Gallium (III) chloride-catalyzed synthesis of 3,4-dihydropyrimidinones for Biginelli reaction under solvent-free conditions

Haixin Yuan¹, Kehua Zhang², Jingjing Xia², Xianhai Hu² and Shizhen Yuan²*

Abstract: We describe the syntheses of 3,4-dihydropyrimidinones or analogous thioketones by a one-pot cyclocondensation of acetoacetates, aldehydes and urea or thiourea using gallium (III) chloride as catalyst under solvent-free conditions. The improved Biginelli reaction not only features a simple procedure, high yields and easy purification of production, but also the recycled catalyst could be directly reused for many times while the yields of reaction would not decrease.

Subjects: Medicinal & Pharmaceutical Chemistry; Organic Chemistry; Applied & Industrial Chemistry; Materials Chemistry

Keywords: gallium (III) chloride; Biginelli reaction; dihydropyrimidinones; solvent-free

1. Introduction
Dihydropyrimidinone (DHPM) and its derivatives have attracted considerable interest in recent years due to their diverse pharmacological properties such as calcium channel blockers, antihypertensive...
agents, neuropeptide antagonists, and α-1a-antagonists (Atwal et al., 1990, 1991). In 1893, Biginelli first reported the synthesis of DHPMs by a simple one-pot condensation reaction of an aromatic aldehyde, β-ketoester, and urea in ethanol containing a catalytic amount of HCl (Biginelli, 1893), however, the yields were low (20–50%).

The acid catalyst is the key in the Biginelli reaction. If there is no acid catalyst, the condensation reaction of aromatic aldehydes can hardly react with urea in the first step. However, it is difficult to freely transmit a protonic acid (H⁺) catalyst in the non-aqueous medium found in the classical Biginelli reaction, but Lewis acid catalysts can freely bond and separate in non-aqueous medium.

Recently, the Biginelli reaction for the synthesis of DHPMs has gained in popularity again and feature Lewis acid catalysts, such as BF₃·OEt₂/CuCl (Hu, Sidler, & Dolling, 1998), CuI (Kalita & Phukan, 2003), CuSO₄·5H₂O (Gohain, Prajapati, & Sandhu, 2004), InBr₃ (Ranu, Hajra, & Jana, 2000), GaI₃ (Li, Mao, An, Zhao, & Zou, 2010), GaBr₃/GaCl₃ (Saini et al., 2007), LaCl₃·7H₂O (Lu, Bai, Wang, Yang, & Ma, 2000), LiBr (Maiti, Kundu, & Guin, 2003), CeCl₃·7H₂O (Bose, Fatima, & Mereyala, 2003), MgBr₂ (Salehi & Guo, 2004), CdCl₂ (Narsaiah, Basak, & Nagaiah, 2004), Al(HSO₄)₃ (Khodaei, Salehi, Zolfigol, & Sirouszadeh, 2004), FeCl₃·6H₂O/NiCl₂·6H₂O/HCl (Lu & Bai, 2002), SmI₂ (Han, Xu, Luo, & Shen, 2005), ZnI₂ (Jenner, 2004), ZnCl₂ (El Badaoui, Bazi, Tahir, Lazrek, & Sebti, 2005), BiCl₃ (Ramalinga, Vijayalakshmi, & Kaimal, 2001), Bi(NO₃)₃ (Slimi, Moussaoui, & ben Salem, 2016), which allow to the preparation of DHPM in high yields.

Recently, gallium (III) halides have emerged as a powerful Lewis catalyst for implementing the Biginelli reaction under solvent-free or microwave-assisted conditions (Maiti et al., 2003; Bose et al., 2003). After considering the gallium (III) halides, gallium (III) chloride, with lower melting point (78°C), is readily melted, and suitable for solvent-free Biginelli reactions.

Herein, we wish to report our study of using gallium (III) chloride for as catalyst for Biginelli reaction under solvent-free conditions (Scheme 1).

2. Results and discussion

Our initial study was started by reacting benzaldehyde (2 mmol), urea (3 mmol) with ethyl acetoacetate (2 mmol) under different conditions. The results are summarized in Table 1.

