MUTYH the base excision repair gene family member associated with colorectal cancer polyposis

Seyed Mohammad Hossein Kashfi1, Mina Golmohammadi1, Faeghe Behboudi1, Ehsan Nazemalhosseini-Mojarad2, Mohammad Reza Zali2

1Basic and molecular epidemiology of Gastroenterology disorders Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran

ABSTRACT
Colorectal cancer is classified into three forms: sporadic (70-75%), familial (20-25%) and hereditary (5-10%). Hereditary colorectal cancer syndromes classified into two different subtypes: polyposis and non-polyposis. Familial Adenomatous polyposis (FAP; OMIM #175100) is the most common polyposis syndrome, account for <1% of colorectal cancer incidence and characterized by germline mutations in the Adenomatous polyposis coli (APC, 5q21-q22; OMIM #175100). FAP is a dominant cancer predisposing syndrome which 20-25% cases are de novo. There is also another polyposis syndrome; MUTYH associated polyposis (MAP, OMIM 608456) which it is caused by mutation in human Mut Y homologue MUTYH (MUTYH; OMIM 604933) and it is associated with multiple (15-100) colonic adenomas. In this paper we discuss MUTYH mechanism as an important member of Base Excision Repair (BER) family and its important role in polyposis condition.

Keywords: Colorectal cancer, MAP, MUTYH, Base excision repair (BER).

Introduction
It is estimated that 20,000 DNA damages occur in every cell per day (1). Gastrointestinal tract is a main target for oxidising elements which are highly mutationic (2). So colorectal cancer considered as a main cancer arises from exposure to this kind of agents. Beside Mismatch Repair (MMR) and Nucleotide excision repair (NER) Pathways which are the fundamental repair pathways interact with the mismatch pairs and aberrant nucleotide occurs in replication process, respectively, the base excision repair (BER) pathway is one of the main and primary DNA repair mechanisms that is involved in correcting the base mutations arised from oxidative, alkylation, deamination and depurination/depyrimidination damages (3). MUTYH is a DNA glycosylase and it belongs to BER family. The MUTYH protein is involved in the repair of post-replicative mispairs within DNA replication (4,5).

MUTYH function and interactions:
A human homologue of the Escherichia coli (E. coli) mutY gene was first cloned in 1996 (6), while
the identification of the functional activity of the MUTYH gene first back in 2000 (7). This gene is called MUTYH and often known as hMYH or MYH, although this is not a correct name, because MYH is the gene symbol for the myosin heavy-chain gene. MUTYH is located on the short arm of chromosome 1(1p34.1) and spans 11.2 kb. This gene is a DNA glycosylase that is involved in the repair of post-replicative mispairs and plays a critical role in base excision repair (BER) pathway (4,5). The oxidized form of guanine is 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxoG) which is considered as a frequent and stable element (8). In replication process 8-oxoG can pair with adenine as well as cytosine. The modified guanine (8-oxoG) is replicated in each round and the failure to remove the oxidized nucleotides before replication results in G: C to T: A transversion mutation (9,10).

MUTYH mediates to remove A from A: 8-oxoG mispairs (7, 11) and OGG1 the other member of BER pathway detects and then removes 8-oxoG opposite cytosine (8-oxoG: C) (12-13). Thus the cooperation of OGG1 and MUTYH together prevents G: C to T: A transversion mutation due to oxidative damages within replication process. When an aberrant base is incised and then removed, it produce a gap called Apurinic/ A pyrimidinic (AP) sites which are mutagenic and should be corrected quickly (14). Completion of the repair process requires involvement of many additional proteins. More than 8 specific proteins detect specific DNA mutations which produce a basic or Apurinic/ A pyrimidinic (AP) sites (15).

Based on proteins involved in the process of BER activity, there are two main mechanisms to repair AP site created by DNA damage: short patch repair pathway and long patch repair pathway (16).

Short-patch repair pathway involves making the association between POLB, APE1, XRCC1, PARP1, and either LIG1 or LIG3 genes. These related genes are activated when a single nucleotide insertion occurs and an AP endonuclease (also known as APE1 or APEX) incises the incorrect matched DNA at the AP site resulting in the formation of a 3’-hydroxyl end (3’OH) and a 5’ a basic sugar phosphate end (5’dRP) (17). Since MUTYH has no AP-lyase activity APE1 detects a basic site and then proceed the excision process. At the end, repair procedure of an aberrant nucleotide is accomplished by DNA ligase III (16).

