Japanese VLBI Network observations of radio-loud narrow-line Seyfert 1 galaxies

Akihiro Doi,1,4† Kenta Fujisawa,1 Makoto Inoue,2 Kiyoshi Wajima,3 Hiroshi Nagai,4,2 Keiichiro Harada,1 Koosuke Suematsu,1 Asa Habe,5 Mareki Honma,2,4 Noriyuki Kawaguchi,2,4 Eiji Kawai,6 Hideyuki Kobayashi,7,2 Yasuhiro Koyama,6 Hiromitsu Kuboki,6 Yasuhiro Murata,8,9 Toshio Omokawa,10 Kazuo Sorai,5 Hiroshi Sudo,11 Hiroshi Takaba,11 Kazuhiro Takashima,12 Koji Takeda,10 Sayaka Tamura,9,8 and Ken-ichi Wakanatsu,11

1Faculty of Science, Yamauchi University, 1677-1 Yoshida, Yamauchi, Yamaguchi 753-8512
2National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588
3Korea Astronomy and Space Science Institute, 61-1 Whaam-dong, Yuseong, Daejeon 305-348, Korea
4Department of Astronomical Science, Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588
5Division of Physics, Graduate School of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810
6Kashima Space Research Center, National Institute of Information and Communications Technology, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510
7Mizusawa VERA Observatory, 2-12 Hoshibaoka, Mizusawa, Oshu, Iwate 023-0861
8The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510
9Department of Space and Astronautical Science, The Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510
10Faculty of Science, Kagoshima University, 1-21-30 Korimoto, Kagoshima, Kagoshima 890-0065
11Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193
12Geographical Survey Institute, 1 Kitasato, Tsukuba, Ibaraki, 305-0811

(Received 2006 August 31; accepted 2007 April 9)

Abstract

We performed phase-reference very long baseline interferometry (VLBI) observations on five radio-loud narrow-line Seyfert 1 galaxies (NLS1s) at 8.4 GHz with the Japanese VLBI Network (JVN). Each of the five targets (RXS J08066+7248, RXS J16290+4007, RXS J16333+4718, RXS J16446+2619, and B3 1702+457) in milli-Jansky levels were detected and unresolved in milli-arcsecond resolutions, i.e., with brightness temperatures higher than 10^7 K. The nonthermal processes of active galactic nuclei (AGN) activity, rather than starbursts, are predominantly responsible for the radio emissions from these NLS1s. Out of the nine known radio-loud NLS1s, including the ones chosen for this study, we found that the four most radio-loud objects exclusively have inverted spectra. This suggests a possibility that these NLS1s are radio-loud due to Doppler beaming, which can apparently enhance both the radio power and the spectral frequency.

Key words: galaxies: active — galaxies: jets — galaxies: Seyfert — radio continuum: galaxies — techniques: interferometric

1. Introduction

Narrow-line Seyfert 1 galaxies (NLS1s), a class of active galactic nuclei (AGNs), are defined as having the following optical properties: (1) the full-width at half-maximum (FWHM) of Hβ is less than 2000 km s$^{-1}$, (2) permitted lines are only slightly broader than forbidden lines, and (3) [OIII]/Hβ < 3 (Osterbrock & Pogge 1985; Pogge 2000). NLS1s have been extensively studied on both optical and X-ray bands; results show that many of their properties are clearly different to those of the classical Seyfert galaxies. There is increasing evidence that NLS1s are extreme AGNs, with accretion rates near the Eddington limit (e.g., Pounds et al. 1995; Boroson 2002) onto relatively lower mass ($\sim 10^6 M_\odot$) black holes (Peterson et al. 2000; Grupe & Mathur 2004), although this picture is still under debate. On the other hand, the radio properties of NLS1s have not been well investigated; to date, there are only two known systematic surveys (Ulvestad et al. 1995; Moran 2000). From these two surveys, unlike the optical and X-ray studies, the radio data showed little difference between NLS1s and classical Seyfert galaxies. Zhou & Wang (2002) suggested that there is a scarcity of radio-loud NLS1s, particularly very
radio-loud ones (see also Komossa et al. 2006a). Radio loudness, \(R \), was conventionally defined as the ratio of 5-GHz radio to \(B \)-band flux densities, with a threshold of \(R = 10 \) separating radio-loud and radio-quiet objects (e.g., Visnovsky et al. 1992; Stocke et al. 1992; Kellermann et al. 1994). The reason for the scarcity of radio-loud (\(R > 10 \)) NLS1s is still unknown. The radio-quietness of NLS1s may possibly be related to the suppression of radio jets emanated from accretion disks with high accretion rates (Greene et al. 2006), as well as X-ray binaries in the high/soft state (see, e.g., McClintock & Remillard 2003 for a review).

