Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia

Maria Moskalenko¹, Irina Ponomarenko¹, Evgeny Reshetnikov¹*, Volodymyr Dvornyk² & Mikhail Churnosov¹

This study aimed to determine possible association of eight polymorphisms of seven MMP genes with essential hypertension (EH) in a Caucasian population of Central Russia. Eight SNPs of the MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, and MMP12 genes and their gene–gene (epistatic) interactions were analyzed for association with EH in a cohort of 939 patients and 466 controls using logistic regression and assuming additive, recessive, and dominant genetic models. The functional significance of the polymorphisms associated with EH and 114 variants linked to them (\(r^2 \geq 0.8\)) was analyzed in silico. Allele G of rs11568818 MMP7 was associated with EH according to all three genetic models (OR = 0.58–0.70, \(p_{perm} = 0.01–0.03\)). The above eight SNPs were associated with the disorder within 12 most significant epistatic models (OR = 1.49–1.93, \(p_{perm} < 0.02\)). Loci rs1320632 MMP8 and rs11568818 MMP7 contributed to the largest number of the models (12 and 10, respectively). The EH-associated loci and 114 SNPs linked to them had non-synonymous, regulatory, and eQTL significance for 15 genes, which contributed to the pathways related to metalloendopeptidase activity, collagen degradation, and extracellular matrix disassembly. In summary, eight studied SNPs of MMPs genes were associated with EH in the Caucasian population of Central Russia.

Cardiovascular diseases are a global problem of modern healthcare and the second most common cause of total mortality². Among cardiovascular diseases, essential hypertension (EH) is of tremendous clinical importance in terms of health, working capacity, and life expectancy³–⁵. According to some estimates, the number of patients with EH will reach 1.56 billion by 2025⁶. More than 9.4 million death cases resulting from EH complications, such as stroke, myocardial infarction, renal failure, etc., are recorded worldwide annually⁷–⁹.

The development of EH is determined by complex interaction mechanisms of genetic and environmental factors⁵,¹⁰–¹². The contribution of hereditary factors to EH is estimated from 25 to 75% in different populations according to family and twin studies¹³,¹⁴. Among the possible candidate genes for EH are matrix metalloproteinases (MMP). This is a group of enzymes with a wide range of biological functions that are responsible for the hydrolysis of the extracellular matrix (ECM) components¹⁵–¹⁸. The imbalance between synthesis and degradation of ECM caused by the change in MMP gene expression can lead to a decrease in the ability of the vascular wall to remodel and to the development of cardiovascular diseases¹⁹,²⁰. It was found that single nucleotide polymorphisms (SNP) of the MMP genes are associated with EH and its complications in different populations: Australian (rs3025058 MMP3), Polish (rs3025058 MMP3), American (rs652438 MMP12), Swedish (rs11568818 MMP7), Brazilian (rs243865 MMP2), Serbian (rs11225395 and rs1320632 MMP8, rs1799750 MMP1) and others¹⁶,¹⁹,二¹–²⁰. However, no associations of the MMP polymorphisms with EH and its complications were found in Chinese (rs3025058 MMP3, rs17577 MMP9), Indian (rs11568818 MMP7), and Mexican (rs1799750 MMP1) populations²²–²⁴. The observed inconsistencies prompt for further studies of the role of the MMP polymorphisms in the development of EH.

¹Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia. ²Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia. *email: reshetnikov@bsu.edu.ru
In this study, we analyzed the associations of matrix metalloproteinases and their gene–gene interactions with EH in a Caucasian population of Central Russia. We also examined the biological mechanisms of their phenotypic effects and SNPs linked to them (nonsynonymous substitutions, regulatory and cis-eQTL influences, pathways).

Results

Study participants characteristics. The patients with EH had higher rates of BMI, total cholesterol, triglycerides, low-density lipoprotein cholesterol, low-high-density lipoprotein cholesterol, TG, triglycerides, LDL-C, low-density lipoprotein cholesterol.

Table 1. Phenotypic characteristics of the study participants. Clinical characteristics of age, BMI, SBP, DBP, HDL-C, LDL-C, TG and TC are given as means ± SD and other values as number of individuals.

Parameters	EH, mean ± SD, % (n)	Controls, mean ± SD, % (n)	p
N	939	466	–
Gender (male/female)	60.06 /39.94 (564/375)	55.15/44.85 (257/209)	0.09
Age (years)	58.08 ± 8.91	57.82 ± 9.52	0.77
BMI (kg/m²)	30.78 ± 5.08	24.94 ± 3.14	< 0.001
SBP (mmHg)	182.48 ± 28.26	122.58 ± 11.49	< 0.001
DBP (mmHg)	105.84 ± 13.47	77.65 ± 6.93	< 0.001
TC (mM)	5.71 ± 1.29	5.26 ± 1.04	< 0.001
HDL-C (mM)	1.34 ± 0.42	1.52 ± 0.42	< 0.001
LDL-C (mM)	3.78 ± 1.11	3.22 ± 0.74	< 0.001
TG (mM)	1.92 ± 1.03	1.22 ± 0.71	< 0.001
Blood glucose (mM)	5.92 ± 6.68	4.88 ± 0.95	< 0.001
Smoking	38.33 (353)	19.76 (84)	< 0.001
Alcohol abuse	5.79 (53)	3.12 (13)	0.051

The data about the studied SNPs is given in Table 2. All loci had MAF > 5% and showed no departure from the HWE (p > 0.05).

The allele G of the rs11568818 MMP7 polymorphism was associated with EH according to the additive (OR = 0.70, 95% CI 0.54–0.89, p = 0.001, pperm = 0.01, power 99.03%), dominant (OR = 0.66, 95% CI 0.46–0.97, p = 0.02, pperm = 0.03, power 94.50%) and recessive (OR = 0.58, 95% CI 0.37–0.91, p = 0.01, pperm = 0.02, power 91.54%) models (Table 3).

