Environmental Consequences of Poor Landfill Management

Iyenoma ThankGod Osazee and Bhaskar Sen Gupta

ABSTRACT

Landfill is a popular method of waste disposal in many countries due to its relatively low cost of operation. The offensive aspect of the method is improper removal or disposal of the waste, which has resulted in avoidable sicknesses, diseases and preventable deaths. Carbon dioxide and methane are the two main gases emitted from landfill sites; municipal solid waste issue accounts for almost 5% of total greenhouse gas emissions and methane from landfills accounts for 12% of the total quantity of global methane emissions. Landfills can be put to sustainable use by employing it to produce energy from waste whenever is feasible and it has the capacity to generate revenue. Furthermore, many advanced waste treatment technologies have been developed which received commendable attention in developed countries and are evolving in developing countries. Landfill gas-to-energy is viable economically and for control of methane emissions and effective management of time, costs and quality with minimum risks to humans and the environment.

Keywords: GHGs, landfill, leachate, municipal solid waste, sustainability indicators, treatment technologies.

I. INTRODUCTION

Environment is the pivot in which physical, social, and economic activities takes place. Some analysts mostly describe environment, whose main resource is land, as ‘living earth’. This connotes that the earth or land is capable of reacting positively or negatively depending on the human activities. A common negative approach of dealing with ‘earth’ is dumping of waste into the ground, streets or drainages indiscriminately thereby causing sicknesses, diseases, and avoidable deaths.

A survey of waste disposal methods employed by selected countries was conducted in 2002 [1]. The survey demonstrated that all the countries have landfill sites: with Canada, 96% leading, followed by Finland, 95% and UK, 88%; the least is Switzerland, 20%; but had the highest in incinerated scheme of 80%. Many landfill sites accommodate waste that can be recycled. This makes it attractive to scavengers, who by this process are exposed to the risk of contracting diseases and possible sicknesses that may lead to premature death.

A. Aim and Objectives of the Study

The research paper is aimed at assessing the sustainability indicators of various landfill sites using a list of parameters, the objectives are to discuss and analyze waste to energy, and profits by various treatment technologies, as this will help to reduce overdependence on landfilling.

B. Research Limitation

All data were found through desk study rather than at real sites. The main information sources were with regulators, online and academic studies. The standards and regulations guiding many countries vary, this would tend to impact on the quality of data. The confidence came from the fact that many of the countries are signatories to many international organizations, regulations and associations. Nevertheless, an issue that the data collection process threw up was the need to consider the stakeholders’ opinions being part of a decision-making process. It would have been imperative to know the views of the citizens of many of the countries about current Waste Management techniques. This was dealt with by deep review of relevant journals and literature of many countries, especially the ones where data were collected.

C. Landfill

The unsystematic and unregulated/unscientific choice of landfill sites can pose a danger to the environment, humans,
and possibly, adjacent aquatic bodies, including groundwater [3]. One main criteria for selecting landfill include providing a reasonable distance away from significant water bodies. This is because of the danger of pollution of the water bodies, which may be of adverse effects to the aquatic life [4]. Other factors are climatic conditions, hydrology, local environmental conditions, e.g., nearness to network of roads, and land availability in its construction [5].

II. GHGS EMISSIONS FROM LANDFILLS

GHG emissions from municipal solid waste has been considered as a major issue because it accounts for almost 5% of total greenhouse gas emissions and methane from landfills account for 12% of the total quantity of global methane emissions [6], [7]. The primary composition of landfill gas is methane and carbon dioxide. Methane is regarded as one of the pronounced GHGs because it has a high potent global warming capability, that is, 28 times higher than carbon dioxide [8]. The relative high concentrations of methane have the capability of replacing oxygen in the surrounding atmosphere thereby leading to increased human health risks. Municipal solid waste dumped into the landfill undergoes anaerobic decay process because of the action of methanogens and methane is released into the atmosphere [8], [9].

