BAG4/SODD Protein Contains a Short BAG Domain*

Received for publication, March 22, 2002, and in revised form, May 8, 2002
Published, JBC Papers in Press, June 10, 2002, DOI 10.1074/jbc.M202792200

Klára Briknarová‡, Shinichi Takayama‡, Sachiko Homma‡, Kelly Baker‡, Edelmira Cabezas‡, David W. Hoyt‡, Zhen Li‡, Arnold C. Satterthwait‡, and Kathryn R. Ely‡‡

From ‡The Burnham Institute, La Jolla, California 92037 and ¶Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352

BAG (Bcl-2-associated athanogene) proteins are molecular chaperone regulators that affect diverse cellular pathways. All members share a conserved motif, called the BAG domain (BD), which binds to Hsp70/Hsc70 family proteins and modulates their activity. We have determined the solution structure of BD from BAG4/SODD (silencers of death domains) by multidimensional nuclear magnetic resonance methods and compared it to the corresponding domain in BAG1 (Briknarová, K., Takayama, S., Brive, L., Havert, M. L., Knee, D. A., Velasco, J., Homma, S., Cabezas, E., Stuart, J., Hoyt, D. W., Satterthwait, A. C., Llináes, M., Reed, J. C., and Ely, K. R. (2001) Nat. Struct. Biol. 8, 349–352). The difference between BDs from these two BAG proteins is striking, and the structural comparison defines two subfamilies of mammalian BD-containing proteins. One subfamily includes the closely related BAG3, BAG4, and BAG5 proteins, and the other is represented by BAG1, which contains a structurally and evolutionarily distinct BD. BDs from both BAG1 and BAG4 are three-helix bundles; however, in BAG4, each helix in this bundle is three to four turns shorter than its counterpart in BAG1, which reduces the length of the domain by one-third. BAG4 BD thus represents a prototype of the minimal functional fragment that is capable of binding to Hsp70 and modulating its chaperone activity.

BAG1 proteins are conserved throughout eukaryotes, with homologues found in vertebrates, insects, nematodes, yeast, and plants (1–3). The human members of this family include BAG1 (4), BAG2 (1), BAG3 (CAIR-1/Bis) (1, 5, 6), BAG4 (SODD) (1, 7), BAG5 (1), and BAG6 (BAG3/Scythe) (8–10) (Fig. 1). BAG proteins contain diverse N-terminal sequences but share a conserved protein interaction module near the C-terminal end called the BAG domain (BD). The BD binds to the ATPase domain of Hsp70/Hsc70 and modulates activity of these molecular chaperones (11, 12). The BD of BAG1 also interacts with the C-terminal catalytic domain of Raf-1 and activates the kinase (13). It has been proposed that BAG family members serve as “toggles” in cell signaling pathways (10). For example, Raf-1 and Hsp70 may compete for binding to BAG1 (14). When levels of Hsp70 are elevated after cell stress, the BAG1-Raf-1 complex is replaced by BAG1-Hsp70, and DNA synthesis is inhibited (14). Thus, BAG1 serves as a molecular switch between cell proliferation and growth arrest. BAG4 (SODD), on the other hand, may play a role as a cellular “adapter.” It has been speculated that BAG4 recruits Hsc70 to tumor necrosis factor receptor 1 (TNFR1) and death receptor 3 (DR3) (2, 7), inducing conformational changes that prevent receptor signaling in the absence of ligand.

Each of the human BAG proteins binds to Hsp70/Hsc70 and modulates their chaperone activity. The conserved BD is necessary and sufficient for this interaction (1, 11). Here we report the solution structure of the BD of BAG4 and its comparison with the BD of BAG1 (3, 15). The BD in BAG4 is significantly shorter than its counterpart in BAG1 and may define a minimal structural unit that binds Hsp70/Hsc70. Our comparison reveals two subfamilies of BAG proteins that are structurally and evolutionarily distinct.

