Rising trends towards the development of oral herbal male contraceptive: an insight review

Surender Verma* and Akash Yadav*

Abstract

Background: Acknowledging population control to be an essential step for global health promotes wide research study in the area of male contraception. Although there are a great number of synthetic contraceptives available in the market, they have plenty of adverse effects. Different potential strategies for male contraception were investigated over a long period time consisting of hormonal, chemical, and immunological interventions, although these methods showed good antifertility results with low failure rates relative to condoms.

Main text: This review is based upon the concept of herbal contraceptives which are an effective method for controlling the fertility of animals and humans. This review has highlighted herbal medicinal plants and plant extracts which have been reported to possess significant antifertility action in males. The review considers those plants which are used traditionally for their spermicidal and antispermatogetic activities and imbalance essential hormones for fertility purposes and plants with reported animal studies as well as some with human studies for antifertility effect along with their doses, chemical constituents, and mechanism of action of the antifertility effect of the plants. This review also explains the phases of sperm formation, hormone production, and the mechanism of male contraceptives.

Conclusion: As far as the relevance of the current review is discussed, it might be quite useful in generating monographs on plants and recommendations on their use. A lot of the plant species listed here might appear promising as effective alternative oral fertility-regulating agents in males. Therefore, significant research into the chemical and biological properties of such less-explored plants is still needed to determine their contraceptive efficacy and also to possibly define their toxic effects so that these ingredients can be utilized with confidence to regulate male fertility. The new inventions in this field are necessary to concentrate on modern, more potent drugs with less harmful content and that are self-administrable, less costly, and entirely reversible.

Keywords: Antifertility, Family planning, Herbal contraceptives, Herbs, Mechanisms, Oral male contraceptives, Overpopulation

Background

Today, overpopulation is a matter of extreme concern for developed nations along with developing countries [1, 2]. In the year 2011, the world population was estimated at 6,928,198, 253 and increasing rapidly at a rate of 83 million citizens per year [3]. Among developing countries, India is densely populated and it is estimated that it will reach about 9.2 billion by the year 2050 [1, 2]. The year 2012 witnessed population figures reaching 1,210,193,422 [1] with an increment of 18 million to the total population every year [2]. According to India’s population in 2019, figures are 1,372,717,495 [4]. Increasing population leads to an increase in the demand for resources like water and food, starvation, malnutrition, and consumption of natural resources. Since natural resources are limited, control of the increasing population is a mandatory step [5]. Family planning is an easy and important tool for controlling population burden [6]. On other hand, in
the USA, the unwanted pregnancy rate is approximately 45% with the help of the various contraceptive options provided to women [7]. Although female contraceptives are much effective in preventing unplanned pregnancy, giving high yielding results, it cannot be used by a greater proportion of sex due to their profuse adverse effects [8].

Talking about extreme measures, the World health Organization has initiated a population control program that includes trials linked to traditional medical activities [2]. Many methods for induction of infertility are implemented over a long period that involves biochemical, biological, and immunological pathways [9] with the least impact but minimal inadequacy [5]. During ancient times, the human reproduction system was not fully established. Hence, the progress in research could not be put into practice due to unclear mechanisms related to human hormones [10].

Main text

Methods and materials

The present study has been geared up with wide-ranging facts of curative plants inhabiting all over the world concerning their accepted tradition by countless ethnic groups for fertility regulation in males. To date, no examination has analyzed the dose, constituents of elements, and mechanism of action of the antifertility effect of plants.

So, information concerning this article has been systematically gathered from the sources of scientific literature, including PubMed, Google Scholar, Science Direct, and Scopus. Simply applicable studies available in the English language were considered. The botanical and English names are considered after validation from available text and database. The criteria followed for the choice of information in this evaluation deliberate folk plant:

1. Found in Ancient Indian medicines
2. With recorded animal studies for effects on infertility as well as those with human studies of antifertility effect

Plants, their parts, or their extracts traditionally used for spermicidal and antispermatogenic activities and those that imbalance essential hormones for fertility purposes have been considered as antifertility agents. Furthermore, compounds isolated from plants with attributed potential for fertility regulation are also classified into 6 categories:

1. Phytoconstituents with spermicidal activity
2. Phytoconstituents with antispermatogenic activity
3. Phytoconstituents acts through Sertoli cells
4. Phytoconstituents acts through Leydig cells
5. Phytoconstituents with antimotility activity
6. Phytoconstituents acts by unbalancing hormones

The following keywords were used to search the literature in the data sources: oral male contraceptives, herbal contraceptives, antifertility, and male contraception.

The need of male contraceptives-a boon for society!!!

Acknowledging population control to be an essential step for global health promotes an opportunity for a large-scale research study in the field of male contraceptives [11]. Male contraceptives originated with the use of a condom in ancient times in Imperial Rome. Researches on male contraception initiated with the sole objective of taking easy targets to the male reproductive system by stopping either the sperm or the testis to function [10]. Although there are a great number of synthetic contraceptives available in the market, they have plenty of adverse effects [5].

Moreover, there is a rise in the need for male contraceptives to avoid unwanted pregnancies because not many men wish to take responsibility for family planning [8]. Also due to the adverse effects of synthetic male contraceptives, the quest for a modern, more effective, more reliable, and less expansive approach is the priority as well as objectives for the pharmaceutical and medical sciences not to forget an unusual self-administration and long-lasting effect of male contraceptives [9]. The new inventions in this field often concentrate on modern, more potent drugs with less harmful content and that are self-administrable, less costly, and entirely reversible [12].

**Why not herbals???

Since ancient times, plants are always regarded as a potent source of nourishment that we require for staying healthy along with their valuable components commonly used for food and nutrition, beverages, cosmetics, dyes, medicines, etc. Herbs are excellent examples of being one of the richest sources of nutrients that aim at protecting and restoring a healthy life [13]. As specified by the World Health Organization (WHO) statistics, almost 65–80% of the world’s population relies on plant species and their health care products due to the lack of modern facilities and poor conditions. There is a total of 422,000 plant species that have been recorded all over the world, out of which 20,000 species are acclaimed as wild edible species and less than 20,000 of the same community is consumed as a food supplement for 90% of people around the world, contributing to almost 25% of drug formulations from plants or their extracts [14]. The herbal preparations have been used as an oral tradition. It is becoming more popular and useful in modern times as demand for natural remedies/medicines is increasing.
every day because of the belief of people that they do not have any adverse effects, a boon in disguise [15]. Continuing the traditional system of medicines, more than 35,000 plant species are being used worldwide for medicinal purposes. Following which, more than 80% of the world population is turning to herbal preparations that contain plant extracts for primary health care [2].

