Bone mineral: new insights into its chemical composition

Stanislas Von Euw1,2, Yan Wang1, Guillaume Laurent3, Christophe Drouet3, Florence Babonneau4, Nadine Nassif3 & Thierry Azaïs1

Some compositional and structural features of mature bone mineral particles remain unclear. They have been described as calcium-deficient and hydroxyl-deficient carbonated hydroxyapatite particles in which a fraction of the PO₄³⁻ lattice sites are occupied by HPO₄²⁻ ions. The time has come to revise this description since it has now been proven that the surface of mature bone mineral particles is not in the form of hydroxyapatite but rather in the form of hydrated amorphous calcium phosphate. Using a combination of dedicated solid-state nuclear magnetic resonance techniques, the hydrogen-bearing species present in bone mineral and especially the HPO₄²⁻ ions were closely scrutinized. We show that these HPO₄²⁻ ions are concentrated at the surface of bone mineral particles in the so-called amorphous surface layer whose thickness was estimated here to be about 0.8 nm for a 4-nm thick particle. We also show that their molar proportion is much higher than previously estimated since they stand for about half of the overall amount of inorganic phosphate ions that compose bone mineral. As such, the mineral-mineral and mineral-biomolecule interfaces in bone tissue must be driven by metastable hydrated amorphous environments rich in HPO₄²⁻ ions rather than by stable crystalline environments of hydroxyapatite structure.

Bone is a natural composite material whose main components are mineral and organic matrices1,2. The mature mineral matrix is in the form of nanosized, elongated platelet-like carbonated calcium phosphate particles whose elongated direction is preferentially aligned along the long axis of type I collagen fibrils3. Those collagen fibrils compose the organic matrix, together with different types of biomacromolecules, including proteoglycans and non-collagenous proteins (NCPs)1-4. Bone mineral is known to possess compositional and structural similarities with synthetic stoichiometric hydroxyapatite (HA) mineral, Ca₁₀(PO₄)₆(OH)₂. However, in contrast to stoichiometric HA, bone mineral is structurally disordered, and compositionally nonstoichiometric due to the presence of a substantial amount of anionic (e.g., HPO₄²⁻, CO₃²⁻, Cl⁻) and cationic (e.g., Na⁺, Mg²⁺) species, together with the presence of ion vacancies into the crystal lattice. For instance, CO₃²⁻ ions, whose weight proportion can reach up to ~5-9% in bone mineral, can occupy the PO₄³⁻ (called B-type substitution - major) and/or OH⁻ (A-type substitution - minor) sites within the hydroxyapatite’s crystal lattice. In addition, it was reported that the PO₄³⁻ lattice sites may also be occupied by a fraction of monohydrogen-phosphate (HPO₄²⁻) ions. As a consequence, it is generally accepted that “the deficit in negative charge caused by the replacement of PO₄³⁻ by either CO₃²⁻ or HPO₄²⁻ can be compensated by the loss of positive charge, as through removal of Ca²⁺ from the lattice”7. Furthermore, beside their presence within the hydroxyapatite’s crystal lattice, HPO₄²⁻ ions were also proposed to be present in the so-called amorphous surface layer that coats both biological8-11 (bone, dentin) and biomimetic12-16 nanocrystalline hydroxyapatite particles. Lastly, HPO₄²⁻ ions in bone could also originate from the presence of octacalcium phosphate (OCP), Ca₈(HPO₄)₂(PO₄)₂·5H₂O and OCP-like domains. Indeed, OCP was identified as a possible transient precursor phase of bone hydroxyapatite17-19, whilst OCP-like domains were also proposed as a component of bone mineral20-22.

The presence of HPO₄²⁻ ions was initially proposed and quantified in synthetic hydroxyapatites based on spectroscopic analysis20, together with bulk chemical analysis of pyrolyzed samples21 for which the pyrophosphate ions created by the condensation of two HPO₄²⁻ ions after dehydration upon heating were titrated. The latter method was also used to quantify HPO₄²⁻ ions incorporated into bone mineral22-26. A combination of chemical
and spectroscopic analysis of bone mineral samples of different age and origin (rat, calf and cow) was further undertaken. It lead to the average chemical formula\(^\dagger\) (neglecting the most minor substitutions) proposed by Legros et al. in 1987 for mature cortical bone mineral which is still considered as a reference formula to this day: \(\text{Ca}_{10}[(\text{PO}_4)_{6}\cdot(\text{HPO}_4\text{ or } \text{CO}_3)_{2}\cdot(\text{OH} \text{ or } \frac{1}{2} \text{CO}_3)_{3}]\). Since then, the presence of HPO\(_4\)\(^{2-}\) ions in bone mineral was also proposed based on vibrational spectroscopic analyses\(^\ddagger-\S\). Indeed, thanks to the comparison with hydrogen–phosphate-containing calcium phosphate mineral standards such as brushite (Dicalcium Phosphate Dihydrate, DCFP; CaHPO\(_4\cdot2\)H\(_2\)O) and octacalcium phosphate, Fourier Transform-Infrared (FT-IR) analyses of bone (chicken) and enamel (pig) have revealed that biological hydroxyapatites exhibit characteristic adsorption bands that were attributed to HPO\(_4\)\(^{2-}\) ions\(^\text{38,29}\). Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has also been used to study bone mineral and, in particular, its chemical structure,\(^\text{30,31}\) its hydrophilicity,\(^\text{32}\) and its interaction with bioorganic molecules.\(^\text{33-37}\) The \(31^\text{P}\) NMR chemical environments have been probed; and early studies on bone tissue samples have also suggested the presence of HPO\(_4\)\(^{2-}\) ions in bone mineral based on the measurement of chemical shift anisotropy (CSA) parameters\(^\text{38}\): they were found to differ from those of apatitic PO\(_4\)\(^{3-}\) ions but to be similar with those found for brushite. Similarly, \(^1\text{H}–\)\(^{31}\text{P}\) dipolar-based ssNMR experiments\(^\text{39,40}\) revealed two different behaviours in various bone tissue samples (chicken, bovine and rabbit) attributed to HPO\(_4\)\(^{2-}\) vs PO\(_4\)\(^{3-}\)\(^\ddagger\). Lastly, the presence of HPO\(_4\)\(^{2-}\) ions in bone mineral was also proposed based on \(^1\text{H}\) NMR chemical shift considerations: two-dimensional (2D) \(^{1}\text{H}–\)\(^{31}\text{P}\) heteronuclear correlation (HetCor) NMR experiments were performed to indirectly detect the \(^1\text{H}\) NMR chemical environments of bone\(^\text{41-43}\) and dentine\(^\text{3}\) mineral that were then compared with the \(^1\text{H}\) NMR chemical environments of brushite, monetite (Dicalcium Phosphate Anhydrous, DCPA; CaHPO\(_4\)) and octacalcium phosphate.\(^\text{44}\)

