Addressing Hadronic Uncertainties in Extractions of ϕ_s

ROBERT KNEGJENS

TUM Institute for Advanced Study, Lichtenbergstraße 2a, 85748 Garching, GERMANY

In light of recent LHC results for the extraction of the B_s mixing phase ϕ_s, we can already conclude that if New Physics (NP) is present in this observable, it is hiding pretty well. Thus, as our hunt continues, we must be weary not to confuse NP for penguin effects, or vice versa. In this talk the progress made towards addressing hadronic uncertainties in extractions of ϕ_s from $B_s \to J/\psi\phi$ is reviewed, and the nature of the scalar $f_0(980)$ state, which plays a dominant role in the extraction of ϕ_s from the $B_s \to J/\psi\pi^+\pi^-$ decay, is discussed.

PRESENTED AT

The 8th International Workshop on the CKM Unitarity Triangle (CKM 2014), Vienna, Austria, September 8-12, 2014

1Work supported by ERC Advanced Grant project “FLAVOUR” (267104).
1 Introduction

The CP-violating mixing phase ϕ_s of the B_s meson system has long been a promising and popular probe of New Physics (NP). In principle, it can be extracted from its interference with the phase $\Delta\phi_f$ of any chosen decay mode $B_s \to f$ that is common to both B_s flavour states, provided, of course, that the latter phase shift is known. The decay mode of choice is $B_s \to J/\psi\phi$, which has the desirable property that its dominant diagram has a vanishing phase shift relative to ϕ_s, as well as a favourable decay rate and experimental signature. Yet it also has an Achilles heel: the contribution of penguin diagrams to the phase shift. Although suppressed, these diagrams introduce hadronic uncertainties that must be controlled to achieve precise measurements.

The vector-vector nature of the $J/\psi\phi$ final state gives three transversity (or polarization) amplitudes, two of which are CP-even and one CP-odd \[1, 2\], necessitating an angular analysis to disentangle them. Because the ϕ is observed via its decay to K^+K^-, a small S-wave component has also been found to contribute, adding a fourth, CP-odd, amplitude to the mix \[3, 4\]. The dominant resonance in this S-wave is the scalar $f_0(980)$ state \[5\]. This led to a proposal to also extract ϕ_s from $B_s \to J/\psi\pi^+\pi^-$ \[6\], which has a dominant $f_0(980)$ resonance, too \[7\]. If the $f_0(980)$ can be shown to have an $s\bar{s}$ composition similar to the ϕ, the phase shift associated with this decay mode could be controlled in an analogous way to those of $B_s \to J/\psi\phi$.

There has been great progress recently from the LHC experiments in extracting ϕ_s. For the decay mode $B_s \to J/\psi K^+K^-$ the following values have been reported:

$$\phi_s (+\Delta\phi_f^{J/\psi KK}) = \begin{cases}
- (3.3 \pm 2.8)\,^\circ & : \text{LHCb (3fb}^{-1}) \quad \text{[8]} \\
(6.9 \pm 14.6)\,^\circ & : \text{ATLAS (5fb}^{-1}) \quad \text{[9]} \\
- (1.7 \pm 6.5)\,^\circ & : \text{CMS (20fb}^{-1}) \quad \text{[10]}
\end{cases}.
$$

Likewise, for the extraction from $B_s \to J/\psi\pi^+\pi^-$ LHCb has reported \[11\]

$$\phi_s (+\Delta\phi_f^{J/\psi\pi\pi}) = (4 \pm 3.9)^\circ
$$

These results clearly lie close to the Standard Model (SM) prediction of $\phi^{SM}_s = -(2.1 \pm 0.1)^\circ \quad \text{[12]}$, dispelling the possibility of a large NP signal. Thus if there is NP present in the B_s mixing phase, it must be small and perhaps even be conspiring with the phase shifts to stay hidden. Thus the dilemma is that without control over the phase shifts, it will be impossible to conclude whether a future experimental deviation indicates NP, or if no deviation means no NP.

