Detection of Pulmonary Embolism with Gallium-68 Macroaggregated Albumin Perfusion PET/CT: An Experimental Study in Rabbits

Aziz Gültekin (agultekin@pau.edu.tr)
Pamukkale University, Medical Faculty https://orcid.org/0000-0002-0311-8077

Mustafa Çağdaş Çayır
Pamukkale University

Ayşe Uğur
Pamukkale Universitesi

Ferda Bir
Pamukkale University

Doğangün Yüksel
Pamukkale University

Original research

Keywords: Pulmonary embolism, gallium-68, macroaggregated albumin, PET/CT, experimental rabbit model, Technegas, ventilation /perfusion scan

Posted Date: March 18th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-17621/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Contrast Media & Molecular Imaging on June 30th, 2020. See the published version at https://doi.org/10.1155/2020/5607951.
Abstract

Purpose To evaluate the use of gallium-68 (68 Ga) macroaggregated albumin (MAA) positron emission tomography/computed tomography (PET/CT) perfusion imaging combined with Technegas single-photon emission computed tomography/computed tomography (SPECT/CT) ventilation imaging in rabbits with experimental pulmonary emboli (PE).

Methods Technegas SPECT/CT ventilation and a 68 Ga-MAA PET/CT perfusion scan (V/Q scan) were performed in 12 rabbits before and one hour after artificial induction of PE. Technegas SPECT/CT and 68 Ga-MAA PET/CT images were evaluated by a nuclear medicine physician who recorded the presence, number, and location of PE on a per-lobe basis. The sensitivity, specificity, and accuracy of Technegas SPECT/CT and 68 Ga-MAA PET/CT for detecting PE were calculated using a histopathological evaluation as a reference standard.

Results A total of 60 lung lobes were evaluated in 12 rabbits, and PE was detected in 20 lobes in V/Q scans and histopathological analysis. The overall sensitivity, specificity and accuracy were 100%, 100%, and 100%, respectively, for both the Technegas SPECT/CT and 68 Ga-MAA PET/CT V/Q scans.

Conclusion Technegas/68 Ga-MAA V/Q scans have good sensitivity, specificity and accuracy in the detection of PE in this animal model study.

Introduction

Pulmonary embolism is fatal [1]. Death may occur in 90% of undiagnosed PE patients, and the mortality rate in treated patients has been reported to be reduced by <10% [2, 3]. The high mortality rate for PE requires extreme alertness in diagnosis [4]. The most commonly used imaging methods for the diagnosis of PE are V/Q-SPECT and computed tomography pulmonary angiography (CTPA). Although these tests have been widely validated, they have some limitations [5]. An important limitation of V/Q-SPECT in recent years is the difficulty in obtaining 99mTc worldwide. 99mTc is obtained from a 99Mo/99mTc generator. 99mTc crises occasionally occur in the world due to shortages in the supply of 99Mo. Therefore, there is a search for new alternative radionuclides to 99mTc [6, 7]. With the spread of 68Ge/68Ga generators, new searches in nuclear medicine and molecular imaging have emerged for PE. For PET studies, V/Q radiopharmaceuticals (RFs) labelled with 68Ga are relatively easy to produce, offering higher spatial resolution than SPECT studies [8, 9]. There are a limited number of preclinical and clinical lung perfusion studies with 68Ga-MAA perfusion PET/CT [10].

The aim of our preclinical study was to evaluate the diagnostic accuracy of combined 68Ga-MAA perfusion PET/CT and Technegas ventilation SPECT/CT to detect PE in a rabbit model.

Materials And Methods
Ga-MAA labelling and quality control A volume of 7 mL 68GaCl$_3$ eluted with 0.1 N HCl (from ABX D-01454 Radeberg, Germany) from a 68Ge/68Ga generator was passed through a PSH + cartridge to yield 68Ga of high purity. 68Ga-chloride was added to 1.5 M 4-(2-hydroxyethyl) piperazine-1-82 ethanesulfonic acid (HEPES) buffer solution (from ABX D-01454), bringing the pH to 4–5. After vigorous mixing with MAA (inside 5 mL sterile saline), the 68Ga-MAA suspension was incubated in a heat block at 90 °C (7 min). The pH value of the 68Ga-MAA solution in the product vial was evaluated, and a 5-µL sample was titrated onto Whatman No. 40 paper (8 cm long, 1 cm thick) and passed through a mobile phase to calculate the RF values. Two different solutions were used as the mobile phase: methanol/ammonium acetate 10% (1:1) and acetone/glacial acetic acid (9:1). Radioactivity measurements were performed with a dose calibrator.

