Human DNA polymerase θ grasps the primer terminus to mediate DNA repair

Karl E Zahn1, April M Averill1, Pierre Aller2, Richard D Wood3 & Sylvie Doublié1

DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is over-expressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3′-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.

Human polymerase (pol) θ is a multidomain protein of 2,590 amino acids (aa), with homologs throughout multicellular organisms1–3. The human POLQ gene encodes the pol θ protein, which contains conserved superfamily 2 helicase (SF2) and family-A DNA polymerase domains at the N and C termini, respectively, which are linked by a large central region4. In vertebrates, pol θ and pol ν (ref. 5) are the only family-A polymerases present in cell nuclei. The mitochondrial pol γ is distantly related to pol θ, and 5′-deoxyribose phosphate lyase activity has been attributed to both pol θ and pol γ (refs. 6,7). Pol θ, however, does not synthesize DNA with the accuracy or processivity of the mitochondrial replicase8–9. Several conserved insertion loops, absent from bacterial homologs, intervene within the family A–polymerase fold of pol θ. Deletion of residues 2264–2315, which include much of the penultimate insertion loop, has been shown to abrogate pol θ’s ability to extend unannealed single-stranded oligonucleotides10 and bypass abasic (AP) sites or sites of thymine glycol (Tg) damage11.

Early biochemical characterization of pol θ hinted at a role in translesion DNA synthesis (TLS), given pol θ’s lesion-bypass activity12,13, and the enzyme indeed appears to be involved in TLS of oxidative DNA damage in vivo14. Assays in chicken DT40 cells deduced overlapping roles for pol θ and pol β in base excision repair15. Pol θ can also substitute for pol β during base excision repair in Caenorhabditis elegans16. It has been suggested that pol θ is involved in somatic hypermutation of immunoglobulin genes, but any role appears to be minimal17. Pol θ does, however, participate in a subset of immunoglobulin-gene class switch–recombination events in mouse B cells, in a manner dependent on an alternative (Ku-independent) DNA end–joining pathway18. Pol θ contributes to alternative end-joining of double-strand breaks (DSBs) in Drosophila melanogaster19 and in mammalian cells18. In C. elegans, pol θ limits extensive deletions at DNA replication-fork barriers but generates small indels templated by DNA adjacent to the excision site20,21. Pol θ also produces templated indels in Drosophila22,23 and mice18. Furthermore, pol θ interacts with the origin recognition complex in human cells during G1 and may affect DNA replication timing24.

POLQ encodes the only nuclear DNA polymerase overexpressed in breast cancer, and higher expression correlates with unsuccessful clinical treatment25,26. Elevated POLQ expression also occurs in oral squamous-cell carcinomas27; however, it is also associated with disease-free survival in patients with lung cancers28. Knockout or knockdown of pol θ in mouse18,29 and human30 cells increases sensitivity to DSB-inducing agents, including ionizing radiation. Complementation of this sensitivity phenotype requires the polymerase activity of pol θ but not the ATPase activity of the helicase domain18. The presence of distinctive insertion loops in pol θ has encouraged speculation that these loops bestow unique properties upon the enzyme. However, the molecular mechanisms that confer pol θ’s ability to prime DNA synthesis from nonoptimal base-pairing in the context of alternative end-joining have remained elusive until now. We set out to determine the crystal structures of two active constructs comprising the entire C-terminal polymerase domain and its associated inactivated exonuclease-like subdomain, which are reported here. The structural work, in conjunction with a biochemical analysis of point variants, illuminates specific interactions between the specialized thumb subdomain of pol θ and the primer terminus that are necessary for TLS and contribute to elongation of single-stranded DNA oligonucleotides.

1Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA. 2Diamond Light Source, Didcot, Oxfordshire, UK. 3Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA. Correspondence should be addressed to S.D. (sdoublie@uvm.edu).