A long-patch repair pathway requires PCNA, APE1, RFC, RPA, PARP1, FEN1, POLD/POLE and LIG1 for BER activity and they involve when 2-10 nucleotides mispaired in a DNA strand genes. In long patch repair pathway cleavage process accomplished by AP endonuclease (APEX1) and repair process is completed by proliferating cell nuclear antigen (PCNA) which has different types of functions include in DNA repair as well as cell cycle and DNA replication (3,18).

Among repair genes, MUTYH is the main protein that detects peculiar A:G and A: 8-oxoG mispairs on DNA helix (19).

The MUTYH protein structure consists of many functional domains such as the N-terminal domain on the 5’ side and the C-terminal domain on the 3’ side. The N-terminal domain contains the catalytic region and includes a helix-hairpin-helix (HhH), pseudo HhH and an iron-sulfur cluster loop motif, which are also common region in other BER glycosylases; the C-terminal domain on the 3’ side of the MUTYH protein structure reported to have a role in recognition of 8-oxoG and shares homology with MTH1 (member of the BER family) (20-22).

Association between MUTYH and Replication Protein A (RPA), Proliferating Cell Nuclear Antigen (PCNA), p73, p53 and APE1 has also reported in several studies (18, 23). Many papers suggested that in the damage condition, PCNA increases MUTYH activity (24-25). Association of MUTYH gene and MMR genes such as MSH6,
MSH2 and MLH1 has also been discussed (26-28). Although Most of the APC mutations produce truncated proteins, most pathogenic MUTYH variants are missense and splice site mutations and only a minority of variants are truncating mutations (29). The distribution of MUTYH mutations in MAP patients shows ethnic differences. Some variants are more common in other populations including: E480X in Indian (30), Y104X in Pakistani (31), c.1437_1439delGGA in Italian (32), c.1228_1229insGG in Portuguese (33), Q498H in German (34), and G25D and P18L in Chinese populations (35). Also, Y179C and G396D (previously known as Y165C and G382D) are two most common MUTYH mutations (80%) in Caucasian populations (30). Since only a few variants of MUTYH gene analyzed for their repair activity so far, it is recommended that other variants of MUTYH need to be examined for their involvement in pathogenesis of MAP (36).

Frequency of large deletions in MUTYH gene seem to be low and just Two papers revealed the presence of large deletions in MUTYH gene so far(5,37). Loss of heterozygosity (LOH) of 1p is frequently happening in CRC tumors with chromosomal instability (CIN) (38). Since LOH is a common event in CRC tumors with CIN, LOH in MAP tumors display a distinct pattern of loss of heterozygosity with loss of parts of chromosomes without copy number alterations termed copy-neutral loss of heterozygosity which is not a frequent event in CRC tumors with CIN (39-40). Croitoru et al showed that LOH detected in 20% of biallelic and 47% of monoallelic MUTYH mutation carriers (41). As demonstrated in several studies, microsatellite stable (MSS) is a dominant pattern of MSI in MAP tumors (42,43).

MUTYH association polyposis characterizations

Mutation in MUTYH gene causes a predisposing condition to CRC termed MUTYH association polyposis (MAP) (2,30). MAP was first reported by Al Tassan et al while they were evaluating ‘family N’. In this family three of seven siblings had a phenotype resemble with AFAP without aberrant mutation in APC gene, instead they observed that 11 tumors from three affected siblings had 18 somatic APC mutations which 15 mutations were G:C to T:A transversion mutations, this finding highlighted the possibility of deficiency in repair process of 8-oxoG mutations. They also reported that all three affecting siblings had biallelic mutation in MUTYH gene since it wasn’t detected in rest of four siblings (2). Mean age at diagnosis of MAP patients is 48 and patients have between 10 and 100 colorectal polyps. The penetrance of this syndrome is 20–80% between 50 and 80 years (42-44). The phenotype of MAP patients resembles with Attenuated Familial Adenomatous polyposis coli AFAP (AFAP; OMIM #175100) individuals (30, 44).

