Protective effect of Tβ4 on central nervous system tissues and its developmental prospects

Gui-hong Zhang,1,2 Krishna Dilip Murthy,2 Rahmawati Binti Pare2 and Yi-hua Qian3

Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.

Keywords
Alzheimer’s disease, astrocyte, central nervous system, inflammation, microglia, neurons, oligodendrocyte, thymosin beta4

Introduction
Thymosin was successfully extracted from fetal bovine thymus for the first time in 1966 by Goldstein et al.1 It was originally considered to be a thymic hormone with immunological effects on lymphocytes. It was later identified as a G-actin-binding protein, which is required for cell movement and organogenesis.2,3 According to their isolectric points, they are divided into three subfamilies of α, β, and γ. The β subfamily (Tβs) is distributed in all eukaryotic cells except red blood cells. Tβs is a water-soluble small molecule peptide composed of 40–44 amino acid residues. The chemical structure is highly conserved. It can specifically bind to G-actin to regulate the polymerization of actin and affect angiogenesis to varying degrees4,5 and induce apoptosis.4,6 So far, there are 15 types of Tβs found. In humans, there are three main forms of Tβs, namely Tβ4, Tβ10, and Tβ15. Among them, Tβ4 is the most widely distributed

1School of Medicine, Xi’an International University, Xi’an, China
2Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
3Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China

Corresponding author:
Yi-hua Qian, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Shaanxi 710061, Xi’an, China.
Email: qianyh38@mail.xjtu.edu.cn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
and is the most abundant, accounting for 70%–80% of the total amount of Tβ4.1,7,8

Tβ4 is a highly conserved and highly expressed 43 amino acid polypeptide with multiple intracellular and extracellular functions. In recent years, the biological function of Tβ4 has received much attention, as it plays an important role in many physiological and pathological activities. Studies show that Tβ4 is closely associated with wound healing,9 angiogenesis,10 tumor metastasis,11 cell apoptosis,12,13 corneal repair,14 and myocardial repair.15 It is also involved in anti-inflammatory and neurodegenerative processes,16 especially important for the occurrence and repair of the nervous system.17–23 At present, synthetic Tβ4 has been widely used in research to explore its mechanism of action in different physiological and pathological activities. Studies have found that Tβ4 messenger RNA (mRNA) is widely expressed in mammalian brains such as the hippocampus, dentate gyrus, cerebral cortex, amygdala, and some microglia.17,24 It also participates in the differentiation and development of the nervous system after birth,8 such as synapse generation, neuronal migration, axonal growth, and dendritic plasticity changes, suggesting that it could have neuroprotection, promote axonogenesis and synapse formation properties.25

Tβ4 has great potential to promote CNS plasticity and nerve cell regeneration and appears to be a good candidate as a neural repair agent.26 It can cause neurological recovery in a variety of neurological diseases.27 Studies have shown that Tβ4 can target multiple nerve cells (including neurons, oligodendrocytes, and microglia) in animal models of nerve injury and can also provide neuroprotection, immunosuppression, and nerve repair such as myelin sheath regeneration, synapse formation, and axonal growth (Figure 1).28–33

Tβ4, a polypeptide, inhibits inflammation,34 regenerates saxon,35,36 helps development of nervous system,37 and promotes glial cell differentiation.26 Therefore, its medicinal value in the treatment of neurological diseases cannot be ignored (Figure 2). There are a large number of Tβ4 in the brain, the molecular mechanism of action in CNS is unclear, and participation in the different signaling pathways is poorly understood.38 However, with the in-depth study of the role and mechanism of Tβ4 in neural repair, Tβ4 could become another important target for new treatment of neurological diseases (especially a series of neurodegenerative diseases such as Alzheimer’s disease (AD)).39,40

Protective effect of Tβ4 on neuronal damage

Tβ4 plays a key role in many cellular processes, including mobility, axon pathfinding, neurite formation, proliferation, and neuron survival.41,42 Sabara et al.43 reported the neuroprotective and neurorepairing effects of Tβ4 on injured nerve cells and the interaction between thymus and thymosin and the nervous and endocrine systems.

Exogenous Tβ4 treatment can increase the survival rate of neurons, such as Tβ4 or normal saline given by intraperitoneal injection 3 min or 5 days after spinal cord injury (SCI) in rats. All behaviors were evaluated, and the number of surviving neurons and oligodendrocytes in Tβ4-treated animals increased significantly.23 In addition, in the animal model of traumatic brain injury (TBI), early treatment with intraperitoneal injection of Tβ4 (6 h after injury) reduces the volume of cortical lesions and the loss of hippocampus cells and improves functional recovery, indicating that it is possible to have a neuroprotective effect.42 Treatment with Tβ4 significantly reduces apoptosis of neural progenitor cells due to oxyglucose deprivation.43 Wirsching et al.44 analyzed the expression of Tβ4 in chicken (Gallus domesticus) developing cones and overexpressed and knocked down Tβ4 during egg retrovirus transduction and plasmid electroporation. The results indicate the effect of Tβ4 on neural stem cell and/or progenitor cell populations. This indicates that Tβ4 has a greater effect on neural stem cell and/or progenitor cell populations. Choi et al.45 reported that Tβ4 is involved in the control of programmed cell death (PCD) of chicken embryo.

