López de Medrano and Verjovsky discovered in 1997 a way to construct many compact complex manifolds (cf. [LdM-V]). They start with a \(\mathbb{C} \)-action on \(\mathbb{P}^n \) induced by a diagonal linear vector field (satisfying certain properties), and find an open dense subset \(U \subset \mathbb{P}^n \) where the action is free, proper and cocompact, so the quotient \(N = U/\mathbb{C} \) is a compact complex manifold. Their construction was extended to \(\mathbb{C}^m \)-actions by Meersseman in [M], yielding a vast family of non-Kähler compact manifolds, called LVM-manifolds. These manifolds lend themselves very well to various computations, and a thorough study of their properties is conducted in [M]. Furthermore, they are (deformations of) a very natural generalization of Calabi-Eckmann manifolds. Finally, the topology of LVM-manifolds can be extraordinarily complicated: We refer to [B-M] for the most recent results about a study started off in [W] and [LdM-V].

It was also remarked that each LVM-manifold carries a transversely Kähler foliation \(F \) ([L-N], [M]).

There were two main developments on LVM-manifolds:

(a) In [Bo], Bosio showed that Meersseman’s construction could actually be generalized to more general actions of \(\mathbb{C}^m \). He produced a family of quotient manifolds, containing the family of LVM-manifolds, that we will call LVMB-manifolds. He showed that many properties of LVM-manifolds carry over to the case of LVMB-manifolds, and also pointed out non-trivial combinatorics relevant to these quotients. However, he did not mention the foliation \(F \) (that still exists).

(b) In 2004, Meersseman and Verjovsky investigated in [M-V] a link between LVM-manifolds and Mumford’s Geometric Invariant Theory (Mumford’s GIT) that was soon discovered after [M] was completed. Their main results are that each LVM-manifold satisfying condition \((K) \) (cf. Sect. 2) admits a Seifert fibration over a projective simplicial toric variety \(X \), and moreover any such \(X \) can appear this way.

Building on both (a) and (b), we establish a link between LVMB-manifolds and GIT. We show that the extension from LVM-manifolds to LVMB-manifolds parallels exactly the extension from Mumford’s GIT to the generalized GIT of Białynicki-Birula and Święcicka, which allows for non-projective quotients (cf. [BB-Św2]).

We describe a construction of LVMB-manifolds from a GIT point of view, from which it will be clear that some of them are Seifert-fibered over a complete simplicial toric variety \(X \). Using a result of Hamm, we show that

1 Universität zu Köln, Germany – scupit@uni-koeln.de –
2 Academia Sinica, Taipei, Taiwan – zaffran@math.sinica.edu.tw –
any such X can appear that way, i.e., below some LVMB-manifold. This generalizes and simplifies the proof of the main result of [M-V].

In most cases X is an algebraic reduction of N, and if X is projective then N is actually an LVM-manifold. Using this and the almost-homogeneous structure of these manifolds, we produce examples of LVMB-manifolds that are not biholomorphic to any LVM-manifold.

Now consider an LVM-manifold N satisfying condition (K). Meersseman and Verjovsky showed that the foliation \mathcal{F} is given by a Seifert fibration $N \to X$, with X projective. The fact that X is Kähler is the “reason” for \mathcal{F} to be transversely Kähler.

By our results, an LVMB-manifold that is not an LVM-manifold, and that satisfies condition (K), also admits a map $N \to X$, although this time X is not projective. We prove that \mathcal{F} on such an N is not transversely Kähler. The difficulty here is to deal with the singularities of X as an orbifold.

Finally, our GIT point of view on LVMB-manifolds leads naturally to a further extension of the LVMB family, in the context of the Bialynicki-Birula and Sommese conjecture (cf. [BB-So]). Our results show that the construction of LVMB-manifolds actually follows from the solution of this conjecture for linear algebraic (\mathbb{C}^*) actions on the projective space (cf. [BB-Sw2]).

Acknowledgments. A. Huckleberry invited us as postdocs to Bochum’s Ruhr-Universität where we started this work. We thank him sincerely for his warm hospitality. We thank also P. Heinzner, J. Hubbard, L. Meersseman and R. Sjamaar for useful discussions. We are grateful to P. Littelmann for having given us the opportunity to accomplish this work in good conditions.

1. LVMB-manifolds

Let m and $n \geq 2m$ be positive integers. Let $\mathcal{L} = (\ell_0, \ldots, \ell_n)$ be an ordered $(n+1)$-tuple of linear forms on \mathbb{C}^m. Fixing an isomorphism between \mathbb{C}^m and its dual vector space, we will look at each ℓ_i as a row vector in \mathbb{C}^m. We will also look at ℓ_i as an element in \mathbb{R}^{2m} via the identification $\ell_i \mapsto (\Re \ell_i, \Im \ell_i) \in \mathbb{R}^m \times \mathbb{R}^m \cong \mathbb{R}^{2m}$.

Let $\mathcal{E} = \{\mathcal{E}_\alpha\}_\alpha$ be a family of subsets of $\{0, \ldots, n\}$, each of these subsets having cardinality $2m + 1$.

We denote these data by $(\mathcal{L}, \mathcal{E}, m, n)$. To any given $(\mathcal{L}, \mathcal{E}, m, n)$, we associate the following objects:

- a Zariski open subset $U = U(\mathcal{E}) \subset \mathbb{P}^n$ defined by
 $$U = \{[x_0 : \cdots : x_n] \mid \text{there exists } \mathcal{E}_\alpha \in \mathcal{E} \text{ such that for all } i \in \mathcal{E}_\alpha, x_i \neq 0\};$$

- a \mathbb{C}^m-action on U defined by
 $$(\mathbb{C}^m \times U) \longrightarrow U$$
 $$(z, [x_0 : \cdots : x_n]) \longmapsto [e^{\ell_0(z)}x_0 : \cdots : e^{\ell_n(z)}x_n];$$

- for all α, we define P_α as the convex hull of $\{\ell_i, i \in \mathcal{E}_\alpha\}$. Notice that $2m + 1$ is precisely the number of vertices of a simplex in \mathbb{R}^{2m}.

Definition. Let G be a complex Lie group acting holomorphically and effectively on \mathbb{P}^n. A G-stable open subset U of \mathbb{P}^n will be called **good with**
respect to the G-action when the restricted action on U is proper (therefore the topological quotient U/G is Hausdorff), and U/G is compact.

