Research Article

Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia

Tesfu Shegaw* and Dawit Habte Giorgis
Bonga Agricultural Research Center, South Agricultural Research Institute (SARI), Ethiopia

Abstract

The study was aimed at identifying and characterizing honeybee floras and their flowering seasons in south western parts of the country. Relevant data were collected through conducting questionnaire survey, focus group discussions, field observations and lab analysis of pollen and honey samples. In addition, seasonal performance of colonies in terms of brood area, adult population, pollen and nectar stores were evaluated. The obtained data were analyzed using SPSS-ver.20 and MsExcels. Accordingly, a total of 200 floral species categorized under 77 families identified. Of which, 26(13%) grouped under 16 families characterized as major bee floras. Seasons, January to February, July to August were considered as Dearth periods; March, September to October were brooding seasons, April, November to December were major nectar flow seasons. March to April and November to December were major honey flow seasons being the first for high land and mid land areas and the later for lowland areas whose major botanical origin was Schefflera abyssinica and Guizetia scabra respectively. However, in some areas with better forest covers, Manilkara bujji become a major honey source plant. Whereas, January, June to July, March (in low lands) were considered as minor/mini harvesting seasons whose major botanical origin was Vernonia species, Croton macrostachyus and Combretum species respectively. It was noted that there was a significant correlation among brood area, adult population, pollen store and nectar stores at p<0.01.

Introduction

Ethiopia is endowed with diverse agro climatic features which favors for the growth of diverse natural and cultivated floral species supporting huge number of bee colonies [1-3]. In the country, about 7000 floral species identified so far. Of which, about 400 were characterized as important honeybee plants [4,5]. The Southern Nations Nationalities and Peoples Region in general and the western parts of the region comprising Kafa, Sheka and Benchi Maji zones in particular are endowed with diverse floras potential for beekeeping activity [6,7]. Identification, characterization and evaluation of bee forage species of an area is a prerequisite for attaining a successful beekeeping. However, in spite of some endogenous knowledge on estimating the flowering seasons of some major bee plants by local beekeepers, the type of potential bee plants in the areas, their flowering seasons and contributions for honeybees are not clearly identified. A proper season-based colony management practices are imperative for maintaining the bees in their abodes and obtaining maximum rewards. However, the type and level of managements will vary based on seasons and colony status which in turn related with the abundance level of pollen and nectars sources, based on the abundance level of forage resources and colony status, there are three distinctive periods/cycles occurring once or more times a year; being the Dearth, the Buildup and the honey flow periods. The dearth periods, during which honeybees suffer from shortages of nectar and pollen sources mainly during dry season or excessive rainy seasons. The buildup periods, during which there are many bee forages and the weather is likely favorable for colony expansion. The honey flow periods, during which honeybees are more access for much pollen and...
nectar sources as a number potential plants flowering at a time \cite{8,9}. Timing of management operations corresponding to phonological patterns is very crucial in building up colonies prior to the commencement of major nectar flow seasons \cite{9}. Hence, the aim of this study was to identify and document the types of honeybee floras in the areas and their respective flowering calendars, their contribution for honeybees and proposing appropriate seasonal colony management practices to be pursued to maximize the production level from the untapped huge resources of the areas.

Materials and methods

Description of the study areas

The Kafa, Sheka and Benchi maji zones are found in Southern Nation Nationalities and Peoples Region, Ethiopia (Figure 1). The area receives maximum amount of rain falls ranging from 1000 to over 2200mm annually and the average daily temperature ranges from 17 to 21°C. Having long rainy seasons and favorable weather condition, the area is potential for the growth of diverse plant species flowering during various seasons of the year which intern are opportunities for the abundance of flowers nearly year-round; even some plants may have multiple flowering seasons which considered as golden opportunities for beekeeping. Most parts of the area are covered with intact natural forests which in some areas may exceed 70% of the total area covers \cite{10}. In addition to the abundance of huge natural forests, the area is also home for the growth of various crop species such as coffee, sorghum, maize, etc.; considered as potential sources for pollen and nectar. However, in spite of these potentialities, the overall beekeeping practices of the areas is mostly undertaken in traditional manner with very minimum or no colony managements characterized as low levels of product in terms both quality and quantity.

Study site selection and data collection procedures

The study was conducted in Kafa, Sheka and Benchi Maji Zones of the South Nations Nationalities and Peoples Region (SNNPR) of the country. After conducting a reconnaissance survey, study sites were selected using purposive sampling method based on their potentialities for beekeeping activity and their accessibilities. Accordingly, Chena, Gimbo and Gewata districts from Kafa zone; Guraferda and Debub Benchi districts from Benchi Maji zone and Masha district from Sheka Zone were selected. From each district, three Peasant Associations (PAs) were purposively selected based on their agro ecological variation and potentiality for beekeeping activity. From each PA, 15(�) beekeepers were randomly selected for collecting questionnaire data. All the relevant data were collected through conducting questionnaire survey, field observations, colony inspection and laboratory analysis of pollen and honey samples. The questionnaire survey basically includes about the types bee forages/their local names, honey harvesting seasons and types of plants having adverse effects on honeybees (if any), swarming seasons, types of management practices and so on. In addition, focused group discussions with key informants containing experts, community groups, development agents (DAs) and beekeepers were also undertaken to generate all the relevant information.

After the collection of survey data, nine colonies were assigned to each agro ecology (i.e., at Chena, Gimbo and Gewata districts) based on their accessibilities for regular follow-ups. From each nine colonies assigned at each site, one colony...
was used for pollen collection and the rest eight colonies for collecting their seasonal performance status in their pollens and nectar stores, brood areas and adult bee population trends. The pollen samples were collected by attaching a pollen trap at the entrance of hives making honeybees dislodging their pollen pellets from their pollen baskets while interring into their hives through the holes of pollen trap with 16% efficiency. The dislodged pollen pellets were collected weekly, dried in oven, sorted out by their color, location, collection dates and preserved in an oven maintained at 36°C. Each sorted pollen sample was weighed, identified under microscope using x40 magnification power after diluting with ether solution. The identification of plant types for each type of pollen was undertaken using the already prepared references slides; by comparing the size, shape and apertures of the pollens. Honey samples were also systematically collected from each location following their major and minor harvesting seasons to identify its botanical origin considering a pollen count in honey sample exceeding 45% is mono floral honey [11].

Performance trends of colonies was evaluated by measuring the frame area of stored pollen/bee breads, broods, nectar and adult bees each month using Delaplane et al., [12], standard methods for honeybees’ performance estimation as shown in Figure 2. In this method, an empty frame being divided into 8 grids of 10 cm by 10 cm areas vertically and a cross middle of the frame horizontally; However, the grids at the two (upper and lower) edges of the frame holds half of the areas of grids at middle (i.e. 5 cm by 10 cm) (Figure 2). Hence, a frame may hold 16 units of 10cm by 10 cm areas in both sides considered as one deep frame. Estimation of pollen and nectar stores and brood areas were done in deep frame based by overlapping the gridded frame over each frame of the hives; to hasten the task of estimation, a photo camera was used to capture and counting later. According, one deep frame may include 16(sixteen) units of 10cm-by-10cm areas, each may contain 400 cells or 125 adult bees. Hence, one deep frame is estimated to contain 6,400 cells (broods or pollen cells) or 2,000 adult bees [12]. Based on this, we interchangeably interpreting the areas in squared inch units (in2); one inch= 2.54cm. Similarly, the adult bees were estimated by summing up the comb areas covered with adult bees in deep frame bases considering the bees on combs, hive covers, as well as bees accumulated on the walls of hives and at the entrance into account. The study was conducted for two consecutive years (through 2018 and 2019GC).

During field observation, identification of the intensity of visits of honeybees to various flowers and type of forages (pollen, nectar) sources was undertaken. This could be done through observing the foraging activities of honeybees (i.e.honeybees sucking diving their heads into the flowers base when collecting nectar and observing for pollen pellets on their hind legs for pollen collection).

Plant abundances

The abundance of each honeybee plant was determined using Tesfaye et al., [13] plant density determination methods; by classifying the plants into three groups being the trees, shrubs and herbaceous with sampling plots of 50m by 50m, 20m by 20m and 1m by 1m respectively. The plots of 50m-by-50m areas were laid systematically considering the variability among land use patterns and vegetation covers; then small quadrants of 20m*20m and 1m*1m quadrants were laid out at different sites of larger plots. Accordingly, at least five small quadrants (1m*1m) and two medium quadrants (20m*20m) were considered. From each agro-ecology of selected sites, a minimum of 24 larger sampling plots were considered.

Density of plants (number of plants per unit area (hectare) of observation) was used to determine the abundance level of major bee plant species across each agro ecological zones.

Collection of reference materials

Palynologic analysis and establishment of flowering calendar requires good collection of reference materials. In order to get the preliminary materials, fully matured but, unopened flower heads were collected and preserved following the standard herbarium procedures for identifying the botanical origin of honey samples and pollen samples regularly collected from apiaries. Reference slides were prepared following the methods prescribed by the International Commission for Plant–Bee Relationship [11] by shocking down the pollen grains from anthers on the slides and placed on a watch glass and washed with ether; after the remaining ether has evaporated, the pollen picked up with a needle and a small fragment of glycerinated jelly was placed on a microscope slide and melted at 40°C. Then, the compound/specimen was covered with cover glass and diluted. Then the pollen slide prepared in this manner used as a pollen data base for palynologic analysis. The identified pollen samples on slides were labeled and put into slide box which then used as references.

Honey sample collection and Laboratory analysis

Fresh honey samples were collected from different agroecologies for laboratory analysis following harvesting seasons. From each agro-ecology, 4 to 6 samples were collected from different sites. The pollen analysis was undertaken following the methods elucidated by Louvuex, et al [11] for determination of botanical composition and frequency of pollen grains in the honey.

