Comparison of cadmium and lead sorption by *Phyllostachys pubescens* biochar produced under a low-oxygen pyrolysis atmosphere

Chao Zhang, Baoqing Shan ¹, Wenzhong Tang *¹, Yaoyao Zhu

*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China*

University of Chinese Academy of Science, Beijing 100049, PR China

**Highlights**

- Low oxygen atmosphere could improve sorption capacity of metals.
- The biochar had more favorable adsorption for Pb²⁺ than Cd²⁺.
- Precipitation with ash mechanisms dominated Pb²⁺ sorption on the biochars.
- Coordination with π electron mechanisms dominated Cd²⁺ sorption.

**Graphical Abstract**

![Graphical Abstract Image](image)

**Abstract**

*Phyllostachys pubescens* (PP) biochars produced under a low oxygen pyrolysis atmosphere (oxygen content 1–4%) were prepared as sorbents for investigating the mechanisms of cadmium and lead sorption. A low-oxygen pyrolysis atmosphere increased biochar ash and specific surface area, promoting heavy metal precipitation and complexation. The maximum sorption capacity (Q_m) of Pb²⁺ obtained from the Langmuir model was 67.4 mg·g⁻¹, while Q_m of Cd²⁺ was 14.7 mg·g⁻¹. The contribution of each mechanism varied with increasing oxygen content at a low pyrolysis temperature. Mineral precipitation with Pb²⁺ was the predominant mechanism for Pb²⁺ removal and the contribution proportion significantly increased from 17.2% to 71.7% as pyrolysis oxygen atmosphere increased from 0% to 4%. The results showed that cadmium sorption primarily involved coordination with π electrons, at 54.1–82.6% of the total adsorption capacity. The PP biochar shows potential for application in removing heavy metal contaminants, especially Pb²⁺.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Biochar has been successfully applied for soil remediation, carbon sequestration, climate change mitigation, and carbon farming (Ahmad et al., 2014; Bell and Worrall, 2011; Mohan et al., 2014). In recent years, biochar has been widely applied to water and wastewater for the removal of organic and inorganic contaminants, especially for the effective removal of heavy metals, including lead (Pb²⁺) and cadmium (Cd²⁺) (Ding et al., 2016; Dong et al., 2014; Wang et al., 2015). Depending on the biochar type, heavy metals can be removed by different mechanisms: precipitation with minerals (e.g., phosphate and carbonate); surface complexation with oxygen-containing functional groups (e.g., phenolic, carboxyl, and...
hydroxyl groups); and coordination of heavy metals with π electrons (e.g., Pb²⁺–π and Cd²⁺–π) [Cui et al., 2016; Lu et al., 2012; Wang et al., 2015]. Experiments have confirmed that the proposed mechanisms could be attributed to properties of the biochar, such as ash content, zeta potential, surface area, and other surface characteristics [Fang et al., 2014; Liu et al., 2015; Mohan et al., 2014]. Different biochar properties also influence the adsorption capacities for different heavy metals (Ding et al., 2016; Inyang et al., 2012; Xue et al., 2012). Examination of exact mechanisms for Pb²⁺ and Cd²⁺ sorption on biochars produced under different conditions is crucial. However, there are relatively few studies devoted to simultaneously providing qualitative and quantitative information regarding the relative contribution of the involved mechanisms and comparing sorption mechanisms for different heavy metals on biochars produced under different pyrolysis conditions.

Properties of biochars are not only strongly dependent on biomass feedstocks but also on production conditions (Enders et al., 2012; Luo et al., 2015). Many studies have attempted to explore the relationships between biochar properties and pyrolysis conditions, which include temperature (Dong et al., 2013; Zhang et al., 2013; Zhu et al., 2014), temperature plus heating rate (Angin, 2012; Luo et al., 2015), and pyrolysis duration (Cimò et al., 2014; Zhang et al., 2015). However, the effect of different pyrolysis atmospheres for biochar production has been mostly neglected. Compared with a no-oxygen pyrolysis atmosphere, the biochar yield, volatile matter and functional groups are significantly influenced by the presence of oxygen in the pyrolysis atmosphere (Luo et al., 2015). The number of oxygenated groups, carboxyl, phenolic, and ether groups, were rich at low pyrolysis temperature under anoxic conditions (Zhu et al., 2014). Therefore, the changes of oxygenated functional groups should be determined in a low oxygen pyrolysis atmosphere. Biochars formed under gasification usually have an oxygen-containing atmosphere and can exhibit a high mineral content, which could promote the heavy metals adsorption capacity (Inyang and Dickerson, 2015). In addition, Liu et al. (2015) indicated heat treatment at low temperatures under a weak oxidizing atmosphere may create more oxygenated functional groups. However, very little research has focused on establishing the relationship between Pb²⁺ or Cd²⁺ sorption and biochar properties based on different pyrolysis atmospheres (Luo et al., 2015). Therefore, further effort is required to examine the exact mechanisms of heavy metal sorption on biochars produced under different pyrolysis conditions.

In this research, biochars were obtained under a 0–4% oxygen content atmosphere through slow pyrolysis of Phyllostachys pubescens (PP) at 450 °C and 700 °C, and the physicochemical properties of samples were characterized. The objectives were to: (1) determine the sorption capacity of Pb²⁺ and Cd²⁺ on biochars produced under different pyrolysis atmospheres; (2) investigate the surface properties of biochar produced under pyrolysis atmospheres with different oxygen contents; and (3) compare the different mechanisms of Pb²⁺ and Cd²⁺ removal from water by the biochars on a qualitative and quantitative basis. This study could help to support the use of macroporous, low cost PP biochar for Pb²⁺ and Cd²⁺ removal from mainstream wastewater treatment.

2. Methods

2.1. Preparation of biochar samples

The biomass materials of pubescens (Phyllostachys, Indosasa McClure) were used as feedstocks for biochar production. Phyllostachys pubescens are mainly distributed in the south of the Yangtze River of China, and 85% of the PP in the world are located in this region. The PP were collected in Binzhou, Hunan Province, China, and subsequently washed with ultrapure water three times to remove attached dust, and then dried at 80 °C for more than 24 h.

