Nanocomposite and Its Morphological Characterization -Review

S A Afolalu¹ S O Ongbali¹ O O Ajayi¹ O Ohwofa¹ A A Abioye

¹Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria.
²Department of Estate Management, Covenant University, Ota, Ogun State, Nigeria
Corresponding Author: Sunday.afolalu@covenantuniversity.edu.ng

Abstract
In the wider field of nanotechnology, nanocomposites have attracted a great deal of attention and, due to the enhanced mechanical, electrical and thermal properties of the weld with modulus, strength and dimensional stability of the nanocomposite, they find increased use for various applications in several industries. Metallic and ceramic nanocomposites were used at an earlier stage of development to solve the dangerous issue of optimizing nanomaterial dispersal in matrices. Nanocomposites are currently finding uses in many fields. However, there are also some disadvantages to these characteristics such as optical issues dispersion difficulties, the color black display when different carbon containing nanocomposite are used viscosity increase and sediments. This finding review more about scope of nanocomposite and its morphological structural characterization that make it more suitable in its application.

Keywords: Nanocomposite; Nanoparticle; XRD; EDX; XPS; FT-IR

1.0 Introduction
Nanocomposites are compounds with at least one of its dimensions existing in the nanometric range (i.e <1 µm). These types of materials have developed as appropriate alternatives to by-pass restrictions of micro composites and monolithic, they are stated to the materials of the 21st century in the respect of retaining distinctiveness of its design and mixtures of property that are not established in conventional composites [1]. In welding, the mechanical properties possessed by a joint like its modulus, strength and dimensional stability is greatly improved when nanoparticles are introduced into the weld thereby leading to improvement in the weld properties. There is also an increase in the weld’s electrical conductivity and a decrease in the hydrocarbon, gas and water permeability, as well as an increase in other properties of the weld like chemical resistance, thermal stability, optical clarity and surface appearance is improved [2]. Due to the nanocomposite’s enhanced electrical, mechanical and thermal properties they are finding increased use in several industries for diverse applications. At an earlier stage of development, metallic and ceramic nanocomposites were used to resolve the perilous issue of optimizing the dispersal of nanomaterials in the matrices[3]. Today, nanocomposites presently find uses in numerous fields. However, these characteristics also have disadvantages, such as difficulties in dispersion, optical problems, color black display when using different nanoparticles containing carbon, sedimentation and viscosity increase [4]. The crystallization and glass transition behavior are the two main areas where the nanoparticle’s “Nano-effect” or fiber consideration in relation to larger scale materials is felt. Nanoscale filler or fiber addition give most composite and polymer-based benefits [5].
1.1 Classification of Nanocomposite
Polymer matrix-based nanocompounds have drawn considerable attention in the wider sector of nanotechnology and have been a major place of new research and development with most of the literature debating polymers which have been heavily affected by exfoliated clay-based nanocomposites, but many other important regions of present and growing interest still exist [6]. Nano-based study in sophisticated engineering [7] has led to a breakthrough in nano-technology. This audit will address technologies needed to release dirt-based nanocomposites and include other key fields such as obstacle, gas control, biomedical deployment, electric / electronic / optoelectronic deployments, and energy subsystem issues.

Nanocomposites are compounds that are exhibited in at least one phase in nanometric sizes (1 nm= 10^-9 m). As an alternative to bypass limitation on micro composites and monolithic material, these techniques have been created and stated for 21st-century components, in perspective of the retention of distinguished designs and ownership proportions which are not set out in standard composite materials [8]. Nanocomposites can enhance weld characteristics radically by improving the mechanical characteristics of the weld by means of resistance, modulus and dimensional stabilization. The permeability of gasses, air and hydrocarbons is decreased and other aspects like thermal stability, chemical resistance, ground texture, and optical clarity are enhanced. Nanocomposites are shown to have apps discovered in several sectors due to the improved mechanical, electrical and heat characteristics. In the early stages of development, the harmful issue of optimizing nanomaterial dispersal in matrices has been targeted using metallic and ceramic nanocomposites. Bug[9]. Bug. Nanocomposites are currently used in many areas. However, these features also have disadvantages, like disperse difficulty, optical issues, black-colored show in use of separate carbon-containing nanoparticles, increasing sedimentation and viscosity [10] The two primary regions where the "nano-effect' or fibre-consciousness of nanoparticles with respect to their bigger scaffolding is considered. Nanoscale filler or fiber addition [11] offers most composites and polymer-based advantages.

