MHD rotational flow of viscous fluid past a vertical plate with slip and Hall effect through porous media: A theoretical modeling with heat and mass transfer

Rashid Ayub1, Shahzad Ahmad1 and Mushtaq Ahmad1,2\textcopyright

Abstract
As the slip at the solid boundary is an essential attribute for fluid flow in different mechanical situations. Therefore this article aims to explain the slip effect over the free convection and rotating flow of viscous fluid over an extended plate with heat and mass transfer in the presence of magnetic field of the constant magnitude through a porous medium. The respective fluid is chemically reacting fluid hence the effect of chemical reaction with the effect of heat absorption is considered in the development of governing equations. To get the better physical understanding of flow model the governing equations are reduced to dimensionless form. The dimensionless governing equations are solved with aid of Laplace transform and closed form solutions are developed for the thermal, concentration and velocity fields. The real and imaginary components of velocity field are also plotted for the variation of different physical parameters and parametric discussion is posted with assistance of these plotted graphs. In the light of parametric discussion it is concluded that with heat and mass transfer there is more bouncy effect in flow domain. Further in the presence of hall effect fluid speeds up while it is slow down with increasing value of magnetic and slip parameters

Keywords
Heat and mass transfer, rotating MHD flow, slip condition, Newtonian heating, chemical reaction, porous media

Date received: 3 January 2022; accepted: 27 April 2022
Handling Editor: Chenhui Liang

Introduction
Free convection flows establish by the combine contribution of both thermal and concentration gradients have useful application in the fields of physical sciences and discussed by many researchers. Chandran et al.1 presented the analysis for flow subject to the wall temperature over a plate. Nandy et al.2 consider a natural convection flow model and obtained the closed form solution. Pattnaik and Biswal3 obtained the closed form solution for thermal and mass diffusion. Uddin et al.4 discussed the fluid flow subject to the non-homogenous temperature and concentration fields. Hussain et al.5 have explored role of fluctuating fluxes of heat and mass over a convection flow of viscous fluids. Krishna and Reddy6 considered the flow of a chemically

\1Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Punjab, Pakistan
2Department Mathematics & Statistics, Institute of Southern Punjab, Multan, Punjab, Pakistan

Corresponding author:
Mushtaq Ahmad, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Punjab 60000, Pakistan.
Email: math7690@yahoo.com
replacing fluid with effect of Hall current. Sheikh and Hasan17 explain the effect of inclination over a free convectional flow micropolar fluid induced by mix convection. Some more study regarding free convection flow are listed in Refs.8–12. In all above studies the no-slip condition is considered as boundary condition, however this concept is realized only when the fluid particles adjacent to surface of boundary does not move in flow the flow direction, that is, adhesion is dominant to the cohesion. There are many practical situations like flow of rubberizer compounds, polyethylene, biological suspensions over the hydrodynamic surfaces where fluids and its boundary have some relative velocity therefore in such flow idea of no-slip condition at boundary is no more applicable. In many complex flows, the viscous fluids can slip over a solid boundary in this circumstances the slip condition is an compiling aspect and have the significant effect.

Moreover slip at flow boundary has the many applicable usages in the flow of biological fluids, lubricants, polishing material, and flow of blood through the heart valves. Hayat et al.13,14 discussed the slip and partial slip flows over flat surfaces. Shah et al.15 considered the slip attribute at boundary for flow of Carreau fluid. Norouzi et al.16 analyzed the flow of non-Newtonian fluid and have explained the effect of slip. Fetecau et al.17 illustrated the influence of MHD and slip for natural flow at the moving plat. Imran et al.18 Vieru et al.,19 and Waqas et al.20 also discussed effect for slip over flow of Newtonian and non-Newtonian fluids.

