Modeling the effects of light wavelength on the growth of *Nostoc ellipsosporum*

Martha-Lucía Ortiz-Moreno¹,*, Jaleydi Cárdenas-Poblador², Julián Agredo³, Laura-Vanessa Solarte-Murillo⁴

Abstract

Mathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of *Nostoc ellipsosporum* with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. *N. ellipsosporum* was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD₆₅₀: 0.090 ± 0.008), followed by the yellow light (OD₆₅₀: 0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of *N. ellipsosporum* (OD₆₅₀: 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from *N. ellipsosporum* growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the production of *N. ellipsosporum* and its bioproducts.

Keywords: cyanobacteria; light; mathematical model; microbial growth.

Introduction

Cyanobacteria are gram-negative prokaryotes that represent the oldest group of autophototrophic organisms able to perform oxygenic photosynthesis (Makhalanyane *et al.*, 2015). They have an evolutionary history of 3.5 billion years and are the ancestors of all plastids. They also serve as the only source of biogenic oxygen and a major source of fixed carbon and nitrogen (Pang *et al.*, 2018). These microalgae are widely distributed in aquatic and terrestrial niches, this dominance is due to their metabolism, plasticity and structural conservation (Abed *et al.*, 2009). Cyanobacteria are known for
Modeling the effects of light on Nostoc ellipsosporum

Universitas Scientiarum Vol. 25 (1): 113-148

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

Citation: Ortiz-Moreno ML, Cárdenas-Poblador J, Agredo J, Solarte-Murillo LV. Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum, Universitas Scientiarum, 25 (1): 113-148, 2020. doi: 10.11144/Javeriana.SC25-1.mteo

Funding:
Universidad de los Llanos and COLCIENCIAS grant 497

Electronic supplementary material: N.A.

Among the cyanobacteria, the species from the genus Nostoc stand out as ideal candidates for biopharmaceutical applications (Cibichakravarthy et al., 2019). There are over 40 different Nostoc species that produce more than 120 bioproducts with antiviral, antioxidant, anticancer, antifungal and antimicrobial activities (Shalaby et al., 2019). These species are found in gelatinous colonies, composed of filaments called “trichomes” surrounded by a thin mucilaginous sheath that excrete EPS, which released is mainly concerned with protecting cells from physical or chemical stress and for anchorage purposes (Garlapati et al., 2019). They are known for their ability to lie dormant for long periods of time and recover metabolic activity when rehydrated with water (Nostoc ellipsosporum, 2018). The present study focuses on Nostoc ellipsosporum, a species known for its unusual chemico-physical stability with a prospective role in metallic nanoparticles production (Khanna et al., 2019), and its potent virucidal activity against a broad spectrum of enveloped viruses, including human immunodeficiency virus (HIV), influenza virus and herpes simplex virus, thanks to the cyanovirin-N protein produced by this microorganism (Xiong et al., 2010; Singh et al., 2017). Due to the type of applications, N. ellipsosporum requires innocuous culture conditions in order to avoid contamination, and axenic conditions to ensure the dominance of the species. Therefore, large-scale microalgae cultivation systems, such as open raceway ponds, are not suitable for this species, because they often suffer losses in productivity or alterations in the biochemical production as a result of contamination by parasites, predators or competitor microalgae that could inhibit the growth of N. ellipsosporum (Fuentes et al., 2016; McBride et al., 2016; Novoveska et al., 2016; Supriyanto et al., 2019).

A crucial point in the biotechnological process of Nostoc is to identify the optimal growth conditions that result in higher biomass accumulation, and improvement of polysaccharide production and structural features (Chiu et al., 2008; Da Silva Ferreira & Sant’anna, 2017). Hence, an increasing number of researchers are focusing on how to increase cyanobacterial bioproducts yields by optimizing specific culture conditions, such as light, pH, carbon source and nitrogen source (Andersen, 2005; Xu et al., 2019). This is closely linked to the species physiology and the requirements of each growth
phase, lag and exponential (Crnkovic et al., 2017; Cui et al., 2017). Cellular
division during these growth phases depends on light and nutrient availability,
as those are vital for the photosynthetic system (Barsanti & Gualtieri, 2006;
Celekli et al., 2009; De Oliveira et al., 2014; Crnkovic et al., 2017). During
this photosynthetic process, the sunlight is trapped by the pigments stored
in the multilaminar complex named thylakoids and then elated to the core of
photosystems I and II (Nozzi et al., 2013).

Cyanobacterial photosystems are mainly composed by chlorophyll a, which
maximum absorption wavelength is 420 nm, and phycobiliproteins, such as
phycocyanin and phycoerythrin, that absorb light at 610 nm and 570 nm,
respectively (Barsanti & Gualtieri, 2006). Visible light or white light contains
all wavelengths from about 400 nm to 800 nm. Thus, white light is able to
stimulate all the photosynthetic pigments from photoautotrophic organisms
(Hai et al., 2000). However, in terms of light quality, it has been shown that
different wavelengths can enhance the sustainability of cyanobacteria cultures
according to the target of production (Pagels et al., 2019). For instance,
multiple studies reported that red light (650 nm) and blue light could promote
the production of EPS or accelerate metabolic paths in cyanobacteria from
genera Nostoc, Synechocystis and Synechococcus (Bland & Angenent, 2016;
Han et al., 2017a; Han et al., 2017b; Ooms et al., 2017), and the microalgae
Chlorella (Atta et al., 2013).

Overall, the growth, survival, and production of cyanobacteria bioproducts
have been shown to be affected by some abiotic factors such as different
light wavelength bands (Sinha et al., 2003). Thus, there is a need for
evaluating the different light wavelengths that may affect the growth and
synthesis of bioactive compounds in order to commercially exploit Nostoc ellipso sporum (Kokabi et al., 2019). This type of research signifies an
inexpensive alternative to enhance biomass production without increasing the
nutrient supply (Johnson et al., 2014; Han et al., 2015; Khajepour et al., 2015;
Gaytán-Luna et al., 2016; Crnkovic et al., 2017; Da Silva Ferreira & Sant’anna, 2017).

Microalgal growth can be monitored employing the linear relationship
between optical density (OD) and cell density during the exponential
phase (Griffiths et al., 2011; Liu et al., 2011), provided by the direct
correlation between OD and the concentration of photosynthetic pigments
like chlorophyll and phycobiliproteins (Richmond, 2004; Algal culturing
techniques, 2005; Delattre et al., 2016). Therefore, microbial biomass and
microbial pigments can be estimated by measuring absorption at certain
wavelength (Da Silva Ferreira & Sant’anna, 2017). The results can be used
to analyze the effect of environmental variables on microalgae growth at
different scales (Chiu et al., 2008; Ryu et al., 2017). Once the variables affecting
the microalgae physiology are understood, growth can be mathematically
modeled (Halmi et al., 2014; Park & Lee, 2016; Lotfi et al., 2017). This
approach has been used in monitoring the growth of Chlorella vulgaris
(Infante et al., 2012), Spirulina platensis (Kim & Lee, 2018), and Synechocystis
sp (Schuurmans et al., 2017).

A typical microbial growth curve shows sigmoidal behavior and exhibits four
growth phases (lag, exponential, stationary, and cell death). During the lag
phase, microorganisms adapt to culture conditions. Through the exponential
phase, the number of cells and the rate of population increase due to rapid cell
division. The stationary phase is characterized by growth-limiting conditions,
the growth rate and death rate are equal, thus, the number of individuals
does not increase. Finally, there is a cell death phase that results from
environmental stress.

Mathematical modeling is an essential and powerful tool to study and analyze
microalgae growth under different physiological conditions. Mathematical
models complement in vivo and in vitro experimental approaches and
can also be used to design experiments. This tool has been utilized to
provide insight into industries such as food and medicine (Li et al., 2007).
The use of mathematical models to describe and predict the behavior of
microorganisms (growth, survival, and inactivation), occurs in two stages.
First, an approximation using primary models to explain microorganism
growth over time is used, these models can be deterministic or stochastic
depending on the type of parameters and variables. Then, secondary
models are brought up to describe the relationships between the parameters
from the primary model and the environmental factors that affect the
development of the microorganisms (Swinnen et al., 2004). Furthermore,
growth kinetics combined with deterministic primary models have been
used in empiric models with known functions such as Logistic, Gompertz,
Richards, Schnute, Stannard, Ratkowsky, Weibull and Von Bertalanffy. Some
of these models have modified versions using parameters with biological
meaning (Zwietering et al., 1990). Moreover, some primary
models have a mechanistic conception and include parameters and functions
with biological meaning like Baranyi-Roberts (1994, 1995) and Huang (2013)
models.

