Molecular mechanism of parallel fiber-Purkinje cell synapse formation

Masayoshi Mishina1,2*, Takeshi Uemura2, Misato Yasumura2 and Tomoyuki Yoshida2

1 Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
2 Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

*Correspondence: Masayoshi Mishina, Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan. e-mail: mmishina@fc.ritsumei.ac.jp

The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptors (GluRs) play central roles in synaptic transmission, synaptic plasticity, learning, memory, and development in the brain. Ionotropic GluRs have been classified into three major subtypes, the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors, based on the pharmacological, and electrophysiological properties (Mayer and Westbrook, 1987; Monaghan et al., 1989).

We found the δ subtype of GluR by molecular cloning (Yamazaki et al., 1992). With respect to the amino-acid sequence identity, the GluRδ (GluD) subtype is positioned between the NMDA and non-NMDA (AMPA/kainite) subtypes (Yamazaki et al., 1992; Araki et al., 1993; Lomeli et al., 1993; Hollmann and Heinemann, 1994; Mori and Mishina, 1995; Mishina, 2000). GluRδ2, the second member of this subfamily, is selectively expressed in cerebellar PCs (Araki et al., 1993; Lomeli et al., 1993). Interestingly, GluRδ2 is localized at PF-PC synapses in cerebellar PCs, but not at CF-PC synapses (Takayama et al., 1996; Landsend et al., 1997). GluRδ2 knockout mice showed severe impairments of long-term depression (LTD) at the PF-PC synapse, motor learning, and motor coordination (Funabiki et al., 1995; Hirano et al., 1995; Kashiwabuchi et al., 1995; Kishimoto et al., 2001). Furthermore, a significant number of PC spines lack synaptic contacts with PF terminals and multiple CF innervation to PCs is sustained in GluRδ2 mutant mice (Kashiwabuchi et al., 1995; Kurihara et al., 1997; Hashimoto et al., 2001; Ichikawa et al., 2002). Thus, GluRδ2 plays a central role in the synaptic plasticity, motor learning, and neural wiring of cerebellar PCs. Since there is no evidence for GluRδ2 channel activities, although lurcher mutation (Ala639Thr) transformed GluRδ2 to constitutively active channels (Zuo et al., 1997), it remained unknown how GluRδ2 regulates cerebellar wiring and function. Recent findings provided significant insights on the issue.

GluRδ2 REGULATES SYNAPTIC PLASTICITY AND MOTOR LEARNING THROUGH THE C-TERMINAL DOMAIN

Studies with conventional and conditional knockout mice revealed that GluRδ2 is essential for synapse formation, synaptic plasticity, motor learning, and the restriction of CF territory (Figure 1). However, the causal relationships of these phenotypes remained to be clarified. The C-terminal cytoplasmic region of GluRδ2 contains at least three domains for protein-protein interactions (Roche et al., 1999; Uemura et al., 2004; Yayata et al., 2006). The postsynaptic density (PSD)-95/Discs large/zona occludens 1 (PDZ)-binding domain at the C-terminal, designated as the T site (Uemura et al., 2007), interacts with PSD-93, PTPMEG, Delphinin, nPIST, and S-SCAM (Roche et al., 1999; Hironaka et al., 2000; Miyagi et al., 2002; Yue et al., 2002; Yap et al., 2003).
In the middle of the C-terminal cytoplasmic region, there is the domain that interacts with Shank scaffold proteins, designated as the S segment (Uemura et al., 2004). The membrane-proximal domain of the C-terminal cytoplasmic region of GluRδ2 interacts with PICK1 (Yawata et al., 2006).

We generated GluRδ2ΔT mice carrying mutant GluRδ2 lacking the T site comprising seven amino acids at the C-terminal (Uemura et al., 2007). There were no significant differences in the amount of receptor proteins in the PSD fraction and in the density of GluRδ2 immunogold particles at PF-PC synapses between wild-type and GluRδ2ΔT mice. Thus, the C-terminal truncation exerted little effect on the synaptic localization of receptor proteins. Synaptic connections between PF terminals and PC spines were intact in GluRδ2ΔT mice. However, LTD induction at PF-PC synapses was impaired and the improvement of the performance in the accelerating rotarod test was diminished in the mutant mice. The importance of the GluRδ2 C-terminal in cerebellar LTD and motor learning is consistent with the observations that in PTPMEG mutant mice, LTD at PF-PC synapses was significantly attenuated and rapid acquisition of the cerebellum-dependent delay eyeblink conditioning was impaired (Kina et al., 2007). These results suggest that the C-terminal T site of GluRδ2 is essential for LTD induction and motor learning, but is dispensable for PF-PC synapse formation (Uemura et al., 2007).

