Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm

Faisal Tariq 1, Salem Alelyani 2,3, Ghulam Abbas 1,*, Ayman Qahmash 2,3 and Mohammad Rashid Hussain 2,3

1 Department of Electrical Engineering, The University of Lahore, Lahore 54000, Pakistan; faisaltariq08170@gmail.com
2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia; s.alelyani@kku.edu.sa (S.A.); a.qahmash@kku.edu.sa (A.Q.); humohammad@kku.edu.sa (M.R.H.)
3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
* Correspondence: ghulam.abbas@ee.uol.edu.pk or engrgabbas@gmail.com

Received: 27 September 2020; Accepted: 23 November 2020; Published: 26 November 2020

Abstract: One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is selected in such a way as to minimize the total fuel cost while satisfying the load demand, subject to operational constraints. Different numerical and metaheuristic optimization techniques have gained prominent importance and are widely used to solve the nonlinear problem. Although metaheuristic techniques have a good convergence rate than numerical techniques, however, their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work is devoted to solving the ELD problem with the integration of variable energy resources using a modified directional bat algorithm (dBA). Then the proposed technique is validated via different realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation results, it is observed that dBA reduces the operational cost with less computational time and has better convergence characteristics than that of standard BA and other popular techniques like particle swarm optimization (PSO) and genetic algorithm (GA).

Keywords: renewables incorporated ELD problem; directional bat algorithm (dBA); operational cost; convergence characteristics

1. Introduction

In a power system’s operation and control, the cost of electric power generation is a major concern due to increased demand in residential and commercial sectors. Due to interconnection among distributed electrical networks, the reduction of electric energy charges is of utmost importance. Even a minor decrease in electric energy cost creates a huge impact on the economics of the overall power system. Economic load dispatch (ELD), a subset of the unit commitment problem, is considered an extremely significant problem that deals with the minimization of a power generation facilities’ operational cost, where the primary job of power system engineers is to consider the economics of power systems. Moreover, the importance of this problem has greatly increased as it creates an impact on the environment. Economic dispatch also helps to minimize environmental pollutants to minimize fuel consumption. Furthermore, to improve the security of an electric system,
there is also an utmost necessity to improve an ELD problem in terms of constraint to prevent any mishap like power system collapse.

The economics of any electric power system plays a significant role in encouraging researchers to find a technique that can reduce power generation cost up to a significant level. Traditionally, numerical techniques like gradient and Lambda iteration methods have been utilized to solve the ELD problem. However, due to the penetration of renewable energy resources, the optimization problem can add more complexity to nonlinear control variables. On the other hand, metaheuristic techniques are considered highly capable of solving high-dimensional ELD problems with less computational time. For example, in [1], a novel technique called the modified teaching-learning algorithm (MTLA) is presented. To overcome the convergence of the local optimum solution, a new stochastic self-adaptive mutation operator is introduced. Load forecast errors and contingencies of generating units are ignored in this research. In [2], modified particle swarm optimization (MPSO) is used to solve the ELD problem involving complex and non-continuous cost functions. This MPSO can deal with all types of constraints effectively. Furthermore, to speed-up the optimization process, a search space reduction strategy is proposed. In [3], an effort to find the optimum power combination of units at a minimum cost and under different power demands is performed using the augmented Lagrangian particle swarm optimization (ALPSO) technique. In [4], an improved PSO is used to solve the ELD problem, where a linearly decreasing inertia weight is combined with chaotic sequences to reduce the chances of premature convergence. However, this work does not consider strategies to reduce computational time for the high-dimensional ELD problem. In [5], authors proposed a mechanism to solve the ELD problem considering various practical constraints such as valve point loading (VPL) effects, ramp rate limits, prohibited operating zones (POZ), and multiple generator fuel options using the firefly algorithm and its variant, i.e., chaos mutation firefly algorithm (CMFA). The ability of the firefly algorithm is further enhanced by replacing the control parameters with fixed values. It is then achieved by self-adaption parameters, which affect solution quality, convergence speed, and reliability.

Similarly, in [6], a cuckoo search algorithm (CSA) is proposed for solving the nonconvex ELD problem by considering its various practical constraints. In [7], an enhanced bee swarm optimization method is utilized to solve a dynamic ELD problem, while maintaining a balance between exploration and exploitation. In [8], self-adaptive differential evolution and real coded genetic algorithm (GA) are proposed to solve the ELD problem. In [9], the dispatching of power is optimized using the firefly algorithm while avoiding the subjective penalty factors. In [10], a modified cuckoo search algorithm is proposed to solve the ELD problem considering VPL effects, POZ, losses, and ramp rate limits. This modification consists of self-adaptive step size and some neighbor study strategies to improve the performance of the standard cuckoo algorithm. With a high-dimensional test system, the efficiency of the proposed algorithm is tested. In [11], a modified version of PSO is presented for the ELD problem by considering different constraints. This makes the algorithm capable of search around feasible solution areas. In [12], more practical generator constraints like ramp rate limits and POZ are considered for the ELD problem. In [13], a quantum-inspired PSO is proposed to solve the ELD problem. By introducing quantum computing theory in the basic PSO, the searchability and convergence speed increases. In [14], an artificial immune system, evolutionary programming, and PSO are used for solving the ELD problem. In [15], novel PSO is applied to the ELD problem by considering the generator constraints. In the standard PSO, some mutation operators are introduced to improve its exploration capabilities. Mutation operators take charge as soon as the PSO velocity closes to zero or if it breaks lower and upper boundaries. PSO with mutation operators claims to outperform PSO easily. In [16], a detailed survey of PSO and its certain modifications is explained, while [17] deals with the hybridization of PSO with other algorithms to solve the ELD problem. In [18], ELD and combined economic and emission dispatch (CEED) problem is solved using an interior search algorithm (ISA). All the above-mentioned references are, however, used to solve all-thermal ELD problems that do not involve renewables.

However, a bat algorithm has also been found to solve all-thermal ELD problems successfully. In [19], the ELD problem is solved using a bat algorithm. The bat algorithm has proven to be better
than PSO and the intelligent water drop (IWD) technique. The problem, however, does not include multiple fuels and spinning reserve cases. In [20], two different cost functions are considered, i.e., smooth and non-smooth. A bio-inspired bat optimization problem (BOA) is used for the optimum setting of control variables. In [21], the ELD problem with a quadratic fuel function is solved using BA. It was proved that BA is capable of solving complex constraints problems with ease as it is easy to operate. In addition, the minimization of emission released was also completed. In [22], a BAT algorithm is utilized to solve the ELD problem. A mathematical model is presented for the ELD problem. In [23], some previous algorithms like GA, PSO, and BA are reviewed. The original BA is modified to enhance its capabilities. In [24], a multi-objective self-adaptive BA is introduced to solve a practical environmental and emission dispatch problem considering valve point effects, transmission losses, and ramp rate limits. BA is utilized to achieve Pareto optimal solutions. Novel self-adaptive learning is added to improve the diversity of the population. In [25], a chaotic bat algorithm (CBA), a variant of the bat algorithm, is used to solve the ELD problem. This variant is obtained by incorporating chaotic sequences in the original bat algorithm to improve its performance. This less tuning algorithm claimed to perform better than many algorithms. In [26], an enhanced BA is utilized to solve the ELD problem by considering different generator constraints. In [27], many of the variants of BA are reviewed and some new variants are introduced for enhancing the exploration and exploitation capability of this algorithm. In [28], the novel bat algorithm (NBA) is utilized to solve the ELD problem. In this variant of the bat algorithm, the doppler effect is introduced. Results claimed that NBA has much better efficiency and robustness than BA and PSO.

At present, renewables- incorporated ELD problems are gaining much more attention to cope with the challenge of an energy shortage and the environment and are being solved using metaheuristic techniques. In [29], a hybrid metaheuristic algorithm RCBA is presented to solve the ELD problem by incorporating thermal generators and renewables like wind power. This algorithm combines a chaotic map and random black hole model to avoid premature convergence and move towards the global area. In [30], the reliability of generators and uncertainty of wind power generation is dealt with. For considering extreme conditions with probability, forecasting error relating to wind power generation is modeled as a discretized beta probability distribution function (PDF). In [31], a solution of optimum power dispatch in an interconnected microgrid is presented. A probabilistic model is used for a balanced sharing of power at a minimum operating cost. PSO and imperialist competitive algorithm (ICA) are used for the optimization of the objective function. Results deduced claimed that optimal sharing between the main grid and microgrid decreases the distribution networks’ cost. In [32], combined emission economic dispatch (CEED) is applied to a system consisting of thermal units and photovoltaic (PV) plants. The model considered is a mixed-integer optimization problem (MIOP) solved using PSO. In [33], ELD is solved using a dynamic adaptive bacterial foraging algorithm (BFA) with wind power incorporated. It was shown that this variant of BFA mitigates some drawbacks in the original BFA, such as poor convergence characteristics for high dimensional complex problems. In [34], a dynamic economic dispatch (DED) for the integration of large-scale renewable energy sources (RESs) with the ELD problem is reduced into dual stages using Lagrange relaxation where the multiplier is updated based on the quasi-Newton method. In [35], ELD considering wind power with forecast error is analyzed. As the wind uncertainty has a huge impact on power dispatch and a risk to the power grid, these forecast errors need to be minimized. In [36], the economic environmental dispatch problem is applied to a hybrid power system consisting of solar and wind energies. The strength Pareto evolutionary algorithm (SPEA) method is employed to solve this problem. In [37], the ELD problem considering RESs is solved using GA. It is shown that the inclusion of RESs impacts the economics of the system. However, this technique is not applied to the high-dimensional test case. In [38], the effect of substantial wind-based capacity on the economic load dispatch problem is considered. In [39], the ELD problem is considered with RESs. To deal with the uncertainty of wind and solar, their stochastic nature is modeled by Weibull and Beta distributions. An improved Fireworks algorithm is used to solve this highly-constrained problem. In [40], Lagrangian relaxation with the incremental proximal method is used to solve the ELD problem. In [41], combined emission economic dispatch (CEED) is
solved using the lighting flash algorithm by considering different cases with wind power penetration, multiple fuel options, and generator constraints. In [42], a cost-effective hybrid microgrid system is designed with renewable sources like wind, hydrogen-based storage systems, and fuel cells. This optimal power problem is solved using PSO and is further compared with GA. In [43], the ELD problem by a microgrid containing solar and wind farms is solved using the reduced gradient method. It is shown that solar energy should be incorporated with renewable energy credits. In [44], a control system is presented that is capable of maintaining constant voltage magnitude at the wind farm terminal. The ELD problem is applied to a system containing thermal and wind power units. In [45], the ELD problem is solved using the BAT algorithm by including wind power. In the overall objective function, the stochastic nature of wind power is taken into account. Furthermore, due to the forecasting errors, imbalance charges (overestimation, underestimation) are also considered.

