Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease

Patricio L. Acosta,a,b Mauricio T. Caballero,a Fernando P. Polacka,c

Fundacion INFANT, Buenos Aires, Argentinaa; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentinab; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USAc

In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experienced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became infected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection with wild-type RSV. The enhanced disease was initially characterized as a “peribronchiolar monocytic infiltration with some excess in eosinophils.” Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not processed in the cytoplasm, resulting in a nonprotective antibody response and CD4+ T helper priming in the absence of cytotoxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune complex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vaccine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the risk of ERD in new vaccine candidates.

Respiratory syncytial virus (RSV) is the leading respiratory cause of hospitalization in infants and young children in the United States and in the world (1, 2). Most severe infections occur in young infants, with the peak incidence of lower respiratory tract illness (LRTI) occurring between 2 and 4 months of age (3–5). In the United States, hospitalization rates have risen during the last decades (6), and while premature babies and infants with chronic lung disease and/or congenital heart disease are at increased risk for severe presentations, the majority of hospitalizations occur in previously healthy infants. Recent estimates of global mortality suggest that between 66,000 and 234,000 infants and young children die every year due to RSV (1, 2). Ninety-nine percent of these fatalities are thought to occur in the community. The need for preventive interventions against the virus is indisputable.

The virus. RSV is a member of the pneumovirus genus of the family Paramyxoviridae. The virus is a negative-sense RNA virus with a nonsegmented encapsidated genome and a lipid envelope (7). The envelope is a host plasma membrane-derived lipid bilayer containing three virally encoded transmembrane glycoproteins: the fusion (F) protein, the attachment (G) protein, and the small hydrophobic (SH) protein. RSV F is the main neutralizing antigen, highly conserved and essential for virus viability (7). The envelope is a host plasma membrane-derived lipid bilayer containing three virally encoded transmembrane glycoproteins: the fusion (F) protein, the attachment (G) protein, and the small hydrophobic (SH) protein. RSV F is the main neutralizing antigen, highly conserved and essential for virus viability (7). The secondary protective antigen eliciting neutralizing antibodies is the RSV G protein. Both neutralizing antigens are the main candidates for novel vaccines and targets for monoclonal antibodies.

A new scenario. The world of RSV vaccines is experiencing important changes. In recent years, epidemiological studies highlighted the burden of RSV disease worldwide (2, 8), stressing the public health need for vaccine development against the pathogen. Strategies under evaluation in human subjects to prevent severe RSV LRTI include immunization of pregnant women and passive prophylaxis with long-lived monoclonal antibodies and inoculation of live attenuated RSV vaccines in young infants (9–11). Maternal immunization aims to elicit high levels of protective antibody in pregnant women, fostering transplacentally acquired antibody-mediated protection in infants during the first months of life (12–14). Passive prophylaxis with long-lived monoclonal antibodies against neutralizing epitopes in RSV and immunization with recombinant live, attenuated RSV vaccines target infants directly (11).

In addition, a variety of novel approaches to vaccination have emerged. Replication-defective gene-based single-cycle vectors (15, 16), subunit vaccines adjuvanted with various Toll-like receptor (TLR) agonists (17), viruslike particles (VLPs) with protective antigens (18–20), and new formulations with the prefusion conformation of RSV F (21–25) defy our traditional understanding of replicating and nonreplicating vaccines, posing new questions for the field and for human studies. This challenge is particularly significant for RSV because a vaccine designed to protect infants and toddlers against RSV in the 1960s primed for a severe form of respiratory illness upon RSV infection, known as enhanced RSV disease (ERD). Each of these novel formulations may present individual characteristics that theoretically affect the risk for ERD.

Brief history of enhanced RSV disease. In 1966, a formalin-inactivated vaccine against RSV (FIRSV) was administered to infants and children in four studies in the United States (26–29). The immunized children were exposed to RSV in the community, and those children who were seronegative for the virus before vaccination experienced a significant increase in the frequency and severity of RSV LRTI. This enhanced form of RSV disease presented with fever, wheezing, and bronchopneumonia and led to...
frequent hospitalizations (80% in FIRSV recipients versus 5% in controls among RSV-infected children in one study) (26). In fact, two immunized infants died as toddlers as a consequence of subsequent RSV infection (26).

In the last 3 decades, much effort has been devoted to clarifying the pathogenesis of ERD. For many years, the consensus was that nothing but live, attenuated vaccines against RSV would ever be used to immunize infants. Therefore, the characterization of ERD phenotypes was of academic interest but had limited regulatory implications. The need for identifying clear biomarkers of disease enhancement is now particularly important, because novel vaccine formulations challenging our old safety parameters are emerging and may be ready for human studies in the near future.

