A translocation-defective telomerase with low levels of activity and processivity stabilizes short telomeres and confers immortalization

Yasmin D’Souzaa,b, Tsz Wai Chub,c, and Chantal Autexiera,b,c
aDepartment of Anatomy and Cell Biology and bDivision of Experimental Medicine, Department of Medicine, McGill University, Montréal, PQ H3A 2B2, Canada; cBloomfield Centre for Research in Aging, Lady Davis Institute, Jewish General Hospital, Montréal, PQ H3T 1E2, Canada

ABSTRACT Short, repetitive, G-rich telomeric sequences are synthesized by telomerase, a ribonucleoprotein consisting of telomerase reverse transcriptase (TERT) and an integrally associated RNA. Human TERT (hTERT) can repetitively reverse transcribe its RNA template, acting processively to add multiple telomeric repeats onto the same substrate. We investigated whether certain threshold levels of telomerase activity and processivity are required to maintain telomere function and immortalize human cells with limited lifespan. We assessed hTERT variants with mutations in motifs implicated in processivity and interaction with DNA, namely the insertion in fingers domain (V791Y), and the E primer grip motif (W930F). hTERT-W930F and hTERT-V791Y reconstitute reduced levels of DNA synthesis and processivity compared with wild-type telomerase. Of interest, hTERT-W930F is more defective in translocation than hTERT-V791Y. Nonetheless, hTERT-W930F, but not hTERT-V791Y, immortalizes limited-lifespan human cells. Both hTERT-W930F– and hTERT-V791Y–expressing cells harbor short telomeres, measured as signal free ends (SFEs), yet SFEs persist only in hTERT-V791Y cells, which undergo apoptosis, likely as a consequence of a defect in recruitment of hTERT-V791Y to telomeres. Our study is the first to demonstrate that low levels of DNA synthesis—on the order of 20\% of wild-type telomerase levels—and extension of as few as three telomeric repeats are sufficient to maintain functional telomeres and immortalize limited-lifespan human cells.

INTRODUCTION Mammalian telomeres are composed of repeating T_2AG_3 DNA sequences (Moyzis et al., 1988) associated with six proteins collectively referred to as shelterin (de Lange, 2005). The repetitive sequences terminate in a single-stranded G-rich overhang at the 3’ end of the chromosome (Wright et al., 1997; Blackburn, 2001). The 3’ overhang is sequestered within the duplex region of the telomeric DNA, forming a protective structure known as the telomere loop (t-loop). t-loop formation prevents aberrant recombination, end-to-end fusion, and degradation of the chromosomal end (Griffith et al., 1999; Cesare and Griffith, 2004; de Lange, 2005). In the majority of human cells, the DNA replication machinery is unable to fully replicate the ends of chromosomes (Watson, 1972; Olovnikov, 1973). Consequently telomeres progressively shorten at a rate of \textasciitilde 60–120 base pairs/cell division (Harley et al., 1990; Baird et al., 2003).

Telomere length is maintained in germline cells, embryonic stem cells, immortal cell lines, and \textasciitilde 90\% of human malignancies (Kim et al., 1994; Wright et al., 1996; Kolquist et al., 1998) by a specialized reverse transcriptase (RT) known as telomerase. Telomerase catalyzes the de novo addition of telomeric DNA repeats to the 3’ ends of chromosomes. It is minimally composed of two subunits: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). In most species, the TERT protein is composed of four
structural domains: the telomerase-essential N-terminal (TEN) domain, the telomerase RNA-binding domain (TRBD), the RT domain, and the C-terminus. The central RT domain contains seven motifs (1, 2, A, B*, C, D, and E) that constitute the catalytic site and are evolutionarily conserved among all known RTs (Counter et al., 1997; Harrington et al., 1997; Lingner et al., 1997; Meyerson et al., 1997; Nakamura et al., 1997). These motifs interact with the DNA substrate or primer and incoming nucleotides. The C motif is considered the catalytic center, and the E motif is commonly referred to as the primer grip region. Alteration of conserved sequences in the RT motifs leads to the inactivation of telomerase and reduced telomere length (Lundblad and Szostak, 1989; Counter et al., 1997; Harrington et al., 1997; Lingner et al., 1997; Nakamura et al., 1997). A recent crystal structure of the Tribolium castaneum TERT protein reveals that the TRBD, RT, and C-terminal domains fold into a ring structure with a central cavity to accommodate the RNA/DNA hybrid (Gillis et al., 2008; Mitchell et al., 2010).

A unique feature of telomerase, which distinguishes it from other RTs, is its ability to repetitively reverse transcribe its relatively short RNA template after a single primer-binding event, a process known as repeat addition processivity (RAPP; Greider and Blackburn, 1987; Greider, 1991). Once the 5’ boundary of the template is encountered after one round of reverse transcription, the enzyme can dissociate from or stay associated to the primer for repetitive addition. Translocation must ensue for another round of extension to occur on the same primer, by which the RNA–DNA hybrid is dissociated from the active site and disrupted, the template and the new 3’ end of the DNA substrate realign, and the new RNA–DNA hybrid is repositioned in the active site for another round of elongation (Greider and Blackburn, 1987; Greider, 1991). The template or primer questions the DNA substructure—hTERT-V791Y in the IFD and hTERT-W930F in the E motif—expressed them in limited-lifespan cells, and analyzed their effect on telomere maintenance and cellular immortalization. Despite the data described, details of the regulation of telomere length maintenance and immortalization by telomerase processivity in human cells are incomplete. To determine whether certain threshold levels of telomerase activity and processivity are required to maintain telomere function and immortalize human cells with limited lifespan, we created hTERT variants with mutations in two motifs implicated in processivity and interaction with the DNA substrate—hTERT-V791Y in the IFD and hTERT-W930F in the E motif—expressed them in limited-lifespan cells, and analyzed their effect on telomere maintenance and cellular immortalization.

