Complete minors in digraphs with given dichromatic number

Tamás Mészáros* Raphael Steiner†

January 13, 2021

Abstract

The dichromatic number $\chi(D)$ of a digraph D is the smallest k for which it admits a k-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger’s conjecture for undirected graphs, several groups of authors have recently studied the containment of directed graph minors in digraphs with given dichromatic number. In this short note we improve several of the existing bounds and prove almost linear bounds by reducing the problem to a recent result of Postle on Hadwiger’s conjecture.

1 Introduction

For a given integer $t\geq 1$ let m_t be the least integer for which it is true that every graph with chromatic number at least m_t contains a K_t-minor. Hadwiger’s conjecture [6], which is one of the most important open problems in graph theory, states that $m_t = t$ for all $t \geq 1$. The conjecture remains unsolved for $t \geq 7$. For many years, the best general upper bound on m_t was due to Kostochka [9,10] and Thomason [22], who independently proved that every graph of average degree at least $O(t/\log t)$ contains a K_t-minor, implying that $m_t = O(t/\log t)$. Recently, however, there has been progress. First, Norine, Postle and Song [17] showed that $m_t = O(t(\log t)^\beta)$ (for any $\beta > 1/4$), and then this was further improved by Postle [18] to give $m_t = O(t(\log \log t)^6)$. For more details about Hadwiger’s conjecture the interested reader may consult the recent survey of Seymour [21].

This famous conjecture has influenced many researchers and different variations of it have been studied in various frameworks, one of which is directed graphs. In this case there are multiple ways to define a minor. Here we consider three popular variants: strong minors, butterfly minors and topological minors. The containment of these different minors in dense digraphs as well as their relation to the dichromatic number have already been studied in several previous works, see e.g. [2,5,11] for strong minors, [3,7,12,16] for butterfly minors and [1,4,5,13,14,15,20] for topological minors.

Given digraphs D and H, we say that D is a strong H-minor model if $V(D)$ can be partitioned into non-empty sets $\{X_v : v \in V(H)\}$ (called branch sets) such that the digraph induced by X_v is strongly-connected for all $v \in H$; and for every arc (u,v) in H there is an arc in D from X_u to X_v. More generally, we also say that D contains H as a strong minor and write $D \succ_s H$ if a subdigraph of D is a strong H-minor model. Pause to note that strong minor containment defines a transitive relation on digraphs, that is, if $D_1 \succ_s D_2$ and $D_2 \succ_s D_3$ for digraphs D_1, D_2, D_3, then $D_1 \succ_s D_3$.

Given an undirected graph G we denote by \hat{G} the directed graph with the same vertex set and for every edge $uv \in E(G)$ the vertices u and v are connected in \hat{G} by an arc in each direction. We will be particularly interested in forcing strong \hat{K}_t-minors, as those also yield a strong H-minor for every digraph H on at most t vertices. Analogously to the undirected case, one can ask how large the dichromatic number of a digraph

*Institut für Mathematik, Freie Universität Berlin, Germany. Research supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). Email: tmeszaros87@gmail.com.

†Institut für Mathematik, Technische Universität Berlin, Germany. Funded by DFG-GRK 2434 Facets of Complexity. Email: steiner@math.tu-berlin.de.
should be to guarantee that it contains a strong K_t minor. More precisely, we consider the function $sm_{\bar{\chi}}(t)$, which is the least integer for which it is true that every digraph D with $\bar{\chi}(D) \geq sm_{\bar{\chi}}(t)$ satisfies $D \not\geq_s K_t$. In a recent work, Axenovich, Girão, Snyder and Weber [2] showed that $sm_{\bar{\chi}}(t)$ exists for every $t \geq 1$ and proved the bounds

$$t + 1 \leq sm_{\bar{\chi}}(t) \leq t4^t.$$

Here we improve their upper bound substantially by reducing the problem to the undirected setting.

Theorem 1. For every $t \geq 1$ we have

$$sm_{\bar{\chi}}(t) \leq 2m_{\chi}(t) - 1.$$

By combining Theorem [1] with the aforementioned result of Postle we get that $sm_{\bar{\chi}}(t) = O\left(t(\log \log t)^6\right)$.

