The proteolytic landscape of the yeast vacuole

Karen A Hecht1†, Allyson F O’Donnell2 and Jeffrey L Brodsky1,*

1Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA; 2Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA

*Correspondence to: Jeffrey L Brodsky; Email: jbrodsky@pitt.edu
Submitted: 11/12/13; Revised: 01/27/14; Accepted: 01/28/14
Citation: Hecht KA, O'Donnell AF, Brodsky JL. The proteolytic landscape of the yeast vacuole. Cellular Logistics 2014; 4:e28023; http://dx.doi.org/10.4161/cl.28023

Keywords: protease, S. cerevisiae, hydrolysis, autophagy, endocytosis, metalloprotease, Vps10, CPY, secretory pathway, Pff1

The vacuole in the yeast *Saccharomyces cerevisiae* plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities, fall into unique classes and follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.

A host of proteins define the function of this organelle. Approximately 200 of the 6,000 yeast genes are annotated as encoding proteins having vacuolar localization, and 27% of those are described as having transporter function. The remaining proteins possess functions associated with macromolecular hydrolysis, membrane fusion, protein sorting and targeting to the vacuole, and acidification. Most of these proteins are targeted to the vacuole via the secretory pathway, and by definition the proteins are first translocated into the endoplasmic reticulum (ER). COP II vesicles then ferry the vacuole-targeted proteins to the Golgi apparatus. In the Golgi, the carbohydrate residues of secretory proteins are modified and extended. It is at this point that cargo proteins reach a crossroad in the secretory pathway; they can be retained in the Golgi, targeted to the plasma membrane, or trafficked to the vacuole. Cargo traffic from the Golgi to the cell surface either directly or indirectly via an endosomal intermediate, and for the latter trafficking pathway the adaptor protein complex 1 (AP-1) plays an important role. Similarly, Golgi-to-vacuolar trafficking can be direct, requiring adaptor protein complex 3 (AP-3) or indirect through a multivesicular body (MVB) intermediate. These two trafficking intervals, referred to as the alkaline phosphatase (ALP) and carboxypeptidase Y (CPY) pathways, respectively, are named for model cargos used in their characterization. Genetic screens that monitor CPY maturation and trafficking have been instrumental in identifying proteins required for vacuolar protein sorting and maintenance of vacuolar morphology (i.e., the *VPS* genes).

In the initial stages of the CPY pathway, cargo proteins such as carboxypeptidase S (CPS), Kex2, and the CPY-Vps10 complex exit the Golgi in vesicles associated with clathrin and the adaptor proteins Gga1 and Gga2. Efficient cargo sorting into the MVB and vacuolar lumen is partially dependent on the phosphatidylinositol 3,5-bisphosphate composition of endosomal and vacuolar membranes. In addition, for cargos such as CPS, MVB sorting is controlled by protein ubiquitination. Specifically, the ubiquitin ligase Rsp5 appends K63-linked polyubiquitin chains on protein cargo, which promotes MVB trafficking. The endosomal sorting complex required for transport 0 (ESCRT 0) recognizes ubiquitinated cargo, and together with ESCRTs 1–3, drives cargo incorporation into and formation of intralumenal vesicles. To deliver intralumenal vesicles, the MVB docks and fuses with the vacuole, an event that requires the homotypic fusion and vacuole protein sorting (HOPS) complex, Rab family GTPase, Ypt7, and SNARE proteins. The HOPS complex is also needed...
for vesicles bearing AP-3 to dock and fuse to the vacuole in the ALP pathway, which does not require clathrin and bypasses the MVB completely. These vacuolar trafficking pathways are summarized in Figure 1.

The Yeast Vacuole as a Site of Protein Degradation

The vacuole is host to numerous exopeptidases and endopeptidases that contribute to what is often considered the vacuole’s principle function, protein degradation. The vacuole maintains protein homeostasis under physiological conditions by degrading senescent, superfluous, and damaged proteins and organelles. Vacuole function is also vital under conditions of nutrient stress, when cell growth and proliferation are downregulated and proteins must be broken down so that their constituent amino acids can be recycled. Impressively, degradation of up to ~85% of the cell’s intracellular protein content has been observed during nutrient starvation. Nutrient stress is encountered when yeast reach stationary phase, or when they undergo sporulation. Some of the cues known to trigger nutrient stress include carbon and nitrogen starvation, and to a lesser extent when there is a lack of essential amino acids, nucleotides, and sulfates. This next section summarizes the various degradation functions attributed to the vacuole, and the distinct routes that deliver proteins to this organelle for degradation.

Autophagy

Autophagy, also known as macroautophagy, is a process whereby bulk cytoplasmic material and organelles are isolated in a double-membrane vesicle known as an autophagosome. The autophagosome fuses with the vacuole, where its contents are degraded and the constituent components are recycled. This mechanism is conserved throughout eukaryotes, and is used to maintain cellular homeostasis under physiological conditions by eliminating long-lived proteins and damaged organelles. Autophagy can also be induced under conditions of nutrient stress and during specific stages in the cell cycle, such as in stationary phase or during sporulation. Autophagy is mediated by over 30 autophagy-related proteins, known as the Atg proteins. The Atg proteins act during a series of sequential steps: induction of autophagy, cargo recognition, vesicle nucleation, expansion and completion of the autophagosome, Atg protein recycling, fusion of the autophagosome with the vacuole, vesicle breakdown, and macromolecular recycling.

