Ethmoidectomy Combined with Superior Meatus Enlargement Increases Olfactory Airflow

Hironobu Nishijima, MD; Kenji Kondo, MD, PhD; Tsutomu Nomura, MD, PhD; and Tatsuya Yamasoba, MD, PhD

Objectives: The relationship between a particular surgical technique in endoscopic sinus surgery (ESS) and airflow changes in the post-operative olfactory region has not been assessed. The present study aimed to compare olfactory airflow after ESS between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement, using virtual ESS and computational fluid dynamics (CFD) analysis.

Study Design: Prospective computational study.

Materials and Methods: Nasal computed tomography images of four adult subjects were used to generate models of the nasal airway. The original preoperative model was digitally edited as virtual ESS by performing uncinectomy, ethmoidectomy, and frontal sinusotomy. The following two post-operative models were prepared: conventional ethmoidectomy with normal superior meatus (ESS model) and ethmoidectomy with superior meatus enlargement (ESS-SM model). The calculated three-dimensional nasal geometries were confirmed using virtual endoscopy to ensure that they corresponded to the post-operative anatomy observed in the clinical setting. Steady-state, laminar, inspiratory airflow was simulated, and the velocity, streamline, and mass flow rate in the olfactory region were compared among the preoperative and two postoperative models.

Results: The mean velocity in the olfactory region, number of streamlines bound to the olfactory region, and mass flow rate were higher in the ESS-SM model than in the other models.

Conclusion: We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS. It is hypothesized that the increased airflow to the olfactory fossa achieved with ESS-SM may lead to improved olfactory function; however, further studies are required.

Key Words: virtual endoscopic sinus surgery, computational fluid dynamics, virtual endoscopy, olfactory airflow, olfaction.

Level of Evidence: NA.

INTRODUCTION

Endoscopic sinus surgery (ESS) is the primary surgical treatment for chronic rhinosinusitis that is refractory to medical treatment. The primary aim of ESS is to resolve mucosal inflammation by improving drainage and ventilation of affected sinuses. A number of previous studies have demonstrated that ESS can improve postoperative olfactory function.1,2 In cases of chronic rhinosinusitis with nasal polyposis, the main cause of olfactory loss is conduction block of the odorant, as polyps in the nasal passage prevent the odorant from reaching the olfactory neuroepithelium. Therefore, a surgical technique to regain postoperative airflow in the olfactory region might improve the postoperative olfactory outcome.

Few studies have suggested a relationship between a particular surgical technique in ESS and postoperative olfactory function.3 In particular, the importance of superior meatus enlargement combined with ethmoidectomy for improving post-operative olfaction has been stressed. Miwa et al. reported that the middle turbinate fenestration method, which is similar to ethmoidectomy combined with superior meatus enlargement, results in good improvement of the postoperative olfactory threshold, suggesting that this surgical technique may effectively increase olfactory airflow. However, information regarding the change in olfactory airflow after ESS remains limited.4 It is difficult to intuitively predict the postoperative changes in invisible olfactory airflow, owing to the complex structures in the ethmoid region of the sinonasal cavity. Therefore, selecting a particular surgical technique to improve olfactory function in ESS is primarily based on the personal experience of the surgeon.
The method of computational fluid dynamics (CFD) allows the simulating of airflow using a computer. CFD techniques enable detailed prediction of airflow throughout the nasal cavity based on three-dimensional (3D) models derived from image data. The nasal geometry of image data can be virtually modified with virtual surgery in a manner that reflects surgical changes, and new CFD simulations can be performed to determine the effect of virtual surgery. Nasal CFD and virtual surgery have been especially used to address the

Fig. 1. Virtual Surgery. A) Morphology editing using Mimics. The preoperative model (yellow), endoscopic sinus surgery (ESS) that included ethmoidectomy with normal superior meatus model (ESS model; red), and ESS that included ethmoidectomy with superior meatus enlargement model (ESS-SM model; blue), and a merged photograph of the contours of all the models at the same level of the axial, coronal, and sagittal planes are presented. The colored area is the geometry after the operation. B) Three-dimensional geometry of the nasal cavity in the pre-operative and ESS models. The black arrow indicates the area of the ethmoid sinus where virtual surgery was performed. The ethmoid sinus became one cavity after virtual ESS.
issue of nasal airway obstruction.6–11 One of the potential difficulties for the application of CFD in the olfactory region after virtual ESS is complicated editing of the ethmoid region in the image data using two-dimensional (2D) editing techniques. Because of the complex structures in the ethmoid region, it is sometimes difficult to confirm whether the 3D nasal geometry structured from 2D editing actually corresponds well with the nasal anatomy after ESS.

