On the optimal allocation of assets in investment portfolio with application of modern portfolio management and nonlinear dynamic chaos theories in investment, commercial and central banks

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – The investment economy is a main characteristic of prosperous society. The investment portfolio management is a main financial problem, which has to be solved by the investment, commercial and central banks with the application of modern portfolio theory in the investment economy. We use the learning analytics together with the integrative creative imperative intelligent conceptual co-lateral adaptive thinking with the purpose to advance our scientific knowledge on the diversified investment portfolio management in the nonlinear dynamic financial system. We apply the econophysics principles and the econometrics methods with the aim to find the solution to the problem of the optimal allocation of assets in the investment portfolio, using the advanced risk management techniques with the efficient frontier modeling in agreement with the modern portfolio theory and using the stability management techniques with the dynamic regimes modeling on the bifurcation diagram in agreement with the dynamic chaos theory. We show that the bifurcation diagram, created with the use of the logistic function in Matlab, can provide some valuable information on the stability of combining risky investments in the investment portfolio, solving the problem of optimization of assets allocation in the investment portfolio. We propose the Ledenyov investment portfolio theorem, based on the Lyapunov stability criteria, with the aim to create the optimized investment portfolio with the uncorrelated diversified assets, which can deliver the increased expected returns to the institutional and private investors in the nonlinear dynamic financial system in the frames of investment economy.

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb
Keywords: investment economy, investment portfolio, modern portfolio theory, risk management, efficient frontier, dynamic chaos theory, logistic function, bifurcation diagram, Ledenyov investment portfolio theorem, Lyapunov stability criteria, econophysics, econometrics, nonlinear dynamic financial system, investment, commercial and central banks.
The investment economy is a main characteristic of prosperous society. The investment economy is researched in the science of economics, which considers the research problems of wealth creation and distribution in the social systems. The accurate definition of the science of economics is made in Ueda (1904), Mano (1968-1969):

“Economics in wide sense:

A. Political Economy (a study of economics from the standpoint of the social economic system).

B. Science of Business Administration (a study of economics from the standpoint of the economic unit):

a. Science of Finance (a study of the management of national economy);

b. Housekeeping (a study of home economics);

c. Science of Commerce (a study of economics of a business enterprise).”

At later date, Ueda (1937) more accurately described the relations between the political economy and the science of business administration in Mano (1968-1969):

“Economics in a wide sense:

A. Political Economy or Economics (The main object of this science is the price phenomenon).

B. Science of Business Administration in a wide sense (The science of economic organization, which has an object):

a. Science of Finance (The science of state economy);

b. Housekeeping (The science of home economy);

c. Science of Business Administration (The science of business economy).”

In this research paper, we make the innovative research in the science of finance, which is a part of the science of business administration under the general framework of the science of economics. In the science of finance, we will focus on the investment portfolio problem, considering the various topics on the investment portfolio optimization. In our time, the research in the modern science of finance is done with the use of the financial mathematics (the econometrics), which began to develop in the beginning of last century in Bachelier (1900). Merton (2001) writes: “The origins of much of the mathematics in modern finance can be traced to Louis Bachelier’s 1900 dissertation on the theory of speculation, framed as an option-pricing problem. This work marks the twin births of both the continuous-time mathematics of stochastic processes and the continuous-time economics of derivative-security pricing. In solving his option-pricing problem, Bachelier provides two different derivations of the classic partial differential equation for the probability density of what later was called a Wiener process or
Brownian motion process. In one derivation, he writes down a version of what is now commonly called the Chapman-Kolmogorov convolution probability integral in one of the earliest examples of that integral in print. In the other, he uses a limit argument applied to a discrete-time binomial process to derive the continuous-time transition probabilities. Bachelier also develops the method of images (or reflection) to solve for a probability function of a diffusion process with an absorbing barrier. All this in his thesis five years before the publication of Einstein’s mathematical theory of Brownian motion.” Shiryaev (1998) explains: “Bachelier (1900) certainly was the first researcher, who, with the aim to describe the dynamics of shares prices, used the model of “random walks and their limiting formations,” which, speaking by the modern language, represent nothing other than the Brownian motion.” The research in the modern science of finance is also frequently done with the application of financial physics (the econophysics), which has been developed over a long time period. It makes sense to explain that the econophysics, which aims to understand the nature of complex processes in the economics and finances, using the knowledge base with the theories, experiments and computer modeling in the field of physics, has a long history in the sciences of fundamental and applied economics and finances. Over the recent decades, many scientists made their significant research contributions to the science of econophysics as described in Mantegna, Stanley (1999), Ilinski (2001), Bouchaud, Potters (2003), Sornette (2003), Sinha, Chatterje, Chakraborti, Chakrabarti (2010). Presently, there is a strong research interest in the econophysics from the side of various research groups at the leading universities around the World, which make numerous attempts to re-define the research boundaries of the science of econophysics. The most recent definitions of scientific meaning of econophysics were proposed in Yakovenko, Rosser (2009), Chakrabarti B K, Chakrabarti A (2010), Aoyama, Fujiwara, Iyetomi, Sato (2012), aiming to explain the essence of research approaches, used in the econophysics. Yakovenko, Rosser (2009) write: “Econophysics is a new interdisciplinary research field, applying methods of statistical physics to problems in economics and finance.” Chakrabarti B K, Chakrabarti A (2010) explain: “Econophysics is a new research field, which makes an attempt to bring economics in the fold of natural sciences or specifically attempts for a “physics of economics”. Aoyama, Fujiwara, Iyetomi, Sato (2012) state: “Econophysics is a relatively new discipline that applies concepts and methodologies that originated in physics to the problem of obtaining a better understanding of a wide variety of complex phenomena of a socio-econo-techno nature, including economic, sociological and financial behavior.”

Chakrabarti B K, Chakrabarti A (2010) compiled a list of most important research results and achievements in the field of econophysics:
“(i) **Empirical characterization, analyses and modeling of financial markets** – in particular, the deviation from Gaussian statistics has been established, following the early observations of Mandelbrot and Fama (1960s) – beginning with the studies in 1990s by the groups of Stanley, Mantegna, Bouchaud, Farmer and others.

(ii) **Network models and characterization of market correlations among different stocks/sectors** by the groups of Mantegna, Marsili, Kertesz, Kaski, Iori, Sinha and others.

(iii) **Determination of the income or wealth distributions in societies, and the development of statistical physics models** by the groups of Redner, Souma, Yakovenko, Chakrabarti, Chakraborti, Richmond, Patriarca, Toscani and others. The kinetic exchange models of markets have now been firmly established; this gained a stronger footing with the equivalence of the maximization principles of entropy (physics) and utility (economics) shown by the group of Chakrabarti.

(iv) **Development of behavioral models, and analyses of market bubbles and crashes** by the groups of Bouchaud, Lux, Stauffer, Gallegati, Sornette, Kaizoji and others.

(v) **Learning in multi-agent game models and the development of Minority Game models** by the groups of Zhang, Marsili, Savit, Kaski and others, and the **optimal resource utilization “Kolkata Paise Restaurant” (KPR) model** by the group of Chakrabarti.”

In this research article, we aim to make our new innovative research in the finances, applying the **econophysics principles** to complement the existing **econometrics models** with the aim to find a solution to the problem of the optimal allocation of assets in the **investment portfolio**, using the advanced risk management techniques with the efficient frontier modeling in agreement with the modern portfolio theory and using the stability management techniques with the dynamic regimes modeling on the bifurcation diagram in agreement with the dynamic chaos theory, in the conditions of **nonlinear dynamical financial system** in the **free market economy**, governed by the **modern capitalism**. Let us clarify that we will assume that the **capitalism** is defined as in *Macmillan Dictionary of Modern Economics* (1986), Scott (2007): “Political, social, and economic system in which property, including capital assets, is owned and controlled for the most part by private persons. Under capitalism, the price mechanism is used as a signaling system which allocates resources between uses. The extent to which the price mechanism is used, the degree of competitiveness in markets, and the level of government intervention distinguish exact forms of capitalism.” It makes sense to add that the detailed characteristics of the **free market economy**, including the valuation and taxation problems in the states with the free market economy under the capitalism, with the particular focus on the transition to and formulation of the ideal free market economy principles were researched in
Ledenyov V O, Clancy R (1990-1993), Ledenyov V O, Foldvary F (1993-1994). The authors came to the understanding that all the free market economies consist of a market (voluntary economic acts) and interventions (coercive acts imposed on a market by the governments). Going from the econophysical analysis, the following practical steps to reduce the intervention and establish the optimal ideal free market economy were proposed in Ledenyov V O, Foldvary F (1993-1994), Ledenyov V O (1995):

1) Legalize, preferably through constitutional provisions, voluntary production, exchange (trade), and consumption.