A notable type of selective autophagy is known as the cytoplasm-to-vacuole targeting (Cvt) pathway. In contrast to macroautophagy, the Cvt pathway occurs during nutrient-rich conditions and is a constitutive process. The Cvt pathway controls the selective transport of homooligomeric vacuolar proteins. Only three substrates in yeast are known to be targeted to the vacuole by this pathway: aminopeptidase 1 (Ape1),...
of many excellent recent reviews,63-66 but in brief, this process is the
transport of > 50 proteins in yeast. The details of CME are the focus
of this section.50 These substrates are synthesized in the cytoplasm, where
they homooligomerize and bind to Atg19. Atg19 acts as a receptor
for clathrin-mediated endocytosis (CME).59-62 CME is by far the
most studied of the endocytic pathways and has been examined in an
ESCRT-independent manner.59-62 These efforts have helped determine the
vacuolar trafficking itineraries for specific cargo.71-73,84,85

Table 1. *Saccharomyces cerevisiae* vacuolar proteases. Only those vacuolar resident proteases are shown whose activities and functions have been estab-
lished experimentally (see text for details)

Protease	Gene	Activity	Proteolytically activated by	Trafficking pathway	Function	Known P1 site amino acids
Proteinase A	PEP4	aspartyl endoprotease	Pep4 and Prb1	secretory	Initiator of protease activation cascade;	Phe, Leu, Tyr, Trp, Thr, Asn, Gln, Glu, Lys, Ala, Ile
Proteinase B	PRB1	serine endoprotease	Pep4 and Prb1	secretory	protease activation; peptide degradation	Leu, Arg, Phe, Tyr, Gln, Lys, Gly
Carboxypeptidase Y	PRC1	serine carboxypeptidase	Pep4 and Prb1	CPY pathway	peptide degradation	Ala, Gly, Val, Leu, Ile, Met, Phe
Carboxypeptidase S	CPS1	zinc metalloprotease	Prb1	CPY pathway	peptide degradation	Gly, Leu
Aminopeptidase I	APE1	zinc metalloprotease	Prb1	Cvt pathway	glutathione degradation	Leu, Cys, Gly
Aminopeptidase Y	APE3	metalloprotease	Prb1	secretory	unknown	Pro, Ala, Leu, Met, Phe, Tyr, Ser, Lys, Arg
Dipeptidylaminopeptidase B	DAP2	serine dipeptidase	none	CPY pathway	unknown	Xaa-Ala, Xaa-Pro

α-mannosidase 1 (Ams1), and aminopeptidase 4 (Ape4). Ape1 and Ams1 are resident vacuolar proteins, whereas Ape4 is cyto-
solic under physiological conditions, but targeted to the vacuole in a Cvt-dependent manner during nutrient starvation condi-
tions.50 These substrates are synthesized in the cytoplasm, where they homooligomerize and bind to Arg19. Arg19 acts as a receptor
for Cvt substrates.58-60 The autophagosomes associated with the Cvt pathway are smaller, and take approximately 10 times longer
to form than those associated with autophagy.62,64

The Cvt pathway may be an important alternative trafficking mechanism to target resident vacuolar proteins that are otherwise
damaging to secretory pathway residents. Alternatively, the Cvt pathway may facilitate transport of stable oligomeric proteins
that are too large to traverse the vacuolar membrane via trans-
porters. Finally, the Cvt pathway may facilitate vacuolar localization
of membrane-associated proteins, such as Ams1, which lack a signal sequence to direct their translocation into the secretory
pathway (Fig. 1).35

Endocytosis

Protein composition at the cell surface is carefully regulated. Proteins that become damaged or that may be detrimental are
removed by endocytosis and often traffic to the vacuole, where they
are degraded. Plasma membrane-to-vacuole trafficking was first observed in yeast by monitoring lucifer yellow, a fluo-
rescent dye that initially localizes to the cell surface but gradu-
ally accumulates in the vacuole after endocytosis.55 Subsequent
genetic screens were instrumental in identifying components of
the endocytic machinery,56-58 and more recently, cutting edge
microscopy has generated a detailed temporal and spatial map
of clathrin-mediated endocytosis (CME).59-62 CME is by far the
best characterized endocytic pathway, requiring the orchestra-
tion of > 50 proteins in yeast. The details of CME are the focus
of many excellent recent reviews,63-66 but in brief, this process is characterized by: 1) arrival of early endocytic and coat proteins,
including Edel, Syp1 and clathrin; 2) cargo recruitment, and the
arrival of actin nucleation promoting factors, such as Pan1 and Las17, which is the WASP homolog; 3) regulated branched actin
assembly by Arp2/3 and association of additional actin nucleation
regulators, including Myo3 and Myo5; 4) membrane invagi-
nation, which is driven by actin polymerization and allows for
recruitment of the amphipathins Rvs161 and Rvs167 that aid in
constricting the neck of the tubule; and 5) vesicle scission, which
may involve the dynamin related protein Vps1, vesicle uncoating,
and actin disassembly.59-61 It is important to note that the
organization and timing of endocytic events described in yeast
is now thought to be largely conserved in mammalian cells.67,68
In addition to the well-characterized CME pathway, a clathrin-
independent endocytic pathway (CIE), analogous to the RhOA
CIE pathway in mammals, was also recently identified in yeast.69

Endocytosis and vacuolar sorting of cell surface proteins
requires cargo ubiquitination. Pioneering studies of the yeast
G-protein coupled receptors and nutrient permeases showed
that ligand- or nutrient-induced ubiquitination precedes protein
endocytosis.70-72 The ubiquitin ligase Rsp5 is required for ubiqui-
itination,73-75 but most membrane cargos do not bind the ligase
directly. Instead, adaptor proteins, such as the α-arrestins, recruit
Rsp5 to specific membrane cargo, often in a signal-induced fash-
ion and stimulate endocytosis.76-80 Ubiquitinated cargo proteins, once removed from the cell surface, are sorted to endosomes and
enter the MVB in an ESCRT-dependent manner.29,35,81 Thus,
there is convergence of the endocytic route to the vacuole with the
Golgi-to-vacuolar sorting pathway, described above. Many stud-
ies have examined protein stability in cells harboring deletions
of the Pep4 protease, which prevents maturation of the vacuolar
proteases (see below).82,83 These efforts have helped determine the
vacuolar trafficking itineraries for specific cargo.71,72,84,85

The Vacuolar Proteases

The yeast vacuole contains seven characterized vacuolar pro-
teases, one of which is a transmembrane protease. Among all of
these, three are metalloproteases, three are serine proteases, and
one is an aspartyl protease. The vacuolar proteases include three
aminopeptidases, two carboxypeptidases, and two endopepti-
dases. This section describes the known characteristics and func-
tion of these proteases, which are summarized in Table 1. Quite
recently, we reported on an eighth vacuolar protease, which is a transmembrane metalloprotease and is the product of the YBR074w gene (Pff1) (also see below). However, its protease activity has yet to be demonstrated.