Diagnosis of MAP patients with cases present overlapping features or AFAP patients is difficult since they share some similarities such as number of polyps, proximal location of polyps and early onset of CRC (42-45). In MAP patients Polyps are frequently small and mostly located left-side of the colon (42). Proximal location of polyps is the key point to distinguish cases with moderate adenomatous polyps from those of sporadic (42,46). In comparison with the general population CRC risk in MAP patients, associated with 28- to 93-fold (42, 47). Histopathologically Adenomas (tubular or tubulo-villous) are detected in entire colon consider as predominant lesions in AFAP/FAP and also in MAP patients. Since serrated polyps: hyperplastic polyps, sessile serrated polyps (also referred to as sessile serrated adenomas) and traditional serrated adenomas are not present in Affected harbouring mutation in APC gene, they are common types of lesions in MAP patients (48). Finally APC genetic testing for this group of patients with serrated polyps

Gastroenterol Hepatol Bed Bench 2013;6(Suppl.1):S1-S10
 wouldn’t be informative. Tumors in MAP patients show a high frequency of distinctive somatic G:C to T:A mutations in the APC and Kras genes (2,30). GAA sequences in APC gene are the target sites for truncating mutations and this site is frequently mutated during tumorigenesis (2, 30,49). APC has 216 GAA sites in which G:C→T:A mutations could happen and result in a termination codons (2). In contrast TP53, PTCH, RB1, NF1 and VHL have fewer target sites and this makes the APC the best target than the other genes for mutagenesis in MAP tumors (49). It is notable that, in Kras gene the hot spot codon is c.34G>T at codon12 (50,51).

Screening and Management

Early detection, genetic counseling and MUTYH mutation screening are important in affected individuals and their siblings. Based on National Comprehensive Cancer Network NCCN recommendation, Colonoscopy starts at age 25 years (52) and patients with more than 10 adenomas should be referred for genetic counseling and testing procedure (52). Patients with less than 10 adenomas should be referred for follow up screening and genetic testing for this group of patients is not necessary.

Other surveillance protocol for MAP patients recommends similar screening program similar AFAP patients. Patients undergo colonoscopy every 2 years starting at 18 - 20 years and upper gastrointestinal endoscopy starts when affected is between 25 and 30 years of age (53,54).

MUTYH mutation screening is recommended for people who are diagnosed with MAP and patients who have a recessive mutation transmission and phenotype similar to AFAP. The affected may not be seen in every generation and usually have a normal parents (55,56).

First of all, the two putative codons Y165C or G382D are examined for their high incidence rate in majority of populations. Then PCR sequencing is performed for the entire coding region and intron–exon boundaries of MUTYH. The genetic testing for MUTYH in patients with multiple serrated polyps without adenomas is not recommended by NCCN(52).

There haven't been any reports to define molecular screening in patients with MAP in Iran yet and Research is ongoing to determine APC and MUTYH variants in FAP patients. But screening of mutations in other Genes associated with CRC carried out and other repair genes like MLH1 and MSH6 have been studied (57-60).

Prevalence

Approximately 0.3%–1% of all colorectal cancers is associated with MAP (41, 42).

It is estimated that 1% to 2% of the general population has a mutation in MUTYH. There isn’t a peculiar criterion to classify nonpolyposis MUTYH-associated CRC phenotype, so it has been recommended that all early-onset CRC cases should be evaluated for MUTYH mutations (61). Several Studies demonstrated that up to 30% of biallelic MUTYH mutation carriers develop CRC although they do not present a polyposis condition (62). There has also been reported some cases with MAP and no polyps whereas in some cases more than 500 colorectal polyps observed (44). APC germline mutations are not present in 10–30% of FAP patients and in up to 90% of AFAP patients (63). In another word, APC mutations are detected in 10–22% of AFAP cases and biallelic germline mutation of MUTYH were identified in 15–30% of AFAP patients and approximately 7–22% of FAP patients. Biallelic MUTYH mutations can be detected in 30% of APC mutation-negative patients. (30, 55, 64, 65).

