Automatic interpretative image-focusing analysis

Joseph Jennings†*, Robert Clapp†, Mauricio Araya-Polo‡ and Biondo Bioni‡

ABSTRACT
The focusing of a seismic image is directly linked to the accuracy of the velocity model. Therefore, a critical step in a seismic imaging workflow is to perform a focusing analysis on a seismic image to determine velocity errors. While the offset/aperture-angle axis is frequently used for focusing analysis, the physical (i.e., midpoint) axes of seismic images tend to be ignored as focusing analysis of geological structures is highly interpretative and difficult to automate. We have developed an automatic data-driven approach using convolutional neural networks to automate image-focusing analysis. Using focused and unfocused geological faults, we show that our method can make use of both spatial and offset/angle focusing information to robustly estimate velocity errors within seismic images. We demonstrate that our method correctly estimates velocity errors from a 2D Gulf of Mexico limited-aperture image where a traditional semblance-based approach fails. We also show that our method has the added benefit of improving the interpretation of faults within the image.

INTRODUCTION
The focusing and unfocusing of seismic images is in large part determined by the accuracy of the migration velocity model. When the migration velocity is incorrect, within their physical axes (x-midpoint, y-midpoint and depth), seismic images lose reflector coherence and in the presence of geological faults and rugose geological features, exhibit unfocused/overly focused fault plane reflections and diffractions. The angle/offset axis within prestack seismic images provides an additional axis for analyzing seismic image focusing. When the migration velocity is correct, events within angle/offset gathers will be flat; when it is incorrect, they will either curve upward or downward. The use of focusing information within the physical axes as well as the angle/offset axis for image-focusing analysis has shown to provide high resolution and robust estimation of migration velocities in scenarios with limited aperture-angle range such as sub-salt imaging as well as narrow/constant-offset acquisition geometries (Sava et al., 2005; Wang et al., 2006, 2008; Ma et al., 2011). Notwithstanding the success obtained with using all axes of a seismic image, typically velocity errors are assessed within seismic images using only the residual moveout information along

†Stanford University, Department of Geophysics, Stanford, CA, U.S.A
‡Total Energies, Research and Technology US, Houston, TX, U.S.A
*corresponding author: joseph29@stanford.edu
Interpretative image-focusing analysis

the angle/offset axis. This is mainly due to the fact that analyzing focusing within
the physical axes of seismic images is a highly interpretative process that is difficult
to automate. Moreover, it tends to be more applicable in areas of with rugose and
faulted geology which occur less frequently in the subsurface.

In spite of this challenge, many successful attempts have been made to create a ro-
 bust and automatic image-focusing analysis. Existing approaches can be split into two
main categories. The first of these categories are diffraction-based approaches that
analyze the focusing of diffractions separated from the reflections. These approaches
have been well-studied and have been able to improve imaging and interpretation
in a variety of geological settings such as near salt bodies, faults and also channels
[De Vries and Berkhout, 1984; Harlan et al., 1984; Pomel et al., 2007; Montazeri et al.,
2020]. The majority of these approaches only examine the focusing of a seismic im-
age within its physical axes and use an image entropy-based focusing measure for
determining the optimal focusing of a diffraction.

Approaches that fall into the other category make use of coherence along the dif-
ferent axes of the image. Within images generated from common-reflection point (CRP)
scans [Audebert et al., 1996], wave-equation migration scans [Wang et al., 2006] or
reverse-time migration delayed-imaging-time scans [Wang et al., 2009], they examine
either the flatness of the CRP gathers or the coherence of extracted horizons. While
original approaches analyzed the coherence of horizons qualitatively [Nérnon et al.,
2000; Wang et al., 2006], automatic methods were later developed to perform focus-
ing analysis for each image point along automatically extracted horizons (Whiteside
et al., 2011). These approaches have shown to provide robust estimates of focusing
errors within images and also demonstrated to have the added benefit of improving
the interpretation of geologic features such as salt bodies.

While approaches in both of these categories have demonstrated success towards
developing an automated interpretative image-focusing analysis, their solutions are
not all-encompassing. The diffraction-based approaches rely on the detection and
isolation of diffractions from reflections within seismic images, which can prove to be
a challenging task in the presence of noise or limited illumination [Berkovitch et al.,
2009]. Additionally, these approaches are limited in that they only target point scat-
ters within stacked seismic images. Therefore, they neglect reflector coherence and
curvature in addition to the curvature information available along the angle/offset
axis of prestack seismic images. While the coherence-based approaches have become
routine procedures for subsalt-imaging workflows, they are also not without limita-
tions. Although they incorporate structural constraints by performing the focusing
analysis along extracted horizons, the picking of the optimal focusing parameters is
typically performed on each image-point separately using a maximum amplitude cri-
teron, which can potentially lead to a spatially inconsistent assessment of the focusing
errors. Additionally, both the diffraction-based and the coherence-based approaches
can be considered from an automation perspective as “rule-based” approaches that
rely on the specification and extraction of particular features within focused and un-
focused images in order to assess the velocity error. While these features can be
extracted and used for a wide variety of seismic images, there are also many instances in which they do not apply (e.g., corner cases) and therefore other features need to be specified and the rule-based approaches need to be updated.

