ON THE WEAK SOLUTION $u \in C_{1-\alpha}(I,E)$ OF A FRACTIONAL–ORDER WEIGHTED CAUCHY TYPE PROBLEM IN REFLEXIVE BANACH SPACES

A. M. A. EL-SAYED AND SH. A. ABD EL-SALAM

(Communicated by N. Vasylyeva)

Abstract. In this paper, we study the existence of a weak solution $u \in C_{1-\alpha}(I,E)$ of the nonlinear weighted Cauchy type problem of fractional-order.

1. Introduction

In this paper, we study the existence of solutions, in the Banach space $C_{1-\alpha}[I,E]$, for the nonlinear weighted Cauchy-type problem of the following type

$$
\left\{
\begin{array}{l}
D^\alpha u(t) = f(t,u(t)), \quad t > 0, \quad \alpha \in (0,1) \\
t^{1-\alpha} u(t)|_{t=0} = b, \quad b > 0.
\end{array}
\right.
$$

This problem has been studied by many authors for example in ([4]), the author supposed that the function $f(t,u)$ is continuous on $R^+ \times R$, $|f(t,u)| \leq t^\mu e^{-\sigma t} \psi(t)|u|^m$, $\mu \geq 0$, $m > 1$, $\sigma > 0$, $\psi(t)$ is a continuous function on R^+. Also; In ([2]–[3]) the author proved the existence of L_1 and L_p solution of the same problem respectively.

2. Preliminaries

Let $L_1(I)$ be the space of Lebesgue integrable functions on the interval $I = [0,1]$. Unless otherwise stated, E is a reflexive Banach space with norm $\|\cdot\|$ and dual E^*. We will denote by E_w the space E endowed with the weak topology $\sigma(E,E^*)$ and denote by $C(I,E)$ the space of continuous functions defined on $I = [0,1]$ with norm

$$
\|u\|_C = \sup_{t\in[0,1]} \|u(t)\|.
$$

Also; define the space $C_{1-\alpha}(I,E)$ by

$$
C_{1-\alpha}(I,E) = \{ u : t^{1-\alpha} u(t) \text{ is continuous on } I = [0,1] \}.
$$

Mathematics subject classification (2010): 34A12, 34A08, 35D30.

Keywords and phrases: Weighted Cauchy type problem, fractional-order, weak solution.
with norm
\[||u||_{C^{1-\alpha}} = ||t^{1-\alpha}u||_{C}. \]

We recall that the fractional integral operator of order \(\alpha > 0 \) with left-hand point \(a \) is defined by (see [9], [14], [15] and [20])
\[
I^\alpha_a u(t) = \int_a^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} u(s) \, ds.
\]

DEFINITIONS. Let \(E \) be a Banach space and let \(u : I \to E \). Then

1. \(u(,) \) is said to be weakly continuous (measurable) at \(t_0 \in I \) if for every \(\varphi \in E^* \) we have \(\varphi(u(,)) \) continuous (measurable) at \(t_0 \).

2. A function \(h : E \to E \) is said to be weakly sequentially continuous if \(h \) takes weakly convergent sequences in \(E \) to weakly convergent sequences in \(E \).

Note that:

1. If \(u \) is weakly continuous on \(I \), then \(u \) is strongly measurable (see [7]), hence weakly measurable.

2. In reflexive Banach spaces weakly measurable functions are Pettis integrable (see [1], [7] and [13] for the definition) if and only if \(\varphi(u(,)) \) is Lebesgue integrable on \(I \) for every \(\varphi \in E^* \).

Now, we present some auxiliary results that will be needed in this paper. Firstly, we state O’Regan fixed point theorem ([12]).

THEOREM 2.1. Let \(E \) be a Banach space with \(Q \) a nonempty, bounded, closed, convex, equicontinuous subset of \(C[I,E] \). Suppose \(T : Q \to Q \) is weakly sequentially continuous and assume \(TQ(t) \) is weakly relatively compact in \(E \) for each \(t \in I \), holds. Then the operator \(T \) has a fixed point in \(Q \).

