Influence of finite volume effect on the Polyakov Quark-Meson model

Nisem Magdy1,*

1Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA

In the current work, we study the influence of a finite volume on 2 + 1 $SU(3)$ Polyakov Quark-Meson model (PQM) order parameters, (fluctuations) correlations of conserved charges and the quark-hadron phase boundary. Our study of the PQM model order parameters and the (fluctuations) correlations of conserved charges indicates a sizable shift of the quark-hadron phase boundary to higher values of baryon chemical potential (μ_B) and temperature (T) for decreasing the system volume. The detailed study of such effect could have important implications for the extraction of the (fluctuations) correlations of conserved charges of the QCD phase diagram from heavy ion data.

Keywords: Chiral Lagrangian, Quark confinement, Quark-Gluon Plasma

* nisemmn@gmail.com
I. INTRODUCTION

One of the major aims of the current heavy ion collisions research is to study the properties of the strongly interacting matter created in such collisions theoretically and experimentally. On the experimental level, many facilities have been designed to investigate the strongly interacting matter phase diagram such as Relativistic Heavy Ion Collider (RHIC) program [1], and the Large Hadron Collider (LHC) [2]. Different studies suggest that the strongly interacting matter phase transition from hadronic phase to quark-gluon plasma (QGP) phase be a smooth crossover at low density and high-temperature [3], and first-order phase transition at high density and low temperature [4, 5]. Both smooth crossover and first-order phase transitions expected to be connected by the critical endpoint (CEP), at which the phase transition is expected to be second order. One avenue to map out and study the QCD phase diagram is through the effective models such as the quark-meson (QM) model [6–8], the Nambu-Jona- Lasinio (NJL) model [9], and their Polyakov-loop extended versions [10].

Many studies have been devoted to investigating the QCD phase diagram, higher order moments and the thermodynamics of two [11, 12] and three quark flavors [13] QM model and even PQM model with different Polyakov-loop potentials. The thermodynamic properties (pressure, the equation of state, the speed of sound, specific heat, trace anomaly, and the bulk viscosity) have been evaluated at finite and vanishing chemical potential [13, 14].

The effect of a finite-volume on the strongly interacting matter has been widely studied [15–22]. Those studies include that finite volume has a strong effect on the transition temperature (\(T_c\)), the location of the critical endpoint and other thermodynamic properties. In PQM model the transition temperature (\(T_c\)) shifted to large values as the volume decrease [21] and the location of the critical endpoint is shifted toward large \(\mu\) and small \(T\) [17, 18]. On another hand NJL [16] and PNJL [19] indicates that the transition temperature (\(T_c\)) shifted to small values as the volume decrease and the location of the critical endpoint is shifted toward large \(\mu\) and small \(T\) for (2+1 flavor) and toward small \(\mu\) and small \(T\) for (2 flavors).

In this work, we investigate the effect of the finite volumes on the PQM model order-parameters, phase-transition, and the conserved charges fluctuations and correlations. The present work is organized as follows. In section II we give a brief overview of the PQM model. The PQM model calculations of the order-parameters, thermodynamic properties, and the conserved charges fluctuations and correlations are compared with the LQCD [23, 24], also, the influence of finite-volume effect on the PQM model conserved-quantities, baryon, charge, strangeness and them correlations will be presented in section III. We conclude with a summary and an outlook in section IV.

II. THE POLYAKOV QUARK MESON (PQM) MODEL

The \(SU(3)\) Quark Meson model with \(N_f = 2 + 1\) flavor quarks, coupled to Polyakov loop dynamics to formulate the Polyakov Quark Meson (PQM) model [13]. The related Lagrangian is given as;

\[
\mathcal{L} = \mathcal{L}_{\text{chiral}} - \mathcal{U}(\phi, \phi^*, T),
\]

where the chiral part of the Lagrangian, \(\mathcal{L}_{\text{chiral}} = \mathcal{L}_{\text{quark}} + \mathcal{L}_{\text{meson}}\), has \(SU(3)_L \times SU(3)_R\) symmetry [25, 26]. The first part provides the fermionic sector, and the second part represents the mesonic contribution, both contributions had been extensively discussed in Ref. [14].