Theorem 1.1 ([Bo], 1.4). Take any $(\mathcal{L}, \mathcal{E}, m, n)$, with corresponding U and \mathbb{C}^m-action. Then U is good with respect to that action if and only if the following two conditions are satisfied:

1. **(sep)** $P_\alpha \cap P_\beta \neq \emptyset$ for every α, β;
2. **(comp)** for every $\mathcal{E}_\alpha \in \mathcal{E}$ and every $i \in \{0, \ldots, n\}$ there exists $j \in \mathcal{E}_\alpha$ such that $(\mathcal{E}_\alpha - \{j\}) \cup \{i\} \in \mathcal{E}$.

When $(\mathcal{L}, \mathcal{E}, m, n)$ satisfies these conditions, we write $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$, and denote the quotient U/C^m by $N = N(\mathcal{L}, \mathcal{E}, m, n)$. By definition, the \mathbb{C}^m-action is proper, but \mathbb{C}^m has no compact subgroups, so this action is necessarily free. It is known that a quotient by a free and proper action is a complex manifold ([cf. Hu] Proposition 2.1.13). Therefore N is a compact complex manifold of dimension $n - m$, that we call an *LVMB-manifold* (Bosio calls it a *generalized LVM-manifold*).

When $\bigcap_\alpha P_\alpha \neq \emptyset$, the action on U is called an *LVM-action*. We write $(\mathcal{L}, \mathcal{E}, m, n) \in LVM$, and call N an *LVM-manifold*. By Proposition 1.3 in [Bo], LVM-manifolds are exactly the manifolds constructed in [M].

Example 1.2. Take $n = 5, m = 1$, so the ℓ_i’s are just complex numbers, that—for later use— we take in $\mathbb{Z} + \sqrt{-1} \mathbb{Z}$ according to the diagram:

![Diagram of example 1.2](image_url)

and we take

$$\mathcal{E} = \left\{ \{024\}, \{135\}, \{025\}, \{124\}, \{034\}, \{035\}, \{134\}, \{125\} \right\}.$$

Then it is easy to check that $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$. It is also immediate that $(\mathcal{L}, \mathcal{E}, m, n) \notin LVM$ (cf. [BB-Šw1] p.26 and [Bo] p.1291). We will show that the LVMB-manifold $N(\mathcal{L}, \mathcal{E}, m, n)$ is not isomorphic to any LVM-manifold.

Remark. (i) For an action on \mathbb{P}^n of form (hol), there are in general many good U’s, and on some of them the restricted action is an *LVM*-action, whereas the restricted action on others is not an *LVM*-action. In other words, for $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$, there may be $\mathcal{E}' \neq \mathcal{E}$ such that $(\mathcal{L}, \mathcal{E}', m, n)$ is in $LVMB$ or in LVM.

(ii) For $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$ but $(\mathcal{L}, \mathcal{E}, m, n) \notin LVM$, the natural question is whether it is possible that $N(\mathcal{L}, \mathcal{E}, m, n)$ be isomorphic to an *LVM*-manifold. This question was unfortunately left open by [Bo] (cf. its review MR1860666-2002i:32015). We will give a partial answer in Sect. 3.2.
(iii) In the proof of Proposition 2.2 in \[Bo\], the author shows that if \(n > 2m\), \(N\) contains a submanifold with odd first Betti number. From this it follows that \(N\) is not Kähler. (Remark: Our \(n\) corresponds to \(n - 1\) in \[Bo\].) In the limiting case \(n = 2m\), \(N\) is a compact torus, so it is Kähler.

Definition. (\[ALV\]) We say that \((\mathcal{L}, \mathcal{E}, m, n)\) satisfies condition \((K)\), and write \((\mathcal{L}, \mathcal{E}, m, n) \in (K)\), when there exists a real affine automorphism of \((\mathbb{C}^m)^* \cong \mathbb{C}^m \cong \mathbb{R}^{2m}\) sending each \(\ell_i\) to a vector with integer coefficients.

For example, an action whose \(\ell_i\)'s have only rational coordinates satisfies condition \((K)\). In particular, \((K)\) is a dense condition. \(\square\)

2. **Intermediate generalized GIT-quotients**

Take integers \(m, n\) with \(n \geq 2m\). Consider an algebraic torus \((\mathbb{C}^*)^{2m}\) acting effectively and linearly on \(\mathbb{P}^n\). Such an action is given by \(n + 1\) row vectors \(\lambda_i = (\lambda_{i,1}, \ldots, \lambda_{i,2m}) \in \mathbb{Z}^{2m}\) for \(i = 0 \ldots n\). Explicitly:

\[
(\mathbb{C}^*)^{2m} \times \mathbb{P}^n \longrightarrow \mathbb{P}^n
\]

\[
(alg) \quad (t, [x_0 : \ldots : x_n]) \mapsto [t^{\lambda_0} x_0 : \ldots : t^{\lambda_n} x_n]
\]

where \(t^{\lambda_i}\) denotes the product \(t_{1}^{\lambda_{i,1}} \ldots t_{2m}^{\lambda_{i,2m}}\).

In this setting, Bia/‌łynicki-Birula and Świecieckia describe all the good open subsets in \([BB-\acute{S}w2]\). This is a generalization of Mumford’s GIT, because the quotient of such a good open subset \(U\) is not necessarily projective: In general \(X = U / (\mathbb{C}^*)^{2m}\) is a complete simplicial toric abstract-algebraic variety\(^3\). In their language, \(U \rightarrow X\) is a “strongly geometric complete quotient” (NB: their “good quotients” are not assumed to be compact). In particular, all the \((\mathbb{C}^*)^{2m}\)-isotropy subgroups are finite (cf. \([BB-\acute{S}w2]\) 1.4).

Now pick \(G\) a closed cocompact complex Lie subgroup of \((\mathbb{C}^*)^{2m}\) isomorphic to \(\mathbb{C}^m\) (there are plenty of these: see Lemma \[2.2\]). As \((\mathbb{C}^*)^{2m}\) acts properly on \(U\), so does \(G\). Thus \(U\) is good with respect to the \(G\)-action.

Moreover, \(G\) has no torsion, so it can’t intersect the \((\mathbb{C}^*)^{2m}\)-isotropy subgroups. Therefore \(G\) acts freely, and \(N = U / G\) is a compact complex manifold, that we call an intermediate (generalized) GIT-quotient:

\[
\begin{array}{ccc}
U & \rightarrow & N \cong U / G \\
\downarrow & & \downarrow \\
X = U / (\mathbb{C}^*)^{2m} & \rightarrow & N \rightarrow X
\end{array}
\]

and the map \(N \rightarrow X\) is the quotient of \(N\) by the action of \(\mathbb{T} = (\mathbb{C}^*)^{2m} / G\), which is a compact complex \(m\)-torus.