Herbal contraceptives are plant-based contraceptives which are effective methods for controlling the fertility of animals and humans [16]. The chemical constituents of plants such as flavonoids, terpenes, tannins, quinines, diterpenoids, and lactones are apprehended to possess antifertility action through a different mechanism [17]. Different potential mechanisms for male contraception have been studied over a long period of time consisting of hormonal, chemical, and immunological strategies [2, 18] though these methods have shown better results of antifertility effects with minimum failure rates than condoms.

In recent years, plants have been reported to be used in the regulation of male fertility because of the better compatibility with the human body, better cultural acceptability, and lesser adverse effects giving it an upper hand [19]. As a result, herbal products attract scientists as a primary source of naturally occurring antifertility agents due to little or negligible adverse signs [17]. For instance, in India, several herbal plants have been reported to have antifertility effects that act through the mechanism by suppression of spermatogenesis or by prevention of implantation [20].

Phases for sperm formation

Testicular carries out two primary goals:

1. Testosterone production
2. Spermatogenesis (origin of haploid germ cells) [8] (Fig. 1)

Flow sheet for production of hormones [21] (Fig. 2)

Pituitary gonadotrophins regulate the functions of the testicles, with luteinizing hormones (LH) acting on the testosterone and producing interstitial cells and the follicle-stimulating hormone (FSH) affecting the cells of the seminiferous tubules. Including the seminiferous epithelium’s structural elements, the movement of nutritional growth factor to the haploid germ cells with a near junction in the epithelium for consecutive cells is known as the “blood-testis barrier.” Well-performing Sertoli cells supply sufficient mitogens, distinct factors, and energy sources to the growing germ cell, as well as shielding them from the host’s own immune system from harmful agents. The number and function of the present Sertoli cells define the spermatogenesis rate and quality [22].

Male contraceptives might work as follows:

1. Suppress sperm production by antispermagenic
2. Prevention of maturation of sperm
3. Prevention of the flow of sperm through vas deferens
4. Prevention of deposition of the sperm [1]
Phytoconstituents with spermicidal agents

Ideal spermicidal characteristics include the following: would rapidly and irreversibly achieve sperm immobilization, are not harmful to the vaginal and penile mucosa, do not have any side effects on the growing fetus that are free from long-term topical and systemic toxicity, and should not be ingested systemically [23]. A typical lipid bilayer consisting of outer, intra, and transmembrane proteins is a key component of the plasma membrane of sperms. This lipid bilayer associate with saponin molecules, impacting cell membrane glycoproteins and altering ionic movement across the membrane, resulting in many plants (Phytolacca dodecadra, Calendula officinalis, and Acacia caesia) differing [24].

Sperm immobilization can be caused by the acid pH of lemon juice through the denaturation of ATPase dyein [23].

Phytoconstituents with antispermatogenic activity

The spermatogenesis process involves a complex process:

1. Spermatocytogenesis
2. Spermatidogenesis
3. Spermiogenesis

A diploid spermatogonium undergoes mitotic division in the process of spermatocytogenesis and develops two diploids known as primary spermatocytes. Every primary spermatocyte divides into two haploid secondary spermatocytes by meiosis. Spermiogenesis is the process of spermatid differentiation into mature sperm. It indicates interference in the steroidogenesis when the cholesterol level rises and sudanophilic lipid accumulates [25].

Phytoconstituents acts through Sertoli cells

Sertoli cells are columnar with oval or pear nuclei and thin mitochondria; at the base of their cytoplasm, they have lipofuscin and lipid droplets. The main feature of Sertoli cell structural support for germ cell development is the blood test barrier, which is situated between neighboring Sertoli cells in close junctions. Sertoli cells play an important part in the process of spermatogenesis and adult life as a whole. The plant extracts kill the viability and work of Sertoli cells and have various effects

Fig. 2 Release and production of different hormones from glands
on spermatogenesis, such as reducing the nuclear and cytoplasmic volume and vacuolizing Sertoli cells [26].

Phytoconstituents acts through Leydig cells

Leydig cells are polyhedral with a large prominent nucleus, an eosinophilic cytoplasm, and various vesicles packed with lipids. The hormone-releasing gonadotropin, secreted and synthesized by the hypothalamus, produces and releases LH and FSH from the pituitary gland. LH induces the production of testosterone in the testis Leydig cells [27].

Phytoconstituents with antimotility activity

The sperm passes through three sections of the caput, corpus, and cauda epididymis that are important for sperm maturation [28]. Therefore, the production and secretion of proteins through the epididymis and the completion of various morphological, biochemical, and motile properties during the transformation from epididymis are important for the spermatozoa’s full capacity to fertilize [29].

Phytoconstituents acts by unbalancing hormone

Hypothalamus, pituitary gland, and testis secrete the various hormones which regulate spermatogenesis [30]. The Leydig cells synthesize and secrete the major male sex hormone testosterone under the influence of pituitary gonadotropin luteinizing hormone (LH). Several plant products are considered to contain enzymes that are used in androgen synthesis [31]. Quassia Amara’s blunt methanol extract shows lower levels of testosterone, LH, and hormone-stimulating follicles (Fig. 3) (Table 1)

Epidemiological studies have shown that the use of combination oral contraceptives increases the possibility of brain thrombosis; enhances the serum triglyceride, high-density lipoprotein (HDL), and cholesterol levels; and also increases family mortality related to cardiovascular diseases as well as malignant tumors in any organ, low resistance to glucose or insulin, diarrhea, abdominal pain, fatigue, hypertension, and menstrual shifts [2].

