Critical Review

ACR Appropriateness Criteria® external beam radiation therapy treatment planning for clinically localized prostate cancer, part I of II

Expert Panel on Radiation Oncology-Prostate:
Nicholas G. Zaorsky MD a, Timothy N. Showalter MD MPH b,*
Gary A. Ezzell PhD c, Paul L. Nguyen MD d, Dean G. Assimos MD e,
Anthony V. D’Amico MD PhD f, Alexander R. Gottschalk MD PhD g,
Gary S. Gustafson MD h, Sameer R. Keole MD i, Stanley L. Liauw MD j,
Shane Lloyd MD k, Patrick W. McLaughlin MD l,
Benjamin Movsas MD m, Bradley R. Prestidge MD MS n,
Al V. Taira MD o, Neha Vapiwala MD p, Brian J. Davis MD PhD q

a Fox Chase Cancer Center, Philadelphia, Pennsylvania (research author)
b University of Virginia, Charlottesville, Virginia (principal author)
c Mayo Clinic, Phoenix, Arizona (research author, contributing)
d Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts (panel vice-chair)
e University of Alabama School of Medicine, Birmingham, Alabama (American Urological Association)
f Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts (American Society of Clinical Oncology)
g University of California San Francisco, San Francisco, California
h William Beaumont Hospital, Troy, Michigan
i Mayo Clinic, Scottsdale, Arizona
j The University of Chicago Medical Center, Chicago, Illinois
k Huntsman Cancer Hospital, Salt Lake City, Utah
l University of Michigan, Novi, Michigan
m Henry Ford Health System, Detroit, Michigan
n Bon Secours Cancer Institute, Norfolk, Virginia
o Mills Peninsula Hospital, San Mateo, California
p University of Pennsylvania, Philadelphia, Pennsylvania
q Mayo Clinic, Rochester, Minnesota (panel chair)

Received 11 August 2016; accepted 12 October 2016

The American College of Radiology seeks and encourages collaboration with other organizations on the development of the American College of Radiology Appropriateness Criteria through society representation on expert panels. Participation by representatives from collaborating societies on the expert panel does not necessarily imply individual or society endorsement of the final document.

Reprint requests to: publications@acr.org.
* Corresponding author. 1891 Preston White Drive, Reston, VA 20191
E-mail address: tnshowalter@gmail.com (T.N. Showalter)

http://dx.doi.org/10.1016/j.adro.2016.10.002
2452-1094/© 2017 The American College of Radiology. Published by Elsevier Inc. on behalf of the American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Summary of literature review

Introduction/background

Prostate cancer is the most common cancer among men in the United States, with an estimated 220,800 new diagnoses in 2015. External beam radiation therapy (EBRT) is the treatment of choice for many men with localized prostate cancer. It is generally accepted that EBRT is a first-line treatment option for localized prostate cancer, as are radical prostatectomy and brachytherapy. Advances in image-based EBRT treatment planning and localization have contributed to better targeting of the prostate and greater sparing of normal tissues, permitting dose escalation while maintaining safe doses to adjacent normal tissues. As shown in Appendix 1, the available published evidence suggests that advances in EBRT technologies have translated to improved clinical outcomes. This review complements other American College of Radiology Appropriateness Criteria on localized prostate cancer by focusing on the practical and technical elements of EBRT. This document provides guidance for EBRT treatment planning for localized, organ-confined prostate cancer; locally advanced node-negative disease; and postprostatectomy radiation therapy (RT). The first part of the review covers treatment planning: target volume definitions, patient setup, and dose constraints. The second part of the review covers treatment delivery: organ motion, target localization, image guidance, and RT delivery techniques; additionally, clinical variants are presented (see Variants 1-7).

Prostate cancer risk definitions

This document provides guidance for EBRT treatment planning for definitive primary therapy for localized prostate cancer, including low-risk, intermediate-risk, and high-risk organ-confined disease as well as for post-prostatectomy RT. Risk groups for localized prostate cancer are defined in this document per D’Amico et al and the National Comprehensive Cancer Network. The D’Amico criteria classify patients as follows: low risk, for clinical stage T1c-T2a tumor, Gleason score ≤6, and prostate-specific antigen (PSA) < 10 ng/mL; intermediate risk, for clinical stage T2b tumor, PSA 10 to 20 ng/mL, or Gleason score 7; and high risk, for clinical stage T2c tumor, PSA > 20 ng/mL, or Gleason score ≥8. The National Comprehensive Cancer Network risk-grouping system is similar to the D’Amico guidelines, with the exceptions of including T2c tumors in the intermediate-risk group and T3a tumors in the high-risk group.

RT fractionation definitions

This article relates mostly to men treated with dose-escalated conventionally fractionated EBRT (a single 1.8- to 2.0-Gy fraction, delivered in approximately 15 minutes per day, 5 days per week, for 8 to 9 weeks, to a total dose of 76 to 80 Gy), which is an established treatment modality for men in all disease risk groups. Notably, other fractionation techniques to treat prostate cancer patients exist. For example, moderately hypofractionated RT (HFRT, 2.1-3.5 Gy/fraction, for approximately 15 minutes per day, 5 days per week, for about 4 weeks, to a total dose of ~52 to 72 Gy) has been tested in phase 1-3 trials since the 1990s. Extremely fractionated RT, also termed stereotactic body RT (SBRT, the delivery of 3.5-15 Gy per fraction, in 5 fractions or less), is an emerging form of EBRT that to date has mostly been reserved for low-risk prostate cancer patients. HFRT and SBRT deliver a higher dose per fraction to the prostate; thus, these methods also require diligence in treatment planning. We outline special considerations for HFRT and SBRT in this article.

Definitions for target volumes and organs at risk

The outcomes and toxicities with different EBRT technologies and fractionation techniques are shown in Appendix 1. The definitions of target volumes and planning target volume margins for EBRT in published clinical protocols are shown in Appendix 2. Target volumes are described in this document according to the standard terms recommended in Report 83 of the International Commission on Radiation Units and Measurements for specifying dose prescription and are summarized as follows.

Gross tumor volume

The gross tumor volume (GTV) is the gross demonstrable extent and location of the malignant growth; it consists of the primary tumor, which for prostate cancer has historically been defined as the entire gland as well as any visualized extension into surrounding normal tissues, the regional lymph nodes (LNs), or distant metastases based on clinical data (eg, physical examination, anatomic imaging with computed tomography [CT] and magnetic resonance imaging [MRI], and functional and molecular imaging). The GTV is delineated during the RT-planning process before the start of EBRT.

Clinical target volume

The clinical target volume (CTV) encompasses the GTV as well as areas at risk for subclinical cancer involvement. The CTV may include a margin around the prostate GTV, and it may include adjacent regions at risk of having subclinical disease. For example, this may
include the seminal vesicles (SVs), an expansion for extraprostatic extension (EPE), or pelvic LNs.

In cases in which the disease is confined to the gland (clinical stages T1-2) but the risk of SV invasion exceeds 15%, 2 CTVs can be defined. The first should encompass the prostate and the SVs (ie, CTV1), and the second boost CTV is the prostate alone (ie, CTV2, which equals the GTV). In these cases, a radiation dose that controls subclinical disease is prescribed to the first target volume, and a higher dose is intended for the prostate itself. When there is evidence of EPE on physical examination or imaging modalities such as MRI (radiographic stage T3), the SVs could be included for the total radiation dose prescription.

As a general rule, the CTV should be influenced by potential EPE, as described in the following section regarding disease extension. With this in mind, the Genitourinary Section of the Radiation Oncology Group of the European Organisation for Research and Treatment of Cancer (EORTC) guidelines include recommendations for CTV definition according to risk group for prostate EBRT.\(^{32}\) The EORTC guidelines recommend that the CTV include a 5-mm expansion of the prostate to address EPE for patients with intermediate- and high-risk tumors and that the proximal 1 cm or 2 cm of the SVs be included for patients with intermediate- and high-risk tumors, respectively.\(^{32}\) The most recent Radiation Therapy Oncology Group (RTOG) protocol for high-risk prostate cancer (0924) recommends that the proximal 1 cm of the SVs be included in the boost CTV, but does not require a specific expansion to account for EPE.\(^{33}\) It is recognized that there may be some variation in clinical practice on this point, and CTV-to-planning target volume (PTV) expansion margins may also provide some coverage of potential EPE.

Planning target volume

The PTV encompasses the CTV plus an additional margin to account for patient movement, setup error, and organ movement.\(^{34}\) Each CTV should have a corresponding PTV design based upon consideration of the extent of immobilization and use of image guided RT (IGRT). For prostate cancer, the PTV is typically the CTV plus a 0.5- to 1.0-cm margin; the margin may be reduced posteriorly to minimize the volume of rectum exposed to higher radiation doses. Guidance for CTV-to-PTV expansion margins is provided in the following section.

Contouring organs at risk

RTOG provides recommendations for contouring normal tissue structures in the form of a contouring atlas on the RTOG Web site and published consensus guidelines.\(^ {35}\) Adherence to these guidelines is recommended to ensure that published evidence and trial protocol recommendations may be readily extrapolated to clinical decisions regarding EBRT treatment planning. Normal tissue structures for prostate EBRT treatment planning include the rectum, bladder, penile bulb, bowel bag, and proximal femurs. The rectum should be contoured from the lowest level of the ischial tuberosities up to the rectosigmoid junction, where the rectum loses its round shape on axial imaging. The entire rectum (as a cylinder), not just the anorectal wall, should be contoured. The penile bulb contour should encompass the portion of the bulbous spongiosum that is adjacent to the genitourinary diaphragm without extending the contour anteriorly into the penile shaft. The penile bulb may be visualized on CT and T2-weighted MRI scans. Proximal femurs should be contoured from the top of the femoral head inferiorly to the lowest level of the ischial tuberosities. The bowel bag may be defined by contouring the abdominal contents, excluding muscle and bones, and then subtracting any overlapping nongastrointestinal normal structures using the treatment-planning software.

Determining CTVs for prostate EBRT

EBRT planning is performed with volumetric imaging to visualize the target volumes and relevant pelvic anatomy and perform dose calculations in treatment planning. CT imaging is the most common modality for EBRT planning, but complementary imaging modalities may enhance delineation of CTVs.

Imaging modalities for prostate cancer

CT

CT simulation can help localize the urogenital diaphragm, which abuts the prostatic apex. Typically, the location of the apex can be resolved to 2 or 3 CT slices obtained at 3- to 5-mm intervals, and with an experienced radiation oncologist, the use of CT simulation alone may be adequate based upon this consideration.\(^ {36}\) Furthermore, interobserver variations can be reduced by learning to define the prostate on CT after studying the common sites of target definition errors using MRI prostate volumes defined by an expert radiologist.

MRI

Advantages. It has long been recognized that there is substantial interobserver variability in the definition of prostate EBRT target volumes on CT imaging.\(^ {37}\) Target definition remains 1 of the largest sources of uncertainty and error in prostate EBRT, particularly in the era of highly conformal EBRT planning and delivery.\(^ {38}\) Incorporating MRI in the planning process for prostate target volume delineation offers an advantage because it
has been shown to decrease contouring variability when compared with the use of CT imaging.39,40 MRI-defined prostate volumes are typically smaller than CT-defined volumes, particularly near the base and apex, and result in reduced EBRT doses to the rectum.41 Similarly, prostate volumes are approximately 30\% larger on CT imaging than ultrasound (US) imaging.42 MRI and US-based prostate contours show less variation than CT-based contouring, and these 2 modalities have the closest correspondence, suggesting that MRI and US may be preferred over CT for prostate EBRT target delineation, especially at the prostatic apex.

