Reductions in hospital care among clinically vulnerable children aged 0–4 years during the COVID-19 pandemic

David Etoori 1, Katie L Harron 1, Louise Mc Grath-Lone 1, Maximiliane L Verfürden 1, Ruth Gilbert 2, Ruth Blackburn 1

ABSTRACT

Objective To quantify reductions in hospital care for clinically vulnerable children during the COVID-19 pandemic.

Design Birth cohort.

Setting National Health Service hospitals in England.

Study population All children aged <5 years with a birth recorded in hospital administrative data (January 2010–March 2021).

Main exposure Clinical vulnerability defined by a chronic health condition, preterm birth (<37 weeks’ gestation) or low birth weight (<2500 g).

Main outcomes Reductions in care defined by predicted hospital contact rates for 2020, estimated from 2015 to 2019, minus observed rates per 1000 child years during the first year of the pandemic (March 2020–2021).

Results Of 3 813 465 children, 17.7% (one in six) were clinically vulnerable (9.5% born preterm or low birth weight, 10.3% had a chronic condition). Reductions in hospital care during the pandemic were much higher for clinically vulnerable children than peers: respectively, outpatient attendances (314 vs 73 per 1000 child years), planned admissions (34 vs 10) and unplanned admissions (105 vs 79). Clinically vulnerable children accounted for 50.1% of the reduction in outpatient attendances, 55.0% in planned admissions and 32.8% in unplanned hospital admissions. During the pandemic, weekly rates of planned care returned to prepandemic levels for clinically vulnerable children and non-vulnerable children. Reductions in care differed by ethnic group and level of deprivation. Virtual outpatient attendances increased from 3.2% to 24.8% during the pandemic.

Conclusion One in six clinically vulnerable children accounted for one-third to one-half of the reduction in hospital care during the pandemic.

INTRODUCTION

Rates of hospital contact (outpatient attendances, planned and unplanned hospital admissions) among 0–4-year-olds are highest for infants and have increased steadily in England over the past decade.1–4 Hospital utilisation patterns differ markedly by age and clinical vulnerability: children born preterm, with low birth weight or a congenital anomaly, have substantially more admissions than other children.1–4,5

Hospital contacts reduced substantially during the COVID-19 lockdown,6–9 which likely most impacted high intensity users of planned hospital care, such as children born too early or too small or with underlying health conditions.1,10 Postponed or cancelled planned hospital care may result in delayed diagnoses or treatments, which could be detrimental to health or development.11 Fewer unplanned hospital admissions might reflect fewer infections, injuries or other health problems due to reduced exposure during pandemic restrictions but could also reflect unmet need.

This study aimed to quantify reductions in planned and unplanned hospital care for clinically vulnerable children and non-vulnerable peers.
during the COVID-19 pandemic using national, longitudinal administrative hospital data for England. We measured planned hospital contacts (admissions and outpatient attendances) and unplanned admissions among children with chronic health conditions or born preterm or low birth weight and children with no recorded clinical vulnerability as well as by ethnicity and area-based deprivation. Reductions were quantified as the difference between predicted and observed rates of hospital contacts during the first year of the pandemic. We also examined whether rates of contact returned to prepandemic levels and described changes in the type of outpatient contact (eg, face to face or virtual).

METHODS
Study population and data source
Children were included in the cohort if aged 0–4 years and their birth was recorded in hospital administrative data in the English NHS (Hospital Episode Statistics (HES)) between 1 January 2010 and 31 March 2021. HES records 97% of all births in England.12 Children were followed until the earliest of fifth birthday or 31 March 2021 (online supplemental figure 1). All contacts with NHS hospitals in England (including admitted patient care and outpatient attendances) were linked using the encrypted HES Identifier (ID). Accident and emergency (A&E) attendances could not be included as patient-level linkage is via Token ID.13 We combined consecutive consultant episodes and hospital transfers to form admissions.14

Outcome and exposure
Our primary outcome was the reduction in hospital care, defined as the difference between observed and predicted rates (per 1000 child-years (cy)) of hospital contacts (stratified into outpatient attendances, planned or unplanned admissions) during the pandemic (23 March 2020–22 March 2021). Inpatient admissions were classified as planned or unplanned using the ‘admission method’ variable (admissions have a predictable clinical need where the decision to admit may be separated in time from the actual admission).15 We also described trends in weekly rates of hospital contacts by age (from 1 January 2020 to 31 March 2021 and averaged for 2015–2019), and uptake (attended, missed, cancelled and postponed) and mode (in person, virtually) of outpatient contacts. Clinical vulnerability was defined by a chronic condition recorded up to age 4 years, or preterm birth (<37 weeks of gestation) or low birth weight (<2500g) recorded in birth or delivery records. A child had a chronic condition at a given age if at least one relevant International Classification of Diseases 10th revision (ICD-10) code (identified using code lists developed by Feudtner and Hardelid16–18) was recorded in any of their records up to that age including their birth admission. Completeness of demographic variables declined for children born during the pandemic (missingness increase by; 9% Index of Multiple Deprivation (IMD); 3% birth weight; 2% gestational age) but was unchanged for admission characteristics including inpatient admission type (planned, unplanned, birth or maternity) or outpatient attendance type (in-person and virtual), similar to outpatient data metrics published by NHS digital.19

