On the automorphism group of a Johnson graph

Ashwin Ganesan*

Abstract

The Johnson graph \(J(n, i) \) is defined to be the graph whose vertex set is the set of all \(i \)-element subsets of \(\{1, \ldots, n\} \), and two vertices \(A, B \) are said to be adjacent in this graph whenever \(|A \cap B| = i - 1 \). In Ramras and Donovan [SIAM J. Discrete Math, 25(1): 267-270, 2011], it is conjectured that if \(n = 2i \), then the automorphism group of the Johnson graph \(J(n, i) \) is \(S_n \times \langle T \rangle \), where \(T \) is the complementation map \(A \mapsto A^c \) and \(A^c := \{1, \ldots, n\} \setminus A \). We resolve this conjecture in the affirmative. The proof uses only elementary group theory and is based on an analysis of the clique structure of the graph.

Index terms — Johnson graph, automorphism group, cliques

1. Introduction

The Johnson graph \(J(n, i) \) is defined to be the graph whose vertex set is the set of all \(i \)-element subsets of \(\{1, \ldots, n\} \), and two vertices \(A, B \) are said to be adjacent in this graph whenever \(|A \cap B| = i - 1 \). This graph has been well-studied in the literature (cf. [1] [2] [3] [4] [5] [8] [9] [10]). The automorphism group of a graph is the set of all permutations of the vertex set of the graph that preserves adjacency [6]. In [10], it is proved that if \(n \neq 2i \), then the automorphism group of the Johnson graph \(J(n, i) \) is isomorphic to \(S_n \). In [10, Conjecture 1, p. 269] it is conjectured that if \(n = 2i \), then the automorphism group of \(J(n, i) \) is isomorphic to \(S_n \times \langle T \rangle \), where \(T \) is the complementation map \(A \mapsto A^c \) and \(A^c := \{1, \ldots, n\} \setminus A \). In the present paper, this conjecture is resolved in the affirmative.

Actually, the automorphism group of \(J(n, i) \) for both the \(n \neq 2i \) and \(n = 2i \) cases was already determined in [7], but the proof given there uses heavy group-theoretic machinery. The main result of [10] was to provide a proof for the \(n \neq 2i \) case that uses only elementary group theory; the proof is based on an analysis of the clique structure of the graph. In [10] the authors leave the \(n = 2i \) case open but make a conjecture for this case. We resolve this conjecture in the affirmative by providing a proof that again uses only elementary group theory and a similar analysis of the clique structure of the graph.

*Department of Electronics and Telecommunication Engineering, Vidyalankar Institute of Technology, Wadala, Mumbai, India. Email: ashwin.ganesan@gmail.com.
We first recall some basic facts about the Johnson graphs $J(n,i)$. Two vertices A, B are adjacent in this graph iff their intersection $A \cap B$ has cardinality $i - 1$, and this occurs exactly when the cardinality of their symmetric difference is 2. The Johnson graph $J(n,i)$ is isomorphic to the Johnson graph $J(n,n-i)$; an explicit bijection between their vertex sets that preserves adjacency is the complementation map $T: A \mapsto A^c$. Hence, without loss of generality we shall restrict our study of the Johnson graphs $J(n,i)$ to the case where $i \leq n/2$. Also, the graphs $J(n,1)$ are the complete graphs and hence are not very interesting. The graphs $J(n,2)$ are the line graphs of complete graphs, and their automorphism groups are known. Thus, when studying $J(n,i)$ henceforth, it is assumed that $i \geq 3$.

Each permutation in S_n acts in a natural way on the set of i-element subsets of $\{1, \ldots, n\}$, and this induced action on the vertices of $J(n,i)$ is an automorphism of the graph. Also, distinct permutations in S_n induce distinct automorphisms of the i-element subsets. Hence S_n is isomorphic to a subgroup of the automorphism group of $J(n,i)$. In some cases, S_n happens to be the (full) automorphism group of $J(n,i)$. A special case of the results in [7] Theorem 2(a)(c)] is that when $n \neq 2i$, the automorphism group of $J(n,i)$ is isomorphic to S_n; a special case of the results in [7] Theorem 2(e)] is that when $n = 2i$, the automorphism group of $J(n,i)$ is isomorphic to $S_n \times S_2$. The proofs given in [7] use heavy group-theoretic machinery. An elementary combinatorial proof of the former result is given in [10], and an elementary combinatorial proof of the latter result is given in the present paper.