MRI may also allow better identification of structures adjacent to the prostate that are associated with erectile function.43 McLaughlin et al44 were able to spare the critical erectile structures more often with a T2-weighted MRI and MRI angiogram-based treatment plan than with a plan using conventional CT-based contouring. In a similar analysis, Steenbakkers et al45 reported improved sparing of the rectum and penile bulb with the use of MRI-based delineation of the prostate on 3-dimensional conformal RT (3D-CRT) treatment plans. At this time, it is unclear whether sparing erectile tissues leads to better sexual outcome or quality of life. It is also not established whether sparing of these tissues will compromise long-term tumor control.

Coregistration of MRI with CT may be more accurate in delineating the prostate and SVs than use of CT alone.46 CT overestimates the size of the gland approximately by 30\% to 50\%; additionally, there is a systematic discrepancy in the posterior apical prostate border, which observers define as being \(~3.6 \text{ mm}\) more posterior on MRI than on CT.47

\textbf{Disadvantages}. The disadvantages of MRI-based prostate localization are its limited availability, CT/MRI fusion inaccuracies, treatment-planning spatial warping, and a lack of radiographic density information for calculating radiation doses and reconstructing digital radiographs for treatment verification. CT scans permit standard dose calculations during RT planning, so the combination of CT and MRI may be advantageous in this regard. Several centers are exploring methods to reduce the dosimetric and positional uncertainties associated with MRI simulation.48,49 At this time, it is reasonable to use MRI to facilitate the definition of target volumes, especially if CT/MRI fusion capabilities or an MRI simulator are available. Some investigators have explored EBRT treatment planning using MRI alone, suggesting that it is feasible.50

\textbf{Technical aspects}. Traditionally, MRI for prostate cancer has been performed with a 1.5T scanner and endorectal coil, which has a greater accuracy than 0.3T or 0.5T scanners. With the introduction of higher field strength, such as 3.0T, and thus higher spatial resolution, endorectal coils may not be essential to achieve high-quality magnetic resonance-based imaging.51 Consequently, MRI may become more readily used; however, the field strength of MRI is only 1 factor that may influence prostate cancer imaging.52 Although a 3.0T MRI scan shows a high accuracy for the staging of clinically localized prostate cancer, it is currently unknown whether the improved spatial resolution and signal-to-noise ratio of 3.0T scanners improve diagnostic performance over 1.5T scanners.53

Magnetic resonance spectroscopy, dynamic contrast-enhanced MRI, and diffusion weighted imaging MRI are novel magnetic resonance-based imaging techniques under investigation. Radionuclide-based techniques with small molecules (eg, 18F-FDG, 11C-choline, 18F-choline, 11C-acetate, 18F-acetate, 18F-NaF, 18F-DHT), amino acids (eg, 11C-methionine), and protein-specific molecules are other forms of imaging that are also largely experimental. These techniques may prove useful for target delineation in the future. Currently, they are not widely available in routine clinical practice; thus, we have not included them in this manuscript.

\textbf{Uncertainty regarding disease extension}

\textbf{Extraprostatic extension}

The radial distance of EPE (EPEr) is the perpendicular distance away from the edge of a prostate where cancer may be present. An additional volumetric expansion around the prostate may be necessary to account for EPEr. Chao et al54 performed a detailed pathologic analysis of 371 prostatectomy specimens to determine CTV margins. EPE was present in one-third of patients. The median EPE distance was 2.4 mm (range, 0.05-7.0 mm). The 90th percentile distance was 5.0 mm. Of the 121 cases with EPE, 55\% had a distance \(\geq 2 \text{ mm}\), 19\% \(\geq 4 \text{ mm}\), and 6\% \(\geq 6 \text{ mm}\). EPE occurred posterolaterally along the neurovascular bundle in all cases. The pretreatment PSA, biopsy Gleason, pathologic Gleason, clinical stage, bilateral involvement, positive margins, percentage of gland involved, and maximal tumor dimension were associated with presence of EPE.

Similarly, Zlotta et al55 concluded that PSA \(\geq 10 \text{ ng/mL}\) and biopsy Gleason score \(\geq 7\), or \(>50\%\) of prostate biopsy cores being positive, argued in favor of removing the SVs with surgery. On the other hand, a review of other studies found that the distance of EPEr for the vast majority of patients ranges from 0.5 to 2.4 mm58; thus, EPEr should be readily contained within a 5-mm prostate GTV-to-CTV expansion for most patients; for high-risk patients, a posterolateral CTV expansion of up to 7 mm may be considered.
SV coverage

In selected patients, it is necessary to include the SVs in the CTV, which are typically well-visualized on a cross-section CT scan of the pelvis. Nomograms may be used to determine the probability of EPE, SV, or pelvic LN involvement using clinical stage, pretreatment PSA, and Gleason score, and SV coverage can be based upon predicted probability of SV involvement.

Kestin et al published an analysis of 344 radical prostatectomy specimens in which they measured the length of SVs, length of involvement by carcinoma, and percentage of SV involved. Of the 81 patients with SV involvement, the median length of tumor presence was 1 cm. In the entire population, only 7% of patients had SV involvement beyond 1 cm. The authors recommend that the proximal 2.0 to 2.5 cm (approximately 60%) of the SVs be included in the CTV for intermediate- and high-risk patients (ie, PSA ≥10, Gleason ≥7, ≥T2b). Zlotta et al concluded that PSA ≥10 ng/mL and biopsy Gleason score ≥7, or >50% of prostate biopsy cores being positive, argued in favor of removing the SVs with surgery.

LNs. Lawton et al conducted a study of CTV definition of pelvic LNs by radiation oncologists with expertise in prostate cancer and observed significant variation among physicians in the CTV structures contoured. To provide guidance for the safe and effective use of intensity modulated RT (IMRT) for pelvic LN irradiation, RTOG developed a contouring atlas for pelvic LN irradiation for prostate cancer. When irradiating the pelvic LNs for prostate cancer, the RTOG consensus guidelines recommend including the distal common iliac, presacral, external iliac, internal iliac, and obturator LNs. Pelvic LN CTVs include the vessels with a 7-mm radial margin, anatomically constrained to exclude bowel, bladder, bone, and muscle. Pelvic LN CTVs begin superiorly at the L5-S1 interspace and end inferiorly at the superior border of the pubic bone. These RTOG guidelines are recommended for prostate EBRT treatment planning when pelvic LN irradiation will be delivered as part of definitive therapy.

Postoperative prostate bed EBRT. Several sets of consensus guidelines have been developed to guide prostate bed target volume delineation for adjuvant and salvage RT, relying primarily upon evidence regarding locations of clinical recurrences, anatomy, and expert opinion. The vesicourethral anastomosis, bladder neck, retrovesical region, and SV stumps have been shown in imaging and biopsy series to be at highest risk of clinical recurrence following prostatectomy, and the consensus guidelines aim to encompass these regions. The RTOG guidelines provide detailed guidance on CTV definition, including variation based upon pathological information, and are supplemented by an atlas available on the RTOG Web site (http://www.rtog.org/). The RTOG-recommended prostate fossa CTV (PF-CTV) spans a cranial border at the caudal vas deferens remnant cranially down to a caudal border that is 8 to 12 mm inferior to the vesicourethral anastomosis. The PF-CTV extends anteriorly to the posterior aspect of the pubis below the cranial border of the pubic symphysis and encompasses the posterior 1 to 2 cm of the bladder wall above the pubic symphysis. The lateral border of the PF-CTV is at the sacrorectogenitopubic fascia superiorly and the levator ani muscles inferiorly. The posterior border of the PF-CTV extends to the mesorectal fascia superiorly and the rectum inferiorly. If SV involvement is evident, the SV remnants should also be included in the PF-CTV.

Although there is some evidence that pelvic nodal irradiation may improve disease control for patients with high-risk prostate cancer after prostatectomy, the addition of pelvic nodal irradiation may increase the risk of treatment-related toxicities compared with treating the prostate bed alone. Whether to include pelvic LNs in postprostatectomy RT is an unresolved question and is being evaluated by the RTOG cooperative group in a phase 3 randomized controlled trial (RTOG 0534).

Some limitations in PF-CTV delineation should be noted. A comparative study of the 4 consensus guidelines demonstrated significant variations among prostate bed target volumes defined according to these criteria, suggesting a lack of consistency among the guidelines. Similarly, Ost et al have shown significant interobserver variability for application of EORTC contouring guidelines for defining the prostate bed target volume using CT alone. Alternative imaging with MRI has been suggested to help refine PF-CTV contouring. The use of postoperative MRI for prostate bed CTV delineation may reduce the size of the CTV and allow for more precise determination of the CTV. Interestingly, a recent study by Croke et al compared the prostate on preoperative MRI with prostate bed CTVs as defined according to consensus guidelines and demonstrated that postoperative CTV guidelines do not adequately cover the at-risk areas identified by preoperative MRI scans. These studies together suggest that guidelines for PF-CTV delineation might be improved by incorporating MRI, a topic worthy of additional study but beyond the scope of the current document.

Techniques of patient immobilization and setup

Before delivering EBRT for clinically localized prostate cancer, a patient must first be optimally positioned and immobilized to maximize accuracy and minimize the movement of the target organ (ie, the prostate). Proper
positioning and immobilization allow target volumes to be treated with smaller margins for setup error.

Patient positioning: prone versus supine

Patient position during simulation treatment has been extensively studied.⁷⁶-⁸⁰ Published reports have not demonstrated a clear benefit to using the prone position compared with the supine position.⁷⁸,⁷⁹ In the prone position, there may be greater rectal sparing, particularly in patients with large SVs. However, a larger percentage of the bladder may be included, which may increase the probability of urinary complications. There may also be greater setup error resulting from patient discomfort.⁷⁹ Furthermore, the prone position is more likely to be influenced by normal respiration,⁸¹,⁸² perhaps because of the increased intra-abdominal pressure associated with breathing in a prone position. When treatment is delivered in the prone position, the use of rigid cast immobilization may improve the accuracy of treatment delivery.⁸³ On the other hand, rigid immobilization and abdominal compression do not appear to reduce prostate motion in the supine position.⁸⁴ Bayley et al⁸⁵ conducted a prospective randomized trial of the supine versus prone position in patients undergoing CRT. Twenty-eight patients were randomized to commence RT in the prone or supine position and then change to the alternate position midway through their treatment course. After placement of fiducial markers in the prostate for daily prostate localization, the patients underwent CT simulation and treatment planning in both positions. Observed motion was less in the supine position than the prone position. Moreover, pretreatment positioning corrections were required more often for the prone position. A dose-volume histogram analysis revealed more bladder wall, rectal wall, and small bowel in the high dose volumes when patients were in the prone position than in the supine position. Finally, patients were more comfortable in the supine position than the prone position; 7 patients who started in the supine position refused to be treated in the prone position because of discomfort.

