INTRODUCTION

The perihepatic space is composed of different spaces, mainly the right subphrenic and subhepatic spaces. The liver is surrounded by the visceral peritoneum, which usually contains a small amount of serous fluid. The spread of inflammatory and tumoral processes to the perihepatic space is dependent on the distribution and dynamics of the peritoneal fluid. The latter is determined by hydrostatic pressure and the effect of gravity as well as peritoneal recesses and mesenteric reflections. Liver disease conditions may also extend to the liver capsule and subsequently to the perihepatic space. Extension from other peritoneal or extraperitoneal sites may follow the communication pathways through the hepatic ligaments to the perihepatic space (1).

Computed tomography (CT) is the usual cross-sectional imaging technique with which the perihepatic space abnormalities are discovered and evaluated. However, as magnetic resonance imaging (MRI) is being used more widely, it is crucial to be familiar with the appearance of these lesions on MRI. Moreover, the optimal contrast resolution of MRI allows better detection and characterization of some lesions in the perihepatic space compared to CT.

The purpose of this article was to describe the MRI characteristics of abnormalities of the perihepatic space and highlight and illustrate the value of MRI over computed tomography.

Keywords: Magnetic resonance imaging; Liver; Computed tomography; Peritoneum
peritoneum (1) and containing the obliterated umbilical vein, connects the anterior abdominal wall and the diaphragm to the liver. This ligament separates segments 2 and 3 from segment 4 (Fig. 1A). The falciform ligament forms a partial barrier between the right and left subphrenic space yet allows the transfer of fluid from one side to the other. The inferior part of the falciform ligament is elongated by the Teres ligament.

The coronary ligament, contiguous with the falciform ligament and composed of left and right ligaments, is the largest attachment of the liver to the diaphragm. The triangular ligaments are formed by fusion of inferior and superior reflections of the coronary ligaments. The left triangular ligament is short and does not compartmentalize the left subphrenic space, unlike the right triangular ligament, which is long and separates the right subphrenic space from the right subhepatic space (2).

The lesser omentum is divided into two parts: the gastrohepatic and the hepatoduodenal ligaments. The gastrohepatic ligament connects the lesser curve of the stomach to the liver and contains the coronary vein and left gastric artery. The hepatoduodenal ligament connects the duodenum to the liver and hosts the portal vein, hepatic artery, common hepatic duct, and part of the cystic duct.

The subhepatic space is divided into an anterior and a posterior space. The anterior subhepatic space is located posteriorly to the portal vein and freely communicates with the lesser sac via the Winslow foramen (3). The posterior subhepatic space is known as the Morison’s pouch and is contiguous with the anterior right Gerota fascia (4). The perihepatic space includes the right subphrenic space, the subhepatic space, the lesser sac, and the left perihepatic space.

Peritoneal disease extends to the perihepatic space in a clockwise direction through the right paracolic gutter to the Morrison’s pouch and the right subphrenic space. Right subphrenic pathology can spread to the left subphrenic space and anterior wall. Hepatobiliary disease can spread to the perihepatic space and peritoneum through the falciform ligament. The hepatoduodenal ligament constitutes a route for the spread of pancreatic disease to the porta hepatis and liver (Fig. 1B).

The anatomy, as described above, is presented in an animated picture (Supplementary Video 1).

Assessing the Perihepatic Origin of a Lesion

Assessing the perihepatic origin of a lesion versus its intrahepatic origin presents a major challenge, particularly when the lesion is large. It may be straightforward when the tumor is completely surrounded by liver parenchyma, indicating that it is intrahepatic, when the liver parenchyma is compressed and displaced, and when there is a fat layer between the tumor and the liver parenchyma indicating its extrahepatic origin. In other situations, other signs may be helpful such as identifying an arterial supply to a pedunculated tumor originating from the hepatic arteries, which suggests an intrahepatic location of the tumor. Identifying the tumor center may also suggest that the tumor is probably extrahepatic when the center is outside

