Abstract—Robotic manipulation of cloth has applications ranging from fabrics manufacturing to handling blankets and laundry. Cloth manipulation is challenging for robots largely due to their high degrees of freedom, complex dynamics, and severe self-occlusions when in folded or crumpled configurations. Prior work on robotic manipulation of cloth relies primarily on vision sensors alone, which may pose challenges for fine-grained manipulation tasks such as grasping a desired number of cloth layers from a stack of cloth. In this paper, we propose to use tactile sensing for cloth manipulation; we attach a tactile sensor (ReSkin) to one of the two fingertips of a Franka robot and train a classifier to determine whether the robot is grasping a specific number of cloth layers. During test-time experiments, the robot uses this classifier as part of its policy to grasp one or two cloth layers using tactile feedback to determine suitable grasping points. Experimental results over 180 physical trials suggest that the proposed method outperforms baselines that do not use tactile feedback and has better generalization to unseen cloth compared to methods that use image classifiers. Code, data, and videos are available at https://sites.google.com/view/reskin-cloth.

I. INTRODUCTION

Cloth manipulation remains an active research area in robotics with significant real world applications, including folding laundry [8, 31], assistive dressing [10–12, 55], bed-making [41], and manufacturing fabrics [48]. Cloth manipulation is challenging because it is difficult to infer the complete configuration of the cloth from robot observations when the cloth is in a crumpled or folded state, due to the high degrees of freedom and self-occlusions [3, 39].

In light of these challenges, researchers have recently proposed numerous data-driven methods for canonical cloth manipulation tasks such as smoothing [42, 52] and folding [25, 33, 51]. While showing promising results, many prior works focus on top-down grasping of one cloth. Such grasping may be ineffective for manipulation tasks involving multiple cloths, such as picking a desired number of layers of a stack of cloth, because performance is extremely sensitive to the height of the gripper when it grasps. Indeed, a common failure case reported in prior work [13, 51] is picking the wrong number of layers. Yet, manipulating a specific number of cloth layers is common in daily life, such as in folding and unfolding tasks, or handling piles of stacked clothing in stores. How, then, can robots achieve accurate grasping of multiple layers of cloth?

Incorporating tactile sensing is an under-explored direction for deformable object manipulation. While there has been recent work on optical-based tactile sensors such as GelSight [56] and DIGIT [24], these sensors have primarily been applied to cloth perception [28, 57] instead of cloth manipulation. Recent work on magnetometer-based sensors such as ReSkin [2] have benefits over optical sensors, such as lower-dimensional sensor readings, more direct measurements of normal and shear forces, and a compact form factor. However, research into the applications of magnetometer-based sensors for deformable object manipulation is currently limited.

In this paper, we study the application of magnetometer-based tactile sensing for deformable cloth manipulation. We focus on precisely grasping and lifting layers of stacked cloth; due to the flexibility of cloth and unpredictable crumpling behavior, this task is challenging while being a well-defined manipulation problem. Furthermore, precise grasping of layers of cloth is a prerequisite for many downstream manipulation tasks (e.g., folding cloth in half twice).

We present a robotic system consisting of a 7-DOF Franka arm, a mini-Delta gripper [32], and a Reskin [2] sensor on the gripper finger to perform precise cloth grasping (see Fig. 1). The system uses a tactile classifier as feedback for a grasping policy. We show that simple approaches to both classifying tactile data and incorporating feedback into the policy (e.g., as a termination condition) work surprisingly well.
This paper makes the following contributions:
1) A robot hardware system which incorporates ReSkin tactile sensors for cloth manipulation.
2) A training procedure for developing a classifier based on this hardware to use in a grasping policy.
3) Experiments showing success on the task of grasping a desired number of cloth layers.

II. RELATED WORK

Manipulation of deformable objects such as cloth has a long history in robotics; see Yin et al. [54] and Zhu et al. [59] for representative surveys.

A. Cloth Manipulation Policies

In early research on cloth manipulation, a common strategy was to utilize a bimanual robot to grip cloth in midair to smooth it using gravity. This standardizes the configuration of cloth and exposes its corners, which can then facilitate planning subsequent manipulation tasks such as smoothing and folding [8, 31]. Other researchers have relied on using geometric features of cloth, such as by fitting polygon contours to clothing [34]. While these works showed impressive results, such approaches may be time-consuming or require strong assumptions on cloth configurations.

