Effects of Metformin Treatment on Myocardial and Endothelial Function in Insulin Resistance Patients: A Metabolomic Study

Christian Cadeddu*, Martino Deidda1, Silvio Nocco1, Emanuela Locci1, Efisio Cossu2, Marco G Baroni1, Luigi Atzori2 and Giuseppe Mercuro1

1Department of Medical Sciences “M Aresu”, University of Cagliari, Italy
2Department of Biomedical Sciences, University of Cagliari, Italy

Abstract

Introduction: Insulin resistance (IR) adversely affects cardiac performance and peripheral vasodilation reserve. Metformin, prescribed to prevent the progression of IR resistance into diabetes, has been shown to improve myocardial performance and endothelial function in insulin resistant individuals. Metabolomics in the study of the metabolite profile of a biological organism proved its efficacy in detecting metabolites changes as a result of a therapeutic intervention and, so, predicting the response.

Aim: To evaluate myocardial and endothelium-dependent vasodilatory functions in an IR population subsequent to treatment with metformin and to determine the metabolic changes associated.

Methods: Twenty consecutive patients recently diagnosed with IR were studied. All subjects underwent echocardiography with Speckle Tracking technique, peripheral arterial tonometry to measure the endothelial flow reserve (EFR) and metabolomic analysis by 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate analysis at baseline and after metformin treatment.

Results: Inter-test comparison performed at baseline and after 3 months of metformin showed a significant reduction in weight (79 ± 15.4 vs 80.9 ± 16.2, P<0.05) and BMI (29.7 ± 5.3 vs 30.8 ± 5.2, p<0.05). Moreover we evidenced a significant increase in EFR (2.1 ± 0.43 vs 1.88 ± 0.47, p<0.05), and of the Global Longitudinal Strain (20.2 ± 4.21% vs 15.4 ± 3.06%, p<0.001).

PLS-DA analysis of the metabolic profile detected by NMR identified two groups significantly different (cross validation p-value=0.005). More significant discriminating metabolites were: lactate, lipids, N-acetyl glycoproteins, valine, choline, betaine, creatine.

Conclusions: The data obtained show that in IR subjects metformin improves myocardial and endothelial function. This effect was associated to significant metabolic changes characterized by means of a metabolomic approach.

Keywords: Metformin; Insulin resistance; Myocardial function; Endothelial function; Metabolomics

Introduction

It is an established fact that insulin produces multiple physiological effects, not only on the glucose metabolism, but also on various structures and organs, such as vascular endothelium, heart, liver, adipose tissue and skeletal muscles [1].

Insulin resistance (IR), a condition in which elevated levels of this hormone produce a sub-optimal biological response, is considered a primary etiologic factor in the development of non-ischemic heart failure [1]. Accordingly, IR is associated with a form of cardiomyopathy in which the myocardium is incapable of responding to injuries by altering substrate metabolism to increase energy efficiency. Moreover, recent studies have shown that IR plays an important role in determining a reduction in cardiovascular performance [2,3]. A high prevalence of IR has been found in the non-ischemic heart failure population. It predates the development of the disease, and independently defines a worse prognosis [4]. In a large community-based sample of elderly men, IR predicted the incidence of congestive heart failure independently of the established risk factors, including diabetes [5]. Several studies have shown that a reduction in endothelial function [6] may represent the link between IR and decline in cardiovascular performance.

Treatment with metformin (MTF), an insulin-sensitizing agent, has been reported to prevent the above-mentioned cardiac abnormalities [7] and the evolution of IR diabetes [8]. Moreover we recently evidenced a beneficial effect induced by MTF on cardiopulmonary performance and on vascular endothelial function in IR patients with high HOMA-IR [9].

Metabolomics is the study of the small-molecule metabolite profile of a biological organism. Unlike previous experimental tools that have focused on a limited number of enzymatic reactions or a single path, metabolomics may provide a functional view of an organism as determined by the sum of its genes, RNA, proteins and environmental factors, including nutrition and drug therapies [10,11]. Metabolomics

*Corresponding author: Christian Cadeddu, Department of Medical Sciences "M Aresu", University Hospital of Cagliari, StradaStatale 554, Km 4.500, 09042 Monserrato (Cagliari), Italy, Tel/Fax (00 39) 070 675-4955/4991; E-mail: cadeddu@unicai.it

Received June 23, 2013; Accepted August 13, 2013; Published August 17, 2013

Citation: Cadeddu C, Deidda M, Nocco S, Locci E, Cossu E, et al. (2013) Effects of Metformin Treatment on Myocardial and Endothelial Function in Insulin Resistance Patients: A Metabolomic Study. J Diabetes Metab 4: 279. doi:10.4172/2155-6156.1000279

Copyright: © 2013 Cadeddu C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
represents an innovative approach in terms of metabolic research and has been shown to produce a marked impact on the investigation of various cardiovascular diseases [10,11].