![Fig. 1. Anatomy of the perihepatic space.](https://doi.org/10.3348/kjr.2019.0774)

Falciform ligament (yellow arrows, A) separates the left and right hepatic lobes, and the right from the left subphrenic space (dashed arrows). On axial T2-weighted MR images (B) shows the spread of hepatobiliary disease to the perihepatic space and peritoneum through the falciform ligament (yellow arrow). Pancreatic and gastric disease spread to the porta hepatis and liver through the lesser omentum (red arrow). MR = magnetic resonance.
the liver. Some signs may help differentiate between right hepatic and right retroperitoneal lesions. Large tumors, such as those found in the inferior vena cava or the right portal bifurcation, may displace the vessels. A large tumor arising from the right liver can increase the distance between the right anterior and the right posterior portal branches, while large extrahepatic tumors displace vessels differently. For example, a large adrenocortical carcinoma will displace the inferior vena cava and the portal branches anteriorly and clockwise. A summary is displayed in an animated picture (Supplementary Video 2).

Unusual Perihepatic Location of Normal Structures or Fluids

Structures Abnormally Located in the Perihepatic Space

The intestines, mainly the colon, may interpose temporarily or permanently between the liver and the diaphragm, which is known as Chilaiditi syndrome (5). Usually, it is an asymptomatic and incidental imaging finding. The gallbladder may very rarely be found wandering in a perihepatic position, even in the absence of acute volvulus in elderly persons. Varices may also be found around the liver as a consequence of portal hypertension. Fat may be found, although rarely, medially and adjacent to the lumen of the inferior vena cava, near the hepatic confluence. Lastly, the omentum may be used as packing material in hepatobiliary surgery, which then appears as a fatty mass in the perihepatic space (6).

Abnormal Location of Fluids

Perihepatic fluid collection may result from accumulation of ascites, blood, bile, chyle, pancreatic necrosis, or urine. MRI, due to its high-contrast resolution, may allow a better depiction of hemorrhagic content than CT and may thus provide a more precise definition of the location of a lesion. Perihepatic fluids are hypointense on T1-weighted images, even during the hepatobiliary phase.

Conversely, bile leaking into the perihepatic fluid will appear as a high signal intensity on late enhanced T1-weighted sequences after intravenous administration of specific hepatobiliary contrast agents (Fig. 2) (7). However, it has been shown that peritoneal fluids may display a signal intensity that increases progressively over time, even in the absence of any biliary leakage on T1-weighted gradient-echo sequences after injection of gadobenate dimeglumine (Gd-BOPTA) (8).

Disease Conditions

Infection

Stone-Related Perihepatic Abscesses

Depending on peritoneal anatomy and pressure gradients, abdominal infections are more likely to extend to the right side than to the left, and the perihepatic space, mainly the retrohepatic space, is regularly involved. Small foreign bodies, such as stercoliths left behind after an appendectomy, or dropped gallstones after a cholecystectomy, may get trapped in the perihepatic space, with subsequent formation of an abscess (12). The latter...
are generally small and discovered up to several years after the operation. They are increasingly being found owing to the development of laparoscopic procedures and may result in iterative febrile flareups whose origins are often underdiagnosed (13, 14).

Although CT is often sufficient for the detection of stercoliths, it may not always show a dropped gallstone with pure cholesterol content (Fig. 3). Unlike CT, MRI can detect all types of stones, even those that are small or non-calcified. Stones appear as hyperintense foci on T1-weighted images or as small hypointense abnormalities on both T1- and T2-weighted sequences.

Echinococcosis

Echinococcosis is a parasitic infection caused by the larva of the tapeworm Echinococcus. The two main forms include cystic hydatid disease (*Echinococcus granulosus*) and the less frequent alveolar hydatid disease (*Echinococcus multilocularis*). In both these forms, a cyst may rupture in the perihilar space (15-17).

