ON THE COX RING OF BLOWING UP THE DIAGONAL

HENDRIK BÄKER

Abstract. We compute the Cox rings of the blow-ups Bl\(\Delta\)(\(X' \times X'\)) and Bl\(\Delta\)(\(\mathbb{P}_n^1\)) where \(X'\) is a product of projective spaces and \(\Delta\) is the (generalised) diagonal.

1. Introduction

To a complete, normal variety with finitely generated divisor class group one can associate its Cox ring. In recent literature it has been discussed how the Cox ring behaves under blow-ups. In particular, it is of interest whether finite generation is preserved in this process, and, if so what a presentation in terms of generators and relations looks like, see for example [1, 3, 8, 10].

In the present note we employ the techniques developed in [2, 8] to compute the Cox rings of the following blow-ups. Let \(X' := \mathbb{P}_n^1 \times \ldots \times \mathbb{P}_n^r\) be a product of projective spaces and denote by \(\Delta_X \subseteq X := X' \times X'\) the diagonal. The variety \(X\) is spherical and Bl\(\Delta_X\)(\(X\)) inherits this property. Hence, it is known that the Cox ring \(\mathcal{R}(\text{Bl}_{\Delta_X}(X))\) is finitely generated, see [1]. Our first result is an explicit presentation.

Theorem 1.1. The Cox ring \(\mathcal{R}(\text{Bl}_{\Delta_X}(X))\) of the blow-up \(\text{Bl}_{\Delta_X}(X)\) is isomorphic to the \(\mathbb{Z}^r \times \mathbb{Z}^r \times \mathbb{Z}\)-graded factor algebra \(R_X/I_X\) where
\[
R_X := \mathbb{K}[T_{\infty}, T_{ij}^{r}; \quad r = 1, \ldots, r, \quad 0 \leq i < j \leq n_r + 2, \quad i \leq n_r],
\]
and the grading of \(R_X/I_X\) is given by
\[
\deg (T_{\infty}) = (0, 0, 1), \quad \deg (T_{ij}^{r}) = \begin{cases} (e_r, 0, 0) & \text{if } j = n_r + 1, \\
(0, e_r, 0) & \text{if } j = n_r + 2, \\
(e_r, e_r, -1) & \text{else}. \end{cases}
\]

In particular, the spectrum of the Cox ring \(\mathcal{R}(\text{Bl}_{\Delta_X}(X))\) is the intersection of a product of affine Grassmannian varieties (w.r.t. the Plücker embedding) with a linear subspace.

As a second class of examples we treat the (non-spherical) blow-up of the variety \(Y := \mathbb{P}_1^n\) in the generalised diagonal \(\Delta_Y := \{(x, \ldots, x); x \in \mathbb{P}_1\} \subseteq Y\). Again we prove that the Cox ring of \(\text{Bl}_{\Delta_Y}(Y)\) is finitely generated and we give an explicit presentation.

2010 Mathematics Subject Classification. 14C20, 14M25.
Acknowledgement. I would like to thank Jürgen Hausen for helpful discussions and suggestions.

2. Proofs of Theorems 1.1 and 1.2

Let us recall some definitions, for details see [1]. Let Z be a normal variety with free and finitely generated divisor class group $K := \text{Cl}(Z)$ and only constant invertible regular functions. Then we define its Cox ring as the K-graded K-algebra

$$R(Z) := \bigoplus_{K} \Gamma(Z, \mathcal{O}(D)).$$

If the Cox ring $R(Z)$ is finitely generated, we call its spectrum $\mathcal{Z} := \text{Spec}(R(Z))$ the total coordinate space of Z. The K-grading of $R(Z)$ gives rise to an action of the quasitorus $H_Z := \text{Spec}(K[1])$ on \mathcal{Z}. Moreover, there exists an open invariant subset, the characteristic space, $\hat{Z} \subseteq \mathcal{Z}$ admitting a good quotient $p_Z: \hat{Z} \to \hat{Z}/H_Z \cong Z$ for this action.

Before we enter the proofs we will sketch the methods developed in [2] [8]. Let Z be a toric variety with Cox construction $p_Z: \hat{Z} \to Z$, total coordinate space $\mathcal{Z} = \mathbb{K}^r$ and an ample class $w \in K$ in the divisor class group.