The biochar samples used in this study were produced by slowly pyrolyzing the dried PP in a lab-scale quartz tube furnace (OTF-1200X-80, Hefei Kejing, China) with a trace gases mixed gas supply system (CGM-2F, Hefei Kejing, China) under the varying conditions shown in Table 1. The samples were placed in a tubular furnace and air was evacuated. A gas mixture, with a set oxygen and nitrogen flow ratio (Table 1), was passed through the tubular furnace. The process of evacuating the furnace and passing through the mixed gas was repeated, and the process took about 60 min in total. The gas mixture was continuously supplied during the pyrolysis process, with gas flow maintained at 0.4 L min⁻¹. The reactor was heated with a heating rate of 20 °C min⁻¹. These biochars were cooled to room temperature under the predetermined atmospheric conditions. The resultant PP biochars were ground through 120–180-μm (80–120 mesh) sieves. Finally, the PP biochars were stored in scintillation vials with polypropylene caps and polyethylene liners in the dark until required for the sorption experiment.

2.2. Batch sorption experiment

The Pb(II) and Cd(II) solution was prepared using Pb(NO₃)₂ and Cd(NO₃)₂·2H₂O (Guaranteed reagent, Sigma-Aldrich, USA). All the tested Pb(II) and Cd(II) solutions contained 5 mM NaNO₃ as the background electrolyte to maintain ionic strength, and the pH was pre-adjusted to 5.0 ± 0.05 by adding either 0.1 M HNO₃ or NaOH solutions before testing. Next, 2 g L⁻¹ of PP biochars were added to 50-mL vials at an initial concentration of 100 mg L⁻¹ for both Cd(II) and Pb(II). The vials were shaken at 140 rpm and obtain the sample from 0 to 50 h to determine Cd(II) and Pb(II) in the liquid phase to analyze the adsorption kinetics. Adsorption isotherms were produced with the initial Cd(II) and Pb(II) concentration in the range of 100–800 mg L⁻¹. All vials were shaken at 140 rpm at 25 °C for 24 h. After shaking, all mixtures were filtered through a 0.22-μm Millipore filter. The influence of coexisting ions on adsorption was studied at appropriate pH with the addition of different concentrations of Ca²⁺ (0–30 mg L⁻¹) and Fe³⁺ (0–30 mg L⁻¹), K⁺ (0–30 mg L⁻¹), NH₄⁺ (0–50 mg L⁻¹), humic acid (HA; 0–100 mg L⁻¹), Cd²⁺ (0–1.5 mmol L⁻¹), or Pb²⁺ (0–1.5 mmol L⁻¹). The impact of pH on biochar adsorption was examined by adjusting the pH of the initial Cd²⁺ or Pb²⁺ solutions (100 mg L⁻¹) to ensure equilibrium solution ranging from 2.0 to 7.0, because precipitates are formed under high solution pH. The Cd(II) and Pb(II) concentrations in the filtrate were analyzed with a flame atomic absorption spectrophotometer (Z-5000, Hitachi, Japan) at 229.0 and 283.3 nm, respectively. The experiments were performed in triplicate, with appropriate blanks without biochar samples or without heavy metals. As the mass loss was negligible, sorption of solutes by biochars was determined by mass balance.

2.3. Sorption mechanisms

2.3.1. Biochar characterization

The specific surface area was determined by using Brunauer–Emmett–Teller isotherm method and the pore volume was estimated using the Barrett–Joyner–Halenda method at 77 K (Quantachrome Nova 3200e, USA) with a N₂ adsorption–desorption. The surface structure and elemental content distribution of the biochars were analyzed using scanning electron microscopy (SEM; S-4800, Hitachi, Japan) and energy-dispersive X-ray spectroscopy (EDX; 7593-H, Horiba, Japan). The pH of samples was measured in a suspension of 1:10 sample/deionized water using a combination electrode. The suspension was shaken for 1 h before measurement. The existence and crystalline form of chemical pre-
citrates after Pb\(^{2+}\) and Cd\(^{2+}\) sorption were checked using a D/Max-III A powder X-ray diffractometer (Rigaku Corp., Japan). The patterns were collected in the angular range from 5\(^{\circ}\) to 60\(^{\circ}\) with 0.02\(^{\circ}\) step size. The solid phases were identified using the Jade 5.0 software (Materials Data Inc., Livermore, CA, USA). The surface charge properties of biochars were evaluated by zeta potential measurements, which were conducted at different equilibrium pH using an electroacoustic spectrometer (ZEN3600 Zetasizer, Malvern Instruments, UK). The isoelectric point (pH\(_{\text{IEP}}\)) of the biochars, defined as the pH using an electroacoustic spectrometer (ZEN3600 Zetasizer, Malvern Instruments, UK), was determined by plotting zeta potentials against pH (Fang et al., 2014). The elemental (C, H, N) analyses were performed with an Elemental Analyzer (Elementar Vario EL III instrument, Germany).

Qualitative analysis of oxygen functional groups used Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The FTIR data were recorded in the 4000–400 cm\(^{-1}\) region with a Thermo Nicolet FTIR spectrophotometer (model 6700) using KBr pellets. The XPS experiments were carried out on a Thermo Scientific Escalab 250Xi instrument equipped with Al Ka radiation (hv = 1486.6 eV). Binding energies for the high-resolution spectra were calibrated by setting C 1s at 284.8 eV. The XPS core level spectra were analyzed using XPS Peak 4.1. Qualitative analysis of oxygenated acidic groups and basic components for samples were determined using Boehm titration method (Goertzen et al., 2010; Oickle et al., 2010). A more detailed account of Boehm titration is available in the Supporting Information.