Unlike other methods, the directional bat algorithm (dBA) evolved as a promising variant of BA is limitedly used to solve renewables-incorporated ELD problems that have recently received considerable scholarly attention. The dBA introduces the directional echolocation to the structure of BA, which may get trapped locally for the complex and constrained dispatch problems, so as to enhance exploitation and exploration characteristics. To validate the superiority of dBA, in this paper, the ELD problem with and without renewables considering different test cases is solved using BA and dBA. With the help of compelling results, it was proved that dBA converges faster with minimized fitness value, thus justifying the claim that it is more effective than BA and other well-known GA and PSO techniques.

The paper commences with the formulation of an ELD problem considering combined thermal and RESs in Section 2. Steps involved in the standard BA with advantages, disadvantages, and a few variants are highlighted in Section 3. Section 3 also introduces dBA and discusses the steps involved in implementing this technique. Section 4 shows the simulation results of the test cases with specific characteristics of particular cases. Finally, the findings of the paper are pointed out in Section 5.

2. Problem Formulation

The objective of this research is to minimize the operating cost of a thermal unit system by integrating solar PV and wind energy units, subject to power demand and dispatch limitations.

2.1. Thermal Energy

The cost function of a thermal power plant without and with the valve point effect (VPL) is a second-order polynomial function:

\[
F_i(P_i) = \begin{cases}
 a_i P_i^2 + b_i P_i + c_i, & \text{without VPL} \\
 a_i P_i^2 + b_i P_i + c_i + f_i \times \sin(f_i \times (P_i^{min} - P_i)), & \text{with VPL}
\end{cases}
\]

where \(a_i, b_i, c_i,\) and \(f_i\) are fuel cost coefficients of power generation unit \(i\) whereas the total cost of \(j\) thermal units is expressed by \(\sum_{i=1}^{j} F_i(P_i)\).

2.2. Wind Energy

The power generated by wind turbines can be written as:

\[
P_w = \frac{1}{2} \rho A u^3
\]

where \(\rho\) is the air density, \(u^3\) is wind speed, and \(A\) is the windswept area, respectively. The cost function of wind generation is subject to the investment cost of the equipment and the operation and maintenance (O&M) cost of generated energy. However, the capital cost of land, assuming it is a community-based microgrid where the land is owned by the community [43] is given as:

\[
F(P_w) = a l^2 P_w + C_e P_w
\]

where \(a\) can be expressed as:
\[a = \frac{r}{1 - (1 + r)^{-N}} \]

(4)

where \(P_w \) is the wind generation in (kW), \(a \) is an annuitization coefficient (dimensionless), \(r \) is the interest rate (taken as 0.09 for base case), \(N \) is the investment lifetime (\(N = 20 \) years), \(I^w \) is the investment cost per unit installed power ($/kW), and \(G^E \) is the O&M cost per unit of generated energy ($/kW), respectively. In this system, it is assumed that \(I^w \) and \(G^E \) are approximately equal to $1400 and 1.6 cents per kW, respectively.

2.3. Solar PV Energy

The maximum power provided by a solar panel is given by [43]:

\[E_i = 3.24M_{PV}\left(1 - 0.0041 \times (T_i - 8) \times S_i\right) \]

(5)

where \(E_i \) is the output power, \(M_{PV} \) is the capacity of each PV panel, \(T_i \) is the temperature, and \(S_i \) is the radiation data at time \(i \), respectively. The cost function of solar generation in [43] involves the investment cost of the equipment and the O&M cost of the generated energy. However, without the capital cost of land, it can be expressed as:

\[F(P_s) = aI^sP_s + G^EP_s \]

(6)

where \(a \) is written as:

\[a = \frac{r}{1 + (1 + r)^{-N}} \]

(7)

where \(P_s \) is the solar generation (kW), \(a \) is an annuitization coefficient (dimensionless), \(r \) is the interest rate (taken as 0.09 for base case), \(N \) is the investment lifetime (taken as \(N = 20 \) years), \(I^s \) is the investment costs per unit installed power ($/kW), and \(G^E \) is the O&M cost per unit generated energy ($/kW), respectively. In this system, it is assumed that the investment costs per unit installed power \((I^s) \) and O&M cost per unit generated energy \((G^E) \) are approximately equal to $5000 and 1.6 cents per kW, respectively.

In the case of RESs, the generating cost parameter is not taken into account. The RESs that are considered in this research are wind energy and solar PV energy, whose forecasting is taken from [43] and is shown in Figure 1. A comprehensive review of the forecasting approaches for wind and solar power generation can be found in [46].

Figure 1. Wind and solar power forecasting.
2.4. Overall Cost Function Incorporating Renewables

Adding all the cost functions described in (1), (3), and (6) gives the overall cost function as:

$$F_i = F_i(P_i) + F(P_{th}) + F(P_{r})$$

(8)

The following constraints (equalities and inequalities) have been considered while minimizing the overall cost function.

Power Balance Equation: Neglecting the transmission losses, the total generated power of all the units (thermals and renewables) $\sum_{i=1}^{n}(P_i)$ should be equal to the total system demand P_{load} i.e.,

$$\sum_{i=1}^{n}(P_i) = P_{\text{load}}$$

Generator Capacity Limits: The power delivered by each generating unit should remain within its minimum and maximum limits.

$$P_{i,\text{min}} \leq P_i \leq P_{i,\text{max}}$$

where $P_{i,\text{min}}$ and $P_{i,\text{max}}$ signify the ith generating unit’s minimum and maximum output power, respectively.

3. A Variant of BA for the ELD Problem

3.1. Overview of BA

This algorithm is inspired by microbats. The rules followed by this algorithm emerge from the certain behavior of bats, which are discussed as follows [47]:

1. Bats use echolocation to sense distance and to know the difference between food and prey. In our case, the fitness function is food and bats, which are the possible solutions;
2. The bats fly randomly with some predefined velocity v_i at a position x_i with a predefined frequency f_i. They can adjust their frequency of pulse emitted;
3. They can vary the rate of pulses by looking at the target proximity;
4. Loudness can be varied from a large positive value to a small value.

Figure 2 shows the flowchart involved in the process. The algorithm progresses by taking the following steps:

1. Firstly, we initialize the algorithm with maximum iterations, bat population, loudness constant α, pulse rate constants γ, initial values of loudness, and pulse rates;
2. Give a random position to all bats in the solution space within the lower and upper boundary;
3. Find the best bat position x^* and its fitness;
4. Start the process in which the position is updated one by one by:

$$\begin{align*}
 v_i' &= v_i^{t-1} + (x_i^{t-1} - x^*) f_i \\
 x_i' &= x_i^{t-1} + v_i'
\end{align*}$$

where v_i' is the velocity of bat i at a certain position x_i' at iteration t. There is the global best position x^* among all the bats. Minimum and maximum frequency is selected depending on the application. The value β will be between 0 and 1.

5. Now a random number is generated (between 0 and 1) and is compared with pulse rate. Based on pulse rate, local search is done around the best solution by:

$$x_{\text{new}} = x_{\text{old}} + \varepsilon A^t$$

(10)
6. An existing random solution \(k \) is selected with \(k \neq i \) and is compared with the new solution. If it is better, then update the new solution by:

\[
x_{\text{new}} = x_i + \epsilon A^i
\]

(11)

7. The new solution from the previous step will be compared with the existing positions of the current bat. Furthermore, a random number will again be generated and compared with loudness \(A_i \) of that bat. If the new solution of the previous step is better than the global best solution, and the random number is less than loudness, then a new solution will be accepted, and the loudness and pulse rate of that bat will be updated based on the following expressions:

\[
A_i^{t+1} = \alpha A_i^t
\]

\[
r_i^{t+1} = r_i^t [1 - e^{\gamma t}]
\]

(12)

Figure 2. Flow chart of the bat algorithm (BA).

Loudness and pulse rates play a vital role in finding the best result in terms of control exploration and exploitation. The value of loudness will decrease from a positive value to a certain minimum value, while the pulse rate will increase from a small value to a large value as the bat finds its prey. \(\alpha \) and \(\gamma \) are the constants of loudness and pulse rate, and the value of \(\alpha \) will be any value between 0 and 1 and \(\gamma \) is greater than 0. Optimum values of \(\alpha \) and \(\gamma \) have been selected as 0.9 and 0.98, respectively [47].

Although the bat algorithm comes with the advantages of having a highly efficient, reliable, easy structure and can be programmed from any programming language easily, it suffers from limitations of premature convergence, which increases with complexity and bat moves by the information from
the best bat (best bat could be local optimum). This requires a modification in the structure of the BA to handle the nonconvex ELD problem. Much research has been done to improve the exploration and exploitation capabilities of the BA. There are many variants of the BA [27]. Some of the variants, such as the novel BA [28], enhanced BA [26], chaotic BA [25], and modified BA [23] have already been applied to solve the ELD problem. In this paper, we are going to apply a dBA to tackle the renewables-incorporated ELD problem.

3.2. dBA

dBA plays a dual role at different stages of the algorithm. In the beginning, it helps to explore more search space and as the process moves, the bats move around the leader, which improves the exploitation ability. It has a strong exploitation process that increases the convergence speed without being trapped in local optima. By adding a scale factor in the local search step, bats are allowed to move randomly with large steps. This results in enhancing the exploration capability of the algorithm. A decrease in the scale factor as the iteration proceeds improves the exploitation capability [48,49].

