Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evaluation of safety, efficacy, tolerability, and treatment-related outcomes of type I interferons for human coronaviruses (HCoVs) infection in clinical practice: An updated critical systematic review and meta-analysis

Chengjun Yua,d,e,f, Lian Kanga,c,d,f, Jiadong Chena,c,d,f, Na Zanga,b,c,d,e,f,g,*

a Children’s Hospital of Chongqing Medical University, Chongqing, China
b Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
c National Clinical Research Center for Child Health and Disorders, Chongqing, China
d Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
e China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
f Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
g Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China

\textbf{ARTICLE INFO}

Keywords:
Human coronavirus
MERS-CoV
SARS-CoV
SARS-CoV-2
Type I interferons

\textbf{ABSTRACT}

\textbf{Background:} There is no vaccine or specific antiviral treatment for HCoVs infection. The use of type I interferons for coronavirus is still under great debate in clinical practice.

\textbf{Materials and methods:} A literature search of all relevant studies published on PubMed, Cochrane library, Web of Science database, Science Direct, Wanfang Data, and China National Knowledge Infrastructure (CNKI) until February 2020 was performed.

\textbf{Results:} Of the 1081 identified articles, only 15 studies were included in the final analysis. Comorbidities and delay in diagnosis were significantly associated with case mortality. Type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce needs for supplemental oxygen support. Type I interferons seem to be well tolerated, and don’t increase life threatening adverse effects. Data on IFNs in HCoVs are limited, heterogenous and mainly observational.

\textbf{Conclusions:} Current data do not allow making regarding robust commendations for the use of IFNs in HCoVs in general or in specific subtype. But we still recommend type I interferons serving as first-line antivirals in HCoVs infections within local protocols, and interferons may be adopted to the treatments of the SARS-CoV-2 as well. Well-designed large-scale prospective randomized control trials are greatly needed to provide more robust evidence on this topic.

\section{1. Introduction}

Coronaviruses are single – stranded and positive – sense RNA viruses. Among coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), seven coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, severe acute respiratory syndrome (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) have been known to infect human hosts and cause respiratory diseases. These seven known human coronaviruses (HCoVs) can cause respiratory diseases from mild to severe symptoms. HCoVs caused mild upper respiratory symptoms, until the unexpected outbreak of SARS in 2003 was associated with significant infectivity and high case mortality rate \cite{1}. The clinical manifestation of coronavirus infection widely ranges from asymptomatic or mild respiratory symptoms, to rapidly progressing acute respiratory stress needing mechanical ventilation or extracorporeal membrane oxygenation (ECMO), or even acute death \cite{2}. The initial symptoms of coronavirus infection are just common flu-like nonspecial symptoms, like cough, fever, chills, and...
gastrointestinal symptoms, makes it difficult to distinguish from flu [3]. Unfortunately, coronavirus infection is much more dangerous and challenging than flu cold, and usually rapidly progress into severe illness, like severe pneumonia, shortness of breath, acute respiratory distress syndrome (ARDS), respiratory failure and other related life threatening comorbidities. The outbreak of SARS was a turning point that human beings think of coronavirus, and the novel coronavirus identified in a 60-year old man in Saudi Arabia in 2012 [4], known as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), strengthened the awareness and understanding of coronavirus.

Both SARS-CoV and MERS-CoV caused outbreaks affecting multiple countries, severe disease, and global threatening, for its widespread infectivity, rapid progress, high variance and mortality rate, and non-special treatment, somewhat the same as SARS-CoV-2 in Wuhan, China [5]. As for treatments, currently there is no defined primary remedy, vaccination or prophylaxis. Nowadays, treatments for such cases range from supportive treatment (including fluid balance, nutrition support, invasive ventilation, renal replacement therapy, vasopressors, corticosteroids, immunoglobulins, etc.) to antiviral treatment, or both [6–10]. The specific antiviral treatments were interferons (IFN), ribavirin, lopinavir, and other related antiviral agents. Clinically, the use of specific antivirals, especially the utility of IFNs, is still under great debate, for its efficacy, safety, and treatment-related adverse effects.

