Construction of University Governance Model Based on Microscope Algorithm

Fei Bian*

Development and Planning Office (Institutional Research Center), Shenzhen Polytechnic, Shenzhen 518000, Guangdong, China

*Corresponding author e-mail: bianfei2011@szpt.edu.cn

Abstract. The evaluation of university governance is a scientific and reasonable comprehensive evaluation to measure the economy, efficiency and efficiency of cultivating talents, which is an important part of the work of universities. With the rapid development of technology field, the method of artificial observation and analysis has been unable to adapt to the status quo of rapidly increasing information, and the automatic acquisition and analysis of microscope algorithm has become an inevitable trend. The purpose of this article is trying to solve the university governance theory and the practice topic, assessment and monitoring algorithm and combined with microscope compiled a set of characteristics of modern university, multi-level, three-dimensional governance performance evaluation index system, including personnel training performance, teaching, research, scientific research, social service performance, logistics support, the performance of five main dimensions, established the model of university governance evaluation algorithm based on microscope, and apply the model to assess the comprehensive performance of a university, a series of scientific conclusions and recommendations, to further improve the comprehensive performance of colleges and universities play an important role, also enriched the theory of university governance evaluation system, It expands the new direction of the comprehensive research in colleges and has important reference value for the future development of the university management mode from the traditional hierarchical management mode to the common governance mode.

Keywords: Evaluation Function, University Governance Model, Microscope Algorithm, Automatic Focusing Algorithm

1. Introduction
The management performance of colleges and universities is to measure the economy, efficiency and efficiency of financial expenditure to train talents in colleges and universities and make a scientific and reasonable comprehensive evaluation, including the financial expenditure budget process, expenditure behavior process, expenditure efficiency and its final effect that colleges and universities carry out in order to achieve the social goal of cultivating talents. In fact, colleges and universities need performance evaluation in the whole process of financial expenditure budget preparation and
implementation, which should comprehensively evaluate the financial budget preparation and expenditure efficiency, management level and scientificity, etc., so as to make the finance give full play to the function of regulating the work direction of college staff and realize the goal of talent training. The method of performance evaluation in colleges and universities usually requires science and standardization, and the unified formulation of performance evaluation standard can control and give feedback in many aspects in advance, during and after the financial expenditure. Microscope is the study of one of the main tools of modern medicine and life science, with the development of related technologies, automation degree of microscope, higher and higher demands are proposed, automatic focusing technology is the core part of automatic control microscope system, efficient automatic algorithm is the key to the realization of technology, combined with the university governance model of microscope can provide the performance evaluation of university governance with more convenient and accurate experience.

Bryant Andres describes the research on video rate imaging using a scanning tunneling microscope. This will increase the scan speed by two to three orders of magnitude from what was previously reported. Perhaps the most exciting advantage of using STM with high imaging rates is that new physical phenomena can be obtained in a shorter time frame. There are also more practical advantages, such as immunity to indoor background vibrations. In fact, the high speed STM is not very sensitive to any "1/f" noise source. In addition, Bryant Andres found that thermal control was much less necessary. The first group of STM images taken at high speed is introduced. These are on the surface of graphite and they determine where the individual atoms are on the surface. In these images, the interaction between the tip of the STM tip and the sample can be observed, and this interaction will lead to a similar phenomenon of friction at high scanning speed. The image of 2-tantalum dienamide taken at room temperature is also shown. The expected charge density wave was not observed at room temperature [1]. Traffic models need to be calibrated to provide an adequate representation of actual field conditions. Carlos Cobos proposed a meme algorithm (ma-sh-chain) based on Solis and Wets local search chain for the correction of microscopic traffic flow simulation model. Two vehicle traffic flow models (McTrans and Reno) were used to test the effectiveness of the proposed ma-sw-chain method. The results are superior to the two most advanced methods found in the literature: single objective genetic algorithm (GASA) using simulated annealing and stochastic approximate simultaneous perturbation algorithm (SPSA). Comparison is based on tuning time, running time and calibration quality, measured by GEH statistics (GEH statistics calculate the difference between the number of real links and the number of simulated links) [2]. Information system is an inevitable requirement for private universities to improve governance and achieve good governance. From 2006 to 2008, the government provided it assistance to 1072 private institutions and continued to implement the development assistance scheme. Considering such a large IT grant, IT is necessary to study the efficiency and success of IT grant implementation in private universities, as well as the proper leadership to achieve GUG. M. Tajuddin used a sample of 61 private colleges in east Java under the leadership of Kopertis Wilayah 7 (private higher education institution - region), including universities, institutes, institutes of technology and colleges, which received IT funding within 3 years. Each private college had four respondents, including IT administrators in the academic, financial, web and library fields, so the expected number of respondents was 244. However, only 112 data sets were obtained and qualified for analysis [3].