In this paper, we present a novel workflow of automatic interpretative image-focusing analysis that uses the powerful automatic feature extraction capabilities of deep learning with convolutional neural networks (CNNs). Recently, CNNs have been transforming the seismic interpretation community due to their ability to robustly detect geological features such as geological faults, channels and salt bodies within seismic images (Waldeland et al., 2018; Wu et al., 2019; Pham et al., 2019; Tschannen et al., 2020). The CNN we present and train within this study is similar to the work done in the seismic interpretation community. While CNNs trained for seismic interpretation typically learn to detect the presence of geological features within seismic images, we train a CNN to learn to detect whether a geological feature is focused within an image. Although any geological feature could be used for training the CNN, for the purposes of this paper, we provide the CNN with focused and unfocused faults as training images. Our image-focusing CNN takes as input prestack image patches from a migration scan and provides for each image patch a focusing score that is close to one for focused images and close to zero for unfocused images. With focusing scores computed for all patches in the image, the migration scanning parameter can then be selected for each patch based on the image that provided the largest focusing score. While any migration scanning procedure can be used in this workflow, in this study, we use prestack Stolt residual depth migration for generating focused and unfocused prestack images (Sava, 2003; Biondi, 2010).

To demonstrate the effectiveness of our method, we train our image-focusing CNN and use it to automate an image-focusing analysis on a 2D limited-aperture image from the Gulf of Mexico (GOM). Comparing our approach to an approach that only analyzes the migration scans using semblance calculated from angle-domain common image gathers, we show that in spite of the limited amount of angle information provided along the aperture-angle axis, our method can make use of the additional spatial focusing information from faults to provide a robust estimate of the migration scanning parameter. We also show that our method, similar to Whiteside et al. (2011), has the added benefit of improving the interpretation of the faults compared to the semblance-based method.

In the first section of the paper, we introduce the 2D limited-aperture GOM field dataset to which we apply image-focusing analyses using both a semblance-based approach and our novel CNN-based approach. The image obtained from migrating these data is composed primarily of normal listric faults and therefore the geological feature on which we choose to spend most of our attention for focusing analysis is faults. Following the description of the field data, we review the migration scanning procedure of prestack Stolt residual migration and the semblance-based approach for performing focusing analysis that only uses the aperture angles. We then outline how we perform the focusing analysis using a CNN by describing design of the CNN, the training data creation workflow and the training of the CNN. Finally, we apply both

Interpretative image-focusing analysis
approaches to our 2D GOM image with faults and compare and discuss the results.

FIELD DATA

The field data used for this study were taken from a survey line acquired off of the Texas coast of the Gulf of Mexico (Claerbout, 1985). The data consist of 148 shots acquired with a streamer acquisition with a maximum offset of 3.4 km. Figure 1 shows the migrated image of these data. We migrated the dataset with a 2D shot-profile wave-equation depth migration algorithm (Kessinger, 1992) that used a maximum frequency of 50 Hz and 41 subsurface offsets. During the migration, we introduced a shallow slow velocity anomaly in order to introduce defocusing on the normal faults present within the image.

Additionally, in order to investigate the effects of a limited aperture during image focusing analysis, we converted the subsurface-offset-domain common-image gathers to aperture-angle-domain common-image gathers (Sava and Fomel, 2003) and applied a mute on the angle gathers in order to simulate data that had been acquired with only 1.0 km offset. Figure 2 shows the region of interest of the image used for this study as well as an extracted muted angle gather. Diffracted events on the fault near \(x = 10 \) km and the unfocused fault plane reflection on the central fault provide signs of undermigration. Also note that little to no curvature information is available along the aperture angle axis due to the application of the mute.

METHODS

Pre-stack Stolt residual depth migration

We use a residual migration-based approach for performing the migration scanning procedure. Residual migration is a seismic imaging technique that transforms an image that has been migrated with a particular velocity, to an image that has been migrated with another velocity. A major advantage of this image-to-image mapping is that as residual velocity errors are in general small, less accurate imaging algorithms may be utilized (Rothman et al., 1985). Typically, less accurate imaging algorithms are also less computationally demanding and therefore many residual migrations can be performed at relatively little cost. Over the past few decades, residual migration has shown to be a useful tool for imaging and migration velocity analysis (Beasley et al., 1988; Van Trier, 1990; Sava and Biondi, 2004; Novais et al., 2008; Alkhalifah and Fomel, 2011).

While any migration can be re-expressed as a residual migration algorithm, in this study we use the 2D pre-stack Stolt residual depth migration algorithm as described in Sava (2003). This migration algorithm performs a mapping from our initial migration image (migrated with initial velocity \(v_0(z,x) \)) to a residually migrated image...
Figure 1: Unfocused depth-migrated image to be used in this study with the region of interest for focusing analysis shown within the highlighted box.
Figure 2: The region of interest shown in Figure 1 and a muted angle gather extracted at 11.3 km.