Initial in vitro investigations demonstrated type I interferons (IFN-α, IFN-β) to inhibit replication of SARS coronavirus (SARS-CoV) [11]. Based on previous studies, Morgenstern et al. investigated the combination effect of IFN-β and ribavirin to prevent SARS-CoV, and yield potential benefits of the ribavirin plus IFN-β for the treatment of SARS [12]. Illuminated by the possible antiviral treatment for SARS, several in vitro studies determined a possible efficacious effect of IFN-α2b and ribavirin in the treatment of MERS-CoV infection [13,14]. Subsequently, the same investigators further examined the efficacy of these drugs in an animal study (macaques), 8 h after they were inoculated with MERS-CoV with favorable outcomes [15]. Strayer et al. concluded that the most active drugs against SARS/MERS CoV at clinically achievable serum levels were type I interferons and a TLR3 agonist, interferon inducer/activator [16].

Promising potential benefits of these antivirals successfully attracted attention of clinicians for the treatments of coronavirus infection. Though a systematic review conducted by Zumla et al. indicated that the application of type I IFNs may not improve clinical outcomes. There still exist several clinical trials determined that IFNs could make contributions to increase survival rate, improve oxygen saturation and associated with a more rapid resolution of pyrexia or radiographic lung opacities and respiratory improvements [17–21], or even prophylaxis efficacy [22,23].

A review of such anecdotal experiences is greatly needed for the more rational use of type I IFNs for coronavirus. Therefore, we conducted this updated systematic review and meta-analysis to recapitulate relevant studies to evaluate the safety, efficacy, tolerability and treatment-related outcomes of type I IFNs for coronavirus infection in clinical practice, with expectation to provide more robust evidence whether IFNs should be served as first-line agents for coronavirus infection, including the SARS-CoV-2.

2. Methods

2.1. Information sources and search strategy

This study was performed in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [24]. The systematic literature search of databases was conducted by two independent reviewers on February 2020. These articles that contained relevant information on IFN and coronavirus were initially searched on PubMed, Cochrane Library, Web of Science Database, Science Direct, Wanfang Data, and China National Knowledge Infrastructure (CNKI), without time period, language, and region restriction. A MeSH terms search and keywords search were combined. The references of the included studies and reviews were also manually searched. We used the following search terms using the Boolean operators:

#1 “interferon” OR “IFN” OR “antivir”’” OR “drug effect” OR “drug ther”’” OR “combination drug ther”’

And

#2 “coronavirus” OR “Middle East Respiratory Syndrome: OR “MERS-CoV” OR “MERS virus” OR “SARS” OR “severe acute respiratory syndrome” OR “SARS-CoV”

2.2. Inclusion criteria

(1) Clinical trials regarding type I IFN (IFN-α, IFN-β) solely or combinationally for the treatment of coronavirus infections or prophylaxis;

(2) Human studies, regardless of randomized controlled trial (RCT), case-control studies, observational study, cohort studies or case series;

(3) Compared the treatment outcomes of IFN and other remedies (supportive treatment only, corticosteroids, or between IFNs).

2.3. Exclusion criteria

(1) In vitro studies or animal models;

(2) Cellular, molecular, histological, or pathological mechanism studies or hypothesis;

(3) Pharmaceutical mechanism or toxicology hypothesis addressing IFN or related agents on coronavirus;

(4) Other antiviral therapies that do not include type I IFN;

(5) Repeated studies, staged trials or studies without comparison information;

(6) Reviews, comments or letters.

2.4. Study selection and data extraction

Two investigators independently reviewed the electronically and manually retrieved articles. After screening the titles and abstracts, potentially relevant studies were selected, and a full-text review was performed. All disagreements were solved by discussion or, still unresolved, by a third supervisor.

Each included article was thoroughly reviewed, and the following baseline information were extracted (Table 1): first author, publication year, region, study type, participants, diagnostic method of coronavirus infection, treatment-related adverse effects. In addition, the study design, treatment plan (including IFN dosage, frequency and duration), main findings and conclusions were extracted in detail in Table 2. Data on total mortality rate, 14-day survival, 28-day survival, 3-month survival, transferring rate to intensive care unit (ICU), required intubation and mechanical ventilation, resolution of pyrexia, and respiratory improvement (days) were recorded for possible meta-analysis.

For better understanding of severity and case mortality rate of coronavirus, we divided these patients into critically ill patients and mild ill patient. Critically ill defined as coronavirus-infected patients with other severe comorbidities, respiratory distress or failure, directly or indirectly transferred to ICU, needing intubation, mechanical ventilation, or extracorporeal membrane oxygenation (ECMO), when admitted to primary treatment. Mild ill patients defined as these real-time polymerase chain reaction (RT-PCR) or other laboratory confirmed coronavirus infected asymptomatic or otherwise laboratory well patients.
Table 1
Baseline characteristics of included studies.

