Investigation of angiotensin-I-converting enzyme (ACE) inhibitory tri-peptides: a combination of 3D-QSAR and molecular docking simulations

Fangfang Wanga,*, Bo Zhoub

a School of Life Science, Linyi University, Linyi, 276000, China.
b State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, Guizhou Medical University, Guizhou, 550004, China.

* Corresponding author: E-mail: yu100288@163.com

Table S1
Summary of QSAR results for ACE peptides based on template ligand-based alignment.

	CoMF		CoMSIA						
	SE	S	E	H	D	A	SE	SH	SD
R^2_{cv}	0.761	0.667	0.009	0.39	0.449	-0.312	0.824	0.578	0.678
$R^2_{n(cv)}$	0.953	0.797	0.466	0.705	0.775	0.166	0.952	0.957	0.67
SEE	0.243	0.479	0.776	0.577	0.549	0.970	0.458	0.248	0.410
F	86.617	37.193	8.276	22.717	11.018	1.884	120.16	55.634	27.649
R^2_{pred}	0.6257	0.4567	0.2113	0.4994	0.428	0.582	0.5199	0.46	0.6783
SEP	0.549	0.613	1.058	0.829	0.859	1.261	0.458	0.776	0.637
N_C	4	2	2	5	2	3	6	4	

Field contribution

S	0.675	1.000	-	-	-	-	0.528	0.366	0.439
E	0.325	-	1.000	-	-	-	-	0.472	-
H	-	-	-	1.000	-	-	-	-	0.634
D	-	-	-	-	1.000	-	-	-	0.561
A	-	-	-	-	-	1.000	-	-	-

CoMSIA

	SA	EH	ED	EA	HD	HA	DA	SEH	SED
R^2_{cv}	0.726	0.532	0.658	0.04	0.426	0.53	0.445	0.625	0.746
$R^2_{n(cv)}$	0.941	0.932	0.322	0.659	0.801	0.931	0.916	0.947	0.956
SEE	0.264	0.292	0.322	0.656	0.487	0.287	0.347	0.25	0.237
F	94.216	58.665	31.845	8.206	24.169	80.957	27.139	76.128	91.351
R^2_{pred}	0.459	0.4876	0.7901	0.0241	0.4753	0.4113	0.684	0.5094	0.6199
SEP	0.571	0.768	0.699	1.100	0.827	0.819	0.891	0.687	0.566
N_C	3	4	6	4	3	6	4	4	

Field contribution

S	0.618	-	-	-	-	-	-	0.237	0.319
E	-	0.364	0.292	0.653	-	-	-	0.301	0.266
H	-	0.636	-	-	0.567	0.675	-	-	0.462
D	-	-	0.708	-	0.433	-	0.670	-	0.414
Table S2.
Summary of QSAR results for ACE peptides based on docking-based alignment.

	CoMF A	CoMSIA							
	SE	S	E	H	D	A	SE	SH	SD
R^2_{cv}	0.005	0.174	-1.162	0.202	-0.197	0.208	-0.057	0.193	0.245
R^2_{ncv}	0.858	0.816	0.812	0.892	0.635	0.892	0.900	0.931	0.983
SEE	0.411	0.468	0.487	0.359	0.642	0.369	0.354	0.296	0.158
F	36.386	26.623	18.334	49.448	16.514	35.165	38.392	56.982	140.992
R^2_{pred}	6E-5	0.1141	0.1596	0.0088	0.019	0.0257	0.0003	0.119	0.1819
SEP	1.089	0.992	1.210	0.975	1.162	0.999	1.155	1.009	1.039

CoMSIA	SEA	SHD	SHA	SDA	EHD	EHA	EDA	HDA	SEHD
R^2_{cv}	0.778	0.553	0.649	0.74	0.532	0.558	0.581	0.585	0.613
R^2_{ncv}	0.952	0.850	0.971	0.968	0.947	0.956	0.917	0.967	0.956
SEE	0.240	0.423	0.202	0.214	0.266	0.236	0.343	0.218	0.242
F	117.73	33.883	85.198	75.773	57.387	27.777	91.664	27.777	72.333
R^2_{pred}	0.5015	0.6328	0.6427	0.6693	0.6138	0.7827	0.7628	0.6428	
SEP	0.514	0.729	0.708	0.609	0.792	0.747	0.774	0.770	0.720
N_C	3	3	6	6	5	4	6	6	5

