Detection of *Cryptosporidium* spp. and *Giardia duodenalis* in small wild mammals in northeastern Brazil

Hllytchaikra Ferraz Fehlberg, Cássia Matos Ribeiro, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, Camila Albano dos Santos, Martín Roberto del Valle Alvarez, Tatiane Vitor Harvey, George Rêgo Albuquerque

1 Department of Agricultural and Environmental Sciences, Santa Cruz State University —UESC, Ilhéus, BA, Brazil, 2 Department of Support, Production and Animal Health, Universidade Estadual Paulista—UNESP, Araçatuba, SP, Brazil, 3 Department of Biological Sciences, State University of Santa Cruz—UESC, Ilhéus, BA, Brazil

These authors contributed equally to this work.

Current address: Departamento de Ciências Agrárias e Ambientais, Hospital Veterinário, Universidade Estadual de Santa Cruz, Salobrinho, Ilhéus, Bahia, Brazil

ferrazellen@hotmail.com

Abstract

This study investigated the occurrence of *Giardia duodenalis* and *Cryptosporidium* spp. in rodents and marsupials from the Atlantic Forest in southern Bahia, northeastern Brazil. Two hundred and four fecal samples were collected from different forest areas in the municipalities of Ilhéus, Una, Belmonte, and Mascote. Identifications were performed using PCR and nested PCR followed by sequencing of the *gdh* and *tpi* genes for *G. duodenalis*, and the *gp60* and *Hsp-70* genes for *Cryptosporidium*. The total frequency of positive PCR samples for both *G. duodenalis* and *Cryptosporidium* spp. was 5.4% (11/204).

Giardia duodenalis occurred in 2.94% (4/136) of rodents and 2.94% (2/68) of marsupials. The prevalence of *Cryptosporidium* in rodents and marsupials was 1.47% (2/136) and 4.41% (3/68), respectively. In the areas sampled, the frequency of parasitism was 50% (7/14), while the Mascote region alone had no parasitized animals. The *G. duodenalis* subgenotype AI was identified in the rodent species *Hylaeamys laticeps*, *Oecomys catharinus*, *Oligoryzomys nigripes* and *Akodon cursor*, and in the marsupials *Gracilinanus agilis* and *Monodelphis americana*. In the rodents *Rhipidomys mastacalis*, *H. laticeps* and in the marsupial *Marmosa murina* the protozoa *Cryptosporidium fayeri*, *C. parvum* and *C. ubiquitum* with subtypes IIa and IVg by the *gp60* gene were found. In conclusion, this study provides the genetic characterization of *Giardia* and *Cryptosporidium* species and genotypes in rodents and marsupials. And, these findings reinforce that the rodent and marsupial species mentioned above play a role as new hosts for *Giardia* and *Cryptosporidium*.

PLOS ONE | https://doi.org/10.1371/journal.pone.0256199 August 16, 2021
Introduction

Small mammals such as rodents (Rodentia, Cricetidae) and marsupials (Mammalia, Didelphimorphia) transmit pathogens to humans and domestic animals; however, the consequent risk to public health is poorly understood [1,2]. Environmental disruption due to human activity influences the occurrence and spread of zoonotic and parasitic diseases (e.g., giardiasis and cryptosporidiosis) in these animals, affecting the wildlife species balance [3].

Giardia Kunstler, 1882 and *Cryptosporidium* Tizzer, 1907 are protozoa known worldwide for causing severe gastroenteric disease in humans, as well as domestic and wild animals [2,4,5]. These protozoa cause infections from cysts or oocysts found in environmental and water contaminations [4,6].

The role of wild animals in human giardiasis and cryptosporidiosis epidemiology is uncertain. However, molecular studies have allowed the identification of several species of *Giardia* and *Cryptosporidium* in wild animals [6,7–9].