Now let \mathfrak{A} be a subscheme of Z; we ask for the Cox ring of the blow-up $\text{Bl}_{\mathfrak{A}}(Z)$ of Z in \mathfrak{A}. By Cox’ construction [6] the subscheme \mathfrak{A} arises from a homogeneous ideal $\mathfrak{a} = (f_1, \ldots, f_l)$ in the K-graded Cox ring $R(Z)$. For this consider the associated K-graded sheaf $\hat{\mathfrak{a}}$ on \mathcal{Z}; then \mathfrak{A} is given by $(p_Z*, \hat{\mathfrak{a}})_0$. As a first step we embed Z into a larger toric variety Z_1 such that the blow-up can be dealt with using methods from toric geometry. For this we consider the closed embedding

$$\pi: \mathbb{K}^r \to \mathbb{K}^{r_1}; \ z \mapsto (z, f_1(z), \ldots, f_l(z)),$$

where $r_1 := r + l$. We endow $\mathbb{K}[T_1, \ldots, T_r]$ with a grading of $K_1 := K$ by assigning to T_1, \ldots, T_r the original K-degrees and setting $\text{deg}(T_{r+1}) := \text{deg} f_1$ for the remaining variables. Then the quasitorus $H_{Z_1} := \text{Spec}(\mathbb{K}[1])$ acts on the affine space $\mathcal{Z}_1 := \mathbb{K}^{r_1}$ and this makes π equivariant. The class $w \in K_1$ gives rise to an open subset $\hat{Z}_1 \subseteq \mathcal{Z}_1$ and a toric variety $Z_1 := \hat{Z}_1/H_{Z_1}$.

The closed embedding π restricts to a closed embedding $\hat{\pi}: \hat{Z} \to \hat{Z}_1$ of the corresponding characteristic spaces and then descends to a closed embedding $\pi: Z \to Z_1$ of the respective quotients. The setting fits into the following commutative diagram.

\begin{eqnarray*}
R_Y := \mathbb{K}[S_{ij}: 1 \leq i < j \leq n + 2] \\
I_Y := (S_{ij}S_{kl} - S_{ik}S_{jl} + S_{il}S_{jk}; 1 \leq i < j < k < l \leq n + 2),
\end{eqnarray*}

and the grading of R_Y/I_Y is given by

$$\deg(S_{ij}) = \begin{cases} e_i & \text{if } i \leq n, j = n + 1, n + 2, \\
e_{n+1} & \text{if } i = n + 1, j = n + 2, \\
e_i + e_j - e_{n+1} & \text{else.} \end{cases}$$

Theorem 1.2. The Cox ring $\mathcal{R}(\text{Bl}_{\Delta_Y}(Y))$ of the blow-up $\text{Bl}_{\Delta_Y}(Y)$ is isomorphic to the \mathbb{Z}^{n+1}-graded factor algebra R_Y/I_Y where

\begin{eqnarray*}
R_Y := \mathbb{K}[S_{ij}: 1 \leq i < j \leq n + 2] \\
I_Y := (S_{ij}S_{kl} - S_{ik}S_{jl} + S_{il}S_{jk}; 1 \leq i < j < k < l \leq n + 2),
\end{eqnarray*}
The idea is to compute the Cox ring of the proper transform Z' of $Z \subseteq Z_1$ with respect to a toric blow-up of Z_1. The following lemma relates Z' to the blow-up $\text{Bl}_A(Z_1)$. Although the result was to be expected, we do not know of a reference and provide a proof.

Lemma 2.1. Let $b \subseteq O(Z_1)$ be a K_1-homogeneous ideal and let \mathfrak{B} be the corresponding subscheme of Z_1. Then the proper transform of $Z \subseteq Z_1$ under the blow-up $\text{Bl}_B(Z_1) \to Z_1$ is isomorphic to the blow-up of Z in the subscheme of Z_1 associated to the K-homogeneous ideal $\pi^*b \subseteq O(Z)$.

Remark 2.2. If we apply Lemma 2.1 in the case $b := \langle T_{r+1}, \ldots, T_r \rangle$, then we obtain $a = \pi^*b$ and the proper transform Z' of $Z \subseteq Z_1$ is the blow-up of Z in $p_Z(V(a))$. Moreover, if a is prime, then the associated subscheme \mathfrak{A} is the subvariety $p_Z(V(a))$ and Z' is the ordinary blow-up of Z in $p_Z(V(a))$.