In the present study, we aimed to compare olfactory airflow between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement using virtual ESS and computational fluid dynamics analysis in order to determine the relationship between a particular surgical technique in ESS and airflow changes in the postoperative olfactory region. In order to overcome the difficulty of corresponding the 2D-edited nasal geometry to the predicted nasal anatomy after ESS, we introduced new virtual endoscopy techniques.

MATERIALS AND METHODS

Subjects

The first study included four adults (one male and three female subjects; age range, 37–75 years) without lesions associated with sinus diseases or severe nasal septal deviation. The subjects were sequentially numbered from 1 to 4. These subjects visited our outpatient clinic with the complaint of post-nasal drip. Computed tomography (CT) studies were performed to screen for latent sinus diseases; however, no abnormalities were identified. The nasal structures and mucosa in all the subjects were normal on nasal inspection. We then studied two cases of chronic sinusitis. In these patients, nasal endoscopy revealed multiple nasal polyps in the olfactory cleft and middle meatus. The patients complained of smell loss, which fluctuated depending on the steroid intake, and it was compatible with conductive smell loss by airflow blocking. All procedures were performed in accordance with the guidelines of the University of Tokyo, and the study was approved by the institutional review board (approval no. 2487).
Virtual Surgery and Virtual Endoscopy

Postoperative models were created for each subject, using the original CT scan images with 0.8-mm-thick slices and the image analysis software Mimics 16.0 (Materialise NV, Leuven, Belgium). Virtual surgery was performed by hand-editing the anatomical structures in the 2D images using Mimics software to reproduce surgical changes. The procedures included uncinectomy, ethmoidectomy, antrostomy, and frontal sinusotomy. In antrostomy and frontal sinusotomy, each sinus ostium was widened as much as possible. In ethmoidectomy, an attempt was made to include all ethmoid cells into one cavity. The following two post-operative models were prepared: 1) ESS that included ethmoidectomy with a normal superior meatus (ESS model) and 2) ESS that included ethmoidectomy with superior meatus enlargement (ESS-SM model) (Fig. 1A). In the ESS-SM model, the basal lamella and adjacent part of the middle turbinate were removed almost 1 cm in front of the anterior aspect of the superior turbinate, enlarging the superior meatus in the anterior direction (Fig. 1A). The superior turbinate was kept intact.

To overcome the difficulties associated with virtual ESS, a new virtual endoscopic technique was developed using the ParaView software (Kitware Inc., Clifton Park, NY). This technique enabled the observation of the nasal cavity model in an endoscopic view, which is familiar to rhinologists and therefore makes virtual ESS easy to perform.

After 2D image editing, 3D reconstructions of the nasal cavity were created in 3D surface files (.stl) using Mimics software (Fig. 1B). These 3D nasal models were checked with virtual endoscopy using ParaView 5.0 to determine whether virtual surgery based on the 2D image editing reproduced the predicted post-operative status (Fig. 1B). Supporting Video 1-3).

CFD Workflow

The geometry was meshed using ICEM-CFD 14.5 (ANSYS, Inc., Canonsburg, PA), and the numerical simulation was performed using ANSYS CFX 14.5 (ANSYS, Inc.). The models included about 2 million tetrahedral grids, and this number was thought to be sufficient to resolve the relative change tendency of the flow fields in the nasal cavity. A finer prism layer was created near the mucosal surface to accurately resolve the rapidly changing near-wall air velocity profile.

The CFD airflow simulation was performed under laminar, steady-state airflow and at a temperature of 20°C in an inspiratory direction. The boundary conditions to determine airflow were as follows, based on previous studies. The nasal walls were assumed to be a non-slip, rigid model. For the pressure-inlet condition at the nostrils, the gauge pressure was set to zero. For the pressure-outlet condition at the outlet, the gauge pressure was set to negative, corresponding to a target steady-state flow rate. The target steady-state inspiratory airflow rate ranged from 13.2 L/min to 18.1 L/min (mean, 14.8 L/min). This flow rate represents an estimate of twice the patient’s minute volume based on anatomic scaling according to body weight.

