Isometric multipliers of $L^p(G, X)$

U B TEWARI and P K CHAURASIA

Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India
E-mail: ubtewari@iitk.ac.in; praveenc@iitk.ac.in

MS received 21 January 2004

Abstract. Let G be a locally compact group with a fixed right Haar measure and X a separable Banach space. Let $L^p(G, X)$ be the space of X-valued measurable functions whose norm-functions are in the usual L^p. A left multiplier of $L^p(G, X)$ is a bounded linear operator on $L^p(G, X)$ which commutes with all left translations. We use the characterization of isometries of $L^p(G, X)$ onto itself to characterize the isometric, invertible, left multipliers of $L^p(G, X)$ for $1 \leq p < \infty$, $p \neq 2$, under the assumption that X is not the ℓ^p-direct sum of two non-zero subspaces. In fact we prove that if T is an isometric left multiplier of $L^p(G, X)$ onto itself then there exists a $y \in G$ and an isometry U of X onto itself such that $Tf(x) = U(R_yf)(x)$. As an application, we determine the isometric left multipliers of $L^1 \cap L^p(G, X)$ and $L^1 \cap C_0(G, X)$ where G is non-compact and X is not the ℓ^p-direct sum of two non-zero subspaces. If G is a locally compact abelian group and H is a separable Hilbert space, we define $A^p(G, H) = \{ f \in L^1(G, H) : \hat{f} \in L^p(\Gamma, H) \}$ where Γ is the dual group of G. We characterize the isometric, invertible, left multipliers of $A^p(G, H)$, provided G is non-compact. Finally, we use the characterization of isometries of $C(G, X)$ for G compact to determine the isometric left multipliers of $C(G, X)$ provided X^* is strictly convex.

Keywords. Locally compact group; Haar measure; Banach space-valued measurable functions; isometric multipliers.

1. Introduction

Let G be a locally compact group with right Haar measure μ. Suppose X is a separable Banach space. If $1 \leq p < \infty$, let $L^p(G, X)$ be the space of X-valued measurable functions F such that $\int_G \| F(x) \|^p \, d\mu < \infty$. The p-norm of F is defined by $\left(\int_G \| F(x) \|^p \, d\mu \right)^{1/p}$. In case X is a one-dimensional complex Banach space, $L^p(G, X)$ is denoted by $L^p(G)$.

The left and right translation operators L_g and R_g are defined by $(L_gF)(x) = F(gx)$ and $(R_gF)(x) = F(xg)$. A left multiplier of $L^p(G, X)$ is a bounded linear operator on $L^p(G, X)$ which commutes with all left translations. The main result of this paper gives a characterization of the isometric, invertible, left multipliers of $L^p(G, X)$ for $1 \leq p < \infty$, $p \neq 2$, under the assumption that X is not the ℓ^p-direct sum of two non-zero subspaces. More precisely we shall prove the following theorem.

Theorem 1. Let G be a locally compact group and T an isometric, invertible, left multiplier on $L^p(G, X)$ for $1 \leq p < \infty$, $p \neq 2$. Suppose that X is not the ℓ^p-direct sum of two non-zero subspaces. Then there exists an isometry U of X onto itself and $y \in G$ such that T is of the form

$$(TF)(x) = UR_yF(x).$$
Wendel [7] proved this result for $L^1(G)$ in 1952. Later Strichartz [6] and Parrot [4] proved it for $L^p(G)$ if $1 \leq p < \infty$, $p \neq 2$.

Let G be a non-compact locally compact group. If $f \in L^1 \cap L^p(G, X)$, we define $\|f\| = \|f\|_1 + \|f\|_p$. Then $L^1 \cap L^p(G, X)$ is a Banach space with this norm. Similarly for $f \in L^1 \cap C_0(G, X)$, we define $\|f\| = \|f\|_1 + \|f\|_\infty$. Then $L^1 \cap C_0(G, X)$ is a Banach space. In both cases, we shall show that if T is an isometric, invertible, left multiplier, then T is of the form