Now let us turn to butterfly minors. Given a digraph D and an arc $(u, v) \in A(D)$, this arc is called (butterfly-)contractible if v is the only out-neighbor of u or if u is the only in-neighbor of v in D. Given such a contractible arc e, the digraph D/e is obtained from D by merging u and v into a common vertex and joining their in- and out-neighborhoods, ignoring parallel arcs. A butterfly minor of a digraph D is any digraph that can be obtained by repeatedly deleting arcs, deleting vertices or contracting arcs.

In [16], inspired by Hadwiger’s conjecture, Millani, Steiner and Wiedermann raised the question that for a given integer $k \geq 1$, what is the largest butterfly minor closed class D_k of k-colorable digraphs, and they gave a precise characterization of D_2 as non-even digraphs. The question concerning a characterization of D_k for $k \geq 3$ is closely related to the question of forcing complete butterfly minors in digraphs. For an integer $t \geq 1$, let us define $bm_{\bar{\chi}}(t)$ as the least integer such that every digraph D with $\bar{\chi}(D) \geq bm_{\bar{\chi}}(t)$ contains K_t as a butterfly minor, and put

$$b(x) := \max\{t \geq 1 \mid bm_{\bar{\chi}}(t) \leq x\}$$

for the integer inverse function of $bm_{\bar{\chi}}(\cdot)$. Let us further denote by K_t the class of all digraphs with no K_t as a butterfly minor. Then, on the one hand, every digraph excluding $\overline{K_{b(k+1)}}$ as a butterfly minor is colourable with $bm_{\chi}(b(k+1)) - 1 \leq k$ colours. On the other hand, every digraph in D_k must exclude $\overline{K_{k+1}}$ as a butterfly minor, since its dichromatic number exceeds k. Therefore, for every k we have

$$K_{b(k+1)} \subseteq D_k \subseteq K_{k+1}.$$

To see how tight the the above inclusions are one needs to obtain good lower bounds on $b(k+1)$, or equivalently good upper bounds on $bm_{\bar{\chi}}(t)$. In this direction, as an application of Theorem [1] we prove the following corollary.

Corollary 1. For $t \geq 1$ we have $bm_{\bar{\chi}}(t) \leq 2m_{\chi}(2t) - 1 = O(t(\log \log t)^6)$.

For the sake of completeness we remark that a lower bound of $t + 1 \leq bm_{\bar{\chi}}(t)$ follows by taking $D = \overline{G}$ where G is the complete graph on $t + 2$ vertices with a 5-cycle removed. It is a simple exercise to verify that $\bar{\chi}(D) = t$ but it contains no butterfly K_t-minor.

Finally, we consider topological minors. Given a digraph H, a subdivision of H is any digraph obtained by replacing every arc $(u, v) \in A(H)$ by a directed path from u to v, such that subdivision-paths of different arcs are internally vertex-disjoint. Then H is said to be a topological minor of some digraph D if D contains a subdivision of H as a subgraph.

Aboulker, Cohen, Havet, Lochet, Moura and Thomassé [1] initiated the study of the existence of various subdivisions in digraphs of large dichromatic number. For a digraph H they introduced the parameter $mader_{\bar{\chi}}(H)$, the dichromatic Mader number of H, as the least integer such that any digraph D with $\bar{\chi}(D) \geq mader_{\bar{\chi}}(H)$ contains a subdivision of H. In their main result they proved that if H is a digraph with n vertices and m arcs, then

$$n \leq mader_{\bar{\chi}}(H) \leq 4^m(n - 1) + 1.$$

Gishboliner, Steiner and Szabó [3] conjectured that $mader_{\bar{\chi}}(K_t) \leq Ct^2$ for some absolute constant C, however, it seems surprisingly hard to find a polynomial upper bound even for quite simple digraphs H.

