A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications

B. M. Golam Kibria1 and Adewale F. Lukman2,3

1Department of Mathematics and Statistics, Florida International University, Miami, FL, USA
2Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
3Institut Henri Poincare Centre Emile Borel, Paris, France

Correspondence should be addressed to B. M. Golam Kibria; kibriag@fiu.edu
Received 20 January 2020; Accepted 28 February 2020; Published 15 April 2020

Copyright © 2020 B. M. Golam Kibria and Adewale F. Lukman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem for the linear regression model. Theory and simulation results show that, under some conditions, it performs better than both Liu and ridge regression estimators in the smaller MSE sense. Two real-life (chemical and economic) data are analyzed to illustrate the findings of the paper.

1. Introduction

To describe the problem, we consider the following linear regression model:

\[y = X\beta + \varepsilon, \]

where \(y \) is an \(n \times 1 \) vector of the response variable, \(X \) is a known \(n \times p \) full rank matrix of predictor or explanatory variables, \(\beta \) is an \(p \times 1 \) vector of unknown regression parameters, \(\varepsilon \) is an \(n \times 1 \) vector of errors such that \(E(\varepsilon) = 0 \), and \(V(\varepsilon) = \sigma^2 I_n \), where \(I_n \) is an \(n \times n \) identity matrix. The ordinary least squares estimator (OLS) of \(\beta \) in (1) is defined as

\[\hat{\beta} = (S)^{-1}X'y, \]

where \(S = X'X \) is the design matrix.

The OLS estimator dominates for a long time until it was proven inefficient when there is multicollinearity among the predictor variables. Multicollinearity is the existence of near-to-strong or strong-linear relationship among the predictor variables. Different authors have developed several estimators as an alternative to the OLS estimator. These include Stein estimator [1], principal component estimator [2], ridge regression estimator [3], contraction estimator [4], modified ridge regression (MRR) estimator [5], and Liu estimator [6]. Also, some authors have developed two-parameter estimators to combat the problem of multicollinearity. The authors include Akdeniz and Kaçıranlar [7]; Özkałe and Kaçıranlar [8]; Sakallıoğlu and Kaçıranlar [9]; Yang and Chang [10]; and very recently Roozbeh [11]; Akdeniz and Roozbeh [12]; and Lukman et al. [13, 14], among others.

The objective of this paper is to propose a new one-parameter ridge-type estimator for the regression parameter when the predictor variables of the model are linear or near-to-linearly related. Since we want to compare the performance of the proposed estimator with ridge regression and Liu estimator, we will give a short description of each of them as follows.

1.1. Ridge Regression Estimator. Hoerl and Kennard [3] originally proposed the ridge regression estimator. It is one of the most popular methods to solve the multicollinearity problem of the linear regression model. The ridge regression
estimator is obtained by minimizing the following objective function:
\[(y - X\beta)'(y - X\beta) + k(\beta'\beta - c), \]
with respect to \(\beta\), will yield the normal equations
\[(X'X + kI_p)\beta = X'y, \]
where \(k\) is the nonnegative constant. The solution to (4) gives the ridge estimator which is defined as
\[\tilde{\beta}(k) = (S + kI_p)^{-1}X'y = W(k)\tilde{\beta}, \]
where \(S = X'X, W(k) = [I_p + kS^{-1}]^{-1}\), and \(k\) is the biasing parameter. Hoerl et al. [15] defined the harmonic-mean version of the biasing parameter for the ridge regression estimator as follows:
\[\tilde{k}_{HM} = \frac{\hat{\sigma}^2}{\sum_{i=1}^{p}a_i^2}, \]
where \(\hat{\sigma}^2 = (Y'Y - \beta'X'Y)/(n - p)\) is the estimated mean squared error form OLS regression using equation (1) and \(a_i\) is \(i\)th coefficient of \(\alpha = Q\beta\) and is defined under equation (17). There are a high number of techniques suggested by various authors to estimate the biasing parameters. To mention a few, McDonald and Galarneau [16]; Lawless and Wang [17]; Wichern and Churchill [18]; Kibria [19]; Sakallıoğlu and Kaçiranlar [9]; Lukman and Aynide [20]; and recently, Saleh et al. [21], among others.

1.2. Liu Estimator. The Liu estimator of \(\beta\) is obtained by augmenting \(d\tilde{\beta} = \beta + \varepsilon'\) to (1) and then applying the OLS estimator to estimate the parameter. The Liu estimator is obtained to be
\[\tilde{\beta}(d) = (S + I_p)^{-1}(X'y + d\tilde{\beta}) = F(d)\tilde{\beta}, \]
where \(F(d) = [S + I_p]^{-1}[S + dI_p]\). The biasing parameter \(d\) for the Liu estimator is defined as follows:
\[\tilde{d}_{opt} = 1 - \tilde{\sigma}^2 \left[\frac{\sum_{i=1}^{p}(1/(\lambda_i(\lambda_i + 1)))}{\sum_{i=1}^{p}(a_i^2/(\lambda_i + 1)^2)} \right], \]
where \(\lambda_i\) is the \(i\)th eigenvalue of the \(X'X\) matrix and \(\alpha = Q\beta\) which is defined under equation (17). If \(\tilde{d}_{opt}\) is negative, Özkale and Kaçiranlar [8] adopt the following alternative biasing parameter:
\[\tilde{d}_{al} = \min \left[\frac{\tilde{\sigma}^2}{\tilde{\sigma}^2/\lambda_i + B}, \right], \]
where \(\tilde{\sigma}\) is the \(i\)th component of \(\tilde{\alpha}\), \(Q\tilde{\beta}\).

For more on the Liu [6] estimator, we refer our readers to Akdeniz and Kaçiranlar [7]; Liu [22]; Alheety and Kibria [23]; Liu [24]; Li and Yang [25]; Kan et al. [26]; and very recently, Farghali [27], among others.

In this article, we propose a new one-parameter estimator in the class of ridge and Liu estimators, which will carry most of the characteristics from both ridge and Liu estimators.

1.3. The New One-Parameter Estimator. The proposed estimator is obtained by minimizing the following objective function:
\[(y - X\beta)'(y - X\beta) + 2\sum_{i=1}^{p}(\lambda_i + 1)\tilde{\sigma}^2(\tilde{\alpha}_i/\lambda_i), \]
with respect to \(\beta\), will yield the normal equations
\[(X'X + kI_p)\beta = X'y - k\tilde{\beta}, \]
where \(k\) is the nonnegative constant. The solution to (11) gives the new estimator as
\[\tilde{\beta}_{KL} = (S + kI_p)^{-1}(S - kI_p)\tilde{\beta} = W(k)M(k)\tilde{\beta}, \]
where \(S = X'X, W(k) = [I_p + kS^{-1}]^{-1}\), and \(M(k) = [I_p - kS^{-1}]\). The new proposed estimator will be called the Kibria–Lukman (KL) estimator and denoted by \(\tilde{\beta}_{KL}\).