The MEROPS peptidase database (http://merops.sanger.ac.uk) classifies known proteases into evolutionarily related groups, which will be referenced in the following discussion. A protease clan refers to proteases derived from a single common ancestor, and clans are subdivided into families. A protease family refers to a sub-group of proteases that share sequence similarity, either throughout the entire protein sequence or only within the catalytic domain. Protease families are assigned a letter referring to the catalytic mechanism of the protease: M for metalloprotease, S for serine protease, and A for aspartyl protease. The catalytic designation is followed by a numerical family identifier. Another important aspect of nomenclature refers to the site of cleavage of the substrate. The amino acid on the N-terminal side of the hydrolyzed peptide bond is referred to as P1, whereas the amino acid on the C-terminal side is referred to as P1'. Similarly, the site on the proteolytic enzyme known to bind to the P1 residue is referred to as S1, and the site recognizing the P1' residue is referred to as S1'.

In brief, serine proteases comprise a large family whose enzymatic activity is mediated by a characteristic catalytic triad consisting of Asp, His, and Ser. The members, substrates and catalytic mechanism of the serine type proteases are reviewed in Hedstrom et al. In contrast, metalloproteases depend on metal ions, especially Zn$^{2+}$, for their catalytic function. The aspartyl proteases are characterized instead by two catalytic Asp residues, mediating an acid-base hydrolysis reaction. The structure and function of aspartyl proteases was reviewed by Dunn.

It is important to highlight the fact that early studies of vacuolar proteases led to seminal discoveries in cell biology. First, many vacuolar proteases, including CPY, CPS, and Ape1, are translated as precursors that are proteolytically cleaved to become mature, active proteases in the vacuole. In addition to proteolysis, CPY and CPS are glycosylated in the secretory pathway, altering their molecular weights. Thus, progressive protease maturation is a marker that can pinpoint protease location during vacuolar transit. The reader is referred to figure 2 in ref. for a cartoon outlining the maturation events associated with the vacuolar proteases.

Perhaps the best-characterized example of a protease that follows these events is CPY. The CPY signal sequence targets the nascent protein to the ER and is then removed. ER luminal CPY has a propeptide, which blocks protease activity and aids in CPY folding and glycosylation to generate p1-CPY. Further glycosylation in the Golgi forms the higher molecular weight p2-CPY species. Finally, in the vacuole Pep4 cleaves the CPY propeptide to produce the lower molecular weight, mature CPY enzyme. Defects in CPY processing were instrumental in identifying proteins required for this trafficking interval. For example, the CPY sorting receptor, Vps10, which is required for Golgi-to-MVB trafficking, was first identified in one such screen, and additional sorting receptors have since been characterized. Unlike CPY, which requires the Vps10 receptor for Golgi-to-MVB trafficking, carboxypeptidase S (CPS) is produced as a precursor (pCPS) that is a type-II membrane protein. Once pCPS reaches the vacuole Pep4 or Prb1 cleave the transmembrane anchor to generate mature CPS (mCPS), which is a soluble peptidase in the vacuolar lumen. Therefore, CPS maturation can also be tracked by monitoring changes in the protein’s molecular weight. Studies using CPS demonstrated that Rsp5-mediated ubiquitination of cargos and recognition of the ubiquitinated species by the ESCRTs drives sorting to the vacuolar lumen. Efficient ubiquitination and segregation of CPS to the vacuolar lumen also requires adaptor proteins Tull and Bsd2, each of which contain $^{1/2}$PxF motifs that recruit the Rsp5 ubiquitin ligase to CPS. This paradigm of ubiquitin ligase recruitment to substrates in the secretory pathway by adaptors is broadly conserved.

In stark contrast to CPY and CPS, aminopeptidase I (referred to as Ape1 or API) does not enter the secretory pathway and lacks a signal sequence motif. While CPY and CPS transit to the vacuole in ~6 min, Ape1 requires over 40 min to mature. As noted above, Ape1 uses the Cvt pathway. The Cvt pathway requires similar machinery to the autophagy pathway and represents a de novo mechanism for vesicle formation in the cytoplasm.

Soluble vacuolar proteases

Proteinase A (referred to as PrA or Pep4), encoded by the PEP4 gene, is a monomeric 42 kDa aspartyl endoprotease of the A1 family of proteases. PrA is targeted to the vacuole via the secretory pathway and is a key enzyme in the vacuolar protease activation cascade. Many vacuolar hydrolases, including PrA, are initially produced as inactive precursor forms, known aszymogens. Zymogens are not activated until they have been delivered to the vacuole, where an inhibitory propeptide is removed by proteolysis. This allows hydrolase activity to be sequestered within the vacuole, thereby protecting residents of the secretory pathway from proteolytic damage. The vacuolar proteases proteinase B (PrB), carboxypeptidase Y (CPY), and aminopeptidase I (API), which are discussed below, each depend on PrA for proteolytic activation. Therefore, PrA mutant strains are deficient in the activity of these proteases as well.

PrA is initially synthesized as an inactive precursor referred to as preproPrA. PreproPrA is 405 amino acids in length and has a molecular mass of 52 kDa. PreproPrA has a hydrophobic 22 amino acid signal sequence that directs its translocation into the ER, where it is modified by N-linked glycans at Asn67 and Asn266. The signal peptide is cleaved by the signal peptidase to produce proPrA, which is then transported to the Golgi. The carbohydrate residues of proPrA are extended by mannosylation in the Golgi. ProPrA is recognized by the vacuolar protein sorting receptor, Vps10, which targets it to the vacuole. Either within the transport vesicle or the vacuole, proPrA undergoes autocatalytic activation, whereby a 54 amino acid propeptide is removed.
to produce active PrA.\(^{116}\) PrA was shown in early work to preferentially cleave substrates between two hydrophobic amino acids, with Phe, Leu, and Glu at the P1 site and Phe, Ile, Leu, and Ala at the P1’ site.\(^{117,118}\) PrA activity extending to polar and charged residues has also been observed, suggesting that PrA may be a more general protease.\(^{119}\)