Field contribution

	S	E	H	D	A				
R^2_{cv}	0.005	0.174	-1.162	0.202	-0.197				
R^2_{ncv}	0.858	0.816	0.812	0.892	0.635				
SEE	0.411	0.468	0.487	0.359	0.642				
F	36.386	26.623	18.334	49.448	16.514				
R^2_{pred}	6E-5	0.1141	0.1596	0.0088	0.019				
SEP	1.089	0.992	1.210	0.975	1.162				
\(N_C \)	3	3	4	3	2	4	4	4	6
---	---	---	---	---	---	---	---	---	---
Field contribution									
S	0.546	1.000	-	-	-	-	0.484	0.376	0.465
E	0.454	-	1.000	-	-	-	0.516	-	-
H	-	-	-	1.000	-	-	0.624	-	-
D	-	-	-	-	1.000	-	-	0.535	-
A	-	-	-	-	-	1.000	-	-	-
CoMSIA									
	SA	EH	ED	EA	HD	HA	DA	SEH	SED
\(R_{cv}^2 \)	0.288	0.126	-0.104	0.056	0.163	0.268	0.026	0.127	-0.002
\(R_{ncv}^2 \)	0.981	0.92	0.869	0.793	0.945	0.856	0.928	0.930	0.914
SEE	0.166	0.317	0.407	0.483	0.264	0.403	0.301	0.298	0.329
\(F \)	126.43	49.191	28.176	36.67	72.654	56.480	55.018	56.242	45.275
\(R_{pred}^2 \)	0.0028	0.0608	0.0765	0.0755	0.0001	1E-05	0.0108	0.0038	0.0006
SEH	1.008	1.050	1.180	1.032	1.027	0.909	0.108	1.049	1.124
\(N_C \)	6	4	4	2	4	2	4	4	4
Field contribution									
S	0.402	-	-	-	-	-	-	0.253	0.312
E	-	0.404	0.508	0.446	-	-	-	0.298	0.333
H	-	0.596	-	-	0.590	0.507	-	0.449	-
D	-	-	0.492	-	0.410	-	0.393	-	0.355
A	0.598	-	-	0.554	-	0.493	0.607	-	-
CoMSIA									
	SEA	SHD	SHA	SDA	EHD	EHA	EDA	HDA	SEHD
\(R_{cv}^2 \)	0.096	0.192	0.234	0.176	0.097	0.181	0.02	0.208	0.102
\(R_{ncv}^2 \)	0.934	0.986	0.948	0.936	0.928	0.836	0.921	0.944	0.939
SEE	0.288	0.141	0.256	0.284	0.300	0.430	0.316	0.265	0.278
\(F \)	60.507	177.47	77.748	62.304	55.089	48.428	49.493	72.191	64.890
\(R_{pred}^2 \)	0.0238	0.0755	0.0092	0.0025	0.0605	0.0017	0.0199	0.0011	0.0007
SEH	1.068	1.075	0.983	1.019	1.067	0.961	1.111	0.999	1.064
\(N_C \)	4	6	4	4	4	2	4	4	4
Field contribution									
S	0.274	0.255	0.234	0.292	-	-	-	-	0.200
E	0.292	-	-	-	0.283	0.285	0.302	-	0.221
H	-	0.416	0.388	-	0.428	0.364	-	0.388	0.341
D	-	0.329	-	0.295	0.288	-	0.290	0.255	0.239
A	0.434	-	0.377	0.413	-	0.351	0.408	0.357	-
CoMSIA									
	SEHA	SEDA	SHDA	EHDA	SEHDA				
\(R_{cv}^2 \)	0.159	0.056	0.216	0.164	0.147				
\(R_{ncv}^2 \)	0.941	0.930	0.952	0.936	0.944				
SEE	0.273	0.297	0.245	0.284	0.265				
\(F \)	67.663	56.660	85.170	62.241	72.263				
R²_{pred}	0.0018	0.0096	0.004	0.0259	0.0034				
SEP	1.030	1.091	0.994	1.027	1.037				
N_C	4	4	4	4	4				

Field contribution

	S	E	H	D	A
N_C	0.179	0.217	0.11	-	0.154
	0.206	0.226	-	0.203	0.166
	0.317	-	0.308	0.311	0.262
	-	0.236	0.211	0.203	0.177
	0.298	0.322	0.289	0.283	0.241

Table S3.

