The Earth's Surface Controls the Depth-Dependent Seismic Radiation of Megathrust Earthquakes

Jiuxun Yin and Marine A. Denolle

Abstract

Megathrust earthquakes exhibit a ubiquitous seismic radiation style: low-frequency (LF) seismic energy is efficiently emitted from the shallowest portion of the fault, whereas high-frequency (HF) seismic energy is efficiently emitted from the deepest part of the fault. Although this is observed in many case-specific studies, we show that it is ubiquitous in global megathrust earthquakes between 1995 and 2021. Previous studies have interpreted this as an effect of systematic depth variation in either the plate interface frictional properties (Lay et al., 2012) or the P wave speeds (Sallarès & Ranero, 2019). This work suggests an alternative hypothesis: the interaction between waves and ruptures due to the Earth's free surface is the leading mechanism that generates this behavior. Two-dimensional dynamic rupture simulations of subduction zone earthquakes support this hypothesis. Our simulations show that the interaction between the seismic waves reflected at the Earth's free surface and the updip propagating rupture results in LF radiation at the source. In contrast, the downdip propagation of rupture is less affected by the free surface and is thus dominated by HF radiation typical of buried faults. To a second degree, the presence of a realistic Earth structure derived from P-wave velocity (Vp) tomographic images and realistic Vp/Vs ratio estimated in boreholes further enhances the contrast in source radiation.

We conclude that the Earth's free surface is necessary to explain the observed megathrust earthquake radiation style, and the realistic structure of subduction zone is necessary to better predict earthquake ground motion and tsunami potential.

Plain Language Summary

The largest earthquakes occur on the megathrusts of subduction zones and generate huge ground motions and devastating tsunami waves that threaten the coastal populations. Global databases of earthquake seismic signals reveal that almost all megathrust earthquakes have a particular radiation style. The shallow portion of the megathrust is where the seismic event generates tsunamis but low-frequency, less damaging ground motions, whereas deeper segments of the megathrust are where the rupture excites the high-frequency and destructive ground motion strongly felt by the nearby coastal and urban regions. The scientific community has focused on a depth dependence of fault-surface properties. This study instead shows that a dynamic feedback between seismic waves and rupture with the Earth's surface and realistic structures is sufficient to explain these observed phenomena.

1. Introduction

The largest and most damaging earthquakes occur offshore in subduction zones: the Mw 9.4 1960 Great Chilean earthquake, the 1964 Mw 9.3 Great Alaskan earthquake, the Mw 9.2 2004 Sumatra earthquakes, and the Mw 9.0 2011 Tohoku-oki earthquake. Because almost 1 in 10 people in the world lives on the coast, understanding the rupture behavior of megathrust earthquakes is critical for seismic and tsunami risk mitigation in coastal areas. The recent occurrence of multiple of these events has coincided with a vast expansion in seismic networks, which, in turn, has led to the discovery of a multitude of processes surrounding the rupture of these large earthquakes (e.g., Ishii et al., 2005; Lay et al., 2012, and references therein).

A remarkable observation of these earthquakes' seismic signature is that low-frequency (LF) seismic waves are mostly generated at the shallow, updip region, while high-frequency (HF) seismic waves tend to come from the deep, downdip part. We refer to this as the “depth-frequency relation” in this work. It is manifested in three ways. First, studies on earthquake source time functions highlight a shortening of the source pulse that is well explained by an increase in elastic moduli with depth (Bilek & Lay, 1999; Houston, 2001; Vallée, 2013) and an increase in the relative contributions of HF radiation at depth and...
along the megathrust (Chouet & Vallée, 2018; Ye et al., 2016). Second, the strong ground motions that are responsible for damaging urban infrastructure have been observed to originate from the downdip end of the megathrust (Asano & Iwata, 2012; Frankel, 2013; Kurahashi & Irikura, 2011). The third class of seismic observations is the back-projection (BP) image reconstructed from teleseismic P waves (Ishii et al., 2005). Consequently, the images constructed at various frequency bands relate to the slip function’s whole-event spectral content on the fault. Event-specific studies have shown that high frequencies are more efficiently generated at the downdip portion of the megathrust rather than its updip end (Kissel et al., 2011; Meng et al., 2011; Simons et al., 2011; Sufri et al., 2012; Yao et al., 2013; Melgar et al., 2016; Yin et al., 2016, 2017, 2018).