Many efforts have therefore been made over the years to identify, localize and quantify HPO\(_4\)\(^{2-}\) ions within bone mineral. While their presence in bone mineral is now accepted, both their localization and quantification are still being debated.\(^\text{45}\) This prevents the design of an accurate chemical and structural model of mature bone mineral particles which will not only provide design principles for the next generation of alloplasts for bone regeneration, but will also facilitate the understanding of bone mineral chemistry and reactivity in vivo. Hence, the present study aims to more precisely assess the identification, the localization, and the quantification of HPO\(_4\)\(^{2-}\) ions in bone mineral. To this end, we used a combination of dedicated ssNMR techniques from intact mature bone tissue samples together with synthetic reference samples. In particular, the \(^{[1}\text{H}–31\text{P}]_2\)\(^\text{1H}\) double cross polarization (CP) ssNMR experiment was used to suppress the proton signal from the bone organic matrix, and, therefore, to selectively record the \(^1\text{H}\) NMR spectrum of bone mineral. The variation of the \(^{31}\text{P} \rightarrow \)\(^1\text{H}\) contact time in the \(^{[1}\text{H}–31\text{P}]_2\)\(^\text{1H}\) double CP experiment, followed by numerical modelling and calculations allowed us to determine the \(^1\text{H}-\)\(^{31}\text{P}\) distances within the HPO\(_4\)\(^{2-}\) ions identified in bone mineral. These distances were subsequently compared with those determined for known inorganic POH groups found in HPO\(_4\)\(^{2-}\) ions from monetite. Further ssNMR investigations including \(^1\text{H}–\)\(^1\text{H}\) double quantum–Single quantum experiments have also been undertaken to study the localization of the HPO\(_4\)\(^{2-}\) ions present in a bone mineral proxy sample. Lastly, a single pulse \(^{31}\text{P}\) ssNMR spectrum of bone mineral recorded under quantitative conditions was recorded to quantify these HPO\(_4\)\(^{2-}\) ions with respects to the overall amount of inorganic phosphate ions that compose bone mineral.

Methods

Samples preparation. Cortical bone tissue samples were harvested from healthy 2-year-old sheep; and were extracted from the distal femoral metaphysis. The animal experiments were approved by the IMMR’s Institutional Animal Care and Use committee (IACUC) and performed in accordance with relevant guidelines and regulations. The IMMR received an agreement (n° 75-14-01) on September 08th, 2008 for period of 5 years by the “ Sous-Direction de la protection Sanitaire” of the French Authorities. Fresh bone tissue samples were analysed within two hours following their extraction from the animal. This delay corresponds to the trip from the hospital where the bone tissue samples were harvested to our lab. In the meantime, the bone samples were conserved intact in a sealed vial at ambient temperature. The dry bone tissue samples were obtained once the fresh bone tissue samples were dehydrated at ambient temperature in a laminar flow hood for one night.

Monetite (DCPA) was obtained by mixing calcium carbonate (CaCO\(_3\)) and an aqueous phosphoric acid solution (H\(_3\)PO\(_4\), 85 wt. %) in water (ratio Ca/P = 1). The mixture was placed in an autoclave at 150 °C for 48 h. The resulting precipitate was then washed with ethanol and dried at 37 °C.

OctaCalcium Phosphate (OCP) was prepared according to the protocol of Bigi et al. (2004). Briefly, 500 mL of an aqueous solution containing 40 mM CH\(_3\)(CH\(_2\))O\(_2\) was added dropwise to 1500 mL of an aqueous solution containing 6.6 mM of Na\(_2\)HPO\(_4\) and 6.6 mM of Na\(_2\)PO\(_4\) with a starting pH of 5. The reaction was performed at 70 °C, and no stirring was applied. Fifteen minutes after the end of the addition, the precipitate was centrifuged, washed three times with deionized water, and then dried at 37 °C.

A biomimetic Carbonated Hydroxyapatite (CHA-SBF) sample was precipitated directly from a modified simulated body fluid solution (SBF) inspired from human blood plasma. A solution 1.5 times more concentrated compared to standard SBF was prepared (1.5 × SBF). Briefly, 1 L of this solution was frozen at –20 °C for 1 night. Then, the solution was thawed and conserved at 5 °C for 1 month. The resulting nanoparticles were recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and dried at 37 °C. The mixture was then weighed, and 20 mg of this sample were used for each ssNMR measurement. The CHA-SBF sample was recovered by centrifugation and dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C. To study CHA-SBF in wet conditions, about 10 mg of this sample was recovered by centrifugation and finally dried at 37 °C.
FT-IR analyses. Fourier Transform-Infrared (FT-IR) spectra were recorded at room temperature using a Nicolet Magna FT-IR spectrometer in ATR mode, in the range of 650–4000 cm$^{-1}$ and at a resolution of 4 cm$^{-1}$. The weight proportion of CO$_3^{2-}$ ions in bone mineral from our 2-year-old sheep bone tissue sample was evaluated according to the FT-IR analysis procedure described by Grunenwald et al.32.

Solid-state NMR. Solid-state Nuclear Magnetic Resonance (ssNMR) experiments were performed on an Avance 300 Bruker spectrometer (7.0 T) using a 4 mm double resonance magic angle spinning (MAS) probe head. 3-4 mm-thick pieces of cortical bone samples were packed into a 4 mm (O.D.) NMR zirconia rotor and spun at a Magic Angle Spinning (MAS) frequency $\nu_{\text{MAS}} = 14$ kHz. The temperature in the NMR probe was kept at 25°C during all analysis periods. The recycle delays in the one-dimensional (1D) 1H-31P cross polarization (CP), two-dimensional (2D) 1H-31P Heteronuclear Correlation (HetCor), 1D 1H-31P1H double CP; and in the 2D 1H-31P1H double quantum-Single quantum experiments, were set to 2 sec (bone and CHA-SBF), 10 sec (monetite) and 30 sec (HPO$_4^{2-}$-substituted HA). The 2D 31P1H HetCor experiments were recorded with a contact time of 1000 µs and 80 scans for each 100 t$_c$ increments. The radio frequency (RF) field (B_1) applied during the CP steps was $\nu_{\text{RF}}(^1H) = 70$ kHz and $\nu_{\text{RF}}(^{31}P) = 50$ kHz. The 1H-31P1H double CP experiments were recorded with identical RF fields. The sequence consists of two consecutive CP transfers, and is schematically described in Fig. S1. Following the first transfer (during t$_{CP1}$), the 31P magnetization is flipped back to the z direction through a 90° pulse. The 1H residual signal is eliminated by two low power pulses phase shifted by 90° at $\nu_{\text{RF}} = \nu_{\text{MAS}}/2 = 7$ kHz (HORROR condition13). The length of each pulse corresponds to the length of the 1H free induction decay (~ 10 ms). This saturation step not only enables suppression of all unwanted 1H signals; but it also, within the model of thermal reservoirs2, enables transformation of the proton bath into a hot reservoir into which the 31P magnetization can be back-transferred from the cold reservoir. After this step, the 31P magnetization is then flipped back into the transverse plane through a 90° pulse and a second CP transfer is then applied (during t$_{CP2}$) prior to 1H acquisition. In regard to the CP dynamics experiments, the Hartmann-Hahn condition of the first CP 1H \rightarrow 31P transfer was set through a tangential ramp on the 1H channel in order to maximize the 31P signal32. The Hartmann-Hahn condition of the second CP 31P \rightarrow 1H transfer was set through square pulses on both channels. The 1H and 31P radio frequency field strengths were matched to the first spinning sidebands (n = ±1) of the Hartmann-Hahn matching profile (Fig. S2). High power 1H decoupling was applied during acquisition (60 kHz of RF field strength, spinal 64). Regarding the NMR signal processing, no line broadening (LB) was employed to process the 1H-31P1H double CP free induction decay (FID); while a line broadening of 30 and 100 Hz was employed for the 2D 1H-31P1H HetCor experiments in the F2 and F1 dimensions, respectively. Two dimensional 1H-31P1H double quantum-Single quantum ssNMR spectra were recorded using the Back-to-Back (BABA) excitation scheme based on the recoupling of 1H homonuclear dipolar couplings35. The 1H RF field was 70 kHz. The recoupling delay was synchronized to the rotor rotation period (71.4 µs). 1H chemical shifts were referenced to TetramethylSilane (TMS) at δ^{1}H = 0.0 ppm, whereas 31P chemical shifts were referenced to H_3PO_4 (85% w/w aqueous solution) at δ^{31}P = 0.0 ppm.