RESULTS

In vitro–expressed hTERT-W930F and hTERT-V791Y reconstitute lower levels of telomerase activity and processivity than does wild-type hTERT

Amino acid alignments of multiple TERT IFD and E motifs from diverse organisms indicate that the valine at position 791 and tryptophan at position 930 in human TERT (boxed in Figure 1A) are well-conserved hydrophobic amino acids (Peng et al., 2001; Lue et al., 2003). In an effort to reduce human telomerase processivity, we mutated the valine and tryptophan to the residues found at similar positions in yeast Est2p, known for exhibiting lower levels of in vitro processivity than wild-type Est2p. To confirm protein stability, we expressed the resulting mutants, hTERT-V791Y and hTERT-W930F, in in vitro rabbit reticulocyte lysate (RRL) in the presence of [35S]methionine. A major band of 130 kDa was observed for both mutants, hTERT-V791Y and hTERT-W930F, expressed the resulting mutants, hTERT-V791Y and hTERT-W930F, in RRL in the presence of in vitro–transcribed human telomerase RNA (hTR). Activity was assayed over a wide range of protein dilutions using the PCR-based telomere repeat
amplification protocol (TRAP) assay to determine which concentration of protein generates telomerase activity in the linear range (data not shown). Quantification was performed for the 1:80 dilution, which generates telomerase activity within the linear range for both variants and WT-hTERT (Figure 1B). The RRL-reconstituted mutant enzymes both displayed lower levels of telomerase activity compared with WT telomerase. hTERT-W930F and hTERT-V791Y displayed 64.16% ±2.73 SD and 29.00% ±4.11 SD of WT levels of overall DNA synthesis, respectively (n = 2). Next the RRL-reconstituted mutant human telomerase variants were incubated with biotinylated [\(^{32} \text{P} \text{T}_{2}\text{A}_{3}\text{G}_{3} \)] substrate primer, and the extension products were analyzed on sequencing gels (Figure 1C). The mutant enzymes displayed lower levels of processivity than did WT enzyme, as shown by the absence of long extension products. hTERT-W930F consistently synthesized three repeats (+16) and hTERT-V791Y, minimally, four repeats (+22).

Quantification of RAP for the first three repeats for hTERT-W930F and for the first four to six repeats for hTERT-V791Y revealed that hTERT-W930F and hTERT-V791Y, respectively, possessed RAP levels of 75.03% ±3.25 SD and 87.09% ±0.04 SD compared with wild-type enzyme (n = 3). The non–PCR-based direct primer extension assay was previously reported to be more representative than the TRAP technique for detecting defects in levels of reconstituted telomerase activity or DNA synthesis, largely due to the amplification of low levels of elongation products by the TRAP assay (Huard et al., 2003; Moriarty et al., 2004, 2005a). The variants reconstituted low levels of telomerase activity (DNA synthesis) compared with WT-hTERT. However, hTERT-W930F consistently displayed a higher level of DNA synthesis than hTERT-V791Y, as indicated by the darker band at position +4 (the first G in the first telomeric repeat to be synthesized; Figure 1C), also suggestive of a defect in RAP and translocation.

hTERT-W930F and hTERT-V791Y expressed in cells reconstitute lower levels of telomerase activity and processivity compared with wild-type telomerase

In vitro RRL-reconstituted telomerase containing W930F and V791Y mutations display lower levels of TRAP activity compared with WT telomerase. To confirm these results, we also assayed telomerase activity over a wide range of protein dilutions using extracts from mutant and WT telomerase-expressing HAS cells. HAS cells comprise a human embryonic kidney cell line with limited lifespan that expresses SV40 large T and small t antigens and lacks hTERT expression (Stewart and Bacchetti, 1991). HAS-hTERT-W930F clone D and HAS-hTERT-W930F clone F2 displayed lower levels of activity compared with WT (Figure 2A). Of importance, levels of activity for HAS-hTERT-W930F were never higher than for WT, regardless of the population doubling (PD). Similar results were obtained with HAS-hTERT-V791Y clone E and W930F clone F1 (data not shown). To confirm the processivity defects of the in vitro–reconstituted hTERT-W930F and hTERT-V791Y enzymes, we used cell extracts from 293 cells coexpressing hTR and the various hTERTs in a direct primer

![FIGURE 1: Location of IFD and E motif mutations and activity and processivity of in vitro–reconstituted mutant and wild-type telomerase enzymes.](Image)
Despite reduced levels of DNA synthesis and processivity reconstituted by hTERT-W930F and hTERT-V791Y enzymes, hTERT-W930F, but not hTERT-V791Y, expression can immortalize HA5 cells

To determine the in vivo effects of decreased DNA synthesis and processivity resulting from mutated IFD and E motifs, we expressed the variants and WT hTERTs in HA5 cells. The ability of WT hTERT to maintain telomeres and immortalize HA5 cells has been demonstrated (Counter et al., 1998; Armbruster et al., 2001; Moriarty et al., 2005b). Several dozen colonies were obtained after retroviral infection of HA5 cells with hTERT-W930F or WT hTERT. Similar to WT hTERT, the expression of hTERT-W930F was able to immortalize HA5 cells. Two clones of each were selected and passaged for ~150–200 PDs (Figure 3A). In contrast to hTERT-W930F, only five colonies of HA5 cells expressing hTERT-V791Y and seven colonies of HA5 cells infected with empty vector were obtained. Colonies of each variant were expanded to monitor growth. hTERT-V791Y-expressing cells behaved similarly to empty vector–containing cells in culture. They both failed to immortalize HA5 cells and died between PDs 6 and 10 (Figure 3B). It was also important to confirm the expression of the WT and mutant proteins to assess whether protein levels fluctuated during culture or differed between mutant hTERT- and WT hTERT-expressing cells. hTERT protein levels remained relatively unchanged during growth (Figure 3C). The levels of hTERT-W930F expressed by the HA5 cells were never higher than the levels of hTERT-V791Y for the different clones. hTERT protein was not detected in empty vector–containing HA5 cells.