The following theorems can be found in [5], [22] and [10] respectively:

THEOREM 2.2. (Dominated convergence theorem for Pettis integral) Let \(u : I \to E \). Suppose there is a sequence \((u_n) \) of Pettis integrable functions from \(I \) into \(E \) such that \(\lim_{n \to \infty} \varphi(u_n) = \varphi(u) \) a.e. for \(\varphi \in E^* \). If there is a scalar function \(\psi \in L_1(I) \) with \(||u_n(\cdot)|| < \psi(\cdot) \) a.e. for all \(n \), then \(u \) is Pettis integrable and
\[
\int_I u_n(s) \, ds \to \int_I u(s) \, ds \quad \text{weakly} \quad \forall \ t \in I.
\]

THEOREM 2.3. A subset of a reflexive Banach space is weakly compact if and only if it is closed in the weak topology and bounded in the norm topology.

THEOREM 2.4. Let \(Q \) be a weakly compact subset of \(C[I,E] \). Then \(Q(t) \) is weakly compact subset of \(E \) for each \(t \in I \).
Finally, we state some results which is an immediate consequence of the Hahn-Banach theorem.

Theorem 2.5. Let E be a normed space with $u_0 \neq 0$. then there exists a $\varphi \in E^*$ with $\|\varphi\| = 1$ and $\varphi(u_0) = |u_0|$.

Theorem 2.6. If $u_0 \in E$ is such that $\varphi(u_0) = 0$ for every $\varphi \in E^*$, then $u_0 = 0$.

Now consider the fractional-order integral equation

$$u(t) = b t^{\alpha - 1} + \int_{0}^{t} \frac{(t-s)^{\alpha - 1}}{\Gamma(\alpha)} f(s, u(s)) \, ds, \quad t \in [0, 1].$$

(2) For each continuous function f and sequentially continuous for each $y \in E$, the fractional order Pettis integral of $\chi_{[0,1]}$ is a function of bounded variation. Thus, according to Lemma 3.2, for any $r > 0$, the weak closure of the range of $f(I \times B_r)$ is weakly compact in E (or equivalently; there exists an M_r such that $\|f(t, u)\| \leq M_r$ for all $(t, u) \in I \times B_r$).

Example 2.1. Let T be the interval $[0, 1]$ and define $f : T \to L^\infty(T)$ by $f(t) = \chi_{[0,1]}$. This function is weakly measurable and for each $\varphi \in L^\infty_*$, we have $\varphi f \in L_1$ (each φf is a function of bounded variation). Thus, according to Lemma 3.2, $I^\alpha f$ exists. Also, the fractional order Pettis integral of f exists see [6, 16, 18].

Definition 2.1. By a weak solution of (2) we mean a function $u \in C_{1-\alpha}[I, E]$ such that for all $\varphi \in E^*$

$$\varphi(u(t)) = b t^{\alpha - 1} + \int_{0}^{t} \frac{(t-s)^{\alpha - 1}}{\Gamma(\alpha)} \varphi(f(s, u(s))) \, ds, \quad t \in [0, 1].$$
3. Fractional-order integrals in reflexive Banach spaces

Here, we define the fractional-order integral operator in reflexive Banach spaces. Definition given below is an extension of such a notion for real-valued functions.

Definition 3.1. Let \(u : I \rightarrow E \) be a weakly measurable function, such that \(\varphi(u(.)) \in L_1(I) \), and let \(\alpha > 0 \). Then the fractional (arbitrary) order Pettis integral (shortly FPI) \(I^\alpha u(t) \) is defined by

\[
I^\alpha u(t) = \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} u(s) \, ds.
\]

In the above definition the sign "\(\int \)" denotes the Pettis integral.

Lemma 3.1. [16] Let \(u : I \rightarrow E \) be a weakly measurable function, such that \(\varphi(u(.)) \in L_1(I) \), and let \(\alpha > 0 \). The fractional (arbitrary) order Pettis integral

\[
I^\alpha u(t) = \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} u(s) \, ds
\]

exists for almost every \(t \in I \) as a function from \(I \) into \(E \) and \(\varphi(I^\alpha u(t)) = I^\alpha \varphi(u(t)) \).

