Regulatory T-cell vaccination independent of auto-antigen

David W Pascual¹, Xinghong Yang¹, Kathryn Holderness², SangMu Jun¹, Massimo Maddaloni¹ and Irina Kochetkova²

To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated *Salmonella* vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine’s capacity to protect against travelers’ diarrhea or salmonellosis. By adapting the vaccine’s anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25⁺ Treg cells are stimulated, but for arthritis CD39⁺ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.

Experimental & Molecular Medicine (2014) 46, e82; doi:10.1038/emm.2014.4; published online 14 March 2014

Keywords: autoimmunity; bacteria; fimbriae; mucosal immunity; regulatory T cells; vaccine

1Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA and 2Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT, USA

Correspondence: Dr DW Pascual, Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA.

E-mail: pascuald@ufl.edu

Received 22 November 2013; accepted 6 December 2013
later in life, while adult travelers to these endemic regions are unprotected and remain susceptible to infection.

CFA/I fimbriae are an archetype of 5 fimbriae characterized by a common four-gene operon. For CFA/I, this is cfaABCE. This operon contains four genes in the following order: periplasmic chaperone

CFA/II fimbriae failed to induce significant serum antibody responses. Oral vaccination of human volunteers with CFA/I fimbriae comprised two proteins, CfaB and CfaE, and an assembly with a single copy of CfaE followed by multiple copies of CfaB. In fact, CfaB is the major pilin subunit, and it is present as approximately 1000 copies on the cell surface per single copy of the minor subunit, CfaE.

CFA/I FIMBRIAE ARE HIGHLY IMMUNOGENIC AND CONFER PROTECTION AGAINST ETEC

Attempts to successfully vaccinate against ETEC have met with varied success. Oral vaccination of human volunteers with CFA/I or CFA/II fimbriae failed to induce significant serum immunoglobulin G (IgG) or secretory IgA (SlgA) Abs. As a result of poor anti-fimbriae Ab titers, the human volunteers were not protected against virulent ETEC. Despite neutralization of their stomach acidity, poor SlgA anti-CFA Ab responses were obtained in these volunteers. Subsequent work showed that gastric proteases altered the CFA fimbriae antigenicity even at a neutral pH. Overcoming the deleterious effects of the gastrointestinal tract, oral vaccination of rabbits with microencapsulated CFA/I fimbriae still failed to induce serum and fecal IgA anti-CFA/I Abs. Although in a separate study, microencapsulated CFA/II fimbriae when directly intubated into the rabbit duodenum revealed that CFA/II fimbriae-specific Ab-forming cell responses could be induced in the Peyer’s patches and spleens. Once elicited, Abs to these fimbriae do protect against ETEC infection. An effective vaccine for ETEC remains elusive, but promising results have been obtained from recent human trials using heat-killed ETEC plus recombinant LT-B/CT-B, suggesting the fimbriae are optimally immunogenic when associated with the bacilli.

Attenuated, live Salmonella vectors have been extensively used as a means to vaccinate against salmonellosis and heterologous diseases. Such attenuated Salmonella strains have been shown to be effective in delivering heterologous antigens (Ags) because of their ability to stimulate both mucosal and systemic immune compartments most likely via infection of Peyer’s patches and followed by subsequent spread into systemic immune compartment. Therefore, an ETEC vaccine adapted as an attenuated, balanced-lethal AaroA Aasd S. Typhimurium vaccine carrying an asd+ plasmid encoding the CFA/I operon. The expression of this fimbriae appears similar to wild-type ETEC with long, hairlike projections extending from the bacterial cell surface. Upon oral immunization, Salmonella-CFA/I was quite adept in stimulating elevated mucosal IgA and serum IgG Abs to the fimbriae. Interestingly, the CFA/I fimbriae stimulated a biphasic T helper (Th) cell response with a rapid induction of Th2 cells within the first week of vaccination followed by a progressively increasing Th1 cell response to eliminate the salmonelae. This was corroborated by the stimulation of elevated serum IgG1 Abs relative to IgG2a shortly after vaccination. This is atypical to immune responses to Salmonella vaccines, which generally are Th1 cell-dependent promoting serum IgG2a Abs. Despite obvious differences in Th cell profiles, the expression of CFA/I fimbriae did not alter its capacity to protect against wild-type Salmonella challenge. The highly proinflammatory nature of Salmonella, subsequent analysis assessed whether the CFA/I fimbriae interfered with the normal recognition of the bacilli. Upon infection of RAW264.7 or thioglycolate-induced macrophages with low infection ratios of Salmonella-CFA/I, minimal-to-no interleukin (IL)-1α, IL-6 and tumor necrosis factor (TNF)-α production was observed in contrast to its isogenic Salmonella vector strain eliciting all of these proinflammatory cytokines with as few as one bacterium/80 macrophages. To ascertain why such a profound disparity in proinflammatory cytokine production, subsequent analysis could not find any differences in Salmonella colonization or increased susceptibility to macrophage cell death nor were there increases in anti-inflammatory IL-10 or IL-12p40 cytokines. Although the mechanism for the stealth-like qualities of Salmonella-CFA/I was not discerned, a possible explanation for these observations may be that the CFA/I fimbriae thwart innate immune responses by hindering detection by individual or a combination of pathogen-recognition receptors, including Toll-like receptor 4 (TLR4), TLR5, CD14, MD2 and lipopolysaccharide-binding protein, to indicate Salmonella’s presence. Hence, we hypothesized that the Salmonella-CFA/I may be an anti-inflammatory vaccine.