Authors	Publication year	Region	Study type	Participants enrollment	Type of coronavirus	Diagnostic method of coronavirus	Data collection method	Baseline characteristics before treatment	Time from admission to treatment start	Time from diagnosis to treatment start	Primary endpoint
Arabi et al. 2018	Saudi Arabia	RCT	Laboratory RT-PCR confirmed MERS-CoV infected adults	Laboratory RT-PCR confirmed MERS-CoV infection by RT-PCR from any diagnostic sampling source	Clinical records, laboratory tests, and follow-up	Randomly allocation, to guarantee comparability	N/A	N/A	90-day mortality, mortality in the ICU, mortality in the hospital and 28-day mortality, sequential organ failure assessment scores at baseline and on study days 1, 3, 7, 14, 21 and 28	N/A	
Ghamdi et al. 2016	Saudi Arabia	Retrospective cohort study	Laboratory-confirmed MERS-CoV-infected patients	MERS-CoV PCR testing of MERS-CoV for both upE and ORF1a gene targets	Medical charts, demographic, clinical and laboratory data	NA	N/A	N/A	Total mortality rate	N/A	
Imran Khalid et al. 2016	Saudi Arabia	Retrospective case series	Adult patients intubated for management of ARDS from confirmed MERS-CoV	RT-PCR testing of respiratory tract samples for upE gene and ORF1a	Medical records, laboratory values, physical and radiological findings, and follow-up	All subjects had comorbidities	N/A	N/A	ICU survival, 28- and 90-d survival, survival at 1 y from the date of intubation	Not different	
Shalhoub et al. 2015	Saudi Arabia	Sequential retrospective cohort study	Confirmed MERS-CoV-infected patients	RT-PCR testing of respiratory tract samples or plasma for MERS-CoV ORF 1b, and E genes	Clinical and laboratory examinations	No statistical difference	Median 1 day [range from 1 day before diagnosis to 1 day after diagnosis]	Not different	Total mortality rate	Not different	
Mohammad Khalid et al. 2015	Saudi Arabia	A preliminary report of two cases	One confined MERS-CoV patient with normal initial laboratory investigation and one suspected patient	MERS-CoV PCR testing of MERS-CoV for both upE and ORF1b gene	Medical records	One confined MERS-CoV patient and one suspected patient	From the admission day	3 days before diagnosis	Treatment effects	N/A	
Al-Queer et al. 2015	Kuwait	Case series	Three cases	MERS-CoV RT-PCR testing of bronchoalveolar lavage fluid for MERS-CoV upE and ORF1a	Medical records	N/A	The same day or next day	Treatment effects	Drop in hemoglobin level	N/A	
Al-Hameed et al. 2015	Saudi Arabia	Prospective cohort study	8 MERS-CoV-confirmed cases that required ICU admission	MERS-CoV RT-PCR testing using nasopharyngeal swabs or tracheal aspirates and upE gene and ORF1a	Demographic, clinical, and laboratory variables	All patients were admitted to the ICU because of respiratory distress, and all with comorbid conditions	From the admission day	N/A	Time of ICU stay, day 3, day 7, and day 14 of ICU admission	N/A	
Omrani et al. 2014	Saudi Arabia	Retrospective cohort study	Adults with laboratory-confirmed MERS-CoV infection and pneumonia needing	MERS-CoV RT-PCR testing of respiratory tract samples for MERS-CoV upE, ORF1b, and N genes	Medical record, laboratory examination tests, and follow-up	No statistical difference	N/A	N/A	14-day and 28-day survival from the date of MERS-CoV infection diagnosis	Not obvious, no premature discontinuation secondary to adverse effects	