In Section 2 we review the control of penguin contributions to the phase shifts $\Delta\phi_f^{J/\psi\phi}$. In Section 3 we discuss whether the dominant resonance in $B_s \to J/\psi\pi^+\pi^-$, the scalar $f_0(980)$, can be interpreted as an $s\bar{s}$ state. Finally in Section 4 we give a summary.

*We define ϕ_s as the argument of the dispersive part of $\langle B^0_s|H|\overline{B}^0_s\rangle$, with phase conventions fixed so that $\phi^{SM}_s = -2\beta_s$.\[13\]
2 Controlling penguin contributions in $B_s \to J/\psi \phi$

Let us denote the four transversity amplitudes of $B_s^0 \to (J/\psi K^+ K^-)_h$ by A_h, and those of the CP-conjugate process by \overline{A}_h, with $h \in \{\|, \perp, 0, S\}$. Although in practice the full angular analysis involves 20 observables, the mixing-induced CP-violating phases for each amplitude are in essence extracted from the tagged time-dependent analyses [2]:

$$|A_h(t)|^2 - |\overline{A}_h(t)|^2 = \frac{(1 - |\lambda_h|^2) \cos(\Delta M_st) + 2 \text{Im}(\lambda_h) \sin(\Delta M_st)}{(1 + |\lambda_h|^2) \cosh(\Delta \Gamma_st) + 2 \text{Re}(\lambda_h) \sinh(\Delta \Gamma_st)},$$

(3)

with ΔM_s and $\Delta \Gamma_s$ the mass and decay width differences of the B_s system, and

$$\lambda_h = -\eta_h \sqrt{\frac{1 - C_h}{1 + C_h}} e^{-i(\phi_s + \Delta \phi_h)}, \quad \eta_h = \begin{cases} +1 & : h = \{\|, 0\} \\ -1 & : h = \{\perp, S\} \end{cases}. \quad (4)$$

Here C_h is the direct CP violation and $\Delta \phi_h$ the phase shift for each transversity amplitude.

A non-zero $\Delta \phi_h$ requires the sub-leading diagrams to carry CP-violating phases, which is notably the case for penguin diagrams with internal up and top quarks. By pulling the CKM structure out of the contributing diagrams and utilizing the unitarity of the CKM matrix in the SM, we may write [13]

$$A_h = A(B_s^0 \to (c\bar{c} s\bar{s})_h) = A_{\lambda h} \left[1 + \epsilon e^{i\gamma} b_{\lambda h} e^{i\theta_{\lambda h}}\right]. \quad (5)$$

The $A_{\lambda h}$ and $b_{\lambda h} e^{i\theta_{\lambda h}}$ are CP-conserving hadronic parameters with a non-perturbative nature. In particular $b_{\lambda h} e^{i\theta_{\lambda h}}$ represents the ratio of such hadronic contributions from diagrams that carry a CP-violating phase (γ) with those that do not, whereby it is approximately a ratio of penguin contributions over the leading tree contribution. A virtue of these decays is that $b_{\lambda h}$ is Cabibbo suppressed by $\epsilon \equiv \lambda^2/(1 - \lambda^2) \simeq 5\%$. Consequently, for $\gamma = 68^\circ$, our observables are

$$\Delta \phi_h \approx (6^\circ) \cdot b_{\lambda h} \cos \theta_{\lambda h}, \quad C_{\lambda h} \approx (-10\%) \cdot b_{\lambda h} \sin \theta_{\lambda h}. \quad (6)$$

The troublesome penguin diagrams are loop suppressed and also OZI suppressed due to the radiative production of the J/ψ, leading to a perturbative estimate of $b_{h} \sim \mathcal{O}(10^{-2})$ [14, 15, 16]. The difficulty, however, is in accounting for non-perturbative hadronic effects, which could potentially give an order of magnitude enhancement. The presence or absence of such an enhancement makes all the difference in whether we can neglect the phase shift given in (6), or not.

