Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress

Caitlin A. Lawson1*, Malcolm Possell2, Justin R. Seymour1, Jean-Baptiste Raina1 & David J. Suggett1

Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry – surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae. We used GC-MS to characterise five species (Symbiodinium lineae, Breviolum psymphilum, Durusdinium trenchii, Effrenium voratum, Fugacium kawagutii) under steady-state growth. A diverse range of 32 BVOCs were detected (from 12 in D. trenchii to 27 in S. lineae) with halogenated hydrocarbons, alkanes and esters the most common chemical functional groups. A thermal stress experiment on thermally-sensitive Cladocopium goreai and thermally-tolerant D. trenchii significantly affected the volatilomes of both species. More BVOCs were detected in D. trenchii following thermal stress (32 °C), while fewer BVOCs were recorded in stressed C. goreai. The onset of stress caused dramatic increases of dimethyl-disulfide (98.52%) in C. goreai and nonanoic acid (99.85%) in D. trenchii. This first volatilome analysis of Symbiodiniaceae reveals that both species-specificity and environmental factors govern the composition of BVOC emissions among the Symbiodiniaceae, which potentially have, as yet unexplored, physiological and ecological importance in shaping coral reef community functioning.
have moved towards identifying the functional diversity amongst the Symbiodiniaceae to determine key traits of resistance to stress\(^29\), which is critical to understand their susceptibility to rising seawater temperatures. Whilst different metabolic traits and hence diagnostic metabolites appear central in governing this functional diversity\(^31\), the role of BVOCs remains largely unexplored.

The assortment of BVOCs produced by an organism has recently been termed the ‘volatilome’\(^{32,33}\). Assessments of volatilomes, or volatilomics, is widely used in medical research, where the approach has been used to diagnose patient health via bio-markers in exhaled breath\(^34\). More recently, volatilomics has also been used to quickly distinguish plant strains and to successfully monitor long-term plant health\(^35\), with this approach showing promise for the development of new non-invasive monitoring tools of taxonomic and functional diversity in aquatic ecosystems\(^33\). Indeed, volatilomics may be particularly useful in connecting ecological processes and biogeochemical cycles in the ocean, since emissions of BVOCs from photosynthetic organisms can have a strong influence on atmospheric chemistry by increasing local cloud albedo or the residence time of greenhouse gases\(^36,37\). Within this context, characterising the volatilome of highly productive, habitat forming marine organisms should enable more accurate modelling of the impact of tropical BVOCs on climate regulation\(^2,38\).

Here we provide the first characterisation of the volatilome of different Symbiodiniaceae species (spanning five genera) to determine whether and how volatile metabolite signatures are conserved across divergent taxa, and to identify volatiles that may be involved in previously overlooked physiological processes, ecosystem interactions and atmospheric cycling. In addition to this screening across-strains, we also examined the volatilomes of two Symbiodiniaceae strains with different thermal tolerance thresholds under conditions of heat stress, to investigate the extent of thermally-induced changes in the volatilome and identify BVOCs potentially involved in Symbiodiniaceae thermal tolerance.

