StatMix: Data augmentation method that relies on image statistics in federated learning

Dominik Lewy\(^1\), Jacek Mańdziuk\(^1\), Maria Ganzha\(^1\), and Marcin Paprzycki\(^2,3\)

\(^1\) Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
d.lewy@mini.pw.edu.pl, \{jacek.mandziuk, maria.ganzha\}@pw.edu.pl
\(^2\) Systems Research Institute Polish Academy of Sciences
\(^3\) Warsaw Management University, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract. Availability of large amount of annotated data is one of the pillars of deep learning success. Although numerous big datasets have been made available for research, this is often not the case in real-life applications (e.g., companies are not able to share data due to GDPR or concerns related to intellectual property rights protection). Federated learning (FL) addresses this challenge by enabling training a global model on data scattered across multiple nodes, without sharing local data itself. However, even FL methods pose a threat to data privacy, if not handled properly. Therefore, we propose **StatMix**, an augmentation approach that uses image statistics, to improve results of FL scenario(s). **StatMix** is empirically tested on CIFAR-10 and CIFAR-100, using two neural network architectures. In all FL experiments, application of **StatMix** improves the average accuracy, compared to the baseline training (with no use of **StatMix**). Some improvement can also be observed in non-FL setups.

Keywords: Federated Learning · Data Augmentation · Mixing Augmentation.

1 Introductions

One of key factors, behind the success of deep learning in Computer Vision, is the availability of large annotated datasets like ImageNet \(^2\) or COCO \(^17\). However, even if large datasets theoretically exist, there can be restrictions related to bringing them to one place, to enable model training. Federated learning (FL) addresses this challenge by enabling data to be kept where it is, and share only limited information, based on which the original content cannot be recreated. At the same time FL allows training a model that achieves better results than ones trained in isolation on separated nodes. This, for instance, is a typical scenario for hospitals that gather (possibly annotated) medical images. However, they cannot
share it with other hospitals, due to various reasons (e.g. GDPR regulations or intellectual property rights protection).

According to the FL classification, proposed in [15], the method presented in this paper addresses a horizontal data partitioning scenario (each of individual nodes collects similar data). The specific focus is on Convolutional Neural Network (CNN) architectures, since the problem considered is an image classification. However, the approach is in no way limited to the CNN-oriented use case. The proposed method is based on sharing limited amount of data between nodes, thus avoiding violation of privacy. In the paper we consider a centralized FL setup. Nevertheless, the proposed algorithm (StatMix) is communication architecture agnostic and can be easily applied in decentralized settings with each node sharing information with all the other (or selected group of) nodes, instead of a server. Again, with assumed minimization of amount of shared information, the efficiency of communication is not the focus of this study.

1.1 Motivation
Historically, in majority of FL research, during model training, either gradients of the training process (e.g. FedSGD [19]) or weights of the model (e.g. FedAvg [19]), have been shared. Only recently a paper on sharing averaged images (FedMix [23]) was published. However, all these approaches pose a potential threat to data privacy if data sharing is not properly managed (e.g. by using differential privacy, or by ensuring the number of images in the averaged images is large enough). The method, proposed in what follows, limits the information shared to bare minimum (just 6 values, 2 per each color channel), and is still able to provide boost in accuracy.

1.2 Contribution
The main contribution of this work is threefold:

- A simplistic data augmentation (DA) mechanism (StatMix), dedicated to FL learning setup that limits the amount of communication between participating nodes, is proposed.
- StatMix is evaluated on two different CNNs, with numbers of FL participants ranging from 5 to 50.
- It is shown that the standard set of simple DAs, typically used for CIFAR datasets, is not well suited for FL scenario, as it deteriorates the performance along with a decrease of the number of samples per each FL node.

2 Related work

Federated learning Since FL system is, usually, a combination of algorithms each research contribution can be regarded and analysed from different angles. Typical FL aspects include: (1) if the data is partitioned horizontally or vertically [30], (2) which models are used (some require dedicated algorithms, e.g.
trees [27], other can be addressed with more general methods, like SGD [21],
(3) whether the global model is updated during the training process [19], or only
once when all local models have been already trained [25], (4) what (if any) is
the mechanism that guarantees privacy of the data [3], and/or (5) how effective
is the process of sharing information between parties of the system [10].

