Pyramiding approach for development of blast and bacterial leaf blight resistant, and drought tolerant rice variety through marker-assisted selection

Ibrahim Silas Akos
Kaduna State University, Faculty of Agriculture

Mohd Rafi Yusop (mrafi@upm.edu.my)
University Putra Malaysia https://orcid.org/0000-0003-4763-6367

Mohd Razi Ismail
Universiti Putra Malaysia

Shairul Izan Ramlee
Universiti Putra Malaysia

Noraziyah Abd Aziz Shamsudin
Universiti Kebangsaan Malaysia

Asfaliza Binti Ramli
Malaysia Agricultural Research and Development Institute

Oladosu Yusuff
Universiti Putra Malaysia

Isma'ila Muhammad
Universiti Putra Malaysia

Original article

Keywords: Rice, pyramiding, blast, bacterial leaf blight, resistant, drought, tolerant, marker-assisted selection

DOI: https://doi.org/10.21203/rs.3.rs-86456/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Rice (Oryza sativa L) is an important cereal crop and staple food crop of the world, whose yield could be influenced by biotic and abiotic conditions, resulting in 1-100% yield losses depending on the incidences of diseases or severity of stress condition. The research was basically to identify the polymorphic markers at the target region (parental survey) and screened for selection of improved lines with multiple traits of resistance/tolerance to two or three of blast, bacterial leaf blight and drought tolerance. Three varieties were used; two high yielding varieties of Putra-1 and MR219-PL-137 resistant to blast and tolerant to drought respectively, and an IRBB60 bacterial leaf blight resistance variety. They were crossed to a common recipient parent (Putra-1) to produce two categories of F1 hybrid as baseline for development of improved lines in three crossing methods which produced five populations (PB, PD, PDB, DBP) through marker-assisted pedigree selection. The populations were screened by genotyping using SSR markers to select lines polymorphic to parental cultivars and carrying the linked markers/QTLs for diseases resistance and drought tolerance: Blast resistance (RM6836 and RM8225), IRBB60 (RM224, RG136, RM122, RM21), MR219-PL-137 drought tolerance QTLs (RM236, RM520, RM511, RM1261). The results of gel electrophoresis agreed with the phenotyping results of the improved lines F4, F3 (2), F3 for single, double and three-way (and reciprocal) crosses respectively and also susceptible parent cultivars.

Materials And Methods

Plant Materials and Breeding Design

Two high yielding rice; Putra-1 (blast resistance), MR219-PL-137 (Drought tolerant) and IRBB60 (Bacterial leaf blight resistant) varieties were crossed by pedigree breeding method in a single, three-way (and reciprocal) and double crosses breeding scheme to produce single line with...
multiple traits through pyramiding approach by using marker-assisted selection. The experiment was conducted in a glass house at the Rice Research Centre (RRC) and Laboratory of Climate and Smart-Food Crop Production, Universiti Putra Malaysia (UPM).

Breeding Scheme to Develop Hybrid Disease Resistance and Tolerance Lines

The procedures used to develop improved lines with multiple traits of blast resistance, bacterial leaf blight and drought tolerance are shown in Figure 1.

Genomic DNA Extraction

Complete genomic DNA of each of the plant samples collected was extracted from the leaf tissues of 2-4 weeks old of the parental cultivars and progenies of individual plants using Cetyltrimethylammonium bromide (CTAB) method protocol Doyle and Doyle (1987) with modification following the protocol of McCouch et al. (1988).

The DNA pellet (crude form) was washed with 75% ethanol and dissolved in 50µl TE buffer and then treated with RNase. The quality and integrity of the DNA were quantified using Nanodrop spectrophotometer (ND1000 Spectrophotometer) to determine the concentration and purity of samples.

Molecular markers

Some primers polymorphic to the different genes responsible for blast resistance, bacterial leaf blight and drought tolerance were selected through the gramene data base. Linked markers associated with the genes of interest were selected from published article for foreground selection which included; Blast resistance (Ashkani et al. (2011), Pinta et al. (2013), Miah et al. (2016), drought tolerance (Shamsudin et al. 2016). Some of the primers were mapped by Miah et al. (2016), for blast resistance, (Miah et al. 2016) and (Shamsudin et al. 2016) for drought tolerance, and bacterial leaf blight (Pinta et al. 2013; He et al. 2006; Khan et al. 2015; Pradhan et al. 2015) as indicated in Table 1.

