DUNALIELLA SALINA IMPROVED OBESITY-ASSOCIATED INFLAMMATION AND OXIDATIVE DAMAGE IN ANIMALS’ RODENT

FAROUK K EL-BAZ*, HANAN F ALY1, DALIA B FAYED2

1Department of Plant Biochemistry, National Research Centre, 33 El Bohouthst. (former El Tahrirst.), Dokki, Giza, P.O.12622, Egypt.
2Department of Therapeutic Chemistry, National Research Centre, 33 El Bohouthst. (former El Tahrirst.), Dokki, Giza, P.O.12622, Egypt.

Email: fa_elbaz@hotmail.com

Received: 05 January 2018, Revised and Accepted: 29 January 2018

ABSTRACT

Objective: The objective of this study is to investigate the efficacy of microalgae Dunaliella salina to improve apelin, oxidative damage, inflammatory, and apoptotic function implicated in high-fat diet (HFD)-induced obesity in rats.

Methods: Fifty male Westar albino rats weighing 150–160 g were fed on HFD for 12 weeks. Treatment of obese rats with D. salina was carried out in a dose 150 mg/kg body weight as compared to orlistat as anti-obesity standard drug. Blood nuclear factor kappa-B cells (NF-kB), apelin, apoptosis regulator (B-cell lymphoma 2 [BCL2]), monocytes chemotractant protein-1, paraoxonase-1 (PON1) were determined in serum of different groups. Besides, lipid peroxidation (malondialdehyde [MDA]), glutathione (GSH) levels as well as histopathological examination were investigated in liver tissue of obese rats.

Results: Serum apelin, MDA, and NF-kB levels were significantly high, reached to 97.25, 158.18, 511.433, and 170.73%, respectively. While significant decrease in PON1 (47.82%), BCL2 (74.88%), and GSH (63.54 %), levels were detected in the obese rats compared to controls. Obvious improvement in all biomarkers under investigation upon treated obese rats with ethanol extract of D. salina. Histopathological examination of obese hepatic tissue showed dilatation in the central portal veins associated with inflammatory cells infiltration in the portal area and congestion. However, treatment of obese rats with D. salina confirmed biochemical analysis and declared less diffuse inflammatory cells infiltration as well as less focal infiltration in both hepatic parenchyma and portal area with higher improvement in D. salina than drug.

Conclusion: It could be concluded that D. salina has a great ability to improve inflammation associated with obesity as well as damaged hepatic architectures, hence it can be used as a promising anti-obesity nutraceuticals.

Keywords: Apelin, Adiponectin, Obesity, Nuclear factor kappa-B, Monocytes chemotractant protein-1 – B-cell lymphoma 2, Paraoxonase-1, Dunaliella salina.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018v11i5.24622

INTRODUCTION

Obesity is considered to be major common health problem associated with low grade of inflammatory state [1,2]. Considerable evidence suggested the inflammatory response to dietary fat is mediated by toll-like receptor (TLR) signaling, which result in the activation of nuclear factor kappa-B (NF-kB) and production of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), interferon, growth factors, cell adhesion molecules, immune receptors, monocytes chemotractant protein-1 (MCP-1), and stress proteins [3].

It has been known that oxidative stress in obese subjects is a principle factor to the pathogenesis of obesity-linked with metabolic disorders. Adipocytes secretes apelin which is an adipocytokine. Apelin is well recognized for its anti-obesity and anti-diabetic characteristic. Apelin reduces the generation of reactive oxygen species (ROS) in adipocytes, through apelin receptor (APR) interaction. This is further documented by the known that apelin elicits enhancement of antioxidant enzymes through pathways of MAPK kinase/extracellular signal-regulated kinase (ERK) and AMPK and decreases prooxidant enzyme production through AMPK pathway [4].

Obesity is connected with oxidative stress [5] which is a principle factor-associated obesity and other metabolic diseases [6]. Adipose tissue regulates homeostasis of metabolism through the release of different metabolic factors and adipocytokines. It was found that fat accumulation in adipocytes increases in parallel with the production of ROS [4]. In addition, ROS overproduction destroys functions of adipocyte. It, for examples, damages glucose uptake by insulin in adipocytes and elicits adipogenesis and lipolysis, resulting in free fatty acids overproduction [4]. Furthermore, overproduction of ROS in adipose tissue causes suppression of antioxidative enzymes, promotes NADPH oxidase expression, and abnormality in the regulation of adipocytokines expression (e.g., adiponectin and IL-6) [4].

