Yield, flesh parameters, and proximate and fatty acid composition in muscle tissue of wild and cultured Vieja Colorada (*Cichlasoma festae*) in tropical Ecuadorian river

Martin A. González1, Elena Angón2, Jorge Rodríguez1, Ángel Moya1, Antón García1 and Francisco Peña2

1 Universidad Técnica Estatal de Quevedo. Dept. Control de Calidad, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsáchilas, 120501 Quevedo, Ecuador. 2 Universidad de Córdoba. Dept. Producción Animal, Ctra. Madrid-Cádiz Km. 396-a. 14071 Córdoba, Spain. 3 Ministerio de Agricultura, Ganadería, Acuacultura y Pesca (MAGAP), Av. Amazonas y Av. Eloy Alfaro, 170516 Quito, Ecuador.

Abstract

This study was conducted to determine the composition of cultured and wild *Cichlasoma festae* in Ecuador. The mean slaughter yield and dress-out were similar for cultured and wild specimens and the average fillet fat content for cultured fish was significantly higher compared to the wild fish. The pH, fillet color, drip loss and cooking loss were similar between populations. Significant differences were found in protein, lipid and ash content in both studied populations. This study showed that saturated fatty acid (SFA) was higher than sum of monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both populations. Palmitic, oleic and linoleic acids had the maximum percentage of SFA, MUFA and PUFA respectively. In cultured and wild fish was also found to differ in the PUFA/SFA, docosahexaenoic acid/eicosapentaenoic acid, n-3/n-6 ratios and atherogenicity and thrombogenicity indices. Minerals included Ca, P, K, Mg, Zn, Fe, Cu and Mn. There were significant differences in the first six ones. The production system (cultured or wild) influences significantly most of the analyzed characteristics of carcass and flesh of *C. festae*. These results provide valued nutritional information of native species to produce sources of food with low-fat and high-protein, and safety food for the consumers in Ecuadorian country.

Additional key words: freshwater fish; omega-3 fatty acids; proximate analysis; minerals.

Abbreviations used: ALA (α-linolenic acid); BHT (butylated hydroxytoluene); DHA (docosahexaenoic acid); EPA (eicosapentaenoic acid); FAME (fatty acid methyl esters); FID (flame ionization detector); IA (index atherogenicity); IT (index thrombogenicity); MUFA (monounsaturated fatty acid); PUFA (polyunsaturated fatty acid); SFA (saturated fatty acid); WHC (water holding capacity).

Authors’ contributions: Conceived and designed the experiments, and wrote the paper: EA, MAG, FP. Performed the experiments: MAG, JR, AM. Analyzed the data: EA, MAG. Contributed reagents/materials/analysis tools: EA, FP, AG. All authors read and approved the final manuscript.

Citation: González, M. A.; Angón, E.; Rodriguez, J.; Moya, A.; Garcia, A.; Peña, F. (2017). Yield, flesh parameters, and proximate and fatty acid composition in muscle tissue of wild and cultured Vieja Colorada (*Cichlasoma festae*) in tropical Ecuadorian river. Spanish Journal of Agricultural Research, Volume 15, Issue 3, e0604. https://doi.org/10.5424/sjar/2017153-10271

Introduction

Nowadays, fish products freshness and quality has become the key strategic priority for the fish industry. Consumers are increasingly aware of fish benefits for human health, and always ask for high quality products. For their nutritional characteristics, fish is considered an excellent source of high quality protein, essential minerals and low-fat product. Among other properties fish is the best source of polyunsaturated long chain omega-3 fatty acids, which are beneficial to human health. Highlights include eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) that although can be synthesized in the human body by α-linolenic acid (ALA, 18:3n-3), their efficiency is rather low (Domenichiello et al., 2015) and their inclusion in the human diet is essential (Luczynska et al., 2014). They both recognize the positive effect of consumption of fish and fish oils on human health. Numerous studies confirm the reduction of the incidence of many diseases, including cardiovascular disease, psychiatric and mental illness. Regarding minerals, fish meat is considered a source of calcium and phosphorus, as well as iron and copper (Izquierdo et al., 2001).
In Ecuador, fisheries have progressively increased and contribute 7% to the total supply of animal protein. In 2011 fishery production was about 663,600 tonnes of which 391,700 tonnes were derived from capture fisheries and 308,900 tonnes from aquaculture. Aquaculture in Ecuador is a source of employment and foreign exchange for the country that contributes to poverty alleviation, food security and maintains the livelihoods (FAO, 2014). The main species of fish that are caught on the coast and Ecuadorian Amazon are vieja colorada (Cichlasoma festae), vieja azul (Aequidens rivulatus), bocachico (Prochilodus magdalenae), dama (Brycon alburnus), ratón (Leporinus ecuadoriensis), huanchiche (Hoplias microlepis) and dica (Lebiasina bimaculata) among others (FAO, 2014). Cichlasoma festae, among the freshwater fish (Boulenger, 1899), is a teleost fish native to the continental South America, with a high presence in Ecuador. It is among the nine commercially important species that inhabit the inland waters of Ecuador, Colombia and Peru and can be found in rivers, lakes, ponds and dams (Revelo & Elias, 2004; Pacheco & Chicaiza, 2008). It is noted for its white meat, excellent taste and high acceptance in local cuisine (Barnhill et al., 1974). In order to produce and preserve this native species, a conservation programme for native species was developed by the Subsecretaria de Acuacultura of the Ecuadorian Ministerio de Agricultura, Ganadería, Acuacultura y Pesca (MAGAP). According to Revelo & Elias (2004), the cultivation of C. festae is becoming more and more popular due to its good growth rate, fecundity, ease of manipulation, ability to grow under suboptimal environmental conditions, disease resistance and good consumer acceptance.