Amplification and electrophoresis

Primer pairs were optimized for polymerase chain reaction (PCR) to amplify microsatellite loci. Parental survey of the three varieties was carried out to identify polymorphic SSR markers among the parental varieties. The total PCR reaction of 15µL contained 70ng template DNA, 1.0 µmol L⁻¹ concentration of each primer, 7.5µL master mix (Thermo Scientific, Waltham, MA, USA) and 4.5µL nuclease-free water. PCR amplification was carried out in a thermocycler (T100TM, Bio-Rad, Hercules, CA, USA) following the initial denaturation at 94°C for 5 min followed by 35 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 30 s and a final extension at 72°C for 5 min, followed by rapid cooling to 4°C prior to analysis for conventional protocol while the touch procedure used was; the lid temperature was 105°C, denaturation, annealing and elongation temperatures as follows; (1. 94°C for 3mins, (2. 94°C for 30sec, (3. 62°C for 1min., +1°C per cycle (4. 72°C for 30sec., (5. Go to step 2, 9× (6. 94°C, 30sec. (7. 52°C, 1min., (8. 72°C, 2mins., (9. Go to step 6, 29×, (10. 72°C, 10mins. (11. rapid cooling to 4°C; and (12. 12°C prior to analysis.

Gel electrophoresis was carried out where 5µL of PCR product was mixed with loading dye (ladder) and run using 2.0% Metaphor™ agarose (Lonza) gel containing 5-10µL Midori green in 1× TBE buffer (0.05 mol L⁻¹ Tris, 0.05 mol L⁻¹ boric acid, 1 mmol L⁻¹ EDTA, pH 8.0). The gel was run at a constant voltage of 80V for 60 minutes. Band pattern was documented under UV light and analyzed using Molecular imager system (GelDoc™ XR, BioRad) for amplified products.

Identification of polymorphic and linked markers for parental survey and selection of improved lines using gel electrophoresis

Two paired parents of donors and recurrent (recipients) used to determine polymorphisms are Putra-1(Blast)×MR219-PL-137 (drought tolerance), Putra-1(Blast) × IRBB60 (BLB).

Biparental cultivars with MR219-PL-137 and IRBB60 designated as donors were dusted on Putra-1 used as recipient parent each for the donor parent cultivars. The markers identified during parental survey are RM6836, RM8225 for blast resistance (Putra-1) which served as polymorphic and linked markers. RM236, RM520, RM511, RM1261 comprised of polymorphic, linked and flanking markers for drought tolerance in MR219-PL-137 line, while IRBB60 had markers RG136, Xa13Prom, RM224, RM122, RM21, pTA248 as both polymorphic and linked to genes of resistance as shown in Table 1.

Table 1. Polymorphic and linked microsatellite (SSR) markers used for parental survey and associated to genes of resistance and quantitative trait loci (QTL)/Flanking markers
### Variety: Genes	Primer sequences (5′ – 3′)	Chr. position	Exp. size	References
SSR linked marker | **Forward primer** | **Reverse primer** | | |
Putra-1 (Blast resistance) | | | | |
RM6836 | *Piz, Pi2, Pi9* | TGTTGCATATGGGTCTATTGGA | GATACGGCTTCTAGGCGAAA | 6 | 240 | (Miah et al., 2016; Akos et al., 2019ab)
M8225 | *Piz* | ATGCGTGTTCCGAAATTAGG | TGTTGTATACCTCATCGACAG | 6 | 221 | (Miah et al., 2016)
MR219-PL-137 drought tolerance | | | | |
RM511 | *qDTY* | CTTCGATCCGGTGACGAC | AACGAAAGCGAAGCTGTCTC | 12 | 130 | (Shamsudin et al., 2016)
RM520 | *qDTY* | AGAGGAGAGAAGTCCCTCCC | GCCAATGTGTGAGCAATAG | 3 | 247 | (Shamsudin et al., 2016)
RM236 | *qDTY* | GCCTGAGTGAAATGAG | GCCATCCCTCTTTGATTCTC | 2 | 174 | (Shamsudin et al., 2016)
RM276 | *qDTY* | CTCAACGTTGCACCTCGTG | TCTTCCATCGACCTATCA | 6 | 149 | (Akos et al., 2019b)
RM1261 | *qDTY* | GTCCATGCCCAAGACACAAC | GTTACATCATGGGCTACCC | 12 | 167 | (Mishra et al., 2013; Bernier et al., 2007)
IRBB60 (Bact. leaf blight) | | | | |
RM224 | Xa-4 | ATCGATCGATCTTCACGAGG | TGCTATAAAAGGCATTCGGG | 11 | 157 | (He et al., 2006)
RM122 | xa-5 | GAGTCGATGTAATGTCATCAGTGC | GAAGGAGGTATCGCTTTGTTGGAC | 5 | 227 | (Wu and Tanksley, 1993)
RM13 | xa-5 | TCCAACATGGCAAGAGAGAG | GGTGGCATTCGATTCCAG | 5 | 141 | (Khan et al., 2015)
RG136 | xa-13 | TCTTGCCCGTCACTGAGATCC | GCAGCCCTAATGCTACAATTCTTC | 8 | 246 | (Zhang et al., 1996)
Xa13Prom | x13 | GCCATGGCTCAGTGTTTTAT | GAGCTCCAGCTCTCCAAATG | 8 | - | (Akos et al., 2019bc)
RM21 | Xa-21 | ACGATTCCGACGAGGACGA | GCTCCATGAGGATGATGAG | 11 | 157 | (Chen et al., 1997)
pTA248 | Xa-21 | AGACCGGAGGGGTGTTCCCGGA | AGACCGGTAATCGAGATGAAA | 11 | - | (Ronald et al., 1992)