SALMONELLA-CFA/I AS AN ANTI-INFLAMMATORY VACCINE FOR AN ANIMAL MODEL OF MULTIPLE SCLEROSIS (MS)

The surprising results from the macrophage infection studies indicated that Salmonella-CFA/I was not eliciting the proinflammatory arm of immunity. Moreover, the stimulation of Th2 cells and associated anti-inflammatory cytokines suggests that this vaccine may also be therapeutic in treating autoimmune diseases, such as MS or arthritis. MS is an inflammatory demyelinating disease of the central nervous system (CNS) with destruction of white matter by autoreactive T cells. This neurodegenerative disease affects as many as 400,000 people in United States and >2 million people worldwide. The frequency of MS is thought to be age and gender dependent, as it most frequently affects young and middle-aged adults and occurs twice as often in females as in males. Although not considered fatal, MS can progress into considerable neurological disability, impacting the quality of life, and resulting in a shortened lifespan.
Experimental autoimmune encephalomyelitis (EAE) is one of the best and most frequently studied rodent model that mimics the neuropathology and clinical disease of MS.60–65 EAE manifests as an ascending disease in the spinal cord where initial symptoms begin as a limp or paralyzed tail, followed by rear leg paralysis that can eventually progress into forearm paralysis.66 It is induced upon immunization with restricted CNS peptides, such as myelin oligodendrocyte glycoprotein,67 myelin basic protein68 or proteolipid protein (PLP),69 into susceptible mice. This injection results in the activation of myelin-specific CD4+ T cells in naive animals where in the CNS inflammatory cells are recruited that secrete interferon (IFN)-\(\gamma\), TNF-\(\alpha\) and IL-1, resulting in perpetuation of inflammation along with tissue damage, including axonal damage, demyelination and perivascular inflammatory lesions.69 Due to demyelination, new epitopes become exposed, and exposure of these neo-Ags acts as an immunization process, thereby causing further epitope spreading.62,70–72 Studies have shown that the proinflammatory-promoting cytokine, IL-23, is primarily responsible for encephalitogenic T-cell development in EAE.73–75 IL-17 is the principal mediator of the inflammation observed in EAE76–79 and in large part induced by IL-23.73–76 IL-17 is cross-regulated by both IL-4 and IFN-\(\gamma\).76 Neutralization of IL-17 has been shown to be protective,76–79 and protection can also be mediated via regulatory T (T\textsubscript{reg}) cells.80–83 The proinflammatory cytokines IFN-\(\gamma\),84–87 IL-17\textsubscript{a} and TNF-\(\alpha\)73,74,82,85,88 can also impact disease primarily via Th1 cells. Protection to EAE correlates with Th2/T\textsubscript{reg} cell dependence as IL-480,89–91 IL-1071,72,85,92–94 and transforming growth factor (TGF)-\(\beta\)80,82,89,95–97 can reverse or prevent EAE. IL-27 has also been shown to be important for induction of protective T\textsubscript{reg} cells.98–100

As for many autoimmune diseases, patients have lost the capacity to be tolerated to self, and consequently, the patient begins to mount an immune response to self much like recognition of foreign Ags. This T-cell dysfunction exhibited in these patients results in chronic activation of inflammatory Th1 and Th17 cells.101,102 Often the course of treatment involves anti-inflammatory drugs and does not address the cause of the disease. Certainly, an approach that has had experimental success is the induction of tolerance. Tolerance is the inability to recognize self or to defined Ags (reviewed in Faria and Weiner,103 Mueller104 and Bilate and Lafaille105) and past efforts to induce tolerance in humans by delivering Ags have proven successful for treating allergies.106–108 The major obstacle in human tolerance is in part attributed to the requirement for large doses of Ag or repeated administrations of therapeutics.106 Although feeding auto-Ags is effective in treating experimental autoimmune diseases, when applied to patients, oral feeding with auto-Ags has been deemed unsuccessful.109,110