HA5 cells expressing hTERT-V791Y display signal-free ends, which persist with increasing population doubling

Typically, telomeres of transformed cells such as HA5 cells shorten with successive cell division, eventually leading to unprotected telomeres, genomic instability, and cell death associated with crisis (Counter et al., 1992, 1994; Shay et al., 1993; Klingelhutz et al., 1994). To determine whether HA5 cells expressing hTERT-V791Y or empty vector were undergoing apoptosis, we performed fluorescence-activated cell sorting (FACS) analysis (Figure 4A). hTERT-V791Y-expressing and empty vector–containing cells experienced high levels of apoptosis compared with hTERT-W930F and WT telomerase-expressing cells. In addition, the levels of apoptosis increased with increasing PD, as shown by empty vector clone H and all of the V791Y-telomerase–expressing clones. We predicted that hTERT-V791Y–expressing cells, which experienced high levels of

![Image](image_url)
Low telomerase confers immortalization

The decrease in average telomere length followed by an increase in clone F2 paralleled the increased SFEs observed at middle passage followed by a decreased number of SFEs at late passage (Figure 4B). Such a correlation was not observed for clone F1, which, despite initially longer average telomere lengths compared with clone F2, also harbored very short telomeres at early and middle passages (Figure 4, B and C). Of importance, at late passage, the average telomere lengths of both HA5 clones hTERT-W930F-F2 (1.9 kb) and hTERT-W930F-F1 (1.3 kb) were consistently less than the average telomere lengths of two HA5 clones expressing hTERT-WT (clone F1, 2.2 kb; clone M2, 3.2 kb; D’Souza et al., 2013).

hTERT-W930F is more defective in translocation than hTERT-V791Y

Next we investigated the translocation efficiency of the hTERT mutant enzymes to determine whether hTERT-V791Y’s inability to elongate short telomeres and immortalize HAS cells was due to a defect in translocation. During extension of a primer by telomerase, translocation must occur once the 5’ boundary of the template is encountered in order for another round of extension to proceed. The efficiency of translocation was measured using a recently developed assay (Latrick and Cech, 2010) that allows only a single template translocation event to occur. Extension of the primer 26GTT (TTATTATTAGGGTTAGGGTTAGGGTT) results in two products, a +2nt product and a +4nt product. The +2nt product is generated by the addition of one dATP and one dGTP. After their addition, translocation occurs. During the next round of extension two additional dGTPs are added to generate the +4nt product. Further nucleotide addition cannot occur due to the absence of dTTP in the reaction. Telomerase enzymes were reconstituted in 293 cells coexpressing hTR and incubated with 26GTT and a 10-fold excess of an unex- tendable 3’-phosphorylated competitive primer (ASP: TTAGGGTAGGGTATTAGGGTATTAGGGTATTAGGGTATTAGGGTATTAGGGTATTAGGGP) to minimize the frequency of reinitiation on the same 26GTT primer. Western analysis confirmed that expression levels of mutant hTERTs were not significantly different from that of wild-type hTERT (Figure 2C). The expected +2nt and +4nt products can be seen at most of the time points for the telomerase mutant enzymes (Figure 5A). The +3nt product is unrelated to template translocation (Qi et al., 2011). The efficiency of translocation corresponds to the ratio of the +4nt signal compared with the total signal at the +2 and +4 positions at the last time point and reflects the fraction of telomerase that has translocated. The translocation efficiency for WT telomerase was 68.14% ([x±5.06 SD]; n = 2), which is in agreement with the previously reported value (Latrick and Cech, 2010). Both hTERT-W930F and hTERT-V791Y were impaired in translocation compared with WT hTERT, which may contribute to the decrease in processivity displayed by both RRL- and 293 cell–reconstituted mutant telomerase enzymes. Surprisingly, an increased number of stalled or dissociated telomerase complexes was seen for hTERT-W930F (translocation efficiency, 36.00% [±5.06 SD]; n = 2).

To examine telomere length maintenance in cells expressing hTERT-W930F, we extracted genomic DNA from cells at different population doublings. The average telomere lengths of HA5 clones expressing hTERT-W930F were measured by TRF analysis (Figure 4C). Telomere length decreased from 2.5 kb at PD6 to ~1.7 kb at PD54 and subsequently increased to reach an average telomere length of 1.9 kb at PD165 in clone F2, whereas telomere length decreased from ~3 kb at early PD to 1.3 kb at PD123 in clone F1.