Biallelic germline mutations in MUTYH are common in patients with negative APC related FAP patients and in MAP cases but recently studies are focused on monoallelic MUTYH variants in CRC patients and try to identify the
association between monoallelic mutation susceptibility to CRC (66-68). Monoallelic MUTYH mutation carrier’s account for 1% to 2% of the general population since Biallelic mutations observed in less than 1% of all CRCs and the frequency of this mutation in patients with 10 to 100 polyps are 28% and in individuals with 100 to 1000 polyps are 14% (44, 69). First degree relatives of MAP patients with biallelic mutation in MUTYH gene are considered as obligate carriers who carry at least one MUTYH mutation. Both parents are carriers of a biallelic mutation and each child has 25% chance of inheriting two mutations. Whether monoallelic MUTYH carriers (heterozygote) are at high risk for developing CRC is still not clear: compared with the general population There is evidence that obligate monoallelic MUTYH mutation carriers have a modest risk for colorectal cancer (47,66). Some authors believe that heterozygote mutation carriers should consider as low penetrance alleles, although consensus surveillance guidelines for this subgroup need to be developed.

MUTYH and other cancers
Extracolonic manifestations are common in patients with MAP which include: duodenal cancer and related polyposis, cancers such as gastric, small intestinal, endometrial, liver, ovarian, bladder, thyroid, Breast and skin cancers including melanoma, squamous epithelial, and basal cell carcinomas (70,71). Other manifestations such as osteomas, dental cysts and congenital hypertrophy of the retinal pigment epithelium (CHRPE) are also seen in this group of patients (32, 71, 72). These extra colonic manifestations are also reported in FAP patients and the occurrence is less in MAP than in FAP or AFAP patients (73). The association between breast cancer and MUTYH gene is not defined clearly so far (71). Since Frequency of biallelic MUTYH mutations in breast cancer seem to be low (74,75) in valuable paper by Wasielewski et al. reported heterozygote mutations in MUTYH gene in families with both CRC and breast cancer moreover they have also reported that there was an increased risk for breast cancer in Female MAP patients (76).The association of many malignancy such as endometrial (77,78), Gastric(79,80), Bladder(81) lung(82) and Diabetes(83) with MAP have reported respectively. Screening of Somatic MUTYH gene Mutations in sporadic CRC patients doesn’t seem to be informative since the majority of papers revealed no association between MUTYH and sporadic colorectal cancer (84, 85) except one paper detected two MUTYH mutations in Tunisian patients (86).

Immune system response
The immune system of patients with deficiency in DNA mismatch repair genes is more active than individuals without DNA repair defects. It is proposed that the accumulation of peptide elements and mutant proteins in surface of the tumor cells in patients with high MSI or aberrant expression of MMR genes, makes the immune system more active then this results in better diagnosis and survival (87, 88). This active immune system could affect tumorigenesis while Antigens presenting in the tumor cell surface (89). Infact The accumulation of peptides and neoantigenes in such patients simulate anti-tumor immune response (90) and in comparison with the other lesions they show increased survival rates (91). High Infiltration of lymphocytes in MAP tumors reported in several studies previously (43, 51). Human leukocyte antigen class I complexes mediates in targeting of tumor cells by CD8+ and loss of expression of this antigen is a common event in MSI-H and MAP tumors (92-94). When HLA is lost then tumors hide from immune system due to deficiency in recognition and elimination (95, 96).
Conclusion
Although the MUTYH mutations gaining attention in diagnosis and counseling of patients with CRC and polyposis, many questions about diagnostic and screening protocols still remained unanswered. Detection of MUTYH gene variants and their association with polyposis and non polyposis CRC and study of immune system molecules and their involvements in tumorigenesis of MAP patients will be worthwhile for better diagnosis and further screening schedule for MAP patients.

Acknowledgements
This work was financially supported by the Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran with grant number 707.

