Introduction

Musculoskeletal discomfort is associated with inflammatory and degenerative conditions that affect muscles, tendons, ligaments, nerves, bones and joints. Aside from being common in the world population, these health conditions also comprise an economic burden to society, negatively affecting the quality of life1,2.

Chronic musculoskeletal pain (MSP) affects a wide range of people in the society ranging from the middle-aged working class to younger aged college students. Essentially in developing countries, one in the four people report to have MSP. This condition causes a reduction in the work productivity which would eventually leads to absence from work or school. Thus, this condition would bear negative consequences not only for the affected individuals but also for the society as well3-10. Given these impacts of MSP, a number of studies have been conducted to assess the factors contributing to MSP in laborers and office workers from various sectors4,8,9. However, only a limited number of studies address MSP and its consequences in students of health sciences10-15.

In many epidemiological studies, it has been stated that musculoskeletal pain problems of office workers may be caused by long-term computer use and static sitting posture16-20. In addition, it was shown that the most painful areas were the neck and back and shoulder regions19,20. In particular, students of health professions, including nursing and physiotherapy students, may have static sitting posture problems such as long-term lesson session.
and computer use, as well as dynamic posture problems created by studies in various patient-related positions. The areas where the students feel pain are mostly mentioned as back, dorsal, neck, shoulder and hand. Throughout their education, health sciences (medicine, dentistry, physical therapy and rehabilitation, nursing etc.) students perform patient interventions in inpatient and outpatient settings. These interventions may include activities such as bending, stretching, lifting or pulling which may have a negative impact on body mechanics. Thus during the course of their education which comprise, students are predisposed to an increased risk of MSP because of their routine exposure to abnormal physical loading, ergonomic and postural problems. In line with the paradigm, a large number of graduate physiotherapists reported to experience MSP. Furthermore, a higher prevalence of low back pain was reported for undergraduate physiotherapy students compared with medical school students.

The key characteristic of epidemiology studies on MSP is collecting reliable data. In 1987, Kuorinka et al. introduced the Standardized General Nordic Questionnaire in the literature as a screening tool to measure MSP. This tool is more commonly referred to as the Nordic Musculoskeletal Questionnaire (NMQ), which has been adapted as a more explanatory term by Dickinson et al. The NMQ has been most widely used in occupational populations rather than general populations. Surprisingly, a literature chronology for the NMQ has underlined that the tool has been extensively used, albeit a rigorous reliability assessment is missing. After the introduction of the NMQ, the reliability studies of the tool were inconsistent. As such additional safety coefficients for the NMQ tool could only be presented 16 years after the introduction of the tool. Furthermore, the NMQ was frequently modified or adapted in these studies. The limitations of the original NMQ form to collect reliable data accounted for such frequent modifications and adaptations. Particularly, Dawson et al. developed an extended version of NMQ to extract more data on the prevalence and impacts of MSP. This extended version of the Musculoskeletal Questionnaire (NMQ-E) was administered to health sciences students of nursing and was reported to be a valid and beneficial tool to be used in occupational and general populations. In addition, Pugh et al. developed an online version of the questionnaire for graduate nurses working as health professionals and similarly reported that the online NMQ-E version was also a valid and reliable questionnaire for screening and assessment of MSP.

Self-report outcomes are important for clinical assessments and research. The use of self-report outcome measures in various languages facilitates collection of reliable data for the studies conducted in different countries by allowing comparisons of the outcomes. Notably, the assessment of cross-cultural competence ensures the measurement of the same parameters in different cultures and countries. The reliability study the Turkish version and cross-cultural adaptation of the NMQ was performed by Kahraman et al. in 2015. However several studies have already used the NMQ-E version in Turkey, the reliability assessment and cross-cultural adaptation of the Turkish NMQ-E version has not been performed yet. Therefore, the aim of this study was to translate and cross-culturally adapt the NMQ-E for use in Turkey, and to determine the psychometric properties of this translated version.

Materials and methods
Translation and cross-cultural adaptation

The Research Ethics Committee of Acibadem University and Acibadem Healthcare Group has approved the study (reference no. 2016-7/3) after taking the permission of Anna P. Dawson by mail for the NMQ-E to be translated into Turkish and cross-culturally adapted. The adaptation procedure consisted of five stages as recommended by Beaton et al. In the first stage the questionnaire was translated from English into Turkish by a translator blinded to the study and a physiotherapist aware of the study. Both persons speak English and Turkish as their mother tongue. Translations were completed independently from each other and the synthesis of translations took place in the second stage and the final draft of the translation was revised for any conceptual errors or inconsistencies by a person who possessed a good command of both English and Turkish. In the third stage the questionnaire was back-translated into English by two translators whose mother tongue was English and who also possessed a good command of Turkish. Both translators were blinded to the study and had no access to the original questionnaire. In the fourth stage an expert committee (a methodologist, a developer, a language professional, and the 4 translators) compared the questionnaire back-translated into English to the original version of the questionnaire and reviewed reports on the Turkish version of the questionnaire and finalized the questionnaire. The fifth stage consisted of preliminary testing.