In this sense, the aim of the present study was to monitor the
growth of N. ellipsosporum under different light wavelengths and
compare four deterministic primary models used to describe the species
growth, three modified empirical: Logistic, Gompertz and Richards
(Zwietering et al., 1990), and one mechanistic: Baranyi-Roberts (Baranyi &
Roberts, 1994, 1995) (Table 1), as a way to contribute to cyanobacteria biotechnological development. The modified growth models: Logistic, Gompertz, and Baranyi-Roberts are based on the maximum specific growth rate (μ_{max}), i.e. the increase in the number of cells over time, the latency phase and the time. On the other hand, the modified Richards growth model introduces an additional parameter for adjustment (v), which must always have a positive value considering that cellular growth is related to the binary fission of the parental cells in the culture medium and its minimum value has to be zero (Zwietering et al., 1990; Baranyi & Roberts, 1994; Cayré et al., 2007; Merli & Perazzi, 2017), since there cannot exist a negative number of cells (Cayré et al., 2007; Trejos et al., 2009; Infante et al., 2012; Castillo et al., 2017). At the same time, the mathematical model, as an abstraction of reality, must show an adjustment in its curves in order to closely represent the behavior of the experimental data, as it is the product of a complex interaction between environmental factors and the biology of the analyzed microorganism (Zwietering et al., 1990; Castillo et al., 2017; Merli & Perazzi, 2017).

Materials and methods

Strain information

For growth experiments, *Nostoc ellipsosporum* was used (Göttingen Univ. B1453-79), provided by the Institute of Vegetal Biochemistry and Photosynthesis (IBVF) from the Center of Scientific Research Isla de Cartuja, Seville (Spain). *N. ellipsosporum* Rabenhorst ex Bornet & Flahault belongs to the Prokaryotic domain, Eubacteria kingdom, Negibacteria subkingdom, Cyanobacteria phylum, Cyanophyceae class, Nostocophycidae subclass, Nostocales order and Nostocaceae family. They have a highly metabolic plasticity which allow them to endure high temperatures and acid environmental conditions, and inhabit different areas such as Great Britain, Czech Republic, Spain, Turkey, North-America, Argentina, Bangladesh, India, Iraq, Nepal and New Zealand (*Nostoc ellipsosporum*, 2018).

Culture conditions

N. ellipsosporum was cultivated in BD flasks with 30 ml of BG-11 liquid medium for 9 days. The inoculum concentration was 1.1×10^4 cells/ml, and was isolated from a pre-culture at exponential phase and counted using a Neubauer chamber. The glass paper wrapping method was used to deduce the effect of light wavelengths on *N. ellipsosporum* biomass production, this technique is based on the principle that the color glass paper allows only a selective wavelength of light to pass through it; i.e., if red colored glass
Table 1. Mathematical models used in the present study: Baranyi-Roberts, modified Gompertz, modified logistic and modified Richards.

Model	Expression
Modified logistic	\[y(t) = \frac{A}{1 + e^{\frac{\mu_{\text{max}}(\lambda - t)}{A}} + 2} \]
Modified Gompertz	\[y(t) = Ae^{-e^{\frac{\mu_{\text{max}}}{A}(\lambda - t) + 1}} \]
Modified Richards	\[y(t) = A\left[1 + \nu e^{(1+\nu)} e^{-\frac{\mu_{\text{max}}}{A}(1+\nu)(\lambda - t)}\right]^{1/\nu} \]
Modified-Roberts	\[y(t) = A + \mu_{\text{max}}t + \ln\left(e^{\mu_{\text{max}}t} - e^{\mu_{\text{max}}t-b_0} + e^{-\mu_{\text{max}}-(\lambda-t)}\right) - 1 + e^{\mu_{\text{max}}t + b_0 - e^{\mu_{\text{max}}t} - 1} e^{\mu_{\text{max}}t - 1} \]

\(y(t) = \ln(\xi(t)) \), where \(\xi(t) \): cell density at moment \(t \).
\(\mu_{\text{max}} \): maximum specific growth rate, \(\lambda \): lag time,
\(A \): growth inferior asymptote
\(\nu \): adjustment parameter, \(b_0 = \mu_{\text{max}} \lambda \).

Paper is used, then only red color light wavelength will pass through the paper (Rehman & Dixit, 2019). Each glass paper was wrapped around the flask and 10 cm kept away from the light source (Kang et al., 2015; Ojit et al., 2015; Sanmartín et al., 2017; Rather & Singh, 2018; Znad et al., 2018). Fluorescent lamps adjusted to 1200 lux using a lux meter were employed. A total of 12 experimental units were analyzed with the following treatments: white light (400-800 nm) as control treatment with no colored glass paper; red light (650-800 nm); yellow light (550-580 nm); and blue light (460-480 nm). Each experiment was performed in triplicate. The experimental units were kept under in controlled conditions such as 23 °C and 12 h of photoperiod, according to the Biotechnology Laboratory at the Federal University of São Carlos (UFSCar) in Brazil (Camargo & Lombardi, 2018). On days 1, 3, 5, 7, and 9, optical densities (OD) were measured using 1 ml of \(N. \ ellipsosporum \) liquid culture and a spectrophotometer (Mettler Toledo) at 650 nm.
Data processing

All the results were analyzed by means of (one-way) ANOVA followed by Tukey HSD multiple comparisons. All statistical analyses were performed using SPSS (V. 21) software. $P < 0.05$ was considered statistically significant.

All four chosen models, Baranyi-Roberts (Baranyi & Roberts, 1994, 1995; Baranyi et al., 1995), modified Gompertz (Zwietering et al., 1990), modified Logistics (Gompertz, 1825; Zwietering et al., 1990) and Richards (Richards, 1959; Zwietering et al., 1990), consider biological meaningful parameters such as μ_{max} (maximum specific growth rate) and λ (lag time). Growth data was adjusted using a non-linear regression and the CurveExpert Basic 2.1.0 software, which employs the Marquardt algorithm. This algorithm minimizes the Residual Sums of Squares between predicted and experimental values, while providing correlation coefficient and standard error. The obtained data was adjusted to the four models, and the models were compared employing a F-test (Motulsky & Ransnas, 1987).

Results and Discussion

Cyanobacteria began an adaptive diversification 3.5 billion years ago by optimizing oxygenic photosynthesis, managing to expand their ecological niches (Dhar et al., 2015). Such changes led to the evolution of a wide spectrum of photosynthetic pigments with specialized functions in order to compete with other autotrophic organisms (Morales et al., 2017; Benítez et al., 2018). Oxygenic photosynthetic organisms like cyanobacteria contain two types of reaction centers, P700 from photosystem I and P680 from photosystem II (Singh et al., 2015). Photosystems have chlorophyll as their main pigment and phycobilisomes (PBS) as light-harvesting antennae to optimize the absorption of light energy (Bland & Angenent, 2016; Hagemann et al., 2016). PBS are supramolecular assemblies of water-soluble proteins named phycobiliproteins (PBP) and polypeptides (Ho et al., 2017). PBP are heterodimers of two structurally related but distinctly specialized polypeptides, α and β, made up of seven alpha-helices, each, which allow the complementary chromatic adaptation (Singh et al., 2015).

Cyanobacteria often feature an extensive range of colored pigments due to these highly fluorescent and covalently bound phycobiliproteins (Arteni et al., 2009). Some of these proteins are phycocyanin (CPC) with an absorption spectrum around 610-620 nm (blue), allophycocyanin (APC), having an absorption spectrum around 650-655 nm (blue grey), and phycoerythrin (CPE) around 540-570 nm (red) (Tiwari et al., 2015; Shukla et al., 2016; Garlapati et al., 2019). The absorption spectrum of phycobiliproteins is determined by an open-chain tetrapyrrrole chromophore and the environment (Singh & Singh, 2015).
As mentioned before, phycobiliproteins have a very important role in regulating the distribution of the absorbed light energy between photosynthetic systems I and II, reason for which phycobiliproteins go under rapid changes when light is modified. This physiological mechanism allows cyanobacteria to adapt fast to environmental conditions. Therefore, light quality determines the intensity of all vital processes affecting yield and quality of the biomass obtained (Bland & Angenent, 2016; Chen et al., 2016; Cepoi, 2019). In this scenario, the effect of different light wavelengths (i.e., red, yellow, blue and white) on the growth of *Nostoc ellipsosporum* was evaluated and the obtained results are presented next. Growth was monitored based on the optical density (OD_{650}) over a 9-day incubation period.