SNP × SNP interactions. In total 12 most significant two-, three, and four-locus models of gene–gene interactions associated with EH were determined (pperm ≤ 0.02, cross-validation consistency CVC = 10/10, testing balanced accuracy 49.2–55.3%) (Tables 4 and 5). These models included eight SNPs. Loci rs1320632 MMP8 and rs11568818 MMP7 were involved in the largest number of models (12 and 10, respectively). Loci rs652438 MMP12, rs11225395 MMP8, rs1320632 MMP8, and rs11568818 MMP7 contributed to the most significant epistatic models (pperm = 0.002). The following combinations of genotypes had most significant associations with EH: rs11225395 CT × rs1320632 AG × rs11568818 CC (beta = − 0.827, p = 0.002), rs652438 AA × rs11225395 CT × rs1320632 AG × rs11568818 CT (beta = − 0.437, p = 0.003), rs17577 AG × rs1320632 AG × rs11568818 CT × rs1799750 1G/1G (beta = − 1.726, p = 0.002) (Supplementary Table 1).

The graph of the most significant epistatic models of the four SNPs (Fig. 1) suggests these interactions are concerted. Pronounced synergism was observed between the polymorphisms of the MMP8 gene, while an antagonistic interaction was suggested between rs652438 MMP12 and rs11568818 MMP7. The graph of interactions (Fig. 1b) shows that rs11225395 MMP8 and rs11568818 MMP7 eliminated 0.34 and 0.25% of class entropy, respectively, thereby having the largest univariate effects.

Functional SNP. Non-synonymous SNPs. Among the eight SNPs studied, two loci (rs17577 MMP9 and rs652438 MMP12) cause the replacement of amino acids in the encoded polypeptide and a decrease in its activity (Supplementary Table 2). Also, three non-synonymous variants (rs679620 MMP3, rs1940475 and rs3765620 MMP8) were determined among the polymorphisms linked to the studied SNPs (Supplementary Table 2).

Regulatory effects. The data on the regulatory effects of the EH-associated loci is presented in Supplementary Table 3. According to the HaploReg database (v4.1), two SNPs were located in evolutionarily conserved regions, two polymorphisms—in the promoter histone marks region, and eight SNPs—in the enhancer histone marks region in various tissues. Seven SNPs were in the hypersensitivity region to DNAse-1, three SNPs—in the protein-bound region, five SNPs—in the motifs changed region. According to the SNPinfo Web Server database, polymorphisms rs1320632 MMP8 and rs11225395 MMP8 possessed the most significant regulatory potential (0.53 and 0.20, respectively). Four SNPs were located in the regions of the transcription factor binding site.
(TFBS), one was in the microRNA binding region, and two were in the exonic splicing enhancer and exonic splicing silencer. SNP rs11568818 was located in the DNA regulatory motifs region: the allele G increased affinity to transcription factors Foxa (ΔLOD scores = −5.1), PLZF (ΔLOD scores = −1.5), Pou5f1 (ΔLOD scores = −3.2) and reduced affinity to GR transcription factor (ΔLOD scores = 0.8).

In addition to the eight EH-associated SNPs, regulatory significance was estimated for 114 polymorphisms linked to them (Supplementary Table 4). Eight SNPs (including five non-synonymous and three synonymous substitutions) were located in exons of the studied genes, three were located in 3′-UTR and one in 5′-UTR, 86 were in introns, and 44 were in intergenic regions. Nine loci were located in evolutionarily conserved regions.

The in silico analysis of SNPs linked to the EH-associated loci suggested several polymorphisms with pronounced regulatory effects (Supplementary Table 4). For example, rs243862 (linked to rs243865 MMP2) is located in the promoter histone marks region in 21 tissues and enhancer histone marks in two tissues, the hypersensitivity region to DNAse-1 in 19 tissues, region 14 motifs changed.

SNP	Genotypes, indicators	EH, % (n)	Controls, % (n)
rs11568818 MMP7	AA	36.38 (338)	31.82 (147)
	AG	48.65 (452)	49.13 (227)
	GG	14.97 (139)	19.05 (88)
	Minor allele G	39.29 (730)	43.61 (403)
	H/H (P>0.05)	0.49/0.48 (p > 0.05)	0.49/0.49 (p > 0.05)
rs1320632 MMP8	AA	84.67 (784)	81.48 (374)
	AG	14.47 (134)	17.65 (81)
	GG	0.86 (8)	0.87 (4)
	Minor allele G	8.10 (150)	9.69 (89)
	H/H (P>0.05)	0.14/0.15 (p > 0.05)	0.18/0.17 (p > 0.05)
rs1125395 MMP8	CC	31.09 (291)	25.97 (120)
	CT	48.50 (454)	48.27 (223)
	TT	20.41 (191)	25.76 (119)
	Minor allele T	44.66 (836)	49.89 (461)
	H/H (P>0.05)	0.48/0.49 (p > 0.05)	0.48/0.50 (p > 0.05)
rs179750 MMP1	1G/1G	28.01 (263)	28.73 (133)
	1G/2G	49.20 (462)	47.30 (219)
	2G/2G	22.79 (214)	23.97 (111)
	Minor allele 2G	890 (47,39)	47.62 (441)
	H/H (P>0.05)	0.49/0.50 (p > 0.05)	0.47/0.50 (p > 0.05)
rs3025058 MMP3	6A/6A	30.63 (287)	26.73 (127)
	5A/6A	48.77 (457)	50.53 (240)
	5A/5A	20.60 (193)	22.74 (108)
	Minor allele 5A	44.98 (843)	48.00 (456)
	H/H (P>0.05)	0.48/0.50 (p > 0.05)	0.51/0.50 (p > 0.05)
rs652438 MMP12	AA	86.97 (814)	90.20 (414)
	AG	12.39 (116)	9.37 (45)
	GG	0.64 (6)	0.43 (2)
	Minor allele G	128 (6,84)	5.12 (47)
	H/H (P>0.05)	0.12/0.13 (p > 0.05)	0.09/0.10 (p > 0.05)
rs243865 MMP2	CC	58.15 (546)	59.57 (277)
	CT	35.14 (330)	35.05 (163)
	TT	6.71 (63)	5.38 (25)
	Minor allele T	24.28 (456)	25.66 (213)
	H/H (P>0.05)	0.35/0.37 (p > 0.05)	0.39/0.38 (p > 0.05)
rs17577 MMP9	GG	66.95 (622)	61.00 (280)
	AG	29.82 (277)	34.64 (159)
	AA	3.23 (30)	4.36 (20)
	Minor allele A	18.14 (337)	21.68 (199)
	H/H (P>0.05)	0.30/0.30 (p > 0.05)	0.35/0.34 (p > 0.05)

