Virulence factors and antimicrobial resistance in uropathogenic Escherichiacoli strains isolated from cystitis and pyelonephritis

Hosseinali Ghazvini
Keyvan Taheri
Elahe Edalati
Ali Miri
Mansour Sedighi

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
Ghazvini, Hosseinali; Taheri, Keyvan; Edalati, Elahe; Miri, Ali; Sedighi, Mansour; and MIRKALANTARI, SHIVA (2019) "Virulence factors and antimicrobial resistance in uropathogenic Escherichiacoli strains isolated from cystitis and pyelonephritis," Turkish Journal of Medical Sciences: Vol. 49: No. 1, Article 53.
https://doi.org/10.3906/sag-1805-100
Available at: https://journals.tubitak.gov.tr/medical/vol49/iss1/53

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Virulence factors and antimicrobial resistance in uropathogenic Escherichiacoli strains isolated from cystitis and pyelonephritis

Authors
Hosseinali Ghazvini, Keyvan Taheri, Elahe Edalati, Ali Miri, Mansour Sedighi, and SHIVA MIRKALANTARI

This article is available in Turkish Journal of Medical Sciences: https://journals.tubitak.gov.tr/medical/vol49/iss1/53
Virulence factors and antimicrobial resistance in uropathogenic *Escherichia coli* strains isolated from cystitis and pyelonephritis

Hosseinali GHAZVINI\(^1\), Keyvan TAHERI\(^1\), Elahe EDALATI\(^2\), Mansour SEDIGHI\(^3,4\), Shiva MIRKALANTARI\(^1,5,6\)

\(^1\)Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
\(^2\)Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
\(^3\)Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
\(^4\)Azarbaijan-Gharbi Regional Blood Transfusion Center, Urmia, Iran
\(^5\)Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran

Background/aim: The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic *Escherichia coli* (UPEC) isolates.

Materials and methods: Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains.

Results: Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74%) and nitrofurantoin (9%), respectively. Of these isolates, 72 (36%) and 128 (64%) strains were ESBL-positive and ESBL-negative, respectively. The frequency of *fimH*, *papC*, and *hly* was 64%, 38%, and 12%, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was *fimH* 46 (23%) and 86 (43%), respectively. The *hlyA* gene was more prevalent among patients with pyelonephritis than cystitis.

Conclusion: The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of *hlyA* and *papC* genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions.

Key words: Urinary tract infections, *Escherichia coli*, antimicrobial resistance, virulence genes, cystitis, pyelonephritis

1. Introduction

Urinary tract infections (UTIs), including cystitis and pyelonephritis, are among the most common infections in humans, primarily caused by uropathogenic *Escherichia coli* (UPEC) (1,2). The severity of the infection varies depending on the virulence of the infecting bacteria and host susceptibility (3–5). Urinary tract infections often occur in patients with anatomically and functionally normal urinary tracts (3). In ascending infections, colonization of microorganisms in the urethra leads to the upward spread of bacteria to the kidneys (causing pyelonephritis) or bladder (causing cystitis) (2,6). Antibiotic resistance is another serious problem in infections caused by UPEC. Extended-spectrum beta-lactamases (ESBL) are enzymes that confer resistance to most beta-lactam antibiotics, including penicillins, cephalosporins, and aztreonam (7). The high antimicrobial resistance of UPEC associated with ESBL production significantly reduces the therapeutic options and increases the treatment costs and mortality rates (8–10). ESBL-producing UPEC strains, which are increasing in prevalence worldwide, have an appreciable deleterious impact on the clinical management of UTIs (11). UPEC strains harbor a great number of genes that encode different virulence factors, which contribute to greater pathogenicity (11,12). Virulence factors of UPEC strains have a significant role in the development of UTIs (13). The molecular features and functions of these virulence factors have been determined (1,14). The most likely theory is that UPEC primarily germinate from nonpathogenic strains by acquiring new virulence genes (through DNA horizontal transfer of plasmids, bacteriophages, transposons, and pathogenicity islands located at chromosomal loci), which confer an increased ability to adapt to new niches and allow the bacteria to increase the ability to cause a broad

* Correspondence: mirkalantari.sh@iums.ac.ir

This work is licensed under a Creative Commons Attribution 4.0 International License.
The present study was proposed to determine the frequency of important virulence genes as well as the patterns of antibiotic resistance and ESBL production in UPEC strains isolated from patients with cystitis and pyelonephritis in Tehran, Iran.

