Original Research Article

Improving the biotransformation efficiency of soybean phytosterols in *Mycolicibacterium neoaurum* by the combined deletion of *fbpC3* and *embC* in cell envelope synthesis

Liang-Bin Xiong, Hao-Hao Liu, Lu Song, Miao-Miao Dong, Jie Ke, Yong-Jun Liu, Ke Liu, Ming Zhao, Feng-Qing Wang, Dong-Zhi Wei

Jiating District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, PR China
State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
Huawei Safety Evaluation & Medical Research (Shanghai) Co., Ltd., Shanghai, 201206, PR China

Corresponding author.

E-mail addresses: xionglb@sumhs.edu.cn (L.-B. Xiong), hhliu2012@163.com (H.-H. Liu), songlu2012@163.com (L. Song), 454577293@qq.com (L. Song), 2447513449@qq.com (M.-M. Dong), fjwang@ecust.edu.cn, fjwang@ecust.edu.cn (F.-Q. Wang), drwei@ecust.edu.cn (D.-Z. Wei).

Liang-Bin Xiong and Hao-Hao Liu contributed equally to this work.

ARTICLE INFO

Keywords:
Mycolicibacterium
9-OHAD
Cell permeability
Soybean phytosterol
fbpC3
embC

ABSTRACT

Biotransformation of soybean phytosterols into 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is the core step in the synthesis of adrenocortical hormone. However, the low permeability of the dense cell envelope largely inhibits the overall conversion efficiency of phytosterols. The antigen 85 (Ag85) complex encoded by *fbpA*, *fbpB*, and *fbpC* was proposed as the key factor in the combined catalysis of mycolyl for producing mycolyl-arabinogalactan (m-AG) and trehalose dimycolate (TDM) in mycobacterial cell envelope. Herein, we confirmed that *fbpC3* was essential for the biotransformation of trehalose monomycolate (TMM) to TDM in *Mycobacterium neoaurum*. The deficiency of this gene raised the cell permeability, thereby enhancing the sterol uptake and utilization. The 9-OHAD yield in the *fbpC3*-deficient 9-OHAD-producing strain was increased by 21.3%. Moreover, the combined deletion of *fbpC* and *embC* further increased the 9-OHAD yield compared to the single deletion of *fbpC3*. Finally, after 96 h of bioconversion in industrial resting cells, the 9-OHAD yield of 11.2 g/L was achieved from 20 g/L phytosterols and the productivity reached 0.116 g/L/h. In summary, this study suggested the critical role of the *fbpC3* gene in the synthesis of TDM in *M. neoaurum* and verified the feasibility of improving the bioconversion efficiency of phytosterols through the cell envelope engineering strategy.

1. Introduction

Biotransformation of low value-added phytosterols mainly extracted from vegetable oil processing waste or pine tree biomass to important steroidal intermediates is the key step in the semi-synthetic route of current steroidal pharmaceutical industry [1]. Actinobacteria, especially mycobacteria, play an essential role in the above bioconversion process [2,3]. From steroidal intermediates, almost all kinds of steroidal drugs can be produced by chemical modifications [4]. The inactivation of 3-ketosteroid-Δ1-dehydrogenases (KstDs), which are key enzymes for initiating the degradation of steroidal nucleus, can block the sterol metabolic pathway of *Mycobacterium neoaurum*. Consequently, the obtained engineered strain could convert sterol substrates into an important steroidal intermediate, 9-OHAD [2]. However, due to its insufficient yield, the engineered strain was further improved to achieve a satisfying biotransformation efficiency of soybean phytosterols. Sterols can be utilized as the sole carbon source and energy source for the basic physiological and metabolic activities of mycobacteria [5,6].

https://doi.org/10.1016/j.synbio.2021.11.007

Received 22 September 2021; Received in revised form 27 October 2021; Accepted 24 November 2021