Content validity

The method defined by Popham was used to assess the validity of the content. The members of the Expert Committee determined whether each item of the NMQ-E was consistent with and relevant to the main construct of the questionnaire. Each expert rated each item by corresponding percentages and then the average percentage was calculated based on the sum of percentages given by each expert.

Preliminary testing

Students in master’s degree and doctoral degree programs of the Health Sciences Institute of Acibadem University, who meet inclusion/exclusion criteria (n=30, 9 males, 21 females; the mean age, 27.4 years±2.3 years; body mass index=24.4±4.8 kg/m²) underwent preliminary testing. Each student completed the questionnaire and was allowed to have face-to-face interview with the physiotherapist who administered the questionnaire. Participants read the questions and evaluated every item for clarity. Any phrases
or words that the participants had difficulty understanding were noted by physiotherapists and participants were allowed to recommend various elements to delete/replace such phrases/words.

NMQ-E

The NMQ-E is completed by self-administration or face-to-face interview and provides reliable information on the onset, prevalence and outcomes of MSP in nine body regions (the neck, shoulder, upper back, elbow, wrist/hand, low back, hip/thigh, knee, ankle/foot). The NMQ-E interrogates ache, pain or discomfort experienced in the nine body parts to date, for the last 12 months, for the last four weeks and on the day of the administration, with binary choice questions (yes or no)\(^{35-40}\). The finalized NMQ-E of Turkish version is included in the Appendix.

Construct validity

The Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) was administered to each participant to assess construct validity. The CMDQ was developed by Hedge et al.\(^{47,48}\) to assess musculoskeletal disorders, at the Human factors and Ergonomics Laboratories. The questionnaire was translated into Turkish and the validation of the Turkish version was tested by Erdinç et al.\(^{49}\). The questionnaire assesses pain in 20 individual regions under 3 chapters including frequency, severity and interference. The questionnaire interrogates the frequency and severity of MSP in various regions of the body and whether it interferes with work. Higher scores indicate and increased MSP. Responders are asked to mark the location of pain on a body pain diagram. Cornell Musculoskeletal Discomfort Questionnaire scores were calculated in two different ways\(^{49,50}\):

i. Scores were calculated by giving a relative value for the frequency, severity and interference with school related works. In the calculation of scores for each region, the frequency of experiencing pain was defined as ‘never’, ‘1-2 times/week’, ‘3-4 times/week’, ‘at least once a day’ or ‘several times every day’ and rated with weights of 0, 1.5, 3.5, 5 and 10 respectively.

ii. The severity of discomfort was defined as ‘Slightly uncomfortable’, ‘Moderately uncomfortable’ and ‘Very uncomfortable’ and rated with weights of 1, 2 and 3, respectively. The inference with the ability to work was defined as ‘Not at all’, ‘Slightly interfered’ and ‘Substantially interfered’ and rated with weights of 1, 2 and 3, respectively.

Scores were obtained according to above definitions and varied between 0 to 90. “Discomfort Score” was calculated for each region assessed for pain. “Total Cornell Score” was obtained by summing all of the regional discomfort scores ranging from 0 to 990.

Participants

The sample size was calculated based on the intraclass coefficient correlation (ICC) calculated for internal validity, estimated %95 confidence interval and a width of 0.10. In previous studies conducted by Kahraman et al.\(^1\) and Dawson et al.\(^{35}\), ICC values were 0.896 (would be rounded to 0.9) and 0.9, respectively and the estimated ICC value was considered as 0.9 and introduced into the formula. The sample size was calculated based on following formula developed by Knottnerus and Buntinx\(^{51}\) and found to be 144 participants. N= \[16 x p x (1-p)/w^2\]

One hundred sixty-one physiotherapy and rehabilitation students attending Health Sciences Faculty of Acibadem Mehmet Ali Aydinlar University were included in the study on a voluntary basis. Participants had no severe chronic systemic or psychological diseases or any serious musculoskeletal disease (fibromyalgia, inflammatory rheumatic diseases, trauma and surgery involving musculoskeletal system) within six months before their participation in the study and each participant signed an informed consent form. The study was performed between September 2018 and March 2019. Participants were administered both NMQ-E and CMDQ and they were asked to complete these questionnaires in the order of the administration. One week later, they were asked to complete the NMQ-E once more. The study was conducted in 132 students who fully completed the entire questionnaires.

Reliability

Reliability is used to refer to internal consistency (homogeneity) and test-retest reliability (repeatability). A total of 132 participants were asked to complete the NMQ-E twice with one week interval to assess test-retest reliability. This time interval was considered to be enough to prevent the participant from remembering changes in their responses\(^1,35\).

