Calcium and copper transport ATPases: analogies and diversities in transduction and signaling mechanisms

Giuseppe Inesi

Abstract
The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca$^{2+}$ with high affinity on one side of the membrane, and releases the bound Ca$^{2+}$ on the other side of the membrane to yield a high free Ca$^{2+}$ gradient. These features are a basic requirement for cellular Ca$^{2+}$ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins.

Keywords
Transport ATPases · Ca$^{2+}$ ATPase · Cu$^{2+}$ ATPase · Ca$^{2+}$ signaling · Copper trafficking · Energy transduction

Abbreviations
NMBD N-methyl-terminus domain
SERCA Sarco-endoplasmic reticulum Ca$^{2+}$ ATPase
TMBS Transmembrane binding site

Introduction
Transport ATPases of the P-type family are members of the acid dehalogenases superfamily (Burroughs et al. 2006), and are membrane bound enzymes whose catalytic cycle includes ATP utilization by formation of a phosphorylated enzyme intermediate, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi from the phosphoenzyme intermediate. Transport ATPases (Inesi and Nakamoto 2008) are essential components of numerous mechanisms pertinent to signaling, homeostasis and energy metabolism. They are also relevant to diseases of cardiac muscle, cancer, osteoporosis, retinal degeneration, immune deficiency, cystic fibrosis, diabetes, gastric ulcer, hearing loss, skin alterations, and copper-related disorders. Compounds of pharmacological and therapeutic interest, and their interaction with transport ATPases, such as ouabain, thapsigargin and gastric H$^{+}$ pump inhibitors, have been recognized. Furthermore, an important role of transport...
ATPases in the establishment of drug resistance has become apparent.

Within the wide family of ion-motive P-type ATPases, it is interesting to compare the calcium and the copper transport ATPases, as they are prototypes of enzymes that retain basic structural and catalytic features, but at the same time display prominently diverse features. In fact, the plasma (Brini and Carafoli 2009) and intracellular Ca\(^{2+}\) ATPases (de Meis and Vianna1979; Inesi 1985; Møller et al. 2010) reside on membranes delimiting distinct cellular compartments and, in this rather stable position, collect free Ca\(^{2+}\) from one side of the membrane to release it on the other side, yielding a three to four orders of magnitude free Ca\(^{2+}\) gradient. On the other hand, copper is acquired by the copper ATPase (Lutsenko et al.2007) through exchange with donor proteins, and is then delivered to acceptor proteins by vectorial displacement, without formation of high free copper gradients. In addition, the copper ATPase undergoes intracellular trafficking to reach rather distant locations for copper delivery and extrusion.

The calcium ATPase

Calcium ATPases include transporters located on plasma membranes (PMCA: Brini and Carafoli 2009), on the Golgi/secretory pathway (Ca\(^{2+}/Mn^{2+}\)-SPCA: Ton and Rao 2004; Van Baelen et al. 2004), and on Sarco-Endoplasmic Reticulum membranes (SERCA). The latter is discussed here due to its detailed characterization. SERCA enzyme isoforms are encoded by three highly conserved genes (SERCA1, 2, and 3) localized on different chromosomes, and undergo alternative splicing following transcription (Periasamy and Kalyanasundaram 2007). The SERCA1 isoform (MacLennan et al. 1985) has been studied in detail, and the sequence of reactions and conformational changes comprising its catalytic and transport cycle is well known. Its amino acid sequence comprises (Fig. 1) ten transmembrane mostly helical segments, where the fourth, fifth, sixth and eighth segments contribute residues to a Transmembrane Binding Site (TMBS) for two Ca\(^{2+}\) required for enzyme activation and undergoing active transport. The SERCA1 headpiece includes an N domain with the ATP binding site, a P domain with the aspartyl residue undergoing phosphorylation as a catalytic intermediate, and an A domain containing the conserved TGE motif involved in catalytic assistance of the final hydrolytic reaction.

From the functional standpoint, the equilibrium binding isotherm (Inesi et al. 1980) shown in Fig. 2 demonstrates that each molecule of SERCA1 protein binds two Ca\(^{2+}\) with high affinity (Ka = 3 \times 10^{12} M^{-2}) and high cooperativity (Hill coefficient = 1.82). Mutational analysis has demonstrated that E309, E771, N796, T799, D800 and E908 in the transmembrane region (Fig. 1) are specifically required for Ca\(^{2+}\) dependent catalytic functions (Clarke et al. 1989; Andersen and Vilsen 1992), and are directly involved in Ca\(^{2+}\) binding (Strock et al. 1998) as elegantly shown by crystallography (Toyoshima et al. 2000).

The high specificity of the SERCA activating and transport sites (TMBS) for Ca\(^{2+}\) is revealed by high binding affinity and selectivity for Ca\(^{2+}\) in the presence of much higher concentrations of Mg\(^{2+}\) which is required in conjunction with ATP for phosphoryl transfer at the catalytic site within the P domain. It is of interest that Mn\(^{2+}\) appears able to substitute to some extent for both Ca\(^{2+}\) and Mg\(^{2+}\) (Chiesi and Inesi 1981).