One method to control penguin contributions is via the approximate $SU(3)_F$ flavour symmetry of strong interactions, which can relate the hadronic parameters of decay modes driven by $b \to sc\bar{c}$ transitions to those by $b \to dc\bar{c}$. Analogous to [5], the amplitudes of the latter control channels are given by

$$A(B_s^0 \to (c\bar{c} d\bar{q})_h) = -\lambda A_{\lambda h}' \left[1 - \epsilon e^{i\gamma} b_{\lambda h}' e^{i\theta_{\lambda h}'}\right], \quad (7)$$

† Note that also the CKM length $R_b \sim 0.4$ has been absorbed into the definition of b_{h}.

2
where in the limit of an exact flavour symmetry $\mathcal{A}'_b = \mathcal{A}_b$ and $b'_h e^{i\theta_b} = b_h e^{i\theta_b}$. Because the parameters $b'_h e^{i\theta_b}$ are not suppressed by ϵ, CP studies of the control modes are more sensitive to their extraction. On the other hand, an overall Cabibbo rate suppression means their precision typically trails that of $b \to sc\bar{c}$ driven modes.

Proposed control channels for $B_s \to J/\psi \phi$ are the flavour symmetry related decays $B_d \to J/\psi K_{0s}$ and $B_d \to J/\psi \rho^0$ [17] [13]. As they too are vector-vector final states, each transversity amplitude can control the phase shift of its counterpart. An important caveat is that K_{0s} and ρ^0, as octets of $SU(3)_F$, are related to the octet ϕ, while the physical ϕ, being mostly $s\bar{s}$, also has a sizable $SU(3)_F$ singlet ϕ_0 component [18]. While $SU(3)_F$ breaking is estimated to be $m_s/\Lambda_{QCD} \sim f_{B_s}/f_{B_d} - 1 \sim 20–30\%$, the reliability of a larger $U(3)$ nonet symmetry for these decays is less certain.

The mode $B_d \to J/\psi K_{0s}$ is flavour-specific and thereby has no mixing-induced CP observables available. Instead, its C'_{ϕ} observables must be complemented with decay rate information in order to extract $b'_h e^{i\theta_b}$, introducing large uncertainties via the amplitude ratios $|\mathcal{A}_b/\mathcal{A}'_b|$ [13] [19]. The branching ratio and polarization fractions of this decay have already been measured by LHCb [20], and a 3 fb$^{-1}$ update that includes direct CP violation measurements is in progress. The mode $B_d \to J/\psi \rho^0$, on the other hand, does have access to mixing-induced CP observables and LHCb has recently reported a preliminary estimate of the penguin induced phase shift [21]. Assuming exact $SU(3)_F$ flavour symmetry, a universal phase shift of $\Delta \phi_f = (0.05 \pm 0.56) \degree$ is estimated.

The flavour symmetry method is also applied to control penguin effects in $B_d \to J/\psi K_S$, where a similar phase shift is expected. A recent update, including the control channels $B_d \to J/\psi \pi^0$ and $B_s \to J/\psi K_S$, finds $\Delta \phi_{J/\psi K_S} = (-0.97^{+0.72}_{-0.65}) \degree$ [22] [23], in agreement with earlier results [24] [25]. In a similar study a full fit to the $SU(3)_F$ related decays $B_{u,d,s} \to J/\psi \{K, \pi, (\eta_8)\}$ was performed, including linear breaking terms, finding $\Delta \phi_{J/\psi K_S} \lesssim 1 \degree$ [26]. In particular, the breaking terms were found to be crucial for the goodness of the fit. A similar method could potentially be applied to the vector-vector decays $B_{u,d,s} \to J/\psi \{\phi, \omega, \rho, K^*\}$ in the future [27].