2. Material and methods

2.1. Study design and bacteria collection

In this study, a total of two hundred nonduplicate E. coli strains were isolated from 4650 urine samples of patients suffering from UTI symptoms who referred to the laboratories of hospitals over a period of 2 years. Bacteriological and biochemical tests were performed for confirmation of E. coli strains. Samples with over 100,000 CFU/mL E. coli count from clean-voided urine were defined as positive UTI infections. Cytobacteriological examination of urine specimens was the basis for the diagnosis of cystitis and pyelonephritis among patients.

2.2. Antibacterial susceptibility testing

The antibiotic susceptibility of E. coli was determined using the Kirby–Bauer disk diffusion method on Muller Hinton agar medium with cefotaxime (30 µg), ceftazidime (30 µg), nalidixic acid (30 µg), trimethoprim-sulfamethoxazole (12.5/23.75 µg), amikacin (30 µg), ciprofloxacin (5 µg), gentamicin (10 µg), and nitrofurantoin (30 µg). The obtained results of the tests were interpreted according to the guidelines of the Clinical Laboratory Standards Institute (23). E. coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603 strains were used as negative and positive controls, respectively.

2.3. Determination of extended-spectrum beta-lactamase phenotype

The presence of the beta-lactamase phenotype was determined by combination disk diffusion method (24). Based on this test, after the inoculation of bacteria in standard concentrations on Muller Hinton agar medium, a disk of ceftazidime (30 µg) alone and a combination disk containing ceftazidime and clavulanic acid (30 µg/10 µg) were placed at a distance of 25 mm from each other. Increase in the size of inhibition zone around the combination disk compared to the ceftazidime disk alone equal to or above 5 mm was considered as positive ESBL phenotype.

2.4. DNA extraction and PCR assay

The colonies of E. coli strains grown on agar medium were suspended in TE buffer and total genomic DNA for amplification was purified from whole cells by simple boiling method (25). The purity and integrity of extracted DNA was confirmed by electrophoresis and biophotometer analysis, respectively. The PCR amplification was performed for the investigation of three types of virulence genes including papC, fimH, and hlyA with specific primers as labeled in Table 1. The PCR products were electrophoresed on agarose gel and visualized by gel documentation after etidium bromide staining.

2.5. Statistical analysis

Statistical analysis was performed using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). Correlation between variables was evaluated by chi-square test. P < 0.05 was considered as statistically significant.

3. Results

A total of 200 E. coli isolates were recovered from urine samples with a count of more than 10⁵ cfu/mL during 2015–2017. Frequency of E. coli isolation was higher in females (86%) than males (14%). Ages of the patients suffering from UTIs ranged between 1 and 91 years. The median age was 38 ± 22.7 years. The number of E. coli isolates recovered from inpatient and outpatients was 40 (20%) and 160 (80%), respectively. Among the 200 E. coli
strains, 72 (36%) strains revealed the ESBL phenotype. Of 72 positive ESBL strains, 24 (12%) and 48 (24%) strains were isolated from pyelonephritis and cystitis cases, respectively. PCR products of three virulence genes were analyzed on agarose gel (Figure). Results showed that the frequency of the studied virulence genes including \textit{papC}, \textit{fimH}, and \textit{hlyA} were 38%, 64%, and 12%, respectively. The frequency of carrying any of these three virulence genes alone was 32% for \textit{fimH}, 4% for \textit{hlyA}, and 4% for \textit{papC}. The \textit{fimH} gene was the most common virulence gene and was detected in 64% of patients, which further revealed that the prevalence was higher in cystitis cases (65.3%). Twenty-four percent of isolates were negative for these three virulence genes (Table 2). The majority of virulence genes were detected in ESBL and non-ESBL isolates and in outpatients and inpatients. The \textit{hlyA}, \textit{papC}, and \textit{fimH} genes were respectively present in 10 (31.25%), 15 (46.8%), and 21 (65.6%) of strains isolated from inpatients and 16 (9.5%), 62 (36.9%), and 108 (64.2%) of strains collected from outpatients. The incidences of \textit{fimH}, \textit{papC}, and \textit{hlyA} virulence genes were higher in inpatients compared to outpatients. There was a significant difference between ESBL-positive and -negative groups for carrying the three virulence genes ($P < 0.005$). The virulence genes were most frequently detected in patients with ESBL-positive strains and the \textit{fimH} gene was the most prevalent. The composition of the virulence genes was similar in both sexes. The prevalence of virulence genes was higher in patients over 50 years of age (Table 3). Multidrug resistance was detected by antibiotic susceptibility test. Of the 200 isolates, 128 (64%) were multidrug-resistant. In ESBL-producing \textit{E. coli} strains, 100% of strains had

Table 1. Primer sequences of studied virulence genes in \textit{E. coli} isolates.

