On Some Explicit Semi-stable Degenerations of Toric Varieties

Marina Marchisio, Vittorio Perduca

Abstract
We study semi-stable degenerations of toric varieties determined by certain partitions of their moment polytopes. Analyzing their defining equations we prove a property of uniqueness.

MSC 2000: 14M25

1 Background
1.1 Polytopes and semi-stable partitions
In his paper [5], Hu provides a toric construction for semi-stable degenerations of toric varieties. We study the uniqueness of this construction for a toric variety X in the particular case of a semi-stable partition of its moment polytope in two subpolytopes. Adapting a theorem by Strumfels on toric ideals (Lemma 4.1 in [9] and Section 2 in [8]) to particular open polytopes, we investigate the equations of the degeneration of X as embedded variety.

Let $M \simeq \mathbb{Z}^n$ be a lattice and N its dual. We consider polytopes $\Delta \subset M$ which describe smooth algebraic varieties X_Δ; Δ determines the normal fan $\Sigma_{X_\Delta} \subset N$. Recall that convex polytopes Δ determine a toric manifold X_Δ together with an ample line bundle L_Δ: (X_Δ, L_Δ). If the polytope is non singular of dimension n, then L_Δ is very ample, we then have an embedding $X_\Delta \hookrightarrow \mathbb{P}^\ell$, for some ℓ [7].

Now fix a (compact) polytope Δ and suppose $\Delta \cap M = \{m_0, \ldots, m_\ell\}$. Take x_0, \ldots, x_ℓ as homogeneous coordinates in \mathbb{P}^ℓ. We can define $X = X_\Delta$ as the closure in \mathbb{P}^ℓ of the image of the map

$$\varphi : (\mathbb{C}^*)^n \rightarrow \mathbb{P}^\ell$$

$$t \mapsto [t^{m_0}, \ldots, t^{m_\ell}], \quad (1)$$
where \(t = (t_1, \ldots, t_n) \in (\mathbb{C}^*)^n \) and given \(u = (u_1, \ldots, u_n) \in \mathbb{Z}^n \) we use the notation \(t^u = t_1^{u_1} \cdots t_n^{u_n} \). Taking homogeneous coordinates in \(X_\Delta \), this map extends to a map \(X_\Delta \to \mathbb{P}^\ell \), which is an embedding under the assumption \(X_\Delta \) smooth (see [2]).

We assume that there exists a suitable finite partition \(\Gamma \) of \(\Delta \) in subpolytopes \(\{ \Delta_j\}_{j=1}^{k} \). We will assume that the toric varieties \(X_{\Delta_j} \) corresponding to each \(\Delta_j \) are also smooth. We call an open \(l \)-face \(\sigma \) of \(\Delta \) an \(l \)-face of \(\Gamma \) and we declare that the 0-faces of \(\Delta \) are not 0-faces of \(\Gamma \). Following [1, 5] we ask \(\Gamma \) to be semi-stable:

Definition 1.1 \(\Gamma \) is semi-stable if for any \(l \)-face \(\sigma \) of \(\Gamma \), if \(\theta \) is a \(k \)-face of \(\Delta \) such that \(\sigma \subset \theta \), then there are exactly \(k-l+1 \) \(\Delta_j \)'s such that \(\theta \) is a face of each of them.

In fact:

Theorem 1.2 [1, 5] If \(\{ \Delta_j\}_{j=1}^{k} \) is a semi-stable partition of \(\Delta \), then there exists a semi-stable degeneration of \(X_{\Delta} \), \(f : \tilde{X} \to \mathbb{C} \) with central fiber \(f^{-1}(0) = \bigcup_{j=1}^{k} X_{\Delta_j} \); the central fiber is completely described by the polytope partition \(\{ \Delta_j\}_{j=1}^{k} \).