Proof of Lemma 2.1. First blow-ups are determined locally. We consider a suitable partial open cover of \hat{Z}_1 and of the characteristic space \hat{Z}. Let $w \in K = K_1$ be an ample class of Z as above. We set

$$\Gamma := \{ \gamma \in \{0, 1\}^r_1; \ w \in \text{relint}(\text{cone}(\deg T_i; \text{where } \gamma_i = 1)) \}.$$

Then \hat{Z}_1 is covered by the H_2-invariant sets $\hat{Z}_1^\gamma := \hat{Z}_1 \setminus V(T^\gamma)$ where $\gamma \in \Gamma$. We now determine a partial cover which already contains $\pi(\hat{Z})$. For this we consider the subset

$$\Gamma' := \Gamma \cap (\{0, 1\}^r \times \{0\}^l) \subseteq \Gamma.$$

Then the corresponding open subvarieties cover the image of π. More precisely, if we set $\mathcal{Z}_\gamma := \pi^{-1}(\hat{Z}_1^\gamma)$, then we have

$$\hat{Z} = \bigcup_{\gamma \in \Gamma'} \mathcal{Z}_\gamma \quad \text{and hence} \quad \pi(\hat{Z}) \subseteq \bigcup_{\gamma \in \Gamma'} \mathcal{Z}_1^\gamma.$$

Moreover, we denote by $Z_\gamma := \hat{Z}_1^\gamma \sslash H_\gamma$ and $Z_{1,\gamma} := \hat{Z}_1 \sslash H_\gamma$, the respective quotient spaces and fix some $\gamma \in \Gamma'$. If we set $I_1 \subseteq K[T_1, \ldots, T_n]$ as the ideal generated by all the $T_{r+i} - f_i$, then the image of π is given by $V(I_1)$. The morphism π factors into an isomorphism $\pi': \hat{Z} \to V(I_1)$ and a closed embedding $\iota: V(I_1) \to \hat{Z}_1$.

On the algebraic side we set $A := O(\hat{Z})$ and $B := O(\hat{Z}_1)$. We write $B_\gamma, (B/I)_\gamma$ and A_γ for the localised algebras and $B_{(0)}, (B/I)_{(0)}$ and $A_{(0)}$ for their respective homogeneous components of degree zero. Then the situation fits into the following...
commutative diagrams.

\[
\begin{array}{c}
\xymatrix{ Z & V(I_1) \ar[rr]^\pi & & Z_1 \\
Z_\gamma \ar[u]^\pi' & V(I_1) \cap Z_\gamma \ar[u]^{\pi'_\gamma} \ar[r]^{i_\gamma} & Z_1 \gamma \ar[u]^{i_\gamma} \\
Z_\gamma \ar[u]^\pi' & Z_\gamma \ar[u]^{\pi'} & Z_1 \gamma \ar[u]^{i_\gamma} } \quad \xymatrix{ A & B/I_1 \ar[r]^\pi' & B \\
A(0) \ar[u]^\pi' & (B/I_1)(0) \ar[u]^{\pi'_r} \ar[r]^{i_\gamma} & B_{(0)} }\end{array}
\]

The proper transform of \(Z_\gamma \subseteq Z_{1,\gamma} \) is the blow-up of \(Z_\gamma \) with center given by the affine scheme associated to the ideal \(\iota^*b_{(0)} \subseteq (B/I_1)(0) \). Our assertion then follows from the fact that in \(A(0) \) the ideals \(\pi'^*(\iota^*b_{(0)}) \) and \((\pi'^*b)_{(0)} \) coincide.

Construction 2.3. Let \(b \) be the ideal \((T_{r+1}, \ldots, T_r) \) and \(Z' \to Z \) the proper transform of \(Z \subseteq Z_1 \) with respect to the toric blow-up \(\text{Bl}_B(Z_1) \to Z_1 \). We turn to the problem of determining the Cox ring \(R(Z') \). For this we set \(r_2 := r_1 + 1 \) and consider the \(r_1 \times r_2 \)-matrix

\[
A := [E_{r_1}, 1_l], \quad \text{where} \quad 1_l := (0, \ldots, 0, 1, \ldots, 1)^t.
\]