Proteinase B (referred to as PrB or Prb1) is a serine endoprotease of the S8 family and is encoded by \textit{PRB1}. Thezymogen preproPrB is initially synthesized as a 76 kDa polypeptide that is translocated into the ER where its 20 amino acid signal peptide is removed and the resulting polypeptide is modified by a single N-linked glycan.\(^{120}\) PreproPrB undergoes autocatalytic cleavage in the ER, removing an N-terminal 260 amino acid propeptide.\(^{121}\) To facilitate the proper folding of proPrB, the ER-resident protein, Pbn1, acts as a chaperone during this process,\(^{122,123}\) and proPrB is further modified by O-linked glycans in the Golgi.\(^{120}\) The N-terminal propeptide is thought to remain non-covalently associated with proPrB, partially inhibiting its enzymatic activity until proPrB is targeted to the vacuole. Here, the N-terminal propeptide is degraded by PrA, which activates the enzyme.\(^{123}\) In the vacuole a C-terminal propeptide (~30 amino acids) of proPrB is also cleaved by PrA to produce a 37 kDa PrB species. The final cleavage event is mediated autocatalytically by PrB, removing a C-terminal peptide modified by a single N-linked glycan, and yielding the mature 31 kDa PrB.\(^{120}\) Intriguingly, while disrupting PrA activity leads to accumulation of proPrB and the N-terminal propeptide, proPrB retains residual catalytic activity.\(^{40}\)

Information on the substrate specificity of PrB comes from studies of PrB isolated from both \textit{S. cerevisiae} and \textit{C. albicans}. Both artificial peptides and non-yeast proteins, such as insulin, were used to test PrB substrate specificity.\(^{124,125}\) Based on these studies, PrB has broad substrate specificity that depends on amino acid context. The protease cleaves substrates at Arg, Leu, Tyr, Phe, Lys, Gly or Gln in the P1 site, and Phe, Tyr, Val, Gly, Leu, Glu, or His in the P1’ site.\(^{124,125}\)

Carboxypeptidase Y (CPY) is a serine carboxypeptidase of the S10 family, and is encoded by \textit{PRC1} in yeast. As outlined above, CPY is initially synthesized as a ~60 kDa precursor that is 532 amino acids in length. The protein is translocated into the ER where a 20 amino acid signal peptide is removed by signal peptidase and four N-linked glycan residues are appended to produce a 67 kDa form called p1-CPY.\(^{126}\) CPY protein folding in the ER involves the formation of five disulfide bonds and is facilitated by a 91 amino acid propeptide, which acts as an intramolecular chaperone.\(^{127}\) The p1-CPY protein is delivered to the Golgi where glycan residues are extended to produce the 69 kDa species, referred to as p2-CPY. In the Golgi, p2-CPY is recognized by Vps10 for delivery to the MVB via a Gln-Arg-Pro-Leu recognition sequence in the propeptide region.\(^{49,99,126}\) In the vacuole, the propeptide of CPY is removed by the sequential action of PrA and PrB to produce active CPY.\(^{126}\)

CPY contains a catalytic triad resident in all serine proteases, which is comprised of Ser146, His397, and Asp338.\(^{126}\) The enzyme is active at low pH and high salt concentrations, which are characteristic of the vacuolar environment. Substrates of CPY are recognized via their C-terminal carboxyl group, which associates with CPY by hydrogen bonding near the S1’ binding pocket. The S1’ subsite in the substrate binding pocket is relatively large and can recognize both hydrophobic and hydrophilic residues. However, the hydrophobic S1 subsite exhibits greater specificity toward hydrophobic amino acids by virtue of being lined with bulky Tyr residues and having a Leu at the bottom of the binding pocket.\(^{126}\)

Carboxypeptidase S (CPS) is a zinc-dependent metallo-carboxypeptidase of the M20 family, and is encoded by \textit{CPS1}. As introduced above, CPS is synthesized as a ~64 kDa precursor containing a sequence spanning amino acids 20 through 40 that is inserted into the ER membrane such that CPS is oriented with its C-terminus facing the lumen.\(^{128}\) The CPS membrane-bound precursor is glycosylated and transits through the Golgi before being targeted to the vacuole via the CPY pathway.\(^{33}\) Once in the vacuole, CPS is processed by PrB and is released into the vacuolar lumen. Both 74 kDa and 77 kDa mature forms of CPS are observed, representing CPS modified by 2 or 3 N-linked glycans, respectively. It is interesting to note that the membrane-bound form of CPS also exhibits proteolytic activity.\(^{101}\)

CPS has partially overlapping substrate specificity with CPY, contributing ~60% of the enzymatic activity required to hydrolyze the synthetic dipeptide Cbz-Gly-Leu, where Cbz is the amino protecting group benzyloxycarbonyl.\(^{129}\) In a \textit{prc1Δ} strain, CPS is required for growth on media when Cbz-Gly-Leu is the sole source of nitrogen and Leu.\(^{128}\) CPS has been found to play a role in sporulation efficiency. Specifically, disrupting PrB activity produces a partial defect in sporulation, but when PrB activity is disrupted together with CPY and CPS activity, yeast are unable to sporulate.\(^{129}\)

Aminopeptidase I (Apel) is a zinc-dependent metallo-aminopeptidase of the M18 family, encoded by the \textit{APE1} gene. Apel is synthesized as 61 kDa precursor known as preApel, which contains a 45 amino acid N-terminal helix-loop-helix domain that is required for vacuolar localization. PreApel homooligomerizes in the cytoplasm, forming a dodecamer with a molecular mass of 372 kDa that then utilizes the Cvt pathway.\(^{30,131}\) The preApel complex is recognized by its receptor, Atg19, which interacts with Atg11 to tether the preApel complex to the site of autophagosome formation, known as the Phagophore Assembly Site (PAS).\(^{132}\) Next, the preApel complex is encapsulated into the Cvt vesicle that fuses with the vacuole. Exposure to the acidic pH of the vacuolar lumen results in disassembly of the preApel complex to preApel dodecamers.\(^{131}\) Finally, PrB cleaves the N-terminal propeptide in preApel to produce the active 50 kDa enzyme.\(^{132,133}\)

