Effects of the traditional medicine, Dai-Ken-Chu-To on obesity and glucose intolerance induced by long-term feeding on a high-fat diet in mice

MahoSumiyoshiandYoshiyukiKimura*
Division of Biochemical Pharmacology, Department of Basic Medical Research, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan

Abstract

The traditional medicine Dai-Ken-Chu-To (DK) is used to treat gastrointestinal diseases. The drug may have an anti-obesity effect through its gastrointestinal activities. In this study, we examined the effects of DK on obesity and glucose intolerance induced by long-term feeding on a HF diet. Male C57BL/6N mice (5 weeks old) consumed a HF diet, a HF diet plus 1% or 3% DK extract, or a HF diet plus 0.5 or 1% zanthoxylum fruit extract for 20 weeks. The DK extract (500 or 1000 mg/kg) and the lipase inhibitor orlistat (50 mg/kg) reduced elevated levels of triacylglycerol (TG) in plasma in the oral lipid tolerance test. The HF diet plus 3% DK extract inhibited the increase in body weight at weeks 8, 9, 11 and 12, compared with the HF diet alone. The DK extract (1% and 3%), and the zanthoxylum fruit extract (1%) lowered the elevated plasma glucose levels in mice fed the HF diet. DK extract or zanthoxylum fruit extract might be useful for preventing obesity and/or glucose intolerance induced by a HF diet.

Materials and methods

Materials

A modified Dai-Ken-Chu-To extract without maltose powder (DK) (Lot. 070723AG), and a zanthoxylum fruit extract (Zanthoxylum piperitum De Candolle, Rutaceae) (Lot. 081021AG) were obtained from by Nihon Funmatsu Pharmacy Co. Ltd. (Osaka, Japan). DK (10g) is a mixture of powdered extract from dried ginger rhizome (Zingiber officinale Rosc oe Zingiberaceae) (5 g), ginseng root (Panax ginseng C. A. Meyer, Araliaceae) (3 g) and zanthoxylum fruit (2 g). The Triglyceride E-Test, Total Cholesterol E-Test, Nonesterified Fatty Acid (NEFA) C-Test and Glucose CII-Test kits were purchased from Wako Pure Chemical Co. Ltd. (Osaka, Japan). Cornstarch, casein, cellulose, soybean oil, lard, mineral mixture (AIN-76), and vitamin mixture (AIN-76) were from Clea Japan Co. (Osaka, Japan). The standard diet AIN-93M (protein 13.9% calorie, fat 9.7% calorie and carbohydrate 77.0% calorie) (total 377kcal/100g diet) was purchased from Test Diet Co. (IN, USA). The lipase inhibitor orlistat was obtained from Roche Pharmaceuticals Ltd. (Basel, Switzerland). Other chemicals were of reagent grade.

Composition of diet

The basic composition of the experimental high-fat diet was as follows (g/100 g food); cornstarch 30, casein 14, sugar 10, cellulose 5, soybean oil 4, lard 32.5, mineral mixture 1, and vitamin mixture 1 (total 546 kcal/100g diet). The composition of the other experimental diets is

Correspondence to: YoshiyukiKimura, Division of Biochemical Pharmacology, Department of Basic Medical Research, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan, Tel: (+81)-89-960-5922, E-mail: yokim@m.ehime-u.ac.jp

Key words: Dai-Ken-Chu-To, anti-obesity, high-fat diet, glucose intolerance

Received: September 06, 2015; Accepted: September 25, 2015; Published: September 28, 2015
shown in Table 1. To avoid the auto-oxidation of fat content, the feeds were stored at -30°C and freshly prepared each day.

Animals
Male ICR mice (5 weeks old) and male C57BL/6N mice (4 weeks old) obtained from Japan SLC (Shizuoka, Japan) were housed in a room with a 12-h light/dark cycle and controlled temperature and humidity. The animals had free access to food and water, and were used after 1 week of adaptation to the lighting conditions. Mice were treated according to the ethical guidelines of the Animal Center, Ehime University Graduate School of Medicine. The Animal Studies Committee of Ehime University approved the experimental protocol.