EXPERIMENTAL PROCEDURES

NMR Spectroscopy and Structure Calculation—BAG4 BD (residues 376–457) was expressed in Escherichia coli as a glutathione transferase (GST) fusion construct. After initial purification of the recombinant protein by affinity chromatography on glutathione-agarose resin, the GST moiety was removed by thrombin cleavage, and the digest was separated using Gel filtration chromatography. Remaining impurities were eliminated by affinity chromatography on a benzamidine-agarose column and by ion-exchange chromatography on a Q-Sepharose column. NMR samples contained 1–2 mM [15N- or [15N,13C]-labeled protein, 10 mM potassium phosphate buffer, pH 7.2, 100 mM KCl, 1 mM DTT, and 1 mM EDTA in 90% H2O/10% D2O. Spectra were acquired at 30 °C on Varian 500, 600, and 750 MHz spectrometers. The data were processed and analyzed with Felix 2000 (Molecular Simulations, Inc., San Diego). [1H, 15N, and 13C] assignments were established based on CBCA(CO)NH, HN(CACO), HNCC, C(O)NH, HCCO(NH), HCCCH-TOCSY, and three-dimensional [15N-edited NOESY. Distance restraints were obtained from three-dimensional [15N-edited NOESY and three-dimensional [13C, 15N-edited NOESY. φ and ψ dihedral angle restraints were generated with TALOS (16). Structures were calculated with standard torsion angle dynamics (TAD) simulated annealing protocol implemented in CNS 1.0 (17) using restraints for 1153 interproton distances (120 long range, 5 ≤ i-j ≤ 199 medium-range, 2 ≤ i-j ≤ 4, 195 sequential and 639 intrasredundant), 92 hydrogen bond distances, and 61 φ and 61 ψ dihedral angles. The protocol consisted of high temperature TAD, followed by TAD and cartoon slow cooling stages and final minimization. The scale factor for the dihedral angle energy term was doubled throughout the calculation; otherwise, default parameters were employed. Of 28 structures, 25 structures were selected that had no distance and dihedral angle restraint violated by more than 0.5 Å or 5°, respectively. The statistics are summarized in Table I. The structure with the lowest energy was used for illustrations and discussion. All figures were generated with MOLMOL 2K (18).

† To whom correspondence should be addressed. Tel.: 858-646-3135; Fax: 858-646-3191; E-mail: ely@burnham.org.
‡ This work was supported by NCI, National Institutes of Health Grants CA 67329, the USAMRMC Prostate Cancer Program (BAMD 17-99-1-0094 and PC010678), and the University of California Breast Cancer Research Program (7FB-0084). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1794 solely to indicate this fact.
§ The authors wish to thank Dr. Thomas C. Hinterdorfer, Department of Medicine, University of California, San Diego, for assistance in the preparation of the manuscript.
¶ The abbreviations used are: BAG, Bcl-2-associated athanogene; SODD, silencer of death domains; BD, Bag domain; GST, glutathione S-transferase; TAD, torsion angle dynamics; PDB, protein data bank.

* S. Takayama, unpublished results.
Peptide Synthesis and Binding Study—The peptide corresponding to helical region Asn-256–Cys-267 of the ATPase domain of human Hsc70, which was predicted to bind to BAG4, was synthesized in a helix-nucleated form to stabilize helicity (19) and characterized as described previously (15). 1H-15N HSQC spectra were recorded for 15N-labeled BAG4 solutions containing varying concentrations of peptide, and most pronounced resonance shifts of BAG4 amides were noted and mapped onto the structure.

