Anatomically constrained tractography facilitates biologically plausible fiber reconstruction of the optic radiation in multiple sclerosis

Horbruegger, M; Loewe, K; Kaufmann, J; Wagner, M; Schippling, S; Pawlitzki, M; Schoenfeld, M A

Abstract: Diffusion-weighted magnetic resonance imaging (dMRI) enables the microstructural characterization and reconstruction of white matter pathways in vivo non-invasively. However, dMRI only provides information on the orientation of potential fibers but not on their anatomical plausibility. To that end, recent methodological advances facilitate the effective use of anatomical priors in the process of fiber reconstruction, thus improving the accuracy of the results. Here, we investigated the potential of anatomically constrained tracking (ACT), a modular addition to the tractography software package MRtrix3, to accurately reconstruct the optic radiation, a commonly affected pathway in multiple sclerosis (MS). Diffusion MRI data were acquired from 28 MS patients and 22 age- and sex-matched healthy controls. For each participant, the optic radiation was segmented based on the fiber reconstruction obtained using ACT. When implementing ACT in MS, it proved essential to incorporate lesion maps to avoid incorrect reconstructions due to tissue-type misclassifications in lesional areas. The ACT-based results were compared with those obtained using two commonly used probabilistic fiber tracking procedures, based on FSL (FMRIB Software Library) and MRtrix3 without ACT. All three procedures enabled a reliable localization of the optic radiation in both MS patients and controls. However, for FSL and MRtrix3 without ACT it was necessary to place an additional waypoint halfway between the lateral geniculate nucleus and the primary visual cortex to filter out anatomically implausible tracks. In the case of ACT, the results with and without an additional waypoint were virtually identical, presumably because the employed anatomical constraints already prevented the occurrence of the most implausible tracks. Irrespective of the employed tractography procedure, increased diffusivity and decreased anisotropy were found in the optic radiation of the MS patients compared to the controls.

DOI: https://doi.org/10.1016/j.nicl.2019.101740

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-176676
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.

Originally published at:
Horbruegger, M; Loewe, K; Kaufmann, J; Wagner, M; Schippling, S; Pawlitzki, M; Schoenfeld, M A (2019). Anatomically constrained tractography facilitates biologically plausible fiber reconstruction of
the optic radiation in multiple sclerosis. NeuroImage: Clinical, 22:101740.
DOI: https://doi.org/10.1016/j.nicl.2019.101740
Anatomically constrained tractography facilitates biologically plausible fiber reconstruction of the optic radiation in multiple sclerosis

M. Horbrueggera,1, K. Loewea,b,1, J. Kaufmanna, M. Wagnerc, S. Schipplingd,e, M. Pawlitzkia,f,*,2, M.A. Schoenfeld

aDepartment of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany

bDepartment of Computer Science, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

cDepartment of Ophthalmology, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany

dCenter for Neuroscience Zurich, Federal Institute of Technology (ETH), Zurich, Switzerland

eDepartment of Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich, Frauenklinikenstrasse 26, 8091 Zurich, Switzerland

fKlinik für Neurologie Berlin, Rehaklinik Berlin, Berlin, Germany

gKlinik für Neurologie Berlin, Rehaklinik Berlin, Berlin, Germany

hKlinik für Neurologie Berlin, Rehaklinik Berlin, Berlin, Germany

1Shared first authorship.

2Shared last authorship.

*Corresponding author at: Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany. E-mail address: marc.pawlitzki@med.ovgu.de (M. Pawlitzki).

ARTICLE INFO

Keywords:
- Magnetic resonance imaging
- Multiple sclerosis
- Fiber tracking
- Probabilistic tractography
- Diffusion MRI
- Optic radiation
- ACT

ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) enables the microstructural characterization and reconstruction of white matter pathways in vivo non-invasively. However, dMRI only provides information on the orientation of potential fibers but not on their anatomical plausibility. To that end, recent methodological advances facilitate the effective use of anatomical priors in the process of fiber reconstruction, thus improving the accuracy of the results. Here, we investigated the potential of anatomically constrained tracking (ACT), a modular addition to the tractography software package MRtrix3, to accurately reconstruct the optic radiation, a commonly affected pathway in multiple sclerosis (MS). Diffusion MRI data were acquired from 28 MS patients and 22 age- and sex-matched healthy controls. For each participant, the optic radiation was segmented based on the fiber reconstruction obtained using ACT. When implementing ACT in MS, it proved essential to incorporate lesion maps to avoid incorrect reconstructions due to tissue-type misclassifications in lesional areas. The ACT-based results were compared with those obtained using two commonly used probabilistic fiber tracking procedures, based on FSL (FMRI Software Library) and MRtrix3 without ACT. All three procedures enabled a reliable localization of the optic radiation in both MS patients and controls. However, for FSL and MRtrix3 without ACT it was necessary to place an additional waypoint halfway between the lateral geniculate nucleus and the primary visual cortex to filter out anatomically implausible tracks. In the case of ACT, the results with and without an additional waypoint were virtually identical, presumably because the employed anatomical constraints already prevented the occurrence of the most implausible tracks. Irrespective of the employed tractography procedure, increased diffusivity and decreased anisotropy were found in the optic radiation of the MS patients compared to the controls.

1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) can be used to assess microstructural tissue properties in vivo, since these properties influence diffusion measures such as the mean diffusivity (MD) or the fractional anisotropy (FA; Basser, 1995). In multiple sclerosis (MS) research, dMRI is an important technique complementing more conventional MR imaging modalities in studying pathological changes, such as inflammation, demyelination, or axonal loss, within the white matter (Cercignani and Wheeler-Kingshott, 2018).