1.3.1. Properties of the New Estimator.
\[E(\tilde{\beta}_{KL}) = W(k)M(k)E(\tilde{\beta}) = W(k)M(k)\beta, \]
The proposed estimator is a biased estimator unless \(k = 0\).
\[B(\tilde{\beta}_{KL}) = [W(k)M(k) - I_p]\beta, \]
and the mean square error matrix (MSEM) is defined as
\[\text{MSEM}(\tilde{\beta}_{KL}) = \sigma^2 W(k)M(k)S^{-1}M'(k)W'(k), \]
where \(Z = XQ\alpha\) and \(\alpha = Q\beta\). Here, Q is an orthogonal matrix such that \(Z'Z = QX'XQ = \Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_p)\). The OLS estimator of \(\alpha\) is
\[\tilde{\alpha} = \Lambda^{-1}Z'y, \]
MSEM(\(\tilde{\alpha}\)) is \(\sigma^2 \Lambda^{-1}\).

The ridge estimator (RE) of \(\alpha\) is
\[\tilde{\alpha}(k) = W(k)\tilde{\alpha}, \]
where \(W(k) = [I_p + k\Lambda^{-1}]^{-1}\) and \(k\) is the biasing parameter.
MSEM(\(\tilde{\alpha}(k)\)) is \(\sigma^2 W(k)\Lambda^{-1}W(k) + (W(k) - I_p)a\Lambda(aW(k) - I_p)', \)
where \((W(k) - I_p) = -k(\Lambda + kI_p)^{-1}\).

The Liu estimator of \(a\) is
\[
\tilde{a}(d) = \left(\Lambda + I_p\right)^{-1}(Z'Y + d\tilde{a}) = F(d)\tilde{a}, \tag{22}
\]
where \(F(d) = [I_p + I_p^{-1}(\Lambda + dI_p)]\).

\[
\text{MSEM}(\tilde{a}(d)) = \sigma^2F_d\Lambda^{-1}F_d + (1 - d)^2(\Lambda + I)^{-1}
\cdot \alpha' \left(\Lambda + I\right)^{-1}, \tag{23}
\]
where \(F_d = (\Lambda + I)^{-1}(\Lambda + dI)\).

The proposed one-parameter estimator of \(a\) is
\[
\tilde{a}_{KL} = \left(\Lambda + kI_p\right)^{-1}\left(\Lambda - kI_p\right)\tilde{a} = W(k)M(k)\tilde{a}, \tag{24}
\]
where \(W(k) = [I_p + k\Lambda^{-1}]^{-1}\) and \(M(k) = [I_p - k\Lambda^{-1}]\).

The following notations and lemmas are needful to prove the statistical property of \(\tilde{a}_{KL}\):

Lemma 1. Let \(n \times n\) matrices \(M > 0\) and \(N > 0\) (or \(N \geq 0\)); then, \(M > N\) if and only if \(\lambda_1(NM^{-1}) < 1\), where \(\lambda_1(NM^{-1})\) is the largest eigenvalue of matrix \(NM^{-1}\) [28].

Lemma 2. Let \(M\) be an \(n \times n\) positive definite matrix, that is, \(M > 0\) and \(a\) be some vector; then, \(M - aa' \geq 0\) if and only if \(a'M^{-1}a \leq 1\) [29].

\[
\text{MSEM}[\tilde{a}] - \text{MSEM}[\tilde{a}_{KL}] = \sigma^2\Lambda^{-1} - \sigma^2W(k)M(k)\Lambda^{-1}M'(k)W'(k) \\
- [W(k)M(k) - I_p]\alpha' [W(k)M(k) - I_p]' \tag{26}
\]

We have the following theorem.

\[
\alpha' [W(k)M(k) - I_p] [\sigma^2(\Lambda^{-1} - W(k)M(k)\Lambda^{-1}M'(k)W'(k))] [W(k)M(k) - I_p] \alpha < 1. \tag{27}
\]

Theorem 1. If \(k > 0\), estimator \(\tilde{a}_{KL}\) is superior to estimator \(\tilde{a}\) using the MSEM criterion, that is, \(\text{MSEM}[\tilde{a}] - \text{MSEM}[\tilde{a}_{KL}] > 0\) if and only if

\[
\sigma^2\Lambda^{-1} - \sigma^2W(k)M(k)\Lambda^{-1}M'(k)W'(k) \geq 0.
\]

where \(\Lambda^{-1} - W(k)M(k)\Lambda^{-1}M'(k)W'(k)\) will be positive definite (pd) if and only if \((\lambda_i + k)^2 - (\lambda_i - k)^2 > 0\). We observed that, for \(k > 0\), \((\lambda_i + k)^2 - (\lambda_i - k)^2 = 4\lambda_i k > 0\).

Consequently, \(\Lambda^{-1} - W(k)M(k)\Lambda^{-1}M'(k)W'(k)\) is pd.

2.2. **Comparison between \(\tilde{a}(k)\) and \(\tilde{a}_{KL}\).** The difference between \(\text{MSEM}(\tilde{a}(k))\) and \(\text{MSEM}(\tilde{a}_{KL})\) is

\[
\text{MSEM}[\tilde{a}(k)] - \text{MSEM}[\tilde{a}_{KL}] = \sigma^2W(k)\Lambda^{-1}W(k) - \sigma^2W(k)M(k)\Lambda^{-1}M'(k)W'(k) \\
+ [W(k) - I_p]aa' [W(k) - I_p]' - [W(k)M(k) - I_p]aa' [W(k)M(k) - I_p]' \tag{29}
\]

Lemma 3. Let \(\tilde{a}_i = A_iy\), \(i = 1, 2\), be two linear estimators of \(a\). Suppose that \(D = \text{Cov}(\tilde{a}_1) - \text{Cov}(\tilde{a}_2) > 0\), where \(\text{Cov}(\tilde{a}_i)\) \(i = 1, 2\) denotes the covariance matrix of \(\tilde{a}_i\) and \(b_i = \text{Bias}(\tilde{a}_i) = (A_iX - I)a\), \(i = 1, 2\). Consequently,

\[
\Delta(\tilde{a}_1 - \tilde{a}_2) = \text{MSEM}(\tilde{a}_1) - \text{MSEM}(\tilde{a}_2) = \sigma^2D + b_1b_2' \\
b_1b_2' > 0 \tag{25}
\]

if and only if \(b_2'\left[\sigma^2D + b_1b_1'\right]^{-1}b_1 < 1\), where \(\text{MSEM}(\tilde{a}_i) = \text{Cov}(\tilde{a}_i) + b_i'b_i\) [30].

