CONTRACTION OF CYCLIC CODES OVER FINITE CHAIN RINGS

ALEXANDRE FOTUE TABUE AND CHRISTOPHE MOUJAHA

ABSTRACT. Let R be a commutative finite chain ring of invariants (q, s), and $\Gamma(R)$ the Teichmüller’s set of R. In this paper, the trace representation cyclic R-linear codes of length ℓ, is presented, when $\gcd(\ell, q) = 1$. We will show that the contractions of some cyclic R-linear codes of length $u\ell$ are γ-constacyclic R-linear codes of length ℓ, where $\gamma \in \Gamma(R) \setminus \{0_R\}$ and the multiplicative order of γ is u.

1. INTRODUCTION

Let R be finite chain ring with invariant (q, s), $\pi : R \to \mathbb{F}_q$ be the natural ring epimorphism, and ℓ a positive integer such that $\gcd(q, \ell) = 1$. Let R^\times be the group of units of R, and $\gamma \in R^\times$. An R-linear code C of length γ is γ-constacyclic if $\tau_\gamma(C) = C$, where $\tau_\gamma : R^s \to R^t$, is the γ-constashift operator, defined by $\tau_\gamma(c_0, c_1, \cdots, c_{\ell-1}) = (\gamma c_{\ell-1}, c_0, \cdots, c_{\ell-2})$. Especially, cyclic and negacyclic linear codes correspond to $\gamma = 1_R$ and $\gamma = -1_R$, respectively (see [4]). The residue code of R-linear code C is the \mathbb{F}_q-linear code $\pi(C) := \{(\pi(c_0), \pi(c_1), \cdots, \pi(c_{\ell-1})) : (c_0, c_1, \cdots, c_{\ell-1}) \in C\}$. The equality $\pi(\tau_\gamma(C)) = \tau_{\pi(\gamma)}(\pi(C))$, enables to see that the residue code of any γ-constacyclic R-linear code, is an $\pi(\gamma)$-constacyclic \mathbb{F}_q-linear code. In the literature [3, 5, 10, 11, 12], the class of γ-constacyclic R-linear codes, which are studied, have the following property $\gamma \in 1_R + R\theta$.

In this paper, on the one hand, we will describe each γ-constacyclic R-linear code of length ℓ, as contraction of a cyclic R-linear code of length $u\ell$, and on the other hand, we will investigate on the structure of γ-constacyclic R-linear codes, where $\gamma \in \Gamma(R) \setminus \{0_R\}$.

The present paper is organized as follows. In Sect. 2 we present results which will be used in the following sections. Sect. 3 studies the subring subcode and trace code of a linear codes over finite chain rings. In Sect. 4 the trace-description of cyclic linear codes over finite chain rings is presented. For any $\gamma \in \Gamma(R)$, we proceed to investigate on the structural properties of γ-constacyclic codes of arbitrary length ℓ, in Sect. 5.

2. BACKGROUND ON FINITE CHAIN RINGS

Throughout of this section, R is a commutative ring with identity and $J(R)$ denoted the Jacobson radical of R, and R^\times denotes the multiplicative group of units of R. The definitions and results on the finite chain rings are extracted in monographs [6, 8].

Definition 2.1. We say that R is a finite chain ring of invariants (q, s), if:

1. R is local principal ideal ring;
2. $R/J(R) \cong \mathbb{F}_q$ and $R \supseteq R\theta \supseteq \cdots \supseteq R\theta^{s-1} \supseteq R\theta^s = \{0\}$, where θ is a generator of $J(R)$.

The map $\pi : R \to \mathbb{F}_q$ denotes the canonical projection.

Lemma 1. Let R be a finite chain ring of invariants (q, s), and θ be a generator of $J(R)$. Then

1. $R^\times = R \setminus J(R)$, and the ideals of R are precisely $J(R)^t = R\theta^t$, where $t \in \{0, 1, \cdots, s\}$;
2. $|R^\times| = q^{(s-1)(q-1)}$ and $|J(R)^t| = q^{q-t}$, for every $t \in \{0, 1, \cdots, s\}$.

Theorem 1. Let R be a finite chain ring of invariants (q, s), and θ be a generator of $J(R)$. Then
(1) \(R^* = \Gamma(R)^* \cdot (1 + R\theta) \), and \(\Gamma(R)^* \cong \mathbb{F}_q \setminus \{0\} \) (as multiplicative group) where \(\Gamma(R)^* := \{ b \in R : b \neq 0, b\theta = b \} \);
(2) \(\Gamma(R)^* \) is a cyclic subgroup of \(R^* \), of order \(q - 1 \) and \(|1_R + R\theta| = q^{s-1} \);
(3) for every element \(a \in R \), there exists a unique \((a_0, a_1, \cdots, a_{s-1}) \in \Gamma(R)^s \), such that \(a = a_0 + a_1 \theta + \cdots + a_{s-1} \theta^{s-1} \).

Definition 2.2. Let \(R \) be a finite chain ring of invariants \((q, s) \), and \(\theta \) be a generator of \(J(R) \). The set \(\Gamma(R) = \Gamma(R)^* \cup \{0\} \) is called the Teichmüller set of \(R \).

We say that the ring \(S \) is an extension of \(R \) and we denote it by \(S|R \) if \(R \) is a subring of \(S \) and \(1_R = 1_S \). We denote by \(\text{rank}_R(S) \), the rank of \(R \)-module \(S \). We denote by \(\text{Aut}_R(S) \), the group of ring automorphisms of \(S \) which fix the elements of \(R \).