Primer	Oligonucleotides	Product size	Reference
\textit{papC}	F: GTGGCAGATATGTAATGACCGTTA R: ATATCCTTTTCTGACAGGATGCAATA	200 bp	(39)
\textit{fimH}	F: TGCAGAACGGATAAGCCGTGG R: GCAGTCACCTGCCCTCCGGTA	508 bp	(39)
\textit{hlyA}	F: AACAAGGATAAGCAGCTCAGTGGCTGCT R: ACCATATAAGCGGTCATTCCCGTCA	1177 bp	(39)

F: Forward primer, R: reverse primer.

Figure. Gel electrophoresis of PCR products. A) PCR products of \textit{hlyA} gene (1117 bp), B) PCR products of \textit{fimH} gene (500 bp), C) PCR products of \textit{papC} gene (200 bp).
multidrug resistance, while in *E. coli* strains without ESBL production 43.75% were multidrug-resistant (*P* < 0.005) (Table 4). There was a significant difference in antibiotic resistance between patients suffering from pyelonephritis and cystitis (*P* < 0.001).

4. Discussion

UTIs caused by uropathogenic *Escherichia coli* are among the most important infectious diseases leading to renal failure (26). The degree of pathogenicity of UPEC strains is dependent upon the existence of virulence genes (27,28).

Table 2. Different patterns of virulence factors among UPEC isolates.

Pattern	Rate
EC1 (none of the genes)	24%
EC2 (*hlyA*)	4%
EC3 (*fimH*)	32%
EC4 (*papC*)	4%
EC5 (*hlyA-papC*)	4%
EC6 (*hlyA-fimH*)	0%
EC7 (*papC-fimH*)	28%
EC8 (*papC-fimH-hlyA*)	4%

Pyelonephritis-associated pilus (*pap*) is an important factor in the pathogenesis of UTIs, and the essential role of *P. fimbriae* in the progress of pyelonephritis is well known (2,29). The frequency of *papC* in our study was 38%. The study of López-Banda et al. also reported a high frequency of the *papC* gene (62%) in UPEC strains (21). The frequency of the *papC* gene in UPEC isolates in the present study was similar to those found in Iran, Brazil, Tunisia, and China (6,8,30,31). The high prevalence of the *papC* gene suggests that these strains have the ability to colonize the kidneys and generate pyelonephritis. Our study showed that the frequency of the *papC* gene between patients with cystitis (36.6%) and pyelonephritis (36%) was similar. Our findings are in disagreement with the results reported by Firoozeh et al. (2) and Mabbett et al. (32), showing the *pap* gene to be significantly more prevalent among patients with pyelonephritis than cystitis. *hlyA* (α-hemolysin) has been associated with clinical severity in UTI patients (33). In our study, *hlyA* was detected in 12% of UPEC strains. Jalali et al. (3) showed a higher frequency of the *hlyA* gene (47%), while López-Banda et al. (21) indicated a lower prevalence of this gene (7.4%) in UPEC strains. Our results showed a higher prevalence of the *hlyA* gene among UPEC isolates causing cystitis (10.6%) in comparison to the isolates causing pyelonephritis (16%), while, in the study of Firoozeh et al. (2), the frequency of *hlyA* was 1.3% and 6.9% in cystitis and pyelonephritis isolates.

Table 4. Antibiotic resistance rates in ESBL-positive and -negative isolates.

Antibiotic	ESBL-positive	ESBL-negative				
	R	I	S	R	I	S
FM	11.11%	-	88.89%	7.8%	1%	92.2%
GM	36.11%	2%	63.89%	25%	1%	75%
SXT	75%	-	25%	43.75%	-	56.25%
NA	75%	-	25%	54.68%	1%	45.32%
CP	52.7%	-	47.3%	18.75%	-	81.28%
CN	94.4%	-	5.6%	62.5%	1%	37.5%
CAZ	100%	-	-	-	-	-

Table 3. Prevalence of virulence genes among different statuses of patients.