Delphilin is selectively expressed in cerebellar PCs except for a slight expression in the thalamus and is exclusively localized at the postsynaptic junction site of the PF-PC synapse (Miyagi et al., 2002). The characteristic expression pattern of Delphilin is reminiscent of GluRδ2. Delphilin knockout mice showed no detectable abnormalities in cerebellar histology, PC cytology, and PC synapse formation (Takeuchi et al., 2008). Delphilin ablation exerted little effect on the synaptic localization of GluRδ2. However, LTD induction was facilitated at PF-PC synapses and intracellular Ca2+ required for the induction of LTD appeared to be reduced in Delphilin knockout mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings suggest that synaptic plasticity at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning (Takeuchi et al., 2008).

GluRδ2 TRIGGERS PF-PC SYNAPSE FORMATION BY TRANS-SYNAPTIC INTERACTION WITH NEUREXINS THROUGH Cbln1

We examined the role of GluRδ2 in the adult brain using inducible and cerebellar PC-specific gene targeting on the C57BL/6 genetic background (Takeuchi et al., 2005). When GluRδ2 proteins were
diminished, a significant number of PC spines lost their synap-
tic contacts with PF terminals. Thus, studies with conventional
and inducible knockout mice indicate that the formation and
maintenance of PF-PC synapses are critically dependent on
GluRδ2 in vivo (Kashiwabuchi et al., 1995; Takeuchi et al., 2005).
Concomitant with the decrease of postsynaptic GluRδ2 proteins,
postsynaptic active zones shrank progressively and PSD expanded,
resulting in mismatching between pre- and postsynaptic spe-
cializations at PF-PC synapse (Figure 2). Furthermore, GluRδ2
and PSD-93 proteins were concentrated at the contacted portion
of mismatched synapses, while AMPA receptors distributed in
both the contacted and dissociated portions. Thus, postsynaptic
GluRδ2 is a key regulator of the presynaptic active zone and PSD
organization at PF-PC synapses. Based on the direct relationship
between the density of postsynaptic GluRδ2 and the size of presy-
naptic active zones in GluRδ2 mutant mice generated by inducible
Cre-mediated ablation, we proposed that GluRδ2 makes a physi-
ical linkage between the active zone and PSD by direct or indirect
interaction with an active zone component (Takeuchi et al., 2005).
Indirect interaction through PSD proteins appears to be less likely
since the C-terminal truncation of GluRδ2 has little effect on
PF-PC synapse formation, while the mutation impairs cerebellar
LTD and motor learning (Uemura et al., 2007).

To identify the key domain responsible for synapse formation,
we expressed GluRδ2 in HEK293T cells and cultured the
transfected cells with cerebellar granule cells (GCs) (Uemura and
Mishina, 2008) (Figure 3). Numerous punctate signals for presy-
naptic markers were observed on the surface of HEK293T cells
expressing GluRδ2. The presynaptic specializations of cultured
GCs induced by GluRδ2 were capable of exo- and endocytosis as
indicated by FM1-43 dye labeling. Replacement of the extracellu-
lar N-terminal domain (NTD) of GluRδ2 with that of the AMPA
receptor GluRα1 abolished the inducing activity. The NTD of
GluRδ2 (GluRδ2-NTD) coated on beads successfully induced the
accumulation of presynaptic specializations. These results sug-
gest that GluRδ2 triggers synapse formation by direct interaction
with presynaptic component(s) through the NTD (Uemura and
Mishina, 2008; Kakegawa et al., 2009; Kuroyanagi et al., 2009;
Mandolesi et al., 2009).

To seek for GluRδ2 interacting proteins, the presynap-
tic differentiation of cerebellar GCs was induced by treat-
ment with GluRδ2-NTD-coated magnetic beads and then

