Introduction
Arginine is a positively charged, hydrophilic amino acid that is often found on the surface of proteins, where it participates in ionic interactions with other amino acid side chains and forms stabilizing hydrogen bonds with both the peptide backbone and amino acid side chains. These characteristics make it a key amino acid in the three-dimensional organization of proteins and in the interaction with other biological molecules. Hence, post-translational modification of arginine can alter the three-dimensional protein structure and function and potentially expose previously hidden epitopes to the immune system. Deimination (citrullination) of arginine side chains (peptidylarginine) to form peptidylcitrulline is one of many recognized post-translational modifications of this amino acid. This post-translational conversion is catalyzed by the family of peptidylarginine deiminase (PAD) enzymes. The process of protein citrullination plays a vital role in normal physiology, in which it is involved in the formation of rigid structures such as hair, skin, and myelin sheaths [1]. Aberrant citrullination has been observed in diseases of the skin and nervous system and in inflammatory arthritides, of which rheumatoid arthritis (RA) is one example [1]. Despite the ubiquity of citrullinated proteins, the autoantibody response to citrullinated proteins is largely restricted to RA [2]. The switch that leads to the generation of antibodies to citrullinated peptides and thus loss of immune tolerance to citrullinated proteins is likely to involve a complex interplay of individual genetic and environmental factors.

Citrullination by human and bacterial peptidylarginine deiminases
In humans, a family of five PAD enzymes (PAD1 to 4 and PAD6), encoded by five genes clustered on chromosome 1p35-36, has been described [3]. Apart from PAD4, which can translocate to the nucleus, PAD enzymes are typically found in the cytoplasm of various cell types and show a characteristic tissue distribution. The localization and functions of each of the human PAD enzymes are summarized in Table 1. Homologous amino acid sequences for some or all of these PADs exist in other eukaryotic species, such as the mouse, chicken, frog, and bony fish. Among prokaryotic species, PAD activity has, to date, been described in Porphyromonas gingivalis only [4]. P. gingivalis is a major pathogen in periodontitis, a disease that (akin to RA) is a chronic inflammatory disorder characterized by pro-inflammatory cytokine production and erosion of bone.

As protein citrullination in the joint is not specific to RA [5] and autoantibodies to citrullinated proteins precede the clinical signs of RA [6], it has been proposed that oral citrullination of human and bacterial proteins by P. gingivalis PAD (PPAD) in an infectious context prior to the onset of RA could break tolerance and trigger a latent antibody response against citrullinated protein [7].

Abstract
Peptidylarginine deiminases (PADs) convert arginine within a peptide (peptidylarginine) into peptidylcitrulline. Citrullination by human PADs is important in normal physiology and inflammation. Porphyromonas gingivalis, a major pathogen in periodontitis, is the only prokaryote described to possess PAD. P. gingivalis infection may generate citrullinated peptides, which trigger anti-citrullinated peptide antibodies. In susceptible individuals, host protein citrullination by human PADs in the joint probably perpetuates antibody formation, paving the way for the development of chronic arthritis. Blockades of bacterial and human PADs may act as powerful novel therapies by inhibiting the generation of the antigens that trigger and sustain autoimmunity in rheumatoid arthritis.
Table 1. Localization and function of human peptidylarginine deiminase enzymes

PAD	Localization	Function	Reference
PAD1	Epidermis, hair follicles, arrector pili muscles, and	Citrullination of filaggrin and keratin, facilitating proteolysis and	[66-68]
	sweat glands	crosslinking of the proteins and contributing to skin cornification.	
		Maintains hydration of stratum corneum and epidermis barrier function.	
		Differentiation of hair follicles.	
PAD2	Brain astrocytes, sweat glands, arrector pili muscles,	Citrullination of myelin basic protein in the brain and spinal cord,	[45,46,66,67,69-73]
	skeletal muscle, spleen, macrophages, monocytes,	promoting electrical insulation of myelin sheaths.	
	epidermis, synovial tissue, and synovial fluid	Citrullination of vimentin in apoptotic monocytes and macrophages.	
PAD3	Upper layers of epidermis and hair follicles	Citrullination of trichohyalin, contributing to directional hair growth.	[66-68]
PAD4	Hematopoietic cells and inflamed rheumatoid synovium	Citrullination of transcriptional coactivator p300 and histones H2A,	[35,44,45,74]
		H3, and H4, regulating gene expression by chromatin remodelling.	
		Citrullination of fibrin, contributing to chronic inflammation in	
		rheumatoid arthritis.	
		P53-dependent citrullination of proteins following DNA damage,	
		translocation of histone chaperone nucleophosmin, and p53-	
		mediated inhibition of tumor cell growth.	
PAD6	Ovary and testis tissue and peripheral blood leukocytes	Amino acids known to be conserved in PAD enzymatic activity are not	(3,73)
		conserved in PAD6. Function and enzymatic activity remain unclear.	