\(\tilde{X} \) is constructed by a lift of \(\Delta \) (see Definition [1.3]). From Theorem 2.8 in [5], \(\tilde{X} \) is unique: we study the uniqueness of \(\tilde{X} \) for semi-stable partitions of \(\Delta \) in two subpolytopes \(\Delta_1, \Delta_2 \), and we describe its defining equations. In particular, in Section 2 of [5], Hu shows that the ordering (arbitrarily fixed) \(\{ \Delta_1, \ldots, \Delta_k \} \) of the polytopes in \(\Gamma \) determines a piecewise affine function on the partition \(F : \Delta \to \mathbb{R} \), which takes rational values on the points in the lattice \(M \). \(F \) can be chosen to be concave and it is called lifting function.

Definition 1.3

\(\tilde{\Delta}_F = \{(m, \tilde{m}) \in M \times \mathbb{Z} \text{ such that } m \in \Delta \text{ and } \tilde{m} \geq F(m)\} \)

is an open lifting (here simply lift) of \(\Delta \) with respect to \(\Gamma \).

There are many possible lifts of \(\Delta \) with respect to \(\Gamma \); if \(\Gamma \) consists of two subpolytopes, then two lifts exist. By construction there exists a morphism \(f : \tilde{X}_F := X_{\tilde{\Delta}_F} \to \mathbb{C} \) which realizes a semi-stable degeneration of \(X \). As
before we have embeddings $X \hookrightarrow \mathbb{P}^\ell$ and $\tilde{X}_F \hookrightarrow \mathbb{P}^\ell \times \mathbb{C}$. In particular we can define \tilde{X}_F as the closure in $\mathbb{P}^\ell \times \mathbb{C}$ of the image of the map:

$$\psi_F : ((\mathbb{C}^*)^n \times \mathbb{C}) \to \mathbb{P}^\ell \times \mathbb{C}$$

$$(t, \lambda) \mapsto ([\lambda^{F(m_0)} t^{m_0}, \lambda^{F(m_1)} t^{m_1}, \ldots, \lambda^{F(m_\ell)} t^{m_\ell}], \lambda).$$

Theorem 2.8 in [5] claims that the image of $\psi := \psi_F$, and hence \tilde{X}_F, is independent of the lifting function F.

We explicitly study this statement for semi-stable partitions of Δ in two subpolytopes. If Γ consists of two subpolytopes Δ_1, Δ_2, then we can construct two possible lifting functions F, G and then Δ has two lifts, say Δ_F and Δ_G. In particular let y_1, \ldots, y_n be coordinates in $\mathbb{R}^n \supset \Delta$ and let

$$a_1y_1 + \ldots + a_ny_n + a_{n+1} = 0$$

be an equation of the cut $\Delta_1 \cap \Delta_2$ in the lattice, where we take $a_1, \ldots, a_{n+1} \in \mathbb{Z}$ such that for all $m_j = (m_{1j}, \ldots, m_{nj}) \in \Delta_2 \cap M$ we have

$$a_1m_{1j} + \ldots + a_nm_{nj} + a_{n+1} \geq 0.$$

Following the construction in [5], the functions F, G we obtain look like:

$$F(m_j) = \begin{cases} 0 & \text{if } m_j \in \Delta_1 \\ L_F(m_j) := a_1m_{1j} + \ldots + a_nm_{nj} + a_{n+1} & \text{if } m_j \in \Delta_2, \end{cases}$$

$$G(m_j) = \begin{cases} L_G(m_j) := -a_1m_{1j} - \ldots - a_nm_{nj} - a_{n+1} & \text{if } m_j \in \Delta_1 \\ 0 & \text{if } m_j \in \Delta_2. \end{cases}$$

We prove that the two non-compact toric varieties defined by the open polytopes $\tilde{\Delta}_F$ and $\tilde{\Delta}_G$ have the same toric ideals. To do this we adapt a Strumfels’s theorem on toric ideals (Lemma 4.1 in [9] and Section 2 in [8]) to this non-compact context.

