A Review on Metal–Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials

Zhiwei Zhang1, Zhihao Cai1, Ziyuan Wang1, Yaling Peng1, Lun Xia1, Suping Ma1, Zhanzhao Yin1, Yi Huang1

HIGHLIGHTS

• The theoretical knowledge in the field of microwave absorption is summarized in detail.
• The recent progress of metal–organic frameworks-derived porous carbon-based nanocomposites as microwave absorption materials is reviewed.

ABSTRACT The development of microwave absorption materials (MAMs) is a considerable important topic because our living space is crowded with electromagnetic wave which threatens human’s health. And MAMs are also used in radar stealth for protecting the weapons from being detected. Many nanomaterials were studied as MAMs, but not all of them have the satisfactory performance. Recently, metal–organic frameworks (MOFs) have attracted tremendous attention owing to their tunable chemical structures, diverse properties, large specific surface area and uniform pore distribution. MOF can transform to porous carbon (PC) which is decorated with metal species at appropriate pyrolysis temperature. However, the loss mechanism of pure MOF-derived PC is often relatively simple. In order to further improve the MA performance, the MOFs coupled with other loss materials are a widely studied method. In this review, we summarize the theories of MA, the progress of different MOF-derived PC-based MAMs, tunable chemical structures incorporated with dielectric loss or magnetic loss materials. The different MA performance and mechanisms are discussed in detail. Finally, the shortcomings, challenges and perspectives of MOF-derived PC-based MAMs are also presented. We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.

KEYWORDS Metal–organic frameworks; Porous carbon; Microwave absorption material; Reflection loss; Effective absorption bandwidth
1 Introduction

The rapid development of science and technology made many kinds of electronic devices become irreplaceable role in human’s daily life [1–7]. However, the electronic devices make the space rife with electromagnetic waves (EMWs) [8–14]. The EMWs become a new and more hazardous source of pollution as water, air and noise pollution [15–17]. On the one hand, the undesirable EMW may make strong interference to the nearby instruments, causing their malfunctioning and signal interruption. On the other hand, EMW may harm human’s health which cause some disease such as cancer and endocrine disorder [18, 19]. Besides, plants can be inactive, variation and even die with the strong EMW radiation [20, 21]. It is urgently need for human to solve the problem of EMW pollution, while in the field of military, many advanced weapons such as warcraft are the key target of the enemy. EMW stealth technology of military equipment is a crucial solution to evade detection and attack. Coating of MAMs on military equipment is an effective anti-detection method [22]. Therefore, the exploration of high-performance MAMs is of great significance in both civil and military fields.

Recently, MAMs have received much attention because they have the ability to attenuate EMW. They can convert EMW into thermal energy or other forms of energy to dissipate [23, 24]. The ideal MAMs are often multiple loss mechanisms and they required to have lightweight, thin thickness, wide absorption bandwidth and strong absorption characteristics [25, 26].

Metal–organic frameworks (MOFs) are a kind of crystalline porous material with periodic network structure, which is composed of inorganic metal center (metal ion or metal cluster) and organic ligand connected by self-assembly [27–30]. Due to large amounts of organic ligands that could be used, MOFs have various of compositions and structures. As we know, more than 20,000 MOFs have been reported so far [31, 32]. MOFs have attracted lots of research interest due to their performance diversity, which are potential to extensive uses in many fields, such as electrochemical energy storage [33, 34], catalysis [35, 36], purification [37, 38] and sensing [39, 40]. Moreover, with MOFs as the precursor, carbon and metal-based compounds can be generated in situ by high-temperature pyrolysis in an inert atmosphere [28, 41, 42]. Fortunately, the morphologies of MOFs are still well preserved after pyrolysis [43, 44]. The MOF-derived PC nanocomposites also possess the desirable properties from MOFs [45] such as their tunable chemical structures, large specific surface area, uniform pore distribution, diverse morphology and chemical stability, which enable MOF-derived PC to be an ideal candidate for MA.

MOF-derived PC-based nanocomposites have been widely studied in the field of MAMs, but the attenuation mechanism may be relatively simple. In order to improve the attenuation performance, they usually coupled with other lossy materials. Based on the above views, how to design and prepare MOF-derived PC-based MAMs is now a hot research topic [46, 47]. In this review, we summarize the recent progress of several MOF-derived PC-based nanocomposites as MAMs such as Co, Ni, Fe, Zn, Cu, Ti, Zr and rare-earth (RE) MOF-derived PC-based nanocomposites. Besides the pure MOF, multi-metal MOF or tunable chemical composition incorporated with other loss material had also been fabricated as MAMs. Furthermore, MAMs with different morphology had been reviewed. Finally, we put forward some personal insights into the current status and perspectives in the future research direction.

2 Theories of Microwave Absorption

When the incident EMW contacts with the surface of the MAMs, as shown in Fig. 1, three situations may happen. Part of the incident EMW reflects on the surface of the MAMs (reflected EMW), part of it goes to the interior of the MAMs and absorbed by the MAMs (adsorbed EMW), and the rest of the EMW goes through the MAMs (transmitted EMW) [48]. When designing MAMs, researchers expect the incident EMW to be dissipated as much as possible inside the MAMs to reduce reflected EMW and transmitted EMW. Therefore, a good MAM usually needs to meet two conditions: good impedance matching and strong EMW attenuation ability [49, 50]. The good impedance matching requires incident EMW goes into the MAMs as much as possible and reduces the reflection on the material surface [51]. The ideal impedance matching requires that the complex permittivity ($\varepsilon_r = \varepsilon' - j\varepsilon''$) is equal to the complex permeability ($\mu_r = \mu' - j\mu''$). In the formula, ε' and μ' represent the ability to store electrical and magnetic energy, while ε'' and μ'' refer to the loss of electrical and magnetic energy [52, 53].
Transmission line theory, which is shown as follows [56–60]:

\[R_L \text{ is calculated by the } \delta_m \text{ comparable to } 90\% \text{ of } MA. \text{ The } RL \text{ value of } -20 \text{ dB}\]

absorption ability. For example, the \(RL \) value of -10 dB of MAMs [24, 54, 55].

The loss capacity of the EMW which enters into the interior impedance matching. The EMW attenuation ability means the loss capacity of the EMW which enters into the interior impedance matching degree. The equation is shown [61, 62]. The delta-function is another method to evaluate the EM impedance matching. If |\(\Delta \)| tends to far away from zero, it gives poor microwave absorption.

The MAMs can be roughly divided into three types according to their loss mechanisms including dielectric loss materials, magnetic loss materials and multiple loss materials, as shown in Table 1. Dielectric loss materials are represented by carbon materials [66, 67], non-magnetic metal powder [68, 69], polymers [70, 71], non-magnetic metal oxides [72, 73], non-oxygen ceramics [74, 75] and so on. They possess features such as high strength, resistance to high temperature, excellent electrical conductivity and low density, but effective absorption bandwidth (EAB) and the MA performance may be not sufficient [76, 77]. Magnetic loss materials are represented by magnetic metal powder and compounds [78, 79], ferrite [80–87], carbonyl iron [88–90] and so on. However, their high density and poor stability limit their practical application [91]. The dielectric and magnetic loss factors, defined as tan \(\delta_e = \epsilon''/\epsilon' \) and tan \(\delta_m = \mu''/\mu' \), are suggested to evaluate on dielectric and magnetic losses [92–94].

The dielectric loss ability mainly stems from electrical conductivity loss and polarization relaxation loss [95, 96]. The electrical conductivity loss is that when the EMWs enters into the MAMs, the charge carriers would form a current under the action of the electric field, and then, the electric energy converts to the thermal energy or other form of energy and dissipated out [97, 98], thus increasing EMW attenuation. However, if the conductivity is too high, the incident EMW will be reflected by a large amount, resulting in impedance mismatch and poor EMW attenuation. The polarization relaxation loss is split into ionic polarization, electronic polarization, dipoles relaxation polarization and interfacial polarization (spatial polarization) [55, 99]. Ion polarization is caused by the relative displacement of cations and anions. Electron polarization is caused by position change of the constituent atoms relative to the nucleus, and thus, the dipole moment is generated. Ion polarization and electron polarization usually occur in the frequency range of

\[
K = \frac{4\pi \sqrt{\mu_r \epsilon_r} \times \sin \left(\frac{\delta_e + \delta_m}{2} \right)}{c \times \cos \delta_e \times \cos \delta_m}
\]

(4)

\[
M = \frac{4\mu_r \epsilon_r \cos \delta_e \times \cos \delta_m \times \sqrt{\mu_r \epsilon_r} \times \sin \left(\frac{\delta_e + \delta_m}{2} \right)}{(\mu_r \cos \delta_e - \epsilon_r \cos \delta_m)^2 + \left[\sin \left(\frac{\delta_e + \delta_m}{2} \right) \right] (\mu_r \cos \delta_e + \epsilon_r \cos \delta_m)^2}
\]

(5)

The small delta value and close to zero indicate good impedance matching. If |\(\Delta \)| is not easy to meet this requirement. We can artificially adjust electromagnetic parameters (\(\epsilon \) and \(\mu \)) to improve the impedance matching. The EMW attenuation ability means the loss capacity of the EMW which enters into the interior of MAMs [24, 54, 55].

