The Raney Numbers and \((s, s + 1)\)-Core Partitions

Robin D.P. Zhou\(^1\), Sherry H.F. Yan\(^2\)

\(^1\)College of Mathematics Physics and Information
ShaoXing University
ShaoXing 312000, P.R. China

\(^2\)Department of Mathematics
Zhejiang Normal University
Jinhua 321004, P.R. China

\(^1\)dapao2012@163.com, \(^2\)huifangyan@hotmail.com

Abstract

The Raney numbers \(R_{p, r}(k)\) are a two-parameter generalization of the Catalan numbers. In this paper, we give a combinatorial proof for a recurrence relation of the Raney numbers in terms of coral diagrams. Using this recurrence relation, we confirm a conjecture posed by Amdeberhan concerning the enumeration of \((s, s + 1)\)-core partitions \(\lambda\) with parts that are multiples of \(p\). As a corollary, we give a new combinatorial interpretation for the Raney numbers \(R_{p+1, r+1}(k)\) with \(0 \leq r < p\) in terms of \((kp + r, kp + r + 1)\)-core partitions \(\lambda\) with parts that are multiples of \(p\).

Keywords: Raney number, Catalan number, core partition, hook length, poset, order ideal, coral diagram

AMS Subject Classifications: 05A15, 05A17, 06A07

1 Introduction

In this paper, we build a connection between the Raney numbers and \((s, s + 1)\)-core partitions with parts that are multiples of \(p\). We show that the number of \((kp + r, kp + r + 1)\)-core partitions with parts that are multiples of \(p\) equals the Raney number \(R_{p+1, r+1}(k)\), confirming a conjecture posed by Amdeberhan \([1]\).

The Raney numbers \(R_{p, r}(k)\) were introduced by Raney in his investigation of functional composition patterns \([13]\) and these numbers have also been used in probability theory \([11, 12]\). The Raney numbers \(R_{p, r}(k)\) are defined as follows:

\[
R_{p, r}(k) = \frac{r}{kp + r} \left(\begin{array}{c} kp + r \\ k \end{array} \right).
\]
The Raney numbers are a two-parameter generalization of the Catalan numbers. To be more specific, if \(r = 1 \), the Raney numbers specialize to the Fuss-Catalan numbers \(C_p(k) \) \[8, 9\], where \(C_p(k) \) are the numbers of \(p \)-ary trees with \(k \) internal vertices and

\[
C_p(k) = R_{p,1}(k) = \frac{1}{kp+1} \binom{kp+1}{k}.
\]

If we further set \(p = 2 \), we obtain the classical Catalan numbers \(C_k \), that is,

\[
R_{2,1}(k) = C_k = \frac{1}{k+1} \binom{2k}{k}.
\]

Let \(C_p(x) \) and \(R_{p,r}(x) \) denote the generating functions of the Fuss-Catalan numbers \(C_p(k) \) and the Raney numbers \(R_{p,r}(k) \), respectively, namely,

\[
C_p(x) = \sum_{k \geq 0} C_p(k) x^k = \sum_{k \geq 0} \frac{1}{kp+1} \binom{kp+1}{k} x^k,
\]

\[
R_{p,r}(x) = \sum_{k \geq 0} R_{p,r}(k) x^k = \sum_{k \geq 0} \frac{r}{kp+r} \binom{kp+r}{k} x^k.
\]

It is easily seen that \(C_p(x) = R_{p,1}(x) \). The following theorem gives more relations of the generating functions \(C_p(x) \) and \(R_{p,r}(x) \).

Theorem 1.1 \([8, 9]\) Let \(p \) be a positive integer and let \(r, k \) be nonnegative integers. Then we have

\[
C_p(x) = 1 + xC_p(x)^p, \quad (1.2)
\]

\[
R_{p,r}(x) = C_p(x)^r. \quad (1.3)
\]

Notice that \(C_p(x) = R_{p,1}(x) \). The following theorem is followed directly by equating the coefficients of \(x^k \) in \((1.2)\) and \((1.3)\).