2
An indication for this increased difficulty compared to the undirected case could be that for digraphs it is not even possible to force a K_3-subdivision by means of large minimum out- and in-degree (compare \[13\]). In [4] the authors still managed to identify a wide class of graphs, called octus graphs\[2\], for which the lower bound is tight. Their result means that given a digraph D with $\overrightarrow{\chi}(D) \geq n$ it contains the subdivision of every octus graph on at most n vertices.

Here, along the same line of thinking, as a corollary of Theorem \[1\] we prove a similar result for another class of digraphs. By slightly abusing the terminology, we call a digraph D subcubic if D is an orientation of a graph with maximum degree at most three such that the in- and out-degree of any vertex is at most two.

Corollary 2. For $n \geq 1$ if D is a digraph with $\overrightarrow{\chi}(D) \geq 22n$ then it contains a subdivision of every subcubic digraph on at most n vertices.

Notation. For a digraph D and a set $S \subseteq V(D)$ we denote by $D[S]$ the subdigraph spanned by the vertices in S. The set S is called acyclic if $D[S]$ is an acyclic digraph. We call D strongly-connected if for every ordered pair u, v of vertices in D there is a directed path in D from u to v. An in-/out-arborescence is a rooted directed tree where every arc is directed towards/away from the root. For the starting/ending point of an arc we will also use the names tail/head.

A (proper) coloring of an undirected graph G with colors in a set A is a map $f : V(G) \to A$ where neighbouring vertices are mapped to different colors, or equivalently $f^{-1}(a)$ is an independent set for every $a \in A$. If $|A| = k$ then f is called a k-coloring. Analogously, an (acyclic) k-coloring of a digraph D is a map $f : V(D) \to A$ with $|A| = k$ where $f^{-1}(a)$ is an acyclic set for every $a \in A$. The minimum k for which a k-coloring exists is the chromatic (resp. dichromatic) number of the undirected graph G (resp. digraph D), which we shall denote by $\chi(G)$ (resp. $\overrightarrow{\chi}(D)$).

2 Proofs

2.1 Strong minors

The proof of Theorem \[1\] will be based on the following result.

Theorem 2. For every digraph D there is an undirected graph G such that

(i) D is a strong $\overrightarrow{\chi}$-minor model, and

(ii) $\overrightarrow{\chi}(D) \leq 2\chi(G)$.

Proof. To start with, let us first fix a partition X_1, X_2, \ldots, X_m of $V(D)$ such that for every $i \in \{1, 2, \ldots, m\}$ the set X_i is an inclusion-wise maximal subset of $V(D) \setminus (X_1 \cup \cdots \cup X_{i-1})$ with $D[X_i]$ strongly connected and $\overrightarrow{\chi}(D[X_i]) \leq 2$. Note that the X_i’s are well-defined since the one vertex-digraph is strongly connected and 2-colorable. Now we define G to be the undirected simple graph with vertex set $\{X_1, \ldots, X_m\}$ and $X_i, X_j \in E(G)$ if and only if there are arcs in both directions between X_i and X_j in D. Then, by definition, D is a strong $\overrightarrow{\chi}$-minor model, as one can simply take X_1, X_2, \ldots, X_m as the branch sets.

Therefore, what remains to prove is property (ii). For this let us assume that $\chi(G) = k$ and fix a proper coloring $f_G : V(G) \to \{c_1, c_2, \ldots, c_k\}$ of G. Now, for every i take an arbitrary acyclic two-coloring of $D[X_i]$ (which exists by assumption) with colors $\{c_i', c_i''\}$. The rest of the proof is about showing that by putting these colorings together we obtain an acyclic coloring f_D of D with the $2k$ colors $\{c_1', c_1'', c_2', c_2'', \ldots, c_k', c_k''\}$.