As noted, the Salmonella-CFA/I vaccine elicited Th2-type responses to the fimbriae38 much like an effect of soluble Ag with adjuvant.11 The observed Th2 cell bias was directed to the fimbriae but not as much as to the Salmonella vector, which still retained the capacity to stimulate Th1-type responses against Salmonella Ags.111 With this backdrop, subsequent studies began to analyze the potential of Salmonella-CFA/I to augment disease, first with PLP139–151-induced EAE.112 As Salmonella-CFA/I elicits a biphasic Th cell response, groups of mice were orally vaccinated 1 week or 4 weeks before EAE challenge to coincide with a more Th2 cell- or Th1 cell-prone environment, respectively. In either case, Salmonella-CFA/I still conferred protection recovering completely from disease unlike those mice vaccinated with an isogenic Salmonella vaccine lacking CFA/I fimbriae or those mice treated with phosphate-buffered saline (PBS).112 However, mice vaccinated with the isogenic Salmonella vector did show reduced disease relative to PBS-treated mice but still bore greater disease than those mice vaccinated with Salmonella-CFA/I. In addition to the clinical scores, increased disease pathology of the CNS was evident from the enhanced demyelination and inflammatory cell infiltration relative to Salmonella-CFA/I-vaccinated mice. This protection was supported by increased production of IL-4, IL-10 and IL-13 and diminished production of IFN-\(\gamma\) by PLP139–151-CFA/I or CFA/I fimbriae-restimulated CD4+ T cells.112 In contrast, CD4+ T cells isolated from unprotected or Salmonella vector-immunized mice112 displayed elevated IFN-\(\gamma\) and minimal-to-no Th2-type cytokines. Thus, Salmonella-CFA/I was successful in reducing EAE severity in a bystander fashion when administered before disease induction.

Although these prophylactic results were clearly promising, often with human autoimmune diseases, it is unknown which patients will develop disease and at what time point. Therefore, to address the therapeutic potential of oral Salmonella-CFA/I, additional studies were conducted to determine whether it could impact ongoing disease.68 Adapting the same PLP139–151 challenge model, mice were subjected to intervention with Salmonella-CFA/I, Salmonella vector or PBS 6 days post-EAE induction. As per the prophylactic studies, both the Salmonella-CFA/I and Salmonella vector were able to subdue disease to different degrees, but only Salmonella-CFA/I was able to inhibit CNS inflammation unlike the Salmonella vector-treated mice, which showed extensive neutrophil, macrophage and T-cell infiltration into the CNS.68 Protection to EAE by Salmonella-CFA/I was attributed to the stimulation of anti-inflammatory cytokines, IL-4, IL-10 and IL-13 with concomitant reductions in IFN-\(\gamma\) and IL-17.68 Because of the observed anti-inflammatory cytokines, we queried whether these were generated by T\textsubscript{reg} cells, possibly induced by Salmonella-CFA/I. T\textsubscript{reg} cells were originally delineated in thymectomized neonatal mice that showed increased manifestations of autoimmune disorders.113,114 As a result, T\textsubscript{reg} cells have been shown to maintain peripheral tolerance and are responsible for protection against a variety of autoimmune diseases, including colitis,115 arthritis116 and EAE.81,83,105,117 T\textsubscript{reg}-cell subsets are varied in their expression of phenotypic markers, but natural T\textsubscript{reg} cells are identified by the expression of IL-2 receptor \(\alpha\)-chain.113 These are also transcriptionally regulated by forkhead box transcription factor (Foxp3),117–120
and when Foxp3 function is ablated, CD4^+ CD25^+ T\textsubscript{reg} cells are abrogated producing a wasting disease and inflammatory bowel disease in mice.118,119 Co-inhibitory molecules, activation-induced cytotoxic T lymphocyte associated protein-4 and glucocorticoid-induced TNF receptor may also be expressed and contribute in mediating T\textsubscript{eff} cell suppression.121,122 In lieu of the phenotypic markers, earlier studies relied on functional characterization of these T\textsubscript{reg} cells, and these were distinguished by the cell surface expression or secretion of TGF-b120,123,124 referred to as Th3 cells,125 or production of IL-10 referred to as T\textsubscript{regulatory} cells.126,127 TGF-\beta production by CD25^+ CD4^+ T\textsubscript{reg} cells has been shown to be responsible for recovery from EAE,48,89,95–97,123,128 and the presence of TGF-\beta has been shown to be necessary for conversion of CD4^+ CD25^- T cells into CD4^+ CD25^+ TGF-P3^+ T\textsubscript{reg} cells.120,121,124,129 More recently, IL-35 can mediate its effects via the stimulation of IL-10.130,131,135 TGF-\beta production by CD25^+ CD4^+ T cells adoptively transferred from mice vaccinated with Salmonella-CFA/I showed the greatest potency in PLP\textsubscript{139–151}-CFA/I therapeutic.138 The percentage of Foxp3^+ T\textsubscript{reg} cells obtained from Salmonella vector-vaccinated mice did confer protection, some disease was still evident that was subsequently protracted. Recipients adoptively transferred with naive T\textsubscript{reg} cells only showed a delayed onset of disease, and all mice developed EAE. Interestingly, partial protection could be achieved with CD25^- CD4^+ T cells adoptively transferred from Salmonella-CFA/I-vaccinated mice unlike those same cells from Salmonella vector-immunized mice that were unable to confer protection. The adoptively transferred T\textsubscript{reg} cells from Salmonella-CFA/I-vaccinated mice produced both TGF-\beta and IL-10, but the majority of the IL-10 was derived from CD25^+ CD4^+ T cells. Moreover, these CD25^- CD4^+ T cells produced IL-4 and IL-13, suggesting these are potentially Th2 cells. T\textsubscript{reg} cells from Salmonella vector-vaccinated mice produced little TGF-\beta and IL-10, and their CD25^- CD4^+ T cells did not produce IL-4, IL-10 or IL-13, which accounts for the lesser potency in reducing EAE.68 As TGF-\beta1^-/- mice succumb to death in utero and those surviving succumb early in life,136 additional adoptive transfer studies were performed to test the dependence on TGF-\beta for protection to EAE.137 Upon adoptive transfer of T\textsubscript{reg} or CD25^- CD4^+ T cells from Salmonella-CFA/I-vaccinated mice, recipients induced with EAE were neutralized of their TGF-\beta using a monoclonal Ab (mAb), and this abrogated much of the protective effect by Salmonella-CFA/I's T\textsubscript{reg} cells. Complete abrogation was observed upon treating recipients with Salmonella-CFA/I's CD25^- CD4^+ T cells.137 As with this latter finding, TGF-\beta neutralization resulted in the complete loss of any partial protection conferred by Salmonella vector T\textsubscript{reg} cells, and no protection was evident in recipients given CD25^- CD4^+ T cells from Salmonella vector-immunized mice.137 TGF-\beta neutralization also impacted the expression of Foxp3 by the T\textsubscript{reg} cells enabling IL-17 to be augmented, which would account for the loss of function and ultimately protection. Thus, TGF-\beta is an essential regulatory element induced by Salmonella-CFA/I therapeutic.

