Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors

V. K. Thorsmølle1,2, R. D. Averitt1,3, J. Demsar1,4,5, D. L. Smith1, S. Tretiak, R. L. Martin1, X. Chi1,6, B. K. Crone1, A. P. Ramirez1,7 and A. J. Taylor1

1Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
3Boston University, Boston, MA 02215, USA
4Dept. of Physics and CAP, Universität Konstanz, D-78457 Konstanz, Germany
5Dept. of Physics and CAP, Universität Konstanz, D-78457 Konstanz, Germany
6Dept. of Complex Matter, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia and Bell Laboratories, Alcatel-Lucent, 600 Mountain Ave., Murray Hill, NJ 07974, USA.

(Dated: January 14, 2009)

We present a comparative study of ultrafast photo-conversion dynamics in tetracene (Tc) and pentacene (Pc) single crystals and Pc films using optical pump-probe spectroscopy. Photo-induced absorption in Tc and Pc crystals is activated and temperature-independent respectively, demonstrating dominant singlet-triplet exciton fission. In Pc films (as well as C\textsubscript{60}-doped films) this decay channel is suppressed by electron trapping. These results demonstrate the central role of crystallinity and purity in photogeneration processes and will constrain the design of future photovoltaic devices.

PACS numbers: 71.35.-y, 72.80.Le, 73.61.Ph, 78.47.-p

The strong potential for new technological applications provided by organic semiconductors has spurred extensive research efforts in these materials7,8. Applications include thin film transistors4, light-emitting diodes (OLEDs)3,6, photodiodes and photovoltaics (OPVs)7,8. To successfully utilize organic semiconductors in these technologies it is important to understand both the nature of the photogenerated states and their relaxation dynamics. In particular, for OPVs it is vital to understand and control exciton lifetimes at the materials level in order to fully optimize efficiency. Such studies involve understanding the role of crystallinity, defects, and molecular constituency in controlling relaxation dynamics in the time domain of relevance for photoconversion7,10. Here, we present a comparative study of ultrafast photogenerated state dynamics in pentacene (Pc) and tetracene (Tc) single crystals and in pure and C\textsubscript{60}-doped Pc films using optical pump-probe spectroscopy. We demonstrate for the first time how morphology may control relaxation behavior in an organic semiconductor by effectively turning singlet-triplet exciton fission decay channels on and off. Importantly, we show that triplet suppression, which is necessary for free carrier formation and thus photovoltaic and photodiode performance, is controllable via sample morphology.

Exposure of an organic semiconductor to light above the absorption edge gives rise to various photoexcited species. There is an ongoing debate in the literature as to the nature of these photoexcitations and their relaxation dynamics. This includes details of exciton formation versus the generation of charged polarons or free charge carriers11,12,13. These processes are important in determining the behavior of many organic semiconductor-based devices such as solar cells and photodiodes. Organic polymers, such as poly(p-phenylene-vinylene), have been extensively studied providing observations of polarons, interchain excitons (indirect excitons or bound polaron pairs), self-trapped excitons, triplet excitons and charge transfer dynamics14,15,16,17,18. In contrast to organic polymers with long chains, organic molecular crystals consist of shorter molecular units and form well-defined crystal structures. The intermolecular interactions are weak, and the excitons are largely confined to single molecules resulting in large exciton binding energies19. Polyacene organic crystals such as tetracene (Tc) and pentacene (Pc) are model systems for studying the intrinsic properties of exciton dynamics. Tc and Pc molecules consist of, respectively, 4 and 5 benzene rings fused along their sides and arranged in a herringbone stacking arrangement with two molecules in each unit cell2. Tc has an orange color and luminesces strongly when illuminated due to prompt and delayed fluorescence20, while Pc is opaque and is nonluminescent21. In the polyacene series of organic crystals, the energy level of the lowest triplet exciton \(E(T_1)\) decreases faster than the lowest singlet exciton energy \(E(S_1)\) with increasing molecular size. The energy difference \(E(S_1) - 2E(T_1)\) is \(-1.3\) eV in napthalene (Nph), \(-0.55\) eV in anthracene (Ac), \(-0.21\) eV in Tc, and \(0.11\) eV in Pc21. In Pc, the excitonic fission process from the lowest singlet exciton to a pair of the lowest excitons \(S_1 \rightarrow 2T_1\) is energetically allowed, while in Tc this same process is only possible by thermal activation. This process is strongly suppressed in Nph and Ac. An energy level diagram for Tc and Pc is presented in Fig. 1. Direct fission from higher-lying singlet states, \(S_N \rightarrow 2T_1\), is another probable relaxation channel which competes with nonradiative relaxation to the lowest excited state, \(S_1\)1. Charge
Transfer processes, resulting in carrier generation, compete with both singlet and triplet exciton formation. In some device applications, such as solar cells and photodiodes it is beneficial to enhance carrier generation.

