Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study

E. Christiaan Boerma
Michael A. Kuiper
W. Peter Kingma
Peter H. Egbers
Rik T. Gerritsen
Can Ince

Abstract Objective: Measurement of central-to-toe temperature difference has been advocated as an index of severity of shock and as a guide for circulatory therapy in critically ill patients. However, septic shock, in contrast to other forms of shock, is associated with a distributive malfunction resulting in a disparity between vascular compartments. Although this disparity has been established between systemic and microcirculatory parameters, it is unclear whether such disparity exists between skin perfusion and microcirculation. To test this hypothesis of disparity, we simultaneously measured parameters of the two vascular compartments, in the early phase of sepsis.

Design: Prospective observational study in patients with severe sepsis/septic shock in the first 6 h of ICU admission. Simultaneous measurements of central-to-toe temperature difference and sublingual microcirculatory orthogonal polarization spectral imaging, together with parameters of systemic hemodynamics.

Setting: 22 bed mixed-ICU in a tertiary teaching hospital.

Patients: 35 consecutive patients in a 12-month period.

Measurements and results: In 35 septic patients and a median APACHE II score of 20, no correlation between central-to-toe temperature gradient and microvascular flow index was observed ($r_s = -0.08, p = 0.65$). Also no significant correlation between temperature gradient/microvascular flow index and systemic hemodynamic parameters could be demonstrated.

Conclusions: During the early phase of resuscitated severe sepsis and septic shock there appears to be no correlation between sublingual microcirculatory alterations and the central-to-toe temperature difference. This finding adds to the concept of a dispersive nature of blood flow under conditions of sepsis between microcirculatory and systemic hemodynamics.

Keywords Orthogonal polarization spectral imaging · Microcirculation · Peripheral circulation · Temperature gradient · Skin perfusion · Sepsis

Introduction

Over the last decades it has become clear that despite correction of systemic hemodynamics, the incidence of organ dysfunction and mortality remains high in sepsis. Already in 1969 Joly and Weil [1] identified the cold toe as a new and easily accessible parameter of severity of circulatory shock. The authors observed a correlation between an increment in central-to-toe temperature difference (ΔT) and adverse outcome in a mixed ICU population. 30 years later this was confirmed with a subjective assessment of skin temperature [2]. In a mixed surgical population cool skin temperature was associated with lower cardiac output and central venous oxygen saturation and higher lactate levels as opposed to warm skin temperature, thus using skin perfusion as a marker for systemic hypoperfusion. How-
ever, Weil and Shubin [3] had earlier reclassified circulat-
tory shock to identify distributive shock, including sep-
tic shock, as a different entity, in which there is an in-
ability of blood to reach the exchange sites. This concept
was confirmed by microcirculatory measurements made in
septic patients after the introduction of sublingual orthog-
onal polarization spectral (OPS) imaging [4]. It has be-
come clear that the discordance between systemic hemo-
dynamic parameters and the microcirculatory alterations
is most prominent during sepsis [5], as opposed to other
forms of shock. These alterations have also been identi-
ied as markers for morbidity and mortality [6] whereas
systemic hemodynamic parameters failed to do so under
septic conditions [7].

However, no investigations exist as to what extent skin
perfusion is correlated with microcirculatory abnormalities
during sepsis. Since ΔT is easily obtainable in the clinical
setting, we conducted an observational study [8] in human
sepsis to answer the question: is there a relationship be-
tween ΔT and microcirculatory alterations during sepsis?
Based on our understanding of distributive shock we ex-
pected a disparity between these two parameters.

Materials and methods

Imaging technique

The OPS technique, as described in detail elsewhere [4],
consists of a hand-held device that illuminates an area of
interest with polarized light, while imaging the remitted
light through a second polarizer. If a wavelength within the
hemoglobin absorption spectrum (e.g., 548 nm) is chosen,
red blood cells will appear dark.

Imaging and analysis procedure

OPS imaging and semiquantitative analysis was performed
as described in detail elsewhere [9]. The overall microvas-
cular flow index (MFI) is an average score over a maxi-
mum of 12 quadrants (three regions \times four quadrants per
region) derived from the overall flow impression of all ves-
sels with a particular range of diameter in a given quadrant.

Setting and patient selection

We performed a single-center prospective observational
study in a tertiary teaching-hospital with a 22-bed mixed
ICU. During a 12-month period patients with severe sep-
sis/septic shock, according to international criteria [10],
were included. Patients were included only when the
source of the sepsis was suspected or confirmed (e.g.,
infiltrate on chest X-ray plus positive sputum gram
stain/culture, fecal spill in the abdominal cavity observed
during surgical procedure). Age under 18 years, (diabetic)
peripheral vascular disease and a body mass index higher
than 35 were contraindications for enrolment. A local
ethics and scientific committee approved of the study
protocol and written informed consent was obtained from
the patients or their surrogate decision makers, according
to applicable laws.