### 2.3.2. Quantitative analysis of different mechanisms to Pb\(^{2+}\) or Cd\(^{2+}\) sorption

The calculation of the contribution of different mechanisms to Pb\(^{2+}\) and Cd\(^{2+}\) sorption on biochars has been reported (Cui et al., 2016; Wang et al., 2015). The calculation method of the sorption attributed to precipitation with minerals (Q\(_p\)), oxygen functional groups complications (Q\(_f\)), and coordination of heavy metals with heterogeneity (Q\(_g\)) is as follows: (a) most ash from the PP biochars were removed by the acid dipping procedure in the supporting information, and the oxygen-containing functional groups were not changed. The reduced amount of heavy metals sorption on the biochars before and after demineralization could be considered as the contribution of the removed minerals, which was calculated as shown in Eq. (1); (b) when the biochars were washed with acid, a decrease in pH before and after Pb\(^{2+}\) or Cd\(^{2+}\) sorption on acid-washed PP biochars occurred as a result of the complication with the oxygen-containing organic groups. The pH change as an indicator for the calculation of oxygen containing group effect has been reported in a previous paper and the operation method was based on (Wang et al., 2015). Moreover, the carboxyl and hydroxyl groups of biochar release H\(^+\) ions by exchange interactions, which could result in pH changes in the solution (Cao et al., 2009; Mohan et al., 2007). The pH decrease was used as an indicator of the amount of H\(^+\) release, thereby calculating the adsorbed Pb\(^{2+}\) by the oxygen-containing functional groups complexation (Q\(_f\)). (c) The amount of sorbed Pb\(^{2+}\) or Cd\(^{2+}\) on biochar after the acid dipping procedure (Q\(_a\)) was taken as the result of the π interaction and functional groups complexation together. Therefore, the amount of Q\(_t\) could be calculated as shown in Eq. (2). The contribution percentage of different mechanisms to the overall Pb\(^{2+}\) and Cd\(^{2+}\) sorption was then calculated using the Qf/Qt, Qπ/Qt and Qp/Qt ratio.

\[
Q_p = Q_t - Q_a, \quad (1)
\]

\[
Q_{\pi} = Q_a - Q_f, \quad (2)
\]

where Q\(_p\) is the amount of Pb\(^{2+}\) or Cd\(^{2+}\) sorption attributed to the precipitation with minerals, Q\(_t\) is the total sorption of Pb\(^{2+}\) or Cd\(^{2+}\) on biochar, Q\(_a\) is the amount of sorbed Pb\(^{2+}\) or Cd\(^{2+}\) on biochar after the acid dipping procedure, Q\(_\pi\) is the amount of Pb\(^{2+}\) sorption resulting from Pb\(^{2+}\)–π interaction, and Q\(_f\) is the oxygen functional groups complications.

#### 2.4. Statistical analysis of the experimental data

The kinetics of Pb\(^{2+}\) or Cd\(^{2+}\) sorption on biochars were studied using pseudo first order kinetic equation (Eq. (3)), pseudo second order kinetic model (Eq. (4)), intraparticle diffusion model (inner model, Eq. (5)) and Elovich model (Eq. (6)), which can be presented as follows (Inyang et al., 2012; Wang et al., 2015):

\[
Q_t = Q_e (1 - e^{-k_1 t}), \quad (3)
\]

\[
Q_t = \frac{k_2 Q_e^2 t}{1 + k_2 Q_e t}, \quad (4)
\]

\[
Q_t = k_3 t^{\alpha/5} + b, \quad (5)
\]

\[
Q_t = \frac{1}{b} \ln(q/e^t + 1), \quad (6)
\]

where Q\(_t\) (mg g\(^{-1}\)) and Q\(_e\) (mg g\(^{-1}\)) are the amounts of metals sorbed at time t and at equilibrium, respectively, k\(_1\) is the pseudo first order rate constant (h\(^{-1}\)), k\(_2\) is the rate constant of the pseudo second order adsorption (g mg\(^{-1}\) h\(^{-1}\)), k\(_3\) is the intraparticle diffusion rate constant (mg g\(^{-1}\) h\(^{-0.5}\)), b is the intercept (mg g\(^{-1}\)), α (mg g\(^{-1}\) h\(^{-1}\)) is the initial adsorption rate, and β (g mg\(^{-1}\)) is the desorption constant at time t.

Langmuir (Eq. (7)) and Freundlich (Eq. (8)) models were used to fit the Pb\(^{2+}\) or Cd\(^{2+}\) adsorption isotherm data (Kolodyńska et al., 2012):

\[
Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}, \quad (7)
\]

\[
Q_e = K_f C_e^\alpha, \quad (8)
\]

where C\(_e\) is the equilibrium aqueous concentration of metals (mg L\(^{-1}\)). The parameters K\(_L\) and K\(_f\) are the adsorption coefficients of Langmuir and Freundlich (L mg\(^{-1}\) and (mg g\(^{-1}\))/(mg L\(^{-1}\)) h\(^{-1}\)), respectively. Q\(_m\) is the maximum adsorption capacity of the solute (mg g\(^{-1}\)). The n is the Freundlich constant related to the surface site heterogeneity.

In this study, the experiments of kinetics and adsorption isotherms were conducted in triplicate. Significant differences were tested using Duncan’s multiple range test (P < 0.05) by SPSS 17.0. The kinetics and adsorption isotherms were fitted using Origin Pro 8.0 (Origin Lab, USA).