A. Monitoring of Landfill Sites

The purpose of gas monitoring is to ascertain gas production that has given rise to hazard- the potential of agent, in this case gas level, to cause damage or injury. The monitoring of any landfill should commence six months from the time it was opened for operation and monitoring should be undertaken at 15 years after closure of a landfill as landfill sites consists predominantly of inert waste that may have produced landfill gas (Table 2). Leachate migration in landfills is due to water percolation that accumulates within or below the landfills especially in unsealed landfills above aquifer [10]. A leachate is typically characterized by two factors, viz, its composition and the volume generated [11] both varies among landfills and highly influenced by type of waste, volume, age, climatic conditions, mode of operation and landfiling technology [11], [12]. The efficiency or adequacy of a landfill is in the monitoring of leachate and regular control of groundwater migration [13]. [14] posited that the most important factor influencing landfill leachate composition is the age of the landfill. Many methods of disposing leachate have been evolved over time. For example, in Poland, one main municipal landfill leachate disposal technique is the co-treatment with domestic wastewater. The implementation seems to limit the total number of landfills [15].

III. RESEARCH METHODS

A. Advanced Waste Management Technologies

Four core types of advanced waste technologies: gasification, plasma arc gasification, pyrolysis, and steam classification, utilized for municipal wastes was adopted in this work. However, only gasification, plasma arc gasification and pyrolysis were considered being the only technologies available in the public domain.

B. Selection of Technique(s) through Decision Analysis

The criteria are clearly spelt out in Fig. 1 and the environmental parameters represented in Fig. 2.

Every key sustainability indicator was weighted against environmental options and award points are given to it on a random scale of 1 to 5 (1 is best and 5 is worst). Fig. 4 shows a flowchart of the relationship between the options and the sustainability indicators. The costs range quoted are 2009 prices and in US Dollars (Table 3). However, many variations in labour, materials and equipment have occurred since 2009 in the USA; in addition to the impact of exchange rate of Dollars and other currencies used in other countries. Table 4 was used to develop flowchart in Fig. 2.
TABLE 2: REGULATORY LIMITS OF LEACHATE CONTAMINANTS COMPOSITION IN SOME SELECTED COUNTRIES OF THE WORLD IN SEVEN REGIONS

Region	Parameter	Country	COD (MgL⁻¹)	BOD₅ (MgL⁻¹)	TOC (MgL⁻¹)	NH₄⁻N (MgL⁻¹)	PO₄⁻P (MgL⁻¹)	Dissolved Solids (MgL⁻¹)	SS (MgL⁻¹)	Total Nitrogen (MgL⁻¹)	Phenolic Compound (MgL⁻¹)	Ref.
SAR		Cameron	320	44								
		Nigeria	338	111								[16]
		South Africa	680	117	0.1							[17]
		China	100	15	0.5							
EAP		Malaysia	100	50	10							[18]
		Singapore	718	529	375							[19]
		Macedonia	985	1250								[20]
ECA		Tajikistan	4921									
		Ukraine	2									
		Mexico	790	4780	3395							
LAC		Uruguay	0.3	8	0.7	0.15						[21]
		Venezuela	160									[22]
		Egypt	12850	11700	7736							[23]
		Lebanon	50000	350								[24]
		Saudi Arabia	50000	350								[25]
MENA		Arabia	14.1									[26]
		Australia	10	15	0.5	0.1						[27]
OECD		Germany	200	10	15	0.3	3					[28]
		Sweden	33	3361	297							[29]
		Bangladesh	200	20	20	5	0.05					[30]
		India	100	50	100	200	2100	150	0.2			[31]

Legend:
- Acceptable
- Unacceptable

Fig. 2. Flowchart illustrating outcome for three advanced thermal solid waste management technologies options.
TABLE 3: SUMMARY OF ADVANCED SOLID WASTE TECHNOLOGIES [6], [32]-[37]

Type of Waste Mgt	Average Capital Cost ($ Millions)	Average Annual Operating Cost ($ Millions)	Average Tipping Fee	Average # FTE	Renewable Energy (MW)	Average Disposal Capacity (Thousand tons/year)	Average Land Space Required (Acres)	Emissions	# of facilities
Landfill Gas-to-Energy Gasification	5	0.6	$34	2	3.0	500	172	Low	485
Pyrolysis Plasma Arc Gasification	65	7.1	$40	30	4.0	350	8	Low	110
Mechanical Biological Treatment	90	6.6	$40	50	4.3	200	5	Low	3
	78	7.9	$70	30	4.0	225	6	Low	70

C. Data Collection and Analysis

A systematic collection of data from various landfill sites globally was carried out for the 21 countries selected from 7 regions (Table 7). All data collections were done through desk study; sources would be regulators, online and academic studies. This was subjected to the environmental parameters that produced Table 5.