It is well recognized that the activity of paraoxonase-1 (PON1) in serum is differ related to PON1 consumption to prevent oxidation [7]. Inhibition activity of PON1 in serum is considered as a risk factor for hypercholesterolemia [8], obesity, and Type 2 diabetes [9].

Apoptosis is considered as one of the most important features of obesity and non-alcoholic fatty liver (NAFLD) [10]. It has been demonstrated that Bax and caspase-3 were induced by cholesterol [11] which may be a principle apoptotic proteins; however, expression of p53 and B-cell lymphoma 2 (BCL2) in steatotic cells did not elevate by cholesterol, speculated critical effect for the mechanisms of cell death in hepatocytes [12].

On the other hand, microalgae are considered as a rich source of carotenoids [13]. In addition, up to 0.2% of carotenoids were constituted microalgae (Chlorophyceae family), with the highest content of β-carotene in Dunaliella (up to 1% dry weight). Hence, they are not only rich purified compounds source but also powerful functional foods that are currently being demonstrated as chemopreventive nutraceuticals against inflammatory and carcinogenic diseases [14].
β-carotene showed antioxidant and anticancer properties which are attributed to its retinol (Vitamin A) [13]. Retinoids have a wide range of biological activities and can improve several processes such as reproduction, embryogenesis, growth, differentiation, proliferation, apoptosis, vision, bone formation, metabolism, hematopoiesis, and immunological processes [13].

B-carotene as an anti-inflammatory activity has been demonstrated in many models in vitro and in vivo [15]. Although β-carotene could act preventively on intestinal inflammatory diseases. The efficacy was attributed to different molecular target attenuation, such as NF-kB, COX-2, and matrix metalloproteinase 9 (MMP-9). Dunaliella bardawil was used against bowel inflammation induced by acetic acid [13]. β-carotene rich in D. salina exhibited the growth inhibition activity and proapoptotic effects on human colon cancer cell lines, many types of cancer, and degenerative diseases in vitro and in vivo [13] probably due to their antioxidant and anti-inflammatory activities [16].

Hence, the present study is designed to evaluate the role of D. salina in improving oxidative damage, inflammatory, and antiapoptotic biomarkers associated with high-fat diet (HFD)-induced obesity in rats.

METHODS

Cultivation of D. salina

The organism was grown in conical flask 5L containing BG11 nutrient media according to Stanier et al. as shown in Table 1 [17].

One ml of the micronutrient solution was added to the culture medium. After autoclaving and cooling, pH of medium is about 7. The culture was harvested by centrifugation, dried at 40°C, and then grounded into homogeneous fine powder.

Ethanolic extract preparation of D. salina

For the preparation of the ethanolic extract, 100 g of D. salina powder was soaked in ethanol (80%) and shook on shaker (Heidolph UNIMAX 2010) for 48 h at 150 rpm. The extract was filtered using a Buchner funnel and Whatman No. 4 filter paper, and the algal residue was reextracted with the addition of fresh 80% ethanol for another 2 times. Combined filtrates were concentrated using rotary evaporator (Heidolph, Germany) at 40°C under vacuum. The resulting dry extract was evaporated on a rotary vacuum evaporator to dryness. The dry extract was stored at −20°C in a freeze and kept for further analysis [18].

Biological assay

Experimental animals

Male albino rats (n=50) weighted 150±20 g were obtained from the Animal House of the National Research Center (NRC). Animals were performed according to the Ethical Committee of the NRC, Egypt, provided that the animals will not suffer at any stage of the experiment.

Macronutrient	g/L
NaN₃	1.5
K₂HPO₄·4H₂O	0.04
MgSO₄·7H₂O	0.075
CaCl₂·2H₂O	0.036
Citric acid	0.006
Ferric ammonium citrate	0.006
EDTA (disodium magnesium salt)	0.001
Na₂CO₃	0.02
Micronutrient	g/L
H₂B₃	2.86
MnCl₂·4H₂O	1.81
ZnSO₄·7H₂O	0.222
Na₂MoO₄·2H₂O	0.39
CuSO₄·5H₂O	0.079
Co (NO₃)₂·6H₂O	0.0494

Table 1: BG11 nutrient composition

Induction of obesity in rats

Obesity was induced in rats according to the method of Adaramoye et al. [19] by feeding rats’ HFD (lard), cholesterol was orally administrated at a dose of 30 mg/0.3 ml olive oil/1 kg animal 5 times a week for 12 consecutive weeks, lard fat was mixed with normal diet (ND) (1 kg of animal lard was added to 5 kg of ND), and the occurrence of obesity was determined by measuring body weight gain percentages and visceral and fecal fat percentages.