The idea of FL was introduced in [9], where the usage of asynchronous SGD
to update a global model in a distributed fashion was proposed. Currently, the
most common approach is FedAvg [19], which at each communication round,
performs training on a fraction of nodes, using the local data and, at the end
of each round, averages the model weights on the server. Subsequent works, in
this area, focused on either making the process more effective [10,6], or being
able to address particular data-related scenarios (e.g. non-IID setup [16,28,1]).
Since the StatMix method shares only highly limited information between nodes,
due to space limits, privacy guarantees and communication efficiency will not be
discussed in the literature review.

Data Augmentation Another research area relevant to the scope of this paper
is DA [14], especially the methods dedicated to the FL setup. An interesting
research approach is adjustment of Mixup [26] to the FL regime [23,20,22].
However, it requires sending mixed data to the server rendering these methods
expensive in terms of communication. Moreover, in some cases, this could lead
to privacy violation, if small number of samples is selected for mixing.

An alternative approach to DA, is the use of GANs for local node DA [7,8].
These approaches require samples from private node data, to be shared with the
server for the purpose of GAN training that will be subsequently downloaded to
each node to generate additional synthetic samples.

Another approach to synthetic data generation is the usage of models trained
using, for instance, FedAvg, to generate samples based on the statistics from the
batch normalization layer, using a Zero Shot Learning [4].

Yet another stream of research, worth mentioning that according to our best
knowledge was not yet applied to FL problems, and is an inspiration for this
work, is MixStyle [29], which is dedicated to the problem of Domain Generaliza-
tion (DG), i.e. construction of classifiers robust to domain shift, able to generalize
to unseen domains. To this end MixStyle, similarly to Mixup based methods,
performs sample mixing. However, it does not mix pixels but instance-level feature
statistics of the two images generated from the neural network.

3 Proposed approach

In a typical FL scenario, there are two main components: nodes which contain
local data that cannot be shared (e.g., due to privacy reasons), and a server that
coordinates the process of information exchange. In certain FL implementations
the central server is not used, and participating nodes communicate directly.

The goal of this work is to increase the accuracy of classifiers, trained in
individual nodes, by using limited statistical information (delivered by all nodes
Algorithm 1 StatMix

Local part 1:
1: \(K \leftarrow \text{number of images in the node}; \ N \leftarrow \text{number of nodes} \)
2: \(\text{for } i = 1, 2, \ldots, N \ \text{do} \)
3: \(\text{for } k = 1, 2, \ldots, K \ \text{do} \)
4: \(\text{Calculate all the image statistics according to equations (1)-(2)} \)
5: \(S_{ik} = \{\mu(x_{ik})_1, \mu(x_{ik})_2, \mu(x_{ik})_3, \sigma(x_{ik})_1, \sigma(x_{ik})_2, \sigma(x_{ik})_3\} \)
6: \(\text{end for} \)
7: \(\text{end for} \)
8: \(\text{Share statistics with the sever} \)

Server part:
9: \(\text{Distribute statistics to all nodes} \)

Local part 2:
10: \(\text{for } i = 1, 2, \ldots, N \ \text{do} \)
11: \(\text{for } \text{epoch} = 1, 2, \ldots, \text{max epoch} \ \text{do} \)
12: \(\text{for } \text{batch} = 1, 2, \ldots, \text{max batch} \ \text{do} \)
13: \(\text{if } \text{random}(0, 1) < P_{\text{StatMix}} \text{ then} \)
14: \(\text{Randomly select set of statistics } S_{jm}, j \in \{1, \ldots, N\}, m \in \{1, \ldots, K\} \)
15: \(\text{Normalize images from a batch using equation (3)} \)
16: \(\text{Apply augmentation using equation (4)} \)
17: \(\text{end if} \)
18: \(\text{end for} \)
19: \(\text{end for} \)
20: \(\text{end for} \)

and aggregated on the server). This is to be achieved without sending/storing any actual data. Overall, the proposed approach can be characterized as follows (see Figure 1 and Algorithm 1):

(a) Calculation of image statistics (mean and standard deviation per color channel) in individual nodes – Local part 1 in Algorithm 1
(b) Distribution of the calculated statistics to all nodes via central server – Server part in Algorithm 1
(c) Using these statistics in individual nodes to perform style transfer like augmentation of images in this node – Local part 2 in Algorithm 1