![FIGURE 2 | Close relationship between the amount of GluRδ2 protein and
the size of the active zone. (A) Ablation of GluRδ2, when induced in the adult
brain, resulted in the disruption of synaptic connections with PF terminals in a
significant number of PC spines. In addition, some of residual PF-PC synapses
show mismatching between pre- and postsynaptic specializations (Takeuchi
et al., 2005). White and black arrowheads indicate the edges of active zone
and PSD, respectively. (B) Schematic presentation of the relationships
between the amount of GluRδ2 protein and the sizes of presynaptic active
zone (hatched) and PSD (cross-hatched). The length of active zone became
shorter in the order of normal, matched, and mismatched synapses according
to the decrease of the density of GluRδ2-immunogold labeling at postsynaptic
sites (Takeuchi et al., 2005). Based on the direct relationship between the
density of postsynaptic GluRδ2 and the size of presynaptic active zones in
GluRδ2 mutant mice, we proposed that GluRδ2 makes a physical linkage
between the active zone and PSD by interaction with an active zone
component. Normal, normal synapse of wild-type mice; matched, matched
synapse of induced GluRδ2 KO mice; mismatched, mismatched synapse of
induced GluRδ2 KO mice; free, free spine of induced GluRδ2 KO mice.]
surface proteins of cerebellar GC axons were covalently bound to GluRδ2-NTD using non-permeable cross-linker 3,3′-dithiobis(sulfosuccinimidylpropionate). Comparative analysis of the isolated proteins by liquid chromatography-tandem mass spectrometry identified neurexin (NRXN) 1, NRXN2, FAT2, protein tyrosine phosphatase σ (PTPσ), and cerebellin 1 precursor protein (Cbln1) as possible GluRδ2-interacting proteins (Uemura et al., 2010). NRXN1, NRXN2, FAT2, and PTPσ are membrane proteins (Pulido et al., 1995; Nakayama et al., 2002; Sündhöf, 2008), while Cbln1 is a glycoprotein secreted from cerebellar GCs (Bao et al., 2005). After a series of selections, we found robust binding signals of GluRδ2-NTD on the surface of HEK293T cells transfected with NRXN1β or NRXN2β in the presence of Cbln1. It is known that presynaptic NRXNs bind to postsynaptic neuroligins (NLGNs) forming trans-synaptic cell adhesion complexes (Ichtchenko et al., 1995; Scheiffele et al., 2000; Graf et al., 2004) and NLGNs preferentially bind to NRXN variants lacking splice segment 4 (S4) (Boucard et al., 2005; Chih et al., 2005; Comoletti et al., 2006). In contrast to NLGNs, GluRδ2 selectively interacts with NRXN variants containing S4. NRXN variants containing S4 were expressed in the cerebellum but those lacking S4 were hardly detectable except for early stages of development, while both variants were found in the cerebral cortex and hippocampus (Uemura et al., 2010; Iijima et al., 2011).

Direct binding experiments showed that GluRδ2 is a receptor for Cbln1 and NRXN is another receptor for Cbln1 (Uemura et al., 2010). The KD value of Cbln1 for the NTD of GluRδ2 estimated by surface plasmon resonance binding assays is 16.5 nM and that for the extracellular domain (ECD) of NRXN1β is 0.17 nM. These values suggest high affinity interactions of GluRδ2, Cbln1 and NRXN as compared with KD values (≈200 to ≈600 nM) reported for the interactions between NLGNs and NRXNs (Comoletti et al., 2003; Koehnke et al., 2008). Matsuda et al. (2010) also reported the interaction between Cbln1 and GluRδ2. Since Cbln1 is a ligand for both GluRδ2 and NRXN, we propose a model in which postsynaptic GluRδ2 interacts with presynaptic NRXN through Cbln1 and this ternary interaction provides a physical linkage between PSD and active zone (Uemura et al., 2010). The synaptogenic activity of GluRδ2 is hindered by knockout of Cbln1 and by small interference RNA-mediated knockdown of NRXNs. Furthermore, the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo was abolished by the NTD of GluRδ2 and the ECD of NRXN1β (Figure 4). These results suggest that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic NRXNs through Cbln1 mediates PF-PC synapse formation in the cerebellum (Uemura et al., 2010). This model well explains previous observations that the size of the presynaptic active zone shrank progressively concomitant with the decrease of postsynaptic GluRδ2 proteins upon inducible Cre-mediated GluRδ2 ablation (Takeuchi et al., 2005) and that Cbln1 knockout mice phenotypically mimic GluRδ2 knockout mice (Hirai et al., 2005).

ASSEMBLY STOICHIOMETRY OF THE TRANS-SYNAPTIC TRIAD

Cumulative evidence indicates the tetrameric assembly of the AMPA/kainate- and NMDA-type GluRs (Laube et al., 1998; Rosenmund et al., 1998; Bowie and Lange, 2002; Sun et al., 2002; Weston et al., 2006). The mobility of GluRδ2 molecules from the membrane fraction corresponded to the size of the tetramer in blue native PAGE. GluRδ2 band collapsed into monomeric and dimeric intermediates by the treatment of 1% SDS. These behaviors were similar between GluRδ2 and AMPA-type GluR. These results suggest that GluRδ2 exists as a tetramer in the membrane. On the other hand, GluRδ2-NTD assembled into a stable homodimer. The NTD of ionotropic GluRs with tetrameric structure assembles as a dimer of dimers (Schorge and Colquhoun, 2003; Tichelaar et al., 2004; Midgett and Madden, 2008; Kumar et al., 2009) and tetrameric iGluRs have 2-fold symmetry rather than 4-fold symmetry (Armstrong and Gouaux, 2000; Sobolevsky et al., 2004, 2009; Nanao et al., 2005).