2405-805X/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The uptake of sterols by cells can be divided in two phases: the mass transfer of sterol particles to cell surface and the transport of sterol molecules through cell envelope [7,8]. Hence, cell envelope plays an essential role in the uptake of sterols. The outermost covering of cell envelope is typically composed of a variety of non-covalent binding capsular lipids, such as trehalose monomycolate (TMM), trehalose dimycolate (TDM), phenolic glycolipids, sulfolipids, and phospholipids [9,10]. A covalent binding layer of dense mycolyl-arabinogalactan-peptidoglycan (m-AG-PG) can be found on the inner side of the non-covalent layer (Fig. 1) [10,11]. This unique cell envelope leads to a low permeability and forms an effective barrier, which can prevent toxic compounds from entering mycobacterial cells [12,13]. However, the feature negatively affects the uptake of sterol substrates at the bioconversion to steroidal intermediates [8,14].

The deletion of kasB encoding a \(\beta \)-ketoacyl-acyl carrier protein synthase likely shortened the length of keto-mycolic acids, the key components of mycolic acid methyl esters (MAMEs) in the core m-AG-PG structure [8]. Moreover, the inactivation of arabinofuranosyltransferase gene embC caused a synthesis defect of the lipoarabinomannan from lipomannan [14,15]. The above two changes remarkably improved the cell permeability and enhanced the uptake of steroids. As a result, the accumulation efficiency of the target steroidal intermediate was further increased, whereas the inactivation of other dispensable genes (hadA, hadC, mmaA1, mmaA3, mmaA4 or pks13) in the mycolic acid synthesis pathway did not show positive effects on steroid utilization [8].

TMM is the final product of mycolic acid synthesis pathway in the mycobacterial cytoplasm [16]. Synthesized TMM is then transported into periplasmic space for the mycoloyl residue transfer pathway arabinogalactan to produce the m-AG, or used in the formation of the outer membrane cord factor TDM, the most abundant surface-exposed glycolipid of the mycobacterial cell envelope [10,16–19]. The complex of Ag85 composed of three secreted transesterases (Ag85A, Ag85B and Ag85C respectively encoded by \(\text{bfbP, bfbB, and bfbC} \) was identified as the catalyzing enzyme for the assembly of the two lipids [20,21]. Up to now, at least two trehalose binding sites (active site and secondary site) in Ag85 enzymes were identified [20]. TMM firstly binds to secondary site for inducing a conformational change of the side chain at PhE\(_{294}^3\) in Ag85A/Ag85B and Leu\(_{290}^3\) in Ag85C after being transported through the membrane to periplasm [21]. Then, the molecule can enter active site to release a free trehalose, whereas the residual \(\alpha \) chain of ester-linked mycolic acid is buried in a hydrophobic hole [21]. Finally, mycolic acid is selectively transferred onto \(\delta \)-hydroxy of TMM to form TDM or onto the S-hydroxy of the terminal arabinose to yield m-AG [16].

Actually, a catalytic triad composed of a nucleophilic serine (Ag85C: Ser\(_{124}^{3}\)), histidine base (Ag85C: His\(_{260}^{3}\)), and glutamic acid (Ag85C: Glu\(_{228}^{3}\)) was employed to catalyze a ping–pong reaction mechanism for the mycolyl transfer [20,22,23]. A new potent inhibitor ebselen of \(M. tuberculosis \) Ag85 complex was identified to bind covalently to a Cys\(_{209}^{3}\) residue located near the Ag85C active site, thereby leading to a remarkably decreased enzymatic activity of Cys\(_{209}^{3}\) mutation [24,25]. Besides, nuclear magnetic resonance analysis revealed that another novel inhibitor 13-Ag85 could bind Ag85C and thus block the biosynthesis of cord factor TDM in \(M. tuberculosis \) [17]. These studies suggested that the inactivation of \(\text{bfbP} \) suppressed the mycoloyl residue transfer in cell envelope synthesis of engineered \(M. neoaurum \) and might be a robust and efficient strategy to raise cell permeability. Since the \(\text{bfbP} \) genes are likely synthetically lethal, the double deletion of them has not been reported [26]. It is necessary to evaluate the effects of the serial deletion of identified target genes involved in cell envelope synthesis of \(M. neoaurum \) [8,14]. As a consequence of these combined manipulations, the biotransformation efficiency of soybean phytosterols by the mutant strain might be boosted up to a new level.