Theorem 1.2 Let \(p \) be a positive integer and let \(r, k \) be nonnegative integers. Then the number \(R_{p,r}(k) \) satisfies the recurrence relations

\[
R_{p,1}(k) = \sum_{i=0}^{k-1} R_{p,1}(i) R_{p,p-1}(k - 1 - i), \quad (1.4)
\]

\[
R_{p,r}(k) = \sum_{i=0}^{k} R_{p,1}(i) R_{p,r-1}(k - i), \quad \text{for } r > 1, \quad (1.5)
\]

with the initial values \(R_{p,r}(0) = 1 \) if \(r \geq 0 \) and \(R_{p,0}(k) = 0 \) if \(k > 0 \).
Notice that $C_k = R_{2,1}(k)$. Substituting $p = 2$ into (1.4), we obtain the recurrence relation for the Catalan numbers $C_k = \sum_{i=0}^{k-1} C_i C_{k-1-i}$.

Let us give an overview of notation and terminology on partitions. A partition λ of a positive integer n is a finite nonincreasing sequence of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_m)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_m = n$. We write $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m) \vdash n$ and we say that n is the size of λ and m is the length of λ. The Young diagram of λ is defined to be an up- and left-justified array of n boxes with λ_i boxes in the i-th row. Each box B in λ determines a hook consisting of the box B itself and boxes directly to the right and directly below B. The hook length of B, denoted $h(B)$, is the number of boxes in the hook of B.

For a partition λ, the β-set of λ, denoted $\beta(\lambda)$, is defined to be the set of hook lengths of the boxes in the first column of λ. For example, Figure 1 illustrates the Young diagram and the hook lengths of a partition $\lambda = (5, 3, 2, 2, 1)$. The β-set of λ is $\beta(\lambda) = \{9, 6, 4, 3, 1\}$. Notice that a partition λ is uniquely determined by its β-set.

Given a decreasing sequence of positive integers (h_1, h_2, \ldots, h_m), it is easily seen that the unique partition λ with $\beta(\lambda) = \{h_1, h_2, \ldots, h_m\}$ is $\lambda = (h_1 - (m - 1), h_2 - (m - 2), \ldots, h_{m-1} - 1, h_m)$.

![Figure 1: The Young diagram of $\lambda = (5, 3, 2, 2, 1)$](image)

For a positive integer t, a partition λ is a t-core partition, or simply a t-core, if it contains no box whose hook length equal to t (or equivalently, equal to a multiple of t). Let s be a positive integer not equal to t, we say that λ is an (s, t)-core if it is simultaneously an s-core and a t-core. For example, the partition $\lambda = (5, 3, 2, 2, 1)$ in Figure 1 is a $(5, 8)$-core.

Let s and t be two coprime positive integers. Anderson [3] showed that the number of (s, t)-core partitions equals $(s + t) / (s + t)$. It specializes to the Catalan number $C_s = \frac{1}{s+1} \binom{2s}{s}$ if $t = s + 1$. Ford, Mai and Sze [7] proved that the number of self-conjugate (s, t)-core partitions equals $\binom{\lfloor \frac{s}{2} \rfloor + \lfloor \frac{t}{2} \rfloor}{\lfloor \frac{s}{2} \rfloor}$. Furthermore, Olsson and Stanton [14] proved that there exists a unique (s, t)-core partition with the maximum size $(s^2 - 1)(t^2 - 1)/24$. A simpler proof was provided by Tripathi [17]. More results on (s, t)-core partitions can be found in [2, 4, 6, 10, 16, 18, 19].

In [1], Amdeberhan posed the following conjecture.
Conjecture 1.1 Let s and p be positive integers. The number of $(s, s+1)$-core partitions λ with parts that are multiples of p equals

$$s + 1 - p\left\lfloor \frac{s}{p} \right\rfloor \left(s + \left\lfloor \frac{s}{p} \right\rfloor \right).$$

(1.6)

We observe that the expression (1.6) appearing in Conjecture 1.1 equals the Raney number $R_{p+1,r+1}(k)$ if we write $s = kp + r$, where $0 \leq r < p$. In the next section, we present a combinatorial proof of the recurrence relations (1.4) and (1.5) of the Raney numbers by using coral diagrams. In Section 3, we give a characterization of the β-set of the conjugate of an $(s, s+1)$-core partition with parts that are multiples of p. Based on this characterization, we show that the number of $(kp+r, kp+r+1)$-core partitions with parts that are multiples of p has the same recurrence relation with the Raney number $R_{p+1,r+1}(k)$. This proves Conjecture 1.1.

