LOW-RESOLUTION SPECTRAL TEMPLATES FOR GALAXIES FROM 0.2 TO 10 μm

R. J. Assef, 1 C. S. Kochanek, 1 M. Brodwin, 2 M. J. I. Brown, 3 N. Caldwell, 4 R. J. Cool, 5 P. Eisenhardt, 6 D. Eisenstein, 5 A. H. Gonzalez, 6 B. T. Jannuzi, 7 C. Jones, 4 E. McKenzie, 8 S. S. Murray, 4 and D. Stern 8

Revised 2007 August 10; accepted 2007 December 6

ABSTRACT

We built an optimal basis of low-resolution templates for galaxies over the wavelength range from 0.2 to 10 μm using a variant of the algorithm presented by Budavari and coworkers. We derived them using 11 bands of photometry from the NDWFS, FLAMEX, zBoötes, and IRAC Shallow surveys for 16,033 galaxies in the NDWFS Boötes field with spectroscopic redshifts measured by the AGN and Galaxy Evolution Survey. We also developed algorithms to accurately determine photometric redshifts, K-corrections, and bolometric luminosities using these templates. Our photometric redshifts have an accuracy of \(\sigma_z/(1+z) = 0.04 \) when clipped to the best 95%. We used these templates to study the spectral type distribution in the field and to estimate luminosity functions of galaxies as a function of redshift and spectral type. In particular, we note that the 5–8 μm color distribution of galaxies is bimodal, much like the optical \(g - r \) colors.

Subject headings: galaxies: distances and redshifts — galaxies: luminosity function, mass function — galaxies: photometry

Online material: machine-readable tables

1. INTRODUCTION

Imaging surveys are a very important and common tool in astronomy. Large wide-field surveys, such as the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) and the Sloan Digital Sky Survey (SDSS; York et al. 2000), and very deep ones, like GOODS (Dickinson et al. 2003) and the Hubble Ultra Deep Field (Beckwith et al. 2006), have radically improved our understanding of the universe. The large galaxy samples yielded by these surveys enable us, for example, to study the evolving space density of galaxies (Bell et al. 2004; Brown et al. 2007), baryon oscillations (Padmanabhan & Ray 2006), and the halo occupation distribution (Zehavi et al. 2005; Ouchi et al. 2005; Lee et al. 2006; White et al. 2007; M. Brown et al. 2008, in preparation). Astrophysical applications of these surveys require measurements of quantities such as the redshift, spectral type, and rest-frame and bolometric magnitudes of the galaxies. Due to the enormous number or faintness of the objects in these surveys, spectroscopic follow-up is extremely expensive, if not impossible, for the great majority of the sources. Even when spectra are available, they usually have a low signal-to-noise ratio, so most estimates of these quantities still have to come from broadband photometry.

Extensive efforts over the last decade have shown that photometric redshift estimates from broadband photometry are reasonably accurate. Photometric redshift techniques can be divided into two main families: methods based on empirical relations between color and redshift that are usually implemented with neural networks (e.g., Wang et al. 1998; Brumme et al. 1999; Collister & Lahav 2004; Connolly et al. 1995) and methods based on spectral energy distribution (SED) fitting techniques (e.g., Bolzonella et al. 2000; Benitez 2000). The first family of methods relies on the assumption that there is some relation between observed properties of galaxies and redshift that can be empirically calibrated using a training set of objects with both broadband photometry and spectroscopic redshifts. These methods can automatically accommodate physical processes that are hard to model directly, such as dust extinction and emission, but they cannot be used for estimating K-corrections, bolometric luminosities, or redshifts outside the range of the training set. SED fitting techniques rely on model spectra to determine redshifts by minimizing the difference between observed and expected broadband colors. This family of methods does not have redshift boundaries, as long as the observed rest-frame wavelengths overlap those of the template SEDs, and they can be used to determine K-corrections and bolometric luminosities. They typically have larger uncertainties than the empirical methods (e.g., Csabai et al. 2003; Brodwin et al. 2006) and can fail badly for objects poorly described by the templates.

Templates used by the SED fitting methods are either derived from observations (e.g., Coleman et al. 1980; Kinney et al. 1996) or from stellar population synthesis models (e.g., Bruzual & Charlot 1993, 2003; Fioc & Rocca-Volmerange 1997). Most of these templates have limited wavelength coverage. In particular, the popular Coleman et al. (1980) and Kinney et al. (1996) templates do not extend into the infrared, and most synthetic templates have not been calibrated in this range or lack physical processes that operate at these wavelengths. Templates derived from observations sometimes come from very noisy spectra (e.g., Kinney et al. 1996), which could translate small systematic errors into large errors in the broadband colors. Templates from stellar population synthesis models do not suffer from this problem, but sometimes do a poor job reproducing observed properties of galaxies. For example, the red galaxy templates of Bruzual & Charlot (1993)
agree with observed optical colors but severely underestimate UV fluxes (e.g., see Fig. 4 of Donas et al. 1995), and most models cannot reproduce the colors of star-forming galaxies because they do not include or cannot model nebular emission, dust, and PAH emission features. While the Pegase.2 models (Fioc & Rocca-Volmerange 1997) attempt to include these effects, their templates have not been calibrated particularly far into the infrared.

Budavari et al. (2000) and Csabai et al. (2000) developed a method that adjusts template SEDs in order to overcome these problems. The method uses a training data set to determine SEDs that accurately represent the galaxies and then uses the updated SEDs for photometric redshifts, K-corrections, and bolometric luminosities. A similar method has also been developed by Blanton et al. (2003a; also see Blanton & Roweis 2007), focusing mostly on K-corrections, and by Feldmann et al. (2006), who implemented it, along with other features, in their ZEBRA package.

In this paper we derive low-resolution spectral templates for galaxies in the wavelength range 0.2–10 μm that accurately reproduce galaxy SEDs. We derive them using the extensive photometric observations of the NOAO Deep Wide-Field Survey (NDWFS; Jannuzi & Dey 1999) Boötes field combined with the redshifts from the spectroscopic observations of the AGN and Galaxy Evolution Survey (AGES; C. S. Kochanek et al. 2008, in preparation) and a variant of the Budavari et al. (2000) method. AGES provides spectroscopic redshifts for approximately 17,000 galaxies with z ≤ 1, most of which have broadband photometry from 0.4 to 8 μm.

In § 2 we describe the data we use to obtain the templates. In § 3 we describe the method used to derive the templates, as well as the algorithms used to determine bolometric luminosities, K-corrections and photometric redshifts. In § 4 we derive the templates and apply the algorithms for K-corrections and photometric redshifts to the galaxies from the AGES galaxy sample. And finally, in § 5, we study the spectral type distribution for approximately 65,000 galaxies from the NDWFS Boötes field, based only on their photometry. We also use photometric redshifts and K-corrections to determine luminosity functions for this field. Throughout the paper we assume the standard ΛCDM cosmology (Ω_M = 0.3, Ω_Λ = 0.7, Ω_K = 0, and H_0 = 70 km s^{-1} Mpc^{-1}).

2. DATA

The NOAO Deep Wide-Field Survey is a deep optical and near-infrared imaging survey that covers two 9.3 deg^2 fields, the Boötes and Cetus fields. Both fields were imaged in B_W (3500–4750 Å, peak at ≈4000 Å), R, and I passbands to depths (5 σ, 2\″ diameter aperture) of approximately 26.5, 26, and 25.5 AB magnitude. Both NDWFS fields have been completely imaged in the K and K_s bands to a limiting AB magnitude of 21.