Table 2. The allele and genotype frequencies (%) of the studied SNPs in the EH and control groups. The number in the brackets represents the number of participants with the respective genotype (or allele).
SNPs	Model	Genotype	OR (95% CI)	p
rs11568818 MMP7	Dominant	AG/GG vs AA	0.66 (0.46–0.97)	0.02
	Recessive	GG vs AG/AA	0.58 (0.37–0.91)	0.01
	Additive	AG vs GG vs AA	0.70 (0.54–0.89)	0.001
rs1320632 MMP8	Dominant	GA/GG vs AA	0.66 (0.42–1.05)	0.07
	Recessive	GG vs GA/AA	0.84 (0.09–8.27)	0.99
	Additive	GA vs GG vs AA	0.69 (0.45–1.06)	0.08
rs1125395 MMP8	Dominant	CT/TT vs CC	0.74 (0.50–1.10)	0.13
	Recessive	TT vs CT/CC	0.69 (0.46–1.04)	0.15
	Additive	CT vs TT vs CC	0.78 (0.61–1.00)	0.07
rs1799750 MMP1	Dominant	1G2G/2G2G vs 1G1G	1.07 (0.73–1.56)	0.71
	Recessive	2G2G vs 1G2G /1G1G	1.02 (0.68–1.53)	0.86
	Additive	1G2G vs 2G2G vs 1G1G	1.03 (0.81–1.31)	0.70
rs302508 MMP3	Dominant	5A6A/5ASA vs 6A6A	1.12 (0.77–1.62)	0.61
	Recessive	5ASA vs 5A6A/6A6A	0.87 (0.57–1.34)	0.69
	Additive	5A6A vs 6A6A vs 5ASA	1.01 (0.79–1.28)	0.75
rs65248 MMP12	Dominant	GA/GG vs AA	1.46 (0.81–2.61)	0.26
	Recessive	GG vs GA/AA	1.34 (0.10–1.74)	0.86
	Additive	GA vs GG vs AA	1.41 (0.81–2.44)	0.19
rs243865 MMP2	Dominant	CT/TT vs CC	1.04 (0.73–1.48)	0.86
	Recessive	TT vs CT/CC	1.55 (0.71–3.39)	0.26
	Additive	CT vs TT vs CC	1.09 (0.82–1.46)	0.85
rs17577 MMP9	Dominant	AG/AA vs GG	0.94 (0.66–1.35)	0.85
	Recessive	AA vs AG/GG	0.91 (0.36–2.32)	0.74
	Additive	AG vs GG vs AA	0.95 (0.69–1.29)	0.68

Table 3. Association of the MMPs genotypes with EH. OR odds ratio, 95% CI 95% confidence interval, p significance level.

N	SNP x SNP interaction models	NH	betaH	WH	NL	betaL	WL	Pperm
Two-order interaction models								
1	rs11225395 MMP8 x rs1320632 MMP8	1	0.242	2.74	2	−0.51	10.54	0.008
2	rs1320632 MMP8 x rs11568818 MMP7	0	NA	NA	3	−0.55	10.77	0.010
Three-order interaction models								
3	rs1320632 MMP8 x rs11568818 MMP7 x rs3025058 MMP3	1	0.922	3.36	5	−0.907	23.88	0.002
4	rs11225395 MMP8 x rs1320632 MMP8 x rs11568818 MMP7	1	0.497	4.09	5	−0.715	16.88	0.004
5	rs17577 MMP9 x rs1320632 MMP8 x rs11568818 MMP7	0	NA	NA	2	−0.927	16.22	0.004
6	rs1320632 MMP8 x rs11568818 MMP7 x rs1799750 MMP1	0	NA	NA	3	−0.816	15.66	0.006
7	rs11225395 MMP8 x rs1320632 MMP8 x rs3025058 MMP3	2	0.460	9.72	4	−0.634	16.13	0.012
Four-order interaction models								
8	rs652438 MMP12 x rs11225395 MMP8 x rs1320632 MMP8 x rs11568818 MMP7	1	0.363	3.33	4	−0.862	23.48	0.002
9	rs652438 MMP12 x rs1320632 MMP8 x rs11568818 MMP7 x rs3025058 MMP3	0	NA	NA	5	−0.918	22.06	0.004
10	rs1320632 MMP8 x rs11568818 MMP7 x rs3025058 MMP3 x rs243865 MMP2	2	0.794	7.05	5	−1.311	26.38	0.006
11	rs11225395 MMP8 x rs1320632 MMP8 x rs11568818 MMP7 x rs243865 MMP2	2	1.089	7.96	4	−1.090	23.26	0.006
12	rs17577 MMP9 x rs1320632 MMP8 x rs11568818 MMP7 x rs1799750 MMP1	0	NA	NA	4	−1.261	21.38	0.018

Table 4. Gene–gene interactions significantly associated with the risk of EH according to MB-MDR. NH, number of significant High risk genotypes in the interaction, beta H, regression coefficient for High risk exposition in the step 2 analysis, NA - not available, WH, Wald statistic for High risk category, NL, number of significant Low risk genotypes in the interaction, beta L, regression coefficient for Low risk exposition in the step 2 analysis, WL, Wald statistic for Low risk category, Pperm, Permutation P-value for the interaction model.
According to the GTExportal database, four EH-associated SNPs had the cis-eQTL significance (p < 8 × 10⁻⁵, pFDR ≤ 0.05) and might affect the expression of five genes (MMP7, MMP27, RP11-817J15.3, SNX21, SLC12A5) in several tissues and organs (Supplementary Table 5). Six EH-associated loci were in strong LD with the SNPs affecting the expression (p < 8.5 × 10⁻⁵, FDR ≤ 0.05) of 11 genes in more than 20 tissues and organs, including those pathogenetically significant for the development of EH (whole blood, tibial artery, left ventricle of heart, etc.) (Supplementary Table 6).

