FIRST RECORD OF LITTLE SLEEPER SHARK, SOMNIOSUS ROSTRATUS (ELASMOBRANCHII: SQUALIFORMES: SOMNIOSIDAE), FROM THE TUNISIAN COAST, CENTRAL MEDITERRANEAN SEA

Christian CAPAPÉ 1, Sihem RAFRAFI-NOUIRA 2, Youssouph DIATTA 3, and Christian REYNAUD 4

1 Laboratoire d’Ichtyologie, Université de Montpellier, France
2 Unité de Recherches et Exploitation des Milieux aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, Université de Carthage, Tunisia
3 Laboratoire de Biologie marine, Institut fondamental d’Afrique noire, Université Cheikh Anta Diop de Dakar, Senegal
4 Laboratoire Interdisciplinaire de Recherche en Didactique, Education et Formation, Université de Montpellier, Université Paul Valery Montpellier 3, France

Capapé C., Rafrafi-Nouira S., Diatta Y., Reynaud C. 2020. First record of little sleeper shark, Somniosus rostratus (Risso, 1827), from the Tunisian coast, central Mediterranean Sea. Acta Ichthyol. Piscat. 50 (4): 475–480.

Abstract. The first record of the little sleeper shark, Somniosus rostratus (Risso, 1827), from the Tunisian coast, is presented in this note. It was an adult female measuring 990 mm total length and weighing 4500 g. The capture occurred off Ras Jebel located in north-eastern Tunisia at a depth of 120 m. The specimen is herein described including morphological measurements, color, and dental formula. Due to a lack of records, the real status of the species in the Mediterranean Sea remains questionable. Somniosus rostratus is rarely caught in this sea because it lives in deep bottoms poorly exploited by commercial vessels. However, recent captures of specimens and occurrence of nursery grounds suggest that a viable population of S. rostratus is probably established in this sea.

Keywords: description, morphometric measurements, dental formula, deep bottoms, fragmented distribution, nursery grounds

INTRODUCTION

Little sleeper shark, Somniosus rostratus (Risso, 1827), is known in the eastern Atlantic from the Bay of Biscay, reported as its junior synonym S. bauchotae by Quéro (1976), from the northern coast of Spain (Bañon et al. 2010) and the coast of Portugal (Mc Eachran and Branstetter 1984, Carneiro et al. 2019). South of the Strait of Gibraltar, the species is known off Morocco (Lloris and Rucabado 1998), but not recorded southward off the western coast of Africa, from Mauritania (Maigret and Ly 1986) and Senegal (Capapé et al. 1994, Diatta et al. 2019). Conversely, S. rostratus is reported in the waters surrounding the Azores (Barcelos et al. 2019), Madeira (Biscoito et al. 2018), and the Canaries (Brito et al. 2002). The species is possibly caught from the western Atlantic, off Cuba (Ebert and Stehmann 2013), but Pacific records were probably based on a misidentification (Yano et al. 2004).

Somniosus rostratus occurs in the Mediterranean, especially in the western Basin where it was recorded for the first time, off Nice, southern France (Risso 1826, Moreau 1881). The species was found in the Gulf of Genoa, in the waters surrounding Sicily Island (Tortonese 1956), off the Ligurian coast (Cigala-Fulgosi and Gandolfi 1983), and in the north-western Ionian Sea (Capezzuto et al. 2010). Westwards, S. rostratus was reported from the Catalan Sea (Barrul and Mate 2001, Barría et al. 2015), the Gulf of Lions (Barría et al. 2015), and between the Balearic Islands and the Spanish coast (De Loyola Fernández et al. 2017).

Somniosus rostratus was previously reported as rare from the Algerian coast (Dieuzeide et al. 1953), but investigations conducted off Algiers, in the central region, allowed to collect 19 specimens (Kheddam et al. 2016). Conversely, S. rostratus remains unknown to date from the eastern Algerian coast (Refes et al. 2010). The
species was recorded from the Central Mediterranean Sea, in the waters surrounding Malta (Vella et al. 2013), and the presently reported specimen from the Tunisian coast. Additionally, *S. rostratus* was recorded in the Aegean Sea (Economidis 1973), the Levant Basin, off Haifa (Golani 1986), and from the coast of Syria (Ali and Saad 2003). The Tunisian specimen of *Somniosus rostratus* is described in this paper with comments on its distribution in the area and the wide Mediterranean Sea.