Definition 2.3. Let \(R \) be a finite chain ring of invariants \((q, s) \). We say that the finite chain ring \(S \) is the Galois extension of \(R \) of degree \(m \), if

1. \(S|R \) is unramified, i.e. \(J(S) = J(R)|S \);
2. \(S|R \) is normal, i.e. \(R := \{ a \in S : \varphi(a) = a \ for \ all \ \varphi \in \text{Aut}_R(S) \} \).

Proposition 1. Let \(R \) be a finite chain ring of invariants \((q, s) \). Let \(S \) be the Galois extension of \(R \) of degree \(m \). Then

1. \(S \) is a free \(R \)-module of rank \(m \);
2. \(\text{Aut}_R(S) \) is cyclic of order \(m \);
3. \(S = R[\xi] \) where \(\xi \) is a generator of \(\Gamma(S) \).

Definition 2.4. Let \(S|R \) be the Galois extension of finite chain rings of degree \(m \) and \(\sigma \) be a generator of \(\text{Aut}_R(S) \). The map \(\text{Tr}_R^S := \sum_{i=0}^{m-1} \sigma_i \), is called the trace map of the Galois extension \(S|R \).

Proposition 2. [6 Chap. XIV] Let \(S|T \) and \(R|T \) be Galois extensions of finite chain rings. Then

1. \(R = \{ a \in S : \sigma(a) = a \ for \ all \ \sigma \in \text{Aut}_R(S) \} \);
2. the bilinear form \(\varphi : (a, b) \rightarrow \text{Tr}_R^S(ab) \) is nondegenerate;
3. \(\text{Tr}_R^S \) is a generator of \(S \)-module \(\text{Hom}_R(S, R) \), and \(\text{Tr}_T^S \circ \text{Tr}_R^S = \text{Tr}_T^S \).

3. **Linear codes over finite chain rings**

Recall that an \(R \)-linear code of length \(\ell \) is an \(R \)-submodule of \(R^\ell \). We say that an \(R \)-linear code is free if it is a free as \(R \)-module.

3.1. **Type and rank of a linear code.** A matrix \(G \) is called a generator matrix for \(\mathcal{C} \) if the rows of \(G \) span \(\mathcal{C} \) and none of them can be written as an \(R \)-linear combination of the other rows of \(G \). We say that \(G \) is a generator matrix in standard form if

\[
G = \begin{pmatrix}
I_{k_0} & G_{0,1} & G_{0,2} & \cdots & G_{0,s-1} & G_{0,s} \\
0 & \theta I_{k_1} & \theta G_{1,2} & \cdots & \theta G_{1,s-1} & \theta G_{1,s} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \theta^{s-1} I_{k_{s-1}} & \theta^{s-1} G_{s-1,s}
\end{pmatrix} U,
\]

where \(U \) is a suitable permutation matrix. The \(s \)-tuple \((k_0, k_1, \cdots, k_{s-1}) \) is called type of \(G \) and \(\text{rank}(G) := k_0 + k_1 + \cdots + k_{s-1} \) is the rank of \(G \).

Proposition 3. ([9 Proposition 3.2, Theorem 3.5]) Each \(R \)-linear code \(\mathcal{C} \) admits a generator matrix \(G \) standard form. Moreover, the type is the same for any generator matrix in standard form for \(\mathcal{C} \).

So the type and the rank are the invariants of \(\mathcal{C} \), and henceforth we have the following definition.

Definition 3.1. Let \(\mathcal{C} \) be an \(R \)-linear code.
Proof. Delsarte’s celebrated result (see [7, Theorem 3.10]) Let \(\mathcal{C} \) be an \(R \)-linear code of length \(\ell \) and of type \((k_0, k_1, \ldots, k_{s-1})\) is free if and only if the rank of \(\mathcal{C} \) is \(k_0 \), and \(k_1 = k_2 = \cdots = k_{s-1} = 0 \). It defines the scalar product on \(R^\ell \) by:
\[
\mathbf{a} \cdot \mathbf{b}^T := \sum_{i=0}^{\ell-1} a_i b_i,
\]
where \(\mathbf{b}^T \) is the transpose of \(\mathbf{b} \). Let \(\mathcal{C} \) be an \(R \)-linear code of length \(\ell \). The dual code of \(\mathcal{C} \), denoted \(\mathcal{C}^\perp \), is an \(R \)-linear code of length \(\ell \), define by:
\[
\mathcal{C}^\perp := \{ \mathbf{a} \in R^\ell : \mathbf{a} \cdot \mathbf{b}^T = 0 \text{ for all } \mathbf{c} \in \mathcal{C} \}.
\]
A generator matrix of \(\mathcal{C}^\perp \), is called parity-check matrix of \(\mathcal{C} \).

Proposition 4. (\cite{7} Theorem 3.10) Let \(\mathcal{C} \) be an \(R \)-linear code of length \(\ell \) and of type \((k_0, k_1, \ldots, k_{s-1})\).