Children with a chronic condition but missing gestation and birth weight were categorised as clinically vulnerable (chronic condition only).

We analysed risk factors associated with health service use: age (0–11 months, 1–4 years),2 quintile/fifth of deprivation derived from the national distribution of the IMD 2004 (an area measure for ~650 households20 21 and recorded ethnic group (grouped as white, black, Asian or other, including mixed and Chinese).

Statistical analyses
We calculated observed rates of hospital contacts per 1000 cy in the prepandemic period (2015–2019), stratifying by risk factors.

We calculated child-years at risk by averaging the eligible population of births recorded in HES at the beginning and end of a year, assuming no emigration and ignoring deaths. We used Poisson regression (including a linear effect of time and log of the midyear population as an offset) to model rates stratified by risk factors from 1 January 2015 to 31 December 2019. Data from 1 January to 22 March 2020 were excluded from the prepandemic period because reductions in hospital contact rates preceded the first lockdown. To calculate the reduction in hospital contacts, we predicted rates for the pandemic period, assuming that the pandemic had not occurred and previous trends would have continued. The reduction was estimated as the difference between predicted and observed rates. We also calculated reductions within the first national lockdown (23 March–23 June 2020), easing of restrictions (24 June–4 November 2020), second national lockdown (5 November–31 December 2020) and third national lockdown (1 January–22 March 2021).22

We calculated weekly rates between 1 January 2015 and 31 March 2021, using dynamic denominator study populations to accommodate temporal changes in hospital activity. Analyses stratified children with and without chronic conditions (recorded between birth and the relevant week) because we expected the differences to be largest between these comparators. Weekly rates of hospital contact were calculated by dividing the total number of weekly admissions or attendances by the weekly dynamic denominator population of children within each stratification level (ie, a child born in week 1 of 2015 would move into the 1-year-old group in week 1 of 2016 and age out of the cohort in week 1 of 2019). Weekly rates in 2020 and 2021 were plotted against average weekly rates for 2015–2019. We also modelled weekly rates between 1 January 2015 and 31 December 2019, using a Poisson model that included a linear effect of time, calendar month to account for seasonality, log of the weekly denominator population as an offset and second-order lagged residuals. A similar approach was used to estimate weekly reductions during the pandemic. Analyses were performed in Stata V.16.23

RESULTS
Population characteristics
Of the 3811465 children aged 0–4 years, 394384 (10.3%) had a record indicating a chronic condition (including congenital anomalies); 363950 (9.5%) were born preterm or low birth weight; and 83283 (2.2%) had both vulnerabilities. Overall, 675051 (17.7%) had one or more of these clinical vulnerabilities (table 1).

Hospital contacts prepandemic
Hospital contacts were much higher among infants than children aged 1–4 years: 60.1% (95% CI 60.0 to 60.3) of infants and 8.2% (8.1–8.2) of 1–4-year-olds had ≥1 outpatient attendance each year, reflecting 1538 outpatient attendances per 1000 cy for infants and 302 for 1–4-year-olds (online supplemental figure 2, online supplemental table 1). Overall, 31.2% (31.1–31.3) of clinically vulnerable children had ≥1 outpatient attendance compared with 14.1% (14.1–14.2) of those with no known
vulnerability reflecting 1483 attendances per 1000 cy for children with any vulnerability and 295/1000 cy for those without. Patterns were similar for planned and unplanned hospital admissions. Children with chronic conditions had the highest rates of admissions across all strata (online supplemental figures 3 and 4). Children born preterm or low birth weight but with no chronic condition had similar admission rates to their peers born at term or weighing ≥2500 g (online supplemental figure 2).

