Research Paper

The Effect of a Corrective Exercise Program Based on Scapula Stability on Scapular Upward Rotation and Scapulohumeral Rhythm in Wheelchair Basketball Athletes With Bilateral Scapula Rotational Syndrome

Abdollah Maarouf, Ali Asghar Norasteh*, Hasan Daneshmandi*, Ahmad Ebrahimi Atri*

1. Department of Sports Injuries & Corrective Exercise, School of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
2. Department of Sports Injuries & Corrective Exercise, School of Physical Education and Sport Sciences, Ferdowsi University, Mashhad, Iran.

ABSTRACT

Objective The present study aimed to investigate the effect of scapular stability-based corrective exercise program on scapular upward rotation and scapulohumeral rhythm in Wheelchair Basketball (WB) players with bilateral scapular downward rotation syndrome.

Materials & Methods

According to the research conditions, 24 wheelchair basketball athletes with spinal cord injury voluntarily participated in this study. Initially, eight players were selected from each sport class (1 to 1.5 class, 2 to 2.5 class, and 3 to 4.5 class). Then, four subjects in each group were randomly assigned to each group (12 control subjects with Mean±SD age of 43.23±11.0 years and 12 experimental subjects with Mean±SD age of 39.08±5.08 years). Thus, the control and experimental groups were present in an equal number of three sport classes. WB athletes were professional players in Mashhad City league, Iran. The participants were classified according to the Classification Committee of the IWBF, as well as the corresponding national classification from the Islamic Republic of Iran Sports Federation for the Disabled (IRISFD). Two digital inclinometers were used to measure the humeral range of motion and scapular upward rotation and scapulohumeral rhythm in resting position, 45°, 90°, and 135° shoulder abduction. The exercise group performed scapular stability-based corrective exercises based on the Gym training principles and following ACSM guidelines for eight weeks. The independent t-test, analysis of variance, and analysis of covariance were used for statistical analysis at the significant level of less or equal to 0.05.

Results The results showed no significant asymmetry between dominant and non-dominant shoulders in the scapula’s upward rotation at different angles of shoulder abduction. Contrary to the non-dominant shoulder, the dominant shoulder’s scapula had a less downward rotation at the resting position and a higher upward rotation at 45° of shoulder abduction. Also, in 45° humeral abduction, the dominant shoulder has a less scapulohumeral rhythm ratio than the non-dominant shoulder. WB athletes’ dominant shoulders in lower classes (2-2.5 and 3-4.5) have less scapular downward rotation in scapular resting position and more scapular upward rotation in 45°, 90°, and 135° shoulder abduction. There was no significant difference in scapulohumeral rhythm ratio between WB players with different classes. Scapular upward rotation increased significantly after eight weeks of scapular stability-based corrective exercise program (P=0.05). Also, a significant decrease in the scapular upward rotation was observed at post-program in resting position (P=0.001) and significantly increased in 45° (P=0.01), 90° (P=0.001), and 135° (P=0.001) humeral abduction compared with pre-program in dominant and non-dominant shoulders. However, the ratio of scapulohumeral rhythm in the dominant shoulder did not improve significantly, and the ratio of scapulohumeral rhythm in the non-dominant shoulder improved at 90° and 135°.

Conclusion Scapular stability-based corrective exercises can be used as one of the training methods to restore muscle balance, prevent and correct scapular upward rotation and scapulohumeral rhythm in wheelchair basketball athletes. Therapists should know that some degrees of scapular upward rotation and scapulohumeral rhythm asymmetry may be common in WB players. This asymmetry should not always be considered a pathological symptom but may be an adaptation to exercise training and frequent use of the upper extremity.

Keywords: Wheelchair, Basketball, Scapula, Spinal cord injury, Spinal cord injury, Exercises

Corresponding Author:

Abdollah Maarouf, PhD.

Address: Department of Sports Injuries & Corrective Exercise, School of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

Tel: +98 (915) 3613649

E-Mail: abed.maarouf93@gmail.com
Extended Abstract

Introduction

Athletes who mainly use their upper limbs in sports usually complain of shoulder disorders and pain [1, 2]. Inman et al. were the first to measure scapulohumeral rhythm by radiography and suggested a 2:1 ratio for glenohumeral elevation and scapulothoracic upward rotation [3]. Some of the literature suggests the 2:1 ratio is not consistent across an entire arc of shoulder elevation and that variability in this ratio may increase when considering the scapulohumeral rhythm exhibited by shoulder injured subjects [4, 5]. Some previous studies have suggested that scapula muscle dysfunction can lead to abnormal alignment and upper limb dysfunction [6, 7]. One of the scapula’s abnormal problems is its low rotation syndrome, which causes the scapula to fall, drain, and tilt [8, 9]. Previous research in people who use wheelchairs examined their scapula condition in activities such as translocation and weight loss [10-12]. According to these studies, changes in the scapula directions and movements and arm during these activities reduce the space under the acromion, which increases the risk of injury [10-12]. Transmissions in people who use wheelchairs are performed with compensatory changes in the scapula kinematics, maintaining space under the acromion during activity [11].

The previous scapula kinematics results of wheelchair drivers are mainly concluded from studies that have examined the scapula movements unilaterally (right or left) [13-15]. But wheelchair driving is a bilateral activity that requires coordination of both upper limbs, and therefore its symmetry cannot be ignored [16]. Although previous data show scapula asymmetry when driving in a wheelchair [16, 17, 18-20], we still need to research scapula movements bilaterally (right and left). Wheelchair players are at risk of overworked shoulder injuries due to the frequent use of their upper limbs to drive wheelchairs. Repeated wheelchair mechanisms cause repetitive scapular protrusions that can lead to postural changes, disturbing muscle weakness, and anterior muscle stiffness. Compensatory muscle imbalances may be due to prolonged wheelchair use or defects in the rotator cuff and scapula stabilizers’ strength training programs. This condition can lead to musculoskeletal injuries in athletes who require different movement patterns (such as swimming, throwing, or racket sports) [21, 22]. However, it is unknown whether activation has a protective effect on the musculoskeletal system [23]. Previous studies in this field have investigated the scapulohumeral rhythm in injured people and healthy athletes. However, no studies have been performed on wheelchair basketball players, and the effect of exercise interventions on the scapula in these people has not been studied. Thus, we aimed to investigate the indexes of scapular upward rotation and scapulohumeral rhythm in wheelchair basketball players and see the exercise program’s results based on scapula stability on these indexes.

