著者別名	西村 泰一
最終所属 | タイ
所属 | タイ
学位 | タイ
Differential Geometry of Microlinear Frölicher Spaces IV-1

Hirokazu Nishimura
Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571
Japan

December 5, 2012

Abstract

The fourth paper of our series of papers entitled "Differential Geometry of Microlinear Frölicher Spaces" is concerned with jet bundles. We present three distinct approaches together with transmogrifications of the first into the second and of the second to the third. The affine bundle theorem and the equivalence of the three approaches with coordinates are relegated to a subsequent paper.

1 Introduction

As the fourth of our series of papers entitled "Differential Geometry of Microlinear Frölicher Spaces", this paper will discuss jet bundles. Since the paper has become somewhat too long as a single paper, we have decided to divide it into two parts. In this first part we will present three distinct approaches to jet bundles in the general context of Weil exponentiable and microlinear Frölicher spaces. In the subsequent part, we will establish the affine bundle theorem in the second and the third approaches, and we will show that the three approaches are equivalent, as far as coordinates are available (i.e., in the classical context).

This part consists of 7 sections. The first section is this introduction, while the second section is devoted to some preliminaries. We will present three distinct approaches to jet bundles in Sections 3, 4 and 5. In Section 6 we will show how to translate the first approach into the second, while Section 7 is devoted to the transmogrification of the second approach into the third.

We have already discussed these three approaches to jet bundles in the context of synthetic differential geometry, for which the reader is referred to our previous work [15], [16], [17], [18], [19] and [20]. Now we have emancipated them to the real world of Frölicher spaces.
2 Preliminaries

2.1 Frölicher Spaces

Frölicher and his followers have vigorously and consistently developed a general theory of smooth spaces, often called Frölicher spaces for his celebrity, which were intended to be the maximal class of spaces where smooth structures can live. A Frölicher space is an underlying set endowed with a class of real-valued functions on it (simply called structure functions) and a class of mappings from the set \mathbb{R} of real numbers to the underlying set (simply called structure curves) subject to the condition that structure curves and structure functions should compose so as to yield smooth mappings from \mathbb{R} to itself. It is required that the class of structure functions and that of structure curves should determine each other so that each of the two classes is maximal with respect to the other as far as they abide by the above condition. What is most important among many nice properties about the category FS of Frölicher spaces and smooth mappings is that it is cartesian closed, while neither the category of finite-dimensional smooth manifolds nor that of infinite-dimensional smooth manifolds modelled after any infinite-dimensional vector spaces such as Hilbert spaces, Banach spaces, Fréchet spaces or the like is so at all. For a standard reference on Frölicher spaces, the reader is referred to [5].

2.2 Weil Algebras and Infinitesimal Objects

2.2.1 The Category of Weil Algebras and the Category of Infinitesimal Objects

The notion of a Weil algebra was introduced by Weil himself in [29]. We denote by \mathbf{W} the category of Weil algebras, which is well known to be left exact. Roughly speaking, each Weil algebra corresponds to an infinitesimal object in the shade. By way of example, the Weil algebra $\mathbb{R}[X]/(X^2)$ (=the quotient ring of the polynomial ring $\mathbb{R}[X]$ of an indeterminate X over \mathbb{R} modulo the ideal (X^2) generated by X^2) corresponds to the infinitesimal object of first-order nilpotent infinitesimals, while the Weil algebra $\mathbb{R}[X]/(X^3)$ corresponds to the infinitesimal object of second-order nilpotent infinitesimals. Although an infinitesimal object is undoubtedly imaginary in the real world, as has harassed both mathematicians and philosophers of the 17th and the 18th centuries such as philosopher Berkley (because mathematicians at that time preferred to talk infinitesimal objects as if they were real entities), each Weil algebra yields its corresponding Weil functor or Weil prolongation on the category of smooth manifolds of some kind to itself, which is no doubt a real entity. By way of example, the Weil algebra $\mathbb{R}[X]/(X^2)$ yields the tangent bundle functor as its corresponding Weil functor. Intuitively speaking, the Weil functor corresponding to a Weil algebra stands for the exponentiation by the infinitesimal object corresponding to the Weil algebra at issue. For Weil functors on the category of finite-dimensional smooth manifolds, the reader is referred to §35 of [9], while the reader can find a readable treatment of Weil functors on the category of
smooth manifolds modelled on convenient vector spaces in §31 of [11]. In [21] we have discussed how to assign, to each pair \((X, W)\) of a Fréchet space \(X\) and a Weil algebra \(W\), another Fréchet space \(X \otimes W\) called the Weil prolongation of \(X\) with respect to \(W\), which is naturally extended to a bifunctor \(\mathbf{FS} \times \mathbf{W} \to \mathbf{FS}\). And we have shown that, given a Weil algebra \(W\), the functor assigning \(X \otimes W\) to each object \(X\) in \(\mathbf{FS}\) and \(f \otimes \text{id}_W\) to each morphism \(f\) in \(\mathbf{FS}\), namely, the Weil functor on \(\mathbf{FS}\) corresponding to \(W\) is product-preserving. The proof can easily be strengthened to

Theorem 1 The Weil functor on the category \(\mathbf{FS}\) corresponding to any Weil algebra is left exact.

There is a canonical projection \(\pi: X \otimes W \to X\). Given \(x \in X\), we write \((X \otimes W)_x\) for the inverse image of \(x\) under the mapping \(\pi\). We denote by \(S_n\) the symmetric group of the set \(\{1, \ldots, n\}\), which is well known to be generated by \(n - 1\) transpositions \(<i, i + 1>_i\) exchanging \(i\) and \(i + 1(1 \leq i \leq n - 1)\) while keeping the other elements fixed. Given \(\alpha \in S_n\) and \(\gamma \in X \otimes W_{D_n}\), we define \(\gamma^\alpha \in X \otimes W_{D_n}\) to be

\[
\gamma^\alpha = \left(id_X \otimes W_{(d_1, \ldots, d_n) \in D_n} \mapsto (d_{\alpha(1)}, \ldots, d_{\alpha(n)}) \in D_n\right)(\gamma)
\]

Given \(\alpha \in \mathbb{R}\) and \(\gamma \in X \otimes W_{D_n}\), we define \(\alpha \cdot \gamma \in \gamma \in X \otimes W_{D_n} (1 \leq i \leq n)\) to be

\[
\alpha \cdot \gamma = \left(id_X \otimes W_{(d_1, \ldots, d_n) \in D_n} \mapsto (d_{\alpha(1)}, \ldots, d_{\alpha(i)}, d_i, d_{i+1}, \ldots, d_n) \in D_n\right)(\gamma)
\]

Given \(\alpha \in \mathbb{R}\) and \(\gamma \in X \otimes W_{D_n}\), we define \(\alpha \gamma \in X \otimes W_{D_n} (1 \leq i \leq n)\) to be

\[
\alpha \gamma = \left(id_X \otimes W_{d \in D_n, \alpha d \in D_n} \mapsto d \in D_n\right)(\gamma)
\]

for any \(d \in D_n\). The restriction mapping \(\gamma \in T_{x,D_n}^{D_{n+1}}(M) \mapsto \gamma|_{D_n} \in T_{x,D_n}^{D_n}(M)\) is often denoted by \(\pi_{n+1,n}\).

Between \(X \otimes W_{D_n}\) and \(X \otimes W_{D_{n+1}}\) there are \(2n + 2\) canonical mappings:

\[
X \otimes W_{D_{n+1}} \xrightarrow{d_i} X \otimes W_{D_n} \quad (1 \leq i \leq n + 1)
\]

For any \(\gamma \in X \otimes W_{D_n}\), we define \(s_i(\gamma) \in X \otimes W_{D_{n+1}}\) to be

\[
s_i(\gamma) = \left(id_X \otimes W_{(d_1, \ldots, d_{n+1}) \in D_{n+1}} \mapsto (d_1, \ldots, d_{i-1}, d_i, d_{i+1}, \ldots, d_{n+1}) \in D_{n+1}\right)(\gamma)
\]

For any \(\gamma \in X \otimes W_{D_{n+1}}\), we define \(d_i(\gamma) \in X \otimes W_{D_n}\) to be

\[
d_i(\gamma) = \left(id_X \otimes W_{(d_1, \ldots, d_n) \in D_n} \mapsto (d_1, \ldots, d_{i-1}, 0, d_i, \ldots, d_n) \in D_{n+1}\right)(\gamma)
\]

These operations satisfy the so-called simplicial identities (cf. Goerss and Jardine [7]), so that the family of \(X \otimes W_{D_n}\)'s together with mappings \(s_i\)'s and \(d_i\)'s form a so-called simplicial set.
Synthetic differential geometry (usually abbreviated to SDG), which is a kind of differential geometry with a cornucopia of nilpotent infinitesimals, was forced to invent its models, in which nilpotent infinitesimals were visible. For a standard textbook on SDG, the reader is referred to [12], while he or she is referred to [8] for the model theory of SDG constructed vigorously by Dubuc [2] and others. Although we do not get involved in SDG herein, we will exploit locutions in terms of infinitesimal objects so as to make the paper highly readable. Thus we prefer to write W_D and W_{D^2} in place of $R[X]/(X^2)$ and $R[X]/(X^3)$ respectively, where D stands for the infinitesimal object of first-order nilpotent infinitesimals, and D^2 stands for the infinitesimal object of second-order nilpotent infinitesimals. To Newton and Leibniz, D stood for \{ $d \in \mathbb{R}$ | $d^2 = 0$ \} while D^2 stood for \{ $d \in \mathbb{R}$ | $d^3 = 0$ \}.

More generally, given a natural number n, we denote by D_n the set
\{ $d \in \mathbb{R}$ | $d^{n+1} = 0$ \},
which stands for the infinitesimal object corresponding to the Weil algebra $\mathbb{R}[X]/(X^{n+1})$. Even more generally, given natural numbers m, n, we denote by $D(m)_n$ the infinitesimal object
\{ $(d_1, \ldots, d_m) \in \mathbb{R}^m | d_{i_1} \cdots d_{i_{n+1}} = 0$ \},
where i_1, \ldots, i_{n+1} shall range over natural numbers between 1 and m including both ends. It corresponds to the Weil algebra $\mathbb{R}[X_1, \ldots, X_m]/I$, where I is the ideal generated by $X_{i_1} \cdots X_{i_{n+1}}$'s. Therefore we have

\[
D(1)_n = D_n \\
D(m)_1 = D(m)
\]

Trivially we have

\[D(m)_n \subseteq D(m)_{n+1}\]

It is easy to see that

\[
D(m_1)_n \times D(m_2)_1 \subseteq D(m_1 + m_2)_{n+1} \\
D(m_1 + m_2)_n \subseteq D(m_1)_n \times D(m_2)_n
\]

By convention, we have

\[D^0 = D_0 = \{0\} = 1\]

A polynomial ρ of $d \in \mathbb{D}_n$ is called a simple polynomial of $d \in \mathbb{D}_n$ if every coefficient of ρ is either 1 or 0, and if the constant term is 0. A simple polynomial ρ of $d \in \mathbb{D}_n$ is said to be of dimension m, in notation $\dim(\rho) = m$, provided
that \(m \) is the least integer with \(\rho^{m+1} = 0 \). By way of example, letting \(d \in D_3 \), we have
\[
\dim (d) = \dim (d + d^2) = \dim (d + d^3) = 3 \\
\dim (d^2) = \dim (d^3) = \dim (d^2 + d^3) = 1
\]

We will write \(W_{d \in D_2 \mapsto d \in D} \) for the homomorphism of Weil algebras \(\mathbb{R}[X]/(X^2) \to \mathbb{R}[X]/(X^3) \) induced by the homomorphism \(X \to X^2 \) of the polynomial ring \(\mathbb{R}[X] \) to itself. Such locutions are justifiable, because the category \(W \) of Weil algebras in the real world and the category \(D \) of infinitesimal objects in the shade are dual to each other in a sense. Thus we have a contravariant functor \(W \) from the category of infinitesimal objects in the shade to the category of Weil algebras in the real world. Its inverse contravariant functor from the category of Weil algebras in the real world to the category of infinitesimal objects in the shade is denoted by \(D \). By way of example, \(D_{\mathbb{R}[X]/(X^2)} \) and \(D_{\mathbb{R}[X]/(X^3)} \) stand for \(D \) and \(D_2 \), respectively. Since the category \(W \) is left exact, the category \(D \) is right exact, in which we write \(D \oplus D' \) for the coproduct of infinitesimal objects \(D \) and \(D' \). For any two infinitesimal objects \(D, D' \) with \(D \subseteq D' \), we write \(i \) or \(i_{D \to D'} \) for its natural injection of \(D \) into \(D' \). We write \(m \) or \(m_{D \times D' \to D} \) for the mapping \((d, d') \in D_n \times D_m \mapsto dd' \in D_n \). Given \(\alpha \in \mathbb{R} \), we write \(\left(\alpha_1 \right)_{D^n} \) for the mapping
\[
(d_1, \ldots, d_n) \in D^n \mapsto (d_1, \ldots, d_{i-1}, \alpha d_i, d_{i+1}, \ldots, d_n) \in D^n
\]

To familiarize himself or herself with such locutions, the reader is strongly encouraged to read the first two chapters of [12], even if he or she is not interested in SDG at all.

2.2.2 Simplicial Infinitesimal Objects

Definition 2 1. Simplicial infinitesimal spaces are objects of the form
\[
D \{m; S\} = \{(d_1, \ldots, d_m) \in D^m | d_{i_1} \ldots d_{i_k} = 0 \text{ for any } (i_1, \ldots, i_k) \in S\},
\]
where \(S \) is a finite set of sequences \((i_1, \ldots, i_k) \) of natural numbers with \(1 \leq i_1 < \ldots < i_k \leq m \).

2. A simplicial infinitesimal object \(D \{m; S\} \) is said to be symmetric if \((d_1, \ldots, d_m) \in D \{m; S\} \) and \(\sigma \in S_m \) always imply \((d_{\sigma(1)}, \ldots, d_{\sigma(m)}) \in D \{m; S\} \).

To give examples of simplicial infinitesimal spaces, we have
\[
D(2) = D \{2; (1, 2)\} \\
D(3) = D \{3; (1, 2), (1, 3), (2, 3)\},
\]
which are all symmetric.
Definition 3 1. The number \(m \) is called the degree of \(D \{m; S\} \), in notation:
\[m = \deg D \{m; S\}. \]

2. The maximum number \(n \) such that there exists a sequence \((i_1, ..., i_n)\) of natural numbers of length \(n \) with \(1 \leq i_1 < ... < i_n \leq m \) containing no subsequence in \(S \) is called the dimension of \(D \{m; S\} \), in notation:
\[n = \dim D \{m; S\}. \]

By way of example, we have
\[
\begin{align*}
\deg D(3) &= \deg D \{3; (1, 2)\} = \deg D \{3; (1, 2), (1, 3)\} = \deg D^3 = 3 \\
\dim D \{3; (1, 2)\} &= \dim D \{3; (1, 2), (1, 3)\} = 2 \\
\dim D^3 &= 3
\end{align*}
\]

It is easy to see that

Proposition 4 if \(n = \dim D \{m; S\} \), then

\[d_1 + ... + d_m \in D_n \]

for any \((d_1, ..., d_m) \in D \{m; S\}\), so that we have the mapping

\[+_{D \{m; S\} \to D_n} : D \{m; S\} \to D_n \]

Definition 5 Infinitesimal objects of the form \(D^m \) are called basic infinitesimal objects.

Definition 6 Given two simplicial infinitesimal objects \(D \{m; S\} \) and \(D \{m'; S'\} \), a mapping

\[\varphi = (\varphi_1, ..., \varphi_{m'}) : D \{m; S\} \to D \{m'; S'\} \]

is called a monomial mapping if every \(\varphi_j \) is a monomial in \(d_1, ..., d_m \) with coefficient 1.

Notation 7 We denote by \(D \{m\}_n \) the infinitesimal object

\[\{(d_1, ..., d_m) \in D^m | d_{i_1}...d_{i_{n+1}} = 0\}, \]

where \(i_1, ..., i_{n+1} \) shall range over natural numbers between 1 and \(m \) including both ends.

2.2.3 Quasi-Colimit Diagrams

Definition 8 A diagram in the category \(\mathbf{D} \) is called a quasi-colimit diagram if its dually corresponding diagram in the category \(\mathbf{W} \) is a limit diagram.