References
1. Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, et al. Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair 2004; 3:1389-407.
2. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors. Nat Genet 2002; 30:227-32.
3. Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci 2009; 66:981-93.
4. Nghiem Y, Cabrera M, Cupples CG, Miller JH. The mutY gene: a mutator locus in Escherichia coli that generates G. C----T.A transversions. Proc Natl Acad Sci USA 1988; 85:2709-13.
5. Torrezan GT, da Silva FC, Krepischi AC, Santos ÉM, Ferreira Fde O, Rossi BM, et al. Breakpoint characterization of a novel large intragenic deletion of MUTYH detected in a MAP patient: case report. BMC Med Genet 2011; 12:128.
6. Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol 1996; 178:3885-92.
7. Shinmura K, Yamaguchi S, Saitoh T, Takeuchi-Sasaki M, Kim SR, Nohmi T, et al. Adenine excisional repair function of MYH protein on the adenine: 8-hydroxyguanine base pair in double-stranded DNA. Nucleic Acids Res 2000; 28:4912-8.
8. Kasai H, Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 1984; 12:2137-45.
9. Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990; 29:7024-32.
10. Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP. Site-specific mutagenesis using a gapped duplex vector: a study of translation synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 1991; 254:281-88.
11. Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH. Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 1999; 181:6210-13.
12. Shinmura K, Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal 2001; 3:597-609.
13. Klungland A, Bjelland S. Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst) 2007; 6:481-88.
14. Nilsen H, Krokan HE. Base excision repair in a network of defence and tolerance. Carcinogenesis 2001; 22:987-98.
15. Thyagarajan B, Lindgren B, Basu S, Nagaraj S, Gross MD, Weisdorf DJ, et al. Association between genetic variants in the base excision repair pathway and outcomes after hematopoietic cell transplantations. Biol Blood Marrow Transplant 2010; 16:1084-89.
16. van Loon B, Hübscher U. An 8-oxo-guanine repair pathway coordinated by MUTYH glycosylase and DNA polymerase lambda. Proc Natl Acad Sci USA 2009; 106:18201-206.
17. Memisoglu A, Samson L. Base excision repair in yeast and mammals. Mutat Res 2000; 451:39-51.
18. Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem 2001; 276:5547-55.
19. Gu Y, Lu AL. Differential DNA recognition and glycosylase activity of the native human MutY homolog (hMYH) and recombinant hMYH expressed in bacteria. Nucleic Acids Res 2001; 29:2666-74.

20. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis 2009; 4:22.

21. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 2003; 348:791-99.

22. Noll DM, Gogos A, Granek JA, Clarke ND. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine-adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Biochemistry 1999; 38:6374-79.

23. Zaika E, Wei J, Yin D, Andl C, Moll U, El-Rifai W, et al. p73 protein regulates DNA damage repair. FASEB J 2011; 25:4406-14.

24. Shi G, Chang DY, Cheng CC, Guan X, Venclov C, Lu AL. Physical and functional interactions between MutY glycosylase homologue (MYH) and checkpoint proteins Rad9-Rad1-Hus1. Biochem J 2006; 400:53-62.

25. Gembka A, Toueille M, Smirnova E, Poll R, Ferrari E, Villani G, et al. The checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta in long patch base excision repair. Nucleic Acids Res 2007; 35:2596-608.

26. Giráldez MD, Balaguer F, Bujanda L, Cuatrecasas M, Muñoz J, Alonso-Espinaco V, et al. MSH6 and MUTYH deficiency is a frequent event in early-onset colorectal cancer. Clin Cancer Res 2010; 16:5402-13.

27. GU Y, Parker a, Wilson TM, Bai H, Chang DY, Lu AL. Human MutS homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 2002; 277:11135-42.

28. Lefevre JH, Colas C, Coulet F, Bonelli L, Mourra N, Flejou JF, et al. MYH biallelic mutation can inactivate the two genetic pathways of colorectal cancer by APC or MLH1 transversions. Fam Cancer 2010; 9:589-94.

29. Out AA, Tops CM, Nielsen M, Weiss MM, van Minderhout IJ, Fokkema IF, et al. Leiden Open Variation Database of the MUTYH gene. Hum Mutat 2010; 31:1205-15.

30. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C-->T:A mutations. Hum Mol Genet 2002; 11:2961-67.

31. Dolwani S, Williams GT, West KP, Newman J, Stock D, Griffiths AP, et al. Analysis of inherited MYH(MUTYH) mutations in British Asian patients with colorectal cancer. Gut 2007; 56:593.

32. Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, et al. Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer 2004; 109:680-84.

33. Isidro G, Laranjeira F, Pires A, Leite J, Regateiro F, Castro e Sousa F, et al. Germline MUTYH (MYH) mutations in Portuguese individuals with multiple colorectal adenomas. Hum Mutat 2004; 24:353-54.

34. Görgens H, Krüger S, Kuhlisch E, Pagenstecher C, Höhl R, Schackert HK, et al. Microsatellite stable colorectal cancers in clinically suspected hereditary nonpolyposis colorectal cancer patients without vertical transmission of disease are unlikely to be caused by biallelic germline mutations in MYH. J Mol Diagn 2006; 8:78-82.