Doses and routes of administration

Obese rats received an oral dose of 2 mg/kg body weight dissolved in distilled water of the anti-obesity reference drug, orlistat (12 mg/Kg body weight) for 6 weeks [20]. Obese rats treated with orally administered 150 mg/kg body weight of D. salina ethanolic extract for 6 weeks [21].

Assay of paraoxonase activity

The rate of paraoxon hydrolysis was monitored the increase of absorbance at 405 nm and 25°C. The basal assay mixture included 1.0 mM paraoxon and 1.0 mM CaCl₂ in 0.05 M glycine buffer, pH 10.5. 1 unit (U) of PON activity is defined as 1 µmol of p-nitrophenol formed per min, and activity was expressed as U/l of serum [22].

Determination of MCP-1 protein

MCP-1 protein levels in serum were measured using a solid-phase sandwich enzyme-linked immunosorbent assay (MCP-1 Quantikine enzyme-linked immunosorbent [ELISA] kit, R&D systems, Abingdon, UK). Briefly, 100 µl of diluted samples or standards (recombinant human MCP-1) were incubated (2 h at room temperature) in the wells precoated with the primary antihuman MCP-1 antibody. After incubation, wells were washed 3 times and horseshind peroxidase-conjugated polyclonal antibodies against MCP-1 were added (for 2 h at room temperature). Finally, tetramethylbenzidine substrate solution was applied for 30min, and after stopping the reactions by 2 M sulfuric acid, the absorbance was measured at 450 nm (with correction at 540 nm). The data were evaluated with KIM-E software (USOL, Prague, Czech Republic); the detection limit of the MCP-1 assay was 5.0 Pg/ml.

Quantification of NF-kB

NF-κB was measured in serum using commercially available human NF-κB ELISA kit (Gloxy Science Co., Ltd, Del Rio, TX, USA) according to manufacturer instructions. The kit uses a double antibody sandwich ELISA assay to assay the level of NF-κB. The detection range of the kits is 100–2000 U/l.

Determination of lipid peroxide

Lipid peroxidation was assayed in liver tissue homogenate by measuring the thiobarbituric acid-reacting substances as previously described by Ruiz-Larrea et al. [23] and Prijant et al. [24] in which the thiobarbituric acid reactive substances react with thiobarbituric acid to produce a red-colored complex having peak absorbance at 532 nm (using ultraviolet-V18 recording spectrophotometer, Shimadzu Corporation, Australia).

Determination of BCL2

The level of serum BCL2 was determined by double-antibody sandwich enzyme-linked immunosorbent assay kit according to the manufacturer’s instructions (Biosystems, Egypt.).

Apelin-12

Serum apelin-12 levels were determined by ELISA (apelin-12 ELISA kit, Phoenix Pharmaceuticaels, Belmont, CA, USA) (sensitivity: [Minimum detectable concentration] = 0.15–0.25 ng/ml, intra-CV: 5%, and inter-CV: 14%).

El-Baz et al. Asian J Pharm Clin Res, Vol 11, Issue 5, 2018, 240-246
Marker for antioxidant

Glutathione (GSH) was demonstrated using 5, 5′-dithiobis-2-nitrobenzoic acid in phosphate buffer and the formed color was measured at 412 nm as described by El-Baz et al. [25].

Experimental design

Fifty male Wistar albino rats (5–6 weeks-old) weighing at 155.00±5.00 g (mean ± standard deviation [SD]) (weight of rats on the day received from supplier) after adaptation period to the environment, the rats were randomly divided into five groups (n=10/group) as follows:

- **Group (1):** Control rats received normal diet (ND)
- **Group (2):** Control rats administered ND and treated with 150 mg/g body weight of ethanolic extract of *D. salina* (HFD/ND)
- **Group (3):** HFD treated rats for 12 weeks
- **Group (4):** Obese rats treated for 6 weeks with 150 mg/kg body weight of ethanolic extract of *D. salina* (HFD/DS)
- **Group (5):** Obese rats treated for 6 weeks with anti-obesity standard drug orlistat (12 mg/kg body weight) (HFD/odd ratio).