Theorem 9 (The Fundamental Theorem on Simplicial Infinitesimal Objects) Any simplicial infinitesimal object \(\mathbf{D} \) of dimension \(n \) is the quasi-colimit of a finite diagram whose objects are of the form \(D^k \)'s \((0 \leq k \leq n)\) and whose arrows are natural injections.
Proof. Let \(\mathbb{D} = D(m; S) \). For any maximal sequence \(1 \leq i_1 < ... < i_k \leq m \) of natural numbers containing no subsequence in \(S \) (maximal in the sense that it is not a proper subsequence of such a sequence), we have a natural injection of \(D^k \) into \(\mathbb{D} \). By collecting all such \(D^k \)'s together with their natural injections into \(\mathbb{D} \), we have an overlapping representation of \(\mathbb{D} \) in terms of basic infinitesimal spaces. This representation is completed into a quasi-colimit representation of \(\mathbb{D} \) by taking \(D^l \) together with its natural injections into \(D^{k_1} \) and \(D^{k_2} \) for any two basic infinitesimal spaces \(D^{k_1} \) and \(D^{k_2} \) in the overlapping representation of \(\mathbb{D} \), where if \(D^{k_1} \) and \(D^{k_2} \) come from the sequences \(1 \leq i_1 < ... < i_{k_1} \leq m \) and \(1 \leq \tilde{i}_1 < ... < \tilde{i}_{k_2} \leq m \) in the above manner, then \(D^l \) together with its natural injections into \(D^{k_1} \) and \(D^{k_2} \) comes from the maximal common subsequence \(1 \leq \tilde{i}_1 < ... < \tilde{i}_l \leq m \) of both the preceding sequences of natural numbers in the above manner. By way of example, the above method leads to the following quasi-colimit representation of \(\mathbb{D} = D \{3\}_2 \):

\[
\begin{array}{c}
D^2 \\
D^l \downarrow \quad \quito
\end{array}
\]

In the above representation \(i_{jk} \)'s and \(i_j \)'s are as follows:

1. the \(j \)-th and \(k \)-th components of \(i_{jk}(d_1, d_2) \in D(3)_2 \) are \(d_1 \) and \(d_2 \), respectively, while the remaining component is 0;

2. the \(j \)-th component of \(i_j(d) \in D^2 \) is \(d \), while the other component is 0.

Definition 10 The quasi-colimit representation of \(\mathbb{D} \) depicted in the proof of the above theorem is called standard.

Remark 11 Generally speaking, there are multiple ways of quasi-colimit representation of a given simplicial infinitesimal space. By way of example, two quasi-colimit representations of \(D \{3; (1, 3), (2, 3)\} \) \(= (D \times D) \oplus D \) were given in Lavendhomme [12, pp.92-93] (§3.4, pp.92-93), only the second one being standard.

2.3 Weil-Exponentiability and Microlinearity

2.3.1 Weil-Exponentiability

We have no reason to hold that all Frölicher spaces credit Weil prolongations as exponentiations by infinitesimal objects in the shade. Therefore we need a notion which distinguishes Frölicher spaces that do so from those that do not.
Definition 12 A Frölicher space X is called Weil exponentiable if

$$(X \otimes (W_1 \otimes_{\infty} W_2))^Y = (X \otimes W_1)^Y \otimes W_2$$

holds naturally for any Frölicher space Y and any Weil algebras W_1 and W_2.

If $Y = 1$, then (1) degenerates into

$$X \otimes (W_1 \otimes_{\infty} W_2) = (X \otimes W_1) \otimes W_2$$

If $W_1 = \mathbb{R}$, then (1) degenerates into

$$(X \otimes W_2)^Y = X^Y \otimes W_2$$

The following three propositions have been established in our previous paper [21].

Proposition 13 Convenient vector spaces are Weil exponentiable.

Corollary 14 C^∞-manifolds in the sense of [11] (cf. Section 27) are Weil exponentiable.

Proposition 15 If X is a Weil exponentiable Frölicher space, then so is $X \otimes W$ for any Weil algebra W.

Proposition 16 If X and Y are Weil exponentiable Frölicher spaces, then so is $X \times Y$.

The last proposition can be strengthened to

Proposition 17 The limit of a diagram in FS whose objects are all Weil-exponentiable is also Weil-exponentiable.

Proof. Let Γ be a diagram in FS. Given a Weil algebra W, we write $\Gamma \otimes W$ for the diagram obtained from Γ by putting $\otimes W$ to the right of every object in Γ and $\otimes \text{id}_W$ to the right of every morphism in Γ. We have

$$(\text{Lim} \Gamma) \otimes (W_1 \otimes_{\infty} W_2))^Y = (\text{Lim} \ (\Gamma \otimes (W_1 \otimes_{\infty} W_2)))^Y$$

so that we have the coveted result.

We have already established the following proposition and theorem in our previous paper [21].
Proposition 18 If X is a Weil exponentiable Frölicher space, then so is X^Y for any Frölicher space Y.

Theorem 19 Weil exponentiable Frölicher spaces, together with smooth mappings among them, form a Cartesian closed subcategory FS_WE of the category FS.

2.3.2 Microlinearity

The central object of study in SDG is microlinear spaces. Although the notion of a manifold (=a pasting of copies of a certain linear space) is defined on the local level, the notion of microlinearity is defined on the genuinely infinitesimal level. For the historical account of microlinearity, the reader is referred to §§2.4 of [12] or Appendix D of [8]. To get an adequately restricted cartesian closed subcategory of Frölicher spaces, we have emancipated microlinearity from within a well-adapted model of SDG to Frölicher spaces in the real world in [22]. Recall that

Definition 20 A Frölicher space X is called microlinear providing that any finite limit diagram Γ in W yields a limit diagram $X \otimes \Gamma$ in FS, where $X \otimes \Gamma$ is obtained from Γ by putting $X \otimes$ to the left of every object in Γ and $\text{id}_X \otimes$ to the left of every morphism in Γ.

Generally speaking, limits in the category FS are bamboozling. The notion of limit in FS should be elaborated geometrically.

Definition 21 A finite cone Γ in FS is called a transversal limit diagram providing that $\Gamma \otimes W$ is a limit diagram in FS for any Weil algebra W, where the diagram $\Gamma \otimes W$ is obtained from Γ by putting $\otimes W$ to the right of every object in Γ and $\text{id}_W \otimes$ to the right of every morphism in Γ. The limit of a finite diagram of Frölicher spaces is said to be transversal providing that its limit diagram is a transversal limit diagram.

Remark 22 By taking $W = \mathbb{R}$, we see that a transversal limit diagram in FS is always a limit diagram in FS.

We have already established the following two propositions in ??.

Proposition 23 If Γ is a transversal limit diagram in FS whose objects are all Weil exponentiable, then Γ^X is also a transversal limit diagram for any Frölicher space X, where Γ^X is obtained from Γ by putting X as the exponential over every object in Γ and over every morphism in Γ.

Proposition 24 If Γ is a transversal limit diagram in FS whose objects are all Weil exponentiable, then $\Gamma \otimes W$ is also a transversal limit diagram for any Weil algebra W.

The following results have been established in [22].
Proposition 25 Convenient vector spaces are microlinear.

Corollary 26 C^∞-manifolds in the sense of [11] (cf. Section 27) are microlinear.

Proposition 27 If X is a Weil exponentiable and microlinear Frölicher space, then so is $X \otimes W$ for any Weil algebra W.

Proposition 28 The class of microlinear Frölicher spaces is closed under transversal limits.

Corollary 29 Direct products are transversal limits, so that if X and Y are microlinear Frölicher spaces, then so is $X \times Y$.

Proposition 30 If X is a Weil exponentiable and microlinear Frölicher space, then so is X^Y for any Frölicher space Y.

Proposition 31 If a Weil exponentiable Frölicher space X is microlinear, then any finite limit diagram Γ in W yields a transversal limit diagram $X \otimes \Gamma$ in \mathbf{FS}.

Theorem 32 Weil exponentiable and microlinear Frölicher spaces, together with smooth mappings among them, form a cartesian closed subcategory $\mathbf{FSWE,ML}$ of the category \mathbf{FS}.

2.4 Convention

Unless stated to the contrary, every Frölicher space occurring in the sequel is assumed to be microlinear and Weil exponentiable. We will fix a smooth mapping $\pi : E \to M$ arbitrarily. In this paper we will naively speak of bundles simply as smooth mappings of microlinear and Weil exponentiable Frölicher spaces, for which we will develop three theories of jet bundles. We say that $t \in M \otimes W_D$ is degenerate providing that

$$t = (i_{(x)} \to M \otimes \text{id}_{W_D}) (t')$$

for some $x \in M$ and some $t' \in \{x\} \otimes W_D$. We say that $t \in E \otimes W_D$ is vertical provided that $(\pi \otimes \text{id}_{W_D}) (t)$ is degenerate. We write $(E \otimes W_D)^\perp$ for the totality of vertical $t \in E \otimes W_D$.

3 The First Approach to Jets

Definition 33 A 1-tangential over the bundle $\pi : E \to M$ at $x \in E$ is a mapping $\nabla_x : (M \otimes W_D)_{\pi(x)} \to (E \otimes W_D)_x$ subject to the following three conditions:

1. We have

$$(\pi \otimes \text{id}_{W_D}) (\nabla_x (t)) = t$$

for any $t \in (M \otimes W_D)_{\pi(x)}$.

10
2. We have
\[\nabla_x(\alpha t) = \alpha \nabla_x(t) \]
for any \(t \in (M \otimes W_D)_{\pi(x)} \) and any \(\alpha \in \mathbb{R} \).

3. The diagram
\[
\begin{array}{ccc}
(M \otimes W_D)_{\pi(x)} & \xrightarrow{\text{id}_M \otimes W_{(d,e)} \in D \times D_\to \cdots \in D} & (M \otimes W_D)_{\pi(x)} \otimes W_{D_m} \\
\nabla_x & \downarrow & \nabla_x \otimes \text{id}_{W_{D_m}} \\
(E \otimes W_D)_x & \xrightarrow{\text{id}_E \otimes W_{(d,e)} \in D \times D_\to \cdots \in D} & (E \otimes W_D)_x \otimes W_{D_m}
\end{array}
\]
is commutative, where \(m \) is an arbitrary natural number.

We note in passing that condition (1.2) implies that \(\nabla_x \) is linear by dint of Proposition 10 in §1.2 of [12].

Notation 34 We denote by \(J^1_x(\pi) \) the totality of 1-tangentials \(\nabla_x \) over the bundle \(\pi : E \to M \) at \(x \in E \). We denote by \(J^1(\pi) \) the set-theoretic union of \(J^1_x(\pi) \)'s for all \(x \in E \). The canonical projection \(J^1(\pi) \to E \) is denoted by \(\pi_{1,0} \) with
\[\pi_1 = (\pi \otimes \text{id}_{W_D}) \circ \pi_{1,0}. \]

Definition 35 Let \(F \) be a morphism of bundles over \(M \) from \(\pi \) to \(\pi' \) over the same base space \(M \). We say that a 1-tangential \(\nabla_x \) over \(\pi \) at a point \(x \) of \(E \) is \(F \)-related to a 1-tangential \(\nabla_{F(x)} \) over \(\pi' \) at \(F(x) \) of \(E' \) (in the sense of Nishimura) provided that
\[(F \otimes \text{id}_{W_D})(\nabla_x(t)) = \nabla_{F(x)}(t) \]
for any \(t \in (M \otimes W_D)_{\pi(x)} \).

Notation 36 By convention, we let
\[J^0(\pi) = J^0(\pi) = J^0(\pi) = E \]
with
\[\hat{\pi}_{0,0} = \hat{\pi}_{0,0} = \pi_{0,0} = \text{id}_E \]
and
\[\hat{\pi}_0 = \hat{\pi}_0 = \pi_0 = \pi \]
We let
\[J^1(\pi) = J^1(\pi) = J^1(\pi) \]
with
\[\hat{\pi}_{1,0} = \hat{\pi}_{1,0} = \pi_{1,0} \]
and
\[\hat{\pi}_1 = \hat{\pi}_1 = \pi_1 \]
Notation 37 Now we are going to define $\tilde{J}^{k+1}(\pi)$, $\hat{J}^{k+1}(\pi)$ and $J^{k+1}(\pi)$ together with mappings $\tilde{\pi}_{k+1,k}: \tilde{J}^{k+1}(\pi) \to \tilde{J}^k(\pi)$, $\hat{\pi}_{k+1,k}: \hat{J}^{k+1}(\pi) \to \hat{J}^k(\pi)$ and $\pi_{k+1,k}: J^{k+1}(\pi) \to J^k(\pi)$ by induction on $k \geq 1$. Intuitively speaking, these are intended for non-holonomic, semi-holonomic and holonomic jet bundles in order. We let $\tilde{\pi}_{k+1} = \tilde{\pi}_k \circ \tilde{\pi}_{k+1,k}$, $\hat{\pi}_{k+1} = \hat{\pi}_k \circ \hat{\pi}_{k+1,k}$ and $\pi_{k+1} = \pi_k \circ \pi_{k+1,k}$.

1. First we deal with $\tilde{J}^{k+1}(\pi)$, which is defined to be $J^1(\tilde{\pi}_k)$ with $\tilde{\pi}_{k+1,k} = (\tilde{\pi}_k)_{1,0}$.

2. Next we deal with $\hat{J}^{k+1}(\pi)$, which is defined to be the subspace of $J^1(\hat{\pi}_k)$ consisting of ∇_x’s with $x = \nabla_y \in \hat{J}^k(\pi)$ abiding by the condition that ∇_x is $\hat{\pi}_{k,k-1}$-related to ∇_y.

3. Finally we deal with $J^{k+1}(\pi)$, which is defined to be the subspace of $J^1(\pi_k)$ consisting of ∇_x’s with $x = \nabla_y \in J^k(\pi)$ abiding by the conditions that ∇_x is $\pi_{k,k-1}$-related to ∇_y and that the composition of mappings

\[
\begin{align*}
&M \otimes W_{D^2})_{\pi_k(x)} \\
&\langle \text{id}_M \otimes W_{d \in D \to (d,0) \in D^2}, \text{id}_M \otimes W_{(d_1,d_2) \in D^2 \to (d_2,d_1) \in D^2} \rangle \\
&\langle (M \otimes W_{D^2}) \times_M \otimes W_D (M \otimes W_{D^2}) \rangle_{\pi_k(x)} \\
&\nabla_x \times \text{id}_M \otimes W_{D^2} \\
&\langle (J^k(\pi) \otimes W_D) \times_M \otimes W_D (M \otimes W_{D^2}) \rangle_{\pi_k(x)} \\
&= \langle (J^k(\pi) \otimes W_D) \times_M \otimes W_D ((M \otimes W_D) \otimes W_D) \rangle_{\pi_k(x)} \\
&= \langle (J^k(\pi) \times_M (M \otimes W_D)) \otimes W_D \rangle_{\pi_k(x)} \\
&\langle (\nabla, t) \in J^k(\pi) \times_M (M \otimes W_D) \to \nabla (t) \in (J^{k-1}(\pi) \otimes W_D) \rangle \otimes \text{id}_{W_D} \\
&\langle J^{k-1}(\pi) \otimes W_D \rangle \otimes W_D \\
&= J^{k-1}(\pi) \otimes W_{D^2}
\end{align*}
\]
is equal to the composition of mappings

\[
(M \otimes W_{D^2})_{\pi_k(x)} \langle \text{id}_M \otimes W_{d \in D \rightarrow (0,d) \in D^2}, \text{id}_M \otimes W_{d \in D^2} \rangle \\
\nabla_x \times \text{id}_M \otimes W_{D^2} \\
((J^k(\pi) \otimes W_D) \times M \otimes W_D \circ (M \otimes W_D) \otimes W_D)_{\pi_k(x)} \\
= (M \otimes W_D) \times M \otimes W_D \circ (M \otimes W_D) \otimes W_D)_{\pi_k(x)} \\
= ((\nabla, t) \in J^k(\pi) \times M (M \otimes W_D) \rightarrow \nabla (t) \in (J^{k-1}(\pi) \otimes W_D)) \otimes \text{id}_W_D \\
(J^{k-1}(\pi) \otimes W_D) \otimes W_D \\
= J^{k-1}(\pi) \otimes W_{D^2} \\
\text{id}_{J^{k-1}(\pi)} \otimes W_{(d_1,d_2) \in D \rightarrow (d_2,d_1) \in D^2} \\
J^{k-1}(\pi) \otimes W_{D^2}
\]

Definition 38 Elements of \(\tilde{J}^n(\pi) \) are called \(n \)-subtangentials, while elements of \(\hat{J}^n(\pi) \) are called \(n \)-quasitangentials. Elements of \(J^n(\pi) \) are called \(n \)-tangentials.

4 The Second Approach to Jets

Definition 39 Let \(n \) be a natural number. A \(D^n \)-pseudotangential over the bundle \(\pi : E \rightarrow M \) at \(x \in E \) is a mapping \(\nabla_x : (M \otimes W_{D^n})_{\pi(x)} \rightarrow (E \otimes W_{D^n})_x \) abiding by the following conditions:

1. We have
 \[
 (\pi \otimes \text{id}_{W_{D^n}})(\nabla_x (\gamma)) = \gamma
 \]
 for any \(\gamma \in (M \otimes W_{D^n})_{\pi(x)} \).

2. We have
 \[
 \nabla_x (\alpha \cdot \gamma) = \alpha \cdot \nabla_x (\gamma) \quad (1 \leq i \leq n)
 \]
 for any \(\gamma \in (M \otimes W_{D^n})_{\pi(x)} \) and any \(\alpha \in \mathbb{R} \).