Virulence genes	Inpatients (n = 32)	Outpatients (n = 168)	ESBL-positive (n = 72)	ESBL-negative (n = 128)	Cystitis (n = 150)	Pyelonephritis (n = 50)	Male (n = 28)	Female (n = 172)
hlyA	9.52%	25%	4.1%	7.1%	10.6%	16%	11.1%	12.79%
fimH	62.5%	64.28%	30.5%	32.8%	65.3%	60%	65.11%	57.14%
papC	43.75%	36.90%	20.8%	17.96%	36.6%	36%	21.4%	40.69%
respectively. These findings show that the prevalence of
these genes possibly varies based on geographical region.
fimH, the adhesive subunit of type 1 fimbriae, was the most
prevalent virulence factor detected in UPEC strains. Also,
in agreement with our observation, Yun et al. (33), Jalali
et al. (3), Qin et al. (6), Tarchouna et al. (30), Tajbakhsh
et al. (34), and Wang et al. (35) found the fimH gene to be
the most prevalent virulence factor among UPEC strains.
In the study of Qin et al. (6), among 70 UPEC strains
fimH was detected in 82% and 88% of pyelonephritis and
cystitis specimens, respectively. Consistently, our findings
indicated that this prevalence was 60% and 65.3% in
pyelonephritis and cystitis specimens, respectively.

Our results showed that the prevalence of hlyA, papC,
and fimH genes in strains isolated from inpatients were
31.25%, 46.8%, and 65.6%, respectively, and in strains
collected from outpatients were 9.5%, 36.9%, and 64.2%,
respectively. In comparison to our findings, Santo
et al. (36) showed a similar frequency of hlyA (32%) but
no similar prevalence of pap (9%) and fimH (5%) was
reported in inpatient UPEC isolates; on the other hand,
a similar rate of pap (23%) and conflicting rates of hlyA
(64%) and fimH (20%) were observed in outpatients. Santo
et al. (36) illustrated that strains isolated from outpatients
displayed a greater number of virulence factors compared
to those from hospitalized subjects, in disagreement with
our results showing a higher frequency of fimH, papC, and
hlyA virulence genes in inpatients compared to outpatients.
In the study of Hojati et al. (13), from 130 fimH-positive
isolates, 47.7% and 52.3% belonged to inpatients and
outpatients, respectively, in agreement with our findings
representing a high prevalence of fimH in inpatient and
outpatient UPEC isolates. Mohajeri et al. (19) showed that
the frequency of the pap gene in inpatient and outpatient
subjects was 18.3% and 21.6%, respectively, which was
meaningfully lower than our results of the frequency of
this gene in inpatient and outpatient groups. Mohajeri et
al. (19) also indicated that the prevalence of the hemolysin
gene was 18.3% and 32.1% in inpatient and outpatient
subjects, respectively, contrary to our study indicating a
higher frequency of hlyA gene in inpatients compared to
outpatients.

In our study, out of 200 UPEC strains, 36% were
ESBL-positive and 64% were ESBL-negative. Similar to
our results, Tabar et al. (37) reported that 26.6% of UPEC
strains harbored ESBL-associated genes. Among these
isolates, 128 (64%) strains were multidrug-resistant. Tabasi
et al. (14) found that 26.9% of UPEC strains were ESBL
producers and totally 79% of all isolates were multidrug-
resistant, similar to our results for ESBL production and
multidrug resistance status among UPEC strains. Tabasi
et al. (14) also showed that antibiotic resistance occurred
at a higher rate among ESBL-producing isolates compared
to non-ESBL-producing strains for all tested antibiotics,
consistent with our results illustrating a higher rate of
resistance to different antibiotics in ESBL-positive
compared to ESBL-negative strains. In the study of Qin et
al. (6), 53% of UPEC isolates produced ESBL. On the other
hand, Qi et al. (38) reported that 2.9% of UPEC strains
recovered from outpatient urine cultures harbored ESBLs,
while in our study a higher number of UPEC strains
collected from outpatients harbored ESBL enzymes. Qin et
al. (6) declared that, among all studied virulence genes, the
fimH gene had the highest frequency in ESBL-producing
(76%) and non-ESBL-producing (97%) UPEC strains, in
agreement with the present research indicating the fimH
gene as the most frequent virulence gene detected in
ESBL-producing and non-ESBL-producing UPEC isolates.
However, the frequency of this gene was higher in ESBL-
positive than ESBL-negative strains in our study.
Our study on UPEC strains isolated from pyelonephritis
and cystitis was meant as a step towards improving the
knowledge regarding their virulence gene determinants
and the ability to deal with them. In conclusion, in
our patients, we found no significant differences in
pyelonephritis-causing UPEC strains and cystitis-causing
UPEC strains in the presence of the studied virulence
genes, but the frequencies of hlyA and papC were higher
among UPEC strains isolated from inpatients compared
to outpatients; hence, they could be considered as useful
targets for prophylactic interventions. These findings raise
the possibility that the increase in virulence genes may
lead to the higher risk of severe diseases in inpatients. On
the other hand, our results indicated that about 64% of
UPEC isolates harbored the fimH gene. The high binding
ability of fimH could result in the increased pathogenicity
of UPEC strains; thus, this gene could be used as a possible
diagnostic marker and/or vaccine candidate. Also, in the
current study, higher resistance was observed in ESBL-
producing strains than non-ESBL-producing strains;
therefore, empiric treatment regimens have to be modified
against ESBL enzymes to reach better therapeutic
outcomes.