In the current study, we focused on the optic radiation (OR), which is regularly affected in MS (Gabilondo et al., 2014; Klistorner et al., 2014). Alterations within the OR might be explained by its transitional position within the visual pathway, which renders it vulnerable to both...
Most dMRI studies on MS employed diffusion tensor imaging (DTI). However, as the diffusion tensor cannot represent more than one independent orientation, it is a poor model of more complex local fiber configurations. Therefore, DTI is most useful when applied to large WM bundles like the corticospinal tract, which is characterized by high myelination with many axially directed axons and few crossing and kissing fibers (Jeurissen et al., 2013). Higher order diffusion models are better suited to describe complex local fiber configurations, but high angular resolution diffusion imaging (HARDI) data are required to reliably fit them. As modern HARDI protocols are gaining currency, even in clinical settings, the diffusion tensor is increasingly superseded by higher order models. For example, in MTRix spherical harmonics are used to model the fiber orientation distribution in a given voxel (Tournier et al., 2012, Lilja et al., 2016). In contrast, in FSL (FMRIB Software Library) the principal diffusion or fiber directions present in a given voxel are modeled based on Bayesian probability theory (Woolrich et al., 2009; Lilja et al., 2014). These and other methods have proven useful in representing tissue-specific diffusion properties, particularly in the presence of crossing fibers (Tournier et al., 2011; Wilkins et al., 2015).

Although DTI-based diffusion measures, such as FA, MD, axial (AD), and radial diffusivity (RD), are inherently limited by the underlying tensor model, alternative non-DTI-based measures like the multi-directional anisotropy (MDA), the generalized FA (GFA; Tuch, 2004), or the fiber density (FD) and cross section (FC; Gajamani et al., 2017) are not yet well established, especially in clinical settings. Thus, DTI-based diffusion measures are still the most widely used method for the analysis of WM changes (Balk et al., 2015). In the current study, we rely on higher order models for fiber tractography but use tensor-based diffusion measures for within-tract statistical analyses. In doing so, we make full use of the high angular resolution of the data to obtain more accurate fiber reconstructions while maintaining comparability with tensor-based results reported in other studies.

Previous dMRI studies in MS often relied on post-processing based on additional filtering to remove false or excessive paths and enhance the anatomically plausibility of the final tractography results. This is necessary because dMRI provides only limited information about the different underlying tissue types (Shardella et al., 2013). Here, we investigate a new framework for anatomically constrained tractography (ACT; Smith et al., 2012) that is designed to integrate anatomical information extracted from additional T1-weighted MRI data during tracking. More specifically, a T1-based tissue-type segmentation is used in conjunction with a fixed set of rules based on anatomical and biological a priori knowledge to influence the termination and acceptance/rejection criteria for each probabilistic fiber track. However, disease-related pathologies can cause tissue-type misclassifications upon using the T1-weighted data to inform tractography. To avoid this, it is therefore important to integrate lesion information, e.g., derived from FLAIR hyperintensities (e.g., Schmidt et al., 2012), into the procedure as well.

Compared to commonly used ad-hoc approaches, e.g., based on study-specific filtering regions, ACT provides a more principled approach to constraint imposition based on anatomical images. As we show here, this approach is also effective in the case of the OR, as it facilitates biologically plausible reconstructions in both healthy controls (HCs) and MS patients. Both of the other approaches required the addition of a study-specific filtering region to exclude implausible results. However, some minor problems, e.g., regarding tracks passing through the lateral ventricles were still observed, whereas this was not the case using ACT.

2. Methods

2.1. Participants

The study involved 28 patients diagnosed with MS according to the McDonald criteria 2010 (Polman et al., 2011) and 22 age- and sex-matched HCs. Participants were prospectively recruited at the Department of Neurology, Otto-von-Guericke University Magdeburg, Germany. Visual acuity measurements were carried out by an ophthalmologist (M.W.). Participants with ophthalmological diseases other than a history of optic neuritis or a refractive error exceeding $+/- 5.0$ dpt. were not included. Further exclusion criteria were other neurological diseases (e.g., stroke or epilepsy), any immunosuppression (e.g., diabetes or hematological diseases), and any MRI contraindication. Moreover, MS patients had not presented with an acute clinical relapse or received any steroids within the preceding 4 weeks. Clinical disability was quantified using the Expanded Disability Status Scale (EDSS; Kurtzke, 1984). Disease duration was defined as the time between diagnosis and study inclusion. The study was approved by the local ethics committee (Reference No. 7414) and all participants gave their written informed consent prior to inclusion. Demographic data are summarized in Table 1.

2.2. OCT data acquisition

Optical coherence tomography (OCT) was used to measure each patient's retinal nerve fiber layer (RNFL) thickness around the optic nerve head based on a peripapillary ring scan (angle 12°, diameter 3.4mm) acquired without pupillary dilation. All measurements were performed by an experienced ophthalmologist (M.W.) using a spectral domain OCT (SD-OCT) device (Heidelberg Spectralis, Heidelberg Engineering, Heidelberg, Germany). The acquired scans underwent rigid quality control according to the validated OSCAR-IIB criteria (Schippling et al., 2015; Tewarie et al., 2012) at the Neuro-OCT Reading Centre at the University Hospital Zurich, Zurich, Switzerland (S.S.). The RNFL measurements of each patient were averaged to obtain one mean RNFL value per patient.