Molecular techniques have successfully determined and supported the understanding of epidemiological processes [9] by using several genes to identify distinct species of *Giardia* and *Cryptosporidium*. Additionally, they reveal genotypes and subgenotypes, of which some are specific to humans and others to animals [6].

To determine *Cryptosporidium* spp. genotypes and subgenotypes, coding genes stand out as small subunit 18S ribosomal RNA (SSu-rRNA) [10]. Both gp60 and Hsp-70 demonstrate a high polymorphism in different species [11,12]. In addition, wall-protein coding genes (COWPs), actin, acetyl-CoA synthetase, and internal space transcribed from rDNA (rDNA ITS 1) are also used [13,14].

To detect the genotype and subgenotype of the *Giardia duodenalis* species, genes of SSu-rRNA [15,16], glutamate dehydrogenase (gdh), triose-phosphate isomerase (tpi), and beta-giardin (bg) coding genes are used [16–18].

Molecular studies to detect *Giardia* and *Cryptosporidium* in wildlife reported the presence of these protozoa in different species of small mammals. However, in northeastern Brazil, no studies have employed molecular genotyping to identify *G. duodenalis* and *Cryptosporidium* spp. Thus, the objective of this study was to identify, through a molecular technique at the level of genotypes and subgenotypes, *G. duodenalis* and *Cryptosporidium* spp. in fecal samples of rodents and marsupials captured in agroforestry areas (*Cabruca*) and the Atlantic Forest in southern Bahia, northeastern Brazil.

Material and methods

Collection area

Within the study area, 14 forest areas, distributed in four municipalities in the southern region of the State of Bahia, were sampled. These included three cocoa agroforestry areas located in the rural area of Ilhéus (areas 1–3), and 11 forest areas located in the municipalities of Una, Mascote and Belmonte (areas 4–14) (Fig 1). The study region is characterized by a hot and humid tropical climate, with an average relative humidity of 89–90% and an average temperature of 24–25˚C, predominantly covered by tropical forest vegetation and an agroforestry system, which preserves native forest [19]. In the region, it rains 150 days a year on average, with precipitation reaching 2,000 mm/year. The dry seasons are not well defined; occasionally, one to three months receive less than 100 mm of rain [20]. Elevation of the sampled areas ranged from 42–100 m above sea level and were georeferenced with a Global Positioning System (GPS).
Capturing animals and obtaining biological material

The capture period ranged from June 2015 to December 2016. The animals were captured using Sherman (23 × 8 × 9 cm), Tomahawk (50 × 17 × 17 cm), and pitfall traps. Each area was divided into three plots, with a total of 24 traps per plot and 72 traps per area. The study was approved by the Biodiversity Authorization and Information System (SISBIO) under number 17131-4 from the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA) and by the Council for the Ethical Use of Animals of the State University of Santa Cruz (CEUA-UESC; Case No. 003/2013).

After identification of the species, fecal samples were collected with subsequent release of the animals at the places of origin (Table 1). Fecal samples were stored in 1.5 mL microtubes, kept refrigerated and delivered to Laboratory of Veterinary Parasitology of the State University of Santa Cruz (LAPVET-UESC), weighed, and standardized between 180 and 200 mg.
DNA extraction and molecular characterization

The fecal samples were washed with sterile PBS (pH 7.2) and subjected to genomic DNA extraction using the QIAamp DNA Stool Mini kit \(^{1}\) (Qiagen), according to manufacturer’s instructions. After adding the lysis buffer, the samples were subjected to five cycles of heating (96˚C) and freezing (-196˚C), with 3 minutes of heating and 5 minutes of freezing, then homogenized in a vortex for 5 minutes with 0.2 g of glass beads (0.5 mm), following the kit’s guidelines thereafter. The amount of extracted genomic DNA was established using a NanoDrop 2000 (Thermo Scientific, USA), stored in boxes, and placed in a freezer at -20˚C.