The increase in world population demanding high amount of fish protein makes it necessary to develop research to increase knowledge of systems and aquaculture products nutritionally (FAO, 2008). According to Tvetérás et al. (2012) it is estimated that about 3 billion people consume meat of fish and other marine organisms as the main source of protein.

According to Gonzalez-Artola (2004) is important for farmers to know the differences between cultured and wild fish of different species; this could lead them to understand the chemical, physical, nutritional and sensorial profiles of the wild animal and try to reproduce it in their farmed products. Although comparisons of the morphology between cultured and wild fishes from several species have already been carried out by several authors (Solomon et al., 2015; González et al., 2016), differences based on nutritional composition among cultured and wild C. festae stocks, have not been studied yet.

Hence, the aim of this study was to compare the carcass and fillet characteristics, fatty acid composition and nutritional value in muscle tissue of wild and cultured of Cichlasoma festae, a native species of Ecuador.

Material and methods

Study area

The study was conducted in three areas of the Babahoyo River and the fish farm center located in the Province Los Rios (Ecuador). The area has a tropical climate with an average temperature of 25°C, an annual rainfall of 2400 mm and a relative humidity of 82%. The salinity of water, both in the river and the fish farm, does not exceed 0.1%, the pH was between 7.0 and 7.29, the range of temperature is 19.7ºC and 24.7ºC cultured fish, while the dissolved oxygen in the river and fish farm is between 6.8 and 8.9 mg/L, respectively. The conductivity values are about 145 mS/cm.

Collection of specimens, sampling and slaughter

One hundred matured fish samples (following the rules described by Konings, 1989) of C. festae comprising of 50 individuals from natural origin (wild population) and 50 from a cultured environment (private fish farms, cultured stock) were collected at dawn over the month of May 2016 with the help of standard fishing gears like cast and hand nets. Since male and female could not be differentiated morphologically, sexing of the sampled fish was not carried out. Specimen collection was performed weekly by purchasing representative samples of the two selected populations from local fishermen (wild fish) or fish farm (cultivated fish). Wild fishes were caught from three different locations within their natural geographic distributions in Babahoyo River (Provincia de los Ríos, Ecuador). Cultured fishes were collected from fish farm. Just after catching, the fish specimens were kept in a glass flow through aquaria with continuous air and filled with 200 L of dechlorinated tap water, transported alive and housed in two masonry tanks (capacity of 500 L) (dissolved oxygen = 6.20 ± 0.0 mg/L, temperature = 20.5 ± 0.2 °C and pH = 5.6 ± 0.1). The fish rested for 48 h before the experiment, with fasting time of 24 h before stunning. On the day of the experiment, the water in the tank was reduced by half; the fish were quickly caught with a net and transferred to a plastic box (100 L) and kept indoor. For stunning, the fish were placed at the same time in a mixture of 40 L of ice and 40 L of water (0.8 °C) until the apparent stunning (20 min) was over. After
Effect of fisheries systems on flesh characteristics

Spanish Journal of Agricultural Research

September 2017 • Volume 15 • Issue 3 • e0604

Fish. The colour variables calculated were L*, a* and b* where L* describes lightness (+L* = white, -L* = black), a* red-green chromaticity (+a* = red, -a* = green) and b* yellow-blue chromaticity (+b* = yellow, -b* = blue) as recommended by CIE (1976). For each fillet, three measurements (along the length of the fillet) were done on the interior part of fillet, and values were combined to one mean value per fish for each of the three colour variables measured.

Water holding capacity (WHC) was determined using the method described by Grau & Hamm (1953) and it was measured in two ways: drip loss and cooking loss. To determine drip loss, two cubes of 10 mm × 10 mm × 20 mm were cut of fresh muscle.

The cubes were suspended on a pin inside a sample bottle (200 mL) taking care that the meat did not touch the sides of the bottle and stored for 24 h at 2 ± 1°C. The amount of drip measured between 24 h and 48 h postmortem, as the difference between the sample mass before and after, was expressed as a percentage of the starting mass:

\[\text{Drip loss (\%) = \frac{\text{Final weight} - \text{Initial weight}}{\text{Initial weight}} \times 100}\]

To evaluate cooking loss, the samples (~ 30 g) were trimmed of external fat, weighed prior to cooking, placed in a polyethylene bag and immersed in a water bath (JP Selecta, Barcelona, Spain) at 80°C until the internal temperature of sample reached 70°C. The temperature was repeatedly monitored by a Type K flexible high-temperature thermocouple (Hanna Instruments, USA) inserted into the geometric centre of each piece. Once the samples were cooled at room temperature (approximately 15°C) for 40 min, they were re-weighed (after gently blotting on filter paper). Cooking loss percentage was calculated as follows:

\[\text{Cooking loss (\%) = \frac{\text{Weight cooked meat}}{\text{Weight raw meat}} \times 100}\]

Proximate analyses

Muscle samples were homogenized using a 20000 rpm grinder. Wet, crude protein, total fat and ash percent of fish raw meat were determined according to AOAC (2000). The crude protein content was measured by the block digestion method (UNE 55-020), ashing was done at 550 °C for 24 h (ISO R-936), and the moisture content was determined by drying at 102 °C for 24 h (ISO R-1442). Fat percentage was measured according to the Soxhlet method (ISO R-1443) using a Foss Tecator AB Soxtec 2050. Analyses were determined in duplicate, according to the mean value of two determinations and expressed in mg per 100 g of raw meat.
Fatty acid analysis

