Human mortality at extreme age

Léo R. Belzile, Anthony C. Davison, Holger Rootzén and Dmitrii Zholud

Article citation details
R. Soc. open sci. 8: 202097.
http://dx.doi.org/10.1098/rsos.202097

Review timeline
Original submission: 24 December 2020
Revised submission: 27 August 2021
Final acceptance: 7 September 2021

Is the manuscript scientifically sound in its present form?
Yes

Are the interpretations and conclusions justified by the results?
Yes

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No

Have you any concerns about statistical analyses in this paper?
No

Recommendation?
Accept as is
Comments to the Author(s)
This manuscript is clear and convincing. It was meticulously written, with great attention to detail, organized understandably. The statistical analysis is powerful and appropriate. The manuscript is an important contribution to the literature, resolving the issue of whether human death rates level off at advanced ages or continue to increase: the rates level off.

Review form: Reviewer 2

Is the manuscript scientifically sound in its present form?
No

Are the interpretations and conclusions justified by the results?
No

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No

Have you any concerns about statistical analyses in this paper?
Yes

Recommendation?
Major revision is needed (please make suggestions in comments)

Comments to the Author(s)
The authors focus on lifespans of Italian and French semi-supercentenarians by taking a fully parametric approach based on the Pareto distribution. The main conclusion is that a constant force of mortality describes the data well. While this result is already known for the Italian population, it is here - and for the first time - extended to the French population. The statistical methods are generally correct and the material is nicely described. However, I have two major concerns, listed below.

MAJOR ISSUES

1. The goodness of fit of the model is overlooked. I would welcome a comparison between the cumulative hazard function predicted by the model and a Nelson-Aalen nonparametric estimate of the cumulative hazard function.

2. Lifetimes are treated as exceedances above a threshold u, which is chosen by trying several thresholds and then choosing the value that stabilize the parameter estimates. This part of the analysis looks rather empirical and it is not very convincing. The sample size decreases (and the variability of the estimates increases) as u increases and it is not clear what the authors mean by "stable estimates". I’d welcome a more rigourous approach in the selection of u.
Decision letter (RSOS-202097.R0)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don't hesitate to let us know at the email address below.

Dear Professor Davison

The Editors assigned to your paper RSOS-202097 "Human mortality at extreme age" have now received comments from reviewers and would like you to revise the paper in accordance with the reviewer comments and any comments from the Editors. Please note this decision does not guarantee eventual acceptance.

Firstly, please accept our sincere apologies for the unusual delays incurred during the review process. We regret that it proved more difficult than usual to acquire referees for your paper, and Editor and staff absences related to the pandemic also caused some delays earlier in the year. We will endeavour to do all that we can to expedite your paper once you submit your revision. We invite you to respond to the comments supplied below and revise your manuscript. Below the referees’ and Editors’ comments (where applicable) we provide additional requirements. Final acceptance of your manuscript is dependent on these requirements being met. We provide guidance below to help you prepare your revision.

We do not generally allow multiple rounds of revision so we urge you to make every effort to fully address all of the comments at this stage. If deemed necessary by the Editors, your manuscript will be sent back to one or more of the original reviewers for assessment. If the original reviewers are not available, we may invite new reviewers.

Please submit your revised manuscript and required files (see below) no later than 21 days from today’s (ie 08-Jul-2021) date. Note: the ScholarOne system will ‘lock’ if submission of the revision is attempted 21 or more days after the deadline. If you do not think you will be able to meet this deadline please contact the editorial office immediately.

Please note article processing charges apply to papers accepted for publication in Royal Society Open Science (https://royalsocietypublishing.org/rsos/charges). Charges will also apply to papers transferred to the journal from other Royal Society Publishing journals, as well as papers submitted as part of our collaboration with the Royal Society of Chemistry (https://royalsocietypublishing.org/rsos/chemistry). Fee waivers are available but must be requested when you submit your revision (https://royalsocietypublishing.org/rsos/waivers).