Animal experiments The flow-chart of the rabbit experiment is shown in Fig. 1. This preclinical study was conducted following ethical approval from the Animal Experiments Ethics Committee (Jan 11, 2019; 60758568-020/2716). European Union directives were followed. The gender of the animal was not considered to be a factor in the experimental design. All rabbits were cared for and kept in separate cages with 12-h day and night cycles at 25 °C during all procedures and fed ad libitum. Twelve New Zealand rabbits (Oryctolagus cuniculus) that weighed 2350–3000 g were divided into 2 groups: PE (n = 6) and sham (n = 6). In all rabbits, ketamine 35 mg/kg (Ketasol 10 ml, Richterpharma, Austria) and xylazine 5 mg/kg (Rompun 25 ml, Bayer, USA) were injected intramuscularly to induce general anaesthesia. After shaving the right femoral region of the rabbits, the skin was disinfected. Pulmonary embolism was induced in 6 rabbits via gelatin sponge (Galenaspon, Eucare Pharmaceuticalis Ltd, Chennai, India) plugs through the right femoral vein. For 6 rabbits, 5 mL of saline was injected into the right femoral vein, and these animals were included in the sham group. The right femoral vein was surgically exposed. An 18 gauge (green) Angiocath (Gloon, Global Medikit Ltd, Delhi, India) was placed. From a 80 × 50 × 10-mm gelatin sponge, four 2 × 2 × 10-mm gelatin sponges per rabbit were cut under sterile conditions and softened in 5 cc saline. The first six rabbits (PE group) were injected with four 2 × 2 × 10-mm gelatin sponge plugs [11]. The remaining 6 rabbits (sham group) were only injected with 5 mL of saline.

Ventilation SPECT/CT with Technegas Technegas was produced from a Technegas generator according to the manufacturer's instructions. The size range of Technegas particles was 0.005-0.2 µm [12]. After the rabbits were anesthetized, the Technegas was ventilated with the aid of a mouth mask modified from a baby mask. Technegas was passively ventilated to rabbits with the help of an AMBU on the device. After a ventilation period of approximately one minute, imaging was performed in the prone position.

SPECT/CT imaging was conducted using a SPECT/CT device equipped with a dual-head hybrid gamma camera and combined within the same gantry with a flat panel CT with a low dose X-ray tube (2.5 mA, 120 kVp; Philips Brightview XBT; Cleveland, OH, USA). SPECT/CT images of the thorax were obtained immediately after Technegas ventilation. CT images were generated using a 512 × 512 matrix with a slice thickness of 1 mm. The SPECT images were captured using a low-energy high-resolution collimator (140 keV photoelectric pic, 20% energy window). They were acquired using a 64 × 64 matrix (64 frames;
Images in each plane were captured by rotating 360 degrees around the animals. The images were reconstructed using an Astonish filter and the filtered back projection method (cutoff, 3; order, 8) (AutoSPECTPro; Philips Intellispace Portal). Attenuation correction was performed using transverse, sagittal and coronal CT imaging. The SPECT and CT images were fused to generate SPECT/CT images.

68 Ga-MAA PET/CT perfusion imaging Immediately after the ventilation study was completed, 68Ga-MAA PET/CT perfusion imaging was performed. The rabbits were anesthetized. Immediately after injection of 37 MBq 68Ga-MAA into the ear marginal vein, imaging was performed in the prone position. The rabbits were examined using a PET/CT scanner (Gemini TF TOF PET-CT; Philips, Cleveland, OH; 3D mode, slice thickness of 5 mm, 4 × 4 × 22 mm, 256 × 256 matrix, transverse FOV 576 mm and axial FOV 180 mm). Whole body emission scans were acquired for 2 minutes per position without intravenous contrast injection. Transmission images were obtained by low-dose CT (90 mA, 100 kV, 16 CT detectors, slice thickness of 5 mm). Attenuation correction was performed for PET images using CT maps. The ordered subsets-expectation maximization algorithm included 33 subsets and 3 iterations. PET images were reconstructed. Transverse, sagittal, and coronal sections (5-mm thickness) were created from PET/CT fusion images and evaluated using Philips Fusion Viewer software (ver. 2.1; Philips Healthcare, Best, The Netherlands).