The dual map \(A^*: \mathbb{Z}^{r_1} \to \mathbb{Z}^{r_2} \) yields a homomorphism \(\alpha^* \) of group algebras and a morphism \(\alpha: (\mathbb{K}^*)^{r_2} \to (\mathbb{K}^*)^{r_1} \). Together with the canonical embeddings \(\iota_1^* \) and \(\iota_2^* \) we now have transfer the ideal

\[
I_1 := \langle T_{r+1-i}; i = 1, \ldots, l \rangle \subseteq \mathbb{K}[T_1, \ldots, T_{r_1}]
\]

by taking extensions and contractions via the construction

\[
\begin{align*}
I_1 & \quad I_1' := \langle \iota_1^*I_1 \rangle \\
\mathbb{K}[T_1, \ldots, T_{r_1}] & \quad \mathbb{K}[T_1^{\pm 1}, \ldots, T_{r_1}^{\pm 1}] \\
\mathbb{K}[T_1^{\pm 1}, \ldots, T_{r_1}^{\pm 1}] & \quad \mathbb{K}[T_1, \ldots, T_{r_1}]
\end{align*}
\]

and call the resulting ideal \(I_2 \). If we endow \(\mathbb{K}[T_1, \ldots, T_{r_2}] \) with the grading of \(K_2 := K_1 \times \mathbb{Z} \) given by

\[
\deg(T_i) := \begin{cases}
\deg_{K_1}(T_i), & \text{for } 1 \leq i \leq r, \\
\deg_{K_1}(T_i), & \text{for } r + 1 \leq i \leq r_1, \\
0, & \text{for } i = r_2,
\end{cases}
\]

then \(I_2 \) is \(K_2 \)-homogeneous and the following Proposition provides us with a criterion to show that \(I_2 \) defines the desired Cox ring.

Proposition 2.4 ([2, Proposition 3.3, Corollary 3.4]). If in the \(K_2 \)-graded ring \(R_2 := \mathbb{K}[T_1, \ldots, T_{r_2}]/I_2 \) the variable \(T_{r_2} \) is prime and does not divide \(a T_i \) with \(1 \leq i \leq r_1 \), then \(R_2 \) is Cox ring of the proper transform \(Z' \).

We return to our two cases of \(X = X' \times X' \) and \(Y = \mathbb{P}^n \). Both of them are toric varieties, their respective Cox rings are polynomial rings and the total coordinate spaces are

\[
\overline{X} = \bigoplus_{r=1}^n (\mathbb{K}^{n-r+1} \oplus \mathbb{K}^{n-r+1}) \quad \text{and} \quad \overline{Y} = \bigoplus_{n=1}^n \mathbb{K}^{2 \oplus \ldots \oplus 2^n}.
\]

On \(\overline{X} \) we will label the coordinates of the \(r \)-th factor with \(rT_{ij} \) where \(i = 0, \ldots, n_r \) and \(j = n_r + 1, n_r + 2 \). On \(\overline{Y} \) we will use the notation \(S_{ij} \) for the coordinates where similarly \(i = 1, \ldots, n \) and \(j = n + 1, n + 2 \).
The first step is to determine generators for the vanishing ideals of the generalised diagonals Δ_X and Δ_Y in the respective Cox rings, i.e. the ideals
\[a_X := I(p_X^{-1}(\Delta_X)) \subseteq \mathcal{O}(X) \quad \text{and} \quad a_Y := I(p_Y^{-1}(\Delta_Y)) \subseteq \mathcal{O}(Y). \]

Lemma 2.5. As above let a_X and a_Y be the ideals of the generalised diagonals Δ_X and Δ_Y in the respective Cox rings. Both of them are prime and they are generated by the following elements.

(i) The ideal a_X is generated by the 2×2-minors of the matrices
\[
\begin{bmatrix}
 rT_{0,n_1+1} & rT_{1,n_r+1} & \cdots & rT_{n_r,n_1+1} \\
 rT_{0,n_1+2} & rT_{1,n_r+2} & \cdots & rT_{n_r,n_1+2}
\end{bmatrix}, \quad r = 1, \ldots, r.
\]

(ii) The ideal a_Y is generated by the 2×2-minors of the matrix
\[
\begin{bmatrix}
 S_{1,n_1+1} & S_{2,n_1+1} & \cdots & S_{n,n_1+1} \\
 S_{1,n_1+2} & S_{2,n_1+2} & \cdots & S_{n,n_1+2}
\end{bmatrix}.
\]

The idea of the proof is to execute the computations on the respective tori. For future reference let us make the following remark.