Laboratory results

As shown in **Fig. 1**, *N. ellipsosporum* had significantly distinct levels of cell growth when cultivated under different light wavelengths.

![Growth curves](image)

Figure 1. Growth curves from *N. ellipsosporum* under different light wavelength, treatments were as follow: white light (400-800 nm); red light (650-800 nm); yellow light (550-580 nm) and blue light (460-480 nm). OD: Optical density.
The \((OD_{650})\) of \textit{N. ellipsosporum} was higher under white light conditions \((0.090 \pm 0.008)\), followed by yellow \((0.057 \pm 0.004)\), red \((0.040 \pm 0.006)\) and blue light \((0.009 \pm 0.001)\). These results may be due to the wider photo-spectrum distribution of white light \((400-800 \text{ nm})\), which stimulates mostly all photosynthetic pigments from autotrophic microorganisms \((\text{Ho et al.}, 2014)\); as seen in microalgae \textit{Navicula incerta} \((\text{Singh & Singh}, 2015)\) and cyanobacterium \textit{Nostoc flagelliforme} \((\text{Han et al.}, 2014)\). Similarly, \textit{Kim et al.} \((2013)\) reported that the cell growth rate of the microalgae \textit{Scenedesmus} sp. was the highest under white light conditions, followed by red, blue, and green light, respectively. \textit{Zhao et al.}, also stated that the highest maximum specific growth rate and biomass productivity of microalgae \textit{Chlamydomonas} sp. was under white light, then green, blue, and red \((\text{Zhao et al.}, 2019)\). Nevertheless, \textit{Das et al.} reported that the biomass productivity of \textit{Spirulina platensis} was the highest under red light condition, yet the maximum specific growth rate of \textit{Nannochloropsis} sp. was achieved under blue light \((\text{Das et al.}, 2011)\). Since this is not the present case, it can be said that the effect of light wavelength on biomass production in photoautotrophic microalgae is species-dependent \((\text{Ho et al.}, 2014)\).

The growth of \textit{N. ellipsosporum} showed a progressive increase from day 3 until day 9, under white, red and yellow lights (Fig. 1). The maximum \(OD_{650}\) values were observed on day 9 of the incubation period. On the other hand, under blue light, the growth was stationary, almost non-existing, and slow from day 5 to day 9.

\textit{N. ellipsosporum} showed a similar trend in its growth curve under white light as previous growth curves reported by several authors in \textit{Nostoc flagelliforme}, \textit{Synechocystis} sp. and \textit{Microcystis aeruginosa}, exhibiting a lag phase during three days after inoculation and an exponential phase afterwards \((\text{Han et al.}, 2014; \text{Bland & Angenent}, 2016; \text{Crettaz Minaglia et al.}, 2017)\). Overall, comparison of the \(OD_{650}\) using (one-way) ANOVA and Tukey HSD multiple comparisons showed that the \textit{N. ellipsosporum} cells grew significantly better \((P = 0.000; 98 \% \text{ correlation coefficient})\) under white light (control), and that blue light restricts cyanobacteria growth.

\textit{N. ellipsosporum} photosynthetic system includes various pigments. The primary pigment is chlorophyll a, whose maximum absorption wavelength is 420 nm, and is stimulated by white and blue lights \((\text{Singh & Singh}, 2015)\); since chlorophyll is the most abundant, the cyanobacterium grew better under the white light. Other pigments in the photosynthetic systems are phycocyanin with a maximum absorption at 620 nm, it is stimulated by white, red and yellow lights; and phycoerythrin whose maximum absorption wavelength is 570 nm and is stimulated by white and yellow lights \((\text{Barsanti & Gualtieri}, 2006; \text{Johnson et al.}, 2014)\). As described above, phycocyanin and
phycoerythrin are pigments that efficiently harvest light energy and transfer it to photosynthetic reaction centers. They are produced to increase the range of light absorption, once the cyanobacterium needs alternative ways to get light and energy in order to grow. They are directly related and influenced by the composition of the light provided to the culture (Pagels et al., 2019). In the present study there was a slight adaptation of N. ellipsosporum when exposed to red and yellow light under the established conditions according to the OD_{680} values, which suggest some increase in these proteins’ contents and a consequent effect on the cellular growth and function. Likewise, Tiwari et al. observed that higher quantity of phycocyanin is produced under red light and phycoerythrin under green light in Nostoc muscorum, in order to guarantee the photosynthetic efficiency (Tiwari et al., 2015). However, acclimation to the different light quality is not horizontal and it varies according to the species. For example, it has been described that, under blue light, some Anabaena species increase the total phycobiliprotein productivity (Pagels et al., 2019). The same outcome has been observed in Nostoc sphaeroides (Ma et al., 2015). Nonetheless, no adaptation under blue light was observed in this study.

In photosynthetic organisms like N. ellipsosporum, carotenoids and xanthophylls serve as both light harvesting pigments and to protect cells from photooxidative damage. They absorb light from the green and blue regions (380-580 nm). Carotenoids production is related to the nutrient’s availability in the genus Nostoc (Yang et al., 2019). When carotenoids are absent, the number of phycocyanin molecules connected to the phycobilisome nucleus is strongly reduced, thus, disturbing the organization of the thylakoid membrane and affecting the microalgae growth (Tóth et al., 2015). Under the experimental conditions of this study, N. ellipsosporum seems to be associated with low concentrations of carotenoids, similar to what has been described before (Loaiza et al., 2016; Rivera-González et al., 2017).

The inhibitory effect of blue light on the growth of N. ellipsosporum is comparable to the results from Ooms et al., where blue light also diminished Synechococcus sp. biomass production (Ooms et al., 2017); and to the results from Luimstra et al., which showed that cyanobacterium Synechocystis sp. displayed lower O_2 and biomass production rates in blue light (Luimstra et al., 2018, 2019). It was demonstrated that cyanobacteria have low photosynthetic efficiency in blue light because PBS does not absorb wavelengths under 450 nm, and hence blue light mainly excites the photosystem I, while fewer photons excite the photosystem II reaction center (Solhaugh et al., 2014; Kirilovsky, 2015).

Also, although blue light absorption is strong, a great part of this energy is diverted to other metabolic paths (Itoh et al., 2014; Teo et al., 2014),
resulting in cell division delays (Oldenhof et al., 2006). Furthermore, particular light wavelengths can enhance the production of specific metabolic products in closely related species. Han et al. showed in 2018 and 2019, that different light qualities influenced the gene expression of N. flagelliforme, and that cells treated under blue and red light showed more significant changes in carbohydrate metabolism, energy metabolism, amino acid metabolism, nucleotide metabolism, activities of key enzymes and signal transduction. Moreover, light quality was considered to be a key factor controlling the growth and exopolysaccharides biosynthesis (Han et al., 2018; Han et al., 2019).

Mathematical modeling of data

Turbidimetry allows the detection of small particles that diffract light in a culture medium according to its concentration, within the detection limits determined by the spectrophotometer used. Since it is a fast and low-cost methodology, it has been widely used to study bacterial growth through the measurement of optical density (OD) and is used as a tool for mathematical modeling of cellular growth (Dalgaard et al., 1994; Dalgaard & Koutsoumanis, 2001; Santiesteban-López & López-Malo, 2008; Belda-Galbis et al., 2011; Gupta et al., 2012; Tevatia et al., 2012; Mytilinaios et al., 2014; Pla et al., 2015; Ahmad et al., 2015; Ibrahim et al., 2018; Silva et al., 2018; You et al., 2018; Charlebois & Balázsi, 2019).