PAD, peptidylarginine deiminase.

Once tolerance is breached, citrullination of host proteins by human PADs perpetuates the immune response through epitope spreading and cross-reactivity, resulting in chronic inflammatory disease (Figure 1). Citrullination by both human and bacterial PAD enzymes may thus provide a target for inhibiting the immune response at an early stage in the inflammatory pathway of RA.

The best-established autoantigens in RA include α-enolase, fibrinogen, vimentin, and type II collagen (reviewed in [1]) and all are efficiently deiminated by mammalian PADs. In theory, citrullinated peptides from these antigens could also be generated by PPAD, although this has yet to be demonstrated experimentally. Alpha-enolase is of particular interest in this respect because it is highly conserved among eukaryotes and prokaryotes. A sequence of nine amino acids (Asp-Ser-Arg-Gly-Asn-Pro-Thr-Val-Glu) spanning the immunodominant epitope on the peptide known as citrullinated enolase peptide-1 (CEP-1) is 100% identical to the corresponding region in P. gingivalis enolase, and affinity-purified antibodies to CEP-1 react with recombinant enolase citrullinated in vitro from both humans and P. gingivalis [8], providing an attractive target for molecular mimicry between human and bacterial species.

Etiological association between periodontitis and rheumatoid arthritis

The rationale for considering both human and P. gingivalis PADs in the etiology and pathology of RA is also based on epidemiological data suggesting an association between the two diseases (reviewed in [9]). Periodontitis and RA are chronic inflammatory disorders characterized by erosion of bone and production of pro-inflammatory cytokines. The reported prevalence of periodontitis is highly variable; in one large study of the American population, the prevalence was 4.2% [10]. Epidemiological studies have shown that RA is more prevalent among patients with periodontal disease (3.95%) than in the general population (1%) [11]. In addition, patients with RA have a higher frequency of advanced periodontal disease than the general population [12]. P. gingivalis, Treponema denticola, and Tannerella forsythia are some of the major Gram-negative bacteria that exist as part of a complex bacterial biofilm in the gingival crevice and are linked to the development and progression of periodontitis but can also be found in lower numbers in periodontally healthy subjects [13]. Long-term plaque accumulation and an interplay of host and bacterial factors result in chronic inflammation and tissue damage. Destruction of the adjacent bone and periodontal ligament attachment may eventually lead to tooth loss [14]. P. gingivalis antibody levels have been shown to correlate with anti-CCP (anti-cyclical citrullinated peptide) antibody titres [15], making this periodontopathic oral bacterium an attractive candidate environmental trigger in the development of RA.

Several research groups have reported an increased variety and number of oral bacterial DNA and antibodies targeting these bacteria in serum and synovial fluid of patients with RA and other inflammatory joint diseases compared with controls (non-inflammatory arthritides or healthy donors) [15-19]. Oral bacterial DNA could
reach the joint as free DNA or intracellularly in immune cells. Owing to the stringent growth requirements of live oral bacteria, their presence in the joint is unlikely, and no viable organisms have been obtained from synovial fluid [19]. However, these observations need to be interpreted with caution since many bacterial antibody assays using whole-bacterium lysates are of questionable specificity, and the same applies to polymerase chain reaction-based detection and DNA-DNA hybridization using a complex nucleic acid mixture containing an excess of human DNA. A number of antibiotics used in the treatment of periodontitis, such as tetracyclines and clarithromycin, are efficacious in the treatment of RA [20-24], although to date there has been no direct evidence that this therapeutic effect is due to their anti-bacterial activity. For example, minocycline has anti-inflammatory and anti-apoptotic effects that are separate from its anti-bacterial role and that are mediated by inhibition of nitric oxide synthase [25], matrix metalloproteinases [26], and caspases [27]. As will be discussed below, minocycline and other tetracycline derivatives may also be direct inhibitors of human PAD4 [28] and P. gingivalis arginine-gingipains [29], which are potent proteinases and major virulence factors in periodontal disease.