While not all candidate vaccines present similar risks of eliciting ERD, identifying safety parameters for the evaluation of certain new formulations will be critical. Importantly, these evaluations will have to be conducted in animal models, because novel vaccine formulations challenging our old safety parameters are emerging and may be ready for human studies in the near future. While not all candidate vaccines present similar risks of eliciting ERD, identifying safety parameters for the evaluation of certain new formulations will be critical. Importantly, these evaluations will have to be conducted in animal models, because novel vaccine formulations challenging our old safety parameters are emerging and may be ready for human studies in the near future.

Numerous cell types, cytokines, and chemokines have been reported to promote or mitigate ERD in the last decades (30–40). The studies used a variety of animal models, immunogens, and immunization strategies (31, 32, 41–51). We have chosen to focus on the most widely accepted and arguably best-studied characteristics of ERD to provide a concise and critical review of disease pathogenesis and discuss the potential value of selected biomarkers in the evaluation of novel RSV vaccine candidates.

Eosinophils in ERD. Autopsy material from both toddlers killed by ERD showed bronchopneumonia with atelectases and pneumothoraces. The pulmonary histopathology was reported in the literature as a “peribronchiolar monocytic infiltration with some excess in eosinophils” (26), but rereview of the autopsy reports (42) revealed a pulmonary neutrophilia with abundant macrophages and lymphocytes and excess eosinophils (Fig. 1). Given the overwhelming predominance of neutrophils and mononuclear cells in ERD, the reason why these cells were ignored in the original manuscript is unclear (26). Perhaps the postmortem recovery in culture of Klebsiella and Escherichia coli bacteria from autopsy specimens of both children (26) raised suspicion that a bacterial superinfection had triggered the pulmonary neutrophilia. However, high RSV titers were recovered from the lungs of the affected children (26), the lung histopathology in both cases was not entirely consistent with bacterial pneumonia (52, 53), and recovery of Gram-negative bacilli from the respiratory tracts of ill, hospitalized patients is exceedingly common (34–56).

The original report emphasizing eosinophils in the lung pathology made these cells a critical endpoint of ERD models. In fact, FIRSV was often replaced in ERD models by vaccines with significant differences in design and properties, namely, vaccinia virus expressing RSV G (vvG) (31, 32, 49–51). These alternative vaccines were chosen based on their ability to promote eosinophilia upon RSV challenge (35, 38–40, 57–90). Notably, more than half of all mouse studies of ERD pathogenesis used vvG immunization instead of FIRSV. And while vvG primed for an undesirable pulmonary eosinophilia after challenge, this replicating immunogen differed significantly from FIRSV. Consequently, its disease-priming mechanisms were not necessarily those of inactivated vaccines leading to ERD. Moreover, the strong emphasis on lung eosinophilia in mouse models of ERD often translated into considering the presence of other inflammatory cells irrelevant (26–32, 35, 45, 49–51, 91–99). This is paradoxical, as eosinophils were not always the dominant infiltrating cells even in Th2-biased mouse models of ERD (31, 32, 34, 38–40, 49–51, 57–90, 100), and they are absent in cotton rats and several cattle models of enhanced illness (42, 43). Recently, new evidence revealed that eosinophils do not play a critical role in ERD pathogenesis (37).
Their role in illness, like that of neutrophils, remains unclear. However, the presence of eosinophils in lung sections of immunized and challenged BALB/c mice may serve as a warning sign and prompt caution against any vaccine candidate targeting RSV. Conversely, the absence of eosinophils in other disease models should not be interpreted as solid reassurance against the risk of ERD.

T helper bias in ERD. Twenty-four years ago, the first evaluation of ERD pathogenesis showed increased production of interleukin 4 (IL-4) in lungs of affected BALB/c mice by using Northern blot analyses (30). Subsequent depletion of CD4+ T lymphocytes and codepletion of IL-4 and IL-10 down-modulated ERD lung pathology, suggesting that the disease was due to an exacerbated Th2 response (34, 35). These observations were further supported by reports of increased numbers of eosinophils and CD4+ (but not CD8+) T cells in mice with ERD and high levels of both IL-5 and IL-13 type 2 cytokines in murine models (38). Recently, similar results in BALB/c mice confirmed a critical role for Th2 bias (but not eosinophils) in airway hyperreactivity and mucus hypersecretion (37). Formaldehyde, used for virus inactivation in FIRSV, may have contributed to Th2 polarization during ERD by generating carbonyl groups on viral antigens (96).

The activation and/or suppression of other T lymphocyte populations may contribute to ERD. Recent work associated ERD with marked suppression of T regulatory cell (Treg) activity (an observation that aligns with earlier evidence of modulation by IL-10 [35]), exacerbating the Th2 bias in recipients of inactivated RSV vaccines (36). Th1 responses may also be suppressed during acute illness (101), while exacerbated Th17 responses may associate with lung neutrophilia and synergize with Th2 cytokines (102–104).

