Article

Drug-Receptor Interaction of Peptidic HIV-1 Protease: Polar Effect-II

Vishnu Kumar Sahu *, Rajesh Kumar Singh, Pashupati Prasad Singh

Department of Chemistry, Maharani Lal Kunwari Post Graduate College, Balrampur, U.P.271201, India

*Correspondence: Vishnu Kumar Sahu (vishnukr_sahu@rediffmail.com)

Abstract: Klopman described the chemical reaction of metal ions and base ions in term of softness, E_n and E_m, respectively. By simple modification of known methods, Singh et al. made it applicable for neutral Lewis acids (transition metal salts) and bases (organic molecules) and also extended its application to biological systems for site selectivity and to explain reaction mechanism (markovnikov and anti-markovnikov rule), ligand-receptor interaction of testosterones, estrogens and tetrahydroimidazobenzodiazepinone. In this study effective atomic softness $E^{|\text{eff}|}$ and $E^{|\text{eff}|}_m$ and their change $\Delta E^{|\text{eff}|}$ have been used for site selectivity and polar interaction between 51 peptidic HIV-1 protease inhibitors and receptor amino acids. $\Delta E^{|\text{eff}|}$ values derived from drug-receptor interaction show that when one moiety on receptor behaves as nucleophile (O of valine amino acid) at the same time maximum electrophilic site of the drug (C of the maximum $E^{|\text{eff}|}$ value) orient itself to come close the respective site and make maximum interaction, while when another moiety on receptor behaves as electrophilic site (C of isoleucine amino acid), at the same time maximum nucleophilic site of the drug (O of the maximum $E^{|\text{eff}|}_m$ value) also orient itself to come close the respective site and make maximum interaction.

Keywords: Effective atomic softness, $\Delta E^{|\text{eff}|}$, HIV-1 protease inhibitors, PM3

1. Introduction

In our successive publications, we have studied pharmacokinetics followed by hydrophobic interaction of peptidic HIV-1 protease inhibitors [1, 2]. The present work describes the polar interaction based on effective atomic softness. Klopman provides a very convenient way to describe the chemical reactivity of a compound with the help of atomic softness values in terms of E_n and E_m [3]. This concept was based on the charge and frontier orbital controlled chemical reaction of perturbation theory.

$$E^{|\text{eff}|}_n = IP_n - a^2(IP_n - EA_n) - \left[\frac{X_r}{R_f} \left(\frac{C^{|\text{eff}|}_r}{q_s + 2b^2 X_s} \right)^2 \right] \left[1 - \frac{1}{\epsilon} \right]$$ (1)

$$E^{|\text{eff}|}_m = IP_m - b^2(IP_m - EA_m) - \left[\frac{X_s}{R_s} \left(\frac{C^{|\text{eff}|}_s}{q_s + 2b^2 X_s} \right)^2 \right] \left[1 - \frac{1}{\epsilon} \right]$$ (2)

where, E_n = softness of an acid, E_m = softness of a base, IP = ionization potential of atom, EA = electron affinity of atom, $a^2 = \frac{3}{4}$, $b^2 = \frac{1}{4}$, $C = 1$, ϵ = dielectric constant of the medium in which reaction is carried out, R = radius of atom whose softness is to be de-
terminated, \(q \) = charge on the atom, \(C \) = electron density, \(\chi = q - (q - 1)\sqrt{k} \), and \(k = 0.75 \), \(a \) and \(b \) are variational parameters. By a simple modification of known methods [4-7], Singh et al. were calculated the values of IP, \(q \) and \(R \) and made it applicable for a neutral chemical system [8]. The softness values so derived by them are termed as “effective softness” and are designated by symbols \(E_{n(eff)} \) for Lewis acid and \(E_{m(eff)} \) for Lewis base [9-11]. In this study semiempirical method has been used to calculate effective atomic softness: \(E_{n(eff)} \) and \(E_{m(eff)} \), for 51 peptidic HIV-1 protease inhibitors (HIV-1-PRIs).

