Entangled state generation via quantum walks with multiple coins

Meng Lia,b, Yun Shanga,c,*

aInstitute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
bSchool of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
cNCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Generation of entangled state is of paramount importance both from quantum theoretical foundation and technology applications. Entanglement swapping provides an efficient method to generate entanglement in quantum communication protocols. However, perfect Bell measurements for qudits, the key to entanglement swapping, have been proven impossible to achieve by using only linear elements and particle detectors. To avoid this bottleneck, we propose a novel scheme to generate entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state between several designate parties via the model of quantum walks with multiple coins. Then we conduct experimental realization of Bell state and three-qubit GHZ state between several designate parties on IBM quantum platform and the result has high fidelity by preforming quantum tomography. In the end, we give a practical application of our scheme in multiparty quantum secret sharing.

1. Introduction

Entanglement, a very powerful and efficient quantum resource, is a cornerstone of many quantum communication and quantum computation protocols. A lot of quantum schemes depend heavily on the property of entanglement \cite{1}, such as quantum key distribution \cite{2}, quantum teleportation \cite{3}, quantum metrology \cite{4}, and quantum sensing \cite{5}.

There is no doubt that the preparation of entangled quantum states is of great concern in the past decades. Many schemes have been proposed theoretically and achieved experimentally \cite{6,7,8,9,10}. However, the preparation of high-dimensional entangled states is so difficult that it has been implemented almost exclusively in photonic systems \cite{11}. Entanglement swapping \cite{12}, also known as teleportation of entanglement, can entangle two particles that are not related at first by performing a joint Bell-state
measurement on them, which plays an important role in long distance quantum communication, such as quantum repeater [13, 14]. It is also the heart for quantum network and entanglement distribution. However, Ref. [15] has pointed out that it is impossible to perform perfect Bell state measurement for qudits by using only linear elements and particle detectors. It is of interest to know if we can sidestep this thorny issue but still entangle designate parts. And in addition to the simple case involving two-qubit entangled quantum state, GHZ entanglement swapping by using three pairs EPR entangled state has also been discussed [16]. Then, Ref. [17] demonstrated entanglement swapping between two multipartite entangled state, such as GHZ state and EPR state, and two GHZ states. However, a relatively general framework for generating entangled state via entanglement swapping is missing, let alone the experimental platform chosen to test.

Motivated by this, we develop a new scheme to generate multipartite entanglement in high dimensions by using quantum walks instead of direct Bell state measurement in the framework of entanglement swapping and thus avoid the difficulty of the realization of Bell state measurement. Our scheme is mainly based on the model of quantum walks with multiple coins [18] which can bring out entanglement between position space and coin space and has been proved to be useful in quantum communication protocols [19, 20]. Here we mainly consider quantum walks with multiple coins on 2-line, 2-circle and 2-complete (d-complete) graph, which are all the building blocks in quantum network. In this way, we can generate two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and even three-qudit GHZ state between several designate parties.

In terms of experimental realization of entangled state, it is very difficult to find an appropriate experimental preparation device especially for the high-dimensional entangled state, let alone universal method and experimental device. However, the physical implementations of the quantum walk have been realized in many different physical systems, such as trapped atom [21], trapped ions [22], photonic system [23] and so on. Since quantum walk is a universal quantum computing model [24, 25, 26, 27], these schemes may provide a universal platform for entanglement generation.

Recently, IBM Quantum Experience, as a superconducting flux qubit based open platform, attracts the attention of many researchers [28]. Many theoretical schemes in the field of quantum computation and quantum information have been detected and performed on this platform [29, 30, 31, 32, 33]. Here, we carry out experiments on this platform to generate Bell state and three-qubit GHZ state between several designate parties. Also, the accuracy of our scheme can be verified well by performing quantum state tomography [34].

Furthermore, we give its application in quantum communication. In detail, we provide an improved multiparty quantum secret sharing protocol based on Ref. [35] by using our scheme. Compared with the original protocols, our new scheme are high code capacity and high security. And it is easy to be implemented in experiment.

2. Results

For the quantum walks with \(k \) coins on an arbitrary graph, the \(k \) coins were used cyclically. At \(i \)-th step of quantum walks, the coin state can be flipped with the \(i \)-th coin operator \(C_i \) and then the walker moves to another position according to the conditional
shift operator S_i, which can be described as

$$U_i = (S_i \otimes I) \cdot (I \otimes C_i).$$

After t steps, the initial state $|\phi(0)\rangle$ evolves into

$$|\phi(t)\rangle = (U_k \cdots U_1)^t/k |\phi(0)\rangle.$$

We denote the line, circle and complete graph with N vertices as N-line, N-circle and N-complete graph respectively. The three corresponding conditional shift operators acting on the position space and the coin space that is active at the step can be written as:

$$S^{N-\text{complete}} = \sum_{x,j=0}^{N-1} |(x+j) \mod N\rangle \langle x| \otimes |j\rangle \langle j|,$n

$$S^{N-\text{circle}} = \sum_{x=0}^{N-1} |(x + 1) \mod N\rangle \langle x| \otimes |0\rangle \langle 0| + |(x - 1) \mod N\rangle \langle x| \otimes |1\rangle \langle 1|,$n

$$S^{N-\text{line}} = \sum_{x=0}^{N-2} |(x + 1) \mod N\rangle \langle x| \otimes |0\rangle \langle 0| + \sum_{x=1}^{N-1} |(x - 1) \mod N\rangle \langle x| \otimes |1\rangle \langle 1| + |N - 1\rangle \langle N - 1| \otimes |1\rangle \langle 0| + |0\rangle \langle 0| \otimes |0\rangle \langle 1|.$$

In particular, when the number of vertices is 2, the conditional shift operators are:

$$S^{2-\text{complete}} = |0\rangle \langle 0| + |1\rangle \langle 1| \otimes |0\rangle \langle 0| + |1\rangle \langle 0| + |0\rangle \langle 1| \otimes |1\rangle \langle 1|,$n

$$S^{2-\text{circle}} = |1\rangle \langle 0| + |0\rangle \langle 1| \otimes |0\rangle \langle 0| + |1\rangle \langle 0| + |0\rangle \langle 1| \otimes |1\rangle \langle 1|,$n

$$S^{2-\text{line}} = |1\rangle \langle 0| \otimes |0\rangle \langle 0| + |0\rangle \langle 1| \otimes |1\rangle \langle 1| + |0\rangle \langle 0| \otimes |0\rangle \langle 1| + |1\rangle \langle 1| \otimes |1\rangle \langle 0|.$$

Figure 1: The schematic diagram of our scheme. The small boxes indicate particles and the dotted lines indicate entanglement. (a) represents the generation of bipartite entangled state. (b) represents the generation of GHZ state. Due to the symmetry of the particles, any two or three unrelated particles can be entangled by our scheme. But for the sake of narration, let us take entanglement generation of particles 1, 4 and particles 1, 4, 5 as examples.
2.1. Generation of two-qubit entangled state

We start by discussing the generation of two-qubit entangled state. And the experimental setup is illustrated in Figure 1(a). Without loss of generality, we can assume that the initial state of the four particles is

\[|\psi(0)\rangle = (a|01\rangle + b|10\rangle)_{1,2}(a|01\rangle + b|10\rangle)_{3,4}, \]

where \(|a|^2 + |b|^2 = 1\). Now we try to generate entanglement between particle 1 and 4. Here, we can view particle 1 and 2, 3, 4 as walker and three coins respectively. And thus we can consider quantum walks with three coins on 2-line, 2-circle and 2-complete graph.

For the case of quantum walks with three coins on 2-line, we can perform two-step quantum walks where \(C_1 = H\) and \(C_2 = I\). According to conditional shift operator and initial state shown in equation (5) and (9), the evolution process is written as follows:

\[|\psi(1)\rangle = \frac{1}{\sqrt{2}}(a^2|1001\rangle - a^2|0001\rangle + ab|1010\rangle - ab|0010\rangle + ab|1101\rangle + ab|0101\rangle + b^2|1110\rangle + b^2|0110\rangle)_{1,2,3,4}, \]

\[|\psi(2)\rangle = \frac{1}{\sqrt{2}}(-a|00\rangle + a|01\rangle + b|10\rangle + b|11\rangle)_{2,3}(a|11\rangle + b|00\rangle)_{1,4}. \]

Therefore, we can definitely obtain entangled state between particle 1 and 4 by performing two local measurements on the other two particles. In particular, the state will be Bell state, also known as maximal entangled state, when \(a = b = \frac{1}{\sqrt{2}}\).

In the case of quantum walks with three coins on 2-circle, it is impossible to get entangled between particle 1 and 4 no matter how many steps we take. In this case, the conditional shift operator happens to be the second-order Pauli matrix \(X_2\). Therefore, the general form of evolved quantum state under three-step quantum walks is \((I \otimes C_1 \otimes C_2 \otimes C_3)(a^2|1101\rangle + ab|1110\rangle + ab|0001\rangle + b^2|0010\rangle)\). And it has a definite explicit form by giving three unitary coin operators with parameters. Then, it is not hard for us to find that there is no satisfied coin operator by analyzing the final state with parameters.