MATERIAL AND METHODS

Information on the capture on *Somniosus rostratus* was provided by an experienced fisherman. The help of local communities was considered by researchers to enlarge and improve attention in fisheries research, referred to as local ecological knowledge (sensu Anadón et al. 2009). The description of the specimen in the present paper follows Bello et al. (2014) for first records.

On 16 May 2019, a specimen of *Somniosus rostratus* was caught by commercial trawler off Ras Jebel (37°31′28″N, 10°17′10″E) (see Fig. 1). It was collected at a depth of 120 m, on rocky bottoms, together with shoals of smooth hound, *Mustelus mustelus* (Linnaeus 1758). All morphometric measurements were carried out using digital caliper to the nearest 1 mm following Compagno (1984), the weight was determined to the nearest 0.1 g, included in Table 1, together with the dental formula. The specimen was fixed in 10% buffered formalin, preserved in 75% ethanol, and deposited in the Ichthyological Collection of the Institut Supérieur d’Aquaculture et de Pêche of Bizerte (Tunisia), receiving the catalog number ISPAB-Som-rost-01.

RESULTS AND DISCUSSION

The presently reported specimen was identified as *Somniosus rostratus* based on a combination of the following characters (Fig. 2A): head short; snout short and broadly rounded; no fin spines on both dorsal fins; no anal fin; insertion of first dorsal fin closer to pectoral bases than pelvic bases; interdorsal space greater than distance from snout to second gill slits; second dorsal origin above end of pelvic base; short lateral keel present on base of caudal fin; caudal peduncle short; eyes small, round; nostrils large; mouth slightly curved with distinct deep fold in corner; upper teeth smooth-edged sharply pointed directed and curved laterally; lower teeth larger finely serrated with oblique cusp and overlapping bases, roots broadly flattened imbricate with a notch in the middle below (Fig. 2B); scales with horizontal cusp giving skin a smooth texture, fixed to the skin by a short and strong peduncle, broad in front ending in a sharp long point, at the end three undulations, the middle one more elevated than the two other ones (Fig. 2C); color uniformly blackish without transverse dark bands, small light spots, and blotches.

The morphology, measurements, counts, and color are in total agreement with previous descriptions of *Somniosus rostratus* provided by Maul (1955), Tortonese (1956), Compagno (1984), Mc Eachran and Branstetter (1984), and Ebert and Stehmann (2013). This capture of *S. rostratus* constitutes the first record of the species from the Tunisian coast and should be included at present in the local ichthyofauna (see Bradai et al. 2004). The presently reported specimen measured 990 mm TL and its total body weight reached 4500 g. It was an adult female in a resting phase, males mature at 710 mm TL and females at 800 TL, respectively (Barrull and Mate 2001, Guillart et al. 2013). Additionally, the species hardly exceeds 1000 mm TL in the Mediterranean Sea (Séret et al. 2009).

Somniosus rostratus is actually restricted to the northeastern Atlantic and the Mediterranean Sea where the species is rather considered as rare, or at least rarely caught (Garibaldi et al. 2012, 2013). Such a pattern could

Fig. 1. Records of *Somniosus rostratus* reported in the Mediterranean Sea by chronological order (1) Off Nice (Risso 1826); (2) Off Nice (Moreau 1881); (3) From the Algerian coast (Dieuzeide et al. 1953); (4) In the Gulf of Genoa (Tortonese 1956); (5) From Sicily (Tortonese 1956); (6) From the Aegean Sea (Economidis 1973); (7) From the Ligurian coast (Cigala-Fulgosi and Gandolfi 1983); (8) Off Haifa, in the Levant Basin (Golani 1986); (9) From the Catalan Sea (Barrull and Mate 2001); (10) From the coast of Syria (Ali and Saad 2003); (11) From the northwestern Ionian Sea (Capezzuto et al. 2010); (12) From waters surrounding Malta Islands (Vella et al. 2013); (13) Ibiza Channel (Guillart et al. 2013); (14) Catalan Sea (Barria et al. 2015); (15) Gulf of Lions (Barria et al. 2015); (16) Marine area between the Balearic Islands and Spanish coast (De Loyola Fernández 2017); (17) Off Ras Jebel, northeastern Tunisian coast (this study); black circles indicate the occurrence of nursery grounds.
First record of *Somniosus rostratus* from Tunisian coast

