Resveratrol: A potential challenger against gastric cancer

Aida Zulueta, Anna Caretti, Paola Signorelli, Riccardo Ghidoni

Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer-related mortality in the world. Despite the improvement of conventional therapies for advanced GC, the length or quality of life of patients with advanced GC is still poor. Resveratrol exerts bactericidal activity against Helicobacter pylori, acting as a GC preventive agent.

Resveratrol therapeutic potential against GC initiation and progression is thus required to be surveyed and this is done within this minireview.

Correspondence to: Riccardo Ghidoni, PhD, Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy. riccardo.ghidoni@unimi.it

Received: May 18, 2015
Peer-review started: May 20, 2015
First decision: June 23, 2015
Revised: July 9, 2015
Accepted: August 31, 2015
Article in press: August 31, 2015
Published online: October 7, 2015

Abstract

Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer-related mortality in the world. Late diagnosis and classical therapeutic approaches such as surgery, chemotherapy and radiotherapy make this disease a still threatening tumor. Genetic asset, environmental stress, dietary habit and infections caused by Helicobacter pylori (H. pylori) are the major causes concurring to GC initiation. A common mechanism is induction of radicals resulting in gastric mucosal injury. A regular food intake of antioxidant and radical scavenging agents has been proposed to exert protection against tumorigenesis. Resveratrol belongs to the polyphenol flavonoids class of antioxidants produced by a restricted number of plants. Resveratrol exerts bactericidal activity against H. pylori and is a powerful antioxidant, thus acting as a tumor preventive agent. Resveratrol intracellular signaling results in growth arrest and apoptosis, so that it can be directed against tumor progression. Resveratrol therapeutic potential against GC initiation and progression are reviewed here.

Core tip: Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer-related mortality in the world. Despite the improvement of conventional therapies for advanced GC, the length or quality of life of patients with advanced GC is still poor. Resveratrol exerts bactericidal activity against Helicobacter pylori, acting as a GC preventive agent. Resveratrol therapeutic potential against GC initiation and progression is thus required to be surveyed and this is done within this minireview.

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
cancer and the second leading cause of cancer-related mortality in the world13, due to the difficulty in making an early diagnosis for GC, thus most of the patients are diagnosed at advanced stages. Despite the improvement in conventional therapies for advanced GC, including surgery, chemotherapy and radiotherapy, the length or quality of life of patients with advanced GC is still poor2,3. There is therefore an urgent need to explore new preventive drugs or therapeutic targets.

Although the host genetic asset, environmental stress, dietary habits and other factors have been implicated in the gastric oncogenic process, there is strong evidence that the predominant etiological factors contributing to the development of GC are infections caused by Helicobacter pylori (\textit{H. pylori}) and/or exposure to chemical carcinogens such as those in cigarettes and cured meats14,15. The identification and eradication of \textit{H. pylori} infection in the world population would be an economically prohibitive undertaking because more than 50% of the population over the age of 50 is infected with the bacterium, and eradication would not benefit those with pre-malignant gastric mucosal alterations. The infiltration of neutrophils and macrophages caused by \textit{H. pylori} infection leads to the production of free radicals, including nitric superoxide and oxide. ROS-mediated stress responses result in gastric mucosal injury, ulcers, and ultimately GC7. Therefore, agents that have a powerful antioxidant potential via ROS scavenging or enhancing antioxidant capacity may help to protect against GC initiation and progression.

Among antioxidants, an important role is played by natural compounds with radical scavenging activity, that can be ingested on a regular basis by food intake and exert protection against tumorigenesis. Polyphenols comprise a large class of antioxidants and include flavonoids, anthocyanins, phenolic acids, lignans and stilbenes. These compounds are all derived from phenylalanine and contain an aromatic ring with a reactive hydroxyl group. Within the sub-class of stilbenes, resveratrol is the common term for 3,5,4'-hydroxystilbene. Resveratrol is produced by a restricted number of plants (about 31 genera). It is not normally present in large amounts and is produced in response to stress; resveratrol belongs to a class of defense molecules called phytoalexins that protect against infection and damage from exposure to ultraviolet (UV) irradiation8-10. Resveratrol and the analogs piceatannol and pterostilbene have been found in several edible natural products such as grapes (\textit{Vitis} spp.), peanuts (\textit{Arachis} spp.)11, berries (blueberries, cranberries and lingonberries, all \textit{Vaccinium} spp.)12 and rhubarb (\textit{Rheum} spp.)13.

