ALL-DERIVABLE POINTS IN NEST ALGEBRAS

ZHANG LIN, ZHU JUN AND WU JUNDE

ABSTRACT. Suppose that \mathcal{A} is an operator algebra on a Hilbert space H. An element V in \mathcal{A} is called an all-derivable point of \mathcal{A} for the strong operator topology if every strong operator topology continuous derivable mapping φ at V is a derivation. Let \mathcal{N} be a complete nest on a complex and separable Hilbert space H. Suppose that M belongs to \mathcal{N} with $\{0\} \neq M \neq H$ and write \tilde{M} for M or M^\perp. Our main result is: for any $\Omega \in \text{alg}\mathcal{N}$ with $\Omega = P(\tilde{M})\Omega P(\tilde{M})$, if $\Omega_{\tilde{M}}$ is invertible in $\text{alg}\mathcal{N}_{\tilde{M}}$, then Ω is an all-derivable point in $\text{alg}\mathcal{N}$ for the strong operator topology.

1. Introduction

Let K and H be complex and separable Hilbert spaces of dimensions greater than one. $B(K,H)$ and $F(K,H)$ stand for the set of all bounded linear operators and the set of all finite rank operators from K into H, respectively. When $H = K$, $B(K,H)$ and $F(K,H)$ are abbreviated to $B(H)$ and $F(H)$, respectively. The adjoint operator of T is denoted by T^*. Suppose $x \in K$ and $y \in H$. The rank one operator $<\cdot , x> y$, from K into H, is denoted by $y \otimes x$. If \mathcal{N} is a complete nest on H, then the nest algebra $\text{alg}\mathcal{N}$ is the Banach algebra of all bounded linear operators which leave every member of \mathcal{N} invariant. For $N \in \mathcal{N}$, N_- stands for $\forall [M \in \mathcal{N}: M \subset N]$, and \mathcal{N}_N stands for the nest $\{L \cap N : L \in \mathcal{N}\}$ in N. We write $P(N)$ for the orthogonal projection operator from H onto N. The identity of $B(N)$ is denoted by I_N and the restriction of an operator $T \in B(H)$ to the subspace N is denoted by $T|_N$.

Suppose that \mathcal{A} is a subalgebra of $B(H)$ and V is an operator in \mathcal{A}. A linear mapping φ from \mathcal{A} into itself is called a derivable mapping at V if $\varphi(ST) = \varphi(S)T + S \varphi(T)$ for any S, T in \mathcal{A} with $ST = V$. Operator V is called an all-derivable point in \mathcal{A} for the strong operator topology if every strong operator topology continuous derivable mapping φ at V is a derivation.

In recent years the study of all-derivable points in operator algebras has attracted many researchers’ attentions. Jing, Lu, and Li [4] proved that every derivable mapping φ at 0 with $\varphi(I) = 0$ on nest algebras is a derivation. Li, Pan, and Xu [5] showed that every derivable mapping φ at 0 with $\varphi(I) = 0$ on CSL algebras is a derivation. Zhu and Xiong proved the following results in \cite{6 7 8 9 10}: 1) every norm-continuous generalized derivable mapping at 0 on some CSL algebras is a generalized derivation; 2) every invertible operator in nest algebras is an all-derivable point for the strong operator topology; 3) V is an all-derivable point in \mathcal{M}_n if and only if $V \neq 0$, where \mathcal{M}_n is the algebras of all $n \times n$ upper triangular matrices; and 4) every orthogonal projection operator $P(M)(\{0\} \neq M \in \mathcal{N})$

Key words and phrases. All-derivable point; nest algebra; derivable linear mapping; derivation.

This work is supported by the National Natural Science Foundation of China (No. 10771191).
is an all-derivable point in nest algebra \(\text{alg} \mathcal{N} \) for the strong operator topology.

The main purpose of this paper is to study the all-derivable points in nest algebras. Suppose that \(M \) belongs to \(\mathcal{N} \) with \(\{0\} \neq M \neq H \) and write \(\tilde{M} \) for \(M \) or \(M^\perp \). We shall prove: for any \(\Omega \in \text{alg} \mathcal{N} \) with \(\Omega = P(\tilde{M})\Omega P(\tilde{M}) \), if \(\Omega \mid \mathcal{M} \) is invertible in \(\text{alg} \mathcal{M}^\perp \), then \(\Omega \) is an all-derivable point in \(\text{alg} \mathcal{N} \) for the strong operator topology.

2. THREE LEMMAS

It is known that every operator \(S \) in \(B(H) \) can be uniquely expressed in the form of a \(2 \times 2 \) operator matrix relative to the orthogonal decomposition \(H = M \oplus M^\perp \). Thus we immediately get the following proposition.

Proposition 2.0 Let \(\mathcal{N} \) be a complete nest on a complex and separable Hilbert space \(H \). For an arbitrary \(M \) in \(\mathcal{N} \) with \(\{0\} \neq M \neq H \), we have

\[
\text{alg} \mathcal{N} = \left\{ \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix} : X \in \text{alg} \mathcal{M}, Z \in \text{alg} \mathcal{M}^\perp, Y \in B(M^\perp, M) \right\}.
\]

The following three lemmas will be used to prove the main result of this paper in Section 3.

Lemma 2.1. Let \(H \) be a complex and separable Hilbert space and let \(\mathcal{N} \) be a complete nest in \(H \). Suppose that \(\delta \) is a strong operator topology continuous linear mapping from \(\text{alg} \mathcal{N} \) into itself and \(\Gamma \) is an invertible operator in \(\text{alg} \mathcal{N} \). If the following equation

\[
(2.1) \quad \delta(\Gamma) = \delta(\Gamma S_1)S_2 + \Gamma S_1 \delta(S_2)
\]

holds for any \(S_1, S_2 \) in \(\text{alg} \mathcal{N} \) with \(S_1S_2 = I \), then \(\delta \) is an inner derivation.