The present study investigated a population of individuals affected by IR without clinically evident cardiovascular diseases. The aim was to examine the possible effects of early MTF treatment on Left Ventricular (LV) and endothelial function and the underlying metabolic changes.

Materials and Methods

The study was conducted as an open, non-randomized trial; it was approved by the Institutional Ethics Committee (University Hospital, University of Cagliari), and written informed consent was obtained from all subjects. The study was performed in accordance with the Declaration of Helsinki.

Twenty consecutive untrained individuals of both sexes (9 women and 11 men; mean age 47 ± 13 years) with impaired glucose tolerance (IGT), and impaired fasting glycaemia (IFG)) referring to the Diabetic Center of our University Hospital were enrolled in the trial. All subjects had a recent diagnosis of IR calculated according to the homeostatic model assessment (HOMA) index ([insulin (µU/mL) x glycaemia (mmol/L)] /22) and defined according to the values of Bonora et al. [12]

Inclusion criteria were the following: patients aged 20-75 years; an echocardiographic LVEF value ≥55% and absence of echocardiographic wall motion abnormalities at rest; normal hepatic and renal function (bilirubin ≤1.5 mg/dl, creatinine ≤2.0 mg/dl); availability of the patient to follow the study protocol. Patients were not eligible if they had a history of cardiac disease, hypertension with evidence of cardiac hypertrophy, diabetes mellitus and/or had been previously treated with insulin sensitizers.

A full baseline routine cardiovascular assessment, including physical examination and bi-dimensional Doppler echocardiogram with Speckle Tacking (ST) technique was performed. At enrolment, all patients underwent a complete series of blood chemistry tests, including oral glucose tolerance test (baseline glycaemia and 120’ after a 75 g glucose load) and insulinaemia dosage. Moreover the collection of blood samples for metabolomics analysis was performed in all patients.

At baseline, all patients underwent a digital tonometry of upper limbs for endothelial flow reserve (EFR) measurement. After enrolment MTF treatment was commenced at a standard dose of 850 mg twice a day for the following 3 months. Out of the 20 patients originally enrolled, only 15 completed the study following 3-months MTF administration. Patients were excluded from the study as a result of severe diarrhea (n=2) and as a consequence of voluntary early drop out (n=3).

Over the last 3 days of MTF therapy patients once again underwent echocardiographic and EFR evaluation with the collection of blood samples for metabolomics analysis. Patients were familiarized with the medical environment and the day before the experimental session, all patients were asked to refrain from consuming alcohol, coffee, or aspirin, and to abstain from severe physical exercise.

On the morning of the experiments, patients reported to our laboratory at approximately 9:00 am after a light breakfast and were weighed and measured. They spent at least 20 minutes acclimatizing by lying in a quiet room at a controlled temperature of 22°C and relative humidity of 65%. On reaching a steady state of relaxation, the vascular reactivity test was performed. Subsequently, all patients underwent the Echocardiographic evaluation with acquisition of RAW data for ST analysis.

Endothelial function

Endothelial function was assessed by means of a peripheral arterial tone (PAT) device (Endo-PAT2000, Itamar Medical, Caesarea, Israel) [13]. A probe is placed on the tip of both index fingers to measure pulse volume changes by applying uniform pressure to the skin surface working as a pneumatic plethysmograph. Baseline pulse amplitude was measured from each fingertip for 5 min. By inflating a cuff placed around the proximal forearm with a pressure 60 mmHg above systolic pressure, arterial flow was interrupted for 5 min. Pulse amplitudes were recorded for another 5 min during hyperemia following deflation of the cuff. The natural logarithm of the ratio of post deflation to baseline pulse amplitude in the hyperemic finger divided by the same ratio in the control contralateral finger was used to estimate vascular function (lnPAT).

Conventional and ST echocardiography

Echocardiographic images were recorded using a system equipped with ST 2D imaging and raw data acquisition (Toshiba Artida; Toshiba Corp., Tochigi, Japan). Basal standard 2D measurements were carried out before and after MET treatment.