2 A combinatorial proof of Theorem 1.2

In this section, we investigate the Raney numbers and give a combinatorial proof of Theorem 1.2 by using coral diagrams. Let us begin with an introduction of some graph theoretic terminology.

Let p be a positive integer. Then a p-star is a rooted tree with p terminal edges lying above a single base vertex. A coral diagram of type (p, r, k) is a rooted tree which is constructed from an r-star at its base via the repeated placement of k p-stars atop terminal edges. Let $D(p, r, k)$ denote the set of coral diagrams of type (p, r, k). We can construct a coral diagram $D \in D(p, r, k)$ by attaching p-stars one “tier” at a time. We begin with the base tree and work upward. Figure 2 illustrates a coral diagram of type $(2, 3, 3)$.

![Figure 2: Construction of a coral diagram of type (2,3,3)](image)

We note that the definition of coral diagrams differs slightly from the one defined by Beagley and Drube [5]. In [5], a coral diagram of type (p, r, k) is a rooted tree which is constructed from an $(r+1)$-star via the repeated placement of k p-stars atop terminal edges that are not the leftmost edge adjacent to the root. Not attaching p-stars to the
leftmost edge adjacent to the root gives them a consistent way of selecting a base vertex for planar embedding. Anyhow, the coral diagrams under the two definitions have the same enumeration.

We need the following theorem due to Beagley and Drube \[5\].

Theorem 2.1 Let \(p \) be a positive integer and let \(r, k \) be nonnegative integers. Then the number of coral diagrams of type \((p, r, k)\) equals the Raney number \(R_{p,r}(k) \), that is,

\[
|D(p, r, k)| = R_{p,r}(k).
\]

Using Theorem 2.1, we present a combinatorial proof of Theorem 1.2.

Proof of Theorem 1.2. The initial values for \(R_{p,r}(k) \) follow directly from Theorem (2.1). Now we assume that \(k > 0 \) and \(r > 0 \). Let \(D \) be a coral diagram in \(D(p, r, k) \). There are two cases.

If \(r > 1 \), we divide the coral diagram \(D \) into two coral diagrams \(D_1 \) and \(D_2 \) by splitting the root of \(D \) into two vertices such that the root of \(D_1 \) is only adjacent to the leftmost edge and the root of \(D_2 \) is adjacent to the remaining \(r - 1 \) edges. See Figure 3 as an example. Assume that the coral diagram \(D_1 \) has \(i \) \(p \)-stars, then the coral diagram \(D_2 \) has \(k - i \) \(p \)-stars. It follows that \(D_1 \in D(p, 1, i) \) and \(D_2 \in D(p, r - 1, k - i) \). Since the coral diagram \(D \) is uniquely determined by \(D_1 \) and \(D_2 \), we obtain the relation (1.5), that is,

\[
R_{p,r}(k) = \sum_{i=0}^{k} R_{p,1}(i)R_{p,r-1}(k-i).
\]

If \(r = 1 \), then \(D \) is constructed from a 1-star. Contracting the edge of this 1-star into a new vertex, we obtain a new coral diagram \(D' \). It is easily seen that \(D' \) is a coral diagram in \(D(p, p, k - 1) \). Hence we have \(R_{p,1}(k) = R_{p,p}(k-1) \). If further \(p = 1 \), since \(R_{1,0}(k) = 0 \) when \(k > 0 \), relation (1.4) is equivalent to \(R_{1,1}(k) = R_{1,1}(k-1) \). By the expression (1.1) for the Raney numbers \(R_{p,r}(k) \), it can be easily checked that \(R_{1,1}(k) = R_{1,1}(k-1) = 1 \). Hence relation (1.4) holds if \(r = p = 1 \). Now assume that \(p > 1 \). Combining relation (1.5) and \(R_{p,1}(k) = R_{p,p}(k-1) \), we obtain (1.4). This completes the proof.