Proof. Put \(S_1 = S_2 = I \) in Eq. (2.1), we have \(S_1S_2 = I \). It follows that \(\Gamma \delta(I) = 0 \). That is, \(\delta(I) = 0 \) since \(\Gamma \) is invertible in \(\text{alg} \mathcal{N} \). Put \(S_1 = I - aP \) and \(S_2 = I - bP \) in Eq. (2.1), where \(P \) is an idempotent in \(\text{alg} \mathcal{N} \) and \(a, b \) are two complex numbers such that \(a + b = ab = 1 \). Thus we get that \(S_1S_2 = I \). Furthermore, we have

\[
\begin{align*}
\delta(\Gamma) & = \delta(\Gamma - a\Gamma P)(I - bP) + (\Gamma - a\Gamma P)\delta(I - bP) \\
& = [\delta(\Gamma) - b\delta(\Gamma)P - a\delta(\Gamma)P + ab\delta(\Gamma)P] + [\Gamma\delta(I) - b\Gamma\delta(P) - a\Gamma P\delta(I) + ab\Gamma P\delta(P)].
\end{align*}
\]

It follows from \(\delta(I) = 0 \) that

\[
(2.2) \quad a\delta(\Gamma)P + b[\delta(\Gamma)P + \Gamma\delta(P)] = \delta(\Gamma)P + \Gamma P\delta(P).
\]

Interchanging the position of \(a \) and \(b \) in Eq. (2.2), we have

\[
(2.3) \quad b\delta(\Gamma)P + a[\delta(\Gamma)P + \Gamma\delta(P)] = \delta(\Gamma)P + \Gamma P\delta(P).
\]

It follows from Eq. (2.2) and Eq. (2.3) that \(\delta(\Gamma)P = \delta(\Gamma)P + \Gamma\delta(P) \). Notice that every rank-one operator in \(\text{alg} \mathcal{N} \) may be written as a linear combination of at most four idempotents in \(\text{alg} \mathcal{N} \) (see [3]) and
every finite rank operator in \(\text{alg}.\mathcal{N} \) may be represented as a sum of rank-one operators in \(\text{alg}.\mathcal{N} \) (see \cite{2}). Thus we obtain

\[
(2.4) \quad \delta(\Gamma F) = \delta(\Gamma)F + \Gamma\delta(F)
\]

for any \(F \) in \(F(H) \cap \text{alg}.\mathcal{N} \). By applying Erdős Density Theorem (see \cite{2}) to Eq. (2.4), we obtain that

\[
\delta(\Gamma R) = \delta(\Gamma)R + \Gamma\delta(R) \quad \text{for any } R \text{ in } \text{alg}.\mathcal{N}.
\]

In particular,

\[
(2.5) \quad \delta(\Gamma S_1) = \delta(\Gamma)S_1 + \Gamma\delta(S_1).
\]

It follows from Eq. (2.1) and Eq. (2.5) that

\[
\delta(\Gamma)S_1 = \delta(\Gamma)S_1 + \Gamma\delta(S_1).
\]

We only prove (1). One can prove (2) similarly.

\textbf{Lemma 2.2.} Let \(K, H \) be two complex and separable Hilbert spaces with dimensions greater than one, and let \(\mathcal{N} \) and \(\mathcal{N}' \) be two complete nests in \(H \) and \(K \), respectively. Suppose that \(\varphi \) is a strong operator topology continuous linear mapping from \(B(K, H) \) into itself.

(1) If \(T\varphi(S) = 0 \) for any \(T \) in \(\text{alg}.\mathcal{N} \) and \(S \) in \(B(K, H) \) with \(TS = 0 \), then there exists an operator \(D \) in \(B(K) \) such that

\[
\varphi(S) = SD
\]

for any \(S \) in \(B(K, H) \).

(2) If \(\varphi(S)T' = 0 \) for any \(T' \) in \(\text{alg}.\mathcal{N}' \) and \(S \) in \(B(K, H) \) with \(ST' = 0 \), then there exists an operator \(D' \) in \(B(H) \) such that

\[
\varphi(S) = D'S
\]

for any \(S \) in \(B(K, H) \).

\textit{Proof.} We only prove (1). One can prove (2) similarly.

\textit{Case 1.} Suppose that \([0]_+ \neq [0] \). For any \(x \) in \(H \) and \(g \) in \(K \), it is clear that \(x \otimes g \) is in \(B(K, H) \). For an arbitrary vector \(z \in \{x\}^+(\subset H = [0]^+) \) and \(y \) in \([0]_+ \) with \(y \neq 0 \), \(y \otimes z \) in \(\text{alg}.\mathcal{N} \) and \((y \otimes z)(x \otimes g) = 0 \). Under the hypothesis, we get that \(y \otimes z \varphi(x \otimes g) = 0 \). Thus there exists a vector \(\omega_{x,g} \) in \(K \) such that

\[
\varphi(x \otimes g) = x \otimes \omega_{x,g}.
\]

It follows that

\[
\varphi(x \otimes (f + g)) = x \otimes \omega_{x,f+g}.
\]

for any \(f, g \) in \(K \). Moreover,

\[
\varphi(x \otimes (f + g)) = \varphi(x \otimes f) + \varphi(x \otimes g) = x \otimes \omega_{x,f} + x \otimes \omega_{x,g}.
\]