In this paper we focus on the Boötes field observations, for which there has also been extensive coverage at other wavelengths. Specifically, we will also use the observations of the Flamingos Extragalactic Survey (FLAMEX; Elston et al. 2006), which covered about half of this field in the J and K_s bands, the z′ band observations of the zBoötes survey (Cool 2007), and the IRAC Shallow Survey (Eisenhardt et al. 2004), which observed the field with the Spitzer Space Telescope Infrared Array Camera (IRAC; Fazio et al. 2004) in channels 1, 2, 3, and 4 (3.6, 4.5, 5.8, and 8 μm, respectively). We refer to this last four bands as C1, C2, C3, and C4, respectively, throughout the paper. It should be noted that there are also radio (FIRST: Becker et al. 1995; WENSS: Rengelink et al. 1997; WSRT: de Vries et al. 2002; NVSS: Condon et al. 1998), far-IR (MIPS: Weedman et al. 2006), X-ray (XBoötes: Murray et al. 2005), and UV (GALEX: Martin et al. 2005) observations of the NDWFS Boötes field that we do not currently use.

The AGN and Galaxy Evolution Survey is a redshift survey in the NDWFS Boötes field. It has obtained spectra for ≈20,000 objects in the wavelength range from 3200 to 9200 Å with a resolution of R ≈ 1000 using the 6.5 m MMT telescope and the 300 fiber robotic Hectospec instrument (Fabricant et al. 2005). Spectroscopic redshifts have been measured for about 17,000 galaxies in the field with 0 < z < 1. The median redshift is approximately 0.31.

We derive the templates using a total of 16,033 galaxies with spectroscopic redshifts and photometry in at least 6 of these 11 bands (B_W, R, I, and K from NDWFS; z′ from zBoötes; J and K_s from FLAMEX; and C1, C2, C3, and C4 from the IRAC Shallow Survey). We required six bands so that we would always include some combination of optical and IR photometry for each galaxy, but requiring five or seven would not affect our results. We use 6.0′′ aperture magnitudes to derive the templates and SExtractor (Bertin & Arnouts 1996) Kron-like magnitudes for estimates of the total flux. The photometry was corrected for Galactic extinction with the Schlegel et al. (1998) model. We cannot easily distinguish between nondetections and survey gaps from the existing photometry compilations, so we make no use of upper bounds.

The magnitudes measured by NDWFS and FLAMEX are in the Vega system. The IRAC magnitudes are in their own system, which is based on the Kurucz model spectrum of Vega (see Reach et al. 2005). The z′ magnitudes are in the AB system. Throughout the paper we keep these conventions — every magnitude computed is presented in its respective system. We refer to the objects with both photometry and spectroscopic redshifts as the AGES galaxy sample.

3. METHODS

In this section we present the algorithms developed to build the low-resolution templates from the Boötes field observations and estimate K-corrections, bolometric magnitudes, and photometric redshifts. We have made the latter algorithms publicly available9 as part of a Fortran 77 library, which also incorporates other useful functions and can carry out the calculations for any set of filters specified by the user.

3.1. Templates

We build our templates using a variant of the approach proposed by Budavari et al. (2000). The flux \(F_{i,b} \) of object \(i \) in band \(b \) is given by

\[
F_{i,b} = c N_b \int_0^\infty \lambda^{-1} R_b(\lambda) f_i(\nu) \, d\lambda,
\]

where \(N_b \) sets the normalization of the filter, \(R_b(\lambda) \) is the filter bandpass response per photon of wavelength \(\lambda \), c is the speed of light, and \(f_i(\nu) \) is the object’s observed spectrum measured in energy per unit area per unit time per unit frequency. In general, the spectra of a sample of galaxies will not be fully independent of each other, but, instead, can be regarded as different combinations of a small set, or basis, of rest-frame spectral templates \(T_k(\nu) \). Thus, we can model the observed flux of an object as

\[
F_{i,b}^{\text{mod}} = c N_b \left(\frac{10 \text{ pc}}{D_{v,i}} \right)^2 \sum_k a_{i,k} \times \int_0^\infty \lambda^{-1} R_b(\lambda) (1 + z_i) T_k[(1 + z_i)\nu] \, d\lambda,
\]

\(^9\) At http://www.astronomy.ohio-state.edu/~rjassef/lrt.
This relation can be discretized as

\[a_i \]

where \(a_i \) models the IR part of the M82 and VCC 1003 templates of Devriendt et al. (1999) to include mid-IR with the Bruzual & Charlot (2003) synthetic models and then adding the mid-IR templates, which were generated by extending the CWW templates to the mid-infrared distance. We have assigned a bolometric luminosity of \(z_i \) regions unless there are priors on the permitted values of the is that the model spectrum can be unphysical (negative) in some observed galaxy spectra. One problem with such a decomposition is the sensitivity curve of filter \(b \) shifted to the redshift of the observed object and integrated over wavelength bin \(\lambda_n \). The main idea of the method is to use the observed colors of galaxies to fit for the spectral base components \(Tk \) that these models lack, we spliced onto the Sbc and Im models. We optimize equation (5) iteratively, starting with templates matching the initial templates, \(Tk,0 = Qk,0 \). We then iterate in steps by (1) estimating the galaxy weights \(a_{i,k} \); (2) estimating zero-point corrections by adjusting \(Nk \); (3) sequentially optimizing the templates and normalizing them (see § 3.2); and (4) returning to step 1. After every five iterations, we remove the large-scale behavior of the zero-point corrections and rescale the smoothing

\[G = x^2 + \frac{1}{\eta^2} H, \]

where the \(x^2 \) optimizes the fit to the templates, \(H \) forces the templates to be smooth, and \(\eta \) is a parameter that determines the strength of the smoothing. The goodness of fit to the data is

\[\chi^2 = \sum_{i,b} \left(\frac{F_{i,b} - F_{i,b}^{mod}}{\sigma_{i,b}} \right)^2, \]

where \(F_{i,b} \) is the observed flux of object \(i \) in band \(b \) with error \(\sigma_{i,b} \), and the smoothing term

\[H = \sum_{k,n} \left(\log \frac{T_{k,\nu_a}}{Q_{k,\nu_a}} - \log \frac{T_{k,\nu_{a+1}}}{Q_{k,\nu_{a+1}}} \right)^2 \]

minimizes the logarithmic differences between the final templates \((Tk,\nu_a) \) and the initial templates \((Qk,\nu_a) \). If a too small value of \(\eta \) is selected, the final templates will not be very different from their initial guesses and they will not be a good fit to the data. On the other hand, if a too large value of \(\eta \) is selected, the final templates will better fit the data but they will show nonphysical oscillatory behavior. Selecting a value for \(\eta \) between these two extremes allows us to obtain galaxy templates that fit the photometry of the sample better than the initial ones but are still well behaved. Since the splines of the dust/PAH features are somewhat ad hoc, we decreased the weight of the logarithmic smoothing linearly with wavelength from 1 to 10 \(\mu \)m.
TABLE 1
THREE-TEMPLATE MODEL ABSOLUTE MAGNITUDES