In this study, the relationship between the located \(\text{bfbP} \) and the synthesis of mycolic acids-related components in \(M. neoaurum \) was firstly evaluated. The changes in cell permeability caused by the disordered assembly of cell envelope and the chain effect on steroid uptake and utilization were then determined. Then, the biotransformation efficiency of soybean phytosterols in the \(\text{bfbP} \) deficient 9-OHAD-producing \(M. neoaurum \) strain was measured. Finally, the combined manipulation of the previously screened gene targets that influenced the accumulation of steroidal intermediates [8,14] and the newly identified \(\text{bfbP} \) was performed to further increase 9-OHAD yield.

2. Materials and methods

2.1. Strains, plasmids, primers, media, and culture conditions

The strains used in this study are listed in Table 1. \(M. neoaurum \) ATCC 25795 (Mn) and \(E. coli \) DH5\(_a\) were respectively purchased from American Type Culture Collection (ATCC) and TIANGEN Biotech. Co., Ltd. (Shanghai, China). The steroid drug intermediate 9-OHAD producer \(M. neoaurum \) strain was constructed by Kang Yao [2]. Plasmids and primers used for constructing the mutants are shown in Supplementary Table S1 and Table S2. Recombinant plasmids were transformed into \(E. coli \) DH5\(_a\) by the heat shock method or into \(M. neoaurum \) by electroporation as described previously [27,28].

The media and culture conditions in previous descriptions were adopted in the study [28]. \(E. coli \) was cultured in Luria–Bertani (LB)
medium at 37 °C and kanamycin (50 mg/L) or hygromycin (100 mg/L) was added in the corresponding media if necessary. M. neoaurum was firstly cultivated in LB medium and then inoculated in MYC/01 medium was added in the corresponding media if necessary.

Table 1

Strains used in this study.	Names	Descriptions	Sources
E. coli DH5α	E. coli strain for cloning	TIANGEN Co., Ltd. ATCC	
M. neoaurum ATCC 25795 (Mn)	Wild type strain, the starting strain	ATCC	
MnAfbpC3	fbpC3 deleted in M. neoaurum ATCC 25795	This study	
MnAfbpC3 fbpC3	fbpC3 complemented in MnAfbpC3 strain	This study	
WI	ksdD1, ksdD2 and ksdD3 deleted in M. neoaurum ATCC 25795, 9-OHAD-producing strain	Yao et al., 2014	
WIΔfbpC3 deleted in WI strain	fbpC3 deleted in WI strain	This study	
WIΔfbpC3Δkzd3FB	fbpC3 and kzd3 deleted in WI strain	This study	
WIΔfbpC3Δkzd3FB Deleting MAMEs could be acquired from defatted cells by adding 500 μL of 10% tetrabutylammonium hydroxide (Sigma-Aldrich LLC., MO, USA) at 100 °C overnight. After cooling, 500 μL of ddH2O, 250 μL of dichloromethane, and 62.5 μL of iodomethane (Sigma-Aldrich LLC., MO, USA) were added, then stirred for 30 min and centrifuged at 12,000 × g for 10 min. The lower organic layer was washed respectively with 1.0 mL of hydrochloric acid (1 M) and 1.0 mL of ddH2O. Crude MAMES would be obtained after the organic layer was dried under a nitrogen stream. In order to further purify MAMES, the resulting residue was dissolved in a mixture of toluene (0.2 mL) and acetoneitrile (0.1 mL), followed by the addition of 0.2 mL of acetonitrile and incubation for 1 h at 4 °C. The mixture solution was centrifuged at 12,000 × g for 10 min and then the obtained MAMES were re-suspended in 200 μL of dichlormethane for further analysis. Mycolic acids were analyzed by silica gel TLC plates. The mean grayscale intensity was analyzed with Quantity One (Version 4.6.6, Bio-Rad Laboratories, CA, USA). Relative abundances of polar mycolic acids (TMM and TDM) and nonpolar MAMES were respectively calculated.			