Health conditions of all rats were monitored daily and no adverse events were observed throughout the study. At the beginning of the experiments, the weights of all rats were recorded at 155.00±5.00 g (mean ± SD) (weight of rats after 10 days of acclimatization). All experiments and biochemical analysis were conducted using 50 rats with triplicate measurements. The permission to conduct this study was according to the ethics of NRC, Egypt.

Blood sample

Blood samples were obtained following an overnight fasting state at the end of treatment (week 12) at 8 a.m. Samples were withdrawn from a cubital vein into blood tubes under diethyl ether anesthesia and immediately stored on ice at 4°C. The serum was then separated from the cells by centrifugation at 3000 rpm for 10 min, and they were stored until analyzing at −80°C [26]. After 12 and 18 weeks of treatment, all the rats were sacrificed and the liver was removed for biochemical and histopathological examination.

Histological examination

Histopathological examination of control rats showed no histopathological alteration and normal histological structure of the central vein and surrounding hepatocytes in the parenchyma (Fig. 1). Furthermore, control rats treated with *D. salina* showed no histopathological alteration (Fig. 2). However, photomicrograph of obese rats fed HFD showed dilatation in the central portal veins associated with inflammatory cells infiltration in the portal area and congestion (Figs. 3a and 3b). Photomicrograph of obese rats treated with *D. salina* and orlistat standard drug showed less diffuse inflammatory cell infiltration as well as less focal infiltration in both hepatic parenchyma and portal area with higher improvement in *D. salina* than drug (Figs. 4a and 4b).

DISCUSSION

It was suggested that the enhanced hypothalamic TLR4/NF-kB and the release of inflammatory cytokines were incorporated in the imperfect food intake after dietary fat exposure [28]. In the present study, we found that NF-kB NF-kB was significantly higher in obese rats induced by HFD compared with normal control rats. Similar results were found and GSH level with percentages 47.82 and 63.54%, respectively, as compared to control. Medication of obese rats with *D. salina* demonstrated marked improvement in apelin, PON1, MDA, and GSH levels with percentages 67.50, 52.17, 127.27, and 41.14%, respectively, as compared to standard drug (58.78, 29.57, 114.55, and 16.83%, respectively) (Table 3).

RESULTS

The present results demonstrated an insignificant change in control rats treated with *D. salina* as compared to control, while obese rats showed significant increase in NF-kB and MCP-1 levels upon treated obese rats with ethanolic extract of *D. salina* with percentages 511.433 and 170.73%, respectively, as compared to control. Whereas, a significant decrease in BCl2 reached to 74.88%. Marked amelioration in NF-kB, BCl2, and MCP-1 levels in obese rats treated with *D. salina* with percentages of amelioration 378.44, 36.16, and 112.19%, respectively, as compared to control, while obese rats demonstrated significant increase in apelin and MDA levels with percentages 97.25 and 150.18%, respectively, while there was a significant reduction in PON1 activity.
It was found that inflammation of hypothalamus in response to increase in oxidized lipids, adipose stimuli activates NF-kB, which could enhance NF-kB in neighboring hepatocytes [31].

In obese condition, the pathways of pro-inflammatory response could initiate from stressed hepatocytes through NF-kB activation. Alternatively, inflammatory response mediators in steatohepatitis nutritional model [31]. Further, NF-kB is activated by oxidative stress, bacterial endotoxin, mitochondrial damage, and insulin resistance induction [3].

Biomarkers

Table 2: Effect of D. salina on inflammatory and apoptotic markers in obese rats

Biomarkers	Control/ND	Control/ND/DS	HFD	HFD/DS	HFD/OR
% change	52.50±5.00	48.00±8.01	321.00±21.905	122.3±2.90	153.8±4.78
% im improvement	-8.57	1.43	13.29	192.95	318.47
BCL2 (μg/l)	13.2±0.16	13.00±2.00	3.32±0.21	8.10±0.34	8.43±1.14
% change	1.66	74.88	38.73	36.23	36.65
% im improvement	36.16	36.16	38.73		
MCP-1 (Pg/ml)	8.20±0.54	8.00±2.00	22.20±2.00	13.00±0.99	17.0±0.79
% change	2.40	170.73	58.54	107.31	63.41
% im improvement	112.19	112.19	58.54		

ND: Normal diet, ND/DS: Rats feed ND and treated orally with D. salina extract for 4 weeks. HFD/DS: Rats feed with HFD for 4 weeks post-induction. HFD/OR: Rats feed HFD and treated orally for 4 weeks with standard drug orlistat. Statistical analysis is carried out using the SPSS computer program, combined with a costate computer program, where unshared letter is statistically significant at P≤0.05.