Hospital contacts during the pandemic

There were stark reductions in rates of all hospital contact types during the pandemic (table 2, online supplemental tables 2-4). Reductions were much larger for children with a chronic condition (outpatient: −492 (−505 to −480) contacts per 1000 cy; planned: −91/1000 cy (−95 to −86); unplanned: −230/1000 cy (−236 to −224)) than those without and particularly high for children with a chronic condition, with less perceptible changes among those without a chronic condition. Outpatient attendances rapidly returned to prepandemic rates for infants but remained below 2015–19 averages for older children. Planned admissions returned to prepandemic rates only for infants (figure 2).

Trends in hospital contacts

Outpatient attendances reduced sharply before and during the first national lockdown, among children of all ages with a chronic condition, with less perceptible changes among those without a chronic condition. Outpatient attendances rapidly returned to prepandemic rates for infants but remained below 2015–19 averages for older children. Planned admissions followed a similar pattern, with a return to prepandemic rates only for infants (figure 2).

A similar pattern was observed for reductions in rates of unplanned admissions, and these remained below prepandemic levels for both groups at all ages (figure 2). In 2020, the

Table 1 Demographic characteristics of children born between 1 January 2015 and 31 March 2021 by vulnerability status

Birth year	None (n=2 773 420; 72.7%)	LBW/preterm only (n=280 667; 7.4%)	CC only (n=311 101; 8.2%)	Both (n=83 283; 2.2%)	Missing (n=364 994; 9.6%)	Total (n=3 813 465)
	n	%	n	%	n	%
Sex						
Male	1 406 322	50.7	134 871	48.1	183 964	59.1
Female	1 366 276	49.3	145 481	51.8	127 006	40.8
Missing	822	0.0	315	0.1	131	0.04
Age						
Infants	400 330	14.4	36 445	13.0	276 411	8.9
1–4 years old	2 373 090	85.6	244 222	87.0	283 460	91.1
Ethnicity						
White	1 958 159	70.6	184 525	65.8	228 023	73.3
Black/Black British	126 067	4.5	15 477	5.5	14 150	4.6
Asian/Asian British	295 850	10.7	41 516	14.8	33 610	10.8
Any other ethnic groups	239 079	8.6	24 085	8.6	25 135	8.1
Missing	154 265	5.6	15 064	5.4	10 183	3.3
IMD						
Q1 (most deprived)	668 113	24.1	83 204	29.7	89 425	28.7
Q2	550 124	19.8	60 337	21.5	67 853	21.8
Q3	468 995	16.9	45 794	16.3	55 924	18.0
Q4	413 514	14.9	37 446	13.3	47 670	15.3
Q5 (least deprived)	400 528	14.4	34 530	12.3	43 052	13.8
Missing	272 146	9.8	19 356	6.9	7 177	2.3
Birth year						
2015	45 046	16.5	46 590	16.6	68 814	22.1
2016	431 324	17.0	49 020	17.5	63 505	19.9
2017	465 975	16.8	49 358	17.6	55 396	17.8
2018	443 438	16.0	47 406	16.9	47 628	15.3
2019	431 854	15.6	41 713	14.9	40 107	12.9
2020	409 956	14.8	38 128	13.6	30 598	9.8
2021	93 327	3.4	8 445	3.0	5 053	1.6

Notes:
CC, chronic conditions; IMD, Index of Multiple Deprivation; LBW, low birth weight.
autumn–winter peak in unplanned admissions was diminished relative to previous years; however, following the reopening of primary schools at the end of the third lockdown on 8 March 2021, there was an increase in unplanned admission rates for all children, particularly those with a chronic condition (figure 2, online supplemental figure 7). Trends did not consistently differ across deprivation levels (online supplemental figures 8 and 9) or by ethnic group (online supplemental figures 10–12).

For all age groups, a spike in cancellations and postponement of outpatient appointments preceded the first lockdown by

