Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO$_2$ Measurements with QUO2 MRI

Isabelle Lajoie1,2,*, Felipe B. Tancredi3, Richard D. Hoge2

1 Département de physiologie moléculaire et intégrative, Institut de génie biomédical, Université de Montréal, Montreal, Quebec, Canada, 2 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, 3 Departamento de Radiologia, Centro de Pesquisa em Imagem, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil

* isabelle.lajoie@mail.mcgill.ca

Abstract

The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO$_2$) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO$_2$ and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O$_2$ delivery and absolute CMRO$_2$ estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO$_2$ were estimated from the measured end-tidal O$_2$, CBF$_0$, CBF$_{HC/HO}$ and R2*$_{HC/HO}$. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF$_0$, M, OEF, O$_2$ delivery and CMRO$_2$ were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*$_{0}$ (wsCV$_{GM} = 0.33\%$) along with CBF$_0$ (wsCV$_{GM} = 3.88\%$) and R2*$_{HC}$ (wsCV$_{GM} = 6.7\%$). CBF$_{HC}$ and R2*$_{HO}$ were found to have a higher intra-subject variability (wsCV$_{GM} = 22.4\%$ and wsCV$_{GM} = 16\%$ respectively), which is likely due to propagation of random measurement errors, especially for CBF$_{HC}$ due to the low contrast-to-noise ratio intrinsic to ASL. Reproducibility of the QUO2 derived estimates were computed, yielding a GM intra-subject reproducibility of 3.87% for O$_2$ delivery, 16.8% for the M value, 13.6% for OEF and 15.2% for CMRO$_2$. Although these results focus on the precision of the QUO2 method, rather than the accuracy, the information will be useful for
calculation of statistical power in future validation studies and ultimately for research applications of the method. The higher test-retest variability for the more extensively modeled parameters (M, OEF, and CMRO2) highlights the need for further improvement of acquisition methods to reduce noise levels.

Introduction

Mapping of resting metabolism in the brain is of considerable interest for diagnostic and research applications. Until recently, positron emission tomography (PET) using a triple injection of radio-labeled O2 was the only imaging method for measuring cerebral metabolic rate of O2 consumption (CMRO2) [1]. The PET method requires exposure to ionizing radiation, arterial sampling, and access to an on-site cyclotron to produce the short-lived 15O-labeled tracers, limitations that have led to the development of magnetic resonance imaging (MRI) techniques to measure O2 consumption [2–4].

The approach proposed by our team, Quantitative O2 (QUO2) MRI is based on respiratory calibration of the BOLD signal, in which the oxygen extraction fraction (OEF) at rest is determined using hypercapnia (HC) and hyperoxia (HO). During the respiratory manipulation, we monitor end-tidal O2 (ETO2) levels and use dual-echo ASL to measure BOLD and cerebral blood flow (CBF) simultaneously. ETO2, BOLD and CBF then serve as inputs to the generalized calibration model (GCM) described in Gauthier and Hoge [5], which yields a system of two equations with solutions for the BOLD calibration parameter M, i.e. the maximum BOLD signal increase when venous O2 saturation approaches 100%, and resting OEF. Multiplication of OEF by baseline CBF and arterial O2 content (estimated from ETO2 monitoring and, optionally, blood testing) gives resting CMRO2 in absolute units, e.g. μmol/100 g/min.

An initial proof-of-concept of the QUO2 method was presented in Gauthier and Hoge [6] to obtain individual and group maps of BOLD calibration parameter M, resting OEF and CMRO2. While valid regional and group-averaged estimates of the latter parameters were obtained, individual OEF maps showed signs of instability characterized by large fluctuations in the modeled values and a lack of solution in certain regions. The stability of individual solution maps generated using this method depends on accurate and robust measures of end-tidal O2 and maps of fractional changes in BOLD and CBF during the respiratory manipulation. In an attempt to improve the stability and avoid circumstances where the QUO2 model cannot be solved, we have adapted the imaging and respiratory protocols used in several ways. Instead of performing two separate respiratory scans for hyperoxia and hypercapnia, we have adopted the 18-minute respiratory sequence that alternates between periods of hypercapnia and hyperoxia [2] and during which the total time dedicated to each gas manipulation is increased compared to the original protocol, improving statistical power. We developed a simple breathing circuit allowing a better control over fractional concentration of inspired gas and thus yielding improved stability of end-tidal values compared with the simple oxygen masks used in our earlier studies [7]. Combining a dual-echo Pseudo-Continuous ASL sequence (de-pCASL), the respiratory protocol and breathing circuit mentioned above, we assessed the test-retest reliability in the respiratory responses and in CBF and BOLD responses within GM [8]. In the present study, we attempted to further improve the voxel-wise image quality in single-subject maps by performing an integrated analysis on the dual-echo pCASL data. The novel analysis strategy (further described in Materials and Methods) involved 1) motion correcting the interleaved echo series using the same transformation for the two echo times; 2) applying a more holistic.
general linear model on the motion-corrected series to extract baseline parameters and gas responses using one regressor per combination of echo and tag/control; 3) employing both echoes information to estimate R2* rather than approximating it from the second echo; and 4) employing a more sophisticated approach to mitigate solution instabilities from isolated non-parenchymal voxels using 3D median filtering.

The aim of this study was to assess, in a small cohort of healthy individuals, the variability of the optimized QUO2 measures across and within subject in different brain regions. These results, based on the precision of the method, will help guide future developments and research application of the method. The following estimates were obtained: BOLD calibration parameter M, OEF, O2 delivery and resting-state CMRO2. The impact of systematic and random errors on the accuracy and precision of such estimates was also evaluated. Furthermore, these estimates were compared with CBF and BOLD-based reproducibility estimates derived from the same group of subjects and same enhanced analysis.

Materials and Methods

Eight healthy adults were enrolled in this study (4 females, mean age: 30.5 ± 5.7 years). All participants gave written informed consent and the project was approved by the Comité mixte d’éthique de la recherche du Regroupement Neuroimagerie/Québec. They were scanned twice (referred to as Test A and Test B), within 24 hours, using the same imaging procedures and respiratory manipulation. To minimize effects of diurnal fluctuation in blood flow, all sessions was acquired between 2 PM and 6 PM [9]. The participants were asked to abstain from caffeine 3 hours prior to scanning.

Respiratory Manipulation

For the respiratory manipulation, we adopted the gas sequence described by Bulte et al [2] with a total duration of 18 minutes. This involves two 2-min periods of hypercapnia (HC) and two 3-min periods of hyperoxia (HO). HC was followed by a 1-min normocapnic period and then the 3-min hyperoxic stimulus. HO was followed by a 3-min period of normoxia.

HC and HO blocks were induced by supplying participants with gas mixtures enriched with CO2 or O2. Participants breathed the gas mixtures through the breathing circuit developed in-house [7]. An automated system, also developed in-house, was used to deliver the gas mixtures with a reproducible time course in all scanning sessions. The system comprises 4 flow controllers (SideTrak® 840, Sierra instruments, L. Monterey, CA, USA), a ~25 mL mixing chamber, a digital interface (Sierra, FloBox™ 954) to send commands to the flow controllers and a laptop computer to automate the gas mixture processes and collect behavioral data. The system’s output is connected to the breathing circuit via 10 meters of plastic tubing (BIOPAC, AFT31-MRI). Three gases were input to the flow controllers: medical air, oxygen and a 5% CO2 and air mixture. During the hyperoxia periods, subjects breathed a mixture of 50% pure oxygen balanced with air, yielding a fix inspired O2 concentration of 60% O2. Otherwise, participants were given medical air to breathe. Gas mixtures were administered at a rate of 20 L/min, except during transitions in inspired concentrations, during which the flow rate was increased to 50 L/min for 5.4 seconds in order to accelerate transitions.

Respiratory gases were continuously monitored using the CO2100C and O2100C modules of a BIOPAC MP150 system (BIOPAC Systems Inc., CA, USA). Gases were sampled via a 10m segment of rigid tubing (AFT31-XL, from BIOPAC System Inc.) in series with a bacterial filter (#2200/01, GVS filter technology, LA, UK) and 1’ segment of oxygen tubing attached to the sampling port of the respiratory circuit.
Image Acquisition

Images were acquired on a clinical 3 T scanner (Siemens TIM TRIO, Siemens Medical Solutions, Erlangen, Germany) using the vendor’s 32-channel receive-only head coil. The scan session included a 5-minute anatomical acquisition (1 mm\(^3\) MPRAGE with TR/TE/flip angle = 2.3 seconds/3 msec/9°, 256x240 matrix, GRAPPA factor = 2), and an 18-minute functional scan using dual-echo pseudo-continuous ASL sequence (de-pCASL) [10] in order to acquire simultaneous measures of BOLD and CBF. The de-pCASL parameters were: TR/TE1/TE2/alpha = 4.12 seconds/8.4 msec/30 msec/90°, labeling duration = 2 seconds using Hanning window-shaped RF pulse with duration/space = 500 μsec/360 μsec, flip angle = 25°, slice-selective gradient = 6 mT/m, label offset = 100 mm below the center of image slab, nominal and average post-labeling delay (PLD) = 0.9 and 1.44 seconds respectively. The readout consisted of a GRE-EPI with GRAPPA factor = 2, partial sampling of k-space = 7/8, in-plane resolution of 4.5 x 4.5 mm\(^2\), 21 slices with 4.5 mm thickness and 0.45 mm gap.