![Figure 1. Mechanism of thymosin β4 protection and repair of CNS.](image-url)
motor neurons (MNs). Tβ4 can significantly reduce the death of chicken embryo MNs caused by staurosporine (protein kinase C inhibitor). It is suggested that Tβ4-derived peptides can be used for anti-apoptotic treatment of neuropathology related to neuronal apoptosis. Popoli et al.46 also reported that Tβ4 could reduce the toxic effect of glutamate on primary cultured cortical neurons, significantly reduce neuronal apoptosis, and protect neurons in rat models of excitatory amino acid damage induced by kainic acid. Morris et al.47 found that Tβ4 could promote the migration and differentiation of neural stem cells from the subventricular zone (SVZ) to ischemic lesions, and reduce brain function damage after cerebral ischemia in adult rats, suggesting that Tβ4 may achieve these effects by stimulating neuron migration and inducing the expression of extracellular matrix. According to the latest report, based on Tβ4 potential anti-inflammatory molecules and neuroprotective and myelin regeneration molecules and their mechanism of action, it is conceivable to use Tα1 (thymosin-α1) and Tβ4 alone in multiple sclerosis (MS) or with other approved possible application of drug combination therapy.48

Protective effect of Tβ4 on glial cell injury

Glial cells are interstitial cells of the nervous system. They support and provide nutrition to the neurons. They also participate in the transduction and transmission of information in the brain, regulate the secretion and uptake of neurotransmitters, and maintain the environmental balance in the brain. Glial cells mainly include astrocytes, oligodendrocytes, and microglia.

Protective effect of Tβ4 on astrocyte injury

Activation of astrocytes is often found in related studies such as neurodegenerative changes after chronic cerebral ischemia and neuronal damage in the hippocampus.49

Studies have found that the expression of astrocyte markers S100B (S100 calcium binding
protein B) and glial fibrillary acidic protein (GFAP) in the hippocampus of rats with chronic cerebral ischemia are increased, but glutamate intake is reduced resulting in cognitive impairment. The analysis showed that there is a positive correlation between the two, suggesting that astrocytes may be involved in neurodegenerative changes and cognitive dysfunction after chronic cerebral ischemia. However, Yang et al.50 found that T\textbeta 4 can reduce the neurotoxicity of ethanol to astrocytes, and has a significant protective effect, suggesting that T\textbeta 4 can protect astrocytes and reduce their damage by inhibiting apoptosis.

Protective effect on oligodendrocyte damage

Oligodendrocytes are the myelinating cells of CNS. Their damage mainly affects the production of myelin, impairs the synthesis of myelin sheath, and eventually leads to pathological changes such as white matter defects and volume reduction. Signal transmission between the brain and the subcortical center causes long-term neurobehavioral defects, which can clinically manifest as a decline in somatomotor function, visual spatial skills, association ability, and psychomotor function. Thus, oligodendrocytes are closely related to white matter damage.51 Clinical studies have shown that cerebral white matter is vulnerable to ischemia. After chronic cerebral ischemia, certain degree of oligodendrocytes damage, DNA breakage, activation of caspase apoptotic pathway, and apoptosis-related proteins caspase-3 (caspase protease 3), TNF-\textalpha (tumor necrosis factor-alpha), the expression of Bax (BCL2-associated X Protein, B-cell lymphoma/leukemia-2 gene (Bcl-2)), and so on were further increased, which further aggravated the damage of white matter and the apoptosis of oligodendrocytes. Therefore, it is necessary to protect oligodendrocytes. According to clinical data, T\textbeta 4 has significant advantages in neuroprotection and myelin regeneration, and has good safety, tolerance, and effectiveness, indicating that it is an excellent candidate for the treatment of demyelinating diseases.52–54 Santra et al.29 said that T\textbeta 4 promotes oligodendrocyte differentiation and inhibition of the Toll-like receptor (TLR) pro-inflammatory pathway by up-regulating microRNA-146a, suggesting that T\textbeta 4 has development prospects for the treatment of nerve damage. T\textbeta 4 can achieve its anti-inflammatory and immunoregulatory properties by inhibiting the activation of nuclear factor-\textkappa B (NF-\textkappa B) to protect oligodendrocytes from damage and death.25,55,56 Zhang et al.25 found that oligodendrocytes in the brain of experimental animals with MS model were significantly increased after T\textbeta 4 administration, and the neurological function recovered well in the short term and long term. The pathology of MS is characterized by irregular demyelination and glial hyperplasia in the white matter of the central nervous system (CNS). Therefore, the above results suggest that oligodendrocytes may promote the formation of myelin sheaths, which is helpful for myelin regeneration. Some studies have suggested that the protective effect of T\textbeta 4 is related to the promotion of oligodendrocyte differentiation and myelination,36 and it has a protective effect on white matter damage.