V/Q scan evaluation for pulmonary emboli For each rabbit, the pulmonary perfusion PET/CT and ventilation SPECT/CT findings were assessed for each of the five lung lobes (right upper, middle, and lower lobes and left upper and lower lobes). Furthermore, 68Ga-MAA PET/CT images were blindly evaluated by a nuclear medicine physician. The nuclear medicine physician marked the perfusion and ventilation defects in a chart showing lung segments for each rabbit. The EANM guidelines for ventilation/perfusion SPECT were used to diagnose emboli [13, 14]. The presence of PE was defined as one or more wedge-shaped mismatch V/Q defects.

Histopathologic examination Pathological evaluation was accepted as the reference standard for this study. Rabbits were sacrificed with high-dose anaesthesia after lung V/Q imaging. The lungs and heart were removed in blocks. The materials were fixed with formaldehyde. Pathological slices were obtained from each lung lobe from the hilus to the periphery at 1-mm intervals. The sections were stained with hematoxylin and eosin. Pulmonary emboli were diagnosed when gelatin sponges were stained with HE in the pulmonary arteries.

Statistical analysis Data were analysed with SPSS 24.0 package software (IBM, Armonk, NY, USA). Continuous variables are presented as the mean ± standard deviation, whereas categorical variables are provided as frequencies and percentages. Pathological results were accepted as the reference. Sensitivity, specificity and accuracy values of combined 68Ga-MAA PET/CT perfusion and Technegas SPECT/BT ventilation imaging for PE were calculated.

Results
Since the prewash step was important before adding 68Ga to MAA particles in commercial kits, we conducted the labelling process by washing the MAA particles in our study. We obtained 68Ga-MAA (yield 99\%) with a higher yield than labelled 68Ga-MAA (yield 95\%) without washing. 68Ga-MAA labelled at an optimized pH (pH 4–5) was available for clinical application at 80\% total activity 15 minutes after labelling. No radical scavenger was added during the labelling to increase the synthesis yield. The labelling procedure we developed provided maximum 68Ga-MAA activity.

The 68Ga-MAA PET/CT perfusion, Technegas SPECT/CT ventilation imaging and histopathological results of all rabbits are shown in Table 1.

Table 1

Rabbits	68Ga-MAA PET/CT (perfusion defect)	Technegas SPECT/CT (ventilation defect)	Mismatch defect	Diagnosis (PE: +/-)								
	RU	RM	RL	LU	LL	RU	RM	RL	LU	LL	V/Q scan	HP
PE1	+	+	+	-	-	-	-	-	-	-	3	+
PE2	+	+	+	+	-	-	-	-	-	-	4	+
PE3	-	-	-	+	+	-	-	-	-	-	2	+
PE4	-	-	+	+	+	-	-	-	-	-	3	+
PE5	+	+	+	+	-	-	-	-	-	-	4	+
PE6	+	+	+	+	-	-	-	-	-	-	4	+
Sham1-6	-	-	-	-	-	-	-	-	-	-	0	-
TOTAL	4	4	5	5	2	0	0	0	0	0	20	

PE: pulmonary embolism; V/Q: ventilation and perfusion; HP: histopathologic; RU: right upper lobe; RM: right middle lobe; RL: right lower lobe; LU: left upper lobe; LL: left lower lobe

When evaluating the 6 rabbits (PE models) and 30 lung lobes separately, lobar and segmental perfusion defects were detected in 20 lobes. Ventilation was normal in all 30 lobes. Perfusion and ventilation defects were not detected in any of the 30 lung lobes of the 6 rabbits in the sham group. The 68Ga-MAA perfusion PET/CT images of all rabbits in the PE group are shown in Fig. 2. Lobar or wide subsegmental perfusion defects were clearly observed in all cases. Ventilation SPECT/CT in these cases was normal. An example V/Q scan of one of the sham group rabbits is shown in Fig. 3. The perfusion and ventilation of the lungs were completely normal. The V/Q scan findings of one of the rabbits in the PE group (PE5)
are shown in Fig. 4. A perfusion defect in the entire right lung and subsegmental perfusion defect in one lobe in the left lung were observed. The ventilation SPECT/CT of this rabbit was completely normal. PE was diagnosed due to mismatch V/Q defects.

