Optical observations of BL Lacertae from 1997 to 1999

J.H. Fan1,2,3, B.C. Qian4, and J. Tao4

1 Center for Astrophysics, Guangzhou University, Guangzhou 510400, China, e-mail: jhfan@guangztc.edu.cn
2 Chinese Academy of Science-Peking University Joint Beijing Astrophysical Center(CAS-PKU.BAC), Beijing, China
3 Department of Physics, Yunnan University, Kunming, China
4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China

October 30, 2018

Abstract. We present the optical (V, R, and I) photometry for BL Lacertae, which was observed from 1997 through 1999, with the 1.56-m telescope at the Shanghai astronomical observatory (SHAO). After the 1997 outburst, it dimmed to a low state and then brightened again. During the period JD 2450701 to JD 2450701.5, variations of 0.40mag, 0.27mag, and 0.21mag over a time scale of 100 minutes were found for V, R, and I bands, suggesting that the variations were decreasing with wavelength. The correlation between V, R, and I is also analyzed using the DCF (Discrete Correlation Function) method. This shows that the variability in the V, R, and I bands are correlated with no time delay longer than 0.2 day.

Key words: Galaxies: active; BL Lacertae objects: individual: BL Lac (PKS 2200+420); Galaxies: photometry

1. Introduction

The nature of active galactic nuclei (AGNs) is still an open problem. Photometric observations of AGNs are important for constructing their light curves and to study their variation behavior on different time scales. Blazars are an extreme subclass of AGNs and often show large and violent variations. The variability on very short time scales from minutes to hours is a common property of blazars, and is observed in many objects (Rieke et al. 1976; Smith et al. 1987; Sillanpaa et al. 1991; Carini et al. 1992; Romero et al. 1994, 1995a,b, 1997, 2000; Heidt & Wagner 1995; Miller & Noble 1996; Villata et al. 1997, 1999; Terasranta et al. 1998; Takalo 1994; Bai et al. 1999; Kraus et al. 1999; Raiteri et al. 1999).

BL Lacertae (PKS 2200+420), the archetype of its class, lies in a giant elliptical galaxy at a redshift of \sim 0.07 (Miller et al. 1978). It is one of the best-studied objects. Superluminal components have been observed from the source (Mutel & Phillips 1987; Vermeulen & Cohen 1994; Fan et al. 1996; Xie et al., 1992, 1994; Webb et al. 1988; 1998; Catanese et al. 1997; Qin & Xie 1997; Fan et al. 1998a,b; Fan & Lin 1999, 2000 and reference therein). Its spectrum is usually featureless, but weak emission lines are indeed identified when the source is in the fainter state (Corbett et al. 1996). The optical variability is extremely irregular over periods of hundreds of days of continuous observation but a possible \sim 14-year period was found in the B light curve (see Fan et al. 1998a). In addition, some rapid variability over short time scales has been reported: for example, a variation of 1.5 magnitude over a time scale of 20 hours (Weistrop, 1973), daily variation as great as 0.3 magnitude (Carswell et al. 1974), and variation of 0.1 magnitude over 30 minutes in the V band (Corbett et al. 1996). During the 1997 outburst period, it was widely observed in optical bands by many groups (Nesci et al. 1998; Bai et al. 1999; Kovael et al. 1999; Massaro et al. 1999; Matsumoto et al. 1999; Miller et al. 1999; Nikolashvili et al. 1999a,b; Sobrito et al. 1999; Tosti et al. 1999a,b; Qian et al. 2000; Ghosh et al. 2000a,b and reference therein).

BL Lacertae is also one of the sources in our observing program. To investigate their short time-scale variability, we have made optical observations of blazars with the 1-m telescope at Yunnan Astronomical Observatory (YAO), the 1.56-m telescope at Shanghai Observatory (SHAO), and the 2.16-m telescope at Beijing Observatory (BAO) (Fan et al. 1997, 1998a; Qian et al. 2000; Xie et al. 1992, 1994).