There has recently been an attempt to calculate the non-perturbative contribution to the u-quark penguin in the low-energy effective theory [28]. By exploiting the large momentum flow through the u-quark loop (due to the heavy J/ψ) the penguin diagram can be shown to factorize into a single effective operator. By placing bounds on the associated hadronic matrix element using a $1/N_c$ expansion, $|\Delta \phi_f| \leq 1.2\degree$ is estimated.

3 The nature of the $f_0(980)$ in B decays

The $f_0(980)$ is a scalar state with the quantum numbers $J^{PC} = 0^{++}$. With a mass of 990 MeV it joins the club of scalar states with masses below 1 GeV that together could form a nonet, specifically $\{f_0(980), f_0(500), \kappa, a_0(980)\}$, the nature of which has been debated for several decades (for a review see Ref. [29]). The simplest interpretation, that they are

\footnote{see the talk of W. Kanso in these proceedings.}
Figure 1: Left panel: the tetraquark diagram $A_{4q}^{(t)}$ that contributes to $B_s^0 \to J/\psi f_0^{[0]}$ ($B_d^0 \to J/\psi \phi^{[0]}$) for $q = s$ ($q = d$). Right panel: constraints from $r_{d,\sigma}^{s,f}$, $r_{s,\sigma}^{s,f}$ and $r_{s,\sigma}^{d,s,f}$ in the tetraquark picture, with ω the mixing angle and κ' the relative contribution of the A_{4q}' diagram from the left panel (see text).

$q\bar{q}$ mesons in a P-wave, cannot explain their inverted mass hierarchy with respect to their assumed ‘strange’ quark content. Furthermore, the additional orbital momentum should make them half a GeV heavier than their vector meson nonet counterparts \{\phi, \omega, K^*, \rho\}. Thus other interpretations that can explain these discrepancies have been suggested over the years. These include tetraquarks (diquark–anti-diquark bound states), meson-meson molecules, or some mixture of the two.

In both the $q\bar{q}$ and tetraquark ($4q$) pictures the two isospin singlet states $f_0 = f_0(980)$ and $\sigma = f_0(500)$ can mix. We will consider simple realizations of both pictures, where the mixing is given by

$$\begin{pmatrix} f_0 \\ \sigma \end{pmatrix} \equiv \begin{pmatrix} \cos \varphi_M & \sin \varphi_M \\ -\sin \varphi_M & \cos \varphi_M \end{pmatrix} \cdot \left(\frac{1}{\sqrt{2}} \begin{pmatrix} s \bar{s} \\ u \bar{u} + d \bar{d} \end{pmatrix} \right),$$

or

$$\begin{pmatrix} f_0 \\ \sigma \end{pmatrix} \equiv \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix} \cdot \begin{pmatrix} f_0^{[0]} \\ \sigma^{[0]} \end{pmatrix}, \quad \begin{cases} f_0^{[0]} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} |u\bar{u}|+|s\bar{d}| \\ |u\bar{d}| \end{pmatrix} \\ \sigma^{[0]} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} |s\bar{d}| \\ |u\bar{d}| \end{pmatrix} \end{cases}.$$ \hfill (8,9)

In Ref. [30] these two pictures were compared in the context of $B_s \to J/\psi f_0$, where it was found that significantly different decay dynamics are possible. In the tetraquark picture, in particular, an additional tree-level topology is present that carries a CP-violating phase, as shown in the left panel of Figure 1. Based on such unknown decay dynamics the conservative estimate $\Delta \phi_{J/\psi f_0}^{B_s} \in [-3^\circ, 3^\circ]$ was derived, and $B_d \to J/\psi f_0$ was explored as a potential control channel. In Ref. [31] a test of the two pictures was proposed that utilises
of Figure 1 we plot the experimental results for (10), (11), and the ratio B_d,σ the left panel of Figure 1, with the leading $\pm QCD$ where these diagrams dominate, which is also the suppression of Λ_{had} tree diagram. We estimate X diagrams with spectator quark interactions. An X assumption of negligible tetraquark mixing, namely B_d,σ Figure 1 can contribute to $B_d \rightarrow J/\psi f_0$ but not to $B_d \rightarrow J/\psi f_0^{[0]}$. Furthermore, the assumption of negligible tetraquark mixing, namely $|\omega| \lesssim 5^\circ$ from Refs [33, 34], could be outdated: updating this bound using a mass for $m_\kappa = 797$ MeV [37] (previously $m_\kappa = 797$ MeV), gives $\omega \approx 20^\circ$ (see also Ref. [38]). Allowing for mixing modifies (10) and (11) to