Human peptidylarginine deiminases in disease

In normal physiology, PAD enzymes are involved in regulatory processes such as epidermal differentiation, maturation of hair follicles, insulation of nerve fibers, and epigenetic regulation. Aberrant citrullination contributes

Figure 1. Simplified model illustrating the hypothesis that *Porphyromonas gingivalis*-mediated citrullination triggers anti-citrulline autoimmunity in rheumatoid arthritis. Citrullination by *P. gingivalis* peptidylarginine deiminase (PAD) in the inflammatory context of periodontitis produces bacterial and host-derived citrullinated peptides to which the immune system mounts a humoral immune response with the production of peptidylcitrulline antibodies. Inflammation-induced citrullination by human PAD enzymes in the gingiva is also possible (dashed arrow). Tissue injury and inflammation in the joint lead to activation of human PAD enzymes and citrullination of host proteins, such as α-enolase, vimentin, fibrinogen, and collagen type II. Peptidylcitrulline antibodies bind citrullinated host and bacterial peptides, which may show molecular mimicry, and in genetically susceptible individuals (presence of the certain HLA alleles), intra- and intermolecular epitope spreading leads to a sustained immune response with the formation of high-affinity antibodies to host citrullinated proteins.
to skin diseases such as psoriasis and neurological disorders such as multiple sclerosis, Alzheimer disease, and prion disease [30-32]. Citrullination of histones and other nuclear proteins by PAD4 is involved in transcriptional regulation and response to cellular stresses and contributes to the innate immune response through the formation of neutrophil extracellular traps [33-36]. Recently, citrullination of various chemokines has been shown to have functional roles in receptor binding and signalling, proteolytic cleavage, and extravasation of neutrophils [37,38]. Furthermore, citrullination appears to play a role in the coagulation system and associated pathways, and this is supported by the findings that in vitro citrullinated fibrinogen shows impaired thrombin-catalyzed fibrin polymerization [39] and in vitro citrullination of antithrombin with PAD4 abolishes its thrombin-inhibitory activity [40]. Both citrullinated fibrinogen and citrullinated antithrombin were detected in patients with inflammatory arthritis [40,41].

Citrullination is thus a widespread phenomenon in normal physiology and inflammation, although targeting citrullinated proteins for an autoimmune response is relatively restricted to RA as shown by the high specificity of anti-citrullinated peptide antibodies for RA [2]. Therefore, it is important to consider which of the deiminases are used for generating the antigens that drive this autoimmunity. On the transcriptional level, various single-nucleotide polymorphisms in the PADI4 gene have been associated with RA in Asian but not in Caucasian populations (reviewed in [42]). Suzuki and colleagues [43] showed that the presence of the disease-associated PADI4 haplotype led to a more stable mRNA, which they suggested increased PAD4 expression and thus levels of citrullinated proteins. However, as PAD inhibitors would work on the post-transcriptional level, we will focus on the expression of PAD enzymes. PAD2 and PAD4 expression has been demonstrated in rheumatoid synovium [44] and synovial fluid cells [45] and extracellularly in synovial fluid [46]. PAD4 differs from other PAD isotypes in its capacity to undergo nuclear translocation due to the presence of a nuclear localization sequence and this translocation has been shown to be induced by tumor necrosis factor-alpha in murine and human oligodendroglial cell lines [47]. PAD expression in the synovial tissue is not specific to RA. It occurs in a variety of inflammatory synovitides [41] and diseases such as inflammatory bowel disease, polymyositis, and interstitial pneumonia [48]. While PAD2 is expressed in the synovia of both patients with inflammatory arthritis and osteoarthritis (OA), PAD4 is predominantly expressed in the synovia of patients with inflammatory arthritides rather than OA [44]. The converse was observed in the extracellular compartment, where Kinloch and colleagues [46] showed the presence of PAD4 in the synovial fluid of patients with RA, spondyloarthropathies, and OA, while PAD2 expression was found in both groups of patients with inflammatory arthritis but was notably absent in those with OA. PAD2 and PAD4 expression in the synovium correlates with inflammatory cell infiltration, synovial lining thickness, and vascularity of the deep synovium [44]. Foulquier and colleagues [44] demonstrated PAD2 and PAD4 in close proximity to citrullinated fibrin deposits, although simultaneous detection of the two enzymes in the same area was rare.