Patents available are shown Table 2.
Sr. no.	Botanical name	Common name	Family	Part used	Subject	Dose	Active constituents	Duration of administration (days)	Mechanism of action	Antifertility activity	References
1.	Acacia auriculiformis Benth.	Ear leaf	Fabaceae	Seeds	Human sperm	0.35 mg/ml	Acacic acid lactone	–	Disintegrate sperm plasma membrane and immobilize sperm	–	[32]
2.	Aegle marmelos (L.) Corrêa Bael	Leaves	Rutaceae	Rat		200 and 300 mg/kg B.W. /day	Coumarins, tannins, phenols, rutin	60	Suppress gonadotropic hormone	Reversible	[33]
3.	Albizia lebbeck (L.) Benth	Pods	Fabaceae	Rat		100 mg/kg B.W.	Labbekanin-E, saponins	60	Reduce sperm density and sperm motility and decrease testes and prostate size	–	[34]
4.	Allium sativum L.	Bulb	Lillicae	Human sperm		0.25 and 0.5 g/ml	Allitridum	–	Disrupt membrane architecture	Irreversible	[20]
5.	Cananga odorata (Lam.) Hook. f. & Thomson	Root bark	Annonaceae	Rat		1 g/kg B.W./day	52-kd protein	60	Decrease androgen production, increase 3-hydroxy-3-methyl-glutaryl-CoA (HMG CoA) reductase activity, and decrease 3β-hydroxy steroid dehydrogenase enzyme activity	Reversible	[35]
6.	Cestrum parqui (Lam.) L'Hér.	Leaves	Solanaceae	Human semen		40, 62.5, 100, 150, and 250 μg/ml	Saponin	–	Disrupt sperm plasma membrane sterol	–	[36]
7.	Chenopodium album L.	Lamb's quarters	Chenopodiaceae	Fruits	Rat/rabbit	2 mg/ml	Oleanolic acid, glucuronic acid	–	Disintegrate sperm plasma membrane and cause the dissolution of acrosomal cap causing sperm death	–	[37]
8.	Chromolaena odoratum (L.) Tivra	Leaves	Compositae	Rat		250 and 500 mg/kg B.W.	–	14	Decrease biomolecule concentration and disrupt seminiferous tubules	–	[38]
9.	Colebrookia oppositifolia	Leaves	Lamaceae	Rat		100 and 200 mg/kg	5,6,7,4′-tetramethoxy flavones, 5,6,7-trimethoxy flavones, 5,7, 4′-trihydroxy flavones 3-o-glucoside	56–70		–	[39]
10.	Juniperus phoenica (L.)	Ripe red cones	Cupressaceae	Rat		400 and 800 mg/kg	α-Pinene, δ-3-carone, β-phellandrene	21	Inhibit LH and gonadotropin-liberating hormone	–	[40]
11.	Mollugo pentaphylla L.	Aerial part	Molluginaceae	Human sperm		10, 30, 100, and	Mollugogenol-A (saponin)	–	Plasma membrane-losing osmoregulatory properties and	–	[41]
Sr. no.	Botanical name	Common name	Family	Part used	Subject	Dose	Active constituents	Duration of administration (days)	Mechanism of action	Antifertility activity	References
---------	----------------	-------------	-------------	-----------	---------	------------	--------------------	----------------------------------	---------------------	----------------------	------------
12.	Quassia amara	Bitterwood	Simaroubaceae	Stem wood	Rat	0.1, 1.0,	Quassin, 2-methoxycanthin-6-one	56	Decrease serum level testosterone, LH, and FSH	Reversible	[42]
	L.					and 2 mg/kg B.W.					
13.	Sapindus	Reetha	Sapindaceae	–	Human	0.05%, 0.1%,	Saponins, digitonin	–	Disruption and erosion of membrane	–	[32]
	mukorossi				Semen	1.25%, and 5%					
Gaertn.											
14.	Terminalia	Chebulic	Combretaceae	Dry fruits	Rat	50 and 100 mg/	Anthraquinones, ellagittamic acid, 42,4-	60	Inhibit acrosomal enzyme and sperm hyaluronidase enzyme	Reversible	[43]
	chebula	myrobala				kg/day	4,2,4-chebulyl-β-D-glucopyranose, ellagic acid, gallic acid				
Retz.											
15.	Tinospora	Guduchi	Menispermaceae	Stem	Rat	100 mg/	–	60	Reduce plasma level of testosterone and inhibit glycolysis in spermatozoa	–	[44]
	cordifolia (Wild)					rat/day					
	(Willd)										
16.	Ziziphus	Ber	Rhamnaceae	Barks	Human semen	0.1 and 0.5 mg/ml	Saponin	20 s–20 min	Disrupt lipid within sperm membrane	–	[45]
	mauritiana										
Lam.											

Phytoconstituents with antispermatogenic activity

1. *Bacopa monnieri* (L.) Wettst.
 Brahmi
 Scrophulariaceae
 All part
 Mice
 250 mg/kg B.W. /day
 28 and 56
 Decrease fructose level and inhibit spermatogenesis
 Reversible
 [46]

2. *Barleria prionitis* L.
 Vajra-danti
 Acanthaceae
 Root
 Rat
 100 mg/kg
 Barlerin, acetyl barlerin, apigenin-7-o-glucoside
 60
 Reduce glycogen, protein, and sialic acid content and deplete germinal and Leydig cell constituents
 –
 [47]

3. *Cannabis sativa* L.
 Ganja
 Cannabinaceae
 Seeds
 Rat
 20 mg/day
 Cannabinoids
 20
 Act on cannabinoid receptors
 –
 [48]

4. *Chrysophyllum albidum* G.Don
 White star apple, vdara
 Compodeoidea
 Root bark
 Rat
 100 and 200 mg/kg
 Alkaloids, tannis, saponin, phenol, flavonoids
 147
 Reduce gonadotropins level (FSH and LH) and inhibit spermatogenesis
 –
 [49]

5. *Citrullus colocynthis* (L.) Schrad.
 Tumba
 Cucurbitaceae
 Root
 Rat
 50, 100, and 200 mg/kg B.W./day
 Hentriacontane, n-octacosanol, 1,2,6-hexa-cosanediol
 60
 Inhibit pituitary gonadotropin secretion and reduce sialic acid and protein
 Reversible
 [50]

6. *Crotalaria juncea* L.
 Sunn hemp
 Papilionaceae
 Seed
 Mice
 25 mg/100 g/day
 –
 30
 Reduce seminiferous tubular fluid and decrease protein content, FSH, and LH
 –
 [51]