2.4. Analysis of cell permeability

After the manipulation of target genes, cell permeability was assessed according to the previous procedure [29]. Cultivated cells with the same wet weight were suspended in 4.5 mL of phosphate buffer (106 cells/mL), mixed with 0.5 mL of fluorescein diacetate (FDA) acetone solution was harvested, centrifuged at 12,000 × g for 10 min and washed with ddH2O for two times, followed by the addition of 1.0 mL of the mixture of petroleum ether and ethyl acetate (6:4, v/v) and dried at 32 °C for 10 min. Then, the fluorescence value of the obtained suspension was detected at the maximum excitation wavelength of 485 nm and the emission wavelength of 538 nm.

The quantity of cholest-4-en-3-one entering cells per unit time was determined as described [30]. The cells were cultured in MYC/02 medium containing 1.0 g/L cholest-4-en-3-one (purity >95.0%, Adamas Reagent, Co., Ltd., Shanghai, China). To assess the bioconversion efficiency, the cells were transferred into MYC/02 medium for 48 h–72 h. Then, the cultivated cells were harvested, washed with 20 mM KH2PO4, and resuspended to obtain 200 g/L suspensions. The transformation was performed with 100 g/L cells, 20 g/L phytosterols, and 80 g/L hydroxypropyl-β-cyclodextrin. The transformation experiment was carried out in shake flasks (30 °C and 200 rpm).

2.2. Gene manipulation in M. neoaurum

Target gene-deleted mutants were acquired through the allelic homologous recombination as previously described [28]. The plasmids p2NIL and pGOAL19 were employed to construct the homologous recombination plasmids. Briefly, the upstream and downstream sequences of a target gene were cloned, digested with restriction enzymes and ligated into p2NIL. A selection marker cassette from pGOAL19 was dissected and inserted into the recombinant p2NIL to construct the knockout-plasmids (Supplementary Table S1), which could be electroporated into M. neoaurum to obtain the corresponding deficient strains.

The coding frame of a wild-type target gene was firstly cloned, digested and then inserted into pMV261 and the constructed p261-gene was used to overexpress the function of the corresponding deficient gene. In addition, the expression cassette could be digested from the p261-gene and integrated into pMV306 to obtain a complementary p260-gene. The constructed plasmid could be then integrated into the mycobacterial chromosome DNA in a single copy.

2.3. Analysis of mycolic acid methyl esters

Mycobacterial cell MAMES were extracted and determined as previously described [8]. Cultivated cells (50 mg, wet weight) were firstly collected at 12,000 × g for 10 min. Then, after adding 0.5 mL of methanol and chloroform (2:1, v/v), collected cells were incubated at 60 °C for 2 h. Polar lipids were dissolved in the supernatant after the extraction solution was centrifuged at 12,000 × g for 10 min. MAMEs could be acquired from defatted cells by adding 500 μL of 200 °C–280 °C within 4 min, 280 °C for 2 min, 280 °C–305 °C within 1.5 min, and 305 °C for 10 min. Inlet temperature and flame-ionization detector temperature were maintained at 320 °C. The flow rate of nitrogen carrier gas was 2 mL/min at 50 °C.