LV ejection fraction was obtained from the apical 4- and 2-chamber views according to Simpson’s rule. Pulsed wave Doppler (PWD) was performed in apical 4-chamber view with the sample volume placed between the mitral leaflet tips and the early (E) and late (A) diastolic peak velocities determined; E deceleration time (DecT) was measured and then the E/A ratio was derived.

A four-chamber view clip was acquired at each evaluation at the apical level. LV longitudinal function was calculated offline from raw data. (Toshiba Corp., Tochigi, Japan). Global systolic strain (GLS) and Strain Rate (GLSR) were obtained by averaging the Strain and Strain Rate of all the segments at the 4-chamber view.

GLS and GLSR values were averaged over 3 cardiac cycles. A single investigator who was unaware of the status of the study patients performed all off-line measurements.

Metabolomics analysis

Chemicals: Deuterium oxide (D2O, 99.9%) was purchased from Cambridge Isotope Laboratories Inc. (Andover, MA, USA). Sodium 3 Dimethyl-Silyl-Sulphonic acid (DSS, 98 atom % D) was acquired from Sigma-Aldrich (Milan, Italy).

Sample collection: Heparinized blood samples were immediately centrifuged at 4000 rpm for 15 minutes; the supernatant was then divided into 800 µL aliquots and stored at −80°C. At the moment of analysis, specimens were thawed and centrifuged at 4500 rpm for 5 min at 4°C; 400 µL of supernatant was added to a standard solution [consisting of 100µL deuterated water (D2O) and 150µL of 50 mM DSS] and then transferred in 5-mm O.D NMR tubes.

1H NMR spectroscopy: NMR experiments were carried out using a Varian UNITY INOVA 500 spectrometer operating at 500 MHz for proton and equipped with a 5 mm double resonance probe (Varian Inc., Palo Alto, CA). All samples were submitted to identical standard acquisition parameters and pulse sequences. Broad signals were removed and overlapping reduced by applying a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [14] with a spectral width of 8 kHz, acquisition time 1.5 s, relaxation delay 3 s, and tau=500µs.
The residual water signal was suppressed by applying a pre-saturation technique with low power radiofrequency irradiation for 2 s during relaxation.

NMR data processing and multivariate statistical analysis: Spectra were imported in M nova (Mnova Release 7, M estrelab Research http://mestrelab.com/) and pre-processed with line broadening lb=0.5 Hz, zero filling to 64k, and Fourier transformed. Each spectrum was phased, baseline corrected and the DSS signal aligned to 0.00 ppm. The 1H-NMR spectra were reduced into consecutive integrated spectral regions (bins) of equal width (0.04 ppm) corresponding to the region 0.7 - 8.7 ppm. The spectral regions 3.26 - 3.94 ppm and 4.38 - 5.30 ppm containing the resonances of residual water and glucose resonances were excluded from statistical analysis prior to integration. Normalization of the total area of the spectrum was applied to each sample data set in order to minimize the effects of variable concentration among different samples.

Pattern recognition. In order to recognize metabolic patterns data were analysed using: Principal Component Analysis (PCA), projection to latent structures by Partial Least Squares (PLS), and PLS-Discriminant Analysis (PLS-DA) within the SIMCA-P+ package (Version 13.0, Umetrics, Umeå, Sweden) [14]. PCA is a technique that transforms the variables in a data set into a smaller number of new latent variables known as principal components, which are uncorrelated with each other and account for decreasing proportions of the total variance of the original variables. Each new principal component is a linear combination of the original variables; in such a manner, a compact description of the variation within a data set is generated. When PCA proved inadequate to define a clustering, a supervised approach was used. PLS-DA is a supervised extension of PCA capable of distinguishing two or more classes by searching for variables (X matrix) correlated to class membership (Y matrix). By means of this approach, the axes are calculated to maximize separation between groups and can be used to examine separation that would otherwise be across three or more principal components. PLS, another supervised extension of PCA, is used to maximize the correlation between two data sets to allow for prediction of the response variable Y from X [15]. For each model built, the loading scores and the Variable Influence on Projection (VIP) parameters were examined in conjunction with the original spectra to identify metabolites more significantly contributing to data clustering. Loading scores describe the correlation between original variables and new component variables, whereas VIP parameters are essentially a measure of the degree to which a particular variable explains Y variance (class membership or linear trend). Model performance was evaluated using R2 and Q2 parameters, both of which vary between 0 and 1 [15]. R2 provides an indication of the extent to which a variation within a data set can be explained by the various components of the model. The first three components of a PCA can typically represent 60–90% of the total variation found in an NMR-based metabolomics data set. Q2 indicates how accurately the data, either classified or non-classed, can be predicted; Q2 is more relevant for supervised than unsupervised pattern recognition processes. A Q2 score >0.5 indicates a model that is better than chance, whereas a score between 0.7 and 1.0 demonstrates a highly robust trend.