Shah et al⁸⁶ evaluated the differences in target motion during prostate EBRT in the prone and supine positions using electromagnetic transponders. Twenty patients received EBRT in the supine position; for each patient, 10 treatment fractions were followed by a session where the patient was repositioned prone. In the prone position, respiratory motion caused the prostate to be displaced >3 and >5 mm for 38% and 10% of the total tracking time, respectively. In the supine position, the prostate was displaced >3 and >5 mm for 13% and 3%, respectively; therefore, the supine position was associated with less movement. These findings are consistent with those of Wilder et al,⁷⁹ who observed a similar magnitude of intrafraction prostate motion in the prone and supine positions and improved comfort in the supine position in their prospective evaluation of patients treated with electronic portal images obtained before and after EBRT. In summary, based upon the current evidence, the prone position has not been demonstrated to improve treatment accuracy beyond that achieved with the supine position.

Patient instructions and preparation

Regardless of the type of immobilization device used or the treatment position chosen, it is important that institutional policies are clear and consistent for patient setup for prostate EBRT and that the patient receive clear instructions regarding treatment preparation. In addition, the importance of patient education about bladder filling, rectal emptying, and adherence to recommended diet has been recognized.⁸⁷-⁸⁹ Bladder filling instructions, such as drinking a prescribed volume of water at a specific time interval before EBRT, do not result in consistent bladder volumes.⁹⁰ It is not clear that variations in bladder filling status influence target position⁹¹ or delivered doses⁹² in a significant way during prostate EBRT. On the other hand, variations in rectal filling can result in interfraction prostate motion that affects both dosimetric and clinical outcomes.⁹²,⁹³ An antiflatulent diet and milk of magnesia laxative have been shown to reduce setup error between EBRT fractions⁹³-⁹⁵ but it has not been shown to reduce intrafraction prostate motion.⁹⁵ Although institutional guidelines may vary, it is reasonable to instruct patients to strive for consistency with a comfortably full bladder, an empty rectum, and an antiflatulent diet for both simulation and treatment. Given the availability of online daily image guidance strategies for prostate EBRT, which minimize geographic misses of the prostate target volume,⁹⁶ preparation guidelines should not create excessive discomfort or inconvenience for patients.⁹⁷ Finally, the use of contrast (intravenous, intravesicular/ureteral, rectal) is generally not necessary for routine care.

External immobilization methods

Immobilization devices are widely used to allow the use of smaller margins, thus reducing the dose to the surrounding normal tissues. Various forms of immobilization devices exist, including rigid casts⁸³ and vacuum-lock systems.⁸⁴ The average deviation of the isocenter position from the time of simulation to treatment has been shown to be smaller when patients are immobilized as compared with a nonimmobilized control group. Kneebone et al⁸³ reported results of a prospective randomized study that demonstrated that the average simulation-to-treatment deviation of the isocenter position was 8.5 mm in the control group versus 6.2 mm in the immobilized group (⁹ < .001). The use of a cast immobilization
device reduced the incidence of major isocenter deviations (>10 mm). The average deviations in the anteroposterior, right-left, and superoinferior directions were reduced to 2.9 mm, 2.1 mm, and 3.9 mm, respectively, among patients treated with immobilization.98

A simple device that allows a comfortable and reproducible setup can reduce large errors. The commonly used immobilization devices are constructed of a melted plastic mold material, a solidified foam mold, or a reusable inflatable mold device. In the era of image guidance, the choice of which immobilization device to use should take into consideration other relevant technical considerations, including the anticipated total dose and dose-fractionation schedule, treatment time required per fraction, and use of image guidance to target interfraction and/or intrafraction target volume motion. For example, alternative options such as leg and ankle supports that may be more comfortable to the patient have been suggested as reasonable immobilization strategies when positioning is later confirmed by image guidance. A range of immobilization options may be reasonable for use in prostate EBRT, and the specific choices may vary based upon other clinical factors.

Internal organ immobilization

Endorectal balloons can reduce prostate motion by stabilizing the rectum, act as an internal immobilization device, and displace the posterior rectal wall away from the high-dose region.98-102 When used for prostate EBRT, endorectal balloons are inserted into the rectum for treatment planning and each day before treatment delivery and typically filled with 40 mL or more of air (for photon-based therapy) or water (for proton beam therapy).99 The introduction of an air cavity into an endorectal balloon during prostate EBRT may reduce dose to the anterior rectal wall through electronic disequilibrium at the tissue-air interface.99 Endorectal balloons are generally well-tolerated by patients and have been shown to reduce radiation doses delivered to the anorectal wall during prostate EBRT.99 However, endorectal balloons also have disadvantages: (1) the prostate is deformed by introduction of the balloon; (2) the anterior rectal wall is pushed closer to the prostate; and (3) patient compliance poses barriers to widespread use of balloons.103

Dosimetric comparisons have demonstrated that endorectal balloons reduce the volume of rectum exposed to high RT doses, but data regarding impact upon clinical outcomes are relatively scarce.99 Wachter et al104 demonstrated in 10 patients that the dose to the posterior wall of the rectum could be significantly reduced with the use of an endorectal balloon during the prostate boost. The advantage of a rectal balloon was lost if the SVs were treated. Patel et al105 demonstrated significant dosimetric sparing of the rectum with 3D-CRT or IMRT when a rectal balloon was used during an entire course of RT in 5 patients. Patients tolerated daily insertion of the balloon exceptionally well.

Bastasch et al103 evaluated the tolerance of endorectal balloons in a cohort of 396 patients who received prostate IMRT. The majority of patients (99.2%) tolerated endorectal balloon immobilization with 100 mL of air. Topical anal medications were prescribed for 11.6% of patients during the treatment course. Van Lin et al101 compared endoscopic examinations of patients treated with and without endorectal balloons and found that using endorectal balloons was associated with fewer observed telangiectasias, which is indicative of reduced rectal mucosal wall injury with endorectal balloons. More clinical data are needed to evaluate whether endorectal balloons lead to better clinical outcomes for patients who receive prostate EBRT.

Finally, endorectal balloons may be useful when delivering high doses per fraction. Timmerman et al required endorectal balloons in their phase 1 and 2 trials of prostate SBRT.106,107

Spacers

The injection of foreign material into the plane between the rectum and prostate has been investigated as a strategy to reduce rectal toxicity from prostate EBRT by reducing the radiation exposure of the rectum, with preclinical evidence suggesting that prostate—rectum spacers can provide for reduced rectal toxicity and potential for EBRT dose intensification.108 Clinical studies of injectable hyaluronic acid,109 a polyethylene glycol-based hydrogel,110-112 human collagen,113 and an implantable, biodegradable balloon114,115 to separate the prostate from the rectum during prostate EBRT have been reported. Injection of these spacer materials between the rectum and prostate gland has been shown to be safe and to reduce exposure of the rectum to conventionally fractionated IMRT,111-113,115,116 hypofractionated IMRT,109 and SBRT.117 Although some early evidence suggests lower-than-expected rates of acute gastrointestinal side effects with the use of spacer materials during prostate EBRT,110 further research is needed before this technique can be recommended as a standard component of prostate EBRT, particularly considering potential risks of the implantation. This is a promising area for research, and future clinical trials are encouraged. Notably, however, the use of spacers in prostate cancer EBRT is not routine.

Special considerations for radiation planning

Large prostate size

Special situations may arise in clinical practice, which presents special challenges to the radiation oncologist.
Very large prostate gland size may be a challenge for EBRT planning, because larger PTVs make it more challenging to meet planning objectives for bladder and rectum.115 Short-term androgen deprivation therapy (ADT) may downsize large prostate glands before brachytherapy to mitigate concerns regarding pubic arch interference and toxicity.119,120 Likewise, Zelefsky et al121 reported on the benefit of neoadjuvant ADT in reducing dose to the rectum and bladder in their early experience with 3D-CRT. However, neoadjuvant ADT is usually not necessary or recommended for downsizing in routine clinical practice in the present era of IMRT and IGRT, and it may be appropriate only in highly selected situations.122

If neoadjuvant ADT is used, special attention should be given to timing of simulation for treatment planning because the prostate gland volume changes significantly during the first 2 months after starting ADT.123,124

Hip prostheses

Hip prostheses present a well-recognized challenge for prostate EBRT because these create CT imaging artifacts that can obscure pelvic anatomy and impair the ability of the treatment-planning system to determine the electron densities for dose modeling.124-126 Although challenging, IMRT planning is feasible in a patient with bilateral hip prostheses,127 and class solutions have been proposed.128,129 Megavoltage CT imaging, if available, may provide better imaging of pelvic anatomy and may be useful as a tool for electron density calibration during EBRT planning.130,131 There is some limited evidence that MRI scanning may also be helpful for target delineation for patients with bilateral hip prostheses.132,133

EBRT planning requires careful collaboration among radiation oncologists, physicists, and dosimetrists and should include recognition of the uncertainty in target volume definition and dose calculations. Hip implants have minimal effect on most IGRT with US134 or radio-frequency transponders.135 Recommendations, including those from a 2003 American Association of Physicists in Medicine task group report,136 are that beam arrangements avoid the prosthesis,124,128,129 use more arcs,135 that inhomogeneity corrections be turned off during treatment planning, that dose perturbations be estimated, and that exit doses be measured during EBRT delivery. Additionally, there are special considerations for helical tomotherapy138 and proton therapy.139-141

Obesity

Obese patients may present a challenge for highly conformal EBRT because there may be day-to-day variations in external body contour dependent upon movement of a pannus. Obese patients tend to have larger interfractional shifts because of setup errors,142,143 and anatomic variations in obese patients may lead to significant variations in delivered dose.144 Obese patients also have been reported to have higher rates of prostate cancer recurrence after EBRT.145,146 There is no direct evidence regarding the effectiveness of specific immobilization or IGRT techniques in obese patients. Special attention should be given to the accuracy of patient positioning and daily target localization. Volumetric images obtained during treatment for image guidance, if available, should be reviewed for anatomical variation during the course of EBRT.

When anticoagulation needs present a challenge for fiducial marker insertion, it may be reasonable to forgo the implantation of markers when online volumetric imaging is available. Moseley et al147 compared cone beam CT (CBCT) with and without implanted gold fiducial markers and found that cone beam CT without fiducial markers provides a reasonably precise method of IGRT for prostate EBRT.

Dose constraints for target volumes and organs at risk

Target volumes

Evaluation of target volume coverage in prostate EBRT planning focuses on percentage of the target volume covered by the prescription dose, as well as maximum and minimum doses. As an example, the RTOG 0924 trial specifies that 3D-CRT or IMRT doses be normalized so that exactly 98% of the PTV receive the prescription; the maximum allowable dose to 0.03 mL or more of the PTV is 107%, and the minimum allowable dose to 0.03 mL or more is 95%.18 Similarly, for SBRT and HFRT, the dose is typically prescribed to cover at least 95% of the PTV.107 Martin et al148 have published a clinician’s guide to prostate IMRT plan assessment, which provides an overview of EBRT treatment planning and additional recommendations for plan review, including the objective of a conformity index of 1.1 and 99% coverage of the CTV by the 100% isodose line. Target volume constraints from selected recent or ongoing RTOG trials (including 0924,149 0534,71 0415,149 0938,150 9406,32 012629) are displayed in Appendix 3.

