Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Impact of asthma on COVID-19 mortality in the United States: Evidence based on a meta-analysis

Xueya Han, Jie Xu, Hongjie Hou, Haiyan Yang, Yadong Wang

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, Henan Province, China

ARTICLE INFO

Keywords: COVID-19 Asthma Mortality Meta-analysis USA

ABSTRACT

Objective: The aim of this study was to investigate the impact of asthma on the risk for mortality among coronavirus disease 2019 (COVID-19) patients in the United States by a quantitative meta-analysis.

Methods: A random-effects model was used to estimate the pooled odds ratio (OR) with corresponding 95% confidence interval (CI). I² statistic, sensitivity analysis, Begg’s test, meta-regression and subgroup analyses were also performed.

Results: The data based on 56 studies with 426,261 COVID-19 patients showed that there was a statistically significant association between pre-existing asthma and the reduced risk for COVID-19 mortality in the United States (OR: 0.82, 95% CI: 0.74–0.91). Subgroup analyses by age, male proportion, sample size, study design and setting demonstrated that pre-existing asthma was associated with a significantly reduced risk for COVID-19 mortality among studies with age ≥ 60 years old (OR: 0.79, 95% CI: 0.72–0.87), male proportion ≥ 55% (OR: 0.79, 95% CI: 0.72–0.87), male proportion < 55% (OR: 0.81, 95% CI: 0.69–0.95), sample sizes ≥ 700 cases (OR: 0.80, 95% CI: 0.71–0.91), retrospective study/case series (OR: 0.82, 95% CI: 0.75–0.89), prospective study (OR: 0.83, 95% CI: 0.70–0.98) and hospitalized patients (OR: 0.82, 95% CI: 0.74–0.91). Meta-regression did reveal none of factors mentioned above were possible reasons of heterogeneity. Sensitivity analysis indicated the robustness of our findings. No publication bias was detected in Begg’s test (P = 0.4538).

Conclusion: Our findings demonstrated pre-existing asthma was significantly associated with a reduced risk for COVID-19 mortality in the United States.

1. Introduction

It has been reported that the prevalence of comorbid asthma among coronavirus disease 2019 (COVID-19) patients varied greatly across countries or regions worldwide [1–3]. Previous meta-analyses have investigated the association between pre-existing asthma and COVID-19 mortality in the whole regions [1–3], but the conclusions were inconsistent, which might suffer limitations from substantial variation of asthma prevalence among different countries. Moreover, a previous meta-analysis by Sunjaya et al reported that COVID-19 patients with asthma had a significantly increased risk for mortality in Asia, but not in Europe, North America and South America [4]. Taken together, those urged us to investigate the association between pre-existing asthma and COVID-19 mortality in a specific country or region. To date, a number of individual studies have explored the association between pre-existing asthma and COVID-19 mortality in the United States with conflicting results [5–9], but no quantitative meta-analysis on this topic was conducted to address this issue. Therefore, we performed a quantitative meta-analysis to investigate the impact of asthma on the risk for COVID-19 mortality in the United States.

2. Methods

2.1. Search strategy and selection criteria

This meta-analysis strictly adhering to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was carried out [10]. We performed an extensive search of the literature in the online databases of PubMed, Wiley Library, Springer Link, Elsevier ScienceDirect, Web of Science, EMBASE, Scopus and Cochrane...
Library to identify all potential articles which were published from inception to October 30, 2021, using the following keywords: “COVID-19”, “coronavirus disease 2019”, “2019-nCoV”, “2019 novel coronavirus”, “SARS-CoV-2”, “severe acute respiratory syndrome coronavirus 2”, “asthma”, “asthmatic”, “mortality”, “fatality”, “death”, “non-survivor”, “deceased”, “US”, “USA”, “America”, “the United States” and “the United States of America”. The references of the included studies and relevant reviews were also searched to identify additional articles. The primary outcome of interest was mortality. The participants of exposure group were COVID-19 patients with asthma and those of control group were COVID-19 patients without asthma.

