Study of the Change from Walking to Non-Walking Behavior
in a Vectorial Gauge Theory as a Function of N_f

M. KURACHI* and R. SHROCK†

C.N. Yang Institute for Theoretical Physics,
State University of New York,
Stony Brook, New York 11794, USA
*Speaker: E-mail: masafumi.kurachi@sunysb.edu
†E-mail: robert.shrock@sunysb.edu

Based on recent works [1,2], we present the results of calculations for several physical quantities (meson masses, the S parameter, etc.) in a vectorial gauge theory, as a function of the number of fermions, N_f. Solutions of the Schwinger-Dyson and the Bethe-Salpeter equations with the improved ladder approximation are used for the calculations. We focus on how the values of physical quantities change as one moves from the QCD-like (non-walking) to walking regimes.

1. Introduction

We consider a (3 + 1)-dimensional vectorial gauge theory (at zero temperature and chemical potential) with the gauge group SU(N_c) and N_f massless fermions transforming according to the fundamental representation of this group. For $N_c = 3$, if one took $N_f = 2$, this would be an approximation to actual QCD. We restrict here to the range $N_f < (11/2)N_c$ for which the theory is asymptotically free. An analysis using the two-loop beta function and Schwinger-Dyson equation leads to the inference that for N_f in this range, the theory includes two phases: (i) for $0 \leq N_f \leq N_{f,cr}$ a phase with confinement and spontaneous chiral symmetry breaking ($S\chi$SB); and (ii) for $N_{f,cr} \leq N_f \leq (11/2)N_c$ a phase with no spontaneous chiral symmetry breaking (plausibly a non-Abelian Coulomb phase). We shall refer to $N_{f,cr}$, the critical value of N_f, as the boundary between these two phases.

For N_f slightly less than $N_{f,cr}$, the theory exhibits an approximate infrared (IR) fixed point with resultant walking behavior. That is, as the energy scale μ decreases from large values, $\alpha = g^2/(4\pi)$ (g being the SU(N_c) gauge coupling) grows to be $O(1)$ at a scale Λ, but increases only rather
slowly as \(\mu \) decreases below this scale, so that there is an extended interval in energy below \(\Lambda \) where \(\alpha \) is large, but slowly varying. Associated with this slowly running behavior, the resultant dynamically generated fermion mass, \(\Sigma \), is much smaller than \(\Lambda \). In addition to its intrinsic field-theoretic interest, this walking behavior has played an important role in theories of dynamical electroweak symmetry breaking [3]-[9]. As \(N_f \) approaches \(N_{f,cr} \) from below, quantities with dimensions of mass vanish continuously; i.e., the chiral phase transition separating phases (i) and (ii) is continuous. Recently, meson masses and other quantities such as the generalized pseudoscalar decay constant \(f_P \) and the \(S \) parameter [10] were calculated in the walking limit of an SU(\(N_c \)) gauge theory [11,12].

It is of interest to investigate how meson masses and other quantities change as one decreases \(N_f \) below \(N_{f,cr} \), moving away from the boundary, as a function of \(N_f \), between phases (i) and (ii), deeper into the confined phase. For this purpose, in Ref. [1], as in Refs. [11,12], we use the Schwinger-Dyson (SD) equation to compute the dynamical fermion mass \(\Sigma \) (generalized constituent quark mass) and then insert this into the Bethe-Salpeter (BS) equation to obtain the masses of the low-lying mesons and other quantities. We restrict to an interval of \(N_f \) values for which the theory has an infrared fixed point. For definiteness, we take \(N_c = 3 \); however, \(N_c \) enters only indirectly, via the dependence of the value of the infrared fixed point \(\alpha_* \) on \(N_c \). Hence, our findings may also be applied in a straightforward way, with appropriate changes in the value of \(\alpha_* \), to an SU(\(N_c \)) gauge theory with a different value of \(N_c \).

In order to study meson masses and other quantities as one moves away from the boundary between phases (i) and (ii), it is first necessary to know as accurately as possible where this boundary lies, as a function of \(N_f \), i.e., to know the value of \(N_{f,cr} \). For sufficiently large \(N_f \), the beta function (calculated to the maximal scheme-independent order, namely two loops) has an IR fixed point at

\[
\alpha_* = \frac{-4\pi(11N_c - 2N_f)}{34N_c^2 - 13N_cN_f + 3N_c^{-1}N_f}.
\]

(1)

Requiring that \(\alpha_* \) be sufficiently large as to yield spontaneous symmetry breaking in the context of an approximate solution to the SD equation for a fermion yields the condition that \(N_f < N_{f,cr} \), where [9]

\[
N_{f,cr} = \frac{2N_c(50N_c^2 - 33)}{5(5N_c^2 - 3)}.
\]

(2)

For \(N_c = 3 \) this gives \(N_{f,cr} \approx 11.9 \). These estimates are only rough, in view
of the strongly coupled nature of the physics. Effects of higher-order gluon exchanges and instantons have been studied in Refs. [13].