Data from all four light wavelength treatments (white, yellow, red and blue), was adjusted to the selected models (Baranyi-Roberts, modified Gompertz, modified logistic and modified Richards). Estimation of the model with the better adjustment was based on correlation coefficient and the F-test (Table 2). An example of the adjustment is presented in Fig. 2 using data from N. ellipsosporum growth under yellow light. According to the correlation coefficient and the F-test, Baranyi-Roberts model showed the best adjustment to experimental data from all four treatments. This is particularly interesting considering it is a mechanical-based model; however, biological parameters were used from the initial approach. In this model (Baranyi & Roberts, 1994, 1995), the starting point is that the variation of cell density $x(t)$ in time t can be modeled from the initial value problem:

$$\frac{dx}{dt} = \mu_{max} \alpha(t) u(x) x, \quad x(0) = x_0,$$ \hspace{1cm} (1)
Modeling the effects of light on *Nostoc ellipsosporum*

Table 2. Correlation coefficient for adjustments of Baranyi-Roberts, modified Gompertz, modified logistic and modified Richards models to *N. ellipsosporum* growth under different light wavelengths: white light (400-800 nm); red light (650-800 nm); yellow light (550-580 nm) and blue light (460-480 nm).

Model	White light treatment	Yellow light treatment	Red light treatment	Blue light treatment
Baranyi-Roberts	0.9974	0.9978	0.9903	0.9403
Modified Gompertz	0.9953	0.9964	0.9792	0.8579
Modified Logistic	0.9912	0.9977	0.9814	0.8662
Modified Richards	0.9953	0.9979	0.9842	0.8674

where μ_{max} is the maximum specific growth rate, $\alpha(t)$ is a function that describes the population adaptation to the new environment, $u(x)$ is a function that describes the inhibition growth at the end of the exponential phase and the beginning of the stationary phase.

![Growth curves from N. ellipsosporum using the mathematical models](image)

Figure 2. Growth curves from *N. ellipsosporum* using the mathematical models: Baranyi-Roberts, modified Gompertz, modified Logistic and modified Richards. All of them under yellow light treatment (550-580 nm). OD: optical density.
If the inhibition function has a Logistic form and x_{max} represents the maximum density of the population, then:

$$u(x) = 1 - \frac{x}{x_{\text{max}}}.$$ \[\text{(2)}\]

Now, Baranyi & Roberts model (1994, 1995) supposes that the adaptation function $\alpha(t)$ indicates the required medium to ensure microorganism growth in the new environment, using Michaelis-Menten kinetics, then:

$$\alpha(t) = \frac{q(t)}{1 + q(t)},$$ \[\text{(3)}\]

where $q(t)$ represents the initial physiological state of the population. Under the assumption that $q(t)$ follows a first order kinetics, then:

$$\frac{dq}{dt} = v \cdot q, \quad q(0) = q_0,$$ \[\text{(4)}\]

meaning that:

$$\alpha(t) = \frac{q_0}{q_0 + e^{-\mu_{\text{max}}t}},$$ \[\text{(5)}\]

where q_0 indicates the initial physiological state of the inoculum and it was taken from $v = \mu_{\text{max}}$.

Changing the variable $y(t) = \ln(x(t)), \ y_0 = \ln(x_0), \ y_{\text{max}} = \ln(x_{\text{max}})$, the solution to the corresponding initial value problem is given by:

$$y(t) = y_0 + \mu_{\text{max}} A(t) - \ln\left(1 + \frac{e^{y_{\text{max}}t}}{e^{y_{\text{max}}t}} \right)$$ \[\text{(6)}\]

$$A(t) = t + \frac{1}{\mu_{\text{max}}} \ln\left(\frac{e^{-\mu_{\text{max}}t} + q_0}{1 + q_0}\right).$$ \[\text{(7)}\]

If

$$h_0 = \ln\left(1 + \frac{1}{q_0}\right),$$ \[\text{(8)}\]

then

$$y(t) = y_0 + \mu_{\text{max}} t + \ln\left(e^{-\mu_{\text{max}}t} + e^{-h_0} - e^{-\mu_{\text{max}}t - h_0}\right)$$ \[\text{(9)}\]

$$- \ln\left(1 + \frac{e^{\mu_{\text{max}}t + \ln(e^{-\mu_{\text{max}}t - h_0}) - h_0 - \mu_{\text{max}}t - h_0)}{e^{y_{\text{max}}t}}\right).$$ \[\text{(10)}\]
Using Baranyi-Roberts model (1994, 1995) as a base model, the effect of light wavelength on the growth of *Nostoc ellipsosporum* was adjusted (Fig. 3). The μ_{max} values (1/day) were between 0.5161 to 1.1883. Under the white light treatment (control) the lag phase was negative. Lag phase increased progressively in the yellow, red and blue light treatments (Table 3).

Over the last decades, the use of primary models to describe growth kinetics of microorganisms has increased, especially in microalgae research (Lacerda et al., 2011; Mohamed et al., 2014; Halmi et al., 2014). Among many mathematical models used, the Baranyi-Roberts model proved to be very useful in the present study, because its parameters have a direct biological interpretation, it can be applied to dynamic environmental conditions and can be adjusted to the experimental data.

A relationship between the natural logarithm of the OD and the natural logarithm of the cell density DC (cell/ml) was estimated in order to use the OD data in each treatment and calculate the respective cell concentration, considering that the optical density is directly proportional to the cell density.
Table 3. Parameters adjusted according to the Baranyi-Roberts mathematical model for the growth of *N. ellipsosporum* under different light wavelengths.

Parameter	White light	Yellow light	Red light	Blue light
μ_{max} (1/day)	0.5161	0.7843	1.1883	0.9261
λ (day)	2.0277	3.8561	5.4740	

concentration and that it is a widely used parameter for monitoring cell growth (Infante *et al.*, 2012; Vanegas & Ramírez, 2016). Only when a strain reaches the phase of cellular death, due to a high cell concentration, nutrient depletion and accumulation of toxic metabolites; the cell concentration reduces and the cellular biomass is precipitated, thus altering the OD of the culture medium.

![Growth curves from *N. ellipsosporum* under four light wavelength treatments.](image-url)

Figure 4. Growth curves from *N. ellipsosporum* under four light wavelength treatments. The curves were adjusted according to Baranyi-Roberts mathematical model (BR2): $y = 303978x + 2 \times 10^6$; where $x = \ln(OD)$, $y = \ln(CD)$. OD: optical density. CD: cell density.
Modeling the effects of light on *Nostoc ellipsosporum*

This is why in batch cell culture systems, focused on cellular biomass production or its derivatives, cultivation is carried out until the phase of cellular death. It was found that when modeling the experimental data of OD using Baranyi-Roberts (BR1) a coefficient of determination value of 2.7×10^{-4} is obtained, with a previous calibration curve (BR2) formed by the expression:

$$y = 303978x + 2 \times 10^6,$$

where: $x = \ln(OD)$, $y = \ln(CD)$. A coefficient of determination of 1.36×10^{-3} was obtained, showing a better fit of BR2 with the growth curve of *N. ellipsosporum*. When applying this method to the data from each treatment, the following coefficients of determination were found: 1.32×10^{-4} (white light BR1) and 7.32×10^{-4} (white light BR2); 3.83×10^{-5} (yellow light BR1) and 5.39×10^{-5} (yellow light BR2); 9.65×10^{-5} (BR1 red light) and 8.43×10^{-5} (BR2 red light); 2.79×10^{-6} (blue light BR1) and 1.02×10^{-6} (blue light BR2). BR1 had a better fit with the red light and blue light treatments, while BR2 better represented the white light and yellow light treatments data (Fig. 4).

Table 4 shows the growth parameters of *N. ellipsosporum* under four treatments using different wavelengths of light and modeled with Baranyi-Roberts under conditions BR1 and BR2. This table shows that the white light treatment had the maximum growth rate μ_{max}. The resulting data demonstrated that it is possible to extend the Baranyi-Roberts model to other types of growth indicators, such as absorbance.