In summary, ERD pathogenesis is associated with Th2 polarization of the immune response in the lungs after RSV challenge. RSV vaccines eliciting high levels of IL-4 and/or IL-13 in animal models (compared to the levels in control animals protected by prior wild-type [wt] RSV infection) should be considered prone to priming for ERD and excluded as potential candidates for infant immunization.

Cytotoxic T lymphocytes in ERD. A critical element in ERD pathogenesis is the inability of FIRSV and other vaccine antigens not processed in the cytoplasm to elicit cytotoxic T lymphocytes (CTL) in immunized subjects (39). The absence of a CTL response during immunization is associated with virus replication in the lungs and Th2 polarization of the anamnestic CD4+ T lymphocyte response during RSV infection (38, 39, 92). Correcting this deficit led to Th1 protective responses, abrogating the pathogenic phenotype (39). These manifestations were first evidenced using vVg immunization in mice as a surrogate for FIRSV (31, 32, 49–51). In summary, the absence of CTLs and nonprotective antibodies (discussed below) allows RSV replication after challenge and, in the context of primed CD4+ T lymphocytes, sets the stage for an aberrant anamnestic response that results in ERD.

Antibodies in ERD. Two mysterious observations defied our understanding of ERD susceptibility for decades: ERD never occurred in those infants who were seropositive for RSV at the time of FIRSV administration, and no child ever experienced ERD twice (26). The answer to these two enigmas also explains why FIRSV elicited antibodies that failed to protect against RSV infection (26). The mechanism responsible for the absence of a protective antibody response against RSV remained unclear for decades, hampering the development of new vaccines against the virus.

The nonprotective antibody response elicited by RSV vaccines encoding antigens not processed in the cytoplasm is the result of lack of affinity maturation in B cells (33). This low-affinity response to FIRSV stems from poor TLR activation during immunization and, upon RSV infection, triggers immune complex formation and complement activation, potentiating Th2-mediated bronchoconstriction, pneumonia, and mucus production through anaphylatoxin C3a (33, 105).

The importance of antibody avidity for protection against respiratory viruses is also observed in responses against measles virus (MV) (106, 107). A formalin-inactivated vaccine against MV (FIMV) also elicited low-avidity, nonprotective antibodies followed by an atypical and severe illness (i.e., atypical measles) in individuals exposed to wild-type virus (106). In the case of MV, low-avidity antibody did not neutralize viral infection through the CD150 high-avidity MV receptor and—as observed in ERD (105)—promoted immune complex-mediated illness (106). In RSV, differences in affinity between the antibodies elicited by FIRSV and viral attachment proteins versus these proteins and their receptors may explain the nonprotective responses and pathogenic immune complexes associated with disease enhancement (108–110).

Affinity maturation also explains why children who were seropositive for RSV before immunization with FIRSV never developed ERD. Preexisting high-avidity antibody against wt RSV probably outcompeted low-avidity B cell clones elicited by FIRSV, eliminating pathogenic B cell priming against the virus. After ERD, B cells elicited by RSV infection also outcompeted preexistent pathogenic B cells and reestablished a healthy response against subsequent reinfections. In fact, a similar process was inadvertently elicited by corrective subcutaneous inoculation of live, attenuated MV vaccine in individuals immunized with FIMV in the 1960s. Live MV vaccine recipients developed localized atypical measles at the injection site (111, 112) but eliminated pathogenic B cell clones, preventing future systemic exacerbations. Whether other factors in RSV protective antigens, such as the RSV F pre- or postfusion conformation in vaccine candidates (23, 25), also contribute to antibody quality and disease enhancement requires further study.

In summary, vaccines elicting nonneutralizing antibody against RSV in seronegative individuals may prime for ERD and should not be administered to infants (at least until effective nonneutralizing mechanisms of antibody-mediated protection are demonstrated).

Current vaccine candidates. Fortunately, concerns for ERD are minimal for immunization of pregnant women, administration of monoclonal antibodies to susceptible populations, and infant intranasal immunization with live, attenuated RSV vaccines (11, 113, 114). However, novel RSV vaccine candidates in preclinical and clinical development potentially targeted to naive infants confront the field with new challenges. Understanding ERD pathogenesis and the mechanisms of illness associated with candidate biomarkers is critical to evaluate these immunogens in animal models. Some of these candidates, using antigens not processed in the cytoplasm, may present excessive risks for further testing. Others will demand careful evaluation in small and large animal models. Cotton rats have proven useful in characterizing ERD based on lung histopathology, particularly in studies focus-
ing on alveolitis (42), RSV replication, neutrophilia, and inflammation. Alveolitis in rodents replicates findings in lung sections from children with ERD and may serve as an indicator of illness (42). Cattle ERD models have certain limitations but may also provide useful information (43). Bovine RSV is related to human RSV in numerous aspects, including epidemiology and pathology (115–117). The clinical forms mimic those observed in humans (ranging from subclinical to severe bronchiolitis and pneumonia). Furthermore, most affected animals are younger than 6 months of age (115, 117). However, while some studies reported complete protection using the inactivated vaccine (118, 119), others described nonprotective responses (120, 121) and, in other cases, partial reproduction of the human ERD phenotype (43, 122, 123).