Apel is also known as Lap4 because it was initially characterized as a Leu aminopeptidase in a screen for yeast mutants defective for the ability to hydrolyze the synthetic substrate Leu β-naphthylamide.\(^{108}\) Apel was also shown to mediate resistance to Cd\(^{2+}\), which is otherwise toxic and induces oxidative stress.\(^{134}\) Yeast sequester Cd\(^{2+}\) in the vacuole as a glutathione (GSH) S-conjugate. The GSH is recycled from the vacuole by the action of gamma-glutamyltranspeptidase (Ecm38), which hydrolyzes Glu, leaving a Cys-Gly dipeptide that is thought to be further degraded by Apel.\(^{134}\) Thus, Apel is required for GSH homeostasis, and defects in this process lead to Cd\(^{2+}\) sensitivity. However,
more recent work has identified an alternative GSH degradation pathway involving the cytosolic dipeptidase Dug1, which is a member of the M20 family of metalloproteases. This study demonstrated that Ape1 was not required for growth of a met15Δ strain on medium in which GSH was the only source of sulfur. Aminopeptidase Y (Ape3), encoded by the gene APE3, is a metallo-aminopeptidase of the same M28 family of proteases as the recently discovered, putative vacuolar protease, Ybr074w (see below). Like YBR074w, the APE3 locus is found on chromosome II. Global pairwise sequence alignment of Ape3 and Ybr074w, shown in Figure 2, reveals 5.7% amino acid sequence identity, while comparison of the M28 protease domains indicates ~22% sequence identity, including conservation of catalytic residues. Ape3 is synthesized as a 60 kDa precursor bearing a 21 amino acid signal sequence directing its translocation into the ER. The signal sequence is cleaved in the ER, and the Ape3 precursor is targeted to the Golgi, where—as evident with several of the other enzymes discussed above—it is recognized by Vps10.

Figure 2. (A) Sequence alignment of Ape3 (MEROPS accession: MER001288) and Pff1 (MEROPS accession: MER001911), two vacuole-resident yeast metalloproteases. A global sequence alignment was performed using ClustalW default parameters. Only the M28 domains of Ape3 and Ybr074 are shown according to the MEROPS defined protease domain boundaries. (B) Active site of the M28 metalloprotease, AM-1 Aminopeptidase, from Aneurinibacillus sp. strain AM-1 (MEROPS accession: MER00667; protease domain: Gly173-Arg436). Of the M28 metalloproteases whose crystal structures have been solved, the protease domain amino acid sequence of AM-1 Aminopeptidase is most similar to that of the yeast Pff1 (MEROPS accession: MER001911; protease domain: Asn96-Ala341). The MEROPS defined protease domain boundaries of AM-1 and Pff1 show 19.2% identity when compared by global sequence alignment using ClustalW default parameters. Catalytic residues are labeled in blue and metal coordinating residues are labeled in red in both this panel and in part (A). Zinc ions are depicted as red spheres. This image was captured from PDB ID: 2E9K using 3D Molecule Viewer of Vector NTI Advance, Version 11.5.2 (Life Technologies).
for vacuole targeting.115 Also similar to some of the other proteases, a 35 amino acid N-terminal propeptide is cleaved by PrB in the vacuole, producing mature \textit{Ape3}.138 The mature \textit{Ape3} protein exists in both a 70 kDa and 75 kDa form that differ in the extent of glycan modification, as \textit{Ape3} has eight acceptor sites for N-linked glycans but only 5–7 sites are used.138

The enzymatic activity of \textit{Ape3} was characterized by Yasuhara et al. using synthetic peptides with a C-terminal 4-methylcoumaryl-7-amide (MCA) protecting group.138 \textit{Ape3} exhibits a preference for cleaving the basic residue Lys. However, it also cleaves the yeast \textit{\alpha} nopeptidase A (Ste13) processes repeating X-Ala dipeptides from of Dap2 is unknown, a Golgi-resident homolog, dipeptidylamidase.139 Interestingly, the hydrolysis of amino acid-MCAs and dipeptides was enhanced in the presence of Co2+, while that of dipeptidyl-MCAs and larger unmodified peptides was inhibited. Although M28 family metalloproteases commonly bind two catalytic zinc ions, the authors suggested that zinc is inhibitory to \textit{Ape3} proteolytic activity.138

Membrane-bound vacuolar proteases

Dipeptidylaminopeptidase B (Dap2) is a serine protease in the \textit{S}9 family. Dap2 has a hydrophobic transmembrane segment positioned 30 amino acids from the N-terminus, which serves both as an ER-targeting sequence and membrane anchor. Dap2 is a type II membrane protein, having a cytosolic N-terminus and a prominent luminal C-terminus. The protein is initially synthesized as a 93 kDa protein, 818 amino acids in length, and is modified in the ER with between 5 and 8 N-linked glycans, which undergo minimal extension in the Golgi. This results in a final ~120 kDa product. Unlike other vacuolar proteases, Dap2 is not proteolytically processed in the vacuole.10,139 Although the substrate specificity of Dap2 is unknown, a Golgi-resident homolog, dipeptidylaminopeptidase A (Ste13) processes repeating X-Ala dipeptides from the yeast \textit{\alpha} factor mating pheromone.140 Disrupting Ste13 function prevents maturation of \textit{\alpha} factor and results in sterile \textit{MAT\alpha} cells. This defect in mating was partially restored when Dap2 was over-expressed ~10-fold in a \textit{MAT\alpha ste13} mutant strain.140

Finally, we recently identified Pro tease in FXNA-related Family 1 (Pff1) as a vacuolar membrane protein that is predicted to possess nine transmembrane segments.86 Pff1 harbors a conserved M28 protease domain (Fig. 2) that faces the vacuolar lumen, as determined based on the accessibility of this domain when exogenous protease was added to a crude vesicle preparation. The vacuolar residence of Pff1 was evidenced by the analysis of several different tagged forms of the protein,86 and because the native protein was identified when highly enriched vacuolar membranes were subjected to mass spectrometry analysis.10 Although the specific function and substrate-specificity of Pff1 has yet to be elucidated, a whole genomic analysis of proteins that respond to the absence of the \textit{Pff1} (YBR074w) gene product is consistent with the protein playing a role in vacuolar function. Interestingly, a putative mammalian homolog of Pff1 exists.141 However, the mammalian protein was instead found to reside in the ER and appears to be involved in ovarian development. In the future, it will be exciting to determine whether the mammalian enzyme acts on select substrates that traffic through the secretory pathway, and whether Pff1 in yeast exhibits substrate specificity in the vacuole.