The procedure followed by dBA is very similar to the original BA; however, some modifications are made to improve its diversification and intensification [48,49]. Figure 3 shows the flow chart involved in the dBA process.

1. Firstly, bats are initialized by giving random positions within the upper and lower boundaries of each bat;
2. The standard BA has two navigation modes: First, towards the best solution and second, to exploit the best solution. In directional echolocation, bats move by analyzing their echoes. In addition, a bat takes help from other bats for better decisions. One of the bat pulses is toward the leader and another one toward a randomly selected bat. If the food exists around that random bat, the bat moves toward it otherwise, it moves toward the leader (best bat). Equations (13) and (14) depict this movement as follows:

\[
x_i^{t+1} = x_i^t + (x^* - x_i^t)f_1 + (x_i^t - x_i^*)f_2
\]

If the food does not exist around the random bat, then a bat will move towards the leader:

\[
x_i^{t+1} = x_i^t + (x^* - x_i^*)f_1
\]

where \(x_i^* \) shows the position of randomly selected bat \(k \) where \(k \neq i \) and \(x^* \) shows the position of the global best. In the above equations, \(f_1 \) and \(f_2 \) are the frequencies of two pulses which are assigned as:

\[
f_1 = f_{\text{min}} + (f_{\text{max}} - f_{\text{min}})\text{rand1}
\]

\[
f_2 = f_{\text{min}} + (f_{\text{max}} - f_{\text{min}})\text{rand2}
\]

where \(\text{rand1} \) and \(\text{rand2} \) are random numbers between 0 and 1;
3. In the next step, the local search step is done similar to BA. However, the equation is modified by including a scale factor \(w_i^t \) as follows:

\[
x_i^{t+1} = x_i^t + \langle A^t \rangle \varepsilon w_i^t
\]

where \(\langle A^t \rangle \) is the average loudness and \(\varepsilon \) has a random value between \(-1\) and \(1\). The value of \(w_i^t \) starts from a large value and then reduces to 1% of a quarter of its length as follows:

\[
w_i^t = \left(\frac{w_{i_0} - w_{i_{\text{f}}}}{1 - t_{\text{max}}} \right)(t - t_{\text{max}}) + w_{i_{\text{f}}}
\]

where \(w_{i_0} \) and \(w_{i_{\text{f}}} \) show the initial and final values, respectively, and \(t \) and \(t_{\text{max}} \) show the current and maximum iteration, respectively. The value of \(w_{i_0} \) and \(w_{i_{\text{f}}} \) can be set as:
Here \(U_i \) and \(L_i \) show the upper and lower bounds, respectively;

4. In the next step, which is similar to the standard BA, a random number is compared with loudness, but unlike the standard BA, a new solution is compared with the existing solution of that bat (not the global best). This step helps to improve the diversity of the algorithm. If these two conditions are true, then only new solutions are accepted. The pulse rate has an important role as it decides a balance between exploration and exploitation. Moreover, the loudness and pulse rate are updated as follows:

\[
A' = \left(\frac{A_0 - A_{\infty}}{1-t_{\max}} \right)(t-t_{\max}) + A_{\infty} \\
\]

\[
r' = \left(\frac{r_0 - r_{\infty}}{1-t_{\max}} \right)(t-t_{\max}) + r_{\infty}
\]

where \(A \) and \(r \) show the loudness and pulse rate, respectively. For the best results, the optimum values recommended in the literature are 0.1 and 0.7 for pulse rate, and 0.9 and 0.6 for loudness;

5. In the last step, the new solution is compared with the global solution. If it has better fitness, then the global solution is updated [48,49].

![Flow chart of the directional bat algorithm (dBA).](image)

Figure 3. Flow chart of the directional bat algorithm (dBA).

4. Simulation Results and Discussion

To validate the successful application of dBA to the ELD problem and to show its superiority over GA, PSO, and BA, two test systems, namely an IEEE 57-bus system with 7 thermal units driving
from fossil fuels and a high dimensional 15-unit system, with and without renewables, are considered. A MATLAB environment was used to solve the test systems. Unless otherwise specified, for all the simulation results, the population and iteration were selected at 100 and 1000, respectively for all considered optimization algorithms. For BA and dBA algorithms, the values of \(f_{\text{min}} \) and \(f_{\text{max}} \) were set to 0 and 2, respectively, whereas \(r_0 = 0.1 \), \(r_{\text{max}} = 0.7 \), \(A_0 = 0.9 \), and \(A_{\text{max}} = 0.6 \). For PSO, inertial, personal, and global coefficients were set to 0.9, 2, and 2, respectively. For GA, the selection strategy was stochastic uniform, the mutation function was adaptive feasible, and the crossover probability was set to 0.8. The selection of the parameters is made on the basis of the experiments to ensure a better solution.

4.1. Case 1: The IEEE 57 Bus System with Seven Thermal Units

4.1.1. Data

An IEEE 57 bus system, which consists of 7 thermal units running from fossil fuels, was considered. The cost coefficients with minimum and maximum power generation limits are shown in Table 1 [50]. In Table 2, a 24 h load forecasting was selected as a load demand which was to be met. It can be seen that the maximum power demand at 1600 h is 1800 MW. In this case, \(F_{\text{thermal}} = \sum_{i=1}^{7} F_i(P_i) \).

Generator	\(a \) ($/MW^2)	\(b \) ($/MW)	\(c \) ($)	\(P_{\text{min}} \) (MW)	\(P_{\text{max}} \) (MW)
1	0.007	7	400	100	575
2	0.0095	10	200	50	100
3	0.009	8.5	220	50	140
4	0.009	11	200	50	100
5	0.008	10.5	240	100	550
6	0.0075	12	200	50	100
7	0.0068	10	180	100	410

Table 1. Cost coefficients of seven thermal units with lower and upper power limits.

Time (h)	1	2	3	4	5	6	7	8	9	10	11	12
Demand (MW)	800	780	750	750	720	700	700	700	800	900	1000	1200

Time (h)	13	14	15	16	17	18	19	20	21	22	23	24
Demand (MW)	1400	1500	1750	1800	1500	900	850	800	780	750	700	800

Table 2. Demand forecasting over 24 h.

The data used for RESs are mentioned where the renewables-incorporated ELD problem is discussed in the following sections/subsections.

4.1.2. Cost Offered by BA and dBA

Table 3 shows the simulation results of BA and dBA in terms of operating costs for a 24 h period. It can be seen that dBA comparatively gives a lower operating cost, i.e., 288,526 $/day than that of BA which gives 288,673 $/day. Even for the load demand for each hour, dBA ensured less cost when compared to BA. This ensures that dBA displays a better chance of finding the solution closer to the global optimum with regard to the conventional BA. In the second scenario, a seven-unit thermal system was added with one wind and one solar PV farm. Both BA and dBA were applied to ELD incorporating renewables. Table 4 shows the result of BA and dBA over a 24 h time period. It is clear from the results that dBA gives better fitness results when compared to the BA. The dBA is found more successful in reducing the total cost per day as compared to dBA with or without renewables.
Table 3. BA and dBA on a seven-thermal unit system without renewables.

t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	Cost ($/h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	Cost ($/h)
1	310.0691	50.4229	139.3672	50.1000	140.100	50.100	100.100	9762.3	298.4298	61.5703	140.100	50.100	100.100	9759.8		
2	290.9093	50.1000	139.0909	50.1000	958.2	286.5761	53.9338	139.4902	50.100	953.79						
3	272.9545	50.1000	127.0456	50.1000	921.04	272.0187	50.0043	127.9772	50.100	921.03						
4	274.7427	50.1000	125.2577	50.1000	921.05	271.5529	50.1000	128.4458	50.100	1000.01	921.03					
5	259.4567	51.3485	108.9565	50.1000	891.81	255.0398	50.0033	106.0329	50.100	886.97						
6	245.5637	50.1000	104.4364	50.1000	867.98	243.7256	50.0001	106.2745	50.100	867.99						
7	246.6246	50.1000	111.7129	50.1000	868.04	243.5853	50.0001	106.4148	50.100	867.99						
8	238.2873	50.1000	111.7129	50.1000	876.98	243.5853	50.0001	106.4148	50.100	867.99						
9	296.9272	63.8645	139.2085	50.1000	976.98	298.3961	61.6040	140.100	50.100	9759.8						
10	358.2764	99.7169	139.4866	50.5020	100.6255	338.2785	92.7575	140.000	50.1718	128.2864	10.909					
11	357.1164	98.9309	139.0237	62.0253	100.000	371.9944	107.4411	50.1000	100.100	163.0657	12.108					
12	412.0867	99.8622	139.8622	160.4408	78.8337	426.0545	99.9996	140.100	151.3067	64.2512	218.4388	14.626				
13	574.8994	99.5914	139.8622	163.8266	99.4364	426.0545	99.9996	140.100	203.4979	100.2734	17.292					
14	517.2908	99.9756	139.9966	215.7008	98.7083	99.9996	139.9939	50.1000	311.3399	18.691						
15	574.9994	99.9994	139.9994	325.0040	99.9994	409.9994	99.9994	140.100	325.0004	10.9460	22.406					
16	574.9815	99.9815	139.9815	375.1116	99.9815	409.9815	99.9815	140.100	375.1111	22.406						
17	509.0922	99.8615	139.8615	255.8111	99.8615	294.8103	18.6986	139.9982	233.6462	99.9773	310.3549	18.691				
18	360.6688	99.9931	139.9964	100.0610	50.0610	10.9188	338.9833	92.8095	140.000	50.0021	128.6058	10.909				
19	323.4386	68.3125	139.1759	50.1000	119.0736	10.3300	320.3933	78.0468	140.000	50.0021	111.5603	10.328				
20	289.5354	68.0608	139.8833	50.6302	100.6302	976.29	298.0306	61.9695	140.000	50.0001	9759.8					
21	291.5612	50.1000	138.4389	50.1000	953.82	290.0000	50.1000	140.000	50.0001	953.81						
22	261.7829	50.1000	138.2172	50.1000	921.20	271.6896	50.0002	128.3102	50.100	921.03						
23	243.2984	50.1000	106.7019	50.1000	867.99	244.0813	50.1000	105.9188	50.100	867.99						
24	310.4408	50.1000	139.5994	50.1000	927.62	298.0959	61.9043	140.000	50.100	9759.8						

