A study of QCD coupling constant
and power corrections in
the fixed target deep inelastic measurements *

V.G. Krivokhijine and A.V. Kotikov

Joint Institute for Nuclear Research, 141980 Dubna, Russia

We reanalyze deep inelastic scattering data of BCDMS Collaboration by including proper cuts
of ranges with large systematic errors. We perform also the fits of high statistic deep inelastic
scattering data of BCDMS, SLAC, NM and BFP Collaborations taking the data separately and
in combined way and find good agreement between these analyses. We extract the values of both
the QCD coupling constant \(\alpha_s(M_Z^2) \) up to NLO level and of the power corrections to the structure
function \(F_2 \).

1. Introduction

The deep inelastic scattering (DIS) leptons on hadrons is the basical process to study the
values of the parton distribution functions (PDF) which are universal (after choosing of fac-
torization and renormalization schemes) and can be used in other processes. The accuracy of
the present data for deep inelastic structure functions (SF) reached the level at which the \(Q^2 -
\)dependence of logarithmic QCD-motivated terms and power-like ones may be studied separately
(for a review, see [1] and references therein).

In the present paper we sketch the results of our analysis [2] at the next-to-leading order
(NLO) of perturbative QCD for the most known DIS SF \(F_2(x, Q^2) \) taking into account experi-
mental data [4]-[7] of SLAC, NM, BCDMS and BFP Collaborations. We stress the power-like
effects, so-called twist-4 (i.e. \(\sim 1/Q^2 \)) contributions. To our purposes we represent the SF
\(F_2(x, Q^2) \) as the contribution of the leading twist part \(F_2^{\text{PQCD}}(x, Q^2) \) described by perturbative
QCD, when the target mass corrections are taken into account, and the nonperturbative part
("dynamical" twist-four terms):

\[
F_2(x, Q^2) \equiv F_2^{\text{full}}(x, Q^2) = F_2^{\text{PQCD}}(x, Q^2) \left(1 + \frac{\tilde{h}_4(x)}{Q^2} \right),
\]

where \(\tilde{h}_4(x) \) is magnitude of twist-four terms.

Contrary to standard fits (see, for example, [8]- [10]) when the direct numerical calculations
based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [11] are used to evaluate
structure functions, we use the exact solution of DGLAP equation for the Mellin moments
\(M^{tw}_2(Q^2) \) of SF \(F_2^{tw}(x, Q^2) \) and the subsequent reproduction of \(F_2^{\text{full}}(x, Q^2) \) at every needed
\(Q^2 \)-value with help of the Jacobi Polynomial expansion method 1 [12, 13] (see similar analyses
at the NLO level [13, 14] and at the next-next-to-leading order (NNLO) level and above [15].

In this paper we do not present exact formulae of \(Q^2 \)-dependence of SF \(F_2 \) which are given
in [2]. We note only that the PDF at some \(Q^2_0 \) is theoretical input of our analysis and the
twist-four term \(\tilde{h}_4(x) \) is considered as a set of free parameters (one constant \(\tilde{h}_4(x_i) \) per \(x_i \)-bin):

\[
\tilde{h}_4^{\text{free}}(x) = \sum_{i=1}^{I} \tilde{h}_4(x_i),
\]

where \(I \) is the number of bins.

* Talk presented at X Int. Workshop on Deep Inelastic Scattering (DIS2002), Cracow, 30 April - 4 May 2002.
A shorter version will appear in the Proceedings.

1 We note here that there is similar method [16], based on Bernstein polynomials. The method has been used
in the analyses at the NLO level in [17] and at the NNLO level in [18].
2. Fits of F_2

First of all, we choose the cut $Q^2 \geq 1$ GeV2 in all our studies. For $Q^2 < 1$ GeV2, the applicability of twist expansion is very questionable. Secondly, we choose $Q_0^2 = 90$ GeV2 ($Q_0^2 = 20$ GeV2) for the nonsinglet (combine nonsinglet and singlet) evolution, i.e. quite large values of the normalization point Q_0^2: our perturbative formulae should be applicable at the value of Q_0^2. Moreover, the higher order corrections $\sim \alpha_s^k(Q_0^2)$ and $\sim (\alpha_s(Q^2) - \alpha_s(Q_0^2))^k$ ($k \geq 2$) should be less important at these Q_0^2 values.