Conclusions

While the substrate specificities of many of the vacuolar proteases have been defined using synthetic substrates, significantly less information is available on the action of these proteases on endogenous, \textit{bona fide} substrates. In principle, substrates might be identified through yeast genetic screens using mutant forms of the corresponding protease. But, because the absence of a protease is often masked by the activity of a functionally redundant enzyme, many of the proteases described in this review were instead obtained by analyzing activities for defined, synthetic substrates, or simply by virtue of sequence gazing. One view is that vacuolar proteases are indiscriminant enzymes because their major requirement in this organelle is to simply process full-length proteins to short peptides and amino acids, which can serve as precursors for ongoing protein synthesis and/or for metabolic, energy-generating processes. If this is the case, one might posit that the proteases evolved to ensure the efficient degradation of any protein substrate that enters the vacuole. Nevertheless, it remains possible that select proteases do exhibit substrate specificity. If so, do these proteases respond to certain physiological conditions requiring vacuole-dependent degradation or processing of distinct substrates? Are there functional characteristics that differentiate soluble vacuolar proteases from membrane-bound vacuolar proteases? Perhaps membrane-bound proteases associate more readily with membrane-bound substrates, but even this question has not been addressed. Given the growing appreciation that proteases dictate so many critical cellular “decisions,” and combined with the development of genomic and proteomic tools that permit a better understanding of cellular protein networks, it is likely that much remains to be learned about the myriad proteases that provide house-keeping functions in the vacuole.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by development funds from the Department of Cell Biology (University of Pittsburgh) and grant DA014204–11 (awarded to A. Sorkin, University of Pittsburgh) from the National Institutes of Health for A.F.O, and by grant G75061 and DK79307 (The Pittsburgh Center for Kidney Research) from the National Institutes of Health to J.L.B.
References

1. Broach JR, Pringle JR, Jones EW. The Molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor, N.Y.; Cold Spring Harbor Laboratory Press, 1991.

2. Li SC, Kane PM. The yeast lysosome-like vacuole: evolution and functions. Biochim Biophys Acta 2005; 1743:503; PMID:15945250; http://dx.doi.org/10.1016/j.crvi.2004.09.021

3. Marty F. Plant vacuoles. Plant Cell 1999; 11:587-600; PMID:10243780

4. Vese Y, Richards A, Gou NA. Vacuoles and fungal biology.Curr Opin Microbiol 2008; 11:503-10; PMID:18955977; http://dx.doi.org/10.1016/j.mib.2008.09.012

5. Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 1990; 54:266-92; PMID:2215422

6. Wiemken A, Matile P, Moor H. Vacuum dynamics in synchronously budding yeast. Arch Mikrobiol 1970; 70:89-103; PMID:4914043; http://dx.doi.org/10.1007/BF00412220

7. Brett CL, Kallay L, Hua Z, Green R, Chyou A, Poolman B, Slotboom DJ. The yeast vacuolar membrane proteome. Mol Biol Cell 2008; 19:5087-100; PMID:18423880; http://dx.doi.org/10.1023/a:10717002.000000

8. Preston RA, Murphy RF, Jones EW. Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A 1986; 86:7627-31; PMID:2679492; http://dx.doi.org/10.1023/a:107386.86.17027

9. Sarry JE, Chen S, Collum RP, Liang S, Peng M, Murphy RF, Jones EW. Assay of vacuolar protein sorting mutants: evidence for a pre-vacuolar compartment in class E vps mutants. Mol Biol Cell 1992; 3:1389-402; PMID:1493335; http://dx.doi.org/10.1091/mbc.3.6.1389

10. Sarry JE, Chen S, Collum RP, Liang S, Peng M, Murphy RF, Jones EW. Assay of vacuolar protein sorting mutants: evidence for a pre-vacuolar compartment in class E vps mutants. Mol Biol Cell 1992; 3:1389-402; PMID:1493335; http://dx.doi.org/10.1091/mbc.3.6.1389

11. Yan A, Lennarz WJ. Unraveling the mechanism of protein N-glycosylation. J Biol Chem 2005; 280:31214-24; PMID:15900627; http://dx.doi.org/10.1074/jbc.R400036200

12. Goto M. Protein O-glycosylation in fungi: diverse aspects and functions. Mol Membr Biol 2000; 17:3907-20; PMID:16790491; http://dx.doi.org/10.1080/096824600100027701

13. Harsay E, Schekman R. A subset of yeast vacuolar protein-sorting mutants are blocked in one branch of the exocytic pathway. J Cell Biol 2002; 156:2717-27; PMID:12161245

14. Alvarez ME, Fuller RS. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are adaptors that can interact with the AP-2 complex. J Cell Biol 1997; 138:1369-83; PMID:9356126; http://dx.doi.org/10.1083/jcb.138.4.1369

15. Costaguta G, Duncan MC, Fernández GE, Huang GH, Payne GS. Distinct roles for TGN/endosome and Golgi membrane proteins. Dev Cell 2002; 2:283-92; PMID:12161245

16. Vallviva RH, Baggott D, Chuang JS, Schekman RW. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2002; 2:283-94; PMID:11879654; http://dx.doi.org/10.1016/s1090-413x(02)00127-2

17. Cowles CR, Odorizzi G, Payne GS, Emr SD. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 1997; 91:109-18; PMID:9353539; http://dx.doi.org/10.1016/s0092-8674(01)00180-8

18. Vida TA, Hara GM, Emr SD. Yeast vacuolar protein-sorting mutants are sorted in the late Golgi compartment and transported to the vacuole via a pre-vacuolar endo-some-like compartment. J Cell Biol 1993; 121:1245-56; PMID:8509446; http://dx.doi.org/10.1083/jcb.121.6.1245

19. Bankaitis VA, Johnson LM, Emr SD. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 1986; 83:9075-9; PMID:5358017; http://dx.doi.org/10.1023/a:107386.83.23.9075

20. Bankaitis VA, Johnson LM, Emr SD. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 1986; 83:9075-9; PMID:5358017; http://dx.doi.org/10.1023/a:107386.83.23.9075