Then
\begin{enumerate}
\item the type of \(\mathcal{C}^\perp \) is \((\ell - k, k_{s-1}, \ldots, k_1)\), where \(k := k_0 + k_1 + \cdots + k_{s-1} \).
\item \(|\mathcal{C}| = q^{\sum_{i=0}^{s-1} k_i} \), where \(|\mathcal{C}| \) denotes the number of elements of \(\mathcal{C} \).
\end{enumerate}

3.2 Galois closure of a linear code over a finite chain ring

Let \(\mathcal{B} \) be an \(S \)-linear codes of length \(\ell \). Then
\[
\sigma(\mathcal{B}) := \{(\sigma(\mathbf{c}_0), \ldots, \sigma(\mathbf{c}_{\ell-1})) : (\mathbf{c}_0, \ldots, \mathbf{c}_{\ell-1}) \in \mathcal{B} \}
\]
is also an \(S \)-linear codes of length \(\ell \). We say that the \(S \)-linear code \(\mathcal{B} \) is call \(\sigma \)-invariant if \(\sigma(\mathcal{B}) = \mathcal{B} \). The subring subcode of \(\mathcal{B} \) to \(R \), is \(R \)-linear code \(\text{Res}_R(\mathcal{B}) := \mathcal{B} \cap R^\ell \), and the trace code of \(\mathcal{B} \) over \(R \), is the \(R \)-linear code
\[
\text{Tr}_R(\mathcal{B}) := \{(\text{Tr}_R^S(\mathbf{c}_0), \ldots, \text{Tr}_R^S(\mathbf{c}_{\ell-1})) : (\mathbf{c}_0, \ldots, \mathbf{c}_{\ell-1}) \in \mathcal{B} \}.
\]
It is clear that \(\text{Tr}_R^S(\mathcal{B}) = \text{Tr}_R^S(\mathcal{B})^\perp \). The extension code of an \(R \)-linear code \(\mathcal{C} \) to \(S \), is the \(S \)-linear code \(\text{Ext}_S(\mathcal{C}) \), formed by taking all combinations of codewords of \(\mathcal{C} \). The following theorem generalizes Delsarte’s celebrated result (see \cite{13} Ch.7, S.8, Theorem 11.1).

Theorem 2. (\cite{7} Theorem 3). Let \(\mathcal{B} \) be an \(S \)-linear code then \(\text{Tr}_R^S(\mathcal{B}^\perp) = \text{Res}_R(\mathcal{B})^\perp \), where \(\mathcal{B}^\perp \) is the dual to \(\mathcal{B} \) with respect to the usual scalar product, and \(\text{Res}_R(\mathcal{B})^\perp \) is the dual of \(\text{Res}_R(\mathcal{B}) \) in \(R^\ell \).

Definition 3.2. Let \(\mathcal{B} \) be an \(S \)-linear code. The \(\sigma \)-closure of \(\mathcal{B} \), is the smallest \(\sigma \)-invariant \(S \)-linear code \(\mathcal{\overline{B}} \), containing \(\mathcal{B} \).

Proposition 5. Let \(\mathcal{B} \) be an \(S \)-linear code. Then \(\mathcal{\overline{B}} = \sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \) and \(\text{Tr}_R^S(\mathcal{B}) = \text{Tr}_R^S(\mathcal{\overline{B}}) \).

Proof. We have \(\mathcal{B} \subseteq \mathcal{\overline{B}} \) and \(\sigma(\mathcal{B}) = \mathcal{\overline{B}} \), by Definition 3.2 of \(\mathcal{\overline{B}} \). So \(\sigma^i(\mathcal{B}) \subseteq \mathcal{\overline{B}} \), for all \(i \in \{0, 1, \ldots, m-1\} \). Hence \(\sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \subseteq \mathcal{\overline{B}} \). Since \(\sigma \left(\sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \right) = \sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \) and \(\mathcal{B} \subseteq \sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \), as \(\mathcal{\overline{B}} \) is the smallest \(S \)-linear code containing \(\mathcal{B} \), which is \(\sigma \)-invariant, it follows \(\mathcal{\overline{B}} \subseteq \sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \). Hence \(\mathcal{\overline{B}} = \sum_{i=0}^{m-1} \sigma^i(\mathcal{B}) \). Thanks to \cite{7} Proposition 1., \(\text{Tr}_R^S(\mathcal{\overline{B}}) = \text{Tr}_R^S(\mathcal{B}) \).

The following Theorem summarizes the obtained results in \cite{7}.

Theorem 3. Let \(\mathcal{B} \) be an \(S \)-linear code and \(\sigma \) be a generator of \(\text{Aut}_R(S) \). Then the following statements are equivalent:

1. \(\mathcal{B} \) is \(\sigma \)-invariant;
2. \(\text{Tr}_R^S(\mathcal{B}) = \text{Res}_R(\mathcal{B}) \);
3. \(\mathcal{B} \), and \(\text{Res}_R(\mathcal{B}) \) have the same type.

Proof. Let \(\mathcal{B} \) be an \(S \)-linear code.
1. \Leftrightarrow 2. : Thanks to [2] Theorem 2.
1. \Leftrightarrow 3. : Since any R-basis of $Res_R(\mathcal{B})$ is also an S-basis of $Ext_S(Res_R(\mathcal{B}))$. Thanks to [2] Theorem 1, we deduce that $\mathcal{B} = Ext_S\left(Tr_{R}^{s}(\mathcal{B})\right)$ if and only if \mathcal{B} and $Res_R(\mathcal{B})$ have the same type.

4. CYCLIC LINEAR CODES OVER FINITE CHAIN RINGS

Let ℓ be a positive integer such that $gcd(q, \ell) = 1$. Then the remainder $q \pmod{\ell}$ of q by ℓ, belongs to \mathbb{Z}_{ℓ}^{*}, the positive integer m denotes the multiplicative order of $q \pmod{\ell}$. Let $\Sigma_{\ell} := \{0, 1, \cdots, \ell-1\}$ be the underlying set of \mathbb{Z}_{ℓ}.