$$r_{d,\sigma}^{d,f_0} \equiv \frac{\text{BR}(B_d \rightarrow J/\psi f_0) \cdot \Phi_d(\sigma)}{\text{BR}(B_d \rightarrow J/\psi \sigma) \cdot \Phi_d(\sigma)} \left(\begin{array}{c} \tan^2 \varphi : q\bar{q} \\ \frac{1}{2} : \text{tetraquark (} \omega = 0^\circ \end{array} \right) \right)$$

$$r_{s,f_0}^{s,\sigma} \equiv \frac{\text{BR}(B_s \rightarrow J/\psi f_0) \cdot \Phi_s(\sigma)}{\text{BR}(B_s \rightarrow J/\psi \sigma) \cdot \Phi_s(\sigma)} \left(\begin{array}{c} \tan^2 \varphi : q\bar{q} \\ 0 : \text{tetraquark (} \omega = 0^\circ \end{array} \right) \right)$$

where the choice of no tetraquark mixing was motivated by the bound $|\omega| \lesssim 5^\circ$ from Refs [33, 34, 30]. The above ratios have since been measured by LHCb, which finds $r_{d,\sigma}^{d,f_0} = 0.011^{+0.064}_{-0.050} < 0.098$ [35] and $r_{s,f_0}^{s,\sigma} < 0.018$ [7], with the bounds at 90% CL. If the relation given in (10) (denoted by \dagger) is taken to be exact, the tetraquark picture (without mixing) would be ruled out by 8σ [35]. If, in addition, the relation in (11) were exact, the resulting small mixing angle would imply that the f_0 is almost completely a P-wave $s\bar{s}$ state in the $q\bar{q}$ picture.

There are, however, a number of caveats to the relations denoted by \dagger in (10) and (11) that need to be taken into account [36]. For instance, there are sizable asymmetries possible in the production of the f_0 and σ states. If we were to consider, for example, only the leading colour-suppressed diagram and apply naive factorization, there is only limited evidence to suggest that $|F_{B_d\sigma}/F_{B_s f_0}|$ are close to one [32, 31]. There may also be significant sub-leading diagrams contributing, which for $b \rightarrow c\bar{c}d$ transitions receive no CKM suppressions. In particular, the tetraquark topology shown in the left panel of Figure 1 can contribute to $B_d \rightarrow J/\psi f_0^{[0]}$ but not to $B_d \rightarrow J/\psi f_0^{[0]}$. Furthermore, the assumption of negligible tetraquark mixing, namely $|\omega| \lesssim 5^\circ$ from Refs [33, 34], could be outdated: updating this bound using a mass for $m_\kappa = 797$ MeV [37] (previously $m_\kappa = 797$ MeV), gives $\omega \approx 20^\circ$ (see also Ref. [38]). Allowing for mixing modifies (10) and (11) to

$$r_{d,\sigma}^{d,f_0} \mid_{4q} \sim \frac{1}{2} \left| \frac{1 - \sqrt{2} \tan \omega}{1 + \frac{1}{\sqrt{2}} \tan \omega} \right|^2, \quad r_{s,f_0}^{s,\sigma} \mid_{4q} \sim \left| \tan \left[\omega + \tan^{-1} \left(\sqrt{2} X_c \right) \right] \right|^2.$$ (12)

Here X_c is the ratio of exchange and penguin annihilation amplitudes relative to the dominant tree diagram. We estimate $|X_c| \lesssim 5\%$ from branching ratio limits on $B_d \rightarrow J/\psi \phi$, where these diagrams dominate, which is also the suppression of Λ_{QCD}/m_b expected for diagrams with spectator quark interactions. An X_c of this magnitude can shift ω in (12) by up to $\pm5^\circ$.