21. Bankaitis VA, Huyer G, Emr SD. Yeast vacuolar protein-sorting mutants defective in protein sorting. J Cell Biol 1988; 107:1369-83; PMID:3049619; http://dx.doi.org/10.1083/jcb.107.4.1369

22. Raymond CK, Howald-Stevensson I, Vater CA, Stevens TH. Morphological classification of the yeast vacuolar protein-sorting mutants: evidence for a pre-vacuolar compartment in class E vps mutants. Mol Biol Cell 1992; 3:1389-402; PMID:1493335; http://dx.doi.org/10.1091/mbc.3.6.1389

23. Rothman JH, Stevens TH. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 1986; 47:1041-51; PMID:3536126; http://dx.doi.org/10.1016/0092-8674(86)90819-6

24. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 1992; 119:301-11; PMID:1400575; http://dx.doi.org/10.1083/jcb.119.2.301

25. Davila RH, Baggott D, Chuang JS, Schekman RW. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2002; 2:283-94; PMID:11879654; http://dx.doi.org/10.1016/s1090-413x(02)00127-2

26. Costaguta G, Duncan MC, Fernández GE, Huang GH, Payne GS. Distinct roles for TGN/endosome-like and Golgi proteins. Dev Cell 2002; 2:283-92; PMID:12161245

27. Cowles CR, Odorizzi G, Payne GS, Emr SD. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 1997; 91:109-18; PMID:9353539; http://dx.doi.org/10.1016/s0092-8674(01)00180-8

28. Takeda E, Tuma R, Lennom SK. The yeast adapt or protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J Cell Biol 1997; 139:761-74; PMID:9412470; http://dx.doi.org/10.1083/jcb.139.7.761

29. Papalamba E, Yang K, Sweeney H, Rusche J, Bierer B, Stiroh D, Bopp M, Gu H, Blenis J. The human AP2 adaptor complex - coordinators of endosome-membrane fusion. Trends Cell Biol 2010; 20:196-204; PMID:20810114

30. Poolman B, Slotboom DJ. The yeast vacuolar mem brane proteome. Mol Membr Biol 2000; 17:3907-20; PMID:16790491; http://dx.doi.org/10.1080/096824600100027701
58. Raths S, Rohrer J, Crausaz F, Riezman H. end3 and end5, and end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis. J Cell Biol 2005; 169:771-25; PMID:16239147 ; http://dx.doi.org/10.1083/jcb.200510041

59. Wendland B, McCaffery JM, Xiao Q, Emr SD. Aminopeptidase I is targeted to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 2001; 276:20491-8; PMID:11624888; http://dx.doi.org/10.1074/jbc.M101150200

60. Kraft C, Reggiori F, Peter M. Selective types of clathrin-dependent control of the Bul arrestin-like adaptors. J Biol Chem 2013; 288:24063-80; PMID:23824189; http://dx.doi.org/10.1074/jbc.M1124063200

61. Yuga M, Gomi K, Kaksonen M, Briggs JA. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2006; 7:404-14; PMID:16723976; http://dx.doi.org/10.1038/nrm1940

62. Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2012; 22:1-13; PMID:22081597; http://dx.doi.org/10.1016/j.tcb.2011.09.001

63. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cerone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 2013; 15:33-43; PMID:23227664; http://dx.doi.org/10.1038/ncb.2975

64. Taylor MJ, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290

65. Berkower C, Loayza D, Michaelis S. Metalloproteinase instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. J Biol Chem 2003; 278:50732-43; PMID:14523026; http://dx.doi.org/10.1074/jbc.M304113200

66. Burton DR, Chi RJ, Lemmon M, Stephens TJ. Recruitment to the actin-based endocytic machinery for yeast endocytosis mutants identifies a yeast macropinocytosis factor pheromone receptor. Mol Cell Biol 2005; 25:7137-48; PMID:16060644; http://dx.doi.org/10.1128/MCB.00463-12

67. Dunn R, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290

68. Dunn R, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290

69. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cerone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 2013; 15:33-43; PMID:23227664; http://dx.doi.org/10.1038/ncb.2975

70. Taylor MJ, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290

71. Dunn R, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290

72. Dunn R, Perrais D, Merrifield CJ. A high precision video microscopy of metallopeptidases. Methods Enzymol 1995; 248:183-228; PMID:8439290
haslik a, Tanner W. Biosynthesis of the vacuolar cyes. J Biol Chem 1985; 156:36-48; PMID:6352682

Harding TM, Hefner-Gravink A, Thumm M, Klosky NJ. Genetic and phenotypic overlap between autoproteolysis and the cytoplasm-to-vacuole protein targeting pathway. J Biol Chem 1996; 271:17621-4; PMID:8663607; http://dx.doi.org/10.1074/jbc.271.10.17621

Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klosky NJ. Cytoplasm-to-vacuole targeting and autoproteolysis employ the same machinery to deliver proteins to the vacuole. Proc Natl Acad Sci U S A 1996; 93:12340-8; PMID:8905176; http://dx.doi.org/10.1073/pnas.93.22.12340

Westphal V, Marcusson EJ, Winther JR, Emr SD. van den Hazel HR. Multiple pathways for vacuolar sorting of yeast proteinase A. J Biol Chem 1996; 271:11865-70; PMID:8662642; http://dx.doi.org/10.1074/jbc.271.10.11865

van den Hazel HR, Kielland-Brandt MC, Winther JR. Autocatalysis of proteinase A initiates activation of yeast vacuolar yzymes. Eur J Biol Chem 1992; 269:277-83; PMID:1628653; http://dx.doi.org/10.1002/1096-9063(199207)269:2<277::AID-JBC145026907_3.0.CO;2-V>

Mechler B, Muller M, Muller H, Meusdoerffer F, Wolf DH. In vivo biosynthesis of the vacuole proteins A and B in the yeast Saccharomyces cerevisiae. J Biol Chem 1982; 257:11201-6; PMID:6749836

Parr CL, Keates RA, Bryksa BC, Ogawa M, Yada KY. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 2007; 24:677-80; PMID:17447722; http://dx.doi.org/10.1002/yea.1485