$$(Tf)(x) = U R_y f(x).$$

If G is a locally compact abelian group and H is a separable Hilbert space, we define $A^p(G, H) = \{f \in L^1(G, H) : f \in L^p(\Gamma, H)\}$ where Γ is the dual group of G. For $f \in A^p(G, H)$, we define $\|f\| = \|f\|_1 + \|\hat{f}\|_p$. $A^p(G, H)$ is a Banach space with this norm. We will prove that if T is an isometric, invertible, left multiplier, then T is of the form

$$(Tf)(x) = U R_y f(x).$$

Let G be a compact group and X be a separable Banach space. $C(G, X)$ denotes the Banach space of continuous X-valued functions. Using the characterization of isometries of $C(G, X)$, we will prove that if T is an isometric, invertible, left multiplier, then T is of the form

$$(T F)(x) = U R_y F(x).$$

provided X^* is strictly convex.

2. Preliminaries

Let (Ω, Σ, μ) be a measure space. Suppose Σ' is the σ-ring generated by the sets of σ-finite measure. A mapping Φ of Σ' onto itself, defined modulo null sets, is said to be a regular set isomorphism if

1. $\Phi(A \setminus A') = \Phi(A) \setminus \Phi(A')$ for $A, A' \in \Sigma'$.
2. $\Phi(\bigcup_{n=1}^\infty A_n) = \bigcup_{n=1}^\infty \Phi(A_n)$, where $\{A_n\}$ is a sequence of disjoint sets in Σ'.
3. $\mu(\Phi(A)) = 0$ iff $\mu(A) = 0$.

A regular set isomorphism induces a linear map on X-valued measurable functions. If $A \in \Sigma'$ and $x \in X$, define $\Phi(\chi_A)(x) = \chi_{\Phi(A)}(x)$ where χ_A is the characteristic function of A. This extends linearly to simple functions. Let f be an X-valued measurable function. Then there exists a sequence $\{f_n\}$ of simple functions converging to f in measure. Then $\{\Phi(f_n)\}$ is a Cauchy sequence in measure and hence converges to a measurable function $\Phi(f)$. It is easy to show that $\Phi(f)$ depends only on f and not on the particular sequence $\{f_n\}$.

We also note that any Σ'-measurable function is also Σ-measurable and any Σ'-measurable function with σ-finite support is Σ'-measurable. Thus the spaces of Σ' and Σ measurable functions with σ-finite support coincide.

If Φ is a regular set isomorphism, define a measure ν by $\nu(A) = \mu(\Phi^{-1}(A))$. The measure ν is absolutely continuous with respect to μ. Let $h = ((\nu)/(d\mu))^{1/p}$. It is easy to see that h is a function on Ω whose restriction to any measurable set of σ-finite measure is measurable. Further, if $f \in L^p(\Omega, X)$, then $h \Phi(f) \in L^p(\Omega, X)$ and $\|h \Phi(f)\|_p = \|f\|_p$.

We say that a Banach space X is the ℓ^p-direct sum of two Banach spaces X_1 and X_2 if X is isometrically isomorphic to $X_1 \oplus X_2$ where the norm on the direct sum is given by $\|x_1 \oplus x_2\| = (\|x_1\|^p + \|x_2\|^p)^{1/p}$.

Our main tool for the proof of the main result is a theorem of Sourour [5]. We state it in a form slightly different from that of [5], but virtually no modification of the proof given there is necessary. The assumption that Ω is σ-finite is not needed for our conclusion because every function in $L^p(\Omega, X)$ has σ-finite support.

Theorem S. Let (Ω, Σ, μ) be a measure space and T be an isometry of $L^p(\Omega, X)$ onto itself. Suppose X is not the ℓ^p-direct sum of two non-zero Banach spaces. Then there exists a regular set isomorphism Φ of Σ' onto itself, a measurable function h on Ω and a strongly measurable map S of Ω into the Banach space of bounded linear maps of X into X with $S(t)$ a surjective isometry of X for almost all $t \in \Omega$, such that

$$T(F(t)) = S(t)h(t)\Phi(F)(t)$$

for $F \in L^p(\Omega, X)$ and almost all $t \in \Omega$.

3. Isometric multipliers of $L^p(G, X)$

In this section we characterize the isometric, invertible, left multipliers of $L^p(G, X)$.

Proof of Theorem 1. Let T be an isometric, invertible, left multiplier of $L^p(G, X)$. It follows from Theorem S that

$$TF(t) = h(t)S(t)\Phi(F)(t) \quad \text{a.e.}$$

for every $F \in L^p(G, X)$.