Resveratrol was first reported to exert anti-tumor activities in 199714. Since then, the antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects of resveratrol have been widely studied15. Subsequent reports have shown that resveratrol suppresses proliferation of several types of cancers, such as colon, breast, pancreas, prostate, ovarian and endometrial cancers, as well as lymphoma, and affects diverse molecular targets16-23. In this review, we will summarize the principal findings that support the antitumoral properties of resveratrol in GC either as a preventive or as a therapeutic agent.

PREVENTIVE ROLE OF RESVERATROL IN GC AGAINST \textit{H. PYLORI}

Besides its antioxidant activity, resveratrol was found to have antimicrobial effects24 by inhibiting the growth of multiple \textit{H. pylori} strains25-27. The infection by \textit{H. pylori} induces an inflammatory response with the release of various cytokines and reactive oxygen species and changes in cell proliferation28. The neutrophil attractant IL-8 is one of the most crucial chemokines in the host inflammatory response to \textit{H. pylori}29-33. The upregulation of IL-8 following \textit{H. pylori} infection may lead to free-radical generation, and the release of proteolytic enzymes from activated neutrophils ultimately affects mucosal integrity29,38. Pre-treatment of \textit{H. pylori}-infected MKN-45 cells with resveratrol at 75 and 100 µmol/L for 4 h significantly suppressed IL-8 secretion. Moreover, ROS production was significantly suppressed by resveratrol pre-treatment at 10-100 µmol/L for the same time34.

Another peculiarity of \textit{H. pylori} infection is the increased severity in patients infected by strains expressing the CagA (cytotoxin associated gene A) which are endowed with an increased inflammatory potential35. It has been documented that the interaction between CagA positive \textit{H. pylori} strains and host cells is associated with morphological changes that lead to dysregulation of host cell functions, thereby contributing to pathogenesis. After CagA protein injection by \textit{H. pylori} into the cells, CagA interacts with various intracellular signaling molecules including enzymes like Src kinases, eventually leading to increased cell motility and the hummingbird phenomenon36. Resveratrol pre-treatment (100 µmol/L) for 2 h blocked the morphological changes induced by infection with a CagA positive \textit{H. pylori} strain in the MKN-45 cells34. Resveratrol may be a particularly important preventive tool in GC since \textit{H. pylori} strains isolated from gastric carcinoma biopsies show an increased susceptibility to resveratrol compared with strains isolated from patients with chronic gastritis alone37. The hypothesis is that one target of the antibacterial action of resveratrol may be one or more F-type ATPases, which normally protect the bacteria from low pH levels by maintaining a proton gradient across membranes. In strains isolated from patients with gastric carcinoma, such an enzyme may be underexpressed, as an adaptive response to an environment that has lost its natural acidity. Thus, the bacterial defenses are reduced and then susceptibility to resveratrol is increased, so that it saturates its...
targets more quickly and efficiently.