Statistical analysis

Categorical variables were given as frequency (n) and percentage (%), while continuous characteristics were summarized as “mean±SD”. Group comparisons were conducted by the Mann-Whitney U test because all data were departed from normal approximation which was assessed by the Kolmogorov-Smirnov test. Internal consistency was assessed by using Cronbach’s alpha coefficients (excellent, >0.80; adequate, 0.70-0.79; and inadequate, <0.70)\(^{52,53}\). Test-retest reliability was analyzed by intraclass correlation coefficient (ICC, r=0.81-1.0, excellent; 0.61-0.80, very good; 0.41-0.60, good; 0.21-0.40, fair; and 0.00-0.20, poor)\(^{54,55}\) and prevalence-adjusted bias-adjusted kappa (PABAK) was calculated using the equation given below:

PABAK = \[2p_0-1\]

Wherein \(p_0\) refers to agreement ratio. PABAK measurements can account for the prevalence and bias and thus PABAK is considered to provide a better agreement estimate than Kappa alone\(^{49}\). PABAK values was categorized to refer agreement levels as follows: 0.01-0.2, slight; 0.21-0.4, fair; 0.41-0.6, moderate; 0.61-0.8, substantial; and 0.81-1.0, perfect\(^{54,56}\). All of the statistical analyses were performed by using SPSS (version 22.0) or Microsoft Excel 2010 (Microsoft, Corp, Redmond, WA).
Results

Content validity and preliminary testing

Based on the decision of the experts of the committee, the translation of the word “overlap” was changed to a word which was considered to be more understandable for the society (the word “çağışma” was changed into “birbiriyle örtüşme”). Further because a Bachelor in Science (BSc) program of chiropractic is not available in Turkey and not recognized by the society, the chiropractor profession group was excluded from the questionnaire. Generally, physiotherapists administer chiropractic treatment after taking courses after completing BSc degrees or attending postgraduate programs. After finalizing the questionnaire, it was assessed by every expert in the committee and all of its components were found to be consistent with the main construct. Therefore, the content validity was considered to be 100%. No amendments to the items were recommended in preliminary testing.

Participants

One hundred sixty-three students were recruited to our study on a voluntary basis. A student with bipolar disorder and a student who had a history of recent scoliosis surgery were excluded from the study. One hundred sixty-one physiotherapy and rehabilitation students who met the inclusion criteria were asked to complete the questionnaire on their own. 29 out of 161 students were excluded from the study due to missing demographic information in the questionnaire form or for not showing up in the retest (school absence or withdrawal from the study). Among the remaining 132 students (97 females, 35 males; mean±SD age: 19.91±1.24 years, mean±SD body mass index: 21.77±3.31 kg/m²), 23% (n: 30) were smokers and 13% (n: 17) reported social drinking. Among 3 students (2%) who had a mild systemic disease, 2 of them was reported to have insulin resistance and 1 to have hypothyroidism. Clinicians were asked to define these conditions as mild or severe. Based on the clinician’s decision, they were allowed to participate in the study as their doctors reported mild conditions.
Participant musculoskeletal symptom prevalences and results of NMQ-E parameters are listed in Table 1.

Construct validity

The data of participants were analyzed to examine the construct validity between NMQ-E and CMDQ. Except from the elbow section, significant differences were noted for all of the body parts between the participants with vs. without MSP in the all parts of body (p<0.001, Table 2). The CMDQ form does not include any section dedicated to the elbows as an anatomic region; instead, it includes a section for pain in the lower arm and pain in the upper arm. Therefore, pain scoring was analyzed by adding the pain scores from the lower arms and upper arms and a statistical significance was detected (p<0.01, Table 2). Overall, the construct validity results are shown in Table 2.

Reliability

The Turkish version of the NMQ-E showed adequate internal consistency (Cronbach α coefficient=0.78) and excellent test-retest reliability (intraclass correlation coefficient (ICC=0.88). Furthermore, when PABAK was used to assess the retest reliability, PABAK coefficients ranged from 0.61 to 0.955 (0.61-0.8, substantial; and 0.81-1.0, perfect level). The test-retest reliability results are shown in Table 3.

Discussion

In this study we aimed to translate, transculturally adapt, and determine the psychometric properties of the Turkish version of the NMQ-E. For these aims, the validity and reliability of the translated form were found to be acceptable. As such the Turkish version of the NMQ-E showed adequate internal
consistency and a perfect intraclass correlation coefficient. Further, test-retest reliability which was assessed by PABAK revealed a high to almost perfect reliability for all of the items. Turkish version of the NMQ-E was also shown to have a good construct validity. Hence, overall we report that the Turkish version of the NMQ-E has appropriate psychometric properties, including good test-retest reliability, internal consistency and construct validity.

