FVB/NJ Mice Demonstrate a Youthful Sensitivity to Noise-Induced Hearing Loss and Provide a Useful Genetic Model for the Study of Neural Hearing Loss

Maria K. Ho, Xin Li, Juemei Wang, Jeffrey D. Ohmen, Rick A. Friedman

Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, and Department of Cell Biology and Genetics, House Research Institute, Los Angeles, Calif., USA

Key Words
Hybrid mouse diversity panel · Noise-induced hearing loss · Age-related hearing impairment · Auditory brainstem response · Distortion product otoacoustic emissions · FVB/NJ mice

Abstract
The hybrid mouse diversity panel (HMDP), a panel of 100 strains, has been employed in genome wide association studies (GWAS) to study complex traits in mice. Hearing is a complex trait and the CBA/Caj mouse strain is a widely used model for age-related hearing impairment (ARHI) and noise-induced hearing loss (NIHL). The youthful sensitivity to noise and limited age-related hearing loss of the CBA/Caj strain led us to attempt the identification of additional strains segregating a similar phenotype for our panel. FVB/NJ is part of the HMDP and has been previously described as having a similar ARHI phenotype to CBA/Caj. For these reasons, we have studied the FVB/NJ mouse for ARHI and NIHL phenotypes in the hopes of incorporating its phenotype into HMDP studies. We demonstrate that FVB/NJ exhibits ARHI at an earlier age than CBA/Caj and young FVB/NJ mice are vulnerable to NIHL up to 10–12 weeks. This suggests that FVB/NJ may be used as an additional genetic model for neural forms of progressive hearing loss and for the study of youthful sensitivity to noise.

© 2014 S. Karger AG, Basel
Introduction

The two most common forms of hearing loss in our society are age-related and noise-induced. Age-related hearing impairment (ARHI) is one of the most common sensory abnormalities in the world, affecting 30% of people by the age of 65 [National Institute on Deafness and Communication Disorders, 2010]. Noise-induced hearing loss (NIHL) is the most common preventable form of sensorineural hearing loss worldwide [Dobie, 2008], and approximately 500 million individuals are exposed to hazardous levels of noise in occupational and social environments [Sliwinska-Kowalska and Davis, 2012]. Of concern, adolescents and young adults are increasingly exposed to hazardous levels of noise during social activities [Smith et al., 2000; Sadhra et al., 2002; Serra et al., 2005; Vogel et al., 2007]. Several reports have shown that this age group reports symptoms of hearing loss [Niskar et al., 2001; Shargorodsky et al., 2010; Henderson et al., 2011], and a cohort of children and adolescents aged 6–19 were found to have audiometric evidence of NIHL [Maassen et al., 2001; Mercier et al., 2002]. In addition, an increasing number of teenagers and adolescents are using personal listening devices [Vogel et al., 2007; Punch et al., 2011] and listening to music at damaging levels [McNeill et al., 2010; Portnuff et al., 2011] with significant threshold shifts at high frequency and decreased distortion product otoacoustic emission (DPOAE) amplitudes [Sulaiman et al., 2013]. Moreover, studies in both humans and mice have shown evidence that the effects of noise exposure and aging combine, leading to a faster progression of hearing loss with age [Gates et al., 2000; Kujawa and Liberman, 2006].

Identifying susceptibility genes will ultimately inform treatment strategies for these two ailments. We are able to exploit the evidence that there are genetic and environmental factors influencing ARHI [DeStefano et al., 2003] and NIHL [Friedman et al., 2009; White et al., 2009]. Recently, genome wide association studies (GWAS) have been employed to discover genes conferring susceptibility to complex traits in humans. Lately, we have identified variations in GRM7 associated with ARHI in a European cohort and validated our findings in a US cohort [Friedman et al., 2009; Newman et al., 2012].

Estimates from human twin studies suggest that the heritability of NIHL is approximately 36% [Johnson et al., 1992] and candidate gene studies using single nucleotide polymorphisms have identified a small number of potential susceptibility genes [Henderson et al., 1991; Fortunato et al., 2004; Helfer et al., 2005; Van Eyken et al., 2007; Price, 2007]. Unfortunately, many of these studies have low statistical power due to small sample sizes and lack replication. Finally, the combined risk from these alleles fails to account for the majority of the genetic risk [Heinonen-Guzejev et al., 2005].

Although many insights have been gleaned for many human diseases utilizing GWAS and candidate gene studies, only a modest proportion of the genetic risk has been explained for most traits, and the effects of environmental exposures such as noise are difficult to control [McCarthy et al., 2008]. It is for this reason that many researchers have turned to mouse models. For almost 50 years, the mouse has been an essential animal model for studies in hearing loss. Advances in mouse genetics, including genome sequencing and high-density single nucleotide polymorphisms maps, provide a suitable system for the study of complex traits such as ARHI and NIHL. Strain variation in ARHI and NIHL susceptibility has been demonstrated in both in our laboratory [Niu et al., 2006] and in others [Van Laer et al., 2006; Konings et al., 2007; Konings et al., 2009a]. These data indicate that a significant component of these forms of hearing loss is heritable. Furthermore, several strain-specific loci for ARHI are also associated with NIHL susceptibility, confirming an overlap [Konings et al., 2009b].