2) Set up a registry of all real estate and titleholders.

3) Assess the ground rent for all land, including the economic rent of minerals, fishing areas, etc.

4) Initiate the collection of the ground rent, gradually increasing it to the value of the economic rent. Preferably, there should be a constitutional provision stating that ground rent is community property.

5) At the same time as #4, reduce taxes on wages, income, profits, turnover, sales, exports, and imports (the order depending on political feasibility).

6) Initiate effluent (pollution) fees proportional to the damage caused by pollution (Germany provides a model).

7) Raise the pollution fee while reducing other taxes (as with #5) over some set time interval until all taxes on production are eliminated, with a constitutional provision banning them.

8) Eliminate all remaining economic restrictions, prohibiting only force, fraud, and other acts of coercive and invasive harm. This includes gradually reducing and eliminating all tariffs and trade quotas, as well as restrictions on money and banking, and a constitutional provision protecting freedom of commerce as well as complete personal liberty.

In addition, it makes sense to note that we conduct our research, assuming that the nonlinear dynamic financial system is greatly affected by the process of globalization. The globalization means the integration of economic activities, across borders, through markets; resulting in the free movement of goods, services, labour and capital in the global single free market in Wolf (2004, 2006). The globalization represents the closer integration of the countries and people of the world, which has been brought about by the enormous reduction of costs of transportation and communication, and the breaking down of artificial barriers to the flows of goods, services, capital, knowledge, and (to a lesser extent) people across borders in Stiglitz (2002). The globalization has many dimensions such as the globalization of ideas, of knowledge,
of civil society in Stiglitz (2002). In the conditions of globalization, the well designed, perfectly optimized and efficiently operated financial system represents a main foundation of prosperous developed society with the free market economy in Ledenyov D O, Ledenyov V O (2012). At the same time, we must understand that the presently established global financial and economic systems have a number of functional challenges and proved to be ineffective, resulting in a conclusion that the states with the free market economies may also be frequently exposed to the economic stagnation and recession processes as discussed in Ledenyov D O, Ledenyov V O (2012).

Let us continue our investigation with the focus on the main subject of our research, which is the problem of the optimal allocation of assets in the investment portfolio in the nonlinear dynamic financial system in the frames of investment economy in the conditions of globalization. As it was already mentioned, the research on the investment portfolio can only be done with the use of the financial mathematics. Initially, the dynamics of continuously traded investment portfolios was developed with the use of the calculus as proposed by Kiyoshi Itô. Merton (2001) writes on the theoretical proposals by Kiyoshi Itô: "On the mathematical side, Kiyoshi Itô was greatly influenced by Bachelier’s work in his development in the 1940s and early 1950s of his stochastic calculus, later to become an essential tool in finance. ... Initially, Ito’s mathematics found its way into finance with the development of the continuous-time theory of optimal lifetime consumption and portfolio selection. This theory used diffusion processes to model asset price movements and applied the Itô calculus to analyze the dynamics of continuously traded portfolios. The connection between Itô’s work and option pricing was made, when that same continuous trading portfolio modeling tool was used to derive dynamic portfolio strategies that replicate the payoffs to an option, from which the famous Black-Scholes option pricing theory was born." Let us explain that, presently, the investment, commercial, central banks usually make their investments by creating the investment portfolios with the different assets. In the general case, it is possible to characterize the investments by their expected return and standard deviation of return. The investment portfolio building in the process of wealth management is a challenging task, because the capital markets represent the open, non-linear and complex financial systems with the positive or negative feedback loop mechanisms, resulting in the assets prices fluctuations in Mosekilde (1996, 1996-1997), Beinhocker (2006), Mandelbrot (2004). The Modern Portfolio Theory (MPT) was proposed in Markowitz (1952, 1956, 1959, 1987). The fundamental concept of the MPT is that the price changes by the different interrelated assets must be taken to the account during the investment
portfolio building. The **Efficient Frontier (EF)** concept in the MPT was introduced in *Markowitz (1952)*.

![Mean Variance Analysis](image1)

Fig. 1. Illustration of mean variance analysis by Markowitz (after Shiryaev (1998)).

Markowitz (1952) considers the two characteristics of capital $X_1(b)$:

1) $EX_1(b)$ is the mathematical expectation;
2) $DX_1(b)$ is the dispersion.

In agreement with the *mean variance analysis* by Markowitz (1952), the investment portfolios with a set of points $(EX_1(b), \sqrt{DX_1(b)})$ between the point α and the point β on the *efficient frontier* curve have the maximum mean value of capital at the minimum value of dispersion in Fig. 1 in Shiryaev (1998).

In Fig. 2, the illustration of the efficient frontier of all the investments is shown by *Hull (2005-2006, 2010, 2012)*.

$$
\mu_p = w_1\mu_1 + w_2\mu_2
$$

$$
\sigma_p = \sqrt{w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + 2\rho w_1 w_2 \sigma_1 \sigma_2}
$$

![Efficient Frontier](image2)

Fig. 2. Efficient frontier of all investments (after Hull (2005-2006, 2010, 2012)).

As explained in *Wikipedia (2012)*, the combination of risky assets (without the risk-free assets) can be plotted in the *risk-expected return space*, and the collection of all such possible portfolios defines a region in this space. The upward-sloped (positively-sloped) part of the left boundary of this region, a hyperbola, is then called the "**efficient frontier**". The efficient frontier
is then the portion of the opportunity set that offers the highest expected return for a given level of risk, and lies at the top of the opportunity set or the feasible set. A combination of risky assets, i.e. a portfolio, is referred to as "efficient," if it has the best possible expected level of return for its level of risk (usually proxied by the standard deviation of the portfolio's return) in Fig. 3.

![Fig. 3. The efficient frontier (after Wikipedia (2012)).](image)

The research contributions to the MPT were comprehensively analyzed by Kaplan (1998), who explains: “Markowitz extends the techniques of linear programming to develop the critical line algorithm. The critical line algorithm identifies all the feasible portfolios that minimize risk (as measured by variance or standard deviation) for a given level of expected return and maximize expected return for a given level of risk. When graphed in standard deviation versus expected return space, these portfolios form the efficient frontier. The efficient frontier represents the trade-off between risk and expected return faced by an investor, when forming his portfolio.” Kaplan (1998) highlights: “Markowitz showed that while there are infinitely many efficient portfolios, you only need a limited number of corner portfolios to identify all efficient portfolios. Not all efficient portfolios contain all assets. Moving along the efficient frontier, a corner portfolio is located, where an asset weight or slack variable is either added or dropped. Every efficient portfolio is a linear combination of the two corner portfolios immediately adjacent to it. Thus, by locating all corner portfolios, the critical line algorithm generates the entire efficient frontier.” In addition, Kaplan (1998) writes: “In general, the maximizing expected utility of ending period wealth by choosing portfolio weights is a complicated stochastic nonlinear programming problem. Markowitz asserted that, if the utility function can be approximated closely enough by a second-order Taylor expansion over a wide range of returns, then expected utility will be approximately equal to a function of expected value (mean) and variance of returns. This allows the investor's problem to be restated as a mean-variance optimization problem so that the objective function is a quadratic function of portfolio weights.” Engle (2003, 2006) states: “Markowitz (1952) and Tobin (1958) associated
risk with the variance in the value of a portfolio.” The **Tobin's mutual fund theorem** says that the investment portfolio’s assets allocation problem can be viewed as a decision to allocate between a **riskless asset** and a **risky portfolio** in Tobin (1958). In the mean-variance approach framework, the cash can serve as a proxy for a riskless asset; and an efficient portfolio on the efficient frontier serves as the risky portfolio, such, that any allocation between the cash and this portfolio dominates all other portfolios on the efficient frontier. This portfolio is called a **tangency portfolio**, because it is located at the point on the efficient frontier, where a tangent line that originates at the riskless asset touches the efficient frontier. Engle (2003, 2006) explains: “Sharpe (1964) developed the implications, when all investors follow the same objectives with the same information. This theory is called the **Capital Asset Pricing Model** or CAPM, and shows that there is a natural relation between expected returns and variance”. It is necessary to state that the **Sharpe ratio** is a measure of return-to-risk that plays an important role in the investment portfolio analysis and it was introduced in Sharpe (1966). Specifically, the investment portfolio that maximizes the Sharpe ratio is also the **tangency portfolio** on the efficient frontier from the mutual fund theorem in Sharpe, Alexander, Bailey (1999). The maximum **Sharpe ratio** investment portfolio is situated on the efficient frontier. Summarizing all the important research results on the MPT, it is necessary to say that the most significant research achievements in the MPT were presented in Markowitz (1952, 1956, 1959, 1987), Tobin (1958), Sharpe (1964, 1966), and Merton (1969, 1970, 1971, 1972, 1973a, 1973b, 1977a, 1977b, 1982, 1983a, 1983b, 1990, 1992, 1993a, 1993b, 1994, 1995a, 1995b, 1997, 1998, 1999, 2001).