Plasma triacylglycerol (TG) concentration after oral administration of corn oil emulsion to ICR mice

DK extract (500 or 1000 mg), zanthoxylum fruit extract (500 or 1000 mg) and the lipase inhibitor orlistat (50 mg) were suspended in distilled water (10 mL). A mixture of corn oil (5 g) was emulsified with 5% bovine serum albumin (BSA) (10 mL). After the mice were deprived of food for 5 h, the DK (500 or 1000 mg/kg body weight), zanthoxylum fruit extract (500 or 1000 mg/kg body weight), or orlistat (50 mg/kg body weight) was administered orally 20 s before the oral administration of the corn oil emulsion (5 g/kg). Blood samples were taken from the tail at 0, 0.5, 1, 2 and 4 h after administration of the corn oil emulsion using a heparinized capillary tube, and centrifuged at 5500 g for 5 min in a KUBOTA 3220 centrifuge (Kubota, Tokyo, Japan) to obtain the plasma. The plasma TG concentration was determined using the Triglyceride E-Test kit.

Body weight, liver and white adipose tissue weights, plasma lipids, and liver TG and TC concentrations
Male C57BL/6N mice (4 weeks old) were divided into six groups that were matched for body weight, after 1 week of being fed laboratory pellet chow ad libitum. The control group was given the standard purified diet AIN-93M ad libitum during the experimental period. The mice consumed the high-fat (HF) diet, the HF diet containing 1 or 3% DK extract, or the HF diet containing 0.5 or 1% zanthoxylum fruit extract for 20 weeks. The body weight of each mouse was measured once a week and the total amount of food consumed was recorded weekly. After the mice had been fed these diets for 20 weeks, blood was taken from each mouse by venous puncture under anesthesia with diethylether; the mice were killed with an overdose of diethylether. Experiments were performed in a ventilated room. The plasma was prepared by centrifugation and frozen at -80°C for analysis.

Table 1. Composition of experimental diets.

(g/100g)	HF	HF plus 1% DK extract	HF plus 3% DK extract	HF plus 0.5% zanthoxylum fruit extract	HF plus 1% zanthoxylum fruit extract
Corn starch	30.0	29.0	27.0	29.5	29.0
Casein	14.0	14.0	14.0	14.0	14.0
Sucrose	10.0	10.0	10.0	10.0	10.0
Cellulose	5.0	5.0	5.0	5.0	5.0
Soybean oil	4.0	4.0	4.0	4.0	4.0
Lard	32.5	32.5	32.5	32.5	32.5
Mineral mixture	3.5	3.5	3.5	3.5	3.5
Vitamin mixture	1.0	1.0	1.0	1.0	1.0
DK or zanthoxylum fruit extract	0	1.0	3.0	0.5	1.0
Energy kcal/100 g	546	546	546	546	546

Mean food consumption per day per mouse for 20 weeks did not differ among mice fed the standard diet (AIN-93M), the HF-diet, the HF diet plus DK extract (1 or 5%), and the HF diet plus zanthoxylum fruit extract (0.5 or 1%), being 10.2 ± 0.11 kcal (AIN-93M diet), 12.7 ± 0.16 kcal (HF diet), 12.2 ± 0.16 kcal (HF plus 1% DK extract), 11.3 ± 0.11 kcal (HF plus 3% DK extract), 12.7 ± 0.70 kcal (HF plus 0.5% zanthoxylum fruit extract) and 12.3 ± 0.15 kcal (HF plus 1% zanthoxylum fruit extract), respectively. Figure 2 shows the changes in body weight of the groups during the experiment. Mice fed the HF diet showed a significant decrease in body weight compared to the AIN-93M diet group.
showed significant increases in body weight at 4-20 weeks compared with those fed the standard diet. The intake of the 1% DK extract, and 0.5 or 1% zanthoxylum fruit extract, had no effect on the increase in body weight induced by the HF diet during the 20 weeks. The 3% DK extract significantly inhibited the increase in body weight at weeks 8, 9 11 and 12, and overall, tended to inhibit the increase in body weight caused by the HF diet (Figure 2).

The weights of the liver and mesenteric and epididymal adipose tissue were increased together with body weight in mice fed the HF diet compared with those on the standard diet (Table 2). The DK extract and zanthoxylum fruit extract had no effect on the increases caused by the HF diet during the 20 weeks (Table 2). The plasma TC levels were increased in mice on the HF diet compared with those on the standard diet. Neither the DK extract nor zanthoxylum fruit extract had any effect on the increased TC levels in mice fed the HF diet (Table 3). Plasmatic TG and NFFA concentrations did not differ significantly between the mice on the standard diet, HF diet, HF diet plus DK extract, and HF diet plus zanthoxylum fruit extract (Table 3). Liver TG and TC levels did not differ significantly among mice fed the HF diet, HF diet plus DK extract, and HF diet plus zanthoxylum fruit extract (data not shown).