As shown in Table 1, dihydropyrimidinone 4a was observed in low yield at 80°C with no catalyst (entry 1, Table 1). When indium (III) halides, gallium (III) bromide, and gallium (III) iodide were used as catalysts, the yields of dihydropyrimidinone 4a were also lower at 80°C (entries 2–6, Table 1). Encouraging, the dihydropyrimidinone 4a was obtained in high yields using gallium (III) chloride as catalyst under the same condition (entry 7, Table 1). Increasing the catalyst loading moderately helped to increase yields of 3,4-dihydropyrimidinone 4a (entries 8–10, Table 1). The effective reaction time was 6 h (entries 11–12, Table 1) and when the reaction temperature was below 75°C, the yields declined sharply (entries 13–14, Table 1). Raising the reaction temperature hardly increased the yield of dihydropyrimidinone 4a with respect to 80°C (entry 15, Table 1). Gratifyingly, the recycled
catalyst could be directly reused and the yields for the four cycles were as high as for the first cycle (entry 16, Table 1).

After this successful survey of the reaction conditions, gallium (III) chloride was considered as an appropriate catalyst for the Biginelli reaction, and was used to synthesize a series dihydropyrimidinone 4a-4r by reacting benzaldehydes (2 mmol), urea/thiourea (3 mmol) with ethyl/methyl acetoacetate (2 mmol) at 80°C under solvent-free conditions (Scheme 1) and these results are listed in Table 2. The results are listed in Table 2.

It was found that benzaldehyde and both electron withdraw groups or electron donating groups could implement Biginelli reaction with urea and ethyl (methyl) acetoacetate in good yields at 80°C (entries 1–13, Table 2). The position of the substitution group seldomly had an effect on reaction yields, although it was necessary to prolong the reaction time when ortho- and meta-substituted substrates was used for this reaction (entries 5, 6, 10, 11, and 12, Table 2), which may be caused by the increase in steric hindrance around the carbonyl group and the effect of electron withdrawing substituent, respectively. However, aromatic aldehydes substituted by electron-withdrawing group gave higher yields of DHPMs (4) than by electron-donating group at the same position (entries 7–13, Table 2). Moreover, naphthaldehyde, furfural also could afford the corresponding DHPMs (4) in high yields under the same conditions smoothly (entries 14–15, Table 2). Inspiringly, when an aliphatic aldehyde was used in the present reaction, the corresponding DHPM (4p) also was given the better yield (entry 16, Table 2). Finally, a reaction of aromatic aldehydes with ethyl acetoacetate and thiourea also gave high yields of the desired product (entries 17–18, Table 2).

Entry	Catalyst	Catalyst Mpt. (°C)	Time (h)	Temp(°C)	Yield (4a)/%a,b
1	/	124	5	80	49
2	GaCl₃ (0.05 mmol)	78	5	80	43
3	GaCl₃ (0.1 mmol)	78	5	80	91
4	GaCl₃ (0.15 mmol)	78	5	80	94
5	GaCl₃ (0.2 mmol)	78	5	80	94
6	GaCl₃ (0.15 mmol)	78	5	80	96
7	GaCl₃ (0.15 mmol)	78	5	80	96
8	GaCl₃ (0.15 mmol)	78	6	80	96
9	GaCl₃ (0.15 mmol)	78	7	80	95
10	GaCl₃ (0.15 mmol)	78	6	75	73
11	GaCl₃ (0.15 mmol)	78	6	65	56
12	GaCl₃ (0.15 mmol)	78	6	90	96
13	GaCl₃ (0.15 mmol, recycled)	78	6	80	95
3. Conclusions

In summary, we have developed efficient catalyst for the Biginelli reaction using gallium (III) chloride, the condensation of aromatic aldehydes, ethyl acetoacetate, and urea or thiourea generated the corresponding products in excellent yields under free-solvent conditions. The GaCl₃ can be recovered by filtration, and untreated GaCl₃ was reused directly for Biginelli reaction for at least four cycles. The procedure will find important applications in the synthesis of dihydropyrimidinones to cater the needs of academic and pharmaceutical industries.

4. Experimental section

All melting points were determined on a WT-melting point apparatus. IR (Perkin-Elmer, 2000 FTIR), ¹H NMR (DMSO-d₆, 400 MHz), ¹³C NMR (DMSO-d₆, 100 MHz) were recorded on a Bruker AC-300 FT spectrometer and MS-GC (HP5890 (II)/HP 5972, EI) spectra were obtained at the Center of Analytical Configuration of Anhui Jianzhu University. Flash chromatographic sheet employed was purchased from Anhui Liangchen Silicon Material Co., Ltd. and all materials from Aldrich and used directly as received.