7. *Cuminum Jeera*
 Apiceae
 Seed
 Rat
 100 mg/
 –
 60
 Sloughing or death of epithelial
 –
 [52]
| Sr. no. | Botanical name | Common name | Family | Part used | Subject | Dose | Active constituents | Duration of administration (days) | Mechanism of action | Antifertility activity | References | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 8. | Curcuma longa L. | Haldi | Zingiberaceae | Rhizomes | Mice | 600 mg/kg B.W./day | – | 56 and 84 | Inhibit gonadotropin secretion and decrease serum level | Reversible [53] |
| 9. | Fadogia agrestis Schweinf. ex Hiern | Nagbitenga | Rubiaceae | Stem | Rat | 18, 50, and 100 mg/kg B.W. | Alkaloids, anthraquinones, flavonoids, saponin | 28 | Increase cholesterol level and reduce glycogen content | Reversible [54] |
| 10. | Hibiscus rosa-sinensis L. | Gudhal | Malvaceae | Flower | Mice | 150 and 300 mg/kg | – | 20 | Decrease androgen synthesis and reduce spermatogenic element | – [55] |
| 11. | Lepidium meyenii Walp. | Maca | Brassicaceae | Root | Rat | 66.7 mg/ml | – | 14 | Enhance epididymal weight and reduce stages I-VI of seminiferous epithelium | – [56] |
| 12. | Leptadenia hastata | Cheila | Asclepiadaceae | Leaves and stem | Rat | 100, 200, 400, and 800 mg/kg | – | 60 | Reduce Leydig cell and imbalance LH, prolactin, and testosterone serum level hormones | – [57] |
| 13. | Momordica charantia L. | Karela | Cucurbitaceae | Seed | Rat | 25 mg/100 g B.W. | – | 35 | Inhibit gonadotrophins (FSH) and enhance cholesterol level and sudanophilic lipids | – [58] |
| 14. | Mondia whitei (Hook.f) Skeels | La racine | Periplocaeae | Root | Rat | 500 and 1000 mg/kg B.W. | Steroids, triterpenes | 30 | Reduce intratesticular concentration of cholesterol | Reversible [59] |
| 15. | Morinda lucida Benth. | Brimstone tree | Rubiaceae | Leaves | Rat | 400 mg/kg/day | Anthraquinones, anthraquinols | 28 and 91 | Reduce serum testosterone level and inhibit acetylcholinesterase | Reversible [60] |
| 16. | Mucuna urens L. | Ibaba | Cannabaceae | Seed | Rat | 70, 140, and 210 mg/kg B.W. | Flavonoids, anthranoid, anthraquinones, polyphenols | 14 | Inhibit endogenous gonadotrophic activity | – [61] |
| 17. | Ocimum gratissimum L. | African basil, ram tulsi | Lamiaceae | Leave | Mice | 11–88 mg/kg | Eugenol, citral, linalol, charvicol, thymol, geraniol | 7, 14 and 28 | Deplete Leydig and Sertoli cells and destroy cell membrane | – [62] |
| 18. | Parkinsonia aculeate L. | Viliyat babul | Caesalpinaceae | Stem bark | Rat | 50, 100, and 200 mg/rat/day | α-Amyrin acetate, β-amyron acetate, 6-hydroxypentacosylpentanoate ethynoma decanoate, 6-hydroxytritriacont-3-one | 60 | Reduce testosterone level and Leydig cell diameter and seminiferous tubular diameter | – [63] |
| 19. | Piper nigrum L. | Long pepper | Piperaceae | Fruits | Mice | 25 and 100 mg/ | Piperine | 20 and 90 | Reduce sialic acid level and decrease fructose concentration | Reversible [64] |
| Sr. no. | Botanical name | Common name | Family | Part used | Subject | Dose | Active constituents | Duration of administration (days) | Mechanism of action | Antifertility activity | References |
|--------|----------------|-------------|--------|-----------|---------|------|---------------------|----------------------------------|---------------------|-------------------|------------|
| 20. | Ruta graveolens L. | Rue | Rutaceae | Leave | Rat | 500 mg/kg B.W./day | – | Reduce serum androgen level and degenerate Leydig cells | – | – | [65] |
| 21. | Semecarpus anacardium | Bilawa | Anacardiaceae | Fruit | Rat | 100, 200, and 300 mg/kg/day | – | Decrease sialic acid content and androgen production (LH) | – | – | [66] |
| 22. | Terminalia bellirica (Gaertn.) Roxb. | Baheda | Combretaceae | Fruit | Rat | 10 and 25 mg/100 g B.W. | Triphala | Reduce androgen level and increase cholesterol level | – | – | [67] |
| 23. | Thevetia peruviana | Lucky nut, Mexican oleander | Apocynaceae | Stem bark | Rat | 100 mg/rat/day | α-Amyrin acetate, lupeol acetate, α-amyrin, β-amyrin, lupeol, thevetigenin | 60 | Deform and impair Leydig cell and reduce androgen concentration | – | – | [68] |

Phytoconstituents acts through Sertoli cells

1. *Azadirachta indica* A.Juss. | Neem | Meliaceae | Leaves | Rat | 100 mg/rat/day | – | Degenerate germ cells | Reversible | [69] |
2. *Dendrophthoe falcate* (L.f.) Ettingsh. | Banda | Loranthaceae | Stem | Rat | 100 mg/kg B.W./day | Quercitrin (quercetin-3-o-rhamnoside), kaempferol, rutin | 60 | Decrease seminiferous tubular fluid and reduce androgen synthesis and sialic acid | – | – | [70] |
3. *Thespesia populnea* (L.) Sol. ex Corrêa | Tulip tree | Malvaceae | Leaves | Mice | 400 mg/kg B.W. | – | Elongate seminiferous tubules | – | – | [71] |
4. *Tripterygium wilfordi* Hook. f. | Yellow vine root | Celastraceae | Root | Rat | 100 mg/kg/day | – | Degenerative changes of seminiferous epithelium and reduce reproductive cells in testes | Irreversible | – | [72] |