The addition of one dATP and one dGTP. After their addition, translocation occurs. During the next round of extension two additional dGTPs are added to generate the +4nt product. Further nucleotide addition cannot occur due to the absence of dTTP in the reaction. Telomerase enzymes were reconstituted in 293 cells coexpressing hTR and incubated with 26GTT and a 10-fold excess of an unextendable 3’-phosphorylated competitive primer (ASP: TTAGGGTAGGGP) to minimize the frequency of reinitiation on the same 26GTT primer. Western analysis confirmed that expression levels of mutant hTERTs were not significantly different from that of wild-type hTERT (Figure 2C). The expected +2nt and +4nt products can be seen at most of the time points for the telomerase mutant and WT enzymes (Figure 5A). The +3nt product is unrelated to template translocation (Qi et al., 2011). The efficiency of translocation corresponds to the ratio of the +4nt signal compared with the total signal at the +2 and +4 positions at the last time point and reflects the fraction of telomerase that has translocated. The translocation efficiency for WT telomerase was 68.14% ([x±5.06 SD]; n = 2), which is in agreement with the previously reported value (Latrick and Cech, 2010). Both hTERT-W930F and hTERT-V791Y were impaired in translocation compared with WT hTERT, which may contribute to the decrease in processivity displayed by both RRL- and 293 cell–reconstituted mutant telomerase enzymes. Surprisingly, an increased number of stalled or dissociated telomerase complexes was seen for hTERT-W930F (translocation efficiency, 36.00% [±5.06 SD]; n = 2).
Green–conjugated, telomere-specific probe (green; Figure 6A). Cy3 foci were not visible in HeLa cells in the absence of overexpressed hTERT and hTR. Colocalization of telomeres and hTR was evident in HeLa cells coexpressing hTR and WT hTERT or hTERT-W930F (average of 7.14 \(\pm\) 0.74 SD vs. 6.13 \(\pm\) 0.57 SD colocalizations/cell, respectively). hTR was observed at five or more telomeres in 90.75% of HeLa cells coexpressing WT telomerase and in 77.26% of hTERT-W930F–expressing cells. In contrast, an average of only 1.86 colocalizations (\(\pm\) 0.18 SD) was seen per HeLa cell coexpressing hTERT-V791Y and hTR. The percentage of cells containing hTR associations with five or more telomeres decreased to 0.70% in cells coexpressing hTERT-V791Y and hTR. These results indicate that this mutant telomerase enzyme may be defective in recruitment to telomeres.

DISCUSSION

Telomerase is a processive enzyme that reverse transcribes its relatively short RNA template onto the 3’ end of chromosomal DNA. The synthesis of a telomeric repeat requires the 3’ end of the DNA primer to base pair with the RNA template to form an RNA/DNA hybrid positioned within the active site. DNA polymerization then proceeds by reverse transcription of the RNA template compared with hTERT-V791Y (translocation efficiency, 58.55% \(\pm\) 0.54 SD, \(n=2\); Figure 5B), despite hTERT-W930F’s ability to immortalize HA5 cells.

hTERT-V791Y is impaired in recruitment to telomeres

Finally, we tested whether the presence of SFEs in HA5-hTERT-V791Y cells and the inability of hTERT-V791Y to immortalize HA5 cells were due to a lack of proper localization of mutant telomerase to telomeres. Sensitive and specific fluorescence in situ hybridization (FISH) procedures using overexpressed telomerase components have been used, enabling visualization of the localization of the telomerase RNA component to the telomere (Tomlinson et al., 2006, 2008; Cristofari et al., 2007; Abreu et al., 2010; Stern et al., 2012; Zhong et al., 2012). The localization of hTR to the telomere is dependent on the presence of hTERT (Tomlinson et al., 2008). These studies revealed that the telomere-lengthening activity of telomerase is controlled in part by regulated trafficking of telomerase components. hTR and mutant or WT hTERT were coexpressed in HeLa cells, and similar expression levels of W930F-, V791Y- and WT-hTERT were confirmed by Western analysis (Figure 6C). FISH was performed using three hTR–specific Cy3-conjugated probes (magenta) and one Oregon
onto the 3' end of the DNA primer. A unique biochemical attribute of vertebrate and ciliate telomerase is RAP, by which hundreds of DNA repeats can be synthesized onto a given DNA primer without complete dissociation from the enzyme (Lue, 2004). Telomerase processivity relies on a “template translocation” mechanism to regenerate access to the RNA template after each repeat is synthesized. The processivity of the reaction is determined by the efficiency of RNA/DNA realignment over complete product release during translocation (Qi et al., 2011). We identified two residues in hTERT—V791Y in the IFD and W930F within the E motif—that both regulate processivity and DNA synthesis but influence telomere function and immortalization differently. Despite decreased levels of DNA synthesis and processivity reconstituted by both hTERT variants, only hTERT-W930F was able to elongate short telomeres and immortalize H5 cells. H5 cells expressing hTERT-V791Y underwent apoptosis after ~10 PDs. Of interest, despite hTERT-W930F’s ability to maintain telomere function, it was also shown to possess lower RAP and processivity than hTERT-V791Y.

According to the high-resolution structural model of T. castaneum TERT, the N- and C-termini are postulated to come together to form a ring-like structure (Mitchell et al., 2010). The IFD is located at the periphery of the N-terminus and RT domain, implying that this region plays an important role in the structural organization of TERT (Gillis et al., 2008). The IFD is unique to telomerase and is not found in other RTs. Telomerase has evolved a more elaborate fingers domain than HIV-1 RT to optimize substrate interaction and mediate synthesis of multiple telomeric repeats (Lue et al., 2003). Mutation of residues within Est2p’s IFD indicates that this region is required for normal telomere maintenance in vivo and maximal telomerase activity in vitro. The quadruple Est2p LYID589AAAA mutant and corresponding hTERT WIE790AAAA mutant manifest primer-specific defects, being selectively impaired in extending primers that form short hybrids with telomerase RNA (Lue et al., 2003; Qi et al., 2011). Furthermore, translocation efficiency of these mutant TERTs is severely affected, confirming that this region is also required for processivity (Lue et al., 2003; Xie et al., 2010; Qi et al., 2011).