Much of the progress in the genetics of hearing disorders in the mouse has come from the application of linkage analysis (i.e. QTL analysis) to identify naturally occurring single gene mutations (Mendelian traits) and the analysis of targeted gene deletions. Little attention has
been directed towards the definition of the genetics of common hearing disorders. Classical genetic approaches have been used to identify several QTL that modulate ARHI and NIHL susceptibility [Johnson et al., 2006]. One of the most significant shortcomings of QTL analysis is the use of a limited resource (i.e. a segregating F2 population). Another limitation of this approach is the genomic resolution, typically on the order of 10 Mbp or greater. It is for these reasons that we have begun using a novel high-resolution association mapping strategy, the hybrid mouse diversity panel (HMDP), to study common forms of hearing loss in mice.

The HMDP is a panel that combines the use of 29 classical inbred and 71 recombinant inbred strains of mice for association studies [Bennett et al., 2010]. Power calculations have demonstrated that this panel is superior to traditional linkage analysis and is capable of detecting loci responsible for 10% of the overall variance. Several studies have successfully mapped candidate loci for complex traits using this panel [Farber et al., 2011; Park et al., 2011; Smolock et al., 2012; Davis et al., 2013]. The use of the HMDP for GWAS in mice can allow us to map genes at a much higher resolution than traditional analyses. A minimum requirement for success is the accurate phenotyping of the clinical traits of interest in mice that are distantly related.

Resistance to noise exposure and age-related changes are important phenotypes to understand and use in GWAS. Historically, CBA/CaJ mice have been extensively studied as a model of resistance to NIHL [Kujawa and Liberman, 2006; Li, 1992; Li and Borg, 1993] and ARHI [Li and Borg, 1991; Willott et al., 1992; Frisina et al., 1997]. They also exhibit ARHI at a much older age than other strains of mice [Martin et al., 2007; Zheng et al., 1999; Zhou et al., 2006]. Of additional interest, a youthful sensitivity to NIHL has been demonstrated in CBA/CaJ mice. In an effort to identify mice with a phenotype similar to CBA/CaJ, we explored strains that have been grouped as ‘CBA-like’. FVB/NJ mice have been described as ‘CBA-like’ in comparisons of hearing phenotypes via DPOAE [Martin et al., 2007] and auditory brain response (ABR) measurements [Zheng et al., 1999; Zhou et al., 2006]. Yet, previous studies have not characterized NIHL in FVB/NJ mice. In this article, we characterize FVB/NJ noise susceptibility and age-related hearing changes by ABR and DPOAE. We demonstrate that like CBA/CaJ, FVB/NJ mice exhibit susceptibility to NIHL at a young age, and age-related changes in auditory thresholds. CBA/CaJ has recently been added to the HMDP. Identifying additional strains, such as FVB/NJ, within the panel that is ‘CBA-like’ will only enhance our ability to map the loci responsible for both the youthful sensitivity to noise and the strain variation in ARHI.

Methods

Animals

FVB/NJ mice were housed with ambient noise not exceeding that of normal air conditioning. Occasional periods of increased noise may have been present weekly during cage changing activity. To avoid any confounding variables related to sex, only female animals were used. Preexposure threshold levels were obtained via ABR from mice aged 4–5, 9–10, 12–13, 15–16, 20–22, 26, and 34 weeks (n = 4–17). Mice were purchased from The Jackson Labs (Bar Harbor, Maine, USA) or bred internally. The use of animals described in this study was performed in accordance with guidelines placed by the Institutional Animal Care and Use Committee (IACUC) at the House Research Institute and with principles stated in the Declaration of Helsinki. All procedures were approved by the IACUC and conformed to institutional standards.

Noise Exposure and Audiometric Equipment

Mice aged 5, 10, 12, and 22 weeks (n = 4–13) were exposed to 10 kHz octave band noise (OBN) for 2 h at a sound pressure level (SPL) of 100 dB using a method adapted from
Kujawa and Liberman [2009]. The OBN noise exposure was previously described [White et al., 2009]. During exposure, mice were housed in a circular wire-mesh exposure cage of 1/4 inch with four pie-shaped compartments and were permitted to move within the compartment. The cage was placed in a MAC-1 sound-proof chamber designed by Industrial Acoustics (IAC, Bronx, N.Y., USA), and the sound chamber was lined with 1-inch thick acoustical sound-proofing foam to minimize sound reflections. Noise recordings were played with a Fostex FT17H Tweeter Speaker built into the top of the sound chamber. Calibration of the damaging noise was done with a B&K sound level meter with a variation of 1.5 dB across the cage.