Conclusion. To summarize, in the 1960s, ERD was a severe complication of infant immunization against RSV using vaccine antigens not processed in the cytoplasm. The illness was characterized by failure to elicit protective antibody and CTLs after immunization, followed by Th2 polarization, an excess of lung eosinophils (accompanying robust lung neutrophilia and mononuclear cell infiltration), and pulmonary immune complex deposition after wt RSV infection.

ACKNOWLEDGMENTS

The work was supported by a Director’s Challenge award from NIEHS and a grant from the Bill & Melinda Gates Foundation.

FUNDING INFORMATION

BMGF provided funding to Fernando P Polack under grant number OPP1084347. HHS | NIH | National Institute of Environmental Health Sciences (NIEHS) provided funding to Fernando P Polack under grant number Director’s Challenge.

REFERENCES

1. Hall CB. 2010. Respiratory syncytial virus in young children. Lancet 375:1500–1502. http://dx.doi.org/10.1016/S0140-6736(10)60401-1.
2. Nair H, Nokes DJ, Gesnser BD, Dherani M, Madhi SA, Singleton RJ, O’Brien KL, Roca A, Wright PF, Bruce N, Chandran A, Theodoratou E, Sedyaningsih ER, Nga M, Muyunyoki PK, Kartasasmita C, Simoes EA, Rudan I, Weber MW, Campbell H. 2010. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375:1455–1457. http://dx.doi.org/10.1016/S0140-6736(10)60602-1.
3. Monto AS, Sullivan KM. 1993. Acute respiratory illness in the community. Frequency of illness and the agents involved. Epidemiol Infect 110:145–160.
4. Denny FW, Clyde WA Jr. 1986. Acute lower respiratory tract infections in nonhospitalized children. J Pediatr 108:635–646. http://dx.doi.org/10.1016/S0022-3476(86)81034-4.
5. Gruber WC. 1995. Bronchiolitis: epidemiology, treatment, and prevention. Semin Pediatr Infect Dis 6:128–134. http://dx.doi.org/10.1016/S1045-1870(05)80039-1.
6. Shy DK, Holman RC, Newman RD, Liu LT, Stout JW, Anderson LJ. 1999. Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA 282:1440–1446. http://dx.doi.org/10.1001/jama.282.15.1440.
7. Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (ed). 2007. Fields virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
8. Hall CB, Weinberg GA, Swane MK, Blumkin AK, Edwards KM, Staat MA, Auinger P, Griffin MR, Erdman D, Grijalva CG, Zhu Y, Szilagyi P. 2009. The burden of respiratory syncytial virus infection in young children. N Engl J Med 360:588–598. http://dx.doi.org/10.1056/NEJMoa0804877.
9. Anonymous. 2003. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 112:1442–1446. http://dx.doi.org/10.1542/peds.112.6.1442.
10. Johnson S, Griego SD, Pfarr DS, Doyle ML, Woods R, Carlin D, Prince GA, Koenig S, Young JF, Dillon SB. 1999. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSH1ZBP. J Infect Dis 180:35–40. http://dx.doi.org/10.1086/314840.
11. Karron RA, Wright PF, Belsole RB, Thumar B, Casey R, Newman F, Polack FP, Randolph VB, Deatly A, Hackell J, Gruber W, Murphy BR, Collins PL. 2005. Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J Infect Dis 191:1093–1104. http://dx.doi.org/10.1086/427813.
12. Madhi SA, Nunes MC, Cutland CL. 2014. Influenza vaccination of pregnant women and protection of their infants. N Engl J Med 371:2340–2350. http://dx.doi.org/10.1056/NEJMoa1412050.
13. Steinhoff MC, Omer SB, Roy E, Altaye M, Breiman RF, Zaman K. 2010. Influenza immunization in pregnancy—antibody responses in mothers and infants. N Engl J Med 362:1644–1646. http://dx.doi.org/10.1056/NEJMoa1002650.
14. Amirthalingam G, Andrews N, Campbell H, Ribeiro S, Kara E, Donegan K, Fry MK, Miller E, Ramsay M. 2014. Effectiveness of maternal pertussis vaccination in England: an observational study. Lancet 384:1521–1528. http://dx.doi.org/10.1016/S0140-6736(14)60686-3.
15. Kim E, Okada K, Beeler JA, Crim RL, Piedra PA, Gilbert BE, Gamبثto A. 2014. Development of an adenovirus-based respiratory syncytial virus vaccine: preclinical evaluation of efficacy, immunogenicity, and enhanced disease in a cotton rat model. J Virol 88:5100–5108. http://dx.doi.org/10.1128/JVI.03194-13.
