ARTIGO ORIGINAL

IMPACTO TERAPÊUTICO DOS PROBIÓTICOS NA DOENÇA HEPÁTICA GORDUROSA NÃO ALCOÓLICA EM PEDIATRIA: UMA REVISÃO SISTEMÁTICA

The therapeutic impact of probiotics on nonalcoholic fatty liver disease in pediatrics: a systematic review

Felipe Galvão Batista Chaves, Glauco Ferreira de Oliveira, João Paulo Ribeiro, João Victor Serafim, Luiz Felipe Medeiros Cordeiro, Matheus Alves Alves, Marcelo Trindade Cecchi, Murilo Cordeiro Vasquez, Thaísy Bianka Dorta de Souza, Vera Esteves Vagnozzi Rullo

ABSTRACT

Objective: Evaluate the effects of probiotics use, compared with placebo, in pediatric patients with non-alcoholic fatty liver disease (NAFLD), using laboratorial and ultrasonographic parameters as outcomes.

Methods: A systematic review of the literature was performed through MEDLINE and Lilacs databases. The articles selected were randomized controlled clinical trials published until November 2018, without any language restriction, dealing with pediatric patients with NAFLD. Patients were divided into 2 groups. One group received probiotic therapy and the other group, only received placebo. The primary outcome evaluated was the difference between the serum levels of alanine aminotransferase (ALT) before and after receiving probiotics or placebo. The secondary outcomes evaluated were the serum aspartate aminotransferase levels, body mass index, serum triglycerides, waist circumference and level of liver steatosis on the ultrasonography.

Results: A total of 46 articles were recovered, and 3 articles were included in the qualitative analysis, totaling 128 patients. Two trials revealed a significant decrease of alanine aminotransferase levels after treatment with probiotics (Lactobacillus rhamnosus for 8 weeks; Bifidobacterium+Lactobacillus for 12 weeks), when compared to the placebo. The other variables did not show a statistically significant difference between both groups.

RESUMO

Objetivo: Avaliar os efeitos do uso de probióticos em comparação com placebo, em pacientes pediátricos portadores de doença hepática gordurosa não alcoólica (DHGNA), utilizando parâmetros laboratoriais e ultrassonográficos como desfecho.

Métodos: Revisão sistemática da literatura por meio das bases de dados Sistema Online de Busca e Análise de Literatura Médica (MEDLINE) e Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs). Foram selecionados ensaios clínicos controlados randomizados publicados até novembro de 2018, sem restrição de língua, com pacientes pediátricos portadores de DHGNA, divididos em dois grupos. Um grupo foi submetido à terapia probiótica e outro grupo recebeu somente placebo. O desfecho primário avaliado foi a comparação dos níveis de alanina aminotransferase (ALT) ao início e no fim do seguimento entre os grupos probiótico e placebo. Os desfechos secundários avaliados foram os níveis de aspartato aminotransferase sérico, índice de massa corpórea, triglicerídeos totais séricos, circunferência abdominal e grau de esteatose hepática à ultrassonografia abdominal.

Resultados: Foram recuperados 46 artigos, sendo três incluídos na análise qualitativa, totalizando 128 pacientes. Dois estudos demonstraram redução significativa dos níveis de ALT com o uso de probiótico (Lactobacillus rhamnosus, por oito semanas; Bifidobacterium+Lactobacillus, por 12 semanas), em comparação ao placebo. As demais variáveis avaliadas não evidenciaram diferença estatisticamente significante entre os dois grupos.
INTRODUÇÃO

Os últimos dados da Organização Mundial da Saúde (OMS) indicam que a obesidade infantil está crescendo globalmente, sendo um problema de saúde pública que já afeta um quinto da população infantil mundial.1,2 No mundo todo, haverá aumento do número de crianças obesas, totalizando cerca de 70 milhões em 2025, segundo a OMS.3 A Comissão pelo Fim da Obesidade Infantil da OMS estima que o número de pré-escolares obesos ou com sobrepeso foi de 32 milhões em 1990 para 41 milhões em 2016, num total de 340 milhões de crianças e adolescentes nessas condições naquele ano.4,5 A maioria vive em países subdesenvolvidos ou em desenvolvimento, cujas taxas de sobrepeso e obesidade aumentaram 30% em relação aos países desenvolvidos.6,7 Nos países mais ricos, apesar da redução da taxa de crescimento da obesidade infantil, a prevalência não regrediu.8