The NMQ allows comparisons of musculoskeletal problems in different body parts for use in epidemiological studies. Essentially NMQ measures musculoskeletal pain in 9 distinct body regions which may lead to disturbance of the activities of daily living. This tool was previously reported to assess work-related musculoskeletal pain in large sample sizes\cite{25,57}. NMQ has been translated into Brazilian Portuguese\cite{58}, Greek\cite{59}, European Portuguese\cite{60}, Chinese\cite{61}, Turkish\cite{62} and Persian\cite{62}. In these translation and adaptation studies, the kappa coefficients varied in the range of 0.63-1.0. Particularly, the study of Mesquita et al.\cite{60} revealed an excellent internal consistency, with a Kuder-Richarson coefficient of 0.855. Paralel to this finding, Kahraman et al.\cite{1} qualified the Turkish version of the NMQ as excellent with a Cronbach's alpha of 0.896. Moreover the assessment of test-retest reliability using PABAK revealed a moderate to almost perfect reliability (PABAK=0.57-0.90) for all of the items\cite{1}. In all of these studies, the NMQ has been found to be reliable and valid and was reported to be an appropriate tool to assess musculoskeletal pain. However, in studies with non-adapted version of the NMQ, the questionnaire has been frequently amended and modified for specific use in relevant groups\cite{26,31-34}. As the limited ability of the original form to collect data was accepted as the underlying cause of such amendments and adaptations, in 2009, Dawson et al.\cite{15} developed an extended version of the NMQ to create more data on the prevalence and impacts of MSP. Dawson et al.\cite{15} reported that their NMQ-E would provide data reliable enough to suggest that this version might be used as a screening tool able to reflect the prevalence and outcomes of musculoskeletal pain.

The proportion of observed agreement for NMQ-E has been found to be higher than the proportion described for the NMQ. The original version of the NMQ may collect minimal data on musculoskeletal pain and activity prevention. Therefore, Dawson et al.\cite{15} considered the development of the NMQ-E important and suggested that the NMQ-E might be used in descriptive studies and longitudinal studies of disease outcomes to classify the intensity of pain. Further this tool can also be used as a self-assessment tool or may be administered during in personal interviews. Severe back pain is defined as pain necessitating treatment or sick leave while low back pain may be defined as non-severe in the absence of such conditions. The NMQ-E may facilitate to classify pain for purposes of longitudinal studies of disease outcomes. Pugh et al.\cite{40} developed an online version of NMQ-E and administered to nurses. In line with our study, they found Cronbach's alpha values ranging between 0.81 and 0.92 and ICC values higher than 0.75. They suggested that the online version might be also used in health professionals. As far as we know, the NMQ-E has been translated only into Persian language and the Persian version was culturally adapted. In that study conducted by Mokhtarinia et al.\cite{57}, 45 patients with musculoskeletal disorders were administered the questionnaire; the authors reported that the translation and localization of NMQ-E was easy and feasible. Furthermore, all of the items of the questionnaire were found to have acceptable face validity; the Intraclass Correlation Coefficient (ICC) was calculated as >0.7 and the Kappa coefficient varied from 0.78 to 1.00. Therefore, in line with our study the Persian version of the NMQ-E was reported to have an acceptable validity and test-retest reliability, to assess musculoskeletal disorders in Iranian patients\cite{57}.

In 1960, Cohen\cite{63} developed kappa statistics only to be used in the assessment of categorical data that correct or adjust random agreement. Although it has been criticized to be highly dependent on the prevalence of the condition in the population, kappa has been widely used after its development and is still used. PABAK was developed to overcome the limitation of Kappa. When compared with Kappa, PABAK reflects the ideal situation and determine the prevalence of conditions and biases presented in the “real” world. PABAK is adjusted for the prevalence and bias; however, prevalence and bias indices are also checked with PABAK coefficients\cite{64}. In our study, bias indices have been very low while prevalence indices have been relatively higher. Therefore, test-retest reliability of this translated version of the questionnaire has been found to be high. In the study conducted by Kahraman et al.\cite{1}, PABAK results for the Turkish version of the NMQ were similar to those found in our study.

In our study the CMDQ was used to assess the construct validity. The CMDQ was chosen to assess the construct validity in our study because the CMDQ assessed the presence of pain in different anatomical regions in a similar way to the NMQ-E. The Turkish version of the CMDQ has been validated by Erdinç et al.\cite{49} (Kappa coefficients=0.56 to 0.97). However we could not measure the construct convergent validity of CMDQ with the NMQ-E regions by using a correlation analysis due to 2-way answer options. Therefore, the results in participants with musculoskeletal problems and without musculoskeletal problems were compared to each other based on the CMDQ scores for matching regions. As a result, we determined that this translated questionnaire had good construct validity, as this translated questionnaire was found to be statistically significant in analyses performed for all anatomical regions.