Statistical analysis

Continuous variables between baseline and post-treatment were assessed using one way ANOVA for repeated measures. Categorical variables were compared by means of Chi square or Fischer exact test, as appropriate. A two-tailed value of p<0.05 was considered statistically significant.

Results

Biophysical, clinical, and metabolic characteristics of patients are reported in Table 1. HOMA index revealed the presence of IR in all patients, 6 of whom were overweight and 9 obese. At baseline, conventional ST echocardiography attested a normal left ventricular (LV) systolic and diastolic function (Table 2).

Three months of MTF treatment produced a significant reduction in weight (79 ± 15.4 vs. 80.9 ± 16.2, P<0.05) and BMI (29.7 ± 5.3 vs. 30.8 ± 5.2, P<0.05). Conventional echo parameters remained unchanged (Table 2). Most interestingly we observed an improvement in longitudinal systolic function at TDI (Sm 7.58 ± 1 vs. 6.97 ± 1.19 cm/sec, p<0.01) and with the deformation indexes at ST (GLS 20.2 ± 4.21% vs. 15.4 ± 3.06%, p<0.001; GLSR 1.3 ± 0.33 s-1 vs. 1.06 ± 0.26 s-1).

Age (years ± SD)	47 ± 13
Weight (Kg ± SD)	80.9 ± 16.2
BMI (Kg/m² ± SD)	30.8 ± 5.2
Hypertension	27%
Total Cholesterol (mg/dl ± SD)	219 ± 17
HDL (mg/dl ± SD)	52 ± 15
LDL (mg/dl ± SD)	128 ± 21
Triglycerides (mg/dl ± SD)	153 ± 57
Basal glycemia (mg/dl ± SD)	115 ± 14
OGTT 120 min (mg/dl ± SD)	142 ± 41
Carbohydrate metabolism	
IFG	72%
IGT	28%
Insulinemia	20.2 ± 12.2
HOMA (<2.7)	6.2 ± 3.2

Abbreviations: BMI: Body Mass Index; NG: Normoglycaemic; IFG: impaired fasting glucose; IGT: Impaired Glucose Tolerance; HOMA: Homeostasis Model Assessment

Table 1: Basal characteristics.
Weight(kg)
BMI
LVEF(%)
EDV(mL)
ESV(mL)
DecT(s)
E/A
TDI
Sm(cm²)
Glucokinase (mg/dl ± SD)
Glucokinase (s-1)
Endothelial function

Abbreviations: BMI: Body Mass Index; LVEF: Left Ventricular Ejaction Fraction; EDV: End Diastolic Volume; ESV: End Systolic Volume; DecT: Deceleration Time; E/A: Early and Late Diastolic Peak Velocity Ratio; E/A: Early and Late Diastolic Peak Velocity; E/A: Early and Late Diastolic Peak Velocity Ratio; E/E: Early Diastolic Peak Flow Velocity and TD Velocity Ratio; GLS: Global Longitudinal Strain; GLSR: Global Longitudinal Strain Rate; EFR: Endothelial Flow Reserve

Table 2: Endothelial and myocardial echocardiographic parameters at baseline and after 3-months metformin treatment.
Metabolomics analysis

Out of fifteen patients who performed all the 3 months of MTF therapy, two patients were excluded from metabolomics analysis for the impossibility to carry out the 1H NMR analysis due to the blood samples haemolysis. A representative 1H NMR spectrum of the blood model was assessed trough 200 applications in which all Q2 values of testing (n = 200) and CV-ANOVA [Eriksson 2008]. Significance of the PLS-DA model validation was performed using y-table permutation to detect any inherent separation between the groups and identify possible outliers; a significant separation was found (the two first PC’s explain 67% of the total variance; R2x=0.898; Q2=0.606; data not shown). The application of PLS-DA classification model to 1H-NMR data identified two metabolic clusters corresponding to pre and post-MTF treatment. To avoid over-fitting two latent variables were used in the PLS-DA model. The scores plot of the first and the second latent variable is reported in Figure 2. As shown, a good separation is observed between the two groups of samples. In particular, the basal time was characterized by higher levels of lactic acid, lipids, for the separation between the two groups of samples. The first two latent variables explain 43.2 and 12.5 % of the total variation, respectively. Statistical values obtained with were: R2x = 0.557; R2y = 0.802 and Q2 = 0.592.