PTV evaluation generally applies to whole-gland volumes, without specific parameters regarding GTV dose. Although there have been a number of studies boosting dominant prostate tumor nodules, there is no clear evidence or consensus around such an approach and it remains investigational at this time.151

Organs at risk

Safe delivery of EBRT requires care and attention to doses received by adjacent organs at risk, and this is particularly important for dose-escalated prostate EBRT.
Emami et al. provided the first comprehensive set of dose-volume constraints for organs at risk in 1991. An updated set of dose-volume parameters was provided in 2010 through the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) program. The QUANTEC review of rectal dose-volume effects suggested the following constraints: V50 Gy <50%, V60 Gy <35%, V65 Gy <25%, V70 Gy <20%, and V75 Gy <15%. Additionally, a V70 Gy <10%-15% should be considered as a strict cutoff. The QUANTEC report for bladder recommended the dose limits used for the conventional-fractionation arm of RTOG 0415 (shown in Appendix 3). For the penile bulb, the QUANTEC report recommends keeping the mean dose to 95% of the penile bulb <50 Gy as well as limiting the D70 and D90 to 70 Gy and 50 Gy, respectively.

QUANTEC recommendations apply primarily to conventionally fractionated EBRT, and different dose-volume objectives must be considered for hypofractionated treatments, with an effort toward considering the biological equivalent dose for late normal tissue toxicity for the hypofractionation schedule. Dose-volume constraints from the moderate-hypofractionation (70 Gy in 28 fractions) arm of RTOG 0415 are similar to the schedule reported by Kupelian et al. are shown in Appendix 3. For the randomized trial of 70.2 Gy in 26 fractions versus 76 Gy in 38 fractions reported by Pollack et al., the dose constraints used for the hypofractionated arm include rectum, V50 Gy ≤17% and V31 Gy ≤35%; and bladder, V50 Gy ≤25% and V31 Gy ≤50%. Dose-volume constraints for prostate SBRT are shown in Appendix 3, taken from RTOG 0938.

Although dose-volume considerations are necessary, it is important to remember that clinical factors are also associated with risk of RT-related complications, including comorbidities such as congestive heart failure or history of myocardial infarction, diabetes mellitus, use of anti-coagulation, prior smoking, prior transurethral resection of the prostate, inflammatory bowel disease, and hemorrhoids, as well as tumor size and advanced age. Clinical judgment should be used for patients with significant medical comorbidities, for whom consideration of more stringent dose-volume constraints may be prudent.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5-29.
2. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28:1117-1123.
3. Aizer AA, Yu JB, Colberg JW, McKeon AM, Decker RH, Peschel RE. Radical prostatectomy vs. intensity-modulated radiation therapy in the management of localized prostate adenocarcinoma. Radiother Oncol. 2009;93:185-191.
4. Klein EA, Ciezki J, Kupelian PA, Mahadevan A. Outcomes for intermediate risk prostate cancer: Are there advantages for surgery, external radiation, or brachytherapy? Urol Oncol. 2009;27:67-71.
5. Kupelian PA, Potters L, Khuntia D, et al. Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy ≥ or =72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys. 2004;58:25-33.
6. Mohler JL, Kantoff PW, Armstrong AJ, et al. Prostate cancer, version 2.2014. J Natl Compr Cancer Netw. 2014;12:686-718.
7. Gustafson GS, Nguyen PL, Assimos DG, et al. ACR appropriateness Criteria(R) Postradical prostatectomy irradiation in prostate cancer. Oncology (Williston Park). 2014;48:1125-1130, 1132-1136.
8. Nguyen PL, Aizer A, Assimos DG, et al. ACR Appropriateness Criteria(R) Definitive External-Beam Irradiation in stage T1 and T2 prostate cancer. Am J Clin Oncol. 2014;37:278-288.
9. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969-974.
10. Zaorsky NG, Ohri N, Showalter TN, Dicker AP, Den RB. Systematic review of hypofractionated radiation therapy for prostate cancer. Cancer Treat Rev. 2013;39:728-736.
11. Zaorsky NG, Studenski MT, Dicker AP, Gomella L, Den RB. Stereotactic body radiation therapy for prostate cancer: Is the technology ready to be the standard of care? Cancer Treat Rev. 2013;39:212-218.
12. Perez CA, Michalski JM, Mansur D, Lockett MA. Three-dimensional conformal therapy versus standard radiotherapy in localized carcinoma of prostate: An update. Clin Prostate Cancer. 2002;1:97-104.
13. Kuban DA, Levy LB, Cheung MR, et al. Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys. 2011;79:1310-1317.
14. Kuban DA, Tucker SL, Dong L, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2006;70:67-74.
15. Michalski J, Winter K, Raghavan M, et al. Clinical outcome of patients treated with 3D conformal radiation therapy (3D-CRT) for prostate cancer on RTOG 9406. Int J Radiat Oncol Biol Phys. 2012;83:e363-e370.
16. Michalski JM, Bae K, Roach M, et al. Long-term toxicity following 3D conformal radiation therapy for prostate cancer from the RTOG 9406 phase I/II dose escalation study. Int J Radiat Oncol Biol Phys. 2010;76:1310-1317.
17. Zelefsky MJ, Fuku S, Happensret L, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55:241-249.
18. Pollack A, Walker G, Horwitz EM, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860-3868.
19. Sheets NC, Goldin GH, Meyers AM, et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA. 2012;307:1611-1620.
20. Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125-129.
21. Katz AJ, Santoro M, Ashley R, Diblasio F, Witten M. Stereotactic body radiotherapy as boost for organ-confined prostate cancer. Technol Cancer Res Treat. 2010;9:575-582.
22. Katz AJ, Santoro M, Diblasio F, Ashley R. Stereotactic body radiation therapy for low, intermediate, and high-risk prostate cancer: Disease control and quality of life. Int J Radiat Oncol Biol Phys. 2011;81:S100.
23. Katz AJ, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate cancer, a 7-year study. Front Oncol. 2014;4:301.

24. Zietman AL, Bae K, Slater JD, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: Long-term results from Proton Radiation Oncology Group/American College of Radiology 95-09. J Clin Oncol. 2010;28:1106-1111.

25. Beckendorf V, Guerif S, Le Prise E, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80:1056-1063.

26. Al-Mamgani A, van Putten WL, Heemsbergen WD, et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;72:980-988.

27. Deaenzaley DP, Sydes MR, Graham JD, et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: First results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007;8:475-487.

28. Seddon B, Bidmead M, Wilson J, Khoo V, Deaenzaley D. Target volume definition in conformal radiotherapy for prostate cancer: Quality assurance in the MRC RT-01 trial. Radiother Oncol. 2000;56:73-83.

29. Michalski J. RTOG 0126: A phase III randomized study of high dose 3DCRT/IMRT versus standard dose 3DCRT/IMRT in patients treated for localized prostate cancer. 2014. Available at: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?studyid=0126.

30. Roach M. RTOG 0924: Androgen deprivation therapy and high dose radiotherapy with or without whole-pelvis radiotherapy in unfavorable intermediate or favorable high risk prostate cancer: A phase III randomized trial. 2011. Available at: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?studyid=0924.

31. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report No. 83). Cancer Radiother. 2011;15:555-559.

32. Boehmer D, Maingon P, Poortmans P, et al. Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol. 2006;79:259-269.

33. Cox J. RTOG 9406: A phase III dose escalation study using three dimensional conformal radiation therapy for adenocarcinoma of the Prostate. 2008. Available at: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?studyid=9406. Accessed April 22, 2015.

34. Litzenberg DW, Balter JM, Hadley SW, et al. Intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:548-553.

35. Gay HA, Barthold HJ, O’Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: A Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353-e362.

36. McLaughlin PW, Evans C, Feng M, Narayana V. Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys. 2010;76:369-378.

37. Cazzaniga LF, Marinoni MA, Bossi A, et al. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiat Oncol. 1998;47:293-296.

38. Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol. 2005;15:136-145.

39. Debois M, Oyen R, Maes F, et al. The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys. 1999;45:857-865.

40. Usmani N, Sloboda R, Kamal W, et al. Can images obtained with high field strength magnetic resonance imaging reduce contouring variability of the prostate? Int J Radiat Oncol Biol Phys. 2011;80:728-734.

41. Rasch C, Barilott I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: A multi-observer study. Int J Radiat Oncol Biol Phys. 1999;45:57-66.

42. Kalkner KM, Kubicek G, Nilsson J, Lundell M, Levitt S, Nilsson S. Prostate volume determination: Differential volume measurements comparing CT and TRUS. Radiat Oncol. 2006;81:179-183.

43. Smith WL, Lewis C, Bauman G, et al. Prostate volume contouring: A 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys. 2007;67:1238-1247.

44. McLaughlin PW, Troyer S, Berri S, et al. Functional anatomy of the prostate: Implications for treatment planning. Int J Radiat Oncol Biol Phys. 2005;63:479-491.

45. McLaughlin PW, Narayana V, Meirovitz A, et al. Vessel-sparing prostate radiotherapy: Dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys. 2005;61:20-31.

46. Steenbakkers RJ, Deurloo KE, Nowak PJ, Lebesque JV, van Herk M, Rasch CR. Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2003;57:1269-1279.

47. Villes GM, Van Vaerenbergh K, Vakaet L, et al. Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol. 2005;181:424-430.

48. Parker CC, Damyanovich A, Haycoks T, Haider M, Bayley A, Catton CN. Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration. Radiother Oncol. 2003;66:217-224.

49. Chen L, Price RA Jr, Wang L, et al. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys. 2004;60:636-647.

50. Petersch B, Bogner J, Fransson A, Lorant T, Potter R. Effects of geometric distortion in 0.2T MRI on radiotherapy treatment planning of prostate cancer. Radiol Oncol. 2004;71:55-64.

51. Lee YK, Bollet M, Charles-Edwards G, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiol Oncol. 2003;66:203-216.

52. Sciarr A, Baranska J, Bjartell A, et al. Advances in magnetic resonance imaging: How they are changing the management of prostate cancer. Eur Urol. 2011;59:962-977.

53. Sciarr A, Panebianco V, Saliccia S, et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol. 2008;54:589-600.

54. Turkbey B, Choyke PL. Multiparametric MRI and prostate cancer diagnosis and risk stratification. Curr Opin Urol. 2012;22:310-315.

55. Seitz M, Shukla-Dave A, Bjartell A, et al. Functional magnetic resonance imaging in prostate cancer. Eur Urol. 2009;55:801-814.

56. Chao KK, Goldstein NS, Yan D, et al. Clinicopathologic analysis of extracapsular extension in prostate cancer: Should the clinical target volume be expanded posterolaterally to account for microscopic extension? Int J Radiat Oncol Biol Phys. 2006;65:1009-1007.

57. Zlotta AR, Roumeguere T, Ravery V, et al. Is seminal vesicle ablation mandatory for all patients undergoing radical prostatectomy? A multivariate analysis on 1283 patients. Eur Urol. 2004;46:42-49.

58. Schwartz DJ, Sengupta S, Hillman DW, et al. Prediction of radial distance of extraprostatic extension from pretherapy factors. Int J Radiat Oncol Biol Phys. 2007;69:411-418.