As regards quantum walks with three coins on 2-complete graph, we can take three-step quantum walks where \(C_1 = I, C_2 = H\) and \(C_3 = X_2\). Thus the whole evolutionary process can be described as follows:

\[|\psi(1)\rangle = (a^2|1101\rangle + ab|1110\rangle + ab|1001\rangle + b^2|1010\rangle)_{1,2,3,4}, \]

\[|\psi(2)\rangle = \frac{1}{\sqrt{2}}(a^2|1101\rangle + a^2|0111\rangle + ab|1100\rangle - ab|0110\rangle + ab|1001\rangle + ab|0011\rangle + b^2|1000\rangle - b^2|0010\rangle)_{1,2,3,4}, \]

\[|\psi(3)\rangle = \frac{1}{\sqrt{2}}((b|00\rangle + a|10\rangle)_{2,3}(a|10\rangle + b|01\rangle)_{1,4} + (b|01\rangle + a|11\rangle)_{2,3}(a|00\rangle - b|11\rangle)_{1,4}. \]

So we can obtain entanglement between particle 1 and 4 by performing three-step quantum walks and two local measurements. Of course, the state obtained happens to be Bell state when \(a = b = \frac{1}{\sqrt{2}}\). In addition, there are other ways to select coin operators to generate new entanglement. For example, \(C_1 = I, C_2 = X_2, C_3 = H\) or \(C_1 = X_2, C_2 = X_2, C_3 = H,\) or \(C_1 = X_2, C_2 = H, C_3 = X_2\) can also be used to generate entanglement between particle 1 and 4.
2.2. Generation of two-qudit entangled state

High-dimensional entangled states are of paramount interest both from a theoretical and practical perspective. Generalized Bell states in Hilbert space $C^d \otimes C^d$, a basis of maximally entangled high-dimensional bipartite states, can be described as [3] [36]

$$|\psi_{k,l}\rangle = \frac{1}{\sqrt{d}} \sum_{m=0}^{d-1} \exp\left(\frac{2\pi i}{d} mk\right)|m - l\rangle,$$

where $m - l$ means $(m - l) \mod d$. The general entangled state can be written as $\sum_{i=0}^{d-1} a_i |i\rangle|\bar{i}\rangle$, where $\sum_{i=0}^{d-1} |a_i|^2 = 1$. For the sake of simplicity, we denote d-order generalized Pauli operator as $X_d = \sum_{i=0}^{d-1} |i + 1\rangle\langle i|$, which is also known as discrete Weyl operator. Next, we propose two novel schemes to generate maximal and non-maximal entangled high-dimensional states (two-qudit entangled state) by performing quantum walks with three coins on d-complete graph. And its schematic diagram is shown in Figure 1(a).

For the case of maximal entangled state, the initial state is $|\psi(0)\rangle = |\psi_{k,l}\rangle_{1,2}|\psi_{k,l}\rangle_{3,4} = \frac{1}{d} \sum_{m,n=0}^{d-1} \exp\left(\frac{2\pi i}{d} (m + n)k\right)|m, m-l, n, n-l\rangle$. Now we can perform three-step quantum walks where $C_1 = I$, $C_2 = F$ (Fourier transformation) and $C_3 = X_d$. Thus, we can obtain the final state:

$$|\psi(3)\rangle = \frac{1}{d} \sum_{m,p=0}^{d-1} [\exp\left(\frac{2\pi i}{d} mk\right)|m-l\rangle|p\rangle]\frac{1}{\sqrt{d}} \sum_{n=0}^{d-1} \exp\left(\frac{2\pi i}{d} (k+p)n\right)|2m+p+n-2l+1\rangle|n-l+1\rangle.$$

(16)

Then we take two local measurements on particle 2 and 3 and assume that the result are $\exp\left(\frac{2\pi i}{d} (2m_0 + p_0 - 2l + 1)(k + p_0)\right)|\psi_{k+p_0,2m_0+p_0-l}\rangle_{1,4}.

More generally, in the case of non-maximal entangled state, the initial state can be written as $|\psi(0)\rangle = (\sum_{i=0}^{d-1} a_i |i\rangle|\bar{i}\rangle)_{1,2} \otimes (\sum_{j=0}^{d-1} b_j |j\rangle|\bar{j}\rangle)_{3,4}$, where $\sum_{i=0}^{d-1} |a_i|^2 = \sum_{i=0}^{d-1} |b_j|^2 = 1$. After the same three-step quantum walks ($C_1 = I$, $C_2 = F$ and $C_3 = X_d$), the final state will be $|\psi(3)\rangle = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} (a_i |i\rangle|\bar{i}\rangle |k\rangle|\bar{k}\rangle)_{1,4} [\exp\left(\frac{2\pi i}{d} jk\right)|2i + j + k + 1\rangle|j + 1\rangle]$. Similarly, particle 1 is entangled with 4 after two local measurements.