Bacterial peptidylarginine deiminase

P. gingivalis, considered a primary pathogen in chronic periodontitis, is a Gram-negative, non-motile anaerobic bacterium that is the only prokaryote described to date to express a functional endogenous PAD enzyme [4]. To date, investigations of bacterial deiminases have focused mainly on enzymes that use free, non-peptidyl arginine or arginine derivatives such as arginine deiminase (ADI). ADIs are enzymes that catalyze the deamination of free arginine to citrulline, releasing ammonia. They are key enzymes in the widespread anaerobic pathway of arginine degradation and many pathogenic microorganisms use this pathway for energy production. Since ADIs are missing in higher eukaryotes, the enzyme constitutes a potential anti-parasitic and anti-bacterial drug target [49]. The other group of structurally and functionally related enzymes produced by most bacterial species consists of agmatine deiminases (agmatine iminohydrolases, or AIHs). AIHs deiminate agmatine (a decarboxylation product of arginine) to *N*-carbamoylputrescine and ammonia.

On the amino acid sequence level, PPAD shows no relation to eukaryotic PAD; instead, position-specific iterative-basic local alignment search tool (PSI-BLAST) search connects PPAD to the AIH family (Figure 2). Although the molecular structure of PPAD is unknown, its sequence similarity to AIHs with conservation of key catalytic and guanidino-binding residues indicates that the catalytic domain shares the common α/β-propeller fold of the guanidine-group modifying enzyme (GME) superfamily, which includes human PADS, microbial ADI, aminotransferases, dimethylarginine dimethylaminohydrolases, and AIH [50]. Of note, the database annotation of AIH is confusing since these enzymes are often referred to as ‘Porphyromonas-type peptidyl-arginine deiminases’ although they most likely do not possess PPAD activity. The three-dimensional structure of PPAD was predicted to consist of the amino-terminal catalytic α/β-propeller domain, followed by an immunoglobulin-like β sandwich. In comparison, the published structure of human PAD4 is composed of two amino-terminal immunoglobulin-like β sandwich domains, followed by the catalytic α/β-propeller domain [51].
Unlike mammalian enzymes, PPAD is able to deiminate both free arginine and peptidylarginine ([4] and our own unpublished observations) and preferentially targets carboxy-terminal arginine, although internal citrullination cannot be excluded. Furthermore, deimination by human PAD is calcium-dependent in contrast to that by PPAD, which does not appear to require any specific cofactors ([4,52] and our own unpublished observations).

P. gingivalis has been shown, however, to increase intracellular calcium concentrations by cleavage of proteinase-activated receptor 2 (PAR 2), a G protein-coupled receptor found on the neutrophil surface, which may in turn promote human PAD activation [53].

The physiological role of PPAD is unclear. It was suggested that production of ammonia during deimination enhances the survival of *P. gingivalis* within the periodontal pocket [4]. Indeed, ADI- and AIH-catalyzed ammonium production among bacterial species is known to act as a virulence factor, promoting the survival of microbial pathogens in the host environment. Ammonia neutralizes acidic environments and thereby optimizes gingipain and PPAD function, inactivates hemagglutinins, promotes ATP production, and has negative effects on neutrophil function [4,54]. Furthermore, it can be speculated that PPAD acts as a virulence factor by generating citrullinated peptides, which may assist the bacterium in spreading and circumventing the humoral immune response. However, the requirements for citrullination by PPAD have not been well investigated to date and it is unknown whether the citrullinated peptides are immunogenic.

Thus, we conclude that PPAD may be more relevant to the initiation of autoimmunity at a site distant from the joint, such as the gingiva, and that PAD2 and PAD4 are important in generating autoantigens that perpetuate autoimmunity in RA once tolerance is breached. Further work is required to identify the regulation and substrate specificity of each enzyme in order to establish a more precise role in the autoimmune response.
Therapeutic peptidylarginine deiminase blockade in rheumatoid arthritis

Although PAD4 has been most extensively studied as a potential therapeutic target in RA (mainly based on the availability of a crystal structure [51]), PAD2 may also be important. It is proposed that selective inhibition of PAD would reduce the levels of citrullinated proteins and consequently suppress the humoral immune response directed to citrullinated antigens in RA. Because PAD4 has an important physiological role in regulating gene expression and PAD4 translocates into the nucleus from the cytosol, potential inhibitors may need to be selective for the extracellular compartment or other PAD isotypes to avoid unwanted effects on gene transcription. It is, however, not known whether intracellular or extracellular PAD is important in the pathophysiology of RA.