In addressing the importance of these processes we find singlet-triplet fission to be the dominant process in both Pc and Tc crystals with a prominent long-lived photoinduced absorption (PIA) peak originating from $S_1 \rightarrow 2T_1$ and $S_N \rightarrow 2T_1$ fission. In contrast to Pc, the triplet production in Tc is strongly temperature dependent in agreement with the thermally activated $S_1 \rightarrow 2T_1$ fission process, where fission competes with radiative fluorescence. In comparison to Pc crystals, we find that in Pc films the triplet production is quenched and the dynamics is largely dominated by charge transfer originating from defects (electron acceptors). This was further supported by measurements on C$_{60}$-doped Pc films, with C$_{60}$ being a known electron acceptor [18].

High quality single crystals were grown in a flow of inert gas [22]. The Pc crystals used were typically 3×3 mm2 and approximately 50 μm thick, while the Tc crystals were larger. The Pc films were evaporated onto 10×10 mm2 MgO substrates, with a film thickness of ~ 150 nm, and $\sim 0.03\%$ molecular C$_{60}$-doping added to one film. In these optical experiments we utilized a commercial regeneratively amplified Ti:Al$_2$O$_3$ laser system operating at 250 KHz producing nominally 10 μJ, sub-50 fs pulses at 1.5 eV. The samples were excited at 3.0 eV (high above the absorption band of ~ 1.9 eV in Pc, and ~ 2.4 eV in Tc), and changes in reflectivity $\Delta R/R$ and transmissivity $\Delta T/T$ were measured over the range of probe photon energies from 0.6 – 2.5 eV using an optical parametric amplifier. We utilized an optical chopper operating at 2 kHz together with lock-in detection to measure relative changes with a sensitivity better than 10^{-5}.

In all samples the signal displayed linear dependence on excitation density in the range of fluences (F) used (in Pc F = $10 - 200$ μJ/cm2, in Tc F = $5 - 50$ μJ/cm2). The presented data was recorded at ~ 150 μJ/cm2 (Pc) and ~ 30 μJ/cm2 (Tc).

The transient PI spectra from Tc and Pc crystals are shown in Fig. 2 at different times after photoexcitation. The most prominent feature in both crystals is a long-lived (> 1 ns) PIA peak centered at approximately ~ 1.7 eV in Tc, and at ~ 1.4 eV in Pc. The long relaxation time suggests that the state being probed is the triplet state T_1 ($T_1 \rightarrow T_N$), i.e. the PIA from the occupied T_1 level to a higher-lying unoccupied excited state T_N [23].

The transient PI spectra from Tc and Pc single crystals. The spectra are shown at different pump-probe delay times for photoexcitation at 3.0 eV at room temperature for (a) Tc crystal in transmission and (b) Pc crystal in reflection. $S_0 \rightarrow S_N$ and $S_N \rightarrow S_1$ ($T_1 \rightarrow T_N$) refers to electronic transitions in the triplet (singlet) manifold. (See Fig. 1.)