Respiratory Data Analysis

Analysis of the respiratory data was carried out using an in-house program developed in Matlab (MathWorks, Natick, MA, USA). An automatic extraction of the end-tidal (ET) and fixed inspired (FI) points from the continuous O\(_2\) and CO\(_2\) traces was performed. It was observed that the filter placed in series with the sampling line added an extra resistance causing an effect of low-pass filtering to the respiratory waveform. This resulted in an offset of both the ET and FI monitored pressures, i.e. an attenuation of the peak-to-peak amplitude of the waveform, which was dependent on the participant’s breathing pace. Each ET point was corrected using the average of the differences between the observed and expected FI points surrounding it. ET values were also corrected to account for an expired partial pressure of water of 47 mmHg [11]. The resting ET and changes in ET during HC and HO periods were determined by applying the linear model previously described [12]. The model is composed of a third-degree polynomial term and four regressors to represent responses to the hypercapnic and hyperoxic blocks. The offset term served to estimate the baseline ET whereas the effect size of each response regressor yielded an estimate of the associated ET change. Final ETO\(_2\) change to periods of HO was obtained by averaging the two ETO\(_2\) changes to HO. The same method was employed to compute the final ETO\(_2\) change to periods of HC, and ETCO\(_2\) responses to both gases.

The average values of ETO\(_2\) at baseline and during both respiratory stimuli were used to compute arterial O\(_2\) content (ml O\(_2\)/ml blood) and change in the venous deoxygenated fraction ([dHb]/[dHb]\(_0\)) as in Chiarelli et al [13] and Gauthier et al [3]. The latter quantities are integrated to obtain the BOLD calibrated value \(M\), resting OEF and CMRO\(_2\) as specified below.

Imaging Data Analysis

Preprocessing. Analysis of functional scans was performed using in-house software implemented in C. The interleaved echo series was motion corrected with consecutive first and second echo frames sharing the same transformation matrix. The resultant series was spatially filtered (8mm FWHM 3D Gaussian kernel), had extra-cerebral voxels removed and was intensity normalized (brain mean 100). The fMRI data were then fit to a GLM to extract the label and control series of both echoes during baseline, hypercapnia and hyperoxia periods. The model used four regressors per conditions to account for both echoes label and control points, and a third-degree polynomial with an offset term representing signal drifts. We used a single-gamma HRF function with 20 seconds time-to-peak and 40 seconds width, which yielded near-exponential transitions to account for the slow response of the arterial partial pressures to
the inspired gas [14]. ASL (S0) and BOLD (R2’ or 1/T2’) control and label series at baseline and during gas manipulations were computed using both echoes information. ASL flow series were computed from subtraction of S0 control to S0 label series, whereas BOLD series were isolated averaging the control and label R2’ series. A 3D median filtering (radius of 1 voxel) was applied on the resultant maps to minimize the impact of non-parenchymal voxels such as those containing large blood vessels.

The functional maps produced by the above analysis were then used to further reduce the impact of voxels not meeting the assumptions of the QUO2 model: Baseline T2’ maps served to exclude voxels in regions degraded by susceptibility artifact (lower threshold of 30ms). Voxels in which ΔR2’HO was positive were assumed to be dominated by susceptibility artifacts from adjacent nasal cavity due to the paramagnetic effect of molecular O2. Additional voxels with positive ΔR2’HC were considered as non-parenchymal and were also excluded from the analysis. The ASL signal was converted into physiological units of flow (mL/100 g/min) as in Wang et al [15] using the constants recommended by the ISMRM Working Committee [16] and an adjusted PLD to account for slice acquisition time (PLD range for 21 slices of 900-1960ms).

During hyperoxic manipulation, the T1 of blood is altered due to an increase in plasma concentration of paramagnetic O2 [17]. To account for this change in blood T1, which would bias our Δ%CBFHO estimation, we applied a corrective factor using the approach described in Challela et al [18] and Zaharchuk et al [19]. The T1 of blood during hyperoxic intervals was estimated individually using the R1 and PaO2 relationship in rats’ blood reported in Pilkinton et al [17].

Computations of metabolism. For each gas challenge, the changes in the venous deoxygenated fraction, along with the change in BOLD (ΔR2’) and CBF were used as inputs to the generalized calibration model (GCM) described in Gauthier et al [5]. This yields a system of two equations with two unknowns: the BOLD calibration parameter M (extrapolated maximum BOLD fractional signal increase when venous O2 saturation approaches 100%) and OEF (the fraction of delivered oxygen that is consumed). Absolute CMRO2 was then determined by multiplying OEF by O2 delivery, computed as the product of resting CBF by arterial O2 content. In the absence of intersection in between the HC and HO curves, the voxel is said to have no solution and will later be excluded from any ROI or voxel average in M, OEF and CMRO2. Because of the low CNR of the ASL hyperoxic response, the GM-averaged value obtained from the post-T1-correction Δ%CBFHO was used as an estimate of the whole-brain post-T1-correction Δ%CBFHO. Previous studies [3,13] also report using a whole-brain estimate of Δ%CBFHO, with the difference that, in the current paper, the value was computed for each participant. In the equation defining M (Gauthier and Hoge 2012, equation 7), the parameter α, which expresses the relationship between changes in blood flow and blood volume, was assumed to be 0.18 [20] while β, defining the non-linear dependence of changes in R2’ on deoxygenated hemoglobin, was set to 1.5 [21]. The hemoglobin concentration [Hb] was assumed to be 15 g Hb/dl blood, although this can be readily measured using a venous blood draw. It was also assumed that oxygen consumption remained constant during periods of hypercapnia and hyperoxia (CMRO2HC and CMRO2HO). The sensibility of QUO2 model-derived estimates to the assumed parameters was also evaluated, as detailed in the section ‘Accuracy of QUO2 model-derived estimates—sensitivity to systematic errors’.

Tissue segmentation
Automated segmentation of gray matter (GM) from the anatomical scans was carried out using the FMRIB Software Library (FSL) [22]. Structural images were extracted from
T1-weighted scans using the brain extraction tool (FSL’s BET). Then, a binary mask delineating the brain was created along with a probability mask of GM employing the automated segmentation tool (FSL’s FAST). Both were resampled to the resolution of the functional EPI scans.

Regions of Interest. In addition to the whole brain gray matter (GM), six ROIs in ICBM space were selected from OASIS-TRT-20 in three-dimensional mode [23]. The selected ROIs are located in parietal, occipital or temporal lobes, and are known to be implicated in conditions such as Alzheimer’s disease [24–29]. ROIs, presented in Fig 1, include left and right: inferior parietal (IP), superior parietal (SP), precuneus (PRE), hippocampus (HIP), anterior (caudal and rostral) cingulate (AC) and posterior cingulate (PC). Each ROI was registered to the resolution of the functional EPI scans before being conjoined with the individual’s GM probability mask excluding voxels with a GM probability lower than 50% and non-parenchymal voxels identified previously. The resultant ROI probability masks were used to perform weighted averaging of the different metrics. Voxels where no solution was found for M and OEF were excluded when performing the ROI analysis of M, OEF and CMRO$_2$.

Registration. Individual BOLD, CBF, M, OEF and CMRO$_2$ maps were non-linearly normalized to the ICBM152 template using the CIVET software package [30] via the CBRAIN

![Fig 1. Regions of interest (ROIs). QUO2 parameters were evaluated in GM and in six ROIs selected from the OASIS-TRT-20 atlas.](doi:10.1371/journal.pone.0163071.g001)
tool [31] with 12 degrees of freedom. Test A and B average maps of BOLD and CBF were computed as arithmetic means using in-house software. On their part, average maps of M, OEF and CMRO$_2$ were obtained excluding from the average any voxels where no solution was found.

Statistical Analysis

Within each measurement, i.e. CBF, BOLD (R^2), M, OEF and CMRO$_2$, Test A and Test B were averaged and compared across ROIs, considering $P < 0.05$ level of significance, correction for multiple comparisons.

Statistical tests were performed on the data to ensure it satisfied the criteria for conducting a reproducibility analysis. For ETO$_2$ and the other parameters listed above, the distribution of differences was tested for normality using the Shapiro-Wilk W-test, and the independence between the magnitude of differences and mean of measurements was verified using a rank correlation coefficient (Kendall's τ). If the differences distribution appeared to deviate from a normal distribution, or if the magnitude of differences increased with the mean of measurements, the data were transformed on the log$_{10}$ scale and the verification was repeated. In cases where the log$_{10}$ scaled data satisfied the criteria, the reproducibility was assessed on these scaled values. Otherwise, assessment of reproducibility was based on the original values along with appropriate annotation [32–34]. Additionally, to determine whether there was an order effect between the two tests, we performed a two-tailed paired t-test on each set of ROI-averaged values, considering a $P < 0.05$ level of significance.

ROI-averaged reproducibility was evaluated using Matlab to compute metrics that give complementary information on the agreement between repeated measures and population variance:

1. dSD, the standard deviation of the differences between Test A and B measurements.
2. wsSD, the within-subject standard deviation, equals dSD/$\sqrt{2}$ considering two measurements.
3. wsCV, the within-subject (or intra-subject) coefficient of variation, as used in Floyd et al [33] and Chen et al [35]. $wsCV = \sqrt{ mean \ of \ the \ (wsSD/subject \ mean)^2 \}$. wsCV provides an unbiased reproducibility measurement expressed as a percent of the mean with a low wsCV indicating a high reproducibility. When data were on the log$_{10}$ scale, wsCV was approximated by antilog(wsSD)-1 [36].
4. CR, the coefficient of repeatability [37] = 1.96$\sqrt{2 \cdot wsSD}$ or 1.96$\cdot dSD$. CR gives an estimate of the range of values one would obtain in a retest measurement. Thus, 95% of repeated measures for the sample will lie between the interval mean differences \pm CR ($\alpha = 0.05$).
5. bsCV, the between-subject (or inter-subject) coefficient of variation as computed in Tjandra et al [38]. $bsCV = SD_{pooledData} / mean_{pooledData} \times 100$.