2. Materials and Methods

Fifty-one HIV-1-PRIs have been used as study material and are separately listed in Table 1, 2 and 3 with their observed biological activities in term of IC_{50} [12-14]. All the fifty-one inhibitors have been divided in three sets on the basis of their structural similarities (Figure 1, 2and 3). The first, second and third set comprises of eighteen, seventeen and sixteen inhibitors, respectively. The logarithms of the inverse of IC_{50} have been used as biological end point (log1/C) in the study. For solving the modified Klopman equations, the 3D modeling and geometry optimization of all the compounds have been performed with the help of CAChe Pro software of Fujitsu [15, 16]. The study is based on semiempirical PM3 method [17, 18]. The PM3 based calculations have been performed with MOPAC 2002 software associated with CAChe. The values of various parameters to solve modified Klopman softness have been calculated by softness calculator which was developed by Singh research group [4]. Singh et al. made Klopman equations applicable for neutral Lewis acids (transition metal salts) and bases (organic molecules) and also extended its application to biological systems for site selectivity and to explain reaction mechanism (markovnikov and anti-markovnikov rule), ligand-receptor interaction of testosterones, estrogens and tetrahydroimidazobenzodiazepinone [19-23].

Table 1. First set of peptidic HIV-1-PRIs with observed biological activities [12]

Compd.No	R	Substiunts	o(log1/C)		
1	Cbz\(^a\)	H	CHMe\(_2\)	Me	5.82
2	Cbz	H	CHMe\(_2\)	n-Bu	6.03
3	Qua\(^b\)	H	CHMe\(_2\)	n-Bu	6.90
4	Cbz	H	CHMe\(_2\)	n-Pr	6.29
5	Cbz	H	CHMe\(_2\)	Et	6.48
6	Cbz	H	CHMe\(_2\)	t-Pr	6.59
7	Cbz	H	CHMe\(_2\)	t-Bu	7.46
8	Qua	H	CHMe\(_2\)	t-Bu	8.22
9	Cbz	H	CH\(_2\)CHMe\(_2\)	t-Bu	7.89
10	Qua	H	CH\(_2\)CHMe\(_2\)	t-Bu	8.52
11	Cbz	H	C\(_6\)H\(_11\)	t-Bu	7.54
12	Qua	H	C\(_6\)H\(_11\)	t-Bu	8.30
13	Cbz	H	C\(_6\)H\(_5\)	t-Bu	7.72
14	Qua	H	C\(_6\)H\(_5\)	t-Bu	8.52
15\(^c\)	Cbz	Me	C\(_6\)H\(_5\)	t-Bu	5.19
16\(^d\)	Cbz	Me	C\(_6\)H\(_5\)	t-Bu	5.29
17	Cbz	H	4-Py	t-Bu	6.98
18	Qua	H	4-Py	t-Bu	7.72

\(^a\)Carbobenzyloxy. \(^b\)Quinolinyl-2-carboxamide. \(^c\)CHXY in R-configuration. \(^d\)CHXY in S-configuration.
Table 2. Second set of fifty one peptidic HIV-1-PRIs with observed biological activities [13]

Compd.No.	Substituents	\(\log_1 (C) \)		
19	CH\(_2\)Ph	H	H	9.6
20	CH\(_2\)Ph	Me	H	8.11
21	CH\(_2\)CH\(_2\)Ph	H	OH	9.72
22	CH\(_2\)-4-CF\(_3\)Ph	H	H	9.59
23	CH\(_2\)=CHPh	H	H	9.64
24	CH\(_2\)C\(_6\)F\(_5\)	H	H	9.22
25	CH\(_2\)-4-CH\(_2\)Ph	H	H	9.54
26	CH\(_2\)-4-NH\(_2\)Ph	H	H	9.51
27	CH\(_2\)-4-NO\(_2\)Ph	H	H	9.57
28	H	H	H	5.53
29	CH\(_2\)-4-0HPh	H	H	9.8
30	CH\(_2\)CH=CH\(_2\)	H	H	7.56
31	CH\(_2\)-4-IPh	H	H	9.14
32	CH\(_2\)C(O)Ph	H	H	8.27
33	CH\(_2\)-4-Pyridyl	H	H	9.28
34	CH\(_2\)SPh	H	H	9.60
35	CH\(_2\)-4-CMe\(_3\)Ph	H	H	9.77

Figure 1. Parent skeleton along with reactive sites (compound no. 1-18)