### Table 1

| Sample | A (°C) | B (h) | C (%) | D (μm) |
|--------|--------|-------|-------|--------|
| P1     | 450    | 3     | 0     | 106–150|
| P2     | 450    | 3     | 1     | 106–150|
| P3     | 450    | 3     | 2     | 106–150|
| P4     | 450    | 3     | 4     | 106–150|
| P5     | 700    | 3     | 0     | 106–150|
| P6     | 700    | 3     | 1     | 106–150|
| P7     | 700    | 3     | 4     | 106–150|
3. Results and discussion

3.1. Adsorption kinetics and adsorption isotherms

As shown in Fig. 1, the adsorption for Cd$^{2+}$ or Pb$^{2+}$ was rapid adsorption in the first 8 h, and the adsorption capacity of Pb$^{2+}$ and Cd$^{2+}$ reached 98.9% and 99.8% of adsorption equilibrium capacity at 24 h, respectively. The correlation coefficient ($R^2$) of the Elovich model was higher than that of other models (Table S1), indicating that the experimental data fitted better to the Elovich model, which is similar to adsorption of Zn(II) to a meat and bone meal biochar (Betts et al., 2013). For biochar P5, the initial adsorption rate ($\alpha$) of the Elovich model for Pb$^{2+}$ was 9.43 times greater than that for Cd$^{2+}$. The Elovich equation has been used to infer a number of transport-limited reaction mechanisms, including bulk and surface diffusion (Cheung et al., 2000). The Elovich model describes reactions that are biphasic, with an initial, rapid reaction followed by a slower progress. This has been observed in other sorption reactions and may imply reactions limited by diffusion (Betts et al., 2013). Cheung et al. (2000) described heavy metal sorption on biochar with the Elovich model and inferred from the results that the mechanism of metals sorption was limited by diffusion through pores in the biochar.

The sorption isotherms of Pb(II) and Cd(II) onto PP biochar are presented in Fig. 1 and the fitting parameters of are listed in Table S2. The adsorption amounts of Cd(II) and Pb(II) of the material both increased rapidly in the low concentration range, and then increased gradually as the initial concentrations increased. The correlation coefficient values ($R^2 > 0.94$) demonstrate that the Freundlich model is more suitable than the Langmuir model for describing the adsorption process. The Freundlich adsorptive capacity ($K_f$) for Cd(II) and Pb(II) increased substantially with oxygen content increase at low pyrolysis temperature, but the adsorption capacity of the PP biochar showed little change with oxygen content increase at 700 °C. In particular, $Q_{max}$ increased dramatically from the P1 to P4 samples, possibly due to the considerable increase in surface area with the trace oxygen atmosphere, which may have enhanced the number of adsorption sites. For each sample, the adsorption capacity for Pb(II) was larger than that for Cd(II). The maximum adsorption capacity of Pb(II) reached 67.45 mg L$^{-1}$ with P6, whereas it reached 14.68 mg L$^{-1}$ for Cd(II) with P5 (Table S2). Compared with other adsorbent materials, PP biochar demonstrates the potential to act as an effective adsorbent for Pb$^{2+}$ removal in aqueous solution; however, PP biochar shows a poor adsorption capacity for Cd$^{2+}$ (Table S3).

The regeneration property of the as-synthesized biochar was also studied, and the results of the regeneration tests are shown in Fig. S1. For the biochar regeneration, metal-adsorbed biochar was washed in 200 mL of a 0.1 N HNO$_3$ solution and gently stirred for 1 h. In the regeneration trials, the adsorption capacity decreased for Cd$^{2+}$ or Pb$^{2+}$ adsorption. The adsorption capacity of Pb$^{2+}$ and Cd$^{2+}$ was 68.5–72.3% and 74.3–81.5% of the origin biochar, respectively. These reductions in adsorption capacity were largely due to the structural deterioration and surface mineral loss of the adsorbents.

3.2. Effect of pH and coexisting ions on the adsorption of Cd(II) and Pb (II)

The zeta potential is representative of the surface charge property of a particle interacting with other particles or ions in the surrounding suspension (Yao et al., 2016). Fig. 2a illustrates the zeta potential curves of biochars at different solution pH values. The obtained pH$_{IEP}$ values were 2.1, 1.7, 1.2, 1.5 and 1.5 for P1, P3, P4, P6 and P7, respectively. The pH$_{IEP}$ value of the biochar is higher at high pyrolysis temperature, which was similarly shown for a biochar derived from hardwood litter (Teixidó et al., 2011). Some studies have shown pH$_{IEP}$ of biochar is within the range of 1–2.5 (Ding et al., 2016; Fang et al., 2014). The pH-dependent curve of the zeta potential displayed a horizontal S-shape with two significant inflection points (pH$_I$ and pH$_{P}$), which is similar to the observation by Fang et al. (2014). Their results demonstrated that a platform appeared at pH 5–9 for biochar produced at low pyrolysis temperatures, whereas the platform occurred at pH 6–10 for biochar produced at high pyrolysis temperatures (Fang et al., 2014). There were two different types of pH-dependent functional groups on biochars, carboxyl and hydroxyl groups, which influenced zeta potential at two distinct pH ranges (Fang et al., 2014; Shokri et al., 2012). The zeta potentials of biochars (Fig. 2a) indicate that the surfaces of these biochars were mostly negatively charged. The carboxyl and hydroxyl groups on the biochar act as a buffer substance, retaining a relatively stable zeta potential in the tested pH range from 3.3 to 6.2.

The pH is a major factor affecting adsorption of Cd(II) and Pb(II) in aqueous solutions (Fig. 2b). When the solution pH > pH$_{IEP}$, biochar conducts electric adsorption with metal cations, including Cd(II) and Pb(II), due to the deprotonation of the adsorbent hydrated surface. The Cd$^{2+}$ adsorption capacity slightly increased from 12.8 to 21.2 mg L$^{-1}$ when pH increased from 5 to 7, which may result from increase in the electrostatic attraction capacity, as zeta potential varied from −25.5 to −32.2 mV. The surface charge properties have an important influence on the adsorption capability and mechanism of heavy metals adsorption onto biochars. When the initial pH is higher (5–7), the pH after equilibrium can be improved by the pH buffer capacity of biochar, and the heavy metals subsequently precipitate (Chen et al., 2014). When the pH is lower, only limited local precipitation occurs because the large number of H$^+$ ions compete with these divalent metal ions, weakening the adsorption performance at the lower initial pH (Lu et al., 2012).