In an attempt to disrupt the protective capacity of CFA/I fimbriae, a mutant was developed to alter the cell surface expression of the fimbriae. This mutant bears only the cfa\textsubscript{AB} portion of the operon and lacks the genes for the outer membrane usher protein cfa\textsubscript{C}, and minor fimbrial subunit cfa\textsubscript{E}, and is referred to as Salmonella-CFA/I\textsubscript{intraacellular} (Salmonella-CFA/I\textsubscript{IC}).138 This restricted the major subunit CfaB primarily to the Salmonella's periplasm. Upon oral vaccination, mice showed reduced fecal SIgA and reduced serum IgG Abs to the fimbriae but remained as effective in protecting mice against EAE as did adoptive transfer of their T\textsubscript{reg} cells into EAE recipients.138 What was particularly interesting of this finding was the difference in cytokine profiles from Salmonella-CFA/I-vaccinated mice. Examination of cytokine production by T\textsubscript{reg} cells from Salmonella-CFA/I\textsubscript{IC}-treated EAE mice revealed no change in TGF-\beta production but considerably augmented IFN-\gamma and IL-13 production relative to similarly treated mice with Salmonella-CFA/I\textsubscript{IC}.138 The percentage of Foxp3^+ T\textsubscript{reg} cells was similar. To test the relevance of the observed IFN-\gamma and IL-13, in vivo Ab neutralization studies were conducted. Adoptive transfer of Salmonella-CFA/I\textsubscript{IC}'s T\textsubscript{reg} cells into EAE recipients neutralized of their IFN-\gamma using a mAb resulted in no differences in susceptibility to EAE, and both groups of mice given T\textsubscript{reg} cells with normal rat IgG or rat anti-mouse IFN-\gamma mAb showed protection against disease. In contrast, EAE recipients neutralized of their IL-13 using a polyclonal anti-IL-13 Ab and adoptively transferred with Salmonella-CFA/I\textsubscript{IC}'s T\textsubscript{reg} cells lost their protection further showing the importance of IL-13 in defense against EAE.138 This further implicated the ability of IL-13 to directly affect T\textsubscript{reg} cell function or enhance the action of T\textsubscript{reg} cells.138 Thus, these collective studies show the effectiveness of Salmonella-CFA/I and Salmonella-CFA/I\textsubscript{IC} as therapeutics to defend against EAE.