The other parts of this article are as follows. The theoretical comparison among the estimators and estimation of the biasing parameters are given in Section 2. A simulation study has been constructed in Section 3. We conducted two numerical examples in Section 4. This paper ends up with concluding remarks in Section 5.
Theorem 3. When $\lambda_{\text{max}}(HG^{-1}) < 1$, estimator $\tilde{\alpha}_{KL}$ is superior to $\tilde{\alpha}(k)$ in the MSEM sense if and only if

$$\alpha' \left[W(k)M(k) - I_p \right]' \left[V_1 + \left(W(k) - I_p \right) \alpha \alpha' \left(W(k) - I_p \right) \right] \left[W(k)M(k) - I_p \right] \alpha > 0,$$

(30)

where

$$V_1 = \sigma^2 W(k)\Lambda^{-1}W(k) - \sigma^2 W(k)M(k)\Lambda^{-1}M'(k)W(k),$$

$$H = 2W(k),$$

$$G = kW(k)\Lambda^{-1}W(k).$$

(32)

Proof. Using the dispersion matrix difference,

$$\text{MSEM} \left[\tilde{\alpha} \right] - \text{MSEM} \left[\tilde{\alpha}_{KL} \right] = \sigma^2 F_d \Lambda^{-1} F_d - \sigma^2 W(k)M(k)\Lambda^{-1}M'(k)W'(k)$$

$$+(1-d)^2 (\Lambda + I)^{-1} \alpha \alpha' (\Lambda + I)^{-1}$$

$$- \left[W(k)M(k) - I_p \right] \alpha \alpha' \left[W(k)M(k) - I_p \right].$$

(34)

We have the following theorem.

Theorem 3. If $k > 0$ and $0 < d < 1$, estimator $\tilde{\alpha}_{KL}$ is superior to estimator $\tilde{\alpha}(d)$ using the MSEM criterion, that is, $\text{MSEM} \left[\tilde{\alpha} \left(d \right) \right] - \text{MSEM} \left[\tilde{\alpha}_{KL} \right] > 0$ if and only if

$$\alpha' \left[W(k)M(k) - I_p \right]' \left[V_2 + (1-d)^2 (\Lambda + I)^{-1} \alpha \alpha' (\Lambda + I)^{-1} \right] \left[W(k)M(k) - I_p \right] \alpha > 0,$$

(35)

where $V_2 = \sigma^2 F_d \Lambda^{-1} F_d - \sigma^2 W(k)M(k)\Lambda^{-1}M'(k)W(k).$

Proof. Using the difference between the dispersion matrix,

$$V_2 = \sigma^2 F_d \Lambda^{-1} F_d - \sigma^2 W(k)M(k)\Lambda^{-1}M'(k)W(k)$$

$$= \sigma^2 \left(F_d \Lambda^{-1} F_d - W(k)M(k)\Lambda^{-1}M'(k)W(k) \right)$$

$$= \sigma^2 \left[\Lambda + I_p \right]^{-1} \left[\Lambda + dI_p \right] \Lambda^{-1} \left[\Lambda + I_p \right]^{-1} \left[\Lambda + dI_p \right]$$

$$- \Lambda (\Lambda + k)^{-1} \Lambda^{-1}$$

$$\cdot (\Lambda - k) \Lambda^{-1} \Lambda^{-1} (\Lambda - k) \Lambda (\Lambda + k)^{-1},$$

(36)

where

$$W(k) = \left[I_p + k\Lambda^{-1} \right]^{-1} = \Lambda (\Lambda + k)^{-1}$$

and

$$M(k) = \left[I_p - k\Lambda^{-1} \right] = \Lambda^{-1} (\Lambda - k).$$

We observed that $F_d \Lambda^{-1} F_d - W(k)M(k)\Lambda^{-1}M'(k)W(k)$ is pd if and only if

$$\left(\lambda_i + d \right)^2 (\lambda_i + k)^{-2} - \lambda_i (\lambda_i + k)^{-2} \geq 0,$$

$$(\lambda_i + k)^{-2} \geq 0$$

or

$$(\lambda_i + d)^2 (\lambda_i + k)^{-2} - \lambda_i (\lambda_i + k)^{-2} \geq 0.$$
Table 1: Estimated MSE when \(n = 30, p = 3, \) and \(\rho = 0.70 \) and 0.80.

Sigma	\(k = d \)	OLS	Ridge	Liu	New est	OLS	Ridge	Liu	New est
1	0.1	0.362	0.352	0.291	0.342	0.547	0.519	0.375	0.491
	0.2	0.342	0.298	0.323	0.493	0.391	0.407	0.370	
	0.3	0.333	0.305	0.307	0.470	0.407	0.425	0.342	
	0.4	0.325	0.312	0.293	0.449	0.425	0.342	0.328	
	0.5	0.317	0.320	0.280	0.431	0.443	0.328	0.268	0.414
	0.6	0.309	0.328	0.268	0.414	0.462	0.318		
	0.7	0.302	0.336	0.258	0.398	0.482	0.299		
	0.8	0.296	0.344	0.249	0.384	0.503	0.282		
	0.9	0.290	0.353	0.242	0.372	0.525	0.269		
	1.0	0.284	0.362	0.235	0.360	0.547	0.258		
5	0.1	8.021	7.759	6.137	7.501	12.967	12.232	8.364	11.522
	0.2	7.511	6.331	7.021	11.567	9.817	10.261		
	0.3	7.277	6.529	6.577	10.962	9.284	9.156		
	0.4	7.056	6.731	6.165	10.411	9.766	8.186		
	0.5	6.846	6.937	5.784	9.907	10.263	7.333		
	0.6	6.647	7.146	5.430	9.445	10.775	6.581		
	0.7	6.459	7.359	5.102	9.019	11.301	5.918		
	0.8	6.280	7.576	4.797	8.626	11.842	5.331		
	0.9	6.109	7.797	4.513	8.263	12.397	4.813		
	1.0	5.947	8.021	4.250	7.926	12.967	4.354		
10	0.1	31.993	30.939	24.421	29.907	51.819	48.871	33.333	46.022
	0.2	29.945	25.203	27.977	46.201	35.155	40.955		
	0.3	29.005	26.000	26.189	43.775	37.034	36.514		
	0.4	28.116	26.812	24.532	41.561	38.972	32.612		
	0.5	27.274	27.639	22.995	39.536	40.968	29.176		
	0.6	26.474	28.480	21.568	37.677	43.022	26.145		
	0.7	25.715	29.336	20.241	35.966	45.134	23.466		
	0.8	24.994	30.207	19.008	34.387	47.304	21.096		
	0.9	24.307	31.092	17.860	32.926	49.532	18.996		
	1.0	23.654	31.993	16.791	31.570	51.819	17.134		