Figure 2. Parent skeleton along with reactive sites (compound no. 19-35)
Compd. No.	X	o(\log 1/C)	Compd. No.	X	o(\log 1/C)
36		6.94	44		9.16
37		8.02	45		9.75
38		7.47	46		7.39
39		6.16	47		4.52
40		6.79	48		6.89
41		7.18	49		6.84
42		6.67	50		10.00
43		6.91	51		7.41

Figure 3. Parent skeleton along with reactive sites (compound no. 36-51)
3. Results and Discussion

Out of fifty-one compounds under study, the eighteen compounds (compound no. 1-18) have the parent skeleton of Figure 1, which has 25 sites. Out of remaining thirty-three, the seventeen compounds (compound no. 19-35) have the parent skeleton of Figure 2, which has 33 sites. While the remaining sixteen compounds (compound no. 36-51) have the parent skeleton of Figure 3, which has 29 sites [10, 11]. The effective softness values represented by \(E^{n(eff)} \) describe the electrophilic character of compound, whereas \(E^{m(eff)} \) describe the nucleophilic character of compound [19-23]. \(E^{n(eff)} \), IP and EA of electron deficient carbon center (electrophilic site) have been evaluated at sixteen sites (C2, C3, C5, C6, C7, C9, C11, C12, C16, C17, C18, C19, C20, C21, C22, C24, C25, C26, C27, C28, C29 and C30) of compound no 1-18, twenty six sites (C1, C3, C5, C6, C7, C8, C9, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C24, C25, C26, C27, C28, C29 and C30) of compound no 19-35 and twenty three sites (C1, C3, C5, C6, C7, C8, C9, C10, C11, C12, C14, C15, C16, C17, C18, C19, C20, C22, C24, C25, C26, C27 and C28) of compound no 36-51. While \(E^{m(eff)} \) IP and EA of electron rich center (nucleophilic site) have been evaluated at nine sites (N1, N4, N8, N10, O13, O14, O15, O23 and O25) of compound no 1-18, seven sites (O2, N4, N10, O23, O31, O32 and O33) of compound no 19-35 and six sites (O2, N4, O13, O21, O23 and O29) of compound no 36-51. Softness parameter is a very dominating factor when correlated with the mechanism of action of a variety of known therapeutic agents and their pharmacoactivities. Because it included atomic radius (R), electron density (C), charge (q), ionization potential (IP), and electron affinity (EA) of atom. The incorporation of dielectric constant (\(\epsilon \)) shows the effect of medium in which reaction is carried out. Correlation of this dominating factor, with mechanism of action of various therapeutic agents and their pharmacoactivities, would be very valuable in search of a new advance drug before its synthesis. This technique when applied saves time and resources with the limited facilities for a medicinal scientist. Effective softness values represented by \(E^{n(eff)} \) describe the electrophilic character of an atom within a molecule. Higher the value of \(E^{n(eff)} \) of a site greater will be the electrophilic character of that site within the molecule. Further, the site of highest \(E^{n(eff)} \) Value characterizes the susceptibility of the molecules toward the attack of nucleophile. The highest \(E^{m(eff)} \) values of compounds are placed in Table 4. A reference to this table shows that, in case of compounds of group-A, the \(E^{n(eff)} \) value of all the compounds is highest at position C11, except compounds 5, 6, 10 and 12, which has highest \(E^{n(eff)} \) value at position C7. A close look at parent skeleton of compounds of group-A clearly indicates that the positions C7 and C11 are carbon to which the urea isostere and -CONH; group is linked to it, respectively. In group-B, the \(E^{n(eff)} \) value of compounds 19, 22, 23, 27, 31, 33, 34 and 35 is highest at position C21. While of compounds 20, 21, 25, 26, 28, 29 and 30, it is highest at position C22 and in compounds 24 and 32 it is highest at position C7. A close look at parent skeleton of compounds of group-B clearly indicates that the position C7, C21 and C22 is carbon of methylene, methyl and methyl moiety, respectively. In group-C, the \(E^{n(eff)} \) value of compounds 37, 38, 40-45, 47-49 and 51 is highest at position C11. While of compounds 36 and 39, it is highest at position C12 and in compounds 46 and 50 it is highest at position C7. A close look at parent skeleton of compounds of group-C clearly indicates that the position C7, C11 and C12 is also carbon of methylene, methyl and methyl moiety, respectively. The examination of Table 4 indicates that there must be a relationship between effective softness, \(E^{n(eff)} \) and observed biological activity. Of course, there exist relationship between \(E^{n} \) and log 1/C but there no sequential rise or fall. In order to provide sequential relationship, we have divided the compounds into subgroups, group-A: subgroup-a, b, c and d; group-B: subgroup-e, f, g and h; and group-C: subgroup-i, j and k. A close look to these subgroups has shown that (i) In subgroup-a, compound 1, 2 and 16; in subgroup-b, compound 3, 5 and 17; in subgroup-c, compound 6, 7, 8, 9, 11 and 13; and in subgroup-d, compound 10, 14 and 18 show the direct relationship very clearly. Compound 4, 12 and
15 do not follow the sequential trend, (ii) In subgroup-e, compound 20, 24, 30, 31 and 32 and in subgroup-f, compound 22, 25, 26 and 27 show the direct relationship very clearly. While in subgroup-g, compound 21, 23 and 35 and in subgroup-h, compound 19, 33 and 34 shows the inverse relationship very clearly. Compound 28 and 29 do not follow the sequential trend, and (iii) In subgroup-i, compound 36, 38, 42, 43 and 50; and in subgroup-j, compound 40, 47 and 49 show the direct relationship very clearly. While in subgroup-l, compound 39, 41, 45, 46 and 48 shows the inverse relationship very clearly. Compound 28, 29, 37 and 44 do not follow the sequential trend.