z	Template	B_m	B	V	R	I	u'	g'	r'	i'	z'	J	H	I_s	K	C1	C2	C3	C4	DM	
0.0	1	-18.47	-18.57	-19.49	-20.14	-20.82	-17.03	-18.97	-19.78	-20.20	-20.57	-21.68	-22.49	-22.66	-22.63	-22.99	-22.84	-22.81	-22.00	0.01	
0.0	2	-17.96	-17.99	-18.61	-19.29	-19.90	-17.20	-18.25	-18.94	-19.30	-19.70	-20.00	-21.00	-21.94	-22.36	-22.35	-23.29	-23.44	-25.39	-27.40	0.00
0.0	3	-19.34	-19.35	-19.72	-20.11	-20.40	-18.78	-19.56	-19.85	-19.92	-20.02	-20.82	-21.36	-21.49	-21.47	-21.93	-21.94	-23.67	-23.53	0.00	
0.1	1	-17.89	-18.06	-19.32	-20.02	-20.73	-16.41	-18.64	-19.66	-20.50	-21.77	-22.47	-22.88	-22.88	-23.18	-23.20	-23.18	-23.18	-23.53	38.32	
0.1	2	-17.70	-17.74	-18.51	-19.16	-19.85	-17.09	-18.76	-19.58	-21.04	-21.85	-22.55	-22.56	-23.42	-23.59	-24.39	-27.28	-38.32	0.01		
0.1	3	-19.21	-19.23	-19.77	-20.11	-20.50	-18.57	-19.49	-19.83	-20.02	-20.07	-20.95	-21.48	-21.71	-21.71	-22.19	-22.16	-22.75	-25.34	38.32	
0.2	1	-17.20	-17.50	-19.12	-19.89	-20.64	-15.53	-18.16	-19.50	-20.01	-20.42	-21.82	-22.45	-23.11	-23.11	-23.36	-23.50	-23.43	-23.10	39.96	
0.2	2	-17.42	-17.47	-18.44	-19.03	-19.80	-17.07	-17.88	-18.65	-19.17	-19.53	-21.04	-21.81	-22.68	-22.70	-23.37	-23.79	-24.20	-26.92	39.96	
0.2	3	-18.99	-19.01	-19.74	-20.15	-20.58	-18.51	-19.37	-19.87	-20.07	-20.16	-21.07	-21.56	-21.93	-21.93	-22.30	-22.40	-22.64	-25.07	39.96	
0.3	1	-16.71	-16.95	-18.77	-19.75	-20.55	-14.47	-17.60	-19.33	-19.92	-20.34	-21.79	-22.51	-23.25	-23.26	-23.50	-23.69	-23.68	-23.56	40.96	
0.3	2	-17.28	-17.29	-18.30	-18.95	-19.70	-17.02	-17.64	-18.59	-19.02	-19.51	-20.97	-21.84	-22.71	-22.75	-23.39	-23.98	-24.23	-26.41	40.96	
0.3	3	-18.76	-18.82	-19.70	-20.15	-20.60	-18.43	-19.19	-19.89	-20.04	-20.24	-21.15	-21.64	-22.10	-22.11	-22.44	-22.65	-22.74	-24.65	40.96	

Notes.—Table 1 is published in its entirety in the electronic edition of the *Astrophysical Journal.* A portion is shown here for guidance regarding its form and content. The table supplies the absolute magnitude of the three-template model as a function of redshift, along with the distance modulus DM. The absolute magnitude we present here corresponds to the canonical definition of the absolute magnitude (as in, for example, eq. [26] of Hogg 1999) plus the K-correction term. This allows the calculation of photometric redshifts and K-corrections from the table. To determine photometric redshifts, colors should be calculated and matched to the data by varying the a_k coefficients (see § 3.1) and the redshift. For a galaxy at redshift z with template coefficients a_k, the model magnitude in band B is given by $M_B(z) = -2.5 \log \sum a_k 10^{-0.4 M_B(z)}$. Apparent magnitudes can be determined by adding the distance modulus to the absolute ones. To determine K-corrections for a galaxy at redshift z, coefficients a_k should also be determined to match the observed colors as above. With the same coefficients, redshift zero model absolute magnitudes can be determined, and the difference between them will correspond to the desired K-correction.
TABLE 2

Four-Template Model Absolute Magnitudes

z	Template	B_u	B	V	R	I	g'	r'	i'	z'	J									
0.0.....	1	-18.29	-18.41	-19.45	-20.11	-20.81	-16.86	-18.87	-19.74	-20.19	-20.57	-21.73	-22.52	-22.73	-22.70	-23.00	-22.80	-22.69	-22.32	
0.0.....	2	-18.09	-18.13	-18.78	-19.46	-20.06	-17.15	-18.40	-19.12	-19.46	-19.86	-21.12	-22.09	-22.49	-22.48	-23.36	-23.53	-25.37	-27.17	
0.0.....	3	-18.87	-18.86	-19.23	-19.62	-19.99	-18.49	-19.08	-19.35	-19.47	-19.67	-20.61	-21.28	-21.53	-21.50	-22.16	-22.07	-24.28	-26.63	
0.0.....	4	-19.68	-19.70	-20.04	-20.43	-20.70	-18.69	-19.87	-20.18	-20.22	-20.29	-21.07	-21.58	-21.79	-21.76	-22.22	-23.35	-23.08	-23.77	
0.1.....	1	-17.65	-17.85	-19.27	-19.99	-20.71	-16.33	-18.47	-19.62	-20.07	-20.49	-21.79	-22.51	-22.91	-22.92	-23.20	-23.19	-23.10	-22.62	38.32
0.1.....	2	-17.78	-17.85	-18.66	-19.33	-20.01	-16.84	-18.24	-18.93	-19.45	-19.73	-21.14	-22.01	-22.64	-22.66	-23.50	-23.69	-24.45	-27.17	38.32
0.1.....	3	-18.79	-18.79	-19.29	-19.62	-20.04	-18.37	-19.01	-19.33	-19.54	-19.67	-20.72	-21.32	-21.75	-21.76	-22.35	-22.29	-23.10	-26.54	38.32
0.1.....	4	-19.44	-19.49	-20.04	-20.45	-20.80	-18.25	-19.81	-20.17	-20.33	-20.36	-21.20	-21.64	-21.96	-21.98	-22.46	-22.52	-23.08	-23.38	38.32
0.2.....	1	-17.02	-17.29	-18.99	-19.85	-20.61	-15.55	-17.93	-19.46	-19.97	-20.41	-21.82	-22.50	-23.13	-23.12	-23.39	-23.39	-23.37	-23.05	39.96
0.2.....	2	-17.37	-17.49	-18.57	-19.20	-19.97	-16.75	-17.97	-18.80	-19.35	-19.69	-21.16	-21.96	-22.79	-22.80	-23.48	-23.38	-24.28	-26.85	39.96
0.2.....	3	-18.68	-18.66	-19.24	-19.67	-20.09	-18.37	-18.93	-19.39	-19.56	-19.70	-20.81	-21.36	-21.93	-21.94	-22.36	-22.61	-22.85	-26.10	39.96
0.2.....	4	-18.97	-19.10	-20.07	-20.44	-20.89	-17.85	-19.62	-20.15	-20.39	-20.46	-21.32	-21.74	-22.17	-22.18	-22.62	-22.73	-23.08	-23.98	39.96
0.3.....	1	-16.61	-16.80	-18.56	-19.69	-20.51	-14.61	-17.38	-19.25	-19.88	-20.31	-21.79	-22.55	-23.27	-23.28	-23.54	-23.71	-23.65	-23.46	40.96
0.3.....	2	-17.08	-17.16	-18.43	-19.88	-20.63	-17.63	-18.73	-18.73	-19.20	-19.68	-21.12	-21.96	-22.85	-22.89	-23.52	-24.05	-24.32	-26.36	40.96
0.3.....	3	-18.55	-18.56	-19.20	-19.67	-20.10	-18.40	-18.85	-19.41	-19.54	-19.76	-20.84	-21.43	-22.03	-22.05	-22.45	-22.87	-25.39	40.96	
0.3.....	4	-18.46	-18.68	-20.07	-20.45	-20.93	-17.48	-19.29	-20.16	-20.39	-20.55	-21.40	-21.87	-22.33	-22.33	-22.69	-22.94	-23.14	-24.05	40.96

Notes.—Table 2 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content. The electronic table supplies the absolute magnitude of the four-template model as a function of redshift, along with the distance modulus DM. The absolute magnitude we present here corresponds to the canonical definition of the absolute magnitude (as in, for example, eq. [26] of Hogg 1999) plus the K-correction term. This allows the calculation of photometric redshifts and K-corrections from the table. To determine photometric redshifts, colors should be calculated and matched to the data by varying the a_i coefficients (see § 3.1) and the redshift. For a galaxy at redshift z with template coefficients a_i, the model magnitude in band b is given by $M_b(z) = -2.5 \log \sum a_i 10^{-0.4M_{b,i}(z)}$. Apparent magnitudes can be determined by adding the distance modulus to the absolute ones. To determine K-corrections for a galaxy at redshift z, coefficients a_i should also be determined to match the observed colors as above. With the same coefficients, redshift z, and redshift zero model absolute magnitudes can be determined, and the difference between them will correspond to the desired K-correction.
functions and templates. To optimize the templates we linearize the smoothing term, assuming that the change in $T_{k, \nu}$ is small compared to $Q_{k, \nu}$. As the resulting equations are linear, we can use a least-squares algorithm in all the steps. Since we require that every coefficient for which we fit is positive (all $a_{i, k}, T_{k, j}$, and N_b), we use the nonnegative least-squares solver (NNLS) of Lawson & Hanson (1974). Our data sample contains objects with bad data points or with heavy AGN contamination, so we adjust the templates using only the 97% of the galaxies with the best fits.