Accuracy of QUO2 model-derived estimates—sensitivity to systematic errors

The QUO2 derived estimates accuracy rely on assumed physiological parameters such as α, β, [Hb], as well as assumed normalized CMRO$_2$ changes during HC and HO. As sources of systematic errors, the assumed values won't affect the reproducibility/precision analysis outcomes, however they can lead to individual inaccuracy of M, OEF and CMRO$_2$. Using the group-averaged GM experimental Test A data, the sensitivity of QUO2 estimates to assumed parameters...
was evaluated by independent variation in α, β, [Hb], CMRO$_{2\text{HC}}$ and CMRO$_{2\text{HO}}$. The values used in the previous analysis were: $\alpha = 0.18$, $\beta = 1.5$, [Hb] = 15g Hb/dl blood, while isometabolism during hypercapnia and hyperoxia was considered (CMRO$_{2\text{HC}}$ and CMRO$_{2\text{HO}}$ = 1.0).

Explored ranges of α and β were respectively 0.15 to 0.45 and 1.0 to 1.5, matching those in Chiarelli and al. [13]. The span of [Hb], i.e. from 11 to 17 g Hb/dl blood, was chosen as in Mark et al. [39] to take into account differences in gender and presence of anemia or polycythemia [40]. Evaluated ranges of change in CMRO$_2$ during HC and HO were determined as in Merola et al [41]: i.e. a change of \pm 1% in CMRO$_2$ for 1 mmHg and 40 mmHg change in end-tidal CO$_2$ and O$_2$ respectively. We also evaluated the impact of a maximum of 10% decrease in blood flow during HO periods, as this parameter is often assumed (normalized CBF$_{HO}$ from 0.90 to 1.0).

Precision of QUO2 model-derived estimates—sensitivity to random errors

Within-subject precision of the QUO2 model-based M, OEF and CMRO$_2$ estimates can be affected by a certain real physiological within-subject variability as well as random errors in the measurement of brain’s responses to hypercapnia and hyperoxia. To evaluate the effect, on OEF and M precision, of such errors in measurement, we performed an error propagation analysis of the QUO2 model employing Test A data. In addition to the analysis of errors in measured CBF during HC, also discussed in Gauthier and Hoge [5], we examined the impact of errors in measured R2$'$ changes during both respiratory challenges. For each observed source of error, individual OEF and M values were computed based on ‘real’ GM and respiratory measures, with simulated error ranging from -33% to $+33\%$ added to the examined source. This simulated error can be translated into coefficient of variation of the observed input: the CV being the percent of variability with respect to the mean value, it is lower when an error is added to the measurement (CV of 20% for an error of $+33\%$) rather than subtracted (CV of 28% for an error of -33%). Simulated group-average M and OEF were computed from the individual simulated values, while the latter were compared with the ‘real’ values to calculate the simulated CVs with respect to the added error.

Results

One participant was excluded from the analysis because their CBF response to CO$_2$ during Test A was found to be an outlier (value beyond twice the standard deviation). This participant reported a high level of anxiety during Test A due to a first MRI scan and hypercapnia experience.

Gas manipulations

The average and standard deviation of ETO$_2$ levels in Test A and B are shown in Fig 2A. Breathing medical air (~160 mmHg of O$_2$) yielded average ETO$_2$ levels of 111 ± 6 mmHg and 110 ± 4 for the two scan time points. During hyperoxia induction, when participants received a gas mixture with 380 mmHg of O$_2$, ETO$_2$ levels increased to 370 ± 9 mmHg during Test A and 374 ± 12 mmHg during Test B. During hypercapnia periods, participants demonstrated a slight increase in the minute volume ventilation, which increased ETO$_2$ levels in comparison to air-breathing (118 ± 4 and 117 ± 4 mmHg) despite a slightly lower inhaled O$_2$ concentration (~152 mmHg). Fig 2B shows the average and standard deviation of ETCO$_2$ levels in Test A and B. ETCO$_2$ levels at baseline and during hyperoxia were found to be similar, with 40 ± 2 mmHg and 39 ± 2 mmHg (in both tests) respectively. During HC, the ETCO$_2$ levels increased to 49 ± 1 mmHg and 50 ± 2 mmHg in Test A and B respectively. Table 1 shows, for both ETO$_2$
and ETCO$_2$ measurements, P-values of Shapiro-Wilk W-test, Kendall’s rank coefficient and t-Student paired test, as well as wsCV and CR. All distributions of differences in tests were found to be normal (Shapiro-Wilk W-test, $P > 0.05$) and no dependence was observed between the differences in measurements and mean of measurements (Kendall’s τ, $P > 0.2$). Finally, no significant difference (t-Student paired test, $P > 0.1$) was found between Test A and Test B end-tidal levels, which were also reproducible (ETO$_2$: CR < 20 mmHG, wsCV < 5%; ETCO$_2$: CR < 6 mmHG, wsCV < 6%).

Exclusion of non-parenchymal or artifact voxels

Fig 3 shows sagittal group-averaged maps of voxels excluded from the ROI analysis given that they were considered as non-parenchymal or dominated by susceptibility artifacts, based on

Table 1. End-tidal measurements.

	ETO$_2$	ETO$_2$HO	ETO$_2$HC	ETCO$_2$	ETCO$_2$HO	ETCO$_2$HC
Test A mean ± SD	111 ± 6	370 ± 9	118 ± 4	40 ± 2	39 ± 2	49 ± 1
Test B mean ± SD	110 ± 4	374 ± 12	117 ± 4	40 ± 2	39 ± 2	50 ± 2
All mean ± SD	111 ± 5	372 ± 10	118 ± 4	40 ± 2	39 ± 2	50 ± 2
Shapiro-Wilk	$P = 0.38$	$P = 0.24$	$P = 0.25$	$P = 0.05$	$P = 0.3$	$P = 0.08$
Kendall’s τ	$P = 0.38$	$P = 0.24$	$P = 1.00$	$P = 0.38$	$P = 0.56$	$P = 0.38$
Paired Student’s t-test	$P = 0.73$	$P = 0.39$	$P = 0.51$	$P = 0.58$	$P = 0.83$	$P = 0.1$
CR	13	19	10	5	3	4
wsCV	4.4%	1.9%	3.0%	5.0%	3.2%	2.6%

Group-averaged ± SD of end-tidal values are presented, followed by Shapiro-Wilk, Kendall’s τ and paired t-test P value. Coefficient of repeatability (CR) and within-subject coefficient of variation (wsCV) are also shown.

doi:10.1371/journal.pone.0163071.t001
individual ΔR^*_{HC}, ΔR^*_{HO} and T^*_0. Both tests presented similar patterns of excluded voxels, and, as expected, the latter were mainly situated in regions adjacent to the nasal cavity due to the paramagnetic effect of molecular O_2. In Table 2, we present, for each ROI, the group average and standard deviation of the number of voxels with GM probability higher than 0.5, preceding and following the exclusion process. No significant difference was found between Test A and Test B number of pre- and post-exclusion voxels (all $P > 0.23$). In whole GM, $24 \pm 4\%$ were excluded from the analysis. The hippocampus and the anterior cingulate were the most affected by the procedure, with a percentage of exclusion of $31 \pm 10\%$ and $30 \pm 9\%$ respectively, whereas less than 2% of voxels were excluded in the other regions.

![Fig 3. Exclusion of non-parenchymal or artifact voxels.](image)

For both tests, voxels considered as non-parenchymal or affected by susceptibility artifacts based on individual ΔR^*_{HC}, ΔR^*_{HO} and T^*_0 are shown overlapping a sagittal slice of the ICBM template. The latest column presents the overall excluded voxels in each test.

doi:10.1371/journal.pone.0163071.g003

Table 2. Exclusion of non-parenchymal or artifact voxels.

Number of voxels pre-exclusion	GM	IP	SP	PRE	HIP	AC	PC
Test A mean ± SD	5676 ± 550	234 ± 33	197 ± 32	168 ± 33	79 ± 11	88 ± 21	59 ± 14
Test B mean ± SD	5715 ± 541	226 ± 21	204 ± 20	167 ± 23	78 ± 12	88 ± 15	53 ± 10
Paired t-test	$P = 0.35$	$P = 0.26$	$P = 0.30$	$P = 0.90$	$P = 0.95$	$P = 0.95$	$P = 0.25$

Number of voxels post-exclusion	GM	IP	SP	PRE	HIP	AC	PC
Test A mean ± SD	4331 ± 567	233 ± 33	193 ± 26	166 ± 32	54 ± 7	63 ± 23	59 ± 14
Test B mean ± SD	4316 ± 561	225 ± 22	200 ± 16	167 ± 23	53 ± 10	62 ± 16	53 ± 10
Paired t-test	$P = 0.74$	$P = 0.23$	$P = 0.28$	$P = 0.92$	$P = 0.84$	$P = 0.93$	$P = 0.25$

| Percent of excluded voxels (%) | 24 ± 4 | 0.58 ± 0.91 | 1.81 ± 2.37 | 0.60 ± 0.73 | 31 ± 10 | 30 ± 9 | 0.00 ± 0.00 |

Group-averaged ± SD of the number of voxels in each ROI are presented before and after the voxels exclusion procedure. Paired t-test P values between Test A and Test B number of voxels as well as percentage of voxels excluded are also shown.

doi:10.1371/journal.pone.0163071.t002
T1 shortening

Estimates of arterial blood T1 during HO were found to be 1.558 ± 0.004 sec for Test A and 1.556 ± 0.006 sec for Test B, with no significant difference between them (paired t-test, \(P = 0.39 \)). Computation of GM-averaged post-T1-correction Δ%CBF\(_{\text{HO}}\) resulted in 0.4 ± 4.5% for Test A and -2.8 ± 3.3% for Test B. No significant difference (paired t-test, \(P = 0.25 \)) was found between them and both were not significantly different from zero (\(P > 0.07 \)).

Detection rate of solutions in ROI

The percentage of voxels where a solution was found for \(M \) and OEF were computed for each individual and test. The results, presented in the Table 3, show no significant difference between Test A and Test B (\(P > 0.21 \)) and all detection rates were above 87% besides in HIP where the detection rate were 78%. These percentages are based on the number of voxels after exclusion of non-parenchymal and artifact voxels found in the Table 2.

