The dilemma of denosumab: Salvage of a femoral head giant cell tumour

Czar Louie Gaston *, Florian Puls, Robert John Grimer

Oncology Unit, Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Birmingham B31 2AP, UK

ABSTRACT

INTRODUCTION: Denosumab is a monoclonal RANKL antibody which has been shown to be highly effective in treating giant cell tumour (GCT) of bone. We report on its use as a neo-adjuvant agent to avoid morbid surgery for an adolescent.

PRESENTATION OF CASE: We report a case of a 15-year old female with a Campanacci 3 GCT involving the femoral head and neck.

DISCUSSION: To preserve bone stock and avoid an outright hip replacement, the patient was given denosumab pre-operatively to consolidate the tumour. After receiving 6 months of treatment, a rim of cortical bone had developed to allow an extended curettage of the tumour to be performed without fear of collapse of the articular surface.

CONCLUSION: This is the first reported case of the use of denosumab in GCT of the femoral head and neck. We describe our experience in the neo-adjuvant use of denosumab and offer suggestions for future use. Further studies will be needed to see if denosumab has a role in conventional GCT and whether it can lead to a lowering of local recurrence rates.

© 2014 The Authors. Published by Elsevier Ltd. on behalf of Surgical Associates Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. **Introduction**

Receptor activator of nuclear factor kappa-B ligand (RANKL) drives osteoclast formation, function and survival and an excess of RANKL causes an increase in bone destruction. In giant cell tumour of bone (GCT) RANKL is secreted by neoplastic ovoid cells as well as monocytoid cells and drives the formation of RANK positive non-neoplastic osteoclast like cells, which mediate bone destruction in GCT.1,2

Denosumab is a human monoclonal RANKL antibody currently licenced in the UK for the treatment of resistant osteoporosis and metastatic bone disease.3,4 By disruption of RANK–RANKL interaction denosumab inhibits osteoclast mediated bone destruction in this osteolytic bone tumour. It has also been shown to be highly effective in giant cell tumours (GCT), with a 96% response rate recently reported in a Phase 2 clinical trial when used in patients with either inoperable GCT or where surgery would be associated with major morbidity.5,6 In the reported trial, 90% of patients who were planned to have major surgery and who received denosumab either avoided surgery or had less morbid surgery. As a result of this trial denosumab was approved for use in the USA for unresectable GCT or where surgical resection was likely to result in severe morbidity by the FDA in June 2013.7

Denosumab is given monthly by subcutaneous injections of 120 mg and the principal side effects include osteonecrosis of the jaw and hypocalcaemia.8 It is contraindicated in anyone with pre-existing dental sepsis or hypocalcaemia and in children who are still growing. Any female of child bearing age must use appropriate contraception as denosumab crosses the placental membrane and has been associated with increase stillbirth and decreased growth/development in infants in animal studies.9 There is evidence that if denosumab is stopped without the lesion being surgically removed, that recurrence is probably inevitable (personal communication). This may mean that in inoperable tumours denosumab will need to be continued indefinitely.

We report on the use of denosumab in a 15 year old female to demonstrate how less morbid surgery can be performed using this as a neo-adjuvant agent. The report was prepared in accordance with ethical standards and written informed consent was obtained.

2. **Presentation of case**

A 15 years old female presented with progressive left groin pain and difficulty in walking. Plain radiographs showed a lytic lesion involving the left femoral head and neck (Fig. 1). MRI scans demonstrate the involvement of >50% of the head and neck of the femur with a cortical breach. CT-guided biopsy showed the typical appearance of a giant cell tumour of bone rich in osteoclast-like giant cells scattered within densely packed plump to slightly spindled mononuclear cells (Fig. 4A). The CT also demonstrated the almost
complete absence of any bone supporting the articular surface. An extended curettage, even with grafting, would lead to almost certain collapse of the femoral head given the extent of the tumour and leave no other option for reconstruction other than a hip replacement. To avoid an outright joint replacement in a teenager, we opted to give denosumab, to see if this would consolidate the tumour and the surrounding bone.