Thank you for submitting your manuscript to Royal Society Open Science and we look forward to receiving your revision. If you have any questions at all, please do not hesitate to get in touch.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Andreas Kyprianou (Associate Editor) and Mark Chaplain (Subject Editor)
openscience@royalsociety.org
Reviewer comments to Author:
Reviewer: 1
Comments to the Author(s)
This manuscript is clear and convincing. It was meticulously written, with great attention to detail, organized understandably. The statistical analysis is powerful and appropriate. The manuscript is an important contribution to the literature, resolving the issue of whether human death rates level off at advanced ages or continue to increase: the rates level off.

Reviewer: 2
Comments to the Author(s)
The authors focus on lifespans of Italian and French semi-supercentenarians by taking a fully parametric approach based on the Pareto distribution. The main conclusion is that a constant force of mortality describes the data well. While this result is already known for the Italian population, it is here - and for the first time - extended to the French population. The statistical methods are generally correct and the material is nicely described. However, I have two major concerns, listed below.

MAJOR ISSUES

1. The goodness of fit of the model is overlooked. I would welcome a comparison between the cumulative hazard function predicted by the model and a Nelson-Aalen nonparametric estimate of the cumulative hazard function.

2. Lifetimes are treated as exceedances above a threshold u, which is chosen by trying several thresholds and then choosing the value that stabilize the parameter estimates. This part of the analysis looks rather empirical and it is not very convincing. The sample size decreases (and the variability of the estimates increases) as u increases and it is not clear what the authors mean by "stable estimates". I’d welcome a more rigourous approach in the selection of u.

===PREPARING YOUR MANUSCRIPT===

Your revised paper should include the changes requested by the referees and Editors of your manuscript. You should provide two versions of this manuscript and both versions must be provided in an editable format:
one version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
a 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them. This version will be used for typesetting if your manuscript is accepted.
Please ensure that any equations included in the paper are editable text and not embedded images.

Please ensure that you include an acknowledgements' section before your reference list/bibliography. This should acknowledge anyone who assisted with your work, but does not qualify as an author per the guidelines at https://royalsociety.org/journals/ethics-policies/openness/.

While not essential, it will speed up the preparation of your manuscript proof if accepted if you format your references/bibliography in Vancouver style (please see https://royalsociety.org/journals/authors/author-guidelines/#formatting). You should include DOIs for as many of the references as possible.
If you have been asked to revise the written English in your submission as a condition of publication, you must do so, and you are expected to provide evidence that you have received language editing support. The journal would prefer that you use a professional language editing service and provide a certificate of editing, but a signed letter from a colleague who is a native speaker of English is acceptable. Note the journal has arranged a number of discounts for authors using professional language editing services (https://royalsociety.org/journals/authors/benefits/language-editing/).

===PREPARING YOUR REVISION IN SCHOLARONE===

To revise your manuscript, log into https://mc.manuscriptcentral.com/rsos and enter your Author Centre - this may be accessed by clicking on "Author" in the dark toolbar at the top of the page (just below the journal name). You will find your manuscript listed under "Manuscripts with Decisions". Under "Actions", click on "Create a Revision".

Attach your point-by-point response to referees and Editors at Step 1 'View and respond to decision letter'. This document should be uploaded in an editable file type (.doc or .docx are preferred). This is essential.

Please ensure that you include a summary of your paper at Step 2 'Type, Title, & Abstract'. This should be no more than 100 words to explain to a non-scientific audience the key findings of your research. This will be included in a weekly highlights email circulated by the Royal Society press office to national UK, international, and scientific news outlets to promote your work.

At Step 3 'File upload' you should include the following files:
-- Your revised manuscript in editable file format (.doc, .docx, or .tex preferred). You should upload two versions:
1) One version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
2) A 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them.
-- An individual file of each figure (EPS or print-quality PDF preferred [either format should be produced directly from original creation package], or original software format).
-- An editable file of each table (.doc, .docx, .xls, .xlsx, or .csv).
-- An editable file of all figure and table captions.
Note: you may upload the figure, table, and caption files in a single Zip folder.
-- Any electronic supplementary material (ESM).
-- If you are requesting a discretionary waiver for the article processing charge, the waiver form must be included at this step.
-- If you are providing image files for potential cover images, please upload these at this step, and inform the editorial office you have done so. You must hold the copyright to any image provided.
-- A copy of your point-by-point response to referees and Editors. This will expedite the preparation of your proof.