Thus \(\omega_{x,f+g} = \omega_{x,f} + \omega_{x,g} \). Similarly, we obtain that \(\omega_{x,\text{alg}} = \lambda \omega_{x,g} \). Consequently, there exists a linear mapping \(L_x \) from \(K \) into \(K \) such that \(\varphi(x \otimes g) = x \otimes L_x g \). Furthermore, we have

\[
(x + v) \otimes L_{x+v}g = \varphi((x + v) \otimes g) = \varphi(x \otimes g) + \varphi(v \otimes g) = x \otimes L_x g + v \otimes L_v g
\]
for any \(v \) in \(H \). So \(x \otimes (L_{x+v} - L_x)g + v \otimes (L_{x+v} - L_x)g = 0 \), which implies that \(L_x = L_v \) when \(x \) and \(v \) are linearly independent. If \(x \) and \(v \) are linearly dependent, there exists some complex number \(t \) such that \(v = tx \). Since \(\dim H > 1 \), a vector \(u \) can be chosen from \(H \) such that \(u \) and \(x \) are linearly independent.

Thus \(L_x = L_u = L_v \) since \(u \) and \(v \) are linearly independent. This implies that \(L_x \) is independent of \(x \) for any \(x \in H \). If we write \(L = L_x \), then \(\varphi(x \otimes g) = x \otimes Lg \) for any \(x \) in \(H \) and \(g \) in \(K \). Next we shall prove that \(L \) is in \(B(K) \). In fact, for arbitrary sequence \((g_n)\) in \(K \) with \(g_n \rightarrow g \) and \(Lg_n \rightarrow h \), we have \(x \otimes Lg_n = \varphi(x \otimes g_n) \rightarrow \varphi(x \otimes g) = x \otimes Lg \). So \(x \otimes (Lg - h) = 0 \), namely \(Lg = h \). Therefore \(L \) is a closed operator. By the Closed Graph Theorem, we obtain that \(L \) is a bounded linear operator on \(K \).

Since \(L \in B(K) \), \(\varphi(x \otimes g) = x \otimes Lg = x \otimes gL^* \). We write \(D \) as \(L^* \). So \(\varphi(x \otimes g) = x \otimes gD \).

Furthermore, we have

\[\varphi(FS) = FSD \]

for any \(S \) in \(B(K, H) \) and finite rank operator \(F \) in \(\text{alg} \mathcal{N} \). Since \(\varphi \) is a strong operator topology continuous linear mapping, it follows from Erdös Density Theorem that \(\varphi(S) = SD \) for any \(S \) in \(B(K, H) \).

Case 2. Suppose that \([0]_+ = [0] \). Then there exists a sequence \([N_n]\) in \(\mathcal{N} \) such that the following statements hold: 1) \(N_1 \supseteq N_2 \supseteq \cdots \supseteq N_j \supseteq N_{j+1} \supseteq \cdots \supseteq [0] \); 2) \((P(N_n^\perp)) \) strongly converges to \(0 \) as \(n \rightarrow +\infty \). It is obvious that

\[N_1 \subseteq N_2 \subseteq \cdots \subseteq N_j \subseteq N_{j+1} \subseteq \cdots \subseteq H \]

and the sequence \((P(N_n)) \) strongly converges to the unit operator \(I_H \) as \(n \rightarrow +\infty \). For an arbitrary integer \(n \) and \(x \) in \(N_n \), by imitating the proof of case 1, we can find a linear mapping \(D_{N_n} \) on \(K \) such that \(\varphi(x \otimes g) = x \otimes gD_{N_n} \) for any \(x \) in \(N_n \) and \(g \) in \(K \). Note that \(N_n \subseteq N_m \) \((m > n)\) and \(\varphi(x \otimes g) = x \otimes gD_{N_m} \) for any \(x \) in \(N_m \) and \(g \) in \(K \). So \(x \otimes gD_{N_n} = x \otimes gD_{N_m} \) for any \(x \in N_n \) and \(g \in K \). It follows that \(D_{N_n} = D_{N_m} \). Hence \(D_{N_n} \) is independent of \(N_n \). We write \(D \) as \(D_{N_n} \). Thus \(\varphi(x \otimes g) = x \otimes gD \) for any \(x \) in \(N_n \) and \(g \) in \(K \). For any \(x \) in \(H \), put \(x_0 = P(N_n)x \). Then we get that

\[\varphi(x_0 \otimes g) = x_0 \otimes gD \]

That is,

\[\varphi(P(N_n)x \otimes g) = P(N_n)x \otimes gD. \]

Since \(\varphi \) is a strong operator topology continuous linear mapping and \(P(N_n) \) strongly converges to \(I_H \) as \(n \rightarrow +\infty \), taking limit on both sides in the above equation, we obtain that \(\varphi(x \otimes g) = x \otimes gD \) for any \(x \) in \(H \) and \(g \) in \(K \). The rest of the proof is similar to case 1. The lemma is proved.

Lemma 2.3. Let \(\mathcal{A} \) be an unital subalgebra of \(B(H) \), where \(H \) is a complex and separable Hilbert space. Suppose that \(\phi \) is a linear mapping from \(\mathcal{A} \) into itself. If \(\phi \) vanishes at every invertible operator in \(\mathcal{A} \), then \(\phi \) vanishes on \(\mathcal{A} \).