3 Proof of Conjecture 1.1

In this section, we give a characterization of the \(\beta \)-set of the conjugate of an \((s, s + 1)\)-core partition with parts that are multiples of \(p \). Using this characterization, we prove Conjecture 1.1 posed by Amdeberhan. As a corollary, we give a new combinatorial interpretation for the Raney numbers \(R_{p+1,r+1}(k) \) with \(0 \leq r < p \) in terms of \((kp + r, kp + r + 1)\)-core partitions \(\lambda \) with parts that are multiples of \(p \).
We observe that the expression (1.6) appearing in Conjecture 1.1 equals the Raney number $R_{p+1,r+1}(k)$ if we write $s = kp + r$, where $0 \leq r < p$. That is,

$$\frac{s + 1 - p\left\lfloor \frac{s}{p} \right\rfloor}{s + 1} \left(s + \left\lfloor \frac{s}{p} \right\rfloor \right) = \frac{kp + r + 1 - kp}{kp + r + 1} \left(\frac{kp + r + k}{kp + r} \right)$$

$$= \frac{r + 1}{k(p + 1) + r + 1} \left(\frac{k(p + 1) + r + 1}{k} \right) = R_{p+1,r+1}(k).$$

Hence Conjecture 1.1 can be restated as the following equivalent theorem.

Theorem 3.1 Let s and p be positive integers. Suppose that $s = kp + r$, where $0 \leq r < p$. Then the number of $(s, s+1)$-core partitions λ with parts that are multiples of p equals the Raney number $R_{p+1,r+1}(k)$.

To prove the above theorem, we give a characterization of the β-set $\beta(\lambda^c)$, where λ^c is the conjugate of an $(s, s+1)$-core partition λ with parts that are multiples of p. Let us recall some notation and terminology on posets.

Let P be a poset. For two elements x and y in P, we say y covers x if $x < y$ and there exists no element $z \in P$ satisfying $x < z < y$. The Hasse diagram of a finite poset P is a graph whose vertices are the elements of P, whose edges are the cover relations, and such that if y covers x then there is an edge connecting x and y and y is placed above x. An order ideal of P is a subset I such that if any $y \in I$ and $x \leq y$ in P, then $x \in I$. Let $J(P)$ denote the set of order ideals of P. For more details on posets, see Stanley [15].

Anderson [3] gave a characterization of the β-set of a t-core partition. Based on this characterization, Stanley [16] obtained the following lemma which gives a correspondence between core partitions and order ideals of a certain poset by mapping a partition to its β-set.
Lemma 3.2 Let s, t be two coprime positive integers, and let λ be a partition of n. Then λ is an (s, t)-core partition if and only if $\beta(\lambda)$ is an order ideal of $P_{(s,t)}$, where

$$P_{(s,t)} = \mathbb{N}^+ \setminus \{n \in \mathbb{N}^+ | n = k_1s + k_2t \text{ for some } k_1, k_2 \in \mathbb{N} \}$$

and y covers x in $P_{(s,t)}$ if $y - x \in \{s, t\}$.

For example, let $s = 3$ and $t = 4$. We can construct all $(3, 4)$-core partitions by finding order ideals of $P_{(3,4)}$. It is easily checked that $P_{(3,4)} = \{1, 2, 5\}$ with the partial order $5 > 2$ and $5 > 1$. Hence the order ideals of $P_{(3,4)}$ are \emptyset, $\{1\}$, $\{2\}$, $\{2, 1\}$ and $\{5, 2, 1\}$. The corresponding $(3, 4)$-core partitions are \emptyset, (1), (2), $(1, 1)$ and $(3, 1, 1)$, respectively. Let $T_s = P_{(s,s+1)}$. From Lemma 3.2, the Hasse diagram of T_s can be easily constructed. For example, Figure 4 illustrates the Hasse diagram of the poset T_6.