Now, let us shortly consider the various assets, which can be used in the investment portfolio:

1) Credit Derivatives;
2) Equity Derivatives;
3) Other Derivatives.

The definition of derivatives is presented in Hull (2005-2006, 2010, 2012): “A Derivative is an instrument whose value depends on the values of other more basic underlying variables.” In the investment portfolio, the derivatives can be used in a number of ways in Hull (2005-2006, 2010, 2012):

1. To hedge risks;
2. To speculate (take a view on the future direction of the market);
3. To lock in an arbitrage profit;
4. To change the nature of a liability;
5. To change the nature of an investment without incurring the costs of selling one portfolio and buying another.

Ledenyov V O, Ledenyov D O (2012) explained that: “The Structured Investment Vehicles (SIV), which include the structured credit products, are extremely complex. The purpose of structured credit products is to give fixed income investors fully rated and leveraged exposure to the main Credit Derivatives Indices. The investment portfolio building with the positions hedged by the different means depends on the investor’s expertise in the following investment vehicles in Ledenyov V O, Ledenyov D O (2012):

1. **Credit Derivatives** (CD are the financial contracts whose payoffs explicitly depend on the behaviour of one or more indices): Collateralized Debt Obligations (CDO), Constant Proportion Debt Obligations (CPDO), and investment protection mechanisms such as the Synthetic Collateralized Debt Obligations (SCDO), Credit Default Swaps (CDS), Credit Default Swap Index (CDSI), Loan only Credit Default Swaps (LCDS), Credit Default Swaps of ABS (ABCDS), Variance Swaps (VS), Constant Proportion Portfolio Insurance (CPPI), Contracts for Difference (CFD);

2. **Equity Derivatives**: Futures, Asian Options, Barrier Options, Compound Options, Look-back Options, Vanilla Stock Options (put and call options), Vix Options;

3. **Other Derivatives**: Interest Rate Swaps.”

Let us more comprehensively consider the Credit Derivatives (CD) and Equity Derivatives, using the recent research findings in the Financial Times (2005-2012):

1. **Credit Derivatives** (CD) are defined as the investment vehicles that are based on the Corporate Bonds and give their owners protection against a default. It is necessary to comment that the Corporate Bonds are secured against the issuers balance sheet or the Covered Bonds are secured against the pools of Mortgages or public-sector Loans, making the corporate and covered bonds one of the safest, highest rated issues in the fixed-income markets. The investment banks pool corporate bonds for sale, for example, in the form of the Collateralized Debt Obligations (CDO), and sell off pieces of the pool. Structure of pool consists of both the riskiest slice and the conservative slice. The high default correlation and law default correlation slices are distinguished. The asset backed or Structured Finance (SF) backed paper makes up the vast majority of CDO issuance. The CDO concept actually contributed a lot to the Capital Market efficiency, however it is necessary to note that the CDO based business model needs greater levels of protection and more pragmatic pricing. The concepts of diversification and collateralization are sound - provided they are combined with some judgment, however the substituting collectivization and collateralization for credit analysis really does not work and
merely exacerbates the market’s innate tendency to misallocate capital during the more
enthusiastic parts of the cycle. The Synthetic Collateralized Debt Obligations (Synthetic CDO)
replaces the pools of bonds – specifically, with a type called Credit Default Swaps (CDS). The
swaps are like insurance policies. They insure against a bond default. Owners of bonds can buy
CDS on their bonds to protect themselves. CDS has improved liquidity in credit generally, much
as swaps did in the pure rate markets. The derivative products allow investors to tranche risk
very finely, to bundle risk, but they also allow lots of new entrants to financial markets that
otherwise wouldn’t be there, because the barriers to entry have been lowered so much. The
transparent Price Discovery process and ability to access Secondary Market Pricing quickly and
easily contribute to the transparency in the CDO and CDS markets, and is considered as a
cornerstone of confidence in financial markets in general.

2. Equity Derivatives, let share a few thoughts about the following equity derivatives:

1. Futures Contracts;

2. Forward Contracts;

3. Options.

The clear definition of Futures Contract is made in Hull (2005-2006, 2010, 2012): “A
Futures Contract is an agreement to buy or sell an asset at a certain time in the future for a
certain price. By contrast in a spot contract there is an agreement to buy or sell the asset
immediately (or within a very short period of time). The Futures Prices for a particular contract
is the price at which you agree to buy or sell. It is determined by supply and demand in the same
way as a spot price. Traditionally, the futures contracts have been traded using the open outcry
system, where traders physically meet on the floor of the exchange. Increasingly, this is being
replaced by electronic trading, where a computer matches the buyers and sellers.”

Speaking about the Options, let us make the following definitions:

1. A Call Option is an option to buy a certain asset by a certain date for a certain price
(the Strike Price);

2. A Put Option is an option to sell a certain asset by a certain date for a certain price (the
Strike Price);

3. A Stellate Option is a double option to buy or sell a certain asset by a certain date for a
certain price (the Strike Price).

It is necessary to distinguish the American Options vs. European Options:

1. An American option can be exercised at any time during its life;

2. A European option can be exercised only at maturity.
Also, it is necessary to remember the distinction between the **Options** vs. **Futures/Forwards Contracts**:

1. **Futures/Forward Contract** gives the holder the obligation to buy/sell at a certain price;
2. **Option** gives the holder the right to buy or sell at a certain price.

Let us also explain the meaning of the **volatility**: “**Volatility** is the standard deviation of the continuously compounded rate of return in certain period of time,” as it is explained in Hull (2005-2006, 2010, 2012). It is possible to form a portfolio, consisting of the stock and the option, which eliminates this source of **uncertainty**. The **implied volatility of an option** is the volatility for which the **Black-Scholes price** equals to the **market price**. Traders and brokers often quote **implied volatilities** rather than **dollar prices**. After the options have been issued, it is not necessary to take account of dilution, when they are valued. Before they are issued, we can calculate the cost of each option as \(\frac{N}{N+M} \) times the price of a regular option with the same terms, where \(N \) is the number of existing shares and \(M \) is the number of new shares that will be created, if the exercise takes place. The **high volatility** in capital markets may lead to the certain financial problems, for example the **liquidity crisis**. Let us mention that the Black and Scholes (1972, 1973), Black (1989) and Merton (1973) developed a model to evaluate the **pricing of options** and derived the necessary formulas. The examples of the **risk transfer**, applying the **diversification**, **hedging** and **insurance**, are described in Gray, Merton, Bodie (2007), and also studied in other research papers in Riedl, Serafeim (2001), Campbell, Chan, Viceira (2002), Campbell, Serfaty-de Medeiros, Viceira (2007):

- **Asset Diversification in Banking Sector**.
- **Equity Swaps as a Method of Diversifying Internationally**.
- **Contingent Reserves or Contingent Sovereign Capital**.
- **Sovereign Bonds with Special Features**.
- **Diversification and Hedging Related to Management of Foreign Reserves**.
- **Other types of swaps: assets, equity, or debt**.

The examples of the assets selection in the modern **investment portfolio**, created in the **Financial Toolbox(TM)** in the **Matlab**, are shown in Figs. 4-11. Specifically, the examples show how to set up and optimize the **mean-variance portfolio** with the particular focus on the **two-fund theorem**, the impact of **transaction costs** and **turnover constraints**, the maximization of the **Sharpe ratio**, and the two popular hedge-fund strategies - **dollar-neutral** and **130-30 portfolios** in Grinold and Kahn (2000), Markowitz (1952, 1959), Lintner (1965), Sharpe (1966), Tobin (1958), Treynor and Black (1973).
Fig. 4. Efficient Frontier (after Matlab).

Fig. 5. Efficient Frontier with Tangent Line (after Matlab).

Fig. 6. Efficient Frontier with Targeted Portfolios (after Matlab).

Fig. 7. Efficient Frontier with Turnover Constraint (after Matlab).

Fig. 8. Efficient Frontier with Maximum Sharpe Ratio Portfolio (after Matlab).

Fig. 9. Confirmation that Maximum Sharpe ratio is a Maximum (after Matlab).

