An Extended Family of Slant Curves in S–manifolds

Şaban Güvenç

Abstract
In this paper, we define an extended family of slant curves (i.e. θ_α–slant curves) in S–manifolds. We give two examples of such curves in $\mathbb{R}^{2n+3s}(-3s)$, where we choose $n = 1$, $s = 2$. Finally, we study biharmonicity of these curves in S–space forms.

Keywords: θ_α–slant curve; S–manifold; biharmonic curve.

AMS Subject Classification (2020): Primary: 53C25; Secondary: 53C40; 53A04.

1. Introduction

In [6], J. Eells and L. Maire studied selected topics in harmonic maps. In this paper, they suggested k-harmonic maps. G. Y. Jiang dealt with the case $k = 2$ in [11]. He derived the first and second variational formulas for 2-harmonic maps. On the other hand, in [4], B. Y. Chen published a survey article, which is divided into 25 sections. In one of these sections, he considered a biharmonic submanifold of Euclidean space as $\Delta H = 0$, where Δ denotes the Laplace operator and H denotes the mean curvature vector field. If the ambient space is considered as Euclidean, then Jiang’s and Chen’s results match.

In [5], J. T. Cho, J. Inoguchi and J. E. Lee defined and studied slant curves in Sasakian manifolds. They proved a theorem, which is similar to the classical theorem of Lancret for curves in Euclidean 3-space. They showed that a non-geodesic curve in a Sasakian 3-manifold is a slant curve if and only if the ratio of $(\tau \pm 1)$ and κ is constant, where κ and τ denotes the geodesic curvature and torsion of the curve, respectively. They gave some interesting examples. Notably, in the Heisenberg group with an appropriate metric, they exhibited slant helix and a slant curve which is not a helix.

In [8], D. Fetcu and C. Oniciuc obtained a method of producing biharmonic submanifolds in a Sasakian space form using the flow of characteristic vector field ξ. They showed that under the flow action of ξ a biharmonic integral submanifold is carried to a biharmonic anti-invariant submanifold. Following their idea, the present author and C. Özgür considered biharmonic slant curves in S–space forms [9].

It is a natural motivation to generalize the results of slant curves to θ_α–slant curves in S–manifolds. In Section 2, we give the fundamental definitions and theorems of S–space forms, biharmonic maps and Frenet curves. In Section 3, we define an extended family of slant curves, namely θ_α–slant curves, in S–manifolds and give two examples. In Section 4, we obtain the necessary and sufficient conditions for θ_α–slant curves in S–space forms to be proper biharmonic.
2. Preliminaries

Let \((M, g)\) be a \((2n + s)\)-dimensional Riemann manifold. \(M\) is called a framed metric manifold with a framed metric structure \((f, \xi_{\alpha}, \eta^{\alpha}, g)\), \(\alpha \in \{1, ..., s\}\), if it satisfies:

\[
f^2 X = -X + \sum_{\alpha=1}^{s} \eta^{\alpha}(X)\xi_{\alpha}, \quad \eta^{\alpha}(f(X)) = 0, \quad \eta^{\alpha}(\xi_{\beta}) = \delta_{\alpha\beta}, \quad f(\xi_{\alpha}) = 0,
\]

\[
g(X, Y) = g(fX, fY) + \sum_{\alpha=1}^{s} \eta^{\alpha}(X)\eta^{\alpha}(Y),
\]

\[
\eta^{\alpha}(X) = g(X, \xi_{\alpha}), \quad d\eta^{\alpha}(X, Y) = -d\eta^{\alpha}(Y, X) = g(X, fY),
\]

where \(f\) is a \((1, 1)\)-type tensor field of rank \(2n\); \(\xi_{1}, ..., \xi_{s}\) are vector fields; \(\eta^{1}, ..., \eta^{s}\) are 1-forms and \(g\) is a Riemannian metric on \(M; X, Y \in TM\) and \(\alpha, \beta \in \{1, ..., s\}\) (see [13], [15]). \((f, \xi_{\alpha}, \eta^{\alpha}, g)\) is said to be an \(S\)-structure, if the Nijenhuis tensor of \(f\) is equal to \(-2d\eta^{\alpha} \otimes \xi_{\alpha}\), for all \(\alpha \in \{1, ..., s\}\) [1].