59. Eilber FB, Feng Z, Lin BM, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111:22-29.

60. Kestin L, Goldstein N, Vicini F, Yan D, Korman H, Martinez A. Treatment of prostate cancer with radiotherapy: Should the entire seminal vesicles be included in the clinical target volume? Int J Radiat Oncol Biol Phys. 2002;54:686-697.
61. Lawton CA, Michalski J, El-Naqa I, et al. Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. *Int J Radiat Oncol Biol Phys*. 2009;74:377-382.

62. Lawton CA, Michalski J, El-Naqa I, et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. *Int J Radiat Oncol Biol Phys*. 2009;74:383-387.

63. Sidhom MA, Kneebone AB, Lehman M, et al. Post-prostatectomy radiation therapy: Consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group. *Radiother Oncol*. 2008;88:10-19.

64. Poortmans P, Bossi A, Vanpepukte K, et al. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. *Radiother Oncol*. 2007;84:121-127.

65. Wiltshire KL, Brock KK, Haider MA, et al. Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. *Int J Radiat Oncol Biol Phys*. 2007;69:1090-1099.

66. Michalski JM, Lawton C, El Naqa I, et al. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. *Int J Radiat Oncol Biol Phys*. 2010;76:361-368.

67. Wang J, Kudchadker R, Choi S, et al. Local recurrence map to guide target volume delineation after radical prostatectomy. *Pract Radiat Oncol*. 2014;4:239.e244.

68. Kim BS, Lashkari A, Vongtama R, Lee SP, Parker RG. Effect of pelvic lymph node irradiation in salvage therapy for patients with prostate cancer with a biochemical relapse following radical prostatectomy. *Clin Prostate Cancer*. 2004;3:93-97.

69. Spiotto MT, Hancock SL, King CR. Radiotherapy after prostatectomy: Improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients. *Int J Radiat Oncol Biol Phys*. 2007;69:54-61.

70. Deville C, Vapiwala N, Hwang WT, et al. Comparative toxicity and dosimetric profile of whole-pelvis versus prostate bed-only intensity-modulated radiation therapy after prostatectomy. *Int J Radiat Oncol Biol Phys*. 2012;82:1389-1395.

71. Pollack A. *RTOG 0534: A phase III Trial of Short Term Androgen Deprivation With Pelvic Lymph Node or Prostate Bed Only Radiotherapy (SPPORT) in prostate cancer patients with a rising PSA after radical prostatectomy*. 2014. Available at: https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?studyid=0534. Accessed September 2015.

72. Malone S, Croke J, Roustan-Delator N, et al. Postoperative radiotherapy for prostate cancer: A comparison of four consensus guidelines and dosimetric evaluation of 3D-CRT versus tomotherapy IMRT. *Int J Radiat Oncol Biol Phys*. 2012;84:725-732.

73. Ost P, De Meerleer G, Vercauteren T, et al. Delineation of the postprostatectomy prostate bed using computed tomography: Interobserver variability following the EORTC delineation guidelines. *Int J Radiat Oncol Biol Phys*. 2011;81:e143-e149.

74. Seferova J, Odrzazka K, Paluska P, et al. Magnetic resonance imaging in postprostatectomy radiotherapy planning. *Int J Radiat Oncol Biol Phys*. 2012;82:911-918.

75. Croke J, Malone S, Roustan Delator N, et al. Postoperative radiotherapy in prostate cancer: The case of the missing target. *Int J Radiat Oncol Biol Phys*. 2012;83:1160-1168.

76. Kitanura K, Shirato H, Seppenwoolde Y, et al. Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. *Int J Radiat Oncol Biol Phys*. 2002;53:1117-1123.

77. McLaughlin WP, Wygoda A, Sahijdak W, et al. The effect of patient position and treatment technique in conformal treatment of prostate cancer. *Int J Radiat Oncol Biol Phys*. 1999;45:407-413.

78. Vargas C, Saito AI, Hsi WC, et al. Cine-magnetic resonance imaging assessment of intrafraction motion for prostate cancer patients supine or prone with and without a rectal balloon. *Am J Clin Oncol*. 2010;33:11-16.

79. Wilder RB, Chittenden L, Mesa AV, et al. A prospective study of intrafraction prostate motion in the prone vs. supine position. *Int J Radiat Oncol Biol Phys*. 2010;77:165-170.

80. Liu B, Lerma FA, Patel S, et al. Dosimetric effects of the prone and supine positions on image guided localized prostate cancer radiotherapy. *Radiother Oncol*. 2008;88:67-76.

81. Dawson LA, Litzenberg DW, Brock KK, et al. A comparison of ventilatory prostate movement in four treatment positions. *Int J Radiat Oncol Biol Phys*. 2000;48:319-323.

82. Malone S, Croke JM, Kendal WS, Szanto J. Respiratory-induced prostate motion: Quantification and characterization. *Int J Radiat Oncol Biol Phys*. 2000;48:105-109.

83. Kneebone A, Gabski V, Hugendoorn N, Turner S. A randomized trial evaluating rigid immobilization for pelvic irradiation. *Int J Radiat Oncol Biol Phys*. 2003;56:1105-1111.

84. Rosewall T, Chung P, Bayley A, et al. A randomized comparison of interfraction and intrafraction prostate motion with and without abdominal compression. *Radiother Oncol*. 2008;88:88-94.

85. Bayley AJ, Catton CN, Haycock T, et al. A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. *Radiother Oncol*. 2004;70:37-44.

86. Shah AP, Kupelian PA, Willoughby TR, Langen KM, Meeks SL. An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking. *Radiother Oncol*. 2011;99:37-43.

87. de Crevoisier R, Melancon AD, Kuban DA, et al. Changes in the pelvic anatomy after an IMRT treatment fraction of prostate cancer. *Int J Radiat Oncol Biol Phys*. 2007;68:1529-1536.

88. Guckenberger M, Pohl F, Baier K, Meyer J, Vordermark D, Flentje M. Adverse effect of a distended rectum in intensity-modulated radiotherapy (IMRT) treatment planning of prostate cancer. *Radiother Oncol*. 2006;79:59-64.

89. de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. *Int J Radiat Oncol Biol Phys*. 2010;76:75-79.

90. Hynds S, McGarry CK, Mitchell DM, et al. Assessing the daily consistency of bladder filling using an ultrasonic Bladderscanner device in men receiving radical conformal radiotherapy for prostate cancer. *Br J Radiol*. 2011;84:813-818.

91. Tsai CL, Wu JK, Wang CW, Hsu FM, Lai MK, Cheng JC. Using cone-beam computed tomography to evaluate the impact of bladder filling status on target position in prostate radiotherapy. *Strahlenther Onkol*. 2009;185:588-595.

92. Moiseenko V, Liu M, Kristensen S, Gelovitz G, Berthelet E. Effect of bladder filling on doses to prostate and organs at risk: Arealment planning study. *J Appl Clin Med Phys*. 2007;8:55-68.

93. Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: Results from the Dutch trial of 68 GY versus 78 Gy. *Int J Radiat Oncol Biol Phys*. 2007;67:1418-1424.

94. Simmsmans MH, Pos FJ, de Bois J, et al. The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. *Int J Radiat Oncol Biol Phys*. 2008;71:1279-1286.

95. Nichol AM, Warde PR, Lockwood GA, et al. A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. *Int J Radiat Oncol Biol Phys*. 2010;77:1072-1078.

96. Button MR, Staffurth JN. Clinical application of image-guided radiotherapy in bladder and prostate cancer. *Clin Oncol* (*R Coll Radiol*). 2010;22:698-706.

97. Yahya S, Zarkar A, Southgate E, Nightingale P, Webster G. Which bowel preparation is best? Comparison of a high-fibre diet leaflet.
daily microenema and no preparation in prostate cancer patients treated with radical radiotherapy to assess the effect on planned target volume shifts due to rectal distension. Br J Radiol. 2013;86:20130457.

98. Court LE, D’Amico AV, Kadam D, Cormack R. Motion and shape change when using an endorectal balloon during prostate radiation therapy. Radiother Oncol. 2006;81:184-189.

99. Smeenk RJ, Teh BS, Butler EB, van Lin EN, Kaanders JH. Is there a role for endorectal balloons in prostate radiotherapy? A systematic review. Radiother Oncol. 2010;95:277-282.

100. Smeenk RJ, van Lin EN, van Kollenburg P, Kunze-Busch M, Kaanders JH. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy. Radiother Oncol. 2009;93:131-136.

101. van Lin EN, Kristinnson J, Philpippines ME, et al. Reduced late rectal mucosal changes after prostate-three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy. Int J Radiat Oncol Biol Phys. 2007;67:799-811.

102. Zaurowsky NG, Harrison AS, Trabulsi EJ, et al. Evolution of advanced technologies in prostate cancer radiotherapy. Nat Rev Urol. 2013;10:565-579.

103. Bastasch MD, Teh BS, Mai WY, McGary JE, Grant WH 3rd, Butler EB. Tolerance of endorectal balloon in 396 patients treated with intensity-modulated radiation therapy (IMRT) for prostate cancer. Am J Clin Oncol. 2006;29:8-11.

104. Wachter S, Gerstner N, Dorner D, et al. The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002;52:91-100.

105. Patel RR, Orton N, Tome WA, Chappell R, Ritter MA. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiother Oncol. 2003;67:285-294.

106. Kim DW, Straka C, Cho LC, Timmerman RD. Stereotoxic body radiation therapy for prostate cancer: Review of experience of a multicenter phase III dose-escalation study. Front Oncol. 2014;4:319.

107. Boike TP, Lotan Y, Cho LC, et al. Phase I dose-escalation study of stereotoxic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol. 2011;29:2020-2026.

108. Susil RC, McNutt TR, DeWeese TL, Song D. Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76:1251-1258.

109. Chapet O, Udrescu C, Devonec M, et al. Prostate hypofractionated radiation therapy: Injection of hyaluronic acid to better preserve the rectal wall. Int J Radiat Oncol Biol Phys. 2013;86:72-76.

110. Eckert F, Alloussi S, Paulsen F, et al. Motion and shape change when using an endorectal balloon during prostate radiation therapy. Radiother Oncol. 2006;81:184-189.

111. Gez E, Cytron S, Ben Yosef R, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: A prospective multi-center study. Radiat Oncol. 2013;8:96.

112. Weber DC, Zilli T, Vallée JP, Rouzaud M, Miralbell R, Cozzi L. Intensity modulated proton and photon therapy for early prostate cancer with or without transperineal injection of a polyethylene glycol spacer: A treatment planning comparison study. Int J Radiat Oncol Biol Phys. 2012;84:e311-e318.

113. Gibbons EP, Jacobs BL, Smith RP, Berival S, Krishna K, Benoit RM. Dosimetric outcomes in prostate brachytherapy: Is downsizing the prostate with androgen deprivation necessary? Brachytherapy. 2009;8:304-308.

114. Kucway R, Vicini F, Huang R, Stromberg J, Gonzalez J, Martinez A. Prostate volume reduction with androgen deprivation therapy before interstitial brachytherapy. J Urol. 2002;167:2443-2447.

115. Zelensky MJ, Harrison A. Neoadjuvant androgen ablation prior to radiotherapy for prostate cancer: Reducing the potential morbidity of therapy. Urology. 1997;49(Suppl):38-45.

116. McBee L, Mendenhall NP, Henderson RH, et al. Outcomes in men with large prostates (>60 cm3) treated with definitive proton therapy for prostate cancer. Acta Oncol. 2013;52:470-476.