Stimuli were delivered by a custom acoustic system, consisting of two miniature speakers. Sound pressure was measured by an electret condenser microphone. A data acquisition board from National Instruments (National Instruments Corporation, Austin, Tex., USA) was controlled by custom software and was used to generate the stimuli and to process the response. All tests were performed in a separate MAC-1 sound-proof chamber to eliminate both environmental and electrical noise. Testing involved the right ear only.

ABR and DPOAE Measurements

Mice were anesthetized with an intraperitoneal injection of a mixture of ketamine (80 mg/kg body weight) and xylazine (16 mg/kg body weight). Body temperature was maintained and an artificial tear ointment was applied to the eyes. Mice recovered on a heating pad at body temperature.

Auditory signals were presented as tone pips with a rise and a fall time of 0.5 ms and a total duration of 5 ms at the frequencies of 4, 8, 12, 16, 24, and 32 kHz. Tone pips were delivered below threshold and then increased in 5-dB increments until reaching 100 dB. Signals were presented at a rate of 30 per second. Responses were filtered with a 0.3- to 3-kHz passband and amplified 10,000 times. Up to 512 waveforms were averaged for each stimulus intensity. Stainless-steel electrodes were placed subcutaneously at the vertex of the head and the right mastoid, with a ground electrode at the base of the tail. Hearing threshold was determined by visual inspection of ABR waveforms and was defined as the minimum intensity at which wave 1 could be distinguished. Data was stored for offline analysis of peak-to-peak (p-p) values (from peak to trough) for wave 1 amplitudes.

DPOAEs were obtained as input/output (I-O) functions with \(2f_1 - f_2\) as the primary measure. Primary tones were set at a ratio of \(f_2/f_1 = 1.2\) with the \(f_2\) between 5.6 to 32 kHz, the \(f_2\) level set 10 dB less than the \(f_1\) level, and \(L_2\) ranging from 20 to 70 dB. The DPOAEs were extracted after both waveform and spectral averaging. The noise floor was obtained by averaging six spectral points above and below the \(2f_1 - f_2\). Threshold was defined as the \(L_2\) level needed to produce a DPOAE of 0 dB SPL, with a signal-to-noise ratio of at least 3 dB.

Determination of Permanent Threshold Shifts

Preexposure threshold levels were obtained at least 4 days prior to noise exposure. These threshold levels were used as a baseline to determine threshold shifts after exposure to noise. Animals were assessed for noise damage 3–4 weeks after exposure. The permanent threshold shifts (PTS) for ABR and DPOAE were defined as the difference between preexposure and postexposure thresholds at each tested frequency or \(L_2\) level, respectively.

Statistics

Comparisons between thresholds, amplitudes and PTS were performed using Student’s t tests (Welsh test). \(p\) values less than 0.05 were considered significant.
Results

FVB/NJ Mice Demonstrate Age-Related Changes in Hearing

In 1999, Zheng et al. characterized ABR thresholds in young and old classically inbred strains of mice. In their study, they demonstrated that CBA/CaJ mice maintain stable threshold sensitivity as they age [Henry, 1982; Jimenez et al., 1999]. The FVB/NJ strain was not detailed in that study but has long been considered phenotypically similar to CBA/CaJ. To explore this in the hopes of identifying an identical phenotype for genetic study, we sought to characterize the hearing of FVB/NJ mice with age utilizing ABR. In 2007, Martin et al. conducted a comparison of DPOAE in 28 inbred strains of mice, including FVB/NJ. In their study, distortion product grams for FVB/NJ mice were identical to those of CBA/CaJ demonstrating stable outer hair cell (OHC) function over time (5 months being the oldest). Their conclusion supported the notion that FVB/NJ was in fact a very similar strain with regard to ARHI. In addition, in a study by Jimenez et al., CBA/CaJ mice have been shown to display stable DPOAEs for up to 15 months of age [Jimenez et al., 1999].

To characterize hearing with age in FVB/NJ mice, we performed ABR at several ages ranging from 5 to 34 weeks (fig. 1). Unlike CBA/CaJ, 34-week-old FVB/NJ mice demonstrated statistically significantly elevated thresholds at 32 kHz (p < 0.027). These data suggest that, unlike the stability of OHC function (DPOAE) demonstrated by Martin et al. [2007] in FVB/NJ mice, there may be a loss of cochlear neurons accounting for age-related changes that might serve as a good genetic model for neural presbycusis. We sought to test this notion by looking at the wave 1 p-p amplitudes over time.