1.2 Application of Nanocomposite
In laser welding of polypropylene / earth nanocomposite, polypropylene-mud nanocomposite sheets of 2 mm thickness with 0 wt. percent, 3 wt. percent and 5 wt. percent, Nakhaei et al. explored the use of reaction surface philosophy for weld quality forecasting using CO2 laser to determine the impact of mud substance and laser process parameters on weld elasticity[12]. This is why Taguchi's parametric plan and advancement strategy was used to attempt configuration and build a model to predict weld rigidity as a component of mud substance and laser process parameters, such as laser control, welding speed and central position[13]. The model's sufficiency was checked using difference checks and additional affirmation tests were directed. The ideal dimensions of the parameters were solved by using Taguchi's streamlining approach. The results showed that the expansion of dirt substance and welding speed decreased the weld quality while the expansion of laser control increased the weld quality. In addition, the increase in the central position showed an expansion and, subsequently, the impact of laser welding parameters such as laser control, welding speed and central position alongside the mud content of a polypropylene / mud nanocomposite on weld quality was resolved using reaction surface strategy[14].
This philosophy was connected to build a numerical model that can anticipate the main impacts of the above-mentioned parameters and their effects on the elasticity of butt-welded laser joints that could be expressively improved by removing the total weld fill radius. Differential examination was performed to check the amplitude of the model created[15]. There was also a correlation between the anticipated and genuine results. The results showed that the welding quality decreased with the expansion of the mud content from 0 to 6 percent, while the welding rate increased from 30 to 60 mm / s. The above parameters have also been upgraded to achieve a welded joint of high quality[16].

2.0 Method of Processing Nanocomposite

Various techniques have been used to blend the progression of square copolymers that contain polyesteramids like hard square and polyethylene glycol (PEG). Composite metal salt are made from these diblock copolymers which are subsequently gathered into the desired subatomic (talk 5 to 50 nm) intermittent structure[ 17]. The polymers are shown by FTIR, TGA, H-NMR and Differential Scans Calorimetry (DSC) arrangement consistency. Scanning Electron Micrographs (SEM) and Transmission Electron Microscope (TEM) take into account the Nano examples of polymers as well as those of composites. They can be used to create organic and compound sensors, build microelectronic and optoelectronic gadgets, frameworks for light-wave correspondence, and so on[18].

2.1 Surface composites

Surface composite were fabricated on AA6063-T6 base metal using silicon carbide (SiC) reinforcement particles by friction stir processing (FSP). Influence of multiple FSP passes was investigated on the SiC particle distribution, processed zone dimensions, and micro hardness of fabricated composites [19]. The rotational speed, traverse speed, and tool tilt were kept constant and the numbers of passes were varied at 2, 4, 6, and 8. The particle distribution in processed zone was analyzed using OM and SEM, while micro hardness were evaluated by Vickers indentation test [23]. The results reveal that with increase in FSP passes there is increase in processed zone dimensions and elimination of defects such as agglomeration of particles and void. The micro hardness of reinforced region was increased uniformly with increasing passes which is attributed to homogeneous distribution of reinforcement particles. The peak micro hardness value of 81.9 Hv was obtained in sample which is processed with eight numbers of FSP passes. The area processed shows excellent substratum bonding and grain refining[21].

Sun J. made from a powder-sweat-resistant composite-layer of the aluminum matrix lateral injection B 4 C and MIG welding[20]. In this process, a composite aluminum network (AMC) layer of 7075 aluminum alloy amalgam (AA-6075-T6) heat treated T6 substratum was developed to provide a single simple mechanism for consolidating MIG welding and horizontal dust infusion. The AMC layer was 6-7 mm large and was all around[22] attached to the substratum. A normal substance of about 7 vol was scattered over the B4C particles. The entire AMC coating percentage. On the gravity interface or in the al-Lattice there were no significant reaction objects. The AMC layer has demonstrated an extraordinary wear resistance of 1/10-3/10 size, that of the surrendered AISI 1045 stainless steel and only around 2-7% of that of the AA7075-T6, with comparable wear
conditions, in stick-on-plate dry rubbing wear trials against Al2O3 granular wheels[12]. A tiny extension of fired particles can significantly increase the wear and tear, indicating a large potential for a broad variety of applications.