Rotating flows of fluids with the effect of magnetic fields through a porous media have the significant role in the study of Cosmic and oceanic fluids eddies, rotating food machinery, processing industry, and filtration plants. Singh21 has investigated the results for rotational flow of fluid past an aerated surface. Kumari and Nath22 has explained the unsteady rotating flow in the vicinity MHD field. Muthucumaraswasy et al.23,24 have also considered the rotational effect of over a free convectional motion of viscous fluid for mass diffusion. Imran et al.25 has derived the interesting results of velocity and temperature for the free convectional flow in the rotating frame. Krishna and Reddy26 have presented the effect of reaction and Joule’s current for a rotating flow of fluid with MHD. Farhad et al.27 consider a rotating flow of viscous fluid with effect of MHD and Hall current. Raghunath et al.5 and Sharma et al.28 have also considered rotating flow subject to the thermal and mass transfer.

The slippage and rotating free convectional flow of viscous fluid in the presence of MHD for a porous regime with heat obreption and chemical reaction is discussed in the present study and such work has not been found in the present literature. The primary goal of this study is to modeled a rotating flow of viscous fluid with slip condition over the boundary and the solved analytically by applying Laplace transform. The expression of temperature, concentration, and velocity is communicated in term of special functions. Further the some graphs of velocity components are plotted and discuss the deportment of parameters of interest.

Development of model

Suppose a Newtonian fluid is flowing near a vertical plate in the presence of magnetic field of the constant magnitude \(B_0 \) through a porous regime with the effect of heat absorption and chemical reaction. Flow is induced by the combine contribution of mechanical motion of plate, and non homogenous thermal and concentration fields as shown in the Figure 1. For beginning fluid and boundary are at rest and in this state the level of concentration is \(C_w \) with the thermal state \(T_w \). For the time \(t>0 \) suddenly plate start to move with velocity \(u_0(t) \) and at this moment the temperature at wall is \(T_w \) concentration level is \(C_w \). Absorption heat and chemical reaction are also considered. The effect of density variation is also deliberated in the momentum balance. In the light of assumption flow model is governed by the following PDEs9,26

\[
\frac{\partial u(z,t)}{\partial t} - 2\Omega v(z,t) = \nu \frac{\partial^2 u(z,t)}{\partial z^2} - \frac{B_0 J_y}{\rho} - \frac{\nu \phi}{k} u(z,t) + g\beta_T(T(z,t) - T_w) + g \beta_C(C(z,t) - C_w),
\]

(1)

\[
\frac{\partial v(z,t)}{\partial t} + 2\Omega u(z,t) = \nu \frac{\partial^2 v(z,t)}{\partial z^2} - \frac{B_0 J_z}{\rho} - \frac{\nu \phi}{k} v(z,t),
\]

(2)

\[
\rho C_p \frac{\partial T(z,t)}{\partial t} = k \frac{\partial^2 T(z,t)}{\partial z^2} + q_1(T(z,t) - T_w),
\]

(3)

\[
\frac{\partial C(z,t)}{\partial t} = D \frac{\partial^2 C(z,t)}{\partial z^2} + Kr(C(z,t) - C_w),
\]

(4)

\[
u(z,0) = v(z,0) = 0, T(z,0) = 0, C(z,0) = 0.
\]

(5)

\[
u(0,t) - \lambda \frac{\partial u}{\partial z} = u_0(t), v(0,t) - \lambda \frac{\partial v}{\partial z} = 0,
\]

(6)

\[
T(0,t) = T_w, C(0,t) = C_w,
\]

(7)

and

\[
u(z,t) \to 0, v(z,t) \to 0, T(z,t) \to 0, C(z,t) \to 0 as z \to \infty.
\]

(8)

For the magnetic field of the larger magnitude, the modified usual Ohm’s law is stated as follows

\[\mathbf{J} = \frac{\omega_c \tau_c}{B_0} (\mathbf{J} \times \mathbf{B}) = \sigma \left[\nabla \mathbf{v} + \nabla \times \mathbf{B} + \frac{1}{\epsilon \eta_c} \nabla p_e \right],\]