Phytoconstituents acts through Leydig cells

1. *Berberis chitria* Buch.-Ham. ex Lindl. | Daruhaldi | Berberidaceae | Root | Dog | 30 mg/kg/day | Palmitine hydroxide | 60 | Decrease postmeiotic germ cells and decrease androgen binding protein of Sertoli cells via FSH | – | – | [73] |
2. *Calotropis procera* | Camelweed | Asclepiadaceae | Roots | Gerbil/ rabbit | 25 mg/kg B.W. | Calotropin | 30 | Suppress testicular function by decreasing androgenic parameter | – | – | [74] |
3. *Garcinia cambogia* | Malabar tamarind | Cluciaceae | Seed | Rat | 100 and 200 mg/kg B.W. | Biflavonoid, xanthone | 42 | Enhance interstitial spaces and reduce Leydig cells in interstitial space and seminiferous tubules contraction | – | – | [75] |
4. *Malvaviscus conzattii* Greenm. | Turk's cap mallow | Malvaceae | Flower | Rat | 800 mg/kg B.W./day | – | Reduce germ cells and impairs function of epididymides | – | – | [76] |
| Sr. no. | Botanical name | Common name | Family | Part used | Subject | Dose | Active constituents | Duration of administration (days) | Mechanism of action | Antifertility activity | References |
|--------|----------------|-------------|--------|-----------|---------|------|--------------------|-------------------------------|-------------------|---------------------|------------|
| 5. | Martynia annua L. | Scorpion Martyniaceae | Root | Rat | 50, 100, and 200 mg/kg B.W. | – | Reduce serum concentration of LH and testosterone | 30 | Reversible | [77] |
| 6. | Ocimum sanctum L. | Tulsi Lamiaceae | Fresh leaves | Rabbit | 2 g/day | – | Reduce pH, mucoprotein, and alkaline phosphatase and make non-viable spermatozoa | 30 | Reversible | [21] |
| Phytoconstituents with antimotility activity | | | | | | | | | |
| 1. | Carica papaya L. | Papita Caricaceae | Seeds | Monkey | 50 mg/kg B.W./day | – | Hasten sperm transport leading to ejaculation and affect composition of epididymal fluid and their enzymes on spermatozoa | 360 | Reversible | [78] |
| 2. | Echinops echinatus Roxb. | Utakatira, oonkateli | Roots | Rat | 50, 100, and 200 mg/kg B.W./day | Echinopsine, echinopsidine, echinozolinone | 60 | Reduce concentration of protein in the cauda epididymis and testicular glycogen level and reduce ascorbic acid content of the adrenal gland | – | [79] |
| 3. | Gossypum herbaceum | Cotton Malvaceae | Fruit | Rabbit | 20 mg/day | Gossypol acetic acid | 84 | – | [80] |
| 4. | Lagenaria breviflora (Benth.) Roberty | Molina Cucurbitaceae | Whole fruit | Rat | 1000, 2000, 4000, and 8000 mg/kg B.W. | – | Degenerate seminiferous tubules | 14 | – | [81] |
| Phytoconstituents acts by unbalancing hormones | | | | | | | | | |
| 1. | Abelmoschus esculentus (L.) Moench | Okra Malvaceae | Fruit | Rat | 70 mg/kg B.W./day | Flavonoids, saponins | 28 | Reduce serum testosterone level and spermatogenesis | Reversible | [82] |
| 2. | Abrus precatorius L. | Coral bead vine, rosary pea, ratti Leguminosae | Seed | Rat | 250 mg/kg | Abridine | 30 and 60 | Impair function of sperm plasma membrane, suppress oxidative/energy metabolism, and reduce sperm motility | Reversible | [83] |
| 3. | Bulbine natalensis Baker | Bulbine Asphodelaceae | Stem | Rat | 25, 50, and 100 mg/kg B.W. | Alkaloids, tannins, anthraquinones | 7 | Reduce serum testosterone and progesterone levels | – | [84] |
| 4. | Curcuma longa L. | Haldi Zingiberaceae | Rhizomes | Rat | 500 mg/kg/day | – | Decrease androgen synthesis and Leydig cell nuclei diameter and inhibit Leydig cell function | 60 | – | [85] |
| Sr. no. | Botanical name | Common name | Family | Part used | Subject | Dose | Active constituents | Duration of administration (days) | Mechanism of action | Antifertility activity | References |
|---------|----------------|-------------|--------|-----------|---------|------|---------------------|----------------------------------|----------------------|----------------------|------------|
| 5. | Psoralea corylifolia L. | Babchi | Leguminosae | Seeds | Rat | 10 g/kg B.W. | Corylin, bavachin, psoralen, isopsoralen, psoralidin | 84 | Decrease serum testosterone and FSH levels and suppress pituitary-testicular axis | – | [86] |
| 6. | Stevia rebaudiana | Sugar leaf | Asteraceae | Leave | Rat | 2 ml/rat | Stevioside | 60 | Decrease androgen level | Irreversible | [87] |
| 7. | Syzygium aromaticum (L.) Merr. & L.M. Perry | Lavang | Myrtaceae | Flower buds | Mice | 15, 30, and 60 mg/kg B.W. | Eugenol, β-caryophyllene | 35 | Destroy germ cells and inhibit spermatogonia | – | [88] |
Conclusion
Different potential strategies for male contraception were investigated over a long period time consisting of hormonal, chemical, and immunological interventions, although these methods showed good antifertility results with low failure rates relative to condoms. The present study showed the literature data that there is majority of plants, which are traditionally used as antifertility agents and their effects have not been thoroughly studied on animals. The majority of tests have been performed on conscious animals and relatively few tests have had their efficacy confirmed in humans. Herbal contraceptives are safer and cheaper methods for population overcoming. To summarize, a lot of the plant species listed here might appear promising as effective alternative oral fertility-regulating agents in males. Among plant parts, leaves have been maximally utilized for controlling fertility. As far as the relevance of the current review is discussed, it might be quite useful in generating monographs on plants and recommendations on their