The time interval between test and retest measurements is important in the assessment of test-retest reliability\cite{57}. In general, the interval between the first measurement and retest measurement should be short (3 to 7 days) when the condition is expected to change rapidly\cite{65}. However, Marx et al.\cite{66} demonstrated that a test-retest interval ranging from 2 to 14 days might not affect reliability tests of health status assessment tools in clinically stable populations\cite{57}. Dawson et al.\cite{35} used a time interval of 24 hours when developing the NMQ-E and reported that the time interval used in their study might be a potential limitation. Furthermore, they also
suggested that an assessment of the reliability of the NMQ-E after a longer time period of time (i.e. 7 to 14 days) might be beneficial to determine whether reliability estimates were decreased as the time interval between test and retest was increased. Pugh et al. also used time intervals ranging from 4 to 7 days for the online version of NMQ-E with the assumption that the time interval might not affect the overall reliability of the questionnaire. To simulate previous studies, we chose 7 days as the test-retest interval which can be considered as one of the limitations of this study due to possibility of recall bias.

Most of the questionnaires in the literature have been developed in English and therefore it can be said that these questionnaires reflect more of the Anglo-Saxon culture. Although most of the questionnaires are used as standard in the literature, the correct use of these tools depends on their compatibility with different languages and cultures while preserving cultural equality. A strict adaptation process is required to avoid the potentially confusing distribution of questionnaires, and only translation is not sufficient. For this reason, intercultural adaptation ensures that the studies are carried out reliably between different countries. When planning the study, we aimed cultural adaptation of the NMQ-E questionnaire. Upon comprehensive inspection of all items of the questionnaire, we did not find any phrases that need to a cross-cultural translation except from “chiropractor and overlap”. Overall, all of the terms/phrases in the items already have a direct translation the Turkish language and more importantly widely recognized by the Turkish population. Furthermore, the expert committee has assessed and validated the cross-cultural adaptation of the current study.

The limitation of our study is that the questionnaire was administered to relatively a healthy population included only college students. However, we aimed at reducing this limitation by selecting students from the Department of Physical Therapy and Rehabilitation as this was a population that had previously reported musculoskeletal pain in association during their education. The rate of students experiencing pain was relatively high and one out two college students answered “yes” to the question of “Have you experienced any problem (pain, pain or discomfort) for the neck and low back region. 40% of students reported pain in the upper back region. Therefore, we suggest that students from the Department of Physical Therapy and Rehabilitation should be encouraged more to use self-protection techniques during their education. Furthermore, future studies should be conducted among workers and patients and the reliability of the answers to NMQ-E should be checked against medical and workplace records, as suggested by Dawson et al. It might be more appropriate to assess the content validity in this way. The reliability of the NMQ-E in general population should also be determined.

This study was conducted to investigate psychometric properties of the Turkish version of the NMQ-E. Overall, our results provided significant contributions to the current literature, reflecting that the Turkish Version of the NMQ-E possess appropriate psychometric properties including a good test-retest reliability and construct validity. In conclusion, the NMQ-E Turkish version produces reliable data on the onset, prevalence and outcomes of musculoskeletal pain in an educated occupational cohort and may be used as a self-administered tool in epidemiological studies.

Acknowledgments

Concept - N.A., E.E.S., A.I.K., E.T.; Design - N.A., E.E. S., A.I. K., E.T.; Supervision - N.A., E.T.; Resource - N.A., E.E.S., A.I.K., E.T.; Materials - N.A., E.E.S., A.I.K., E.T.; Data Collection and/or Processing - N.A., E.E.S., A.I.K., E.T.; Analysis and/or Interpretation - N.A., E.T.; Literature Search - N.A., E.E.S., E.T.; Writing - N.A., E.T.; Critical Reviews - N.A., E.E.S., A.I.K., E.T.