MRI is the best imaging technique for characterizing these lesions and defining their extension, both intra and extrahepatically, particularly to the subdiaphragmatic area and hepatic hilum. It best shows the multivesicular cystic structure of a lesion, depicted as areas of high T2 signal intensity (Fig. 4) (18). In both forms of echinococcosis, diagnosis is confirmed by specific serum antibodies detected in blood and confirmed by immunoassay.

Tuberculosis

Abdominal tuberculosis, although very rare, is increasingly encountered, even in developed countries. Hepatic and peritoneal involvement is usually seen with active thoracic tuberculosis infection. However, the occurrence of isolated perihilar tuberculosis with small abscesses in the perihilar space has been described, although the exact mechanism remains unclear (19).

Table 1. Clinical Presentation and Treatment of the Different Perihilar Disease

Perihilar Space Abnormality	Symptoms and Clinical Examination	Treatment
Dropped stones-related perihepatic abscess	- History of cholecystectomy or appendectomy	
- Tenderness and pain in right upper quadrant
- Fever
- Elevated white blood cell count | - Antibiotic therapy
- Surgical removal of stones |
| Echinococcosis | - Cholestatic jaundice and epigastric/right upper quadrant pain
- Cholangitis
- Portal hypertension and biliary cirrhosis from invasion of bile ducts and hepatic blood vessels | - Anthelmintic drugs |
| Tuberculosis | - Abdominal pain
- Weight loss
- Anemia
- Fever with night sweats | - Antibiotic therapy |
| Perihepatic peritoneal metastases/ pseudomyxoma peritonei | - Imaging discovery unless large palpable mass | - Cytoreductive surgery |
| Diffuse peritoneal leiomyomatosis and fibromatosis | - Incidental discovery | - Surgery if necessary |
| Splenosis | - History of spleen trauma
- Fortuitous discovery | - Absence |
| Fitz-Hugh-Curtis syndrom | - Sudden onset of right upper quadrant pain
- Pelvic inflammatory disease | - Symptomatic
- Treatment of primary infectious involvement |
| Endometriosis | - Diffuse or basithoracic pain during menses
- Scapular or cervical pain
- Catamenial pneumothorax
- Pelvic endometriosis context | - Abdomen surgery
- Thoracic surgery if recurrent catamenial pneumothorax |
| Intra-peritoneal focal fat infarction | - Abdominal pain and tenderness correlating with the location of the infarcted focal fat infarction | Conservative treatment |
Tumoral Involvement: Perihepatic Carcinomatosis and Its Mimics

Tumoral involvement of the perihepatic space may occur as an extrahepatic extension of a malignant liver lesion, but also as dissemination from a tumor located elsewhere via the lymphatic route or from being spread to the peritoneal space (e.g., from the undersurface of the diaphragm or Morison’s pouch).

Perihepatic Peritoneal Metastases

CT and MRI features of perihepatic carcinomatosis include thickening, nodules, or masses in the peritoneum around the liver. Moreover, peritoneal enhancement after contrast medium intravenous administration may be abnormal in perihepatic peritoneal carcinomatosis. This enhancement is optimally detected five minutes after contrast medium injection. The subphrenic space is commonly involved, particularly on the right side, because of the preferential flow of peritoneal fluid into this space from the right paracolic gutter. Disease in this space is best depicted on contrast-enhanced reformatted coronal and sagittal MRI. MRI is very sensitive to small volumes of peritoneal carcinomatosis, showing thin peripheral lines of enhancement adjacent to the liver.

MRI may improve the detection of carcinomatosis, thus
facilitating the diagnosis of this disease condition and help in the evaluation of the peritoneal carcinomatosis index (20, 21). The advantages of MRI are related to its superior contrast resolution and diffusion-weighted MRI, which allows detection and characterization of carcinomatosis nodules, particularly in the round ligament fossa and the hepatic hilum (Figs. 5, 6) (22-24).