If \(s = 1\), a framed metric structure is the same as an almost contact metric structure and an \(S\)-structure is the same as a Sasakian structure. For an \(S\)-structure, we have the following equations [1]:

\[
(\nabla_X f)Y = \sum_{\alpha=1}^{s} \{g(fX, fY)\xi_{\alpha} + \eta^{\alpha}(Y)f^2 X\},
\]

and

\[
\nabla \xi_{\alpha} = -f,
\]

for all \(\alpha = 1, ..., s\). In case of \(s = 1\), (2.3) can be calculated from (2.2).

Let \(X \in T_pM\) be orthogonal to \(\xi_{1}, ..., \xi_{s}\). The plane section spanned by \(\{X, fX\}\) is called an \(f\)-section in \(T_pM\) and its sectional curvature is called an \(f\)-sectional curvature. Let \((M, f, \xi_{\alpha}, \eta^{\alpha}, g)\) be an \(S\)-manifold. If \(M\) has constant \(f\)-sectional curvature, its curvature tensor \(R\) is given by

\[
R(X, Y)Z = \sum_{\alpha, \beta} \{\eta^{\alpha}(X)\eta^{\beta}(Z)f^2 Y - \eta^{\beta}(Y)\eta^{\alpha}(Z)f^2 X
\]

\[
-\frac{1}{2}\{g(fX, fZ)f^2 Y + g(fY, fZ)f^2 X + g(fX, fZ)f^2 X + g(fY, fZ)f^2 Y\},
\]

for \(X, Y, Z \in TM\) [3]. In this case, \(M\) is called an \(S\)-space form and it is denoted by \(M(c)\). In case of \(s = 1\), an \(S\)-space form is the same as a Sasakian space form [2].

Let \((M, g)\) and \((N, h)\) be Riemannian manifolds and \(\varphi : M \rightarrow N\) a differentiable map. A harmonic map is a critical point of the energy functional of \(\varphi\), which is defined as

\[
E(\varphi) = \frac{1}{2} \int_M |d\varphi|^2 v_g,
\]

(see [7]). Furthermore, a biharmonic map is a critical point of the bienergy functional

\[
E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g,
\]

where \(\tau(\varphi) = \text{trace} \nabla d\varphi\) and it is called the first tension field of \(\varphi\). Jiang derived the biharmonic map equation [11]

\[
\tau_2(\varphi) = -J^c(\tau(\varphi)) = -\Delta \tau(\varphi) - \text{trace} R^N(d\varphi, \tau(\varphi))d\varphi = 0,
\]

where \(J^c\) denotes the Jacobi operator of \(\varphi\). It is obvious that harmonic maps are biharmonic. So, non-harmonic biharmonic maps are called proper biharmonic.

Let \(\gamma : I \rightarrow M\) be a unit-speed curve in an \(n\)-dimensional Riemannian manifold \((M, g)\). The curve \(\gamma\) is called a Frenet curve of osculating order \(r\) \((1 \leq r \leq n)\), if there exists orthonormal vector fields \(T, E_2, ..., E_r\) along the curve
validating the Frenet equations
\[
\begin{align*}
T &= \gamma', \\
\nabla_T T &= \kappa_1 E_2, \\
\nabla_T E_2 &= -\kappa_1 T + \kappa_2 E_3, \\
\nabla_T E_r &= -\kappa_r E_{r-1},
\end{align*}
\]

where \(\kappa_1, \ldots, \kappa_{r-1}\) are positive functions called the curvatures of \(\gamma\). If \(\kappa_1 = 0\), then \(\gamma\) is called a geodesic. If \(\kappa_1\) is a non-zero positive constant and \(r = 2\), \(\gamma\) is called a circle. If \(\kappa_1, \ldots, \kappa_{r-1}\) are non-zero positive constants, then \(\gamma\) is called a helix of order \(r\) \((r \geq 3)\). If \(r = 3\), it is shortly called a helix.