Table 4. Values of quantum chemical descriptors with observed biological activities of fifty one peptidic HIV-1-PPIs

No.	Electrophilic Site	Nucleophilic Site	o(log1/C)						
	Site	IP_n	EA_n	E_{n(eff)}	Site	IP_m	EA_n	E_{m(eff)}	
Group A 1	C11	12.758	-2.827	56.480	O13	26.544	-16.613	-28.032	5.82
	C2	12.842	-2.823	56.859	O13	26.346	-16.327	-27.693	6.03
	C3	12.557	-1.846	55.809	O13	27.529	-16.818	-28.872	6.90
	C4	12.641	-2.618	55.999	O13	26.871	-16.848	-28.427	6.29
	C5	12.536	-2.585	55.529	O13	28.494	-18.543	-30.771	6.48
	C6	12.493	-2.456	55.362	O13	28.132	-18.095	-30.198	6.59
	C7	12.539	-2.423	55.582	O13	27.236	-17.120	-28.876	7.46
	C8	12.706	-2.027	56.444	O13	25.809	-15.129	-26.478	8.22
	C9	-3.313	4.170	56.372	O13	-12.725	6.3890	-22.298	7.89
	C10	12.506	-1.854	55.573	O13	28.020	-17.369	-29.608	8.52
	C11	12.642	-2.788	55.961	O13	27.661	-17.807	-29.661	7.54
	C12	12.579	-1.843	55.910	O13	27.892	-17.156	-29.367	8.30
	C13	12.720	-2.650	56.349	O13	27.208	-17.138	-28.869	7.72
	C14	12.637	-1.970	56.139	O13	26.921	-16.327	-28.097	8.52
	C15	12.767	-2.832	56.518	O13	26.840	-16.904	-28.445	5.19
	C16	12.542	-2.527	55.569	O13	26.490	-16.475	-27.897	5.29
	C17	12.626	-2.342	56.003	O13	27.517	-17.232	-29.154	6.98
	C18	12.536	-1.891	55.698	O13	27.185	-16.540	-28.434	7.72
Group B 19	C21	12.773	-2.970	56.510	O23	25.036	-15.233	-26.012	9.60
	C20	12.743	-2.884	56.396	O23	25.675	-15.816	-26.864	8.11
	C21	12.713	-2.680	56.311	O23	25.187	-15.154	-26.062	9.72
	C22	12.789	-2.459	56.712	O23	25.006	-14.676	-25.602	9.59
	C23	12.779	-3.012	56.526	O23	25.022	-15.255	-26.017	9.64
	C24	12.877	-2.074	57.200	O23	25.258	-14.455	-25.624	9.22
	C25	12.729	-3.058	56.291	O32	25.241	-15.570	-26.390	9.54
	C26	12.738	-3.663	56.170	O32	24.953	-15.898	-26.417	9.51
	C27	12.725	-1.775	56.590	O32	25.235	-14.286	-25.490	9.57
	C28	12.804	-2.868	56.676	O23	24.825	-14.889	-25.626	5.53
	C29	12.725	-3.252	56.225	O23	25.207	-15.734	-26.480	9.80
	C30	12.721	-2.874	56.297	O32	25.194	-15.348	-26.202	7.56
	C31	12.786	-2.921	56.579	O23	25.038	-15.174	-25.972	9.14
	C32	12.726	-2.404	56.437	O32	24.422	-14.099	-24.795	8.27
	C33	12.777	-2.583	56.624	O23	25.046	-14.852	-25.752	9.28
	C34	12.767	-2.432	56.618	O23	25.093	-14.759	-25.721	9.60
	C35	12.706	-2.949	56.213	O32	25.243	-15.486	-26.332	9.77
Effective softness values represented by $E_{\text{m(eff)}}$ describe the nucleophilic character of an atom within a molecule. Higher the value of $E_{\text{m(eff)}}$ with negative sign of a site greater will be the nucleophilic character of that site within the molecule. Further, the site of highest $E_{\text{m(eff)}}$ value characterizes the susceptibility of the molecules toward the attack of