In this job the MIG welding, parallel powder infusion, constructing a fundamental and highly productive approach for the development of an AA7075-T6 substratum with B4C-molecule-enhanced AMC layer, arrived at the associated determinations and efficiently fabricated a dense AMC layer 6-7 mm dense, connected to the AA7075–T6 substratum all around[26]. A ordinary material of roughly 7 vol. was used to scatter the B4C particles. The whole AMC coating percentage. Due to the right temperature and brief contact period of B4C aluminum liquid, no obvious reaction elements could be found at the border of the particle-gate or the framework. In addition, in plate wear the AMC layer was unbelievable wear opposition to Al2O3 crushing wheels, whereby the wear rate for the volume was approximately 1/10-3/10 that for the extinct steel of AISI 1045 was only approximately 2-7 per cent that for the same conditions of AA7075-T6 amalgam[27]. The main purpose of elevated wear obstruction of the AMC layer is to use MML counterwear devices and multiply molecules despite the elevated hardness of the B4C particles[28].

3.0 Structural Characterizations

The basic qualities that are of the essential significance structurally is to consider the constitution and nature of structural bonding materials[29]. The mass properties of the subject material are the primary source of information about the structural composition of the NPs. Within a host of other systems vitality dispersive X-beam (EDX), XRD, XPS, BET, Raman, Zeta and IR size analyzer are the regular systems used to determine NP's fundamental structural properties[30].

3.1 XRD-Application

XRD is one of the main procedures of characterizing the structural characteristics of NPs amongst other techniques. It provides sufficient data on NPs' phase crystallinity. It also allows for the use of the Debye Scherer equation to estimate the measure of the molecule through the equation [31]. This method worked admirably in characterizations of single and multi-phase NPs. All things considered, the securing and correct estimation of basic and different parameters could be troublesome due to littler NPs having size under many molecules. Also, the XRD diffractogram may be affected by NPs with increasingly indistinct qualities with fluctuated nuclear entomb lengths. The diffractogram of bimetallic NPs must be compared specifically with that of the corresponding monometallic NPs for accurate information to be obtained and their physical blends must be. The most ideal approach to achieving great contrast is to correlate PC simulated structural model of observed XRD spectra with that of bimetallic NPs [32].

3.2 EDX-Application on Nanocomposite

EDX regularly solved using FE-SEM or TEM gadget is widely used to evaluate the basic composition with the rough estimate of the weight percentage already known. The electron ray was focused by SEM or TEM on a lonely NP to obtain data about the NP under consideration. NP involves constituent components and every one of them radiates attributes vitality X-beams by electron shaft light [33]. The power of explicit X-beam is straightforwardly relative to the centralization of the express component in the molecule. This system is broadly utilized by
scientists to offer help to SEM and different procedures for the affirmation of their components in arranged material [34]. The EDX method used to decide the essential composition of BiVO4 NPs synthesized essentially using ultra-sono chemical methods combined with a pseudo-bloom molding [35]. Likewise, by using comparable procedure the elemental affirmation and impregnation of In2O3/graphene heterostructure NPs with graphene was completed, which indicated that Carbon, Indium and Oxygen are contributing components. The NPs were produced through the use of ordinary aqueous system [36].

3.3 XPS-Application on Nanocomposite

XPS is the most delicate scheme and is used extensively to determine the right bonding nature and the right percentage of the elements of the nanoparticles. The sensitive surface operation is used in research illustrating the profile of the depth to understand the overall constituency and the compositional variation by depth[37]. XPS is compatible with fundamental spectroscopic norms and the XPS mean range consists of the X-pivot electrons ' binding energy (eV) versus the Y-Axis plot electrons. Each component has its own unique binding energy value, and this way XPS tops are explicitly arranged. The peaks relate closely to the electronic arrangement, for example, 1s, 2s, 2p, and 3s gave a thorough electron exchange study on how Pt NPs using XPS method with help from other people were supported through CeO2. They found that only one electron per ten Pt particles is fed from the NPs to the CeO2 bolster [38]. The profile examination was given to consider the scattering of boron NPs (measure of 10 nm) with the functionalization of polyethylene glycol (PEG). At 1.4 keV and 20 nm, Ar+ particles were used; deep surface scratching was performed. It was discovered that with depth, the grouping of NPs increases from 2 to 5 %. This gave great evidence that within the heft of functionalized PEG, boron NPs are successfully broken down [39]. Core shell Au / Ag indicated comparative conduct through profiling of XPS depth in comparable investigation. Wang et al. use SESSA programming to measure the NPs covered by this method by XPS and STEM spectroscopic [40].