Reflection loss (RL) is often used to evaluate the EMW absorption ability. For example, the RL value of -10 dB is comparable to 90% of MA, and the RL value of -20 dB is comparable to 99% of MA. The RL is calculated by the transmission line theory, which is shown as follows [56–60]:

\[
Z = \left| Z_m/Z_0 \right| = \sqrt{\mu_r/\epsilon_r} \times \tan \left[\frac{(2\pi fd/c \sqrt{\epsilon_r \mu_r})}{2} \right]
\]

(1)

\[
R_L = 20 \log \left| (Z_m - Z_0)/(Z_m + Z_0) \right|
\]

(2)

\[
Z_0 \text{ is the impedance of free space (377 } \Omega) \text{, } Z_m \text{ is the input impedance of MAMs, } f \text{ is the frequency of EMW, } d \text{ is the thickness of the MAMs, and } c \text{ is velocity of light, respectively. When } Z=1 \text{, the wave impedance of the MAMs is exactly the same as that of the free space. The incident EMW can enter the MAMs completely without reflected wave. Therefore, } Z=1 \text{ is an ideal situation. When the value of } Z \text{ is equal or close to 1, it is beneficial for improving MA ability [61, 62]. The delta-function is another method to evaluate the EM impedance matching degree. The equation is shown as follows [63–65]:}
\]

\[
|\Delta| = \left| \sinh^2 (Kfd) - M \right|
\]

(3)

Fig. 1 Schematic diagram of interaction between MAMs and microwaves
Multiple loss material: Combination of the above
- Magnetic loss material: Magnetic metals and compounds, ferrite, carbonyl iron, etc.
- Dielectric loss material: Carbon materials, non-magnetic metal powder, polymer, non-magnetic metal oxides, non-oxygen ceramics, etc.

The multiple loss material is not just a single loss mechanism; it combined the advantages of various losses.

Table 1: Classification table of common MAMs

Types of MAMs	Typical materials	Loss mechanisms
Dielectric loss material	Carbon materials, non-magnetic metal powder, polymer, non-magnetic metal oxides, non-oxygen ceramics, etc.	Electrical conductivity loss, polarization relaxation loss (dipoles relaxation polarization and interfacial polarization)
Magnetic loss material	Magnetic metals and compounds, ferrite, carbonyl iron, etc.	Hysteresis loss, eddy current loss and residual loss
Multiple loss material	Combination of the above	Multiple loss

Ultraviolet, visible and infrared light, which is much higher than the microwave frequency range (2-18 GHz), so they are excluded [100, 101]. Dipoles relaxation polarization refers to the polarization caused by the rotation of the dipole moment in the direction of the electric field, and it can greatly influence the dielectric loss [41, 102]. The relaxation loss can be analyzed by Debye equation [103–105]:

\[
\varepsilon' = \varepsilon_{\infty} + (\varepsilon_S - \varepsilon_{\infty}) \frac{1}{1 + \omega^2 \tau^2}
\]

\[
\varepsilon'' = (\varepsilon_S - \varepsilon_{\infty}) \frac{\omega \tau}{1 + \omega^2 \tau^2}
\]

We can deduce an equation from Eqs. (3) and (4) as follows:

\[
\left(\varepsilon' - \frac{\varepsilon_S + \varepsilon_{\infty}}{2} \right)^2 + \left(\varepsilon'' \right)^2 = \left(\frac{\varepsilon_S - \varepsilon_{\infty}}{2} \right)^2
\]

where \(\varepsilon_S \) is the static dielectric constant, \(\varepsilon_{\infty} \) is the dielectric constant of infinite frequency, and \(\tau \) is the time of relaxation.

The circle of this equation is called Cole–Cole semicircle [106, 107]. Each Cole–Cole semicircle represents a polarization relaxation process [108, 109]. The points on the semicircle correspond to the values of the real and imaginary parts of the dielectric constant at a certain frequency calculated by the Debye equation. Interfacial polarization usually appears at the interface of heterogeneous medium, which is caused by the accumulation of electrons or ions at the interface under the action of the external electric field [110]. Generally speaking, dielectric materials can be wideband absorption. However, the disadvantage is that the low-frequency absorption effect is poor and it is difficult to achieve the thin coating wideband absorption.

Magnetic loss refers to the phenomenon that the work is done by the outside world to a magnetic material and then the work is converted into heat during the process of magnetization or demagnetization [111]. It includes hysteresis loss, eddy current loss and residual loss [112, 113]. The hysteresis loss is due to the hysteresis loop relationship between the magnetic perceptual strength and the magnetic field strength. Normally, the hysteresis loss often occurred in the weak field can be excluded [114]. When a conductor moves in an inhomogeneous magnetic field or is in a time-varying magnetic field, the energy loss caused by the induced current in the conductor is called eddy current loss. It can be defined as [115–117]:

\[
C_0 = \frac{\mu''}{(\mu')^2} = \frac{2}{3} \pi \mu^0 \delta d^2
\]

where \(\delta \) is the electrical conductivity of material, and \(d \) is the thickness of the MAMs. From the equation, \(C_0 \) is a constant at a certain thickness of the MAMs with the change of frequency. This is one of the ways to determine whether EMW loss only results from the eddy current loss [118]. The residual loss refers to other losses except hysteresis loss and eddy current loss [77, 101].

The multiple loss material is not just a single loss mechanism, and it combined the advantages of various losses.

We all know that the synergistic effects between the dielectric loss and magnetic loss contribute to the excellent EMW absorption ability, which result in the good impedance matching and strong EM wave attenuation of the MAMs. However, the conflict between the two sides is still exist. In order to get the EMW into the material as much as possible, it will inevitably reduce the attenuation ability of the MAMs to the EMW. Therefore, it is necessary to coordinate impedance matching and EMW attenuation in practical application. The attenuation constant \(\alpha \) can be defined as [119, 120]:

\[
\alpha = \frac{\sqrt{\pi f}}{c} \sqrt{(\mu'\varepsilon'' - \mu'' \varepsilon') + \sqrt{(\mu'\varepsilon'' - \mu'' \varepsilon')^2 + (\mu''\varepsilon'' + \mu' \varepsilon')^2}}
\]
In the formula, λ is the wavelength of EMW, d_m and f_m are the thickness and corresponding frequency of maximum RL values, and $|\mu_r|$ and $|\epsilon_r|$ are the modulus of complex permeability and permittivity at f_m, respectively.

3 MOF-Derived PC-Based Nanocomposites as MAMs

As we know, MOFs are composed of inorganic metal center (metal ion or metal cluster) and organic ligand [121, 122]. Through direct pyrolysis of MOFs, they can be converted into metal-doped carbon, and the structure does not change significantly. We can simple and fast synthesis of MAMs by pyrolysis. However, the pure MOF-derived PC-based nanocomposites have not been functionalized, the absorption loss mechanism is simple and MA performance may be not exciting. By incorporated with materials with different absorbing loss mechanisms, impedance matching can be improved and the MA performance can be enhanced.

3.1 Magnetic Single-Metal MOF-Derived PC-Based Nanocomposites as MAMs

Common magnetic metals are Fe, Co and Ni. They often act as inorganic metal centers to synthesize MOF. When they are directly pyrolyzed, the MA performance may not be very good because the simple loss mechanism may lead to impedance mismatch. They often coupled with dielectric loss material to improve impedance matching and rational design on the microstructure to introduce multiple loss mechanisms.

3.1.1 Co-MOF-Derived PC-Based Nanocomposites as MAMs

The most widely studied MOF-derived PC-based nanocomposites as MAMs are the Co-MOF. The typical Co-MOF is ZIF (zeolitic imidazolate framework)-67, which is prepared through the self-assembly of Co$^{2+}$ and 2-methylimidazole. In Kuang’s work, they pyrolyze Co-based MOFs (Co-MOF, ZIF-67) to synthesize porous Co/C composite under inert atmosphere with different pyrolysis temperature [123]. The morphology before and after sintering has not changed much, just the surface was wrinkled, as shown in Fig. 2. The sample pyrolysis at 500 °C shows better MA performance. The maximum RL of Co/C-500 reached −35.3 dB at 5.8 GHz with a thickness of 4 mm, and the EAB was 5.80 GHz (8.40–14.20 GHz) corresponding to a thickness of 2.5 mm. The magnetic loss of Co, the large dielectric loss value of carbon and the porous structure result in the MA performance, but the RL and EAB are not very satisfactory. Since the tunable of inorganic metal center and organic ligand, MOFs have various of compositions and structures. Co-MOF-derived PC-based nanocomposites as MAMs have been reported by many groups. Kong synthesized Co/C pyrolysis from the cubic [Co(INA)$_2$]MOF by isonicotinic acid as organic ligand [124]. Wang’s group constructed Co/C composites via pyrolysis a new Co-based MOF named [Co$_2$O(cptpy)$_2$(DMF)] (CPT-1-Co, Hcptpy = 4′-(4-carboxyphenyl)-4,2′:6′,4″-terpyridine, DMF = N,N-dimethylformamide), by reacting a multi-dentate ligand, 4′-(4-carboxyphenyl)-4,2′:6′,4″-terpyridine (Hcptpy), with Co(OAc)$_2$ salt [125]. More works of Co/C synthesized from pure Co-MOF have also been reported [126, 127]. However, the MA performance of pure Co-MOF-derived PC-based nanocomposites is not quite satisfying. The reason may be the low relatively complex permittivity, and high relatively complex permeability leads to poor impedance matching performance, thus limiting their application in MAMs. So, Co-MOF coupled with other loss material, especially dielectric loss material, is a better solution to improve the MA performance.

When they coupled with MOF-derived PC, they would show unexpected performance. The MOF-derived PC/dielectric loss material nanocomposites have many advantages, such as low cost, easy preparation and low density. Moreover, the additional loss mechanisms are created, and electrical loss, polarization loss, the interfacial and multiple scattering may lead to the good MA performance.