(continued on next page)
Authors	Publication year	Region	Study type	Participants enrollment	Type of coronavirus	Diagnostic method of coronavirus	Data collection method	Baseline characteristics before treatment	Time from admission to treatment start	Time from diagnosis to treatment start	Primary endpoint	Treatment-related complications or adverse effects
Mohammad Khalid et al.	2014	Saudi Arabia	Case series of 6 patients	Six confirmed MERS-CoV infection patients	MERS-CoV	RT-PCR detection of viral RNA targets upstream of upE gene and ORF1b on sputum samples	Medical records and healthcare screening	4 critically ill (3/4 had comorbid conditions) and 2 mild patients	Critical illness average of 14.7 days (12–19 days); mild ill: 1.5 days (1–2 days)	The same day	Total mortality rate and laboratory changes	Not different
Al-Tawfiq et al.	2013	Saudi Arabia	retrospective observational study of 5 cases	Five confirmed MERS patient of critically ill and under mechanical ventilation	MERS-CoV	RT-PCR testing of MERS of upE gene and ORF1a	Medical records critically ill and under mechanical ventilation	Median 19 days (range 10–22) days	N/A	Total mortality rate, observed laboratory parameters	Inconclusive for critically ill patients	
Loutfy et al.	2003	USA	Open-label preliminary study	Patients met the centers for disease control and prevention and World Health Organization criteria for probable SARS	SARS-CoV	Enzyme-linked immunosorbent assay and indirect immunofluorescent assay targeted to the SARS-CoV propagated E6 cells	Clinical and laboratory examinations	No statistical difference	N/A	N/A	Transformation rate to intension care unit, intubation and mechanical ventilation, 5/13 transferred to the ICU, 3/13 required intubation and mechanical ventilation, 1/13 died in corticosteroids only group	
Zhao et al.	2003	China	RCT	190 patients met the defined SARS diagnostic criteria	SARS-CoV	Diagnosed by clinical criteria	Medical records, laboratory data	Approximately the same	At the time of admission	At the time of admission	Total mortality rate, resolution of pyrexia, respiratory improvement (days), mechanical ventilation rate	N/A
Turner et al.	1986	USA	RCT	51 recruited healthy young adult volunteers	General CoV-229E	Clinical symptoms and ELISA for coronavirus antigen	Laboratory data, clinical outcomes	Healthy volunteers	N/A	N/A	The proportion that met symptom criteria for a cold; Mean nasal symptom score; Mean total symptom score; Mean no. of days with total symptom score > 3	N/A
Zhou et al.	2020	China	Retrospective cohort study	77 adults hospitalized with confirmed COVID-19	SARS-CoV-2	RT-PCR testing of SARS-CoV-2 of ORF1ab and nucleocapsid protein	Medical records, laboratory data, and clinical outcomes	No statistical difference in gender, while different in age and co-morbidities, but no effect on baseline	N/A	N/A	Days from symptom onset to viral clearance, observed laboratory parameters, rate to intension care unit, Circulating cytokine levels, and	Not different, and no adverse event detected.

(continued on next page)
Authors	Publication year	Region	Study type	Participants enrollment	Type of coronavirus	Diagnostic method of coronavirus	Data collection method	Baseline characteristics before treatment	Time from admission to treatment start	Time from diagnosis to treatment start	Primary endpoint	Treatment-related complications or adverse effects
Fan-Ngai Hung et al.	2020	Hong Kong, China	Open-label prospective randomized study	127 recruited adult patients with virologically confirmed COVID-19	SARS-CoV-2	RT-PCR testing of SARS-CoV-2 in the nasopharyngeal swab	Clinical symptoms and signs, laboratory data, national early warning score 2,	laboratory parameters No statistical difference	From the admission day	From the admission day	biomarkers of inflammation The time to providing a nasopharyngeal swab negative for SARS-CoV-2, time to resolution of symptoms, length of hospital stay, and 30-day mortality.	Not statistically different, no patients died during the study.

IFN indicates interferon; MERS-CoV, middle east respiratory syndrome coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; RT-PCR, real-time polymerase chain reaction; RCT, randomized controlled trials; ARDS, acute respiratory distress syndrome; ICU, intension care unit; upE gene, upstream E protein; ORF 1a, open reading frame 1a.
Table 2
The study designs, treatment strategies, and outcomes of included studies for evaluation of safety, efficacy, tolerability, and treatment-related outcomes of interferon for coronavirus infection in clinical practice.