Let $A(t) = h(t)S(t) \forall t \in G$. Fix $s \in G$. We will show that $L_sA(t) = A(t)$. If this is not true, then there exists a set E of positive finite measure such that $A(st) \neq A(t) \forall t \in E$.

The sets $s\Phi^{-1}(E)$ and $\Phi^{-1}(sE)$ may be of σ-finite measure. But by choosing a suitable subset E still of positive finite measure, we can assume that $s\Phi^{-1}(E)$ and $\Phi^{-1}(sE)$ are of positive finite measure. Having done this, let $F = s\Phi^{-1}(E) \cup \Phi^{-1}(sE)$. Then $\forall t \in E$, $st \in sE \subseteq \Phi(F)$ and $E \subseteq \Phi(s^{-1}F)$. Now for $t \in E$ and $x \in X$,

$$L_s(T\chi_Fx)(t) = T(\chi_Fx)(st) = \chi_{\Phi(F)}(st)A(st)(x) = A(st)(x).$$

Also,

$$T(L_s\chi_Fx)(t) = T(\chi_{s^{-1}F}x)(t) = \chi_{\Phi(s^{-1}F)}(t)A(t)(x) = A(t)(x).$$

Since $L_sT = TL_s$, it follows that $A(st)(x) = A(t)(x)$ for almost all $t \in E$. By choosing a countable dense set $\{x_n\}_{n=1}^{\infty}$ in X, we conclude that

$$A(st)(x) = A(t)(x)$$
for almost all \(t \in E \) and all \(x \in X \). But this is a contradiction. Hence

\[A(st) = A(t) \]

for almost all \(t \in G \). Therefore for each \(x \in X \),

\[h(t)S(t)(x) = h(st)S(st)(x) \]

for almost all \(t \in G \). Since \(S(t) \) is an isometry of \(X \) onto itself and \(h(t) \geq 0 \), we have

\[h(st) = h(t) \]

for almost all \(t \in G \). This implies that \(h \) is a constant, say \(k \). It also follows that

\[S(st) = S(t) \]

for almost all \(t \in G \). Hence \(S \) is also a constant operator, say \(V \). Therefore, \(T \) is an isometric multiplier of \(L^p(G, X) \) onto itself for all \(p \), in particular for \(p = 1 \). Now fix \(x \in X \) such that \(\|x\| = 1 \). Then for \(f \in L^1(G) \),

\[L_s T(fx) = L_s k V \Phi(f) x = L_s \Phi(f) k V(x) \]

and

\[TL_s(f x) = k V \Phi(L_s f) x = \Phi(L_s f) k V(x) . \]

Hence \(L_s \Phi(f) = \Phi(L_s(f)) \). This implies that the map \(f \rightarrow k \Phi(f) \) is an isometric multiplier of \(L^1(G) \) onto itself. Hence by Wendel’s characterization there exists an \(s \in G \) and a scalar \(c \) such that \(|c| = 1 \) for which we have

\[k \Phi(f)(t) = cf(ts) . \]

Let \(U = k V \). Then \(U \) is an isometry of \(X \) onto itself such that \(T = U \circ R_s \) and

\[(TF)(t) = UF(ts) \]

for almost all \(t \in G \) and all \(F \in L^p(G, X) \). This completes the proof of the theorem. \(\square \)

We shall now show that the condition that \(X \) is not an \(\ell^p \)-direct sum is a necessary (as well as a sufficient) condition for the conclusion of Theorem 1 to hold. In fact, we prove the following theorem.

Theorem 2. Let \(X \) be a separable Banach space which is \(\ell^p \)-direct sum of two non-zero subspaces of \(X \). Then there exists an isometric, invertible, left multiplier \(T \) of \(L^p(G, X) \) which is not of the form \(U \circ R_y \) for any isometry \(U \) of \(X \) and \(y \in G \).