Protective effect of T\textbeta 4 on microglia

Imai et al.57 have shown that injection of exogenous microglia can increase the expression of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in ischemic hippocampus and induce neurotrophin dependence on damaged neurons. This shows that the administration of exogenous microglia may be a potential candidate for therapy in the CNS repair after transient global ischemia. We know that immunization with amyloid-beta (A\textbeta) peptides is a treatment for AD. Takata et al.58 said that we can increase the clearance of A\textbeta by transplanting exogenous microglia. Microglial activation promotes apoptosis of neurons and aggravates white matter damage by activating superoxide free radicals, hydroxyl free radicals, NO (nitric oxide) and other reactive oxygen species (ROS), and pro-inflammatory response factors such as TNF-\textalpha. Farkas et al.59 found that microglia can cause delayed nerve damage by producing pro-inflammatory factors, on one hand, and participate in the removal of necrotic tissue and promote nerve regeneration, on the other hand. Some studies have found that T\textbeta 4 is involved in microglial activation. Dong et al.60 found that the expression of T\textbeta 4 in hippocampal microglial cells blocked by olfactory nerve transmission was up-regulated, suggesting that T\textbeta 4 participates in the process of microglial activation; Zhou et al.61 used T\textbeta 4 to treat microglial cells in hypoxic brain injury model mice and found that T\textbeta 4 can inhibit inflammatory mediators such as TNF-\textalpha, the secretion of
interleukin-1β (IL-1β), and NO plays an anti-inflammatory role and inhibits the activation of the unfavorable pro-inflammatory phenotype feedback loop of microglia in vitro. In addition, Zhang et al. found that AcSDKP (N-acetyl-serine-aspartyl-lysyl-proline) can significantly reduce fibrin accumulation and microglial/macrophage activation in the brain. Dong et al. reported the progressive aggregation of Tβ4-positive activated microglia in the brains of patients with Huntington’s disease (HD). Therefore, we speculated that Tβ4 may be involved in the activation of microglia after chronic cerebral ischemia and promote the clearance, which is also conducive to the recovery of neural function.

Protective effect of Tβ4 on nerve tissue through anti-inflammatory process

Tβ4 is a major G-actin segregation molecule with anti-inflammatory effects and the mechanism of action is complex (Figure 3). Tβ4 has been used to treat various neurological diseases. Increasing evidence suggests that modulation of thymosin has anti-inflammatory potential in inflammation and autoimmune diseases. For example, Tβ4 treatment could improve functional recovery after experimental autoimmune encephalomyelitis (EAE) by reducing inflammatory infiltration and stimulating oligodendrocytes production. Sosne et al. first proposed a possible mechanism for Tβ4 to exert its anti-inflammatory properties by inhibiting NF-κB activity and cell function.

The activity of Tβ4 directly affects the repair and regeneration after injury. It plays an anti-inflammatory role by regulating the polymerized G-actin sequence and plays an important role in inhibiting tissue damage and fibrosis. Researches have shown that Tβ4 can effectively prevent the increase of ethanol-induced inflammatory mediators. It can significantly inhibit IL-1β and macrophage inflammatory proteins (MIP-1, MIP-1 by down-regulating TNF-α and interfering with NF-κB pathway), mononuclear chemokine protein (MCP-2), and other inflammatory factors gene transcription and expression, indicating that Tβ4 can reduce the number of inflammatory cells, down-regulate the expression of inflammatory chemokines and cytokines, and prevent new tissues from being inflammatory damage. In addition, Tβ4 significantly increased the expression of miR-146a in microglial cells and significantly inhibited the secretion of pro-inflammatory mediators. At the same time, Tβ4 was introduced as a key regulator of miR-146a and TLR signals, which can further regulate the secretion of pro-inflammatory cytokines and thus NF-κB factor. Moreover, Tβ4 can also reduce ROS, increase antioxidant proteins, and protect cells from damage factors released from damaged tissues.