3.2. Bolometric Luminosities and Template Normalization

We normalize the templates to have a constant “bolometric” luminosity of $10^{10} L_\odot$ over the wavelength range from $\lambda_{\text{min}} = 0.2$ to $\lambda_{\text{max}} = 10 \mu \text{m}$ and to be at a distance of 10pc. The “bolometric” luminosity we use is defined as

$$L_{\text{bol}} = 4\pi D_l^2 \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \frac{d\lambda}{\lambda^2} f(\nu) \, d\lambda,$$

where $f(\nu)$ is the observed SED of the object and D_l is its luminosity distance. Since the normalizations of the templates are the same, the total luminosity of a galaxy is simply

$$\frac{L_{\text{bol}}}{10^{10} L_\odot} = \sum_k a_k,$$

where the a_k are the galaxy weight coefficients of equation (2).

3.3. K-Corrections

We can also use the templates to calculate K-corrections (Oke & Sandage 1968; Hogg et al. 2002) for virtually any band as long as it is inside the wavelength range of the SED. This approach is similar to the one taken by Blanton et al. (2003a; also see Blanton & Roweis 2007).

When observing a galaxy through a certain bandpass, the portion of the rest-frame SED of the object sampled by the bandpass will depend on the redshift of the object. The K-correction can be defined as the correction needed to transform the observed magnitude through bandpass b of an object at redshift z to the magnitude we would measure for an object with the same SED and the same apparent bolometric magnitude but located at redshift z_0. We can write it as

$$m_b(z) = m_b(z_0) + K_b,$$

with the K-correction K_b defined as

$$K_b = -2.5 \log \left\{ \frac{1 + z}{1 + z_0} \int_0^\infty \frac{R_b(\lambda)/\lambda}{f[(1 + z)\nu]} \, d\lambda \right\} \left\{ \frac{1 + z}{1 + z_0} \int_0^\infty \frac{R_b(\lambda)/\lambda}{f[(1 + z_0)\nu]} \, d\lambda \right\},$$

where $f(\nu)$ is the rest-frame SED of the object in units of energy per unit area per unit time per unit wavelength. Usually, $z_0 = 0$, so that the magnitude is corrected to the rest frame. One alternative, adopted by the SDSS survey, is to set $z_0 = 0.1$, corresponding to the mode of their redshift distribution, as this minimizes the level of the corrections. Tables 1 and 2 show the absolute magnitudes of the templates as a function of redshift for the three- and four-template model, respectively, we discuss in §4. They can be used to determine K-corrections for each of the AGES bands as well as other commonly used ones (see captions for more information).

3.4. Photometric Redshifts

Once we have derived the templates, it is very easy to estimate photometric redshifts for galaxies with fluxes f_b. For a given redshift, we find the best combination of the basis templates by minimizing

$$\chi^2(z, a_k) = \sum_b \left[\frac{f_b - c N_b(10 \text{ pc}/D_l)^2}{} \right] \sum_\lambda S_{b, \lambda}(z) T_{k, \nu}(z) \right]^2,$$

where $S_{b, \lambda}(z)$ is equal to $S_{i, b, \lambda}$ from equation (4), to solve for $a_k(z)$. We continue to require that $a_k(z) \geq 0$ and find the solution with the NNLS algorithm. Then, with a grid search on the redshift values, we can obtain the optimal redshift for the galaxy.

We included a luminosity prior in our model to avoid selecting improbable luminosities as the best fits. Moreover, at very low redshifts, luminosity is a better distance measure than color. We set the probability for redshift z to be

$$P(z) \propto e^{-\chi^2(z)/2} \Phi(M) \, dV_{\text{com}}(z),$$

where $\Phi(M)$ is the luminosity function, the probability per unit of comoving volume for a galaxy to have absolute magnitude M, and dV_{com} is the comoving volume per unit redshift as a function of redshift. We assume the R-band luminosity function from the Las Campanas Redshift Survey (Lin et al. 1996), which is parameterized by a Schechter function (Schechter 1976) with $\alpha = -0.7$ and $M_\star = -21.4$. Our estimates might be improved by the
use of spectral-type priors (Benitez 2000; Feldmann et al. 2006), but they are not included in our present implementation. The K-corrections in Tables 1 and 2 can also be used to estimate photometric redshifts (see caption for more information).

4. RESULTS

4.1. Templates

Following the procedure outlined in § 3.1, we fit a model based on the three modified CWW templates described in § 3.1 to the AGES galaxy sample, using the photometry for the 11 bands described in § 2. The top panel of Figure 2 shows the number of objects used to derive the templates as a function of wavelength and the response curves of our 11 filters. The peaks in Figure 2 correspond to the mean wavelengths of the filters displaced by the redshift mode of our sample (C24/0.2). Given our standard template resolution, 160 logarithmically spaced wavelengths from 0.2 to 10 \(\mu \text{m} \), these models have \(N_{\text{dof}} = 90,669 \) degrees of freedom (dof). We fit the data assuming the magnitude uncertainties are the larger of the measured errors and 0.05 mag. This minimum error was imposed so that low-redshift galaxies with very small formal uncertainties did not dominate the fits.

To choose an appropriate smoothing weight \(\eta \), we first fit the templates for a range of values. Figure 3 shows the best-fitting templates for different weights \(\eta \), the \(\chi^2 \) of each fit, and the residuals when compared to their initial guesses. In an ideal world, we would simply use the value of \(\eta \) that gives \(\chi^2 / N_{\text{dof}} = 1 \). Unfortunately, we have imperfect errors for the data (e.g., bad data points and systematic errors from seeing variations) and imperfect templates that cannot encompass all physical parameters of real galaxies, so we are forced to adjust \(\eta \) on an empirical basis. Fortunately, the results are not very sensitive to our choice, provided it is reasonable. With little smoothing (\(\eta = 0.1 \)) we obtain a relatively low \(\chi^2 \) but find very unnatural, rapidly oscillating spectra. On the other hand, very heavy smoothing (\(\eta = 10^{-4} \)) gives spectra that are not significantly different from their initial guesses and have significantly higher \(\chi^2 \). Figure 4 shows the goodness of fit as a function of the smoothing weight, where we use a renormalized fit statistic defined such that \(\chi^2 \) in the limit of no smoothing (\(\eta \to \infty \)). Clearly, we want a value of \(\eta \) near the zone of the steep decrease in \(\chi^2 \). More specifically, we want a value of \(\eta \) between approximately \(10^{-2} \) and \(10^{-3} \) to ensure that the templates have changed enough to fit the data well and that we have not introduced any unphysical oscillations. Since the photometric redshifts, the K-corrections and the bolometric luminosities are not very sensitive to this parameter as long as it is in this range, we choose \(\eta = 0.004 \) for our standard models. The resulting templates are shown in Figure 5 and are provided in Table 3. They
produce a χ^2 of 201,414, which for the 90,669 dof available gives $\chi^2/N_{\text{dof}} = 2.22$. The output templates are substantially different from our initial modified CWW ones and wildly different from the Bruzual & Charlot (2003) extended CWW templates. The fitted E template has a lower ratio of optical and mid-infrared to near-infrared emission, and the Sbc and Im templates have stronger PAH emissions in the mid-infrared.