n	N	%	Predicted	Observed	Difference	% change	Predicted	Observed	Difference (95% CI)	% change
Outpatient attendances										
Total	370623	2765941	3.4	1500674	1173091	−327583	−21.8	543	424	−118
No known vulnerability	232976	2243088	10.4	635226	471743	−163483	−25.7	283	210	−73
Any vulnerability	137647	522853	26.3	865448	701348	−164100	−19.0	1655	1341	−114
LBW/preterm only	29622	226439	13.1	946600	76039	−18621	−19.7	418	336	−82
CC only	86825	231671	37.5	586026	475226	−110800	−18.9	2530	2051	−4781
Both	21200	64743	32.7	184762	150083	−34679	−18.8	2854	2318	−5361
Any CC	107762	296414	36.4	771219	625309	−145910	−18.9	2602	2110	−4921
Planned admissions										
Total	52280	2765941	1.9	144980	92618	−52362	−36.1	52	33	−19
No known vulnerability	15287	2243088	0.7	40568	17022	−23546	−58.0	18	8	−10
Any vulnerability	36993	522853	7.1	104412	75596	−28816	−27.6	200	145	−551
LBW/preterm only	1389	226439	0.6	3675	1522	−2153	−58.6	16	7	−10
CC only	31038	231671	13.4	85367	65506	−19861	−23.3	368	283	−867
Both	4566	64743	7.1	15370	8568	−6802	−44.3	237	132	−1051
Any CC	35603	296414	12.0	100929	74074	−26855	−26.6	341	250	−911
Unplanned admissions										
Total	131134	2765941	4.7	442174	179366	−262808	−59.4	160	65	−95
No known vulnerability	66830	2243088	3.0	254263	77713	−176550	−69.4	113	35	−79
Any vulnerability	64304	522853	12.3	187911	101653	−86258	−45.9	359	194	−1651
LBW/preterm only	6046	226439	2.7	25520	7228	−18292	−71.7	113	32	−81
CC only	52285	231671	22.6	134055	84126	−49929	−37.2	579	363	−2161
Both	5973	64743	9.2	28336	10299	−18307	−63.7	438	159	−2791
Any CC	58248	296414	19.7	162648	94425	−68223	−41.9	549	319	−2301

*268256 (8.8%) children missing gestational age and birth weight data.
†Significantly different from children with no known vulnerability (5% level of significance).
‡Any CC combines CC only and both.
CC, chronic conditions; LBW, low birth weight.
3 weeks (online supplemental figure 13). There was an increase in tele/virtual outpatient attendances during the pandemic and face-to-face visits did not return to prepandemic levels in any age group (online supplemental table 8 and figure 14).

DISCUSSION

This population-based cohort study of all children aged <5 years in England found large and disproportionate reductions in planned and unplanned hospital contacts during the COVID-19 pandemic for clinically vulnerable groups. The one in six clinically vulnerable children accounted for over half the reduction in outpatient attendances and planned admissions, and one-third of the reduction in unplanned admissions. While absolute reductions were larger for vulnerable children, they were smaller in relative terms compared with children with no recorded vulnerability suggesting that hospitals prioritised these children. We saw some evidence of recovery in planned care during the pandemic among infants, but not among older children.

This study’s main strength is the use of a birth cohort of all children born in an NHS hospital in England (97% of all births). This large sample size gave us enough data to calculate weekly rates of hospital contacts. The longitudinal nature of the data allowed us to identify chronic conditions from diagnostic codes recorded in all admissions since birth, using a clinically developed coding system.16

Limitations include underascertainment of chronic conditions for children who could not be admitted to hospital due to the pandemic. These children may have been managed in primary care, or as outpatients, where chronic conditions coding is mostly missing. Furthermore, older children would have had more time for chronic conditions to be diagnosed. This likely explains the decline in prevalence of chronic conditions in more recent years. Analyses were restricted by variables available in HES (eg, use of IMD 2004). Vulnerability may be underestimated for the 10% of children who were excluded from the study due to missing gestational age and birth weight data. Multiple imputation of missing data was not feasible given the study size. We could not quantify the reduction in A&E attendances, as this dataset is not yet linkable to admission records. However, recent studies investigating A&E attendances in children reported similar reduced service use during the pandemic.24 25 Our rates did not account for deaths in the denominator (0.5%), non-NHS healthcare or emigration, but these events are rare. Our modelling approach required several assumptions, and our estimates of impacts are likely conservative.

Reductions in hospital care for children during the pandemic have been reported in Europe,7 26–33 Asia,34 North35–38 and South America.39 Most studies investigated A&E attendances or unplanned admissions.25–39 Other studies report a reduction in asthma-related paediatric emergency department attendances39 and reduced likelihood of admission, assessment and surgery for children with epilepsy.40 Furthermore, significant reductions in infection-related hospitalisations have been observed,30 34 36 41 particularly for children under 5 years.41 Two studies conducted national level analyses.30 32 We believe our study reports the first population-level reductions in planned care (admissions and outpatient) for children with health risk-factors for a full year of the pandemic. Previous research in adult populations has reported on the disproportionate burden of COVID-19 infection, hospitalisation and death in minority ethnic groups.42 43

Table 3 Difference in predicted and observed rates of hospital contact per 1000 child-years among children aged 0–4 years during the pandemic (March 2020–2021) by period and clinical vulnerability