Plasma glucose levels in the OGTT

Figure 3 shows the time course of the change in the plasma glucose level after the oral administration of glucose (100 mg/mouse). A maximum level was reached at 15 min. The HF diet plus 1 or 3% DK extract significantly reduced the elevated plasma glucose level 15 and 30 min after the administration of glucose compared with the HF diet alone. The HF diet plus 1% zanthoxylum fruit extract reduced the elevated plasma glucose level 15 and 60 min after the administration of glucose, and the HF diet plus 0.5% zanthoxylum fruit extract reduced the elevated plasma glucose level at 15 min in the OGTT (Figure 3).

Table 2. Effects of DK extract or zanthoxylum fruit extract on the weight of liver, mesenteric and epididymal white adipose tissues in mice fed a HF diet for 20 weeks.

Treatment	Liver (g)	Mesenteric adipose tissue (g)	Epididymal adipose tissue (g)
AIN-93 M diet	1.44 ± 0.08*	0.56 ± 0.04*	1.49 ± 0.09*
HF diet	2.00 ± 0.12	1.33 ± 0.10	2.23 ± 0.14
HF plus 1% DK extract	2.23 ± 0.19	1.32 ± 0.14	1.81 ± 0.21
HF plus 3% DK extract	1.66 ± 0.13	1.02 ± 0.14	1.87 ± 0.15
HF plus 0.5% zanthoxylum fruit extract	2.02 ± 0.09	1.33 ± 0.08	1.91 ± 0.11
HF plus 1% zanthoxylum fruit extract	1.98 ± 0.07	1.33 ± 0.10	1.74 ± 0.13

Results are means ±S.E.M., n=8, *P<0.05, significantly different compared with mice fed HF diet.

Table 3. Effects of DK extract or zanthoxylum fruit extract on plasma TG, TC and NEFA levels in mice fed a HF diet for 20 weeks.

Treatment	TG (mg/100 mL)	TC (mg/100 mL)	NEFA (µM)
AIN-93 M diet	53.6 ± 3.2	164.9 ± 7.0	0.65 ± 0.04
HF diet	51.7 ± 2.8	200.4 ± 9.4	0.56 ± 0.04
HF plus 1% DK extract	42.4 ± 2.3	237.0 ± 11.9	0.59 ± 0.03
HF plus 3% DK extract	47.1 ± 3.1	200.6 ± 11.0	0.57 ± 0.05
HF plus 0.5% zanthoxylum fruit extract	53.3 ± 2.6	240.1 ± 4.9	0.57 ± 0.02
HF plus 1% zanthoxylum fruit extract	49.0 ± 5.1	217.9 ± 9.8	0.52 ± 0.03

Results are means ±S.E.M., n=8, *P<0.05, significantly different compared with mice fed HF diet.
The HF diet. Values are means ± S.E.M., n=8. *P<0.05, significantly different compared with mice fed the HF diet.

Discussion

There are a number of studies describing HF diet-induced obesity [17-20]. Obesity is closely associated with many metabolic disorders including insulin-resistant diabetic mellitus, hyperlipidemia, hypertension, and atherosclerosis. These factors can increase the risk of coronary heart disease [21,22]. Recently, we reported that chronic intake of a HF or high-sucrose diet resulted in different types of glucose intolerance with or without obesity [23]. In a series of studies on the effects of natural products on HF diet-induced obesity, we found that the intake of oolong tea [24], tea saponins [25], chitin-chitosan [26,27], chondroitin sulfate [28], Platycodi saponins [29,30], chikusetsaponins isolated from Panax japonicum [31], and polyphenols of Salix matudana leaves [32] had an effect. DK has been found to improve gastrointestinal motility, postoperative adhesion, and paralytic ileus after abdominal surgery in basic medicinal and clinical studies in Japan [1-8]; therefore, this drug may have an anti-obesity effect through gastrointestinal activities. DK consists of dried ginger rhizome (Zingiber officinale Roscoe Zingiberaeaceae), ginseng root (Panax ginseng C.A. Meyer, Araliaceae) and zanthoxylum fruit (Zanthoxylum piperitum De Candolle, Rutaceae). We have reported that ginger rhizomes and ginseng saponins had anti-obesity actions through the inhibition of pancreatic lipase [33,34]. In this study, we examined the effects of DK extract and Zanthoxylum piperitum fruit extract on obesity and glucose intolerance induced in mice by feeding the high-fat diet long-term. The DK extract and the lipase inhibitor orlistat inhibited the increase in the plasma TG level in the lipid tolerance test, but the zanthoxylum fruit extract had no effect. The DK inhibited the obesity caused by the HF diet. These findings suggest the anti-obesity effect of the DK extract to be partly due to the prevention of fat storage by the inhibition of lipid absorption from the small intestine through the inhibitory effect of the ginger extract [33] and ginseng saponins [34] of Ginseng roots in DK on pancreatic lipase. It is well-known that obesity is closely associated with insulin-resistant diabetic mellitus [22], and we also found that the obesity induced by chronic feeding of a HF diet caused insulin-resistance with glucose intolerance and a reduction in insulin sensitivity [23]. In this study, the feeding of the DK and zanthoxylum fruit extracts improved the glucose intolerance induced by a HF diet for 20 weeks. This finding suggests that the DK and zanthoxylum extracts stimulate insulin sensitivity including peroxisom proliferator-activated receptor (PPAR)γ, and adipocytokines (leptin and adiponectin etc). The mechanism(s) by which the DK or zanthoxylum fruit extract improved the insulin-resistance and obesity induced by a HF diet are unknown. Experiments are now in progress to isolate the insulin-sensitive stimulatory compounds from DK or zanthoxylum fruit extract.