Carbon materials such as graphene, carbon nanotube (CNT) and carbon nanofiber (CNF) have aroused wide attention as MAMs due to their excellent physical and chemical properties, including their lightweight, high specific surface area, mechanical strength, thermal stability, corrosion resistance, electric conductivity and dielectric properties. Graphene, composed of sp^2-bonded carbon atoms, has a lot of advantages such as electrical, thermal...
and mechanical properties. Graphene has functional groups and some defects on its surface. The impedance matching of graphene can be improved, and the dipole polarization relaxation can also be generated to improve the MA performance. Graphene can also form a multilayer structure, which can increase the number of reflections and propagation distance of EMW. Dong had synthesized MOF/RGO hybrids by two steps including in situ growth of Co-based MOF on GO nanosheets and a controlled calcination process [128], which is shown in Fig. 3. The maximum \(RL \) of the sample reached −52 dB at 9.6 GHz with a thickness of 4.1 mm. The \(EAB \) of this MOF/RGO hybrid can reach 7.72 GHz only under a thickness of 3.2 mm, which surpasses most reported MOF and RGO-based MAMs. It is worthy to point out that the enhanced effect of MOF/RGO interface, improved match between dielectric loss and magnetic loss should be considered as the factor of the high MA performance.

Chen’s group synthesized CoC–rGO obtained by calcination of ZIF-67–GO hybrids [129]. The introduction of high conductivity of rGO may lead to strong eddy current loss and reduce the permeability. The impedance matching is determined by the additive amount of rGO. The \(RL_{\text{max}} \) value reached up to -44.77 dB at thickness of 2.1 mm, and the \(EAB \) reached 5.2 GHz at thickness of 1.8 mm, which showed evident advantages compared to CoC or rGO alone with single loss mechanism. Zhang’s group synthesized MOF-derived carbonaceous Co$_3$O$_4$/Co/RGO composite at 600 °C in Ar [130]. The sample displays \(RL_{\text{max}} \) −52.8 dB at 13.12 GHz with thickness which is only 2.0 mm. The \(EAB \) is up to 10.72 GHz in the thickness range of 2.0–4.0 mm. Since the unique porous structure, the dielectric and magnetic tangent losses of the sample are in the middle levels, it is beneficial for the impedance match and thus results in the higher MA performances. CNTs can be divided into single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs). They have a very large aspect ratio, so a conductive network can be formed. The dielectric constant is large, and its permeability is small, so its impedance matching is poor. Therefore, it is often combined with other magnetic loss materials to improve the MA performance. Dong et al. had prepared a 3D Co/C-MCNTs hybrid network using MCNTs as wires and Co-based MOFs as junctions [131]. The multiple components synergistic effect leads to the good MA performance. The purpose of introducing MCNTs may promote the formation of a conductive network, increasing interfacial polarization. The \(RL_{\text{max}} \) of the sample Co/C-MCNTs is -33.4 dB at the frequency
of 3.6 GHz with the thickness of 6 mm. And the EAB is 4.08 GHz at 1.8 mm. Yu had also fabricated Co–C/MWCNTs composites, and the RL_{max} is -48.9 dB at 2.99 mm [132]. Tan synthesized ultra-small Co/CNTs nanohybrid via the pyrolysis of ZIF-67 and (catalytic chemical vapor deposition) CCVD method. It achieves the RL_{max} of -49.16 dB and the in EAB of 4.2 GHz (12.4–16.6 GHz) [133]. Chen synthesized MWCNTs@carbonaceous CoO composites with good MA properties [134]. When the annealing temperature is 500 and 600 °C, the carbonaceous Co$_3$O$_4$ can be obtained. When the annealing temperature is 700 °C, Co$_3$O$_4$ was all reduced to CoO. The value of RL_{max} is up to -50.2 dB with 1.84 mm thickness. CNF has high dielectric constant, so the impedance match may be not very good, and we usually improve the MA performance by combining with magnetic loss materials. Zhang et al. reported necklace-like CNFs@MOF-based carbonaceous Co/CoO composite, which was synthesized by wet and pyrolysis method [135]. The optimum RL value is -53.1 dB at 6.56 GHz with the thickness 3.54 mm, and EAB is up to 13.52 GHz with the thickness range of 2.0–5.0 mm. The unique structure will form many defects, which can generate much interfacial polarization, which lead to more dielectric loss. The small-sized nanoparticle can improve dipole polarization. And impedance matching is also optimized to improve the MA performance.
Polymer has the advantages of low density, anti-corrosion and adjustable conductivity, and the electric conductivity and dielectric constant are high. So, it has shown promising prospect in the field of MAMs. In Wang’s report, a chain-like PPy (Polypyrrole) aerogel decorated with MOF-based nanoporous Co/C (Co/C@PPy) has been successfully prepared by a self-assembled polymerization method [136]. The composite Co/C@PPy can reach the optimal RL value of $-44.76 \, \text{dB}$ at 17.32 GHz with the thickness of 2.0 mm. And the EAB of 6.56 GHz (11.04–17.60 GHz) is achieved with the thickness of 2.5 mm. The performance is attributed to a proper impedance matching and a high dielectric loss highly enhanced by the PPy aerogel. Besides, the unique chain-like PPy aerogel and the porous feature of Co/C itself can induce more multiple reflection and scattering of EMW.

Non-magnetic metal oxide is a common dielectric loss material and coupled with magnetic loss material to regulate impedance matching which is an effective strategy to solve the absorption problems. Zinc oxide (ZnO), as an important semiconductor with a wide band gap, has been extensively investigated as MAMs, due to its excellent dielectric properties and lightweight [137]. Hu’s group constructed a novel 3D hetero-structured Co/NP@ZnO/rGO by the direct pyrolysis of ZIF-67@ZnO NPs wrapped on rGO nanosheets [138]. ZnO can be utilized to regulate the complex permittivity over the measured frequency range and upgrade the impedance matching property of the sample. The RL_{max} can reach up to $-45.4 \, \text{dB}$ at only 2 mm, and the EAB achieved 5.4 GHz (from 11.9 to 17.3 GHz). Vanadium sesquioxide (V_2O_3), with relatively high electrical conductivity at room temperature and superior dielectric loss, is usually used in the field of MAMs. Yan’s group designed and synthesized Co/C@V_2O_3 hollow spheres with an RL of $-40.1 \, \text{dB}$ and the EAB of 4.64 GHz at a small thickness of only 1.5 mm [139]. The sample exhibits both excellent impedance matching and light weight due to the rational combination of hollow V_2O_3 spheres and porous Co/C. One-dimensional chain-like MnO@Co/C composite derived from MnO$_x$@ZIF-67 has also been reported [140]. Similar work was also reported by Co/N/C@MnO$_2$ sample [141]. Hierarchical MnO$_2$ sheets are used to decrease the excessive complex permittivity of Co/N/C and improving impedance match, and polydopamine (PDA) is carbon source. The sample with a filler loading of 15 wt% shows the RL_{max} of $-58.9 \, \text{dB}$ and EAB of 5.5 GHz. The excellent MA performance of Co/N/C@MnO$_2$ composites is attributed to synergetic effects of excellent impedance match, and dramatical EM attenuation ability arises from multiple helpful constituents, abundant interfaces and extraordinary hollow structure.

Non-oxygen ceramics presents high strength, good thermal stability and chemical resistivity. But the MA performance is not very good. In order to improve the MA performance, we usually combine non-oxygen ceramics with magnetic loss materials. Dong constructed kebab-like nanocomposites composed of SiC stringing polyhedral Co-MOF [142]. The excellent MA performance attributed to the reduced dielectric constant, enlarged aspect ratio and enhanced interface polarization. Under the thickness of 3 mm, the RL_{max} attained $-47 \, \text{dB}$ at the frequency of 9.32 GHz, and the EAB achieved 5.92 GHz in a frequency range 12.08–18 GHz with the sample thickness of 2.0 mm.

Rational design on the microstructure of MOFs-derived PC-based nanocomposites is an effective strategy to prepare high-performance MAMs, through designing some special structures such as foam structure, core–shell structure and hollow structure, which improve the multiple reflections and interfacial polarization so as to enhance MA performance. Zheng’s group successfully synthesized NRGO (nitrogen-doped)/MWCNT composite foams by hydrothermal and high-temperature calcination strategy [143]. The 3D networks were well constructed by overlapped flaky RGO in the composite foams, and the calcination temperature showed notable effects on the micromor- phology. The RL_{max} is $-69.6 \, \text{dB}$ at 12.5 GHz, and EAB achieved 4.3 GHz (13.2–17.5 GHz) at a low thickness of 1.5 mm, as shown in Fig. 4. The excellent MA performance of the foams was derived from a well-constructed 3D network structure, nitrogen doping, polarization relaxation and conduction loss. Wu and his workmates designed a 3D hybrid carbon sponge composite with a hierarchical micro/nanostructure and hollow skeleton [144]. The conductive network, diverse interface, porous and tubular structures, as well as the synergistic effect between metallic Co nanocrystals and carbon species, resulting in the RL_{max} is $-51.2 \, \text{dB}$ with a ultrathin thickness of 1.6 mm and EAB is 5.4 GHz. MOFs-derived hollow Co/C microspheres were produced by Li’s group [145]. They use cetyltrimethylammonium bromide (CTAB) as self-sacrificing template to make hollow microstructures well preserved in the resultant carbon matrix. The hollow microstructures improve the dielectric loss, magnetic loss and enhancing attenuation ability. So rational design on the microstructure of...
MOFs-derived PC nanocomposites is an effective strategy to develop high-performance MAMs.

