LUKAS GIANINAZZI AND TORSTEN HOEFLER

Parallel Planar Subgraph Isomorphism and Vertex Connectivity
Subgraph Isomorphism:
Find subgraphs in the target that **match the pattern**
Subgraph Isomorphism:
Find subgraphs in the target that match the pattern

Target G with n vertices

Pattern H with k vertices

2 occurrences
Subgraph Isomorphism:
Find subgraphs in the target that match the pattern

Target G (n vertices)

Planar target: NP-Hard

Pattern H (k vertices)

2 occurrences
Subgraph Isomorphism:
Find subgraphs in the target that match the pattern

Target G
n vertices

Planar target: NP-Hard

Pattern H
k vertices

Focus on small patterns

2 occurrences
Results for Planar Graphs

Work	Depth
$\Omega \left(n^{\sqrt{k}} \right)$	$O\left(\log^2 n \right)$

- **Color Coding**
 - Alon et al. 1995

- **Subgraph Isomorphism**

- **Target $G**

- **Pattern $H**

- **n vertices**

- **k vertices**

- Result correct with high probability
Subgraph Isomorphism

Target G

n vertices

Pattern H

k vertices

Results for Planar Graphs

Work	Depth	
Color Coding*	$\Omega \left(n^{\sqrt{k}} \right)$	$O(\log^2 n)$
Alon et al. 1995		
Eppstein 1995	$O(k^{3k+1}n)$	$\Omega(n)$
Result correct with high probability		
Results for Planar Graphs

Work	Depth	
Color Coding	$\Omega \left(n^{\sqrt{k}} \right)$	$O\left(\log^2 n \right)$
Alon et al. 1995		
Eppstein	$O\left(k^{3k+1} n \right)$	$\Omega \left(n \right)$
1995		
Our Result	$O\left(k^{3k+1} n \log n \right)$	$O\left(k \log n \right)$
Our Result*		

Result correct with high probability
Dynamic Programming

\[G \]
Dynamic Programming

"Shared Vertices" divide the graph
Dynamic Programming

Solve all subproblems for both parts

Pattern H

Partial Solution 1

Partial Solution 2

Dynamic Programming

Solve all subproblems for both parts

Pattern H

Partial Solution 1

Partial Solution 2
Dynamic Programming

Combine compatible partial solutions

Pattern H

Partial Solution 1

Partial Solution 2
Dynamic Programming

Exponential in “shared” part

General $\Omega(n)$
Dynamic Programming

Exponential in “shared” part

General $\Omega(n)$

Planar $\Theta(\sqrt{n})$
Dynamic Programming

Exponential in “shared” part

General $\Omega(n)$

Planar $\Theta(\sqrt{n})$

Planar, diameter d $O(d)$
Dynamic Programming

Exponential in “shared” part

General \(\Omega(n) \)

Planar \(\Theta(\sqrt{n}) \)

Planar, diameter \(d \) \(O(d) \)

Check diameter \(k-1 \) subgraphs
Naïve Covering

G'
Naïve Covering

\[G' \]
Naïve Covering

G'
Naïve Covering

G'
Naïve Covering
Naïve Covering

\[G' \]

\[\Theta(n^2) \text{ work} \]
Work-Efficient Covering with BFS

BFS Tree
Work-Efficient Covering with BFS

BFS Tree

V

G'

G_0
Work-Efficient Covering with BFS

BFS Tree

G'

G_0

G_1
Work-Efficient Covering with BFS

BFS Tree

G'

G_0

G_1

G_2
Work-Efficient Covering with BFS

BFS Tree

G'

G_0

G_1

G_2

$O(kn)$ work
Work-Efficient Covering with BFS

Problem: $\Omega(n)$ depth

BFS Tree

G'

G_0

G_1

G_2

$O(kn)$ work
Low-Diameter Decomposition
Miller et al. 2015

Target G

n vertices
Low-Diameter Decomposition
Miller et al. 2015

Cluster Diameter $O(k \log n)$

n vertices

Target G
Low-Diameter Decomposition
Miller et al. 2015

Cluster Diameter $O(k \log n)$

n vertices

Target G

Probability a particular edge crosses $\leq \frac{1}{2k}$
Low-Diameter Decomposition
Miller et al. 2015

Target G

Cluster Diameter $O(k \log n)$

n vertices

Probability a particular edge crosses $\leq \frac{1}{2k}$

Probability an occurrence crosses $\leq \frac{1}{2}$

Pattern H

n vertices

$C_{\text{cluster diameter}} \leq O(k \log n)$
Low-Diameter Decomposition
Miller et al. 2015

Cluster Diameter \(O(k \log n) \)

\(n \) vertices

Target \(G \)

\(k \) vertices

Pattern \(H \)

Probability a particular edge crosses \(\leq \frac{1}{2k} \)

Probability an occurrence crosses \(\leq \frac{1}{2} \)
Low Diameter Decomposition

- **$O(n)$ work**
- **$O(k \log n)$ depth**
- **$O(k \log n)$ work**
- **$O(k \log n)$ depth**
- **$O(k^3k+1n)$ work**
- **$O(k \log n)$ depth**

Planar Subgraph Isomorphism

- **$O(k \log n)$ repetitions**
Subgraph Isomorphism

G

Pattern H

Minimum Vertex Cut

G
Minimum Vertex Cut
Smallest number of vertices whose removal disconnects the graph
Minimum Vertex Cut

G

G'

Face Vertices

Original Vertices
Face Vertices

Original Vertices

Minimum Vertex Cut

Separating Cycle

G

G'
Minimum Vertex Cut

Separating Cycle

\[G \]
\[G' \]

Constant Length

\[O(n \log n) \] work

\[O(\log n) \] depth

Face Vertices

Original Vertices
Conclusion

Subgraph Isomorphism

- Target G with n vertices
- Pattern H with k vertices
- $O(k^{3k+1}n \log n)$ work
- $O(k \log n)$ depth

Minimum Vertex Cut

- $O(n \log n)$ work
- $O(\log n)$ depth

Examples

- Example of a subgraph isomorphism problem
- Example of a minimum vertex cut problem
Conclusion

Subgraph Isomorphism

Target G

- n vertices

- k vertices

Pattern H

$O(k^{3k+1}n \log n)$ work

$O(k \log n)$ depth

Singly exponential in k?

Polylog in k?

Minimum Vertex Cut

- $O(n \log n)$ work

- $O(\log n)$ depth

Linear in n?
Subgraph Isomorphism

- Target G with n vertices
- Pattern H with k vertices
- Time complexity: $O(k^{3k+1}n \log n)$ work
- Depth: $O(k \log n)$

Minimum Vertex Cut

- Minimum Vertex Cut
- Separating Cycle
- Time complexity: $O(n \log n)$ work
- Depth: $O(\log n)$

Conclusion

- Singly exponential in k?
- Polylog in k?
- Linear in n?
- Other Implications?