Generalized Hamilton-Jacobi equations for nonholonomic dynamics

Michele Pavon
Dipartimento di Matematica Pura e Applicata
Università of Padova
via Belzoni 7, 35131 Padova
and ISIB-CNR, Italy
pavon@math.unipd.it

December 2, 2021

Abstract

Employing a suitable nonlinear Lagrange functional, we derive generalized Hamilton-Jacobi equations for dynamical systems subject to linear velocity constraints. As long as a solution of the generalized Hamilton-Jacobi equation exists, the action is actually minimized (not just extremized).

PACS numbers: 45.20.Jj, 45.10.Db
Running Title: Nonholonomic dynamics
Keywords: Nonholonomic systems, Hamilton-Jacobi equation, Hamilton’s principle

1 Introduction

Consider a mechanical system with configuration space \mathbb{R}^n. Let L be the Lagrangian, and suppose that the system is subject to $k < n$ nonholonomic constraints of the form

$$\omega_i(x(t))^T \dot{x}(t) = 0, \quad i = 1, 2, \ldots, k, \quad t \in [t_0, t_1],$$

where the $\omega_i : \mathbb{R}^n \to \mathbb{R}^n$ are smooth functions and T denotes transpose. Let $\Omega(x)$ be the $k \times n$ matrix whose i^{th} row is $\omega_i(x)^T$. Then, an application of d’Alembert’s principle, together with the method of Lagrange undetermined multipliers, gives that the equations of motion for the system are

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = \Omega^T \lambda,$$

where λ is the k dimensional Lagrange multiplier. Equation (1.2) together with (1.1) constitute a system of $n + k$ equations for the $n + k$ unknowns $x_1, x_2, \ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_k$. The components of $\Omega^T \lambda$ can be physically interpreted as the components of the (polygenic) force which acts on the mechanical system in order to maintain the given non-holonomic conditions [7]. Notice that d’Alembert’s principle is not variational. A variational approach to dynamics of systems subject to linear velocity constraints was proposed in [12] (see also [1, Chap. 1, Sect.4]). A lucid critique of this “Vakonomic dynamics” (variational axiomatic kind dynamics) can be found in [17]. It
is shown there that the vakonomic equations may lead to paradoxical behaviour. The relation between the vakonomic and holonomic approaches has also been discussed in [1, 8, 14, 3, 5, 4].

We show in this paper that the second, hydrodynamic form of Hamilton’s principle may be extended to nonholonomic systems. As long as a solution of the generalized Hamilton-Jacobi equation exists, the action is minimized by a path satisfying the correct equations of motions (1.2). Our derivation relies on general nonlinear Lagrange functionals [10, 11].

2 The classical Hamilton principle

We review below the hydrodynamic form of the classical Hamilton principle in the strong form established in [16, Section II] that developed from [6]. Consider a dynamical system with configuration space \(\mathbb{R}^n \). Let

\[
L(x, v) := \frac{1}{2}mv \cdot v - V(x)
\]

be the Lagrangian function, where \(V(\cdot) : \mathbb{R}^n \to \mathbb{R} \) is of class \(C^1 \). Extension of the results of this paper to general Lagrangian functions that are strictly convex with respect to \(v \) appears straightforward. We prefer, however, to treat the simple case (2.3) in order to avoid obscuring ideas with technicalities. Let \(X_0 \) denote the class of all \(C^1 \) paths \(x : [t_0, t_1] \to \mathbb{R}^n \) such that \(x(t_0) = x_0 \). Let \(V \) denote the family of continuous functions \(v : [t_0, t_1] \to \mathbb{R}^n \).