Received 12 December 2014; accepted 13 February 2015; published online 16 March 2015; doi:10.1038/nsmb.2993
RESULTS

Human pol θ inserts ddATP opposite an AP site

To identify structural components providing for the unique enzymatic activities of pol θ, we determined the crystal structures of two DNA polymerase–domain constructs (Table 1). Molecular replacement31, with a ternary complex of Taq DNA polymerase (PDB 1QSY)32 as the search model, allowed us to place the four similar molecules in the crystal asymmetric unit (ASU) of the tetrahydrofuran (THF)–ddATP complex, which captured human pol θ inserting ddATP opposite THF, a stable AP-site analog. The structure revealed an overall fold reminiscent of bacterial homologs—with exonuclease, thumb and fingers subdomains oriented about a right-hand palm subdomain (Supplementary Table 1)—but disrupted by five unique insertion loops (Fig. 1a–c and Supplementary Table 2). The THF–ddATP complex clearly showed the nascent base pair in the polymerase active site: the strictly conserved catalytic aspartate and glutamate residues (D2330, D2540 and E2541) of the palm subdomain coordinate a divalent Ca2+ ion associated with the triphosphate tail of the ddATP nucleotide (Fig. 1d and Supplementary Fig. 1). A known inhibitor of DNA polymerases, CA2+ was essential for trapping the closed complex, because the primer strand retains a 3′-hydroxyl moiety for nucleophilic attack (Supplementary Fig. 2). The highly conserved lysine (K2383) and arginine (R2379) residues of the fingers subdomain O-helix contact nonbridging oxygens of the α- and γ-phosphates, respectively (Supplementary Fig. 2), as seen in other closed ternary complexes of family-A polymerases33. The conserved O-helix residue Y2391 was fully displaced from its template-occluding position in Y2391 was fully displaced from its template-occluding position in open or ‘ajar’ structures34 (Fig. 1d and Supplementary Fig. 1), and thus, to our knowledge, the pol θ structure represents the first fully closed model of any family-A DNA polymerase inserting adenine opposite a nontemplating DNA lesion. Previously, trapping ternary complexes destabilized by templating THF has required the purine analog 5-nitro-1-indolyl-2′-deoxyribose-5′-triphosphate (5-NITP) because of its enhanced capacity for base-stacking35,36. The 5-NITP and ddATP double rings show substantial overlap when the current pol θ model is superimposed onto these previous structures37.

Pol θ and pol ν both contain unique signature residues at mutable O-Helix sites38, adjacent to the essential arginine and lysine side chains that contact the triphosphate tail and make pyrophosphate a better leaving group39. A glutamine residue occupies position 2384 of pol θ (Q2384), where pol δ has a conserved lysine (K679), and bacterial polymerases generally contain an alanine or threonine. Q2384 appeared in the vicinity of the Hoogsteen face of the incoming nucleotide, within hydrogen-bonding distance to the exocyclic N6 of the ddATP molecule (Fig. 1d). Mutation of the analogous residue to alanine in pol ν (K679A) has been shown to reduce both bypass of Tg and pol ν’s propensity for dTMP-ddGTP mismatch formation38. An additional contact to the incoming nucleotide was established in pol θ between the β-phosphate and O-helix residue Y2387 (Supplementary Fig. 1), which is also conserved in DNA polymerases from T-odd bacteriophages and pol ν (refs. 33, 38).

The fingers subdomain closes on a cognate base pair

We pursued a related pol θ structure in the presence of Mg2+, the likely physiological divalent metal ion, with a cognate dCMP-ddGTP base pair in the active site. This crystallization construct encompassed an additional 27-aa truncation from the N terminus (Fig. 1c), and the DNA sequence was blunted to remove a 3′ template overhang. We also modified the 5′ sequence of the template to complement consecutive incoming ddGTP molecules, in order to promote enzymatic chain termination of the primer strand before trapping the closed ternary complex. These crystals diffracted to similar resolution as the Ca2+ crystals, although we deemed the diffraction data inferior, owing to an off-origin native Patterson map peak and corresponding noncrystallographic symmetrical (NCS) translation relating the two protein molecules of the ASU. Coupled with anisotropic diffraction, skewed intensity-distribution statistics led to systematic data loss and reduced data completeness, even for highly redundant data sets compiled with extensive cross-crystal data merging (Table 1). However, we readily obtained a molecular-replacement solution, based on the Ca2+ model, and refined it (Table 1). Subsequently, this approach yielded crystals of a selenium-methyl variant in the presence of Mg2+, from which we calculated a 4.6-Å anomalous difference Fourier map pinpointing the incorporated selenium atoms. Superimposing these anomalous peaks onto the Ca2+ model added confidence to the overall trace of the model and aided in assignment of side chains in poorly conserved regions by anchoring the pol θ sequence (Fig. 1c). The Mg2+ complex appeared to be globally similar to the complex obtained with Ca2+. The former depicted subtle rearrangements in the fingers subdomain, with an adjustment in the relative position of helix O relative to the primer-template and palm subdomain, so that the O helix appeared to have moved closer to the cognate dCMP-ddGTP pair than the THF–ddATP (Fig. 1e).