Algorithm based on microscope, according to the development of a university in recent years, compiled a set of governance evaluation index system, divided into five main dimensions, including: training performance, teaching, research, scientific research performance, social performance, service performance and logistics support and from different angles in five dimensions, decomposition, contains a total of 68 XiangZi index, according to the evaluation of target type can be divided into control, guidance index and forecast model. Based on the running situation of the governance model, this paper analyzes the advantages and disadvantages of the existing university governance model, and puts forward some Suggestions for optimizing the model.
2. Proposed Method

2.1. Microscope Algorithm

Automatic focusing technology has been widely used in some advanced instruments and unmanned operations. The efficient and accurate automatic focusing depends on the automatic discrimination of image quality, so the judging basis, algorithm and calculation result of image quality directly affect the effect of automatic focusing, and the focusing evaluation function is the key problem.

The focused evaluation function should have the characteristics of high sensitivity, single peak value, no deviation, small computation and high signal-to-noise ratio. Among the many focused evaluation functions, the Laplace gradient function is better in the aspects of sensitivity, single value and calculation. However, when Laplacian gradient function is used in the image sequence with large noise interference, especially in the case of serious defocus, multi-extreme value phenomenon is prone to occur: it is difficult to use the classical mountain-climbing method to improve the focusing efficiency [4].

It is important to analyze the imaging principle of defocus image for the improvement of automatic focusing algorithm. An object can be thought of as a distribution of an infinite number of point lights, and an image is a map of those point lights through the lens system. In general, the lens system can be reasonably approximated as a linear system with translation invariant, so the image can be understood as the convolution of the object with the lens system. Its mapping process can be expressed as:

\[
g(x, y) = f(x, y) * h(x, y) + n(x, y)
\]

(1)

In the above formula, \(g \) is the image, \(f \) is the object, \(h \) is the point of the lens system, the expansion function, \(n \) is the noise on the superposition, and \(* \) is the convolution symbol.

(1) Point extension function PSF

When the optical system is focused, the point light source maps to a point on the image plane, while when defocusing, a spot is formed on the image plane. This mapping is called PSF. The image of A point light source through A lens system is minimized if the image plane is at A. If the image plane is at B and c, the image is a spot. If the object plane has A flat object, then A clear image can be seen at A point like plane A. On planes like plane B and plane c. Due to the overlapping effect of light spots, the image details are lost, and only blurred images can be seen.

The image can be viewed as the convolution of the object with the PSF of the lens system. Assuming that the convolution is carried out on the object plane, taking the PSF of circular aperture of an actual incoherent light source as an example, the light source is set as A narrow-band incoherent light source with A central wavelength and the circular aperture diameter as A. Its PSF is:

\[
h(r) = 2 \pi J_1 \left(\frac{\pi r}{r_0} \right) \left(\frac{r_0}{r} \right)
\]

(2)