As shown in Fig. S2, K$^+$ had little influence on Cd$^{2+}$ and Pb$^{2+}$ removal until the concentration of K$^+$ exceeded 8 and 20 mg L$^{-1}$, respectively. A slight influence of NH$_4^+$ on Cd$^{2+}$ and Pb$^{2+}$ adsorption was observed (Fig. S2). However, the HA, which was calculated as total organic carbon, had a sensitive influence on Pb$^{2+}$ removal, and the removal capacity reduced from 38.5 to 28.4 mg g$^{-1}$ while the content of HA was 2 mg L$^{-1}$. Similar results were obtained with cadmium adsorption. This could be attributed to complexation of HA with Cd$^{2+}$ or Pb$^{2+}$ which could hinder the electrostatic energy between the charges on biochar surface and heavy metal ions in aqueous solution. A high concentration of K$^+$ and NH$_4^+$ in aqueous solution could preempt surface adsorption sites of adsorbents, such as oxygen functional groups, which could decrease the adsorption capacity of Cd$^{2+}$ and Pb$^{2+}$. As shown in Fig. S2, Ca$^{2+}$ and Mn$^{2+}$ have little influence on heavy metals removal. Ca$^{2+}$ and Mn$^{2+}$ could precipitate with minerals, such as carbonate, which may compete with heavy metal removal. The stability constants (pKsp) of CdCO$_3$ (pKsp: 12.00) and PbCO$_3$ (pKsp: 13.13) were higher than those of CaCO$_3$ (pKsp: 8.54) and MnCO$_3$ (pKsp: 10.04). Therefore, it can be speculated that Cd$^{2+}$ or Pb$^{2+}$ was more likely to precipitate than Ca$^{2+}$ and Mn$^{2+}$. Moreover, the high ionic strength of the solution could influence the activity coefficient of heavy metals, thus decreasing the collisions and contact between the sorbent and solute (Ding et al., 2016).

The effect of coexisting Pb$^{2+}$ on the adsorption of Cd$^{2+}$, and vice versa, was also evaluated (Fig. S3). In comparison with the single system, the coexistence of Pb$^{2+}$ and Cd$^{2+}$ could strongly influence the adsorption capacity of Cd$^{2+}$, but had little effect on Pb$^{2+}$ adsorption. Adsorption capacity for Cd$^{2+}$ decreased from 51 mmol kg$^{-1}$ with no Pb$^{2+}$ present to 3 mmol kg$^{-1}$ with 0.5 mM Pb$^{2+}$. The initial
concentration of Cd$^{2+}$ was 1.5 mM. This indicates that the adsorption process in binary systems was more favorable for Pb$^{2+}$, supporting the findings of earlier research (Ding et al., 2016).

Inhibition of adsorption with Cd$^{2+}$ in binary systems may be attributed to the prior interactions between Pb$^{2+}$ and oxygen-containing functional groups, and the stronger complexion capacity of Pb$^{2+}$ with negative charge (Ding et al., 2016; Jin and Bai, 2002; Ma and Dougherty, 1997).

3.3. Characteristics of biochars

The PP biochar was characterized by FTIR spectroscopy (Fig. S4). Pyrolysis temperature and oxygen atmosphere both influence the number of functional groups on the biochar. Compared with biochar produced at 450$^\circ$C, fatty hydrocarbon (2853 and 2923 cm$^{-1}$) and other aliphatic functional groups (1210–1591 cm$^{-1}$) were gradually weakened and diminished at 700$^\circ$C. This was accompanied by an increase in volatile organic matter and an increase of the content of aromatic structures after dehydrogenation of carbohydrates (Dong et al., 2013; Fang et al., 2014). As the temperature increased, the number of oxygen-containing functional groups gradually decreased. With increasing oxygen content atmosphere at low pyrolysis temperature (450$^\circ$C), the number of lactonic functional groups and micropore volume content of PP biochar increased alongside the surface area (Table 2).

As shown in Fig. S5, XRD spectra of the pre-sorption biochars indicated the existence of calcite (CaCO$_3$) in PP biochars, which could be a source of carbonate release into the solution. Minerals such as Fairchildite, Whewellite, and Calcitecalcite have also been found in other biochars converted from raw material (Wang et al., 2015; Zhu et al., 2014).

The Raman spectra were also used to analyze the aromatization of PP biochars (Fig. S6). All of the curves exhibited two relatively broad Raman bands with Raman shifts at 1340–1357 cm$^{-1}$ and 1589–1598 cm$^{-1}$, which corresponded to the D-band and G-band, respectively. The biochar synthesized at low and high temperature both clearly exhibited two peaks, which indicates the presence of amorphous graphite and graphitic crystallites. The Elemental (C, H, N) analyses of the biochar were also conducted. As shown in Table S4, the results indicated that the carbon content of biochar synthesized at low temperature varied from 77.24% to 81.32%. The molar ratios of elements were calculated to estimate the aromaticity (H/C) and polarity (O/C, O + N/C) of the biochar. The results indicate higher aromaticity and lower polarity with oxygen content increase.

The FTIR technique is useful for identifying types of chemical bonds in a molecule based on the infrared absorption spectrum, whereas XPS is a surface sensitive technique that measures elemental composition and chemical state in a material. The XPS C1s peaks of P1, P2 and P4 are presented in Fig. S4, which clearly shows that the oxygen groups were prevalent on the surface of biochars. The main peak for the C1s spectra was assigned to graphitic and aromatic carbon at 284.6 eV, phenolic hydroxyl or ether groups at 285.5–286.2 eV, and carboxylic or ester groups at 288.5–288.8 eV. The relative percentages of oxygen-containing
Contents of oxygen-containing functional groups and total alkaline contents for PP biochar determined by Boehm titration.

- **Volume**: 30 mL; adsorbent dose: 2 g; equilibrium solution pH values on Cd (II) and Pb (II) adsorption by P4.

**Fig. 2.** (a) Zeta potentials of PP biochar at different solution pH values. (b) Effect of equilibrium solution pH values on Cd (II) and Pb (II) adsorption by P4. (Solution volume: 30 mL; adsorbent dose: 2 g L⁻¹; initial concentration: 100 mg L⁻¹; contact time: 24 h).