16. Johnson TR, Rangel D, Graham BS, Brough DE, Gall JG. 2014. Genetic vaccine for respiratory syncytial virus provides protection without disease potentiation. Mol Ther 22:196–205. http://dx.doi.org/10.1038/mt.2013.142.
17. Lambert SL, Aslam S, Stillman E, MacPhail M, Nelson C, Ro B, Sweetwood R, Lei YM, Woo JC, Tang RS. 2015. A novel respiratory syncytial virus (RSV) F subunit vaccine adjuvanted with GLA-SE elicits robust protective Th1-type humoral and cellular immunity in rodent models. PLoS One 10:e019509. http://dx.doi.org/10.1371/journal.pone.019509.
18. Schickli JH, Whitacre DC, Tang RS, Kaur J, Lawlor H, Peters CJ, Jones JE, Peterson DL, McCarthy MP, Van Nest G, Milich DR. 2015. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J Clin Invest 125:1637–1647. http://dx.doi.org/10.1172/JCI78450.
19. Lee S, Quan FS, Kwon Y, Sakamoto K, Kang SM, Compans RW, Moore ML. 2014. Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antiviral Res 111:129–135. http://dx.doi.org/10.1016/j.antiviral.2014.09.005.
20. Ko EJ, Kwon YM, Lee JS, Hwang HS, Yoo SE, Lee YN, Lee YT, Kim MC, Cho MK, Lee YR, Quan FS, Song JM, Lee S, Moore ML, Kang SM. 2015. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. Nanomedicine 11:99–108. http://dx.doi.org/10.1016/j.nano.2014.07.013.
21. Yan D, Lee S, Thakkar VD, Luo M, Moore ML, Plemper RK. 2014. Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc Natl Acad Sci U S A 111:E3441–E3449. http://dx.doi.org/10.1073/pnas.1405198111.
22. Swanson KA, Balabanis K, Xie Y, Aggarwal Y, Palomo C, Mas V, Metrick C, Yang H, Shaw CA, Melero JA, Doronitis PR, Carfi A. 2014. A monoclonal uncanceled respiratory syncytial virus F antigen retains pre-fusion-specific neutralizing epitopes. J Virol 88:11802–11810. http://dx.doi.org/10.1128/JVI.01225-14.
23. Mclean JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang Y, Zhang B, Chen L, Srivatsan S, Zheng A, Zhou T, Grapel KW, Kumar A, Mein S, Boyington JC, Chuang YG, Soto C, Baxa U, Bakker AQ, Spits H, Beaumont T, Zheng Z, Xia N, Ko SY, Todd JP, Rao S, Graham BS, Kwong PD. 2013. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342:592–598. http://dx.doi.org/10.1126/science.1234283.
24. Rigter A, Widaja I, Versantvoort H, Coenjaerts FE, van Roosmalen M, Leenhouts K, Rottier PJ, Hajema BJ, de Haan CA. 2013. A protective and safe intranasal RSV vaccine based on a recombinant prefu...
sion-like form of the F protein bound to bacterium-like particles. PLoS One 8:e71072. http://dx.doi.org/10.1371/journal.pone.0071072.

25. McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, Kumar A, Modjarad K, Zheng Z, Zhao M, Xia N, Kwong PD, Graham BS. 2013. Structure of RSV fusion glycoprotein trimmer bound to a prefusion-specific neutralizing antibody. Science 340:1113–1117. http://dx.doi.org/10.1126/science.1234914.

26. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH. 1969. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434.

27. Chin J, Magoffin RL, Shearer LA, Schieble JH, Lennette EH. 1969. Field evaluation of a respiratory syncytial virus vaccine and a thymic parainfluenza virus vaccine in a pediatric population. Am J Epidemiol 89:449–463.

28. Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE. 1979. Respiratory syncytial virus infection in children previously vaccinated with an inactivated RSV virus vaccine. Am J Epidemiol 89:405–421.

29. Fulginiti VA, Eller JJ, Sieber OF, Joyner JW, Minamitani M, Meikle MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Kim JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Jin W, Zhao M, Xia N, Kwong PD, Graham BS. 2013. Defective immunoregulation in RSV vaccine-augmented viral lung disease of respiratory syncytial virus in the bonnet monkey model of RSV. PLoS One 8:e81472. http://dx.doi.org/10.1371/journal.pone.0081472.

