Health disparities are associated with gastric cancer mortality-to-incidence ratios in 57 countries

Ming-Chang Tsai, Chi-Chih Wang, Hsiang-Lin Lee, Cheng-Ming Peng, Tzu-Wei Yang, Hsuan-Yi Chen, Wen-Wei Sung, Chun-Che Lin

Abstract

AIM
To evaluate the association between mortality-to-incidence ratios of gastric cancer and health disparity in 57 countries.
incidence ratios (MIRs) and health disparities.

METHODS
In this study, we used the GLOBOCAN 2012 database to obtain the cancer incidence and mortality data for 57 countries, and combined this information with the World Health Organization (WHO) rankings and total expenditures on health/gross domestic product (e/GDP). The associations between variables and MIRs were analyzed by linear regression analyses and the 57 countries were selected according to their data quality.

RESULTS
The more developed regions showed high gastric cancer incidence and mortality crude rates, but lower MIR values than the less developed regions (0.64 vs 0.80, respectively). Among six continents, Oceania had the lowest (0.60) and Africa had the highest (0.91) MIR. A good WHO ranking and a high e/GDP were significantly associated with low MIRs ($P = 0.001$ and $P = 0.001$, respectively).

CONCLUSION
The MIR variation for gastric cancer would predict regional health disparities.

Key words: Gastric cancer; Mortality; Incidence; Mortality-to-incidence ratio; Gross domestic product; Expenditure; World Health Organization

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The mortality-to-incidence ratios (MIRs), defined as the ratio of the crude rate of mortality to the incidence, could reflect the clinical outcomes of disease. A total of 57 countries was included in this analysis to evaluate the association between MIR and health care disparities. The results showed the more developed regions had high gastric cancer incidence and mortality, but lower MIR than the less developed regions. Otherwise, good World Health Organization ranking and high total expenditures on health/gross domestic product were significantly associated with low MIRs. Therefore, the MIR variation for gastric cancer could predict regional health disparities.

INTRODUCTION
Gastric cancer was the leading cause of cancer mortality worldwide until the 1990s[9], but its incidence has since declined, especially in the developed world. Nevertheless, gastric cancer remains one of the most prevalent cancers in the world[2,3]. Gastric cancer is a multi-factorial disease, having a clear relationship with environmental risks, dietary habits, food storage, Helicobacter pylori infection, and geographic region[14-18]. Gastric cancer is more common in developing countries than in developed countries, and it occurs more frequently in men than in women[7,8].

Previous ethnic and migration studies have indicated that early exposure to environmental factors has a greater influence on the mortality and incidence rates of gastric cancer than is found for genetic factors[9,10]. Modern studies have also explored the mechanism of how Helicobacter pylori infection affects gastric cancer development in cancer stem cell lines and animal models[11,12]. Several recent large-scale database observational studies have documented the incidence of gastric cancer among patients with gastric precancerous lesions in western countries[13,14]. The early detection of precancerous lesions, such as atrophic gastritis, intestinal metaplasia and dysplasia, by esophagogastroduodenoscopy (EGD) and further endoscopic or surgical resection are helping to decrease the progression to malignancy[15] and therefore the morbidity and mortality associated with gastric cancer.

As already mentioned, the mortality rates due to gastric cancer have shown a steady decline globally, but regional differences are evident. Previous studies have demonstrated an annual percent decrease in gastric mortality rate of around 3% to 4% for European countries, the United States, the Republic of Korea, Japan and Australia between 1980 and 2005[16]. A 2% annual percent decrease was noted in gastric mortality rate among major Latin American countries and a less dramatic decline was observed in China[9]. This decline is at least in part due to the introduction of EGD, an important tool for early detection of gastric cancer, and even precancerous lesions. A recent Japanese study concluded that EGD screening was more powerful than either radiographic or photofluorography screening, and reduced the mortality rate from gastric cancer by 57%[17].

All these declines in gastric cancer prevalence suggest that the health care system may be able to improve precancerous lesion detection, early cancer detection, and treatment of gastric cancer to provide further declines in mortality. We therefore considered that the mortality-to-incidence (MIR) ratio for gastric cancer should be low in countries with good health care systems, in agreement with recent findings on prostate cancer[18-21]. The aim of the present study was therefore to clarify the association between human development, the World Health Organization (WHO) ranking, region, total expenditure on health/gross domestic product (GDP; e/GDP), life expectancy, and crude rates of incidence and mortality for gastric cancer in different countries. Our results provide a comprehensive overview of gastric cancer MIRs and health disparities in various countries across the globe.
MATERIALS AND METHODS