Sem intervenção, crianças obesas tendem a se tornar adultos obesos, assim como jovens com sobrepeso podem se tornar adultos obesos.8-10 Também se torna mais provável a incidência de diabetes melito tipo 2, doenças coronarianas, hipertensão arterial, alguns tipos de câncer e problemas osteoarticulares.8,9 Além disso, certas manifestações podem incidir a curto prazo, como dislipidemia, resistência insulínica e doença hepática gordurosa não alcoólica (DHGNA).9

Nesse contexto, a DHGNA tem prevalência média de 7,6% (intervalo de confiança de 95% [IC95%] 5,5–10,3%) na população pediátrica geral.10 Quando analisadas especificamente crianças obesas, esse número é de em média 34,2% (IC95% 27,8–41,2%), além de se encontrar maior prevalência em meninos do que em meninas (razão 2:1).10 Igualmente se observou que a prevalência é maior à medida que ocorre aumento do índice de massa corporal (IMC escore Z).10

Pode-se definir essa condição como a formação excessiva de tecido adiposo no parênquima hepático, levando ao processo de esteatose hepática na ausência de causas secundárias, como霭aloiquilose, hepatite C, nutrição parenteral, erros do metabolismo, apneia obstrutiva do sono, entre outros.11

Conclusões: O uso de probióticos representou redução nos níveis séricos de ALT na esteatose hepática na infância, indo ao encontro dos resultados obtidos por outros autores da literatura científica vigente. No que se refere às variáveis de desfecho secundário, não foi demonstrado benefício ou dano do tratamento de probióticos em relação ao placebo.

Palavras-chave: Doença hepática gordurosa não alcoólica; Pediatria; Obesidade infantil; Probióticos; Esteatose hepática.

Novas evidências contribuem para o entendimento de sua fisiopatologia e demonstram o papel da microbiota intestinal na produção dessas espécies reativas, assim como de substâncias pró-inflamatórias, expressão de fatores nucleares e citocinas que contribuem para o desenvolvimento da DHGNA e sua progressão para esteato-hepatite e fibrose hepática, podendo-se até detectar algumas dessas substâncias já nos estágios iniciais da DHGNA em crianças.12,13

Além das opções terapêuticas tradicionais, estudos experimentais indicam que o uso de prebióticos, probióticos e simbióticos na modulação da microbiota intestinal mostraram benefícios no tratamento da obesidade e da DHGNA,14-18 entretanto algumas sociedades científicas defendem que o número de evidências acerca dos tratamentos com probióticos é pobre e estudos mais aprofundados são necessários na população para que se compreendam seus riscos e benefícios em número maior de indivíduos.19 Da mesma forma, não há indicação de seu uso nos mais recentes algoritmos de tratamento com base em evidências das principais sociedades especializadas no mundo.19-21

Portanto, o presente estudo visou proporcionar análise atualizada quanto ao uso dos probióticos na DHGNA na infância, os quais ainda não possuem seu impacto terapêutico completamente elucidado na população pediátrica.

MÉTODO

Essa revisão sistemática de ensaios clínicos controlados rando-mizados avaliou o efeito da terapia probiótica na DHGNA na infância. Para a seleção dos ensaios, foi realizada busca sistemática nas bases de dados primárias Sistema Online de Busca e Análise de Literatura Médica (MEDLINE), via PubMed, e Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs), via Biblioteca Virtual em Saúde (BVS).22-23 Para a base MEDLINE, foi utilizada a seguinte estratégia de busca: (Prebiotics OR probiotics OR lactobacillus OR bifidobacterium) AND...
“liver diseases” [MeSH Terms] AND (adolescent OR child OR “child, preschool” OR infant OR “infant, newborn”). Para a base Lilacs, usou-se a seguinte estratégia de busca: (probiotics AND liver).