Conclusions

DK or zanthoxylum fruit extract might be useful for preventing obesity and/or glucose intolerance caused by a HF-diet.

Funding

This work was supported by Research Grants from Nihon Funmatsu Pharmacy Co. (Osaka, Japan).

Acknowledgments

A modified Dai-kenchu-to extract without maltose powder (DK) (Lot. 070723AG), and a zanthoxylum fruit extract (Zanthoxylum piperitum De Candolle, Rutaceae) (Lot. 081021AG). We wish to thank Nihon Funmatsu Pharmacy Co. for these materials. Dr. Y. Kimura designed the experiments, conducted all the experimental work, wrote the manuscript, and discussed it with Dr. M. Sumiyoshi; Dr. M. Sumiyoshi performed all the experimental analyses and helped in writing the manuscript. This manuscript is dedicated to Dr. Maho Sumiyoshi, 42 years old, who passed away on December 11th 2014. I wish to express my posthumous gratitude to Dr. Maho Sumiyoshi, first author of this work, for her commitment to carrying out the experiments, discussing the results, writing the manuscript, and her overall contribution to this work.

References

1. Itoh T, Yamakawa J, Mai M, Yamaguchi N, Kanda T (2002) The effect of the herbal medicine dai-kenchu-to on post-operative ileus. J Int Med Res 30: 428-432. [Crossref]
2. Suehiro T, Matsumata T, Shikada Y, Sugimachi K (2005) The effect of the herbal medicines dai-kenchu-to and keishi-bukuyo-san on bowel movement after colorectal surgery. Hepatogastroenterology 52: 97-100. [Crossref]
3. Endo S, Nishida T, Nishikawa K, Nakajima K, Hasegawa J, et al. (2006) Dai-kenchu-to, a Chinese herbal medicine, improves stasis of patients with total gastrectomy and jejunal pouch interposition. Am J Surg 192: 9-13. [Crossref]
4. Iwai N, Kume Y, Kimura O, Ono S, Aoi S, et al. (2007) Effects of herbal medicine Dai-kenchu-to on anorectal function in children with severe constipation. Eur J Pediatr Surg 17: 115-118. [Crossref]
5. Tokita Y, Satoh K, Sakaguchi M, Endoh Y, Mori I, et al. (2007) The preventive effect of Dai-kenchu-to on postoperative adhesion-induced intestinal obstruction in rats. Inflammopharmacology 15: 65-66. [Crossref]
6. Suzuki H, Inadomi JM, Hibi T (2009) Japanese herbal medicine in functional gastrointestinal disorders. Neurogastroenterol Motil 21: 688-696. [Crossref]
7. Kawasaki N, Nakada K, Suzuki Y, Funakawa Y, Hanya N, et al. (2009) Effect of Dai-kenchu-to on gastrointestinal motility and gastric emptying. Int J Pediatr Surg 7: 218-222. [Crossref]
8. Kawahara H, Yanaga K (2009) The herbal medicine Dai-Kenchu-To directly stimulates colonic motility. Surg Today 39: 175-177. [Crossref]
9. Shibata C, Sasaki I, Naito H, Ueno T, Matsumo S (1999) The herbal medicine Dai-Kenchu-To stimulates upper gut motility through cholinergenic and 5-hydroxytryptamine 3 receptors in conscious dogs. Surgery 126: 918-924. [Crossref]
10. Nagano T, Itoh H, Takeyama M (2000) Effects of Dai-kenchu-to on levels of 5-hydroxytryptamine (serotonin) and vasoactive intestinal peptides in human plasma. Biol Pharm Bull 23: 352-353. [Crossref]
11. Sato Y, Katagiri F, Inoue S, Itoh H, Takeyama M (2004) Dai-kenchu-to raises levels of calcitonin gene-related peptide and substance P in human plasma. *Biol Pharm Bull* 27: 1875-1877. [Crossref]