Results and Discussion
Identification of HPO$_4^{2-}$ ions in bone mineral. The direct solid-state Nuclear Magnetic Resonance (ssNMR) detection of the protons localized in bone mineral from an intact bone tissue sample is not possible. This is due to the presence of the extracellular organic matrix whose different signals dominate the 1H single pulse (SP) ssNMR spectrum of a bone tissue sample44. However, the possibility to reveal atomic-scale spatial proximities among hydrogen and phosphorus nuclei in the two-dimensional (2D) 1H-31P Heteronuclear Correlation (HetCor) ssNMR experiment allows for probing bone mineral hydrogen environments through the analysis of the F1 dimension (Fig. 1A). Unfortunately, this experiment is time consuming and gives rise to a 1H projection of the vertical (F1) dimension with a relatively poor signal-to-noise ratio (S/N) and a low digital resolution (Fig. 1B). To overcome these limitations, we used the one-dimensional (1D) 1H-31P1H double cross polarization (CP) ssNMR experiment. It consists of a double CP transfer conducted in a “there-and-back” manner (1H \rightarrow 31P \rightarrow 1H) (Fig. S1). First, this experiment allowed us to obtain 31P-filtered 1H ssNMR spectra of bone mineral from an intact, cortical 2-year-old sheep bone tissue sample with an excellent S/N despite a relatively short acquisition time (i.e., 9 hours) (Fig. 1C,D). The different 1H chemical environments from bone mineral are now readily observable and can be safely analyzed with precision. With regard to the internal crystalline core of bone mineral particles, the hydroxyl ions present in the hydroxyapatite’s crystal lattice are observed in the form of a complex oscillation at δ^{1}H = 0.0 ppm. Regarding their amorphous surface layer, structural water molecules and acidic phosphate species present in non-apatitic environments are observable in the form of a single resonance centred at δ^{1}H = 5.2 ppm and a broad resonance ranging from δ^{1}H = 7 to 17 ppm32, respectively.

Second, this experiment allows the investigation of the 1H-detected CP dynamics to selectively reveal the nature of the 1H nuclei nearby 31P nuclei. To this end, the contact time 1 (t$_{CP1}$) was kept fixed at 1000 µs, while the contact time 2 (t$_{CP2}$) was varied from 75 µs up to 1000 µs (Fig. 2). A uniform increase of the magnetization is observed for both the resonances centred at δ^{1}H = 0.0 and δ^{1}H = 5.2 ppm (see the black dashed lines), previously attributed to OH$^-$ ions and structural H$_2$O molecules according to their respective 1H NMR chemical shift. In contrast, the evolution of the broad signal in the range of δ^{1}H = 7–17 ppm initially shows a rapid increase of its magnetization (up to t$_{CP2}$ = 300 µs) and is followed by the presence of an oscillatory behaviour (up to t$_{CP2}$ = 1250 µs - see the black dashed line). This oscillatory behaviour is characteristic of 1H-31P dipolar (D_{PP}) oscillations35,56. The fitting of the corresponding 1H-31P1H ssNMR spectra at various t$_{CP2}$ is not straightforward due to the overlapping of various resonances. Whereas synthetic HA samples usually exhibit a symmetric OH$^-$ resonance32; we show here that the OH$^-$ resonance of bone mineral is particularly complex and can be fitted as follows: a main peak at δ^{1}H = 0.0 ppm surrounded by two shoulders peaks at δ^{1}H = −0.7 and 0.9 ppm (Fig. S3). The residual structural water resonance can be properly fitted with a single peak centred at
\[\delta(1H) = 5.2 \text{ ppm (Fig. S4). In contrast, the broad signal from the acidic phosphate species observable in the range of } \delta(1H) = 7–17 \text{ ppm cannot be satisfactorily fitted with a single peak with fixed position and line width, especially at short contact times (see the best fitting results for the various } t_{CP2} \text{ values in Fig. S4 – left column). However, the fitting results are accurate when two different peaks are used with fixed positions [at } \delta(1H) = 9.8 \pm 0.1 \text{ and } 14.0 \pm 0.1 \text{ ppm] and fixed line widths (6.2 \pm 0.1 \text{ and } 5.0 \pm 0.1 \text{ ppm, respectively) (Fig. S4 – right column). We cannot claim that this broad signal is only composed of two peaks corresponding to two distinct proton environments, but it is probably composed of a wide distribution of chemical environments leading to a distribution of NMR chemical shifts. Accordingly, Fig. 3A shows the four peaks that were used to analyse the } 1H \text{ double CP MAS spectra recorded with the following contact times: (C) } t_{CP1} = t_{CP2} = 1000 \mu s \text{; and, (D) } t_{CP1} = t_{CP2} = 15000 \mu s. \text{ The total experimental time was the same in each experiment (i.e., 9 hours).}

Figure 1. Detection of hydrogen-bearing species in bone mineral. \(^{1}H\)\(^{31}P\) cross polarization (CP) based magic angle spinning (MAS) solid-state Nuclear Magnetic Resonance (ssNMR) spectra of a dry 2-year-old sheep bone tissue sample. (A) two-dimensional (2D) \(^{1}H\)\(^{31}P\) Heteronuclear Correlation (HetCor) spectrum (contact time, \(t_{CP} = 1000 \mu s\)). Signal intensity increases from blue to red. (B) \(^{1}H\) projection of the vertical (F1) dimension of the 2D \(^{1}H\)\(^{31}P\) HetCor spectrum shown in (A). \(^{1}H\)\(^{31}P\)\(^{1}H\) double CP MAS spectra recorded with the following contact times: (C) \(t_{CP1} = t_{CP2} = 1000 \mu s\); and, (D) \(t_{CP1} = t_{CP2} = 15000 \mu s\). The total experimental time was the same in each experiment (i.e., 9 hours).