Fig. 10. Efficient Frontier with Dollar Neutral Portfolio (after Matlab).

Fig. 11. Efficient Frontier with 130-30 Portfolio (after Matlab).

Tab. 1. Efficient Frontier Modeling in Financial Toolbox(TM) in Matlab (after Matlab 2012).
We intend to optimize the allocation of assets in the investment portfolio, modeling the stability of the investment portfolio, with the use of the dynamic chaos theory. Alexandrov, Khinchin (1953), Gleick (1988) explain that the theoretical foundations of the science of chaos were created by Kolmogorov (1931, 1937, 1940, 1941, 1959, 1985, 1986). A number of scientists, including Ulam, von Neumann (1941), Sharkovsky (1964, 1965), Li, Yorke (1975), May (1974, 1976), Feigenbaum (1978, 1979, 1980), Lanford (1982), Feigenbaum, Kadanoff, Shenker (1982), Sharkovsky, Maistrenko, Romanenko (1986), Klimontovich (1989, 1990), Anishenko (1990), Anishenko, Vadivasova, Astakhov (1999), made significant contributions to the development of the science of chaos. Let us review the various dynamic regimes of nonlinear dynamic system, which can be characterized with the application of logistic function in the frames of dynamic chaos theory. Kuznetsov (2001) explains that the first attempt to describe the change of population number was made by Thomas Maltus (1766-1834): \(x_{n+1} = R x_n \), where \(R \) is the parameter, defining the life conditions of population. Kuznetsov (2001) clarifies that the population growth can be modeled by the introduction of the nonlinear quadratic term in the equation:

\[
x_{n+1} = r(x_n - x_n^2).
\]

The graphics of the logistic function \(f(x) \) is shown in Fig. 12.

![Fig. 12. The graphics of logistic function (after Saratov group of theoretical nonlinear dynamics (2012)).](image)

The two fixed stable points are shown on the graphic. The first point is \(x_0 = 0 \). The stability of point can be researched by calculating the derivative:

\[
f'(x) = (r - 2rx) |_{x=0} = r.
\]

The point \(r \) is non-stable at \(r > 1 \), and its movement dynamics is shown in Fig 13.

![Fig. 13. The graphics of movement dynamics of non-stable point \(r \) (after Saratov group of theoretical nonlinear dynamics (2012)).](image)
All the iterations of non-stable point r at $r>l$ converge to the second fixed stable point x_0, which is shown in Fig. 14

$$x_0 = rx_0 \left(1 - x_0\right), \quad x_0^* = 1 - \frac{1}{r}.\]

Fig. 14. The graphics of movement dynamics of non-stable point r with multiple iterations, which converge to point x_0 (after Saratov group of theoretical nonlinear dynamics (2012)).

The point x_0^* is non-stable at $r>3$, and it has the movement dynamics, which is shown on the iteration diagram in Fig 15

$$\mu = f'\left(x_0^*\right) = r - 2rx_0^* = r - 2r\left(1 - \frac{1}{r}\right) = 2 - r,$$

$$\mu = \left|f'\left(x_0^*\right)\right| > 1.$$

Fig. 15. The graphics of movement dynamics of non-stable point x_0^* with multiple iterations, which converge to point x_0 (after Saratov group of theoretical nonlinear dynamics (2012)).
At \(r=3 \), the point \(x_0^* \) has the movement dynamics, which is shown on the iteration diagram in Fig 16.

\[
\begin{align*}
\begin{cases}
f(x_2) = x_1 \\
f(x_1) = x_2
\end{cases} \Rightarrow
\begin{cases}
x_1 = r x_2 (1 - x_2) \\
x_2 = r x_1 (1 - x_1)
\end{cases}
\end{align*}
\]

\[
\begin{cases}
x_1 - x_2 = (x_1 - x_2) [r (x_1 - x_2) - r] \\
(x_1 + x_2)^2 - 2x_1 x_2 = (x_1 + x_2) \left(\frac{r-1}{r} \right)
\end{cases} \Rightarrow
\begin{cases}
x_1 + x_2 = \frac{1 + r}{r} \\
x_1 x_2 = \frac{1 + r}{r^2}
\end{cases}
\]

\[
x_{1,2} = \frac{1 + r \pm \sqrt{(r-3)(r+1)}}{2r}
\]

Fig. 16. The graphics of movement dynamics of non-stable point \(x_0^* \) with multiple iterations, which converge to point \(x_0 \) (after Saratov group of theoretical nonlinear dynamics (2012)).

In the case of the period two cycle at \(3 < r < 3.499 \), the following expression is true

\[
x_1 = f(x_2) = f(f(x_1)).
\]

Let us find the criteria of cycle stability, showing that the period four cycle can be realized at \(r=3.499 \)

\[
\begin{align*}
\mu &= \left[f \left(f \left(f \left(x_1 \right) \right) \right) \right]^\prime = f' \left(f \left(f \left(x_1 \right) \right) \right) f' \left(x_1 \right) = f' \left(x_2 \right) f' \left(x_1 \right) \\
f' \left(x \right) &= r - 2rx \\
\mu &= r^2 \left(1 - 2x_1 \right) \left(1 - 2x_2 \right) = r^2 \left[1 - 2 \left(x_1 + x_2 \right) + 4x_1 x_2 \right] = \\
&= r^2 \left[1 - 2 \left(\frac{1 + r}{r} \right) + 4 \left(\frac{1 + r}{r^2} \right) \right] = -r^2 + 2r + 4. \\
r &= 1 + \sqrt{6} = 3.499.
\end{align*}
\]
Presenting the map of dynamic regimes, Kuznetsov (2001) considers the following logistic equation

$$x_{n+1} = 1 - \lambda x_n^2$$

where λ is some parameter, presenting the solutions of logistic equation on the map with the different dynamic regimes in Fig 17.

![Map of dynamic regimes](image1)

Fig. 17. Map of dynamic regimes. Regions with different regimes on axis of parameter λ in logistic equation are shown (after Kuznetsov (2001)).

It can be seen that the period 2, 4, 8, 16 cycles appear in the simple nonlinear dynamic system at the increase of parameter r, resulting in the origination of dynamic chaos.

In Fig. 18, the corresponding bifurcation diagram is also shown in Kuznetsov (2001).

![Bifurcation diagram](image2)

Fig. 18. Bifurcation diagram (after Kuznetsov (2001)).
In Figs. 19-27, Medvedeva (2000) modeled the **dynamics of logistic function**, considering the behaviour of a simple nonlinear dynamic system, which can be described by the logistic function

\[f_\lambda = \lambda x (1 - x). \]

Fig. 19. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda < 1 \) (after Medvedeva (2000)).

Fig. 20. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 1 \) (after Medvedeva (2000)).

Fig. 21. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(1 < \lambda < 3 \) (after Medvedeva (2000)).

Fig. 22. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 2.8 \) (after Medvedeva (2000)).

Fig. 23. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 3 \) (after Medvedeva (2000)).

Fig. 24. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 3.2 \) (after Medvedeva (2000)).

Fig. 25. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 3.83 \) (after Medvedeva (2000)).

Fig. 26. Graphics of function \(f_\lambda = \lambda x(1-x) \) at \(\lambda = 4.5 \) (after Medvedeva (2000)).

Tab. 2. Graphics of function \(f_\lambda = \lambda x(1-x) \) at various parameters \(\lambda \) (after Medvedeva (2000)).

At \(\lambda = 3.569 \), the transition to the chaos is observed as shown in Fig. 27 in Medvedeva (2000).

Fig. 27. Bifurcation diagram of function \(f_\lambda = \lambda x(1-x) \), created by its iterations from 100th to 400th (after Medvedeva (2000)).
The dynamic chaos was a subject of intensive research in the economics and finances as explained in Hsieh (1991). Peters (1996) reviewed the chaos and order in the capital markets, demonstrating that the simple nonlinear dynamic systems can be characterized by the logistic equation

\[P_{t+1} = aP_t(1 - P_t) \]

In Fig. 28, the bifurcation diagram, created with the help of logistic equation is shown in Peters (1996).

\[\text{Fig. 28. Bifurcation diagram: logistic equation (after Peters (1996)).} \]

Peters (1996) writes that the Feigenbaum found the following dependence in the alternation of bifurcations

\[\frac{b_n - b_{n-1}}{b_{n+1} - b_n} = 4.669201609, \]

where \(b \) is the value of parameter \(a \) at the bifurcation number \(n \); \(F=4.669201609 \) is the Feigenbaum number.
Most recently, Shiryaev (1998) reviewed the **nonlinear chaotic models**, highlighting a well known fact that the economic and financial systems can be characterized as the chaotic systems or the deterministic nonlinear systems. Shiryaev (1998) considers the nonlinear dynamic system, described by the following **logistic equation**

\[
x_n = \lambda x_{n-1} (1 - x_{n-1}), \quad n \geq 1, \quad 0 < x_0 < 1,
\]

demonstrating that the nonlinear dynamic system has a number of the stable and unstable states at the increase of parameter λ, resulting in the transition to the chaos state at the parameter $\lambda = 3.6$. Shiryaev (1998) notes that the following expression is true in the case of all the parabolic systems

\[
\frac{\lambda_k - \lambda_{k-1}}{\lambda_{k+1} - \lambda_k} \to F, \quad k \to \infty,
\]

where $F = 4.669201$ is the **Feigenbaum number** in Lanford (1982). In Figs. 29-34, the illustrations of bifurcation diagram are shown in Shiryaev (1998).