Moreover mean EFR values were significantly increased by MTF therapy (2.1 ± 0.43 vs. 1.88 ± 0.47, p<0.05).

Compound	Group	1H (ppm)	1H Multiplicity
3-hydroxybutyrate	CH3	1.22	d
	CH2	2.48	dd
	CH	4.16	m
Acetate	CH3	1.94	s
Alanine	CH3	1.50	d
	CH2	3.80	q
Betaine	N-(CH3)2	3.25	s
	-CH2	3.90	s
Choline	N-(CH3)2	3.23	s
	βCH2	3.53	m
	αCH2	4.06	m
Citrate	γCH2	2.55	d
	γCH3	2.72	d
Creatine	N-CH3	3.06	s
Creatinine	N-CH2	3.95	s
	N-CH1	3.07	s
Cysteine	μCH2	3.03	dd
	αCH2	3.97	t
Formate	HCOO-	8.48	s
α-Glucose	C4H	3.43	m
	C2H	3.56	dd
	C3H	3.78	m
	C5H	3.79	m
	C1H	5.26	d
β-Glucose	C2H	3.27	dd
	C4H	3.43	m
	C5H	3.49	m
	C3H	3.50	m
	C2H	3.93	dd
	C1H	4.67	d
Glutamic acid	βCH2	2.10	m
	γCH2	2.38	m
	αCH2	3.76	dd
Glutamine	βCH2	2.15	m
	γCH2	2.47	m
	αCH2	3.77	t
Lactate	βCH2	1.35	d
	αCH2	4.14	q
Lipids in LDL	CH3-(CH2)n	0.87	m
	-(CH2)n	1.26	m
Lipids in VLDL	CH2-CH2-CH2-C=	0.90	m
	CH2-CH2-CH2=CO	1.30	m
	CH2-CH2-CO	1.60	m
Lysine	γCH2	1.43	m
	δCH2	1.71	m
	βCH2	1.90	m
	εCH2	3.05	t
N-acetylglucoproteins	NHCOCH2	2.05	s
Succinate	CH3	2.41	s
Triglycerides	CH3-(CH2)n	0.91	m
	-(CH2)n	1.30	m
	CH2-CH2-CO	1.60	m
	CH2=C=C	2.04	m
	CH2=C=O	2.25	m
	=CH-CH-CH=	2.78	m
	CH=CH	5.33	m
Trimethylamine-N-oxide (TMAO)	N-(CH3)2	3.27	s
Valine	γCH2	1.01	d
	γCH3	1.06	d
	βCH	2.27	m
	αCH	3.62	m

*1H chemical shift are reported with respect to DSS signal (0.0 ppm)
*Multiplicity definitions: s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublets; m: multiplet

Table 3: 1H NMR chemical shift of the metabolites identified.
MTF is the most worldwide prescribed biguanide for the treatment of hyperglycemia and type 2 diabetes. In Diabetes Prevention Program, MTF displayed an ability to slow the progression from a glucose intolerant state towards diabetes [20,21]. In vitro studies have demonstrated that MTF exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain (electron transfer from the NADH to the Q 10 coenzyme) [22-26]. This inhibition may slow down the transfer of reducing equivalent during the Krebs cycle and limit the capacity of oxidative metabolism. In myocardial cells, the mitochondrial reserve may be used to some extent during stress; however, if an inhibition of the complex 1 reduces this reserve, a critical decrease in myocardial performance has been supposed. On the basis of the findings presented to date, it is of particular importance the influence of MTF treatment on longitudinal myocardial function in insulin-resistant subjects. Indeed, in view of their non-diabetic status, these subjects are generally deemed to be “healthy”; however, it may be beneficial to prescribe treatment with this drug to prevent the onset of diabetes.

This study investigated the metabolic effects of MTF in relation to its capacity to improve myocardial and endothelial function.