Test and retest group-averaged metrics across ROIs

A summary of the dual-echo pCASL and QUO2 ROI-averaged metrics is presented in Fig 4. For each combination of metric and ROI, we present the group average of Test A, Test B and of both tests. Resting CBF, \(\text{O}_2 \) delivery and resting \(R2^* \) displayed the highest group-averaged test-retest reproducibility. Resting \(R2^* \) presented the lowest population variance in both tests. Resting CBF and \(\text{O}_2 \) delivery, due to their direct relation, showed a similar pattern of values across ROIs. Similarly for \(M \) and \(\Delta R2^* \)\(_{\text{HC}}\), given that QUO2 \(M \) values are very sensitive to change in \(R2^* \) and CBF during HC while nearly insensitive to change during HO (as later demonstrated in the "Precision of group GM-averaged values--sensitivity to random errors" section). A larger decrease in \(R2^* \) (higher BOLD increase) was observed during HC than during HO in every ROIs. Although every metrics, but OEF, showed a certain tendency of heterogeneous values across ROIs, all differences were not found statistically significant, as presented in the following section.

Comparison of all tests averaged between ROIs

Data from all subjects and tests were averaged and compared across ROIs. Fig 5 shows where a significant difference (\(P < 0.05 \)) was found between two ROIs, after correction for multiple comparisons. No statistical significant difference was found in fractional CBF change to HC across ROIs, except in the HYP, were the smallest change was found. \(R2^* \) change to HO was found to be the smallest in AC among all ROIs except compared to HYP values, whereas the smallest \(R2^* \) change to HC was found in HYP. Due to its low population variance within ROI, resting \(R2^* \) presented values generally significantly different across ROIs. On the contrary, OEF were found to have consistent values across ROIs (\(P > 0.2 \)).

	GM	IP	SP	PRE	HIP	AC	PC
Test A	89 ± 5	95 ± 4	97 ± 3	93 ± 9	78 ± 11	87 ± 11	100 ± 1
Test B	88 ± 7	92 ± 10	95 ± 6	91 ± 11	78 ± 13	94 ± 5	99 ± 2
Paired t-test	\(P = 0.86 \)	\(P = 0.53 \)	\(P = 0.56 \)	\(P = 0.73 \)	\(P = 0.99 \)	\(P = 0.21 \)	\(P = 0.25 \)

Group-averaged ± SD of the percentage of voxels where a solution was found for \(M \) and OEF are shown in each ROI. Paired t-test \(P \) values between Test A and Test B detection rate are also shown.

doi:10.1371/journal.pone.0163071.t003
ROI reproducibility analysis

In Table 4, we report the reproducibility analysis of the dual-echo pCASL and QUO2 measurements in each ROI, more precisely, the P-value of Kendall's τ, Shapiro-Wilk and paired t-test,
Shapiro-Wilk and Kendall’s τ test detected, for a certain combination of metric-ROI, if the distribution deviated from normality (condition a in Table 4) and if there was a dependency between the differences in measurements and the mean of measurements (condition b in Table 4) respectively. In all cases, a log_{10} transformation of the data resulted in

Fig 5. Comparison of all tests averaged between ROIs. For each metric, group average of all subjects and tests was compared across ROIs. Colors code for limits in P values after correction for multiple comparisons: dark blue indicates absence of significant difference (P > 0.05), while light blue (P < 0.05), green (P < 0.005) and orange (P < 0.0005) illustrate a significant difference between two ROIs (designed in the X and Y axis).

doi:10.1371/journal.pone.0163071.g005
Table 4. Reproducibility of QUO2 measurements in different ROI.

Average volume	GM	IP	SP	PRE	HIP	AC	PC
Mean ± SD, cm³>50% prob GM	394 ± 49	20.9 ± 2.5	17.9 ± 1.9	15.2 ± 2.4	4.9 ± 0.8	5.7 ± 1.8	5.1 ± 1.1

Δ%CBF_{HC}

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.56	P = 0.77	P = 0.19	31.1	22.4%
%	P = 0.19	P = 0.14	P = 0.45	32.1	25.9%
IP	P = 0.04^a	P = 0.38	P = 0.43	0.4	35.6%
SP	P = 0.58	P = 0.24	P = 0.51	51.6	35.8%
PRE	P = 0.78	P = 0.56	P = 0.68	30.4	40.3%
HIP	P = 0.03^a	P = 0.24	P = 0.08	38.8	26.5%
AC	P = 0.007	P = 0.24	0.5	46.9%	
PC	P = 0.007^a				

ΔR²_{ΔHC}

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.21	P = 0.24	P = 0.03^b	16.0%	6.70%
%	P = 0.51	P = 0.24	P = 0.41	18.9%	8.93%
IP	P = 0.02^a	P = 1.00	P = 0.17	15.3%	7.43%
SP	P = 0.49	P = 1.00	0.17	18.9%	8.09%
PRE	P = 0.65	P = 0.14	0.18	19.2%	16.10%
HIP	P = 0.46	P = 0.07	0.15	17.4%	11.00%
AC	P = 0.93	P = 0.77	0.12	19.3%	6.93%
PC	P = 0.007^a	P = 1.00	0.17	19.3%	6.93%

CBF_o mL/100 g/min

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.90	P = 1.00	P = 0.66	5.4	3.88%
%	P = 0.25	P = 0.56	P = 0.77	5.5	3.38%
IP	P = 0.93	P = 1.00	0.79	7.9	6.50%
SP	P = 0.07	P = 0.07	0.16	7.4	5.32%
PRE	P = 0.80	P = 1.00	0.18	6.0	5.23%
HIP	P = 0.45	P = 0.14	0.18	9.8	6.99%
AC	P = 0.39	P = 1.00	0.19	10.9	7.45%
PC	P = 0.56	P = 1.00	0.08	6.99%	7.45%

R²₀

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.45	P = 1.00	P = 0.65	0.17	3.88%
%	P = 0.10	P = 0.77	P = 0.65	0.65	3.38%
IP	P = 0.64	P = 0.07	0.55	7.9	5.32%
SP	P = 0.19	P = 0.38	0.33	7.4	5.23%
PRE	P = 0.32	P = 0.14	0.94	6.0	5.23%
HIP	P = 0.46	P = 1.00	0.56	9.8	6.99%
AC	P = 0.55	P = 1.00	0.45	10.9	7.45%
PC	P = 1.00	P = 1.00	0.96	6.99%	7.45%

%M

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.04^a	P = 0.24	P = 0.28	0.19	16.8%
%	P = 0.31	P = 0.38	P = 0.23	1.84	16.6%
IP	P = 0.05^a	P = 0.77	P = 0.23	0.22	20.2%
SP	P = 0.91	P = 0.19	P = 0.12	2.50	18.1%
PRE	P = 0.91	P = 0.19	1.72	2.32	21.5%
HIP	P = 0.22	P = 0.77	2.42	1.72	16.7%
AC	P = 0.22	P = 1.00	0.96	2.42	19.1%
PC	P = 1.00	P = 1.00	0.42	2.42	19.1%

O₂deliv μmol/100 g/min

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.86	P = 1.00	P = 0.76	41	3.87%
%	P = 0.27	P = 0.56	P = 0.79	44	3.63%
IP	P = 0.76	P = 0.14	0.37	59	6.29%
SP	P = 0.16	P = 1.00	0.21	58	5.35%
PRE	P = 0.29	P = 0.24	0.52	46	5.36%
HIP	P = 0.75	P = 0.09	0.34	71	6.75%
AC	P = 0.42	P = 0.21	0.08	83	7.43%
PC	P = 0.56	P = 0.07	0.77	83	7.43%

OEF

	Shapiro-Wilk	Kendall’s τ	Paired Student’s t-test	CR	wsCV
Sh	P = 0.12	P = 0.38	P = 0.03^a	1.84	3.87%
%	P = 0.03^a	P = 0.24	P = 0.75	0.19	3.63%
IP	P = 0.32	P = 1.00	0.19	59	6.29%
SP	P = 0.09	P = 0.56	0.52	58	5.35%
PRE	P = 0.21	P = 1.00	0.34	46	5.36%
HIP	P = 0.21	P = 1.00	0.08	71	6.75%
AC	P = 0.77	P = 0.07	0.77	83	7.43%
PC	P = 0.22	P = 1.00	0.96	83	7.43%

(Continued)
the satisfaction of both conditions (reproducibility of transformed data is presented in boldface) except for Δ%CBF_HC in AC which distribution deviated from normality after the transformation (reproducibility of original data is presented in italic boldface). Paired t-tests detected no significant difference between Test A and Test B (P > 0.07), except for %M in AC (P < 0.001), OEF in HIP (P < 0.03) and CMRO_2 in HIP (P < 0.05).

Fig 6 compares individual-subject reproducibility (wsCV) with the population variance (bsCV) of QUO2 measurements in each ROI. Among all ROIs, the measurement that showed lower inter- and intra-subject variability was resting R2* (wsCV < 2%; bsCV < 5.5%). CBF_0 and O_2 delivery come next, with a low individual-subject reproducibility (ROI-averaged wsCV = 5.5%) compared to the population variance (ROI-averaged bsCV = 14.6%), meaning the latter cannot be explained by poor reproducibility of the technique. It is also an indication of reproducible estimate of arterial O_2 content. ΔR2_HC was also found to have a considerably higher intra-subject consistency than across subjects (ROI-averaged wsCV = 9.3%; ROI-averaged bsCV = 22.3%), as opposition to ΔR2_HO (ROI-averaged wsCV = 17.9%; ROI-averaged bsCV = 17.5%). The highest inter- and intra-subject variability was found in Δ%CBF_HC (wsCV_GM = 22.4%; wsCV_allROI = [22.4%,46.9%]; bsCV_GM = 21.6%; bsCV_allROI = [21.6%,37.9%]). As for the QUO2 estimated measurements M, OEF and CMRO_2, their wsCV in GM were found to be lower than 17% and they ranged from 13% to 27% across all ROIs. Their variability across subjects were higher by a factor of 1.3 in average across ROIs. Values averaged over GM were found to have the lowest inter- and intra-subject variability among regional averages (mean wsCV of 11.0 ± 7.4%; mean bsCV of 16.15 ± 6.55%) whereas variability in smaller regions, i.e. HIP and PC, was generally found higher. A significant correlation between the variability of a certain metric and the volume of observed region was detected only for resting R2* measurement (Pearson correlation coefficient R^2 = -0.76, P = 0.48).