We use MINUIT program [19] for minimization of $\chi^2(F_2)$. We consider free normalizations of data for different experiments. For the reference, we use the most stable deuterium BCDMS data at the value of energy $E_0 = 200$ GeV (E_0 is the initial energy lepton beam). Using other types of data as reference gives negligible changes in our results. The usage of fixed normalization for all data leads to fits with a bit worse χ^2.

2.1. BCDMS $^{12}C + H_2 + D_2$ data

We start our analysis with the most precise experimental data [6] obtained by BCDMS muon scattering experiment at the high Q^2 values. The full set of data is 762 points.

It is well known that the original analyses given by BCDMS Collaboration itself (see also Ref. [9]) lead to quite small values $\alpha_s(M_\pi^2) = 0.113$. Although in some recent papers (see, for example, [8, 20]) more higher values of the coupling constant $\alpha_s(M_\pi^2)$ have been observed, we think that an additional reanalysis of BCDMS data should be very useful.

Based on study [21] we proposed in [2] that the reason for small values of $\alpha_s(M_\pi^2)$ coming from BCDMS data was the existence of the subset of the data having large systematic errors. We studied this subject by introducing several so-called Y-cuts 2 (see [2]):

$$
y \geq 0.14 \text{ when } 0.3 < x \leq 0.4, \quad y \geq 0.16 \text{ when } 0.4 < x \leq 0.5
$$
$$
y \geq Y_{\text{cut}3} \text{ when } 0.5 < x \leq 0.6, \quad y \geq Y_{\text{cut}4} \text{ when } 0.6 < x \leq 0.7
$$
$$
y \geq Y_{\text{cut}5} \text{ when } 0.7 < x \leq 0.8
$$

and several N sets for the cuts at $0.5 < x \leq 0.8$:

N	0	1	2	3	4	5	6
$Y_{\text{cut}3}$	0	0.14	0.16	0.16	0.18	0.22	0.23
$Y_{\text{cut}4}$	0	0.16	0.18	0.20	0.20	0.23	0.24
$Y_{\text{cut}5}$	0	0.20	0.20	0.22	0.22	0.24	0.25

Table 1. The values of $Y_{\text{cut}3}$, $Y_{\text{cut}4}$ and $Y_{\text{cut}5}$.

From the Figs. 1 and 2 we can see that the α_s values are obtained for $N = 1 \div 6$ of $Y_{\text{cut}3}$, $Y_{\text{cut}4}$ and $Y_{\text{cut}5}$ are very stable and statistically consistent.

2.2. SLAC, BCDMS, NM and BFP data

After these Y-cuts have been incorporated (with $N = 6$) for BCDMS data, the full set of combine data is 1309 points. The results of the fits are compiled in Summary.

3. Summary

We have demonstrated several steps of our study [2] of the Q^2-evolution of DIS structure function F_2 fitting all fixed target experimental data.

From the fits we have obtained the value of the normalization $\alpha_s(M_\pi^2)$ of QCD coupling constant. First of all, we have reanalyzed the BCDMS data cutting the range with large systematic errors. As it is possible to see in the Figs. 1 and 2, the value of $\alpha_s(M_\pi^2)$ rises strongly when the

\footnote{Hereafter we use the kinematical variable $Y = (E_0 - E)/E_0$, where E is scattering energies of lepton.}
Fig. 1. The study of systematics at different Y_{cut} values in the fits based on nonsinglet evolution (i.e. when $x \geq 0.25$). The inner (outer) error-bars show statistical (systematic) errors.

Fig. 2. All other notes are as in Fig. 1 with two exceptions: the fits based on combine evolution and the points $N_{Y_{cut}} = 1, 2, 3, 4, 5$ correspond the values $N = 1, 2, 4, 5, 6$ in the Table 1.