Unique insertion loops decorates pol θ

The locations of the three loop elements previously described in the palm and thumb subdomains12 are now firmly established by the current pol θ structure in addition to two previously unreported

Table 1 Data collection and refinement statistics

	Pol θ–Ca2+-THF–ddATP	Pol θ–Mg2+-dCMP–ddGTP	Pol θ–SeMet–Mg2+-dCMP–ddGTP
Data collection			
Space group	P2_1_2_1	P2_1_2_1	P2_1_2_1
Cell dimensions	a, b, c (Å)	126.9, 137.0, 100.7	100.4, 134.8, 248.0
Resolution (Å)	50–3.9 (40–3.9)	40–3.9 (40–3.9)	40–4.6 (4.8–4.6)
Rmerge (%)	20.5 (100)	19.6 (72.2)	15.5 (31.5)
Rfree (%)	8.4 (79.2)	9.0 (39.4)	16.9 (27.4)
Completeness (%)	99.7 (99.1)	85.6 (64.0)	78.1 (53.1)
Redundancy	16.6 (14.0)	22.6 (13.4)	4.8 (3.7)
Refinement			
Resolution (Å)	30–3.91	30–3.90	30–3.90
No. reflections	74,685 (2,403)	31,372 (1,987)	
Rwork / Rfree (%)	24.1 (39.4) / 25.8 (35.0) / 30.2 (43.9)	31.6 (45.4)	
No. atoms	22,448	10,902	9,950
Protein	19,900	9,950	
DNA	2,428	890	
Ligand/ion	120	62	
r.m.s. deviations			
Bond lengths (Å)	0.015	0.014	
Bond angles (°)	1.362	1.169	

Values in parentheses are for highest-resolution shells. Pol θ–Ca2+ and Mg2+ data sets are the product of merging three and four crystals, respectively. The pol θ selenomethionine (SeMet) Mg2+ data set was collected on a single crystal. Rfree = Σ|Fo–Fc| / Σ|Fo| > 1.
Figure 1 Structure of human pol θ polymerase domain. (a) Overall THF–ddATP pol θ structure, shown in comparison to Taq polymerase (circled inset; PDB 1OSY32), with the five insertion loops identified: loops exo1 and exo2 (cyan), insert 1 (brown), insert 2 (yellow) and insert 3 (purple). Dotted lines represent regions of the loops not seen in the electron density map and thus not built in the crystallographic model. (b) Putty representation of pol θ, in the same orientation as in a, displaying the tube radius of the backbone trace proportionally to the refined atomic displacement parameters. Peaks from an NCS-averaged anomalous difference electron density map (yellow mesh, contoured at 4σ) pinpoint the locations of methionines. (c) Schematic of the domain architecture of full-length human pol θ and crystallization constructs, which encompass the entire C-terminal polymerase domain (residues 1819–2590), including the vestigial exonuclease-like subdomain (residues 1819–2090). (d) Close-up view of the pol θ active site, showing ddATP opposite THF in the closed conformation. Contacts (black lines) are mediated from the O-helix residue Q2384 to the incoming nucleobase. (e) Superimposition of the THF–ddATP (dark pink, dark blue and yellow-green) and dCMP-ddGTP (lighter hues) models, on the basis of palm-subdomain residues. Subtle rearrangements with cognate dCMP-ddGTP in the active site reposition the C-terminal end of the O helix, forming a putative salt bridge from R2254 of insert 2 to D2376 of the fingers. All molecular illustrations were made with PyMOL (http://www.pymol.org/).
Figure 2. DNA pol θ features insertions bearing conserved residues. (a) Structure-based sequence alignment illustrating the conservation of K2181, R2202 and R2254 (blue triangles) in multicellular organisms. Pol θ, mus308 and pol ν have arginine or lysine at position 2254, whereas bacterial polymerases retain a hydrophobic side chain. Only pol θ–like enzymes (top nine proteins) have conserved basic residues at positions 2181 and 2202. (b) Superposition of pol θ (pink), Taq (PDB 1OSY32, cyan) and Klenow (PDB 1KLN41, light gray), illustrating how insertion loop 2 (yellow) departs from the canonical family A–polymerase fold. R2254 in human pol θ contacts the primer 3′-terminal (n – 1) phosphate. (c) The palm (pink) and specialized thumb subdomain (green) of pol θ, illustrated to display unique contacts (black lines) to the primer DNA (orange sticks). Contacts of R2254 to the n – 1 phosphate and R2202 to the n – 2 and n – 3 phosphates of the primer DNA are shown (dotted lines). K2181 establishes a putative salt bridge to the n – 5 phosphate, just after insertion loop 1 (brown).

