The Links Have It: Infobox Generation by Summarization over Linked Entities

Kezun Zhang,†, Yanghua Xiao,‡, Hanghang Tong,†, Haixun Wang,§, Wei Wang,§
†{kzhang12, shawyh, weiwang1}@fudan.edu.cn ‡tong@cs.ccny.cuny.edu §haixun@google.com
†School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
‡City College, CUNY, NY, USA
§Google Research, USA

ABSTRACT
Online encyclopedia such as Wikipedia has become one of the best sources of knowledge. Much effort has been devoted to expanding and enriching the structured data by automatic information extraction from unstructured text in Wikipedia. Although remarkable progresses have been made, their effectiveness and efficiency is still limited as they try to tackle an extremely difficult natural language understanding problems and heavily relies on supervised learning approaches which require large amount effort to label the training data.

In this paper, instead of performing information extraction over unstructured natural language text directly, we focus on a rich set of semi-structured data in Wikipedia articles: linked entities. The idea of this paper is the following: If we can summarize the relationship between the entity and its linked entities, we immediately harvest some of the most important information about the entity. To this end, we propose a novel rank aggregation approach to remove noise, an effective clustering and labeling algorithm to extract knowledge. We conduct extensive experiments to demonstrate the effectiveness and efficiency of the proposed solutions. Ultimately, we enrich Wikipedia with 10 million new facts by our approach.

Keywords
Knowledge Extraction, Rank Aggregation, Clustering, Cluster Labeling

1. INTRODUCTION
Online encyclopedia has become one of the best sources of knowledge. A typical example is Wikipedia, which contains 3.04 million articles for English language and covers a wide range of human knowledge. Another fast growing online encyclopedia is BaiduBaike, which contains 5 million entities and is the largest knowledge base in Chinese. Wikipedia and BaiduBaike are organized in similar ways, and have become the caliber of other online encyclopedias. In this paper, we focus on these two encyclopedias for information extraction.

Among others, one critical reason that makes online encyclopedias extremely valuable is that part of their data is structured, and hence machine processible. Usually, a Wikipedia article is about an entity. Many Wikipedia articles contain structured information such as table, image, text, citation, etc., all of which are the targets of information extraction. More importantly, many entities are associated with an infobox which consists of a set of (property, value) pairs about the entities. As an example, Figure 1 shows the Wikipedia article about Steve Jobs, with an infobox on the right side, wherein the first property is Born and its value is Steven Paul Jobs, February 24, 1955, San Francisco, California, US.

Such structured information is the core building block behind many applications, including search engines, for answering user questions about these entities, etc.

Steve Jobs
From Wikipedia, the free encyclopedia
This article is about the person. For the biography, see Steve Jobs (book). For the 2015 biographical film, see Jobs (film).

Steven Paul "Steve" Jobs (IPA) /ˈʃtɛv/; February 24, 1955 – October 5, 2011 was an American entrepreneur, computer scientist, and inventor. He was the co-founder of Apple Inc. He was also co-founder of Pixar Animation Studios, a computer animation company, and was credited with the success of the Herbalife and Microsoft products. He is considered one of the primary innovators in the modern computer revolution. Jobs also designed and performed as the chief executive officer of Apple. He became a member of the board of directors of The Walt Disney Company in 2006, when Disney acquired Pixar. Jobs was among the first to see the commercial potential of Steve Wozniak’s computer-related projects, which led to the creation of the Apple II, a line of derivative floppy disk computers, one of the first widely available computer printers, to the market.

Born Steven Jobs
February 24, 1955
Birthplace San Francisco, California, US
Died October 5, 2011 (aged 56)
Residence Palo Alto, California, US
Alma mater Reed College (dropout)
Occupation Co-founder, Chairman and CEO
Apple Inc. Co-founder and CEO
Founder of Pixar

Figure 1: Fragment of Steve Jobs in Wikipedia.

Despite much effort to enrich structured data, the current infobox in Wikipedia is often incomplete and inconsistent. This is mainly due to the fact that most infobox is generated by human editing, which is not just labor intensive but also error prone. To be specific,

• About 55% Wikipedia articles do not have infobox. These are not only those less popular articles, but also new articles [?]. For articles that have infobox, the information in the infobox is often incomplete. Some important properties may be missing, and values of certain properties may be incomplete [?].

• Information in infobox is often inconsistent across different articles and entities. For example, the property "place of birth" in some infoboxes is also expressed as "birthplace" in other infoboxes; The property value "America" and "United States (US), America" refer to the same country, etc.

In order to address the drawbacks of human editing, recently, extensive effort has focused on expanding and enriching the structured data by automatic information extraction from unstructured text in Wikipedia [? , ? , ?]. Although remarkable progresses have been made, their effectiveness and scalability are still

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Copyright 2011 ACM ACM-XXXXX-XX-X/XX/XX ...$10.00.

http://www.wikipedia.org
http://www.baike.baidu.com/
somewhat limited mainly for the two reasons. First, these methods rely on several natural language understanding tasks (e.g., named entity recognition, dependency parsing, and relationship extraction), which themselves are extremely challenging and error prone. Second, many of the existing approaches are costly, since they are essentially supervised learning methods, and hence require large amount of labeled training examples.

In this paper, we propose an alternative approach for enriching structured data. Instead of performing information extraction over unstructured natural language text directly, we focus on a rich set of semi-structured data in Wikipedia articles linked entities. A Wikipedia article typically consists of many links to other Wikipedia articles. Intuitively, the author of the article, in describing a Wikipedia entity, refers the reader to many other entities that are important or related to the entity. The key idea of this paper is the following: If we can summarize the relationship between the entity and its linked entities, then we immediately harvest some of the most important information about the entity.

Table 1: Entities
Key Story
Care (film)
Brave (2012 film)
Intel
Dell
Apple Inc.
blood pressure
The Public Theater

Table 2: Knowledge
property
Pixar Animated Films
Electronic Companies
American Writers
Apple Inc. Hardware

Let us use the example in Figure 1 to illustrate the intuition of our approach. Table 1 lists some linked entities in the Wikipedia article of Steve Jobs, which cover a variety of different aspects of the article entity Steve Jobs. If we further convert these linked entities into something shown in Table 2, where we assign a property label to a linked entity or a set of linked entities, the result provides a comprehensive, structured summary of the entity Steve Jobs.

In order to fulfill this basic idea, there are the following challenges we need to address as follows.

C1. How to accurately summarize linked entities. In order to convert the unstructured linked entities list in Table 1 to structured (property, value) pairs in Table 2, we need to group the similar linked entities (i.e., values) together as well as assign a label (i.e., property) for each group. Here, our key observation is that it is relatively easier to summarize a group of entities than an individual because the group members disambiguate each other. We thus propose a “cluster-then-label” approach: We divide linked entities into different semantic groups, and then give each group a semantic label (a property). More specifically, we propose a Q-means based clustering algorithm to cluster the linked entities into different semantic groups. In the Steve Jobs example, we obtain four clusters. We further propose a label generating algorithm to generate a label for each group. Each labeled group is eventually a candidate (property, value) pair for the infobox.