Foram incluídos estudos experimentais do tipo ensaio clínico controlado randomizado, comparando o uso de probióticos com o não uso desses produtos na DHGNA, em faixa etária pediátrica. Excluíram-se da revisão sistemática os seguintes artigos:
- Estudos observacionais.
- Com população de faixa etária não pediátrica.
- Revisões de literatura.
- Estudos realizados com animais.
- Duplicados.

Após a busca sistemática na literatura por meio das bases de dados MEDLINE e Lilacs, foram selecionados os artigos que atendiam aos critérios de inclusão e exclusão do trabalho. Apenas publicações completas foram incluídas, e não houve restrição de linguagem. Foram recuperados 47 trabalhos ao total: 31 mediante o MEDLINE e 16 via Lilacs. A busca foi realizada até outubro de 2018.

Após a leitura do resumo de todos os artigos, 40 trabalhos foram excluídos da análise qualitativa, sendo 32 estudos observacionais/revisões de literatura; três desenvolvidos com animais; três que não avaliaram pacientes portadores de hepatopatia não alcoólica; um analisando apenas pacientes adultos; e um artigo duplicado, encontrado tanto na base MEDLINE quanto na base Lilacs. Desse modo, sete ensaios clínicos randomizados foram selecionados para análise do texto completo. Durante essa etapa, excluíram-se quatro trabalhos da seleção, por apresentarem população de estudo não pediátrica. Os três trabalhos restantes foram incluídos nessa revisão sistemática. O processo de seleção dos artigos pode ser observado na Figura 1.

![Diagrama de fluxo da seleção de estudos incluídos na análise.](image-url)
Visando avaliar o impacto prognóstico dos probióticos na DHGNA, os três ensaios clínicos incluídos nessa análise utilizaram critérios objetivos para o acompanhamento das crianças hepatopatas. Esses critérios basearam-se em exames laboratoriais de função hepática, achados ultrassonográficos, índice de massa corporal (IMC) e porcentagem de gordura no tecido hepático.

Nessa revisão, o desfecho primário de avaliação foi o valor sérico da alanina aminotransferase (ALT), observada nos três artigos. Os desfechos secundários foram os valores séricos de aspartato aminotransferase (AST) e de triglicérides e o escore Z para o IMC.

RESULTADOS
Os três artigos selecionados são ensaios clínicos randomizados que adotaram como grupo de intervenção os pacientes submetidos ao uso de probiótico e como grupo controle pacientes recebendo somente placebo. Os pacientes foram alocados igualmente entre grupo probiótico e grupo placebo. O objeto de estudo foram crianças em idade escolar e adolescentes portadores de DHGNA, totalizando 128 sujeitos nos três ensaios avaliados. As características individuais dos estudos estão expressas na Tabela 1. Os critérios de qualidade dos ensaios clínicos randomizados selecionados foram adaptados das recomendações propostas pelo Scottish Intercollegiate Guidelines Network (SIGN) e podem ser observados na Tabela 2.

Vinte pacientes participaram do estudo realizado por Vajro et al.,25 todos crianças (idade 10,7±2,1 anos) obesas (IMC superior ao percentil 95 para idade e sexo) e portadoras de DHGNA. Foram critérios de inclusão no estudo a persistência de ALT sérica superior a 40 UI/L por ao menos três meses e a presença de esteatose hepática à ultrassomografia. Excluíram-se indivíduos apresentando outras etiologias para hepatopatia. Os pacientes foram alocados em dois grupos de 10. O primeiro grupo foi submetido à terapia oral com o probiótico *Lactobacillus rhamnosus*, enquanto o segundo recebeu placebo. O seguimento ocorreu em oito semanas, e o desfecho primário avaliado foi o nível sérico de ALT. Outras variáveis observadas pelo estudo foram o IMC, a concentração de fatores de necrose tumoral alfa (TNF-alfa) e o resultado de testes utilizando anticorpos séricos IgA para complexos peptidoglicano-polissacarídeos (PG-PS IgA).