be due to fact that the species lives on the outer continental shelf and upper slope at depths of 120–2220 m, and the majority of the records occurred from less than 1000 m, poorly exploited by commercial vessels reducing fishing pressure (Barrul and Mate 2001). The species has not a high commercial value and is probably discarded at sea by fishermen, or included among the shark species belonging to the genus *Centrophorus* Müller et Henle, 1837, no separate fishery statistics were provided for this species (Ebert and Stehmann 2013). Barrul and Mate (2001) noted that the species fed on fishes and benthic species, however, the occurrence of cephalopods in stomach contents suggests that *S. rostratus* forages in the water column (Golani 1986, Guallart et al. 2013) that is probably the case for the present specimen caught at a depth of only 120 m. Additionally, a reproductive strategy cannot be totally ruled out, generally, adult females approach shallow coastal waters to find favorable nursery grounds to lay and protect their brood from predation by larger specimens. Such behavior is well known in elasmobranch oviparous and viviparous species since Muñoz-Chápuli (1984) and Castro (1993), and frequently reported to date (Heithaus 2007).

Additionally, records of pregnant females were reported since Moreau (1881) who observed a female caught off Nice, during March 1874 carrying 12 embryos. Southward, from the Gulf of Genoa, Tortonese (1956) reported the capture of a female carrying 17 embryos, and from the Ligurian Sea, Cigala-Fulgosi and Gandolfi (1983) observed a female with 5 embryos in the left uterus and 4 in the right one. Such reports suggest that nursery grounds occur in these latter areas. Similar patterns were reported from the Spanish coast, in the Catalan Sea where Barrull and Mate (2001) observed a female carrying 8 developing embryos. Southward, in the Balearic Sea, Guallart et al. (2013) reported the capture of eight pregnant females and noted that litter size ranged between 5 and 17 ova/embryos. These data show that *S. rostratus* is not very prolific as other elasmobranch species (Mellinger 1989), but indicate the presence of nursery grounds allowing to state that a viable population is successfully established for several decades in the Mediterranean Sea, at least in western areas. The captures of the present specimen and the records of Vella et al. (2013) in the central Mediterranean allowed such opinion. Golani (1986) and Ali and Saad (2003) reported the occurrence of *S. rostratus* from the eastern Levant Basin, but conversely, the species is not recorded in close areas such as Lebanon (Bariche and Fricke 2019) and the Mediterranean coast of Egypt (El Sayed et al. 2017). It appears that the species is sporadically caught in the eastern Mediterranean where the establishment of a viable population remains questionable until records of other specimens will be reported.
Absolute and relative values of selected morphometric measurements, dental formula, and total body weight of a female specimen of *Somniosus rostratus* collected off Ras Jebel, northeastern Tunisian coast (ref. ISPAB-Som-rost-01)

Character	Absolute [mm]	Relative [%TL]
Total length (TL)	990	100.0
Fork length	890	89.90
Precaudal length	800	80.81
Pre-first dorsal length	380	38.38
Pre-second dorsal length	690	69.70
Head length	210	21.21
Mouth length	20	2.02
Eye length	13	1.31
Prebranchial length	160	16.16
Prespiracular length	150	15.15
Preorbital length	70	7.07
Prepectoral length	210	21.21
Preanal length	595	60.10
Snout-vent length	640	64.65
Interdorsal space	260	26.26
Dorsal–caudal space	70	7.07
Pectoral–pelvic space	340	34.34
Anal–caudal space	115	11.62
Pelvic–caudal space	53	5.55
Vent–caudal length	120	12.12
Preoral length	70	7.07
First gill slit height	20	2.02
Fift gill slit height	25	2.53
Pectoral base	60	6.06
Pectoral anterior margin	120	12.12
Pectoral inner margin	40	4.04
Pectoral posterior margin	70	7.07
Pectoral height	110	11.11
First dorsal base	70	7.07
First dorsal anterior margin	90	9.09
First dorsal inner margin	45	4.55
First dorsal posterior margin	70	7.07
Second dorsal base	50	5.05
Second dorsal anterior margin	40	4.04
Second dorsal inner margin	65	6.57
Second dorsal posterior margin	80	8.08
Anal base	50	5.05
Anal anterior margin	70	7.07
Anal inner margin	40	4.04
Anal posterior margin	70	7.07
Caudal base	40	4.04
Dorsal caudal margin	180	18.18
Terminal caudal lobe	120	12.12
Lower postventral caudal margin	75	7.58
Preventral caudal margin	130	13.13
Dental formula	63/16-1-16	
Total body weight [g]	4500	