A submanifold of an \(S\)-manifold is said to be an integral submanifold if \(\eta^\alpha(X) = 0\), \(\alpha \in \{1, \ldots, s\}\), where \(X\) is tangent to the submanifold \(12\). A Legendre curve is a 1-dimensional integral submanifold of an \(S\)-manifold \((M^{2n+s}, f, \xi, \eta, g)\). More precisely, a unit-speed curve \(\gamma : I \to M\) is a Legendre curve if \(T\) is \(g\)-orthogonal to all \(\xi\) \((\alpha = 1, \ldots, s)\), where \(T = \gamma'\) \([14]\).

3. \(\theta_\alpha\)–Slant Curves in \(S\)-manifolds

In this section, we define an extension of slant curves in \(S\)-manifolds. Firstly, we give the following definition:

Definition 3.1. Let \(M = (M^{2n+s}, f, \xi, \eta, g)\) be an \(S\)-manifold and \(\gamma : I \to M\) a unit-speed curve. \(\gamma\) is called a \(\theta_\alpha\)–slant curve, if there exist constant angles \(\theta_\alpha\) \((\alpha = 1, \ldots, s)\) such that \(\eta^\alpha(T) = \cos \theta_\alpha\). Here, we call \(\theta_\alpha\) the contact angles of \(\gamma\).

One can easily see that Definition 3.1 extends the family of slant curves to \(\theta_\alpha\)–slant curves. In particular, a \(\theta_\alpha\)–slant curve is called slant if its all contact angles are equal (see \([9]\)).

For a \(\theta_\alpha\)–slant curve, if we differentiate \(\eta^\alpha(T) = \cos \theta_\alpha\) along the curve \(\gamma\), we obtain
\[
\eta^\alpha(E_2) = 0,
\]
for all \(\alpha = 1, \ldots, s\). From now on, we use the following notations:

\[
A = \sum_{\alpha=1}^{s} \cos^2 \theta_\alpha, \quad B = \sum_{\alpha=1}^{s} \cos \theta_\alpha, \quad V = \sum_{\alpha=1}^{s} \cos \theta_\alpha \xi_\alpha.
\]

The following corollary is directly obtained:

Corollary 3.1. If \(\gamma\) is slant, then
\[
A = s \cos^2 \theta, B = s \cos \theta, V = \cos \theta \sum_{\alpha=1}^{s} \xi_\alpha,
\]
where \(\theta\) denotes the equal contact angles of \(\gamma\).

Let \(\gamma\) be a non-geodesic unit-speed \(\theta_\alpha\)–slant curve. Using equation 2.1, we find
\[
g(fT, fT) = 1 - A \geq 0.
\]
If \(A = 1\), then we have \(fT = 0\), that is, \(T = V\). Hence, we get
\[
\nabla_T T = \nabla_T V = 0,
\]
which means \(\gamma\) is a geodesic. As a result, we can give the following proposition:

Proposition 3.1. For a non-geodesic unit-speed \(\theta_\alpha\)–slant curve in an \(S\)-manifold,
\[
A = \sum_{\alpha=1}^{s} \cos^2 \theta_\alpha < 1.
\]
Note that, if γ is slant, we obtain Proposition 3.1 in [9].

From equations 2.1 and 2.5, we obtain the following statement:

Proposition 3.2. For a non-geodesic unit-speed $\theta_\alpha-$slant curve in an S-manifold $(M, f, \xi, \eta^\alpha, g)$, we have

$$\nabla_T fT = (1 - A) \sum_{\alpha=1}^s \xi_\alpha + B (-T + V) + \kappa_1 fE_2.$$ \hspace{1cm} (3.2)

Now we give the following examples of non-trivial $\theta_\alpha-$slant curves in $\mathbb{R}^{2n+s}(-3s)$, choosing $n = 1$, $s = 2$. For detailed information on $\mathbb{R}^{2n+s}(-3s)$, see [10].

Example 3.1. $\gamma : I \rightarrow \mathbb{R}^4(-6)$, $\gamma(t) = (t, 0, t, \sqrt{2}t)$ is a $\theta_\alpha-$slant curve with the contact angles $\theta_1 = \frac{\pi}{3}$, $\theta_2 = \frac{\pi}{4}$. In fact, γ is a $\theta_\alpha-$slant circle with $\kappa_1 = \frac{\sqrt{2}+1}{2}$.