Para avaliação hepática ao ultrassom, os autores analisaram a ecogenicidade do parênquima, a penetrância em tecidos profundos hepáticos e a visualização de estruturas vasculares do órgão. As texturas hepáticas foram comparadas quantitativa-mente à ecogenicidade renal, permitindo avaliação da relação ultrassonográfica hepatorenal como parâmetro de avaliação do comprometimento gorduroso hepático. Na avaliação dos níveis de TNF-alfa e de PG-PS IgA e da relação ultrassonográfica hepatorenal, os valores obtidos no estudo foram comparados aos de populações infantis sem hepatopatias.

Alisi et al.26 conduziram um estudo experimental com 44 crianças obesas (percentil para IMC>85 para idade e sexo) com hepatopatia gordurosa não alcoólica. A idade média dos pacientes foi de 10,5 anos. Foram selecionados indivíduos com valores de ALT sérica limítrofe inferiores a 40 UI/L, sem sinais de nenhuma outra causa de doença hepática. Os participantes foram randomizados em grupos de 22, recebendo por quatro meses o probiótico VSL#3 submetido à terapia oral.

Tabela 1 Características dos estudos selecionados.

Artigo	Vajro et al.25	Alisi et al.26	Famouri et al.27
Ano de publicação	2011	2014	2017
Probiótico	*Lactobacillus rhamnosus*	VSL#3	*Bifidobacterium* + *Lactobacillus*
Grupo probiótico	10	22	32
Grupo placebo	10	22	32
Amostra total	20	44	64
Tempo de seguimento	8 semanas	4 meses	12 semanas

Tabela 2 Critérios de qualidade dos ensaios clínicos incluídos no estudo conforme adaptação das recomendações do Scottish Intercollegiate Guidelines Network (SIGN).

Artigo	Vajro et al.25	Alisi et al.26	Famouri et al.27
Questão clínica focada e apropriada	Sim	Sim	Sim
Randomização	Sim	Sim	Sim
Alocação vedada	Sim	Sim	Sim
Estudo duplo cego	Sim	Sim	Sim
Homogeneidade inicial entre os grupos	Não relatado	Sim	Sim
Probiótico como a única diferença entre os grupos	Sim	Sim	Sim
Desfechos medidos por método confiável	Sim	Sim	Sim
Perdas	0%	8,4%	Não relatado
Análise por intenção de tratamento	Sim	Sim	Sim
Estudo multicêntrico	Não	Não	Não
Minimização de vieses	Sim	Sim	Sim
ou placebo. Crianças de até nove anos do grupo probiótico receberam um sachê por dia, enquanto aquelas de dez anos ou mais ingeriam dois sachês. O principal desfecho avaliado foi a gravidade da hepatopatia ao ultrassom, definida em graduação de zero a três, em que grau zero indica fígado normal e demais graduações em hepatopatia leve, moderada e grave, a depender da intensidade de aumento da ecogenicidade do parênquima hepático e da nítidez de visualização da borda diafragmática e da veia portal. Após o seguimento de quatro meses, os resultados foram computados e um modelo matemático de regressão demonstrou a evolução dos resultados ultrasonográficos por meio de probabilidades.

Outros desfechos considerados por esse ensaio incluíam níveis de ALT e do peptídeo semelhante a glucagon (GLP-1) e alterações de glicemia de jejum×glicemia de jejum/405 (em mg/dL).

Por sua vez, Famouri et al.27 avaliaram uma população de 64 indivíduos entre dez e 18 anos. Foram incluídos somente aqueles com evidência ultrasonográfica de hepatopatia gordurosa não alcoólica e com IMC igual ou superior ao percentil 85 para idade e sexo. Excluíram-se os portadores de hepatopatias por outras etiologias. Por alocação randômica, 32 pacientes foram submetidos à terapia probiótica e outros 32 receberam somente placebo durante o período estudado. A terapia probiótica foi baseada em uma cápsula contendo bactérias dos géneros Lactobacillus e Bifidobacterium. O seguimento foi de 12 semanas. As variáveis avaliadas pelo estudo foram o ALT sérico, a AST sérica, o perfil lipídico (dado pela avaliação de lipoproteína de baixa densidade, lipoproteína de alta densidade e triglicerídeos) e a circunferência abdominal. O grau de hepatopatia gordurosa também foi avaliado utilizando-se o mesmo método classificatório utilizado por Alisi et al., exceto o uso de modelo matemático e de probabilidades.