Data analysis

The obtained data were analyzed using SPSS-ver-20 and Microsoft excels. Descriptive statistic such as frequency and...
percent were used. The Analysis of variance (ANOVA) with GLM (Generalized Linear Model) at p<0.05 significance level with Mean + Standard Deviation (SD) of values considered. Pearson’s correlation model was used to identify the correlation among pollen and nectar stores with brood and adult bee population.

Result and Discussion

Honeybee plants identified in the area

A total of two hundred species of plants grouped under seventy sevenfamilies being Araceae, Asteraceae, Fabaceae, Labiatae, Myrtaceae, Phytolaccaeae, Pedaliaceae, Poaceae, Acanthaceae, Agavaceae, Anacardiaceae, Apiales, Apocynaceae, Aquifoliaceae, Araliaceae, Arecaceae, Basellaceae, Boraginaceae, Brassicaceae, Caricaceae, Celastraceae, Combretaceae, Dracaenaceae, Commelinaceae, Convolvulaceae, Crassulaceae, Capparidaceae, Cucurbitaceae, Cyperaceae, Ericaceae, Euphorbiaceae, Fabaceae, Polygonaceae, Gutierrezeeae, Icacinaceae, Moraceae, Lamiales, Lauraceae, Linaceae, Malvaceae, Meliaceae, Melianthaceae, Loganiaceae, Moraceae, Moringaceae, Annonaceae, Musaceae, Myrsinaceae, Myrtaceae, Oleaceae, Onagraceae, Piperaceae, Plantaginaceae, Poaceae, Proteaceae, Punicaceae, Ranunculaceae, Resedaceae, Rhamnaceae, Rosaceae, Rutaceae, Sapindaceae, Sapotaceae, Ulmaceae, Simaroubaceae, Solanaceae, Sterculiaceae, Sapotaceae, Thymelaeaceae, Tiliaceae, Urticaceae, Vitaceae, Verbenaceae, Annonaceae and Bignoniaceae identified to be important in contributing pollen, nectar, propolis or a combinations each for honeybees (Table 1).

Of the total 200 identified species, forty seven (23.5%) of them being Schefflera abyssinica, Crotonmacrostachyus, Cordia africana, Eucalyptus species, Polyscias fulva, Prunus africana, Combretumcollinum, Combretum brownie, Syzygium guineense, Desmodium species were climber; Euphorbia tirucalli, Hypericum revolutum, Lippia abyssinica, Ocimum species, Sesbania sesban, Maytenus gracilipes, Ipomoea tenuirostris, Premna schimperi, Jasminum abyssinicum, Galiniera saxifraga, Fuchsia hybrid, Euphorbia latifolia, Clausena anisata, Solanum incanum, Solanum dasyphyllum, Allophyllus macrobotrys, Plectranthus bursorum, Erica genus, Ilex mitis L., Dalbergia luteaL, Cajanus cajan, Rhusglutinosu, Phytolaccadecandra, Cleomegynandra, Solanecigogias, Ricinuscommunis, Morus L, Bersema abyssinica, Buddlejadaavidiiand Clerodendrumspicespecies were shrubs; fifty one (25.5%) of them being Guizotia abyssaca, Satureja paradoxa, Trifolium species, Vernonia leopoldii, Vernonia unionis, Bidentaprestinaria, Bident macroptera, Bident pachylophum, Cineraria abyssinica, Crossocephalummacropappum, Dicrocoehalachrysanthemifolia, Nicadra physalois, Lagger acrispata, Parthenium hysterophorum, Tagetes minuta, Pycnostachysemii, Xanthium spinosum L., Caylusea abyssinica, Hypericum species, Plectranthus bursorum, Plantago lanceolata, Datura stramonium, Cardusus species, Ipomoea species, Solanum nigrum, Galinsogaparfiflora, Bothriochloeschimeri, Bident spilosa, Justitia laiandolai, Phaolopsis imbricate, Cyperus species, Hypoestes forskaoli, Isoglossaspices, Zantedeschia anethifolia, Triumfettarhomboidae, Girar dinebullosu, Physalis lagascae, Salvia leucantha, Anethum graveolens, Ageratum houstonianum, Anthemisthiensis, Commelina benghalensis, Urta simensis, Clerodendron myricoides, Datura stramonium, Discodipodium penninervum, Kalanchoedensuflora, Crotalaria species, Rumex abyssinicus and Sparrmanniaricinocarpawere herbs; seventeen(8.5%) of them being Combretum paniculatum, Goania longiplicata, Paltohobiumstellatum, Mikania longisaitoides, Clematistaegiaca, Microglossypyrifolia, Clematis hirsuta, Gymnemayselvestre, Basella alba, Helinus mystacinus, Gouania longiplicata, Apomoea species, Curcubitapieces, Zeheria scabra, Mimosa invisa, Rhoicissus tridentata and Desmodium species were climber; fourteen(7%) of them being Guizotia abyssinica, Zeya mays, Coffee arabica, Oamiscus basilicum, Helianthus annuus, Brassica species, Sorghum bicolor, Vicia faba, Linumusitatis simumL., Pisum sativum, Sesamum indicum, Piper capense, Coriandrum sativum L. and Phaseolus speciesawere crops; Seventeen(8.5%) of them being Lycopersiconesculentum, Capsicum annuum, Solanum tuberosum, Mangifera indica, Persea americana, Citrus aurantifolia, Citrus simensis, Citrus medica, Citrus deliciosa, Annonaspecies, Musapices, Punica granatum L., Carica papaya, Curcubitapepo, Psidium guajava L. and Solanumcommuniswere fruits and vegetables (Table 1).

This indicates being the area receiving ambient rain falls throughout most seasons; it creates an opportunity for the growth of diverse floral species. Perhaps, this creates an opportunity for honeybees to access for ample forage sources during most seasons the year. Similarly, Siya [10] also indicated that even though there is an ever increasing rates of deforestation due to over population and resettlements resulting for the depopulation of major bee plants including Chordia africana, Olea species and Prunus africana, the area is still known for its more diverse plant species and coverage compared to most parts of the country.

Number of Honeybee plant species flowering each season

Availability of diverse floral species during particular season creates a good opportunities for the bees in obtaining substantial amount of nectar through full day foraging by adjusting their foraging times as each plant species has its own time schedules for attaining its optimum nectar secrections [14]. Though each plant species has its own requirements for the amounts of rain falls, temperature and sun light intensities for
Habit	Local Name	Scientific Name	Family Name	Flowering seasons	No. of days	Utility	
	Buto	Schefflera Abyssinica	Araliaceae	March-April	60	HL; ML; LL	N
	Wago	Croton macrostachyus	Euphorbiaceae	April-July	98	HL; ML; LL	P,N
	Di'o	Cordia africana	Boraginaceae	May-Sept.	150	HL; ML; LL	N
	Bahirzaf	Eucalyptus species	Myrtaceae	Nov.-Dec.; Mar.- June	150	HL; ML; LL	N
	Keresho	Polyscia fulva	Araliaceae	Mar.-April	60	HL; ML; LL	P,N
	Omo	Prunus africana	Rosaceae	Oct.-Nov.	50	HL; ML; LL	P,N
	Tikurabalo	Combretum collarum	Combretaceae	-	-	HL; ML; LL	P,N
	Wonbela	Combretumbrownie	Combretaceae	-	-	HL; ML; LL	P,N
	Yino	Syzygium guineense	Myrtaceae	Dec.-Janu.	30	HL; ML; LL	P,N
	Shedo	Sapium ellipticum	Euphorbiaceae	Dec.-Janu.	55	HL; ML; LL	P,N
	She'o	Allophylus abyssinicus	Asteraceae	May-Nov.	86	HL; ML; LL	P,N
	Gacho	Euphorbia abyssinica	Euphorbiaceae	Nov.-Dec.	52	HL; ML; LL	N, P
	Wogammo	Ehractiocymosa	Borraginaceae	Nov.-Janu.	75	HL; ML; LL	N
	Bazragrar	Acacia abyssinica	Fabaceae	Dec.-May	162	HL; ML; LL	P,N
	Gerbi/girar	Acacia lahai	Fabaceae	March-May	85	HL; ML; LL	P,N
	Alaro	Acacia niloticus	Fabaceae	Mar.-May	85	HL; ML; LL	P,N
	Tukur girar	Acacia mellefers	Fabaceae	Mar.-May	85	HL; ML; LL	P,N
	Ohiyo/sesas	Albizia species	Fabaceae	April-May	38	HL; ML; LL	P,N
	Digitta	Calpurnia aurea	Fabaceae	Nov.-Janu.	50	HL; ML; LL	P,N
	Lukina	Leucaena leucocephala	Fabaceae	Sept.-Dec.	110	HL; ML; LL	P,N
	Kelewa	Maesalanceceolata	Myrsinaceae	Aug.-Sept.	55	HL; ML; LL	P,N
	Charo	Ficus sur	Moraceae	May-June	35	HL; ML; LL	P,N,pnr
	Nugehso	Bruceaentidysenterica	Simaroubaceae	Sept.-Nov.	75	HL; ML; LL	P,N
	Mielo	Ficusvasta	Moraceae	May-June	35	HL; ML; LL	P,N,pnr
	Yekolawanza	Pilostigmamonningii	Fabaceae	-	-	HL; ML; LL	P,N
	Yaho	Olea welwitschii	Oleaceae	Dec.-Janu.	30	HL; ML; LL	N
	Wulkifa/Shewuko/	Dombeya torrid	Sterculiaceae	Oct.-Dec.	80	HL; ML; LL	N
	Buti'l	Manilkara butugi	Sapotaceae	Nov.-Janu.	45	HL; ML; LL	P,N
	Adsesse	Veprisdainelli	Rutaceae	Nov.-January	90	HL; ML; LL	P,N
	Kondo bereberie	Piper nigrum	Piperaeae	Sept.-Oct.; Jan.-Mar.	85	HL; ML; LL	P,N
	Koso	Hagenia abyssinica	Rosaceae	Oct.-Dec.	90	HL; ML; LL	P,N
	Beye	Olivia rochetiana	Oliniaceae	Janu.-May	135	HL; ML; LL	P,N
	Bosoka	Eriobotrya japonica	Rosaceae	Sept.-Dec.	90	HL; ML; LL	P,N
	Gravillia	Grevillea robusta	Proteaceae	Oct.-Janu.	115	HL; ML; LL	P,N
	Chewie	Dracaena steudneri	Dracaenaceae	Oct.-Dec.	75	HL; ML; LL	P,N
	Luiya	Trichilidregeaana	Meliaceae	Nov.-Mar.	130	HL; ML; LL	P,N
	Ororo	Ekebergia capensis	Meliaceae	March-June	100	HL; ML; LL	P,N
	Boko	Bersema abyssinica	Meliantheae	Janu.-May	130	HL; ML; LL	P,N
	Bibiro	Millettia fusiformis	Fabaceae	Mar.-May	70	HL; ML; LL	P,N
	Shifieraw	Moringa oleifera	Moringaceae	Feb.-May	92	HL; ML; LL	N
	Keero	Anigeriaitissima	Sapotaceae	Nov.-Feb	100	HL; ML; LL	N
	Shishu	Celtis africana	Ulmaceae	May-June	43	HL; ML; LL	P
	Aroressa	Grewia species	Thymelaeaceae	-	-	HL; ML; LL	P
	Nukseso	Bruceaentidysenterica	Simaroubaceae	Sept-Nov.	45	HL; ML; LL	P,N
	Korch	Erythrina abyssinica	Fabaceae	Nov.-Janu	90	HL; ML; LL	P,N
	Tsedaki	Spathodeanlotica	Bignoniaceae	April-Aug.	140	HL; ML; LL	N
	Wondifo	Apodytesdimidiata	Icacinaceae	Dec.-Mar.	115	HL; ML; LL	P,N