The data acquisition was described previously.[18] In brief, the cancer epidemiological data were gathered from the GLOBOCAN 2012 database maintained by the International Agency for Research on Cancer (https://www.iarc.fr/). The WHO rankings of countries were obtained from the World’s Health Systems of WHO. The e/GDP and life expectancies for 2012 were obtained from the World Health Statistics 2015. Data for 184 countries were obtained from the GLOBOCAN 2012 database. Among these 184 countries, 22 were excluded from the study due to a lack of WHO ranking data. We excluded a further 105 countries due to the availability of mortality/incidence data mentioned in GLOBOCAN 2012 database (rankings E to G for incidence or rankings 4 to 6 for mortality were excluded). This resulted in 57 countries being further analyzed in this study. The MIR is defined as the ratio of the crude rate of mortality and the crude rate of incidence.[21]. The methods used for statistical analyses were described previously.[18] Associations between the MIRs and variants among countries were estimated by linear regression. R-squared changes and analysis of variance (ANOVA) were determined using SPSS statistical software version 15.0 (SPSS, Inc., Chicago, IL, United States). P value < 0.05 of a two-sided test were considered statistically significant. Scatter plots were generated using Microsoft Excel 2010.

RESULTS

Incidence and mortality rates of gastric cancer according to regions

We examined the global trends in gastric cancer by analyzing the incidence and mortality numbers and rates according to different regions across the globe. The results are summarized in Table 1. The worldwide MIR is 0.76 and it is higher in less developed regions than in more developed regions (0.80 vs 0.64). The WHO values indicate that the Western Pacific region
Table 2. World Health Organization rankings, total expenditure on health/ gross domestic product, life expectancy, gastric cancer incidence, mortality and mortality-to-incidence ratio for gastric cancer in selected countries

Country	Ranking	Total expenditure on health/GDP, %	Life expectancy	Number	Crude rate	Age-standardized rate	Mortality-to-incidence ratio			
				Incidence	Mortality	Incidence	Mortality			
France	1	11.6	82	6507	4412	10.3	7	4.7	2.9	0.68
Italy	2	9.2	83	13001	9917	21.3	16.3	8.2	5.6	0.77
Malta	5	8.7	81	68	33	16.2	7.9	8.0	3.3	0.49
Singapore	6	4.2	83	647	431	12.3	8.2	8.2	5.3	0.67
Spain	7	9.3	83	7810	5389	16.7	11.5	7.8	4.9	0.69
Oman	8	2.7	76	79	68	2.7	2.3	5.3	4.7	0.85
Austria	9	11.1	81	1314	853	15.6	10.1	6.8	4.0	0.65
Japan	10	10.3	84	107988	52326	85.3	41.4	29.9	12.4	0.49
Norway	11	9.3	82	475	313	9.6	6.3	4.6	2.8	0.66
Portugal	12	9.9	81	3018	2285	28.2	21.4	13.1	9.0	0.76
Iceland	15	9.0	82	28	18	8.5	5.5	5.0	2.9	0.65
Luxembourg	16	7.2	82	67	32	12.8	6.1	7.6	3.0	0.48
Netherlands	17	12.7	81	1953	1391	11.7	8.3	5.6	3.7	0.71
United Kingdom	18	9.3	81	6684	4334	10.6	7.2	4.7	2.9	0.68
Ireland	19	8.9	81	487	325	10.6	7.1	6.5	4.2	0.67
Switzerland	20	11.4	83	683	485	8.8	6.3	4.2	2.6	0.72
Belgium	21	10.9	80	1417	902	13.1	8.9	5.8	3.5	0.68
Colombia	22	6.8	78	3897	4981	12.4	10.3	13.4	11.2	0.85
Sweden	23	9.6	82	811	633	8.5	6.7	3.7	2.7	0.79
Cyprus	24	7.3	82	94	72	8.3	6.4	5.4	4.0	0.77
Germany	25	11.3	81	16015	9714	19.5	11.8	7.8	4.3	0.61
Israel	26	7.4	82	777	516	10.1	6.7	7.1	4.5	0.66
Canada	27	10.9	82	3342	1937	9.6	5.6	4.9	2.7	0.58
Finland	28	9.1	81	641	479	11.9	8.9	5.2	3.7	0.75
Australia	29	8.9	83	2049	1135	8.9	5.0	4.8	2.5	0.56
Chile	30	7.3	80	371	337	13.8	15.6	13.8	0.91	
Denmark	31	11.0	80	625	351	11.2	6.3	5.6	2.9	0.56
Costa Rica	32	10.1	79	874	612	18.2	12.8	17.3	12	0.70
United States	33	17.0	79	21755	11758	6.7	3.7	3.9	2.0	0.55
Slovenia	34	9.4	80	468	335	22.9	16.4	10.4	6.8	0.72
Cuba	35	8.6	78	1126	916	10.0	8.1	5.9	4.6	0.81
New Zealand	36	10.2	82	393	240	8.8	5.4	5.2	2.9	0.61
Bahrain	37	4.4	77	29	21	2.1	1.5	3.9	3.5	0.71
Thailand	38	4.5	75	2841	2826	4.1	3.3	3.1	2.5	0.80
Czech Republic	39	7.5	78	1595	1099	15.1	10.4	7.4	4.9	0.69
Malaysia	40	4.0	74	1900	873	6.5	3.0	7.8	3.6	0.46
Poland	41	6.8	77	6105	5197	13.9	13.6	8.4	7.0	0.86
Jamaica	42	5.6	74	269	229	9.7	8.3	9.1	7.1	0.86
South Korea	43	7.6	82	31249	10746	64.4	22.1	41.8	15	0.34
has the highest incidence and mortality for gastric cancer, regardless of whether this is based on the number, crude rate, or age-standardized rate (ASR) (Table 1). However, this region has the lowest MIR, at 0.72, among the six WHO regions. The highest MIR is reported for the WHO South-East Asia region (0.92). At a continent level, Africa has the lowest rate of incidence but has the highest MIR (0.91). The lowest MIR is found in North America.