Our study examined the effects of three months MTF therapy on myocardial and endothelial function verifying the related metabolic changes by means of a metabolomics approach. The major findings were: i. MTF confirmed its high efficacy on reducing weight and BMI in IR subjects; ii. Longitudinal function after MTF significantly improves as shown by S wave at TDI and by the deformation indexes at ST echocardiography as GLS and GLSR; iii. Subjects with IR showed a significant improvement in peripheral endothelial function; iv. Metabolomic analysis showed a specific metabolic profile before treatment (higher lactic acid, lipids, n-acetylglicoproteins); v. After three months of MTF was observed a significant increase of valina, alanine, creatine, choline, 3-hydroxybutyrate, betaine and TMAO.

An inefficient energy metabolism in presence of IR has been demonstrated in animal models [4]. In sucrose-fed rats, serial echocardiographic assessments revealed that early abnormalities in diastolic function, followed by late systolic dysfunction, were associated with IR. A concurrent depressed sarcoplasmic reticulum function was demonstrated by a significant reduction in Ca2+ uptake [27]. In IR subjects abnormal glucose homeostasis was found correlated with impaired LV diastolic function [28], and this relationship has been shown to be independent of blood pressure, LV geometry, total plasma lipids and obesity [29].

In our study, we evidenced normal ventricular function at baseline but a positive effect of three months of MTF on longitudinal function has been found. Recent studies showed a latent longitudinal dysfunction in IR subjects, evidenced by a reduced longitudinal contractile reserve during exercise [30] or after a dobutamine stress test [3]. These evidences have not been confirmed in diabetic subjects with a good pharmacologic metabolic compensation [31]. More recently an insulin sensitizer as MTF showed to be associated with a reduced mortality with a lower hospitalization rate of heart failure patients with new-onset diabetes mellitus. Nevertheless, MTF was not associated with an improved prognosis of HF patients with a good metabolic compensation [32].

The early decline of longitudinal contractile reserve in IR patients has been related to several factors as insulin inhibition of nitric oxide production at the myocardial level [33], with potential endothelial dysfunction. More recently, IR that has been reported in association

Metabolite	Loading (bin)	Change trend
3-hydroxybutyrate	1.26, 2.46, 2.50, 4.22	↑
Alanine	1.50, 1.54	↑
Betaine/Choline/Trimethylamine-N-oxide (TMAO)	3.26	↑
Citrate	2.74	↑
Creatine	3.1, 3.98	↑
Glutamine	2.14, 2.18	↑
Valine	1.02, 1.06, 1.10	↑
Lipids in LDL/VLDL (CH₃)	0.90	↑
Lactate	1.38, 4.14	↓
-(CH₃) in LDL/VLDL/Triglycerides	1.34	↓
Lipids in VLDL/Triglycerides	1.58, 1.62, 1.66	↓
N-acetylglicoproteins	2.1	↓
Triglycerides	2.26, 2.30, 5.34, 5.38, 5.42	↓

Table 4: Change of metabolites identified by ¹H NMR in IR patients after MTF treatment.

found by Huo et al. in a study that analyzed the metabolic profiles of type 2 diabetes mellitus patients pre and post treatment with MTF [17].

Discussion

Much interest has been shown in the use of metabolomics to identify biomarkers of cardiovascular and metabolic disease. Diabetes increases the risk of mortality from cardiovascular disease [18,19] and, although atherosclerosis has a major role in the causes of death, a subpopulation of patients with type 2 diabetes develop myocardial dysfunction that is independent of vascular disease. How heart failure develops in this subgroup, especially in the absence of ischemic disease, is still unknown.
with exercise intolerance in heart failure patients has been partly attributed to reduced coronary flow reserve [34]. Moreover, alteration of the myocardial energetic metabolism caused by IR can lead to ATP production impairment and have a major role in the early longitudinal dysfunction [35-38].

The presence of vascular endothelial dysfunction has been demonstrated in IR states, where it may represent an important early event in the development of atherosclerosis [39]. IR may be linked to endothelial dysfunction by a number of molecular and pathophysiological mechanisms, such as disturbances of subcellular signaling pathways and the PI-3-kinase/Akt pathway, common to both insulin action and nitric oxide production [40]. In subjects affected by metabolic syndrome a reduction of EFR [41] has been reported, thus confirming a compromised activity of the eNOS enzyme in case of IR. On the other hand, previous results obtained by our group in IR subjects underlined an improvement of EFR following 3 months therapy with MTF [7] and correlated with basal levels of HOMA-IR [9,42]. In the present study we amplified and defined this finding, showing that the MTF-induced improvement of EFR was closely linked with changes in cardiac function was correlated to significant metabolic changes occurring during IR could be a positive target for a better therapy. Given the increasing importance attributed to early treatment of IR, further studies in larger population should be warranted.

