The maximum number of perfect matchings in graphs
with a given degree sequence

Noga Alon∗ Shmuel Friedland†‡

17 March, 2008

Abstract

We show that the number of perfect matching in a simple graph G with an even number of vertices and degree sequence d_1, d_2, \ldots, d_n is at most $\prod_{i=1}^{n} (d_i)!^{\frac{1}{2d_i}}$. This bound is sharp if and only if G is a union of complete balanced bipartite graphs.

2000 Mathematics Subject Classification: 05A15, 05C70.
Keywords and phrases: Perfect matchings, permanents.

1 Introduction

Let $G = (V, E)$ be an undirected simple graph. For a vertex $v \in V$, let $\deg v$ denote its degree. Assume that $|V|$ is even, and let perfmat G denote the number of perfect matchings in G. The main result of this short note is:

Theorem 1.1

$\text{perfm} G \leq \prod_{v \in V} (\frac{\deg v)!}{\deg v},$ (1.1)

where $0^0 = 0$. If G has no isolated vertices then equality holds if and only if G is a disjoint union of complete balanced bipartite graphs.

For bipartite graphs the above inequality follows from the Bregman-Minc Inequality for permanents of $(0, 1)$ matrices, mentioned below.

The inequality (1.1) was known to Kahn and Lovász, c.f. [2, (7)], but their proof was never published, and it was recently stated and proved independently by the second author in [3]. Here we show that it is a simple consequence of the Bregman-Minc Inequality.

∗School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, and IAS, Princeton, NJ 08540, USA, e-mail: nogaa@post.tau.ac.il. Research supported in part by the Israel Science Foundation and by a USA-Israeli BSF grant.
†Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA, e-mail friedlan@uic.edu
‡Visiting Professor, Fall 2007 - Winter 2008, Berlin Mathematical School, Berlin, Germany
2 The proof

Let A be an $n \times n$ $(0,1)$ matrix, i.e. $A = [a_{ij}]_{i,j=1}^n \in \{0,1\}^{n \times n}$. Denote $r_i = \sum_{j=1}^n a_{ij}, i = 1,\ldots,n$. The celebrated Bregman-Minc inequality, conjectured by Minc [4] and proved by Bregman [1], states

$$\text{perm} A \leq \prod_{i=1}^n (r_i!)^{\frac{1}{r_i}}, \quad (2.1)$$

where equality holds (if no r_i is zero) iff up to permutation of rows and columns A is a block diagonal matrix in which each block is a square all-1 matrix.

Proof of Theorem 1.1: The square of the number of perfect matchings of G counts ordered pairs of such matchings. We claim that this is the number of spanning 2-regular subgraphs H of G consisting of even cycles (including cycles of length 2 which are the same edge taken twice), where each such H is counted 2^s times, with s being the number of components (that is, cycles) of H with more than 2 vertices. Indeed, every union of a pair of perfect matchings M_1, M_2 is a 2-regular spanning subgraph H as above, and for every cycle of length exceeding 2 in H there are two ways to decide which edges came from M_1 and which from M_2.

The permanent of the adjacency matrix A of G also counts the number of spanning 2-regular subgraphs H' of G, but now we allow odd cycles as well. Here, too, each such H' is counted 2^s times, where s is the number of cycles of H' with more than 2 vertices (as there are 2 ways to orient each such cycle as a directed cycle and get a contribution to the permanent.) Thus the square of the number of perfect matchings is at most the permanent of the adjacency matrix, and the desired inequality follows from Bregman-Minc by taking the square root of (2.1), where the numbers r_i are the degrees of the vertices of G.

It is clear that if G is a vertex-disjoint union of balanced complete bipartite graphs then equality holds in (1.1). Conversely, if G has no isolated vertices and equality holds, then equality holds in (2.1), and no r_i is zero. Therefore, after permuting the rows and columns of the adjacency matrix of G it is a block diagonal matrix in which every block is an all-1 square matrix, and as our graph G has no loops, this means that it is a union of complete balanced bipartite graphs, completing the proof. □

References

[1] L.M. Bregman, Some properties of nonnegative matrices and their permanents, *Soviet Math. Dokl.* 14 (1973), 945-949.

[2] B. Cuckler and J. Kahn, Entropy bounds for perfect matchings and Hamiltonian cycles, *to appear.*

[3] S. Friedland, An upper bound for the number of perfect matchings in graphs, arXiv: 0803.0864v1, 6 March 2008.

[4] H. Minc, Upper bounds for permanents of $(0,1)$-matrices, *Bull. Amer. Math. Soc.* 69 (1963), 789-791.