Author	Study design	Treatment plan, dosage, frequency	Main outcome (safety, efficacy, treatment-related outcomes)
Arimi et al. 2018	IFN-λ3 or IFN-β therapy alone or in combination with ribavirin or corticosteroids	Lopinavir/ritonavir (400 mg lopinavir/100 mg ritonavir) administered every 12 h for 14 days. IFN-β or IFN-λ3 will be administered as 0.25 mg/m² subcutaneous injections on alternate days for 14 days (for a total of seven doses). One placebo will be given every 12 h and will comprise a source tablet or capsule.	This trial is ongoing and recruiting patients.
Ohandzi et al. 2016	Interferon β, ribavirin, and methylprednisolone	NA	Safety and efficacy of interferon β in the treatment of severe COVID-19.
Iran Khalid et al. 2016	Observational case series	Ribavirin (dose adjusted based on creatinine clearance) and PegIFN-α2a combination + methylprednisolone	Those who survived the MERS infection and its complications remained well at 90 days and 1 year. Adverse effects of IFN were not obvious.
Shalhoub et al. 2015	Subcutaneous IFN-α2a + ribavirin (n=33) VS subcutaneous IFN-β4a + ribavirin (n=11)	PegIFN-α2a (180 µg once weekly) + PO ribavirin (loading dose of 2g, followed by 600 mg every 12 h) OR PegIFN-β4a (44 mg 3 times weekly) + PO ribavirin (loading dose of 2g, followed by 600 mg every 12 h)	The mortality rate was 85% in IFN-α2a vs 64% in IFN-β4a. Chronic renal impairment, age more than 50 years, and diabetes mellitus were significantly associated with mortality.
Mohammad et al. 2015	First patient as treatment, second patient as prophylaxis, ribavirin + IFN-α2b	PegIFN-α2b 144 µg once for five weeks OR PO ribavirin with a loading dose of 7000 mg, and adjusted by creatinine clearance	Both patients completed recovery and discharged home.
Al-Qaaner et al. 2015	Case representation and comparison	Case 1: IFN-β2a (180 µg) + PO ribavirin 400 mg every 12 h with no loading dose, a second dose of IFN-α2a was given, ribavirin was discontinued as a result of gradual drop of the hemoglobin; Case 2: PegIFN-α2a 0.5 mg/kg, a second and third PegIFN-α2a was given, associated with mechanical ventilation and ECMO	Case 1: Discharge home
Al-Ramood et al. 2015	All patients were treated with ribavirin. Broad spectrum antibiotics were empirically added	PegIFN-α2a and ribavirin. Broad spectrum antibiotics were empirically added	pegIFN-α2a plus low dose ribavirin seemed to be efficacious for MERS-CoV. No life-threatening side effects were witnessed. 5 patients developed multisystemic organ failure (MOSF) during the course of their ICU stay. All 8 patients demonstrated elevation in creatinine kinase (CK) levels during their ICU admission.
Omar et al. 2014	Subcutaneous IFN-α2a + ribavirin (n=20) VS supportive therapy only (n=24)	PegIFN-α2a (180 µg per week for 2 weeks) + PO ribavirin (dose based on calculated creatinine clearance), for 8-10 days	Survival rates at 14 days from the date of diagnosis was 70% versus 29% (P=0.064) and at 28 days (50% versus 17%, P=0.674). Adverse effects were similar between groups. Increased hemoglobin level was more obvious in PegIFN-α2a + ribavirin.

group.

Mohammad et al. 2014 Four confirmed MERS-CoV infection critically ill patients + two confirmed MERS-CoV infection mild patients IFN-α2b 144 µg once per week for 2 weeks. PO ribavirin with a loading dose of 2000 mg, and adjusted by creatinine clearance. Critically ill patients: average time from admission to treatment was 14.7 days, 3/4 died at last. Mild ill patients: average time from admission to treatment was 1.5 days, 1/2 died at last. Treatment with ribavirin and IFN-α2b may be effective in patients infected with MERS-CoV. Early diagnosis and intervention was a key to increase survival rate.

Al-Torafi et al. 2013 Observational case series Case 1: Ribavirin for 5 days, with loading dose of 2000 mg via nasogastric tube, followed by 400 mg PO every 8 h on day 1, and two doses of IFN-α2b 100 µg every 12 h once per week. Case 2: Ribavirin for 5 days with a loading dose of 2000 mg PO, followed by 400 mg PO every 8 h and two doses of IFN-α2b 100 µg every 12 h once per week. Case 3: Ribavirin for 5 days, with a loading dose of 2000 mg via nasogastric tube, followed by 600 mg PO every 8 h, one dose of IFN-α2b 144 µg every 12 h. Case 4: Ribavirin for 9 days, with a loading dose of 2000 mg via nasogastric tube, followed by 800 mg PO daily for the first 5 days and 400 mg PO every 8 h for the remaining 4 days. Case 5: Ribavirin for 11 days, with a loading dose of 2000 mg PO, 500 mg via nasogastric tube every 8 h, and two doses of IFN-α2b 100 µg every 12 h once per week. | Case 1: Died from multi-organ failure | Case 2: Died from multi-organ failure | Case 3: Pneumonitis developed | Case 4: Hematological depression and blood pressure was required | Case 5: Died from multi-organ failure | Case 6: Died from multi-organ failure |