TABLE 4: INDICATING ENVIRONMENTAL SET OF CRITERIA ASSESSMENTS FOR THREE OPTIONS

Options	Gasification	Pyrolysis	Plasma Arc Gasification
Tipping Fee	3	3	2
Environment Impact	2	2	1
Public Acceptability	4	3	1
Number of Facilities	3	4	2
Total	12	12	6
Rank	2	2	1

TABLE 5: INDICATING ASSESSMENT OF THE COSTS FOR THREE OPTIONS

Options	Gasification	Pyrolysis	Plasma Arc Gasification
Environment	12	12	6
Operation	16	13	10
Costs	14	13	14
Total	42	38	30
Overall Rank	3	2	1

IV. PROCEDURE FOR COMPUTATION

For the feasibility study on the technological aspects of solid waste to energy generation, the following equation was adopted from an earlier work [38]. The essence was to analyze the weights of waste as par the reviewed literature on ‘Gasification and Pyrolysis’ technologies already discussed.

Let the rank in the selected criterion be represented by \(r_{ij} \), for \(i = 1, 2, 3, j = 1 \ldots 13 \), where \(i \) represents the technologies and \(j \) represents the criterion.

The value of the inward will determine the relative weights of rank for each criterion.

Let the values awarded for each criterion be represented by \(a_{ij} \), for \(j = 1 \ldots 13 \). Then,

\[
W_j = \frac{a_{ij}}{\sum_{j=1}^{13} a_{ik}} \quad \text{for} \quad j = 1 \ldots 13 \tag{1}
\]

Equation (2) demonstrates how the total rank was computed:

\[
r_{T, i} = \sum_{j=1}^{13} (r_{ij}w_j), \text{for all} \quad i \tag{2}
\]

The ranking of technologies \(i \) will now be determined based on the minimum \(r_{T, 1}, r_{T, 2}, r_{T, 3} \).

Illustration of the calculation process using the equation using tipping fee as an example.

From Table 4 Awarded Points on the three technologies = 3+3+2 = 8.

Average value of awarded points = 8/3 = 2.67.

From Table 5 Total Costs based on the three options gives: 42+38+30 = 110.

Average of Total Costs = 110/3 = 36.67.

Weight of Criteria = 2.67/36.67 = 0.072.

All other values in Table 6 were computed using the above procedure as illustrated.

A. Interpretation of Results

The procedure made pairwise comparison of technologies alternatives of the 7 regions of countries selected. Local priorities of alternatives were interpreted in the calculations in this intermediate step which are reflected in Fig. 4. These computed criteria weights for each region where the sum of criteria weights in each region is equal to 1 (Fig. 3).
TABLE 6: RESULTS OF CALCULATIONS AND ANALYSIS FROM RESEARCH METHODS

S/N	Tipping Fee	Environment Impact	Public Acceptability	Number of Facilities	Revenue	Development Period	Flexibility of Process	Net Conversion Efficiency	Capital Cost	Land Requirement	Ease of Permitting	Marketability	Operation Cost
1	2.67	1.67	2.67	3	2.67	4	3.67	3.33	3.33	2.67	3	2	2.67

Fig. 3. Criteria weights obtained from ATSWM technologies:
(a) Latin America and Caribbean, (b) Organisation and Economic Cooperation and Development, (c) Sub-Saharan Africa Region, (d) Middle East and North Africa, (e) South Asia Region, (f) Eastern and Central Region, (g) East Asia and Pacific.