Pseudomyxoma Peritonei

Pseudomyxoma peritonei (PMP) is characterized by the presence of a large amount of mucin in the abdomen due to neoplastic mucin-secreting cells, typically from an appendiceal primary tumor. MRI features include signs like those seen in peritoneal carcinomatosis. However, the high signal on T2-weighted MRI, the extent to which scalloping is present, the loculation of the peritoneal effusions, the predominance of lesions in the perihepatic space, and involvement of the greater omentum. At the same time, the gastrointestinal tract is rarely involved, signs highly suggestive of PMP (20, 25).

The assessment of perihepatic involvement, especially that of the hepatic pedicle, lesser omentum, and hepatoduodenal ligament infiltration, is crucial, as these sites are associated with incomplete cytoreductive surgery (25). MRI, due to its superior contrast resolution, both with T2, diffusion, and gadolinium-enhanced T1-weighted...
sequences, allows improved detection and characterization of the perihepatic space, particularly when involvement is subtle or doubtful (Figs. 7, 8).

Diffuse Peritoneal Leiomyomatosis and Fibromatosis

Diffuse peritoneal leiomyomatosis findings include peritoneal nodules with histologic features similar to those of uterine leiomyomas (26). Malignant transformation is rare. MRI may have added value compared to CT for the characterization of homogeneous well-delineated soft-tissue perihepatic nodules, showing small well-delineated regular peritoneal nodules displaying low signal intensity on T2-weighted images and intermediate signal intensity on T1-weighted images. The nodules are homogeneously enhanced after intravenous administration of gadolinium chelates. Peritoneal fibromas are even rarer (Fig. 9).

Miscellaneous

Splenosis due to Implantation of Splenic Fragments

Most splenic implantations into the peritoneal cavity are found after a trauma to the spleen that has required a...
splenectomy, potentially leaving behind some fragments of the spleen. Splenosis can be spread by a capsular or intrahepatic extension (Fig. 10). MRI patterns of a single well-defined mass, which is similar to that of healthy spleen parenchyma on all sequences, along with a relevant history, should allow the diagnosis (27).

Fitz-Hugh-Curtis Syndrome

Fitz-Hugh-Curtis syndrome is frequently caused by Neisseria gonorrhoeae or Chlamydia trachomatis infections and have been reported as occurring in up to 59% of patients with pelvic inflammatory disease. It presents as a hepatic capsular and subcapsular enhancement after contrast medium intravenous administration, predominantly seen along the right antero-inferior hepatic surface on post-contrast arterial-phase CT or MRI (Fig. 11) (28, 29) due to inflammation of the hepatic capsule and edema. The diagnosis can be confirmed by laparoscopy, which allows visualization of the classic adhesions resembling violin strings and isolating the infectious agent responsible for the pelvic disease.

Fig. 9. Peritoneal fibromatosis in a 37-year-old female with abdominal pain. A 37-year-old female patient with a history of peritoneal fibromatosis operated on at the age of five with complete cytoreduction complaining of abdominal pain.
A. Axial contrast-enhanced CT image displays well-delineated peritoneal nodules containing calcifications, one of which is in the perihepatic space (arrows). B. Axial T2-weighted MR image reveals the fibrous nature of the nodules displaying low signal intensity (arrows).

Fig. 10. MRI characteristics can make the diagnosis of splenosis. A 53-year-old male, with a vehicle-accident history with subsequent surgical removal of the spleen some years ago. A liver lesion was fortuitously discovered. Axial (A) CT images obtained at a portal phase after contrast medium injection shows a rounded, well-defined, homogeneous, subhepatic lesion that seems to be extrahepatic, similar to liver parenchyma on this phase (arrow). Axial fat-suppressed T2-weighted (B), as well as fat-suppressed gadolinium-enhanced T1-weighted MR images at different phases (not shown) confirm the extrahepatic location of the lesion (arrows). The lesion displays mild hyperintensity to the liver on (B), slightly higher enhancement on portal phase, and lower enhancement on late phase. Red blood cell scintigraphy (C) confirms the diagnosis of perihepatic splenosis (arrow).
Endometriosis