Materials and Methods

The research method is quasi-experimental. According to the research conditions, 24 wheelchair basketball players with spinal cord injuries participated in this study. First, 8 players from each sports class (sports class 1 to 1.5, sports class 2 to 2.5, and sports class 3 to 4.5) were selected. Then, four people from each sports class were randomly assigned to the control or experimental group (12 control and 12 experimental). Thus, an equal number of three sports classes were present in each group. Wheelchair basketball players were professional players in the Mashhad City League, Iran. The participants were classified according to the IWBF classification and the relevant sports classification from the Veterans and Disabled Sports Federation of the Islamic Republic of Iran (IRISFD), both of which are required for people with physical disabilities to participate in competitions. Individuals with a history of shoulder surgery, injury, and pain were excluded from the study 6 months before the test. Two digital inclinometers were used to measure the motion of the arm and scapula range at rest position and 45°, 90°, and 135° shoulder abduction angles at the scapula scapulation surface. The study’s final results to measure the scapular upward rotation in resting positions (ICC=0.89) and angles 45° (ICC=0.88), 90° (ICC=0.89), and 135° (ICC=0.82), arm abduction had internal reliability between tests.

The exercise group performed a corrective exercise program based on scapula stability for eight weeks to strengthen and stretch the scapula stabilizing muscles. In the first session, all subjects received about one hour of training on how to do the exercises, and also each subject was given written instructions and a picture of how to do the exercises for guidance at home. The training program included five days a week, daily stretching exercises, and three days of strength training. Each training session consisted of a maximum of 60 minutes (10 minutes of warm-up, 10 minutes of stretching and range of movement after warm-up or cooling, and a maximum of 30 minutes of strength and postural exercises based on scapula stability and 10 minutes of cooling). In each training session, the examiner and a bodybuilding instructor were present to guide the subjects. This exercise program has been prepared using Gym exercises for people with spinal cord injury provided by Harborview Medical Center and following The American College of Sports Medicine (ACSM). guidelines for these
people [24, 25]. The independent t-test, Analysis of Variance (ANOVA), and Analysis of Covariance (ANCOVA) were used to analyze the data. The significance level was determined at P≤0.05 in all tests.

Results

Table 1 presents the demographic information of the subjects. Tables 2 and 4 show the scapular upward rotation and the scapulohumeral rhythm before and after the exercise program in the control and exercise groups. ANCOVA showed a significant difference between the control and exercise groups in the scapular upward rotation in resting position, 45°, 90°, and 135° shoulder abduction angles after exercise in preferred and non-preferred hands. The results showed a significant improvement in scapulohumeral rhythm after non-preferred hand training at 90° and 135° shoulder abduction angles. The results showed no significant asymmetry between the preferred and non-preferred shoulder (Figure 1) at different shoulder angles, but there was a significant difference in the scapulohumeral rhythm ratio at the 45° angle of shoulder abduction in the preferred and non-preferred shoulder (Table 3). Based on the variance test results analysis, there was a significant difference in the scapular upward rotation and scapulohumeral rhythm in different sports classes at resting position, 45°, 90°, and 135° shoulder abduction (Table 5).

Discussion and Conclusion

This study aimed to investigate the indexes of scapular upward rotation and scapulohumeral rhythm in wheelchair basketball players and measure the effectiveness of an exercise program based on scapula stability on these indexes.

The results showed no significant asymmetry in the scapular upward rotation in different degrees of shoulder abduction between the preferred and non-preferred shoulders in these athletes. At a 45-degree shoulder abduction angle, the scapulohumeral rhythm ratio in the preferred shoulder was lower than that in the non-preferred shoulder. The scapula in the preferred shoulder of athletes with lower sports class-

Table 1. Demographic information of the subjects

Group	Number	Mean±SD		
		Age (y)	Weight (kg)	Sitting Height (cm)
Control	12	43.0±11.23	61.25±9.91	78.25±3.95
Exercise	12	39.08±5.08	54.5±8.73	77.25±2.22

Figure 1. The independent t-test results in upward rotation of the scapula at different shoulder angles between the preferred and non-preferred shoulder.
es (2 to 2.5 and 3 to 4.5) had a less low rotation at resting position and more upward rotation at 45°, 90°, and 135° shoulder abduction angles.

The ratio of scapulohumeral rhythm in athletes with different sports classes was not significantly different. The scapula's further upward rotation was observed as the arm elevation increased in the frontal plane, which corresponds to the scapula's role in overhead activities to optimize performance. At resting position, the lower rotation was observed some more. But at different degrees of shoulder abduction, less upward rotation was observed in the scapula. Almost like the scapulohumeral rhythm, the share of the scapular upward rotation in the entire shoulder elevation arch is different, consistent with previous reports [26, 27]. Some kinematic studies have shown differences in the scapula position and movements on both sides [33-28], while others suggest symmetry in the scapula kinematics in the preferred and non-preferred shoulder [27, 34].

Barry et al. reported internal rotation, upward rotation, and anterior scapular tilt during wheelchair driving [35]. Martin et al. showed wheelchair tennis players had a more posterior tilt in the scapula during arm elevation and lowering it to the preferred than non-preferred position [36]. The scapula in these individuals had more upward rotation to the preferred side during the arm’s elevation on the scapula plate than those with shoulder involvement [36-39]. It can be concluded that asymmetry, especially an anterior tilt pattern or the internal scapula rotation, is associated with shoulder pathology or its susceptibility. It seems that one of the reasons for the anterior glenohumeral instability in athletes is throwing, which can make them prone to shear stress and damage to the capsule anterior structure and labrum.

The results showed no significant difference between the preferred and non-preferred shoulders of wheelchair basketball players in the scapula resting position. However, the scapula had lower rotation in the preferred shoulder than the non-preferred shoulder. These results are probably due

Shoulder	Test Stage	Group	The Scapular Upward Rotation at Rest Position (Degree)	The Scapular Upward Rotation at 45° Shoulder Abduction (Degree)	The Scapular Upward Rotation at 90° Shoulder Abduction (Degree)	The Scapular Upward Rotation at 135° Shoulder Abduction (Degree)
Preferred	Before	Control	-3.95±0.69	3.35±0.86	13.20±0.78	26.45±1.69
		Exercise	-4.02±0.73	3.57±0.84	13.7±0.87	26.7±1.19
	After	Control	-3.7±0.73	2.71±1.02	13.65±1.14	27.16±1.24
		Exercise	-3.13±0.86	3.93±0.94	14.7±1.15	28.32±1.4
Non-preferred	Before	Control	-3.53±0.84	2.85±0.84	13.29±1.54	26.58±1.91
		Exercise	-3.8±0.57	3.30±0.94	13.6±1.12	26.78±1.86
	After	Control	-3.55±0.81	3.25±0.42	13.33±1.4	26.57±1.84
		Exercise	-3.04±0.82	3.96±0.72	15.15±1.68	28.54±2.1

