol}(G_n)} = \frac{(1 - \nu_n)^{d-1}}{2}$$

converges to zero, even though the vertices w_i of M_n converge to v_i for $i \neq 0, 1$ and to $m_{0,1}$ for $i = 1$. We see that the relative volume radius $\text{rvr}(M_n) = \frac{1}{2}(1 - \nu_n)$ converges to 1 as $n \to \infty$.

4. Conclusion

In this paper, we have explored polytope structures for genuine entanglement, biseparability, full biseparability and Bell inequality of multi-qubit GHZ diagonal states. Through the discussion, we may visualize which parts of the simplices of all GHZ diagonal states represent genuine entanglement, PPT states and those violating multipartite Bell inequality, respectively. With these pictures, we have computed precise volume related values and their asymptotic behaviors for genuine entanglement, biseparability, full biseparability or equivalently PPT, and violating Bell inequality. All of them look reasonable, but we could not explain why $\lim_{n \to \infty} \text{rvr}(F_n)$ is given by the number $\sqrt{2}$. We also have seen that the largest balls inside three polytopes coincide. This means that the largest balls do not explain the relative volumes in case of GHZ diagonal states. It would be nice to compute the precise volume of the convex set consisting of fully separable GHZ diagonal states. But this job must be much more involved, because fully separable GHZ diagonal states do not make a polytope anymore. See [38, 39].

Acknowledgments

The authors are grateful to Hyun Kwang Kim for fruitful discussions on hypersimplices. They are also grateful to the referee for bringing their attention to multipartite Bell inequality. Both KHH and SHK were partially supported by NRF-2020R1A2C1A01004587, Korea.
Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Kyung Hoon Han © https://orcid.org/0000-0002-8596-0291

References

[1] Greenberger D M, Horne M A and Zeilinger A 1989 Going beyond Bell’s theorem Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Fundamental Theories of Physics) (Dordrecht: Springer) vol 37 pp 73–6
[2] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Bell’s theorem without inequalities Am. J. Phys. 58 1131–43
[3] Gühne O and Tóth G 2009 Entanglement detection Phys. Rep. 474 1–75
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement Rev. Mod. Phys. 81 865–942
[5] Dür W, Cirac J I and Tarrach R 1999 Separability and distillability of multiparticle quantum systems Phys. Rev. Lett. 83 3562–5
[6] Dür W and Cirac J I 2000 Classification of multiqubit mixed states: separability and distillability properties Phys. Rev. A 61 042314
[7] Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Classification of mixed three-qubit states Phys. Rev. Lett. 87 040401
[8] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Multiparticle entanglement purification protocols Phys. Rev. A 57 R4075(R)
[9] Gühne O and Seevinck M 2010 Separability criteria for genuine multipartite entanglement New J. Phys. 12 053002
[10] Gao T and Hong Y 2011 Separability criteria for several classes of n-partite quantum states Eur. Phys. J. D 61 765–71
[11] Hashemi Rafsanjani S M, Huber M, Broadbent C J and Eberly J H 2012 Genuinely multipartite concurrence of N-qubit X matrices Phys. Rev. A 86 062303
[12] Han K H and Kye S-H 2016 Construction of multi-qubit optimal genuine entanglement witnesses J. Phys. A: Math. Theor. 49 175303
[13] Brendsted A 1983 An Introduction to Convex Polytopes (Graduate Texts in Mathematics) vol 90 (Berlin: Springer)
[14] Webster R 1994 Convexity (Oxford: Oxford University Press)
[15] Ziegler G M 1995 Lectures on Polytopes (Graduate Texts in Mathematics) vol 152 (Berlin: Springer)
[16] Grünbaum B 2003 Convex Polytopes (Graduate Texts in Mathematics) vol 221 (Berlin: Springer)
[17] Lang M D and Caves C M 2010 Quantum discord and the geometry of Bell-diagonal states Phys. Rev. Lett. 105 150501
[18] Han K H and Kye S-H 2020 On the convex cones arising from classifications of partial entanglement in the three qubit system J. Phys. A: Math. Theor. 53 015301
[19] Han K H and Kye S-H 2021 Criteria for partial entanglement of three qubit states arising from distributive rules Quantum Inf. Process. 20 151
[20] Kye S-H 2005 Facial structures for decomposable positive linear maps in matrix algebras Positivity 9 57–71
[21] Belinskii A V and Klyshko D N 1993 Interference of light and Bell’s theorem Phys.-Usp. 36 653–93
[22] Mermin N D 1990 Extreme quantum entanglement in a superposition of macroscopically distinct states Phys. Rev. Lett. 65 1838
[23] Ardehali M 1992 Bell inequalities with a magnitude of violation that grows exponentially with the number of particles Phys. Rev. A 46 5375
[24] Zyczkowski K and Sommers H-Jr 2003 Hilbert–Schmidt volume of the set of mixed quantum states J. Phys. A: Math. Gen. 36 10115–30
[25] Szarek S J 2005 Volume of separable states is super-doubly-exponentially small in the number of qubits Phys. Rev. A 72 032304
[26] Slater P B 2005 Qubit–qutrit separability–probability ratios Phys. Rev. A 71 052319
[27] Aubrun G and Szarek S J 2006 Tensor products of convex sets and the volume of separable states on N qudits Phys. Rev. A 73 022109
[28] Grabowski J, Ibort A, Kuś M and Marmo G 2013 Convex bodies of states and maps J. Phys. A: Math. Theor. 46 425301
[29] Singh R, Kunjwal R and Simon R 2014 Relative volume of separable bipartite states Phys. Rev. A 89 022308
[30] Lancien C, Gühne O, Sengupta R and Huber M 2015 Relaxations of separability in multipartite systems: semidefinite programs, witnesses and volumes J. Phys. A: Math. Theor. 48 505302
[31] Harriman J E 1978 Geometry of density matrices: I. Definitions, N matrices and 1 matrices Phys. Rev. A 17 1249–56
[32] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Volume of the set of separable states Phys. Rev. A 58 883–92
[33] Vidal G and Tarrach R 1999 Robustness of entanglement Phys. Rev. A 59 141–55
[34] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Separability of very noisy mixed states and implications for NMR quantum computing Phys. Rev. Lett. 83 1054–7
[35] Gurvits L and Barnum H 2002 Largest separable balls around the maximally mixed bipartite quantum state Phys. Rev. A 66 062311
[36] Gurvits L and Barnum H 2003 Separable balls around the maximally mixed multipartite quantum states Phys. Rev. A 68 042312
[37] Jungnitsch B, Moroder T and Gühne O 2011 Taming multiparticle entanglement Phys. Rev. Lett. 106 190502
[38] Han K H and Kye S-H 2017 Separability of three qubit Greenberger–Horne–Zeilinger diagonal states J. Phys. A: Math. Theor. 50 145303
[39] Chen L, Han K H and Kye S-H 2017 Separability criterion for three-qubit states with a four dimensional norm J. Phys. A: Math. Theor. 50 345303