3.4 FT-IR - Application on Nanocomposite

Using Raman and FT-IR spectroscopies, vibrational characterization of nanoparticles is typically considered. The FTIR and Raman spectroscopy methods are the most developed and feasible vibration characterization techniques in contrast to other basic analytical techniques [41]. The use of the fingerprint area, which for characterization is one of the most significant ranges, offers signature data for the material. In one examination XPS and FT-IR methods were used to examine PT NPs functionality (average size of 1,7 nm) and their communication with an Alumina substratum. The signature vibrational peaks of carboxylated C–O 2033 cm−1 confirm this feature through the FT-IR operation together with a larger O-H peak of 3280 cm-1. FT-IR group red movement estimates have discovered a functionalization level. [42 ] In the corresponding systems the progression of the RE2Hf2O7 (which contains RE= Y, Pr, Lu, Gd, La, and Er) (NPs) hafnium oxide was 5 mol per cent Eu3+doped unused earth metal (RE). FT-IR and Raman spectra investigation showed that La2Hf2O7:5 percent Eu3 + and Pr2Hf2O7:5 percent Eu3 + had requested a moderate pyrochlore structure in contrast to RE2Hf2O7:5 percent Eu3 + creations (RE= Y, Er, and Lu) that distorted fluorite structure. Thermodynamically stable up to a high temperature of 1500 ° C, the steady structures were found. Be that as it may, in the last case, a disordered– asked
for reason insecurity and therefore thermodynamically precarious [43]. Due to the SPR phenomenon which gives it the ability to enhance its signal the tool used for vibrational conformation has been the surface improved Raman spectroscopy (SERS) [44]. A detailed examination of the SERS strategy to contemplate the vibrational properties with phonon modes in TiO2, ZnO and PbS nanostructured and quantum spots was studied using the SERS technique and it was found that the enhanced spectra is responsible for plasmonic resonances present in semiconductor systems [5].

4.0 Conclusion
The use of nanocomposites can lead to the best performing of some of the components. While superior performance can be gotten by homogeneous, concurrent, embedding over the nanocrystallite matrix of the nanoparticles. In order to maintain high strength, improve the ductility and toughness for nanostructured composite of a materials, nanocomposite can be incorporated. The manufacturing of MMCs has been carried out by several methods which include metallurgy, powder stir casting, pressure infiltration etc. Particulate lightweight aluminum-based nanocrystallite matrix reinforced with nanoparticles have exceptional properties in aerospace, automotive and structural components as it has an excellent combination of mechanical and physical properties.

Acknowledgement
The author acknowledged Covenant University for the financial support offered for the publication of this research.

References
[1] Ceschini L Boromei I Minak G Morri A and Tarterini F 2007 Microstructure, tensile and fatigue properties of AA6061/20 vol.% Al2O3p friction stir welded joints.
[2] Arivazhagan N Singh S Prakash S and Reddy G M 2011 Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding Materials & Design 32(5) 3036-3050
[3] Bogdanov A G Gromushkin D M Kokoulin R P Mannocchi G Petrukhin A A Saavedra O and Yashin I I 2010 Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra Physics of Atomic Nuclei 73(11) 1852-1869
[4] Omiogbemi I M B Yawas D S Dagwa I M and Okibe F G 2017 Effects of metal inert gas welding parameters on some mechanical properties of austenitic stainless steel in acidic environment Nigerian Journal of Technology 36(3) 835-843
[5] Paul D R and Robeson L M 2008 Polymer nanotechnology: nanocomposites Polymer 49(15) 3187-3204
[6] Mansha M Qurashi A Ullah N Bakare F O Khan I Yamani Z H 2016 Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 42 11490–11495
[7] Cary H B and Helzer S C 2005 Modern welding technology Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.