WHO ranking and e/GDP were significantly associated with the MIRs for gastric cancer

We conducted a further comparison of the differences in epidemiology among countries by analyzing the 57 selected countries (Table 2). The e/GDP ranged from 2.7% (Oman) to 17.0% (United States of America) with mean ± standard deviation of 8.0% ± 2.6%. Japan had the longest life expectancy (84 years) and the Republic of South Africa had the shortest (60 years). Japan had the highest crude rates for gastric cancer, at 85.3 and 41.4 for incidence and mortality respectively. The MIR of Japan, at 0.49, was the fourth lowest value among the 57 countries. The lowest MIR was found for the Republic of Korea (0.34), which had the highest gastric cancer incidence in terms of ASR (41.8). Among these countries, five have MIR values greater than or equal to 0.90, including Fiji (1.05), Ecuador (0.94), Mauritius (0.92), Chile (0.91) and Egypt (0.90).

We also analyzed the association between the rates of incidence/mortality and the WHO ranking or e/GDP (SF1 and SF2). The results showed no significant association, except for the WHO ranking and the ASR of mortality \((P = 0.005, \text{SF2D}) \). However, the use of the MIR for analyses revealed significant associations for both the WHO ranking and e/GDP and the MIR of the 57 countries \((R^2 = 0.195, P = 0.001; R^2 = 0.195, P = 0.001, \text{respectively, Figure 1}) \).

DISCUSSION

In this study, we analyzed the correlation of the incidence, mortality and MIRs for gastric cancer with WHO rankings and e/GDP. The MIR, which was calculated as the ratio of the crude rate of mortality and the crude rate of incidence, is regarded as an important marker for cancer care disparities. The crude rates of incidence and mortality, which our results showed were higher in Japan and Korea, are similar to those reported previously \[22]\). The incidence of gastric cancer can be influenced by environmental hygiene, food storage, diet habits, ethnicity, geographic regions, and, most importantly, age \[23]\).
Otherwise, in countries with high incidence of gastric cancer, more frequent survey or detection of cancer is performed. This might result in more cases detected in early stage and contribute to good clinical outcome. It is also observed in this database that countries with higher incidence of gastric cancer have lower MIR compared with those with lower incidence (crude rate vs MIR: $R^2 = 0.104, P = 0.015$; case number vs MIR: $R^2 = 0.078, P = 0.035$). Otherwise, a better WHO ranking and a higher e/GDP were correlated linearly with a longer life expectancy ($R^2 = 0.0689, P < 0.001$; $R^2 = 0.248, P < 0.001$ respectively). This could explain the lack of a significant association between the WHO rankings, e/GDP, and incidence of gastric cancer in our analysis.

The mortality rates for gastric cancer can be reduced by screening programs, early endoscopic detection and management, surgical intervention availability, and the capability for chemotherapy or targeted therapy. This may be why the ASR of mortality for gastric cancer was correlated with the WHO ranking, but had no significant correlation with total e/GDP. Previous data have shown that MIRs are lower in areas with better health care, and the present study shows that MIRs are also significantly lower in countries with better WHO rankings, with higher e/GDP, and in more developed regions. For the sex difference in the MIR and the health care disparities, previous study has shown that female patients with bladder cancer have higher MIR compared with male patients with bladder cancer. However, unlike bladder cancer, there is no significant association in gastric cancer.