Total Cost ($/day) 288,673
Total Cost ($/day) 288,526
t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	Wind (MW)	Solar (MW)	Cost ($/h$)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	Wind (MW)	Solar (MW)	Cost ($/h$)			
1	308.454	8	139.845	50	100	50	100	1.7	0	9742.92	1.7	50	100	100	100	1.7	
2	282.318	5	52.4223	136.799	5	100	50	100	8.5	0	9444.65	8.5	50	100	100	100	8.5
3	262.393	2	128.336	50	100	50	100	9.27	0	9110.95	9.27	50	100	100	100	9.27	
4	258.698	2	124.641	50	100	50	100	16.66	0	9031.9	16.66	50	100	100	100	16.66	
5	243.826	4	118.953	50	100	50	100	7.22	0	8814.52	7.22	50	100	100	100	7.22	
6	244.298	9	96.7612	50	100	50	100	4.91	0.03	8629.47	4.91	50	100	100	100	4.91	
7	240.606	3	88.4639	50	100	50	100	14.66	6.27	8645.19	14.66	50	100	100	100	14.66	
8	217.157	6	89.3027	50	100	50	100	26.56	17	8234.75	26.56	50	100	100	100	26.56	
9	265.359	1	139.711	50	100	50	100	20.88	24.1	9267.36	20.88	50	100	100	100	20.88	
10	348.458	6	50.8649	139.997	4	50.8649	100	50	50.8649	100	50	50	100	100	100	100	50.8649
11	374.550	9	98.4651	139.613	6	67.5442	101.6	685	50	147.9	147.9	50	100	100	100	100	147.9
12	451.210	2	98.5168	139.419	7	98.5078	100	50	239.9	829	18.65	239.9	50	100	100	100	18.65
13	468.175	9	99.8158	139.815	8	99.8158	190.3	916	58	255.8	14.35	255.8	50	100	100	100	14.35
14	574.983	7	99.9837	139.983	7	99.9837	216.0	709	73	261.6	10.35	261.6	50	100	100	100	10.35
15	574.981	3	99.9813	139.981	3	99.9813	206.7	732	13	409.9	8.26	409.9	50	100	100	100	8.26
16	574.998	1	99.9981	139.998	1	99.9981	360.6	023	81	409.9	13.71	409.9	100	100	100	100	13.71
17	574.033	9	99.7617	139.967	1	99.9671	204.8	208	71	266.8	3.44	266.8	50	100	100	100	3.44
18	330.592	7	97.907	134.696	1	52.3771	100	50	130.2	475	1.87	130.2	100	100	100	100	1.87
19	329.274	9	50.2884	139.987	9	50.2884	100.2	884	84	128.8	0.75	128.8	50	100	100	100	0.75
20	310.398	6	6	139.431	100	50	100	0.17	0	9760.36	0.17	0	9760.36				
---	---	---	---	---	---	---	---	---	---	---	---	---					
21	284.235	8	3	56.357	50	100	50	100	0.15	0	9536.4	0.15	0	9536.4			
22	264.029	9	5	56.357	50	100	50	100	0.31	0	9207.99	0.31	0	9207.99			
23	244.212	5	6	104.717	50	100	50	100	1.07	0	8668.77	1.07	0	8668.77			
24	302.386	5	5	57.3543	50	100	50	100	0.58	0	9753.69	0.58	0	9753.69			
	Total Cost ($/day)	283,846		Total Cost ($/day)	283,642												
From Figure 4, it can be seen that the operating cost of the system decreases with the incorporation of solar and wind farms in the system.

![Cost offered by BA and dBA without and with considering renewables](image)

Figure 4. Cost offered by (a) BA and (b) dBA without and with considering renewables.

4.1.3. Characteristics Offered by BA and dBA

Figures 5–9 show the various characteristics of the BA and dBA against test case 1. Figures 5 and 6 show the position of bats for the BA and dBA, respectively. As shown, bats start from random locations (initial solutions) and converge to the best solution after 1000 iterations. However, in the case of dBA, the bats are much better optimized. Figure 7a shows that fitness offered by the BA decreases quickly, which increases the risk of trapping the optimal solution in the local optimum. However, fitness gradually decreases as the iterations progress in the case of dBA. It has a better chance of moving closer to the global optimum. Figure 7b shows the magnified view of the cost convergence curve. Figure 8 shows the pulse rate of the best bat which depicts the decrease of pulse rate as the bat finds its prey. Figure 9 shows the best bat’s loudness, which depicts the increase of loudness as the bat finds its prey.
Figure 5. Bats positions in the BA (a) at the start and (b) after 1000 iterations (seven-unit system with renewables).

Figure 6. Bats positions in the dBA (a) before and (b) after 1000 iterations (seven-unit system with renewables).
4.1.4. Comparison of dBA, BA, PSO, and GA

To further justify the effectiveness of the dBA over BA and other metaheuristic techniques like PSO and GA, a test case of 1800 MW was taken with 100 population and 1000 iterations. Tables 5 and 6 show the results regarding cost without and with renewables, respectively. It can be seen that the
dBA is better when compared to BA, which in turn dominates PSO and GA. Figure 10 shows the convergence graph without renewables, whereas Figure 11 shows the convergence with renewables.

Table 5. Cost comparison for 1800 MW demand without renewables.

Algorithm	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	Cost ($/h$)
GA	495.2	99.9987	140	99.9905	454.884	99.978	409.916	23,422.78
PSO	575	100	140	100	375.014	100	410	23,211.59
BA	575	99.998	140	99.998	375.012	99.998	409.998	23,211.39
dBA	575	100	140	100	375	100	410	23,211.36

Table 6. Cost comparison for 1800 MW demand with renewables.

Algorithm	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	Wind (MW)	Solar (MW)	Cost ($/h$)
GA	486.477	99.95	139.988	99.8611	446.64	99.9438	408.14	13.7	5.3	23,124.8
PSO	575	100	140	100	356	100	410	13.71	5.3	22,901.1
BA	574.992	99.99	139.992	99.992	356.04	99.992	409.99	13.71	5.3	22,901.0
dBA	575	100	140	100	355.9	100	410	13.71	5.3	22,899.4

Figure 10. Convergence curve: (a) Convergence graphs without renewables; (b) Magnified view.
Figure 11. Convergence curve: (a) Convergence graphs with renewables; (b) Magnified view.

4.2. Case 2: A 15 Thermal Unit System

4.2.1. Data

The data for a 15-unit system is taken from [12], whereas the solar and wind forecasting data is taken from [43]. Table 7 shows the cost coefficients and the minimum and maximum power limits of all 15 thermal units. Table 8 shows the demand forecasting taken into consideration for this case.

Generator	a ($/MW²)	b ($/MW)	c ($)	P_min (MW)	P_max (MW)
1	0.000299	10.1	671	150	455
2	0.000183	10.2	574	150	455
3	0.001126	8.8	374	20	130
4	0.001126	8.8	374	20	130
5	0.000205	10.4	461	150	470
6	0.000301	10.1	630	135	460
7	0.000364	9.8	548	135	465
8	0.000338	11.2	227	60	300
9	0.000807	11.2	173	25	162
10	0.001203	10.7	175	25	160
Time (h)	Demand (MW)	Time (h)	Demand (MW)		
---------	-------------	---------	-------------		
1	1650	13	2900		
2	1680	14	3000		
3	1680	15	3000		
4	1700	16	3000		
5	1700	17	3000		
6	2000	18	2800		
7	2000	19	2500		
8	2500	20	2000		
9	2500	21	1800		
10	2700	22	1750		
11	2800	23	1700		
12		24	1700		

4.2.2. Cost Offered by the BA and dBA

In the first scenario where renewables are not taken, both the BA and dBA are applied to a 15-thermal unit system for a 24 h period, and the result is shown in Tables 9 and 10, respectively. The bat population and iterations are taken as 100 and 1000, respectively. It can be seen that the dBA gives better fitness when compared to the BA. Similarly, in the second scenario where renewables are taken, both BA and dBA were applied to 15 thermal units with renewables (one solar and one wind farm) added for 24 h, and the results are shown in Tables 11 and 12, respectively. For this scenario, the dBA outperforms the BA in terms of (cost) fitness. The dBA offers not only a minimum cost per day but also a minimum hourly cost. The dBA is found to be more successful in optimizing the total operating cost per day than the BA with or without renewables.
Table 9. The BA on a 15-unit system without renewables.

t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_9 (MW)	P_10 (MW)	P_11 (MW)	P_12 (MW)	P_13 (MW)	P_14 (MW)	P_15 (MW)	Cost ($/h)
1	454.5173	150	129.5173	129.5173	251.9314	135	135	60	25	25	20	79.5173	25	15	15	22,261.66
2	454.8183	323.6984	129.8183	129.8183	150	301.9416	463.6332	60	25	25	20	79.5173	25	15	15	22,538.75
3	150	150	129.714	129.714	150	135	135	60	25	25	20	79.5173	25	15	15	22,745.36
4	150	340.2449	129.9185	129.9185	150	345.9685	464.7813	60	25	25	20	79.5173	25	15	15	22,737.21
5	150	150	129.714	129.714	150	354.6776	129.6776	60	25	25	20	79.5173	25	15	15	22,601.75
6	150	150	129.714	129.714	150	135	135	60	25	25	20	79.5173	25	15	15	22,444.49
7	150	150	129.714	129.714	150	135	135	60	25	25	20	79.5173	25	15	15	22,372.17
8	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,652.13
9	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
10	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
11	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
12	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
13	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
14	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
15	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
16	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
17	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
18	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
19	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32
20	150	150	129.8853	129.8853	469.8853	459.8853	305.4591	60	25	25	20	79.5173	25	15	15	22,000.32

Total Cost ($/day) 679,336
Table 10. The dBA on a 15-unit system without renewables.