Table 1

However, it appears an evident area discontinuity between captures from the western and eastern Mediterranean areas. Similarly, Ben Amor et al. (2019) reported also an area discontinuity of captures for the roundfisht stingray, *Taeniourus grabata* (Geoffroy Saint-Hilaire, 1817). The species is known in the eastern Mediterranean Basin, but totally unknown in the western Basin, including the Maghreb shore. Following Lucrezi and Schlacher (2014), Capapé et al. (2020) noted that such area discontinuity is probably due to the fact that the Mediterranean Sea was invaded during a warm interglacial period in the Quaternary, and some species disappeared from the western Basin due to the intra-glacial cold climatic conditions. Ramirez-Amaro et al (2017) and Geraci et al. (2019) reported similar patterns for the Norwegian skate, *Dipturus nidarosiensis* (Storm, 1881), a species recently found in the Mediterranean Sea. Additionally, global warming of sea waters throughout the world and especially in the entire Mediterranean Sea (Francour et al. 1994) could enhance the emergence of species previously unknown. This hypothesis is suitable but needs further records to be confirmed, even if it cannot be totally ruled out. A lack of sampling in the western Basin is more probably the cause of this discontinuity. Séret et al. (2009) noted that the European regional assessment considered *S. rostratus* as “Data Deficient” (DD). Due to its K-selected reproductive traits as other elasmobranch species, the use of bottom trawlers increase the risk of the drastic decline of the species, most of the sampled specimens were caught at less than 1000 m (Séret et al. 2009). Following Séret et al. (2009) to avoid such risk, a monitoring plan is needed to preserve the occurrence of *Somniosus rostratus* in the Mediterranean regions where the species appears to be substantially established.

REFERENCES

Ali M., Saad A. 2003. Sharks and rays in Syrian sea waters. Al-Assad Journal for Engineering Science 17: 45–76. [In Arabic with abstract in English.]

Anadón J.D., Gimenez A., Ballestar R., Perez I. 2009. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conservation Biology 23 (3): 617–625.

Bariche M., Fricke R. 2020. The marine ichthyofauna of Lebanon: An annotated checklist, history, biogeography, and conservation status. Zootaxa 4775 (1): 1–157. DOI: 10.11646/zootaxa.4775.1.1

Bañón R., Villegas-Ríos D., Serrano A., Mucientes G., Arronte J.C. 2010. Marine fishes from Galicia (NW Spain): An updated checklist. Zootaxa 2667 (2): 1–157. DOI: 10.11646/zootaxa.2667.1.1

Barcelos L., Azevedo J., Barreiros J.P. 2019. Azores chondrichthyes updated checklist. Universidade dos Açores. [Accessed via GBIF.org. on 2020-06-07.] DOI: 10.15468/dlgxwo

Barria C., Coll M., Navarro J. 2015. Unravelling the ecological role and trophic relationships of uncommon and threatened elasmobranchs in the western Mediterranean regions where the species appears to be substantially established.

Somniosus rostratus
First record of *Somniosus rostratus* from Tunisian coast

Mediterranean Sea. Marine Ecology Progress Series 539: 225–240. DOI: 10.3354/meps11494

Barrul J., Mate I. 2001. Primer registro de una hembra preñada de tiburón dormilón *Somniosus rostratus* (Risso, 1826) en las costas españolas del Mediterráneo. Boletin. Instituto Español de Oceanografía 17 (3–4): 323–325.

Bello G., Causse R., Lipez L., Dulčić J. 2014. A proposal best practice approach to process unverified and unverifiable “first records” in ichthyology. *Cybium* 38 (1): 9–14. DOI: 10.26028/cybium/2014-381-002

Ben Amor M.M., Bdioui M., Ouniﬁ-Ben Amor K., Reynaud C., Capapé C. 2019. Unusual record of round fail stingray *Taeniourus grabata* (Chondrichthyens:Dasyatidae) from the Tunisian coast. Annales, Series. Historia Naturalis 29 (2): 223–228. DOI: 10.19233/ASHN.2019.23

Biscoito M., Ribeiro C., Freitas M. 2018. Annotated checklist of the fishes of the archipelago of Madeira (NE Atlantic): 1—Chondrichthyens. Zootaxa 4429 (3): 459–494. DOI: 10.11646/zootaxa.4429.3.2

Bradaï M.N., Quignard J.-P., Bouain A., Jarboui O., Ouannes-Ghorbel A., Ben Abdallah L., Zaouali J., Ben Salem S. 2004. Ichtyofoana autochtone et exotique des côtes tunisiennes: Recensement et biogéographie. *Cybium* 28 (4): 315–328.