Paclitaxel is a chemotherapeutic agent that was initially derived from the bark of the Pacific yew tree. It inhibits angiogenesis by interfering with microtubule function in cell mitosis, migration, chemotaxis, and intracellular transport [55]. In addition, in the millimolar range (half-maximal inhibitory concentration \[IC_{50} = \text{approximately} \, 5 \, \text{mM}\]), paclitaxel inhibits PAD isolated from bovine brain [56]. It has been shown to prevent the induction of collagen-induced arthritis (CIA) and cause significant regression of existing CIA [57]. An open-label multicenter phase II study of paclitaxel in patients with RA was completed in July 2008, although results of this are still pending [58].

Other PAD inhibitors include F-amidine \([N-\alpha\text{-benzoyl-}N^\alpha-(2\text{-fluoro-1-iminoethyl})-L\text{-ornithine amide}],\) Cl-amidine \([N-\alpha\text{-benzoyl-N^\alpha-(2-chloro-1-iminoethyl)-L-ornithine amide},\) and 2-chloroacetamidine, of which Cl-amidine was reported to be the most potent (\[IC_{50} = 5.9 \, \mu\text{M}\]) [59]. Ex vivo studies with F-amidine and Cl-amidine, using a cell line and an assay measuring PAD4-mediated citrullination of a nuclear protein and the resulting enhancement in binding to another protein, indicated that these inhibitors are bioavailable [59,60]. F-amidine irreversibly inhibits PAD4 via the specific modification of Cys 645, an active-site residue that is critical for enzyme catalysis. Cys 645 acts as a nucleophile to form a thiouronium intermediate that is hydrolyzed to form citrulline. Cl-amidine and 2-chloroacetamidine are thought to act via a similar mechanism [59,61]. Inactivation by F-amidine and Cl-amidine is calcium-dependent [60]. In vitro studies with PAD4 have shown that calcium binding leads to a conformational change that moves Cys 645 and His 471 into positions that are competent for catalysis [51] and presumably reactive with F-amidine and Cl-amidine. This is of therapeutic importance as these compounds would therefore be expected to inhibit PAD4 in its activated state only at sites of inflammatory activity such as the synovium and not the inactive enzyme at other sites in the body, limiting toxicity [59]. Willis and colleagues [62] recently showed that Cl-amidine treatment in CIA is able to inhibit clinical disease activity scores by 55%, 53%, and 42% in the 50, 10, and 1 mg/kg per day groups, respectively. Histological severity scores and complement C3 deposition scores paralleled the decreases in disease activity. In addition, mice receiving Cl-amidine showed reduced epitope spreading by peptide microarray, especially to citrullinated joint antigens. Interestingly, there were no changes in the percentages of T-cell, B-cell, or monocyte populations in treated mice compared with controls [62]. These results suggest that Cl-amidine may represent a novel class of RA therapeutics that specifically target citrullination.

Bhattacharya and colleagues [63] demonstrated that human astrocytes subject to pressure showed elevated PAD2 levels, increased intracellular calcium concentrations, and increased citrullination. Treatment with the cell-permeable calcium chelating agent BAPTA-AM (1,2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetracetoxymethyl ester) resulted in decreased intracellular calcium concentration and PAD2 levels. These results suggest that calcium modulation may be an alternative therapeutic strategy in modulating PAD activity and citrullination, although we would argue that this mechanism is too broad to be applicable in practice.

On the basis of the therapeutic use of tetracyclines in RA [23], Knuckley and colleagues [28] screened tetracycline derivatives (minocycline, doxycycline, tetracycline, and chlortetracycline) for their potential to inhibit PAD4 activity. Chlortetracycline was identified as the most potent inhibitor (\[IC_{50} = 100 \, \mu\text{M}\]) and was suggested to bind to a region distal from the active site [28]. Streptomycin, an aminoglycoside antibiotic, was also tested because of its two guanidinium groups that could act as inhibitors of PAD4. Streptomycin was found to inhibit PAD4, though with a lower potency (\[IC_{50} \approx 1.8 \, \text{mM}\]), and was suggested to bind within or in close proximity to the active site. The data suggest that these compounds could provide a valuable scaffold for engineering inhibitors with greater potency and selectivity.