Traditional autofocus algorithms adopt global search method after selecting a certain focus evaluation function. That is to search from one end to the other end in a certain step in the system focus range, and then get the focus position, such a method is mainly speed and precision can not be coordinated. The automatic focusing algorithm proposed in this paper can solve this problem well. Choosing the appropriate evaluation function and step size according to the gradient value of the current focused evaluation function is the key of the algorithm proposed in this paper [5]. The experimental results show that the gradient value of the focus evaluation function is small when it is far from the focus, and significantly increases when it is close to the focus. Based on this observation, a threshold value is set in this paper to judge whether the current position is close to the focus. Gray difference method and stride length are adopted in the position far from the focus, while Laplace function method and small step length are selected when approaching the focus! In this way, only applying Laplace function method in a small range can avoid the shortcoming of long time in the
(2) Neighborhood correlation analysis

In the process of microscope imaging, all the light emitted from each point P on the object plane is still intersected at point Q after being refracted by the lens, that is, each object point corresponds to an image point, and the object point constitutes the focusing plane of the object plane. If the viewing surface (the microscopic image imaging plane) is located in the focusing plane, a clear microscopic image can be obtained, which is called focusing. If the observation surface deviates from the focusing plane, each object point forms a circular spot with radius r on the observation surface, and defocusing occurs. The size of r can represent the degree of focusing of the image. The larger r is, the farther the observation surface is from the focusing plane. The smaller r is, the closer the observation surface is to the focusing plane. When r = 1pixel (hereinafter referred to as 1), the focusing precision can reach pixel level. To analyze the luminance formation of each pixel in the observation plane imaging: when the radius of the spot is 1, the gray value of each pixel in the observation plane imaging is superimposed by the spot with the pixel's quadrangle as the center of the circle, which leads to the mutual influence and high correlation between the pixel of the observation plane and its quadrangle pixels. When r increases, the correlation spreads to all pixels in the r radius neighborhood of the pixel, and the closer the geometric distance is, the greater the correlation is. Therefore, the correlation between each pixel in the observation surface imaging and the pixels in a neighborhood, especially the pixels in the quadrangle region, can reflect the degree of focus of the image. The greater the correlation is, the lower the degree of focus is; otherwise, the higher the degree of focus is.

(3) Improvement analysis of the algorithm

The change of the pixel value of the same line in the digital image in the case of serious defocusing and focusing in the same scene. According to the PSF low pass filter theory, it is composed of high frequency noise and low frequency useful signal, then high frequency noise and high low frequency useful signal. From equation (2), a viteropulas operator [-12-1] is extracted, and its frequency response can be regarded as a high-pass filter. If the convolution operation is carried out separately, the high-frequency noise will be enhanced and the low-frequency useful signal will be attenuated, while the high-frequency noise and useful signal will be enhanced and the low-frequency useful signal will be attenuated. Direct use of laplasse operator for severely defocused images will only enhance the noise, resulting in multiple peaks, while for images near the focus, due to the enhancement of useful high-frequency signals, a very narrow single peak will appear. Consider using an improved Laplace operator. Step is the number of zeros in the operator. The improved Laplacian operator is a comb filter, which can be regarded as composed of multiple traps. The more zeros in the operator, the denser the comb tooth. It attenuates only individual frequencies and enhances most frequencies, including low frequencies. In this way, for multiple fuzzy images composed of high-frequency noise and low-frequency signal, the improved operator also enhances the low-frequency signal to a certain extent, so the sensitivity of the evaluation function to the low-frequency signal changes is enhanced. The result is a single peak with a wide base. This makes it difficult to cross the focus during the focusing process, which is very suitable for the mountain climbing method. The same is true for improved grates extended to 2 dimensions. The size of step is related to image texture, noise level and object size, etc., which is not discussed in depth here [7].