The following is the main result proved in the present paper:

Theorem 1. If $n = 2i$, then the automorphism group of the Johnson graph $J(n,i)$ is $S_n \times \langle T \rangle$, where T is the complementation map $A \mapsto A^c$.

For $\theta \in S_n$, let ρ_θ denote the permutation of the vertex set of $J(n,i)$ induced by θ. It is clear that $\{\rho_\theta : \theta \in S_n\}$ is a subgroup of the automorphism group of $J(n,i)$. When $n = 2i$, the subgroup $\langle T \rangle$ also acts as a group of automorphisms of $J(n,i)$:

Lemma 2. Suppose $n = 2i$. Then the complementation map $T: A \mapsto A^c$ is an automorphism of the Johnson graph $J(n,i)$.

Proof: Let A and B be two vertices in $J(n,i)$. We show that A and B are adjacent in $J(n,i)$ iff A^c and B^c are adjacent in $J(n,i)$. Recall that two vertices are adjacent in $J(n,i)$ iff their intersection has cardinality $i - 1$. The cardinality $|A^c \cap B^c| = n - |A \cup B| = n - (|A| + |B| - |A \cap B|) = n - 2i + |A \cap B|$, which equals $|A \cap B|$ since $n = 2i$. Since $A \cap B$ and $A^c \cap B^c$ have the same cardinality, the complementation map preserves adjacency and nonadjacency in $J(n,i)$. The group $\{\rho_\theta : \theta \in S_n\}\langle T \rangle$ of automorphisms of $J(n,i)$ obtained so far can be expressed as a direct product:

Lemma 3. Let T denote the complementation map $A \mapsto A^c$. The group $H := \{\rho_\theta : \theta \in S_n\}\langle T \rangle$ of automorphisms of $J(2i,i)$ is isomorphic to the direct product $S_n \times \langle T \rangle \cong S_n \times S_2$.

2
Proof: Observe that if A is any i-element subset of $\{1, \ldots, n\}$, then $[\theta(A)]^c = \theta(A^c)$, whence T and ρ_θ commute. It follows that $\{\rho_\theta : \theta \in S_n\}/T$ is a group and its two factors are normal subgroups. It remains to show that the two factors $\{\rho_\theta : \theta \in S_n\}$ and $\langle T \rangle$ have a trivial intersection. By way of contradiction, suppose $T = \rho_\theta$ for some $\theta \in S_n$. Then θ takes $\{1, \ldots, i - 1, i\}$ to its complement $\{i + 1, \ldots, 2i\}$, and $\{1, \ldots, i - 1, i + 1\}$ to its complement $\{i, i + 2, \ldots, 2i\}$. Hence θ takes the common elements $\{1, \ldots, i - 1\}$ to $\{i + 2, \ldots, 2i\}$, and hence the remaining elements $\{i, i + 1\}$ to $\{i, i + 1\}$. Take $A = \{2, \ldots, i - 1, i, i + 1\}$. Then $A^{\rho_\theta} \supseteq \{i, i + 1\}$. Thus $A^{\rho_\theta} \neq A^c$, a contradiction.

Notation. Fix a vertex X of the graph $J(n, i)$. Let L_i denote the set of vertices of $J(n, i)$ whose distance to X is exactly i. Thus, $L_0 = \{X\}$, and L_1 is the set $N(X)$ of neighbors of X. Let G denote the automorphism group of $J(n, i)$. The stabilizer of X in G is denoted G_X.

We use the following additional notation from [10]. Each neighbor of a vertex X in $J(n, i)$ is of the form $(X - \{p\}) \cup \{q\}$ for some $p \in X, q \notin X$. We denote this neighbor by $Y_{p,q}$. For each $p \in X$, the set of neighbors $\{Y_{p,q} : q \notin X\}$ forms a clique, denoted by Y_p. The set $\{Y_p : p \in X\}$ is a partition of the set $N(X)$ of neighbors of X into i cliques, each of cardinality $n - i$. Similarly, for each $q \notin X$, the set $\{Y_{p,q} : p \in X\}$ forms a clique, denoted by Z_q. The set $\{Z_q : q \notin X\}$ is a partition of $N(X)$ into $n - i$ cliques, each of cardinality i. Each maximal clique in $J(n, i)$ that contains the vertex X is of the form $\{X\} \cup Y_p$ for some $p \in X$ or of the form $\{X\} \cup Z_q$ for some $q \notin X$ (cf. [10] Lemma 1).