3. The diagram
 \[
 (M \otimes W_{D^n})_{\pi(x)} \rightarrow (M \otimes W_{D^n})_{\pi(x)} \otimes W_{D_m} \\
 \nabla_x \downarrow \quad \downarrow \nabla_x \otimes \text{id}_{W_{D^n}} \\
 (E \otimes W_{D^n})_x \rightarrow (E \otimes W_{D^n})_x \otimes W_{D_m}
 \]
is commutative, where m is an arbitrary natural number, the upper horizontal arrow is
\[
\text{id}_M \otimes W_{(d_1, \ldots, d_n, e) \in D^n \times D_m \mapsto (d_1, \ldots, d_{i-1}, ed, d_{i+1}, \ldots, d_n) \in D^n},
\]
and the lower horizontal arrow is
\[
\text{id}_E \otimes W_{(d_1, \ldots, d_n, e) \in D^n \times D_m \mapsto (d_1, \ldots, d_{i-1}, ed, d_{i+1}, \ldots, d_n) \in D^n}.
\]

4. We have
\[
\nabla_x (\sigma) = (\nabla_x (\gamma))^{\sigma}
\]
for any $\gamma \in (M \otimes W_{D^n})_{\pi(x)}$ and for any $\sigma \in S_n$.

Remark 40 The third condition in the above definition claims what is called infinitesimal multilinearity, while the second claims what is authentic multilinearity.

Notation 41 We denote by $\hat{J}_{\otimes W_{D^n}}$ the totality of D_n-pseudotangentials ∇_x over the bundle $\pi: E \to M$ at $x \in E$. We denote by $\hat{J}_{\otimes W_{D^n}}$ the set-theoretic union of $\hat{J}_{\otimes W_{D^n}}$'s for all $x \in E$. In particular, $\hat{J}_{\otimes W_{D^n}} = E$ by convention.

Lemma 42 The diagram
\[
\begin{array}{ccc}
E \otimes W_{D^n} & \overset{id_E \otimes W_{D^n+1}}{\longrightarrow} & E \otimes W_{D^n+1} \\
\downarrow \quad \downarrow \quad \downarrow & & \downarrow \\
W_{(d_1, \ldots, d_n, 0) \in D_n \mapsto (d_1, \ldots, d_n) \in D^n} & \overset{id_{W_{D^n+1}}}{\longrightarrow} & W_{(d_1, \ldots, d_n) \in D_n \mapsto (d_1, \ldots, d_n, d_{n+1}) \in D_{n+1}}
\end{array}
\]
is an equalizer.

Proof. It is well known that the diagram
\[
\begin{array}{ccc}
W_{D^n} & \overset{id_{W_{D^n+1}}}{\longrightarrow} & W_{D^n+1} \\
\downarrow \quad \downarrow & & \downarrow \\
W_{(d_1, \ldots, d_n, d_{n+1}) \in D_{n+1} \mapsto (d_1, \ldots, d_n) \in D^n} & \overset{id_{W_{D^n+1}}}{\longrightarrow} & W_{(d_1, \ldots, d_n) \in D_n \mapsto (d_1, \ldots, d_n, d_{n+1}) \in D_{n+1}}
\end{array}
\]
is an equalizer in the category of Weil algebras, so that the desired result follows from the microlinearity of E. \hfill \blacksquare

Corollary 43 $\gamma \in E \otimes W_{D^n+1}$ is in the equalizer of
\[
\begin{array}{ccc}
E \otimes W_{D^n+1} & \overset{id_{E \otimes W_{D^n+1}}}{\longrightarrow} & E \otimes W_{D^n+1} \\
\downarrow \quad \downarrow \quad \downarrow & & \downarrow \\
E \otimes W_{D^n+1} & \overset{id_{E \otimes W_{D^n+1}}}{\longrightarrow} & E \otimes W_{D^n+1}
\end{array}
\]
iff
\[
\gamma = (s_{n+1} \circ d_{n+1})(\gamma)
\]
Proof. This follows simply from

\[s_{n+1} \circ d_{n+1} = \text{id}_E \otimes W_{(d_1, \ldots, d_n, d_{n+1}) \in D^{n+1} \rightarrow (d_1, \ldots, d_n, 0) \in D^{n+1}} \]

\[\]

Proposition 44 Let \(\nabla_x \) be a \(D^{n+1} \)-pseudotangential over the bundle \(\pi : E \rightarrow M \) at \(x \in E \). Let \(\gamma \in (M \otimes W^E)_\pi(x) \). Then we have

\[\nabla_x (s_{n+1}(\gamma)) = \left(\text{id}_E \otimes W_{(d_1, \ldots, d_n, d_{n+1}) \in D^{n+1} \rightarrow (d_1, \ldots, d_n, 0) \in D^{n+1}} \right) (\nabla_x (s_{n+1}(\gamma))) \]

so that

\[\nabla_x (s_{n+1}(\gamma)) = (s_{n+1} \circ d_{n+1}) (\nabla_x (s_{n+1}(\gamma))) \]

Proof. For any \(\alpha \in \mathbb{R} \), we have

\[\alpha \cdot_{n+1} (\nabla_x (s_{n+1}(\gamma))) = \nabla_x (\alpha \cdot_{n+1} (s_{n+1}(\gamma))) = \nabla_x (s_{n+1}(\gamma)) \]

Therefore we have the desired result by letting \(\alpha = 0 \) in the above calculation.

\[\]

Corollary 45 The assignment

\[\gamma \in (M \otimes W^E)_\pi(x) \mapsto d_{n+1} (\nabla_x (s_{n+1}(\gamma))) \in (E \otimes W^E)_x \]

is an \(n \)-pseudotangential over the bundle \(\pi : E \rightarrow M \) at \(x \).

Notation 46 By this Corollary, we have canonical projections \(\hat{\pi}_{n+1,n} : \hat{\pi}^{D^{n+1}}(\pi) \rightarrow \hat{\pi}^{D^n}(\pi) \). By assigning \(\pi(x) \in M \) to each \(n \)-pseudotangential \(\nabla_x \) over the bundle \(\pi : E \rightarrow M \) at \(x \in E \), we have the canonical projections \(\hat{\pi}_n : \hat{\pi}^{D^n}(\pi) \rightarrow M \). For any natural numbers \(n, m \) with \(m \leq n \), we define \(\hat{\pi}_{n,m} : \hat{\pi}^{D^n}(\pi) \rightarrow \hat{\pi}^{D^m}(\pi) \) to be \(\hat{\pi}_{n+1,n} \circ \cdots \circ \hat{\pi}_{n+1,1} \).

Now we are going to show that

Proposition 47 Let \(\nabla_x \in \hat{\pi}^{D^{n+1}}(\pi) \). Then the following diagrams are commu-
tative:

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
Proof. By the very definition of $\hat{\pi}_{n+1,n}$, we have

$$s_{n+1}(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma)) = \nabla_x(s_{n+1}(\gamma))$$

for any $\gamma \in (M \otimes \mathcal{W}_{D^{n+1}})_{\pi(x)}$. For $i \neq n+1$, we have

$$s_i(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma))$$

$$= \left((s_{n+1}(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma)))^{<i,n+1>} \right)^{<i+1,i+2,\ldots,n,n+1>}_{n+1}$$

$$= \left((\nabla_x(s_{n+1}(\gamma)))^{<i,n+1>} \right)^{<i+1,i+2,\ldots,n,n+1>}_{n+1}$$

$$= (\nabla_x ((s_{n+1}(\gamma))^{<i,n+1>})^{<i+1,i+2,\ldots,n,n+1>})$$

$$= \nabla_x (s_i(\gamma))$$

Now we are going to show that

$$d_i(\nabla_x(\gamma)) = (\hat{\pi}_{n+1,n}(\nabla_x))(d_i(\gamma))$$

for any $\gamma \in (M \otimes \mathcal{W}_{D^{n+1}})_{\pi(x)}$. First we deal with the case of $i = n+1$. We have

$$d_{n+1}(\nabla_x(\gamma))$$

$$= d_{n+1}(0 \cdot \nabla_x(\gamma))$$

$$= d_{n+1}(\nabla_x(\gamma))^{<n,n+1>}_{n+1}$$

$$= d_{n+1}(\nabla_x(s_{n+1}(\gamma)))$$

$$= (\hat{\pi}_{n+1,n}(\nabla_x))(d_{n+1}(\gamma))$$

For $i \neq n+1$, we have

$$d_i(\nabla_x(\gamma))$$

$$= (d_{n+1}((\nabla_x(\gamma))^{<i,n+1>}_{n+1}))^{<n,n-1,\ldots,i+1,i>}_{n+1}$$

$$= (d_{n+1}(\nabla_x(\gamma))^{<i,n+1>}_{n+1}))^{<n,n-1,\ldots,i+1,i>}_{n+1}$$

$$= (\hat{\pi}_{n+1,n}(\nabla_x))(d_{n+1}(\gamma))^{<n,n-1,\ldots,i+1,i>}_{n+1}$$

$$= (\hat{\pi}_{n+1,n}(\nabla_x))(d_i(\gamma))$$

Thus we are done through.

Corollary 48 Let ∇^+_x, $\nabla^-_x \in \mathcal{J}^{D^{n+1}}(\pi)$ with

$$\hat{\pi}_{n+1,n}(\nabla^+_x) = \hat{\pi}_{n+1,n}(\nabla^-_x)$$
Then
\[
(id_E \otimes W_{D^{(n+1)}_n \rightarrow D^{n+1}}) (\nabla_x^+ (\gamma)) = (id_E \otimes W_{D^{(n+1)}_n \rightarrow D^{n+1}}) (\nabla_x^- (\gamma))
\]
for any \(\gamma \in (M \otimes W_{D^{n+1}})_{\pi(x)} \).

Definition 49 The notion of a \(D^n \)-tangential over the bundle \(\pi : E \rightarrow M \) at \(x \) is defined by induction on \(n \). The notion of a \(D \)-tangential over the bundle \(\pi : E \rightarrow M \) at \(x \) shall be identical with that of a \(D \)-pseudotangential over the bundle \(\pi : E \rightarrow M \) at \(x \). Now we proceed inductively. A \(D^{n+1} \)-pseudotangential

\[
\nabla_x : (M \otimes W_{D^{n+1}})_{\pi(x)} \rightarrow (E \otimes W_{D^{n+1}})_x
\]

over the bundle \(\pi : E \rightarrow M \) at \(x \in E \) is called a \(D^n \)-tangential over the bundle \(\pi : E \rightarrow M \) at \(x \) if it acquiesces in the following two conditions:

1. \(\hat{\pi}_{n+1,n}(\nabla_x) \) is a \(D^n \)-tangential over the bundle \(\pi : E \rightarrow M \) at \(x \).

2. For any \(\gamma \in (M \otimes W_{D^n})_{\pi(x)} \), we have

\[
\nabla_x \left((id_M \otimes W_{(d_1,\ldots,d_n,d_{n+1}) \in D^{n+1} \rightarrow (d_1,\ldots,d_n,d_{n+1}) \in D^n}) (\gamma)\right) = (id_E \otimes W_{(d_1,\ldots,d_n,d_{n+1}) \in D^{n+1} \rightarrow (d_1,\ldots,d_n,d_{n+1}) \in D^n}) ((\hat{\pi}_{n+1,n}(\nabla_x))(\gamma))
\]

Notation 50 We denote by \(\mathbb{J}_x^{D^n}(\pi) \) the totality of \(D^n \)-tangentials \(\nabla_x \) over the bundle \(\pi : E \rightarrow M \) at \(x \in E \). We denote by \(\mathbb{J}^{D^n}(\pi) \) the set-theoretic union of \(\mathbb{J}_x^{D^n}(\pi) \)'s for all \(x \in E \). In particular, \(\mathbb{J}^{D^0}(\pi) = \mathbb{J}^{D^0}(\pi) = E \) by convention and \(\mathbb{J}^{D^n}(\pi) = \mathbb{J}^{D^n}(\pi) \) by definition. By the very definition of \(D^n \)-tangential, the projections \(\hat{\pi}_{n+1,n} : \mathbb{J}^{D^{n+1}}(\pi) \rightarrow \mathbb{J}^{D^n}(\pi) \) are naturally restricted to mappings \(\pi_{n+1,n} : \mathbb{J}^{D^{n+1}}(\pi) \rightarrow \mathbb{J}^{D^n}(\pi) \). Similarly for \(\pi_n : \mathbb{J}^{D^n}(\pi) \rightarrow M \) and \(\pi_{n,m} : \mathbb{J}^{D^n}(\pi) \rightarrow \mathbb{J}^{D^m}(\pi) \) with \(m \leq n \).

It is easy to see that

Proposition 51 Let \(m,n \) be natural numbers with \(m \leq n \). Let \(k_1,\ldots,k_m \) be positive integers with \(k_1 + \ldots + k_m = n \). For any \(\nabla_x \in \mathbb{J}^{D^n}(\pi) \), any \(\gamma \in (M \otimes W_{D^m})_{\pi(x)} \) and any \(\sigma \in S_n \), we have

\[
\nabla_x \left((id_M \otimes W_{(d_1,\ldots,d_n) \in D^{n+1} \rightarrow (d_{\sigma(1)},\ldots,d_{\sigma(k_1)},\ldots,d_{\sigma(k_1+k_2)},\ldots,d_{\sigma(k_1+\ldots+k_{m-1}+1)},\ldots,d_{\sigma(n)})}) (\gamma)\right) = (id_E \otimes W_{(d_1,\ldots,d_n) \in D^{n+1} \rightarrow (d_{\sigma(1)},\ldots,d_{\sigma(k_1)},\ldots,d_{\sigma(k_1+k_2)},\ldots,d_{\sigma(k_1+\ldots+k_{m-1}+1)},\ldots,d_{\sigma(n)})}) ((\pi_{n,m}(\nabla_x))(\gamma))
\]

Interestingly enough, any \(D^n \)-pseudotangential naturally gives rise to what might be called a \(D \)-pseudotangential for any simplicial infinitesimal space \(D \) of dimension less than or equal to \(n \).

Theorem 52 Let \(n \) be a natural number. Let \(D \) be a simplicial infinitesimal space of dimension less than or equal to \(n \). Any \(D^n \)-pseudotangential \(\nabla_x \) over the bundle \(\pi : E \rightarrow M \) at \(x \in E \) naturally induces a mapping \(\nabla_x^D : (M \otimes W_D)_{\pi(x)} \rightarrow (E \otimes W_D)_x \) abiding by the following three conditions:

17
1. We have
\[(\pi \otimes \text{id}_{W_\gamma}) \left(\nabla^D_x(\gamma) \right) = \gamma\]
for any \(\gamma \in (M \otimes W_\gamma)_{\pi(x)}\).

2. We have
\[\nabla^D_x(\alpha \cdot \gamma) = \alpha \cdot (\nabla^D_x(\gamma))\]
for any \(\alpha \in \mathbb{R}\) and any \(\gamma \in (M \otimes W_\gamma)_{\pi(x)}\), where \(i\) is a natural number with \(1 \leq i \leq \text{deg } D\).

3. The diagram
\[
\begin{array}{ccc}
(M \otimes W_\gamma)_{\pi(x)} & \to & (M \otimes W_\gamma)_{\pi(x)} \otimes W_{D_m} \\
\nabla_x \downarrow & & \downarrow \nabla_x \otimes \text{id}_{W_{D_m}} \\
(E \otimes W_\gamma)_x & \to & (E \otimes W_\gamma)_x \otimes W_{D_m}
\end{array}
\]
is commutative, where \(m\) is an arbitrary natural number, the upper horizontal arrow is
\[\text{id}_M \otimes W_{(d_1,\ldots,d_k,e)} : \mathcal{D} \times D_m \to (d_1,\ldots,d_{k-1},ed,d_{k+1},\ldots,d_k) \in \mathcal{D},\]
and the lower horizontal arrow is
\[\text{id}_E \otimes W_{(d_1,\ldots,d_k,e)} : \mathcal{D} \times D_m \to (d_1,\ldots,d_{k-1},ed,d_{k+1},\ldots,d_k) \in \mathcal{D}\]
with \(k = \text{deg } D\) and \(1 \leq i \leq k\).

If the simplicial infinitesimal space \(\mathcal{D}\) is symmetric, the induced mapping \(\nabla^D : (M \otimes W_\gamma)_{\pi(x)} \to (E \otimes W_\gamma)_x\) acquiesces in the following condition of symmetry besides the above ones:

- We have
\[
\nabla^D_x(\gamma^\sigma) = (\nabla^D_x(\gamma))^\sigma
\]
for any \(\sigma \in S_k\) and any \(\gamma \in (M \otimes W_\gamma)_{\pi(x)}\).