Skinned and deboned muscle from individual fish was blended into homogeneous flesh and total lipid was extracted with chloroform/methanol (2:1 v/v) containing 0.01% of butylated hydroxytoluene (BHT) as antioxidant (Folch et al., 1957). The organic solvent was evaporated under a stream of nitrogen and the lipid content was determined gravimetrically. Aliquots of the lipids extracted were converted to fatty acid methyl esters (FAME) according to Chistie (1993). FAME were separated and identified on GC Perkin Elmer Clarus 500 gas chromatograph with a flame ionization detector (FID) equipped with a TR-FAME capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness, Shinwa Inc.), using helium as a carrier gas at a flow rate of 0.5 mL/min. The injection and detector were maintained at 250 and 260 ºC, respectively. The oven temperature was programmed at 100 ºC, followed by an increase of 2 ºC/min to 220 ºC, with a final hold time of 20 min. Individual fatty acids were identified by comparing their retention times with those of a standard fatty acid mix Sulpeco 37 (Sigma Chemical Co. Ltd., Poole, UK). Nonadecanoic acid methyl ester (19:0 ME) was used as an internal standard. Individual fatty acids were expressed as a percentage of total fatty acids identified and mg/g muscle raw tissue of fish, and grouped as follows: saturated fatty acid (SFA), monounsaturated (MUFA), polyunsaturated fatty acid (PUFA), n-6 and n-3. The PUFA/SFA, DHA/EPA, ∑n-6/∑n-3, atherogenicity (IA) and thrombogenicity (IT) indices were also calculated. IA indicates the relationship between the sum of the main saturated fatty acids and that of the main classes of unsaturated, the former being considered pro-atherogenic (favoring the adhesion of lipids to cells of the immunological and circulatory system), and the latter anti atherogenic (inhibiting the aggregation of plaque and diminishing the levels of esterified fatty acid, cholesterol, and phospholipids, thereby preventing the appearance of micro and macro coronary diseases). Finally, IT shows the tendency to form clots in the blood vessels.

IA and IT indices were calculated by using the Ulbricht & Southgate (1991) equations as follows:

\[
IA = \frac{(\text{C16:0}) + (4 \times \text{C14:0}) + (\text{C18:0})}{(\text{PUFA} - \text{n-6 and n-3}) + \text{MUFA}}
\]

\[
IT = \frac{(0.5 \times \text{MUFA}) + (0.5 \times \text{PUFA} - n-6) + (2 \times \text{PUFA} - n-3) + (\text{PUFA} - 2/\text{PUFA} - n-6)}{(\text{C14:0}) + (\text{C16:0}) + (\text{C18:0})}
\]

Trace mineral analysis

Approximately 1 g of fish raw meat was subjected to the wet mineralisation by Kjeldahl method using a mixture of nitric and sulphuric acid (2:1, w/w) according to Alasalvar et al. (2011). Mineral contents were determined by plasma absorption spectrometer using a 200-DV (Perkin-Elmer, Waltham, USA). The following elements were measured: potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), phosphorus (P), iron (Fe), zinc (Zn) and copper (Cu). Analyses were determined in duplicate, according to the mean value of two determinations and expressed in mg per 100 g of fish raw meat.

Statistical analysis

A total of 100 fish flesh samples were analysed for different parameters. Normal distribution was checked for all data with Kolmogorov-Smirnoff test and homogeneity of the variances with the Levene test. After verification of normal distribution, the effect of the production system (wild and cultured) on carcass and fillet characteristics, fatty acid composition and nutritional value was evaluated using one-way ANOVA with the production systems as the fixed effect. Statistical treatment of the data was done by calculating means and standard error of mean. Differences were considered statistically significant at \(p < 0.05 \). The statistical data were obtained using SPSS software, version 15.0 (IBM, Chicago, IL, USA).

Results

Biometric and yield parameters

Body yield of *C. festae* under two production systems is shown in Table 1. The coefficient of variation (data not show) ranged from 12.66% for flesh to 39.97% for guts, with mean values of 14.83% and 15.60% for head and skin + bones, respectively. One way ANOVA showed differences \((p<0.05) \) among head, skin + bones and flesh percentages of cultured and wild fish samples. The percentage of head was significantly \((p<0.05) \) higher in wild fish, while the percentages of skin + bones and flesh were higher in cultured fish. However, no significant differences were found among guts percentage, slaughter yield and dress-out. The edible portion represents 29.2% of fish weight, higher in cultured compared to wild.

Flesh quality

The flesh quality characteristics of *C. festae* are shown in Table 1. The coefficient of variation did not exceed 3% at pH values, it was about 10% in L*, 21% by cooking loss, 35% for drip loss and exceeded 45% in a* and b* (data not show). The pH postmortem was
the main factor which influences the quality of meat. In the first one hour postmortem, the pH dropped from 7.15 to 6.72, 7.13 to 6.74 and 7.17 to 6.69 in the total population, cultured and wild fish, respectively. This fall took place mainly in the first 2 h postmortem (from 7.15 to 6.73, 7.13 to 6.72 and 7.17 to 6.74, respectively). Chromatic variables (L^*, a^*, b^*), drip loss and cooking loss ranged from 41.8 to 71.8, from 1.35 to 9.91, from -2.44 to 11.34, from 1.09 to 4.81 and from 19.44 to 47.27, respectively (data not shown). L^*, a^*, b^* values indicate a pale meat with high L^* value (have a tendency to white), low a^* value and low b^* value. None of the variables showed significant differences ($p>0.05$) among populations.

Proximate analysis

The results of proximate analysis of muscle tissue of *C. festae* samples are shown in Table 1. The cultured fish had higher ($p<0.05$) crude protein, total fat and ash percentages compared to wild specimens. There was no significant difference of wet in muscles between cultured fish with wild fish.

Table 1. Biometric, yield parameters, flesh quality characteristics, water holding capacity and proximate composition of cultured and wild *Cichlasoma festae*.