The second term in Eq. (1), \(\mathcal{U}(\phi, \phi^*, T)\), represents the Polyakov–loop effective potential [27], which is expressed by using the dynamics of the thermal expectation value of a color traced Wilson loop in the temporal direction

\[
\Phi(\vec{x}) = \frac{1}{N_c} \langle \mathcal{P}(\vec{x}) \rangle,
\]

Then, the Polyakov–loop potential and its conjugate read:

\[
\phi = (\text{Tr}_c \mathcal{P})/N_c,
\]

\[
\phi^* = (\text{Tr}_c \mathcal{P}^\dagger)/N_c,
\]

where \(\mathcal{P}\) is the Polyakov loop. This can be represented by a matrix in the color space [27]

\[
\mathcal{P}(\vec{x}) = \mathcal{P} \exp \left[i \int_0^\beta \! d\tau A_4(\vec{x}, \tau) \right],
\]

where \(\beta = 1/T\) is the inverse temperature and \(A_4 = iA^0\) is called Polyakov gauge [27, 28].
In case of no quarks, zero quark chemical potential, then \(\phi = \phi^* \) and the Polyakov loop is recognized as an order parameter for the deconfinement phase-transition [29]. In the present work, we used Polyakov loop effective potential \(U(\phi, \phi^*, T) \) as discussed in Refs. [29, 30] but with a new dimensionless parameter \(K \) that help us get a better agreement with the LQCD. Other Polyakov loop potentials [31, 32] were also examined in various work. However, the particular selection made for this work does not affect the main conclusions of our work.

\[
\frac{U(\phi, \phi^*, T)}{T^4} = -\frac{B}{2} \phi \phi^* - \frac{a_1}{6} (\phi^3 + \phi^*)^3 + \frac{a_2}{4} (\phi^3 + \phi^*)^2 - K \ln[1 - 6 \phi \phi^* + 4(\phi^3 + \phi^*) - 3(\phi \phi^*)^2],
\]

where \(B \) and \(K \) are dimensionless parameters given as:

\[
B = b_0 + b_1 \left(\frac{T_0}{T} \right) + b_2 \left(\frac{T_0}{T} \right)^2 + b_3 \left(\frac{T_0}{T} \right)^3,
\]

\[
K = k_1 \left(\frac{T_0}{T} \right) + k_2 \left(\frac{T_0}{T} \right)^2 + k_3 \left(\frac{T_0}{T} \right)^3 + k_4 \left(\frac{T_0}{T} \right)^4.
\]

The mean field approximation is used following Refs. [14, 33] to obtain the grand potential as:

\[
\Omega(T, \mu_f) = U(\sigma_x, \sigma_y) + U(\phi, \phi^*, T) + \Omega_{\bar{\psi}\psi}(T, \mu_f; \phi, \phi^*),
\]

where \(\sigma_x \) and \(\sigma_y \) are the non-strange and strange chiral condensates, the first term in Eq. (9) is a purely mesonic potential expressed as:

\[
U(\sigma_x, \sigma_y) = \frac{m^2}{2} (\sigma_x^2 + \sigma_y^2) - h_x \sigma_x - h_y \sigma_y - \frac{c}{2\sqrt{2}} \sigma_x \sigma_y
\]

\[
+ \frac{\lambda_1}{2} \sigma_x^2 \sigma_y^2 + \frac{1}{8} (2\lambda_1 + \lambda_2) \sigma_x^4 + \frac{1}{4} (\lambda_1 + \lambda_2) \sigma_y^4.
\]

Here, \(m^2, h_x, h_y, \lambda_1, \lambda_2 \) and \(c \) are model parameters as reported in Ref. [26]. The parameters values used in the current study, are listed in Table. I below. Different studies [34, 35] indicate that extending the PQM model with the vector meson sector will help to accomplish better agreement with LQCD at \(T < T_c \). Such correction was not included in this work and shall be discussed in future work.

The third term in Eq. (9) \(\Omega_{\bar{\psi}\psi}(T, \mu_f; \phi, \phi^*) \) which gives the quark and anti-quark contributions can be shown as [13],

\[
\Omega_{\bar{\psi}\psi}(T, \mu_f; \phi, \phi^*) = -2T \sum_f \int \frac{d^3p}{(2\pi)^3}
\]

\[
\left\{ \ln \left[1 + 3 \left(\phi + \phi^* e^{-\frac{(E_f - \mu_f)}{T}} \right) e^{-\frac{(E_f - \mu_f)}{T}} + e^{-3 \frac{(E_f - \mu_f)}{T}} \right] \right) \right.
\]