C2. How to remove unrelated linked entities. Although most linked entities are semantically related to the article entity, some might have weak or no semantic relevance to the article entity. Take the Steve Jobs example again, we can see that some linked entities (e.g., blood pressure and The Public Theater, etc) are not related to Steve Jobs. To remove these irrelevant linked entities, we propose a novel ranking aggregation approach that integrates different ranking mechanisms to detect noisy linked entities.

Contributions. In summary, this paper proposes an alternative, radically different approach for infobox generalization for online encyclopedias. By focusing on linked entities, we bypass all the difficulties posed by the existing approaches, including the challenging NLP tasks, manual labeling and human editing. More specially, the main contributions of the paper are three-fold. First, to extract knowledge from the linked entities, we propose an effective clustering and labeling algorithm. Second, we propose a novel rank aggregation approach to detect and remove noisy linked entities for wiki articles. Third, we conduct extensive experimental evaluations to show that our method generates comprehensive infobox with better quality.

The rest of the paper is organized as follows. In section 2, we give a detailed description of handling noisy linked entities. In section 3, we introduce the “cluster-and-label” algorithm. Datasets and experiments are described in section 4. In section 5, we introduce some related works. In section 6, we conclude our paper.

2. REMOVE NOISY LINKED ENTITIES

In this section, we show how we remove noisy linked entities. We first show that the noisy entities are nontrivial problem in online encyclopedias by empirical studies. Then, we propose a novel ranking aggregation approach to identify the noisy linked entities.

2.1 Empirical Studies

In typical online encyclopedias, some linked entities have weak relevance to the article entity. These entities become noises for the understanding of the semantic of the article entity. For example, ‘Steve Jobs’ in Wikipedia also has links to blood pressure, The Public Theater etc., each of which obviously has a weak relationship to ‘Steve Jobs’. They are linked just because they have a corresponding entry in the knowledge base. We need to identify and remove them.

Next, we design an experiment to show that noisy entities are not trivial phenomenon. That is, most articles have noisy linked entities. For each article in Wikipedia or BaiduBaike, we calculate a semantic distance between the article and each of its linked entities. In our study, we use Google Distance Inspired distance [7], which is defined as

\[
sr(a,b) = \frac{\log(\max(|A|,|B|) - \log(|A \cap B|))}{\log(|W|) - \log(\min(|A|,|B|))}
\]

where \(A\) or \(B\) represents linked entities of article \(a\) or \(b\), and \(W\) represents entire articles in Wikipedia. We regard the linked entity as noise if the distance is larger than threshold 0.53.

We summarize the cumulative distribution of the percentage of noisy links, and the results on Wikipedia and BaiduBaike are shown in Figure 2. We found that in Wikipedia nearly 73% of articles have noisy linked entities (only 27% articles have no noisy entities), and 21% articles have more than 20% noisy linked entities. In BaiduBaike, nearly 80% articles have noisy links (20% articles have no noisy entities), and 42% articles have more than 20% noisy linked entities. The existence of the noisy linked entities makes it difficult to accurately understand the semantic understanding of entities.

2.2 Position-aware Ranking Aggregation

The basic idea to remove noisy linked entities is to rank all linked entities by their semantic relatedness to the article entity and then remove the semantically unrelated entities. Thus, ranking the semantic relatedness becomes a key issue. There are many individual ranking schemes of semantic relatedness. However, in general each individual ranking can only characterize the a specific aspect of the semantic relatedness. Thus, an aggregated

![Figure 2: Noisy Links Distribution in Wikipedia and BaiduBaike](image-url)
ranking is necessary for the accurate identification of non-related entities. Many existing ranking aggregation approaches have been proposed. However most of them assume the uniform quality distribution of the ranking. That is the ranking results have the same quality for any two elements in the ordering. However, we found that the individual ranking we used in this paper has a non-uniform quality distribution, which motivates us to propose a position-aware ranking aggregation approach.

Preliminaries. We first formalize the preliminary concepts. A ranking r_i can be considered as a linear ordering on the linked entities. This means that given the linked entities set U with N elements, r_i is an one to one mapping from U to $1, 2, ..., N$. We always assume that elements of higher or topper rankings have smaller value. The quality function q_r of the ranking r_i is defined as a function $q_r: \{1, ..., N\} \rightarrow [0, 1]$. $q_r(i)$ measures our belief on the fact that the i-th element under the ranking r owns the i-th ranking position. Hence, q_r is a function of the position of the ranking. Suppose we are giving two rankings r_1, r_2 such that their quality function have opposite monotonicity. That is, $q_{r_1}(i)$ increases and $q_{r_2}(i)$ decreases with i. Thus, $r_1(e) \leftarrow (n - r_2(e))$ quantify the quality of e ranking r_1 (or r_2). We refer to them as the credit of e in the ranking. The smaller $r_1(e)$ (or $(n - r_2(e))$ is, the more credit that e owns in r_1 (or r_2).

2.2.1 Metrics

Our aggregated ranking is developed upon two wildly used measures, co-occurrence based metric and overlap coefficient. This subsection elaborates these two measures.

Co-occurrence. Entities may co-occur in a common page as linked entities. If two entities always co-occur in a page, they are more likely semantically related. For example, ‘milk’ and ‘bread’ always co-occur in pages describing food and hence they are relevant in semantic. We use PMI (pointwise mutual information) to measure the degree of the co-occurrence for a pair of entities. PMI of entity x and entity y is defined as:

$$\text{PMI}(x, y) = \log \frac{p(x, y)}{p(x)p(y)}$$

where $p(x, y)$ is the probability that x and y co-occur in the same entity page, $p(x)$ (or $p(y)$) is the probability that entity x (or y) occurs in all co-occurrence pairs. PMI is zero when x and y are independent, and maximizes when x and y are perfectly related (i.e., when $p(x, y)$ equals to $p(x) \cdot p(y)$). Compared to the direct co-occurrence number, PMI evaluate their relatedness by statistical independence, which penalizes the independent pairs with high co-occurrence number.