To detect the presence of *Cryptosporidium* spp. and *Giardia duodenalis*, each isolated DNA sample was subjected to nested PCR. For the amplification of *Giardia* fragments, *gdh* \(^{[16]}\) and *tpi* coding genes \(^{[17]}\) were used. *Cryptosporidium* fragments were amplified using *gp60* \(^{[12]}\) and *Hsp-70* \(^{[11]}\) genes (Table 1).

The tests were carried out in a Proflex PCR system thermocycler (Applied Biosystems) using the Platinum Taq DNA polymerase kit (Invitrogen) for the mix. Positive fecal samples from *Giardia* cysts and isolates from the Veterinary Parasitology Laboratory at UESC were used as positive controls. *Cryptosporidium* isolates (13F and 13C) from the Laboratory of Clinical Analysis (LAC) of the State University of Feira de Santana, Bahia \(^{[21]}\) and ultrapure water were used as negative controls. The PCR products were subjected to 1% agarose gel electrophoresis, developed with SYBR \(^{[85]}\) Safe, purified using the PureLink PCR Purification kit (Invitrogen), and sent for sequencing.

Table 1. Species of marsupials and wild rodents captured in the Atlantic Forest and *Cabruca* areas in southern Bahia, northeastern Brazil, and positivity of infected animals.

Order Didelphimorphia	Area	N°/Positives	Molecular diagnosis (Nested/PCR)	
Family Didelphidae			Cryptosporidium	Giardia
Marmosa murina (Linnaeus, 1758)	3;4;6;7;8;9;10;11;12;13;14	26/3	3	0
Marmosa incanus (Lund, 1840)	11; 13	7/0	0	0
Marmosa demerarae (Thomas, 1905)	4;7;8	9/0	0	0
Monodelphis americana (Muller, 1776)	3;4;14	8/1	0	1
Gracilinanus agilis (Burmeister, 1854)	12;14	10/1	0	1
Didelphis aurita (Wied-Neuwied, 1826)	7;8	8/0	0	0
TOTAL	**68/5**	**3**	**2**	

ORDER RODENTIA

Family Cricetidae	Area	N°/Positives	Molecular diagnosis (Nested/PCR)	
Hylaeamys laticeps (Lund, 1840)	1;2;3;4;5;8	81/2	1	1
Akodon cursor (Winge, 1887)	1;2;3;11;14	13/1	0	1
Rhipidomys mastacalis (Lund, 1840)	1;2;3;5;8;12;13	11/1	1	0
Thaptomys nigrita (Lichtenstein, 1829)	1;5;8;13;14	9/0	0	0
Oecomys catherinae (Thomas, 1909)	5;7;13;13	5/1	0	1
Calomys expulsus (Lund, 1841)	12	2/0	0	0
Cerradomys subflavus (Percequillo et al., 2008)	1;2;11	4/0	0	0
Oligoryzomys nigripes (Olfers, 1818)	1;2;5;7;8;12	7/1	0	1
Euryoryzomys russatus (Wagner, 1848)	1;3;13	4/0	0	0
TOTAL	**136/6**	**2**	**4**	
GRAND TOTAL	**204/11**	**5**	**6**	

https://doi.org/10.1371/journal.pone.0256199.t001
Sequencing was performed using capillary electrophoresis (modified Sanger sequencing) on the ABI 3500XL Genetic Analyzer platform (Applied Biosystems) in both directions. Chromatogram analysis was performed using the FinchTV 1.4.0 software. Amplicons were Sanger-sequenced in both directions. DNA sequences were deposited in GenBank under accession numbers MW202351, MW202352, MW202353, MW202354, MW202355, MW202356, MW202357, MW202358, MW202359, MW202360, MW202361, MW202362, MW202363, MW202364, MW202365, MW202366 and MW202367.

Statistical analysis

To verify the association between the positivity of the samples with the catch area (agroforestry and forest areas), statistical analysis was performed using Fisher’s exact test with 95% confidence intervals using the Epi Info™ 7.2.0.1 software.