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
Table 1: Lists of honeybee plants and their flowering seasons.

Habit	Local Name	Scientific Name	Family Name	Flowering seasons	No. of days	Utility				
Shrub										
Dengerito	Vernonia auriculifera	Asteraceae	January - March to June - March	310-50	P,N					
Grawo	Vernonia amigdalina	Asteraceae	January - March to June - March	50-70	P,N					
Yeferes Zeng	Vernonia adenosia	Asteraceae	September - December	50-75	P,N					
Tambora	Vernonia congoensis	Asteraceae	October - December	70-90	P,N					
Hamaka	Vernonia filigera	Asteraceae	October - December	70-90	P,N					
Gujo	Vernonia rueppellii	Asteraceae	October - February	120-130	P,N					
Soyoma	Vernonia thomsoniana	Asteraceae	October - December	80-90	P,N					
Yeebooo	Phoenix reclinata	Arecaceae	November - January	50-55	P,N					
Agam	Carissa spinarum	Apocynaceae	February - March	45-50	P,N					
Tumoga/sensel	Justicia schimperi	Acanthaceae	October - December	70-70	P,N					
Njorie	Robus species	Sapindaceae	December - February	50-65	P					
Dorjeit/chiffrig	Sidarhombifolia	Malvaceae	September - December	100-100	P					
Gaaqoo	Hibiscus berberidifolius	Malvaceae	October - November	60-60	P					
Sansuri	Hibiscus ludwigii	Malvaceae	October - November	60-60	P					
Kontir	Caesalpinia decapetala	Fabaceae	October - January	110-110	P,N					
Bottel brush	Calistemon cinctus	Myrtaceae	September - September	135-135	N					
Tushimo	Pavetta abyssinica	Rubiaceae	October - December	90-90	P,N					
Digissie	Combretum collinum	Combretaceae	-	March - April	45 P,N					
Yudo	Dracaena steudneri	Dracaenaceae	December - January	105-105	P,N					
Geisho	Rheumus prioides	Rhamnaceae	Year round	365-365	P,N					
Maccarikitta	Dodonaea angustifolia	Sapindaceae	-	September -	115 P,N					
Mogneabba	Brugmansia evoluta	Solanaceae	Year round	365-365	P,N					
Yewofkolo	Lantana camara	Verbenaceae	Year round	350-350	P,N					
Kincib	Euphorbia tirucalli	Euphorbiaceae	October - November	30-40	N					
Amija	Hypericum revolutum	Guttiferae	October - January	110-110	P,N					
Koseret	Lippia abyssinica	Verbenaceae	February - March	45-45	P					
Damakiesie	Ocimum species	Lamiaceae	September - December	105-98	P,N					
Suspansia	Sesbaniasp	Fabaceae	January - March	63-63	P,N					
Alatshiko	Maytenus gracilipes	Celastraceae	August - November	110-110	P,N					
YavitKareg	Ipomea teniurostis	Convolvulaceae	December - January	60-60	P,N					
Tumbo/Chocco	Premnaschimperi	Verbenaceae	March - December	275-275	P,N					
Tembelet	Jasminum所以他	Oleaceae	December - January	60-60	P,N					
Didoo	Galinierasaxifraga	Lamiaceae	December - February	50-50	N					
Key aebba	Fuchsia hybrid	Onagraceae	September - January	150-150	N					
Limmich	Clusiana hispida	Rutaceae	May - May	90-90	73 N					
Emibayo	Solanum incanum	Solanaceae	March - December	300-305	P,N					
Geber embay	Solanumumumsporphyr	Solanaceae	March - December	300-305	P,N					
Tatesa/Emibus	Allophyllum macrobotry	Sapindaceae	May - November	80-80	80 P,N					
Embusbusie	Plectranthusbusunom	Lamiaceae	February - March	50-80	40 P,N					
Chiffrig	Erica genus	Ericaceae	October - November	-	40-35	P,N				
Ketto	Ilex mitis	Aquifoliaceae	October - December	90-90	80 N					
Yagbero	Dalbergia lentea	Fabaceae	September - December	120-120	P,N					
YergibAter	Cajanus cajanes	Fabaceae	September - December	100-100	P,N					
Embus	Rhusglutinosa	Urticaceae	May - November	85-85	80 P,N					
Mut ansa	Spermacion cinconar	Lamiaceae	October - November	50-60	50 P					
Endod	Phytolacca dodecandra	Phytolaccaeae	November - May	200-200	P					
Awkobekel	Cleome gynandra	Capparidaceae	October - December	120-120	P,N					
Yeshikokogomen	Solanaceo gigas	Asteraceae	October - March	180-180	150 P					
Gulo	Ricinus communis	Euphorbiaceae	October - November	65-65	50 P,N					
Yeferenjirji	Morus alba	Moraceae	October - December	70-70	60 P					
Azamir	Bersema abyssinica	Melianthaceae	October - December	60-60	60 P,N					
Ataro	Buddlejajadavidi	Loganiaceae	November - January	75-70	60 P,N					
Misiritch	Clerodendrum species	Lamiaceae	October - December	50-52	60 P,N					
Habit	Local Name	Scientific Name	Family Name	Flowering seasons	No. of days	Utility				
-------	------------	----------------	-------------	-------------------	-------------	---------				
				HL	ML	LL	HL	ML	LL	P,N
Herb										
Tufo	Guizotia scabra	Asteraceae	Oct.-Jan.	Oct.–Janu.	Oct.-Janu.	110	110	105	P,N	
Neddo	Satureja paradoxa	Lamiaceae	July-Oct.	July –Oct.	July –Oct.	120	120	110	N	
Magoshimo	Trifolium species	Fabaceae	Sept.-Nov.; Apr.-May	Sept.–Nov.; Apr.-May	Sep.-Nov.; Apr-May	115	115	115	P,N	
Chibo	Vernonia leopoldii	Asteraceae	Oct.–Nov.	Oct.-Nov.	-	52	50	-	P,N	
Silliche	Vernonia unionis	Asteraceae	Oct.-Dec.	Oct.-Dec.	Oct.-Dec.	90	85	85	P,N	
Adey abeba	Bidens predastaria	Asteraceae	Sept.–Nov.	Sept.–Nov.	Sept.–Nov.	75	75	70	P	
Meskel abeba	Bidens macroptera	Asteraceae	Sept.–Dec.	Sept.-Dec.	Sept.-Dec.	115	115	110	P	
Meskel abeba	Bidens pachylophama	Asteraceae	Oct.–Dec.	Oct.-Dec.	Oct.-Dec.	115	115	110	P	
Noophoo	Cineraria abyssinica	Asteraceae	Oct.-Dec.	Oct.-Dec.	Sept.-Dec.	95	90	90	P	
Mandallo	Crassocephalummacropappum	Asteraceae	Sept.-Jan.	Sept.-Janu.	Sept.–Janu.	140	140	130	P	
Hramo	Dicrococephal Chrysanthemifolia	Asteraceae	Sept.-Nov.	Sept.-Nov.	Sept.-Nov.	85	85	70	P	
Etsetfaris	Nicradaphyaloideae	Solanaceae	April-Dec.	April-Dec.	April-Dec.	270	270	270	P,N	
Huphicho	Lagrea crispate	Asteraceae	June-Nov.	June-Nov.	June-Nov.	157	150	143	P	
Partinum	Parthenium hysteroxerus	Asteraceae	Year round	Year round	Year round	365	350	355	P	
Yahiya shitto	Tagetes minuta	Asteraceae	Sept.-Nov.	Sept.-Nov.	Sept.-Oct.	72	70	58	P	
Ye’ero	Pycnostachysneminii	Lamiaceae	June-Dec.	June-Dec.	June-Dec.	180	180	60	P,N	
Yesietnas	Xanthium spinosum L	Asteraceae	Year round	Year round	Year round	365	365	365	P,N	
Yanno	Caylusea abyssinica	Resedaceae	Mar-Dec.	Mar-Dec.	Mar-Dec.	300	300	280	P	
Amja	Hypericum species	Guttiferae	Nov.–Dec.	Nov.–Dec.	Nov.–Dec.	40	40	35	P	
Motijo	Pleotrichus species	Lamiaceae	Sept-Nov.	Sept-Nov.	Sept.-Nov.	70	70	55	P	
Korkeb	Plantagelanceola	Plantaginaceae	Nov.–Jan	Nov.-Janu	Nov.-Janu	80	80	75	P	
Guccino	Carduus species	Asteraceae	Jan–Feb	Janu-Febr.	Janu-Febr.	40	40	40	P	
Ye’ayit Hareg	Ipomeoae species	Convolvulaceae	Octo-Dec.	Oct.-Dec.	Oct.-Nov.	80	80	65	P,N	
Tikurawat	Solanum nigrum	Solanaceae	Sept.–Dec.	Sept.-Dec.	Sept.-Nov.	100	95	90	P	
Yeshewa Arem	Galinsoga parviflora	Asteraceae	Augt-May	Aug.-May	Aug-May	260	250	235	P,N	
Yamesho	Bottrivioclinechimeri	Asteraceae	Sept.-May	Sept.-May	Sept.-May	240	240	210	P,N	
Chogogit	Bidens spilosa	Asteraceae	June-Dec.	June-Dec.	June-Nov.	210	210	190	P	
Chingrech	Justitia ladanoides	Acanthaceae	Oct.-Janu.	Oct.-Janu.	Oct.-Janu.	115	115	110	N	
Liketi	Phaulopsis imbricate	Acanthaceae	Sept.-Dec.	Sept.-Dec.	Sept.-Dec.	120	120	105	N	
Englica	Cyperus species	Lamiaceae	Mar – Apr	Mar. -April	Mar- April	45	45	45	P,N	
-	Hypoestesforskaloii	Acanthaceae	Oct.-Janu.	Oct.-Janu.	Oct.-Janu.	120	120	110	N	
Dergu	Isoglossaspecies	Acanthaceae	Aug.-Nov.	Aug.-Nov.	Aug.-Nov.	120	120	100	N	
Turumbaabeba	Zantedeschia ethiopica	Araceae	Sept.-Dec.	Sept.-Dec.	Sept.-Dec.	120	120	110	P,N	
Doro	Triumfettarhomboida	Tilliaeae	Sept.-Dec.	Sept.-Dec.	Sept.-Dec.	105	105	105	P	
Dobbi	Girardinia bullosa	Urticaceae	Sept.-Dec.	Sept.-Dec.	Sept.-Dec.	115	115	100	P	
Awut	Physalis lagascae	Solanaceae	Sept.-Dec.	Sept.-Dec.	Sept.-Nov.	100	95	90	N	
Sage(Eng)	Salvia leucaantha	Lamiaceae	Year round	Year round	Year round	365	365	305	N	
Enselal	Anethum graveolens L	Apiaceae	Sept.-Dec.	Sept.-Dec.	Sept.-Nov.	110	100	90	P,N	
Kefo	Ocimumamericanum	Lamiaceae	Year round	Year round	Year round	210	210	210	P	
Blue mink(Eng)	Ageratum houstonianum	Asteraceae	Sept.-Mar.	Sept.-Mar.	Sept.-Mar.	192	190	178	P,N	
Chedramo	Rutachalaeopsis	Rutaceae	Oct-Dec.	Oct-Dec.	Oct-Dec.	90	90	90	P	
Shukido	Anthemistogetnest	Asteraceae	Sept.–Janu	Sept.-Janu	Sept.–Janu	140	140	120	P,N	
Shato	Commelinabahengiensis	Commelineae	Sept.-Oct.	Sept.-Oct.	Sept.-Oct.	55	50	45	P	
Samma	Urtica simensis	Urticaceae	Sept.-Dec.	Sept.-Dec.	Sept.-Dec.	120	120	100	P	
Aghio	Clerodendronmyricoides	Verbenaceae	Sept.-June	Sept.–June	Sept.-June	300	300	280	P,N	
Astenagir	Datura stramonium	Solanaceae	Aug.-Febr	Aug.-Febr.	Aug.-Janua.	205	200	185	P	
Aluma	Discopodiumpennerivnium	Solanaceae	June-Dec.	June-Dec.	June-Dec.	210	200	200	P	
Ndhahulla	Kalanchoe densiflora	Crassulaceae	Oct.–Nov.	Oct.-Nov.	Oct.--Nov.	50	50	45	P	
YaitMisir	Crotalaria species	Fabaceae	Sept.-Nov.	Sept.-Nov.	Sept.-Nov.	75	75	70	P	
Megmecho	Rumex abyssicus	Polygonaceae	Mayjuly-Oct.	May-july-Oct.	May-June-Oct.	75	75	75	P	
Moggecco	Sparmannia ricinocarpa	Tiliaceae	Oct.-Dec.; May-June	Oct.-Dec.; May-June	Oct.-May; May-June	85	85	70	P	