Table 3: Effect of D. salina on apelin, antioxidant, oxidative, and apoptotic biomarkers in obese rats

Biomarkers	Control/ND	Control/ND/DS	HFD	HFD/DS	HFD/OR
% change	400.00±23.90	378.00±20.92	89.00±1.89	19.00±9.80	553.8±11.00
% change	5.50	97.25	29.75	38.47	
% im improvement	227.00±11.90	222.00±10.00	120.00±4.88	200.00±3.80	188.00±11.10
% change	1.30	47.82	34.78	18.26	
% im improvement	158.18	30.90	43.64		
MDA (μm/μg protein)	0.55±0.16	0.45±0.06	1.42±0.20	0.72±0.08	0.79±0.09
% change	18.18	52.17		29.57	
% im improvement	187.20	52.17			
GSH (μg/mg protein)	48.79±5.21	55.70±5.21	17.79±1.20	37.88±0.90	26.00±0.32
% change	14.16	63.54	22.36	46.71	
% im improvement	4.18	114.55			

ND: Normal diet, ND/DS: Rats feed ND and treated orally with D. salina extract for 4 weeks. HFD/DS: Rats feed with HFD for 12 weeks and treated orally with D. salina for 4 weeks post-induction. HFD/OR: Rats feed HFD and treated orally for 4 weeks with standard drug orlistat. Statistical analysis is carried out using the SPSS computer program, combined with a costate computer program, where unshared letter is statistically significant at P≤0.05.

by Zhang et al. [29]. It was found that inflammation of hypothalamus post-chronic consumption of HFD could not only make changes in feeding and body weight but also influence body weight-independent state to initiate systemic glucose intolerance, and the mechanism illustrated central leptin and insulin resistance induction [3].

Further, NF-kB is activated by oxidative stress, bacterial endotoxin, and cytokines. It induces liver damage related to different agents and pathogens [30], besides enhancement of NF-kb is consider a principle marker in the acute liver failure [32]. NF-kb and TNF-α roles are act as inflammatory response mediators in steatohepatitis nutritional model [31]. In obese condition, the pathways of pro-inflammatory response could initiate from stressed hepatocytes through NF-kB activation. Alternatively, NF-kB-activated Kupffer cells produced TNF-α, IL-1β, and other cytokines which could enhance NF-kB in neighboring hepatocytes [31].

In obese condition, excess fat lipotoxic effects may stimulate TNF-α production. Once produced, TNF-α/TNF-α cycle becomes self-maintaining [32]. It is likely that TNF-α chronic exposure induces inflammatory cells accumulation in the liver, promoting hepatocytes damaging factors produced from activated monocytes [32]. This is indicated in the current results in the histopathological examination which revealed dilatation in the central portal veins associated with inflammatory cells infiltration in the portal area and congestion (Figs. 3a and 3b).

The present results revealed a significant decrease in BCL2 in obese rats which is run in parallel with the study of Briscini et al. [33], who demonstrated that obese rats' adipocytes recorded low ratios of BCL2/Bax mRNA and protein. BCL2 is a proapoptotic and antiapoptotic factors. BCL2 and related proteins function are concerned with their efficacy to prevent apoptosis pathways of mitochondrial. Apoptotic process implies damage of outer membrane of mitochondria and the release of cytochrome C intermembrane and other proteins into the cytosol, which in turn stimulates death-driven caspase proteolytic enzymes that organize the disassembling of the cell, and this process is regulated by BCL2. Hence, by stopping proapoptotic protein Bax redistribution to the mitochondria, BCL2 prevents mitochondria cytochrome C from release and subsequent caspases proteins activation [34]. Further, the present investigation declared that HFD significantly increased serum MCP-1. These results are in concomitant with Chen et al. [35] who declared that the expression of MCP-1 and MCP-3 in rats was induced by HFD. The high expression level of MCP-1 in adipose tissue leads to the increase in plasma MCP-1 levels post 4 weeks HFD feeding. Monocytes slowly infiltrated and accumulated in the adipose tissue with an increase in the site of adipocytes, which subsequent stimulated expression of MCP-1. It was found that in response to increase in oxidized lipids, adipose MCP-1 and MCP-3 were induced. Furthermore, MCP-1 expression was stimulated by TNF-α in cultured adipocytes, and hence, may act to strengthen the expression of adipocyte MCP-1 [36]. Besides, hepatic MCP-1 has a principle effect in hepatic disorders through stimulation of Kupffer cells by HFD to release markedly high MCP-1 amounts [30].