As \(\mathbb{T}\) is compact, the structure of the map \(N \rightarrow X\) is very well understood thanks to the results of Holmann (cf. \([O]\) pp. 82-84). In some cases, \(\mathbb{T}\) acts freely, so \(X\) is a manifold and \(N \rightarrow X\) is simply a \(\mathbb{T}\)-principal bundle. In general, we have a so-called **Seifert principal bundle**: \(X\) is an orbifold whose

\(^3\) These authors also significantly improved Mumford’s theory of projective quotients.
singularities correspond to orbits with non-trivial isotropy. The map \(N \to X \)
 is “not locally trivial” around those orbits.

Remark. An intuitive (but real) picture of such an exceptional orbit in a Seifert fibration is provided by the circle action \(t.(z, w) = (t^2z, t^3w) \) on the solid torus \(T = \{|z| \leq 1\} \times \{|w| = 1\} \). This yields a foliation of \(T \) for which the core of \(T \) (i.e., \(\{|z| = 0\} \times \{|w| = 1\} \)) is a fiber which is covered 3 times by neighboring fibers, which are \((2, 3)\)-torus knots.

Theorem 2.1. Let \((\mathcal{L}, \mathcal{E}, m, n) \in LVMB \cap (K)\), and \(N = N(\mathcal{L}, \mathcal{E}, m, n) \). Then \(N \) can be obtained as an intermediate GIT-quotient as above, for some choice of a \((\mathbb{C}^*)^{2m}\)-action on \(\mathbb{P}^n \), a good open subset \(U \) and a subgroup \(G \). In particular, any \(LVMB \)-manifold can be obtained as a small deformation of such an intermediate GIT-quotient.

Lemma 2.2. Let \(G \approx \mathbb{C}^m \) be a Lie subgroup of \((\mathbb{C}^*)^{2m}\). Let \(A \in \mathbb{C}^{2\times m} \) be a matrix whose columns \(A_1, \ldots, A_m \) form a \(\mathbb{C} \)-basis of \(\text{Lie}(G) \). Then:

(i) If \(G \) is closed then \(G \) is cocompact;

(ii) \(G \) is closed if and only if the matrix \((\text{Re } A | \text{Im } A) \) \(\in \mathbb{R}^{2\times 2m} \) is invertible.

Proof. Denote the exponential map \(\exp : \mathbb{C}^{2m} \to (\mathbb{C}^*)^{2m} \), whose kernel is \(i\mathbb{Z}^{2m} \). As \(G \approx \mathbb{C}^m \), \(\text{Lie}(G) \cap i\mathbb{Z}^{2m} = \{0\} \). Thus \(G \) is closed if and only if \(\text{Lie}(G) \cap i\mathbb{R}^{2m} = \{0\} \). Thus, when \(G \) is closed, \(\text{Span}_{\mathbb{R}}(\alpha \cup \beta) \) is a full lattice in \(\mathbb{C}^{2m} \) for any real bases \(\alpha \) and \(\beta \) of \(\text{Lie}(G) \) and \(i\mathbb{R}^{2m} \) respectively. Therefore a closed \(G \) is cocompact.

Now: \(\text{Lie}(G) \cap i\mathbb{R}^{2m} \neq \{0\} \) if and only if there exists \((z_1, \ldots, z_m) \in \mathbb{C}^m \setminus \{0\} \) such that

\[
(\ast) \quad \text{Re} \left(\sum_{j=1}^{m} z_j A_j \right) = 0.
\]

Writing \(z_j \) as \(x_j + iy_j \), the equation \(\ast \) is equivalent to

\[
\sum_{j=1}^{m} x_j \text{Re } A_j - y_j \text{Im } A_j = 0.
\]

Thus \(G \) is not closed if and only if \(\{\text{Re } A_1, \ldots, \text{Re } A_m, \text{Im } A_1, \ldots, \text{Im } A_m\} \)
 is \(\mathbb{R} \)-linearly dependent, that is, \((\text{Re } A | \text{Im } A) \) is not invertible. \(\square \)

Proposition 2.3. An action of form \(\text{hol} \) satisfies \((K) \) if and only if it is the restriction of a \((\mathbb{C}^*)^{2m}\)-action of form \(\text{alg} \) to a closed cocompact subgroup isomorphic to \(\mathbb{C}^m \).

Proof. Take a \((\mathbb{C}^*)^{2m}\)-action of form \(\text{alg} \) given by \(\lambda_0, \ldots, \lambda_n \in \mathbb{Z}^{2m} \). Let \(G \) be a closed cocompact subgroup of \((\mathbb{C}^*)^{2m}\) which is isomorphic to \(\mathbb{C}^m \). Take \(A \in \mathbb{C}^{2\times m} \) as in Lemma 2.2. We know that \((\text{Re } A | \text{Im } A) \) is invertible. Writing \(G = \{\exp(Az), z \in \mathbb{C}^m\} \), a direct computation shows that the \((\mathbb{C}^*)^{2m}\)-action restricted to \(G \) is of form \(\text{hol} \), with \(\ell_i = \lambda_i A \) for \(i = 0 \ldots n \). That restricted action satisfies \((K) \) because \((\text{Re } \ell_i, \text{Im } \ell_i)(\text{Re } A | \text{Im } A)^{-1} \) \(\in \mathbb{R}^m \times \mathbb{R}^m \approx \mathbb{R}^{2m} \) equals \(\lambda_i \), so has integer coefficients.

Conversely, take a \(\mathbb{C}^m\)-action of form \(\text{hol} \) satisfying \((K) \), given by the linear forms \(\ell_0, \ldots, \ell_n \). Notice that translating all the \(\ell_i \)'s by the same vector does not change the action. There exist \(\lambda_0, \ldots, \lambda_n \in \mathbb{Z}^{2m} \), an invertible
$M \in \mathbb{R}^{2m \times 2m}$ and $b \in \mathbb{R}^{2m}$ such that for all i, $(Re \ell_i, Im \ell_i) = \lambda_i M + b$. Now take $A \in \mathbb{C}^{2m \times m}$ such that $(Re A|Im A) = M$, and denote by G the subgroup of $(\mathbb{C}^*)^{2m}$ such that $\text{Lie}(G) = \text{Image}(A)$. By Lemma 2.2 G is closed and cocompact. Moreover the restriction to G of the $(\mathbb{C}^*)^{2m}$-action given by the λ_i’s is the \mathbb{C}^m-action we started with.

Proof of Theorem 2.1. Let $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB \cap (K)$, with associated $N = U/\mathbb{C}^m$. Take a $(\mathbb{C}^*)^{2m}$-action of form alg given by Proposition 2.3.