All studies were included in this meta-analysis when they fulfilled the following inclusion criteria: (1) studies reporting adult confirmed COVID-19 patients in the United States; (2) peer-reviewed articles which were written in English language; (3) studies with the sample sizes being more than fifteen cases; (4) studies with available data on the incidence of survivors and non-survivors among COVID-19 patients with asthma and without asthma or the effect size with 95% confidence interval (CI) regarding the association between asthma and COVID-19 mortality. We excluded case reports, review papers, repeated articles, preprints, errata and studies conducted in other than the United States accordingly. Literature search, study selection and data extraction were performed by two investigators independently. Any disagreement was resolved through discussion between the investigators. The extracted information is at list: first author (PMID), study design, country, sample size, the mean (standard deviation) or median (interquartile range) age respectively, proportion of males, available data on the incidence of survivors and non-survivors among COVID-19 patients with asthma and without asthma or the effect size with 95% CI, and setting.

2.2. Statistical analysis

The pooled odds ratio (OR) with corresponding 95% CI evaluating the association between asthma and COVID-19 mortality in the United States was calculated by a random-effects meta-analysis model [11,12]. I² statistic was applied to assess the heterogeneity among studies [13]. Sensitivity analysis by deleting one single study from overall pooled analysis each time was carried out to evaluate the robustness of the findings [2]. Begg’s rank correlation test was used to evaluate the potential publication bias [14]. The statistical analyses were performed with the package “meta” on R software (Version 4.1.1) [15]. Two tailed P value being less than 0.05 was considered statistically significant.

3. Results

3.1. Study selection

Yielding 5912 records from electronic databases and 10 records from hand-searching from the relevant studies or reviews in the cited lists. 2643 records were identified initially after removing duplicates. After evaluating and assessing as much as 257 full-text articles, 201 full-text articles were excluded due to data deficiencies.

3.2. Study characteristics

A total of fifty-six eligible articles with 426,261 COVID-19 patients were included in our meta-analysis. The sample sizes among the included studies varied from 60 to 219,001 cases. There were forty-six
Table 1
General information of the eligible studies included in this meta-analysis.