Figure 2. Cross-polarization dynamics of the \(^{1}H\) resonances from bone mineral. \(^{1}H\)\(^{31}P\)\(^{1}H\) double cross polarization (CP) magic angle spinning (MAS) solid-state Nuclear Magnetic Resonance (ssNMR) dynamics of a dry 2-year-old sheep bone tissue sample. Contact time 1 \((t_{CP1})\) was fixed at 1000 \(\mu s\), while contact time 2 \((t_{CP2})\) was varied from 750 \(\mu s\) to 10000 \(\mu s\). Black dashed lines are guidelines for the eyes.

\[\delta(1H) = 5.2 \text{ ppm (Fig. S4). In contrast, the broad signal from the acidic phosphate species observable in the range of } \delta(1H) = 7–17 \text{ ppm cannot be satisfactorily fitted with a single peak with fixed position and line width, especially at short contact times (see the best fitting results for the various } t_{CP2} \text{ values in Fig. S4 – left column). However, the fitting results are accurate when two different peaks are used with fixed positions [at } \delta(1H) = 9.8 \pm 0.1 \text{ and } 14.0 \pm 0.1 \text{ ppm] and fixed line widths (6.2 \pm 0.1 \text{ and } 5.0 \pm 0.1 \text{ ppm, respectively) (Fig. S4 – right column). We cannot claim that this broad signal is only composed of two peaks corresponding to two distinct proton environments, but it is probably composed of a wide distribution of chemical environments leading to a distribution of NMR chemical shifts. Accordingly, Fig. 3A shows the four peaks that were used to analyse the } 1H \text{ double CP MAS spectra recorded with the following contact times: (C) } t_{CP1} = t_{CP2} = 1000 \mu s \text{; and, (D) } t_{CP1} = t_{CP2} = 15000 \mu s. \text{ The total experimental time was the same in each experiment (i.e., 9 hours).}

\[M(t) = M_0 \cdot \exp\left(-t_{CP}/T_{1H}(1H)\right) \cdot \left[1 - \frac{1}{2} \cdot \exp\left(-t_{CP}/T_{sd}(1H)\right) - \frac{1}{2} \cdot \exp\left(-3t_{CP}/2T_{sd}(1H)\right) \cdot \cos(\pi D_{PH}(1H) \cdot t_{CP})\right] \quad (1)\]

in which \(M_0\), \(t_{CP}\), \(T_{1H}(1H)\), \(T_{sd}(1H)\) and \(D_{PH}(1H)\) are the CP intensity, the contact time, the \(^{1}H\) spin-diffusion rate constant, the spin-lattice relaxation time in the rotating frame, and the apparent \(^{1}H\)\(^{31}P\) dipolar coupling, respectively. The internuclear distance between \(^{1}H\) and \(^{31}P\) nuclei is then readily extracted from \(D_{PH}(1H)\)
in which \(D_{PH} = (\mu_0 \cdot h \cdot \gamma_{1H} \cdot \gamma_{31P})/(16\pi^3 \cdot d_{PH}^3) \) (2)

in which \(D_{PH} = D_{PH}' \times \sqrt{2} \), \(d_{PH} \) is the internuclear distance between the two spins, \(\gamma_{1H} \) and \(\gamma_{31P} \) are the gyromagnetic ratios of the coupled spins, \(\mu_0 \) is the vacuum permeability, and \(h \) is the Planck constant. A dipolar constant
(D$_{993}$) of 4050 Hz was found for the peak centred at δ(1H) = 9.8, while D$_{993}$ = 4695 Hz for the peak centred at δ(1H) = 14.0 ppm. In addition, the corresponding H•••P internuclear distances were calculated: 2.24 Å for the former peak and 2.14 Å for the latter peak (Fig. 3C,D, and Table 1). The estimated precision is ± 490 Hz for D$_{993}$ and ± 0.07 Å for d$_{993}$. Lastly, in regard to the evolution of the magnetization of the resonances at δ(1H) = 0.0 ppm (OH⁻) and δ(1H) = 5.2 ppm (H$_2$O; O$_2$); they are readily fitted within the classical 1-S model. This is an analytical extension of Eq. 1 for an extended spin system in which the behaviour of the magnetization is dominated by an incoherent transfer from 31P to 1H as follows57:

\[
M(t) = M_0 \cdot \left(1 - \frac{T_{1\text{HP}}}{T_{1\text{PP}}(1\text{H})}\right) \cdot \exp(-t_{\text{CP}}/T_{1\text{PP}}) = \exp(-t_{\text{CP}}/T_{1\text{HP}})
\]

in which M_0, t_{CP}, $T_{1\text{HP}}$, $T_{1\text{PP}}(1\text{H})$ are the CP intensity, the contact time, the CP rate constant and the spin-lattice relaxation time in the rotating frame, respectively. A $T_{1\text{HP}}$ value of 795μs was found for the OH⁻ resonance, while a $T_{1\text{PP}}$ value of 522μs was found for the H$_2$O resonance (Table 1).

The same ssNMR-based approach was also applied to monetite (CaHPO$_4$) as a reference sample which is a hydrogen-phosphate-containing calcium phosphate mineral standard (Figs S5 and S7). Dipolar oscillations are also observed for which our numerical modelling and calculations reveal H•••P internuclear distances of 1.92 ± 0.07 and 2.10 ± 0.07 Å within the two inequivalent HPO$_4^{2-}$ groups present in the monetite's crystal lattice (Fig. S7). Such distances are close to those found for the acidic phosphate species within our 2-year-old sheep bone tissue sample, and are in agreement with the distances measured in monetite46 and brushite47 through neutron diffraction analysis (i.e., d$_{993}$ ranging from 2.08 to 2.25 in the HPO$_4^{2-}$ ions of monetite; and d$_{993}$ = 2.19 Å in the HPO$_4^{2-}$ ions of brushite). Since previous spectroscopic analyses have shown that the presence of HPO$_4^{2-}$ ions in carbonated hydroxyapatite was unlikely42, we can now safely attribute the broad signal in the range of δ(1H) = 7–17 ppm observable in bone mineral solely to HPO$_4^{2-}$ ions.

In addition, the same ssNMR-based approach was also applied to a biomimetic Carbonated Hydroxyapatite (CHA-SBF) sample that was precipitated from a modified simulated body fluid solution (SBF) devoid of organic additives. This synthetic bone-like mineral sample displays a similar [1H–31P]H double CP ssNMR spectrum of bone mineral: a resonance centred at δ(1H) = 0.0 ppm attributed to hydroxyl ions; a resonance centred at δ(1H) = 5.2 ppm attributed to structural water molecules; and last, a broad signal in the range of δ(1H) = 7–17 ppm attributed to acidic phosphate species (Fig. S7). The variation of the second contact time (t_{CP}) also leads to the observation of dipolar oscillations in the acidic phosphate species region. Our corresponding numerical modelling and calculations reveal a dipolar constant (D$_{PH}$) of 4960 Hz was found for the peak centred at 0.0 ppm attributed to hydroxyl ions; a resonance centred at δ(1H) = 5.2 ppm attributed to acidic phosphate species (Fig. S7). The variation of the second contact time (t_{CP}) also leads to the observation of dipolar oscillations in the acidic phosphate species region. Our corresponding numerical modelling and calculations reveal a dipolar constant (D$_{PH}$) of 4050 Hz was found for the peak centred at 0.0 ppm attributed to hydroxyl ions; a resonance centred at δ(1H) = 5.2 ppm attributed to acidic phosphate species (Fig. S7).