2.2. Governance Model of Colleges and Universities

(1) Governance evaluation index system

According to the development status of colleges and universities in recent years, this paper has compiled the governance evaluation index system, which is divided into five main dimensions, including: talent cultivation performance, teaching and research performance, scientific research performance, social service performance, and logistics support performance. The five dimensions are decomposed from different perspectives. Detailed indicators are as follows:
1) The talent training performance indicator system is composed of student training performance and staff training performance. Students develop performance indicators include students output indicators (total number of full-time students, total, total number of full-time graduate students in adult education, adult education graduates total), and students training quality indicators (after a year of graduate employment, students skills competition awards, national outstanding student, outstanding students from), students' satisfaction index (satisfaction graduates, graduates recommend degrees, alumni satisfaction) [8].

2) Staff training performance indicators including training output structure (PhD teachers proportion, a master's degree in proportion, the proportions of the orthometric height, the subtropical high, double rate, study abroad experience, teachers), the staff training effectiveness index, staff training quality indicators, teaching research performance indicators system performance by professional construction, course construction, teaching material and teaching performance performance, a mix of training room construction performance. The performance index of major construction includes national key major, provincial key major, university key major and expanded major.

3) The performance indicators of curriculum construction include national quality courses, provincial quality courses and university-level quality courses. Teaching materials and teaching and research performance indicators include national teaching materials, school-level teaching materials, national teaching achievements, provincial and ministerial teaching achievements, municipal teaching achievements, and school-level teaching achievements. The construction performance of training room includes national training room, provincial training room and municipal training room.

4) The scientific research performance index system is composed of the scientific research project performance index and the scientific research output performance index. The performance indicators of scientific research projects include national projects (funds), provincial projects (funds), municipal projects (funds), university projects (funds) and horizontal projects (funds). The performance indicators of scientific research output include the number of papers published, the number of monographs published, the number of patents granted, the number of awards awarded, the number of projects concluded, and the number of scientific and technological achievements (exhibitions) transferred.

5) The social service performance indicator system is composed of social training and examination, social service and support. Social training and examination performance indicators include teacher training, social skills training, social skills examination. Social service and support performance indicators include external support and assistance and social volunteer service performance. Logistics support performance index system is composed of two aspects: logistics work completion rate and logistics work satisfaction. The completion rate of logistics includes energy saving rate of hydropower, implementation rate of sporadic maintenance projects and completion rate of new projects. The satisfaction index of logistics work includes the satisfaction of canteen service quality, campus medical service, school transportation service, dormitory service, school bath service, classroom equipment and service, and school security service [9].

(2) Evaluation index system design

Comprehensive performance of colleges and universities is a scientific and reasonable comprehensive evaluation to measure the economy, efficiency and efficiency of financial expenditure in cultivating talents in colleges and universities, including the financial expenditure budget process, expenditure behavior process, expenditure efficiency and its final effect in order to achieve the social goal of cultivating talents. In fact, colleges and universities need performance evaluation in the whole process of financial expenditure budget preparation and implementation, which should comprehensively evaluate the financial budget preparation and expenditure efficiency, management level and scientificity, etc., so as to make the finance give full play to the function of regulating the work direction of college staff and realize the goal of talent training. The method of performance evaluation in colleges and universities usually requires science and standardization, and the unified formulation of performance evaluation standard can control and give feedback in many aspects in
advance, during and after the financial expenditure. In order to better construct the index system of financial performance evaluation in colleges and universities, it should be carried out in the following basic principles:

1) Simplicity principle: the general content of the selected indicators should not be repeated, and should be as concise as possible under the condition of meeting the evaluation requirements.

2) Representativeness principle: the selection index should reflect the essential characteristics of the comprehensive performance of the university.

3) The principle of systematicness: the selected indicators can reflect the systematicness and comprehensiveness of the comprehensive performance of the university.

4) Practical principle: the index should be scientific and complete, and be in line with the actual situation of the university [10].

3. Experiments

3.1. Experimental Background

As the rise in recent years, a kind of new things, microscope algorithm development will be in anatomy, histology, pathology, forensic science is to clinical diagnosis and other related disciplines have a significant impact, except in the integration of resources, saving money brings benefits, the main characteristics embodied in the remote communication, it is particularly important in the establishment of the model. With the rapid development of information technology, the widespread use of Internet, cloud computing, Internet of things and other technologies not only brings great changes to the way of life of human beings, but also enables access to human behavior data through a variety of terminal devices, which also leads to the explosive growth of the amount of existing data. Education, like other industries, has accumulated a lot of educational data with the advancement of information construction and smart campus construction, and it has become an inevitable trend to drive the development of education with data.