we could model only 8 aa. Loops exo1 and exo2 appear to be proximal to each other and to extend together from the conserved β-sheet of the N-terminal subdomain (Figs. 1a and 3a,b). In full-length pol θ, these insertion elements might provide contacts to the helicase domain or central region, given their proximity to the extreme N terminus of the polymerase-domain crystallization construct.

Insert 3 (S2503–F2534) terminates with two consecutive glycine residues that lead into a six-residue β-strand of the palm subdomain, directly before polymerase motif 5 (HDELLY) (Fig. 3a). Motif 5 contains two of the strictly conserved carboxylate residues, D2540 and E2541. A helical segment of insert 3 appeared at the interface between the β-strand of the palm subdomain and the N-terminal pol θ, lying at the base of the cleft present in the N-terminal pol θ. In the E. coli pol I Klenow fragment, this cleft provides a path for DNA to migrate into the exonuclease proofreading active site41. In pol θ, a small loop (G2022–E2039) in the exonuclease-like domain, which would block DNA from taking a trajectory identical to that previously observed in Klenow fragment, was shifted (Fig. 3a).

The homologous chaos1 variant (S1977P) catalyzes TLS

A previous genetic screen for genomic stability factors in mice implicated pol θ in DSB repair42,43. Mouse cells carrying the Polcchaos1 allele have elevated spontaneous levels of micronuclei and also exhibit increased micronuclei after treatment with ionizing radiation or mitomycin C18,29,43. The Polcchaos1 allele was subsequently verified to encode a serine-to-proline missense mutation (S1977P in human pol θ) in the N-terminal exonuclease-like subdomain. Partial synthetic lethality results when the Polcchaos1 allele is introduced into an Atm-knockout background, allowing only 10% of mice to survive past the neonatal period43.

The human pol θ model illustrates that S1977 caps the C-terminal end of a hydrophobic helix in the vestigial exonuclease-like subdomain. In our current model, S1997 could provide a hydrogen bond to the backbone carboxyl of D1897 of loop exo1 (Fig. 3b). We generated the S1977P mutant to biochemically characterize the homologous human chaos1 variant. Assays aimed to evaluate TLS (Fig. 4a) and single-stranded primer extension (data not shown) failed to reveal a dramatic biochemical phenotype, however. These findings support the suggestion that cellular levels of the pol θ protein are depleted in the Polcchaos1 mice, owing to poor in vivo expression or stability18.

Pol θ R2254V fails to bypass AP sites

We designed the R2254V variant to evaluate how the conserved basic residue of insertion loop 2 contributes to pol θ’s activity on single-stranded DNA oligonucleotides and its bypass of AP sites or Tg lesions. Family-A DNA polymerases from bacteria have a conserved hydrophobic amino acid (valine or isoleucine) at the equivalent position of R2254 (Fig. 2a), and the R2254V variant therefore mimics these bacterial enzymes. Pol θ R2254V, although active on double-stranded DNA, failed to bypass AP sites or Tg (Fig. 4) and was
marginally hindered during extension of unannealed single-stranded DNA oligonucleotides, especially when provided with only pyrimidine nucleotides (Fig. 5). The salt bridge from R2254 to the primer 3′-terminal phosphate appears to be essential in compensating for interactions missing from the templating strand, owing to DNA lesions or distorted base-pairing.