The optimal value of \(k \) in (39) depends on the unknown parameter \(\sigma^2 \) and \(\alpha^2 \). These two estimators are replaced with their unbiased estimate. Consequently, we have

\[
\hat{k} = \frac{\hat{\sigma}^2}{2\hat{\alpha}_i^2 + (\hat{\sigma}^2/\lambda_i)} \tag{40}
\]

Following Hoerl et al. [15], the harmonic-mean version of (40) is defined as

\[
\hat{k}_{\text{HMIN}} = \frac{\rho\hat{a}^2}{\sum_{i=1}^{p} \left[2\hat{\alpha}_i^2 + (\hat{\sigma}^2/\lambda_i) \right]} \tag{41}
\]

According to Özkale and Kaçiranlar [8], the minimum version of (41) is defined as

\[
\hat{k}_{\text{min}} = \min \left[\frac{\hat{\sigma}^2}{2\hat{\alpha}_i^2 + (\hat{\sigma}^2/\lambda_i)} \right] \tag{42}
\]

3. Simulation Study

Since theoretical comparisons among the estimators, ridge regression, Liu and KL in Section 2 give the conditional dominance among the estimators, a simulation study has been conducted using the R 3.4.1 programming languages to see a better picture about the performance of the estimators.

3.1. Simulation Technique

The design of the simulation study depends on factors that are expected to affect the properties of the estimator under investigation and the criteria being used to judge the results. Since the degree of collinearity among the explanatory variable is of central importance, following Gibbons [32] and Kibria [19], we generated the explanatory variables using the following equation:

\[
x_{ij} = \left(1 - \rho^2 \right)^{1/2} z_{ij} + \rho z_{i,p+1}, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3, \ldots, p, \tag{43}
\]

where \(z_{ij} \) are independent standard normal pseudo-random numbers and \(\rho \) represents the correlation between any two explanatory variables. We consider \(p = 3 \) and 7 in the simulation. These variables are standardized so that \(X'X \) and \(X'y \) are in correlation forms. The \(n \) observations for the dependent variable \(y \) are determined by the following equation:

\[
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \cdots + \beta_p x_{ip} + e_i, \quad i = 1, 2, \ldots, n, \tag{44}
\]

where \(e_i \) are i.i.d \(N(0, \sigma^2) \), and without loss of any generality, we will assume zero intercept for the model in (44). The values of \(\beta \) are chosen such that \(\beta' \beta = 1 \) [33]. Since our main
Table 2: Estimated MSE when $n = 30$, $p = 3$, and $\rho = 0.90$ and 0.99.

Sigma $k = d$	OLS	Ridge	Liu	New est	OLS	Ridge	Liu	New est
$n = 30$								
1	0.1	1.154						
0.2	0.899	0.533	0.691		2.339	1.388	1.946	
0.3	0.809	0.638	0.555		1.603	2.117	3.278	
0.4	0.736	0.697	0.459		1.214	3.045	4.416	
0.5	0.675	0.762	0.392		0.978	4.170	5.340	
0.6	0.625	0.831	0.346		0.821	5.495	6.097	
0.7	0.582	0.905	0.317		0.712	7.017	6.725	
0.8	0.545	0.983	0.299		0.631	8.738	7.255	
0.9	0.514	1.066	0.291		0.571	10.656	7.708	
1	0.487	1.154	0.289		0.524	12.774	8.100	
5	28.461	24.840	21.501	319.335				
0.1	21.945	13.492	16.402	56.008	31.445	40.368		
0.2	19.588	15.017	12.625	36.978	26.816	31.445		
0.3	17.641	18.362	7.690		102.751	120.269		
0.4	16.010	20.184	6.104		136.293	138.268		
0.5	14.627	22.105	4.917		174.723	153.240		
0.6	13.442	24.124	4.036		218.040	165.880		
0.7	12.418	26.243	3.393		266.244	176.695		
0.8	11.526	28.461	2.935		319.335	186.058		
1	10.741	319.335	2.535		319.335	186.058		

Table 3: Estimated MSE when $n = 100$, $p = 3$, and $\rho = 0.70$ and 0.80.

Sigma $k = d$	OLS	Ridge	Liu	New est	OLS	Ridge	Liu	New est
$n = 100$								
1	0.1	0.1124						
0.2	0.1118	0.1107	0.1114		0.1465	0.1404	0.1441	
0.3	0.1116	0.1108	0.1110		0.1453	0.1414	0.1420	
0.4	0.1114	0.1110	0.1106		0.1442	0.1423	0.1401	
0.5	0.1112	0.1112	0.1104		0.1432	0.1434	0.1384	
0.6	0.1110	0.1114	0.1101		0.1422	0.1444	0.1369	
0.7	0.1108	0.1116	0.1100		0.1412	0.1455	0.1356	
0.8	0.1106	0.1119	0.1099		0.1403	0.1467	0.1345	
0.9	0.1105	0.1121	0.1099		0.1395	0.1479	0.1336	
1	0.1104	0.1124	0.1099		0.1387	0.1492	0.1328	
5	2.0631	2.0452	1.9126		2.0274	1.9924	1.9924	
0.1	2.0276	1.9289	1.9924		3.1480	2.8942	3.0538	
0.2	2.0102	1.9545	1.9583		3.0199	2.9365	2.9638	
0.3	1.9932	1.9619	1.9249		3.0570	2.9793	2.8771	
0.4	1.9764	1.9785	1.8922		3.0133	3.0224	2.7934	
0.5	1.9599	1.9552	1.8603		2.9707	3.0659	2.7128	
0.6	1.9436	2.0121	1.8291		2.9291	3.1098	2.6350	
0.7	1.9276	2.0290	1.7986		2.8878	3.1542	2.5600	
0.8	1.9119	2.0460	1.7688		2.8492	3.1989	2.4876	
0.9	1.8964	2.0631	1.7396		2.8108	3.2440	2.4178	
10	8.1632	8.0901	7.5481		8.0174	12.9200	12.7234	
0.1	8.0182	7.6150	7.8747		12.5300	11.5045	12.1511	
0.2	7.9474	7.6822	7.7351		12.3456	11.6761	11.7867	
0.3	7.8777	7.7498	7.5984		12.1640	11.8493	11.4349	
objective is to compare the performance of the proposed estimator with ridge regression and Liu estimators, we consider \(k = d = 0.1, 0.2, \ldots, 1 \). We have restricted \(k \) between 0 and 1 as Wichern and Churchill [18] have found that the ridge regression estimator is better than the OLS when \(k \) is between 0 and 1. Kan et al. [26] also suggested a smaller value of \(k \) (less than 1) is better. Simulation studies are repeated 1,000 times for the sample sizes \(n = 30 \) and 100 and \(\sigma^2 = 1, 25, \) and 100. For each replicate, we compute the mean square error (MSE) of the estimators by using the following equation:

\[
\text{MSE}(\alpha^*) = \frac{1}{1000} \sum_{i=1}^{1000} (\alpha^* - \alpha)^T (\alpha^* - \alpha),
\]

where \(\alpha^* \) would be any of the estimators (OLS, ridge, Liu, or KL). Smaller MSE of the estimators will be considered the best one.