Outcome Measures

The aerodynamic parameters, including airflow velocity magnitude, airflow streamlines, which trace the airflow patterns with neutrally buoyant particles, and mass flow rate, were obtained using ANSYS Fluent 14.5 (ANSYS, Inc.), according to previous anatomical studies (Fig. 3). The solid olfactory region was identified and extracted from the body of the nasal cavity using ANSYS Fluent 14.5 (ANSYS, Inc.), according to previous anatomical studies (Fig. 3). The mean and maximum velocities were calculated in the right and left sides of the solid olfactory region, respectively.

Statistical Analysis

Tukey’s test was used for multiple comparisons. All statistical analyses were performed using StatFlex Ver. 6 (Artech Co., Ltd., Osaka, Japan). The level of significance was set at P < 0.05.

RESULTS

Velocity Changes in the Olfactory Region After Virtual ESS

To evaluate the changes in airflow in the olfactory region, we first analyzed the velocity magnitude in the preoperative and two postoperative models. The contour plots of the velocity of the preoperative and two postoperative models in the same plane are shown in Figure 4A. The velocity in the olfactory region was higher in the ESS-SM model than in the preoperative and ESS models (Fig. 4A). Quantitative analyses revealed that the mean postoperative velocity in the olfactory region was significantly greater in the ESS-SM model than in the preoperative and ESS models, and that the mean postoperative velocity in the olfactory region was not significantly different between the preoperative and ESS models (Fig. 4B).
Fig. 4. Airflow Velocity in the Olfactory Region. A) Velocity in the pre-operative model, endoscopic sinus surgery (ESS) that included ethmoidectomy with normal superior meatus model (ESS model), and ESS that included ethmoidectomy with superior meatus enlargement model (ESS-SM model) in the axial and coronal planes. The black arrows indicate the olfactory region. The red arrows indicate superior meatus enlargement. Velocity around the olfactory region increased in the ESS-SM model. MT, middle turbinate; IT, inferior turbinate B) Comparison of the mean and maximum velocities in the olfactory region. *P < 0.05 vs. the pre-operative model, †P < 0.01 vs. the ESS model, ‡P < 0.05 vs. the ESS-SM model (Tukey’s test).
Streamline Changes in the Olfactory Region After Virtual ESS

To evaluate the changes in the airflow stream in the olfactory region following virtual ESS, we analyzed the streamline in the preoperative and two postoperative models. In the preoperative and ESS models, streamline analysis revealed that air passed through the olfactory region from the anterior opening to the posterior opening of the olfactory cleft, in a simple anteroposterior direction. However, in the ESS-SM model, air passed through the olfactory region from the enlarged superior meatus to the middle meatus, increasing the number of streamlines bound to the olfactory region (Fig. 5).

Mass Flow Rate Changes in the Olfactory Region

To evaluate the amount of airflow in the olfactory region after ESS, we analyzed the mass flow rate in the preoperative and two postoperative models. The mass flow rate in the olfactory region was higher in the ESS-SM model than in the preoperative and ESS models (Fig. 6). Axial plane analysis of the olfactory region identified airflow in the upward direction (Fig. 6; indicated in green, yellow, and red) and downward direction (indicated in blue). The mass flow rates in both directions were higher in the ESS-SM model than in the ESS model.

Virtual ESS for Chronic Sinusitis Patients

To evaluate the changes in airflow after ESS in the olfactory region in patients with chronic sinusitis, we performed virtual ESS and ESS-SM in the patients with nasal polyps and compared the airflow parameters in the preoperative and two postoperative models. 3D reconstructions of the nasal cavity showed the absence of the nasal passage in most parts of the ethmoid region in the preoperative model, corresponding to occlusion of the region by nasal polyps and mucosal swelling (Fig. 7A). The contour plots of the velocity revealed that the velocity in the olfactory region increased after virtual surgery, especially after ESS-SM (Fig. 7B). Streamline
analysis revealed that the number of streamlines bound to the olfactory region increased after virtual surgery. In the ESS-SM model (Fig. 8A), airflow was found to pass through the olfactory region from the enlarged superior meatus to the middle meatus. Mass flow rate analysis also showed increased mass flow after virtual surgery, especially after ESS-SM (Fig. 8B). These findings indicate that both ESS and ESS-SM may lead to increased olfactory airflow in cases of chronic sinusitis. Furthermore, when compared between ESS and ESS-SM, the olfactory airflow indicated by velocity, streamlines, and mass flow rate was higher in the ESS-SM model than in the ESS model.