According to the literature, when Tβ4 exerts a variety of physiological and pathological processes, and its high mRNA expression in specific cells, it is found that the concentration of metal ions such as calcium, iron, zinc, and copper in this cell will also increase, indicating that Tβ4 metal coordination (Tβ4 is a small molecule peptide with a metal-binding site) is the driving force for Tβ4 cell translocation and actin binding. Therefore, the function of Tβ4 can be recognized by studying the metal coordination mechanism of Tβ4, which is of great significance for Tβ4 to play its important role in disease treatment. It is well documented...
that excessive free redox active metals such as copper and iron can generate ROS and inflammation, which can cause neurodegeneration. Brain tissue is quite sensitive to ROS. ROS can destroy biomolecules and cause them to fold incorrectly to produce inclusions. Morris et al.39 have found that in neurodegenerative diseases, such as AD, Parkinson’s disease (PD), HD, and amyotrophic lateral sclerosis (ALS), there are many such inclusion bodies. Tβ4 is widely involved in the formation and maintenance of the nervous system. For example, Tβ4 plays an important role in the development of CNS, differentiation of progenitor cells, tangential expansion, neurogenesis, and neurite growth.48,70–72 Tβ4 can effectively promote the recovery of neurological diseases, mainly through the plasticity and neurovascular remodeling of the central (CNS) and peripheral nervous system (PNS).73 Since Tβ4 has good effects on vascular regeneration, neurogenesis, and so on, even if Tβ4 is used for 24 h or more after injury, the neural function can be significantly improved.74,75 In the brains of patients with AD and HD, Tβ4 is found to be elevated in reactive microglia.76 Reactive glial hyperplasia is the primary protective mechanism when nerve tissue is damaged, so elevated Tβ4 may have anti-inflammatory and repair functions in microglia.77 Tβ4 inhibits pro-inflammatory TLR signaling in vitro by activating microglia.37 It reverses increased pro-inflammatory factor concentration27 and reduces expression of inflammatory mediators and secretion of pro-inflammatory factors (TNF-a, IL-1B, and NO).78 Studies have shown that intracellular calcium ions are involved in the inflammatory process,79 and the removal of extracellular calcium ions can delay the increase of intracellular calcium ions before cell death.80 It is hoped that Tβ4 can prevent the relationship between calcium and other ions, thereby preventing inflammatory processes and cell death.

Protective effect of Tβ4 on cerebral vascular regeneration

Tβ4 is widely distributed in the nervous system and runs through the entire developmental process of the nervous system.81 Vartiainen et al.82 found in a rat model of focal cerebral ischemia that Tβ4 is a nerve repair molecule with many repair functions related to cell proliferation, migration, angiogenesis, and axon remodeling.26,83,84 Treatment of neurological damage, disorders, and diseases with Tβ4 can increase neurovascular plasticity, such as neurogenesis, neurite and axon growth, angiogenesis, and oligodendrocyte formation, which can significantly improve functional and behavioral outcomes.22 In the late period after the onset of nervous tissue damage or chronic nervous system symptoms, Tβ4 provides the environment by repairing neurovascular remodeling to repair damaged neural tissue.85 Tβ4 mRNA expression was found in the rat hippocampal ischemia model at 12 h after ischemia,82 and the expression was highest on the seventh day and was distributed throughout the infarcted lesions. However, the study did not elaborate on the effect of increased Tβ4 mRNA on the nervous system and the mechanism by which it increased. Later studies have shown that the expression of Tβ4 in the hippocampus area of rat cerebral ischemia is also significantly increased,86 and it is also highly expressed in brain tissues of HD76 and AD.87 The reason for the high expression of Tβ4 in many diseases of the nervous system may be that it is widely distributed and involved in many biological effects of the nervous system. Current research has shown that Tβ4 is involved in neuronal apoptosis,80 axonal growth and repair,46,51 and cerebral vascular regeneration.88

Morris et al.47 found that intraperitoneal injection of exogenous Tβ4 (6 mg/kg, four times every 3 days) 24 h after focal cerebral ischemia–reperfusion in rats, and that Tβ4 can significantly promote neurological recovery and axon repair in cerebral ischemia and neural stem cells differentiation, can significantly increase blood vessel density in the striatum area and ischemic penumbra (about 1.5 times the blood vessel density in the control group). Xiong et al.34 intraperitoneally injected exogenous Tβ4 into rats with brain injury in the same way. Compared with the control group, the blood vessel density increased significantly in the injured cerebral cortex and hippocampus. It has been reported that Tβ4 cleavage fragment (AcSDKP) is an effective peptide that promotes angiogenesis.89 It can promote endothelial cell migration and secrete active matrix metalloproteinase (MMP-1), indicating that Tβ4 and AcSDKP have overlapping functional regions.