Addition of ATP (Fig. 2) to the calcium activated ATPase (E1Ca\(_2\)) is rapidly followed by formation of the phosphor-
ylated intermediate (E1-P·Ca2) and occlusion of the two bound Ca2+ that become unavailable for exchange on the surface of the membrane (Inesi et al. 1980). Isomerization of the phosphoenzyme (E2-P·Ca2) is then followed by vectorial dissociation of the two bound Ca2+. Final hydrolytic cleavage of Pi completes the cycle, yielding a turnover of 2 Ca2+ pumped per one ATP utilized by the ATPase. At neutral pH, Ca2+ binding and dissociation occur in concomitance with H+ exchange, as occupancy of pertinent acidic residues favors the E2 conformation, and H+ dissociation favors the E1 state. It is apparent that a pK change, in parallel with phosphoenzyme isomerization, contributes to reduction in affinity and dissociation of bound Ca2+ (Tadini-Buoninsegni et al. 2006). The sequential reactions comprising the catalytic and transport cycle are shown in the following scheme:

![Reaction Scheme](image)

The equilibrium constants of the partial reactions listed in the scheme yield an overall free energy requirement that matches the standard free energy derived from hydrolytic cleavage of ATP γ-phosphate (Inesi et al. 1990). It is of interest that the equilibrium constants for enzyme phosphorylation by ATP (reaction 2), as well as the final hydrolytic cleavage of Pi (reaction 6) are nearly 1, indicating that the free energy of ATP is conserved by the enzyme and used to change the Ca2+ binding characteristics through conformational work. This means that the chemical potential of ATP does not manifest itself in the phosphoryl transfer (ATP → E·Ca2 → ADP·E·P·Ca2) or hydrolytic cleavage (H2E-P → H2E·Pi reactions, but rather in the drastic reduction of the enzyme affinity for Ca2+, as the enzyme transitions from E·Ca2 to E2·P·Ca2. If we consider that the free energy required for one ATPase cycle is used to change the equilibrium constant of reaction 1 to the equilibrium constant of reaction 4, under standard conditions,

\[
\Delta G = RT \ln \left(\frac{K_d^{\text{reaction 5}}}{K_d^{\text{reaction 1}}} \right)
\]

where \(K_d^{\text{reaction 1}} \) is the association constants of the enzyme for Ca2+ in the ground state (H2E+2Ca2+ ↔ E·Ca2+2Hout+) and \(K_d^{\text{reaction 5}} \) is the association constant of the enzyme for Ca2+ following the phosphoenzyme transition (H2E-P+2Ca2+ ↔ E·P·Ca2+2Hin+). The corresponding values, at 25°C and pH 7.0, are \(3 \times 10^{12} \) M⁻² and \(3 \times 10^5 \) M⁻², yielding a free energy requirement of ~9 Kcal per cycle which is used to change \(K_d^{\text{reaction 1}} \) to \(K_d^{\text{reaction 5}} \). This value approximates the expected yield of free energy by cleavage of ATP γ-phosphate under standard conditions. Free energy changes in the presence of various concentrations of substrates and products were subjected to analysis and explained elsewhere (Inesi et al. 1990). It is of interest that the entire cycle can be reversed by phosphorylating the enzyme with Pi in the absence of Ca2+, and then adding high (mM) Ca2+ and ADP to form ATP (Masuda and de Meis 1973). Therefore, chemical and binding energy can be interconverted in either direction of the cycle, by means of protein conformational work.

Functional characterization of the SERCA cycle indicates that the basic coupling mechanism of catalysis and transport consists of mutual destabilization of Ca2+ and phosphorylation sites. Considering that the Ca2+ binding...
and phosphorylation site are separated by a relatively large distance (\(\sim 50 \, \text{Å} \): Figs. 1 and 3), it is apparent that interconversion of cation-binding and phosphorylation potentials requires a long-range intramolecular linkage, rendered possible by protein conformational changes. To start with, catalytic activation by Ca\(^{2+}\) binding produces a prominent conformational change, as apparent by comparing (Fig. 3) the three-dimensional structure of SERCA1 in the absence of Ca\(^{2+}\) (commonly referred to as \(E_2 \)) and in the presence of bound Ca\(^{2+}\) (commonly referred to \(E_1 \cdot \text{Ca}_2 \)). In fact, calcium binding to the TMBS affects the A, N and P domain positions in the headpiece, as well as transmembrane segments. Further conformational changes occur in parallel with subsequent sequential reactions, including rotation and bending of entire domains as well as changes in orientation of side chains involved in catalysis and binding. This explains the linkage of phosphoenzyme isomerization to vectorial displacement of bound Ca\(^{2+}\) (Toyoshima and Inesi 2004).