2.3. Generation of three-qubit GHZ state

The three-qubit GHZ states maximize entanglement monotones [37] [38] and have extremely non-classical properties. The setup for this problem is shown in the Figure 1(b). The initial state of the five particles can be written as

$$|\psi(0)\rangle = (a |01\rangle + b |10\rangle)_{1,2} \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right)_{3,4,5},$$

(17)

where $|a|^2 + |b|^2 = 1$. In order to generate entanglement between particle 1, 4 and 5, we can view these five particles as the walker and four coins respectively. So we can discuss the quantum walks with four coins on 2-line, 2-circle and 2-complete graph.

Let us start by talking about the case of quantum walks with four coins on 2-line. And in order to do that, we perform two-step quantum walks where $C_1 = H$ and $C_2 = X$. [5]
Thus the initial quantum state presented in equation (17) will evolve over time into

$$|\psi(1)\rangle = \frac{1}{2}(-a|00\rangle + b|01\rangle + a|10\rangle + b|11\rangle)_{1,2}(|000\rangle + |111\rangle)_{3,4,5},$$ (18)

and

$$|\psi(2)\rangle = \frac{1}{2}(-a|00\rangle + a|01\rangle + b|10\rangle + b|11\rangle)_{2,3}(|000\rangle + |111\rangle)_{1,4,5}. \quad (19)$$

Then we just have to make local measurements of particle 2 and particle 3, and no matter what the measurements are, the remaining three particles always collapse to GHZ state.

For quantum walks with four coins on the complete graph, we can generate entanglement between particle 1, 4 and 5 by performing four-step quantum walks where the particle 1, 4 and 5 are never completely entangled.

Three-qudit GHZ state can be written as

$$|\psi(2)\rangle = \frac{1}{\sqrt{2}}(a|11000\rangle + a|01111\rangle + b|10000\rangle + b|00111\rangle)_{1,2,3,4,5}. \quad (20)$$

The resulting state will be

$$|\psi(3)\rangle = \frac{1}{2}(a|11000\rangle + a|01101\rangle + a|01110\rangle - a|11111\rangle$$

$$+ b|10000\rangle + b|00101\rangle + b|00011\rangle - b|10111\rangle)_{1,2,3,4,5} \quad (21)$$

after one step with coin operator $C_3 = H$. And then the final quantum state can be described as follows:

$$|\psi(4)\rangle = \frac{1}{2\sqrt{2}}\left[(b|00\rangle + a|10\rangle)_{2,3}(|100\rangle + |001\rangle + |010\rangle + |111\rangle)_{1,4,5} + (b|01\rangle + a|11\rangle)_{2,3}(|000\rangle - |101\rangle - |110\rangle + |011\rangle)_{1,4,5}\right].$$ \quad (22)

So we can get the GHZ-like state [39] of particle 1, 4 and 5, which is the entangled quantum state and belongs to the class of GHZ state, by taking two local measurements of particle 2 and 3.

2.4. Generation of three-qudit GHZ state

Three-qudit GHZ state can be written as $\frac{1}{\sqrt{d}}\sum_{n=0}^{d-1}|n\rangle^\otimes 3$. And its generation process is presented in Figure 1(b). For the initial state

$$|\psi(0)\rangle = |\psi_0\rangle_{1,2}(\frac{1}{\sqrt{d}}\sum_{n=0}^{d-1}|n\rangle^\otimes 3)_{3,4,5} = \frac{1}{d}\sum_{m,n=0}^{d-1}\exp(\frac{2\pi i}{d}mk)|m, m - l, n, n\rangle_{1,2,3,4,5},$$ \quad (23)
we can perform four-step quantum walks with four coins on d-complete graph by choosing $C_1 = C_2 = I$ and $C_3 = C_4 = F$ to establish the entanglement between particle 1, 4 and 5 that are unrelated at first. The evolutionary process can be described as follows:

$$|\psi(2)\rangle = \frac{1}{d} \sum_{m,n=0}^{d-1} \exp\left(\frac{2\pi i}{d} mk\right)|2m - l + n, m - l, n, n\rangle_{1,2,3,4,5},$$ \hspace{1cm} (24)

$$|\psi(4)\rangle = \frac{1}{d^2} \sum_{m,n,p,q=0}^{d-1} \exp\left(\frac{2\pi i}{d} (mk + np + nq)\right)|2m - l + n + p + q, m - l, n, p, q\rangle_{1,2,3,4,5}$$

$$= \frac{1}{d} \sum_{m,n=0}^{d-1} \left[\exp\left(\frac{2\pi i}{d} mk\right)|m - l\rangle_2|n\rangle_3\right] \frac{1}{d} \sum_{p,q=0}^{d-1} \exp\left(\frac{2\pi i}{d} (np + nq)\right)|2m - l + n + p + q, p, q\rangle_{1,4,5}].$$ \hspace{1cm} (25)

Then we can obtain an entangled state of particle 1, 4 and 5 by performing two local measurements on particle 2 and 3. Note that any state like $\sum_{p,q=0}^{d-1}|x_0 + p + q, p, q\rangle$ is completely entangled, where $x_0 \in \{0, 1, 2, \cdots, d - 1\}$. It can be seen as the high-dimensional case of GHZ-like state.

