SAPH-ire TFx: A Machine Learning Recommendation Method and Webtool for the Prediction of Functional Post-Translational Modifications

Short Title: Improving PTM functional prioritization through neural networks

Nolan English1,2 and Matthew Torres1,2,*

1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332

2Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30332

* To Whom Correspondence Should be Addressed:
Matthew Torres
Associate Professor
School of Biological Sciences
Engineered Biosystems Building, 4009
Georgia Institute of Technology
950 Atlantic Drive
Atlanta, Georgia 30332
mtorres35@gatech.edu
ABSTRACT

Post-translational Modifications (PTMs), chemical or proteinaceous covalent alterations to the side chains of amino acid residues in proteins, are a rapidly expanding feature class of significant importance in cell biology. Due to a high burden of experimental proof and the lack of effective means for experimentalists to prioritize PTMs by functional significance, currently less than ~2% of all PTMs have an assigned biological function. Here, we describe a new artificial neural network model, SAPH-ire TFx for the functional prediction of experimentally observed eukaryotic PTMs. Unlike previous functional PTM prioritization models, SAPH-ire TFx is optimized with both receiver operating characteristic (ROC) and recall metrics that maximally capture the range of diverse feature sets comprising the functional modified eukaryotic proteome. The tool was through systematic evaluation of input features, model architectures, training procedures, and interpretation metrics using a 2018 training dataset of 430,750 PTMs containing 7,480 PTMs with literature-supported evidence of biological function. The resulting model was used to classify an expanded 2019 dataset of 512,015 PTMs (12,867 known functional) containing 102,475 PTMs unencountered in the original dataset. Model output from the 2019 extended dataset was benchmarked against pre-existing prediction models, revealing superior performance in classification of functional and/or disease-linked PTM sites. Finally, a dynamic web interface provides customizable graphical and tabular visualization of PTM and SAPH-ire TFx data within the context of all modifications within a protein family, exposing several metrics by which important functional PTMs can be identified for investigation.

AUTHOR SUMMARY

The modification of proteins after they are translated is an important process that can control the structure and function of the proteins on which they occur. Hundreds of different types of modification happen at some point during the lifetime of every protein in eukaryotic cells and play an essential role in cellular processes such as cell division, cell communication, gene regulation. Using current state-of-the-art detection tools, the rate at which post-translational modifications are detected now far surpasses the rate at which they can be investigated for functionality. Furthermore, not all modifications detected are functional, making it difficult to determine into which modifications one should invest experimental effort. Here, we describe a new computational tool – SAPH-ire TFx – capable of predicting functional modification sites from large-scale datasets, and consequently focus experimental effort towards only those modifications that are likely to be biologically significant. We show that the tool performs well across multiple datasets within which known functional modifications are scattered; and we show that the tool outperforms prior functional prioritization tools. Finally, we also provide a user-friendly web tool for experimentalists to investigate SAPH-ire TFx output for proteins and protein families of interest.
INTRODUCTION

Post-translational modifications (PTMs) alter the chemistry of amino acid residues within translated proteins and thereby have the potential to expand the function and regulatory control of proteins beyond the limits of the genome (1). By definition PTMs modify the structure of proteins, and can consequently alter their function through changes in biomolecular interactions, protein localization and/or protein stability (2,3). PTMs can act on long or short timescales that allow for dynamic control and response of a cellular proteome to changing environments or cellular phases that ultimately shape cellular phenotype (4). Concomitantly, disruption to either the amino acid or modification of highly functional PTM sites can lead to cellular dysfunction and disease (5–7).

Since the advent of high-throughput protein sequencing by mass spectrometry, hundreds of different types of PTM have been found to occur on the sidechains of most of the 20 amino acids (8,9). However, the rate at which PTM data are generated – a parallel process involving hundreds of independent labs – far surpasses the rate at which it is being curated and/or processed for interpretation – a task undertaken by a much smaller set of labs and institutions (10,11). Today, somewhere between 700K to 1M PTMs represented by nearly 300 unique types are, more or less, accessible in the public domain. Although, such estimates change drastically every year as a result of new technologies that improve detection of any one PTM in the proteome (12). Of these, ~116,000 correspond to human phosphorylation sites – representing about half of the number of phosphosites estimated for the human proteome (13). Thus, the total number of curated PTMs is likely an underestimate of PTMs that exist in the collective eukaryotic proteome.

With the exponential increase in PTM data over the last 15 years, a major question is whether all PTMs detected (accurately) are functionally important – a question not easily answered due to the extremely high burden of experimental proof needed to prove functionality, which involves significant time, cost, and specific expertise for any given protein. This is compounded by unnecessary redundancy in experimental effort, and the tendency of most labs
not to report non-functional results, and the longstanding and widely accepted premise that not all PTMs are functionally equivalent. Indeed, this underlying dilemma tends to promote a perspective that the study of PTMs is risky and quite possibly not worth the effort, especially in light of the exponential increase in data content that can appear overwhelming to a protein experimentalist. PTM site features such as evolutionary conservation (14–16), PTM colocalization (17–19), protein structural constraints (20,21), and other single features, have been shown to be mildly predictive for function and offer useful means of filtering PTM data for likely important modifications. More recently, machine learning models that incorporate multiple single features have been proven to have significantly greater predictive power in comparison to single features alone (22–24). In general, these models provide a priority score that is effective for rank ordering PTM function potential, and are shown to be successful in identifying new functional PTMs across the eukaryotic proteome, but unfortunately do little to confidently recommend PTMs for experimental analysis due to very poor recall of true positive data.