![Hasse diagram](image.png)

Figure 4: The Hasse diagram of $T_6 = P_{(6,7)}$

The following lemma gives a characterization of the β-set of the conjugate λ^c of a partition λ with parts equaling multiples of p.

Lemma 3.3 Let λ be a partition and let λ^c be the conjugate of λ. Then λ is a partition with parts that are multiples of p if and only if the length of each maximal sequence of consecutive integers in $\beta(\lambda^c)$ is divisible by p.

Proof. Suppose that $\lambda^c = (a_1^{m_1}, a_2^{m_2}, \ldots, a_n^{m_n})$, where $a_1 > a_2 > \cdots > a_n$ and $a_i^{m_i}$ means m_i occurrences of a_i. It is easily seen that λ is a partition with parts that are multiples of p if and only if $m_i(1 \leq i \leq n)$ is a multiple of p. Then the lemma follows directly from the relation of a partition and its β-set.

Let S be an integer set and let p be a positive integer. We say that the set S has property \mathcal{H}_p if the length of each maximal sequence of consecutive integers in S is divisible by p. For example, the integer set $\{1, 2, 3, 6, 7, 8, 9, 10, 11\}$ has property \mathcal{H}_3. The following lemma gives a complete characterization of the β-set of the conjugate λ^c of an $(s, s+1)$-core partition λ with parts that are multiples of p.

7
Lemma 3.4 Let \(s \) and \(p \) be two positive integers. Let \(\lambda \) be a partition and let \(\lambda^c \) be the conjugate of \(\lambda \). Then \(\lambda \) is an \((s, s + 1)\)-core partition with parts that are multiples of \(p \) if and only if \(\beta(\lambda^c) \) is an order ideal in \(T_s \) with property \(\mathcal{H}_p \).

Proof. From Lemma 3.3 we see that \(\lambda \) is a partition with parts that are multiples of \(p \) if and only if \(\beta(\lambda^c) \) has property \(\mathcal{H}_p \). It is easily verified that \(\lambda \) is an \((s, s + 1)\)-core partition if and only if \(\lambda^c \) is an \((s, s + 1)\)-core partition. Then from Lemma 3.2 we obtain that \(\lambda \) is an \((s, s + 1)\)-core partition if and only if \(\beta(\lambda^c) \) is an order ideal in \(T_s \). In conclusion, \(\lambda \) is an \((s, s + 1)\)-core partition with parts that are multiples of \(p \) if and only if \(\beta(\lambda^c) \) is an order ideal in \(T_s \) with property \(\mathcal{H}_p \). \(\blacksquare \)

Let \(s \) and \(p \) be two positive integers. Suppose that \(s = kp + r \), where \(0 \leq r < p \). Let \(O_{p,r}(k) \) denote the number of order ideals in \(T_s \) with property \(\mathcal{H}_p \). We proceed to study the number \(O_{p,r}(k) \). To this end, we partition \(J(T_s) \) according to the smallest missing element of rank 0 in an order ideal. Note that the elements of rank 0 in \(T_s \) are the minimal elements. For \(1 \leq i \leq s - 1 \), let \(J_i(T_s) \) denote the set of order ideals of \(T_s \) such that \(i \) is the smallest missing element of rank 0. Let \(J_s(T_s) \) denote the set of order ideals which contain all minimal elements in \(T_s \). Then we can write \(J(T_s) \) as

\[
J(T_s) = \bigcup_{i=1}^{s} J_i(T_s).
\]

Figure 5 gives an illustration of the elements contained in an order ideal in \(J_5(T_{12}) \). We see that an order ideal \(I \in J_5(T_{12}) \) must contain the elements labeled by squares, but does not contain any elements represented by open circles. The elements represented by solid circles may or may not appear in \(I \). That is, \(I \) can be decomposed into three parts, one is \(\{1, 2, 3, 4\} \), one is isomorphic to an order ideal of \(T_4 \) and one is isomorphic to an order ideal of \(T_7 \).