With the rise of deep learning, researchers have recently employed data driven techniques to obtain large amounts of interaction data with cloth to learn manipulation policies using powerful function approximators, often with the help of simulators [27, 47]. These works tend to learn quasi-static pick-and-place policies, which allow the cloth to settle between robot actions [13, 17, 26, 29, 36, 42, 43, 51–53]. Other researchers have learned continuous servoing policies [33], dynamic policies [15] or have explored learning cloth manipulation from purely real world interaction [25].

In contrast to these works which employ vision-manipulation policies, we focus on tactile sensing for cloth grasping.

B. Grasping for Cloth Manipulation

Perhaps the most important part of cloth manipulation tasks is cloth grasping, since a suitable grasp is necessary for subsequent actions such as dragging or lifting. Defining and identifying ideal cloth grasps remains challenging and is the subject of extensive research [3]. Early cloth manipulation research focused on vertically smoothing via gravity. A common such grasping strategy to reliably standardize cloth was to hold it with one gripper while iteratively grasping the lowest hanging corner with the other gripper [4, 21, 22, 31].

Other cloth grasping techniques do not require assuming that the cloth is lifted in midair. For example Ramisa et al. [38] and Sun et al. [45] determine suitable grasping points for cloth on a flat table by detecting wrinkles and edges using depth and classical computer vision techniques. Other applications of cloth manipulation may utilize specialized gripper designs [23] or may simplify the process by assuming that cloth is gripped in advance of the task [18].

Recently, Qian et al. [37] study how to robustly grasp cloth using dense segmentation of images to distinguish between edges and interior creases. Their method involves a self-supervised labeling procedure and a sliding grasp. Nonetheless, robustly grasping cloth remains challenging, particularly when the goal is to generalize to a wide variety of types and configurations of cloth. Prior work has reported that a typical failure cases is grasping the wrong number of cloth layers, particularly when unfolding [33, 42, 51]. Furthermore, many works employ heuristics such as hand-tuning the gripper design and grasp depth [13].

Prior work has also investigated learning to grasp one cloth from a stack using grasping and scooping actions from vision input only [5], as well as designing a robot system to turn a single book page using vision and force sensing [14]. In this work, we consider the novel task of grasping more than one cloth layer, and show the benefits of tactile sensing without requiring vision.

C. Tactile Sensor Hardware

The robotics community has developed numerous tactile sensors. Examples of sensors include the class of optical-based sensors such as GelSight [56], GelSlim [7], and DIGIT [24], which have been used for cloth perception. For example, Yuan et al. [57] demonstrate how to use active learning to identify where to grasp a garment to classify it among several categories of clothing, and Yuan et al. [58] and Luo et al. [28] study how to combine tactile information with vision to infer properties of cloth. Similarly, Khan et al. [19, 20] use tactile information to classify single fabrics into different material and clothing types using piezoelectric pressure sensors [6]. In addition, Drigalski et al. [9] use tactile sensing and rubbing behavior to classify textiles into one of 18 categories, and can distinguish between 1 or 2 layers. In contrast to these works, we focus on cloth manipulation instead of pure perception, and additionally focus on fine-grained manipulation which may be challenging with sensors such as the GelSight due to their relatively large size.

Other types of robotic tactile sensors include BioTac [46] and stretchable piezoresistive [1] sensors. These sensors are durable, but remain expensive and may not be easily replaceable. Research teams have also explored tactile sensing using a customized force-torque sensor [35] for manipulating deformable blocks [40]. To our knowledge, none of these sensors have been used for cloth manipulation tasks.

Recently, Bhirangi et al. [2] proposed the ReSkin, a class of magnetic sensors which is well suited to machine learning due to its low cost, durability, form factor, ability to cover a large area, and ease of replacement. The researchers demonstrate ReSkin on robotic grasping tasks that involve handling delicate objects such as blueberries and grapes. Due to these advantages and existing applications, we use the ReSkin for novel cloth manipulation tasks that involve fine-grained manipulation of cloth layers.
III. PROBLEM STATEMENT

We study the task of grasping a desired number of layers from a stack of cloths. Given a set of at least 3 cloth layers stacked on each other, the goal is to grasp the top \(k \in \{1, 2\} \) cloth layers. For each trial (a given instance of the task), we specify a target value for \(k \). We assume a robot has a two-finger gripper where one of the gripper tips is equipped with a tactile sensor. We assume each trial begins with the robot’s tactile sensor facing a set of edges from a stack of cloth layers, as shown in Fig. 1. A trial is a success when the robot grasps exactly \(k \) cloth layers and is able to lift its gripper upwards by 4 cm while preserving its grasp of the \(k \) layers.