RESVERATROL AS A THERAPEUTIC AGENT IN THE INHIBITION OF CANCER CELL PROLIFERATION

Resveratrol arrests proliferation and induces apoptosis in vitro

In addition to its bactericidal properties, there is multiple evidence that resveratrol is able to inhibit cell proliferation of human adenocarcinoma cell lines, but the mechanisms underlying its action remain unknown. Since resveratrol has been shown to mediate apoptosis through a variety of different pathways, resveratrol-induced apoptosis seems to be one of the inhibitory mechanisms in GC. Several authors have shown that the resveratrol-induced apoptotic program is consequent to its inhibition of cell proliferation. Atten et al. found that exposure of KATO-Ⅲ and RF-1 cells and SNU-1 cells (41,42) to resveratrol (100 μmol/L for 24 h) interfered with cell cycle progression, inhibited DNA synthesis and suppressed cellular proliferation. Moreover, resveratrol suppressed nitrosamines-stimulated DNA synthesis in RF-1 cells, showing that, in addition to suppressing normal cellular proliferation, resveratrol was able to reverse carcinogen-stimulated proliferation. Resveratrol induced inhibition of protein kinase C (PKC) activity in KATO-Ⅲ cells, without any change in mitogen-activated protein kinases ERK1/ERK2 activity, suggesting that resveratrol utilizes a PKC-mediated mechanism to inhibit growth of gastric adenocarcinoma cells. This finding is significant when considering that inhibitors of PKC have been studied as potential anticancer agents precisely because they are associated with tumor suppression, cell cycle arrest, decreased proliferation, and apoptosis. Gastric adenocarcinoma SNU-1 cells treated with resveratrol showed a time- and concentration-dependent increase in tumor suppressors p21(39,40) and p53 preceded by the loss of membrane-associated PKC δ protein and by a concomitant increase in cytosolic PKC ε (42). Resveratrol also caused a time-dependent accumulation of Fas and Fas-L proteins in SNU-1 cells while it had no effect on Fas but did elevate Fas-L in p53 deficient KATO-Ⅲ cells (42). Riles et al. found that individual gastric carcinoma cell lines respond to resveratrol (100 μmol/L) with engagement of individual apoptotic signals. They investigated the role of p53 in the intracellular apoptotic signals engaged by resveratrol. Resveratrol induced a time-dependent apoptotic response in the three cell lines analyzed irrespective of their p53 status. In p53 expressing SNU-1 cells resveratrol up-regulated p53 and down-regulated surviving, whereas in KATO-Ⅲ cells (not expressing p53) and in AGS cells, resveratrol stimulated caspase 3 and cytochrome C oxidase activities, enabling suppression of proliferation while stimulating the breakdown of nuclear proteins.

Treatment with resveratrol (50-200 μmol/L) for 48 h significantly induced apoptosis and DNA damage in human GC SGC-7901 cells. These effects were due to the increased generation of ROS following resveratrol treatment, corroborated by the fact that incubation of cells with superoxide dismutase or catalase attenuated resveratrol-induced cellular apoptosis. Exposure to resveratrol (100 μmol/L) for 24 h induced cell death and cell cycle arrest in SNU-1 GC cells and the combination of resveratrol and dimethylsphingosine increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity (46).

Resveratrol arrests proliferation without induction of apoptosis

Recent studies show a significant anti-proliferative effect of resveratrol in the absence of apoptosis induction, raising the hypothesis of alternative mechanisms, possibly depending on cell type or more likely on treatment dose, underlying the antitumoral activity of this polyphenol. Yang et al. found that resveratrol inhibited the proliferation of the GC cell lines AGS, BGC-823 and SGC-7901, inducing senescence instead of apoptosis. At concentrations of 25 and 50 μmol/L, resveratrol inhibited the cell viability and diminished the clonogenic potential of GC cells. Resveratrol treatment induced G1 phase arrest, and regulators of the cell cycle and senescence pathways, including cyclin D1, cyclin-dependent kinase (CDK4 and 6), p21 and p16, were dysregulated. In agreement with the proposed epigenetic activities of resveratrol via activation of the class III nicotinamide adenine nucleotide (NAD+)-dependent histone/protein deacetylase Sirt1 (16,17), the compound inhibited both the proliferation of GC cells in vitro and the growth of tumor in vivo in a Sirt1 dependent manner (47). Specifically, SIRT1 activation by resveratrol treatment in GC cells (AGS and MKN-45) not only diminished the levels of the acetylated forms of STAT3 and NF-κB, whose activity is associated with tumor progression (48,49), but also caused a loss of viability and an increase in senescence, which were rescued by SIRT1 inhibitor (nicotinamide) or SIRT1-depletion (47,50).