A cogent demonstration of the interdependence of Ca\(^{2+}\) binding, protein conformational change and enzyme activation is provided by thapsigargin (TG), a very high affinity and specific inhibitor of Ca\(^{2+}\) binding and SERCA activation (Sagara and Inesi 1991). It is shown in Fig. 4 that the presence of TG within the SERCA transmembrane region produces steric interference (Xu et al. 2004) with displacement of the Phe256 side chain, which is normally associated with Ca\(^{2+}\) binding. Transition from \(E_2 \) to \(E_1 \cdot \text{Ca}_2 \) is thereby prevented, with consequent stabilization of the \(E_2 \) conformation, and loss of catalytic activity. It is noteworthy that single mutations of Phe256 interfere with the inhibitory effect of TG (Fig. 5).

SERCA is a prominent intracellular protein of muscle, where it sustains ATP dependent Ca\(^{2+}\) transport across the sarcoplasmic reticulum membrane which, in concomitance with passive release through gated channels, allows variations of cytosolic Ca\(^{2+}\) concentrations and control of Ca\(^{2+}\) signaling functions (Clapham 2007). A clear example of the SERCA role in Ca\(^{2+}\) signaling is observed in cardiac myocytes (Fig. 6) where specific SERCA inhibition with TG produces a prominent reduction of Ca\(^{2+}\) released upon electrical stimulation, as well as slowing of the decay phase.

Fig. 3 Crystallographic models of SERCA1 in the \(E_2 \) (left panel) and \(E_1 \cdot \text{Ca}_2 \) (right panel) states. The \(E_2 \) state, stabilized with thapsigargin, was derived from Protein Data Bank code 1iw0, and the \(E_1 \cdot \text{Ca}_2 \) state was derived from Protein Data Bank code 1su4.

Fig. 4 Binding of thapsigargin (TG) to SERCA interferes with the \(E_2 \) to \(E_1 \cdot \text{Ca}_2 \) transition. TG is shown with van der Waals surface represented by dotted spheres. Transmembrane portions of M3, M4, M5, and M7 helices are in violet (\(E_1 \cdot \text{Ca}_2 \)) and in light green (\(E_2 \) (TG)) and superimposed. Note how steric collisions (dotted circle) with TG would occur if the F256 side chain would transition from the \(E_2 \) state to the \(E_1 \cdot \text{Ca}_2 \) state in the presence of TG. Derived from Xu et al. (2004)

Fig. 5 Interference of Phe256 mutations with the inhibitory effect of TG on SERCA1 ATPase activity. Site directed mutations were obtained by expression of mutated cDNA delivered by viral vectors to COS-1 cells. Experiments on ATPase activity were conducted with the microsomal fraction of the COS-1 cells sustaining heterologous expression. Derived from Xu et al. (2004)
of the Ca\(^{2+}\) signal (Prasad and Inesi 2009). This indicates that Ca\(^{2+}\) pumping by SERCA is required to fill the Ca\(^{2+}\) stores to provide sufficient Ca\(^{2+}\) for subsequent for release to activate contraction, and is also required for removal of cytosolic Ca\(^{2+}\) to allow decay of the Ca\(^{2+}\) signal and relaxation of contraction. It is also shown in Fig. 6 that heterologous expression of additional SERCA protein by gene transfer, does not increase the amount of Ca\(^{2+}\) released, but increases the decay rate of the signal (Cavagna et al. 2000). This demonstrates that endogenous SERCA is sufficient to fill the Ca\(^{2+}\) stores for release of maximal Ca\(^{2+}\) upon electric stimuli, but the level of endogenous SERCA is rate limiting for the Ca\(^{2+}\) signal decay, which can be accelerated by expression of additional SERCA. Regulation of SERCA2 activity and level plays important roles in cardiac physiology and pathology (Bers 2008; Prasad and Inesi 2010). It is of interest that the SERCA affinity for Ca\(^{2+}\) and its catalytic turnover can be modulated through phosphorylation of the small partner protein phospholamban, in connection with adrenergic mechanisms in cardiac muscle (MacLennan and Krainia 2003). Generally, as mentioned above, the transduction features of Ca\(^{2+}\) transport ATPases are basic components of Ca\(^{2+}\) signaling mechanisms in numerous and diverse cell systems.

The copper ATPase

The mammalian copper ATPases ATP7A (Dierick et al. 1995; Tümer et al. 1995) and ATP7B (Petrukhin et al. 1994) encode enzyme isoforms that sustain active transport of copper by utilization of ATP, and are involved in copper transfer from enterocytes to blood, copper export from the liver, copper delivery to the secretory pathways for incorporation in metalloprotein, and general copper homeostasis as reviewed in detail by Lutsenko et al. (2007). Genetic defects of ATP7A and ATP7B yield the human Menkes (Vulpe et al. 1993) and Wilson (Gitlin 2003; Harada 2002) diseases, respectively.