Fig. 29. Illustration of the case with $\lambda = 1$ (after Shiryaev (1998)).

Fig. 30. Illustration of the case with $\lambda = 2$ (after Shiryaev (1998)).

Fig. 31. Illustration of the case with $\lambda = 3$ (after Shiryaev (1998)).

Fig. 32. Illustration of the case with $\lambda = 3.5$ (after Shiryaev (1998)).

Fig. 33. Illustration of the case with $\lambda = 4$, when the sequence x_n can be called the chaotic white noise (after Shiryaev (1998)).

Fig. 34. Illustration of the case of doubling of states x_∞ in the logistic system at $\lambda = 4$ (after Shiryaev (1998)).

Tab. 3. Illustration of bifurcation diagram (after Shiryaev (1998)).
Going to the detailed research discussion, let us emphasis that the geometrical approach in the modeling of the complex physical behavior of the nonlinear dynamic systems is a well known mathematic method, which is usually applied to make the accurate characterization of the nonlinear dynamic properties of the nonlinear dynamic systems in Klimontovich (1982, 1990); Anishenko (1990, 1999, 2000); Mosekilde (1996, 1996-1997); Kuznetsov (1996-1997, 2001); Ledenyov D O, Ledenyov V O (2012); Nikulchev (2007, 2011). The geometrical approach is also applied to the modeling of the complex physical behaviors of the nonlinear dynamic systems in the economics and finances in Peters (1996), Mosekilde (1996), Shiryaev (1998), Ilinski (2001), Smirnov (2010), however the application of this advanced econophysical technique in the finances is still relatively limited, because of a number of reasons. In this research paper, we apply the learning analytics in DeGioia (2012), Faust (2012), Rubenstein (2012) together with the integrative creative imperative intelligent conceptual co-lateral adaptive thinking in Martin (1998-1999, 2005-2006, 2007, 2008) with the purpose to advance our knowledge on the modeling of an investment portfolio with the diversified assets in the conditions of the nonlinear dynamical financial system. In our representation, we assume that the real financial system is a nonlinear dynamic financial system. Therefore, we argue that, in the conditions of the nonlinear dynamic financial system, it is not possible to make the accurate characterization of the combining risky investments in the investment portfolio with the use of the efficient frontier, representing the dependence of the expected return on the standard deviation of return at the given moment of time, in Markovitz (1952). We propose to use the dynamic regimes modeling on the bifurcation diagram, based on the dynamic chaos theory, with the purpose to make the accurate characterization of the dynamic properties of the combining risky investments in the investment portfolio, namely to precisely characterize the stability of investment portfolio. Thus, in our opinion, the more accurate characterization of the investment portfolio can certainly be obtained by taking to the account the existing nonlinearities in the nonlinear dynamic financial system and by considering the dynamic behavior of the combining risky investments in the investment portfolio. Therefore, we propose that, at the first approximation, the dynamic behavior of the combining risky investments in the investment portfolio has to be closely approximated by a simple nonlinear system model with the physical characteristics, which strongly depend on the initial conditions of the nonlinear dynamic financial system. The physical behavior of a simple nonlinear system can be modeled, applying the logistic function in May (1974, 1976), May, Oster (1976), Gleick (1988), Mosekilde (1996), Shiryaev (1998), Medvedeva (2000), Kuznetsov (2001). The computed solutions of logistic equation can be
presented on the bifurcation diagram, where the expected return is plotted at the axis Y and the parameter λ, which has a complex dependence on the forcing amplitude of the standard deviation of return is plotted at the axis X. In our case, the creation of the bifurcation diagram to characterize the dynamic behavior of the combining risky investments in the investment portfolio includes the plotting of the values of the logistic function $f_\lambda(x_0)$ at the vertical axis Y and the values of the parameter λ at the horizontal axis X after the computing of the 1000 iterations. In Fig. 35, the 3D bifurcation diagram shows the transition of the combining risky investments in the investment portfolio from the stable state to the chaotic state, which is realized through the period doubling bifurcations by which the $1:2$ mode locking solution is transformed into the $2:4, 4:8, 8:16$ solutions. It can be seen that, at the high enough forcing amplitudes of the standard deviation of return, the nonlinearities start to appear and the model begins to bifurcate, exhibiting the alterations between the high maximum and the low maximum. The period two bifurcation occurs at the parameter $\lambda \approx 3$. The period four bifurcation appears at the parameter $\lambda \approx 3.45$. At the further increase of the forcing amplitudes of the standard deviation of return, the cascade of bifurcations originates, and the model of simple nonlinear system transits to the state of chaos with no regular periods at the parameter $\lambda_\infty = 3.5699$. We researched the complex dynamics of the logistic function up to the parameter $\lambda \approx 4$, obtaining the research results, which are in a good agreement with the Sharkovsky-Yorke theorem in Sharkovsky (1964, 1965, 1986); Li, Yorke (1975). We would like to note that the sharp expansion of the chaotic attractor is registered at the big enough forcing amplitudes of the standard deviation of return, resulting in a crisis, this research result complies with the research findings in Grebogi, Ott, Yorke (1982). We would like to comment that, in our consideration, the choice of the logistic equation to describe a model of the simple nonlinear system was determined by the fact that this is a relatively well known mathematical approach to represent the complex behavior of a simple nonlinear system. There are many other nonlinear differential equations, which can also be researched in Strogatz (1994), Sauer et al (1996), Bunde, Havlin (2009) in the quantum economics in Maslov (2006). In addition, we would like to add that there are various scenarios of stability disappearance in the simple nonlinear system, resulting in its transition from the stable state to the chaotic state as explained in Kuznetsov (2002). In our case, we consider the chaos transition scenario by the means of the period doubling bifurcations only. In addition, it may be interesting to note that we also analyze the existing possibilities and limitations in the Lyapunov analysis, which can be applied with the purpose to precisely characterize the chaos with the Lyapunov exponents. For example, we propose the algorithm to compute the stability of the combining risky investments in the investment portfolio, which is based on the Ledenyov investment portfolio theorem.
Ledenyov investment portfolio theorem: The investment portfolio is stable in the case, when any pair of randomly selected assets from the investment portfolio is stable, satisfying the Lyapunov stability criteria; namely the two randomly selected assets must have the two close trajectories at the start and continue to have the two close trajectories always.

![3D Bifurcation diagram](image)

Fig. 35. 3D Bifurcation diagram for accurate characterization of dynamic properties of combining risky investments in investment portfolio in nonlinear dynamic financial system (Ledenyov D O, Ledenyov V O (2012) Software in Matlab R2012).

In this research article, we highlight the fact that the investment economy is a main characteristic of prosperous society. We emphasize the important observed feature that a biggest part of investment capital is mostly invested in the research and innovation in the investment economy in Sperling (2012). We also note that the management of the investment portfolio is a difficult practical task, which is usually solved by the investment, commercial and central banks with the application of modern portfolio theory in the conditions of investment economy. We used the learning analytics together with the integrative creative imperative intelligent conceptual collateral adaptive thinking with the purpose to advance our scientific knowledge on the diversified investment portfolio building in the nonlinear dynamic financial system. We applied the econophysics principles and the econometrics methods with the aim to find the solution to the problem of the optimal allocation of assets in the investment portfolio, using the advanced risk...
management techniques with the efficient frontier modeling in agreement with the modern portfolio theory and using the stability management techniques with the dynamic regimes modeling on the bifurcation diagram in agreement with the dynamic chaos theory. We showed that the bifurcation diagram, created with the use of the logistic function in Matlab, can provide some valuable information on the stability of combining risky investments in the investment portfolio, helping to optimize the assets allocation in the investment portfolio. We propose the Ledenyov investment portfolio theorem, based on the Lyapunov stability criteria, with the aim to create the optimized investment portfolio with the uncorrelated diversified assets, which can deliver the increased expected returns to the institutional and private investors at the acceptable levels of risk in the nonlinear dynamic financial system in the frames of investment economy in Justin Lin (2012).