FIG. 1: Energy level diagram of Tc and Pc. Only the levels participating in the singlet-triplet fission processes following photoexcitation at 3.0 eV are shown. Here, S_N represents higher-lying states in the singlet manifold, S_1 the lowest singlet exciton, and T_1 the lowest triplet exciton. $T_1 + T_1$ denotes two triplet excitons produced by fission. Important relaxation channels are denoted by arrows.

FIG. 2: Transient spectra of Tc and Pc single crystals. The spectra are shown at different delay times for photoexcitation at 3.0 eV at room temperature for (a) Tc crystal in transmission and (b) Pc crystal in reflection. $S_0 \rightarrow S_N$ and $S_N \rightarrow S_1$ ($T_1 \rightarrow T_N$) refers to electronic transitions in the triplet (singlet) manifold. (See Fig. 1.)

In all samples the signal displayed linear dependence on excitation density in the range of fluences (F) used (in Pc F = $10 - 200$ μJ/cm2, in Tc F = $5 - 50$ μJ/cm2). The presented data was recorded at ~ 150 μJ/cm2 (Pc) and ~ 30 μJ/cm2 (Tc).

The transient PI spectra from Tc and Pc crystals are shown in Fig. 2 at different times after photoexcitation. The most prominent feature in both crystals is a long-lived (> 1 ns) PIA peak centered at approximately ~ 1.7 eV in Tc, and at ~ 1.4 eV in Pc. The long relaxation time suggests that the state being probed is the triplet state T_1 ($T_1 \rightarrow T_N$), i.e. the PIA from the occupied T_1 level to a higher-lying unoccupied excited state T_N [23].
yields approximately 4
eration \[25\]), an initial singlet-exciton concentration of
triplet production in Pc crystals (neglecting charge gen-
\sim (decreasing to
time scale of the S
SN time scale involves both S
22
ous experimental values of the activation energy in Tc,
We find \(\Delta E\)
T is the temperature, and \(\Delta E\) is the activation energy.
A and B are constants,
the thermally activated fission process, S
1
(S
a non-temperature dependent triplet production process
signal present at the lowest temperatures, indicative of
pendence is observed for Tc. There is a substantial PIA
ded to S
1
contribution to the PIA becomes important. It has a
law, \(\Delta T / T (T, 200ps) = A + B \times \exp[-\Delta E/k_B T]\).
Here A and B are constants, \(k_B\) is the Boltzmann constant,
T is the temperature, and \(\Delta E\) is the activation energy.
We find \(\Delta E \sim 70\) meV, in good agreement with previous
experimental values of the activation energy in Tc,
\(22 - 237\) meV \[20\].

The initial ultrafast dynamics observed on a sub-ps
-time scale involves both \(S_N \rightarrow 2T_1\) fission and \(S_N \rightarrow S_1\)
internal conversion in the singlet manifold. In Tc, the
time scale of the \(S_N \rightarrow 2T_1\) fission is \(\sim 0.3\) ps at 300 K
(decreasing to \(\sim 0.25\) ps at 5 K), while in Pc, it is \(\sim 0.7\) ps
and is temperature independent. Assuming an efficient
triplet production in Pc crystals (neglecting charge gen-
eration \[25\]), an initial singlet-exciton concentration of
\(2.2 \times 10^{17} \text{ cm}^{-3}\) (calculated from the excitation fluence)
yields approximately \(4.4 \times 10^{17} \text{ cm}^{-3}\) triplets.