Lastly, similar approaches have modeled the growth of various microorganisms under different conditions also using OD measurement and the modified Baranyi-Roberts model. For example, Mytilinaios *et al.* (2014),

Parameter	White light	Yellow light	Red light	Blue light
Model	BR1	BR2	BR1	BR2
μ_{max} (1/day)	0.5161	11.1966	0.7843	1.3748
λ (day)	5.0705	2.0277	0.7227	3.8561

Table 4. Parameters adjusted according to the Baranyi-Roberts mathematical model for the growth of *N. ellipsosporum* under different light wavelengths based on optical density data (BR1) and calibrated data (BR2).
examined the growth of *Escherichia coli* and *Salmonella typhimurium* under mild conditions of temperature, salt and pH; and concluded that a rearranged Baranyi-Roberts model could be used with time to detection data obtained from optical density measurements, producing highly accurate specific growth rates and lag phase durations (Mytilinaios *et al.*., 2014). In 2005, Perni *et al.* found that the values of μ_{max} obtained by using the Gompertz, logistic and Baranyi-Roberts models, with absorbance and viable counts measurements of cell concentration, fitted the experimental data from the growth of *Listeria monocytogenes* and *Listeria innocua* well (Perni *et al.*, 2005). Moreover, growth curves of *Bacillus cereus*, *L. monocytogenes* and *E. coli* with different initial concentrations were analyzed measuring the microbial growth by optical density, and using mathematical models that provided a good fitting for all growth curves, especially the Baranyi model (Pla *et al.*, 2015). Furthermore, once again, the measurement of absorbance was used to monitor cell concentration in three species of lactic acid bacteria, to model their growth. Primary models Baranyi-Roberts and Gompertz were used, achieving a slightly better fit to the experimental data when using the first one (Silva *et al.*, 2018).

Conclusions

In this study, it was investigated the effects of three different light wavelengths (yellow, red and blue) and a control light wavelength (white) on *Nostoc ellipsosporum* growth. The experimental results indicated that white light 10 cm away and at 1200 lux was significantly more efficient for *N. ellipsosporum* growth compared to the other light wavelengths. The highest optical density (OD_{650}) value was read as 0.099 on day 9 of the incubation period. Growth under yellow and red light was registered as well. However, blue light inhibited *N. ellipsosporum* growth. Nevertheless, the present study only provides insight into the effect of light quality on the growth and biomass accumulation of *N. ellipsosporum*, if the production of specific bioproducts is required, further investigation must occur.

From the analyzed models, the one that proved to have a better fit with the experimental data from *N. ellipsosporum* in all four treatments was the Baranyi-Roberts model. Modeling provides a valuable quantitative approach to understanding different aspects of microalgae physiology and growth, this is a fundamental step for industrial exploitation.

Acknowledgements

The authors thank the General Research Center from Universidad de los Llanos for supporting the research project: “Modelamiento matemático
del crecimiento de un alga perifítica con potencial biotecnológico"code C01-F02-020-201; to Colciencias for the funding provided to the experimental phase with the grant 497 for doctoral studies abroad; and finally, to the Biotechnology Laboratory at the Federal University of São Carlos (UFSCar) in Brazil for the logistic support, especially to Prof. Dr. Ana Teresa Lombardi, the biologist Carlos Casali and Dr. Renata Haneda.

Conflict of interest
The authors declare no conflict of interest.

References

Abed RMM, Dobretsov S, & Sudesh K. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12, 2009.

Ahmad SA, Shukor MS, Masdor NA, Shamaan NA, Roslan MAH, Shukor MY. The growth of Paracoccus sp. SKG on acetonitrile is best modelled using the Buchanan three phase model. Journal of Environmental Bioremediation and Toxicology, 3 (1): 1-5, 2015.

Retrieved from: https://journal.hibiscuspublisher.com/index.php/JEBAT/article/view/253

Algal culturing techniques. (R.A. Andersen Ed.). Burlington: Phycological society of America, 2005.

Andersen RA. Algal culturing techniques, Phycological society of America, Burlington, USA, 2005.

Arteni AA, Ajlani G, & Boekema EJ. Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787 (4), 272-279, 2009.

doi: 10.1016/j.bbabio.2009.01.009

Atta M, Idris A, Bukhari A, & Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373-378, 2013.

doi: 10.1016/j.biortech.2013.08.162

Baranyi J, & Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294, 1994.

doi: 10.1016/0168-1605(94)00157-0
Baranyi J, & Roberts TA. Mathematics of predictive food microbiology. *International Journal of Food Microbiology*, 26(2), 199-218, 1995.

doi: 10.1016/0168-1605(94)00121-L

Baranyi J, Robinson TP, Kaloti A, & Mackey BM. Predicting growth of *Brochothrix thermosphacta* at changing temperature. *International Journal of Food Microbiology*, 27(1), 61-75, 1995.

doi: 10.1016/0168-1605(94)00154-X

Barsanti L, & Gualtieri P. Algae: anatomy, biochemistry and biotechnology. Boca Raton: CRC Press Taylor & Francis group, 2006.

Belda-Galbis CM, Martínez A, Rodrigo D. Antimicrobial effect of carvacrol on *Escherichia coli* K12 growth at different temperatures, 2011.

doi: 10.1142/9789814354868_0015

Benítez REH, Vidal DRA, & Guerrero JV. Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira-Colombia. *Revista Colombiana de Investigaciones Agroindustriales*, 5(1), 20-31, 2018.

doi: 10.23850/24220582.889

Bland E, & Angenent LTJ. Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria. *Bioresource technology*, 216, 579-586, 2016.

doi: 10.1016/j.biortech.2016.05.116

Camargo EC, & Lombardi AT. Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of *Chlorella sorokiniana*. *Journal of Applied Phycology*, 30 (2), 861-871, 2018.

doi: 10.1007/s10811-017-1291-3

Castillo CMN, Rivera FCR, Díaz LE, Díaz AGL. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga *Haematococcus pluvialis*, *Nova*, 15 (28): 19-31, 2017.

Retrieved from http://hemeroteca.unad.edu.co/index.php/nova/article/view/2073/2273
Cayré ME, Vignolo GM, Garro OA. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y Brochothrix thermosphacta sobre emulsiones cárnicas cocidas, Información Tecnológica, 18(3): 23-29, 2007.

doi: 10.4067/S0718-07642007000300004

Celekli A, Yavuzatmaca M, & Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresource Technology, 100, 3625-3629, 2009.

doi: 10.1016/j.biortech.2009.02.055

Cepoi L. Chapter 11: Environmental and Technological Stresses and Their Management in Cyanobacteria. In: Cyanobacteria From Basic Science to Applications. Mishra AK, Tiwari DN, & Rai AN (Eds.). Elsevier, 217-244, 2019.

Retrieved from https://www.elsevier.com/books/cyanobacteria/mishra/978-0-12-814667-5

Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biology, 13 (1-2): 21-39, 2019.

doi: 10.3233/ISB-180470

Chen Q, Montesarchio D, & Hellingwerf KJ. ‘Direct conversion’: artificial photosynthesis with cyanobacteria. In Advances in Botanical Research, 79, 43-62, 2016.

doi: 10.1016/bs.abr.2016.03.001

Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, & Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396, 2008.

doi: 10.1016/j.biortech.2007.08.013

Cibichakrarathvy B, Venkatachalam S, & Prabagaran SR. Chapter 9: Unleashing Extremophilic Metabolites and Its Industrial Perspectives. In: Gupta BK, & Pande A (Eds). New and Future Developments in Microbial Biotechnology and Bioengineering. 119-130, 2019.

doi: 10.1016/B978-0-444-63504-4.00009-8
Crettaz Minaglia MC, Rosso L, Aranda O, Sedan D, Juárez I, Ventosi E, Gian-nuzzi LJI. Modelado matemático del crecimiento de Microcystis aeruginosa en condiciones de laboratorio bajo diferentes temperaturas. Ingeniería Sanitaria y Ambiental, 61-67, 2017.

http://hdl.handle.net/10915/60750

Crnkovic CM, May DS, & Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 1-10, 2017.

doi: 10.1007/s10811-017-1275-3

Cui L, Xu H, Zhu Z, & Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biology open, 6(9), 1329-1335, 2017.

doi: 10.1242/bio.026955

Dalgaard P, Koutsoumanis K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43: 183-196, 2001.

doi: 10.1016/s0167-7012(00)00219-0

Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology, 23: 391-404, 1994.

doi: 10.1016/0168-1605(94)90165-1

Das P, Lei W, Aziz SS, & Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883-3887, 2011.

doi: 10.1016/j.biortech.2010.11.102

Da Silva Ferreira V, & Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 33(1), 20, 2017.

doi: 10.1007/s11274-016-2181-6

De Oliveira CA, Castro-Oliveira W, & Rocha SM. Effect of light intensity on the production of pigments in Nostoc spp. European Journal of Biology and Medical Science Research, 2(1), 23-36, 2014.
Delattre C, Pierre G, Laroche C, & Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. *Biotechnol Adv*, 34(7), 1159-1179, 2016.
doi: 10.1016/j.biotechadv.2016.08.001