Example 3.2. Let c_i be arbitrary constants $(i = 1, \ldots, 4)$, $t_0 \in I$, θ_1 and θ_2 constants such that $A = \cos^2 \theta_1 + \cos^2 \theta_2 < 1$. Let us consider a smooth function $u : I \rightarrow \mathbb{R}$ and define $\gamma_i : I \rightarrow \mathbb{R}$ $(i = 1, \ldots, 4)$ as

$$\gamma_1(t) = c_1 + 2\sqrt{1 - A} \int_{t_0}^t \cos(u(p)) \, dp,$$

$$\gamma_2(t) = c_2 + 2\sqrt{1 - A} \int_{t_0}^t \sin(u(p)) \, dp,$$

$$\gamma_3(t) = c_3 + 2t \cos \theta_1$$

$$+ 2\sqrt{1 - A} \int_{t_0}^t \cos(u(q)) \left(c_2 + 2\sqrt{1 - A} \int_{t_0}^q \sin(u(p)) \, dp \right) dq,$$

$$\gamma_4(t) = c_4 + 2t \cos \theta_2$$

$$+ 2\sqrt{1 - A} \int_{t_0}^t \cos(u(q)) \left(c_2 + 2\sqrt{1 - A} \int_{t_0}^q \sin(u(p)) \, dp \right) dq.$$

Then $\gamma : I \rightarrow \mathbb{R}^4(-6)$, $\gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t), \gamma_4(t))$ is a $\theta_\alpha-$slant curve with the contact angles θ_1 and θ_2.

4. Biharmonic $\theta_\alpha-$Slant Curves in $S-$Space Forms

In this section, we consider proper biharmonic $\theta_\alpha-$slant curves in S-space forms. Let γ be a unit-speed $\theta_\alpha-$slant curve in an S-space form $(M, f, \xi, \eta^\alpha, g)$. Then, we have

$$R(T, \nabla_T T) T = -\kappa_1 \left[B^2 + \frac{c + 3s}{4} (1 - A) \right] E_2 - 3\kappa_1 \frac{c - s}{4} g(fT, E_2) fT,$$

$$\tau_2(\gamma) = \nabla_T \nabla_T \nabla_T T - R(T, \nabla_T T) T$$

$$= -3\kappa_1 \kappa_1' T$$

$$+ \left(\kappa_1'' - \kappa_1^3 - \kappa_1 \kappa_2^2 + \kappa_1 \left[B^2 + \frac{c + 3s}{4} (1 - A) \right] \right) E_2$$

$$+ (2\kappa_1' \kappa_2 + \kappa_1 \kappa_2') E_3 + \kappa_1 \kappa_2 \kappa_3 E_4$$

$$+ 3\kappa_1 \frac{c - s}{4} g(fT, E_2) fT.$$ \hspace{1cm} (4.1)

As a result, we can state the following theorem:
Theorem 4.1. γ is a proper-biharmonic θ_α–slant curve in an S–space form $(M, f, \xi_\alpha, \eta^\alpha, g)$ if and only if $\kappa_1 = \text{constant} > 0$ and
\[
3 \frac{c - s}{4} g(fT, E_2) fT = \left[\kappa_1^2 + \kappa_2^2 - B^2 - \frac{c + 3s}{4} (1 - A) \right] E_2 - \kappa_2^\prime E_3 - \kappa_2 \kappa_3 E_4.
\] (4.2)

Proof. Let γ be a proper-biharmonic θ_α–slant curve. Then $\kappa_1 > 0$ and $\tau_2(\gamma) = 0$. If we take the inner-product of both sides with T, we find $\kappa_1 = \text{constant} > 0$. Hence, from equation (4.1), we obtain equation (4.2). Conversely, if $\kappa_1 = \text{constant} > 0$ and equation (4.2) is satisfied, we find $\tau_2(\gamma) = 0$, which completes the proof.