References

[1] L.-B. Xiong et al. Synthetic and Systems Biotechnology 7 (2022) 453–459.
3. Results and discussion

3.1. FbpC3 is the key factor for the assembly of TDM in M. neoaurum

To further improve the bioconversion efficiency, the fbpC genes involved in the assembly of TMM after the transportation from cytoplasm to periplasm was explored. First of all, a gene fbpC3 (GenBank Accession No. NZ_JMDW01000024.1; Region: 26,764 – 27,720, 997-bp) annotated for encoding the Ag85C protein was located in the genome of M. neoaurum ATCC 25795 (GenBank Accession No. NZ_JMDW00000000.1). Then, the gene was tentatively deleted from the genome of M. neoaurum. (E) Calculated percentage of the relative gray intensity of polar lipids. Deletion of allelic replacement at the located fbpC3 strain was constructed accordingly. Interestingly, the deletion of fbpC3 also accelerated cell growth in the presence of cholesterol (Fig. 2 C), whereas the percentages of the two components in the Mn strain was 86.2% and 13.8% (Fig. 2 E). In a word, the TDM content was decreased by 245% approximately after the deletion of fbpC3 and this phenotype was restored in the fbpC3-complemented strain, indicating that the located gene fbpC3 empowered the strain to synthesize TDM. Additionally, MAMEs showed no obvious difference between the MnΔfbpC3 strain and the parental strain (Supplementary Fig. S1), suggesting that fbpC3 was possibly irrelevant to the MAMEs synthesis.

3.2. Deleting fbpC3 raised cell permeability of M. neoaurum

After the deletion of fbpC3 in M. neoaurum, the MnΔfbpC3 strain showed a determined defect in TDM assembly compared to that of its parental strain. It was speculated that this change might improve cell permeability and enhance the utilization of sterol substrates. To confirm this speculation, cell permeability of fbpC3-deficient strain was evaluated through the fluorescein diacetate (FDA) assay [8]. The mutant strain displayed an obvious improvement in fluorescence intensity (Fig. 3 A). When incubation time increased from 10 to 30 min, the improvement in fluorescence intensity of MnΔfbpC3 strain compared to that of the Mn strain increased from 15.0% to 23.3%, indicating that the penetrated FDA in the fbpC3-deficient cells was raised significantly. In other words, the permeability of the mutant strain might be improved by the deletion of fbpC3.

Based on the above results, the analog of cholesterol, cholest-4-en-3-one, was then used as a label to evaluate the cell permeability to steroids [30]. The determination of the steroids entering cells revealed that the enhanced cell permeability led to about an increase of 55% in the uptake of cholest-4-en-3-one by the MnΔfbpC3 strain compared to that of the Mn strain (Supplementary Fig. S2). Under the same cultivation conditions, the residual

![Fig. 2. Inactivation of fbpC3 caused the assembly deficiency of TDM in M. neoaurum. (A) Schematic diagram of the deletion of fbpC3 gene from the genome of M. neoaurum ATCC 25795. A 1065-bp upstream sequence and a 1053-bp downstream sequence were designed to replace the wild-type gene. (B) Validation results of allelic replacement at the located fbpC3 in the strain. (C) Growth characteristics of the wide-type strain Mn, the fbpC3-deficient strain (MnΔfbpC3) and the fbpC3-complemented strain (MnΔfpbC3+fpbC3) in the MM containing 1.0 g/L cholesterol. (D) Content analysis of polar lipids (TMM and TDM) in the mycobacterial cell envelope. (E) Calculated percentage of the relative gray intensity of polar lipids. Deletion of fbpC3 caused the synthesis deficiency of TDM in M. neoaurum. The relative abundances of TMM and TDM were 96.0% and 4.0% in the fbpC3-deleted strain, whereas the percentages of the two components in the Mn strain was 86.2% and 13.8%, respectively.](image-url)
cholesterol content in the culture medium for the fbpC3-mutant strain was respectively 1.52 g/L at 48 h and 0.43 g/L at 96 h, whereas that of Mn strain was 1.72 g/L at 48 h and 0.66 g/L at 96 h. The phenotypic change might be interpreted as a chain effect caused by the improved cell permeability. In other words, it was confirmed that the improved cell permeability was associated with the deletion of fbpC3. Therefore, the uptake and utilization of steroids was accelerated.