Results

Out of 204 fecal samples collected, 5.4% (11/204) tested positive (Table 1). The occurrence of *G. duodenalis* was 2.94% (6/204) for rodents 2.94% (4/136), and marsupials 2.94% (2/68) (Table 2). For *Cryptosporidium*, the combined positivity was 2.45% (5/204), with 1.47% (2/136) and 4.41% (3/68) for rodents and marsupials, respectively (Table 3). In the collection areas, the frequency of parasitism was 50% (7/14) and there were no parasitized animals in the municipality of Mascote (Fig 1). The agroforestry areas had the highest frequency of infected animals, although the differences between the positivity in capture areas were not statistically significant ($p > 0.05$).

The analysis of the *tpi* and *gdh* gene sequences demonstrated 100% genetic similarity with the *G. duodenalis* species of the subgenotype AI (Table 2). The genetic analysis of *Cryptosporidium* identified *C. parvum, C. ubiquitum, and C. fayeri*, and subtypes that belong to the IIa and IVG allelic families. No subtype found for *C. ubiquitum* (Table 3).

Discussion

The present study investigated, for the first time, the presence of the protozoa *Giardia* and *Cryptosporidium* in rodents and marsupials captured in the northeast region of Brazil. The southern region of Bahia includes an extensive area of the Atlantic Forest with a richness of fauna and flora species, being an important area for the conservation of global biodiversity [20]. In addition to having areas of cocoa agroforestry, providing shade for planting and preserving native forests [22].

Table 2. Species of *Giardia* per parasitized host caught in forest and Cabruca areas in southern Bahia, northeastern Brazil.

Hosts	PCR marker	Order	TPI	GDH	Subgenotypes
Gracilinanus agilis	Didelmorphia	Gd	Gd	Al	
Monodelphis americana	Didelmorphia	Gd	Gd	Al	
Oecomys catherinae	Rodentia	Gd	Gd	Al	
Oligoryzomys nigeripes	Rodentia	Gd	Gd	Al	
Hylaemys laticeps	Rodentia	Gd	Gd	Al	
Akodon cursor	Rodentia	Gd	Gd	Al	

Abbreviations: Gd: *Giardia duodenalis*.
* Subgenotype.

https://doi.org/10.1371/journal.pone.0256199.t002
Giardia duodenalis infection has been described in wild animals, such as rodents and marsupials, with a prevalence ranging from 2% to 12% [3,23–27]. This defines a low prevalence in forest areas, compared to that in urban areas with rodents having a higher prevalence ranging from 24.4% to 64.3% [2,23,28]. In the present study, the frequency of positive animals was 5.4%, and such low positivity may be related to the sampling site, which has rich and abundant flora, low anthropization, and the presence of some arboreal animal species, such as *G. agilis* and *O. catherinae*, which have herbivorous and insectivorous diet, respectively [26,29,30] reducing contact with the pathogen.

The subgenotype AI found in this study is commonly found in humans [31], which characterizes these animals as participants in the epidemiology of human *Giardia* infection [25]. Vermeulen et al. [25], Caccio and Ryan [32], Karim et al. [33], and Garcia et al. [34] identified the same subgenotype in the *gdh* and *tpi* genes in animals. Marsupials and rodents, especially those which are terrestrial, such as the marsupials *M. murina* and *M. americana*, and the rodents *O. nigripes*, *H. laticeps*, *A. cursor*, and *R. mastacalis*, become infected through contaminated water, food, and fomites, thus playing an important role in the evolution of this protozoan [29]. Additionally, this brings the parasite into contact with humans, presenting a risk to public health [31,35].

The *gdh* and *tpi* genes demonstrated good sensitivity, allowing the generated sequences to identify the *G. duodenalis* species and the subgenotype AI in the six isolates. Because it has conserved regions, characterization of these genes can identify all genotypes and subgenotypes of *G. duodenalis* [36–38].