	First lockdown 23 March–23 June 2020	Easing of restrictions 24 June–4 November 2020	second lockdown Nov five to Dec 31, 2020	third lockdown Jan one to March 22, 2021
Outpatient attendances				
Total	232 (231 to 233)	213 (212 to 214)	217 (216 to 218)	214 (213 to 216)
No known vulnerability	218 (217 to 219)	206 (205 to 206)	209 (208 to 210)	207 (206 to 208)
Any vulnerability	240 (239 to 241)	220 (219 to 221)	223 (222 to 224)	221 (220 to 222)
LBW/preterm only	265 (264 to 266)	245 (244 to 246)	248 (247 to 249)	246 (245 to 247)
CC only	252 (251 to 253)	232 (231 to 233)	235 (234 to 236)	233 (232 to 234)
Both	263 (262 to 264)	243 (242 to 243)	246 (245 to 246)	244 (243 to 245)
Any CC	252 (251 to 253)	232 (231 to 233)	235 (234 to 236)	233 (232 to 234)
Planned admissions				
Total	63 (62 to 64)	55 (54 to 56)	57 (56 to 58)	59 (58 to 60)
No known vulnerability	59 (59 to 60)	50 (49 to 51)	52 (51 to 53)	54 (53 to 55)
Any vulnerability	88 (87 to 89)	79 (78 to 79)	81 (80 to 82)	83 (82 to 84)
LBW/preterm only	113 (112 to 114)	100 (99 to 101)	103 (102 to 104)	105 (104 to 105)
CC only	99 (99 to 100)	89 (88 to 90)	92 (91 to 93)	94 (93 to 95)
Both	109 (108 to 109)	99 (98 to 99)	102 (101 to 103)	104 (103 to 105)
Any CC	99 (99 to 100)	89 (88 to 89)	92 (91 to 93)	94 (93 to 95)
Unplanned admissions				
Total	56 (55 to 57)	46 (45 to 46)	48 (47 to 48)	50 (49 to 51)
No known vulnerability	52 (52 to 53)	40 (39 to 41)	42 (41 to 43)	44 (43 to 45)
Any vulnerability	72 (71 to 73)	61 (60 to 61)	63 (62 to 63)	65 (64 to 66)
LBW/preterm only	97 (96 to 98)	81 (80 to 81)	84 (83 to 84)	86 (85 to 86)
CC only	91 (91 to 92)	80 (79 to 80)	83 (82 to 83)	85 (84 to 86)
Both	100 (99 to 100)	89 (88 to 89)	92 (91 to 93)	94 (93 to 95)
Any CC	89 (89 to 90)	79 (79 to 80)	82 (81 to 82)	84 (83 to 84)

*Significantly different from children with no known vulnerability (5% level of significance).

CC, chronic conditions; LBW, low birth weight.
Our study did not examine COVID-19 related contacts because hospitalisation is rare as children typically experience mild asymptomatic disease.44 45 However, we identified small differences in reductions of hospital care for children in the Asian ethnic group and for children in the most deprived quintile. This suggests that inequalities exacerbated by COVID-19 in adult populations might also extend to children from more deprived, minority ethnic backgrounds.

Potential mechanisms underpinning reductions in planned care likely represent restrictions to access, supported by a rise in postponed outpatient care. Our findings show these restrictions were mitigated in infants, who have a high frequency of hospital care and for whom interventions are likely to be more time critical than in older children.3 A move to virtual appointments may have exacerbated existing inequalities for families without access to the internet at home.

Reductions in unplanned care may be driven by opposing factors. Previous studies reported decreases in unplanned infection-related hospitalisations due to reduced social exposure and increased hygiene, with little change in admissions for non-infectious causes like appendicitis.27 30 31 34 41 Others have reported reductions in injury.46 The spike in unplanned admissions after schools reopened in autumn 2020 and in March 2021 when the third lockdown ended likely reflects increased socialisation. Other positive effects could include reduced exposure to triggers for respiratory disease (eg, air pollution)40 and improved medication adherence through increased parental supervision. Negative implications could include reduced extrinsic interventions through education, health and social care professionals,7 48 or delaying or avoiding medical care due to fears of hospital-acquired COVID-19 infection.38 49–51 Additionally, these reductions could represent missed opportunities for earlier and more effective intervention.11 52

This analysis was the first step in quantifying deferred or foregone hospital care during the pandemic. Studies using routine administrative data report only acute hospital presentations,37 38 which may reflect late or missed diagnoses.11 52 Our findings confirm and quantify the reduction in hospital contacts for preschool children in England during the first year of the COVID-19 pandemic. Research is needed to understand reductions in planned care, the types of care, procedures or treatments affected and the short-term and long-term implications for children with specific conditions. More research will be needed to ascertain whether contact rates have returned to previous levels since the end of restrictions. Further research will also be needed to identify vulnerable groups likely to experience adverse outcomes from unmet healthcare in order to target ‘catch-up’ funding and resources to prevent or mitigate these adverse outcomes.53