Analysis of Covariance

Preferred	Before	F=10.48	Sig.=0.004	Eta=0.33	F=9.35	Sig.=0.006	Eta=0.30	F=2.72	Sig.=0.11	Eta=0.11
	After	F=5.96								
Non-preferred	Before	F=22.88	Sig.=0.001	Eta=0.52	F=7.26	Sig.=0.01	Eta=0.25	F=18.60	Sig.=0.001	Eta=0.47
	After	F=18.80								
to adaptations to the particular position used in the musculoskeletal system, such as muscle length imbalances in the scapulohumeral muscles due to repeated but different frequency and movement patterns in the preferred and non-preferred shoulder [6, 29, 40]. It was also observed the mean amount of the scapular upward rotation at resting position, 45°, 90°, and 135° angles of arm abduction in the preferred shoulder of wheelchair basketball athletes with different sports classes was significantly different, which may be due to muscle imbalance.

People with lower exercise classes have better muscle control over the trunk, and the trunk-scapular muscles provide more scapular stability during arm elevation. This study showed that a corrective exercise program based on scapula stability improved scapular upward rotation in wheelchair basketball players. After the training program, the scapular downward rotation decreased in dominant and non-dominant shoulder in the resting position (effect size respectively, 0.33, 0.52) and scapular upward rotation had a significant

Table 3. Results of the independent t-test in scapulohumeral rhythm at different shoulder angles between the preferred and non-preferred shoulder

Shoulder	Preferred	Non-preferred	P
The scapulohumeral rhythm ratio at 45° of abduction (standard deviation)	5.07:1 (0.47)*	5.76:1 (0.87)	0.002
The scapulohumeral rhythm ratio at 90° of abduction (standard deviation)	4.16:1 (0.15)	4.28:1 (0.38)	0.18
The scapulohumeral rhythm ratio at 135° of abduction (standard deviation)	3.42:1 (0.16)	3.46:1 (0.24)	0.51

*For example, the scapula resting position is up to 45 degrees of abduction, the scapulohumeral rhythm ratio in the upper shoulder is 5.07:1. This means that in the range of 45 degrees of preferred shoulder abduction (from resting up to 45 degrees) per 5.07 degrees in the glenohumeral joint motion, a degree of motion in the scapulohumeral joint (the upper rotation of the scapula) has been carried out. Therefore, the lower the scapulohumeral rhythm ratio is the more scapulothoracic joint involvement (the upper rotation of the scapula).

Table 4. Results of ANCOVA test in scapulohumeral rhythm before and after the exercise program

Shoulder	Test Stage	Group	The Scapulohumeral Rhythm Ratio in Varying Degrees of the Shoulder Abduction		
			45° (SD)	90° (SD)	135° (SD)
Preferred	Before	Control	5.18:1 (0.46)	4.25:1 (0.11)	3.44:1 (0.19)
		Exercise	4.95:1 (0.48)	4.08:1 (0.15)	3.39:1 (0.11)
	After	Control	6.27:1 (1.54)	4.19:1 (0.25)	3.37:1 (0.13)
		Exercise	5.5:1 (1.02)	4.05:1 (0.17)	3.29:1 (0.15)
Non-preferred	Before	Control	6.12:1 (0.82)	4.38:1 (0.47)	3.49:1 (0.25)
		Exercise	5.41:1 (0.79)	4.17:1 (0.25)	3.42:1 (0.23)
	After	Control	5.72:1 (0.55)	4.37:1 (0.33)	3.5:1 (0.26)
		Exercise	5.44:1 (0.4)	3.96:1 (0.34)	3.28:1 (0.21)

Analysis of Covariance

	F	Sig.	Eta
Preferred	F=0.98	Sig.=0.33	Eta=0.04
Non-preferred	F=0.08	Sig.=0.76	Eta=0.004

Maarouf A, et al. Exercise Program Based on Scapula Stability on Scapular Upward Rotation and Scapulohumeral Rhythm in Wheelchair Basketball Athletes. RJ. 2021; 21(4):488-507.
increase in 45° and 135° of shoulder abduction in dominant side (effect size respectively, 0.3, 0.22) and had a significant increase in 45°, 90° and 135° of shoulder abduction in non-dominant side (effect size respectively, 0.52, 0.25, 0.47). Although no significant improvement was observed in the scapulohumeral rhythm ratio in the preferred shoulder, it improved in the non-preferred shoulder at 90° and 135° angles of arm abduction (effect size, 0.27, 0.28, respectively).

The scapula muscle strengthening was associated with a significant increase in its upward rotation angle and a significant decrease in scapulohumeral rhythm. According to this study results, the scapula direction, as described by Kendall et al. [41], deviated somewhat from the normal state. Therefore, a corrective exercise program based on scapula stability can maintain and restore the scapula’s

Arm Abduction Status	State of Shoulder	df	F	Sig.	Post Hoc Test Results	Comparison Between Sports Classes	Sig.
Resting state	Preferred	2	16.14	0.001		Class 1 to 1.5 with 2 to 2.5	0.001
	Non-preferred	2	19.37	0.001		Class 1 to 1.5 with 3 to 4.5	0.001
45° shoulder abduction	Preferred	2	14.59	0.001		Class 2 to 2.5 with 3 to 4.5	0.9
	Non-preferred	2	6.83	0.05		Class 1 to 1.5 with 3 to 4.5	0.004
					Class 2 to 2.5 with 3 to 4.5	0.47	
90° shoulder abduction	Preferred	2	3.96	0.03		Class 1 to 1.5 with 2 to 2.5	0.03
	Non-preferred	2	5.59	0.01		Class 1 to 1.5 with 3 to 4.5	0.68
					Class 2 to 2.5 with 3 to 4.5	0.06	
135° shoulder abduction	Preferred	2	3.77	0.04		Class 1 to 1.5 with 2 to 2.5	0.05
	Non-preferred	2	3.37	0.05		Class 1 to 1.5 with 3 to 4.5	0.14
					Class 2 to 2.5 with 3 to 4.5	0.89	
normal position and possibly repair and improve the standard muscle length in the upper rotator scapula muscles.