Table 2 List of patents on a male contraceptive

Summary of invention	Patent number	Inventor/assignee
Substituted acylanilides and methods of use thereof	AU2015264895B2	Dalton, James, Miller, Duane D.
Styrene maleic anhydride based formulation for male contraception and prostate cancer	EP 2 268 290 B1	Guha, Sujoy Kumar
Lonidamine analogs and their use in male contraception and cancer treatment	EP 2 502 624 A1	Chakrassali, Georg, Jakkaraj, Tash
Orally active 7-alpha-alkyl androgens	EP1212345B1	Louw Van Der, Leysen, Buma Bursi
Methods of making the 4-n-butyloclohexanoic and the undecanoic acid esters of (7 alpha, 11 beta)-dimethyl-17 beta-hydroxy-4-estren-3-one and their medical use	EP1272196B1	Blye, Kim
Oral pharmaceutical composition comprising 15-hydroxytestosterone and its analogues	EP1551415B1	Bunschoten, Coelingh Bennink, Van Der Linden
Male contraceptive formulation comprising norethisterone	US20020103176A1	Eberhard Nieschlag, Axel Kamischke, Michael Oettel, Alexander Ruebig, Ekkerhard Schillinger, Habenicht Ursula-Friederike
Male contraceptive method and composition	US20020164368A1	Ronald Zimmerman
Androgen as a male contraceptive and non-contraceptive androgen replacement	US20020193359A1	Alfred J. Moo-Young
Reversible infertility in male mice following oral administration of alkylated imino sugars: a non-hormonal approach to male contraception	US20040019082A1	Aamoud C. Van Der Spoel, Mylvaganam Jeyakumar, Terry D. Butters, Raymond A. Dewk, Frances M. Platt
Non-hormonal compositions and methods for male contraception	US20190290615A1	Guillaume Ei Glau, Mehdi Ei Glau, Philippe Perrin, Stéphane Droupy, Véronique Agathon--Meriau
Reversible male contraception	US4252798	Donald J. Tindall
Male contraceptive steroids and methods of use	US4297350	John C. Babcock; J. Allan Campbell, Thomas J. Lobl,
Oral male contraceptive	US4381298	Patricia B. Coulson, Sheffield Dr.
Male contraceptive implant	US5733565	Alfred J. Moo-Young, Saleh I. Saleh
Male contraceptives	US5854254	Susan H. Benoff
Buccal drug delivery system for use in male contraception	US6180682	Virgil A. Place
High-strength testosterone undecanoate compositions	US9480690	Chandrashekar Gilyar, Basavaraj Chickmath, Nachiannan Chidambaram, Srinivasan Venkateshwaran
Male contraceptive comprising a prolactin inhibitor and a sex steroid	WO1999066953A1	Lincoln, Kirkton Cottages, WU
A pulmonary drug delivery composition containing a progestogen and androgen for use in a contraceptive method in males	WO2003068315A1	Coelingh Bennink, Van Der Linden
Novel spermicidal and anti-infective contraceptive device	WO2007074478A1	Jain Rajesh, Jindal Kour Chand
Substituted (5,6)-dihydronaphraalenyl compounds as reversible male contraceptives	WO2008137081A1	Wolgemuth Debra J., Reczek Peter R.
Inhibitors of eppin/semenogelin binding as male contraceptives	WO2009042565A2	O’rand Michael G., Widgren Esther Elaine, Richardson Richard, Temple Brenda
Non-hormonal male contraceptive agents and methods using same	WO2016205339A1	Yan Wei
Piperidine-dione derivatives for use as contraceptives	WO2018211276A1	Sieng Bora, Lundvall, Steffi, Claudia Alejandra
use. Therefore, this review has highlighted the significant antifertility activity of herbal medicinal plants and their extracts. Moreover, this review can concentrate the interest of researchers on toxicity studies of phytoconstituents and their clinical trials, which may serve as an alternate potential antifertility agents with milder or fewer side effects and can be developed into suitable contraceptive formulations. Therefore, significant research into the chemical and biological properties of such less-explored plants is still needed to determine their contraceptive efficacy and also will possibly define their toxic effects so that these ingredients can be utilized with confidence to regulate male fertility.

Abbreviations
LH: Luteinizing hormones FSH: Follicle-stimulating hormone
hDL: High-density lipoprotein B/W: Body weight

Acknowledgements
Not applicable.

Authors’ contributions
We declare that this work was done by the authors named in this article: SY conceived and designed the study. AY carried out the literature collection of the data and writing of the manuscript. AY and SY assisted in the data analysis and corrected the manuscript. The authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All the information in the manuscript has been referred from the included references and is available upon request from the corresponding author.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 3 August 2020 Accepted: 7 December 2020
Published online: 18 January 2021