Endometriosis may involve the diaphragm in approximately 1.5% of cases, and is symptomatic in nearly half of the cases (30). Pelvic endometriosis is almost always present. The hypothesized mechanism is that of retrograde menstruation of endometrial cells through the fallopian tubes with a clockwise peritoneal circulation through the right paracolic gutter towards the ipsilateral subdiaphragmatic area due to negative subdiaphragmatic pressure. Abdominal and liver MRI, including coronal fat-suppressed T1-weighted sequences, is the best imaging technique for diagnosing diaphragmatic endometriosis (31). Rousset et al. (30), in a series of 23 women with confirmed diaphragmatic endometriosis, showed a sensitivity of MRI of up to 83% for the detection of abnormalities in the perihepatic space. Lesions were mostly posterior nodules, although plaques and micronodular clustered lesions could also be found. The strength of the perihepatic endometriosis signal depends on the age of the lesions. Implants are typically hyperintense on T1-weighted and hypointense on T2-weighted MRI sequences (Figs. 12, 13) (32).

Intraperitoneal Focal Fat Infarction

Intraperitoneal focal fat infarctions include processes ranging from torsion of an epiploic appendage to infarction of the greater omentum. They may thus be found in the perihepatic space, mainly as a result of torsion of an epiploic appendage or omental infarction (33). Acute abdominal pain is the most common symptom. Differentiation between omental infarction and intraperitoneal focal fat infarction relies on the value of maximal diameter, the presence of a peripheral rim-like region, and the central dot sign. Of note, the post-infarction appendage can detach and wander around in the peritoneal cavity.

Fig. 11. Fitz-Hugh-Curtis syndrome. A 30-year-old female patient with abdominal pain and documented pelvic infection (Chlamydia trachomatis). Axial fat-suppressed gadolinium-enhanced T1-weighted MRI acquired at an arterial phase shows mild capsular perihepatic enhancement (arrow). Laparoscopy confirmed the presence of perihepatic adhesions typical of Fitz-Hugh-Curtis syndrome.

Fig. 12. Endometriosis of the right subphrenic space. A 28-year-old female patient followed-up for severe endometriosis and presenting with pain in the upper right quadrant and in the scapula during menstruation. Coronal T1-weighted MRI (arrow, A) optimally detects high-signal intensity, diffuse deposits on the right diaphragmatic cupola. However, on the corresponding coronal contrast-enhanced CT acquired at a portal phase (arrow, B), the diaphragmatic lesion is not visible. Furthermore, characterization of the lesions is not possible with CT based on their appearance.
cavity, covered by a fibrous capsule. It may even become lodged between the diaphragm and the superior surface of the liver (34), often on Glisson’s capsule. MRI optimally depicts the fat content of these well-circumscribed small lesions and may show signal loss on opposed phased gradient-echo MRI (Fig. 14).

CONCLUSION

The perihepatic space is frequently involved by a whole...

Fig. 13. MRI is the best imaging technique for the diagnosis of endometriosis.
A 32-year-old female was presenting with isolated unexplained lower thoracic pain which started seven years ago. Axial fat-suppressed abdominal T1-weighted MRI (A) detects a small posterolateral implant between the diaphragm and the liver, displaying a high signal intensity and suggesting endometriosis (arrow). The corresponding contrast-enhanced axial CT image (B) displays a non-specific hypoattenuating focus, only visible in retrospect (arrow). The radiologist interviewed the patient after the MRI, and she confirmed the catamenial nature of her thoracic pain. Three implants were seen during laparoscopy, and the diagnosis of perihepatic endometriosis was confirmed.