Here we describe the development and application of a neural network model, SAPH-ire TFx, optimized for the recommendation of functional PTMs in whole sequence protein families. We used this model to prioritize the potential for function for 512,015 unique PTMs (8,373 known functional) across 38,231 proteins and 763 organisms. This is the first model of its type in which recall has been used for optimization, and we show that this results in significantly improved predictive properties compared to previous versions of SAPH-ire and other functional prioritization models. We also describe a new web-based resource and API that provides an interactive and customizable tool designed to enable protein experimentalists with SAPH-ire TFx-generated PTM recommendations and contextual visualization of PTMs in the context of the protein families in which they are members.

METHODS

PTMs and multiple sequence alignment
SAPH-ire is PTM agnostic and includes 56 different PTM types (PTMtype), the bulk of which correspond to phosphorylation, ubiquitination, acetylation, methylation, N-linked glycosylation, and sumoylation (Table S1). PTMs were collected from multiple sources including PhosphositePlus (25), SysPTM (26), and dbPTM (27). Each PTM was mapped to UniProt identifiers (UID) and validated by matching the native position (NP) and residue (res) of the curated PTM to UniProt sequences verified for 100% sequence identity using BLAST (28). Isoforms, although rare in the PTM dataset, were also included. The final PTM dataset contains 629,740 unique PTMs (identified by UID-NP-res-PTMtype).

UID entries were mapped to whole sequence protein families using InterPro (29) followed by multiple sequence alignment of family-linked UniProt sequences using MUSCLE with default parameters (30). Families with fewer than 2 members containing at least 1 PTM per member were excluded. This process resulted in a final 512,015 PTMs mapped to 8,039 families (Table S2) containing 38,231 UIDs representing 763 eukaryotic organisms (Table S3).

Feature selection

SAPH-ire features were derived from Modified Alignment Positions (MAPs) corresponding to family alignment positions that harbor at least one PTM, as described previously in detail (20,22,23). A total of eleven features are extracted from 319,981 MAPs (containing the 512,015 PTMs) for inclusion in neural network models described below (Table S4). The number of unique PTMs observed in the alignment position (PTM count; PTMc), the PTM residue conservation within the alignment position (PRC), the predicted disorder of the modified residue (Dis), and the number of unique modified residues within the alignment position (Modified residue count; MRc) all provide the model with an evolutionary conservation-based perspective on the MAP – a feature that has been shown to be an effective in the past (14). The next group of features provide information on the local environment of the PTM by providing the number of neighboring PTMs...
(Neighbor PTMc; NPTMc), neighboring MAPs (Neighbor count, Nc), and neighboring MAPs with functional impact (Known neighbor count, KNc). Neighboring residue context has been shown to be an effective predictive feature in the past by us and others (15,18). Lastly, the number of sources that have observed the PTM (Observation source count; OBSrc), a normalized version of this feature that takes family membership into account (OBSrc_pf), and the number of UniProt entries associated with the MAP (Alignment position member count, AP-MEM) are utilized in this model for the first time here.

Model implementation, cost function optimization, training, and model selection

The SAPH-ire TFx neural network model and modified cost function (defined below) were implemented in Tensorflow using the estimator API (31). PTMs and MAPs were processed into features using Python 3.7.3 and Pandas 0.24.0 (32). PTMs with at least two sources corroborating evidence of biological functional, defined by PhosphositePlus (25), were treated as the positive class with all others being treated as negative. MAPs with a single source were treated as negative because they lacked independent confirmation of functional significance and because their inclusion weakened model performance. The cost for false negatives (misclassified known functional PTMs) was weighted at a 4 to 1 ratio to false positives (PTMs with unknown function classified as functional) to reflect the goal of recommending unstudied PTMs for research. Below this 4/1 ratio the performance suffered, and above it there was no significant improvement while the model began to exhibit signs of overfitting (data not shown).

Neural network models of various structure (in terms of connectivity, activation function, cost function weighting, etc.) were generated in batches of 100 or 200 depending on architecture complexity. The training set for these models were bootstrapped in order to over-represent the positive class to avoid sample distribution biasing (33). Models were trained using a 33% holdback rate, with this holdback being used to evaluate batches of models against the same evaluation
set. Model selection relied on Receiver Operating Characteristic (ROC) and Recall summarization metrics integrated by an Fzero score defined as:

$$F_{zero} = 2 \times \frac{\text{auroc} \times \text{recall}}{\text{auroc} + \text{recall}}$$

Optimal models were defined as those with the greatest Fzero score.