2.3. MRI data acquisition

All imaging data were acquired on a Siemens MAGNETOM Prisma 3 Tesla MRI scanner with syngo MR D13D software and a twenty-channel head coil. For anatomical reference, each scanning session included a high-resolution, T1-weighted structural scan acquired using a 3D-MPRAGE sequence (TE/TR = 2.82/2500 ms, TI = 1100 ms, flip angle = 7°, voxel size = 1 mm3, FoV: 256 x 256 x 256 mm3; image matrix: 256 x 256, 192 sagittal slices) (Mugler and Brokeman, 1990). Parallel imaging (GRAPPA) with an acceleration factor of 2 was used (Griswold et al., 2002), yielding a scan duration of 5 min and 18 s. For detection of WM lesions, a T2-weighted 3D-FLAIR scan was acquired (TE/ TR = 284/6000 ms, TI = 2100 ms, variable flip angle, voxel size = 0.49 x 0.49 x 1.0 mm3, FoV = 250 x 250 x 250 mm3, image matrix = 512 x 512, 160 sagittal slices, GRAPPA acceleration factor = 2, scan duration = 10 min 30 s). Diffusion-weighted images (DWI) were obtained based on a single-shot, single-refocused echo planar imaging (EPI) pulse sequence (TE/TR = 51/8200 ms, voxel size = 1.6 x 1.6 x 1.6 mm3, FoV = 220 x 220 x 220 mm3, image matrix = 138 x 138, 86 axial slices parallel to the AC-PC line, receiver bandwidth = 1812 Hz/pixel, echo spacing = 0.66 ms, GRAPPA acceleration factor = 3, 36 reference lines, scan duration = 19 min 8 s) using 60 non-collinear diffusion gradients (Jones, 2004; Jones et al., 1999).
2.4. MRI data preprocessing

FoV = 220 × 220 mm², 54 slices parallel to the AC-PC line, scan years.
and 10 di were acquired in six blocks. Each block consisted of one
geistered to the
di
a
duration = 2 min 13 s). For all data, image reconstruction was carried
(University College London). The DWI co-registered MPRAGE image

Between-group di differences were assessed using the independent samples t-test
for the MNI space by the Juelich Histological Atlas, is about 20% larger than the right LGN. The final LGN and V1 ROIs (after transformation to native space and thresholding based on the median) were consistent in volume with previous measurements (Schmitt et al., 2014; Wang et al., 2015) and differed by approx. 10% between hemispheres. The volumes of the ROIs are shown in Table 2.

Table 1

	MS (n = 28)	HC (n = 22)	p-value
Age (y), mean ± SD (range)	42.0 ± 10.6 (25-66)	40.3 ± 11.8 (20-60)	0.580
History of optic neuritis, N (%)	14 (50)	–	–
Disease duration (y), mean ± SD (range)	8.5 ± 6.45 (1-26)	–	–
Female, N (%)	21 (75)	12 (54.5)	0.147
EDSS, median ± (IQR)	1.75 (1.125-4.0)	–	–

with two b-values (b1/b2 = 800/1200 s/mm²) and 16 scans without
diffusion weighting (b = 0 s/mm²). For each of the two b-values, data
were acquired in six blocks. Each block consisted of one b = 0 volume
and 10 diffusion-weighted volumes. Before the first and after the last
block, an additional b = 0 volume was obtained. All volumes were regi-
gistered to the first b = 0 volume. To be able to address the problem of
geometric distortions in EPI caused by magnetic field inhomogeneities,
a field map was acquired prior to the EPI sequence using a double-echo
field inhomogeneities were corrected based on the GRE
field map, and
fusion data were registered to the corresponding T1-weighted
epi_reg

2.5. WM lesion mapping

WM lesions were identified using the lesion prediction algorithm (LPA) implemented in the LST toolbox version 2.0.15 ⁴ for SPM12⁵
(University College London). The DWI co-registered MPRAGE image
was used as reference image. LPA is based on a binary classifier in the
form of a logistic regression model trained on the data of 53 MS patients
with lesions from the Department of Neurology, Technische Universität
München (Munich, Germany). We used LPA to compute a voxel-wise estimate of lesion probability for each subject (Schmidt et al., 2012).
The resulting subject-specific lesion probability maps were binarized

2.6. Seed and target selection

The OR is a fiber bundle between the lateral geniculate nucleus (LGN) and primary visual cortex (V1). Individual segmentation of the
LGN and V1 was done automatically based on the Juelich Brain Atlas (Eickhoff et al., 2007) included in FSL. Each of the resulting ROIs was visually inspected to ensure its anatomical plausibility. In doing so, the LGN (seed) and V1 (target) ROIs were considered to be adequately placed lateral to the transition between the cerebral peduncle and the posterior limb of the internal capsule, and in the posterior pole of the occipital lobe and the cortex next to the calcarine sulcus, respectively (Brodmann, 1909).

The left LGN, as defined in MNI space by the Juelich Histological Atlas, is about 20% larger than the right LGN. The final LGN and V1 ROIs (after transformation to native space and thresholding based on the median) were consistent in volume with previous measurements (Schmitt et al., 2014; Wang et al., 2015) and differed by approx. 10% between hemispheres. The volumes of the ROIs are shown in Table 2.

2.7. Tractography

We compared three different fiber tracking methods: two well-es-
tablished methods (FSL, MRtrix) and the newer anatomically con-
strained fiber tracking (ACT), which is a modular addition to MRtrix.

2.7.1. FSL

The first procedure we considered is based on the FMRIB Diffusion Toolbox (FDT version 3.0) which is included in FSL (Behrens et al., 2003; Smith et al., 2004; Woolrich et al., 2009). First, the FSL Brain Extraction tool (BET) was used to remove non-brain tissue (Smith, 2002; Smith et al., 2004). The preprocessed diffusion-weighted images were used to model three fibers per voxel using bedpostx. The use of multiple shells improves the modeling of crossing fibers within each voxel (Jbabdi et al., 2012). Here, we used two shells with b1 = 800 s/mm² and b2 = 1200 s/mm², respectively. The sampling results from bedpostx were used to generate connectivity distributions from user-
specified seed voxels with protrackc2 (Behrens et al., 2007). The fol-
lowing settings were used: simple Euler streaming, number of samples
per voxel = 10,000, number of steps per sample = 2000, step length = 0.5mm, loop check, curvature threshold = 90°, way-point conditions to each half tract separately, subsidiary fiber volume threshold = 0.01, seed sphere sampling = 0 and a stop option when V1 is reached. In the resulting map, each voxel’s value represents the de-
gree of connectivity between it and the seed voxels.