Figure 3 (a) The N-terminal inactivated exonuclease-like subdomain of pol θ (green), superimposed onto the 3′-5′-exonuclease domain of the Klenow fragment (gray, PDB 1KLN41). The Klenow structure shows the path of DNA into the exonuclease active site (tan), which is blocked by a shifted loop in the pol θ model. Insert 3 (purple) is resolved in proximity to the exonuclease-like subdomain and loops exo1 and exo2 (cyan). Insert 3 is sequentially close to polymerase motif 5 of the palm (red), thus providing a structural linkage between the exonuclease-like subdomain and polymerase active site. (b) Close-up view of loops exo1 and exo2 (cyan), with the location of S1977 indicated. S1977P is homologous to the mouse Polθchaos1 allele. The current model indicates the potential for hydrogen-bonding (black dashes) from S1977 to a backbone carbonyl of loop exo1.

Figure 4 Primer extension assays and quantifications. (a) Ability of different polymerase mutants to bypass the AP site during TLS (substrate shown at the bottom). Reactions used 125 nM enzyme, 250 nM primer-template and 500 µM of each nucleotide. Pol θ polymerase domain wild type, mutants R2254V and chaos1-allele homolog (pol θ S1977P), and Klenow fragment exo− were examined. (b–g) Primer extension assays comparing pol θ thumb-subdomain variants K2181A, R2202A, R2254A and R2254V, with substrates with an AP lesion (b), with a Tg lesion (c, f) or with an undamaged template (d, g); substrates are shown below each gel. All bands from primer extension assays in b–d are quantified to plot the average extension (nucleotides inserted past template) in e–g. WT, wild type.
The pol θ structure revealed other unique upstream contacts to the primer DNA strand, mediated by the specialized pol θ thumb subdomain (Fig. 2a). R2202 inserts its guanidinium moiety between the n − 2 and n − 3 primer-strand phosphates and is therefore poised to make two contacts to the DNA backbone. An additional contact is possible from K2181 of the thumb subdomain to the primer n − 5 phosphate (Fig. 2c). These contacts in addition to the contacts from R2254 to the n − 1 phosphate suggest that the pol θ thumb subdomain is specialized to provide salt bridges to the primer-strand phosphate backbone in excess of those conserved by all other family-A polymerases, including pol υ (Fig. 2a). Like pol υ and bacterial pol I, pol θ has retained arginine residues at positions 2201 and 2315 (631 and 690 in E. coli pol I), which provide absolutely conserved interactions to the n − 4 and n − 1 phosphate, respectively.

Generating alanine substitutions at K2181, R2202 or R2254 in pol θ, for the purpose of evaluating the contribution of the specialized thumb subdomain during bypass of an AP site or Tg, revealed that the greatest TLS defect associates with a loss of contacts closest to the extreme primer terminus (Fig. 4b–g). Although the extension step of TLS opposite an AP site challenged all variants (Fig. 4b,e), the mutations made at R2254 (to alanine or valine) afforded the most dramatically deficient TLS phenotypes and were followed closely by R2202A. K2181A, as compared to the wild-type enzyme, reduced bypass of the AP site, although not to the same extent as other variants. When provided with a substrate placing Tg in the templating position (Fig. 4c,f), the same pattern emerged, although R2202A possessed a lesser defect, closer to that of K2181A. Even though pol υ contains a lysine (K584) residue in insertion 2, homologous to R2254 in pol θ, R2202 and K2182 appear in
neither pol ν nor bacterial homologs (Fig. 2a). These differences could explain why only pol θ grasps the primer tightly enough to bypass AP sites and extend certain minimally annealed primer-templates44. Pol ν is less adept at bypassing blocking lesions, and it has been shown to bypass only 55′-Tg effectively13. Likewise, pol ν does not extend single-stranded oligonucleotides in vitro, a reaction readily catalyzed by pol θ (ref. 10). Considering that pol θ has retained substantial ability to extend single-stranded substrates in the context of individual mutations at R2254, R2202 or K2181 in vitro (Fig. 5a), the transiently templated nature of this reaction is emphasized18, and pol θ must therefore use a different set of amino acid side chains to manipulate the single-stranded substrate as its own template for primer extension.