A number of inherited human diseases, including idiopathic pulmonary fibrosis, are linked to telomerase gene mutations, which result in telomere shortening-mediated stem cell defects (Alder et al., 2011; Armanios and Blackburn, 2012). An ancestral mutation in hTERT, V867M-V791I, leading to decreased RAP, was previously shown to correlate with the development of idiopathic pulmonary fibrosis in members of two families (Alder et al., 2011). Mutation carriers were shown to have telomere lengths below the 10th percentile of a normal distribution compared with age-matched controls. Defects in RAP were not evident for the single-substitution mutant hTERT-V791I in vitro. On the other hand, hTERT-V867M displayed processivity defects under conditions of low nucleotide concentrations, indicating that the development of shorter telomeres in double-mutation carriers was mainly due to the effects of V867M. Our results indicate that mutation at the same position, V791, but to a tyrosine results in decreased processivity. It is possible that hTERT-V791I could not maintain telomeres or immortalize late-passage H5 cells because these cells presumably have shorter telomeres, in accordance with the role of this region in telomerase function when the RNA–DNA hybrid is short (Xie et al., 2010). However, the levels of processivity and DNA synthesis displayed by hTERT-V791I were never lower than that displayed by hTERT-W930F, a mutant able to immortalize late-passage H5 cells, indicating that RAP defects are not sufficient to explain apoptosis of H5 cells expressing hTERT-V791I. It is likely that this mutant suffers from defects in assembly or recruitment. A primary mechanism involved in the regulation of telomerase activity and processivity is through intracellular assembly and trafficking of the enzyme’s components during S phase of the process.
levels of actin expression. The number of colocalizations occurs is expressed as a percentage of the total cells counted, n = 2. Colocalizations were counted in ~200 cells per n.

(C) Mutant hTERT-W930F and hTERT-V791Y and WT telomerase complexes were reconstituted in HeLa cells, and levels of hTERT expression were assessed by Western analysis and compared with levels of actin expression.

Of importance, our results highlight that low levels of DNA synthesis and processivity displayed by the W930F enzyme are sufficient to maintain telomere function and impart immortalization to limited-lifespan cells. It has been speculated that a threshold level of enzyme activity, and perhaps processivity, is necessary to prevent telomere shortening, senescence, or crisis and that levels of telomerase activity and telomere length might correlate in human cancer cells, although such a correlation in cancer cells has been difficult to demonstrate (Autexier and Lue, 2006). Low levels of telomerase activity and defects in binding short telomeric primers as an absence of SFEs by late passage. The ability of hTERT-W930F to elongate short telomeres is probably sufficient to prevent telomere uncapping, genomic instability, and cell death associated with crisis, thus leading to the immortalization of these cells despite decreased levels of processivity and translocation efficiency. hTERT-V791Y is also deficient in translocation; however, its inability to be recruited to telomeres likely results in defective telomere extension, telomere uncapping, genomic instability, and apoptosis of HA5 cells.

FIGURE 6: hTERT-V791Y is defective in recruitment to telomeres. (A) hTR (magenta foci) and telomere (green foci) FISH was performed on untransfected HeLa cells (top), coexpressing hTR and hTERT-W930F (second from top), hTERT-V791Y (third from top), or WT-hTERT (bottom). hTR colocalizations with telomeres are represented by yellow foci in the last column (merge). (B) Frequency of colocalization (bottom). hTR colocalizations with telomeres are represented by W930F (second from top), hTERT-V791Y (third from top), or WT-hTERT (top). Percentage of cells containing hTR-telomere associations is graphed for each condition. (C) Mutant hTERT-W930F and hTERT-V791Y and WT telomerase complexes were reconstituted in HeLa cells, and levels of hTERT expression were assessed by Western analysis and compared with levels of actin expression.

The E motif, commonly referred to as the primer grip region, is a universally conserved processivity determinant (Peng et al., 2001). The structure of T. castaneum TERT also indicates that the E motif positions the 3′-end hydroxyl of the DNA primer at the active site of the enzyme for nucleotide addition and is in close proximity to the incoming nucleotides (Mitchell et al., 2010). The four amino acids located at the C-terminal part of this motif in hTERT are W-C-G-L, whereas the corresponding sequence in Est2p is F-C-A-M (Figure 1A). A double-residue substitution that converts the yeast motif to one that imitates HIV-1 RT and hTERT’s E motif exhibits increased processivity, longer telomeres, and normal growth (Peng et al., 2001; Ji et al., 2005). In contrast, a five-alanine substitution mutation in the hTERT primer grip sequence leads to a complete loss of telomerase activity and defects in binding short telomeric primers in vitro (Wyatt et al., 2007), consistent with a role for this region in interacting with the DNA substrate. Mutation of the F to an A at position 720 in Est2p leads to shortened telomeres and has a detrimental effect on cell growth (Peng et al., 2001). Like Est2p F720A, the hTERT-W930F enzyme displays decreased processivity and translocation efficiency, in addition to the presence of SFEs. However, growth of HA5 cells expressing hTERT-W930F was not significantly affected compared with cells expressing WT-hTERT.