For \((x, v) \in (X_0 \times V)\), we define the functional \(J(x, v) \) by

\[
J(x, v) = \int_{t_0}^{t_1} L(x(t), v(t)) \, dt - S_1(x(t_1)),
\]
where $S_1 : \mathbb{R}^n \to \mathbb{R}$ is continuous. Consider the following control problem:

$$\text{Minimize } \{ J(x, v) | (x, v) \in (\mathcal{X}_0 \times \mathcal{V}) \},$$

subject to the constraint

$$\dot{x}(t) = v(t), \quad \forall t \in [t_0, t_1].$$

Remark 2.1 It is apparent that this control problem is equivalent to minimizing the action functional $I(x) := J(x, \dot{x})$ over \mathcal{X}_0.

To solve problem (2.5)-(2.6) we rely on the following elementary, albeit fundamental, result in the spirit of Lagrange. Consider the minimization of $J : Y \to \bar{\mathbb{R}}$, where $\bar{\mathbb{R}}$ denotes the extended reals, over the nonempty subset M of Y.

Lemma 2.2 (Lagrange Lemma) Let $\Lambda : Y \to \bar{\mathbb{R}}$ and let $y_0 \in M$ minimize $J + \Lambda$ over Y. Assume that $\Lambda(\cdot)$ is finite and constant over M. Then y_0 minimizes J over M.

Proof. For any $y \in M$, we have $J(y_0) + \Lambda(y_0) \leq J(y) + \Lambda(y) = J(y) + \Lambda(y_0)$. Hence $J(y_0) \leq J(y)$. \qed

A functional Λ which is constant and finite on M is called *Lagrange functional*. For problem (2.5), let

$$M = \{(x, v) \in \mathcal{X}_0 \times \mathcal{V} | \dot{x}(t) = v(t), \forall t \in [t_0, t_1]\}.$$

We introduce a suitable class of nonlinear Lagrange functionals for our problem. Let $F : [t_0, t_1] \times \mathbb{R}^n \to \mathbb{R}$ be of class C^1. Corresponding to such an F,
we define the nonlinear functional Λ^F on $\mathcal{X}_1 \times \mathcal{V}$

$$
\Lambda^F(x,v) := F(t_1,x(t_1)) - F(t_0,x(t_0)) + \int_{t_0}^{t_1} \left[-\frac{\partial F}{\partial t}(t,x(t)) - v(t) \cdot \nabla F(t,x(t)) \right] dt.
$$

When $(x,u) \in M$, by the chain rule, we have $\Lambda^F(x,u) = 0$. Thus, Λ^F is indeed a Lagrange functional for our problem. The solution procedure is now outlined as follows.

Step 1. Consider the *unconstrained* minimization

$$
\min_{(x,v) \in (\mathcal{X}_1 \times \mathcal{V})} (J + \Lambda^F)(x,v). \tag{2.7}
$$

We perform *two-stage* optimization. Namely, for each fixed $x \in \mathcal{X}_0$, we try to compute an optimal control v_x^* through *pointwise minimization* of the integrand of $J + \Lambda^F$. More explicitly, consider for each $x \in \mathcal{X}_0$ and each $t \in [t_0, t_1]$ the finite-dimensional problem

$$
\min_{v \in \mathbb{R}^n} \left\{ \frac{1}{2} m v \cdot v - V(x(t)) - \frac{\partial F}{\partial t}(t,x(t)) - v \cdot \nabla F(t,x(t)) \right\}. \tag{2.8}
$$

We get

$$
v_x^*(t) = \frac{1}{m} \nabla F(t,x(t)). \tag{2.9}
$$

We notice that v_x^* belongs to the class of admissible velocities \mathcal{V}.

Step 2. Consider now the minimization of the functional

$$
\Gamma^F(x) = (J + \Lambda^F)(x,v_x^*)
$$
on the space \mathcal{X}_0. We have

$$
\Gamma^F(x) = -S_1(x(t_1)) + F(t_1,x(t_1)) - F(t_0,x(t_0)) + \\
\int_{t_0}^{t_1} \left[-\frac{\partial F}{\partial t}(t,x(t)) - \frac{1}{2m} \nabla F(t,x(t)) \cdot \nabla F(t,x(t)) - V(x(t)) \right] dt.
$$
If we can find S such that $\Gamma^S(\cdot)$ is actually constant on X_0, then any pair $(x, v^*_x) \in (X_1 \times V)$ solves problem (2.7). Then, by Lemma (2.2), if the pair (x, v^*_x) satisfies

$$\dot{x}(t) = v^*_x(t) = \frac{1}{m} \nabla S(t, x(t)), \forall t \in [t_0, t_1],$$

it also solves the original constrained problem (2.5)-(2.6).