\[
+ \left. \ln \left[1 + 3 \left(\phi^* + \phi e^{-\frac{(E_f + \mu_f)}{T}} \right) e^{-\frac{(E_f + \mu_f)}{T}} + e^{-3 \frac{(E_f + \mu_f)}{T}} \right] \right) \right\}.
\]

where \(N \) gives the number of the quark flavors, \(E_f = \sqrt{p^2 + m_f^2} \) (the index \(f \) runs over different quark flavors \(u, d \) and \(s \)) is the dispersion relation, energy, of the valence quark and antiquark. Assuming degenerate light quarks, \(q \equiv u, d \), then we can give the masses as follows:

\[
m_q = g \frac{\sigma_x}{2},
\]

\[
m_s = g \frac{\sigma_y}{\sqrt{2}}.
\]

The quark chemical potentials \(\mu_f \) are related to the baryon \((\mu_B) \), strange \((\mu_S) \) and charge \((\mu_Q) \) chemical potentials via the following transformations [36]:

\[
\mu_u = \frac{\mu_B}{3} + \frac{2\mu_Q}{3},
\]

\[
\mu_d = \frac{\mu_B}{3} - \frac{\mu_Q}{3},
\]

\[
\mu_s = \frac{\mu_B}{3} - \mu_S.
\]
The influences of a finite volume are introduced in the PQM model by following the approximate method illustrated in \cite{19, 37} via a lower momentum cut-off \(p_{\text{min}} \) \([\text{GeV}] = \pi / R [\text{GeV}] = \lambda \), where \(R \) is the length of a cubic volume. In this analysis, we are studying a simple situation (lower momentum cut-off). A full implementation of the finite volume would require decent consideration of the effects of the surface and curvature, as well as boundary conditions which are periodic for bosons and anti-periodic for fermions. This full implementation of the boundary conditions leads to an infinite sum over discrete momentum values.

The PQM model has a set of parameters discussed in Refs \cite{26, 30} and listed in Tabs. (I, II).

\(c \) (MeV)	\(\lambda_1 \)	\(m^2 \) (MeV\(^2\))	\(\lambda_2 \)	\(h_x \) (MeV\(^3\))	\(h_y \) (MeV\(^3\))
4807.84	1.40	(342.52)\(^2\)	46.48	(120.73)\(^3\)	(336.41)\(^3\)

TABLE I. Summary of the QM model parameters employed in the presented calculations.

\(a_1 \)	\(a_2 \)	\(b_0 \)	\(b_1 \)	\(b_2 \)	\(b_3 \)
0.75	7.5	-6.75	-1.95	2.625	-7.44
\(k_1 \)	\(k_2 \)	\(k_3 \)	\(k_4 \)		
0.30	0.25	0.24	0.20		

TABLE II. Summary of the Polyakov loop potential parameters employed in the presented calculations.

In order to estimate the model different parameters, \(\sigma_x, \sigma_y, \phi \) and \(\phi^* \), we minimize the thermodynamic potential, Eq. (9), with respect to \(\sigma_x, \sigma_y, \phi \) and \(\phi^* \) which gives us a set of four equations of motion:

\[
\frac{\partial \Omega}{\partial \sigma_x} = \frac{\partial \Omega}{\partial \sigma_y} = \frac{\partial \Omega}{\partial \phi} = \frac{\partial \Omega}{\partial \phi^*}_{\text{min}} = 0,
\]

where \(\sigma_x = \sigma_x, \sigma_y = \sigma_y, \phi = \bar{\phi} \) and \(\phi^* = \bar{\phi}^* \) are the global minimum.

III. RESULTS

In this section, we will discuss our PQM model calculations using the parameters summarized in Tables. (I,II) to illustrate the effect of finite volume on the model order parameters, phase transition and fluctuations/correlations of the conserved charges.

A. Order parameters and phase transition

In the following, we present several calculations to illustrate the impacts of the finite volumes on the PQM model order parameters and the chiral phase transition.

Figure. 1 shows the thermal dependence of the non-strange and strange chiral condensates \((\sigma_x, \sigma_y) \) panels (a, b and c) and the Polyakov loops \((\phi \) and \(\phi^* \) \) panels (d, e and f) for different volume selections and different \(\mu_B \) values. The upper panels show that both \(\sigma_x \) and \(\sigma_y \) increase as the system volume is decreased, with larger sensitivity for the non-strange chiral condensates \((\sigma_x) \). The lower panels show very little if any, volume dependence for \(\phi \) and \(\phi^* \) at different \(\mu_B \).