We call each clique Y_p a clique of the first kind. Similarly, each clique Z_q is a clique of the second kind. When $n \neq 2i$, the cardinality of a clique of the first kind is not equal to the cardinality of a clique of the second kind; thus, any automorphism of the graph that fixes the vertex X must permute the set of cliques of the first kind in $N(X)$ amongst themselves. On the other hand, when $n = 2i$, the cliques in $N(X)$ of the first and second kind have the same cardinality, and so it is possible that there is an automorphism in G_X that takes a clique of the first kind to a clique of the second kind. Indeed, we show below that such an automorphism exists and can be expressed in terms of the complementation map.

Proposition 4. Suppose $n = 2i$, and let X be a vertex of $J(n, i)$ and let $g \in G_X$. Then there exist $\theta \in S_n$ and $i \in \{0, 1\}$ such that the actions of g and $\rho_\theta T^i$ on $L_0 \cup L_1$ are identical.

Proof: Let $g \in G_X$. Then g acts on the set $N(X)$ of neighbors of X, and hence permutes the maximal cliques in $N(X)$ amongst themselves. Recall that these maximal cliques are either of the first kind or the second kind. We consider two cases.

First suppose that g permutes the set of cliques in $N(X)$ of the first kind amongst themselves. Since $g \in G_X$, g acts bijectively on the set of all maximal cliques in $N(X)$, and so g also permutes the set of cliques of the second kind amongst themselves. Hence $g : Y_p \mapsto Y_{\theta_1(p)}, Z_q \mapsto Z_{\theta_2(q)}$ for some $\theta_1 \in \text{Sym}(X), \theta_2 \in \text{Sym}(X^c)$. Define $\theta \in S_n$ to be the map that takes j to $\theta_1(j)$ if $j \in X$ and that takes j to $\theta_2(j)$ if $j \in X^c$. As shown in [10] p. 268, the actions of g and ρ_θ on $L_0 \cup L_1$ are identical.
For the rest of the proof, suppose that \(g \) takes some clique of the first kind to a clique of the second kind. So there exist \(p' \in X, q' \notin X \) such that \(g : Y_{p'} \mapsto Z_{q'} \). We show that \(g \) takes every clique of the first kind to some clique of the second kind. Observe that \(Z_{q'} \) contains exactly one vertex from \(Y_{p'} \), for each \(p \in X \). Any two cliques of the first kind are disjoint, and \(g \) must map disjoint cliques to disjoint cliques. Also, any two cliques of the second kind are disjoint, whereas a clique of the first kind and a clique of the second kind meet: \(Y_p \cap Z_q \neq \emptyset \) since it contains \(Y_{p,q} \). Thus, if \(g \) takes a clique of the first kind to a clique of the second kind, then \(g \) takes each clique of the first kind to some clique of the second kind. Hence \(g \) interchanges the set of cliques of the first kind and the set of cliques of the second kind.

Thus \(g : Y_p \mapsto Z_{\theta_1(p)}, Z_q \mapsto Y_{\theta_2(q)} \) for some \(\theta_1 : X \mapsto X^c \) and \(\theta_2 : X^c \mapsto X \). Define \(\theta \in S_n \) to be the map that takes \(j \) to \(\theta_1(j) \) if \(j \in X \) and that takes \(j \) to \(\theta_2(j) \) if \(j \in X^c \). Recall that \(\rho_\theta \) is defined as \(\rho_\theta \) induced on the vertex set of \(J(n,i) \) and that \(T \) denotes the complementation map \(A \mapsto A^c \).

We show that the actions of \(g \) and \(\rho_\theta T \) on \(L_0 \cup L_1 \) are identical. It is clear that both the actions fix \(L_0 = \{ X \} \). For \(g \in G_X \) implies \(g \) fixes \(X \). And \(X^{\rho_\theta T} = (X^c)^T = X \). Let \(Y_{p,q} \) be a vertex in \(L_1 \), and consider the action of \(g \) and \(\rho_\theta T \) on this vertex. Recall that \(Y_{p,q} \) is the unique vertex in the intersection \(Y_p \cap Z_q \). We have that \((Y_p \cap Z_q)^g = Z_{\theta_1(p)} \cap Y_{\theta_2(q)} = Y_{\theta_2(q),\theta_1(p)} \). The vertex \(Y_{p,q} \) has the same image under \(\rho_\theta T \) as under \(g \): \((Y_{p,q})^{\rho_\theta T} = ((X - \{ p \}) \cup \{ q \})^{\rho_\theta T} = [(X^{\theta_1} - \{ \theta_1(p) \}) \cup \{ \theta_2(q) \}]^T = [(X^c - \{ \theta_1(p) \}) \cup \{ \theta_2(q) \}]^T = (X - \{ \theta_2(q) \}) \cup \{ \theta_1(p) \} = Y_{\theta_2(q),\theta_1(p)} \). Thus, \(g \) and \(\rho_\theta T \) act identically on \(L_1 \).