1.2 Toric ideals

In [8] Sottile describes the ideal I of the compact toric variety X (toric ideal) defined as the closure of the image of a map [1], following Strumfels’s book [9].
Take \(x_0, \ldots, x_\ell \) as homogeneous coordinates in \(\mathbb{P}^\ell \). With the notation of the previous section, suppose \(m_j = (m_{1j}, \ldots, m_{nj}) \), \(j = 0, \ldots, \ell \) and consider the \((n+1) \times (\ell+1)\) matrix
\[
\mathcal{A}^+ = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
m_{10} & m_{11} & \ldots & m_{1\ell} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n0} & m_{n1} & \ldots & m_{n\ell}
\end{pmatrix}.
\]

Observe that if \(u \in \mathbb{Z}^{\ell+1} \), then we may write \(u \) uniquely as \(u = u^+ - u^- \), where \(u^+, u^- \in \mathbb{N}^{\ell+1} \), but \(u^+ \) and \(u^- \) have no non-zero components in common. For instance, if \(u = (1, -2, 1, 0) \), then \(u^+ = (1, 0, 1, 0) \) and \(u^- = (0, 2, 0, 0) \) (Sottile’s notation).

We therefore have:

Theorem 1.4 ([8], Corollary 2.3)

\[I = \langle x u^+ - x u^- \mid u \in \ker(\mathcal{A}^+) \text{ and } u \in \mathbb{Z}^{\ell+1} \rangle. \]

There are no simple formulas for a finite set of generators of a general toric ideal. An effective method for computing a finite set of equations defining \(X_\Delta \) in \(\mathbb{P}^\ell \) is applying elimination theory algorithms to its parametrization in homogeneous coordinates. These algorithms are implemented in the well known computer algebra system Maplesoft [4].

2 First examples

To illustrate the previous section, we describe the semi-stable degenerations of a curve and a surface determined by a subdivision of their moment polytopes in two subpolytopes.

2.1 The twisted cubic

The twisted cubic \(X \subset \mathbb{P}^3 \) can be defined as \(\mathbb{P}^1 \) embedded in \(\mathbb{P}^3 \) by cubics, that is, as the toric curve \((X_\Delta, \mathcal{L}_\Delta) = (\mathbb{P}^1, \mathcal{O}(3)) \), where \(\Delta \) is the polytope below.

Here \(M = \mathbb{Z} \), \(\Delta \cap M = \{m_j = j, j = 0, \ldots, 3\} \), \(X \) is the closure of the image of

\[
\varphi : \mathbb{C}^* \to \mathbb{P}^3 \\
t \mapsto [1, t, t^2, t^3],
\]
Figure 1: The moment polytope Δ of the twisted cubic $X \subset \mathbb{P}^3$.

which extends to the embedding

$$X_\Delta \hookrightarrow \mathbb{P}^3 \quad (v_0, v_1) \mapsto [v_1^3, v_0 v_1^2, v_0^2 v_1, v_0^3],$$

where v_0, v_1 are homogeneous coordinates in X_Δ.

The toric ideal of X is of course computed to be

$$I = \langle x_0 x_2 - x_1^2, x_1 x_3 - x_2^2, x_0 x_3 - x_1 x_2 \rangle.$$

Now consider the semi-stable partition $\{\Delta_1, \Delta_2\}$ of Δ, where $\Delta_1 = [0, 1] \subset \mathbb{R}$ and $\Delta_2 = [1, 3] \subset \mathbb{R}$. This partition gives the semi-stable degeneration of X to the union of two curves $X_1 \cup X_2$, where $X_1 = (\mathbb{P}^1, \mathcal{O}(1))$ and $X_2 = (\mathbb{P}^1, \mathcal{O}(2))$.

The two possible lifting functions are

$$F(j) = \begin{cases} 0 & j = 0, 1 \\ j - 1 & j = 2, 3 \end{cases}, \quad G(j) = \begin{cases} 1 & j = 0 \\ 0 & j \neq 0 \end{cases}.$$