Pathway analyses. The in silico analysis of the functional significance was conducted for the 7 EH-associated genes (MMP7, MMP8, MMP1, MMP2, MMP3, MMP9, MMP12) and for genes whose expression is affected by the EH-associated SNPs according to the eQTL analysis (Supplementary Tables 5 and 6).

Of the 15 genes considered, the Gene Ontology databases have the relevant information about 12 genes; the information about three genes (RP11-817J15, WTAPP1, and RPL13P2) was not available. We found evidence

N	SNP × SNP interaction models	OR (95% CI)	Testing balanced accuracy	Cross-validation consistency	Pperm
Two-order interaction models					
1	rs11225395 MMP8 × rs1320632 MMP8	1.57 (1.23–1.99)	0.543	10/10	0.008
2	rs1320632 MMP8 × rs11568818 MMP7	1.49 (1.16–1.92)	0.537	10/10	0.01
Three-order interaction models					
3	rs1320632 MMP8 × rs11568818 MMP7 × rs3025058 MMP3	1.54 (1.22–1.94)	0.511	10/10	0.002
4	rs11225395 MMP8 × rs1320632 MMP8 × rs11568818 MMP7	1.70 (1.35–2.15)	0.540	10/10	0.004
5	rs17577 MMP9 × rs1320632 MMP8 × rs11568818 MMP7	1.72 (1.34–2.22)	0.531	10/10	0.004
6	rs1320632 MMP8 × rs11568818 MMP7 × rs1799750 MMP1	1.51 (1.19–1.91)	0.492	10/10	0.006
7	rs11225395 MMP8 × rs1320632 MMP8 × rs3025058 MMP3	1.73 (1.38–2.17)	0.553	10/10	0.012
Four-order interaction models					
8	rs652438 MMP12 × rs11225395 MMP8 × rs1320632 MMP8 × rs11568818 MMP7	1.75 (1.40–2.10)	0.537	10/10	0.002
9	rs652438 MMP12 × rs1320632 MMP8 × rs11568818 MMP7 × rs3025058 MMP3	1.71 (1.37–2.14)	0.529	10/10	0.004
10	rs1320632 MMP8 × rs11568818 MMP7 × rs3025058 MMP3 × rs243865 MMP2	1.78 (1.40–2.23)	0.503	10/10	0.006
11	rs11225395 MMP8 × rs1320632 MMP8 × rs11568818 MMP7 × rs243865 MMP2	1.93 (1.54–2.41)	0.531	10/10	0.006
12	rs17577 MMP9 × rs1320632 MMP8 × rs11568818 MMP7 × rs1799750 MMP1	1.73 (1.38–2.16)	0.492	10/10	0.018

Table 5. Cross-validation statistics for best models of the gene–gene interactions in EH. Models are obtained using the multifactor dimensionality reduction method, version 3.0.2 CI, confidence interval, OR, odds ratio, Pperm, permutation P-value for the interaction model.

Figure 1. High-order gene–gene interaction analysis for SNPs of matrix metalloproteinases in EH (data obtained by Multifactor Dimensionality Reduction, version 3.0.2): (a) Interaction dendrogram; (b) Interaction entropy graph.

Expression QTLs. According to the GTExportal database, four EH-associated SNPs had the cis-eQTL significance (p < 8 × 10⁻⁵, pFDR ≤ 0.05) and might affect the expression of five genes (MMP7, MMP27, RP11-817J15.3, SNX21, SLC12A5) in several tissues and organs (Supplementary Table 5). Six EH-associated loci were in strong LD with the SNPs affecting the expression (p < 8.5 × 10⁻⁵, FDR ≤ 0.05) of 11 genes in more than 20 tissues and organs, including those pathogenetically significant for the development of EH (whole blood, tibial artery, left ventricle of heart, etc.) (Supplementary Table 6).

Pathway analyses. The in silico analysis of the functional significance was conducted for the 7 EH-associated genes (MMP7, MMP8, MMP1, MMP2, MMP3, MMP9, MMP12) and for genes whose expression is affected by the EH-associated SNPs according to the eQTL analysis (Supplementary Tables 5 and 6).

Of the 15 genes considered, the Gene Ontology databases have the relevant information about 12 genes; the information about three genes (RP11-817J15, WTAPP1, and RPL13P2) was not available. We found evidence
of enrichment for pathways involved in the metalloendopeptidase activity (PFDR = 1.37E−16), collagen catabolic process (PFDR = 4.68E−15), collagen degradation (PFDR = 8.92E−15), extracellular matrix disassembly (PFDR = 4.79E−14), activation of matrix metalloproteinases (PFDR = 2.28E−13), and 10 other pathways (FDR ≤ 0.05) (Supplementary Table 7).

The network of the intergenic interactions between the 15 EH-associated genes and other 20 genes inferred by GeneMANIA is given in Fig. 2. These interactions are realized through common protein domains (47.03%), co-expression (35.73%), pathogenetic pathways (6.11%), co-localization (2.63%), and genetic interactions (0.53%). The EH-associated genes may interact either directly or via other genes (e.g., *NOP56*, *NOP58*, *MMP10*, *MMP21*, *MMP28*, etc.). Among the 35 candidate genes for EH, the most significant interactions were determined for *NOP56* and *NOP58* (common protein domains, weight = 0.65), *PRPF31* and *NOP56* (common protein domains, weight = 0.41), *PRPF31* and *NOP58* (common protein domains, weight = 0.41), *MMP7* and *MMP3* (pathways, weight = 0.10).