Structural and functional features of the copper ATPase proteins have been reviewed (Mercer et al. 2003; Tsvkovskii et al. 2004; Voskoboinik et al. 2001a), indicating that ATP7A and ATP7B possess a similar architecture, with considerable sequence homology but functionally significant differences. It is shown in Fig. 7 that the ATP7B isoform comprises eight transmembrane segments (as compared to ten in SERCA), including a copper binding site (TMBS) involved in catalytic activation and transport, and a headpiece including the N, P and A domains with conserved catalytic motifs analogous to SERCA1. A specific feature of mammalian copper ATPases is an amino-terminal extension (NMBD) that includes six copper binding sites in addition to the TMBS (Lutsenko et al. 2007). This N-terminal extension is involved in interactions with partner proteins and sustains copper-induced and functionally relevant conformational effects (Banci et al. 2009a).

Copper binding is attributed to characteristic CPX or XPC sequences that are present also in other P1B-type ATPases involved in transport of other metals such as cadmium, zinc, lead, cobalt and silver. On the other hand, other amino acid side chains are likely to participate in transient metal coordination during transport, thereby determining metal selectivity (Argüello 2003). Although the crystal structure of the mammalian copper ATPases is not available as yet, solution structures of specific domains have been obtained by spectroscopic methods (Banci et al. 2009b; Dmitriev et al. 2006). Furthermore, crystal structures of microbial copper ATPases headpiece domains have been obtained (Sazinsky et al. 2006a, b; Tsuda and Toyoshima 2009). Most importantly, the occurrence of conformational changes concomitant with sequential reactions of the catalytic cycle has been demonstrated by characterization of proteolytic digestion patterns under pertinent conditions (Hatori et al. 2009). This indicates that, in analogy to the calcium ATPase, copper ATPases undergo functionally related conformational changes.

The native abundance of copper ATPases is quite low and, for this reason, biochemical experimentation requires recombinant protein obtained by heterologous expression in insect or mammalian (Barnes et al. 2005; Tsvkovskii et al. 2002; Voskoboinik et al. 2001b; Pilankatta et al. 2009) cells. It has been found that the copper ATPase undergoes phosphorylation upon addition of ATP (Barnes et al. 2005; Tsvkovskii et al. 2002; Voskoboinik et al. 2001b; Hung et al. 2007; Pilankatta et al. 2011). It is very important, in this regard, to distinguish formation of the ATPase catalytic intermediate from independent kinase assisted phosphorylation. In fact, phosphorylation of ATP7B protein (Fig. 8)
obtained by heterologous expression in COS-1 cells includes a rapid and alkali labile component obtained within a few seconds, and a much slower alkali resistant phosphorylation (see below). Only the fast component is due to formation of phosphorylated intermediate (analogous to other P\(\text{ATPase}\)s), and is not observed (Fig. 9) following mutation of the conserved aspartate (D1027) at the catalytic site, or following mutation within the transmembrane copper binding site (TMBS). Under optimal conditions, the phosphoenzyme intermediate undergoes decay by hydrolytic cleavage within the second time scale, as expected upon completion of the catalytic site.

Steady state copper transport has been observed with \(\text{ATP7A}\) expressed in cultured Chinese hamster ovary cells (Voskoboinik et al. 1998) and with reconstituted preparations of \(\text{ATP7A}\) expressed in insect cells (Hung et al. 2007), but the reported rates are much lower than expected from \(\text{ATPase}\) activity. In fact, measurements of copper transport are rendered difficult by unfavorable characteristics of the radioactive copper isotope, as well as by occurrence of non-specific high affinity copper binding. These difficulties make it impossible to obtain direct measurements of copper movements within the short time scale of a single catalytic cycle, as done in detail for the Ca\(^{2+}\) \(\text{ATPase}\) (Fig. 2). Nevertheless, indirect demonstration of copper movements was obtained by measurements of charge transfer upon addition of ATP to \(\text{ATP7B}\) protein adsorbed on a solid supported membrane. It is shown in Fig. 10 that, within the pre-steady state following addition of ATP, a current transient is in fact obtained, due to movement of positive charge towards the electrode. The current is not observed in the presence of copper chelators or following mutation of copper binding sites in the protein (Tadini-Buoninsegni et al. 2010). It is of interest that the decay time constant of the copper signal is 140 ± 4 milliseconds, which is significantly slower than that obtained with the Ca\(^{2+}\) \(\text{ATPase}\), i.e. 25 ± 0.3 milliseconds under the same conditions (Fig. 10). This indicates that the catalytic and transport kinetics sustained by the copper \(\text{ATPase}\) are approximately one order of magnitude slower than those of the Ca\(^{2+}\) \(\text{ATPase}\), even though the general catalytic mechanism retains similar features.