Porphyromonas gingivalis peptidylarginine deiminase as a target for treatment in rheumatoid arthritis

The unique nature of PPAD in terms of its different amino acid sequence, cofactor requirement, and domain organization compared with human PADS (Figure 2), along with its location on the bacterial cell surface [4], would make this enzyme a potential target in the treatment of RA provided that its possible involvement in disease etiology or pathology is substantiated in future studies. Development of therapeutics targeting PPAD is
further encouraged by advances in design and synthesis of inhibitors against parasite-derived ADI with potentials to be used as anti-parasitic agents [64]. Since ADI, PADs, and PPAD are likely to use the same catalytic machinery to deaminate (peptidyl)arginine (Figure 2), a similar chemistry may be applied to develop PPAD inhibitors. The calcium-independent deamination of carboxy-terminal arginine residues specific to PPAD can be explored to develop highly selective compounds with little or no cross-reactivity with host enzymes.

McGraw and colleagues [4] reported that native PPAD, purified from the bacterial culture supernatant, was missing the N-terminus inferred from the DNA sequence because of proteolysis at the Arg43-Ala44 peptide bond. This might have been an artifact caused by the potent proteases, arginine-gingipains, which co-purified with PAD at the initial stages of protein purification, or might have true biological significance (for example, arising during export of the enzyme from the cell to form the mature protein). A recent paper on PPAD reported that the full-length, uncleaved form was unstable and had only 40% activity when compared with the truncated form of the enzyme [52]. Future studies aimed at identifying the mature, in vivo form of PPAD and its enzymology are required in order to pin down the biologically relevant form of the enzyme and as such the more appropriate target for therapeutic blockade.

As the PPAD enzyme is not well studied, there are no published studies on possible therapeutic inhibitors. To gain insight into the catalytic mode of PPAD, McGraw and colleagues [4] tested various compounds that might interfere with the catalytic cysteine residue (Cys 351) or substrate binding. They reported that the serine- and cysteine-protease inhibitor leupeptin is able to completely inhibit PPAD at millimolar levels (5 mM), with other inhibitors such as thiourea, thio-l-citrulline, and the serine- and cysteine-protease inhibitor TLCK (N-alpha-p-tosyl-l-lysine chloromethyl ketone) being inhibitory at higher concentrations (12.5 to 50 mM) [4]. Apart from the relatively low inhibitory potency, these compounds are either toxic (thiourea) or unselective (thio-l-citrulline is a potent inhibitor of nitric oxide synthase) [65] but nonetheless provide a basis for the development of more potent, specific inhibitors.

Conclusions

We have summarized a possible role for PPAD in breaking tolerance to citrullinated proteins, with human PAD2 or PAD4 or both maintaining the generation of citrullinated antigens in the joint. However, the evidence remains speculative and clearly requires further investigation of the mechanisms of activity of the enzymes involved and how the apparently unique PAD encoded by *P. gingivalis* could generate immunogenic peptides. If these hypotheses are further substantiated, PAD blockade has the potential to switch off autoimmunity at the point of initiation and inhibit the maintenance of the pathology in RA. Thus, inhibition of bacterial and human PADs could become the first treatment targeting the generation of the actual antigens that drive the disease.

Abbreviations

ADI, arginine deiminase; AIH, agmatine iminohydrolase; CEP-1, citrullinated enolase peptide-1; CIA, collagen-induced arthritis; CI-amidine, N-α-benzoyl-N"-(2-chloro-1-iminoethyl)-L-ornithine amide; F-amidine, N-α-benzoyl-N"-(2-fluoro-1-iminoethyl)-L-ornithine amide; IC50, half-maximal inhibitory concentration (concentration of inhibitor that yields 50% inhibition); OA, osteoarthritis; PAD, peptidylarginine deiminase; PPAD, *Porphyromonas gingivalis* peptidylarginine deiminase; RA, rheumatoid arthritis.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the Arthritis Research Campaign (NW and PJV) and in part by grants DE 09761 and 1642/8/P01/2008/35 from the National Institutes of Health (Bethesda, MD, USA) and the Department of Scientific Research of the Polish Ministry of Science and Education, respectively (JP). The Faculty of Biochemistry, Biophysics, and Biotechnology of the Jagiellonian University Krakow is a recipient of structural funds from the European Union (grant number POIG.02.01.00-12-064/08 – “Molecular biotechnology for health”).

Author details

1. The Kennedy Institute of Rheumatology Division, Imperial College, 65 Aspenlea Road, London, W6 8LH, UK. Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland. 2. School of Dentistry, Oral Health and Systemic Disease, University of Louisville, 501 South Preston Street, Louisville, KY 40202, USA.