A elevação das transaminases hepáticas como a ALT é um resultado laboratorial frequente da hepatopatia. Esse marcador laboratorial pode ser adotado como controle indireto da progressão da DHGNA. Desse modo, avaliaram-se os valores séricos da ALT antes e depois da terapia probiótica, em comparação com o placebo. Os resultados estão apresentados na Tabela 3 e referem-se à média dos valores encontrados entre os participantes de cada estudo e seu respectivo desvio padrão.

As concentrações médias de ALT entre o grupo controle e o grupo probiótico foram parecidas na medida basal conduzida por Vajro et al., mostrando concentração sérica média inicial de 63,6 UI/L no grupo controle e de 61,6 UI/L no grupo probiótico. Famouri et al. encontraram níveis basais médios de ALT de 28,9 UI/L no grupo placebo e de 32,8 UI/L no grupo tratado com probiótico. Por sua vez, Alisi et al. obtiveram medidas iniciais com maiores diferenças, com valores médios de 42 UI/L no grupo controle contra 34 UI/L no grupo tratado com VSL#3. Quanto aos resultados alcançados após seguimento dos grupos, Vajro et al. e Famouri et al. demonstraram queda da concentração de ALT mais expressiva no grupo probiótico em relação aos pacientes submetidos à administração de placebo e com resultados relevantes estatisticamente (p=0,03 e p<0,05, respectivamente).23,27 Em contrapartida, Alisi et al. revelaram que a redução não foi significativa no grupo probiótico e houve aumento direto dos níveis de ALT no grupo placebo. Nenhum dos resultados obteve significativo estatístico (p=0,17).26

 Além da ALT, avaliada pelos três ensaios clínicos, outros marcadores foram utilizados na avaliação da hepatopatia não alcoólica em pediatria, como os achados ultrasonográficos, as concentrações séricas de AST, a concentração média de triglicerídeos e o IMC médio (escore-Z ou z-IMC). Todas as variáveis foram avaliadas ao início e ao final do seguimento dos estudos. A Tabela 4 exibe os resultados obtidos para os marcadores secundários em seus respectivos estudos.

Quanto ao estudo ultrassonográfico, Vajro et al. não constataram mudanças significativas nos achados ultrasonográficos entre os grupos controle e probiótico em oito semanas de seguimento (p>0,05).25 Já Alisi et al. reportaram alterações benéficas ao término de quatro meses de suplementação probiótica. Ao final do estudo, realizou-se simulação matemática, a qual demonstrou que as chances de os pacientes tratados com probióticos não apresentarem fígado gorduroso eram de 21%, 70% para esteatose leve, 9% para esteatose moderada e 0% para a forma grave. No grupo placebo, comparativamente, essas chances foram de 0, 7, 76 e 17%, respectivamente.26

Famouri et al., por sua vez, relataram mudanças benéficas no grau de esteatose dos pacientes que receberam probióticos após 12 semanas. Houve aumento da porcentagem de pacientes sem alterações ao ultrassom, bem como redução da quantidade de pacientes classificados como grau I e grau II. As alterações apresentaram valores estatisticamente significativos (p<0,05).27

Artigo	Probiótico	Placebo	p-valor*		
	Início	Final	Início	Final	
Vajro et al.25	70,3	40,1	63,6	61,6	0,03
	(34,8)	(22,4)	(18,5)	(31,8)	
Alisi et al.26	34,0	42,0	50,0	50,0	0,17
	(1,0)	(1,0)	(5,0)	(5,0)	
Famouri et al.27	32,8	28,9	26,2	26,2	<0,05
	(19,6)	(13,7)	(12,9)		

Tabela 3 Concentração sérica de alanina aminotransferase (UI/L) antes e depois do seguimento.