Using the notation of [2], in local coordinates the embeddings of \tilde{X}_F and \tilde{X}_G in $\mathbb{P}^3 \times \mathbb{C}$ are $([1, t, \lambda t^2, \lambda^2 t^3], \lambda)$ and $([\lambda, t, t^2, t^3], \lambda)$, while in homogeneous coordinates these are

$$([v_1^3, v_0 v_1^2, \lambda v_0^2 v_1, \lambda^2 v_0^3], \lambda)$$
and
\[(\lambda v_1^3, v_0 v_1^2, v_0^2 v_1, v_0^3, \lambda). \]
We therefore observe that \tilde{X}_F and \tilde{X}_G have different parametric equations, nevertheless it is easy to see that both of them are defined in $\mathbb{P}^3 \times \mathbb{C}$ by the equations
\[x_0 x_2 - \eta x_1^2 = 0, x_1 x_3 - x_2^2 = 0, x_0 x_3 - \eta x_1 x_2 = 0, \]
where η is the non-homogeneous coordinate in \mathbb{C}. These equations can also be found applying elimination theory algorithms to the two parametrizations in homogeneous coordinates, computations can be performed by hand or using computer algebra systems.

2.2 $\mathbb{P}^1 \times \mathbb{P}^1$ blown up in a point

Consider the polytope Δ in figure 3 with its associated normal fan. The toric surface X determined by Δ is $\mathbb{P}^1 \times \mathbb{P}^1$ blown up in a point and embedded in \mathbb{P}^7. In local coordinates it is the closure of the image of
\[\varphi : (\mathbb{C}^*)^2 \rightarrow \mathbb{P}^7 \]
\[(t_1, t_2) \mapsto [1, t_1, t_1^2 t_2, t_2, t_1 t_2, t_1^2 t_2, t_2, t_1^2], \]
while taking homogeneous coordinates v_0, \ldots, v_4 for X_Δ (one for each facet of Δ), the embedding is
\[X_\Delta \hookrightarrow \mathbb{P}^7 \]
\[(v_0, \ldots, v_4) \mapsto [v_2^3 v_4^2, v_0 v_2 v_3^2 v_4^2, v_0^2 v_3^2 v_4^2, v_1 v_2^2 v_3 v_4^2, v_0 v_1 v_2 v_3 v_4, \]
\[v_0^2 v_1 v_4, v_1^2 v_2 v_3, v_0 v_1^2 v_2 v_4]. \]
Consider the semi-stable partition \(\{ \Delta_1, \Delta_2 \} \) of \(\Delta \):

![Diagram](image)

Figure 4: A semistable partition of \(X \).

This partition gives the semi-stable degeneration of \(X \) to the union of two surfaces \(X_1 \cup X_2 \), where \(X_1 = \mathbb{P}^1 \times \mathbb{P}^1 \) and \(X_2 = \mathbb{F}^1 \).

The two possible lifting functions are

\[
F(m_j) = \begin{cases}
0 & j = 0, \ldots, 5 \\
1 & j = 6, 7
\end{cases},
\]

\[
G(m_j) = \begin{cases}
1 & j = 0, 1, 2 \\
0 & j = 3, \ldots, 7
\end{cases}.
\]

In local coordinates the embeddings of \(\tilde{X}_F \) and \(\tilde{X}_G \) in \(\mathbb{P}^7 \times \mathbb{C} \) are

\[
([1, t_1, t_1^2, t_2, t_1^2 t_2, t_1^2 t_2 x_1, \lambda t_2 t_1^2], \lambda)
\]

and

\[
([\lambda, \lambda t_1, \lambda t_1^2, t_2, t_1^2 t_2, t_1^2 t_2 x_1, \lambda], \lambda).
\]

We have embeddings

\[
\iota_F : \tilde{X}_F \hookrightarrow \mathbb{P}^7 \times \mathbb{C}
\]

\[
(v_0, \ldots, v_4, \lambda) \mapsto (v_0^2 v_1^3 v_4^2, v_0 v_2 v_3^2 v_4, v_0 v_3^2 v_4, v_1 v_2^2 v_4, v_0 v_1 v_2 v_3^2, v_0 v_1^2 v_2 v_3^2, v_0 v_1 v_2 v_3 v_4, v_0 v_1 v_2 v_3^2, v_0 v_1^2 v_2 v_3^2, v_0 v_1^2 v_2 v_3^2, v_0 v_1^2 v_2 v_4, \lambda),
\]

and

\[
\iota_G : \tilde{X}_G \hookrightarrow \mathbb{P}^7 \times \mathbb{C}
\]

\[
(v_0, \ldots, v_4, \lambda) \mapsto (v_0^2 v_1^3 v_4^2, v_0 v_2 v_3^2 v_4, v_0^2 v_3 v_4^2, v_1 v_2^2 v_4, v_0 v_1 v_2 v_3^2, v_0 v_1^2 v_2 v_3^2, v_0 v_1 v_2 v_3 v_4, v_0 v_1 v_2 v_3^2, v_0 v_1^2 v_2 v_3^2, v_0 v_1^2 v_2 v_4, \lambda).
\]