Mutational Analysis of BAG4 Binding to Hsc70—Mutations in BAG4 were generated by two-step PCR-based mutagenesis using a full-length human BAG4 cDNA (1) as a template (15). The following forward (f) and reverse (r) primers were used: GGGAATTCACTCCTCCGAGTATTAAAAAAATC (f), GCGCTCGAGTCATAATCCTTTTTTTCTAATTTTTCAGTATGGC (r), CATGTGCTGGCGGCGGTCCAGTATC (E388A/E389A, f), GATACTGGACCGCCGCCAGCACATG (E388A/E389A, r), GCTTCTGGAAGCAATGCTAACC (E414A, f), GGTTAGCATTGCTTCAGAAGC (E414A, r), GGAACTGGCTTCAGTTGAAAC (D424A, f), GTTTCAACTGAAGCCAGTTCC (D424A, r), CGGCAGGCCGCAGCGAGGCTG (R438A/K439A, f), CAGCCTCTGCTGCGGCCTGCCG (R438A/K439A, r), GTTTGTAAGATTGCGGCCATACTGG (Q446A, f), CCAGTATGGCCGCAATCTTACAAAC (Q446A, r), and CCTCGAGTCATAATCCTTTTTTGCTAATTTTTCC (E453A, r). The products were purified by QiaQuick gel extraction kit (Qiagen), subcloned into the TOPO TA vector (Invitrogen) and sequenced. For in vitro binding assays, the fragments comprising wild type or mutant BAG4 BD were subcloned into the pGEX4T-1 vector and expressed in BL21(DE3) cells as GST-fusion proteins. After induction at room temperature with 0.1 mM isopropyl-1-thio-β-D-galactopyranoside, cells were lysed by sonication, and expressed proteins were isolated from lysates by affinity purification on glutathione-Sepharose (Amersham Biosciences). GST fusion proteins (5 μg) were immobilized on glutathione-Sepharose and incubated for 4 h at 4 °C in a volume of 0.1 ml of binding buffer (20 mM HEPES, pH 7.7, 142 mM KCl, 5 mM MgCl2, 2 mM ECTA, 0.5% Nonidet P-40) with 1 μl of in vitro translated [35S]methionine-labeled Hsc70 (pcDNA3-HA-Hsc70-(67–377), Ref. 11). The beads were then washed three times with 1 ml of ice-cold binding buffer, and bound proteins were separated by SDS-PAGE and visualized by autoradiography.

Computer Modeling—The homology models of BDs from BAG3 and BAG5 were created with SwissModel (22–24) using the sequence alignment shown in Fig. 2c. The coordinates were used to visualize charge and hydrophobicity distribution on molecular surfaces.

### Table 1

| Structural statistics for BAG4 |
|-------------------------------|
| Root mean square deviation (RMSD) from experimental restraints | 0.016 ± 0.001 |
| NOE distance restraints (Å) | 0.26 ± 0.02 |
| dihedral angle restraints (°) | 0.26 ± 0.02 |
| RMSD from idealized geometry (17) | |
| bonds (Å) | 0.0018 ± 0.0001 |
| angles (°) | 0.38 ± 0.02 |
| impropers (°) | 0.28 ± 0.02 |
| RMSD of residues 380–399, 407–423, 432–456 (helical regions) from mean coordinates* | |
| backbone atoms (N, Cα, C) (Å) | 0.58 ± 0.14 |
| heavy atoms (Å) | 1.21 ± 0.10 |
| RMSD of residues 376–457 from mean coordinates* | |
| backbone atoms (N, Cα, C) (Å) | 0.62 ± 0.18 |
| heavy atoms (Å) | 1.92 ± 0.11 |

* Mean coordinates were obtained by averaging coordinates of 25 calculated structures, which were first superposed using backbone atoms (N, Cα, C) of the helical regions (residues 380–399, 407–423, and 432–456).
RESULTS AND DISCUSSION

Structure of the BAG Domain from BAG4—We have determined the solution structure of BAG4 BD, using multidimensional NMR methods. Similar to its BAG1 counterpart (3, 15), the BAG4 BD is a three-helix bundle (Fig. 2a). However, a striking difference between the BDs of BAG4 and BAG1 is obvious. The three helices in BAG4 BD, which correspond to residues 380–399 (a1), 407–423 (a2), and 432–456 (a3), are substantially shorter than those in BAG1 (Fig. 2b).

Comparison of BAG Domains from BAG1 and BAG4—To compare the BDs of BAG4 and BAG1, we first superimposed their structures using only residues that are identical in the respective sequences. Secondary structure attributes several predominantly basic residues to the intermolecular contacts with BAG1. In particular, Arg-258, Arg-261, Arg-264, and Arg-265 from Hsc70 form salt bridges with Glu-157, Asp-154, and Arg-151 from BAG1. The structure of BAG4 closely resembles the upper two-thirds of the BAG1 BD (Fig. 2b).

Hsc70 Binding Interface on BAG4 BD—Most BAG1 residues that interact with Hsc70 (3) are conserved or are conservatively substituted in BAG4 BD (Fig. 2c). Hence, it can be predicted that BAG4 binds Hsc70 in a manner analogous to BAG1 (3, 15). This was tested experimentally by NMR-monitored titrations of BAG4 BD with a synthetic peptide corresponding to an α-helix (residues Asn-256–Cys-267) from the BAG1-binding interface on the ATPase domain of Hsc70. This helix contributes several predominantly basic residues to the intermolecular contacts with BAG1. In particular, Arg-258, Arg-261, Arg-264, and Thr-265 from Hsc70 form salt bridges with Glu-157, Glu-164, and Asp-167 from α2 and Asp-197 from α3 of BAG1.