Based on this, it is urgent to solve the problems of data quality, storage and sharing in the field of education. Admittedly, colleges and universities have carried out management on the corresponding data, but the current state of data management is multi-headed, decentralized management without a system, which leads to management deadlock. At its root, the problem of data management is at a higher level, that is, there is confusion or absence in the process of data governance. The data governance of colleges and universities is controlled from the macro level, and it guides how to manage the data correctly from the micro level. Specifically speaking, the data governance of colleges and universities starts from three aspects of policy making, process guidance and result control to promote the improvement and innovation of services and the value creation of data.

3.2. Experimental Design

In this paper, a hierarchical structure model is constructed based on microscope algorithm. The first layer is the target layer: the university governance performance evaluation; The second layer is the criterion layer: talent training performance, teaching and research performance, scientific research performance, social service performance, logistics support performance five criteria; The third layer is the sub-standard layer: student training performance, staff training performance, professional construction, curriculum construction, teaching materials, training room construction, scientific research projects, scientific research achievements, etc. The fourth layer is the indicator layer, including 68 sub-indicators.

According to the PSF function principle of microscope, a pairwise judgment matrix is constructed for criterion layer and index layer respectively. Set said criterion layer relative to the target of two judgment matrix, said rule layer all the elements of performance (A talent training, teaching research performance, scientific research performance, D C B social service performance, E logistics support performance) for the evaluation target (financial performance evaluation of colleges and universities) relative importance or priority. Due to the relative importance between the two elements of
subjectivity, in order to reduce the subjective judgment distortion caused by as much as possible, I invite college education researchers, a gleam of experts and professors of colleges and universities, college managers and leaders and relevant experts and scholars on the criterion layer and index layer element between the relative importance of scores, revise the data with statistical method and information deviation, eventually forming the value of judgment matrix, which the results are shown in table 1.

Table 1. Comprehensive governance performance score from 2013 to 2018

	2013	2014	2015	2016	2017	2018
Cultivation of talents	65.47	71.54	74.24	74.70	76.44	81.96
Teaching research	37.52	18.49	31.81	45.15	56.97	45.22
Scientific research performance	50.16	56.83	69.23	81.47	86.59	74.21
Social services	79.14	73.96	72.27	72.49	77.25	89.34
Logistics support	68.27	71.47	66.49	60.85	63.84	69.64
Composite	57.15	56.80	63.39	69.45	74.68	72.19

4. Discussion

4.1. Construction and Analysis of University Governance Model Based on Microscope Algorithm
As shown in Figure 1, dry ice photos are observed under the microscope based on the automatic focusing algorithm. The efficiency and convenience of the microscope algorithm is conducive to the construction of governance model in universities. The author applied algorithm proposed in this paper, based on microscope university governance performance evaluation index system and evaluation model of a university in the governance effect of goal setting, implementation, monitoring, assessment, evaluation, etc, has made a comprehensive evaluation, comprehensive performance index by the cultivation of talents, teaching research, scientific research performance, social performance service performance and logistics support performance weighted combination. The educational concept and educational strength of the university are among the best among similar universities in guangdong province and even in China, and its financial data are representative. Therefore, the financial data of the university is selected as the empirical object. By consulting the data of relevant departments such as yearbook, annual report, student office, finance office, scientific research office, personnel department and the questionnaire data of mycos data research institute, and using the comprehensive performance evaluation model based on AHP to make longitudinal comparison of comprehensive performance of the university from 2013 to 2018.
As can be seen from Figure 2, the comprehensive performance composite index of the school increased steadily from 2013 to 2018, and decreased slightly in 2014 and 2015, reaching a peak of 74.68 in 2016 and a minimum of 56.80 in 2013. Among the five sub-indexes, the talent cultivation index rose steadily for six consecutive years from 2013 to 2017. From 2013 to 2018, the index of teaching, teaching and research was up on the whole, but repeated slightly. The highest value in 2017 was 56.97, and the lowest value in 2015 was 18.49. Scientific research performance index increased steadily from 2010 to 2014, and decreased slightly in 2015. The social service performance index rose in waves, but the performance was relatively repetitive, but overall stable. The logistics support performance index from 2013 to 2018 was generally stable between 60.85 and 71.47, with a slightly decreasing trend from 2014 to 2016, and a bottoming out and rebound from 2013 to 2015.