Groups on PP biochars are listed in Table S5. With the increase of pyrolysis oxygen content at 450 °C, C=O declined from 29.4% for P1 to 22.6% for P2 and 12.6% for P4, but the content of C=O or O-C=O increased, which supports the findings of previous research (Harvey et al., 2012). As shown in Table 2, PP biochars produced with oxygen atmosphere at lower temperature contained more lactonic functional groups, which is consistent with XPS data (Table S5). The surface functional groups (e.g., carboxylic, lactonic, and phenolic) were adsorption sites for heavy metals (Chen et al., 2015; Lu et al., 2012).

Table 2 presents the oxygen-containing functional groups and total alkaline contents of the biochar by Boehm titration. Lactonic groups sharply increased with promotion oxygen content atmosphere at 450 °C, while other acid functional groups (carboxylic and phenolic) and total basicity were little affected by the oxygen content. However, the total basicity increased with increasing pyrolysis temperature, due to the increasing contents of ash and basic functional groups. Total acidity showed opposite trends to basicity at 700 °C, due to the increasing contents of ash and basic functional groups. Yields declined gradually with the oxygen content from 0% to 4%, because of the accelerated decomposition of the components of biochar, producing ash. Correspondingly, the ash content considerably increased as the oxygen atmosphere increased and finally stabilized at 22.4% at 450 °C and 25.5% at 700 °C. Ash on the biochar surface is composed of various inorganic compounds, such as carbonate, which could precipitate with Pb²⁺ and Cd²⁺ and improve the heavy metal adsorption capacity.

### 3.4. Possible mechanisms for Cd(II) and Pb(II) adsorption on biochars

To determine the possible mechanisms for Cd(II) and Pb(II) adsorption on biochars, XPS analysis was employed to identify the type of heavy metal adsorption on the biochar surface (Tang et al., 2015). The XPS was used to analyze the changes in binding energy of C 1s and O 1s in PP biochar before and after adsorption for Pb(II) and Cd(II) (Fig. S7). After adsorption, new peaks were observed that originated from the binding energy spectrum of PbO and Cd3d, indicating Cd(II) and Pb(II) were adsorbed on the biochars.

As shown in Fig. S7, the C 1s spectra of P4 before heavy metal adsorption can be curve-fitted into the forms of C-C (284.7 eV), C=O (288.4 eV), and C-O (286.2 eV). After the adsorption of Cd (II) or Pb(II), their C 1s spectra show that the binding energy of the peaks exhibited a certain degree of shift compared with that of P4 before Cd(II) or Pb(II) adsorption. In particular, the binding energy of 285.5 eV, characteristic for C=O, shows a greater degree of shift. Fig. S7(a) also indicates that the peak area ratio of C=O in P4 after adsorption of Cd(II) decreased from 20.18% to 18.04% compared with P4 before adsorption, whereas the peak area of C=O increased from 4.4% to 8.3%. Previous research has indicated that the increase in C=O of carboxylic groups should be beneficial to Cd²⁺ adsorption (Lim et al., 2008). The XPS data suggested the participation of phenolic hydroxyl and carboxylic groups in Pb(II) and Cd(II) sorption by biochars, which has been previously demonstrated (Bian et al., 2014).

Similarly, three characteristic peaks were identified for the O1s spectrum in P4 before and after Cd(II) or Pb(II) adsorption (Fig. S7). Compared with the original P4, the binding energy of O1s on the surface of biochar after adsorption increased slightly, indicating that the O atom was an electron donor during Cd(II) and Pb(II) adsorption. It should be noted that Oeh (ethers or hydroxyl) in surface P4 (Fig. S7) slightly shifted from 532.3 to 532.1 eV. This shift was possibly due to the formation of CdO₂⁺ or PbO₂⁺ in solution in which the oxygen atoms share electrons with Cd, and thus electron densities of oxygen atoms decrease and the binding energy of the oxygen atoms increases.

As shown in Fig. S7, XPS demonstrated that Pb(II) was present as Pb-O (73.6%) or as PbO₂⁺ (26.4%) and Cd(II) was present as Cd²⁺ (69.3%) or as Cd-O (30.7%) on the surface of the biochars (Table S6). As shown in Fig. S7(e), two peaks with binding energies of 405.42 and 412.07 eV representing Cd3d5/2 and Cd3d3/2, respectively, were observed in the spectra of P4, indicating Cd²⁺ formation.
trapped in polyferric flocs. Another pair of less visible peaks in the same sample appearing at 404.57 and 411.20 eV were also ascribed to Cd3d5/2 and Cd3d3/2, respectively, caused by Cd–O in which Cd2+ is bonded to functional groups such as ether, carboxyl and alcoholic hydroxyl groups on the surface of biochars (Li et al., 2016).

The adsorption of Pb2+ and Cd2+ on P4 was demonstrated by the SEM-EDX spectra (Fig. S8), and the weight percentages of Pb2+ and Cd2+ in the biochar were 1.92% and 1.17%, respectively. To confirm the contribution of the chemical precipitation for Pb(II) and Cd(II) sorption, the lead loading, and cadmium loading for P1, P3 and P4 were scanned by XRD (Fig. S9). The results were consistent with the trend of ash content increase (Table S5). The biochar samples prepared at higher oxygen atmosphere had a higher mineral ash content, which could enhance precipitation with heavy metals. The XRD spectra of loaded Pb2+ on biochars (Fig. S9) showed several new peaks at specific d-values associated with lead minerals, the precipitation mechanism of lead removal by the PP biochars as shown by Inyang et al. (2012). Carbonate released from the biochars can react with lead in aqueous solution to form stable minerals on biochar. Three types of lead minerals, cerussite (PbCO3), hydrocerussite (Pb3(CO3)2(OH)2), and lead carbon hydrogen oxide (2PbCO3*Pb(OH)2), were identified in the post-sorption PP biochar, indicating that lead removal by PP biochar could be controlled by the three precipitation mechanisms. However, lead minerals (for example hydrocerussite or lead carbon hydrogen oxide) on the biochar surface could be dissolved when pH was relatively low, resulting in a significantly decreased lead adsorption content (Fig. 2). As indicated in Fig. S9(b), only a new peak of CdCO3 (otavite, syn), with the typical 2θ, 20.84, 27.75, 33.43, 41.32, 48.43, 57.43 degree in the 2θ, were observed on post-sorption biochar for Cd2+. The formation may be due to the reactions with Cd2+ and the dissolution components, carbonate, and carbonate minerals such as calcite, have also been found in other biochars (Trakal et al., 2016; Xu et al., 2013). As shown in Fig. S5, Since Whewellite and Calcite cannot be dissolved, the precipitation reactions between heavy metals and insoluble carbonate may have occurred on the surface of the biochar. Biochar samples P3 and P4, which were converted under a 2% and 4% oxygen atmosphere respectively, obtained more absorption peaks. This may be because they could release more carbonate to react with the heavy metals in solution.