4.1. General procedure for the synthesis of 5-alkoxycarbonyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones

The mixture of aldehyde (2 mmol), urea or thiourea (3 mmol), ethyl (methyl) acetoacetate (2 mmol), and gallium (III) chloride (0.15 mmol) was heated with stirring at 80°C for the stated time, and the progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled to reach room temperature, and then was poured into crushed ice and stirred for 10 min. The solid separated was filtered under suction, washed with ice-cold water. The pure products were obtained by recrystallized from hot ethanol or by flash chromatography on silica gel eluting with petroleum ether/EtOAc (4:1, V:V) and identified by IR, ¹H, ¹³C NMR, and HRMS. All compounds obtained were consistent with authentic ones in the literatures (Ahmed et al., 2009; Cepanec et al., 2005; Fu et al., 2002; Ladole et al., 2016; Lu & Bai, 2002).

Table 2. Gallium (III) chloride-catalyzed Biginelli reaction between aldehydes, urea or thiourea and acetoacetate

Entry	R₁	R₂	O/S	Time (h)	Yield (4)/(%) a,b	Ref.
1	C₆H₅	OCH₃	O	6	96 (4a)	Fu et al. (2002)
2	4-CH₃C₆H₄	OCH₃	O	7	93 (4b)	Fu et al. (2002)
3	4-CH₃OC₆H₄	OCH₃	O	6	83 (4c)	Fu et al. (2002)
4	4-OHC₆H₄	OCH₃	O	7	90 (4d)	Fu et al. (2002)
5	3-CH₃OC₆H₄	OCH₃	O	8	78 (4e)	Fu et al. (2002)
6	2-CH₃C₆H₄	OCH₃	O	9	89 (4f)	Fu et al. (2002)
7	4-CIC₆H₄	OCH₃	O	6	95 (4g)	Fu et al. (2002)
8	4-BrC₆H₄	OCH₃	O	6	97 (4h)	Fu et al. (2002)
9	4-FC₆H₄	OCH₃	O	6	89 (4i)	Ahmed, Khan, and Habibullah (2009)
10	3-BrC₆H₄	OCH₃	O	7	93 (4j)	Lu and Bai (2002)
11	3-CIC₆H₄	OCH₃	O	7	91 (4k)	Fu et al. (2002)
12	2-CIC₆H₄	OCH₃	O	8	90 (4l)	Fu et al. (2002)
13	4-NO₂C₆H₄	OCH₃	O	6	96 (4m)	Fu et al. (2002)
14	1-Naphthyl	OCH₃	O	9	85 (4n)	Cepanec, Litvić, Bartolinčić, and Lovrić (2005)
15	2-Furyl	OCH₃	O	6	92 (4o)	Fu et al. (2002)
16	n-C₄H₉	OCH₃	O	8	76 (4p)	Fu et al. (2002)
17	4-OHC₆H₄	OCS₂	S	7	91 (4q)	Ladole, Salunkhe, and Aswar (2016)
18	2-Furyl	OCS₂	S	7	90 (4r)	Ladole, Salunkhe, and Aswar (2016)

a Isolated yields are reported.

b The pure product was identified by IR, ¹H, ¹³C NMR and HRMS.
4.2. 4-(4-bromophenyl)-5-Ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4h)

\[^\text{Me} 212–214°C, \text{lit.} \text{212–214°C}\] IR (KBr): \(\nu\ 3,233, 1,727, 1,659 \text{ cm}^{-1}\); \(^1\text{H} \text{NMR (DMSO-}d_6; 400 \text{ MHz}\): \(\delta\ 9.22 \ (s, 1H, NH), 7.51 \ (d, 1H, NH), 7.50–7.18 \ (m, 4H, \text{CH}_2)\), 5.11 \ (d, 1H, CH), 3.97 \ (q, \(J = 6.9 \text{ Hz, 2H, OCH}_2\text{CH}_3\)\), 2.23 \ (s, 3H, \text{CH}_3)\); \(^{13}\text{C} \text{NMR (DMSO-}d_6; 100 \text{ MHz}\): \(\delta\ 165.7, 152.4, 149.2, 144.7, 131.8, 129.0, 120.8, 99.3, 59.7, 54.0, 18.3, 14.6\); HRMS: calcd for \(\text{C}_{12}\text{H}_{14}\text{O}_4\text{N}_2\text{Br}\): 338.9769, found: 338.9771.