Lebhy et al. 2003 Subcutaneous IFN-α2b + corticosteroids VS corticosteroids alone PO prednisone 60mg bid or IV methylprednisolone 40 mg Q12h if not control IFN-α2b 3000000 IU 3 times then taper and stop doses to IFN prednisone to complete 20 days. H2B interferon efficacy for 10 days starting with 9 µg/d for at least 2 days then 15 µg/d no response for 8-13 days. Resolution of fever and leukopenia similar between groups. The (corticosteroids) treatment group had a shorter time to 10% resolution of lung radiographic abnormalities (P = 0.003), had better oxygen saturation (P = 0.02), resolved their need for supplemental oxygen more rapidly (P = 0.02), had less of an increase in creatinine levels (P = 0.03), compared with the group receiving corticosteroids alone.
2.5. Statistical analysis

Dichotomous variables were analyzed using Review Manager version 5.3 (Cochrane Collaboration, Oxford, United Kingdom) and the Mantel-Haenszel method. For continuous variables, mean difference (MD) with 95% confidence interval (CI) was applied. The single-rate meta-analysis was performed using STATA 15.0 software (Stata Corporation, College Station, Texas, USA), which assigned a weight to each study based on both within-study variance and between-study heterogeneity.

Heterogeneity of these manuscripts was tested using both the chi-square test (with a low p-value indicating high heterogeneity, and p-value ≥ 0.1 indicating low heterogeneity) and I^2 index statistics (0% indicating no inter-study heterogeneity) [25]. When I^2 was < 50%, the fixed effects model was applied; otherwise, the random effects model was applied [26]. In all analysis, P-value less than 0.05 was considered significant.

3. Results

The initial database search yielded 1073 articles (Fig. 1). In addition, six articles were added by manual searching from retrieved study lists and relevant reviews, and two papers added by expert suggestion. After eliminating 161 duplicate articles, 920 titles and abstracts were screened. After comprehensively screening 38 full texts, only 15 studies complied with the eligibility criteria and were included at last. Among these, three were RCTs [18,22], one of which has not published yet [27], four were retrospective cohort studies [6,20,28,29], four were case series [6,19,21,23], one prospective cohort study [30], one open-label preliminary study [17], one open-label prospective randomized study [31], and one retrospective observational study [32].

Turner et al. firstly explored whether the prophylactic recombinant IFNs could decrease CoV-229E catch rate or reduce the severity of coronavirus cold symptoms in 1986 in a well-design randomized placebo-controlled study [22]. They recruited absolutely healthy volunteers for participants. In their study, they found that the cold-catch rate, the mean nasal symptom score, the mean total symptom score, and the mean number of days with total symptom score > 4 were much lower in IFNs prophylaxis group than placebo group, all reached significant difference (Table 2). As a consequence, they concluded that prophylactic intranasal recombinant IFNs effectively shortened the duration and reduced the severity of coronavirus cold symptoms.

During the SARS period, Zhao et al. conducted a RCT to compare four groups receiving different remedies in 2003 [18]. In their study, IFNs, ribavirin, antibiotics, methylprednisolone were assigned into each group to make a comparison. Regarding the complexity of comprehensive treatment and defect of original design, the results were inconclusive. We could still realize some trends in treatment outcomes,

Table 2 (continued)

Year	Study	Design	Intervention	Comparator	Sample Size	Outcome Measures	Notes
2003	Zhao et al.	Either IFN-α2b (n=77) or Arbidol (n=80)	IV infusion	Placebo	157	Combination	All adverse events were recorded.

*All patients selected necessary supportive treatments, range from monitoring, immuncglobulins, corticosteroids, and intravenous fluid to invasive ventilation, renal replacement therapy or ECMO, not listed above.

IF indicates subcutaneous injection; NFαIFN, pegylated interferon; IFN, interferon; PO, per os; MERS-CoV, middle east respiratory syndrome coronavirus; NA, not available; mLU, million international units; ECMO, extracorporeal membrane oxygenation.
resolution of pyrexia and respiratory improvements were better in IFN-used group. In addition, combination of IFN-α and high-dose methylprednisolone played the most vital role in resolution of pyrexia and respiratory improvement.

In 2003, an open-label preliminary study was conducted in the USA, in which the authors compared the treatment effects of combination of IFN-α1 and corticosteroids and corticosteroids only for SARS-CoV [17]. Corticosteroids was vital in SARS. According to the study, the combination of IFN-α1 and corticosteroids treatments associated with improved oxygen saturation (P = 0.02) and more rapid resolution of radiographic lung opacities (P = 0.001), less need for supplemental oxygen (P = 0.02), less of an increase in creatine kinase levels (P = 0.03) than systemic corticosteroid alone (Table 2).