Results

Initial screening experiment. A total of 32 BVOCs were detected across *Symbiodinium linucheae*, *Breviolum psygmophilum*, *Durusdinium trenchii*, *Effrenium voratum* and *Fugacium kawagutii*, following blank subtraction and quality control (Table S1). Of these, 50% were successfully identified and a further 28% could be assigned to functional chemical groups. Six compounds were present in at least two out of three replicates in all species tested and defined as core components of the Symbiodiniaceae volatilome (Fig. 1A). These included DMS, 2,3-dimethyl hexane, 6-methyl octadecane and three compounds that could not be fully identified (including a halogenated hydrocarbon, an organosulfur compound and an unclassified compound (UC; UC40.63) (Fig. 1A). Excluding unclassified compounds (22.6%), halogenated hydrocarbon compounds constituted the largest functional group (12.9%), followed by alkanes and esters (both 9.7%) (Fig. 1B).
Four BVOCs were unique to *S. linucheae*, including 3-trifluoroacetoxypentadecane, squalene, an unknown halogenated hydrocarbon and a compound that could not be identified to functional chemical group (UC18.34). None of the volatilomes associated with any of the other Symbiodiniaceae strains comprised any unique BVOCs. The most BVOCs were detected in *S. linucheae* (27), followed by *Breviolum psygmophilum* (23), *Effrenium voratum* (18), *Fugacium kawagutii* (16) and *Durusdinium trenchii* (12) (Fig. 1C). The abundance of five compounds differed significantly between species (one-way ANOVA; *P* < 0.01) – these included DMS, 3-trifluoroacetoxypentadecane, UC18.34, UC39.59 and an unclassified halogenated hydrocarbon (Fig. 2A). Principal component analysis (PCA) revealed tight groupings of *Breviolum psygmophilum* (B2, orange), *Effrenium voratum* (E, green) and *Fugacium kawagutii* (F1, blue). Bootstrap N = 1000. HC = Hydrocarbon, UC = Unclassified (the number following UC indicates the retention time of the compound if the chemical functional group could not be determined), FTAEE = 4-fluoro-3-trifluoromethylbenzoic acid eicosyl ester.
Figure 3. Total number of compounds (present in at least two out of three replicates) detected in Durusdinium trenchii and Cladocopium goreaui control and stress treatments (A). Photosynthetic health (F_{v}/F_{m}, dimensionless) and cell density (cell/mL) (C) of D. trenchii and C. goreaui throughout the thermal stress experiment. Significant differences ($P < 0.05$; Kruskal Wallis; IBM SPSS version 25) between treatments are indicated with a star, the star colour indicates the significantly decreased treatment. Shading on panels (B) and (C) indicates the time period the treatment cultures were held at 26°C (green), 30°C (yellow) and 32°C (red), controls were held at 26°C throughout, see Fig S1 for full temperature profile. All error bars are standard error.

Thermal stress experiment. Both the heat-tolerant D. trenchii and heat-sensitive C. goreaui species exhibited a decrease in photochemical efficiency (F_{v}/F_{m}, dimensionless) and cell density during the thermal stress experiment, but the more thermally sensitive strain C. goreaui exhibited significant (Kruskal-Wallis, $P < 0.05$) declines in F_{v}/F_{m} two days earlier than D. trenchii (Fig. 3B,C). A total of 72 BVOCs were detected in this stress experiment after quality control, following thermal stress there was a significant shift in volatilome composition. The relative abundance of 18 compounds differed significantly between treatment and control in C. goreaui ($P < 0.05$; see Table S2 for full list of significant differences). This shift was also reflected in a decrease in the total number of compounds detected during stress (65 to 58; present in at least two out of three replicates; Fig. 3A). Conversely, more compounds were detected in D. trenchii during stress (66 to 71; Fig. 3A) and 25 BVOCs differed significantly ($P < 0.05$; Table S2) between treatments. Only four compounds (2,4-bis(1,1-dimethylethyl)-phenol, two UC ketones and UC40.78) that differed significantly between treatments were shared by both species during stress (Fig. 4B,C). DMS was recorded in lower amounts under thermal stress—dimethylethyl)-phenol, two UC ketones and UC40.78) that differed significantly between treatments were shared by both species during stress (Fig. 4B,C). DMS was recorded in lower amounts under thermal stress—dimethylethyl)-phenol, two UC ketones and UC40.78) that differed significantly between treatments were shared by both species during stress (Fig. 4B,C). DMS was recorded in lower amounts under thermal stress.

Of the compounds that differed significantly between control and heat stress treatment in C. goreaui, 1,3-dimethoxy-2-propanol and dimethyl disulfide (DMDS) showed the largest increases (94.94% and 98.52%, respectively) under stress (Fig. 4B). In D. trenchii, nonanoic acid and UC44.07 exhibited the largest increases (99.85% and 100%, respectively) in the heat stress treatment (Fig. 4C). Five compounds were only detected under thermal stress conditions: benzoic acid pentadecyl ester, UC42.37 became undetectable in C. goreaui during thermal stress (Fig. 4B,C). All other significantly different compounds were measured in higher quantities during thermal stress (Fig. 4B,C). Of the compounds that differed significantly between control and heat stress treatment in C. goreaui, 1,3-dimethoxy-2-propanol and dimethyl disulfide (DMDS) showed the largest increases (94.94% and 98.52%, respectively) under stress (Fig. 4B). In D. trenchii, nonanoic acid and UC44.07 exhibited the largest increases (99.85% and 100%, respectively) in the heat stress treatment (Fig. 4C). Five compounds were only detected under thermal stress conditions: benzoic acid pentadecyl ester, UC44.07, UC33.89 and UC17.25 (Fig. 4C). PCA visualised the strong differentiation between the control and thermal stress volatilomes of C. goreaui (Fig. 4A), the principal components in this PCA were influenced by DMDS (PC1 loading $= -0.84$), which were all detected in higher quantities during thermal stress (Fig. 4B,C). Of the compounds that differed significantly between control and heat stress treatment in C. goreaui, 1,3-dimethoxy-2-propanol and dimethyl disulfide (DMDS) showed the largest increases (94.94% and 98.52%, respectively) under stress (Fig. 4B). In D. trenchii, nonanoic acid and UC44.07 exhibited the largest increases (99.85% and 100%, respectively) in the heat stress treatment (Fig. 4C). Five compounds were only detected under thermal stress conditions: benzoic acid pentadecyl ester, UC44.07, UC33.89 and UC17.25 (Fig. 4C). PCA visualised the strong differentiation between the control and thermal stress volatilomes of C. goreaui (Fig. 4A), the principal components in this PCA were influenced by DMDS (PC1 loading = 0.66), UC40.78 (PC1 loading = 0.52) and 1,3-dimethoxy-2-propanol (PC1 loading = 0.48), which were all detected in higher levels during thermal stress (Fig. 4A). PCA also revealed clear distinction between control and stress treatments in D. trenchii, whereby the principal components in the D. trenchii PCA (Fig. 4D) were largely influenced by UC40.78 (PC1 loading = 0.46), nonanoic acid (PC1 loading = 0.18) and a stronger negative forcing from DMS (PC1 loading = −0.84).