30. De Swart RL, Kuiken T, Timmerman HH, van Amerongen G, Van Den Hoogen BG, Vos HW, Nielen MJ, Andeweg AC, Osterhaus AD. 2002. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol 76:11561–11569. http://dx.doi.org/10.1128/JVI.76.22.11561-11569.2002.

31. Murphy BR, Sotnikov AV, Lawrence LA, Banks SM, Prince GA. 1990. Enhanced pulmonary histopathology is observed in cotton rats immunized with formalin-inactivated respiratory syncytial virus (RSV) or purified F glycoprotein and challenged with RSV 3–6 months after vaccination. Vaccine 8:497–502. http://dx.doi.org/10.1016/0264-410X(90)90253-1.

32. Priess RL, Springer J, Hayward AR, Wilson H, Simoes EA. 2003. Antibody-dependent enhancement, a possible mechanism in augmented pulmonary disease of respiratory syncytial virus in the bonnet monkey model. J Infect Dis 187:1257–1263. http://dx.doi.org/10.1086/374604.

33. Hessel T, Georgiou A, Sparer TE, Matthews S, Pala P, Openshaw PJ. 1998. Host genetic determinants of vaccine-induced eosinophilia during respiratory syncytial virus infection. J Immunol 161:6215–6222.

34. Srikiatkhachorn A, Wang B, Braciale TJ. 1999. Induction of Th-1 and Th-2 responses by respiratory syncytial virus attachment glycoprotein is epitope and major histocompatibility complex independent. J Virol 73:6590–6597.

35. Tebby PW, Hagen M, Hancock GE. 1998. Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. Exp Respir Res 38:1867–1972. http://dx.doi.org/10.1084/erj.38.10.1867.

36. Varga SM, Wissinger EL, Braciale TJ. 2000. The attachment (G) glycoprotein of respiratory syncytial virus contains a single immunodominant epitope that elicits both Th1 and Th2 CD4+ T cell responses. J Immunol 165:6487–6495. http://dx.doi.org/10.4049/jimmunol.165.11.6487.

37. Hunt CR, Benbow EW, Knox WF, McMahon RF, McWilliam LJ. 1995. Can histopathologists diagnose bronchopneumonia? J Clin Pathol 48:120–123. http://dx.doi.org/10.1136/jcp.48.2.120.

38. Tannier EI, Gray JD, Rebello P, Gamble DR. 1969. Terminal bronchopneumonia. A bacteriological and histological study of 111 necropsies. J Hyg (Lond) 67:477–484.

39. Almuneef MA, Baltimore RS, Farrel PA, Reagan-Ciricione P, Dembry LM. 2001. Molecular typing demonstrating transmission of gram-negative rods in a neonatal intensive care unit in the absence of a recognized epidemic. Clin Infect Dis 32:220–227. http://dx.doi.org/10.1086/318477.

40. Guenther SH, Hendley JO, Wenzel RP. 1987. Gram-negative bacilli as nontransient flora on the hands of hospital personnel. J Clin Microbiol 25:488–490.

41. Niederman MS. 1990. Gram-negative colonization of the respiratory tract: pathogenesis and clinical consequences. Semin Respir Infect 5:173–184.

42. Plotnicki H, Siegrist CA, Aubry JP, Bonnefoy JY, Corvaia N, Nguyen TN, Power UF. 2003. Enhanced pulmonary immunopathology following neonatal priming with formalin-inactivated respiratory syncytial virus but not with the BBG2NA vaccine candidate. Vaccine 21:2651–2660. http://dx.doi.org/10.1016/S0264-410X(03)00055-0.

43. Johnson TR, Rao S, Seder RA, Chen M, Graham BS. 2009. TLR9 agonist, but not TLR7/8, functions as an adjuvant to diminish F-RSV
vaccine-enhanced disease, while either agonist used as therapy during primary RSV infection increases disease severity. Vaccine 27:3043–3052. http://dx.doi.org/10.1016/j.vaccine.2009.03.026.

59. Olszewska W, Suerzer Y, Sutter G, Openshaw PJ. 2004. Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins. Vaccine 23:215–221. http://dx.doi.org/10.1016/j.vaccine.2004.05.015.

60. Krause A, Xu Y, Ross S, Wu W, Joh J, Worgall S. 2011. Absence of vaccine-enhanced RSV disease and changes in pulmonary dendritic cells with adenovirus-based RSV vaccine. Virol J 8:375. http://dx.doi.org/10.1186/1477-5928-8-375.

61. Cyr SL, Jones T, Stoiaca-Popescu I, Brewer A, Chabot S, Lussier M, Burt D, Ward BJ. 2007. Intranasal proteosome-based respiratory syncytial virus (RSV) vaccines protect BALB/c mice against challenge without eosinophilia or enhanced pathology. Vaccine 29:5378–5389. http://dx.doi.org/10.1016/j.vaccine.2007.05.004.