The *Cryptosporidium* frequency was 1.47% and 4.41% in rodents and marsupials, respectively, similar to that described by Santos [24]. The literature describes this protozoan infecting a variety of small mammal species [3,24,39–44]. Studies in urban areas also show a greater degree of parasitism of this protozoan in synanthropic rodents [2,28,41,42]. The presence of this protozoan may be associated with anthropic action and the presence of domestic animals provides an interaction between humans and wild fauna, favoring its dissemination [45].

Cryptosporidium parvum is responsible for the majority of human enteric infections worldwide [44]. The subgenotype IIa obtained in this study is frequently found in humans and animals [43,44,46–48]. *Cryptosporidium fayeri* is common in marsupial species [40,44,49,50] despite has also been identified in humans [44,51,52]. Its pathogenicity is unknown, but it often causes asymptomatic infections in marsupials [40]. The subgenotype IVg has been identified in marsupials (*Macropus giganteus*) [44].

Cryptosporidium ubiquitum was found in *Hylaeamys laticeps*, the first finding in wild rodents captured in Brazil. This species has low specificity and is commonly reported in animals, including rodents, marsupials, and other host species [35,41,43,53,54]. Cases in humans

| Table 3. Species of *Cryptosporidium* per parasitized host caught in forest and Cabruca area in southern Bahia, northeastern Brazil. |
|---|---|---|---|
| **Species** | **Order** | **PCR marker** | **Gp60 subgenotype family** |
| *Marmosa murina* | Didelphidae | *Cp* | *Cp* |
| *M. murina* | Didelphidae | *Cr* | *Cf* |
| *M. murina* | Didelphidae | *Cr* | *Cp* |
| *Rhipidomis mastacalis* | Rodentia | *Cp* | *Cp* |
| *Hylaeamys laticeps* | Rodentia | *Cu* | |

Abbreviations: *Cp: Cryptosporidium parvum; Cf: Cryptosporidium fayeri; Cr: Cryptosporidium sp.; Cu: Cryptosporidium ubiquitum.*

* Subgenotype.
have shown that [55,56] the most common route of *C. ubiquitum* transmission is through water [56].

The two genes assessed, *gp60* and *Hsp-70*, have satisfactory sensitivity and can be used in studies to identify *Cryptosporidium* and verify its genetic diversity [45,53,57,58]. Using more than one gene provides a more detailed understanding of the protozoan’s genetic variability and abiotic factors in the study population [59].

In this study, the occurrence of protozoa in small mammals was similar in the Atlantic Forest (Una and Belmonte) and agroforestry (Ilhéus) environments. The difference in the number of positive animals between capture areas was not statistically significant, demonstrating that agroforestry areas maintain low contamination due to the continued diversity of fauna and flora, despite greater anthropic action and transit of domestic animals that threaten the diversity of wild animals [60].

The close human relationship with wildlife as a result of disorderly urban occupation, illegal trade in wild animals, or the maintenance of these animals as pets, are some of the factors that enhance the transmission of zoonotic diseases between species, thus threatening both conservation of biodiversity, and public health [61,62]. Thus, surveillance and monitoring of wildlife pathogens is necessary for the detection, mitigation and prevention of diseases with zoonotic potential.

Conclusion

Results herein obtained pioneer Giardia and Cryptosporidium identification in rodents and marsupials from southern Bahia, northeastern Brazil, showing the present technique as sensitive enough to identify the subgenotypes of Giardia and Cryptosporidium through the gdh and tpi, and Hsp-70 and gp60 genes, respectively.

Acknowledgments

The authors would like to thank we thank Prof. Aristeu Vieira da Silva (State University of Feira de Santana—UEFS) for the strains of *C. parvum* (13F and 13C), to the Fiocruz Technological Platform Network for the use of its Sequencing facility at FIOCRUZ-Bahia and to Professor Giovanni Widmer, from Tufts University, for their help in sequencing.