Here, we show three examples of such images using an Improved Compressive Sensing BackProjection (imCS-BP) method (Yao et al., 2011; Yin et al., 2018) for the Mw 9.0 2011 Tohoku-oki earthquake (D. Wang & Mori, 2011; Yao et al., 2011; Lay et al., 2012), the Mw 7.9 2015 Gorkha earthquake (Avouac et al., 2015; Yin et al., 2017; Yue et al., 2016), and the Mw 8.3 2015 Chilean IIapel earthquake (Melgar et al., 2016; Yin et al., 2016). We show both the LF and HF BP images in Figures 1a–1c. Supporting Information (Text S1, Figures S1–S3) provide additional details about data processing and results. These images clearly illustrate that HF source signals are emitted at greater depths than LF source signals.

Figure 1. Ubiquitous depth-frequency relation found by back-projection observations. (a–c) back-projection (BP) images of the Mw 9.0 2011 Tohoku-oki, the Mw 7.9 2015 Gorkha, and the Mw 8.3 2015 Illapel earthquakes, respectively. The BP images are reconstructed using the imCS-BP method developed by Yin et al. (2018), and only the contours of 20%, 40%, 60%, and 80% maximum power are shown. The dashed black lines indicate the trench. The thin gray contours show the Slab2 model (Hayes et al., 2018). The purple contours in (a) show the 20 and 50 m of coseismic slip distribution during the 2011 Tohoku earthquake from Lay et al. (2012), and the solid black line shows the location of the velocity profile of Miura et al. (2005). (d) Centroid depths of the low-frequency (0.05–0.25 Hz) BP images compared with the high-frequency (0.25–1 Hz) BP images from 245 M > 6.5 earthquakes.
We then turn to global databases of BP images provided by The Incorporated Research Institutions for Seismology (IRIS) over all the Mw 6.5+ earthquakes since 1995 (Incorporated Research Institutions for Seismology Data Management Center, 2011). Here, we select 461 earthquakes between 1995 and 2021 within the latitude-longitude range of the available Slab2 plate interface model (Hayes et al., 2018). We then project the HF and LF BP peaks of each earthquake onto the Slab2 model and calculate the corresponding HF and LF centroid depths. The centroid depth is a weighted average of the BP peak depths, the weights being the amplitude of BP peaks. Finally, we select the 245 earthquakes that have a BP centroid depth shallower than 70 km. For most earthquakes, especially the large magnitude ones with a likelihood of better time and spatial resolution of the BP image, we find that the centroid depth of the HF BP peaks is systematically greater than that of the LF peaks (Figures 1d and S4). Two events stand out as exceptions: the Mw 9.0 2011 Tohoku-oki earthquake and the Mw 8.3 2006 Kuril Island earthquake (Ammon et al., 2008). For the 2011 Tohoku-oki earthquake, the exception is due to the different choice of frequency bands by the IRIS database, and we have shown that the refined BP results clearly present the depth-frequency relation (Figure 1a, or figures in Yao et al. (2011)).

A common interpretation for these observations is the systematic depth variation in frictional properties that result from increasing temperature and pressure with depth and associated phase transformation of the minerals that compose the downgoing oceanic lithosphere. The argument is that systematic depth variations in fault properties can explain the evolution of the seismicity rates with depth (Scholz, 1998). It has also been widely used to explain the depth-varying seismic radiation of large megathrust earthquakes (Lay et al., 2012; Yao et al., 2013; Yin et al., 2017). Studies that simulate the dynamic rupture have adopted this with a parameterization of pre-stress or fault strength heterogeneity in the deeper portion of the seismogenic megathrust and have successfully reproduced HF and LF's relative contributions in seismic radiation (Galvez et al., 2014; Huang et al., 2012). Other studies have shown that it may be explained by a depth dependence in fault rheology, whereby the transition of frictional behaviors occurs, result in HF radiation at the rupture front (e.g., Noda & Lapusta, 2013; Michel et al., 2017). A recent alternative interpretation is that the systematic increase in P wavespeed (V_P) with depth in subduction zones directly impacts the wavelength and frequency of seismic waves emitted at the source (Sallarès & Ranero, 2019). However, such an argument would also pertain to earthquakes in a wide depth range and from other tectonic environments. But we do not observe it for deeper earthquakes in the IRIS database (see Figure S5).