electrophile. The highest $E_{\text{m(eff)}}$ values of compounds are also placed in Table 4. A reference to this table also shows that, in group-A, the highest $E_{\text{m(eff)}}$ Value in all the eighteen compounds is associated with position O13. A close look at parent skeleton of compounds of group-A clearly indicates that the position O13 is oxygen of amidic moiety. In group-B, $E_{\text{m(eff)}}$ value of compounds 19-24, 28, 31, 33 and 34, is highest at position O23. While of compounds 25-27, 29, 30, 32 and 35 is highest at position O32. A close look at parent skeleton of compounds of group-B clearly indicates that the positions O23 and O32 are oxygen of carboxylic and amidic moiety, respectively. In group-C, the $E_{\text{m(eff)}}$ value of compounds 36 and 37 it is highest at position O21. While of compounds 39-46, it is highest at position O13 and in compounds 38 and 47-51 it is highest at position C29. A close look at parent skeleton of compounds of group-C clearly indicates that the positions O13, O21 and O29 are oxygen of carboxylic, hydroxyl and carbonyl moiety, respectively. The examination of Table 1 also indicates that there must be a relationship between effective softness, $E_{\text{m(eff)}}$, and observed biological activity. Of course, there also exist relationship between $E_{\text{m(eff)}}$ and log 1/C, but there is also no sequential rise or fall. In order to provide sequential relationship, we have divided the compounds into same three groups, group-A: compound no. 1-18; group-B: compound no. 19-35 and group-C: compound no. 36-51, on the basis of their parent skeleton. But, each group has sub-divided into different subgroups, group-A: subgroup-a, b, c and d; group-B: subgroup-e, f and g; and group-C: subgroup-h, i and j. A close look to these subgroups has shown that (i) In subgroup-a, compound 2, 8, 15 and 16; in subgroup-b, compound 5, 6, 13, 14, 17 and 18 show the direct relationship very clearly. In subgroup-c, compound 1, 3, 4, 7 and 11; and in subgroup-d, compound 9, 10 and 12 show the inverse relationship very clearly, (ii) In subgroup-e, compound 20, 28 and 30; in subgroup-f, compound 22, 27 and 34 and in subgroup-g, compound 19, 21, 23, 24, 29, 32, 33 and 35 show the inverse relationship very clearly. Compound 25, 26 and 31 do not follow the sequential trend, and (iii) In subgroup-h, compound 39, 40, 42 and 47; and in subgroup-j, compound 37, 38, 44, 48 and 50 show the direct relationship very clearly. While in subgroup-i, compound 41, 43, 45, 46 and 49 show the inverse relationship Compound 36 and 51 do not follow the sequential trend.
Table 5. Softness values of receptor amino acids of binding sites