Indeed, the specific overexpression of mice adipose tissue MCP-1, in turn, leads to insulin resistance development, inflammation, and hepatic...
steatosis and fibrosis by eliciting hepatic stellate cells migration [37] (as indicated in the histological investigation, (Figs. 3a and 3b)).

Considering apelin which is a novel adipokine, the present results showed a significant increase in its level in obese rats induced by HFD. The apelinergic system has been demonstrated to be implicated in the high prevalence disorders such as obesity, glucose intolerance, and diabetes mellitus Type II [38]. Plasma levels of apelin are markedly elevated independently of diet composition in obese mice and humans with hyperinsulinemia [32]. It was found that apelin connected with APJ, which subsequent leads to protein kinase B (Akt) phosphorylation and ERK in different cell. Further, the system of APJ/apelin enhances the expression of adhesion molecule-1 (ICAM-1) through NF-kB/c-jun N-terminal kinase (JNK) signal pathway [39]. In addition, Yasuzaki et al. [40] declared that apelin/APJ signaling may stimulate Fas-induced hepatic damage in mice injected with anti-Fas antibody (Jo2) through JNK phosphorylation.

On the other hand, treatment of obese rats with D. salina extract improved the inflammatory and antiapoptotic markers, MCP-1, and apelin levels. This biochemical observation is documented in histopathological examination of obese rats liver treated with D. salina (Figs. 4a and 4b), which may be attributed to D. salina-enriched carotenoids exhibited and anti-inflammatory activities [41]. In addition, D. salina treatment inferred a notable downregulation of NF-kB, MCP-1, apelin, and MDA levels, while the extract upregulated BCL2, GSH, and PON1 levels. It could be due to the potential anti-inflammatory activity of carotenoids, especially carotenes [41]. Chiu et al. [41] added that the COX-2 protein expression was substantially downregulated by treatment with a carotenoid extract of D. salina in lipopolysaccharide-induced RAW 267.4 A cell model. Likewise, Bai et al. [42] and Jang et al. [43] pointed out that β-carotene can inhibit the translocation of NF-p65 subunit from cytosol to nucleus and thereby halt the inflammatory cascade. Hence, we speculate that D. extract rich in β-carotene can block the translocation of transcription factor (NF-p65/p50 subunit) and thus downregulate COX-2 protein expression and thereby exert anti-inflammatory activity as approved by the modulatory effect of D. salina on inflammatory reaction, resulting from obesity induced by HFD (Figs. 4a and 4b).

Jayappriyan et al. [44] and Palozza et al. [45] also indicated that β-carotene can interfere with cell growth (antiproliferative) by halting the cell cycle division through inhibiting cyclin A as well as induce apoptosis by downregulating antiapoptotic proteins such as BCL2 in human colon adenocarcinoma cell line. However, D. salina extract rich in carotenoids would not induce cell death in normal cells, rather only in cancer cells, and thus demonstrate its anticancerogenic activity. In the present study, D. salina extract acts as an antiapoptotic agent, upregulated BCL2 anti-apoptotic marker. This statement clearly indicated that D. salina extract acted as an antiobesity-associated with anti-inflammatory agents not only by triggering anti-apoptosis rather it effectively reduced inflammatory cells reaction. Qu et al. [46] proved that lycopene could regulate the expression of different protein involved in apoptosis, antiproliferation, antioxidant, and anti-inflammation, and thereby attenuate the progression of prostate cancer.

The current results showed inhibition of PON1 activity in serum of obese rats. The mechanism involved increased generation of ROS in the liver of obese rats as presented by the detected high levels of MDA. It was found that the inhibition activity of liver microsomal PON1 is considered as the starting point of biochemical alteration contributed to lipid peroxidation and hepatic damage noticed in rats injected with CCl4-induced cirrhosis [47].

In another explanation, PON1 mRNA expression is downregulated by the pro-inflammatory cytokines as IL-1 and TNF-α in HepG2 cells. This cytokine promoted a decrease in the production of PON1 by the liver [48]. Hence, PON1 inhibition activity in sera of patients with chronic hepatic damage was suggested to be attributed to the degree of hepatic injury [22].