Note: Chr. (Chromosome) position, Exp. (Expected) base pair size

Bacterial and Fungal Culture

Bacterial leaf blight (*Xanthomonas oryzae pv oryzae*) MXO 1552 and blast (*Magnaporthe grisea*) fungus with virulent pathotype P7.2 were obtained from the Malaysia Agricultural Research and Development Institute (MARDI), Serdang and sub-cultured in nutrient agar (NA) and potato dextrose agar (PDA) respectively for use. The former was incubated at 30°C for 48 hours (Suresh et al. 2013), while the latter was incubated at 25°C for 14 days (Mahdieh et al. 2013).

Diseases inoculation, tolerance imposition and evaluation
Results And Discussion

Marker assisted selection

Parental survey was carried out to identified markers polymorphic to blast resistance genes (RM6836, RM8225), bacterial leaf blight (Xa13Prom, pTA248, RM164) and drought tolerance (RM520, RM511, RM1261), these markers are also linked to the genes/QTLs of interest and were similarly used on the same traits by Ashkani et al. (2011); Pinta et al. (2013); Miah et al. (2016); Khan et al. (2015); Shamsudin et al. (2016). In F$_1$ generation, crosses between Putra-1 (blast resistance) and MR219-PL-137 drought tolerance cultivars and between Putra-1 and IRBB60 (bacterial leaf blight) was carried out, true F$_1$ were those plants with heterozygous amplification. The two F$_1$s crossed together generated a double-crossed population. While each F$_1$ was crossed with one of the varieties lacking in its F$_1$ which produced three-way crosses, the initial F$_1$s were maintained as single crosses. In F$_2$ segregating generation, the homozygous resistant plants similar to recipient parent (banding pattern alignment) were selected using the polymorphic and linked markers (RM6836, RM8225) and (RM520, RM511 and RM1261) for three-way cross and reciprocal with MR219-PL-137 drought tolerant line as the recipient parent, and the heterozygous and homozygous similar to the two parents and donor respectively were not selected as was represented in similar fashion as the Mendelian ratio 1:2:1 (Figures 2-12).

Genotyping selection in segregation lines (F$_2$) for target genes using gel electrophoresis for single, double and three-way crosses

The Mendelian segregation generation is often an F$_2$ generation represented by ratio 1:2:1 shown in the banding pattern by gel electrophoresis. The parental bands were standard band to gauge the orientation of the progeny bands, these were arranged in the order of cross pollination with the recipient often the first, followed by the donor either in single, double or three-way cross. Each of the aligned band tallied with recipient parent as single band (ratio 1), heterozygote, the two parents of recipient and donor (ratio 2) and donor parent as the last band of 1 in the ratio. The polymorphic markers created this pattern of selection, but the selection at this segregating generation was basically for the band aligning with the recipient parent (Mishra et al. 2013; Chen et al. 1997) (Figures 13-16).

Pure-line selection of F$_4$ single, F$_3$ three-way and F$_3$(2) double crosses using

Non-segregating F$_4$ single crosses, F$_3$ three-way, and F$_3$(2) double crosses lines were selected F$_2$ recipient lines in a segregating generation that self-pollinated resulting in improved stable lines that corresponded to the recipient parent which is Putra-1 (blast resistance), except for the reciprocal cross where the recipient parent was MR219-PL-137 drought tolerance variety. Polymorphic markers were used to determine plants selected (Mishra et al. 2013; Chen et al. 1997) (Figures 17-21).

Phenotyping

This is a strategy used in selection of rice plants that have shown resistance and tolerance to pathogens and water stress situations respectively. It is also a process known as “challenging”, the rice plants (progenies) introgressed with desired traits of resistance and tolerance QTLs determined by linked markers to the traits were infected with pathogens whose resistance and tolerance were introgressed. This basically revealed the levels of expression of resistances and tolerance of genes/QTLs introgressed, it is similar to gene expression determine through western blot analysis. The procedures were according to IRRI-SES (2014) with slight modifications.
Infested glasshouse and selection of F1

The F1 rice plants were grown in a highly blast infested environment without prior treatment with fungicide, so that it can challenge the plants and those that survived were selected and advanced to the next generation of self pollination, double and three-way crosses. This exposed the plant to varied strains of the pathogens within the environment and selection was carried out (Figure 22 g & h). The inability to resist blast even though as hybrid was because it was not a stable line which implied that it was not yet integrated in the plant and could not be expressed.