Lemma 3.2. [17] Let \(u : I \rightarrow E \) be weakly continuous function on \([0, 1]\). Then, FPI of \(u \) exists for almost every \(t \in [0, 1] \) as a weakly continuous function from \([0, 1]\) to \(E \). Moreover,

\[
\varphi(I^\alpha u(t)) = I^\alpha \varphi(u(t)), \quad \text{for all } \varphi \in E^*.
\]

Definition 3.2. [13] Let \(u : I \rightarrow E \). We define the fractional-Pseudo derivative (shortly FPD) of \(u \) of order \(\alpha \in (n-1, n) \), \(n \in N \) by

\[
\frac{d^\alpha}{dt^\alpha} u(t) = D^n I^{n-\alpha} u(t).
\]

In the above definition the sign "\(D \)" denotes the Pseudo differential operator.

Lemma 3.3. [21] Let \(u : [0, 1] \rightarrow E \) be weakly continuous function on \([0, 1]\) such that the real-valued function \(I^{n-\alpha} \varphi u \) is \(n \)-times differentiable. Then, the FPD of \(u \) of order \(\alpha \in (n-1, n) \) exists.

Definition 3.3. A function \(u : I \rightarrow E \) is called Pseudo solution of (1) if \(u \in C_{1-\alpha}[I,E] \) has FPD of order \(\alpha \in (0, 1) \), \(I^{1-\alpha} u(t)|_{t=0} = b \), \(b > 0 \) and satisfies

\[
\frac{d}{dt} \varphi(I^{1-\alpha} u(t)) = \varphi(f(t,u(t))), \quad \text{a.e. on } [0, 1], \quad \text{for each } \varphi \in E^*.
\]

Now, for the properties of the integrals of fractional-orders in reflexive spaces we have the following lemma (see [16]):
LEMMA 3.4. Let \(u : I \to E \) be weakly measurable and \(\varphi(u(.)) \in L_1(I) \). If \(\alpha, \beta \in (0, 1) \), we have:

1. \(I^{\alpha}I^{\beta}u(t) = I^{\alpha+\beta}u(t) \) for a.e. \(t \in I \).
2. \(\lim_{\alpha \to 1} I^{\alpha}u(t) = I^1u(t) \) weakly uniformly on \(I \) if only these integrals exist on \(I \).
3. \(\lim_{\alpha \to 0} I^{\alpha}u(t) = u(t) \) weakly in \(E \) for a.e. \(t \in I \).
4. If, for a fixed \(t \in I \), \(\varphi(u(t)) \) is bounded for each \(\varphi \in E^* \), then \(\lim_{t \to 0} I^{\alpha}u(t) = 0 \).

4. Main result

In this section we present our main result by proving the existence of solution of equation (2) in \(C_{1-\alpha}[I, E] \).

Let \(E \) be a reflexive Banach space. And let

\[E_r = \left\{ u \in C_{1-\alpha}[I, E] : ||u||_{C_{1-\alpha}} < b + \frac{M_r}{\Gamma(1+\alpha)} \right\} \]

We will consider the set

\[B_r = \{ u(t) \in E : u \in E_r, \ t \in I \}. \]

Now, we are in a position to formulate and prove our main result.

THEOREM 4.1. Let the assumptions (1)–(3) are satisfied, then equation (2) has at least one weak solution \(u \in C_{1-\alpha}[I, E] \).

Proof. Let us define the operator \(T \) as

\[Tu(t) = b t^{\alpha-1} + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s,u(s)) \, ds, \ t \in [0,1]. \]

We will solve equation (2) by finding a fixed point of the operator \(T \).