In conclusion, the present study confirms how in a population with an impaired carbohydrate metabolism and IR, MTF therapy is capable of positively influencing myocardial and endothelial function. The improvement in the cardiac function was correlated to significant metabolic changes. We hypothesize that a better knowledge of the metabolic syndrome a reduction of EFR [41] has been reported, thus confirming a compromised activity of the eNOS enzyme in case of IR. On the other hand, previous results obtained by our group in IR subjects underlined an improvement of EFR following 3 months therapy with MTF [7] and correlated with basal levels of HOMA-IR [9,42]. In the present study we amplified and defined this finding, showing that the MTF-induced improvement of EFR was closely linked with changes in cardiac function was correlated to significant metabolic changes occurring during IR could be a positive target for a better therapy. Given the increasing importance attributed to early treatment of IR, further studies in larger population should be warranted.

References

1. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37: 1595-1607.
2. Miyatake N, Saito T, Wada J, Miyachi M, Tabata I, et al. (2007) Comparison of ventilatory threshold and exercise habits between Japanese men with and without metabolic syndrome. Diabetes Res Clin Pract 77: 314-319.
3. Cadeddu C, Nocco S, Piano D, Deidda M, Cossu E, et al. (2013) Early impairment of contractility reserve in patients with insulin resistance in comparison with healthy subjects. Cardiovasc Diabetol 12: 66.
4. Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 51: 93-102.
5. Ingelsson E, Sundström J, Amnlöv J, Zethelius B, Lind L (2005) Insulin resistance and risk of congestive heart failure. JAMA 294: 334-341.
6. Hsueh WA, Lyon CJ, Quihones MJ (2004) Insulin resistance and the endothelium. Am J Med 117: 109-117.
7. Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, et al. (2005) Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med 258: 250-256.
8. Andreis EA, Katsanou PM, Georgiopoulos D, Tsourou GI, Yfantl GK, et al. (2009) The effect of metformin on the incidence of type 2 diabetes mellitus and cardiovascular disease risk factors in overweight and obese subjects—the Carmos study. Exp Clin Endocrinol Diabetes 117: 175-180.
9. Cadeddu C, Nocco S, Deidda M, Cadeddu F, Bina A, et al. (2012) Cardiopulmonary and endothelial effects of metformin treatment in an insulin resistant population. Int J Cardiol 158: 302-304.
10. Mercuro G, Bassareo PP, Deidda M, Cadeddu C, Barberini L, et al. (2011) Metabolomics: a new era in cardiology? J Cardiovasc Med (Hagerstown) 12: 800-805.
11. Griffin JL, Atherton H, Shockcor J, Aitizory L (2011) Metabolomics as a tool for cardiac research. Nat Rev Cardiol 8: 630-643.
12. Bonora E, Kiechl S, Williet J, Oberhollenzer F, Egger G, et al. (1998) Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 47: 1643-1649.
13. Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, et al. (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101: 545-548.
14. Mulder FA, Pronk CA, Slipjer M, Kaptein R, Boelens R (1996) Improved HSQC experiments for the observation of exchange broadened signals. J Biomol NMR 8: 223-228.
15. Eriksson L, Umetrics U (2006) Multi- and megavariate data analysis. Umetrics AB, Umeå, Sweden.
16. Wishart DS, Tzur D, Knox C, Elser N, Guo AC, et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35: D521-526.
17. Hsu Jr, Cai T, Lu X, Sha Y, Yu M, et al. (2009) Metabolonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J Pharm Biomed Anal 49: 975-982.
18. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34: 29-34.
19. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, et al. (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321: 405-412.
20. Bethel MA, Calif F (2007) Role of lifestyle and oral anti-diabetic agents to prevent type 2 diabetes mellitus and cardiovascular disease. Am J Cardiol 99: 726-731.
21. Dagspta G, Grover SA, Da Costa D, Lowenstein I, Yale FJ, et al. (2006) Impact of modified glucose target and exercise interventions on vascular risk factors. Diabetes Res Clin Pract 72: 53-60.
22. Batandier C, Guigas B, Delattie D, El-Mir MY, Fontaine E, et al. (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembrin 38: 33-42.
23. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoleut M, et al. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targetted on the respiratory chain complex I. J Biol Chem 275: 223-228.
24. Guigas B, Delattie D, Chauvin C, Batandier C, De Oliveira F, et al. (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382: 877-884.
25. Lewerve XM, Guigas B, Delattie D, Batandier C, Kocce EA, et al. (2003) Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 29: 638-641.
26. Owen MR, Doran E, Halsgform AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348: 607-614.
27. Vasanji Z, Cantor EJ, Juric D, Moyen M, Netticadan T (2006) Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats associated with insulin resistance. Am J Physiol Cell Physiol 291: C772-780.
28. Bajraktari G, Koltai MS, Ademaj F, Rexhepaj N, Qirko S, et al. (2006) Relationship between insulin resistance and left ventricular diastolic dysfunction in patients with impaired glucose tolerance and type 2 diabetes. Int J Cardiol 110: 206-211.