4.1. CYCLOMATIC COSETS. Let u be a positive integer. The set of multiples of u in A is $uA := \{uz \pmod{\ell} : z \in A\}$.

The q-closure of A is $C_{q}(A) := \bigcup_{i \in \mathbb{N}} q^{i}A$.

Definition 4.1. Let $z \in \Sigma_{\ell}$. The q-cyclotomic coset modulo ℓ, containing z, the Galois closure of $\{z\}$. We simply write $C_{q}(z) := C_{q}(\{z\})$.

It denotes by $Gal(q)$ the set of q-closure subsets of Σ_{ℓ}. Obviously, the q-cyclotomic cosets modulo ℓ, form a partition of Σ_{ℓ}. Let $\Sigma_{q}(\ell)$ be a set of representatives of each q-cyclotomic cosets modulo ℓ.

Proposition 6. [1] Proposition 5.2 We have $|\Sigma_{q}(\ell)| = \sum_{d | \ell} \phi(d)/ord_{d}(q)$, where $\phi(.)$ is the Euler totient function and $ord_{d}(q) := \min\{i \in \mathbb{N} : q^{i+1} \equiv 1 \pmod{\ell}\}$.

Notation 1. Let $z \in \Sigma_{\ell}$ and A be a subset of Σ_{ℓ} and $u \in \mathbb{N}$, with $gcd(u,q) = 1$.

1. The opposite of A is $-A := \{\ell - z : z \in A\}$.
2. The complementary of A is $\overline{A} := \{z \in \Sigma_{\ell} : z \notin A\}$.
3. The dual of A is $A^{\circ} := -A$.

Remark 1. Let A be a subset of Σ_{ℓ}. Then $C_{q}(\overline{A}) = \overline{C_{q}(A)}$ and $-C_{q}(A) = C_{q}(-A)$. Moreover $(A^{\circ})^{\circ} = A$.

Example 4.1. We take $\ell = 20, q = 3$. The q-cyclotomic cosets modulo ℓ, are: $C_{q}(\{0\}) = \{0\}, C_{q}(\{5\}) = \{5, 15\}, C_{q}(\{10\}) = \{10\}$, and

$$C_{q}(\{1\}) = \{1, 3, 9, 7\}; \quad C_{q}(\{2\}) = \{2, 6, 18, 14\};$$
$$C_{q}(\{4\}) = \{4, 12, 16, 8\}; \quad C_{q}(\{11\}) = \{11, 13, 19, 17\}.$$

So $\Sigma_{q}(20) = \{0, 1, 2, 4, 5, 10, 11\}$. We remark that $C_{q}(\{-z\}) = C_{q}(\{z\})$, for every $z \in \{0, 2, 4, 5, 10\}$. We set $I := [0, 10]$. We have $A := C_{q}(I) = C_{q}(\{0, 1, 2, 4, 5, 10\})$, $A = C_{q}(\{2, 4, 5, 10, 11\})$, and $A^{\circ} := C_{q}(\{1\})$.

4.2. Likewise Reed-Solomon codes over finite chain rings. Let S be the Galois extension of R of degree m and ξ be a generator of $\Gamma(S) \setminus \{0\}$. Let $A := \{a_{1}, a_{2}, \cdots, a_{k}\}$ be a subset of Σ_{ℓ}. One denotes by $P(S; A)$, the free S-module with S-basis $\{X^{a} : a \in A\}$. Since m is the smallest positive integer with $q^{m} \equiv 1 \pmod{\ell}$, we can write $\eta := \xi^{-m / \ell}$ and the multiplicative order of η is ℓ. The evaluation

$$ev_{\eta} : \quad P(S; A) \rightarrow S^{\ell} \rightarrow (f(1), f(\eta), \cdots, f(\eta^{\ell - 1})),$$

is an S-modules monomorphism. We see that if $A := \{0, 1, \cdots, k - 1\}$, then for any ℓ^{th}-primitive root of unity η in $\Gamma(S)$, the S-linear code $ev_{\eta}(P(S; A))$ is a primitive Reed-Solomon code. For this reason, we define Likewise Reed-Solomon codes which are a family of codes defined over large finite chain rings as follows.

Definition 4.2. Let A be a subset of Σ_{ℓ}, and S be a finite chain ring such that $|\Gamma(S)| \geq \ell$. Let $\eta \in \Gamma(S)$ and the multiplicative order of η is ℓ. The S-submodule $ev_{\eta}(P(S; A))$ is called likewise Reed-Solomon code over S, with defining pair (η, A).
We remark that $L_\eta(S; A) := ev_\eta(P(S; A))$ is the free S-linear code with free S-basis $\{ev_\eta(X^a) : a \in A\}$, where A is a subset of Σ_ℓ. We remark that $L_\eta(S; \emptyset) = \{0\}$, $L_\eta(S; \{\emptyset\}) = 1$ and $L_\eta(S; \Sigma_\ell) = S^\ell$.

Proposition 7. Let A, B be two subsets of Σ_ℓ. Then

1. $L_\eta(S; A)$ is cyclic;
2. $L_\eta(S; A \cup B) = L_\eta(S; A) + L_\eta(S; B)$ and $L_\eta(S; A \cap B) = L_\eta(S; A) \cap L_\eta(S; B)$.