Author (PMID)	Study design	Region	Cases	Male (%)	Age	Asthma Non-survivor	Asthma Survivor	No Asthma Non-survivor	No Asthma Survivor	Setting
Banoei MM	Retrospective study	Florida	250	56	62.75 ± 17.13	2	28	29	191	Hospitalized
Chou EH	Retrospective study	Texas	1788	50.2	54.6 (41.9–68.2)	9	116	188	1475	All patients
Kim D (PMID: 32950749)	Retrospective study	The USA	817	54.47	57.13 ± 14.57	10	78	111	618	Hospitalized
Garibaldi BT (PMID: 32960455)	Retrospective study	Maryland, Washington	832	53	63 (49–75)	8	71	123	630	Hospitalized
Kim TS (PMID: 33128484)	Prospective study	New York	10,861	59.6	NR	Effect (95% CI): 0.81 (0.67–0.98)				
Rustgi V (PMID: 33409033)	Retrospective study	New Brunswick	403	56.17	62.06 ± 18.62	4	21	86	292	Hospitalized
Suzuki A (PMID: 34442352)	Cohort study	Durham	22,777	NR	NR	59	1254	1461	20,003	All patients
Pecina JL (PMID: 34452582)	Retrospective study	Minnesota	92	56.5	61 (50–74)	Effect (95% CI): 10.0 (1.8–56.0)				
Huang BZ (PMID: 34398424)	Retrospective study	California	61,338	46.08	43.97 ± 16.24	96	5430	901	54,911	All patients
Welder D (PMID: 34132393)	Cohort study	Texas	678	52.4	61.5 ± 16.7	6	92	50	530	All patients
Hou W (PMID: 33746560)	Retrospective study	New York	635	59.8	60 ± 11	3	38	79	515	Hospitalized
Forrest IS (PMID: 34084823)	Retrospective study	New York	688	63.52	67.22 ± 14.44	13	17	286	372	Hospitalized
Gupta YS (PMID: 33601125)	Retrospective study	New York	180	53	68 (59–80)	1	6	58	115	All patients
Jacobs JP (PMID: 34242641)	Prospective study	The USA	200	69	49.8 ± 12.1	19	14	91	76	All patients
Chihba KD (PMID: 32554082)	Retrospective study	Chicago	1526	47	53.3	8	212	64	1242	All patients
Eggert LE (PMID: 34082210)	Retrospective study	California	605	47.8	50.68 ± 26.18	6	94	30	475	Hospitalized
Ho KS (PMID: 33647451)	Retrospective study	New York	4902	55.9	64.99 ± 16.92	54	179	1354	3315	Hospitalized
Lieberman- Cribbin W (PMID: 32522556)	Retrospective study	New York	6245	NR	57	45	227	1083	4890	Hospitalized
Lovinsky-Desir S (PMID: 32771560)	Retrospective study	New York	1298	41.3	52	9	154	101	1034	Hospitalized
Mather JF (PMID: 34143730)	Retrospective study	Hartford	1045	33.7	56.0 ± 17.58	7	81	157	800	Hospitalized
Robinson LB (PMID: 336540461)	Retrospective study	Boston	3248	72	51 ± 17	7	555	69	2617	All patients
Rosenhal JA (PMID: 33059035)	Retrospective study	Washington	727	NR	49.46 ± 17.93	10	95	51	571	All patients
Salacup G (PMID: 32613986)	Retrospective study	Pennsylvania	242	51	66 ± 14.75	0	18	52	172	Hospitalized
Shah P (PMID: 32600956)	Retrospective study	Georgia	522	41.8	63 (50–72)	11	57	81	373	Hospitalized
Miller J (PMID: 32945086)	Retrospective study	Michigan	2316	51.8	64.5 ± 16.3	31	186	402	1697	Hospitalized
Ioannou GN (PMID: 33565952)	Retrospective study	Washington	10,131	91	63.6 ± 16.2	58	687	1032	8354	All patients
Bahl A (PMID: 32970246)	Prospective study	Michigan	1461	52.7	62.0 (50.0–74.0)	30	124	297	1010	Hospitalized
Jackson BR (PMID: 32971532)	Retrospective study	Georgia	297	49.8	60 (45–69)	3	29	48	217	Hospitalized
Kim J (PMID: 33092732)	Retrospective study	New York	510	66	64 ± 14	43	341	1071	7315	All patients
Rechtman E (PMID: 33298891)	Retrospective study	New York	8770	54.3	60 (44–72)	43	341	1071	7315	All patients
Lundon DJ (PMID: 33342596)	Cross-sectional study	New York	8928	46.2	58.0 ± 18.8	45	358	1134	7391	All patients

(continued on next page)
reduced risk for COVID-19 mortality in the United States (OR: 0.82, 95%
calculating the OR: 0.82, 95% CI: 0.74–0.91) (Fig. 2). Once the participants were only limited to hospital patients, we still observed that pre-existing asthma was associated with a significantly reduced risk for COVID-19 mortality (OR: 0.81, 95% CI: 0.74–0.88, Table 2). Subgroup analyses by age, male proportion, sample size and study design demonstrated that this significant association between asthma and the reduced risk for COVID-19 mortality did exist among studies with separated subgroup: age ≥ 60 years old (n = 34 studies, OR: 0.79, 95% CI: 0.72–0.87, Figure S1), male proportion ≥ 55% (n = 27 studies, OR: 0.79, 95% CI: 0.72–0.87, Figure S2), male proportion < 55% (n = 25 studies, OR: 0.81, 95% CI: 0.69–0.95, Figure S2), sample sizes ≥ 700 cases (n = 28 studies, OR:

3.3. Asthma and mortality of COVID-19

Totally, this present meta-analysis showed that there was a statistically significant association between pre-existing asthma and the reduced risk for COVID-19 mortality in the United States (OR: 0.82, 95% CI: 0.74–0.91) (Fig. 2). Once the participants were only limited to hospital patients, we still observed that pre-existing asthma was associated with a significantly reduced risk for COVID-19 mortality (OR: 0.81, 95% CI: 0.74–0.88, Table 2). Subgroup analyses by age, male proportion, sample size and study design demonstrated that this significant association between asthma and the reduced risk for COVID-19 mortality did exist among studies with separated subgroup: age ≥ 60 years old (n = 34 studies, OR: 0.79, 95% CI: 0.72–0.87, Figure S1), male proportion ≥ 55% (n = 27 studies, OR: 0.79, 95% CI: 0.72–0.87, Figure S2), male proportion < 55% (n = 25 studies, OR: 0.81, 95% CI: 0.69–0.95, Figure S2), sample sizes ≥ 700 cases (n = 28 studies, OR:

Table 1

Author (PMID)	Study design	Region	Cases	Male (%)	Age	Asthma	Non-survivor	Survivor	No Asthma	Non-survivor	Survivor	Setting
Hobbs ALV (PMID: 33427149)	Retrospective study	Arkansas, Louisiana, Mississippi, North Carolina, and Tennessee	476	55.3	62 (49–71)	5	43	71	357	Hospitalized		
Gupta R (PMID: 33461499)	Retrospective study	New York	475	NR	NR	Effect (95% CI): 2.77 (1.18–7.04)	Hospitalized					
Marmarchi F (PMID: 33469873)	Retrospective study	Georgia	288	55	63 ± 16	Effect (95% CI): 0.517 (0.189–1.409)	Hospitalized					
Mohamed NE (PMID: 33481113)	Case series	New York	7624	54.6	46.78	33	302	823	6466	Hospitalized		
Muhammad R (PMID: 33538998)	Retrospective study	Washington	200	60.5	58.9 ± 15.1	3	17	42	138	Hospitalized		
Lohia P (PMID: 33544658)	Retrospective study	Michigan	1871	51.6	64.11 ± 16	Effect (95% CI): 0.57 (0.38–0.87)	Hospitalized					
Cedano J (PMID: 33552409)	Retrospective study	New Jersey	132	59	63 (53–71)	6	1	86	39	Hospitalized		
Mulhem E (PMID: 33578311)	Retrospective study	New York	3219	49	65.2	67	362	449	2341	Hospitalized		
Kelly JD (PMID: 34106264)	Cohort study	New York	27,640	88.6	57.2 ± 16.6	Effect (95% CI): 0.78 (0.59–1.04)	Hospitalized					
Ende VJ (PMID: 34397301)	Retrospective study	New York	294	68.7	62.61 ± 14.41	13	17	127	137	Hospitalized		
Zerbo O (PMID: 34432371)	Retrospective study	California	219,001	47.3	37.21	287	31,057	1238	186419	Hospitalized		
Roozi S (PMID: 33845659)	Retrospective study	Pennsylvania	1204	59.3	66	39	83	431	651	Hospitalized		
Al Abbasi B (PMID: 33224366)	Retrospective study	Florida	257	52.53	63 ± 17	3	18	53	183	Hospitalized		
Altonen BL (PMID: 33315929)	Retrospective study	New York	395	66.8	31.03	8	55	47	285	Hospitalized		
Gayam V (PMID: 32672844)	Retrospective study	New York	408	56.62	53	67 (56–76)	16	38	116	238	Hospitalized	
Morrison AR (PMID: 32646770)	Retrospective study	Michigan	81	69.1	64 (58–71)	5	6	30	40	Hospitalized		
Gavin W (PMID: 32652522)	Retrospective study	Indiana	140	51.4	60 (48–72)	1	14	21	104	Hospitalized		
Krishna S (PMID: 32701717)	Retrospective study	Michigan	152	62.5	66 ± 13	16	9	76	51	Hospitalized		
Li X (PMID: 33194555)	Retrospective study	New York	1022	56.46	62.13 ± 17.45	6	51	136	829	Hospitalized		
Berry DA (PMID: 33200317)	Retrospective study	Texas	3123	60.36	63 (51–74)	58	218	637	2135	Hospitalized		
Vu CA (PMID: 33353546)	Retrospective study	Florida	60	66.7	54 (26–87)	0	4	9	47	Hospitalized		
Snider JM (PMID: 34428181)	Retrospective study	New York	90	53.3	62.3	2	5	28	55	Hospitalized		
Mikami T (PMID: 32607928)	Retrospective study	Massachusetts	835	48	64 (50–76)	15	66	134	620	Hospitalized		
Akama-Garren EH (PMID: 33408403)	Retrospective study	New York	142	78.17	59.27 ± 18.89	1	1	33	107	Hospitalized		