Variables	System	
Biometric and yield parameters (%)	Cultured (n=50)	Wild (n=50)
Head	36.06 ± 0.69a	41.44 ± 0.72b
Guts	4.48 ± 0.29a	4.72 ± 0.22a
Skin + bones	31.09 ± 0.59a	28.79 ± 0.67b
Flesh	30.66 ± 0.45a	27.72 ± 0.49a
Slaughter yield	95.52 ± 0.29a	95.28 ± 0.22a
Dress-out	4.74 ± 0.32a	4.98 ± 0.24a
Flesh quality characteristics and water holding capacity		
pH$_0$	7.13 ± 0.02	7.17 ± 0.03
pH$_2$	6.72 ± 0.02	6.74 ± 0.03
pH$_{12}$	6.74 ± 0.03	6.69 ± 0.03
L^*	53.77 ± 0.67	55.27 ± 0.91
a^*	4.52 ± 0.32	4.50 ± 0.29
b^*	5.71 ± 0.42	6.15 ± 0.34
Drip loss (%)	2.75 ± 0.13	2.65 ± 0.12
Cooking loss (%)	30.87 ± 0.96	30.69 ± 0.85
Proximate composition (g/100 g wet weight)		
Wet	78.84 ± 0.34a	79.27 ± 0.26a
Protein	17.86 ± 0.27a	16.80 ± 0.21b
Fat	2.03 ± 0.01a	1.96 ± 0.02b
Ash	1.42 ± 0.01a	1.29 ± 0.01b

Results are expressed as means ± SEM (standard error of mean). pH$_0$ = pH at slaughter; pH$_2$ = pH at 2 h postmortem; pH$_{12}$ = pH at 12 h postmortem; L^*, a^* and b^* = instrumental parameters color (CIE L^*, a^*, b^*). a,b Within a row, means with different superscripts are significantly different ($p<0.05$).

Fatty acid analysis

The fatty acid profiles of cultured and wild *C. festae* are listed in Table 2. In the present study, more abundant saturated fatty acids were palmitic (27.91%), stearic (9.0%) and myristic (7.12%) fatty acids. Monounsaturated oleic acid was the most abundant (19.74%) fatty acid in fish muscle samples, and linoleic acid was the most abundant (8.19%) polyunsaturated fatty acid. Muscle tissue of *C. festae* included 55.7% saturated, 21.2% monounsaturated and 23.2% polyunsaturated fatty acids.

Besides, significant differences ($p<0.05$) were found in the content of most of the fatty acids analyzed.
Table 2. Fatty acid composition (in mg/g; % in parenthesis) of cultured and wild *Cichlasoma festae*.

Fatty acid and indices	Cultured (n=50)	Wild (n=50)
C6:0	0.46 ± 0.02\(^*\) (0.042 ± 0.02\(^*\))	0.29 ± 0.01\(^a\) (0.030 ± 0.001\(^b\))
C8:0	1.55 ± 0.05\(^a\) (0.143 ± 0.005\(^a\))	1.49 ± 0.03\(^a\) (0.151 ± 0.003\(^a\))
C10:0	2.12 ± 0.10\(^a\) (0.197 ± 0.010\(^a\))	2.94 ± 0.05\(^b\) (0.297 ± 0.006\(^b\))
C12:0	18.82 ± 0.20\(^b\) (1.747 ± 0.021\(^b\))	19.26 ± 0.68\(^b\) (1.942 ± 0.69\(^b\))
C14:0	66.06 ± 0.99\(^b\) (6.129 ± 0.099\(^b\))	92.32 ± 1.18\(^b\) (9.305 ± 0.24\(^b\))
C15:0	16.44 ± 0.19\(^b\) (1.523 ± 0.016\(^b\))	19.07 ± 0.31\(^b\) (1.921 ± 0.031\(^b\))
C16:0	289.89 ± 3.44\(^b\) (26.838 ± 0.250\(^b\))	288.53 ± 5.19\(^b\) (28.975 ± 0.397\(^b\))
C18:0	103.57 ± 1.08\(^b\) (9.596 ± 0.087\(^b\))	83.53 ± 1.03\(^b\) (8.409 ± 0.091\(^b\))
C20:0	17.72 ± 0.26\(^b\) (1.644 ± 0.026\(^b\))	16.97 ± 0.19\(^b\) (1.711 ± 0.019\(^b\))
SFA	573.17 ± 3.72\(^b\) (53.104 ± 0.215\(^b\))	581.12 ± 5.54\(^b\) (58.460 ± 0.296\(^b\))
C16:1 n-7	30.19 ± 0.61\(^b\) (2.798 ± 0.055\(^b\))	38.27 ± 0.54\(^b\) (3.855 ± 0.035\(^b\))
C18:1 n-9	244.15 ± 2.39\(^b\) (22.617 ± 0.182\(^b\))	167.15 ± 1.49\(^b\) (16.854 ± 0.171\(^b\))
MUFA	274.35 ± 4.42\(^b\) (25.415 ± 0.185\(^b\))	205.43 ± 3.89\(^b\) (20.709 ± 0.180\(^b\))
C18:2 n-6	100.38 ± 1.77\(^b\) (9.307 ± 0.163\(^b\))	70.12 ± 1.44\(^b\) (7.066 ± 0.145\(^b\))
C18:3 n-3	31.59 ± 0.45\(^b\) (2.929 ± 0.042\(^b\))	33.01 ± 0.43\(^b\) (3.326 ± 0.044\(^b\))
C20:4 n-6	35.05 ± 0.32\(^b\) (3.235 ± 0.036\(^b\))	33.76 ± 0.59\(^b\) (3.403 ± 0.061\(^b\))
C20:5 n-3 (EPA)	19.58 ± 0.33\(^b\) (1.815 ± 0.030\(^b\))	22.89 ± 0.42\(^b\) (2.307 ± 0.043\(^b\))
C22:6 n-3 (DHA)	45.15 ± 1.56\(^b\) (4.178 ± 0.139\(^b\))	46.91 ± 1.01\(^b\) (4.728 ± 0.102\(^b\))
PUFA	231.75 ± 3.01\(^b\) (21.481 ± 0.204\(^b\))	206.69 ± 2.03\(^b\) (20.831 ± 0.198\(^b\))
PUFA/SFA	0.41 ± 0.01\(^b\)	0.36 ± 0.01\(^b\)
DHA/EPA	2.33 ± 0.01\(^b\)	2.08 ± 0.01\(^b\)
n-3/n-6	0.717 ± 0.015\(^b\)	0.998 ± 0.017\(^b\)
Atherogenicity index (AI)	1.134 ± 0.012\(^b\)	1.647 ± 0.022\(^b\)
Thrombogenicity index (TI)	0.739 ± 0.008\(^b\)	0.838 ± 0.013\(^b\)