Dhar DW, Prasanna R, Pabbi S, & Vishwakarma R. Significance of cyanobacteria as inoculants in agriculture. In *Algal Biorefinery: An Integrated Approach* (pp. 339-374): *Springer*. 2015.
doi: 10.1007/978-3-319-22813-6_16

Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, & Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. *Marine Drugs*, 14 (5), 100, 2016.
doi: 10.3390/md14050100

Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, & Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. *Applied Microbiology and Biotechnology*, 103 (12), 4709-4721, 2019.
doi: 10.1007/s00253-019-09811-1

Gaytán-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, Pérez-Martínez AS, Alpuche-Solís Á, & Soria-Guerra RE. Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in *Chlamydomonas reinhardtii*. *Biotechnol Prog*, 32(6), 1404-1411, 2016.
doi: 10.1002/btpr.2368

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. *Philosophical transactions of the Royal Society of London*, 115, 513-583, 1825.
doi: 10.1098/rstl.1825.0026

Griffiths MJ, Garcin C, Van Hille RP, & Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. *Journal of Microbiological Methods*, 85(2), 119-123, 2011.
doi: 10.1016/j.mimet.2011.02.005
Guo F, Zhao JAL, & Yang X. Life cycle assessment of microalgal-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects. *Bioresource Technology*, 221, 350-357, 2016.

doi: 10.1016/j.biortech.2016.09.044

Gupta S, Cox S, Rajauria G, Jaiswal AK, Abu-Ghannam N. Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts, *Food and Bioprocess Technology*, 5: 1907-1916, 2012.

doi: 10.1007/s11947-010-0502-6

Hagemann M, Kern R, Maurino VG, Hanson DT, Weber AP, Sage RF, & Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. *Journal of experimental botany*, 67(10), 2963-2976, 2016.

doi: 10.1093/jxb/erw063

Hai T, Ahlers H, Gorenflo V, & Steinbüchel A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. *Applied Microbiology and Biotechnology*, 53, 383-389, 2000.

doi: 10.1007/s002530051630

Halmi MIE, Shukor MS, Johari WLW, & Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae *Dunaliella tertiolecta*. *Asian Journal of Plant Biology*, 2(1), 1-6. 2014.

Retrieved from http://journal.hibiscuspublisher.com/index.php/AJPB/article/view/81

Han PP, Guo RJ, Shen SG, Yan RR, Wu YK, Yao SY, Wang HY, & Jia SR. Proteomic profiling of *Nostoc flagelliforme* reveals the common mechanism in promoting polysaccharide production by different light qualities. *Biochemical Engineering Journal*, 132, 68-78, 2018.

doi: 10.1016/j.bej.2017.12.006

Han PP, Shen SG, Wang HY, Sun Y, Dai YJ, & Jia SR. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium *Nostoc flagelliforme*. *Algal Research*, 9, 143-150, 2015.

doi: 10.1016/j.algal.2015.02.019
Han PP, Shen SG, Guo RJ, Zhao DX, Lin YJ, Jia S, Yan RR, & Wu YK. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium *Nostoc flagelliforme*. *Journal of Agricultural and Food Chemistry*, 67 (8), 2235-2244, 2019.

doi: 10.1021/acs.jafc.8b06176

Han PP, Shen SG, Wang HY, Yao SY, Tan ZL, Zhong C, & Jia SR. Applying the strategy of light environment control to improve the biomass and polysaccharide production of *Nostoc flagelliforme*. *Journal of Applied Phycology*, 29 (496), 55-65, 2017a.

doi: 10.1007/s10811-016-0963-8

Han PP, Sun Y, Jia SR, Zhong C, & Tan ZL. Effects of light wavelengths on extracellular and capsular polysaccharide production by *Nostoc flagelliforme*. *Carbohydrate polymers*, 105, 145-151, 2014.

doi: 10.1016/j.carbpol.2014.01.061

Han PP, Yao SY, Guo RJ, Yan RR, Wu YK, Shen SG, & Jia SR. Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of *Nostoc flagelliforme*. *RSC Advances*, 7, 45075-45084, 2017b.

doi: 10.1039/C7RA07982F

Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, & Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. *Bioresource Technology*, 152, 275-282, 2014.

doi: 10.1016/j.biortech.2013.11.031

Ho MY, Soulier NT, Canniffe DP, Shen G, & Bryant DA. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. 37, 24-33, 2017.

doi: 10.1016/j.pbi.2017.03.006

Huang L. Optimization of a new mathematical model for bacterial growth. *Food Control*, 32(1), 283-288, 2013.

doi: 10.1016/j.foodcont.2012.11.019
Ibrahim S, Mansur A, Ahmad SA. Mathematical modelling of the growth of Caulobacter crescentus on caffeine. *Journal of Environmental Microbiology and Toxicology*, 6 (2): 13-17, 2018.
Retrieved from https://journal.hibiscuspublisher.com/index.php/JEMAT/article/view/438

Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, & Zapata C. Propagación de la microalga *Chlorella* sp. en cultivo por lote: cinética del crecimiento celular. *Avances en Ciencias e Ingeniería*, 3(2), 2012.
Retrieved from http://www.redalyc.org/pdf/3236/323627686016.pdf

Itoh KI, Nakamura K, Aoyama T, Kakimoto T, Murakami M, & Takido T. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. *Tetrahedron Letters*, 55(2), 435-437, 2014.
doi: 10.1016/j.tetlet.2013.11.049

Johnson EM, Kumar K, & Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated *Nostoc* sp. *Bioresource technology*, 166, 541-547, 2014.
doi: 10.1016/j.biortech.2014.05.097

Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, & Kim HS. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. *Journal of Microbiology and Biotechnology*, 25(1), 109-118. 2015.
doi: 10.4014/jmb.1409.09019

Khajepour F, Hosseini SA, Nasrabadi RG, & Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of *Nostoc calcicola*. *Applied biochemistry and biotechnology*, 176(8), 2279-2289, 2015.
doi: 10.1007/s12010-015-1717-9

Khanna P, Kaur A, & Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. *Journal of Microbiological Methods*, 163, 105656, 2019.
doi: 10.1016/j.mimet.2019.105656
Kim TH, Lee Y, Han SH, & Hwang SJ. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. *Bioreource Technology*, 130, 75-80, 2013.
doi: 10.1016/j.biortech.2012.11.134

Kim YS, & Lee SH. Quantitative analysis of *Spirulina platensis* growth with CO₂ mixed aeration. *Environmental Engineering Research*, 23(2), 216-222, 2018.
doi: 10.4491/eer.2017.193

Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. *Photosynthesis Research*, 126: 3-17, 2015.
doi: 10.1007/s11120-014-0031-7

Kokabi M, Yousefzadi M, Soltani M, & Arman M. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot-spring cyanobacterium Leptolyngbya cf. fragilis. *Phycological Research*, 67 (3), 215-220, 2019.
doi: 10.1111/pre.12374

Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, & Franco TT. Improving refinery wastewater for microalgal biomass production and CO₂ biofixation: Predictive modeling and simulation. *Journal of petroleum science and engineering*, 78(3-4), 679-686, 2011.
doi: 10.1016/j.petrol.2011.07.003

Li H, Xie G, & Edmondson A. Evolution and limitations of primary mathematical models in predictive microbiology. *British food journal*, 109(8), 608-626, 2007.
doi: 10.1108/00070700710772408

Liu X, Sheng J, & Curtiss R. Fatty acid production in genetically modified cyanobacteria. *Proceedings of the National Academy of Sciences*, 2011.
doi: 10.1073/pnas.1103014108

Loaiza NR, Vera P, Aiello-Mazzarri C, & Morales EJA. Comparación del crecimiento y composición bioquímica de cuatro cepas de Nostoc y *Anabaena* (Cyanobacteria, Nostocales) en relación con el nitrato de sodio. *Acta Biológica Colombiana*, 21(2), 347-354, 2016.
doi: 10.15446/abc.v21n2.48883
Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, & Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. *Cell Mol Biol* (Noisy-le-grand), 63(9), 96-105, 2017.
doi: 10.14715/cmb/2017.63.9.17

Luimstra VM, Schuurmans JM, Verschoor AM *et al.* Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. *Photosynthesis Research*, 138, 177-189, 2018.
doi: 10.1007/s11120-018-0561-5

Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. *Photosynthesis Research*, 1-11, 2019.
doi: 10.1007/s11120-019-00630-z

Ma R, Lu F, Bi Y, & Hu Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium *Nostoc sphaeroides* Kützing. *Biotechnology Letters*, 37, 1663-1669, 2015.
doi: 10.1007/s10529-015-1831-3

Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, & Cowan DAJ. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. *Biodiversity and Conservation*, 24(4), 819-840, 2015.
doi: 10.1007/s10531-015-0902-z

Margarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, & Costa JA. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. *Environ Technol*, 1-8, 2016.
doi: 10.1080/09593330.2016.1254685

McBride RC, Smith VH, Carney LT, & Lane TW. Crop protection in open ponds. In: Slocombe SP, & Benemann JR (Eds.). *Microalgal Production for Biomass and High-Value Products*, 1st ed., CRC Press, 165-182, 2016.