2.7.2. MRtrix

The second tracking procedure is based on the MRtrix3 software
package (http://www.mrtrix.org, Tournier et al., 2012). Using dwi2r-
response (with the “dhollander” algorithm for multi-shell data
(Dhollander et al., 2016), we estimated response functions from the
preprocessed diffusion-weighted images. These were then used to esti-
mate fiber orientation distributions (FOD) based on 8th order con-
strained spherical deconvolution (CSD) using dwi2fod (Tournier et al.,
2004). Specifically, we used the msmt_csd algorithm (Jeurissen et al.,
2014), which facilitates the computations of three separate FODs for
WM, gray matter (GM) and cerebrospinal fluid (CSF) based on multi-
shell data. For fiber tracking, we then used tkgen with the iFOD2
(improved 2nd order integration over fiber orientation distributions)
algorithm. This algorithm facilitates more accurate fiber reconstruction
in heavily curved regions such as the Meyer’s loop and thus enhances
the anatomical plausibility of the results (Tournier et al., 2010). During
tracking, the direction for each step is obtained by sampling from the
FOD at the current position, such that the probability of a particular
direction being produced is proportional to the amplitude of the FOD

² http://www.statistical-modelling.de/lst.html.
³ http://www.fil.ion.ucl.ac.uk/spm.
Table 2
Volume of seed and target ROIs.

ROI	Side	Mean ± SD	Paired T-test
	L-R	T	p-value
LGN (Atlas)	R	2576	720 (21%)
	L	3296	
LGN (final)	R	53,488	696 (1.3%)
	L	54,184	
V1 (Atlas)	R	355 ± 47	36.82 (9.4%)
	L	392 ± 61	7.1 0.000
V1 (final)	R	3,046 ± 546	−305 (9.9%)
	L	2,742 ± 452	−6.8 0.000

Mean volume (in mm³) for seed (LGN) and target (V1) ROIs. Atlas: ROIs as defined in MNI space based on the Juelich Histological Atlas; final: ROIs after transformation to native space and median-based thresholding; L: left; R: right. Paired t-tests were conducted to compare the corresponding ROIs of the left and right hemisphere; p-values ≤ 0.05 were deemed to be statistically significant.

2.7.3. MRtrix/ACT

The third procedure (MRtrix/ACT) extends the second procedure by employing additional anatomical constraints. The settings were the same as described above for MRtrix (without ACT). Using ACT, an image segmentation derived from additional MRI data is combined with prior anatomical knowledge to influence the termination and acceptance/rejection criteria during fiber tracking with MRtrix (Smith et al., 2012). The segmentation is supplied to the software via a so-called STT (five tissue types) file, which contains the tissue types "cortical GM", "subcortical GM", "WM", "CSF", and optionally "pathological tissue". We used the command Stgen fsl, which, in turn, uses the FSL segmentation tools FIRST and FAST, to generate segmentations of the four mandatory tissue types based on the T1-weighted data. To avoid tissue-type misclassifications due to WM lesions, we used Stedit to add the previously determined lesion maps to the STT files using the optional 5th tissue type (pathological tissue). To enhance the anatomical plausibility of the reconstructed fibers based on prior information, Smith et al. (2012) devised the following six rules, which pertain to the mandatory four tissue types in the segmentation. (1) If a streamline enters cortical GM, it is terminated and accepted. (2) If a streamline enters CSF, it is rejected. (3) If a streamline leaves the FOV of the diffusion image or the segmentation, or a pre-defined tracking mask, it is terminated and accepted. This is necessary to facilitate, for example, tracking to the spinal column. (4) If a streamline reaches a WM area of poor directionality, as indicated by a very low FOD amplitude, or exhibits excessive curvature while in WM, it is terminated and rejected. (5) If this occurs within subcortical GM, the streamline is instead terminated and accepted. (6) Streamlines are not allowed to exit subcortical GM, and are instead truncated based on the minimum FOD amplitude within the subcortical structure. As a result, tracks will typically terminate upon entering cortical GM or within subcortical GM, which is in line with known properties of the corresponding neuronal axons. Since the condition of pathological tissue is unclear, the anatomical priors implemented by the above rules are temporarily suspended, if a streamline passes through such tissue. Until the streamline either terminates, for example, due to poor directionality, or exits the pathological tissue, tractography is conducted based on the diffusion data alone. To better understand how the incorporation of lesion maps influences the tractography results in practice, we conducted an additional comparison between ACT as described above (STT) and ACT using only the four mandatory tissue types (4TT).

2.7.4. Waypoint-based filtering of tractography results

An additional ROI, to be used as a waypoint for the tracking procedures, was placed inside the OR, lateral to the posterior ventricle above the superior colliculus. Using a waypoint ROI, any generated track that does not pass through the waypoint is essentially filtered out and discarded. The waypoint ROI was defined in MNI152 space and then transformed to the individual MR P-MRAE images using FSL’s FLIRT and FNIRT for linear and non-linear registrations, respectively (Andersson et al., 2007). To presage the results, many implausible tracks, passing, e.g., through the corpus callosum and parahippocampal regions, are generated by MRtrix and FSL without such a waypoint ROI. In the case of MRtrix/ACT, the results with and without waypoint ROI were virtually identical (see Results section, Fig. 4). Therefore, the waypoint ROI was used with FSL and MRtrix (without ACT) but not with MRtrix/ACT in all subsequent analyses.

2.8. Construction and anatomical validation of OR segments

In the cases of MRtrix and MRtrix/ACT, a tract density image was computed from the generated tracks using tckmap. FSL’s output already consisted in a comparable map. The FSL, MRtrix and MRtrix/ACT density images were then divided by its maximum and thresholded at 0.1, so that the set of suprathreshold voxels forms an OR segment. All OR segments were inspected by two raters (M.H., J.K.) to assess their anatomical plausibility. While all OR segments appeared generally reasonable, the OR segments generated by MRtrix appeared to be larger and more extensive than those generated by FSL. Therefore, we measured the average distance between the anterior Meyer's loop (AML) and the temporal pole (TP) in MNI space (Lilja et al., 2014), which confirmed this observation (see Results section, Fig. 1).