Discussion

The multifaceted biological and ecological functions of BVOCs can influence ecosystem resilience², and therefore understanding the roles of these compounds in shaping ‘healthy’ functioning of threatened ecosystems such as coral reefs is particularly important³. To contribute to an enhanced understanding of coral reef volatilomics, we performed the first characterisation of the volatilome of the coral endosymbionts Symbiodiniaceae, which revealed a substantial diversity of BVOC production. Our study screened species spanning a wide range of Symbiodiniaceae genera³⁹, demonstrating that key species produce far more BVOCs than the iconic dimethyl sulfide. This diverse pool of volatiles included halogenated hydrocarbons, alkanes and esters among the most commonly detected compounds.

By screening five different species (spanning five genera), S. linuche, B. psymophilum, D. trenchii, E. voratum and F. kawaguti, we detected 32 different BVOCs. This diversity of BVOCs is consistent with a recent screening of three species of marine macroalgae (Ulva prolifera, Ulva linza and Monostroma nitidum), which identified 41 volatile compounds⁴⁰. Similarly to our study, alkanes, alkenes, ketones, aldehydes, sulphur compounds, alcohols
and esters were detected in the macroalgae studied. However, unlike macroalgae, Symbiodiniaceae also produced halogenated hydrocarbons, and only benzaldehyde (known to be involved in signalling amongst insects) was identified in both Symbiodiniaceae and macroalgae.

Figure 4. Principal Component Analysis (PCA) of Cladocopium goreai (A) (component 1 = 62.1% and component 2 = 29.6% of variance) and Durusdinium trenchii (D) (component 1 = 74.5% and component 2 = 17.7% of variance) during the thermal stress assay experiment (PAST; Bootstrap N = 1000). Fourth root normalised abundance of compounds that varied significantly between control (26 °C) and treatment (32 °C) (P < 0.05; Kruskal Wallis; IBM SPSS version 25) are shown for C. goreai (B) and D. trenchii (C). All error bars are standard error. HC = Hydrocarbon, UC = Unclassified (the number following UC indicates the retention time of the compound if the functional group could not be determined).
Of the 32 volatile compounds detected in this study, six were present in all five Symbiodiniaceae species and were therefore defined as core volatiles. Recognising the ubiquitous nature of certain volatiles is a first step in understanding the potential ecological relevance of compounds produced by this important family of microalgae. We defined DMS, 2,3-dimethyl hexane, 6-methyl octadecane, an UC halogenated hydrocarbon, UC organosulfur and UC40.63 as core volatiles. Two of these compounds, 2,3-dimethyl hexane and 6-methyl octadecane, are both short chain alkanes, which may have originated from the oxidation of fatty acids. The inclusion of DMS in the core set of volatiles produced by all Symbiodiniaceae genera examined here adds weight to the importance and ubiquitous nature of this compound in these organisms. However, it is notable that DMS relative abundance varied substantially between Symbiodiniaceae species, with significantly more DMS detected in S. linucheae and D. trenchii than all other species, while significantly less DMS was detected in F. kawagutii compared to all other species. Both S. linucheae and D. trenchii are known to be more heat resistant species, potentially suggesting that the high amounts of DMS detected under steady state conditions positively influence their resilience, allowing these species to have a larger existing pool of antioxidants.