Telomerase preferentially extends the shortest telomeres when telomerase is expressed in telomerase-negative cells (Ouellette et al., 2000; Hemann et al., 2001; Samper et al., 2001; Britt-Compton et al., 2009). We speculate that low levels of DNA synthesis and processivity and reduced translocation efficiency reconstituted by hTERT-W930F may lead to problems in telomere elongation that result in the generation of SFEs that we observe in early- and middle-passage HA5 cells expressing hTERT-W930F. Subsequently, hTERT-W930F is likely recruited to the shortest telomeres, observed as an absence of SFEs by late passage. The ability of hTERT-W930F to elongate short telomeres is probably sufficient to prevent telomere uncapping, genomic instability, and cell death associated with crisis, thus leading to the immortalization of these cells despite decreased levels of processivity and translocation efficiency. hTERT-V791Y is also deficient in translocation; however, its inability to be recruited to telomeres likely results in defective telomere extension, telomere uncapping, genomic instability, and apoptosis of HA5 cells.

Of importance, our results highlight that low levels of DNA synthesis and processivity displayed by the W930F enzyme are sufficient to maintain telomere function and impart immortalization to limited-lifespan cells. It has been speculated that a threshold level of enzyme activity, and perhaps processivity, is necessary to prevent telomere shortening, senescence, or crisis and that levels of telomerase activity and telomere length might correlate in human cancer cells, although such a correlation in cancer cells has been difficult to demonstrate (Autexier and Lue, 2006). Low levels of telomerase are detected in normal human somatic cells (Broccoli et al., 1995; Masutomi et al., 2003) but are insufficient to prevent telomere shortening. Bone marrow cells and peripheral blood leukocytes contain 0.2–40% of the specific TRAP activity of a HeLa cell reference extract (Broccoli et al., 1995). By using TRAP assays to quantify telomerase activity, Hamad et al. (2002) showed that levels of telomerase activity >5% and <50% of WT enzyme were required for immortalization of limited-lifespan cells. BJ normal human diploid foreskin fibroblasts expressing hTERT were reported to stabilize their telomere
size at subsenescent average lengths with TRAP telomerase activity levels on the order of 1–5% of a control lung adenocarcinoma reference cell line H1299 (Ouellette et al., 2000). Our study is the first to demonstrate, using a direct primer extension assay, that low levels (20% of WT telomerase) of DNA synthesis and extension of as few as three telomeric repeats are sufficient to maintain functional telomeres and immortalize limited-lifespan cells.

Of interest, the phenotype of W930F is reminiscent of mTERT+/− ES cell lines, which, despite short telomere lengths similar to the telomere lengths of mTERT+/− ES cell lines, do not display end-to-end fusions or genomic instability, suggesting that telomerase levels in heterozygote cells are sufficient to provide a protective advantage from end-to-end fusion and genome instability (Liu et al., 2002). At late PD, HA5 cells expressing W930F could not maintain the average telomere length of 2.5–3.0 kb observed at early PD, and average telomere lengths were consistently below the average telomere length of HA5 cells expressing WT-hTERT (D’Souza et al., 2013). However, the elongation of short telomeres by the W930F enzyme, observed by a decrease in SFEs (Figure 4B) and an increase in average telomere length from middle to late population doublings in clone F2 (Figure 4C), is sufficient to maintain functional telomeres.

We showed that telomerase processivity may affect telomere length maintenance, which is required for growth of cancer cells. A better understanding of processivity may facilitate the design of anticancer therapeutics that target domains regulating telomerase processivity. Genetic factors that regulate telomerase localization to the telomere may also be important determinants of telomere length regulation. Drugs that augment telomerase recruitment to telomeres could provide therapies for individuals diagnosed with telomerase insufficiency diseases.

MATERIALS AND METHODS

Plasmid construction

The pMSCV-puromycin-FLAG-hTERT plasmid was constructed by insertion of BglII- and EcoRI-digested PCR products encoding FLAG-hTERT into pMSCV-puromycin (kind gift from Gerardo Ferbeyre, Université de Montréal, Montréal, Canada). The plasmids pET28b-hTERT (Bachand and Autexier, 1999), pMSCV-puromycin-FLAG-hTERT, and pcDNA6/myc-His C-hTERT (Cristofari and Lingner, 2006; kind gift from Joachim Lingner, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland) were used as templates to generate pET28b-hTERT-W930F and -V791Y, pMSCV-puromycin-FLAG-hTERT-W930F and -V791Y, and pcDNA6/myc-His C-hTERT-W930F and -V791Y by site-directed mutagenesis. pBluescript II SK(+)hTAR was a kind gift from Joachim Lingner (Cristofari and Lingner, 2006).

Cell culture, retroviral transfection, and transient transfection

Retroviral and transient transfections were performed as previously described (D’Souza et al., 2013). HA5 cells were a gift from Silvia Bacchetti, Istituto Regina Elena, Rome, Italy.

In vitro transcription and translation, SDS–PAGE, TRAP assay, and direct primer extension assays

Reconstitution of WT and telomerase variants, SDS–PAGE, TRAP assay, and direct primer extension were performed as described (D’Souza et al., 2013).

Quantification of RAP

RAP was quantified as described (Hardy et al., 2001; Moriarty et al., 2004).

Protein analysis

Western blots were performed as described (D’Souza et al., 2013).

Apoptosis analysis by FACS

HA5 cells expressing telomerase variants were grown to confluence in 10-cm plates, trypsinized, washed, and collected. As a positive control, HA5 cells treated with 1 μM staurosporine were also collected. Cells were treated with propidium iodide (Sigma-Aldrich, St. Louis, MO) and Annexin V–fluorescein isothiocyanate (BD Biosciences, San Diego, CA), incubated for 15 min, and passed through a FACSCalibur (BD Biosciences) at the Lady Davis Institute Flow Cytometry Facility. Results were analyzed using CellQuest Pro and compiled with Excel (Microsoft, Redmond, WA).