As pointed out PQM model contains strange and non-strange chiral condensates which reflect the chiral phase transitions. Using both chiral condensates we can investigate the finite volume effects on the \(SU(3) \) 2 + 1 PQM model chiral phase transition via the normalized net-difference condensate \(\Delta_{ls}(T) \) as defined in Ref. \cite{38},

\[
\Delta_{ls}(T) = \frac{\sigma_x - \frac{h_x}{h_y} \sigma_y}{\sigma_{x0} - \frac{h_x}{h_y} \sigma_{y0}},
\]

where \(h_x \) (\(h_y \)) are non-strange (strange) explicit symmetry breaking parameters.
FIG. 1. Temperature dependence of the (non)strange chiral condensates (σ_x, σ_y) panels (a, b and c) and the two Polyakov loops (ϕ, ϕ^*) panels (d, e and f) for several volume selections with $\mu_B = 0.0, 0.4$ and 0.6 GeV.

FIG. 2. The same as in Fig. (1) but for the net-difference condensate (Δ_{ls}) panels (a, b and c) and $d\Delta_{ls}/dT$ panels (d, e and f).

Figure 2 shows the thermal dependence of the normalized net-difference condensate Δ_{ls} panels (a, b and c) and $d\Delta_{ls}/dT$ panels (d, e and f) for different volume selections and different μ_B values. The upper panels indicate an increase in $\Delta_{ls}(T)$ as the system volume is decreased. The lower panels show that for fixed values of R and μ_B, the $d\Delta_{ls}/dT$ is peaking up at a specific point indicating the phase transition. The peak position is shifted toward lower temperature as the μ_B value increase.
FIG. 3. Chiral phase diagram for different volumes selections.

FIG. 4. Comparison of the PQM model pressure density, energy density and entropy to results from LQCD. The comparisons are made for $\mu_B = 0.0$ GeV; the lines indicate the PQM model calculations and the shaded areas indicate LQCD results from Ref. [23].

The study of the phase diagram of the PQM model for at fixed volume could be done through mapping out the μ_B dependence of $\Delta q_{s}(T)$. For a fixed R and μ_B values, $d\Delta_{ls}/dT$ will peak up at a particular point expressing the phase transition. Therefore, the phase diagram can be studied by outlining such points for a wide range of baryon chemical potentials. Fig. 3 illustrates the effects of finite volume on the phase diagram. The parameters T_c and μ_{Bc} represent the transition temperature at $\mu_B = 0.0$ GeV and the transition chemical potential at low temperature respectively at $R = \infty$. Our calculations reveal that the PQM model phase diagram in the (μ_B, T)-plane, increases with decreasing the system volume. For the $R = 2.0$ (fm) the μ_B value at low temperature increased by about 30% and the T value at $\mu_B = 0.0$ GeV increased by about 19% from them values at $R = \infty$ (fm).

B. Fluctuations and correlations of conserved charges

The thermodynamics quantities and (diagonal) off-diagonal susceptibilities can be determined by using the thermodynamic pressure as [24],
FIG. 5. The thermal behavior of PQM model conserved charges fluctuation (a, b and c) and correlation (d, e and f) are compared with the same quantities obtained from the LQCD (symbols). The comparisons are made for $\mu_B = 0$. The LQCD conserved charges fluctuation (a, b and c) and correlation (d, e and f) are taken from Ref [24] tables (III, IV and V).

\begin{align*}
p &= -\Omega(T, \mu_f), \\
s &= dp/dT, \\
\epsilon &= Ts - p,
\end{align*}

(16) (17) (18)

\begin{equation}
\chi^{ijk}_{BQS} = \frac{\partial^i \partial^j \partial^k(p)}{\partial(\mu_B)^i \partial(\mu_Q)^j \partial(\mu_S)^k}.
\end{equation}

(19) (20)

where superscripts i, j and k run over integers that represent the derivatives orders. The indexes B, Q and S represent the conserved-quantities, baryon, charge, and strangeness, respectively. Eq. (20) illustrates the dependence of the (fluctuations) correlations of conserved charges on the temperature, chemical potential, and system volume. The
susceptibilities evaluated first by computing the thermodynamic potential at vanishing μ_f and then expand the scaled thermodynamic potential in a Taylor series around $\mu_f/T = 0$.

Before addressing the system volume effect, it is informative to contrast the PQM model thermodynamics quantities and (diagonal) off-diagonal susceptibilities calculations for ($\mu_B = 0$ and $R = \infty$), to similar results from LQCD calculations \cite{23, 24}. Such comparisons are presented in Figs. (4,5); which indicate a good agreement between the PQM model and LQCD \cite{23, 24}. These comparisons could be improved spatially at low temperature by including the vector mesons sector to the PQM model. The influence of the finite volume on the model thermodynamics quantities has been discussed in our previous study \cite{21}.

Figure 6 displays the temperature dependence of the normalized conserved-fluctuations, baryon (χ_{BB}), charge (χ_{QQ}) and strangeness (χ_{SS}), respectively. The results presented for several volume selections at three μ_B values, $\mu_B = 0.0, 0.4$ and 0.6 GeV. Our results indicate that the normalized fluctuations decrease with the volume which quickly trends towards the infinite volume value at high temperature. The non-strange susceptibilities (χ^2_{BB} and χ^2_{QQ}) shows a higher sensitivity to the volume change more than the strange susceptibility (χ^2_{SS}). This weak sensitivity to the volume change of the strange quantities could be driving from the large mass of the strange quark.

Figure 7 shows the temperature dependence of the off-diagonal susceptibilities, χ_{BQ}, χ_{BS} and χ_{SQ} for several volume selections and different μ_B values. The net baryons show a high correlation to the net charge and less correlation to the net strange. Our results indicate that the normalized correlations decrease with the volume which quickly trends towards the infinite volume value at high temperature. Also, the non-strange correlation (χ_{BQ}) show a higher sensitivity to the volume change.

Also, the temperature dependence of the higher order baryon susceptibilities χ^m_B ($n = 4, 6$ and 8) for different volume selections at μ_B values, $\mu_B = 0.0, 0.4$ and 0.6 GeV are shown in Figure 8. The n^{th}-order susceptibilities decrease with the volume selections, and for $n = 6, 8$ they start to peak around the transition temperature T_c. Also,
FIG. 7. The thermal behavior of the normalized off-diagonal susceptibilities, χ_{BQ}^{11}, χ_{BS}^{11}, and χ_{QS}^{11}, for several volume selections at $\mu_B = 0.0$, 0.4 and 0.6 GeV.

we observed a stronger oscillation in all higher harmonics as we increase the μ_B values.

IV. CONCLUSIONS

In this work, we have used the 2+1 $SU(3)$ Polyakov Quark-Meson model (PQM) framework to study the properties of the QCD medium produced at finite volume in heavy ion collisions. This model framework provides several conserved-quantities, baryon, charge, and strangeness which compare well with those obtained in LQCD calculations for vanishing μ_B. Our calculations indicate that the conserved-quantities (χ_{BQS}^{ijk}) are significantly influenced by finite volume effects. The calculated conserved-quantities decrease with the volume which quickly trends towards the infinite volume value at high temperature. Also, the non-strange quantities show a higher sensitivity to the volume change more than the strange ones. Finally, PQM model conserved-quantities, suggests that the quark-hadron phase boundary is shifted to higher values of μ_B and T with decreasing system volume.
FIG. 8. The thermal behavior of the higher order susceptibilities, χ_4^B, χ_6^B and χ_8^B, for several volume selections at $\mu_B = 0.0$, 0.4 and 0.6 GeV.

ACKNOWLEDGEMENTS

This work is supported by the US Department of Energy under contract DE-FG02-94ER40865.

[1] P. Fachini, “Experimental highlights of the RHIC program,” Proceedings, 10th Mexican Workshop on Particles and Fields (MWPF 2005), Part A and B: Morelia, Mexico, November 6-12, 2005, AIP Conf. Proc. 857, 62–75 (2006), arXiv:hep-ex/0605102 [hep-ex].

[2] M. Monteno (ALICE), “The physics programme of the ALICE experiment at the LHC,” Perspectives in hadronic physics. Proceedings, 5th International Conference on perspectives in hadronic physics, particle-nucleus and nucleus-nucleus scattering at relativistic energies, Trieste, Italy, May 22-26, 2006, Nucl. Phys. A782, 283–290 (2007).

[3] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, “The Order of the quantum chromodynamics transition predicted by the standard model of particle physics,” Nature 443, 675–678 (2006), arXiv:hep-lat/0611014 [hep-lat].