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
Habit	Local Name	Scientific Name	Family Name	Flowering seasons	No. of days	Utility
Climbers						
	Beggo	Combretum paniculatum	Combretaceae	Oct – Mar.	170 170 165	N
	Achbeno	Goania longiplicata	Rhamnaceae	Oct.- Janu.	87 87 80	N
	Kentaffa	Ptilobiumstellatum	Fabaceae	Oct.- Janu.	100 100 85	P,N
	Haddi	Mikaniosisclematoides	Asteraceae	Oct.- Mar.	160 160 130	P,N
	Yazhoareg/ Kacho	Clematis longicaula	Ranunculaceae	Oct. – Mar.	160 155 135	P,N
	Hareg	Microglossaprynolia	Asteraceae	Sept.- May	250 250 220	P,N
	Nechye'azohareg	Clematis hirsuta	Asteraceae	Dec. – Mar.	125 120 105	N
	Qombo	Gymnemaicyrnestre	Asteraceae	Oct.-June	260 260 250	P,N
	Nopho	Basella alba	Basellaceae	Sept.- Nov.	75 72 60	P
	Xaro	Heliniumystacinus	Rhamnaceae	Sept. – Dec.	115 115 110	N
	Hareg	Gouaniumlongispicata	Rhamnaceae	Sept. – Janu.	135 135 135	N
Fruits	Morning glory(Eng)	Apomoeaspecies	Convolvulaceae	Nov.-Febr.	115 115 110	P,N
Fruits	Yemdr'Babuy	Cucurbita species	Cucurbitaceae	Aug.– Nov.	88 85 70	P
Fruits	HaregResa	Zeheria scabra	Cucurbitaceae	Sept.-Nov.	80 70 60	P
	-	Mimosa invisa	Fabaceae	May.-Dec.	215 210 180	P,N
	Wodel asfes	Rhiosissus tridentata	Vitaceae	Mar.- Apr.	60 60 50	N
	Desmodium	Desmodiumspecies	Fabaceae	Sept. – Nov.	60 60 50	N
Fruits	Nugo	Guizotia abyssinica	Asteraceae	Oct. – Dec.	60 60 55	P,N
Fruits	Baaroo	Zeya mays	Poaceae	May – July	60 60 45	P
Fruits	Buno	Coffee arabica	Rubiaceae	Janu. – Feb.	35 35 30	P,N
Fruits	Besobila	Ocimumsambusilicum	Labiatae	April – June	60 60 60	P
Fruits	Yefemjisuf	Helianthus annusus	Asteraceae	Oct. – Dec.	70 67 55	P,N
Fruits	Shaaichofo	Brassica species	Brassicaceae	Sept.-Nov.	70 70 65	P,N
Fruits	Yango	Sorghum bicolor	Poaceae	May-July; Oct.- Nov.	145 145 120	P
Fruits	Bakelo	Vicia faba	Fabaceae	June – July	40 40 -	P
Fruits	Mutto	Linumusitsitsizim L	Linaceae	Sept.-Nov.	70 65 50	P,N
Fruits	Atero	Pismum sativum	Fabaceae	June – July	40 -	P
Fruits	Selt	Sesamum indicum	Pedaliaceae	-	-	45 P
Fruits	Timiz/Turfo	Piper capense	Piperaceae	March-June	75 75 62	P
Fruits	Debo/dimbil	Coriandrum sativum L	Apiaceae	May – Dec.	230 230 215	N
Fruits	Goobbo	Phaseolus species	Fabaceae	April-May	30 30 25	P
Fruits	Timatam	Lycopersiconesculcenten	Solanaceae	July – Aug	45 45 40	P
Fruits	Barberie/baro	Capiscum annum	Solanaceae	Aug.– Oct.	55 55 50	P
Fruits	Dinnich/Doko	Solanum tuberum	Solanaceae	May-Aug	56 56 50	P
Fruits	Mango	Mangifera indica	Anacardiaceae	Oct.-Janu, May-June	145 145 140	P,N
Fruits	Avocado	PerseaAmericana	Lauraceae	Oct.-Dec., May-June	135 135 125	P,N
Fruits	Lomi	Citrus aurantifolia	Rutaceae	Dec.-Janu, May-June	80 80 75	P
Fruits	Bertukan	Citrus sinensis	Rutaceae	Dec.-Janu, May-June	80 80 75	N,P
Fruits	Tiringo	Citrus medica	Rutaceae	Dec.-Janu, May-June	80 80 75	N,P
Fruits	Menderine	Citrus delicosia	Rutaceae	Dec.-Janu, May-June	80 80 75	N,P
Fruits	Gishta	Anonna species	Annonaceae	Oct.-Janu, May-June	75 75 70	P
Fruits	Muz	Musa species	Musaceae	May-July	75 75 75	N
Fruits	Roman	Punica granatum	Punicaceae	Oct.-Dec., May-June	90 90 75	P,N
Fruits	Papaya	Carica papaya	Caricaceae	Dec.-Janu, May-June	115 115 115	P
Fruits	Dubba/Buqo	Cucubita pepo	Cucurbitaceae	May – Dec.	240 240 210	P
Fruits	Apple	Malus sylvestris	Rosaceae	Oct.-Nov.	45 -	P
Fruits	Zeytun	Psidium guajava	Myrtaceae	May-July, Oct.-Jan.	210 210 210	P
Fruits	Kokke	Solanummunicatum	Solanaceae	Mar-June	120 120 105	P

NB: P= Pollen, N= Nectar, Pr= Propolis, - = not available

Table 1: Lists of honeybee plants and their flowering seasons.