The mechanism of Tβ4-promoting angiogenesis is still in deep research, but it can be summarized as follows: (1) the combination of Tβ4 and G-actin increases endothelial cell proliferation and
adhesion and promotes endothelial cell migration.90 (2) Induction of increased secretion of pro-angiogenic factors such as vascular endothelial growth factor (VEGF)91–94 and matrix metalloproteinases (MMPs).95 (3) Activates pro-angiogenic pathways, such as the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway. Studies suggest that Tβ4 protects acute and chronic ischemic embryonic endothelial progenitor cells through the PI3K/Akt pathway96 and it can also up-regulate p-Akt (Phosphorylated Akt) expression in myocardial infarction rats, activate downstream factors, and promote vascular regeneration.65,66 (4) Inhibits apoptosis and aging. Tβ4 can activate PI3K/Akt signaling pathway97 and regulate the phosphorylation of downstream key apoptotic proteins such as Bad (BCL2-Associated D Protein) and GSK-3β (Glycogen synthase kinase 3β) of the pro-apoptotic factor Bcl family and plays an anti-apoptotic effect. In addition, Tβ4 can inhibit serum-induced endothelial progenitor cell apoptosis by activating integrin-linked kinase (ILK) and downstream Akt and has a dose–effect relationship. The mechanism may be that Tβ4 up-regulated the expression of anti-apoptotic protein Bcl-2, while inhibiting the expression of pro-apoptotic protein Bax, leading to an increase in the Bcl-2/Bax ratio, stabilizing the mitochondrial membrane transmembrane potential, and reducing the release of endothelial progenitor cell pigment C.9,10 Tβ4 can also activate downstream endothelial nitric oxide synthase via PI3K/Akt pathway to slow the senescence of endothelial progenitor cells.95 Other studies have shown that Tβ4 can inhibit inflammation and provide a good environment for vascular regeneration.56

Conclusion and future development prospects

Many previously published studies indicate that Tβ4, a new type of multifunctional bioactive molecule, plays a crucial role in neuroprotection and nerve repair in the treatment of traumatic and neurological brain injuries. Tβ4 may be a promising therapeutic approach to reduce neuroinflammation and reduce symptoms associated with the pathogenesis of progressive psychosis and neurodegenerative diseases. However, research to determine their effects on the developing and injured brain is still in its infancy, and the potential role and molecular mechanism of Tβ4 in CNS function is still lacking, especially whether and how Tβ4 affects psychosis and direct pharmacological studies on the impaired behavior of neurodegenerative diseases. Furthermore, detailed preclinical studies are needed to specifically evaluate the therapeutic potential of Tβ4 in animal models of these conditions and determine its potential mechanism of action.

As shown in the preclinical model, the most important activity of Tβ4 may be its actin-binding properties to promote the migration and differentiation of neural stem/progenitor cells in the injured area, thereby promoting brain repair or regeneration processes, and can be used as a potential nerve repair. It has therapeutic potential for various nervous system injuries and neurodegenerative diseases (such as AD). This has great social significance for the high incidence of AD caused by the increasingly serious global aging. However, there is still a significant translation gap between preclinical data and clinical application. First, it is necessary to verify nerve repair and regeneration activity in human neurons or brain tissue, preferably coupled with changes in intracellular signaling pathways known to promote nerve regeneration and survival. Second, the optimal therapeutic dose or method remains to be determined. However, even in the preclinical model, the absorption and distribution of Tβ4 after various dosing regimens are unknown. Finally, the development of translated biomarkers that provide pharmacodynamic evidence of Tβ4 activity in brain tissue or nerve cells will facilitate dose selection.

Acknowledgements

We would like to thank Wang Meng and Yang Weina (Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center) for editorial assistance. We also thank Kai Ling Chin (Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FMHS), Universiti Malaysia Sabah (UMS)) for reading the article.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of
References

1. Goldstein AL, Slater FD and White A (1966) Preparation, assay, and partial purification of a thymic lymphocytopenic factor (thymosin). Proceedings of the National Academy of Sciences 56: 1010–1017.

2. Crockford D (2007) Development of thymosin β4 in tumor metastasis and angiogenesis. Angiogenesis 894: 255–265.

3. Hinkel R, Ball H, DiMaio M et al. (2015) C-terminal variable AGES domain of Thymosin β4: The molecule’s primary contribution in support of post-ischemic cardiac function and repair. Journal of Molecular and Cellular Cardiology 85: 8137–8148.

4. Lee SH, Zhang W, Choi J et al. (2001) Overexpression of the thymosin β-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20: 6700–6706.

5. Koutrafouri V, Leondiadis L, Federigos et al. (2003) Synthesis and angiogenetic activity in the chick chorioallantoic membrane model of thymosin beta-15. Peptides 24: 107–115.

6. Koutrafouri V, Leondiadis L, Livaniou E et al. (2001) Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochimica et Biophysica Acta 1568: 60–66.

7. Huff T, Müller CSG, Otto AM et al. (2001) β-thymosins, small acidic peptides with multiple functions. International Journal of Biochemistry and Cell Biology 33: 205–220.

8. Anadón R, Isabel RM, Pablo C et al. (2001) Differential expression of thymosins b and b during rat cerebellum 4 1 0 postnatal development. Brain Research 894: 255–265.

9. Philip D, Goldstein AL and Kleinman HK (2004) Thymosin β4 promotes angiogenesis, wound healing, and hair follicle development. Mechanisms of Ageing and Development 125: 113–115.