Local part 1. This is the first step of the algorithm. In each node \(i = 1, \ldots, N \), for each locally stored image \(x_{ik}, k = 1, \ldots, K \), where \(x_{ik} \in \mathbb{R}^{W \times H \times C} \) (\(W, H \) and \(C \) denote width, height and color channel, resp.), the mean and the standard deviation of image pixels are calculated separately for each colour channel \(C = 1, 2, 3 \), using the following equations:

\[
\mu(x_{ik})_c = \frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} x_{ik}[w,h,c] \quad (1)
\]
Fig. 1. The figure is composed of two components: a central server (storing only image statistics) and nodes (storing subsets of images and image statistics obtained from the server). The flow shows application of statistics calculated in one node to augment images in another node. For instance, node 1 shares statistics of a plane image with node N, based on which an augmented image of a dog is created.

Fig. 2. The first column shows original images and the remaining part of the figure depicts these images augmented with statistics of various images (each column utilizes a different set of image statistics).
\[\sigma(x_{ik})_c = \left(\frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} (x_{ik}[w,h,c] - \mu(x_{ik})_c)^2 \right)^{1/2} \]

(2)

where \(x_{ik}[w,h,c] \) is a value of \([w,h]\) pixel of image \(x_{ik} \), in color channel \(c \). These 6 statistics form the set \(S_{ik} \), that is used in \textit{Local part 2} for image augmentation.

Server part. In the second step, all sets \(S_{ik}, i = 1, \ldots, N, k = 1, \ldots, K \), are distributed to all \(N \) nodes, i.e. in each node, in addition to \(K \) local (private) images, \(N \cdot K \) statistics are now stored.

Local part 2. Next the augmentation part takes place. In each node \(i = 1, \ldots, N \), all images \(x_{ik} \) located in that node \((k = 1, \ldots, K)\) are randomly divided into \textit{max batch} batches. Then, for each batch, an image \(x_{jm} \) is uniformly selected (from all \(N \cdot K \) images, i.e. including those located in a given node) and the corresponding set of statistics \(S_{jm} \) is applied to augment all images from the batch using equations (3)-(4). This augmentation procedure is applied independently to each batch with probability \(P_{\text{StatMix}} \).

\[x_{ik,c}^{\text{norm}} = \frac{x_{ik,c} - \mu(x_{ik})_c}{\sigma(x_{ik})_c} \]

(3)

\[x_{ik,c}^{\text{augment}} = x_{ik,c}^{\text{norm}} \cdot \sigma(x_{jm})_c + \mu(x_{jm})_c \]

(4)

Note that augmentation procedure \([3]-[4] \) is applied independently to all 3 color channels. Example results of \textit{StatMix} augmentation are depicted in Figure 2.

4 Experimental setup

The experiments were conducted with two popular datasets. CIFAR-10 \[11\] consists of 50 000 training and 10 000 test color images, of size \(32 \times 32 \), grouped into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). There are 5 000 and 1 000 samples of each class in the training and test datasets, respectively.

CIFAR-100 \[12\] is a more granular version of CIFAR-10, with 100 classes. Each class has 500 representatives in the training and 100 in the test datasets, respectively.

CIFAR-100 \[12\] is a more granular version of CIFAR-10, with 100 classes. Each class has 500 representatives in the training and 100 in the test datasets, respectively.

In order to simulate the FL scenario, let us denote by \(P \) the set of all training images in a given dataset (CIFAR-10, or CIFAR-100, respectively). \(P \) was randomly divided, in a stratified manner, into \(N \) disjoint subsets \((P_1, \ldots, P_N)\) of equal size, using labels to reflect the same distribution in each \(P_i \), as in the whole set \(P \). Subsequently, each part was transferred (assigned) to a separate FL node that was connected only to the server (i.e. there were no connections between FL nodes). At this point each of \(N \) nodes calculated statistics of images located in this node and transferred them on the server. Next, for each node
StatMix: Data augmentation method for federated learning

$i = 1, \ldots, N$, the server shared individual statistics of all images not located in node i, i.e. all images from $P \setminus P_i$. Based on this, the images located in node i, i.e. those belonging to P_i, could be augmented (with certain probability) using image statistics from the entire data set P, according to the approach described in section 3. The augmented sets $PA_i, i = 1, \ldots, N$ were used to train the model (one of the 2 deep architectures described in the following paragraph). Afterwards, the trained model was tested on the entire test part of the respective CIFAR dataset.