Acknowledgments
The authors would like to thank the Social Security Shefa
Hospital-Semnan-Iran. We are also thankful to Majid
Sedighi and Serwe Pirouzi for their statistical analysis and
technical assistance in the present study. "Virulence factors
and antimicrobial resistance in uropathogenic Escherichia
coli strains isolated from cystitis and pyelonephritis" was
approved by the Islamic Azad University of the Damghan
Branch (Code: IR.AUD.REC 1396.95243).
References

1. Dehbanipour R, Rastaghi S, Sedighi M, Maleki N, Faghri J. High prevalence of multidrug-resistance uropathogenic Escherichia coli strains, Isfahan, Iran. J Nat Sci Biol Med 2016; 7: 22-27.

2. Firoozeh F, Saffari M, Neamati F, Zibaei M. Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis. Int J Infect Dis 2014; 29: 219-222.

3. Jalali HR, Pourbakhsh A, Fallah F, Eslami G. Genotyping of virulence factors of uropathogenic Escherichia coli by PCR. Nov Biomed 2015; 3: 177-181.

4. Salvador E, Wagenlehner F, Köhler CD, Mellmann A, Hacker J, Svanborg C, Dobrinndt U. Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect Immun 2012; 80: 668-678.

5. Wang MC, Tseng CC, Wu AB, Lin WH, Teng CH, Yan JJ, Wu JJ. Bacterial characteristics and glycemic control in diabetic patients with Escherichia coli urinary tract infection. J Microbiol Immunol Infect 2013; 46: 24-29.

6. Qin X, Hu F, Wu S, Ye X, Zhu D, Zhang Y, Wang M. Comparison of adhesion genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS One 2013; 8: e61169.

7. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci 2015; 22: 90-101.

8. Neamati F, Firoozeh F, Saffari M, Zibaei M. Virulence genes and antimicrobial resistance pattern in uropathogenic Escherichia coli isolated from hospitalized patients in Kashan, Iran. Jundishapur J Microbiol 2015; 8: 1-6.

9. Rawat D, Nair D. Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis 2010; 2: 263-268.

10. Thennozhi S, Moorthy K, Sureshkumar B, Suresh M. Antibiotic resistance mechanism of ESBL producing Enterobacteriaceae in clinical field: a review. Int J Pure Appl Biosci 2014; 2: 207-226.

11. Pourzare M, Derakhshan S, Roshani D. Distribution of uropathogenic virulence genes in Escherichia coli isolated from children with urinary tract infection in Sanandaj, Iran. Arch Pediatr Infect Dis 2017; 5: 1-7.

12. Barbieri NL, Nicholson B, Hussein A, Cai W, Wannemuehler YM, Dell’Anna G, Logue CM, Horn F, Nolan LK, Li G. FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect Immun 2014; 82: 5086-5098.

13. Hojati Z, Zamanzad B, Hashemzadeh M, Molaie R, Gholiopour A. The fimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur J Microbiol 2015; 8: 1-4.

14. Tabasi M, Karam MRA, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect 2015; 6: 261-268.

15. Santo E, Macedo C, Marin JM. Virulence factors of uropathogenic Escherichia coli from a university hospital in Ribeirão Preto, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo 2006; 48: 185-188.

16. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, Paterson DL. The emerging threat of multidrug-resistant gram-negative bacteria in urology. Nat Rev Urol 2015; 12: 570-584.