62. Radu GU, Caiddi H, Miao C, Tripp RA, Anderson LJ, Haynes LM. 2010. Prophylactic treatment with a G glycoprotein monomeric antibody reduces pulmonary inflammation in respiratory syncytial virus (RSV)-challenged naive and formalin-inactivated RSV-immunized BALB/c mice. J Virol 84:9632–9636. http://dx.doi.org/10.1128/JVI.00451-10.

63. Tripp RA, Moore D, Winter J, Anderson LJ. 2000. Respiratory syncytial virus infection and G and/or SH protein expression contribute to substance P, which mediates inflammation and enhanced pulmonary disease in BALB/c mice. J Virol 74:1614–1622. http://dx.doi.org/10.1128/JVI.74.4.1614-1622.2000.

64. Power UF, Hsu T, Michaud V, Plotnicki-Gilquin H, Bonnefoy JV, Nguyen TN. 2001. Differential histopathology and chemokine gene expression in lung tissues following respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV- or BBGNa-immunized mice. J Virol 75:12421–12430. http://dx.doi.org/10.1128/JVI.75.24.12421-12430.2001.

65. Boelen A, Andeweg A, Kwakkel J, Lokhorst W, Bestrooer T, Dormans J, Kimman T. 2000. Both immunisation with a formalin-inactivated respiratory syncytial virus (RSV) vaccine and a mock antigen vaccine induce severe lung pathology and a Th2 cytokine profile in RSV-challenged mice. Vaccine 19:9882–991. http://dx.doi.org/10.1016/S0264-410X(00)00213-9.

66. Waris ME, Tsou C, Erdman DD, Day DB, Anderson LJ. 1997. Priming with live respiratory syncytial virus (RSV) prevents the enhanced pulmonary inflammatory response seen after RSV challenge in BALB/c mice immunized with formalin-inactivated RSV. J Virol 71:6935–6939.

67. Kamphuis T, Meijerhof T, Stegmann T, Lederhofer J, Wilschut J, de Haan A. 2012. Immunogenicity and protective capacity of a virusosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice. PLoS One 7:e36812. http://dx.doi.org/10.1371/journal.pone.0036812.

68. Sparer TE, Matthews S, H...
and other respiratory viral infections. Clin Exp Immunol

respiratory syncytial virus disease. J Exp Med

Karp M, Karron RA.

Lirman DD, Rabold R, Hffman SJ, Karp CL, Kleeberger SR, Wills-
sles virus in atypical measles. Nat Med

1995. Immunity and immunopathology to respiratory syncytial virus. The mouse model. Am J Respir Crit Care Med 152:599–

Dissection between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J Clin Microbiol 24:197–202.

Hancock GE, Speelman DJ, Heers K, Bortell E, Smith J, Cosco C. 1996. Generation of atypical pulmonary inflammatory responses in BALB/c mice after immunization with the native attachment (G) glycoprotein of respiratory syncytial virus. J Virol 70:7783–7791.

Openshaw PJ, Clarke SL, Record FM. 1992. Pulmonary eosinophilic response to respiratory syncytial virus infection in mice sensitized to the major surface glycoprotein G. Int Immunol 4:493–500. http://dx.doi.org/10.1093/intimm/4.4.493

Moghaddam M, Olejowska W, Wang B, Tregoning JS, Helson R, Sattentau QJ, Openshaw PJ. 2006. A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nat Med 12: 905–907. http://dx.doi.org/10.1038/nm1456

Tayyari F, Sutton TC, Manson HE, Hegele RG. 2005. CpG-oligodeoxynucleotides inhibit RSV-enhanced allergic sensitisation in guinea pigs. Eur Respir J 29:295–302. http://dx.doi.org/10.1183/09031936.00136304

Barends M, Van Oosten M, De Rond CG, Dormans JA, Oosterhuis AD, Neijens HJ, Kimman TG. 2004. Timing of infection and prior immunization with respiratory syncytial virus (RSV) in RSV-enhanced allergic inflammation. J Infect Dis 189:1866–1872. http://dx.doi.org/10.1086

Schwarze J, Gieslewicz G, Joetham A, Ikekuma T, Makela MJ, Dakham A, Shultz LD, Lamers MC, Gelfand EW. 2000. Critical roles for interleukin-4 and interleukin-5 during respiratory syncytial virus infection in the development of airway hyperresponsiveness after airway sensitization. Am J Respir Crit Care Med 162:380–386. http://dx.doi.org/10.1164

Kim S, Jang JE, Yu JR, Chang J. 2010. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine 28:3801–3808. http://dx.doi.org/10.1016/j.vaccine.2010.03.032