Pol θ crystals reveal two modes of dimerization

The pol θ ASU in the Ca2+ crystal form contains four protein–DNA complexes assembled as a dimer of two-fold dimers (Fig. 6a). Two dissimilar types of contacts mediated packing of the DNA ends distal from the active site: The 3′ ends of each template DNA strand provide a dGMP overhang, two of which stack against conserved tryptophan residues (W1907) of adjacent protein molecules. The remaining template 3′ ends appear in proximity, forming inter-DNA contacts outside the molecular footprint of pol θ.

Three perpendicular two-fold screw axes generate the space group P212121. However, two alternate pure two-fold axes assemble the ASU of the Ca2+ crystal form, which exist as NCS operators. The first NCS two-fold axis passes near insert 3 and the N-terminal subdomain (Fig. 6b). The second NCS two-fold axis passes adjacent to the 5′-template DNA, upstream of the polymerase active site, and near the putative location of insertion loop 1 (Fig. 6c). The ASU in the current Ca2+ model therefore presents two potentially biologically relevant assemblies, in which the 5′-template DNA's two-fold-symmetry axis relates protein chains A and B, and the two-fold-symmetry axis of insert 3 relates molecules C and D. Interestingly, the pseudo-symmetry observed in the Mg2+ crystal form was a consequence of similar configurations within the ASU, in which the identical NCS two-fold dimeric relationships about the 5′-template DNA and insert 3 appeared once again. In this case, both NCS two-fold axes appeared nearly parallel to the crystallographic 21 screw axis along c, thus generating the NCS translation (Fig. 6d).

DISCUSSION

An alternative DNA end-joining pathway in eukaryotes absolutely requires the C-terminal polymerase activity of the POLQ gene product, applied specifically in a role for which other DNA polymerases or helicases are unable to compensate18–20. The current study informs that the pol θ polymerase domain is possible at sufficient concentration. Analysis of these potential dimer interfaces in PISA46 attributes 12,400 and 13,100 Å2 of buried surface area for the 5′-DNA–propagated and insert-3 NCS two-fold interfaces (Fig. 6b,c), respectively, neglecting the flexible segments omitted from the models. In the context of alternative end-joining, pol θ multimerization might be essential for bringing two DNA ends together or sequestering free DNA ends from classical nonhomologous end-joining factors, such as Ku46.

Higher expression of POLQ correlates with decreased survival in patients with breast cancer47,48, and knockdown of the gene product in several malignant cell lines induces radiosensitivity30. Given that POLQ is nonessential in healthy cells47, the potential to pharmacologically target unique features of the pol θ protein, such as the specialized thumb subdomain revealed by this study, is an appealing approach for adjuvant radiation cancer therapy26. Future experiments will expand understanding of the mechanisms by which pol θ protects cancer cells from radiation or chemotherapeutics.

The extent to which transient pol θ dimers might bridge DSBs, for example, must also be considered as POLQ is evaluated as a potential target for next-generation cancer drugs.

Note added in proof: During final revision of this manuscript, several additional papers were published on the function of pol θ in alternative end-joining of DSBs49–51. Kent et al.51 suggest that a dimeric form of pol θ could function in repair, with dimerization mediated by insertion loop 2. Our crystal structures indicate multimerization of the pol θ polymerase domain (Fig. 6) but do not readily implicate insertion loop 2 in dimerization of this domain.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. Coordinates and structure factors for the ternary complexes of human pol θ obtained with Ca2+ (THF–ddATP) and Mg2+ (dCMP-ddGTP) have been deposited in the Protein Data Bank under accession codes 4XQ0 and 4XQ1, respectively.