Obesity-induced pathology is thought to be occurred as a result of high level of lipid peroxidation. The data presented in the current study clarify that obesity elevated MDA level in hepatic tissue. This is in agreement with the results of Vincent et al. [49] and Amirkhiz et al. [50], who showed that obesity can produce a high level of lipid peroxidation by developing and growing cell damage as a consequence of the large body mass pressure. Cell damage stimulates cytokines production, particularly TNF-α, which initiates ROS from the tissues which lead to lipid peroxidation production [51]. Furthermore, the hypertriglyceridemia observed in obese rats may related to the change in the balance of oxidant-antioxidant status, suggesting that an elevation in the free fatty acids bioavailability can enhance lipid peroxidation [50]. It has been found that the body of animals had a powerful mechanism to stop tissue damage by free radical; this is achieved by a collection of proteins and endogenous antioxidant enzymes as glutathione S-transferase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and GSH. Hence, when the production of ROS exceeds the defense of antioxidant, oxidative stress produce leading to different pathological conditions [51]. The decrease in the enzymes of antioxidant may be related to the fast consumption and exhaustion of enzyme storage in combating free radicals produced during obesity progress. The inhibition in PON-1 activity and reduced GSH level could be occurred as a result of changed synthesis and/or HDL secretion, secondary to destroyed activity of lecithin–cholesterol acyltransferase. PON-1 may be inhibited under oxidative stress, by S-glutathionylation, a redox-controlled mechanism, described by the combination between a protein thiol and oxidized GSH forming mixed disulfide [51].

The ameliorative effects of D. salina on MDA, GSH levels as well as PON1 activity may be due to the presence of several carotenoids such as all-trans-lutein, all-trans-zeaxanthin, all-trans-a-carotene, all-trans-β-carotene, and 9-cis-β-carotene. Nevertheless, all-trans-β-carotene and 9-cis-β-carotene are the major carotenoids present in D. salina.

Fig. 3: (a and b) Photomicrograph of obese rats fed high-fat diet and showed dilatation in the central and portal veins associated with inflammatory cells infiltration in the portal area (H and E × 200)
2. Singh V, Gunjan KD, Katiyar D. Anti-inflammatory activity of alcoholic and aqueous heart extracts of Berberis aristata DC. Asian J Pharm Clin Res 2014;7:210-2.

3. Wang X, Ge A, Cheng M, Guo F, Zhao M, Zhou X, et al. Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp Diabetes Res 2012;2012:1-8.

4. Than A, Zhang X, Leow MK, Poh CL, Chong SK, Chen P. Apelin attenuates oxidative stress in human adipocytes. J Biol Chem 2014;289:3763-74.

5. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-61.

6. Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med 2011;12:21-9.

7. Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Biigaler CL. Human serum paraoxonase (PON1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 1999;26:892-904.

8. Kaikini A, Dhande S, Kadam V. Antihyperlipidemic activity of methanolextract of leaves of Bambusa bambusata against poleopolami-407 induced hyperlipidemia in rats. Int J Pharm Sci 2015;7:393-8.

9. Garg A, Singh R. Antiebesity activity of Ethanolic extract of Cuscuta auriculata in high fat diet induced obese rats. Int J Pharm Sci Res 2015;7:237-43.

10. Williams KH, De Ribeiro AJ, Prakoso E, Veillard AS, Shackel NA, Brooks B, et al. Circulating dipeptidyl peptidase-4 activity correlates with measures of hepatocyte apoptosis and fibrosis in non-alcoholic fatty liver disease in Type 2 diabetes mellitus and obesity: A dual cohort cross-sectional study. J Diabetes 2015;7:809-19.

11. Yamaguchi H, Chen J, Bhalla K, Wang HG. Regulation of Bax activation and apototic response to microtubule-damaging agents by p53 transcription-dependent and-independent pathways. J Biol Chem 2004;279:39431-7.

12. Zhu C, Xie P, Zhao F, Zhang L, An W, Zhan Y. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol. Int J Clin Exp Pathol 2014;7:6807-13.

13. Talero E, Garcia-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcalde A, Motilla V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 2015;13:6152-209.

14. Pasquet V, Morisset P, Ihammouine S, Chepied A, Aumailley L, Berard JB, et al. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 2011;9:819-31.

15. Bhupathiraju SN, Wedick NM, Pan A, Manson JE, Rexrode KM, Willett WC, et al. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr 2013;98:1514-23.