Receptor Protein	Atom	IP	EA	E_{n(eff)}	E_{m(eff)}
	C1	8.645	0.780	33.011	
	C2	11.919	-2.494	52.651	
	C3	11.890	-2.465	52.519	
	C4*	12.327	-2.902	54.482	
	C5	12.292	-2.867	54.327	
	O6*	25.448	-16.023	-26.850	
	N7	15.745	-6.320	-13.089	

HIV-1 protease enzyme (HIV-1-PR) is a viral encoded homodimeric aspartyl protease with C₂ symmetry [25, 26]. A catalytic triad of Asp-Thr-Gly contributed by each monomer comprises the active site of the enzyme. The amino acids constituting the binding site (S2/S2* pocket) are Val-32, Ile-47, Ile-50, and Ile-84 in each monomeric polypeptidic unit of the protease enzyme [27, 28]. HIV inhibitors make initial contact with the receptor amino acids Val and Ile of binding site rather than Asp, Thr and Gly of catalytic site. The study has been made on interaction with Val and Ile of binding site. The nitrogen of amino and oxygen atom of carboxylic group of receptor protein have the nucleophilic character and can interact with the electrophilic center on the inhibitor, while the electron deficient carbon atoms can interact with the nucleophilic site on the inhibitor and vice versa. Thus, the highest $E_{n(eff)}$ value of compounds characterize the susceptibility of the molecules toward the attack of nucleophile, while the highest $E_{m(eff)}$ value of compounds characterize the susceptibility of the molecules toward the attack of electrophile. The softness values $E_{n(eff)}$ of at 5 sites of valine and 6 sites of isoleucine, while the softness values $E_{m(eff)}$ of 2 sites of both Val and isoleucine have also been evaluated and are presented in Table 5. When inhibitors are treated as acids and receptor proteins as base, the highest values of softness $E_{n(eff)}$ of inhibitors and highest values of $E_{m(eff)}$ of amino acids have been used for deriving ΔE_{nm} values. While, when inhibitors are treated as bases and receptor proteins as acids, the highest values of softness $E_{m(eff)}$ of inhibitors and highest values of $E_{n(eff)}$ of amino acids have been used for deriving ΔE_{nm} values. The highest values of softness and the ΔE_{nm} derived from them are given in Table 6. A reference to this Table 1 shows that in the former case the ΔE_{nm} values in case of Val amino acid is higher than the Ile amino acid, while in later case the ΔE_{nm} values in case of Ile amino acid is higher than the Val amino acid.

It is well established that the stability of the compound formed between nucleophile and electrophile depends upon the value of difference between softness values of $E_{n(eff)}$ of nucleophile, and softness values of $E_{m(eff)}$ of electrophile, ΔE_{nm} represent the difference. The higher is the ΔE_{nm} greater is the stability of the compound [24].

$$\Delta E_{nm}^+ = \left| E_{n(eff)}^+ - E_{m(eff)}^- \right|$$

(3)
Compd. No.	Carbon Atom	ΔE_{hm}	ΔE_{hm}	ΔE_{hm}	ΔE_{hm}
Group A 1	C11	56.480	82.915	83.330	1 O13
	C11	56.859	83.709	83.294	2 O13
	C11	55.809	82.659	82.244	3 O13
	C11	55.999	82.849	82.434	4 O13
	C7	55.529	82.379	81.964	5 O13
	C7	55.362	82.212	81.797	6 O13
	C11	55.882	82.432	82.017	7 O13
	C11	56.444	83.294	82.879	8 O13
	C11	56.372	83.222	82.807	9 O13
	C7	55.573	82.423	82.008	10 O13
	C11	55.961	82.811	82.396	11 O13
	C7	55.910	82.760	82.345	12 O13
	C11	56.349	83.199	82.784	13 O13
	C11	56.139	82.989	82.574	14 O13
	C11	56.518	83.368	82.953	15 O13
	C11	55.569	82.419	82.004	16 O13
	C11	56.003	82.853	82.438	17 O13
	C11	56.698	82.548	82.133	18 O13
Group B 19	C21	56.510	83.360	82.945	19 O23
	C22	56.396	83.246	82.831	20 O23
	C22	56.311	83.161	82.746	21 O23
	C21	56.712	83.562	83.147	22 O23
	C21	56.526	83.376	82.961	23 O23
	C7	57.200	84.050	83.635	24 O23
	C22	56.291	83.141	82.726	25 O32
	C22	56.170	83.020	82.605	26 O32
	C21	56.590	83.440	83.025	27 O32
	C22	56.676	83.526	83.111	28 O32
	C22	56.225	83.075	82.660	29 O32
	C22	56.297	83.147	82.732	30 O32
	C21	56.579	83.429	83.014	31 O23
	C7	56.437	83.287	82.872	32 O32
	C21	56.624	83.474	83.059	33 O23
	C21	56.618	83.468	83.053	34 O23
	C21	56.213	83.063	82.648	35 O32
Group C 36	C12	56.327	83.177	82.762	36 O21
	C11	56.389	83.239	82.824	37 O21
	C11	56.539	83.389	82.974	38 O29
	C12	56.662	83.512	83.097	39 O13
	C11	56.578	83.428	83.013	40 O13
	C11	56.507	83.357	82.942	41 O13
	C11	56.009	82.859	82.444	42 O13
	C11	56.111	82.961	82.546	43 O13
	C11	56.483	83.333	82.918	44 O13
	C11	55.926	82.776	82.361	45 O13
4. Conclusion