In addition to DMS, differences between Symbiodiniaceae volatilomes were largely driven by the relative abundance of UC40.45, methyl jasmonate, styrene and 4-fluoro-3-trifluoromethylbenzoic acid eicosyl ester. Methyl jasmonate is ubiquitous in higher plants and is an important signalling molecule that regulates plant development and also plays a role in defence against biotic (e.g. herbivory) and abiotic (e.g. heat) stresses. Methyl jasmonate was detected in all replicates of S. linucheae, and given previous observations in higher plants, this BVOC might be involved in the thermal resistance of this Symbiodiniaceae species. The function of the other two molecules, styrene and 4-fluoro-3-trifluoromethylbenzoic acid eicosyl ester, remain uncertain but styrene has previously been reported in higher plants.

This study identified multiple halogenated compounds however, only three were fully classified (1,2-dichloropropane, 3-trifluorooacetoxypentadecane & 4-fluoro-3-trifluoromethylbenzoic acid eicosyl ester). Halogenated compounds are of particular importance as they can degrade atmospheric ozone, they are known to be produced naturally and have previously been reported from marine microalgae. For example, three tropical microalgae (Amphora sp., Synochoccus sp. & Parachlorella sp.) can produce a range of iodinated and brominated compounds (methyl iodide, bromoform, dibromomethane, dibromochloromethane, and chloroform), with production shown to be species-specific and growth-phase dependent, highlighting the importance of the physiological state of the cell for volatile emissions. Other examinations of a suite of common phytoplankton (Calidiscus leptoporus, Emiliania huxleyi, Phaeodactylum tricornutum, Chaetoceros neogracilis and Dunaliella tertiolecta) demonstrated that all tested species emitted chloromethane, bromoform, bromomethane, chlorobenzene and dichlorobenzene. Our understanding of the function of halogenated compounds remains in its infancy, with current hypotheses suggesting the tight coupling of their production with oxidative processes (potentially formed as side products during the breakdown of reactive oxygen species). Halogenated compounds are also thought to sometimes function as ‘infochemicals’, with studies on macroalgae demonstrating that bromoform supports the alga’s defence by functioning as an antimicrobial. We observed that two halogenated compounds, including 3-trifluorooacetoxypentadecane and another unclassified halogenated BVOC, differed significantly between Symbiodiniaceae species and notably seem to co-occur (Correlation: 0.73, P Value = 0.002, Pearson R, Metaanalyst4.0), with significantly higher levels of both compounds present in S. linucheae compared to all other species tested. 3-trifluorooacetoxypentadecane has previously been shown to have antimicrobial properties, however, far more work is needed to accurately define the function of these halogenated compounds in Symbiodiniaceae.

This initial screening of a range of Symbiodiniaceae species has demonstrated the diversity and species-specific nature of the volatilome. Despite this diversity, a consistent core emerged, suggesting that some compounds have a conserved role across species. While appreciating these potential roles is important, most natural systems rarely remain in steady-state conditions for prolonged amounts of time. Currently, marine systems are experiencing an increase in the frequency and severity of harmful thermal stress events. How corals respond to heat-wave induced bleaching and mortality is often influenced by the thermal tolerance of their endosymbiotic algae (Symbiodiniaceae). A number of physiological traits appear to differentiate stress tolerant-versus-susceptible species (or genetic variants) of Symbiodiniaceae, including maintaining integrity of photosynthetic anatomy, chlorophyll a, and chlorophyll b abundance of UC40.45, methyl jasmonate, styrene and 4-fluoro-3-trifluoromethylbenzoic acid eicosyl ester. With the onset of thermal stress, a larger number of BVOCs were detected in the thermally tolerant D. trenchii, while the thermally sensitive C. goreau produced fewer compounds relative to control conditions. The ability to synthesise specific compounds under stress could be involved in the thermal tolerance of D. trenchii, as ‘de novo’ BVOC synthesis has been previously observed in higher plants during abiotic stresses. During thermal stress, concomitantly with a decrease in cell health, a dramatic increase in nonanoic acid was recorded in D. trenchii. Nonanoic acid is a fatty acid, a group of compounds that can potentially result from increased cell membrane lysis. Furthermore, significantly less DMS was detected in D. trenchii during stress, which was the only compound to significantly decrease in this species. Previous work targeting DMS production in other Cladocapton and Durusdinium Symbiodiniaceae strains also observed a decrease in DMS with the onset of heat stress. Lower levels of DMS under thermal stress may either indicate that Symbiodiniaceae decrease their production, or that DMS degradation increases due to reactions with harmful molecules in response to thermal stress. Interestingly, in our study, we detected higher amounts of another sulphur compound, dimethyl disulfide (DMS) in C. goreau during stress. DMDs can be formed from the photo-oxidation of methanethiol. These results indicate that we need to consider the full suite of volatile sulphur compounds to fully elucidate the role that these chemicals play in stress response and trophic interactions in coral reefs. An additional 17 compounds significantly increased during thermal stress in C. goreau, with 1,3-dimethoxy-2-propanol, UC40.78 and DMDs the main drivers of the differentiation between treatments. Increases in 1,3-dimethoxy-2-propanol may have resulted from lipid peroxidation.
Whether these BVOCs are released prior to other visual (e.g. bleaching) or physiological30 stress indicators remains unknown and will be important to assess for the potential use of specific BVOCs to diagnose early stress responses.