The following result, which is proved in [10] Lemma 2 and Proposition 1], does not use the condition that \(n \neq 2i \) and hence also applies when \(n = 2i \):

Lemma 5. In the Johnson graph \(J(n,i) \), if an automorphism \(g \) fixes a vertex \(X \) and each of its neighbors, then it is the trivial automorphism.

We now complete the proof of the main theorem.

Corollary 6. If \(n = 2i \), then the automorphism group of the Johnson graph \(J(n,i) \) is \(S_n \times \langle T \rangle \), where \(T \) is the complementation map \(X \mapsto X^c \).

Proof: Let \(g \in G_X \). By Proposition [\ref{prop:automorphism}] there exist \(\theta \in S_n \) and \(i \in \{0, 1\} \) such that the action of \(g \) and \(\rho_\theta T^i \) are identical on \(L_0 \cup L_1 \). Hence, \(g^{-1} \rho_\theta T^i \) acts trivially on \(L_0 \cup L_1 \). By Lemma [\ref{lem:trivialautomorphism}], \(g^{-1} \rho_\theta T^i \) is the trivial automorphism of \(J(n,i) \). Hence \(g = \rho_\theta T^i \). This proves that every element in \(G_X \) is one of the \(2i! \) automorphisms specified in the proof above, i.e. every element in \(G_X \) is either one of the \(i! \) elements in \(G_X \) that permutes the \(i \) cliques of the first kind amongst themselves and the \(i \) cliques of the second kind amongst themselves, or is one of the \(i! \) elements in \(G_X \) that interchanges the set of cliques of the first kind and the set of cliques of the second kind. Hence \(|G_X| = 2i! \). Finally, since the graph \(J(n,i) \) is vertex-transitive, the automorphism group \(G \) has order \(|G_X| \binom{n}{i} = 2i! \cdot \binom{n}{i} = 2i! \). Hence the group of automorphisms \(S_n \times \langle T \rangle \) obtained above is the (full) automorphism group of \(J(n,i) \).

\(\blacksquare \)
References

[1] M. C. Cuaresma, M. Giudici, and C. E. Praeger. Homogeneous factorisations of
Johnson graphs. *Designs, Codes and Cryptography*, 46:303–337, 2008.

[2] A. Dabrowski and L. S. Moss. The Johnson graphs satisfy a distance extension
property. *Combinatorica*, 20:295–300, 2000.

[3] M. Daven and C. A. Rodger. The Johnson graph $J(v, k)$ has connectivity δ.
Congressus Numerantium, 139:123–128, 1999.

[4] A. Devillers, M. Giudici, C. H. Li, and C. E. Praeger. Primitive decompositions
of Johnson graphs. *Journal of Combinatorial Theory Series A*, 115:925–966,
2008.

[5] T. Etzion and S. Bitan. On the chromatic number, colorings, and codes of the
Johnson graph. *Discrete Applied Mathematics*, 70:163–175, 1996.

[6] C. Godsil and G. Royle. *Algebraic Graph Theory*. Graduate Texts in Mathematics
vol. 207, Springer, New York, 2001.

[7] G. A. Jones. Automorphisms and regular embeddings of merged Johnson graphs.
European Journal of Combinatorics, 26:417–435, 2005.

[8] S-H. Kim, B. Park, and Y. Sano. The competition numbers of Johnson graphs.
Discussiones Mathematicae Graph Theory, 30:449–459, 2010.

[9] M. Numata. A characterization of Grassman and Johnson graphs. *Journal of
Combinatorial Theory Series B*, 48:178–190, 1990.

[10] M. Ramras and E. Donovan. The automorphism group of a Johnson graph.
SIAM Journal on Discrete Mathematics, 25(1):267–270, 2011.