Another major impact on megathrust earthquake dynamics is the asymmetrical fault-surface geometry: a shallow dipping fault intersects the Earth's free surface, and the accretionary and frontal wedge materials (hanging wall) are highly compliant compared to the footwall materials. This particular structure tends to trap seismic waves within the wedge and cause significant dynamic stress perturbations (Brune, 1996; Gabuchian et al., 2017; Guo et al., 2016; Lotto et al., 2017, 2018; Ma & Beroza, 2008; Nielsen, 1998; Oglesby et al., 2000; Tal et al., 2020). Such high stresses can lead to material yielding (Ma & Hirakawa, 2013; Ma & Nie, 2019) or unclamping and flapping of the hanging wall (Brune, 1996; Gabuchian et al., 2017; Tal et al., 2020).

This study evaluates the impact of realistic structures in subduction zones, including the free surface and heterogeneous velocity structure, on the rupture dynamics and seismic radiation of megathrust earthquakes. We use two-dimensional (2D) dynamic models to investigate the radiation style of these earthquakes. A similar exercise was undertaken by Lotto et al. (2017); Lotto et al. (2018), albeit a simplification of the 2D elastic structure and a focus on fault rheology and tsunamigenesis. Instead, this contribution uses a tomography-derived elastic model, a realistic model of the shear wavespeed (V_S), and provides a comprehensive analysis of the seismic waves generated by these ruptures.

Our results show that all simulations that contain a traction-free surface can reproduce the observations: HF seismic waves are more efficiently generated at depth, LF seismic waves are more efficiently generated near the trench. We define the free-surface effects as the dynamic interactions between the rupture and the seismic waves reflected from the surface. We propose that the free-surface effects are the first-order explanation of the observed depth-frequency relation. Furthermore, the subduction of a cold and wet slab produces a strong material contrast across the plate interface or fault, which favors the evolution of pulse-dominated rupture front and enhances high-frequency strong ground motions from the downdip region near the coast. Because such realistic velocity models exacerbate the contrast in radiation style, we propose that realistic
heterogeneous Earth velocity models give a significant second-order effect on controlling the seismic radiation. We conclude that realistic Earth structures are necessary to predict tsunami and coastal ground motion hazards better.

2. Methods

We perform a set of dynamic rupture experiments in 2D media of small and large earthquakes. Five models are dedicated to small earthquakes in a simple homogeneous half space on a flat fault. For the rest, we gradually increase structural complexity from homogeneous to realistic elastic structures. By building up complexity, we explore to what degree the realism in Earth models impacts the rupture. Combining different parameter settings, we obtained 29 representative rupture models. For both the small and large megathrust rupture models, we analyze the spectral properties of the rupture slip history. We further investigate the nearby ground motions and the tsunami potential for those megathrust models.

2.1. Representing a Realistic Megathrust Structure

We choose the Tohoku region in northeastern Japan as our study case. We start from a benchmark case in the homogeneous full-space medium without a free surface. Then we increase the complexity of the medium from a homogeneous half-space with a planar shallow dipping fault (11.8° degrees, Figures 2a heterogeneous half-space with realistic seafloor topography and V_p structure from Miura et al. (2005). The shaded blue areas highlight where V_p/V_s ratio is varied. (c) Fault properties: static strength levels τ_s (red), dynamic strength levels τ_d (blue), initial shear stress τ_0 (black) with different values of pore-pressure ratio λ of 0.7 (dashed lines) and 0.9 (solid lines), V_p along with two profiles projected at 400-m above (green) and 400-m below the plate interface (purple).