*Comparação entre os grupos ao final dos ensaios.
O trabalho de Famouri et al. também foi o único a acompanhar a concentração sérica de AST dos pacientes. Como observado na Tabela 4, houve redução dessa variável em ambos os grupos de estudo. Tal diminuição, porém, foi mais pronunciada no grupo submetido à terapia probiótica, com queda de 7,9 UI/L após as 12 semanas de seguimento, contra apenas 3,6 UI/L no grupo placebo (p<0,05).27

Dois artigos acompanharam a concentração de triglicerídeos em ambos os grupos, ao início e final do seguimento. Comparativamente, observa-se que os estudos demonstram resultados contrários e pouco relevantes quanto ao impacto terapêutico. Alisi et al. mostraram aumento dos níveis de TG em ambos os grupos, sem significância estatística (p=0,575).26 Entretanto, no estudo de Famouri et al., percebeu-se discreta redução nos dois grupos estudados (p<0,001).27

Em relação ao IMC, em Vajro et al. não foi visualizada variação significativa na população estudada independentemente do tratamento adotado (p>0,05). Alisi et al., por sua vez, observaram moderada redução do IMC após o tratamento probiótico, enquanto não houve variação da massa corpórea no grupo placebo (p<0,001).26 Utilizou-se o desvio padrão (escore Z) do IMC para idade e sexo como referência. Por fim, Famouri et al. usaram a circunferência abdominal (cm) como parâmetro alternativo ao IMC para o controle da obesidade da população estudada. Não foi verificado benefício da intervenção na redução dessa variável no grupo probiótico em comparação ao placebo (p<0,05). Entretanto, comparando-se os valores basais e finais dentro do grupo probiótico isolado, obteve-se redução com significância (p=0,001), ao contrário do observado no grupo controle (p=0,06).27

DISCUSSÃO

A redução dos níveis de ALT demonstrada principalmente por Vajro et al. e Alisi et al. vai ao encontro do que é relatado na literatura mundial. Lavekar et al. desenvolveram metaanálise com sete estudos experimentais na população pediátrica com DHGNA e verificaram queda significativa dos níveis de ALT em todos os estudos (ALT=-20,97 UI/L; IC95% -36,14–-5,81; p<0,0001).28 Outra metaanálise, conduzida por Yan Ma et al. com quatro ensaios clínicos randomizados envolvendo 134 pacientes, também confirmou redução da ALT com significância estatística (ALT=-23,71 UI/L; IC95% -33,46–-13,95; p<0,00001).29 Todavia, outros marcadores também foram utilizados, de forma heterogênea, entre os estudos presentes nessa revisão, o que dificulta sua análise conjunta. Somente Famouri et al. usaram AST como parâmetro avaliável e demonstraram maior queda de seus níveis no grupo probiótico em relação ao placebo, apesar de haver queda parecida entre os grupos. As metaanálises conduzidas por Lavekar et al. e por Yan Ma et al. também apontaram redução dos níveis dessa enzima (AST=-19,24 UI/L; IC95% -32,55–-7,00; p<0,002)28,29 Portanto, há indícios de...
redução de AST superior ao placebo, embora mais evidências sejam necessárias.

O IMC foi avaliado por Vajro et al. e Alisi et al. Enquanto o estudo de Alisi et al. indicou maior variação negativa com o uso de probiótico, Vajro et al. não observaram diferença significativa entre o grupo intervenção e o placebo (variação de -3,5% contra -5,7%, respectivamente). Na literatura mundial, entretanto, há controvérsias quanto aos efeitos dos probióticos no IMC, com alguns autores confirmando alterações e outros relatando não haver mudanças, tanto na população adulta como na pediátrica.30-32 Há até mesmo conflitos entre metanálises.28,29

Além da heterogeneidade de marcadores entre os estudos selecionados nessa revisão, o reduzido número de trabalhos obtidos, associado às pequenas amostras de cada um, prejudica a análise em comparação com outros trabalhos. Na avaliação do IMC, por exemplo, o curto período de avaliação associado à amostra pequena é um dos fatores que dificultam a análise precisa dessa variável.

O fato de os estudos não serem multicêntricos também limita sua aplicação como ferramenta avaliadora de diferentes populações, havendo a necessidade de realização de pesquisas mais amplas acerca da aplicabilidade da terapia probiótica em crianças e adolescentes com DGHNA.