Proof. Suppose \(X = X_1 \oplus_p X_2 \). Then

\[L^p(G, X) = L^p(G, X_1) \oplus_p L^p(G, X_2) . \]

Choose \(z \in G \) where \(z \) is not the identity element of \(G \). Define \(T \) by

\[T(f_1 \oplus f_2) = f_1 \oplus R_z f_2 . \]

Then it is easy to verify that \(T \) is an isometric, invertible, left multiplier of \(L^p(G, X) \) which is not of the form \(U \circ R_y \) for any isometry \(U \) of \(X \) and \(y \in G \). \(\square \)
4. Isometric multipliers of \(L^1 \cap L^p(G, X) \) and \(L^1 \cap C_0(G, X) \)

In this section we assume that \(G \) is non-compact and \(X \) is not an \(\ell^p \)-direct sum of two non-zero subspaces of \(X \). We will prove that if \(T \) is an isometric, invertible, left multiplier of \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \) then \(T \) is of the form \(U \circ R_y \) for some isometry \(U \) of \(X \) and \(y \in G \).

The proof of the following proposition is similar to the proof of Theorems 3.5.1 and 3.5.2 in [2] and hence omitted.

Proposition 3

Suppose \(G \) is non-compact. If \(T \) is a left multiplier of \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \) then \(T \) has a unique extension to \(L^1(G, X) \) as a left multiplier such that \(\|Tf\|_1 \leq \|T\| \|f\|_1 \), where \(\|T\| \) is the norm of \(T \) as an operator on \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \).

We now prove the characterization of an isometric, invertible, left multiplier of \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \).

Theorem 4. Suppose \(G \) is non-compact and \(X \) is not \(\ell^p \)-direct sum of two non-zero subspaces of \(X \). If \(T \) is an isometric, invertible, left multiplier of \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \) then \(T \) is of the form \(U \circ R_y \) for some isometry \(U \) of \(X \) and \(y \in G \).

Proof. Since \(T \) and \(T^{-1} \) are both isometric multipliers of \(L^1 \cap L^p(G, X) \) or \(L^1 \cap C_0(G, X) \), it follows from Proposition 3 that \(T \) extends to \(L^1(G, X) \) as an isometric left multiplier. Therefore by Theorem 1, there exists an isometry of \(X \) onto itself and \(y \in G \) such that \(T = U \circ R_y \). \(\square \)

5. Isometric multipliers of \(A^p(G, H) \)

Let \(G \) be a locally compact Abelian group and \(H \) be a separable Hilbert space. We define the Fourier transform of \(f \in L^1(G, H) \) by

\[
\hat{f}(\gamma) = \int_G \overline{\gamma(x)} f(x) dx,
\]

where \(\gamma \in \Gamma \), the dual group of \(G \). Given a Haar measure on \(G \) there exists a unique Haar measure on \(\Gamma \) such that the map \(f \rightarrow \hat{f} \) is an isometry of \(L^1 \cap L^2(G, H) \) into \(L^2(\Gamma, H) \) and extends to an isometry of \(L^2(G, H) \) onto \(L^2(\Gamma, H) \). The Fourier–Plancherel formula \(\|\hat{f}\|_2 = \|f\|_2 \) holds for \(f \in L^2(G, H) \), see [1].

For \(f \in A^p(G, H) \), we define \(\|f\| = \|f\|_1 + \|\hat{f}\|_p \). Then \(A^p(G, H) \) is a Banach space. We note that left and right translates mean the same for Abelian groups. Suppose \(G \) is non-compact. We will prove that if \(T \) is an isometric and invertible multiplier of \(A^p(G, H) \) then \(T = U \circ R_y \), where \(U \) is an isometry of \(H \) onto itself and \(y \in G \).

The proof of the following Proposition is similar to the argument in the proof of Theorem 6.3.1 in [2] where it is shown that if \(T \) is a multiplier of \(A^p(G) \) then \(\|Tf\|_1 \leq \|T\| \|f\|_1 \) for \(f \in A^p(G) \), where \(\|T\| \) denotes the operator norm of \(T \). The necessary modifications are easy and hence we omit the details.

Proposition 5

Let \(G \) be a non-compact locally compact Abelian group and \(1 \leq p < \infty \). Suppose \(T \) is a multiplier of \(A^p(G, H) \) then \(\|Tf\|_1 \leq \|T\| \|f\|_1 \) for \(f \in A^p(G, H) \).
We now prove the characterization of isometric multipliers of $A^p(G, H)$.