Authors are very grateful to the Graduate School of Economics and Business Administration at Hokkaido University, Sapporo, Hokkaido, Japan for giving us a wonderful opportunity to conduct the research on the highly innovative research papers, written by the Japanese scientists. We appreciate Prof. Geoffrey G. Jones from the Harvard Business School Harvard University in the USA for the thoughtful discussion on the origin of chaos in the finances during our memorable meeting at the Munk Centre for International Studies, Trinity College, University of Toronto in Ontario, Canada in 2006. We also thank the Harvard Business School, Harvard University in Boston, USA for a presented opportunity to make a detailed analytical study on the current state of the investment portfolios research in the finances, using an electronic collection of working papers at the HBS. The first author appreciates Prof. Janina E. Mazierska, Electrical and Computer Engineering Department, School of Engineering and Physical Sciences, James Cook University, Australia for an opportunity to make the advanced innovative research on the modeling of nonlinear dynamic microwave resonant systems in the field of superconducting electronics during more than 12 years. The second author would like to thank Prof. Erik Mosekilde from the Center for the Modeling, Nonlinear Dynamics and Irreversible Thermodynamics at the Technical University of Denmark in Lyngby in Denmark for the numerous thoughtful long discussions on the nonlinear dynamics, including the nature of chaos and hyper-chaos in the financial, economic and managerial systems in 1996-1997. Prof. Harvey R. Campbell from the Fuqua Business School is appreciated for an opportunity to discuss the financial terminology in Morgenson, Campbell (2002), Campbell (2005-2006), and our thanks are also given to a group of leading professors from the Fuqua Business School, Duke University for the discussions on the application of different mathematical distributions in the
finances during our numerous business meetings in Durham, North Carolina in the USA in 2005. The second author is grateful to Profs. Roger L. Martin and John C. Hull from the Rotman School of Management, University of Toronto in Toronto, Canada for a wonderful opportunity to learn more about the integrative thinking, derivatives, and risk management in the finances in North America at the Rotman School of Management, University of Toronto in Toronto, Canada in 1998-1999 and in 2005-2006. The second author thanks Prof. Robert F. Engle III, New York University for the thoughtful scientific discussion on the modern portfolio, risk management and nonlinear dynamic chaos theories during our memorable meeting at the Rotman School of Management, University of Toronto in Toronto, Canada in 2006. The second author is grateful to Martin Wolf, Chief Economic Commentator, Financial Times for the insightful discussion on the globalization during our business meeting at the Rotman School of Management, University of Toronto in Toronto, Canada in 2006. Prof. Joseph Stiglitz, Columbia University is greatly acknowledged for the interesting debate on the topics of globalization and its discontents in 2002. Finally, Lionel Barber, Editor-in-Chief, Financial Times is appreciated for the discussions on the financial topics with more than one hundred global leaders, economists, financiers in the Financial Times in London in the UK in recent years.

*E-mail: dimitri.ledenyov@my.jcu.edu.au

References:
1. Bachelier L 1900 Theorie de la speculation Annales de l’Ecole Normale Superieure vol 17 pp 21-86.
2. Ueda 1904 Shogyo Dai Jiten (The Dictionary of Commerce) Japan.
3. Ueda 1937 Keieikeizaigaku Saran (The Science of Business Administration, Allgemeine Betriebswirtschaftslehre) Japan.
4. Mano O 1968-1969 On the Science of Business Administration in Japan Hokudai Economic Papers vol 1 pp 77-93.
5. Mano O 1970 The Development of the Science of Business Administration in Japan since 1955 Hokudai Economic Papers vol 2 pp 30-42.
6. Merton R C 2001 Future Possibilities in Finance Theory and Finance Practice Working Paper 01-030 Harvard Business School Harvard University Boston USA pp 1-43.
7. Mantegna R N, Stanley H E 1999 Introduction to Econophysics Cambridge University Press Cambridge UK.
8. Bouchaud J P, Potters M 2003 Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management Oxford University Press Oxford UK.
9. Sornette D 2003 Why Stock Markets Crash: Critical Events in Complex Financial Systems Princeton University Press Princeton USA.
10. Sinha S, Chatterje A, Chakraborti A, Chakrabarti B K 2010 Econophysics: An Introduction Wiley-VCH Berlin.
11. Yakovenko V M, Rosser J B 2009 Colloquium: Statistical Mechanics of Money, Wealth, and Income Cornell University NY USA arXiv:0905.1518v1 [q-fin.ST].
12. Chakrabarti B K, Chakrabarti A 2010 Fifteen Years of Econophysics Research Science and Culture vol 76 nos 9-10 pp 293-295; Cornell University NY USA arXiv:1010.3401 [q-fin.ST].
13. Aoyama H, Fujiwara Y, Iyetomi H, Sato A-H 2012 Preface Progress of Theoretical Physics Supplement No 194 pp i-ii.
14. 1986 Macmillan Dictionary of Modern Economics, 3rd Ed., p. 54.
15. Scott B R 2007 The Political Economy of Capitalism Working Paper 07-037 Harvard Business School Harvard University Boston USA pp 1-28.
16. Ledenyov V O, Clancy R 1990-1993 Private Communications on Political Economy Henry George Institute New York USA.
17. Ledenyov V O, Foldvary F 1993-1994 Transition to Market Economies The Georgist Journal New York USA ISSN 0887-6290 no 82 pp 21-24.
18. Ledenyov V O 1995 Transition to Market Economies Invited Talk International Union for Free Trade and Land Value Taxation Conference Roskilde Denmark.
19. Ledenyov V O, Ledenyov D O 2012 Shaping the international financial system in century of globalization Cornell University NY USA www.arxiv.org 1206.2022.pdf pp 1-20.
20. Ledenyov V O, Ledenyov D O 2012 Designing the new architecture of international financial system in era of great changes by globalization Cornell University NY USA www.arxiv.org 1206.2778.pdf pp 1-18.
21. Ledenyov D O, Ledenyov V O 2012 On the New Central Bank Strategy toward Monetary and Financial Instabilities Management in Finances: Econophysical Analysis of Nonlinear Dynamical Financial Systems Cornell University NY USA www.arxiv.org 1211.1897.pdf pp 1-8.
22. Ledenyov D O, Ledenyov V O 2012 On the Risk Management with Application of Econophysics Analysis in Central Banks and Financial Institutions Cornell University NY USA www.arxiv.org 1211.4108.pdf pp 1-10.
23. Ledenyov D O, Ledenyov V O 2012 Nonlinearities in Microwave Superconductivity Cornell University USA www.arxiv.org 1206.4426v2.pdf pp 1-918.
24. Wolf M 2005 Why Globalization Works Yale University Press USA ISBN 0-300-10777-3 pp 1-398.
25. Wolf M 2006 Private Communications on Globalization Rotman School of Management University of Toronto Ontario Canada.
26. Stiglitz J 2002 Globalization and its Discontents Penguin Books Ltd ISBN 0-713-99664-1 pp 1-288.
27. Mosekilde E 1996 Topics in Nonlinear Dynamics Applications to Physics, Biology and Economic Systems World Scientific Publishing Pte Ltd Singapore pp 1 - 380.
28. Mosekilde E 1996-1997 Private Communications on Nonlinear Dynamics Technical University of Denmark Copenhagen Denmark.
29. Beinhocker E 2006 The Origin of Wealth Harvard Business Press USA.
30. Mandelbrot B 2004 The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward Basic Books USA.
31. Wikipedia (2012) Modern Portfolio Theory.
32. Markowitz H M 1952 Portfolio Selection The Journal of Finance vol 7 (1) pp 77–91.
33. Markowitz H M 1956 The Optimization of a Quadratic Function Subject to Linear Constraints Naval Research Logistics Quarterly vol 3.
34. Markowitz H M 1959 Portfolio Selection: Efficient Diversification of Investments John Wiley & Sons NY USA.
35. Markowitz H M 1987 Mean-Variance Analysis in Portfolio Choice and Capital Markets Basil Blackwell USA.
36. Tobin J 1958 Liquidity Preference as Behavior Towards Risk Review of Economic Studies vol 25 pp 65–86.
37. Sharpe W F 1964 Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk Journal of Finance vol 19 pp 425-442.
38. Sharpe W F 1966 Mutual Fund Performance Journal of Business vol 39 no 1 part 2 pp 119-138.
39. Sharpe W F, Alexander G J, Bailey J V 1999 Investments, 6th ed Prentice-Hall Inc USA.
40. Kaplan P D 1998 Asset Allocation Models Using the Markowitz Approach pp 1-12.
41. Engle R F 2003 Risk and Volatility: Econometrics Models and Financial Practice Nobel Lecture www.nobel.org pp 326-349.
42. Engle R F 2006 Private Communications on Modern Portfolio, Risk Management and Nonlinear Dynamic Chaos Theories in Finances Rotman School of Management University of Toronto Ontario Canada.