Overlap coefficient. Entities may share some common linked entities. A pair of entities has a larger overlap of linked entities like food and drinks. We use the Weighted Jaccard Coefficient (WJC) to quantify the overlap ratio for an entity pair. For two entities x and y, WJC is defined as:

$$\text{WJC}(x, y) = \frac{\sum_{e \in \text{N}_x \cap \text{N}_y} w(e)}{\sum_{e \in \text{N}_x \cup \text{N}_y} w(e')}$$

where N_x is the linked entities of x. Here, $w(e)$ is used as the weight of e, defined as:

$$w(e) = \log N - n(e) + 0.5 \quad \text{n(e) + 0.5}$$

where N is total number of articles, and $n(e)$ represents the number of articles containing a link to entity e. Compared to the naive Jaccard, WJC use the $w(e)$ as the weight to suppress the general entities. Like Jaccard coefficient, the higher the WJC is, the more related the entity pair is. If all entities have the same weight, WJC will degrade into the naive Jaccard coefficient.

2.2.2 Position-aware Ranking Aggregation

Our new ranking aggregation is based on the linear combination. Given two rankings r_1, r_2 on U, the generic linear combination define the combined ranking σ as

$$\sigma(e) = \alpha \times r_1(e) + (1 - \alpha) \times r_2(e)$$

for any $e \in U$, where α is used to control the preference to different rankings. In the naive linear combination, α is a static constant. That is, we use the same α for any $e \in U$.

However, previous observation implies that the preference to different rankings is dependent on the position of the entity under different rankings. Hence, in our new ranking aggregation we regard α as a function of $r_1(e)$ and $r_2(e)$ so that it can express the best preference to rankings for different entities. Specifically, we define $\alpha(e)$ as:

$$\alpha(e) = \frac{1}{1 + \frac{r_1(e)}{(n - r_2(e))} - \beta}$$

where β is a parameter used to control the speed that the curve approaches to the climax. Based on $\alpha(e)$, we define our new scoring function of e:

$$\text{score}(e) = \alpha(e) \cdot r_1(e) + (1 - \alpha(e)) \cdot r_2(e)$$

When $\beta = 1$, we have the new scoring function as

$$\text{score}(e) = \frac{n \cdot r_1(e) + (n - r_2(e)) \cdot (n - r_2(e))}{n - r_2(e) + r_1(e)}$$

It is easy to check that $\text{score}(e) \in [0, 1]$.

Given the new score values of linked entities, we first normalize them. We use some articles as training data and label their linked entities as related or unrelated. We build a binary classification model and draw its ROC curve, finding that 0.77 is the best threshold to distinguish unrelated linked entities from others. We use this threshold for all the other articles.
Given two rankings with oppositely monotonic quality functions, the aggregated ranking should bias towards the one with higher quality. Specifically, for any entity \(e \), we evaluate \(\sigma(e) \) according to \(\frac{r_1(e)}{n-r_2(e)} \). There are three specific cases:

1. Case 1: \(r_1(e)/(n-r_2(e)) \approx 1 \). In this case, \(e \) owns similar credit in \(r_1 \) and \(r_2 \). Hence, \(r_1(e) \) and \(r_1(e) \) should be assigned a similar weight close to 0.5.

2. Case 2: \(r_1(e)/(n-r_2(e)) > 1 \). In this case, \(e \) owns more credits in \(r_1 \) than in \(r_2 \). Hence, \(\alpha \) should bias toward \(r_1(e) \). That means the weight of \(r_1(e) \) should be larger than 0.5 in the linear combination.

3. Case 3: \(r_1(e)/(n-r_2(e)) < 1 \). It is the reverse case of Case 2. In this case, \(\alpha \) should bias toward \(r_2(e) \).

Clearly, a sigmoid function can express the desired relationship between \(\alpha \) and the ratio. Specifically, we use the most widely used logistic function \(s(x) \), which is defined as:

\[
s(x) = \frac{1}{1 + \exp(-\beta x)}
\]

where \(\beta \) is a parameter used to control the speed that the curve approaches to the climax. Furthermore, if we replace the ratio by the its log ratio, all the requirement in the three cases can be satisfied. The log ratio is defined as:

\[
\text{ratio}(e) = \ln \left(\frac{r_1(e)}{n-r_2(e)} \right)
\]

Substituting \(x \) with the the log ratio, we have the \(\alpha \) as defined in Eq. 9.

Selection of \(\beta \)
We use 3380 linked entities of Shanghai, Apple Inc., Steve Jobs, China, New York City, Barack Obama as samples. For each of these linked entity, we calculate its ratio function value (we use PMI and WJC as \(r_1 \) and \(r_2 \), respectively). We plot their distribution of ratio in Figure 3(a). From the distribution, we can see that most ratio values lie in the range of [-3,3], which hosts 95% of all sampled linked entities. We also give the simulation of \(\alpha \) as a function of \(\text{ratio}(e) \) (see Eq. 9) with \(\beta \) set as different values in Figure 3(b). The simulation shows that the larger \(\beta \) is, the sharper increase happens around 0. The simulation also reveals that when \(\beta = 0 \) the range of ratio in which a significant \(\alpha \) can be derived almost overlaps with the real range observed from the samples. Hence, typically we set \(\beta = 1 \).

3. CLUSTERING AND LABELING
After removing the noisy linked entities, we keep only the semantically related linked entities. Next, we use a G-means based clustering approach to divide them into different semantic groups. Then, we label each group with an appropriate property name. In this way, we discover a new property and its value for an entity from its linked entities. Distance metric is key for a clustering algorithm. Hence, we first elaborate the distance metric.

3.1 Feature Selection and Distance Metric
To define the distance metric, we first need to identify the effective features to characterize the objects to be clustered. Here, we use category information of entities for the clustering. In Wikipedia or BaiduBaike, an entity is usually assigned one or more categories by editors. A category is widely used to represent the concept of an entity. Hence, if a pair of entities has the similar categories, they probably belong to same concept (or domain, topic). Category or concepts information has been shown to be effective for the document clustering [7] and topic identification [8], which motivates us to use categories to construct the feature vector for the entity.

Problem statement
The naive solution is using direct categories of entities as the features. Let \(F_e \) be the feature set for entity \(e \). In the naive solution, \(F_e \) contains all the direct categories of \(e \). Let \(n \) be the number of all categories in Wiki. We define a \(n \)-dimensional feature vector for each entity \(e \), i.e., \(f_e = \langle w(c_1), \ldots, w(c_n) \rangle \), where \(w(c_i) \) measures the significance that concept \(c_i \) characterizes \(e \). In general, \(w(c_i) = 0 \) when \(c_i \) is not in \(F_e \), otherwise, \(w(c_i) \) is defined by a certain measurement (such as tf-idf functions, we will elaborate it in later texts). Given two feature vectors of two entities \(a, b \), their distance is defined by the cosine distance:

\[
D(a, b) = 1 - \frac{f_a \cdot f_b}{\|f_a\| \cdot \|f_b\|}
\]

However, using the direct categories for the distance metrics has the following two weaknesses:

- First, many categories are not hypernyms of the entity. Some categories express the semantics other than IsA relationship. For example, Steve Jobs has category American Buddhists, which is an IsA relationship. But it also has 1955 births (a property), Apple Inc (works-for relationship) and many other semantics other than IsA. In general, it is hard to use these non-IsA categories to characterize the concept of an entity.