Suprathreshold ABR in FVB/NJ Mice Supports the Notion That ARHI in FVB/NJ Mice Results from Cochlear Neuronal Loss

We performed suprathreshold ABR measurements of p-p wave 1 amplitudes across a selected number of time points (fig. 2a–c). Although measurements for 8 and 16 kHz are similar between 5-, 10-, and 34-week-old mice, p-p wave 1 amplitudes at 32 kHz are significantly reduced when comparing the youngest mice (5-week-old) to the eldest mice (34-week-old) (fig. 2c). These data, in light of the DPOAE data described previously [Jimenez et al., 1999; Martin et al., 2007] support the notion that the age-related changes in the FVB/NJ mice at 34 weeks are the result of loss of cochlear neurons.

FVB/NJ Mice Are Vulnerable to NIHL at an Early Age

As previously described, PTS after noise exposure are measured at approximately 3–4 weeks postexposure when they are at a steady state [Miller et al., 1963]. To further charac-
To study the effect of NIHL on OHCs and the cochlear nerve further, we looked at suprathreshold responses (DPOAE and ABR) to a 16-kHz stimulus in mice exposed to noise at 5 and 10 weeks (fig. 4). As anticipated, the postexposure amplitudes were diminished in both 5- and 10-week-old mice.

Fig. 2. ABR wave 1 amplitudes for 5-, 10-, 34-week-old mice (mean ± SD) showing that suprathreshold amplitudes at 8 kHz (a) and 16 kHz (b) do not have a difference in threshold values, but at 32 kHz (c), there is a significant decrease in difference in suprathreshold values for old mice (34 weeks) in comparison to 5-week-old mice.

Fig. 3. The PTS for ABR and DPOAE at 16 kHz for mice exposed to noise during various ages (mean ± SD) are presented. The vertical dashed line denotes the age of exposure (10 weeks) at which the PTS for DPOAE has dropped significantly (p = 0.0099) without a corresponding change in PTS for ABR (p > 0.05), and at 12 weeks, the PTS for ABR has diminished significantly as well (p = 0.000902).

characterize the potential similarities between CBA/CaJ and FVB/NJ, we evaluated vulnerability to NIHL with age.

In brief, age at the time of noise exposure was systematically varied at 5, 10, 12, and 22 weeks. As noted in a previous study [Kujawa and Liberman, 2006], the largest threshold shifts were noted at 16 kHz, and the age-dependent vulnerability can be seen in figure 3. The youngest mice (5 weeks) demonstrate the greatest vulnerability to NIHL with PTS of approximately 50 dB for ABR and 30 dB for DPOAE suggesting a combined injury with the larger component of the injury occurring in the cochlear neurons. Further analysis of the data shows resistance to noise occurring at approximately 12 weeks when measuring ABR and roughly 10 weeks for the DPOAEs. The older mice (22 weeks) have a minimal PTS by DPOAE; however, in contrast, the PTS remains relatively high when looking at the ABR. These data confirm a greater vulnerability to NIHL in the younger animals, and also suggest that the OHCs are both the earliest site of resistance with aging and more resistant to noise than the cochlear neurons at all ages.
groups of mice. On closer observation, the cochlear neurons do not show differences in sensitivity to noise between the groups. On the contrary, the DPOAE I-O functions demonstrate greater OHC resistance in the older mice (fig. 4). These data are congruent with the findings shown in figure 3 and reinforce the notion that the OHCs experience a decreased sensitivity to noise at an earlier age than cochlear neurons.

Discussion

Early Neural Presbycusis and Noise Susceptibility

CBA/CaJ is a well-characterized model for delayed onset ARHI and exhibits stable ABR thresholds until later in life at 39 weeks of age at least [Zheng et al., 1999; Yoshida et al., 2000; May et al., 2002]. Although FVB/NJ has been previously thought to be similar to CBA/CaJ, our results indicate that FVB/NJ exhibits high-frequency ARHI at a significantly younger age (fig. 1) than CBA/CaJ [Li, 1992; May et al., 2006]. Using Schuknecht’s models of presbycusis as a framework to understand ARHI, neural presbycusis describes neuronal degeneration that occurs sooner and at a greater degree than loss of hair cells [Schuknecht and Gacek, 1993]. A few models have been reported, including knockouts of the nicotinic acetylcholine receptor beta 2 subunit [Bao et al., 2005] and SOD1 [Keithley et al., 2005]. FVB/NJ exhibits neural presbycusis, with high-frequency loss at 32 kHz starting at 34 weeks as demonstrated by decreased ABR wave 1 amplitudes (fig. 2). Thus, FVB/NJ exhibits an increase in ABR thresholds at an earlier age than CBA/CaJ and can be used as a model for earlier onset neural presbycusis.