In our analysis, what we actually vary is the value of the approximate IR fixed point α_*, which depends parametrically on N_f. Thus, although our SD and BS equations are semi-perturbative, the analysis is self-consistent in the sense that our α_{cr} really is the value at which, in our approximation, one passes from the confinement phase with $S\chi$SB to the chirally symmetric phase, and our values of α_* do span the interval over which there is a crossover from walking to QCD-like (i.e., non-walking) behavior.

2. Schwinger-Dyson Equation

We first use the Schwinger-Dyson equation for the fermion propagator to calculate the dynamically generated mass Σ of this fermion. In Fig. 1 (left panel) we show the solution for the dynamical fermion mass Σ as a function of α_*. A fit to the numerical solution in the walking region $0.89 \leq \alpha_* \leq 1.0$ [11] found agreement with the functional form

$$\Sigma = c\Lambda \exp \left[-\pi \left(\frac{\alpha_*}{\alpha_{cr}} - 1 \right)^{-1/2} \right],$$

(3)

with $c = 4.0$ (see also Refs. [6,9]). Our calculations for larger α_* show the expected shift away from walking behavior. This shift is evident in Fig. 1 for α_* larger than about 1.2. Our calculation of Σ, shown in Fig. 1, shows that Σ/Λ increases substantially, by about a factor of 30, from a value of about 0.01 at $\alpha_* = 1.0$ to 0.32 at $\alpha_* = 2.5$, much closer to the value of $O(1)$ for this ratio in QCD.

Another quantity of interest is the pseudoscalar decay constant f_P, the N_f-flavor generalization of the pion decay constant, f_π. In Fig. 1 (right
panel) we show our results for f_P calculated by substituting our solution for $\Sigma(k^2)$ into the Pagels-Stokar formula. In the walking limit, f_P has been shown to satisfy a relation similar to eq. (3), i.e., it is exponentially smaller than the scale Λ. We display, as the dotted curve, the fit from Ref. [11] for the walking interval $0.89 \leq \alpha_\ast \leq 1.0$, given by eq. (3) with $c = 1.5$. Our results show the change from this walking type of behavior as α_\ast increases above this range; specifically, as α_\ast increases from 1.0 to 2.5, f_P/Λ increases substantially, from about 3×10^{-3} to about 0.08. This is similar to the factor by which we found that Σ/Λ increased as α_\ast increased through this interval.

3. Calculation of Meson Masses

We next present the results of the numerical calculations for meson masses, obtained by solving the homogeneous BS equation [1]. (As in Ref. [11], we have checked and confirmed that the flavor-adjoint pseudoscalar meson mass is zero to within the numerical accuracy of our calculation.) In Fig. 2, we show the values of meson masses divided by Λ calculated from the SD and BS equations. In Fig. 3 we plot the values of $M_{A,V,S}/f_P$ (left panel) and $M_{A,S}/M_V$ (right panel). Here, the subscripts V, A and S represent vector, axial-vector and scalar, respectively. Our calculations yield a number of interesting results. We summarize these for the changes in these meson masses as α_\ast increases from 0.9 to 2.5. The ratios of the meson masses divided by Λ increase dramatically, by factors of order 10^2, approaching values of order unity at $\alpha_\ast = 2.5$. This amounts to the removal of the exponential suppression of these masses.
which had described the walking limit near $N_{f,cr}$, as one moves away from this limit into the interior of the confined phase. For example, M_S/f_P increases monotonically from about 4 to 7, thereby approaching to within about 35 % of the value 10.7 in QCD for M_{a_0}/f_π, while M_V/f_P decreases from about 11 to 9, rather close to the value 8.5 for M_ρ/f_π and M_ω/f_π in QCD. The ratios M_A/M_V and M_S/M_V, which were found in Ref. [11] to have values close to 1.0 and 0.36, respectively, in the walking limit, both increase in the interval of α_* that we study, reaching about 1.2 and 0.74, respectively, at $\alpha_*=2.5$. For comparison, these ratios are approximately 1.6 and 1.3 in QCD.