- Second, many direct categories are quite specific. We calculate the frequency of all categories in Wikipedia. We found that among the top-100 most frequent categories, 75% is in the form of ‘? year of birth’ or ‘? year of death’. Obviously these are specific categories that characterize a specific property of the entity. In general, the more specific the category is, the less possible two semantically-close concepts can be matched in terms of the category. For example, in category graph, shows in Figure 4 Apple Inc. can only match with Moore (an IP-rich fabless semiconductor company) in term of a more abstract category technology companies instead of the specific one (Electronics companies).

Algorithm 1 Feature Selection and Weighting Algorithm
```
Require: Entity e, Set of concept-category pair C
Ensure: Feature and corresponding weight of e
1: Isa taxonomy graph G ← Isa-Construction(C);
2: \( A_e \) ← reachable categories from \( e \) in \( G \);
3: for \( c \in A_e \) do
4: \( \text{weight of } c \in e = p(e) \cdot w(c) \), as in Eq. 11 to Eq. 13;
5: \( \text{mark } c \text{ as a feature of } e \), corresponding weight is \( w_c \);
6: end for
7: return \( C \);
8: function Isa-Construction(C)
9: \( G = \phi \); Isa taxonomy graph, a directed graph;
10: \( \alpha \): a threshold parameter;
11: for each concept, category in \( C \) do
12: \( \text{weight of category for concept } e \) is calculated by Eq. 12;
13: add an edge <concept,category> to \( G \) if weight > \( \alpha \);
14: end for
15: return \( G \);
16: end function
```

Figure 3: Ratio and alpha.
IsA taxonomy construction. To overcome the above weaknesses, we need to extend the feature set from the direct categories to high-level categories, described in Algorithm 1. We may recursively use the categories of the categories for the expansion. However, the extension is not trivial. Because we need to ensure the expanded category can characterize the entity accurately. That is to say we expect to improve the recall without sacrificing the precision. For this purpose, we generally need a certain constraints on the extension to ensure the accuracy. A general constraint is to only select the categories that are hypernyms of the entity. Because a hypernym is a concept of the entity, which is a natural interpretation of the entity. Thus, the problem is reduced to identification of a category that is a hypernym of an entity. We define a scoring function \(p(c|e) \) to characterize the confidence on category \(c \) being a hypernym of entity \(e \).

The definition of \(p(c|e) \) depends on the hierarchical structure of the hypernyms of \(e \). For each entity \(e \), we can construct a high-quality hierarchical taxonomy just according to the Wiki categories. The taxonomy for entity \(e \), denoted by \(G_e(V_e, E_e, w_c) \), is a direct acyclic graph with each edge \(< c_1, c_2 \rangle \) assigned a weight \(w(<c_1, c_2>) = p(c_2|c_1) \) which reflects our confidence on the fact that \(c_2 \) is a hypernym of \(c_1 \).

Algorithm to construct the taxonomy. Given a threshold parameter \(\alpha \), we construct the IsA taxonomy \(G_e(V_e, E_e, w_c) \) for an entity or category \(e \) by a level wise solution. Let \(C = C^0 = \{ e \} \). Suppose we have finished the \(i \)-th level (\(i \) starts from 0). The \(i+1 \)-th level is as follows. For each category \(c_2 \) of any element (say \(c_1 \)) in \(C^i \) such that \(p(c_2|c_1) \geq \alpha \), we add the direct edge from \(c_1 \) to \(c_2 \) into \(E_e \) and use \(p(c_2|c_1) \) as the edge weight. And add \(c_1 \) into \(C \) and \(V_e \) if \(c_1 \notin \bigcup_{C^j \subseteq C^j} C_j \). These newly added categories constitute \(C^{i+1} \). We add the direct edge from \(c_1 \) to \(c_2 \) into \(E_e \) and use \(p(c_2|c_1) \) as the edge weight. The procedure is repeated until no more valid category can be found. It is easy to prove that \(G_e \) is a direct acyclic graph.

Figure 4: Category graph in Wikipedia.

Scoring functions. Next, we define \(p(c|e) \). An observation is that many real hypernyms contains many frequent occurring words among the categories of the entities. This inspiration implies that we can use the word frequency to define \(p(c|e) \). Specifically, for an entity or category \(e \) and its categories \(cat(e) \) in Wiki. We first score the words in hypernym \(c \) for \(e \). Let \(f(s) \) be the number of categories in \(cat(e) \) that contains word \(s \). We have

\[
p(s|e) = \frac{f(s)}{|cat(e)|} \quad (11)
\]

Let \(k_c \) be the number of unique words in \(c \). The confidence that the category \(c \) is an appropriate hypernym of \(e \) is defined as:

\[
p(c|e) = \frac{1}{k_c} \sum_{w \in c} p(s|e) \quad (12)
\]

Let \(P_{ec} \) be the set of all the paths from \(e \) to \(c \) and \(p_{ec} \) be one of such path. Now we are ready to define the confidence score for any category \(c \) in \(G_e \) as a hypernym for \(e \).

\[
p(c|e) = \max_{p_{ec} \in P_{ec}} \prod_{<c_i, c_j> \in p_{ec}} p(c_j|c_i) \quad (13)
\]

- The score is defined as the maximal accumulative product of the edge weight over all paths connecting \(e \) to \(c \). The larger the maximal produce, the more possible the concept is a hypernym of the entity. We give Example 1 to illustrate our scoring functions.

Example 1 (Scoring function). Consider Apple Inc., its direct categories in Wikipedia are \{electronics companies, home computer hardware companies, electronics companies of the united states, computer companies of the United States, steve jobs, apple inc., 1976 establishments in California, ...\}. The most frequent words in the categories are \{companies, electronics, computer, united states\}. Thus, the categories containing these words are likely hypernyms of apple inc., such as \{electronics companies of the united states, electronics companies\}. But steve jobs will be dropped in our approach since it contains less frequent words. In the construction of the IsA taxonomy for the apple entity, some high-level categories such as technology companies will be covered. Consequently, many indirect category will be used to characterize an entity.

Improved distance metric. Finally, we are ready to define our improved distance metric, which share the same expression as Eq. 10 but with two improvements. First, \(F_e \) is extend into \(V_e - \{e\} \). That is all categories in \(G_e \) except \(e \) itself will be used as features. Second, \(w(c) \) is defined according to \(p(c|e) \). We use the tf-idf framework to define \(w(c) \). We first define the idf of a concept \(c \), i.e., \(idf(c) \) as

\[
idf(c) = \log \frac{N}{|\{c|e \in V_e\}|} \quad (14)
\]

where \(N \) is the total number of entities in the Wiki and \(|\{c|e \in V_e\}| \) is the number of entities whose IsA taxonomy contains \(c \). Thus, the final weight of each feature is:

\[
w(c) = p(c|e) \cdot idf(c) \quad (15)
\]

To see the effectiveness of the above measurement, we rank the categories of entity Apple Inc. by \(w(c) \) in Table 4. We can see that most categories of higher rank can characterize the entity accurately and expressively.