By definition, U is the complement of some coordinate subspaces, so it is stable by the “big” algebraic torus $(\mathbb{C}^*)^{n+1}$ acting diagonally on \mathbb{P}^n, so in particular U is stable by that $(\mathbb{C}^*)^{2m}$-action. Moreover the topological quotient space $U/(\mathbb{C}^*)^{2m}$ is homeomorphic to $X = (U/\mathbb{C}^m)/((\mathbb{C}^*)^{2m}/\mathbb{C}^m)$, which is the quotient of the compact manifold N by a compact group, therefore it is compact and Hausdorff. Hence $U \rightarrow X$ is one of the “strongly geometric complete” quotients considered in [BB-Sw2]. □

3. Applications

Notation. For a given $(\mathcal{L}, \mathcal{E}, m, n)$, we denote by d the minimal codimension of $\mathbb{P}^n - U$ (cf. [M]). The condition $d > 1$ is equivalent to $\bigcap_\alpha \mathcal{E}_\alpha = \emptyset$. □

3.1. LVMB-manifolds and complete toric varieties

An action of form hol (resp. alg) determines a subgroup H_1 (resp. H_2) of $(\mathbb{C}^*)^{n+1}$, with $H_1 \approx \mathbb{C}^m$ and $H_2 \approx (\mathbb{C}^*)^{2m}$. When (K) is satisfied, the extension from a \mathbb{C}^m-action to a $(\mathbb{C}^*)^{2m}$-action in Proposition 2.3 is unique in the sense that H_2 must be the smallest algebraic subtorus of $(\mathbb{C}^*)^{n+1}$ containing H_1, as follows from the cocompactness of H_1 in H_2. In particular, for any given $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB \cap (K)$, there is a well-defined

$$X = X(\mathcal{L}, \mathcal{E}, m, n) := U/H_2,$$

with a map $\pi : N(\mathcal{L}, \mathcal{E}, m, n) \rightarrow X$ which is a Seifert principal fibration with compact torus $\mathbb{T} = H_2/H_1$, called a *generalized Calabi-Eckmann fibration* in [M-V]. The fibers of π define a foliation on N denoted by $\mathcal{F} = \mathcal{F}(\mathcal{L}, \mathcal{E}, m, n)$.

The next result extends one of [M-V]’s main results to a more general setting. We also give a simpler proof, based on a result of H. Hamm.

Theorem 3.1. Let X be any complete simplicial toric variety. Then there exists an LVMB-manifold N giving a generalized Calabi-Eckmann fibration over X.

Proof. Applying Theorem 6.1 in [Ha], one can realize X as a geometric quotient $V/(\mathbb{C}^*)^r$ with V an open subset of some \mathbb{C}^n acted on linearly by $(\mathbb{C}^*)^r$ and $n > r$. This action is the restriction (to a subgroup isomorphic to $(\mathbb{C}^*)^r$) of the diagonal $(\mathbb{C}^*)^n$-action on \mathbb{C}^n. If r is odd, we let $(\mathbb{C}^*)^{r+1} = (\mathbb{C}^*)^r \times \mathbb{C}^*$ act on $V \times \mathbb{C}^*$ by $(t_1, \ldots, t_r, t)_*(v, z) = ((t_1, \ldots, t_r), v, tz)$ then $V \times \mathbb{C}^*$ is an open subset of \mathbb{C}^{n+1}, and $V \times \mathbb{C}^*/((\mathbb{C}^*)^{r+1} = X$. Therefore (up to replacing V with $V \times \mathbb{C}^*$ and n with $n+1$) we can assume that r is even, i.e., $r = 2m$.

The map $(z_1, \ldots, z_n) \mapsto [1 : z_1 : \cdots : z_n]$ defines a $(\mathbb{C}^*)^{2m}$-equivariant embedding $\mathbb{C}^n \hookrightarrow \mathbb{P}^n$ sending V to an open subset U of \mathbb{P}^n whose quotient
by $(\mathbb{C}^*)^{2m}$ is X. Taking any $G \cong \mathbb{C}^m$ closed and cocompact in $(\mathbb{C}^*)^{2m}$ gives a generalized Calabi-Eckmann fibration $N = U/\mathbb{C}^m$ above X. \hfill \Box

Proposition 3.2. Let $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB \cap (K)$, with corresponding N and X.

(i) If $d > 1$ then X is the algebraic reduction of N;

(ii) X is projective if and only if $(\mathcal{L}, \mathcal{E}, m, n) \in LVM$.

In particular, if X is projective then N is an LVM-manifold.

Proof. (i) The proof of Theorem 4 in $[M]$ applies here and shows that any meromorphic function on N is a function of some functions M_1, \ldots, M_s. But M_1, \ldots, M_s are pull-backs of meromorphic functions on X by Remark 2.13 in $[M-V]$. As X is an abstract-algebraic variety, it is a (non-necessarily projective) algebraic reduction of N.

(ii) Take any $(\mathbb{C}^*)^{2m}$-action of form alg given by Proposition 2.3. From the proof of Proposition 2.3, we know that the λ_i’s of this action are obtained from the ℓ_i’s of the \mathbb{C}^m-action by an affine automorphism, that we denote φ. For each polytope P_α associated to $(\mathcal{L}, \mathcal{E}, m, n)$, we define $Q_\alpha = \varphi(P_\alpha)$.

Denote $\Pi = \{Q_\alpha\}_\alpha$, and define $\hat{U} \subset \mathbb{P}^n$ by: $[x_0 : \cdots : x_n] \in \hat{U}$ if and only if the convex hull of $\{\lambda_i | x_i \neq 0\}$ contains a polytope of Π. We claim that $\hat{U} = U$. The inclusion $U \subset \hat{U}$ follows from the definitions. On the other hand, it follows from Theorem 1.1(sep) that

$$\bigcap_{Q, Q' \in \hat{\Pi}} \hat{Q} \cap \hat{Q}' \neq \emptyset.$$

In particular, any polytope of Π has dimension $2m$, so the quotient of \hat{U} by $(\mathbb{C}^*)^{2m}$ is a geometric quotient (cf. Theorem 7.8 in $[BB-\text{Sw2}]$), i.e., the orbit space $\hat{U}/(\mathbb{C}^*)^{2m}$ is Hausdorff. But this space also contains the compact set $U/(\mathbb{C}^*)^{2m}$ as an open subset, so $\hat{U}/(\mathbb{C}^*)^{2m} = U/(\mathbb{C}^*)^{2m}$. This proves the claim, so U is given by Π in the sense of $[BB-\text{Sw2}]$.

From Example 7.12 and Corollary 7.16 in $[BB-\text{Sw2}]$, it follows that a necessary and sufficient condition for X to be projective is that $\bigcap_{Q \in \Pi} Q \neq \emptyset$.