The sheer quantity of detected and unidentified compounds that differed significantly across species and under heat stress highlights a critical need to robustly quantify and classify these BVOCs. However, lack of a comprehensive marine BVOC database severely limits our interpretation of volatilomic data, an issue that similarly limits progress for other metabolomic approaches33. Terrestrial BVOC studies have already identified ~30,000 volatile compounds to date65. The unidentifiable chemical diversity highlighted here teases at the potential unexplored roles of BVOCs in biological and ecological interactions in marine systems. These unidentified compounds should therefore not be discarded from future analyses as they may play key roles in stress response or could function as useful stress biomarkers that can be measured non-invasively. Volatile databases are continually improving and as such we have made available our mass spectra files (MSV000084436; MassIVE; https://doi.org/10.25345/C5RD5C) for future studies as more comprehensive databases become available.

Numerous BVOCs are known to induce the formation of secondary organic aerosols that enhance cloud formation and albedo (e.g. DMS, benzaldehyde, toluene & styrene66,) while other compounds can result in increased formation and residence time of crucial greenhouse gases such as ozone67. Marine BVOC emissions are known to have stronger convection forces that lead to greater transport of emitted BVOCs to the troposphere and stratosphere68. It is therefore essential to understand current tropical baseline emissions if we wish to accurately model future climate scenarios. Examining the Symbiodiniaceae volatilome is a key step towards understanding the prevalence and function of tropical marine BVOCs. However, further work is needed to clarify how free living Symbiodiniaceae BVOC production varies from endosymbiotic Symbiodiniaceae.

Here we demonstrate for the first time that volatile metabolites produced by Symbiodiniaceae are not only composed of a broad spectrum of BVOCs, but that their production can be influenced by stressful - suboptimal – conditions, suggesting that these overlooked BVOCs likely operate as key constituents regulating metabolic competency. We detected six BVOCs with putative signalling and antioxidant functions that were ubiquitous across the five Symbiodiniaceae genera investigated. Many of the BVOCs reported here are as yet uncharacterised, highlighting an urgent need to develop marine-specific annotation pipelines and to further identify new and abundant compounds. This is of particular relevance given that some of these compounds might play currently uncharacterised roles in resistance and survival of corals during thermal stress events. This work provides direction for future studies to start unravelling the complex functions of volatile metabolites in coral reefs. Corals are some of the most complex symbiotic metaorganisms and the many microbial partners they harbour are likely to contribute to their BVOC emissions.