When incubated with cultured cerebellar GCs, dimeric GluRδ2-NTD exerted little effect on the intensities of punctate immunostaining signals for Bassoon and vesicular glutamate transporter 1 (VGlut1). In contrast, tetrameric GluRδ2-NTD prepared by cross-linking dimeric GluRδ2-NTD-Fc using F(ab′)2 of anti-Fc antibody enhanced the accumulation of the active zone and synaptic vesicle proteins in axons of cultured GCs. These results suggest that native GluRδ2 is
assembled into a tetramer and this tetrameric assembly is essential for GluRδ2 to induce presynaptic differentiation (Lee et al., 2012).

Affinities of a series of Cbln1 mutants for GluRδ2-NTD and NRXN1β-ECD suggest that the binding sites of Cbln1 for GluRδ2 and NRXN1β are differential rather than identical. In addition, no competition was detectable in the binding to Cbln1 between GluRδ2-NTD and the laminin–neurexin–sex hormone-binding globulin (LNS) domain of NRXN1β during triad formation. These results suggest that GluRδ2 and Cbln1 interact with each other rather independently of Cbln1-NRXN1β interaction and vice versa. We thus examined the assembly stoichiometries of GluRδ2-Cbln1 and Cbln1-NRXN1β complexes one by one. Both fast protein liquid chromatography gel-filtration assay and isothermal titration calorimetry analysis consistently showed that dimeric GluRδ2-NTD and hexameric Cbln1 assembled in the molar ratio of one to one, while hexameric Cbln1 and monomeric NRXN1β-LNS assembled in the molar ratio of one to two. Since native GluRδ2 exists as a tetramer in the membrane and the tetramerization is essential for GluRδ2-NTD to stimulate the accumulation of Bassoon and VGluT1 in the axons of cultured GCs, we suggest that the synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN (Lee et al., 2012).

MECHANISM OF GluRδ2-MEDIATED SYNAPSE FORMATION

During development, axons of immature neurons show a capacity for evoked recycling of synaptic vesicles and clusters of the vesicles along axonal segments, even in the absence of target cells (Ziv and Garner, 2004; Jin and Garner, 2008). However, the synaptic vesicle aggregation, in the absence of a postsynaptic contact, is not stably anchored to a given region of the cell surface. Contacts with postsynaptic sites trigger the stabilization and maturation of synapses. In cultured cerebellar GCs, the majority of varicosities containing presynaptic proteins are not apposed to definite postsynaptic structures (Marxen et al., 1999; Urakubo et al., 2003). Cbln1 is a high-affinity ligand for NRXNs (Uemura et al., 2010; Joo et al., 2011) and is secreted from cerebellar GCs (Bao et al., 2005), suggesting that the interaction between secreted Cbln1 and presynaptic NRXNs takes place before PF-PC synapse formation. However, punctate staining signals for Bassoon were comparable between GC cultures from wild-type and Cbln1 knockout mice. The addition of Cbln1 to GC cultures exerted little effect on the intensity of Bassoon.
signals. Thus, the formation of NRXN dimers is not sufficient to induce presynaptic differentiation. Consistently, GluRδ2-NTD dimer that binds to one molecule of Cbln1 failed to induce presynaptic differentiation. In contrast, GluRδ2-NTD tetramer stimulated the accumulation of punctate signals for active zone protein Bassoon and synaptic vesicle protein VGluf1 in cultured cerebellar GCs. Since GluRδ2-NTD tetramer is soluble, it is unlikely that this stimulating effect is due to anchoring presynaptic proteins. Our results suggest that tetrameric GluRδ2-NTD assembles two molecules of Cbln1 and four molecules of NRXNs, whereas dimeric GluRδ2-NTD interacts with one molecule of Cbln1 and two molecules of NRXNs. Thus, clustering of four NRXNs by tetrameric GluRδ2-NTD via two Cbln1 is a key step to trigger presynaptic differentiation (Lee et al., 2012). Taken together, our results suggest the mechanism of PF-PC synapse formation as follows. Cbln1 secreted from cerebellar GCs may interact with presynaptic NRXNs before PF-PC synapse formation. However, Cbln1-induced NRXN dimerization is not sufficient to trigger presynaptic differentiation. When the contact between the PF terminal and PC spine takes place, GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation (Figure 5). Since NRXNs interact with synaptic tagmin, CASK, Mint and syntenin through its C-terminal (Hata et al., 1993, 1996; Butz et al., 1998; Biederer and Südhof, 2000; Grootjans et al., 2000) and the C-terminal of NRXN is critical for the induction of presynaptic differentiation in vitro (Dean et al., 2003), tetramerization of NRXNs may stimulate the clustering of these scaffold proteins leading to the organization of transmitter release machineries (Butz et al., 1998; Maximov et al., 1999; Biederer and Südhof, 2000, 2001).