Assume for contradiction that this is not the case, and there is a directed cycle C in D which is monochromatic. We may, without loss of generality, assume that C is a shortest such cycle, in particular, it is an induced cycle. Let i_0 be the smallest index for which C contains a vertex from X_{i_0}. Note that, in particular, $V(C) \subseteq V(D) \setminus (X_1 \cup \cdots \cup X_{i_0-1})$ and, as f_D is a proper coloring on $D[X_{i_0}]$, the cycle C cannot be fully contained in X_{i_0}. Hence, C contains a subsequence u, w_1, \ldots, w_r, v of consecutive vertices on C with

\[^1\]We note that this class, in particular, includes orientations of cactus graphs (and hence orientations of cycles), as well as bioriented forests.
(u, w_1), (w_1, w_2), \ldots, (w_\ell, v) \in A(C)$, such that $u, v \in X_{i_0}$ (possibly $u = v$), $w_1, \ldots, w_\ell \in X_{i_0+1} \cup \cdots \cup X_m$, and $\ell > 0$.

Let $s \in \{1, \ldots, \ell\}$ be the smallest index such that w_s has an out-neighbor in X_{i_0}, and denote this out-neighbor by $x \in X_{i_0}$. We claim that w_s has no in-neighbor in D that is contained in X_{i_0}. Suppose towards a contradiction that there exists $y \in X_{i_0}$ such that $(y, w_s) \in A(D)$. Let $j > i_0$ be such that $w_s \in X_j$. Then, because of the arcs $(y, w_s), (w_s, x) \in A(D)$, we have $X_{i_0}X_j \in E(G)$ and hence $f_G(X_{i_0}) \neq f_G(X_j)$. This in turn implies that $f_D(w) \neq f_D(w_s)$ and $f_D(v) \neq f_D(w_s)$ which contradicts the monochromaticity of C. Hence, we may assume that w_s has no in-neighbor contained in X_{i_0}. In particular, this implies $s \geq 2$. Let us now consider the set

$$X = X_{i_0} \cup \{w_1, \ldots, w_s\} \subseteq V(D) \setminus (X_1 \cup \cdots \cup X_{i_0-1}).$$

It is clearly strongly connected, as X_{i_0} is so and u, w_1, \ldots, w_s, x induce a directed path (or cycle in case $u = x$) starting and ending in X_{i_0}. Moreover, any extension of an acyclic $\{1,2\}$-coloring of $D[X_{i_0}]$ to a $\{1,2\}$-coloring of $D[X]$ where w_1, \ldots, w_{s-1} receive color 1 and w_s receives color 2 is acyclic. Indeed, by the definition of s, there are no arcs starting in $\{w_1, \ldots, w_{s-1}\}$ and ending in X_{i_0}, and by the inducedness of C there are no arcs spanned between non-consecutive vertices inside $\{w_1, \ldots, w_{s-1}\}$. Adding the fact that w_s has no in-neighbors in X_{i_0}, these imply that any directed cycle in $D[X]$ is either fully contained in $D[X_{i_0}]$, or contains both w_s and at least one vertex in $\{w_1, \ldots, w_{s-1}\}$. In any case, it is not monochromatic. However, the existence of the set X then contradicts with the maximality of X_{i_0}, which finishes the proof. \qed

Now we can easily deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. Let D be a digraph with $\chi(D) \geq 2m_\chi(t) - 1$. By Theorem 2, there exists an undirected graph G such that $\chi(D) \leq 2\chi(G)$ and $D \cong G$. This implies that $\chi(G) \geq m_\chi(t)$, and hence G contains a K_t-minor. Taking the same branch sets in G which give a K_t-minor in G shows that $G \cong \tilde{K}_t$, and by transitivity $D \cong \tilde{K}_t$. Since D was arbitrarily chosen such that $\chi(D) \geq 2m_\chi(t) - 1$, this proves that $sm_\chi(t) \leq 2m_\chi(t) - 1$, as required. \qed

2.2 Butterfly minors

Corollary 1 follows directly from Theorem 1 and the following proposition.

Proposition 1. Every strong \tilde{K}_{2t}-minor model contains \tilde{K}_t as a butterfly minor.