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
its proper growth and setting flowers, the ideal requirements of most species for the above conditions are almost similar. In this regard, some plants such as Combretum species, Schefllera abyssinica, Polyscias fulva and Croton microstachys will bloom during the onset of minor rainy seasons (March to May). While the higher number of species are blooming following the heavy rainy seasons through September to November. However, the number of flowering plant species is highly declining during heavy rain seasons occurring through June to August and dry seasons occurring through December February (Figures 3-5).

Major honeybee plants

Blooming of plants is a continuous process throughout the year, while major bee plants blooming during certain seasons providing excess amounts of pollen and nectars [15]. According to Nuru et al [4] and Demissew [5], Ethiopia has an estimate of 7000 floral species. However, only few of which are identified as major bee plants in their contribution for honeybees. Identification of major bee plants in the study areas was undertaken through two methods; one is through prioritizing them from survey data and secondly through conducting field observation on the foraging intensities of foraging bees on each plant and their contribution for colonies performance. Accordingly, a total of twenty six species classified under seventeen families were identified/ranked as major bee plants (Table 2).

Abundance of major honeybee plants

The profitability of beekeeping does not merely depend on the availability of diverse floral species; rather it relies on the abundance of few but potential bee plant species [16,17]. The plant abundance/density/value of each plant species in Table 3 were rounded to 1.

![Figure 3: Number of flowering bee plant species.](image)

![Figure 4: Pollen Collection.](image)

Pollen grain of some major bee plants (a. Guizetia; b. Croton macrostachys; C. Vernonia species).
Table 2: Major Honeybee forages prioritized based on frequency of respondents.

S.N	Local Name	Scientific Name	Family	Frequency of respondents (%)	Percent of respondents
1	Buto	Schefflera abyssinica	Araliaceae	268	99.25
2	Tufo	Guizotia scabra	Asteraceae	263	97.22
3	Wago	Croton macrostachyus	Euphorbiaceae	260	96.11
4	Adey abeba	Bident species	Asteraceae	255	94.44
5	Grawo	Vernonia amygdalina	Asteraceae	251	92.78
6	Dengerito	Vernonia auriculifera	Asteraceae	226	84.44
7	Di'o	Chordia africana	Boraginaceae	225	83.33
8	Yaho	Olea welwitschii	Oleaceae	218	80.56
9	Yino	Syzygium guineense	Myrtaceae	210	77.78
10	Bahiraf	Eucalyptus species	Myrtaceae	207	76.67
11	Buna	Coffee arabica	Rubiaceae	203	75
12	Mogneabebe	Brugmansiasuaveolens	Solanaceae	195	72.22
13	Acibano	Goania longiplicata	Rhamnaceae	150	55.56
14	Tikurabalo	Combretum collinum	Combretaceae	135	50
15	Wonbela	Combretum brownie	Combretaceae	135	50
16	Butij	Manilkara butugi	Sapotaceae	132	48.89
17	Wulkifa	Dombeya torrid	Sterculiaceae	116	42.78
18	Omo	Prunus africana	Rosaceae	102	37.78
19	Shedo	Sapium ellipticum	Euphorbiaceae	98	36.11
20	YeferenjiNug	Helianthus annuus	Asteraceae	96	35.56
21	Nugo	Guizotia abyssinica	Asteraceae	93	34.44
22	Dido	Galiniera saoxifraga	Lamiaceae	90	33.33
23	Shachiao	Brassica species	Asteraceae	84	31.11
24	Wondifo	Apodytesdimidiata	Icacinaceae	75	27.78
25	Kentafa	Pterolobiumstellatum	Fabaceae	65	24.07
26	Kacho	Clematis longicauda	Ranunculaceae	38	14.07

Report from the respondents indicated that though the area is endowed with diverse floral species, the abundance level of major bee plants is declining from time to time due to various anthropological factors which might be one of the cases for the reduction trends of colonies population. Similarly, Reichmann [18] also reported that deforestation has a noticeable impact on forest coverage of the areas from time to time. For instance, only in Kafa zone, annually an estimate of 22,500 hectares of forests will be distracted for the purpose of human settlements, agricultural expansion and fuels. According to various literatures acknowledged that integration of beekeeping with forest conservation practices found to be one of best mitigation options to boost the species richness and coverage through maximizing cross pollination services [19-21]. Hence, measures taken in scaling up the sub sector into a full time business for small scale farmers accompanied with appropriate market chain accesses is very crucial issue to restore the distraction of natural resources and related consequences.

Evaluation of seasonal performance of honeybee colonies

Pollen stores: Pollen is one of bees’ products regarded as valuable special food rich in proteins and other essential elements serving as crucial food sources for bees [22]. It is known for its various therapeutic effects for human beings [23]. The nutritive content of pollen varies based on the plant types it is collected revealing that pollen from multi floral sources can increase its nutritional competencies [24]. Honeybees collect pollen from the anthers of flowering plants, store it by adding small amounts of honey and enzymes which then will ripen to form beebread used as a main food sources for adult bees as well as rearing their broods [25]. Even though pollen collection is a continuous process, honeybees intensively collecting it during early flowering times of active seasons to build up their population prior of peak nectar collection. A colony with 10,000 - 15,000 population needs an estimate of 13.4 to 17.8 kilograms of pollen annually [26]. This revealed the sustainability of a colony is highly relying on the availability of ample pollen sources. Mostly, the pollen intake of colonies is subject to considerable fluctuation during the course of the year. Commonly, one or two distinct peak pollen collection seasons occurring a year which is highly determined with the flowering of potential locally abundant plants [27].

The pollen stores of colonies for each month was estimated in squared inch units (in²) considering the number of comb cells filled with pollen or beebread. The average pollen stores of the areas were found to be 186.68in², 179in² and 177in² ranging from 95.88in² to 338 in², 77in² to 351in² and 79in² to 417in² in high land, midland and low land areas respectively. The Overall annual pollen store of the study areas was found to be 180.81in² ranging from 84in² to 369.02in² (Table 4). The annual pollen store potentials of A.m. scutellata in the current study was found to be somehow greater than the result of A.m.

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
jementica recorded to be 103.68in² [28] and the same race (A.m. Scutellata) studied in Guji Zone which was found to be 117.12in² [29]. The pollen store of Guji Zone which was found to be 244.64in². However, less brood area (149.12in²) was recorded for Carniolan bees (A.m.carnica) evaluated in sub-tropical environment [17]. The maximum brood areas were recorded during September to November followed by during March to April. However, the peak brooding season will be attained during October (Table 5).

Nectar stores: Nectar is an aqueous solution secreted from flowers of plants profoundly containing sugars mainly glucose, fructose and sucrose with traces of minerals and proteins. It serves as a floral reward for pollinators which is considered as plants’ adaptation to promote cross pollination [34-36]. There is significant variation of nectar in terms of its quality and quantity based on plant species. Honeybees are selective to forage from plants with good quality (high sugar concentration) and quantity of nectar which is highly determined by weather condition and rain fall patterns [16,37,38]. Honeybees collect nectar, reducing its moisture contents and undertaking some enzymatic actions to ripen it and storing for their later uses. Honeybees actively collecting nectar during peak flowering seasons and the amount they store will also vary based on the availability of nectar source plants in their surroundings [9]. The mean annual nectar store of the study areas were found to be 326.76in³, 304.71in³ and 298.58in³ ranging from 218.71in³ - 736in³, 192.36in³ - 545.05in³ and 161.57in³ - 599.4in³ for high land, mid land and low land areas respectively. The Overall average annual nectar store of the study areas was found to be 309.84in³ ranging from 193 in³ – 504.72in³ (Table 6). The current result was found to be somehow greater than the result of A.m. scutellata obtained in Guji Zone which was 262.28in³ [28] which could be varying due to abundance level of potential nectar source plants compared to the study areas. The peak nectar store of the area was recorded during March to April and October to November. Seasons from January to

Table 3: Abundance of Major bee plants.

SN	Local name	Scientific name	Density			
			High lands	Mid lands	Low lands	Over all
1	Buto	Schefflera abyssinica	6	5	0	4
2	Tufo	Guizetta scabra	28,333	47,083	69,321	48,246
3	Wago	Croton macrostachyus	3	4	3	3
4	Adey abebe	Bidens species	20,052	21,564	35,642	25,753
5	Grawo	Vernonia amygdalina	10	12	10	11
6	Dengerito	Vernonia auriculifera	6	8	9	8
7	Di'o	Chordia africana	2	4	3	3
8	Yaho	Olea welwitschii	4	3	1	2
9	Yino	Syzygium guineense	1	2	2	2
10	Bahiraz	Eucalyptus species	8	5	3	5
11	Buno Buna	Coffee arabica	18	109	88	72
12	Mogneabba	Brugmansiasauvolens	40	18	18	25
13	Acibano	Gounalionigispicata	6	5	1	4
14	Tikurabalo	Combretum collinum	0	0	4	1
15	Wonbela	Combrum bronze	0	0	2	1
16	Butij	Manilkara butigi	2	1	1	1
17	Wulkifa	Dombeya torrid	2	1	1	1
18	Omo/ tikuricet	Prunus africana	2	2	1	2
19	Shedo	Sapum ellipticum	3	3	2	3
20	Yeferenjilug	Helianthus annus	1	1	2	1
21	Nugo	Guizotia abyssinica	0	0	83,333	27,778
22	Dido	Gallinerassaxifraga	7	5	2	5
23	Shachiao	Brassica species	11,223	18,740	15,254	15,072
24	Wondfo	Apodytestesidimatale	2	1	1	2
25	Kentafa	Pterolobiumstetallata	1	2	4	2
26	Kacho	Clematis longicauda	1	1	0	1

Table 4: Pollen store across seasons (in²); N=8.