CONCLUSION

Cerebellar PC-specific GluRδ2 plays essential roles in synapse formation, synaptic plasticity and motor learning. The NTD of GluRδ2 is responsible for synapse formation, whereas the C-terminal domain is essential for LTD induction and motor learning. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning in the cerebellum. Synapse formation is the key step in the development of neuronal networks. Precise synaptic connections between nerve cells in the brain provide the basis of perception, learning, memory, and cognition. Although a number of trans-synaptic cell adhesion molecules have been identified that play roles in pre- and postsynaptic differentiation of cultured hippocampal neurons, the precise roles of these molecules in synapse formation in vivo remain elusive (Scheiffele et al., 2000; Dean et al., 2003; Graf et al., 2004; Waites et al., 2005; Varoqueaux et al., 2006; Dalva et al., 2007; McAllister, 2007; Südhof, 2008; Shen and Scheiffele, 2010; Williams et al., 2010; Siddiqui and Craig, 2011). Our results provide evidence that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic NRXNs through Cbln1 mediates PF-PC synapse formation in vivo in the cerebellum (Uemura et al., 2010). Furthermore, the stoichiometry of synaptogenic GluRδ2-Cbln1-NRXN triad suggests that GluRδ2 triggers presynaptic differentiation by clustering four NRXNs (Lee et al., 2012). It will be essential for the elucidation of synaptogenesis mechanism to investigate how NRXN clustering initiates the formation of presynaptic active zone. Interestingly, approximately half of PF-PC synapses survived in GluRδ2 knockout mice (Kashiwabuchi et al., 1995; Kurihara et al., 1997). There may be at least two types of PF-PC synapses, GluRδ2-dependent and independent synapses. Alternatively, other synaptogenic molecule(s) may partly compensate GluRδ2 deficiency in the knockout mice. It should be noted that the organization and composition of remaining PF-PC synapses in the absence of GluRδ2 appear to be altered, suggesting that GluRδ2 also plays a role as a PSD organizer (Takeuchi et al., 2005; Yamasaki et al., 2011). Further investigation of the structure and function of the GluRδ2-Cbln1-NRXN synaptogenic triad will provide a clue to understand how central synapses are formed, mature, show plastic changes, and mediate learning and memory.

During development, PC circuitry is established through heterosynaptic competition between PFs and CFs (Mariani et al., 1977; Crépel, 1982). GluRδ2 regulates the PC wiring by suppressing invasion of CF branches to the territory of PF innervation and to neighboring PCs (Kashiwabuchi et al., 1995; Hashimoto et al., 2001; Ichikawa et al., 2002; Uemura et al., 2007; Miyazaki et al., 2010). Weakened PF inputs due to the decrease of PF-PC synapses in GluRδ2 mutant mice may result in CF invasion to the PF territory (Hashimoto et al., 2001; Ichikawa et al., 2002). However, the territory of CF innervation expanded distally to spiny branchlets in GluRδ2-ΔT mice with intact PF-PC synaptogenic connections (Uemura et al., 2007). GluRδ2 is localized at PF-PC synapses but not at CF synapses (Takayama et al., 1996; Landsend et al., 1997). Thus, GluRδ2 should suppress the distal extension and ectopic innervation of CF axon terminals by the signaling through the C-terminal T site (Uemura et al., 2007).

ACKNOWLEDGMENTS

This work was supported in part by research grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

FIGURE 5 | Molecular mechanism of PF-PC synapse formation. Before PF-PC synapse formation, Cbln1 secreted from cerebellar GCs may interact with presynaptic NRXNs. Cbln1-induced NRXN dimerization is not sufficient to trigger presynaptic differentiation. When the contact between the PF terminal and PC spine takes place, GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation.
REFERENCES

Araki, K., Meguro, H., Kushiya, E., Takayama, C., Inoue, Y., and Mishina, M. (1993). Selective expression of the glutamate receptor channel α2 subunit in cerebellar Purkinje cells. Biochem. Biophys. Res. Commun. 197, 1267–1276.