Test-retest correlation plots for each metric across the different ROIs can be found in Fig 7. For each individual, Test A against Test B measurements is shown, with colors coding for the different ROIs. For each metric, a linear regression model with zero intercept was applied on the data. The computed coefficient of determination (R^2) is displayed in each graph. In each measurement, the regression line that fit the data is shown in solid gray. Values lying in the

Table 4. (Continued)
Paired Student’s t-test
CR
wsCV
CMRO_2 μmol/100 g/min
Shapiro-Wilk
Kendall’s τ
Paired Student’s t-test
CR
wsCV

P value of Shapiro-Wilk, Kendall’s τ, paired t-test, coefficient of repeatability (CR) and within-subject coefficient of variation (wsCV) are presented. When conditions described in footnote a or b were present, data were log_{10} transformed and the conditions were evaluated once again. If the conditions were then satisfied, the reproducibility metrics were computed on the transformed data (results presented in boldface). Otherwise, the reproducibility metrics were computed on the original data (results presented in italic boldface).

a The distribution of difference in measurements deviated from normality.
b A significant dependency between difference in measurements and mean of measurements was detected.
c A significant difference between Test A and Test B was detected.

doi:10.1371/journal.pone.0163071.t004
vicinity of the identity line (solid black line) indicate a good reproducibility of the measurements. Among all quantities, resting R2*, resting CBF, O2 delivery and ΔR2*_{HC} present the best reproducibility, whereas Δ%CBF_{HC}, ΔR2*_{HO}, %M, OEF and CMRO2 show a larger scattering of the data around the identity line.

An additional illustration of reproducibility is offered by Bland-Altman plots for each measurement, as shown in Fig 8. The individual mean of measurements against the difference in measurements is plotted, with colors coding for the different ROIs. For each ROI, a solid line represents mean of difference, whereas dashed lines depict the confidence intervals (i.e. mean

Fig 6. ROI analysis of within- and between-subject reproducibility. Within each ROI, are shown the within- and between-subject coefficient of variation (respectively wsCV (blue) and bsCV (red)) for each metric.
difference ± CR). We can observe a trend toward higher variability in smaller regions (HIP, AC, and PC) compared to larger regions.

Parametric maps

In Fig 9, we show group-average Test A and B maps of the different measurements. One axial and one sagittal slice of the ICBM152 template are shown. The group-average maps generally
demonstrate good qualitative agreement between test and retest, with the main exception being \(\Delta \% \text{CBF}_{HC} \). Fig 10 shows OEF and \(M \) maps in individual subjects, for Tests A and B, as well as group average and standard deviation maps. One axial slice of the ICBM152 template is shown. The subject count maps indicate, at each voxel, the number of subject included in the group average, given that voxels with no solution found for OEF and \(M \) were excluded from ROI analysis of individual reproducibility–Bland-Altman graphs. For each measurement, the difference in sessions against the mean is displayed. Within each ROI, a solid line represents the mean difference between measurements. The dashed lines represent the ROI-averaged limits of agreement (mean ± 1.96 \(\times \) dSD i.e. mean ± coefficient of repeatability (CR)) indicating that 95% of repeated measures will fall in between them.

doi:10.1371/journal.pone.0163071.g008

Fig 8. ROI analysis of individual reproducibility–Bland-Altman graphs. For each measurement, the difference in sessions against the mean is displayed. Within each ROI, a solid line represents the mean difference between measurements. The dashed lines represent the ROI-averaged limits of agreement (mean ± 1.96 \(\times \) dSD i.e. mean ± coefficient of repeatability (CR)) indicating that 95% of repeated measures will fall in between them.
the average. Individual OEF and M maps generated using the optimized QUO2 present little random fluctuation in values and very few voxels with no solution. Group average maps for both parameters were qualitatively very similar in appearance, although differences between Tests A and B are noted in individual subjects.

Accuracy of group GM-averaged values—sensitivity to systematic errors

Sensitivity of the model to systematic errors resulting from the assumed parameters is summarized in Fig 11. Based on our Test A group-averaged changes in ET during each respiratory manipulation, our evaluated ranges of percent change in metabolism were ±10% and ±7% in HC and HO respectively. Effects of the assumed α, β, [Hb], CMRO$_2$$_{HC}$, CMRO$_2$$_{HO}$ and CBF$_{HO}$ on the HC and HO curves are presented (Fig 11A1 to 11A6 respectively), followed by resultant estimates of M, OEF and CMRO$_2$ (Fig 11B1, 11B2 and 11B3 respectively). The β and CMRO$_2$$_{HC}$ assumed values are the principal sources of variation in M, while variations in [Hb], CMRO$_2$$_{HO}$ and CBF$_{HO}$ yield almost no change to the estimate. Fig 11A5 and 11A6 show that, by not affecting the HC curve, variations in metabolism and blood flow during HO shift the HO curve on the nearly horizontal section of the HC curve, resulting in almost no alteration in M solution. The assumption of change in CMRO$_2$ during HO is the principal sources of variation in OEF, especially if a decrease in metabolism is considered ($0.93 < \text{CMRO}_2\text{HO} < 1.0$). Furthermore, OEF is similarly sensible to variation in [Hb], CMRO$_2$$_{HC}$ and CBF$_{HO}$, while presenting almost no change as a variation in β. Both M and OEF are similarly influenced by a variation in α. The used value of 0.18 for α results in an M and OEF of 5.0% and 0.39 respectively, while if α is changed to the commonly adopted values of 0.38, the calculated M and OEF
values become 5.6% and 0.44. Estimate of metabolism being the product of resting CBF by OEF and arterial O\textsubscript{2} content, a certain percent increase/decrease in OEF leads to the same

doi:10.1371/journal.pone.0163071.g011
percent increase/decrease in CMRO$_2$ with the exception where [Hb] is varied, given that it leads to a change in the arterial O$_2$ content in the opposite direction as in OEF.

Precision of group GM-averaged values—sensitivity to random errors

Sensitivity of M and OEF to random errors in BOLD and CBF measurements is summarized in Fig 12. Given that neither resting CBF nor arterial O$_2$ content are varied here, the relative impacts of errors in BOLD and CBF responses measurements on CMRO$_2$ and OEF are

![Fig 12. Precision of group GM-averaged values—sensitivity to random errors. Observed effects, on M and OEF estimates, of error in BOLD and CBF measurements, are summarized. Estimates were based on group-averaged Test A de-PCASL measurements in GM and ETO$_2$ (‘true’ values), while a simulated error was added to each observed input independently. Evaluated error ranged from -33% to 33%, which is equivalent to a maximum measurement CV of 28% (when underestimated) and 20% (when overestimated). The HC and HO curves resulting from six different errors in CBF$_{HC}$, BOLD$_{HC}$ and BOLD$_{HO}$ are shown (A1, A2 and A3 respectively). Each red dot represents the HC and HO curves intersection (hence one M and OEF solution) when either one of the extremity in the observed range is in use. The remaining M and OEF solutions lie on a line connecting both red dots and passing by the subsequent intersections. OEF and M estimates (B1 and B2 respectively) in addition to CV between simulated and ‘true’ OEF/M values (C1 and C2) were computed for each source of errors (colored lines). Without addition of error in measurements, ‘true’ group-averaged Test A M and OEF estimates were 4.96% and 0.39 respectively (shown by the blue stars and the perforated grey lines).](doi:10.1371/journal.pone.0163071.g012)
equivalent. Therefore, estimates and variation of CMRO\textsubscript{2} are not shown. Effect of errors in CBF\textsubscript{HC}, R2\textsubscript{HC} and R2\textsubscript{HO} on HC and HO curves are presented in Fig 12A1, 12A2 and 12A3 respectively. Errors in CBF\textsubscript{HC} or R2\textsubscript{HC} affect both M and OEF estimates, whereas errors in R2\textsubscript{HO} by shifting the HO curve on the nearly horizontal section of the HC curve, result in almost no alteration in M solution. OEF and M estimates as a function of percent errors or variability of measurement are shown in Fig 12B1 and 12B2 respectively. Fig 12B1 exhibits a nearly linear increase in OEF errors as each of the input's error increases. Fig 12B2 presents the same observation for M estimates, with the exception mentioned above where errors in R2\textsubscript{HO} have almost no noticeable effect. The direction of the effect on OEF and M estimates depend on the source of error: an underestimated R2\textsubscript{HC} will lead to an underestimated OEF or M, whereas if overestimated, OEF and M will also be overestimated. On the other hand, CBF\textsubscript{HC} have the opposite effect on OEF and M as well as R2\textsubscript{HO} on OEF. Fig 12C1 and 12C2 show resulted variability of OEF and M estimates respectively. We observe that for the same percent error, CBF\textsubscript{HC} will induce a lower variability in OEF than R2, and a lower variability in M than R2\textsubscript{HC}. However, it is known that one of the limiting factors of such calibrated MRI methods is the low signal-to-noise ratio of ASL measurements, which is more susceptible to induce higher errors than in BOLD measurements. Fig 12C bring our attention to the fact that the test-retest variability found in our experimental CBF\textsubscript{HC} (wsCV = 22\%) and R2\textsubscript{HO} (wsCV = 16\%) data, likely contributed to a minimum of 10\% variability in our M and OEF estimates.