Telomere restriction fragment analysis

TRF analysis was performed as described (D’Souza et al., 2013).

Fluorescence in situ hybridization

Metaphase spreads and Q-FISH analyses for the detection of SFE were performed as described (D’Souza et al., 2013). Images were captured using an Axio Imager M1 (63×; Carl Zeiss, Jena, Germany). Quantitative analysis of SFE was performed with TFL-Telo, version 2.0, software (kindly provided by Peter Lansdorp, British Columbia Cancer Center, Vancouver, Canada). hTR-telomere FISH was performed using three different Cy3-conjugated hTR probes (Tomlinson et al., 2008) and an Oregon Green–conjugated telomeric probe (Abreu et al., 2010) on HeLa cells coexpressing supertelomerase or supertelomerase variants and hTR (Abreu et al., 2011). Cy3 monoreactive dye was from GE Healthcare (Piscataway, NJ), Oregon Green 488 from Invitrogen, and probes from Operon (Huntsville, AL). Imaging was performed using an Axio Imager M1 (63×).

Translocation assay

Translocation assays and quantification were carried out as previously described, with minor modifications (Latrick and Cech, 2010; Qi et al., 2011). Briefly, 30 μg of supertelomerase whole-cell extract was incubated with the telomerase substrate oligonucleotide 26GTT, an ASP chase primer to prevent telomerase from reinitiating on the same 26GTT primer, dATP, and radiolabeled dGTP (PerkinElmer, Waltham, MA). The assay was conducted at 4°C in the presence of 0.1 mM Mg²⁺ to slow the reaction. Samples were removed at various time points and stopped with 100 μl of 3.6 M ammonium acetate with 20 μg of glycogen (Invitrogen), ethanol precipitated at −80°C overnight, and electrophoresed on a 10% denaturing gel. The percentage of translocated product was calculated by dividing the +4 band by the total count (+2 and +4 band). The +3nt product is unrelated to template translocation (Qi et al., 2011). The fraction of translocated products was then plotted versus time.

ACKNOWLEDGMENTS

We thank Catherine Lauzon for help with FACS and Shusen Zhu for help with Western conditions for hTERT detection. We thank members of the Autexier lab for helpful discussion. Financial support was received from Canadian Institute for Health Research Grant MOP86672 to C.A. C.A. is a Chercheur National of the Fonds de la Recherche en Santé du Québec. Y.D’S. was supported by a Canadian Institute for Health Research Canada Graduate Scholarship, and T.W.C. was supported by a McGill University Faculty of Medicine Internal Studentship and a Canadian Institute for Health Research McGill Integrated Cancer Research Training Program Studentship.
REFERENCES

Abreu E, Arionovska E, Reichenbach P, Cristofari G, Culp B, Tems RM, Lingner J, Tems MP (2010). TIN2-tethered TTP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30, 2971–2982.

Abreu E, Terns RM, Terns MP (2011). Visualization of human telomerase localization by fluorescence microscopy techniques. Methods Mol Biol 735, 123–137.

Alder JK, Cogan JD, Brown AF, Anderson CJ, Lawson WE, Lansdorp PM, Moriarty TJ, Marie-Egyptienne DT, Autexier C (2005a). Regulation of 5' to 3' telomerase activity in vitro and in vivo. Mol Cell Biol 25, 565–574.

Alder JK, Cogan JD, Brown AF, Beijersbergen RL, Lansdorp PM, Moriarty TJ, Marie-Egyptienne DT, Autexier C (2005b). The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75, 493–517.

Bachand F, Autexier C (1999). Functional reconstitution of human telomerase expressed in Saccharomyces cerevisae. J Biol Chem 274, 38027–38031.

Baird DM, Rowson ME, Wynford-Thomas D, Kipling D (2003). Extensive allelic variation and ultra-short telomeres in senescent human cells. Nat Genet 33, 203–207.

Berman AJ, Akiyama BM, Stone MD, Cech TR (2011). The RNA accordion model for template positioning by telomerase DNA during telomeric DNA synthesis. Nat Struct Mol Biol 18, 1371–1375.

Blackburn EH (2001). Switching and signaling at the telomere. Cell 106, 126, 676–687.

Berman AJ, Akiyama BM, Stone MD, Cech TR (2011). The RNA accordion model for template positioning by telomerase DNA during telomeric DNA synthesis. Nat Struct Mol Biol 18, 1371–1375.

Blackburn EH (2001). Switching and signaling at the telomere. Cell 106, 126, 676–687.

Britt-Compton B, Capper R, Rowson J, Baird DM (2009). Short telomeres are preferentially elongated by telomerase in human cells. FEBS Lett 583, 3076–3080.

Broccoli D, Young JW, de Lange T (1995). Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 92, 9082–9086.

Cesare AJ, Griffith JD (2004). Telomeric DNA in ALT cells is characterized by free telomere circles and heterogeneous t-loops. Mol Cell Biol 24, 9948–9957.

Cohn M, Blackburn EH (1995). Telomerase in yeast. Science 269, 396–400.

Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM, Sedivy JM, Weinberg RA (1998). Disassociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 95, 14723–14728.

Counter CM, Meyerson M, Eaton EN, Weinberg RA (1997). The catalytic subunit of yeast telomerase. Proc Natl Acad Sci USA 94, 9202–9207.

Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP, Lingner J (2007). Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol Cell 27, 882–889.

Cristofari G, Lingner J (2006). Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 25, 565–574.