Selection of resistance and tolerance lines

The success of this selection entailed that the genes/QTLs introgressed to produce the improved lines were expressed, and the resultant effect is that when the pathogens and water deficit conditions were appropriately introduced to the plants, they showed resistance and tolerance, except on the susceptible (Control) parent plants, which actually showed susceptibility as shown in Figure 22(c,d,g,h). The blast's three R genes conferred resistance to leaves at all stages of growth, likewise bacterial leaf blight with four R genes, and also drought tolerance with three qDTY. The potential of developing resistance to blast and bacterial leaf blight are possibilities attainable, the Figure 23 showed the scores of both traits inoculated with the disease pathogens, it recorded resistant (R) and moderately resistant (MR) to blast and bacterial leaf blight for M. grisea and X. oryzae respectively. These results agreed with the findings of Chen et al. 1997 and Miah et al. 2017 on the development of blast resistant variety. Sun et al. (2004) and Zhang et al. (2009) reported that Xa21 gene was the best to induced resistance against BLB. These R genes were also introgressed in the improved lines.

Table 2 Genotypic and phenotypic segregation of resistance (R.) heterozygous (H) and susceptible (S) to rice in parental, F1 hybrid and F2 populations
Population	Expected ratio	Observed frequency	Chi-square	P-value	
	R:H:S	R	H	S	
F₂ (PD)					
Pₚ	6	-	-		
Pₛ	-	4			
F₁ hybrid	-	11	-		
F₂ genotype	1:2:1	18.5	5.99		
F₂ Phenotype	3:1	16	4	3.58	3.84
F₂ (PB)					
Pₚ	2	-	-		
Pₛ	-	-	9		
F₁ hybrid	-	1	-		
F₂ genotype	1:2:1	149.69	5.99		
F₂ Phenotype	3:1	3	9	20.5	3.84
F₂ (PBD)					
Pₚ	3	-	-		
Pₛ	-	-	2		
F₁ hybrid	-	12	-		
F₂ genotype	1:2:1	13.5	5.99		
F₂ Phenotype	3:1	15	2	5.75	3.84
F₂ (PDB)					
Pₚ	6	-	-		
Pₛ	-	-	4		
F₁ hybrid	-	11	-		
F₂ genotype	1:2:1	28	5.99		
F₂ Phenotype	3:1	17	4	10.42	3.84
F₂ (DPB)					
Pₚ	5	-	-		
Pₛ	-	-	7		
F₁ hybrid	-	8	-		
F₂ genotype	1:2:1	31	5.99		
F₂ Phenotype	3:1	13	7	16.83	3.84

Phenotype $df(2) @ 0.05$; Genotype $df(1) @ 0.05$

Selection for inheritance of resistance and tolerance
Total of 20 heterozygous F₁ plants selected were advanced to the next generation by selfing (F₂), double cross (F₁(2)) and three-way crosses (F₃). A total of 102 F₂, single cross, F₁(2) double and F₃ three-way crosses were evaluated for genotyping analysis using polymorphic and linked markers as presented in Table 2. The F₂ was segregated as resistance (aligning with the recipient female), susceptible (donor male) and heterozygous scored markers. While F₁(2) was selected based on resemblance to parents (recipient female of initial F₁ and new donor for the three-way cross and double cross) F₁ heterozygous. The F₁(2) is similar to F₁ and therefore only the heterozygous plants were selected.

There was an interplay of genes of inheritance among blast M. grisea, BLB X. oryzae and Drought MR219-PL-137 (drought tolerance) in the F₂ single, double and three-way crosses. All the traits for resistance and tolerance had dominant and recessive genes as shown in Table 2. The statistical value in the populations PD (Putra-1 and MR219-PL-137 drought tolerance) single cross F₂ phenotype was less than the P-value. The phenotypic t calculated and t tabulated values are 3.58 and 3.84 respectively. Therefore, there is no significant difference P≤0.05 and so, does not conform to 3:1 Mendelian ratio. The genotypic t calculated and t tabulated values of the chi-square are 18.5 and 5.99 respectively. Therefore, it is significant (P≤0.05), which conformed to the Mendelian genotypic ratio (1:2:1). This non conformity of phenotypic ratio 3:1 could be attributed to epistasis and linkage effect. However, considering PB (Putra-1 and IRBB60), PBD, DBP and DPB populations, the genotypic and phenotypic ratio conformed to Mendelian chi-square statistics (P≤0.05) in the F₂ generation. The t calculated were greater than t tabulated. It corroborated with the findings of 18, although on single gene model. This research introgressed multiple genes, but dominance-recessive effect conformed to the model as well as the single gene model. This was also visible in the F₂ single, F₃(2) double and F₃ three-way crosses stable non-segregating pure-lines generation. This principle was always applied in all breeding research which often result to multiplication of seeds and released as new variety after multi-locational evaluation (Nyguist and Baker, 1991; Acquaah, 2007).