Theorem 2.3 ([16]) Let $S(t, x)$ be any C^1 solution on $[t_0, t_1] \times \mathbb{R}^n$ of the terminal value problem

$$\frac{\partial S}{\partial t} + \frac{1}{2m} \nabla S \cdot \nabla S + V(x) = 0, \quad (2.10)$$

$$S(t_1, x) = S_1(x). \quad (2.11)$$

Then any $x \in X_0$ satisfying on $[t_0, t_1]$

$$\dot{x}(t) = \frac{1}{m} \nabla S(x(t), t), \quad (2.12)$$

solves together with $\frac{1}{m} \nabla S(x(t), t)$ problem (2.5)-(2.6).

Proof. If S solves (2.10)-(2.11), we get $\Gamma^S(x) \equiv S(x_0, t_0)$ on X_0. \qed

Notice that when a C^1 solution $S(x, t)$ of (2.10)-(2.11) exists, then there are also solutions x of the differential equation (2.12) satisfying $x(t_0) = x_0$, and therefore optimal pairs. In this case, the action functional is actually minimized, not just extremized. The difficulty lies, of course, with the terminal value problem (2.10)-(2.11) that, in general, only has a local in t solution (namely, on some interval $(\bar{t}, t_1], t_0 < \bar{t}$).
Remark 2.4 Let us now assume that S is of class C^2. Following [6], let us introduce the acceleration field $a(t, x)$ through a substantial time derivative

$$a(t, x) := \left[\frac{\partial}{\partial t} + \frac{1}{m} \nabla S \cdot \nabla \right] \left(\frac{1}{m} \nabla S \right)(t, x) = \frac{1}{m} \nabla \left[\frac{\partial S}{\partial t} + \frac{1}{2m} \nabla S \cdot \nabla S \right](t, x).$$

Then, (2.10) implies the local form of Newton’s law

$$a(t, x) = -\frac{1}{m} \nabla V(x). \quad (2.13)$$

3 Nonholonomic dynamical systems

Consider a system subject to linear velocity constraints of the form

$$\Omega(x(t)) \dot{x}(t) = 0, \quad t \in [t_0, t_1], \quad (3.14)$$

where $\Omega : \mathbb{R}^n \to \mathbb{R}^{k \times n}, k < n$ is a continuous map. We assume that for each $x \in \mathbb{R}^n$, the rows of Ω are linearly independent. These constraints are called Pfaffian. A simple example is provided by a disk rolling on a plane without slipping. More complex nonholonomic systems with Pfaffian constraints occur in many problems of robot motion planning and have therefore been the subject of intensive study, see [15, 13, 2] and references therein. Let

$$\Omega(x(t))v(t) = 0, \quad t \in [t_0, t_1]. \quad (3.15)$$

We now study the control problem (2.5)-(2.6)-(3.15), namely the same problem as in the previous section when also constraint (3.15) is present. This problem is equivalent to minimizing the action functional

$$I(x) := J(x, \dot{x}) = \int_{t_0}^{t_1} L(x(t), \dot{x}(t)) \, dt - S_1(x(t_1)), \quad (3.16)$$
under the constraints (3.14). Reformulating the calculus of variations problem as a control problem as before, we let

\[M = \{(x, v) \in \mathcal{X}_0 \times \mathcal{V} | \dot{x}(t) = v(t), \Omega(x(t))v(t) = 0, \forall t \in [t_0, t_1]\} . \]