Table 4: Category ranking for Apple Inc.

computer companies of the united states	electronics companies
technology companies of the united states	networking hardware companies
retail companies of the united states	home computer hardware companies
steve jobs	apple inc.
warrants issued in hong kong stock exchange	

3.2 Clustering Algorithm

We may directly use K-means approach as the basic framework for clustering given the distance metric. But in our case, the naive K-means leads to bad results due to the following reasons.

1. First, in naive K-means the parameter K is specified by users, which is impossible when millions of entity clustering tasks need to be executed.

2. Second, the naive K-means randomly selection initial centers. The selection of initial center is influential on the final results. A smart selection strategy is expected to obtain a better clustering result.

To solve these problems, we propose a new clustering approach. The basic idea is using statistical test (proposed in G-means [7]) to guide the selection of best \(K \), and using a dynamically center selection strategy (proposed in K-means++ [8]) to determine the best initial central points.
Our clustering algorithm is described in Algorithm 2. The algorithm accepts the set of data points \(X \) as the input and return \(K \) clusters. The algorithm recursively bi-partition the data until the stop criteria is reached. The bi-partition procedure consists of three major steps:

1. In the first step, we select two data points \(d_1, d_2 \in G \) as the initial centers by K-means++ [7]. K-means++ is smarter than the random generation of two cluster centers. It follows the principle that the probability of a datapoint to be center should be proportional to the distance from the already selected centers. Following the idea, we first choose a datapoint \(d_1 \) uniformly at random from the group \(X \). Then, we select another datapoint \(d_2 \) from the group, with probability
 \[
 \frac{D(d_1, d_2)^2}{\sum_{x \in X} D(d_1, d_2)^2},
 \]
 where \(D(d_1, d_2) \) represents distance between \(d_1 \) and \(d_2 \).

2. In the second step, we run K-means on data points in \(G \) with \(K = 2 \) and the initial center as \(d_1, d_2 \). After the K-means reaches to the convergence state or gets maximal iteration, we get two clusters \(G_1, G_2 \) and their new centers \(c_1, c_2 \).

3. In the third step, project datapoint \(d_i \) in \(G \) onto vector \(c_1 - c_2 \), which \(d_i' = d_i - (c_1 - c_2)/\|c_1 - c_2\| \). And let \(Z \) be the cumulative distribution of \(d_i' \). Finally, we test whether the Anderson-Darling statistic value \(A^2(Z) \) lies in the range of non-critical values at significance level \(\alpha \). If true, keep the original group and abandon the splitting. Otherwise, replace the group with two subclusters \(G_1, G_2 \) and continue bi-partition until no new clusters emerging.

\[\text{Algorithm 2 G-means Clustering Algorithm}\]

Require: Datapoints \(X \), significance level \(\alpha \)

Ensure: \(K \) Clusters

1. \(K \leftarrow 1, G \leftarrow X \)
2. \(\text{Clusters} \leftarrow \text{Bi-Partition}(G, \alpha) \)
3. return Clusters

4. \[\text{function Bi-Partition}(G, \alpha)\]
5. \[\text{function GaussianTest}(G_1, c_1, c_2) \]
6. \[\text{function Bi-Partition}(G, \alpha) \]
7. \[\text{Run K-means with } k = 2 \text{ and the initial center as } d_1, d_2 \]
8. \[\text{Let } G_1, G_2 \text{ be the two clusters and } c_1, c_2 \text{ be the corresponding two cluster centers} \]
9. \[\text{if GaussianTest}(G_1, c_1, c_2) \text{ then } \text{ Bi-Partition}(G_1, \alpha) \cup \text{ Bi-Partition}(G_2, \alpha) \]
10. return \(G \)
11. else
12. \(K \leftarrow K + 1 \)
13. \(\text{Bi-Partition}(G, \alpha) \)
14. end if
15. end function

For example, we remove the noisy entities for Apple Inc. in Wikipedia, and cluster them in above algorithm, clusters show in Table 5.

3.3 Labeling the Cluster

Next, we assign a semantic label for each group. In this way, we explain why group of linked entities are linked to the article entity. The semantic label as well as the group of entities thus becomes the property of the target entity and its corresponding value. This information is a good supplement of the current infobox. For example, a cluster which contains \{ Google Maps, ios 6, iBooks, icloud, iTunes \}. If we assign the semantic label ios software for the cluster, we successfully enrich the infobox of Apple Inc. with a property(ios software).

That is the problem of cluster labeling, some researches have already conducted on cluster labeling. A popular method for labeling cluster is applying the statistic technologies to select frequency features. That is identifying the most common terms from the text that best represent the cluster topic. But the frequent terms may not convey meaningful message of the cluster. Because some popular terms are also frequently occur in other clusters.

As a result, an appropriate cluster label should characterize the common topic of entities in each cluster and simultaneously informative. A good cluster label should satisfy two requirements:

1. **Completeness.** It should cover most entities in the cluster. E.G, for first cluster in Table 5 label russian-jewish descent only cover one entity in the cluster. So we want a wildly covered label which can represents the group correctly.

2. **Informativeness.** We hope the label is the most specific label while covering all entities in the cluster. E.g. in first cluster people by status covers all entities in the cluster, but it is not informative.

The completeness and the informativeness are contradicted to each other. In general, the more abstract a label, the more entities that it can cover. Some improvements have been done to generate a meaningful label. Inverse frequent term, takes both frequency and weight of a term into consideration. A meaningful label for a cluster is a term with maximal inverse frequency.

Baseline labeling strategies.

We first give two naive methods to label clusters. However, the naive solution in general has one or more weakness, which motivates us to a least common ancestor (LCA) based solution. In the previous subsection, we have built the IsA Taxonomy graph \(G_e \) for each entity \(e \). All categories in \(G_e \) will be used for the labeling. Given a cluster \(X = \{e_1, e_2, ..., e_k\} \), let \(C \) be the union of each \(V_e \). We have two baseline labeling strategies.