Methods

Across strain screening of symbiodiniaceae volatilomes. Five isolates, each representing a distinct Symbiodiniaceae genus (Symbiodinium linucheae, Breviolum psymophilum, Durusdinium trenchii, Effrenium voratum and Fugacium kawagutii; see Table 1), were maintained in exponential growth in a temperature controlled incubator (Labec; Marrickville, Australia) maintained at 25 °C ± 1 °C and under a light intensity of ca. 50 ± 5 µmol photons m\(^{-2}\) s\(^{-1}\) (HYDRA; Aquailumination, Ames, Iowa) on a 12:12 light:dark cycle (as per Lawson et al.70). Cultures were grown in triplicate in 0.2 µm filtered artificial seawater71 with IMK medium (Diago, Japan) in sterile 250 mL Schott bottles. Growth and physiological condition of each culture was monitored daily in the five days prior to sampling with direct cell counts and Fast Repetition Rate fluorometry (FRRf; FastOcean, Chelsea Technologies Group, UK). The FRR fluorometer was programmed to deliver single turnover induction of photosystem II (PSII) (i.e. 100 × 1.1 µs flashlets spaced at 2.8 µs intervals) via a blue excitation LED (450 nm). Each acquisition recorded was the mean of 40 consecutive single turnover fluorescent transients, with intervals of 150 ms between acquisitions (detailed in Lawson et al.70). FRRf measurements were performed on 3 mL live culture, samples were first acclimated to low light (<5 µmol photons m\(^{-2}\) s\(^{-1}\) for ~15 minutes to relax non-photochemical quenching while simultaneously avoiding build-up of chlororespiration to ensure that only the maximum quantum yield of PSII (\(F_\text{v}/F_\text{m}\)) was assessed72. Cell counts were performed on live cultures using a Neubauer haemocytometer and 20x magnification on a Nikon Eclipse Ci-L compound microscope (Nikon Instruments; Melville, New York). In addition to this daily monitoring data, additional samples were taken on the day of BVOC sampling for FRRf, cell counts, and cell size. For cell size analysis, an aliquot of culture was loaded onto a Neubauer haemocytometer and using a Nikon Upright Fluorescence Microscope (Nikon Instruments; Melville, New York) a series of 48 images were taken for each sample. Using FIJI73,74 and White Balance software,

Table 1. Symbiodiniaceae isolates examined in the screening experiment. Isolates were maintained in culture and no corals were directly handled in this study. Strains in bold were used for the thermal stress experiment, *indicates use in the screening experiment.

ID	ITS2 Type	Origin	Host	Species
*RT379	A4	Bahamas	_Plexaura homomalla_ (Coral)	*Symbiodinium linucheae*
*RT141	B2	Bermuda	_Oculina diffusa_ (Coral)	*Breviolum psymophilum*
1235CF 058-04	C1	Magnetic Island (Pacific)	_Acropora millepora_ (Coral)	*Cladiococcus goreaut*
*amur-D-MI	D1a	Magnetic Island (Pacific)	_A. muricata_ (Coral)	*Durusdinium trenchii*
*CCMP241	E	Wellington, NZ	Free-living	*Effrenium voratum*
*IT56	F1	Hawaii (Pacific)	_Montipora verrucosa_ (Coral)	*Fugacium kawagutii*
these images were processed and the mean cell volume was recorded for each strain72. Values of \(F_{v}/F_{m} \) (dimensionless) varied on the day of sampling from 0.412 ± 0.016 (E. voratum) to 0.479 ± 0.002 (D. trenchii) (mean ± SE, \(n = 3 \); Fig. S2), a range expected across isolates growing in nutrient replete exponential growth86,22.

Symbiodiniaceae thermal assay experiment. Two Symbiodiniaceae strains characterised by different levels of thermal sensitivity, including the relatively heat sensitive SCF058-04 (Cladocopium goreaui) and heat tolerant amur-D-MI (Durusdinium trenchii)73−78 were subjected to a thermal stress experiment. These isolates were selected based on their differing thermal tolerance and their abundance on the Great Barrier Reef79,80. A control incubator (ARALAR; Sintra, Lisboa) was maintained at 26 °C ± 1.5 °C with a light intensity of ca. 100 ± 10 μmol photons m\(^{-2}\) s\(^{-1}\) (LEDs) on a 12:12 light:dark cycle. A parallel incubator (ARALAR; Sintra, Lisboa) was used for the heat treatment assay with identical settings as for the control, except that temperature was ramped from 26 °C to 30 °C over 4 days and then maintained at 30 °C for 4 days prior to resampling. The temperature was then ramped from 30 °C to 32 °C over 2 days and finally maintained at 32 °C for a further 4 days (Fig. S1). Six biological replicates of each culture were grown (\(n = 3 \) per each control and treatment). All cultures were monitored daily with FRFR and cell counts following the same procedures as used in the screening experiment. BVOC sampling was performed at the end of the stress period when the treatment cultures had been at 32 °C for 4 days. Additional samples were taken for cell imaging as per screening experiment on these BVOC sampling days.