DISCUSSION
The novel finding in our simulation of nasal airflow using CFD is that the velocity, streamlines, and mass flow rate in the olfactory region were better increased with ESS-SM than with conventional ESS. The velocity and streamline profiles in numerical simulations have been widely used to indicate the airflow status in the olfactory region.\(^1^{9-21}\) The increase in these parameters suggests that the amount of airflow through the olfactory region increases after superior meatus enlargement. Our findings support the findings of a previous report, which showed that a surgical method similar to ESS-SM resulted in good improvement of the postoperative olfactory threshold.\(^3\)

The possible reason for the increase in the airflow of the olfactory region in the ESS-SM model is that the enlarged superior meatus reduced the airflow resistance through the olfactory cleft. This was actually demonstrated by streamline analysis, in which some of the inspired airflow passed through the olfactory region and exited from the enlarged superior meatus to the middle meatus, increasing the number of streamlines bound to the olfactory region in the ESS-SM model (Fig. 5).
Fig. 7. Airflow Velocity in the Olfactory Region of Chronic Sinusitis Patients. A) Three-dimensional geometry of the nasal cavity in the preoperative model and endoscopic sinus surgery (ESS) that included ethmoidectomy with normal superior meatus model (ESS model). The black arrowheads indicate the area of the ethmoid sinus and olfactory cleft where the nasal passage was absent due to nasal polyps, and virtual surgery was performed. The ethmoid sinus replaced nasal polyps with an air passage, becoming one cavity after virtual ESS. B) Velocity in the preoperative model, ESS model, and ESS that included ethmoidectomy with superior meatus enlargement model (ESS-SM model) in the axial and coronal planes. The black arrows indicate the olfactory region. Velocity around the olfactory region increased in the ESS-SM model. MT = middle turbinate; IT = inferior turbinate.
Fig. 8. Streamline and Mass Flow Rate in the Olfactory Region of Chronic Sinusitis Patients. A) Streamline in the preoperative model, endoscopic sinus surgery (ESS) that included ethmoidectomy with normal superior meatus model (ESS model), and ESS that included ethmoidectomy with superior meatus enlargement model (ESS-SM model) in the entire nasal cavity. The black arrows indicate the olfactory region. The streamline around the olfactory region is higher in the ESS-SM model than in the other models. B) The mass flow rate in the pre-operative model, ESS model, and ESS-SM model in the axial and coronal planes. The black arrows indicate the olfactory region. Axial plane analysis identified airflow in the upward direction (green, yellow, and red) and downward direction (blue). The mass flow rate in both directions is higher in the ESS-SM model than in the ESS model. MT = middle turbinate; IT = inferior turbinate.
On the other hand, the airflow velocity, streamlines, and mass flow rate in the olfactory region were not different between pre-surgery and the ESS models. This may be because even though the total airflow resistance in the nasal cavity decreased after ethmoidectomy, the increased airflow passed through the middle meatus to the choana and not through the olfactory cleft (Fig. 5), probably because the airflow resistance through the olfactory region does not change with simple ethmoidectomy. On the other hand, virtual removal of the nasal polyps in the cases of chronic sinusitis increased airflow in the olfactory region after ESS (Figs. 7 and 8). This suggests that the post-operative improvement in olfactory function after ESS implies that ESS-SM provides optimal postoperative airflow for olfaction. Olfaction is affected by many factors, such as the diffusion effects of odorants, transfer of odorant molecules to the olfactory receptors, and severity of mucosal and eosinophilic inflammation (pathological aspect). Therefore, an increase in olfactory airflow does not necessarily indicate better olfactory function, and we need to be careful in considering the clinical implications of our results. Further prospective studies are necessary to investigate if the olfactory airflow difference between surgical techniques is reflected in the difference in postoperative olfactory function in clinical settings.