In this paper, we present the BL Lacertae optical photometry observed with the 1.56-m telescope at SHAO during the period 1997 to 1999. In section 2, we present the data and analysis; in section 3, a brief conclusion.

2. Observations and analysis

Send offprint requests to: J.H. Fan
2.1. Data reduction

BL Lac is one of the regularly monitored objects at SHAO using the f/10 Cassegrain focus of the 1.56m telescope with a liquid nitrogen cooled Photometric 200 series CCD camera having 1024 × 1024 pixels. The filters are standard Johnson and Cousins BVRI filters. The field of view is 417", with 1 pixel=0.25". The exposure times are typically set according to the sky conditions. The seeing at the Sheshan Station of SHAO usually varies from 1.2" to 1.5".

The obtained frames were processed with the photometric task APHOT of the IRAF software package after bias, dark and flat-field corrections. The bias frames were taken at the beginning and the end of the night observations. In addition, some were taken in the middle of the observations. Sky flat-field images were taken at dusk and dawn where possible. Otherwise, a dome flat was used. The dark and the flat-field corrections are 0.01 to 0.02. Observations. Sky flat-field images were taken at dusk and dawn where possible. Otherwise, a dome flat was used. The dark and the flat-field corrections are 0.01 to 0.02 mag, mainly contributed by the flat-field.

We used stars B and C (Smith et al., 1985) as photometric comparison stars. Their colors are (V-R) = 0.85±0.06, (R-I) = 0.84±0.08 for B and (V-R) = 0.50±0.04, (R-I) = 0.46±0.05 for C while their magnitudes are V = 12.78±0.04, R = 11.93±0.05, I = 11.09±0.06 for B and V = 14.19±0.03, R = 13.69±0.03, I = 13.23±0.04 for C. Based on the long-term data, the colors of BL Lacertae are (V-R) = 0.73±0.19 and (R-I) = 0.82±0.11 on average, while the magnitudes are in the ranges: V = 10.52 to 15.25, R = 11.78 to 14.91, and I = 10.74 to 14.19 (Fan et al. 1998a). Because the colors of the comparison stars are similar to those of BL Lacertae while the magnitudes of the comparison stars are in the magnitude range of BL Lacertae, the reduction of the photometry is simplified, with no needed corrections for color or non-linearity.

We determined differential magnitudes of BL-B and B-C from the instrumental magnitudes of BL Lacertae (BL), the Star B (B), and star C (C). The curves B-C indicate observational uncertainties and the intrinsic variability of the stars. The variability of the target object BL Lacertae is investigated by means of the variability parameter, C, introduced by Romero et al. (1999, see also Cellone et al. 2000). To do so, we determine the scatter of the differential magnitudes BL-B and B-C, σ(BL−B) and σ(B−C), the variability parameter C is expressed as σ(BL−B) σ(B−C). If C > 3, then the target is variable.

The rms errors are calculated from the two stars using the formula:

\[\sigma = \sqrt{\frac{\sum (m_i - \overline{m})^2}{N - 1}} \]

where \(m_i = (m_B - m_C)_i \) is the differential magnitude of stars B and C while \(\overline{m} = \frac{m_B - m_C}{N} \) is the differential magnitude averaged over the entire dataset, and N is the number of the observations on a given night. The results are given in Table 1 for filters V, R and I. Column (1) is the Julian date, column (2) the V magnitude, column (3) the uncertainty in V, column (4) the R magnitude, column (5) the uncertainty in R, column (6) the I magnitude, and column (7) the uncertainty in I. The light curves are shown in Figure 1 for the bands R, V and I.

2.2. Analysis

2.2.1. Variation

During the 1997 outburst, rapid variations of 0m.5 over 90 minutes by Sobrito et al. (1999) and 0m.6 over 40 minutes by Matsumoto et al. (1999) were found (see also Nesci et al. 1998). Our observations show that in the period JD 2450692 to JD 2450702, a variation of about 1 mag over a week is found in the three bands. In the period JD 2450701 to JD 2450701.5, variations of 0.40mag, 0.27mag, and 0.21mag over a time scale of 100 minutes were found in the V, R, and I wavebands (see Fig. 2) suggesting that the variations decrease with increasing wavelength, consistent with the findings of Nikolashvili et al. (1999a). No similar rapid variation was found in our other observations of the source during our monitoring period 1997 to 1999, which suggests that this does not happen often. The corresponding variability parameters \(C_{V,R,I} \) are greater than 10.0.