2.5. Experimental protocol

We provide the experimental realization of our scheme using IBM quantum computer *ibmq 5-yorktown − ibmqx2* (it is called *ibmqx2* for short) and simulator with 8192 number shots (see Supplementary Note 1 for the introduction). Here, we mainly discuss the generation of standard Bell state and three-qubit GHZ state based on quantum walks.

2.5.1. Experimental generation of Bell state on 2-complete graph

Based on the theoretical scheme, we provide the corresponding IBM quantum circuit that can be seen in Figure 2 to generate Bell state by performing three-step quantum walks on 2-complete graph. And the results, measured in Z-basis, are shown in Figure 3. According to the Figure 3(a), the simulation seems very close to the theoretical result (there are eight outcomes appeared in Figure 3(a) and the probability of each is 12.5%). And the results on *ibmqx2* shown in Figure 3(b) are not as good as the simulation.
results. In fact, there are some noises on the quantum platform, such as decoherence, depolarizing, general noises and so on, which result in the discrepancy between theoretical values and the run results. According to the quantum state tomography \(\text{[34]}\) and the detailed experimental data, we find that the fidelity between theoretical and simulation density matrix \(F(\rho^T_{ij}, \rho^E_{\text{simulator}})\) where \(i, j \in \{0, 1\}\) are approximately equal to 1 (see Supplementary Note 2). And the fidelity between theoretical and experimental density matrix \(F(\rho^T_{ij}, \rho^E_{\text{ibmqx2}})\) are 0.8535, 0.8793, 0.7909, 0.8549 (see Supplementary Note 2).

2.5.2. Experimental generation of three-qubit GHZ state on 2-line

As for the generation of three-qubit GHZ state, we provide the corresponding IBM quantum circuit diagram that can be seen in Figure 4(a), which is realized by performing two-step quantum walks on 2-line on the basis of theoretical scheme. The whole design idea is similar to the experimental realization of Bell state. The only thing that needs to be paid attention to is the design of shift operator on 2-line. Here we give the amplitude results and probability results on \textit{ibmqx2} in Figure 4(b) and 4(c) respectively. The analysis of the experimental results can be similarly obtained, so we will not repeat it.

3. Application

In order to share secret among some agents and reconstruct it only when they collaborate together, the scheme of quantum secret sharing (QSS) was first proposed in 1999 \(\text{[40]}\). Zhang and Man proposed a multiparty quantum secret sharing (MQSS) protocol by using entanglement swapping \(\text{[35]}\). Then Lin and Zhang revised and improved the protocol respectively \(\text{[41, 42]}\).

Here, we improve and perfect the performance of MQSS protocol proposed by Zhang and Man \(\text{[35]}\) by using our scheme. According to our scheme, for the initial state

\[
|\phi(0)\rangle = |\psi_{x,y,1,2}\rangle|\psi_{k,l,3,4}\rangle = \frac{1}{d} \sum_{m,n=0}^{d-1} \exp\left(\frac{2\pi i}{d} mx + nk\right)|m, y, n, l\rangle_{1,2,3,4},
\]

(26)
after three-step quantum walks (the coin operators are \(I, F, X_d\) in sequence), we could...
obtain the final state

\[
|\phi(3)\rangle = \frac{1}{d^{\sqrt{d}}} \sum_{m,n,p=0}^{d-1} \exp\left(\frac{2\pi i}{d} mx + nk + np\right) |2m + p + n - y - l + 1, m - y, p, n - l + 1\rangle_{1,2,3,4}
\]

\[
= \frac{1}{d} \sum_{m,p=0}^{d-1} \exp\left(\frac{2\pi i}{d} (mx - (2m + p - y - l + 1)(k + p))\right) |m - y\rangle_2 |p\rangle_3 |\psi_{k+p,2m+p-y}\rangle_{1,4}.
\]

(27)

Assume that \(d\) is odd, we can set up a bijection between the pairs \((m - y, p)\) and \((k + p, 2m + p - y)\), where \(y\) and \(k\) are known fixed numbers.