SALMONELLA-CFA/I AS AN ANTI-INFLAMMATORY VACCINE FOR AN INFLAMMATORY MODEL OF ARTHRITIS

Rheumatoid arthritis (RA) is an autoimmune disorder and chronic inflammatory disease of the joints impacting ~1% of
the population in North America and the United Kingdom,139 with women being three times more likely to be afflicted than men.139,140 Although the etiology of this disease remains to be discerned, it is manifested as a chronic synovitis and progressive destruction of the joints, leukocyte infiltrates and cartilage destruction and bone erosion. This destruction is believed to be supported and perpetuated by proinflammatory cytokines. Past studies have indeed shown that proinflammatory cytokines are overexpressed in RA joints (reviewed in Feldmann \textit{et al.},141 Brennan \textit{et al.}142 and Kannan \textit{et al.}143). To understand how such cytokines are regulated, a rodent model sharing many of the same features for human disease (reviewed in Kannan \textit{et al.}143) was developed. This autoimmune disease, collagen-induced arthritis (CIA), is induced by immunizing rodents, typically with heterologous (bovine or chick) type II collagen in combination with adjuvant, to elicit immune attack of the host’s native collagen. Thus, components of both the innate and adaptive immune systems are involved. Emphasis on regulating proinflammatory cytokines, particularly TNF-\textgreek{a}, is key to minimizing disease as it can be detected in joints of RA patients.144–146 Treatment with TNF-\textgreek{a} antagonists decreases inflammation and attenuates the destruction of cartilage and bone.141,147–151 Such treatment is also believed to inhibit other inflammatory cytokines, including IL-1, IL-6, IL-8 and granulocyte macrophages colony-stimulating factor.141,142

Components of both the adaptive and innate immune systems contribute as a source for TNF-\textgreek{a} and other proinflammatory cytokines.143,152,153 IFN-\textgreek{g} also contributes to disease, but it is phase dependent.154–157 Th17 cells, which can regulate both Th1 and Th2 cells,158,159 may be important for mediating RA disease as ICOS-\textgreek{g} DBA/1 mice showed depressed IL-17 production, but not TNF-\textgreek{a} or IFN-\textgreek{g}, and still conferred complete resistance to CIA.160 IL-17 is also expressed by the human synovium and is particularly elevated in patients with RA161,162 and is IL-23 dependent.163 In vivo neutralization of IL-17 results in significantly reduced CIA and could also lessen the progression of the established disease.164

Given the results from the EAE studies, we queried whether \textit{Salmonella}-CFA/I would be effective in treating CIA, a rodent model for RA.153 DBA/1 mice are susceptible to chick or bovine collagen II (CII) challenge, and develop a progressive disease affecting multiple joints.153,165 As such, DBA/1 mice were orally dosed with \textit{Salmonella}-CFA/I, \textit{Salmonella} vector or PBS 7 days before CII challenge. Mice were followed for a course of 42 days, and \textit{Salmonella}-CFA/I protected against CIA as evidenced by minimal clinical disease and significantly reduced incidence unlike mice treated with the \textit{Salmonella} vector or PBS.166 The observed reduction in disease was supported by the production of the cytokines IL-4, IL-10 and TGF-\textgreek{b} by CD4+ T cells. In addition, mononuclear cells from \textit{Salmonella}-CFA/I-treated animals had decreased levels of TNF-\textgreek{a}, IL-1\textgreek{b}, IL-6 and IL-27.166 To distill which CD4+ T cells were responsible for the regulatory and anti-inflammatory cytokines in DBA/1 mice void of disease, mice were orally vaccinated with \textit{Salmonella}-CFA/I, and cytokine profiles from CD25+CD4+ and CD25−CD4+ T cells were assessed. The CD25+CD4+ T cells produced significantly more IL-4, IL-10 and TGF-\textgreek{b} than the CD25− T cells. Interestingly, IFN-\textgreek{g} and IL-17 were significantly elevated relative to CD25−CD4+ T cells but less than CD25+CD4+ T cells from \textit{Salmonella} vector-immunized mice.166 As the CD25+ CD4+ T cells from similarly vaccinated mice were highly protective against EAE,98 adoptive transfer studies were performed to measure the potency of these T\textsubscript{reg} cells in conferring protection against CIA. Surprisingly, neither the individual CD25+CD4+ nor CD25−CD4+ T-cell subset was adequate in treating CIA relative to whole CD4+ T-cell isolates with respect to disease onset and mice with reduced clinical disease.166 Thus, it appeared that both CD25+CD4+ and CD25−CD4+ T cells were required for protection against CIA. Subsequently, adoptive transfer studies using total CD4+ T cells in combination with anti-IL-4 mAb or anti-TGF-\textgreek{b} mAb were performed and revealed that inhibition of either cytokine resulted in disease and loss of the protective response.166 Collectively, these data showed that \textit{Salmonella}-CFA/I could induce the induction of diverse populations of T\textsubscript{reg} cells.