Futuramente, serão essenciais investigações com maior tempo de seguimento e avaliação mais rigorosa sobre o desempenho individual dos participantes quanto às alterações dos hábitos de vida relacionados à obesidade e ao sobrepeso, as quais podem gerar viés no resultado dos estudos. Uma alternativa para reduzir viéses nesse sentido seria categorizar os participantes de acordo com a faixa etária, levando em consideração o grau de entendimento sobre a doença, fatores causais e complicações.

Como conclusão, a queda dos níveis séricos de ALT constatada nos ensaios clínicos selecionados corrobora os resultados obtidos por outros autores em revisões sistemáticas e metanálises. Em relação aos níveis séricos de AST, triglicerídeos e IMC, não foi demonstrado benefício ou dano do tratamento de probióticos no que se refere ao placebo, contudo há heterogeneidade entre probióticos utilizados nos trabalhos selecionados, bem como nos parâmetros secundários avaliados, dificultando uma análise sistemática mais abrangente. Além disso, há poucos ensaios clínicos randomizados adequados para efeito comparativo quanto ao impacto terapêutico ao se empregar os métodos de seleção propostos pelo presente estudo. Desse modo, mais evidências são necessárias para elucidar mais precisamente as vantagens da terapia probiótica no manejo da DGHNA na infância.

Financiamento

O estudo não recebeu financiamento.

Conflito de interesses

Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. World Health Organization [homepage on the Internet]. Taking action on childhood obesity. Geneva: WHO; 2016 [cited 2019 Jan 10]. Available from: http://apps.who.int/iris/bitstream/handle/10665/274792/WHO-NMH-PND-ECHO-18-1-eng.pdf

2. World Health Organization [homepage on the Internet]. Childhood obesity. Geneva: WHO; 2019 [cited 2019 Jan 10]. Available from: https://www.who.int/end-childhood-obesity/en/

3. World Health Organization [homepage on the Internet]. Commission on ending childhood obesity: facts and figures on childhood obesity. Geneva: WHO; 2017 [cited 2019 Jan 10]. Available from: https://www.who.int/end-childhood-obesity/facts/en/

4. World Health Organization [homepage on the Internet]. Obesity and overweight. Geneva: WHO; 2018 [cited 2019 Jan 10]. Available from: http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight

5. World Health Organization [homepage on the Internet]. Report of the commission on ending childhood obesity. Geneva: WHO; 2016 [cited 2019 Jan 10]. Available from: http://apps.who.int/iris/bitstream/handle/10665/204176/9789241510066_eng.pdf?sequence=1

6. Wabitsch M, Moss A, Kromeier-Hauschild K. Unexpected plateauing of childhood obesity rates in developed countries, BMC Med. 2014;12:17. https://doi.org/10.1186/1741-7015-12-17

7. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627-42. https://doi.org/10.1016/S0140-6736(17)32129-3

8. World Health Organization [homepage on the Internet]. Comission on ending childhood obesity: frequently asked questions on childhood obesity. Geneva: WHO; 2014 [cited 2019 Jan 11]. Available from: https://www.who.int/end-childhood-obesity/faq/en/

9. Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Family Med Prim Care. 2015;4:187-92. https://doi.org/10.4103/2249-4863.154628

10. Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PloS One. 2015;10:e0140908. https://doi.org/10.1371/journal.pone.0140908
11. Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64:319-34. https://doi.org/10.1097/MPC.0000000000001482

12. Nier A, Engstler AJ, Maier IB, Bergheim I. Markers of intestinal permeability are already altered in early stages of non-alcoholic fatty liver disease: studies in children. PLoS One. 2017;12:e0183282. https://doi.org/10.1371/journal.pone.0183282

13. Lau E, Carvalho D, Freitas P. Gut microbiota: association with NAFLD and metabolic disturbances. Biomed Res Int. 2015;2015:979515. https://doi.org/10.1155/2015/979515

14. Mencarelli A, Distruiti E, Renga B, D'Amore C, Cipriani S, Palladino G, et al. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. PLoS One. 2011;6:e22918. https://doi.org/10.1371/journal.pone.0022978