Proof. We only need to prove that \(\phi(T) = 0 \) for any operator \(T \) in \(\mathcal{A} \). Take a complex number \(\lambda \) with \(|\lambda| > ||T|| \). It follows that \(\lambda I - T \) is invertible in \(\mathcal{A} \). We thus see that \(\phi(\lambda I - T) = 0 \) by the hypothesis. Thus we have \(\phi(T) = \lambda \phi(I) \) by the linearity of \(\phi \). So \(\phi(T) = 0 \) for any \(T \) in \(\mathcal{A} \).

\[\square \]
3. All-derivable points in \(\text{alg}\mathcal{N} \)

In this section, we always assume that \(M \) belongs to \(\mathcal{N} \) with \(\{0\} \neq M \neq H \), and write \(\hat{M} \) for \(M \) or \(M^\perp \). Throughout the rest of this paper, every upper triangular \(2 \times 2 \) operator matrix relative to the orthogonal decomposition \(H = M \oplus M^\perp \) always stands for the element of nest algebra \(\text{alg}\mathcal{N} \). The unit operator on \(M \) is denoted by \(I_M \). The following theorem is our main result.

Theorem 3.1. Let \(\mathcal{N} \) be a complete nest on a complex and separable Hilbert space \(H \). Suppose that \(M \) belongs to \(\mathcal{N} \) with \(\{0\} \neq M \neq H \) and write \(\hat{M} \) for \(M \) or \(M^\perp \). For any \(\Omega \in \text{alg}\mathcal{N} \) with \(\Omega = P(\hat{M})\Omega P(\hat{M}) \), if \(\Omega|_{\hat{M}} \) is invertible in \(\text{alg}\mathcal{N}_{\hat{M}} \), then \(\Omega \) is an all-derivable point in \(\text{alg}\mathcal{N} \) for the strong operator topology.

Proof. Let \(\varphi \) be a strong operator topology continuous derivable linear mapping at \(\Omega \) from \(\text{alg}\mathcal{N} \) into itself. We only need to show that \(\varphi \) is a derivation. For arbitrary \(X \) in \(\text{alg}\mathcal{N}_M \), \(Y \) in \(B(M^\perp, M) \) and \(Z \) in \(\text{alg}\mathcal{N}_{M^\perp} \), we write

\[
\left\{ \begin{array}{l}
\varphi\left(\begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} A_{11}(X) & A_{12}(X) \\ 0 & A_{22}(X) \end{bmatrix}, \\
\varphi\left(\begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} B_{11}(Y) & B_{12}(Y) \\ 0 & B_{22}(Y) \end{bmatrix}, \\
\varphi\left(\begin{bmatrix} 0 & 0 \\ 0 & Z \end{bmatrix} \right) = \begin{bmatrix} C_{11}(Z) & C_{12}(Z) \\ 0 & C_{22}(Z) \end{bmatrix}.
\end{array} \right.
\]

Obviously, \(A_{ij}, B_{ij} \) and \(C_{ij}(i, j = 1, 2, i \leq j) \) are strong operator topology continuous linear mappings on \(\text{alg}\mathcal{N}_M, B(M^\perp, M), \) and \(\text{alg}\mathcal{N}_{M^\perp} \), respectively.

Case 1. Suppose that \(\hat{M} = M \). Then \(\Omega \) may be represented as the following matrix relative to the orthogonal decomposition \(H = M \oplus M^\perp \):

\[
\Omega = \begin{bmatrix} W & 0 \\ 0 & 0 \end{bmatrix},
\]

where \(W \) is an invertible operator in \(\text{alg}\mathcal{N}_M \). The proof are divided into the following five steps:

Step 1. For arbitrary \(X_1, X_2 \) in \(\text{alg}\mathcal{N}_M \) with \(X_1X_2 = I_M \), taking \(S = \begin{bmatrix} WX_1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(T = \begin{bmatrix} X_2 & 0 \\ 0 & 0 \end{bmatrix} \), then \(ST = \Omega \). Since \(\varphi \) is a derivable mapping at \(\Omega \) on \(\text{alg}\mathcal{N} \), we have

\[
\begin{bmatrix} A_{11}(W) & A_{12}(W) \\ 0 & A_{22}(W) \end{bmatrix} = \varphi(\Omega) = \varphi(S)T + S\varphi(T)
\]

\[
= \begin{bmatrix} A_{11}(WX_1) & A_{12}(WX_1) \\ 0 & A_{22}(WX_1) \end{bmatrix} \begin{bmatrix} X_2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} WX_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11}(X_2) & A_{12}(X_2) \\ 0 & A_{22}(X_2) \end{bmatrix}
\]

\[
= \begin{bmatrix} A_{11}(WX_1)X_2 + WX_1A_{11}(X_2) & WX_1A_{12}(X_2) \\ 0 & 0 \end{bmatrix}.
\]
Furthermore,

\begin{align}
(3.1) \quad A_{11}(W) &= A_{11}(WX_1)X_2 + WX_1A_{11}(X_2), \\
(3.2) \quad A_{12}(W) &= WX_1A_{12}(X_2), \\
A_{22}(W) &= 0
\end{align}

for any X_1, X_2 in \mathcal{N}_M with $X_1X_2 = I_M$. By Lemma 2.1 we get that A_{11} is an inner derivation on \mathcal{N}_M. Then there exists an operator $A \in \mathcal{N}_M$ such that

\begin{equation}
(3.3) \quad A_{11}(X) = XA - AX
\end{equation}

for any X in \mathcal{N}_M.