In addition to utilization of ATP for formation of phosphorylated intermediate, phosphorylation of serine residues has an influence on trafficking of \(\text{ATP7A}\) expressed in both polarized and non-polarized cells (Veldhuis et al. 2009). Furthermore, it was recently reported (Pilankatta et al. 2011) that using \(\text{ATP7B}\) protein expressed in COS-1 cells, a prominent alkali stable phosphorylation is obtained following addition of ATP. This alkali stable phosphorylation is formed at slow rates, in addition to rapid

Fig. 7 Two-dimensional folding model of the \(\text{ATP7B}\) sequence. The diagram shows eight transmembrane segments including a copper binding site (TMBS). Yellow residues at the TMBS are likely involved in copper binding. The extramembranous region comprises: a nucleotide binding domain (N) with the H1069 residue whose mutation is frequently found in the Wilson disease; the P domain, with several residues (in yellow) conserved in P-type \(\text{ATPases}\), where D1027 undergoes phosphorylation to form the catalytic phosphoenzyme intermediate (EP); the A domain with the TGE (yellow) conserved sequence involved in catalytic assistance of EP hydrolytic cleavage; the N-metal binding domain (NMBD) with six copper binding sites; and a C-terminus chain. Serines undergoing kinase assisted phosphorylation (Ser478, Ser481, Ser1121 and Ser1453) reside within flexible loops of the protein.

\(\text{ATP7B}\)

Graphical representation of the \(\text{ATP7B}\) sequence showing the structure and function of the protein.
formation of alkali labile phosphorylated enzyme intermediate, and is specifically and totally prevented by protein kinase D inhibition (Fig. 8). An important feature of Protein kinase D is its association with the trans-Golgi network, where it favors fission of transport carriers specifically destined to the cell surface (Válverde et al. 1994; Liljedahl et al. 2001). It should be noted that alkali resistant phosphorylation is not observed at all with the Ca\(^{2+}\) ATPase (skeletal muscle SERCA1) under the same conditions (Fig. 8). However, serine phosphorylation sustained by Ca\(^{2+}\)/calmodulin-dependent protein kinase has been reported for SERCA2, with consequent activation of Ca\(^{2+}\) pumping ATPase in cardiac and slow twitch muscle, but not in fast twitch skeletal muscle (Hawkins et al. 1994).

Alkali resistant phosphorylation of ATP7B involves serine residues at least in part identified as S478, S481, S1121 and S1453 (Fig. 7), requires copper and, most importantly, is required for ATP7B trafficking. Copper regulated movement from the Golgi apparatus to vesicles approaching the plasma membrane was first observed with ATP7A (Petris et al. 1996, 2002; La Fontaine et al. 1998), consistent with the notion that copper-induced trafficking of the copper ATPase is a key mechanism for copper homeostasis (Mercer et al. 2003). Compartmentalization and trafficking has also been observed with ATP7B (Guo et al. 2005; Schaefer et al. 1999). In fact, copper induced displacement from the trans-Golgi network to cytosolic

Fig. 8 Phosphorylation of WT ATP7B (a, b), ATP7B D1027N mutant (c) and WT SERCA1 (d), in the absence (a, c and d) and in the presence (b) of PKD inhibitor. Microsomes obtained from COS-1 cells sustaining heterologous expression of WT ATP7B (a, b), ATP7B D1027N mutant (c), or WT SERCA1 (d) were incubated with 50 μM [γ-\(^{32}\)P]ATP at 30°C, in the absence (a, c and d) or in the presence (b) of 20 μM CID755673 (PKD inhibitor). Electrophoresis in acid buffer or alkaline buffer was then performed to distinguish total \[^{32}\text{P}\]\ phosphoprotein (■) from alkali resistant \[^{32}\text{P}\]\ phosphoprotein (○). The difference is considered alkali labile \[^{32}\text{P}\]\ phosphoprotein (aspartate: ●) and attributed to formation of phosphorylated enzyme intermediate. The stoichiometry of phosphoprotein refers to total microsomal protein. Derived from Pilankatta et al. (2011)

Fig. 9 Copper dependence of ATP7B phosphorylation and effects of site directed mutations. Top: Total phosphorylation (aspartate and serines) is inhibited by copper chelation with BCS. Lower quadrants: total phosphorylation (aspartate and serines) is prevented by C575A/C578A mutation at the 6th NMBD copper site (6thCuNMBD mutant), while only aspartate phosphorylation is prevented by C983A & C985A mutation of the TMBS (Cu TMBS mutant). Note the different stoichiometric scale on the vertical axis of the two panels. Derived from Pilankatta et al. (2011)
trafficking vesicles can be shown clearly with ATP7B expressed in COS-1 cells (Fig. 11) and hepatocytes (Tsivkovskii et al. 2002). Most importantly, trafficking is not observed following mutations within the sixth copper binding site of the NMBD, or mutation of serines involved in phosphorylation assisted by protein kinase D (Pilankatta et al. 2011). It is therefore apparent that a concerted mechanism, based on copper occupancy of NMBD sites and kinase assisted phosphorylation of serines, is permissive of ATP7B trafficking. It is possible that the negative charge acquired by serines through phosphorylation, is involved in electrostatic interactions (such as arginine residues) with consequent effects on conformation and binding to partner proteins. The serine residues undergoing phosphorylation reside at rather distant locations within the TP7B sequence (Pilankatta et al. 2009), including the N terminal extension, the N domain and the C terminal. This suggests a global conformational response. In fact, a critical role of the C-terminus has been recently demonstrated (Braiterman et al. 2011). It is also important to recognize that a copper and phosphorylation dependent conformation is required to avoid degradation by proteasome mediated quality control, and to allow high levels of expressed ATP7B protein (Pilankatta et al. 2011).