3.3. Increasing the accumulation efficiency of 9-OHAD by deleting fbpC3

To assess the effect of the improved cell permeability caused by the decreased content of polar TDM on the bioconversion of target steroidal intermediates, a new WIΔfbpC3 strain was constructed based on the engineered 9-OHAD-producing strain WI [2]. In the biotransformation conditions, the vegetative cells of WIΔfbpC3 strain yielded 0.31 g/L 9-OHAD after 24 h of conversion, whereas its parental strain WI yielded 0.18 g/L 9-OHAD after 24 h of conversion. The accelerated accumulation of 9-OHAD was observed at all the subsequent three sampling time points. Ultimately, the deletion of fbpC3 increased the 9-OHAD yield from 1.31 g/L to 1.59 g/L after 96 h of conversion under the same cultivation conditions (Fig. 4A). Subsequently, the resting cell transformation system was employed to measure the conversion efficiency of strains per unit wet weight. After 72 h of conversion, the highest increase was observed in WIΔfbpC3 strain and the yield reached 8.9 g/L (Fig. 4B), which was 35.1% higher than that of the parental strain. After 120 h of bioconversion, the WIΔfbpC3 strain produced 10.7 g/L 9-OHAD and the molar yield reached 68.2%, which was 20.3% higher than that of its parental strain WI. The above data showed that the deletion of fbpC3 in the engineered 9-OHAD-producing strain indeed enhanced the bioconversion of soybean phytosterols to the target steroidal intermediate 9-OHAD.

3.4. Effects of the combined deletion of fbpC3 and other modified sites on the 9-OHAD yield

In previous studies [8, 14], the independent inactivation of kasB or embC raised the productivity of 9-OHAD-producing strain. The combined deletion of screened target genes might have an additive enhancement effect on the yield of target intermediate. Then, we deleted the gene kasB of strain WIΔfbpC3 to obtain the WIΔfbpC3ΔkasB strain. Unexpectedly, the yield of target product in the obtained strain WIΔfbpC3ΔkasB did not show the additive enhancement effect compared to the WIΔfbpC3 strain. The 9-OHAD yield in the WIΔfbpC3ΔkasB strain declined to about 0.79 g/L after 96 h of conversion under the same cultivation conditions (Fig. 4A). Therefore, the combined deletion of two genes (fbpC3 and kasB) in the synthesis and assembly of mycolic acids-related components might not be an efficient method for further enhancing the bioconversion efficiency. The gene embC is responsible for the assembly of lipoolarabinomannan, which is one of the non-covalent lipoglycan component in the cell envelope [14]. Hence, embC was tentatively deleted from

![Fig. 3. Knockout of fbpC3 increased cell permeability of M. neoaurum. (A) Determination of cell permeability in the fbpC3-deficient strain. Mycobacterial cells were stained with FDA and analyzed with a fluorescence spectrophotometer. (B) Effects of the deletion of fbpC3 on the uptake of steroid cholest-4-en-3-one. Cells were cultivated in MM containing 1.0 g/L cholest-4-en-3-one. Data represent mean ± standard deviation of three measurements.](image)