Discussion

We have characterized the inter- and intra-subject variability of the estimated M, OEF and absolute CMRO\textsubscript{2} derived from the optimized QUO2 approach, which is a crucial step in the development and clinical application of this MRI technique for the quantitative measurement of oxygen delivery and consumption in the human brain. A visual inspection of the individual maps of M and OEF revealed a larger stability of values and fewer regions with no solution than the individual maps presented in the initial proof-of-concept of the QUO2 model [6].

We obtained physiologically plausible tests-averaged M, OEF and CMRO\textsubscript{2} estimates in GM that were compared to those in literature summarized in Table 5. Variability among different studies in estimated values can arise from: the imaging technique employed, the type of breathing manipulations, the values of the assumed parameters, and the strategy employed to define the grey-matter region. Our M average of 4.69 ± 0.91\% falls in the low end of reported values, although this may be mainly due to a more aggressive exclusion of large venous voxels. Our OEF and CMRO\textsubscript{2} of 0.37 ± 0.06 and 144 ± 34 \(\mu\text{mol}/\text{100 g/min}\) respectively fall within the reported range of values.

Regional inter- and intra-subject reproducibility

Our individual-subject reproducibility in every parameters was found to be lower than our population variance, as also reported in previous study [38,47,60], except for our CBF response to HC and BOLD response to HO. Inter- and intra-subject variability of QUO2 measurements was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions, a finding that is to be expected based on statistical considerations and consistent with previous studies [60,61]. The most intra-subject reproducible measurements was CBF\textsubscript{0}, along with O\textsubscript{2} delivery and R2\textsubscript{0}. Our regional CBF\textsubscript{0} wsCV were comparable to that reported by Wang et al [61].

To our knowledge, reproducibility of OEF and absolute CMRO\textsubscript{2} estimated from combined HC and HO calibrated BOLD technique has not been characterized in studies so far published. On the other hand, variability of M calibration parameter and relative change in CMRO\textsubscript{2} were
studied. In a small area of the visual cortex, Leontiev and Buxton [48] evaluated the intra-subject variability in M, CBF and BOLD responses to HC employing a different CV computation. Adjusting our CV computation to theirs, we obtain a similar wsCV for M of 13% in GM (compared to 12.3%) and a lower variability in BOLD HC and CBF HC with 7% vs. 26.1 and 20% vs. 40.6% respectively. They reported the presence of an important leak in the CO2 delivery during day 2 for two of their participants, thus increasing their intra-subject variability in BOLD and CBF responses to HC. In another study at 7 Tesla, using a simultaneous hypercapnia-hyperoxia (carbogen) gas-breathing challenge, Krieger et al [60] detected more intra-subject variability in their M value and BOLD changes to carbogen than what we found (wsCV = 34% vs. wsCV < 17%) while they reported less variable CBF changes to carbogen than our CBF changes during HC (wsCV = 9% vs. wsCV = 22%). The difference among variability in M, CBF and BOLD changes to gas may arise from the different choice of MRI acquisition and gas challenge.

Studies employing dynamic 15O PET as a direct measure of OEF and CMRO2 have reported lower intra-subject variability in OEF and CMRO2. Coles et al [55] reported a whole brain test-retest coefficient of variation of 4.6% and 3.7% for OEF and CMRO2 respectively, while Bremer et al [57] obtained a variability of 8.8%, 9.3% and 5.3% for CBF0, OEF and CMRO2 in GM respectively. In our study, resting CBF in GM varied less (wsCV = 3.9%) while OEF and CMRO2 had a higher degree of variability (13.6% and 15.2% respectively). Higher intra-subject variability in QUO2 estimates than PET estimates may arise partly from a larger noise accumulation in QUO2 techniques as an indirect measure of OEF and CMRO2.

Accuracy of group GM-averaged values—sensitivity to systematic errors
The QUO2 sensibility to assumed physiological parameters α, β, [Hb], CMRO2HC, CMRO2HO and CBFHO was examined. Recently, Wise et al employed a Bayesian estimation framework in order to estimate α and β [4]. Merola et al [41] presented a simplified calibration model that

Table 5. Literature values of M, OEF and resting-state CMRO2.

Study	M (%)	OEF	CMRO2
Bulte et al. (2009) [42]	5.3		158**
Ances et al. (2008) [43]	5.7	0.26 ± 0.02	125 ± 15
Gauthier et al. (2012) [4]	6.0	0.35 ± 0.04	145 ± 30
Ances et al. (2009) [44]	6.5	0.35 ± 0.06	
Mark et al. (2011) [39]	6.5–9.7	0.35 ± 0.01	123 ± 4
Chen and Parrish (2009) [45]	6.7		137
Wise et al. (2013) [4]	6.9–9.2	0.42–0.50	184±45–222±82
Chiarelli et al. (2007) [13]	7.0	0.38 ± 0.68	130 ± 24**
Ances et al. (2009) [44]	7.3	0.38	155*
Bulte et al. (2012) [2]	8.5	0.38 ± 0.14	155 ± 39
Gauthier et al. (2011) [46]	9.5	0.43 ± 0.63	120 ± 8
Lin et al. (2008) [47]	10.5	0.43	137*
Leonie and Buxton (2007) [48]	11.1	0.44 ± 0.06	129 ± 20
Perthen et al. (2008) [49]	11.6		

The majority of M values were taken from Gauthier et al [46]. All are values at 3 T, adjusted to TE = 30ms.

Pet studies are identified with a light grey background.

* Extrapolated value to match our mean age of 30 years old.

** Corrected value for the ratio of CMRO2 and mass between GM and WM [4].
substitute the standard α and β parameters with a single one and yielded improved estimates of OEF. Accuracy of estimates is likely to benefit from those calibration techniques where α and β are automatically estimated. Individual OEF estimates can also benefit from a simple blood test to determine the hemoglobin concentration. Isometabolism during hypercapnia and hyperoxia remains of a debate to date. Some studies suggest that CMRO$_2$ does not change with HC [62–64] while others report an increase [65], or a decrease [66,67]. Similarly, heterogeneous results are found with regard to metabolism alteration during hyperoxia [68]. Without a clear consensus on the matter, we opted to preserve the assumption of no change in CMRO$_2$ during both respiratory manipulations.

We have reported a certain variation in OEF (and CMRO$_2$) as a function of reduction in blood flow caused by the hyperoxia manipulation. It is common to assume a fixed T1-corrected CBF$_{HO}$ for every subject, for example Bulte et al. assumed a blood flow decrease of 4% during periods of hyperoxia at 50% O$_2$ [2,69], or, as in the initial proof-of-concept of the QUO2 model, to compute the group-averaged measured CBF$_{HO}$ after T1-correction and use it for every subject. In the present study, we obtained physiologically plausible arterial blood T1 values (1.56 sec at 60% O$_2$, consistent with 1.49 sec at 95% O$_2$ [70]) and post-T1-correction CBF$_{HO}$ in GM. The latter was used as an individual basis, hence capturing any intra-subject variation between test and re-test blood flow decrease during HO. When correcting for T1 shortening during HO, rat blood was used as a surrogate for human blood which is justified since they both possess similar blood constitution, are likely to have very similar longitudinal relaxivity to molecular oxygen relationship and to experience similar physiological responses to hyperoxia.

Precision of group GM-averaged values—sensitivity to random errors

The error propagation analysis highlighted how the precision in QUO2 estimates was affected by random errors in the measurements of CBF and BOLD responses to the respiratory challenges. Especially, considering the same range of error, BOLD had a larger impact on QUO2 precision than CBF. However in practice, CBF response to HC is more challenging and carries a bigger uncertainty due to the low contrast-to-noise ratio. The range of error observed (-33% to +33%) is likely to approach the order of error in measured CBF$_{HC}$ while a lower uncertainty is expected in BOLD measurement, yielding smaller effects on QUO2 precision errors. It is therefore believed that the principal limitation in the QUO2 M, OEF and CMRO$_2$ intra-subject reproducibility remains the error in CBF responses. Although the exact contribution of the measurements errors compared to the intrinsic day-to-day physiological variability could be further studied with a within-session test-retest reproducibility design, the present study offers clinically relevant assessment of variability in QUO2 measurements for follow-up studies.

QUO2 qualitative individual and group maps reproducibility

As expected, the reproducibility of QUO2 parameter estimates was generally improved with more extensive averaging of voxels and subjects. While group average maps demonstrated qualitatively good reproducibility, it was found that physiological and measurement noise still limits reproducibility of voxel values at the individual subject level.

Potential QUO2 accuracy and precision improvement

There are other potential avenues to improve the accuracy and precision of functional ASL. One strategy may include the use of a higher magnetic field, which would increase the SNR by increasing spin polarization and the T1 relaxation time of arterial blood. The gain in SNR might be partly lost due to an increase in physiological noise, however, this effect could be diminished by applying a denoising technique like RETROICOR [71,72]. Improved control for
magnetization transfer effects is another mechanism for improving accuracy [73]. Additional approaches may also enhance accuracy and reproducibility of QUO2 measurements by correcting for region-specific variations in tag arrival times [74–76], for drops in label efficiency [77,78], for partial volume [79] and hemodynamic response delays [80]. Benefits may also be offered by improved imaging readout methods such as the use of a 3D imaging readout [81], multiband excitation [82] and background suppression [83–85].