(9)

where \(\mathbf{J} \) is the space density of current, \(\mathbf{E} \) is the vector of electric field, \(\omega_c \) is frequency of cyclotron, \(\tau_c \) is the
time of electron collision, e is electric charge, σ is the fluid electric conductivity, η_e is the electron density number, and p_e is pressure develop by electron. In the Eq. (8), the slip of ion, thermos effect of electron motion, electron pressure gradient are not considered. Moreover it is also assumed that the electric field $E = 0$. With these assumption the Ohm’s law rescued to following component form

$$J_x + v \frac{\partial e}{\partial y} = sB_0v,$$

$$J_y - \omega_e \tau_e J_x = -\sigma B_0 u.$$ \hfill (9)

Solving equations (9) and (10) for the relation of J_x and J_y we get

$$J_x = \frac{\sigma B_0}{1 + m^2} (v + mu),$$

$$J_y = \frac{\sigma B_0}{1 + m^2} (mv - u),$$ \hfill (11)

where $m = \omega_e \tau_e$ is the hall parameter.

Inserting respective relations of J_x and J_y from equations (11) and (12) in equations (1) and (2) we get

$$\frac{\partial u(z, t)}{\partial t} - 2\Omega v(z, t) = \nu \frac{\partial^2 u(z, t)}{\partial z^2} + \frac{1}{\rho} \frac{\sigma B_0^2}{1 + m^2} (mv - u),$$

$$+ gB_1(T(z, t) - T_\infty) + g\beta_c(C(z, t) - C_\infty),$$ \hfill (13)

$$\frac{\partial v(z, t)}{\partial t} + 2\Omega u(z, t) = \nu \frac{\partial^2 v(z, t)}{\partial z^2} - \frac{1}{\rho} \frac{\sigma B_0^2}{1 + m^2} (v + mu) - \frac{\nu \phi}{k} v(z, t).$$ \hfill (14)

By introducing the following dimensionless relations

$$u^* = \frac{u}{u_0}, v^* = \frac{v}{u_0}, z^* = \frac{z u_0}{\nu},$$

$$t^* = \frac{u_0^2 t}{\nu}, T^* = \frac{T - T_\infty}{T_w - T_\infty}, C^* = \frac{C - C_\infty}{C_w - C_\infty},$$ \hfill (15)

In equations (3)–(7) and in equations (13)–(14) we get

$$\frac{\partial u(z, t)}{\partial t} - 2 E_k v(z, t) = \frac{\partial^2 u(z, t)}{\partial z^2} - \frac{1}{k_o} u(z, t)$$

$$+ \frac{M^2}{1 + m^2} (mv - u) + GrT(z, t) + Gm C(z, t),$$ \hfill (16)

$$\frac{\partial v(z, t)}{\partial t} + 2 E_k u(z, t) = \frac{\partial^2 v(z, t)}{\partial z^2} - \frac{1}{\nu} (v + mu),$$ \hfill (17)

$$\frac{\partial T(z, t)}{\partial t} = \frac{1}{Pr} \frac{\partial^2 T(z, t)}{\partial z^2} + q_o T(z, t),$$ \hfill (18)

$$\frac{\partial C(z, t)}{\partial t} = \frac{1}{Sc} \frac{\partial^2 C(z, t)}{\partial z^2} + K_o C(z, t).$$ \hfill (19)
with non-dimensional conditions

\[u(z, 0) = 0, v(z, 0) = 0, T(z, 0) = 0, C(z, 0) = 0, \] \hspace{1cm} (20)

\[u(0, t) - \lambda_o \frac{\partial u}{\partial z} = f(t), v(0, t) - \lambda_o \frac{\partial v}{\partial z} = 0, \] \hspace{1cm} (21)

\[T(0, t) = 1, C(0, t) = 1, \]

\[u(z, t) \rightarrow 0, v(z, t) \rightarrow 0, T(z, t) \rightarrow 0, C(z, t) \rightarrow 0 \] \hspace{1cm} as \ z \rightarrow \infty, \] \hspace{1cm} (22)

where

\[\frac{1}{k_o} = \frac{\nu^2 \phi}{k_i u_o^2}, \]