2.9. Within-tract diffusion measures

After construction of the OR segments via thresholding of the normalized tract density maps, the within-tract diffusion measures (FA, MD, AD, RD) were computed as weighted averages based on the suprathreshold voxels. In doing so, areas with a higher tract density have a greater influence on the final average, which seems reasonable.

2.10. Statistical analyses

Statistical analyses were conducted using SPSS 21 (IBM). Comparisons of categorical (sex) and continuous variables (e.g., age) were performed using a Chi²-test and an independent-samples t-test. We analyzed both hemispheres separately to prevent reduction of variance by averaging. The left and right data were compared using paired t-tests. For lesion burden estimation, only lesions inside the OR ROI with a probability > 0.3, were considered.

Two-way repeated measures ANOVA was used to test for between-subject factor “group” (MS, HC) and within-subject factor “tracking procedure” (FSL, MRtrix, MRtrix/ACT). All results were Greenhouse-Geisser corrected to account for violations of sphericity. For a more detailed description of the differences between the three methods, paired sample t-tests were applied for controls and patients separately. Bonferroni-corrected p-values < 0.0125 (0.05/4) were deemed to be statistically significant.

To assess intra-individual differences and variance homogeneity for two different procedures, Bland-Altman plots were used. To inspect measurement deviations, such as scale or location shift, we used scatter...
plots with calibration and orthogonal regression lines (Koch and Spörl, 2007). Intraclass correlation coefficient (ICC) was used to evaluate the reproducibility between the procedures.

We used Spearman’s r to assess dependencies between the OR diffusion measures (FA, MD, AD, RD) corresponding to each procedure and the OR lesion volume. Bonferroni-corrected p-values < 0.008 (0.05/6) were deemed to be statistically significant. Pearson’s correlation coefficient was used to correlate the visual acuity, RNFL and V1 thickness with the FA values of each procedure; p-values < 0.008 (0.05/6) were deemed to be statistically significant.

3. Results

3.1. Anatomical validation

Since the aML is the most anterior section of the OR, a smaller distance between it and the TP indicates a more accurate representation of this highly curved section. The mean distances for the left and right hemisphere were 55 and 56 mm (FSL), 50 and 47 mm (MRtrix), and 47 and 44 mm (MRtrix/ACT). As illustrated in Fig. 1, the average distance in our study was smallest for MRtrix/ACT, so that the corresponding OR lesions were registered to the Big Brain MNI template (https://bigbrain.loris.ca/main.php) (200 μm voxel size) for visualization purposes.

To better understand how the incorporation of lesion maps influences the tractography results in practice, we conducted an additional filtering of tractography results by the diameter of the waypoint ROI. Any generated track that does not pass through the pathway is filtered out and discarded. As it turned out, many implausible tracks, passing, e.g., through the corpus callosum and parahippocampal regions, were generated by MRtrix and FSL without such a waypoint ROI. In the case of MRtrix/ACT, the results with and without waypoint ROI were virtually identical. Therefore, the waypoint ROI was used with FSL and MRtrix (without ACT) but not with MRtrix/ACT in all subsequent analyses.

Fig. 1. Mean normalized tract density maps for FSL (green), MRtrix (red), and MRtrix/ACT (blue). The distances reported in the text were measured between the anterior Meyer’s loop (aML, determined separately for each of the procedures based on the OR segments) and the temporal pole (TP, gray line). Maps were registered to the Big Brain MNI template (https://bigbrain.loris.ca/main.php) (200 μm voxel size) for visualization purposes.

3.2. Waypoint-based filtering of tractography results

To enhance the anatomical plausibility of fiber reconstructions, a waypoint ROI was placed inside the OR, lateral to the posterior ventricle above the superior colliculus. Using a waypoint ROI, any generated track that does not pass through the waypoint is filtered out and discarded. As it turned out, many implausible tracks, passing, e.g., through the corpus callosum and parahippocampal regions, were generated by MRtrix and FSL without such a waypoint ROI. In the case of MRtrix/ACT, the results with and without waypoint ROI were virtually identical. Therefore, the waypoint ROI was used with FSL and MRtrix (without ACT) but not with MRtrix/ACT in all subsequent analyses. Fig. 4 illustrates the effect of the waypoint ROI on the results generated by the different procedures.

3.3. Statistical analyses

3.3.1. Repeated measures ANOVA

For all diffusion values, significant within-subject effects were found between all three procedures (FA: F(1.20) = 13.93, p < 0.001, Greenhouse-Geisser p = 0.004; MD: F(1.35) = 6.42, Greenhouse-Geisser p = 0.002; AD: F(1.29) = 3.77, Greenhouse-Geisser p = 0.044 and RD: F(1.34) = 8.66, p < 0.001, Greenhouse-Geisser p = 0.002). There were no significant group × procedure interactions.

3.3.2. Per-procedure differences between groups

DTI metrics (FA, MD, AD, RD) of the ORs from the different groups are summarized in Table 3 and significant FA differences are shown in Fig. 5A-C. All procedures detected significant between-group differences (p < 0.001). No significant between-group differences were found in visual acuity (p = 0.243) or V1 thickness (p = 0.2). Significant differences were found in RNFL (p = 0.04) and lesion volumes (OR: p < 0.001, whole brain: p = 0.011). Between-group differences in FA values are shown separately for each procedure using boxplots (Fig. 5A–C).

3.3.3. Per-group differences between procedures

We observed significant differences between FSL and MRtrix for FA (p = 0.007), MD (p = 0.004) and RD (p = 0.001) values in HCs and for FA (p = 0.001) and RD (p = 0.012) in MS patients. No significant differences were found between FSL and MRtrix/ACT except for FA (p = 0.010) in MS patients. Comparing MRtrix and MRtrix/ACT, we observed significant differences for all diffusion measures with the exception of FA values in HCs (p = 0.049) and in MS patients (p = 0.11, Table 4).

