LINKED HOM SPACES

BRIAN OSSERMAN

Abstract. In this note, we describe a theory of linked Hom spaces which complements that of linked Grassmannians. Given two chains of vector bundles linked by maps in both directions, we give conditions for the space of homomorphisms from one chain to the other to be itself represented by a vector bundle. We apply this to present a more transparent version of an earlier construction of limit linear series spaces out of linked Grassmannians.

1. Introduction

In [5], spaces of linked Grassmannians are introduced in order to use them in a new construction of limit linear series schemes. Given a base scheme S, integers $r < d$, and a chain of vector bundles E_1, \ldots, E_n on S of rank d, with homomorphisms $f_i : E_i \to E_{i+1}$ and $g_i : E_{i+1} \to E_i$ satisfying certain natural conditions, the associated linked Grassmannian parametrizes tuples of subbundles $F_i \subseteq E_i$ of rank r, which are all mapped into one another under the f_i and g_i. These schemes behave like flat degenerations of the classical Grassmannian $G(r, d)$, and indeed according to [2], whenever the f_i and g_i are generically isomorphisms, the linked Grassmannian does in fact yield a flat degeneration of $G(r, d)$.

In this note, we study a Hom version of the linked Grassmannian construction, which arises naturally in the construction of limit linear series spaces out of linked Grassmannians. Given chains of vector bundles F_1, \ldots, F_n and G_1, \ldots, G_n on S, with the F_i of rank r and the G_i of rank m, and homomorphisms $f_i : F_i \to F_{i+1}$, $f^i : F_{i+1} \to F_i$, $g_i : G_i \to G_{i+1}$, $g^i : G_{i+1} \to G_i$, we determine natural conditions (see Definition 2.3 below) so that the resulting linked Hom functor $LH((\{F_i\}, \{G_i\}, \{f_i, f^i\}, \{g_i, g^i\})$ parametrizing tuples of morphisms $\varphi_i : F_i \to G_i$ which commute with all f_i, f^i, g_i, g^i is well behaved. Specifically, we show:

Theorem 1.1. A linked Hom functor $LH((\{F_i\}, \{G_i\}, \{f_i, f^i\}, \{g_i, g^i\})$ is represented by a vector bundle LH on S of rank rm.

Using this result, we are able to give a less ad hoc and more symmetric version of the construction of limit linear series spaces out of linked Grassmannians. Although the resulting shift in perspective is relatively minor, we believe it will be important for a new application to higher-rank Brill-Noether theory. Specifically, Bertram, Feinberg and Mukai observed that in the case of rank 2 vector bundles of canonical determinant, there are symmetries which result in the spaces of bundles with prescribed numbers of sections having dimension higher than previously expected, when they are non-empty. One would like to show such spaces (and generalizations, as suggested in [4]) are nonempty via degeneration techniques, but the limit linear series construction introduced by Eisenbud and Harris in [1] and generalized to higher rank by Teixidor i Bigas in [3] does not appear superficially to preserve the necessary symmetries introduced by the canonical determinant condition. The
simpler nature of our construction should lead to a proof that the dimensions of spaces of limit linear series with special determinants satisfy the desired modified lower bounds.

Acknowledgements. I would like to thankMontserrat Teixidor i Bigas for helpful comments.

2. Linked Hom spaces

We work throughout over a fixed base scheme \(S \).

The basic definition is as follows:

Definition 2.1. Let \(r, m, n \) be integers. Suppose that \(\mathcal{F}_1, \ldots, \mathcal{F}_n \) are vector bundles of rank \(r \) on \(S \) and \(\mathcal{G}_1, \ldots, \mathcal{G}_n \) are vector bundles of rank \(m \) on \(S \). Suppose also that we have homomorphisms

\[
f_i : \mathcal{F}_i \to \mathcal{F}_{i+1}, \quad f^i : \mathcal{F}_{i+1} \to \mathcal{F}_i, \quad g_i : \mathcal{G}_i \to \mathcal{G}_{i+1}, \quad g^i : \mathcal{G}_{i+1} \to \mathcal{G}_i
\]

for each \(i = 1, \ldots, n-1 \). Then the functor

\[
\mathcal{LH}(\{\mathcal{F}_i\}, \{\mathcal{G}_i\}, \{f_i, f^i\}, \{g_i, g^i\})
\]

associates to an \(S \)-scheme \(T \) the tuples of homomorphism \(\varphi_i : \mathcal{F}_i|_T \to \mathcal{G}_i|_T \) such that \(\varphi_{i+1} \circ f_i = g_i \circ \varphi_i \) and \(\varphi_i \circ f^i = g^i \circ \varphi_{i+1} \) for \(i = 1, \ldots, n-1 \).