As neither CD25+ nor CD25−CD4+ T cells could completely protect following adoptive transfer into DBA/1 mice, our data suggested that perhaps a different T\textsubscript{reg}-cell subset was being induced. To investigate such a possibility, the \textit{Salmonella}-CFA/I-induced CD4+ T cells were screened for expression of alternative T\textsubscript{reg}-cell markers other than CD25. One such alternative is CD39. These CD39+ T\textsubscript{reg} cells are also able to suppress Th17 cells, and their absence has been linked to MS.167 Specifically, CD39 is an ectonucleoside triphosphate diphosphohydrolase, and it is expressed on the cell surface of Foxp3+ T\textsubscript{reg} cells, dampening proinflammatory cells by ultimately converting proinflammatory extracellular ATP to anti-inflammatory adenosine.166,168,169 Subsequent evaluation of CD39+ expression was conducted in C57BL/6 male mice, which also are susceptible to arthritis.170 Thus, CIA mice were orally dosed with \textit{Salmonella}-CFA/I, and it was revealed that only half of the CD39+CD4+ T cells was Foxp3+CD25+CD4+, although CD39 was also expressed on the CD25−CD4+ T cells.170 To determine whether these CD39+ T cells were protective against disease, C57BL/6 mice were adoptively transfected with CD39+CD4+ or CD39−CD4− T cells from \textit{Salmonella}-CFA/I- or \textit{Salmonella} vector-dosed mice into recipients challenged 14 days earlier with CIA. Only mice receiving CD39+CD4+ T cells from \textit{Salmonella}-CFA/I-dosed mice were protected against CIA, indicating that again the CFA/I fimbriae are essential in stimulating this therapeutic subset of T\textsubscript{reg} cells. As these CD39+CD4+ T cells were composed of both Foxp3+ and Foxp3− cells, further analysis was performed to determine whether Foxp3+ or Foxp3−CD39+CD4+ T cells were protective against CIA. Notably, CIA recipients given either Foxp3+CD39+CD4+ or Foxp3−CD39+CD4+ T cells protected equally to disease but not as effectively as total CD39+CD4+ T cells.170 These subsets were further teased to discern how they differ. Cytokine analysis revealed that IL-10 and TGF-\textgreek{b} segregated
with Foxp3+CD39+CD4+ and Foxp3− CD39+CD4+ T cells, respectively. Neutralization of TGF-β reduced the percentage of CD39 expression, implicating the importance of TGF-β for induction of CD39.

CONCLUSIONS
Outside of our studies, there have only been a few reports where bacterial infections have been used to subdue EAE, and even less for CIA. However, it is important to emphasize that the induction of Treg cells is mediated not so much by the attenuated Salmonella vaccine strain as these cells are induced by the fimbiae or the combination of bacteria with fimbiae. Current studies are addressing these possibilities. Nonetheless, our studies demonstrate the feasibility of a simple oral treatment with Salmonella-CFA/I to render protection against EAE and CIA without having previous knowledge of the auto-Ag. Consequently, in a bystander fashion, both fimbiae- and PLP139-151-specific, TGF-β-producing, Foxp3+ CD25+ CD4+ T cells were induced for EAE and CIA-specific, IL-10-producing Foxp3+ CD39+ and TGF-β-producing Foxp3− CD39− CD4+ T cells. For the protective Treg cells in CIA, co-expression of CD25 did not specifically segregate with either subset. The advantage of using Salmonella-CFA/I is that intervention of autoimmunity can be achieved upon vaccination with an innocuous Ag and in this case the side-effect would be the additional protection against the diarrheal diseases, ETEC and salmonellosis. Moreover, this therapeutic can be administered orally enabling patient compliance. Additionally, this approach does not polyclonally activate Treg cells, which have been shown to have a cataclysmic outcome.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by the Public Health Service Grants AI-41123 and P01 AT-004986-05.
75 Zhang GX, Gran B, Yu S, Li J, Siglenti I, Chen X et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-(β2-deficient) mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003; 170: 2153–2160.

76 Park H, Li Z, Yang XO, Chang SH, Nuriea R, Wang YH et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133–1141.

77 Hofstetter HH, Ibrahim SM, Koczlan D, Kruse N, Weishaupt A, Toyka KV et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 2005; 237: 123–130.

78 Komiyama Y, Nakae S, Matsuji T, Aiba M, Ishigame H, Kakuta S et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566–573.

79 Sutton C, Breerton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203: 1685–1691.

80 Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-β-secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 1998; 28: 2780–2790.

81 Zhang X, Koldzic DN, Iizak L, Reddy J, Nazareno RF, Sakaguchi S et al. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 2004; 16: 249–256.

82 Sun J, Xiao B, Lindblad M, Link H, Czervinsky C et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-β-secreting cells and suppressing chemokine expression. Int Immunol 2000; 12: 1449–1457.

83 Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD4+ T cells during active experimental autoimmune encephalomyelitis. J Immunol 2002; 169: 4712–4716.