Author Contributions

Conceptualization: Hllytchaikra Ferraz Fehlberg, George Rêgo Albuquerque.

Data curation: Hllytchaikra Ferraz Fehlberg, Cássia Matos Ribeiro, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, George Rêgo Albuquerque.

Formal analysis: Hllytchaikra Ferraz Fehlberg, Cássia Matos Ribeiro, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, Camila Albano dos Santos, Tatiane Vitor Harvey, George Rêgo Albuquerque.

Funding acquisition: George Rêgo Albuquerque.

Investigation: Hllytchaikra Ferraz Fehlberg, Cássia Matos Ribeiro, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, Camila Albano dos Santos, George Rêgo Albuquerque.

Methodology: Hllytchaikra Ferraz Fehlberg, Cássia Matos Ribeiro, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, Camila Albano dos Santos, Martín Roberto del Valle Alvarez, George Rêgo Albuquerque.
Project administration: Martín Roberto del Valle Alvarez, George Rêgo Albuquerque.
Resources: George Rêgo Albuquerque.
Supervision: George Rêgo Albuquerque.
Validation: Hllytchaikra Ferraz Fehlberg, George Rêgo Albuquerque.
Visualization: Martín Roberto del Valle Alvarez, Tatiane Vitor Harvey, George Rêgo Albuquerque.
Writing – original draft: Hllytchaikra Ferraz Fehlberg, George Rêgo Albuquerque.
Writing – review & editing: Hllytchaikra Ferraz Fehlberg, Pedro de Alcântara Brito Junior, Bruno César Miranda Oliveira, George Rêgo Albuquerque.