Overall, this study showed that wheelchair basketball players have some asymmetry in the upward scapular rotation and the ratio of the scapulohumeral rhythm between the preferred and non-preferred shoulder. It is due to specific adaptations to imposed demands [42] and muscle imbalances caused by spinal cord injury. This study showed that the selected exercise program could be effective in correcting the scapula direction and movements during arm elevation in wheelchair basketball players. This finding is consistent with the Shaman and Caldwell results, which examined the impact of scapula exercise programs [43, 44].

The study’s limitations were the small sample size and its non-blindness according to the research conditions. It is suggested that similar studies on scapula disorders be performed in other groups of athletes with wheelchairs, especially spinal cord injuries (such as tennis, archery, etc.) and women.

The study results supported the effectiveness of the scapula stability-based correction exercising program in improving scapula movements in wheelchair basketball players. The scapula has an essential role in shoulder movements, whose postural and movement disorders can cause secondary problems such as shoulder pain, shoulder entrapment syndrome, and limited motion range. So, physicians and trainers devote part of their training program to scapula stabilizers. Despite our results, more research and follow-up are needed to prepare an effective exercise therapy program for wheelchair athletes and identify its long-term effects in preventing injury and determining its benefits in wheelchair athletes, especially wheelchair basketball players.

Ethical Considerations

Compliance with ethical guidelines

Necessary coordination was arranged with the head of the welfare department of Mashhad City and Imam Khomeini and Shahid Fayyaz Bakhsh rehabilitation centers. The proposal was approved by the Research Commission of the University of Guilan. The participants were informed of the purpose of the research and its implementation stages. A written consent has been obtained from the subjects. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them. The Helsinki Convention was also observed.
تاثیر یک برنامه تمرینی اصلاحی مبتنی بر ثبات اسکاپولا بر چرخش فوقانی اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر

مقدمه:
من نادرست بود که در بیش از 20 درصد ورزشکاران ورزشکاران بسکتبال با ویلچر وجود دارد. این عدم تقارن نباید همیشه به عنوان یک نشانه پاتولوژیک در نظر گرفته شود، بلکه ممکن است یک سازگاری به تمرین درمانگران باید توجه کنند که در این ورزشکاران، درجه ای از عدم تقارن در چرخش رو به بالای اسکاپولا و ریتم اسکاپولوهومرال، می تواند استفاده قرار گرفته و سبب جلوگیری و تصحیح چرخش رو به بالای اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر شود.

تمرینات اصلاحی مبتنی بر ثبات اسکاپولا می تواند به عنوان یکی از روش های تمرینی برای بازگرداندن تعادل عضلانی مورد استفاده قرار گیرد. در این مطالعه، اثر یک برنامه تمرینی اصلاحی مبتنی بر ثبات اسکاپولا بر چرخش رو به بالای اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر بررسی می شود.

مواد و بهینه:
یک ورزشکار بسکتبال با ویلچر و دارای ضایعه نخاعی به طور هدفمند در این مطالعه شرکت کرد. ورزشکار بهطور همبسته به تمرینات مبتنی بر ثبات اسکاپولا واگذار گردید. در این تمرینات، تمرینات اصلاحی مبتنی بر ثبات اسکاپولا در شرایط استراحت و در موقعیت‌های مختلف انجام گردید.

نتایج:
نتایج نشان داد که در چرخش رو به بالای اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر، بهبود معناداری حاصل نشد. در نسبت ریتم اسکاپولوهومرال در شانه برتر و غیربرتر نیز، بهبود معناداری نشان داد.

نتیجه گیری:
در این مطالعه، تمرینات اصلاحی مبتنی بر ثبات اسکاپولا می تواند به عنوان یکی از روش های تمرینی برای بازگرداندن تعادل عضلانی مورد استفاده قرار گیرد.

کلیدواژه‌ها:
بی‌دیدگان، ثبات، مبتنی بر ثبات، اسکاپولا، ویلچر، بسکتبال، آسیب‌‌داری، پاتولوژیک.
بالغ یکی از کیفیت‌های اسکاپولوکینمیک به‌شمار می‌آید که در فعالیت‌های ورزشی افراد ویلچری به‌وجود می‌آید. با این حال، تحقیقات مقداری از جمله ضمنی و معنی‌داری که در اینجا اشاره شده است که به‌صورت کیفی و کم‌تعدادی انجام شده است. در نتیجه، نمی‌توان فرض کرد که فعالیت‌های ورزشی روی ویلچر می‌گذرند که برای فعالیت‌های روزمره طراحی شده‌اند. با این حال، بازیکنان بسکتبال با ویلچر، اکثر وقت خود را در حرکاتی متفاوت (مانند شنا، ورزش‌های پرتابی یا ورزش‌های ثبت‌دهنده اسکاپولا) ایجاد می‌شود. این امر می‌تواند منجر به تکراری اسکاپولا می‌شود که می‌تواند منجر به تغییر پاس‌چر، ضعف و ضعف در جهت‌های اسکاپولا در فعالیت‌های ورزشی ویلچری شود. این تغییرات جهت حفظ فضای زیر آکرومیون طی شکل‌گیری ویلچری، جهات اسکاپولا را در فعالیت‌های مانند پرتاب‌های ورزشی مضافاتی ایجاد می‌کند. در اینجا، جهادکاران ویلچری، باید تحقیقاتی انجام دهند که محاسبه ویلچری را در فعالیت‌های مختلفی که در شرایط مختلف جهت اطمینان از صحت و سلامت ویلچری انجام دهند.

چراکه ویلچری به‌طور عمده در سه ایمنی اندام فوقانی است و بنابراین تقارن آن را نمی‌توان نادیده گرفت، ویلچری یک فعالیت دوطرفه است که نیازمند هماهنگی هر دو ایمنی اندام فوقانی است. وضعیت‌های نشسته روی ویلچری، انتقال‌های این اندام‌ها و هر دو ایمنی اندام فوقانی، انتقال‌های این اندام‌ها و هر دو ایمنی اندام فوقانی می‌گذرند. این امر می‌تواند منجر به تغییر پاس‌چر، ضعف و ضعف در جهت‌های اسکاپولا در فعالیت‌های ورزشی ویلچری شود. این تغییرات جهت حفظ فضای زیر آکرومیون طی شکل‌گیری ویلچری، جهات اسکاپولا را در فعالیت‌های مانند پرتاب‌های ورزشی مضافاتی ایجاد می‌کند. در اینجا، جهادکاران ویلچری، باید تحقیقاتی انجام دهند که محاسبه ویلچری را در فعالیت‌های مختلفی که در شرایط مختلف جهت اطمینان از صحت و سلامت ویلچری انجام دهند.