t (h)	P1 (MW)	P2 (MW)	P3 (MW)	P4 (MW)	P5 (MW)	P6 (MW)	P7 (MW)	P8 (MW)	P9 (MW)	P10 (MW)	P11 (MW)	P12 (MW)	P13 (MW)	P14 (MW)	P15 (MW)	Cost ($/h)	Total Cost ($/day)
1	268.107	151.824	129.992	130	150	135	465	60	25.054	25	20	35.00603	25.00067	15.00716	15	22,135.66	
2	150	150	130	130	150	150	465	60	25	20	34.09638	15	22,442.49				
3	268.191	185.799	129.987	129.987	150	135	464.245	60	25	20	31.79258	15	22,443.63				
4	297.296	176.270	130	130	150	150	463.496	60	25	20	32.85194	15	22,649.91				
5	258.924	150	129.967	129.978	150	206.050	464.943	60	25	20	29.42383	15	22,444.3				
6	237.147	150	130	130	150	223.461	465	60	25	20	25.13593	15	22,644.91				
7	326.330	262.908	130	129.979	150	308.751	464.605	60	25	20	21.58769	15	25,726.55				
8	318.749	269.832	130	129.986	150	331.041	465	60	25	20	20.13303	15	25,726.83				
9	454.938	455	129.996	130	152.983	459.999	465	60	25	20	36.28722	15	30,893.49				
10	455	455	130	130	150	460	465	60	25	20	30.00977	15	30,902.77				
11	454.876	455	129.987	130	435.471	460	465	60	25	20	79.9573	15	32,998.86				
12	455	455	129.982	130	470	459.995	465	60	25	20	46.37583	15	34,049.35				
13	455	455	130	130	150	470	460	60	25	20	35.02112	15	35,113.62				
14	455	455	130	130	150	470	460	60	25	20	32.85194	15	36,204.07				
15	455	455	130	130	150	470	460	60	25	20	34.43637	15	36,204.07				
16	455	455	130	130	150	470	460	60	25	20	30.00162	15	36,204.07				
17	455	455	130	130	150	470	460	60	25	20	46.1922	15	36,245.37				
18	455	455	130	130	150	470	460	60	25	20	51.20889	15	36,245.37				
19	454.43	455	129.944	129.991	187.679	458.247	465	60	25	20	34.5946	15	34,051.09				
20	316.389	236.952	129.865	130	360.521	462.951	60	25	20	20	28.0467	15	30,899.38				
21	258.974	159.746	130	129.998	150	290.991	465	60	25	20	31.08181	15	25,726.8				
22	297.882	226.146	129.993	129.993	150	464.985	60	25	20	20	21.88823	15	23,162.9				
23	320.593	150	129.999	129.971	150	464.996	60	25	20	20	34.43637	15	22,649.47				
24	280.040	191.749	130	129.999	150	465	60	25	20	20	33.21005	15	22,648.73				

Total Cost ($/day) 678,037
t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_{10} (MW)	P_{11} (MW)	P_{12} (MW)	P_{13} (MW)	P_{14} (MW)	P_{15} (MW)	W_{in} (MW)	$Solar$ (MW)	Cost ($/h$)	
1	281.70	150.07	129.99	129.99	150.07	135.86	464.99	60.073	25.073	25.073	20.0739	20.073	20.073	20.073	15.073	15.073	1.7 0	
2	150	282.33	129.81	129.81	150	135	464.81	60	25	25.125	20	44.594	25	15	15	8.5 0		
3	271.93	454.69	129.69	129.69	150	135	135	60	25	25	25	79.6985	2	20	25	15	15	9.27 0
4	150	150	129.85	129.77	150	458.61	310.09	60	25	25	20	20	25	15	15	16.6 0		
5	288.14	258.76	129.57	129.70	150	396.42	5	15	60	25	25	20	20	25	15	15	7.22 0	
6	304.29	259.08	129.98	129.98	150.03	381.27	135.03	60.033	25.033	25.033	20.0331	20.136	25.033	15.033	15.033	4.91 0.03		
7	289.24	78	129.70	129.70	150.10	459.70	464.70	60.662	25.221	25	15	15	14.6	6	25	52.22	44	
8	210.52	150	129.47	129.99	150	459.62	464.20	60	25	25	20	77.642	25	15	15	26.5		
9	453.97	409.30	129.52	129.52	469.16	464.52	64	25	25	20	79.045	5	25	15	15	20.8		
10	454.92	433.28	129.79	129.92	150	459.92	464.77	60	25	25	20	35.157	27	15	15	17.8		
11	365.44	454.88	129.88	129.88	469.88	464.88	60	25	25	20	20	25	69	15	128	7.41		
12	454.52	454.52	128.67	129.52	364.22	459.15	464.52	60	25	25	79.277	77.999	3	25	15	15	18.6	
13	345.89	454.72	129.72	129.72	469.72	459.72	464.72	60	25	25	15	79.277	77.999	25	15	15	14.3	
14	454.94	454.55	129.92	129.94	469.28	459.94	464.94	60	25	15	79.388	79.999	4	25	15	15	10.3	
15	454.99	454.99	129.99	129.99	469.99	464.99	109.91	25.04	25.675	79.976	79.997	25.308	15.746	54.993	8.26			
16	454.76	454.99	129.99	129.99	469.74	459.92	464.99	60.050	25.050	115.83	79.9448	79.849	25.050	15.050	15.050	13.7		
17	454.99	454.99	129.99	129.99	469.99	459.99	81.012	25.195	15	20.1955	79.999	25.195	15.195	15.195	3.44			
18	454.48	454.99	129.99	129.99	243.60	460.59	464.86	60.028	25.028	15	78.7464	79.025	25.028	15.028	15.028	49.1		
Table 12. The dBA on a 15-unit system with renewables.

t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_9 (MW)	P_{10} (MW)	P_{11} (MW)	P_{12} (MW)	P_{13} (MW)	P_{14} (MW)	P_{15} (MW)	Wind (M W)	Solar (M W)	Cost ($/h)	
1	222.32	150.07	130	150.01	184.92	465	60.00	281	25	25	20.0149	30.947	89	25	15	15000	1.7	194	22116.94
2	174.55	150.95	129.99	129.98	129.98	150.02	259.37	464.84	60.00	25	25.0040	25.0021	26.777	25	15	15014	8.5	355	22355.62
3	220.79	152.59	150	129.94	150.21	259.43	464.84	60.02	25.0085	25.0087	25.0030	31.639	50.02	25	15	15002	16.6	835	22476.58
4	179.63	150	130	129.98	150.24	241.94	465	60.02	25.0028	25.0027	25.0030	31.639	50.02	25	15	15002	16.6	835	22476.58
5	210.94	150	129.98	129.98	150	241.94	465	60.02	25.0028	25.0027	25.0030	31.639	50.02	25	15	15002	16.6	835	22476.58
6	228.36	150.02	130	150.10	223.82	464.91	60.02	25.0014	25.0027	25.0027	25.0000	32.821	32.00	25	15	15040	14.6	665	22595.21
7	229.61	155	130	150.13	213.73	465	60.02	25	25	25	25	33.037	86	45	15	15043	26.5	606	25525.78
8	318.94	172.21	150	130	150.13	318.49	463.49	60.07	476	25	25	33.037	86	45	15	15043	26.5	606	25525.78
9	455	431.24	130	150.12	456.23	465	60.02	25	25	25	25	24.0677	48.367	25.07	15	15005	20.8	240	30428.21
Energy Level	Cost ($/day)																		
-------------	--------------																		
10	427.61																		
11	455																		
12	129.99																		
13	454.99																		
14	455																		
15	455																		
16	455																		
17	455																		
18	455																		
19	455																		
20	395.35																		
21	251.77																		
22	251.59																		
23	221.17																		
24	318.28																		

Total Cost ($/day) 673,821.7
From the above results, it can be seen that the incorporation of solar and wind farms into the 15-unit thermal system saves 4458 $/day in the case of the BA and approximately 4215 $/day in the case of the dBA. Figure 12 shows this difference clearly.

4.2.3. Characteristics Offered by BA and dBA

Figures 13–17 show different convergence characteristics of the BA and dBA for selected test Case 2. The bat population was selected as 100, and total iterations were taken at 1000. Figures 13 and 14 show the position of bats of the BA and dBA, respectively at the start and after 1000 iterations. As observed from simulation results, bats start from a random location and converge to the best solution after 1000 iterations. It can also be seen that almost all the bats moved towards the best solution, showing that the solution is much closer to a global solution. However, in the case of the dBA, the bats are much better optimized. Figure 15a shows that the BA’s fitness decreases very quickly, which increases the risk of capturing the local optimum solution. The fitness gradually decreases as the iteration increases. It gives a better chance of moving the solution closer to the global best position. Figure 15b shows the magnified view of the cost convergence curve. Figure 16 shows the pulse rate of the best bat, which depicts the decrease of pulse rate as the bat finds its prey. Figure 17 shows the best bat’s loudness, which depicts the increase of loudness as the bat finds its prey.
Figure 13. Bats positions in the BA (a) at the start and (b) after 1000 iterations (15-unit system with renewables).

Figure 14. Bats positions in the dBA (a) before and (b) after 1000 iterations (15-unit system with renewables).
Figure 15. Convergence curve: (a) The cost convergence curve by the BA and dBA (15-unit system with renewables); (b) Magnified view.

Figure 16. The pulse rate of the best bat of the BA and dBA.

Figure 17. The loudness of the best bat of the BA and dBA.

4.2.4. Comparison of dBA, BA, PSO, and GA

Simulation results reveal that the variant dBA shows promising results in terms of better quality and convergence characteristics without being trapped in local optima compared to the conventional BA. To further validate the applicability of dBA, a test case of 3000 MW demand was taken and solved with population and iterations of 100 and 1000, respectively, using BA, dBA, PSO, and GA. Table 13 shows the result without renewables and Table 14 with renewables. It can be seen that the dBA tends
to give better fitness than the BA, which in turn gives better results than that of the PSO and GA. Figures 18 and 19 depict the achievements regarding convergence characteristics.