Remark 2.6. Let $\iota : (\mathbb{K}^*)^n \to \mathbb{K}^n$ be the canonical open embedding and ι^* its comorphism. If $I \subseteq \mathbb{K}[T_1, \ldots, T_n]$ a prime ideal not containing any of the variables T_i, then $(\iota^*)^{-1}(\iota^*(I)) = I$ holds.

Proof of Lemma 2.5. Let $p_Z : \mathcal{Z} \to Z$ be the Cox construction of a toric variety Z and \mathcal{Z} its total coordinate space. We view the toric morphism p_Z as a morphism $\mathcal{Z} \to Z$ of the openly embedded dense tori. Moreover, we denote by $\Delta \subseteq Z$ a subvariety with $\Delta = \Delta \cap T_Z$ and write $\iota : \mathcal{Z} \to \mathcal{Z}$ and $\iota : T_Z \to Z$ for the canonical open embeddings.

Let $\mathfrak{d} \subseteq \mathcal{O}(T_Z)$ be the vanishing ideal of $\Delta \cap T_Z$. For the vanishing ideal of Δ in the Cox ring we obtain
\[I(\iota(\mathcal{Z})) = I(\iota^{-1}(\mathcal{Z})) = \sqrt{(\iota^*)^{-1}(\mathcal{Z})}. \]

We turn to i) and label the coordinates of
\[T_X = ((\mathbb{K}^*)^{n_1} \times (\mathbb{K}^*)^{n_1}) \times \cdots \times ((\mathbb{K}^*)^{n_r} \times (\mathbb{K}^*)^{n_r}) \]
by rU_{ij} where $r = 1, \ldots, r$, $i = 1, \ldots, n_r$ and $j = n_r+1, n_r+2$. Then the comorphism p_X^* of the corresponding Laurent polynomial rings is given as
\[p_X^* : \mathbb{K}[rU_{ij}] \to \mathbb{K}[r T_{ij}^\pm rU_{ij}]. \]

The vanishing ideal of $\Delta_X \cap T_X$ is generated by
\[rU_{i,n_r+1} - rU_{i,n_r+2} \quad \text{where} \quad r = 1, \ldots, r, \quad \text{and} \quad i = 1, \ldots, n_r. \]

Note that for any $r = 1, \ldots, r$ and $i, i' = 1, \ldots, n_r$ this ideal also contains the elements
\[rU_{i,n_r+1} - rU_{i,n_r+2} \quad \text{and} \quad rU_{i',n_r+1} - rU_{i',n_r+2}. \]

Pulling back all these equations via p_X^* yields the ideal $\iota_X^*(a_X)$ in the Laurent polynomial ring $\mathcal{O}(T_X)$. Since a_X is an ideal of 2×2-minors, it is prime (in fact, it is the vanishing ideal of the Segre embedding). Hence Remark 2.6 gives our assertion.
We first have to compute their preimages under \(p_Y^* \). For this let \(0 \leq T \) above ideals according to Construction 2.3, i.e. we set
\[
T_i, n+1 \langle T_{i, n+2} \rangle
\]
Then for any pairwise distinct \(0 \leq T \) we denote by \(\iota \) where the additional variables are Lemma 2.7. Let \(\iota \) and the same argument as in i) yields the assertion.