3.1.2 Ni-MOF-Derived PC-Based Nanocomposites as MAMs

Magnetic metal Ni-based MOF is also often used in MAMs. Zou and his workmates synthesized Ni@C composites by thermal decomposition of pure Ni-MOF [146]. The sample which calcinated at temperature 800 °C showed a RL_{max} of −55.7 dB, and the EAB is 6.0 GHz at a thickness of 1.85 mm. The excellent MA performance is related to the hollow structure and the synergistic effect between carbon and nickel nanoparticles. Ji had fabricated Ni nanoparticles-embedded nanoporous carbon (NPC/Ni), and the sample prepared at 700 °C exhibits nice MA performance with the RL_{max} value of -39.4 dB and EAB of 4.2 GHz [147]. In Yang’s report, they synthesized Ni-based MOF hollow spheres with various surface morphologies via a simple hydrothermal method [148]. The surface morphologies are controlled by the hydrothermal reaction time. The surface morphologies are smooth, hair-like and rod-like corresponding to the reaction time which is 6, 8, and 10 h, respectively.

Fig. 4 a, b SEM and TEM images of the samples. c RL-f curves of the sample. d Schematic diagram of the EM absorbing mechanisms of NRGO/MWCNT composite foams. Reprinted with permission from Ref. [143]
The RL_{max} of the 10 h sample reached -58 dB at 6 GHz with a thickness of 1.5 mm, and the EAB was 6.2 GHz (5–11.2 GHz) with a thickness of 4.6 mm, as shown in Fig. 5. The difference in the surface morphologies results in variation of the magnetic anisotropy, which leads to multi-resonance behavior of the permeability. Liu’s group synthesized two kinds of Ni@C derived from the Ni-based MOFs with two kinds of organic ligands (dimethylimidazole as a ligand named as Ni-ZIF and trimesic acid as a ligand named as Ni-BTC) [149]. The RL_{max} of the Ni@C-ZIF microspheres is -86.8 dB with the thickness of 2.7 mm, and the EAB was 7.4 GHz (4–11.4 GHz) with the thickness ranging from 1.5 to 4.0 mm. The impedance matching, multiple reflection, interfacial polarization among Ni and C and the N-doping were beneficial to the excellent MA performance.

The dielectric loss material is also usually introduced to Ni-MOF to improve impedance matching. Chen’s group fabricated multi-component composite SiC/Ni/NiO/C by annealing SiC NPs and the Ni-MOF in argon [150]. The maximum RL is -50.52 dB at 13 GHz for a film thickness of 4.0 mm, and the EAB is 2.96 GHz (14.76–17.72 GHz) with thickness of 2.5 mm. The high permittivity of the SiC/Ni/NiO/C nanocomposites is expected to enhance absorption of EMW, as shown in Fig. 6. The excellent MA performance also stems from the multi-interface structure which provides interfacial polarization and plasmon resonance.

Structure design is also very important to improve the MA performance of Ni-MOF-derived PC. Du synthesized hierarchical yolk–shell nanostructure (NiO/Ni/GN@Air@NiO/Ni/GN) derived from Ni-MOF by solvothermal reactions [151]. This special structure can effectively enhance the MA performance. And it can also tune the dielectric properties of the NiO/Ni/GN@Air@NiO/Ni/GN composites to achieve good impedance matching. The RL_{max} of -34.5 dB is obtained at 17.2 GHz with the thin thickness of 1.7 mm. And the EAB can be obtained in the frequency

Fig. 5 a Illustration for the formation of Ni-MOF hollow spheres with controllable surface architecture. b, c SEM images and d, e TEM images of Ni-MOFs samples with 10 h before and after annealing at 600 °C. f Electromagnetic wave reflection losses of the Ni-MOF sample with different reaction times. g Absorbing mechanism of as-prepared samples. Reprinted with permission from Ref. [148]
range 7.8–18 GHz with absorber thicknesses of 1.7–5.0 mm. The 3D porous flower-like Ni/C composites were prepared by Zou’s group through the pyrolysis of Zn-doped Ni-MOF under N$_2$ atmosphere [152]. These 3D flower-like structures have massive porous and large spacing flakes, which increases the EMW scatter. The $R_{L_{\text{max}}}$ is -52.4 dB with a thickness of 1.6 mm, and EAB is 5 GHz.

3.1.3 Fe-MOF-Derived PC-Based Nanocomposites as MAMs

Because of the good chemical stability, high saturation magnetization and simple preparation, metal iron and ferrite are often used to enhance magnetic loss in MA. So dielectric loss material is also introduced to improve impedance
matching. Xu et al. reported Fe/C nanocubes, which are prepared through an in situ derivation from Prussian blue MOF by controlled high-temperature pyrolysis [153]. The maximum RL of the sample obtained at 650 °C reached −22.6 dB at 4 GHz with a thickness of 5 mm, and the EAB was 7.2 GHz (10.8–18.0 GHz) corresponding to a thickness of 2 mm, as shown in Fig. 7. The good MA performance of the Fe/C nanocubes results in the synergetic effect of dielectric loss and magnetic loss.

Hu’s group successfully fabricated magnetic Fe$_3$C/C (denoted as FC-650) and Fe$_3$C/Fe/C (denoted as FC-700) carbon-matrix composites via carbonization of Material Institute Lavoisier (MIL)-101(Fe) [154]. Both Fe$_3$C/C and Fe$_3$C/Fe/C owned flower-like structures formed by 2D flakes. Fe$_3$C/C possessed RL_{max} of −39.43 dB at 14.00 GHz, at the thickness of 2.00 mm. And the EAB is 14.32 GHz (from 3.68 to 18.00 GHz). The impedance matching and the well-designed structures lead to the excellent MA performance.

The morphology usually had significant effect on the MA performance. Kong pyrolyzed two MOFs with different topologies (MOFs: MIL-101-Fe and MIL-88B-Fe) under the same pyrolysis condition, identical chemical composition and microstructure [155]. The RL_{max} is −59.2 dB with a thickness of 4.32 mm, and the EAB is 6.5 GHz with a thickness of 2 mm which are achieved by Fe/C-700@101 (700: pyrolysis temperature; 101: MIL-101 precursor) and Fe/Fe$_3$C/C-800@101, respectively. This article reveals the significant impact of morphology on MA performance.

In order to improve the impedance matching, dielectric loss material is usually introduced to the Fe-MOF. Hu’s group reported the synthesis of novel MOF (Fe)/PANI (polyaniline) core–shell composite via hydrothermal and in situ chemical polymerization methods [156]. The RL_{max} of the composite can reach −41.4 dB at 11.6 GHz, and the EAB is up to 5.5 GHz with only 2 mm. The loss mechanism is due to the enhanced interfacial polarization, dipole polarization and charge transfer and attenuation constant. The introduction of PANI enlarges the dielectric constant. Meanwhile, the higher dielectric constant of MOF (Fe)/PANI may be attributed to the improved interfacial polarization and appearance of localized defects as bipolaron/ polaron, and the multiple reflection and scattering in the

![Diagram](https://example.com/diagram.png)

Fig. 7 a Schematic illustration of converting PB nanocubes into Fe/C nanocubes by a pyrolysis technique. b–e SEM images of the as-prepared PB nanocubes and Fe/C nanocubes obtained at different pyrolysis temperatures: 600, 650 and 700 °C. f TEM image of the 650 °C sample. g HRTEM images of the Fe core and h the graphitic carbon shell. i Reflection losses of the 650 °C sample with variable absorber thicknesses. Reprinted with permission from Ref. [153]
pores of the samples, dielectric loss, magnetic loss, good impedance matching also beneficial for EMW absorption. Lu’s group reported Fe₃O₄ @ carbon (Fe₃O₄@NPC) composites by a simple one-pot synthesis method and subsequent in situ formation under thermal decomposition conditions [157]. The Fe₃O₄@NPC composites exhibited MA performance with a maximum RL of -65.5 dB at 9.8 GHz with a thickness of 3 mm and the EAB of 4.5 GHz, as shown in Fig. 8. The tan δₘ value was higher than tan δₑ value, which indicated that magnetic loss contributed more than dielectric loss to the EMW attenuation. Thus, the improvement of the absorption performance was mainly originated from the magnetic loss. The synergistic effects of the dielectric loss and the magnetic loss are effective in enhancing the MA performance.

![Fig. 8](image)

Fig. 8
(a) Schematic illustration of the Fe₃O₄@NPC composites formation process.
(b–e) SEM, low magnification TEM images, high magnification TEM images (inset: SAED patterns) and HRTEM images of Fe₃O₄@NPC composites.
(f) Schematic illustration of the electromagnetic wave absorption mechanism.
(g) Electromagnetic wave reflection loss with various thicknesses for Fe₃O₄@NPC composites. Reprinted with permission from Ref. [157]
3.2 Non-magnetic Single-Metal MOF-Derived PC-Based Nanocomposites as MAMs

Non-magnetic single-metal MOF-derived PC-based nanocomposites usually act as dielectric performance but have negative characteristics in attenuation and impedance matching. Therefore, selecting a high dielectric candidate to combine with non-magnetic single-metal MOF or magnetic loss material is critical.

3.2.1 Zn-MOF-Derived PC-Based Nanocomposites as MAMs

Ji’s group fabricated ZnO/nanoporous carbon (NPC)/reduced graphene oxide (RGO) materials through a simple and valid hydrothermal method derived from Zn-MOF [158]. The RL_{max} is -50.5 dB with a thickness of 2.4 mm, and the EAB is 7.4 GHz with a thickness of 2.6 mm, which is shown in Fig. 9. The dielectric constant of ZnO/NPC/RGO samples could be modulated by regulating the combination ratio. Too high or too low permittivity can hardly satisfy an ideal absorber. They had also prepared novel ZnO/carbon porous nanofibers derived from Zn-MOF and polyacrylonitrile (PAN) nanofibers [159]. Xie reported polypyrrole (PPy)/Zn-MOF nanocomposites show tunable electrical conductivity as well as a tunable MA performance [160]. The EAB reaches 7.24 GHz with the thickness of 2.6 mm, and the RL_{max} is -49 dB with the thickness of 2.9 mm. The MA performance is attributed to the electrical conduction loss and interfacial polarization relaxation.