\(^a\) SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids. Results are expressed as means ± SEM (standard error of mean). \(^b\) Within a row means with different superscripts are significantly different (p<0.05).

between cultured and wild fish except for caprylic, lauric, palmitic, SFA, DHA and arachidonic contents which were similar (p>0.05) between systems.

Trace mineral analysis

Table 3 shows the trace mineral composition of the meat of cultured and wild *C. festae*. P, K and Ca were predominant elements among eight minerals analysed and constituted 95.3% and 95.4% of total trace minerals content in cultured and wild *C. festae*, respectively. P, Ca, Mg were higher (p<0.05) in cultured fish compared with wild fish. However, the content of K, Fe and Zn were lower in cultured fish. No significant differences (p>0.05) were found in Cu and Mn content.

Discussion

This study investigated the performance, flesh quality, fatty acids profile and traces minerals of wild and cultured of *C. festae*. The results are important since they provide valuable nutritional information in order to produce sources of low-fat, high-protein, and safety food for the consumers in Ecuadorian country.

Biometric and yield parameters

The skeletal muscle (fillet or flesh) is the major part of the edible portion of fish and flesh yield depends on the species, sex and size, structural anatomy of the fish and farming conditions. In the present study, flesh yield was much lower than those presented for tilapia.
Effect of fisheries systems on flesh characteristics

(Oreochromis sp.) (33%) and channel catfish (Ictalurus punctatus) (>38%) and similar to the 32% reported by Neto et al. (2012) in Pacu (Colossoma bidens) and Tambaqui (Colossoma macropomum) fish. Based on production systems, the flesh yield obtained was higher in cultured fish than wild fish (Table 1) and similar than those presented by Sulieman & James (2011) for Nile Tilapia (Oreochromis niloticus) who reported values higher in farmed fish than in wild fish (37.1% and 32.2 % respectively). However, the results were lower than those presented by Rørå et al. (2001) who indicated values between 40% and 70% in cultured system. The values for flesh yield and dress-out did not agree with Intarak et al. (2015) who indicated that dress-out and flesh yield did not change with slaughter weight.

The differences in yield of different part of body could have been caused by the slaughter weight and to food. In addition, factors inherent to cichlids such as the anatomical body shape, head size and final weight influenced in the yield body in these species (Rojas-Runjaic et al., 2011).

Flesh quality

The values for pH postmortem, chromatic variables (L*, a*, b*), drip loss and cooking loss were not influenced by production system (Table 1). The pH postmortem is the most important factor which influences the texture of meat; minor changes in pH impact dramatically the connective tissue properties (Huss, 1995). The pH could be considered as an appropriate index of quality control of fish meat. In this study, the drop of pH within 12 h after death was in accordance with Robb et al. (2000) and Roth et al. (2009) who reported that muscle pH displayed a rapid decline in muscle pH during the first 12 h postmortem, then between 12 and 24 h decline was less pronounced and from 24 h pH did not show variations, indicating that the fish were reaching its end pH.

The values obtained for drip losses and cooking losses were higher than those found by Wangtueai & Vichasilp (2015) in Nile tilapia, who reported cooking and drip losses values fluctuating between 17.78% - 26.37% and 0.7 - 3.95%, respectively. Intarak et al. (2015), in Panga fish (Pangasius bocourti Sauvage), reported values of 4.88% to 2.88% for drip loss, with significant decreases with increasing live weight.

L*, a* and b* value indicate a pale meat and the results obtained in this study were similar that those presented by Rørå et al. (2012), the protein (17.4 - 17.9%) and ash (1.38 - 1.59%) contents were similar than our results, while the moisture (75.2 - 76.9%) and total fat (2.48 - 4.88%) contents were lower and higher, respectively. In general, the wet contents in the muscle fish of this study were

Table 3. Mineral contents (mg/100 g) of fish raw meat from cultured and wild Cichlasoma festae

Mineral	All data (n=100)	Cultured (n=50)	Wild (n=50)
P	156.23 ± 1.55	166.39 ± 1.52a	146.07 ± 1.84a
K	101.05 ± 0.87	94.28 ± 0.94a	107.81 ± 0.94a
Ca	189.05 ± 2.26	193.15 ± 3.61a	184.95 ± 2.63a
Mg	14.53 ± 0.20	16.26 ± 0.17a	12.80 ± 0.12a
Cu	0.23 ± 0.01	0.23 ± 0.01a	0.24 ± 0.01a
Fe	2.54 ± 0.05	2.08 ± 0.03a	2.99 ± 0.04a
Zn	4.05 ± 0.16	3.24 ± 0.19a	4.86 ± 0.20a
Mn	0.15 ± 0.01	0.15 ± 0.01a	0.16 ± 0.01a

Results are expressed as means ± SEM (standard error of mean). Within a row, means with different superscripts are significantly different (p<0.05).

The proximate composition of fish is affected by a diversity of factors such as: size, temperature, salinity, production system and feeding among other (Gonzalez-Artola, 2004). The normal variations between the constituents in fish are: 66 - 81% for wet, 16 - 21% for protein, 0.2 - 25% for fat and 1.2 - 1.5% for ash (Chandrashekar & Deosthale, 1993).