(migrated with trial velocity $v(z, x)$):

$$r_0(z_0, x, h) \rightarrow r(z, x, h),$$

where z is depth, x is midpoint and h is subsurface offset. This mapping is performed in the spatial frequency domain using the following relationship:

$$k_z = \frac{1}{2} \sqrt{\frac{v_0^2}{v^2} \left[\frac{k_{z0}^2 + k_h^2}{k_{z0}^2} \left(\frac{k_{z0}^2 + k_x^2}{k_{z0}^2} \right) - (k_x + k_h)^2 \right] + \frac{1}{2} \sqrt{\frac{v_0^2}{v^2} \left[\frac{k_{z0}^2 + k_h^2}{k_{z0}^2} \right] \left(\frac{k_{z0}^2 + k_x^2}{k_{z0}^2} \right) - (k_x - k_h)^2}},$$

where k_z is the vertical wavenumber of the output residually migrated image, k_{z0} is the vertical wavenumber of the original input image, k_h is the subsurface offset wavenumber, and k_x is the midpoint wavenumber. It is important to note that Equation 2 does not only depend on the original migration velocity, but rather on the ratio between the original migration velocity and the output trial velocity. Following the notation of Biondi (2006), we denote this parameter as ρ and refer to it throughout this paper as the migration scanning parameter. As prestack Stolt residual depth migration operates entirely in the wavenumber domain (described by Equation 2), the ratio $\rho = v_0/v$ must be a scalar parameter. This implies that while v_0 and v may both be spatially-variant, v must be a scaled version of v_0. In this sense, performing prestack Stolt residual migration for a range of ρ values is very similar to performing wave equation migration/CRP scans for focusing migration velocity analysis.

Interpretative image-focusing analysis
Figure 3 shows several images that resulted from applying prestack Stolt residual
depth migration to the unfocused image shown in Figure 2. We computed residual
migration images from ρ values of 0.90 to 1.1 with an interval of 0.00125 resulting
in a total of 161 residually migrated images. We also applied a depth correction to
each of the images in order to correct for depth shifts between the different depth
migrated images. Additionally, as we did for the original unfocused image shown in
Figure 2, we converted each residually migrated subsurface-offset-domain common-
image gather to an aperture-angle-domain common-image gather. In Figure 3, it is
apparent that while none of the images have been fully corrected for the velocity error,
the image corresponding to $\rho = 0.97$ (Figure 3(b)) provides the best focusing of the
fault plane reflections as well as the largest stack power. Due to the fact that the trial
velocity must be a scaled version of the migration velocity, only a global refocusing
can be performed on the entire image and the resulting images will at best contain
locally-focused regions. In order to fully correct for local velocity errors, we must
establish focusing criteria that can be computed over the entire image and provide
an estimate of a spatially-variant residual migration parameter ($\rho(z,x)$).

Measuring image focusing with semblance

A simple yet often effective focusing measure is to measure the flatness of the angle
gathers. This can be done with the following coherence measure (Neidell and Taner
1971):

$$s_i = \frac{\sum_{j=i-M}^{i+M} \left(\sum_{k=1}^{N} g_{j,k} \right)^2}{N \sum_{j=i-M}^{i+M} \sum_{k=1}^{N} g_{j,k}^2},$$ (3)

where g is a residually migrated angle gather for a single ρ, i and j are depth indices,
k is the current trace index within the gather, N is the number of traces within
the gather and M is the length of the smoothing filter in depth. Performing this
calculation for all depths and a range ρ values will result in a semblance panel that
will indicate, for all depths, the ρ values that provide the flattest gathers. The maxima
of this semblance panel can then be picked resulting in an estimate of $\rho(z)$ for the
position at which the angle gather was extracted. Figure 4(a) shows the result of
computing a semblance panel for $\rho = 0.9 - 1.1$ for an angle gather extracted at 11.3
km within the unfocused image. We picked the maxima using the automatic picking
algorithm described in Fomel (2009) and the picks are displayed in the red curves
superimposed on the angle gather and semblance panels shown in Figure 4(a).

While semblance provides an efficient measure for image focusing and in many
cases yields a robust estimate for $\rho(z,x)$, the resolution of semblance is heavily reliant
on a sufficient range of aperture angles. With a small range of aperture angles,
the power of the stack will be less sensitive to changes in ρ, which will result in
a broader range of maxima in the semblance panel and consequently less accurate
semblance picks. To illustrate this, we performed a reference focusing analysis on
the full aperture image. The semblance computed from the angle gather extracted

Interpretative image-focusing analysis
Figure 3: A selection of residual migration images taken from the application of prestack Stolt residual depth migration to the unfocused image. While it is clear that a single ρ value does not fully correct for the velocity error, we observe that the best focusing of the faults and largest stack power occur for $\rho = 0.97$ (panel (b)).
from the same spatial location within the full aperture image is shown in Figure 4(b). While we see a tight and clear trend in the semblance panel in Figure 4(a), we see a very broad smeared trend in the semblance panel in Figure 4(b). The picks of each of the semblance panels is also shown in Figure 4(b). We observe a significant difference between the picks from the full and limited-aperture data indicating an inaccurate pick resulted from the focusing analysis on the limited-aperture data.

Measuring image focusing with a CNN

We can overcome this explicit reliance on the aperture angle range by augmenting the semblance-based focusing analysis with the focusing information contained within the physical axes of the image. We propose to do this with a CNN. In recent years, CNNs have shown remarkable abilities at automating a wide range of computer vision tasks [Krizhevsky et al., 2012; Taigman et al., 2014; Liu et al., 2016]. They have been especially useful for tasks that are difficult to define formally (easy for humans to perform but difficult to automate with an algorithm). Even more recently, CNNs have shown to be of use within the seismic interpretation community. Their powerful ability to learn to extract features within seismic images has allowed them to detect subsurface structures in a wide variety of complex geological scenarios. We extend this idea of geological feature detection to aid in the task of image-focusing analysis. We do this by training a CNN to classify geological features as focused or unfocused. We provide prestack image patches to the CNN and train it to provide a score valued from zero to one of the focusing of the patch. In a similar way to semblance, this focusing score serves as a measure for the focusing of the patch. In the following sections, we describe the design and training of our image-focusing CNN.