117. Melancon AD, Lee AK, Kudchadker R, et al. Anatomic variation and dosimetric consequences of neoadjuvant hormone therapy before radiation therapy for prostate cancer. Pract Radiat Oncol. 2013;3:329-336.

118. Martin DA, Hruby G, Whitaker MK, Foo KY. Constrained-beam inverse planning for intensity-modulated radiation therapy of prostate cancer patients with bilateral hip prostheses. J Med Imaging Radiat Oncol. 2012;56:703-707.

119. Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: Assessment of image quality and clinical feasibility. AJR Am J Roentgenol. 2014;203:788-795.

120. Li H, Noel C, Chen H, et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys. 2012;39:7507-7517.

121. Su A, Reft C, Rash C, Price J, Jani AB. A case study of radiotherapy planning for a bilateral metal hip prosthesis prostate cancer patient. Radiat Oncol. 2013;3:329-336.

122. van der Est H, Prins P, Heijmen BJ, Dirkx ML. Intensity modulated radiation therapy planning for patients with a metal hip prosthesis: Comparison of different planning strategies. Br J Radiol. 2013;86:72-76.

123. Pinkawa M, Corral NE, Caffaro M, et al. Application of a spacer gel to optimize three-dimensional conformal and intensity-modulated radiotherapy for clinically localized prostate cancer. BMC Cancer. 2013;13:27.

124. Song DY, Herfarth KK, Uhl M, et al. A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity modulated radiation therapy for prostate cancer: Analysis of dosimetric outcomes. Int J Radiat Oncol Biol Phys. 2013;87:81-87.

125. Noyes WR, Bosford CC, Schultz SE. Human collagen injections to reduce rectal dose during radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:1918-1922.

126. Melchert C, Gez E, Bohlen G, et al. Intertstitial biodegradable balloon for reduced rectal dose during prostate radiotherapy: Results of a virtual planning investigation based on the pre- and post-implant imaging data of an international multicenter study. Radiother Oncol. 2013;106:210-214.
133. Rosewall T, Kong V, Vesprini D, et al. Prostate delineation using CT and MRI for radiotherapy patients with bilateral hip prostheses. *Radiother Oncol*. 2009;90:325-330.

134. Boda-Heggemann J, Haneder S, Ehmann M, et al. Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement. *Pract Radiat Oncol*. 2015;5:197-202.

135. Bittner N, Butler WM, Kurko BS, Merrick GS. Effect of metal hip prosthesis on the accuracy of electromagnetic localization tracking. *Pract Radiat Oncol*. 2015;5:43-48.

136. Reft C, Alcuc R, Das JJ, et al. Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63. *Med Phys*. 2003;30:1162-1182.

137. Rana SB, Polkarev S. A dosimetric study of volumetric modulated arc therapy planning techniques for treatment of low-risk prostate cancer in patients with bilateral hip prostheses. *South Asian J Cancer*. 2014;3:18-21.

138. Sterzing F, Kafz J, Sroka-Perez G, et al. Megavoltage CT in helical tomotherapy - clinical advantages and limitations of special physical characteristics. *Technol Cancer Res Treat*. 2009;8:343-352.

139. Cuuron JJ, Harris AA, Chon B, et al. Anterior-oriented proton beams for prostate cancer: A multi-institutional experience. *Acta Oncol*. 2015;54:868-874.

140. Rana S, Cheng C, Zheng Y, et al. Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric-modulated arc therapy. *J Appl Clin Med Phys*. 2014;15:4611.

141. Newhauser WD, Giebeler A, Langen KM, Mirkovic D, Mohan R. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants? *Phys Med Biol*. 2008;53:2327-2344.

142. Millender LE, Aubin M, Pouliot J, Shinohara K, Roach M 3rd. Daily electronic portal imaging for morbidly obese men undergoing radiotherapy for localized prostate cancer. *Int J Radiat Oncol Biol Phys*. 2004;59:6-10.

143. Wong JR, Gao Z, Uematsu M, et al. Interfractional prostate shifts: Review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. *Int J Radiat Oncol Biol Phys*. 2008;72:1396-1401.

144. Den RB, Nowak K, Buzurovic I, et al. Implanted dosimeters identify radiation overdoses during IMRT for prostate cancer. *Int J Radiat Oncol Biol Phys*. 2012;83:e371-e376.

145. Strom SS, Katam AM, Gruschke SK, et al. Influence of obesity on biochemical and clinical failure after external-beam radiotherapy for localized prostate cancer. *Cancer*. 2006;107:631-639.

146. Wang LS, Murphy CT, Ruth K, et al. Impact of obesity on outcomes after definitive dose-escalated intensity-modulated radiotherapy for localized prostate cancer. *Cancer*. 2015;121:3010-3017.

147. Moseley DJ, White EA, Wiltshire KL, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. *Int J Radiat Oncol Biol Phys*. 2007;67:942-953.

148. Martin JM, Franttiz J, Eade T, Chung P. Clinician’s guide to prostate IMRT plan assessment and optimisation. *J Med Imaging Radiation Oncol*. 2010;54:569-575.

149. Lee W, RTOG 0415: A phase III randomized study of hypofractionated 3D/2CRT/IMRT versus conventionally fractionated 3D/2CRT/IMRT in patients treated for favorable-risk prostate cancer. 2009. Available at: http://www.rtog.org/clinicalTrials/ProtocolTable/StudyDetails.aspx?studyID=0415.

150. Lukka H, RTOG 0938: A randomized phase II trial of hypofractionated radiotherapy for favorable risk prostate cancer. 2011. Available at: http://www.rtog.org/clinicalTrials/ProtocolTable/StudyDetails.aspx?studyID=0938.

151. Bauman G, Haider M, Van der Heide UA, Menard C. Boosting imaging defined dominant prostatic tumors: A systematic review. *Radiother Oncol*. 2013;107:274-281.

152. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. *Int J Radiat Oncol Biol Phys*. 1991;21:109-122.

153. Marks LB, Ten Haken RK, Martel MK. Guest editor’s introduction to QUANTEC: A users guide. *Int J Radiat Oncol Biol Phys*. 2010;76(3 Suppl):S1-S2.

154. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. *Int J Radiat Oncol Biol Phys*. 2010;76(3 Suppl):S123-S129.

155. Chenmupati SK, Pelizzari CA, Kumavakkam R, Liauw SL. Late toxicity and quality of life after definitive treatment of prostate cancer: Redefining optimal rectal sparing constraints for intensity-modulated radiation therapy. *Cancer Med*. 2014;3:954-961.

156. Michalski JM, Yan Y, Watkins-Brunner D, et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. *Int J Radiat Oncol Biol Phys*. 2013;87:932-938.

157. Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU. Radiation dose-volume effects of the urinary bladder. *Int J Radiat Oncol Biol Phys*. 2010;76(3 Suppl):S116-S122.

158. Roach M 3rd, Nam J, Gagliardi G, El Naqa I, Deasy JO, Marks LB. Radiation dose-volume effects and the penile bulb. *Int J Radiat Oncol Biol Phys*. 2010;76(3 Suppl):S130-S134.

159. Kupelian PA, Willoughby TR, Reddy CA, Klein EA, Mahadevan A. Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. *Int J Radiat Oncol Biol Phys*. 2007;68:1424-1430.

160. Hamstra DA, Stenmark MH, Ritter T, et al. Age and comorbid illness are associated with late rectal toxicity following dose-escalated radiation therapy for prostate cancer. *Int J Radiat Oncol Biol Phys*. 2013;85:1246-1253.

161. Murphy CT, Heller S, Ruth K, et al. Evaluating toxicity from definitive radiation therapy for prostate cancer in men with inflammatory bowel disease: Patient selection and dosimetric parameters with modern treatment techniques. *Pract Radiat Oncol*. 2015;5:e215-e222.

162. White EC, Murphy JD, Chang DT, Koong AC. Low toxicity in inflammatory bowel disease patients treated with abdominal and pelvic radiation therapy. *Am J Clin Oncol*. 2015;38:564-569.

163. Chung PW, Haycock T, Brown T, et al. On-line aSi portal imaging of implanted fiducial markers for the reduction of intersection error during conformal radiotherapy of prostate carcinoma. *Int J Radiat Oncol Biol Phys*. 2004;60:329-334.

164. Graf R, Wust P, Budach V, Boehner D. Potentials of on-line repositioning based on implanted fiducial markers and electronic portal imaging in prostate cancer radiotherapy. *Radiother Oncol*. 2009;4:13.

165. Hammond R, Patel SH, Pradhan D, et al. Examining margin reduction and its impact on dose distribution for prostate cancer patients undergoing daily cone-beam computed tomography. *Int J Radiat Oncol Biol Phys*. 2008;71:265-273.

166. Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. *Med Phys*. 2007;34:4041-4043.

167. Pawlowski JM, Yang ES, Malcolm AW, Coffey CW, Ding GX. Reduction of dose delivered to organs at risk in prostate cancer patients via image-guided radiation therapy. *Int J Radiat Oncol Biol Phys*. 2010;76:924-934.

168. Ramsey CR, Scaperoth D, Seibert R, Chase D, Byrne T, Mahan S. Image-guided helical tomotherapy for localized prostate cancer: Technique and initial clinical observations. *J Appl Clin Med Phys*. 2007;8:2320.
169. Schubert LK, Westerly DC, Tome WA, et al. A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. *Int J Radiat Oncol Biol Phys*. 2009;73(4):1260-1269.

170. Stephans KL, Xia P, Tendulkar RD, Ciezki JP. The current status of image-guided external beam radiotherapy for prostate cancer. *Curr Opin Urol*. 2010;20(3):223-228.

171. Balter JM, Wright JN, Newell LJ, et al. Accuracy of a wireless localization system for radiotherapy. *Int J Radiat Oncol Biol Phys*. 2005;61:933-937.

172. Langen KM, Willoughby TR, Meeks SL, et al. Observations on real-time prostate gland motion using electromagnetic tracking. *Int J Radiat Oncol Biol Phys*. 2008;71:1084-1090.

173. Zhu X, Bourland JD, Yuan Y, et al. Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment. *Phys Med Biol*. 2009;54:N393-N401.

174. Chua B, Min M, Wood M, et al. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: Planning data and acute toxicity outcomes. *J Med Imaging Radiat Oncol*. 2013;57:482-489.

175. Eldredge HB, Studenski M, Keith SW, et al. Post-prostatectomy image-guided radiation therapy: Evaluation of toxicity and interfraction variation using online cone-beam CT. *J Med Imaging Radiat Oncol*. 2011;55:507-515.