Even though the three-template model fits the data well, there is no physical reason why three templates should be enough to reconstruct the spectra for all galaxies in the sample. In particular, the initial templates are either actually star-forming (Sbc, Im) or have had no recent star formation (E)—there is no intermediate-age template. We tested a model with a fourth template whose prior was a CWW E template combined with an A0 stellar spectrum from the Pegase.2 libraries (Fioc & Rocca-Volmerange 1997) to mimic an E+A/K+A spectrum. Since the dependence of the χ^2 deviations should not be extremely dependent on the types of templates that we are trying to fit, we will use $\eta = 0.004$, as above. The resulting templates are provided in Table 4 and produce a χ^2 of 146,410, which for the 75,028 dof available gives $\chi^2/N_{\text{dof}} = 1.95$.

Figure 5 shows the best-fit three- and four-template models compared to their initial guesses. They are clearly very different from their initial guesses. While the best-fit elliptical and Sbc templates do not differ significantly from the previous case, the Im is very different. Even though Figure 4 shows that adding an additional template significantly reduces the χ^2 values, the formal improvement from adding the fourth template is only about 19 σ based on the F-test. Moreover, as we shall see in \S 4.3, adding the extra component also creates problems.

Compared to common template SEDs used in the literature, these templates do a significantly better job of tracing the observed color–color distribution of galaxies. Figures 6 and 7 show the color distributions of the AGES galaxies compared to the color ranges permitted by our basis of templates in the optical and mid-IR bands, respectively, for four redshift ranges. For comparison, we also show the optical color ranges spanned by six commonly used templates: the CWW E, Sbc, Scd, and Im and the Kinney et al. (1996) SB1 and SB2. The older templates represent the colors of galaxies poorly, especially in the redshift range 0.2–0.4, where the Sbc spiral template differs significantly from the observations. Notice that they span lines instead of full areas because they are single-color points smeared by the redshift range. This can be somewhat overcome by interpolating between the templates, but success in performing this correction is highly dependent on the implementation of the interpolation scheme. In the mid-IR, we show for comparison the colors spanned by the Bruzual & Charlot (2003) extended CWW templates. These clearly do a very poor job reproducing the observed color–color distribution. In this same figure, note that the mid-IR distribution of galaxies at low redshift is strongly bimodal, resembling the $g-r$ color distribution (e.g., Strateva et al. 2001; Blanton et al. 2003b; Madgwick et al. 2003; Bell et al. 2004).

Finally, it should be noted that while fitting the templates we also fitted for corrections to the nominal zero points of each of the AGES bands, relative to the B_{SFB} band. The zero points used are 3627.5, 3009.9, 2408.8, 3631.0, 1594.0, 666.7, 651.2, 277.5, 179.5, 116.6, and 63.1 Jy for the B_w, R, I, z', J, K_s, K, $C1$, $C2$, $C3$, and $C4$ bands, respectively. The correction factors (relative to B_{SFB}) are 1.00, 1.01, 1.02, 1.03, 0.97, 1.00, 1.00, 1.06, 0.98, 1.01, and 1.03, respectively (the large discrepancy for the IRAC bands was also noted by Brodwin et al. [2006], and it seems to be related to aperture corrections for the IRAC PSF). In general, these should be viewed as corrections to a common mean photometric aperture rather than errors in the zero-point calibrations. Note that we cannot determine the absolute corrections, since we are also fitting for the fluxes of the galaxies. These corrections could be improved by considering seeing variations between the individual observations, but we will not pursue this question at present.

4.2. K-Corrections

As mentioned above, Blanton et al. (2003a) followed an approach similar to ours to determine K-corrections. To test our code, we compare our K-corrections for the AGES galaxy sample with those from the kcorrect v4.1–4 code of Blanton et al. (2003a). Note that for this comparison we use the four-template basis model, as it provides a better fit to the SEDs if the redshift is known (see \S\S 4.1 and 4.3).

Figure 8 shows the comparison for the B_{w}, R, I, J, z, and K bands at low ($z < 0.3$) and high ($z > 0.3$) redshift. We do not examine the IRAC channels or use them to fit the SEDs, since kcorrect v4.1–4 cannot model mid-IR fluxes. In general, the agreement is good, with a typical difference of less than about 0.1 mag. The band with the largest dispersion is B_{w}. All bands show some deviation in the mean of a few hundredths of a magnitude, suggesting that there are some differences between the templates used by the codes. Notice that there is a smaller deviation at lower than at higher redshifts, which is expected since K-corrections tend to be bigger at higher redshifts and kcorrect was largely calibrated at lower redshifts than the AGES sample.

4.3. Photometric Redshifts

Using the methods described in \S 3.4, we obtain photometric redshifts for the AGES galaxy sample using the best-fit E, Sbc, and Im templates described in \S 4.1, without considering the E+A
We have so many sources that there is no particular reason to have a separate training set. The top left panel of Figure 9 shows a density contour plot of the photometric redshifts, z_p, compared to the spectroscopic ones, z_s, for the AGES galaxy sample. We show the dispersion in z_s at fixed z_p, since this is the

TABLE 3

λ (μm)	E	Sbc	Im
0.1000	0.1086	3.8414	18.6522
0.1029	0.1239	4.8336	23.4179
0.1059	0.1220	4.8676	23.4784
0.1090	0.1267	5.2671	23.4784
0.1122	0.1267	5.3591	25.2659

Notes.—Table 3 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content. The electronic table presents the flux per unit frequency F_ν of the three components model best-fit template spectra as a function of wavelength. Templates are normalized to be at a distance of 10 pc and to have an integrated luminosity between the wavelength boundaries of $10^{10} L_\odot$.

TABLE 4

λ (μm)	E	Sbc	Im	E+A
0.1000	0.1430	3.5994	27.7314	0.0822
0.1029	0.1632	4.5298	34.8230	0.0942
0.1059	0.1604	4.5628	34.9195	0.0929
0.1090	0.1670	4.9381	37.3873	0.1383
0.1122	0.1665	5.0253	37.5922	0.1935

Notes.—Table 4 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content. The electronic table presents the flux per unit frequency F_ν of the four components model best-fit template spectra as a function of wavelength. Templates are normalized to be at a distance of 10 pc and to have an integrated luminosity between the wavelength boundaries of $10^{10} L_\odot$.

Fig. 5.—Templates derived using the algorithm described in § 3.1 for the three- (dashed lines) and four- (dotted lines) template models compared to their initial guesses (solid lines). All templates are normalized so that they have the same integrated energy from 0.5 to 2 μm.
distribution relevant for characterizing the errors in photometric redshifts. The central contours are tightly centered on the $z_p = z_s$ line, so the algorithm works well for the typical galaxy. The results for this are summarized in Table 5, as the “three-template/complete sample,” where we give the standard dispersion $\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{z_p^i - z_s^i}{1 + z_s^i} \right)^2}$, \(\sigma_z \), defined by equation (14) after clipping the sample to the 95% of the galaxies with the best $|z_p - z_s|$ to eliminate outliers. The distribution of errors has very non-Gaussian tails. For example, if we sort the galaxies by their fitted SED elliptical component fraction, \hat{e}, defined as

$$\hat{e} \equiv \frac{a_e}{a_e + a_s + a_i},$$

(15)

where a_e, a_s, and a_i are the E, Sbc, and Im template components of the galaxy SED, we find that $\sigma_z/(1 + z) = 0.047$ for the galaxies with $\hat{e} > 2/3$ and $\sigma_z/(1 + z) = 0.071$ for $\hat{e} < 1/3$.