For an arbitrary invertible operator X in \mathcal{N}_M, putting $X_2 = X, X_1 = X^{-1}$ in Eq. (3.2), then we get that $A_{12}(W) = WX^{-1}A_{12}(X)$, i.e., $W^{-1}A_{12}(W) = X^{-1}A_{12}(X)$. Taking $X = I_M$, we have $W^{-1}A_{12}(W) = A_{12}(I_M)$. Thus we get that

\[A_{12}(X) = XA_{12}(I_M) \]

for any invertible operator X in \mathcal{N}_M. It follows from Lemma 2.3 that $A_{12}(X) = XA_{12}(I_M)$ for any operator X in \mathcal{N}_M. If we write B for $A_{12}(I_M)$, then

\begin{equation}
(3.4) \quad A_{12}(X) = XB
\end{equation}

for any X in \mathcal{N}_M.

\[\text{Step 2. For arbitrary } Z_1, Z_2 \text{ in } \mathcal{N}_M^\perp \text{ with } Z_1Z_2 = 0 \text{ and } X_1, X_2 \text{ in } \mathcal{N}_M \text{ with } X_1X_2 = I_M, \text{ taking} \]

\[S = \begin{bmatrix} WX_1 & 0 \\ 0 & Z_1 \end{bmatrix} \text{ and } T = \begin{bmatrix} X_2 & 0 \\ 0 & Z_2 \end{bmatrix}, \text{ then } ST = \Omega. \text{ Thus we have} \]

\[
\begin{bmatrix}
A_{11}(W) & A_{12}(W) \\
0 & A_{22}(W)
\end{bmatrix}
= \begin{bmatrix}
A_{11}(WX_1) + C_{11}(Z_1) & A_{12}(WX_1) + C_{12}(Z_1) \\
0 & A_{22}(WX_1) + C_{22}(Z_1)
\end{bmatrix}
\begin{bmatrix}
X_2 & 0 \\
0 & Z_2
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
WX_1 & 0 \\
0 & Z_1
\end{bmatrix}
\begin{bmatrix}
A_{11}(X_2) + C_{11}(Z_2) & A_{12}(X_2) + C_{12}(Z_2) \\
0 & A_{22}(X_2) + C_{22}(Z_2)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
A_{11}(WX_1)X_2 + C_{11}(Z_1)X_2 & A_{12}(WX_1)Z_2 + C_{12}(Z_1)Z_2 \\
WX_1A_{11}(X_2) + WX_1C_{11}(Z_2) & +WX_1A_{12}(X_2) + WX_1C_{12}(Z_2)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & A_{22}(WX_1)Z_2 + C_{22}(Z_1)Z_2 \\
+Z_1A_{22}(X_2) + Z_1C_{22}(Z_2)
\end{bmatrix}.
\]
Furthermore,

\begin{align*}
(3.5) \quad A_{11}(W) &= A_{11}(WX_1)X_2 + C_{11}(Z_1)X_2 + WX_1A_{11}(X_2) + WX_1C_{11}(Z_2), \\
(3.6) \quad A_{12}(W) &= A_{12}(WX_1)Z_2 + C_{12}(Z_1)Z_2 + WX_1A_{12}(X_2) + WX_1C_{12}(Z_2), \\
(3.7) \quad A_{22}(W) &= A_{22}(WX_1)Z_2 + C_{22}(Z_1)Z_2 + Z_1A_{22}(X_2) + Z_1C_{22}(Z_2)
\end{align*}

for any \(Z_1, Z_2 \) in \(\text{alg.}\mathcal{M}^+ \) with \(Z_1Z_2 = 0 \) and \(X_1, X_2 \) in \(\text{alg.}\mathcal{M} \) with \(X_1X_2 = I_M \). Substituting the expression of \(A_{11}(W) \) in Eq. \((3.1)\) into Eq. \((3.5)\), and the expression of \(A_{12}(W) \) in Eq. \((3.4)\) into Eq. \((3.6)\), respectively, we have

\begin{align*}
(3.8) \quad 0 &= C_{11}(Z_1)X_2 + WX_1C_{11}(Z_2), \\
(3.9) \quad WB &= WX_1BZ_2 + C_{12}(Z_1)Z_2 + WB + WX_1C_{12}(Z_2)
\end{align*}

for any \(Z_1, Z_2 \) in \(\text{alg.}\mathcal{M}^+ \) with \(Z_1Z_2 = 0 \) and \(X_1, X_2 \) in \(\text{alg.}\mathcal{M} \) with \(X_1X_2 = I_M \). For an arbitrary \(Z \) in \(\text{alg.}\mathcal{M}^+ \), Putting \(Z_1 = 0 \) and \(Z_2 = Z \), it follows from Eq. \((3.8)\) and Eq. \((3.9)\) that

\[C_{11}(Z) = 0 \]

and

\[C_{12}(Z) = -BZ \]

for any \(Z \) in \(\text{alg.}\mathcal{M}^+ \). Taking \(Z_1 = I_M \) and \(Z_2 = 0 \) in Eq. \((3.7)\), we get that \(A_{22}(X_2) = A_{22}(W) \) for any \(X_2 \) in \(\text{alg.}\mathcal{M} \). Furthermore, \(A_{22}(X) = 0 \) for any invertible operator \(X \) in \(\text{alg.}\mathcal{M} \). It follows from Lemma \((2.2)\) that

\[A_{22}(X) = 0 \]

for any \(X \) in \(\text{alg.}\mathcal{M} \). Using Eq. \((3.10)\) and Eq. \((3.7)\), we get that \(C_{22}(Z_1)Z_2 + Z_1C_{22}(Z_2) = 0 \), namely \(C_{22} \) is a derivable mapping at 0.