Let \(U_i = X_i^d = \sum_{j=0}^{d-1} |j + i\rangle \langle j|\) be \(d\) local unitary transformations \((i = 0, 1, \cdots, d - 1)\) that correspond to \(|\log d|\) classical bits respectively. To be specific, \(U_0\) corresponds to
“0···000”, U_1 corresponds to “0···001”, U_2 corresponds to “0···010” and so on. Based on the property U_i holds,

$$(I \otimes U_i)|\psi_{k,l}\rangle = |\psi_{k,l-i}\rangle,$$

we can establish correspondence between the unitary operators \{\$U_i : i = 0, 1, \cdots, d - 1\$\} and generalized Bell states \{|\$\psi_{k,l}\rangle : l = 0, 1, \cdots, d - 1\$\} for an arbitrary fixed k. Next, we will show the improved MQSS based on [35] in which d is an odd number. And the schematic flow chart of the whole process is shown in Figure 5.

![Figure 5: The schematic diagram of the improved multiparty quantum secret sharing where the small boxes indicate particles and the dotted lines indicate entanglement. The particles in yellow belong to Alice. The particles in green and red are in Bob’s and Charlie’s possession. The purple particle has been performed by a unitary operator.](image)

1. Alice prepares three identical generalized Bell state pairs $|\psi_{k,l}\rangle_{1,2}, |\psi_{k,l}\rangle_{3,4}$ and $|\psi_{k,l}\rangle_{5,6}$. She sends qudit 2 and 3 to Bob, 4 and 5 to Charlie via their quantum channels respectively. Then, Alice enters step 2 with probability q, or enters step 3 with probability $1 - q$.

2. Alice chooses randomly from two mutually unbiased measurement basis, $M_1 = \{|i\rangle : i = 0, 1, \cdots, d - 1\}$ and $M_2 = \{|\tilde{i}\rangle : i = 0, 1, \cdots, d - 1\}$, where $|\tilde{i}\rangle = \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \exp(\frac{2\pi i j}{d}) |j\rangle$. Alice tells Bob the basis she has chosen. They measure qudit 1 and 2 using this chosen measurement basis respectively. Then Bob tells Alice his outcome of qudit 2. Alice compares these two outcomes to judge the security of Alice-Bob quantum channel (For example, if the generalized Bell state pairs that Alice prepares is $|\psi_{0,0}\rangle$, these two measurement outcomes must be identical when the channel is safe). The security of Alice-Charlie quantum channel can also be checked in the same way. If the two channel are both secure, returns to step 1. Otherwise, this process will be terminated.

3. Alice applies a local unitary operator chosen randomly from \{\$U_i : i = 0, 1, \cdots, d-1\$\} on one of her qudits 1 and 6 (say, on qudit 6). Firstly, they perform three-step quantum walks on qudit 5, 6, 1 and 2. Alice performs two local measurements on qudit 6 and 1 and announces her outcome. Next, they perform three-step quantum walks on qudit 5, 2, 3 and 4. Bob performs two local measurements on qudit 2 and
3 and writes down the outcomes. At this times, Charlie records his own state. Bob
and Charlie can deduce the unitary transformation Alice performs and the classical
bits Alice wants to share.

Now let us explain how we derived U_i in step 3 based on the three measurement results
they announced and evolutionary properties. Without generality, we can denote the
outcome Alice announces as $|a, b\rangle_{b, 1}$. Suppose the quantum state of qudit 5 and 2 is $|\psi_{k, l}\rangle$
after the first quantum walks. According to equation (27), we can denote the outcome
Bob writes down and the state Charlie possesses as $|m - \bar{l}, p \rangle_{2, 3}$ and $|\psi_{k + p, 2m + p - l}\rangle_{5, 4}$
respectively. Since k is known, p, m and \bar{l} are also known. Next we can infer that $k = k + p$
and the state of qudit 5 and 6 after the local unitary transformation performed by Alice
is $|\psi_{k, \bar{l} - b - 2a}\rangle_{5, 6}$ based on the first quantum walks. Thus, the unitary transformation
Alice performed is $U_{l - (\bar{l} - b - 2a)}$. Note that the above mentioned addition and subtraction
methods are all of modulo d. So it is not hard to infer the classical bits Alice wants to
share.

In addition, our protocol can also be generalized to a multiparty case. Without loss
of generality, we suppose that there are N parties in total. First, the sender prepares
N identical generalized Bell state pairs and distributes two qudits to the agents one by one
and does not tell the ordering of the two qudits. So the i-th agent and the $i + 1$-th
agent share a generalized Bell state pair. And the N-th agent will share a generalized
Bell state pair with the sender. Then, they check the security of quantum channel (step
2) with probability q or transmit message (step 3) with probability $1 - q$. The order of
quantum walk and measurements, which is crucial for the whole process, is the same as
the order of entanglement swapping in the previous protocol [41, 42]. The security (even
in a noisy channel) can be guaranteed by the discussions in Ref. [35, 41, 42].