15. Mencarelli A, Cipriani S, Renga B, Bruno A, D'Amore C, Distruiti E, et al. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS One. 2012;7:e45425. https://doi.org/10.1371/journal.pone.0045425

16. Tagliari E, Campos AC, Costa-Casagrande TA, Salvalaggio PR. The impact of the use of symbiotics in the progression of nonalcoholic fatty liver disease in a rat model. ABCD Arq Bras Cir Dig. 2017;30:211-5. http://dx.doi.org/10.1590/0102-3744/201730211

17. Nobili V, Putignani L, Mosca A, Chierico FD, Vernocchi P, Alisi A, et al. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players? Arch Med Sci. 2018;14:81-7. https://doi.org/10.5114/ams.2016.62150

18. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. 2016;17:E928. https://doi.org/10.3390/ijms17060928

19. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388-402. https://doi.org/10.1016/j.jhep.2015.11.004

20. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67:328-57. https://doi.org/10.1002/hep.29367

21. Zhu JZ, Hollis-Hansen K, Wan XY, Fei SJ, Pang XL, Meng FD, et al. Clinical guidelines of non-alcoholic fatty liver disease: a systematic review. World J Gastroenterol. 2016;22:8226-33. https://doi.org/10.3748/wjg.v22.i36.8226

22. PubMed.org [homepage on the Internet]. US National Institutes of Health: National Library of Medicine. [cited 2018 Dec 20]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/

23. Lilacs.bvsalud.org [homepage on the Internet]. Organização Pan-Americana da Saúde: Centro Latino-Americano e do Caribe de Informação em Ciência da Saúde. [cited 2018 Dec 20]. Available from: http://lilacs.bvsalud.org/

24. Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50 A guideline developer’s handbook. Edinburgh: SIGN; 2002.

25. Vajro P, Mandato C, Licenziati MR, Francesa A, Vitale DF, Lenta S, et al. Effects of Lactobacillus rhamnosus Strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2011;52:740-3. https://doi.org/10.1097/MPG.0b013e31821f9b65

26. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39:1276-85. https://doi.org/10.1111/apt.12758

27. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 2017;64:413-7. https://doi.org/10.1097/MGP.0000000000001422

28. Lavekar AS, Ravey DJ, Manohar T, Lavekar AA. Role of probiotics in the treatment of nonalcoholic fatty liver disease: a meta-analysis. Euroasian J Hepatogastroenterol. 2017;7:130-7. https://doi.org/10.5005/jp-journals-10018-1233

29. Ma YY, Li L, Yu CH, Shen Z, Chen LH, Li YM. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19:6911-8. https://doi.org/10.3748/wjg.v19.i40.6911

30. Aller R, Luis DA, Izaoa O, Conde R, Sagrado MG, Primo D, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12:256-62. https://doi.org/10.1111/hepr.12071

31. Wong VW, Wong GL, Chim AM, Chu WC, Yeung DK, Li KC, et al. Clinical guidelines of non-alcoholic fatty liver disease: which strains act as health players? Arch Med Sci. 2018;14:81-7. https://doi.org/10.5114/ams.2016.62150

32. Wong VW, Wong GL, Chim AM, Chu WC, Yeung DK, Li KC, et al. Clinical guidelines of non-alcoholic fatty liver disease: which strains act as health players? Arch Med Sci. 2018;14:81-7. https://doi.org/10.5114/ams.2016.62150

33. Wu Y, Li L, Yu CH, Shen Z, Chen LH, Li YM. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19:6911-8. https://doi.org/10.3748/wjg.v19.i40.6911

34. Aller R, Luis DA, Izaoa O, Conde R, Sagrado MG, Primo D, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12:256-62. https://doi.org/10.1111/hepr.12071

35. Gao X, Zhu Y, Wen Y, Liu G, Wan C. Efficacy of probiotics in the treatment of nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19:6911-8. https://doi.org/10.3748/wjg.v19.i40.6911

36. Aller R, Luis DA, Izaoa O, Conde R, Sagrado MG, Primo D, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12:256-62. https://doi.org/10.1111/hepr.12071