10. Grant DS, Rose W, Yaen C et al. (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3: 125–135.

11. Cha H-J, Jeong M-J and Kleinman HK (2003) Role of thymosin 4 in tumor metastasis and angiogenesis. Journal of the National Cancer Institute 95: 1674–1680.

12. Liu DS, Xiao SL, Wang B et al. (2014) Expressions of Bcl-2 and Bax and apoptotic rate of bone marrow mesenchymal stem cells transfected with thymosin beta4 in a hypoxic environment. Chinese Journal of Tissue Engineering Research 18: 6573–6577.

13. Tapp H, Deepe R, Yarmola E et al. (2009) Exogenous thymosin β4 prevents apoptosis in human intervertebral annulus cells in vitro. Biotechnic and Histochemistry 84: 287–294.

14. Sosne G and Kleinman HK (2015) Primary mechanisms of thymosin β4 repair activity in dry eye disorders and other tissue injuries. Investigative Ophthalmology and Visual Science 56(9): 5110–5117.

15. Pipes GT and Yang J (2016) Cardioprotection by thymosin beta 4. Vitamins and Hormones 102: 209–226.

16. Lachowicz JI, Jaremko M, Jaremko L et al. (2019) Metal coordination of thymosin β4: Chemistry and possible implications. Coordination Chemistry Reviews 396: 117–123.

17. Carpintero P, Anadón R, Díaz-Regueira S et al. (1999) Expression of thymosin β4 messenger RNA in normal and kainate-treated rat forebrain. Neuroscience 90: 1433–1444.

18. Xiong Y, Mahmood A and Chopp M (2010) Neurorestorative treatments for traumatic brain injury. Discovery Medicine 10: 434–442.

19. Gómez-Márquez J and Anadón R (2002) The beta-thymosins, small actin-binding peptides widely expressed in the developing and adult cerebellum. The Cerebellum 1: 95–102.

20. Yang H, Cheng X, Yao Q et al. (2008) The promotive effects of thymosin β4 on neuronal survival and neurite outgrowth by upregulating L1 expression. Neurochemical Research 33: 2269.

21. Paulussen M and Arckens L (2012) Striking neuronal thymosin beta 4 expression in the deep layers of the mouse superior colliculus after monocular deprivation. Brain Structure and Function 217: 81–91.

22. Shomali N, Baradaran B, Akbari M et al. (2020) A new insight into thymosin β4, a promising therapeutic approach for neurodegenerative disorders. Journal of Cellular Physiology 235: 3270–3279.

23. Cheng P, Kuang F, Zhang H et al. (2014) Beneficial effects of thymosin β4 on spinal cord injury in the rat. Neuropharmacology 85: 408–416.

24. Santra M, Chopp M, Santra S et al. (2016) Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. Journal of Neurochem 136: 118–132.

25. Zhang J, Zhang ZG, Li Y et al. (2016) Thymosin beta4 promotes oligodendrogenesis in the demyelinating central nervous system. Neurobiology of Disease 88: 85–95.

26. Chopp M and Zhang ZG (2015) Thymosin β4 as a restorative/regenerative therapy for neurological injury and neurodegenerative diseases. Expert Opinion on Biology Therapy 15(Suppl 1): S9–S12.
27. Zhang J, Wu J, Zeng W et al. (2016) Function of thymosin beta-4 in ethanol-induced microglial activation. *Cellular Physiology and Biochemistry* 386: 2230–2238.

28. Wang L, Chopp M, Jia L et al. (2015) Therapeutic benefit of extended thymosin β4 treatment is independent of blood glucose level in mice with diabetic peripheral neuropathy. *Journal of Diabetes Research* 6: 1–13.

29. Santra M, Zhang ZG, Yang J et al. (2014) Thymosin β4 up-regulation of MicroRNA-146a promotes oligodendrocyte differentiation and suppression of the toll-like proinflammatory pathway. *Journal of Biological Chemistry* 289: 19508–19518.

30. Sosne G, Qiu P, Kurpakus-Wheater M et al. (2010) A candidate for treatment of stroke? *Annals of the New York Academy of Sciences* 1194: 190–198.

31. Qiu P, Wheater MK, Qiu Y et al. (2011) Thymosin β4 inhibits TNF-α-induced NF-κB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. *The FASEB Journal* 25: 1815–1826.

32. Lee SI, Yi JK, Bae WJ et al. (2016) Thymosin beta-4 suppresses osteoclastic differentiation and inflammatory responses in human periodontal ligament cells. *Plos One 11*: e0146708.

33. Zhang C, Chopp M, Cui Y et al. (2010) Expression of thymosin β4 and corneal wound healing: Visions of the future. *Annals of the New York Academy of Sciences* 1194: 190–198.