4. Calculation of the S parameter

In this section we present the results of our calculations of \hat{S} [2] in the crossover region of the theory between the walking limit at $\alpha_* \downarrow \alpha_{cr}$ and larger values of α_* that move toward the QCD-like regime. Here, \hat{S} represents the contribution to the S parameter from one fermion isodoublet. (Studies of S in the walking limit include [12,14].) We calculate \hat{S} via the relation $\hat{S} = 4\pi(\Pi_{VV}(0) - \Pi_{AA}(0))$, where $\Pi_{VV}(q^2)$ and $\Pi_{AA}(q^2)$ are the vector and the axial-vector current-current correlation functions. These correlators are computed by solving the SD equation and the inhomogeneous BS equation [2].

In Fig. 4, as a function of α_*, we plot the value of \hat{S}_n, the value of \hat{S} normalized by its value at $\alpha_*=1.8$, namely, 0.47. This figure shows that \hat{S}_n, and hence also \hat{S}, decreases by about 40 % as α_* is reduced from 1.8.
Fig. 4. Plot of \hat{S}_n for several values of α_* in the range of $0.9 \leq \alpha_* \leq 1.8$. As indicated by the subscript n, the values are normalized by the value of \hat{S} at $\alpha_* = 1.8$, i.e., 0.47.

to 0.9, or equivalently as N_f is increased from 10.3 to 11.6. Reinserting the factor of the number of fermion isodoublets, $N_D = N_f/2$, to get S itself, we obtain a decrease by about 30% in S, since N_D only increases by about 10% over this range. Thus, our calculation shows that for this range of values, S decreases significantly as one moves from the QCD-like to the walking regimes. We recall that the (improved) ladder approximation to the BS equation can overestimate S in QCD by as much as 30% [15]. Hence, in addition to the demonstrated decreasing trend of \hat{S} and S as α_* decreases from 1.8 to 0.9, one may, separately, comment that the absolute magnitude of these quantities could be about 30% smaller than the values yielded by our ladder approximation. Our results thus strengthen the evidence for the reduction of \hat{S} in a walking, as opposed to QCD-like, gauge theory, and are relevant to assessing the impact of the S-parameter constraint on technicolor theories.

5. Summary

In summary, using numerical solutions of the Schwinger-Dyson and Bethe-Salpeter equations, we have calculated several physical quantities, including f_P, meson masses, and the S parameter, as a function of the approximate infrared fixed point, α_*, or equivalently, the number of massless fermions, N_f, in a vectorial, confining SU(N) gauge theory. Our results show the crossover between walking and non-walking behavior in a gauge theory, and demonstrate that \hat{S} and also S decrease significantly as α_* decreases in this range.
Acknowledgments

M.K. thanks Profs. M. Harada and K. Yamawaki for the collaborations on the related Refs. [11,12]. This research was partially supported by the grant NSF-PHY-03-54776.

References

1. M. Kurachi and R. Shrock, JHEP 0612, 034 (2006)
2. M. Kurachi and R. Shrock, Phys. Rev. D 74, 056003 (2006)
3. B. Holdom, Phys. Lett. B 150, 301 (1985).
4. K. Yamawaki, M. Bando, and K. Matumoto, Phys. Rev. Lett. 56, 1335 (1986).
5. T. Appelquist, D. Karabali, and L. C. R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986); T. Appelquist and L. C. R. Wijewardhana, Phys. Rev. D 35, 774 (1987); Phys. Rev. D 36, 568 (1987).
6. T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Phys. Rev. Lett. 77, 1214 (1996).
7. V. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051 (1997); ibid. 56, E 3768 (1997).
8. R. S. Chivukula, Phys. Rev. D 55, 5238 (1997)
9. T. Appelquist, A. Ratnaweera, J. Terning, and L. C. R. Wijewardhana, Phys. Rev. D 58, 105017 (1998).
10. M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990); Phys. Rev. D 46, 381 (1992).
11. M. Harada, M. Kurachi, and K. Yamawaki, Phys. Rev. D 68, 076001 (2003).
12. M. Harada, M. Kurachi, and K. Yamawaki, Prog. Theor. Phys. 115, 765 (2006).
13. T. Appelquist, K. Lane, and U. Mahanta, Phys. Rev. Lett. 61, 1553 (1988); T. Appelquist et al., Phys. Rev. D 43, 646 (1991); T. Appelquist and S. Selipsky, Phys. Lett. B 400, 364 (1997).
14. T. Appelquist and G. Triantaphyllou, Phys. Lett. B 278, 345 (1992); R. Sundrum and S. Hsu, Nucl. Phys. B 391, 127 (1993); T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702 (1999); S. Ignjatovic, L. C. R. Wijewardhana, and T. Takeuchi, Phys. Rev. D 61, 056006 (2000).
15. M. Harada, M. Kurachi, and K. Yamawaki, Phys. Rev. D 70, 033009 (2000).