Let \(F : [t_0, t_1] \times \mathbb{R}^n \to \mathbb{R} \) be of class \(C^1 \) and \(g : [t_0, t_1] \times \mathbb{R}^n \to \mathbb{R}^k \) be continuous. Corresponding to such a pair, we define the nonlinear functional \(\Lambda_{F,g} \) on \(\mathcal{X}_0 \times \mathcal{V} \) by

\[
\Lambda_{F,g}(x, v) := F(t_1, x(t_1)) - F(t_0, x(t_0)) + \int_{t_0}^{t_1} \left[-\frac{\partial F}{\partial t}(t, x(t)) - v(t) \cdot \nabla F(t, x(t)) + g(t, x(t))^T \Omega(x(t))v(t) \right] dt.
\]

It is apparent that \(\Lambda_{F,g} \) is a Lagrange functional for the problem since it is identically zero when (2.6) and (3.15) are satisfied. Following the same procedure as in the previous section, we consider the unconstrained minimization of \(\Lambda_{F,g}(x, v) \) over \(\mathcal{X}_0 \times \mathcal{V} \). For \(x \in \mathcal{X}_0 \) fixed, the pointwise minimization of the integrand of \(J + \Lambda_{F,g} \) at time \(t \) gives

\[
v_x^*(t) = \frac{1}{m} \left[\nabla F(t, x(t)) - \Omega^T(x(t))g(t, x(t)) \right]. \tag{3.17}
\]

Notice that \(v_x^* \in \mathcal{V} \). We consider next the minimization of the functional

\[\Gamma_{F,g}(x) = (J + \Lambda_{F,g})(x, v_x^*) \]

on the space \(\mathcal{X}_0 \). We have

\[
\Gamma_{F,g}(x) = -S_1(x(t_1)) + F(x(t_1), t_1) - F(x(t_0), t_0) + \int_{t_0}^{t_1} \left[-\frac{\partial F}{\partial t}(t, x(t)) - \frac{1}{2m}||\nabla F(t, x(t)) - \Omega^T(x(t))g(t, x(t))||^2 - V(x(t)) \right] dt,
\]

8
where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^n. Let $S(t, x)$ of class C^1 and $\mu(t, x)$ continuous solve on $\mathbb{R}^n \times [t_0, t_1]$ of the initial value problem

$$\begin{align*}
\frac{\partial S}{\partial t} + \frac{1}{2m}||\nabla S - \Omega^T \mu||^2 + V(x) &= 0, \\
S(x, t_0) &= S_0(x).
\end{align*}$$

(3.18) (3.19)

Then $\Gamma^{S,\mu}(x) \equiv S(x_0, t_0)$ on \mathcal{X}_0. By Lemma (2.2), if $x \in \mathcal{X}_0$ satisfies for all $t \in [t_0, t_1]$

$$\begin{align*}
\dot{x}(t) &= \frac{1}{m} \left[\nabla S(t, x(t)) - \Omega^T(x(t))\mu(t, x(t)) \right], \\
\Omega(x(t))\dot{x}(t) &= 0,
\end{align*}$$

(3.20) (3.21)

then it solves the problem together with the corresponding feedback velocity (3.17).

Remark 3.1 As in the unconstrained case, we now show that (3.18) implies the second principle of dynamics. Assume that S is of class C^2 and that Ω, and μ are of class C^1. The acceleration field is again obtained through a substantial derivative of the velocity field

$$\begin{align*}
a(t, x) := \left[\frac{\partial}{\partial t} + \frac{1}{m} \left[\nabla S - \Omega^T \mu \right] \cdot \nabla \right] (\frac{1}{m} \left[\nabla S - \Omega^T \mu \right])(t, x) \\
= \frac{1}{m} \left\{ \nabla \left[\frac{\partial S}{\partial t} + \frac{1}{2m}||\nabla S - \Omega^T \mu||^2 \right] - \frac{\partial(\Omega^T \mu)}{\partial t} \right\}(t, x).
\end{align*}$$