The transient PI spectra for Pc films, shown in Fig. 5,
resemble a previously obtained spectrum published in
ref. \[24\], and the steady state absorption spectrum (not shown) is identical to the one given in ref. \[11\]. In
contrast to Pc crystals, the PI spectra for Pc films are
dominated by sharp features at higher energies, while
the long-lived PIA centered at \(\sim 1.4\) eV is substantially
reduced. At room temperature we observe PI bleaching
peaks at \(\sim 1.8\) eV and \(\sim 2.1\) eV, and a PIA peak at
\(\sim 2.0\) eV. Their decay dynamics consists of two contribu-
tions; a fast exponential \(\sim 0.4\) ps decay followed by a
sub-ns decay. The \(\sim 1.8\) eV and \(\sim 2.1\) eV peaks are as-
signed to \(S_0 \rightarrow S_1\) and \(S_0 \rightarrow S_N\) transitions, respec-
tively, while the PIA observed at \(\sim 2.0\) eV may be related to the
formation of excimer-like excitons, as argued in ref. \[25\].
at lower temperatures an additional PIA signal appears
at \(\sim 1.9\) eV (see inset to Fig. 5), which overshadows the
\(\sim 2.0\) eV peak observed at room temperature and per-
sects well into the ns regime. This strongly temperature-
dependent PIA observed at \(\sim 1.9\) eV is attributed to
\(S_0^+ \rightarrow S_1^+\) transitions, and is related to charge transfer
dynamics. (\(S_0^+ \rightarrow S_1^+\) refers to an ionized state, where
an electron from the Pc molecule has been transferred to
an electron trap.) Importantly, the same dynamics and
spectral features are observed in the C_{60}-doped Pc film
as shown in the inset to Fig. 5, except that the spectral
features above \(\sim 1.7\) eV are enhanced by \(\sim 1.5\) times,
while the PIA at \(\sim 1.4\) eV is further suppressed. Since C_{60}
is a known electron acceptor this observation further
leads support to the assignment of the \(\sim 1.9\) eV absorp-
tion peak to charge transfer due to electron traps intrinsic
to Pc films.

The long-lived \(T_1 \rightarrow T_N\) transition at \(\sim 1.4\) eV, clearly
prominent in the Pc crystal, is strongly suppressed in the
Pc film, Fig. 5, where only a minor feature with sub-

FIG. 3: Time-resolved PI transmission (reflection) dynamics
of Tc (Pc) single crystals at selected probe photon energies.
The data is normalized to the value recorded after the initial
sub-ps rise.

FIG. 4: Temperature dependence of the normalized PI signal
in Tc and Pc single crystals at 200 ps. The solid black line is
a fit for Tc: \(\Delta T / T (T, 200ps) = 0.52 + 7.77 \times \exp[-\Delta E/k_B T]\),
where \(\Delta E \sim 70\) meV. The inset shows the time-resolved PIA
changes in transmission for Tc probed at 1.67 eV at 6 K and
300 K.
ns dynamics that vanishes at low temperatures is observed. Considering the identical dynamics, temperature dependence and enhancement of the spectral features in the C60-doped Pc film as compared to the undoped Pc film, we attribute the quenching of the long-lived PIA at \(~\approx 1.4\) eV to ultrafast charge transfer dynamics related to electron traps, as seen in the Pc films.

In summary, we have shown that following optical excitation in Tc and Pc single crystals triplets are produced via fission, not only from the lowest singlet state, \(S_1 \rightarrow 2T_1\), but also from higher-lying states, \(S_N \rightarrow 2T_1\). In Pc, fission is a major relaxation channel, while in Tc there is strong radiative fluorescence from \(S_1\) which competes with \(S_1 \rightarrow 2T_1\) fission. At room temperature, half of the triplets in Tc are produced immediately from \(S_N\) within \(~\approx 0.3\) ps while the other half are produced via thermally activated fission from \(S_1\) within \(~\approx 50\) ps. This suggests that the internal conversion in Tc from \(S_N\) to \(S_1\) is comparable to \(~\approx 0.3\) ps, which is the time scale for \(S_N \rightarrow 2T_1\) fission. Below \(~\approx 200\) K the \(S_1 \rightarrow 2T_1\) fission is suppressed consistent with a thermally activated process. In Pc, the triplet production is temperature independent, and the majority of triplets are produced within \(~\approx 0.7\) ps via \(S_N \rightarrow 2T_1\) fission, while \(S_1 \rightarrow 2T_1\) fission proceeds within a few ps following internal conversion.