IV. METHOD

This proposed system for tactile sensing involves designing hardware with tactile data (Sec. IV-A), training a classifier to distinguish grasping cloth layers (Sec. IV-B), then using this classifier for a grasping policy (Sec. IV-C). See Fig. 2 for the overall pipeline.

A. Hardware

The proposed system uses a ReSkin [2] sensor, which comprises of a soft magnetized skin and a circuit board with a 5-magnetometer array (see bottom-left inset of Fig. 2). The board sits beneath the skin, and any deformations caused by normal/shear forces are read via distortions in magnetic fields. For each of the 5 magnetometers, 3 magnetic flux values \(\langle B_X, B_Y, B_Z \rangle \) are reported, corresponding to flux in the X-, Y-, and Z- magnetometer coordinate axes. Concatenating these values for a single time step \(t \) results in a 15-dim vector \(\mathbf{B}^{(t)} \in \mathbb{R}^{15} \). ReSkin publishes these values at up to 400 Hz.

We attach ReSkin to a finger on a mini-Delta gripper [32]. We use the mini-Delta largely due to its length and form factor, since it facilitates grasping a layered stack of cloth layers by approaching it from the side, instead of top-down. The mini-Delta has 3 DOFs for each finger, and is compliant due to the 3D-printed soft links (blue component in Fig. 1), though in this work, we do not rely on the additional DOFs or on compliance. Our contribution centers on tactile sensing for grasping of cloth layers, and we leave investigation of exploiting additional DOFs and compliance for future work. The gripper and attached sensor are mounted on a 7-DOF Franka robot.

B. Grasp Classifier Training

We train a classifier to predict the number of cloth layers grasped to use as part of the grasp policy (Sec. IV-C). The classifier takes as input a tactile reading from a single time step \(\mathbf{B}^{(t)} \). While analyzing sensory data across a time series seems natural for the tactile modality, we find that predictions based on point estimates are surprisingly effective, as we later show in Sec. VI. We do not take proprioceptive data as input, as this modality is not currently available with the mini-Delta gripper: the compliant links can bend from their commanded position given sufficiently high external force, and estimating proprioception for these types of compliant links is an area of active research.

The classifier uses the tactile readings to predict how the gripper is interacting with the cloth, among 4 classes: (1) pinching with no cloth between the fingers, (2) pinching 1 cloth layer, (3) pinching 2 cloth layers, and (4) pinching 3 cloth layers. We limit the number of cloth layers under consideration to 3 to make classification tractable, while also allowing feedback-based policies to recover if they overshoot when grasping two layers. We leave classifying an arbitrary number of layers to future work.

We collect training data in the real world for the classifier due to the lack of a suitable simulator.\(^1\) We define a single

\(^1\)While there has been progress in developing high-fidelity simulators for tactile sensors [44, 50] and for deformables [27, 30], simulating both is challenging and to our knowledge has not yet been shown.
“training episode” as the process of getting a set of tactile data from one grasp. First, a human stacks several layers of cloth with edges facing the gripper. The height at which the robot approaches the cloth is uniformly sampled per attempt within a ±2 mm range to collect a variety of grasps. The robot then approaches the cloth, closes its fingertips to grasp firmly, records ReSkin data during the grasp, then releases. Each training episode lasts roughly 5 seconds and produces approximately 350 sensor readings of 15 values each (3 per magnetometer). We visually inspect videos from the recorded data to determine the number of grasped cloth layers, and we label all points from a training episode with the same label, speeding up annotation time and effort. See Fig. 3 for example visualizations of training episodes for all classes.

We then use this collected data to train a classifier to distinguish the numbers of layers grasped from the tactile readings. We experimented with various types of classifiers, including k-Nearest Neighbor (kNN), SVM, Logistic Regression, and Random Forests, and we found the performance to be fairly similar across classifiers. For simplicity, we use a k-Nearest Neighbor (kNN) classifier with $k = 10$ neighbors.