1. **Most Frequent Category** (MF for short). The direct solution is labeling the cluster using the most popular category. Let \(tf(c) \) be the number of \(e \) such that \(c \in V_e \) for all entities in the cluster. Thus, MF selection strategy is:
 \[\arg \max_{c \in C} tf(c)\]

2. **Most Frequent yet Informative Category** (MFI for short) Apparently, MF tend to select popular concept and most popular concept are abstract concept. Thus, the informativeness is sacrificed. To avoid this, we take the idf like factor into account. Formally, MFI selection strategy is:
 \[\arg \max_{c \in C} tf(c) \cdot idf(c)\]

 \[\text{idf}(c) \text{ is defined by Eq. 14.}\]

However, the above labeling methods have the following weakness. 1) MF tends to select general (with good completeness) but less informative label. 2) MFI can recognize specific labels, but in many cases maybe over specific. Because some specific concepts own a large idf weight. Next, we propose a least common ancestor model to handle the tricky tradeoff between the informativeness and complexity.

3.3.1 LCA based solution

The LCA model is defined on the IsA Taxonomy graph for the cluster \(X \) to be labeled. Given a cluster \(X = \{e_1, e_2, ..., e_k\} \), we first construct the IsA Taxonomy graph for \(X, G_X \). We define \(G_X \) as the union of all IsA taxonomy graph \(G_e \) such that \(e \in X \). Here, we ignore the weight of \(G_x \). Thus the union of two IsA taxonomy graphs \(G_{e_1} \) and \(G_{e_2} \) is the graph \(G'(V', E') \) with \(V' = V_{e_1} \cup V_{e_2} \) and \(E' = E_{e_1} \cup E_{e_2} \). Obviously, \(G_X \) is a DAG. We can also define \(G \) as the union of all IsA taxonomy \(G_e \) for each entity \(e \).

Definition 1 (IsA taxonomy graph for cluster \(X \)). The IsA taxonomy graph for cluster \(X, G_X, \) is the union of all IsA taxonomy graph \(G_e \) for each \(e \in X \).

Proposition 1. For a set of entities \(X, G_X \) is a directed acrylic graph.
Problem Model. Given G_X, finding a best cluster label for X thus is reduced to the problem of finding a least common ancestor of X from G_X. Given two nodes u, v in G, if u has a path to v, then v is an ancestor of u. For a set of entities X, a LCA in G_X is an ancestor of all entities in X which has no descendant that is an ancestor of entities in X.

The direct LCA model clearly can ensure we find a general enough concept to cover all entities. However, the model may sacrifice the informativeness. Hence, we need a more flexible model allowing us to control the tradeoff between informativeness and completeness. We introduce a coverage constraint ζ into LCA to turn the tradeoff between coverage and informativeness.

Note that there may exist more than one LCA. We use idf function (defined in Eq. [13]) to help select the best LCA. We propose maximal ζ-LCA to reflect all these requisites.

Problem Definition 1 (Maximal ζ-LCA). Given an ISA taxonomy graph G_X for the entity cluster X, find an node a from G_X such that a is the LCA of at least $|X|$ entities in X and $idf(a)$ is maximized.

Solution. To find the best solution, we first give the monotonicity property of the idf function defined in Eq. [13]. The lemma [4] states that if a category c_1 is an ancestor of c_2 in G, then $idf(c_1) \leq idf(c_2)$. It is obviously true. Because according to Eq. [13] the number of descendants of c_1 is no less than that of c_2. The lemma suggests that bottom up level wise search solution for the maximal ζ-LCA of X. Because the lower level (close to the entities) ζ-LCA will certainly has a larger idf value than the upper level.

For example, an ISA taxonomy graph G, shows in Figure 1 compose of 4 entities and 4 categories. c_2 is parent category of c_1, so c_2 is ancestor of e_1, e_2, e_3. Thus c_1 occurs in feature of e_1, e_2 and c_2 occurs in feature of e_1, e_2, e_3, then $idf(e_1) = log(4/2)$, and $idf(c_2) = log(4/3)$. Similarly, c_4 is ancestor of both e_1 and e_2, then $idf(c_4) = log(6/4)$. Clearly idf of a category is always no larger than its descendant category.

Specifically, we use L_i ($i \geq 1$) to denote the categories to be tested in the i-th level. L_1 is defined as the parents of X in G_X. In the i-th level, we first let L_i be the parents of categories of L_{i-1}. Then, we calculate the coverage of each category in L_i. If any category cover at least $|X|$ entities, we return the one with maximal idf value from L_i. Otherwise, the procedure proceeds into the $(i + 1)$-th level. Note that in each level, we use the idf function to select the most specific one among all ζ-LCA discovered in the same level. We also highlight that L_i many overlap with L_{i-1}. The above-level wise search can certainly find the optimal solution due to Lemma [1].

Lemma 1 (Monotonicity). Given two categories c_1, c_2, if c_1 is an ancestor of c_2 in G, we have $idf(c_1) \leq idf(c_2)$.

Example 2. We give the example to show how maximal ζ-LCA can be found. Suppose there is cluster X compose of e_1, e_2, e_3 in Figure 2 and we set $\zeta = 1$. First, for categories in $L_1 = \{c_1, c_2\}$, their coverage is 0.67, 0.33 respectively. Both coverage is lower than ζ, so we continue search upper level $L_2 = \{c_2, c_4\}$, here both coverage of c_2 and c_4 is 1. Hence c_2 and c_4 satisfy the requirement of ζ-LCA, we select the most specific one c_2 as the maximal ζ-LCA since idf weight of c_2 is larger than c_4.

Implementation Optimizations. In real implementations, we have two issues to address. First, we set a maximal layer limit to boost the search procedure. Second, we need to handle cases where no appropriate a ζ-LCA is found. Next, we elaborate our solutions to each issue.

We set a upper limit for the search level due to two reasons. On one hand, X may have no valid ζ-LCA. On the other hand, even if we find a ζ-LCA in a higher layer, the category we found may be too general thus is meaningless.

Note that our algorithm may return no result due to two reasons. First, the constraint posed by ζ is too stricter. Second, the upper-limit may although boosted the search but may miss some valid solution occurring in upper level. To solve this problem, we run the maximal ζ-LCA search iteratively with ζ varying from 1 to ζ_{max} (with increment as ζ_{inc}). Obviously, the iterative search can certainly find a solution if at least category occur in G_X.

4. EXPERIMENT

In this section, we present our experimental results. We run the experiments on Wikipedia (released in January 1, 2013). The basic statistics of Wikipedia before and after revoking the noisy entities are shown in Table 5. We refer to the linked entity with at least one category as valid linked entity because we need to use the category information for the clustering. We run all experiments on a 64 bit Windows Server 2008 system with Intel Xeon E5620 @ 2.40GHz 16 cores cpu and 48G memory. We implement all the programs in Java.

We totally find 9.8M clusters for 1.95M articles. For each article, we find 5 cluster on average. Each cluster contains 3.3 entities on average. If we treat the <article entity, property, an entity in a cluster> as a single fact, we extracted overall 32M facts.