84 Tran EH, Prince EN, Owens T. IFN-gamma shapes immune invasion of the brain in inflammatory demyelination. J Immunol 2000; 164: 2759–2768.

85 Ito A, Bebo BF Jr, Matejuk A, Silverman M, Fyfe-Johnson A et al. Estrogen treatment down-regulates TNF-α production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol 2001; 167: 542–552.

86 Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 1999; 163: 5278–5286.

87 Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-β. J Immunol 1991; 146: 1163–1168.

88 Retke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991; 146: 3012–3017.

89 Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein protects against experimental autoimmune encephalomyelitis. J Exp Med 2000; 191: 2039–2052.

90 Slavin AJ, Maron R, Weiner HL. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int Immunol 2001; 13: 825–833.

91 Cupples et al. Failure to suppress the expansion of the effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-β. J Immunol 1991; 146: 1163–1168.

92 Retke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991; 146: 3012–3017.

93 Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL. Oral tolerance: Th3 cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–425.

94 Pot C, Alpetal L, Awarashi A, Kuchroo VK. Induction of regulatory T cells and inhibition of Th17 cells by IL-27. Semin Immunol 2011; 23: 438–445.

95 Fitzgerald DC, Cric B, Touli T, Harle H, Grammatikopoulou J, Das Sarma J et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007; 179: 3268–3275.

96 Retke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991; 146: 3012–3017.

97 Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL. Oral tolerance: Th3 cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–425.

98 Pot C, Aparat L, Awasthi A, Kuchroo VK. Induction of regulatory T cells and inhibition of Th17 cells by IL-27. Semin Immunol 2011; 23: 438–445.

99 Fitzgerald DC, Cric B, Touli T, Harle H, Grammatikopoulou J, Das Sarma J et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007; 179: 3268–3275.

100 Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 2009; 21: 612–618.

101 Paust S, Cantor H, Regulatory T cells and autoimmune disease. Immunol Rev 2005; 204: 195–207.

102 Faria AMC, Weiner HL. Oral tolerance. Immunol Rev 2005; 206: 232–259.

103 Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol 2010; 11: 21–27.

104 Bridle AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012; 30: 733–758.

105 Faria A, Weiner HL. Oral tolerance: therapeutic implications for autoimmune disease. Clin Dev Immunol 2006; 13: 143–157.

106 Skylar JS, Krisher JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial—Type 1. Diabetes Care 2005; 28: 1068–1076.

107 Dahl R, Kapp A, Colombo G, de Monchy JG, Rak S, Emminger W et al. Efficacy and safety of sublingual immunotherapy with grass allergen tablets for seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol 2006; 118: 434–440.

108 Didier A, Malling HJ, Worm M, Horak F, Jäger S, Montagut A et al. Optimal dose, efficacy, and safety of once-daily sublingual immunother-apy with a 5-grass pollen tablet for seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol 2006; 118: 434–440.

109 Faria A, Weiner HL. Oral tolerance: therapeutic implications for autoimmune disease. Clin Dev Immunol 2006; 13: 143–157.

110 Skyler JS, Krisher JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial—Type 1. Diabetes Care 2005; 28: 1068–1076.

111 Pascual DW, White MD, Larson T, Walters N. Impaired mucosal immunity in L-selectin-deficient mice orally immunized with a Salmonella vaccine vector. J Immunol 2001; 167: 407–415.

112 Jun S, Gilmore W, Callis G, Rynda A, Haddad A, Pascual DW. A live diartheal vaccine imprints a Th2 cell bias and acts as an anti-inflammatory vaccine. J Immunol 2005; 175: 6733–6740.