After the 1997 outburst, it dimmed to a very low state (Fig. 1), with R = 14.76 on JD 2450738, and then brightened again. The brightening tendency is consistent with the later observation of a high state of R = 12.44 on JD 2451514.32 (Massaro & Nesci 1999). On JD 2451328.5 R = 13.10 was observed by Tosti & Nucciarelli (1999). On those days, we have no observations, but our data (R = 13.24 on JD 2451104 and R = 13.18 on JD 2451379) combined with those by Tosti & Nucciarelli (1999), and Massaro & Nesci (1999) suggest a brightening tendency.

2.2.2. Correlated variability

BL Lacertae was observed in V, R, and I bands from 1997 until 1999, which makes it possible for us to discuss the correlated variability among the colors. We analyzed our time-series data to search for time lag using the method of Discrete Correlation Function (DCF) (Edelson & Krolik 1988; also see Fan et al. 1998c, and Tornikoski et al. 1994).

First, we calculated the set of unbinned correlation coefficient (UDCF) between data points in the two data streams a and b, i.e.

\[UDCF_{ij} = \frac{(a_i - \bar{a}) \times (b_j - \bar{b})}{\sqrt{\sigma_a^2 \times \sigma_b^2}}, \]

where \(a_i \) and \(b_j \) are points in the data sets, \(\bar{a} \) and \(\bar{b} \) are the average values of the data sets, and \(\sigma_a \) and \(\sigma_b \) are the corresponding standard deviations. Secondly, we averaged the points sharing the same time lag by binning the
$UDCF_{ij}$ in suitably sized time-bins in order to get the DCF for each time lag τ:

$$DCF(\tau) = \frac{1}{M} \sum UDCF_{ij}(\tau),$$

(2)

where M is the total number of pairs. The standard error for each bin is

$$\sigma(\tau) = \frac{1}{M-1} \left\{ \sum [UDCF_{ij} - DCF(\tau)]^2 \right\}^{0.5}.$$

(3)

The results for time bins of 0.2 days are shown in Fig. 2 for V vs. R, R vs. I, and V vs. I respectively. No time delay longer than 0.2 day is found between any two bands.

3. Conclusion

BL Lacertae is a variable source through the whole magnetic waveband, and has been observed intensively. In this paper, we presented our measurements of V, R, and I bands for the period of 1997 to 1999. Short time scale variations were noted by other authors. The optical variations are found to be correlated with no time delay exceeding 0.2 days.

Acknowledgements

The authors thank Dr. Wills for the comments and suggestions that improve the paper. JHF thanks Dr. G.E. Romero for his comments. This work is supported by the National Scientific Foundation of China (19973001) and the National 973 Project of China (NKBRAF G19990754).

References

Bai J.M., Xie G.Z., & Li, K.H. et al. 1999, A&AS, 136, 455

Carini M. T., Miller H. R., Noble J. C., Goodrich B. D. 1992, AJ 104, 15

Cataneo, M., Akerlof, C.W. Biller, et al. 1997, ApJ, 480, 562

Corbett, E. Robinson, Axon, D.J. Hough, J. et al. 1996, MN-RAS, 281, 737

Edelson R. A., Krolik J. H., 1988, ApJ 333, 646

Fan J.H., Xie, G.Z., & Wen S.L. 1996, A&AS, 116, 409

Fan J.H., Xie G.Z., Lin R.G., 1999, ApJ, 537, 101

Fan J.H., Lin R.G., 2000, ApJ, 537, 101

Gabriel, K.K., Ramsey B.D., Sadun A.C., et al. 2000a, ApJS 127, 11

Gabriel, K.K., Ramsey, B. D.; Sadun, A. C. et al. 2000b, ApJ 537, 638

Heidt J., Wagner S. 1995, A&A 305, 42

Kovalev Yu.A., Berlin A.B., Nizhelsky N.A., Kovalev Y.Y., 1999, ASP Conf. Ser. Vol 159, p63