The results obtained in this study were similar that those obtained for Nile tilapia (Michelato et al., 2016). In a study in Turkey of cultured Oncorhynchus mykiss (Mashaii et al., 2012), the protein (17.4 - 17.9%) and ash (1.38 - 1.59%) contents were similar than our results, while the moisture (75.2 - 76.9%) and total fat (2.48 - 4.88%) contents were lower and higher, respectively. In general, the wet contents in the muscle fish of this study were...
within the range reported by Jebene & Chaudhry (2011) and Campagnoli de Oliveira et al. (2010). Fat content was affected by production systems and this variation in the total fat content was consistent with the conclusions of González-Artola (2004) and Jebene & Chaudhry (2011). Fish is often classified on the basis of their fat content into lean fish (fat<2%), low fat fish (fat = 2 - 4%), medium fat fish (fat = 4 - 8%) and high fat fish (fat>8%) (González-Artola, 2004). Based on this classification, C. festae is considered a lean fish (Table 1).

In this study, crude protein of 17.33% wet weight was similar than protein levels for common carp (Cyprinus carpio) (16% wet weight; FAO, 2008) but much lower within the range of 18.64 - 22.7% and 18.4 - 20.8% reported for the Cichlidae family by Perea et al. (2008) and Sulieman & James (2011) and respectively. According to Hernandez & Aguilera (2012) ash content (1.36% wet weight) observed in this study was located within the ranges reported and was affected by production systems.

Fatty acid

Fish suffers changes in body composition in response to diet and environmental conditions, and the differences found in fatty acid composition between production systems could be attributed to differences between condition in captivity and in the wild.

More than 50% of the SFAs identified, palmitic acid (C16:0) was the most abundant, ranging from 26.8% to 28.9%. Other studies also reported this fatty acid as the most abundant (Aggelousis & Lazos, 1991). Caproic (C6:0), capric (C10:0), myristic (C14:0), pentadecanoic (C15:0), stearic (C18:0) and arachidic (C20:0) acids were significantly different between systems but no significant differences were found for total SFAs. Oleic acid was the principal MUFA in both systems. Difference was observed between cultured and wild fish. Alasalvar et al. (2011) also reported oleic acid as the most abundant of the MUFAs.

Regarding to PUFA content, linoleic acid (C18:2n - 6) was the dominating fatty acids according to results found by Jebene & Chaudhry (2011) for Cyprinus carpio, Labeo rohita and Oreochromis mossambicus in Indus River (Pakistan). Linoleic acid values were different (p<0.05) among systems, being higher in cultured system.

In n-3 family fatty acids, EPA, DHA and linolenic acid were the most important as Romero et al. (2000) and Mashaii et al. (2012) indicated. According to Leaf & Weber (1988), DHA and EPA are key components for a healthy diet in humans. Although in this study DHA and EPA values were low, it is important to highlight that, contrary to expectations, wild fish had higher EPA content (22.89 mg/g). Finally, suitable choice of dietary lipid in cultured fish will allow improve the fatty acids profile, especially in n-3 PUFAs. In n-6 family fatty acid, linoleic acid was the most important and arachidonic acid (C20:4 n-6) content was higher in cultured fish (p<0.05) and this fatty acid is precursor for prostaglandin and thromboxane biosynthesis aiding the blood clotting process during wound healing (Jabeen & Chaudhry, 2011).

In our study, the SFA content was higher than unsaturated fatty acids. Higher amounts of SFA in the present study might be assumed as a disadvantage of these fish. The n-3/n-6 ratio in this study (0.86) was similar than those found by Hoseini et al. (2013) in farmed Big head carp (Hypophthalmichthys nobilis) and Grass carp (Ctenopharyngodon idella). An increase in the human dietary of n-3/n-6 fatty acid ratio is essential in the diet and nutritionists believe that this ratio should be 0.1 - 0.2 and consider higher ratios (>0.2) more beneficial to human health (FAO/WHO, 1994). Simopoulos (2008) suggested that the n-3/n-6 ratio should be kept between 1:1 and 1:4. Amount of n-3/n-6 in cultured fish was 0.72 and in wild fish 0.99; differences were observed between two production systems (p<0.05). Those results could be due to wild fish probably ingests higher rate of natural foods containing more EPA and DHA.

IA and IT indices are indicators of flesh lipids quality, and were calculated to determine the potential health impact on human consumers. In our study, the mean values of IA and IT indices were 1.39 and 0.86, respectively; higher than those values recorded by Hoseini et al. (2013).

Trace mineral analysis

According to Alasalvar et al. (2011) the concentration of trace minerals in fish is influenced by numerous factors such as seasonal and biological differences, food source and environment. In this study, P, K and Ca were predominant elements among eight minerals analysed and constituted 95.3% and 95.4% of total trace minerals content in cultured and wild C. festae, respectively. The results obtained were similar than those obtained by Ravichandran et al. (2012); P, Ca, Mg, were higher in cultured than wild fish, however K, Fe and Zn were lower in cultured fish. P values were similar than those found by Perea et al. (2008) for Nile tilapia with value fluctuating between 191mg/100 g and 285mg/100 g. Adeniyi et al. (2012) found K values higher in wild fish than farmed fish, in line with the results obtained in this study (farmed fish: 107.8mg/100 g, wild fish: 94.28 mg/100 g). Moreover, Ca and Mg values were higher than those reported by Mogobe et al. (2015) in different freshwater species (Marcusenius altisambesi, Schilbe intermedius, Brycinus lateralis, Oreochromis andersonii, Barbus poechii). In the present study, the Fe values obtained were in consonance with FAO (2001), who indicated adequate
range from 0.23 mg/100 g to 2.1 mg/100 g. Mazumder et al. (2008) defined the decreasing order of magnitude (Zn>Fe>Mn>Cu) which is evident in most of the fishes, while in our work, the Cu content exceeded that of Mn.