Fig. 3. The values of the twist-four terms. The black and white points correspond to the small-x asymptotics $\sim x^{-\omega}$ of sea quark and gluon distributions with $\omega = 0$ and $\omega = 0.18$, respectively. The statistical errors are displayed only.

cuts of systematics were incorporated. In another side, the value of $\alpha_s(M_Z^2)$ does not dependent on the concrete type of the cut within modern statistical errors.
Fitting SLAC, BCDMS, NM and BFP data, we have found in [2] that at $Q^2 \geq 10 \div 15$ GeV2 the formulae of pure perturbative QCD (i.e. twist-two approximation together with target mass corrections) are in good agreement with all data. When we have added twist-four corrections, we have very good agreement between QCD (i.e. first two coefficients of Wilson expansion) and the data starting already with $Q^2 = 1$ GeV2, where the Wilson expansion should begin to be applicable. The results for $\alpha_s(M_Z^2)$ are very similar (see [2]) for both types of analyses and have the following form:

$$\alpha_s(M_Z^2) = 0.1177 \pm 0.0007 \text{ (stat)} \pm 0.0021 \text{ (syst)} \pm 0.0009 \text{ (norm)},$$

(3)

where the symbols “stat”, “syst” and “norm” mark the statistical error, systematic one and the error of normalization of experimental data.

We would like to note that we have good agreement also with the analysis [20] of combined H1 and BCDMS data, which has been given by H1 Collaboration very recently. Our results for $\alpha_s(M_Z^2)$ are in good agreement also with the average value for coupling constant, presented in the recent studies (see [8, 28] and references therein) and in famous reviews [29].

At the end of our paper we would like to discuss the contributions of higher twist corrections. In our study [2] we have reproduced well-known x-shape of the twist-four corrections at the large and intermediate values of Bjorken variable x (see the Fig. 3 and [9, 2]).

Note that there is a small-x rise of the magnitude of twist-four corrections, when we use flat parton distributions at $x \to 0$. As we have discussed in Ref [2], there is a strong correlation between the small-x behavior of twist-four corrections and the type of the corresponding asymptotics of the leading-twist parton distributions. The possibility to have a singular type of the asymptotics leads (in our fits) to the appearance of the rise of sea quark and gluon distributions as $\sim x^{-0.18}$ at low x values, that is in full agreement with low x HERA data and with theoretical studies [22, 26]. At this case the rise of the magnitude of twist-four corrections is completely canceled. This cancellation is in full agreement with theoretical and phenomenological studies (see [22, 31, 23]).

Acknowledgments. The study is supported in part by the Heisenberg-Landau program. A.V.K. would like to express his sincerely thanks to the Organizing Committee of the X Int. Workshop on Deep Inelastic Scattering (DIS2002) for the kind invitation and for fruitful discussions. He was supported in part by Alexander von Humboldt fellowship and INTAS grant N366.

REFERENCES

[1] M. Beneke, Phys.Report. 317 (1999) 1; M. Beneke, V.M. Braun, hep-ph/0010208.
[2] A.V. Kotikov, V.G. Krivokhijine, Dubna preprint E2-2001-190 (hep-ph/0108224); in: Proceedings of the XVth International Workshop “High Energy Physics and Quantum Field Theory” (2001), Moscow (hep-ph/0206221); in: Proc. of the Int. Workshop “Renormalization Group 2002” (2002), High Tatras, Slovakia (hep-ph/0207222).
[3] K. Long et al., in Proc. of the 9th Int. Workshop on Deep Inelastic Scattering, DIS 2001 (2001), Bologna (hep-ph/0109092).
[4] SLAC Collab., L.W. Whitlow et al., Phys.Lett. B282 (1992) 475. SLAC report 357 (1990).
[5] NM Collab., M. Arneodo et al., Nucl. Phys. B483 (1997) 3.