In C57BL/6J mice, the Ahi locus has also been found to confer genetic susceptibility to noise damage within the cochlea [Harding et al., 2005]. Increased vulnerability to NIHL has been attributed to the dystrophin gene [Chen et al., 2012], vasodilator-stimulated phosphoprotein [Schick et al., 2004], and heat shock factor 1 genes [Sugahara et al., 2003; Farber et al., 2011]. In addition to Cdh23ahi, Cdh231v transgenic mice with knockouts of the genes Cp, Gpx1, Pmca2, Sod1, and Trpv4 show vulnerability to noise damage [Ohlemiller, 2006].

Yet, when studying the effect of noise on hearing loss, age has also been shown to interact with noise, influencing the degree of damage. Resistance to NIHL with age has been previ-
ously reported in CBA/CaJ [Nemoto et al., 2004; Kujawa and Liberman, 2006] and CBA/Ca mice [Li et al., 1993; Li and Borg, 1993], and evidence suggests that mice are much more susceptible to NIHL at younger ages [Saunders and Hirsch, 1976; Henry, 1982; Ohlemiller et al., 2000]. FVB/NJ also exhibits resistance with age, with decreased PTS for both ABR and DPOAE measurements in older mice (fig. 2).

Age Influences the Effects of Noise Exposure

In 2006, Kujawa and Liberman showed that young CBA/CaJ mice were much more sensitive to high-level noise damage than older mice after exposure to OBN for 2 h at a SPL of 100 dB. PTS were observed to decrease extensively between 8 and 16 weeks of exposure for both ABR and DPOAE. In a study by Henry [1983], CBA/J mice also showed dramatically decreased sensitivity to NIHL after 16 weeks [Henry, 1983]. To investigate this large change in sensitivity with age between 8 and 16 weeks in FVB/NJ, we looked at noise-exposed mice at 5, 10, 12 and 22 weeks. Similar to Kujawa and Liberman’s findings, our results show relatively high threshold shifts at 16 kHz for both ABR and DPOAE at 5 weeks of exposure (approx. 50 and 30 dB, respectively) and lower values for exposure at 22 weeks (fig. 3). Looking at exposure at 10 and 12 weeks, the PTS interestingly drops first for DPOAE at 10 weeks of exposure (fig. 4), followed by a decrease in PTS for ABR at 12 weeks of exposure (fig. 3). These results suggest that the OHCs become more resistant to noise damage at a younger age than the inner hair cells (IHCs) and cochlear nerve.

Based upon the present findings that the PTS of DPOAE decreases before the ABR, one may infer that the IHCs could exhibit greater or earlier morphological changes than the OHCs secondary to noise exposure at these ages. However, noise exposure has been shown to cause OHC loss, followed by IHC and spiral ganglion cell loss [Ou et al., 2000; Wang et al., 2002]. After exposure to noise (2 h of broadband noise at 106 dB), male CBA/CaJ mice at 10–12 weeks of age show greater degrees of OHC loss than IHC loss towards the basal end of the cochlea [Hirose and Liberman, 2003]. Similar findings are reported in 12-week-old CBA/J mice [Chen et al., 2012].

On the contrary, our results are consistent with the notion that the cochlear nerve is relatively more sensitive than the OHCs at younger ages. This agrees with a study showing that 16-week-old CBA/CaJ mice exposed to OBN for 2 h at 100 dB displayed complete recovery of DPOAEs by 8 weeks and ABRs which showed only modest recovery, especially at suprathreshold values [Kujawa and Liberman, 2009]. Although our study uses mice exposed to traumatic levels of noise, moderate noise exposure in CBA/CaJ mice has recently been shown to damage the cochlear nerve at a dramatically greater degree than OHCs. In CBA/CaJ mice from 4 to 144 weeks of age, exposure to moderate levels of noise (between 50 to 60 dB >95% of the time and less than 80 dB >99% of the time) caused IHC synaptic loss prior to changes in OHC thresholds and hair cell counts [Maison et al., 2013]. This evidence suggests that noise-induced damage may have its greatest effect on the cochlear nerve across a range of ages.

FVB/NJ, as Part of the HMDP, Adds to Our Capacity to Map Hearing Loss Loci via GWAS

In recent years, mouse GWAS have led to the discovery of many genes associated with a variety of complex traits in humans. Successful use of GWAS for hearing disorders rests on the basis that the genes controlling the hearing phenotype in mice are similar to those in humans and that the genetic and phenotypic variation in mouse strains can be harnessed to study the variation in human populations. In the past, some GWAS have been challenged as lacking enough power to detect genes that may have small contributions to complex phenotypes [Pletcher et al., 2004; de Bakker et al., 2005; Payseur and Place, 2007]. A solution to this constraint, the HMDP, was created as a resource for GWAS and has the power to map complex traits with relatively small variances in phenotype (70% power to detect effect sizes <10%)
Ho et al.: FVB/NJ Mice Demonstrate a Youthful Sensitivity to Noise-Induced Hearing Loss and Provide a Useful Genetic Model for the Study of Neural Hearing Loss

The HMDP includes FVB/NJ and has been successfully used to find candidate loci for several complex traits in the mouse including fear conditioning [Park et al., 2011], bone morphogenic density [Farber et al., 2011], heart rate [Smolock et al., 2012], and blood cell traits [Davis et al., 2013]. The identification of the phenotypic similarity of FVB/NJ to CBA/CaJ, while having distant relatedness, provides an additional useful strain for the study of susceptibilities to both ARHI and NIHL in mice.