12. Kono T, Kosuchi T, Chiba S, Ebisawa Y, Chisato N, Iwamoto J, Kanai S (2008) Colonic vascular conductance increased by Danshenchu via calcitonin gene-related peptide and receptor-activity modifying protein 1. *J Surg Res* 150: 78-84. [Crossref]

13. Leonhardt M, Heupka B, Langhans W (1999) New approaches in the pharmacological treatment of obesity. *Eur J Nutr* 38: 1-13. [Crossref]

14. Hill JO, Melanson EL, Wyatt HT (2000) Dietary fat intake and regulation of energy balance: implications for obesity. *J Nutr* 130: 284S-288S. [Crossref]

15. Leslie WS, Lean ME, Baillie HM, Hankey CR (2002) Weight management: a comparison of existing dietary approaches in a work-site setting. *Int J Obes Relat Metab Disord* 26: 1469-1475. [Crossref]

16. Verger R (1984) Pancreatic lipase. (Eds: By Borgstrom B and Brockman HL) pp. 83-105. Elsevier, Amsterdam.

17. Flatt JP (1987) The difference in the storage capacities for carbohydrate and for fat, and its implications in the regulation of body weight. *Ann N Y Acad Sci* 499: 104-123. [Crossref]

18. Awad AB, Bernardis LL, Fink CS (1990) Failure to demonstrate an effect of dietary fatty acid composition on body weight, body composition and parameters of lipid metabolism in mature rats. *J Nutr* 120: 1277-1282. [Crossref]

19. Shimomura Y, Tamura T, Suzuki M (1990) Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. *J Nutr* 120: 1291-1296. [Crossref]

20. Hill JO, Peters JC, Lin D, Yakubu F, Greene H, et al. (1993) Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. *Int J Obes Relat Metab Disord* 17: 223-236. [Crossref]

21. Plutzky J (2000) Emerging concepts in metabolic abnormalities associated with coronary artery disease. *Curr Opin Cardiol* 15: 416-421. [Crossref]

22. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. *Diabetes* 37: 1595-1607. [Crossref]

23. Sumiyoshi M, Sakanaka M, Kimura Y (2006) Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. *J Nutr* 136: 582-587. [Crossref]

24. Han LK, Takaku T, Li J, Kimura Y, Okuda H (1999) Anti-obesity action of oolong tea. *Int J Obes Relat Metab Disord* 23: 98-105. [Crossref]

25. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, et al. (2001) Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. *Int J Obes Relat Metab Disord* 25: 1459-1464. [Crossref]

26. Han LK, Kimura Y, Okuda H (1999) Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. *Int J Obes Relat Metab Disord* 23: 174-179. [Crossref]

27. Sumiyoshi M, Kimura Y (2006) Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. *J Pharm Pharmacol* 58: 201-207. [Crossref]

28. Han LK, Sumiyoshi M, Takeda T, Chihara H, Nishikiori T, et al. (2000) Inhibitory effects of chondroitin sulfate prepared from salmon nasal cartilage on fat storage in mice fed a high-fat diet. *Int J Obes Relat Metab Disord* 24: 1131-1138. [Crossref]

29. Han LK, Xu BJ, Kimura Y, Zheng YN, Okuda H (2000) Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. *J Nutr* 130: 2760-2764. [Crossref]

30. Han LK, Zheng YN, Xu BJ, Okuda H, Kimura Y (2002) Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. *J Nutr* 132: 2241-2245. [Crossref]

31. Han LK, Zheng YN, Yoshikawa M, Okuda H, Kimura Y (2005) Anti-obesity effects of chikuseitsusaponins isolated from Panax japonicus rhizomes. *BMC Complement Altern Med* 5: 9. [Crossref]

32. Han LK, Sumiyoshi M, Zhang J, Liu MX, Zhang XF, et al. (2003) Anti-obesity action of Salix matsudana leaves (Part 1). Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals. *Phytother Res* 17: 1188-1194. [Crossref]

33. Han LK, Gong XJ, Kawano S, Saito M, Kimura Y, et al. (2005) Antioesity actions of Zingiber officinalis Roscoe. *Yakugaku Zasshi* 125: 213-217. [Crossref]

34. Liu W, Zheng Y, Han L, Wang H, Saito M, et al. (2008) Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. *Phytomedicine* 15: 1140-1145. [Crossref]