References

1. Kahraman T, Genç A, Göz E. The Nordic Musculoskeletal Questionnaire: cross-cultural adaptation into Turkish assessing its psychometric properties. Disability and rehabilitation 2016;38(21):2153-2160.
2. Lelis CM, Batassa MRB, Freitas FCTD, Rocha FLR, Marziale MHP, Robazzi MLDC. Work-related musculoskeletal disorders in nursing professionals: an integrative literature review. Acta Paulista de Enfermagem 2012;25(3):477-482.
3. Wooll A, Akesson K. Understanding the burden of musculoskeletal conditions. BMJ 2001;322:1079.
4. Punnett L, Wegman DH. Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. Journal of electromyography and kinesiology 2004;14:13.
5. Smith DR, Wei N, Ishitake T, Wang RS. Musculoskeletal disorders among Chinese medical students. The Kurume medical journal 2005; 52(4):139-146.
6. Noack-Cooper KL, Sommerich CM, Mirka GA. College students and computers: Assessment of usage patterns and musculoskeletal discomfort. Work 2009;32:285-298.
7. Lorusso A, Vimercati L, L’Abbate N. Musculoskeletal complaints among Italian Xray technology students: a cross-sectional questionnaire survey. BMC Research Notes 2010;3:114-117.
8. Vyas R. Mitigation of musculoskeletal problems and body discomfort of agricultural workers through educational intervention. Work 2012;41:2398-2404.
9. Iruhe NK, Okafor UC, Adekola OO, Odebiyi DO, Habebe MYM, Sowunmi AC. Work Related musculoskeletal discomforts (WRMD) in ultrasonologists: prevalence and risk factors. World Journal of Medical Sciences 2013; 8:199-204.
10. Nyland L, Grimmer K. Is undergraduate physiotherapy study a risk factor for low back pain? A prevalence study of LBP in physiotherapy students. BMC musculoskeletal disorders 2003;4:22.
11. Taspinar F, Taspinar B, Aksoy CC. Investigation of musculoskeletal discomforts in physiotherapy and rehabilitation students. Journal of Exercise Therapy and
12. Smith DR, Leggat PA. Prevalence and distribution of musculoskeletal pain among Australian medical student. J Musculoskelet Pain 2007;15:39-46.
13. Smith D, Leggat P, Walsh L. Workplace hazards among Australian dental students. Australian Dental Journal 2009;54:186-188.
14. Smith D, Leggat P. Musculoskeletal disorders among rural Australian nursing students. Australian Journal of Rural Health 2004;12:241-245.
15. Falavigna A, Teles A, Mazzucchini T, de Braga GL, Kleber FD, Barreto F, Beckenkamp NL. Increased prevalence of low back pain among physiotherapy students compared to medical students. European Spine Journal 2011;20:500-505.
16. Wahlstrom J. Ergonomics, musculoskeletal disorders and computer work. Occup Med 2005;55:168-76
17. Sillanpää J, Huikkö S, Nyberg M, Kivi P, Laippala P, Uitti P. Effect of work with visual display units on musculoskeletal disorders in the office environment. Occup Med (Lond) 2003;53:443-51
18. Jensen C, Finsen L, Sogaard K, Christensen H. Musculoskeletal symptoms and duration of computer and mouse use. Int J Ind Ergon 2002;30(4-5):265-75.
19. Canie B, Danneels L, Tiggelen D, de Loos V, Cambier D. Individual and work related risk factors for neck pain among office workers: a cross sectional study. Eur Spine J 2007;16:679-86
20. Eltayeb S, Staal BJ, Kennes J, Lamberts P, Bie R. Prevalence of complaints of arm, neck and shoulder among computer office workers and psychometric evaluation of a risk factor questionnaire. BMC Musculoskel Disord 2007;8:68.
21. Martins AC, Felli VEA. Sintomas musculo-esqueléticos em graduandos de enfermagem. Enferm Foco 2013;4(1):58-62.
22. Antochevis-de-Oliveira M, Toscani-Greco PB, Cassol-Prestes F, Martins-Machado L, Bosi-de-Souza-Magnago TS, Rosa-dos-Santos R. Musculoskeletal disorders/pain in undergraduate nursing students in a community university in southern Brazil. Enfermeria Global 2017;16(3):160-174.
23. Bid DD, Alagappan TR, Dhanani HP, Goyani PS, Narielwala ZS. Musculoskeletal health, quality of life, and related risk factors among physiotherapy students. Physiother - J Indian Assoc Physiother 2017;11(2):53.
24. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sorensen F, Andersson G, Jorgensen K. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Applied ergonomics 1987:18:233-237.
25. Dickinson C, Campion K, Foster A, Newman S, O’Rourke A, Thomas P. Questionnaire development: An examination of the Nordic Musculoskeletal questionnaire. Applied ergonomics 1992:23:197-201.
26. Bao S, Winkel J, Shahnaz H. Prevalence of musculoskeletal disorders at workplaces in the People’s Republic of China. International journal of occupational safety and ergonomics 2000;6:557-574.
27. Choobineh A, Tabatabaei S, Mokhtarzadeh A, Salehi M. Musculoskeletal problems among workers of an Iranian rubber factory. Journal of occupational health 2007;49:418-423.
28. Dovrat E, Katz-Leurer M. Cold exposure and low back pain in store workers in Israel. American journal of industrial medicine 2007;50:626-631.
29. Lee H, Wilbur J, Conrad K, Mokadam D. Work-related musculoskeletal symptoms reported by female flight attendants on long-haul flights. Aviation, space, and environmental medicine 2006;1283-1287
30. Smith D, Mihashi M, Adachi Y, Koga H, Ishitake T. A detailed analysis of musculoskeletal disorder risk factors among Japanese nurses. Journal of safety research 2006;37:195-200.
31. Trinkoff AM, Lipscomb J, Geiger-Brown J, Brady B. Musculoskeletal problems of the neck, shoulder, and back and functional consequences in nurses. American journal of industrial medicine 2002;41:170-178.
32. Hagen K, Svebak S, Zwart J. Incidence of musculoskeletal complaints in a large adult Norwegian county population. The HUNT Study. Spine 2006;31:2146-2150.
33. Murphy S, Buckle P, Stubbs D. A cross-sectional study of self-reported back and neck pain among English schoolchildren and associated physical and psychological risk factors. Applied Ergonomics 2007;38:797-804.
34. Walker B, Muller R, Grant W. Low back pain in Australian adults. Prevalence and associated disability. Journal of manipulative and physiological therapeutics 2004;27:238-244.
35. Dawson AP, Steele EJ, Hodges PW, Stewart S. Development and test-retest reliability of an extended version of the Nordic Musculoskeletal Questionnaire (NMQ-E): a screening instrument for musculoskeletal pain. The Journal of Pain 2009;10(5):517-526.