Figure 2. Model setting. (a) Model configuration in the homogeneous structure: a flat half-space with planar slab/fault geometry and a flat topography (dashed lines), a half-space with realistic slab geometry and seafloor topography (solid lines, referred to later as REF), hypocentral locations (yellow stars). (b) Heterogeneous half-space with realistic seafloor topography and V_p structure from Miura et al. (2005). The shaded blue areas highlight where V_p/V_s ratio is varied.

The elastic structure varies considerably along the dip of the megathrust, especially V_p in the upper plate (Sallarès & Ranero, 2019). Another aspect of the structural complexity is the high compliance of the sediments that constitute the accretionary wedge (Von Huene et al. (2009), and references therein). Here, we describe the megathrust fault zone into two canonical fault zone structures: a) the updip fault zone has low-velocity properties and high V_p/V_s ratio, a nearby free surface, and a wide damaged zone, and b) the downdip fault zone has a sharp contrast in material properties across the fault.
We focus our efforts to model a realistic updip region (above 20 km) on generating a realistic V_S structure. The compilation of V_p/V_S ratio values provided by Brocher (2005) suggests that low V_p materials have high V_p/V_S ratios. In light of this, we discuss three regions of possibly elevated V_p/V_S ratios. The first region is the subduction channel, the thin upper layer of the downgoing slab that is composed of fluid-rich seafloor sediments (Hicks et al., 2014; Naif et al., 2015; Saffer & Tobin, 2011; Zhu et al., 2020) and hydrated minerals in a mafic fractured crust (Bostock, 2013; Hicks et al., 2014; Nishimura et al., 2019; Pimienta et al., 2018; Shelly et al., 2006). The second region is the slope apron, the thin layer of the seafloor sediments that covers the wedge, which is best accessed by offshore drilling and active seismic surveys (Fujie et al., 2013; Peacock et al., 2010; Tsuji et al., 2011; Zhu et al., 2020). The third region we consider is the frontal prism that is the tip of the accretionary wedge where dragging of high V_p/V_S ratio sediments may occur (Fujie et al., 2013; Hicks et al., 2014; Nakamura et al., 2014; Saffer & Tobin, 2011). Due to the range of V_p/V_S values found in the literature, we vary the ratios between $\sqrt{3}$~1.73, 1.83, 1.94, 2.04, 2.14, 2.24, 2.35, and 2.45 in the three specific regions discussed above (Figure S6). Although higher values have been reported within layers of seafloor sediments (Zhu et al., 2020), these are likely too thin to be resolved by our numerical exercise.

We now focus our attention on modeling material contrasts at the plate interface in the downdip region (between 20 and 50 km depth). Although the downgoing oceanic plate is denser than the overriding plate, the several-kilometer thin upper portion of the oceanic crust exhibits low seismic velocities. It is present in most subduction zones and is referred to as the Low-Velocity Zone (LVZ). To confirm this common feature of subduction zones, we compile the range of V_p in the LVZ and across the fault in the upper plate in Supplementary Materials Table S1.

Finally, we embed the realistic structure in a homogeneous half-space and generate a larger simulation domain to avoid artifacts from the absorbing boundary conditions. We impose a 5-km smoothing operator to taper off velocity changes between the realistic structural model and the homogeneous half-space (Supporting Information Figure S7).