Let κ' denote the ratio of the special tetraquark topology for $B_d^0 \rightarrow J/\psi \sigma^{[0]}$, shown in the left panel of Figure 1 with the leading $B_d^0 \rightarrow J/\psi \sigma^{[0]}$ topologies. In the right panel of Figure 1 we plot the experimental results for (10), (11), and the ratio

$$r_{d,\sigma}^{s,f_0} \equiv \frac{\text{BR}(B_s \rightarrow J/\psi f_0) \cdot \Phi_d(\sigma)}{\text{BR}(B_d \rightarrow J/\psi \sigma) \cdot \Phi_d(\sigma)}.$$ (13)

Our definition for κ' is analogous to that of b' in [5], including also a factor R_b.
with respect to the tetraquark mixing angle ω and κ'. For simplicity we have ignored other sub-leading diagrams (such as penguins), and taken κ' to be real. Included in each amplitude ratio is also a 30% error to account for the flavour symmetry breaking and possible production asymmetries for the scalar states.

We observe from the figure that by including these caveats the tetraquark picture can survive the current B decay constraints, and it will be interesting to follow how this picture develops. Of course not all of the discussed caveats necessarily apply, and Occam’s razor currently favours a $q\bar{q}$ like production for the scalar states. Either way, our descriptions for both the $q\bar{q}$ and tetraquark pictures are probably too simple, and the true nature of the light scalar states is unlikely to be solved by B constraints alone. Nonetheless, the important point is that a diagram like the one shown in the left panel of Figure [1] or its meson–meson molecular analogue (with a flipped internal quark line), could contribute significantly to the $B_s \to J/\psi \pi^+ \pi^-$ decay modes, and thereby need to be controlled to allow for precise extractions of ϕ_s.

4 Summary

The B_s mixing phase ϕ_s is now known to lie very close to the SM prediction thanks to excellent progress from the LHC experiments. Therefore to continue the search for NP, the control of hadronic uncertainties in the $B_s \to J/\psi K^+ K^-$ and $B_d \to J/\psi \pi^+ \pi^-$ modes will become a crucial aspect of these analyses. To this end, we reviewed several available methods, including the control of penguin contributions using the flavour symmetry related modes $B_0^0 \to J/\psi K^{0*}$ and $B_0^0 \to J/\psi \rho$. We also discussed the nature of the $f_0(980)$ resonance in the S-wave amplitudes of these modes, and argued that a tetraquark interpretation can survive the current constraints from B decays. As a result, the $f_0(980)$ resonance can exhibit different decay dynamics to that of the ϕ, and care should be taken in interpreting averages of ϕ_s extractions involving the two.

ACKNOWLEDGEMENTS

I would like to thank the conveners of working group IV for the invitation to this workshop, and the organizers for their organization and hospitality. I am grateful to Giulia Ricciardi and Robert Fleischer for their collaboration on topics presented in this talk. I would further like to thank Giulia and Martin Jung for their comments on this manuscript.