Additional factors that can influence accuracy and precision of measurements in such calibrated approaches are the inhaled concentrations of oxygen and carbon dioxide. A higher O\textsubscript{2} and CO\textsubscript{2} concentration would yield BOLD changes closer to the M value to be extrapolated, reducing measurement errors. Furthermore, higher CO\textsubscript{2} concentration would have the advantage of increasing the contrast-to-noise ratio due to higher CBF changes. However, administration of high levels of O\textsubscript{2} and CO\textsubscript{2} introduce potential problems: higher O\textsubscript{2} concentration can complicate the quantification of CBF due to blood T1 reduction and susceptibility artifacts in areas close to sinuses and airways, while higher levels of CO\textsubscript{2} can lead to anxiety and potentially alter brain physiology in ways other than the intended vasodilatory effect [86,87]. Future studies should assess the effect of oxygen and carbon dioxide concentration in reproducibility of quantitative calibrated methods such as QUO2. An investigation on the effect of O\textsubscript{2} concentration in QUO2 estimates is presently in process, comparing 60% vs. 100% O\textsubscript{2} during hyperoxia periods (manuscript in preparation).

The imaging parameters of the de-pCASL used in the present study were adjusted to optimize the detection rate of CBF responses in GM while acquiring whole-brain image with a minimal gap between slices. In order to allow the labeled blood bolus to arrive in the tissue of the imaged region, a post labeling delay (PLD) is employed. In our 2D acquisition, the first and last slices are acquired after a delay of 900 msec and 1986 msec respectively, resulting in a brain-averaged PLD of 1443 msec which is shorter than that recommended in the ASL white paper [16]. The latter recommends a 3D readout PLD of 1800 msec for healthy subjects of age below 70 years old. MacIntosh et al [74] evaluated the regional arterial time transit (ATT) in a cohort of healthy participants with range of age equivalent to that of our group. Among the temporal, parietal, frontal and occipital lobes, only the latter was reported to have a mean ATT (935 ± 0.108ms) slightly higher than our nominal PLD (900 msec), but lower than the acquisition time of our second slice (953 msec). Although our choice of PLD might not be optimal in lower occipital region of certain healthy participants, we believe that in the large majority of cases, the acquired ASL signal was accurately reflecting CBF and that an increase in our PLD would have resulted in a loss in SNR, especially in hypercapnic situation where the ATT is known to diminish.

Small cohort sizes like 8 have been common in recent years, particularly for complex fMRI protocols with greater physiological specificity than the classic BOLD contrast. Although our conclusion are limited by the relatively small sample size, we felt that this regional analysis of inter- and intra-subject variability of the QUO2 estimates in such a cohort remains of interest.

In conclusion, the variability of the optimized QUO2 estimates across subjects and the intra-subject reproducibility of estimates in different brain regions were characterized while the impact of errors on the accuracy and precision of such estimates was determined. These results will help guide power analyses for research applications as well as future developments aimed at further improving the reproducibility of the QUO2 method.

Acknowledgments

The authors would like to thank Scott Nugent, Marius Tuznik, Bahare Sabouri, Carollyn Hurst and André Cyr for their excellent technical assistance and insightful discussions. Jiongjiong Wang at UCLA is acknowledged for providing the pseudo-continuous arterial spin-labeling sequence.
Author Contributions

Conceptualization: IL FBT RDH.
Data curation: IL FBT RDH.
Formal analysis: IL.
Funding acquisition: RDH.
Investigation: IL FBT RDH.
Methodology: IL FBT RDH.
Project administration: RDH.
Resources: RDH.
Software: IL FBT RDH.
Supervision: RDH.
Validation: IL.
Visualization: IL.
Writing – original draft: IL.
Writing – review & editing: IL FBT RDH.

References

1. Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980; 4:727–736. PMID: 6971299

2. Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, et al. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage. 2012; 60:582–591. doi: 10.1016/j.neuroimage.2011.12.017 PMID: 22209811

3. Gauthier CJ, Desjardins-Crèpeau L, Madjar C, Bherer L, Hoge RD. Absolute quantification of resting oxygen metabolism and metabolic reactivity during functional activation using QUO2 MRI. Neuroimage. 2012; 63:1353–1363. doi: 10.1016/j.neuroimage.2012.07.017 PMID: 22986357

4. Wise RG, Harris AD, Stone AJ, Murphy K. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage. 2013; 83:135–147. doi: 10.1016/j.neuroimage.2013.06.008 PMID: 23769703

5. Gauthier CJ, Hoge RD. A generalized procedure for calibrated MRI incorporating hypercapnia and hyperoxia. Hum. Brain Mapp. 2012; 34:1053–1068. doi: 10.1002/hbm.21495 PMID: 23015481

6. Gauthier CJ, Hoge RD. Magnetic resonance imaging of resting OEF and CMRO2 using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage. 2011; 60:1212–1225. doi: 10.1016/j.neuroimage.2011.12.056 PMID: 22227047

7. Tancredi FB, Lajoie I, Hoge RD. A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations. BMC Res Notes. 2014; 7:235. doi: 10.1186/1756-0500-7-235 PMID: 24725848

8. Tancredi FB, Lajoie I, Hoge RD. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J. Magn. Reson. Imaging. 2015; 42:1144–1157. doi: 10.1002/jmri.24878 PMID: 25752936

9. Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn. Reson. Med. 2004; 51:736–743. PMID: 15065246

10. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn. Reson. Med. 2008; 60:1488–1497. doi: 10.1002/mrm.21790 PMID: 19025913
11. Severinghaus JW. Water vapor calibration errors in some capnometers: respiratory conventions misunderstood by manufacturers? Anesthesiology. 1989; 70:996–998. PMID: 2499226

12. Tancredi FB, Hoge RD. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J Cereb Blood Flow Metab. 2013;1:9.

13. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage. 2007; 37:808–820. PMID: 17632016

14. Poulin MJ, Liang PJ, Robbins PA. Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol. 1996; 81:1084–1095. PMID: 8889738

15. Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salucci AE, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn. Reson. Med. 2003; 50:599–607. PMID: 12939768

16. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn. Reson. Med. 2015; 73:102–116. doi: 10.1002/mrm.25197 PMID: 24715426

17. Pilkinton DT, Hiraki T, Detre JA, Greenberg JH, Reddy R. Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood. Magn. Reson. Med. 2011; 67:1556–1565. doi: 10.1002/mrm.23137 PMID: 22135087

18. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic Resonance Perfusion Imaging in Acute Ischemic Stroke Using Continuous Arterial Spin Labeling. Stroke. 2000; 31:680–687. PMID: 10700504

19. Zaharchuk G, Martin AJ, Dillon WP. Noninvasive Imaging of Quantitative Cerebral Blood Flow Changes during 100% Oxygen Inhalation Using Arterial Spin-Labeling MR Imaging. American Journal of Neuroradiology. 2008; 29:663–667. doi: 10.3174/ajnr.A0896 PMID: 18397966

20. Chen JJ, Pike GB. MRI measurement of the BOLD-specific flow–volume relationship during hypercapnia and hypocapnia in humans. Neuroimage. 2010; 53:383–391. doi: 10.1016/j.neuroimage.2010.07.003 PMID: 20642474

21. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. Contrast due to Intravascular Magnetic Susceptibility Perturbations. Magn. Reson. Med. 1995; 34:555–566. PMID: 8524024

22. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001; 5:143–156. PMID: 11516708

23. Klein A, Tournier J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 2012; 6:171. doi: 10.3389/fnins.2012.00171 PMID: 23227001

24. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol. 2000; 47:93–100. PMID: 10632106

25. Johnson NA, Jahng G-H, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005; 234:851–859. PMID: 15734937

26. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006; 67:1215–1220. PMID: 17030755

27. Asllani I, Habeck C, Scarmeas N, Borogovac A, Brown TR, Stern Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab. 2007; 28:725–736. PMID: 17960142

28. Tohgi H, Yonezawa H, Takahashi S, Sato N, Kato E, Kudo M, et al. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer’s type and vascular dementia with deep white matter changes. Neuroradiology. 1988; 40:131–137. PMID: 3651814

29. Yao J, Rettberg JR, Kloainski LP, Cadenas E, Brinton RD. Shift in brain metabolism in late onset Alzheimer’s disease: Implications for biomarkers and therapeutic interventions. Mol Aspects Med. 2011; 32:247–257. doi: 10.1016/j.mam.2011.10.005 PMID: 22024249

30. Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D Model-Based Neuroanatomical Segmentation. Hum. Brain Mapp. 1995; 3:190–208.

31. Sherif T, Rioux P, Rousseau M-E, Kassis N, Beck N, Adalat R, et al. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Front. Integr. Neurosci. 2014; 8:54. doi: 10.3389/fnint.2014.00054 PMID: 24904490

32. Padhani AR, Hayas C, Landau S, Leach MO. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. 2002; 15:143–153. PMID: 11870910
33. Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J. Magn. Reson. Imaging. 2003; 18:649–655. PMID: 14635149

34. Jain V, Duda J, Avants B, Giannetta M, Xie SX, Roberts T, et al. Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. Radiology. 2012; 263:527–536. doi: 10.1148/radiol.12111509 PMID: 22517961

35. Chen Y, Wang D, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J. Magn. Reson. Imaging. 2011; 33:940–949. doi: 10.1002/jmri.22345 PMID: 21448961

36. Bland MJ, Altman DG. Measurement error proportional to the mean. BMJ. 1996; 313:106. PMID: 8688716

37. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; i:307–310.

38. Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage. 2005; 27:393–401. PMID: 15921936

39. Mark CI, Fisher JA, Pike GB. Improved fMRI calibration: Precisely controlled hyperoxic versus hypercapnic stimuli. NeuroImage. 2011; 54:1102–1111. doi: 10.1016/j.neuroimage.2010.08.070 PMID: 20826623

40. Gustard S, Williams EJ, Hall LD, Pickard JD, Carpenter TA. Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI. J. Magn. Reson. Imaging. 2003; 21:599–607.