Discussion

The present study determined significant associations of eight loci of matrix metalloproteinase genes with EH in a Caucasian population of Central Russia.

Allele G of locus rs11568818 *MMP7* was associated with EH according to the dominant, additive and recessive models (OR = 0.58–0.70) and was involved in 10 of 12 two-, three-, and four-locus models of gene–gene interactions associated with EH. Marker rs11568818 was characterized by a significant regulatory effect: it was located in the region hypersensitive to DNase-1 in 15 tissues, in the region of modified histones (H3K4me1 and H3K4me3) that marked promoter and enhancer in 11 different organs and tissues, and affected the *MMP7* gene expression. The locus was located in the region of DNA that binds to the TATA-binding protein (TBP), c-FOS, c-Jun, and located in regulatory protein binding sites. According to the GeneCards database, TBP is responsible for proper RNA polymerase positioning on a promoter during transcription; regulatory proteins c-FOS and c-Jun interact with each other and control cell proliferation, differentiation, and transformation. The data about the possible contribution of rs11568818 to cardiovascular disease in different ethnic populations was somewhat inconsistent. For example, Jormsjö et al. showed that carriers of genotype GG rs11568818 *MMP7* had an increased risk for developing cardiovascular pathology in the Swedish population, while in populations from India, Mexico, and Turkey associations of this marker with EH and its complications were not determined. The observed inconsistencies could stem from the differences in study designs (e.g., differences in the used covariates, sample sizes, gene–gene and gene-environment interactions, etc.). In addition, the differences in the results might be
associated with ethnicity-specific pathogenetic features of the emergence and course of EH\cite{12, 13, 14} or/and ethnicity-related differences in the genetic structure of the populations\cite{15, 16}.

According to the GeneCards database (http://www.genecards.org/), the MMP7 gene belongs to the gene cluster on chromosome 11 and encodes the enzyme of the same name, which is characterized by the absence of a conserved C-terminal hemopexin domain. Matrix metalloproteinase 7 is responsible for proteolytic cleavage of elastin, type I, III, IV, V gelatins, fibronectin, casein, proteoglycans and is involved in the regeneration processes after damage, remodeling of the extracellular matrix, and also modulates cell migration, proliferation, and apoptosis\cite{17}.

We did not determine monolocus effects for rs1320632 of the MMP8 gene; however, this marker is involved in all 12 identified gene–gene interactions models associated with EH. SNP rs1320632 has significant regulatory potential—it is located in the region of DNA regulatory motifs and modulates affinity for seven transcription factors (CAC-binding-protein, Foxc1-2, GATA-known13, GCM, MAZ, PRDM1-known1, STAT-disc6). In addition, this SNP is located in the region of hypersensitivity to DNAse-1 in 10 tissues, in the region of H3K4me1 and H3K4me3, marking enhancers and promoters in six tissues. We found that rs1320632 MMP8 is strongly linked to 14 SNPs that have important regulatory significance, and this locus is associated with a level of the MMP27 gene expression in four tissues. Our results are consistent with those previously reported for the Serbian population\cite{18}. The MMP8 gene encodes a proteolytic enzyme involved in the cleavage of the extracellular matrix in the proliferation and remodeling of tissues, embryonic development, as well as in pathological processes such as arthritis and metastasis. Selective proteolysis of the polypeptide leads to the formation of many active forms of the enzyme with different N-ends. MMP8 is involved in the degradation of type I-III collagen and is expressed by macrophages, while the production of MMP8 sharply increases with inflammation.

It should be noted that the current study is somewhat limited because: (a) only one ethnic population was analyzed. The well-known ethnic disparities in the prevalence of complex diseases warrant validation studies of the determined associations of the MMP genes and EH in other ethnic populations; (b) a transethnic meta-analysis of the studied MMP SNPs would help to clarify this issue, but is currently impossible due to the insufficient data available about MMP and EH; (c) the obtained results are not sufficient to construct a reliable predictive model of EH based on the eight studied SNPs using the multi-model deep learning method.

Conclusions

Thus, in this work, we found that genetic polymorphism rs11568818 MMP7 and gene–gene interactions of eight SNPs are associated with EH in a Caucasian population of Central Russia, and their phenotypic effects are realized through non-synonymous substitutions, regulatory and cis-eQTL effects, and shared biological pathways.

Materials and methods

Study subjects.

The study sample included 1405 people: 939 patients with essential hypertension and 466 controls. The participants were recruited through the cardiological and neurological departments of the St. Joasaph Belgorod Regional Clinical Hospital during 2013–2016. The following inclusion criteria were adopted: self-declared Russian descent, a birthplace in Central Russia\cite{19}.

Essential hypertension was diagnosed by certified physicians in cardiology and neurology as recommended by the World Health Organization (n = 939, 100%). All study subjects had a clinical history of hypertension for more than one year. Untreated hypertensive patients had the established hypertension defined by seated systolic (SBP) and/or diastolic (DBP) blood pressure above 140 and/or 90 mm Hg, respectively, measured at least twice. All hypertensive patients had no clinical signs, symptoms, and laboratory findings suggesting secondary hypertension, and liver or/and kidney failure. The controls were recruited during regular medical examinations at the above Center. The criterion for inclusion in the control group was the level of SBP < 140 mmHg and the level of DBP < 90 mmHg, no history of metabolic syndrome, autoimmune disorders, and oncological diseases.

The level of blood pressure (BP) was determined by the auscultation method using a sphygmomanometer and according to Korotkov\cite{20}. BP was measured throughout several days (at least twice). The patients had not consumed caffeine, exercise, and smoke for at least 30 min before the measurement procedure began. The measurement was performed in the seated position of the patient after 5 min of rest. The blood pressure was measured on both arms: at least two measurements were taken with an interval of 1–2 min. A mean of at least two readings taken at least two times was used to assess individual blood pressure.