\[M = \frac{\sigma B_o^2 \sigma}{u_o \rho (1 - m)}, \]

\[E_k = \frac{\Omega \nu}{u_o^2}, \quad Gr = \frac{\nu}{u_o^2} g \beta_r (T_w - T_\infty), \]

\[q_o = \frac{v q_1}{u_o^2 \rho C_p}, \quad G_m = \frac{\nu}{u_o^2} g \beta_c (C_w - C_\infty), \]

\[\nu = \frac{v p C_\nu}{\kappa}, \quad Sc = \frac{\nu}{D}, \quad k_0 = k_r \frac{\nu}{u_o^2}, \quad \lambda_o = \frac{\lambda u_o}{\nu}, \]

are porosity, magnetic parameter, rotational parameter, thermal Grashof number, heat generation parameter, mass Grashof, Prandtl, Schmidt numbers, chemical reaction, and slip parameter respectively.

Solution of problem

Temperature

Apply Laplace to equation (18)

\[q\tilde{T}(z, q) = \frac{1}{Pr} \frac{\partial^2 \tilde{T}(z, q)}{\partial z^2} + q_o \tilde{T}(z, q). \] \hspace{1cm} (24)

Equation (24) is hold for the following transformed boundary conditions

\[T(0, q) = \frac{1}{q}, \quad \text{and} \quad T(z, q) \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty. \] \hspace{1cm} (25)

Equation (24) is solved with conditions in (25) as

\[\tilde{T}(z, q) = \frac{1}{q} e^{-\sqrt{Pr}(q - q_o)}. \] \hspace{1cm} (26)

In equivalent form

\[\tilde{T}(z, q) = \frac{q - q_o}{q} \frac{1}{q - q_o} e^{-\sqrt{Pr}(q - q_o)}, \] \hspace{1cm} (27)

\[\tilde{T}(z, q) = \frac{1}{q - q_o} e^{-\sqrt{Pr}(q - q_o)} - \frac{1}{q q - q_o} e^{-\sqrt{Pr}(q - q_o)}. \] \hspace{1cm} (28)

Applying inverse Laplace transformation

\[T(z, t) = \text{erfc} \left(\frac{z}{2 \sqrt{t}} \right) e^{\theta o t} - \int_0^t \text{erfc} \left(\frac{z}{2 \sqrt{\tau}} \right) e^{\theta o \tau} d\tau. \] \hspace{1cm} (29)

Solution of concentration

Apply Laplace to equation

\[q\tilde{C}(z, q) = \frac{1}{Sc} \frac{\partial^2 \tilde{C}(z, q)}{\partial z^2} + k_o \tilde{C}(z, q). \] \hspace{1cm} (30)

Transform Boundary condition,

\[C(0, q) = \frac{1}{q}, \quad \text{and} \quad T(z, q) \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty. \] \hspace{1cm} (31)

Solution of (30)

\[\tilde{C}(z, q) = \frac{1}{q} e^{-\sqrt{Sc(q - q_0)}}. \] \hspace{1cm} (32)

In suitable form

\[\tilde{C}(z, q) = \frac{1}{q} \frac{q - q_o}{q - k_0} e^{-\sqrt{Sc(q - q_0)}}, \] \hspace{1cm} (33)

\[\tilde{C}(z, q) = \frac{1}{q - k_0} e^{-\sqrt{Sc(q - q_0)}} - \frac{1}{q q - k_0} e^{-\sqrt{Sc(q - q_0)}}. \] \hspace{1cm} (34)

Applying inverse Laplace transformation

\[C(z, t) = \text{erfc} \left(\frac{z}{2 \sqrt{t}} \right) e^{\theta o t} - k_o \int_0^t \text{erfc} \left(\frac{z}{2 \sqrt{\tau}} \right) e^{\theta o \tau} d\tau. \] \hspace{1cm} (35)