\(\tilde{X}_F \) and \(\tilde{X}_G \) have different parametric equations. We find that \(\tilde{X}_F, \tilde{X}_G \) are both defined in \(\mathbb{P}^7 \times \mathbb{C} \) by the following nine quadratic equations:

\[
x_3 x_5 - x_4^2 = 0, x_2 x_6 - \lambda x_4^2 = 0, x_1 x_6 - \lambda x_3 x_4 = 0,
\]

\[
x_1 x_5 - x_2 x_4 = 0, x_1 x_4 - x_2 x_3 = 0, x_0 x_6 - \lambda x_3^2 = 0,
\]

\[
x_0 x_5 - x_2 x_3 = 0, x_0 x_4 - x_1 x_3 = 0, x_0 x_2 - x_1^2 = 0.
\]
Omitting λ in these equations we obtain a set of equation for X_Δ embedded in \mathbb{P}^7: these are the same equations one can compute from (3) through elimination.

3 Main results

We use the notation of the previous sections.

Let I_F be the ideal of all polynomials in the coordinates $x_0, \ldots, x_\ell, \eta$ homogeneous in x_0, \ldots, x_ℓ and vanishing on \tilde{X}_F, where η is the non-homogeneous coordinate in \mathbb{C}. In analogy with the compact case we use the notation $z^u = x_0^{u_0} \ldots x_\ell^{u_\ell} \eta^{u_{\ell+1}}$, with $u = (u_0, \ldots, u_\ell, u_{\ell+1}) \in \mathbb{Z}^{\ell+2}$.

Consider the $(n+2) \times (\ell+2)$ matrix

$$B^+ = B_F^+ = \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 \\ m_{10} & m_{11} & \cdots & m_{1\ell} & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ m_{n0} & m_{n1} & \cdots & m_{n\ell} & 0 \\ F(m_0) & F(m_1) & \cdots & F(m_\ell) & 1 \end{pmatrix}.$$

Lemma 3.1 I_F is the linear span of all binomials $z^u - z^v$ with vectors $u, v \in \mathbb{N}^{\ell+2}$ such that $B^+ u = B^+ v$.

Proof. We follow Theorems 2.1 and 2.2 [8].

A binomial $z^u - z^v$, with $u, v \in \mathbb{N}^{\ell+2}$, vanishing on $\psi((\mathbb{C}^*)^n \times \mathbb{C})$ needs to be homogeneous in the coordinates x_0, \ldots, x_ℓ, i.e.

$$\sum_{i=0}^{\ell} u_i = \sum_{i=0}^{\ell} v_i. \quad (4)$$

Therefore we prove that I_F is the linear span of all binomials $z^u - z^v$ with vectors u, v such that (4) holds and $Bu = Bv$, where

$$B = B_F = \begin{pmatrix} m_{10} & m_{11} & \cdots & m_{1\ell} & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ m_{n0} & m_{n1} & \cdots & m_{n\ell} & 0 \\ F(m_0) & F(m_1) & \cdots & F(m_\ell) & 1 \end{pmatrix}.$$
Consider a monomial z^u and restrict it to $\psi((\C^*)^n \times C)$:

$$z^u|_{\psi((\C^*)^n \times C)} = (x_0^{u_0} \cdots x_\ell^{u_\ell} \eta^{u_{\ell+1}})|_{\psi((\C^*)^n \times C)} = (t_1^{m_1 u_0} \cdots t_n^{m_n u_0} \lambda^{F(m_0)})^{u_0} \cdots (t_1^{m_1 u_\ell} \cdots t_n^{m_n u_\ell} \lambda^{F(m_\ell)})^{u_\ell} \cdot \lambda^{u_{\ell+1}} = (t_1^{m_1 u_0 + \ldots + m_\ell u_\ell} \cdots t_n^{m_0 u_0 + \ldots + m_n u_\ell} \lambda^{F(m_0) u_0 + \ldots + F(m_\ell) u_\ell + u_{\ell+1}} = T^{Bu},$$

with $T = (t_1, \ldots, t_n, \lambda)$.