We will prove that

\[T : C_{1-\alpha}[I, E] \to C_{1-\alpha}[I, E]. \]

First note that from assumption (2), we get that for each \(u \in C_{1-\alpha}[I, E] \), \(f(., u(.)) \) is weakly measurable on \(I \). Since \(f \) has weakly compact range, then \(\varphi(f(., u(.))) \) is Lebesgue integrable on \(I \) for every \(\varphi \in E^* \) and thus the operator \(T \) is well defined.

Now, we show that if \(u \in C_{1-\alpha}[I, E] \), then \(Tu \in C_{1-\alpha}[I, E] \). Note that there exists \(r > 0 \) with \(||u||_{C_{1-\alpha}} = \sup_{t \in I} ||t^{1-\alpha}u(t)|| < b + \frac{M_r}{\Gamma(1+\alpha)} \).

Now assumption (3) implies that

\[||f(t,u(t))|| \leq M_r \text{ for } t \in [0,1]. \]

Let \(t, \tau \in [0,1] \) with \(t > \tau \). Without loss of generality, assume \(t^{1-\alpha}Tu(t) - \tau^{1-\alpha}Tu(\tau) \neq 0 \). Then there exists (a consequence of Theorem 2.5) \(\varphi \in E^* \) with \(||\varphi|| = 1 \) and

\[||t^{1-\alpha}Tu(t) - \tau^{1-\alpha}Tu(\tau)|| = \varphi(t^{1-\alpha}Tu(t) - \tau^{1-\alpha}Tu(\tau)). \]
Thus

\[
||t^{1-\alpha}Tu(t) - \tau^{1-\alpha}Tu(\tau)|| \leq \left| t^{1-\alpha} \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi(f(s,u(s))) \, ds \right| - \tau^{1-\alpha} \int_0^\tau \frac{(\tau-s)^{\alpha-1}}{\Gamma(\alpha)} \phi(f(s,u(s))) \, ds \\
\leq \left| \int_0^\tau \frac{t^{1-\alpha}(t-s)^{\alpha-1} - \tau^{1-\alpha}(\tau-s)^{\alpha-1}}{\Gamma(\alpha)} \phi(f(s,u(s))) \, ds \right| \\
+ \left| \int_\tau^t \frac{t^{1-\alpha}(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi(f(s,u(s))) \, ds \right| \\
\leq \frac{Mr}{\Gamma(\alpha)} \left(\int_0^\tau |t^{1-\alpha}(t-s)^{\alpha-1} - \tau^{1-\alpha}(\tau-s)^{\alpha-1}| \, ds \right) \\
+ \int_\tau^t |t^{1-\alpha}(t-s)^{\alpha-1}| \, ds \\
\leq \frac{Mr}{\Gamma(1+\alpha)} \left(2(t-\tau)^\alpha + |t-\tau| \right).
\]

(3)

which proves that \(Tu \in C_{1-\alpha}[I,E] \).

Now, let

\[
Q = \left\{ u \in E_r : (\forall t, \tau \in I) ||t^{1-\alpha}u(t) - \tau^{1-\alpha}u(\tau)|| \leq \frac{Mr}{\Gamma(1+\alpha)} \left(2(t-\tau)^\alpha + |t-\tau| \right) \right\},
\]

Note that \(Q \) is nonempty, closed, bounded, convex and equicontinuous subset of \(C_{1-\alpha}[I,E] \). Now, we claim that \(T : Q \to Q \) and is weakly sequentially continuous. If this is true then according to Theorem 2.3, \(TQ \) is bounded in \(C_{1-\alpha}[I,E] \) (hence, Theorem 2.4, implies \(TQ(t) \) is weakly relatively compact in \(E \) for each \(t \in I \)) and the result follows immediately from Theorem 2.1. It remains to prove our claim. First we show that \(T \) maps \(Q \) into \(Q \). To see this, note that the inequality (3) shows that \(TQ \) is norm continuous. Now, take \(u \in Q \); without loss of generality, we may assume that \(t^{1-\alpha}I^\alpha f(t,u(t)) \neq 0 \), then, by Theorem 2.5, there exists \(\varphi \in E^* \) with \(||\varphi|| = 1 \) and \(||t^{1-\alpha}I^\alpha f(t,u(t))|| = \varphi(t^{1-\alpha}I^\alpha f(t,u(t))) \). Thus

\[
||t^{1-\alpha}Tu(t)|| \leq b + \frac{Mr}{\Gamma(1+\alpha)},
\]