Kraus A., Quirrenbach A., Lobanov A.P., et al., 1999, ASP Conf. Ser. Vol 159, p67

Massaro E., Nesci R., 1999, Blazar Data News N 24,
Fig. 1. Differential Light Curves of BL-B and B-C in I band (upper panel), in R band (middle panel), and in V band (lower panel). The light curves of B-C are displaced by 3.5 mag. for all the three bands.
Fig. 2. Variation on JD 2450701 in V (filled squares), R (open circles), and I (filled circles) bands.
Fig. 3. Plot of DCF V-R (upper panel), DCF R-I (middle panel), and DCF V-I (lower panel).
Table 1. Optical measurements of BL Lacertae in 1997-1999

JD 2450000+	V	σ_V	R	σ_R	I	σ_I
616.2197	12.51	0.053				
616.2218	12.51	0.053				
616.2230	12.52	0.053				
616.2242	12.50	0.053				
616.2264	13.27	0.105				
616.2281	13.24	0.105				
616.2301	13.27	0.105				
616.2336	13.97	0.094				
616.2382	13.89	0.094				
616.2414	13.93	0.094				
616.2451	13.88	0.094				
616.2650	14.01	0.094				
616.2746	13.91	0.094				
616.2809	13.88	0.094				
616.2844	13.83	0.094				
616.2885		12.41	0.053			
616.2936		12.40	0.053			
616.2963		13.15	0.105			
616.2979		13.15	0.105			
616.3012	13.74	0.094				
616.3053	13.76	0.094				
616.3128		12.40	0.053			
616.3161		13.17	0.105			
616.3174		13.17	0.105			
651.1869		12.21	0.030			
651.1906		12.21	0.030			
651.1937		12.91	0.044			
651.1957		12.90	0.044			
651.2015	13.54	0.022				
651.2052	13.54	0.022				
651.2094		12.21	0.030			
651.2113		12.22	0.030			
651.2157		12.89	0.044			
651.2175		12.90	0.044			
651.2234	13.51	0.022				
651.2274	13.54	0.022				
651.2326		12.17	0.030			
651.2341		12.16	0.030			
651.2374	12.93	0.044				
651.2392	12.90	0.044				
Table 1. - Continued

JD 2450000+	V	σ_V	R	σ_R	I	σ_I
692.0580		12.30				
692.0618		12.34				
692.0648		12.32				
692.0676		12.31				
692.0705	13.08	0.033				
692.0731	13.07	0.033				
692.0753	13.07	0.033				
692.0790	13.72	0.038				
692.0820	13.72	0.038				
692.0858	13.68	0.038				
692.0900		12.26				
692.0931		12.25				
692.0970	13.07	0.033				
692.0991	13.05	0.033				
692.1020	13.06	0.033				
692.1048	13.69	0.038				
692.1102	13.69	0.038				
692.1157		12.30				
692.1190		12.28				
692.1220		12.32				
692.1281	13.06	0.033				
692.1313	13.02	0.033				
692.1337	13.06	0.033				
692.1369	13.68	0.038				
692.1401	13.64	0.038				
692.1442	13.64	0.038				
692.1486		12.25				
692.1529		12.26				
692.1553		12.27				
692.1578	13.02	0.033				
692.1638	13.00	0.033				
692.1712	12.96	0.033				
692.1806	13.61	0.038				
692.1836	13.59	0.038				
692.1864	13.63	0.038				
692.2139		12.22				
692.2214		12.22				
692.2238		12.18				
692.2266	12.98	0.033				
701.0644		13.25				0.125
Table 1. - Continued