After obtaining informed written consent, denosumab was approved for use in this case by the host institution and was given 120 mg subcutaneously monthly for 6 months with additional doses at day 8 and 15 of the first month as previously described. Calcium and vitamin D supplementation was provided with regular monitoring for signs of hypocalcemia and osteonecrosis. Within six weeks her hip symptoms resolved and the patient was pain free. Serial radiographs and CT showed the development of a good rim of cortical bone with clinical improvement in pain and ability to walk (Fig. 2).

After six months of denosumab, the patient underwent an extended curettage of her femoral head. Through a lateral approach to the hip, a cortical window was made over the lateral cortex to allow access to the femoral head and neck as previously described. The curettage was performed with various angled curettes and a high-speed burr under image intensifier control to map out the extent of the tumour and ensure a complete curettage (Fig. 3). An ipsilateral fibular graft was harvested and placed as a strut supporting the articular surface and the remainder of the cavity packed with femoral head autograft.

Curettages taken following denosumab treatment showed striking morphological changes to classical GCT appearances as described previously. The majority of the tumour area was occupied by long spindle cells with bland nuclei within a densely collagenised matrix (Fig. 4C). There were cellular nodules of residual mononuclear cells also with smaller nuclei with condensed chromatin (Fig. 4B). Residual osteoclast-like giant cells were not found. Newly formed woven bone was also seen (Fig. 4D).

3. Discussion

Giant cell tumours of the femoral head and neck are rare lesions that often present a surgical dilemma to the treating orthopaedic oncologist. Although intralesion curettage is the standard treatment for Campanacci 1 and 2 tumours of femoral head and neck, this treatment strategy is often not possible in Campanacci 3 tumours. Due to limited bone stock and high rates of local recurrence, primary excision and reconstruction with a hip arthroplasty or endoprosthetic replacement has been advocated. Khan et al. reported on 12 patients with Campanacci 3 GCT of the proximal femur which were adequately treated with endoprosthetic replacements without local recurrences. Tibrewal reported on four cases treated primarily with curettage, all developing local recurrence, and suggested the possibility of hip arthroplasty as primary treatment. Given the patient’s young age, avoidance of a joint replacement is of utmost importance, especially in the setting of a benign neoplasm.

The decision to use denosumab was based on the senior author’s experience of contributing patients to the Phase 2 trial and the observation that denosumab produces a rim of firm bone around a residual central cavity at the site of the tumour. Maximal radiological response is usually seen within 26 weeks. In some cases there is complete consolidation of the previous GCT.
The decision on whether to continue denosumab treatment in GCTs is a complex one, requiring consideration of factors such as the extent of the tumour, patient age and gender, and the presence of local recurrence or relapse. Branstetter and co-workers, among others, advocate for the use of denosumab in the management of GCTs, particularly in young patients, to reduce the risk of recurrence and improve outcomes.

However, the role of denosumab in the management of GCTs remains a topic of ongoing debate. Further studies are needed to determine the optimal duration and frequency of treatment, and to explore the potential long-term effects of denosumab on bone metabolism and the risk of secondary malignancies.

Another challenge in the management of GCTs is the question of whether to continue denosumab treatment after a remission has been achieved. While denosumab can lead to a reduction in tumour size and symptoms, there is a risk of relapse if treatment is stopped prematurely.

In conclusion, the use of denosumab in the management of GCTs is a promising development, offering hope for patients with this aggressive bone tumour. Further research is needed to fully understand the role of denosumab in the management of GCTs and to develop guidelines for its appropriate use.