The simulated results for \(n = 30, p = 3, \) and \(\rho = 0.70, 0.80 \) and \(\rho = 0.90, 0.99 \) are presented in Tables 1 and 2, respectively, and for \(n = 100, p = 3, \) and \(\rho = 0.7, 0.80 \) and \(\rho = 0.90, 0.99 \) are presented in Tables 3 and 4, respectively. The corresponding simulated results for \(n = 30, 100 \) and \(p = 7 \) are presented in Tables 5–8. For a better visualization, we have plotted MSE vs. \(d \) for \(n = 30, \sigma = 10, \) and \(\rho = 0.70, 0.90, \) and 0.99 in Figures 1–3, respectively. We also plotted MSE vs \(\sigma \) for \(n = 30, d = .50, \) and \(\rho = 0.90 \) and 0.99, which is presented in Figures 4 and 5, respectively. Finally, to see the effect of sample size on MSE, we plotted MSE vs. sample size for \(d = 0.5 \) and \(\rho = 0.90 \) and presented in Figure 6.

Table 3: Continued.

\(n = 100 \)	\(k = d \)	OLS	Ridge	Liu	New est	OLS	Ridge	Liu	New est
Sigma									
0.5	7.8091	7.8178	7.4646	11.9870	12.0239	11.0953			
0.6	7.7415	7.8862	7.3336	11.8144	12.2001	10.7674			
0.7	7.6750	7.9549	7.2053	11.6462	12.3778	10.4506			
0.8	7.6096	8.0240	7.0797	11.4821	12.5570	10.1447			
0.9	7.5451	8.0934	6.9568	11.3220	12.7377	9.8490			
1	7.4816	8.1632	6.8364	11.1658	12.9200	9.5634			

Table 4: Estimated MSE when \(n = 100, p = 3, \) and \(\rho = 0.90 \) and 0.99.

\(n = 30 \)	\(k = d \)	OLS	Ridge	Liu	New est	OLS	Ridge	Liu	New est
Sigma									
1	0.1	6.958	6.719	5.256	6.486	76.772	53.314	14.746	34.689
0.2	6.495	5.431	6.050	39.905	18.971	16.660			
0.3	6.283	5.610	5.649	31.412	23.862	8.834			
0.4	6.083	5.792	5.278	25.626	29.420	5.803			
0.5	5.893	5.977	4.935	21.466	35.645	5.174			
0.6	5.714	6.166	4.617	18.350	42.537	5.795			
0.7	5.544	6.359	4.324	15.939	50.096	7.072			
0.8	5.383	6.555	4.052	14.024	58.321	8.868			
0.9	5.230	6.754	3.799	12.471	67.213	10.458			
1	5.085	6.958	3.566	11.189	76.772	12.287			

10	0.1	27.809	26.853	20.970	25.916	307.086	213.255	58.717	138.685
0.2	25.951	21.675	24.167	159.582	75.683	66.354			
0.3	25.100	22.394	22.551	125.559	95.308	34.817			
0.4	24.296	22.126	21.056	102.365	117.590	22.463			
0.5	23.355	23.872	19.672	85.681	142.529	19.743			
0.6	22.815	24.632	18.389	73.175	170.126	22.045			
0.7	22.131	25.406	17.200	63.493	200.380	26.995			
0.8	21.482	26.193	16.096	55.802	233.291	33.308			
0.9	20.865	26.994	15.071	49.561	268.860	40.270			
1	20.279	27.809	14.120	44.407	307.086	47.470			
Table 5: Estimated MSE when $n = 30$, $p = 7$, and $\rho = 0.70$ and 0.80.

Σ	$k = d$	OLS	Ridge	Liu	New ridge	OLS	Ridge	Liu	New ridge
1	0.1	0.838	0.811	0.651	0.785	1.239	1.179	0.859	1.121
	0.2	0.786	0.670	0.737	1.124	0.895	1.018		
0.3	0.763	0.689	0.694	1.074	0.933	0.928			
0.4	0.741	0.709	0.654	1.029	0.973	0.974			
0.5	0.720	0.729	0.618	0.987	1.014	0.781			
0.6	0.701	0.750	0.586	0.949	1.056	0.721			
0.7	0.682	0.771	0.556	0.914	1.100	0.660			
0.8	0.665	0.793	0.529	0.881	1.145	0.623			
0.9	0.649	0.815	0.505	0.851	1.191	0.583			
1	0.633	0.838	0.484	0.823	1.239	0.549			
5	0.1	20.955	20.275	16.063	19.608	30.981	29.455	21.084	27.975
	0.2	19.633	16.568	18.362	26.780	23.062	24.130	20.845	
0.3	19.026	17.083	17.208	25.602	24.513	25.201	18.963		
0.4	18.452	17.607	16.139	24.130	23.506	24.301	17.279		
0.5	17.908	18.141	15.147	22.570	21.520	22.429	15.767		
0.6	17.391	18.685	14.226	21.190	20.320	21.329	14.408		
0.7	16.901	19.238	13.369	19.930	19.409	19.739	13.185		
0.8	15.990	20.373	11.829	18.850	18.599	18.375	12.081		
0.9	14.157	20.955	11.377	17.887	17.597	17.373	11.081		
1	14.157	20.955	11.377	17.887	17.597	17.373	11.081		

$N = 30$

Table 6: Estimated MSE when $n = 30$, $p = 7$, and $\rho = 0.9$ and 0.99.