Step 3. For arbitrary \(Y \) in \(B(M^+, M) \) and \(X_1, X_2 \) in \(\text{alg.}\mathcal{M} \) with \(X_1X_2 = I_M \), taking \(S = \begin{bmatrix} WX_1 & Y \\ 0 & 0 \end{bmatrix} \) and \(T = \begin{bmatrix} X_2 & 0 \\ 0 & 0 \end{bmatrix} \), then \(ST = \Omega \). Thus we have

\[
\begin{bmatrix}
A_{11}(W) & A_{12}(W) \\
0 & 0
\end{bmatrix} = \varphi(\Omega) = \varphi(S)T + S\varphi(T)
\]

\[
= \begin{bmatrix}
A_{11}(WX_1) + B_{11}(Y) & A_{12}(WX_1) + B_{12}(Y) \\
0 & B_{22}(Y)
\end{bmatrix}
\begin{bmatrix}
X_2 & 0 \\
0 & 0
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
WX_1 & Y \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
A_{11}(X_2) & A_{12}(X_2) \\
0 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
A_{11}(WX_1)X_2 + B_{11}(Y)X_2 + WX_1A_{11}(X_2) + WX_1A_{12}(X_2) \\
0 & 0
\end{bmatrix}.
\]
Furthermore,

\[A_{11}(W) = A_{11}(WX_1)X_2 + B_{11}(Y)X_2 + WX_1A_{11}(X_2). \]

Since \(A_{11} \) is an inner derivation and \(X_2 \) is an invertible operator in \(\text{alg.} \mathcal{N}_M \), we have

\[B_{11}(Y) = 0 \]

for any \(Y \) in \(B(M^+, M) \).

Step 4. For arbitrary \(Y \) in \(B(M^+, M) \), \(Z \) in \(\text{alg.} \mathcal{N}_M \), taking \(S = \begin{bmatrix} I_M & Y \\ 0 & 0 \end{bmatrix} \) and \(T = \begin{bmatrix} W & -YZ \\ 0 & Z \end{bmatrix} \), then \(ST = \Omega \). Thus we have

\[
\begin{pmatrix}
A_{11}(W) & A_{12}(W) \\
0 & 0
\end{pmatrix}
= \varphi(\Omega) = \varphi(S)T + S\varphi(T)
\]

\[
= \begin{pmatrix}
0 & A_{12}(I_M) + B_{12}(Y) \\
0 & B_{22}(Y)
\end{pmatrix}
\begin{pmatrix}
W & -YZ \\
0 & Z
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
I_M & Y \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
A_{11}(W) & A_{12}(W) - B_{12}(YZ) + C_{12}(Z) \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
W & -YZ \\
0 & Z
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
A_{12}(I_M) + B_{12}(Y) \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
A_{11}(W) \\
0
\end{pmatrix}
\begin{pmatrix}
W & -YZ \\
0 & Z
\end{pmatrix}
\]

Furthermore,

\[A_{12}(W) = (A_{12}(I_M) + B_{12}(Y))Z + A_{12}(W) \]

\[-B_{12}(YZ) + C_{12}(Z) + Y(C_{22}(Z) - B_{22}(YZ)), \] \tag{3.11}

\[0 = B_{22}(Y)Z \] \tag{3.12}

for any \(Y \) in \(B(M^+, M) \) and \(Z \) in \(\text{alg.} \mathcal{N}_M \). Putting \(Z = I_M \) in Eq. (3.12), we have

\[B_{22}(Y) = 0 \]

for any \(Y \) in \(B(M^+, M) \). Taking \(Z = I_M \) in Eq. (3.11), we get \(A_{12}(I_M) + C_{12}(I_M) + YC_{22}(I_M) = 0 \) for any \(Y \in B(M^+, M) \). So \(C_{22}(I_M) = 0 \). Since \(C_{22} \) is a derivable mapping at 0, \(C_{22} \) is a derivation on \(\text{alg.} \mathcal{N}_M \) (see [11]). Thus \(C_{22} \) is inner, and so there is an operator \(C \in \text{alg.} \mathcal{N}_M \) such that

\[C_{22}(Z) = ZC - CZ \]

for any \(Z \) in \(\text{alg.} \mathcal{N}_M \).

Step 5. For arbitrary idempotent \(Q \) in \(\text{alg.} \mathcal{N}_M \) and \(Y \) in \(B(M^+, M) \), we write \(Q\lambda \) for \(Q + \lambda I_M \). Obviously there exist two complex numbers \(\lambda_1, \lambda_2 \) such that \(\lambda_1 + \lambda_2 = -\lambda_1\lambda_2 = -1 \). So \(Q_{\lambda_1}Q_{\lambda_2} = \)
$Q_{d_2}Q_{d_1} = I_M$ and $Q_{d_1} + Q_{d_2} = 2Q - I_M$. Taking $S = \begin{bmatrix} WQ_{d_1} & -WQ_{d_1}Y \\ 0 & 0 \end{bmatrix}$ and $T = \begin{bmatrix} Q_{d_2} & Y \\ 0 & I_{M^+} \end{bmatrix}$, then $ST = \Omega$. Thus we have

$$
\begin{bmatrix} A_{11}(W) & A_{12}(W) \\ 0 & 0 \end{bmatrix} = \varphi(\Omega) = \varphi(S)T + S\varphi(T)
$$

$$
= \begin{bmatrix} A_{11}(WQ_{d_1}) & A_{12}(WQ_{d_1}) - B_{12}(WQ_{d_1}Y) \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_{d_2} & Y \\ 0 & I_{M^+} \end{bmatrix}
$$

$$
+ \begin{bmatrix} WQ_{d_1} & -WQ_{d_1}Y \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11}(Q_{d_2}) & A_{12}(Q_{d_2}) + B_{12}(Y) + C_{12}(I_{M^+}) \\ 0 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} A_{11}(WQ_{d_1})Q_{d_2} + WQ_{d_1}A_{11}(Q_{d_2}) & A_{11}(WQ_{d_1})Y + A_{12}(WQ_{d_1}) - B_{12}(WQ_{d_1}Y) + WQ_{d_1}A_{12}(Q_{d_2}) + WQ_{d_1}B_{12}(Y) + WQ_{d_1}C_{12}(I_{M^+}) \\ 0 & 0 \end{bmatrix}
$$