Now, let us make some comparisons between our scheme and the other schemes
[35, 43]. Compared with Ref. [35], the advantage of our scheme is that the capacity of
classical messages it can distribute is much larger. Specifically, it is a task to distribute
$N = \lceil \log d \rceil$ classical bits instead of just two bits. In addition, Ref. [35] needs $\frac{3N}{2(1 - q)}$
Bell states in step 3. Our scheme just needs $\frac{1}{1 - q}$ generalized Bell states. Thus, as for
the resource, our scheme is much better. In Ref. [43], Zhang et.al designed a MQSS
protocol by swapping qutrit-state entanglement and then generalized to the qudit case,
in which the so-called two-qutrit (two-qudit) entangled-state measurement is crucial but
hard to implement in experiment. Here, we mainly use the model of quantum walks with
multiple coins which is practical and novel. Therefore, our scheme avoids the difficulty in
the experimental realization of Bell state measurement, especially for the measurement
of high dimensional Bell state [15]. So our protocol is more feasible than the protocol in
Ref. [43]. Also, it may inspire more potential applications in quantum communication
and quantum information.

4. Discussion

The generation of entanglement, especially in the high-dimensional case, between
several designated parties is vital and essential in scalable quantum network. Inspired
by entanglement swapping, we have developed a scheme to generate entangled state by
using the model of quantum walks with multiple coins, including two-qubit entangled
state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state. In comparison with original entanglement swapping, the benefit of using our scheme is expected to avoid performing joint Bell state measurement that is still an unsolved problem to date, and provide a relatively general framework for generating entangled state via entanglement swapping.

Also, we provide the experimental realization of our scheme to generate Bell state and three-qubit GHZ state on IBM platform. And our scheme exhibits high fidelity by performing quantum state tomography. Moreover, we present an improved multiparty quantum secret sharing by using our scheme. After our improvement, it can convey more classical information and require less quantum resources (Bell states).

It remains an interesting open question to design further the GHZ state and W state for a system of n qubit, where n is an arbitrary integer. It is also highly desired to extend our method to more practical applications.

5. Data availability

The experimental data that supports our finding are available from the corresponding author on reasonable request.

6. Acknowledgements

We thank the support of National Key Research and Development Program of China under grant 2016YFB1000902, National Natural Science Foundation of China (Grant No.61472412, 61872352), and Program for Creative Research Group of National Natural Science Foundation of China (Grant No. 61621003).

7. References

References

[1] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement, Reviews of Modern Physics 81 (2009) 865–942.
[2] A. Ekert, Quantum cryptography based on bell’s theorem, Physical Review Letters 67 (6) (1991) 661–663.
[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Physical Review Letters 70 (13) (1993) 1895–1899.
[4] V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology, Physical Review Letters 96 (2006) 010401.
[5] C. L. Degen, F. Reinhard, P. Cappellaro, Quantum sensing, Review of Modern Physics 89 (2017) 035002.
[6] L. Dicarlo, M. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467 (7315) (2010) 574–578.
[7] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. Oconnell, D. Sank, H. Wang, M. Weides, J. Wenner, et al., Generation of three-qubit entangled states using superconducting phase qubits, Nature 467 (7315) (2010) 570–573.
[8] A. Delteil, Z. Sun, W. Gao, E. Togan, S. Faelt, A. Imamoglu, Generation of heralded entanglement between distant hole spins, Nature Physics 12 (3) (2016) 218–223.
[9] X.-m. Hu, W.-b. Xing, C. Zhang, B.-h. Liu, M. Pivoluska, M. Huber, Y.-f. Huang, C.-f. Li, G.-c. Guo, Experimental creation of multi-photon high-dimensional layered quantum states, Npj Quantum Information 6 (88) (2020).

[10] M. Erhard, M. Krenn, A. Zeilinger, Advances in High Dimensional Quantum Entanglement, Nature Reviews Physics 2 (2020) 365–381.

[11] M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, A. Zeilinger, Generation and confirmation of a (100×100)-dimensional entangled quantum system, Proceedings of the National Academy of Sciences of the United States of America 111 (17) (2014) 6243–6247.

[12] M. Zukowski, A. Zeilinger, M. A. Horne, A. Ekert, Event-ready-detectors bell experiment via entanglement swapping, Physical Review Letters 71 (26) (1993) 4287–4290.

[13] H. J. Briegel, W. Dur, J. I. Cirac, P. Zoller, Quantum repeaters : The role of imperfect local operations in quantum communication, Physical Review Letters 81 (26) (1998) 5932–5935.

[14] S. Santra, S. Muralidharan, M. Lichtman, L. Jiang, C. Monroe, L. Jiang, C. Monroe, Quantum repeaters based on two species trapped ions, New Journal of Physics 21 (7) (2019) 073002.