![Fig. 9](https://example.com/fig9.png)

Fig. 9 a Preparation route of PPy/ZIFs nanocomposites. b, c SEM images, d, e TEM images and f MA performance of PPy/ZIFs. g Interfacial polarization of interfacial polarization. Reprinted with permission from Ref. [160]
3.2.2 Ti-MOF-Derived PC-Based Nanocomposites as MAMs

Ji’s group had also synthesized a novel nanoporous carbon material (TiO₂/C) by annealing titanium-based MOFs (MIL-125 (Ti); MIL stands for Material from Institute Lavoisier) [161]. The RL_{max} is -49.6 dB, and the EAB is 4.6 GHz (13.4-18 GHz) with the thickness of 1.6 mm. The outstanding MA performance may be due to the high tan δ, α and polarization loss.

3.2.3 Cu-MOF-Derived PC-Based Nanocomposites as MAMs

Zeng’s group synthesized Ni/NiO/Cu@C composites by using Cu MOFs as the precursor [162]. The RL_{max} value is -38.1 dB at a layer thickness of 3.2 mm. The introduction of Ni offers magnetic loss, and interfacial polarization is changed by increasing the interface area and electrical conductivity.

3.2.4 Zr-MOF-Derived PC-Based Nanocomposites as MAMs

Liu’s group developed cobalt-decorated porous ZrO₂/C hybrid octahedrons by pyrolysis of Co(NO₃)₂ impregnated NH₂-UIO-66(Zr-MOF) [44]. The sample results in RL_{max} of -57.2 dB at 15.8 GHz, corresponding to a matching thickness of 3.3 mm. The EAB reaches 11.9 GHz (6.1–18 GHz). The excellent MA performance of Co/ZrO₂/C can be ascribed to the strong interface polarization and the suitable impedance matching, and the synergistic effect among the components. Wang had also synthesized ZrO₂/C octahedra from UIO-66 [163]. The RL_{max} value of -58.7 dB (16.8 GHz, 1.5 mm) has been achieved. And the EAB could cover 91.3% (3.4–18.0 GHz) of the measured frequency within the thickness range of 1.0–5.0 mm.

3.2.5 Rare-Earth MOF-Derived PC-Based Nanocomposites as MAMs

Li’s group had reported the synthesis of a series of rare-earth MOFs based on MH (maleic hydrazide) ligands [13]. RE-MOFs have many advantages such as hierarchical porous structures, low density and large pore volume. These properties will meet the requirements of MAMs. They successfully synthesized four novel RE-MOFs $[Y_2(MH)_{6}]_{n}\cdot DMF$ (1), $[Er_2(MH)_{6}]_{n}$ (2), $[Yb_2(MH)_{6}]_{n}$ (3) and $[La(MH)_{3}]_{n}$ (4) by the traditional hydrothermal method. Different MA performances can be attributed to different structures and different central ions. The maximum RL values of MOF 1, MOF 2, MOF 3 and MOF 4 are -22.78, -19.99, -28.14 and -13.07 GHz at 2 mm, respectively. And the effective absorption bandwidth is 2.24 GHz (6.8–9.04 GHz), 2.12 GHz (from 6.8 to 8.72 GHz), 0.96 GHz (15.76–16.72 GHz) and 0.32 GHz (16.72–17.04 GHz) for MOF 1, MOF 2, MOF 3 and MOF 4. The property may be resulted in the synergetic effects of permittivity and permeability.

3.3 Multi-metal MOF-Derived PC-Based Nanocomposites as MAMs

The MA performance of multi-metal MOF-derived PC-based nanocomposite is often better than single-metal MOF because the multi-metal MOF combines the advantages of two or more materials, endows the mixture with new chemical and physical properties and effectively regulates the electromagnetic parameters of the MAMs.

3.3.1 Multi-magnetic Metal MOF-Derived PC-Based Nanocomposites as MAMs

NiCo nanoparticles/nanoporous carbon (NiCo/NPC) composites with multilayered structure were synthesized through in situ pyrolysis of the bimetallic NiCo-MOF by Lu’s group [164]. The synergistic interactions of magnetic loss and dielectric loss among NiCo NPs, graphitized carbon layer and NPC were beneficial to the optimization of the impedance matching and the enhancement of EMW attenuation. The multilayered nanoporous carbon matrix leads to the multiple reflection and scatterings, interface and dipole polarization as well as the natural resonance and exchange resonance. The RL_{max} value is -51 dB at 17.9 GHz with EAB of 4.5 GHz (13.5–18 GHz) and a thickness of 1.5 mm at 600 °C. Dong had also fabricated porous and hollow CoNi@C microspheres derived from CoNi-MOFs [165]. The RL_{max} can reach -44.8 dB at 10.7 GHz, and the EAB
can reach up to 13.3 GHz (4.7–18.0 GHz) with the thickness of 1.6–4.0 mm, as shown in Fig. 10. The simultaneous enhancement of attenuation ability and impedance matching together contribute to the improved MA performance. The attenuation ability comes from interfacial polarization, eddy current loss, multiple reflection and scattering. The impedance matching stems from magnetic CoNi alloy and dielectric graphitized carbon. Liu had also reported CoNi/C nanocomposites derived from bimetallic CoNi-MOF [166]. The RL_{max} of -74.7 dB could be achieved with a thickness of 1.8 mm at 15.6 GHz. The EAB ranged from 2.9 GHz to 18 GHz. The porous Co–Ni/C nanocomposites combined advantages of excellent impedance matching and strong interfacial loss between metallic NPs and porous carbon composites. Similarly, FeCo alloy/carbon composites [167] and Fe$_3$Ni/C composites [168] had also shown the excellent MA performance. Hollow sphere trimetallic FeCoNi@C MAMs via high-temperature carbonization were obtained using FeCoNi-based MOF-74 (FeCoNiMOF) as the precursor [169].

Other multi-magnetic metal MOF-derived PC-based nanocomposites as MAMs had also been reported. In order to further improve impedance matching, the dielectric loss is often introduced to the multi-magnetic metal MOF such as FeCo@C@CNGs (carbon nanocages) [170], NiCo alloy/carbon nanorod@CNT [171], Fe–Co/N/rGO [172], FeNi@CNT/CNRs (carbon nanorods) [173] and CoFe@C@MnO$_2$ [174]. All of these samples show good impedance matching and outstanding EMW attenuation capability.

Fig. 10
(a) Illustration for the synthetic process of hollow CNC microspheres. b, c SEM images, d, e TEM images and f RL curves of CoNi@C samples. g Schematic illustration of microwave absorption mechanisms for CNC microspheres. Reprinted with permission from Ref. [165]
3.3.2 Magnetic and Non-magnetic Metal MOF-Derived PC-Based Nanocomposites as MAMs

Non-magnetic metal MOFs play the role of dielectric loss. Zn is most widely used in this occasion. Since the unique evaporation character of Zn metal under high pyrolysis temperature, the porous low-dielectric amorphous carbon/Zn shell derived from Zn-MOF was formed to decrease the permittivity for a better impedance match. Zheng’s group fabricated nitrogen-doped CoO/Co/C nanocomposites by high-temperature pyrolysis of Co/Zn-ZIFs [175]. Zn was evaporated during the high-temperature pyrolysis process at 700 °C. The RL_{max} reached -66.7 dB at 7.2 GHz with a thickness of 3.3 mm, and the EAB is 5.1 GHz (12.6–17.7 GHz) with thickness of 1.8 mm, as shown in Fig. 11. The excellent MA performance ascribed to the enhanced polarization relaxation, and synergistic effects of dielectric loss, conduction loss and magnetic loss.

Jiang had fabricated CoZn-MOF and then calcined it at different high temperatures to gain the metal Co embedded in porous and N-doped graphitized carbon matrix (Co@pNGC) [176]. Zn species was also evaporated at high temperature. The RL_{max} is -50.7 dB at 11.3 GHz, and the EAB reaches 5.5 GHz (12.3–17.8 GHz), corresponding to a thickness of 2.0 mm. The strong dielectric loss is derived from interfacial polarization, migration, hopping of electrons and the magnetic loss from the Co nanoparticles.

4 Comparison of MA Performance of Different MOF-Derived PC-Based Nanocomposites

As is mentioned above, many MOF-derived PC-based nanocomposites exhibited the appreciable MA performance. In Table 2, we sum up the performance of the MAMs mentioned above. As is described, there are many kinds of MOF-derived PC-based materials used in the MAMs. Most of the MOF-derived PC-based MAMs have better MA performance than the comparison MAMs. The MA performance of pure Ni, Co, Fe-MOF-derived PC-based is not satisfactory. When they coupled with dielectric loss material, the MA performance will be significantly improved. Non-magnetic metal MOF-derived PC-based MAMs such as Zn, Ti, Cu, Zr and RE are usually coupled with magnetic loss material to get impedance matching, while the multiple metal MOF-derived PC-based MAMs have shown excellent MA performance. They usually have multiple loss mechanism, so the synergistic effect between each part will be beneficial to impedance matching and electromagnetic wave attenuation. The structure of MOF also has a significant effect on the MA performance. Through design of MOF with different structures such as foam structure, core–shell structure, hollow structure, etc., the multiple reflections and interfacial polarization can be achieved. Therefore, MOF-derived PC-based nanocomposite is a promising material in the field of high-performance MAMs in the future.