Brito A., Pascual P.J., Falcón J.M., Sancho A. González G. 2002. Peças de las Islas Canarias: catálogo comentado e ilustrado. Francisco Lemus, La Laguna, Santa Cruz de Tenerife, Spain.

Capapé C., Diop M., N’Dao M. 1994. Observations sur dix-sept espèces de Sélaciens d’intérêt économique capturées dans la région marine de Dakar-Ouakam (Sénégal, Atlantique tropical oriental). Bulletin de l’Institut fondamental d’Afrique noire Cheikh Anta Diop de Dakar, série A, 47: 87–102.

Capapé C., Rafrasti-Nouira S., Diatta Y., Reynaud C. 2020. First record of *Physicus dalwigki* (Actinopterygii: Gadiformes:Moridae) from the Tunisian coast (central Mediterranean Sea). Acta Ichthyologica et Piscatoria 50 (2): 223–226. DOI: 10.3750/AIEP/02842

Capezzuto F., Carlucci R., Maiorano P., Sion L., Battistia D., Giovè A., Indeniddate A., Tursi A., D’Onghia G. 2010. The bathyal benthopelagic fauna of the western Mediterranean Sea, and long snouted lancetfish *Alepisaurus ferox* from the eastern north Atlantic Ocean. Turkish Journal of Fisheries and Aquatic Sciences 17 (5): 1073–1076. DOI: 10.4194/1303-2712-v17_5_24

Diatta Y., Diaby A., RAfrasti-Nouira S., Capapé C. 2019. Capture of a rare endangered species leafscale gulper shark *Centrophorus squamosus* (Chondrichthyens: Squalidae) from the coast of Senegal (Eastern Tropical Atlantic). Annales, Series. Historia Naturalis 29 (2): 205–210. DOI: 10.19233/ASHN.2019.20

Dieuzeide R., Novella M., Roland J. 1953. Catalogue des Poissons des côtes algériennes. Volume 1: Squales, Raies, Chimères. Bulletin de la Station d’Aquitulture et de Pêche de Castiglione, nouvelle série: 1–274.

Ebert D.A., Stehmann M.F.W. 2013. Sharks batoids and Chimaerans of the North Atlantic. FAO species Catalogue for Fisheries Purposes, No. 7, FAO, Rome.

Economidis P.S. 1973. Catalogue des poissons de la Grèce. Hellenc Oceanology and Limnology 11: 421–600.

El Sayed H., Akel K., Karachale P.K. 2017. The marine ichthyofauna of Egypt. Egyptian Journal of Aquatic Biology and Fisheries 21 (3): 81–116. DOI: 10.21608/ejabf.2017.4130

Francour P., Boudouresque C.F., Harmelin J.G., Harmelin-Vivien M.L., Quignard J.-P. 1994. Are the Mediterranean waters becoming warmer? Marine Pollution Bulletin 28 (9): 523–526.

Garibaldi F., Rovellini A., Franco A., Lanteri L., Orsi Relini L., Orsi. 2012. A rare or rarely caught species? The case of little sleeper shark *Somniosus rostratus* in the Ligurian Sea (Western Mediterranean). Report of the 16th European Elasmobranch Association Scientific Conference. 22–25 November 2012, Milan, Italy.

Geraci M.L., Di Lorenzo M., Falsone F., Scannella D., Di Maio F., Colloca F., Vitale S., Serena F. 2019. The occurrence of Norwegian skate, *Dipturus nidarosiensis* (Elasmobranchii: Rajiformes: Rajidae), in the Strait of Sicily, Central Mediterranean. Acta Ichthyologica et Piscatoria 49 (2): 203–208. DOI: 10.3750/AIEP/02566

Golani D. 1986. On deep-water sharks caught off the Mediterranean coast of Israel. Israel Journal of Zoology 34 (1): 23–31.
Guallart J., Vincent J.J., Catalán A., García-Salinas P. 2013. New data on the uncommon deep-sea shark, Somniosus rostratus (Squaliformes, Somniosidae) in the Balearic Sea (western Mediterranean). Report of 17th European Elasmobranch Association Scientific Conference, 1–3 November 2013, Plymouth University, UK.