In the histopathological evaluation, intra-arterial gelatin sponge plugs, alveolar congestion, an increase in the number of monocytes in the parenchyma, and scattered emphysema areas were observed in the PE rabbits. In the histopathological evaluation of the lung tissues of the sham group rabbits, normal lung tissue was observed (Fig. 5). No intra-arterial sponge plug was found. Sponge plugs were observed in 20 of 60 lung lobes of 12 rabbits that were examined histopathologically. Under macroscopic examination, the surfaces of the lungs with emboli were purple, and the normal lungs were pink.

With reference to the histopathological findings, the sensitivity, specificity and accuracy of the V/Q scans are shown in Table 2.

Statistics	Results (%)	CI (95%)
Sensitivity	100	83.16–100
Specificity	100	91.19–100
Accuracy	100	94.04–100

Discussion

We synthesized 68Ga-MAA in an automated synthesis unit using a 68Ge/68Ga generator used for oncological studies and a commercial MAA kit at our institution. Our method was developed by modifying an existing method. The binding activity and radiochemical purity of our method was compatible with similar studies [15–17]. Our method is simple and fast because it is an automatic and closed system. In addition, the risk of radioactive and microbiological contamination is extremely low.

With reference to the histopathological results, there were 20 true positive and 40 true negative results from the V/Q scan measurements of the 60 lung lobes of the 12 rabbits evaluated. There were no false positive or false negative results. According to these results, when histopathological results are used as a reference, the sensitivity, specificity and accuracy of V/Q scans were found to be 100%, 100%, and 100%, respectively. In a similar preclinical study with rabbits, Yang et al. [11] investigated the effectiveness of 99mTc-MAA planar, SPECT, SPECT/CT perfusion and pulmonary enhancement imaging (PEI) methods in PE. In this study, the sensitivity, specificity and accuracy of 99mTc-MAA planar, SPECT, SPECT/CT
perfusion images were found to be 71.0%, 84.4%, and 82.1%; 77.4%, 90.6%, and 86.3%; and 74.2%, 93.8%, and 87.4%, respectively. PEI is a method derived from dual-energy computed tomography (DECT). The sensitivity, specificity and accuracy of PEI were 100%, 96.9% and 97.9%, respectively, and were similar to our results. Specifically, high radiation exposure, renal dysfunction and contrast allergy are the most important limitations of PEI. Our results are better than those from all conventional nuclear medicine methods for PE. The most important reason for this finding is that Yang et al. [11] decided on the presence of PE only according to a perfusion study. They preferred the PISAPED criteria as the evaluation method. In our study, we evaluated lung ventilation and perfusion studies together. Although scintigraphy and PET reflect similar physiological processes in evaluating lung perfusion, PET/CT has greater sensitivity, spatial and temporal resolution and quantitative capacity than scintigraphy [18].

In clinical studies, the sensitivity of 99mTc-V/Q SPECT/CT ranges from 80–100%, and its specificity ranges from 93–100% for PE [19]. 99mTc-V/Q SPECT/CT has a high sensitivity and specificity. However, it is important that 68Ga-PET/BT V/Q imaging is now available as an alternative imaging method when 99mTc supply crises are frequent. V/Q scanning is a vital imaging test. Due to its current technological advantages, it may be possible to use PET/CT more frequently in the future and perhaps use PET/CT instead of scintigraphy for the diagnosis of PE. Two clinical lung perfusion studies have been performed with 68Ga MAA. Mueller et al. [16] and Hofman et al. [20] stated that 68Ga-PET/CT V/Q scanning is superior to 99mTc-SPECT/CT V/Q scanning in a pilot study with a few patients. However, they did not provide quantitative information (about sensitivity, specificity and accuracy) due to the limited number of patients. According to the results of these studies [11, 20], 68Ga-MAA is a potential radiopharmaceutical for lung perfusion studies.