DOI: http://dx.doi.org/10.24018/ejgeo.2021.2.2.117
TABLE 7: COUNTRY CLASSIFICATION ACCORDING TO REGION [2]

Region	Africa (AFR)	East Asia & Pacific (EAP)	Eastern & Central Asia (ECA)	Latin America & the Caribbean (LAC)	Middle East & North Africa (MENA)	Organisation for Economic Co-operation and Development (OECD)	South Asia (SAR)
Angola	Brunei Darussalam	Albania	Antigua & Barbuda	Algeria	Andorra	Bangladesh	
Benin	Cambodia	Armenia	Argentina	Bahrain	Australia	Bhutan	
Botswana	China	Belarus	Bahamas, The	Egypt, Arab Rep.	Australia	India	
Burkina Faso	Fiji	Bulgaria	Barbados	Iran, Islamic Rep.	Belgium	Maldives	
Burundi	Hong Kong	Croatia	Belize	Iraq	Canada	Nepal	
Cameroon	Indonesia	Cyprus	Bolivia	Israel	Czech Republic	Pakistan	
Cape Verde	Lao PDR	Estonia	Brazil	Jordan	Denmark	Sri Lanka	
Central African Rep	Macao, China	Georgia	Chile	Kuwait	Finland	France	
Chad	Malaysia	Latvia	Colombia	Lebanon	Costa Rica	Malta	
Comoros	Marshall Islands	Lithuania	Malta	Germany	Greek		
Congo, Dem. Rep	Mongolia	Macedonia, FYR	Cuba	Morocco	Greece		
Congo, Rep.	Myanmar	Poland	Dominica	Oman	Hungary		
Cote d’Ivoire	Philippines	Romania	Dominican Republic	Qatar	Iceland		
Eritrea	Singapore	Russia Federation	Ecuador	United Arab Emirates	West Bank and Gaza	Luxembourg	
Ethiopia	Solomon Island	Serbia	El Salvador	Syrian Arab Rep	Italy		
Gabon	Thailand	Slovenia	Grenada	Tunisia	Japan		
Gambia	Tonga	Tajikistan	Guatemala	United Arab Emirates	Spain		
Ghana	Vanuatu	Turkey	Guiana	Peru	Sweden		
Guinea	Vietnam	Turkmenistan	Haiti	Monaco	Switzerland		
Kenya	Honduras	Jamaica	Mexico	Norway	Portugal		
Lesotho	Madagascar	Nicaragua	Panama	Slovak Republic	Spain		
Liberia	Mali	Mauritania	Mauritius	St. Kitts and Nevis	Morocco	New Zealand	
Malawi	Mali	Mauritania	Mauritius	St. Vincent and the Grenadines	Norway	Portugal	
Madagascar	Malawi	Peru	Nicaragua	Suriname	Portugal	Portugal	
Malawi	Malawi	Nigeria	Togo	United Kingdom	United States	United Kingdom	
Mali	Mali	Nigeria	Togo	United States	United States	United States	
Mauritania	Mauritania	Rwanda	United States	Venezuela, RB	United States	United States	

V. CONCLUSION

Sustainable solid waste management is practically difficult; however, finding solutions to the waste situation that is ever increasing is paramount for any country and indeed the rest of the world. In order to progress the process, analytical hierarchical process (AHP), which was first made known by [39] and best practicable environmental option (BPEO) are renowned approaches of resolving complex decision-making problems by deriving weights to denote the comparative significance of different criteria has been applied.

Many technologies are available as well as many have been reviewed. In all, landfill gas-to-energy seems the most viable economically and for control of methane emissions, in addition to producing dependable source of energy.

These three technologies virtually reduce or eliminate the need for landfills in some instances, in addition to meeting
sustainability measures; however, the economic aspects of plasma arc gasification have not been fully verified because of its high technical requirements.

REFERENCES

[1] Lumbsden, T.K. (2002): “Pattern of waste management in developed countries”. International Journal of water and sediment contamination, 49(2), 63-68. In: Ige, O.O. (2013): Geological and Geotechnical Evaluation of an open landfill for sanitary landfill construction in Ikorodu, Southwestern Nigeria. Journal of Environment and Earth Science, ISSN 2225-0948(Online), Vol. 3 No. 3.