By this is equivalent to

$$\bigcap_{Q \in \Pi} \hat{Q} \neq \emptyset,$$

which is in turn equivalent to $\bigcap_{\alpha} \hat{P}_\alpha \neq \emptyset$, i.e., $(\mathcal{L}, \mathcal{E}, m, n) \in LVM$. \hfill \Box

3.2. Existence of LVMB-manifolds that are not LVM-manifolds.

3.2.1. **Standard submanifolds.** Let $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$, with associated $N = N(\mathcal{L}, \mathcal{E}, m, n)$. Let U^1 be a subset of $U \subset \mathbb{P}^n$ defined by the vanishing of some homogeneous coordinates. Then the \mathbb{C}^m-action on U restricts on U^1 to an action of form $[ho]$, and when it satisfies the conditions of Theorem 1.1 it gives a submanifold $N^1 \subset N$ called a standard submanifold of N with respect to $(\mathcal{L}, \mathcal{E}, m, n)$ (cf. $[M]$ p.100).

Examples of standard submanifolds are obtained as follows: Take any element \mathcal{E}_α of \mathcal{E}, and define a $2m$-dimensional U^1 by letting $z_i = 0$ for $i \notin \mathcal{E}_\alpha$. By doing this for each element of \mathcal{E}, one gets a finite family of standard m-submanifolds. They have minimal dimension among standard submanifolds.
of N w.r.t. $(\mathcal{L}, \mathcal{E}, m, n)$. We call them \textit{minimal} standard submanifolds of N w.r.t. $(\mathcal{L}, \mathcal{E}, m, n)$.

\textbf{Lemma 3.3.} A standard submanifold of N is minimal if and only if it is a compact complex torus.

\textit{Proof.} Each standard submanifold is itself an $LVMB$-manifold, so the statement follows from Proposition 2.1 in \cite{Bo}, and the fact that tori are symplectic (NB: our n corresponds to $n - 1$ in \cite{Bo}). \hfill \square

3.2.2. \textit{Action of $Aut^0(N)$}. We state a few consequences of \cite{Bo} Proposition 2.4 and of \cite{M} Part V, whose proofs apply also to $LVMB$-manifolds.

Let $N = N(\mathcal{L}, \mathcal{E}, m, n)$ be an $LVMB$-manifold. The linear diagonal action of $(\mathbb{C}^*)^{n + 1}$ on \mathbb{P}^n descends to an action on N, which corresponds to a subgroup of $Aut(N)$ that we call G. Each G-orbit is a standard submanifold N^1 minus all standard submanifolds strictly contained in N^1. In particular, minimal standard submanifolds are G-orbits.

In general, G is contained in $Aut^0(N)$, the connected component of the identity. Therefore the closure of any $Aut^0(N)$-orbit is a union of standard submanifolds.

Finally, if $d > 1$ and $\ell_i \neq \ell_j$ when $i \neq j$, then $G = Aut^0(N)$. This follows from \cite{M} Theorem 6, which states the result at the $-\text{commutative-}$Lie algebra level.

3.2.3. \textit{A family of $LVMB$-manifolds that are not LVM-manifolds.}

\textbf{Proposition 3.4.} Let $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB$, with associated d and ℓ_i's such that $d > 1$ and $\ell_i \neq \ell_j$ when $i \neq j$. Let $N = N(\mathcal{L}, \mathcal{E}, m, n)$.

If there exists $(\mathcal{L}', \mathcal{E}', m', n')$ such that $N(\mathcal{L}', \mathcal{E}', m', n') = N$, then:

(i) $m' = m$, $n' = n$, $d' > 1$;
(ii) if $(\mathcal{L}, \mathcal{E}, m, n) \in (K)$ then $(\mathcal{L}', \mathcal{E}', m', n') \in (K)$.

\textit{Proof.} We use the facts stated in \cite{222}.

(i) The $Aut^0(N)$-orbits of minimal dimension are exactly the minimal standard submanifolds of N w.r.t. $(\mathcal{L}, \mathcal{E}, m, n)$. Therefore they are tori of dimension m.

Let p belong to one of these tori. We know \textit{a priori} that the closure of the orbit of p under $Aut^0(N)$ is a union of standard submanifolds w.r.t. $(\mathcal{L}', \mathcal{E}', m', n')$. That orbit being closed and smooth, it must equal exactly one such submanifold N'_i. By Lemma 3.3 it is a minimal standard submanifold w.r.t. $(\mathcal{L}', \mathcal{E}', m', n')$, so $m' = m$. Then $n' = n$ because $n' - m' = \dim N = n - m$.

From the proof of Proposition 2.1 in \cite{Bo}, $d > 1$ implies that

$$H^2(N, \mathbb{Z}) \cong \mathbb{Z} \text{ and } \pi_1(N) = 0$$

($\pi_1(N) = 0$ because there is a principal bundle over N with fiber a circle and a 2-connected total space).

Now we use that $N = N(\mathcal{L}', \mathcal{E}', m', n')$. Denote by k' the cardinality of $\bigcap_{j} E_{\alpha_j}$. Assume that $d' = 1$. Then $k' \geq 1$, and Bosio's description of the homotopy type of N implies that $H^2(N, \mathbb{Z})$ has rank 0 or $(k' - 1)(k' - 2)/2$.
and $\pi_1(N) = \mathbb{Z}^{k-1}$. Thus, by $(*)$, $(k'-1)(k'-2)/2 = 1$, so $k' = 3$. Then $\pi_1(N) = \mathbb{Z}^2$, which is a contradiction, so $d' > 1$.

(ii) For $N = N(\mathcal{L}, \mathcal{E}, m, n)$ with $d > 1$, Theorem 4 (ii) in [M] equates the algebraic dimension of N to an integer a (the proof given for LVM-manifolds applies also in the LVMB case). It follows from the definitions of a and (K) that in general $a \leq \dim N - m$, with equality if and only if $(\mathcal{L}, \mathcal{E}, m, n) \in (K)$. Therefore (ii) follows from (i). \qed

Proposition 3.5. Let $N = N(\mathcal{L}, \mathcal{E}, m, n)$ be an LVMB-manifold. Assume that $(\mathcal{L}, \mathcal{E}, m, n) \in (K)$, $d > 1$, and $\ell_i \neq \ell_j$ for $i \neq j$.

Then there exists an open, dense and \mathcal{F}-saturated subset $N_* \subset N$ such that the following are equivalent:

(i) $p, q \in N_*$ belong to the same leaf of \mathcal{F}.

(ii) for all $f \in \mathcal{M}(N)$ holomorphic at p and q, $f(p) = f(q)$.