Localisation of the HPO$_4^{2-}$ ions in bone mineral. The exact localisation of the structural water molecules and the HPO$_4^{2-}$ ions within bone mineral particles is still unclear. To date, they are suggested to be present both in the hydroxyapatite's crystal lattice (internal crystalline core) and in the non-apaticic environments (amorphous surface layer)45. We first investigated their exact localisation through the examination of 31P-filtered 1H ssNMR spectra of hydrated (fresh) and dry 2-year-old sheep bone tissue samples (Fig. S8A). The comparison of the two spectra demonstrates that all the protons from the HPO$_4^{2-}$ ions undergo fast chemical exchanges with the protons from free water molecules present in the extracellular fluid. Indeed, in the case of the fresh bone tissue sample, the structural water resonance at δ(1H) = 5.2 ppm together with the broad signal in the range of δ(1H) = 7–17 ppm now safely attributed to HPO$_4^{2-}$ ions, are no longer detected. Instead, a sharp and intense signal of strongly bound water molecules is now observable at δ(1H) = 4.8 ppm. A similar behaviour was observed for the biomimetic Carbonated Hydroxyapatite (CHA-SBF) sample that was studied in dry conditions and soaked in water (Fig. S8B). These observations make clear that all the HPO$_4^{2-}$ ions are easily accessible to H$_2$O molecules and, therefore, are located near the surface of the particles within the so-called amorphous surface layer that coats bone mineral particles46,48.

Second, we have also investigated whether or not HPO$_4^{2-}$ ions are present in the hydroxyapatite's crystal lattice of bone mineral particles. To this end, we studied a synthetic HPO$_4^{2-}$-substituted HA sample. This sample, named HPO$_4^{2-}$-substituted HA, does not possess non-apaticic environments in the form of an amorphous surface layer so that all its HPO$_4^{2-}$ ions are allegedly localized within the hydroxyapatite's crystal lattice. The 2D [1H–31P]H Heteronuclear Single Quantum–Double Quantum (SQ–DQ) correlation experiment (Fig. S10A) which can reveal short 1H-1H spatial proximities (a few Å). A cross-peak on the left side of the diagonal is observable. It spatially correlates the HPO 4 ions in the hydroxyapatite's crystal lattice (internal crystalline core) and in the non-apaticic environments (amorphous surface layer)45. We first investigated their exact localisation through the examination of 31P-filtered 1H ssNMR spectra of hydrated (fresh) and dry 2-year-old sheep bone tissue samples (Fig. S8A). The comparison of the two spectra demonstrates that all the protons from the HPO$_4^{2-}$ ions undergo fast chemical exchanges with the protons from free water molecules present in the extracellular fluid. Indeed, in the case of the fresh bone tissue sample, the structural water resonance at δ(1H) = 5.2 ppm together with the broad signal in the range of δ(1H) = 7–17 ppm now safely attributed to HPO$_4^{2-}$ ions, are no longer detected. Instead, a sharp and intense signal of strongly bound water molecules is now observable at δ(1H) = 4.8 ppm. A similar behaviour was observed for the biomimetic Carbonated Hydroxyapatite (CHA-SBF) sample that was studied in dry conditions and soaked in water (Fig. S8B). These observations make clear that all the HPO$_4^{2-}$ ions are easily accessible to H$_2$O molecules and, therefore, are located near the surface of the particles within the so-called amorphous surface layer that coats bone mineral particles46,48.

A cross-peak on the left side of the diagonal is observable. It spatially correlates the HPO$_4^{2-}$ ions in the hydroxyapatite's crystal lattice (internal crystalline core) and in the non-apaticic environments (amorphous surface layer)45. We first investigated their exact localisation through the examination of 31P-filtered 1H ssNMR spectra of hydrated (fresh) and dry 2-year-old sheep bone tissue samples (Fig. S8A). The comparison of the two spectra demonstrates that all the protons from the HPO$_4^{2-}$ ions undergo fast chemical exchanges with the protons from free water molecules present in the extracellular fluid. Indeed, in the case of the fresh bone tissue sample, the structural water resonance at δ(1H) = 5.2 ppm together with the broad signal in the range of δ(1H) = 7–17 ppm now safely attributed to HPO$_4^{2-}$ ions, are no longer detected. Instead, a sharp and intense signal of strongly bound water molecules is now observable at δ(1H) = 4.8 ppm. A similar behaviour was observed for the biomimetic Carbonated Hydroxyapatite (CHA-SBF) sample that was studied in dry conditions and soaked in water (Fig. S8B). These observations make clear that all the HPO$_4^{2-}$ ions are easily accessible to H$_2$O molecules and, therefore, are located near the surface of the particles within the so-called amorphous surface layer that coats bone mineral particles46,48.
Lastly, since octacalcium phosphate (OCP) has recently been proposed as a component of bone mineral\(^20\), the question whether the HPO\(_4^{2−}\) ions detected in the bone mineral of our 2-year-old sheep bone tissue sample originate from OCP environments needs to be raised. In this direction, the 2D \(\{1H\}^{31P}\) Heteronuclear Correlation (HetCor) magic angle spinning (MAS) solid-state Nuclear Magnetic Resonance (ssNMR) spectrum of a fresh and intact 2-year-old sheep bone tissue sample is shown in Fig. 4A. Again, the upper correlation peak corresponds to the OH\(^−\) and PO\(_4^{3−}\)-containing apatitic environments that compose the internal crystalline core of bone mineral particles (orange line). These individual \(^{31}P\) NMR signals were generated from the 2D \(\{1H\}^{31P}\) HetCor ssNMR spectrum shown in (A). To do so, the F2 slices taken at the bound water molecules position [from \(δ(1H) = 3\) to 7 ppm, blue area] and hydroxyl ions position [from \(δ(1H) = −2\) to 2 ppm, orange area] in F1 have been summed. (C) 1D \(31P\) CP MAS ssNMR spectrum (\(t_{CP} = 1000\) μs) of a synthetic octacalcium phosphate (OCP) sample. P1 to P6 correspond to the six different phosphate groups present in the OCP crystal lattice according to the work of Davies et al\(^60\). The red dashed-line marks the most intense resonance in the signal of OCP which is not detected in bone mineral (B).