Acknowledgements

The authors would like to acknowledge Dr. M. Charles Liberman for providing hardware specifications and software for audiometric testing. In addition, we thank John Wygonski for building and testing the acoustic sound delivery apparatus, Ping Luo for engineering support, Cory White for his assistance with statistics and Aldo Castillo for technical assistance with data collection.

This study was supported by NIH NIDCD grant R01 DC010856-01 (R.A.F.) and NIH NIDCD Engineering Core grant P30 DC006276-11.

Disclosure Statement

The authors have no conflicts of interest to disclose.

References

Bennett, 2010]. The HMDP includes FVB/NJ and has been successfully used to find candidate loci for several complex traits in the mouse including fear conditioning [Park et al., 2011], bone morphogenic density [Farber et al., 2011], heart rate [Smolock et al., 2012], and blood cell traits [Davis et al., 2013]. The identification of the phenotypic similarity of FVB/NJ to CBA/CaJ, while having distant relatedness, provides an additional useful strain for the study of susceptibilities to both ARHI and NIHL in mice.

Acknowledgements

The authors would like to acknowledge Dr. M. Charles Liberman for providing hardware specifications and software for audiometric testing. In addition, we thank John Wygonski for building and testing the acoustic sound delivery apparatus, Ping Luo for engineering support, Cory White for his assistance with statistics and Aldo Castillo for technical assistance with data collection.

This study was supported by NIH NIDCD grant R01 DC010856-01 (R.A.F.) and NIH NIDCD Engineering Core grant P30 DC006276-11.

Disclosure Statement

The authors have no conflicts of interest to disclose.

References

- Bao J, Lei D, Du Y, Ohlemiller KK, Beaudet AL, Role LW: Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neuron during aging. J Neurosci 2005;25:3041–3045.
- Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemens N, Neubauer M, Neuhais I, Yordanova R, Guan B, Truong A, Yang WP, He A, Kayne P, Gargalovic P, Kirchgesner T, Pan C, Castellani LW, Kostem E, Furlotte N, Drake TA, Eskin E, Luisi AJ: A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 2010;20:281–290.
- Chen FQ, Zheng HW, Hill K, Sha SH: Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. J Neurosci 2012;32:12421–12430.
- Davis RC, van Nas A, Bennett B, Orozco L, Pan C, Rau CD, Eskin E, Luisi AJ: Genome-wide association mapping of blood cell traits in mice. Mamm Genome 2013;24:105–118.
- de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D: Efficiency and power in genetic association studies. Nat Genet 2005;37:1217–1223.
- DeStefano AL, Gates GA, Heard-Costa N, Myers RH, Baldwin CT: Genomewide linkage analysis to presbycusis in the Framingham Heart Study. Arch Otolaryngol Head Neck Surg 2003;129:285–289.
- Dobie RA: The burdens of age-related and occupational noise-induced hearing loss in the United States. Ear Hear 2008;24:565–577.
- Farber CR, Bennett BJ, Orozco L, Zou W, Lira A, Kostem E, Kang HM, Furlotte N, Berberyen A, Ghazalpour A, Suwanwela J, Drake TA, Eskin E, Wang QT, Teitelbaum SL, Luisi AJ: Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 2011;7:e1002038.
- Fortunato G, Marciano E, Zarrilli F, Mazzaccara C, Intrieri M, Calcagno G, Vitale DF, La Manna P, Saulino C, Marcelli V, Sacchetti L: Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem 2004;50:2012–2016.
- Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van Eyken E, Cornevaux JJ, Tembe WD, Halperin RF, Thorburn AG, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykko I, Cremers CW, Cremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Malkuma L, Ohmen JD, Linthicum FH Jr, Fayad JN, Pearson JV, Craig DW, Stephan DA, Van Camp G: GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 2009;18:785–796.
- Frisina RD, Walton JP, Lynch-Armour MA, Klotz DA: Efferent projections of a physiologically characterized region of the inferior colliculus of the young adult CBA mouse. J Acoust Soc Am 1997;101(5 Pt 1):2741–2753.
- Gates GA, Schmid P, Kujawa SG, Nam B, D’Agostino R: Longitudinal threshold changes in older men with audiometric notches. Hear Res 2000;141:220–228.
Harding GW, Bohne BA, Vos JD: The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Hear Res 2005; 204:90–100.