2.2. Modeling the Dynamic Rupture

The other ingredients necessary to model earthquake ruptures are fault properties such as the stress field, the pore pressure, and the frictional conditions (Figure 2c). We explore several frictional conditions. In most models, we apply linear slip weakening on the entire fault. We test for slip-neutral and slip-strengthening conditions in the upper ~10 km of the along-dip direction, in a zone of low-grade metamorphism where neutrally stable conditions may occur (Huang et al., 2012; Kozdon et al., 2013; Lotto et al., 2017, 2018; Noda & Lapusta, 2013). We also test the frictional constitutive relation proposed by Murphy et al. (2018) that is derived from laboratory experiments. In addition to increasing the V_p/V_S ratio, the fluid content also affects the stress fields by reducing overburden lithostatic pressure σ_i with pore fluid pressure p. We use the pore pressure ratio λ defined in Hubbert and Rubey (1959) to impose a pore pressure $p = \lambda\sigma_i$ as well as the effective normal stress $\sigma_n = (1 - \lambda)\sigma_i$. Given the uncertainties in λ, we test two values of λ (0.7 and 0.9) and assume that the pore fluid pressure becomes lithostatic when $\sigma_n = 40$ MPa (Figure 2d). These conditions are similar to those discussed and imposed in previous studies (e.g., Rice, 1992; Saffer & Tobin, 2011; Murphy et al., 2018; Lotto et al., 2018). The earthquake rupture naturally evolves on the fault in response to an over-stressed nucleation patch (see Figure 2c). A full description of all model parameters is in Supporting Information (Text S2). We use the SEM2DPACK software (Ampuero, 2012, https://github.com/jpampuero/sem2dpack, last accessed on 06/08/2021) to simulate both the dynamic slip on the fault and the wavefield in the two-dimensional elastic domain.

2.3. Parameterization of the Source Radiation

To understand the relative contributions between LF and HF seismic waves emitted by the rupture, we parameterize the local slip-rate function’s spectrum and improve from the qualitative discussions in Figure 3c of Ma and Hirakawa (2013) and Figure 12d of Galvez et al. (2014). In this study, we systematically measure and compare the along-dip spectral variations with two metrics.

The first approach fits the Fourier amplitude spectrum of the local slip-rate function with a flat model at low frequencies and a power-law decay at high frequencies. We apply a model commonly used in source
seismology, $S(f) = 1 / \left(1 + (f / f_c)^n\right)$, where f_c and n are the corner frequency and spectral falloff rate, respectively. The spectral model fits the shape of far-field P-wave pulses that originate from circular crack ruptures with uniform stress drop and elliptical slip distribution (Brune, 1970; Eshelby, 1957; Madariaga, 1976). It is common to perform spectral fitting over the spectrum of the far-field body-wave pulse of the entire event, which is the moment-rate pulse (Abercrombie & Rice, 2005; Allmann & Shearer, 2009; Trugman & Shearer, 2017; W. Wang & Shearer, 2019). Slip rate functions and overall moment-rate functions differ because the latter is the spatial integration of the former. This leads to differences in spectral shapes. For instance, the slip-rate spectral shape may be sensitive to the breakdown time (Huang, Ampuero, & Kanamori, 2014; Tinti et al., 2005). We use this spectral shape solely to characterize the spectral shapes and relative HF-LF content. The corner frequency f_c is inversely proportional to the pulse duration, which is also referred to as “rise time” in the kinematic representation of the earthquake source. The spectral falloff rate n describes how fast the high-frequency component decays in amplitude. The two spectral parameters trade off each other during the spectral fitting (Denolle & Shearer, 2016; Trugman & Shearer, 2017). Combining both can help to quantify the relative portions of LF and HF seismic radiation: larger f_c and smaller n correspond to relatively more HF radiation, while smaller f_c and larger n correspond to relatively more LF radiation. We apply a non-linear least-square solver to find f_c and n from fitting the log10 of the amplitude spectra of the local slip-rate functions interpolated on a logspace frequency vector, a strategy similar to other observational studies (see Shearer et al. 2019) for a recent review.

The second measure of relative contribution in frequency content estimates the seismic power generated by the local slip-acceleration function. Similar methods have been applied in previous studies to quantify...
the spectral power of slip rate from different frequency components (Huang, Ampuero, & Kanamori, 2014; Huang et al., 2012; Michel et al., 2017). Here we choose slip acceleration as the ground motion unit because far-field velocity seismograms are commonly used for teleseismic P-wave back-projection studies (Fukahata et al., 2014; Yin & Denolle, 2019) and are proportional to moment accelerations. We estimate the power by bandpassing (Butterworth, four corners, zero phase) and integrating the squared time series of local slip-acceleration functions in two frequency bands below the resolvable frequency: for small earthquake rupture in the homogeneous medium (Section 3.1), LF 0.001–0.1 Hz and HF 0.1–1 Hz; for megathrust rupture (Section 3.2), LF 0.001–0.06 Hz and HF 0.06–0.3 Hz. The central frequencies 0.1 and 0.06 Hz are arbitrarily chosen as approximately the middle of the log-scale frequency band, but other tested values did not affect the general trends in the results. Details about the frequency resolution are in the Supporting Materials (Text S2.4). We then use the HF and LF seismic powers, specifically the HF/LF power ratio, to measure their relative contributions.