We will consider equation (4.2) from all points of view. Our discussions are based on the question: ”When do the coefficients of fT vanish?” First discussion is for the absence of the term with fT in equation (4.2). Second discussion is for the non-vanishing coefficients.

First Discussion: The term with fT vanishes.

i) $c = s$.

In this case, equation (4.2) becomes
\[
0 = \left[\kappa_1^2 + \kappa_2^2 - B^2 - s (1 - A) \right] E_2 - \kappa_2^\prime E_3 - \kappa_2 \kappa_3 E_4.
\] (4.3)

As a result, we give the following Theorem:

Theorem 4.2. Under the assumption $c = s$; γ is a proper-biharmonic θ_α–slant curve in $(M, f, \xi_\alpha, \eta^\alpha, g)$ if and only if either γ is a circle with $\kappa_1 = \sqrt{B^2 + s(1 - A)}$ or a helix with $\kappa_1^2 + \kappa_2^2 = B^2 + s(1 - A)$.

Proof. From equation (4.3), since $\{E_2, E_3, E_4\}$ is g–orthonormal, the proof is clear.

ii) $c \neq s$ and $fT \perp E_2$.

Under these assumptions, equation (4.2) gives us
\[
0 = \left[\kappa_1^2 + \kappa_2^2 - B^2 - \frac{c + 3s}{4} (1 - A) \right] E_2 - \kappa_2^\prime E_3 - \kappa_2 \kappa_3 E_4.
\] (4.4)

Firstly, we need to prove the following Lemma:

Lemma 4.1. Let γ be a θ_α–slant curve of order $r = 3$ in an S–space form $(M, f, \xi_\alpha, \eta^\alpha, g)$ and $fT \perp E_2$. Then, $\{T, E_2, E_3, fT, \nabla_T fT, \xi_1, \ldots, \xi_s\}$ is linearly independent.

Proof. Let $r = 3$ and $fT \perp E_2$. Let us denote $S_1 = \{T, E_2, E_3, fT, \nabla_T fT, \xi_1, \ldots, \xi_s\}$. In view of equations (2.5), (3.1) and (3.2), we have
\[
g(E_2, T) = g(E_2, E_3) = g(E_2, fT) = g(E_2, \nabla_T fT) = g(E_2, \xi_\alpha) = 0,
\]
for all $\alpha = 1, \ldots, s$. Thus, S_1 is linearly independent if and only if $S_2 = \{T, E_2, E_3, fT, \nabla_T fT, \xi_1, \ldots, \xi_s\}$ is linearly independent. From the assumption, we have $fT \perp E_2$. If we differentiate $g(fT, E_2) = 0$, we find $g(fT, E_3) = 0$. Since $g(fT, fT) = 1 - A > 0$ is a constant, we obtain $g(fT, \nabla_T fT) = 0$. f is skew-symmetric, so $g(fT, T) = 0$. From equation (2.1), we also have $g(fT, \xi_\alpha) = 0$, for all $\alpha = 1, \ldots, s$. Then, omitting fT, we get that S_2 is linearly independent if and only if $S_3 = \{T, E_3, \nabla_T fT, \xi_1, \ldots, \xi_s\}$ is linearly independent. Now, let us investigate whether T is linearly dependent with other vector fields in S_3. From Frenet equations, $g(T, E_3) = 0$. Equation (3.2) gives us $g(T, \nabla_T fT) = 0$. Assume that $T \in \text{sp} \{\xi_1, \ldots, \xi_s\}$. If we differentiate
\[
T = \sum_{\alpha=1}^s \cos \theta_\alpha \xi_\alpha,
\]
along the curve γ, we get $\kappa_1 = 0$, which is a contradiction. As a result, $T \notin \text{sp} \{\xi_1, \ldots, \xi_s\}$. Hence, S_3 is linearly independent if and only if $S_4 = \{E_3, \nabla_T fT, \xi_1, \ldots, \xi_s\}$ is linearly independent. If we differentiate $g(fT, E_3) = 0$, we find $g(\nabla_T fT, E_3) = 0$. Now, let us assume $E_3 \in \text{sp} \{\xi_1, \ldots, \xi_s\}$. If we differentiate
\[
E_3 = \sum_{\alpha=1}^s \eta^\alpha (E_3) \xi_\alpha,
\]
we obtain
\[-\kappa_2 E_2 = \sum_{\alpha=1}^s \{\nabla_T [\eta^\alpha(E_3)] \xi_{\alpha} - \eta^\alpha(E_3)f_T\}.\]

