The complete plastid genome sequence of *Ilex suaveolens* (H. Lév.) Loes, the most abundant medicinal holly in Mount Huangshan

Lige Yuan**, Han Wu**, Can Zhang**, Ying Wang*, Qi Huang*, Shiming Fan* and Tao Su**,**

*Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; *Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China

ABSTRACT

Holly (*Ilex* L.) is a woody dioecious genus cultivated as pharmaceutical, ornamentals, and industrial materials. *Ilex suaveolens* (H. Lév.) Loes is an endemic medicinal holly with a predominant distribution in Mount Huangshan, China. In the present work, the complete plastid genome of *I. suaveolens* was de novo sequenced by high-throughput sequencing technology. The newly-assembled plastid genome holds 37.6% of the overall GC content and a length of 157,857 bp, comprising a large single-copy (LSC, 87,255 bp), a small single-copy (SSC, 18,398 bp), and a pair of inverted repeat (IRs, 26,102 bp) regions. The plastid genome annotation suggested the presence of a total of 89 protein-encoding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The plastome-mediated phylogenetic topology revealed that *I. suaveolens* clustered together with *I. szechwanensis* and *I. viridis* in the same clade, and a strong relationship between clades and biogeography was found. These data contribute to the understanding of genetic diversity and conservation study of *Ilex* in Mount Huangshan.
15 *Ilex* species were aligned (Katoh et al. 2019). The plastid topology of phylogenies was reconstructed using the software MEGA X, showing that *I. suaveolens* is mostly related to *I. szechwanensis* and *I. viridis* in the clade III (Figure 1). In summary, the plastid phylogenetic tree displayed superior resolution for species discrimination and a better indication of the phylogeographic distribution in *Ilex*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the National Natural Science Foundation of China [31700525]; The Scientific Research Foundation for High-Level Talents of Nanjing Forestry University [GXL2017011; GXL2017012]; The Undergraduate Innovation and Entrepreneurship Training Programs [201910298115Y; 2020NFUSPITP0819].

Data availability statement

The complete plastid genome data that support the findings of this study are openly available in the GenBank of NCBI (https://www.ncbi.nlm.nih.gov/) under the accession number of MN830249. The raw sequence reads have been deposited in GSA database (https://bigd.big.ac.cn/gsa/) associated with the accession number of CRR147931.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Ding H, Fang Y, Yang X, Yuan F, He L, Yao J, Wu J, Chi B, Li Y, Chen S, et al. 2016. Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan, Anhui Province, East China. Biodivers Sci. 24(8):875–887.

Hao D, Gu X, Xiao P, Liang Z, Xu L, Peng Y. 2013. Research progress in the phytochemistry and biology of *Ilex* pharmaceutical resources. Acta Pharm Sin B. 3(1):8–19.

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4):1160–1166.

Manen JF, Boulter MC, Naciri-Graven Y. 2002. The complex history of the genus *Ilex* L. (Aquifoliaceae): evidence from the comparison of plastid and nuclear DNA sequences and from fossil data. Plant Syst Evol. 235(1):79–98.

Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ. 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 9(3):328–333.

Qian Y, Tian R. 2016. Research advance of *Ilex* germplasm resources and their application to landscape. World Forest Res. 29:40–45.

Su T, Han M, Min J, Cao D, Pan H, Liu Y. 2019. The complete chloroplast genome sequence of *Populus deltoides* ‘Siyang-2’. Mitochondrial DNA Part B. 5(1):283–285.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20(17):3252–3255.

Yao X, Song Y, Yang J, Tan Y, Corlett RT. 2020. Phylogeny and biogeography of the hollies (*Ilex* L., Aquifoliaceae). J Syst Evol. 00(0):1–10.

Yao X, Tan Y-H, Liu Y-Y, Song Y, Yang J-B, Corlett RT. 2016. Chloroplast genome structure in *Ilex* (Aquifoliaceae). Sci Rep. 6:28539.

Yi F, Zhao X, Peng Y, Xiao P. 2016. Genus *Ilex* L. phytochemistry, ethnopharmacology, and pharmacology. Chinese Herb Med. 8(3):209–230.

Zong D, Gan P, Zhou A, Zhang Y, Zou X, Duan A, Song Y, He C. 2019. Plastome sequences help to resolve deep-level relationships of *Populus* in the family Salicaceae. Front Plant Sci. 10:5.