In general, for \(1 \leq i \leq s \) and an order ideal \(I \in J_i(T_s) \), we can decompose it into three parts: one is \(\{1, 2, \ldots, i - 1\} \), one is isomorphic to an order ideal of \(T_{i-1} \) and one is isomorphic to an order ideal of \(T_{s-i} \) (some parts may be empty). We shall use this decomposition to prove the following recurrence relations for the number \(O_{p,r}(k) \).

Theorem 3.5 Let \(p \) be a positive integer and let \(r, k \) be nonnegative integers with \(0 \leq r < p \). Then the number \(O_{p,r}(k) \) satisfies the recurrence relations

\[
O_{p,0}(k) = \sum_{i=0}^{k-1} O_{p,0}(i)O_{p,p-1}(k-1-i), \quad (3.1)
\]

\[
O_{p,r}(k) = \sum_{i=0}^{k} O_{p,0}(i)O_{p,r-1}(k-i), \quad \text{for } r > 0, \quad (3.2)
\]

with the initial value \(O_{p,r}(0) = 1 \) if \(r \geq 0 \).
Figure 5: The elements of an order ideal $I \in J_5(T_{12})$

Proof. If $k = 0$, that is, $s = r < p$. Then the unique order ideal in T_r with property P_p is \emptyset. By the definition of $O_{p,r}(k)$, we have that $O_{p,r}(0) = 1$.

Now suppose that $k \geq 1$. Let I be an order ideal in $J(s)$ with property H_p. Then $I \in J_{ip+1}(T_s)$, where $0 \leq i \leq \left\lfloor \frac{s-1}{p} \right\rfloor$ since I has property H_p. It is easily seen that I can be decomposed into three parts: one is $\{1, 2, \ldots, ip\}$, one is isomorphic to an order ideal I_1 of T_{ip} and one is isomorphic to an order ideal I_2 of T_{s-1-ip}. Since the absolute difference of any two numbers in different parts are larger than 1, we have that all of the three parts $\{1, 2, \ldots, ip\}$, I_1 and I_2 have property H_p. Conversely, given a pair (I_1, I_2) of order ideals with property H_p, $I_1 \in T_{ip}$ and $I_2 \in T_{s-1-ip}$, we can recover an order ideal in $J_{ip+1}(T_s)$ by reversing the decomposition procedure. It is apparent the resulting order ideal has property H_p. Thus, the order ideals in $J_{ip+1}(T_s)$ with property H_p are in one-to-one correspondence with pairs of order ideals with property H_p, one in T_{ip} and one in T_{s-1-ip}.

It is easily seen that the number of order ideals in T_{ip} with property H_p is counted by $O_{p,0}(i)$. To enumerate the number of order ideals in T_{s-1-ip} with property H_p, we consider two cases. If $r = 0$, namely $s = kp$, then $s - 1 - ip = (k - i - 1)p + (p - 1)$. It follows that the number of order ideals in T_{s-1-ip} with property H_p is counted by $O_{p,ip-1}(k - i - 1)$. If $r > 0$, then $s - 1 - ip = (k - i)p + r - 1$. So in this case, the number of order ideals in T_{s-1-ip} with property H_p is counted by $O_{p,r-1}(k - i)$, and the proof follows.

Proof of Theorem 3.1. From Lemma 3.4 we see that to prove Theorem 3.1 it suffices to
show that

\[O_{p,r}(k) = R_{p+1,r+1}(k), \]

for all \(p > 0, 0 \leq r < p \) and \(k \geq 0 \). We proceed to show the assertion by induction on \(k \).

Recall that \(O_{p,r}(0) = 1 = R_{p+1,r+1}(0) \) for all \(r \geq 0 \). Assume that \(O_{p,r}(s) = R_{p+1,r+1}(s) \) for all \(p > 0, 0 \leq r < p \) and \(s < k \). Now we shall show that \(O_{p,r}(k) = R_{p+1,r+1}(k) \). In views of relations (1.4) and (3.1), we have \(O_{p,0}(k) = R_{p+1,1}(k) \) by induction hypothesis.