[4] Shinji Ejiri, “Canonical partition function and finite density phase transition in lattice QCD,” Phys. Rev. D78, 074507 (2008), arXiv:0804.3227 [hep-lat].

[5] Robert D. Pisarski and Frank Wilczek, “Remarks on the Chiral Phase Transition in Chromodynamics,” Phys. Rev. D29, 338–341 (1984).

[6] Benjamin W Lee, “Chiral dynamics,” New York, NY : Gordon and Breach, B591, 129 p. (1972).

[7] P. Kovacs and Zs. Szep, “The critical surface of the $SU(3)_L \times SU(3)_R$ chiral quark model at non-zero baryon density,” Phys. Rev. D75, 025015 (2007), arXiv:hep-ph/0611208 [hep-ph].
[8] P. Kovacs and Zs. Szep, “Influence of the isospin and hypercharge chemical potentials on the location of the CEP in the mu(B) - T phase diagram of the SU(3)(L) x SU(3)(R) chiral quark model,” Phys. Rev. D77, 065016 (2008), arXiv:0710.1563 [hep-ph].

[9] Yoichiro Nambu and G. Jona-Lasinio, “Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I.” Phys. Rev. 122, 345–358 (1961), [127(1961)].

[10] Kenji Fukushima, “Chiral effective model with the Polyakov loop,” Phys. Lett. B591, 277–284 (2004), arXiv:hep-ph/0310121 [hep-ph].

[11] Topi Kahara and Kimmo Tuominen, “Degrees of freedom and the phase transitions of two flavor QCD,” Phys. Rev. D78, 034015 (2008), arXiv:0803.2598 [hep-ph].

[12] Jochen Wambach, Bernd-Jochen Schaefer, and Matthias Wagner, “QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD,” Three days of strong interactions. Proceedings, EMMI Workshop and 26th Max Born Symposium, Wroclaw, Poland, July 9-11, 2009, Acta Phys. Polon. Supp. 3, 691–700 (2010), arXiv:0911.0296 [hep-ph].

[13] Bernd-Schaefer and Matthias Wagner, “On the QCD phase structure from effective models,” Heavy-ion collisions from the Coulomb barrier to the quark-gluon plasma. Proceedings, International Workshop on Nuclear Physics, 30th Course, Erice, Italy, September 16-24, 2008, Prog. Part. Nucl. Phys. 62, 381 (2009), arXiv:0812.2855 [hep-ph].

[14] Hong Mao, Jinshuang Jin, and Mei Huang, “Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors,” J. Phys. G37, 035001 (2010), arXiv:0906.1324 [hep-ph].

[15] Michael E. Fisher and Michael N. Barber, “Scaling Theory for Finite-Size Effects in the Critical Region,” Phys. Rev. Lett. 28, 1516–1519 (1972).

[16] L. M. Abreu, M. Gomes, and A. J. da Silva, “Finite-size effects on the phase structure of the Nambu-Jona-Lasinio model,” Phys. Lett. B642, 551–562 (2006), arXiv:hep-th/0610111 [hep-th].

[17] L. F. Palhares, E. S. Fraga, and T. Kodama, “Chiral transition in a finite system and possible use of finite size scaling in relativistic heavy ion collisions,” J. Phys. G38, 085101 (2011), arXiv:0904.4830 [nucl-th].

[18] Eduardo S. Fraga, Leticia F. Palhares, and Paul Sorensen, “Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data,” Phys. Rev. C84, 015903 (2011), arXiv:1104.3755 [hep-lat].

[19] Abhijit Bhattacharyya, Paramita Deb, Sanjay K. Ghosh, Rajarshi Ray, and Subrata Sur, “Thermodynamic Properties of Strongly Interacting Matter in Finite Volume using Polyakov-Nambu-Jona-Lasinio Model,” Phys. Rev. D87, 054009 (2013), arXiv:1212.5893 [hep-ph].

[20] Abhijit Bhattacharyya, Rajarshi Ray, and Subrata Sur, “Fluctuation of strongly interacting matter in the Polyakov-Nambu-Jona-Lasinio model in a finite volume,” Phys. Rev. D91, 015011 (2015), arXiv:1412.8316 [hep-ph].