29. Sliem H, Nasr G (2011) Left ventricular structure and function in prediabetic adults: Relationship with insulin resistance. J Cardiovasc Dis Res 2: 23-28.

30. Cadfeddu C, Nocco S, Piano D, Deidda M, Cossu E, et al. (2013) Early Ventricular Dysfunction in Type II Diabetes: Role of Metabolic Unbalance. J Diabetes Metab S13: 004.

31. Ha TH, Seo HS, Choo WJ, Choi J, Suh J, et al. (2011) The Effect of Metabolic Syndrome on Myocardial Contractile Reserve during Exercise in Non-Diabetic Hypertensive Subjects. J Cardiovasc Ultrasound 19: 176-182.

32. Romero SP, Andrey JL, Garcia-Egido A, Escobar MA, Perez V, et al. (2013) Metformin therapy and prognosis of patients with heart failure and new-onset diabetes mellitus. A propensity-matched study in the community. Int J Cardiol 166: 404-412.

33. Shah A, Shannon RP (2003) Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med 4 Suppl 6: S50-57.

34. Snoer M, Monk-Hansen T, Olsen RH, Pedersen LR, Simonsen L, et al. (2012) Insulin resistance and exercise tolerance in heart failure patients: linkage to coronary flow reserve and peripheral vascular function. Cardivasc Diabetol 11: 97.

35. Boudina S, Sena S, O'Neill BT, Young ME, et al. (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112: 2686-2695.

36. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364: 1786-1788.

37. Opie LH (2004) The metabolic vicious cycle in heart failure. Lancet 364: 1733-1734.

38. Bansil S, Farkouh ME, Fuster V (2007) Role of insulin resistance and hyperglycemia in the development of atherosclerosis. Am J Cardiol 99: 68-148.

39. Kim JA, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113: 1888-1904.

40. Müller MM, Griesmacher A (2000) Markers of endothelial dysfunction. Clin Chem Lab Med 38: 77-85.

41. Wheatcroft SB, Williams IL, Shah AM, Kearney MT (2003) Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med 20: 255-268.

42. Cadfeddu C, Nocco S, Deidda M, Cadfeddu F, Bina A, et al. (2013) Relationship between high values of HOMA-IR and cardiovascular response to metformin. Int J Cardiol 167: 282.

43. Lv S, Fan R, Du Y, Hou M, Tang Z, et al. (2009) Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice. Eur J Nutr 48: 205-212.

44. Olli K, Lahtinen S, Rautonen N, Tiihonens (2013) Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes. Br J Nutr 109: 43-49.

45. Nomura A, Zhang M, Sakamoto T, Ishii Y, Morishima Y, et al. (2003) Anti-inflammatory activity of creatine supplementation in endothelial cells in vitro. Br J Pharmacol 139: 715-720.

46. Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, et al. (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40: 837-849.

47. Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, et al. (1999) Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation 100: 2113-2118.

48. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122: 795-801.

49. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, et al. (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86: 1810-1818.

50. Lamb HJ, Beyerbach HP, van der Laarse A, Stoel BC, Doornbos J, et al. (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99: 2261-2267.

51. Tessari P, Triengo A (2008) Metformin treatment of rats with diet-induced overweight and hypertriglyceridemia decreases plasma triglyceride concentrations, while decreasing triglyceride and increasing ketone body output by the isolated perfused liver. Acta Diabetol 45: 143-145.