If we take the inner-product of both sides with E_2, we find $\kappa_2 = 0$, which contradicts $r = 3$. Then, $E_3 \not\in \text{sp}\{\xi_1, ..., \xi_s\}$. So, S_4 is linearly independent if and only if $S_5 = \{\nabla_T f T, \xi_1, ..., \xi_s\}$ is linearly independent. Equation (3.2) can be rewritten as
\[\nabla_T f T = \sum_{\alpha=1}^s [(1 - A) + B \cos \theta_{\alpha}] \xi_{\alpha} - BT + \kappa_1 f E_2.\]

Since $f T \perp E_2$ and f is skew-symmetric, we have $f E_2 \perp T$. As a result, the term $(-BT + \kappa_1 f E_2)$ does not vanish, that is, $\nabla_T f T \not\in \text{sp}\{\xi_1, ..., \xi_s\}$. Consequently, S_5 is linearly independent and the proof is complete. \hfill \Box

In view of Lemma 4.1, we can state the following theorem:

Theorem 4.3. Under the assumptions $c \neq s$ and $f T \perp E_2$; γ is a proper-biharmonic θ_{α}-slant curve in $(M, f, \xi_{\alpha}, \eta^\alpha, g)$ if and only if either

a) $\dim(M) \geq 4 + s$ and γ is a circle with $\kappa_1 = \dfrac{1}{2} \sqrt{4B^2 + (c + 3s)(1 - A)}$, where $\{T, E_2, f T, \nabla_T f T, \xi_1, ..., \xi_s\}$ is linearly independent; or

b) $\dim(M) \geq 5 + s$ and γ is a helix with $\kappa_1^2 + \kappa_2^2 = B^2 + \dfrac{c + 3s}{4}(1 - A)$, where $\{T, E_2, E_3, f T, \nabla_T f T, \xi_1, ..., \xi_s\}$ is linearly independent.

Proof. If we consider Lemma 4.1 and equation (4.4) together, the proof is directly obtained. \hfill \Box

Second Discussion: The term with $f T$ does not vanish.

i) $c \neq s$ and $f T \parallel E_2$.

In this case, since $g(f T, f T) = 1 - A$ and $f T \parallel E_2$, we can write
\[f T = \varepsilon \sqrt{1 - AE_2},\] (4.5)
where $\varepsilon = \text{sgn}(g(f T, E_2))$. Then, equation (4.2) becomes
\[3 \frac{c - s}{4} (1 - A) E_2 = \left[\kappa_1^2 + \kappa_2^2 - B^2 - \frac{c + 3s}{4}(1 - A)\right] E_2 - \kappa_2 E_3 - \kappa_1 \kappa_2 E_4.\] (4.6)

Firstly, we can state the following Lemma:

Lemma 4.2. Let γ be a non-geodesic θ_{α}-slant curve in an S-space form $(M, f, \xi_{\alpha}, \eta^\alpha, g)$ and $f T \parallel E_2$. If κ_1 is a constant, then γ is either a circle or a helix.

Proof. Let $\kappa_1 = \text{constant} > 0$. From equations (2.5), (3.2) and (4.5), after some calculations, we get
\[\kappa_2 \varepsilon \sqrt{1 - AE_3} = (1 - A) \sum_{\alpha=1}^s \xi_{\alpha} - (B + \varepsilon AD) T + (B + \varepsilon D) V,\] (4.7)
where we denote $D = \kappa_1 / \sqrt{1 - A}$. Note that
\[g(T, T) = 1, \ g(T, \sum_{\alpha=1}^s \xi_{\alpha}) = B, \ g(T, V) = A,\]
\[g(\sum_{\alpha=1}^s \xi_{\alpha}, \sum_{\alpha=1}^s \xi_{\alpha}) = s,\]
\[g(\sum_{\alpha=1}^s \xi_{\alpha}, V) = B, \ g(V, V) = A.\]