Merli GO, Perazzi JR. Modelos de crecimiento en microbiologia predictiva (Ecología microbiana cuantitativa). Estimación de modelos y simulación mediante dinámica de sistemas, *XXVIII Simposio Internacional de Estadistica 5th International Workshop on Applied Statistics*, Medellín, Colombia, 2017.
Mohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, & Ariff AB. Kinetics and modeling of microalga *Tetraselmis* sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. *Biochemical engineering journal*, 88, 30-41, 2014. doi: 10.1016/j.bej.2014.04.002

Morales E, Luna V, Navarro L, Santana V, Gordillo A, & Arévalo AJRE. Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. *Revista Ecuatoriana de Medicina y Ciencias Biológicas*, 34(1-2), 129-149, 2017. doi: 10.26807/remcb.v34i1-2.240

Motulsky HJ, & Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. *The FASEB journal*, 1(5), 365-374, 1987. doi: 10.1096/fasebj.1.5.3315805

Mytilinaios I, Bernigaud I, Belot V, & Lambert RJW. Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Barany-Roberts model. *Journal of applied microbiology*, 118(1), 161-174, 2014. doi: 10.1111/jam.12695

Nostoc ellipsosporum, (2018). Retrieved from http://www.algaebase.org/search/species/detail/?species id=32575

Novoveska L, Franks DT, Wulfers TA, & Henley WJ. Stabilizing continuous mixed cultures of microalgae. *Algal Research*, 13(C), 126-133. 2016. doi: 10.1016/j.algal.2015.11.021

Nozzi NE, Oliver JW, & Atsumi S. Cyanobacteria as a platform for biofuel production. *Frontiers in Bioengineering and Biotechnology*, 1(7), 2013 doi: 10.3389/fbioe.2013.00007

Oldenhof H, Zachleder V, & Van Den Ende H. Blue-and red-light regulation of the cell cycle in *Chlamydomonas reinhardtii* (Chlorophyta). *European Journal of Phycology*, 41(3), 313-320, 2006. doi: 10.1080/09670260600699920
Ojit S, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi AS, Silvia CH, Indira DW, Romi KH, Minerva SH, & Thadoi DA. The response of phycobiliproteins to light qualities in *Anabaena circinalis*. *Journal of Applied Biology and Biotechnology*, 3, 1-6, 2015.
doi: 10.7324/JABB.2015.3301

Ooms MD, Graham PJ, Nguyen B, Sargent EH, & Sinton D. Light dilution via wave-length management for efficient high-density photobioreactors. *Biotechnology and bioengineering*, 114(6), 1160-1169, 2017.
doi: 10.1002/bit.26261

Pagels F, Guedes AC, Amaro HM, Kijjoa A, & Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. *Biotechnology Advances*, 37 (3), 422-443, 2019.
doi: 10.1016/j.biotechadv.2019.02.010

Pang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, & Xiao S. Nitrogen-Fixing heterocystous cyanobacteria in the Tonian period. *Current Biology*, 28(4), 616-622, 2018.
doi: 10.1016/j.cub.2018.01.008

Park H, & Lee CG. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. *Biotechnol J*, 11(11), 1461-1470, 2016.
doi: 10.1002/biot.201600041

Pereyra DSV, & Ferrari SG. Extracellular Polymeric Substance (EPS) Production by *Nostoc minutum* under Different Laboratory Conditions. *Advances in Microbiology*, 6(05), 374, 2016.
doi: 10.4236/aim.2016.65036

Perni S, Andrew PW, Shama G. Estimating the maximum growth rate from microbial growth curves: definition is everything. *Food microbiology*, 22 (6): 491-495, 2005.
doi: 10.1016/j.fm.2004.11.014

Pla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of primary models to predict microbial growth by the plate count and absorbance methods. *BioMed Research International*, 365025, 2015.
doi: 10.1155/2015/365025
Rather AH, & Singh S. Preliminary evaluation of impact of monochromatic light on the biosynthesis of astaxanthin in green alga Haematococcus pluvialis. *World News of Natural Sciences*, 19, 45-50, 2018.

Rehman NNMA, & Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of *Pseudomonas aeruginosa* NR1. *Journal of King Saud University Science*. doi: 10.1016/j.jksus.2019.01.004

Richards FJ. A flexible growth function for empirical use. *Journal of Experimental Botany*, 10(2), 290-301, 1959. doi: 10.1093/jxb/10.2.290

Richmond A. *Handbook of microalgal culture: Biotechnology and applied phycology*. Ames: Blackwell publishing. 2004.

Rivera-González MV, Gómez-Gómez L, & Cubillos-Hinojosa JG. Effect of humic acids on the growth and the biochemical composition of *Arthrospira platensis*. *Revista Colombiana de Biotecnología*, 19(1), 71-81, 2017. doi: 10.15446/rev.colomb.biote.v19n1.58316

Ryu BG, Kim J, Han JI, & Yang JW. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. *Bioresource Technology*, 225, 58-66, 2017. doi: 10.1016/j.biortech.2016.11.029

Sanmartín P, Vázquez-Nion D, Arines J, Cabo-Domínguez L, & Prieto B. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. *International Biodeterioration and Biodegradation*, 122, 107-115, 2017. doi: 10.1016/j.ibiod.2017.05.003

Santiesteban-López N, López-Malo A. Descripción e importancia de algunos modelos predictivos utilizados como herramienta para la conservación de alimentos. *Temas Selectos de Ingeniería de Alimentos*, 2 (2): 14-26, 2008.
Schuurman R, Matthijs J, & Hellingwerf K. Transition from exponential to linear photoautotrophic growth changes the physiology of *Synechocystis* sp. PCC 6803. *Photosynthesis research*, 132(1), 69-82. 2017.

doi: 10.1007/s11120-016-0329-8

Shalaby EA, Atta MB, Sleem IA, Mohamed MA, Lightfoot DA, & El-Shemy HA. Cytotoxicity, antioxidant and antiviral potential of aqueous extract from *Nostoc muscorum* cultivated in various inexpensive media. *Waste and Biomass Valorization*, 10(5), 1419-1431, 2019.

doi: 10.1007/s12649-017-0188-3

Shukla M, Tabassum R, Singh R, & Dhar DW. Influence of light intensity, temperature and CO₂ concentration on growth and lipids in green algae and cyanobacteria. *Indian Journal of experimental biology*, 54, 482-487, 2016.