Recently, Brodwin et al. (2006) estimated redshifts for galaxies and AGNs in the IRAC Shallow survey using a hybrid algorithm between SED fitting and empirical neural networks, calibrated with AGES spectroscopic redshifts and photometry similar to that used in here. Due to the lack of dust/PAH features in their templates, SED fitting was only used for galaxies with $C3, C4 < 1$, which corresponds to galaxies with little or no star formation, while neural networks were used for the rest of the galaxies and for the AGNs. Eliminating the need to use different methods for star-forming and quiescent galaxies was one of the motivations for our work. With this hybrid approach, Brodwin...
Fig. 7.—Color-color distributions of the AGES galaxy sample for four different redshift ranges in the mid-IR bands. Contours are defined in the same way as in Fig. 6. For comparison, we show the Bruzual & Charlot (2003) extended CWW templates in the same color coding as in the optical. Notice that the E, Sbc, and Scd colors sometimes overlap, since they are very similar in this wavelength range. Also note that the low-redshift galaxy distribution is strongly bimodal.

Fig. 8.—Histograms of the differences between the K-corrections determined here and those determined by $k_{correct}$ v4.1.4 of Blanton et al. (2003a) for the AGES galaxy sample in all optical and near-IR AGES bands (K and K_s have been combined into a single K band) for redshifts lower (left) and higher (right) than 0.3. Each panel also gives the standard deviation between the methods σ, the mean μ of ΔK_{corr} and the values of $|\Delta K_{corr}|$ that encompasses 68.3%, 95.5%, and 99.7% of the objects. The IRAC bands are not considered since $k_{correct}$ v4.1.4 cannot model mid-IR fluxes.
et al. (2006) obtained $\sigma_z/(1 + z) = 0.105$ and $\Delta z = 0.047$ for galaxies, about a factor of 1.8 and 1.2 larger than what we obtained, although the two galaxy samples are not identical since Brodwin et al. (2006) used subset of AGES galaxies with measured C2 magnitudes rather than the full sample.

We repeated the calculations using the four-template model, as shown in the top right panel of Figure 9. The distribution statistics are again summarized in Table 5. The dispersion when using four templates is equal to that for three templates, while Δz is larger. This seems to show that even though the data are better fit using four templates rather than three, the freedom introduced by including an extra template broadens the photo-z distribution. Presumably, this occurs because the four-template model allows colors that expand beyond the observed range for galaxies (see Figs. 6 and 7), while the three-template models do not.

We built the templates excluding the 3% of galaxies most poorly fit by them (see Fig. 4). These poor fits are mostly caused by extreme star formation, AGN contamination, and bad data. Figure 10 shows some examples of the worst- and best-fit galaxies. The flat continuum in the mid-infrared is the signature of an AGN (Stern et al. 2005). Figure 11 shows that galaxies that are poorly fit by the templates tend to have less reliable photometric redshifts, so we examined the accuracy for galaxies whose best-fit photometric redshift yields a χ^2 smaller than the 90th percentile of its expected value. This criteria eliminates 25% of the original sample. As summarized in Table 5 and illustrated in the bottom panels of Figure 9, these χ^2-limited samples have distribution widths that are a factor of 1.2–1.4 smaller than those for the sample as a whole, and by similar amounts for the 68.3, 95.5, and 99.7% intervals. We tried improving the photometric redshifts for objects with bad data by sequentially dropping individual magnitude measurements during the template fitting. While this greatly improved the fits, the redshift accuracy $\sigma_z/(1 + z)$ worsened by 5%–10% when we considered the full sample. For objects that have AGN contamination, photometric redshifts could be improved by adding an AGN template when the galaxy templates fit poorly.

In these calculations we forced all a_i coefficients to be positive both while building the templates and while estimating the photometric redshifts. It is possible that this limitation might worsen the photometric redshifts, essentially by limiting the permitted range of star formation rates. When we tested this by recalculating the photometric redshifts without forcing $a_i \geq 0$, we found that the dispersion in the redshifts increases by factors of 1.3 and 1.5 for the three- and four-template models, respectively. The problem is that the added freedom allows the accessible color space to expand well beyond that occupied by galaxies, thereby allowing good fits at bad redshifts. We also investigated the effects of the luminosity priors on the photometric redshifts and found out that while they improve the accuracy, the gain is marginal (a 5%–10% effect in all cases).

To further test our photometric redshift determinations, we obtained the five bands of SDSS photometry for the galaxies in the AGES sample and estimated their redshifts based solely on this information. We find a dispersion of $\sigma_z/(1 + z) = 0.086$ and $\Delta z = 0.052$, again with highly non-Gaussian tails. While these values are worse than what we had previously obtained for the same sample, as they are based on a smaller number of photometric bands, they prove the validity of our templates and algorithms. Csabai et al. (2003) estimated photometric redshifts for galaxies brighter than $r' = 18$ in the early data release of SDSS with a method similar to ours and found a standard deviation of $\sigma_{\text{rms}} = 0.045$. If we limit our SDSS sample to that magnitude, we find a very similar result of $\sigma_{\text{rms}} = 0.048$.

Table 5

Photometric-Spectroscopic Redshift Comparison Summary

Templates and Sample	$\sigma_z/(1 + z)$	Δz	68.3%	95.5%	99.7%	Median
Three-template/complete sample	0.060	0.038	0.039	0.126	0.348	0.016
Three-template/χ^2-limited	0.044	0.030	0.033	0.088	0.245	0.020
Four-template/complete sample	0.060	0.039	0.042	0.119	0.335	0.014
Four-template/χ^2-limited	0.048	0.033	0.037	0.092	0.268	0.023

Notes. — Summary of the photometric redshifts calculations for the AGES photometric galaxy sample. For each case discussed in § 4.3 we present $\sigma_z/(1 + z)$ (as defined in eq. [14]), Δz [the 95% clipped distribution $\sigma_z/(1 + z)$], the ranges of $|z_p - z_s|/(1 + z_s)$ encompassing 68.3%, 95.5%, and 99.7% of the distribution and the median value of $z_p - z_s$.

LOW-RESOLUTION SPECTRAL GALAXY TEMPLATES

Fig. 9.—Comparison of photometric and spectroscopic redshifts. For a fixed photometric redshift, the solid line shows the median of the spectroscopic redshifts, while the dotted and dashed lines contain the 68.3% and 90% of the distribution, respectively. The two redshifts are equal, $z_p = z_s$, on the diagonal dot dashed line. (a) Comparison for the three-template model and (b) for the four-template one. For the bottom panels, (c) and (d), we have only included the 75% of the objects for which there is a probability greater than 10% of obtaining a χ^2 larger than that of the best fit.

5. Spectral Classifications

We can now use the SED models for other applications, such as studying the spectral distribution of the galaxies in the sample. For this section, we use the full photometric galaxy sample of the Boötes field up to $I \leq 21$ mag, as derived from NDFWS, FLAMEx, zBoötes, and IRAC observations. This “photometric” galaxy sample consists on approximately 80,000 galaxies in total,
photometry in the galaxies with AGN contamination. The bottom left panel is a galaxy with bad
justifies the /C31 ¼ e other covers a broad range of star-forming galaxies. The spike at
one peak consists of nearly pure elliptical galaxies, while the
all model SED (solid line) and the E (dashed line), Sbc (dotted line), and Im (dot-dashed line) contributions to the model SED. The top panels show the fit for galaxies with AGN contamination. The bottom left panel is a galaxy with bad photometry in the z' band. Finally, the bottom right panel shows the median fit for comparison.

of which 69,000 are usable because they have photometry in at least 4 of the 11 bands described in §2 and have not been flagged by AGES for either having an AGN contribution or being near a bright star. We estimate photometric redshifts using the algorithm of §3.4.