3. Results From Dynamic Rupture Simulations

3.1. Cases of Small Subduction Zone Earthquakes

We start by inquiring whether the model setup can reproduce the differences in pulse width and fall-off rate that are reported from observations of small subduction-zone events (Houston, 2001; Ye et al., 2016). We systematically model five small ruptures initiated at the depths of 13.4 km, 17.6 km, 21.7 km, 25.9 km, and 30.0 km in a homogeneous structure with a planar fault and flat, free surface (Figures 2a and S8). We impose pre-stress conditions to constrain the rupture length and keep other parameters equal in all simulations (see Figure S8). Finally, we apply our parameterizations to quantify the contributions from LF and HF radiation for these rupture models. Any difference in rupture style may then be attributed to free-surface effects controlled by the depth (or distance from the free surface) at which the rupture occurs.

The simulation results show that only the two shallower ruptures have reached the surface while the three deeper ones remain buried (Figure 3a and S9). As the shallow ruptures reach the trench, they interact with the scattered wavefield. Such wave-rupture interaction disappears in the case of a source deeper than 20 km as the rupture almost terminates before the arrival of free-surface reflections (Figure S9). Effectively, the deep sources are in a full-space. The shallow ruptures end up releasing about twice the moment (per unit of fault width) of the deep ruptures (Figure 3a) due to the “mirror effect” from free surface (Luo et al., 2018).

Next, we fit the overall moment-density-rate function with the spectral model mentioned in Section 2.3 up to a resolvable frequency of 1 Hz (Figure 3c). This is, in practice, very similar to the seismological studies that explore earthquake source parameters (e.g., Abercrombie & Rice, 2005; Baltay et al., 2014; Denolle & Shearer, 2016; Trugman & Shearer, 2017). However, here we only use this model to quantify the spectral shape and avoid any dynamic implications on source parameters due to the circular-crack assumption of this spectral model (Brune, 1970; Eshelby, 1957; Madariaga, 1976). The spectral analysis shows that the source spectra of the two shallow earthquakes have lower $f_c = 0.19$ Hz and $f_c = 0.16$ Hz than the deeper ones with f_c about 0.2 Hz because of the longer duration of shallow ruptures. We also find a systematic trend of the spectral falloff rate n that the value of n systematically decreases along depth (Figure 3c), implying that the moment-rate spectrum is more depleted in HF waves than deep earthquakes.

Moreover, we investigate how the local slip-rate functions vary with depth for each model. Details of the space-time rupture evolution can be found in Supplementary Figure S9. Here, we select an individual slip-rate function every 10 km along with the plate interface and measure corner frequency f_c, falloff rate n, and the corresponding HF/LF power ratio (Figures 3d–3f). There is no evident systematic along-depth variation of f_c; instead, it varies with the distance from the nucleation site as expected from crack models (rise time is longest at the nucleation patch). However, we find systematic along-depth variations of n and HF/LF power ratio: n decreases while HF/LF power ratio increases with depth for all models in general. Both n and the HF/LF ratio suggest that more HF components are radiated during the deeper ruptures. Since the only difference between the models is the source depths, i.e., the distances from the free surface, we suggest that free-surface effects are the origin of the depth-frequency relation.
3.2. Cases of Megathrust Earthquakes