17. Tiba MR, Yano T, Leite DdS. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis. Rev Inst Med Trop Sao Paulo 2008; 50: 255-260.

18. Bien J, Sokolova O, Bozzo P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol 2012; 2012: 1-15.

19. Mohajeri P, Khademi H, Ebrahimi R, Farahani A, Rezaei M. Frequency distribution of virulence factors in uropathogenic Escherichia coli isolated from Kermanshah in 2011-2012. Int J Appl Basic Med Res 2014; 4: 111-116.

20. Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 2008; 85: 11-19.

21. López-Banda DA, Carrillo-Casas EM, Leyva-Leyva M, Orozco-Hoyuela G, Manjarrez-Hernández ÁH, Arroyo-Escalante S, Moncada-Barrón D, Villanueva-Recillas S, Xicotencatl-Cortes J, Hernández-Castro R. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. Biomed Res Int 2014; 2014: 959206.

22. Aprikian P, Tchesnokova V, Kidd B, Yakovenko O, Yarovoy V, Trinchina E, Vogel V, Thomas W, Sokurenko E. Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose. J Biol Chem 2007; 282: 23437-23446.

23. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-fourth Informational Supplement, M100-S24. Wayne, PA, USA: CLSI; 2014.

24. Giriyapur RS, Nandihal NW, Krishna B, Patil AB, Chandrasekhar M. Comparison of disc diffusion methods for the detection of extended-spectrum beta lactamase-producing Enterobacteriaceae. J Lab Physicians 2011; 3: 33-37.

25. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 2001.

26. Hagan EC, Mobley HL. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 2007; 75: 3941-3949.
27. Sabaté M, Moreno E, Pérez T, Andreu A, Prats G. Pathogenicity island markers in commensal and uropathogenic *Escherichia coli* isolates. Clin Microbiol Infect 2006; 12: 880-886.

28. Hadifar S, Moghfoofi M, Nematollahi S, Ramazanzadeh R, Sedighi M, Salehi-Abargouei A, Miri A. Epidemiology of multidrug resistant uropathogenic *Escherichia coli* in Iran: a systematic review and meta-analysis. Jpn J Infect Dis 2017; 70: 19-25.

29. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13: 269-284.

30. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in *Escherichia coli* isolated from patients with urinary tract infection. Int J Infect Dis 2013; 17: 450-453.

31. Abe CM, Salvador FA, Falsetti IN, Vieira MA, Blanco J, Blanco JE, Blanco M, Machado AM, Elias WP, Hernandez RT et al. Uropathogenic *Escherichia coli* (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol Med Microbiol 2008; 52: 397-406.

32. Mabbett AN, Ulett GC, Watts RE, Tree JJ, Totsika M, Cheryl-Lynn YO, Wood JM, Monaghan W, Looke DF, Nimmo GR et al. Virulence properties of asymptomatic bacteriuria *Escherichia coli*. Int J Med Microbiol. 2009; 299: 53-63.

33. Yun KW, Kim HY, Park HK, Kim W, Lim IS. Virulence factors of uropathogenic *Escherichia coli* of urinary tract infections and asymptomatic bacteriuria in children. J Microbiol Immunol Infect 2014; 47: 455-461.

34. Tajbakhsh E, Ahmadi P, Abedpour-Dehkordi E, Arbab-Soleimani N, Khamesipour F. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic *E. coli* isolated from clinical samples in Iran. Antimicrob Resist Infect Control 2016; 5: 1-8.

35. Wang H, Min G, Glockshuber R, Sun TT, Kong XP. Uropathogenic *E. coli* adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 2009; 392: 352-361.

36. Santo E, Macedo C, Marin JM. Virulence factors of uropathogenic *Escherichia coli* from a university hospital in Ribeirao Preto, Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo 2006; 48: 185-188.

37. Tabar MM, Mirkalantari S, Amoli RI. Detection of ctx-M gene in ESBL-producing *E. coli* strains isolated from urinary tract infection in Semnan, Iran. Electron Physician 2016; 8: 2686-2690.

38. Qi C, Pilla V, Jessica HY, Reed K. Changing prevalence of *Escherichia coli* with CTX-M-type extended-spectrum β-lactamases in outpatient urinary *E. coli* between 2003 and 2008. Diagn Microbiol Infect Dis 2010; 67: 87-91.

39. Johnson JR, Stell AL. Extended virulence genotypes of *Escherichia coli* strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 2000; 181: 261-272.