The differential effects of TMBS and NMBD copper occupancy are of special interest. Mutations within the transmembrane copper binding site (TMBS) produces specific inhibition of catalytic phosphorylation (Asp1027) in analogy to the effect of the calcium TMBS mutations in the Ca\(^{2+}\) ATPase. In fact, it was recently proposed that soluble copper chaperones transfer copper directly to transmembrane transport sites (González-Guerrero and Argüello 2008). Furthermore, mutation of the TMBS copper site does not interfere with kinase assisted phosphorylation of serines. On the other hand, mutation of the sixth NMBD copper site produces inhibition of both catalytic (aspartate) and kinase assisted (serines) phosphorylation (Fig. 9). It should be pointed out that a functional, global conformation of ATP7B requires the entire NMBD segment, since deletion of the segment including the first five copper NMBD sites results in extensive degradation of the expressed protein. Levels approximating those obtained

![Fig. 10 Current transients obtained following rapid addition of ATP to recombinant WT copper ATPase (in the presence of 5 μM CuCl\(_2\), solid line) or Ca\(^{2+}\)-ATPase (in the presence of 10 μM free Ca\(^{2+}\), dotted line). Charge movements were measured with microsomes containing recombinant Cu\(^{2+}\)-ATPase (ATP7B) or Ca\(^{2+}\)-ATPase (SERCA1) adsorbed on a solid supported membrane anchored to a gold electrode. No currents are obtained with an inactive ATP7B mutant. Net charge across the activated protein was compensated for by a flow of electrons along the external circuit to keep the applied voltage ΔV constant across the whole metal/solution interphase, and the resulting current transient was monitored under potentiostatic conditions as a function of time. This technique detects pre-steady state current transients within the first transport cycle, and is not sensitive to stationary currents following the first cycle. (Derived from Tadini-Buonisegni et al. 2010)

![Fig. 11 Heterologous expression, distribution and trafficking of WT ATP7B in COS-1 cells. COS-1 cells were exposed overnight to 200 μM CuCl\(_2\) 1 day after infection with adenoirus vector for delivery of WT ATP7B cDNA. The cells were stained with antibodies specific for the the Golgi marker protein Giantin (left upper panel), and the ATP7B c-myc tag (left middle panel) 24 h following infection. Secondary antibodies yield green color for the ATP7B c-myc tag, and blue color for Golgi. Red color indicates nuclei stained with propidium iodide. The lower left panel shows merging of the stains, demonstrating colocalization of ATP7B with the Golgi marker, in a distinct and polarized location relative to the nuclei. The right panel shows an enlarged view of cytosolic vesicles containing ATP7B (green), budding from the Golgi region (blue) and trafficking throughout the cytoplasm. Bars: 15 μm. Derived from Pilankatta et al. (2011)
with wild type constructs can be only obtained by specific inhibition of proteasome mediated degradation but, in this case, inactive enzyme is produced (Pilankatta et al. 2011). It is possible that, in various tissues, different requirements may be involved in conformational mechanisms to allow interactions with different partner proteins, thereby accounting for specific trafficking patterns and functions of copper ATPases. It was reported in this regard that in polarized hepatic cells, copper response and apical targeting of ATP7B is only dependent on a short segment of the NH2-extension rather than the entire NMBD (Guo et al. 2005). It was proposed that the copper-binding sites at the N-terminal domain of ATP7A are sensors of low concentrations of copper but are not essential for the overall catalytic activity (Voskoboinik et al. 2001c).

Finally, specific sequence features of copper ATPases may determine diverse behaviors. For instance, the ATP7A isoform undergoes post-translational glycosylation, while the ATP7B does not ((Liu et al. 2010) and Fig. 12). This feature confers plasma membrane stabilization to the ATP7A isoform (Fig. 13).

Conclusions

Calcium and copper transport ATPases retain an analogous catalytic mechanism for utilization of ATP, but present a wide range of differences in the mechanisms of transduction and signaling. The Ca2+ ATPase is well characterized from the structural, biochemical, thermodynamic and kinetic points of view. It sustains active transport of free ion across biological membranes, providing Ca2+ concentration gradients for subsequent release of signaling Ca2+. Its conformational states are dictated by occupancy of calcium, nucleotide and phosphorylation sites specifically involved in catalysis and active transport. On the other hand, functionally competent conformation of the copper ATPase requires proper folding of a rather long NH2-terminal extension which is not present in the calcium ATPase. Copper occupancy of the NH2-terminal extension (NMBD) allows kinase assisted phosphorylation of serine residues and cytosolic trafficking. Occupancy of the copper TMBS and of the ATP site on the N domain then triggers the catalytic cycle. Copper is mostly acquired from, and delivered to partner proteins.