Proof. For the sake of simplicity in description, we deal, by way of example, with the case that \(n = 3\) and \(\mathcal{D} = D\{3\}_2\), for which the standard quasi-colimit representation was given in the proof of Theorem 9 Therefore, giving \(\gamma \in (M \otimes W_{D\{3\}_2})_{\pi(x)}\) is equivalent to giving \(\gamma_1, \gamma_2, \gamma_3 \in (M \otimes W_{D\{3\}_2})_{\pi(x)}\) with \(d_2(\gamma_1) = d_2(\gamma_2), d_1(\gamma_1) = d_2(\gamma_3)\) and \(d_1(\gamma_1) = d_1(\gamma_3)\). By Proposition 47, we have

\[
d_2(\pi_{3,2}(\nabla_x)(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_2(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_2(\gamma_2)) = \pi_{3,2}(\nabla_x)(d_2(\gamma_3)) = d_2(\pi_{3,2}(\nabla_x)(\gamma_1))
\]
\[
d_1(\pi_{3,2}(\nabla_x)(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_2(\gamma_2)) = \pi_{3,2}(\nabla_x)(d_2(\gamma_3)) = d_2(\pi_{3,2}(\nabla_x)(\gamma_1))
\]
\[
d_1(\pi_{3,2}(\nabla_x)(\gamma_2)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_3)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_2)) = d_1(\pi_{3,2}(\nabla_x)(\gamma_3))
\]
\[
d_1(\pi_{3,2}(\nabla_x)(\gamma_3)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_1)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_2)) = \pi_{3,2}(\nabla_x)(d_1(\gamma_3)) = d_1(\pi_{3,2}(\nabla_x)(\gamma_3))
\]

18
Thus we can prove by induction on n that
\[
\begin{align*}
\gamma & \in (E \otimes W_{D(3)_2})_x \\
\mathbf{d}_1(\nabla^{D(3)_2}_x(\gamma)) & = \tilde{\pi}_{3,2} (\nabla_x)(\gamma_{23}) \\
\mathbf{d}_2(\nabla^{D(3)_2}_x(\gamma)) & = \tilde{\pi}_{3,2} (\nabla_x)(\gamma_{13}) \\
\mathbf{d}_3(\nabla^{D(3)_2}_x(\gamma)) & = \tilde{\pi}_{3,2} (\nabla_x)(\gamma_{12}).
\end{align*}
\]

The proof that $\nabla^{D(3)_2}_x \colon (M \otimes W_{D(3)_2})_{\pi(x)} \to (E \otimes W_{D(3)_2})_x$ acquires in the desired four properties is safely left to the reader. ■

Remark 53 The reader should note that the induced mapping ∇^D_x is defined in terms of the standard quasi-colimit representation of \mathbb{D}. The concluding corollary of this subsection will show that the induced mapping ∇^D_x is independent of our choice of a quasi-colimit representation of \mathbb{D} to a large extent, whether it is standard or not, as long as ∇ is not only a D^n-pseudotangential but also a D^n-tangential. We note in passing that $\hat{\pi}_{n,m}(\nabla)$ with $m \leq n$ is no other than ∇^D_x.

Proposition 54 Let $\pi' : P \to E$ be another bundle with $x \in P$. If $\nabla_{\pi'(x)}$ is a n-tangential$_2$ over the bundle $\pi : E \to M$ at $\pi'(x) \in E$ and ∇_x is a n-tangential$_2$ over the bundle $\pi' : P \to E$ at $x \in E$, then the composition $\nabla_x \circ \nabla_{\pi'(x)}$ is a n-tangential$_2$ over the bundle $\pi \circ \pi' : P \to M$ at $x \in E$, and $\pi_{n,n-1}(\nabla_x \circ \nabla_{\pi'(x)}) = \pi_{n,n-1}(\nabla_x) \circ \pi_{n,n-1}(\nabla_{\pi'(x)})$ provided that $n \geq 1$.

Proof. In case of $n = 0$, there is nothing to prove. It is easy to see that if $\nabla_{\pi'(x)}$ is a n-tangential$_2$ over the bundle $\pi : E \to M$ at $\pi'(x) \in E$ and ∇_x is a n-tangential$_2$ over the bundle $\pi' : P \to E$ at $x \in E$, then the composition $\nabla_x \circ \nabla_{\pi'(x)}$ is an n-pseudoconnection over the bundle $\pi : E \to M$ at $x \in P$. If $\nabla_{\pi'(x)}$ is a $(n+1)$-tangential$_2$ over the bundle $\pi : E \to M$ at $\pi'(x) \in E$ and ∇_x is a $(n+1)$-tangential$_2$ over the bundle $\pi' : P \to E$ at $x \in P$, then we have
\[
\pi_{n+1,n}(\nabla_x \circ \nabla_{\pi'(x)}) = \mathbf{d}_{n+1} \circ \nabla_x \circ \nabla_{\pi'(x)} \circ s_{n+1} \\
= \mathbf{d}_{n+1} \circ \nabla_x \circ s_{n+1} \circ \mathbf{d}_{n+1} \circ \nabla_{\pi'(x)} \circ s_{n+1}
\]
[By Proposition 41]
\[
= \pi_{n+1,n}(\nabla_x) \circ \pi_{n+1,n}(\nabla_{\pi'(x)})
\]

Therefore we have
\[
\nabla_x \circ \nabla_{\pi'(x)} \left((s_{d_1} \circ \cdots \circ s_{d_{n+1}}) \in D^{n+1} \right) (\gamma)
= \nabla_x \left(\nabla_{\pi'(x)} \left((s_{d_1} \circ \cdots \circ s_{d_{n+1}}) \in D^{n+1} \right) (\gamma) \right)
= \nabla_x \left(\left(\mathbf{id}_E \otimes (d_{d_1} \cdots d_{d_{n+1}}) \in D^{n+1} \to (d_{d_1} \cdots d_{d_{n+1}}) \in D^n \right) (\pi_{n+1,n}(\nabla_{\pi'(x)})(\gamma)) \right)
= \left(\mathbf{id}_E \otimes (d_{d_1} \cdots d_{d_{n+1}}) \in D^{n+1} \to (d_{d_1} \cdots d_{d_{n+1}}) \in D^n \right) (\pi_{n+1,n}(\nabla_{\pi'(x)})(\gamma))
= \left(\mathbf{id}_E \otimes (d_{d_1} \cdots d_{d_{n+1}}) \in D^{n+1} \to (d_{d_1} \cdots d_{d_{n+1}}) \in D^n \right) (\pi_{n+1,n}(\nabla_x \circ \nabla_{\pi'(x)})(\gamma))
\]

Thus we can prove by induction on n that if $\nabla_{\pi'(x)}$ is a n-tangential$_2$ over the
bundle \(\pi : E \to M \) at \(\pi'(x) \in E \) and \(\nabla_x \) is a \(n \)-tangential over the bundle \(\pi' : P \to E \) at \(x \in E \), then the composition \(\nabla_x \circ \nabla_{\pi'(x)} \) is a \(n \)-tangential over the bundle \(\pi \circ \pi' : P \to M \) at \(x \in E \). □

Theorem 55 Let \(\nabla \) be a \(\mathcal{D}^n \)-tangential over the bundle \(\pi : E \to M \) at \(x \in E \). Let \(\mathcal{D} \) and \(\mathcal{D}' \) be simplicial infinitesimal spaces of dimension less than or equal to \(n \). Let \(\chi \) be a monomial mapping from \(\mathcal{D} \) to \(\mathcal{D}' \). Let \(\gamma \in \mathcal{T}_{\nabla}^{\mathcal{D}'}(M) \). Then we have

\[
\nabla_{\mathcal{D}}((\text{id}_M \otimes \mathcal{W}_\chi)(\gamma)) = (\text{id}_E \otimes \mathcal{W}_\chi)(\nabla_{\mathcal{D}'}(\gamma))
\]

Remark 56 The reader should note that the above far-flung generalization of Proposition [57] subsumes Proposition [44].

Proof. In place of giving a general proof with formidable notation, we satisfy ourselves with an illustration. Here we deal only with the case that \(\mathcal{D} = \mathcal{D}^3 \), \(\mathcal{D}' = \mathcal{D}(3) \) and \(\chi \) is \(\chi(d_1, d_2, d_3) = (d_1d_2, d_1d_3, d_2d_3) \)

for any \((d_1, d_2, d_3) \in \mathcal{D}^3 \). We assume that \(n \geq 3 \). We note first that the monomial mapping \(\chi : \mathcal{D}^3 \to \mathcal{D}(3) \) is the composition of two monomial mappings

\[
\chi_1 : \mathcal{D}^3 \to D \{6; (1, 2), (3, 4), (5, 6)\}
\]

\[
\chi_2 : D \{6; (1, 2), (3, 4), (5, 6)\} \to D(3)
\]

with

\[
\chi_1(d_1, d_2, d_3) = (d_1, d_1, d_2, d_3, d_3)
\]

for any \((d_1, d_2, d_3) \in \mathcal{D}^3 \) and

\[
\chi_2(d_1, d_2, d_3, d_4, d_5, d_6) = (d_1d_3, d_2d_5, d_4d_6)
\]

for any \((d_1, d_2, d_3, d_4, d_5, d_6) \in D \{6; (1, 2), (3, 4), (5, 6)\} \), while the former monomial mapping \(\chi_1 : \mathcal{D}^3 \to D \{6; (1, 2), (3, 4), (5, 6)\} \) is in turn the composition of three monomial mappings

\[
\chi_1^1 : \mathcal{D}^3 \to D \{4; (1, 2)\}
\]

\[
\chi_1^2 : D \{4; (1, 2)\} \to D \{5; (1, 2), (3, 4)\}
\]

\[
\chi_1^3 : D \{5; (1, 2), (3, 4)\} \to D \{6; (1, 2), (3, 4), (5, 6)\}
\]

with

\[
\chi_1^1(d_1, d_2, d_3) = (d_1, d_1, d_2, d_3)
\]

for any \((d_1, d_2, d_3) \in \mathcal{D}^3 \);

\[
\chi_1^2(d_1, d_2, d_3, d_4) = (d_1, d_2, d_3, d_4)
\]

for any \((d_1, d_2, d_3, d_4) \in D \{4; (1, 2)\} \) and

\[
\chi_1^3(d_1, d_2, d_3, d_4, d_5) = (d_1, d_2, d_3, d_4, d_5)
\]

for any \((d_1, d_2, d_3, d_4) \in D \{4; (1, 2)\} \) and
for any \((d_1, d_2, d_3, d_4, d_5) \in D \{5; (1, 2), (3, 4)\}\). Therefore it suffices to prove that

\[
\nabla \left(\left(\text{id}_M \otimes W_{\chi_1} \right) (\gamma') \right) = \left(\text{id}_E \otimes W_{\chi_1} \right) \left(\nabla_{D(4;1,2)} \right) (\gamma')
\]

for any \(\gamma' \in (M \otimes W_{D(4;1,2)})_{\pi(x)}\), that

\[
\nabla_{D(4;1,2)} \left(\left(\text{id}_M \otimes W_{\chi_2} \right) (\gamma'') \right) = \left(\text{id}_E \otimes W_{\chi_2} \right) \left(\nabla_{D(5;1,2)} \right) (\gamma'')
\]

for any \(\gamma'' \in (M \otimes W_{D(5;1,2)})_{\pi(x)}\), that

\[
\nabla_{D(5;1,2)} \left(\left(\text{id}_M \otimes W_{\chi_3} \right) (\gamma''') \right) = \left(\text{id}_E \otimes W_{\chi_3} \right) \left(\nabla_{D(6;1,2)} \right) (\gamma''')
\]

for any \(\gamma''' \in (M \otimes W_{D(6;1,2)})_{\pi(x)}\), and that

\[
\nabla_{D(6;1,2)} \left(\left(\text{id}_M \otimes W_{\chi_4} \right) (\gamma''') \right) = \left(\text{id}_E \otimes W_{\chi_4} \right) \left(\nabla_{D(7;1,2)} \right) (\gamma''')
\]

for any \(\gamma'''' \in (M \otimes W_{D(7;1,2)})_{\pi(x)}\). Since \(D \{4; (1, 2)\} = D(2) \times D^2\), it is easy to see that

\[
\nabla \left(\left(\text{id}_M \otimes W_{\chi_1} \right) (\gamma') \right) = \nabla(\gamma'_1 + \gamma'_2) = \nabla(\gamma'_1) + \nabla(\gamma'_2)
\]

where \(\gamma'_1 = \gamma' \circ (i_1 \times \text{id}_{D^2})\) and \(\gamma'_2 = \gamma' \circ (i_2 \times \text{id}_{D^2})\) with \(i_1(d) = (d, 0) \in D(2)\) and \(i_2(d) = (0, d) \in D(2)\) for any \(d \in D\). On the other hand, we have

\[
\left(\text{id}_E \otimes W_{\chi_1} \right) \left(\nabla_{D(4;1,2)} \right) (\gamma') = \left(\text{id}_E \otimes W_{\chi_1} \right) \left(\text{l}_{(\nabla(\gamma'_1), \nabla(\gamma'_2))} \right) = \nabla(\gamma'_1) + \nabla(\gamma'_2)
\]

where \(\text{l}_{(\nabla(\gamma'_1), \nabla(\gamma'_2))}\) is the unique element of \(E \otimes W_{D(2) \times D^2}\) with

\[
\left(\text{id}_E \otimes W_{i_1 \times \text{id}_{D^2}} \right) \left(\text{l}_{(\nabla(\gamma'_1), \nabla(\gamma'_2))} \right) = \nabla(\gamma'_1)
\]

and

\[
\left(\text{id}_E \otimes W_{i_2 \times \text{id}_{D^2}} \right) \left(\text{l}_{(\nabla(\gamma'_1), \nabla(\gamma'_2))} \right) = \nabla(\gamma'_2)
\]

Thus we have established \(\text{2}\). By the same token, we can establish \(\text{3}\) and \(\text{4}\). In order to prove \(\text{1}\), it suffices to note that

\[
\left(\text{id}_E \otimes W_{i_{135}} \right) \left(\nabla_{D(6;1,2), (3,4), (5,6)} \left(\left(\text{id}_M \otimes W_{\chi_2} \right) (\gamma''') \right) \right)
\]

\[
= \left(\text{id}_E \otimes W_{\chi_2 \circ i_{135}} \right) \left(\nabla_{D(3)} (\gamma''') \right)
\]

together with the seven similar identities obtained from the above by replacing \(i_{135}\) by seven other \(i_{jkl} : D^3 \rightarrow D \{6; (1, 2), (3, 4), (5, 6)\}\) in the standard quasi-colimit representation of \(D \{6; (1, 2), (3, 4), (5, 6)\}\), where \(i_{jkl} : D^3 \rightarrow D \{6; (1, 2), (3, 4), (5, 6)\}\) \((1 \leq j < k < l \leq 6)\) is a mapping with \(i_{jkl}(d_1, d_2, d_3) = \)
(..., d_1, ..., d_2, ..., d_3, ...) (d_1, d_2 and d_3 are inserted at the j-th, k-th and l-th positions respectively, while the other components are fixed at 0). Its proof goes as follows. Since

\[(\text{id}_E \otimes W_{i_{135}}) (\nabla D_{\{6;1,2),(3,4),(5,6)\}}((\text{id}_M \otimes W_{\chi_2}) (\gamma''')))\]

\[= \nabla((\text{id}_M \otimes W_{\chi_2 \circ i_{135}}) (\gamma''')),\]

it suffices to show that

\[\nabla((\text{id}_M \otimes W_{\chi_2 \circ i_{135}}) (\gamma''')) = (\text{id}_E \otimes W_{\chi_2 \circ i_{135}}) \nabla D(3)(\gamma''')\]

However the last identity follows at once by simply observing that the mapping \(\chi_2 \circ i_{135} : D^3 \to D(3)\) is the mapping

\[(d_1, d_2, d_3) \in D^3 \mapsto (d_1d_2, 0, 0) \in D(3),\]

which is the successive composition of the following three mappings:

\[(d_1, d_2, d_3) \in D^3 \mapsto (d_1, d_2) \in D^2\]

\[(d_1, d_2) \in D^2 \mapsto d_1d_2 \in D\]

\[d \in D \mapsto (d, 0, 0) \in D(3).\]

\[\blacksquare\]

Corollary 57 Let \(\nabla\) be a \(D^n\)-tangential over the bundle \(\pi : E \to M\) at \(x \in E\). Let \(\mathbb{D}\) be a simplicially infinitesimal spaces of dimension less than or equal to \(n\). Any nonstandard quasi-colimit representation of \(\mathbb{D}\), if any mapping into \(\mathbb{D}\) in the representation is monomial, induces the same mapping as \(\nabla_{\mathbb{D}}\) (induced by the standard quasi-colimit representation of \(\mathbb{D}\)) by the method in the proof of Theorem 52.

Proof. It suffices to note that

\[\nabla_{D^n}((\text{id}_M \otimes W_{\chi}) (\gamma)) = (\text{id}_E \otimes W_{\chi}) (\nabla_{\mathbb{D}}(\gamma))\]

for any mapping \(\chi : D^n \to \mathbb{D}\) in the given nonstandard quasi-colimit representation of \(\mathbb{D}\), which follows directly from the above theorem. \(\blacksquare\)

5 The Third Approach to Jets

Definition 58 Let \(n\) be a natural number. A \(D_n\)-pseudotangential over the bundle \(\pi : E \to M\) at \(x \in E\) is a mapping

\[\nabla_x : (M \otimes W_{D_n})_{\pi(x)} \to (E \otimes W_{D_n})_x\]

abiding by the following two conditions:
1. We have

\[(\pi \otimes \text{id}_{W_{D_n}}) (\nabla_x (\gamma)) = \gamma\]

for any \(\gamma \in (M \otimes W_{D_n})_{\pi(x)} \).