Fig. 2. MRtrix/ACT often produced more accurate OR reconstructions than plain MRtrix. As illustrated by a representative patient, MRtrix results (left) sometimes included parts of the lateral ventricles. In contrast, MRtrix/ACT results (red: MRtrix; blue: MRtrix ACT) are shown on top of the corresponding FLAIR images.
The Bland-Altman plots (Fig. 5D) showed that the differences between MRtrix and MRtrix/ACT FA values were lower compared to the differences between MRtrix or MRtrix/ACT and FSL. Fig. 5E shows scatter plots to facilitate pairwise comparisons between the three procedures. Several outliers indicated differences between the procedures. The similarity of MRtrix/ACT and MRtrix w.r.t. the FA values was evident (ICC = 0.979). The comparison of FSL with MRtrix (ICC = 0.871) and FSL with MRtrix/ACT (ICC = 0.843) showed a similar scale shift especially in the higher FA values, with a point of intersection of the regression lines with the identity line on 0.47.

3.4. Relationship between OR lesion volume and OR diffusivity

Table 5 shows correlations between lesion volume and diffusion parameters for each procedure. In the MS patients, we found strong dependencies, which were very similar for the different procedures (FA: negative correlation; MD, AD, RD: positive correlation). Of note, the absolute correlation values were greatest for MRtrix/ACT for all diffusion parameters. No correlations were found in the HCs.

3.5. ROC curves and AUC

Fig. 6 shows the ROC curves of each diffusivity parameter (FA, MD, AD, RD) for all three fiber tracking procedures. Here, the MRtrix/ACT method exhibited the highest AUC values (from RD: AUC = 83.929 to AD: AUC = 71.226) for all four diffusion parameters to distinguish both groups (HC and MS patients). The lowest AUC values (from RD: AUC = 79.099 to FA: AUC = 69.481) were reached by the MRtrix (without ACT) procedure.

3.6. Relationship between clinical, OCT and MRI values

We did not find any significant correlations between visual acuity, RNFL thickness, V1 thickness, lesion and FA (independently from the tracking procedure used; Table 6).

4. Discussion

The aim of our study was to compare the performance of MRtrix/ACT with two other probabilistic fiber tracking procedures (MRtrix and FSL) regarding their localization precision and characterization of the OR, especially in MS patients with WM lesions. All three methods enabled a reliable localization of the OR in both MS patients and controls. With regard to the anatomical accuracy of the reconstructed ORs, both visual inspection and a comparison of the distances between the anterior Meyer’s loop and temporal pole showed that ACT provides more anatomically plausible pathways compared to the other two procedures. Furthermore, all procedures detected increased MD, AD and RD as well as decreased FA within the OR in MS patients compared to controls, indicative of the MS-induced WM damage (Horsfield and Jones, 2002).
FA is a dimensionless index. For continuous variables, independent samples
changes are associated with visual disability (Reich et al., 2010;
previous studies (see Supplementary Material, Table 7). Such
primary V1 thinning (Balk et al., 2015). Overall, the observed MS-re-
the highest discriminatory performance. As a result, ACT also appears
nounced when using ACT. Similarly, in a ROC curve analysis based on
mean lesion burden and intracranial
burden in ml ± SD
Mean FLAIR OR lesion burden in ml ± SD
0.47 ± 0.7 0.03 ± 0.05 0.000

4.2. Anatomical constraints in fiber tractography

Traditionally, to enhance the anatomical plausibility of fiber reconstructions, the generated tracks are often filtered using waypoint ROIs based on anatomical knowledge relevant to the fiber tracts studied (Conturo et al., 1999; Catani et al., 2002; Hagmann et al., 2003; Wakana et al., 2007). User-defined constraints can also be placed on other tract-specific parameters such as path length or curvature to filter tractography results (Sherbondy et al., 2008). These techniques enable highly customized filtering, tailored to the application, research question, or data set. However, significant additional efforts are often necessary to define appropriate ROIs and adjust the constraints and parameters with regard to the targeted fiber tracts (Jones and Cercignani, 2010). For example, the high curvature of the Meyer’s loop requires an angle of at least 90° to facilitate its reconstruction in an anatomically plausible manner (Liija et al., 2014).

In contrast, ACT is a more general technique improving the overall anatomical plausibility independent of application-specific considerations and in a fully automated fashion. In many cases, ACT obviates the need for additional filtering based on constraints tailored to the targeted fiber tract. For example, waypoint ROIs were employed in the current study to filter out implausible streamlines, e.g., extending into the CSF or parahippocampal regions, that would otherwise occur when using FSL or MRtrix without ACT. In the case of ACT, this was not necessary, as the results with and without an additional waypoint ROI were virtually identical. It appears that the anatomical constraints employed by ACT were very successful in preventing the generation of implausible fiber tracks. In fact, the ACT-based fiber reconstructions appeared anatomically more accurate, even, than the results from the other two procedures, which employed filtering. At the same time, the avoidance of such filtering improves the usability and also removes a source of rater-dependence, if the filtering ROIs are not defined in a fully automated fashion. Still, it may be beneficial in some cases to employ target-specific filtering in addition to ACT.