We denote the functions from Lemma 2.5 by \(r_{ij} \in \mathcal{O}(\mathcal{Y}) \) and \(g_{ij} \in \mathcal{O}(\mathcal{Y}) \) where \(r \) corresponds to the \(r \)-th matrix and in both cases \(i, j \) define the respective columns. These functions \(r_{ij} \) and \(g_{ij} \) give rise to the stretched embeddings
\[
\pi_X : \bigoplus_{r=1}^{r} \mathbb{K}^{2(n+1)} \rightarrow \bigoplus_{r=1}^{r} \left(\mathbb{K}^{2(n+1)} \otimes \mathbb{K}\left(\frac{n+1}{2}\right) \right)
\]
\[
(x_1, \ldots, x_r) \mapsto ((x_1, 1f_{ij}(x_1)), \ldots, (x_r, r_{ij}(x_r)))
\]
\[
\pi_Y : \mathbb{K}^{2n} \rightarrow \mathbb{K}^{2n} \otimes \mathbb{K}\left(\frac{n}{2}\right)
\]
\[
y \mapsto (y, g_{ij}(y)).
\]
The vanishing ideals of the images are given by
\[
I_{X, 1} := \langle r_{ij} - r_{ij}; r = 1, \ldots, r, 0 \leq i < j \leq n_r + 2, i \leq n_r \rangle,
\]
\[
I_{Y, 1} := \langle S_{ij} - g_{ij}; 1 \leq i < j \leq n + 2, i \leq n \rangle.
\]
We denote by \(\iota_{X, 1}^*, \iota_{X, 2}^*, \iota_{Y, 1}^*, \alpha_X^*, \iota_{Y, 2}^* \), the respective isomorphisms from Construction 2.3. The new Laurent polynomial rings are then given by
\[
\mathbb{K}[T_\infty^\pm, r_{ij}^\pm; r = 1, \ldots, r, 0 \leq i < j \leq n_r + 2, i \leq n_r],
\]
\[
\mathbb{K}[S_{ij}; 1 \leq i < j \leq n + 2],
\]
where the additional variables are \(T_\infty \) and \(S_{n+1, n+2} \) respectively. We transfer the above ideals according to Construction 2.3 i.e. we set
\[
I_{X, 2}^* := \langle \alpha_X^* (\iota_{X, 1}^*(I_{X, 1}^*)) \rangle
\]
\[
= \langle r_{ij}T_\infty^\pm - r_{ij}; r = 1, \ldots, r, 0 \leq i < j \leq n_r + 2, i \leq n_r \rangle,
\]
\[
I_{Y, 2}^* := \langle \alpha_Y^* (\iota_{Y, 1}^*(I_{Y, 1}^*)) \rangle
\]
\[
= \langle S_{ij}S_{n+1, n+2} - g_{ij}; 1 \leq i < j \leq n + 2, i \leq n \rangle.
\]
We first have to compute their preimages under \(\iota_{X, 2}^* \) and \(\iota_{Y, 2}^* \), then we then show that \(T_\infty \) and \(S_{n+1, n+2} \) define prime elements and divide non of the remaining variables. Since the resulting relations are very closely related to the Plücker relations, we introduce some new notation. For this let \(0 \leq i, j, k, l \leq n \) be distinct integers. Then we denote by \(q(i, j, k, l) \) the corresponding Plücker relation; i.e. if \(i < j < k < l \) holds, then we set
\[
q(i, j, k, l) := T_{ij}T_{kl} - T_{ik}T_{jl} + T_{il}T_{jk} \in \mathbb{K}[T_{ij}], 0 \leq i < j \leq n].
\]

\textbf{Lemma 2.7.} Let \(0 \leq i_0, j_0 \leq n \) be distinct integers. In the Laurent polynomial ring \(\mathbb{K}[T_{ij}^\pm], 0 \leq i < j \leq n] \) consider the ideal
\[
I := \langle q(i_0, j_0, k, l), 0 \leq k, l \leq n, i_0, j_0, k, l \text{ pairwise distinct} \rangle.
\]
Then for any pairwise distinct \(0 \leq i, j, k, l \leq n \) we have \(q(i, j, k, l) \in I \).
Proof. We first claim that for distinct \(0 \leq i, j, k, l, m \leq n\) we have

\[
(*) \quad q(i, j, k, l), q(i, j, k, m), q(i, j, l, m) \in I \implies q(i, k, l, m) \in I.
\]

For this we assume without loss of generality that \(i < j < k < l < m\) holds. The claim then follows from the relation

\[
q(i, k, l, m) = \frac{T_{jk}}{T_{ij}} q(i, j, l, m) - \frac{T_{jl}}{T_{ij}} q(i, j, k, m) + \frac{T_{jm}}{T_{ij}} q(i, j, k, l) \in I.
\]

Now consider distinct \(0 \leq \alpha, \beta, \gamma, \delta \leq n\). If \(\{\alpha, \beta, \gamma, \delta\} \cap \{i_0, j_0\} \neq \emptyset\) holds, then \(q(\alpha, \beta, \gamma, \delta) \in I\) follows from the above claim \((*)\). So assume that \(\{\alpha, \beta, \gamma, \delta\}\) and \(\{i_0, j_0\}\) are disjoint. Applying \((*)\) to the three collections of indices

\[
i_0, j_0, \alpha, \beta, \gamma; \quad i_0, j_0, \alpha, \beta, \delta; \quad i_0, j_0, \alpha, \gamma, \delta
\]

shows that \(q(i_0, \alpha, \beta, \gamma), q(i_0, \alpha, \beta, \delta)\) and \(q(i_0, \alpha, \gamma, \delta)\) lie in \(I\). Another application of \((*)\) then proves \(q(\alpha, \beta, \gamma, \delta) \in I\). \(\square\)

We are now ready to prove Theorem 1.2. For Theorem 1.1 we require some further preparations.