Hence, rearing system significantly influences most of the analyzed characteristics of carcass and flesh of C. festae. Overall, cultured C. festae is desirable for its greater flesh yield and appears to be the best diet for its higher content of protein, fat, MUFA, PUFA and PUFA/SFA ratio, and lower SFA content and IA and IT indices. Finally, from a nutritional point of view, C. festae flesh presents very desirable characteristics for human consumption.

References

Adeniyi SA, Orjiekwe CL, Ehiagbonare JE, Josiah SJ, 2012. Nutritional composition of three different fishes (Clarias gariepinus, Malapterurus electricus and Tilapia guineensis). Pakistan J Nutr 11 (9): 793-797. https://doi.org/10.3923/pjn.2012.891.895

Aggelousis G, Lazos ES, 1991. Fatty acid composition of the lipids from eight freshwater fish species from Greece. J Food Comp Anal 4: 68-76. https://doi.org/10.1016/0889-1575(91)90049-C

Alasalvar C, Grigor JM, Ali Z, 2011. Practical evaluation of fish quality by objective, subjective and statistical testing. In: Handbook of seafood quality, safety and health applications; Alasalvar C, Shahidi F, Miyashita K, Wanasundara U (eds.). pp: 13-29. Blackwell Publ. Ltd., New Delhi.

AOAC, 2000. Official methods of analysis (17th edn.). Association of Official Analytical Chemists. Gaithersburg, MD, USA.

Barnhill B, Lopez E, Les A, 1974. Estudio sobre biología de los peces del río Vinces. Instituto Nacional de Pesca. Boletín Científico Técnico III (1): 40.

Boulenger GA, 1899. Poissons de l’Équateur, 2ème partie. Bollettino dei Musei di Zoologia ed Anatomia Comparata della R. Università di Torino 14: 1-8.

Campagnoli de Oliveira PR, Fávaro-Trindade CS, Trindade, MA, de Carvalho JC, Macedo EM, 2010. Quality of sausage elaborated using minced Nile Tilapia submitted to cold storage. Sci Agr 67: 183-190. https://doi.org/10.1590/S0103-90162010000200009

Chandrashekar K, Deosthale YG, 1993. Proximate composition, amino acid, mineral, and trace element content of the edible muscle of 20 Indian fish species. J Food Comp Anal 6: 195-200. https://doi.org/10.1006/jfca.1993.1021

Christie W, 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv Lipid Method 2: 69-111.

CIE, 1976. Colorimetry, Publication n°15. Commission Internationale de l’Éclairage.

Domenichiello A, Kitson A, Richard A, Bazinet P, 2015. Is docosahexaenoic acid synthesis from ω-3-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 59: 54-66. https://doi.org/10.1016/j.plipres.2015.04.002

FAO, 2001. Human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations, Rome.

FAO, 2008. The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Rome.

FAO, 2014. The state of world fisheries and aquaculture. Opportunities and challenges. FAO Fisheries and Aquaculture Department, Rome.

FAO/WHO, 1994. Fats and oils in human nutrition. Report of a joint FAO/WHO expert consultation, 19-26 October 1993, Rome, 168 pp.

Folch J, Lees M, Stanley GH, 1957. A simple methods for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.

González MA, Rodriguez JM, Angón E, Martinez A, Garcia A, Peña F, 2016. Characterization of morphological and meristic traits and their variations between two different populations (wild and cultured) of Ciclaspasma festae, a species native to tropical Ecuadorian rivers. Arch Tierzucht 59 (4): 435-444. https://doi.org/10.5194/aab-59-435-2016

González-Artola S, 2004. Chemical, physical and sensorial compositions of farmed and wild yellow perch (Perca flavescens), southern flounder (Paralichthys lethostigma) and coho salmon (Oncorhynchus kisutch), Faculty of the Virginia Polytechnic Institute and State University, USA. 179 pp.

Grau R, Hamm R, 1953. Eine einfache Methode zur Bestimmung der Wasser bindung in Muskel. Naturwissenschaften 40: 29-30. https://doi.org/10.1007/BF00595734

Hernandez F, Aguilera ME, 2012. Nutritional richness and importance of the consumption of tilapia in the Papaloapan region. REDVET 13: 1-12.

Hoseini M, Baboli MJ, Sary AA, 2013. Chemical composition and fatty acids profile of farmed big head carp (Hypophthalmichthys nobilis) and grass carp (Ctenopharyngodon idella) fillet. AACl Bioflux 6: 202-210.

Huss IH, 1995. Quality and quality changes in fresh fish. FAO Technical Paper, Rome. 348 pp.

Intarik I, Lhasudta P, Jathurasitha S, Wicke M, Kreuzer M, 2015. Effects of slaughter weight on carcass and meat characteristics of punga fish (Pangasius bocourti Sauvage). Agric Sc Procedia 5: 164-169. https://doi.org/10.1016/j.aspro.2015.08.025

Izquierdo P, Torres G, Allara M, Márquez E, Barboza Y, Sánchez E, 2001. Análisis proximal, contenido de aminoácidos esenciales y relación calcio/fosforo en algunas especies de pescado. Rev Cient-Fac Cien V XI (2): 95-100. https://www.saber.ula.ve/bitstream/123456789/27453/2/articulo2.pdf

Jabeen F, Chaudhry AS, 2011. Chemical composition and fatty acid profiles of three freshwater fish species.

Spanish Journal of Agricultural Research September 2017 • Volume 15 • Issue 3 • e0604
Food Chem 125: 991-996. https://doi.org/10.1016/j.foodchem.2010.09.103

Konings A, 1989. Malawi cichlids in their natural habitat. Verduijn Cichlids, Holland & Lake Fish Movies, West Germany.