Protocol and data collection

Patients were admitted to the ICU directly from the
emergency department or operation room. All patients
were ventilated and sedated with morphine/midazolam.
By protocol, none of the patients received vasodilatory
therapy, steroids, or activated protein C before the OPS
images were obtained. Before measurement fluid resusci-
tation was applied until repeated volume challenges did
not increase stroke volume (SV) 10% or more, or when
central venous pressure (CVP) reached 15 mmHg. Mean
arterial pressure (MAP) was maintained at a minimum
level of 60 mmHg with dopamine up to 10 μg/kg per
minute and additional norepinepherine. Cardiac index (CI)
and SV were measured by esophageal Doppler technology
(CardioQ, Deltex Medical, West Sussex, UK). ΔT was
calculated as the difference between rectal and skin
temperature; skin temperature was measured by a probe
on the dorsum of the foot (Philips Medical Systems
21078A, Eindhoven, The Netherlands) under constant
room temperature. SvO_2 was not measured routinely.
Age, gender, length of stay (LOS), Acute Physiology And
Chronic Health Evaluation (APACHE) II, and Sequential
Organ Failure Assessment (SOFA) scores were calculated
after 24 h [11, 12].

Statistical analysis

The Statistical Package for the Social Sciences (SPSS
12.0.1 for Windows, Chicago IL, USA) was used for
statistical analysis. Data are presented in medians and
interquartile ranges (IQR). Nonparametric rank correlation
is expressed as Spearman’s rho (r_s). For subgroup analysis
a Bonferroni correction was applied. A two-sided p
value less than 0.05 is considered statistically significant.

Results

Thirty-five ICU sepsis patients with a median APACHE II
score of 20 (14–23) were enrolled; 20 patients also
engaged in a previous reported study [13]. All patients
fulfilled the entry-criteria; cultures confirmed the source
of sepsis in all cases. Baseline characteristics and hemo-
dynamic parameters are summarized in Table 1. ICU and
in-hospital mortality were 25.7% and 32.4% respectively,
Table 1 Characteristics study population (n = 35) (APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sepsis-Related Organ Failure Assessment; PEEP, Positive End Respiratory Pressure; n, number of patients)

Characteristic	Value
Gender: M/F	21/14
Age, median (years)	65 (56–77)
APACHE II score, median (IQR)	20 (14–23)
SOFA score, median (IQR)	7 (6–9)
Use of ventilator	35
PEEP level, median (cmH2O; IQR)	12 (10–15)
Continuous venovenous hemofiltration	2
Norepinephrine dose, median (µg kg−1 min−1; IQR)	0.02 (0–0.17)
Dopamine dose, median (µg kg−1 min−1; IQR)	6 (4–10)
Source of sepsis	Abdominal: 28
	Pneumonia: 7
Heart rate, median (beats/min; IQR)	107 (92–119)
Mean arterial pressure, median (mmHg; IQR)	71 (66–81)
Central venous pressure, median (mmHg; IQR)	11 (8–14)
Cardiac index, median (l min−1 m−1; IQR)	4.5 (3.5–5.3)
Central-to-toe temperature difference, median (°C; IQR)	3.2 (2.2–6)
Lactate, median (mmol/l; IQR)	2.5 (1.3–3.4)

with an ICU LOS of 7 (IQR 3–13) days and an in-hospital LOS of 20 (IQR 11.8–35.3) days. All measurements were obtained in the first 6 h of ICU admission.

Primary outcome of the study, the relation between MFI and ΔT, appeared to be absent; nonparametric rank correlation (r_s) was −0.08 (p = 0.65, Fig. 1). After subgroup analysis r_s in severe sepsis was −0.04 (n = 16, p = 0.87) and in septic shock −0.23 (n = 19, p = 0.35).

Table 2 Correlation between microvascular flow index (MFI) of small vessels (<20 µm), central-to-toe temperature difference (ΔT), and systemic hemodynamic parameters/parameters of morbidity in study population; data presented as Spearman’s rank correlation values (n = 35) (SOFA, Sepsis-Related Organ Failure Assessment; APACHE, Acute Physiology and Chronic Health Evaluation)

	MFI	ΔT		
r_s	p			
Heart rate	0.12	0.50	0.03	0.85
Mean arterial pressure	0.17	0.33	0.38	0.18
Cardiac index	-0.06	0.74	-0.15	0.39
Central venous pressure	0.13	0.49	0.1	0.59
Norepinephrine dose	0.17	0.34	0.04	0.82
Dopamine dose	0.10	0.58	0.10	0.58
Lactate	-0.17	0.37	0.1	0.59
SOFA	0.18	0.29	-0.08	0.64
APACHE II	-0.2	0.24	0.05	0.76