According to the sorption of Cd(II) and Pb(II) on original biochar and demineralized biochars, the contribution of different mechanisms to the Cd(II) or Pb(II) on could be calculated by the method

![Fig. 3. The estimated contribution of Pb2+ (a) and Cd2+ (b) sorption on PP biochar, and the contribution percentage of different mechanisms to the overall Pb2+ (c) and Cd2+ (d) sorption on biochars.](image-url)
described in the supporting information. The contribution of Qp, Qf, and Qt to Q on biochars is shown in Fig. 3. The contribution for Pb²⁺ adsorption by PP biochars followed the order Qp > Qt > Qf, whereas the Cd²⁺ adsorption followed the order Qt > Qp > Qf. As shown in Fig. 3a and c, the contribution of Qp significantly increased from 17.2% to 71.7% as the oxygen content of the atmosphere increased from 0% to 4% at 450 °C. At low pyrolysis temperature, the increased oxygen content of the atmosphere may contribute to the formation of surface minerals, such as carbonate, which could remove Pb²⁺ in the form of co-precipitation. Use of a trace oxygen atmosphere in pyrolysis process could cause the increase of biochar specific surface area and number of micropores (Table S7), which could provide more adsorption sites for the Pb-π complexation. When pyrolysis process trace oxygen increased from 0% to 4%, the contribution of Qp increased from 3.25 to 32.1 mg g⁻¹, which is consistent with the mineral precipitation of lead with increasing oxygen content (Fig. 5).

The contribution of Pb-π complexation in P3 and P6 reached 18 and 23 mg g⁻¹, respectively, while the corresponding proportions were 34% and 43%, respectively. This indicates a good agreement as surface area and porosity significantly increased (Table S7), which may result from aromatization and increased π chemical bonds with increased pyrolysis temperature. The contribution of both Qp and Qt/Qt increased with increasing pyrolysis temperature from 450 to 700 °C, while that of Qf and Qf/Qt showed the reverse trend. For example, the Qf value of P4 was 7.06 mg Pb²⁺ g⁻¹, while the Qf value of P4 was only 3.58 mg Cd²⁺ g⁻¹ (Fig. 3a). This may be attributed to the amount of oxygen-containing functional groups gradually reducing or disappearing with the temperature increase (Table 2).

The adsorption capacity of Cd²⁺ by PP biochar was relatively low compared with other biochars (Table S3). The Qp and Qt/Qt values of the high-temperature biochars (700 °C) were greater than those of the low-temperature biochars (450 °C). For example, the Qp value of P2 was only 2.15 mg Cd²⁺ g⁻¹, while the Qp value of P6 was 10.2 mg Cd²⁺ g⁻¹, which is approximately 4.7 times greater than that of P2 (Fig. 3b). Similarly, the Qp/Qt value of P2 was 54.4%, but the Qp value of P6 accounted for 83.3% of its Qp value. For the biochars produced at 450 °C, the contribution of both Qp and Qt/Qt increased with increasing pyrolysis oxygen atmosphere from 0% to 4% (Fig. 3d). Conversely, Qp for the trace oxygen atmosphere biochar (P2, P3 and P4) was roughly equal to the pure nitrogen atmosphere (P1). For example, Qp value of P4 was 7.36 mg Cd²⁺ g⁻¹, accounting for 72.6% to the Qt values, while Qp and Qt/Qt value of P1 were only 2.07 mg Cd²⁺ g⁻¹ and 58.5%, respectively.

Overall, the pyrolysis temperature and atmosphere are crucial for both Pb²⁺ and Cd²⁺ sorption capacity of biochars and the contribution of different mechanisms. It could be concluded that Cd²⁺-attracted to the C=C (π-electron) bond would predominant mechanism Cd²⁺ removal, especially for biochar at high pyrolysis temperature. Precipitation between Pb²⁺ and minerals would also play a key role in Pb²⁺ removal from water. For Pb²⁺ adsorption, as the pyrolysis temperature increased, the contribution of Qp increased substantially. The Qp values accounted for 68.2–75.0% of the Qp values at high pyrolysis temperature, indicating that coprecipitation is the dominant mechanisms of Pb²⁺ sorption on biochars. At low pyrolysis temperature, the Qp/Qt values of biochar, except for P1, accounted for 45.3–71.7%, indicating that mineral coprecipitation is the dominant mechanism of Pb²⁺ sorption. For Cd²⁺ adsorption, the Qp values accounted for 63.0–74.1% of the Qt values, indicating that electrostatic adsorption is the dominant mechanisms of Cd²⁺ sorption. Therefore, the cadmium adsorption capacity of PP biochar is far less than the lead adsorption capacity, for which mineral ash plays a critical role.

4. Conclusions

The PP-derived biochars exhibited different sorption capacities for Pb²⁺ and Cd²⁺ under different pyrolysis atmosphere. Importantly, the presence of oxygen in biochar pyrolysis procedure could promote specific surface area and ash content increase at 450 °C. The adsorption capacity of Pb²⁺ was higher than Cd²⁺, which is mainly due to mineral precipitation with Pb²⁺. Precipitation dominated Pb²⁺ sorption on the biochars and its proportion increased as oxygen content increased. With increasing oxygen content, Cd²⁺-π interaction was consistently dominant, whereas the contribution of functional groups complexation reduced. This study provides a method for the preparation of cost-effective biochar for metals adsorption.