2. For any \(\gamma \in (E \otimes W_{D_n})_x \) and any \(\alpha \in \mathbb{R} \), we have

\[\nabla_x (\alpha \gamma) = \alpha \nabla_x (\gamma)\]

3. The diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_n})_{\pi(x)} & \xrightarrow{id_M \otimes W_{(d_1,d_2) \in D_n \times D_m \rightarrow d_1 \times d_2 \in D_n}} & (M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m} \\
\nabla_x \downarrow & & \downarrow \nabla_x \otimes \text{id}_{W_{D_m}} \\
(E \otimes W_{D_n})_x & \xrightarrow{id_E \otimes W_{(d_1,d_2) \in D_n \times D_m \rightarrow d_1 \times d_2 \in D_n}} & (E \otimes W_{D_n})_x \otimes W_{D_m}
\end{array}
\]

commutes, where \(m \) is an arbitrary natural number.

Remark 59 The third condition in the above definition claims what is called infinitesimal linearity.

Notation 60 We denote by \(\tilde{\mathfrak{T}}_x^n (\pi) \) the totality of \(D_n \)-pseudotangentials over the bundle \(\pi : E \rightarrow M \) at \(x \in E \). We denote by \(\tilde{\mathfrak{T}}_x (\pi) \) the set-theoretic union of \(\tilde{\mathfrak{T}}_x^n (\pi) \)'s for all \(x \in E \).

It is easy to see that

Lemma 61 The following diagram is an equalizer in the category of Weil algebras:

\[
\begin{array}{ccc}
W_{D_n} & \xrightarrow{W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1 \times d_2 \in D_n}} & W_{D_{n+1} \times D_n} \\
\xrightarrow{W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow (d_1,d_2,d_3) \in D_{n+1} \times D_n}} & & \xrightarrow{W_{(d_1,d_2,d_3) \in D_{n+1} \times D_n \rightarrow (d_1,d_2,d_3) \in D_{n+1} \times D_n}} \\
W_{D_{n+1} \times D_{n+1} \times D_n} & & W_{D_{n+1} \times D_{n+1} \times D_n}
\end{array}
\]

Proposition 62 Let \(\nabla_x \) be a \(D_{n+1} \)-pseudotangential over the bundle \(\pi : E \rightarrow M \) at \(x \in E \) and \(\gamma \in (M \otimes W_{D_n})_{\pi(x)} \). Then there exists a unique \(\gamma' \in (E \otimes W_{D_n})_x \) such that the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1 \times d_2 \in D_n}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n}
\]

\[\nabla_x \otimes \text{id}_{W_{D_n}} (E \otimes W_{D_{n+1}})_x \otimes W_{D_n}
\]

applied to \(\gamma \) results in

\[(\text{id}_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1 \times d_2 \in D_n}) (\gamma')\]
Proof. By dint of Lemma 6.1 it suffices to show that the composition of mappings
\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2)\in D_{n+1}\times D_n\mapsto d_1,d_2\in D_n}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n}
\]
\[
\nabla_x \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_{n+1} \times D_n}} (8)
\]
is equal to the composition of mappings\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2)\in D_{n+1}\times D_n\mapsto d_1,d_2\in D_n}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n}
\]
\[
\nabla_x \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_{n+1} \times D_n}} (9)
\]
Since \(\otimes\) is a bifunctor, the diagram\[
(M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \rightarrow (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_{n+1} \times D_n}
\]
\[
\nabla_x \otimes \text{id}_{W_{D_n}} \downarrow \quad \downarrow \nabla_x \otimes \text{id}_{W_{D_{n+1} \times D_n}}
\]
\[
(E \otimes W_{D_{n+1}})_x \otimes W_{D_n} \rightarrow (E \otimes W_{D_{n+1}})_x \otimes W_{D_{n+1} \times D_n}
\]
commutes, where the upper horizontal arrow is\[
\text{id}_M \otimes W_{(d_1,d_2,d_3)\in D_{n+1}\times D_{n+1}\times D_n\mapsto (d_1,d_2,d_3)\in D_{n+1}\times D_n},
\]
while the lower horizontal arrow is\[
\text{id}_E \otimes W_{(d_1,d_2,d_3)\in D_{n+1}\times D_{n+1}\times D_n\mapsto (d_1,d_2,d_3)\in D_{n+1}\times D_n}.
\]
Therefore the composition of mappings in (8) is equal to the composition of mappings\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2)\in D_{n+1}\times D_n\mapsto d_1,d_2\in D_n}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n}
\]
\[
\nabla_x \otimes \text{id}_{W_{D_{n+1} \times D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_{n+1} \times D_n}} (10)
\]
Since the composition of mappings
\[
M \otimes W_{D_n} \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2)\in D_{n+1}\times D_n\mapsto d_1,d_2\in D_n}} M \otimes W_{D_{n+1} \times D_n}
\]
\[
\text{id}_M \otimes W_{(d_1,d_2,d_3)\in D_{n+1}\times D_{n+1}\times D_n\mapsto (d_1,d_2,d_3)\in D_{n+1}\times D_n} \xrightarrow{M \otimes W_{D_{n+1} \times D_{n+1} \times D_n}} M \otimes W_{D_{n+1} \times D_{n+1} \times D_n}
\]

24
is trivially equal to the composition of mappings

\[
M \otimes W_{D_n} \text{id}_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \mapsto d_1,d_2 \in D_n} M \otimes W_{D_{n+1} \times D_n}
\]

the composition of mappings in (11) is equal to the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \text{id}_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \mapsto d_1,d_2 \in D_n} (M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_n}
\]

By dint of the third condition in Definition 58, the diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_{n+1}})_{x(x)} \otimes W_{D_n} & \rightarrow & (M \otimes W_{D_{n+1}})_{x(x)} \otimes W_{D_{n+1} \times D_n} \\
\nabla_x \otimes \text{id}_{W_{D_n}} & \downarrow & \nabla_x \otimes \text{id}_{W_{D_{n+1} \times D_n}} \\
(E \otimes W_{D_{n+1}})_{x} \otimes W_{D_n} & \rightarrow & (E \otimes W_{D_{n+1}})_{x} \otimes W_{D_{n+1} \times D_n}
\end{array}
\]

commutes, where the upper horizontal arrow is

\[
\text{id}_M \otimes W_{(d_1,d_2,d_3) \in D_{n+1} \times D_{n+1} \times D_n \mapsto (d_1,d_2,d_3) \in D_{n+1} \times D_n},
\]

and the lower horizontal arrow is

\[
\text{id}_E \otimes W_{(d_1,d_2,d_3) \in D_{n+1} \times D_{n+1} \times D_n \mapsto (d_1,d_2,d_3) \in D_{n+1} \times D_n}.
\]

Therefore the composition of mappings in (11) is equal to the composition of mappings in (9), which completes the proof.

It is not difficult to see that

Proposition 63

Given a \(D_{n+1}\)-pseudotangential \(\nabla_x\) over the bundle \(\pi : E \rightarrow M\) at \(x \in E\), the assignment \(\gamma \in (M \otimes W_{D_n})_{\pi(x)} \mapsto \gamma' \in (E \otimes W_{D_n})_{x}\) in the above proposition, denoted by \(\hat{\pi}_{n+1,n}(\nabla_x)\), is a \(D_n\)-pseudotangential over the bundle \(\pi : E \rightarrow M\) at \(x \in E\).

Proof. We have to verify the three conditions in Definition 58 concerning the mapping \(\hat{\pi}_{n+1,n}(\nabla_x) : (M \otimes W_{D_n})_{\pi(x)} \rightarrow (E \otimes W_{D_n})_{x}\).

1. To see the first condition, it suffices to show that

\[
(\text{id}_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \mapsto d_1,d_2 \in D_n}) \circ (\pi \otimes \text{id}_{W_{D_n}}) ((\hat{\pi}_{n+1,n}(\nabla_x)) (\gamma)) = \gamma,
\]

which is equivalent to

\[
(\pi \otimes \text{id}_{W_{D_{n+1} \times D_n}}) \circ (\text{id}_E \otimes W_{(d_1,d_2,d_3) \in D_{n+1} \times D_{n+1} \times D_n \mapsto (d_1,d_2,d_3) \in D_{n+1} \times D_n}) ((\hat{\pi}_{n+1,n}(\nabla_x)) (\gamma)) = \gamma.
\]
since \otimes is a bifunctor. Therefore it suffices to show that the composition of mappings

$$ (M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

$$ \nabla_x \otimes \text{id}_{W_{D_{n+1}}} (E \otimes W_{D_{n+1}}) \xrightarrow{\pi \otimes \text{id}_{W_{D_{n+1}}}} (M \otimes W_{D_{n+1}}) \otimes W_{D_n} $$

applied to γ results in

$$ (\text{id}_M \otimes W_{(d_1,d_2)} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n) (\gamma), $$

which follows directly from the first condition in Definition 58.

2. To see the second, let us note first that the composition of mappings

$$ (M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

is equal to the composition of mappings

$$ (M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

$$ \text{id}_M \otimes W_{(d_1,d_2)} \in D_{n+1} \times D_n \rightarrow (d_1,d_2) \in D_{n+1} \times D_n \quad (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

Since ∇_x is a D_{n+1}-pseudotangential over the bundle $\pi : E \rightarrow M$ at $x \in E$, the diagram

$$ (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \quad \rightarrow \quad (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

$$ \nabla_x \otimes \text{id}_{W_{D_n}} \quad \downarrow \quad \nabla_x \otimes \text{id}_{W_{D_n}} $$

$$ (E \otimes W_{D_{n+1}}) \otimes W_{D_n} \quad \rightarrow \quad (E \otimes W_{D_{n+1}}) \otimes W_{D_n} $$

commutes, where the upper horizontal arrow is

$$ \text{id}_M \otimes W_{(d_1,d_2)} \in D_{n+1} \times D_n \rightarrow (d_1,d_2) \in D_{n+1} \times D_n, $$

while the lower horizontal arrow is

$$ \text{id}_E \otimes W_{(d_1,d_2)} \in D_{n+1} \times D_n \rightarrow (d_1,d_2) \in D_{n+1} \times D_n, $$

Therefore the composition of mappings

$$ (M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} $$

$$ \nabla_x \otimes \text{id}_{W_{D_n}} \quad (E \otimes W_{D_{n+1}}) \otimes W_{D_n} $$

26
3. To see the third, we have to show that the diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_n})_{\pi(x)} & \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} & (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \\
\nabla_x \otimes id_{D_n} & \xrightarrow{(E \otimes W_{D_{n+1}})_x} & \nabla_x \otimes id_{D_n} \\
(M \otimes W_{D_{n+1}})_{\pi(x)} & \xrightarrow{id_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow (d_1,d_2) \in D_{n+1} \times D_n}} & (E \otimes W_{D_{n+1}})_x \otimes W_{D_n}
\end{array}
\]

is equal to the composition of mappings

\[
\begin{align*}
(M \otimes W_{D_n})_{\pi(x)} & \xrightarrow{id_M \otimes W_{d_1,d_2} \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \\
\nabla_x \otimes id_{D_n} & \xrightarrow{(E \otimes W_{D_{n+1}})_x} (E \otimes W_{D_{n+1}})_x \otimes W_{D_n}
\end{align*}
\]

The former composition of mappings applied to \(\gamma \in (M \otimes W_{D_n})_{\pi(x)}\) results in

\[
(id_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n})(\hat{\pi}_{n+1,n}(\nabla_x)(\alpha \gamma)),
\]

while the latter composition of mappings applied to \(\gamma\) results in

\[
(id_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow (d_1,d_2) \in D_{n+1} \times D_n}) \circ (id_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n})(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma)) = (id_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n})(\alpha(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma))).
\]

Therefore we have

\[
\hat{\pi}_{n+1,n}(\nabla_x)(\alpha \gamma) = \alpha(\hat{\pi}_{n+1,n}(\nabla_x)(\gamma)).
\]

3. To see the third, we have to show that the diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_n})_{\pi(x)} & \xrightarrow{id_M \otimes W_{D_{D_n} \times D_m \rightarrow D_n}} & (M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_n} \\
\nabla_x \otimes id_{D_n} & \xrightarrow{(E \otimes W_{D_{n+1}})_x} & (E \otimes W_{D_{n+1}})_x \otimes W_{D_n}
\end{array}
\]

commutes, where \(m\) is an arbitrary natural number. Since the lower square of the diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_n})_{\pi(x)} & \xrightarrow{id_M \otimes W_{D_{D_n} \times D_m \rightarrow D_n}} & (M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m} \\
\nabla_x \otimes id_{D_n} & \xrightarrow{(E \otimes W_{D_{D_n} \times D_m \rightarrow D_n})} & \nabla_x \otimes id_{D_n} \\
(M \otimes W_{D_{D_{n+1} \times D_{D_m} \rightarrow D_n}})_{\pi(x)} & \xrightarrow{id_E \otimes W_{m_{D_{n+1} \times D_{D_m} \rightarrow D_n}}} & (E \otimes W_{D_{D_{n+1} \times D_{D_m} \rightarrow D_n}})_x \otimes W_{D_n}
\end{array}
\]

commutes, so that the commutativity of the diagram in (12) is equivalent to the commutativity of the outer square of the diagram in (13). The composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1} \times D_{D_m} \rightarrow D_n}}} (E \otimes W_{D_{D_{n+1} \times D_{D_m} \rightarrow D_n}})_{\pi(x)} \otimes W_{D_n}
\]

is equal to the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1} \times D_{D_m} \rightarrow D_n}}} \nabla_x \otimes W_{D_n},
\]

\[
\nabla_x \otimes id_{W_{D_n}} (E \otimes W_{D_{n+1}})_x \otimes W_{D_n}.
\]
while the composition of mappings
\[
(M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m} \xrightarrow{\hat{\pi}_{n+1,n}(\nabla_x)} (E \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m}
\]
\[
\text{id}_M \otimes W_{m_{n+1} \times D_n \rightarrow D_n \times D_m} \xrightarrow{\pi(x)} (M \otimes W_{D_n \times m_{n+1}})_{\pi(x)} \otimes W_{D_n \times D_m}
\]
is equal to the composition of mappings
\[
(M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m} \xrightarrow{\nabla_x \otimes \text{id}_{W_{D_n \times D_m}}} (E \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n \times D_m}
\]
It is easy to see that the four diagrams are commutative, which implies that the outer square of the diagram commutes. This completes the proof.

\[\Box\]

Notation 64 By the above proposition, we have the canonical projection \(\hat{\pi}_{n+1,n} : \hat{\mathbb{D}}_{n+1}(\pi) \rightarrow \hat{\mathbb{D}}_n(\pi)\) so that, given \(\nabla_x \in \hat{\mathbb{D}}_{n+1}(\pi)\) and \(\gamma \in (M \otimes W_{D_n})_{\pi(x)}\), the composition of mappings in \(\Box\) applied to \(\gamma\) results in
\[
(\text{id}_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n}) (\hat{\pi}_{n+1,n}(\nabla_x)(\gamma))
\]
For any natural numbers \(n, m\) with \(m \leq n\), we define \(\hat{\pi}_{n,m} : \hat{\mathbb{D}}_n(\pi) \rightarrow \hat{\mathbb{D}}_m(\pi)\) to be \(\hat{\pi}_{m+1,m} \circ \ldots \circ \hat{\pi}_{n,n-1}\).

Proposition 65 Let \(\nabla_x\) be a \(D_{n+1}\)-pseudotangential over the bundle \(\pi : E \rightarrow M\) at \(x \in E\). Then the diagram
\[
(M \otimes W_{D_{n+1}})_{\pi(x)} \xrightarrow{\nabla_x} (E \otimes W_{D_{n+1}})_{\pi(x)}
\]
is commutative.