Then, (3.18) yields

$$a(t, x) = -\frac{1}{m} \nabla V(x) - \frac{1}{m} \Omega^T \frac{\partial \mu}{\partial t}. \quad (3.22)$$

Define

$$\lambda(t, x) := -\frac{\partial \mu}{\partial t}(t, x).$$

9
For $x \in X_0$ satisfying (3.20) and of class C^2, let $\lambda(t) := \lambda(t, x(t))$. We then get

$$m \ddot{x}(t) = -\nabla V(x(t)) + \Omega^T(x(t))\lambda(t),$$

namely equation (1.2). By differentiating (3.21), a simple calculation employing (3.23), shows that the Lagrange multipliers λ may be expressed as an instantaneous function of x and \dot{x}, see e.g. [17, Section 2], [15, pp.269-270].

Next we show how the multiplier μ can be eliminated in our hydrodynamic context. If x satisfies (3.20)-(3.21), then, plugging (3.20) into (3.21), we get

$$\Omega(x(t)) \frac{1}{m} \left[\nabla S(t, x(t)) - \Omega^T(x(t))\mu(t, x(t)) \right] = 0$$

Since Ω has full row rank, the latter is equivalent to

$$\mu(t, x(t)) = (\Omega(x(t))\Omega^T(x(t)))^{-1}\Omega(x(t))\nabla S(t, x(t))$$

(3.24)

Plugging this into (3.20), we get

$$\dot{x}(t) = \frac{1}{m} \left[(I - \pi(x(t))) \nabla S(t, x(t)) \right],$$

(3.25)

where $\pi(t, x)$ is defined by

$$\pi(x) = \Omega^T(x)\Omega(x)\Omega^T(x))^{-1}\Omega(x).$$

(3.26)

Observe that $\pi(x)^2 = \pi(x)$ and $\pi(x)^T = \pi(x)$. Thus, $\pi(x)$ is an orthogonal projection. In fact, $\pi(x)$ is the orthogonal projection onto Range ($\Omega^T(x)$).

Remark 3.2 Notice that (3.25) implies (3.21). Indeed,

$$\Omega(x(t))\dot{x}(t) = \Omega(x(t)) \frac{1}{m} \left[(I - \pi(x(t))) \nabla S(t, x(t)) \right] = 0,$$

since $I - \pi(x)$ projects onto the kernel of $\Omega(x)$.
Now we use the freedom we have in picking S and μ. Since (3.24) must be satisfied by an optimal solution, we impose that the pair (S, μ) satisfies identically on all of $[t_0, t_1] \times \mathbb{R}^n$

$$\mu(t, x) = (\Omega(x)\Omega^T(x))^{-1}\Omega(x)\nabla S(t, x). \quad (3.27)$$

Hence, $\Gamma^{S\mu}(x) = \Gamma^S(x)$ and equation (3.18) becomes

$$\frac{\partial S}{\partial t} + \frac{1}{2m} ||(I - \pi)\nabla S||^2 + V(x) = 0 \quad (3.28)$$

We are now ready for our main result.

Theorem 3.3 For $x \in \mathbb{R}^n$, let $\sigma(x) = I - \pi(x)$ denote the orthogonal projection onto $\ker \Omega(x)$. Let $S(t, x)$ be any C^1 solution on $[t_0, t_1] \times \mathbb{R}^n$ of

$$\frac{\partial S}{\partial t} + \frac{1}{2m} \nabla S \cdot \sigma \nabla S + V(x) = 0, \quad S(t_1, x) = S_1(x). \quad (3.29)$$