At Step 6 'Details & comments', you should review and respond to the queries on the electronic submission form. In particular, we would ask that you do the following:
-- Ensure that your data access statement meets the requirements at https://royalsociety.org/journals/authors/author-guidelines/#data. You should ensure that you cite the dataset in your reference list. If you have deposited data etc in the Dryad repository, please include both the 'For publication' link and 'For review' link at this stage.
-- If you are requesting an article processing charge waiver, you must select the relevant waiver option (if requesting a discretionary waiver, the form should have been uploaded at Step 3 'File upload' above).
--- If you have uploaded ESM files, please ensure you follow the guidance at https://royalsociety.org/journals/authors/author-guidelines/#supplementary-material to include a suitable title and informative caption. An example of appropriate titling and captioning may be found at https://figshare.com/articles/Table_S2_from_Is_there_a_trade-off_between_peak_performance_and_performance_breadth_across_temperatures_for_aerobic_scope_in_teleost_fishes_/3843624.

At Step 7 'Review & submit', you must view the PDF proof of the manuscript before you will be able to submit the revision. Note: if any parts of the electronic submission form have not been completed, these will be noted by red message boxes.

Author's Response to Decision Letter for (RSOS-202097.R0)

See Appendix A.

Decision letter (RSOS-202097.R1)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don't hesitate to let us know at the email address below.

Dear Professor Davison,

It is a pleasure to accept your manuscript entitled "Human mortality at extreme age" in its current form for publication in Royal Society Open Science.

You can expect to receive a proof of your article in the near future. Please contact the editorial office (openscience@royalsociety.org) and the production office (openscience_proofs@royalsociety.org) to let us know if you are likely to be away from e-mail contact -- if you are going to be away, please nominate a co-author (if available) to manage the proofing process, and ensure they are copied into your email to the journal.

Due to rapid publication and an extremely tight schedule, if comments are not received, your paper may experience a delay in publication.

Please see the Royal Society Publishing guidance on how you may share your accepted author manuscript at https://royalsociety.org/journals/ethics-policies/media-embargo/. After publication, some additional ways to effectively promote your article can also be found here https://royalsociety.org/blog/2020/07/promoting-your-latest-paper-and-tracking-your-results/.

Thank you for your fine contribution. On behalf of the Editors of Royal Society Open Science, we look forward to your continued contributions to the Journal.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org
Appendix A

Replies to the reviewer comments on “Human mortality at extreme age”

Léo R. Belzile, Anthony C. Davison, Holger Rootzén and Dmitrii Zholud
August 26, 2021

We thank the two reviewers for their positive feedback and helpful comments. Below we respond to the remarks of Reviewer 2, and then make an additional comment.

Substantive changes made in response to your remarks are shown in red in the revised paper; some minor infelicities of wording have also been corrected, but are unmarked.

Reply to Reviewer 2

1. The goodness of fit of the model is overlooked. I would welcome a comparison between the cumulative hazard function predicted by the model and a Nelson–Aalen nonparametric estimate of the cumulative hazard function.

Thank you for proposing these improvements.

Various graphical goodness-of-fit diagnostics have been proposed for right-censored and left-truncated data (Waller & Turnbull, 1992). Figure 6 of the Supporting Information shows quantile-quantile (QQ) plots and compares the Nelson–Aalen estimate for the Istat data with the fitted parametric models, adjusted for left-truncation as in Example IV. 1.8 of Andersen et al. (1993). We refer to this in the paper.

The France 2019 and IDL data are doubly truncated, so the QQ plots are awkward to construct and difficult to interpret. Instead Figure 7 of the Supporting Information compares the nonparametric cumulative hazard estimates (Turnbull, 1976; Shen, 2010) for these datasets with those of the fitted parametric models.