References
1. De Seixas Filho JT, Santana AC, Mesquita EDFM. Parasitism in the wild animals of the Atlantic rainforest biome used as hunting meat. Semioses, 8 (1) (2014), pp. 69–70. https://doi.org/10.5604/12321966.1141359 PMID: 25780818
2. Pereg-Matysiak A, Burkowska-Gawlik K, Zaleśniy G, Hildebrand J. Small rodents as reservoirs of Cryptosporidium spp. and Giardia spp. in south-western Poland. Ann Agric Environ Med. 22 (1) (2015). https://doi.org/10.5604/0103-84782090050000085.
3. Lallo MA, Pereira A, Araujo R, Favorito SE, Bordon EF. Ocorrência de Giardia, Cryptosporidium e microsporidios em animais silvestres em área de desmatamento no Estado de São Paulo, Brasil. Cienc. Rural. 39 (5) (2009), pp. 1465–1470. https://doi.org/10.1590/S0103-84782090050000085.
4. Thompson RCA, Ash A. Molecular epidemiology of Giardia and Cryptosporidium infections. Infect Genet Evol. 40 (2016), pp. 315–323. https://doi.org/10.1016/j.meegid.2015.09.028 PMID: 26458528
5. Siqueira-Castro ICV, J. Greinert-Goulart A, Bonatti TR, Yamashiro S, Frano RMB. First report of predation of Giardia sp. cysts by ciliated protozoa and confirmation of predation of Cryptosporidium spp. oocysts by ciliate species. Environ Sci Pollut Res. 23 (11) (2016), pp. 11357–11362. https://doi.org/10.1007/s11356-016-6689-y PMID: 27098881
6. Xiao L, Fayer R. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol. 38 (11) (2008), pp. 1239–1255. https://doi.org/10.1016/j.ijpara.2008.03.006 PMID: 18479685
7. Heitman TL, Frederick LM, Viste JR, Guselle NJ, Morgan UM, Thompson RCA, et al. Prevalence of Giardia and Cryptosporidium and characterization of Cryptosporidium spp. isolated from wildlife, human, and agricultural sources in the North Saskatchewan River Basin in Alberta, Canada. Can. J. Microbiol., 48 (2002), pp. 530–541. https://doi.org/10.1139/w02-047 PMID: 12166680
8. Zhou L, Fayer R, Trout JM, Ryan UM, Schafer FW, Xiao L. Genotypes of Cryptosporidium species infecting fur-bearing mammals differ from those of species infecting humans. Appl Environ Microbiol. 70 (12) (2004), pp. 7574–7577. https://doi.org/10.1128/AEM.70.12.7574-7577.2004 PMID: 15874965
9. Appelbee AJ, Thompson RC, M. Olson EC. Giardia and Cryptosporidium in mammalian wildlife–current status and future needs. T parasitology., 21 (8) (2005), pp. 370–376. https://doi.org/10.1016/j.pt.2005.06.004 PMID: 15982929
10. Xiao L, Escalante L, Yang C, Sulaiman I, Escalante AA, Montal I. R. J. A. N. A., Bern C., Xiao L.. A comparison of Cryptosporidium subgenotypes from several geographic regions. J Eukaryot Microbiol. 48 (2001), pp. 28s–31s. https://doi.org/10.1111/j.1550-7489.2001.tb01605.x PMID: 1190067
11. Khramtsov NV, Tilley M, Blunt DS, Montelone BA, Upton SJ. Cloning and analysis of a Cryptosporidium parvum gene encoding a protein with homology to cytoplasmic form Hsp70. J Eukaryot Microbiol. 42 (4) (1995), pp. 416–422. https://doi.org/10.1111/j.1550-7408.1995.tb01605.x PMID: 7620467
12. Peng M. M., Matos O., Gatei W., Das P., Stantici-Pavlinic M. I. R. J. A. N. A., Bern C., Xiao L.. A comparison of Cryptosporidium subgenotypes from several geographic regions. J Eukaryot Microbiol. 48 (2001), pp. 28s–31s. https://doi.org/10.1111/j.1550-7408.2001.tb00442.x PMID: 1190067
13. Widmer G, Lin I, Kapur V, Feng X, Abrahamsen MS. Genomics and genetics of Cryptosporidium parvum: the key to understanding cryptosporidiosis. Microbes Infect. 4 (10) (2002), pp. 1081–1099. https://doi.org/10.1016/S1286-4579(02)01852-5 PMID: 12191658
14. Monis PT, Thompson RCA. Cryptosporidium and Giardia-zoonoses: fact or fiction? Infect Genet Evol. 3 (4) (2003), pp. 233–244. https://doi.org/10.1016/j.meegid.2003.08.003 PMID: 14636685
Detection of Cryptosporidium spp. and Giardia duodenalis in small wild mammals in northeastern Brazil
44. Marques ARL. Aplicacío n de la MLTS (multilocus sequence typing) na Genotipagem de Giardia Lamblia. Dissertação. Universidade de Coimbra, 2015, http://hdl.handle.net/10316/32320.

45. Dall’olio AJ, Franco RMB. Ocorrência de Cryptosporidium spp. em pequenos mamíferos silvestres de três áreas serranas do Sudeste brasileiro. Arq. Bras. Med. Vet. Zootec., 56 (1) (2004), pp. 25–31, https://doi.org/10.1590/S0102-09352004000100005.

46. Ryan UM, Power M, Xiao L. Cryptosporidium fayeri n. sp. (Apicomplexa: Cryptosporidiidae) from the Red Kangaroo (Macropus rufus). J Eukaryot Microbiol. 55 (1) (2008), pp. 22–26, https://doi.org/10.1111/j.1550-7408.2007.00299.x PMID: 18251799.

47. Garcia–r JC, French N, Pita A, Velathanthiri N, Shrestha R, Hayman D. Local and global genetic diversity of protozoan parasites: spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis., 11 (7) (2017), pp. e0005736, https://doi.org/10.1371/journal.pntd.0005736 PMID: 28704362.