The study was carried out in accordance with the standards of Good Clinical Practice and the principles of the Helsinki Declaration. The study was approved by the Regional Ethics Committee of Belgorod State University. All participants signed informed consent before the enrolment in the study.

Data on anthropometric characteristics (height, weight, and body mass index), smoking and alcohol use were collected for each participant. Blood samples for determining total cholesterol (TC, mmol/l), triglycerides (TG, mmol/l), high-density lipoprotein cholesterol (HDLC, mmol/l), and low-density lipoprotein cholesterol (LDLC, mmol/l) were collected after 8-h fasting, the analysis was performed in the certified clinical diagnostic laboratory of the St. Joasaph Belgorod Regional Clinical Hospital. The baseline and clinical characteristics of the study population are given in Table 1. The control group was matched to the EH group for sex and age (p > 0.05).

SNP selection and DNA handling.

DNA was extracted from whole blood by the phenol–chloroform protocol and then checked for quality (as described earlier\cite{21}).

Eight single nucleotide polymorphisms (SNPs) of seven matrix metalloproteinase genes (rs1799750 MMP1, rs243865 MMP2, rs3025058 MMP3, rs11568818 MMP7, rs1320632 and rs11225395 MMP8, rs17577 MMP9, and rs652438 MMP12) were selected for the study based on the following criteria\cite{22, 23, 24}: (1) SNP associations with the development of EH and/or its complications according to the results of previous studies; (2) the regulatory
effect of a polymorphism (regSNP); (3) the effect of the locus on gene expression (eSNP); (4) relation to non-synonymous substitutions (nsSNP); (5) MAF > 0.05. The SNPs regulatory potential and effect on the gene expression were assessed using HaploReg (v4.1) (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php), SNPinfo Web Server—SNP Function Prediction (FuncPred) (https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html), and GTExPortal (http://www.gtexportal.org/).

Information on the biological role of the studied polymorphisms and their associations with cardiovascular pathology is presented in Supplementary Table 8. All SNPs appeared to have significant regulatory potential, four of them (50.00%) were eSNPs, and 2 were nsSNPs (Supplementary Table 3).

SNP genotyping. The polymorphisms were genotyped using the MALDI-TOF mass spectrometry iPLEX platform (Agena Bioscience Inc, San Diego, CA). Genotyping of blind replicates was performed to ensure quality control. The repeatability test was performed for 5% of randomly selected samples and showed 100% reproducibility.

Statistical analysis. Correspondence of the studied loci to the Hardy–Weinberg equilibrium (HWE) was checked by the chi-square test. The loci were analyzed for associations with EH using logistic regression and according to additive (i.e., comparison of all genotypes, e.g., TT vs TC vs CC), dominant (CC/TC vs TT, where C is a minor allele), and recessive (CC vs TC/TT, where C is a minor allele) genetic models with adjustment for covariates. The following covariates were applied as quantitative variables: BMI, total cholesterol, triglycerides, high-density and low-density lipoprotein cholesterol; and while smoking status was used as qualitative variables (yes/no) (Table 1). The adaptive permutation test was applied to adjust the results for multiple comparisons. The significance level was set at $p_{\text{perm}} < 0.05$. The calculations were performed using software PLINK v.2.050 (http://zzz.bwh.harvard.edu/plink/). Statistical power for each SNP was estimated using Quanto 1.2.4 (http://hydra.usc.edu/gxe, 2009).

The epistatic interactions were analyzed assuming two-, three-, and four-locus models. The MB-MDR (Model Based Multifactor Dimensionality Reduction) approach and respective software (v. 2.6) for the R programming environment were utilized for the computations. The significance of the gene–gene interaction models was evaluated by the permutation test. For the permutation test, the following threshold values (after the Bonferroni correction based on the numbers of combinations studied for eight loci) were adopted for the models of the gene–gene interactions: $p < 1.8 \times 10^{-3}$ ($< 0.05/28$) for the two-locus models, $p < 8.9 \times 10^{-4}$ ($< 0.05/56$) for the three-locus models, and $p < 7.1 \times 10^{-4}$ ($< 0.05/70$) for the four-locus models. The significance level was set at $p_{\text{perm}} < 0.05$.

The cross-validation of the most significant models of intergenic interactions associated with EH was conducted by MDR (Multifactor Dimensionality Reduction) a, as implemented in the MDR software (v.3.0.2) (http://sourceforge.net/projects/mdr). The MDR method was used to assess the nature and strength (contribution to entropy) of gene–gene interactions and visualize them in graph form 48.

Functional SNPs. The SNPs associated with EH and those strongly linked to them were evaluated for their functional significance (non-synonymous SNPs 49, regulatory potential 50,51, and eQTLs 52). The loci in linkage disequilibrium (LD) ($r^2 \geq 0.8$) with the EH-associated ones were determined using HaploReg (v4.1) (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) and the data of the European population from the 1000 Genomes Project Phase 1 42,50,53,54.

Non-synonymous SNPs. Non-synonymous SNPs and their predictive potential were analyzed using the SIFT tool (https://sift.bii.a-star.edu.sg/) 49.

Regulatory effects. The candidate loci for EH were analyzed in silico for their regulatory potential using HaploReg (v4.1) (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) 50 and SNP Function Prediction (FuncPred) (https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html) 51.

Expression QTLs. The effect of the candidate SNPs for EH on gene expression in various tissues and organs was estimated using the GTExPortal data (http://www.gtexportal.org/) as of 10.12.2019 (Release V8 updated on 26/08/2019) (dbGaP Accession phs000424.v8.p2) 52. The False Discovery Rate (FDR) ≤ 0.05 was applied as statistical significance threshold 53.

Pathway analyses. The genes associated with EH were analyzed for functional significance in the various metabolic pathways using the Gene Ontology Portal (PANTHER Overrepresentation Test accessed on 13.04.2017; PANTHER version 12.0 accessed on 10.07.2017, http://geneontology.org) 54. The adjustment for multiple comparisons was made using the FDR test. The networks of intergene interaction were inferred using GeneMANIA (version 3.5.0, accessed on 13 March 2017, http://genemania.org) and the automatic weighting for the network 57.