Lemma 2.2. In the situation of Definition 2.1, the functor

\[
\mathcal{LH}(\{\mathcal{F}_i\}, \{\mathcal{G}_i\}, \{f_i, f^i\}, \{g_i, g^i\})
\]

is represented by an affine scheme \(LH \) of finite presentation over \(S \).

Note that the functor naturally takes values in \(\mathcal{O}_T \)-modules, and as a result \(LH \) has the structure of a (not necessarily quasi-coherent) \(\mathcal{O} \)-module over the big Zariski (or etale, or fppf) site on \(S \).

Proof. It is clear that our functor is a subfunctor of \(\bigoplus_{i=1}^n \text{Hom}(\mathcal{F}_i, \mathcal{G}_i) \), which is represented by a vector bundle over \(S \). Moreover, it is cut out by the conditions

\[
\varphi_{j+1} \circ f_j - g_j \circ \varphi_j = 0 \quad \text{and} \quad \varphi_j \circ f^i = g^i \circ \varphi_{j+1} = 0,
\]

which can be viewed as the preimage of the zero section under morphisms

\[
\bigoplus_{i=1}^n \text{Hom}(\mathcal{F}_i, \mathcal{G}_i) \to \text{Hom}(\mathcal{F}_j, \mathcal{G}_{j+1})
\]

and

\[
\bigoplus_{i=1}^n \text{Hom}(\mathcal{F}_i, \mathcal{G}_i) \to \text{Hom}(\mathcal{F}_{j+1}, \mathcal{G}_j)
\]

respectively, and thus give closed (and finitely generated) conditions. We thus conclude that \(LH \) exists, with the desired properties. \(\square \)

We now describe the additional conditions we will impose in order to obtain good behavior for \(LH \). Rather than literally considering a Hom version of linked Grassmannians (that is, imposing the same conditions on both the \(\mathcal{F}_i \) and the \(\mathcal{G}_i \) as were imposed on the \(\mathcal{E}_i \) in a linked Grassmannian), we will impose somewhat stronger conditions on the \(\mathcal{G}_i \) and weaker ones on the \(\mathcal{F}_i \). This not only leads to good behavior, but is precisely the situation which arises in the application to construction of limit linear series spaces. See Remark 2.6 below for further discussion.
Definition 2.3. In the situation of Definition 2.1 and Lemma 2.2, we say that \(LH \) is a **linked Hom space** if the following conditions are satisfied:

(I) There exists some \(s \in \Gamma(S, \mathcal{O}_S) \) such that
\[
 f_i f^i = f^i f_i = g_i g^i = g^i g_i = s \text{id}
\]
for all \(i = 1, \ldots, n - 1 \).

(II) For all \(x \in S \) with \(s = 0 \) in \(\kappa(x) \), and all \(i = 1, \ldots, n - 1 \), the kernel of \(g_i \) restricted to \(\mathcal{G}_i \otimes \kappa(x) \) is precisely the image of \(g^i \), and vice versa.

(III) For all \(x \in S \) with \(s = 0 \) in \(\kappa(x) \), and all \(i = 1, \ldots, n - 2 \), we have \(\text{im} g_i \) complementary to \(\text{ker} g_{i+1} \), and \(\text{im} g^{i+1} \) complementary to \(\text{ker} g^i \) in \(\mathcal{G}_{i+1} \otimes \kappa(x) \).

The following notation will be convenient:

Notation 2.4. In the situation of Definition 2.3, given \(i < j \), denote by \(f_{i,j}, f^{j,i}, g_{i,j} \) and \(g^{j,i} \) the compositions
\[
 f_{j-1} \circ f_{j-2} \circ \cdots \circ f_{i+1} \circ f_i,
\]
\[
 f^i \circ f^{i+1} \circ \cdots \circ f^{j-2} \circ f^{j-1},
\]
\[
 g_{j-1} \circ g_{j-2} \circ \cdots \circ g_{i+1} \circ g_i,
\]
and
\[
 g^i \circ g^{i+1} \circ \cdots \circ g^{j-2} \circ g^{j-1},
\]
respectively. We use the convention that \(f_{i,i}, f^{i,i}, g_{i,i} \) and \(g^{i,i} \) all denote the identity map.