Proof. The foliation \mathcal{F} is given by the fibers of the map $\pi : N \to X(\mathcal{L}, \mathcal{E}, m, n)$ and X is an abstract-algebraic variety, so in particular X is a Moishezon space. By Hironaka’s and Moishezon’s theorems, there exists \tilde{X} smooth and projective, with a sequence of blow-downs $\varphi : \tilde{X} \to X$.

Then $f \mapsto f \varphi$ is an isomorphism between the fields of meromorphic functions $\mathcal{M}(X)$ and $\mathcal{M}(\tilde{X})$, and there exist X_s and \tilde{X}_s open dense subsets in X and \tilde{X} between which φ induces a biholomorphism. Define $N_s = \pi^{-1}(X_s)$.

(ii) implies (i):

Take $p, q \in N_*$ not on the same leaf, i.e., $\pi(p)$ and $\pi(q)$ are distinct points in X_s, so $p_s = \varphi^{-1}\pi(p)$ and $q_s = \varphi^{-1}\pi(q)$ are distinct in \tilde{X}_s. Then there exists $f \in \mathcal{M}(\tilde{X})$ holomorphic at p_s and q_s such that $f(p_s) \neq f(q_s)$ (cf. [G-F], V, Theorem 3.14). Then $f \varphi^{-1}\pi \in \mathcal{M}(N)$ is holomorphic at p and q, and $f(p) \neq f(q)$.

(i) implies (ii):

Take $p, q \in N_*$ on the same leaf L, i.e., $\pi(p) = \pi(q)$. Let $f \in \mathcal{M}(N)$, holomorphic at p and q. Then there exists $f_1 \in \mathcal{M}(X)$ such that $f = f_1 \pi$ (cf. proof of Proposition 3.2).

As f is holomorphic at p, it is bounded on a neighborhood of p. As π is an open map, f_1 is bounded on a neighborhood A of $\pi(p) = \pi(q)$. So f_1 is holomorphic on A, and f is holomorphic on $\pi^{-1}(A)$, and in particular on L, which is compact. So f is constant on L, and in particular $f(p) = f(q)$. \qed

Theorem 3.6. Let $(\mathcal{L}, \mathcal{E}, m, n) \in LVMB \cap (K)$, with $d > 1$ and $\ell_i \neq \ell_j$ for $i \neq j$. If $(\mathcal{L}, \mathcal{E}, m, n) \notin LVM$ then N is not biholomorphic to any LVM-manifold.
Proof. Assume on the contrary that N can also be written as $N(L', E', m', n')$ with $(L', E', m', n') \in LVM$. By Proposition 3.4 (ii), $(L', E', m', n') \in (K)$. Now denote by F and F' the foliations of N with respect to (L, E, m, n) and (L', E', m', n'). By Proposition 3.5, F and F' agree on a dense open subset, so $F = F'$ everywhere. But by Proposition 3.2, $X' = N/F'$ is projective, whereas $X = N/F$ is not. Contradiction. \hfill \square

Example. In Ex. 3.2 it is immediate to check that $(L, E, m, n) \in (K)$ and that $\cap_{a} E_{a} = \emptyset$, so $d > 1$ (actually $d = 2$). Also $(L, E, m, n) \notin LVM$, so by Theorem 3.6, $N(L, E, m, n)$ is not isomorphic to any LVM-manifold.

3.3. Foliations

Let $(L, E, m, n) \in LVM$, and $N = N(L, E, m, n)$. Generalizing the results of Loeb and Nicolau, Meersseman shows (cf. [M]) the existence of a foliation $F = F(L, E, m, n)$ on N, and proves it is transversely Kähler. This means that N admits a closed, real and J-invariant two-form ω, positive on the normal bundle of F, and such that $\ker(\omega) = F$. This is a strong property, that has interesting geometric consequences on N.

Now assume that $(L, E, m, n) \in (K)$. Then the foliation’s leaves are just the fibers of $\pi : N \to X(L, E, m, n)$. Assume moreover that $(L, E, m, n) \notin LVM$. By Proposition 3.5 (ii), we know that X is not projective. Using this fact, we prove below that F is not transversely Kähler. This is an unexpected difference with the case of LVM-manifolds.

The proof is straightforward when T acts freely on N, i.e., when $N \to X = N/T$ is a genuine principal bundle: Assume that F is transversely Kähler with respect to a 2-form ω. Then:

(a) Make ω a T-invariant form by averaging it over the T-action, and push it forward on X, where it gives a Kähler form.

(b) As X is smooth, Kähler and Moishezon, it is projective by a theorem of B. Moishezon.

In the general case of $N \to X$ being a Seifert principal bundle (and X being singular), both steps (a) and (b) become non-trivial:

For (a): The problem is that the push forward of a T-invariant ω is not smooth in general (it is not even continuous). To fix this problem, we use some results and methods of D. Barlet and J. Varouchas. We take local potentials of ω on slices of the Seifert bundle, and push them forward to X. Then we can apply the following theorem of Varouchas: *If a complex space X has an open cover $\{U_i\}_{i \in I}$, with for all i a continuous strictly plurisubharmonic function ψ_i, such that for all i and j, $\psi_i - \psi_j$ is plurisubharmonic, then X is a Kähler space in the sense of Grauert.* (Grauert’s definition of a Kähler space is exactly the above sentence with “continuous” replaced with “smooth”.)

For (b): It is not true in general that a Moishezon Kähler space is projective. However, as X has only rational singularities, a theorem of Y. Namikawa implies that X is projective.

Theorem 3.7. Let $(L, E, m, n) \in LVM \cap (K)$, with corresponding N and F. If $(L, E, m, n) \notin LVM$ then F is not transversely Kähler.

Proof. Assume on the contrary that there exists a 2-form ω_0 with respect to which F is transversely Kähler. We have to show that $(L, E, m, n) \in LVM$.

First step: “make \(\omega_0 \) \(\mathbb{T} \)-invariant”. Let \(A \) be an automorphism of \(N \) induced by some element of \(\mathbb{T} \). Remark that for any \(p \in N \) and any vector \(v \in T_p N \), \(v \) is tangent to the \(\mathbb{T} \)-orbit of \(p \) if and only if \(A_s v \) is.

For \(u, v \in T_p N \), define

\[
\omega(u, v) = \int_{t \in \mathbb{T}} \omega_0(tu, tv)
\]

for \(\omega_0 \) the normalized Haar measure on \(\mathbb{T} \). This defines a \(\mathbb{T} \)-invariant, closed, real and \(J \)-invariant 2-form \(\omega \). Moreover, by the above remark, \(\ker \omega = \mathcal{F} \) and \(\omega \) is positive on the normal bundle of \(\mathcal{F} \) (because an integral of positive numbers is positive). So \(\mathcal{F} \) is transversely \(\mathbb{K} \)ähler with respect to \(\omega \).