16. Palozza P, Serini S, Maggiano N, Tringali G, Navarra P, Barbas C. Evolution of oxidative stress parameters and response to oral Vitamins E and C in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2008;60:871-8.

17. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 1994;59:383-8.

18. Prijanti AR, Marissa N, Paramita R, Humaira S, Nabila EN, Wijaya AE, et al. Analysis of oxidative stress markers malondialdehyde, glutathione, nitric oxide, and protein level in preeclampsia placental tissues. Asian J Pharm Clin Res 2018;11:158-61.

19. El-Baz FK, Aly HF, Ali GH. Neuromodulating effect of Dunaliella salina extract in the regression of Alzheimer’s disease in rats. Int J Pharm Sci 2018;4:245.
Pharm Biol Sci 2016;7:921-31.
26. Selek S, Aslan M, Nazgul Y. Serum PON1 activity and oxidative stress in non-alcoholic fatty liver disease. J Harran Univ Med Fac 2012;9:85-91.
27. Drury RA, Wällington EA. Carleton’s Histology Technique. 4th ed. New York, USA: Oxford University Press; 1967. p. 653-61.
28. Milanski M, Degasperi G, Coape A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J Neurosci 2009;29:359-70.
29. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008;135:61-73.
30. Abdel-Salam OM, Youssef ER, Mohammed NA, Abu-Elhamed WA. Nuclear FACTOR-kappa B and other oxidative stress biomarkers in serum of autistic children. Open J Mol Integr Physiol 2015;5:18-27.
31. Baranova A, Younossi ZM. Adipokines in non-alcoholic fatty liver disease. In: Fantuzzi G, Mazzone T, editors. Adipose Tissue and Immunol 2013;4:1-8.
32. Briscini L, Tonello C, Dionis L, Carruba MO, Nisoli E. BCL2 and Bax induction of monocyte chemoattractant protein-1 and its impact on obesity-linked apoptosis. FEBS Lett 1998;431:80-4.
33. Cerpa-Cruz S, González-Díaz V, Martínez-Bonilla G, Gutiérrez-Ureña S, Rodríguez-Cortés E, García-Espinoza LA, et al. Non-alcoholic fatty steatohepatitis an inflammatory disorder beyond the liver. J Clin Cell Immunol 2013;4:1-8.
34. Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: New insights and potential new treatments. Nutrients 2017;9:E387.
35. Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Exp Nutr 2014;22:202-9.
36. Chen A, Mumick S, Zhang C, Lamb J, Dai H, Weingarth D, et al. Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 2005;13:1311-20.
37. NRC. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press; 2005.
38. Jang SH, Lim JW, Kim H. Beta-carotene inhibits Helicobacter pylori-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in human gastric epithelial AGS cells. J Physiol Pharmacol 2009;60:131-7.
39. Jayappriyan KR, Renganathan R, Venkatkrishnan V, Rengasamy R. In vitro anticancer activity of natural β-carotene from Dunaliella salina EL8891199 in PC-3 cells. Biomed Prev Nutr 2013;3:99-105.
40. Palozza P, Serini S, Muggiano N, Angelini M, Bonisegna A, Di Nicuolo F, et al. Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by β-carotene through down-regulation of cyclin A and BCL2 family proteins. Carcinogenesis 2002;23:11-8.
41. Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, van Bremmen RB. Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prev Res (Phila) 2013;6:419-27.
42. Bai SK, Lee SJ, Na HJ, Ha KS, Han JA, Lee H, et al. Beta-carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-kappa B activation. Exp Mol Med Mol Biol Sci 2016;9:576-82.
43. Yang DJ, Lin JT, Chen YC, Liu SC, Lu FJ, Chang TJ, et al. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK signal pathway in human umbilical vein endothelial cells. Amino Acids 2012;43:2125-36.
44. El-Baz et al. Asian J Pharm Clin Res, Vol 11, Issue 5, 2018, 240-246
45. Ferré N, Camps J, Cabrè M, Paul A, Joven J. Hepatic paraoxonase activity alterations and free radical production in rats with experimental cirrhosis. Metabolism 2001;50:997-1000.
46. Murthy KC, Vanitha A, Rajesh A, Swamy MM, Sowmya P, Ravishankar GA. In vivo antioxidant activity of carotenoids from Dunaliella salina-a green microalgae. Life Sci 2005;76:1381-90.