Proof. Consider the codeword $c_i = (1, \eta^a, \ldots, \eta^{a(\ell-1)})$. Then the shift of c_i is $\eta^{-a}c_i$. Since $L_\eta(S; A)$ is S-linear, we have $\eta^{-a}c_i \in L_\eta(S; A)$. Hence $L_\eta(S; A)$ is cyclic. It is clear that $L_\eta(S; A \cup B) \supseteq L_\eta(S; A) + L_\eta(S; B)$. The set $\{ev_\eta(X^a) : a \in A \cup (B \setminus A)\}$ is a free R-basis of $L_\eta(S; A \cup B)$ and $L_\eta(S; A) + L_\eta(S; B)$. Hence, $L_\eta(S; A \cup B) = L_\eta(S; A) + L_\eta(S; B)$. We leave the last equality as an exercise.

Proposition 8. Let A be a subset of Σ_ℓ and u be a positive integer such that $\gcd(\ell, u) = 1$. Then

1. $L_\eta^u(S; A) = L_\eta(S; uA)$;
2. $L_\eta(S; A) = L_\eta(S; A^\ell)$;
3. $L_\eta(S; A)$ is the σ-closure of $L_\eta(S; A)$.

Proof. Assume that $\gcd(\ell, u) = 1$. Then η and η^u are ℓth-primitive roots of unity. Since $\{ev_\eta(X^a) : a \in uA\}$ is a free R-basis of $L_\eta(S; A)$, we have $L_\eta^u(S; A) = L_\eta(S; uA)$.

A free S-basis of $L_\eta(S; A^\ell)$ is $\{c_i : -a \in A\}$ where $c_i := (1, \eta^{-a}, \ldots, \eta^{-a(\ell-1)}) \in L_\eta(S; A^\ell)$. Then for all $b \in A$, $c_b := (1, \eta^b, \ldots, \eta^{b(\ell-1)}) \in L_\eta(S; A)$. We have $c_i c_b^{\text{tr}} = \sum_{j=0}^{\ell-1} \eta^{ij}$. It is easy to check that $\sum_{j=0}^{\ell-1} \eta^{ij} = 0$, when $i \not\equiv 0 \pmod{\ell}$. Since $0 < b - a < \ell$, we have $c_b c_a^{\text{tr}} = 0$. So $L_\eta(S; A^\ell) \subseteq L_\eta(S; A^\ell)$. Comparison of cardinality yields $L_\eta(S; A^\ell) = L_\eta(S; A^\ell)$. Finally, $\sigma(L_\eta(S; A)) = L_\eta(S; A)$. So by Proposition 5 we have $L_\eta(S; A) = \bigcup_{i=0}^{m-1} L_\eta(S; q^iA) = L_\eta(S; A^\ell)$. Since $\text{ev}_q(A) = \bigcup_{i=0}^{m-1} q^iA$, we obtain $L_\eta(S; A) = L_\eta(S; \text{ev}_q(A))$.

4.3. **Trace representation of free cyclic linear codes.** We introduce the map trace-evaluation $\text{Tr}_S^R \circ ev_\eta : P_\eta(S; A) \to R^\ell$, defined by:

$$\text{Tr}_S^R \circ ev_\eta(X^a) := \text{Tr}_R^S \left(1, \eta^a, \ldots, \eta^{a(\ell-1)}\right),$$

for all $a \in A$. In the sequel, we write: $C_\eta(R; A) := \text{Tr}_S^R \left(L_\eta(S; A)\right)$, and $C_\eta(R; A)$ is a free cyclic R-linear code of length ℓ. The immediate properties of trace representation of free cyclic linear codes over finite chain ring are given in the following.

Proposition 9. Let A, B be two empty subsets of Σ_ℓ. Then

1. $C_\eta(R; A) = C_\eta(R; \text{ev}_q(A))$;
2. $\text{rank}_S(L_\eta(S; \text{ev}_q(A))) = |\text{ev}_q(A)|$ and $C_\eta(R; A) = C_\eta(R; A^\ell)$;
3. $C_\eta(S; A \cup B) = C_\eta(S; A) + C_\eta(S; B)$ and $C_\eta(S; A \cap B) = C_\eta(S; A) \cap C_\eta(S; B)$.

Proof. Let A, B be two subsets of Σ_ℓ.

1. From Proposition 5, $C_\eta(R; A) = \text{Tr}(L_\eta(S; A)) = \text{Tr}(L_\eta(S; \text{ev}_q(A))) = C_\eta(R; \text{ev}_q(A))$.
2. Theorem 3 yields $C_\eta(R; A) = \text{Tr}(L_\eta(S; \text{ev}_q(A))) = \text{Res}_S(L_\eta(S; \text{ev}_q(A)))$. So $\text{rank}_R(C_\eta(R; A)) = \text{rank}_S(L_\eta(S; \text{ev}_q(A))) = |\text{ev}_q(A)|$.

From Proposition 8, $C_\eta(R; A^\ell) = C_\eta(R; A^\ell)$.