The limitations of this study include the fact that many countries are not participants in the WHO, and many of these countries are located in the least developed areas of the world. This limitation could influence the impact of e/GDP on gastric cancer incidence. Second, the use of the WHO rankings and e/GDP to represent the health care disparities of a country is not particularly specific. We were also unable to analyze ethnicity and national health insurance issues in our study. The reason why only the ASR mortality rate had a significant correlation with WHO rankings needs further investigation.

Our study indicates that gastric cancer has a higher incidence, mortality, and MIR value in less developed regions. Although the incidence, mortality, and MIR values are low in more developed regions, some differences were evident between the geographic regions; for example, the ASR incidence (9.4 vs 15.8 vs 3.8) and mortality (6.9 vs 11.7 vs 3.5) were higher in Europe and Asia than in Africa. The MIRs are generally lower in the more developed continents, as exemplified by North America, which showed the lowest MIR (0.56) and Africa, which showed the highest (0.91).

In conclusion, MIRs showed a significant correlation with WHO rankings and e/GDP in our analysis and we believe that this finding reflects the health care disparities of different countries. Our study provides a valuable documentation of the MIR and its relationship to the global geographic distribution of gastric cancer in 57 countries worldwide.

COMMENTS

Background

MIRs of colorectal and prostate cancers are associated with health disparities, but similar associations between the MIRs for gastric cancer and health disparities among different countries have never been investigated.

Research frontiers

A total of 57 countries was included in this analysis. The more developed regions showed high gastric cancer incidence and mortality, but lower MIR than the less developed regions. Otherwise, good World Health Organization (WHO) ranking and high total expenditures on health/gross domestic product (e/GDP) were significantly associated with low MIRs.

Innovations and breakthroughs

The MIR variation for gastric cancer could predict regional health disparities.

Applications

The gastric cancer MIR could be used to evaluate the health disparities and ranking of countries.

Terminology

MIRs showed a significant correlation with WHO rankings and e/GDP in 57 countries, which reflects the health care disparities of different countries. Our study provides valuable documentation of the MIR and its relationship to the global geographic distribution of gastric cancer worldwide.

Peer-review

The novelty of this manuscript is good, and the result can help to explain the research purpose.

REFERENCES

1. Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer 1993; 55: 891-903 [PMID: 8253525 DOI: 10.1002/ijc.291050604]
2. Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 2014; 50: 1330-1344 [PMID: 24650570 DOI: 10.1016/j.ejca.2014.01.029]
3. Zhu AL, Sonnenberg A. Is gastric cancer again rising? J Clin Gastroenterol 2012; 46: 804-806 [PMID: 22914346 DOI: 10.1097/MCG.0b013e3182604254]
4. Coggon D, Barker DJ, Cole RB, Nelson M. Stomach cancer and food storage. J Engl Cancer Inst 1989; 81: 1178-1182 [PMID: 2746670 DOI: 10.1093/jnci/81.15.1178]
5. La Vecchia C, Negri E, D’Avanzo B, Franceschini S. Electric refrigerator use and gastric cancer risk. Br J Cancer 1990; 62: 136-137 [PMID: 2390474 DOI: 10.1038/bjc.1990.245]
6. Caruso ML, Fucci L. Histological identification of Helicobacter pylori in early and advanced gastric cancer. J Clin Gastroenterol 1990; 12: 601-602 [PMID: 2103734]
7. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90 [PMID: 21298855 DOI: 10.3322/caac.20107]

Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from other diseases among Japanese in the United States. J Natl Cancer Inst 1968; 40: 43-68 [PMID: 5635018]

Haenszel W, Kurihara M, Segi M, Lee RK. Stomach cancer among Japanese in Hawaii. J Natl Cancer Inst 1972; 49: 969-988 [PMID: 4678140]

Yong X, Tang B, Xiao YF, Xie R, Qin Y, Luo G, Hu CJ, Dong H, Yang SM. Helicobacter pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer. Cancer Lett 2016; 374: 292-303 [PMID: 26940070 DOI: 10.1016/j.canlet.2016.02.032]

Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett 2015; 359: 345-351 [PMID: 25853150 DOI: 10.1016/j.canlet.2015.01.028]

de Vries AC, van Grieken NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 2008; 134: 945-952 [PMID: 18395075 DOI: 10.1053/j.gastro.2008.01.071]