3 We note that at small x values, the perturbative QCD works well starting with $Q^2 = 1.5 \div 2$ GeV2 and higher twist corrections are important only at very low Q^2: $Q^2 \sim 0.5$ GeV2 (see [22, 23, 24] and references therein). As it is was observed in [25, 26] (see also discussions in [22, 23, 27]) the good agreement between perturbative QCD and experiment seems connect with large effective argument of coupling constant at low x range.

4 This correlation comes because of very limited numbers of experimental data used here lie at the low x region. Indeed, only the NMC experimental data contribute there. We hope to incorporate the HERA data [20, 30] in our future investigations.
B. Escobles et al., Nucl.Phys. B242 (1984) 329; D.I. Kazakov, A.V. Kotikov, Yad. Fiz. 46 (1987) 1767 [Sov.J.Nucl.Phys. 46 (1987) 1057]; Nucl.Phys. B307 (1988) 721; B345 (1990) 299

[18] J. Santiago, F.J. Yndurain, Nucl.Phys. B563 (1999) 45. Nucl.Phys. B611 (2001) 447.

[19] F. James, M. Ross, “MINUIT”, CERN Computer Center Library, D 505, Geneva, 1987.

[20] H1 Collab.: C. Adloff et al., Eur. Phys. J. C21 (2001) 33.

[21] V. Genchev et al., in Proc. Int. Conference of Problems of High Energy Physics (1988), Dubna, V.2., p.6; A. Milsztajn et al., Z.Phys. C49 (1991) 527.

[22] A.V. Kotikov and G. Parente, Nucl. Phys. B549 (1999) 242; hep-ph/0010352; in Proc. of the Int. Conference PQFT98 (1998), Dubna (hep-ph/9810223); in Proc. of the 8th Int. Workshop on Deep Inelastic Scattering, DIS 2000 (2000), Liverpool, p. 198 (hep-ph/0006197).

[23] A.V. Kotikov and G. Parente, in Proc. Int. Seminar Relativistic Nuclear Physics and Quantum Chromodynamics (2000), Dubna (hep-ph/0012299); in Proc. of the 9th Int. Workshop on Deep Inelastic Scattering, DIS 2001 (2001), Bologna (hep-ph/0106175).

[24] A.V. Kotikov and G. Parente, Preprint US-FT/3-02 (hep-ph/0207276).

[25] Yu.L. Dokshitzer, D.V. Shirkov, Z. Phys. C67 (1995) 449; A.V. Kotikov, JETP Lett. 59 (1994) 1; Phys. Lett. B338 (1994) 349. W.K. Wong, Phys. Rev. D54 (1996) 1094

[26] S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov and G.B. Pivovarov, JETP. Lett. 70 (1999) 155; in: Proc. of the PHOTON2001, Ascona, Switzerland, 2001 (CERN-TH/2001-341, SLAC-PUB-9069, hep-ph/0111390); V.T. Kim, L.N. Lipatov and G.B. Pivovarov, in: Proc. of the VIIIth Blois Workshop at IHEP, Protvino, Russia, 1999 (IITAP-99-013, hep-ph/9911228); in: Proc. of the Symposium on Multiparticle Dynamics (ISMD99), Providence, Rhode Island, 1999 (IITAP-99-014, hep-ph/9911242).

[27] Bo Andersson et al., hep-ph/0204115.

[28] G. Dissertori, hep-ex/0105070; T. Affolder et al., hep-ex/0108034; P.A. Movilla Fernandez et al., Preprint MPI-PH/2001-005 (hep-ex/0105059).

[29] G. Altarelli, hep-ph/0204179; S. Bethke, J.Phys. G26 (2000) R27 (hep-ex/0004021).

[30] ZEUS Collab.: S. Chekanov et al., Eur. Phys. J. C21 (2001) 443.

[31] J. Bartels, K. Golec-Biernat, K. Peters, Eur. Phys. J. C17 (2000) 121; J. Blumlein, V. Ravindran, Jian-hong Ruan and Wei Zhu, Phys. Lett. B504 (2001) 235.