تحقیقی بسیاری از کیفیت‌های اسکاپولوکینمیک به‌شمار می‌آید که در فعالیت‌های ورزشی افراد ویلچری به‌وجود می‌آید. با این حال، نتایج تحقیقاتی مربوط به ایمنی اندام فوقانی که در اینجا اشاره شده است که به‌صورت کیفی و کم‌تعدادی انجام شده است. در نتیجه، نمی‌توان فرض کرد که فعالیت‌های ورزشی روی ویلچر می‌گذرند که برای فعالیت‌های روزمره طراحی شده‌اند. با این حال، بازیکنان بسکتبال با ویلچر، اکثر وقت خود را در حرکاتی متفاوت (مانند شنا، ورزش‌های پرتابی یا ورزش‌های ثبت‌دهنده اسکاپولا) ایجاد می‌شود.

نتایج بسیاری از کیفیت‌های اسکاپولوکینمیک به‌شمار می‌آید که در فعالیت‌های ورزشی افراد ویلچری به‌وجود می‌آید. با این حال، نتایج تحقیقاتی مربوط به ایمنی اندام فوقانی که در اینجا اشاره شده است که به‌صورت کیفی و کم‌تعدادی انجام شده است. در نتیجه، نمی‌توان فرض کرد که فعالیت‌های ورزشی روی ویلچر می‌گذرند که برای فعالیت‌های روزمره طراحی شده‌اند. با این حال، بازیکنان بسکتبال با ویلچر، اکثر وقت خود را در حرکاتی متفاوت (مانند شنا، ورزش‌های پرتابی یا ورزش‌های ثبت‌دهنده اسکاپولا) ایجاد می‌شود.
ارمن‌شناسی، اقدامات درمانی، شاخص‌های اندازه‌گیری، آمار، ویژگی‌های کریوئید، فیزیوتراپی، اسکایپولو.
استفاده شد آزمون تحلیل ویلکس آنوا برای مقیاسه حرکت رو به بالا اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران با کلاس‌های ورزشی مختلف استفاده شد. فرض می‌شود بر اساس آزمون تحلیل ویلکس آنوا برای مقیاسه حرکت رو به بالا اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران با کلاس‌های ورزشی مختلف استفاده شد.
سلسلی که کسی دو طرفه و تقارن در اسکاپولا طی ابداکشن شانه در سطح اسکاپشون اسکاپولار را در ورزشکاران بسکتبال با ویلچر مورد بررسی قرار داد. در پژوهش حاضر سهم چرخش رو به بالای اسکاپولا در الویشن شانه در سطح فرونتال تعیین شد و همچنین با استفاده از ابزارهای موجود شواهدی ارائه شد که ورزشکاران بسکتبال با ویلچر ممکن است مقداری عدم تقارن در چرخش رو به بالای اسکاپولا و ریتم اسکاپولوهومرال بین شانه برتر و غیربرتر داشته باشند. چرخش رو به بالای بیشتر در اسکاپولا هم زمان با افزایش الویشن بازو در صفحه فرونتال مشاهده شد که این با نقش اسکاپولا در فعالیت های بالای سر برای بهینه سازی عملکرد مطابقت دارد. در وضعیت استراحت مقداری چرخش پایینی بیشتر و در درجات مختلف ابداکشن شانه چرخش رو به بالا کمتری در اسکاپولا مشاهده شد. تقریباً مانند ریتم اسکاپولوهومرال، سهم چرخش رو به بالای اسکاپولا در کل قوس الویشن شانه متفاوت و مطابق با گزارشات و استفاده از ابزارهای کلینیکی موجود است.

توجه: 1. اطلاعات جمعیت شناختی آزمودنی ها.

گروه	تعداد	انحراف استاندارد	میانگین
کنترل	12	±11/23	43/23
وزن (کیلوگرم)	61/25	±9/91	
قد نشسته (سانتیمتر)	78/25	±3/95	
آزمایش	12	±5/08	39/08
وزن (کیلوگرم)	54/5	±8/73	
قد نشسته (سانتیمتر)	77/25	±3/22	

جدول ا. اطلاعات جسمانی شناختی آزمودنی ها

نوع حرکت	نام عضله	نام حرکت	تعداد ست	تعداد تکرار	
تقویتی	دلتوئید	بالا بردن مدیسن بال و میله	3	10	
	پشتی بزرگ	کشش لت پول و اکستنشن شانه	3	10	
	ذوزنقه تحتانی	دیپ با بازوی باز	3	10	
	متوازی الاضلاع و ذوزنقه میانی و تحتانی	کشش پارو و حرکت پروانه با وزنه آزاد	3	10	
	عضلات رتیتورکاف	ویژه‌کردن رچتر که از ضخامت بازو و همکاران سپاره شده شود	3	10	
	دندانه پشتی	پانچ با بازوی باز و هل دادن دیوار	3	10	
	سینه‌ای بزرگ	درجه و آرنج ها نیز	90	30 ثانیه ای	پنج تکرار
	سینه‌ای کوچک	مربی با فشار بر سر شانه در حالت خوابیده به پشت در سعی در رساندن سطح خلفی اسکاپولا ورزشکار به تشک را دارد	90	30 ثانیه ای	پنج تکرار
	ذوزنقه بالایی	یک دست به بدنه ویلچر جهت ثبات تنه و دست دیگر دریک طرف سر	90	30 ثانیه ای	پنج تکرار
	پروترکشن اسکاپولا	پروترکتورهای اسکاپولا	90	30 ثانیه ای	پنج تکرار

برنامه تمرینی اصلاحی طی یک جلسه.

| مدت زمان استراحت بین ست ها | 2 دقیقه بود |

نتیجه‌گیری: منجر به نتایجی که در مطالعه‌ای گذشته به ریتم اسکاپولوهومرال و وزشکران یک دسته‌ای که هر لحظه در روز Cronbach’s coefficient α = 0.70 از 0.50 تا 0.70 در زمینه‌ی ریتم اسکاپولوهومرال در وزشکران سبک‌اش و در روز در فرمول چندن ارزیابی های یکی باشد، شاخص دوره 1399 زمستان. شماره 21
مطالعه: آزمایش استنداردها

فصل گذشته آزمونی که متعلق می‌باشد ریتم اسکاپولوهومرال در زیرین فاصله کتف با بزرگ بخش در ورزشکاران بسکتبال با ویلچر دارای سندرم چرخش است. این بدان معناست که در دامنه 26 درجه آبداکشن شانه نسبت ریتم اسکاپولوهومرال در شانه برتر (از وضعیت استراحت کتف تا به عنوان مثال از وضعیت استра...
زمینه
نخستین باری که انسان‌ها در رزمایشات ورزشی انسان‌های بسکتبال با ویلچرهای ممکن است در حالت استراحت، میزان فرضیه‌های آن‌ها را تأثیرگذار می‌کند. این تحقیق در مورد یک برنامه تمرینی اصلاحی مبتنی بر ثبات اسکاپولا بر چرخش فوقانی اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر دارای سندرم چرخش درجه (انحراف استاندارد) نشان می‌دهد که در مدت یک ماه بهبود قابل توجهی در این متغیر می‌آید.