34. Condon MR and Hall AK (1992) Expression of thymosin beta-4 and related genes in developing human brain. *Journal of Molecular Neuroscience* 3: 165.

35. Santra M, Chopp M, Lu M et al. (2012) Thymosin beta 4 mediates oligodendrocyte differentiation by upregulating MAPK. *Glia* 60: 1826–1838.

36. Renault L (2016) Intrinsic, functional, and structural properties of β-thymosins and β-thymosin/WH2 domains in the regulation and coordination of actin self-assembly dynamics and cytoskeleton remodeling. *Vitamins and Hormones* 102: 25–54.

37. Pardon MC (2018) Anti-inflammatory potential of thymosin β4 in the central nervous system: Implications for progressive neurodegenerative diseases. *Expert Opinion on Biological Therapy* 18: 165–169.

38. Morris DC, Chopp M, Zhang L et al. (2010) Thymosin β4: A candidate for treatment of stroke? *Annals of the New York Academy of Sciences* 1194: 112–117.

39. Sun W and Kim H (2007) Neurotrophic roles of the beta-thymosins in the development and regeneration of the nervous system. *Annals of the New York Academy of Sciences* 1112: 210–218.

40. Зимина ИВ, Belova OV, Arion VY et al. (2015) Взаимосвязь тимуса и тимических пептидов с нервной и эндокринной системами. *Interaction between Thymus and Thymus Peptides with Nervous and Endocrine Systems* 1: 18–29.

41. Xiong Y, Mahmood A, Zhang Y et al. (2012) Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury. *Annals of the New York Academy of Sciences* 1270(1): 51–58.

42. Samara P, Ioannou K and Tsitsilonis OE (2016) Prothymosin alpha and immune responses: Are we close to potential clinical applications? *Vitamins and Hormones* 102: 179–207.

43. Wirsching HG, Kretz O, Morosan-Puopolo G et al. (2012) Thymosin β4 induces folding of the developing optic tectum in the chicken (*Gallus domesticus*). *The Journal of Comparative Neurology* 520: 1650–1662.

44. Choi SY, Noh MR, Kim DK et al. (2007) Neuroprotective function of thymosin-β and its derivative peptides on the programmed cell death of chick and rat neurons. *Biochemical and Biophysical Research Communications* 362(3): 587–593.

45. Popoli P, Pepponi R, Martire A et al. (2007) Neuroprotective effects of thymosin β4 in experimental models of excitotoxicity. In *Annals of the New York Academy of Sciences* 1112: 219–224.

46. Morris DC, Chopp M, Zhang L et al. (2010) Thymosin β4 improves functional neurological outcome in a rat model of embolic stroke. *Neuroscience* 169(2): 674–682.

47. Severa M, Zhang J, Rizzo F et al. (2019) Thymosins in multiple sclerosis and its experimental models: Moving from basic to clinical application. *Multiple Sclerosis and Related Disorders* 27: 52–60.

48. Vicente E, Deganone D, Bohn L et al. (2009) Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. *Brain Research* 1251: 204–212.

49. Yang H, Bin Cui G, Jiao XY et al. (2010) Thymosin-β4 attenuates ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes by inhibiting apoptosis. *Cellular and Molecular Neurobiology* 30: 149–160.