Softness parameter is a very dominating factor when correlated with the mechanism of action of a variety of known therapeutic agents and their pharmacological activities. Because it included atomic radius (R), electron density (C), charge (q), ionization potential (IP), and electron affinity (EA) of atom. ΔE_{int} values derived from drug-receptor interaction show that when one moiety on receptor behaves as nucleophile (O of valine amino acid) at the same time maximum electrophilic site of the drug (C-atoms of the maximum E_{nuc} value) orient itself to come close the respective site and make maximum interaction, while when another moiety on receptor behaves as electrophilic site (C of isoleucine amino acid), at the same time maximum nucleophilic site of the drug (O-atoms of the maximum E_{nuc} value) also orient itself to come close the respective site and make maximum interaction.

Acknowledgements: The authors gratefully acknowledge the financial support (Project No: C.S.T./D.3564 /11/2009) given by “Council of Science & Technology, U.P., INDIA”.

References

[1] Sahu, V. K.; Singh, R. K.; Singh, P. P. Extended Rule of Five and Prediction of Biological Activity of Peptidic HIV-1-PR Inhibitors. Universal Journal of Pharmacy and Pharmacology. 2022, 1, 20-42.
[2] Sahu, V. K.; Singh, R. K.; Singh, P. P. Drug-Receptor Interaction of Peptidic HIV-1 Protease: The Hydrophobic Effect-I. Online Journal of Microbiological Research. 2022, 1, 33-48.
[3] Klopman, G. Chemical Reactivity and The Concept of Charge and Frontier Controlled Reactions. J. Am. Chem. Soc. 1968, 90, 223-234.
[4] Dewar, M. J. S.; Mortia, T. F. Ground States of Conjugated Molecules. XII. Improved Calculations for Compounds Containing Nitrogen and Oxygen. J. Am. Chem. Soc. 1968, 91, 796-802.
[5] Sanderson, R. T. Chemical Bond and Bond Energy. Academic Press, New York, 1971, pp19-20.
[6] Huheey, J. E. Inorganic Chemistry. Harper & Row, New York, 1972, pp71-72.
[7] Pauling, L. The Nature of Chemical Bond, 3rd Edn. Cornell University Press, New York, 1960, pp513.
[8] Singh, P. P.; Srivastava, S. K.; Srivastava, A. K. A Matching Between Lewis Acids and Lewis Bases on The Basis of Quantitative Softness Values and Their Relation With The Stability of The Complexes-I. J. Inorg. Nucl. Chem. 1980, 42, 521-532.
[9] Singh, P. P. Quantitative Softness Values and Their Novel Applications. J. Sci. Ind. Res. 1983, 42, 140-148.
[10] Singh, P. P.; Naqvi, M. I.; Singh, N. B. New softness parameters and Hammett’s equation. Indian J. Chem. 1992, 33A, 586-589.
[11] Singh, P. P.; Pasha, F. A.; Srivastava, H. K. Novel application of softness parameter for regioselectivity and reaction mechanism. Indian J. Chem. 2004, 43B, 983-991.
[12] Getman, D. P.; DeCrescenzo, G. A.; Heintz, R. M.; Reed, K. L.; Talley, J. J.; Bryant, M. L.; Clare, M.; Houseman, K. A.; Marr, J. J. Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl)urea isostere. J. Med. Chem. 1993, 36, 288-291.
[13] Holloway, M. K.; Wai, J. M.; Halgren, T. A.; Fitzgerald, P. M. D.; Vacca, J. P.; Dorsey, B. D.; Levin, R. B.; Thompson, W. J.; Chen, L. J. A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J. Med. Chem. 1995, 38, 305-317.
[14] Garg, R.; Gupta, S. P.; Gao, H.; Babu, M. S.; Debnath, A. K.; Hansch, C. Comparative Quantitative Structure–Activity Relationship Studies on Anti-HIV Drugs. Chem. Rev. 1999, 99, 3525-3602.
[15] Thiel, W. Fast Semiempirical Geometry Optimizations. J. Mol. Struct. 1988, 163, 415-429.
[16] Komornicki A.; McIver, J. W. Rapid Geometry Optimization for Semiempirical Molecular Orbital Methods. Chem. Phys. Lett, 1971, 10, 303-306.
[17] Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209-220.
[18] Stewart, J. J. P. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004, 10, 155-164.