Means comparison of days to 50% flowering (DTF) showed that the susceptible variety (CONTROL) recorded more days compared to other improved lines when imposed with reproductive stage drought stress. The susceptible (Control) took an average of between 95-98 days to 50% flowering, while the improved lines had the lowest and maximum days of 92-95 days. The stress was imposed for >2 weeks starting from intermediate to severe stress with leaves turned from U-shaped to 0-shaped respectively. Over ten days of severe drought stress imposed against the seven days of reproductive drought stress recommended for glass house (IRRI-SES, 2014). Other parameters observed included; panicle length (PL), fully filled grain and (FFG), yield maturity (YM). These traits are reproductive stage influenced and therefore, their responses to effect of drought was important in determining their level of tolerance (Figure 24).

The average panicle length for control (susceptible) and improved lines under reproductive stage drought stress was 20 cm and 24 cm respectively, while the fully filled grain (FFG) was similarly 27g and 44g, and yield maturity was 132 days and 128 days respectively. Water deficit stress delays flowering and more so when the cultivar has no tolerant QTLs. It was recorded that although both were subjected to the same stress condition, the improved lines with QTLs flowered somewhat earlier. This corroborated with the reports and findings of Pantuwan et al. (2002); Lanceras et al. (2004); Atlin et al. (2006); Ouk et al. (2006); Venuprasad et al. (2007); Zhao et al. (2010); Blum (2011); Vikram et al. (2011); Ghimire et al. (2012) that reproductive stage drought stress delays flowering. The percentage of FFG yield of 27g and 44g was 15.13% and 24.66% for susceptible and improved lines respectively. According to Yambo and Ingram (1988) yield reduction of up to 70%, 88% and 52% when rice was imposed drought stress for 15 days at panicle initiation stage, flowering and grain filling stage respectively was considered tolerant (Kano-Nakata et al. 2014). however stated that any drought protocol that has the potential of reducing yield to 65% compared to those under no drought stress could be considered as drought tolerant. This conveniently agrees with our result of 75% reduction.

Delay in flowering would normally result in delay in yield maturity because a stage was delayed. The physiological and biochemical processes adjusted in response of stress to conserve water as a system of adaptation, it slowed down the processes thereby causing delay. This emphasizes the importance of water to plants (Juraimi et al. 2009). The reproductive stage drought stress was delayed to 133 days to attend physiological maturity with the susceptible line, while the improved tolerant line was 128 days. A check on the drought tolerant variety under non stress condition matured at an average of 118 days.

Report shows that qDTY₁₂,₁ and qDTY₂₃,₁ conferred tolerance and produce high yield with increasing drought effect in upland (Wu and Tanksley, 1993), and in lowland (Venuprasad et al. 2009) respectively. Zhang et al. (1996) reported qDTY₁₂,₁ as the first QTL with large effect of grain yield on reproductive stage drought stress. Similarly, QTLs qDTY₁₂,₁ and qDTY₂₃,₁ with confirmed large effects also recorded in Nepal (Bernier et al. 2007; Yadaw et al. 2013). Figure 25 and Figure 26 shows the stages and pattern of rice growth under normal stress-free and in reproductive stage drought stress conditions, from planting to when drought stress was imposed (reproductive stage), and when the plants flowered (heading) to yield maturity in each of the 4 populations of the improved lines which had drought tolerance QTLs introgressed based on parental traits crossed.
Conclusion

Improved lines of high yielding and diseases resistance and drought tolerance rice were developed from three parents. These were properly selected based on the genotyping results obtained through gel electrophoresis and with the aid of the polymorphic markers which formed the bases for accurate gene introgression and selection. The polymorphic and linked markers to the R genes of the disease pathogens (Blast, Bacterial leaf blight) and the drought tolerant QTLs were used and confirmed to be present on the selected segregating generations to non-segregating, pure-line selection, either as single (F$_4$), double (F$_3(2)$) and three-way (F$_3$) crosses. The susceptible varieties confirmed the level of resistance of the improved lines. The reproductive stage drought test showed that the yield was within acceptable range for drought tolerant varieties. These lines are therefore, suitable for cultivation in lowlands and low water availability to mitigate the effect of climate change.

Description of letter symbol used

Characteristics	Denotation	Description
PB	F$_1$(PB)	Cross between Putra-1 and IRBB60
PD	F$_1$(PD)	Cross between Putra-1 and MR219-PL-137
PBD	PBD	3-way cross between putar1 and IRBB60(F1) and MR219 Drought tolerant
PDB	PDB	Double cross (from two F$_1$s; P×D and P×B)
DPB	DPB	4-way reciprocal cross (between MR219-PL-137 drought tolerant and F$_1$ Putra-1×IRBB60)
Population	Pop.	Population signifies the breeding or crossed lines
Resistant	R	Score of measure of resistance to pathogens
Moderately resistant	MR	Score of moderate resistance
Moderately susceptible	MS	Measures and score for moderately susceptible to pathogen
Susceptible	S	Measure of plants susceptibility to pathogens
Potato dextrose agar	PDA	Growth media for fungi
Nutrient agar	NA	Media for growing bacteria

Declarations

Ethical Approval and Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

Not applicable for all, but for those applicable are available on demand

Competing interests

Authors declare that they have no competing interests

Funding

Not applicable

Authors’ contributions

MYR conceived the study and was also involved in the design and project coordination. ISA drafted the manuscript and laboratory experiment. MRI, SIR, NAAS and ABR also participated in the breeding design, protocols for phenotyping and molecular (genotyping)
experiment and project coordination. OY and IM involved in the analysis and formatting.