Leaf A, Weber PC, 1988. Cardiovascular effects of n-3 fatty acids. N Engl J Med 318: 549-557. https://doi.org/10.1056/NEJM19880330180905

Lima DP, Fuzinatto MM, Andretto AP, Braccini GL, Mori RH, Canan C, de Mendoça S, de Oliveira C, Ribeiro R, Vargas L, 2015. Physical, chemical and microbiological quality of fillets and mechanically separated meat, and sensory evaluation of fillets of Nile Tilapia treated with homeopathic product. Afr J Pharm Pharmacol 9: 738-744. https://doi.org/10.5897/AJPP2014.4173

Luczyńska J, Paszczyk B, Luczyński B, 2014. Fatty acids profiles in marine and freshwater fish from fish markets in northeastern Poland. Arch Pol Fish 22: 181-188. https://doi.org/10.2478/apof-2014-0018

Mashaii N, Mosaddegh MH, Sarsangi H, Rajabioupour F, Ghoroghi A, Bitaraf A, Mozaffari H, 2012. Proximate and fatty acid composition in muscle tissues of rainbow trout (Oncorhynchus mykiss) cultured in Yazd province of Iran. Walailak J Sci Tech 9: 317-325.

Mazumder MSA, Rahman MM, Ahmed ATA, Begum M, Hossain MA, 2008. Proximate composition of some small indigenous species (sis) in Bangladesh. Int J Sustain Crop Prod 3: 18-23.

Michelato M, Vitor de Oliveira Vital L, Xavier TO, Batista de Moura L, Alves de Almeida FL, Pedrosa VB, Barrioviera Furuya VR, Massamitu Furuya W, 2016. Dietary lysine requirement to enhance muscle development and fillet yield of finishing Nile tilapia. Aquaculture 457: 124-130. https://doi.org/10.1016/j.aquaculture.2016.02.022

Mogobe O, Mosepele K, Masamba WR, 2015. Essential mineral content of common fish species in Chanoga, Okavango Delta, Botswana. Afr J Food Sci 9: 480-486. https://doi.org/10.5897/AJFS2015.1307

Neto RVR, Serafim MA, Fonseca de Freitas RT, Allaman IB, Mourad NMN, Lago A, 2012. Performance and carcass traits in the diel crossing of pacu and tambaqui. R bras Zootec 41: 2390-2395. https://doi.org/10.1590/S1516-359820120001200002

Pacheco L, Chicaiza D, 2008. Estudio en el Embalse Chongon. Instituto Nacional de Pesca, Ecuador. 21 pp.

Perea A, Gómez E, Mayorga Y, Triana C, 2008. Caracterización nutricional de pescados de producción y consumo regional en Bucaramanga, Colombia. Arch Latinoam Nutr 58: 91-97.

Ravichandran S, Sharmila FR, Kanagalakshmi R, Ramya MS, 2012. Variation in nutritive composition of two commercially important marine fin fishes. Int J Zool Res 8: 43-51. https://doi.org/10.3923/ijzr.2012.43.51

Revelo W, Elias E, 2004. Aspectos biológicos de los principales recursos de aguas continentales, durante febrero y marzo del 2004 en la provincia de los Ríos. Instituto Nacional de Pesca, Ecuador. 21 pp.

Robb DHF, Kestin SC, Warriss PD, 2000. Muscle activity at slaughter: I. Changes in flesh colour and gaping in rainbow trout. Aquaculture 182: 261-269. https://doi.org/10.1016/S0044-8486(99)00273-2

Rojas-Runjaic B, Perdomo DA, García DE, González-Estopiñán M, Corredor Z, Moratínos P, Santos O, 2011. Rendimiento en canal y fileteado de la tilapia (Oreochromis niloticus) variedad Chitralada producida en el estado Trujillo, Venezuela. Zootrop 29: 113-126.

Romero N, Robert P, Masson L, Pineda R, 2000. Fatty acids composition and proximate of 7 fish species of Isla de Pascua (in Spanish). Arch Latinoam Nutr 50: 304-308.

Rora AMB, Morkore T, Einen R, 2001. Primary processing (evisceration and filleting). In: Farmed fish quality. Fishing News Book; Kestin SC & Warriss PD (eds). Blackwell Sci Ltd, Oxford, England. pp: 249-260.

Roth B, Birkeland S, Oyarzun F, 2009. Stunning, pre-slaughter and filleting conditions of Atlantic salmon and subsequent effect on flesh quality on fresh and smoked fillets. Aquaculture 289: 350-356. https://doi.org/10.1016/j.aquaculture.2009.01.013

Rutten M, Bovenhuis H, Komen H, 2004. Modeling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus L.). Aquaculture 231: 113-122. https://doi.org/10.1016/j.aquaculture.2003.11.002

Simopoulos AP, 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233: 674-688. https://doi.org/10.3181/0711-MR-311

Solomon SO, Okomoda VT, Ogbenyikwu AI, 2015. Intraspecific morphological variation between cultured and wild Clarias gariepinus (Burchell) (Clariidae, Siluriformes). Arch Pol Fish 23: 53-61. https://doi.org/10.1515/apof-2015-0006

Sulieman HA, James GK, 2011. A comparative study on the chemical and physical attributes of wild farmed Nile tilapia (Oreochromis niloticus). OJAFR 1: 407-411.

Tveterás S, Asche F, Bellemare MF, Smith MD, Gutormsen AG, Lem A, Vannucci S, 2012. Fish is food-the chemical and physical attributes of wild farmed Nile tilapia (Oreochromis niloticus). FAO's fish price index. Plos One 7: e36731. https://doi.org/10.1371/journal.pone.0036731

Ulbricht T, Southgate D, 1991. Coronary heart disease: seven dietary factors. Lancet 338: 985-992. https://doi.org/10.1016/0140-6736(91)91846-M

Wangueui S, Vichasił C, 2015. Optimization of phosphate and salt application to physical and sensory properties of frozen Nile tilapia fillets. Int Food Res J 22: 2002-2009.