Solution of complex velocity

Introducing the complex velocity \(F(z, t) = u(z, t) + iv(z, t) \) and by applying the operation equations (16) + iequation (17) we get

\[\frac{\partial F(z, t)}{\partial t} + 2iE_k F(z, t) = \frac{\partial^2 F(z, t)}{\partial z^2} \frac{F(z, t)}{k_o}, \] \hspace{1cm} (36)

\[\frac{F(z, 0)}{k_o} = 0, \] \hspace{1cm} (37)

\[F(z, t) - \lambda_o \frac{\partial F(z, t)}{\partial z} = f(t), F(z, t) \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty. \] \hspace{1cm} (38)

Equation (36) in the light of initial condition in (37) under the Laplace transform reduced to the

\[\frac{\partial^2 \tilde{F}(z, q)}{\partial z^2} = \left(q + \frac{1}{k_o} + \frac{M^2}{1 - im} + 2iE_k \right) \tilde{F}(z, q) \] \hspace{1cm} (39)

Equation (39) holds for the transformed boundary conditions given below

\[\tilde{F}(0, q) - \lambda_o \frac{\partial \tilde{F}(z, q)}{\partial z} = f(q), \tilde{F}(z, t) \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty. \] \hspace{1cm} (40)
Solution of equation (39) with conditions (40) is

\[F(z, q) = \frac{f(q)e^{-z^{2}/q + M_0}}{1 + \lambda_0\sqrt{q} + M_o} + \frac{Gm(1 + \lambda_\sqrt{Pr(q - q_o))}}{Pr(q - q_o) - (q + M_o)q} \left[e^{-z^{2}/q + M_0} + e^{-z^{2}/(Pr(q - q_o))} \right] \]

where, \(M_o = \frac{1}{K} + \frac{M^2}{1 + \epsilon} + 2iE_k \).

In suitable form

\[F(z, q) = \frac{f(q)e^{-z^{2}/q + M_0}}{1 + \lambda_0\sqrt{q} + M_o} + \frac{Gm(1 + \lambda_\sqrt{Pr(q - q_o))}}{Pr(q - q_o) - (q + M_o)q} \left[e^{-z^{2}/q + M_0} + e^{-z^{2}/(Pr(q - q_o))} \right] \]

where, \(M_o = \frac{1}{K} + \frac{M^2}{1 + \epsilon} + 2iE_k \).

now applying the inverse Laplace transform

\[F(z, t) = \int_0^t f(t - s)f(l, s)ds \]

where

\[f_1(z, t) = \frac{1}{\lambda_0\sqrt{\pi t}} \exp \left(\frac{z^2}{4t} - M_0 t \right) \]}

and

\[f_2(z, t) = \frac{1}{\lambda_0\sqrt{\pi t}} \exp \left(\frac{z^2}{4t} - K_0 t \right) \]

Parametric discussion

This article aims to explain the rotating flow of viscous fluid past an extended surface in the presence of magnetic field of the constant magnitude through a porous medium with slip. The respective fluid is chemically reacting fluid with the effect of heat absorption is considered for construction development of governing equations. To get the better physical understanding of flow model the governing equations are reduced to dimensionless form. The dimensionless partial differential equations are solved with aid of Laplace transform and exact solutions for the thermal, concentration and velocity fields are developed.

The temperature profile is plotted in Figure 2 due to \(Pr \) and \(q_0 \) respectively. From figures it is revealed that thermal profiles fall down with increment of \(Pr \) and rises with the increment of heat absorption parameter \(q_0 \). Larger value of \(q_0 \) is referred to the more heat in the flow domain so temperature of fluid is raised with increasing value of \(q_0 \).