The following theorem gives the number of cyclic codes and free cyclic codes over finite chain rings.
Lemma 3. Let G be a finite chain ring of invariants (q, s) and S be the Galois extension of G of degree m. Let $z \in \Sigma_s$. Set $S = R[\xi]$, $m_z := [c_0(z)]$, $\eta := \frac{\xi^{m_z} - 1}{\eta - z}$. Then the map

$$
\psi_z : R[\xi^{m_z}] \to C_0(R; \{z\}),
$$

$$
a \mapsto \text{Tr}_R^S(\text{ev}_\eta(aX^z)),
$$

is an G-module isomorphism. Further $R[\xi^{m_z}]$ is the Galois extension of G of degree m_z and $\psi_z \circ \tau_0 = \tau_1 \circ \psi_z$, where $\tau_1(a) = a_{2},$ for all $a \in R[q].$

Proof. It is clear that $a \in \text{Ker}(\psi_z)$ if and only if $a \in R[\xi^{m_z}] \cap R[\xi^{m_z}]$, where duality is with respect to trace form. As the trace bilinear form is nondegenerate, we have $S = R[\xi^{m_z}] \cap R[\xi^{m_z}]$ and Ker$(\psi_z) = \{0\}$. Hence ψ_z is an G-module monomorphism. We remark that, $C_0(R, \{z\})$ is cyclic, if and only if $\psi_z \circ \tau_0 = \tau_1 \circ \psi_z$, for all $a \in R[q]$. Finally, we have $S = R[\xi]$, so $R[\xi^{m_z}]$ is the Galois extension of G of degree m_z. Hence, ψ_z is an G-module isomorphism.

Definition 4.3. A non-trivial cyclic G-linear code C is said to be irreducible, if for all G-linear cyclic subcodes C_1 and C_2 of C, such that, $C = C_1 \oplus C_2$, implies $C_1 = \{0\}$ or $C_2 = \{0\}$.

Proposition 10. The irreducible cyclic G-linear codes are precisely $\theta^t C_0(R; \{z\})$, where $t \in \{0, 1, \cdots, s - 1\}$ and $z \in \Sigma_s(q)$.

Proof. By Lemma 3 the cyclic G-linear code $C_0(R; \{z\})$ and all the cyclic G-linear subcodes are irreducible. Let C be an irreducible cyclic G-linear code. Then the G-linear code $\text{Quo}\theta_{s-1}(C) := \{c \in R^s : \theta^t c \in C\}$ is cyclic and free, and so $\text{Quo}\theta_{s-1}(C) = C_0(R; A)$ for some $A \subset \Sigma_s(q)$ and $A \neq \emptyset$. Assume that $|A| > 1$. Then $C_0(R; A) = C_0(R; A_1) \oplus C_0(R; A_2)$ where $A_1 \cap A_2 = \emptyset$, $A_1 \neq \emptyset$ and $A_2 \neq \emptyset$. We have $C_0(R; A_1) \neq \{0\}$ and $C_0(R; A_2) \neq \{0\}$. Therefore $C = (C_0(R; A_1)) \oplus (C_0(R; A_2))$. It is impossible, because C be an irreducible. So $|A| = 1$. Now, $C \subseteq C_0(R; \{z\})$, it follows that $C = \theta^t C_0(R; \{z\})$, for some $t \in \{0, 1, \cdots, s - 1\}$.

We set $\Sigma_s(q)$ a set of representatives of each q-cyclotomic cosets modulo ℓ. An (q, s)-cyclotomic partition modulo ℓ, is the $(s + 1)$-tuple (A_0, A_1, \cdots, A_s) with the property $A_t = C_q(\lambda^{-1}(\{t\}))$, where $\lambda : \Sigma_s(q) \to \{0, 1, \cdots, s\}$ is a map. Denoted by

$$
\mathcal{M}_t(q, s) := \{(A_0, A_1, \cdots, A_s) : (\exists \lambda \in \{0, 1, \cdots, s\}^{\Sigma_s(q)}) (A_t = \lambda^{-1}(\{t\}))\}
$$

the set of (q, s)-cyclotomic partitions modulo ℓ, and $\text{Cy}(R, \ell)$ the set of cyclic G-linear codes of length ℓ. We have $|\mathcal{M}_t(q, s)| = (s + 1)^{|\Sigma_s(q)|}$.

Example 4.2. We take $\ell = 20, q = 3$ and $s = 2$. Then $|\Sigma_s(q)| = 13$ and $|\mathcal{M}_t(q, s)| = 3^{7}$. An (q, s)-cyclotomic partition modulo ℓ, is $A_t := (C_q(0, 1, 2), C_q(0, 11), C_q(4, 10))$.

Theorem 4. Any cyclic G-linear code C there exists a unique $A := (A_0, A_1, \cdots, A_s) \in \mathcal{M}_t(q, s)$ such that $C = C_q(A)$ and $C_q(A) = \bigoplus_{t=0}^{s-1} C_q(R; A_t)$. Moreover, the type of $C_q(A)$ is

$$
(C_q(A_0), C_q(A_1), \cdots, C_q(A_{s-1})),
$$

for some $A_0, A_1, \cdots, A_s \in \mathcal{M}_t(q, s)$.