Two popular architectures were tested during experiments: PreActResNet18 [5] and DLA [24]. The models belong to different families and offer decent accuracy in non-FL scenarios.

SGD optimizer with initial learning rate equal to 0.01 and momentum equal to 0.9 was used. The learning rate was adapted, using cosine annealing [18], from the initial learning rate to 0, over the course of the training process. In all experiments that mention standard DA, random image crop and random horizontal flip were applied [13]. For consistency, all models were trained for 200 epochs, on a batch of 128 images at a time.

The experiments were ran 3 times for each $N = 1, 5, 10, 50$ with the probability of applying statistics-based augmentation set to 0.5.

5 Experimental results and analysis

First, CIFAR-10 results are presented in Table 1. In all experiments, in the FL setup ($N > 1$) the application of StatMix boosts the final accuracy, compared to the baseline case, with no use of StatMix. The impact of the method grows with the number of nodes in the system (at least, to 50 nodes, as tested here).

It is worth noting that the augmentation method, proposed for the FL setup, works also in a non-FL scenario ($N = 1$). The improvement can be observed in all 4 cases (cf. column diff [%] in Table 1). Lastly, it can be observed that standard DAs (random crop and horizontal flip), often utilized with CIFAR data in non-FL scenarios, deteriorate the accuracy of training in the FL scenario (cf. row True vs. row False for a given architecture and given $N > 1$).

For the CIFAR-100, results are summarized in Table 2. On this, more granular, dataset similar observations are also valid. In the majority of cases, application of StatMix improves the results, compared to the baseline (i.e. the case with no StatMix utilization). However, for this more fine-grained dataset this conclusion does not reach 50 nodes, as for this setup, adding StatMix deteriorates the performance. This is, most probably, caused by too high noise-to-image ratio after augmentation, due to 10 times smaller number of representatives in individual classes, as compared to CIFAR-10.

The conclusion that StatMix is generally beneficial in non-FL scenarios ($N = 1$) is also valid for CIFAR-100 (cf. the rightmost column in the table). In 3 out of 4 cases (including both with standard DA application), adding StatMix augmentation improves obtained results.
Table 1. Mean and standard deviation results for CIFAR-10 dataset averaged over last 10 epochs and 3 experiment repetitions. Columns denote: number of nodes \((N)\), model architecture, whether or not standard DA was applied, whether StatMix augmentation was used (0.0 – not used, 0.5 – used with probability 0.5), the relative improvement of applying StatMix compared to not applying it, i.e. \([\text{mean}(0.5) / \text{mean}(0.0) - 1]\).

Nodes \((N)\)	Architecture	Standard	StatMix \(0.0\)	StatMix \(0.5\)	\(\text{diff}\) [%]
1	DLA	False	86.02 \(\text{mean}\) 0.80	86.58 \(\text{mean}\) 0.47	0.65
		True	93.26 \(\text{mean}\) 0.28	93.83 \(\text{mean}\) 0.19	0.61
	PreActResNet18	False	86.15 \(\text{mean}\) 0.79	86.60 \(\text{mean}\) 0.14	0.52
		True	93.54 \(\text{mean}\) 0.05	93.79 \(\text{mean}\) 0.13	0.27
5	DLA	False	67.32 \(\text{mean}\) 1.15	69.47 \(\text{mean}\) 0.70	3.19
		True	63.39 \(\text{mean}\) 1.03	66.24 \(\text{mean}\) 0.89	4.50
	PreActResNet18	False	70.83 \(\text{mean}\) 0.44	72.01 \(\text{mean}\) 0.55	1.67
		True	68.22 \(\text{mean}\) 0.64	69.12 \(\text{mean}\) 0.33	1.32
10	DLA	False	56.06 \(\text{mean}\) 1.27	58.97 \(\text{mean}\) 1.09	5.19
		True	50.72 \(\text{mean}\) 1.45	54.54 \(\text{mean}\) 1.59	7.53
	PreActResNet18	False	60.72 \(\text{mean}\) 0.64	62.03 \(\text{mean}\) 0.76	2.16
		True	56.63 \(\text{mean}\) 0.77	58.69 \(\text{mean}\) 0.74	3.64
50	DLA	False	37.47 \(\text{mean}\) 1.20	38.06 \(\text{mean}\) 1.42	1.57
		True	34.06 \(\text{mean}\) 1.11	34.65 \(\text{mean}\) 1.39	1.73
	PreActResNet18	False	38.62 \(\text{mean}\) 0.96	40.28 \(\text{mean}\) 1.08	4.30
		True	35.01 \(\text{mean}\) 1.07	36.93 \(\text{mean}\) 1.21	5.48

Observation, that standard augmentation methods, used commonly in the literature, do not help in the FL scenario(s), holds also for CIFAR-100. The reason behind that might be that augmentation introduces some noise and the network cannot distill true patterns based on limited amount of clean data.

