Abstract. In this note, we provide a conceptual explanation of a well-known polynomial identity used in algebraic number theory.

A basic theorem in algebraic number theory is that in a number field $E = \mathbb{Q}(w)$ of degree n, with minimal polynomial $f(X)$ for w, the dual lattice of $\mathbb{Z}[w]$ relative to the trace form is $\mathbb{Z}[w]/f'(w)$, where $f'(w)$ is the derivative of $f(X)$ evaluated at $X = w$. From that we can deduce that the different ideal of the ring $\mathbb{Z}[w]$ is the principal ideal generated by the number $f'(w)$.

All the standard accounts rely on the following polynomial identity credited to Euler:

$$\sum f(X)/(X - u)f'(u) = 1,$$

where the sum runs over all the conjugates u of w,

or more generally,

$$\sum q(u)f(X)/(X - u)f'(u) = q(X)$$

for any polynomial q of degree $< n = \deg(f)$.

See, e.g., [1], chapter 3. The above polynomial identities are beautiful and can be proven simply by observing that both sides are polynomials of degree $< n = \deg(f)$ and have the same value when X is set equal to any of the n different conjugates of w. However, the identities seem to fall out of the sky and therefore rather mysterious. A conceptual explanation along the following line may be illuminating.

1 E-mail address: nicholas.pn@gmail.com
We start with \(E = \mathbb{Q}(w) \), which we can identify with \(\mathbb{Q}[X]/f(X) \) via the natural isomorphism that maps \(X \mod f(X) \) to \(w \). \(E \) is an algebra over \(\mathbb{Q} \), and if we extend the domain of rationality to the algebraic closure \(K \) of \(\mathbb{Q} \), that is to say if we look at the \(K \)-algebra \(E \otimes K \) (tensoring over \(\mathbb{Q} \)), then that \(K \)-algebra is isomorphic to a product of \(n \) copies of \(K \) because over \(K \) the polynomial \(f(X) \) is a product of \(n \) distinct linear factors. The homomorphism from \(E \otimes K = K[X]/f(X) \) to a factor \(K \) is simply induced by \(X \mapsto \) a conjugate of \(w \) in \(K \).

So we can identify \(E \otimes K \) with \(\prod K(u) \), where the product runs over the conjugates \(u \) of \(w \); and the symbol \(K(u) \) for a conjugate element \(u \) of \(w \) refers to the field \(K \) obtained by the homomorphism from \(K[X] \) to \(K \) given by \(X \mapsto u \).

The \(K \)-algebra \(\prod K(u) \) has a natural basis \((e_a)\), where each vector \(e_a \) has \(u \)-component 1 and all other components being zero. The sum of all these vectors is equal to the unit element of the \(K \)-algebra \(\prod K(u) \), namely the vector all of whose components are 1.

What are the elements in \(E \otimes K = K[X]/f(X) \) that correspond to this nice natural basis \((e_a)\) of \(\prod K(u) \)? A polynomial \(p_a \) in \(K[X] \) that maps to \(e_a \) must be divisible by \((X - v) \) for any conjugate \(v \) of \(w \) that is \(\neq u \). That means \(p_a \) must be divisible by the product of all those factors \((X - v) \) with \(v \neq u \), which is just \(f(X)/(X - u) \). Moreover, such a polynomial \(p_a \) must leave a remainder of 1 upon division by \((X - u) \), i.e., \(p_a(u) = 1 \). The polynomial \(f(X)/(X - u) \) when evaluated at \(u \) has the value \(f'(u) \), so the polynomial \(f(X)/(X - u)f'(u) \) will map to \(e_a \). Any two such polynomials are congruent mod \(f(X) \), so \(f(X)/(X - u)f'(u) \) is in fact the only polynomial with degree \(< \deg(f) \) that maps to \(e_a \). We will denote this polynomial as \(p_a(X) \).

Accordingly, the Euler’s polynomial identity \(\sum f(X)/(X - u)f'(u) = 1 \) is an expression of the fact that the sum of \(p_a(X) \) maps to the sum of \(e_a \), and so must be congruent to 1 mod \(f(X) \).

The monomial \(X \) in \(K[X] \) maps to the vector in \(\prod K(u) \) whose components are the conjugates of \(w \). It follows that for any polynomial \(q(X) \) with coefficients in the base field \(\mathbb{Q} \), the element \(q(X) \) mod \(f(X) \) in \(K[X]/f(X) \), which corresponds to \(q(w) \otimes 1 \) in the algebra
$E \otimes K$, maps to the vector whose components are the conjugates of $q(w)$. On the other hand, the sum $\sum q(u)f(X)/(X - u)f'(u) = \sum q(u) p_u(X)$ also maps to $\sum q(u) e_u$ which is the vector whose components are the conjugates of $q(w)$. So $q(X)$ and $\sum f(X)q(u)/(X - u)f'(u)$ must be congruent modulo $f(X)$ in the ring $K[X]$. If $q(X)$ has degree $< \deg(f)$, then the expressions must be equal.

REFERENCES:

[1] Serge Lang, *Algebraic Number Theory* (Graduate Texts in Mathematics 110), Springer-Verlag (1986).