These results suggest that the inhibitory effects of resveratrol on GC may depend on Sirt1. However, some authors dispute this hypothesis, suggesting that resveratrol exerts chemoprotective effects independently of Sirt1 (18).

Another proposed pathway involved in the mechanism of cell proliferation inhibition by resveratrol is the MEK1/2-ERK1/2- c-Jun signaling cascade. It has been documented that resveratrol treatment (500 nmol/L) abolided cell proliferation through specific inhibition of MEK1/2-mediated ERK1/2 phosphorylation, which consequently suppresses translocation of c-Jun into the nuclear compartment, impairing cell progression.
proliferation of human adenocarcinoma gastric cells (AGS)\(^{51}\).

Resveratrol has been proposed to modulate sub-pools of sphingolipids, lipid molecules involved in structural as well as signaling functions, thus finely acting to block cell cycle with no direct apoptosis induction\(^{46,52}\). Resveratrol was found to downregulate the activity of dihydroceramide desaturase, the enzyme involved in ceramide formation along the \textit{de novo} sphingolipid synthetic pathway, inducing dihydroceramide accumulation in GC cells\(^{46,52}\). Twenty-four hours’ treatment with resveratrol (50 \(\mu\)mol/L) induced lack of cell death \textit{via} apoptosis and enhanced autophagy in the HGC-27 cell line\(^{52}\). Dihydroceramide accumulated in a resveratrol concentration-dependent manner in other gastric cell lines like SNU-1, but not in SNU-668 cells\(^{46}\), suggesting that the different sensitivity of cancer cells to resveratrol might be deeply related to sphingolipid, especially dihydroceramide, distribution patterns. In spite of the results reported, resveratrol was shown to induce ceramide increase and apoptosis in cancer cell lines other than gastric such as prostate\(^{53}\), breast\(^{54}\), and myeloid leukemia cells\(^{63,64}\).

Table 1 Summary of principal effects of resveratrol treatment on gastric cancer

Cell or animal model	Effect	First author	Year	Ref.
MKN-45 cells	Antioxidant and anti-inflammatory	Zaidi	2009	[34]
\textit{Helicobacter pylori} strains	Bactericidal	Martini	2011	[37]
KATO-Ⅲ and RF-1 cells	Cell cycle arrest and pro-apoptotic	Atten	2001	[41]
SNU-1 cells	Cell cycle arrest and pro-apoptotic	Atten	2005	[42]
SNU-1, KATO-Ⅲ and RF-1 cells	Pro-apoptotic	Riles	2006	[44]
SGC-7901 cells	Pro-apoptotic	Wang	2012	[45]
SNU-1 and SNU-668 cells	Cell cycle arrest and anti-proliferative	Shin	2012	[46]
AGS, BGC-823 and SGC-7901 cells	Cell cycle arrest and senescence	Yang	2013	[47]
AGS and MKN-45 cells	Anti-proliferative and senescence	Lu	2014	[50]
AGC cells	Anti-proliferative	Aquilano	2009	[51]
HGC-27 cells	Cell cycle arrest	Signorelli	2009	[52]
Nude mice xenografts (BGC-823 cells)	Anti-proliferative	Yang	2013	[47]
Nude mice xenografts (primary gastric cancer cells)	Apoptosis of carcinoma cells	Zhou	2005	[57]

USE OF RESVERATROL AS A NUTRACEUTICAL IN HUMANS: A CHALLENGE AGAINST ITS POOR BIOAVAILABILITY

Although the use of resveratrol in cell culture models has demonstrated much potential, there has been substantial concern that the concentrations used \textit{in vitro} and in animal models are not reasonably attainable in humans\(^{58}\). There is little data regarding the bioavailability of resveratrol in humans. Early research suggested that resveratrol bioavailability was rather limited, considerably less than 1\%\(^{59-61}\) despite a high absorption of almost 70\% due to its rapid and extensive metabolism\(^{62}\). The metabolism of resveratrol involves both glucuronidation and sulfation in the intestine and liver\(^{63,64}\). One of the initial human studies of the absorption and bioavailability uses a single 25 mg oral dose\(^{65}\), which corresponds to a moderate intake of red wine. After this dose to healthy human subjects, the compound appears in serum and urine predominantly as glucuronide and sulfate conjugates and reaches peak concentrations (10-40 nmol/L) in serum around 30 min after consumption\(^{65}\). Sulfate conjugation occurs very rapidly and could be the primary metabolic pathway\(^{66}\).