Our hypotheses on the chain \(\mathcal{G} \) yield the following simple structure:

Lemma 2.5. In the situation of Definition 2.1, suppose that \(LH \) is a linked Hom space. Then locally on \(S \), we have decompositions
\[
 \mathcal{G}_i \cong \mathcal{G}'_i \oplus \mathcal{G}''_i
\]
with \(\mathcal{G}'_i \) and \(\mathcal{G}''_i \) free \(\mathcal{O}_S \)-modules, satisfying the following conditions for all \(i = 1, \ldots, n - 1 \):

(i) \(g_i \) maps \(\mathcal{G}'_i \) to \(\mathcal{G}'_{i+1} \) and \(\mathcal{G}''_i \) to \(\mathcal{G}''_{i+1} \), and similarly for \(g^i \).

(ii) The induced maps \((g_i)' : \mathcal{G}'_i \to \mathcal{G}'_{i+1} \) and \((g^i)'' : \mathcal{G}''_{i+1} \to \mathcal{G}''_i \) are isomorphisms.

Proof. Given \(x \in S \), if \(s \neq 0 \) in \(\kappa(x) \), then there exists an open neighborhood \(U \) of \(x \) on which \(s \) is a unit, and by condition (I) of a linked Hom space, the \(g_i \) are isomorphisms. We may thus set \(\mathcal{G}'_i = \mathcal{G}_i \) and \(\mathcal{G}''_i = 0 \) for all \(i \).

On the other hand, if \(s = 0 \) in \(\kappa(x) \), choose subspaces \(\mathcal{G}'_1 \subseteq \mathcal{G}_1 \otimes \kappa(x) \) and \(\mathcal{G}''_n \subseteq \mathcal{G}_n \otimes \kappa(x) \), complementary to \(\text{ker} g_1 \) and \(\text{ker} g^{n-1} \) respectively. Putting together conditions (II) and (III) for a linked Hom space, we see that for all \(i \), we have \(g_{i,i} \) injective on \(\mathcal{G}'_i \), and \(g^{n-i} \) injective on \(\mathcal{G}''_n \), and furthermore setting \(\mathcal{G}'_1 = g_{1,1} \mathcal{G}''_1 \) and \(\mathcal{G}''_n = g^{n-i} \mathcal{G}'_n \) we have that \(\mathcal{G}'_i \) and \(\mathcal{G}''_i \) are complementary in \(\mathcal{G}_i \otimes \kappa(x) \). We thus obtain a decomposition of the desired form over \(\kappa(x) \). In particular, if \(\dim \mathcal{G}'_1 = \ell \), then \(\dim \mathcal{G}''_n = m - \ell \).

Now, choose \(U \) any affine open neighborhood of \(x \) on which the \(\mathcal{G}_i \) become free. Multiplying by units in \(\mathcal{O}_{S,x} \) as necessary, we may choose bases for \(\mathcal{G}'_1 \) and \(\mathcal{G}''_n \) which can be lifted to some \(v_1, \ldots, v_\ell \in \mathcal{G}'_1(U) \) and \(w_1, \ldots, w_{m-\ell} \in \mathcal{G}_n(U) \). Let \(\mathcal{G}'_1 \) and \(\mathcal{G}''_n \) be the submodules of \(\mathcal{G}_1|_U \) and \(\mathcal{G}_n|_U \) spanned by the \(v_i \) and \(w_i \), respectively.
Restrict U as necessary to the complement of the closed subschemes on which the maps

$$\mathcal{O}_U^{\oplus \ell} \xrightarrow{\nu} \mathcal{G}_1$$

$$\mathcal{O}_U^{\oplus m-\ell} \xrightarrow{\nu} \mathcal{G}_n$$

and for each $i = 1, \ldots, n$

$$g_{1,i} \oplus g^{n,i} : \mathcal{G}_i' \oplus \mathcal{G}_n'' \to \mathcal{G}_i$$

do not have full rank. To see that the last condition make sense, we observe that under the hypothesis that the first map has full rank, it must in fact be an isomorphism onto its image \mathcal{G}_1', and similarly for \mathcal{G}_n''. It suffices to check this on stalks, and the full rank condition implies that on each stalk, the fiber of \mathcal{G}_1' has dimension ℓ. Thus Nakayama’s lemma implies that \mathcal{G}_1' is free of rank ℓ on stalks, and thus the map induced by the v_i is an isomorphism on stalks, as desired. The same argument goes through for \mathcal{G}_n''.