43. Merton R C 1969 Lifetime Portfolio Selection Under Uncertainty: The Continuous Time Case Review of Economics and Statistics vol 51 pp 247-257.

44. Merton R C 1970 A Dynamic General Equilibrium Model of the Asset Market and its Application to the Pricing of the Capital Structure of the Firm Working Paper No. 497-70 Sloan School of Management Massachusetts Institute of Technology Cambridge MA [Reprinted in Merton R C 1992 Ch 11]).

45. Merton R C 1971 Optimum Consumption and Portfolio Rules in a Continuous-Time Model Journal of Economic Theory vol 3 pp 373-413.

46. Merton R C 1972 Appendix: Continuous-Time Speculative Processes in Day R H, Robinson S M editors Mathematical Topics in Economic Theory and Computation Society for Industrial and Applied Mathematics Philadelphia USA [Reprinted in Merton R C 1973 SIAM Review vol 15 pp 34-38].

47. Merton R C 1973a Theory of Rational Option Pricing Bell Journal of Economics and Management Science vol 4 pp 141-83.

48. Merton R C 1973b An Inter-temporal Capital Asset Pricing Model Econometrica, vol 41 pp 867-887.

49. Merton R C 1977a An Analytic Derivation of the Cost of Deposit Insurance and Loan Guarantees: An Application of Modern Option Pricing Theory Journal of Banking and Finance vol 1 pp 3-11.

50. Merton R C 1977b A Re-examination of the Capital Asset Pricing Model Studies in Risk and Return Bicksler J, Friend I editors Ballinger vols I & II pp 141-159.

51. Merton R C 1982 On the Microeconomic Theory of Investment Under Uncertainty in Handbook of Mathematical Economics vol II Arrow K, Intriligator M editors North-Holland Publishing Company Amsterdam The Netherlands.

52. Merton R C 1983a On Consumption-Indexed Public Pension Plans,” in Financial Aspects of the US Pension System in Bodie Z, Shoven J editors University of Chicago Press Chicago USA.

53. Merton R C 1983b Financial Economics in Brown E C, Solow R M editors Paul Samuelson and Modern Economic Theory McGraw-Hill NY USA.

54. Merton R C 1990 The Financial System and Economic Performance Journal of Financial Services Research vol 4 pp 263-300.
55. Merton R C 1992 Continuous-Time Finance Revised Edition Basil Blackwell Cambridge MA USA.

56. Merton R C 1993a Operation and Regulation in Financial Intermediation: A Functional Perspective in Englund P editor Operation and Regulation of Financial Markets The Economic Council Stockholm Sweden.

57. Merton R C 1993b Optimal Investment Strategies for University Endowment Funds in Clotfelter C, Rothschild M editors Studies of Supply and Demand in Higher Education University of Chicago Press Chicago USA.

58. Merton R C 1994 Influence of Mathematical Models in Finance on Practice: Past, Present and Future Philosophical Transactions of the Royal Society of London vol 347 pp 451-463.

59. Merton R C 1995a A Functional Perspective of Financial Intermediation Financial Management vol 24 no 2 pp 23-41.

60. Merton R C 1995b Financial Innovation and the Management and Regulation of Financial Institutions Journal of Banking and Finance vol 19 pp 461-481.

61. Merton R C 1997 On the Role of the Wiener Process in Finance Theory and Practice: The Case of Replicating Portfolios in Jerison D, Singer I M, and Stroock D W editors The Legacy of Norbert Wiener: A Centennial Symposium PSPM Series vol 60 American Mathematical Society Providence RI USA.

62. Merton R C 1998 Applications of Option-Pricing Theory: Twenty-Five Years Later Les Prix Nobel 1997 Nobel Foundation Stockholm Sweden [Reprinted in American Economic Review pp 323-349].

63. Merton R C 1999 Commentary: Finance Theory and Future Trends: The Shift to Integration Risk pp 48-50.

64. Merton R C, Bodie Z 1992 On the Management of Financial Guarantees Financial Management vol 21 pp 87-109.

65. Merton R C, Bodie Z 1993 Deposit Insurance Reform: A Functional Approach in Meltzer A, Plosser C editors Carnegie-Rochester Conference Series on Public Policy vol 38 pp 1-34.

66. Merton R C, Scholes M S 1995 Fischer Black Journal of Finance vol 50.

67. Merton R C 2001 Future Possibilities in Finance Theory and Finance Practice Working Paper 01-030 Harvard Business School Harvard University Boston USA pp 1-43.

68. Hull J C 2012 Options, Futures, and Other Derivatives Prentice Hall 8th Edition ISBN: 0-13-216484-9 USA pp 1-816.

69. Hull J C 2012 Risk Management and Financial Institutions Wiley 3rd Edition ISBN: 978-1-1182-6903-9 USA pp 1-672.
70. Hull J C 2010 Fundamentals of Futures and Options Markets Prentice Hall 7th Edition ISBN-10: 0136103227 ISBN-13: 978-0136103226 USA pp 1-624.

71. Hull J C 2005-2006 Private Communications Rotman School of Management University of Toronto Ontario Canada.

72. Sandor R 2012 Good Derivatives: a story of financial and environmental innovation Public Lecture on 05.11.2012 London School of Economics and Political Science London UK http://richmedia.lse.ac.uk/publicLecturesAndEvents/20121105_1830_goodDerivatives.mp4 .

73. Financial Times (2005-2013) Information Compiled from Selected Articles FT London UK.

74. Black F and Scholes M 1972 The Valuation of Option Contracts and a Test of Market Efficiency Journal of Finance vol 27 pp 399–417.

75. Black F and Scholes M 1973 The Pricing of Options and Corporate Liabilities Journal of Political Economy vol 81 pp 637-654.

76. Black F 1989 How We Came up with the Option Formula The Journal of Portfolio Management vol 15 pp 4-8.

77. Black F, Fischer 1990 Equilibrium exchange rate hedging Journal of Finance vol 45 pp 899—907.

78. Elton E J, Gruber M J 2011 Investments and Portfolio Performance World Scientific ISBN 978-981-4335-39-3 pp 382–383.

79. Riedl E J, Serafeim G 2001 Information Risk and Fair Value: An Examination of Equity Betas and Bid-Ask Spreads Working Paper 10-008 Harvard Business School Harvard University Boston USA pp 1-41.

80. Campbell J Y, Chan Y L, Viceira L M 2002 A Multivariate Model of Strategic Asset Allocation Working Paper 02-033 Harvard Business School Harvard University Boston USA pp 1-78.

81. Campbell J Y, Serfaty-de Medeiros K, Viceira L M 2007 Global Currency Hedging Working Paper 07-084 Harvard Business School Harvard University Boston USA pp 1-74.

82. Gray D F, Merton R C, Bodie Z 2007 A New Framework for Analyzing and Managing Macrofinancial Risks of an Economy Working Paper 07-026 Harvard Business School Harvard University Boston USA pp 1-45.

83. Grinold R C and Kahn R N 2000 Active Portfolio Management 2nd ed.

84. Lintner J 1965 The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets Review of Economics and Statistics vol 47 no 1 pp 13-37.