Considering the rise time dynamics in Pc and Tc crystals we conclude that when the condition for fission, which conserves spin, is fulfilled, \(E(S_1) > 2E(T_1)\), triplet production may occur on a sub-ps time scale. In thermally activated fission the time scale for triplet production increases considerably (\(~\approx 100\) ps for Tc). In comparison, it is well-known that for intersystem crossing (which does not conserve spin) the time scale may increase by orders of magnitude \(^{[1]}\). The ultrafast time scales demonstrated in Pc and Tc may enable fast organic optical switching devices based on triplet excitons.

Research and development of photoconversion-based devices such as OLEDs and OPVs has largely involved polymeric and polycrystalline materials in thin film morphologies and thus has not been concerned with the influence of defects. Here we have shown that defects can cause triplet quenching and enhanced carrier generation. In particular, there is a large variation in triplet exciton dynamics between Pc crystals and films, suggesting that a route to enhanced triplet exciton lifetime is via the use of single crystals for hosting the photoconversion process. Thus, the present results provide motivation for further research aimed at incorporating crystalline material into the donor and acceptor regions of OPVs.

We acknowledge the support of the Laboratory Directed Research and Development program at Los Alamos National Laboratory, the Department of Energy (DOE) Center for Integrated Nanotechnologies, and DOE grant number DE-FG02-04ER46118. We are grateful to Michael Grätzel, Majed Chergui, Christoph Gadermaier and Thomas Dekorsy for important comments.

\(^{[1]}\) M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers (Oxford University Press, New York, 1999) 2nd ed.

\(^{[2]}\) F. A. Hegmann, Physics in Canada 59, 127 (2003).

\(^{[3]}\) M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).

\(^{[4]}\) S. R. Forrest, Nature 428, 911 (2004).

\(^{[5]}\) J. H. Burroughes et al., Nature 347, 539 (1990).

\(^{[6]}\) J. Godlewski and M. Obarewoska, Opto-Electron. Rev. 15, 179 (2007).

\(^{[7]}\) B. Oregan and M. Grätzel, Nature 353, 737 (1991).

\(^{[8]}\) R. F. Service, Science 306, 2034 (2004).

\(^{[9]}\) S. R. Forrest and M. E. Thompson, Chem. Rev. 107, 923 (2007).

\(^{[10]}\) Y. Shao and Y. Yang, Adv. Mater. 17, 2841 (2004).

\(^{[11]}\) O. Ostroukhova et al., Phys. Rev. B 71, 035204 (2005).

\(^{[12]}\) V. K. Thorsmølle et al., Appl. Phys. Lett. 84, 891 (2004).

\(^{[13]}\) E. Hendry et al., Phys. Rev. Lett. 92, 196601 (2004).

\(^{[14]}\) G. D. Scholes and G. Rumbles, Nature Mater. 5, 683 (2006).

\(^{[15]}\) S. L. Dexheimer et al., Phys. Rev. Lett. 84, 4425 (2000).

\(^{[16]}\) S. V. Frolov et al., Phys. Rev. Lett. 78, 4285 (1997).

\(^{[17]}\) J. L. Bredas et al., Chem. Rev. 104, 4971 (2004).

\(^{[18]}\) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).

\(^{[19]}\) K. Hummer and C. Ambrosch-Draxl, Phys. Rev. B 71, 081202(R) (2005).

\(^{[20]}\) Y. Tomkiewicz, R. P. Groff, and P. Avakian, J. Chem. Phys. 54, 4504 (1971).

\(^{[21]}\) C. Jundt et al., Chem. Phys. Lett. 241, 84 (1995).

\(^{[22]}\) R. A. Laudise et al., J. Cryst. Growth 187, 449 (1998).

\(^{[23]}\) The position of the energy levels of the excited states in Pc crystals and polymers (Oxford University Press, New York, 1999) 2nd ed.

\(^{[24]}\) F. A. Hegmann, Physics in Canada 59, 127 (2003).

\(^{[25]}\) H. Maier and Thomas Dekorsy for important comments.