As before, we set $\mathcal{G}_i' = g_{1,i} \mathcal{G}_1'$ and $\mathcal{G}_i'' = g^{n,i} \mathcal{G}_n''$, and we claim that we obtain the desired decomposition. Our first claim is that $g_{1,i} : \mathcal{G}_i' \to \mathcal{G}_i'$ is an isomorphism for each i, and similarly for $g^{n,i}$. In particular, \mathcal{G}_i' and \mathcal{G}_i'' are free \mathcal{O}_U-modules, and condition (ii) is satisfied. Arguing as before, this follows from Nakayama’s lemma and the full rank hypotheses. Next, for each i, we have the natural morphism

$$\mathcal{G}_i' \oplus \mathcal{G}_i'' \to \mathcal{G}_i$$

induced by the inclusions, which we wish to show is an isomorphism. Since both modules are free of rank m, to obtain the desired decomposition it suffices to check surjectivity, which holds on fibers by the full rank hypothesis, and hence on stalks by Nakayama’s lemma.

Since we have already checked condition (ii), it remains to check that (i) is satisfied. We see that $g_{1,i}$ maps \mathcal{G}_i' to $\mathcal{G}_i'_{i+1}$ by construction. On the other hand, $g_{1,i} \mathcal{G}_i'' = g_{1,i} g^{n,i} \mathcal{G}_n'' = s \mathcal{G}_n'_{i+1}$ by condition (I) of a linked Hom space. Thus, $g_{1,i}$ preserves the decomposition, and we see similarly that the maps g_j preserve the decomposition, giving us condition (i), as desired.

We can now prove our main theorem:

Proof of Theorem 1.1. The question being local on S, we may assume without loss of generality that the \mathcal{G}_i decompose as in Lemma 2.5. Denote by m_1 the rank of \mathcal{G}_1' and by m_2 the rank of \mathcal{G}_n''. The existence of the isomorphisms $(g_{1,i})'$ and $(g^{n,i})''$ imply that \mathcal{G}_i' has rank m_1 for all i, and \mathcal{G}_i'' has rank m_2 for all i. In particular, $m_1 + m_2 = m$. We then claim that in fact \mathcal{LH} represents

$$\mathcal{H} := \text{Hom}(\mathcal{F}_1, \mathcal{G}_1') \oplus \text{Hom}(\mathcal{F}_n, \mathcal{G}_n')$$

and is thus a vector bundle of rank $rm_1 + rm_2 = rm$, as desired.

For $i < j$, denote by $(g_{i,j})'$ and $(g^{i,j})''$ the compositions

$$(g_{j-1})' \circ (g_{j-2})' \circ \cdots \circ (g_{i+1})' \circ (g_i)'$$

and

$$(g^i)'' \circ (g^{i+1})'' \circ \cdots \circ (g^{i-2})'' \circ (g^{i-1})''$$

respectively. We use the convention that $(g_{i,i})'$ and $(g^{i,i})''$ denote the identity map.
Clearly, there is a natural forgetful map from \(h_{LH} \) to \(H \). To construct the inverse map, if we are given \(\varphi''_1 \in \text{Hom}(\mathcal{F}_1, \mathcal{G}'')_T \) and \(\varphi''_n \in \text{Hom}(\mathcal{F}_n, \mathcal{G}'')_T \), we can construct \(\varphi_i \in \text{Hom}(\mathcal{F}_i, \mathcal{G}'')_T \) for all \(i \) by setting
\[
\varphi_i = ((g_{i,n})')^{-1} \circ \varphi'_n \circ f_{i,n} \oplus ((g_{i+1,n})')^{-1} \circ \varphi''_n \circ f_{i+1}.
\]
We check the linkage condition directly: we have
\[
\varphi_{i+1} \circ f_i = ((g_{i+1,n})')^{-1} \circ \varphi'_n \circ f_{i+1,n} \circ f_i \oplus ((g_{i+1,n})')^{-1} \circ \varphi''_n \circ f_{i+1} \circ f_i
\]
\[
= ((g_{i+1,n})')^{-1} \circ \varphi'_n \circ f_{i,n} \oplus s((g_{i+1,n})')^{-1} \circ \varphi''_n \circ f_{i},
\]
so we conclude equality from the fact that \(g_i \circ (g')'' = s \text{id} \). Similarly, we have \(\varphi_i \circ f_i = g_i \circ \varphi_{i+1} \), so the linkage condition holds. Moreover, the fact that \((g_i)' \) and \((g')'' \) are isomorphisms together with the linkage condition imply that the \(\varphi_i \) are uniquely determined by \(\varphi'_1 \) and \(\varphi''_n \), so we obtain the desired isomorphism of functors and conclude the theorem.