CONCLUSION

Our virtual simulation study suggested that ESS-SM might be an effective procedure for the improvement of postoperative olfactory function, as it increases olfactory airflow. We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS.

ACKNOWLEDGMENTS

We thank Ms. Kae Yamazaki (ANSYS, Japan) and Ms. Yasuko Shiraishi (Materialise, Japan) for their technical assistance, and Dr. Natsumaro Kutsuna and Dr. Seiichiro Hasezawa (University of Tokyo and LPixel Inc., Japan) for their helpful suggestions.

BIBLIOGRAPHY

1. Baradaranfar MH, Ahmadi ZS, Dadgarnia MH, et al. Comparison of the effect of endoscopic sinus surgery versus medical therapy on olfaction in nasal polyposis. Eur Arch Otorhinolaryngol 2014;271:311–316.
2. Bruner HR, Jones N, Simmen D. Olfaction after endoscopic sinus surgery: long-term results. Rhinology 2012;50:178–184.
3. Mita W, Uramoto N, Tsukatani T, Furukawa M. Middle turbinate fenestration method: a new technique for the treatment of olfactory disturbance due to chronic sinusitis. Chem Senses 2005;30:214–221.
4. Zhao K, Fribakin EA, Cowart BJ, Rosen D, Scherer PW, Dalton P. Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am J Rhinol 2006;20:306–316.
5. Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 1995;117:429–441.
6. Frank-JO DO, Kimbell JS, Land P, Garcia GJ, Rhue JS. Predicting post-surgical nasal airflow with computational modeling: current challenges and limitations. Otolaryngol Head Neck Surg 2014;151:751–759.
7. Rhue JS, Cannon DE, Frank DO, Kimbell JS. Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery. Arch Facial Plast Surg 2012;14:354–359.
8. Rhue JS, Pawar SS, Garcia GJ, Kimbell JS. Toward personalized nasal surgery using computational fluid dynamics. Arch Facial Plast Surg 2011;13:305–310.
9. Wexler D, Segal R, Kimbell J. Aerodynamic effects of inferior turbinate reduction: computational fluid dynamic simulation. Arch Otolaryngol Head Neck Surg 2005;131:1102–1107.
10. Kim SK, Na Y, Kim J, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 2013;46:299–306.
11. Leong SC, Chen XB, Lee HP, Wang DY. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 2010;48:139–145.
12. Di MY, Jiang Z, Gao ZQ, Li Z, An YR, Lv W. Numerical simulation of airflow fields in two typical nasal structures of empty nose syndrome: a computational fluid dynamics study. PLoS One 2013;8:e64243.

13. Zhao K, Jiang J, Pribitkin EA, et al. Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients. Int Forum Allergy Rhinol 2014;4:288–308.

14. Garcia GJ, Baille N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol (1985) 2007;103:1082–1092.

15. Nemura T, Usb Rob M, Kondo K, Yamashita T. Effects of nasal septum perforation repair surgery on three-dimensional airflow: an evaluation using computational fluid dynamics. Eur Arch Otorhinolaryngol 2015;272:3327–3333.

16. Kimbell JS, Garcia GJ, Frank DO, Cannon DE, Pawar SS, Rhee JS. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report. Am J Rhinol Allergy 2012;26:e94–98.

17. Leopold DA, Hummel T, Schwob JE, Hong SC, Knecht M, Kobal G. Anterior distribution of human olfactory epithelium. Laryngoscope 2000;110:417–421.

18. Feron F, Perry C, McGrath JJ, Mackay-Sim A. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg 1998;124:861–866.

19. Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T. Flow mechanisms in the human olfactory groove: numerical simulation of nasal physiological respiration during inspiration, expiration, and sniffing. Arch Otolaryngol Head Neck Surg 2009;135:156–162.

20. Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 2004;29:365–379.

21. Croce C, Fodil R, Durand M, et al. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 2006;34:997–1007.

22. Wofford MR, Kimbell JS, Frank-Ito DO, et al. A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery. Rhinology 2015;53:41–48.

23. Hahn I, Scherer PW, Mezoll MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol (1985) 1993;75:2273–2287.

24. Chung SK, Son YR, Shin SJ, Kim SK. Nasal airflow during respiratory cycle. Am J Rhinol 2006;20:379–384.