Neural network structure

We designed our CNN to have a feed-forward architecture that is composed of two primary components: a feature extraction component and a classification component. The feature extraction component takes as input a prestack image patch (which in 2D has dimensions of \((n\gamma, nz, nx)\), where \(\gamma\) represents the aperture angle) and provides as output a feature vector consisting of 128 elements. Mathematically, we can describe this component as the following non-linear transformation:

\[
x_f = f(r; w, b),
\]

where \(x_f\) is the output feature vector of length 128, \(r\) is an input prestack image patch of size \(32 \times 64 \times 64\), and \(w\) and \(b\) are vectors that contain the weights (i.e., CNN filter coefficients) and biases to be estimated and that parameterize the CNN. Figure 5 shows a schematic of the architecture of the CNN. The network consists of three 3D convolutional, max-pooling and rectified linear unit (ReLU) blocks. All convolutional operations were performed using filters of size \(3 \times 3 \times 3\) and apart from the first layer, all max-pooling operations were performed with a kernel size of \(2 \times 2 \times 2\).
Figure 4: (a) Computed ρ semblance from an angle gather extracted at 11.3 km. The left panel shows the angle gather residually migrated for ρ values between 0.9 and 1.1 and the right panel shows the computed semblance. The red curves show the pick of the maxima of the semblance panel. (b) The computed ρ semblance from the angle gather extracted at 11.3 km, but from the full-aperture image. The blue curve shows the pick of this semblance panel (labeled F-SMB) and the red curve is the pick from the limited-aperture semblance panel (labeled M-SMB and shown in panel (a)).

Interpretative image-focusing analysis
Figure 5: A schematic of the architecture of the feature extraction component our image-focusing CNN. The shapes written beneath each of the operations denote the shapes of the outputs of the operation.

which act to halve each dimension of the input features. (For the first block, we chose to not perform pooling along the angle axis). These three blocks serve to extract the features from the image that are most relevant for determining the focusing of the image patch. The output of these blocks is then reshaped and transformed into the output feature vector x_f via a fully-connected layer. The final classification step maps x_f to a scalar via an inner-product and then a sigmoid activation function is used to provide an output score:

$$s(r; w, b, \theta, \theta_0) = \frac{1}{1 + e^{-\theta^T x_f (r; w, b) + \theta_0}}, \quad (5)$$

where θ is a 128-element vector of parameters and θ_0 is a bias parameter to be estimated during training. s is then the output image-focus score (bounded between 0 and 1) that we use as a measure for the focusing of the image patch.

We chose the design of the neural network wanting to take advantage of all of the information provided within the prestack image patch. We found that we could best do this by extracting three-dimensional features with 3D convolutions and 3D max-pooling operations. While we could add layers and complexity to our CNN, we desired to keep the total number of parameters relatively small. The feature extraction component consists of a total of 8,666,304 parameters (number of parameters in w and b). Including the 129 parameters (128 weights from the final classification layer (θ) and the bias term), the CNN has a total of 8,666,433 trainable parameters.
Training data

To create training images to train the CNN, we first formed patches from the limited-aperture unfocused image. We chose a patch size of 64 depth samples × 64 lateral samples and for each patch we selected all 32 angles. We chose to have 50% overlap in both z and x directions when forming patches which resulted in 225 spatial patches. After forming patches on all 161 residually-migrated limited-aperture images, we obtained a total of $225 \times 161 = 36,225$ patches.

To label the patches, we grouped all residually-migrated patches that belonged to the same spatial location and labeled the “best focused” patch of this group as a focused patch (receiving a label of one) and then all other patches within the patch group we classified as unfocused (receiving a label of zero). For patches without faults and near the surface that were largely unaffected by the aperture angle mute, we could use the power of the stack as well as visual reflector coherence within the patch as a metric for selecting the best focused patch. For all other patches, we first performed automatic fault segmentation on that patch for the $\rho = 1$ image. For fault segmentation, we used a 2D CNN-based fault segmentation approach trained on 2D synthetic training images. The architecture of our fault segmentation CNN was designed after the U-net shown in [Wu et al. (2019)]. If an image patch with a segmented fault contained enough fault pixels indicating that it contained at least one fault, we would visually label the patch within the patch group that had the most coherent and accurate fault segmentation as focused and all other patches as unfocused. Figure 6 shows the fault segmentation for a patch for different ρ values. Qualitatively, the fault segmentation for the $\rho = 1$ image shown in Figure 6(b) appears to have the sharpest and most precise fault segmentation and therefore, this image patch received the focused label for this patch group.

While this approach for creating a labeled training set is advantageous in that we do not have to be as concerned with model generalization and a data-domain gap, the labeling procedure can be time-consuming and also the resulting labeled images are dependent on the individual performing the labeling. Additionally, this approach will generate far fewer focused training images than unfocused training images as only one out of 161 is labeled focused for each patch group. While this can still result in a relatively large number of training patches, it will lead to a largely unbalanced dataset that will likely bias the model to predicting unfocused patches. For this reason, we select only one focused and one unfocused patch for each patch group (the unfocused patch is selected at random from the unfocused patches in the patch group). This will lead to a perfectly balanced dataset but has the downside of providing significantly fewer patches. Due to this reason, as well as our desire to not spend too much time on manually labeling patches, we labeled only 56 field data patches. Figure 7(a) shows examples of our unfocused and focused field training patches. Note that for the purposes of this paper and to investigate generalization, all labeled field patches used for training were selected from outside of the region of interest.