5 Conclusion

The recent progress of MOF-derived PC-based nanocomposites as MAMs has been systematically summarized by this review. In view of these studies, we find that MOF-derived PC-based MAMs from in situ pyrolysis of MOFs will be a promising method for the development of lightweight and highly effective MAMs. After pyrolysis, the PC-based MAMs from the MOFs exhibit porosity, low density, good electrical conductivity and dielectric loss. And the inorganic metal center can result in magnetic loss (magnetic metal) or dielectric loss (non-magnetic metal). To further improve the MA performance, the MOF-derived PC-based nanocomposites often coupled with other loss material. The well-designed nanocomposites with multiple advantages will show good impedance matching and strong EM attenuation capability because of the multiple loss mechanism and synergistic effect of the multi-components. Therefore, the MOF-derived PC-based nanocomposites coupled with multiple loss material are an attractive development direction of MAMs in the future.

Many achievements have been made in MOF-derived PC-based nanocomposites as MAMs, but most are just at the research stage, far away from the practical use. The EAB and the maximum RL values are not enough to meet the actual needs. We can rationally design the MAMs with the suitable preparation conditions to realize the special microstructure, which can
improve the scattering of EM, and the multiple loss mechanism is realized by the synergistic effect of multiple components. As more than 20,000 kinds of MOFs have been used in various fields, we only review the common Ni, Co, Fe, Zn, Ti, Cu, Zr and RE metal as the central elements, and they have shown considerable MA performance. But they are just the tip of the iceberg of the big family of MOFs. We should also pay more attention to other metal elements. Through the modulation of

Fig. 11 a Schematic illustration of the preparation procedures of CoO/Co/C nanocomposites. b–e TEM images with different magnifications of CoO/Co/C nanocomposites. f RL curves of CoO/Co/C nanocomposites. g Schematic illustration of the possible microwave absorption mechanisms of nitrogen-doped CoO/Co/C nanocomposites. Reprinted with permission from Ref. [175]
Table 2 The MA performance of different kinds of MOF-derived PC-based nanocomposites as MAMs

Type	MAMs	$R_{\text{f}}_{\text{max}}$ (value dB)	f_{m} (GHz)	Thickness (mm)	EAB (< − 10 dB) (GHz)	Value (GHz)	Thickness (mm)	Refs.
MOF-derived PC-based nanocomposites	Co/C-500	−35.3	5.8	4	5.8 (8.4–14.2)	2.5	[123]	
	Co/C-650	−47.6	5.11	2	5.1 (12.1–17.2)	2	[124]	
	Co/C-700	−15.7	15.1	1.7	5.4 (12.3–17.7)	1.7	[125]	
	Co/C-700	−30.31	11.03	3	4.93 (8.31–13.24)	3	[126]	
	Co/C-800	−39.6	9.6	2	3.8 (10.7–14.5)	2	[127]	
	MOF/RGO-500	−52	9.6	4.1	7.72 (10.28–18)	3.2	[128]	
	CoC-rGO-2	−44.77	12.1	2.1	5.2 (12.8–18)	1.8	[129]	
	Co3O4/Co/RGO	−52.8	13.12	2	10.72 (4.88–15.6)	2–4	[130]	
	3D CoC-MCNT	−20.3	13.84	1.8	4.08	1.8	[131]	
	Co/C-MCNTs	−48.9	9	2.99	–	–	[132]	
	Co/CNT	−49.16	14.16	2.5	4.2 (12.4–16.6)	2.5	[133]	
	MWCNTs@carbonaceous CoO	−50.2	14.3	1.84	4.32 (12.32–16.64)	1.84	[134]	
	CNFs@carbonaceous Co/CoO	−53.1	6.56	3.54	13.52 (3.68–14.64, 15.44–18)	2–5	[135]	
	Co/C@PPy	−44.76	17.32	2.0	6.56 (11.04–17.60)	2.5	[136]	
	Co/NPC@ZnO/rGO	−45.4	14.2	2	5.4 (11.9–17.3)	2	[138]	
	Co/C@V$_2$O$_3$	−40.1	14.1	1.5	4.64 (13.36–18)	1.5	[139]	
	MnO@Co/C	−49.06	6.48	3.4	2.24	3.4	[140]	
	Co/N/C@MnO$_2$	−58.9	5.56	3.7	5.5	–	[141]	
	NRGO/MWCNT	−69.6	12.5	1.8	4.3 (13.2–17.5)	1.5	[143]	
	Co/CNTs/CS	−51.2	12	2.2	4.1 (10.3–14.4)	2.2	[144]	
	Co/C-HS	−66.5	17.6	1.53	14.3 (3.7–18.0)	1–5	[145]	
Ni-MOF-derived PC-based nanocomposites	Ni@C-800	−57	13.8	1.85	6 (12–18)	1–5	[146]	
	NPC/Ni	−39.4	–	–	4.2	–	[147]	
	Ni@C-ZIF	−86.8	7.25	2.7	7.4 (4–11.4)	1.5–4	[149]	
	Si/C/Ni/NiO/C	−50.52	13	4	2.96 (14.76–17.72)	2.5	[150]	
	NiO/Ni/Ni@Air@NiO/Ni@GN	−34.5	17.2	1.7	10.2 (7.8–18)	1.7–5.0	[151]	
	Porous flower-like Ni/C	−52.4	16.1	1.6	5	1.6	[152]	
Fe-MOF-derived PC-based nanocomposites	Fe/C nanocubes	−22.6	4	5	7.2 (10.8–18)	2	[153]	
	FC-650	−39.43	14	2	5.36 (11.76–17.12)	2	[154]	
	Fe/C-700-101	−59.2	5	4.32	5	1.8	[155]	
	MOF (Fe)/PANI	−41.4	11.6	2	5.5 (9.8–15.3)	2	[156]	
	Fe$_3$O$_4$@NPC	−65.5	9.8	3	4.5	3	[157]	
Zn-MOF-derived PC-based nanocomposites	ZnO/NPC/RGO	−50.5	14	2.4	7.4 (9.6–17)	2.6	[158]	
	Fe$_3$O$_4$/CNT	−43	15.2	1.5	8.3 (9.7–18)	1.75	[159]	
	PPy/ZIFs	−49	12.1	2.9	7.24 (10.76–18)	2.6	[160]	
Ti-MOF-derived PC-based nanocomposites	TiO$_2$/C	−49.6	15.8	1.6	4.6 (13.4–18 GHz)	1.6	[161]	
Cu-MOF-derived PC-based nanocomposites	Ni/NiO/Cu@C	−38.1	14.8	3.2	–	–	[162]	
Zr-MOF-derived PC-based nanocomposites	ZrO$_2$/C	−57.2	15.8	3.3	11.9 (6.1–18)	3.3	[44]	
inorganic metal center and organic ligand, different kinds of MOFs are constructed to achieve the optimal MA performance. The “thin, wide, light, strong” is the goal to develop MAMs, but most of the studies merely focus on the EAB and the maximum RL values, while the thickness and the weight of the MAMs have been usually ignored. In fact, low density is also an important parameter to evaluate the MAMs. One of the pyrolysis products of MOFs is carbon; therefore, MOFs are promising materials to employ new lightweight MAMs, especially in military applications. In conclusion, MOF-derived PC-based nanocomposites

Type	MAMs	RL_{max} Value (dB)	f_m (GHz)	Thickness (mm)	EAB (< − 10 dB) (GHz) Value (GHz)	Thickness (mm)	Refs.
RE-MOF-derived PC-based nanocomposites	ZrO$_2$/C	−58.7	16.8	1.5	14.6 (3.4–18.0)	1–5	[163]
	[Y$_2$(MH)$_6$]$_n$	−28.14	−	2	−	−	[13]
	[Y$_3$(MH)$_6$]$_n$·DMF	−	−	−	2.24 (6.8–9.04)	5	
Multi-magnetic metal MOF-derived PC-based nanocomposites	NiCo/NPC	−51	17.9	1.5	4.5 (13.5–18)	1.5	[164]
	CoNi@C	−44.8	6.8	3.2	13.3 (4.7–18.0)	1.6–4	[165]
	CoNi/C	−74.7	15.6	1.8	15.1 (2.9–18.0)	0.3–5	[166]
	FeCo alloy/carbon	−57.4	17.7	1.26	4.2 (11.0–15.2)	−	[167]
	Fe$_3$Ni/C	−46.2	10.44	2.65	5.24 (12.76–18)	2	[168]
	FeCoNi@C	−69.03	5.52	2.1	8.08 (9.92–18)	2.47	[169]
	Core–shell FeCo@carbon/PDA	−67.8	15.8	1.75	5.3 (11.0–16.3)	2	[170]
	NiCo alloy/C nanorod@CNT	−58.8	14.0	2.2	6.5 (11.5–18)	2.2	[171]
	Fe–Co/Ni@rGO	−43.26	11.28	2.5	9.12 (8.88–18)	2.63	[172]
	FeNi@CNT/CNRs	−47.0	−	2.3	4.5	1.6	[173]
	CoFe@C@MnO$_2$ nanocubes	−64	15.6	1.3	9.2 (8.8–18)	1.6	[174]
Magnetic and non-magnetic metal MOF-derived PC-based nanocomposites	CoO/Co/C	−66.7	7.2	3.3	5.1 (12.6–17.7)	1.8	[175]
	Co@pNGC	−50.7	11.3	2.5	4.0 (12.2–16.2)	1.2	[176]
	CNT	−21	5	3.5	0.5	3.5	[177]
	rGO	−6.9	7	2	−	−	[178]
	graphene foam	−34	13.1	−	14.3 (3.7–18)	−	[59]
	Carbon nanotube/graphene foams	−39.5	11.6	−	16	−	[179]
	Carbon nanotube grown on the carbon fiber	−42	11.4	2.5	2.7	2.5	[180]
	3D PPy aerogel	−22.5	12	3	5.0 (10.0–15.0)	3	[181]
	PANI nanoparticle	−18.8	17.2	2	3.9 (14.1–18.0)	2	[182]
	ZnO nanoparticles	−37.7	8.96	2.1	3.55 (7.5–11.05)	2.1	[183]
	C$_3$N$_4$ nanosheets	−36.1	14.6	19.5	1.7	19.5	[184]
	SiC	−24.8	11	3	4.2 (8.2–12.4)	3	[185]
	Fe powder	−5.2	11	3	−	−	[186]
	Fe$_3$O$_4$/C	−40	15.9	1.5	3.9 (14.1–18)	1.5	[93]
	Flaky carbonyl iron particles	−14	0.6	1	1.6 (0.4–2)	1	[187]
had already shown its great potential as MAMs. We firmly believe that the MOF-derived PC-based nanocomposites will be widely used in the field of MAMs in the future.