35. Chen H, Xu L, Qi Q, Yao Y, Zhu M, Wang Y. A haplotype variation affecting the mitochondrial transportation of hMYH protein could be a risk factor for colorectal cancer in Chinese. BMC Cancer 2008; 8:269.

36. Shimamura K, Goto M, Tao H, Sugimura H. Role of Base Excision Repair Enzyme MUTYH in the Repair of 8-Hydroxyguanine and MUTYH-Associated Polyposis (MAP). Hereditary Genet 2012; 10:2161-41.

37. Rouleau E, Zattara H, Lefol C, Noguchi T, Briaux A, Buecher B, et al. First large rearrangement in the MutYH gene and attenuated familial adenomatous polyposis syndrome. Clin Genet 2011; 80:301-303.

38. Therstensen L, Qvist H, Heim S, Liebers GI, Nesland JM, Giercksky KE, et al. Evaluation of 1p losses in primary carcinomas, local recurrences and peripheral metastases from colorectal cancer patients. Neoplasia 2000; 2:514-22.

39. Middeldorp A, van Puijenbroek M, Nielsen M, van Minderhout IJ, Fokkema IF, et al. High frequency of copy-neutral LOH in MUTYH-associated polyposis carcinomas. J Pathol 2008; 216:25-31.

40. Melcher R, Hartmann E, Zopf W, Herterich S, Wilke P, Müller L, et al. LOH and copy neutral LOH (cnLOH) act as alternative mechanism in sporadic...
colorectal cancers with chromosomal and microsatellite instability. Carcinogenesis 2011; 32:636-42.

41. Croitoru ME, Cleary SP, Di Nicola N, Manno M, Selander T, Aronson M, Redston M, et al. Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. J Natl Cancer Inst 2004; 96:1631-34.

42. Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol 2009; 27:3975-80.

43. Nielsen M, de Miranda NF, van Puijenbroek M, Jordanova ES, Middeldorp A, van Wezel T, et al. Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas. BMC Cancer 2009; 9:184.

44. Nielsen M, Morreau H, Vasen HF, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 2011; 79:1-16.

45. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology 2004; 127:444-51.

46. O'Shea AM, Cleary SP, Croitoru MA, Kim H, Berk T, Monga N, et al. Pathological features of colorectal carcinomas in MYH-associated polyposis. Histopathology 2008; 53:184-94.

47. Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, et al. Germline mutation carriers in colorectal cancer: a multicenter, case-control, population-based study. Clin Cancer Res 2003; 63:7595-99.

48. Snover DC, Ahnen DJ, Burt RW, et al. Serrated polyps of the colon and rectum and serrated polyp. In: Bosman FT, Carneiro F, Hruban RH, et al, eds. WHO Classification of Tumours of the Digestive System. 4th ed. Lyon, France: IARC; 2010:160Y165.

49. Cheadle JP, Sampson JR. Exposing the MYH about base excision repair and human inherited disease. Hum Mol Genet 2003; 12:R159-65.

50. van Puijenbroek M, Nielsen M, Tops CM, Halfwerk H, Vasen HF, Weiss MM, et al. Identification of patients with (atypical) MUTYH-associated polyposis by KRAS2 c.34G > T prescreening followed by MUTYH hotspot analysis in formalin-fixed paraffin-embedded tissue. Cancer Res 2003; 63:139-42.

51. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 2003; 63:7595-99.

52. NCCN clinical practice guidelines in oncology. Colorectal cancer screening; V1.2012. 2012. Available at: http://www.nccn.org. Accessed April 3, 2012.

53. Groves CJ, Saunders BP, Spigelman AD, Phillips RK. Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study. Gut 2002; 50:636-41.

54. Bülow S, Björk J, Christensen IJ, Fausa O, Järvinen H, Moesgaard F, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut 2004; 53:381-86.

55. Aretz S, Uhlaufa S, Goergens H, Siberg K, Vogel M, Pagenstecher C, et al. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer 2006; 119:807-14.

56. Olschwang S, Blanché H, de Moncuit C, Thomas G. Similar colorectal cancer risk in patients with monoallelic and biallelic mutations in the MYH gene identified in a population with adenomatous polyposis. Genet Test 2007; 11:315-20.