BVOC sampling and volatilome retrieval. Two aliquots of 50 mL from each sample were each placed into a sterile 100 mL crimp cap vial to yield technical duplicate samples with 50 mL head space. Vials were capped and placed in a water bath under light intensity (cool white light, HYDRA; Aquailumination, Iowa, USA) and temperature that matched their growth or treatment conditions. Samples were purged with instrument grade air (BOC Gases, Linde Group, Australia) for 30 minutes, whereby the purge outlet was passed over thermal desorption (TD) tubes (Tenax TA; Markes International Ltd, Llantrisant, UK; see Fig. S3), which were immediately capped post purge and stored at 4 °C until processing. All TD tubes were analysed within two weeks of sampling by desorbing samples with automated thermal desorption (ULTRA 2 & UNITY 2; Markes International Ltd, Llantrisant, UK) for 6 minutes at 300 °C and concentrated on a Tenax TA cold trap at −30 °C. This cold trap was then flash heated to 300 °C and the concentrated sample injected via a heated transfer line (150 °C) onto a 7890A GC-MS (Agilent Technologies Pty Ltd, Melbourne) fitted with a BP1 capillary column (60 m splitless to allow detection of trace compounds. To allow for complete desorption the GC oven was heated at 35 °C film thickness; SGE Analytical Science Pty Ltd, Melbourne) at a flow rate of 2.3 mL/minute. Samples were run under accession numbers: MSV000084436.

Statistical analyses. A Principal Components Analysis (PCA; Bootstrap N = 1000) on data normalised to total cell volume was completed in the statistical package PAST83 to contrast the volatilomes between Symbiodiniaceae species (Screening experiment) and between temperatures (Stress experiment). Compounds were considered "core" components of the volatilome if they appeared in at least 2 out of 3 biological replicates in all species. To test for significant differences between species in the screening experiment, data were processed in MetaboAnalyst4.0, undergoing a generalised logarithm transformation and tested with a one-way ANOVA and Tukey’s HSD post hoc55,58. For treatments in the stress experiment, a Kruskal-Wallis test was used (IBM SPSS Statistics, version 25), as data did not meet the assumptions required for parametric tests.

Data availability

The datasets generated during the current study are available in the MassIVE database (https://massive.ucsd.edu) under accession numbers: MSV000084436.

Received: 1 July 2019; Accepted: 1 November 2019;
Published online: 22 November 2019