References
1. Soni PK, Luhadia G, Sharma DK, Mali PC (2015) Antifertility activates of traditional medicinal plants in male with emphasis on their mode action: a review. J Glob Biosci 4:1165–1179
2. Kaur R, Sharma A, Kumar R, Kharb R (2011) Rising trends towards herbal contraceptives. J Nat Prod Plant Res 1:5–12
3. Harisha B, Swamy VB (2012) Evaluation of antifertility activity of Melothria heterophylla (Lour.) Cogn. Res J Pharma Bio Chem Sci 3:754–771
4. India population web search, dated: 26 January, 2020 http://worldpopulationreview.com/countries/india-population/
5. Singh R, Kakar S, Shah M, Jain R (2018) Some medicinal plants with antifertility potential: a current status. J Basic Clin Reprod Sci 7:7–19
6. Gholi P, Gupta P, Tripathy A, Das B, Ghosh D (2018) Evaluation of hypotesticular activities of different solvent fractions of hydro-methanolic extract of the fruit of Terminalia chebula in Wistar strain adult albino rat: genomic and flow cytometric approaches. J Appl Biomed 16:394–400
7. Long JF, Lee MS, Blithe DL (2019) Male contraceptive development: update on novel hormonal and nonhormonal methods. Clin Chem 65:153–160
8. Amory JK (2016) Male contraception. Fertil Steril 106:1303–1309
9. Gupta RS, Sharma R (2006) A review on medicinal plants exhibiting antifertility activity in males. Nat Prod Rad 5:389–310
10. Michael GO, Silva EJ, Hamil KG (2016) Non-hormonal male contraception: a review and development of an Eppin based contraceptive. Pharmacol Ther 157:105–111
11. Afzalzadeh MR, Ahangarpour A, Amirzargar A, Varamankhasti MK, Ganjalidarani H (2015) The effect of Yitis sinifera L. juice on serum levels of inhibit B, sperm count in adult male rats. World J Mens Health 33:109–116
12. Bhattacharya P, Saha A (2013) Evaluation of reversible contraceptive potential of Cordia dichotoma leaves extract. Rev Bras Farmacogn 23:342–350
13. Tripathy B, Swain SN, Panda MK, Pradhan RN, Acharya UR (2018) Antispermatogetic effects of seed extract of Caesalpinia bonducella in Swiss mice. Int J Biosci 12:23–34
14. Zaman W, Ahmad M, Zafar M, Armin H, Ullah F, Bahadur S, Ayaz A, Saqib S, Begum N, Jahan S (2020) The quest for some novel antifertility herbalss used as male contraceptives in district Shangila, Pakistan. Acta Ecol Sin 40:102–112. https://doi.org/10.1016/j.cjsea.2019.05.017
15. Rajan TS, Sanathchandiran L, Kadamani B (2013) Evaluation of newly developed herbal oral suspension for spermatoatoxic activity on male Wistar albino rats. J Pharm Res 7:347–351
16. Sitaswii AJ, Isdaddyanto S, Mardiati SM (2018) Effect of ethanolic Neem (Azadirachta indica) leaf extract as an herb contraceptive on Hepato-somatic Index of the male mice (Mus musculus). J Phys Conf Ser 1025:012043
17. Zaman W, Shah SN, Ullah F, Ayaz A, Ahmad M, Ali A (2019) Systematic approach to the correct identification of Asplenium dalhausieae (Asplenieaceae) with their medicinal uses. Microsc Res Tech 82:459–465
18. Khilare B, Shrivastav TG (2003) Spermicidal activity of Azadirachta indica (neem) leaf extract. Contraception 68:225–229
19. Singh N, Singh SK (2016) Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice. Syst Biol Reprod Med 62:39–48
20. Chakraborty K, Pal S, Bhattacharya AK (2003) Sperm immobilization activity of Allium sativum L. and other plants extracts. Asian J Androl 5:131–135
21. Sethi J, Yadav M, Sood S, Daihya K, Singh V (2010) Effect of tulu (Ocimum Sanctum Linn.) on sperm count and reproductive hormones in male albino rabbits. Int J Ayurveda Res 1:208–210
22. Petersen C, Söder O (2006) The setoili cell—a hormonal target and ‘super’nurse for germ cells that determines testicular size. Horm Res Paediatr 66:153–161
23. Burgess SA, Walker ML, Sakakibara H, Knight PJ, Olwa K (2003) Dyeine structure and power stroke. Nature 421:715–718
24. Nivsarkar M, Shrivastava N, Patel M, Padh H, Bapu C (2002) Sperm membrane modulation by Sapindus mukorossi during sperm maturation. Asian J Androl 9:233–235
25. Mandal TK, Das NS (2018) Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems. Toxicol Ind Health 26:11–23
26. Sharma RS, Rajalakshmi M, Jeyaraj DA (2001) Current status of fertility control methods in India. J Biosci 26:391–305
27. Dufau ML, Winters CA, Hatton M, Aquilano D, Baranoa JL, Nouz K, Baulak A, Catt KJ (1984) Hormonal regulation of androgen production by the Leydigg cell. J Steroid Biochem 20:161–173
28. Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587
29. Jahan S, Rasool S, Khan MA, Ahmad M, Zafar M, Arsamah M, Abbasi AM (2009) Antifertility effects of ethanolic seed extract of Abrus precatorius L. on sperm production and DNA integrity in adult male mice. J Med Plant Res 3:809–814
30. Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N (2011) Spermatozoa stock preservation by Simazine. Asian J Androl 13:770–771
31. Begum N, Jahan S (2020) The quest for some novel antifertility herbals used in Bangladesh. Asian J Androl 92:233–235
32. Pakrashi A, Ray H, Pal BC, Mahato SB (1991) Sperm immobilizing effect of Ethanolic leaf of Azadirachta indica (Asparagaceae) with their medicinal uses. Microsc Res Tech 82:459–465
33. Chauhan A, Agarwal M (2008) Reversible changes in the antifertility induced by Aegle marmelos in male albino rats. Syst Biol Reprod Med 54:240–246
34. Shyamal YS, Jaiswal M, Prajapati PK (2012) Therapeutic potentials of Shirisha (Albizia lebbeck Berth.)-a review. Int J Ayurvedic Med 2:153–163

35. Pankajashky A, Madambath I (2009) Spermatotoxic effects of Cananga odorata (Lam.)-a comparison with gossypol. Fertil Steril 91:2243–2246

36. Souad K, Ali S, Mounir A, Mounir TM (2007) Spermiocidal activity of extract from Cestrum parqui. Contraception 75:152–156

37. Kumar S, Biswas S, Mandal D, Roy HN, Chakraborthy S, Kabir SN, Ranjeeer S, Mondal NB (2007) Chenopodium album seed extract: a potent sperm-immobilizing agent both in vitro and in vivo. Contraception 75:71–78

38. Yakubu MT, Akanji MA, Olodji AT (2007) Evaluation of antifertility potentials of aqueous crude extract of Chromolaena odoratum (L.) KR leaves in male rats. Andrologia 39:255–257

39. Gupta RS, Yadav RK, Dixit VP, Dobhal MP (2001) Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia 72:236–245

40. Shikani HG, Salhab AS, Shafie M, Quadan FA (2008) Antifertility effect of an ethanolic extract of Citrullus colocynthis root in male albino rats. J Ethnopharmacol 115:288

41. Rajasekaran M, Nair AG, Hellstrom WJ, Sikka SC (1993) Spermicidal activity of an ethanol extract of Citrullus colocynthis seed of an antifungal saponin obtained from the tropical herb Mollugo pentaptytha. Contraception 47:401–412

42. Raji Y, Bolarinwa AF (1997) Antifertility activity of Quassia amara in male rats—in vivo study. Life Sci 61:1067–1074

43. Srivastav A, Chandra A, Singh M, Majumder M, Rastogi P, Rajendran SM, Bansode FW, Lakshmi V (2010) Inhibition of hyaluronidase activity of human and rat spermatozoa by a patented antifertility agent in rat sperm in vitro.Terminalia chebula, a flavonoid rich plant. Reprod Toxicol 29:214–224

44. Gupta RS, Sharma A (2003) Antifertility effect of Tinospora cordifolia (Wild.) stem extract in male rats. Indian J Exp Biol 41:885–889

45. Dubey R, Dubey K, Sridhar C, Jayaveera KN (2011) Spermatotoxic effects of Ruta graveolens and Cannabis sativa extracts in male mice. Asian J Androl 6:67

46. Singh A, Singh SK (2009) Evaluation of antifertility potential of Brahmi in male rats. J Herb Pharmacother 7:179–189

47. Raji Y, Bolarinwa AF (1997) Antifertility activity of Quassia amara in male rats—in vivo study. Life Sci 61:1067–1074