Fig. 14. Pseudolipoma of Glisson’s capsule.
Axial in (A) and out-of-phase (B) MRI sequences show a small, subcapsular, well-circumscribed lesion (arrows) displaying high signal intensity on the in-phase and signal drop on the out-of-phase sequence, suggestive of fatty content.
spectrum of diseases. The first objective of the radiological analysis is to confirm the perihepatic origin of the lesion. The identification of the nature of the lesion then relies on both CT and MRI features and clinical presentation. Detection of the extent of the disease and identification of its nature is optimally performed with MRI, particularly for infectious entities such as stone-related perihepatic abscesses, echinococcosis, perihepatic carcinomatosis, PMP, and perihepatic endometriosis.

Radiologists should thus be familiar with abnormal MRI features of the perihepatic space and be aware of the potential role and added value of this imaging technique in the evaluation of the perihepatic space.

Supplementary Materials

The Data Supplement is available with this article at https://doi.org/10.3348/kjr.2019.0774.

Supplementary Video Legends

Video 1. Perihepatic spaces
Coronary ligaments (in blue) attach the liver to the diaphragm and merge to form the triangular ligaments (green triangles). Morison pouch (purple arrow) corresponds to the posterior subhepatic space. Subphrenic space is divided into right (pink) and left spaces (orange). Coronal T2-weighted MR images shows the spread of peritoneal disease proceeding in a clockwise direction through the right paracolic gutter to the Morrison’s pouch (purple) and the right subphrenic space (pink). Right subphrenic disease can spread to the left subphrenic space and the anterior wall (orange).

Video 2. Determine intra versus perihepatic origin.
An animated picture demonstrates the key points to determine the origin intra versus perihepatic of a lesion with the example below.

In the first coronal fat-suppressed gadolinium-enhanced T1-weighted image obtained in a 48-year-old female treated for breast cancer, a peripherally-enhancing lesion is seen (in blue). This lesion is separated from the liver by a fat layer (yellow), indicating the extrahepatic origin of the lesion. Pathological examination diagnosed schwannoma of the lesser omentum.

In the coronal contrast-enhanced CT acquired at a late arterial phase obtained in a 55-year-old female with focal nodular hyperplasia (second image), the tumor (in blue) is vascularized by a hepatic artery (red), suggesting the hepatic origin of the lesion. In the last axial T2-weighted MRI image obtained in a 20-year-old female with an adrenocortical adenocarcinoma, the lesion (in blue) compresses the liver and displaces the inferior vena cava (red) anteriorly and clockwise (arrow), indicating the extrahepatic origin of this mass.

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

ORCID iDs
Angèle Bonnin https://orcid.org/0000-0003-0095-1060
Carole Durot https://orcid.org/0000-0001-9293-2312
Manel Djelouah https://orcid.org/0000-0003-0638-4415
Anthony Dohan https://orcid.org/0000-0002-8732-5603
Lionel Arrivé https://orcid.org/0000-0002-6184-6013
Pascal Rousset https://orcid.org/0000-0001-6956-2800
Christine Hoeffel https://orcid.org/0000-0002-2551-3545

REFERENCES

1. Kim S, Kim TU, Lee JW, Lee TH, Lee SH, Jeon TY, et al. The perihepatic space: comprehensive anatomy and CT features of pathologic conditions. *Radiographics* 2007;27:129-143
2. Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, et al. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. *Radiographics* 2012;32:437-451
3. DeMeo JH, Fulcher AS, Austin RF Jr. Anatomic CT demonstration of the peritoneal spaces, ligaments, and mesenteries: normal and pathologic processes. *Radiographics* 1995;15:755-770
4. Patel CM, Sahdev A, Reznek RH. CT, MRI and PET imaging in peritoneal malignancy. *Cancer Imaging* 2011;11:123-139
5. Oh SN, Rha SE, Byun JY, Kim JY, Song KY, Park CH. Chilaiditi syndrome caused by Fitz-Hugh-Curtis syndrome: multidetector CT findings. *Abdom Imaging* 2006;31:45-47
6. Mulé S, Colosio A, Cazejust J, Kianmanesh R, Soyer P, Hoeffel C. Imaging of the postoperative liver: review of normal appearances and common complications. *Abdom Imaging*
20. Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the Peritoneal Cancer Index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. *Ann Surg Oncol* 2015;22:1708-1715