C. Proposed Grasp Policy

Next we describe how we use the above trained classifier to enable the robot to grasp the desired number of layers. We divide the robot trajectory into three parts. First, the gripper moves vertically down by a distance d_{vert}, then horizontally towards the cloth stack by a distance d_{slide}, then lifts up by a distance d_{lift}, then closes its gripper tips (see Fig. 4 for a visualization). At this point, we record tactile data and classify the number of layers that are grasped. If the predicted number of grasped layers (according to the classifier) matches the target number of grasped layers, it lifts the gripper further by 4 cm to indicate the end of the trial; otherwise, it resets the gripper back to the starting position and tries again (see below for details). The values of d_{slide} and d_{lift} are tuned and fixed ahead of time by a human operator, while d_{vert} is determined by the policy, as explained below.

The grasping policy uses the output of the grasp classifier (Sec. IV-B) to determine the vertical distance that the gripper lowers before grasping, d_{vert}. For a target number of layers k to grasp, the robot begins at some height with the grippers open, moves towards the cloth stack, and attempts a grasp. If the grasp classifier determines that it has not grasped the correct number of layers, then the robot releases, moves back, and adjusts the gripper height (d_{vert}). If the classifier predicts that it has grasped too many layers, d_{vert} is decremented by a small value to decrease the grasp height; if it has grasped too few, d_{vert} is incremented by a small value. The policy continues until either the classifier determines that it has grasped the desired number of layers and ends the trial, or until the maximum number of grasp attempts is reached.

During each grasp attempt on the physical system, the classifier starts predicting the class once the gripper closes, and stops predicting after the robot lifts by d_{vert}. This results in a set of about 160 separate predictions. We use the mode of all the predictions as the final prediction to determine
whether to raise or lower the grasp height.

V. PHYSICAL EXPERIMENTS

We evaluate the methods using the physical system described in Sec. IV-A. The experiments are designed to answer the following questions:

- Can magnetometer-based tactile sensing with ReSkin sensors provide sufficient information about grasping a target number of cloth layers?
- What are the benefits of the proposed method that uses tactile-based feedback to adjust the gripper height?
- Can a classifier trained on tactile feedback generalize to different cloths?

A. Experiment Protocol

We train our tactile classifier on a gray cloth; we then evaluate our system on the gray training cloth and on two other unseen cloths to measure the generalization of our method to new cloths (see Fig. 6). We use the same training data from the gray cloth for all of the tactile-based method variations described in Sec. V-B. The tactile data collection results in a total of 18,838 such \(B(1) \) readings. We train a classifier on 95% of the training episodes (to allow for a small validation set). We normalize the tactile data so that each of the 15 features has mean 0 and variance 1 in the training set.

We perform two sets of experiments, in which we set the desired number of cloth layers to grasp as one layer and two layers, respectively. Each trial begins with a human arranging folded cloths on the workspace with edges exposed and facing the robot gripper. The number of folded cloths is the same across trials, but variations in the depth of the layers up to 1.5 mm can occur due to slight differences in the initial cloth configuration. We initialize the robot’s gripper at an angle (30°) which increases the likelihood that a horizontal motion can slide the robot finger tips in between layers of cloth.

Each experiment set consists of comparing several grasping methods (see Sec. V-B). When running experiments, we randomly sample the method to run in the given trial after the cloths have been set, to reduce potential human bias in the data initialization. The robot employs the selected method to grasp the appropriate number of cloth layers. The robot is allowed up to \(T = 10 \) actions per trial, though it can terminate earlier if the classifier estimates that it has grasped the appropriate number of layers. Upon termination, the robot lifts the gripper by 4 cm and a human measures this as a success if the correct number of layers are still grasped. All other cases result in the trial as a failure.

We categorize failures into two types, prediction and grasping failures. Prediction failures are a result of mispredictions by the trained classifier, where it either: (1) incorrectly predicts that the robot has grasped the desired number of layers and terminates the trial prematurely, or (2) the classifier incorrectly predicts that the robot has grasped the wrong number of layers, causing unnecessary regrasps and leading to the robot reaching the max number of attempts for the trial. Grasping failures are due to either failing to grasp the desired number of layers at the last time step in a trial, or failing to robustly grasp the cloth, such that cloth layers slip out of the robot’s control when lifting (see Fig. 5).