4.3. 5-Ethoxycarbonyl-4-(2-furyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione(4n)

\[^\text{Me} 226–227°C, \text{lit.} \text{225–227°C}\] IR (KBr): \(\nu\ 3,244, 1,703, 1,652 \text{ cm}^{-1}\); \(^1\text{H} \text{NMR (DMSO-}d_6; 400 \text{ MHz}\): \(\delta\ 9.61 \ (s, 1H, NH), 7.55 \ (s, 1H, NH), 7.53 \ (m, 1H, furyl), 6.35 \ (d, 1H, furyl), 6.11 \ (d, 1H, furyl), 5.20 \ (d, \(J = 3.6 \text{ Hz, 1H, CH})\), 4.00 \ (q, \(J = 4.2 \text{ Hz, 2H, OCH}_2\text{CH}_3\)\), 2.22 \ (s, 3H, \text{CH}_3)\); \(^{13}\text{C} \text{NMR (DMSO-}d_6; 100 \text{ MHz}\): \(\delta\ 175.3, 165.4, 155.2, 146.5, 143.2, 111.1, 106.8, 98.8, 60.2, 17.7, 14.6\); MS: \(m/z\ 250 \left(\text{M}^+\right), 221, 177\); Anal. (%): calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_4\text{N}_2\): C, 57.57; H, 5.67; N, 11.26. Found: C, 57.67; H, 5.67; N, 11.26; HRMS: calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_4\text{N}_2\): 366.4321, found: 366.4317.

4.4. 5-Ethoxycarbonyl-4-(2-furyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione(4n)

\[^\text{Me} 226–227°C, \text{lit.} \text{225–227°C}\] IR (KBr): \(\nu\ 3,244, 1,703, 1,652 \text{ cm}^{-1}\); \(^1\text{H} \text{NMR (DMSO-}d_6; 400 \text{ MHz}\): \(\delta\ 9.61 \ (s, 1H, NH), 7.55 \ (s, 1H, NH), 7.53 \ (m, 1H, furyl), 6.35 \ (d, 1H, furyl), 6.11 \ (d, 1H, furyl), 5.20 \ (d, \(J = 3.2 \text{ Hz, 1H, CH})\), 4.01 \ (q, \(J = 4.2 \text{ Hz, 2H, OCH}_2\text{CH}_3\)\), 2.22 \ (s, 3H, \text{CH}_3)\); \(^{13}\text{C} \text{NMR (DMSO-}d_6; 100 \text{ MHz}\): \(\delta\ 175.3, 165.4, 155.2, 146.5, 143.2, 111.1, 106.8, 98.8, 60.2, 17.7, 14.6\); MS: \(m/z\ 250 \left(\text{M}^+\right), 221, 177\); Anal. (%): calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_4\text{N}_2\): C, 57.57; H, 5.64; N, 11.20. Found: C, 57.67; H, 5.67; N, 11.26; HRMS: calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_4\text{N}_2\): 366.4321, found: 366.4317.

Funding

We appreciate financial support from the Natural Science Foundation of China [grant number 11573001], the Natural Science Foundation of Anhui Province [grant number 1508085MB36], and the Center of Analytical Configuration of Anhui Jianzhu University.

Author details

Haixin Yuan1
E-mail: yuanshzh3@hotmail.com

Kehua Zhang1
E-mail: zhangkehua@ahjzu.edu.cn

Jingjing Xia1
E-mail: xjjy@ahjzu.edu.cn

Xianhai Hu2
E-mail: xhyx@ahjzu.edu.cn

Shizhen Yuan1
E-mail: yuanshzh3@hotmail.com

1 School of Medical Economics & Management, Anhui University of Chinese Medicine, Hefei 230012, China.
2 Department of Chemistry, Anhui Jianzhu University, Hefei 230022, China.

Citation information

Cite this article as: Gallium (III) chloride-catalyzed synthesis of 3, 4-dihydropyrimidinones for Biginelli reaction under solvent-free conditions, Haixin Yuan, Kehua Zhang, Jingjing Xia, Xianhai Hu & Shizhen Yuan, Cogent Chemistry (2017), 3: 1318692.

References

Ahmed, B., Khan, R. A., & Habibullah, M. (2009). An improved synthesis of Biginelli-type compounds via phase-transfer catalysis. Tetrahedron Letters, 50, 2889–2892. https://doi.org/10.1016/j.tetlet.2009.03.177

Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. II. Synthesis of dihydropyrimidinones catalysed by Biginelli reaction. Tetrahedron, 47, 4801–4807. https://doi.org/10.1016/S0040-4020(02)00455-6

Bose, D. S., Fatima, L., & Mereyala, H. B. (2003). Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: Comparison of ethanol, water, and solvent-free conditions. The Journal of Organic Chemistry, 68, 587–590. https://doi.org/10.1021/jo0205199

Cepanec, I., Litivc, M., Bartolinc, A., & Lovric, M. (2005). Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron, 61, 4275–4280. https://doi.org/10.1016/j.tet.2005.02.059