Seasons	Agro ecologies (Mean+SD)	Overall
January	141.38± 36.36	120.05± 27.30
January	121.3± 45.99	104.33± 26.96
March	286.56± 45.34	256.10± 47.46
April	249.29± 58.02	218.19± 62.35
May	192.46± 27	165.68± 46.90
June	143.50± 31.13	130.52± 31.15
July	125.5± 37.46	112.85± 36.60
August	95.88± 20.06	84.19± 16.36
September	193.06± 37.98	225.72± 48.77
October	338.04± 70.79	369.02± 69.37
November	221.66± 74.7	239.32± 60.17
December	193.74± 43.48	149.45± 40.00
Overall	105.68± 84.54	180.81± 93.38

NB: letters with different superscript shows significant variation of mean values of pollen stores across months.

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
February and June to August are considered as dearth periods when honeybees suffer from nectar and pollen shortages due to excessive dry season occurring through January to February and the heavy rainy seasons occurring through June to August (Table 6). Unlike pollen store, brood store and adult population, the nectar store distribution has shown significant variation at p<0.05 (sig. 0.02) among agro ecologies under Kruskal Wallis test of similarity.

Adult bee population: Adult bees comprise of a queen, hundreds of drones and thousands of worker bees. The population sizes of worker bees is a major concern in determining the strength of colonies which could be classified as weak, medium and strong colonies. The population size of adult bees might vary from colony to colony due to genotypic (brooding efficiency of the queen) and environmental (availability of potential flowers) effects [14,17]. The Mean annual population (n*10^3) of the areas was recorded as 15369, 16128 and 16301 ranging from 8850 - 24220, 8460 - 23835 and 8340 - 23670 for high lands, midlands and low lands respectively (Table 7). Similarly, colony population of Apis mellifera species ranging from 9,800 to 24,500 was reported by Bhusal et al [28]. The Mean annual adult population (n*10^3) of the study areas was calculated as 15948 ranging from 8,550 to 22,200 (Table 7).

The relationship among pollen stores, nectar stores, brood area and adult population

As depicted in Figure 6, there is a significant correlation among pollen store, nectar stores, brood areas and adult population of colonies at p< 0.01. In this regard, the pollen store of colonies was found to be 85.4% correlated with brood stores, 57.7% with nectar stores and 50.5% with adult population. The correlation of brood area with nectar stores and adult population of colonies. This shows abundance level of potential bee forages has a direct implication on the pollen and nectar storing ability of colonies which inter depend their population strength through high brooding efficiencies [39]. The foraging efficiency of honeybees is highly related with population size of worker bees. In this regard, a colony with huge number of foragers produces more product than more colonies with less number of populations [28]. Studies in same literature indicated an increment of 182%, 59% and 18% of honey yield was obtained from 10, 8 and 6 frames of adult bees compared to honey yield of 2.82kg obtained from a colony with 4-frames of adult bees. According to Cramp [9], due to its high nutritional richness, pollen is what honeybees are all about; basically to feed their young. As depicted in Figure 6, there is a significant correlation among pollen store, nectar stores, brood areas and adult population of colonies. This shows abundance level of potential bee forages has a direct implication on the pollen and nectar storing ability of colonies which inter depend their population strength through high brooding efficiencies [39].

Table 5: Brood areas across seasons (in.²); N=8.

Months	Agro ecologies (Mean+SD)	Over all	
	High Land	Mid land	Low land
January	188.62 ± 45.73	166.89 ± 40.75	125.8 ± 31.7
February	157.25 ± 30.27	154.68 ± 42.47	107.69 ± 18.09
March	333.31 ± 2.17	322.58 ± 27.25	282.5 ± 38.3
April	297.83 ± 3.13	278.38 ± 51.40	201.06 ± 30.49
May	267.56 ± 42.42	222.19 ± 50.66	162.63 ± 17.14
June	185.94 ± 33.33	172.81 ± 37.35	144.26 ± 25.98
July	165.56 ± 33.60	137 ± 35.89	124.44 ± 28.21
August	139.41 ± 73	119.20 ± 41.56	103.88 ± 29.81
September	225.94 ± 45.43	265.88 ± 41.86	334.75 ± 61.34
October	365.88 ± 74.77	383.75 ± 68.95	455.69 ± 54.27
November	291.69 ± 47.59	303.69 ± 36.33	401.50 ± 43.03
December	1817 ± 25.94	179.75 ± 32.53	229.31 ± 37.17
Total	233.29 ± 82.97	227.31 ± 90.59	227.51 ± 124.74

NB: letters with different superscripts shows significant variation of values mean brood population among months

Table 6: Nectar store across seasons in squared inch (in²); N=8; p<0.05.

Months/seasons	Agro ecologies (Mean+SD)	Over all	
	High Land	Mid land	Low land
January	270.76±46.44	257.51±55.96	195.93±45.24
February	218.71±35.99	198.20±36.03	161.57±32.29
March	383.46±63.74	323.86±72.23	257.62±43.66
April	73.61±182.52	545.05±158.36	233.11±25.89
May	264.95±38.59	235.73±35.05	217.47±19.82
June	244.85±50.03	223.56±49.27	213±22.18
July	236.55±31.36	215.61±31.68	193.50±33.94
August	222.43±39.61	192.36±37.82	197.42±36.79
September	300±35.17	340.00±47.22	395.53±49.23
October	336.20±46.79	375.49±48.38	492.70±49.72
November	409.74±66.11	435.83±69.89	599.44±47.40
December	297.57±37.99	315.94±39.74	462.51±53.64

Total 326.76±152.06 304.17±20.10 298.58±145.95

Table 7: Adult bee population across seasons (n*10^3) N=8; p<0.05

Months/seasons	Agro ecologies (Mean+SD)	Over all	
	High Land	Mid land	Low land
January	9.180±1.420	9.075±2.160	9.207±1.625
February	8.850±0.940	8.460±0.820	8.340±0.874
March	24.270±6.190	23.856±8.872	18.075±4.884
April	23.175±6.740	22.860±7.131	17.640±4.681
May	10.170±2.025	12.865±2.259	12.690±2.329
June	10.230±2.079	12.076±2.329	12.690±2.329
July	9.570±2.114	11.760±1.896	12.465±2.476
August	9.840±2.131	11.794±2.098	12.270±2.260
September	16.980±7.364	16.630±6.660	22.920±8.462
October	20.280±7.297	20.580±7.656	22.920±8.462
November	21.300±6.551	21.630±1.964	23.670±8.030
December	19.950±5.877	20.490±1.483	24.360±7.913
Total	15.369±7.57	16.128±530	16.301±7.503

Total 15.369±7.57 16.128±530 16.301±7.503

NB: S-significant variation of Adult bee population across seasons; NS - non significance of adult bee population across seasons

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
of one honey types over the other [40-42]. Hence, in spite of obtaining additional income sources, consuming honey from different plant sources is also crucial to obtain important elements for human bodies. As noted from survey results, the majorities, about 212(78.5%) of the respondents harvest only once a year, 41(15.2%) of them harvest twice a year, 14(5.2%) of them harvest three times a year and 3(1.1%) of them practice harvesting up to four times a year. Similar studies by Beyene and Phillips [43] and Nuru [4] also indicated that in most parts of Ethiopia, there is once or twice; even some times three times major harvesting seasons. However, there are also other mini harvesting seasons depending on the availability of bee forages and rain fall patterns. In comparison with the existence of diverse potential floral species, the number beekeepers practicing multiple harvesting in the area are very less. This is basically due to the fact that most beekeepers practicing traditional forest beekeeping system by hanging the hives in forest trees during specific times basically about 1-2 months before the onset of major honey flow seasons and harvesting could undertaken after bringing the hives down of trees and totally removing the bees by splitting the hive logs a part. Under such types of beekeeping practices, it is inappropriate for harvesting honey during each mini harvesting season. Hence, keeping colonies in back yard system is a pre requisite to pursue proper colony managements and obtaining additional yields from multiple harvests. According to the beekeepers responses, even if beekeepers are practicing multiple harvests mainly to obtain additional incomes, some are also aimed with obtaining particular types of honey such as Vernonia species, Croton macrostachyus honey for their various therapeutic values.

In the areas, there are two peak honey flow seasons being from April to May which is considered as the major season for high land and mid land areas and from October to December which is the major season for low land areas (Figure 7). The variation of major harvesting seasons between agro ecologies is due to variations on the abundance level of potential plants types. Accordingly, the major nectar source plant for high land and mid land areas is Schefflera Abyssinica (‘Buto’-local name) whose blooming season occurs through March to April. Whereas, the major honey flow seasons for low land areas occurs through October to December related with the blooming season of Guizotiascabra (“Tufo”-local name) which is considered as minor seasons for high land and mid land areas. Actually, in some areas (in area with intense forest covers), the type of mono floral honey will be ‘Butui’honey(Manilkara Butugi) in case of Guizetia honey which is predominantly abundant in open areas. The peak harvesting season of Butugi-honey will occur during December.
In regard to the frequency of harvesting months of the respondents indicated that about 96.67% and 91.11% of them will harvest during May season for high land and mid land areas respectively. Whereas, 24.44% and 25.56% of them were also found harvesting during April in high lands and mid lands respectively. Other minor harvesting will also occur during June to July and January which is sourced from Croton macrostachyus and Vernonia species respectively. In some low land areas, considerable amount of honey will also be harvested from Combretum species (‘Abala’ and ‘wombela’) during March (Figure 7).