The concentration profile is plotted in Figure 3 due to \(Sc \) and \(K_0 \) respectively. From figures it is revealed that concentration profiles fall down with increment of \(Pr \) and rises with the increment of chemical reaction \(K_0 \). Larger value of \(K_0 \) is referred to the more species in the flow domain so concentration is raised with increasing value of \(K_0 \).
The velocity components are also plotted for the variation of different physical parameters and parametric discussion is posted with assistance of these plotted graphs in the Figures 4 to 14. In Figure 4 velocity field is plotted for thermal Grashof number Gr and outline of the figures reveal that the increasing value of Gr provides a support to the both components of fluid’s velocity. The same behavior of velocity components against the variation of mass Grashof number is also observed in Figure 5 and the physical reason behind this behavior of velocity is that Gr and Gm are the ratio of bouncy force due to temperature and concentration gradients respectively to the viscous force. Therefore more the bouncy force there are more convectional currents which provide a supports to fluid flow. The Figures 6 and 7 are drawn to study the significance of Pr and Sc. The both components of fluid velocity show a decreasing trend for increasing values of Pr and Sc, larger Pr and Sc refer to more momentum diffusivity which slows downs the fluid’s velocity. The
velocity’s components are sketched in Figure 8 for due variation of magnetic parameter M and decaying trend is seen. This decaying trend in velocity profiles is due the magnetic field in the flow domain so some resistive force is induced that retards fluid flow. The effect of porosity \(k_0 \) is discussed in the Figure 9 and increasing behavior is observed for the increasing value of \(k_0 \). The larger the value of \(k_0 \) there are larger the volume of voids in the porous media therefore there is more flow through the porous medium. The subjectivity of velocity’s components for heat absorption parameter \(q_0 \) is studies in the Figure 10 and heat absorption mean that there is more heat in the flow domain which accelerates the fluid with larger velocity.

The Figure 11 is sketched to discussed influence of reacting parameter \(K_0 \) over the components and decreasing trend is noted in the velocity components for \(K_0 \) variation. Some type of the species are created in the flow domain for reacting fluid and due to this fluid become thick and flow with small velocity. The slippage attribute \(\lambda \) is studies in the Figure 12 and velocity components speed up for increasing value of \(\lambda_0 \). More
slip there is more support to flow the fluid that is why both components of velocity increase with the increasing values of slip parameter. Rotational parameter E_k is discussed in the Figure 13 for enhancing E_k the fluid flows with the reduced real component while enhanced imaginary component.

In Figure 14 the Hall parameter m is discussed and it is noted that both components of velocity are enhanced for increasing value of m. As Hall effect is due to Lorentz forces acting on ionized fluid in the presence of magnetic of the larger strength. An extra voltages generated in the flow field which a rise in the velocity of flowing fluid.

A comparison for components of present velocity profiles with Farhad et al. is presented in Figure 15 and the absence of bouncy effect due to temperature and concentration gradient, our result for both components of velocity overlap with the results obtained by Farhad.

The heat and mass flow rate at the boundary are discussed numerical in terms of Nusselt and Sherwood...
numbers respectively and obtained result are presented in the tabular in Table 1.

Conclusion

In this article the slippage and rotating free convectional flow of viscous fluid in the presence of MHD in a porous medium regime with the effect of heat obrep- traction and chemical reaction in the flow domain has been investigated. The expression for temperature, concentration, and velocity is expressed in term of special function. Further effect of parameters over the velocity profile are also explained by plotting the real and imaginary components of velocity. Concluded remarks of the present study are listed as:

- Temperature field shows a decreasing trend for increasing Prandtl number Pr while an increasing trend is seen for increasing values of heat obrep- traction parameter.
Concentration field shows a decreasing trend for increasing mass Prandtl number Sc while an increasing trend is seen for increasing chemical reaction parameter K_0.

Both real and imaginary components are increasing functions of parameters Gr, GM, q_0, and k_0.

Both components of velocity decreases for parameters Pr, Sc, M, and K_0.

Effect of slip parameter λ_0 over the velocity’s components is significant only near the plate while away from plate the slip effect is irrelevant.

Real components of the velocity is reduced while the imaginary component is enhanced by increasing value of rotational parameter Ek.

In the presence of hall effect fluid speeds up.

Figure 10. Components of velocity verses z subject to q_0 for $\lambda_0 = 0.5$.