Acknowledgements The data for this project are part of the Education and Child Health Insights from Linked Data (ECHILD) project. The ECHILD project is in partnership with National Health Service Digital and the Department for Education (DfE), and we would like to thank the following individuals for their valuable contributions to the project: Garry Coleman, Richard Caulton, Joanna Geisler, Catherine Day (NHS Digital), Chris Douglass and Gary Connell (DfE). We would like to thank all the children, young people, parents and carers who contributed to the ECHILD project, as well as Dr Erin Walker (UCL Partners) who led this involvement. We would particularly like to thank members of the National Children’s Bureau Young Research Advisors, National Children’s Bureau Family Research Advisory Groups,
National Institute for Health Research (NIHR) Great Ormond Street Hospital (GOSH) Biomedical Research Centre Parent and Carer Advisory Group, GOSH Young People’s Forum and GOSH Young Persons Advisory Group for their input to this project. We also gratefully acknowledge all children and families whose deidentified data are used in this analysis. We would like to thank Nicolas Libuy, Pia Hardelid, Chloe Parkin and Matthew Lilliman for their contributions to this project. We would also like to thank the editor and reviewers for their helpful comments during the peer-review process that greatly improved the final paper.

Contributors The study was conceived by RG, KLH and RB. DE conducted all the analyses with input from KLH and RG. DE wrote the manuscript with input from all the authors. All the authors approved the final manuscript. DE acts as guarantor.

Funding This work is supported by ADR UK (Administrative Data Research UK), an Economic and Social Research Council (part of UK Research and Innovation) programme (grant number ES/V000977/1). This research was also supported in part by the National Institute for Health Research (NIHR) Great Ormond Street Hospital Biomedical Research Centre and Health Data Research UK (grant number LOND1), funded by the UK Medical Research Council and eight other funders. This research benefits from and contributes to the NIHR Children and Families Policy Research Unit but was not commissioned by the NIHR Policy Research Programme. RG and RB are in part supported by the NIHR Children and Families Policy Research Unit. RB is supported by a UKRI Innovation Fellowship funded by the Medical Research Council (grant number MR/S033797/1). KH is funded by NIHR (grant number 17/99/19).

Disclaimer The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by London—South East Research Ethics Committee (reference 16/LO/0012). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available. The data used in this analysis are expected to be available to accredited researchers in 2022 (as part of the ECHID Database) by applying to the data providers (DfE and NHS Digital).

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
David Etoori http://orcid.org/0000-0002-2807-6272
Katie L Harron http://orcid.org/0000-0002-3418-2856
Louise Mc Grath-Lone http://orcid.org/0000-0003-0887-6673
Maximiliane L Verfürden http://orcid.org/0000-0003-2204-8251
Ruth Blackburn http://orcid.org/0000-0002-3491-7381

