Identification of a variant associated with early-onset diabetes in the intron of the insulin gene with exome sequencing

Shohei Matsuno1, Hiroto Furuta1, Kitaro Kosaka2, Asako Doi1, Tohru Yorifuji3, Takuya Fukuda4, Takafumi Senmaru4, Shinsuke Uraki5, Norihiko Matsutani1, Machi Furuta5, Hiroyuki Mishima6, Hiroshi Iwakura1, Masahiro Nishi7, Kohichiro Yoshiura6, Michiaki Fukui4, Takashi Akamizu1

1The First Department of Medicine, Wakayama Medical University, Wakayama, 2Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, 3Department of Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, 4Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, 5Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, 6Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, and 7Department of Clinical Nutrition and Metabolism, Wakayama Medical University, Wakayama, Japan

Keywords
Early-onset diabetes, Insulin gene, Mutation

*Correspondence
Hiroto Furuta
Tel: +81-73-441-0625
Fax: +81-73-445-9436
E-mail: hfuruta@wakayama-med.ac.jp

J Diabetes Investig 2019; 10: 947–950
doi: 10.1111/jdi.12974

INTRODUCTION
In 1979, Tager et al.1 reported a patient with hyperinsulinemia and diabetes, and the subsequent genetic analysis identified a heterozygous missense mutation in the INS gene2. Our group also reported a Japanese family with the similar clinical phenotype as a result of the INS gene mutation3. The glucose-lowering effect of exogenous insulin was normal in the family, and the insulin receptor binding activity of abnormal insulin was reduced in vitro3. In contrast, Stoy et al.4 reported that INS gene mutations were also the cause of neonatal diabetes as a result of impaired insulin secretion. All mutations reported were heterozygous missense mutations, and were located in critical regions of insulin for normal protein folding and progression in the secretory pathway. Furthermore, expression of abnormal insulin induced severe endoplasmic reticulum stress and β-cell apoptosis5, as had been described in the Akita mouse6.

Whole-exome sequencing (WES) is a new technology. Here, we used it to explore the gene responsible for early-onset diabetes as a result of impaired insulin secretion in a family, and identified a heterozygous intronic mutation in the INS gene.

METHODS
Participants
The proband was born at the 40th week of gestation with birthweight 3,300 g (81.8 percentile). She was diagnosed with diabetes on regular health checkups at the age of 3 years, and has been treated with insulin from diagnosis. She was aged 43 years (body mass index [BMI] 24.0 kg/m2) at the time of study, and was treated with multiple daily insulin injections (0.48 IU/kg/day). Her elder daughter was born at the 37th week of gestation with birthweight 2,760 g (73.6 percentile). She developed symptoms of thirst, polydipsia and polyuria at the age of 12 months. Hyperglycemia (fasting plasma glucose 230 mg/dL [12.7 mmol/mL], glycated hemoglobin 15.0%) and low serum C-peptide level (0.9 ng/mL [298 pmol/L]) were detected, and insulin therapy was started. She was aged 14 years (BMI 20.5 kg/m2) at the time of study, and was treated with an insulin pump (1.18 IU/kg/day). The younger daughter of the proband was born at the 38th week of gestation with birthweight 2,805 g (62.4 percentile). She was found

Received 11 June 2018; revised 28 October 2018; accepted 4 November 2018
to have hypoglycemia (40 mg/dL [2.2 mmol/L]) with normoinsulinemia (serum immunoreactive insulin 4.8 μU/mL [34.4 pmol/L]) for 3 days after birth, and her hypoglycemia was naturally improved. Asymptomatic hyperglycemia (fasting plasma glucose 160 mg/dL [8.8 mmol/mL], glycated hemoglobin 7.7%) was observed at the age of 14 months during a random investigation of blood glucose. Her serum immunoreactive insulin level was low (1.8 μU/mL [12.9 pmol/L]) at the time of diagnosis, and insulin therapy was started. She was aged 9 years (BMI 16.5 kg/m²) at the time of study, and was treated with an insulin pump.

In the present study, sequencing was carried out to achieve the average read depth of 100 × for target regions of WES, and we obtained data with the depth of 114 ×. At first, we checked the result for 26 genes known to cause mature onset diabetes of the young and/or neonatal diabetes. The list and each average read depth of the 26 genes are shown in Table S1. We found a heterozygous c.188-31G>A mutation (reference sequence: NM_000207.2) in intron 2 of the INS gene, which was registered in the databases as rs797045623. The average read depth for the INS gene was 30 ×, which was lowest among the 26 genes, and the read depth on the region in where the c.188-31G>A mutation was located was 15 ×. The mutation was then validated by Sanger sequencing and further investigated in the family group. The mutation was also identified in the proband’s two daughters with diabetes, but not in her son without diabetes. The mutation was also not identified in her husband, who had late-onset diabetes and was treated with oral hypoglycemic agents. Furthermore, the mutation was not identified in her parents without diabetes, suggesting that the mutation might be a de novo mutation in the proband (Figure 1).