5.1 Ablation study

In order to check how the probability of applying StatMix impacts final classification accuracy, additional experiments were performed using PreActResNet18 architecture (which is less computationally intensive than DLA) and a setup with 5 nodes \((N = 5)\). All remaining training parameters were adopted from the base experiments. Probabilities ranging from 0 to 1, with a step of 0.1, were tested.

The results for CIFAR10 and CIFAR100 are presented in Figure 3. It can be concluded from the chart that both not applying StatMix at all, as well as applying it to the majority of the batches (more than 80% for CIFAR10 and more than 60% for CIFAR100) renders the worst results.

Quite interestingly, applying StatMix to all batches \((P_{\text{StatMix}} = 1)\) results in a huge accuracy deterioration (for CIFAR10 the accuracy dropped to 63%,
Table 2. Mean and standard deviation results for CIFAR-100 dataset, average from 10 epochs and 3 experiment repetitions. Columns, denote: number of nodes \((N)\), model architecture, whether or not standard DA was applied, whether StatMix augmentation was used \((0.0 - \text{not used}, 0.5 - \text{used with probability} \ 0.5)\), relative improvement of applying StatMix compared to not applying it, i.e. \([\text{mean}(0.5) / \text{mean}(0.0) - 1]\).

Nodes \((N)\)	Architecture	Standard	\(\text{StatMix}\)	\(0.0\)	\(\text{std}\)	\(\text{mean}\)	\(\text{std}\)	\(\text{diff} \ [%]\)
1	DLA	False	**59.29**	2.08	**58.11**	0.87	-1.99	
		True	73.40	0.26	75.25	0.46	2.52	
	PreActResNet18	False	54.99	2.73	55.84	2.21	1.55	
		True	71.83	0.49	73.63	0.22	2.51	
1	DLA	False	26.46	0.49	28.04	0.53	5.97	
		True	22.84	0.71	24.84	0.60	8.76	
	PreActResNet18	False	31.02	0.58	31.39	0.58	1.19	
		True	27.70	0.60	28.63	0.59	3.36	
1	DLA	False	19.86	0.59	20.49	0.66	3.17	
		True	16.48	0.57	17.80	0.92	8.01	
	PreActResNet18	False	22.32	0.41	22.86	0.50	2.42	
		True	19.37	0.50	20.33	0.57	4.96	
1	DLA	False	9.65	0.64	9.56	0.72	-0.93	
		True	7.83	0.69	7.77	0.74	-0.77	
	PreActResNet18	False	10.74	0.46	10.48	0.56	-2.42	
		True	9.15	0.45	9.20	0.48	0.55	

while for CIFAR100 to 19% in comparison to no augmentation). These results have been excluded from the charts, to avoid obfuscating other findings.

For CIFAR10, all probabilities between 0.1 and 0.8 bring positive impact, however with no clearly best values. Hence, as long as \(\text{StatMix}\) is applied to a certain fraction of the batches, it leads to accuracy boost. For CIFAR100 experiments with lower \(P_{\text{StatMix}}\) probability \(\text{between} \ 0.1 \ \text{and} \ 0.4\) achieve better final accuracy. A possible explanation is that CIFAR100 is a more complex dataset and introducing too much noise through the \(\text{StatMix}\) augmentation is no longer beneficial. This leads to a conclusion that the results on CIFAR100 could potentially be further optimized by decreasing the probability of \(\text{StatMix}\) application.

6 Concluding remarks

In this work, \(\text{StatMix}\), a novel DA method designed for FL, has been introduced. \(\text{StatMix}\) exchanges high level image statistics (two values per color channel). As a result, data privacy remains protected. At the same time, it has been empirically validated that using this method improves model accuracy, over baseline training (with no use of \(\text{StatMix}\)), for two standard benchmark datasets, and two popular
CNN architectures. Furthermore, \textit{StatMix} improves performance in classical, non-FL setup where the method helped in majority of cases.