Furthermore,

$$
A_{12}(W) = A_{11}(WQ_{d_1})Y + A_{12}(WQ_{d_1}) - B_{12}(WQ_{d_1}Y) + WQ_{d_1}A_{12}(Q_{d_2}) + WQ_{d_1}B_{12}(Y) + WQ_{d_1}C_{12}(I_{M^+}).
$$

(3.13)

Interchanging the position of d_1 and d_2 in Eq. (3.13), we have

$$
A_{12}(W) = A_{11}(WQ_{d_2})Y + A_{12}(WQ_{d_2}) - B_{12}(WQ_{d_2}Y) + WQ_{d_2}A_{12}(Q_{d_1}) + WQ_{d_2}B_{12}(Y) + WQ_{d_2}C_{12}(I_{M^+}).
$$

(3.14)

Subtracting Eq. (3.14) from Eq. (3.13), we have

$$
A_{11}(W)Y - B_{12}(WY) + WB_{12}(Y) = 0.
$$

Adding Eq. (3.13) to Eq. (3.14), we have

$$
2[A_{11}(WQ)Y - B_{12}(WQY) + WQB_{12}(Y)] - [A_{11}(W)Y - B_{12}(WY) + WB_{12}(Y)] = 0.
$$

It follows that

$$
A_{11}(WQ)Y - B_{12}(WQY) + WQB_{12}(Y) = 0.
$$

Since every rank one operator in $\text{alg}\mathcal{N}_M$ can be represented as a linear combination of at most four idempotents in $\text{alg}\mathcal{N}_M$(see [3]), we get that the above equation is valid for each rank-one operator in $\text{alg}\mathcal{N}_M$. Furthermore, it is valid for every finite rank operator in $\text{alg}\mathcal{N}_M$(see [2]). Therefore, by the Erdős Density Theorem(see [2]), we have

$$
A_{11}(WX)Y - B_{12}(WXY) + WXB_{12}(Y) = 0
$$

for any X in $\text{alg}\mathcal{N}_M$ and Y in $B(M^+, M)$. If we take X in $\text{alg}\mathcal{N}_M$ and Y in $B(M^+, M)$ in the above equation such that $XY = 0$, from Eq. (3.3) we can get

$$
(WXA - AWX)Y + WXB_{12}(Y) = 0.
$$
That is, $X(AY + B_{12}(Y)) = 0$. By Lemma 2.2 (1), we can pick an operator G from $B(M^\perp)$ such that $AY + B_{12}(Y) = YG$, i.e., $B_{12}(Y) = YG - AY$ for any Y in $B(M^\perp, M)$. Substituting the expressions of $A_{12}, B_{12}, C_{12}, B_{22}$ and C_{22} into Eq. (3.11), we can obtain that $Y[(G - C)Z - Z(G - C)] = 0$ for any Y in $B(M^\perp, M)$ and Z in $\Alg{\mathcal{N}}_M$. Thus $G - C$ in $(\Alg{\mathcal{N}}_M, Y)$. Thus there exists a complex number λ such that $G - C = -\lambda I_{M^\perp}$ (The commutant of nest algebra is trivial.). Finally, we can obtain that $B_{12}(Y) = Y(C - \lambda I_{M^\perp}) - AY$. That is,

$$B_{12}(Y) = YC - AY - \lambda Y$$

for any Y in $B(M^\perp, M)$.

In summary, we get that

$$\varphi\left(\begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} A_{11}(X) & A_{12}(X) \\ 0 & A_{22}(X) \end{bmatrix} = \begin{bmatrix} XA - AX & XB \\ 0 & 0 \end{bmatrix}$$

$$\varphi\left(\begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} B_{11}(Y) & B_{12}(Y) \\ 0 & B_{22}(Y) \end{bmatrix} = \begin{bmatrix} 0 & YC - AY - \lambda Y \\ 0 & 0 \end{bmatrix}$$

$$\varphi\left(\begin{bmatrix} 0 & 0 \\ 0 & Z \end{bmatrix}\right) = \begin{bmatrix} C_{11}(Z) & C_{12}(Z) \\ 0 & C_{22}(Z) \end{bmatrix} = \begin{bmatrix} 0 & -BZ \\ 0 & ZC - CZ \end{bmatrix}$$

for any X in $\Alg{\mathcal{N}}_M$, Y in $B(M^\perp, M)$ and Z in $\Alg{\mathcal{N}}_M$. Hence we obtain that

$$\varphi\left(\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}\right) = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}\begin{bmatrix} A & B \\ 0 & C \end{bmatrix} - \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix} - \lambda \begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}\begin{bmatrix} A + \frac{1}{2}\lambda I_{M^\perp} & B \\ 0 & C - \frac{1}{2}\lambda I_{M^\perp} \end{bmatrix} - \begin{bmatrix} A + \frac{1}{2}\lambda I_{M^\perp} & B \\ 0 & C - \frac{1}{2}\lambda I_{M^\perp} \end{bmatrix}\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}.$$

Thus φ is an inner derivation.