![Fig. 4. Assessment of the influences of the deletion of multiple genes involved in the cell wall synthesis on the bioconversion of phytosterols to 9-OHAD. (A) Preliminary determination of 9-OHAD yield in the vegetative cell transformation system containing 5 g/L phytosterols. (B) Assessment results of the constructed 9-OHAD-producing strain with a resting cell conversion system containing 20 g/L phytosterols. Data represent mean ± standard deviation of three measurements.](image)
the genome of \(\text{WI} \Delta fbpC3 \) strain to generate the strain \(\text{WI} \Delta fbpC3 \Delta embC \). Interestingly, this mutant strain displayed some additive effect on the biotransformation of soybean phytosterols to target product 9-OHAD in the shake flask experiments (Fig. 4A). The highest improvement was determined in the newly constructed \(\text{WI} \Delta fbpC3 \Delta embC \) strain after 72 h of conversion and the 9-OHAD yield reached 1.25 g/L, which was about 105% higher than that of the WI strain. The serial deletion of \(fbpC3 \) and \(embC \) finally increased the 9-OHAD to 1.68 g/L after 96 h of conversion. In addition, during the subsequent assessment with the resting cell bioconversion system, after 96 h of conversion, the 9-OHAD yield in the \(\text{WI} \Delta fbpC3 \Delta embC \) strain increased to 11.2 g/L with the productivity of 0.116 g/L/h and the molar yield was 71.4%, which was higher than that of the strain \(\text{WI} \Delta kasB \) (69.5%) and the strain \(\text{WI} \Delta fbpC3 \) (68.2%) (Fig. 4B). In a word, after 96 h of biotransformation, the 9-OHAD yield in the \(\text{WI} \Delta fbpC3 \Delta embC \) strain was improved by 26% compared to that in the WI strain. When transformation time was increased to 144 h, the 9-OHAD yield of the \(\text{WI} \Delta fbpC3 \Delta embC \) strain reached about 11.9 g/L, which was the highest in all the reported data of existing 9-OHAD-producing \(M. \ neoaurum \) strains [8,14,28,31].

Actually, a total of four \(fbpC \) genes were annotated in the genome of \(M. \ neoaurum \) (Supplementary Table S3). However, the inactivation of \(fbpC1, fbpC2, \) or \(fbpC4 \) in the \(M. \ neoaurum \) did not show any observable phenotype change (data not shown). Only the \(fbpC3 \)-deficient strain displayed an expected enhancement on the 9-OHAD production, indicating that \(fbpC3 \) possibly played an essential role in the synthesis of 9-OHAD. The serial inactivation of \(fbpC3 \) and \(kasB \) theoretically caused defects on the synthesis of the polar TDM as well as the nonpolar meropectin. However, the overall transformation efficiency in the engineered strain, suggesting that the combined enhancement of the mass transfer, the transport of sterols into cells as well as the intracellular catabolism of sterols might be a promising breakthrough for evolving the transforming strain.

4. Conclusions

In summary, this study confirmed that \(fbpC3 \) was a key gene responsible for the assembly of polar TDM in the cell envelope of \(M. \ neoaurum \). The inactivation of this gene was proved to be an effective way to increase the production of the steroidal intermediate 9-OHAD. However, interestingly, the joint deletion of \(fbpC3 \) and \(kasB \) did not display the desired promotion effect on 9-OHAD accumulation, whereas the combined deletion of \(fbpC3 \) and \(embC \) achieved an expected additive enhancement effect on the production of 9-OHAD. Ultimately, in the \(\text{WI} \Delta fbpC3 \Delta embC \) strain under the resting cell transformation system containing 20 g/L of phytosterols, the 9-OHAD yield increased to 11.9 g/L and the molar yield reached 75.8%.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21776075 and 32100067), the Natural Science Foundation of Shanghai (No. 20ZR1415100), the National Key Research and Development Program of China (No. SQ2020YFC120061), the China Postdoctoral Science Foundation (No. 2020M671028), the Shanghai Municipal Health Commission (No. 20204Y0380), the Teacher’s Professional Development Project of Shanghai Municipal Education Commission, and the Scientific Research Foundation of SUMHS.

CRediT authorship contribution statement

Liang-Bin Xiong: Methodology, Formal analysis, Investigation, Writing – original draft, Funding acquisition. Hao-Hao Liu: Methodology, Validation, Formal analysis, Investigation, Writing – original draft. Lu Song: Methodology, Validation, Formal analysis. Miao-Miao Dong: Investigation. Jie Ke: Investigation. Yong-Jun Liu: Investigation. Ming Zhao: Writing – review & editing, Funding acquisition. Feng-Qing Wang: Conceptualization, Methodology, Formal analysis, Investigation, Supervision, Writing – review & editing, Funding acquisition. Dong-Zhi Wei: Supervision, Funding acquisition.