Received: 1 August 2020; Accepted: 16 February 2021
Published online: 04 March 2021
References

1. Turin, T. C. et al. Impact of hypertension on the lifetime risk of coronary heart disease. *Hypertens. Res.* 39, 548–551. https://doi.org/10.1038/hra.2016.23 (2016).

2. Battistoni, A., Mastromarino, V. & Volpe, M. Reducing cardiovascular and cancer risk: How to address global primary prevention in clinical practice. *Clin. Cardiol.* 38, 387–394. https://doi.org/10.1002/clc.22394 (2015).

3. Perk, J. et al. European Guidelines on cardiovascular disease prevention in clinical practice: The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). *Eur. Heart J.* 33, 1635–1701 (2012).

4. Seravalle, G., Mancia, G. & Grassi, G. Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. *High Blood Press. Cardiovasc. Prev.* 21, 89–105 (2014).

5. Singh, M. et al. Molecular genetics of essential hypertension. *Clin. Exp. Hypertens.* 38, 268–277 (2016).

6. Taljard, M. et al. Cardiovascular disease population risk tool (CVDpPopT): predictive algorithm for assessing CVD risk in the community setting. *BMJ Open.* 4, 213–219 (2014).

7. Doi, Y. et al. Renal resistive index and cardiovascular and renal outcomes in essential hypertension. *Hypertension* 60, 770–777. https://doi.org/10.1161/HYPERTENSIONAHA.112.196717 (2012).

8. Pistoia, F. et al. Hypertension and stroke: Epidemiological aspects and clinical evaluation. *High Blood Press. Cardiovasc. Prev.* 23, 9–18. https://doi.org/10.1007/s10029-015-0115-2 (2016).

9. Tocci, G. et al. Therapeutic approach to hypertension urgencies and emergencies during acute coronary syndrome. *High Blood Press. Cardiovasc. Prev.* 25, 253–259. https://doi.org/10.1007/s10029-018-0275-y (2018).

10. Kunes, J. & Žicha, J. The interaction of genetic and environmental factors in the etiology of hypertension. *Physiol. Res.* 58, S33–S41 (2009).

11. Chang, T. J. Genetic variation in the human SORBS1 gene is associated With blood pressure regulation and age at onset of hypertension: A SAPPHIRE cohort study. *Medicine* 95, 2970 (2016).

12. Lee, H. A. & Park, H. Diet-related risk factors for incident hypertension during an 11-year follow-up: The Korean genome epimiology study. *Nutrients.* 10, 1077. https://doi.org/10.3390/nu10081077 (2018).

13. Krzesinski, J. M. & Saint-Remy, A. Essential hypertension, a complex trait. *Rev. Med. Liege.* 67, 279–285 (2012).

14. Chen, H., Ding, S., Liu, X., Wu, Y. & Wu, X. Association of interleukin-6 genetic polymorphisms and environment factors interactions with coronary artery disease in a Chinese Han population. *Clin. Exp. Hypertens.* 40, 514–517. https://doi.org/10.1080/10649363.2017.1403618 (2018).

15. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. *Nat. Rev. Mol. Cell Biol.* 15, 786–801. https://doi.org/10.1038/nrm4006 (2014).

16. Saratits, A. et al. Association between seven single nucleotide polymorphisms involved in inflammation and proteolysis and abdominal aortic aneurysm. *J. Vasc. Surg.* 61, 1120–1128 (2015).

17. Yang, W., Lu, J., Yang, L. & Zhang, J. Association of matrix metalloproteinase-9 gene -1562c/t polymorphism with essential hypertension: A systematic review and meta-analysis article. *Iran J. Public. Health.* 44, 1445–1452 (2015).

18. Fields, G. B. & Stawikowski, M. J. Imaging matrix metalloproteinase activity implicated in breast cancer progression. *Methods Mol. Biol.* 1406, 303–329. https://doi.org/10.1007/978-1-4939-3444-7_15 (2017).

19. Arning, A. Matrix metalloproteinase-12 (MMP-12) and the risk of cerebral aneurysm. *J. Neurosurg.* 8, 1–6 (2016).

20. de Mello, M. M. B., Parente, J. M., Schulz, R. & Castro, M. M. Matrix metalloproteinase (MMP)-2 activation by oxidative stress decreases aortic calponin-1 levels during hypertrophic remodeling in early hypertension. *Vasc. Pharmacol.* 116, 36–44. https://doi.org/10.1016/j.vph.2018.02.009 (2019).

21. Laccinu, R. et al. Common matrix metalloproteinase 2 gene haplotypes may modulate left ventricular remodelling in hypertensive patients. *Hum. Hypertens.* 26, 171–177. https://doi.org/10.1007/s10749-011-9326-4 (2012).

22. Durić, T. et al. Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: Preliminary study. *Atherosclerosis.* 219, 673–678. https://doi.org/10.1016/j.atherosclerosis.2011.08.025 (2011).

23. Jormsjo, S. et al. Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. *Arterioscler. Thromb. Vasc. Biol.* 21, 1834–1839. https://doi.org/10.1161/ha1101.0988229 (2001).

24. Wu, H. D., Bai, X., Chen, D. M., Cao, H. Y. & Qin, L. Association of genetic polymorphisms in matrix metalloproteinase-9 and coronary artery disease in the Chinese Han population: A case-control study. *Genet. Test. Mol. Biomark.* 17, 707–712. https://doi.org/10.1089/gtm.2013.0109 (2013).

25. Sakowicz, A., Hejduk, P. & Pietrucha, T. Association between ins4436A in 11β-hydroxysteroid dehydrogenase type 1 gene and coronary artery disease susceptibility: A case-control study. *Clin. Chim. Acta.* 413, 1834–1839. https://doi.org/10.1016/j.cca.2012.05.012 (2012).