As a result, if we denote the norm of the right-hand side of equation (4.7) by C, we have
\[C = \sqrt{1 - A} \sqrt{AD^2 - As + B^2 + 2\varepsilon BD + s},\]
which gives us
\[\kappa_2 = \sqrt{AD^2 - As + B^2 + 2\varepsilon BD + s}. \]
So, \(\kappa_2 \) is a constant. If \(\kappa_2 = 0 \), then \(\gamma \) is a circle. If \(\kappa_2 \neq 0 \), equation (4.7) gives us
\[E_3 = a_0 T + a_1 \xi_1 + \ldots + a_s \xi_s, \]
for some constants \(a_0, \ldots, a_s \). If we differentiate this last equation, we obtain
\[-\kappa_2 E_2 + \kappa_3 E_4 = a_0 \kappa_1 E_2 - a_1 fT - \ldots - a_s fT. \tag{4.8} \]
If we take the inner-product of equation (4.8) with \(E_4 \), considering the fact that \(fT \parallel E_2 \), we find \(\kappa_3 = 0 \). In this case, \(\gamma \) is a helix.

In view of Lemma 4.2, we have the following result:

Theorem 4.4. Under the assumptions \(c \neq s \) and \(fT \parallel E_2 \); \(\gamma \) is a proper-biharmonic \(\theta_\alpha \)-slant curve in \((M, f, \xi_\alpha, \eta^\alpha, g) \) if and only if either

- (a) it is a circle with \(\kappa_1 = \sqrt{B^2 + c(1 - A)} \) with the Frenet frame field
 \[\{ T, \frac{\varepsilon fT}{\sqrt{1 - A}} \} \]
 where \(B^2 + c(1 - A) > 0 \); or

- (b) it is a helix with \(\kappa_1 = \sqrt{1 - AD} \), \(\kappa_2 = \sqrt{AD^2 - As + B^2 + 2\varepsilon BD + s} \) with the Frenet frame field
 \[\{ T, \frac{\varepsilon fT}{\sqrt{1 - A}} \frac{\varepsilon}{1 - A\sqrt{AD^2 - As + B^2 + 2\varepsilon BD + s}} W \} \]
 where \(AD^2 - As + B^2 + 2\varepsilon BD + s > 0 \), \(D > 0 \) is a constant satisfying
 \[D(2\varepsilon B + D) = (1 - A)(c - s) \]
 and \(W \) denotes
 \[W = (1 - A) \sum_{\alpha=1}^{s} \xi_\alpha - (B + \varepsilon AD) T + (B + \varepsilon D) V. \]

Proof. Let \(\gamma \) be proper-biharmonic. Then, \(\kappa_1 = \text{constant} > 0 \) and equation (4.6) must be satisfied. If we take the inner-product of equation (4.6) with \(E_2, E_3 \) and \(E_4 \), we get
\[\kappa_1^2 + \kappa_2^2 = B^2 + c(1 - A) \]
\[\kappa_2 = \text{constant}, \kappa_3 = 0, \]
respectively. From the proof of Lemma 4.2, using equation (4.10), we obtain the curvatures and the Frenet frame field of \(\gamma \). Furthermore, if \(\gamma \) is a helix, if we replace \(\kappa_1 \) and \(\kappa_2 \) in equation (4.10), we find equation (4.9).

Conversely, let \(\gamma \) be a one of the curves given in (a) or (b). Then, one can easily show that equation (4.4) is verified. So, \(\gamma \) is proper-biharmonic.

ii) \(c \neq s \) and \(g(fT, E_2) \neq 0, 1, -1 \).