Proof. Let D be a strong \tilde{K}_{2t}-minor model and let $\{X_i^+, X_i^- : i \in [1, \ldots, t]\}$ be a corresponding partition of $V(D)$ into $2t$ branch sets. In particular, for every $i \in \{1, \ldots, t\}$ there exist $r_i^+ \in X_i^+$ and $r_i^- \in X_i^-$ such that $(r_i^+, r_i^-) \in A(D)$. Since $D[X_i^-]$ and $D[X_i^+]$ are strongly connected digraphs, there exist oriented spanning trees $T_i^- \subseteq D[X_i^-]$ and $T_i^+ \subseteq D[X_i^+]$ such that T_i^- is an in-arborescence rooted at r_i^- and T_i^+ is an out-arborescence rooted at r_i^+. Let us consider the spanning subdigraph D' of D consisting of the arcs contained in

$$T := \bigcup_{i=1}^{t} \big((r_i^-, r_i^+) \cup A(T_i^+) \cup A(T_i^-)\big),$$

as well as all arcs of D starting in X_i^+ and ending in X_j^- for $i \neq j$. Then every arc of D' contained in T is either the unique arc in D' emanating from its tail or the unique arc in D' entering its head. It follows that all arcs in T are butterfly-contractible. Note that the contraction of an arc does not affect the butterfly-contractibility of other arcs, hence the digraph D'/T, obtained from D' by successively contracting all arcs in T, is a butterfly minor of D. The vertices of D'/T can be labelled v_1, \ldots, v_t, where v_i denotes the vertex corresponding to the contraction of the (weakly) connected component of D' inside $X_i^+ \cup X_i^-$. As D is a strong \tilde{K}_{2t}-minor model, by definition of D' for every $(i, j) \in \{1, \ldots, k\}^2$ with $i \neq j$, there exists an arc in D' starting in X_i^+ and ending in X_j^-. Therefore, D'/T is a butterfly minor of D isomorphic to \tilde{K}_t, concluding the proof. \qed

\footnote{Such trees can easily be obtained by considering a breadth-first in-search (resp. out-search) starting from r_i^- (resp. r_i^+).}
2.3 Topological minors

Finally, we prove Corollary \[\text{2}\]

Proof of Corollary \[\text{2}\]: As a first step note that given \(n \in \mathbb{N}\), every undirected graph \(G\) with minimum degree at least \(10.5n > n + 6.291 \cdot \frac{3}{2}n\) contains every \(n\)-vertex subcubic graph as a minor. This follows directly from a result of Reed and Wood [19], who proved that every graph with average degree at least \(n + 6.291m\) contains every graph with \(n\) vertices and \(m\) edges as a minor.

Let now \(D\) be any digraph with \(\chi(D) \geq 22n\), \(F\) a subcubic digraph on \(n \geq 2\) vertices and \(H\) its underlying undirected subcubic graph. By Theorem \[\text{2}\] there exists an undirected graph \(G\) such that \(D\) is a strong \(\tilde{G}\)-minor model and \(\chi(G) \geq 11n\). In particular, \(G\) contains a subgraph of minimum degree at least \(11n - 1 > 10.5n\) and hence, by our earlier remark, an \(H\)-minor. This implies that \(\tilde{G}\) contains a strong \(\tilde{H}\)-minor and hence \(D\) does so. However, as \(F \subseteq \tilde{H}\), it also follows that \(D\) contains a strong \(F\)-minor, i.e. a subdigraph \(D'\) which is a strong \(F\)-minor model. Let \(\{X_f : f \in V(F)\}\) be a branch set partition of \(V(D')\) witnessing this. Recall that, by definition, for every arc \(e = (u_1, u_2) \in A(F)\) there exist vertices \(v(e, u_1) \in X_{u_1}\) and \(v(e, u_2) \in X_{u_2}\) such that \((v(e, u_1), v(e, u_2)) \in A(D') \subseteq A(D)\).

Let next \(u \in V(F)\) be an arbitrary vertex with total degree \(d = d(u) \in \{0, 1, 2, 3\}\) and let us denote the arcs incident to \(u\) by \(e_1, \ldots, e_d\). Furthermore, for \(i = 1, \ldots, d\) we put \(v_i := v(e_i, u)\). We claim that there exists a vertex \(b(u) \in X_u\) and for every \(i = 1, \ldots, d\) a directed path \(P_i^u\) in \(D[X_u]\) such that

- \(P_1^u, \ldots, P_d^u\) are internally vertex-disjoint;
- if \(u\) is the tail of \(e_i\), then \(P_i^u\) is a directed path from \(b(u)\) to \(v_i\);
- if \(u\) is the head of \(e_i\), then \(P_i^u\) is a directed path from \(v_i\) to \(b(u)\).