Note: The age (years) was presented as mean ± standard deviation or median (interquartile range, IQR); CI, confidence interval; The USA, the United States; NR, not clearly reported.
Fig. 2. Forest plot presents the relationship between COVID-19 mortality and asthma in the United States: pooled odds ratio (OR) with its 95% confidence interval (CI).
6

International Immunopharmacology 102 (2022) 108390

6

38x63 terms of suppressing viral replication and relieving inflammation [68]; and biological agents, may resist the severe prognoses of COVID-19 in asthma in convention, allergen immunotherapy, inhaled corticosteroids (3) type 2 immune response modulating the expression of ACE2 and TMPRSS2 further supports an important role in inflammatory process in COVID-19 pathogenesis [69].

The prevalence of comorbid asthma among coronavirus disease 2019 patients varied greatly across countries or regions worldwide. Previous meta-analyses have reported the inconsistent association between asthma and COVID-19 mortality in the whole regions [1–3], which might be difficult in assessing the association on substantial variation of asthma prevalence among different countries. The strength of this study was that the included studies (56 eligible articles) with 426,261 cases were only conducted in the USA, which thought about the influences of this varied prevalence for asthma in regions among COVID-19 patients in the USA in terms of the relation between asthma and COVID-19 mortality. The meta-analysis only including studies conducted in the USA supported that pre-existing asthma was significantly associated with a reduced risk for COVID-19 mortality, which wards off the diversity of epidemiological characteristics and prevention and control measures in region, for the most part.

Undeniably, we indeed acknowledged that there were several limitations in this present meta-analysis. First, most of the included studies were retrospective, only four prospective studies were included, thus further meta-analyses on this topic based on prospective studies are warranted to confirm our results when more eligible data are available. Second, the pooled effect size was estimated on the crude effect sizes, which could not address the effects of certain confounders on the association between asthma and COVID-19 mortality. Therefore, further studies based on risk factors-adjusted estimates are warranted to verify our current findings. Third, this study could not address the effects of medications on the association between asthma and COVID-19 mortality, since most of the included studies did not provide the data. Forth, we noticed that the data of several studies were collected from multiple hospitals or centers, thus overlapping data might occur. In order to include more data as more as possible, we did not exclude the studies containing multiple hospitals or centers.