Declaration of competing interest

The authors declared that they have no conflicts of interest to this work. The manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Acknowledgements

The authors sincerely thank T. Parish (Department of Infectious and Tropical Diseases, United Kingdom) for providing the plasmids, p2NIL, and pGOAL19, and W. R. Jacobs Jr. (Howard Hughes Medical Institute) for providing the plasmids pMV261 and pMV306.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.synbio.2021.11.007.

References

[1] Fernández-Cabezón L, Galán B, García JL. New insights on steroid biotechnology. Front Microbiol 2018;9:958.
[2] Yao K, Xu LQ, Wang FQ, Wei DZ. Characterization and engineering of 3-ketosteroid-1α-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androsten-3,17-dione through the catabolism of steroids. Metab Eng 2014:24:181–91.
[3] Xu LQ, Liu YJ, Yao K, Liu HH, Tao XY, Wang FQ, et al. Unraveling and engineering the production of 23,24-bisnorcholesteryl esters in steroid metabolism. Sci Rep 2016;6:21928.
[4] Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 2012;94:1423–47.
[5] Pandey AK, Sansetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci Unit States Am 2008;105:4376–80.
[6] Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018;20:1815–27.
[7] Donova MV, Nikolayeva VM, Dobnychy DV, Gulevskaya SA, Suzina NE. Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology 2007;153:1981–92.
[8] Xiong LB, Liu BH, Zhao M, Liu YJ, Song L, Xie ZY, et al. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of \(\text{kasB} \) in the cell wall synthesis of Mycobacterium neoaurum. Microb Cell Factories 2020; 19:80.
[9] Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Front Biochem 1998;3:1253–61.
[10] Tahan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, et al. SQ109 targets \(\text{MemL3}, \) a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Ch 2012;56:1797–809.
[11] Kaur D, Guerin ME, Skovierova H, Brennan PJ, Jackson M. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 2009;69:23–78.
[12] Nguyen L, Chinnapapagari S, Thompson CJ. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 2005;187:6603–11.
Jankute M, Grover S, Rana AK, Besra GS. Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiol 2012;7:129–47.

Xiong LB, Liu HH, Song XW, Meng XG, Liu XZ, Ji YQ, et al. Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. J Biotechnol 2020;332:341–6.

Korkegian A, Roberts DM, Blair R, Parish T. Mutations in the essential arabinosyltransferase EmbC lead to alterations in Mycobacterium tuberculosis lipoarabinomannan. J Biol Chem 2014;289:35172–81.

Marrakchi H, Lannele M-A, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 2014;21:67–85.

Warrier M, Tropis M, Werngren J, Diehl A, Gengenbacher M, Schlegel B, et al. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 2014;58:2102–14.

Goins CM, Dajnowicz S, Thanna S, Sucheck SJ, Parks DR, Ronning DR. Exploring covalent allosteric inhibition of antigen 85C from Mycobacterium tuberculosis by ebselen derivatives. ACS Infect Dis 2017;3:132–41.

Armitage LY, Jaganathan C, Wangar AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 2000;68:767–78.

Yao K, Wang FQ, Zhang HC, Wei DZ. Identification and engineering of cholesterol oxidases involved in the initial step of sterol catabolism in Mycobacterium neoaurum. Metab Eng 2012;14:4–12.

Belisle JT, Vissa V, Sievert T, Takayama K, Brennan PJ, Besra GS. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997;276:1420–2.

Anderson DH, Harth G, Horwitz MA, Eisenberg D. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. J Mol Biol 2001;307:671–81.

Goins CM, Dajnowicz S, Smith MD, Parks JM, Ronning DR. Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into Antigen 85 catalysis. J Biol Chem 2018;293:3651–62.

Ronning DR, Klabunde T, Besra GS, Vissa VD, Belisle JT, Sacchettini JC. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Biol 2000;7:141–6.