(4)

therefore

\[
||Tu||_{C_{1-\alpha}} < b + \frac{Mr}{\Gamma(1+\alpha)}.
\]

Thus \(T : Q \to Q \). Finally, we will show that \(T \) is weakly sequentially continuous. To see this, let \(\{u_n\}_{n=1}^\infty \) be a sequence in \(Q \) and let \(u_n(t) \to u(t) \) in \(E_w \) for each \(t \in [0,1] \). Recall [10] that a sequence \(\{u_n\}_{n=1}^\infty \) is weakly convergent in \(C[I,E] \) if and only if it is weakly pointwise convergent in \(E \). Fix \(t \in I \). From the weak sequential continuity of \(f(t,.) \), the Lebesgue dominated convergence theorem (see assumption (3)) for the
Pettis integral [5] implies for each $\varphi \in E^*$ that $\varphi(Tu_n(t)) \to \varphi(Tu(t))$ a.e. on I, $Tu_n(t) \to Tu(t)$ in E_w. So $T : Q \to Q$ is weakly sequentially continuous. The proof is complete. □

Now, we are looking for sufficient conditions to ensure the existence of Pseudo solution to the nonlinear weighted Cauchy-type problem (1).

Note that, the following theorem is a generalization of the results of §3.3 in [8]:

Theorem 4.2. If $f : I \times B_r \to E$ satisfies the assumptions of Theorem 4.1, then the nonlinear weighted Cauchy-type problem (1) has a fractional-Pseudo derivative (FPD) $u \in C_{1-\alpha}[I, E]$.

Proof. Let us remark, that by assumptions (2), (3) the FPI of f of order $\alpha > 0$ exists and

$$\varphi(I^\alpha f(t,u(t))) = I^\alpha \varphi(f(t,u(t))), \text{ for all } \varphi \in E^*.$$

Let u be a solution of equation (2), then

$$u(t) = bt^{\alpha-1} + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s,u(s)) \, ds, \quad t \in [0,1].$$

It is clear that

$$t^{1-\alpha}u(t)|_{t=0} = b.$$

Furthermore, we have

$$u(t) = bt^{\alpha-1} + I^\alpha f(t,u(t))$$

since $u \in C_{1-\alpha}[I, E]$, then $\varphi(I^{1-\alpha}u(t)) = I^{1-\alpha} \varphi(u(t))$, for all $\varphi \in E^*$ (see Lemma 3.2). From equation (5), we deduce that

$$\varphi(u(t)) = bt^{\alpha-1} + \varphi(I^\alpha f(t,u(t))).$$

Operating by $I^{1-\alpha}$ on both sides of the equation (6) and using the properties of fractional calculus in the space $L_1[0,1]$ (see [19] and [20]) result in

$$I^{1-\alpha} \varphi(u(t)) = b_1 + I \varphi(f(t,u(t))).$$

Therefore,

$$\varphi(I^{1-\alpha}u(t)) = b_1 + I \varphi(f(t,u(t))).$$

Thus

$$\frac{d}{dt} \varphi(I^{1-\alpha}u(t)) = \varphi(f(t,u(t))) \text{ a.e. on } [0,1].$$

That is u has the FPD of order $\alpha \in (0,1)$ and u is a solution of the differential equation (1). Conversely, let $u(t)$ be a solution of (1), integrate both sides, then

$$I^{1-\alpha} \varphi(u(t)) - I^{1-\alpha} \varphi(u(t))|_{t=0} = I \varphi(f(t,u(t))),$$
operating by I^α on both sides of the last equation, then

$$I\varphi(u(t)) - I^\alpha C = I^{1+\alpha} \varphi(f(t, u(t))),$$

differentiate both sides, then

$$\varphi(u(t)) - C_1 t^{\alpha-1} = I^\alpha \varphi(f(t, u(t))),$$

from the initial condition, we find that $C_1 = b$, then we obtain (2), i.e. Problem (1) and equation (2) are equivalent to each other. □

REFERENCES

[1] J. Diestel and J. J. Uhl, Jr., *Vector measures*, Math. Surveys Monogr. 15, Amer. Math. Soc., Providence, R. I., (1977).