2. Lifetimes are treated as exceedances above a threshold u, which is chosen by trying several thresholds and then choosing the value that stabilize the parameter estimates. This part of the analysis looks rather empirical and it is not very convincing. The sample size decreases (and the variability of the estimates increases) as u increases and it is not clear what the authors mean by "stable estimates". I’d welcome a more rigorous approach in the selection of u.

Threshold selection is complicated as there is no “correct” threshold: as you write, the choice of u involves a bias-variance tradeoff (too low a threshold may make the generalized Pareto model approximation poor and extrapolation unreliable, but higher thresholds increase variability and thus reduce the value of the fitted model). The (unfortunately inconclusive) literature on threshold
Table 1: P-values for the likelihood ratio test comparing the generalized Pareto and exponential models (null hypothesis) with thresholds 108 ([Istat, France 2019]) and 110 years ([IDL]) against the piecewise generalized Pareto model of [Northrop & Coleman, 2014] with five thresholds at the 0, 0.2, . . . , 0.8 quantiles of the exceedances. The p-values are based on the asymptotic χ^2 distribution.

	gen. Pareto	exponential
Istat	0.47	0.61
France	0.44	0.55
IDL	0.77	0.77

choice in extreme-value statistics up to 2012 is reviewed by [Scarrott & MacDonald, 2012]. There have since been further proposals (e.g., [Wadsworth & Tawn, 2012; Northrop & Coleman, 2014; Lee et al., 2015; Wadsworth, 2016]), but each has its drawbacks and none is suitable ‘as is’ for censored and truncated data. Thus the use of stability plots remains standard, despite their drawbacks and informal nature.

For a more formal approach we adapted the likelihood ratio testing approach of [Northrop & Coleman, 2014] to handle censoring and truncation. The results, given in Table 1 of the present document and in Table 3 of the Supporting Information, support the chosen thresholds.

Additional changes

We have taken advantage of the delay since the paper was first submitted to use the most recent, August 2021, release of the [IDL]; the Swiss, Australian and Italian data (50 records in all) have been removed, but 234 records added. To make our work as reproducible as possible we now provide a supplementary document with instructions on how to download and preprocess the data we use. This update does not affect our overall conclusions, but the increased sample size leads to narrower confidence intervals for the parameter estimates and higher power to detect finite lifespan.

We also took the opportunity to deal with an issue concerning the truncation bounds for the French data: these records are doubly interval-truncated because the lower bounds of the sampling windows differ for semisupercentenarians and supercentenarians. In order to simplify the treatment and exposition, we now impose a common window (death in 1987–2016). This leads us to discard 41 out of 9853 semi-supercentenarians, of which only six lifetimes exceed 108 years. This removal of $\sim 0.5\%$ of the exceedances above 108 years has no discernible impact on our results or conclusions.

References

Andersen, P., Borgan, O., Gill, R., & Keiding, N. (1993). *Statistical Models Based on Counting Processes*. New York: Springer Verlag.

Lee, J., Fan, Y., & Sisson, S. (2015). Bayesian threshold selection for extremal models using measures of surprise. *Computational Statistics & Data Analysis*, 85, 84–99.
Northrop, P. J. & Coleman, C. L. (2014). Improved threshold diagnostic plots for extreme value analyses. *Extremes*, 17(2), 289–303.

Scarrott, C. & MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. *Revstat – Statistical Journal*, 10(1), 33–60.

Shen, P.-S. (2010). Nonparametric analysis of doubly truncated data. *Annals of the Institute of Statistical Mathematics*, 62, 835–853.

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. *Journal of the Royal Statistical Society, Series B*, 38, 290–295.

Wadsworth, J. L. (2016). Exploiting structure of maximum likelihood estimators for extreme value threshold selection. *Technometrics*, 58(1), 116–126.

Wadsworth, J. L. & Tawn, J. A. (2012). Likelihood-based procedures for threshold diagnostics and uncertainty in extreme value modelling. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 74(3), 543–567.

Waller, L. A. & Turnbull, B. W. (1992). Probability plotting with censored data. *American Statistician*, 46(1), 5–12.