Proof. It is easy to see that the following four diagrams are commutative:
\[
\begin{align*}
M \otimes W_{D_{n+1}} & \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_{n+1} \rightarrow d_1,d_2 \in D_{n+1}}} M \otimes W_{D_{n+1} \times D_{n+1}} \\
\text{id}_M \otimes W_{D_{n+1} \times D_n} & \xrightarrow{\text{id}_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n}} \text{id}_M \otimes W_{D_{n+1} \times D_{n+1}}
\end{align*}
\]
Therefore the composition of mappings which yields the coveted result.

\[
\begin{array}{ccc}
M \otimes W_{D_{n+1} \times D_{n+1}} & \nabla_x \otimes \text{id}_{W_{D_{n+1}}} & E \otimes W_{D_{n+1} \times D_{n+1}} \\
id_M \otimes W_{i_{D_{n+1} \times D_{n+1}}} & & id_E \otimes W_{i_{D_{n+1} \times D_{n+1}}} \\
M \otimes W_{D_{n+1} \times D_{n}} & \nabla_x \otimes \text{id}_{W_{D_{n}}} & E \otimes W_{D_{n+1} \times D_{n}} \\
\end{array}
\]

By the second condition in Definition 58

\[
\begin{array}{ccc}
E \otimes W_{D_{n+1}} & \text{id}_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_{n+1} \rightarrow d_1,d_2 \in D_{n+1}} & E \otimes W_{D_{n+1} \times D_{n+1}} \\
E \otimes W_{D_n} & \text{id}_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_{n+1} \rightarrow d_1,d_2 \in D_n} & E \otimes W_{D_{n+1} \times D_n} \\
\end{array}
\]

Therefore the composition of mappings

\[
\begin{array}{ccc}
M \otimes W_{D_{n+1}} & \text{id}_M \otimes W_{i_{D_{n+1}}} & M \otimes W_{D_n} \\
id_M \otimes W_{(d_1,d_2) \in D_{n+1} \times D_{n} \rightarrow d_1,d_2 \in D_{n}} & M \otimes W_{D_{n+1} \times D_n} \\
(M \otimes W_{D_{n+1}}) \otimes W_{D_n} \nabla_x \otimes \text{id}_{W_{D_n}} (E \otimes W_{D_{n+1}}) \otimes W_{D_n} & E \otimes W_{D_{n+1} \times D_n} \\
= (M \otimes W_{D_{n+1}}) \otimes W_{D_{n+1} \times D_n} & \end{array}
\]

is equal to the composition of mappings

\[
\begin{array}{ccc}
M \otimes W_{D_{n+1}} & \nabla_x \otimes \text{id}_{W_{D_{n+1}}} & E \otimes W_{D_{n+1}} \\
\text{id}_E \otimes W_{(d_1,d_2) \in D_{n+1} \times D_n \rightarrow d_1,d_2 \in D_n} & \text{id}_E \otimes W_{i_{D_{n+1}}} & E \otimes W_{D_{n+1} \times D_n} \\
M \otimes W_{D_{n+1}} \nabla_x \otimes \text{id}_{W_{D_{n+1}}} & E \otimes W_{D_{n+1} \times D_n} \\
\end{array}
\]

which yields the coveted result.

\[\text{Corollary 66}\] Let \(\nabla_x\) be a \(D_{n+1}\)-pseudotangential over the bundle \(\pi : E \rightarrow M\) at \(x \in E\). For any \(\gamma, \gamma' \in (M \otimes W_{D_{n+1}})_{\pi(x)}\) if

\[
\pi_{n+1,n}(\gamma) = \pi_{n+1,n}(\gamma')
\]

then

\[
\pi_{n+1,n}(\nabla_x(\gamma)) = \pi_{n+1,n}(\nabla_x(\gamma'))
\]

Proof. By the above proposition, we have

\[
\pi_{n+1,n}(\nabla_x(\gamma)) = \pi_{n+1,n}(\nabla_x)(\pi_{n+1,n}(\gamma)) = \pi_{n+1,n}(\nabla_x(\pi_{n+1,n}(\gamma'))) = \pi_{n+1,n}(\nabla_x(\gamma'))
\]

which establishes the coveted proposition.

29
Definition 67 The notion of a D_n-tangential over the bundle $\pi : E \to M$ at $x \in E$ is defined inductively on n. The notion of a D_0-tangential over the bundle $\pi : E \to M$ at $x \in E$ and that of a D_1-tangential over the bundle $\pi : E \to M$ at $x \in E$ shall be identical with that of a D_0-pseudotangential over the bundle $\pi : E \to M$ at $x \in E$ and that of a D_1-pseudotangential over the bundle $\pi : E \to M$ at $x \in E$ respectively. Now we proceed by induction on n. A D_{n+1}-pseudotangential $\nabla : (M \otimes W_{D_{n+1}})^{\pi(x)} \to (E \otimes W_{D_{n+1}})_x$ over the bundle $\pi : E \to M$ at $x \in E$ is called a D_{n+1}-tangential over the bundle $\pi : E \to M$ at $x \in E$ if it acquiesces in the following two conditions:

1. $\hat{\nabla}_{n+1}(\nabla_x)$ is a D_n-tangential over the bundle $\pi : E \to M$ at $x \in E$.

2. For any simple polynomial ρ of $d \in D_{n+1}$ with $l = \dim \rho$ and any $\gamma \in (M \otimes W_d)^{\pi(x)}$, we have
$$\nabla_x(\gamma \circ \rho) = (\pi_{n+1,l}(\nabla_x)(\gamma)) \circ \rho$$

Notation 68 We denote by $\mathcal{J}^{D_n}(\pi)$ the totality of D_n-tangentials over the bundle $\pi : E \to M$. By the very definition of a D_n-tangential, the projection $\hat{\nabla}_{n+1} : \mathcal{J}^{D_{n+1}}(\pi) \to \mathcal{J}^{D_n}(\pi)$ is naturally restricted to a mapping $\pi_{n+1,n} : \mathcal{J}^{D_{n+1}}(\pi) \to \mathcal{J}^{D_n}(\pi)$. Similarly for $\pi_{n,m} : \mathcal{J}^{D_n}(\pi) \to \mathcal{J}^{D_m}(\pi)$ with $m \leq n$.

6 From the First Approach to the Second

Definition 69 Mappings $\varphi_n : J^n(\pi) \to J^{D_n}(\pi)$ ($n = 0, 1$) shall be the identity mappings. We are going to define $\varphi_n : J^n(\pi) \to J^{D_n}(\pi)$ for any natural number n by induction on n. Let $x_n = \nabla_{x_{n-1}} \in J^n(\pi)$ and $\nabla_{x_n} \in J^{n+1}(\pi)$. We define
\(\varphi_{n+1}(\nabla x_n) \) as the composition of mappings

\[
(M \otimes W_{D^{n+1}})_{\pi(x_n)} \\
= ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \\
\left(\pi^M_{M \otimes W_{D^n}} \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \right) \\
(M \otimes W_D)_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \\
\nabla x_n \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \\
(\mathcal{J}^{D^n}(\pi) \otimes W_{D^n})_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \\
(\varphi_n \otimes \text{id}_{W_D}) \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \\
(\mathcal{J}^{D^n}(\pi) \otimes W_{D^n}) \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \\
= (E \otimes W_{D^{n+1}})_{\pi_0(x_n)}
\]

Surely we have to show that

\textbf{Lemma 70} We have

\(\varphi_{n+1}(\nabla x_n) \in \hat{J}^{n+1}(\pi) \)

\textbf{Proof.} We have to show that for any \(\gamma \in T_{\pi_n(x_n)}(M) \), any \(\alpha \in \mathbb{R} \) and any \(\sigma \in S_{n+1} \), we have

\[
\gamma = (\pi \otimes \text{id}_{W_{D^{n+1}}}) \circ (\varphi_{n+1}(\nabla x_n))(\gamma) \\
\varphi_{n+1}(\nabla x_n)(\alpha \cdot \gamma) = \alpha \cdot \varphi_{n+1}(\nabla x_n)(\gamma) \quad (1 \leq i \leq n + 1) \\
\varphi_{n+1}(\nabla x_n)(\gamma)^\sigma = (\varphi_{n+1}(\nabla x_n)(\gamma))^\sigma
\]

We proceed by induction on \(n \).

1. First we deal with (14). The mapping

\[
(\pi \otimes \text{id}_{W_{D^{n+1}}}) (\varphi_{n+1}(\nabla x_n))
\]
is the composition of mappings

\[
(M \otimes W_{D^n+1})_{\pi(x_n)} = ((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)} \otimes W_D
\]

\[
\langle \pi_M \otimes id_{W_D}, id_{(M \otimes W_{D^n}) \otimes W_D} \rangle
\]

\[
(M \otimes W_D)_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)}
\]

\[
\nabla_n \times id_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)}
\]

\[
(\varphi_n \otimes id_{W_D}) \times id_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(J^n(\pi) \otimes W_D)_{\varphi_n(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\varphi_n(x_n)}
\]

\[
\left(J^n(\pi) \times_M (M \otimes W_{D^n}) \right) \otimes W_D
\]

\[
(\nabla, \gamma) \in J^n(\pi) \times_M (M \otimes W_{D^n}) \mapsto \nabla (\gamma) \in E \otimes W_{D^n} \otimes id_{W_D}
\]

\[
((E \otimes W_{D^n}) \otimes W_D)_{(E \otimes W_{D^n})_{\pi_0(x_n)}} = (E \otimes W_{D^n+1})_{\pi_0(x_n)} \pi \otimes id_{W_{D^n+1}} (M \otimes W_{D^n+1})_{\pi(x_n)}
\]

It is easy to see that the composition of mappings

\[
(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)}
\]

\[
(\varphi_n \otimes id_{W_D}) \times id_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(J^n(\pi) \otimes W_D)_{\varphi_n(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\varphi_n(x_n)}
\]

\[
\left(J^n(\pi) \times_M (M \otimes W_{D^n}) \right) \otimes W_D
\]

\[
(\nabla, \gamma) \in J^n(\pi) \times_M (M \otimes W_{D^n}) \mapsto \nabla (\gamma) \in E \otimes W_{D^n} \otimes id_{W_D}
\]

\[
((E \otimes W_{D^n}) \otimes W_D)_{(E \otimes W_{D^n})_{\pi_0(x_n)}} = (E \otimes W_{D^n+1})_{\pi_0(x_n)} \pi \otimes id_{W_{D^n+1}} (M \otimes W_{D^n+1})_{\pi(x_n)}
\]

is no other than the canonical projection

\[
(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)}
\]
to the second factor \(((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)}\). It is also easy to see that the composition of mappings

\[
((M \otimes W_{D^n}) \otimes W_D)_{\pi(x_n)} \otimes W_D
\]

\[
\langle \pi_M \otimes W_{D^n} \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \rangle
\]

\[
(M \otimes W_D)_{\pi(x_n)} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
\nabla_{x_n} \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(\mathcal{J}^n(\pi) \otimes W_D)_{\pi(x_n)} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
(\varphi_n \otimes \text{id}_{W_D}) \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(\mathcal{J}^n(\pi) \otimes W_D)_{\pi(x_n)} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
\varphi_n(\pi) \otimes W_D \otimes W_{D^n} \otimes W_D
\]

\[
(\mathcal{J}^n(\pi) \otimes W_D)_{\pi(x_n)} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
\varphi_n(\pi) \otimes W_D \otimes W_{D^n} \otimes W_D
\]

\[
(\mathcal{J}^n(\pi) \otimes W_D)_{\pi(x_n)} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

Therefore (14) follows at once.

2. Now we deal with (15), the treatment of which is divided into two cases, namely, \(i \leq n\) and \(i = n + 1\). Since both of them are almost trivial, they can safely be left to the reader.

3. Finally we must deal with (16), for which it suffices to consider only transpositions \(\sigma = \langle i, i + 1 \rangle\) \((1 \leq i \leq n)\). Here we deal only with the most
difficult case of $\sigma = (n, n+1)$. We consider the composition of mappings

$$
(M \otimes W_{D^{n+1}})_{\pi(x_n)} \xrightarrow{\gamma \in (M \otimes W_{D^{n+1}})_{\pi(x_n)}} \gamma^{(n, n+1)} \in (M \otimes W_{D^{n+1}})_{\pi(x_n)}
$$

$$(M \otimes W_{D^{n+1}})_{\pi(x_n)} = ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}}$$

$$
\langle \pi_M \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \rangle
$$

$$(M \otimes W_{D})_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}}$$

$$\nabla_{x_n} \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D}$$

$$(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}}$$

$$\langle \varphi_n \otimes \text{id}_{W_D} \rangle \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D}$$

$$(J^n(\pi) \otimes W_D)_{\varphi_n(x_n) \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}}}$$

$$= \left((J^n(\pi) \times (M \otimes W_{D^n})) \otimes W_D \right)_{\varphi_n(x_n) \times (M \otimes W_{D^n})_{\pi(x_n)}}$$

$$\nabla, \gamma \in J^n(\pi) \times (M \otimes W_{D^n}) \mapsto \nabla (\gamma) \in E \otimes W_{D^n} \otimes \text{id}_{W_D}$$

$$(E \otimes W_{D^n}) \otimes W_D)_{(E \otimes W_{D^n})_{\pi_0(x_n)}}$$

$$= (E \otimes W_{D^{n+1}})_{\pi_0(x_n)}$$

By the very definition of φ_n, the composition of mappings

$$(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}}$$

$$= ((E \otimes W_{D^n}) \otimes W_D)_{(E \otimes W_{D^n})_{\pi_0(x_n)}}$$

$$= (E \otimes W_{D^{n+1}})_{\pi_0(x_n)}$$

34
is equivalent to the composition of mappings

\[(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})\pi(x_n)} \]

\[= (J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n-1}) \otimes W_D)((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})\pi(x_n)} \]

\[= \left(\left(J^n(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D \right) \otimes W_D \right)_{\ast} \]

\[\ast = x_n \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})\pi(x_n)} \]

\[\left(\left(J^n(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D \right) \otimes W_D \right)_{\ast} \]

\[\ast = x_n \times \pi(x_n) \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})\pi(x_n)} \]

\[\left(\left(J^n(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D \right) \otimes W_D \right)_{\ast} \]

\[\ast = (J^{n-1}(\pi) \otimes W_D)_{\pi_{n-1}(x_n)} \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})\pi(x_n)} \]

\[= \left(\left(J^{n-1}(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D^2 \right)_{\ast} \right)_{\pi_{n-1}(x_n) \times (M \otimes W_{D^n-1})\pi(x_n)} \]

\[\varphi_{n-1} \times \text{id}_{(M \otimes W_{D^n-1}) \otimes W_D} \]

\[\left(\left(J^{D^n-1}(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D^2 \right)_{\ast} \right)_{\pi_0(x_n) \times (M \otimes W_{D^n-1})\pi(x_n)} \]

\[\left((\nabla, \gamma) \in J^{D^n-1}(\pi) \times (M \otimes W_{D^n-1}) \mapsto \nabla(\gamma) \in E \otimes W_{D^n-1} \right) \otimes \text{id}_{W_D^2} \]

\[\left((E \otimes W_{D^n-1}) \otimes W_D^2 \right)_{(E \otimes W_{D^n-1})\pi_0(x_n)} \]

\[= (E \otimes W_{D^n-1})_{\pi_0(x_n)} \]
Therefore (17) is no other than the composition of mappings

\[(M \otimes W_{D^{n+1}})_{\pi(x_n)} \]

\[\gamma \in (M \otimes W_{D^{n+1}})_{\pi(x_n)} \mapsto \gamma^{(n,n+1)} \in (M \otimes W_{D^{n+1}})_{\pi(x_n)} \]

\[(M \otimes W_{D^{n+1}})_{\pi(x_n)} = ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \]

\[\left(\pi_M \otimes \id_{W_D}, \id_{(M \otimes W_{D^n}) \otimes W_D} \right) \]

\[(M \otimes W_D)_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \]

\[\nabla_{x_n} \times \id_{(M \otimes W_{D^n}) \otimes W_D} \]

\[(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \]

\[= (J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})_{\pi(x_n)}} \]

\[= \left(\left(J^n(\pi) \times (M \otimes W_{D^n-1}) \otimes W_D \right) \otimes W_D \right)^* \]

\[[\ast = x_n \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})_{\pi(x_n)}} \]

\[(\id_{J^n(\pi)} \times (\pi_M \otimes \id_{W_D}, \id_{(M \otimes W_{D^n-1}) \otimes W_D})) \otimes \id_{W_D} \]

\[\left(\left(J^n(\pi) \times (M \otimes W_{D^n}) \times ((M \otimes W_{D^n-1}) \otimes W_D) \right) \otimes W_D \right)^* \]

\[[\ast = x_n \times \pi(x_n) \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})_{\pi(x_n)}} \]

\[(\nabla, t) \in J^n(\pi) \times (M \otimes W_D) \mapsto \nabla (t) \in J^{n-1}(\pi) \otimes W_D \]

\[\left(\left(J^{n-1}(\pi) \otimes W_D \right) \times (M \otimes W_{D^n-1}) \otimes W_D \right)^* \]

\[[\ast = (J^{n-1}(\pi) \otimes W_D)_{\pi_{n-1}(x_n)} \times ((M \otimes W_{D^n-1}) \otimes W_D)_{(M \otimes W_{D^n-1})_{\pi(x_n)}} \]

\[\varphi_{n-1} \times \id_{(M \otimes W_{D^n}) \otimes W_D} \]

\[\left(J^{n-1}(\pi) \times (M \otimes W_{D^n-1}) \right) \otimes W_{D^2} \]

\[\left(\nabla, \gamma \right) \in J^{n-1}(\pi) \times (M \otimes W_{D^n-1}) \mapsto \nabla (\gamma) \in E \otimes W_{D^n-1} \]

\[((E \otimes W_{D^n-1}) \otimes W_{D^2})_{(E \otimes W_{D^n-1})_{\pi_0(x_n)}} \]

\[= (E \otimes W_{D^n-1})_{\pi_0(x_n)} \]