[19] Singh, P. P.; Pasha, F. A.; Sivastava, H. K. DFT Based Atomic Softness and Its Application in Site Selectivity. QSAR Comb. Sci. 2003, 22, 843-851.

[20] Sivastava, H. K.; Pasha, F. A.; Singh, P. P. Atomic Softness-Based QSAR Study of Testosterone. Int. J. Quantum Chem. 2005, 103, 237-245.

[21] Pasha, F. A.; Sivastava, H. K.; Singh, P. P. Semiempirical QSAR study and ligand receptor interaction of estrogen. Mol. Diver. 2005, 9, 215-220.

[22] Sahu, V. K.; Khan, A. K. R.; Singh, R. K.; Singh, P. P. Drug-Receptor Interaction-Based Quantitative Structure-Activity Relationship of Tetrahydroimidazodiazepinone. Int. J. Quantum Chem. 2009, 109, 1243-1254.

[23] Sivastava, H. K.; Pasha, F. A.; Mishra, S. K.; Singh, P. P. Noval applications of atomic softness and QSAR study of testosterone derivatives. Med. Chem. Res. 2009, 103, 237-245.

[24] Sahu, V. K.; Khan, G.; Verma, R. N.; Singh, P. P. Complexes of Cobaltocene: A Effective Atomic Softness and Fukui Function Based Study. RJPBCS 2010, 1, 535-544.

[25] Pyring, D.; Lindberg, J.; Rosenquist, A.; Zuccarello, G.; Kvarnstrom, I.; Zhang, H.; Vrang, L.; Unge, T.; Classon, B.; Hallberg, A.; Samuelsson, B. Design and Synthesis of Potent C3-Symmetric Diol-Based HIV-1 Protease Inhibitors: Effects of Fluoro Substitution. J. Med. Chem. 2001, 44, 3083-3091.

[26] Alterman, M.; Andersson, H. O.; Garg, N.; Ahlse’n, G.; Lo’vgren, S.; Classon, B.; Danielson, U. H.; Kvarnstro¨m, I.; Vrang, L.; Unge, T.; Samuelsson, B.; Hallberg, A. Design and Fast Synthesis of C-Terminal Duplicated Potent C3-Symmetric P1/P1‘-Modified HIV-1 Protease Inhibitors. J. Med. Chem. 1999, 42, 3835-3844.

[27] Szeltner, Z.; Polga, R. L. Conformational Stability and Catalytic Activity of HIV-1 Protease Are Both Enhanced at High Salt Concentration. J. Biol. Chem. 1996, 271, 5458-5463.

[28] Srivastava, H. K.; Choudhury, C.; Sastry, G. N. The Efficacy of Conceptual DFT Descriptors and Docking Scores on the QSAR Models of HIV Protease Inhibitors. Medicinal Chemistry 2012, 8, 811-825.