Bronchial rupture related to endobronchial stenting in relapsing polychondritis

To the Editor:

Relapsing polychondritis is a rare multi-systemic disease characterised by recurrent episodes of inflammation and destruction of cartilaginous structures [1]. Airway involvement by relapsing polychondritis, which results in tracheobronchomalacia and airway stenosis, is associated with a poor prognosis. Several reports have suggested that endobronchial intervention can be beneficial in these subjects [2, 3]. Herein, we describe a case of bronchial rupture related to endobronchial intervention in a patient with relapsing polychondritis.

A 47-yr-old male nonsmoker was referred for management of progressive dyspnoea, stridor and cough evolving over...
12 months. He had been considered to have severe asthma and was treated with a fixed combination of inhaled corticosteroids and long-acting β-agonists, and short courses of oral corticosteroids. Spirometry showed fixed airflow limitation with a post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity of 22% and an FEV1 of 22% predicted. A thoracic computed tomography (CT) scan revealed marked thickening and narrowing of trachea and mainstem bronchi (fig. 1). A diagnosis of relapsing polychondritis was suggested; the patient had no auricular or nasal chondritis and no ocular symptoms. Fluorodeoxyglucose positron emission tomography showed no cartilaginous tracer uptake. Bronchoscopy showed marked thickening and inflammation of airway mucosa. Severe tracheobronchomalacia, which was observed predominantly in the left mainstem bronchus, further contributed to airway stenosis with marked reduction in airway calibre. Careful balloon dilatation of the left mainstem bronchus was performed but was insufficient to restore airway patency. An attempt to deploy a bifurcated silicone stent (Tracheobronxane® DumontTM; Novatech, La Ciotat, France) in the trachea and main bronchi was unsuccessful due to incomplete stenosis of the left mainstem bronchus, and the stent had to be removed immediately. After this intervention the patient experienced isolated subcutaneous emphysema without bronchoscopic visualisation of bronchial rupture and without radiographic pneumothorax. 3 days later, the subcutaneous emphysema worsened rapidly and acute respiratory failure required emergency invasive mechanical ventilation. Bronchoscopy revealed laceration of the mainstem left bronchus, leading to a decision for surgical bronchial repair. The patient’s haemodynamic condition deteriorated rapidly due to left tension pneumothorax and pneumopericardium, which required pericardium decompression and insertion of a left chest tube. Surgical bronchial repair was impossible due to extensive laceration and a left pneumonectomy was performed. Histological examination of the bronchi revealed pleomorphic inflammatory infiltrate with disrupted cartilage structures, compatible with the diagnosis of relapsing polychondritis (fig. 2). The post-operative period was complicated by prolonged mechanical ventilation with several episodes of ventilator-associated pneumonia. Weaning from mechanical ventilation was finally achieved after 6 weeks without a tracheostomy. Treatment with methotrexate (25 mg per week) and prednisone (7 mg per day) was started. Within a few weeks respiratory symptoms improved dramatically. A bronchoscopy showed improvement in airway patency and the patient was discharged from hospital.

Relapsing polychondritis is a rare disease and therapies are based on clinical experience rather than on results from clinical trials [1]. Immunosuppressive therapies, including corticosteroids, methotrexate, cyclophosphamide and tumour necrosis factor-α blockers, have been proposed for subjects with relapsing polychondritis [1]. ENG and SABANATHAN [2] further proposed that bronchoscopic intervention could be useful when tracheobronchial stenosis and/or malacia occurred in subjects with relapsing polychondritis. Although immunosuppressive therapy and bronchoscopic intervention were often associated, no study has addressed the best treatment strategy in subjects with airway involvement and relapsing polychondritis.