176. Klayton T, Price R, Buyyounouski MK, et al. Prostate bed motion during intensity-modulated radiotherapy treatment. *Int J Radiat Oncol Biol Phys*. 2012;84:130-136.
Appendix 1 Outcomes and toxicities with different external-beam radiation therapy technologies and methods for prostate cancer treatment

Study/author	Year accrued/era	Comparison/clinical question	Arms	N	Risk groups	Med FU (mo)	Outcomes	Toxicities	Conclusion(s)
Perez12	1992-1999	Clinical retrospective comparison of 120 rotational arcs vs 3D-CRT	Standard RT, with 120° bilateral arcs, using portals with 2-cm margins: 68-70 Gy (no ADT) 3D-CRT: 68-74 Gy (no ADT)	155, 312	L, I	56, 38	ASTRO FFBFs: T1b/c: 61% vs 75% (SS) T2: 65% vs 79% (SS)	Moderate dysuria: 2%-5% vs 6%-9% (SS) Late GI grade 2 morbidity: 7% vs 1% (SS)	3D-CRT has improved FFBF and toxicity profile for T1-2 cancers
MD Anderson/ Kuban13,14	1993-1998	RCT of dose escalation of 3D-CRT	3D-CRT: 78 Gy 3D-CRT: 70 Gy	151, 150	L, I, H	108, 108	Phoenix FFBF: 78% vs 59% L: 92% vs 73% I: 78% vs 76% H: 67% vs 33%	Late RTOG grade 3-4 toxicities: GI 7% vs 1% (SS) GU 4% vs 1% (NS)	Dose escalation to 78 Gy improves FFBF, CSS for I, H patients
RTOG 9406/ Michalski15,16	1994-2000	Phase 1/2 RCT of dose escalation of 3D-CRT	Levels I-V (respective): 68.4, 73.8, 79.2 Gy, all at 1.8-Gy fractions; or 74 Gy and 78 Gy at 2-Gy fractions (±ADT)	1,084	L, I, H	110-140	Phoenix FFBFs (for levels I-V, respectively) L: 68%, 73%, 67%, 84%, 80%; I: 70%, 62%, 70%, 74%, 69% H: 42%, 62%, 68%, 54%, 67%.	Increased GU/GI Grade ≥2 toxicity using 78 Gy vs 68.4 Gy to 79.2 Gy or 74 Gy (hazard ratios 1.6-2.6)	Improved outcomes with 78-79.2 Gy vs lower doses Increased toxicity with higher doses of 3D-CRT
Zelefsky17	1992-1998	Clinical retrospective comparison of 3D-CRT vs IMRT	3D-CRT: 72 Gy + 9-Gy boost IMRT: 81 Gy	61, 171	L, I, H	12, N/A	N/A	Combined rates of acute G1-2 GI toxicities and GI bleeding improved with IMRT (2% vs 10%, SS)	Improved dosimetry, toxicity, safe deliverable dose to target with IMRT vs 3D-CRT
Fox Chase/ Pollack18	2002-2006	RCT of HFRT with IMRT vs CFRT with IMRT to improve FFBF	CFRT: 76 Gy in 2-Gy fractions (±ADT) 3D-CRT: 72 Gy with 9-Gy boost IMRT: 81 Gy	152, 151	L, I, H	68, 68	5-y Phoenix FFBF similar between the 2 arms (78% vs 77%)	Acute Grade ≥2 GI toxicities similar, Acute GU toxicities statistically higher with HFRT (18.3% vs 8.3%, SS); late toxicities similar	HFRT did not result in improved FFBF but was delivered in shorter time. Men with poor GU function before HFRT may not be ideal candidates for the approach.
Study	Year Range	Description	Patient Details	Dose (Gy)	Fractionation	Follow-Up	Toxicity/Outcome		
-------	------------	-------------	-----------------	-----------	--------------	-----------	-----------------		
Sheets 2012	2000-2008	SEER analysis of any late toxicity of protons vs IMRT, 3D-CRT	Proton IMRT 684 L, I, H	46-50	N/A	N/A	Absolute risk per 100 person-years: GU: 26 vs 25 (NS) GI: 25 vs 13 (SS) Absolute risk per 100 person-years: GI diagnoses: 13.4 vs 14.7 (SS) Hip fracture: 0.8 vs 1.0 (SS) IMRT patients had a lower rate of GI morbidity (vs protons). IMRT patients had a lower rate of diagnosis of GI morbidity and hip fracture (vs 3D-CRT).		
Zelefsky 2006-2009	Retrospective cohort study of IMRT vs IMRT with IGRT	IMRT to 86.4 Gy + IGRT kV imaging of implanted prostatic fiducial markers	190 L, I, H	34	N/A	N/A	No differences in 3-y FFBF (88% to 94%) for L or I patients FFBF improved for H patients (97% vs 78%, SS) with IGRT 3-y Grade ≥2 GU toxicity: 20% vs 10.4%, respectively (SS) 3-y Grade ≥2 GI toxicity similar: 1.0 vs 1.6%, respectively (NS) IGRT, with fiducial markers, is associated with improved FFBF among high-risk patients and a lower rate of late GU toxicity compared with high-dose IMRT.		
Katz 2006-2009	Phase 1/2 dose-escalation study of robotic-arm SBRT	Robotic-arm SBRT: 515 L, I > H	40	5-y Phoenix FFBFs: L: 98%, I: 93%, H: 75%	RTOG late grade 3-4 toxicity: 0%	SBRT has promising rates of toxicity and efficacy.			

ADT, androgen deprivation therapy; ASTRO, American Society for Radiation Oncology; 3D-CRT, 3-dimensional conformal radiation therapy; CFRT, conventionally fractionated radiation therapy (ie, 1.8-2.0 Gy/fraction); CSS, cancer-specific survival; FFBF, freedom from biochemical failure; FU, follow-up; GI, gastrointestinal; GU, genitourinary; H, high risk; HFRT, hypofractionated radiation therapy (ie, 2.1-3.5 Gy/fraction); I, intermediate risk; IGRT, image guided radiation therapy; IMRT, intensity modulated radiation therapy; L, low risk; N/A, not applicable; NR, not reported; NS, not significant; OS, overall survival; RCT, randomized controlled trial; RTOG, Radiation Therapy Oncology Group; SBRT, stereotactic body radiation therapy (ie, >3.5 Gy/fraction in 5 fractions or less); SEER, Surveillance, Epidemiology, and End Results; SS, statistically significant.

Note: ASTRO: 3 consecutive PSA (prostate-specific antigen) rises; Phoenix: PSA nadir + 2 ng/mL.
Appendix 2 Definition of target volumes and planning target volume margins for EBRT in published clinical protocols

Protocol/reference(s)	GTV and CTV	PTV
MD Anderson: RCT of 70 Gy vs 78 Gy Kuban, 2008¹⁴	CTV = prostate and SVs	Conventional 4-field box, 11 × 11 cm for AP/PA fields, 11 × 9 cm for lateral fields, then reduce all fields to 9 × 9 cm
		On 70-Gy arm, CT performed to confirm that margins from CTV to block edge were 1.25 to 1.5 in anterior and in dimensions and 0.75 × 1.0 cm in posterior and superior dimensions
PROG 9509 RCT of 70.2 Gy vs 79.2 Gy Zietman, 2010¹⁵	CTV = prostate + 5-mm margin	CTV = 7-10 mm
GETUG: RCT of 70 vs 80 Gy Beckendorf, 2004²¹	CTV = prostate ± SVs	Phase 1: prostate and SVs + 10-mm margin, reduced posteriorly to 5 mm
		Phase 2: prostate alone with same margins
		CTV + 10 mm during first 68 Gy
		CTV + 5 mm (except 0 mm toward the rectum) for last 10 Gy in high-dose arm
Dutch CKVO96-10: RCT of 68 Gy vs 78 Gy Al-Mamgami, 2008²⁶	CTV = GTV	CTV + 5- to 10-mm margin
	Group 1: prostate only	Group 2-3: prostate and SVs (for first 50-68 Gy), then prostate only for remainder
	Group 4: prostate and SVs	
	64-Gy arm: GTV = prostate ± base of SVs (for phase 1 GTV)	
	74-Gy arm: GTV = prostate + SVs (for phase 1 GTV)	
	Prostate ± base of SVs (for phase 2 GTV)	
		CTV = GTV + 5 mm
		CTV = prostate and proximal SVs (up to 10 mm); may be reduced to prostate only after 55.8 Gy
		CTV + a minimum of 5 mm in all directions. Superior and inferior margins should be 5-10 mm depending on spacing of planning CT
		PTV1 = CTV1 + 5-15 mm
		PTV2 = CTV2 + 5-10 mm
		Individual selection of PTV margin should be based on spacing of planning CT
UK MRC RT01: RCT of 64 Gy vs 74 Gy Dearnaley, 2007²⁷,²⁸		
RTOG 0126:²⁹ RCT of 70.2 Gy vs 79.2 Gy		
RTOG 0924:³⁰ RCT of high-dose RT ± pelvic RT in intermediate- and high-risk patients	GTV1 = all known disease on planning CT, urethrogram, clinical information	
	GTV2 = prostate + proximal SVs	
	CTV1 = prostate and SVs + LNs (obturator, external iliac, proximal internal iliac, common iliac) + 7-mm margins (excluding bone)	
	CTV2 = GTV2	

CTV, clinical target volume; EBRT, external-beam radiation therapy; GETUG, Groupe d’Etude des Tumeurs Uro-Génitales; GTV, gross tumor volume; PTV, planning target volume; RCT, randomized controlled trial; SVs, seminal vesicles. Other abbreviations as in Appendix 1. All studies listed use conventionally fractionated radiation therapy (ie, 1.8-2.0 Gy/fraction).
Appendix 3 Dose constraints for EBRT for low-risk prostate cancer

Fractionation	Structure	Constraint(s)	Comment/reference
Intact prostate, CFRT, assuming 1.8 Gy × 44 (79.2 Gy total)	PTV	V100 >98%	RTOG 9406 - level 3 \(^{11}\); RTOG 0126 - arm 2 \(^{21}\); RTOG 0415 - arm 1 \(^{49}\); RTOG 0924 \(^{39}\)
		Maximum point dose <107% of prescription dose	
	Bladder	V80 <15%	
		V75 <25%	
		V70 <35%	
		V65 <50%	
	Rectum	V75 <15%	
		V70 <25%	
		V65 <35%	
		V60 <50%	
	Femoral head	V50 <10% (each head evaluated separately)	RTOG 0534 - arm 3 \(^{71}\)
	Small bowel	V45 <150 mL	RTOG 0534 - arm 3 \(^{71}\)
	Penile bulb	Mean <52.5 Gy	RTOG 9406 - level 3 \(^{33}\); RTOG 0126 - arm 2 \(^{29}\)
Intact prostate, HFRT, assuming 2.5 Gy × 25 fractions (70 Gy total)	PTV	V100 >98%	RTOG 0938 - 5-fraction arm \(^{150}\)
		Maximum point dose <107% of prescription dose	
	Bladder	V79 <15%	
		V74 <25%	
		V69 <35%	
		V64 <50%	
	Rectum	V74 <15%	
		V69 <25%	
		V64 <35%	
		V59 <50%	
	Penile bulb	Mean dose ≤51 Gy	RTOG 0534 - arm 3 \(^{71}\)
Intact prostate, SBRT, assuming 7.25 Gy × 5 fractions (36.25 Gy total)	PTV	D0.03 mL <107% of prescription dose (robotic arm)	
		D0.03 mL <120% of prescription dose (nonrobotic arm)	
		V100 >95%	
	Bladder	D1 mL <105%	
		D90% <90% of prescription dose	
		D50% <50% of prescription dose	
	Rectum	D1cc <105%	
		D90% <90% of prescription dose	
		D80% <80% of prescription dose	
		D50% <50% of prescription dose	
	Femoral head	V20 <10 mL (both heads)	
		D1 mL <81% of prescription dose	
		D1 mL <100% of prescription dose	
		V20 <3 mL	
		D1 mL <107% of prescription dose	
	Penile bulb	Contoured as avoidance structure to avoid beams (robotic arm)	

\(X;\) Dose (X, in Gy; or as % of total dose) to 1 mL of structure; \(D90\%;\) X Dose (X, in Gy; or as % of total dose) to 90% of structure.