For all the scenarios considered in test cases, the dBA always performed better when compared to the BA and other metaheuristics such as the GA and PSO. This justifies the applicability and potency of dBA to renewables-incorporated ELD problems.
Table 13. Cost comparison for 3000 MW demand without renewables.

Alg.	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_9 (MW)	P_{10} (MW)	P_{11} (MW)	P_{12} (MW)	P_{13} (MW)	P_{14} (MW)	P_{15} (MW)	Cost ($/h$)
GA	363.49	453.79	129.3	129.728	359.963	375.192	464.217	180.51	148.767	153.632	79.9023	77.2148	39.1577	27.5144	17.5699	3649
PSO	455	455	130	130	470	460	465	93.0009	162	25	20	80	25	15	15	36299
BA	454.98	454.98	129.9	129.98	469.98	459.98	464.98	60.01557	159.98	20.01557	79.97995	25.01557	15.01557	15.01557	15.01557	36242
dB	455	455	130	130	470	460	465	60	25	135	80	80	25	15	15	36204

Table 14. Cost comparison for 3000 MW demand with renewables.

Alg.	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_9 (MW)	P_{10} (MW)	P_{11} (MW)	P_{12} (MW)	P_{13} (MW)	P_{14} (MW)	Wind (MW)	Solar (MW)	Cost ($/h$)	
GA	359.14	361.42	129.93	129.9	388.694	362.319	390.447	290.997	150.702	153.982	78.889	78.993	55.887	34.555	15.079	13.71	5.3	36,491.1
PSO	455	455	130	130	470	460	465	60	25	75.9902	80	80	25	55	15	13.71	5.3	36,047
BA	454.91	454.90	129.90	129.9	469.909	459.909	464.909	60	25	116.809	79.909	79.909	25	15	15	13.71	5.3	35,996
dB	455	455	130	130	470	460	465	60	25	115.99	80	80	25	15	15	13.71	5.3	35,995
4.3. Case 3: 6 Thermal Units with Valve Point Effect

4.3.1. Data

An IEEE 30 bus system which consists of six thermal units running from fossil fuels with a valve point effect, is considered. The cost coefficients with minimum and maximum power generation limits are shown in Table 15 [26]. In Table 16, a 24 h load forecasting is selected as a load demand which is to be met. It can be seen that the maximum power demand at 1600 h is 1350 MW. In this case, \(F_{thermal} = \sum_{i=1}^{6} F_i(P_i) \).
Table 15. Cost coefficients of seven thermal units with lower and upper power limits.

Unit	a ($$/\text{MW}^2$)	b ($$/\text{MW}$$)	c ($)	e	f	P_{min} (MW)	P_{max} (MW)
1	0.007	7	240	300	0.031	100	500
2	0.0095	10	200	200	0.042	50	200
3	0.009	8.5	220	150	0.063	80	300
4	0.009	11	200	150	0.063	50	150
5	0.008	10.5	220	150	0.063	50	200
6	0.0075	12	190	150	0.063	50	120

Table 16. Demand forecasting over 24 h.

Time (h)	Demand (MW)
1	800
2	780
3	750
4	750
5	720
6	700
7	700
8	700
9	800
10	900
11	1000
12	1200
13	1260
14	1263
15	1300
16	1350
17	1100
18	900
19	850
20	800
21	780
22	750
23	700
24	800

The data used for RESs are mentioned where the renewables-incorporated ELD problem is discussed in the following sections/subsections.

4.3.2. Cost Offered by the BA and dBA

Table 17 shows the simulation results of the aBA and dBA in terms of operating cost for a 24 h period. It can be seen that the dBA comparatively gives less operating cost, i.e., 262,196.7 $/day than that of the BA, which gives 263,734.7 $/day. Even for most of the load demand for each hour, the dBA ensures a lower cost when compared to the BA. This ensures that the dBA displays a better global optimum solution with regards to the conventional BA. In the second scenario, a six-unit thermal system was added with one wind and one solar PV farm. Both BA and dBA were applied to ELD-incorporating renewables. Table 18 shows the result of the BA and dBA over a 24 h time period. It is clear from the results that the dBA gives better fitness results than the BA. The dBA is found to be more successful in reducing the total cost per day than the BA with or without renewables.
Table 17. The BA and dBA on a six-thermal unit system without renewables.

t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	Cost ($/h$)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	Cost ($/h$)
1	304.097	199.869	145.658	50.1247	50.1247	50.1247	9738.751	303.121	197.145	303.121	197.145	303.121	197.145	9738.751
2	302.387	9	50	277.612	50	50	9360.333	400.266	179.733	400.266	179.733	400.266	179.733	9360.333
3	403.747	6	50.0779	145.941	50.0779	50.0779	9065.843	302.683	117.583	302.683	117.583	302.683	117.583	9065.843
4	403.827	8	116.172	50	50	50	9074.849	404.025	145.974	404.025	145.974	404.025	145.974	9074.849
5	302.830	8	50	95.8625	50	50	8527.005	302.683	124.799	302.683	124.799	302.683	124.799	8527.005
6	404.137	6	50	187.169	6	50	8837.094	302.683	142.516	302.683	142.516	302.683	142.516	8837.094
7	403.680	2	50	86.3199	50	50	8562.329	302.683	197.316	302.683	197.316	302.683	197.316	8562.329
8	304.911	3	50	195.088	9	50	8460.184	302.683	179.731	302.683	179.731	302.683	179.731	8460.184
9	404.062	8	50.0696	195.503	50.2274	50.0696	9642.309	302.683	117.717	302.683	117.717	302.683	117.717	9642.309
10	302.005	2	198.867	180.260	50	50	1108.14	302.683	124.799	302.683	124.799	302.683	124.799	1108.14
11	298.513	9	119.494	279.072	50	155.483	97.4355	302.679	124.799	302.679	124.799	302.679	124.799	97.4355
12	405.893	7	196.259	279.407	116.915	150.036	51.4876	404.025	229.599	404.025	229.599	404.025	229.599	51.4876
13	405.654	8	198.289	257.471	149.905	198.686	50	1548.8	404.025	199.599	404.025	199.599	404.025	1548.8
14	499.777	3	199.455	264.276	50	199.491	50	15545.1	404.025	180.176	404.025	180.176	404.025	15545.1
Table 18. The BA and dBA on a six-thermal unit system with renewables (wind and solar).

t (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	Wind (MW)	dBA	Cost ($/h$)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	Wind (MW)	Solar (MW)	Cost ($/h$)		
1	407.2	50	191.0	391	50	50	50	1.7	0	9623.1	302.69	50	229.66	50	115.98	50	302.69	0	9626.
2	403.9	50	137.5	276	50	50	50	8.5	0	9454.0	216.71	124.83	179.73	50	149.82	50	216.71	0	9422.

Total Cost ($/day) = 263,734.

Total Cost ($/day) = 262,196.
3	407.4	52.88	80	100.4	50	50	9.27	0	8997.9	302.10	109.63	179.25	3	50	50	50	302.10	17	0	8912.94					
4	302.8	392	50	229.3	51.12	799	11	50	50	16.7	0	8743.5	302.82	64	50	130.72	99.907	99.888	50	302.82	0	8767.59			
5	301.2	707	50	211.15	0.96	50	50	7.22	0	8625.0	302.68	50	80	80.363	149.73	31	50	302.68	0	8746.108					
6	309.4	563	50	185.6	0.37	50	50	4.91	0	8371.8	302.69	69	77	9	42	8	4	51	50	50	50	50	302.69	0.03	8357.135
7	399.0	7	50	80	50	50	50	14.7	6.2	8222.7	302.69	77	95	50	176.39	0	50	50	50	50	50	302.67	6.27	8101.709	
8	303.8	122.6	80	50	50	50	26.6	17	7916.2	226.73	50	16	99.879	99.882	50	226.73	17	68	866						
9	300.4	127.3	177.1	50.03	62	759	66	50	50	20.9	24	9027.0	302.67	50.115	129.97	99.916	99.537	72.899	302.67	24.1	9195.099				
10	404.5	675	50	232.9	55.21	97	56	50	50	17.9	39	10,125	404.00	58.294	179.89	99.972	50.593	50.020	404.00	39.4	10,114.919				
11	405.3	130.0	185.9	103.5	64	864	525	50	50	12.8	7.4	11,927	404.01	50	179.72	146.31	149.72	50	404.01	7.41	11,784.842				
12	402.9	199.5	276.0	96.27	415	535	98	50	50	18.7	3.6	14,292	404.48	124.79	279.46	149.83	99.831	404.48	3.65	14,334.4					
13	499.4	189.1	227.7	147.7	858	647	838	99	50	14.4	31	14,891	404.13	130.50	229.68	149.69	199.66	100.01	404.13	31.9	14,727.89				
14	403.9	196.1	278.8	149.9	604	123	50	199	9.7	10.4	26	14,922	404.02	193.01	229.56	149.72	199.53	50	404.02	26.8	14,888.817				
15	499.9	50.36	279.7	149.9	823	122	823	199	98.23	8.26	10	15,777	404.13	500	124.79	279.46	149.73	149.73	77.930	500	10.1	15,771.39			

Energies 2020, 13, 6225
	16	199.9	199.4	280.3	100.7	199.9	50	13.7	5.3	16,302	500	199.89	279.50	149.99	150.43	51.159	3	500	5.3	16,294	7.56
	17	404.8	199.9	280.2	50.29	50.29	101	3.44	9.5	13,175	404.03	124.53	229.58	99.859	129.2	99.779	404.03	9.57	13.15	8.34	
	18	301.0	198.3	178.1	50	118	1.87	2.3	10,989	308.93	57.358	229.71	50.099	149.84	99.865	308.93	2.31	10.85			
	19	303.5	578	50	50	199	0.75	0	10,321	302.68	121.82	129.86	98.672	99.853	96.351	302.68	0	10.24			
	20	303.4	50.02	279.1	50	67.175	0.17	0	9713.2	204.37	50.184	279.46	66.067	99.867	99.866	204.37	0	9922.			
	21	302.3	867	50.35	176.8	149.5	50.15	0.15	9399.8	302.68	179.72	97.592	99.854	50.000	302.68	0	9300.				
	22	405.7	363	50.80	80.80	51.32	109	0.31	0	9155.6	302.68	117.31	80.000	99.829	99.865	50	302.68	0	9069.		
	23	404.8	733	64.05	80	50	50	1.07	0	8525.1	302.68	146.37	99.866	50.002	302.68	0	8473.				
	24	302.5	694	50	232.2	114	0.58	0	9750.3	403.94	115.69	99.803	403.94	50	56	0	9689.				
										258.25							257.9				

| Total Cost ($/day) | 258.25 | 1.6 | Total Cost ($/day) | 257.9 | 14.1 |
4.3.3. Comparison with Other Algorithms