\[\square\]

Remark 2.6. Note that the conditions on the \(f_i, f' \) are quite minimal, and the only additional conditions we impose on the \(g_i, g' \) beyond that for a linked Grassmannian are that \(\text{im} g_i \) actually be complementary to \(\text{ker} g_{i+1} \) and similarly for the \(g' \), while for linked Grassmannians we required only that \(\text{im} g_i \cap \text{ker} g_{i+1} = (0) \) and \(\text{im} g_{i+1} \cap \text{ker} g_i = (0) \).

We see moreover that this mild strengthening is indeed necessary in order for Theorem 1.1 to hold: consider the case that \(r = 1, m = 3, \) and \(n = 3, \) with \(s = t^2, \) all modules free, and in terms of chosen bases, maps given as follows:
\[
f_1 = f_2 = f^1 = f^2 = t,
\]
\[
\begin{bmatrix}
g_1 &=& \begin{bmatrix} 1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix}, &
g_1' &=& \begin{bmatrix} s & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},
g_2 &=& \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}, &
g_2' &=& \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{bmatrix}
\]

First suppose that \(S \) is a point, and that \(t = 0 \). In this case, the space \(LH \) parametrizes triples of vectors in \(\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3 \) which are in the kernels of all relevant maps, and this has dimension 4, which is larger than \(rm = 3 \).

If instead \(S \) is the spectrum of a DVR, and \(t \) is a uniformizer, then we have that \(LH \) has dimension 3 over the generic point, but dimension 4 over the closed point, so \(LH \) is not even flat over \(S \).

3. Application to Limit Linear Series

We conclude with a brief explanation of the application of Theorem 1.1 to the construction of spaces of limit linear series. We follow the notation of [5]. We begin with a family \(\pi : X \to B \) of curves of genus \(g \) satisfying the conditions of a smoothing family, as specified in Definition 3.1 of loc. cit. In particular, over the locus \(\Delta \) of \(B \) over which \(X \) is not smooth, \(X \) is nodal, consisting of two smooth components \(Y \) and \(Z \) glued along a section \(\Delta' \) of \(\pi \). Although [5] also treats the
case in which π is smooth, we will only be interested in the other two cases, where $\Delta = B$ or where Δ is a Cartier divisor in B. Given integers r, d, Definition 4.5 of loc. cit. then describes a limit linear series functor which can be summarized roughly as follows.

In the case that $\Delta = B$, to a B-scheme T, the functor associates the set of line bundles \mathcal{L} on $X|_T$ of degree d on $Y|_T$ and degree 0 on $Z|_T$, together with rank-$(r+1)$ subbundles V_i of $\pi_*\mathcal{L}$, where \mathcal{L}_i is obtained from \mathcal{L} by gluing together the line bundles $\mathcal{L}|_Y(-i\Delta')$ and $\mathcal{L}|_Z(i\Delta')$. We further require that each V_i map into V_{i+1} under the maps which are zero on Y and the natural inclusion on Z, and vice versa.

In the case that Δ is a Cartier divisor in B, to a B-scheme T the functor associates the set of line bundles \mathcal{L} on $X|_T$ of degree d on $Y|_T$ and degree 0 on $Z|_T$, together with rank-$(r+1)$ subbundles V_i of $\pi_*\mathcal{L}$, where $\mathcal{L}_i := \mathcal{L} \otimes \mathcal{O}_X(iY)|_T$. We further require that the V_i map into one another under the maps which are the natural inclusions in one direction, and which are obtained from a choice of isomorphism $\mathcal{O}_X(-Z) \cong \mathcal{O}_X(Y)$ in the other.