Numerous strategies have been developed to enhance the bioavailability of orally administered resveratrol, as recently reviewed\(^{67}\). Most of these are based on increasing resveratrol absorption and on protecting resveratrol from its rapid metabolism in the gastrointestinal tract. Resveratrol administration combined with red wine polyphenols could be a simple approach to improving bioavailability, in accordance with the “French Paradox”. Indeed, these polyphenols could target the key enzymes that conjugate resveratrol reducing the rate of transformation of trans-resveratrol\(^{68,69}\). While piperine, a polyphenol...
found in black pepper, enhances the pharmacokinetics of resveratrol by inhibiting its glucuronidation\(^\text{70}\), quercetin, found in many fruits, vegetables, leaves and grains, inhibits the human liver sulfotransferase SULT1A1 and thereby reduces the rate of resveratrol sulfate formation\(^\text{71}\). Although research into cellular and animal models has shown that these polyphenols enhance the effects of resveratrol\(^\text{64,68,72}\), the co-administration in humans did not increase resveratrol bioavailability\(^\text{73}\). An approach aimed at improving resveratrol absorption is to decrease the particle size of resveratrol by micronization, thus increasing its rate of dissolution and absorption. The micronized resveratrol formulation SRT501 resulted in increased plasma levels and time of maximum plasma concentrations in patients of a phase I trial\(^\text{74}\). Prodrugs may provide another interesting solution that would allow a physiologically significant concentration without toxicity. The acetylation of three hydroxyl groups of resveratrol to obtain 3,5,4′-Tri-O-acetylresveratrol (taRES), a prodrug of resveratrol, masks its principal sites of glucuronidation and sulfation until it is deacetylated to produce resveratrol\(^\text{75,76}\). Intragastric administration of taRES to rats resulted in a greater concentration than those obtained with the equivalent dosage of de-acetylated resveratrol\(^\text{75}\). Pharmacokinetic studies of synthesized carbamate ester derivatives of resveratrol revealed a high water solubility while maintaining to some degree the ability to permeate biomembranes and confirmed absorption after oral administration in rats\(^\text{77}\). In a neuroblastoma cellular model, resveratrol lipoconjugates through phosphate bridges showed significantly more activity than unconjugated resveratrol\(^\text{78}\). In addition to these strategies, recent data has revealed that resveratrol nanoformulations can improve resveratrol transport across the membranes\(^\text{79}\), protect resveratrol from metabolism in animal models\(^\text{80,81}\), as well as reduce gastrointestinal damages in rats\(^\text{82}\) suggesting a possible greater tolerability in humans.

Recently human pilot studies in patients with colorectal and hepatic cancers have confirmed resveratrol beneficial effects in reducing cancer cell proliferation\(^\text{83}\), in modulating the expression of some genes of the WNT pathway\(^\text{80}\) and in increasing markers of apoptosis in the malignant tissues\(^\text{74}\). Although the bioavailability is very low, rapid uptake and accumulation of resveratrol in epithelial cells along the aerodigestive tract\(^\text{59}\) and potentially active resveratrol metabolites may still produce cancer-inhibitory effects in organs like the esophagus and the stomach.