36
On the other hand, the composition of mappings

\[
(M \otimes W_{D^{n+1}})_{\pi(x_n)} = ((M \otimes W_{D^n}) \otimes W_D)(M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
(\nabla_{x_n} \times id_{(M \otimes W_{D^n}) \otimes W_D})
\]

\[
(J^n(\pi) \otimes W_D)_{x_n} \times (M \otimes W_{D^n})_{\pi(x_n)}
\]

\[
(\varphi_n \otimes id_{W_D}) \times id_{(M \otimes W_{D^n}) \otimes W_D}
\]

\[
(\nabla(\pi) \times (M \otimes W_{D^n}) \mapsto \nabla(\pi)) \otimes id_{W_D}
\]

\[
((E \otimes W_{D^n}) \otimes W_D)(E \otimes W_{D^n})_{\pi_0(x_n)}
\]

\[
\gamma \in E \otimes W_{D^{n+1}} \mapsto \gamma^{(n,n+1)} \in E \otimes W_{D^{n+1}}
\]
is the composition of mappings

\[
(M \otimes W_{D_n+1})_{\pi(x_n)} \\
= ((M \otimes W_{D_n}) \otimes W_D)_{(M \otimes W_{D_n})_{\pi(x_n)}} \\
\left\langle \pi_M^{M \otimes W_{D_n}} \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D_n}) \otimes W_D} \right\rangle \\
(M \otimes W_D)_{\pi(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D_n}) \otimes W_D)_{(M \otimes W_{D_n})_{\pi(x_n)}} \\
\nabla_{x_n} \times \text{id}_{(M \otimes W_{D_n}) \otimes W_D} \\
(J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D_n}) \otimes W_D)_{(M \otimes W_{D_n})_{\pi(x_n)}} \\
= (J^n(\pi) \otimes W_D)_{x_n} \times_{M \otimes W_D} ((M \otimes W_{D_n-1}) \otimes W_D)_{(M \otimes W_{D_n-1})_{\pi(x_n)}} \\
= (J^n(\pi) \times ((M \otimes W_{D_n-1}) \otimes W_D))_{\pi(x_n)} \\
\left[\ast = x_n \times ((M \otimes W_{D_n-1}) \otimes W_D)_{(M \otimes W_{D_n-1})_{\pi(x_n)}} \right] \\
\left(\text{id}_{J^n(\pi)} \times \left\langle \pi_M^{M \otimes W_{D_n-1}} \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D_n-1}) \otimes W_D} \right\rangle \right) \otimes \text{id}_{W_D} \\
\left(\left(J^n(\pi) \times_{M \otimes W_D} ((M \otimes W_{D_n-1}) \otimes W_D) \right) \otimes W_D \right)_{\pi(x_n)} \\
\left[\ast = x_n \times \pi(x_n) \times ((M \otimes W_{D_n-1}) \otimes W_D)_{(M \otimes W_{D_n-1})_{\pi(x_n)}} \right] \\
\left(\left(\nabla(t) \in J^n(\pi) \times (M \otimes W_D) \mapsto \nabla(t) \in J^{n-1}(\pi) \times W_D \right) \times \text{id}_{((M \otimes W_{D_n-1}) \otimes W_D)} \right) \otimes \text{id}_{W_D} \\
\left(\left(J^{n-1}(\pi) \otimes W_D \right) \times_{M \otimes W_D} ((M \otimes W_{D_n-1}) \otimes W_D) \right)_{\pi(x_n)} \\
\left[\ast = (J^{n-1}(\pi) \otimes W_D)_{\pi_{n-1}(x_n)} \times_{M \otimes W_D} ((M \otimes W_{D_n-1}) \otimes W_D)_{(M \otimes W_{D_n-1})_{\pi(x_n)}} \right] \\
= ((J^{n-1}(\pi) \times (M \otimes W_{D_n-1})) \otimes W_{D^2})_{\pi_{n-1}(x_n) \times (M \otimes W_{D_n-1})_{\pi(x_n)}}
\]
Lemma 71 The diagram

\[\begin{array}{ccc}
J^{n+1}(\pi) & \xrightarrow{\varphi_{n+1}} & J^{D^{n+1}}(\pi) \\
\varpi_{n+1,n} & \downarrow & \varpi_{n+1,n} \\
J^n(\pi) & \xrightarrow{\varphi_{n}} & J^{D^n}(\pi)
\end{array} \]

is commutative.

Proof. Given \(\nabla_{x_n} \in J^{n+1}(\pi) \), \((\varpi_{n+1,n} \circ \varphi_{n+1})(\nabla_{x_n}) \) is, by the very definition of \(\varpi_{n+1,n} \), the composition of mappings

\[
(M \otimes W_{D^n})_{\varpi(x_n)} s_{n+1} \bigl(M \otimes W_{D^{n+1}} \bigr)_{\varphi(x_n)} \varphi_{n+1}(\nabla_{x_n}) \\
(E \otimes W_{D^{n+1}})_{\varpi_0(x_n)} d_{n+1} \bigl(E \otimes W_{D^n} \bigr)_{\varphi_0(x_n)}
\]
which is equivalent, by the very definition of $\varphi_{n+1}(\nabla x_n)$, to the composition of mappings

\[
\begin{align*}
(M \otimes W_{D^n})_{\pi(x_n)} s_{n+1}^+ (M \otimes W_{D^{n+1}})_{\pi(x_n)} \\
= ((M \otimes W_{D^n}) \otimes W_D)_{(M \otimes W_{D^n})_{\pi(x_n)}} \\
\langle \pi_M \otimes W_{D^n} \otimes \text{id}_{W_D}, \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \rangle \\
\left((M \otimes W_D) \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D) \right)_{\pi(x_n)} \{ (\pi(x_n)) \times (M \otimes W_{D^n})_{\pi(x_n)} \} \\
\nabla_{x_n} \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \\
\left((J^n(\pi) \otimes W_D) \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D) \right)_{\pi(x_n)} \{ (\pi(x_n)) \times (M \otimes W_{D^n})_{\pi(x_n)} \} \\
(\varphi_n \otimes \text{id}_{W_D}) \times \text{id}_{(M \otimes W_{D^n}) \otimes W_D} \\
\left((J^n(\pi) \otimes W_D) \times_{M \otimes W_D} ((M \otimes W_{D^n}) \otimes W_D) \right)_{\pi(x_n)} \{ (\pi(x_n)) \times (M \otimes W_{D^n})_{\pi(x_n)} \} \\
= \left((J^n(\pi) \times_M (M \otimes W_{D^n}) \otimes W_D) \right)_{\pi(x_n)} \{ (\pi(x_n)) \times (M \otimes W_{D^n})_{\pi(x_n)} \} \\
\left((\nabla, \gamma) \in J^n(\pi) \times (M \otimes W_{D^n}) \mapsto \nabla (\gamma) \in E \otimes W_{D^n} \otimes \text{id}_{W_D} \right) \\
((E \otimes W_{D^n}) \otimes W_D)_{(E \otimes W_{D^n})_{\pi_0(x_n)}} \\
= (E \otimes W_{D^{n+1}})_{\pi_0(x_n)} d_{n+1}^+ (E \otimes W_{D^n})_{\pi_0(x_n)} \\
\end{align*}
\]

This is easily seen to be equivalent to $\varphi_n(\pi_{n+1, n}(\nabla x_n))$, which completes the proof. \(\blacksquare\)

Lemma 70 can be strengthened as follows:

Lemma 72 We have

$$\varphi_{n+1}(\nabla x_n) \in J^{n+1}(\pi)$$

Proof. With due regard to Lemmas 70 and 71, we have only to show that

\[
\begin{align*}
(\varphi_{n+1}(\nabla x_n)) \circ (\text{id}_E \otimes W_{(d_1, \ldots, d_n, d_{n+1}) \in D^{n+1} \mapsto (d_1, \ldots, d_n, d_{n+1}) \in D^n} \\
= (\text{id}_E \otimes W_{(d_1, \ldots, d_n, d_{n+1}) \in D^{n+1} \mapsto (d_1, \ldots, d_n, d_{n+1}) \in D^{n+1}} \circ \\
(\pi_{n+1, n}(\varphi_{n+1}(\nabla x_n))) \\
\end{align*}
\]

(18)
For $n = 0$, there is nothing to prove. We proceed by induction on n. By the very definition of ϕ_{n+1}, the left-hand side of (15) is the composition of mappings

\[(M \otimes W_{D^n})_{(x_n)}\]
\[\id_M \otimes W_{(d_1, \ldots, d_n, d_{n+1}) \in D^{n+1} \mapsto (d_1, \ldots, d_n, d_{n+1}) \in D^n}\]
\[(M \otimes W_{D^{n+1}})_{(x_n)}\]
\[= ((M \otimes W_{D^n}) \otimes W_D)(M \otimes W_{D^n})_{(x_n)}\]
\[\times \left(\phi_{M \otimes W_{D^n}} \otimes \id_W, \id_{(M \otimes W_{D^n}) \otimes W_D}\right)\]
\[\nabla_{x_n} \times \id_{(M \otimes W_{D^n}) \otimes W_D}\]
\[\left(\mathbf{J}^n(\pi) \otimes W_D\right)_{(x_n)} \times_{M \otimes W_D} \left(\mathbf{J}^n(\pi) \otimes W_D\right)_{\mathbf{J}^n(\pi) \otimes W_D}\]
\[\left(\phi_n \otimes \id_W\right) \times \id_{(M \otimes W_{D^n}) \otimes W_D}\]
\[\left(\mathbf{J}^n(\pi) \otimes W_D\right)_{(x_n)} \times_{M \otimes W_D} \left(\mathbf{J}^n(\pi) \otimes W_D\right)_{\mathbf{J}^n(\pi) \otimes W_D}\]
\[\left(\phi_n \otimes \id_W\right) \times \id_{(M \otimes W_{D^n}) \otimes W_D}\]

which is easily seen, by dint of Lemma 70, to be equivalent to the right-hand side of (15).

Thus we have established the mappings $\phi_n : \mathbf{J}^n(\pi) \to \mathbf{J}^{D^n}(\pi)$.

7 From the Second Approach to the Third

The principal objective in this section is to define a mapping $\psi_n : \mathbf{J}^n(\pi) \to \mathbf{J}^{D^n}(\pi)$. Let us begin with

Proposition 73 Let ∇_x be a D^n-pseudotangential over the bundle $\pi : E \to M$ at $x \in E$ and $\gamma \in (M \otimes W_{D^n})_{\pi(x)}$. Then there exists a unique $\gamma' \in (E \otimes W_{D^n})_{x}$ such that

\[\nabla_x (\id_M \otimes W_{(d_1, \ldots, d_n) \in D^{n+1} \mapsto (d_1, \ldots, d_n) \in D_n}) (\gamma)\]
\[= (\id_E \otimes W_{(d_1, \ldots, d_n) \in D^{n+1} \mapsto (d_1, \ldots, d_n) \in D_n}) (\gamma')\]

Proof. This stems easily from the following simple lemma.

\[\]
Lemma 74 The diagram

\[
\begin{array}{ccc}
W_{D_n} W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n} & \xrightarrow{W_{\tau_1}} & W_{D^n} \\
\vdots & & \vdots \\
W_{\tau_{n-1}} & & W_{D^n}
\end{array}
\]

is a limit diagram in the category of Weil algebras, where \(\tau_i : D^n \to D^n\) is the mapping permuting the \(i\)-th and \((i + 1)\)-th components of \(D^n\) while fixing the other components.

Notation 75 We will denote by \(\hat{\psi}_n(\nabla_x)(\gamma)\) the unique \(\gamma'\) in the above proposition, thereby getting a function \(\hat{\psi}_n(\nabla_x) : (M \otimes W_{D_n})_{\pi(x)} \to (E \otimes W_{D_n})_x\).

Proposition 76 For any \(\nabla_x \in \hat{\mathbb{D}}_x D^n(\pi)\), we have \(\hat{\psi}_n(\nabla_x) \in \hat{\mathbb{D}}_x D^n(\pi)\).

Proof. We have to verify the three conditions in Definition 58 concerning the mapping \(\hat{\psi}_n(\nabla_x) : (M \otimes W_{D_n})_{\pi(x)} \to (E \otimes W_{D_n})_x\).

1. To see the first condition, it suffices to show that

\[
(id_M \otimes W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n})(\gamma)
\]

which follows from

\[
(id_M \otimes W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n})(\pi \otimes id_{W_{D_n}})(\hat{\psi}_n(\nabla_x)(\gamma))
\]

\[
= (\pi \otimes id_{W_{D_n}})(id_E \otimes W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n})(id_M \otimes W_{D_n})(\hat{\psi}_n(\nabla_x)(\gamma))
\]

By the bifunctionality of \(\otimes\)

\[
= (\pi \otimes id_{W_{D^n}})(\hat{\psi}_n(\nabla_x)(id_M \otimes W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n}(\gamma)))
\]

By the very definition of \(\hat{\psi}_n(\nabla_x)\)

\[
= (id_M \otimes W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n}(\gamma))
\]

2. Now we are going to deal with the second condition. It is easy to see that

\[
(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{(\alpha)_{D^n}}} (M \otimes W_{D_n})_{\pi(x)} W_{(d_1, \ldots, d_n) \in D^n \to (d_1 + \ldots + d_n) \in D_n}
\]

\[
(M \otimes W_{D^n})_{\pi(x)}
\]

42
is equivalent to the composition of mappings

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{W_{(1 \ldots d_n) \in D^n \rightarrow (1 \ldots + d_n) \in D^n}} (M \otimes W_{D^n})_{\pi(x)}
\]

\[
\text{id}_M \otimes W_{(\alpha_1)}_{D^n} \xrightarrow{\pi}(M \otimes W_{D^n})_{\pi(x)} \ldots \text{id}_M \otimes W_{(\alpha_n)}_{D^n}
\]

\[
(M \otimes W_{D^n})_{\pi(x)},
\]

while the composition of mappings

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{id_M \otimes W_{(\alpha_1)}} (M \otimes W_{D^n})_{\pi(x)} \ldots \xrightarrow{id_M \otimes W_{(\alpha_n)}} (M \otimes W_{D^n})_{\pi(x)}
\]

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x
\]

is equivalent to the composition of mappings

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x \xrightarrow{id_E \otimes W_{(\alpha_1)}} (E \otimes W_{D^n})_x \ldots
\]

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x
\]

Therefore the composition of mappings

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{id_M \otimes W_{(\alpha_1)}} (M \otimes W_{D^n})_{\pi(x)} \xrightarrow{W_{(1 \ldots d_n) \in D^n \rightarrow (1 \ldots + d_n) \in D^n}} (M \otimes W_{D^n})_{\pi(x)}
\]

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x
\]

is equivalent to the composition of mappings

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{W_{(1 \ldots d_n) \in D^n \rightarrow (1 \ldots + d_n) \in D^n}} (M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x
\]

\[
\text{id}_E \otimes W_{(\alpha_1)}_{D^n} \xrightarrow{\pi}(E \otimes W_{D^n})_x \ldots \text{id}_E \otimes W_{(\alpha_n)}_{D^n}
\]

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x
\]

which should be equivalent in turn to

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x \xrightarrow{id_E \otimes W_{(\alpha_1)}} (E \otimes W_{D^n})_x \ldots
\]

\[
(M \otimes W_{D^n})_{\pi(x)} \xrightarrow{\nabla \frac{n}{2}} (E \otimes W_{D^n})_x \xrightarrow{id_E \otimes W_{(\alpha_1)}} (E \otimes W_{D^n})_x \ldots
\]

Since the composition of mappings

\[
(E \otimes W_{D^n})_x \xrightarrow{W_{(1 \ldots d_n) \in D^n \rightarrow (1 \ldots + d_n) \in D^n}} (E \otimes W_{D^n})_x \xrightarrow{id_E \otimes W_{(\alpha_1)}} (E \otimes W_{D^n})_x \ldots
\]

\[
(E \otimes W_{D^n})_x \xrightarrow{id_E \otimes W_{(\alpha_1)}} (E \otimes W_{D^n})_x
\]

43
is equivalent to the composition of mappings
\[(E \otimes \mathcal{W}_{D_n})_x \rightarrow_{\text{id}_E \otimes \mathcal{W}_{(\alpha)}_{D_n}} (E \otimes \mathcal{W}_{D_n})_x \rightarrow_{\text{id}_E \otimes \mathcal{W}_{(d_1, \ldots, d_n)} \in D^n \rightarrow (d_1 + \ldots + d_n) \in D_n} (E \otimes \mathcal{W}_{D^n})_x,\]

the coveted result follows.