Proof of Theorem 1.2. Using Lemma 2.7 we see that the ideals \(\langle \iota_{Y,2}^* R_Y \rangle\) and \(I_{Y,2}'\) coincide. Since \(I_Y\) is prime from Remark 2.6 we infer that

\[
(i_{Y,2})^{-1} I_{Y,2}' = (i_{Y,2})^{-1} \langle \iota_{Y,2}^* R_Y \rangle = I_Y.
\]

Since \(I_Y\) is the ideal of Plücker relations, \(S_{n+1,n+2}\) is prime and does not divide any of the remaining variables. We determine the grading of the Cox ring. The ring \(O(Y) = \mathbb{K}[T_{ij}; \quad i = 1, \ldots, n, \quad j = n+1, n+2]\) is \(\mathbb{Z}_+\)-graded by \(\deg(S_{ij}) = e_i\). Under the stretched embedding the new variables \(S_{ij}\) where \(1 \leq i < j \leq n\) are assigned the degrees \(\deg(S_{ij}) = \deg(f_{ij}) = e_i + e_j\). Finally, under the blow-up the weights are modified according to 2.3 to give the asserted grading. \(\square\)

We turn to the remaining case of \(X = X' \times X'\).

Lemma 2.8. Let \(R := \mathbb{K}[T_{\infty}, T_1, \ldots, T_n]\) be graded by \(\mathbb{Z}_+\) and let \(I \subseteq R\) be a homogeneous ideal. Suppose that \(T_{\infty} \notin \sqrt{I}\) and \(\deg(T_{\infty}) > 0\) hold. If the ideals \(I + \langle T_{\infty} \rangle\) and \(\sqrt{I}\) are prime, then so is \(I\).

Proof. Compare also [9, Proof of Theorem 1]. Since \(I + \langle T_{\infty} \rangle\) is a radical ideal, we have \(\sqrt{I} \subseteq I + \langle T_{\infty} \rangle\). With this we obtain

\[
\sqrt{I} = (I + \langle T_{\infty} \rangle) \cap \sqrt{I} = I + \langle T_{\infty} \rangle \sqrt{I}.
\]

Note that for the second equality we used that \(\sqrt{I}\) is prime and \(T_{\infty} \notin \sqrt{I}\) holds. Let \(\pi: R \to R/I\) denote the canonical projection of \(\mathbb{Z}_+\)-graded algebras. Then we have \(\pi(\sqrt{I}) = \pi((T_{\infty}) \sqrt{I})\) and \(\deg(\pi(T_{\infty})) > 0\). The assertion follows from the graded version of Nakayama’s Lemma. \(\square\)

Lemma 2.9 ([9, Proposition 4]). Let \(1 \leq c \leq n\) be an integer. Then in the polynomial ring \(\mathbb{K}[T_{ij}; \quad 0 \leq i < j \leq n + 2]\) the following relations generate a prime ideal

\[
-T_{ik} T_{jk} + T_{il} T_{jk}; \quad 0 \leq i < j \leq c < k < l \leq n + 2,
\]