Pathogenic enrichment analysis

Genetic mutations and the curated interpretation of their significance to disease was collected from Clinvar (34). The proteins affected by genetic mutations were filtered for single nucleotide polymorphisms (SNPs) that alter PTM sites present within the SAPH-ire dataset. Then, these sites were aggregated by SAPH-ire MAP and separated into one of four categories according the NIH classification: Benign, Likely Benign, Pathogenic, or Likely Pathogenic. Only Benign and Pathogenic categories were used for analysis.

Graphical and statistical data analyses

Graphical and statistical data analyses were achieved using a combination of R (35), and JMP 14.1 (SAS Institute Inc.).

SAPH-ire web-tool implementation

The results of the SAPH-ire model have been made accessible through Web and Application Programming Interface available at (https://saphire.biosci.gatech.edu). Briefly, SAPH-ire input and output data were uploaded into a Mongo database made accessible through API endpoints created using the Eve package in Python (https://docs.python-eve.org/en/stable/). The Web interface, which also pulls from the API as its data source, was built in Vue.js relying on Vuetify for design elements and the open source Plotly.js library for delivering graphical summary of the data.
RESULTS

Optimizing SAPH-ire TFx model architecture and performance through recall

Previous models (including our own) have employed the use of quantitative features in isolation (15,16) or in combination (20,22–24,36) to rank PTMs according to potential for function. In the process of re-evaluating this approach, we concluded that rank-based models are incongruous with functional evidence from biological data, wherein functional impact is broadly defined and highly variable. In contrast, recommendation-based models, in which groups of objects that fit some criteria without asserting any specific entity within that group is a better fit for that criteria than any other, more accurately reflects the intended goal of PTM prioritization – namely the recommendation of likely-functional PTMs for investigative protein research. To build a model capable of recommendation-based classification, we introduced a new summation metric, F_{zero}, that emphasizes not only ROC metrics, but also captures the recall of true positive data (see Methods). Due to the intended goal of SAPH-ire to identify “potential positives”, a high precision (true positives captured / total positives) was not only unwanted but indicative of a poor model and therefore not included as a summary metric.

For model training, we used a SAPH-ire training dataset generated in 2018, consisting of 435,750 PTMs coalesced by multiple sequence alignment into 272,968 MAPs (Figure 1A; see Methods). From each of more than a dozen architecture and training permutations, 200 models were stochastically trained and evaluated by F_{zero} and Recall and then filtered to identify the most consistently high performing architectures (Batch 1). The agreement between most of the models made collective intelligence approaches redundant. Therefore, an additional series of models trained with an added feature (family-weighted observation source count) was generated (Batch 2). In general, both batches varied only slightly in terms of ROC AUC (0.68 – 0.73), but varied dramatically in recall (0.5 – 0.8), suggesting that significant gains in model performance
were achieved by considering recall in addition to ROC AUC (Figure 1B). The top performing models from these two independent evaluations were averaged together to represent the final SAPH-ire score that outperformed either top model alone (Figure 1B (inset)). This final score resulted in excellent predictive (AUC = 0.792) and recall (AUC = 0.694) performance (Figure 1C).

Figure 1. Numerical summary of SAPH-ire TFx development, training, and performance. (A) Diagram of the training dataset with positive and negative classes indicated. Note that Modified Alignment Positions (MAPs) with less than 2 literature sources of support were included in the negative class as they were not used at any point for training the model (see methods). (B) Plot of true positive recall versus ROC AUC versus Fzero (color) for the top two of 200 models generated using ten (Batch 1) or eleven (Batch 2) features (MAP-level analysis). Dashed box (on same scale) indicates performance of a combined model (SAPH-ire TFx) that is generated by taking the average score of Batches 1 and 2 on the expanded dataset (shown further below). (C) ROC and recall threshold curves for the training dataset are shown (based on MAP-level analysis).

Evaluating SAPH-ire TFx on an expanded PTM dataset

Next, we evaluated the performance of SAPH-ire TFx on an expanded PTM dataset in which an additional 102,475 PTMs were modeled – 3,233 of which were known functional but to which the algorithm was blind during its initial training (Figure 2A). With this expanded dataset, a completely new set of protein family alignments were also generated and model input features extracted. Thus, the expanded dataset represents a completely new dataset never before seen by the model. Overall ROC AUC and recall for the outcoming data performed better than on the original training dataset in terms of ROC and recall-threshold metrics (AUCROC 0.794 vs. 0.792, and AUCRecall 0.764 versus 0.694) (Figure 2B). We further evaluated the model by comparing the distribution of SAPH-ire TFx scores for unknown and known functional MAPs wherein each MAP was placed into a bin described by the known function source count (KFSC) – a count of the unique literature sources containing evidence of functional impact for a PTM within the MAP, which serves as a proxy for confidence in the assignment of known function status (Figure 2C). This analysis revealed that SAPH-ire scored PTMs with greater KFSC values significantly higher (p<0.0001) than those with lower KFSC (3+ref/2ref; 2ref/1ref, and 1ref/0refs). This trend was also
evident for the 3,233 “New” PTMs of known functional status in the expanded dataset to which algorithm was completely blind during initial training (Figure 2C, dashed lines). Taken together, these data show that SAPH-ire TFx is an effective recommendation model for functional PTMs and is robust in its performance across independent datasets.