36. de Barros E, Alexandre N. Cross-cultural adaptation of the Nordic musculoskeletal questionnaire. International nursing review 2003;50:101-108.
37. Josephpson M, Lagerstrom M, Hagberg M, Wigaeus Hjelm E. Musculoskeletal symptoms and job strain among nursing personnel: A study over a three year period. Occupational and environmental medicine 1997;54:681-685.
38. Lagerstrom M, Wenemark M, Hagberg M, Wigaeus Hjelm E. Occupational and individual factors related to musculoskeletal symptoms in five body regions among Swedish nursing personnel. International archives of occupational and environmental health 1995;68:27-35.
39. Maul I, Laubli T, Klipstein A, Krueger H. Course of low back pain among nurses: A longitudinal study across eight years. Occupational and environmental medicine 2003;60:497-503.
40. Pugh JD, Gelder L, Williams AM, Twigg DE, Wilkinson AM, Blazevich AJ. Validity and reliability of an online extended version of the Nordic Musculoskeletal Questionnaire.
(NMO-E2) to measure nurses’ fitness. Journal of clinical nursing 2015;24(23-24):3550-3563.
41. Gül A, Üstündag H, Kahraman B, Purisa S. Evaluation of Musculoskeletal Pain among Nurses. Journal of Health Science and Profession 2014;1(1):1-10 (in Turkish).
42. Tunçay SU, Yeldan İ. Is physical inactivity associated with musculoskeletal disorders? AGRI (The journal of Turkish Society of Algology):25(4):147-155 (in Turkish).
43. Altındaş Ş, Soylu M. Effect Of Dentist Working Conditions On Occupational Musculoskeletal System Diseases. SDÜ Sağlık Bilimleri Dergisi 2018;9(1):46-52 (in Turkish).
44. Durmaz E, Nazlican E, Akbaba M. Examination of Musculoskeletal System Complaints of Secretaries Working in a University Hospital. Sakarya Tip Dergisi 2018;8(2):432-441 (in Turkish).
45. Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 2000;25(24):3186-3191.
46. Popham WJ. Criterion-referenced assessment. Englewood Cliffs (NJ): Prentice-Hall; 1978.
47. Hedge A, Morimoto S, McCroibe D. Effects of keyboard tray geometry on upper body posture and comfort, Ergonomics 1999;42:1333-1349.
48. http://ergo.human.cornell.edu/ahmsTurkishquest.html Cornell University Ergonomics Web Accessed October 1, 2018.
49. Erdinc O, Hot K, Ozkaya M. Turkish version of the Cornell Musculoskeletal Discomfort Questionnaire: cross-cultural adaptation and validation 2011 Work;39(3):251-260.
50. Erdinc O. Upper extremity musculoskeletal discomfort among occupational notebook personal computer users: work interference, associations with risk factors and the use of notebook computer stand and docking station. Work 2011;39(4):455-463.
51. Knottnerus JA, Buntinx F. The evidence base of clinical diagnosis: theory and methods of diagnostic research. Oxford: Wiley; 2011.
52. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, de Vet HC. Quality criteria were proposed for measurement properties of health status questionnaires. Journal of clinical epidemiology 2007; 60:34-42.
53. Çelik D, Coşkunsu D, Kiliçoğlu Ö, Ergönül Ö, Irgang JJ. Translation and cross-cultural adaptation of the international knee documentation committee subjective knee form into Turkish. Journal of orthopaedic & sports physical therapy 2014;44(11):899-909.
54. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33:159-174.
55. Marx RG, Menezes A, Horovitz L, Jones EC, Warren RF. A comparison of two time intervals for test-retest reliability of health status instruments. Journal of clinical epidemiology 2003;56:730-735.
56. Byrt T, Bishop J, Carlin JB. Bias, prevalence and kappa. Journal of clinical epidemiology 1993;46:423-429.
57. Mokhtarinia H, Shafiee A, Pashmdarfard M. Translation and localization of the Extended Nordic Musculoskeletal Questionnaire and the evaluation of the face validity and test-retest reliability of its Persian version. Iranian Journal of Ergonomics 2015;3(3):21-29.
58. De Barros E, Alexandre NMC. Cross-cultural adaptation of the Nordic Musculoskeletal Questionnaire. Int Nurs Rev 2003;50:101-108.
59. Antonopoulou M, Ekdahl C, Sgantzos M, et al. Translation and standardisation into Greek of the standardised general Nordic Questionnaire for the musculoskeletal symptoms. Eur J Gen Pract 2004;10:33-34.
60. Mesquita CC, Ribeiro JC, Moreira P. Portuguese version of the standardized Nordic Musculoskeletal Questionnaire: cross cultural and reliability. J Public Health (Oxf) 2010;18:461-466.
61. Fang Y, Li S, Zhang Y, et al. Test-retest reliability of Nordic Musculoskeletal Questionnaire in nurses. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2013;31:753-758.
62. Namnik N, Negahban H, Salehi R, Shafizadeh R, Tabib MS. Validity and reliability of Persian version of the Specific Nordic questionnaire in Iranian industrial workers. Work 2016;54(1):35-41.
63. Cohen J. A coefficients of agreement for nominal scales. Educational and psychological measurement 1960;20:37-46.
64. Chen G, Faris P, Hemmelgarn B, Walker RL, Quan H. Measuring agreement of administrative data with chart data using prevalence unadjusted and adjusted kappa. BMC medical research methodology 2009;9(1):5.
65. Metsavaht L, Leporace G, Riberto M, Sposito MMM, Del Castillo LN, Oliveira LP, Batista LA. Translation and cross-cultural adaptation of the Lower Extremity Functional Scale into a Brazilian Portuguese version and validation on patients with knee injuries. Journal of Orthopaedic & Sports Physical Therapy 2012;42:932-939.
66. Marx RG, Menezes A, Horovitz L, Jones EC, Warren RF. A compar-ison of two time intervals for test-retest reliability of health status instruments. Journal of Clinical Epidemiology 2013;56:730-735.
67. Padua R, Padua L, Ceccarelli E, Romanini E, Bondi R, Zanoli G, Campi A. Cross-cultural adaptation of the lumbar North American Spine Society questionnaire for Italian-speaking patients with lumbar spinal disease. Spine (Phila Pa 1976) 2001;26:E344-347.
68. Pynsent PB. Choosing an outcome measure. J Bone Joint Surg Br 2001;83:792-794.
69. Çelik D, Coşkunsu D, Kiliçoğlu O. Translation and cultural adaptation of the Turkish Lysholm knee scale: ease of use, validity, and reliability. Clin Orthop Relat Res 2013; 471(8):2602-2610.
Appendix