[21] Niseem Magdy, M. Csand, and Roy A. Lacey, “Influence of finite volume and magnetic field effects on the QCD phase diagram,” J. Phys. G44, 025101 (2017), arXiv:1510.04380 [nucl-lat].

[22] Gabor Almahi, Robert Pisarski, and Vladimir Skokov, “Volume dependence of baryon number cumulants and their ratios,” Phys. Rev. D95, 056015 (2017), arXiv:1612.04416 [hep-ph].

[23] Szabocls Borsanyi, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz, Stefan Krieg, and Kalman K. Szabo, “Full result for the QCD equation of state with 2+1 flavors,” Phys. Lett. B730, 99–104 (2014), arXiv:1309.5258 [hep-lat].

[24] A. Bazavov et al. (HotQCD), “Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model,” Phys. Rev. D86, 034509 (2012), arXiv:1203.0784 [hep-lat].

[25] Jonathan T. Lenaghan, Dirk H. Rischke, and Jurgen Schaffner-Bielich, “Chiral symmetry restoration at nonzero temperature in the SU(3)(r) x SU(3)(l) linear sigma model,” Phys. Rev. D62, 085008 (2000), arXiv:nucle-th/0004066 [nucl-th].

[26] Bernd-Jochen Schaefer and Matthias Wagner, “The Three-flavor chiral phase structure in hot and dense QCD matter,” Phys. Rev. D79, 014018 (2009), arXiv:0808.1491 [hep-ph].

[27] Alexander M. Polyakov, “Thermal Properties of Quarks and Gluons,” Phys. Rev. D72B, 477–480 (1978).

[28] Leonid Susskind, “Lattice Models of Quark Confinement at High Temperature,” Phys. Rev. D20, 2610–2618 (1979).

[29] Claudia Ratti, Michael A. Thaler, and Wolfram Weise, “Phases of QCD: Lattice thermodynamics and a field theoretical model,” Phys. Rev. D73, 014019 (2006), arXiv:hep-ph/0506234 [hep-ph].

[30] Sanjay K. Ghosh, Tamal K. Mukherjee, Munshi Golam Mustafa, and Rajarshi Ray, “PNJL model with a Van der Monde term,” Phys. Rev. D77, 094024 (2008), arXiv:0710.1700 [hep-ph].

[31] Lisa M. Haas, Rainer Stiele, Jens Braun, Jan M. Pawlowski, and Jurgen Schaffner-Bielich, “Improve Polyakov-loop potential for effective models from functional calculations,” Phys. Rev. D87, 076004 (2013), arXiv:1302.1993 [hep-ph].

[32] Bernd-Jochen Schaefer, Matthias Wagner, and Jochen Wambach, “QCD thermodynamics with effective models,” Proceedings, 5th International Workshop on Critical point and onset of deconfinement (CPOD 2009): Upton, USA, June 8-12, 2009, PoS CPOD2009, 017 (2009), arXiv:0909.0289 [hep-ph].

[33] A. Tawfik, N. Magdy, and A. Diab, “Polyakov linear SU(3) σ model: Features of higher-order moments in a dense and thermal hadronic medium,” Phys. Rev. C89, 055210 (2014), arXiv:1405.0577 [hep-ph].

[34] Pter Kovcs and Gyorgy Wolf, “Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model,” Proceedings, International Meeting of Excited QCD 2015: Tatranska Lomnica, Slovakia, March 8-14, 2015, Acta Phys. Polon. Supp. 5, 281–286 (2015), arXiv:1507.02064 [hep-ph].

[35] Peter Kovcs, Zsolt Szp, and Gyorgy Wolf, “Existence of the critical endpoint in the vector meson extended linear sigma model,” Phys. Rev. D93, 114014 (2016), arXiv:1601.05291 [hep-ph].

[36] Wei-jie Fu, “Fluctuations and correlations of hot QCD matter in an external magnetic field,” Phys. Rev. D88, 014009 (2013), arXiv:1306.5804 [hep-ph].
[37] Abhijit Bhattacharyya, Rajarshi Ray, Subhasis Samanta, and Subrata Sur, “Thermodynamics and fluctuations of conserved charges in a hadron resonance gas model in a finite volume,” Phys. Rev. C91, 041901 (2015), arXiv:1502.00889 [hep-ph].

[38] Bernd-Jochen Schaefer, Mathias Wagner, and Jochen Wambach, “Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies,” Phys. Rev. D81, 074013 (2010), arXiv:0910.5628 [hep-ph].