Heithaus M. 2007. Nursery areas as essential shark habitats: a theoretical perspective. Pp. 3–13. In: Camila T., McCandless N., Kohler E., Pratt Jr H. L. (eds.) Shark nursery grounds of the Gulf of Mexico and the East Coast waters of the United States. American Fisheries Society Publisher, New York, NJ, USA.

Kheddam H., Justine J.-L., Tazerouti F. 2016. Hexabothrid monogeneans from the gills of deep sea sharks off Algeria, with the description of Squalonchocotyle euzeti n.sp. (Hexabothrididae) from the kitefin shark Dalatias licha (Euselachii, Dalatiidae). Helminthologia 53 (4): 354–362. DOI: 10.1515/helmin-2016-0034

Lloris D., Rucabado J. 1998. Guide FAO d'identification des espèces pour les besoins de la pêche. Guide d'identification des ressources marines vivantes pour le Maroc. FAO, Rome.

Lucrezi S., Schlacher T. A. 2014. The ecology of ghost crabs. Pp. 201–256. In: Hughes R.N., Hughes D.J., Smith I.P. (eds.) Oceanography and Marine Biology: An annual review. Vol. 52. CRC Press, Boca Raton, FL, USA.

Maigret J., Ly B. 1986. Les poissons de mer de Mauritanie. Centre national de Recherches Océanographiques et des Pêches, Nouadhibou, République Islamique de Mauritanie.

Maul G. 1955. Five species of rare sharks new for Madeira including two new to science. Notulae Natura 279: 1–13.

Me Eachran J.D., Branstetter S. 1984. Squalidae. Pp. 128–147. In: Whitehead P.J.P., Bauchot M.L., Bureau J.C., Nielsen J., Tortone E. (eds.) Fishes of the North-western Atlantic and the Mediterranean. Vol. I. UNESCO, Paris.

Mellinger J. 1989. Reproduction et développement des Chondrichthyes. Océanis 15: 283–303.

Moreau E. 1881. Histoire naturelle des poissons de la France. Volume. G. Masson, éditeur, Paris.

Muñoz-Chápuli R. 1984. Ethologie de la reproduction chez quelques requins de l’Atlantique Nord-Est. Cybium 8 (3): 1–14.

Quéro J.-C. 1976. Somniosus bauchotae sp. nov. (Selachii, Squalidae, Scymnoridae) espèce nouvelle de l’atlantique N.E. Revue des Travaux de l’Institut des Pêches maritimes de Nantes 39 (4): 455–469.

Ramirez-Amaro S., Ordines F., Angel Puerto M., Garcia C., Ramon C., Terrasa B., Massuti E. 2017. New morphological and molecular evidence confirm the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea and extend its distribution to the western basin. Mediterranean Marine Science 18 (2): 251–259. DOI: 10.12681/mms.1950

Refes W., Semahi N., Boulahdid M., Quignard J.-P. 2010. Inventaire de la faune ichthyologique du secteur oriental de la côte algérienne (El Kala; Skikda; Jijel; Bejaïa). Rapports de la Commission internationale pour la mer Méditerranée 39: 646.

Risso A. 1826. Histoire naturelle des principales productions de l’Europe méridionale et particulièrement celles des environs de Nice et des Alpes maritimes. Paris et Strasbourg.

Séret B., Guallart J., Vacchi M., Mancusi C., McCormack C. 2009. Somniosus rostratus. The IUCN Red List of Threatened Species 2009: e.T161432A5422754. [Downloaded on 18 June 2020.] DOI: 10.2305/IUCN. UK.2009-2. RLTS.T161432A5422754.en

Tortonese E. 1956. Fauna d’Italia. Vol. II. Leptocardia, Ciclostomata, Selachii. Calderini, Bologna, Italy.

Vella A., Vella N., Dent E. 2013. First records of the little sleeper shark, Somniosus rostratus, in Maltese fisheries landings. Rapports de la Commission internationale pour la mer Méditerranée 40: 495.

Yano K., Stevens J., Compagno L. 2004. A review of the systematics of the sleeper shark genus Somniosus with redescription: of Somniosus (Somniosus) antarcticus and Somniosus (Rhinoscyymus) longus (Squaliformes Somniosidae). Ichthyological Research 51 (4): 360–373. DOI: 10.1007/s10228-004-0244-4

Received: 22 June 2020
Accepted: 7 September 2020
Published electronically: 7 December 2020