Proof. Let C be an cyclic G-linear code of length ℓ. From Proposition 9, we have $R[\xi^{m_z}]$ is equal to $C_q(R; \{z\})'s$ are free irreducible cyclic G-linear codes. Therefore $C = \bigoplus_{z \in \Sigma_s(q)} C_q(R; \{z\})$, where $C_q(R; \{z\})'$s are free irreducible cyclic G-linear codes.
\[C_0(R; \{z\}) \cap \mathcal{C}.\] From Proposition \[10\] \(\mathcal{C}_z = \theta \cdot \mathcal{C}_0(R; \{z\})\), where \(t_z \in \{0, 1, \ldots, s\}\). Hence

\[\mathcal{C} = \bigoplus_{t \in \Sigma(q)} \theta \cdot \mathcal{C}_0(R; \{z\}) \bigoplus_{t=0}^{s-1} \mathcal{C}_0(R; A_t),\]

where \(A_t = \{z \in \Sigma(q) : t_z = t\}\). Since \(\mathcal{N}_r(q, s) = (s + 1)^{\mathcal{N}_r(q, s)}\), by Theorem \[2\] the uniqueness of \(A := (A_0, A_1, \ldots, A_s) \in \mathcal{N}_r(q, s)\) such that \(\mathcal{C} = C_0(A)\) is guaranteed.

Moreover, for every \(t \in \{0, 1, \ldots, s - 1\}\), the cyclic \(R\)-linear code \(C_0(R; A_t)\) is free and \(\text{rank}_R(C_0(R; A_t)) = |\mathcal{C}_0(A_t)|\). Since the direct sum \(\bigoplus \theta \cdot \mathcal{C}_0(R; A_t)\) gives the type of \(C_0(A)\), the type of \(C_0(A)\) is \((k_0, k_1, \ldots, k_s)\), where \(k_i := |\mathcal{C}_0(A_i)|\), for every \(t \in \{0, 1, \ldots, s - 1\}\).

\[\text{Proposition 11.} \text{ Let } A := (A_0, A_1, \ldots, A_s) \in \mathcal{N}_r(q, s) \text{ and } t \in \{0, 1, \ldots, s - 1\}. \text{ Then } C_0(A) \vdash C_0(A^\circ), \text{ where } A^\circ := (-A_s, -A_{s-1}, \ldots, -A_1, -A_0).\]

\[\text{Proof.} \text{ Let } A := (A_0, A_1, \ldots, A_s) \in \mathcal{N}_r(q, s). \text{ We have } C_0(A) \vdash \bigcap_{t=0}^{s-1} \left(\theta \cdot A_t \right) \text{ and } \text{rank}_R(C_0(R; A_t)) = |\mathcal{C}_0(A_t)|, \text{ for every } t \in \{1, 2, \ldots, s\}. \text{ It follows that } C_0(A^\circ) \subseteq C_0(A) \vdash.\]

\[\text{From Propositions } 4 \text{ and Theorem } 4 \text{ C}_0(A^\circ) \text{ and } C_0(A) \vdash \text{ have the same type, we have } C_0(A) \vdash = C_0(A^\circ). \]
Theorem 5. Let $u, ℓ \in \mathbb{N}$ such that $\gcd(u, ℓ, q) = 1$. Let A be a subset of $\{0, 1, \ldots, u ℓ - 1\}$ and $C_q(R; A)$ be a cyclic R-linear code of length $u ℓ$. Then $C_q(A)(\text{mod } u) = \{a\}$, if and only if $\mathcal{X} := \varphi^{-1}(C_q(R; A))$ is an γ-constacyclic R-linear code of length $ℓ$, where $\gamma = \frac{\zeta^{q m - 1}}{u \text{ mod } u}$. Moreover, $\mathcal{X} \perp = \varphi^{-1}(C_q(R; A^u))$, where $C_q(A)(\text{mod } u) = \{a\}$, and $A^u := \{a \in A^0 : a \equiv -a(\text{mod } u)\}$, is an γ^{-1}-constacyclic R-linear code of length $ℓ$.

Proof. Let m be the positive integer such that $q^m \equiv 1(\text{mod } u ℓ)$ and $q^m \not\equiv 1(\text{mod } u ℓ)$. Let $S := R[\xi]$ be a Galois extension of R of degree m. We set $u := \frac{q - 1}{u ℓ}$ and $η := ξ^w$. Let $Z := C_q(A)$, where A is a subset of Σ_q. Then $C_q(R; Z) = \oplus_{z \in Z} C_q(R; \{z\})$. It is enough to show that $C_q(R; \{z\}) \subseteq \varphi(R^\ell)$, for all $z \in Z$. Let $z \in Z$, we set $m_z := |C_q(z)|$ and $ζ := η^{m_z}$. From Lemma 1, $C_q(R; \{z\}) = \psi_z C_q(R[ζ^{m_z}]) = Tr^R_S(\psi_q R[ζ^{m_z}])$. Thus for all $c := (c_0, \ldots, c_{u ℓ - 1}) \in C_q(R; \{z\})$, from Lemma 1, there exist a unique $a \in R[ζ^{m_z}]$ and such that $c = Tr^R_S(\psi_q(aX^ζ))$. Since $R[ζ^{m_z}]$ is the Galois extension of R of degree m_z, there then exist a unique $(a_0, a_1, \ldots, a_{m_z - 1})$ such that $a := \sum_{h=0}^{m_z - 1} a_h \xi^{h m_z} \in R[ζ^{m_z}]$.

Example 5.1. Let R be a finite chain ring of invariants (q, s) where $q = 3$. Take $ℓ = 28, u = 2$. We set $A_1 := C_q(\{1, 7\}), A_2 := C_q(\{1, \ldots, 11\})$, and $A_3 := C_q(\{1, 5, 7, 11\})$. We have $C_q(A_i)(\text{mod } 2) = \{1\}$. We can set $\mathcal{X}_i := \varphi^{-1}(C_q(R; A_i))$, where $i \in \{1, 2, 3\}$. Since $A_1^2 = A_2$ and $A_2^2 = A_2$, we have $\mathcal{X}_3 = \mathcal{X}_1^\perp$ and \mathcal{X}_2 is self-dual.