Jorgensen MU, Emr SD, Winther JR. Ligand recognition and domain structure of Yps1p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur J Biochem 1998; 261:269-78; PMID:9756278; http://dx.doi.org/10.1046/j.1432-1327.1999.00176.x

Rupp S, Hirsch HH, Wolf DH. Biogenesis of the yeast vacuole (lysosome). Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases. FEBS Lett 1999; 293:62-6; PMID:1955673; http://dx.doi.org/10.1016/S0014-5793(99)81153-Y

Kondo H, Shibano Y, Amami T, Cronin N, Oda K, Dunn BM. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate. J Biol Chem 1998; 273:141-7; PMID:9644256; http://dx.doi.org/10.1016/S0021-9258(98)50008-5

Dreyer T. Substrate specificity of proteinase ysc from Saccharomyces cerevisiae. Carlsberg Res Commun 1989; 54:85-97; PMID:2478140; http://dx.doi.org/10.3324/crcan.2002.63-64

Barrett AJ, Rawlings ND, Woese JS. Handbook of proteolytic enzymes. Amsterdam; Boston, MA: Elsevier Academic Press, 2004.

Moshle CM, Dixon CK, Jones EW. Processing pathway for protease B of Saccharomyces cerevisiae. J Cell Biol 1989; 108:309-25; PMID:2659249; http://dx.doi.org/10.1083/jcb.108.2.309

Nebes VL. Jones EW. Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence. J Biol Chem 1991; 266:22851-7; PMID:1744078

Subramanian S, Woolford CA, Drill E, Lu M, Jones EW. Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the yeast cytoplasm. Proc Natl Acad Sci U S A 2006; 103:939-44; PMID:16448276; http://dx.doi.org/10.1073/pnas.0505570103

Naik RR, Jones EW. The PBN1 gene of Saccharomyces cerevisiae: an essential gene that is required for the post-translational processing of the protease B precursor. Genetics 1998; 149:1277-92; PMID:9649520

Farley PC, Shepherd MG, Sullivan PA. The purification, properties, localization, and processing of the N-terminal propeptide of the protease B from Candida albicans. Biochem J 1986; 236:177-84; PMID:3599010

Kominami E, Hoffschulte H, Leuschel L, Maier K, Fischer H. The substrate specificity of proteinase B from baker's yeast. Biochim Biophys Acta 1981; 661:136-41; PMID:7028121; http://dx.doi.org/10.1016/0005-2744(81)90992-9

Jung G, Ueno H, Hayashi R. Carboxypeptidase Y: structural basis for protein sorting and catalytic triad. J Biochem 1991; 126:1-6; PMID:1903913; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022408

Tang B, Nirasawa S, Kizuka M, Hayashi K. The role of the N-terminal propeptide of the pro-aminopeptidase processing propeptide: refolding, processing, and enzyme inhibition. Biochem Biophys Res Commun 2002; 296:78-84; PMID:12147230; http://dx.doi.org/10.1016/S0006-291X(02)00838-8

Spormann DO, Heim J, Wolf DH. Carboxypeptidase Y: gene structure and function of the vacuolar enzyme. Eur J Biochem 1991; 197:399-405; PMID:2026611; http://dx.doi.org/10.1111/j.1432-1327.1999.815924.x

Wolf DH, Ehmann C, Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 1981; 147:418-26; PMID:7025130

Kim J, Scott SV, Oda MN, Klionsky DJ. Transport of a large oligomeric protein by the cytoplasm to vacuole targeting pathway. J Cell Biol 1997; 137:609-18; PMID:9151668; http://dx.doi.org/10.1083/ jcb.137.3.609

Adachi W, Suzuki NN, Fujikoa Y, Suzuki K, Ohsumi Y. Inagaki F. Crystallization of Saccharomyces cerevisiae aspartic proteinase 1, the major cargo protein of the Cvi pathway. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:200-3; PMID:17329814; http://dx.doi.org/10.1107/S1744332507005441

Morales Quinones M, Winston JT, Stromhaug PE. Propeptide of amnioprotease 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway. J Cell Biol 2002; 157:1021-33; PMID:12213825; http://dx.doi.org/10.1083/jcb.2001113166

Schu P. Aminopeptidase I enzymatic activity. Methods Enzymol 2008; 451:67-78; PMID:19185714; http://dx.doi.org/10.1016/S0076-6879(08)03206-0

Adams PD, Mannari SC, Riger CJ, Duarte G, Cruz A, Pereira MD, Eleuthério EC, Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism. Biomedlets 2009; 22:243-9; PMID:18716881; http://dx.doi.org/10.1007/s10534-008-9160-9

Ganguli D, Kumar C, Bachhawar AK. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 2007; 175:1137-51; PMID:17799087; http://dx.doi.org/10.1038/gene.2006.66944

Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988; 4:11-7; PMID:3382986

Nishizawa M, Yasuhara T, Nakai T, Fujiyki Y, Ohashi A. Molecular cloning of the aspartic proteinase of yeast Saccharomyces cerevisiae. Sequence analysis and gene disruption of a new aminopeptidase. J Biol Chem 1994; 269:13651-5; PMID:8175800

Yasuhara T, Nakai T, Ohashi A. Aminopeptidase Y, a new aminopeptidase from Saccharomyces cerevisiae. Purification, properties, localization, and processing by protease B. J Biol Chem 1994; 269:13644-50; PMID:8175799
139. Roberts CJ, Pohlig G, Rothman JH, Stevens TH. Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole. J Cell Biol 1989; 108:1363-73; PMID:2647766; http://dx.doi.org/10.1083/jcb.108.4.1363

140. Julius D, Blair L, Brake A, Sprague G, Thorner J. Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 1983; 32:839-52; PMID:6339075; http://dx.doi.org/10.1016/0092-8674(83)90070-3

141. Garcia-Rudaz C, Luna F, Tapia V, Kerr B, Colgin L, Galimi F, Dissen GA, Rawlings ND, Ojeda SR. Fxna, a novel gene differentially expressed in the rat ovary at the time of folliculogenesis, is required for normal ovarian histogenesis. Development 2007; 134:945-57; PMID:17267443; http://dx.doi.org/10.1242/dev.02795

142. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947-8; PMID:17846036; http://dx.doi.org/10.1093/bioinformatics/btm404