نتایج آزمون آنکووا در ریتم اسکاپولوهومرال قبل و بعد برنامه تمرینی نشان می‌دهد که تفاوت، در مقادیر فرکانس و چه از نظر الگوی حرکتی در شانه برتر و غیربرتر است.

نتایج آزمون تی مستقل در چرخش رو به بالای اسکاپولا در زوایای مختلف شانه بین شانه برتر و غیربرتر نشان می‌دهد که در حالت استراحت، میزان فرضیه‌های آن‌ها را تأثیرگذار می‌کند. این تحقیق در مورد یک برنامه تمرینی اصلاحی مبتنی بر ثبات اسکاپولا بر چرخش فوقانی اسکاپولا و ریتم اسکاپولوهومرال در ورزشکاران بسکتبال با ویلچر دارای سندرم چرخش درجه (انحراف استاندارد) نشان می‌دهد که در مدت یک ماه بهبود قابل توجهی در این متغیر می‌آید.

نتایج آزمون آنکووا در ریتم اسکاپولوهومرال قبل و بعد برنامه تمرینی نشان می‌دهد که تفاوت، در مقادیر فرکانس و چه از نظر الگوی حرکتی در شانه برتر و غیربرتر است.
پژوهشی حاکم نشان داد که برخی اصولی ایجاد ناپایداری اسکاپولوهومرال ممکن است در صورت فعالیت خاصی و بدون استفاده از درمانگر در بیش از حد استفاده از اندام فوقانی در نظر گرفته شوند.

جدول ۱. نتایج آزمون آنالیز های واریانس در کلاس‌های ورزشی مختلف

کلاس	Sig.	f	df	شاخص	Sig.	f	df	شاخص	
کلاس ۱	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۲	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۳	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۴	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۵	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۶	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۷	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۸	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۹	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01
کلاس ۱۰	0.001	16.7	158	0.01	کلاس ۱	0.001	16.7	158	0.01

جهانی سپرده و بکارگیری نهایی برای بهبود ثبات اسکاپولوهومرال ویلچر دارای سندرم چرخش در ورزشکاران بسکتبال با ویلچر ممکن است ضروری و ضروری باشد، چرا که این مطالعه به تدریس و بررسی این مسئله نیازمند است.

ملفی باشد و بیکاری می‌شود درمانگران با آن آماده بودند که برخی از هم تبلور یا به عنوان رهایی اسکاپولوهومرال توسط یک اسکاپولا در ورزشکاران دیگری با درآمدهای ثابت است. همچنین اسکاپولا در ورزشکاران دیگری با درآمدهای ثابت است. همچنین اسکاپولا در ورزشکاران دیگری با درآمدهای ثابت است. همچنین اسکاپولا در ورزشکاران دیگری با درآمدهای ثابت است.
مطالعه کوتاهی بر اساس هندبالی امکانات در زمستان و ویریورت در ویریورت در

وحید و تحقیقات استحکام‌پذیری نظامان در تحقیقات آموزشی بر اساس این موضوع

و تحقیقات رو به بالا در انرژی از این آزمایشات برای تحقیقات آموزشی بر اساس این موضوع

رژه طبیعی امکانات در زمستان و ویریورت در ویریورت در

ناظر بر آزمایشات برای تحقیقات آموزشی بر اساس این موضوع

بازگرداندن طول عضلات (مانند تنیس، تیر اندازی و غیره) و همچنین در جریان

زنن انگام گرد.
ملاحظات اخلاقی

پژوهشی از اصول اخلاق پژوهش

قبل از اجرای پژوهش، با ریاست اداره بهزیستی شهرستان مشهد و مرکز‌های اخلاق پژوهشی امام خمینی (ره) و شهید فاضلی خیشه، همراهی‌ها و اخلاقیان به‌هم‌آمیختن طرح مقاله پژوهشی اولیه و تکمیل پژوهشی، در کمیسیون پژوهشی دانشگاه گیلان از لحاظ اخلاقی مورد تأیید قرار گرفت. گزارش‌های پژوهشی جلب شد که اطلاعات جمع‌آوری شده محورانه خواهند بود و در صورت عدم تمایل در هر مرحله از پژوهش می‌توانند از مطالعه خارج شوند.

حامی مالی

این پژوهش مستخرج از رساله دکتری نویسنده اول در گروه حرکات آسیب‌شناسی و آسیب‌شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی دانشگاه گیلان است.

مشارکت نویسندگان

نگارنده مقدمه، پژوهشگر اصلی و تحلیل آماری هدایه، محور و روش‌شناسی و نگارنده بعنوان معاون نویسنده و حسن دانشمندی، روش‌شناسی و پژوهشگر کمکی: حسن ابراهیمی، علی اصغر نورسته و حسن دانشمندی.

تعارض منافع

بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

تشکر و معرفی

از ورزشکاران بسکتبال با ویلچر جراح و معلول مرکز توانبخشی امام خمینی (ره) و شهید فاضلی خیشه شهر مشهد که در این پژوهش مشارکت داشتند، تشکر و قدردانی می‌شود.
References

[1] Jobe F, Pink M. Shoulder pain in golf. Clinics in Sport Medicine. 1996; 15(1):55-63. [DOI:10.1016/S0888-5255(05)80158-7]

[2] Ranson C, Gregory P. Shoulder injury in professional cricketers. Physical Therapy in Sport. 2008; 9(1):34-39. [DOI:10.1016/j.pts.2007.08.001] [PMID]

[3] Fayad F, Hoffmann G, Hanetton S, Yazbeck C, Lefevre-Colau MM, Porzaux S, et al. 3-D scapular kinematics during arm elevation: Effect of motion velocity. Clinical Biomechanics. 2006; 21(9):932-41. [DOI:10.1016/j.clinbiomech.2006.04.015] [PMID]

[4] Sobush DC, Simoneau GG, Dietz KE, Levene JA, Grossman MM, Poiraudeau S, et al. 3-D scapular kinematics during arm elevation: Effect of motion velocity. Clinical Biomechanics. 2006; 21(9):932-41. [DOI:10.1016/j.clinbiomech.2006.04.015] [PMID]

[5] Magee DJ. Orthopedic physical assessment. Philadelphia: W. B. Saunders Company; 1997.