From relations (1.5) and (3.2), we have

\[R_{p+1,2}(k) = \sum_{i=0}^{k} R_{p,1}(i) R_{p,1}(k-i) \]

and

\[O_{p,1}(k) = \sum_{i=0}^{k} O_{p,0}(i) O_{p,0}(k-i). \]

Combining the above two relations with \(O_{p,0}(s) = R_{p+1,1}(s) \) for all \(0 \leq s \leq k \), we can deduce that \(O_{p,1}(k) = R_{p+1,2}(k) \). By similar arguments, one can easily verify that \(O_{p,r}(k) = R_{p+1,r+1}(k) \) for all \(r > 1 \). Thus, we have \(O_{p,r}(k) = R_{p+1,r+1}(k) \) for all \(r \geq 0 \), which completes the proof. \(\blacksquare \)

Let \(p, r, k \) be nonnegative integers and \(r < p \). From Theorem 3.1, we see that the Raney numbers \(R_{p+1,r+1}(k) \) equal the numbers of \((kp+r, kp+r+1)\)-core partitions with parts that are multiples of \(p \). This gives a new combinatorial interpretation for these Raney numbers.

Acknowledgments. The authors would like to thank the referees for their helpful comments and suggestions. This work was supported by the National Science Foundation of China and the Zhejiang Provincial Natural Science Foundation of China (LY14A010009 and LY15A010008).

References

[1] T. Amdeberhan, Theorems, problems and conjectures, http://129.81.170.14/ tamdeberhan/conjectures.pdf.

[2] T. Amdeberhan and E. Leven, Multi-cores, posets, and lattice paths, Adv. Appl. Math., 71 (2015), 1–13.

[3] J. Anderson, Partitions which are simultaneously \(t_1 \)- and \(t_2 \)-core, Discrete Math., 248 (2002), 237–243.

[4] D. Armstrong, C.R.H. Hanusa and B.C. Jones, Results and conjectures on simultaneous core partitions, European J. Combin., 41 (2014), 205–220.
[5] J.E. Beagley, P. Drube, The Raney generalization of Catalan numbers and the enumeration of planar embeddings, Australasian J. Combin., 63 (2015), 130–141.

[6] W.Y.C. Chen, H.H.Y. Huang and L.X.W. Wang, Average size of a self-conjugate \((s, t)\)-core partition, Proc. Amer. Math. Soc., 144 (2016), 1391–1399.

[7] B. Ford, H. Mai and L. Sze, Self-conjugate simultaneous \(p\)- and \(q\)-core partitions and blocks of \(A_n\), J. Number Theory, 129 (2009), 858–865.

[8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, 1994, Addison-Wesley, Boston.

[9] P. Hilton, J. Pedersen, Catalan numbers, their generalization, and their uses. Mathematical Intelligencer, 13 (1991), 64–75.

[10] P. Johnson, Lattice points and simultaneous core partitions, arXiv:1502.07934.

[11] W. Mlotkowski, Fuss-Catalan numbers in noncommutative probability, Documenta Math., 15 (2010), 939–955.

[12] W. Mlotkowski, K.A. Penson and K. Zyczkowski, Densities of the Raney distributions, Documenta Math., 18 (2013). 1573–1596.

[13] G.N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc., 94 (1960), 441–451.

[14] J.B. Olsson and D. Stanton, Block inclusions and cores of partitions, Aequationes Math., 74 (2007), 90–110.

[15] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Second ed., Cambridge University Press, Cambridge, 2011.

[16] R.P. Stanley and F. Zanello, The Catalan case of Armstrong’s conjecture on simultaneous core partitions, SIAM J. Discrete Math., 29 (2013) 658–666.

[17] A. Tripathi, On the largest size of a partition that is both \(s\)-core and \(t\)-core, J. Number Theory, 129 (2009), 1805–1811.

[18] V.Y. Wang, Simultaneous core partitions: parameterizations and sums, arXiv:1507.04290v3.

[19] J.Y.X. Yang, M.X.X. Zhong, R.D.P. Zhou, On the enumeration of \((s, s+1, s+2)\)-core partitions, European J. Combin., 49 (2015), 203–217.