Figure 2. Application of SAPH-re TFx to an expanded dataset. The SAPH-ire TFx model summarized in figure 1 was applied to a completely new expanded dataset derived from new protein sequence alignments and containing additional PTMs curated in 2019. (A) Venn diagram showing the relationship between the training and expanded datasets. Due to stringent self-imposed UniProt sequence filters, a small fraction of PTMs in the training dataset were lost, and the new expanded dataset contained 102,475 newly curated PTMs. (B) ROC and recall curves for SAPH-ire TFx results from the expanded dataset. (C) Frequency distribution of SAPH-ire TFx scores relative to true positive status in terms of known function source count (1, 2, or 3+ references). Area contained by solid lines corresponds to total expanded PTM dataset. Area contained by dashed lines corresponds to expanded PTMs not contained in the original training dataset from figure 1. All statistical data shown is at the MAP level.

Biological Significance

We hypothesized that MAPs containing sites of PTM that coincide with a known pathogenic mutation should have higher SAPH-ire scores than those that are benign when silenced, if the model can recommend functionally significant PTMs. To test this hypothesis, we compared the SAPH-ire TFx scores of PTMs whose sites correspond to mis-sense mutations curated in the ClinVar disease linkage database (34). We observed significantly higher scores (p=0.0003) for PTMs coincident with pathogenic mutations (median score = 0.475) compared to benign mutations (median score = 0.033) (Figure 3). As expected from the sigmoid response curve of the SAPH-ire model, the score distributions exhibit two regions of enrichment. The first region encompasses PTMs with a score less than .05, in which there is a slightly greater enrichment (37%) for benign versus pathogenic mutations. The second region represents the top 10% of PTMs by SAPH-ire TFx score (score above .95), and above this threshold there is significant overrepresentation (156%) of pathogenic compared to benign mutations. The enrichment of high scoring pathogenic-SNP-coincident PTMs follows with the corollary that if the
model is capable of distinguishing between PTMs with and without functional impact, then MAPs that coincide with disease-causing SNPs should be overrepresented compared to benign SNPs as the SAPH-ire score increases. However, it’s also important to note that there are also several SNP/PTM sites for which the model does not support this corollary. This seeming incongruity, can be readily explained as not every SNP labeled as pathogenic is necessarily dependent on the effect of lost PTM. Alternatively, PTMs coincident with SNP mutations that are labelled benign could still have functional significance but not be pathogenic when silenced.

Figure 3. SAPH-ire TFx selective enrichment of PTMs coincident with causal disease-linked mutations. PTMs contained in the expanded dataset that are coincident with disease-linked mutations curated in the ClinVar database as benign or pathogenic were compared by frequency distribution of SAPH-ire TFx scores. The median score for each class is indicated as a red bar in the box plot. Significance testing (p-value) was determined using a T-test.

Recommendation thresholding is essential for model interpretation

Thresholding is an essential component of a recommendation model that provides a useful filter for large datasets. Prior models for the functional prioritization of PTMs, while providing quantitative distributions of potential function, have largely struggled to provide well-defined thresholds that support confident recommendations for further investigation. To address this problem, we modeled the tradeoff between true and false positive rates using ROC curves. Our goal was to set a minimum threshold score over which MAPs could be considered having a high chance of functionality. Due to our desire for SAPH-ire scores to be agnostic across different PTM types, we first considered that the selected thresholds must not create a bias in distribution of PTMs occurring above that threshold. To evaluate this, we plotted the percent representation of each of the most common PTMs in the dataset relative to SAPH-ire TFx score (Figure 4A). The relative representation of each PTM type deflected significantly above a score of 0.9897 but was stable below this point and above 0.945, the range between which we defined as ideal for thresholding.
Next, we evaluated the ROC curves for the highest confidence true positive MAPs (KFSC >1, >2) (Figure S1), and unfurled each curve to reveal the independent rates for true and false positives with respect to the SAPH-ire TFx score. From these curves, three thresholds were chosen within the ideal range (0.95, 0.9719, and 0.987) that strike a balance between true positive hits and false positive recommendations (Figure 4B). These recommendation thresholds provide useful landmarks to interpret SAPH-ire TFx scores for a protein or family of interest, as shown here for family IPR000043 (Figure 4C). They also serve as benchmarks for evaluating other models and future versions of SAPH-ire.

Figure 4. Recommendation thresholding for SAPH-ire TFx. (A) Plot of the percent representation for different PTM types relative to SAPH-ire TFx score, revealing an ideal threshold range inside which no one PTM becomes over or underrepresented. (B) Unfurled pareto fronts showing true positive (TP) and false positive (FP) rates above given SAPHire score. Rates shown are KFSC > 1 (lower confidence) or KFSC > 2 (higher confidence). Dashed vertical lines represent chosen thresholds where TP and FP rates are as follows (KFSC >2): 0.95 – TP=0.82, FP=0.11; 0.972 – TP=0.7, FP=0.07; 0.987 – TP=0.53, FP=0.04. (C) Representative rank-ordered SAPH-ire TFx plot for family IPR000043 (Adenosylhomocysteinase-like family) with indicated thresholds shown for reference. Shown on an exponential scale to emphasize rank distribution.