Song H, Ekhiobum Ic, Zheng Z, Ericsson J, Nyrén O, Ye W. Incidence of gastric cancer among patients with gastric precancerous lesions: observational cohort study in a low risk Western population. BMJ 2015; 351: h3867 [PMID: 26215280 DOI: 10.1136/bmj.h3867]

Li D, Bautista MC, Jiang SF, Daryani P, Brackett M, Armstrong MA, Hung YY, Postlethwaite D, Ladabaum U. Risks and Predictors of Gastric Adenocarcinoma in Patients with Gastric Intestinal Metaplasia and Dysplasia: A Population-Based Study. Am J Gastroenterol 2016; 111: 1104-1113 [PMID: 27185078 DOI: 10.1038/ajg.2016.188]

Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M, La Vecchia C. Recent patterns in gastric cancer: a global overview. Int J Cancer 2009; 125: 666-673 [PMID: 19382179 DOI: 10.1002/ijc.24290]

Hamashima C, Ogoshi K, Narisawa R, Kishi T, Kato T, Fujita K, Sano M, Tsukioka S. Impact of endoscopic screening on mortality reduction from gastric cancer. World J Gastroenterol 2015; 21: 2460-2466 [PMID: 25741155 DOI: 10.3748/wjg.v21.i8.2460]

Chen SL, Wang SC, Ho CJ, Kao YL, Hsieh TY, Chen WJ, Chen CJ, Wu PR, Ko JL, Lee H, Sung WW. Prostate Cancer Mortality-To-Incidence Ratios Are Associated with Cancer Care Disparities in 35 Countries. Sci Rep 2017; 7: 40003 [PMID: 28051150 DOI: 10.1038/srep40003]

Cordero-Morales A, Savitzky MJ, Stenning-Persivale K, Segura ER. Conceptual considerations and methodological recommendations for the use of the mortality-to-incidence ratio in time-lagged, ecological-level analysis for public health systems-oriented cancer research. Cancer 2016; 122: 486-487 [PMID: 26484751 DOI: 10.1002/cncr.29747]

Sunkara V, Hébert JR. The application of the mortality-to-incidence ratio for the evaluation of cancer care disparities globally. Cancer 2016; 122: 487-488 [PMID: 26484652 DOI: 10.1002/cncr.29746]

Sunkara V, Hébert JR. The colorectal cancer mortality-to-incidence ratio as an indicator of global cancer screening and care. Cancer 2015; 121: 1563-1569 [PMID: 25572676 DOI: 10.1002/cncr.29228]

Varghese C, Carlos MC, Shin HR. Cancer burden and control in the Western Pacific region: challenges and opportunities. Ann Glob Health 2014; 80: 359-369 [PMID: 25512151 DOI: 10.1016/j.agog.2014.09.015]

Seo JY, Jin EH, Jo HJ, Yoon H, Shin CM, ParkYS, Kim N, Jung HC, Lee DH. Clinicopathologic and molecular features associated with patient age in gastric cancer. World J Gastroenterol 2015; 21: 6905-6913 [PMID: 26078567 DOI: 10.3748/wjg.v21.i22.6905]

BERG HH. [Forms of stomach cancer with long survival rate after surgery and early diagnosis]. Radiol Clin 1954; 23: 1-4 [PMID: 13167350]

Lee CM, Choi IK, Kim JH, Park DW, Kim JS, Park SH. Is noncurative gastrectomy always a beneficial strategy for stage IV gastric cancer? Ann Surg Treat Res 2017; 92: 23-27 [PMID: 28090502 DOI: 10.4174/asmr.2017.92.1.23]

Shiraishi K, Mimmura K, Izawa S, Inoue A, Shiba S, Maruyama T, Watanabe M, Kawaguchi Y, Inoue M, Fujii H, Kono K. Laptatinib acts on gastric cancer through both antiproliferative function and augmentation of trastuzumab-mediated antibody-dependent cellular cytotoxicity. Gastric Cancer 2013; 16: 571-580 [PMID: 23187882 DOI: 10.1007/s10120-012-0219-5]

Wang SC, Sung WW, Kao YL, Hsieh TY, Chen WJ, Chen SL, Chang HR. The gender difference and mortality-to-incidence ratio relate to health care disparities in bladder cancer: National estimates from 33 countries. Sci Rep 2017; 7: 4360 [PMID: 28659584 DOI: 10.1038/s41598-017-04083-z]

P- Reviewer: Amir M, Bang YJ, Cacoclo JL, Komatsu S
S- Editor: Gong ZM
L- Editor: Filipodia
E- Editor: Ma YJ