For example, Martinez-Heras et al. (2015) used MRtrix3 with ACT to reconstruct the OR. In sharp contrast to our results, they report that many implausible streamlines were generated despite using ACT, which they remedied using a post-processing routine based on anatomical exclusion criteria designed to filter out anatomically implausible streamlines. In addition to the difference in sample size (Martinez-Heras et al.: 5 MS patients and 10 controls; the current study: 28 MS patients and 22 controls), there are a number of important methodological differences, some of which may be responsible for the substantially different performance of ACT. First, there are differences in the dMRI acquisition hardware (Martinez-Heras et al.: Siemens MAGNETOM Trio 3T; this study: Siemens MAGNETOM Prisma 3T) and protocols (Martinez-Heras et al.: one b-value 1500 s/mm², 1.5mm isotropic voxel, high resolution acquisition with TE/TR = 110/16600 ms, 32 channel coil; this study: two b-values 800 and 1200 s/mm², 1.6mm isotropic voxel, TE/TR = 51/8200 ms, 64 channel coil) used. The much higher gradient strength (80 mT/m for the Prisma vs. 45 mT/m for the Trio) allowed us to use a much lower TE, which, in turn, results in a significantly higher signal-to-noise ratio. Second, a different segmentation method was used (Martinez-Heras et al.: Stigen freeSurfer; this study: Stigen fsH). Third, the version of MRtrix3 that was used for the analysis may have been older than the one used in the current study. Therefore, potential improvements to the relevant code in MRtrix3 are another possible source for the observed differences in ACT performance. Note, in this context, that Martinez-Heras et al. apparently did not use ACT’s option to specify lesion probability maps, which may have had undesirable effects on the tractography due to tissue type misclassifications in the affected areas. Finally, the definition of seed and target ROIs were also substantially different. While Martinez-Heras et al. used the entire thalamus (including the LGN) to define the start ROIs, we used only the LGN. We believe that the substantially larger seed ROIs used by Martinez-Heras et al. may be the most likely reason for the poor

Table 3

dMRI metrics of the ORs, optical and structural metrics from multiple sclerosis (MS) patients and healthy controls (HC).	MS	HC	p-values
FA OR	0.52 ± 0.05	0.55 ± 0.03	0.000
FSL	0.50 ± 0.04	0.54 ± 0.02	0.000
MRtrix	0.50 ± 0.04	0.54 ± 0.03	0.000
MRtrix/ACT	0.81 ± 0.10	0.75 ± 0.05	0.000
MD OR	0.83 ± 0.10	0.76 ± 0.03	0.000
MRtrix/ACT	0.81 ± 0.09	0.75 ± 0.02	0.000
AD OR	1.32 ± 0.11	1.26 ± 0.07	0.001
FSL	1.32 ± 0.10	1.27 ± 0.05	0.001
MRtrix	1.31 ± 0.09	1.25 ± 0.03	0.000
MRtrix/ACT	0.67 ± 0.10	0.59 ± 0.05	0.000
RD OR	0.68 ± 0.10	0.61 ± 0.03	0.000
MRtrix	0.67 ± 0.09	0.60 ± 0.02	0.000
MRtrix/ACT	1.7 ± 0.1	1.6 ± 0.1	0.2
RNFL in μm	90.9 ± 11.4	97.4 ± 7.7	0.04
Primary visual cortex in mm	8.22 ± 11.8	4.7 ± 1.5	0.011
Mean FLAIR whole lesion burden in ml ± SD	0.47 ± 0.7	0.03 ± 0.05	0.000

Mean (standard deviation) is given. ACT: MRtrix/ACT; AD: axial diffusivity; FA: fractional anisotropy; FSL: FSL protrackx2 tracking: HC: healthy controls; IQR: interquartile range; MD: mean diffusivity; MRtrix: MRtrix without ACT; MS: multiple sclerosis; OR: optic radiation; RD: radial diffusivity; RNFL: Retinal nerve fiber layer; SD: standard deviation; WM: white matter; mean lesion burden and intracranial

However, the observed between-group differences were most pronounced when using ACT. Similarly, in a ROC curve analysis based on the within-tract diffusion parameters, the ACT-based procedure showed the highest discriminatory performance. As a result, ACT also appears to improve the diagnostic value of OR tractography as compared to the other two procedures.

4.1. Clinical background

WM changes are thought to reflect additional WM pathologies, such as trans-synaptic degeneration induced by retinal damage after optic neuritis (Kolbe et al., 2016; Tur et al., 2016; Oertel et al., 2019) or by primary V1 thinning (Balk et al., 2015). Overall, the observed MS-related RNFL thickness and WM changes in the OR are in good agreement with previous studies (see Supplementary Material, Table 7). Such changes are associated with visual disability (Reich et al., 2010; Lennartsson et al., 2014), but are often analyzed in conjunction with the OR lesion burden (Wang et al., 2018; Klistorner et al., 2015; Rocca et al., 2013; Sinnecker et al., 2014). However, in contrast to previous investigations (Jenkins et al., 2011; Pfueller et al., 2011; Gabilondo et al., 2014; Balk et al., 2015), we did not observe V1 atrophy. Such conflicting findings regarding regional cortical changes may be explained either by a larger WM lesion burden within the OR (Jenkins et al., 2011) or a larger sample size (Balk et al., 2015).
performance of ACT in their study.

Filtering of tracts during post-processing was successfully employed to enhance the anatomical plausibility of OR reconstructions in MS (Klistorner et al., 2015; Klistorner et al., 2016; Martinez-Heras et al., 2015; Kuchling et al., 2018) and in other applications (Winston et al., 2011; Lim et al., 2015; Renauld et al., 2016; Oertel et al., 2017). However, as mentioned above, a potential disadvantage of the ROI-based filtering arises if ROIs are defined in a user-dependent fashion, which can hamper both usability and reproducibility. Since MRtrix/ACT is a fully automated method, we would recommend the evaluation of its performance in a given application first. If it performs reasonably well, the development of more targeted, potentially user-dependent methods may prove unnecessary. In the case of the OR, our results, in contrast to those of Martinez-Heras et al. (2015), indicate that ACT (by itself) is, in fact, sufficient to ensure the anatomical plausibility of the reconstructed tracts.

4.3. Other methods for OR localization

At the moment, we are not aware of any commonly accepted standard to perform the tractography of the OR (Lilja et al., 2014). Upon defining OR segments for each data set, one faces the problem of
Table 4
Summary of per-group differences between tracking procedures.