Figure 12 shows the distribution of galaxies as a function of their relative elliptical component ˆe (see eq. [15]). For this figure and for the rest of this section, we use the three-template model for the reasons discussed in §4.3. There are two components—one peak consists of nearly pure elliptical galaxies, while the other covers a broad range of star-forming galaxies. The spike at ˆe = 0 is a consequence of requiring ak ≥ 0 and contains ~20% of the objects. If we allow negative spectral coefficients, the distribution develops a smooth tail (see Fig. 12) where the best-fitting SEDs subtract an E component from the Sbc/Im templates to reduce the 1.6 µm emission peak. We inspected spectra of galaxies in the spike and found that it is dominated by galaxies with obvious evidence of star formation, plus a number of galaxies with photometry issues (~10%). If we modify the templates by subtracting 20% of the E template from the two star-forming ones, the spike shrinks, but at the cost of making the Sbc template unphysical and worsening the photometric redshifts. If we modify the components in this way and then refit the templates to the AGES sample using the method of §3.1, they move back toward the original solution. A possible reason for this is the lack of a second parameter, such as metallicity, to differentiate between star-forming galaxies, as the templates will converge to the typical galaxies. Lack of data also contributes to the formation of the spike. If we restrict the sample to galaxies with six or more bands of photometry, the fraction of galaxies in the spike goes down by about 20%. Photometric redshift error also contribute, since the spike drops by 20% if we use spectroscopic redshifts and by 50% if we apply the χ² cuts of §4.3 (see Fig. 12).

Figure 13 shows the distribution of the E template fraction ˆe of the SEDs as a function of their bolometric luminosity L for three different redshift ranges. Note that while we use the 6.0'' aperture fluxes to fit the templates, we correct to the total flux for the bolometric luminosity. We do this by scaling the best-fit SED by the ratio of the Kron-like SExtractor I-band magnitude to the 6.0'' one. In practice however, the I-band Kron-like photometry is sometimes affected by nearby bright stars beyond the AGES flagging, producing excessively bright magnitudes. To deal with this, we follow the approach of D. J. Eisenstein et al. (2008, in preparation) and use a total I-band magnitude, produced from a weighted mean between the Kron-like measurement and the predicted one from the R-band measurement and the 6.0'' colors, that favors the faintest of the two. To account for the volume and depth
limitations of the survey, we use the V/V_{max} method (Schmidt 1968) to properly weight each bin for the effects of the magnitude limits. The density of each bin is given by

$$n = \sum_i \frac{1}{\min(V_{\text{max}}^i, V_{\text{max}}) - V_{\text{min}}},$$

where V_{max}^i is the comoving volume to which galaxy i can be detected and V_{max} and V_{min} are the volumes corresponding to the upper and lower edges of the redshift bin. The V_{max}^i are easily calculated with our algorithm, since it only depends on the SED of the galaxy and the magnitude limits of the survey. In this figure we do not show the galaxies in the $\hat{e} = 0$ spike. As expected, we see a well-defined clump of galaxies with a low star formation rate in all three redshift ranges, and also a less well-defined locus of star-forming galaxies that spans a broader luminosity range. The latter group becomes less well defined at higher redshifts. Notice that in the lowest redshift bin we cannot map the high star formation peak well, mostly because of the problems discussed above with the blue spike of Figure 12.

Using the V/V_{max} method, we also estimated B-band luminosity functions for the NDWFS Boötes field. We limited the survey to a central area of approximately 5.3 deg2 that is uniformly sampled in all bands and contains \sim43,000 galaxies to $I < 21$. This is a conservative limit of the usable survey area, but it does not affect our results. As before, we excluded galaxies with a possible AGN contamination (1200 objects), photometry in fewer than four bands (1350), and near bright stars (2400), leaving us with a sample of approximately 39,000 galaxies. Using our templates and algorithms, we predict the B-band (Bessell 1990) absolute magnitude of each galaxy. We corrected for the dropped objects as a simple sampling fraction correction. Naively implemented, the low-luminosity tail of the LF estimates is dominated by $L \sim L_*$ objects with “catastrophic” photo-z errors. As discussed in §4.3, a χ^2 cut can be implemented to minimize such systematic failures. After some iterations, we decided on eliminating the worst 10% of the objects, leaving the sample with \sim35,000 galaxies. This cut provides a good balance between minimizing the statistical uncertainties from the diminished number of objects and the systematic uncertainties from the photometric redshifts. Our estimated
luminosity functions, scaled to the total number of galaxies in the selected subfield (that is the ones used for the estimation plus the ones with bad fits and the ones near bright stars) are shown in Figure 14 for four redshift ranges and for four spectral type subdivisions: $0 < \hat{e} < 0.4$ (high star formation rate), $0.4 < \hat{e} < 0.8$ (intermediate star formation rate), and $0.8 < \hat{e} \leq 1.0$ (low star formation rate). We estimated the errors by bootstrap resampling. This figure also shows the best-fit Schechter functions (Schechter 1976) for each case, with the parameters summarized in Table 6. We fit the Schechter functions only over the magnitude ranges for which the functional form is appropriate, dropping the bins affected by the catalog magnitude limit and regions where there is an apparent upturn at faint magnitudes. This upturn is probably produced by a small artifact amplified by the $1/V_{\text{max}}$ weights. These present results are also limited by the photometry, with problems in the total (Kron) magnitudes for objects with bright neighbors affecting mostly the bright ends.

Brown et al. (2007) estimated the B-band luminosity functions of red galaxies in the NDWFS field. The left panels of Figure 15 show their results compared to our $0.8 < \hat{e} \leq 1.0$ sample. Due to the different ways in which the samples were selected, we only expect them to agree on the bright end, and not on the faint end slope or in the overall amplitude ϕ_*. Brown et al. (2007) defined their sample using the evolving and luminosity-dependent rest-frame $U - V$ color criterion (eq. [3] of Brown et al. 2007):

$$ U - V > 1.40 - 0.25 - 0.08(M_V - 5\log h + 20.0) $$

$$ - 0.42(z - 0.05) + 0.07(z - 0.05)^2, $$

which corresponds to the expected location of the red sequence in the $(M_V, U - V)$ plane displaced to the blue by 0.25 mag. Our criteria, on the other hand, correspond to a nonevolving and luminosity-independent $U - V$ color $(U - V \gtrsim 1.1)$, so, by definition, our sample will include fewer faint galaxies than Brown et al. (2007). Moreover, the evolution of the criteria set by Brown et al. (2007) follows the evolution of the red sequence, becoming bluer with increasing redshift, so we expect the differences between the two luminosity functions to occur at brighter magnitudes at higher redshifts, as seen in Figure 15.

Wolf et al. (2003) carried out a similar analysis to ours, using galaxies from COMBO-17 with photometric redshifts and classifying them by their overall spectral shape rather than their colors. In particular, their type 1 sample, defined as all galaxies with...
Fig. 15.—Early-type galaxy luminosity functions for the redshift ranges 0.2–0.4 (bottom), 0.4–0.6 (middle), and 0.6–0.8 (top) from this work (solid lines and points) and from Brown et al. 2007 (left) and Wolf et al. (2003) (right, dashed lines). Note that the shapes agree well for galaxies brighter than M_C. The difference in the fainter end and in the normalization ϕ_0 with the functions of Brown et al. (2007) come from the different selection criteria (see § 5 for details).