D'Souza Y, Lauzon C, Chu TW, Autexier C (2013). Regulation of telomere length and homeostasis by telomerase enzyme processivity. J Cell Sci 126, 676–687.

Damm K et al. (2001). A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 20, 6958–6968.

de Lange T (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19, 2100–2110.

Dillman VA, Schultz CS, Collins K (2001). Replacements for the dGTP-dependent repeat addition processivity of recombinant Tetrahymena telomerase. J Biol Chem 276, 4863–4871.

Harley CB, Fuchter AB, Greider CW (1990). Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.

Harrington L, Zhou W, McPhail T, Oulton R, Yeung DSK, Mar V, Bass MB, Robinson MO (1997). Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11, 3109–3115.

Hemann MT, Strong MA, Mao L-Y, Greider CW (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77.

Huard S, Moriarty TJ, Autexier C (2003). The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity. Nucleic Acids Res 31, 4059–4070.

Jacobs SA, Podell ER, Cech TR (2006). Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13, 218–225.

Jady BE, Richard P, Bertrand E, Kiss T (2006). Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Cell Biol 17, 944–954.

Ji H, Platts MH, Dharamsi LB, Friedman KL (2005). Regulation of telomere length by an N-terminal region of the yeast telomerase reverse transcriptase. Mol Cell Biol 25, 9103–9114.

Jurczyk J, Nousens AS, Holien JK, Adams TE, Lovrecz GO, Parker MW, Cohen SB, Bryan TM (2011). Direct involvement of the TEN domain at the active site of human telomerase. Nucleic Acids Res 39, 1774–1788.

Kim NW, Patysek MA, Prowse KR, Harley CB, West MD, Ho PLC, Civelli GM, Wright WE, Weinrich SL, Shay JW (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.

Klingelhoett AJ, Barber SA, Smith PP, Dyer K, MacDougall JK (1994). Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells. Mol Cell Biol 14, 961–969.

Kolquist KA, Elissen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL (1998). Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nature Genet 19, 182–186.

Lattrick CM, Cech TR (2010). POT1-TTP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 29, 924–933.

Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 266, 561–567.

Liu Y, Kha H, Ungrin M, Robinson MO, Harrington L (2002). Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc Natl Acad Sci USA 99, 3597–3602.

Lue N (2004). Ating the ends: what makes telomerase processive and how important is it? BioEssays 26, 955–962.

Lue NF, Lin YC, Mian IS (2003). A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 23, 8440–8449.

Lue NF, Peng Y (1998). Negative regulation of yeast telomerase activity through an interaction with an upstream region of the DNA primer. Nucleic Acids Res 26, 4871–4879.

Lundblad V, Szostak JW (1989). A mutant with a defect in telomere elongation. EMBO J 8, 611–617.

Meyerson M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E (2010). A functional organizaion of the short telomere and telomerase activity accompany immortalization of human papillomavirus-immortalized human anogenital epithelial cells. Mol Cell Biol 14, 961–969.

Mitchell M, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Tems RM, Lingner J, Tems MP (2010). TIN2-tethered TTP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30, 2971–2982.

Phillips JA 3rd, Loyd JE, Chen JJ, Armanios M (2011). Ancestral muta-
Moriarty TJ, Ward R, Taboski MAS, Autexier C (2005b). An anchor site type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 16, 3152–3161.

Morin GB (1989). The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529.

Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu J-H (1988). A highly conserved repetitive DNA sequence, TTAGGG(n), present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85, 6622–6626.

Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997). Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959.

Olovnikov AM (1973). A theory of marginotomy. J Theor Biol 41, 181–190.

Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Retig WJ, Damm K, Schnapp A (2002). Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 275, 10072–10076.

Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Retig WJ, Damm K, Schnapp A (2002). Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 275, 10072–10076.

Peng Y, Mian SI, Lue NF (2001). Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol Cell 7, 1201–1211.

Prescott J, Blackburn EH (1997). Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Gene Dev 11, 528–540.

Qi X, Xie M, Brown AF, Bley CJ, Podlevsky JD, Chen JJ (2011). RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency. EMBO J 30, 150–161.

Romé E, Baran N, Gantman M, Shmoish M, Min B, Collins K, Manor H (2007). High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc Natl Acad Sci USA 104, 8791–8796.

Samper E, Flores JM, Blasco M (2001). Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep 2, 800–807.

Shay JW, Wright WE, Brasiskyte D, Van der Haegen BA (1993). E6 of human papilloma type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407–1413.

Stern JL, Zyner KG, Pickett HA, Cohen SB, Bryan TM (2012). Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol Cell Biol 32, 2384–2395.

Stewart N, Bacchetti S (1991). Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180, 49–57.

Stewner RN, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP (2008). Telomerase reverse transcriptase is required for the localization of telomerase RNA to Cajal bodies and telomeres in human cancer cells. Mol Cell Biol 19, 3793–3800.

Takacs EM, Lobb DA, Beattie TL (2007). Characterization of physical and functional anchor site interactions in human telomerase. Nucleic Acids Res 35, 2173–2181.

Wyatt HDM, Lobb DA, Beattie TL (2007). Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol 27, 3226–3240.

Xie M, Podlevsky JD, Qi X, Bley CJ, Chen JJ (2010). A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res 38, 1982–1996.

Zhao Y, Abreu E, Kim J, Stadler G, Eskiocak U, Terns MP, Terns RM, Shay JW (2011). Processive and distributive extension of human telomeres by telomerase under homeostatic and nonequilibrium conditions. Mol Cell 42, 297–307.

Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE (2012). TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494.