In conclusion, our findings demonstrated that pre-existing asthma was significantly associated with a reduced risk for COVID-19 mortality in the United States, further well-designed studies based on risk factors-adjusted estimates are warranted to confirm our findings. This study suggested that routine interventions and treatment for asthma patients with severe acute respiratory syndrome coronavirus 2 infection should be continued in the United States.
Study	Odds Ratio	OR	95%–CI
Omitting Akama–Garren EH	0.82	[0.74; 0.91]	
Omitting Al Abbasi B	0.82	[0.74; 0.91]	
Omitting Altonen BL	0.82	[0.74; 0.91]	
Omitting Bahl A	0.82	[0.74; 0.91]	
Omitting Banoei MM	0.82	[0.74; 0.91]	
Omitting Berry DA	0.82	[0.74; 0.91]	
Omitting Cedano J	0.82	[0.74; 0.91]	
Omitting Chhiba KD	0.82	[0.74; 0.91]	
Omitting Chou EH	0.82	[0.74; 0.91]	
Omitting Eggert LE	0.82	[0.74; 0.91]	
Omitting Ende VJ	0.82	[0.74; 0.91]	
Omitting Forrest IS	0.82	[0.74; 0.91]	
Omitting Garibaldi BT	0.82	[0.74; 0.91]	
Omitting Gavin W	0.82	[0.74; 0.91]	
Omitting Gayarn V	0.82	[0.74; 0.91]	
Omitting Gupta R	0.82	[0.74; 0.90]	
Omitting Gupta YS	0.82	[0.74; 0.91]	
Omitting Ho KS	0.82	[0.74; 0.91]	
Omitting Hobbs ALV	0.82	[0.74; 0.91]	
Omitting Hou W	0.82	[0.74; 0.91]	
Omitting Huang BZ	0.82	[0.74; 0.91]	
Omitting Ioannou GN	0.82	[0.74; 0.91]	
Omitting Jackson BR	0.82	[0.74; 0.91]	
Omitting Jacobs JP	0.82	[0.74; 0.91]	
Omitting Kelly JD	0.82	[0.74; 0.91]	
Omitting Kim D	0.82	[0.74; 0.91]	
Omitting Kim J	0.82	[0.74; 0.91]	
Omitting Kim TS	0.82	[0.74; 0.91]	
Omitting Krishnan S	0.82	[0.74; 0.91]	
Omitting Li X	0.82	[0.74; 0.91]	
Omitting Lieberman–Cribbin W	0.82	[0.74; 0.91]	
Omitting Lohia P	0.82	[0.74; 0.91]	
Omitting Lovinsky–Desir S	0.82	[0.74; 0.91]	
Omitting Lundon DJ	0.82	[0.74; 0.91]	
Omitting Marmarchi F	0.82	[0.74; 0.91]	
Omitting Mather JF	0.82	[0.74; 0.91]	
Omitting Mikami T	0.82	[0.74; 0.91]	
Omitting Miller J	0.82	[0.74; 0.91]	
Omitting Mohamed NE	0.82	[0.74; 0.91]	
Omitting Morrison AR	0.82	[0.74; 0.91]	
Omitting Muhammad R	0.82	[0.74; 0.91]	
Omitting Mulhem E	0.82	[0.74; 0.91]	
Omitting Pecina JL	0.82	[0.74; 0.91]	
Omitting Rechtman E	0.82	[0.74; 0.91]	
Omitting Robinson LB	0.82	[0.74; 0.91]	
Omitting Roomi S	0.82	[0.74; 0.91]	
Omitting Rosenthal JA	0.82	[0.74; 0.91]	
Omitting Rustgi V	0.82	[0.74; 0.91]	
Omitting Salacup G	0.82	[0.74; 0.91]	
Omitting Shah P	0.82	[0.74; 0.91]	
Omitting Snider JM	0.82	[0.74; 0.91]	
Omitting Sulaiman I	0.82	[0.74; 0.91]	
Omitting Suzuki A	0.82	[0.74; 0.91]	
Omitting Vu CA	0.82	[0.74; 0.91]	
Omitting Welder D	0.82	[0.74; 0.91]	
Omitting Zerbo O	0.82	[0.74; 0.91]	

Random effects model 0.82 [0.74; 0.91]

Fig. 3. Sensitivity analysis for pooled OR and 95% CI by deleting one single study from overall pooled analysis each time.
Fig. 4. Publication bias based on funnel plot.

Author contribution

Haiyan Yang and Yadong Wang conceptualized the study. Xueya Han, Jie Xu, Hongjie Hou and Haiyan Yang performed literature search and data extraction. Xueya Han, Jie Xu and Hongjie Hou analyzed the data. Xueya Han and Yadong Wang wrote the manuscript. All the authors approved the final manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Yang Li, Peihua Zhang, Jian Wu, Xuan Liang, Wenwei Xiao, Ying Wang and Li Shi (All are from Department of Epidemiology, School of Public Health, Zhengzhou University) for their kind help in searching articles and collecting data, and valuable suggestions for analyzing data.

Data availability statement

The data that support the findings of this study are included in this article and available from the corresponding author upon reasonable request.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.intimp.2021.108390.