[15] J. Calsamiglia, Generalized measurements by linear elements, Physical Review A 65 (2002) 030301.

[16] C.-y. Lu, T. Yang, J.-W. Pan, Experimental multiparticle entanglement swapping for quantum networking, Physical Review Letters 103 (2) (2009) 020501.

[17] X.-l. Su, C.-x. Tian, X.-w. Deng, Q. Li, C.-d. Xie, K.-c. Peng, Quantum Entanglement Swapping between Two Multipartite Entangled States, Physical Review Letters 117 (24) (2016) 240503.

[18] T. A. Brun, H. A. Carteret, A. Ambainis, Quantum walks driven by many coins, Physical Review A 67 (5) (2003) 052317.

[19] Y. Wang, Y. Shang, P. Xue, Generalized teleportation by quantum walks, Quantum Information Processing 16 (9) (2017) 221.

[20] Y. Shang, Y. Wang, M. Li, R.-q. Lu, Quantum communication protocols by quantum walks with two coins, EPL 124 (6) (2019) 60009.

[21] M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325 (5937) (2009) 174–177.

[22] M. Tamura, T. Mukaiyama, K. Toyoda, Quantum walks of a phonon in trapped ions, Physical Review Letters 124 (2020) 200501.

[23] H. Tang, X. Lin, Z. Feng, J. Chen, J. Gao, K. Sun, C. Wang, P. Lai, X. Xu, Y. Wang, et al., Experimental two-dimensional quantum walk on a photonic chip, Science Advances 4 (5).

[24] A. M. Childs, Universal computation by quantum walk, Physical Review Letters 102 (18) (2009) 180501.

[25] A. M. Childs, D. Gosset, Z. Webb, Universal computation by multiparticle quantum walk,, Science 339 (6121) (2013) 791–794.

[26] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, V. Kendon, Universal quantum computation using the discrete-time quantum walk, Physical Review A 81 (4) (2010) 042330.

[27] M. S. Underwood, D. L. Feder, Universal quantum computation by discontinuous quantum walk, Physical Review A 82 (4) (2010) 042304.

[28] IBM Quantum Experience. URL: https://www.ibm.com/quantum-computing/

[29] Y. Shang, M. Li, Quantum communication protocols by quantum walks with two coins, Quantum Sci. Technol 5 (1) (2019) 015005.

[30] D. Alsina, J. I. Latorre, Experimental test of mermin inequalities on a five-qubit quantum computer, Physical Review A 94 (1) (2016) 012314.

[31] S. J. Devitt, Performing quantum computing experiments in the cloud, Physical Review A 94 (3) (2016) 032329.

[32] B. K. Behera, A. Banerjee, P. K. Panigrahi, Experimental realization of quantum cheque using a five-qubit quantum computer, Quantum Information Processing 16 (12) (2017) 312.

[33] Y.-h. Wang, Y. Li, Z.-q. Yin, B. Zeng, 16-qubit IBM universal quantum computer can be fully entangled, Npj Quantum Information 4 (46) (2018).

[34] D. James, P. Kwiat, W. Munro, A. White, Measurement of qubits, Physical Review A 64 (5) (2001) 052312.

[35] Z.-j. Zhang, Z.-x. Man, Multiparty quantum secret sharing of classical messages based on entanglement swapping, Physical Review A 72 (2) (2005) 022303.

[36] D. Lyk, G. Leuchs, A complete basis of generalized bell states, New Journal of Physics 11 (1) (2009) 013006.

[37] F. Verstraete, J. Dehaene, B. De Moor, Normal forms and entanglement measures for multipartite quantum states, Physical Review A 68 (2003) 012103.
[38] W. Dür, G. Vidal, J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Physical Review A 62 (2000) 062314.

[39] K. Yang, L. Huang, W. Yang, F. Song, Quantum teleportation via ghz-like state, International Journal of Theoretical Physics 48 (2) (2009) 516–521.

[40] M. Hillery, V. Bužek, A. Berthiaume, Quantum secret sharing, Physical Review A 59 (1999) 1829–1834.

[41] S. Lin, F. Gao, F.-a. Guo, Q.-y. Wen, F.-c. Zhu, Comment on “multiparty quantum secret sharing of classical messages based on entanglement swapping”, Physical Review A 76 (2007) 036301.

[42] Z.-j. Zhang, Z.-x. Man, Reply to “comment on ‘multiparty quantum secret sharing of classical messages based on entanglement swapping’ ”, Physical Review A 76 (2007) 036302.

[43] Z.-j. Zhang, Y.-m. Liu, M. Fang, D. Wang, Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement, International Journal of Modern Physics C 18 (12) (2007) 1885–1901.