Since the equality cases are previously investigated, we complete our discussions under the assumptions \(c \neq s \) and \(g(fT, E_2) \neq 0, 1, -1 \). Let us consider a smooth function \(m(t) \) such that
\[g(fT, E_2) = \sqrt{1 - A} \cos m(t). \tag{4.11} \]
Differentiating this equation, we have
\[\kappa_2 g(fT, E_3) = -\sqrt{1 - A} m'(t) \sin m(t). \tag{4.12} \]
If we take the inner-product of equation (4.2) with \(E_2, E_3 \) and \(E_4 \), we find
\[\kappa_1^2 + \kappa_2^2 = B^2 + \frac{c + 3s}{4} (1 - A) + \frac{3(c - s)}{4} g(fT, E_2)^2, \tag{4.13} \]
\[
\kappa'_2 + \frac{3}{4} \left(c - s \right) g(fT, E_2) g(fT, E_3) = 0, \\
\kappa_2 \kappa_3 + \frac{3}{4} \left(c - s \right) g(fT, E_2) g(fT, E_4) = 0,
\]
respectively. If we multiply equation (4.14) with \(2\kappa_2\), equations (4.11) and (4.12), we have
\[
2\kappa_2 \kappa'_2 + (1 - A) \frac{3}{4} \left(c - s \right) [-2m'(t) \sin m(t) \cos m(t)] = 0.
\]
If we integrate the last equation, we get
\[
\kappa_2^2 = - (1 - A) \frac{3}{4} \left(c - s \right) \cos^2 m(t) + h_0,
\]
where \(h_0\) is an arbitrary constant. If we write equation (4.16) in (4.13), we obtain \(m(t)\) is constant. As a result, we can write
\[
fT = \sqrt{1 - A} \left(\cos m E_2 + \sin m E_4 \right),
\]
where \(m \in (0, 2\pi) - \{ \frac{\pi}{2}, 0, \frac{3\pi}{2} \}\). Now, we can give the following theorem:

Theorem 4.5. Under the assumptions \(c \neq s\) and \(g(fT, E_2) \neq 0, 1, -1\); \(\gamma\) is a proper-biharmonic \(\theta_\alpha\)-slant curve in \((M, J, \xi, \eta^\alpha, g)\) if and only if \(\kappa_1, \kappa_2\) and \(\kappa_3\) are constants such that
\[
\kappa_1^2 + \kappa_2^2 + \kappa_3^2 = B^2 + \frac{c + 3s}{4} (1 - A) + \frac{3}{4} \left(c - s \right) \cos^2 m, \\
\kappa_2 \kappa_3 + \frac{3}{8} \left(1 - A \right) \sin 2m = 0,
\]
where \(fT = \sqrt{1 - A} \left(\cos m E_2 + \sin m E_4 \right)\) and \(m \in (0, 2\pi) - \{ \frac{\pi}{2}, 0, \frac{3\pi}{2} \}\).

References

[1] Blair, D. E.: Geometry of manifolds with structural group \(U(n) \times O(s)\). J. Differential Geometry. 4, 155-167 (1970).

[2] Baikoussis, C., Blair, D. E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata. 49, 135-142 (1994).

[3] Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an \(S\)-space form. Acta Math. Hungar. 62, 373-383 (1993).

[4] Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).

[5] Cho, J. T., Inoguchi, J., Lee, J. E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc. 74, 359-367 (2006).

[6] Eells, Jr. J., Lemaire, L.: Selected topics in harmonic maps. Amer. Math. Soc. Providence, R.I. (1983).

[7] Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).

[8] Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).

[9] Güvenç, Ş., Özgür, C.: On slant curves in \(S\)-manifolds. Commun. Korean Math. Soc. 33 (1), 293-303 (2018).

[10] Hasegawa, I., Okuyama, Y., Abe, T.: On \(p\)-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A. 37 (1), 1-16 (1986).

[11] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7, 389-402 (1986).

[12] Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an \(S\)-space form. Bull. Korean Math. Soc. 44, 395-406 (2007).

[13] Nakagawa, H.: On framed \(f\)-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).

[14] Özgür, C., Güvenç, Ş.: On biharmonic Legendre curves in \(S\)-space forms. Turkish J. Math. 38 (3), 454-461 (2014).

[15] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. World Scientific Publishing Co. Singapore (1984).
Affiliations

ŞABAN GÜVENÇ
ADDRESS: Balikesir University, Dept. of Mathematics, 10145, Balikesir-Turkey.
E-MAIL: sguvenc@balikesir.edu.tr
ORCID ID: 0000-0001-6254-4693