3 The sequence numbering for murine BAG1 is the same as that used in our previous NMR study reporting the solution structure of mBAG1 (15). Human BAG1 is numbered accordingly for clarity. When the crystal structure of human BAG1 was published (3), a different numbering scheme was used based on the sequence of BAG1M, a longer isoform of BAG1. For direct comparison with the sequence numbers for human BAG1 in the crystal structure, the reader should add 55 to the BAG1 sequence numbers used in the present study.
respectively. The chemical shifts and mutations that affect binding are located in translated L-[35S]methionine-labeled Hsc70-(67–377). However, until now, low levels of homology for the conserved helices results of NMR titrations of BAG1 with the same peptide (15). Consistent with the expected peptide contact sites and with the orientation of the molecule is the same as in Fig. 2. Substitutions for residues 388–389 were made as control mutations because they are located in a1, on the opposite side of the molecule from the Hsc70 contact interface, and were not expected to affect binding. Input lane shows one-fifth of the total in vitro translated protein, which was mixed with the GST fusion protein. c. Tube model of BAG4 BD (residues 376–457) colored according to 1H- and 15N-chemical shift changes of the individual residues upon binding of the Hsc70 peptide Asn-256–Cys-267. Color intensity is proportional to the observed change. Sites of alanine substitution, which are described in panel b, are depicted as spheres. Black, gray, or white spheres indicate mutations that ablished, weakened, or did not affect binding to Hsc70, respectively. The chemical shifts and mutations that affect binding are located in a2–a3, marking an interaction interface that is closely similar to that seen in BAG1 (3, 15). Orientation of the molecule is the same as in Fig. 2.

The peptide interacted with BAG4 BD; the most pronounced 1H,15N chemical shift changes in BAG4 BD induced by peptide binding were localized in a2 (Fig. 3, a and c). This is consistent with the expected contact peptide sites and with the results of NMR titrations of BAG1 with the same peptide (15).

To further define the binding interface in BAG4 BD across the conserved helices a2 and a3, we used site-directed mutagenesis of the predicted contact residues within these helices. The results indicated that Gln-414 and Asp-424 from a2, as well as Arg-438, Lys-439, and Gln-446 from a3 are important for the interaction of BAG4 with Hsc70, because mutating these residues to alanine abolished or weakened the binding (Fig. 3, b and c). The equivalents of these residues in BAG1 each make direct contact with Hsc70 (3). As expected, mutations in a1 (E388A, E389A) had no effect, because this helix does not interact with Hsc70. Thus the results indicate that the binding surface for the heat shock chaperone is similar in BAG4 and BAG1, involving a2–a3 and extending through an area of ~10 × 10 Å across one face of the domain.

Whereas most intermolecular interactions between BAG4 and Hsc70 are identical to those in the BAG1-Hsc70 complex (3), the contributions and relative importance of some residues differ. For example, the BAG4 E453A mutant still interacted with Hsc70, even though mutation of the equivalent residue in BAG1 (D197A, made as a double mutant with Q201A) resulted in a failure to bind Hsc70 (15). In BAG1, Asp-197 forms a salt bridge with Arg-258 in Hsc70 whereas Gln-201 is not involved in direct contact (3). Aspartic or glutamic acid is found at this position in all human BDs. It is possible that the longer aliphatic side chain of glutamic acid precludes formation of a stable intermolecular salt bridge as seen in the BAG1-Hsc70 complex, and consequently, this residue is not critical for BAG4-Hsc70 recognition.

Structure-based Sequence Alignment of Human BAG Domains—The sequence similarity between BDs of BAG4 and BAG1 is strongest in a3 (30% identical) and somewhat weaker in a2 (24% identical), so the alignment was clear for these two helices. However, until now, low levels of homology for the sequences in a1 obscured alignments of this region, even with knowledge of the BAG1 structure (1–3). In some cases, this segment of BDs was excluded from sequence alignments. Now, with the structures of two BDs in hand, it is possible to evaluate the conserved folding pattern of a1 and to more accurately predict sequence homology for the BDs. A structure-based sequence alignment is presented in Fig. 2c. The most significant correction to previous alignment attempts is the relative position of a1; BAG4 a1 spans residues 380–399, corresponding to structurally equivalent residues 104–123 in BAG1.