From a conceptual point of view, transport ATPases have been viewed as chemiosmotic pumps where ATP utilization operates, in reverse direction, the mechanism originally conceived for ATP synthesis in mitochondria (Mitchell 1961). We show here that the Ca2+ ATPase does in fact yield a chemiosmotic gradient by active transport of free Ca2+. On the contrary, the copper ATPase delivers copper by active transfer from donors to acceptor proteins. Due to difficulties in measuring copper binding affinity constants, we cannot predict the extent of copper ion gradients formed by the pump. In fact, due to high binding affinity, copper ion concentrations are expected to remain low. However, we can conclude that in both calcium and copper ATPases the ATP chemical energy is utilized to produce specific protein conformational changes that affect binding affinity and orientation of specific ligands. Therefore, the common
mechanistic feature of transport ATPases is protein conformational work, yielding in some cases an ionic gradient, and in other cases vectorial displacement of bound ligands as in the copper ATPase and, even more evidently, in drug transport ATPases (Ernst et al. 2010).

Acknowledgment The author’s research is supported by National Institutes of Health Grant NHB1L RO301-69830.

Competing interests The author declares that he has no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Andersen JP, Vilsen B (1992) Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca2+ ATPase of sarcoplasmic reticulum. J Biol Chem 267:19383–19387

Argiello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

Banci L, Bertini I, Cantini F, Migliardi M (2009a) An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 284:9354–9360

Banci L, Bertini I, Cantini F, Migliardi M, Natile G, Nushi F, Rosato A (2009b) Solution structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins. Biochemistry 48:7849–7855

Bans N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem 280:9640–9645

Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

Braiterman L, Nyasae L, Hubbard AL (2011) Critical roles for the C-Terminus of the Cu-ATPase, ATP7B, in protein stability, trans-Golgi network retention, copper sensing and retrograde trafficking. Am J Physiol Gastrointest Liver Physiol, Mar 31. [Epub ahead of print]

Brini M, Carafole E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034

Cavagna M, O’Donnell JM, Sumbilla C, Inesi G, Klein MG (2000) Exogenous Ca2+-ATPase isomorph effects on Ca2+ transients of embryonic chicken and neonatal rat cardiac myocytes. J Physiol 528:53–63

Chiesi M, Inesi G (1981) Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles. Arch Biochem Biophys 208:586–592

Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

Clarke DM, Loo TW, Inesi G, MacLennan DH (1989) Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339:476–478

de Meis L, Vianna AL (1979) Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292

Dierick HA, Ambrosini L, Spencer J, Glover TW, Mercer JF (1995) Molecular structure of the Menkes disease gene (ATP7A). Genomics 28:462–469

Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307

Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277:540–549

Gitlin JD (2003) Wilson disease. Gastroenterol 125:1868–7187

González-Guerrero M, Argüello JM (2008) Mechanism of Cu++-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci USA 105:5992–5997

Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol 289:G904–G916

Harada M (2002) Wilson disease. Med Electron Microsc 35:61–66

Hatori Y, Lewis D, Toyoshima C, Inesi G (2009) Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 48:4871–4880

Hawkins C, Xu, Narayanan N (1994) Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269:31198–31206

Hung YH, Layton MJ, Voskoboinik I, Mercer JF, Camakaris J (2007) Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A). Biochem J 401:569–579

Inesi G (1985) Mechanism of calcium transport. Annu Rev Physiol 47:573–601

Inesi G, Nakamoto RK (2008) Special issue on transport ATPases. Arch Biochem Biophys 476:1–2

Inesi G, Kurzmac M, Coan C, Lewis DE (1980) Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem 255:3025–3031

Inesi G, Sumbilla C, Kirtley ME (1990) Relationships of molecular structure and function in CaBP, Cu-ATPase ATP7B, the Menkes and Wilson disease proteins. Biochemistry 29:573–587

La Fontaine S, Firth SD, Lockhart PJ, Brooks H, Parton RG, Camakaris J, Mercer JF, Camakaris J, Mercer JF (1998) Functional analysis and intracellular localization of the human menkes protein (MNK) stably expressed from a cDNA construct in Chinese hamster ovary cells (CHO-K1). Hum Mol Genet 7:1293–1300

Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420

Liu Y, Pilankatta R, Hatori Y, Lewis D, Inesi G (2010) Comparative features of copper ATPases ATP7A and ATP7B heterologously expressed in COS-1 cells. Biochemistry 49:10006–10012

Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino-acid sequence of a Ca2+- and Mg2+-dependent ATPase from rabbit...
Calcium and copper ATPases: analogies and diversities

muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

Masuda H, de Meis L (1973) Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry 12:4851–4855