ACKNOWLEDGMENTS

These studies were funded by US National Institutes of Health grants R01 CA052040 (S.D.) and CA097175 (R.D.W.), grant RPI30297 from the Cancer Prevention and Research Institute of Texas (R.D.W.) and the Grady F. Saunders PhD. Distinguished Research Professorship (R.D.W.). The GM/CA beamline at the Advanced Photon Source has been funded in whole or in part with federal funds from the US National Cancer Institute (ACR-12002) and the US National Institute of General Medical Sciences (AGM-12006). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

AUTHOR CONTRIBUTIONS

K.E.Z. performed crystallization, data collection and structure refinement. A.M.A. oversaw the project. K.E.Z. wrote the manuscript with S.D. and R.D.W. All authors discussed the results and commented on the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Harris, P.V. et al. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase 1 genes. Mol. Cell. Biol. 16, 5764–5771 (1996).
2. Inagaki, S. et al. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell 18, 879–892 (2006).
3. Yousefzadeh, M.J. & Wood, R.D. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst.) 12, 1–9 (2013).
4. Seki, M., Marini, F. & Wood, R.D. POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 31, 6117–6126 (2003).

© 2015 Nature America, Inc. All rights reserved.

ARTICLES
28. Allers-Moreau, C. et al. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASP1in upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis 1, e30 (2012).
29. Goff, J.P. et al. Lack of DNA polymerase theta (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total-body irradiation. Radiat. Res. 172, 165–174 (2009).
30. Higgins, G.S. et al. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown. Cancer Res. 70, 2984–2993 (2010).
31. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).
32. Li, Y., Mitaxov, V. & Waksman, G. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc. Natl. Acad. Sci. USA 96, 9491–9496 (1999).
33. Doublíl, S., Tabor, S., Long, A.M., Richardson, C.C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).
34. Zahn, K.E., Brehm, H., Wallace, S.S. & Doublíl, S. Caught bending the θ rules: The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an “αα” intermediate conformation in the nucleotide selection mechanism. J. Biol. Chem. 286, 19758–19767 (2011).
35. Santarpia, L., Ceccaldi, R. Inference of macromolecular assemblies from crystalline datasets. Acta Crystallogr. D Biol. Crystallogr. 58, 2082–2086 (2002).
36. Nishiyama, M. et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 10, e1004654 (2014).
37. Chan, S.H., Yu, A.M. & McVey, M. Dual roles for DNA polymerase theta in alternative end-joining of double-strand breaks in Drosophila. PLoS Genet. 6, e1001005 (2010).
38. Koole, W. et al. A Polθ-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 5, 3216 (2014).
39. Roerink, S.F., van Schendel, R. & Tjisterman, M. Polθ-mediated error-prone DNA break repair. Genome Res. 24, 954–962 (2014).
40. You, A.M. & McVey, M. Synthesis-dependent microhomology-mediated end-joining accounts for multiple types of repair junctions. Nucleic Acids Res. 38, 5706–5717 (2010).
41. White, T.B. & Lambowitz, A.M. The recombination of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms. PLoS Genet. 8, e1002534 (2012).
42. Fernandez-Vidal, A. et al. A role for DNA polymerase θ in the timing of DNA replication. Nat. Commun. 5, 4285 (2014).
43. Lemée, F. et al. DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc. Natl. Acad. Sci. USA 107, 13390–13395 (2010).
44. Higgins, G.S. et al. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget. 1, 175–184 (2010).
45. Lessa, R.C. et al. Identification of upregulated genes in oral squamous cell carcinomas. Head Neck 35, 1475–1481 (2013).
ONLINE METHODS

Crystallography of recombinant human pol θ. The pol θ polymerase crystallization construct (residues 1792–2590) was expressed from the pSGMO3 vector in Rosetta2(DE3)pLysS cells (Novagen) by autoinduction and was purified to homogeneity with a nickel-NTA resin (Thermo Scientific), a HiTrap heparin column (GE Healthcare Life Sciences) and a Superdex 200 Increase GL gel-filtration column (GE Healthcare Life Sciences)11. The selenomethionyl pol θ protein was also autoinduced, but with the Overnight Express System 2 kit (EMD Millipore) with NCS averaging. Rebuilding in Coot 53 and refinement in Phenix 54 search for the four protein–DNA complexes per ASU. Long segments of selenomethionyl pol θ were of lesser quality. Nevertheless, phases obtained by refining the rigid-body solution of the Mg\(^{2+}\) crystal form in Phenix55 proved useful in generating cross-crystal density-modified NCS-averaged maps, which provided high-quality electron density for side chain placement in the final model and helped resolve ambiguities in the tracing of the inserts and N-terminal exonuclease-like subdomain. Phases calculated from the transformed model also allowed visualization of anomalous peaks at 4.6 Å, owing to selenomethionine substitution in the SeMet Mg\(^{2+}\) crystal form, and thereby provided invaluable verification of the backbone trace in the N-terminal domain and insertion element 2.