[8] Ali S Khan I Khan S A Sohail M Ahmed R Rehman A and Morsy M A 2017 Electrocatalytic performance of Ni@ Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. Journal of Electroanalytical Chemistry 795 17-25

[9] Senthilvelan T S Gopalakannan S Vishnuvarthan and Keerthivaran K 2013 Fabrication and characterization of SiC, Al2O3 and B4C reinforced Al-Zn-Mg-Cu alloy (AA 7075) metal matrix composites: a study In Advanced Materials Research 622 1295-1299

[10] Abouelmagd S A Meng F Kim B K Hyun H and Yeo Y 2016 Tannic acid-mediated surface functionalization of polymeric nanoparticles ACS biomaterials science and engineering 2(12) 2294-2303

[11] Pandey C Mahapatra M M Kumar P and Saini N 2018 Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint Materials Science and Engineering A 712 720–737

[12] Nakhaei M R Arab N M and Naderi G 2013 Application of response surface methodology for weld strength prediction in laser welding of polypropylene/clay nanocomposite Iranian Polymer Journal 22(5) 351-360

[13] Ghani J A Choudhury I A and Hassan H H 2004 Application of Taguchi method in the optimization of end milling parameters Journal of materials processing technology 145(1) 84-92

[14] Squillace A Prisco U Ciliberto S and Astarita  A 2012 Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints Journal of Materials Processing Technology 212(2) 427-436

[15] Nakhaei M R Arab N M Naderi G and Gollo M H 2013 Experimental study on optimization of CO2 laser welding parameters for polypropylene-clay nanocomposite welds Journal of Mechanical Science and Technology 27(3) 843-848

[16] Huang H Y 2010 Effects of activating flux on the welded joint characteristics in gas metal arc welding Materials & Design 31(5) 2488-2495

[17] Choudhury S U Ray B C a n d Dolui S K 2007 Fabrication of nanocomposites. Materials and manufacturing processes 22(6) 726-732

[18] Abioye A A Atanda P O Abioye O P Afolalu S A and Dirisu J O 2017 Microstructural Characterization and Some Mechanical Behaviour of Low Manganese Austempered Ferritic Ductile Iron International Journal of Applied Engineering Research 12(23) 14435-14441

[19] Ajayi O O Omowa O F Abioye O P Omotosho O A Akinlabi E T Akinlabi S A and Afolalu S A 2018 Finite Element Modelling of Electrokinetic Deposition of Zinc on Mild Steel with ZnO-Citrus sinensis as Nano-Additive. In TMS Annual Meeting & Exhibition (pp. 199-211). Springer, Cham

[20] Adetunji O R Musa A A and Afolalu S A 2015 Computational Modelling of Chromium Steel in High Temperature Applications International Journal of Innovation and Applied Studies 12(4) 1015

[21] Oyinbo S T Ikumapayi O M Ajiboye J S and Afolalu S A 2015 Numerical Simulation of
Ax symmetric and Asymmetric Extrusion Process Using Finite Element Method.  *International Journal of Scientific & Engineering Research* **6**(6) 1246-1259

[22] Adetunji O R Ude O O Kuye S I Dare E O Alamu K O and Afolalu S A 2016 Potentiodynamic Polarization of Brass, Stainless and Coated Mild Steel in 1M Sodium Chloride Solution. In *International Journal of Engineering Research in Africa* **23** 1-6

[23] Ikumapayi O M Ojolo S J and Afolalu S A 2015 Experimental and theoretical investigation of tensile stress distribution during aluminium wire drawing *European Scientific Journal, ESJ,* **11**(18)

[24] Adetunji O R Adegbola A O and Afolalu S A 2015 Comparative Study of Case-Hardening and Water-Quenching of Mild Steel Rod on Its Mechanical Properties. *International Journal of Advance Research** 3**(6) 1-9

[25] Dirisu J O Asere A A Oyekunle J A Adewole B Z Ajayi O O Afolalu S A Joseph O O and Abioye A A 2017 Comparison of the Elemental Structure and Emission Characteristics of Selected PVC and Non PVC Ceiling Materials Available in Nigerian Markets *International Journal of Applied Engineering Research** 12**(23) 13755-13758