Retrieved from http://nopr.niscair.res.in/bitstream/123456789/34750/1/IJEB%2054%287%29%20482-487.pdf

Silva APR, Longhi DA, Dalcanton F, Aragão GMF. Modelling the growth of lactic acid bacteria at different temperatures. *Brazilian archives of biology and technology*, 61: e18160159, 2018.

doi: 10.1590/1678-4324-2018160159

Singh NK, Sonani RR, Rastogi RP, & Madamwar D. The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. *EXCLI journal*, 14, 268, 2015.

doi: 10.17179/excli2014-723

Singh RS, Walia AK, Khattar JS, Singh DP, & Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. *International Journal of Biological Macromolecules*, 102, 475-496, 2017.

doi: 10.1016/j.ijbiomac.2017.04.041

Singh S, & Singh P. Effect of temperature and light on the growth of algae species: a review. *Renewable and Sustainable Energy Reviews*, 50, 431-444, 2015.

doi: 10.1016/j.rser.2015.05.024
Sinha RP, Ambasht NK, Sinha JP, & Hader DP. Wavelength-dependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. *Photochemical and Photobiological Sciences*, 2, 171-6, 2003. doi: 10.1039/b204167g

Solhaug KA, Xie L, Gauslaa Y. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. *Plant and Cell Physiology*, 55: 1404-1414, 2014. doi: 10.1093/pcp/pcu065

Supriyanto, Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, & Watanabe MM. Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. *Biosystems Engineering*, 177, 122-129, 2019. doi: 10.1016/j.biosystemseng.2018.10.002

Swinnen IAM, Bernaerts K, Dens EJ, Geeraerd AH, & Van Impe JF. Predictive modelling of the microbial lag phase: a review. *International journal of food microbiology*, 94(2), 137-159, 2004. doi: 10.1016/j.ijfoodmicro.2004.01.006

Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, & Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. *Bioresource technology*, 162, 38-44. doi: 10.1016/j.biortech.2014.03.113

Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotrophic growth and neutral lipid accumulation in terms of ammonium concentration in *Chlamydomonas reinhardtii*. *Bioresource Technology*, 119: 419-424, 2012. doi: 10.1016/j.biortech.2012.05.124

Tiwari ON, Devi WI, Silvia C, Devi AT, Oinam G, Singh OA, Singh KO, Indrama T, Sharma AS, Khangembam R, Shamjetshaban M, Miranda L, & Prasanna R. Modulation of phycobiliprotein production in *Nostoc muscorum* through culture manipulation. *Journal of Applied Biology & Biotechnology*, 3(04), 011-016, 2015. doi: 10.7324/JABB.2015.3403
Tóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Gombos ZJB. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1847(10), 1153-1165, 2015.

doi: 10.1016/j.bbabio.2015.05.020

Trejos VM, Alzate JF, Garcia MÁG. Descripción matemática y análisis de estabilidad de procesos fermentativos, *text*, 76 (158): 111-121, 2009.

Retrieved from https://www.redalyc.org/pdf/496/49612069012.pdf

Vanegas DM, Ramírez ME. Correlación del crecimiento de *Pseudomonas fluorescens* en la producción de polihidroxialcanoatos de cadena media (PHA_{MCL}) mediante modelos primarios de Gompertz, Logístico y Baranyi.*Información tecnológica*, 27 (2): 87-96, 2016.

doi: 10.4067/S0718-07642016000200011

Xiong S, Fan J, & Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. *Applied Microbiology and Biotechnology*, 86, 805-812, 2010.

doi: 10.1007/s00253-010-2470-1

Xu L, Yong H, Tu X, Wanga Q, & Fan J. Physiological and proteomic analysis of *Nostoc flagelliforme* in response to alkaline pH shift for polysaccharide accumulation. *Algal Research*, 39, 101444, 2019.

doi: 10.1016/j.algal.2019.101444

Yang YW, Yin YC, Li ZK, Huang D, Shang JL, Chen M, & Qiu BS. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium *Nostoc agelliforme* to desiccation. *Photosynthesis Research*, 140 (1), 103-113, 2019.

doi: 10.1007/s11120-019-00629-6

You Z, Xu H, Zhang S, Kim H, Chiang PC, Yun W, Zhang L, He M. Comparison of petroleum hydrocarbons degradation by *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*. *Applied Sciences*, 8: 2551, 2018.

doi: 10.3390/app8122551
Zhao X, Ma R, Liu X, Ho SH, Xie Y, & Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42 (3), 435-443, 2019.

doi: 10.1007/s00449-018-2047-4

Znad H, Al Ketife AM, & Judd S. Enhancement of CO₂ biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology, 1-7, 2018.

doi: 10.1080/09593330.2018.1437778

Zwietering MH, Jongenburger I, Rombouts FM, & Van’t Riet K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881, 1990.

doi: 0099-2240/90/061875-07$02.00/0

Modelamiento de los efectos de la longitud de onda de la luz sobre el crecimiento de Nostoc ellipsosporum

Resumen: Los modelos matemáticos proveen información sobre las dinámicas poblacionales bajo diferentes condiciones. En el presente estudio, se evaluaron cuatro modelos (Baranyi-Roberts, Gompertz Modificado, Logístico Modificado y Richards) y se emplearon para describir la cinética de crecimiento de Nostoc ellipsosporum con diferentes longitudes de onda de luz. N. ellipsosporum creció en medio líquido BG-11 por 9 días, usando un fotoperiodo de 12 horas y los siguientes tratamientos: luz blanca (400-800 nm), luz roja (650-800 nm), luz amarilla (550-580 nm) y luz azul (460-480 nm). Cada experimento se llevó a cabo por triplicado. La densidad óptica (OD) se midió en los días 1, 3, 5, 7 y 9 usando un espectrofotómetro a 650 nm. El máximo crecimiento celular se obtuvo con la longitud de onda de la luz blanca (OD_{650} : 0.090 ± 0.008), seguido de la luz amarilla (OD_{650} : 0.057 ± 0.004). Por el contrario, la luz azul mostró un marcado efecto inhibitorio en el crecimiento de N. ellipsosporum (OD_{650} : 0.009 ± 0.001). Los resultados revelaron que el modelo Baranyi-Roberts se ajustó mejor a los datos experimentales de crecimiento de N. ellipsosporum en los cuatro tratamientos. Los hallazgos de este estudio de modelación se pueden usar en diversas aplicaciones biotecnológicas que requieran la producción de N. ellipsosporum y sus bioproductos.

Palabras clave: cianobacterias; luz; modelo matemático; crecimiento microbiano.
Modelamento dos efeitos da longitude de onda da luz sobre o crescimento de *Nostoc ellipsosporum*

Resumo: Os modelos matemáticos dão informações sobre as dinâmicas populacionais sob diferentes condições. No presente estudo, avaliaram-se quatro modelos (Baranyi-Roberts, Gompertz Modificado, Logístico Modificado y Richards) e foram aplicados para descrever a cinética de crescimento de *Nostoc ellipsosporum* com diferentes longitudes de onda de luz. *N. ellipsosporum* cresceu em meio líquido BG-11 por 9 dias, usando um fotoperíodo de 12 horas e os seguintes tratamentos: luz branca (400-800 nm), luz vermelha (650-800 nm), luz amarela (550-580 nm) e luz azul (460-480 nm). Cada experimento se realizou por triplicado. A densidade óptica (OD) foi medida nos dias 1, 3, 5, 7 e 9, usando um espectrofotômetro a 650 nm. O máximo crescimento celular foi obtido sob luz branca (*OD*₆₅₀: 0.090 ± 0.008), seguido de luz amarela (*OD*₆₅₀: 0.057 ± 0.004). Ao contrário, a luz azul mostrou um marcado efeito de inibição no crescimento de *N. ellipsosporum* (*OD*₆₅₀: 0.009 ± 0.001). Os resultados revelaram que o modelo Baranyi-Roberts se ajustou melhor aos dados experimentais de crescimento de *N. ellipsosporum* nos quatro tratamentos. As descobertas de este estudo de modelação podem ser usadas em diversas aplicações biotecnológicas que requeram a produção de *N. ellipsosporum* e seus bioproductos.

Palavras-chave: cianobactérias; luz; modelo matemático; crescimento microbiano.
Martha Lucia Ortiz-Moreno

Was born in Villavicencio, she is a Biologist graduated with a master in Microbiology from Universidad Nacional de Colombia. She has a degree in University Teaching from Escuela Superior de Administración Pública, and a PhD in Ecology and Natural Resources from Universidad Federal de São Carlos (Brazil). She has several papers on applied microbiology.

Jaleydi Cárdenas-Poblador

Was born in Bogota, she is a Mathematician graduated with a master in Mathematical Science from Universidad Nacional de Colombia. Her studies focus on mathematical modeling for Biological and Environmental Sciences applications.

Julián Agredo

Was born in Cali, he is a Mathematician graduated from Universidad Nacional de Colombia, with a master degree in Mathematics from Universidad Católica de Chile and a doctorate in Sciences with a mention in mathematics from Universidad de Chile. His studies focus on Real and Complex Analysis, Probability, Stochastic processes, Stochastic analysis, mathematical physics and its applications.

Laura Vanessa Solarte-Murillo

She is a Biologist student from Universidad de los Llanos. She is a part of BIORINOQUIA investigation group from the same University, and has research experience in aquaculture biotechnology and genetics.