References

1. Shaw, S. L., Gantt, B. & Meskhidze, N. Production and Emissions of Marine Isoprene and Monoterpenes: A Review. *Adv. Meteorol.*, 2010, 1–24 (2010).
2. Peñuelas, J. & Llusià, J. BVOCs: Plant defense against climate warming? *Trends Plant Sci.*, 8, 105–109 (2003).
3. Kesselmeier, J. & Staudt, M. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. *J. Atmos. Chem.*, 33, 23–88 (1999).
4. Loreto, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010).
5. Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–20 (2002).
6. Loreto, F., Barta, C., Brilli, F. & Nogues, I. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell Environ. 29, 1820–1828 (2006).
7. Croft, K. P. C., Jüttermann, F. & Shusarenko, A. J. Volatile Products of the Lipoygenase Pathway Evolved from. Plant Physiol. 101, 13–24 (1993).
8. Shiojiri, K. et al. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc. Natl. Acad. Sci. 103, 16672–16676 (2006).
9. Schiesel, F. P. Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol. 206, 571–577 (2015).
10. Loiavamai, M., Mumm, R., Dicke, M. & Schnitzler, J.-P. Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc. Natl. Acad. Sci. 105, 17430–17435 (2008).
11. De Moraes, C. M., Mescher, M. C. & Tumlinson, J. H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580 (2001).
12. Laathawornkritkul, J. et al. Isoprene emissions influence herbivore feeding decisions. Plant, Cell Environ. 31, 1410–1415 (2008).
13. Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006).
14. Exton, D. A. A., Suggett, D. J., Mcgenity, T. J. J. & Steinke, M. Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnol. Oceanogr. 58, 1301–1311 (2013).
15. Jackson, R., Fabric, A. & Cropp, R. Effects of ocean warming and coral bleaching on aerosol emissions in the Great Barrier Reef, Australia. Sci. Rep. 8, 1–11 (2018).
16. Broadbent, A. D. D. & Jones, G. B. DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar. Freshw. Res. 55, 849–855 (2004).
17. Hopkins, F. E., Bell, T. G., Yang, M., Suggett, D. J. & Steinke, M. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci. Rep. 6, 1–11 (2016).
18. Ayers, G. P. & Gras, J. L. Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 354, 56–58 (1991).
19. Deschaseaux, E. S. M. et al. Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress. J. Exp. Mar. Bio. Ecol. 459, 181–189 (2014).
20. Seymour, J. R., Simo, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science (80-.). 329, 342–346 (2010).
21. Nevitt, G. A., Veit, R. R. & Kareva, P. Dimethyl sulphide as a foraging cue for Antarctic Procellariform seabirds. Nature 376, 680–682 (1995).
22. Swan, H. B. et al. Dimethyl sulfide and other biogenic volatile organic compound emissions from branching coral and reef seawater: potential sources of secondary aerosol over the Great Barrier Reef. J. Atmos. Chem. 1–26, https://doi.org/10.1007/s10874-016-9327-7 (2016).
23. Broadbent, A. D., Jones, G. B. & Jones, R. J. DMSP in Corals and Benthic Algae from the Great Barrier Reef. Estuar. Coast. Shelf Sci. 55, 547–555 (2002).
24. Steinke, M., Brading, P., Kerrison, P., Warner, M. E. & Suggett, D. J. Concentrations of dimethylsulphoniopropionate and dimethyl sulfide are strain-specific in symbiotic dinoflagellates (symbiodinium sp., dinophyceae). J. Phycol. 47, 775–783 (2011).
25. Exton, D. A. A., Suggett, D. J. J., Mcgenity, T. J. J. & Steinke, M. Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnol. Oceanogr. 58, 1301–1311 (2013).
26. Van Alstyne, K. L., Dominique, V. J. & Muller-Parker, G. Is dimethylsulphoniopropionate (DMSP) produced by the symbionts or the host in an enemone-zooxanthella symbiosis? Coral Reefs 28, 167–176 (2009).
27. Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbioses. J. Exp. Biol. 215, 3467–3477 (2012).
28. Suggett, D. I., Warner, M. E. & Leggat, W. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. Trends Ecol. Evol. 32, 735–745 (2017).
29. Diaz-Almeyda, E. M. et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc. R. Soc. B Biol. Sci. 284, 20171767 (2017).
30. Goyen, S. et al. A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae). Mar. Biol. 164, 1–12 (2017).
31. Matthews, J. L. et al. Partner switching and metabolic flux in a model cnidarian–dinoflagellate symbiosis. Proc. R. Soc. B Biol. Sci. 285 (2018).
32. D’Alessandro, M. Assessing the importance of specific volatile organic compounds in multitrophic interactions. (Université de Neuchâtel, 2006).
33. Steinke, M., Randell, L., Dumbrell, A. J. & Saha, M. Volatile Biomarkers for Aquatic Ecological Research. Advances in Ecological Research 59 (Elsevier Ltd., 2018).
34. Amann, A. et al. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8 (2014).
35. Jud, W., Winkler, J. B., Niederbacher, B., Niederbacher, S. & Schnitzler, J. P. Volatilomics: A non-invasive technique for screening plant phenotypic traits. Plant Methods 14, 1–18 (2018).
36. Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37 (2003).
37. Atkinson, R. & Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103, 4605–4638 (2003).
38. Laathawornkritkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New Phytol. 183, 27–51 (2009).
39. Lafisette, T. C. et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).
40. Yamamoto, M. et al. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry. Sci. World J. 2014, 1–8 (2014).
41. Kang, C. Y., Kim, J. & King, H.-H. Benzaldehyde Synergizes the Response of Female Xyloborus saxesenii (Coleoptera: Curculionidae, Scolytinae) to Ethanol. J. Econ. Entomol. 111, 1691–1695 (2018).
42. Swan, T. D., Challenger, J., Backman, V. & Marcelino, L. Consensus thermostolerance ranking for 110 Symbiodinium phylootypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183 (2017).
43. Jones, G. & King, S. Dimethylsulphoniopropionate (DMSP) as an indicator of bleaching tolerance in scleractinian corals. J. Mar. Sci. Eng. 3, 444–465 (2015).
44. Dar, T. A., Uddin, M., Khan, M. M. A., Hakeem, K. R. & Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 115, 49–57 (2015).
Acknowledgements
This research was supported by an Australian Government Research Training Program Scholarship awarded to C.A.L., J.B.R. was supported by Australian Research Council fellowship DE160100636 and D.J.S. by an ARC Discovery Grant (DP160100271). We thank Samantha Goyen, David Hughes, Graeme Poleweski, Scott Allchin, Stephanie Gardner and Axel Olander for their assistance transporting samples for analysis.

Author contributions
C.L., D.J.S., J.B.R., J.R.S. conceived and designed the project, C.L. performed the experiments, analysed the data and produced figures. M.P. provided technical and data analysis assistance. D.J.S. provided financial support. C.L. wrote the paper. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53552-0.

Correspondence and requests for materials should be addressed to C.A.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019