Comparison to other models

SAPH-ire TFx is a unique model that is one of a small number of published algorithms aimed at functional prioritization of PTMs, and also the first recommendation model for functional PTMs. We therefore sought to draw comparisons with these models to gauge overall performance. Two predominant models currently exist in the public domain: SAPH-ire FPx (23) – an 8-feature neural network PTM ranking model; and a Phosphosite Functional Score (PFS) model (36) – a 59-feature gradient boosting machine learning model trained to identify functional phosphosites.

To evaluate the three models equivalently, we compared model scores for phosphosites represented in all three datasets. PFS was built using a dataset containing 116,268 phosphosites that resulted from selective re-analysis of raw mass spectrometry data files collected from a broad range of eukaryotic organisms (36). Comparing our source database to the PFS dataset revealed
71% overlap (82,279 phosphosites), however, this number dropped in response to strict protein family membership criteria (see Methods). Of PTMs that fall within InterPro whole sequence families, 236,982 represent unique phosphosites that were analyzed by SAPH-ire TFx, and 49,935 of these overlap with ~43% of the PFS dataset (Figure 5A). Inclusion of SAPH-ire FPx data, which was based on PTMs curated in early 2017, resulted in a final comparable dataset of 24,695 phosphosites, which were compared in terms of score distribution as well as ROC and recall metrics.

Figure 5. Benchmarking SAPH-ire TFx against prior PTM functional prioritization models. SAPH-ire TFx was compared head-to-head with the two prior machine learning models for functional prioritization: SAPH-ire FPx (23) and Phosphosite Functional Score (PFS) (36). (A) Venn diagram describing the overlap between the expanded dataset (reported here) and phosphosite datasets for the other two models. Three-way model comparisons were conducted with 24,695 phosphosites. Pairwise model comparisons (PFS vs. SAPH-ire TFx) were also conducted with 49,935 overlapping phosphosites (Figure S2). (B) Comparison of the score distributions for PTMs binned by category of unknown function, known function (1, 2, or 3+ sources), or known by neighbor (KbN) determined by SAPH-ire TFx protein family alignments. Dashed lines indicate the thresholds quantitatively determined for SAPH-ire TFx or loosely recommended by other models. (C) Inter-quartile range relative to known functional status, based on the distributions shown in B. (D) Comparison of ROC and recall curves for each model. (E) Pie chart representation of the percentage of recalled versus mis-called (Missed) PTMs based on thresholds shown in B [0.95 threshold used for SAPH-ire TFx] (top). Number of recommendations deduced from these percentages applied to the whole dataset for each model (bottom). Recommendations are also shown for each of the thresholds established for SAPH-ire TFx in figure 4.

In general, SAPH-ire FPx and PFS perform similarly in most respects – in part because they were both built to maximize ROC AUC but not recall. Both models result in broad and overlapping score distributions that are significantly different but modestly distinct between sites of known and unknown function (Figure 5B). This results from broad score distributions that change marginally across bins of increasing KFSC. SAPH-ire FPx tends to have lower average scores that are compressed for the unknown function category and don’t increase dramatically until reaching KFSC >2 true positive status. PFS exhibits higher overall scores compared to SAPH-ire FPx but shows comparable responsiveness to increasing KFSC. The score distribution of the two models as shown by inter-quartile range also increases by almost 2-fold with increasing
KFSC, which is counter to the expectation for increased confidence in classification (Figure 5C).

Consequently, the recommendation thresholds used for each model must be low to enable either model to capture even a small percentage of true positive phosphosites. A separate analysis comparing only PFS and SAPH-ire TFx, which includes a larger phosphosite overlap (49,935 phosphosites), showed similar results (Figure S3).

In contrast to SAPH-ire FPx and PFS, the score distributions for SAPH-ire TFx become less, rather than more broad with increasing KFSC, concomitant with the expectation for greater confidence with increasing score (Figure 5B,C). ROC and recall curves for all three models show that this difference is largely due to improved recall performance of SAPH-ire TFx, while ROC AUC is otherwise similar between the three different models (Figure 5D). The practical consequences of the differences between SAPH-ire TFx and other models is evident in terms of number of missed calls based on recommended thresholds, where as many as 32% of highly confident true positive functional PTMs (KFSCMAP > 2) are mis-called by previous models – a quantity that is lowered to less than 6% in SAPH-ire TFx (Figure 5E). This also results in an increase in the number of phosphosites recommended as functionally impactful at all thresholds (see Conclusions).

We next compared all three models to a recently published fourth model that is not based on machine learning, but rather on a derivative of sequence homology modeling (37). In brief, this method calls conserved phosphorylation hotspots that are defined based on the sequence conservation of protein regions in domain families that are densely populated with observed phosphorylation sites. In general, high scores were enriched for conserved phosphosite hotspots regardless of model, with SAPH-re TFx exhibiting the best overall performance in terms of recall and score distribution across KFSC (Figure S3). Taken together, these data strongly support the conclusion that SAPH-ire TFx is a robust and effective model for the classification of PTM function, which surpasses the performance of previous models.
SAPH-ire web interface

To support the community with easy access to SAPH-ire TFx, we have launched a web resource (https://saphire.biosci.gatech.edu). This resource provides an intuitive and dynamic interface for interacting with SAPH-ire predictions and allows for quick prioritization of PTMs of interests in context of either a protein or family of interest. In the results window for the tool, one can quickly retrieve and analyze the SAPH-ire scores and general statistics for the associated PTMs, as well as quickly identify known functional PTMs in the family (Figure 6). Additionally, SAPH-ire predictions are made available via API.