[2] Hoonweg, D., Lam, P., Chaudhry, M. (2005): Waste Management in China: Issues and Recommendations. Urban Development Working Papers No. 5, East Asia Infrastructure Department. World Bank.

[3] Singh, C.K., Kumar, A., Roy, S.S. (2017): Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India. MDPT Technologies.

[4] Jamal, H. (2017): Solid Waste Landfill Site Selection available at https://www.aboutcivil.org/solid-waste-landfill-site-selection.html.

[5] Zabaleta, A. (2008): Sustainability Indicators for Municipal Solid Waste Treatment – Case study – The City of Stockholm: landfill vs incineration. Master of Science Thesis presented to Industrial Ecology Royal Institute of Technology, Stockholm.

[6] EPA (2006): Solid waste management and greenhouse gases- Lifecycle assessment of emissions and sinks. Third Edition. U.S. Environmental Protection Agency, Washington, D.C. September 2006.

[7] World Bank Group at https://sitesources.worldbank.org.

[8] Du, M., Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. (2017): Quantification of methane emissions from municipal waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 2017, 78, 272-279.

[9] Themelis, N.J.; Ulloa, P.A. (2007): Methane generation in landfills. Renew. Energy 2007, 32, 1243-1257.

[10] Freeze, R.A. and Cherry, J.A. (1979): Groundwater: Englewood Cliffs, NJ, Prentice-Hall.

[11] I. Mukherjee, S., Mukhopadhyay, S., Hashim, M.A., Sen Gupta, B., (2014); Current Environmental Issues of Landfill Leachate: Assessment and Remedies. Critical Reviews in Environmental Science and Technology. Pp. 472-590. https://doi.org/10.1080/10643389.2013.876524.

[12] Bjerg, P.L., Tuxen, N., Reitzel, L.A., Albrechtsen, H., Kjeldsen, P. (2011): “Natural attenuation processes in landfill leachate plumes at three Danish sites.” Ground water. 4995, pp. 688-705. In: Porowska, D. (2017): A Simple Method for Delineation of Leachate Plumes. Periodica Polytechnica Chemical Engineering.61 (3), pp.156-162. https://dx.doi.org/10.3311/PPhc.9667.

[13] Nanny, P.B., and Ratasuk, N. (2002): Characteristics and composition of hydricophic neutral and hydricrophic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Resources. 36, 1572-1584. In: Critical Reviews in Environmental Science and Technology. Pp. 472-590. https://doi.org/10.1080/10643389.2013.876524.

[14] Kulikowska, D., and Klimiuk, E. (2008): The effects of landfill age on municipal leachate composition. Bioresource Technology 99, 5891 - 5895. In: Critical Reviews in Environmental Science and Technology.Pp.472-590. https://dx.doi.org/10.1016/j.biortech.2008.08.024.

[15] Koc-Jurczyk, J., Jurczyk, L. (2020): The Characteristics of Organic Compounds in Landfill Leachate Biologically Treated under Different Technological Conditions. Journal of Ecological Engineering. Volume 21, Issue 3, April 2020, pages 104-111.

[16] Chopaw, S.O., Agbede, O.A., I., Sangodoyin, A.Y. (2012): Characterisation of Dumpsite Leachate: Case Study of Ogbomosoland, South-Western Nigeria. Journal of Civil Engineering; 2012, 2, 33-41. Scientific Research.

[17] Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baum, A., Ledin, A., Christensen, T.H. (2002): Present and Long-term Composition of MSW Landfill Leachate: A Review Environmental Science and Technology. ISSN: 1547-6537(online).

[18] Yidong, G., Xin, C., Shuai, Z. and Ancheng, L. (2012): Performance of multi-soil-layering system (MSL) treating leachate from rural unimproved landfills. Science of The Total Environment, 420,183-190.

[19] Aziz, H.A., Alias, S., Adlan, M.N., Faridah, A., A., and Zahari, M.S. (2007): Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology, 98: 218-220.

[20] Kusnik, A., Pachel, K., Kusnik, A., Loigu, É. (2014): Landfill runoff water and landfill leachate discharge and treatment. The 9th International Conference “Environmental Engineering”, Vilnius, Lithuania.