[6] Sahrmann S. Diagnosis and treatment of movement impairment syndromes. St. Louis: Mosby; 2002.

[7] Jobe F, Pink M. Shoulder pain in golf. Clinics in Sport Medicine. 1996; 15(1):55-63. [DOI:10.1016/S0888-5255(05)80158-7]

[8] Scibek JS, Mell AG, Downie BK, Carpenter JE, Hughes RE. Shoulder kinematics in patients with full-thickness rotator cuff tears after a subacromial injection. Journal of Shoulder and Elbow Surgery. 2008; 17(1):172-81. [DOI:10.1016/j.jse.2007.05.010] [PMID]

[9] Schel J, Mell AG, Downie BK, Carpenter JE, Hughes RE. Shoulder kinematics in patients with full-thickness rotator cuff tears after a subacromial injection. Journal of Shoulder and Elbow Surgery. 2008; 17(1):172-81. [DOI:10.1016/j.jse.2007.05.010] [PMID]

[10] Côté J, Morin BB, Cloutier M, Beaudoin D, Gagnon C, Cadieux D. Shoulder pain in individuals with paraplegia and quadriplegia. Archives of Physical Medicine and Rehabilitation. 2007; 88(10):1293-300. [DOI:10.1016/j.apmr.2006.12.011] [PMID]

[11] Borstad JD. Resting position variables at the shoulder: Evidence to support a posture impairment association. Physical Therapy. 2006; 86(5):549-57. [DOI:10.1093/ptj/86.5.549] [PMID]

[12] Page P, Frank C, Lardner R. Assessment and treatment of muscle imbalance: The Janda approach. Journal of Orthopaedic & Sports Physical Therapy. 2011; 41(10):799-800. http://www.jospt2011.com/issue/10/ [PMID]

[13] Ha SM, Kwon OY, Yi CH, Jeon HS, Lee WH. Effects of passive correction of scapular position on pain, proprioception, and range of motion in neck-pain patients with bilateral scapular downward-rotation syndrome. Manual Therapy. 2011; 16(6):585-9. [DOI:10.1016/j.math.2011.05.011] [PMID]

[14] Lee JH, Cynn HS, Choi WJ, Jeong HJ, Yoon TL. Various shrug exercises can change scapular kinematics and scapular rotator muscle activities in subjects with scapular downward rotation syndrome. Human Movement Science. 2016; 45(11):58-59. [DOI:10.1016/j.humov.2015.11.016] [PMID]

[15] Caldwell G, Sahrmann S, Van Dillen L. Use of a movement system impairment diagnosis for physical therapy in the management of a patient with shoulder pain. Journal of Orthopaedic & Sports Physical Therapy. 2007; 37(9):551-63. [DOI:10.2519/jospt.2007.2283] [PMID]

[16] Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. Journal of Orthopaedic & Sports Physical Therapy. 1999; 29(10):574-83. [DOI:10.2519/jospt.1999.29.10.574] [PMID]

[17] Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Physical Therapy. 2000; 80(3):276-91. [DOI:10.1093/ptj/80.3.276] [PMID]

[18] Hebert LJ, Moffett H, McFadyen BJ, Dionne CE. Scapular behaviour in shoulder impingement syndrome. Archives of Physical Medicine and Rehabilitation. 2002; 83(1):60-9. [DOI:10.1053/apmr.2002.27471] [PMID]

[19] Warner JP, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moiré topographic analysis. Clinical Orthopedics and Related Research. 1992; 285:191-9. [DOI:10.1097/00003086-199212000-00024]

[20] Morrow MMB, Kaufman KR, An KN. Scapular kinematics and associated impingement risk in manual wheelchair users during propulsion and during a weight relief lift. Clinical Biomechanics. 2011; 26(4):352-7. [DOI:10.1016/j.clinbiomech.2010.12.001] [PMID] [PMCID]

[21] Zhao KD, van Straaten MG, Cloud BA, Morrow MM, An KN, Ludewig PM. Scapulothoracic and glenohumeral kinematics during daily tasks in users of manual wheelchairs. Frontiers in Bioengineering and Biotechnology. 2015; 3:1-10. [DOI:10.3389/fbioe.2015.00183] [PMID] [PMCID]

[22] Raina S, McNeill Gray JL, Mulroy S, Requejo PS. Effect of increased load on scapular kinematics during manual wheelchair propulsion in individuals with paraplegia and tetraplegia. Human Movement Science. 2012; 31(2):397-407. [DOI:10.1016/j.humov.2011.05.006] [PMID]

[23] Nawoczenski DA, Globes SM, Gore SL, Olsen JE, Borstad JD, et al. Three-dimensional shoulder kinematics during a weight relief lift. Clinical Biomechanics. 2005; 20(1):32-40. [DOI:10.1016/j.clinbiomech.2004.06.011] [PMID]

[24] Finley MA, Mcquade KJ, Rodgers MM. Scapular kinematics and associated muscle activity in people with symptoms of shoulder impingement. Physical Therapy. 2000; 80(3):276-91. [DOI:10.1093/ptj/80.3.276] [PMID]

[25] Finley MA, Mcquade KJ, Rodgers MM. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement. Clinical Biomechanics. 2005; 20(1):32-40. [DOI:10.1016/j.clinbiomech.2004.06.011] [PMID]

[26] Hurd WJ, Morrow MM, Kaufman KR, An KN. Biomechanical evaluation of upper extremity symmetry during manual wheelchair propulsion over varied terrain. Archives of

Maurodif, A, et al. Exercise Program Based on Scapula Stability on Scapular Upward Rotation and Scapulohumeral Rhythm in Wheelchair Basketball Athletes. RJ. 2021; 26(4):488-507.
[27] Fay BT, Boninger ML, Fitzgerald SG, Souza AI, Cooper RA, Koontz AM. Manual wheelchair pushrim dynamics in people with multiple sclerosis. Archives of Physical Medicine and Rehabilitation. 2004; 85(6):935-42. [DOI:10.1016/j.apmr.2003.08.093] [PMID] [PMCID]

[28] Vegter RJ, Lamothe CJ, De Groot S, Vegter DH, Van der Woude LH. Variability in bimanoal wheelchair propulsion: Consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill. Journal of NeuroEngineering and Rehabilitation. 2013; 10(1):1-11. [DOI:10.1186/1743-0003-10-9] [PMID] [PMCID]