Quantification of HPO\(_4^{2−}\) ions in bone mineral. The quantification of the HPO\(_4^{2−}\) ions present in bone mineral were undertaken. To this end, the lineshape and linewidth of the individual \(^{31}P\) NMR signals of the OH\(^−\) and PO\(_4^{3−}\)-containing internal crystalline core [\(δ(1H) = 3.1\) ppm, full width at half maximum (FWHM) = 270 Hz] and the H\(_2\)O and HPO\(_4^{2−}\)-containing non-apatitic environments (amorphous surface layer) [\(δ(1H) = 3.2\) ppm, FWHM = 640 Hz] that were revealed in Fig. 4B, were used in the fitting of the quantitative \(^{31}P\) single pulse (SP) MAS ssNMR spectrum of a fresh 2-year-old sheep bone tissue sample (Fig. 5A). The molar percentage proportion of HPO\(_4^{2−}\) and PO\(_4^{3−}\) ions in bone mineral were found to be about 50/50 ± 5%. As suggested by our
40 nm in width, and Those two peaks, whose lineshape and linewidth were revealed in Fig. 4B, correspond to the PO$_4^{2-}$-containing internal crystalline core in the form of hydroxyapatite (orange peak) and the HPO$_4^{2-}$-containing non-apatitic environments in the form of an amorphous surface layer (purple peak). (A) Fourier Transform-Infrared (FT-IR) spectrum of the ν$_3$(CO$_3$) vibration mode for a 2-year-old sheep bone tissue sample (blue line) and its corresponding fitting (red dashed line). Type B CO$_3^{2-}$ ions occupy the PO$_4^{3-}$ sites within the hydroxyapatite’s crystal lattice; type A CO$_3^{2-}$ ions occupy the OH$^-$ sites within the hydroxyapatite’s crystal lattice; whereas non-apatitic CO$_3^{2-}$ are present within the amorphous surface layer that coats bone mineral particles.

Figure 5. Quantification of HPO$_4^{2-}$ and CO$_3^{2-}$ ions present in bone mineral. (A) Quantitative 31P single pulse (SP) magic angle spinning (MAS) solid-state Nuclear Magnetic Resonance (ssNMR) spectrum of a fresh 2-year-old sheep bone tissue sample (blue line) and its corresponding fitting (red dashed line) with two peaks. Those two peaks, whose lineshape and linewidth were revealed in Fig. 4B, correspond to the PO$_4^{3-}$-containing internal crystalline core (A) and the HPO$_4^{2-}$-containing non-apatitic environments (B). The results presented here and elsewhere15 suggest that the average chemical composition of mature cortical bone mineral proposed by Legros et al.27, $\text{Ca}_{n-\alpha\beta\gamma\delta}(\text{PO}_4)_{1.75}(\text{HPO}_4, \text{CO}_3)_{0.25}(\text{OH} \text{or} \frac{1}{2} \text{CO}_3)_{0.05}$, must be reconsidered. Indeed, this formula does not properly account for the presence of the amorphous surface layer whose chemical composition greatly varies with respect to the apatitic environments present in the internal crystalline core of the particles, but also underestimates the molar proportion of HPO$_4^{2-}$ ions present in the amorphous surface layer. Here we consider a nanosized platelet with a thickness of 4.0 nm, and we assume that the densities of phosphate atoms present in the hydroxyapatite’s crystal lattice and in the amorphous surface layer are equivalent. In such a scenario, the thickness of the internal crystalline core is about 2.4 nm (i.e., which is about twice the size of the hexagonal unit cell of hydroxyapatite64 along the crystallographic axes a and b; a = b = 0.94 nm); whilst the thickness of the outer amorphous surface layer can be estimated to be about 0.8 nm (i.e., which then corresponds to the size of the hexagonal unit cell of hydroxyapatite along a and b, and, hence, is equivalent to the stacking of only two phosphate ions). One should be conscious that these are average values that correspond to the sum of the contributions of all the inorganic phosphate ions present in our 2-year-old sheep bone tissue sample. These results might be different for older specimen in which the proportion of the non-apatitic environments might be less65 due to bone mineral maturation: the progressive transformation of the amorphous surface layer into apatitic environments15. Nevertheless, the thickness of the surface layer determined here (0.8 nm) is in good agreement with the estimated sizes proposed in some previous studies: about the size of one phosphate unit in fluorapatite-gelatine mesocrystals66, and about 1–2 nm in synthetic hydroxyapatites67,68.

Update on bone mineral chemical composition. The results presented here and elsewhere15 suggest that the average chemical composition of mature cortical bone mineral proposed by Legros et al.27, $\text{Ca}_{n-\alpha\beta\gamma\delta}(\text{PO}_4)_{1.75}(\text{HPO}_4, \text{CO}_3)_{0.25}(\text{OH} \text{or} \frac{1}{2} \text{CO}_3)_{0.05}$, must be reconsidered. Indeed, this formula does not only disregard the presence of the amorphous surface layer whose chemical composition greatly varies with respect to the apatitic environments present in the internal crystalline core of the particles, but also underestimates the molar proportion of HPO$_4^{2-}$ ions. To propose an up to date formula of our 2-year-old sheep bone tissue sample, we needed firstly to determine the weight proportion of CO$_3^{2-}$ ions. A value of 4.8% with a major contribution in B-type carbonates was found through FT-IR analyses49 (Fig. 5B), which is in accordance with the values found for other bone mineral samples5. In addition, the following parameters were considered: (i) the particles must remain electrically neutral (both the internal crystalline core and the amorphous surface layer); (ii) the molar proportion of HPO$_4^{2-}$ ions relative to the overall amount of inorganic phosphate ions is constrained close to 50% according to the present study; (iii) the degree of carbonation should be close to the experimental value (4.8% w/w); (iv) the overall Ca/(P + C) molar ratio should remain acceptable for a bone tissue sample, i.e. in the range of 1.2–1.53 and, last, (v) the proportion of A-type, B-type, and non-apatitic carbonate ions present in the amorphous surface layer should remain in accordance with the FT-IR data. Once all of these constraints have been amalgamated, the average chemical composition of the mature cortical bone mineral from our 2-year-old sheep bone tissue sample can be approximated as follows: $\text{Ca}_{n-\alpha\beta\gamma\delta}(\text{PO}_4)_{1.75}(\text{HPO}_4)_{0.25}(\text{CO}_3)_{0.25}(\text{OH})_{0.25}$. One should note that this average chemical composition solely corresponds to our specific bone tissue sample according to our own experimental results.
Hence this formula is not universal since variability occurs among bone specimens depending, in particular, on the specie, the age, the food supply and their degree of maturation.

Conclusions

In this work, we determined the $H\bullet\bullet\bullet$P distances (2.1–2.3 Å) within the acidic phosphate ions that compose bone mineral, and, hence, shown that they undeniably correspond to POH groups in inorganic HPO_4^{2-} ions. The presence of HPO_4^{2-} ions in bone mineral was therefore demonstrated based on accurate interatomic distance measurements. Further, in contrast to what was previously proposed, our results suggest that these HPO_4^{2-} ions are concentrated at the surface of bone mineral particles within the so-called amorphous surface layer since they were not detected within the internal crystalline core in the form of hydroxyapatite in our bone mineral proxy sample. Our results also indicate that the amount of HPO_4^{2-} ions present in bone mineral is higher than previously determined in previous studies. Indeed, our calculations show that at least half of the overall amount of inorganic phosphate ions that compose bone mineral are in the form of monohydrogen-phosphate ions. As a result, the average chemical composition of the mature cortical bone mineral from our 2-year-old sheep bone tissue sample was approximated as follows: $Ca_2\cdot(PPO_4)\cdot(HPO_4)\cdot(CO_3)\cdot(OH)_{h/2}$. According to the similarities between sheep and humans, not only in terms of bone and joint structure, but also in terms of bone regeneration and metabolism69, this methodological and analytical approach may be translatable to human bones for which a comparable quantification attempt has been undertaken70.