[26] Abioye A A Abioye O P Ajayi O O Afolalu S A Fajobi M A and Atanda P O 2018 Mechanical and Microstructural Characterization of Ductile Iron Produced from Fuel-Fired Rotary Furnace, *International Journal of Mechanical Engineering and Technology* **9**(1) 694–704

[27] Salawu E Y Okokpujie I P Afolalu S A Ajayi O O and Azeta J 2018 Investigation of production output for improvement *International Journal of Mechanical and Production Engineering Research and Development* **8**(1) 915-922

[28] Afolalu S A Abioye A A Dirisu J O Okokpujie I P Ajayi O O Adetunji O R 2018 Investigation of wear land and rate of locally made HSS cutting tool In *AIP Conference Proceedings* **1957**(1) 050002

[29] Gangil N Maheshwari S and Siddiquee A N 2018 Multipass FSP on AA6063-T6 Al:Strategy to fabricate surface composites *Materials and Manufacturing Processes* **33**(7) 805-811

[30] Quinn G D and Bradt R C 2007 On the Vickers indentation fracture toughness test *Journal of the American Ceramic Society* **90**(3) 673-680

[31] Sun J Shen P and Zeng D High Wear-Resistant Aluminum Matrix Composite Layer Fabricated by MIG Welding with Lateral B 4 C Powder Injection *Journal of Materials Engineering and Performance* 1-9

[32] Rogante M 2009 Wear characterisation and tool performance of sintered carbide Inserts during automatic machining of AISI 1045 steel. *Journal of Materials Processing Technology* **209**(10) 4776-4783

[33] Moinuddin M Q 2016 Development of wear resistant metal matrix composite coatings based on laser surfacing engineering technique. (Doctoral dissertation, University of Malaya).

[34] Suleiman S Abdollah-Zadeh A and Alidokht S A 2012 Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. *Wear,* **278** 41-47

[35] Khan I Abdalla A and Qurashi A 2017 Synthesis of hierarchical WO3 and Bi2O3/WO3
nanocomposite for solar-driven water splitting applications International Journal of Hydrogen Energy 42(5) 3431-3439

[36] Chen Y B Lei Z L Li L Q and Wu L 2006 Experimental study on welding characteristics of CO2 laser TIG hybrid welding process Science and Technology of Welding and Joining 11(4) 403-411

[37] Afrin N Chen D L Cao X Jahazi M 2008 Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy Materials Science and Engineering: A, 472(1-2) 179-186

[38] Kumar R Mevada R N Rathore S Agarwal N and Rajput V 2017 Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm.

[39] Martín Ó López M and Martin F 2007 Artificial neural networks for quality control by ultrasonic testing in resistance spot welding. Journal of Materials Processing Technology, 183(2-3) 226-233

[40] Miao Y Wu B Xu X and Han D 2014 Effect of heat input on microstructure and mechanical properties of joints made by bypass-current MIG welding–brazing of magnesium alloy to galvanized steel Acta Metallurgica Sinica (English Letters) 27(6) 1038-1045

[41] Arivazhagan N Singh S Prakash S Reddy G M 2011 Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding Materials & Design 32(5) 3036-3050

[42] Bogdanov A G Gromushkin D M Kokoulin R P Mannocchi G Petrukhin A A Saavedra O and Yashin I I 2010 Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra. Physics of Atomic Nuclei 73(11) 1852-1869

[43] Cary H B and Helzer S C 2005 Modern welding technology Upper Saddle River New Jersey: Pearson Education. ISBN 0-13-113029-3

[44] Cary H B and Helzer S C 2005 Modern welding technology Upper Saddle River New Jersey: Pearson Education. ISBN 0-13-113029-3

[45] Ceschini L Boromei I Minak G Morri A and Tarterini F 2007 Microstructure, tensile and fatigue properties of AA6061/20 vol.% Al2O3p friction stir welded joints. Composites Part A: Applied Science and Manufacturing 38(4) 1200-1210

[46] Khan I Saeed K and Khan I 2017 Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 1 - 24 http://dx.doi.org/10.1016/j.arabjc.2017.05.011