This shows that in the hypothesis (4), $z^u - z^v$ vanishes on $\psi((\C^*)^n \times C)$ (and hence belongs to I_F) if and only if $Bu = Bv$.

Now we show that these binomials generate I_F as a C-vector space: we follow Strumfels’s book [9]. Strumfels considers the (compact) toric variety defined as in (1) and doesn’t deal with the homogeneous vs. non-homogeneous question.

Fix a monomial ordering $>$ on $\C[x_0, \ldots, x_\ell, \eta]$, and remember that this is a well-ordering on the set of monomials z^u. Suppose the set R of polynomials $f \in I_F$ which cannot be written as a C-linear combination of binomials as above is non-empty and take $f \in R$ such that

$$LM_>(f) = \min_{g \in R} LM_>(g),$$

where $LM_>(f)$ is the leading monomial of f with respect to $>$. We can suppose f to be monic, so that its leading term $LT_>(f)$ is its leading monomial, let this be the monomial z^u.

When we restrict f to $\psi((\C^*)^n \times C)$ we get an expression containing T^{Bu} as a term and which is equal to zero. Hence the term T^{Bu} must cancel in this expression. This means that there is some other monomial z^v appearing in f such that $Bu = Bv$ and (4) holds.

Moreover $z^u > z^v$. The polynomial

$$f' := f - z^u + z^v$$

belongs to I_F and to R but since $LM_>(f) > LM_>(f')$, we get a contradiction. □

Theorem 3.2 $I_F = \langle z^u^+ - z^u^- | u \in \ker(B^+) \rangle$ and $u \in \Z^{\ell+2}$.
Proof. On one hand, \(u \in \ker(B^+\!\!_+) \) if and only if \(B^+\!\!_+u = B^+\!\!_-u \). On the other hand, we show that if \(B^+\!\!_+v = B^+\!\!_-w \) (and \([4]\) holds), then \(z^v - z^w = h(z^u - z^w) \), for some polynomial \(h \) and vector \(u \in \ker(B^+\!\!_+) \cap \mathbb{Z}^{\ell+2} \); the statement will then follow from the theorem.

If \(B^+\!\!_+v = B^+\!\!_-w \), then \(v - w \in \ker(B^+\!\!_+) \).

\[
z^v - z^w = z^w(z^v - w - 1) = z^wz^{-(v-w)}(z^{(v-w)+} - z^{(v-w)-})
= z^w-(v-w)(z^{v-w} - z^{v-w})
\]

It is easy to show that \(w - (v - w) - \in \mathbb{N}^{\ell+2} \). □

Now let \(G \) be the second lift, then we can consider the matrix \(B^+_G \) and characterize the toric ideal \(I_G \) of \(\tilde{X}_G \) as above. In general \(\tilde{X}_G \) will have a different parametrization from the one of \(\tilde{X}_F \), moreover the normal fans are different.

Our main result is

Theorem 3.3 \(\tilde{X}_F \) and \(\tilde{X}_G \) have the same equations in \(\mathbb{P}^{\ell} \times \mathbb{C} \), i.e. \(I_F = I_G \).