Armstrong, N., and Gouaux, E. (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structure of the GluR2 ligand binding core. Neuron 28, 165–181.

Bao, D., Pang, Z., and Morgan, J. I. (2005). The structure and proteolytic processing of Cbln1 complexes. J. Neurochem. 95, 618–629.

Biederer, T., and Südhof, T. C. (2000). Mints as adaptors: direct binding to neurexins and recruitment of Munc18. J. Biol. Chem. 275, 39803–39806.

Biederer, T., and Südhof, T. C. (2001). CASK and Protein 4.1 support F-actin nucleation on neurexins. J. Biol. Chem. 276, 47869–47876.

Butz, S., Okamoto, M., and Südhof, T. C. (2000). Crystal structure of the GluR2 ligand binding core. Neuron 28, 165–181.

Comoletti, D., Flynn, R., Jennings, P. M., and Südhof, T. C. (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 229–236.

Dove, D., and Lange, G. D. (2002). Functional stoichiometry of glutamate receptor desensitization. J. Neurosci. 22, 3392–3403.

Hata, Y., Davletov, B., Petrenko, A. G., Jahn, R., and Südhof, T. C. (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494.

Hata, Y., Demeler, B., Schirf, V., Shi, J., et al. (2006). Gene selection, alternative splicing, and post-translational processing regulate neurexin selectivity for β-neurexins. Biochemistry 45, 12816–12827.

Crepel, F. (1982). Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 5, 266–269.

Dalva, M. B., McClelland, A. C., and Kayser, M. S. (2007). Cell adhesion molecules: signalling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220.

Dean, C., Scholl, F. G., Choih, J., DeMaria, S., Berger, J., Isaccoff, E., et al. (2003). Neurexin mediates the assembly of presynaptic terminal. Nat. Neurosci. 6, 708–716.

Funahashi, K., Mishina, M., and Hirano, T. (1995). Retarded vesicular compensation in mutant mice deficient in α2 glutamate receptor subunit. Neuronetwork 7, 189–192.

Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W., and Craig, A. M. (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neurelins. Cell 119, 1013–1026.

Groothuis, J. J., Reekmans, G., Ceulemans, H., and David, G. (2000). Synetnin-Syndecan binding requires Syndecan-Syntenin and the co-operation of both PDZ domains of Syndecin. J. Biol. Chem. 275, 19933–19941.

Hashimoto, K., Ichikawa, R., Takechi, H., Inoue, Y., Aiba, A., Sakurama, K., et al. (2001). Roles of glutamate receptor α2 subunit (GluR2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J. Neurosci. 21, 9701–9712.

Hata, Y., Butz, S., and Südhof, T. C. (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494.

Hata, Y., Davletov, B., Petrenko, A. G., Jahn, R., and Südhof, T. C. (1993). Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10, 307–315.

Hara, H., Pang, Z., Bao, D., Miyazaki, T., Li, L., Miura, E., et al. (2005). Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat. Neurosci. 8, 1534–1541.

Hata, Y., Demeler, B., Schirf, V., Shi, J., et al. (2006). Gene selection, alternative splicing, and post-translational processing regulate neurexin selectivity for β-neurexins. Biochemistry 45, 12816–12827.

Crepel, F. (1982). Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 5, 266–269.

Dalva, M. B., McClelland, A. C., and Kayser, M. S. (2007). Cell adhesion molecules: signalling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220.

Dean, C., Scholl, F. G., Choih, J., DeMaria, S., Berger, J., Isaccoff, E., et al. (2003). Neurexin mediates the assembly of presynaptic terminal. Nat. Neurosci. 6, 708–716.

Funahashi, K., Mishina, M., and Hirano, T. (1995). Retarded vesicular compensation in mutant mice deficient in α2 glutamate receptor subunit. Neuronetwork 7, 189–192.

Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W., and Craig, A. M. (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neurelins. Cell 119, 1013–1026.

Groothuis, J. J., Reekmans, G., Ceulemans, H., and David, G. (2000). Synetnin-Syndecan binding requires Syndecan-Syntenin and the co-operation of both PDZ domains of Syndecin. J. Biol. Chem. 275, 19933–19941.

Hashimoto, K., Ichikawa, R., Takechi, H., Inoue, Y., Aiba, A., Sakurama, K., et al. (2001). Roles of glutamate receptor α2 subunit (GluR2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J. Neurosci. 21, 9701–9712.