JD 2450000+	V	σ_V	R	σ_R	I	σ_I
701.1001	14.73	0.10				
701.1030	14.71	0.10				
701.1077			13.23	0.125		
701.1109		14.02	0.12			
701.1146		14.01	0.12			
701.1182		14.02	0.12			
701.1340		14.52	0.10			
701.1378		14.49	0.10			
701.1429			13.03	0.125		
701.1456			13.00	0.125		
701.1494		13.80	0.12			
701.1531		13.80	0.12			
701.1573		14.41	0.10			
701.1614		14.37	0.10			
727.1410		14.63	0.031			
727.1451		14.64	0.031			
727.1504		15.30	0.021			
728.0135			13.54	0.022		
728.0167			13.53	0.022		
728.0255		14.49	0.022			
728.0354		15.16	0.061			
728.0414			13.50	0.022		
728.0494		15.01	0.061			
728.0584		14.32	0.022			
728.0586			13.56	0.022		
728.0618		14.37	0.022			
728.0660		15.10	0.061			
728.0749			13.48	0.022		
728.0796		14.35	0.022			
728.0857		15.15	0.061			
728.0897		15.16	0.061			
728.0945			13.52	0.022		
728.1004		14.40	0.022			
728.1039		14.40	0.022			
728.1095		15.15	0.061			
728.1151			13.49	0.022		
728.1214		14.36	0.022			
728.1268		15.18	0.061			
728.1303		15.12	0.061			
728.1596		15.21	0.061			
Table 1. - Continued

JD 2450000+	V	σ_V	R	σ_R	I	σ_I
729.9905	14.08	0.089				
729.9973	14.10	0.089				
729.9999	14.76	0.113				
730.0206	14.09	0.089				
730.0206	13.25	0.034				
730.0231	13.26	0.034				
730.0310	14.15	0.089				
730.0429	14.64	0.113				
730.0475			13.19	0.034		
730.0505	14.04	0.089				
730.0535	14.04	0.089				
730.0614	14.63	0.113				
730.0764			13.27	0.034		
730.0803	14.14	0.089				
730.0830	14.10	0.089				
730.0881	14.70	0.113				
730.0912	14.70	0.113				
734.9653			13.79	0.062		
734.9687	14.77	0.171				
734.9781			13.71	0.062		
734.9826	14.54	0.171				
734.9865	14.89	0.135				
734.9931			13.64	0.062		
734.9962	14.21	0.171				
735.0020	14.94	0.135				
735.0073			13.64	0.062		
735.0100	14.66	0.171				
735.0144	15.13	0.135				
735.0194			13.68	0.062		
735.0229	14.61	0.171				
735.0363			13.66	0.062		
735.0390	14.67	0.171				
735.0433	15.18	0.135				
735.0483			13.73	0.062		
735.0508	14.42	0.171				
735.0596			13.71	0.062		
735.0626	14.71	0.141				
735.0677	15.15	0.135				
735.0759			13.50	0.062		
735.0792	14.48	0.171				
Table 1. - Continued