References

[1] S. Liu, Y. Cao, T. Du, Y. Zhi. Prevalence of comorbid asthma and related outcomes in COVID-19: A systematic review and meta-analysis, J. Allergy clin. immunol. In practice 9 (2) (2021) 693–701.
[2] L. Shi, J. Xu, W. Xiao, Y. Wang, Y. Jin, S. Chen, G. Duan, H. Yang, Y. Wang, Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis, Allergy Asthma Immunol. Res. 12 (5) (2021) 524–534.
[3] P.D. Terry, R.E. Heidel, R. Bhand, Adult Asthma in Patients with COVID-19. Prevalence and Risk of Severe Disease, Am. J. Respir. Crit. Care Med. 203 (7) (2021) 893–905.
[4] A.P. Sunnjaea, S.M. Allida, G.L. Di Tanna, C.R. Jenkins, Asthma and Coronavirus Disease 2019 Risk: A systematic review and meta-analysis, Eur. Respir. J. 2021, https://doi.org/10.1183/13993003.01209-2021.
[5] R. Gupta, R. Agrawal, Z. Bakhari, A. Jabbar, D. Wang, J. Diks, M. Alshal, D. Y. Emechebe, F.C. Brunicaardi, J.M. Lazar, R. Chamberlain, A. Burza, M.A. Haseeb, Higher comorbidities and early death in hospitalized African-American patients with Covid-19. BMC Infect. Dis. 21 (1) (2021) 78.
[6] B.Z. Huang, Z. Chen, M.A. Sidell, S.P. Eckel, M.P. Martinez, F. Lurmann, D. C. Thomas, F.D. Gilliland, A.H. Xiang, Asthma Disease Status, COPD, and COVID-19 Severity in a Large Multiethnic Population, J.allergy clin.immunol. In practice 10 (10) (2021) 3621–3628.e2, https://doi.org/10.1016/j.jamp.2021.07.035.
[7] G.N. Ioannou, E. Locke, P. Green, K. Berry, A.M. O’Hare, J.A. Shah, K. Crothers, M. C. Eastment, J.A. Dominiz, V.S. Fan, Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection, JAMA network open 3 (9) (2020) e20223110, https://doi.org/10.1001/jamanetworkopen.2020.22310.
[8] A. Suzuki, J.T. Erfid, T.S. Redding, A.D. Thompson, A.M. Press, C.D. Williams, C. J. Hostler, C.M. Hunt, COVID-19-Associated Mortality in US Veterans with and without SARS-CoV-2 Infection, Int. J. Environ. Res. Public Health 18 (16) (2021) 8486, https://doi.org/10.3390/ijerph18168486.
[9] O. Zerbo, N. Lewis, B. Fireman, K. Goddard, J. Skarbinski, J.J. Sejvar, E. Arztz-Baumgartner, N.P. Klein, Population-based assessment of risks for severe COVID-19 disease outcomes, Influenza Other Respir. Viruses 2021, https://doi.org/10.1111/irv.12901.
[10] A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P.A. Ioannidis, M. Clarke, P.J. Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, PLoS Med. 7 (9) (2009) e1000100, https://doi.org/10.1371/journal.pmed.1000100.
[11] R. De Selmonison, N. Laird, Meta-analysis in clinical trials revisited, Contemporary clinical trials 45 (Pt A) (2015) 139–145.
[12] Y. Wang, R. Feng, J. Xu, H. Hou, H. Feng, H. Yang, An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality, J. med. Virol. 93 (10) (2021) 5682–5686, https://doi.org/10.1002/jmv.26159.
[13] J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses, BMJ 327 (7414) (2003) 557–560.
[14] C.B. Begg, M. Mazumdar, Operating characteristics of a rank correlation test for publication bias, Biometrics 50 (4) (1994) 1088–1093.
[15] S. Balduzzi, G. Rucker, G. Schwarzer, How to perform a meta-analysis with R: a practical tutorial, Evidence-based mental health 22 (4) (2019) 153–160.
[16] E.H. Akama-Garren, J.X. Li, Unbiased identification of clinical characteristics predictive of COVID-19 severity, Clin. Exp. Med. (2021).
[17] B. Al Abbasi, P. Torres, F. Ramos-Tuarez, N. Dewaswala, A. Abdallah, K. Chen, M. Abdul Qader, R. Job, S. Aboulenain, K. Dziadkowiec, H. Bhopalwala, J.E. Pino, R.D. Chait, Cardiac Troponin I and COVID-19: A Prognostic Tool for In-Hospital Mortality, Cardiol. Res.. 11 (6) (2020) 398–404.
[18] Brian L. Altonen, Tatiana M. Arreglado, Ofelia Leroux, Max Murray-Ramcharan, Brian L. Altonen, Tatiana M. Arreglado, Ofelia Leroux, Max Murray-Ramcharan, Ryan Engdahl, Wembian Tan, Characteristics, comorbidity and survival analysis of young adults hospitalized with COVID-19 in New York City, PLoS ONE 15 (12) (2020) e0243434, https://doi.org/10.1371/journal.pone.0243434.
[19] A. Bahl, M.N. Van Baalen, L. Ortiz, N.W. Chen, C. Todd, M. Millad, A. Yang, J. Tang, M. Nygren, L. Qu, Early predictors of in-hospital mortality in patients with COVID-19 in a large American cohort, Intern. Emerg. Med. 15 (6) (2020) 1059–1068.
[20] M.M. Banoei, R. Dinparastaleah, A.V. Zadeh, M. Mirsaedi, Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying, Crit. Care 25 (1) (2021), https://doi.org/10.1186/s13054-021-03749-5.
[21] D.A. Berry, A. Ip, B.E. Lewis, S.M. Berry, N.S. Berry, M. Mc Kuilic, V. Gadalla, B. Sat, K. Wright, M. Serna, R. Unawane, K. Trpesci, M. Koropak, P. Kaur, Z. Sica, A. McConnell, U. Bednarz, M. Marafelias, A.H. Goy, J.L. Fesczuk, L. Goldberg, P. Abete, Development and validation of a prognostic 40-day mortality risk model among hospitalized patients with COVID-19, PLoS ONE 16 (7) (2021) e0255228, https://doi.org/10.1371/journal.pone.0255228.
A.L.V. Hobbs, N. Turner, I. Omer, M.K. Walker, R.M. Beaulieu, M. Sheikh, S. W. Hou, Z. Zhao, A. Chen, H. Li, T.Q. Duong, Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 18 (8) (2021) 1739–1745.