Whereas the sequence alignment of more distantly related BAG4 and BAG1 BDs required comparison of their structures, sequences of BDs from BAG3, BAG4, and BAG5 can be aligned with a high degree of confidence (Fig. 2c, compare with Refs. 2 and 3). BDs from BAG3 and BAG4 are the most closely related among human BDs, being 60% identical. BAG5 was shown previously to contain four BDs (20–40% identical to BAG3 and BAG4) (1, 2), arranged in tandem and accounting for most of the protein. Now, our alignment has revealed that another segment in BAG5, located immediately after the first BD and predicted to contain three a-helices, is yet another BD, which we termed BAG5/BD2. For the alignment in Fig. 2c, we renumbered the remaining BDs from the identifiers cited previously (2, 10) to BAG5/BD3, BAG5/BD4, and BAG5/BD5. The role of these linked BDs in BAG5 is not yet understood.

Alignment of the putative BDs from BAG2 and BAG6/Syte/Mano was not straightforward, and therefore we did not include their sequences in Fig. 2c. Even though both proteins bind to Hsc70 and inhibit its refolding activity (1, 9), they are obvious outliers and their structures are likely to be different from other BDs. In BAG2, the C terminus of the protein itself terminates the putative BD shortly after the segment with homology to a2. Thus, if the folding pattern were retained for the first part of the domain, BD in BAG2 would lack most of a3. In contrast, the BD of BAG6 may lack the structural equivalent of a1 because the corresponding sequence contains several prolines that are likely to disrupt the helix. Only half of the residues whose counterparts in BAG1 contact the chaperone are conserved in...
BAG6. The region with binding of BAG6 to Hsc70 (9). It remains to be seen whether potential. Areas with negative, positive, or neutral character are described in terms of electrostatic accessibility of the domain is colored according to electrostatic character. Areas with negative, positive, or neutral character are displayed as in panels a and b, or, respectively. In panel b, the molecule is rotated 180° around a vertical axis relative to the view in panel a, thus revealing the opposite side with helix 1 in front. In panels c and d, the surface is colored according to hydrophobicity. Yellow color intensity is proportional to increasing hydrophobic character, and the front and back views of the molecule are displayed as in panels a and b. Charged and hydrophobic residues are labeled in the appropriate panels.

Implications for Human BAG Proteins—To consider conserved structure/function relationships in the human BAG family, we used BAG4 BD as a template to construct three-dimensional homology models for the BDs from BAG3 and BAG5. The sequence identity is 60, 39, 29, 22, 23, and 43% for BAG3 BD, BAG5/BD1, BAG5/BD2, BAG5/BD3, BAG5/BD4, and BAG5/BD5, respectively. The BDs from BAG2 and BAG6 were excluded from this comparison because they lack the clear homology seen in the other members of the family. Thus, a “gallery” of BDs was generated consisting of three experimentally determined structures (BAG4, murine BAG1, Ref. 15 and human BAG1, Ref. 3) and six homology models (Figs. 4 and 5). This gallery was used to compare the overall globular shape as well as surface features and protein interaction interfaces across the family. It should be noted for the homology models that the main chain conformation is likely to be accurate, but the positions of the side chains are less well defined. Our models provide a reasonable representation of overall surface feature distribution and can be useful in the absence of experimental structures of other members of the BAG family. BAG1, BAG3, and BAG4 interact with Hsc70 (1, 2, 6, 11, 20), and, consistent with that, the Hsc70-binding faces (helices α2 and α3) of BDs from these family members are very similar with respect to charge distribution (Fig. 5, top row). Acidic residues (Glu-413 and Glu-414 from α2, Asp-424 and Glu-427 from the connecting loop, and Glu-450 and Glu-453 from α3 in BAG4) dominate diagonally across the surface (Fig. 4a). The N-terminal portion of α3 presents a cluster of basic residues (Arg-435, Arg-438, and Lys-439 in BAG4), seen in the upper left corner of the domain (Fig. 4a). Some of the acidic residues and the basic cluster on the α2-α3 face are shared by all the BDs. Similarly, a central hydrophobic region (Leu-420 and Leu-421 from α2 and Val-442, Ile-445, and Leu-449 from α3 in BAG4) is conserved through the family (Fig. 5).