TABLE 6
NDWFS Boötes Field B-Band Luminosity Functions

$\hat{\epsilon}$ Range	z Range	$M^* - 5 \log h$	α	ϕ^* ($h^3 \text{Mpc}^{-3} \text{mag}^{-1}$)
$0.8 < \hat{\epsilon} < 1.0$	$0.0 < z < 0.2$	-18.99 ± 0.12	0.22 ± 0.16	$8.95 \pm 0.38 \times 10^{-3}$
	$0.2 < z < 0.4$	-19.48 ± 0.07	0.21 ± 0.10	$4.35 \pm 0.11 \times 10^{-3}$
	$0.4 < z < 0.6$	-19.68 ± 0.02	0.21 ± 0.00	$3.86 \pm 0.07 \times 10^{-3}$
	$0.6 < z < 0.8$	-19.73 ± 0.03	0.21 ± 0.00	$2.15 \pm 0.08 \times 10^{-3}$
$0.4 < \hat{\epsilon} < 0.8$	$0.0 < z < 0.2$	-19.00 ± 0.17	-0.64 ± 0.19	$8.69 \pm 1.28 \times 10^{-3}$
	$0.2 < z < 0.4$	-19.45 ± 0.08	-0.23 ± 0.10	$5.19 \pm 0.22 \times 10^{-3}$
	$0.4 < z < 0.6$	-19.71 ± 0.02	-0.23 ± 0.00	$5.33 \pm 0.10 \times 10^{-3}$
	$0.6 < z < 0.8$	-19.73 ± 0.02	-0.23 ± 0.00	$4.64 \pm 0.16 \times 10^{-3}$
$0.0 < \hat{\epsilon} < 0.4$	$0.0 < z < 0.2$	-18.86 ± 0.07	-1.30 ± 0.02	$13.85 \pm 1.07 \times 10^{-3}$
	$0.2 < z < 0.4$	-19.22 ± 0.08	-0.67 ± 0.11	$11.00 \pm 0.71 \times 10^{-3}$
	$0.4 < z < 0.6$	-19.72 ± 0.02	-0.67 ± 0.00	$9.14 \pm 0.19 \times 10^{-3}$
	$0.6 < z < 0.8$	-19.79 ± 0.02	-0.67 ± 0.00	$9.26 \pm 0.34 \times 10^{-3}$
$0.0 < \hat{\epsilon} < 1.0$	$0.0 < z < 0.2$	-19.64 ± 0.05	-1.23 ± 0.02	$15.59 \pm 0.86 \times 10^{-3}$
	$0.2 < z < 0.4$	-19.55 ± 0.05	-0.54 ± 0.06	$18.07 \pm 0.67 \times 10^{-3}$
	$0.4 < z < 0.6$	-19.87 ± 0.01	-0.54 ± 0.00	$17.13 \pm 0.21 \times 10^{-3}$
	$0.6 < z < 0.8$	-20.00 ± 0.01	-0.54 ± 0.00	$12.10 \pm 0.25 \times 10^{-3}$

Note.—Best-fit Schechter function parameters for the luminosity functions of the NDWFS Boötes field.
spectral types from ellipticals to Sab spirals, is similar to our low star formation rate sample. We recalculated the luminosity functions using the COMBO-17 survey B-band for our early-type sample, again keeping α fixed to the value from the $0.2 < z < 0.4$ redshift bin, and found in general a good agreement with Wolf et al. (2003). The right panels of Figure 15 show our luminosity functions compared to those of Wolf et al. (2003) in the three redshift ranges where we overlap. The agreement is very good for the two lowest redshift ranges in the figure, but somewhat worse for the highest one, although still compatible. A comparison with the rest of their results is not straightforward, as there is no trivial match between their selection criteria and ours for groups other than their type 1.

6. CONCLUSIONS

We have built an optimized basis of low-resolution spectral templates for the wavelength range from 0.2–10 μm that accurately reproduce most galaxy SEDs. We used a variant of the Budavari et al. (2000) method to fit the SEDs of 17,000 AGES galaxies with photometry in at least 6 of 11 possible bands. We considered a three-template basis starting from the CWW E, Sbc, and Im templates, and a four-template basis in which we added an E+A poststarburst component. One novel feature of our approach is that we model each galaxy as a nonnegative sum of templates, which markedly improves the match of the model to the observed color range of galaxies (see Figs. 6 and 7) and significantly improves photometric redshift estimates.

We applied these optimized templates to calculate accurate photometric redshifts. We find that while the four-template models fit the galaxy SEDs better than the three-template models when the redshift is known, they broaden the photometric redshift errors by approximately 50%. Using the three-template basis, we showed that the accuracy of our method is $\sigma_z/(1+z) = 0.060$ ($\Delta z = 0.038$), with the accuracy being highest for early-type galaxies. Many of the galaxies with poor photometric redshift estimates are also poorly fit by the templates because of either bad photometric data points or AGN contamination. If we consider only galaxies having χ^2 values smaller than the 90th percentile of their expected value, the accuracy improves to $\sigma_z/(1+z) = 0.044$ ($\Delta z = 0.030$). This is somewhat better than that obtained by Brodwin et al. (2006) for a very similar data set but based on a hybrid approach that mixed SED fitting and neural networks. Our results are somewhat worse than those obtained by the ZEBRA code (Feldmann et al. 2006) for a COSMOS (Scoville et al. 2006) galaxy sample, but this is probably due to the very small number of degrees of freedom in their data set after fitting six redshift-dependent templates to a sample of only 866 galaxies that is then used to test those templates.

Besides photometric redshifts, we also applied these optimized templates to calculate accurate K-corrections and bolometric luminosities. We compared the K-corrections to those obtained using the kcorrect v4...1.4 code of Blanton et al. (2003a) for the AGES galaxy sample and found a very good agreement between them. We have implemented our algorithms for calculating bolometric luminosities, K-corrections and photometric redshifts, including our optimized template basis, in a public code\(^{10}\) that can carry out the calculations for any set of filters provided by the user.

We applied these algorithms to the photometric galaxy sample of the NDWFS Boötes field with $I \leq 21$ mag ($\sim 69,000$ galaxies) and studied the galaxy luminosity distribution as a function of redshift and star formation (parameterized by the early-type template fraction \hat{q}). We find that our algorithms reproduce the bimodal distribution of red and blue galaxies that has been observed as a function of color and magnitude in the SDSS (Strateva et al. 2001; Blanton et al. 2003b; Kauffmann et al. 2003), DEEP2 (Madgwick et al. 2003; Weiner et al. 2005), and COMBO-17 (Bell et al. 2004) surveys, for example. We have also shown that the mid-infrared color-color distribution of galaxies is strongly bimodal, resembling its optical counterpart, except that rather than a red clump and a blue cloud, it has a blue clump and a red cloud (Fig. 7). Finally, we used these algorithms to estimate the B-band luminosity functions of the field from a central region of the survey containing about 43,000 galaxies. Our approach allows us to easily study them as a function of redshift and star formation. Our results, summarized in Figure 14 and Table 6, agree broadly with the results of Brown et al. (2007) and Wolf et al. (2003).

\(^{10}\) Code available at http://www.astronomy.ohio-state.edu/~rjassef/lrt.

REFERENCES

Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Budavari, T., Szalay, A. S., Connolly, A. J., Csabai, I., & Dickinson, M. 2000, AJ, 120, 1588
Coleman, G. D., Wu, C.-C., & Weedman, D. W. 1980, ApJS, 43, 393
Collister, A. A., & Lahav, O. 2004, PASP, 116, 345
Connolly, A. J., et al. 1995, AJ, 115, 1692
Connolly, A. J., et al. 1995, AJ, 110, 2655
Cool, R. J. 2007, ApJS, 169, 21
Csabai, I., Connolly, A. J., Szalay, A. S., & Budavari, T. 2000, AJ, 119, 69
Csabai, I., et al. 2003, AJ, 125, 580
Devriendt, J. E. G., Guiderdoni, B., & Sadat, R. 1999, A&A, 350, 381
de Vries, W. H., et al. 2006, AJ, 132, 1729
Dickinson, M., et al. (The GOODS Team). 2003, The Mass of Galaxies at Low and High Redshift, ed. R. Bender & A. Renzini (New York: Springer), 324