K.S. Ho, D. Howell, L. Rogers, B. Narasimhan, V. Harma, D. Steiger, The relationship between rhinovirus, eosinophilia, and outcomes in coronavirus disease 2019 infection. Ann. Allergy Asthma Immunol. 127 (1) (2021) 42–48.

A.L.V. Hobbs, N. Turner, I. Omer, M.K. Walker, R.M. Beaulieu, M. Sheikh, S. W. Hou, Z. Zhao, A. Chen, H. Li, T.Q. Duong, Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 18 (8) (2021) 1739–1745.

K.S. Ho, D. Howell, L. Rogers, B. Narasimhan, V. Harma, D. Steiger, The relationship between rhinovirus, eosinophilia, and outcomes in coronavirus disease 2019 infection. Ann. Allergy Asthma Immunol. 127 (1) (2021) 42–48.

X. Han et al.
[67] S.M. Assaf, S.P. Tarasevych, Z. Diamant, N.A. Hanania, Asthma and severe acute respiratory syndrome coronavirus 2019: Current evidence and knowledge gaps, Current opinion in pulmonary medicine 27 (1) (2021) 45–53.

[68] R.K. Ramakrishnan, S. Al Heialy, Q. Hamid, Implications of preexisting asthma on COVID-19 pathogenesis, Am. J. Physiol. Lung Cell. Mol. Physiol. 320 (5) (2021) L880–L891.

[69] M.C. Peters, S. Sajuthi, P. Deford, S. Christenson, C.L. Rios, M.T. Montgomery, P. G. Woodruff, D.T. Mauger, S.C. Erzurum, M.W. Johansson, L.C. Denlinger, N. N. Jarjour, M. Castro, A.T. Hastie, W. Moore, V.E. Ortega, E.R. Bleecker, S. E. Wenzel, E. Israel, B.D. Levy, M.A. Seibold, J.V. Fahy, COVID-19-related genes in sputum cells in asthma relationship to demographic features and corticosteroids, Am. J. Respir. Crit. Care Med. 202 (1) (2020) 83–90.