Figure 6. SAPH-ire TFx web tool. Screen shots from https://saphire.biosci.gatech.edu showing architecture of the SAPH-ire TFx web tool. Key features include dynamic customizable graphic and tabular display that can be filter-updated by the user and downloaded to produce figures. Tabular data is searchable and is color coordinated to indicate PTMs aligned with or correspondent with known functional data, including PubMed reference IDs, hyperlinks to protein (UniProt) or protein family (InterPro) information, among other features. Additionally, information is machine accessible through a corresponding API provided at the same domain.

DISCUSSION

Using systematic architecture and training optimization procedures we have created a new machine learning model and complimentary web-accessible tool – SAPH-ire TFx – that is capable of confidently recommending PTMs of likely functional significance. To our knowledge, this is the first recommendation tool that does not rely solely on probability-based ranking for functional prioritization. As estimated by ROC and recall analyses, the model is shown to be highly predictive for recall of PTMs of known function, and this property is enhanced at increasing score thresholds provided by the model. After its development, we tested the model with an expanded dataset to which it had never been previously exposed, showing that its performance characteristics are robust. To estimate its performance with physiologically relevant predictions, we demonstrated that the model enriches PTMs that are coincident with pathogenic point mutations significantly over those coinciding with benign mutations – an expected trend for models that predict the functional importance of protein residues. In a series of benchmarking tests, we further showed
that SAPH-ire TFx outperforms existing machine learning or conservation-based hotspot models (including one of our previous models) in all respects, including ROC, recall, and prediction confidence. Finally, we provide quantitatively-validated thresholds that maximize confidence, recall, and recommendations of unknown function PTMs (the ultimate goal of the model). All model output is provided in a user-accessible web interface that is intended to maximize knowledge about any given PTM in the context of all PTMs for a protein and/or protein family.

An important consideration in the design and interpretation of any model intended to predict whether a PTM is functionally significant is the absence of true negative data – i.e. PTMs for which definitive evidence demonstrates that they have no biological impact. This inevitable characteristic of PTM data prohibits the estimation of accuracy as an evaluation metric and forces reliance on true positive data alone as an evaluation metric. Our current perspective is that models failing to efficiently capture true positive data fail to recognize the combinations of protein features underlying the breadth of PTM functions that are known to exist in the eukaryotic proteome. SAPH-ire TFx is the first model for the prediction of functional PTMs that maximizes the recall of true positive data and so hopefully minimizes this concern as much as possible. As we have shown here, models that do not optimize recall suffer from broad score distributions that force extremely conservative thresholding to capture a reasonable (albeit small) fraction of true positive data (Figure 5E). The accumulation of additional experimental data over time will certainly highlight the robustness of these and future models.

ACKNOWLEDGEMENTS

We would like to thank Zahra Nassiri-Toosi, Wei Li, and other members of the Torres lab for careful review and beta-testing of the SAPH-ire website. Special thanks also to Jiani Long and Ragy Haddad for pilot work on SAPH-ire and web-tool development. Special thanks to Dr. Peng Qiu of Georgia Institute of Technology for critical review of the manuscript and contributions to model design. This work was funded by National Institutes of Health R01 GM117400 to M.T.
1. Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding [Internet]. Vol. 4, Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2012 [cited 2012 Nov 5]. p. 565–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22899623

2. Nussinov R, Tsai C-J, Xin F, Radivojac P. Allosteric post-translational modification codes. Trends Biochem Sci [Internet]. 2012 Oct [cited 2012 Oct 9];37(10):447–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22884395

3. Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett [Internet]. 2013 Apr 17 [cited 2014 Feb 22];587(8):1247–57. Available from: http://www.sciencedirect.com/science/article/pii/S0014579313000926

4. Csizmok V, Forman-Kay JD. Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol [Internet]. 2018 Feb [cited 2019 Aug 6];48:58–67. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0959440X17301306

5. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire M a, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science [Internet]. 2010 Jul 2;329(5987):52–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20488990

6. Reimand J, Bader GD. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol [Internet]. 2014;9(1):637–637. Available from: http://msb.embopress.org/cgi/doi/10.1038/msb.2012.68

7. Reimand J, Wagih O, Bader GD. Evolutionary constraint and disease associations of post-translational modification sites in human genomes. PLoS Genet [Internet]. 2015;11(1):e1004919. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25611800

8. Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: The chemistry of proteome diversifications. Vol. 44, Angewandte Chemie - International Edition. 2005. p. 7342–72.

9. Darling AL, Uversky VN. Intrinsic disorder and posttranslational modifications: The darker side of the biological dark matter. Front Genet. 2018;9(MAY):1–18.

