Study of recycle spent brick lining as refractory castable product

Kukuh Yudiarto*, Taufik Saleh, Ferdy Rahadian and Firman Ashad

Indonesia Asahan Aluminium Company, Kuala Tanjung, Sumatera Utara, Indonesia, 21257

*Email: kukuh@inalum.id

Abstract. Every year INALUM has produced around 500-1000 ton spent brick lining which placed in the dump yard. After it has been placed, it sells to the third party. Spent Brick lining which has been cleaned has no or little harmful content and some chemical composition can be utilized as a new product as the refractory application in INALUM. Some research proves that spent brick has some good mechanical properties if applied as concrete and INALUM’s spent brick production high enough to fulfill castable needs in INALUM in a year. The General flow process of castable making is sorting and drying, crushing and grinding, screening, mixing (with other aggregate and additive). With this general production, it’s predicted to produce earning after taxes (EAT) around IDR 678,232,000 per year.

1. Introduction

Refractories are ceramic materials that are designed to withstand a variety of severe service conditions, including high temperatures, corrosive liquids and gases, abrasion, and mechanical and thermal-induced stresses [1]. Refractories are used by a variety of companies, including metal, ceramic, cement and glass producers [1]. When refractory materials have reached the end of their service life, they will be replaced with new refractories that have been manufactured from virgin raw materials and the spent refractories as a result of pot dismantling are typically disposed of in a landfill wasting valuable natural resources [1].

The production of spent refractory material in INALUM was reported to be over 500-1000 tons for the year, INALUM should pay third party for further handling this spent refractory so that it is not harmful to the environment. In order to minimize cost and production of industrial waste, INALUM does some research for a few years until now to find the best way to recycle spent refractory material into a reusable product.

Some studies are found in the literature. A. Baradan and M. Nematzade (2017)[2] investigated the various engineering properties of concrete using crushed brick as coarse aggregate. The investigation was done by comparing the properties of brick aggregate with different amounts of addition. The result proved that by replacing coarse aggregate with spent crushed fire brick show equal mechanical properties with the new one [2]. F. Brunck and Dr Otto (1995)[3] investigated that the chemical composition of spent brick from baking furnace didn’t change even though it has been used in baking operation for a long time in any position such as anode side, intermediate side, and flue side [3]. On the other hand, spent brick from pot reduction at the position that reacts with the metal or adjacent to cathode block has a potential loss in chemical position because of increasing CaO, Na2O, and F content [4]. We
can not utilize it before diminish those harmful content. However, spent brick located on the first and second layer or far away from liquid metal potential contact in pot reduction recommended to utilize because have little contained CaO, Na2O, and F [4].

INALUM has produced several types of waste every year. Some of these wastes are classified as B3 and Non-B3. B3 waste contains harmful substances such as Na2O, Fluoride, and Cyanide which if left unchecked, can pollute the environment. Some research state that brick waste that is not contaminated with molten metal can be categorized as Non-B3 waste which still has some ingredients that can be reused as raw material for refractory.

2. Method
2.1. Castable needs in INALUM

Table 1. Application castable in INALUM.

Place	Pot Reduction and Ladle	Baking Furnace	Holding Furnace and Launder	Induction Furnace
Photo				
Volume	200-260 ton/year	12 ton/year	18-20 ton/year	6 ton/year
Types of Castable	Ca-13 I, Ca-13 Ni	C13AS	C13AS, IC-11 HS	SK-30
	HC-AL, C13AS		C-HAS, Castable	Dry Vibe
			Gibram, Matriflo 84	Minrosil

Based on table 2.1 the annual castable requirement in a year is 300 tons while the production of waste brick in a year is 500-1000 tons. It means that brick production is sufficient to meet the needs of castable in INALUM.

2.2. General flow process of castable making

General flow process of castable making such as:

- **Sorting**
 Sorting is done to separate spent bricks from impurities or other bricks that have been contaminated with molten metal. Sorting was also done to determine the type of waste brick used to simplify the calculation of the desired composition.

- **Crushing and Grinding**
 After sorting, used brick is typically crushed to liberate refractory aggregate from metal, slag or other impurities that may have penetrated the lining [1]. In this process, the old refractories are roughly crushed into pieces of 200-400 mm so they can easily be handled in the subsequent crushing with heavy-duty machinery. After that production is carried out with a ball mill to reduce the size until 20 mm or less and recover them according to their particle size.

- **Screening**
 Screening is used to ensure that material has been reduced to the appropriate size for liberation. Mesh size is decided according to the purpose of classification. The largest mesh sieve is set at the top stage while the smallest at the bottom, with the intermediate mesh sieves set between them to mesh size. Size needed as raw material divided into 3-5 mm, 1-3 mm, 0-1 mm and #325.

- **Mixing**
The raw material that has been classified is mix with other raw material and additive in the mixer for some time after that the castable product is born.

![Sorting and Drying](image1)

Figure 1. General flow process of castable making.

2.3. Material used

- **Spent Brick Lining**
 Use as coarse aggregate containing Al$_2$O$_3$ and SiO$_2$ as the main phase as a refractory characteristic with percentage < 60%. Product in Market: B-1, C-1, SK-32, SK-34, SK-36

- **Bauxite/ Calcined Alumina**
 As raw material with percentage 30-60%, on coarse aggregate use bauxite, on fine aggregate use calcined clumina. Has high alumina and stable at elevated temperature. Product in market: CA-5M, Bauxite 85, Bauxite 80, Tabular Alumina.