Honey yield

The honey yield data of each hive type for both major and minor seasons were collected from the respondent beekeepers. Accordingly, the (Mean±SD) honey yield (kg) of the areas during major season was found to be 7.28±2.95,18.48±4.61 and 26.13±6.56 for traditional, transitional and moveable frame hives respectively with significantly lower yield in lowland areas than mid land and high land areas. Whereas, it was found to be 4.05±1.97, 7.71±1.58 and 11.75±2.27 for traditional, transitional and moveable frame hives respectively during minor season (Table 8). The current result is equivalent with the report of honey yield of Apis mellifera scutellata in its potential environments [6,44-46].

Pollen analysis of honey samples

According to the pollen analysis of honey samples undertaken to identify the major six plants of the two major harvesting seasons being March to May (season-1) and October – December (season-2), Schefflera abyssinianates the greater pollen count both in High lands and Midland areas accounting for 50%–65% and 47%–60% which is considered as a mono floral honey [11]. Whereas Combrutum species is the major mono floral honey source in low land areas accounting for 28–62% pollen counts (Table 8). Guizotia abyssinica and manilkarabutij were become the major honey source plants across the three agro ecologies. According to the pollen analysis results indicated than honey samples collected from areas with better forest coverage had Manilkara butij honey. In contrast, the major honey source plants in areas with low forest coverage/farm lands were found to be Guizotia scabra and Biden sources though Guizotia abyssinica was the dominantsone (Table 9).

This revealed the type of honey produced in the area is highly influenced the abundance level of major honey source plants whose distribution is highly determined by agro ecological variation and levels anthropogenic impacts.

Season based colony manipulation

Based on the availability level of forages and status of bee colonies, commonly seasons could be classified into three major categories being the Dearth, the Buildup and the honey flow seasons [8,9]; each requiring distinctive colony manipulation practices [47].

The dearth seasons: Occur through January to February and May to August during which honeybees are exposed for shortages of pollen and nectar sources resulting for declining in broods and adults population. Following their starvation, it is also the time for being affected by various pests and diseases as colonies become weak for defending themselves. As a result, during such seasons, operations like provision of supplementary feeds substituting the pollen and nectar sources, reducing the hive spaces, uniting weak colonies to maintain their strength for the next active seasons are needed. However, due to the fact that the predominant numbers of beekeepers in

Table 8: Honey yield (Kg) (Mean±SD)
Hive types
Seasons
Major
High lands
Mid lands
Low lands
Total
Minor
High lands
Mid lands
Low lands
Total

() - indicates number of respondents

Figure 7: Harvesting seasons of beekeepers.

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee florals in Kafa, Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
the areas are practicing traditional forest types of beekeeping system and lack of awareness, over 95% of beekeepers do not provide any feed supplements to their colonies. According to the report from the respondents, over 90% of absconding cases occur during these seasons.

The Buildup seasons: During which honeybees become busy in collection of much pollens for multiplying their population prior of peak nectar collection times. Perhaps, they will be more initiated to form multiple queen cells to form independent swarms. During these seasons, colony manipulations like queen rearing, increasing the hive spaces, colony transferring will be undertaken. In the study areas, the peak building up seasons will occur during October and March.

The Honey flow seasons: During which honeybees collect nectar abundantly to store it for their later uses. The peak honey flow seasons of the areas occur during April and November. Based on the production levels, the first is considered as major honey flow season and the later as minor harvesting season for high land and mid land areas; where as vice versa for lowland areas. In spite of various cares taken during pre and post harvesting times to obtain better product in terms of quality and quantity; such as avoiding over smoking, selecting calm days for harvesting(avoiding harvesting during humid days), using food graded storages, etc, determining the right time of harvesting seasons at which most parts of honey combs get ripened for harvesting is also very crucial to obtain better quality product as ripened honey has minimum water content which is considered as one of major detrimental factor for its shelf life [48,49]. Accordingly, the peak harvesting seasons of the areas will be attained during May and November-December.

Conclusion and recommendation

As a conclusion, in related ample precipitations and favorable environments, the area is enriched with diverse floral species important for honeybees in providing either pollen, nectar, propolis or a combination of these resources for bees. The diverse floral species creates an opportunity for bees to access forages throughout most seasons which also considered as golden opportunity to obtain a valuable and additional honey yield of various botanical origins from multiple harvestings. Hence, from the current study, the following points could be forwarded as recommendation;

- Advancing the current widely practiced traditional forest types of beekeeping system into improved/backyard system accompanied with appropriate seasonal colony management practices are imperative to maximize honey yield from multiple harvestings.
- The sustainability of beekeeping is highly reliable on the abundance of potential floras in the near surroundings of beekeeping areas. In this regard, despite the normal perpetuation of plants under natural conditions, the efforts taken to conservation and rehabilitation of such plants are almost nonexistent. Hence, conservation measures especially in focus of increasing the abundance of potential bee plants should be a due focus issue.
- The nectar secretion efficiency of major bee plants across agro ecologies need follow up studies to determine the carrying capacities of each locality.
- The current study focuses only one bee species (i.e., honeybees); and detailed investigation on seasonal colony status, honey harvesting seasons and identification of potential floras for other important bee species like stingless bees need follow up studies.
- In some localities, the traditional practice/Kobo system’; owner ship of forest/trees for hanging hives which passes over successive generations might considered as opportunity for achieving improved ways mitigation options for natural resource conservation.

Furthermore, detailed analysis on physico-chemical composition and nutritional values of each mono floral honey sources including mini harvesting seasons is very essential to initiate conservational measure for floral species.

Acknowledgements

The author would like to heartedly acknowledge the Ethiopian Institute of Agricultural Research (EIAR) for its wise budget allowances for conducting the activity; the Southern Agricultural Research Institute (SARI) for its kind facilitations and providing constructive comments to enrich the write-ups. The author would also like to thank Holeta Agricultural Research Center (HARC) for its provision of technical, material and laboratory supports during Polynological analysis of honey.

Table 9: Pollen counts of major plants in honey samples (in %).

Major Seasons	Plant name	Pollen counts
Season-1 (Mar.- May)	- Schefflera abyssinica	50-65
	- Guizotia Scabra	10-30
	- Croton microstachys	2-13
	- Eucalyptus species	1-7
	- Vernonia amygdalina	0-21
	- Bersema abyssinica	2-8
	- Guizotia scabra	20-60
	- Bidens species	0-80
	- Manilkara butij	0-8
	- Eucalyptus species	0-5
	- Syzygium guenesis	0-7
	- Coffee arabica	0-7
	- Rumex abyssinica	0-7
Season-2 (Oct. - Dec.)	- Schefflera abyssinica	47-60
	- Guizotia Scabra	20-30
	- Croton microstachys	7-12
	- Eucalyptus species	0-3
	- Vernonia amygdalina	0-13
	- Bersema abyssinica	2-8
	- Guizotia scabra	35-82
	- Manilkara butij	0-70
	- Bidens species	20-64
	- Eucalyptus species	0-8
	- Coffee arabica	0-7
	- Rumex abyssinica	0-6.2

High Land/Mid Land/Low Land

Plant name	Pollen counts	
High Land	Mid Land	Low Land
- Schefflera abyssinica	28-62	
- Guizotia scabra	20-35	
- Croton microstachys	5-23	
- Eucalyptus species	0-9	
- Vernonia amygdalina	0-11	
- Bersema abyssinica	0-5.2	
- Guizotia scabra	38-85	
- Manilkara butij	15-80	
- Bidens species	20-67	
- Eucalyptus species	0-12	
- Syzygium guenesis	0-9	
- Rumex abyssinica	1.2-10	

Citation: Shegaw T, Giorgis DH (2021) Identification, characterization and evaluation of honeybee floras in Kafa, Sheka and Bench Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. J Agric Sc Food Technol 7(3): 310-326. DOI: https://dx.doi.org/10.17352/2455-815X.000125
samples and other tasks. My special appreciation also goes to my colleagues, staff members and researchers who took part during the review processes at national and regional levels who gave me a lot of constructive ideas and technical supports in finalizing the work. Finally, but not list, I would like to thank the respective woreda and peasant association (PA) experts and respondent beekeepers for their wise collaboration starting from site selection to data collection tasks.

References

1. Abadi B, Abebe A, Delenasaw Y (2016) Community Perception on Beekeeping Practices, Management, and Constraints in Tarmaber and Basona Wereda Districts, Central Ethiopia. Hindawi Publishing Corporation Advances in Agriculture 2016: 4106043. Link: https://bit.ly/3lWkHyd

2. Yilibeh T (2008) Review on: Beekeeping practices, Opportunities, Marketing and challenges in Ethiopia. Journal of Dairy and Veterinary Science 5.

3. Haftey S, Gashaw E, Ayalew N, Tsehaye N (2018) Assessment of honey production system, constraints and opportunities in Ethiopia: Review. International Journal Pharmacy & Pharmacology 6: 42-47. Link: https://bit.ly/3ITTMG

4. Nur A (2008) Atlas of pollen grains of major honeybee flora of Ethiopia. Holeta Bee Research Centre. Commercial Printing Enterprise. Addis Ababa, Ethiopia 152.

5. Demissew W (2016) Bee keeping in Ethiopia: Country situation paper. The 5th ApiExpo Africa, September 2016. Kigali, Rwanda.