To overcome this challenge of limited labeled field training patches, we supple-
Figure 6: Fault segmentation on a training patch for different ρ values. Panel (a) shows the $\rho = 1$ image and panels (b), (c) and (d) show the computed fault confidences estimated from the $\rho = 1.0$, $\rho = 0.9587$ and $\rho = 1.0675$ images respectively. Qualitatively, comparing the fault segmentations for the different residually migrated images, we observe that the $\rho = 1$ image has the most precise fault segmentation.
mented the field training set with a synthetic pre-training set. The addition of a synthetic pre-training set also has the advantage in that it can help reduce biases and uncertainties that arise due to a manual labeling procedure. To create synthetic training image patches we implemented the following procedure: we first create a synthetic reflectivity model with undulating reflectors as well as normal faults. We then convolve this reflectivity model with a 20 Hz Ricker wavelet to create a band-limited synthetic seismic image. To minimize the domain gap between the synthetic and real images, we attempt to make the geological structure and frequency content of our synthetic seismic image similar to our real seismic image. We then simulate a subsurface-offset image by padding with 20 positive and 20 negative offsets keeping our synthetic image at the zero subsurface offset (a focused image). To create an unfocused image, we then perform prestack Stolt residual depth migration for a random \(\rho \) value that is different from \(\rho = 1 \). This will create a constant velocity error on the image resulting in diffractions on faults and energy away from zero subsurface offset. Finally, we convert both images from the subsurface-offset domain to the aperture-angle domain and apply a mute on the gathers to mimic the aperture range on our real seismic image. For each synthetic seismic image, we then create patches from each image using the same patch grid we used for the real seismic image. Performing this procedure for 1,000 models created 8,192 unfocused and focused synthetic pre-training patches. Similar to Figure 7(a), Figure 7(b) shows examples of unfocused and focused synthetic pre-training patches.

Training the image-focusing CNN

To train our CNN, we used the binary cross-entropy loss function:

\[
L(w, b, \theta, \theta_0) = -\sum_{i=1}^{M} y_i \log(s_i(r; w, b, \theta, \theta_0)) + (1 - y_i) \log(1 - s_i(r; w, b, \theta, \theta_0)),
\]

(6)

where \(y_i \) is the label for the \(i \)-th training example and \(M \) is the total number of examples used for training. To minimize this loss and estimate the unknown parameters \(w, b, \theta \), and \(\theta_0 \), we chose the ADAM optimization algorithm with a fixed learning rate of \(1 \times 10^{-4} \) (Kingma and Ba, 2014). The training itself was split into two stages. The first stage was a pre-training stage in which we trained the CNN on the synthetic pre-training images. For this stage, we specified a batch size of 20 image patches and trained for 20 epochs and used 80% of the 8,192 patches for training and 20% for validation. For the synthetic validation training set we achieved nearly 100% accuracy in classification. In the secondary stage of training we trained on the 56 field training patches and used an additional 20 for validation. We also trained for 20 epochs but used a batch size of one image patch as we found that smaller batch sizes provided the best validation accuracy. We found that with the addition of the pre-training set, we were able to achieve very good classification accuracy on the validation data as opposed to training with only the field training patches. Figure 8 shows the comparison of the learning curves of the secondary stage of training with and without
Figure 7: A selection of prestack training image patches used to train our image-focusing CNN. (a) Labeled patches taken from outside of the region of interest within the limited-aperture image and (b) labeled patches created from our synthetic training image procedure. For both panels (a) and (b), the two leftmost images are unfocused training patches and the rightmost images are focused training patches.
the pre-training step. We observe that by first pre-training on our synthetic seismic images, the network was able to avoid overfitting the real data training patches and achieve nearly perfect validation accuracy.

RESULTS

To test the trained image-focusing CNN, we made predictions on image patches within our region of interest. Forming the region of interest into residually migrated patch groups, we then computed the image-focusing score for each patch in the patch group and chose the ρ value corresponding to the patch that had the maximum focusing score. We assigned that selected ρ value over the whole patch and performed the same operation for all patches within the target region. We then smoothed the selected ρ values with a 0.5 km triangular smoothing filter along the lateral direction and a 0.15 km triangular smoothing filter in depth. Figure 9(a) shows the predicted $\rho(z, x)$ superimposed on the unfocused image. We observe that the predicted $\rho(z, x)$ smoothly varies in the unfocused region between values of 0.96 and 0.98 in the region of most severe defocusing which is consistent with what we observed in the residual migration images (Figure 3). Figure 9(b) shows the estimated $\rho(z, x)$ from the semblance-based approach. While the two predicted $\rho(z, x)$ generally agree spatially, we observe significant differences in magnitude in the predicted residual migration parameter. Additionally, we observe that the estimated $\rho(z, x)$ from the semblance-based approach oscillates above and below $\rho = 1$. In order to better compare the estimated $\rho(z, x)$, we performed a semblance-based focusing analysis for all spatial locations within the full-aperture image. The results of this focusing analysis are shown in Figure 9(c). Comparing all three estimated $\rho(z, x)$, we observe both spatially and in terms of magnitude that the CNN-based approach agrees quite well with the full aperture semblance-based focusing analysis. Figure 10 shows a comparison of the estimated $\rho(z, x)$ for all three focusing analyses, taken at $x = 9.6$, 11.3 and 13 km. For both panels (b) and (c) of Figure 10, we observe near perfect agreement between the full-aperture analysis and CNN analysis. We also observe good agreement in panel (a), but we observe that the $\rho(z)$ from the CNN-based approach diverges from the full-aperture semblance approach below a depth of about 1.2 km.