Proof. Reorder the \(m_j \)'s such that \(m_0, \ldots, m_r \in \Delta_1 - \Delta_2, m_{r+1}, \ldots, m_s \in \Delta_1 \cap \Delta_2 \) and \(m_{s+1}, \ldots, m_\ell \in \Delta_2 - \Delta_1 \), then we have

\[
B^+_F = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
m_{10} & \ldots & m_{1r} & m_{1,r+1} & \ldots & m_{1s} & m_{1,s+1} & \ldots & m_{1\ell} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
m_{n0} & \ldots & m_{nr} & m_{n,r+1} & \ldots & m_{ns} & m_{n,s+1} & \ldots & m_{n\ell} & 0 \\
0 & \ldots & 0 & \ldots & 0 & L_F(m_{s+1}) & \ldots & L_F(m_\ell) & 1
\end{pmatrix}
\]

and

\[
B^+_G = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
m_{10} & \ldots & m_{1r} & m_{1,r+1} & \ldots & m_{1s} & m_{1,s+1} & \ldots & m_{1\ell} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
m_{n0} & \ldots & m_{nr} & m_{n,r+1} & \ldots & m_{ns} & m_{n,s+1} & \ldots & m_{n\ell} & 0 \\
L_G(m_0) & \ldots & L_G(m_r) & 0 & \ldots & 0 & \ldots & 0 & 1
\end{pmatrix}
\]

Let \(E \) be the \((n + 2) \times (n + 2)\) elementary matrix

\[
\begin{pmatrix}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
a_{n+1} & a_1 & \ldots & a_n & 1
\end{pmatrix}
\in SL_{n+2}(\mathbb{Z})
\]

10
we have
\[E \cdot \mathcal{B}_G^+ = \mathcal{B}_F^+, \]
and hence
\[\ker \mathcal{B}_F^+ = \ker \mathcal{B}_G^+. \]
The theorem follows from Theorem (3.2).

Going back to the examples above, if \(X \) is the twisted cubic, we have
\[
\mathcal{B}_F^+ = \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 3 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\end{pmatrix},
\]
\[
\mathcal{B}_G^+ = \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 1 & 2 & 1 \\
\end{pmatrix},
\]
and \(E \) is the 3 \times 3 elementary matrix
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -1 & 1 \\
\end{pmatrix} \in SL_3(\mathbb{Z}).
\]

In the case of \(\mathbb{P}^1 \times \mathbb{P}^1 \) blown up in a point, we have
\[
\mathcal{B}_F^+ = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix},
\]
\[
\mathcal{B}_G^+ = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{pmatrix},
\]
and
\[
E = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & -1 & 1 \\
\end{pmatrix} \in SL_4(\mathbb{Z}).
\]

It would be interesting to extend such results to semi-stable partitions of a polytope \(\Delta \) in an arbitrary number of subpolytopes.
References

[1] V. Alexeev, *Complete moduli in the presence of semiabelian group action*, Ann. Math., 155 (2002) 611–708.

[2] D. Cox, *What is a toric variety?*, Topics in algebraic geometry and geometric modeling, 203–223, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); also available at http://www.amherst.edu/~dacox/

[3] W. Fulton, *Introduction to Toric Varieties*, Ann. of Math. Studies, 13, Princeton University Press, (1993).

[4] Maplesoft. Maple10. [http://maplesoft.com].

[5] S. Hu, *Semistable Degeneration of Toric Varieties and Their Hypersurfaces*, Communications in Analysis and Geometry, Volume 14, Number 1 (2006), 59–89; arXiv:math.AG/0110091, (2001) 1-26.

[6] M. Marchisio - V. Perduca, *On Some Properties of Explicit Toric Degenerations*, Bollettino U.M.I. (8) 9-B (2006), 779-784.

[7] T. Oda, *Convex Bodies and Algebraic Geometry*, 15, Springer-Verlag, Berlin Heidelberg (1988).

[8] F. Sottile, *Toric ideals, real toric varieties, and the moment map*, Topics in algebraic geometry and geometric modeling, 225–240, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); arXiv:math.AG/0212044.

[9] B. Strumfels, *Gröbner Bases and Convex Polytopes*, American Mathematical Society, University Lecture Series, Volume 8, Providence, RI (1996). MR 97b:13034.
Marina Marchisio
Università di Torino
Dipartimento di Matematica
Via Carlo Alberto, 10
10123 Torino (Italy)
marina.marchisio@unito.it

Vittorio Perduca
Università di Torino
Dipartimento di Matematica
Via Carlo Alberto, 10
10123 Torino (Italy)
vittorio.perduca@unito.it