The substitution was located 31 bp proximal to exon 3 in intron 2 of the INS gene (Figure 2). It was predicted to create an ectopic splice site by in silico analysis (http://www.cbs.dtu.dk/services/NetGene2/) leading to insert 29 nucleotides of intron 2 as an exonic sequence in the transcript. The insertion altered the reading frame, and the new stop codon was located at 19 amino acids downstream from the original stop codon. Furthermore, the mutation had been reported to be associated with early-onset diabetes in White people (Table 1).7–9 For these reasons, we concluded that the heterozygous c.188-31G>A mutation was the pathogenic mutation in the present family.

DISCUSSION
This is the first report for the pedigree with diabetes as a result of the c.188-31G>A mutation in Asian people. The
clinical phenotype of diabetes observed in the present patients was impaired insulin secretion, the same as in the previous reports. The mutation was initially identified in patients with permanent neonatal diabetes. In this report, the abnormal transcript predicted was detected with reverse transcription polymerase chain reaction in messenger ribonucleic acids of patients’ lymphoblastoid cells established by Epstein–Barr virus transformation. Furthermore, they analyzed the three-dimensional structure of the mutant protein with computer modeling and predicted that the mutant protein would fail to fold properly in the endoplasmic reticulum, and concluded that the abnormal insulin could induce pancreatic β-cell dysfunction and apoptosis as a result of the endoplasmic reticulum stress.

A majority of patients were diagnosed with diabetes before 12 months-of-age as a result of the heterozygous missense mutations in the INS gene. In an initial report, patients with the c.188-31G>A mutation were diagnosed at 1 month after birth. However, the ages at diagnosis observed in another two families reported were older than that of the initial report and were similar to the present patients (Table 1), suggesting that other genetic and environmental factors might modulate the age at onset of diabetes.

Although the present results would help in understanding the role of the c.188-31G>A INS gene mutation in developing diabetes, the present study had several weaknesses. WES cannot detect relatively large structural variations, such as an exon deletion. Furthermore, we checked the result of WES for only the 26 genes. It is possible that other structural variations or non-synonymous mutations have also contributed to the phenotype of diabetes in the present family.

Because patients with the ABCG8, KCNJ111 or HNF1A gene abnormalities respond to sulfonylureas and do not require insulin therapy in many cases, the genetic diagnosis is useful for the therapeutic decision in patients with early-onset diabetes. The cost for WES is rapidly decreasing, so the method could be more widely used for genetic testing of monogenic diabetes in the near future.

Table 1 | Summary of families with the c.188-31G>A mutation in the insulin gene

Family	Country	Sex	Relationship	Zygosity	Age at diagnosis	Treatment	References
1	Spain	M	Father	Hetero	1 month	INS	[7]
		F	Proband	Hetero	1 month	INS	
2	USA	M	Proband	Hetero	10 months	INS	[8]
3	Czech Republic	F	Mother	Hetero	6 years	OHA → INS	[9]
4	Japan	F	Proband	Hetero	3 years	INS	
		F	Daughter	Hetero	12 months	INS	
		F	Daughter	Hetero	14 months	INS	

† The patient was treated with oral hypoglycemic agents (OHA) for 1 year. ‡ The diabetes was transiently resolved from 18 months, but appeared at the age of 3 years. F, female; INS, insulin; M, male.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number JP17K09842.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Tager H, Given B, Baldwin D, et al. A structurally abnormal insulin causing human diabetes. Nature 1979; 281: 122–125.
2. Kwok SC, Steiner DF, Rubenstein AH, et al. Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes 1983; 32: 872–875.
3. Nanjo K, Sanke T, Miyano M, et al. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. J Clin Invest 1986; 77: 514–519.
4. Stoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 2007; 104: 15040–15044.
5. Colombo C, Porzio O, Liu M, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest 2008; 118: 2148–2156.
6. Wang J, Takeuchi T, Tanaka S, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 1999; 103: 27–37.
7. Garin I, Perez de Nanclares G, Gastaldo E, et al. Permanent neonatal diabetes caused by creation of an ectopic splice site within the INS gene. PLoS ONE 2012; 7: e29205.
8. Alkorta-Aranburu G, Carmody D, Cheng YW, et al. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 2014; 113: 315–320.
9. Dusatkova L, Dusatkova P, Vosahlo J, et al. Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young. Eur J Med Genet 2015; 58: 230–234.
10. Edghill EL, Flanagan SE, Patch AM, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008; 57: 1034–1042.
11. Naylor RN, Greeley SA, Bell GI, et al. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig 2011; 2: 158–169.
12. Pearson ER, Starkey BJ, Powell RJ, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003; 362: 1275–1281.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | The list of 26 genes known to cause mature onset diabetes of the young and/or neonatal diabetes and the average read depth at each locus.