Acknowledgements The authors gratefully acknowledge financial support from Ministry of Science and Technology of China (MoST, 2016YFA0200200), the National Natural Science Foundation of China (NSFC, 21875114, 51373078, and 51422304) and NSF of Tianjin City (15JCYBJC17700).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
2. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces. 7(18), 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
3. S. Xie, Z. Ji, L. Zhu, J. Zhang, Y. Cao et al., Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 27, 100963 (2020). https://doi.org/10.1016/j.jobe.2019.100963
4. L. Heng, Z. Zhang, X. Chen, S. Wang, Z. Wu et al., Fe/nanoporous carbon hybrid derived from metal-organic framework for highly effective microwave absorption. Appl. Organomet. Chem. 33(8), e4991 (2019). https://doi.org/10.1002/aoc.4991
5. S.U. Rehman, J. Wang, Q. Luo, M. Sun, L. Jiang et al., Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/jcej.2019.05.040
6. M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
7. B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
8. J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, H.J. Wu, Facile synthesis of ellipsoid-like MgCoO4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B Eng. 176, 12 (2019). https://doi.org/10.1016/j.compositesb.2019.107240
9. X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080
10. P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of Cu3 nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces. 8(8), 5536–5546 (2016). https://doi.org/10.1021/acsami.5b10511
11. M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces. 7(34), 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
12. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
13. L.W. Zhu, N. Liu, X.H. Jiang, L.M. Yu, X. Li, Four novel 3D RE-MOFs based on maleic hydradize: syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorg. Chim. Acta 501, 119291 (2020). https://doi.org/10.1016/j.ica.2019.119291
14. Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
15. P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh et al., High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5(10), 4330–4336 (2013). https://doi.org/10.1039/c3nr00634d
16. L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
17. Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces. 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
18. X.-X. Wang, T. Ma, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). https://doi.org/10.1016/j.cej.2017.09.101
19. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou et al., Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29(20), 17122–17136 (2018). https://doi.org/10.1007/s10854-018-9909-z

20. H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3

21. H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027

22. S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das et al., An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 344, 138–154 (2018). https://doi.org/10.1016/j.cej.2018.03.039

23. K. Srogi, Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination. Anal. Lett. 40(2), 199–232 (2007). https://doi.org/10.1080/0003271060867713

24. X. Zhang, J. Qiao, F. Wang, L. Lv, D. Xu et al., Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceram. Int. 46(4), 4754–4761 (2020). https://doi.org/10.1016/j.ceramint.2019.10.207

25. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3(19), 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f

26. A. Munir, Microwave radar absorbing properties of multi-walled carbon nanotubes polymer composites: a review. Adv. Polym. Tech. 36(3), 362–370 (2017). https://doi.org/10.1002/adpt.201617

27. M. Safaei, M.M. Foroughi, E. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac-Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007

28. X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces. 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b03536

29. Y. Wang, X. Gao, C. Lin, L. Shi, X. Li et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 785, 765–773 (2019). https://doi.org/10.1016/j.jallcom.2019.01.271

30. Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou et al., Pore space partition within a metal-organic framework for highly efficient CH4/CO2 separation. J. Am. Chem. Soc. 141(9), 4130–4136 (2019). https://doi.org/10.1021/jacs.9b00232

31. H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham et al., MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54(42), 5268–5288 (2018). https://doi.org/10.1039/c8cc00789f

32. Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903 (2019). https://doi.org/10.1002/adma.201804903

33. Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. (2018). https://doi.org/10.1002/adma.201702891

34. X. Wei, Y. Li, H. Peng, M. Zhou, Y. Ou et al., Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 341, 618–627 (2018). https://doi.org/10.1016/j.cej.2018.02.032

35. J. Li, W. Huang, M. Wang, S. Xi, J. Meng et al., Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 4(1), 285–292 (2019). https://doi.org/10.1021/acsenergylett.8b02045

36. B. Zhu, R. Zou, Q. Xu, Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801193

37. R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019). https://doi.org/10.1016/j.ccr.2017.09.027

38. X. Jiang, S. Li, Y. Bai, L. Shao, Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. J. Mater. Chem. A 7(18), 10898–10904 (2019). https://doi.org/10.1039/c8ta11748a

39. J. Chang, X. Wang, J. Wang, H. Li, F. Li, Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal. Chem. 91(5), 3604–3610 (2019). https://doi.org/10.1021/acs.analchem.8b05599

40. Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuat. B Chem. 278, 126–132 (2019). https://doi.org/10.1016/j.snb.2018.09.076

41. W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces. 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b01685

42. H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056

43. Y. Zhang, S. Gao, H. Xing, H. Li, In situ carbon nanotubes encapsulated metal Nickel as high-performance microwave
absorber from Ni-Zn metal-organic framework derivative. J. Alloys Compd. 801, 609–618 (2019). https://doi.org/10.1016/j.jallcom.2019.06.164
44. X. Zhang, J. Qao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces. 11(39), 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
45. W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
46. W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal–organic-framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces. 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b0320
47. Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5(6), 065602 (2018). https://doi.org/10.1088/2053-1591/aac6e7
48. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
49. R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020). https://doi.org/10.1016/j.cej.2019.123266
50. Y. Wu, R. Shu, X. Shan, J. Zhang, J. Shi et al., Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd. 817, 152766 (2020). https://doi.org/10.1016/j.jallcom.2019.152766
51. J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
52. Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomass with excellent microwave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
53. N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
54. M. Zeng, Q. Cao, J. Liu, B. Guo, X. Hao et al., Hierarchical cobalt selenides as highly efficient microwave absorbers with tunable frequency response. ACS Appl. Mater. Interfaces. 12(1), 1222–1231 (2020). https://doi.org/10.1021/acsami.9b15172
55. L.J. Yang, H.L. Lv, M. Li, Y. Zhang, J.C. Liu et al., Multiple polarization effect of shell evolution on hierarchical hollow C@MnO_x composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 392, 10 (2020). https://doi.org/10.1016/j.cej.2019.123666
56. Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
57. K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
58. R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang et al., Fabrication of 3D net-like MWNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106
59. Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
60. J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Facile fabrication and enhanced microwave absorption properties of reduced graphene oxide/tin dioxide binary nanocomposites in the X-band. Synth. Met. 257, 116157 (2019). https://doi.org/10.1016/j.synthmet.2019.116157
61. Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
62. G. Shao, J. Liang, W. Zhao, B. Zhao, W. Liu et al., Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J. Alloys Compd. 813(15), 152007 (2020). https://doi.org/10.1016/j.jallcom.2019.152007
63. S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
64. X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
65. S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
66. L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan et al., Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain.
J. Jiang, D. Li, D. Geng, J. An, J. He et al., Microwave absorption properties of core double-shell FeCo/C/BaTiO$_3$ absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. (2019). https://doi.org/10.1021/acsami.8b21671

H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti$_3$C$_2$Mxene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces. 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671

C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47241

J. Jiang, D. Li, D. Geng, J. An, J. He et al., Microwave absorption properties of core double-shell FeCo/C/BaTiO$_3$ nanocomposites. Nanoscale 6(8), 3967–3971 (2014). https://doi.org/10.1039/c3nr04087a

P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO$_2$ ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4(26), 6362–6370 (2016). https://doi.org/10.1039/c6tc01718e

W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil et al., A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002

W. Zhou, R.-M. Yin, L. Long, H. Luo, W.-D. Hu et al., Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si$_3$N$_4$ ceramics within the gigahertz range. Ceram. Int. 44(11), 12301–12307 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017

H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang et al., Coin-like alpha-Fe$_3$O$_4$@CoFe$_2$O$_4$ core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces. 7(8), 4744–4750 (2015). https://doi.org/10.1021/ami50843s

B. Quan, X. Lang, G. Ji, J. Ma, P. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces. 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788

C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe$_2$Ti$_2$C$_7$T$_9$ composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208

O. Khani, M.Z. Shoustari, K. Ackland, P. Stamenov, The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 428, 28–35 (2017). https://doi.org/10.1016/j.jmmm.2016.12.010
90. S. Yan, C. Cao, J. He, L. He, Z. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of TiC$_2$Mxene/Ilkay carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10584-019-09959-0

91. Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. (2019). https://doi.org/10.1002/advs.201801057