Σ	$k = d$	OLS	Ridge	Liu	New ridge	OLS	Ridge	Liu	New ridge
1	0.1	2.52	2.27	1.29	2.03	28.68	11.20	2.26	4.45
	0.2	2.06	1.39	1.66	6.82	3.55	4.16		
0.3	1.88	1.51	1.37	4.78	5.25	5.78			
0.4	1.73	1.63	1.16	3.62	7.36	7.58			
0.5	1.61	1.76	0.99	2.88	9.89	9.25			
0.6	1.50	1.90	0.85	2.37	12.83	10.75			
0.7	1.41	2.04	0.75	2.01	16.17	12.07			
0.8	1.32	2.20	0.68	1.74	19.93	13.24			
0.9	1.25	2.35	0.62	1.54	24.10	14.27			
1	1.18	2.52	0.57	1.38	28.68	15.19			
5	0.1	63.03	56.58	31.23	50.57	717.09	278.85	50.83	108.00
	0.2	51.27	43.11	41.03	168.23	84.11	97.17		
0.3	46.82	37.15	33.61	116.38	127.57	134.75			
0.4	43.03	40.35	27.78	86.52	181.23	176.89			
0.5	39.77	43.72	23.14	67.36	245.07	216.47			
0.6	36.94	47.25	19.42	54.18	319.10	251.87			
0.7	34.45	50.95	16.43	44.67	403.32	283.16			
0.8	32.25	54.81	14.01	37.54	497.72	310.80			
0.9	30.28	58.84	12.06	32.06	602.31	335.29			
1	28.52	63.03	10.48	27.73	717.09	357.10			
10	0.1	252.14	226.30	124.75	202.23	2868.35	1115.06	202.39	431.48
	0.2	205.03	136.28	164.03	672.43	335.62	387.84		
3.2. Simulation Results and Discussion. From Tables 1–8 and Figures 1–6, it appears that, as the values of σ increase, the MSE values also increase (Figure 3), while the sample size increases as the MSE values decrease (Figure 4). Ridge, Liu, and proposed KL estimators uniformly dominate the ordinary least squares (OLS) estimator. In general, from these tables, an increase in the levels of multicollinearity and the number of explanatory variables increase the estimated MSE values of the estimators. HZ_he figures consistently show that the OLS estimator performs worst when there is multicollinearity. From Figures 1–6 and simulation Tables 1–8, it clearly indicated that, for $\rho = 0.90$ or less, the proposed estimator uniformly dominates the ridge regression estimator, while Liu performed much better than both proposed and ridge estimators for small d, say 0.3 or less. When $p = 0.99$, the ridge regression performs the best for higher k, while the proposed estimator performs the best for say k (say 0.3 or less). When $d = k = 0.5$ and $\rho = 0.99$, both ridge and KL estimators outperform the Liu estimator. None of the estimators uniformly dominates each other. However, it appears that our proposed estimator, KL, performs better in the wider space of $d = k$ in the parameter space. If we review all Tables 1–8, we observed that the conclusions about the performance of all estimators remain the same for both $p = 3$ and $p = 7$.

Table 6: Continued.

$n = 30$	$k = d$	OLS	Ridge	Liu	New ridge	OLS	Ridge	Liu	New ridge
Sigma									
0.3	0.9	187.21	148.46	134.32	464.91	509.59	537.07		
0.4	172.05	161.30	110.91	345.38	724.31	706.26			
0.5	156.99	174.79	92.29	268.65	979.78	864.43			
0.6	147.63	188.95	77.37	215.88	1276.00	1005.86			
0.7	137.66	203.76	65.34	177.77	1612.96	1130.89			
0.8	128.82	219.23	55.62	149.24	1990.68	1241.34			
0.9	120.95	235.35	47.75	127.25	2409.14	1339.21			
1	113.89	252.14	41.38	109.92	2868.35	1426.34			

Table 7: Estimated MSE when $n = 100$, $p = 7$, and $\rho = 0.70$ and 0.80.

$n = 100$	$k = d$	OLS	Ridge	Liu	New ridge	OLS	Ridge	Liu	New ridge
Sigma									
0.1	0.7	0.173	0.163	0.171	0.263	0.259	0.235	0.255	
0.2	0.171	0.164	0.169	0.255	0.238	0.249			
0.3	0.170	0.165	0.166	0.252	0.241	0.243			
0.4	0.169	0.166	0.164	0.249	0.244	0.237			
0.5	0.167	0.168	0.161	0.246	0.247	0.232			
0.6	0.166	0.169	0.159	0.243	0.250	0.227			
0.7	0.165	0.170	0.157	0.240	0.253	0.222			
0.8	0.164	0.171	0.155	0.238	0.256	0.218			
0.9	0.163	0.173	0.154	0.235	0.259	0.214			
1	0.162	0.174	0.152	0.233	0.263	0.210			

5	0.7	4.320	4.055	4.284	6.563	6.474	5.852	6.386
0.2	4.285	4.087	4.214	6.388	5.928	6.216		
0.3	4.250	4.120	4.146	6.304	6.005	6.053		
0.4	4.216	4.153	4.079	6.222	6.082	5.895		
0.5	4.182	4.187	4.013	6.143	6.160	5.744		
0.6	4.149	4.220	3.949	6.066	6.239	5.988		
0.7	4.116	4.254	3.887	5.991	6.319	5.457		
0.8	4.084	4.288	3.826	5.917	6.399	5.322		
0.9	4.053	4.322	3.767	5.846	6.481	5.191		
1	4.022	4.356	3.708	5.777	6.563	5.066		

10	0.7	17.281	16.219	17.138	26.250	25.896	23.408	25.545
0.2	17.140	16.350	16.858	25.551	23.713	24.866		
0.3	17.001	16.482	16.584	25.216	24.020	24.212		
0.4	16.864	16.614	16.316	24.891	24.330	23.582		
0.5	16.729	16.748	16.054	24.573	24.643	22.975		
0.6	16.597	16.882	15.797	24.265	24.959	22.389		
0.7	16.467	17.016	15.547	23.964	25.277	21.825		
0.8	16.339	17.152	15.301	23.671	25.599	21.280		
0.9	16.213	17.288	15.062	23.385	25.923	20.755		
1	16.089	17.425	14.827	23.107	26.250	20.247		
Table 8: Estimated MSE when \(n = 100, p = 7, \) and \(\rho = 0.90 \) and 0.99.

Sigma	\(k = d \)	\(\rho = 0.9 \)	\(\rho = 0.99 \)						
	OLS	Ridge	Liu	New ridge	OLS	Ridge	Liu	New ridge	
1	0.1	0.546	0.529	0.431	0.512	6.389	4.391	1.624	2.949
	0.2	0.513	0.442	0.482	3.407	1.934	1.836		
	0.3	0.498	0.454	0.456	2.819	2.298	1.453		
	0.4	0.485	0.466	0.432	2.423	2.718	1.347		
	0.5	0.472	0.478	0.411	2.135	3.192	1.359		
	0.6	0.460	0.491	0.392	1.914	3.721	1.426		
	0.7	0.449	0.504	0.375	1.738	4.306	1.519		
	0.8	0.439	0.517	0.360	1.593	4.945	1.625		
	0.9	0.429	0.531	0.346	1.472	5.640	1.737		
	1	0.420	0.546	0.334	1.370	6.389	1.851		
5	0.1	13.640	13.216	10.676	12.802	159.732	109.722	38.895	73.284
	0.2	12.820	10.979	12.037	84.915	47.018	44.506		
	0.3	12.448	11.289	11.336	69.971	56.467	33.865		
	0.4	12.099	11.605	10.693	59.823	67.242	30.146		
	0.5	11.770	11.928	10.102	52.370	79.343	29.417		
	0.6	11.460	12.257	9.558	46.597	92.769	30.090		
	0.7	11.168	12.593	9.056	41.953	107.521	31.455		
	0.8	10.891	12.935	8.593	38.114	123.599	33.171		
	0.9	10.628	13.284	8.165	34.875	141.003	35.063		
	1	10.379	13.640	7.768	32.097	159.732	37.036		
10	0.1	54.558	52.866	42.699	51.212	638.928	438.910	155.399	293.121
	0.2	51.282	43.914	48.150	48.150	339.663	187.945	177.874	
	0.3	49.796	45.155	45.344	48.150	279.860	225.785	135.151	
	0.4	48.399	46.422	42.768	48.150	239.236	268.921	120.120	
	0.5	47.084	47.714	40.397	48.150	209.391	317.351	117.053	
	0.6	45.843	49.032	38.214	48.150	186.265	371.077	119.599	
	0.7	44.670	50.375	36.198	48.150	167.659	430.097	124.922	
	0.8	43.560	51.744	34.336	48.150	152.274	494.412	131.654	
	0.9	42.508	53.138	32.612	48.150	139.287	564.022	139.094	
	1	41.509	54.558	31.014	48.150	128.149	638.928	146.866	