\[
T_{ij} T_{kl} - T_{ik} T_{jk} + T_{il} T_{jk}; \quad 0 \leq i < j < k < l \leq n + 2 \quad \text{different from above}.
\]
Proof of Theorem 1.2. First we claim that the ideal \(I_X \) is prime. For this note that the ideal \(\langle T_\infty \rangle + I_X \) is generated by \(T_\infty \) and the equations
\[
- r_{T_{jk}} T_{ij} + r_{T_{ik}} T_{jk} \text{ for } 0 \leq i < j \leq n_r, \quad k = n_r + 1, \quad l = n_r + 2,
\]
\[
- r_{T_{kl}} T_{ij} - r_{T_{ik}} T_{jk} + r_{T_{il}} T_{jk} \text{ for } 0 \leq i < j < k < l \leq n + 2 \text{ diff. f. above}
\]
where \(r = 1, \ldots, r \). From Lemma 2.6 we infer that \(\langle T_\infty \rangle + I_X \) is prime; we check the remaining assumptions of Lemma 2.8. Consider the classical grading of \(R_X \); then \(I_X \) is homogeneous and \(\deg T_\infty > 0 \) holds. We only have to verify that \(V(I_X) \) is irreducible. For this recall that we transferred the ideal \(I_{X,1} \) via
\[
I_{X,1}' = \langle \alpha^*_X I_{X,1} \rangle \quad \text{and} \quad I_{X,2}' = \langle \alpha^*_X I_{X,2} \rangle.
\]
Treating the index \(\infty \) as \(n_r + 1, n_r + 2 \) in Lemma 2.7 we see that the latter ideal is given by \(I_{X,2}' = \langle \alpha^*_X(I_X) \rangle \). We track the respective zero sets.
\[
V(I_X) = V(I_{X,2}') = \alpha_X^{-1} V(I_{X,1}) = \alpha_X^{-1}(\alpha_X^{-1}(V(I_{X,1}))) \]
Since \(\alpha_X \) has connected kernel and \(V(I_{X,1}) \) is the graph of \(\bar{X} \) and as such irreducible, so is \(V(I_X) \). This then implies that \(T_\infty \) is prime.

By Remark 2.6 this means that \(I_X = (\tau^*_X)^{-1}(\tau^*_X I_X) = (\tau^*_X)^{-1}(I_{X,2}') \) holds. By Proposition 2.4 the only thing left to verify is that \(T_\infty \) does not divide any of the remaining variables. For this we compute the grading of the Cox ring; for reasons of degree it is then impossible for \(T_\infty \) to divide any other variable. The \(\mathbb{Z}^r \times \mathbb{Z}^r \)-grading of
\[
O(\bar{X}) = \mathbb{K}[\tau_{T_{ij}}; r = 1, \ldots, r, \ i = 0, \ldots, n_r, \ j = n_r + 1, n_r + 2]
\]
is given by
\[
\deg(\tau_{T_{ij}}) = \begin{cases} (e_r, 0) & \text{if } j = n_r + 1, \\ (0, e_r) & \text{if } j = n_r + 2. \end{cases}
\]
When stretching the embedding we add for every \(r = 1, \ldots, r \) the variables \(\tau_{T_{ij}} \) where \(0 \leq i < j \leq n_r \). These are assigned the degrees \(\deg(\tau_{T_{ij}}) = \deg(\tau_{g_{ij}}) = (e_r, e_r) \). Finally under the blow-up the degrees are modified according to Construction 2.3 to give the asserted grading. \(\square \)

References

[1] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface. Cox rings. 2011. [arXiv:1003.4299v2[math.AG]]
[2] H. Bäker, J. Hausen, and S. Keicher. On Chow quotients of torus actions. preprint: [arXiv:1203.3759]
[3] M. Brion and F. Knop. Contractions and flips for varieties with group action of small complexity. J. Math. Sci. Univ. Tokyo, 1(3):641–655, 1994.
[4] A. Castravet and J. Tevelev. \(\overline{M}_{0,n} \) is not a Mori Dream Space. preprint: [arXiv:1311.7673]
[5] A.-M. Castravet and J. Tevelev. Hilbert’s 14th problem and Cox rings. Compos. Math., 142(6):1479–1498, 2006.
[6] D. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom, 4(1):17–50, 1995.
[7] S. Goto, K. Nishida, and K. Watanabe. Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik’s question. Proc. Amer. Math. Soc., 120(2):383–392, 1994.
[8] J. Hausen, S. Keicher, and A. Laface. Computing Cox rings. preprint: [arXiv:1305.4343]
[9] J. Hausen and M. Liebendörfer. The Cox ring of the space of complete rank two collineations. Math. Nachr., 285(8-9):974–980, 2012.
[10] J. C. Ottem. On the Cox ring of \(\mathbb{P}^2 \) blown up in points on a line. Math. Scand., 109(1):22–30, 2011.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 12, 72076 Tübingen, Germany
E-mail address: hendrik.baeker@mathematik.uni-tuebingen.de