Measure	Group	FSL vs. MRtrix	FSL vs. MRtrix/ACT	MRtrix vs. MRtrix/ACT
FA	MS	0.001	0.010	0.110
HC	0.007	0.059	0.049	0.000
MD	0.086	0.996	0.000	0.001
AD	MS	0.004	0.863	0.000
HC	0.979	0.111	0.000	0.002
RD	MS	0.342	0.495	0.002
HC	0.012	0.273	0.003	0.003
HC	0.001	0.410		

Significant differences (bold), Bonferroni-corrected, p-values < 0.0125 (0.05/4); FA: fractional anisotropy; FSL: FSL probtrackx2; HC: healthy controls; MD: mean diffusivity; AD: axial diffusivity; MRtrix: MRtrix without ACT; MRtrix/ACT: MRtrix with ACT; MS: multiple sclerosis; RD: radial diffusivity. MD, AD and RD are given in 10−3 mm²/s.

Another challenge in comparing different fiber tractography procedures lies in appropriately thresholding the corresponding density maps to obtain comparable OR segments. It appears that smaller differences in ROI size between procedures are acceptable when computing within-tract statistic based on density-weighted averaging. In doing so, the influence of marginal areas, in which most of the differences are usually located, is limited, thus facilitating more sensible comparisons of the average diffusion parameters. In addition to considering other thresholding strategies, e.g., to match the ROIs in size, a further alternative would consist in a voxel-based analysis of the density maps, thus avoiding the thresholding problem altogether. However, this would require to spatially normalize either the diffusion data or the density maps (Raffelt et al., 2017; Gajamane et al., 2017). Since the spatial normalization is adversely affected by the abovementioned MS-related pathologies, we decided to forego this option for the current study.

5. Conclusion

In this study, we found that ACT facilitates biologically plausible reconstructions of the OR in both HCs and MS patients. It provides a more realistic basis for the assessment of between-group differences and higher discriminatory performance as compared to two more commonly used fiber tracking methods.

Ethical publication statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Conflicts of interest

Marc Pawlitzki received research grants from Novartis and Genzyme, speaker honoraria and travel/accommodations/meeting expenses and speaker honoraria by Novartis, Biogen Idec., MERCK Serono.

The other authors declare that there is no conflict of interest.

Acknowledgements

We thank Erhard Stadler and Denise Scheermann, Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany, for excellent technical assistance. The study was supported by Novartis pharma GmbH Germany.

Table 5
Correlations of dMRI metrics of the ORs from multiple sclerosis (MS) patients and healthy controls (HC) with the optic radiation (OR) specific FLAIR lesion volume.

OR FLAIR lesion volume	FSL	MRtrix	MRtrix/ACT					
			Spearman’s ρ	p-value	Spearman’s ρ	p-value	Spearman’s ρ	p-value
FA HC	−0.164	0.288	−0.156	0.313	−0.229	0.135		
MS	−0.488	0.000	−0.650	0.000	−0.692	0.000		
MD HC	0.388	0.009	0.263	0.084	0.377	0.012		
MS	0.715	0.000	0.738	0.000	0.818	0.000		
AD HC	0.133	0.026	0.192	0.211	0.262	0.086		
MS	0.680	0.000	0.683	0.000	0.703	0.000		
RD HC	0.222	0.147	0.102	0.512	0.306	0.044		
MS	0.704	0.000	0.761	0.000	0.819	0.000		

p-values < 0.00625 (0.05/8) were deemed to be statistically significant (bold).
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nicl.2019.101740.

References

Andersson, J.L.R., et al., 2007. Non-linear Registration Aka Spatial Normalisation FMRIB Technical Report TR07JA2.

Audoin, B., et al., 2006. Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain. 129 (4), 1031–1039. Available at: http://academic.oup.com/brain/article/129/4/1031/371252/Selective-magnetization-transfer-ratio-decrease-in (Accessed September 16, 2018).

Basser, P.J., 1995. Inferring Microstructural Features and the Physiological State of Tissues from Diffusion-Weighted Images. NMR IN BIOMEDICINE 8, 333–344.

Balk, L.J., et al., 2015. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 86 (4), 419–424. Available at: https://doi.org/10.1136/jnnp-2014-308189.

Behrens, T.E.J., et al., 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50 (5), 1077–1088. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14587019 (Accessed January 13 2017).

Behrens, T.E.J., et al., 2007. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34 (1), 144–155. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17070705 (Accessed January 13 2017).

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirnrinde. In: ihren Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, Leipzig.

Conturo, T.E., Lori, N.F., Call, T.S., et al., 1999. Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U. S. A. 96 (18), 10422–10427.

Dhollander, T., Raffelt, D., Connolly, A., 2016. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI, pp. 5. Available at: https://www.researchgate.net/publication/307863133_Unsupervised_3-tissue_response_function_estimation_from_single-shell_or_multi_shell_diffusion_MR_data_without_a_co-registered_T1_image Accessed December 4. 2016.
quantitative Tractography methods applied to cerebral white matter. NeuroImage. 36 (3), 630-644. https://doi.org/10.1016/j.neuroimage.2007.02.049.

Wang, J., et al., 2015. Automatic segmentation of the lateral geniculate nucleus: application to control and glaucoma patients. J. Neurosci. Methods 255, 104–114.

Wang, C., et al., 2018. White matter tract-specific quantitative analysis in multiple sclerosis: comparison of optic radiation reconstruction techniques. PLoS One 13 (1), 1-19.

Wilkins, B., et al., 2015. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values. NeuroImage 109, 341–356. Available at: https://www.sciencedirect.com/science/article/pii/S1053811914010659 (Accessed November 29, 2018).

Winston, Gavin P., Mancini, Laura, Stretton, Jason, Ashmore, Jonathan, Symms, Mark R., Duncan, John S., Youssry, Tarek A., 2011. Diffusion tensor imaging Tractography of the optic radiation for epilepsy surgical planning: a comparison of two methods. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2011.07.019.

Woolrich, M.W., et al., 2009. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 45 (1 Suppl).