As shown in Figure 3, the index of talent cultivation performance and scientific research performance of the school has been rising steadily from 2013 to 2018, with a minimum of 65.47 in 2013 and a maximum of 81.96 in 2018, indicating that the school's talent cultivation performance has been developing steadily with the efforts of all teachers and students. Among them, the performance of staff training has made great progress from 2013 to 2018, with a minimum of 28.11 in 2013 and a maximum of 65.38 in 2015, an increase of 2.3 times, indicating that the university has made great progress in staff training in the past 6 years. Only with high-quality teachers can high-quality students be produced. As can be seen from figure 3, the student talent cultivation performance has been
performing very well and developing steadily at a high level. From 2013 to 2014, the student talent cultivation performance hovered at a high level. The Figure 4 shows that the school teaching research performance trend has spiraled wave during 2014-2015, 2014-2015 years teaching research performance decline, including teaching materials and teaching performance, curriculum construction performance in 2010-2011, by the construction of professional performance in 2014-2016 has been a significant reduction, the reason is that in recent years to develop the school curriculum and professional reform, apparent lagging behind; From 2015 to 2018, teaching and research performance showed a steady rise. Teaching materials, teaching and research performance and practice room construction showed a wave rise from 2014 to 2016, while professional construction performance showed a rapid rebound from 2013 to 2016, while curriculum construction showed a big fluctuation.

Figure 3. Changes of talent cultivation and scientific research performance index

Figure 4. Changes of teaching and research performance indicators and professional construction indicators

4.2. Suggestions for Improving the Governance Model of Colleges and Universities
From the macro level, governance not only requires the participation of multiple people, but also requires multiple steps. How to coordinate and plan as a whole needs the guidance of collaborative governance theory. The theory of collaborative governance will guide the governance subject to different interest demands, play different roles and assume corresponding responsibilities in the governance process, and is the theoretical guidance that connects the governance subject and
governance object closely and reasonably. In the process of scientific research data governance, we should constantly consolidate and strengthen the relationship between all parties, carry out governance closely around scientific research data, and improve the ability of governance subjects, so as to achieve the overall goal of data governance in colleges and universities. In addition, the theory of collaborative governance and the theory of stakeholders respectively put forward a new idea of governance from the macro and micro perspectives, that is, to share risks and responsibilities and governance results.

Therefore, in the process of data governance in colleges and universities, the theory of data life cycle is the basis and the theoretical guidance surrounding the governance object, which has been incorporated into every link and detail of scientific research data governance. Stakeholder theory focuses on the relationship and balance between participants from the perspective of governance subjects. And the theory of collaborative governance is to stand in a higher Angle, overall planning, seamless connection between the first two theories. The three theories guide the whole process of scientific research data management from different angles and heights.

5. Conclusions
Data governance in colleges and universities is the only way to make full use of data and improve the value of data. It is also the common demand to promote the development of colleges and universities themselves and improve the education environment. The data governance proposed in this paper is not to centralize, compulsively collect and uniformly manage the data in colleges and universities distributed among different researchers or groups, but to assist the group to rationally manage the data with embedded services through scientific and effective governance. The microscope algorithm combines the advantages of fast grayscale difference method and high-precision Laplace function method and realizes the transition from fast coarse adjustment to precise fine adjustment by changing the step size. There is no strict theoretical proof of the threshold value of the algorithm, but the significance of its existence and value range are verified by a large number of experiments. The algorithm has been successfully applied to the construction of university governance model.