57. Pourhoseingholi MA, Zali MR. Colorectal cancer screening: Time for action in Iran. World J Gastrointest Oncol 2012; 4:82-3.

58. Montazer Haghighi M, Radpour R, Aghajani K, Zali N, Molaei M, Zali MR. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer. Int J Colorectal Dis 2009; 24:885-93.

59. Shahmoradi S, Bidmeshkipour A, Salamian A, Emami MH, Kazemi Z, Salehi M. Two novel mutations in hMLH1 gene in Iranian hereditary non-polyposis colorectal cancer patients. Fam Cancer 2012; 11:13-17.

60. Khodadoostan M, Fatemi R, Maseret E, Hooshang A, Alizade M, Molaei M, et al. Clinical and pathological characteristics of colorectal polyps in Iranian population. East Afr J Public Health 2010; 7:157-59.

61. Riegert-Johnson DL, Johnson RA, Rabe KG, Wang L, Thomas B, Baudhuin LM, et al. The value of MUTYH testing in patients with early onset microsatellite stable colorectal cancer referred for hereditary nonpolyposis colon cancer syndrome testing. Genet Test 2007; 11:361-65.

62. Balaguer F, Castellvi-Bel S, Castells A, Andreu M, Muñoz J, Gisbert JP, et al. Identification of MYH mutation carriers in colorectal cancer: a multicenter, case-control, population-based study. Clin Gastroenterol Hepatol 2007; 5:379-87.

63. Armstrong JG, Davies DR, Guy SP, Frayling IM, Evans DG. APC mutations in familial adenomatus
polyposis families in the Northwest of England. Hum Mutat 1997; 10:376-80.

64. Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G, et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell 1993; 75:951-57.

65. Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungk M, et al. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 2001; 48:515-21.

66. Jones N, Vogt S, Nielsen M, Christian D, Wark PA, Eccles D, et al. Increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology 2009; 137:489-94, 494.e167.

67. Win AK, Hopper JL, Jenkins MA. Association between monoallelic MUTYH mutation and colorectal cancer risk: a meta-regression analysis. Fam Cancer 2011; 10:1-9.

68. Theodoratou E, Campbell H, Tenesa A, Houlston R, Webb E, Lubbe S, et al. MUTYH gene variants and breast cancer in a Dutch case–control study. Breast Cancer Res Treat 2012; 134:219-27.

69. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A, et al. MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population. J Exp Clin Cancer Res 2009; 28:10.

70. Chen H, Sun C, Guo W, Meng R, Du H, Qi Q, et al. MUTYH gene variants and polymorphic variants in MMR, E-cadherin and MYH genes associated with familial gastric cancer in Jiangsu of China. Asian Pac J Cancer Prev 2011; 12:301-305.

71. Vasovcak P, Pavlikova K, Sedlacek Z, Skapa P, Kouda M, Hoch J, et al. Molecular genetic analysis of 103 sporadic colorectal tumours in Czech patients. PLoS One 2011; 6:e24114.

72. Boland CR, Thibodeau SN, Hamilton SR, Feuer EJ, Burt RW, et al. Bloom syndrome: an autosomal dominant disorder with increased risk of colorectal cancer. Cancer Res 1990; 50:7461-65.

73. Borek V, Jilek J, Smid J, Holcik M. Base excision repair in colorectal cancer. Cancer Res 2002; 62:3937-41.
Tunisian patients with sporadic colorectal cancer. J Clin Lab Anal 2007; 21: 372-74.

87. Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol 2001; 159:297-304.

88. Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 2001 15; 91:2417-22.

89. Cheadle JP, Sampson JR. MUTYH-associated polyposis--from defect in base excision repair to clinical genetic testing. DNA Repair 2007 1; 6:274-79.

90. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3:991-98.

91. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23:609-18.

92. Dierssen JW, de Miranda NF, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 2007; 7:33.

93. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 2005; 65:6418-24.

94. de Miranda NF, Hes FJ, van Wezel T, Morreau H. Role of the microenvironment in the tumourigenesis of microsatellite unstable and MUTYH-associated polyposis colorectal cancers. Mutagenesis 2012; 27:247-53.

95. Algarra I, García-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53:904-10.

96. Klein J, Sato A. The HLA system: First of two parts. N Engl J Med 2000; 343:702-709.