6. Awraris G, Yemisrach G, Dejen A, Nuru A, Gebeyehu G, et al. (2012) Honey production systems (Apis mellifera L.) in Kaffa, Sheka and Bench-Maji zones of Ethiopia. Journal of Agricultural Extension and Rural Development 4: 528-541. Link: https://bit.ly/3fVj3kK

7. Janet L, Andrian W (2014) A discussion of the importance of forest beekeeping and commercial honey and beeswax trade for the sustainable management of natural forests in SW Ethiopia. Bees for Development and University of Huddersfield, UK. Link: https://bit.ly/3fW9Kol

8. UNBS (Uganda National Bureau of Standard) (2006) Code of Practice for apiary management, handling and processing of bee-products. First Ed. Kampala, Uganda. Link: https://bit.ly/2ZbfMAF

9. Cramp D (2008) Pollen Collecting. A practical manual of Beekeeping. ed 36. Link: https://bit.ly/3APDNP

10. Sisay N (2008) Flora Biodiversity Assessment in Bonga, Boginda and Mankir Forest, Kafa, Ethiopia. Submitted to PPP-project, Addis Ababa, Ethiopia. Link: https://bit.ly/3j6fJWt

11. Louiseaux J, MaurizioA, Vorwogh G (1978) Methods of melissopanology. Bee World 59: 139-157. Link: https://bit.ly/3wrgoFX

12. Delaplance KS, Van der steen J, Guzman E (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. In V Dietemann; J D Ellis; P Neumann (Eds) The ColossoBeebook, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research 52: 1-12. Link: https://bit.ly/3AYG5b8

13. Tesfaye B, Kitessa H, Ensermu K (2013) Floristic Composition and Structural Changes Areas in Ethiopia: Status and Future Prospects. journal of Biology, Agriculture and Healthcare 6. Link: https://bit.ly/3DTESmT

14. Tesfaye B, Kiteesa H, Ensermu K (2013) Floristic Composition and Structural Changes Areas in Ethiopia: Status and Future Prospects. Journal of Biology, Agriculture and Healthcare 6. Link: https://bit.ly/3DTESmT

15. Kazafy E, Abdou T (2015) A study on nectar and pollen sources for honeybee, Apis mellifera L in Al-Asha Saudi Arabia. Journal of Entomology and Zoology Studies 3: 272-277. Link: https://bit.ly/3BZjHyL

16. Ahmed AG, Nur A, Awraris G, Yilma T (2014) New approach for determination of an optimum honeybee colony’s carrying capacity based on productivity and nectar secretion potential of bee forage species. Saudi Journal of Biological Sciences 23: 92-100. Link: https://bit.ly/3p9g4g1F

17. Nur A, Ahmed A, Yilma T, Awraris G, Awad M, et al. (2017) Nectar secretion dynamics and honey production potentials of some major honey plants in Saudi Arabia. Saudi Journal of Biological Sciences 24: 180-191. Link: https://bit.ly/3DEVEz7Q

18. Riechmann D (2007) Introduction of sustainable coffee production and marketing complying with international quality standards using the natural resources of Ethiopia. Literature Survey on biological data and research carried out in Bonga area, Kafa, Ethiopia.

19. Manrique AJ, Thimmann RE (2002) Coffee arabica pollination with Africanized honeybees in Venezuela. Journal of Network of Scientists from Latin America, the Caribbean, Spain and Portugal. Non-profit academic project, developed under the open access initiative 27. Link: https://bit.ly/3n1eHn0

20. Segeren P (2004) The value of beekeeping for pollination. Beekeeping in tropics (5'ed.). Digigraph, Wageningen, the Netherlands.

21. Guesh D, Asaminew T (2016) Importance of Integrating Beekeeping with Closure Areas in Ethiopia: Status and Future Prospects. journal of Biology, Agriculture and Healthcare 6. Link: https://bit.ly/3DTiz0i

22. Bradbear N (2009) Non-wood Forest Products: Bees and their role in forest livelihoods. A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Rome, Italy. Link: https://bit.ly/2Z7NdNn

23. Bogdanov S (2004) Quality and standards of Pollen and Beeswax. AIPACTA, 38: 334-341. Link: https://bit.ly/3nOan04

24. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immune competence. Biol Lett 6: 562–565. Link: https://bit.ly/3C9EyQd

25. Mutsaers M, Blitterswijk H, Leven L, Kerkvliet J, Waerd J (2005) Bee products. Properties, Processing and Marketing. In M. Mutsaers (Ed.), Agrodok Series 42. Wageningen, the Netherlands.

26. Avni D, Hendriksma HP, Dag A, Uni Z, Shafir S (2014) Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J Insect Physiol 69. 65-73. Link: https://bit.ly/3WFXpDs

27. Keller I, Fluri F, Indore A (2015) Pollen nutrition and colony development in honey bees-Part II. Swiss Federal Research Station for Animal Production and Dairy Products (ALP). Bee Research Centre, Liebefeld, CH-3003 Bern. Link: https://bit.ly/3A4qjT

28. Awad M, Ayman A, Abdelzeiz S (2016) Performance of two honeybee species during harsh weather and Acacia gerrardii nectar-rich flow. Scientia Agricola 74: 474-480. Link: https://bit.ly/3gwWMHH

29. Tadele A, Gemechis L, Zewdu A (2014) Performance Evaluation of Honeybee (Apis mellifera scutellata) in Guji Zone. International Journal of Innovation and Applied Studies 9: 1987-1993. Link: https://bit.ly/3phltrl

30. Bhushal S.J, Lekhnath K, Resham BT, Cheng JS (2011) Effect of Colony Strength on the Performance of Honeybees (Apis mellifera) in Nepal. In Hymenoptera Apidae. Journal of Socio Biology 58: 435-447. Link: https://bit.ly/3BYG7Nu

31. Gregory P (2011) The life of the Bee. The Basic Beekeeping Manual. 3rd edition, March 2011. Ed. Gay Marris. UK, National Bee Unit (the Food and Environmental Research Unit).

32. Sihar RC, Kaur G (2018) Patterns of short- and long-term responses of honeybee (Apis mellifera L.) colony to changes in its internal environment. Journal of Ecology and the Natural environment 10: 108-128. Link: https://bit.ly/3DTEsmt
33. Mid Atlantic Apiculture Research and Extension Consortium (MAAREC) (2005) Seasonal cycles of activities in honey bee colony. Honeybees Biology. Link: https://bit.ly/3jBI1WD

34. Clara I, Miguel A (2012) A review on: Plant biodiversity enhances bees and other insect pollinators in agro ecosystems. Journal of Agronomy for Sustainable Development 33: 257-274. Link: https://bit.ly/3BVmWSA

35. Mohammed AE, Mogbel EN, Tallat DA (2013) Identification of botanical origin and potential importance of vegetation types for honey production in the Sudan. Journal of Natural Resources and Environmental Studies 1. Link: https://bit.ly/3AUwTUB

36. WAC (World Agroforestry Center) (2015) Beekeeping for honey production training to benefit Lamu farmers and boost biodiversity conservation efforts. The Link: A newsletter of ICRAF’s Eastern and Southern Africa Region 9. Link: https://bit.ly/3AYy7Yq

37. Boleslaw Jand ZbigniewK (2005) Nectar Secretion and Honey Potential of Honey-plants growing under Poland’s Conditions–Part Xv. Journal of Apicultural Science 49: 59-63. Link: https://bit.ly/30yHVSx

38. Abdulaziz S, Hassan M, Ayman A (2013) Performance Evaluation of indigenous and exotic honeybee(Apis mellifera L.) races in Assir region, Southwestern Saudi Arabia. Saudi Journal of Biological Science 21: 256-264. Link: https://bit.ly/3BVw3Q

39. Kangave A, Butele CA, Onzoma A, Kato A (2012) Floral Calendar and Bee Keeping. The National Beekeeping Training and Extension manual 34. Link: https://bit.ly/3votdch

40. Valeria PA (2010) Determination of Quality chemical parameters of Honey from Chubut (Argentinean Patagonia). Chilean Journal of Agricultural Research 70: 640-645. Link: https://bit.ly/3FZCSL7

41. Laleh ML, Esmaiili M (2012) Honey & Honey Adulteration Detection: A Review. Department of Food Science and Technology, University of Urmia, Iran.

42. Efflen L (2013) Current Issues and Trends of Honey Quality in the Global Honey Market. Intertake Food Services, Bremen Germany.

43. Beyene T, Phillips D (2007) Ensuring Small Scale Producers in Ethiopia to Achieve Sustainable and Fair Access to Honey Markets. 64.

44. Chala K, Taye T, Kebede D (2013) Assessment of Honey Production and Marketing System in Gomma District, Southwestern Ethiopia. Greener Journal of Business and Management Studies 3: 099-107. Link: https://bit.ly/3RWEA9

45. Yoshimasa ITO (2014) Local honey production activities and their significance for local people: a case of mountain forest area of southwestern Ethiopia. African Study monography 48: 77-97. Link: https://bit.ly/3BHYHm0

46. Teklu G, Dinku N (2016) Honeybee Production System, Challenges and Opportunities in Selected Districts of Gedeo Zone, Southern Nation, Nationalities and Peoples Regional State, Ethiopia. International Journal of Research-Granthaalayah 4. 49-63. Link: https://bit.ly/30znBAX

47. AHBC (Australian Honeybee Industry Council) (2008) Participants learning Guide: on managing honeybee swarms. Beekeeping certificate III. Australian Government, Department of Agriculture, Fisheries and Forestry.

48. Fredris D, Peteris K, Ize C, Mara K (2006) The criteria for Honey quality and itschandes during Storage and Thermal treatment. LLU, Raksti 16: 73-78. Link: https://bit.ly/3jdfIak

49. Gallmann P, Thomas H (2012) Beekeeping and honey production in southwestern Ethiopia 1–24. Link: https://bit.ly/3AP3CKN