Among the BAG5 BDs, BAG5/BD5 is the most canonical whereas BAG5/BD2 is the least. In fact, the charge distribution in BAG5/BD2 is rather unusual, resulting in a large dipolar moment on the α2-α3 face of the domain. In BAG5/BD3 and BAG5/BD4, the cluster of acidic residues on α2 and α3 is not conserved, which could impede the interaction with Hsc70. In particular, the equivalents of the critical contact residue Glu-414 in BAG4 are cysteine in BAG5/BD3 and threonine in BAG5/BD4. When this glutamic acid is mutated to alanine in BAG4 or BAG1, binding to Hsc70 is abolished. The putative Hsc70 contact interfaces in BAG5/BD5 and also BAG5/BD1 are more closely similar to that in BAG4. In BAG5/BD5, this critical glutamatate residue is conserved but an arginine is present at this site in BAG5/BD1. Interestingly, both of these BDs bind Hsc70 in in vitro assays. Future studies are needed to reveal how BAG5 is organized, whether its five BDs act independently or interact with one another, and to identify the molecular targets of BAG5/BDs that do not bind Hsc70.

Short Versus Long BAG Domains—In our comparison of BDs from human BAG family members, we have demonstrated the presence of two structurally distinct BAG domains that divide the family into two subfamilies, characterized by the presence of “short” (BAG3, BAG4, and BAG5) or “long” (BAG1) BAG domains. Gene structure of these two BD types also differs and reflects separate evolutionary history. Whereas the BDs in BAG3, BAG4, and BAG5 are neither flanked by nor contain any introns, there are several phase 0 introns in the BD region of the human BAG1 gene. The existence of short and long varieties raises numerous questions about evolution and function of BDs. Because the short BD is sufficient for binding to Hsc70 and modulating its activity, what is the advantage of having each α-helix extended at one end of the long BD by three turns? Does the long BD represent the original form, and did the short BD arise by elimination of the part of the molecule that was not required for its function? Alternatively, did the long BD evolve from an ancestral short BD, with the extra residues enabling it to gain a new function?

To learn more about short and long BDs, we investigated which types are present in other species. Sequences similar to BDs are found in fungi, plants, and animals (1–3). Proteins containing the long BD, homologous to human BAG1, have been identified in various vertebrates (mouse, Mus musculus, Ref. 4; rat, Rattus norvegicus, BI280304, BF407193, A1045819; cow, Bos taurus, AV601527; frog, Xenopus laevis, AW640566, BJ036536; fish, Oryzias latipes, B0J21354) and in nematodes (Caenorhabditis elegans, Ref. 1; Meloidogyne arenaria, BI746004, BI501569; Meloidogyne javanica, B124599; Heteroder a glycines, BF249474). All the nematode BDs contain an insertion of 6 residues between α2 and α3. Short BDs, similar to those in human BAG4, have been found throughout vertebrates (mouse, M. musculus, BAB27167; rat, R. norvegicus, BF392489; cow, B. taurus, BM104841, AW416999; chicken,
Gallus gallus, AJ396368; zebrafish, Danio rerio, BM071126, BG303781, BM095203) and in chordates (tunicate, Ciona intestinalis, AV841356, AV881072). Short BDs are also present in insects (silkworm, Bombyx mori, Ref. 21; fruit fly, Drosophila melanogaster, Ref. 3; bee, Apis mellifera, BI515842, BI508980; mosquito, Anopheles gambiae, AJ280648) in a set of proteins distinct from BAG3, BAG4, and BAG5. In BDs from fungi (Snl1p in Saccharomyces cerevisiae (2); BAG1A and BAG1B in Schizosaccharomyces pombe (1); Neurospora crassa, CAB88563), homology is limited to the Hsc70-binding region of α2 and α3, which is common to both short and long BDs. However, the C termini of the proteins limit α3 to a size typical of a short BD. Consistent with this observation, secondary structure prediction indicates that the three α-helices span a region of approximately 90 residues. Altogether, BDs in fungi are likely to be short. Also in plant BDs (2, 3), only the chaperone-binding sequence of α2 and α3 is conserved. In this case, however, protein termini do not limit the size of the BDs, and secondary structure prediction is not straightforward. Classification as short or long may therefore require knowledge of the three-dimensional structure of these proteins.