Quality check of the results

In addition to comparing the estimated ρ from the limited-aperture focusing analyses with the reference full aperture focusing analysis, we performed an additional quality check (QC) to assess the quality of the estimated $\rho(z, x)$. Our additional QC consisted of first performing a correction to the unfocused image that extracts the optimally focused residual migration images $r(z, x, \rho)$ using the estimated $\rho(z, x)$ \cite{MacKay and Abma 1989}. Mathematically we can express this as follows:

$$r_{\text{corr}}(z, x) = r(z, x, \rho(z, x)), \quad (7)$$
Figure 8: Learning curves with and without the pre-training stage. Panel (a) shows the comparison between the validation loss and panel (b) the comparison of the validation accuracy of the model with and without pre-training. Note to better display the trend of the curves, each of the curves was smoothed with a 50-point triangular smoothing filter.
Figure 9: Comparison of estimated $\rho(z,x)$ for (a) our CNN-based approach, (b) the semblance-based approach and (c) the semblance-based approach computed on the full-aperture dataset included for reference. The black vertical bars indicate the spatial locations at which the $\rho(z,x)$ values were extracted and compared in Figure 10.

Interpretative image-focusing analysis
Figure 10: Comparison of $\rho(z)$ extracted at (a) $x = 9.6$ km, (b) $x = 11.3$ km and (c) $x = 13$ km. Each semblance panel was computed from the reference full-aperture image-focusing analysis. The red curve shows the result of performing semblance-based focusing analysis and the green curve the result from the CNN (both performed on the limited-aperture data). The blue curve shows the pick of the semblance panels for reference.

where r_{corr} is the corrected image. We numerically implement this operation using a high-order spline interpolation. Panels (b)-(d) of the left column of Figure 11 show the results of performing this correction using the estimated migration scanning parameters from our CNN-based approach computed from the limited-aperture image, the semblance-based approach computed on the limited-aperture image and the reference semblance-based focusing analysis computed on the full-aperture image. Comparing these panels with the original unfocused image in the left column of panel (a) of Figure 11, we observe significant improvement in the focusing of the faults for each of the corrected images. However, we observe some residual defocusing in the muted semblance image (Figure 11(c)). This is more readily apparent in the fault segmentation of each image shown in the right column of Figure 11. Qualitatively, comparing the central fault of the fault segmented images on panels (b)-(d), we observe at approximately 0.8 km depth that the segmentation of panels (b) and (d) is better resolved than that of panel (c).

To provide a quantitative comparison of the observed improvement in the fault segmentation, we first specified the faults segmented on the reference image (Figure 11(d)) as the ground truth fault locations and applied a threshold to the predicted fault confidences in each of the images where any pixel containing less than 0.3 fault confidence was set to zero and all others received a value of one. We then used a standard intersection over union (IOU) metric for assessing the quality of the predicted faults in the images shown in Figures 11(a) - 11(c). The IOU metric can be

Interpretative image-focusing analysis
Table 1: Computed IOU metrics for the faults segmented within the original unfocused image (Figure 11(a)), the image corrected after semblance-based focusing analysis (Figure 11(c)), and the image corrected after our CNN-based focusing analysis (Figure 11(b)).

	Unfocused	Semblance	CNN
IOU	0.58	0.72	0.83

computed as follows:

$$\text{IOU} = \frac{N_{11}}{N_{11} + N_{01} + N_{10}},$$ \hspace{1cm} (8)$$

where N_{11} is the number of fault pixels within the predicted image that matched with the fault pixels in the reference image (true positives), N_{01} is the number of predicted non-fault pixels that were actually fault pixels in the reference image (false negatives) and N_{10} is the number of predicted fault pixels that were actually non-fault pixels in the target image (false positives). Table 1 shows the computed IOU values from the images shown in Figures 11(a)-11(c). We observe a significant improvement in the IOU of the faults segmented within the CNN corrected image compared to both the original unfocused and semblance corrected image.

DISCUSSION

The results of the focusing analysis shown in the previous section indicate that the CNN can extract focusing information from the faults within the image when there lacks sufficient information along the aperture angles. We observed that we could achieve nearly the same results of a full aperture focusing analysis, with a very limited aperture. For the spatial locations where the results differ, we believe that this difference could be attributed to a few different reasons. One reason could be due to the lack of focusing information within the physical axes of the image. For example, comparing the different faults in Figure 11, we observe that although the velocity is incorrect, the left-most fault has been largely unaffected due to the velocity error, while the central fault is very much unfocused. The fault segmentation of the different images readily shows the difference in focusing of the faults. In scenarios such as these, it will be more challenging for the CNN to perform an accurate focusing analysis. Another possible source of uncertainty that must be considered when training an image-focusing CNN is the labeling of field data examples. While manual/interpretative focusing analysis has shown to be quite successful for migration scanning methods, manual interpretation and labeling will most likely contain errors in labeling images as focused or unfocused. While this is true for all supervised learning techniques, our approach is more robust to these errors in that at relatively little cost, we can provide a large amount of pre-training images to the CNN in which we have perfectly focused and unfocused images. Moreover, the exact classification of an image patch as unfocused or focused is not of the utmost importance. Rather,
Figure 11: Comparison of corrected images and fault segmentation. The left column shows the image and the right column is the image with the fault segmentation of (a) the original unfocused image, (b) the image corrected with the CNN-based approach, (c) the image corrected with semblance and (d) the reference image corrected from full-aperture focusing analysis.