[21] Webb, S.M. (2009): Management of environmental risks associated with landfills in seismically active regions in the new Independent States of Central Asia.

[22] Mott MacDonald Ltd (2011): Drisla Landfill Feasibility Study, Prepared for IFC, Volume 1 of 2 – Main Findings – Final Report.

[23] EcoMetrix Ltd (2006): Cumulative Impact Study Uruguay Pulp Mills. IFC World Bank Group. Environment in Ukraine – Problems and Challenges. https://www2.mst.nl. Retrieved on April 14, 2018.

[24] Abu-Dabhes, M.A., Abu-Qudais, H., Alsoury, H. (2013): Assessment of Heavy Metals and Organics in Municipal Solid Waste Leachates from Landfills with Different Ages in Jor, Journal of Environmental Protection.

[25] Abd El-Salam, M.M., Abu-Zuid, G.I. (2014): Impact of landfill leachate in groundwater quality: A case study in Egypt. Journal of Advanced Research, Cairo University, Egypt.

[26] Stuart, M.E., Klimck, B.A. (1999): A catalogue of leachate quality for selected landfills from newly industrialised countries. DFID, British Geological Survey, UK.

[27] Kodeh, N. (2016): Landfill Leachate and its Fate in Lebanon. www.greenarea.me/en/128051/Landfill-landleachate.

[28] Ngo, H.H, Guo, W. and W. Xing (2008): Applied Technologies in Municipal Solid Waste landfill Leachate Treatment, Encyclopaedia of Life Support System (EOLSS), UNESCO.

[29] Stegmann, R., K., U. and R., C. (2005): Leachate Treatment, Tenth International Waste Management and Landfill Symposium, Italy.

[30] MoEF (2000): Municipal Solid Wastes (Management and Handling) Rules, In: India, G.O. (Ed.), S.O.908. Ministry of Environment and Forest, New Delhi.

[31] Saleem, M., Hameed, I., Kashif, S.R. (2017): Characterisation of Lakhdar Landfill Leachate. Journal of Environmental Analytical Chemistry.

[32] Dekalb Sanitation Department (2009): Application of biotechnology in waste management for sustainable development. Management of Environmental Quality, 17(4), 467.

[33] Juniper (2001): Pyrolysis and Gasification of Waste. A Worldwide Technology and Business Review. Juniper Consultancies Services.

[34] Circeo, L.J. (n.d): Plasma Arc Gasification of Municipal Solid Waste, https://www.track光彩.org/RACleanEnergy/Presentation-slides/Tuesday-技术%20Taube/Lou%20%20%20Solid%20Waste.ppt#258,1,Plasma%20Arc%20Gasification%20%20%20%20Municipal%20Solid%20Waste, In: Chirico, J. (n.d): There is No Such Thing as “Away”: An Analysis of Sustainable Solid Waste Management Technologies at www.istp.gatech.edu.

[35] Dodge, E. (2009): Plasma Gasification: Clean Renewable Fuel Through Vaporization of Waste. Waste Management World. 2009; 10(4).

[36] Gamble, S., Alexander, R. (2009): Hawai’i County Mechanical – Biological Treatment Conceptual Design. Technical Memorandum prepared for County of Hawai, May 12, 2009.

[37] Waste Technology (2009): Energy from Waste, https://www.waste-technology.co.uk. In: Chirico, J. (n.d) There is No Such Thing as “Away”: An Analysis of Sustainable Solid Waste Management Technologies at www.istp.gatech.edu.

[38] Tan, Y. (2013): Feasibility Study on Solid Waste to Energy Technological Aspects. Fung Institute for Engineering Leadership. College of Engineering University of California, Berkeley. Fung Technical Report No. 2013.04.15.

[39] Saaty, R.W. (1987): The Analytic Hierarchy Process – What it is and how it is used. Pergamon Journals Ltd. Mathl Modelling, Vol. 9, No. 3-5, pp. 161-176. Printed in Great Britain. Process., vol. 10, no. 5, pp. 767-782, May 2001.

DOI: http://dx.doi.org/10.24018/ej-geo.2021.2.2.117