To further justify the effectiveness of the dBA over the BA, PSO, GA, and enhanced bat algorithm (EBA) (another variant of BA), a test case of 1263 MW was taken. A population size of 50 and 200 iterations were taken for this case for all algorithms. The dBA was compared with the EBA, BA, PSO, and GA for an ELD problem without and with renewables. In [26], the EBA is already applied to the same 6-unit thermal system, taking the valve point effect. The parameters used for the EBA are the following: $f_{min} = 0$, $f_{max} = 2$, $r_0 = 0.5$, $A_0 = 0.9$, learning factor (ρ_{init}) = 0.65, and modulation Index (η) = 3. Table 19 shows a comparison of all mentioned techniques for the demand of 1263 MW. It can be seen that the dBA gives the lowest value when compared to other metaheuristic techniques. Table 20 shows a comparison of the same techniques without the EBA for a demand of 1263 MW. It can be seen that the dBA still gives the lowest value when compared to other metaheuristic techniques. Figure 20 shows the convergence graph without renewables, whereas Figure 21 shows the convergence with renewables, both for a load demand of 1263 MW.

Table 19. Comparison of the dBA, enhanced bat algorithm (EBA), BA, PSO, and GA without renewables.

Unit	dBA	EBA [26]	BA	PSO	GA
1	404.0243	404.0251	403.8001	500	402.7638
2	199.5995	199.5997	199.7978	200	186.9464
3	260.0438	279.4662	224.1185	229.4894	279.9828
4	149.7328	149.7331	148.2026	150	99.8815
5	149.7333	180.1760	198.3771	133.5109	188.7443
6	99.8664	50	88.70405	50	104.681
P_{TOTAL} (MW)	1263	1263	1263	1263	1263
Cost ($/h)	15,448.9331	15,453.8841	15,498.9328	15,524.9449	15,563.0527

Table 20. Comparison of the dBA, BA, PSO, and GA with renewables.

Unit	dBA	BA	PSO	GA
1	404.0152	402.1131	500	499.9096
2	124.3873	125.9102	126.6186	147.8697
3	229.5998	280.6446	229.5035	229.9327
4	149.2019	149.4743	50	101.3156
5	198.8925	197.6381	200	149.7285
6	99.6837	50	99.6575	77.02417
Wind	17.85	17.85	17.85	17.85
Solar PV	39.37	39.37	39.37	39.37
P_{TOTAL} (MW)	1263	1263	1263	1263
Cost ($/h)	14,592.6446	14,632.51	14,698.722	14,944.389
4.4. Case 4

To further compare the effectiveness of the dBA with other metaheuristic techniques, in this case study, a 150 kV power system located in East Java, Indonesia, consisting of 10 units, is considered. Cost coefficients of the units with lower and upper power bounds, taken from [51], are summarized in Table 21. The total system demand without the transmission losses is 616 MW. Population size and iterations are kept the same for all the techniques to compare the results on one scale.

A comparison of the results offered by the dBA and other algorithms such as the BA, GA, PSO, and modified inertial weight-based PSO (MIW-PSO) is presented in Table 22. The dBA offers a low cost, i.e., 95,633 $/h when compared to all other mentioned techniques, thus validating the workability of the dBA. This low cost is also depicted in the convergence characteristics drawn for the dBA and MIWPSO, as shown in Figure 22. For the comparison purpose, the convergence characteristics are drawn for 15 iterations.
Table 21. A 10-unit thermal system cost coefficients with lower and upper power limits.

Generator	a ($/MW²)	b ($/MW)	c ($)	P_min (MW)	P_max (MW)
1	0.2162	42.5118	4088.5375	23	92
2	0.4108	20.5021	4547.8075	23	92
3	0.0562	32.9483	4601.9649	47.25	189
4	0.1266	22.2655	4316.1074	47.25	189
5	0.6210	50.6244	3707.7500	10.25	41
6	0.1255	69.7050	3459.6950	10.25	41
7	3.6454	370.6642	9045.7750	23	95
8	0.3981	31.9013	1124.9075	23	95
9	2.3185	484.7006	8549.5500	23	95
10	0.1142	31.8112	4486.6174	41.25	165

Table 22. Comparison of dBA, BA, GA, PSO, and modified inertial weight-based PSO (MIW-PSO).

Generator	dBA	BA	GA	PSO [51]	MIW-PSO [51]
1	35.84	23	42.469	38.63	36.34
2	44.47	52.51	54.964	38.94	46.58
3	189	185.97	69.765	178	189
4	138.40	150.56	73.755	142.20	139.16
5	10.25	10.25	32.788	13.43	11.06
6	10.25	10.25	37.772	13.42	10.25
7	23	23	23.009	29	23
8	31.62	23	93.591	26.84	29.90
9	23	23	23.032	29	23
10	110.17	114.47	164.854	106.54	107.71

PG_TOTAL (MW)	616	616	616	616	616
Cost ($/h)	95,633.00	95,745.54	100,207.15	95,840.57	95,835.53

Figure 22. Cost convergence graph of the dBA and MIWPSO in a 10-unit system case.

From the inspection of the convergence characteristics of all the considered case studies, we observed that at the initial stage, the dBA almost converges slowly compared to other algorithms due to a rigorous exploration process to ensure effective search space exploration. However, as the algorithm progresses, the exploitation dominates exploration to speed up the convergence toward global optimum compared to other algorithms. The dBA boosts its exploration and exploitation capabilities due to the introduction of directional echolocation to the structure of BA, the inclusion of
a scale factor in the local search step to make the movement random, thus avoiding a local convergence, the acceptance of new solutions based on a random value to ameliorate the solution quality, and monotonically increasing and decreasing pulse rate and loudness, respectively, to enhance diversity. In this way, the dBA offers promising convergence characteristics compared to other algorithms, giving a low total fuel cost. We also noticed that the algorithm performs better as the problems’ dimensions increase because of its capability to promote diversity and avoid the local optima.

5. Conclusions

In this paper, the modified directional bat algorithm (dBA), which is a useful variant of nature-inspired (BA), was utilized to solve the ELD problem with and without the optimal integration of RESs such as solar and wind. The dominance of this metaheuristic technique was highlighted by comparing the performance of the dBA with BA and other prominent metaheuristics techniques like GA and PSO. Moreover, to show the superiority of the dBA, it was also compared with the variants of PSO and BA such as MIWPSO and EBA. Different test cases were considered to analyze and compare the performance of the dBA. From the simulation results, it could be seen that by incorporating renewables in the thermal unit system, the operating cost of the system decreased significantly. Moreover, with the help of directional echolocation, the dBA outperformed all other algorithms with comparatively fast convergence. It also reduced the probability of a premature convergence problem due to the elitism mechanism. In addition, the valve point effect was also considered to test the algorithm with a more practical system. In future, this improved variant of the BA could be applied to even more realistic ELD problems taking more practical constraints such as prohibited operating zones, multiple fuel options, and transmission losses along with other renewables.

Author Contributions: Conceptualization, F.T. and G.A.; Data curation, S.A.; Formal analysis, G.A. and M.R.H.; Funding acquisition, S.A.; Investigation, G.A.; Methodology, F.T.; Project administration, G.A.; Resources, M.R.H.; Software, A.Q.; Visualization, S.A.; Writing—original draft, F.T.; Writing—review & editing, A.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number (R.G.P2/100/41).