No	Name	Al2O3 (%)	Fe2O3 (%)	BD (g/cc)	CCS (MPA)	Refractoriness (°C)
1	50% Al2O3	51	0.4	30.5	40	1350
2	60% Al2O3	54	4	38	60	1440
3	70% Al2O3	71	0.4	29	70	1700
4	80% Al2O3	40	2	38.5	50	1270

- **Calcium Alumina Cement**
 Serves as a binding material with percentage of 10-20%. In the presence of water, he will form hydrate calcium aluminate hydrate or calcium silicate hydrate which can harden at room temperature and high temperature [5]. But the addition of water also needs to be adjusted to the type of raw material because the excess water will form a lot of porosity which reduces mechanical properties like figure 3.2. Product in market: Cement Fondu, A-700, Secar 71.
Figure 2. Hydration scheme of CAC concretes with a. excess water and b. suitable water [5].

- Other Additive
 To get certain properties with percentage <5% such as the speed of installation, plasticity, dispersion, coagulation, and others. Product in the market: Citric Acid, Isopropyl Alcohol, Sodium Phosphates, Silica Fume.

2.4. Example of castable making composition calculation

Raw Material	Size (mm)	Percentage	AL2O3	SiO2	CaO	Fe2O3				
Spent S K – 32	3-5	20.00%	30	6	60	12	0	0	2.5	0.5
Brick	3-1	20.00%	30	6	60	12	0	0	2.5	0.5
	0-1	20.00%	30	6	60	12	0	0	2.5	0.5
Bauxite 85	3-5	5.00%	82	4.1	10.5	0.525	0	0	1.99	0
	1-3	5.00%	82	4.1	10.5	0.525	0	0	1.99	0
	0-1	5.00%	82	4.1	10.5	0.525	0	0	1.99	0
Tabular Alumina	#325	5.00%	99	4.95	0	0	0	0	0	0
A-700	20.00%	51	10.2	0.4	0.08	30.5	6.1	0	0	0
Total	100.00%	45.45	37.655	6.1	1.5	1.5				

3. Cost and benefit Analysis

3.1. CAPEX

No.	Description	Price (IDR)
1.	Crushing	100,000,000
2.	Milling	12,000,000
3.	Siever	30,000,000
4.	Mixer	70,000,000
5.	Land and Building	1,400,000,000
6.	Installation (5% Total Equipment)	64,000,000
	Total CAPEX	1,784,000,000
3.2. **OPEX**

No.	Description	Price (IDR/Year)
1	Total Electricity	92,400,000
2	Material	
	Cement	750,000,000
	Bauxite	1,750,000,000
	Alumina	700,000,000
3	Employee salary	1,728,000,000
4	Maintenance (15% CAPEX)	267,600,000
5	Transportation (2% CAPEX)	35,680,000
	Total OPEX	5,323,680,000

3.3. **Cash flow**

No.	Description	Priced (IDR/Year)
1	Total COST SAVING	6,300,000,000
2	Total OPEX	5,323,680,000
3	Depresiation, 10% Capex	178,400,000
4	Gross Profit	797,920,000
5	EBT (Earning Before Taxes)	797,929,000
6	Taxed, 15% EBT	119,688,000
7	EAT (Earning After Taxed)	678,232,000

3.4. **Feasibility analysis**

No.	Description	Value
1	NPV (DF 12%)	640,394,701
2	IRR	17.39%
3	PI	2.79
4	PB	2.63

4. **Conclusion**

Some research proves that spent brick has some chemical composition that can be utilized as a new product and the product has good mechanical properties. Spent Brick production in Inalum (500-1000 ton/year) high enough to fulfill castable needs in Inalum (200-300 ton/year). General flow process castable production from spent brick lining is Sorting – Crushing/Grinding – Screening – Mixing – Castable Product. Raw Material Needs to produce castable are spent brick (Max 60%), bauxite/tabular alumina (30-60%), alumina cement (10-20%), other additive (<5%). There is potential margin when implement recycle spent brick for producing castable in Inalum.

References

[1] H. Fag, J.D. Smith and K.D. Peaslee. 1999 *Study of spent refractory waste recycling from metal manufacturers in Missouri, Resources, Conservation and Recycling.*

[2] A. Baradan-Nasiri and M. Nematzadeh. 2017 *The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and alumina cement.* Constr. Build. Mater. 147 pp 865-875.

[3] F. Brunk and DR.C. Otto 1995 *Corrosion Behaviour of Fireclay Bricks used in The Flues of Open Anode Baking Furnaces,* Light Metals, pp 641-646.
[4] F. Brunk and DR.C. Otto. 1995 Corrosion Behaviour of Fireclay Bricks of Varying Chemical Composition Used in the Bottom Lining reduction Cells, Light Metals, pp 641-646.

[5] M. Nematzadeh and J. Dashti. 2018 Optimizing compressive behavior of concrete containing fine recycled refractory brick aggregate together with calcium aluminate cement and polyvinyl alcohol fibers exposed to acidic environment. Constr. Build. Mater. 164 pp 837-849.

[6] J. Butter. 1994 Recycling of anode baking furnace refractory bricks, Light Metals, pp 663-640.

[7] A. Baradan-Nasiri and M. Nematzadeh. 2017 The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and alumina cement. Constr. Build. Mater. 147 pp 865-875.

[8] S. Banerjee. 1998 Monolithic Refractories. A Comprehensive Handbook. World Scientific.

[9] G. Routschka. 2003 Pocket Manual refractory Materials 2nd Edition. Vulkan-Verlag.

[10] J. Newman, B.S. Choo. 2013 Advanced Concrete Technology 2: Concrete Properties. Elsevier.

[11] B. Mazumder and B.K. Mishra. 2011 Managing Waste from Aluminum Smelter Plants. WPI.