Hata, Y., Butz, S., and Südhof, T. C. (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494.

Kishimoto, Y., Kawahara, S., Suzuki, M., Morii, H., Mishina, M., and Kirino, Y. (2001). Classical eyelid blinking condition in glutamate receptor subunit δ2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur. J. Neurosci. 13, 1249–1253.

Koehne, J., Jin, X., Trivonic, N., Katsamba, P. S., Brasch, J., Ahlsen, G., et al. (2008). Crystal structures of β-neurexin 1 and β-neurexin 2 ectodomains and dynamics of splice insertion sequence 4. Structure 16, 410–421.

Kumar, J., Schuck, P., Jin, R., and Mayer, M. L. (2009). The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nat. Struct. Mol. Biol. 16, 631–638.

Kurilhara, H., Hashimoto, K., Kano, M., Takayama, C., Sakurama, K., Mishina, M., et al. (1997). Impaired parallel fiber-Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor α2 subunit. J. Neurosci. 17, 9613–9623.

Kuroyanagi, T., Yokoyama, M., and Hirano, T. (2009). Postsynaptic glutamate receptor δ family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc. Natl. Acad. Sci. U.S.A. 996, 4912–4916.

Landsend, A. S., Amiry-Moghaddam, M., Matsusbara, A., Bergersen, L., Usami, S., Wenthold, R. J., et al. (1997). Differential localization of δ glutamate receptors in the rat cerebellum: coexpression with AMPA receptor subunits in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17, 834–842.

Laube, B., Kuhse, J., and Betz, H. (1998). Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961.

Lee, S.-J., Uemura, T., Yoshi, Y., and Mishina, M. (2012). GluR2 assemblies four neurexins into trans-synaptic triad to trigger synaptic formation. J. Neurosci. 32, 4688–4701.

Lomeli, H., Sprengel, R., Laurie, D. J., Körh, G., Herb, A., Seeburg, P. H., et al. (1995). The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FERS Lett. 315, 318–322.

Mandolesi, G., Autuori, E., Cesnà, R., Premoselli, F., Cesare, P., and Strata, P. (2009). GluR2 expression in the mature cerebellum of hotfoot mice.
promotes parallel fiber synaptogenensis and axonal competition. PLoS ONE 4:e5243, doi: 10.1371/journal.pone.0005243.

Mariani, I., Crecel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 281, 1–28.

Marxen, M., Volkman, W., and Zimmermann, H. (1999). Endocytic vacuoles formed following a short pulse of K+-stimulation contain a plethora of presynaptic membrane proteins. Neuroscience 94, 985–996.

Matsuda, K., Miura, E., Miyazaki, T., Kakegawa, W., Emi, K., Nemoto, S., et al. (2010). Chn1 is a ligand for an orphan glutamate receptor 82, a bidirectional synapse organizer. Science 328, 363–368.

Maximov, A., Sudhof, T. C., and Bezprozvanny, I. (1999). Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456.

Mayer, M. L., and Westbrook, G. L. (2004). The amino-terminal domain of glutamate receptor GluR δ 2 at parallel fiber synapses through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079.

Mishina, M. (2005). Control of glutamate receptor channel expression and distribution of the ligand has 2-fold rotational symmetry. Neuron 33, 473–507.

Mishina, M., and Mishina, M. (2008). The amino-terminal domain of glutamate receptor 82 triggers presynaptic differentiation. Biochem. Biophys. Res. Commun. 377, 1315–1319.

Miyagi, Y., Yamashita, T., Fukaya, M., and Wollmuth, L. P. (2004). The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378.

Miyazaki, T., Takeuchi, T., Yoshida, T., Ra, M., et al. (2010). Trans-Synaptic interaction of GluR82 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079.

Miyazaki, T., Tominaga-Yoshino, K., and Ogura, A. (2003). Non-synaptic exocytosis enhanced in rat cerebellar granule neurons cultured under survival-promoting conditions. Neurosci. Res. 45, 429–436.

Miyazaki, T., Tominaga-Yoshino, K., Watanabe, M., Abe, M., Natsume, R., Hagiwara, T., et al. (2011). Glutamate receptor 82 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J. Neurosci. 31, 3362–3374.

Miyazaki, M., Araki, K., Shibata, A., and Mishina, M. (1992). Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem. Biophys. Res. Commun. 183, 886–892.

Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.

Mori, H., and Mishina, M. (1995). Structure and function of the NMDA receptor channel. Neurouhaopharmacology 34, 1219–1237.