Theorem 6. Let G be a non-compact locally compact Abelian group and $1 \leq p < \infty$. Suppose T is an isometric multiplier of $A^p(G, H)$. Then there exists a unique $y \in G$ and an isometry U of H onto itself such that $T = U \circ R_y$.

Proof. Let T be an isometric multiplier of $A^p(G, H)$. Then T^{-1} is also an isometric multiplier and we conclude from Proposition 5 that $\|Tf\|_1 = \|f\|_1$ for every $f \in A^p(G, H)$. It follows that T extends to $L^1(G, H)$ as an isometric multiplier of $L^1(G, H)$. Hence, by Theorem 1, there exists an isometry U of H onto itself and $y \in G$ such that $T = U \circ R_y$.

6. **Isometric multipliers of $C(G, X)$**

In this section we describe the isometric, invertible, left multipliers of $C(G, X)$ where G is a compact group and X^* is strictly convex. The space $C(G, X)$ consists of all continuous X-valued function and is a Banach space under the supremum norm. The norm of $f \in C(G, X)$ will be denoted by $\|f\|_\infty$. For the space X, we denote the set of isometries of X onto itself by $I(X)$. The isometries of $C(G, X)$ were characterized by Lau [3]. He has shown that if T is an isometry of $C(G, X)$ onto itself, then there exists a homeomorphism ϕ of G onto itself and a continuous map $\lambda: X \to I(X)$ (with the strong operator topology) such that

$$Tf(s) = \lambda(s)f(\phi(s)) \quad \forall s \in G.$$

Using this characterization of isometries of $C(G, X)$, we prove the following:

Theorem. Let T be an isometric, invertible, left multiplier of $C(G, X)$. Then there exists an isometry U of X onto itself and $y \in G$ such that $T = U \circ R_y$.

Proof. Since T is an isometry of $C(G, X)$, there exists a continuous map $\lambda: X \to I(X)$ and a homeomorphism ϕ of G onto itself such that

$$Tf(s) = \lambda(s)f(\phi(s)) \quad \forall s \in G.$$

Fix $x \in X$ and let $f(s) = x \forall s \in G$. Then

$$TL_t f(s) = \lambda(s)f(t(\phi(s))) \quad (1)$$

and

$$L_t Tf(s) = \lambda(ts)f(\phi(ts)). \quad (2)$$

Since $TL_t = L_t T$, it follows that $\lambda(s)(x) = \lambda(ts)(x)$. Since $x \in X$ is arbitrary, we conclude that $\lambda(ts) = \lambda(s) \forall s, t \in G$. Hence there exists an isometry U of X onto itself such that $\lambda(s) = U \forall s \in G$. Therefore

$$Tf(s) = Uf(\phi(s)) \quad \forall f \in C(G, X).$$

Let $g \in C(G)$ and $x \in X$. Define f by $f(s) = g(s)x \forall s \in G$. Then (1) and (2) imply that

$$g(t\phi(s)) = g(\phi(ts)) \quad \forall g \in C(G).$$

Since $C(G)$ separates points, we conclude that $t\phi(s) = \phi(ts) \forall s, t \in G$. Let s be the identity element of G. Then $\phi(t) = t\phi(e)$. Let us denote $\phi(e)$ by y. Then we have $Tf(s) = Uf(sy) \forall f \in C(G, X)$ and $s \in G$. Therefore we have $T = U \circ R_y$.

\[\square\]
Isometric multipliers of $L^p(G, X)$

References

[1] Gaudry G I, Jefferies B R F and Ricker W J, Vector-valued multipliers: Convolution with operator-valued measures, Dissert. Mathematicae (Rozprawy Matematyczne) (Warszawa) (2000)

[2] Larsen R, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 175 (New York, Berlin, Heidelberg: Springer-Verlag) (1970)

[3] Lau K, A representation theorem for isometries of $C(X, E)$, Pacific J. Math. 60 (1975) 229–233

[4] Parrot S K, Isometric multipliers, Pacific J. Math. 25 (1968) 159–166

[5] Sourour A R, The isometries of $L^p(\Omega, X)$, J. Funct. Anal. 86 (1978) 275–285

[6] Strichartz R S, Isomorphisms of group algebras, Proc. Am. Math. Soc. 17 (1966) 858–862

[7] Wendel J G, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952) 251–261