Radio-loud (\(R > 10 \)) NLS1s are rare, but they do exist (Siebert et al. 1999; Grupe et al. 2000; Zhou et al. 2003; Whalen et al. 2006; Komossa et al. 2006a; Komossa et al. 2006b). One possible idea that could explain the existence of radio-loud NLS1s is that nonthermal jets are associated with NLS1s, and a relativistic effect on these jets influences the radio loudness of NLS1s, as well as the other radio-loud AGN classes. Hardening of X-ray spectra during rapid X-ray flares of the radio-loud NLS1 PKS 0558–504 could arise from the transient spectral dominance of synchrotron emission from relativistically boosted jets (Wang et al. 2001), similar to the spectra of radio-loud quasars (e.g., Reeves et al. 1997).

Observational evidence for the existence of nonthermal jets and Doppler beaming effect on them are required. If not, the presence of bright radio lobes or a starburst will be needed to explain the radio excess.

Very long baseline interferometry (VLBI) is the most powerful tool available for revealing to such properties by direct imaging. Arcsecond-resolution observations have resolved the structures of only a few NLS1s (Ulvestad et al. 1995; Moran 2000); however, there was insufficient evidence to prove the existence of jets. VLBI images at milli-arcsecond (mas) resolutions had been reported for only three radio-quiet NLS1s: MRK 766, AKN 564 (Lal et al. 2004), and NGC 5506 (Middelberg et al. 2004); pc-scale radio structures were revealed in these NLS1s. VLBI observations on a large number of NLS1s, both radio-quiet and radio-loud objects, are crucial if we are to understand the nature of possible highly energetic jet phenomena in these central engines.

We have started VLBI imaging studies on over a dozen NLS1s, including both radio-quiet and radio-loud objects. It has previously been reported that VLBI observations for the most radio-loud (\(R \approx 2000 \); Zhou et al. 2003) object, SDSS J094857.3+002225, revealed that Doppler-boosted jets are needed to explain observed high brightness temperatures on its radio emissions (Doi et al. 2006a).

In the present paper, we report our VLBI survey of five radio-loud NLS1s at 8.4 GHz. In Section 2, we outline the reasons for our selection of NLS1s. In Section 3, we describe our observations and data reduction procedures. In Section 4, we present the observational results. In Section 5, we discuss the implications of the results. In Section 6, we summarize the outcomes of our investigation. Throughout this paper, a flat cosmology is assumed, with \(H_0 = 71 \) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.27 \), and \(\Omega_L = 0.73 \)
Table 2. JVN observations.

Date	Antenna*	\(\nu\) (GHz)	Target	\(t_{\text{scan}} \times N_{\text{scan}}\) (sec)
2006Mar17	VMI VIR	8.424	RXS J08066+7248	130\times45
2006Mar26	VERA\times4	8.424	RXS J08066+7248	130\times6
	GIF Ks Ud		RXS J16290+4007	120\times22
	TKB YMG		RXS J16446+2619	120\times16
2006May20	VERA\times4	8.424	RXS J16333+4718	158\times15
	GIF Ks Ud		B3 1702+457	162\times18

Col. (1) observation date; Col. (2) antenna participant; Col. (3) observing frequency at band center; Col. (4) target name; Col. (5) scan length in second and number of scans.