Turkish Version of NMO-E.

Anketi nasıl cevaplarım?	Vücudunuzun bu bölgésinde hiç sorun yaşadınız mı? (sancı, ağrı, rahatsızlık)	Eğer yanıtınız “hayır” ise, bir sonraki vücut bölgésine geçin. Eğer yanıtınız “evet” ise lütfen devam edin.	Sorun yaşamaya başladığınızda kaç yaşındaydınız?	Bu sorunuzun yüzde Giảiverdi mi? (sağlığına, cinsellikte, sosyal yaşamınızda)	Son 12 ayda vücutunuzun bu bölgésinde hiç sorun yaşadınız mı? (sancı, ağrı, rahatsızlık)	Eğer yanıtınız “hayır” ise, bir sonraki vücut bölgésine geçin. Eğer yanıtınız “evet” ise lütfen devam edin.	Geçen ay (4 haftada) vücutunuzun bu bölgésinde hiç sorun yaşadınız mı? (sancı, ağrı, rahatsızlık)	Bugün vücutunuzun bu bölgésinde hiç sorun yaşadınız mı? (sancı, ağrı, rahatsızlık)	Bu sorun (evde veya dışarıda) normal eylemlerinizi yapmanıza engel olmu?	Bu sorunuzden dolayı bir doktora, fizyoterapist vb. bir uzmana başvurduğunuz mü?	Bu sorunuzdan dolayı ilaç aldınız mı?	Bu sorunuzdan dolayı okuldan izin almak durumunda kaldınız mı?
BOYUN	Hayır	Evet	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
OMZULAR	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
ÜST SIRT	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
DIRSEKLER	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
EL BİLEKLERİ/ELLER	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
BEL	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
KALÇALAR/UYU KLAR	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
DİZLER	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır
AYAK BİLEKLERİ/AYA KLAR	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır