Clinical and Radiological Results of Treating Lumbar Spondylosis With Cortical Bone Trajectory Screws

Mateusz Bielecki
Medical University of Warsaw: Warszawski Uniwersytet Medyczny

Przemyslaw Kunert (przemyslaw.kunert@wum.edu.pl)
Department of Neurosurgery, Medical University of Warsaw, Warsaw, 02-097, Poland

Artur Balasa
Medical University of Warsaw: Warszawski Uniwersytet Medyczny

Sławomir Kujawski
Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz: Uniwersytet Mikolaja Kopernika w Toruniu Collegium Medicum im Ludwika Rydygiera w Bydgoszczy

Andrzej Marchel
Medical University of Warsaw: Warszawski Uniwersytet Medyczny

Research article

Keywords: Minimally invasive spine surgery, Cortical bone trajectory, Traditional trajectory

DOI: https://doi.org/10.21203/rs.3.rs-80155/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The cortical bone trajectory (CBT) technique is a popular minimally invasive spine surgery. Few studies have reported long-term outcomes. Here, we evaluated the complication profile and long-term follow-up of patients with lumbar degenerative disease treated with the CBT technique.

Methods: This retrospective analysis included the first 40 consecutive patients that underwent the CBT technique. The indication for surgery was critical stenosis of the intervertebral foramen, which required removal of the entire intervertebral joint, on at least one side, during decompression.

Results: The CBT technique was performed on one spine level, in 29 cases, and on two levels, in 11 cases. The last follow-up showed minimal clinically important differences in the numerical rating scale (NRS) of leg pain, the NRS of back pain, and the Oswestry Disability Index (ODI), in 97%, 95%, and 95% of patients, respectively. Thirty-nine patients completed long-term radiological follow-ups. Computed tomography demonstrated solid bone unions on 47 (92%) operated levels, collapsed unions on 2 (4%) levels, non-union on 1 (2%) level, and 1 (2%) lost to follow-up. Seven patients experienced complications (4 hardware-related). Three patients required four revision surgeries.

Conclusions: The CBT technique effectively achieved spinal fusion; over 90% of patients achieved clinical improvement at a mean follow-up of 4.4 years (minimum 3 years in all cases).

Introduction

The cortical bone trajectory (CBT) technique is an alternative method of pedicle screw fixation. CBT can be applied to many paediatric and adult spinal pathologies, including spondylolisthesis, deformities, failed traditional lumbar pedicle screws, adjacent-segment disease, and trauma [1–5]. In traditional trajectory (TT) transpedicular screw fixation, the trajectory in the transverse plane is from lateral to medial, which requires the application of strong muscle retraction. In the CBT technique, the trajectory for screw fixation is reversed. Biomechanical tests on cadavers and animals have shown that the risk of screw plowing is lower with CBT than with TT screws [6–8]. The present study aimed to evaluate the clinical and radiological outcomes and complications in a group of 40 consecutive patients that underwent CBT fusion, after a mean clinical follow-up of 52.45 months.

Materials And Methods

We retrospectively reviewed prospectively collected data on the first 40 consecutive patients that underwent CBT fusion between 2014 and 2017. Methods of this study were approved by ethics commission of the Medical University of Warsaw. Our group comprised 20 (50%) men and 20 (50%) women. The average age of the patients was 60 years (range: 35–86). The symptomatic period varied from 12 to 48 months (mean 23 months). The patient characteristics are given in Table 1. The indication for surgery was critical stenosis of the intervertebral foramen (Fig. 1) that required removal of the entire intervertebral joint, at least on one side, during decompression. Among these patients, 13 (33%) had
undergone prior microdiscectomies, 16 (40%) had first degree spondylolisthesis, and 10 (25%) had predominant degenerative foraminal stenosis. Treatment results were assessed clinically and radiologically.
Table 1
Characteristics of 40 patients with lumbar spondylosis treated with cortical bone trajectory screws

Characteristic	Category	N (%)
Sex	Male	20 (50%)
	female	20 (50%)
Age, years; mean (range)		60 (35–86)
Symptom duration, months; mean (range)		23 (12–48)
Symptoms	Back pain	37 (93%)
	Sciatica	38 (95%)
	Claudication	25 (63%)
	Paresis	19 (48%)
	Sensory disturbance	25 (63%)
Spondylolisthesis – grade I		16 (40%)
Prior lumbar spine surgery		13 (33%)
Spinal levels of surgery; number of levels (%)	One fusion level	29 (72.5%)
	L4–L5	23 (57.5%)
	L5–S1	
	Two fusion levels	6 (15%)
	L3–L4–L5	11 (27.5%)
	L4–L5–S1	6 (15%)
	Total number of spinal fusion levels	5 (12.5%)
		51
Interbody fusion and CBT details; number of levels (%)	PLIF	28 (55%)
	TLIF	22 (43%)
	Only autogenic graft	1 (2%)
	Total interbody devices, n	78
	Total screws, n	182

Values are the number of patients (%), unless otherwise indicated. PLIF – posterior lumbar interbody fusion, TLIF – transforaminal lumbar interbody fusion
Characteristic	Category	N (%)
Mean operative time, h (range)		3.6 (3–5)

Values are the number of patients (%), unless otherwise indicated. PLIF – posterior lumbar interbody fusion, TLIF – transforaminal lumbar interbody fusion

Clinical assessment

The average observation time was 52.45 months (range: 36–69). Clinical symptoms were collected at the hospital or through phone calls before surgery and at 3, 12, and 24 months post-surgery, and finally, at the study endpoint, in September 2020. Twelve months after surgery, patients were admitted to the hospital for a short stay to undergo clinical and radiological evaluations. We used the Numerical Rating Scale (NRS) to assess radicular leg pain and back pain. Patient functional status was assessed with the Polish version of the Oswestry Disability Index (ODI) questionnaire [9]. The minimal clinically important difference (MCID) was measured to assess treatment efficiency [10]. The MCID was calculated as the difference between preoperative and different postoperative NRS and ODI values. The MCID was defined as ≥ 12 points of improvement in the ODI, and ≥ 3 points of improvement in the NRS [11].

Radiological assessment

Standing radiograms were performed for all patients before discharge to confirm the correct location of the hardware. Long-term radiological control was performed at 12 months after surgery in 39 (98%) patients. Computed tomography (CT) and dynamic flexion-extension X-rays of the lumbar spine were performed to assess spine stability, mobility of the fused level, bony union, and signs of haloing of the interbody screws. Based on CTs acquired from the sagittal, transverse, and coronal positions, we assessed the positions of interbody screws and the presence of implants, bone union, and screw loosening. Correct screw placement was defined as a cortical screw trajectory that was anchored close (± 3 mm) to the disc endplate or the lateral border of the vertebra [12]. Screw position was assessed according to a 2-mm increment grading classification system [13]. Screw loosening was defined as a visible osteolytic lesion on the CT (“halo”) and/or screw migration [14]. Solid bony union in situ was defined as the maintenance of bone continuity between the vertebrae, without signs of graft collapse, on the CT scans [15]. A collapsed union was defined as a solid fusion with ≥ 2 mm of interbody cage subsidence into an adjacent vertebral body. Non-union was defined as persistent motion of the fused level on lateral dynamic X-rays. In addition to the scheduled radiological imaging at the follow-up, CTs and magnetic resonance imaging (MRI) were also performed in cases of significant ongoing pain.

Complications

Complications were defined as early or late. Early complications occurred intraoperatively or during hospitalization. All adverse events that occurred after hospital discharge were defined as late complications. We analysed the data in terms of the following adverse events: screw misplacement, screw haloing, interbody device migration, retroperitoneal haemorrhage, surgical site hematoma, dural
tissue tear, infection, new neurological deficit, improper wound healing, thrombosis, adjacent segment disease, and other general complications.

Operation technique

With the patient under general anaesthesia and in the prone position, a small incision was made in the midline, above the spinous processes (4–6 cm long). A slight dissection of the spine muscles was performed over the lamina, up to the lateral border of the pars interarticularis, as in a laminectomy, to retain functionality of the neurovascular system in the muscles. Then, two anatomical structures were identified: (1) the lateral edge of the intra-articular isthmus, and (2) the lower edge of the transverse process. Fluoroscopy was performed to prepare the starting points for screw insertion at the level of 10 mm. Starting points were located at 1–2 mm medial to the connection between the lateral edge of the intra-articular isthmus and the lower edge of the transverse process, directly below the upper connection of the joint surfaces (Fig. 2). Next, the spinal canal was decompressed, and a laminectomy, foraminotomy, and discectomy were performed. Interbody fusion was performed with autogenic local bone chips combined with hydroxyapatite nanoparticle gel (Nanogel®, Teknimed, France) and interbody implants. The screw trajectory was controlled with C-arm fluoroscopy. For the S1, we implemented the technique proposed by Matsukawa, where the starting point was in the middle of the superior articular process of S1, 3 mm below the inferior articular process of the L5 vertebrae [12]. Then, the screw was drilled along a trajectory that pointed straight along the horizontal plane and at an angle of 10 degrees in the cephalic direction in the sagittal plane. We considered a screw to be well anchored when it perforated the disc endplate or the lateral border of the vertebra, up to 3 mm [12].

Statistical analysis

The Shapiro-Wilk test was used to examine the normality assumption. The Friedman ANOVA test was used to examine the influence of surgery, with the STATISTICA 13.1 program (StatSoft, Inc.). The Durbin-Conover test and the Benjamini & Hochberg p-adjustment method were applied for the post-hoc analysis. Violin graphs were created with RStudio (version 1.2.5019) and a ggstatsplot library.

Results

Clinical outcomes

Clinical follow-up was completed in all 40 patients (Table 2). At the most recent follow-up, the average NRS scores for leg pain and back pain decreased by 6 points (range: 1–9) and 5 points (range: 0–10), respectively, compared to the preoperative scores (p < 0.00001 for both). Moreover, the average ODI score decreased by 28 points (range: −2 to 40) (p < 0.00001) compared to the preoperative score.
Table 2
Clinical and radiological results of cortical bone trajectory treatment for lumbar spondylosis

Clinical results	Before surgery	3-month follow-up	12-month follow-up	24-month follow-up (40/40 patients)	Most recent follow-up	Difference between pre-surgery and most recent follow-up
NRS leg: Range:	7.3 (1–10)	2.9 (0–8)	1.9 (0–7)	1.3 (0–4)	1.3 (0–4)	6 p < 0.00001
NRS back: Range:	6.8 (1–10)	3.2 (0–7)	2.2 (0–7)	2.1 (0–7)	1.8 (0–6)	5 p < 0.00001
ODI: Range:	42 (20–48)	26 (12–40)	17 (0–40)	13 (0–34)	14 (0–34)	28 p < 0.00001
MCID NRS leg	34/38 (89%)	35/38 (92%)	37/38 (97%)	37/38 (97%)		
MCID NRS back	29/37 (78%)	34/37 (92%)	33/37 (89%)	35/37 (95%)		
MCID ODI	30/40 (75%)	36/40 (90%)	37/40 (93%)	38/40 (95%)		

Radiological results

Grade	N/total (%)
Grade I	153/182 (84%)
Grade II	21/182 (12%)
Grade III	2/182 (1%)
Grade IV	2/182 (1%)
LTFU	4/182 (2%)

The 2-mm increment classification system of screw placement accuracy [13]

A post-hoc analysis indicated that, compared to preoperative scores, the average NRS for the leg, NRS for the back, and ODI scores significantly decreased after 3 months, after 12-months, after 24-months, and at the most recent follow-up. Additionally, measurements taken at postoperative intervals showed that the average leg NRS and ODI scores steadily improved over time (Fig. 3a,c). In contrast, the average back pain decreased significantly at 3 months after surgery, compared to pre-surgery, then remained constant.
(Fig. 3b). The MCID for leg pain NRS, back pain NRS, and the ODI were achieved at the most recent follow-up in 97%, 95%, and 95% of patients, respectively.

Radiological outcomes

We found no hardware abnormalities in the early postoperative radiograms for our series. However, the follow-up CTs showed that hardware abnormalities occurred in two cases. Long-term radiological follow-up imaging was achieved in 39 cases (Table 2). One patient refused followup examinations, due to an oncological disease. In total, 50 fused levels, 178 screws, and 77 interbody devices were evaluated in long-term dynamic X-rays and CT scans. Asymptomatic mobility at the fused level was observed in a dynamic X-ray for 1 (3%) patient (Fig. 4e, f). Followup CT scans showed that solid bone union in situ was achieved at 47 (92%) operated levels, collapsed unions occurred at 2 (4%) levels, a non-union occurred at 1 (2%) level, and 1 patient (1 level, 4 screws) was lost to follow-up. CT imaging also showed that 174 (98%) out of 178 initially placed screws remained in the correct position without signs of “haloing” (Fig. 4c, d). Three (1.7%) screws loosened with signs of “haloing” in 2 patients (Fig. 4a, b). Two (1.1%) screws and 1 (1.3%) interbody device were malpositioned.

Complications

Complications occurred in 7 patients (Table 3). Of these, 3 experienced more than one complication. However, only 4 (10%) patients had hardware-related complications. Only 5 patients displayed early complications, including intraoperative dural tears; of those, 3 (60%) patients had previously undergone surgery at the same level. No patient experienced an intraoperative pedicle fracture or damage to the nerve root. Moreover, no other postoperative events occurred, such as symptomatic hematoma, thrombosis, infection, or general complications.
Table 3
Complications of cortical bone trajectory treatment for lumbar spondylosis

Patient	Early/Late	Description	Management
1	Late	1 screw loosened with interbody device dislocation	Reposition of screw in left S1 pedicle and removal of interbody device
2	Early	Dural tear	Suturing + TachoSil®
	Late*	Screw malposition	Reposition of screw in left L5 pedicle
	Late	Adjacent segment disease	L3–L4 laminectomy
3	Early	Dural tear	Suturing + TachoSil®
	Late*	Screw malposition	Removal of screw in right L4 pedicle
4	Late	2 screws loosened (asymptomatic)	no treatment needed
5	Early	Dural tear	Suturing + TachoSil®
6	Early	Dural tear	Suturing + TachoSil®
7	Early	Dural tear	Suturing + TachoSil®

Summary of complications

Totals	Time	Type	N/total (%)	Management
11 adverse events in 7 patients; 178 screws; 77 devices	Early – 5/40 patients	Dural tear	5/40 (12.5%)	Intraoperative repair – 5
	Late – 6/39 patients	Screw loosening	3/178 (1.7%)	4 revision surgeries in 3 patients
		Screw malposition	2/178 (1.1%)	
		Interbody device dislocation	1/77 (1.3%)	
		Adjacent segment disease	1/39 (3%)	
		Other general complication	0 (0%)	

According to our definition, this was a late complication, because the pain presented after hospital discharge
Late complications occurred in 4 patients. One patient with severe back pain and radicular pain in the left leg displayed screw loosening and interbody device dislocation. Symptoms occurred after physical therapy, one year after surgery. This patient required screw replacement in the left S1 pedicle, with a new CBT procedure, and the interbody device was removed. The second patient experienced severe left leg radicular pain several days after discharge. The MRI and CT showed foraminal compression of the L5 root, related to an incorrect screw trajectory in the left L5 pedicle, which was not clearly visible in intraoperative and early postoperative X-rays. The patient underwent surgical screw repositioning in the left L5 pedicle. This patient also developed symptomatic central stenosis on the adjacent segment above the fused segment. This complication required an L3–L4 laminectomy without additional fusion, 17 months later. The third patient experienced severe right-sided pain in the lumbar spine 11 months after surgery. One screw misplacement was found in the right L4 pedicle on the CT of the lumbar spine. The screw was surgically removed on that side without additional fixation, because there were no signs of mobility on that level in a follow-up dynamic X-ray. The fourth patient displayed asymptomatic loosening of two screws in a follow-up CT, 12 months after surgery.

Discussion

Cortical bone trajectory has gained popularity as a minimally invasive spine surgery in recent years. The main advantage of CBT is that the spinal canal, foraminal decompression, discectomy, interbody fusion, and screw fixation can be performed with only one small incision. In general, the advantages of minimally invasive spine surgery are less tissue damage, reduced morbidity, faster functional recovery, and the ability to achieve the same surgical goal, compared to traditional surgical methods [16]. Compared to TT screws, CBT preserves a larger group of muscles, because there CBT does not require the exposure necessary to access traditional screw entry points; instead, only the pars interarticularis must be accessed. However, studies with longer follow-ups are needed for more accurate comparisons. The primary objective of this study was to demonstrate the long-term results of CBT screw fixation (mean follow-up 4.4 years). To our knowledge, this study was the first to describe such a long follow-up.

Clinical outcomes

The outcomes, demographic data, and fusion levels of our group were similar to those reported in other studies that had two or more years of follow-up [2, 17, 18]. Chin et al. described 30 patients with an average follow-up of two years [17]. They reported improvements in the mean visual analogue scale (VAS) for back pain (from 7.8 to 2.5), in the mean VAS for leg pain (from 4.2 to 0.2), and in the mean ODI (from 40.8 to 28.7). In a series of 35 patients, Lee et al. showed improvements in the mean VAS for back pain (from 7.7 to 2.7), the mean VAS for leg pain (from 5.9 to 1.3), and the mean ODI (from 35.1 to 11.8) [18].

Radiological outcomes

The solid fusion rate was achieved in 92% of operated levels; this rate was comparable to those reported in previous studies [1, 2]. Sakura et al. reported solid bone fusion in 90.9% of operated levels after single-
and two-level fusions in a group of 22 patients [2]. They found non-unions in 4 patients, but none required revision surgery. In contrast, Hussain et al. reported a fusion rate of only 37.5% among follow-up CT scans performed at an average 15 months post-surgery [19]. They suggested that their low rate might have been explained by a high rate of undiagnosed osteopenia or osteoporosis, due to the large number of postmenopausal women included in their groups.

Complications

We observed 11 adverse events in 7 patients of our group. However, only 4 (10%) patients experienced hardware-related complications. Durations occurred in five patients, but 3 of those patients had undergone a previous surgery at the same level. Previous surgery is a clear risk factor for dural sac violations [20]. In the current literature, durations have been reported in 4–15.6% of patients [2, 21, 22]. In our group, 2 (5%) patients experienced screw loosening, but one had a diagnosis of osteoporosis. Lee et al. evaluated 35 patients and found 4 (11.4%) patients with signs of screw loosening [18]. Gleenie et al. evaluated 8 patients, and 5 (62.5%) had signs of screw loosening [23]. In preclinical tests, cortical screws showed some biomechanical advantages that should improve the fixation strength. In 2009, Santoni et al. performed a cadaveric study that showed that screws with a cortical trajectory had 30% higher resistance to uni-axial pull-out forces, compared to traditional screw insertion methods [6]. Subsequent biomechanical tests showed that CBT screws required nearly twice the insertion torque required for TT screws, and CBT screws had a higher resistance to pulling out than TT screws [7, 8]. In practice, screw loosening sometimes occurs. To avoid this, the longest and thickest screws possible are used, and the screw tip is anchored to the disc endplate or lateral wall of the vertebrae to achieve bicortical fixation. Another complication was the screw malpositioning observed in two cases. Sakura et al. reported a 2.1% rate of screw malpositioning in a group of 95 patients [24]. Marengo et al. reported that 4/418 (0.95%) screws were malpositioned and required repositioning [3]. It is necessary to identify anatomical landmarks for entry points and use intraoperative fluoroscopy or navigation to avoid screw malpositioning.

Recent studies have reported other complications, including superior facet joint violations (1.25–9.1%); symptomatic adjacent segment disease, deep vein thrombosis or pulmonary embolism (3.8%); hematomas (1.1–2.4%), and infection (1.3–2.1%) [2–4, 18, 24, 25]. We observed no infections in our series; this result might have been related to the use of a shorter incision than that required with traditional techniques. To date, in our experience, longer screws with bicortical fixation and filling the intervertebral space with bone chips appeared to be very important for achieving long-lasting success. However, further investigations are required to provide evidence in support of these observations.