113 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

114 Horii S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2003; 81: 331–371.

115 Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C et al. Cutting edge: TGF-β2 signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+ CD25+ T cells. J Immunol 2004; 173: 6526–6531.
autoimmune encephalomyelitis independently of autoantigen. J Immunol 2008; 181: 954–968.
139 Carmona L, Cross M, Williams B, Lassere M, March L. Rheumatoid arthritis. Best Pract Res Clin Rheumatol 2010; 24: 733–745.
140 Scott DL, Wolfe F, Huizenga TW. Rheumatoid arthritis. Lancet 2012; 376: 1094–1108.
141 Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996; 14: 397–440.
142 Brennan FM, Maini RN, Feldmann M. Role of pro-inflammatory cytokines in rheumatoid arthritis. Springer Semin Immunopathol 1998; 20: 133–147.
143 Kannan K, Ottmann RA, Kimpel D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 2005; 12: 167–181.
144 Di Giovinco FS, Nuki G, Duff GW. Tumor necrosis factor in synovial exudates. Ann Rheum Dis 1988; 47: 768–772.
145 Saxne T, Palladino MA Jr, Heinegard D, Talal N, Wollheim FA. Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum 1988; 31: 1041–1045.
146 Firestein GS, Alvaro-Gracia JM, Maki R. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 1990; 144: 3347–3353.
147 Piquet PF, Grau GE, Vesin C, Loetscher H, Gentz R, Lesslauer W. Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunol 1992; 77: 510–514.
148 Thorbege JK, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumour necrosis factor α and transforming growth factor β during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1989; 89: 7375–7379.
149 Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 1992; 89: 9784–9788.
150 Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997; 337: 141–147.
151 Lipsky PE, van der Heijde DM, St. Clair EW, Furst DE, Breedveld FC, Kalden JR et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis With Concomitant Therapy Study Group. N Engl J Med 2000; 343: 1594–1602.
152 Fava RA, Olsen NJ, Postlethwaite AE, Brown KN, Davidson JM, Namney LB et al. Transforming growth factor beta 1 (TGF-β1) induced neutrophil recruitment to synovial tissues: implications for TGF-β1-driven synovial inflammation and hyperplasia. J Exp Med 1991; 173: 1121–1132.
153 Casassella MA, Gasperini S, Russo MP. Cytokine expression and release by neutrophils. Ann NY Acad Sci 1997; 832: 233–242.
154 Miners-Jones Schwartz B, Chirichella G, Bessis N, Abelsara-Amar O, Batteux F, Muller S et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-γ receptors. J Immunol 1997; 158: 5501–5506.
155 Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J Immunol 1997; 58: 550713.
156 Kelchtermans H, De Klerck B, Mitter A, Van Barel M, Bullens D, Billiau A et al. Defective CD4 + CD25 + regulatory T cell function in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-γ. Arthritis Res Ther 2005; 7: R402–R415.
157 Finnegan A, Kaplan CD, Cao Y, Eibel H, Giant TT, Zhang J. Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Res Ther 2003; 5: R18–R24.
158 Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an interrelated new lineage of pro-inflammatory T cells. Immunology 2006; 124: 677–688.
159 Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 2006; 34: 229–242.
160 Nurieva RI, Treuting P, Duong J, Flavell RA, Dong C. Inducible costimulator is essential for collagen-induced arthritis. J Clin Invest 2003; 111: 701–706.
161 Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frapporti L et al. Human interleukin-17: a T cell-derived proinflammatory cytokine.
produced by the rheumatoid synovium. *Arthritis Rheum* 1999; 42: 963–970.

162 Ziółkowska M, Koc A, Luszczykiewicz G, Ksiezyńska-Pietrzak K, Klimczak E, Chwałinska-Sadowska H et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. *J Immunol* 2000; 164: 2832–2838.

163 Kim HR, Cho ML, Kim KW, Juhn JY, Hwang SY, Yoon CH et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-κB- and p38 MAPK-dependent signalling pathways. *Rheumatol* 2007; 46: 57–64.

164 Lubberts E, Koenders MI, Oppers-Walgreen B, van den Besselaar L, Coenen-Roo CJJ, Joosten LA et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. *Arthritis Rheum* 2004; 50: 650–659.

165 Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunization against heterologous type II collagen induces arthritis in mice. *Nature* 1980; 283: 666–668.

166 Kochetkova I, Trunkle T, Callis G, Pascual DW. Vaccination without autoantigen protects against collagen-induced arthritis via immune deviation and regulatory T cells. *J Immunol* 2008; 181: 2741–2752.

167 Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. *J Immunol* 2009; 183: 7602–7610.

168 Borsellino G, Kleinewietfeld M, Mitri DD, Sternjak A, Diamantini A, Giometto R et al. Expression of ectonucleotidase CD39 by Foxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression. *Blood* 2007; 110: 1225–1232.

169 Bynoe MS, Viret C. Foxp3+CD4+T cell-mediated immunosuppression involves extracellular nucleotide catabolism. *Trends Immunol* 2008; 29: 99–102.

170 Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+T cell function: TGF-β-producing Foxp3- and IL-10-producing Foxp3+ cells are interdependent for protection against collagen-induced arthritis. *J Immunol* 2011; 187: 4654–4666.

171 Lehmann D, Ben-Nun A. Bacterial agents protect against autoimmune disease. I. Mice pre-exposed to *Bordetella pertussis* or *Mycobacterium tuberculosis* are highly refractory to induction of experimental autoimmune encephalomyelitis. *J Autoimmun* 1992; 5: 675–690.

172 Lee J, Reinke EK, Zozulya AL, Sandor M, Fabry Z. *Mycobacterium bovis* bacille Calmette-Guérin infection in the CNS suppresses experimental autoimmune encephalomyelitis and Th17 responses in an IFN-γ-independent manner. *J Immunol* 2008; 181: 6201–6212.

173 Marshall E. Drug trials. Violent reaction to monoclonal antibody therapy remains a mystery. *Science* 2006; 311: 1688–1689.