Interpretative image-focusing analysis
we require that the CNN provide a higher relative focusing score to patches that are better focused. This relaxes the accuracy requirement for the CNN for classification and instead allows the CNN to act as a data-driven focusing measure of seismic images with faults. Lastly, there is always the issue with providing enough training data for the network to generalize to many images. We suspect that when applying the image-focusing CNN to different seismic images, a small amount of training image patches from each new image may need to be provided to the CNN for training. This will be especially important in cases in which acquisition parameters or the geology varies greatly between surveys.

In addition to these potential sources of uncertainty in our method, we also point out that there is certainly room for improvement of the method. Perhaps the biggest downside to our proposed approach is that it is entirely local and applied on a patch-by-patch basis. The main advantage and motivation behind this choice is that by remaining local, we can scale to full 3D prestack images (5-dimensional images) with much greater ease. Nevertheless, future research will possibly involve also providing the entire stacked image to the CNN for a global-context. While the patch-by-patch approach is inherently lower resolution than semblance, we believe that this does not hinder our approach due to the fact that interpretative approaches will tend to be lower resolution and better follow the geological structure within the image.

Comparing the computational cost of our approach with that of the semblance-based approach, we note that the cost of our approach is significantly higher. This is both true for training and prediction stages of our approach. For the semblance-based approach, which effectively requires a stack over angles and smoothing in depth (as described by Equation 3) as well as a picking procedure and the smoothing of the picks, the total estimation of $\rho(z, x)$ completed in 0.9 min on a single core of an Intel(R) Xeon(R) Gold 6126 2.60 GHz CPU. In comparison, our CNN-based approach, requires similar amounts of memory but significantly more compute resources. To create the synthetic pre-training data, each synthetic model can be computed independently and therefore the computation is embarrassingly parallel. Distributing this computation across 200 CPU cores on 9 compute nodes (of the same hardware used for the semblance computation), all 8,192 synthetic patches were created in 15 minutes. For both stages of training, we trained on a single NVIDIA V-100 GPU with 16 GB of RAM which allowed us to store all patches in GPU memory during training. For the pre-training stage, the total time for training was 10 minutes and for the real data the training time was 0.5 minutes. Finally, using the same GPU, we computed the focusing scores for all residually migrated patches within the region of interest in 1.1 min.

One way to mitigate the significant cost increase of the CNN-based approach is to use it in conjunction with a pure semblance-based approach. For example, in well-illuminated areas, a semblance-based approach can be used to provide reliable estimates of the migration scanning parameter. In areas of poor illumination and that contain focused and unfocused geological features within the physical axes of the seismic image, the CNN-based approach can help to overcome the limitations
of a semblance-based approach in that area. Additionally, our method could be used in conjunction with a diffraction imaging procedure in which the CNN could be trained with focused/unfocused diffraction images instead of full prestack images. While this introduces an additional step into the workflow, it eliminates the additional offset/angle axis as diffraction-imaging approaches often operate on stacked images, which reduces the memory and disk read/write costs associated with performing focusing analysis on prestack images.

CONCLUSION

Convolutional neural networks provide a data-driven approach for automating image-focusing analysis which traditionally is a highly qualitative and interpretative process. Using focusing information present within the midpoint-depth axes as well as curvature information along the aperture-angle axis, we trained a CNN to classify local image patches as focused or unfocused. Our limited-aperture field data example demonstrates that our image-focusing CNN is able to correctly estimate a spatially variant migration scanning parameter where a traditional semblance-based approach fails. The comparison of our approach with the semblance-based full-aperture focusing analysis confirms the robustness of our CNN-based approach to a limited aperture.

ACKNOWLEDGMENTS

We would like to thank Total Energies Research and Technology US and the other affiliate members of the Stanford Exploration Project for the financial support of this research. We would also like to thank Rami Nammour for useful comments and suggestions.