The focus of this study is to build a data quality model from the perspective of data governance by combining the microscope algorithm, and to provide theoretical and practical guidance for the detection and evaluation of educational data quality through the construction and analysis of the educational data quality model. This study firstly analyzes the concept of data governance and expounds the meaning of educational data sources, characteristics and quality. Secondly, this paper analyzes the quality requirements of education data from the perspective of data governance, and obtains the first dimension of education data quality model. Again, by sorting out the index composition of the existing research data quality model, the index items that should be included in each dimension are obtained according to the dimension division of the education data quality model.

Evaluate the performance of education management of the current our country is still in its infancy, the current performance evaluation of colleges and universities still stays in spending allocation, budget target completion, the compliance level of execution, has yet to the economy, efficiency and effectiveness of the spending to make scientific evaluation, so this project was the first to establish university governance evaluation model based on microscope algorithm try to solve the theory and practice of university governance evaluation subject, has positive significance.

Acknowledgements
This work was supported by the Special Research Project on College Philosophy and Social Sciences in 2019 of the 13th Five-Year Plan for Educational Science in Guangdong Province (2019GXJK242), Shenzhen Education Scientific Planning Project in 2020 (ybzz20010)

References
[1] Bryant, A. (2015). “High-speed Imaging with the Scanning Tunneling Microscope”, Orthopaedic Journal of Sports Medicine, 3(2 Suppl), pp.145-165.
[2] Cobos C, Daza C, Cristhian Martinez, Mendoza M, & Paz A.(2016). “Calibration of Microscopic Traffic Flow Simulation Models Using a Memetic Algorithm with Solis and Wets Local Search Chaining (Ma-sw-chains)”, Lecture Notes in Computer Science, 10022(21), pp.365-375.

[3] Tajuddin, M. (2015). “Modification of Delon and Mclean Nodel in the Ssuccess of Information System for Good University Governance”, Turkish Online Journal of Educational Technology, 14(4), pp. 113-123.

[4] Christian Brogna, Matthias Millesi, Leslie Fiengo, Mark Richardson, & Ugur Türe. (2017). “Commentary: Giuseppe Campani (1635-1715, Rome, Italy): The First Use of a Microscope in Medicine and Surgery”, Neurosurgery, 82(2), pp.223-227.

[5] Michele Augusto Riva, Luca Borghi, & Fabio Pagni. (2016). “The First Recorded Use of Microscopy in Medicine: Pope Innocent Xii’s Autopsy Report”, Lancet, 388(10044), pp.559.

[6] Hopwood Nick. (2015). “Embryos under the Microscope: The Diverging Meanings of Life”, Journal of the History of Medicine & Allied Sciences, 62, 2.

[7] Ngadiman, Norhayati, Rahman, Ismail Abdul, Kaamin, Masiri, Amiruddin, Mohd Hasril, Leman, Abdul Mutalib, & Mokhtar, Mazlin. (2017).“Governance Strategies in Sustainable Campus Using Rasch Model”, Advanced Science Letters, 23(4), pp.3233-3236.

[8] Irena Vaivode. (2015). “Triple Helix Model of University–industry–government Cooperation in the Context of Uncertainties”, Procedia - Social and Behavioral Sciences, 213(2), pp. 1063-1067.

[9] Asghar Ebadiifar, & Niloofar Peykari. (2016). “Health Research Governance: Introduction of a New Web-based Research Evaluation Model in Iran: One-decade Experience”, Iranian Journal of Public Health, 45(10), pp.1309-1314.

[10] Roychoudhury, Saurav, Bhowmik, Anuj, & Chattopadhyay, Srobonti. (2015).“Innovation, Governance and Competition”, Mpra Paper, 61(4), pp.230-234.