JD 2450000+	V	σ_V	R	σ_R	I	σ_I
735.0912			14.46	0.171		
735.0955	14.42	0.135				
735.1050			13.59	0.062		
735.1095	14.31	0.171				
735.1145	15.20	0.135				
738.9709			13.56	0.041		
738.9736			14.76	0.141		
738.9788	15.20	0.147				
738.9837			13.63	0.041		
738.9861			14.56	0.141		
738.9893	15.50	0.147				
738.9940			13.66	0.041		
738.9962	15.50	0.141				
738.9991	15.29	0.147				
739.0088			13.59	0.041		
739.0112			14.73	0.141		
739.0141	15.75	0.147				
739.0187			13.66	0.041		
739.0239	15.14	0.147				
739.0320			13.62	0.041		
739.0343	14.42	0.141				
739.0685			13.65	0.041		
739.0724	14.56	0.141				
739.0757	15.18	0.147				
739.0807			13.73	0.041		
739.0832	14.45	0.141				
739.0861	15.15	0.147				
739.0916			13.58	0.041		
739.0942	14.49	0.141				
739.0974	15.48	0.147				
740.9737			13.53	0.021		
740.9775	14.39	0.040				
740.9810	14.97	0.077				
740.9889			13.45	0.021		
740.9919	14.51	0.040				
740.9949	15.79	0.077				
741.0602			13.58	0.021		
741.0635			14.50	0.040		
741.0673	15.27	0.077				
741.0734			13.62	0.021		
JD 2450000+	V	σ_V	R	σ_R	I	σ_I
-----------	-----	--------	-----	--------	-----	--------
741.0854		13.63		0.021		
741.0879	14.53	0.040				
741.0953	15.17	0.077				
741.1007	13.65	0.021				
741.1035	14.52	0.040				
741.1133	13.64	0.021				
741.1161	14.47	0.040				
758.9111	13.90	0.054				
758.9200	14.79	0.036				
758.9252	15.30	0.086				
758.9309	15.35	0.086				
758.9431	14.64	0.036				
758.9484	14.69	0.036				
758.9867	15.20	0.086				
759.0054	15.27	0.086				
759.0187	14.63	0.036				
759.0237	15.21	0.086				
759.0417	15.23	0.086				
759.0580	14.68	0.036				
759.9480	14.44	0.035				
759.9533	15.36	0.097				
759.9574	13.75	0.046				
759.9723	14.53	0.035				
759.9764	15.28	0.097				
759.9864	14.52	0.035				
759.9898	15.57	0.097				
759.9958	14.56	0.035				
760.0100	15.34	0.097				
760.0225	14.49	0.035				
760.0272	14.98	0.097				
760.0379	14.31	0.035				
760.0488	15.04	0.097				
760.9380	15.35	0.067				
760.9525	15.24	0.067				
760.9742	15.33	0.067				
760.9897	15.27	0.067				
761.0107	14.96	0.067				
761.0255	15.38	0.067				
1088.9883	12.99	0.035				
1088.9967	12.94	0.035				
\begin{table}						
\centering						
\begin{tabular}{cccccc}						
\hline						
JD 2450000+ & \(V\) & \(\sigma_V\) & \(R\) & \(\sigma_R\) & \(I\) & \(\sigma_I\) \\						
\hline						
1089.0217 & 13.76 & 0.065 & & & & \\						
1089.0296 & 13.82 & 0.065 & & & & \\						
1089.0378 & & & 12.99 & 0.035 & & \\						
1089.0480 & 14.45 & 0.113 & & & & \\						
1089.0652 & 13.86 & 0.065 & & & & \\						
1089.0669 & & & 13.08 & 0.035 & & \\						
1089.0711 & 14.51 & 0.113 & & & & \\						
1089.0814 & 13.85 & 0.065 & & & & \\						
1089.0903 & & & 13.03 & 0.035 & & \\						
1089.0944 & 14.53 & 0.113 & & & & \\						
1089.1047 & 13.78 & 0.065 & & & & \\						
1089.9803 & & & 12.70 & 0.046 & & \\						
1089.9849 & & & 12.73 & 0.046 & & \\						
1089.9909 & 14.20 & 0.064 & & & & \\						
1089.9910 & 14.16 & 0.064 & & & & \\						
1090.0116 & 13.54 & 0.053 & & & & \\						
1090.0194 & 13.57 & 0.053 & & & & \\						
1090.0280 & & & 12.77 & 0.046 & & \\						
1090.0319 & & & 12.74 & 0.046 & & \\						