Figure 1: Continued.
4. Numerical Examples

To illustrate our theoretical results, we consider two datasets: (i) famous Portland cement data originally adopted by Woods et al. [34] and (ii) French economy data from Chatterjee and Hadi [35], and they are analyzed in the following sections, respectively.

4.1. Example 1: Portland Data. These data are widely known as the Portland cement dataset. It was originally adopted by

![Figure 1: Estimated MSEs for $n = 30$, $\sigma = 1, 10$, $\rho = 0.70, 0.80$ and different values of $k = d$. (a) $n = 30$, $p = 3$, $\sigma = 1$, and $\rho = 0.70$. (b) $n = 30$, $p = 3$, $\sigma = 10$, and $\rho = 0.70$. (c) $n = 30$, $p = 3$, $\sigma = 1$, and $\rho = 0.80$. (d) $n = 30$, $p = 3$, $\sigma = 10$, and $\rho = 0.80$.](image1)

![Figure 2: Estimated MSEs for $n = 30$, $\sigma = 1, 10$, $\rho = 0.90, 0.99$, and different values of $k = d$. (a) $n = 30$, $p = 3$, $\sigma = 1$, and $\rho = 0.90$. (b) $n = 30$, $p = 3$, $\sigma = 10$, and $\rho = 0.90$. (c) $n = 30$, $p = 3$, $\sigma = 1$, and $\rho = 0.99$. (d) $n = 30$, $p = 3$, $\sigma = 10$, and $\rho = 0.99$.](image2)
Figure 3: Estimated MSEs for $n = 30$, $d = 0.5$, and different values of rho and sigma. (a) $n = 30$, $p = 3$, $d = 0.5$, and rho $= 0.70$. (b) $n = 30$, $p = 3$, $d = 0.5$, and rho $= 0.80$. (c) $n = 30$, $p = 3$, $d = 0.5$, and rho $= 0.90$. (d) $n = 30$, $p = 3$, $d = 0.5$, and rho $= 0.99$.

Figure 4: Continued.
Woods et al. [34]. It has also been analyzed by the following authors: Kaciranlar et al. [36]; Li and Yang [25]; and recently by Lukman et al. [13]. The regression model for these data is defined as

\[y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon_i, \]

where \(y_i \) = heat evolved after 180 days of curing measured in calories per gram of cement, \(X_1 \) = tricalcium aluminate, \(X_2 \) = tricalcium silicate, \(X_3 \) = tetracalcium aluminoferrite, and \(X_4 \) = \(\beta \)-dicalcium silicate. The correlation matrix of the predictor variables is given in Table 9.
The variance inflation factors are \(VIF_1 = 38.50 \), \(VIF_2 = 254.42 \), \(VIF_3 = 46.87 \), and \(VIF_4 = 282.51 \). Eigenvalues of \(X'X \) are \(\lambda_1 = -44676.206 \), \(\lambda_2 = 5965.422 \), \(\lambda_3 = 809.952 \), and \(\lambda_4 = 105.419 \), and the condition number of \(X'X \) is approximately 424. The VIFs, the eigenvalues, and the condition number all indicate the presence of severe multicollinearity. The estimated parameters and MSE are presented in Table 10. It appears from Table 11 that the proposed estimator performed the best in the sense of smaller MSE.
5. Summary and Concluding Remarks

In this paper, we introduced a new biased estimator to overcome the multicollinearity problem for the multiple linear regression model and provided the estimation technique of the biasing parameter. A simulation study has been conducted to compare the performance of the proposed estimator and Liu [6] and ridge regression estimators [3]. Simulation results evidently show that the proposed estimator performed better than both Liu and ridge under some condition on the shrinkage parameter. Two sets of real-life data are analyzed to illustrate the benefits of using the new estimator in the context of a linear regression model. The proposed estimator is recommended for researchers in this area. Its application can be extended to other regression models, for example, logistic regression, Poisson, ZIP, and related models, and those possibilities are under current investigation [37, 39, 40].

Data Availability

Data will be made available on request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We are dedicating this article to those who lost their lives because of COVID-19.

References

[1] C. Stein, “Inadmissibility of the usual estimator for mean of multivariate normal distribution,” in Proceedings of the Third Berkley Symposium on Mathematical and Statistics Probability, J. Neyman, Ed., vol. 1, pp. 197–206, Springer, Berlin, Germany, 1956.

[2] W. F. Massy, “Principal components regression in exploratory statistical research,” Journal of the American Statistical Association, vol. 60, no. 309, pp. 234–256, 1965.

[3] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[4] L. S. Mayer and T. A. Willke, “On biased estimation in linear models,” Technometrics, vol. 15, no. 3, pp. 497–508, 1973.

[5] B. F. Swindel, “Good ridge estimators based on prior information,” Communications in Statistics—Theory and Methods, vol. 5, no. 11, pp. 1065–1075, 1976.

[6] K. Liu, “A new class of biased estimate in linear regression,” Communication in Statistics—Theory and Methods, vol. 22, pp. 393–402, 1993.

[7] F. Akdeniz and S. Kaçiranlar, “On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse,” Communications in Statistics—Theory and Methods, vol. 24, no. 7, pp. 1789–1797, 1995.

[8] M. R. Özkale and S. Kaçiranlar, “The restricted and unrestricted two-parameter estimators,” Communications in Statistics—Theory and Methods, vol. 36, no. 15, pp. 2707–2725, 2007.

[9] S. Sakallıoğlu and S. Kaçiranlar, “A new biased estimator based on ridge estimation,” Statistical Papers, vol. 49, no. 4, pp. 669–689, 2008.

Table 11: The results of regression coefficients and the corresponding MSE values.