The presence of the short BD in at least two kingdoms, animals and fungi, suggests that this form of BD is of ancient origin. It is not clear if the long BD is limited only to a part of the animal kingdom, or if it will be found elsewhere as well.

Interestingly, nematodes possess an orthologue of BAG1, which contains the long BD, but the short BD has not yet been identified in the completed genome of C. elegans. Does this imply that the short BD is absent in some animal species? Obviously, many open questions remain. The origin of short and long BDs, point of their divergence, diversity of BDs within eukaryotes, and significance of their different lengths are still obscure. Also, even though the structures of BAG domains from human and mouse BAG1 (3, 15) and from human BAG4 have been determined, it is not straightforward to predict structures of BDs from distantly related BAG family members whose sequence similarity is limited to Hsc70-binding regions of α2 and α3. Once the structures of BDs from yeast and plant proteins, as well as those from BAG2 and BAG6, are known they will provide new insights into the structure-function relationship in this diverse family of molecular regulators.

Acknowledgments—We thank N. E. Preece for assistance with the Varian 500 MHz spectrometer, D. Kedra for help with sequence database searches, J. C. Reed for helpful discussions and critical review of the manuscript, and S. Hammond for assistance in preparing the manuscript for publication. This research was performed in part at the Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the United States DOE Office of Biological and Environmental Research) located at Pacific Northwest National Laboratory, operated by Battelle for the DOE.
REFERENCES

1. Takayama, S., Xie, Z., and Reed, J. (1999) J. Biol. Chem. 274, 781–786
2. Tschopp, J., Martinon, F., and Hofmann, K. (1999) Curr. Biol. 9, R381–384
3. Sondermann, H., Schreufel, C., Schneider, C., Hohfeld, J., Hartl, F.-U., and Mayor, I. (2001) Science 291, 1553–1557
4. Takayama, S., Sato, T., Krajewski, S., Kochel, K., Irie, S., Millan, J. A., and Reed, J. C. (1995) Cell 80, 279–284
5. Lee, J. H., Takahashi, T., Yasuhara, N., Inazawa, J., Kamada, S., and Tsujimoto, Y. (1999) Oncogene 18, 6183–6190
6. Thress, K., Song, J., Morimoto, R. I., and Kornbluth, S. (2001) EMBO J. 20, 1033–1041
7. Wang, H. G., Takayama, S., Rapp, U. R., and Reed, J. C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 7063–7068
8. Song, J., Takada, M., and Morimoto, R. I. (2001) Nat. Cell Biol. 3, 276–282
9. Briknarova, K., Takayama, S., Brive, L., Havert, M. L., Knee, D. A., Velasco, J., Homma, S., Cabezas, E., Landin, M., Reed, J. C., and Ely, R. K. (2001) Nat. Struct. Biol. 8, 349–352
10. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J. Biol. Chem. 274, 289–292
11. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Grosse-Kunstleve, R. W., and Warren, G. L. (1998) Acta Crystallogr. Sect. D 54, 905–921
12. Koradi, R., Billeter, M., and Wuthrich, K. (1996) J. Mol. Graph. 14, 51–55
13. Cabezas, E., and Satterthwait, A. C. (1999) J. Biol. Chem. 274, 22506–22514
14. Wang, H. G., Takayama, S., Rapp, U. R., and Reed, J. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7063–7068
15. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Crystallogr. 26, 283–291
BAG4/SODD Protein Contains a Short BAG Domain
Klára Briknarová, Shinichi Takayama, Sachiko Homma, Kelly Baker, Edelmira Cabezas, David W. Hoyt, Zhen Li, Arnold C. Satterthwait and Kathryn R. Ely

J. Biol. Chem. 2002, 277:31172-31178.
doi: 10.1074/jbc.M202792200 originally published online June 10, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M202792200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 28 references, 9 of which can be accessed free at http://www.jbc.org/content/277/34/31172.full.html#ref-list-1