In our report, an attempt to perform balloon dilatation with endobronchial stenting resulted in bronchial laceration and rupture, leading to left pneumonectomy. ERNST et al. [3] have described the largest cohort of subjects with relapsing polychondritis and airway involvement (n=31). Those authors performed bronchoscopy in 23 subjects and 12 patients underwent bronchoscopic interventions (stenting and/or balloon dilatation). No major complications were described and most patients experienced improvement in airway symptoms [3]. Interestingly, DOOMS et al. [4] conducted a retrospective study of the clinical effectiveness of self-expandable metallic stents in 17 patients with benign airway strictures. Tracheal tear was the single immediate complication of stenting, and occurred in a

FIGURE 1. a) An inspiratory transversal slice thoracic computed tomography (CT) scan revealing marked narrowing of mainstem bronchi (arrows). b) A coronal slice CT scan indicating tracheal wall thickening (arrowheads) and severe narrowing of the left mainstem bronchus (arrows).
subject with relapsing polychondritis [4]. Although broncho-
sopic intervention could be useful in subjects with airway
involvement and relapsing polychondritis, the risk of serious
complications related to laceration of the fragile inflammatory
bronchi is probably increased compared to other causes of
benign stenosis.

Multiple mechanisms may account for airway narrowing in
patients with relapsing polychondritis [3]. Tracheal/tracheobron-
chial wall thickening, which is related to the inflammatory
process, could result in airway stenosis and fibrosis. Cartilage
destruction, which is presumably associated with decreased
airway wall thickness, is responsible for tracheobronchomalacia
characterised by airway collapse on active exhalation [3]. Detailed
assessment of the characteristics of the airway wall using a
combination of CT scan, bronchoscopy and/or endobronchial
ultrasound is probably important in identifying the mechanisms
of airway narrowing. It is suggested that endobronchial inter-
vention is more appropriate for inflammatory/fibrous narrowing
with increased wall thickness and more dangerous in cases of
dominant malacia with reduced airway wall thickness.

In conclusion, relapsing polychondritis and airway involve-
ment is a severe disease for which immunosuppressive
therapy is not always sufficient for symptom improvement.

Because life-threatening complications may occur during
bronchoscopic intervention, we suggest that medical therapy
should always be the first-step therapy and that endobronchial
intervention should be considered in subjects with insufficient
improvement despite medical therapy.

Jeanne Chapron*, Delphine Wermert#, Françoise Le Pimpec-
Barthes*, Aurélie Cazes+, Romain Pommier*, Anne
Hernigou†, Jacques Lacroix#, Daniel Dusser* and
Pierre-Régis Burgel*

*Service de Pneumologie, Hôpital Cochin, AP-HP, Université
Paris Descartes, Sorbonne Paris Cité, †Service de Pneumologie,
Hôpital Européen Georges Pompidou, Service de Chirurgie
Thoracique, Hôpital Européen Georges Pompidou, Service
d’Anatomie-Pathologique, Hôpital Européen Georges Pompidou, and
+Service de Radiologie, Hôpital Européen
Georges Pompidou, AP-HP, Université Paris Descartes,
Sorbonne Paris Cité, Paris, France.

Correspondence: P-R. Burgel, Service de Pneumologie,
Hôpital Cochin, AP-HP, 27 rue du Faubourg St Jacques,
75014 Paris, France. E-mail: pierre-regis.burgel@cch.aphp.fr

Statement of Interest: D. Dusser received fees for consultancy,
advisory board participation or lectures from AstraZeneca,
Boehringer Ingelheim, Chiesi, Novartis and Nycomed. Industry-sponsored grants for education were received from
GlaxoSmithKline and Boehringer Ingelheim. P-R. Burgel
received fees for advisory board participation or lectures
from AstraZeneca, Boehringer Ingelheim, Chiesi, Novartis and
Nycomed.

Provenance: Submitted article, peer reviewed.

REFERENCES

1 Lahmer T, Treiber M, von Werder A, et al. Relapsing polychondritis:
an autoimmune disease with many faces. Autoimmun Rev 2010; 9:
540–546.

2 Eng J, Sabanathan S. Airway complications in relapsing polychon-
dritis. Ann Thorac Surg 1991; 51: 686–692.

3 Ernst A, Rafiq S, Boiselle P, et al. Relapsing polychondritis and
airway involvement. Chest 2009; 135: 1024–1030.

4 Dooms C, De Keukelaire T, Janssens A, et al. Performance of fully
covered self-expanding metallic stents in benign airway strictures.
Respiration 2009; 77: 420–426.

DOI: 10.1183/09059180.0000612