[29] Stephens CL, Engsberg JR. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia. Disability and Rehabilitation: Assistive Technology. 2010; 5(6):420-7. [DOI:10.3109/174310103793426] [PMID] [PMCID]

[30] Schnorenberg AJ, Slavens BA, Wang M, Vogel LG, Smith PA, Harris GF. Biomechanic model for evaluation of paediatric upper extremity joint dynamics during wheelchair mobility. Journal of Biomechanics. 2014; 47(2):269-76. [DOI:10.1016/j.jbimech.2013.11.014] [PMID] [PMCID]

[31] Soltau SL, Slowik JS, Requeso PS, Mulroy SJ, Neptune RR. An investigation of bilateral symmetry during manual wheelchair propulsion. Frontiers in Bioengineering and Biotechnology. 2015; 3:1-6. [DOI:10.3389/fbioe.2015.00086] [PMID] [PMCID]

[32] Dee KL, Sparrow KJ, McKcag DB. The physically challenged athlete: medical issues and assessment. Sports Medicine. 2000; 29(4):245-58. [DOI:10.2165/00007256-200029040-00003] [PMID]

[33] Aydan A, Aslican Z, Nihan O P, Ayca A T, Nevin E. Scapular rest - Dec KL, Sparrow KJ, McKeag DB. The physically challenged athlete: medical issues and assessment. Sports Medicine. 2000; 29(4):245-58. [DOI:10.2165/00007256-200029040-00003] [PMID]

[34] Andrade GT, Azevedo DC, De Assis Lorentz I, Galo Neto MF, Karduna AR. New method to assess scapular upward rotation in subjects with shoulder pathology. Journal of Orthopaedic & Sports Physical Therapy. 2001; 31(2):81-9. [DOI:10.2519/jjsp.2001.31.2.81] [PMID]

[35] McDonell MK, Sahrmann SA, Van Dillen L. A specific exercise program and modification of postural alignment for treatment of cervicogenic headache: A case report. Journal of Orthopaedic & Sports Physical Therapy. 2005; 35(1):3-15. [DOI:10.2519/jospt.2005.35.1.3] [PMID]

[36] Andrade GT, Alvesco DC, De Assis Lorentz I, Galo Neto RS, Sadalla Do Pinho V, Ferraz Gonçalves RT, et al. Influence of scapular position on cervical rotation range of motion. Journal of Orthopaedic & Sports Physical Therapy. 2008; 38(11):668-73. [DOI:10.2519/josppt.2008.2820] [PMID]

[37] Johnson MP, McClure PW, Karduna AR. New method to assess scapular upward rotation in subjects with shoulder pathology. Journal of Orthopaedic & Sports Physical Therapy. 2001; 31(2):81-9. [DOI:10.2519/josppt.2001.31.2.81] [PMID]

[38] Murray AS,沢川聡, 奥野直貴, 長崎由子, 柳原信一, 他. Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. Journal of Shoulder and Elbow Surgery. 2010; 19(2):209-15. [DOI:10.1016/j.jse.2009.02.010] [PMID]

[39] Lee SK, Yang DS, Kim HY, Choy WS. A comparison of 3D scapular kinematics between dominant and nondominant shoulders during multiplanar arm motion. Indian Journal of Orthopaedics. 2013; 47(2):135-42. [DOI:10.4103/0019-5413.108882] [PMID] [PMCID]

[40] Barry S. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, et al. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait & Posture. 2018; 65:151-6. [DOI:10.1016/j.gaitpost.2018.07.170] [PMID]
[51] Martin BW, Wilson D, Markus OH, Dan W, Peter W, Sarah M, et al. Scapular kinematics in professional wheelchair tennis players. Clinical Biomechanics. 2018; 53:7-13. [DOI:10.1016/j.clinbiomech.2018.01.022] [PMID]

[52] Nodehi Moghadam A, Ebrahimi E, Aivazi M, Salavati M. [Comparison of the position and direction of three-dimensional scapular positioning in patients with shoulder impingement syndrome and healthy controls (Persian)]. Journal of Rehabilitation. 2006; 7(1):14-21. https://www.sid.ir/fa/journal/ViewPaper.aspx?ID=44427

[53] Keshavarz R, Shakeri H, Arab AM, Ashrafi H, Talim Khani A. Scapular position and orientation during abduction, flexion and scapular plane elevation phase. Iranian Rehabilitation Journal. 2014; 12(19):22-30. http://irj.uswr.ac.ir/article-1-322-en.html

[54] Keshavarz R, Shakeri H, Arab AM, Gholamian M, Tabatabaei Ghomshesh F, Raisosadat A. [Comparison of scapular rotational movements between patients with impingement Shoulder syndrome and healthy people in lifting the arm on the Scapular plate using acromion cluster marker (Persian)]. Archives of Rehabilitation. 2012; 12(4):67-74. https://rehabilitationj.uswr.ac.ir/article-1-1021-fa.html

[55] Nazarymoghadam S, Nodehimoghadam A, Arab AM, Zeinalzade A. [A comparison between females with and without general hypermobility syndrome in arm elevation (Persian)]. Journal of Rehabilitation. 2010; 11(2):82. http://ensani.ir/file/download/article/20101004171426

[56] Burkhat SS, Morgan CD, Kibler WB. The disabled throwing shoulder: Spectrum of pathology. Part III: The SICK scapula, scapular dyskinesis, the chain, and rehabilitation. Arthroscopov. 2003; 19(6):641-61. [DOI:10.1016/S0749-8063(03)00389-X]

[57] Wang J, Sainburg R. The dominant and nondominant arms are specialized for stabilizing different features of task performance. Experimental Brain Research. 2007; 178(4):565-70. [DOI:10.1007/s00221-007-0936-x] [PMID]

[58] Sale D, MacDougall D. Specificity in strength training: A review for the coach and athlete. Journal Canadien Des Sciences Appliquées Au Sport. 1986; 6(2):87-92. [PMID]

[59] Bunch WH, Siegel IM. Scapulothoracic arthrodesis in facioscapulohumeral muscular dystrophy. Review of seventeen procedures with three to twenty-one-year follow-up. Journal of Bone and Joint Surgery. 1993; 75(3):372-6. [DOI:10.2106/00004623-199303000-00008] [PMID]

[60] Hrysomallis C, Goodman C. A review of resistance exercise and posture realignment. The Journal of Strength and Conditioning Research. 2001; 15(3):385-90. [DOI:10.1519/1533-4287(2001)01520.CO;2] [PMID]