This claim holds trivially if \(d = 0\), and if \(d = 1\) then we can simply put \(b(u) = v_1\) and let \(P_1^u\) be the trivial one-vertex path consisting of \(v_1\).

If \(d = 2\) then, without loss of generality, by the symmetry of reversing all arcs in \(D\) and \(F\), we may assume that \(u\) is the head of \(e_1\). We then can put \(b(u) := v_1\), let \(P_1^u\) be the trivial one-vertex path consisting of \(v_1\), and take \(P_2^u\) to be any directed path in \(D[X_u]\) from \(v_1\) to \(v_2\), which exists by strong connectivity.

Finally suppose \(d = 3\). Since \(F\) is subcubic, \(u\) either has in-degree one and out-degree two, or vice versa. As before, without loss of generality, by symmetry we may assume that the first case occurs, and it is \(e_1\) that enters \(u\) and \(e_2\) and \(e_3\) that emanate from it. Take now \(P_{12}\) and \(P_{13}\) to be directed paths in \(D[X_u]\) starting at \(v_1\) and ending at \(v_2\) and \(v_3\), respectively. We define now \(b(u)\) as the first vertex in \(V(P_{12})\) that we meet when traversing \(P_{13}\) backwards (starting at \(v_3\)); \(P_1^u\) as the subpath of \(P_{12}\) directed from \(v_1\) to \(b(u)\); \(P_2^u\) as the subpath of \(P_{12}\) directed from \(b(u)\) to \(v_2\); and \(P_3^u\) as the subpath of \(P_{13}\) directed from \(b(u)\) to \(v_3\). It follows by definition that \(P_1, P_2, P_3\) are internally vertex-disjoint, and hence the claim follows.

To finish the proof, let \(S \subseteq D\) be a subdigraph with vertex set

\[V(S) := \bigcup_{u \in V(F)} \left(\bigcup_{i=1}^{d(u)} V(P_i^u) \right), \]

and arcs

\[A(S) := \left\{ (v(e, u_1), v(e, u_2)) \mid e = (u_1, u_2) \in A(F) \right\} \cup \left(\bigcup_{u \in V(F)} \left(\bigcup_{i=1}^{d(u)} A(P_i^u) \right) \right). \]

\(S\) is a digraph isomorphic to a subdivision of \(F\) in which a vertex \(u \in V(F)\) is represented by the branch-vertex \(b(u)\). This concludes the proof. \(\square\)
3 Concluding remarks

In this note we showed that $sm_\chi(t) \leq 2m_\chi(t) - 1$ and $bm_\chi(t) \leq 2m_\chi(2t) - 1$ for any $t \geq 1$. As far as lower bounds are considered, it is not hard to see that $m_\chi(t) \leq \min\{sm_\chi(t), bm_\chi(t)\}$ for every $t \geq 1$. Indeed, for any graph G with $\chi(G) \geq \min\{sm_\chi(t), bm_\chi(t)\}$, as $\chi(\overline{G}) = \chi(G)$, by definition \overline{G} contains \overline{K}_t either as a strong minor or as a butterfly minor, each of which implies that G contains a K_t-minor. Therefore, our results reduce the question about the asymptotics of $sm_\chi(t)$ and $bm_\chi(t)$ to the well-studied undirected version of the problem. Also, as Hadwiger’s conjecture is known to be true for small values, for $3 \leq t \leq 6$ we have

$$t + 1 \leq sm_\chi(t) \leq 2t - 1 \quad \text{and} \quad t + 1 \leq bm_\chi(t) \leq 4t - 1.$$

We believe that the upper bounds should not be tight. To support this intuition, let us mention that a more careful analysis of our proof of Theorem (1) yields the stronger statement that any digraph D with $\overline{\chi}(D) \geq 2m_\chi(t) - 1$ contains a strong \overline{K}_t-minor model in which between any two branch sets, there are at least two arcs spanned in both directions. Under the assumption that Hadwiger’s conjecture is true, the bound $2t - 1$ for this stronger property would be sharp, as shown by \overline{K}_{2t-2}. This indicates that our proof should not be expected to give a tight bound for the problem of forcing a strong \overline{K}_t-minor. Instead it seems plausible that $sm_\chi(t) = t + 1$ (and maybe $bm_\chi(t) = t + 1$) for any $t \geq 3$.