Then any $x \in X_0$ satisfying

$$\dot{x}(t) = \frac{1}{m}\sigma(x(t))\nabla S(t, x(t)) \quad (3.30)$$

on $[t_0, t_1]$ solves together with

$$v(t) = \frac{1}{m}\sigma(x(t))\nabla S(t, x(t))$$

problem (2.5)-(2.6)-(3.15) (equivalently, such an $x \in X_0$ minimizes (3.16) subject to (3.14)). If S is of class C^2, and $x \in X_0$ satisfying (3.30) is also of class C^2, then x satisfies equation (3.23)

$$m\ddot{x}(t) = -\nabla V(x(t)) + \Omega^T(x(t))\lambda(t),$$

with λ given by

$$\lambda(t) = -(\Omega(x(t))\Omega^T(x(t)))^{-1}\Omega(x(t))\nabla S(t, x(t)). \quad (3.31)$$
Proof. If S solves (3.29), we get $\Gamma_{S,\mu}(x) = \Gamma^S(x) = S(x_0, t_0)$ for any $x \in X_0$. Thus any pair $(x, v) \in (X_0 \times V)$ solves the unconstrained minimization problem. Since x satisfies (3.30), constraint (2.6) is fulfilled. Moreover, by Remark 3.2, (3.15) is also satisfied. By Lemma 2.2, the pair is optimal for the original constrained minimization. Finally, x satisfies (3.23) with λ as in (3.31) in view of Remark 3.1 and (3.27).

Acknowledgments I wish to thank Luis Bonilla and Franco Cardin for some useful conversations on the content of this paper and for pointing out some relevant bibliography to me.

References

[1] V. Arnold, (Ed.), “Dynamical Systems, III”, Encyclopaedia of Mathematical Sciences, Vol. 3, Springer-Verlag, 1988.

[2] A. Bloch, J. Baillieul, P. Crouch, and J. Marsden, Nonholonomic Mechanics and Control, Springer Verlag, 2003.

[3] F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys. 18 (1996), 295–325.

[4] J. Cortés, M. de León, D. Martín de Diego, S. Martínez, Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions, SIAM J. Contr. Optimiz. 41 (2003), 1389-1412.
[5] M. Favretti, Equivalence of dynamics for nonholonomic systems with transverse constraints, *J. Dynam. Differential Equations* 10 (1998), 511-536.

[6] F. Guerra and L. Morato, Phys.Rev.D 27, 1774 (1983).

[7] C. Lanczos, *The variational Principles of Mechanics*, Dover, 1970 (Fourth Edition).

[8] P. V. Kharlamov, A critique of some mathematical models of mechanical systems with differential constraints, J. Appl. Math. Mech. 56 (1992), 584–594.

[9] P. Kosmol, *Optimierung und Approximation*, de Gruyter Lehrbuch, 1991.

[10] P. Kosmol and M. Pavon, Lagrange Lemma and the optimal control of diffusions II: Nonlinear Lagrange functionals, *Systems and Control Letters* 24 (1995), 215-221.

[11] P. Kosmol and M. Pavon, Solving optimal control problems by means of general Lagrange functionals, *Automatica* 37 (2001), 907-913.

[12] V. Kozlov, Dynamics of systems with nonintegrable constraints, Part I, *Moscow Univ. Mech. Bull.* 37 (1982), 27-34; Part II 74-80; Part III 38 (1983), 40-51.

[13] P. S. Krishnaprasad, A. Bloch, J. E. Marsden and R. M. Murray, Nonholonomic Mechanics and Symmetry, *Archive for Rational Mechanics and Analysis*, 136, 21-99, 1996.
[14] A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiment, *Internat. J. Non-Linear Mech.* **30** (1995), 793-815.

[15] R. M. Murray, Z. Li and S.S. Sastry, *A Mathematical Introduction to Robotic Manipulation*, CRC Press, Boca Raton, 1994.

[16] M. Pavon, Hamilton’s principle in stochastic mechanics, *J. Math. Phys.* **36** (1995), 6774.

[17] G. Zampieri, Nonholonomic versus vakonomic dynamics, *J. Diff. Equations* **163** (2000), 335-347.