References

[1] A. S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner, Phys.Lett. B369, 144 (1996), hep-ph/9511363.
[2] A. S. Dighe, I. Dunietz, and R. Fleischer, Eur.Phys.J. C6, 647 (1999), hep-ph/9804253.
[3] S. Stone and L. Zhang, Phys.Rev. D79, 074024 (2009), 0812.2832.
[4] Y. Xie, P. Clarke, G. Cowan, and F. Muheim, JHEP 0909, 074 (2009), 0903.3627.
[5] LHCb Collaboration, R. Aaij et al., Phys.Rev. D87, 072004 (2013), 1302.1213.
[6] S. Stone and L. Zhang, (2009), 0909.5442.
[7] LHCb Collaboration, R. Aaij et al., Phys.Rev. D89, 092006 (2014), 1402.6248.
[8] R. Aaij et al., (2014), 1411.3104.
[9] ATLAS Collaboration, G. Aad et al., Phys.Rev. D90, 052007 (2014), 1402.1796.
[10] CMS Collaboration, CERN Report No. CMS-PAS-BPH-13-012, 2014 (unpublished).
[11] LHCb collaboration, R. Aaij et al., Phys.Lett. B736, 186 (2014), 1405.4140.
[12] CKMfitter Group, J. Charles et al., Eur. Phys. J. C41, 1 (2005), hep-ph/0406184.
[13] S. Faller, R. Fleischer, and T. Mannel, Phys.Rev. D79, 014005 (2009), 0810.4248.
[14] H. Boos, T. Mannel, and J. Reuter, Phys.Rev. D70, 036006 (2004), hep-ph/0403085.
[15] H.-n. Li and S. Mishima, JHEP 0703, 009 (2007), hep-ph/0610120.
[16] M. Gronau and J. L. Rosner, Phys.Lett. B672, 349 (2009), 0812.4796.
[17] R. Fleischer, Phys.Rev. D60, 073008 (1999), hep-ph/9903540.
[18] M. Gronau and J. L. Rosner, Phys.Lett. B669, 321 (2008), 0808.3761.
[19] X. Liu, W. Wang, and Y. Xie, Phys.Rev. D89, 094010 (2014), 1309.0313.
[20] LHCb Collaboration, R. Aaij et al., Phys.Rev. D86, 071102 (2012), 1208.0738.
[21] LHCb collaboration, R. Aaij et al., (2014), 1411.1634.
[22] K. De Bruyn and R. Fleischer, presented at BEACH 2014 (2014).
[23] K. De Bruyn, R. Fleischer, and P. Koppenburg, Eur.Phys.J. C70, 1025 (2010), 1010.0089.
[24] S. Faller, M. Jung, R. Fleischer, and T. Mannel, Phys.Rev. D79, 014030 (2009), 0809.0842.
[25] M. Ciuchini, M. Pierini, and L. Silvestrini, (2011), 1102.0392.
[26] M. Jung, Phys.Rev. D86, 053008 (2012), 1206.2050.
[27] LHCb Collaboration, R. Aaij et al., Eur.Phys.J. C73, 2373 (2013), 1208.3355.
[28] P. Frings, U. Nierste, and M. Wiebusch, presented at these proceedings (2014).
[29] E. Klempt and A. Zaitsev, Phys.Rept. 454, 1 (2007), 0708.4016.
[30] R. Fleischer, R. Knegjens, and G. Ricciardi, Eur.Phys.J. C71, 1832 (2011), 1109.1112.
[31] S. Stone and L. Zhang, Phys.Rev.Lett. 111, 062001 (2013), 1305.6554.
[32] J.-W. Li, D.-S. Du, and C.-D. Lu, Eur.Phys.J. C72, 2229 (2012), 1212.5987.
[33] L. Maiani, F. Piccinini, A. Polosa, and V. Riquer, Phys.Rev.Lett. 93, 212002 (2004), hep-ph/0407017.
[34] G. ’t Hooft, G. Isidori, L. Maiani, A. Polosa, and V. Riquer, Phys.Lett. B662, 424 (2008), 0801.2288.
[35] LHCb Collaboration, R. Aaij et al., Phys.Rev. D90, 012003 (2014), 1404.5673.
[36] R. Fleischer, G. Ricciardi, and R. Knegjens, work in progress (2014).
[37] Particle Data Group, J. Beringer et al., Phys.Rev. D86, 010001 (2012).
[38] D. Black, A. H. Fariborz, F. Sannino, and J. Schechter, Phys.Rev. D59, 074026 (1999), hep-ph/9808415.