1090.0367 & 14.19 & 0.064 & & & & \\						
1090.0486 & 14.28 & 0.064 & & & & \\						
1090.0597 & 13.62 & 0.053 & & & & \\						
1090.0699 & 13.63 & 0.053 & & & & \\						
1090.0785 & & & 12.82 & 0.046 & & \\						
1090.0955 & 14.32 & 0.064 & & & & \\						
1090.1147 & 13.67 & 0.053 & & & & \\						
1093.9625 & 13.41 & 0.036 & & & & \\						
1093.9649 & 13.44 & 0.036 & & & & \\						
1093.9675 & & & 12.63 & 0.025 & & \\						
1093.9750 & & & 12.64 & 0.025 & & \\						
1093.9876 & 14.05 & 0.051 & & & & \\						
1093.9934 & 13.46 & 0.036 & & & & \\						
1094.0000 & 13.44 & 0.036 & & & & \\						
1094.0027 & 14.08 & 0.051 & & & & \\						
1094.0035 & & & 12.67 & 0.025 & & \\						
1094.0072 & & & 12.64 & 0.025 & & \\						
1094.0155 & 14.04 & 0.051 & & & & \\						
1094.0207 & 14.06 & 0.051 & & & & \\						
1094.0264 & 13.45 & 0.036 & & & & \\						
1094.0297 & 13.48 & 0.036 & & & & \\						
\hline						
\end{tabular}						
\caption{Table 1. - Continued}						
\end{table}						
JD 2450000+	V	σ\(_V\)	R	σ\(_R\)	I	σ\(_I\)
------------	-----	-------	-----	--------	-----	--------
1094.0386	14.18	0.051				
1094.0536	13.49	0.036				
1094.0563	13.53	0.036				
1094.0618	12.71	0.025				
1094.0618	14.16	0.051				
1094.0647	12.71	0.025				
1094.0731	14.10	0.051				
1094.0811	13.51	0.036				
1094.0903	13.52	0.036				
1094.0933	12.71	0.025				
1094.0955	12.71	0.025				
1094.9458	12.83	0.041				
1094.9502	12.80	0.041				
1094.9581	13.40	0.041				
1094.9619	13.44	0.041				
1094.9708	14.34	0.013				
1094.9765	14.29	0.013				
1094.9894	12.81	0.041				
1094.9934	12.80	0.041				
1094.9966	13.81	0.041				
1095.0001	13.60	0.041				
1095.0045	14.26	0.013				
1095.0106	14.26	0.013				
1095.0199	12.79	0.041				
1095.0273	12.81	0.041				
1095.0304	13.65	0.041				
1095.0379	13.61	0.041				
1095.0422	14.29	0.013				
1095.0488	14.17	0.013				
1095.0595	12.78	0.041				
1095.0624	12.75	0.041				
1095.0660	13.65	0.041				
1095.0763	13.60	0.041				
1095.0902	14.28	0.013				
1095.0977	14.30	0.013				
1103.9759	13.28	0.064				
1103.9817	12.51	0.046				
1104.0262	13.28	0.064				
1104.0319	12.52	0.046				
1104.0681	12.55	0.046				
JD 2450000+	V	σ_V	R	σ_R	I	σ_I
------------	--------	------------	-----	------------	----	------------
1379.2335						
1379.2365						
1379.2417		13.19		0.063		
1379.2461		13.18		0.063		
1379.2509	13.83	0.056				
1379.2646	13.76	0.056				
1379.2736					12.44	0.031
1379.2806					12.42	0.031
1379.2858		13.19		0.063		
1379.2962		13.19		0.063		
1379.3097	13.78	0.056				
1379.3381					13.06	0.063
1391.1644		13.96				
1448.1080		12.78				
1448.1431					12.05	0.066
1448.1514	13.39	0.211				
1469.0082					12.27	0.047
1469.0126					12.27	0.047
1469.0187		13.05		0.142		
1469.0227		13.03		0.142		
1469.0265	13.70	0.091				
1469.0314	13.60	0.091				
1469.0362					12.28	0.047
1469.0391					12.29	0.047
1469.0450		13.02		0.142		
1469.0487		13.04		0.142		
1469.0560		13.04		0.142		
1469.0591	13.68	0.091				
1469.0635	13.60	0.091				
1469.0689					12.30	0.047
1469.0714					12.29	0.047
1469.0743	13.67	0.091				
1469.0788	13.66	0.091				
1469.0836					12.31	0.047
1469.0861					12.34	0.047