El Badaoui, H., Bazi, F., Tahir, R., Lazrek, H. B., & Sebti, S. (2005). Synthesis of 3, 4-dihydropyrimidin-2-ones catalysed by fluorapatite doped with metal halides. Catalysis Communications, 6, 455–458. https://doi.org/10.1016/j.catcom.2005.04.003

Fu, N. Y., Yuan, Y. F., Cao, Z., Wang, S. W., Wong, J. T., & Peppe, C. (2003). Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Tetrahedron, 59, 4801–4807. https://doi.org/10.1016/S0040-4020(02)00455-6

Gohain, M., Prajapati, D., & Sandhu, J. S. (2004). A novel Cu-catalysed three-component one-pot synthesis of dihydropyrimidinones-2 (1H)-ones using microwaves under solvent-free conditions. Synlett, 2004, 235–238.

Han, X., Xu, F., Luo, Y., & Shen, Q. (2003). An efficient one-pot synthesis of dihydropyrimidinones by a samarium...
diiodide catalyzed Biginelli reaction under solvent-free conditions. European Journal of Organic Chemistry, 2005, 1500–1503. https://doi.org/10.1002/ejoc.200500609

Hu, E. H., Sidler, D. R., & Dolling, U. H. (1998). Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxy carbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones. The Journal of Organic Chemistry, 63, 3454–3457. https://doi.org/10.1021/jo970846u

Jenner, G. (2004). Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations. Tetrahedron Letters, 45, 6195–6198. https://doi.org/10.1016/j.tetlet.2004.05.106

Kalita, H. R., & Phukan, P. (2007). CuI as reusable catalyst for the Biginelli reaction. Catalysis Communications, 8, 179–182. https://doi.org/10.1016/j.catcom.2006.06.004

Khodaei, M. M., Salehi, P., Zolfigol, M. A., & Sirouszadeh, S. (2004). Efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones by aluminum hydrogensulfate. Polish Journal of Chemistry, 78, 385–388.

Ladole, C. A., Salunkhe, N. G., & Aswar, A. S. (2016). A microwave assisted synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones using NiFe2O4 ferrite as an effective and reusable catalyst. Journal of Indian Chemical Society, 93, 337.

Li, D., Mao, H., An, L., Zhao, Z., & Zou, J. (2010). Gallium(III) iodide-catalyzed Biginelli-type reaction under solvent-free conditions: Efficient synthesis of dihydropyrimidine-2(1H)-one derivatives. Chinese Journal of Chemistry, 28, 2025–2032. https://doi.org/10.1002/cjoc.201009338

Lu, J., & Boi, Y. (2002). Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2002, 466–470. https://doi.org/10.1055/s-2002-20956

Lu, J., Boi, Y., Wang, Z., Yang, B., & Ma, H. (2006). One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Letters, 41, 9075–9078. https://doi.org/10.1016/j.tetlet.2001.06.010

Maiti, G., Kundu, P., & Guin, C. (2003). Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones catalyzed by lithium bromide: An improved procedure for the Biginelli reaction. Tetrahedron Letters, 44, 2757–2758. https://doi.org/10.1016/S0040-4039(02)02859-9

Narsaiah, A. V., Basak, A. K., & Nagaih, K. (2004). Cadmium chloride: An efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2004, 1253–1256.

Ramalingo, K., Vijayalakshmi, P., & Kaimal, T. N. B. (2001). Bismuth(III)-catalyzed synthesis of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Synlett, 2001, 863–865. https://doi.org/10.1055/s-2001-14587

Ranu, B. C., Hajor, A., & Jana, U. (2000). Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: An improved procedure for the Biginelli reaction. The Journal of Organic Chemistry, 65, 6270–6272. https://doi.org/10.1021/jo000711f

Saini, A., Kumar, S., & Sandhu, J. S. (2007). Aluminium(III) halides mediated synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones via three component Biginelli-like reaction [J]. Indian Journal of Chemistry B, 46, 1690–1694.

Salehi, H., & Guo, Q. X. (2004). A facile and efficient one-pot synthesis of dihydropyrimidinones catalyzed by magnesium bromide under solvent-free conditions. Synthetic Communications, 34, 171–179. https://doi.org/10.1081/SCC-120027250

Slimi, H., Moussoua, Y., & ben Salem, R. (2016). Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via Biginelli reaction promoted by bismuth(III) nitrate or PPh3 without solvent. Arabian Journal of Chemistry, 9, S510–S514. https://doi.org/10.1016/j.arabjc.2011.06.010