26. Rodríguez-Pérez, J. M. et al. rs9318242 MMP9 gene polymorphism is associated with myocardial infarction in Mexican patients. *Genet. Mol. Res.* 15, 15017776. https://doi.org/10.4238/gmr.15017776 (2016).

27. Pérez-Hernández, N. et al. The matrix metalloproteinase 2 gene polymorphism is associated with the risk of developing myocardial infarction in Mexican patients. *J. Atheroscler. Thromb.* 19, 718–727. https://doi.org/10.5551/jat.11817 (2012).

28. Alp, E. et al. Analysis of MMP-7 and TIMP-2 gene polymorphisms in coronary artery disease and myocardial infarction: A Turkish case-control study. *Koalitsiyu J. Med. Sci.* 33, 78–85. https://doi.org/10.1016/j.kjms.2016.12.002 (2017).

29. Chiu, M. et al. Temporal trends in cardiovascular disease risk factors among white, South Asian, Chinese and black groups in Ontario, Canada, 2001 to 2012: a population-based study. *BMJ Open.* 5, e007232. https://doi.org/10.1136/bmjopen-2014-007232 (2015).

30. Quan, H. et al. Incidence, cardiovascular complications and mortality of hypertension by sex and ethnicity. *Heart* 99, 715–721. https://doi.org/10.1136/heartjnl-2012-303152 (2013).

31. Moskalenko, M. I. et al. The role of stress factors and genetic predisposition in the development of stroke in patients with essential hypertension. Zh Nevrol Psychiatry Im S S Korsakov. 3, 11–17. https://doi.org/10.17176/nevro/201911032111 (2019) (in Russian).

32. Moskalenko, M. I. et al. Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men. *Kardiologiya.* 75, 28–35. https://doi.org/10.18087/cardio.2598 (2019) (in Russian).

33. Bushueva, OYu. Single nucleotide polymorphisms in genes encoding xenobiotic metabolizing enzymes are associated with predisposition to arterial hypertension. *Res. Results Biomed.* 4, 447–456 (2020) (in Russian).

34. Moskalenko, M. I. et al. Polymorphic locus rs1061624 of the TNFR2 gene is associated with the development of arterial hypertension in males. *Kardiologiya.* 8, 1–5. https://doi.org/10.18087/cardio.2020.8.0996 (2020) (in Russian).
38. Moskalenko, M. I. et al. The role of the stress factor in mediating the genetic predisposition to stroke of the background of hypertensive disease. Neurosci. Behav. Physiol. 2, 143–148. https://doi.org/10.1007/s11055-019-00880-3 (2020).
39. Dvornyk, V. et al. Differentiation of Caucasians and Chinese at bone mass candidate genes: Implication for ethnic difference of bone mass. Ann. Hum. Genet. 67, 216–227. https://doi.org/10.1046/j.1469-1809.2003.00037 (2003).
40. Dvornyk, V. et al. Contribution of genotype and ethnicity to bone mineral density variation in Caucasians and Chinese: A test for five candidate genes for bone mass. Chin. Med. J. 118, 1235–1244 (2005).
41. Hooper, M. M. et al. Definitions and diagnosis of hypertension. J. Am. Coll. Cardiol. 62, 42–50. https://doi.org/10.1016/j.jacc.2013.10.032 (2013).
42. Ponomarenko, I. V. et al. Association of genetic polymorphisms with age at menarche in Russian women. Gene 686, 228–236. https://doi.org/10.1016/j.gene.2018.11.042 (2019).
43. Stanikova, D. et al. Novel data about association of the functionally significant polymorphisms of the MMP-9 gene with exfoliation glaucoma in the Caucasian population of Central Russia. Ophtalmic Res. https://doi.org/10.1016/j.or.2020.09.005 (2020).
44. Che, R., Jack, I. R., Motsinger-Reif, A. A. & Brown, C. C. An adaptive permutation approach for genome-wide association study: Evaluation and recommendations for use. BioData Min. 7, 9. https://doi.org/10.1186/1756-3308-7-9 (2014).
45. Calle, M. L., Urrea, V., Vellalta, G., Malats, N. & Steen, K. V. Improving strategies for detecting genetic patterns of disease susceptibility in association studies. Stat. Med. 27, 6532 (2008).
46. Calle, M. L., Urrea, V., Malats, N. & Van Steen, K. Mbdmr: An R package for exploring gene–gene interactions associated with binary or quantitative traits. Bioinformatics 26, 2198–2199 (2010).
47. Moore, J. et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241, 252–261 (2006).
48. Ponomarenko, I. V. Using the method of Multifactor Dimensionality Reduction (MfDR) and its modifications for analysis of gene–gene and gene–environment interactions in genetic-epidemiological studies (review). Res. Results Biomed. 1, 4–21. https://doi.org/10.18413/2313-8955-2019-5-1-0-1 (2019).
49. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 7, 1073–1081 (2009).
50. Ward, L. D. & Killis, M. HaplOpReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. D1, D877–D881 (2016).
51. Xu, Z. & Taylor, J. A. SNPinfo: Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 37, W600–W605 (2009).
52. The GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
53. Ponomarenko, I. et al. Candidate genes for age at menarche are associated with endometriosis. Rep. BioMed. Online. 5, 943–956. https://doi.org/10.1016/j.rbmo.2020.04.016 (2020).
54. Ponomarenko, I. et al. Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene 757, 144933. https://doi.org/10.1016/j.gene.2020.144933 (2020).
55. Ponomarenko, I. et al. Candidate genes for age at menarche are associated with uterine leiomyoma. Front. Genet. 11, 512940. https://doi.org/10.3389/fgen.2020.512940 (2021).
56. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2017).
57. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–220 (2010).

Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions
M.M., V.D., M.C. substantial contributions to conception and design. M.M., E.R. acquisition of data. I.P., V.D. analysis and interpretation of data. M.M., I.P., drafting the article. E.R., V.D., M.C. revising it critically for important intellectual content. All authors final approval of the version to be published. All authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-84645-4.

Correspondence and requests for materials should be addressed to E.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021