Second step: “push forward local potentials on slices”. It follows from the results of Holmann (cf. [V2] pp. 82–84) that we can find a family of local holomorphic slices \(\{S_i\}_{i \in I} \) such that for each \(i \):

- \(S_i \subset N \) is transverse to \(\mathcal{F} \) and biholomorphic to a ball of same dimension as \(X \);
- \(\pi_i = \pi|_{S_i} \) is a quotient by a finite subgroup of \(\mathbb{T} \) denoted by \(\Gamma_i \) (\(\Gamma_i \) is some isotropy subgroup);
- \(\{V_i = \pi_i(S_i)\}_{i \in I} \) is an open cover of \(X \).

For each \(i \), \(\pi_i : S_i \rightarrow V_i \) is a ramified covering. We denote by \(\pi_i : S_i^{\text{reg}} \rightarrow V_i^{\text{reg}} \) the associated regular covering (off the ramification locus). We define \(\omega_i = \omega|_{S_i} \), which is a \(\mathbb{K} \)ähler form on the ball \(S_i \). So it admits a potential \(\varphi_i \), i.e., \(\varphi_i \in C^\infty(S_i, \mathbb{R}) \), \(\varphi_i \) is strictly plurisubharmonic (p.s.h.) and \(\omega_i = \sqrt{-1}\partial\bar{\partial}\varphi_i \).

Now define for all \(i \) a map \(\psi_i : V_i \rightarrow \mathbb{R} \) by

\[
\psi_i(x) = \frac{1}{n_i} \sum_{\gamma \in \Gamma_i} \varphi_i(\gamma, p),
\]

where \(p \in \pi_i^{-1}(x) \) and \(n_i \) is the order of \(\Gamma_i \). Then for all \(i \), \(\psi \) is continuous and strictly p.s.h. by a result of Barlet (cf. [V2] Proposition 3.4.1).

Third step: we prove that for all \(i, j \), \(\psi_i - \psi_j \) is pluriharmonic on \(V_i \cap V_j \).

We use the definition of pluriharmonic (p.h.) of [V2]. For a real function, this means that the function is locally the real part of a holomorphic function.

We will first prove that \(\psi_i - \psi_j \) is p.h. on \(V_i^{\text{reg}} \cap V_j^{\text{reg}} \). Let \(V \) be any small open subset of \(V_i^{\text{reg}} \cap V_j^{\text{reg}} \) isomorphic to an open ball. Then \(\pi_i^{-1}(V) \) is a union of balls \(B_{i,1}, \ldots, B_{i,n_i} \) and \(\pi_j^{-1}(V) \) is a union of balls \(B_{j,1}, \ldots, B_{j,n_j} \). Pick any two of them \(B_\alpha \) and \(B_\beta \). Denote \(\pi_\alpha = \pi|_{B_\alpha} \) \(\pi_\beta = \pi|_{B_\beta} \). Then \(\pi_\alpha \) (resp. \(\pi_\beta \)) sends \(B_\alpha \) (resp. \(B_\beta \)) isomorphically onto \(V \).

We now check that

\[
(\pi_\alpha)_* \omega = (\pi_\beta)_* \omega.
\]

Take \(p \in V \) and \(u, v \in T_p V \). Denote: \(p_\alpha = \pi_\alpha^{-1}(p) \), \(u_\alpha = (\pi_\alpha^{-1})_* u \), \(v_\alpha = (\pi_\alpha^{-1})_* v \), and \(p_\beta \), \(u_\beta \), \(v_\beta \) in the analogous way. We need to show:

\[
\omega(u_\alpha, v_\alpha) = \omega(u_\beta, v_\beta).
\]

As \(p_\alpha \) and \(p_\beta \) are on the same fiber of \(\pi \), there exists \(A \in \text{Aut}(N) \) induced by some \(t \in \mathbb{T} \) such that \(A(p_\alpha) = p_\beta \). By the \(\mathbb{T} \)-invariance of \(\omega \),

\[
\omega(u_\alpha, v_\alpha) = \omega(A_s u_\alpha, A_s v_\alpha).
\]
On the other hand, \(\pi A = \pi \), so \(\pi_* A_* u_\alpha = \pi_* u_\alpha = u = \pi_* u_\beta \). Therefore \(u_\beta - A_* u_\alpha \in Ker \pi_* = Ker \omega \). Thus \(\omega(u_\beta - A_* u_\alpha, v_\beta) = 0 \), i.e., \(\omega(A_* u_\alpha, v_\beta) = \omega(u_\beta, v_\beta) \). Repeating this for the second entry we get

\[
(3) \quad \omega(A_* u_\alpha, A_* v_\alpha) = \omega(u_\beta, v_\beta).
\]

By (2) and (3), we get (1). Therefore (e) holds, which means that pushing forward \(\omega \) by \(\pi \) from any ball among \(B_{i,1}, \ldots, B_{i,n_i}, B_{j,1}, \ldots, B_{j,n_j} \) gives on \(V \) the same 2-form, that we denote by \(\omega_V \).

By the definition of \(\psi_i \) and \(\psi_j \) we have

\[
\psi_{j|V} = \frac{1}{n_i} \sum_{\nu=1...n_i} \pi_*(\varphi_{i,B_{i,\nu}}) \quad \text{and} \quad \psi_{j|V} = \frac{1}{n_j} \sum_{\nu=1...n_j} \pi_*(\varphi_{i,B_{j,\nu}}).
\]

So

\[
\sqrt{-1} \partial \bar{\partial} \psi_{j|V} = \frac{1}{n_i} \sum_{\nu=1...n_i} \sqrt{-1} \partial \bar{\partial} \pi_*(\varphi_{i,B_{i,\nu}}) = \frac{1}{n_i} \sum_{\nu=1...n_i} \pi_*(\sqrt{-1} \partial \bar{\partial} \varphi_{i,B_{i,\nu}}) = \omega_V,
\]

and, similarly, \(\sqrt{-1} \partial \bar{\partial} \psi_{j|V} = \omega_V \). Therefore \(\partial \bar{\partial}(\psi_i - \psi_j)|V = 0 \), so \(\psi_i - \psi_j \) is on \(V \) the real part of some holomorphic function. This proves that \(\psi_i - \psi_j \) is p.h. on \(V_i^{reg} \cap V_j^{reg} \), and we also know that it is continuous on \(V_i \cap V_j \).