Limitations of the study

This retrospective study lacked a control group. Therefore, we could not make direct comparisons to results with, e.g., minimally invasive spinal-transforaminal lumbar interbody fusion or TT transpedicular screw fixation. In addition, we did not perform radiological evaluations of the preoperative and follow-up sagittal alignment of the spine, because the main indications for this technique were symptoms of
intervertebral foraminal stenosis. Therefore, we could not establish any associations between the clinical results and sagittal balance, based on the collected data.

Conclusion

We found that the CBT technique offered high efficacy in the achievement of spinal fusion and displayed a low risk of hardware complications. CBT achieved clinical improvement in over 90% of patients with lumbar degenerative disease, at a mean follow-up of 4.4 years.

Abbreviations

CBT
Cortical Bone Trajectory; TT: Traditional Trajectory; NRS: Numerical Rating Scale; ODI: Oswestry Disability Index; MCID: The Minimal Clinically Important Difference; CT: Computed Tomography; MRI: Magnetic Resonance Imaging

Declarations

Ethics declaration

Methods of this study were approved by ethics commission of the Medical University of Warsaw under the study approval number: AKBE/159/17. Apart from the above, the study was not subject to any other approval and no experimental protocols have been created.

Consent for publication

Not applicable.

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

Competing interests

The authors declare that they have no competing interests.

Founding

No founding was provided

Author's contributions
M.B. completed material and drafted the manuscript. M.B., A.B., P.K., S.K. completed the analysis. P.K. and A.M. supervised the analysis and critically revised the manuscript. All authors provided substantial intellectual contributions and approved the final version of the manuscript.

Acknowledgments

Not applicable

Authors’ information

Mateusz Bielecki M.D.,¹ Przemysław Kunert M.D. Ph.D. *,¹ Artur Balasa M.D.,¹
Sławomir Kujawski MSc.,² Andrzej Marchel M.D. Ph.D.¹

¹Department of Neurosurgery, Medical University of Warsaw, Warsaw, 02-097, Poland

²Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Collegium Medicum in Bydgoszcz, Bydgoszcz, 85-094, Nicolaus Copernicus University in Toruń, Poland

* Corresponding author:

Przemysław Kunert M.D. Ph.D.

Public Central Teaching Hospital

Banacha 1a, 02-097 Warsaw, Poland

phone: + 48 22 59-92-575, fax: + 48 22 59-91-574

e-mail: przemyslaw.kunert@wum.edu.pl

References

1. J. N. Sellin, J. S. Raskin, K. A. Staggers, A. Brayton, V. Briceno, A. J. Moreno and A. Jea, "Feasibility and safety of using thoracic and lumbar cortical bone trajectory pedicle screws in spinal constructs in children: Technical note," J Neurosurg Pediatr, vol. 21, no. 2, pp. 190-196, 2018.

2. H. Sakaura, T. Miwa, T. Yamashita, Y. Kuroda and T. Ohwada, "Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: Comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis," J Neurosurg Spine, vol. 28, no. 1, pp. 57-62, 2018.

3. N. Marengo, P. Berjano, F. Cofano, M. Ajello, F. Zenga, G. Pilloni, F. Penner, S. Petrone, L. Vay, A. Ducati and D. Garbossa, "Cortical bone trajectory screws for circumferential arthrodesis in lumbar degenerative spine: Clinical and radiological outcomes of 101 cases," Eur Spine J, vol. 27, no. Suppl 2, pp. 213-221, 2018.
4. L. A. Snyder, E. Martinez-Del-Campo, M. T. Neal, H. A. Zaidi, A. W. Awad, R. Bina, F. A. Ponce, T. Kaibara and S. W. Chang, "Lumbar spinal fixation with cortical bone trajectory pedicle screws in 79 patients with degenerative disease: Perioperative outcomes and complications," *World Neurosurg*, vol. 88, pp. 205-213, 2016.

5. G. C. Calvert, B. D. Lawrence, A. M. Abtahi, K. N. Bachus and D. S. Brodke, "Cortical screws used to rescue failed lumbar pedicle screw construct: A biomechanical analysis," *J Neurosurg Spine*, vol. 22, no. 2, pp. 166-172, 2015.