92. C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@C nanorods. Synth. Met. 257, 116187 (2019). https://doi.org/10.1016/j.synthmet.2019.116187

93. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core-shell Fe$_3$O$_4$@C composites. ACS Appl. Mater. Interfaces. 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d

94. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788

95. H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, Y.-Z. Wang, Ultralight CoNi/GO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 7(2), 441–448 (2019). https://doi.org/10.1039/c8tc05239e

96. H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 167, 690–699 (2019). https://doi.org/10.1016/j.compositesb.2019.03.055

97. B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110

98. B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications (Funct. Mater., Adv. 2019). https://doi.org/10.1002/adfm.201901236

99. H. Lv, H. Zhang, G. Ji, Z.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces. 8(10), 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662

100. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe$_3$O$_4$, gamma-Fe$_2$O$_3$, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u

101. M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398

102. X. Liang, B. Quan, Z. Man, B. Cao, N. Li et al., Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces. 11(33), 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365

103. Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089

104. N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe$_2$O$_3$ nanocoating structure. ACS Appl. Mater. Interfaces. 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142

105. Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40240-020-00461-x

106. Y. Yang, L. Xia, T. Zhang, B. Shi, L. Huang et al., Fe$_3$O$_4$/LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510–518 (2018). https://doi.org/10.1016/j.cej.2018.07.064

107. N. Zhang, Y. Huang, M. Zong, X. Ding, S. Li et al., Synthesis of ZnS quantum dots and CoFe$_2$O$_4$ nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J. 308, 214–221 (2017). https://doi.org/10.1016/j.cej.2016.09.065

108. H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces. 9(6), 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223

109. Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multi-layered sheets assembled by porous Bi$_2$Fe$_4$O$_9$ microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018). https://doi.org/10.1016/j.cej.2017.11.150

110. T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift 171(1), 23–31 (1960). https://doi.org/10.1007/BF01520320

111. J.B. Goodenough, Summary of losses in magnetic materials. IEEE Trans. Magn. 38(5), 3398–3408 (2002). https://doi.org/10.1109/TMAG.2002.802741

112. M.-S. Cao, J.-C. Shu, X.-X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390

113. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces. 7(23), 12951–12960 (2015). https://doi.org/10.1021/acsami.5b02716

114. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia
117. X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environmental...
118. D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu et al., Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties. J. Magn. Magn. Mater. 469, 428–436 (2019). https://doi.org/10.1016/j.jmmm.2018.09.019

119. X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoNi3 encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2

120. R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839

121. Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun et al., Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036

122. Y. Wu, R. Shu, J. Zhang, Z. Wan, J. Shi et al., Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide-multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J. Alloys Compd. 819, 152944 (2020). https://doi.org/10.1016/j.jallcom.2019.152944

123. X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. (2018). https://doi.org/10.1002/adma.201705189

124. R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal-organic frameworks for batteries. Joule 2(11), 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019

125. Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177

126. J. Li, P. Miao, K.-J. Chen, J.-W. Cao, J. Liang et al., Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Compos. Part B Eng. 182, 107613 (2020). https://doi.org/10.1016/j.compositesb.2019.107613

127. B.-Y. Zhu, P. Miao, J. Kong, X.-L. Zhang, G.-Y. Wang et al., Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption. Cryst. Growth Des. 19(3), 1518–1524 (2019). https://doi.org/10.1021/acs.cgd.9b00064

128. H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces. 9(48), 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796

129. R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.025

130. K. Zhang, A. Xie, C. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026

131. H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo et al., Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 29(2), 1204–1214 (2020). https://doi.org/10.1007/s11664-019-07837-9

132. J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020

133. K. Zhang, F. Wu, J. Li, M. Sun, A. Xie et al., Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.008

134. Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b06067

135. X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109

136. S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs® carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazolate framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018

137. H. Chen, R. Hong, Q. Liu, S. Li, F. Huang et al., CNFs® carbonaceous Co/C composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 752, 115–122 (2018). https://doi.org/10.1016/j.jallcom.2018.04.142

138. X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11(5), 781–793 (2018). https://doi.org/10.3390/ma11050781
137. X. Liu, L.-S. Wang, Y. Ma, Y. Qiu, Q. Xie et al., Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni/C-RGO composite materials. Chem. Eng. J. 333, 92–100 (2018). https://doi.org/10.1016/j.cej.2017.09.139

138. S. Kang, W. Zhang, Z. Hu, J. Yu, Y. Wang et al., Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 818, 152932 (2020). https://doi.org/10.1016/j.jallcom.2019.152932

139. C. Zhou, C. Wu, D. Liu, M. Yan, Metal-organic framework-derived hierarchical Co/C@V2O5 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25(9), 2234–2241 (2019). https://doi.org/10.1002/chem.201805565

140. M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289

141. R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal-organic frameworks self-templated cubic hollow Co/Ni@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063

142. K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces. 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b15192

143. R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces. 12(4), 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134

144. N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultrathin three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces. 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101

145. Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acs.suschemeng.8b01270

146. Z. Zhang, Q. Zhu, X. Chen, Z. Wu, Y. He et al., Ni@C composites derived from Ni-based metal organic frameworks with a lightweight, ultrathin, broadband and highly efficient microwave absorbing properties. Appl. Phys. Express 12(1), 011001 (2019). https://doi.org/10.1021/acs.suschemeng.8b01270

147. B. Quan, G. Xu, H. Yi, Z. Yang, J. Xiang et al., Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 769, 961–968 (2018). https://doi.org/10.1016/j.jallcom.2018.08.069

148. Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881

149. J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces. 11(43), 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850

150. R. Yang, J. Yuan, C. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). https://doi.org/10.1016/j.jallcom.2019.152519

151. X. Liang, B. Quan, Y. Sun, G. Ji, Y. Zhang et al., Multiple interfaces structure derived from metal-organic frameworks for excellent electromagnetic wave absorption. Part. Part. Syst. Char. 34(5), 1700006 (2017). https://doi.org/10.1002/ppsc.201700006

152. Z. Zhang, Y. Lv, X. Chen, Z. Wu, Y. He et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption. J. Magn. Magn. Mater. 487, 165334 (2019). https://doi.org/10.1016/j.jmmm.2019.165334

153. R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C

154. S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306

155. P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable Electromagnetic Wave Absorption Of Supramolecular Isomer-Derived Nanocomposites With Different Morphology. Adv. Mater. Interfaces. 7(4), 1901820 (2020). https://doi.org/10.1002/admi.201901820

156. Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang et al., Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017). https://doi.org/10.1016/j.synthmet.2017.04.009

157. Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014

158. X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5(11), 10570–10579 (2017). https://doi.org/10.1021/acs.suschemeng.7b02565

159. W. Gu, J. Lv, B. Quan, X. Liang, B. Zhang et al., Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with
lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 806, 983–991 (2019). https://doi.org/10.1016/j.jallcom.2019.07.334

160. Y. Jiao, J. Li, A. Xie, F. Wu, K. Zhang et al., Confined polymerization strategy to construct polypropylene/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 174, 232–240 (2019). https://doi.org/10.1016/j.compsitech.2019.03.003

161. J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274

162. L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. Part B Eng 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081

163. X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7(2), 385–393 (2020). https://doi.org/10.1039/c9qf01259a

164. J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096

165. Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837

166. C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultrawide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/c9nj04115j

167. D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013

168. W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143–153 (2018). https://doi.org/10.1016/j.carbon.2018.06.009

169. J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trinmetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces. 11(42), 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430

170. F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082

171. L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2(12), 7827–7838 (2019). https://doi.org/10.1021/acsnano.9b01842

172. S. Wang, Y. Xu, R. Fu, H. Zha, Q. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11(1), 76 (2019). https://doi.org/10.1007/s40820-019-0307-8

173. X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In Situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces. 11(39), 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754

174. Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructurally assembled CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039

175. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang et al., Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos. Part B Eng. 178, 107518 (2019). https://doi.org/10.1016/j.compositesb.2019.107518

176. S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian, Y. Wang, Q. Wang, W. Jiang, Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 46436–46444 (2017). https://doi.org/10.1039/c7ra0882e

177. X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310–28310 (2016). https://doi.org/10.1038/srep28310

178. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). https://doi.org/10.1063/1.3555436

179. H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007

180. S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces. 10(29), 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673

181. A. Xie, F. Wu, M. Sun, X. Dai, Z. Xu et al., Self-assembled ultralight three-dimensional polypyrrole aerogel for effective...
emagnetic absorption. Appl. Phys. Lett. 106(22), 222902 (2015). https://doi.org/10.1063/1.4921180
182. P. Zhang, X. Han, L. Kang, R. Qiang, W. Liu et al., Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3(31), 12694–12701 (2013). https://doi.org/10.1039/C3RA40973B
183. M. Cai, A. Shui, X. Wang, C. He, J. Qian et al., A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638
184. M. Green, Z. Liu, R. Smedley, H. Nawaz, X. Li et al., Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 5, 78–86 (2018). https://doi.org/10.1016/j.mtphys.2018.06.005
185. C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces. 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
186. R.B. Yang, W.F. Liang, C.W. Lou, J.H. Lin, Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2–18 GHz. J. Appl. Phys. 111(7), 07A338 (2012). https://doi.org/10.1063/1.3693764
187. F. Wang, C. Long, T. Wu, W. Li, Z. Chen et al., Enhancement of low-frequency magnetic permeability and absorption by texturing flaky carbonyl iron particles. J. Alloys Compd. 823, 153827 (2020). https://doi.org/10.1016/j.jallcom.2020.153827