Table 5: Statistics of Wikipedia before/after removing the noisy linked entities

Item	before	after
#article	0.91M	0.81M
#categories	0.81M	0.84M
#article has linked entities	3.01M	2.01M
#linked entity per article	30	20
#article has valid entity	2.21M	1.95M

4.1 Effectiveness

In this subsection, we justify the effectiveness of our system with the comparison to two state-of-the-art systems to extract knowledge from Wikipedia. Both of the two competitors extract the relationship of entity pairs by handling natural language sentences. The first system (S1) finds the sentences in an article mentioning two entities. The sentences will be parsed to drive a dependency tree, and the shortest dependency path from one entity to the other entity gives the syntactic structure expressing the relationship between the entity pair [7]. However, an entity may be expressed in different formats (known as the coreference resolution problem), which results into the low recall of S1. To solve the coreference resolution problem, in the second system (S2) we borrow the idea from [7] to extract many syntactic patterns of an entity, then use S1 to extract facts from Wikipedia.

We evaluate the precision and user satisfaction for all the systems. We randomly select 10 Wikipedia articles and recruited 5 volunteers to manually evaluate the quality of the extracted facts of these articles. We present the existing infobox as reference to them and ask them to evaluate the systems. Each volunteer was asked to rate the knowledge by one of the options in perfectly sensible, well sensible, somewhat sensible, not sensible at all. We assign each option with a score from 0 (not sensible at all) to 3 (perfect sensible).

The comparison results are shown in Table 6 where Time cost per fact is the average time cost on generating one fact (the pre-processing time including finding the sentences is not considered in S1 and S2). Precision is measured as the percentage of sensible knowledge (all three options except not sensible at all). Recall is the percentage of linked entities that can be found a relationship between it and the article entity. user satisfaction is the average score for all samples. Note that we also give the user satisfaction for the existing infobox.

We can see from Table 6 that our system (C&L) is significantly more efficient than the two competitor systems. Besides this, our system outperforms the competitors significantly in precision, recall and user satisfactory. We highlight that the precision of our system is almost 0.91. The recall of our system is 0.68. The reason is that some linked entities are regarded as noises or do not have category information and consequently can not be clustered. If
we didn’t count them in the recall computation, we will get an even better recall. The user satisfactory of our system is close to that on the existing infobox, suggesting that our extraction system has close quality to existing infobox. Comparing to S1, S2 has a higher recall but a lower precision because it can discover more sentences containing the article entity and linked entity.

4.2 Remove Noisy Linked Entities

In this subsection, we evaluate the effectiveness of our rank aggregation approach. The statics of Wikipedia after removing all unrelated linked entities are shown in Table 6. To quantify the goodness of a ranking scoring, we first manually label each linked entity as related or unrelated. This manually labeled data set is used as the ground truth. Then for each ranking measure, we generate an ordering by the measures and evaluate the ordering with the comparison to the ground truth by $M@K$.

$$M@K = \frac{|M \cap K|}{|M|}$$

where M is the set of linked entities labeled with related, and K is the set of top-K entities in the ordering. By varying K from 0 to the number of elements to be ordered, we can draw the curve of $M@K$. We can further quantify the closeness of a ranking measure r with respect to a range $[s, t]$ as

$$\text{closeness}(r, s, t) = \frac{\sum_{K=s}^{t} M@K_r}{t-s+1}$$

where $M@K_r$ and $M@K_{r,\text{truth}}$ are the $M@K$ curve of the measure r and the ground truth, respectively. $[s, t]$ means the range from top-s to top-t. The closeness(r, s, t) actually characterizes the average closeness in the range of $[s, t]$. When $s = 1$ and $t = n$ (n is the number of all elements) we have closeness(r) measures the entire closeness to the ground truth of the ranking measure r.

Comparison to Individual Rankings. We use Steve Jobs, Apple Inc. to evaluate the effectiveness of different ranking measures. Results on other articles are similar to them. In our experiment, we order linked entities of the two samples by different rankings. The $M@K$ curves are shown in Figure 5 in which we compare our aggregated measure to the two individual ranking measures: PMI and WJC. We also give the $M@K$ curve for the ground truth. The closer to the ground truth curve the better the measure is. We can see that PMI is better than WJC in noise detection since PMI in general is closer than WJC to the ground truth curve. In general, the curve of our aggregated measure is closer to the ground truth curve than the two individual measures. Hence, our rank aggregation is better than either PMI or WJC and outperforms them in both detecting strongly related entities and recognizing noisy entities.

Comparison to Other Aggregated Measures. We next compare our aggregated ranking to the naive linear combination method with static α. We vary α from 0 to 1 with increment of 0.1 so that we can compare to the different linearly combined measures. For the two samples we calculate the closeness ($closeness(r)$) between the ground truth and different ordering measure r. The results are shown in Figure 6 where the horizontal line is our aggregated measure. We can see that that our aggregated is superior to the naive linearly combined measure consistently over different α. Only in the case of Apple Inc. with α ranging from 0.6 to 0.8, the linearly combined measure can reach the same goodness as our measure. But in general, users have no prior knowledge to set an appropriate value for α. Instead our method automatically computes the appropriate α and achieves the best performance.

Rationality of the motivation. Next, we justify the motivation of renaming aggregation method. Recall that our aggregation is based on the fact that PMI is good at identifying the semantically unrelated entities and WJC is good at identifying the semantically related entities. To verify this, we need to analyze the entities in the head and tail part of the orderings. We select 100 articles randomly and manually label their linked entities as related and unrelated. For each measure, we calculate the closeness for the top 20 (head) and last 20 (tail) entities respectively by Eq. 16. For comparison, we also give the result of a random ordering. The results are shown in Figure 7. We can see that in the head part WJC is better than PMI and both outperforms the random ordering. But in the tail part PMI is better than WJC and random order. In both head and tail part, the aggregated measure perfumes the best, which justify again the effectiveness of our ranking aggregation approach.

4.3 Clustering and Labeling

We first give the metrics used for the evaluation, then present the experiment results, some clustering and labeling results are shown in Table 4.
Metrics for the Evaluation of Clustering. To evaluate the effectiveness of a cluster, we use both the subjective and objective metric. The objective metrics include the inter-cluster distance (average distance between cluster centers) and intra-cluster distance (average distance between entities and corresponding cluster center). The two individual metrics can be furthered combined as a synthesis score, known as valid index. Formally, let K be the number of clusters, m_i be the center of cluster C_i, we have

$$\text{inter} = \frac{2}{K(K-1)} \sum_{i=1}^{K} \sum_{j=i+1}^{K} \text{dis}(m_i, m_j)$$

$$\text{intra} = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{|C_i|} \sum_{e \in C_i} \text{dis}(m_j, e)$$

$$\text{valid} = \text{inter} \quad \text{intra}$$

A good clustering result has a large inter distance and a small intra distance, which induces a large valid index.