Concluding refinement steps were conducted in Phenix54, fitting protein domains and nucleic acid chains as rigid bodies. Torsion NCS, secondary structure and Ramachandran restraints were enforced during individual xze refinement, before TLS and group_ADP refinement, at which point the R\(_{\text{free}}\) reached 28.3% (R\(_{\text{free}}\) = 31.2%) for the Ca\(^{2+}\) model. Finally, the individual_ADP strategy was applied for two cycles of refinement to yield the completed model, for which statistics are reported. Ramachandran analysis places 98.6% of residues in the Ca\(^{2+}\) model in favored or allowed regions of the plot, leaving 1.4% outliers. The final Mg\(^{2+}\) model was obtained by trimming several residues from the base of insertion loop 1, and omitting 3 bp of the duplex DNA extruding from the molecule in the 5′ primer direction, before refinement was run similarly in Phenix. The completed Mg\(^{2+}\) model identifies 99.3% of residues in the favored or allowed region of the Ramachandran plot, with 0.7% outliers.

Variant production and biochemical analysis. Variant pol θ constructs were generated by site-directed mutagenesis with the QuikChange XL kit (Stratagene). Biochemical reactions were conducted by preincubation of the primer-template (250 nM) with pol θ variants (125 nM) in 20 mM Tris-HCl buffer, pH 8.0, 25 mM KCl and 1 mM β-mercaptoethanol, before addition of deoxynucleotides (500 μM each or individually) and 10 mM MgCl\(_2\). Aliquots were quenched at the indicated time points by mixture with equal parts of a quench solution made of 95% formamide, 20 mM EDTA and trace bromphenol blue. Products were separated on a SequaGel UreaGel (National Diagnostics) denaturing sequencing gel (12%) and visualized by excitation of a 5′-tetrachlorofluorescein tag on the primer strand at the 532-nm setting on a PharoFX (Bio-Rad) imaging device. Bands were quantified with QuantityOne (Bio-Rad) and plotted in GNPplot via the function \(\Sigma_i \times \rho_i\), where \(\rho_i\) is the normalized density of the band corresponding to the ith extension product, to yield the average extension of the primer strand in fractional nucleotides.

52. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).
53. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
54. Headd, J.J. et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. D Biol. Crystallogr. 68, 381–390 (2012).
55. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

The Mg\(^{2+}\) crystal form diffracted to similar resolution as the Ca\(^{2+}\) form but was plagued by a strong off-origin native Patterson peak consistent with an NCS translation of (0.1, −0.5, 0.5) fractional units, which was verified by molecular replacement in the space group P2\(_1\)2\(_1\)2\(_1\), with the Ca\(^{2+}\) structure as a search model. The identical NCS two-fold dimeric configurations were resolved, as observed of crystals grown in Ca\(^{2+}\), although in this case a single dimer constituted the ASU. The NCS two-folds occurred parallel to the crystallographic 2\(_z\) screw operator along c, which gave rise to pseudosymmetry and potential twinning (Fig. 6d). Refinement against potential twin laws in all related monoclinic cells failed to improve refinement statistics, however, and twinning was ruled out, despite the presence of suspect intensity distribution. Moreover, the electron density maps were of lesser quality. Nevertheless, phases obtained by refining the rigid-body solution of the Mg\(^{2+}\) crystal form in Phenix55 proved useful in generating cross-crystal density-modified NCS-averaged maps, which provided high-quality electron density for side chain placement in the final model and helped resolve ambiguities in the tracing of the inserts and N-terminal exonuclease-like subdomain. Phases calculated from the transformed model also allowed visualization of anomalous peaks at 4.6 Å, owing to selenomethionine substitution in the SeMet Mg\(^{2+}\) crystal form, and thereby provided invaluable verification of the backbone trace in the N-terminal domain and insertion element 2.