* Station code — Ks: Kashima 34 m of NICT, Ud: Usuda 64 m of JAXA, YMG: Yamaguchi 32 m of NAOJ, TKB: Tsukuba 32 m of GSI, GIF: Gifu 11 m of Gifu University, VMI: VERA Mizusawa 20 m, VIR: VERA Iriki 20 m, VOG: VERA Ogasawara 20 m, and VIS: VERA Ishigaki 20 m of NAOJ.

a phase-referencing technique that involved fast switching of an antenna’s pointing direction. The switching-cycle period was usually 5 minutes, or ~3 minutes at low elevations. For three targets (RXS J08066+7248, RXS J16333+4718, and B3 1702+457), we adopted observation schedules for bigradient phase referencing (BPR; Doi et al. 2006c) using two calibrators: C1-C2-C1-C2-C1-C2-T-C1-T-C1-C2-C1-C2-C1-C2-C1-C2-C1-T-C1-T-C1-T-C1-T-C1-T-C1-. . . , where C1, C2, and T represent the primary calibrator, the secondary calibrator, and the desired target, respectively. C1 should be strong enough to be detected in a few minutes. Even if C2 is a fringe-undetectable calibrator in a few minutes, the BPR can make it a fringe-detectable one by coherent integration of phase-referenced data for several tens of minutes. The detected C2 will be used as either (1) an alternative focal point, instead of C1, to reduce the separation angle between a target and the calibrator or (2) a tracer to measure undesirable phase-drifts in the sky in order to shift the focus to the nearest point from T on the line of C1-C2 (Doi et al. 2006c). For three targets (RXS J16333+4718, RXS J08066+7248, and B3 1702+457), the C2–C1 pair is almost parallel and RX J16446+2619, the C2–C1 pair is almost parallel.

Table 3. Phase-reference calibrators.

Target	Calibrator	\(\Delta\theta\) (deg)
RXS J08066+7248	J0808+7315*	0.46
RXS J16290+4007	J1625+4134*	1.56
	J1623+3909	1.50
	NRAO 512	2.23
RXS J16333+4718	J1637+4717*	0.74
	J1628+4734	0.85
RXS J16446+2619	J1642+2523*	1.04
B3 1702+457	J1707+4536*	0.67
	B3 1702+460	0.32

Col. (1) target’s name; Col. (2) calibrator’s name; Col. (3) separation angle between target and calibrator.

* Primary calibrator as C1 (Section 3.1).

3.2 Data reduction

Data reduction procedures were performed in following the standard procedure of data inspection, flagging, fringe-fitting, and bandpass calibration using the Astronomical Image Processing System (AIPS; Greisen 2003) developed at the US National Radio Astronomy Observatory. A standard a-priori amplitude calibration was not used, mainly because several JVN antennas were not equipped with the monitoring system of system noise temperature, \(T_{\text{sys}}\). Amplitude-gain parameters relative to each antenna were obtained by self-calibration for a point-like strong source, which was near a target in the sky and scanned every several tens of minutes. A scaling factor of absolute amplitude was obtained from the result of a-priori calibration using the aperture efficiencies and \(T_{\text{sys}}\) logs of only three antennas (Yamaguchi 32 m, Kashima 34 m, Usuda 64 m) with the \(T_{\text{sys}}\) monitors. Such a flux calibration appeared to achieve an accuracy level of 10% or less, according to several experiments on the JVN.

We obtained correction parameters for both amplitude and phase by self-calibration of C1 with the AIPS task CALIB using a source structure model, which was established in the Difmap software (Shepherd 1997) using deconvolution and self-calibration algorithms iteratively. The correction parameters were applied to the data of T, C2, and C3. After correcting the positions of the phase-referenced C2 and C3, we derived phase-drift curves from the solutions of self-calibration on both C2 and C3. The amplitude of the phase-drift curves was appropriately scaled-up/down by factors that should be determined from the ratios of separation angles and position angles of the target-calibrator pairs (Doi et al. 2006c). For the observations of RX J16333+4718, RX J08066+7248, and RX J16446+2619, the C2–C1 pair is almost parallel.
to the T–C1 pair in the sky. Therefore, we determined the scaling factors so that $C_1' C_2' = r_{12} C_1 C_2$, where C_2' is the nearest point on the C1–C2 line from T and r_{12} is the scaling factor. For the data of RXS J16290+4007 including C2 and C3, we determined two scaling factors so that $C_1 T = r_{12} C_1 C_2 + r_{13} C_1 C_3$. The target and the calibrators in B3 1702+457 observation does not align. Hence, we applied to T the raw solutions of self-calibration on C2, implying that we obtained a closer reference point by replacing C1 with C2.

Imaging and deconvolution of the calibrated data were carried out using Difmap. Frequency averaging was done in each IF of 16 MHz, resulting in a field of view of $\sim 0''3$ due to bandpass smearing. We tentatively searched emission components with peak intensities larger than 5σ of the noise on natural-weighting images in the field of view. We detected all five targets. After adjusting the mapping centers to the position of emission peaks, we re-imaged them. Astrometric measurements were made in these images using the JMFIT of AIPS task. In addition, we performed self-calibration on four sources only in phase, and obtained solution parameters for all available antennas with signal-to-noise ratios of more than 3.0. The image dynamic ranges have slightly improved. Self-calibration could not be performed on RXS J08066+7248 because of its weakness. A residual phase-drift in the phase-referenced JVAS 0754+7140, because this type of phase error is mainly dependent on the separation angle of source pair (Beasley & Conway 1995). The root-mean-square (RMS) phase error in RXS J08066+7248 was 39$''$: the separation angles of RXS J08066+7248 and JVAS 0754+7140 were measured and found to be $\sim 0''3$; the separation angles of RXS J08066+7248 and JVAS 0754+7140 from J0808+7315 are $0''46$ and $1''87$, respectively. Therefore, the phase error in RXS J08066+7248 was estimated to be 9$'6$, causing a coherence loss of only a few percent in amplitude.

4. Results

We detected each of the five radio-loud NLS1s in mas resolutions, as shown in Fig. 1. These are the first VLBI images for these NLS1s. A single emission component is seen in each image with dynamic ranges of 7.9–75 (Table 4). Flux measurements were carried out by elliptical-Gaussian fitting to the source profiles using the JMFIT of AIPS task. Flux densities of 7–150 mJy; the values of radio loudness simply derived from the 8.4 GHz JVN flux densities are still in the radio-loud regime for all the objects, except for B3 1702+457. Radio powers at the rest frame are listed in Table 5.

All sources were unresolved in the JVN beams, resulting in brightness temperatures higher than 2.8×10^7–1.1×10^9 K at the rest frame (Table 5), which were calculated using

$$T_B = 1.8 \times 10^9 (1 + z) \frac{S_\nu}{\nu^2 \phi_{\text{maj}} \phi_{\text{min}}}$$

in K, where z is redshift, S_ν is the flux density in mJy at frequency ν in GHz, ϕ_{maj} and ϕ_{min} in mas are the fitted full widths at half maximum of the major and minor axes of source size, respectively (cf., Ulvestad et al. 2005). Because these were unresolved, we adopted one-half the beam sizes, i.e., $\theta/2$ (Table 4), as the upper limits to the source sizes ϕ.

The 8.4 GHz JVN flux densities for the two most radio-loud objects in our sample, RXS J16290+4007 and RXS J16446+2619, were larger than 1.4 GHz VLA ones (Tables 1 and 5). Although the difference between the beam sizes of VLA and JVN causes resolution effect, we can obtain at least the lower limit of spectral index α ($S_\nu \propto \nu^{-\alpha}$). Hence, the two inverted ($\alpha > 0$) spectra must be real, without any regard for possible flux variability.

5. Discussion

We discuss the origin of the detected radio flux densities and what makes these NLS1s radio-loud, in the present paper. Possible radio emitting sources with relatively high brightness temperatures in active galaxies are (1) an accretion disk, (2) circumnuclear ionized torus, (3) compact super-nova remnants (SNRs), and (4) AGN jets.

An effective temperature in accretion disk would be at most 10^7 K even in the innermost region (within several times the Schwarzschild radius) of a “slim disk,” a theoretical model for super-Eddington accretion (Abramowicz et al. 1988), which may be a possible central engine for NLS1s (e.g., Mineshige et al. 2000; Wang & Netzer 2003). The emissions from such a small region and a relatively low temperature could hardly account for the detected radio fluxes with JVN. The nucleus of the classical Seyfert galaxy, NGC 1068, has a component, S1, that may trace thermal free-free emissions from the ionized region of innermost (~1 pc) molecular torus (Gallimore et al. 2004). However, this is an exceptional example and its brightness temperature was at most 10^6 K, far inferior when compared with the detected radio-loud NLS1s.

The measured brightness temperatures, $T_B > 2.8 \times 10^7$–1.1×10^9 K (Table 5), were quite high, which is evidence for the existence of a nonthermal process. Many VLBI detections have been reported for very young, compact SNRs, for example, SN 1993J (Bietenholz et al. 2001). However, even the most luminous radio SNR, SN 1988Z ($z \approx 0.022$), generated a radio power at 8.4 GHz of $\sim 10^{21.3}$ W Hz$^{-1}$ at the maximum in its light curve (van Dyk et al. 1993). The sources detected with JVN clearly exceed this limit, excluding a compact SNR origin. Although the radio powers taken from a sample of the most radio-luminous starbursts are $\sim 10^{22.3}$–$10^{23.4}$ W Hz$^{-1}$ (Smith et al. 1998), these brightness temperatures were derived to be $\lesssim 10^6$ K, much less than those of the detected radio-loud NLS1s. Thus, the stellar origin should be ruled out.

Previously, based on the sensitivity of $\sim 10^6$–10^8 K, VLBI imaging has been used to prove that radio emissions associated with AGNs are powered by a nonther-
Fig. 1. JVN images of radio-loud NLS1s at 8.4 GHz. The source name is indicated at upper-left corner in each panel. Data of all sources, except for RXS J08066+7248, were self-calibrated (Section 3.2). All images were synthesized in natural weighting. Contour levels are separated by factors of $\sqrt{2}$ beginning at 3 times the RMS of image noise (Table 4). Negative and positive contours are shown as dashed and solid curves, respectively. Half-power beam sizes (Table 4) are given in the lower left corners.
We now discuss the relationship between the radio loudness and the radio spectral index. We made the plot of radio loudness vs. radio power using (a) the nine radio-loud NLS1s listed in Zhou & Wang (2002), including the five NLS1s observed with JVN (see, Section 2), and (b) the most radio-loud narrow-line quasar SDSS J094857.3+002225 \((R \approx 2000;\) Zhou et al. 2003), as shown in Fig. 2. RXS J00449+1921, one of the sample in Zhou & Wang (2002), was excluded from the plot because recent observations have found it to be radio-quiet (Maccarone et al. 2005). Total flux densities at 1.4–5 GHz were taken from V´erony-Cetty & V´erony (2001) for these NLS1s, except for HE 0132–4313 at 4.85–8.4 GHz (Grupe et al. 2000), PKS 0558–27 at 2.7–4.85 GHz (Wright & Otrupcek 1990; Wright et al. 1994), and SDSS J094857.3+002225 at 1.43–4.86 GHz (Doi et al. 2006a). We discovered that the four inverted spectrum sources are the four most radio-loud objects: SDSS J094857.3+002225 with \(R \approx 2000,\) 2E 1640+5345 with \(R = 282,\) RXS J16446+2619 with \(R = 200,\) and RXS J16290+4007 with \(R = 182.\) This suggests that there could be some connection between a strong low-frequency absorption and the high values of radio loudness. We discuss two possiblilities to cause the combination of the high radio loudness and the strong absorption. (1) One possibility is Doppler beaming effect on jets. The radio flux density from jets could have been boosted by a factor of \(\delta^{3-\alpha}\) (Doppler factor), where \(\delta \equiv \sqrt{1-\beta^2/(1-\beta \cos \phi)},\) \(\beta \equiv v/c\) (\(v\) is the source speed), and \(\phi\) is the angle between the direction of the source velocity and our line of sight, although the optical emission from accretion disk is not affected: higher radio loudness could be achieved.

Table 4. Parameters of JVN images.

Name	\(\sigma\) (mJy beam\(^{-1}\))	\(\theta_{\max} \times \theta_{\min}\) (mas \(\times\) mas)	\(PA\) (deg)	\(DR\)	\(l\) (pc/mas)
RXS J08066+7248	0.54	3.9 \(\times\) 7.1	-17	7.7	1.8
RXS J16290+4007	1.82	3.1 \(\times\) 4.7	-29	15	4.1
RXS J16333+4718	0.93	3.0 \(\times\) 7.3	-34	16	2.1
RXS J16446+2619	1.94	2.4 \(\times\) 6.5	-32	75	2.5
B3 1702+457	0.95	3.0 \(\times\) 7.3	-74	16	1.2

Col. (1) target’s name; Col. (2) RMS of image noise; Col. (3) FWHMs of major and minor axes of synthesized beam; Col. (4) position angle of the beam major axis; Col. (5) image dynamic range, defined as the ratio of peak intensity to RMS of image noise; Col. (6) linear scale in pc corresponding to 1 mas at the distance to the source.

Table 5. Observational results.

Name	RA (J2000.0)	Dec (J2000.0)	\(S_{\text{VLA}}\) (mJy)	\(T_{\text{VLA}}\) (mJy beam\(^{-1}\))	\(P_{8.4\text{GHz}}\) (W Hz\(^{-1}\))	\(T_{B}\) (K)
RXS J08066+7248	08 06 38.95744	72 48 20.4042	6.9 \(\pm\) 1.4	4.2 \(\pm\) 0.7	23.2	\(>10^{24}\)
RXS J16290+4007	16 29 01.31060	40 07 59.9061	20.3 \(\pm\) 4.0	27.2 \(\pm\) 3.3	24.6	\(>10^{24}\)
RXS J16333+4718	16 33 23.58079	47 18 58.9298	21.2 \(\pm\) 2.9	15.0 \(\pm\) 1.8	23.8	\(>10^{24}\)
RXS J16446+2619	16 44 42.53939	26 19 13.2257	150.6 \(\pm\) 15.4	145.5 \(\pm\) 14.7	24.8	\(>10^{24}\)
B3 1702+457	17 03 30.38302	45 40 47.1679	18.5 \(\pm\) 2.6	15.1 \(\pm\) 1.8	23.2	\(>10^{24}\)

Col. (1) target’s name; Col.(2)–(3) astrometric position, measured relative to C1, by our phase-referenced VLBI observation. A position uncertainty was 1 mas or less, which was dominated by absolute-position uncertainties of C1 as an ICRF source (Ma et al. 1998; Fey et al. 2004); Col. (4) flux density. Error was determined as root-sum-square of flux calibration error (10%; Section 3.2) and Gaussian-fitting error (Section 4); Col. (5) peak intensity; Col. (6) radio power at a rest frequency of 8.4 GHz, in which \(k\)-correction was applied assuming a two-point spectral index derived from VLA at 1.4 GHz (Table 1) and JVN flux density at 8.4 GHz; Col. (7) brightness temperature at the rest frame [eq. (1)].
The peak frequency of a self-absorbed synchrotron spectrum could be enhanced by a factor of δ. The frequency range where an inverted spectrum could be seen would extend to our observing frequency. Doppler beaming in an NLS1 has already been established by variability (Zhou et al. 2003) and VLBI studies (Doi et al. 2006a) for SDSS J094857.3+002225, the most radio-loud object in Fig. 2. (2) Another possibility is a very compact radio lobe. Giga-hertz peaked spectrum objects (GPSs; O'Dea 1998 for a review) are strong, compact radio sources, and thought to be in a very early stage ($< 10^3$ yr) on the evolution of radio galaxies. The radio lobes of GPSs are probably self-absorbed due to high brightness, and its spectral evolution throughout the evolution of radio galaxy has been suggested (e.g., Snellen et al. 2000). According to the evolution framework, radio lobes become more luminous and less absorbed with age. However, although we used the limited number of radio-loud NLS1s, we cannot find any evidence of such an expected tendency in Fig. 2: inverted (i.e., strongly absorbed) spectra are rather seen at a high radio power regime. It is less likely that radio-loud NLS1s are a kind of GPSs. Therefore, we suggest the possibility that Doppler boosting has affected the radio loudness of these NLS1s showing inverted spectra.

We also have radio-loud NLS1s with steep ($\alpha < 0$) spectra. At least our VLBI detections have revealed the existence of components with high brightness temperatures in the three steep spectrum radio-loud NLS1s, as well as the two inverted spectrum ones. In case of $\alpha = -0.6$, more than about half of the 1.4 GHz VLA flux densities (Table 1) have been retrieved with JVN at 8.4 GHz, implying that a compact nonthermal component made a major contribution toward total radio fluxes. However, we have little suggestion about the reason why they are radio-loud. There may be following possibilities. (1) Doppler beaming may exist but mildly affected: there would be an insufficient boosting on frequency, but a sufficient boosting on radio flux to the observables, due to only δ-times boosting on frequency, but $\delta^{3-\alpha}$-times boosting on flux density. (2) These NLS1s may have significant jet structures that can provide a radio power sufficient to being radio-loud but cannot be resolved at the spatial resolution of JVN, ~ 3 mas$\times 7$ mas. In the condition of equipartition between synchrotron electrons and magnetic fields, a diameter of about 0.4 mas or more would be needed for a component size in these NLS1s so that a jet can be optically-thin (i.e., steep spectrum) at frequencies higher than 1.4 GHz. Even if radio lobes with a size of 1 mas or less possibly resided in these NLS1s, they could not be resolved with JVN beams. We cannot ruled out either of the possibilities only by the present study.

We have carried out another VLBI observation for the same sample at 1.7 GHz with the US Very Long Baseline Array (VLBA), and the results will be reported in a future paper. We expect that radio properties of the radio-loud NLS1s will be revealed in more detail, because optically-thin, extended synchrotron emissions would be detected more easily at such a low frequency.

6. Summary

We observed five radio-loud NLS1s at 8.4 GHz with the Japanese VLBI Network (JVN) using a phase-referencing technique. All the targets were detected and unresolved in mas resolutions, i.e., with brightness temperatures higher than 10^7–10^9 K. VLBI-detected flux densities kept four out of the five sources still radio-loud. Radio powers mainly originate in the nonthermal processes of AGN activity in central engines, rather than starbursts. We argued the properties of nonthermal jets in these NLS1s. The two most radio-loud objects in our sample, RXS J16290+4007 and RXS J16446+2619, showed inverted spectra between VLA flux densities at 1.4 GHz and JVN ones at 8.4 GHz. With nine radio-loud NLS1s, we also found that the four most radio-loud objects exclusively have inverted spectra. We suggest there is a possibility that the radio emissions of these NLS1s are enhanced by Doppler beaming, which can change both radio loudness and the peak frequency of synchrotron self-absorption spectra.

The JVN project is led by the National Astronomical Observatory of Japan (NAOJ) that is a branch of the National Institutes of Natural Sciences (NINS), Hokkaido University, Gifu University, Yamaguchi University, and Kagoshima University, in cooperation with the Geographical Survey Institute (GSI), the Japan Aerospace Exploration Agency (JAXA), and the National Institute
of Information and Communications Technology (NICT). We have made use of NASA’s Astrophysics Data System Abstract Service, the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory: it also has made use of Ned Wright’s on-line cosmology calculator. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

References

Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ, 332, 646
Beasley, A. J., & Conway, J. E. 1995, ASP Conf. Ser. 82: Very Long Baseline Interferometry and the VLBA, 82, 328
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Bietenholz, M. F., Bartel, N., & Rупен, M. P. 2001, ApJ, 557, 770
Boroson, T. A. 2002, ApJ, 565, 78
Blundell, K. M., & Beasley, A. J. 1998, MNRAS, 299, 165
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693
Doi, A., Fujisawa, K., Habe, A., Honma, M., Kawaguchi, N., Kobayashi, N., Murata, Y., Omodaka, T., Sudou, H., & Takaba, H. 2006c, PASJ, 58, 777
Doi, A., Nagai, H., Asada, K., Kameno, S., Wajima, K., & Inoue, M. 2006a, PASJ, 58, 829
Doi, A., et al. 2006b, ArXiv Astrophysics e-prints, arXiv:astro-ph/0612528
Fey, A. L., et al. 2004, AJ, 127, 3587
Fomalont, E. B., & Kogan, L. R., AIPS Memo No. 111
Gallimore, J. F., Baum, S. A., & O’Dea, C. P. 2004, ApJ, 613, 794
Greene, J. E., Ho, L. C., & Ulvestad, J. S. 2006, ApJ, 636, 56
Greisen, E. W. 2003, Information Handling in Astronomy - Historical Vistas, 109
Grupe, D., Leighty, M. L., Thomas, H.-C., & Laurent-Muehleisen, S. A. 2000, A&A, 356, 11
Grupe, D., & Mathur, S. 2004, ApJL, 606, L41
Kellermann, K. I., Sramek, R. A., Schmidt, M., Green, R. F., & Shaffer, D. B. 1994, AJ, 108, 1163
Kobayashi, H., et al. 2003, Astronomical Society of the Pacific Conference Series, 306, 367
Komossa, S., Voges, W., Adorf, H.-M., Xu, D., Mathur, S., & Anderson, S. F. 2006b, ApJ, 639, 710
Komossa, S., Voges, W., Xu, D., Mathur, S., Adorf, H.-M., Lemson, G., Duschl, W. J., & Grupe, D. 2006a, AJ, 132, 531
Lai, D. V., Sha stri, P., & Gabuzda, D. C. 2004, A&A, 425, 99
Ma, C., et al. 1998, AJ, 116, 516
Maccarone, T. J., Miller-Jones, J. C. A., Fender, R. P., & Pooley, G. G. 2005, A&A, 433, 531
McClintock, J. E., & Remillard, R. A. 2003 (astro-ph/0306213)
Middelberg, E., et al. 2004, A&A, 417, 925
Mineshige, S., Kawaguchi, T., Takeuchi, M., & Hayashida, K. 2000, PASJ, 52, 499
Moran, E. C. 2000, New Astronomy Review, 44, 527
Nagar, N. M., Oliva, E., Marconi, A., & Maiolino, R. 2002, A&A, 391, L21
Neff, S. G., & de Bruyn, A. G. 1983, A&A, 128, 318
O’Dea, C. P. 1998, PASP, 110, 493
Osterbrock, D. E., & Pogge, R. W. 1985, ApJ, 297, 166
Peterson, B. M., et al. 2000, ApJ, 542, 161
Pogge, R. W. 2000, New Astronomy Review, 44, 381
Pounds, K. A., Done, C., & Osborne, J. P. 1995, MNRAS, 277, L5
Preuss, E., & Fosbury, R. A. E. 1983, MNRAS, 204, 783
Reeves, J. N., Turner, M. J. L., Ohashi, T., & Kii, T. 1997, MNRAS, 292, 468
Shepherd, M. C. 1997, ASP Conf. Ser. 125: Astronomical Data Analysis Software and Systems VI, 125, 77
Shibata, K. M., Kameno, S., Inoue, M., & Kobayashi, H. 1998, ASP Conf. Ser. 144: IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources, 144, 413
Siebert, J., Leighly, K. M., Laurent-Muehleisen, S. A., Brinkmann, W., Boller, T., & Matsukawa, M. 1999, A&A, 348, 678
Smith, D. A., Herter, T., & Haynes, M. P. 1998, ApJ, 494, 150
Snellen, I. A. G., Schilizzi, R. T., Miley, G. K., de Bruyn, A. G., Bremer, M. N., Röttgering, H. J. A. 2000, MNRAS, 319, 445
Spergel, D. N., et al. 2003, ApJS, 148, 175
Stocke, J. T., Morris, S. L., Weymann, R. J., & Foltz, C. B. 1992, ApJ, 396, 487
Ulvestad, J. S., Antonucci, R. R. J., & Goodrich, R. W. 1995, AJ, 109, 81
Ulvestad, J. S., Antonucci, R. R. J., & Barvainis, R. 2005, ApJ, 621, 123
van Dyk, S. D., Weiler, K. W., Sramek, R. A., & Panagia, N. 1993, ApJL, 419, L69
Véron-Cetty, M.-P., & Véron, P. 2001, A&A, 374, 92 (VV01)
Visnovsky, K. L., Impey, C. D., Foltz, C. B., Hewett, P. C., Weymann, R. J., & Morris, S. L. 1992, ApJ, 391, 560
Wang, T. G., Matsuoka, M., Kubo, H., Mihara, T., & Negoro, H. 2001, ApJ, 554, 233
Wang, J.-M., & Netzer, H. 2003, A&A, 398, 927
Whalen, D. J., Laurent-Muehleisen, S. A., Moran, E. C., & Becker, R. H. 2006, AJ, 131, 1948
Wright, A., & Otrupcek, R. 1990, Parkes Radio Sources Catalogue, 1990
Wright, A. E., Griffith, M. R., Burke, B. F., & Ekers, R. D. 1993, ApJL, 419, L69
Zhou, H.-Y., & Wang, T.-G. 2002, Chinese Journal of Astronomy and Astrophysics, 2, 501 (ZW02)
Zhou, H.-Y., Wang, T.-G., Dong, X.-B., Zhou, Y.-Y., & Li, C. 2003, ApJ, 584, 147