CONCLUSION

GC is closely related to lifestyle factors, especially diet and/or infection by *H. pylori*. Polyphenolic compounds exert an antioxidant protective action against GC. In addition, the consequent anti-inflammatory properties and the ability to inhibit *H. pylori* growth as well as high rate proliferation of GC cells make resveratrol an attractive candidate for GC prevention and therapy. Extremely rapid metabolism appears to be the rate-limiting step in resveratrol bioavailability; however, if sustained resveratrol levels can be achieved in the gastrointestinal tract, there is evidence of a powerful antitumoral effect. It should be noted that, whereas high concentration of the compound result in toxic and pro-apoptotic effects, a fine modulation of resveratrol administration, *i.e.*, by dietary intake and in consideration of its uptake/metabolism, may activate multiple mechanisms such as dihydroceramide-mediated autophagy and epigenetic control of cell cycle/senescence. Most of these mechanisms are deregulated in cancer, thus making this polyphenol a good adjuvant for antitumoral therapies, specifically targeting hyperproliferative cells.

REFERENCES

1. Jenal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]
2. Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M, La Vecchia C. Recent patterns in gastric cancer: a global overview. Int J Cancer 2009; 125: 666-673 [PMID: 19382179 DOI: 10.1002/ijc.24290]
3. Wu K, Nie Y, Guo C, Chen Y, Ding J, Fan D. Molecular basis of therapeutic approaches to gastric cancer. J Gastroenterol Hepatol 2009; 24: 37-41 [PMID: 19196394 DOI: 10.1111/j.1440-1746.2008.05735.x]
4. Kuipers EJ. Review article: exploring the link between Helicobacter pylori and gastric cancer. Aliment Pharmacol Ther 1999; 13 Suppl 1: 3-11 [PMID: 10209681]
5. Ruggiero P. Helicobacter pylori infection: what's new. Curr Opin Infect Dis 2012; 25: 337-344 [PMID: 22555448 DOI: 10.1097/QCO.0b013e3283513176]
6. Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol 2013; 19: 984-993 [PMID: 23467658 DOI: 10.3748/wjg.v19.i7.984]
7. Yannaka A. Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosa in mice and human subjects. Curr Pharm Des 2011; 17: 1532-1540 [PMID: 21548875]
8. Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Experientia 1977; 33: 151-152 [PMID: 844529]
9. Dixon RA. Natural products and plant disease resistance. Nature 2001; 411: 843-847 [PMID: 11459067 DOI: 10.1038/35081178]
10. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005; 16: 449-466 [PMID: 16040328 DOI: 10.1016/j.jnutbio.2005.01.017]
11. Sanders TH, McMichael RW, Hendrix KW. Occurrence of resveratrol in edible peanuts. J Agric Food Chem 2000; 48: 1243-1246 [PMID: 10775379]
12. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 2004; 52: 4713-4719 [PMID: 15266904 DOI: 10.1021/jf040009c]
13. Matsuda H, Tomohiro N, Hiraba K, Harima S, Ko S, Matsu K, Yoshikawa M, Kubo M. Study on anti-Oketsu activity of Rhizoma (dried rhizome of Rheum undulatum cultivated in Korea). Biol Pharm Bull 2001; 24: 264-267 [PMID: 11256482]
Resveratrol and red wine extracts inhibit the growth of CagA+ strains of Helicobacter pylori in vitro. Am J Gastroenterol 2002; 97: 2132-2136 [PMID: 12079023 DOI: 10.1111/j.1572-0241.2002.02146.x]

Mahady GB, Pendland SL. Resveratrol inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol 2000; 95: 1849 [PMID: 10926010 DOI: 10.1111/j.1572-0241.2000.02146.x]

Mahady GB, Pendland SL, Chadwick LR. Resveratrol and red wine extracts inhibit the growth of CagA+ strains of Helicobacter pylori in vitro. Am J Gastroenterol 2003; 98: 1440-1441 [PMID: 12818294 DOI: 10.1111/j.1572-0241.2003.05713.x]

Holian O, Wahid S, Atten MJ, Attar BM. Inhibition of gastric cancer cell proliferation by resveratrol: role of nitric oxide. Am J Physiol Gastrointest Liver Physiol 2002; 282: G809-G816 [PMID: 11960777 DOI: 10.1152/ajpgi.00193.2001]

Lee KW, Bode AM, Dong Z. Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 2011; 11: 211-218 [PMID: 21326325 DOI: 10.1038/nrc3017]