48. Koehler AV, Whipp M, Hogg G, Haydon SR, Stevens MA, Jex AR, et al. First genetic analysis of Cryptosporidium from humans from Tasmania, and identification of a new genotype from a traveller to Bali. Electrophoresis. 35 (18) (2014), pp. 2600–2607, https://doi.org/10.1002/elps.201400225 PMID: 24916177.

49. Garcia–r JC, French N, Pita A, Velathanthiri N, Shrestha R, Hayman D. Local and global genetic diversity of protozoan parasites: spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis., 11 (7) (2017), pp. e0005736, https://doi.org/10.1371/journal.pntd.0005736 PMID: 28704362.

50. Power ML, Ryan UM. A new species of Cryptosporidium (Apicomplexa: Cryptosporidiidae) from eastern grey kangaroos (Macropus giganteus). J. Parasitol., 94 (5) (2008), pp. 1114–1117, https://doi.org/10.1654/GE-1508.1 PMID: 18973420.

51. Koehler AV, Whipp M, Hogg G, Haydon SR, Stevens MA, Jex AR, et al. First genetic analysis of Cryptosporidium from humans from Tasmania, and identification of a new genotype from a traveller to Bali. Electrophoresis. 35 (18) (2014), pp. 2600–2607, https://doi.org/10.1002/elps.201400225 PMID: 24916177.

52. Fayer R, Santin M, Macarissin D. Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol., 172 (1–2) (2010), pp. 23–32, https://doi.org/10.1016/j.vetpar.2010.04.028 PMID: 20537798.
54. Li N, Xiao L, Alderisio K, Elwin K, Cebelinski E, Chalmers R, Feng Y. Subtyping Cryptosporidium ubiquitous, a zoonotic pathogen emerging in humans. Emerg Infect Dis. 20 (2) (2014), pp. 217, https://doi.org/10.3201/eid2002.121797 PMID: 24447504
55. Feng Y, Alderisio KA, Yang W, Blancero LA, Kuhne WG, Nadareski CA, Xiao L. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microbiol. 73 (20) (2007), pp. 6475–6483, https://doi.org/10.1128/AEM.01034-07 PMID: 17720824
56. Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol., 34 (11) (2018), pp. 997–1011, https://doi.org/10.1016/j.pt.2018.07.009 PMID: 30108020
57. Da Silva AJ, Cacciò S, Williams C, Won KY, Nace EK, Whittier C, et al. Molecular and morphologic characterization of a Cryptosporidium genotype identified in lemurs. Vet parasitol., 111 (4) (2003), pp. 297–307, https://doi.org/10.1016/S0304-4017(02)00384-9 PMID: 12559709
58. De Carvalho TTR. Estado atual do conhecimento de Cryptosporidium e Giardia. J Trop Pathol., 38 (1) (2009), pp. 01–16.
59. Santin M. Clinical and subclinical infections with Cryptosporidium in animals. N Z Vet J. 61 (1) (2013), pp. 1–10, https://doi.org/10.1080/00480169.2012.731681 PMID: 23134088
60. Dos Santos CLA, Silva AP, Santos SB, Pardini R, Cassano CR. Dog invasion in agroforests: the importance of households, roads and dog population size in the surroundings. Perspect Ecol Conser., 15 (3) (2017), pp. 221–226, https://doi.org/10.1016/j.pecon.2017.08.001.
61. Bezerra-Santos MA, Mendoza-Roldan JA, Thompson RCA, Dantas-Torres F, Otranto D. Legal versus Illegal Wildlife Trade: Zoonotic Disease Risks. Trends in Parasitology, 37 (5) (2021), pp. 360–361, https://doi.org/10.1016/j.pt.2021.02.003 PMID: 33648889
62. Shivaparakash KN, Sen S, Paul S, Kiesecker JM, Bawa KS. Mammals, wildlife trade, and the next global pandemic. Current Biology, 31 (1–7) (2021), https://doi.org/10.1016/j.cub.2021.06.006.