Acknowledgments

The authors express gratitude to the Heads, Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, and Rice Research Centre (RRC), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

References

Acquaah G (2007) Principles of plant genetics and breeding. Oxford, UK: Blackwell Publishing.

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Halimu BS, Muhammad I, Chukwu SC (2019a) A review on gene pyramiding of agronomic, biotic and abiotic traits in rice variety development. Int J Appl Biol 3(2):65-96

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Jalloh M, Halidu J, Swaray S (2019b) Genetic inheritance of multiple traits of blast, bacteria leaf blight resistant and drought tolerant rice lines. Int J Appl Biol 3(2):1-35

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Chukwu SC (2019c) Genotyping and phenotyping for rice selection resistant to blast, bacteria leaf blight and drought tolerant. Exploring Innovation in genetics, Proceeding of the 13th Malaysia International Genetic Congress 19th-21st Nov. 2019

Amante-Bordeos AL, Sitch R, Nelson R, Dalmacio N, Oliva H, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

Atlin GN (2006) Lafitte HR, Tao D, Laza M, Amante M and Courtois B, Developing rice cultivars for high fertility upland systems in the Asian Tropics. Field Crops Res. 97:43–52

Ashkani S, Rafii MY, Sariah M, Abdullah SNA, Rusli I, Harun AR, Latif MA (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10:1345–1355.

Baliyan N, Mehta K, Rani R, Purushottum, Boora KS (2016) Evaluation of pyramided rice genotypes derived from cross between CSR-30 and IRBB-60 Basmati variety against bacterial leaf blight. Vegetos 29:3. DOI: 10.5958/2229-4473.2016.00088.4

Banito A, Kadai EA, Sere Y (2012) Screening of rice varieties for resistance to bacteria leaf blight. J Appl Biosci 53:3742-3748

Bermier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. CropSci 47:507-516

Blum A (2011) Plant water relations, plant stress and plant production. In: Blum A, editor. Plant breeding for water-limited environments. New York, Dordrecht, Heidelberg, London. Springer p. 11–52

Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchanan B, Jones R. Biochemistry and Molecular Biology of Plants. Maryland, USA. ASPP 1158–1249

Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553-567.

Choudhury MR, Jia Y, Jackson A, Jia MH, Fjellstrom R, Cartwright RD (2012) Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers. Euphytica 184:35–46.

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyt Bull 19:11-15. Article PubMed/NCBI Google scholar

FAOSTAT, 2017. Statistical database of the food and agriculture of the United Nations [Online]. FAO, Rome. Available: http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitorrrmm/en/ [16th August 2019]

Fitzgerald MA, McCouch SR, Hall RD (2008) Not just a grain of rice: The quest for quality. Trends Plant Sci. 14:133–139 http://dx.doi.org/10.1016/j.tpls.2008.12.004
Ghimire KH, Lenie AQ, Vikram P, Swamy BPM, Dixit S, Ahmed H, et al (2012) Identification and mapping of a QTL (qDTY₁.₁) with a consistent effect on grain yield under drought. *Field Crops Res.* 131:88–96.

Habarema I, Edema R, Gibson P, Lamo J, Asea G, Séré Y, Gasore ER (2013) Population diversity of rice bacterial leaf blight isolates in Uganda. *Asian J of Plant Sci and Res* 3(1):1-9

He Q, Li D, Zhu Y, Tan M, Zhang D, Lin X (2006) Fine mapping of Xa2, a bacterial blight resistance gene in rice. *Mol Breeding*, 17:1–6

Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadi N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. *Theor Appl Genet* 95:313-320. DOI:10.1007/s001220050565

International Rice Research Institutes (IRRI)-Standard evaluation system for Rice (SES) (June, 2014), 5th Edn. Manila, Philippines

Jongdee B, Pantuwan G, Fukai S, Fisher K (2006) Improving drought tolerance in rainfed lowland rice: an example from Thailand. *Agric Water Manag* 80:225–40.

Juraimi AS, Najib MYM, Begum M, Anuar AR, Azmi M, Puteh A (2009) Critical period of weed competition in direct seeded rice under saturated and flooded conditions. *Pertanika J Trop Agric Sci* 32:305-316

Kano-Nakata M, Tatsumi J, Inukai Y, Asanuma S, Yamauchi A (2014) Effect of various intensities of drought stress on 13C variation among plant organs in rice: Comparison of two cultivars. *Am J Plant Sci* 5(11): 1686–1693.