10. Chen C, Huang H, Wu CH. Protein Bioinformatics Databases and Resources. Methods Mol Biol [Internet]. 2017;1558(302):3–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444519801500124

11. Pascovici D, Wu JX, McKay MJ, Joseph C, Noor Z, Kamath K, et al. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. Int J Mol Sci [Internet]. 2018 Dec 20;20(1). Available from: http://www.ncbi.nlm.nih.gov/pubmed/30577541

12. Doll S, Burlingame AL. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol [Internet]. 2015 Jan 16;10(1):63–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25541750

13. Vlastaridis P, Kyriakidou P, Chalioti A, Van de Peer Y, Oliver SG, Amoutzias GD. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic
proteomes. Gigascience. 2017;6(2):1–11.

14. Landry CR, Levy ED, Michnick SW. Weak functional constraints on phosphoproteomes. Trends Genet [Internet]. 2009 May;25(5):193–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19349092

15. Beltrao P, Albanèse V, Kenner LR, Swaney DL, Burlingame A, Villén J, et al. Systematic functional prioritization of protein posttranslational modifications. Cell [Internet]. 2012 Jul 20 [cited 2013 May 21];150(2):413–25. Available from: http://www.ncbi.nlm.nih.gov/pubmedcentral.nih.gov/articlerender.fcgi?artid=3404735&tool=pmcentrez&rendertype=abstract

16. Strumillo MJ, Oplová M, Viéitez C, Ochoa D, Shahraz M, Busby BP, et al. Conserved phosphorylation hotspots in eukaryotic protein domain families. Nat Commun [Internet]. 2019;10(1):1977. Available from: http://dx.doi.org/10.1038/s41467-019-09952-x

17. Minguez P, Letunic I, Parca L, Bork P. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res [Internet]. 2013 Jan [cited 2014 Jan 13];41(Database issue):D306-11. Available from: http://www.ncbi.nlm.nih.gov/pubmedcentral.nih.gov/articlerender.fcgi?artid=3531129&tool=pmcentrez&rendertype=abstract

18. Minguez P, Letunic I, Parca L, Garcia-Alonso L, Dopazo J, Huerta-Cepas J, et al. PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins. Nucleic Acids Res [Internet]. 2015 Jan;43(Database issue):D494--502. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25361965

19. Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, et al. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol [Internet]. 2012 Jan [cited 2012 Oct 25];8(599):599. Available from: http://www.ncbi.nlm.nih.gov/pubmedcentral.nih.gov/articlerender.fcgi?artid=3421446&tool=pmcentrez&rendertype=abstract

20. Dewhurst HM, Choudhury S, Torres MP. Structural Analysis of PTM Hotspots (SAPHire)—A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Mol Cell Proteomics [Internet]. 2015 Aug;14(8):2285–97. Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M115.051177

21. Johnson JR, Santos SD, Johnson T, Pieper U, Strumillo M, Wagih O, et al. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes. PLOS Comput Biol [Internet]. 2015;11(8):e1004362. Available from: http://dx.plos.org/10.1371/journal.pcbi.1004362

22. Torres MP, Dewhurst H, Sundararaman N. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease. Mol Cell Proteomics [Internet]. 2016 Nov 3 [cited 2016 Oct 11];15(11):3513–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27697855

23. Dewhurst HM, Torres MP. Systematic analysis of non-structural protein features for the prediction of PTM function potential by artificial neural networks. Liu B, editor. PLoS One [Internet]. 2017 Feb 22;12(2):e0172572. Available from: http://dx.plos.org/10.1371/journal.pone.0172572

24. Xiao Q, Miao B, Bi J, Wang Z, Li Y. Prioritizing functional phosphorylation sites based on multiple feature integration. Sci Rep [Internet]. 2016;6(April):24735. Available from:
25. Hornbeck P V, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res [Internet]. 2015;43(Database issue):D512-20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4383998&tool=pmcentrez&rendertype=abstract

26. Li J, Jia J, Li H, Yu J, Sun H, He Y, et al. SysPTM 2.0: an updated systematic resource for post-translational modification. Database (Oxford) [Internet]. 2014;2014:bau025. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26578568

27. Huang K-Y, Su M-G, Kao H-J, Hsieh Y-C, Jhong J-H, Cheng K-H, et al. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res [Internet]. 2016 Jan;44(D1):D435--D446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26578568

28. Altschul SFF, Gish W, Miller W, Myers EWW, Lipman DJJ. Basic local alignment search tool. J Mol Biol [Internet]. 1990 Oct 5;215(3):403–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2231712

29. Mitchell A, Chang H, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res [Internet]. 2015 Jan 28;43(D1):D213–21. Available from: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku1243

30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res [Internet]. 2004;32(5):1792–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15034147

31. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale machine learning [Internet]. 2016 [cited 2018 Sep 29]. Available from: https://ai.google/research/pubs/pub45381

32. McKinney W. Data Structures for Statistical Computing in Python [Internet]. 2010. p. 51–6. Available from: http://conference.scipy.org/proceedings/scipy2010/mckinney.html

33. Dupret G, Koda M. Bootstrap re-sampling for unbalanced data in supervised learning. Eur J Oper Res [Internet]. 2001 Oct;134(1):141–56. Available from: www.elsevier.com/locate/dsw

34. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res [Internet]. 2018 Jan;46(D1):D1062--D1067. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29165669

35. R Core Team. R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria.; 2013. Available from: http://www.r-project.org/

36. Ochoa D, Jarnuczak AF, Gehre M, Soucheray M, Kleefeldt AA, Vieitez C, et al. The functional landscape of the human phosphoproteome. bioRxiv [Internet]. 2019
Strumillo MJ, Oplova M, Vieitez C, Ochoa D, Shahraz M, Busby BP, et al. Conserved phosphorylation hotspots in eukaryotic protein domain families. bioRxiv [Internet]. 2018;391185. Available from: https://www.biorxiv.org/content/early/2018/08/13/391185
SUPPLEMENTAL TABLES AND FIGURES

Table S1. Frequency of PTM types analyzed by SAPH-ire TFx.

Table S2. List of InterPro families analyzed in SAPH-ire TFx.

Table S3. List of organisms represented by SAPH-ire TFx.

Table S4. Description of features used in the SAPH-ire TFx model.

Figure S1. ROC curves at different KFSC thresholds. (unfurled in Figure 4).

Figure S2. Pairwise comparison between SAPH-ire TFx and the PFS machine learning models. These data include 49,935 phosphosites that overlap between the SAPH-ire TFx and PFS datasets. (A) Score distribution relative to functional status. (B) Inter-quartile ranges from the distributions in A. (C) ROC and recall curves for the score comparison of each model.

Figure S3. Comparison of SAPH-ire FPx, PFS, and SAPH-ire TFx models relative to phosphosite conservation hotspot analysis. Phosphosites localized within conserve phosphosite hotspots predicted by Strumillo et al. were used to bin data from the three-model comparison shown in figure 5. (A) Score distribution relative to functional status relative to predicted hotspots. (B) Inter-quartile ranges from the distributions in A.
A

Training Dataset
435,750 PTMs
272,968 MAPs

Negative Class
[Unknown Fxn]
426,599 (97.9%)

Positive Class
[Known Fxn]
9,151 (2.1%)

B

FIGURE 1

Recall

0.0
0.2
0.4
0.6
0.8
1.0

False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.792

0.68 0.70 0.72 0.74 0.76 0.78

ROC AUC

Batch 1

Batch 2

M1

M2

Combined

Recall

0.0 0.2 0.4 0.6 0.8 1.0

0.575 0.620 0.665 0.710 0.755 0.800

Fzero

C

True Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.792

0.0 0.2 0.4 0.6 0.8 1.0

SAPH-ire TFx Score

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.694
A Expanded Dataset
512,015 PTMs
319,981 MAPs

Positive Class
[Known Fxn]
(3.3%)
3,233 new

Negative Class
[Unknown Fxn]
(96.7%)
99,242 new

B

SAPH-ire TFx Score

Recall

False Positive Rate

True Positive Rate

AUC = 0.794
AUC = 0.764

C

Unknown

Functional (1 ref)

Functional (2 refs)

Functional (3+ refs)

N = 310,121
median = 0.084

N = 6,502
0.873

N = 1,552
median = 0.955

N = 1,806
median = 0.988

Frequency

SAPH-ire TFx Score

“New” PTMs
FIGURE 3

	Benign	Pathogenic
N	102	322
median	0.033	0.475

p = 0.0003
FIGURE 5

A

B

Score

0.0 0.2 0.4 0.6 0.8 1.0

Unknown Fxn

KbN ± 2

KbN ± 7

1 ref

2 refs

3+ refs

Functional

SAPH-ire FPx (0.247)
PFS (0.5)
SAPH-ire TFx (0.95)

Inter-Quartile Range

C

D

E

Recalled

Missed

SAPH-ire FPx

PFS

SAPH-ire TFx (0.95)

SAPH-ire FPx

PFS

SAPH-ire TFx

1 ref

2 ref

3+ ref

Functional

1 ref

2 ref

3+ ref

Functional

SAPH-ire FPx

21,708/151,764 (14.3%)

SAPH-ire TFx (0.95)

11,056/116,258 (9.5%)

Recommendations

PFS

Thresh 0.95: 133,719/512,015 (26.1%)
Thresh 0.972: 101,632/512,015 (19.8%)
Thresh 0.987: 63,827/512,015 (12.5%)

FIGURE 5
FIGURE S1

The image shows a ROC curve with different thresholds labeled as KFSC > 0, AUC = 0.7949, Positive Count = 9860; KFSC > 1, AUC = 0.9096, Positive Count = 3358; and KFSC > 2, AUC = 0.9428, Positive Count = 1806. The x-axis represents the False Positive Rate, and the y-axis represents the True Positive Rate.
FIGURE S3

A

	Score	NO	YES
Unknown Fxn		N=26130	
KbN ± 2		N=1274	
KbN ± 7		N=1715	
1 ref		N=1741	
2 ref		N=565	
3+ ref		N=1114	

Conserved Phosphosite Hotspot
(Strumillo et al. 2019)

B

	Inter-Quartile Range		
Unknown Fxn	1 ref	2 ref	3+ ref
NO			
YES			

Inter-Quartile Range