References:
1. Branstetter BF, et al. The role of denosumab in the management of giant cell tumour of bone. Bone Joint J 2013;95-B(5):631-637.
2. Zanetti A, et al. Denosumab for the treatment of neoplastic bone disease. Curr Treat Options Oncol 2012;13(2):136-146.
3. Torrance J, et al. Denosumab for the treatment of giant cell tumour of bone. BMJ 2011;342:d1209.
4. Strother CT, et al. Denosumab for the treatment of giant cell tumour of bone: a case series of 15 patients. J Bone Joint Surg Am 2012;94(1):e3.
5. Fearon DJ, et al. Denosumab for the treatment of giant cell tumour of bone: a systematic review and meta-analysis. J Bone Joint Surg Am 2012;94(8):648-655.
6. Fidler JL, et al. Denosumab for the management of giant cell tumour of bone: a report of 10 cases. Bone Joint J 2012;94-B(2):178-182.
but it can certainly produce dramatic results in patients who would otherwise face disabling surgical procedures or in whom all other treatment options have failed.

Conflict of interest

R.J.G. has received honoraria from Amgen for scientific advice. C.L.G. and F.P. declare that they have no conflict of interests.

Funding

No funding received for this study.

Key learning points

- Denosumab was successfully used as a neoadjuvant agent to avoid outright hip replacement for an adolescent with Campanacci 3 GCT of the femoral head and neck.
- Further studies and follow-up is required to determine role of denosumab in surgically treated GCT.

Ethical approval

Written informed consent was obtained from the patient for this case report. Patient details were de-identified in the preparation of this study. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Author contributions

C.L.G. – design, data collection, writing the paper; F.P. – design, data collection, writing the paper; R.J.G. – design, writing the paper.

References

1. Avnet S, Salerno M, Zini N, Alberghini M, Gibellini D, Baldini N, et al. Sustained autocrine induction and impaired negative feedback of osteoclastogenesis in CD14D cells of giant cell tumor of bone. Am J Pathol 2013;182(4):1357–66.
2. Nishimura M, Yuasa K, Mori K, Miyamoto N, Ito M, Tsurudome M, et al. Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact. J Orthop Res 2005;23:979–87.
3. http://www.nice.org.uk/nicemedia/live/13939/61129/61129.pdf [accessed 19.08.13].
4. http://guidance.nice.org.uk/TA204/Guidance/pdf/English [accessed 19.08.13].
5. Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant cell tumour of bone: an open-label phase 2 study. Lancet Oncol 2010;11:275–80.
6. Chawla S, Henshaw R, Seeger L, Choy E, Blay JY, Ferrari S, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel group, phase 2 study. Lancet Oncol 2013;14:901–8.
7. http://www.fda.gov/newssevents/newsroom/pressannouncements/ucm356528.htm [accessed 19.08.13].
8. Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, et al. Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol 2013;42:27–40.
9. George B, Abudu A, Grimer RJ, Carter SR, Tillman RM. The treatment of benign lesions of the proximal femur with non-vascularised autologous fibular strut grafts. J Bone Joint Surg Br 2008;90:648–51.
10. Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 2012;18:4415–24.
11. Sakayama K, Sugawara Y, Kidani T, Miyawaki J, Fujibuchi T, Kamei S, et al. Diagnostic and therapeutic problems of giant cell tumor in the proximal femur. Arch Orthop Trauma Surg 2007;127(10):867–72.
12. Cho HS, Park IH, Han I, Kang SC, Kim HS, et al. Giant cell tumor of the femoral head and neck: result of intraluesional curettage. Arch Orthop Trauma Surg 2010;130(11):1329–33.
13. Kundi ZS, Gogna P, Sangwan SS, Garg R, Kamboj P, Singla R, et al. Benign lytic lesions of the femoral neck: mid-term results of extended curettage and sartorius muscle pedicle bone grafting. Arch Orthop Trauma Surg 2013;133(4):457–62.
14. Khan SA, Kumar A, Inna P, Bakhshi S, Rastogi S, et al. Endoprosthetic replacement for giant cell tumour of the proximal femur. J Orthop Surg (Hong Kong) 2009;17(3):280–3.
15. Tibrewal SB. Treatment of giant cell tumour of the femoral head and neck. J R Soc Med 1986;79(7):401–4.

Open Access

This article is published Open Access at sciencedirect.com. It is distributed under the IJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.