Supporting Information

Molecularly Tunable Fluorescent Quantum Defects

Hyejin Kwon,† Al’ona Furmanchuk,‡§ Mijin Kim,† Brendan Meany,† Yong Guo,∥ George C. Schatz,*‡ and YuHuang Wang*,†,¶

†Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
‡Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
§Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
∥Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
¶Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
*Correspondence should be addressed to
Y.H.W. (yhw@umd.edu) or G.C.S. (schatz@chem.northwestern.edu)
Figure S1. Nanotube structure-dependent defect photoluminescence. The excitation-emission maps of (a), (6,5)-SWCNT; (b), (8,3)- and (8,4)-SWCNT; (c), (7,6)- and (8,4)-enriched SWCNTs; and (d), the mixed chirality of HiPco. Controlled sidewall alkylation induces new PL peaks (marked by *) in (e), (6,5)-SWCNT-CF₂(CF₂)₄CF₃; (f), (8,3)/(8,4)-SWCNT-CF₂(CF₂)₄CF₃; (g), (7,6)/(8,4)-SWCNT-CF₂(CF₂)₄CF₃; and (h), the mixed chirality of HiPco-SWCNT-CF₂(CF₂)₄CF₃. The nanotubes are stabilized in D₂O by 1 wt.% SDS.

Figure S2. Nanotube structure-dependent defect photoluminescence. Emission energy of defect photoluminescence is dependent on the nanotube diameter. All chirality-enriched carbon nanotubes used here are functionalized with -C₆F₁₃ groups.
Figure S3. Brightening of nanotube defect photoluminescence. (a) Exitation-emission map of pristine CoMoCAT (6,5)-SWCNT. (b) Excitation-emission map of CoMoCAT (6,5)-SWCNT-C₆F₁₃. (c) Emission spectra at 565 nm excitation. (d) UV-vis-NIR absorption spectra.
Figure S4. Correlated spectral characterization of functionalized SWCNTs at increasing molar reactant ratios of CF₃(CF₂)₄CF₂I (RX) to the mixed chirality of HiPco SWCNT carbon. (a) Raman scattering. The excitation line is 532 nm. (b) XPS (taken at 25 °C). The O1s peak is marked with an asterisk (*). (c) Photoluminescence. (d) The ratio of covalently attached function group to nanotube carbon, [R]/[C], as determined from XPS, increases linearly with the reactant ratio, [RX]/[C]. (e) Raman D/G ratio of SWCNT-CF₂(CF₂)₄CF₃ at increasing [RX]/[C].
Figure S5. High resolution XPS of C 1s at 175 °C for SWCNT-CF$_2$(CF$_2$)$_4$CF$_3$. (a) Non-functionalized control. (b), [C]:[RX]=1:50. (c), [C]:[RX]=1:500. (d), [C]:[RX]=1:2500. The nanotubes used here are a sample of mixed chirality HiPco SWCNTs.

Figure S6. High resolution XPS of F 1s at 175 °C for SWCNT-CF$_2$(CF$_2$)$_4$CF$_3$. (a) Non-functionalized control. (b), [C]:[RX]=1:50. (c) [C]:[RX]=1:500. (d), [C]:[RX]=1:2500. The nanotubes used here are a sample of mixed chirality HiPco SWCNTs.
Figure S7. Tunable defect photoluminescence from (6,5)-SWCNTs with (a) six-carbon alkyl chains, (b) monovalent and divalent alkyl groups, and (c) monovalent and divalent aryl groups. The emission spectra were taken at 565 nm and the peak intensity was normalized by the peak intensity of the defect PL. Note that the asterisked (*) sidebands may be due to trapped trions1.
Table S1. Alkyl/aryl halides used in this study and their defect photoluminescence.

(6,5)-SWCNT-R	E_{11} (nm)	E_{11}' (nm)	ΔE (meV)	Source of Precursor	-X
Non-functionalized	979	-	-	-	-
$-{\text{CH}}_3$	980	1094	132	Sigma Aldrich	I
$-{\text{CH}}_2\text{CH}_2\text{CH}_3$	984	1099	132	Sigma Aldrich	I
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	981	1096	133	Sigma Aldrich	I
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	980	1097	135	Sigma Aldrich	Br
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CF}_3$	980	1099	137	Oakwood chemical	I
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH}$	980	1102	140	Sigma Aldrich	Br
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CF}_3$	981	1101	140	Santa Cruz Biotech.	I
$-{\text{CH}}_2\text{CH}_2\text{CH}_2\text{CF}_3$	979	1104	143	Aurum Pharmatech LLC.	I
$-{\text{CH}}_2\text{CF}_3$	981	1110	147	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1107	146	Matrix Scientific	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1111	150	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1111	152	Pfaltz and bauer	I
$-{\text{CH}}_2\text{(12C)}$	980	1121	159	Sigma Aldrich	I
$-{\text{CH}}_2\text{(13C)}$	984	1127	160	AstaTech, Inc.	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	979	1121	160	Enamine LLC	I
$-{\text{CH}}_2\text{(12C)}$	979	1125	164	Sigma Aldrich	I_2
$-{\text{CH}}_2\text{(13C)}$	980	1125	163	Cambridge Isotope	I_2
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	979	1125	164	Hit2lead	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1129	168	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1131	169	TCI	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1133	171	Spectra Group Limited Inc	I_2
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	983	1137	170	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	983	1139	173	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	979	1138	177	Sigma Aldrich	I
$-{\text{CH}}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_3$	980	1145	182	Combiphos catalysts, INC	I
$-{\text{CF}}_3$	979	1152	190	Sigma Aldrich	I
$-{\text{CF}}_3$	986	1162	190	Sigma Aldrich	I_2
$-{\text{CF}}_2\text{CF}_2\text{CF}_2\text{CF}_3$	981	1155	190	Sigma Aldrich	I
$-{\text{CF}}_2\text{CF}_2\text{CF}_2\text{CF}_3$	979	1155	193	Sigma Aldrich	I
$-{\text{CF}}_2$	980	1158	194	Sigma Aldrich	I
$-{\text{CF}}_2$	980	1164	200	SynQuest Lab	I_2
Figure S8. PL energy shifts versus calculated inductive constant (σ^*). (a) -($CH_2)_nCF_3 (n = 0-5). (b), $C_6H_{13-n}F_n (n=0, 3, 5, 9, and 13). (c) The combined graph of (a) and (b).

Figure S9. Distribution of Mulliken charges in (6,5)-SWCNTs with a single monovalent defect (left) and the relative energy diagrams of (6,5)-SWCNTs with two monovalent defects (right). (a) CH$_3$. (b) CF$_3$. Note that the most thermodynamically stable structure of methyl functionalized (6,5)-SWCNT is 1,4-para position (m), where the Mulliken charges were highly negative.
Table S2. Orbital energies of simulated structures. Note that all conformations of (6,5)-SWCNT-(CF3)n (n=1, 2) produce larger shifts in emission energy (E11-E11') compared to their respective -CH3 defects.

Model	EHOMO-1 (eV)	EHOMO (eV)	E_LUMO (eV)	E_LUMO-1 (eV)	EHOMO* (eV)	E_LUMO* (eV)	E_LUMO-1* (eV)	E11-E11' (meV)
pristine	-4.603	-4.593	-3.001	-3.000	1.592	1.603	-	
k_CH3	-4.599	-4.488	-3.196	-2.956	1.292	1.643	351	
l_CH3	-4.599	-4.534	-3.032	-2.947	1.503	1.652	149	
m_CH3	-4.614	-4.520	-3.103	-2.941	1.417	1.672	256	
o_CH3	-4.598	-4.459	-3.176	-2.949	1.283	1.649	366	
k_CF3	-4.634	-4.542	-3.308	-2.993	1.234	1.641	407	
l_CF3	-4.633	-4.592	-3.118	-2.988	1.474	1.645	171	
m_CF3	-4.644	-4.573	-3.207	-2.979	1.366	1.664	298	
o_CF3	-4.607	-4.470	-3.192	-2.957	1.278	1.650	372	

Figure S10. Bond lengths of (6,5)-SWCNT ›CH2. C-C bond length around the ›CH2 defect is slightly longer than that in the pristine SWCNT (1.42 Å). The circumferential C-C bond at the defect site is increased to 2.17 Å and thus is broken to adopt an opened three-membered ring.
Figure S11. Distribution of Mulliken charges in (6,5)-SWCNTs with single divalent defect (left) and the relative energy diagram of (6,5)-SWCNTs with two divalent defects (right). (a) ›CH₂. (b) ›CF₂.
Figure S12. Frontier orbitals of non-functionalized control and (6,5)-SWCNTs with a covalently attached single ›CH₂, -CH₃, ›CF₂, and -CF₃ group. The HOMOs and LUMOs were plotted at their iso-surface equal to 0.003.
Time-Dependent DFT Calculations

The electronically excited states can be described in terms of excitation amplitudes based on a set of ground state orbitals. For example, in the time-dependent density functional theory-based approach\(^2\)-\(^{10}\) the excited states are derived from density functional theory ground states. Here the random phase approximation expands the reference states to the many electron space consisting of all single particle-hole excitations. The end result of such a calculation is an excitation energy and a set of coefficients (excitation amplitudes) describing the contribution that each electron-hole pair makes to the excited state.

Here we focus on the absorption spectra of two aryl-based functionalizations of (6,5)-SWCNT. The functionalization patterns (Figure S13 left panel) are chosen to be generally relevant to the functionalization discussed in this work. For this task, we employed the asymptotically corrected wB97XD functional of Chai and Head-Gordon\(^{11}\) which has a 100% fraction of the HF exchange at long-range and about 22% at short-range and incorporates empirical dispersion corrections. The STO-3G basis set was used in the TD-DFT calculations. The lowest 44 excited-state transition energies and their respective oscillator strengths were computed. The absorption spectra were further simulated using a Gaussian line shape with empirical line-broadening parameters to mimic various broadening effects occurring under experimental conditions.

The incorporation of aryl groups leads to brightening of the lowest energy exciton a (Figure S13 right panel) that is optically dark for the pristine (6,5)-SWCNT. The red-shifts of the lowest state upon covalent functionalization, as well as brightening of this transition observed in simulated absorption spectrum could be associated with the experimentally observed E\(_{11}\) peaks in PL spectra. The E\(_{11}\) peak in the absorption spectra of the defect-tailored SWCNTs exhibits a blue shift and is broadened compared to the pristine SWCNT.

Except structure II, the rest of the structures show dominance of ground state HOMO→LUMO transitions contributing to the lowest energy exciton as assigned in Table S3. The energy and the oscillator strength of the lowest energy transition are sensitive to the atomic configuration of the defect. Both degree of brightening (Figure S13 right panel) and localization of HOMO/LUMO orbitals (Figure S14) are also strongly dependent on the functionalization pattern.
Figure S13. Configurations of aryl defect-tailored (6,5)-SWCNT (left panel) and corresponding absorption spectra (right panel). Configurations I and III in this picture correspond to configurations k and n in Figure S9b, correspondingly. Spectra calculated for pristine (6,5)-SWCNT (dotted blue line) and various aryl defect-tailored (6,5)-SWCNT (solid red line).
Table S3. Contributions of ground state orbitals to excitonic transitions assigned in Figure S13.

Structure label	Excitation energy, eV	Peak label	Type of orbitals	Contribution of ground state orbitals to excitation		
I	1.838	a	HOMO-2 → LUMO	0.25		
			HOMO-2 → LUMO+2	0.22		
			HOMO-1 → LUMO	-0.18		
			HOMO-1 → LUMO+1	-0.13		
			HOMO → LUMO	0.49		
	2.4619	b	HOMO-7 → LUMO+1	0.10		
			HOMO-6 → LUMO	-0.22		
			HOMO-5 → LUMO+2	-0.11		
			HOMO-3 → LUMO+2	-0.16		
			HOMO-3 → LUMO+3	0.28		
			HOMO-2 → LUMO+3	0.17		
			HOMO-1 → LUMO+4	-0.11		
			HOMO → LUMO+6	-0.21		
III	1.3447	a	HOMO → LUMO	0.65		
	1.9326	b	HOMO-2 → LUMO	0.10		
			HOMO-2 → LUMO+1	-0.15		
			HOMO-1 → LUMO	-0.21		
			HOMO-1 → LUMO+1	0.45		
			HOMO-1 → LUMO+2	0.22		
			HOMO-1 → LUMO+3	-0.13		
			HOMO → LUMO+1	-0.16		
			HOMO → LUMO+2	-0.20		
	2.3372	c	HOMO-11 → LUMO	0.11		
			HOMO-6 → LUMO	0.20		
			HOMO-6 → LUMO+1	-0.11		
			HOMO-4 → LUMO	0.10		
			HOMO-4 → LUMO+4	-0.14		
			HOMO-3 → LUMO+3	-0.13		
			HOMO-3 → LUMO+4	0.22		
			HOMO-2 → LUMO+1	0.16		
			HOMO-2 → LUMO+2	-0.17		
			HOMO-2 → LUMO+3	-0.11		
			HOMO-1 → LUMO	-0.17		
			HOMO-1 → LUMO+2	-0.14		
			HOMO-1 → LUMO+3	0.12		
			HOMO → HOMO-2	0.15		
IV	1.1683	a	HOMO-1 → LUMO	-0.22		
Energy	1.8183 b	2.3075 c	1.6751 a	2.016 b	2.1912 c	2.3743 d
--------	-----------	-----------	-----------	----------	-----------	----------
HOMO→LUMO	0.63	0.14	0.11	-0.41	-0.14	-0.11
HOMO→LUMO+1	0.12	-0.13	0.11	0.13	0.17	0.10
HOMO-5 → LUMO	0.11	-0.13				
HOMO-5 → LUMO+5	0.13					
HOMO-1 → LUMO	-0.24					
HOMO-1 → LUMO+1	0.48					
HOMO → LUMO	-0.13					
HOMO → LUMO+1	0.33					
HOMO-5 → LUMO+5	0.11					
HOMO-4 → LUMO+2	0.13					
HOMO-4 → LUMO+4	-0.17					
HOMO-3 → LUMO	-0.10					
HOMO-2 → LUMO+2	0.44					
HOMO-2 → LUMO+4	-0.18					
HOMO-1 → LUMO+5	-0.12					
HOMO-6 → LUMO	-0.12					
HOMO-6 → LUMO+6	-0.13					
HOMO-5 → LUMO+1	-0.11					
HOMO-4 → LUMO+2	0.13					
HOMO-3 → LUMO	-0.13					
HOMO-1 → LUMO+2	-0.11					
HOMO → LUMO+1	0.37					
HOMO → LUMO+2	0.12					
HOMO → LUMO+3	0.12					
HOMO → LUMO+5	0.36					
HOMO → LUMO+6	-0.13					
HOMO-2 → LUMO+1	-0.41					
HOMO-2 → LUMO+2	0.47					
HOMO-2 → LUMO+5	0.13					
HOMO-14 → LUMO	-0.14					
HOMO-8 → LUMO	0.17					
HOMO-4 → LUMO	0.26					
HOMO-3 → LUMO+1	0.12					
HOMO-3 → LUMO+2	0.11					
HOMO-1 → LUMO+4	-0.13					
HOMO-1 → LUMO+5	0.11					
HOMO → LUMO+2	-0.26					
HOMO → LUMO+6	0.17					
HOMO → LUMO+7	-0.20					
HOMO-6 → LUMO	-0.11					
HOMO-5 → LUMO+1	0.10					
Energy (eV)	Transition	E (eV)				
------------	------------	--------				
a 1.7748	HOMO-2 → LUMO+18	-0.12				
	HOMO-1 → LUMO	0.25				
	HOMO-1 → LUMO+2	0.12				
	HOMO → LUMO	0.46				
	HOMO → LUMO+1	-0.32				
b 2.1883	HOMO-6 → LUMO	-0.11				
	HOMO-5 → LUMO	0.23				
	HOMO-5 → LUMO+1	-0.18				
	HOMO-4 → LUMO+1	0.10				
	HOMO-2 → LUMO	-0.17				
	HOMO-2 → LUMO+1	0.16				
	HOMO-2 → LUMO+2	0.24				
	HOMO-1 → LUMO+2	-0.13				
	HOMO-1 → LUMO+5	0.15				
	HOMO → LUMO+2	-0.20				
	HOMO → LUMO+4	0.13				
	HOMO → LUMO+5	0.17				
c 2.3434	HOMO-7 → LUMO	0.17				
	HOMO-5 → LUMO+1	-0.11				
	HOMO-4 → LUMO+1	-0.17				
	HOMO-4 → LUMO+4	0.12				
	HOMO-4 → LUMO+5	-0.13				
	HOMO-3 → LUMO+3	0.35				
	HOMO-1 → LUMO+4	0.15				
	HOMO-1 → LUMO+5	-0.12				
	HOMO → LUMO+7	-0.12				
	HOMO → LUMO+8	-0.15				
d 2.5177	HOMO-8 → LUMO	0.13				
	HOMO-7 → LUMO+2	0.15				
	HOMO-7 → LUMO+3	-0.13				
	HOMO-6 → LUMO+1	0.12				
Figure S14. Functionalization pattern-dependent localization of frontier orbitals. Shown are two aryl functional groups in various atomic configurations in comparison with the non-functionalized structure.
Figure S15. pH-responsive defect photoluminescence. (a) monovalent and (b) divalent aminobenzene-functionalized (6,5)-SWCNTs.

References
1. Brozena, A. H.; Leeds, J. D.; Zhang, Y.; Fourkas, J. T.; Wang, Y. ACS Nano 2014, 8, 4239.
2. Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255.
3. Casida, M. E. in Recent Advances in Density Functional Methods, Vol. 1, edited by Chong, D. P. World Scientific, Singapore, 1995.
4. Petersilka, M.; Grossmann, U. J.; Gross, E. K. U.; Phys. Rev. Lett. 1996, 76, 1212.
5. Petersilka, M.; Gross, E. K. U. *Int. J. Quantum Chem.* **1996**, *30*, 181.
6. van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J. *1995*, *103*, 9347.
7. van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J. *J. Comput. Chem.* **2000**, *21*, 1511.
8. Bauernschmitt, R.; Ahlrichs, R. *Chem. Phys. Lett.* **1996**, *256*, 454.
9. Bauernschmitt, R.; Ahlrichs, R.; Hennrich, F. H.; Kappes, M. M. *J. Am. Chem. Soc.* **1998**, *120*, 5052.
10. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. *J. Chem. Phys.* **1998**, *109*, 8218.
11. Chai, J.; Head-Gordon, M. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615.