B. Methods and Baselines

We evaluate the following methods for grasping 1 and 2 cloth layers:

1) **Fixed-Open-Loop**: Initialize the gripper at a fixed height, manually tuned for grasping 1 or 2 cloth layers:
Fig. 5: An example grasping failure case of the task. Due to an insufficiently robust grasp when lifting (left), the layers may slip out of the robot’s control during the lifting portion (right).

Fig. 6: The cloths we use for experiments. We use the gray towel (left) for training, and test on all 3 cloths for evaluation. The white towel and patterned cloth test generalizing to novel cloths. The cloths have thicknesses between 3-5 mm and variation in surface texture and stiffness.

Class \ Prediction	0	1	2	3
0 (0 Layers)	1.000	0.000	0.000	0.000
1 (1 Layer)	0.000	0.999	0.000	0.001
2 (2 Layers)	0.030	0.003	0.866	0.100
3 (3 Layers)	0.128	0.256	0.138	0.478

Table I: The average normalized confusion matrix from the cross-validation training results for the k-nearest neighbor classifier we use for tactile-based experiments.

Also reports the average per-class accuracy. We also computed the average balanced accuracy metric [49] to consider the data imbalance and obtain 0.84 ± 0.06. Inspecting the confusion matrix, we find that the tactile classifier can classify classes 0 (i.e., pinching with no cloth between the fingers) and 1 (i.e., pinching 1 cloth layer) with extremely high effectiveness. Results for classes 2 and 3 suggest that identifying 2 and 3 cloth layers is more challenging.

B. Grasping 1 Cloth Layer

In the first set of physical experiments, we report the success and failures of methods on grasping and lifting the top layer of cloth from a stack. See Table II for results. Our method, Feedback-Tactile, succeeds at grasping one layer of cloth in all 10 trials, whereas all competing ablations have lower success rates. Methods with the tactile classifier outperform those using the image classifier, with most failures attributed to mis-prediction rather than poor grasping.

The fixed-height open loop method (Fixed-Open-Loop) poorly handles variations in the initial cloth configuration. There can be up to 1.5 mm variation in the height of the cloth stack based on how they are placed at the start of the trial, which can lead to failures in the open loop grasping method. Both random grasping approaches, Random-Image (5/10) and Random-Tactile (6/10) have lower success rates compared to using feedback-based height adjustment with Feedback-Image (8/10) and Feedback-Tactile (10/10).

For testing generalization, Feedback-Tactile significantly outperforms Feedback-Image on the white towel and patterned cloth. Feedback-Tactile obtains 8/10 and 7/10 success rates for the white towel and patterned cloth, respectively, while Feedback-Image only succeeds in 3/10 and 2/10 trials.

We have analyzed the failure types of each method in Table II. Grasping failures are rare for most methods on 1-layer grasping; grasping failures can occur if the robot does not robustly grip the cloth, and cloth slips out of the grasp when the robot lifts it (see Fig. 5). Our method (Feedback-Tactile), also has fewer prediction failures when generalizing to unseen cloths compared to Feedback-Image.

C. Grasping 2 Cloth Layers

In the next set of experiments, we evaluate grasping and lifting the top two layers of cloth. The results in Table III suggest that the methods achieve success rates similar to 1-layer grasping (Table II) for the gray towel, but performance is lower on the unseen cloths. While Feedback-Image performs slightly better than Feedback-Tactile on the gray towel, Feedback-Tactile performs slightly better on unseen cloths.
Cloth Type	Method	Success Rate	Prediction Failure	Grasp Failure	Attempts ↓
Gray Towel (Train)	Fixed-Open-Loop	6/10	-	4/10	1 (fixed)
	Random-Image	5/10	5/10	0/10	1.8±0.7
	Random-Tactile	6/10	3/10	1/10	4.8±2.8
	Feedback-Image	8/10	2/10	0/10	2.3±0.8
	Feedback-Tactile	10/10	0/10	0/10	3.1±1.0
White Towel (Generalization)	Feedback-Image	3/10	5/10	2/10	1.6±0.5
	Feedback-Tactile	8/10	0/10	2/10	2.3±0.8
Pattered Cloth (Generalization)	Feedback-Image	2/10	8/10	0/10	5.1±4.3
	Feedback-Tactile	7/10	2/10	1/10	4.6±3.2

TABLE II: Results for the first set of physical experiments described in Sec. VI-B with grasping at 1 cloth layer. We run all methods for 10 trials each and report the success rate, the failure types (grasping and prediction), and the average number of grasp attempts per trial.

Cloth Type	Method	Success Rate	Prediction Failure	Grasp Failure	Attempts ↓
Gray Towel (Train)	Fixed-Open-Loop	7/10	-	3/10	1 (fixed)
	Random-Image	6/10	1/10	3/10	5.3±3.0
	Random-Tactile	4/10	0/10	2/10	6.0±3.0
	Feedback-Image	9/10	0/10	1/10	4.7±0.9
	Feedback-Tactile	7/10	1/10	2/10	6.4±2.6
White Towel (Generalization)	Feedback-Image	0/10	8/10	2/10	9.2±1.8
	Feedback-Tactile	4/10	2/10	4/10	5.0±3.4
Pattered Cloth (Generalization)	Feedback-Image	0/10	10/10	0/10	10.0±0.0
	Feedback-Tactile	1/10	3/10	6/10	6.4±3.6

TABLE III: Experimental results for grasping at the top 2 cloth layers as described in Sec. VI-C. Besides the change of 1 to 2 layers, the results are formatted in the same way as in Table II.

Fig. 7: A qualitative example of how the task is challenging, particularly with grasping two layers. Because of the horizontal motion of the gripper, layers of cloth can be pushed apart (left), creating air pockets between the top and second layer after the action has finished (right). This gap makes it easier to grasp the top layer but harder to grasp the top two layers, due to a smaller gap between the second and third layers (see overlaid yellow circle).

Table III shows that both prediction and grasping failures lead to errors for our method (Feedback-Tactile), though grasping failures are more common (accounting for 2/3 of our total failures). The higher incidence of grasp failures by our method in this experiment suggests that 2-layer grasping is more difficult than 1-layer grasping. Fig. 7 highlights some challenges with grasping two layers; for example, we observe that failures tend to occur due to crumpling the fabric when attempting to grasp 2 layers. Furthermore, the top layer of cloth can push downwards on the layer below it, which reduces the gap between the second and third layers; this reduced gap can make it difficult to grasp 2 layers. These observations and results suggest that further innovation on grasp policies may be necessary to improve 2-layer grasp performance on unseen cloths.

VII. CONCLUSION

In this paper, we present a robotic system that uses magnetometer-based tactile sensing for precisely grasping layers of cloth. We train a classifier on tactile sensor readings from a ReSkin sensor. At test time, the classifier determines the number of layers of cloth grasped, which informs the policy to adjust the height of the gripper for subsequent grasp attempts. The system obtains strong results with grasping the top 1 or 2 cloth layers out of a stack of cloth, and generalizes to unseen cloth. We hope this work motivates future research on tactile-based robotic policies that can manipulate a wide variety of complex objects.

ACKNOWLEDGMENTS

We thank LG Electronics, the NSF CAREER grant IIS-2046491, the NSF grant CMMI-2024794, and the NSF GRFP (DGE1745016, DGE2140739) for funding. We thank our colleagues for helpful hardware support, in particular Sarvesh Patil, Raunaq Bhirangi, Tess Hellebrekers, and Pragna Mannam. We thank our colleagues for helpful paper writing feedback, in particular Zixuan Huang, Chuer Pan, and Sarthak Shetty.

REFERENCES

[1] T. Bhattacharjee, A. Jain, S. Vaish, M. D. Kilpack, and C. C. Kemp, “Tactile Sensing over Articulated Joints With Stretchable Sensors,” in World Haptics Conference (WHC), 2013.
[2] R. Bhirangi, T. Hellebrekers, C. Majidi, and A. Gupta, “ReSkin: versatile, replaceable, lasting tactile skins,” in Conference on Robot Learning (CoRL), 2021.
[3] J. Borras, G. Alenyà, and C. Torras, “A grasping-centered analysis for cloth manipulation,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 924–936, 2020.
[4] M. Cosmano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel, “Bringing Clothing Into Desired Configurations with Limited Perception,” in IEEE International Conference on Robotics and Automation (ICRA), 2011.