When the cluster is labeled, we may alternatively use subjective metric to evaluate the quality of the clustering. We adopt precision to evaluate the quality of the extracted knowledge. For a certain entity, suppose its linked entities are clustered into $C = \{C_1, ..., C_l\}$ and each cluster C_i has label l_i. The precision of C under label set $L = \{l_i\}$ is defined as:

$$P(C, L) = \frac{1}{k} \sum_{C_i \subseteq C} \frac{\text{match}(C_i, l_i)}{|C_i|}$$

Where match(C_i, l_i) is the percentage of entities in cluster C_i that can be appropriately labeled by the l_i. match(C_i, l_i) is evaluated by humans.

Metric for the Labeling Evaluation. Given a cluster $C = \{C_i\}$ and their label set $L = \{l_i\}$, we use the following metrics to evaluate the accuracy of L with respect to C.

- **Coverage.** Coverage of l_i with respect to C_i is the percentage of entities in C_i which is the descendant of l_i in the IsA taxonomy graph g_c. Thus, the coverage of L with respect to C is the average coverage of each label l_i with respect to corresponding C_i.

- **Correctness.** We use $P(C, L)$ to measure correctness of L with respect to C.

Clustering Results. To evaluate the performance of clustering, we cluster the linked entities for China, Shanghai, Apple Inc., Steve Jobs, Barack Obama, New York City, and using our clustering approach with $\alpha = 0.0001$ and iteration = 5. We give the results in Table 7. To calculate $P(C, L)$, we use the labels generated by maximal ζ-LCA. We can see that average valid of clusters is around 2.0, and average precision is approach to 90%, which suggests that the generated clusters are of high quality.

![Figure 8: Evaluation of cluster labeling strategies.](image)

Figure 8: Evaluation of cluster labeling strategies.

Labeling Results. We compare our labeling approaches to the baseline approaches including: MF, MFI and a state-of-the-art approach Score Propagation(SP) [?]. SP uses Wikipedia as external source from which candidate cluster labels can be extracted. Given a cluster, SP first generate some concepts and categories as candidate labels from Wikipedia by measuring the relevance to terms in the cluster. For a cluster, SP first calculate the frequency score of keywords in all candidate labels, then propagate the score from keywords to label. Finally the label with highest score is selected as the cluster label.

We run maximal ζ-LCA with $\zeta = 0.8$. For clusters generated from linked entities of above 6 sample entities, we use coverage and correctness to evaluate different labeling strategies. The results are shown in Figure 8.

We can see from the Figure 8 that coverage of MF is larger than MFI and SP, that is reasonable because the category voted by MF is the feature of most entities in the cluster. And maximal ζ-LCA has the largest coverage which approach to 100%, because the selected category is at least the ancestor of 80% entities in the cluster. For correctness, MF is a little better than MFI, and obviously outperform SP, and also maximal ζ-LCA performs better than other approaches.

Table 8: Labeled clusters generated from Apple Inc., line in column Label represents MF, MFI, SP and Maximal ζ-LCA separately, and each label is given with its Coverage.
No

1
2
3
4
5

We also give the clustering results for Apple Inc. under different labeling approaches in Table 8. We can see that MI in general can find the frequent but general category, such as the first cluster. MFI tends to find the specific label which in general has a
low coverage, such as the second cluster. The performance of SP
is not stable, which may generate either the general or specific
label (see the first and second clusters of SP). Compared to these
methods, \textit{maximal }ζ-LCA method can generate specific label of
high coverage in most clusters. \textit{Maximal }ζ-LCA enables us to
find knowledge such as \langleapple inc., ios software, \{google maps,
ios 6, books, xsan, itunes}\rangle.

5. RELATED WORKS

\textbf{Data mining on encyclopedia.} Many works have been done
in online encyclopedia to achieve some applications, especially in
Wikipedia, one of the most valuable online data source. ESA[?] and
WikiRelate[?] use Wikipedia to compute semantic relatedness for an entity pair. And [?] and [?] use Wikipedia as external
knowledge for clustering or labeling cluster, which enrich the rep-
resentation of document with additional features from Wikipedia.

\textbf{Structural knowledge extraction.} In the work of structural
knowledge extraction, KnowItAll [?] and Textrunner [?] ex-
tract open information from free text, and some challenging task
such as NER, dependency parsing, and relationship extraction
are commonly use in text analysis. Some structural knowledge
have also been extracted from Wikipedia, like YAGO [?] and
DBpedia [?]. DBpedia represents in RDF, is a large scale struc-
tured knowledge base, who extracts structured information from
Wikipedia, and also links to other datasets on the Web to Wikipedia.
But DBpedia is built on existing infobox in Wikipedia and struc-
tural knowledge in other datasets. To make Wikipedia more
structural, Semantic Wikipedia [?] proposes a formalism to struc-
ture Wikipedia’s content as a collection of statements, the state-
ment can explain the relationship between article and linked en-
tities. And [?] try to extract relationship of linked entity use
syntactic and semantic information, and refer to relationships in
infobox. These article-related relationships can be good comple-
ment for infobox. Specifically, to supply attribute value for in-
complete infobox, Kylin [?] and iPupulator [?] and IBminer [?] learn
models from structured information to guide the text processing.
For example, Kylin first predicts what attributes a sentence may
contain, and further use CRF to extract attribute values from the
candidate sentences.

\textbf{Document summarization.} Instead of mining relationship of
singled linked entity, we focus on all the linked entities for an
article. Since each linked entity direct to a specific article in
Wikipedia, multi-document summarization is a good solution to
handle it. We can summarize the linked entities to groups and
generate a theme for each group. In document summarization,
[?] selects important sentences or paragraphs in the set of docu-
ments and build a summary with these passages. And [?] forms
the summary of documents to different event theme by using LDA
to capture the events being covered by the documents. Clus-
tering is another widely used method to do summarization, such as
XDoX [?], and select a representative passage from the cluster
after clustering.

In this paper, we use clustering method to summarize linked
entities. And different from above structural knowledge extrac-
tion methods, we use the structured information(linked entities,
and categories) only in Wikipedia to extract knowledge(infobox).
In this way, we can avoid the text processing problem such as
NER and dependency parsing.

6. CONCLUSION

Discovering and enriching structural information in online en-
cyclopedia is valuable and challenging work. Different from pre-
vious free-text focused methods, in this paper, we propose an
novel, semi-structured information based approach. We extract
knowledge from Wikipedia using rich set of linked entities.

We propose an \textit{cluster-then-label} approach, which clusters the
linked entities into different semantic groups, and then give each
group a semantic label (a property). In this way, we can get
groups of facts in the form of cluster and semantic label. We
further propose a novel position aware rank aggregation method
to detect the semantic related entities. We also propose an effec-
tive cluster reuse strategy to run clustering for millions of entities
in Wilkipeida. With these effective and efficient approach, we
extracted 18 million new facts from Wikipedia.