In summary, the present study provides unprecedented insights into the chemical composition and structural features of bone mineral at the atomic scale; and, hence, embodies a key step to design an accurate chemical and structural model of mature bone mineral particles in their biological environments (Fig. 6). Such model is of primary importance to predict bone mineral chemistry and reactivity in vivo with an overarching objective of enhancing our understanding of processes involved in healthy and pathological bone formations. In this direction, our results emphasize that the surface chemistry and reactivity of bone mineral are driven by metastable amorphous environments rich in monohydrogen-phosphate ions, rather than by stable crystalline environments with hydroxyapatite structure. As such, the recognition mechanisms at the biomineral-biomolecule (collagen, non-collagenous proteins, etc.) interface, which are long-standing questions in the field of bone biomineralization71,72 for shedding light on nucleation and growth processes, must be reconsidered. Further, our results also show the importance of bone mineral surface chemistry in the control of the homeostasis of phosphate ions (i.e., the second ionic buffer in the human body fluids along with carbonates). Last, the analytical tools reported here could be very advantageous for the study of other mineralized tissues in various organisms, including corals73 and bivalve mollusks74 in which the presence of interfacial monohydrogen-carbonate ions localized in highly-disordered environments have been proposed.

References

1. Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. *Science* **360**, eaao2189 (2018).
2. Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM. *Calcif. Tissue Int.* **103**, 606–616 (2018).
3. Glimcher, M. J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev. Mineral. Geochem. 64, 223–282 (2006).

4. Delmas, P. D., Tracy, R. P., Riggs, B. L. & Mann, K. G. Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif. Tissue Int. 36, 308–316 (1984).

5. Boskey, A. L. Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 6, 111–123 (1990).

6. Boskey, A. L. & Robey, P. G. The Composition of Bone. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. Rosen, C. L.) 49–58 (John Wiley & Sons, Inc. 2013).

7. Wopenka, B. & Pasteris, J. D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131–143 (2005).

8. Wu, Y. et al. Nuclear magnetic resonance spin–spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 17, 472–480 (2002).

9. Huang, S.-J., Tsai, Y.-L., Lee, Y.-L., Lin, C.-P. & Chan, J. C. C. Structural Model of Rat Dentin Revisited. Chem. Mater. 21, 2583–2585 (2009).

10. Wang, Y. et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).

11. Von Euw, S. et al. Amorphous surface layer versus transient amorphous precursor phase in bone – A case study investigated by solid-state NMR spectroscopy. Acta Biomater. 59, 351–360 (2017).

12. Rey, C., Combes, C., Drouet, C., Sfihi, H. & Barroug, A. Physico-chemical properties of nanocrystalline apatites: Implications for biomimetics and biomaterials. Mater. Sci. Eng. C 27, 198–205 (2007).

13. Jäger, C., Welzel, T., Meyer-Zaika, W. & Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. MRC 44, 573–580 (2006).

14. Nassin, N. et al. In Vivo Inspired Conditions to Synthesize Biomimetic Hydroxyapatite. Chem. Mater. 22, 3653–3663 (2010).

15. VanCandelaere, N., Rey, C. & Drouet, C. Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J. Mater. Sci. Mater. Med. 23, 2593–2606 (2012).

16. Von Euw, S. et al. Organization of Bone Mineral: The Role of Mineral–Water Interactions. Geosciences 8, 466 (2018).

17. Brown, W. E. Crystal growth of bone mineral. Clin. Orthop. 44, 205–220 (1966).

18. Crane, N. J., Popescu, V., Morris, M. D., Steenhuis, P. & Ignelzi, M. A. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39, 434–442 (2006).

19. Vyalikh, A., Elschner, C., Schulz, M., Mai, R. & Scheler, U. Early Stages of Bimimeral Formation — A Solid-State NMR Investigation of the Mandibles of Minipigs. Magnetoochemistry 3, 39 (2017).

20. Simon, P. et al. First evidence of octacalcium phosphate@ostecalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep. 8, 13696 (2018).

21. Xin, R., Leng, Y. & Wang, N. HRTEM Study of the Mineral Phases in Human Cortical Bone. J. Phys. Chem. C 115, 12319–12326 (2011).

22. Pellegrino, E. D. & Biltz, R. M. Mineralization in the chick embryo. Calcif. Tissue Res. 10, 128–135 (1972).

23. Crane, N., Eanes, E. D., Greenfield, D. J., Nylen, M. U. & Harper, R. A. Hydrazine-deproteinated bone mineral. Calcif. Tissue Res. 12, 73–90 (1973).

24. Pellegrino, E. D. & Biltz, R. M. Mineralization in the chick embryo. Calcif. Tissue Res. 10, 128–135 (1972).

25. Termine, J. D., Eanes, E. D., Greenfield, D. J., Nylen, M. U. & Harper, R. A. Hydrazine-deproteinated bone mineral. Calcif. Tissue Res. 12, 73–90 (1973).

26. Legros, R., Balmain, N. & Bonel, G. Age-related changes in mineral of rat and bovine cortical bone. Calcif. Tissue Int. 41, 137–144 (1987).

27. Rey, C., Shimizu, M., Collins, B. & Glimcher, M. J. Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the vPO4 domain. Calcif. Tissue Int. 46, 384–394 (1990).

28. Rey, C., Shimizu, M., Collins, B. & Glimcher, M. J. Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. II: Investigations in the vPO4 domain. Calcif. Tissue Int. 49, 383–388 (1991).

29. Kolodziejski, W. Solid-state NMR studies of bone. Top. Curr. Chem. 265, 235–270 (2005).

30. Nissen, A. D. & Biltz, R. M. Mineralization in the chick embryo. Calcif. Tissue Res. 10, 128–135 (1972).

31. Termine, J. D., Eanes, E. D., Greenfield, D. J., Nylen, M. U. & Harper, R. A. Hydrazine-deproteinated bone mineral. Calcif. Tissue Res. 12, 73–90 (1973).

32. Legros, R., Balmain, N. & Bonel, G. Age-related changes in mineral of rat and bovine cortical bone. Calcif. Tissue Int. 41, 137–144 (1987).

33. Chow, W. Y. et al. NMR Spectroscopy of Native and in Vitro Tissues Implicates PolyADP Ribose in Biomimeralization. Science 344, 742–746 (2014).

34. Roufossie, A. H., Aue, W. P., Roberts, J. E., Glimcher, M. J. & Griffin, R. G. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 23, 6115–6120 (1984).