In our study, we used Technegas for ventilation. Our method was applied for the first time in our study. The most important advantages are that ventilation and perfusion studies are performed sequentially, and the total imaging time is reduced. In approximately an hour, both ventilation and perfusion studies were completed. Previously, ventilation studies have been published with 68Ga (Galligas) [21–23]. Although the imaging time is short with Galligas, it may be necessary to wait between perfusion and ventilation studies, and this delay can prolong the total diagnosis time.

Our study has some limitations. First, the experimental rabbits did not have any lung disease. However, an accompanying lung disease is present in most real PE cases. It is, therefore, difficult to translate our results directly to clinical practice. Second, the short half-life of 68Ga-MAA poses a problem in adjusting the number of MAA particles to be delivered to the rabbits. This problem is not important when 68Ga-MAA is prepared as a unit dose for a single patient. Third, the perfusion defects were quite large in our cases, whereas smaller and peripheral defects can cause problems in the evaluation and change the results. Lastly, our results are limited by the small sample size. It may be possible to achieve significant results with a larger sample size and in human cases.

Conclusion
68Ga-MAA perfusion PET/CT scans combined with Technegas ventilation SPECT/CT have good sensitivity, specificity and accuracy in the detection of PE in this animal model study.

Declarations

Ethics approval and consent to participate: Approval was obtained from the ethical committee of animal experiments at our university. European Union directives have been followed.

Ethics committee approval date and number: Jan 11, 2019; 60758568-020/2716

Consent for publication: Not applicable

Availability of data and materials: Our availability of data and material statement is as follows:

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Funding: Our research was supported by Pamukkale University Scientific Research Projects Coordination Unit. Project support is provided for research only and no support is provided for any publication produced from the project.

Project decision date and number: March 13, 2019/ 18

Authors' contributions:

AG is the responsible author. He planned to work. He organized all the stages of the study. He wrote the manuscript.

MÇÇ is a cardiovascular surgeon. He performed the surgical operations in rabbits.

AU is a radiochemist. Prepared radiopharmaceuticals and made quality controls.

FB evaluated histopathological materials.

DY is a nuclear medicine physician. He evaluated on PET/CT images of experimental animals. He did the last checks of manuscript.

Acknowledgements: The authors declare that they have no conflicts of interest. The authors would like to thank American Journal Experts (www.aje.com) for the English language review.

Competing interests: The authors declare that they have no competing interests.
References

1. Barritt DW, Jordan SC. Anticoagulant drugs in the treatment of pulmonary embolism. A controlled trial. Lancet. 1960;1(7138):1309–12.

2. Kuriakose J, Patel S. Acute pulmonary embolism. Radiol Clin North Am. 2010;48:31-50.

3. Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008 Mar 6;358(10):1037-1052.

4. Tran HA, Gibbs H, Merriman E, Curnow JL, Young L, Bennett A, et al. New guidelines from the Thrombosis and Haemostasis Society of Australia and New Zealand for the diagnosis and management of venous thromboembolism. Med J Aust. 2019;210:227-235.

5. Le Roux PY, Robin P, Tromeur C, Davis A, Robert-Ebadi H, Carrier M, et al. SPECT V/Q for the diagnosis of pulmonary embolism: protocol for a systematic review and meta-analysis of diagnostic accuracy and clinical outcome. BMJ Open. 2018;8:e022024.

6. Gumiela M. Cyclotron production of (99m)Tc: Comparison of known separation technologies for isolation of (99m)Tc from molybdenum targets. Nucl Med Biol. 2018;58:33-41.

7. Rovais MR, Aardaneh K, Aslani G, Rahiminejad A, Yousefi K, Boulouri F. Assessment of the direct cyclotron production of (99m)Tc: An approach to crisis management of (99m)Tc shortage. Appl Radiat Isot. 2016;112:55-61.

8. Le Roux PY, Robin P, Salaun PY. New developments and future challenges of nuclear medicine and molecular imaging for pulmonary embolism. Thromb Res. 2018;163:236-241.