Note: For protons these dose constraints need to be interpreted as Gy (relative biological effectiveness). V100, \(X\%;\) volume of structure (\(X\%\)) receiving 100% of the dose. Other abbreviations as in Appendixes 1 and 2.
Variant 1 A 67-y-old man diagnosed from a PSA screening program

Treatment	Rating	Comments
Presimulation		
Bowel preparation	7	This option is not required if performing image guidance but is an option that is not wrong for planning purposes. Microenema is recommended. Oral stool softener and anti-flatulent agents are also options.
Supine position	8	See references 86-79
Prone position	5	See reference 80
Custom immobilization (eg, with custom thermoplastic cast)	8	This option is per previously published reports. 81, 82
Bladder		This treatment is dependent on institution.
Full	7	
Comfortably full	8	
Empty	4	
Simulation tools		
CT simulation	8	CT alone is possible in the hands of an experienced clinician. 56
MRI simulation and fusion to CT	7	This procedure may be most helpful if the prostate contour is uncertain or in instances of unusual anatomy. See references 41, 44-48
Treatment planning		
IMRT (nonarc)	8	This reflects recognized controversy in the field. This procedure is unlikely to have worse outcomes than IMRT. Treatment on protocol is encouraged.
IMRT (arc)	8	
Proton beam	6	
3D-CRT	5	This procedure is acceptable if dose-volume histogram constraints are met or if IMRT is not available.
Image guidance		
Use of radiofrequency transponders	7	
CBCT with fiducial markers, aligned to PTV	8	
CBCT without fiducial markers, aligned to PTV	7	
CBCT, aligned to bony anatomy	3	The prostate gland is recognized to move independently of bony anatomy, so alignment based on the prostate PTV is recommended.
2D imaging with fiducial markers	7	
Ultrasound	7	
None	3	
RT fractionation		
CFRT (ie, 1.8-2.0 Gy/fraction)	8	
HFRT (ie, 2.1-3.5 Gy/fraction)	6	This procedure is per previous protocol (eg, RTOG 0415 148).
Stereotactic RT (ie, >3.5 Gy/fraction)	6	This procedure is probably acceptable, but head-to-head comparisons are limited currently. This procedure is per previous protocol (eg, RTOG 0938 150).

Rating scale: 1, 2, 3 = usually not appropriate; 4, 5, 6 = may be appropriate; 7, 8, 9 = usually appropriate.

CBCT, cone beam computed tomography; CFRT, conventionally fractionated radiation therapy; CT, computed tomography; 2D, 2-dimensional; 3D-CRT, 3-dimensional conformal radiation therapy; HFRT, hypofractionated radiation therapy; IMRT, intensity modulated radiation therapy; PSA, prostate-specific antigen; PTV, planning target volume; RT, radiation therapy; RTOG, Radiation Therapy Oncology Group.

* PSA 5.2 ng/mL, prostate within normal limits on examination. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score $3 + 3 = 6.$
Variant 2

A 60-y-old man, asymptomatic in PSA screening program

Treatment	Rating	Comments
Use current simulation	5	This procedure may be appropriate but there was disagreement among panel members on the appropriateness rating as defined by the panel’s median rating. Distended rectum results in worse dosimetry and clinical outcome. It may be controversial to not resimulate, but some patients will always have a distended rectum and image guidance methods may protect against negative effects.
Resimulate this case after intervention:		
Patient walking, bowel movement, enema	8	Enema may be most appropriate.

Rating scale: 1, 2, 3 = usually not appropriate; 4, 5, 6 = may be appropriate; 7, 8, 9 = usually appropriate.

Abbreviations as in Variant 1.

* PSA 5.2 ng/mL, prostate without palpable abnormalities. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score 3 + 3 = 6. CT simulation reveals grossly distended rectum (gas and stool).

Variant 3

A 60-y-old man, asymptomatic in PSA screening program

Treatment	Rating	Comments
Continue planning using current CT simulation	7	Definitive EBRT for large prostates without ADT is associated with low rates of GU or GI toxicity.
Use ADT for downsizing of gland	4	Consider this option if dosimetric criteria are not met on initial plan due to large prostate volume.
Recommend for surgery rather than RT	5	This option is recommended if obstructive symptoms are present.
RT fractionation		
CFRT	8	The toxicities of SBRT in large prostate glands have not been fully characterized.
HFRT	5	
SBRT	4	
Simulation		
CT simulation (kV CT)	8	Volume on MRI is noted to be smaller than that on CT.14
MRI simulation and fusion to CT	8	

Rating scale: 1, 2, 3 = usually not appropriate; 4, 5, 6 = may be appropriate; 7, 8, 9 = usually appropriate.

ADT, androgen deprivation therapy; EBRT, external beam radiation therapy; GI, gastrointestinal; GU, genitourinary; HFRT, hypofractionated radiation therapy; MRI, magnetic resonance imaging; SBRT, stereotactic body radiation therapy. Other abbreviations as in Variant 1.

* PSA 5.2 ng/mL, prostate within normal limits, no palpable lesions. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score 3 + 3 = 6. CT simulation reveals very large-volume prostate (100 mL).
Variant 4 A 60-y-old man, asymptomatic in PSA screening program

Treatment Planning	Rating	Comments
IMRT (nonarc)	8	Dosimetry may be improved by avoiding beams that pass through prostheses.124,128,129
VMAT (arc-based IMRT)	8	Dosimetry may be improved by using more arcs.137
IMRT (helical tomotherapy)	7	This procedure has been previously described.138
Proton beam	5	This procedure reflects recognized controversy in the field. Use anterior-oriented beams139 or oblique beams.140 CT simulation with kV and MV CT images improves range of uncertainties for planning.141

IGRT

Radiofrequency transponders	7	Hip implants have no meaningful effect on image guidance with this strategy.135
MVCT/CBCT with fiducial markers	7	See reference134
Ultrasound	7	

Simulation

CT simulation (kV CT)	8	Use a commercial algorithm to improve CT Hounsfield number accuracy and structure visualization.124-126
Use MVCT to assist planning if available	7	This procedure may improve image resolution and permit calculation of electron density.131
MRI simulation and fusion to CT	8	Bilateral hip implants are not a contraindication to CT/MRI simulation.133

RT Fractionation

| CFRT | 8 | This procedure is not a contraindication on previous protocol (ie, RTOG 940614).
| HFRT | 6 | This procedure is not a contraindication on previous protocol (ie, RTOG 0415149).
| SBRT | 6 | This procedure is not a contraindication on previous protocol (ie, RTOG 0938150). |

Rating scale: 1, 2, 3 = usually not appropriate; 4, 5, 6 = may be appropriate; 7, 8, 9 = usually appropriate.

| IGRT, image guidance radiation therapy; MVCT, megavoltage computed tomography; VMAT, volumetric modulated arc therapy. Other abbreviations as in Variants 1 and 3. |
| * PSA 5.2 ng/mL, prostate without palpable abnormalities. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score 3 + 3 = 6. Patient has bilateral hip implants. |
Variant 5

A 60-y-old man, asymptomatic in PSA screening program*

Treatment	Rating	Comments	Comments
Simulation	8		There is no effect on simulation.
Treatment planning			
IMRT (nonarc)	8		There are reportedly low complications with photon EBRT.
IMRT (arc)	8		There are reportedly low complications with photon EBRT.
Proton beam	5		This procedure may be appropriate but there was disagreement among panel members on the appropriateness rating as defined by the panel’s median rating. This reflects recognized controversy in the field. Treatment on a clinical trial is encouraged.
IGRT			
CBCT with radiofrequency transponders	7		This is expert opinion. There is no published evidence on the optimal method for image guidance.
CBCT with fiducial markers, aligned to PTV	8		This is expert opinion. There is no published evidence on the optimal method for image guidance.
CBCT without fiducial markers, aligned to PTV	7		The prostate gland is recognized to move independently of bony anatomy, so alignment based on the prostate PTV is recommended.
CBCT, aligned to bony anatomy	3		
2D imaging with fiducial markers	7		
Ultrasound	7		
None	2		
RT fractionation			
CFRT	8		
HFRT	4		There is limited evidence regarding the safety of HFRT in inflammatory bowel disease.
SBRT	4		There is limited evidence in inflammatory bowel disease.

Rating scale: 1, 2, 3 = usually not appropriate; 4, 5, 6 = may be appropriate; 7, 8, 9 = usually appropriate.

Abbreviations as in Variants 1, 3, and 4.

* PSA 5.2 ng/mL, prostate without palpable abnormalities. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score $3 + 3 = 6$. Patient has a history of inflammatory bowel disease.
Variant 6
A 60-y-old man, asymptomatic in PSA screening program*

Treatment	Rating	Comments
IGRT		
Daily CT with soft-tissue alignment	7	There are no specific recommendations on RTOG 0534. CBCT with fiducial markers is reasonable.
Daily CT with implanted fiducial markers	6	It is uncertain if fiducial markers are stable, similar to the intact prostate setting.
Daily CT with surgical clips	7	This procedure may be used if other options are not available; however, clinicians should note that these clips may not appear clearly on CBCT.
Daily CT with alignment of bony anatomy	4	The prostate gland is recognized to move independently of bony anatomy, so alignment based on the prostate PTV is recommended.
Daily kV orthogonals	6	The prostate gland is recognized to move independently of bony anatomy, so alignment based on the prostate PTV is recommended.
Electromagnetic transponders	6	There are typically 3 beacons placed: 2 lateral to the ureterovesicular anastomosis and 1 distal in the retrovesical tissue where the SVs had been. The beacons are typically 1 cm apart from each other.
None	3	

* PSA 5.2 ng/mL, prostate with palpable abnormalities. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score 3 + 3 = 6. Patient is obese, with pannus extending into radiation field.

Variant 7
A 60-y-old man, asymptomatic in PSA screening program*

Treatment	Rating	Comments
IGRT		
Simulation		
Immobilization of pannus (eg, tape or cover sheet)	7	There may be considerable variability. Limiting beam angles can be considered. For low-risk patients, one can consider weight loss prior to starting treatment.
Treatment planning		
IMRT (nonarc)	8	One can consider limiting arcs.
IMRT (arc)	8	Beam angles for proton beam therapy must be carefully considered because of limitations in proton beam path length.
Proton beam	6	
Electromagnetic transponders	4	Obesity may obscure reading of transponders. In borderline cases, the transponders may be used as fiducial markers if the signal cannot be obtained.
Daily CBCT with fiducial markers	8	
Daily CBCT without fiducial markers	7	
Daily planar imaging with fiducial markers	7	
Daily ultrasound imaging	5	

* PSA 5.2 ng/mL, prostate within normal limits, no palpable lesions. Multiple needle biopsies of the prostate showed adenocarcinoma. Gleason score 3 + 3 = 6. Patient has radical prostatectomy that reveals pT2 disease, positive apical margin, postoperative PSA of 0.2 ng/mL. Adjuvant EBRT recommended.