3. We are going to deal with the third condition. We have to show that the diagram
\[
\begin{array}{ccc}
(M \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_M \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & (M \otimes \mathcal{W}_{D_n})_x \\
\hat{\psi}(\nabla_x) & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & \hat{\psi}(\nabla_x) \\
(E \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & (E \otimes \mathcal{W}_{D_n})_x \\
\end{array}
\]

commutes. It is easy to see that the diagram
\[
\begin{array}{ccc}
(E \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n}} & (E \otimes \mathcal{W}_{D^n})_x \\
\text{id}_E \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}} & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}}} & \text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}} \\
(E \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}}} & (E \otimes \mathcal{W}_{D^n})_x \\
\end{array}
\]

commutes, where \(\eta \) stands for
\[(d_1, \ldots, d_n, e) \in D^n \times D_m \mapsto (d_1 e, \ldots, d_n e) \in D^n\]

so that the commutativity of the diagram in (19) is equivalent to the commutativity of the outer square of the diagram
\[
\begin{array}{ccc}
(M \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_M \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & (M \otimes \mathcal{W}_{D_n})_x \\
\hat{\psi}(\nabla_x) & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & \hat{\psi}(\nabla_x) \\
(E \otimes \mathcal{W}_{D_n})_x & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{m_{D_n \times D_m \rightarrow D_n}}} & (E \otimes \mathcal{W}_{D_n})_x \\
\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n} & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}}} & \text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}} \\
(E \otimes \mathcal{W}_{D^n})_x & \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n \times \text{id}_{D_m}}} & (E \otimes \mathcal{W}_{D^n})_x \\
\end{array}
\]

where \(+_{D^n \rightarrow D_n} \) stands for
\[(d_1, \ldots, d_n) \in D^n \mapsto (d_1 + \ldots + d_n) \in D_n\]

The composition of mappings
\[(M \otimes \mathcal{W}_{D_n})_x \rightarrow_{\hat{\psi}(\nabla_x)} (E \otimes \mathcal{W}_{D_n})_x \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n}} (E \otimes \mathcal{W}_{D^n})_x\]

is equal to the composition of mappings
\[(M \otimes \mathcal{W}_{D_n})_x \rightarrow_{\hat{\psi}(\nabla_x)} (E \otimes \mathcal{W}_{D_n})_x \rightarrow_{\text{id}_E \otimes \mathcal{W}_{D^n \rightarrow D_n}} (M \otimes \mathcal{W}_{D^n})_x \rightarrow_{\nabla_x} (E \otimes \mathcal{W}_{D^n})_x\]
while the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m} \xrightarrow{\hat{\psi}_n(\nabla_x)} (E \otimes W_{D_n})_x \otimes W_{D_m}
\]

\[
\text{id}_E \otimes W_{+D^n \rightarrow D_n \times id_{D_m}} (E \otimes W_{D^n})_x \otimes W_{D_m}
\]

is equal to the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \text{id}_M \otimes W_{+D^n \rightarrow D_n \times id_{D_m}} (M \otimes W_{D^n})_{\pi(x)} \nabla_x \otimes \text{id}_{W_{D_m}}
\]

\[
(E \otimes W_{D^n})_x \otimes W_{D_m}
\]

Since the diagram

\[
\begin{array}{ccc}
(M \otimes W_{D_n})_{\pi(x)} & \text{id}_M \otimes W_{m_{D_n} \times D_m \rightarrow D_n} & (M \otimes W_{D_n})_{\pi(x)} \otimes W_{D_m}
\\
\downarrow \text{id}_M \otimes W_{+D^n \rightarrow D_n} & \downarrow \text{id}_M \otimes W_{+D^n \rightarrow D_n \times id_{D_m}} & \downarrow \text{id}_M \otimes W_{+D^n \rightarrow D_n \times id_{D_m}}
\\
(M \otimes W_{D^n})_{\pi(x)} & \text{id}_M \otimes W_{\nabla_x} & (M \otimes W_{D^n})_{\pi(x)} \otimes W_{D_m}
\\
\nabla_x & \downarrow \text{id}_{W_{D_m}} & \nabla_x \otimes \text{id}_{W_{D_m}}
\\
(E \otimes W_{D^n})_x & \text{id}_E \otimes W_{\nabla_x} & (E \otimes W_{D^n})_x \otimes W_{D_m}
\\
\end{array}
\]

commutes, the outer square of the diagram in (20) commutes. This completes the proof.

\[\blacksquare\]

Proposition 77 The diagram

\[
\begin{array}{ccc}
\hat{\pi}_n^{D+1}(\pi) & \hat{\psi}_n^{D+1}(\pi) & \hat{\pi}_{n+1}^{D+1}(\pi)
\\
\hat{\pi}_n^{D+1}(\pi) & \hat{\psi}_n^{D+1}(\pi) & \hat{\pi}_{n+1}^{D+1}(\pi)
\\
\hat{\psi}_n(\nabla_x) & \hat{\psi}_n(\nabla_x) & \hat{\psi}_n(\nabla_x)
\\
\end{array}
\]

commutes.

Proof. Given \(\nabla_x \in \hat{\pi}_n^{D+1}(\pi) \), the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \hat{\pi}_{n+1} \left(\hat{\psi}_n^{D+1}(\nabla_x)\right) (E \otimes W_{D_n})_x \text{id}_E \otimes W_{m_{D_n} \times D_m \rightarrow D_n}
\]

\[
(E \otimes W_{D_n})_x \otimes W_{D_n} \text{id}_E \otimes W_{+D^n \rightarrow D_n \times id_{D_m}} (E \otimes W_{D^n})_x \otimes W_{D_n}
\]

is equivalent to the composition of mappings

\[
(M \otimes W_{D_n})_{\pi(x)} \hat{\pi}_{n+1} \left(\hat{\psi}_n^{D+1}(\nabla_x)\right) (E \otimes W_{D_n})_x \text{id}_E \otimes W_{m_{D_n+1} \times D_n \rightarrow D_n}
\]

\[
(E \otimes W_{D_n+1})_x \otimes W_{D_n} \text{id}_E \otimes W_{+D^n+1 \rightarrow D_n+1 \times id_{D_n}} (E \otimes W_{D^n+1})_x \otimes W_{D_n} \text{id}_{D_n+1} \otimes \text{id}_{W_{D_n}}
\]

\[
(E \otimes W_{D^n})_x \otimes W_{D_n}
\]
which is in turn equivalent to the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\text{id}_M \otimes W_{m_{D_{n+1}} \times D_{n+1} \to D_{n+1}}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \xrightarrow{\hat{\psi}_{n+1} (\nabla_x) \otimes W_{id_{W_{D_n}}}} \]

\[(E \otimes W_{D_n+1})_x \otimes W_{D_n} \xrightarrow{id_E \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} (E \otimes W_{D_{n+1}})_x \otimes W_{D_n} d_{n+1} \otimes \text{id}_{W_{D_n}} \]

This is to be supplanted by the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1}} \times D_{n+1} \to D_{n+1}}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \xrightarrow{id_M \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} \]

\[(E \otimes W_{D_{n+1}})_x \otimes W_{D_n} d_{n+1} \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n+1}})_x \otimes W_{D_n},} \]

which is in turn equivalent to the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1}} \times D_{n+1} \to D_{n+1}}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \xrightarrow{id_M \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} \]

\[(M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} d_{n+1} \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n}})_x \otimes W_{D_n},} \]

by Proposition 78. This is to be supplanted by the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1}} \times D_{n+1} \to D_{n+1}}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \xrightarrow{id_M \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} \]

\[(M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} d_{n+1} \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n}})_x \otimes W_{D_n},} \]

which is equivalent to the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{m_{D_{n+1}} \times D_{n+1} \to D_{n+1}}} (M \otimes W_{D_{n+1}})_{\pi(x)} \otimes W_{D_n} \xrightarrow{id_M \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} \]

\[(E \otimes W_{D_{n+1}})_x \otimes W_{D_n} d_{n+1} \otimes \text{id}_{W_{D_n}} \xrightarrow{(E \otimes W_{D_{n}})_x \otimes W_{D_n},} \]

This is really equivalent to the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\text{id}_E \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}}} (E \otimes W_{D_{n+1}})_x \otimes W_{D_n} \]

\[id_E \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}} E \otimes W_{D_{n+1} \times D_{n+1}} \]

(22)

This just established fact that the composition of mappings in (22) and that in (22) are equivalent implies the coveted result at once. This completes the proof.

Proposition 78. Let \(D \) be a simplicial infinitesimal space of dimension \(n \) and degree \(m \). Let \(\nabla_x \) be a \(D^n \)-pseudotangential over the bundle \(\pi : E \to M \) at \(x \in E \) and \(\gamma \in (M \otimes W_{D_n})_{\pi(x)} \). Then the composition of mappings

\[(M \otimes W_{D_n})_{\pi(x)} \xrightarrow{id_M \otimes W_{+D_{n+1} \to D_{n+1} \times id_{D_{n+1}}} (M \otimes W_{D_n})_{\pi(x)} \xrightarrow{\nabla^D_x} (E \otimes W_{D_n})_x \]
is equivalent to the composition of mappings

\[(M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\hat{\psi}_n(\nabla_x)} (E \otimes \mathcal{W}_D)_x \xrightarrow{id_E \otimes \mathcal{W}_D} (E \otimes \hat{\mathcal{W}})_x\]

Proof. Let \(i : D^k \to \mathbb{D}\) be any mapping in the standard quasi-colimit representation of \(\mathbb{D}\). The composition of mappings

\[\sum^{(M \otimes \mathcal{W}_D)_\pi(x)} \xrightarrow{id_M \otimes \mathcal{W}_D} (M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\nabla^{(D^k)}_x} (E \otimes \mathcal{W}_D)_x \]

is equivalent, by dint of Theorem [55] to the composition of mappings

\[(M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{id_M \otimes \mathcal{W}_D} (M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\hat{\psi}_k(\nabla^{(D^k)}_x)} (E \otimes \mathcal{W}_D)_x \]

which is in turn equivalent, by the very definition of \(\hat{\psi}_k\), to the composition of mappings

\[\sum^{(M \otimes \mathcal{W}_D)_\pi(x)} \xrightarrow{id_M \otimes \mathcal{W}_D} (M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\hat{\psi}_k(\nabla^{(D^k)}_x)} (E \otimes \mathcal{W}_D)_x \]

This is indeed equivalent, by dint of Proposition [77] to the composition of mappings

\[(M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{id_M \otimes \mathcal{W}_D} (M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\hat{\psi}_k(\nabla^{(D^k)}_x)} (E \otimes \mathcal{W}_D)_x \]

which is in turn equivalent to the composition of mappings

\[(M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{id_M \otimes \mathcal{W}_D} (M \otimes \mathcal{W}_D)_\pi(x) \xrightarrow{\hat{\psi}_k(\nabla^{(D^k)}_x)} (E \otimes \mathcal{W}_D)_x \]

The just established fact that the composition of mappings in (23) and that in (24) are equivalent implies the coveted result at once. This completes the proof.

Theorem 79 For any \(\nabla_x \in J^n_x(\pi)\), we have \(\hat{\psi}_n(\nabla_x) \in J^n_x(\pi)\).

Proof. In view of Proposition [70] it suffices to show that \(\hat{\psi}_n(\nabla_x)\) satisfies the condition in Definition [??]. Here we deal only with the case that \(n = 3\) and
the simple polynomial ρ at issue is $d \in D_3 \mapsto d^2 \in D$, leaving the general case safely to the reader. Since

$$(d_1 + d_2 + d_3)^2 = 2(d_1 d_2 + d_1 d_3 + d_2 d_3)$$

for any $(d_1, d_2, d_3) \in D^3$, we have the commutative diagram

$$\begin{array}{ccc}
D^3 & \xrightarrow{\chi} & D(6) \\
\downarrow +_{D^3 \to D_3} & \quad & \downarrow +_{D(6) \to D} \\
D_3 & \xrightarrow{\rho} & D
\end{array} \tag{25}$$

where χ stands for the mapping

$$(d_1, d_2, d_3) \in D^3 \mapsto (d_1 d_2, d_1 d_3, d_2 d_3, d_1 d_2, d_1 d_3, d_2 d_3) \in D(6)$$

Then the composition of mappings

$$(M \otimes W_D)_{\pi(x)} \xrightarrow{id_M \otimes W_\hat{\psi}} (M \otimes W_{D_3})_{\pi(x)} \xrightarrow{\hat{\psi}_3 (\nabla_x)} (E \otimes W_{D_3})_x$$

is equivalent, by the very definition of $\hat{\psi}_3$, to the composition of mappings

$$(M \otimes W_D)_{\pi(x)} \xrightarrow{id_M \otimes W_{D^3}} (M \otimes W_{D^3})_{\pi(x)}$$

which is in turn equivalent to the composition of mappings

$$(M \otimes W_D)_{\pi(x)} \xrightarrow{id_M \otimes W_{D(6)}} (M \otimes W_{D(6)})_{\pi(x)}$$

with due regard to the commutative diagram in (25). By Theorem 55, this is equivalent to the composition of mappings

$$(M \otimes W_D)_{\pi(x)} \xrightarrow{id_M \otimes W_{D(6)}} (M \otimes W_{D(6)})_{\pi(x)} \xrightarrow{\nabla_{D(6)}} (E \otimes W_{D(6)})_x$$

which is in turn equivalent by Proposition 78 to the composition of mappings

$$(M \otimes W_D)_{\pi(x)} \xrightarrow{id_M \otimes W_{D^3}} (M \otimes W_{D^3})_{\pi(x)} \xrightarrow{\nabla_{D^3}} (E \otimes W_{D^3})_x$$

Since

$$\hat{\psi}_1(\tilde{\pi}_{3,1}(\nabla_x)) = \tilde{\pi}_{3,1}(\hat{\psi}_3(\nabla_x))$$
by Proposition 177 and the commutativity of the diagram (24), this is equivalent to the composition of mappings

\[(M \otimes W_D)_{\pi(x)} \xrightarrow{\pi_{3,1}(\hat{\psi}_3(\nabla_x))} (E \otimes W_D)_x \xrightarrow{id_E \otimes W_D} (E \otimes W_{D_3})_x \]

which completes the proof. ■

Notation 80 Thus the mapping \(\hat{\psi}_n : \mathbb{D}^{D^n}(\pi) \to \mathbb{D}^{D^n}(\pi) \) is naturally restricted to a mapping \(\psi_n : \mathbb{D}^{D^n}(\pi) \to \mathbb{D}^{D^n}(\pi) \).

References

[1] Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor’kova, N. G., Krasil’shchik, I. S., Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M. and Vinogradov, A. M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, 182, American Mathematical Society, Providence, Rhode Island, 1999.

[2] Dubuc, E.:Sur les modèles de la géométrie différentielle synthétique, Cahiers de Topologie et Géométrie Différentielle, 20 (1979), 231-279.

[3] Frölicher, Alfred:Smooth structures, Lecture Notes in Mathematics, 962 (1982), 69-81, Springer-Verlag, Berlin and Heidelberg.

[4] Frölicher, Alfred:Cartesian closed categories and analysis of smooth maps, Lecture Notes in Mathematics, 1174 (1986), 43-51, Springer-Verlag, Berlin and Heidelberg.

[5] Frölicher, Alfred and Kriegl, Andreas:Linear Spaces and Differentiation Theory, John Wiley and Sons, Chichester, 1988.

[6] Gamkrelidze, R. V. (editor):Geometry I, Encyclopaedia of Mathematical Sciences, 28, Springer-Verlag, Berlin and Heidelberg, 1991.

[7] Goerss, P. G. and Jardine, J. F.:Simplicial Homotopy Theory, Progress in Mathematics, 174, Birkhäuser, Basel, 1999.

[8] Kock, A.:Synthetic Differential Geometry, 2nd edition, London Mathematical Society Lecture Note Series, 333, Cambridge University Press, Cambridge, 2006.

[9] Kolár, Ivan, Michor, Peter W. and Slovák, Jan:Natural Operations in Differential Geometry, Springer-Verlag, Berlin and Heidelberg, 1993.

[10] Krasil’shchik, I. S., Lychagin, V. V. and Vinogradov, A. M.:Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, London, 1986.
[11] Kriegl, Andreas and Michor, Peter W.: The Convenient Setting of Global Analysis, American Mathematical Society, Rhode Island, 1997.

[12] Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry, Kluwer, Dordrecht, 1996.

[13] Michor, Peter W.: Topics in Differential Geometry, American Mathematical Society, Rhode Island, 2008.

[14] Moerdijk, I. and Reyes, G. E.: Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York, 1991.

[15] Nishimura, Hirokazu: Synthetic differential geometry of jet bundles, Bull. Belg. Math. Soc. Simon Stevin, 8 (2001), 639-650.

[16] Nishimura, Hirokazu: Corrigenda to ”Synthetic differential geometry of jet bundles”, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 473.

[17] Nishimura, Hirokazu: Holonomicity in synthetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie, 44 (2003), 471-481.

[18] Nishimura, Hirokazu: Higher-order preconnections in synthetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie, 45 (2004), 677-696.

[19] Nishimura, Hirokazu: Synthetic differential geometry of higher-order total differentials, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 47 (2006) 129-154 and 207-232.

[20] Nishimura, Hirokazu: The affine bundle theorem in synthetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie, 48 (2007), 351-365.

[21] Nishimura, Hirokazu: A much larger class of Frölicher spaces than that of convenient vector spaces may embed into the Cahiers topos, Far East Journal of Mathematical Sciences, 35 (2009), 211-223.

[22] Nishimura, Hirokazu: Microlinearity in Frölicher spaces - beyond the regnant philosophy of manifolds-, International Journal of Pure and Applied Mathematics, 60 (2010), 15-24.

[23] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces I, International Journal of Pure and Applied Mathematics, 64 (2010), 43-83.

[24] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces II, International Journal of Pure and Applied Mathematics, 64 (2010), 85-102.
[25] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces III, International Journal of Pure and Applied Mathematics, 68 (2011), 99-126.

[26] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces IV-2, in preparation.

[27] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces V, in preparation.

[28] Saunders, D. J.: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989.

[29] Weil, André: Théorie des points proches sur les variétés différentiables, Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, pp.111-117, 1953.