6. B. G. Santoni, R. A. Hynes, K. C. McGilvray, G. Rodriguez-Canessa, A. S. Lyons, M. A. Henson, W. J. Womack and C. M. Puttlitz, "Cortical bone trajectory for lumbar pedicle screws," *Spine J*, vol. 9, no. 5, pp. 366-373, 2009.

7. K. Matsukawa, Y. Yato, H. Imabayashi, N. Hosogane, Y. Abe, T. Asazuma and K. Chiba, "Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: What is the ideal screw size for optimal fixation?," *Acta Neurochir (Wien)*, vol. 158, no. 3, pp. 465-471, 2016.

8. C. A. Sansur, N. M. Caffes, D. M. Ibrahimi, N. L. Pratt, E. M. Lewis, A. A. Murgatroyd and B. W. Cunningham, "Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: An in vitro human cadaveric model," *J Neurosurg Spine*, vol. 25, no. 4, pp. 467-476, 2016.

9. G. Miekisiak, M. Kollataj, J. Dobrogowski, W. Kloc, W. Libionka, M. Banach, D. Latka, T. Sobolewski, A. Sulewski, A. Nowakowski, G. Kiwic, A. Pala, T. Potaczek and M. Gierlotka, "Validation and cross-cultural adaptation of the Polish version of the Oswestry Disability Index," *Spine (Phila Pa 1976)*, vol. 38, no. 4, pp. E237-243, 2013.

10. E. J. Carragee and I. Cheng, "Minimum acceptable outcomes after lumbar spinal fusion," *Spine J*, vol. 10, no. 4, pp. 313-320, 2010.

11. O. Hagg, P. Fritzell, A. Nordwall and G. Swedish Lumbar Spine Study, "The clinical importance of changes in outcome scores after treatment for chronic low back pain," *Eur Spine J*, vol. 12, no. 1, pp. 12-20, 2003.

12. K. Matsukawa, Y. Yato, T. Kato, H. Imabayashi, T. Asazuma and K. Nemoto, "Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique: Technical note," *J Neurosurg Spine*, vol. 21, no. 2, pp. 203-209, 2014.

13. A. A. Aoude, M. Fortin, R. Figueiredo, P. Jarzem, J. Ouellet and M. H. Weber, "Methods to determine pedicle screw placement accuracy in spine surgery: A systematic review," *Eur Spine J*, vol. 24, no. 5, pp. 990-1004, 2015.

14. T. M. Stoll, G. Dubois and O. Schwarzenbach, "The dynamic neutralization system for the spine: A multi-center study of a novel non-fusion system," *Eur Spine J*, vol. 11 Suppl 2, pp. S170-178, 2002.

15. S. D. Glassman, J. R. Dimar, L. Y. Carreon, M. J. Campbell, R. M. Puno and J. R. Johnson, "Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix
and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion," *Spine (Phila Pa 1976)*, vol. 30, no. 15, pp. 1694-1698, 2005.

16. P. C. McAfee, F. M. Phillips, G. Andersson, A. Buvenenadran, C. W. Kim, C. Laurysen, R. E. Isaacs, J. A. Youssef, D. S. Brodke, A. Cappuccino, B. A. Akbarnia, G. M. Mundis, W. D. Smith, J. S. Uribe, S. Garfin, R. T. Allen, W. B. Rodgers, L. Pimenta and W. Taylor, "Minimally invasive spine surgery," *Spine (Phila Pa 1976)*, vol. 35, no. 26 Suppl, pp. S271-273, 2010.

17. K. R. Chin, F. J. R. Pencle, A. V. Coombs, M. Elsharkawy, C. F. Packer, E. A. Hothem and J. A. Seale, "Clinical outcomes with midline cortical bone trajectory pedicle screws versus traditional pedicle screws in moving lumbar fusions from hospitals to outpatient surgery centers," *Clin Spine Surg*, vol. 30, no. 6, pp. E791-E797, 2017.

18. G. W. Lee and M. W. Ahn, "Comparative study of cortical bone trajectory-pedicle screw (cortical screw) versus conventional pedicle screw in single-level posterior lumbar interbody fusion: A 2-year post hoc analysis from prospectively randomized data," *World Neurosurg*, vol. 109, pp. e194-e202, 2018.