Summary of QSAR results for ACE peptides based on common scaffold-based alignment.

	CoMFA	CoMSIA							
	SE	S	E	H	D	A	SE	SH	SD
R²_{cv}	-0.133	0.147	-0.213	0.416	-0.234	-0.475	-0.188	0.367	0.066
R²_{ncv}	0.985	0.862	0.405	0.908	0.951	0.324	0.504	0.931	0.991
SEE	0.140	0.395	0.798	0.323	0.265	0.851	0.729	0.279	0.115
F	215.94	59.186	13.621	93.384	48.510	9.598	20.291	127.84	269.813
SEP	1.155	4	2	1	6	1	6	6	6

Field contribution

	S	E	H	D	A
N_C	0.675	1.000	-	-	-
	0.325	-	1.000	-	-
	-	-	1.000	-	-
	-	-	-	1.000	-
	0.57	0.489	-	0.371	0.398

	CoMSIA								
	SA	EH	ED	EA	HD	HA	DA	SEH	SED
R²_{cv}	-0.337	0.222	-0.268	-0.313	0.338	0.181	-0.387	0.173	-0.193
R²_{ncv}	0.961	0.994	0.789	0.421	0.996	0.997	0.982	0.988	0.844
SEE	0.229	0.096	0.501	0.788	0.077	0.068	0.162	0.128	0.431
F	78.588	387.93	22.458	14.547	593.27	770.31	133.32	259.42	32.398
SEP	1.192	1.358	1.229	1.186	0.972	1.082	1.408	1.053	1.238

Field contribution

	S	E	H	D	A
N_C	0.426	-	-	-	-
	-	0.351	0.395	0.511	-
	-	0.649	-	0.525	0.629
	-	0.605	-	0.475	0.602
	0.57	-	0.489	-	0.371

CoMSIA

	CoMSIA								
	SE	SH	SD						
SEP	1.037	1.037	1.037	1.037	1.037	1.037	1.037	1.037	1.037

CoMSIA
	SEA	SHD	SHA	SDA	EHD	EHA	EDA	HDA	SEHD
R^2_{cv}	-0.301	0.311	0.13	-0.131	0.238	0.062	-0.32	0.158	0.209
R^2_{ncv}	0.477	0.996	0.986	0.994	0.997	0.995	0.440	0.998	0.997
SEE	0.748	0.072	0.137	0.093	0.067	0.086	0.775	0.058	0.067
F	18.261	682.53	224.72	406.62	788.89	480.87	15.700	1063.9	784.446
R^2_{pred}	0.4822	0.2337	0.4592	0.1004	0.1366	0.4134	0.463	0.1005	
SEP	1.181	0.992	1080	1.271	1.043	1.158	1.189	1.097	1.063
N_C	1	6	5	6	6	6	6	6	6

Field contribution

	S	E	H	D	A
S	0.197	0.169	0.209	0.231	-
E	0.411	-	-	-	0.197
H	-	0.421	0.493	-	0.426
D	-	0.409	-	0.466	0.377
A	0.392	-	0.298	0.303	-

	SEHA	SEDA	SHDA	EHDA	SEHDA
R^2_{cv}	0.047	-0.234	0.168	0.093	0.096
R^2_{ncv}	0.996	0.994	0.998	0.997	0.997
SEE	0.078	0.090	0.057	0.066	0.064
F	591.463	434.943	1087.702	808.664	881.448
R^2_{pred}	0.2907	0.0478	0.3037	0.2797	0.1973
SEP	1.167	1.328	1.090	1.138	1.137
N_C	6	6	6	6	6

Field contribution

	S	E	H	D	A
S	0.156	0.176	0.140	-	-
E	0.211	0.199	-	0.171	0.148
H	0.389	-	0.342	0.337	0.293
D	-	0.362	0.320	0.296	0.266
A	0.244	0.263	0.198	0.196	0.178

Fig. S1 (A) The alignment for ACE from the docking-based alignment. (B) The alignment for ACE from the common scaffold-based alignment.