Discussion

The presented study demonstrates a lack of correlation between ΔT and OPS-derived sublingual microcirculatory alterations during sepsis after initial resuscitation. Although one may consider ΔT as an index of skin perfusion, this gradient has also been associated with systemic hemodynamic variables [14]. Previous studies demonstrated a good relationship between central-to-toe temperature difference and severity of shock [1, 2]. In patients with circulatory shock ΔT during therapy was associated with outcome, predicted fluid responsiveness in correlation with plasma arginine vasopressin concentrations in preterm infants, and discriminated between circulatory and noncirculatory causes of dyspnea [14].

However, during sepsis and septic shock microcirculatory abnormalities rather than systemic hemodynamic parameters seem to be the predominant factor [5], and heterogeneity of flow between and within microcirculatory units seems to be a characteristic finding. In previous years research using OPS imaging has added to the understanding of the pathophysiological role of microcirculatory alterations in the distributive defects seen in sepsis. Pers-
sistence of OPS-derived microcirculatory abnormalities was found to be associated with prognosis, in contrast to all available systemic hemodynamic parameters [6]. The observed lack of correlation between ΔT and MFI therefore adds to these previous data on the dispersion between systemic and microcirculatory alterations in sepsis after initial resuscitation. Alternatively, skin perfusion itself might not reflect systemic hemodynamics in sepsis, as suggested by nonsignificant correlations between ΔT and systemic hemodynamics in our study (Table 2). Interestingly, Vincent and coworkers [15] also reported a poor correlation between ΔT and cardiac output during septic shock, as opposed to other forms of shock.

Limitations of the study are enclosed in the method of semiquantitative analysis used. Whether the flow score from 0 to 3 is linear or nonlinear remains to be established; until now it is technically impossible to measure exact red blood cell flow velocities in individual vessels in OPS-derived images. In the case of a completely nonlinear relationship between the semiquantitative flow score and exact flow speed the observed relationship between MFI and ΔT would be influenced considerably. Using ΔT as the single parameter of skin perfusion is another limitation of the study. Laser Doppler has the ability to detect altered vascular reactivity, especially in conditions of ischemia-reperfusion. Under nonseptic conditions laser-Doppler imaging of the dorsum of the foot showed a linear relationship with skin temperature [16]. Recently, transcutaneous pO2 measurement of the skin with near infrared spectroscopy has become available. However, until now its use is poorly validated in the ICU setting. Finally, thermoregulatory effects of opioids in general cannot be ruled out, whereas the influence of midazolam has been reported to be futile [17].

Conclusions

During the early phase of resuscitated severe sepsis and septic shock there appears to be no correlation between sublingual microcirculatory alterations and the central-to-toe temperature difference. This finding adds to the concept of a dispersive nature of blood flow under conditions of sepsis between microcirculatory and systemic hemodynamics.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138
2. Kaplan LJ, McPartland K, Santora TA, Trooskin SZ (2001) Start with subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma 50:620–628
3. Weil MH, Shubin H (1971) Proposed reclassification of shock states with special reference of distributive defects. Adv Exp Med Biol 23:13–23
4. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GI, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212
5. De Backer D, Creteur J, Preiser JC Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104
6. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2:1825–1831
7. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408
8. Boerma EC, Konijn AJM, Kuiper MA, Gerritsen RT, Kingma WP, Ince C (2007) Disparity between microcirculatory and skin perfusion in sepsis. Intensive Care Med 33[Suppl 2]:S168
9. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Critical Care 9:R601–R606
10. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Jonathan C, Opal SM, Vincent JL, Ramsay G for the international sepsis definitions conference (2003) 2001 SCCM/ESICM/ACCPT/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538
11. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829
12. Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800
13. Boerma EC, van der Voort PHJ, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35:1055–1060
14. Lima A, Bakker J (2005) Noninvasive monitoring of peripheral perfusion. Intensive Care Med 31:1316–1326
15. Vincent JL, Moraine JJ, van der Linden P (1988) Toe temperature versus transcutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med 14:64–68

16. Yvonne-Tee GB, Rasool AH, Halim AS, Rahman AR (2006) Noninvasive assessment of cutaneous vascular function in vivo using capillaroscopy, plethysmography and laser-Doppler instruments: its strengths and weaknesses. Clin Hemorheol Microcirc 34:457–473

17. Kurz A, Sessler DI, Annadata R, Dechert M, Christensen R, Bjorksten AR (1995) Midazolam minimally impairs thermoregulatory control. Anesth Analg 81:393–398