REFERENCES
1 Saxena S, Bottle A, Gilbert R, et al. Increasing short-stay unplanned hospital admissions among children in England; time trends analysis ‘97-’06. PLoS One 2009;4:e7484.
2 Wolfe I, Thompson M, Gill P, et al. Health services for children in Western Europe. The Lancet 2013;381:1224–34.
3 Ruzangi J, Blair M, Cecil E, et al. Trends in healthcare use in children aged less than 15 years: a population-based cohort study in England from 2007 to 2017. BMJ Open 2020;10:e023361.
4 Willaars LP, Haraldid P, Woodman J, et al. Contribution of recurrent admissions in children and young people to emergency hospital admissions: retrospective cohort study. Arch Dis Child 2015;100:845–9.
5 Harren K, Gilbert R, Cromwell D, et al. International comparison of emergency Hospital use for infants: data linkage cohort study in Canada and England. BMJ Qual Saf 2018;27:31–9.
6 World Health Organisation. COVID-19 significantly impacts health services for noncommunicable diseases [Internet], 2021. Available: https://www.who.int/news/item/01-06-2020-covid-19-significantly-impacts-health-services-for-noncommunicable-diseases
7 Isba R, Edge R, Jenner R, et al. Where have all the children gone? decreases in paediatric emergency department attendances at the start of the COVID-19 pandemic of 2020. Arch Dis Child 2020;105:704.1–704.
8 Public Health England. National COVID-19 surveillance reports [Internet], 2021. Available: https://www.gov.uk/government/publications/national-covid-19-surveillance-reports
9 et al Boute A, Aylin P, Warner M. What happened to English NHS hospital activity during the COVID-19 pandemic? [Internet], 2021. Available: https://ifs.org.uk/publications/15432
10 Cecile E, Bottle A, Sharland M, et al. Impact of UK primary care policy reforms on short-stay unplanned hospital admissions for children with primary Care-Sensitive conditions. Ann Fam Med 2015;13:214–20.
11 Lynn RM, Avis JL, Lenton S, et al. Delayed access to care and late presentations in children during the COVID-19 pandemic: a snapshot survey of 4075 paediatricians in the UK and Ireland. Arch Dis Child 2021;106:e8.
12 Harren K, Gilbert R, Cromwell D, et al. Linking data for mothers and babies in Del- identified electronic health data. PLoS One 2016;11:e0164667.
13 NHS Digital. Hospital Episode Statistics data changes in 2021 [Internet], 2021. Available: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics/hospital-episode-statistics-data-changes-in-2021
14 Herbert A, Wijlaars L, Zylberstein A, et al. Data resource profile: Hospital episode statistics admitted patient care (NHCS APC). Int J Epidemiol 2017;46:1093–1093i.
15 ADMISSION METHOD [Internet], 2022. Available: https://www.datadictionary.nhs.uk/ attributes/admission_method.html
16 Hardeilid P, Dattani N, Gilbert R, et al. Estimating the prevalence of chronic conditions in children who die in England, Scotland and Wales: a data linkage cohort study. BMJ Open 2014;4:e005331.
17 Hardeilid P, Dattani N, Davey J. Overview of child deaths in the four UK countries [Internet], 2013. Available: https://www.hsj.org/resource/overview-of-child-deaths-in-the-four-uk-countries/
18 Feudtner C, Christakis DA, Connell FA. Pediatric deaths attributable to complex chronic conditions: a population-based study of Washington state, 1980-1997. Pediatrics 2000;106:205–9.
19 NHS Digital. Hospital Outpatient Activity [Internet], Available: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-outpatient-activity
20 Office of the Deputy Prime Minister, Neighbourhood Renewal Unit. The English indices of deprivation 2004. [Internet]. London: Office of the Deputy Prime Minister, 2004. Available: https://www.brent.gov.uk/media/323346/50%20indices%20of%20deprivation%202004.pdf
21 Ward J, Hargreaves D, Rogers M. Recent and forecast post-COVID trends in hospital activity in England amongst 0 to 24 year olds: analyses using routine hospital administrative data [Internet], Feb [cited 2021 Nov 30] p. 2021. Available: https://www.medixweb.com/content/10.1101/2021.02.11.21251584v1
22 GOUKC. Prime Minister’s statement on coronavirus (COVID-19); 23 March 2020 [Internet]. Available: https://www.gov.uk/government/speeches/pm-address-to-the-nation-on-coronavirus-23-march-2020
23 StataCorp. Stata statistical software. College Station, TX: StataCorp LLC, 2017.
24 Rose KE, Bressan S, et al. Group EGES. Understanding responses of paediatric emergency departments to the first wave of the Covid-19 pandemic – a pan-European perspective. Arch Dis Child 2021;106:A161–2.
25 Nijman R, Honeyford K, Bressan S. Epidemiology, severity and outcomes of children presenting to emergency departments across Europe during the SARS-CoV-2 pandemic: an observational cohort study. Arch Dis Child 2021;106:A469–70.
26 Scaramuzza A, Tagliarelli F, Bonetti L, et al. Changing admission patterns in paediatric emergency departments during the COVID-19 pandemic. Arch Dis Child 2020;105:704.2–6.
27 Ciavenna A, Nardelli S, Sala D, et al. Impact of COVID-19 on the pattern of access to a pediatric emergency department in the Lombardy region, Italy. Pediatr Emerg Care 2020;36:e597–8.
28 Matera L, Nenna R, Ardeiti Morini F, et al. Effects of Relaxed Lockdown on pediatric ER visits during SARS-CoV-2 pandemic in Italy. Int J Environ Res Public Health 2021;18: doi:10.3390/ijerph18198947. [Epub ahead of print: 10 Sep 2021].
29 Chavasse R, Almario A, Christopher A, et al. The indirect impact of COVID-19 on children with asthma. Arch Bronconeumol 2020;56:768–9.
30 Angoulvant E, Ouldali N, Yang DD, et al. Coronavirus disease 2019 pandemic: impact caused by school closure and national Lockdown on pediatric visits and admissions for viral and nonviral Infections-a time series analysis. Clin Infect Dis 2021;72:319–22.
31 Krzužinga MD, Peeters D, van Veen M, et al. The impact of lockdown on pediatric ED visits and hospital admissions during the COVID-19 pandemic: a multicenter analysis and review of the literature. Pediatr Crit Care Med 2021;18:2221–7.
32 Williams TC, MacRae C, Swann OV, et al. Indirect effects of the COVID-19 pandemic on paediatric healthcare use and severe disease: a retrospective national cohort study. Arch Dis Child 2021;106:911–7.