Joshi P, Shaw A, Kakakios A, Isaacs D. 2003. Interferon-gamma levels in nasopharyngeal secretions of infants with respiratory syncytial virus and other respiratory viral infections. Clin Exp Immunol 131:143–147. http://dx.doi.org/10.1046/j.1365-2249.2003.02039.x

Xu G, Zhang L, Wang DY, Xu R, Liu Z, Han DM, Wang XD, Zuo KJ, Goleniewska K, Hershey GK, Keil JK, Pobele RS, Jr. 2009. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol 182:5317–5321. http://dx.doi.org/10.4049/jimmunol.0803868

Ugonna KB, Plant K, Everard ML. 2010. S25 IL 17 production in S25 IL 17 production in primary and secondary respiratory syncytial virus (RSV) infection and neutrophil transmigration. Thorax 65(Suppl 4):A14. http://dx.doi.org/10.1136/thx.2010.150012.25

Polack FP, Teng MN, Collins PL, Prince GA, Enker M, Regele H, Lirman DD, Rabold R, Hoffman SJ, Karp CL, Kleeberger SR, Willis-Karp M, Karron RA. 2002. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 196:859–865. http://dx.doi.org/10.1084/jem.20020781

86. Hallack FP, Hoffman SJ, Crujeiras G, Griffin DE. 2003. A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat Med 9:1209–1213. http://dx.doi.org/10.1038/nm918.

97. Wright PF, Karron RA, Belsha RE, Shi JR, Randolph VB, Collins PL, O’Shea AF, Gruber WC, Murphy BR. 2007. The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25:7372–7378. http://dx.doi.org/10.1016/j.vaccine.2007.08.014

98. Van der Poel WH, Brand A, Kramps JA, Van Oirschot JT. 1994. Respiratory syncytial virus infections in human beings and in cattle. J Virol 68:9440(10)64496-3.

99. Wright PF, Karron RA, Belsha RE, Shi JR, Randolph VB, Collins PL, O’Shea AF, Gruber WC, Murphy BR. 2007. The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25:7372–7378. http://dx.doi.org/10.1016/j.vaccine.2007.08.014

100. Ellis JA, West KH, Waldner C, Rhodes C. 2005. Efficacy of a saponin-adjuvanted inactivated respiratory syncytial virus vaccine in calves. Can Vet J 46:155–162.

101. Polack FP, Auwaerter PG, Lee SH, Nousari HC, Valsamakis A, Leiferman KM, Diwan A, Adams RJ, Griffin DE. 1999. Production of atypical measles in rhesus macaques: evidence for disease mediated by immune complex formation and eosinophils in the presence of fusion-inhibiting antibody. Nat Med 5:629–634. http://dx.doi.org/10.1038

102. Fleury D, Bareere B, Bizebard T, Daniels RS, Skehel JJ, Knossow M. 1999. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nat Struct Biol 6:530–534. http://dx.doi.org/10.1038/9299.

103. Barbey-Martin C, Gigant B, Bizebard T, Calder JJ, Wharton SA, Skehel JJ, Knossow M. 2002. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294:70–74. http://dx.doi.org/10.1006/viro.2001.3320

104. Murphy S, Tjornehoj K, Larsen LE, Rontved CM, Utenthal A, Ronsholt L, Alexandersen S. 2002. Replication and clearance of respiratory syncytial virus: apoptosis is an important pathway of virus clearance after experimental infection with bovine respiratory syncytial virus. Am J Pathol 161:2195–2207. http://dx.doi.org/10.1016/S0002-9440(96)-X.

105. Bellanti JA. 1971. Biologic significance of the secretary A immunoglobulins. Pediatrics 48:715–729.

106. Annunziato D, Kaplan MH, Hall WW, Ichinose H, Lin JH, Balsam D, Paladino VS. 1982. Atypical measles syndrome: pathologic and serologic findings. Pediatrics 70:203–209.

107. Anonymous. 1998. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatr Infect Dis 17:523–537.

108. Wright PF, Karron RA, Belsha RE, Shi JR, Randolph VB, Collins PL, O’Shea AF, Gruber WC, Murphy BR. 2007. The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25:7372–7378. http://dx.doi.org/10.1016/j.vaccine.2007.08.014

109. Van der Poel WH, Brand A, Kramps JA, Van Oirschot JT. 1994. Respiratory syncytial virus infections in human beings and in cattle. J Virol 68:9440(10)64496-3.

110. Schreiber P, Mattheis JP, Despy F, Heimann M, Letesson JJ, Cieslewicz G, Joetham A, Ikemura T, Makela MJ, Bellanti JA. 1971. Biologic significance of the secretary A immunoglobulins. Pediatrics 48:715–729.