21. Low RN, Barone RM, Bartelmez J, Sebrechts CP, Barone RM, Muller W. Multi-contrast diffusion-weighted and gadoxetate disodium-enhanced MRI can accurately predict the peritoneal cancer index preoperatively in patients being considered for cytoreductive surgical procedures. *Ann Surg Oncol* 2012;19:1394-1401

22. Dohan A, Hoeffel C, Soyer P, Jannot AS, Valette PJ, Thivolet A, et al. Evaluation of the peritoneal carcinomatosis index with CT and MRI. *Br J Surg* 2017;104:1244-1249

23. Low RN, Sebrechts CP, Barone RM, Muller W. Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings--a feasibility study. *AJR Am J Roentgenol* 2009;193:461-470

24. Low RN, Barone RM. Combined diffusion-weighted and gadoxetate-enhanced MRI can accurately predict the peritoneal cancer index preoperatively in patients being considered for cytoreductive surgical procedures. *Ann Surg Oncol* 2012;19:1394-1401

25. Menassel B, Duclos A, Passot G, Dohan A, Payet C, Isaac S, et al. Preoperative CT and MRI prediction of non-resectability in patients treated for pseudomyxoma peritonei from mucinous appendiceal neoplasms. *Eur J Surg Oncol* 2016;42:558-566

26. Al-Talib A, Tulantl T. Pathophysiology and possible iatrogenic cause of leiomyomatosis peritonealis disseminata. *Gynecol Obstet Invest* 2010;69:239-244

27. Pandey A, Pandey P, Ghasabeh MA, Varzaneh FN, Khoshpouri P, Shao N, et al. Accuracy of apparent diffusion coefficient in differentiating pancreatic neuroendocrine tumour from intrapancreatic accessory spleen. *Eur Radiol* 2018;28:1560-1567

28. Kim JY, Kim Y, Jeong WK, Song SY, Cho OK. Perihepatitis with pelvic inflammatory disease (PID) on MDCT: characteristic findings and relevance to PID. *Abdom Imaging* 2009;34:737-742

29. Czyzda-Pommersheim F, Kalb B, Costello J, Liao J, Meshksar A, Arif Tiwari H, et al. MRI in pelvic inflammatory disease: a pictorial review. *Abdom Radiol (NY)* 2017;42:935-950

30. Roussé P, Gregory J, Roussé-Jablonski C, Hugon-Rodin J, Regnard JF, Chapron C, et al. MR diagnosis of diaphragmatic endometriosis. *Eur Radiol* 2016;26:3968-3977

31. Beranger-Gibert S, Lagadec M, Boulay-Coletta I, Petit E, Barrau V, Zins M, et al. Hepatic and perihepatic involvement of female genital diseases and pregnancy: a review. *Abdom Imaging* 2015;40:1331-1349

32. Roussé P, Roussé-Jablonski C, Alifano M, Mansuet-Lupo A, Buy JN, Revel MP. Thoracic endometriosis syndrome: CT and MRI features. *Clin Radiol* 2014;69:323-330

33. Eberhardt SC, Strickland CD, Epstein KN. Radiology of Epiploic appendagitis: acute appendagitis, post-infarcted appendages, and imaging natural history. *Abdom Radiol (NY)* 2016;41:1653-1665

34. Prasad SR, Wang H, Rosas H, Menias CO, Nana VR, Middleton WD, et al. Fat-containing lesions of the liver: radiologic-pathologic correlation. *Radiographics* 2005;25:321-331