Etoori D, et al. Arch Dis Child 2022;0:1–8. doi:10.1136/archdischild-2021-323681

7
33 Dann L, Fitzsimons J, Gorman KM, et al. Disappearing act: COVID-19 and paediatric emergency department attendances. Arch Dis Child 2020;105:810–1.

34 Kishimoto K, Bun S, Shin J-H, et al. Early impact of school closure and social distancing for COVID-19 on the number of inpatients with childhood non-COVID-19 acute infections in Japan. Eur J Pediatr 2021;180:2871–8.

35 Hartnett KP, Kite-Powell A, DeVies J, et al. Impact of the COVID-19 Pandemic on Emergency Department Visits - United States, January 1, 2019-May 30, 2020. MMWR Morb Mortal Wkly Rep 2020;69:699–704.

36 Nolen LD, Seeman S, Bruden D, et al. Impact of social distancing and travel restrictions on Non-Coronavirus disease 2019 (Non-COVID-19) respiratory hospital admissions in young children in rural Alaska. Clin Infect Dis 2021;72:2196–8.

37 Isba R, Edge R, Auerbach M, et al. COVID-19: transatlantic declines in pediatric emergency admissions. Pediatr Emerg Care 2020;36:551–3.

38 Goldman RD, Grafstein E, Barclay N, et al. Paediatric patients seen in 18 emergency departments during the COVID-19 pandemic. Emerg Med J 2020;37:emermed-2020-210273–7.

39 Ferrero F, Ossorio MF, Torres FA, et al. Impact of the COVID-19 pandemic in the paediatric emergency department attendances in Argentina. Arch Dis Child 2021;106:e5.

40 Wirrell EC, Grinspan ZM, Knupp KG, et al. Care delivery for children with epilepsy during the COVID-19 pandemic: an international survey of clinicians. J Child Neurol 2020;35:924–33.

41 Todd IMF, Miller JE, Rowe SL, et al. Changes in infection-related hospitalizations in children following pandemic restrictions: an interrupted time-series analysis of total population data. Int J Epidemiol 2021;50:1435–43.

42 Mathur R, Rentsch CT, Morton CE, et al. Ethnic disparities in COVID-19: increased risk of infection or severe disease? – Authors’ reply. The Lancet 2021;398:390.

43 Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020;584:430–6.

44 Ladhani SN, Amin-Chowdhury Z, Davies HG, et al. COVID-19 in children: analysis of the first pandemic peak in England. Arch Dis Child 2020;105:1180–5.

45 Mehta NS, Mytton OT, Mullins EWS, et al. SARS-CoV-2 (COVID-19): what do we know about children? A systematic review. Clinical Infectious Diseases 2020;71:2469–79.

46 Nufiez JH, Salent A, Lakhani K, et al. Impact of the COVID-19 pandemic on an emergency Traumatology service: experience at a tertiary trauma centre in Spain. Injury 2020;51:1414–8.

47 Krivec U, Kofol Seliger A, Tunis J. COVID-19 lockdown dropped the rate of paediatric asthma admissions. Arch Dis Child 2020;105:809–10.

48 Kubizek K, Liu D, Beaudin C, et al. A profile of nonurgent emergency department use in an urban pediatric hospital. Pediatr Emerg Care 2012;28:977–84.

49 Czeisler Mark É., Marynak K, Clarke KEN, et al. Delay or avoidance of medical care because of COVID-19–Related concerns — United States, June 2020. MMWR Morb Mortal Wkly Rep 2020;69:1250–7.

50 McDonnell T, Nicholson E, Conlon C, et al. Assessing the impact of COVID-19 public health stages on paediatric emergency attendance. Int J Environ Res Public Health 2020;17:6719.

51 Health Foundation. Public perceptions of health and social care in light of COVID-19, 2020. Available: https://www.health.org.uk/publications/reports/public-perceptions-of-health-and-social-care-in-light-of-covid-19-2020

52 Dayal D, Gupta S, Rathnatha D, et al. Missing during COVID-19 lockdown: children with onset of type 1 diabetes. Acta Paediatr 2020;109:2144–6.

53 NHS England + Core20PLUS – An approach to reducing health inequalities [Internet]. 2021. Available: https://www.england.nhs.uk/about/equality/equality-hub/core20plus5/