A relatively large retrospective cohort study included 44 adult patients was designed by Omrani et al. in 2014, after the outbreak of MERS-CoV [6]. Of those patients, 20 patients received subcutaneous pegylated interferon-α2a (PEG-IFN-α2a) and oral ribavirin and 24 patients (control group) received supportive treatment only. The 14-day survival rate from the date of diagnosis was statistically higher in the treatment group compared with the control group (70% versus 29%; P = 0.004), and 28-day survival rate was still higher in antiviral group (30% versus 17%; P = 0.054), though didn’t reach significant difference. Adverse effects were similar between groups, decreased hemoglobin level was more obvious in combination of PEG-IFN-α2a and ribavirin group, but there were no life-threatening adverse effects were detected, and no premature discontinuation secondary to adverse effects happened.

In 2015, another retrospective cohort study was conducted on 24 MERS cases confirmed by RT-PCR in Saudi Arabia [28]. The authors compared the treatment difference between IFN-α2a and IFN-β1a, of these included patients, 13 received combination of ribavirin and IFN-α2a subcutaneous once weekly and 11 received combination of ribavirin and IFN-β1a subcutaneous three times weekly. The fatality rate was 85% in IFN-α2a vs 64% in IFN-β1a (P = 0.24). All patients tolerated well and no obvious severe adverse effects were detected.

Similarly, Al-Quseer et al. and Mohammad et al. also concluded that IFN plus ribavirin presenting possible efficacious for MERS-CoV, according to their case series experience, regardless of critically ill or mild coronavirus-infected patients [19,21]. There was still no life threatening adverse effects detected. In a retrospective observational study of five critically ill patients under mechanical ventilation, though all patients died of multi-organ failure eventually, IFNs still played a vital role during supportive treatments. Moreover, several side effects were detected among these five severely ill patients, including drop in platelet, drop in hemoglobin, rise in lipase, and emergence of pancreatitis, but this should not only roughly ascribe to the effect of IFN [32].

On account of insufficient data, inconsistent initial study design, and complexity of human bodies and case variance, statistical synthesizing was impossible regarding abovementioned parameters (Table 1). As for total mortality rate, we investigated the variance between critically and mild ill patients. On the basis of our analysis, the mortality rate was 69.0% (95% confidence interval: 61.2–76.8%, I² = 71.1%) and 11.2% (95% confidence interval: 1.9–20.5%, I² = 98.5%) in critically and mild ill coronavirus-infected patients. Both presented high heterogeneity and the random effect model was used (Fig. 2).

4. Discussion

Our study systematically investigated the application of type I interferons for HCoVs infection in clinical practice. According to our review, IFNs mainly acted a vital role in rapid resolution of lung abnormalities, respiratory improvements, better oxygen saturation, reduced needs for supplemental oxygen support, and less of an increase in creatine kinase level, which are indispensable for advanced life support and further increase survival. In the meantime, several adverse effects were detected, including drop in platelet, drop in hemoglobin, rise in lipase or bilirubin, and emergency of pancreatitis (only one critically ill case at terminal phage of disease), but these treatment-related outcomes couldn’t rule out the effects of other agents like ribavirin, and still need further investigation [33]. These side effects were not life threatening, and much easier to solve compared with respiratory distress, intractable hyoxemia, or rapid progress of renal or hepatic failure. The tolerability of type I IFNs was acceptable, and no premature discontinuation of IFN secondary to adverse effects was found in all case. Apart from remedy effect of IFN in coronavirus

Fig. 1. Flow diagram of studies identification and inclusion.
infection described above, we also found the prophylaxis efficacy of IFN in coronavirus infection [22,23], which increased and enhanced the utility of IFN in clinical practice.

Al-Tawfiq et al. reported their experience of five critically ill patients that were all died of multi-organ failure after treatment of IFN plus ribavirin and concluded that combination antivirals may not contribute to MERS-CoV-infected patients [32], as preclinical data suggested. In addition, vast majority of adverse effects were reported by them. We think this conclusion may be not objective. They included patients that were all died of multi-organ failure after treatment of IFN and the combination of an effective antiviral and steroid was associated with a better outcome [34]. The same results from Omrani et al., a retrospective cohort study, IFN plus ribavirin have a decreased mortality rate than supportive treatment only, and didn’t significantly increase adverse effects.