Merce JF, Barnes N, Stevenson J, Strausak D, Llanos RM (2003) Copper-induced trafficking of the cU-ATPases: a key mechanism for copper homeostasis. Biometals 16:175–184

Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

Møller JV, Olesen C, Winther AM, Nissen P (2010) The sarcoplasmic Ca2+/ATPase: design of a perfect chemiosmotic pump. Q Rev Biophys 43:501–566

Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442

Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095

Petris MJ, Voskoboinik I, Catter M, Smith K, Kim BE, Llanos RM, Strausak D, Camakaris J, Mercer JF (2002) Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736–46742

Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH, Gilliam TC (1994) Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet 3:1647–1656

Pilankatta R, Lewis D, Adams CM, Inesi G (2009) High yield heterologous expression of wild-type and mutant Cu+-ATPase (ATP7B, Wilson disease protein) for functional characterization of catalytic activity and serine residues undergoing copper-dependent phosphorylation. J Biol Chem 284:21307–21316

Pilankatta R, Lewis D, Inesi G (2011) Involvement of protein kinase D in expression and trafficking of ATP7B (Copper ATPase). J Biol Chem 286:7385–7396

Prasad AM, Inesi G (2009) Effects of thapsigargin and phenylephrine on calcineurin and protein kinase C signaling functions in cardiac myocytes. Ann J Physiol Cell Physiol 296:C992–C1002

Prasad AM, Inesi G (2010) Downregulation of Ca2+-signaling proteins in cardiac hypertrophy. Minerva Cardioangiol 58:193–204

Sagara Y, Inesi G (1991) Inhibition of the sarcoplasmic reticulum Ca2+-transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506

Szajnski MH, Mandler AK, Argüello JM, Rosenzweig AC (2006a) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu2+-ATPase ase. J Biol Chem 281:11161–11166

Szajnski MH, Agarwal S, Argüello JM, Rosenzweig AC (2006b) Structure of the actuator domain from the Archaeoglobus fulgidus Cu2+-ATPase. Biochemistry 45:9949–9955

Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am J Physiol 276:G639–G646

Stroch C, Cavagna M, Peiffer WE, Sumbilla C, Lewis D, Inesi G (1998) Direct demonstration of Ca2+ binding defects in sarcoplasmic reticulum Ca2+-ATPase mutants overexpressed in COS-1 cells transfected with adenovirus vectors. J Biol Chem 273:15104–15109

Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Guidelli R, Inesi G (2006) Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+-ATPase. J Biol Chem 281:37720–37727

Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Pilankatta R, Lewis D, Inesi G (2010) ATP dependent charge movement in ATP7B Cu2+-ATPase is demonstrated by pre-steady state electrical measurements. FEBS Lett 584:4619–4622

Ton VK, Rao R (2004) Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 287:C580–C589

Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292

Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Structure determination of the calcium pump of sarcoplasmic reticulum. Nature 405:647–655

Tsivkovskii R, Esses JF, Kaplan JH, Lutsenko S (2002) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277:976–983

Tsivkovskii R, Purnat T, Lutsenko S (2004) Copper transporting ATPases: key regulators of intracellular copper concentration. In: Futai, Kaplan, Wada (eds) Handbook of ATPases. Weiley-VCH Verlag, Weinheim, pp 99–158

Tsuda T, Toyoshima C (2009) Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. EMBO J 28:1782–1791

Tümer Z, Vural B, Tonnesen T, Chelly J, Monaco AP, Horn N (1995) Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics 26:437–442

Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E (1994) Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci USA 91:8572–8576

Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Van den Ouweland J, Van Lint J, Rozengurt E (1994) Target for diacylglycerol and phorbol ester with a distinctive catalytic domain. Proc Natl Acad Sci USA 91:8572–8576

Xu C, Ma H, Inesi G, Al-Shawi MK, Toyoshima C (2004) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. FEBS Lett 584:4619–4622

Voskoboinik I, Brooks H, Smith S, Shen P, Camakaris J (1998) ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Lett 435:178–182

Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J (2001a) Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant. Biochem Biophys Res Commun 286:2412–2412

Voskoboinik I, Mar J, Strausak D, Camakaris J (2001b) The regulation of catalytic activity of the Menkes copper-transportating P-type ATPase. Role of high affinity copper-binding sites. J Biol Chem 276:28620–28627

Voskoboinik I, Jasmine Mar J, Daniel Strausak D, Camakaris J (2001c) The regulation of catalytic activity of the Menkes copper-transportating P-type ATPase the regulation of catalytic activity of the Menkes copper-transportating P-type ATPase. Role of high affinity copper-binding sites. J Biol Chem 276:28620–28627

Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13, Erratum in: Nat enet 1993, 3:273

Xu C, Ma H, Inesi G, Al-Shawi MK, Toyoshima C (2004) Specific structural requirements for the inhibitory effect of thapsigargin on the Ca2+-ATPase (SERCA). J Biol Chem 279:17973–17979