35. Wu, Y., Glimcher, M. J., Rey, C. & Ackerman, J. L. A Unique Protonated Phosphate Group in Bone Mineral Not Present in Synthetic Calcium Phosphates: Identification by Phosphorus-31 Solid State NMR Spectroscopy. J. Biol. Mol. 244, 423–435 (1994).

36. Kafalk-Hachulaska, A., Samoson, A. & Kolodziejski, W. ‘H MAS and 31P CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 73, 476–486 (2003).

37. Santos, R. A., Wind, R. A. & Bronnimann, C. E. 1H CRAMPS and 1H–31P HETCOR Experiments on Bone, Bone Mineral, and Model Calcium Phosphate Phases. J. Magn. Reson. B 105, 183–187 (1994).

38. Cho, G., Wu, Y. & Ackerman, J. L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300, 1123–1127 (2003).

39. Malisev, S., Duer, M. J., Murray, R. C. & Jaeger, C. A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 42, 8804–8810 (2007).

40. Boyes, J. P. & Eckert, H. Hydrogen environments in calcium phosphates: proton MAS NMR at high spinning speeds. J. Am. Chem. Soc. 109, 6274–6282 (1987).

41. Rey, C., Combes, C., Drouet, C. & Glimcher, M. J. Bone mineral: update on chemical composition and structure. Osteoporos. Int. 20, 1013–1021 (2009).

42. Bigi, A. et al. Morphological and Structural Modifications of Octacalcium Phosphate Induced by Poly-γ-Aspartate. Cryst. Growth Des. 4, 141–146 (2004).

43. Rhee, S.-H. & Tanaka, J. Hydroxyapatite formation on cellulose cloth induced by citric acid. J. Mater. Sci. Mater. Med. 11, 449–452 (2000).
48. Rey, C., Combes, C., Drouet, C. & Somran, S. 15 - Tricalcium phosphate-based ceramics. In Bioceramics and their Clinical Applications (ed. Kokubo, T.) 326–366 (Woodhead Publishing 2008).
49. Gruenwald, A. et al. Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. J. Archaeol. Sci. 49, 134–141 (2014).
50. Nielsen, N. C., Bildsoe, H., Jakobsen, H. J. & Levitt, M. H. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning NMR or magnetic resonance. J. Chem. Phys. 101, 1805–1812 (1994).
51. Yannou, C. S. High-resolution NMR in solids: the CPMAS experiment. Acc. Chem. Res. 15, 201–208 (1982).
52. Hedger, S., Meier, B. H., Kurur, N. D., Bodenhausen, G. & Ernst, R. R. NMR cross polarization by adiabatic passage through the Hartmann–Hahn condition (APPH). Chem. Lett. 283, 288–293 (1984).
53. Feike, M. et al. Broadband Multiple-Quantum NMR Spectroscopy. J. Magn. Reson. A 122, 214–221 (1996).
54. Rey, C., Miquel, J. L., Facchini, L., Legrand, A. P. & Glimcher, M. J. Hydroxyl groups in bone mineral. Bone 16, 583–586 (1995).
55. Müller, L., Kumar, A., Baumann, T. & Ernst, R. R. Transient Oscillations in NMR Cross-Polarization Experiments in Solids. Phys. Rev. Lett. 32, 1402–1406 (1974).
56. Hester, R. K., Ackerman, J. L., Cross, V. R. & Waugh, J. S. Resolved Dipolar Coupling Spectra of Dilute Nuclear Spins in Solids. Phys. Rev. Lett. 34, 993–995 (1975).
57. Kolodziejski, W. & Klinowski, J. Kinetics of Cross-Polarization in Solid-State NMR: A Guide for Chemists. Chem. Rev. 102, 613–628 (2002).
58. Catti, M., Ferraris, G. & Filhol, A. Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P1 or P1? A novel neutron diffraction study. Acta Crystallogr. B 33, 1223–1229 (1977).
59. Curry, N. A. & Jones, D. W. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J. Chem. Soc. Inorg. Phys. Theor. 0, 3723–3729 (1971).
60. Davies, E., Duer, M. J., Ashbrook, S. E. & Griffin, J. M. Applications of NMR Crystallography to Problems in Biominerallization: Refinement of the Crystal Structure and 31P Solid-State NMR Spectral Assignment of Ooctacalcium Phosphate. J. Am. Chem. Soc. 134, 12508–12515 (2012).
61. Eppell, S. J., Tong, W., Katz, J. L., Kuhn, L. & Glimcher, M. J. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 19, 1027–1034 (2001).
62. Kim, H.-M., Rey, C. & Glimcher, M. J. Isolation of calcium–phosphate crystals of bone by non-aqueous methods at low temperature. J. Bone Miner. Res. 10, 1589–1601 (1995).
63. Bocciarelli, D. S. Morphology of crystals in bone. Calcif. Tissue Res. 5, 261–269 (1970).
64. Kay, M. I., Young, R. A. & Posner, A. S. Crystal Structure of Hydroxyapatite. Nature 204, 1050–1052 (1964).
65. Kuhn, L. T. et al. A Comparison of the Physical and Chemical Differences Between Cancellous and Cortical Bovine Bone Mineral at Two Ages. Calcif. Tissue Int. 83, 146–154 (2008).
66. Vyalikh, A. et al. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals. Sci. Rep. 5, (2015).
67. Nakayama, M. et al. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat. Commun. 9, (2018).
68. Bertinetti, L. et al. Surface Structure, Hydration, and Cationic Sites of Nanohydroxyapatite: UHR-TEM, IR, and Microgravimetric Studies. J. Phys. Chem. C 111, 4027–4035 (2007).
69. Nunamaker, D. M. Experimental models of fracture repair. Clin. Orthop. 556–65 (1998).
70. Kafaf, A., Chimielewski, D. & Kolodziejski, W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J. Appl. Biomedi. 14, 321–330 (2016).
71. Shaw, W. J. Solid-state NMR studies of proteins immobilized on inorganic surfaces. Solid State Nucl. Magn. Reson. 70, 1–14 (2015).
72. Gilbert, P. U. P. A., Abrecht, M. & Frazer, B. H. The Organic-Mineral Interface in Biominerals. Rev. Mineral. Geochem. 59, 157–185 (2005).
73. Von Euw, S. et al. Biological control of aragonite formation in stony corals. Science 356, 933–938 (2017).
74. Ben Shit, I., Kabaya, S., Katz, I., Pokroy, B. & Schmidt, A. Exposed and Buried Biomineral Interfaces in the Aragonitic Shell of Perna canaliculus Revealed by Solid-State NMR. Chem. Mater. 25, 4595–4602 (2013).

Acknowledgements
This work was supported by the Agence Nationale de la Recherche (ANR) through the ANR-09-BLAN-0120-01 “NanoShap” program. IMMR in acknowledged and more specifically L. Behr for providing the bone tissue samples.

Author Contributions
S.V.E., Y.W., G.L., C.D. and T.A. performed the research; N. N and T.A. analysed the data; S.V.E., C.D., N.N. and T.A. wrote the main manuscript text; S.V.E., C.D. and T.A. prepared the figures; T.A. designed the research; F.B. looked for financial support.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-44620-6.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019