Figure 11. Components of velocity verses z subject to K_0 for $\lambda_0 = 0.5$.
Figure 12. Components of velocity verses z subject to λ_0.

Figure 13. Components of velocity verses z subject to E_k.

Table 1. Nusselt Number and Sherwood number for Pr and Sc respectively.

t	$Pr = 2.2$	$Pr = 2.4$	$Pr = 2.6$	$Sc = 0.2$	$Sc = 0.5$	$Sc = 0.8$
0.1	0.35833201	0.63438120	1.29323441	1.10429543	1.21272314	1.08938910
0.2	0.58903345	0.84024642	1.28016572	1.30582303	1.21304572	1.15036784
0.3	0.81214314	1.14682341	1.41903478	1.40982718	1.17557059	1.33456213
0.4	1.03499521	1.50321450	1.63002345	1.57901239	1.21376360	1.50457821
0.5	1.2567805	1.83267891	1.71090141	1.80213456	1.19035623	2.60235677
0.6	1.80324678	2.02167931	1.91023590	2.02890321	1.1454580	2.76737382
0.7	1.93583103	2.50934562	2.09814218	2.20924567	1.1494653	2.8064034
0.8	2.09012894	2.20328543	2.31032678	2.30427890	1.31534522	2.93457023
0.9	2.56900322	2.40256721	2.50921478	2.52932567	2.45890123	2.17691038
1.0	2.83237820	2.50324567	2.60936892	2.60457328	2.61610801	2.17712268

Ayub et al.
Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Mushtaq Ahmad https://orcid.org/0000-0002-2265-0747

References

1. Chandran P, Sacheti NC and Singh AK. Natural convection near a vertical plate with ramped wall temperature. Heat Mass Transf 2005; 41: 459-464.
2. Nandy SK, Mahapatra TR and Sidui S. Effect of magnetic field on indirect natural convection flow above a horizontal hot flat plate. Front Heat Mass Transfer 2014; 5: 1-6.
3. Pattnaik PK and Biswal T. Analytical solution of MHD free convective flow through porous media with time dependent temperature and concentration. Eng Phys Sci 2014; 12: 749-762.
4. Uddin MJ, Khan WA and Ismail AIM. Similarity solution of double diffusive free convective flow over a
moving vertical flat plate with convective boundary condition. *Ain Shams Eng J* 2015; 6: 1105–1112.

5. Hussain S, Roy NC, Hossain MA, et al. Effect of fluctuating surface heat and mass flux on natural convection flow along a vertical flat plate. *Math Probl Eng* 2015; 2015: 1–15.

6. Krishna MV and Reddy MG. MHD convective rotating flow past an oscillating porous plate with chemical reaction and Hall effects. *IOP Conf Ser Mater Sci Eng* 2016; 149: 1–14.

7. Sheikh N and Hasan M. Mixed convective flow of micropolar fluids past an inclined porous flat plate. *Open J Fluid Dyn* 2017; 07: 642–656.

8. Oyem DA and Oreyani T. Homotopy analysis of magnetic field effect on free convection flow past a semi-infinite flat plate. *Ann Faculty Eng Hunedoara Int J Eng* 2017; 4: 103–110.

9. Raghunath K, Prasad RS and Raju GS. Hall effects on MHD convective rotating flow of through a porous medium past infinite vertical plate. *Ann Pure Appl Math* 2018; 16: 353–363.

10. Alam M, Hossain M, Parvez M, et al. The coupling conduction effects on natural convection flow along a vertical flat plate with joule heating and heat generation. *Curr J Appl Sci Technol* 2018; 27: 1–12.

11. Javaid M, Imran M, Fetecau C, et al. General solutions for the mixed boundary value problem associated to hydromagnetic flows of a viscous fluid between symmetrically heated parallel plates. *Therm Sci* 2020; 24: 1389–1405.

12. Islam MR, Al Faruque MGM and Islam S. Variable fluid properties of MHD steady natural convection flow over a vertical flat plate. *J Environ Sci* 2019; 1: 1–6.