50. Blumenthal I (2004) Periventricular leucomalacia: A review. *European Journal of Pediatrics* 163: 435–442.
53. Vasilopoulos E, Winyard PJD, Riley PR et al. (2015) The role of thymosin-β4 in kidney disease. Expert Opinion on Biological Therapy 15: 187–190.
54. Girardi M, Filler RB, Shires J et al. (2003) Anti-inflammatory effects in the skin of thymosin-β4 splice-variants. Immunology 109: 1–7.
55. Badamchian M, Fagarasan MO, Danner RL et al. (2003) Thymosin β4 reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock. International Immunopharmacology 3(8): 1225–1233.
56. Sosne G, Qiu P, Christopherson PL et al. (2007) Tumor necrosis factor-α, interleukin-1β and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. Journal of Neuroimmunology 206: 44–51.
57. Zhou T, Huang YX, Song JW et al. (2015) Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochemie Cell Biology 147(5): 555–564.
58. Yamamoto M, Yamagishi T, Yaginuma H et al. (1994) Localization of thymosin β4 to the neural tissues during the development of Xenopus laevis, as studied by in situ hybridization and immunohistochemistry. Developmental Brain Research 79(2): 177–185.
59. Kim DH, Moon EY, Yi JH et al. (2015) Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience 310: 51–62.
60. Chopp M and Zhang ZG (2015) Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opinion Emerging Drugs 20(4): 523–526.
61. Sapp E, Kegel K, Aronin N et al. (2001) Early and progressive accumulation of reactive microglia in the denervated hippocampus. Neuroreport 12(3): 1–14.
62. Lever M, Theiss C, Morosan-Puopolo G et al. (2017) Microgliosis and the multicellular response to CNS damage and the development of Huntington disease brain. Journal of Neuropathology Experimental Neurology 60: 161–172.
63. Burda JE and Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81: 229–248.
64. Zhang J, Zhang GZ, Li Y et al. (2009) Neurological functional recovery after thymosin β4 treatment in mice with experimental auto encephalomyelitis. Neuroscience 164: 1887–1893.
65. Young JD, Lawrence AJ, Leung BP et al. (1999) Thymosin β4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nature Medicine 5: 1424–1427.
66. Kuzu A (2016) Thymosin β as an actin-binding protein with a variety of functions. Advances in Clinical and Experimental Medicine 25(6): 1331–1336.
67. Sosne G, Qiu P, Christopherson PL et al. (2007) Thymosin β4 inhibits microglia activation through microRNA β4 and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. Journal of Neuroimmunology 206: 44–51.
68. Adalatkhah H and Sadeghi-Bazargani H (2015) The first clinical experience on efficacy of topical flu- tamide on melasma compared with topical hydroquinone: A randomized clinical trial. Drug Design, Development and Therapy 9: 4219–4225.
69. Lever M, Theiss C, Morosan-Puopolo G et al. (2017) Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochemie Cell Biology 147(5): 555–564.
70. Wirsching HG, Krishnan S, Frei K et al. (2014) Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience 310: 51–62.
71. Kim DH, Moon EY, Yi JH et al. (2015) Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience 310: 51–62.
80. Cierniewski CS, Sobierajska K, Selmi A et al. (2012) Thymosin β4 is rapidly internalized by cells and does not induce intracellular Ca2+ elevation. Annals of the New York Academy of Sciences 1269(1): 44–52.
81. Choe J, Sun W, Yoon SY et al. (2005) Effect of thymosin β15 on the branching of developing neurons. Biochemical and Biophysical Research Communications 331(1): 43–49.
82. Vartiainen N, Pyykönen I, Hökfelt T et al. (1996) Induction of thymosin β 4 mRNA following focal brain ischemia. Neuroreport 7: 1613–1616.
83. Goldstein AL and Kleinman HK (2015) Advances in the basic and clinical applications of thymosin β4. Expert Opinion on Biological Therapy 15: 1–7.
84. Sosne G, Qiu P, Goldstein AL et al. (2010) Biological activities of thymosin β4 defined by active sites in short peptide sequences. FASEB Journal. Epub ahead of print 23 February. DOI: 10.1096/fj.09–142307.
85. Wang L, Chopp M, Szalad A et al. (2016) Tadalafil promotes the recovery of peripheral neuropathy in type II diabetic mice. PLoS One 11(7): 546–555.
86. Kim Y, Kim EH, Hong S et al. (2006) Expression of thymosin β in the rat brain following transient global ischemia. Brain Research 1085: 177–182.
87. Rensink AAM, Otte-Höller I, Ten Donkelaar HJ et al. (2004) Differential gene expression in human brain pericytes induced by amyloid-β protein. Neuropathology and Applied Neurobiology 30: 279–291.
88. Liman TG and Endres M (2012) New vessels after stroke: Postischemic neovascularization and regeneration. Cerebrovascular Diseases 33: 492–499.
89. Conte E, Iemmolo M, Fruciano M et al. (2015) Effects of thymosin β4 and its N-terminal fragment AC-SDKP on TGF-β-treated human lung fibroblasts and in the mouse model of bleomycin-induced lung fibrosis. Expert Opin Biol Ther. 15 Suppl 1: S211–221.
90. Smart N, Risebro CA, Moses K et al. (2007) Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445: 177–182.
91. Jo JO, Kim SR, Bae MK et al. (2010) Thymosin β4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-1α-dependent manner. Biochimica et Biophysica Acta 1803: 1244–1251.
92. Qiu P, Kurpakus-Wheater M and Sosne G. (2007) Matrix metalloproteinase activity is necessary for thymosin beta 4 promotion of epithelial cell migration. Journal of Cell Physiology 212: 165–173.
93. Hinkel R, Bock-Marquette I, Hazopoulos AK et al. (2010) Thymosin β4: A key factor for protective effects of eEPCs in acute and chronic ischemia. Annals of the New York Academy of Sciences 1194: 105–111.
94. Goldstein AL, Hannappel E, Sosne G et al. (2012) Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opinion on Biological Therapy 12: 37–51.
95. Li J, Qiu F, Yu L et al. (2013) Thymosin β4 reduces senescence of endothelial progenitor cells via the PI3K/Akt/eNOS signal transduction pathway. Molecular Medicine Reports 7: 598–602.
96. Zhao Y, Qiu F, Xu S et al. (2011) Thymosin β4 activates integrin-linked kinase and decreases endothelial progenitor cells apoptosis under serum deprivation. Journal of Cellular Physiology 226: 2798–2806.