While application of \textit{StatMix} demonstrates very promising results, future work, aimed at verifying if sharing additional statistics (e.g., those related to hidden layers of the trained networks) could be beneficial. However, such an approach would be more expensive, when it comes to computation, since it would require local networks (in each node) to be trained at least twice. The first training would be needed to calculate statistics of the image in the inference phase in selected hidden layers of the network. These hidden-layer statistics could be then distributed to all nodes, and used in the process of final models training, similarly to the current \textit{StatMix} specification. Verification of this approach is planned as the next step in \textit{StatMix} development.

\textbf{Acknowledgements} Research funded in part by the Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

\textbf{References}

1. Danilenka, A., Ganzha, M., Paprzycki, M., Mańdziuk, J.: Using adversarial images to improve outcomes of federated learning for non-iid data. CoRR \textbf{abs/2206.08124} (2022)
2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09 (2009)
3. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. CoRR \textbf{abs/1712.07557} (2017)
4. Hao, W., El-Khamy, M., Lee, J., Zhang, J., Liang, K.J., Chen, C., Duke, L.C.: Towards fair federated learning with zero-shot data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 3310–3319 (June 2021)
5. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 9908, pp. 630–645. Springer (2016). https://doi.org/10.1007/978-3-319-46493-0_38

6. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The non-iid data quagmire of decentralized machine learning. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 4387–4398. PMLR (2020)

7. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. CoRR abs/1811.11479 (2018)

8. Jeong, E., Oh, S., Park, J., Kim, H., Bennis, M., Kim, S.L.: Hiding in the crowd: Federated data augmentation for on-device learning. IEEE Intelligent Systems 36(5), 80–87 (2021). https://doi.org/10.1109/MIS.2020.3028613

9. Konečný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine learning for on-device intelligence. CoRR abs/1610.02527 (2016)

10. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. CoRR abs/1610.05492 (2016)

11. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced Research) (2009), http://www.cs.toronto.edu/~kriz/cifar.html

12. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced Research) (2009), http://www.cs.toronto.edu/~kriz/cifar.html

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. pp. 1106–1114 (2012), https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

14. Lewy, D., Mańdziuk, J.: An overview of mixing augmentation methods and augmentation strategies. Artificial Intelligence Review (2022). https://doi.org/10.1007/s10462-022-10227-z published online 2022/06/30

15. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Liu, X., He, B.: A survey on federated learning systems: Vision, hype and reality for data privacy and protection. CoRR abs/1907.09693 (2019)

16. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Dhillon, I.S., Papailiopoulos, D.S., Sze, V. (eds.) Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org (2020)

17. Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: Fleet, D.J., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V. Lecture Notes in Computer Science, vol. 8693, pp. 740–755. Springer (2014). https://doi.org/10.1007/978-3-319-10692-1_48

18. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
19. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, X.J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017)

20. Oh, S., Park, J., Jeong, E., Kim, H., Bennis, M., Kim, S.: Mix2fid: Downlink federated learning after uplink federated distillation with two-way mixup. IEEE Commun. Lett. 24(10), 2211–2215 (2020)

21. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

22. Shin, M., Hwang, C., Kim, J., Park, J., Bennis, M., Kim, S.: XOR mixup: Privacy-preserving data augmentation for one-shot federated learning. CoRR abs/2006.05148 (2020)

23. Yoon, T., Shin, S., Hwang, S.J., Yang, E.: Fedmix: Approximation of mixup under mean augmented federated learning. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net (2021)

24. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. pp. 2403–2412. Computer Vision Foundation / IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00255

25. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.H., Hoang, T.N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 7252–7261. PMLR (2019)

26. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)

27. Zhao, L., Ni, L., Hu, S., Chen, Y., Zhou, P., Xiao, F., Wu, L.: Inprivate digging: Enabling tree-based distributed data mining with differential privacy. In: 2018 IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018. pp. 2087-2095. IEEE (2018). https://doi.org/10.1109/INFOCOM.2018.8486352

28. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. CoRR abs/1806.00582 (2018)

29. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. CoRR abs/2104.02008 (2021)

30. Zhuang Yan, Li Guoliang, F.J.: A survey on entity alignment of knowledge base. Journal of Computer Research and Development 53(1), 165 (2016). https://doi.org/10.7544/issn1000-1239.2016.20150661