Coef.	$\hat{\alpha}$	$\hat{\alpha}(k)$	$\hat{\alpha}(d)_{dopt}$	$\hat{\alpha}(d)_{dopt}$	$\hat{\alpha}_{k1}(k_{\min})$	$\hat{\alpha}_{k2}(k_{\min})$	$\hat{\alpha}_{k3}(k_{\min})$
α_0	−19.7127	−16.7613	−12.5762	−18.8410	−16.5855	−16.8782	
α_1	0.0327	0.1419	0.2951	0.0648	0.1485	0.0636	
α_2	0.4059	0.3576	0.2875	0.3914	0.3548	0.3922	
α_3	0.2421	0.0709	−0.1696	0.1918	0.0606	0.1937	
MSE	17.3326	21.30519	58.28312	16.60293	22.11899	16.60168	
k/d	—	0.0527	0.5282	0.9423	0.0258	0.0065	

Table 12: Correlation matrix.

	X_1	X_2	X_3
X_1	1.000	0.210	0.999
X_2	0.210	1.000	0.208
X_3	0.999	0.208	1.000
[10] H. Yang and X. Chang, "A new two-parameter estimator in linear regression," *Communications in Statistics-Theory and Methods*, vol. 39, no. 6, pp. 923–934, 2010.

[11] M. Roozbeh, "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," *Computational Statistics & Data Analysis*, vol. 117, pp. 45–61, 2018.

[12] F. Akdeniz and M. Roozbeh, "Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models," *Statistical Papers*, vol. 60, no. 5, pp. 1717–1739, 2019.

[13] A. F. Lukman, K. Ayinde, S. Binuomote, and O. A. Clement, "Modified ridge-type estimator to combat multicollinearity: application to chemical data," *Journal of Chemometrics*, vol. 33, no. 5, p. e3125, 2019.

[14] A. F. Lukman, K. Ayinde, S. K. Sek, and E. Adewuyi, "A modified new two-parameter estimator in a linear regression model," *Modelling and Simulation in Engineering*, vol. 2019, Article ID 6342702, 10 pages, 2019.

[15] A. E. Hoerl, R. W. Kannard, and K. F. Baldwin, "Ridge regression: some simulations," *Communications in Statistics*, vol. 4, no. 2, pp. 105–123, 1975.

[16] G. C. McDonald and D. I. Galarneau, "A Monte Carlo evaluation of some ridge-type estimators," *Journal of the American Statistical Association*, vol. 70, no. 350, pp. 407–416, 1975.

[17] J. F. Lawless and P. Wang, "A simulation study of ridge and other regression estimators," *Communications in Statistics-Theory and Methods*, vol. 5, no. 4, pp. 307–323, 1976.

[18] D. W. Wichern and G. A. Churchill, "A comparison of ridge estimators," *Technometrics*, vol. 20, no. 3, pp. 301–311, 1978.

[19] B. M. G. Kibria, "Performance of some new ridge regression estimators," *Communications in Statistics-Simulation and Computation*, vol. 32, no. 1, pp. 419–435, 2003.

[20] A. F. Lukman and K. Ayinde, "Review and classifications of the ridge parameter estimation techniques," *Hacettepe Journal of Mathematics and Statistics*, vol. 46, no. 5, pp. 953–967, 2017.

[21] A. K. M. E. Saleh, M. Arashi, and B. M. G. Kibria, *Theory of Ridge Regression Estimation with Applications*, Wiley, Hoboken, NJ, USA, 2019.

[22] K. Liu, "Using Liu-type estimator to combat collinearity," *Communications in Statistics-Theory and Methods*, vol. 32, no. 5, pp. 1009–1020, 2003.

[23] K. Alheety and B. M. G. Kibria, "On the Liu and almost unbiased Liu estimators in the presence of multicollinearity with heteroscedastic or correlated errors," *Surveys in Mathematics and its Applications*, vol. 4, pp. 155–167, 2009.

[24] X.-Q. Liu, "Improved Liu estimator in a linear regression model," *Journal of Statistical Planning and Inference*, vol. 141, no. 1, pp. 189–196, 2011.

[25] Y. Li and H. Yang, "A new Liu-type estimator in linear regression model," *Statistical Papers*, vol. 53, no. 2, pp. 427–437, 2012.

[26] B. Kan, Ö. Alpu, and B. Yazıcı, "Robust ridge and robust Liu estimator for regression based on the LTS estimator," *Journal of Applied Statistics*, vol. 40, no. 3, pp. 644–655, 2013.

[27] R. A. Farghali, "Generalized Liu-type estimator for linear regression," *International Journal of Research and Reviews in Applied Sciences*, vol. 38, no. 1, pp. 52–63, 2019.

[28] S. G. Wang, M. X. Wu, and Z. Z. Jia, *Matrix Inequalities*, Chinese Science Press, Beijing, China, 2nd edition, 2006.

[29] R. W. Farebrother, "Further results on the mean square error of ridge regression," *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 38, no. 3, pp. 248–250, 1976.

[30] G. Trenkler and H. Toutenburg, "Mean squared error matrix comparisons between biased estimators-an overview of recent results," *Statistical Papers*, vol. 31, no. 1, pp. 165–179, 1990.

[31] B. M. G. Kibria and S. Banik, "Some ridge regression estimators and their performances," *Journal of Modern Applied Statistical Methods*, vol. 15, no. 1, pp. 206–238, 2016.

[32] D. G. Gibbons, "A simulation study of some ridge estimators," *Journal of the American Statistical Association*, vol. 76, no. 373, pp. 131–139, 1981.

[33] J. P. Newhouse and S. D. Oman, "An evaluation of ridge estimators. A report prepared for United States air force project RAND," 1971.

[34] H. Woods, H. H. Steinour, and H. R. Starke, "Effect of composition of Portland cement on heat evolved during hardening," *Industrial & Engineering Chemistry*, vol. 24, no. 11, pp. 1207–1214, 1932.

[35] S. Chatterjee and A. S. Hadi, *Regression Analysis by Example*, Wiley, Hoboken, NJ, USA, 1977.

[36] S. Kaciranlar, S. Sakallioglu, F. Akdeniz, G. P. H. Styan, and H. J. Werner, "A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on portland cement," *Sankhya: The Indian Journal of Statistics, Series B*, vol. 61, pp. 443–459, 1999.

[37] S. Chatterjee and A. S. Haadi, *Regression Analysis by Example*, Wiley, Hoboken, NJ, USA, 2006.

[38] E. Malinvaud, *Statistical Methods of Econometrics*, North-Holland Publishing Company, Amsterdam, Netherlands, 3rd edition, 1980.

[39] D. N. Gujarati, *Basic Econometrics*, McGraw-Hill, New York, NY, USA, 1995.

[40] A. F. Lukman, K. Ayinde, and A. S. Ajiboye, "Monte Carlo study of some classification-based ridge parameter estimators," *Journal of Modern Applied Statistical Methods*, vol. 16, no. 1, pp. 428–451, 2017.