Problem 1. Does every digraph D with $\overline{\chi}(D) \geq t + 1$ contain \overline{K}_t as a strong minor (butterfly minor)?

Already resolving the first open case $t = 3$ would be quite interesting.

Acknowledgments

We would like to thank Patrick Morris for fruitful discussions on the topic.

References

[1] P. Aboulker, N. Cohen, F. Havet, W. Lochet, P. S. Moura, S. Thomassé, Subdivisions in digraphs of large out-degree or large dichromatic number, *The Electronic Journal of Combinatorics*, 26(3):P3.19 (2019)

[2] M. Axenovich, A. Girão, R. Snyder, L. Weber, Strong complete minors in digraphs, arXiv: 2010.05643 (2020)

[3] A. C. Giannopulou, K. Kawarabayashi, K. Kreutzer, O. Kwon, The directed flat wall theorem, *Proceedings of SODA 2020*, pp. 239–258, (2020)

[4] L. Gishboliner, R. Steiner, T. Szabó, Dichromatic number and forced subdivisions, arXiv: 2008.09888 (2020)

[5] A. Girão, K. Popielarz, R. Snyder, Subdivisions of digraphs in tournaments, *Journal of Combinatorial Theory, Series B*, 146:266–285 (2021)

[6] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, *Viertelschr. Naturforsch. Ges. Zürich*, 88:133–142 (1943)

[7] K. Kawarabayashi, K. Kreutzer, The directed grid theorem, *Proceedings of STOC 2015*, pp. 655–664, (2015)

[8] I. Kim, P. D. Seymour, Tournament minors, *Journal of Combinatorial Theory, Series B*, 112:138–153 (2015)

[9] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, *Metody Diskret. Analiz.*, (38):37–58 (1982)
[10] A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, *Combinatorica*, 4(4):307–316 (1984)

[11] C. Jagger, An extremal function for digraph subcontraction, *Journal of Graph Theory*, 21(3):343–350 (1996)

[12] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas, Directed tree-width, *Journal of Combinatorial Theory, Series B*, 82(1):138–154 (2001)

[13] W. Mader, Degree and local connectivity in digraphs, *Combinatorica*, 5:161–165 (1985)

[14] W. Mader, Existence of vertices of local connectivity k in digraphs of large outdegree, *Combinatorica*, 15:533–539 (1995)

[15] W. Mader, On topological tournaments of order 4 in digraphs of outdegree 3, *Journal of Graph Theory*, 21:371–376 (1996)

[16] M. G. Millani, R. Steiner, S. Wiederrecht, Colouring non-even digraphs, arXiv: 1903.02872 (2019)

[17] S. Norin, L. Postle, Z. X. Song, Breaking the degeneracy barrier for coloring graphs with no K_t minor, arXiv: 1910.09378 (2019)

[18] L. Postle, An even better density increment theorem and its application to Hadwiger’s Conjecture, arXiv:2006.14945 (2020)

[19] B. Reed, D. R. Wood, Forcing a sparse minor, *Combinatorics, Probability and Computing*, 25(2):300–322 (2016)

[20] A. D. Scott, Subdivisions of transitive tournaments, *European Journal of Combinatorics*, 21: 1067–1071 (2000)

[21] P. Seymour, Hadwiger’s conjecture, In: J. Forbes Nash, Jr., M. Th. Rassias (eds.), Open problems in mathematics, Springer, 417–437 (2016)

[22] A. Thomason, An extremal function for contractions of graphs, *Math. Proc. Cambridge Philos. Soc.*, 95(2):261–265 (1984)