19. I. Hussain, M. S. Virk, T. W. Link, A. J. Tsiouris and E. Elowitz, "Posterior lumbar interbody fusion with 3d-navigation guided cortical bone trajectory screws for l4/5 degenerative spondylolisthesis: 1-year clinical and radiographic outcomes," *World Neurosurg*, vol. 110, pp. e504-e513, 2018.

20. Y. Smorgick, K. C. Baker, H. Herkowitz, D. Montgomery, S. A. Badve, C. Bachison, S. Erickson and J. S. Fischgrund, "Predisposing factors for dural tear in patients undergoing lumbar spine surgery," *J Neurosurg Spine*, vol. 22, no. 5, pp. 483-486, 2015.

21. B. Dabbous, D. Brown, A. Tsitlakidis and V. Arzoglou, "Clinical outcomes during the learning curve of MIDline Lumbar Fusion (MIDLF(R)) using the cortical bone trajectory," *Acta Neurochir (Wien)*, vol. 158, no. 7, pp. 1413-1420, 2016.

22. J. G. Malcolm, M. K. Moore, F. H. Choksh, F. U. Ahmad and D. Refai, "Comparing cortical trajectory transforaminal lumbar interbody fusions against pedicle trajectory transforaminal lumbar interbody fusions and posterolateral fusions: A retrospective cohort study of 90-day outcomes," *Neurosurgery*, vol. 83, no. 6, pp. 1234-1240, 2018.

23. R. A. Glennie, N. Dea, B. K. Kwon and J. T. Street, "Early clinical results with cortically based pedicle screw trajectory for fusion of the degenerative lumbar spine," *J Clin Neurosci*, vol. 22, no. 6, pp. 972-975, 2015.

24. H. Sakaura, T. Miwa, T. Yamashita, Y. Kuroda and T. Ohwada, "Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: A comparative study," *J Neurosurg Spine*, vol. 25, no. 5, pp. 591-595, 2016.

25. S. Takenaka, Y. Mukai, K. Tateishi, N. Hosono, T. Fuji and T. Kaito, "Clinical outcomes after posterior lumbar interbody fusion: Comparison of cortical bone trajectory and conventional pedicle screw insertion," *Clin Spine Surg*, vol. 30, no. 10, pp. E1411-E1418, 2017.
Radiological images of a patient with L5-S1 central and critical left foraminal stenosis, which presented as left leg radiculopathy. a Sagittal T2-weighted MRI image of the lumbar spine shows a herniated disc at the L5–S1 level (white arrow). b Axial T2-weighted MRI image shows central and left-sided critical foraminal stenosis at the L5–S1 level (white arrow). c Follow-up sagittal CT scan shows solid fusion status. d, e Follow-up axial CT scans demonstrate the correct trajectory of the screws at the d L5 and e S1 levels. f, g Follow-up lateral dynamic X-rays show no motion at the operated spinal level.
Figure 2

Comparison between screws placed with the cortical bone trajectory and the traditional trajectory. a Directions of screws in the traditional trajectory (blue) and the cortical bone trajectory (green) in the axial plane. b Directions of screws in the traditional trajectory (blue) and the cortical bone trajectory (green) in the axial sagittal plane. c Entry points for screws in the traditional trajectory (blue) and the cortical bone trajectory (green)
Figure 3

Pain scores measured before and after surgery. Measurements taken before and at different times after surgery show the changes in the average a leg Numerical Rating Scale (NRS), b back NRS, and c Oswestry Disability Index (ODI) score. Red dots connected by the red line indicate the mean value; horizontal black line inside the box denotes the median value. Green dots before and orange dots after surgery denote the results of individual patients. The violin shapes indicate the distributions of results.
Images of a patient after L3–L4–L5 surgery show representative complications. a, b Sagittal and axial CT scans show evidence of haloing around the screws through the L3 pedicles (black arrows). c, d Sagittal and axial CT scans show no loosening of the screws through the L4 pedicles (white arrows). e, f Sagittal dynamic X-rays in e extension and f flexion show screw mobility at the L3–L4 level.