13. Hayat T, Hina S and Hendi AA. Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer. *J Mech Med Biol* 2012; 12: 1250001.

14. Hayat T, Imtiaz M and Alsaedi A. Partial slip effects in flow over nonlinear stretching surface. *Appl Math Mech* 2015; 36: 1513–1526.

15. Shah RA, Abbas T, Idrees M, et al. MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity. *Boundary Value Probl* 2017; 17: 17.

16. Norouzi M, Davoodi M, Anwar Bég O, et al. Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. *Int J Appl Comput Math* 2018; 4: 108.

17. Fetecau C, Vieru D, Fetecau C, et al. General solutions for magnetohydrodynamic natural convection flow with radiative heat transfer and slip condition over a moving plate. *Z Naturforsch* 2013; 68: 659–667.

18. Imran MA, Sarwar S, Imran M, et al. Combined effect of slip and radiation on MHD flow past a constantly moving vertical plate with variable temperature. *J Prime Res Math* 2016; 12: 130–144.

19. Vieru D, Imran MA and Rauf A. Slip effect on free convection flow of second grade fluids with ramped wall temperature. *Heat Transf Res* 2015; 46: 713–724.

20. Waqas H, Khan SU, Bhatti MM, et al. Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. *J Therm Anal Calorim* 2020; 140: 1293–1306.

21. Singh AK. MHD free-convection flow past an accelerated vertical porous plate in a rotating fluid. *Astrophys Space Sci* 1984; 103: 155–163.

22. Kumari M and Nath G. Transient rotating flow over a moving surface with a magnetic field. *Int J Heat Mass Transf* 2005; 48: 2788–2885.

23. Muralidharan M and Muthucumaraswamy R. MHD and radiative flow past an accelerated vertical plate with variable temperature and uniform mass diffusion. *Int J Appl Phys Math* 2012; 266–269.

24. Muthucumaraswary R, Lal T and Ranganayakulu D. MHD flow past an accelerated vertical plate with variable heat and mass diffusion in the presence of rotation. *Int J Innov Res Sci Technol* 2013; 2: 5671–5681.

25. Imran MA, Vieru D and Mirza IA. The influence of Ekman number on flows over an oscillating isothermal vertical plate in a rotating frame. *J Appl Fluid Mech* 2015; 8: 781–791.

26. Farhad A, Norzieha M, Sharidan S, et al. Hydromagnetic rotating flow in a porous medium with slip condition and Hall current. *Int J Phys Sci* 2012; 7: 1540–1548.

27. Sharma RP, Raju MC, Makinde OD, et al. Buoyancy effects on unsteady MHD chemically reacting and rotating fluid flow past a plate in a porous medium. *Defect Diffus Forum* 2019; 392: 1–9.

Appendix

Notation

- k: Thermal conductivity [$Wm^{-1}K^{-1}$]
- Gr: Grashof number [-]
- Pr: Prandtl number [-]
- Re: Real part of complex number
- g: Gravitational acceleration [ms^{-2}]
- Cp: Specific heat at constant pressure [$JKg^{-1}K^{-1}$]
- Ek: Ekman number [-]
- T: Dimensionless Fluid temperature [K]
- T_w: Temperature far away from the plate [K]
- Tw: Wall temperature [K]
- μ: Dynamic viscosity [$Kgm^{-1}s^{-1}$]
- ν: Kinematic viscosity [m^2s^{-1}]
- u: velocity component along x-axis [ms^{-1}]
- v: velocity component along y-axis [ms^{-1}]
| Symbol | Description | Unit |
|--------|-------------|------|
| σ | Stefan-Boltzmann constant | $Wm^{-2}K^{-4}$ |
| λ | Slip parameter | [-] |
| Ω | Angular velocity of the fluid | s^{-1} |
| β_0 | External Magnetic field | K^{-1} |
| λ_0 | Nondirectional slip parameter | [-] |
| q_0 | Heat absorption parameter | [-] |
| K_0 | Reaction parameter | [-] |
| k_0 | Porosity parameter | [-] |