Chung JY, Park JO, Phyu H, Dong Z, Yang CS. Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-epigallocatechin-3-gallate and theaflavin-3,3'-digallate. FASEB J 2001; 15: 2222-2024 [PMID: 11515526 DOI: 10.1096/fj.01-0316fg]

Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Nutr Cancer Inst 1997; 89: 1881-1886 [PMID: 9414176]

Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63: 7563-7570 [PMID: 14633667]

Ye F, Zhang GH, Guan BX, Xu XC. Suppression of esophageal cancer cell growth using curcumin, (-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol 2012; 18: 126-135 [PMID: 22255318 DOI: 10.3748/wjg.v18.i2.126]

Zaidi SF, Ahmed K, Yamamoto T, Kondo T, Usmanhani K, Kadawski M, Sugiyama T. Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells. Biofarm Biol Nutr 2009; 32: 1931-1935 [PMID: 19881312]

Kowalski M, Konturek PC, Pieniazek P, Karczewska E, Kłuczka A, Grove R, Kraniog W, Nasserri R, Thale J, Hahn EG, Konturek SJ. Prevalence of Helicobacter pylori infection in coronary artery disease and effect of its eradication on coronary lumen reduction after percutaneous coronary angioplasty. Dig Liver Dis 2001; 33: 222-229 [PMID: 11407666]

Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002; 295: 683-686 [PMID: 11743164 DOI: 10.1126/science.1067147]

Martini S, Bonechi C, Rossi C, Figura N. Increased susceptibility to resveratrol of Helicobacter pylori strains isolated from patients with gastric carcinoma. J Nat Prod 2011; 74: 2257-2260 [PMID: 21936484 DOI: 10.1016/j.plnpp.2011.01.016]

Shih A, Davis FB, Lin HY, Davis PJ. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab 2002; 87: 1223-1232 [PMID: 11889192 DOI: 10.1210/jcem.87.3.8345]

Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB. Resveratrol regulates growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 2002; 8: 893-903 [PMID: 11895924]

Aggarwal BB, Bhartiawaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004; 24: 2783-2840 [PMID: 15517885]

Atten MJ, Attar BM, Milson T, Holian O. Resveratrol-induced inactivation of human gastric adenocarcinoma cells through a protein kinase C-mediated mechanism. Biochem Pharmacol 2001; 62: 1423-1432 [PMID: 11709203]

Atten MJ, Godoy-Romero E, Attar BM, Milson T, Zepol M, Holian O. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs 2005; 23: 111-119 [PMID: 15744586 DOI: 10.1007/s10637-005-5858-5]

Caponigro F, French RC, Kaye SB. Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 1997; 8: 26-33 [PMID: 9147607]

Riles WL, Erickson J, Nayar S, Atten MJ, Attar BM, Holian O. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells. World J Gastroenterol 2006; 12: 5628-5634 [PMID: 17007014]

Wang Z, Li W, Meng X, Jia B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin Exp Pharm Physiol 2012; 39: 227-232 [PMID: 22211760 DOI: 10.1111/j.1440-1681.2011.05660.x]

Shin KO, Park NY, Cho H, Hong SP, Oh KI, Hong JT, Han SK, Lee YM. Inhibition of sphingolipid metabolism enhances resveratrol chemotheraphy in human gastric cancer cells. Biomol Ther (Seoul) 2012; 20: 470-476 [PMID: 24090836 DOI: 10.4062/biomolther.2012.20.5.470]

Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W, Jia J. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One 2013; 8: e70627 [PMID: 24276810 DOI: 10.1371/journal.pone.0070627]
Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. *Cancer Res* 2010; 70: 7392-7399 [PMID: 20841478 DOI: 10.1158/0008-5472.CAN-10-2027]

Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. *Cancer Manag Res* 2009; 1: 25-37 [PMID: 21188121]

P- Reviewer: Natsugoe S, Park WS
S- Editor: Ma YJ
L- Editor: A
E- Editor: Wang CH