[2] A. M. A. El-Sayed and Sh. A. Abd El-Salam, *Weighted Cauchy-type problem of a functional differ-integral equation*, EJQTDE 30 (2007) 1–9.

[3] A. M. A. El-Sayed and Sh. A. Abd El-Salam, L_p-solution of weighted Cauchy-type problem of a diffre-integral functional equation, Inter. J. of Nonlinear Sci. 5 (2008).

[4] K. M. Furati and N. E. Tatar, *Power-type estimates for a nonlinear fractional differential equation*, Nonlinear analysis 62 (2005), 1025–1036.

[5] R. F. Geitz, *Pettis integration*, Proc. Amer. Math. Soc. 82 (1981), 81–86.

[6] R. F. Geitz, *Geometry and the Pettis integral*, Trans. Am. Math. Soc. 1982, 169(2) 535–548.

[7] E. Hille and R. S. Phillips, *Functional Analysis and Semi-groups*, Amer. Math. Soc. colloq. Publ. 31, Amer. Math. Soc., Providence, R. I., (1957).

[8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and applications of fractional differential equations*, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, (2006).

[9] K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley, New York (1993).

[10] A. R. Mitchell and Ch. Smith, *An existence theorem for weak solutions of differential equations in Banach spaces*, Nonlinear equations in abstract spaces. Proc. Int. Symp., Arlington, (1977), (1978), 387–403.

[11] D. O’Regan, *Integral equations in reflexive Banach spaces and weak topologies*, Amer. Math. Soc. vol. 124, no. 2 (1996), 607–614.

[12] D. O’Regan, *Weak solutions of ordinary differential equations in Banach spaces*, Applied Math. Letters 12 (1999), 101–105.

[13] B. J. Pettis, *On integration in vector spaces*, Trans. Amer. Math. Soc. 44 (1938), 277–304.

[14] I. Podlubny and A. M. A. El-Sayed, *On two definitions of fractional calculus*, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).

[15] I. Podlubny, *Fractional Differential Equations*, Acad. press, San Diego-New York-London (1999).

[16] H. A. H. Salem and A. M. A. El-Sayed, Weak solution for fractional order integral equations in reflexive Banach spaces, Mathematica Slovaca, (2005), no. 2, 169–181.

[17] H. A. H. Salem, A. M. A. El-Sayed and O. L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115–130.

[18] H. A. H. Salem, *On the nonlinear Hammerstien integral equations in Banach spaces and application to the boundary value problem of fractional order*, Mathematical and computer modelling 48 (2008), 1178–1190.

[19] H. A. H. Salem and M. Väth, *An abstract Gronwall lemma and application to global existence results for functional differential and integral equations of fractional order*, J. Integral Equations Appl. 16 (2004), 411–439.
[20] S. Samko, A. Kilbas and O. L. Marichev, *Fractional Integrals and Derivatives*, Gordon and Breach Science Publisher, (1993).

[21] G. F. Stefansson, *Pettis integrability*, Trans. Am. Math. Soc. 1993, 401–417.

[22] A. Szep, *Existence theorem for weak solutions of differential equations in Banach spaces*, Studia Sci. Math. Hungar. 6 (1971), 197–203.

(Received October 5, 2017)

A. M. A. El-Sayed
Faculty of Science
Alexandria University
Alexandria, Egypt
e-mail: amasayed@alexu.edu.eg

Sh. A. Abd El-Salam
Faculty of Science
Damanhour University
Damanhour, Egypt
e-mail: shrnahmed@sci.dmu.edu.eg