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research, King Khalid University under research grant number (R.G.P2/100/41). The authors would like to express their gratitude to The University of Lahore for the administrative and technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Niknam, T.; Azizipanah-Abarghooei, R.; Aghaei, J. A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch. *IEEE Trans. Power Syst.* 2012, 28, 749–763, doi:10.1109/tpwrs.2012.2208273.
2. Park, J.-B.; Lee, K.-S.; Shin, J.-R. A particle swarm optimization for economic dispatch with nonsmooth cost functions. *IEEE Trans. Power Syst.* 2005, 20, 34–42, doi:10.1109/tpwrs.2004.831275.
3. Puri, V.; Chauhan, Y.K. A solution to economic dispatch problem using augmented Lagrangian particle swarm optimization. *Int. J. Emerg. Technol. Adv. Eng. ISSN* 2012, 2250–2459.
4. Park, J.-B.; Jeong, Y.-W.; Shin, J.-R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic dispatch problems. *IEEE Trans. Power Syst.* 2009, 25, 156–166, doi:10.1109/tpwrs.2009.2030293.
5. Yang, Y.; Wei, B.; Liu, H.; Zhang, Y.; Zhao, J.; Manla, E. Chaos firefly algorithm with self-adaptation mutation mechanism for solving large-scale economic dispatch with valve-point effects and multiple fuel options. *IEEE Access* 2018, 6, 45907–45922, doi:10.1109/access.2018.2865960.
6. Vo, D.N.; Schegner, P.; Ongsakul, W. Cuckoo search algorithm for non-convex economic dispatch. *IET Gener. Transm. Distrib.* 2013, 7, 645–654, doi:10.1049/iet-gtd.2012.0142.
7. Niknam, T.; Golestaneh, F. Enhanced bee swarm optimization algorithm for dynamic economic dispatch. *IEEE Syst. J.* 2013, 7, 754–762, doi:10.1109/jsyst.2012.2191831.
8. Zaman, M.F.; Elsayed, S.M.; Ray, T.; Sarker, R.A. Evolutionary algorithms for dynamic economic dispatch problems. *IEEE Trans. Power Syst.* 2016, 31, 1486–1495, doi:10.1109/tpwrs.2015.2428714.
9. Dekhici, L.; Borne, P.; Khaled, B. Firefly algorithm for economic power dispatching with pollutants emission. *Informatica Economica* 2012, 16, 45–57.
10. Zhao, J.; Liu, S.; Zhou, M.; Guo, X.; Qi, L. Modified cuckoo search algorithm to solve economic power dispatch optimization problems. *IEEE/CAA J. Autom. Sin.* 2018, 5, 794–806, doi:10.1109/jas.2018.7511138.
11. Ma, X.; Liu, Y. Particle swarm optimization to solving economic load dispatch with spinning reserve. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 4, pp. V4–214–V4–217.
12. Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. *IEEE Trans. Power Syst.* 2003, 18, 1187–1195, doi:10.1109/tpwrs.2003.8184889.
13. Meng, K.; Wang, H.-G.; Dong, Z.; Wong, K.P. Quantum-inspired particle swarm optimization for valve-point economic load dispatch. *IEEE Trans. Power Syst.* 2009, 25, 215–222, doi:10.1109/tpwrs.2009.2030359.
14. Abdullah, N.R.H.; Ghazali, N.; Ibrahim, N.; Solleh, N.F.; Samad, R.; Mustafa, M.; Pebrianti, D. Solving economic dispatch (ED) problem using artificial immune system, evolutionary programming and particle swarm optimization. *ARPN J. Eng. Appl. Sci.* 2006, 11, 6663–6667.
15. Khamsawang, S.; Jiriwibhakorn, S. Solving the economic dispatch problem using novel particle swarm optimization. *World Acad. Sci. Eng. Technol.-Int. J. Electr. Comput. Energ. Electron. Commun. Eng.* 2009, 3, 529–534.
16. Abbas, G.; Gu, J.; Farooq, U.; Asad, M.U.; El-Hawary, M. Solution of an economic dispatch problem through particle swarm optimization: A detailed survey-Part I. *IEEE Access* 2017, 5, 15105–15141, doi:10.1109/access.2017.2723862.
17. Abbas, G.; Gu, J.; Farooq, U.; Raza, A.; Asad, M.U.; El-Hawary, M.E. Solution of an economic dispatch problem through particle swarm optimization: A detailed survey; Part II. *IEEE Access* 2017, 5, 24426–24445, doi:10.1109/access.2017.2768522.
18. Trivedi, I.N.; Jangir, P.; Bhyoe, M.; Jangir, N. An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm. *Neural Comput. Appl.* 2018, 30, 2173–2189, doi:10.1007/s00521-016-2795-5.
19. Biswal, S.; Barisal, A.K.; Behera, A.; Prakash, T. Optimal power dispatch using BAT algorithm. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013; pp. 1018–1023.
20. Sakkthivel, S.; Natarajan, R.; Gurusamy, P. Application of bat optimization algorithm for economic load dispatch considering valve point effects. *Int. J. Comput. Appl.* 2013, 67, 35–39, doi:10.5120/11442-7035.
21. Nguyen, T.T.; Ho, S.D. Bat algorithm for economic emission load dispatch problem. *Int. J. Adv. Sci. Technol.* 2016, 86, 51–60, doi:10.14257/ijast.2016.86.05.
22. Gherbi, Y.A.; Bouzegboudja, H.; Lakdja, F. Economic dispatch problem using bat algorithm. *Leonardo J. Sci.* 2014, 24, 75–84.
23. Latif, A.; Palensky, P. Economic dispatch using modified bat algorithm. *Algorithms* 2014, 7, 328–338, doi:10.3390/a7030328.
24. Niknam, T.; Azizipanah-Abarghooei, R.; Zare, M.; Bahmanifirouzi, B. Reserve constrained dynamic environmental/economic dispatch: A new multiobjective self-adaptive learning bat algorithm. *IEEE Syst. J.* 2013, 7, 763–776, doi:10.1109/jsyst.2012.2225732.
25. Adarsh, B.; Raghunathan, T.; Jayabarathi, T.; Yang, X.-S. Economic dispatch using chaotic bat algorithm. *Energy* 2016, 96, 666–675, doi:10.1016/j.energy.2015.12.096.
26. Pradhan, G.; Dewangan, P.D. Solving optimal load dispatch problem using enhanced BAT optimization algorithm. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6.
27. Fister, I.; Yang, X.-S.; Fong, S.; Zhuang, Y. Bat algorithm: Recent advances. In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2014; pp. 163–167.
28. Gautham, S.; Rajamohan, J. Economic load dispatch using novel bat algorithm. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Dehli, India, 4–6 July 2016; pp. 1–4.

29. Liang, H.; Liu, Y.; Shen, Y.; Li, F.; Man, Y. A hybrid bat algorithm for economic dispatch with random wind power. *IEEE Trans. Power Syst.* 2018, 33, 5052–5061, doi:10.1109/tpwrs.2018.2812711.

30. Osório, G.; Lujano-Rojas, J.; Matias, J.C.D.O.; Catalão, J.P. A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources. *Energy* 2015, 82, 949–959, doi:10.1016/j.energy.2015.01.104.

31. Nikmehr, N.; Ravadanegh, S.N. A study on optimal power sharing in interconnected microgrids under uncertainty. *Int. Trans. Electr. Energy Syst.* 2015, 26, 208–232, doi:10.1002/etep.2081.

32. Khan, N.A.; Awan, A.B.; Mahmood, A.; Razzaq, S.; Zafar, A.; Sidhu, G.A.S. Combined emission economic dispatch of power system including solar photo voltaic generation. *Energy Convers. Manag.* 2015, 92, 82–91, doi:10.1016/j.enconman.2014.12.029.

33. Farhat, I.; El-Hawary, M. Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. *IET Gener. Transm. Distrib.* 2010, 4, 989, doi:10.1049/iet-gtd.2010.0109.

34. Li, Z.; Wu, W.; Zhang, B.; Sun, H.; Yang, Y. Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-newton method. *IEEE Trans. Power Syst.* 2013, 28, 4516–4527, doi:10.1109/tpwrs.2013.2267057.

35. Han, L.; Romero, C.E.; Wang, X.; Shi, L. Economic dispatch considering the wind power forecast error. *IET Gener. Transm. Distrib.* 2018, 12, 2861–2870, doi:10.1049/iet-gtd.2017.1638.

36. Brini, S.; Abdallah, H.H.; Oualli, A. Economic dispatch for power system including wind and solar thermal energy. *Leonardo J. Sci.* 2009, 14, 204–220.

37. Warsono; King, D.J.; Ozveren, C.S.; Bradley, D. Economic load dispatch optimization of renewable energy in power system using genetic algorithm. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 2174–2179.

38. Roy, S. Inclusion of short duration wind variations in economic load dispatch. *IEEE Trans. Sustain. Energy* 2012, 3, 265–273, doi:10.1109/TSTE.2011.2179954.

39. Jadoun, V.K.; Pandey, V.C.; Gupta, N.; Niazi, K.R.; Swarnkar, A. Integration of renewable energy sources in dynamic economic load dispatch problem using an improved fireworks algorithm. *IET Renew. Power Gener.* 2018, 12, 1004–1011, doi:10.1049/iet-rpg.2017.0744.

40. Tang, C.; Xu, J.; Tan, Y.; Sun, Y.; Zhang, B. Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios. *IEEE Trans. Power Syst.* 2019, 34, 2685–2695, doi:10.1109/tpwrs.2019.2891227.

41. Kheshti, M.; Kang, X.; Li, J.; Regulski, P.; Terzija, V. Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints. *IET Gener. Transm. Distrib.* 2018, 12, 104–116, doi:10.1049/iet-gtd.2017.0257.

42. Nivedha, R.R.; Singh, J.G.; Ongsakul, W. PSO based economic dispatch of a hybrid microgrid system. In Proceedings of the 2018 International Conference on Power, Signals, Control and Computation (EPSCICON), Thrisur, India, 6–10 January 2018; pp. 1–5.

43. Augustine, N.; Suresh, S.; Moghe, P.; Sheikh, K. Economic dispatch for a microgrid considering renewable energy cost functions. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2020; pp. 1–7.

44. Agrawal, S.P.; Parate, K.B. Economic dispatch of thermal units with the impact of wind power plant. In Proceedings of the 2010 3rd International Conference on Emerging Trends in Engineering and Technology, Goa, India, 19–21 November 2020; pp. 48–53.

45. Jose, J.T. Economic load dispatch including wind power using Bat Algorithm. In Proceedings of the 2014 International Conference on Advances in Electrical Engineering (ICAEE), Singapore, Singapore, 19 February 2014; pp. 1–4.

46. Ellahi, M.; Abbas, G.; Khan, I.; Koola, P.M.; Nasir, M.; Raza, A.; Farooq, U. Recent approaches of forecasting and optimal economic dispatch to overcome intermittency of wind and Photovoltaic (PV) systems: A review. *Energies* 2019, 12, 4392, doi:10.3390/en12224392.

47. Yang, X.-S. A new metaheuristic bat-inspired algorithm. In *Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)*; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
48. Chakri, A.; Khelif, R.; Benouaret, M.; Yang, X.-S. New directional bat algorithm for continuous optimization problems. *Expert Syst. Appl.* **2017**, *69*, 159–175, doi:10.1016/j.eswa.2016.10.050.

49. Chakri, A.; Ragueb, H.; Yang, X.-S. Bat algorithm and directional bat algorithm with case studies. In *Nature-Inspired Algorithms and Applied Optimization*; Springer: Cham, Switzerland, 2018; pp. 189–216.

50. Rahmat, N.A.; Aziz, N.F.A.; Mansor, M.H.; Musirin, I. Optimizing economic load dispatch with renewable energy sources via differential evolution immunized ant colony optimization technique. *Int. J. Adv. Sci. Eng. Inf. Technol.* **2017**, *7*, 2012–2017, doi:10.18517/ijaseit.7.6.2328.

51. Lee, C.-Y.; Tuegeh, M. An optimal solution for smooth and non-smooth cost functions-based economic dispatch problem. *Energies* **2020**, *13*, 3721, doi:10.3390/en13143721.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).