Now take any small open subset \(V \subset V_i \cap V_j \) such that \(\pi^{-1}(V) \) has a simply connected locus of \(V \) as an orbifold, and denote by \(Q = \pi^{-1}(Q) \cap U \). Then \(R \) is the ramification locus of \(\pi_i : U \to V \). In particular, \(R \) is an analytic subset of \(U \). Now \(\pi_i^*(\psi_i - \psi_j|V) \) is continuous on \(U \), and it is p.h. on \(U - R \), so in particular it is p.s.h. on \(U - R \). By a result of Grauert and Remmert (in [G-R]), that function extends as a p.s.h. function on \(U \). We can show similarly that its opposite is p.s.h. on \(U \). Therefore it is p.h., so it is the real part of some holomorphic function. Now pushing forward that holomorphic function gives on \(V \) a holomorphic function whose real part is \(\psi_i - \psi_j \).

Fourth step: We can now apply Theorem 1 of [V2] (remark that our \(X \) is reduced, so “(ii) follows from (i)”), to get that \(X \) is Kähler in the sense of Grauert (cf. [G]). As \(X \) is a toric variety, we know it has only rational singularities by Theorem 5.2 in [C]. Also \(X \) is an abstract-algebraic complex variety, so it is a Moishezon complex space. By Corollary 1.7 in [N], we get that \(X \) is projective. By Proposition 3.2 (\(\mathcal{L}, \mathcal{E}, m, n \) \(\in LVM \)).

Remark. For an \(LVMB \)-manifold obtained by a non-\(LVM \) action that does not satisfy \((K) \), one can still construct a foliation \(\mathcal{F} \), as in [M]. We expect \(\mathcal{F} \) to be non transversely Kähler, but are not able to prove it. There is no general deformation argument to get this result: Whereas a small deformation of a compact Kähler manifold is still Kähler, the analogous statement is not
true in general for transversely Kähler foliations, unless the differentiable type of the foliation is preserved (cf. [EKA-G]).

3.4. Further generalizations of the LVMB family. As a concluding remark, we give two ways of generalizing the family of LVMB-manifolds that are very natural from our GIT point of view. These two ways are independent, and can be combined.

3.4.1. Other cocompact subgroups. Start with a $(\mathbb{C}^*)^k$-action of form $[\text{alg}]$, with k not necessarily even. Now take any closed cocompact complex Lie subgroup $G \subset (\mathbb{C}^*)^k$. Such a G is isomorphic to $\mathbb{C}^m \times (\mathbb{Z})^l$, with $k = 2m + l$. Now take a good open subset U for the $(\mathbb{C}^*)^k$-action. The quotient $N = U/G$ is a compact complex manifold. One can still deform the parameters of the action to get other manifolds.

Note that N is topologically a fiber bundle over an LVMB-manifold with fiber a real torus $(S^1)^l$.

3.4.2. Quotients à la Białynicki-Birula and Sommese. Białynicki-Birula and Sommese have conjectured that part of the algebraic theory of GIT-quotients can be extended to the more general case of meromorphic actions of $(\mathbb{C}^*)^k$ on a reduced compact normal complex analytic space Y, with similar combinatorial properties (cf. [BB-So]). Unfortunately, only the cases of $k = 1$, and $k = 2$ with Y smooth and Kähler are fully understood so far, and there are few non-toric examples worked out in the literature.

It is likely that these quotients yield many new generalized Calabi-Eckmann fibrations, possibly giving new examples over simplicial toric varieties as well.

References

[Ba] D. Barlet, Conveuixité de l’espace des cycles, Bull. Soc. Math. Fr. 106 (1978), pp. 373-397.

[BB-So] A. Białynicki-Birula, A. J. Sommese, A conjecture about compact quotients by tori, Adv. Stud. Pure Math. 8 (1986), pp. 59–68.

[BB-Św1] A. Białynicki-Birula, J. Święcicka, On exotic orbit spaces of tori acting on projective varieties, Group actions and invariant theory (Montreal, PQ, 1988), 25–30, CMS Conf. Proc., 10, Amer. Math. Soc., Providence, RI, 1989.

[BB-Św2] A. Białynicki-Birula, J. Święcicka, Open subsets of projective spaces with a good quotient by an action of a reductive group, Transform. Groups 1 (1996), n° 3, pp. 153–185.

[B-M] F. Bosio, L. Meersseman, Real quadrics in \mathbb{C}^n, complex manifolds and convex polytopes, Preprint, ArXiv [math.GT/0405075].

[Bo] F. Bosio, Variétés complexes compactes : une généralisation de la construction de Meersseman et de López de Medrano-Verjovsky, Ann. Inst. Fourier 51 (2001), n° 5, pp. 1259–1297.

[C] D. Cox, Toric varieties and toric resolutions, Resolution of singularities (Obergren, 1997), pp. 259–284, Progr. Math. 181, Birkhäuser, Basel, 2000.

[EKA-G] A. El Kacimi Alaoui, B. Gmira, Stabilité du caractère kählérien transverse, Israel. J. Math. 101 (1997), pp. 323–347.

[G] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), pp. 331–368.

[G-R] H. Grauert, R. Remmert, Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956), pp. 175–194.

[G-F] H. Grauert, K. Fritzsche, Several Complex Variables, Springer-Verlag, 1976.
[Ha] H. A. Hamm, Very good quotients of toric varieties, Real and complex singularities (Sao Carlos, 1998), pp. 61–75, Chapman Hall/CRC Res. Notes Math. 412, 2000.

[Ho] H. Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), pp. 327–360.

[Hu] D. Huybrechts, Complex geometry. An introduction., Universitext, Springer-Verlag, 2005.

[L-N] J. J. Loeb, M. Nicolau, On the complex geometry of a class of non Kählerian manifolds, Israel J. Math. 110 (1999), pp. 371–379.

[LdM-V] S. López de Medrano, A. Verjovsky, A new family of complex, compact, non symplectic manifolds, Bol. Soc. Brasil. Mat. 28 (1997), pp. 253–269.

[M] L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), pp. 79–115.

[M-V] L. Meersseman, A. Verjovsky, Holomorphic principal bundles over projective toric varieties, J. reine angew. Math. 572 (2004), pp. 57–96.

[GIT] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Ergeb. Math., Vol. 34, Springer-Verlag, Berlin, 1994.

[N] Y. Namikawa, Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Internat. J. Math. 13 (2002), n° 2, pp. 125–135.

[O] P. Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291. Springer-Verlag, Berlin-New York, 1972.

[V1] J. Varouchas, Stabilité de la classe des variétés kähleriennes par certains morphismes propres, Invent. Math. 77 (1984), n° 1, pp. 117–127.

[V2] J. Varouchas, Kähler spaces and proper open morphisms, Math. Ann. 283 (1989), n° 1, pp. 13–52.

[W] C.T.C. Wall, Stability, pencils and polytopes, Bull. London Math. Soc. 12 (1980), no. 6, pp. 401–421.