Published: 2 June 2010

References

1. Wegner N, Lundberg K, Kinloch A, Fisher BA, Malmstrom V, Feldmann M, Venables PJ. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. *Immunol Rev* 2009, 233:1-21.
2. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld FC, van Venrooij WJ. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. *Arthritis Rheum* 2008, 59:155-163.
3. Chavanas S, Mechin MC, Takahara H, Kawada A, Nachat R, Serre G, Simon M. Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PAD6. *Gene* 2004, 330:19-27.
4. McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from *Porphyromonas gingivalis*, peptidylarginine deiminase. *Infect Immun* 1999, 67:3248-3256.
5. Vossenaar ER, Smeets TJ, Kraan MC, Raams J, van Venrooij WJ, Tak PP. The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. *Arthritis Rheum* 2004, 50:3485-3494.
6. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, Habibow MR, Vandenbroucke JP, Dijkmans BA. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. *Arthritis Rheum* 2004, 50:380-386.
7. Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G: Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. *Inflammation* 2004, 28311-318.
8. Lundberg K, Kinloch A, Fisher BA, Wegner N, Wait R, Charles P, Mikuls TR, Venables PJ. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. *Arthritis Rheum* 2008, 58:3009-3019.
9. de Pablo P, Chapple L, Buckley CD, Dietrich T: Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol 2009, 5:218-224.

10. Borrell LN, Burt BA, Taylor GW: Prevalence and trends in periodontitis in the USA: the [corrected] NHANES, 1988 to 2000. J Dent Res 2005, 84:924-930.

11. de Pablo P, Dietrich T, McAlindon TE: Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J Rheumatol 2008, 35:70-76.

12. Mercado F, Marshall RJ, Klesov AC, Bartold PM: Is there a relationship between rheumatoid arthritis and periodontal disease? J Clin Periodontol 2000, 27:267-272.

13. Socarsky SS, Haffajee AD: Periodontal microbial ecology. Periodontol 2000 2005, 38:151-187.

14. Tatakis DN, Kumar PS: Etiology and pathogenesis of periodontal diseases. Dent Clin North Am 2005, 49:491-516.

15. Mikuls TR, Payne JB, Reinhardt RA, Theile GM, Cannella AC, Holers VM, Kuhn KA, O’Dell JR: Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int Immunopharmacol 2009, 9:38-42.

16. Moen K, Brun NG, Madland TM, Tynning T, Jonsson R: Immunoglobulin G and A antibody responses to Bacteroides forsythus and Prevotella intermedia in sera and synovial fluids of arthritis patients. Clin Diagn Lab Immunol 2003, 10:1043-1050.

17. Martinez-Martinez RE, Abud-Mendoza C, Patino-Marin N, Rizo-Rodriguez JC, Little JW, Loyaola-Rodriguez JP: Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol 2009, 36:1004-1010.

18. Olgemöld M, Kokkon S, Ozdemir F, Bird PS, Hamlet S: Serum antibodies to oral anaerobic bacteria in patients with rheumatoid arthritis. MedGenMed 2005, 7:2.

19. Martinez-Martinez RE, Abud-Mendoza C, Patino-Marin N, Rizo-Rodriguez JC, Little JW, Loyaola-Rodriguez JP: Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol 2009, 36:1004-1010.

20. Olgemöld M: Treatment of rheumatoid arthritis with ornidazole: a randomized, double-blind, placebo-controlled study. RheumatoInt 2006, 26:1132-1137.

21. Olgemöld M: Levofloxacin treatment in patients with rheumatoid arthritis receiving methotrexate. South Med J 2007, 100:135-139.

22. Olgemöld M: Effects of clarithromycin in patients with active rheumatoid arthritis. Curr Med Res Opin 2007, 23:515-522.

23. O’Dell JR, Haire CE, Palmer WV, Drymaliski W, Weis S, Blakely K, Churchill M, Eckhoff PJ, Weaver A, Doud D, Erikson N, Dietz F, Olson R, Maloley P, Klassen DV: Antibody responses to oral anaerobic bacteria in patients with rheumatoid arthritis. J Rheumatol 2009, 36:1004-1010.

24. Kloppenburg M, Breedveld FC, Terwel JP, Mallee C, Dijkmans BA: Minocycline in active rheumatoid arthritis: a double-blind, placebo-controlled trial. Arthritis Rheum 1994, 37:529-536.