Nakayama, M., Nakajima, D., Yoshimura, R., Endo, Y., and Obara, O. (2002). MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol. Cell. Neurosci. 20, 565–578.

Nanjo, M. H., Green, T., Sotelo, C., and Changeux, J. P. (2006). Neuroligins determine synapse maturation and function. Neuron 51, 741–754.

Nanjo, M. H., Green, T., Sotelo, C., and Changeux, J. P. (2006). Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456.

Mayer, M. L., and Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197–276.

McAllister, A. K. (2007). Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30, 425–450.

Midgett, C. R., and Madden, D. R. (2008). The quaternary structure of a calcium-permeable AMPA receptor: conservation of shape and symmetry across functionally distinct subunit assemblies. J. Mol. Biol. 382, 578–584.

Mishina, M. (2000). “Molecular diversity, structure, and function of glutamate receptor channels,” in Handbook of Experimental Pharmacology 147, eds M. Endo, Y. Kurachi, and M. Mishina (Berlin: Springer Verlag), 393–414.

Miyagi, Y., Yamashita, T., Fukaya, M., Sonoda, T., Okuno, T., Yamada, K., et al. (2002). Delphinin: a novel PDZ and formin homology domain-containing protein that synthetically colocalizes and interacts with glutamate receptor 82 subunit. J. Neurosci. 22, 803–814.

Miyazaki, T., Yamasaki, M., Takeuchi, T., Sakimura, K., Mishina, M., and Watanabe, M. (2010). Ablation of glutamate receptor GluR82 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J. Neurosci. 30, 15196–15209.

Siddiqui, T. J., and Craig, A. M. (2011). Synaptic organizing complexes. Curr. Opin. Neurobiol. 21, 132–143.

Sohobovsky, A. I., Rosconi, M. P., and Gouaux, E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756.

Sohobovsky, A. I., Yelshansky, M. V., and Wollmuth, L. P. (2004). The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378.

Sudhof, T. C. (2008). Neurilogs and neurexins link synaptic function to cognitive disease. Nature 455, 903–911.

Sun, Y., Olson, R., Horning, M., Armstrong, N., Mayer, M., and Gouaux, E. (2002). Mechanism of glutamate receptor desensitization. Nature 417, 245–253.

Takayama, C., Nakagawa, S., Watanabe, M., Mishina, M., and Inoue, Y. (1996). Developmental changes in expression and distribution of the glutamate receptor channel 82 subunit according to the Purkinje cell maturation. Brain Res. Dev. Brain Res. 92, 147–155.

Takeuchi, T., Miyazaki, T., Watanabe, M., Mori, H., Sakurama, K., and Mishina, M. (2005). Control of synaptic connection by glutamate receptor 82 in the adult cerebellum. J. Neurosci. 25, 2146–2156.

Takai, T., Ohtsuki, G., Yoshiida, T., Fukaya, M., Wainai, T., Yamashita, M., et al. (2008). Enhancement of long-term depression induction and optokinetic response adaptation in mice lacking delphinin. PLoS ONE 3:e2297. doi: 10.1371/journal.pone.0002297.

Tichelaar, W., Saffierling, M., Keinänen, K., Stark, H., and Madden, D. R. (2004). The three-dimensional structure of an ionotropic glutamate receptor reveals a dimer-of-dimers interaction. Neuron 41, 3926–3934.

Rosenmund, C., Stern-Bach, Y., and Stevens, C. F. (1998). The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599.

Scheiffele, P., Fan, J., Choib, J., Fetter, R., and Serafini, T. (2000). Neurilogs expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669.

Schorge, S., and Colquhoun, D. (2003). Studies of NMDF receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23, 1151–1158.

Shen, K., and Scheiffele, P. (2010). Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 33, 473–507.
with C kinase 1 in a cerebellar Purkinje neuron. J. Neurosci. 26, 3626–3633.
Yue, Z., Horton, A., Bravin, M., DeJager, P. L., Selimi, F., and Heintz, N. (2002). A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35, 921–933.
Ziv, N. E., and Garner, C. C. (2004). Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399.
Zuo, J., De Jager, P. L., Takahashi, K. A., Jiang, W., Linden, D. J., and Heintz, N. (1997). Neurodegeneration in lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature 388, 769–773.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 August 2012; accepted: 02 November 2012; published online: 23 November 2012.
Citation: Mishina M, Uemura T, Yasumura M and Yoshida T (2012) Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front. Neural Circuits 6:90. doi: 10.3389/fncir.2012.00090
Copyright © 2012 Mishina, Uemura, Yasumura and Yoshida. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.