In fact, the definition also allows for imposing ramification along sections, but this part of the construction is unaffected by Theorem 1.1, so for the sake of simplicity we ignore it. The construction of the scheme representing the functor (as given in Theorem 5.3 of [5]) then proceeds as follows. Let P be the relative Picard scheme parametrizing line bundles of degree d on Y and degree 0 on Z, and let \mathcal{L} be the universal line bundle on $X \times_B P$. Let \mathcal{L}_i be obtained from \mathcal{L} as in the definition of the functor, depending on which case we are in. Then the \mathcal{L}_i also have maps in both directions as described above. Choose D a sufficiently ample divisor on X, and consider the linked Grassmannian LG parametrizing tuples of rank-$(r+1)$ subbundles V_i of $p_*\mathcal{L}$, which map into one another under the given maps. This space has dimension $\dim B + g + (r+1)(d + \deg D - g - r)$. We can cut out the scheme representing our functor by requiring that the V_i are in fact contained in $p_{2*}\mathcal{L}_i$ for each i, or equivalently that the induced maps $V_i \to p_{2*}(\mathcal{L}_i(p_i^*D)|_{p_i^*D})$ are all zero. However, the trick is to give the appropriate bounds on the dimension. In [5], this was accomplished in an ad hoc manner by writing $D = D_Y + D_Z$ for divisors D_Y, D_Z supported entirely on Y and Z respectively, and checking that imposing vanishing along p_i^*D for all i is equivalent to imposing vanishing on $p_i^*D_Y$ for V_0, and vanishing on $p_i^*D_Z$ for V_d.

With Theorem 1.1, we can proceed more directly. We can rephrase the above discussion as follows: our space LG carries the universal chains of bundles $\{V_i\}$ and $\{p_{2*}(\mathcal{L}_i(p_i^*D)|_{p_i^*D})\}$ of ranks $r+1$ and $\deg D$ respectively, together with a linked homomorphism between them, and the desired limit linear series space is cut out precisely by the condition that this linked homomorphism be 0 for all i. Now, it is easy to see that our chains of bundles satisfy the conditions for a linked Hom space. Indeed, condition (I) is inherited from the $p_{2*}\mathcal{L}_i(p_i^*D)$. Next, we have that the maps between the $p_{2*}(\mathcal{L}_i(p_i^*D)|_{p_i^*D})$ fail to be isomorphisms precisely over Δ. Over Δ, we have that a section of $\mathcal{L}_i(p_i^*D)|_{p_i^*D}$ is in the image of $\mathcal{L}_{i-1}(p_i^*D)|_{p_i^*D}$ if and only if it vanishes along $p_i^*(D \cap Y)$, which is to say if it is in the kernel of the map back to $\mathcal{L}_{i-1}(p_i^*D)|_{p_i^*D}$. Thus, condition (II) is satisfied. On the other hand, a section is in the kernel of the map to $\mathcal{L}_{i+1}(p_i^*D)|_{p_i^*D}$ if and only if it vanishes along $p_i^*(D \cap Z)$. However, $\mathcal{L}_i(p_i^*D)|_{p_i^*D}$ decomposes as a direct sum of the spaces of sections vanishing on $p_i^*(D \cap Y)$ and on $p_i^*(D \cap Z)$, so we obtain condition (III).
as well. Because the limit linear series space is the preimage of the zero section under the given map to the linked Hom space, we conclude from Theorem 1.1 that each component has codimension at most \((r + 1) \deg D\) inside \(LG\), and thus that each component has dimension at least
\[
\dim B + g + (r + 1)(d - g - r) = \dim B + (r + 1)(d - r) - rg,
\]
agreeing with the formula obtained in Theorem 5.3 of [5].

References

[1] David Eisenbud and Joe Harris, Limit linear series: Basic theory, Inventiones Mathematicae 85 (1986), 337–371.
[2] David Helm and Brian Osserman, Flatness of the linked Grassmannian, Proceedings of the AMS 136 (2008), no. 10, 3383–3390, arXiv:math.AG/0605373.
[3] Montserrat Teixidor i Bigas, Brill-Noether theory for stable vector bundles, Duke Mathematical Journal 62 (1991), no. 2, 385–400.
[4] Brian Osserman, Brill-Noether loci in rank 2 with fixed determinant, arXiv:1005.0448.
[5] ———, A limit linear series moduli scheme, Annales de l’Institut Fourier 56 (2006), no. 4, 1165–1205, arXiv:math.AG/0407496.