The Hamming weight of an R-linear code \mathcal{C}, of length $ℓ$, is defined as: $\text{wt}(\mathcal{C}) := \min\{\text{wt}(c) : c \in \mathcal{C} \setminus \{0\}\}$, where $\text{wt}(c) := |\{j \in \Sigma_q : c_j \neq 0\}|$.

Corollary 2. Let $u, ℓ \in \mathbb{N}$ such that $\gcd(u, ℓ, q) = 1$. Set $A := (A_0, A_1, \ldots, A_s) \in \mathbb{R}_{u ℓ}(q, s)$ and $C_R(A)$ be a cyclic R-linear code of length $u ℓ$ such that $\bigcup_{t=0}^{s-1} A_t(\text{mod } u) = \{a\}$. Set $\mathcal{X} := \varphi^{-1}(C_R(A))$. Then

(1) \mathcal{X} is an γ-constacyclic R-linear code of length $ℓ$, where $\gamma = \frac{\zeta^{q m - 1}}{u \text{ mod } u}$,
Example 5.2. Let \(R \) be a finite chain ring of invariants \((q, s) \) where \(J(R) = R\emptyset \), \(q = 3 \) and \(s = 2 \). We take \(\ell = 10 \), \(u = 2 \). We set \(\mathcal{A} := \{A_0, A_1, A_2\} \), where \(A_0 := \mathbb{C}_q\{\{1\}\} \), \(A_1 := \mathbb{C}_q\{\{5\}\} \), and \(A_2 := \mathbb{C}_q\{\{0, 2, 4, 10, 11\}\} \). We have \(\mathbb{C}_q\{A_0\}(\mod 2) = \mathbb{C}_q\{A_1\}(\mod 2) = \{\emptyset\} \). So the contraction of the cyclic \(R \)-linear code \(\mathbb{C}_R(A) \) of length 20, is the self-dual negacyclic \(R \)-linear code \(\mathcal{C} := \mathfrak{v}^{-1}\left(\mathbb{C}_q(R; A_0)\oplus \theta \mathfrak{v}^{-1}\left(\mathbb{C}_q(R; A_1)\right)\right) \), of length 10.

6. Conclusion

We have seen that in the case \(\gcd(\ell, |R|) = 1 \), and \(\gamma \in \Gamma(R)^* \), the class of \(\gamma \)-constacyclic \(R \)-linear codes of length \(\ell \), is the same as the class of contractions of cyclic \(R \)-linear codes \(\mathbb{C}_R(A_0, A_1, \cdots, A_s) \) of length \(u \ell \), where \(u \) is the multiplicative order of \(\gamma \), and each cyclic \(R \)-linear code \(\mathbb{C}_R(A_0, A_1, \cdots, A_s) \) of this class, satisfies: \(\bigcup_{t=0}^{s-1} A_t (\mod u) \) is a singleton.

References

[1] Batoul A., Guenda K., Guelliver T.A., On the self-dual cyclic codes over finite chain rings, Des. Codes Cryptogr. 70(1) 347-358 (2014)
[2] Bierbrauer J., The Theory of Cyclic Codes and a Generalization to Additive Codes, Des. Codes Cryptogr. 25(2): 189–206 (2002).
[3] Yonglin Cao, On constacyclic codes over finite chain rings, Finite Fields and Their Applications 24 (2013) 124–135.
[4] H. Dinh, S.R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (8) 1728–1744 (2004).
[5] Kai X., Zhu S., Tang Y., Some constacyclic self-dual codes over the integers modulo \(2^m \), Finite Fields Appl. 18 (2012) 258–270.
[6] McDonald B. R., Finite Rings with Identity, Marcel Dekker, New York (1974).
[7] Martinez-Moro E., Nicolas A.P., Rua F., On trace codes and Galois invariance over finite commutative chain rings, Finite Fields Appl. Vol. 22, pp. 114–121 (2013).
[8] Alexandr A. Nechaev, Finite rings with applications, in: Handbook of Algebra, vol. 5, Elsevier/North-Holland, Amsterdam, 2008, pp. 213–320.
[9] Norton G.H., Slălăgean A., On the Structure of Linear and Cyclic Codes over a Finite Chain Ring, AAECC Vol. 10, pp. 489–506, (2000).
[10] H. Tapia-Recillas, G. Vega, Some constacyclic codes over \(\mathbb{Z}_p^m \) and binary quasi-cyclic codes, Discrete Appl. Math. 128 (2003) 305–316.
[11] Wolfmann J., Negacyclic and cyclic codes over \(\mathbb{Z}_4 \), IEEE Trans. Inform. Theory 45 (7) (1999) 2527–2532.
[12] Zhu S., Kai X., A class of constacyclic codes over \(\mathbb{Z}_{2^m} \), Finite Fields Appl. 16 (2010) 243–254.
[13] McWilliams F. J. and Sloane N. J. A., The Theory of Error-Correcting Codes, North-Holland Mathematical Library, Vol 16, North-Holland Publishing Co., Amsterdam, (1977).

Department of Mathematics, Faculty of Sciences, University of Yaoundé I, Cameroon
E-mail address: alexfotue@gmail.com

Department of Mathematics, Higher Teachers Training College of Yaoundé, University of Yaoundé I, Cameroon
E-mail address: cmouaha@yahoo.fr