48. Shyamlal YS, Jaiswal M, Prajapati PK (2012) Therapeutic potentials of Shirisha (Albizia lebbeck Berth.)-a review. Int J Ayurvedic Med 2:153–163

49. Watcho P, Donfack MM, Zelebeck F, Nguelebeck TB, Wansi S, Ngufo F, Kamthouching P, Ismo E, Kamanyi A (2005) Effects of the hexane extract of Monda whitei on the reproductive organs of male rats. Afr J Tradit Complement Altern Med 2:102–111

50. Raji Y, Akinmosoye OS, Salman TM (2005) Antispermatogenic activity of Morinda lucida extract in male rats. Asian J Androl 7:405–410

51. Etta HE, Bassey UP, Eneebong EE, Okon OR (2009) Anti-spermatogenic effects of ethanol extract of Mucuna urens. J Reprod Contracept 20:161–168

52. Obianwe AM, Apiraku JS, Esomun CT (2010) Antifertility effects of aqueous crude extract of Ocimum gratissimum L. leaves in male mice. J Med Plant Res 4:889–916

53. Gupta RS, Rehwan H, Khushalani V, Tanwar K, Joshi YC (2007) Antispermatogenic effects of Parkinsonia aculeata stem bark in male rats. Pharm Biol 45:1–8

54. Mishra RK, Singh SK (2009) Antispermatogenic and antifertility effects of fruits of Piper nigrum L. in mice. Indian J Exp Biol 47:706–714

55. Khouri NA, El-Akawi Z (2005) Antifertility activity of Ruta graveolens L in male Albino rats with emphasis on sexual and aggressive behavior. Neuroendocrinol Lett 26:583–592

56. Sharma A, Verma PK, Dixit VP (2003) Effect of Semecarpus anacardium fruits on reproductive function of male albino rats. Asian J Androl 5:121–124

57. Shangongda JP, Satishagouda S, Vishwamatha T, Saraswati B (2010) Effect of terminalia bellirica berries extracts on activity of accessory reproductive ducts in male rats. Int J Pharm Sci Res 1:75–79

58. Gupta R, Kachhawa JB, Gupta RS, Sharma AK, Sharma MC, Dobhal MP (2011) Phytochemical evaluation and antispermatogenic activity of Thevetia peruviana methanol extract in male albino rats. Hum Fertil 14:53–59

59. Aladakati RH, Ahamed RN (2005) Changes in Sertoli cells of albino rats induced by Azadirachta indica A. Jesus leaves. J Basic Clin Physiol Pharmacol 16:67–80

60. Gupta RS, Kachhawa JB, Sharma A (2008) Effect of methanolic extract of Desmosphoece falcata stem on reproductive function of male albino rats. J Herb Pharmacother 7:1–3

61. Krishnamoorthy P, Vaithinathan S (2003) Effect of the extract of Thespesia populnea leaves on testis of mice. J Environ Biol 24:227–230

62. Z-I-Jian L, Zhi-Ping G, Rong-Fa L, Lin-Zhi H (1992) Effects of multicyclosides of Tripterygium willoffi (GTW) on rat fertility and Leydig and Sertoli cells. Contraception 45:249–261

63. Gupta RS, Dixit VP (2009) Testicular cell population dynamics following palmitine hydroxide treatment in male dogs. J Ethnopharmacol 125:136–142

64. Gupta RS, Sharma N, Dixit VP (1990) Calotropin-a novel compound for fertility control. Afr Sci Life 9:224–230

65. Okuyemi KA, Jimoh OR, Adesanya OA, Omotuyi IO, Josiah SJ, Oyeyola TO (2007) Effects of crude ethanolic extract of Garcinia cambogia on the reproductive system of male wistar rats (Rattus norvegicus). Afr J Biotechnol 11:326–328

66. Chakraborthy S, Pakrashi A (1991) Antifertility effect of chronically administered Malviscus concatzill flower extract on fertility of male rats. Contraception 43:273–285

67. Malik PC, Arousia A, Chatuvedi M (2002) Anticancer effect of chronically administered Anacyclus collinis flower extract on fertility of male rats. Contraception 66:341–343

68. Lohiya NK, Manivannan B, Goyal S, Ansari A (2008) Sperm motility inhibitory effect of the benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in langur monkey, Presbytis entellus. Int J Androl 10:298–206

69. Chatuvedi M (1995) Fertility regulation in male rats with the help of Echinops echinatus (Roxb) root extract. J Physiol Res 8:115–118

70. Coutinho EM, Melo IJ, Barbosa I, Segal SJ (1984) Antispermatogenic action of gossypol in men. Fertil Steril 42:424–430

71. Saha AB, Oridupa O, Oyeymi MO, Osaygho OD (2009) Spermatozoa morphology and characteristics of male Wistar rats administered with ethanol extract of Lagenaria Breviflora Roberts. Afr J Biotechnol 8:1175–1179

72. Olatunji-Bello II, Iwuole T, Awobajo FO (2009) Evaluation of the detrimental effects of aqueous fruit extract of Asebiroschus esculentus (Okro fruit) on some male reproductive parameters in Sprague Dawley rats. J Phycol 46:1–468

73. Sinha R (1990) Post-testicular antifertility effects of Abrus precatorius seed extract in albino rats. J Ethnopharmacol 28:173–181

74. Yakubu MT, Afolayan AJ (2009) Reproductive toxicologic evaluations of Bulbine natalensis Baker stem extract in albino rats. Theriogenology 72:322–332
85. Ashok P, Meenakshi B (2004) Contraceptive effect of Curcuma longa (L.) in male albino rat. Asian J Androl 6:71–74
86. Takizawa T, Mitsumori K, Takagi H, Nasu M, Yasuhara K, Onodera H, Imai T, Hirose M (2004) Sequential analysis of testicular lesions and serum hormone levels in rats treated with a Psoralea corylifolia extract. Food Chem Toxicol 42:1–7
87. Mella MS (1999) Effects of chronic administration of Stevia rebaudiana on fertility in rats. J Ethnopharmacol 67:157–161
88. Mishra RK, Singh SK (2008) Safety assessment of Syzygium aromaticum flower bud (clove) extract with respect to testicular function in mice. Food Chem Toxicol 46:3333–3338

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.