9. Bailey DL, Eslick EM, Schembri GP, Roach PJ. (68)Ga PET Ventilation and Perfusion Lung Imaging-Current Status and Future Challenges. Semin Nucl Med. 2016;46:428-435.

10. Shanehsazzadeh S, Jalilian AR, Lahooti A, Geramifar P, Beiki D, Yousefnia H, et al. Preclinical Evaluation of (68)Ga-MAA from Commercial Available (99m)Tc-MAA Kit. Iran J Pharm Res. 2017;16:1415-1423.

11. Zhang LJ, Lu L, Bi J, Jin LX, Chai X, Zhao YE, et al. Detection of pulmonary embolism comparison between dual energy CT and MR angiography in a rabbit model. Acad Radiol. 2010;17:1550-1559.

12. Lemb M, Oei TH, Eifert H, Gunther B. Technegas: a study of particle structure, size and distribution. Eur J Nucl Med1993;20:576–579.

13. Bajc M, Schümichen C, Grüning T, Lindqvist A, Le Roux PY, Alatri A, et al. EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur J Nucl Med Mol Imaging. 2019;46:2429-2451.

14. Abubakar S, Jacobs D, Kotze T. The conclusions drawn from ventilation/perfusion single-photon emission computed tomography compared with lung perfusion single-photon emission computed tomography and chest radiography in patients with suspected pulmonary thromboembolism. Nucl Med Commun. 2018;39:908-914.

15. Even GA, Green MA. Gallium-68-labeled macro aggregated human serum albumin, 68Ga-MAA. Nucl Med Biol. 1989;16:319–321.
16. Mueller D, Kulkarni H, Baum RP, Odparlik A. Rapid Synthesis of (68)Ga-labeled macroaggregated human serum albumin (MAA) for routine application in perfusion imaging using PET/CT. Appl Radiat Isot. 2017;122:72-77.

17. Mathias CJ, Green MA. A convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer. Appl Radiat Isot. 2008;66:1910-1912.

18. Le Roux PY, Hicks RJ, Siva S, Hofman MS. PET/CT Lung Ventilation and Perfusion Scanning using Galligas and Gallium-68-MAA. Semin Nucl Med. 2019;49:71-81.

19. Stein PD, Freeman LM, Sostman HD, Goodman LR, Woodard PK, Naidich DP, et al. SPECT in acute pulmonary embolism. J Nucl Med. 2009;50:1999-2007.

20. Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ. 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J Nucl Med. 2011;52:1513-1519.

21. Ament SJ, Maus S, Reber H, Buchholz HG, Bausbacher N, Brochhausen C, et al. PET lung ventilation/perfusion imaging using (68)Ga aerosol (Galligas) and (68)Ga-labeled macroaggregated albumin. Recent Results Cancer Res. 2013;194:395-423.

22. Nozaki T, Muraoka H, Hara T, Suzuki T. Production of fine aerosols labelled with various radionuclides by sublimation from a graphite boat, and their properties as tracer use. Appl Radiat Isot 1995;46:157–165.

23. Kotzerke J, Andreeff M, Wunderlich G. PET aerosol lung scintigraphy using galligas. Eur J Nucl Mol Imaging 2010a; 37:175–177.

Figures

Figure 1

Flow-chart of rabbit experiment
Figure 2

68Ga-MAA perfusion PET/CT images of all PE rabbits. The images in the first row are transaxial sections, and the images in the second row are coronal sections. Multiple perfusion defects were observed in the images for all rabbits.

Figure 3

68Ga-MAA perfusion PET/CT and Technegas ventilation SPECT/CT images of a rabbit from the sham group. Perfusion (a and c) and ventilation (b and d) appear normal in both lung lobes.
Figure 4

68Ga-MAA perfusion PET/CT and Technegas ventilation SPECT/CT images of a PE rabbit (PE5). There was a perfusion defect in the entire right lung and a subsegmental perfusion defect in the upper left lobe of the left lung (a and c). No ventilation disorders were observed in the ventilation SPECT/CT of the same rabbit (b and d) (mismatch defects).

Figure 5
The sponge structure in the vessel filled with erythrocytes, bleeding in the surrounding parenchyma and mononuclear cell infiltration (a and b; green arrows); healthy lung parenchyma and open vessel structures (c and d; blue arrows) (X10 H&E)