Heinonen-Guzejev M, Vuorinen HS, Mussalo-Rauhamaa H, Heikilä K, Kaskenvuo M, Kaprio J: Genetic component of noise sensitivity. Twin Res Hum Genet 2005; 8:245–249.

Helfer TM, Jordan NN, Lee RB: Postdeployment hearing loss in U.S. Army soldiers seen at audiology clinics from April 1, 2003, through March 31, 2004. Am J Audiol 2005; 14:161–168.

Henderson D, Subramaniam M, Gratton MA, Saunders SS: Impact noise: the importance of level, duration, and repetition rate. J Acoust Soc Am 1991; 89:1350–1357.

Henderson E, Testa MA, Hartnick C: Prevalence of noise-induced hearing threshold shifts and hearing loss among US youths. Pediatrics 2011; 127:e39–e46.

Henry KR: Influence of genotype and age on noise-induced auditory losses. Behav Genet 1982; 12:563–573.

Henry KR: Life-long susceptibility to acoustic trauma: changing patterns of cochlear damage over the life span of the mouse. Audiology 1983; 22:372–383.

Hirose K, Liberman MC: Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol 2003; 4:339–352.

Jimenez AM, Stagner BB, Martin GK, Lonsbury-Martin BL: Age-related loss of distortion product otoacoustic emissions in four mouse strains. Hear Res 1999; 138:91–105.

Johnson TE, DeFries JC, Markel PD: Mapping quantitative trait loci for behavioral traits in the mouse. Behav Genet 1999; 22:635–653.

Keithley EM, Canto C, Zheng QY, Wang X, Fischel-Ghodsian N, Johnson KR: Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 2005; 209:76–85.

Konings A, Van Laer L, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Vandervele A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G: Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Hum Mol Genet 2007; 16:1872–1883.

Konings A, Van Laer L, Michel S, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G: Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations. Eur J Hum Genet 2009a; 17:329–335.

Konings A, Van Laer L, Wiktorek-Smagur A, Rajkowska E, Pawelczyk M, Carlsson PI, Bondeson ML, Dudarewicz A, Vandervele A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G: Candidate gene association study for noise-induced hearing loss in two independent noise-exposed populations. Ann Hum Genet 2009b; 73:215–224.

Kujawa SG, Liberman MC: Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 2006; 26:2115–2123.

Kujawa SG, Liberman MC: Adding insult to injury: cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci 2009; 29:14077–14085.

Li HS: Influence of genotype and age on acute acoustic trauma and recovery in CBA/Ca and C57BL/6j mice. Acta Otolaryngol 1992; 112:956–967.

Li HS, Borg E: Age-related loss of auditory sensitivity in two mouse genotypes. Acta Otolaryngol 1991; 111:827–834.

Li HS, Borg E: Auditory degeneration after acoustic trauma in two genotypes of mice. Hear Res 1993; 68:19–27.

Li HS, Hultcrantz M, Borg E: Influence of age on noise-induced permanent threshold shifts in CBA/Ca and C57BL/6j mice. Audiology 1993; 2:195–204.

Maassen M, Babisch W, Bachmann KD, Ising H, Lehnert G, Plath P, Pinkert K, Rebentisch E, Schuschke G: Superoxide dismutase A, Stange G, Struwe V, Zenner HP: EAR damage caused by leisure noise. Noise Health 2001; 4:1–16.

Maison SF, Usubuchi H, Liberman MC: Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 2010; 30:3305–3309.

Martin GK, Vazquez AE, Jimenez AM, Stagner BB, Howard MA, Lonsbury-Martin BL: Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Hear Res 2007; 234:59–72.

May BJ, Prosen CA: Auditory filter shapes of CBA/CaJ mice: behavioral assessments. J Acoust Soc Am 2006; 120:321–330.

May BJ, Prosen CA, Weiss D, Vetter D: Behavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice. Hear Res 2002; 171:142–157.

McCarthy MI, Goncalo RA, Lon RC, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN: Genome-wide association studies for complex traits: consensus uncertainty and challenges. Nat Rev Genet 2008; 9:356–369.

McNeill K, Keith SE, Feder K, Konkle AT, Michaud DS: MP3 player listening habits of 17 to 23 year old university students. J Acoust Soc Am 2010; 128:646–653.

Mercier V, Hohmann BW: Is electronically loud music too loud? What do young people think? Noise Health 2005; 7:46–52.

Miller JD, Watson CS, Covel WP: Deafening effects of noise on the cat. Acta Otolaryngol Suppl 1963; 176:1–91.

National Institute on Deafness and Communication Disorders: [June 16, 2010]. Quick Statistics [NIDCD Health Information]. http://www.nidcd.nih.gov/health/statistics/Pages/quick.aspx (accessed October 23, 2013).