Case 2. $\widehat{M} = M^\perp$. Then Ω may be represented as the following operator matrices relative to the orthogonal decomposition $H = M \oplus M^\perp$:

$$\Omega = \begin{bmatrix} 0 & 0 \\ 0 & W \end{bmatrix},$$
where W is an invertible operator in $\alg \mathcal{M}^\perp$. Since the proof is similar to case 1, the sketch of the proof is given below. The proof is divided into the following six steps:

Step 1. For arbitrary Z_1, Z_2 in $\alg \mathcal{M}^\perp$ with $Z_1Z_2 = I_{\mathcal{M}^\perp}$, taking $S = \begin{bmatrix} 0 & 0 \\ 0 & WZ_1 \end{bmatrix}$ and $T = \begin{bmatrix} 0 & 0 \\ 0 & Z_2 \end{bmatrix}$, then $ST = \Omega$. Since φ is derivable at Ω, by imitating the proof of Case 1, we get that $C_{12}(Z) = B'Z$ for any Z in $\alg \mathcal{M}^\perp$, where $B' = C_{12}(I_{\mathcal{M}^\perp})$. It follows from Lemma 2.1 that there exists an operator C' in $B(\mathcal{M}^\perp)$ such that $C_{22}(Z) = ZC' - C'Z$ for any Z in $\alg \mathcal{M}^\perp$.

Step 2. For arbitrary Z_1, Z_2 in $\alg \mathcal{M}^\perp$ with $Z_1Z_2 = I_{\mathcal{M}^\perp}$ and X_1, X_2 in $\alg \mathcal{M}$ with $X_1X_2 = 0$, taking $S = \begin{bmatrix} X_1 & 0 \\ 0 & WZ_1 \end{bmatrix}$ and $T = \begin{bmatrix} X_2 & 0 \\ 0 & Z_2 \end{bmatrix}$, then $ST = \Omega$. By Lemma 2.3 and imitating the proof of case 1, we may get that $C_{11}(Z) = 0$ for any Z in $\alg \mathcal{M}^\perp$. Since C_{11} vanishes on $\alg \mathcal{M}^\perp$, we obtain that A_{11} is derivable at 0. It follows from the expression of C_{12} that $A_{12}(X) = -XB'$ for any X in $\alg \mathcal{M}$. We also get that $A_{22}(Z) = 0$ for any X in $\alg \mathcal{M}$.

Step 3. For arbitrary Z_1, Z_2 in $\alg \mathcal{M}^\perp$ with $Z_1Z_2 = I_{\mathcal{M}^\perp}$ and Y in $B(\mathcal{M}^\perp, M)$, taking $S = \begin{bmatrix} 0 & 0 \\ 0 & WZ_1 \end{bmatrix}$ and $T = \begin{bmatrix} Y \\ 0 \end{bmatrix}$, then $ST = \Omega$. Furthermore, we get that $B_{22}(Y) = 0$ for any Y in $B(\mathcal{M}^\perp, M)$.

Step 4. For an arbitrary Y in $B(\mathcal{M}^\perp, M)$, taking $S = \begin{bmatrix} I_{\mathcal{M}^\perp} & -YW^{-1} \\ 0 & I_{\mathcal{M}^\perp} \end{bmatrix}$ and $T = \begin{bmatrix} Y \\ 0 \end{bmatrix}$, then $ST = \Omega$.

Step 5. For arbitrary idempotent Q' in $\alg \mathcal{M}^\perp$ and Y in $B(\mathcal{M}^\perp, M)$, we write Q'_1 for $Q' + I_{\mathcal{M}^\perp}$. Then there exist two complex numbers λ_1, λ_2 such that $\lambda_1 + \lambda_2 = -\lambda_1\lambda_2 = -1$. So $Q'_{\lambda_1}Q'_{\lambda_2} = Q'_{\lambda_2}Q'_{\lambda_1} = I_{\mathcal{M}^\perp}$ and $Q'_{\lambda_1} + Q'_{\lambda_2} = 2Q' - I_{\mathcal{M}^\perp}$. Taking $S = \begin{bmatrix} I_{\mathcal{M}^\perp} & Y \\ 0 & WQ'_{\lambda_1} \end{bmatrix}$ and $T = \begin{bmatrix} -YQ'_{\lambda_2} \\ 0 \end{bmatrix}$, then $ST = \Omega$.

Step 6. For arbitrary X in $\alg \mathcal{M}$ and Y in $B(\mathcal{M}^\perp, M)$, take $S = \begin{bmatrix} X & -XY \\ 0 & W \end{bmatrix}$ and $T = \begin{bmatrix} Y \\ 0 \end{bmatrix}$, then $ST = \Omega$. It follows from $B' = C_{12}(I_{\mathcal{M}^\perp})$ and the expression of A_{12} that $A_{11}(X)Y - B_{12}(XY) + XB_{12}(Y) = 0$ and $A' + D'$ in $(\alg \mathcal{M})'$ (see [11]). Hence there exists a complex number λ' such that
Thus φ is an inner derivation. This completes the proof. \square

Acknowledgement. The authors wish to give their thanks to the referees for helpful comments and suggestions to improve the original manuscript.

REFERENCES

[1] K. R. Davidson, Nest algebras, Research Notes in Math. No. 191, Longman Sci. & Tech., Wiley & Sons, New York, 1998.

[2] J. A. Erdős, Operators of finite rank in nest algebras, J. London Math. Soc. 43(1968), 391–397.

[3] L. B. Hadwin, Local multiplications on algebras spanned by idempotents, Linear and Multilinear Algebra 37(1994), 259–263.

[4] W. Jing, S. J. Lu, and P. T. Li, Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc. 66(2002), 227–232.

[5] J. K. Li, Z. D. Pan, and H. Xu, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl. 332(2007), 1314–1322.

[6] J. Zhu, All-derivable points of operator algebras, Linear Algebra Appl. 427(2007), 1–5.

[7] J. Zhu and C. P. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl. 422(2007), 721–735.

[8] J. Zhu and C. P. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl. 397(2005), 367–379.

[9] J. Zhu, C. P. Xiong, and R. Y. Zhang, All-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 429(4)(2008), 804–818.

[10] J. Zhu and C. P. Xiong, All-derivable points in continuous nest algebras, J. Math. Anal. Appl. 340(2008), 845–853.