Kauffman HE, Reddy APK, Hsien SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to *Xanthomonas oryzae*. *Plant Disease Report*, 57:537–541.

Khan TH, Eramoni FZ, Rubel MH, Nasiruddin KM, Rahman M (2015) Screening of rice varieties for bacterial leaf blight resistance by using SSR markers. *J Biosci Agric Res* 3:45-58.

Kumbhar SD, Kulwal PL, Patil JV, Sarawate CD, Gaikwad AP, Jadhav AS (2015) Genetic diversity and population structure in landraces and improved rice varieties from India. *Rice Sci* 22(3):99–107 (2015).

Lanceras CL, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. *Plant Physiol* 135:384–99.

Mahdieh S, Hosseini M, Soltani J (2013) An investigation on the effects of photoperiod, aging and culture media on vegetative growth and sporulation of rice blast *Pyricularia oryzae*. *Progress in Biol Sci* 3(2):135-143.

McCouch SR, Kochert G, Yu ZH, Wang ZY, et al (1988) Molecular mapping of rice chromosomes. *Theor Appl Genet* 76:815-829

Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latiff MA (2016) Marker-Assisted introgression of Broad-Spectrum Blast Resistance Genes into the Cultivated MR219 Rice Variety. *J. Sci. Food Agric* Wiley online Library.

Miah G, Rafii MY, Ismail MR, Sahebi M, Hashemi FSG, Yusuff Q, Usman MG (2017) Blast disease intimidation towards rice cultivation: a review of pathogen and strategies to control. *J Anim Plant Sci* 27:1058-1066.

Mishra KK, Vikram P, Yadaw RB, Swamy BPM, Dixit S, et al (2013) qDTY₁₂.₁: a locus with a consistent effect on grain yield under drought in rice, *BMC Genet* 14.

Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. *Trends Plant Sci*. 16:319–326. http://dx.doi.org/10.1016/j.tplants.2011.02.009.

Nyguist WE, Baker RJ (1991) “Estimation of heritability and prediction of selection response in plant populations” *Crit Reviews Plant Sci* 10(3):235-322.

Oladosu Y, Rafii MY, Magaji U, Abdullah N, Miah G, Chukwu SC, Hussin G, Ramli A, Kareem I (2018) Genotypic and Phenotypic Relationship among yield components in rice under tropical conditions. *BioMed Res* Int Article ID 8936767, 10 pages. https://doi.org/10.1155/2018/8936767.

Ouk M, Basnayake J, Tsubo M, Fukai S, Fische KS, Cooper M, et al (2006) Use of drought response index for identification of drought tolerant genotypes in rain fed lowland rice. *Field Crops Res* 99:48–58.
Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O'Toole JC (2002) Yield response of rice (*Oryza sativa* L.) to drought under rainfed lowlands: 1. grain yield and yield components. *Field Crops Res* 73:153–68.

Pinta W, Toojinda T, Thummabenjapone P, Sanitchon J (2013) Pyramiding of blast and bacterial leaf blight resistance genes into rice cultivar RD6 using marker assisted selection, *Afri J Biotechnol* 12(28):4432-4438. DOI: 10.5897/AJB12.2028

Pradhan SH, Nayak DK, Mohanty S, Behera M, Barik SR, Pandit E, Lenka S, Ananda A (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna *Rice* 8:19.

Ronald PC, Albato B, Tabien R, Abenes L, Wu K, McCouch S, Tanksley S (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus *Xa21*. *Mol Gen Genet* 236:113–120.

Scardaci SC, Webster RK, Greer CA, Hill JE, Williams JF, Mutters RG, Brandon DM, McKenzie KS, Oster JJ (2003) Rice Blast: A New Disease in California, Agronomy Fact, Department of Agronomy and Range Science, University of California, Davis, Sheet.

Shamsudin NAA, Swamy BPM, Ratnam W, Cruz MTS, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. *BMC Genet* 17:30.

Suresh SR, Yenjerappa ST, Naik MK, Mallesh SB, Kalibavi CM (2013) Studies on cultural and physiological characters of *Xanthomonas oryzae* pv. *oryzae* causing bacterial blight of rice. *Karnataka J Agric. Sci* 26(2):214-216.

Sun XL, Cao YL, Yang ZF, Xu CG, Li XH, Wang SP, Zhang QF (2004) *Xa26*, a gene conferring resistance to *Xanthomonas oryzae* pv. *oryzae* in rice, encodes an LRR receptor kinase-like protein. *Plant J* 37:517–527.

Venuprasad R, Zenna N, Choi RI, Amante M, Virk PS, Kumar A (2007) Identification of marker loci associated with tungro and drought tolerance in near-isogenic rice lines derived from IR64/Aday Sel. IRRN 32.1.p. 270–9.

Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, et al (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. *Theor Appl Genet* 120:177–90.

Vikram P, Swamy BPM, Dixit S, Ahmad H, Sta Cruz MT, Singh AK, et al (2011) *qDTY* , a major QTL for rice grain yield under drought with a consistent effect in multiple elite genetic backgrounds. *BMC Genet* 12:1–30.

Wang X, Lee S, Wang J, Ma J, Bianco T, Jia Y (2014) Current advances on genetic resistance to rice blast disease. In Tech: Rice-Germplasm, Genetics and Improvement, pp. 195-217.

Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of micro satellites in rice. *Mol Gen Genet* 241:225–235.

Yadaw RB, Dixit S, Raman A, Mishra KK, Vikram P, et al (2013) A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal, *Field Crops Res* 144:281–287.

Yambao EB, Ingram KT (1988) Drought stress index for rice. *Philipp J Crop Sci* 13(20):105–11.

Zhang G, Angeles ER, Abenes MLP, Khush GS, Huang N (1996) RAPD and RFLP mapping of the bacterial blight resistance gene *xa13* in rice. *Theor Appl Genet*. 93:65–70.

Zhang Q (2009) Genetics and improvement of bacterial blight resistance of hybrid rice in China. *Rice Sci* 16:83–92.

Zhao X, Qin Y, Sohn JK (2010) Identification of main effects, epistatic effects and their environmental interactions of QTLs for yield traits in rice. *Genes Genomics* 32:37–45.

Figures
(a) Breeding scheme and expected progenies: Single crosses PD, PB, Double cross PDB, three-way crosses PBD, and reciprocal DPB

Figure 1
Breeding scheme for development of diseases resistant/quantitative trait loci (QTLs); A pedigree, single, three-way and double crosses pyramid chart

Figure 2
Parental survey of polymorphic markers for blast resistance in cross between Putra-1 × MR219-PL-137

Figure 3
Parental survey of polymorphic marker for bacterial leaf blight in a cross between Putra-1 × IRBB60 rice varieties

Figure 4
Polymorphic marker for drought tolerance in survey of Putra-1 and MR219-PL-137
Figure 5
Polymorphic marker for drought tolerance in survey between Putra-1 and MR219-PL-137

Figure 6
Polymorphic marker for drought tolerance in survey between Putra-1 and IRBB60

Figure 7
F1 hybrid from a cross between Putra-1×MR219-PL-137

Figure 8
F1 hybrid from cross of Putra-1 and MR219-PL-137

Figure 9
F1 hybrid cross between Putra-1 ×IRBB60

Figure 10
F1(2) hybrid cross between F1 (Putra-1 and MR219-PL-137) and IRBB60 in a three-way cross.

Figure 11
F1 Three-way reciprocal cross between MR219-PL-137 and F1 (Putra-1 and IRBB60)

Figure 12
F1 Three-way cross between F1 (Putra-1 and MR219-PL-137) and IRBB60

Figure 13
F2 single cross between Putra-1 and MR219-PL-137

Figure 14
F2 Single cross between Putra-1 and IRBB60 using Xa13prom marker

Figure 15
F2 three-way cross segregating generation for cross involving Putra-1, IRBB60 and MR219-PL-137
Figure 16

F2 three-way reciprocal cross comprising of MR219-PL-137 and F1 (Putra-1 and IRBB60)

Figure 17

F4 single cross with traits of blast and drought tolerance from Putra-1 and MR219-PL-137 respectively

Figure 18

F4 non segregating and homozygote pureline with blast and bacterial leaf blight resistance genes developed by single cross method

Figure 19

F3 homozygote pureline with drought tolerance QTLs, blast and bacterial leaf blight genes in three-way reciprocal cross between MR219-PL-137 and F1 (Putra-1 and IRBB60) respectively

Figure 20

Homozygote pure-line (F3) with blast, bacterial leaf blight resistance genes and drought tolerance QTLs in a three-way cross involving Putra-1, IRBB60 and MR219-PL-137 cultivars.
Pure-line F3 double cross with blast, bacterial leaf blight genes and drought tolerance QTLs from cross involving Putra-1, IRBB60 and MR219-PL-137 cultivars.

Figure 22

Showing: (a-b) severe reproductive stage drought stressed leaves and dry soil condition, (c. susceptible Xoo infected leaves (d.) resistant Xoo infected leaves (e. 14 days old cells of P. oryzae. (f & g) Improved lines and susceptible variety grown together and showing blast resistant and infected susceptible lines respectively (h) blast infected leaves.

Figure 23

Scores for resistance and susceptibility to Xoo and M. grisea pathogen among improved lines populations introgressed with traits of resistance to blast and BLB.
Figure 24
Comparing of means of parameters measured for reproductive drought stress condition

Figure 25
Stages of development of improved lines of rice under non-stress condition

Figure 26
Stages of development of improved lines of rice under non-stress condition