85. Treynor J L and Black F 1973 How to Use Security Analysis to Improve Portfolio Selection Journal of Business vol 46 no 1 pp 68-86.
86. Kolmogoroff A N 1931 Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung
Mathematische Annalen vol 104 pp 415-458.
87. Kolmogorov A N, Petrovsky I G, Piskunov N S 1937 Research on the Equation of Diffusion,
Connected with Increase of Quantity of Matter and its Application to One Biological Problem
Moscow State University Bulletin: Mathematics and Mechanics vol 1 p 1.
88. Kolmogorov A N 1940 Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen Raum DAN USSR vol 26 no 2 pp 115-118.
89. Kolmogorov A N 1941 Local Structure of Turbulence in Non-Compressed Viscous Liquid at
Very Big Reynolds Numbers DAN USSR vol 30 pp 299-303.
90. Kolmogorov A N 1959 On the Entropy on Unit of Time as Metric Invariant of Auto-
Morphism DAN USSR vol 124 pp 754-755.
91. Kolmogorov A N 1985 Mathematics and Mechanics. Selected Works vol 1 Nauka
Publishing House Moscow Russian Federation.
92. Kolmogorov A N 1986 Probability Theory and Mathematical Statistics. Selected Works
vol 2 Nauka Publishing House Moscow Russian Federation.
93. Alexandrov P S, Khinchin A Ya 1953 Andrei Nikolaevich Kolmogorov (To the 50th
Birthday Anniversary) Uspekhi Matematicheskih Nauk (UMN) vol 8 no 3 pp 178-200.
94. Gleick J 1988 Chaos: Making a New Science Penguin Books Ltd USA ISBN 0 14 00.92501
pp 1-354.
95. Ulam S M, von Neumann J 1947 Bulletin American Mathematical Society vol 53 no 11
p 1120.
96. Kubo R 1957 Statistical-Mechanical Theory of Irreversible Processes Journal Physics
Society Japan vol 12 p 570.
97. Kubo R, Toda M, Hashitsume N 1983 Statistical Physics Springer Heidelberg Germany.
98. Sharkovsky A N 1964 Co-existence of Cycles of a Continuous Map of a Line in Itself
Ukrainian Mathematical Journal vol 16 pp 61 - 71.
99. Sharkovsky A N 1965 On the Cycles and Structure of Continuous Mapping Ukrainian
Mathematical Journal vol 17 p 104.
100. Sharkovsky A N, Maistrenko Yu L, Romanenko E Yu 1986 Differential Equations and
Their Applications Naukova Dumka Kiev Ukraine pp 1-280.
101. May R 1974 Biological Populations with Non-Overlapping Generations: Stable Points,
Stable Cycles, and Chaos Science vol 186 pp 645 - 647.
102. May R 1976 Simple Mathematical Models with Very Complicated Dynamics Nature
vol 261 pp 459 - 467.
103. May R, Oster G F 1976 Bifurcations and Dynamic Complexity in Simple Ecological Models *The American Naturalist* vol 110 pp 573 – 579.
104. Li T-Y, Yorke J A 1975 Period Three Implies Chaos *American Mathematics Monthly* vol 82 pp 982-985.
105. Feigenbaum M J 1978 Quantitative Universality for a Class of Nonlinear Transformations *Journal of Statistical Physics* vol 12 no 1 pp 25 – 52.
106. Feigenbaum M J 1979 The Universal Metric Properties of Nonlinear Transformations *Journal of Statistical Physics* vol 21 no 6 pp 669 – 706.
107. Feigenbaum M J 1979 The Onset Spectrum of Turbulence *Physics Letters* vol A74 no 6 pp 375 – 378.
108. Feigenbaum M J 1980 The Transition to Aperiodic Behaviour in Turbulent Systems *Communications Mathematical Physics* vol 77 no 1 pp 65 – 86.
109. Feigenbaum M J, Kadanoff L P, Shenker S J 1982 Quasiperiodicity in Dissipative Systems: A Renormalization Group Analysis *Physica* vol D5 p 370.
110. Lanford O A 1982 Computer-Assisted Proof of the Feigenbaum Conjectures *American Mathematical Society Bulletin* vol 6 no 3 pp 427 – 434.
111. Klimontovich Yu L 1982 Statistical Physics *Nauka Publishers* Moscow Russian Federation.
112. Klimontovich Yu L 1990 Turbulent Movement and Structure of Chaos *Nauka Publishers* Moscow Russian Federation ISBN 5-02-014038-4 pp 320.
113. Anishenko V S 1990 Complex Oscillations in Simple Systems: Mechanisms of Origination, Structure and Properties of Dynamic Chaos in Radiophysics Systems *Nauka Publishers* Moscow Russian Federation pp 1-312.
114. Anishenko V S 2000 Introduction to Nonlinear Dynamics: Lectures by Soros Professor: Training Manual *College* Saratov Russian Federation.
115. Anishenko V S, Vadivasova T E, Astakhov V V 1999 Nonlinear Dynamics of Chaotic and Stochastic Systems *Saratov University Publishing House* Saratov Russian Federation.
116. Kuznetsov S P 2001 Dynamic Chaos *Izdatel’stvo Fiziko-Matematicheskoi Literatury* Moscow Russian Federation pp 1 - 296.
117. Kuznetsov S P 1996-1997 Private Communications on Dynamic Chaos *Technical University of Denmark* Copenhagen Denmark.
118. Saratov group of theoretical nonlinear dynamics (2012) Information on the logistic equation.
119. Medvedeva N V 2000 Dynamics of the Logistic Function *Soros Educational Journal* vol 6 no 8 pp 121-127.
120. Hsieh D 1991 Chaos and Nonlinear Dynamics The Journal of Finance vol 16 p 5.
121. Peters E E 1996 Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility John Wiley & Sons, Inc 2nd edition NY USA ISBN 0-471-13938-6.
122. Shiryaev A N 1998 Foundations of Stochastic Financial Mathematics vol 1 Fazis Scientific and Publishing House Moscow Russian Federation ISBN 5-7036-0044-8 pp 1-492.
123. Shiryaev A N 1998 Foundations of Stochastic Financial Mathematics vol 2 Fazis Scientific and Publishing House Moscow Russian Federation ISBN 5-7036-0044-8 pp 493-1017.
124. Nikulchev E V 2007 Geometric Approach to Modeling of Nonlinear Systems from Experimental Data ISBN 978-5-8122-0926-1 pp 1 – 162.
125. Nikulchev E V 2011 Private Communications on Modeling of Nonlinear Systems Int. Conference on Design of Engineering and Scientific Applications in Matlab Kharkov Ukraine.
126. Martin R L 1998-1999, 2005-2006 Private Communications on Integrative Thinking Rotman School of Management University of Toronto Ontario Canada.
127. Martin R L 2005-2006 Private Communications on Chaos in Economics The Economic Club of Toronto Toronto Ontario Canada.
128. Martin R L 2007 Becoming an Integrative Thinker Rotman Magazine Rotman School of Management University of Toronto Ontario Canada pp 4-9.
129. Martin R L 2007 Designing the Thinker Rotman Magazine Rotman School of Management University of Toronto Ontario Canada pp 4-8.
130. Martin R L 2008 The Opposable Mind Harvard Business Press Cambridge Massachusetts.
131. Ilinski K 2001 Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing Wiley New York USA ISBN-10: 0471877387 pp 1-300.
132. Smirnov A D 2010 Macrofinances II: Model of Bulbs and Crises Economic Journal of High School of Economics no 4 pp 401-439.
133. Grebogi C, Ott E, Yorke J A 1982 Chaotic Attractor in Crisis Physical Review Letters vol 48 pp 1507-1510.
134. Strogatz S 1994 Nonlinear Dynamics and Chaos Addison Wesley NY USA.
135. Sauer T et al 1996 Chaos: An Introduction to Dynamic Systems Springer Verlag NY USA.
136. Bunde A, Havlin S 2009 Fractal Geometry: A Brief Introduction to «Encyclopedia of Complexity and Systems Science» Springer Berlin Heidelberg Germany.
137. Maslov V P 2006 Quantum Economics Nauka Moscow Russian Federation.
138. Ledenyov D O, Ledenyov V O (2012) 3D Bifurcation diagram for accurate characterization of dynamic properties of combining risky investments in investment portfolio in nonlinear dynamic financial system, Software in Matlab R2012.
139. Morgenson G, Campbell H R 2002 The New York Times Dictionary of Money and Investing: The Essential A-to-Z Guide to the Language of the New Market Times Books ISBN-13: 978-0805069334 pp 1-400.

140. Campbell H R 2005-2006 Personal Communications on the Financial Terminology Fuqua School of Business Duke University Durham North Carolina USA.

141. DeGioia J 2012 Discussion on the edX Platform Economic Club of Washington www.economicclub.org DC USA 2012.

142. Faust D 2012 Discussion on the Challenges and Opportunities of Higher Education Platform Economic Club of Washington www.economicclub.org DC USA 2012.

143. Rubenstein D M 2012 Discussion on the Challenges and Opportunities of Higher Education Platform Economic Club of Washington www.economicclub.org DC USA 2012.

144. Sperling G 2012 Discussion on the Investments in Research and Innovation Investing in the Future Center for American Progress www.americanprogress.org USA 2012.

145. Justin Lin 2012 Demystifying The Chinese Economy, Public Lecture on 18.12.2012 London School of Economics and Political Science London UK http://richmedia.lse.ac.uk/publicLecturesAndEvents/20121218_1845_demystifyingTheChineseEconomy.mp4.