Acknowledgements

This research was supported by the Youth Innovation Promotion Association CAS (Wenzhong Tang, 2017059) and the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07203-006). We also acknowledge the support received by Wenzhong Tang from the Chinese Scholarship Council (CSC Grant 201604910224).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.biortech.2017.04.051.

References

Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33.
Angen, D., 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of sawdust seed press cake. Bioresour. Technol. 128, 593–597.
Bell, M.J., Worrall, F., 2011. Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits? Sci. Total Environ. 409 (19), 1704–1714.
Betts, A.R., Chen, N., Hamilton, J.G., Peak, D., 2013. Rates and mechanisms of Zn²⁺ adsorption on a meat and bone meal biochar. Environ. Sci. Technol. 47 (24), 14350–14357.
Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutledge, H., Wong, S., Chia, C., Marjo, C., Gong, B., Munroe, P., Donne, S., 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 272, 121–128.
Cao, X.D., Ma, L.N., Gao, B., Harris, W., 2009. Dairy-manure derived biochar effectively sorbs lead and arsine. Environ. Sci. Technol. 43 (9), 3285–3291.
Chen, T., Zhang, Y., Wang, H., Liu, W., Zhou, Z., Zhang, Y., Ren, L., 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 164, 47–54.
Chen, Z., Xiao, X., Chen, B., Zhu, L., 2015. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ. Sci. Technol. 49 (1), 309–317.
Cheung, C., Porter, J., McKay, G., 2000. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep. Purif. Technol. 19 (1), 55–64.
Cinco, G., Kucerik, J., Berns, A.E., Schau mann, G.E., Alonzo, G., Conte, P., 2014. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. J. Agric. Food Chem. 62 (8), 1912–1918.
Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., 2016. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 562, 517–525.
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, Y., Zheng, B., Cai, X., 2016. Competitive removal of Cd (u) and Pb (ii) by biochars produced from water-hyacinth: performance and mechanism. RSC Adv. 6 (7), 5233–5237.
Dong, X.L., Ma, L.N.Q., Zhu, Y.J., Li, Y.C., Gu, B.H., 2013. Mechanistic investigation of mercury sorption by brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environ. Sci. Technol. 47 (21), 12156–12164.
Dong, X., Wang, C., Li, H., Wu, M., Liao, S., Zhang, D., Pan, B., 2014. The sorption of heavy metals on thermally treated sediments with high organic matter content. Bioresour. Technol. 160, 123–128.
Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J., 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653.
Fang, Q., Chen, B., Lin, Y., Guan, Y., 2014. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ. Sci. Technol. 48 (1), 279–288.
Goertzen, S.L., Thériault, K.D., Ockle, A.M., Tarasuk, A.C., Andreas, H.A., 2010. Standardization of the Boehm titration. Part I. CO₂ expulsion and endpoint determination. Carbon 48 (4), 1252–1261.
Harvey, O.R., Herbert, B.E., Xie, L.-K., Louchouarn, P., 2012. Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ. Sci. Technol. 46 (19), 10641–10650.
Inyang, M., Dickinson, E., 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134, 232–240.
Inyang, M., Gao, B., Yao, X., Xue, X., Zimmerman, A.R., Pullammanappallil, P., Cao, X., 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50–56.
Jin, L., Bai, R.B., 2002. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18 (25), 9765–9770.
Kolodynska, D., Wnętrzak, R., Leahy, J.J., Hayes, M.H.B., Kwapiński, W., Hubicki, Z., 2012. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 197, 295–305.
Li, C., Yi, X., Dang, Z., Yu, H., Zeng, T., Wei, C., Feng, C., 2016. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Chemosphere 144, 2065–2072.
Lim, S.-F., Zheng, Y.-M., Zou, S.-W., Chen, J.P., 2008. Characterization of copper materials: toward a sustainable platform carbon material. Chem. Rev. 108, 2551–2596.
Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev.
Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., Qiu, W., 2012. Relative distribution of PVK sorption mechanisms by sludge-derived biochar. Water Res. 46 (3), 854–862.
Luo, L., Xu, C., Chen, Z., Zhang, S., 2015. Properties of biomass-derived biochars: combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89.
Ma, J.C., Dougherty, D.A., 1997. The cation–r interaction. Chem. Rev. 97 (5), 1303–1324.
Mohamed, D., Pittman C.U., Bricka, M., Smith, F., Vanecky, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gómez-Serrano, V., Gong, H., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 310 (1), 57–73.
Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202.
Ockle, A.M., Goertzen, S.L., Hopper, K.R., Abdalla, Y.O., Andreas, H.A., 2010. Standardization of the Boehm titration. Part II. Method of agitation, effect of filtering and dilute titrant. Carbon 48 (12), 3313–3322.
Shokri, A., Abedin, A., Fathehi, A., Kass, S.R., 2012. Effect of hydrogen bonds on pKa values: importance of networking. J. Am. Chem. Soc. 134 (25), 10646–10650.
Tang, J., Mu, B., Zheng, M., Wang, A., 2015. One-step calcination of the spent bleaching earth for the efficient removal of heavy metal ions. ACS Sustainable Chem. Eng. 3 (6), 1125–1135.
Teixidó, M., Pignatello, J.J., Beltrán, J.L., Granados, M., Peccia, J., 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 45 (23), 10020–10027.
Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Čihalová, S., Komárek, M., 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 203, 318–324.
Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H.H., Guo, W., Liu, C., Chen, L., Xing, B., 2015. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour. Technol. 177, 308–317.
Xu, X., Cao, X., Zhao, L., 2013. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92 (8), 955–961.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 200, 673–680.
Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M., Liang, J., 2016. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. J. Colloid Interface Sci. 463, 118–127.
Zhang, W., Mao, S., Chen, H., Huang, L., Qiu, R., 2013. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 147, 545–552.
Zhang, J., Liu, J., Liu, R., 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176, 288–291.
Zhu, X.D., Liu, Y.C., Zhou, C., Luo, G., Zhang, S.C., Chen, J.M., 2014. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 77, 627–636.