Nemoto M, Morita Y, Mishima Y, Takahashi S, Nomura T, Ushiki T, Shiroishi T, Kikawa Y, Yonekawa H, Komimani R: Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 2004; 324:1283–1288.
Ho et al.: FVB/NJ Mice Demonstrate a Youthful Sensitivity to Noise-Induced Hearing Loss and Provide a Useful Genetic Model for the Study of Neural Hearing Loss

© 2014 S. Karger AG, Basel
www.karger.com/aue

DOI: 10.1159/000357770

Audiol Neurotol Extra 2014;4:1–11

Newman DL, Fisher LM, Ohmen J, Parody R, Fong CT, Frisina ST, Mapes F, Eddins DA, Robert Frisina D, Frisina RD, Friedman RA: GRM7 variants associated with age-related hearing loss based on auditory perception. Hear Res 2012; 294:125–132.

Niskar AS, Kieszak SM, Holmes AE, Esteban E, Rubin C, Brody DJ: Estimated prevalence of noise-induced hearing threshold shifts among children 6 to 19 years of age: the Third National Health and Nutrition Examination Survey, 1988–1994. United States. Pediatrics 2001;108:40–43.

Niu H, Makmura L, Shen T, Sheh SS, Blair K, Friedman RA: Identification of two major loci that suppress hearing loss and cochlear dysmorphogenesis in Eya1bor/bor mice. Genomics 2006;88:302–308.

Ohiemiller KK: Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 2006;109:1–62.

Ohiemiller KK, Wright JS, Heidbreder AF: Vulnerability to noise-induced hearing loss in 'middle-aged' and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear Res 2000;149:239–247.

Oh HC, Bohne BA, Harding GW: Noise damage in the C57BL/CBA mouse cochlea. Hear Res 2000;145:111–112.

Park CC, Gale GD, de Jong S, Ghazalpour A, Bennett BJ, Farber CR, Langfelder P, Lin A, Khan AH, Esken E, Harvath S, Lusis AJ, Ophoff RA, Smith DJ: Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Syst Biol 2011;5:43.

Payseur BA, Place M: Prospects for association mapping in classical inbred mouse strains. Genetics 2007;175:1999–2008.

Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T: Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2004;2:e293.

Portnuff CD, Fligor BJ, Arehart KH: Teenage use of portable listening devices: a hazard to hearing? J Am Acad Audiol 2011;22:663–677.

Price GR: Validation of the auditory hazard assessment algorithm for the human with impulse noise data. J Acoust Soc Am 2007;122:2786–2802.

Punch JL, Ellenbein JL, James RR: Targeting hearing health messages for users of personal listening devices. Am J Audiol 2011;20:69–82.

Sadhra S, Jackson CA, Ryder T, Brown MJ: Noise exposure and hearing loss among student employees working in university entertainment venues. Ann Occup Hyg 2002;46:455–463.

Saunders JC, Hirsch KA: Changes in cochlear microphonic sensitivity after priming C57BL/6j mice at various ages for audiogenic seizures. J Comp Physiol Psychol 1976;90:212–220.

Schick B, Praetorius M, Eigenthaler M, Jung V, Müller M, Walter U, Knipper M: Increased noise sensitivity and altered inner ear MENA distribution in VASP−/− mice. Cell Tissue Res 2004;318:493–502.

Schulz-Schaeffer HF, Gacek MR: Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 1993;102:1–16.

Serra MR, Biassoni EC, Richter U, Minoldo G, Franco G, Abraham S, Carignani JA, Jooles S, Yacci MR: Recreational noise exposure and its effects on the hearing of adolescents. 1. An interdisciplinary long-term study. Int J Audiol 2003;44:65–73.

Shargorodsky J, Curhan SG, Curhan GC, Earvey R: Change in prevalence of hearing loss in US adolescents. JAMA 2010; 304:772–778.

Smith PA, Davis A, Ferguson M, Lutman ME: The prevalence and type of social noise exposure in young adults in England. Noise Health 2008;10:41–56.

Smolock EM, Ilyushkina IA, Ghazalpour A, Gerloff J, Murashev AN, Lusis AJ, Korshunov VA: Genetic locus on mouse chromosome 7 controls elevated heart rate. Physiol Genomics 2012;44:689–698.

Sugahara K, Inouye S, Izu H, Katoh Y, Katsuki K, Takemoto T, Shimogori H, Yamashita H, Nakai A: Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 2003;182:88–96.

Sulaiman AH, Husain R, Seluakumaran K: Evaluation of early hearing damage in personal listening device users using extended high-frequency audiometry and otoacoustic emissions. Eur Arch Otorhinolaryngol 2013, DOI: 10.1007/s00405-013-2612-z.

Tawfik D, Newmeyer DP, Chernoff JH, Frisina RD: Hearing loss and Provide a Useful Genetic Model for the Study of Neural Hearing Loss. J Comp Physiol Psychol 1976;90:212–220.