Apart from antiviral therapy, management should primarily focus on strict lung-protective ventilation [35]. Our analysis indicated that the overall mortality rate of coronavirus-infected critically ill patients was about 69.0%, and 11.2% in mild ill patients, in accordance with Imran Khalid’s conclusion that delay in remedy would increase mortality [35]. But this calculated mortality rate may be higher that its actual level, for publication bias. As a consequence, early diagnosis and intervention would greatly improve outcomes [19]. This also suggested us paying attention to early screen of close contacts and suspected patients of such disease was equally crucial.

Zumla et al. summarized the therapeutic options for coronavirus in 2015 [36]. In the absence of a targeted vaccine with proved effects or a pathogen-specific antiviral, broad-spectrum antivirals would still function to limit virus spread. Type I interferons could inhibit the replication of both RNA and DNA viruses at different stages of their replicative cycles, and activate immune cell population to clear virus infection [37]. Combined with clinical and molecular mechanism researches, type I interferon presented as an ideal candidate broad-spectrum antivirals.
There is no doubt exist plenty of limitations in this descriptive analysis. Vast majority of studies are retrospective designs or case series, the baseline characteristics of patients in different studies, comorbidities, intervention strategies, between-study heterogeneities are all impossible to ignore. And most importantly, many of these studies reported the effect of combination treatment and not IFN alone, thus this conclusion should be interpreted with great caution. Given insufficient data, inconsistent study design, and case variances, statistical synthesizing is impossible to conduct currently. Data on IFNs in HCoVs are limited, heterogenous and mainly observational. Current data do not allow making regarding robust commendations for the use of IFNs in HCoVs in general or in specific subtype. But we still recommend the clinical use of IFNs in HCoVs within local protocols.

Clinically, combination of IFN and ribavirin are relletively widely adopted to coronavirus infection, though lack of robust evidence [3]. One well-designed randomized placebo-control trial regarding effects of recombinant IFN-β1b plus oplavin/ribovair was registred in 2018 and still pending completion [27]. In this RCT, primary and secondary outcomes are mortality in the ICU, mortality in the hospital and 28-day mortality, 90-day mortality, sequential organ failure assessment scores at baseline and on study days 1, 3, 7, 14, 21 and 28. This seems to be the best conceived trial to determine the efficacy of antivirals in coronavirus infection. We are looking forward to the successful administration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized placebo-control trials regarding effects of recombinant IFN-β1b plus oplavin/ribovair was registred in 2018 and still pending completion [27]. In this RCT, primary and secondary outcomes are mortality in the ICU, mortality in the hospital and 28-day mortality, 90-day mortality, sequential organ failure assessment scores at baseline and on study days 1, 3, 7, 14, 21 and 28. This seems to be the best conceived trial to determine the efficacy of antivirals in coronavirus infection. We are looking forward to the successful administration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.

In conclusion, type I interferons seem to improve respiratory distress, relieve lung abnormalities, present better saturation, reduce concentration of this clinical trial, and calling for large-scale prospective randomized studies to assess the role of antivirals for the treatments of coronavirus, to better guide clinical practice.
middle east respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia, J. Intensive Care Med. 31 (2016) 344.

[31] I.F. Hung, K.C. Lung, E.Y. Tso, et al., Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet (London, England).

[32] J.A. Al-Tawfiq, M. Hisham, D. Jean, et al., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study, Int. J. Infectious Dis.: IJD: Off Publ. Int. Soc. Infectious Dis. 20 (2014).

[33] C.M. Booth, L.M. Matukas, G.A. Tomlinson, et al., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area, JAMA 289 (2003) 2801.

[34] V.C.C. Cheng, B.S.F. Tang, A.K.L. Wu, et al., Medical treatment of viral pneumonia including SARS in immunocompetent adult, J. Infection 49 (2004) 262.

[35] I. Khalid, B.M. Alraddadi, Y. Dairi, et al., Acute management and long-term survival among subjects with severe middle east respiratory syndrome coronavirus pneumonia and ARDS, Respiratory Care 61 (2016) 340.

[36] A. Zumla, J.F.W. Chan, E.I. Azhar, et al., Coronaviruses - drug discovery and therapeutic options, Nat. Rev. Drug Discovery 15 (2016) 327.

[37] Ben X. Wang, Eleanor N. Fish, Global virus outbreaks: Interferons as 1st responders, Semin. Immunol. 43 (2019).