25. Kloppenburg M, Breedveld FC, Terwel JP, Mallee C, Dijkmans BA: Minocycline in active rheumatoid arthritis: a double-blind, placebo-controlled trial. Arthritis Rheum 1994, 37:529-536.

26. Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB: A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A 1996, 93:14014-14019.

27. Greenwald RA, Golub LM, Lavietes B, Ramamurthy NS, Gruber B, Laskin RS, McNamara TF: Tetracyclines inhibit human synovial collagensase in vivo and in vitro. J Rheumatol 1987, 14:28-32.

28. Chen M, Ono VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersh SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM, Conings R, Struyf S, Opdenakker G, Maudgal PC, Van Damme J: The inhibition of cartilage modification in health and disease. Am J Pathol 2008, 173:1129-1142.

29. Gaikwad A, Hashimoto H, Shimizu T, Nakamura Y, Yamada M, Sato M: Structural insight into citrulline degradation by arginase enzymes: structural basis for their diversity and commonality. Proteins 2006, 64:1010-1023.

30. Guo L, Zheng H, Olgemöld M, Mowbray K, Tong J, Ma X, Kohn A, Zan Z, Meijer C, Serre G: Fibrin deimination in synovial tissue is not specific for rheumatoid arthritis but commonly occurs during synovitides. J Immunol 2005, 174:5057-5064.

31. Suzuki A, Yamada R, Yamamoto K: Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann N Y Acad Sci 2007, 1108:323-339.

32. Suzuki A, Yamada R, Chang X, Tokuhiso S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaiya R, Ono M, Ohtsuki M, Furukawa H, Yoshihito S, Yukino S, Toma S, Matsuura T, Watkani S, Teshima R, Nishikoa Y, Sekine A, Iida A, Takahashi A, Tsuonoda T, Nakamura Y, Yamamoto K: Structural haptotytes of PD14, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003, 34:395-402.

33. Fujiwara T, Sebbag M, Barten D, Clavel C, Foulquier C, De Keyser F, Serre G: Cytokine regulation of peptidylarginine deiminase expression in monocytes and macrophages. Ann Rheum Dis 2004, 63:373-381.

34. Kinloch A, Lundberg K, Reid B, Wegrzyn N, Lim NH, Zanders AJ, Saxte T, Malmström V, Venables PJ: Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 2008, 58:2287-2295.

35. Maroniogna AR, Wood DL, Meier J, Raymakers R, Tselevale E, Vosch HM, Probert L, Casacida-Bonnefelt P, Moscarella MA: Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 2006, 26:1387-1396.

36. Makrigiannakos D, Akifin K, Lundeberg IE, Olofsson R, Ulfrenk AF, Klareskog L, Catrina AI: Cetrulination is an inflammation-dependent process. Ann Rheum Dis 2006, 65:1219-1222.

37. Gaikwad A, Sartakova L, Sarikaya E, Lim K, Howard A, Herzberg O: Structural insight into arginase degradation by arginase enzymes, an antibacterial and parasite drug target. J Biol Chem 2004, 279:14001-14008.

38. Shirai H, Mokrak Y, Mizuguchi K: The guanidino-group modifying enzymes: structural basis for their diversity and commonality. Proteins 2006, 64:1010-1023.
basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 2004, 11:777-783.

52. Rodriguez SB, Stitt BL, Ash DE: Expression of peptidylarginine deiminase from Porphyromonas gingivalis in Escherichia coli: enzyme purification and characterization. Arch Biochem Biophys 2009, 488:14-22.

53. Lourtakis A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EI, Pike RN: Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 1998, 435:45-48.

54. Niederman R, Brunkhorst B, Smith S, Weinreb RN, Ryder MI. Ammonia as a potential mediator of adult human periodontal infection: inhibition of neutrophil function. Arch Oral Biol 1990, 35 Suppl:2055-2095.

55. Belotti D, Rieppi M, Nicoletti MI, Casazza AM, Fojo T, Taraboletti G, Giavazzi R: Paclitaxel (Taxol(R)) inhibits motility of paclitaxel-resistant human ovarian carcinoma cells. Clin Cancer Res 1996, 2:1725-1730.

56. Pritzker LB, Moscarello MA: A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1998, 1388:154-160.

57. Brahn E, Tang C, Banquerigo ML: Peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? J Neurosci Res 2005, 80:120-128.

58. Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H, Toda T, Kimura N, Maruyama N: Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci 2005, 25:31-37.

59. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ: PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 2003, 25:1106-1118.