41. Merola A, Murphy K, Stone AJ, Germuska MA, Griffith VEM, Blockley KP, et al. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hyperoxic and hyperoxic activation. NeuroImage. The Authors; 2016; 129:01–021 PMID: 26801605

42. Bulte DP, Drescher K, Jezzard P. Comparison of hypercapnia-induced calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn. Reson. Med. 2009; 61:391–398. doi: 10.1002/mrm.21655 PMID: 18666102

43. Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, Buxton RB. Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: Implications for BOLD-fMRI. NeuroImage. 2008; 39:1510–1521. doi: 10.1016/j.neuroimage.2007.11.015 PMID: 18164629

44. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, et al. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum. Brain Mapp. 2009; 30:1120–1132. doi: 10.1002/hbm.20574 PMID: 18465743

45. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009; 44:647–652. doi: 10.1016/j.neuroimage.2008.09.057 PMID: 19000770

46. Gauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD. Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI. NeuroImage. 2011; 54:1001–1011. doi: 10.1016/j.neuroimage.2010.09.059 PMID: 20887792

47. Lin H, Fox PT, Yang Y, Lu H, Yan L, Gao J-H. Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn. Reson. Med. 2008; 60:380–389. doi: 10.1002/mrm.21655 PMID: 18666102

48. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage. 2007; 35:175–184. PMID: 17208013

49. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, et al. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum. Brain Mapp. 2009; 30:1120–1132. doi: 10.1002/hbm.20574 PMID: 18465743

50. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009; 44:647–652. doi: 10.1016/j.neuroimage.2008.09.057 PMID: 19000770

51. Gauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD. Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI. NeuroImage. 2011; 54:1001–1011. doi: 10.1016/j.neuroimage.2010.09.059 PMID: 20887792

52. Lin H, Fox PT, Yang Y, Lu H, Yan L, Gao J-H. Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn. Reson. Med. 2008; 60:380–389. doi: 10.1002/mrm.21655 PMID: 18666102

53. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage. 2007; 35:175–184. PMID: 17208013

54. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, et al. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum. Brain Mapp. 2009; 30:1120–1132. doi: 10.1002/hbm.20574 PMID: 18465743

55. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009; 44:647–652. doi: 10.1016/j.neuroimage.2008.09.057 PMID: 19000770

56. Gauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD. Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI. NeuroImage. 2011; 54:1001–1011. doi: 10.1016/j.neuroimage.2010.09.059 PMID: 20887792

57. Lin H, Fox PT, Yang Y, Lu H, Yan L, Gao J-H. Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn. Reson. Med. 2008; 60:380–389. doi: 10.1002/mrm.21655 PMID: 18666102

58. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage. 2007; 35:175–184. PMID: 17208013

59. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, et al. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum. Brain Mapp. 2009; 30:1120–1132. doi: 10.1002/hbm.20574 PMID: 18465743

60. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009; 44:647–652. doi: 10.1016/j.neuroimage.2008.09.057 PMID: 19000770

61. Gauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD. Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI. NeuroImage. 2011; 54:1001–1011. doi: 10.1016/j.neuroimage.2010.09.059 PMID: 20887792

62. Lin H, Fox PT, Yang Y, Lu H, Yan L, Gao J-H. Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn. Reson. Med. 2008; 60:380–389. doi: 10.1002/mrm.21655 PMID: 18666102

63. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage. 2007; 35:175–184. PMID: 17208013
54. van Zijl PCM, Eleff SM, Ulatowski JA, Oja JME, Ulug AM, Traystman RJ, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat. Med. 1998; 4:159–167. PMID: 9461188

55. Coles JP, Fryer TD, Bradley PG, Nortje J, Smielewski P, Rice K, et al. Intersubject variability and reproducibility of 15O PET studies. J Cereb Blood Flow Metab. 2006; 26:48–57. PMID: 15988475

56. Leenders KL, Perani D, Lammertsma AA, Heather JD. Cerebral blood flow, blood volume and oxygen utilization. Brain. 1990; 113:27–47. PMID: 2302536

57. Bremmer JP, Berckelaar NM, Persoons S, Kappelle L, Lammertsma AA, Kloet R, et al. Day-to-Day Test–Re test Variability of CBF, CMRO2, and OEF Measurements Using Dynamic 15O PET Studies. Mol Imaging Biol. 2010; 13:759–768.

58. Ibaraki M, Shinohara Y, Nakamura K, Miura S, Kinoshita F, Kinoshita T. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans. J Cereb Blood Flow Metab. 2010; 30:1296–1305. doi: 10.1038/jcbfm.2010.13 PMID: 20160738

59. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2010; 31:635–643. PMID: 20160738

60. Krieger SN, Gauthier CJ, Ivanov D, Huber L, Roggenhofer E, Sehm B, et al. Regional reproducibility of calibrated BOLD functional MRI: Implications for the study of cognition and plasticity. Neuroimage. 2014; 101:8–20. doi: 10.1016/j.neuroimage.2014.06.072 PMID: 25008001

61. Wang Y, Saykin AJ, Pfeuffer J, Lin C, Mosier KM, Shen L, et al. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage. 2011; 54:1188–1195. doi: 10.1016/j.neuroimage.2010.08.043 PMID: 20800097

62. Chen JJ, Pike GB. BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed. 2009; 22:1054–1062. doi: 10.1002/nbm.1411 PMID: 19598180

63. Hino JK, Short BL, Rais-Bahrami K, Seale WR. Cerebral blood flow and metabolism during and after prolonged hypercapnia in newborn lambs. Crit Care Med. 2000; 28:3505–3510. PMID: 11057808

64. McPherson RW, Derrer SA, Traystman RJ. Changes in cerebral CO2 responsivity over time during isoflurane anesthesia in the dog. J Neurosurg Anesthesiol. 1991; 3:12–19. PMID: 15815378

65. Horvath I, Sandor NT, Ruttner Z, McLaughlin AC. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. J Cereb Blood Flow Metab. 1994; 14:503–509. PMID: 8163593

66. Zappe AC, Uludağ K, Logothetis NK. Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. J. Magn. Reson. Imaging. 2008; 26:961–967.

67. Xu F, Uh J, Brier MR, Hart J, Yezhuvath US, Gu H, et al. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab. 2010; 30:1151–1158. doi: 10.1038/jcbfm.2010.153 PMID: 20842164

68. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab. 2012; 32:1909–1918. doi: 10.1038/jcbfm.2012.93 PMID: 22739621

69. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab. 2006; 27:69–75. PMID: 16670698

70. Siero JCW, Strother MK, Faraco CC, Hoogduin H, Hendrikse J, Donahue MJ. In vivo quantification of hyperoxic arterial blood water T1. NMR Biomed. 2015; 28:1518–1525. doi: 10.1002/nbm.3411 PMID: 26419505

71. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Man. Reason. Med. 2000; 44:162–167.

72. Wu Wen-Chau, Edlow BL, Elliot MA, Wang-Jiongjiong, Detre JA. Physiological Modulations in Arterial Spin Labeling Perfusion Magnetic Resonance Imaging. IEEE Trans. Med. Imaging. 2009; 28:703–709. doi: 10.1109/TMI.2008.2012020 PMID: 19150788

73. Zhang W, Silva AC, Williams DS, Koretsky AP. Measurement of Perfusion Using Arterial Spin Labeling Without Saturation. Magn. Reson. Med. 1995; 33:370–376. PMID: 7706704

74. MacIntosh BJ, Filipponi N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn. Reson. Med. 2010; 63:641–647. doi: 10.1002/mrm.22256 PMID: 20146233
75. Gallichan D, Jezzard P. Variation in the shape of pulsed arterial spin labeling kinetic curves across the healthy human brain and its implications for CBF quantification. Magn. Reson. Med. 2009; 61:686–695. doi: 10.1002/mrm.21886 PMID: 19132757

76. Donahue MJ, Faraco CC, Strother MK, Chappell MA, Rane S, Dethrage LM, et al. Bolus arrival time and cerebral blood flow responses to hypercarbia. J Cereb Blood Flow Metab. 2014; 34:1243–1252. doi: 10.1038/jcbfm.2014.81 PMID: 24780904

77. Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, et al. Estimation of labeling efficiency in pseudo-continuous arterial spin labeling. Magn. Reson. Med. 2010; 63:765–771. doi: 10.1002/mrm.22245 PMID: 20187183

78. Jahanian H, Noll DC, Hernandez-Garcia L. B0 field inhomogeneity considerations in pseudo-continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed. 2011; 24:1202–1209. doi: 10.1002/nbm.1675 PMID: 21387447

79. Asllani I, Borogovaç A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn. Reson. Med. 2008; 60:1362–1371. doi: 10.1002/mrm.21670 PMID: 18828149

80. Blockley NP, Driver ID, Francis ST, Fisher JA, Gowland PA. An improved method for acquiring cerebrovascular reactivity maps. Magn. Reson. Med. 2010; 65:1278–1286. doi: 10.1002/mrm.22719 PMID: 21500256

81. Günther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn. Reson. Med. 2005; 54:491–498. PMID: 16032686

82. Feinberg DA, Setzompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. Journal of Magnetic Resonance. 2013; 229:90–100. doi: 10.1016/j.jmr.2013.02.002 PMID: 23473893

83. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise Reduction in 3D Perfusion Imaging by Attenuating the Static Signal in Arterial Spin Tagging (ASSIST). Magn. Reson. Med. 2000; 44:92–100. PMID: 10893526

84. Garcia DM, Duhamel G, Alsop DC. Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn. Reson. Med. 2005; 54:366–372. PMID: 16032674

85. Ghariq E, Chappell MA, Schmid S, Teeuwisse WM, van Osch MJP. Effects of background suppression on the sensitivity of dual-echo arterial spin labeling MRI for BOLD and CBF signal changes. NeuroImage. 2014; 103:316–322. doi: 10.1016/j.neuroimage.2014.09.051 PMID: 25280450

86. Brannan S, Liotti M, Egan G, Shade R, Madden L, Robillard R, et al. Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air. Physiology. 2001; 98:2029–2034.

87. Liotti M, Brannan S, Egan G, Shade R, Madden L, Abplanalp B, et al. Brain responses associated with consciousness of breathlessness (air hunger). Physiology. 2001; 98:2035–2040.