REFERENCES

Alkhalifah, T., and S. Fomel, 2011, The basic components of residual migration in vti media using anisotropy continuation: Journal of Petroleum Exploration and Production Technology, 1, 17–22.
Audebert, F., J.-P. Diet, and X. Zhang, 1996, Crp-scans from 3d pre-stack depth migration: a powerful combination of crp-gathers and velocity scans, in SEG Technical Program Expanded Abstracts 1996: Society of Exploration Geophysicists, 515–518.
Beasley, C. J., W. Lynn, K. Larner, and H. Nguyen, 1988, Cascaded fk migration: Removing the restrictions on depth-varying velocity: Geophysics, 53, 881–893.
Berkovitch, A., I. Belfer, Y. Hassin, and E. Landa, 2009, Diffraction imaging by multifocusing: Geophysics, 74, WCA75–WCA81.
Biondi, B., 2010, Velocity estimation by image-focusing analysis: Geophysics, 75, U49–U60.
Biondi, B. L., 2006, 3d seismic imaging: Society of Exploration Geophysicists.
Claerbout, J. F., 1985, Imaging the earth's interior: Blackwell scientific publications
Oxford.
De Vries, D., and A. Berkhout, 1984, Velocity analysis based on minimum entropy:
Geophysics, 49, 2132–2142.
Fomel, S., 2009, Velocity analysis using ab semblance: Geophysical Prospecting, 57,
311–321.
Fomel, S., E. Landa, and M. T. Taner, 2007, Poststack velocity analysis by separation
and imaging of seismic diffractions: Geophysics, 72, U89–U94.
Harlan, W. S., J. F. Claerbout, and F. Rocca, 1984, Signal/noise separation and
velocity estimation: Geophysics, 49, 1869–1880.
Kessinger, W., 1992, Extended split-step fourier migration, in SEG Technical Pro-
gram Expanded Abstracts 1992: Society of Exploration Geophysicists, 917–920.
Kingma, D. P., and J. Ba, 2014, Adam: A method for stochastic optimization: arXiv
preprint arXiv:1412.6980.
Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, Imagenet classification with
dep deep convolutional neural networks: Advances in neural information processing
systems, 25, 1097–1105.
Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
2016, Ssd: Single shot multibox detector: European conference on computer vision,
Springer, 21–37.
Ma, X., B. Wang, C. Reta-Tang, W. Whiteside, and Z. Li, 2011, Enhanced prestack
depth imaging of wide-azimuth data from the gulf of mexico: A case history: Geo-
physics, 76, WB79–WB86.
MacKay, S., and R. Abma, 1989, Refining prestack depth-migration images with-
out remigration, in SEG Technical Program Expanded Abstracts 1989: Society of Exploration Geophysicists, 1258–1261.
Montazeri, M., L. O. Boldreel, A. Uldall, and L. Nielsen, 2020, Improved seismic inter-
pretation of a salt diapir by utilization of diffractions, exemplified by 2d reflection
seisics, danish sector of the north sea: Interpretation, 8, T77–T88.
Négron, J., P. Perfetti, F. Audebert, P. Guillaume, and X. Zhang, 2000, 3d pre-stack
velocity estimation: A 4d horizon-consistent method for interpretation of crp-scans
to guide tomographic inversion, in SEG Technical Program Expanded Abstracts
2000: Society of Exploration Geophysicists, 930–933.
Neidell, N. S., and M. T. Taner, 1971, Semblance and other coherency measures for
multichannel data: Geophysics, 36, 482–497.
Novais, A., J. Costa, and J. Schleicher, 2008, Gpr velocity determination by image-
wave remigration: Journal of Applied Geophysics, 65, 65–72.
Pham, N., S. Fomel, and D. Dunlap, 2019, Automatic channel detection using deep
learning: Interpretation, 7, SE43–SE50.
Rothman, D. H., S. A. Levin, and F. Rocca, 1985, Residual migration: Applications
and limitations: Geophysics, 50, 110–126.
Sava, P., and B. Biondi, 2004, Wave-equation migration velocity analysis. i. theory:
Geophysical Prospecting, 52, 593–606.
Sava, P. C., 2003, Prestack residual migration in the frequency domain: Geophysics,

Interpretative image-focusing analysis
Interpretative image-focusing analysis

68, 634–640.
Sava, P. C., B. Biondi, and J. Etgen, 2005, Wave-equation migration velocity analysis by focusing diffractions and reflections: Geophysics, 70, U19–U27.
Sava, P. C., and S. Fomel, 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68, 1065–1074.
Taigman, Y., M. Yang, M. Ranzato, and L. Wolf, 2014, Deepface: Closing the gap to human-level performance in face verification: Proceedings of the IEEE conference on computer vision and pattern recognition, 1701–1708.
Tschannen, V., M. Deleschue, N. Ettrich, and J. Keuper, 2020, Extracting horizon surfaces from 3d seismic data using deep learning: Geophysics, 85, N17–N26.
Van Trier, J. A., 1990, Tomographic determination of structural velocities from depth-migrated seismic data: PhD thesis, Stanford University.
Waldeland, A. U., A. C. Jensen, L.-J. Gelius, and A. H. S. Solberg, 2018, Convolutional neural networks for automated seismic interpretation: The Leading Edge, 37, 529–537.
Wang, B., V. Dirks, P. Guillaume, F. Audebert, and D. Epili, 2006, A 3d subsalt tomography based on wave-equation migration-perturbation scans: Geophysics, 71, E1–E6.
Wang, B., Y. Kim, C. Mason, and X. Zeng, 2008, Advances in velocity model-building technology for subsalt imaging: Geophysics, 73, VE173–VE181.
Wang, B., C. Mason, M. Guo, K. Yoon, J. Cai, J. Ji, and Z. Li, 2009, Subsalt velocity update and composite imaging using reverse-time-migration based delayed-imaging-time scan: Geophysics, 74, WCA159–WCA166.
Whiteside, W., Z. Guo, and B. Wang, 2011, Automatic rtm-based dit scan picking for enhanced salt interpretation, in SEG Technical Program Expanded Abstracts 2011: Society of Exploration Geophysicists, 3295–3299.
Wu, X., L. Liang, Y. Shi, and S. Fomel, 2019, Faultseg3d: Using synthetic data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation: Geophysics, 84, IM35–IM45.