In this section, we present our simulation results of the large megathrust earthquake models. Examples of the space-time evolution from the ruptures in the homogeneous full-space model (Full), homogeneous half-space model (REF) and heterogeneous model \(V_{p}/V_{S} = 2.04\) in the \(V_{p}/V_{S}\)-elevated regions are shown in Figure 4a. Our half-space simulations are typical of 2D models of dynamic rupture (Huang et al., 2012; Kozdon et al., 2013; Lotto et al., 2017; Ramos & Huang, 2019). All simulated ruptures reach the trench, last about 60 s, and their final slip increases from small downdip to large updip. The rupture first propagates bilaterally from its nucleation patch. The updip rupture then hits the trench with a high slip rate, and a weak re-rupture front propagates back downdip. The downdip rupture propagates with a constant rupture velocity and dies at the end of the fault. The slip profiles along the dip (Figure 5) are similar to many of those inferred for the Mw 9.0 2011 Tohoku-oki earthquake (summarized in K. Wang et al., 2018, and references therein). By comparison, the simulation in the homogeneous full-space model presents symmetric rupture behavior at the updip and downdip propagating fronts. The slight asymmetry of full-space model is due to the initial stress distribution (Figures 4a and 5b). We refer to Supporting Information 2 for each model’s detailed results and summarize their general patterns.

To explore the depth-varying properties, we apply the same parameterization in previous sections to all megathrust rupture models (Figure 6). First, we perform the spectral fitting for each slip-rate function. We find that all models with a free surface present similar along-dip (or depth) variations of the spectral properties (Figures 6a and S10). The spectral falloff rate \(n\) generally decreases with depth: it is about 1.8–2.0 (model median) on the shallow segment from 0–20 km and 0.8–1.0 (model median) on the deep segment. Second, we calculate the HF/LF power ratio of slip accelerations in the HF (0.06–0.3 Hz) and LF (0.001–0.06 Hz) bands. Here again, we find a clear pattern that the HF/LF power ratio increases with depth (down-dip) for all those half-space models (Figure 6b). We also repeat the measurements for the segment-averaged slip-rate functions (on the 10-km subfaults), and the patterns stay the same (Figure S11).

In all free-surface models, both measures of the local slip-rate functions’ relative frequency content vary systematically with depth. Such systematic variation contrasts with the results obtained with the full-space model’s case: both the spectral falloff rate \(n\) and the HF/LF ratio remain constant (Figure 6) because of the symmetry of slip history (Figures 4 and 5). This is consistent with the results from the small subduction-zone megathrust earthquakes in Section 3.1, and again suggests that free-surface effects are the first-order mechanism that explains the frequency-depth radiation during megathrust earthquakes. Furthermore, we notice that the rupture models in the realistic heterogeneous mediums present stronger contrast in radiation style, that is, stronger variations of falloff rate \(n\) and HF/LF power ratio with depth than the models in the homogeneous structure. It means that the realistic velocity structure can be a second-order mechanism and further enhance the observations of depth-frequency relation.

4. Discussion

This study focuses on the effects of free surface and realistic Earth structure on the dynamic rupture behavior of megathrust earthquakes. While we test one particular subduction zone in northeastern Japan (Miura et al., 2005), the overall structure exists in many other subduction zones (Table S1). Three specific structural
features appear to impact the depth-frequency relation of megathrust earthquakes (Figure 7): a) the free surface in the near-source region, b) the high compliance of the sediments in the updip wedge, and c) the low-velocity zone below the plate interface downdip. Our systematic simulations show that free-surface effects are the first-order mechanism, and the heterogeneity in material compliance further enhances the radiation contrast. We illustrate this in Figure 7. We now discuss the varied rupture behavior, their impact on the depth-frequency relation, and further implication for ground motion and tsunami hazards.

4.1. Updip Rupture: Large and Fast Crack Rupture to the Trench

The rupture accelerates updip and evolves as a crack (Figure 5): the shallow rupture velocities are higher than typically observed (Chouet et al., 2018) and greater than the surrounding V_s, and slip continues until the end of rupture. Our simulations shed light on two major factors that control this updip behavior: the free surface and the shallow compliant fault zone.

Previous studies have shown that the free surface can significantly change the normal stress during rupture, due to waves reflecting at the free surface and traveling back to the fault (Brune, 1996; Nielsen, 1998; Oglesby et al., 1998, 2000; Y. Wang et al., 2019; Tal et al., 2020). Our simulation results are no different: clear surface-reflected phases cause the prolonged and persistent slip in the updip portion (Supporting Information 2). Free-surface effects also induce acceleration of rupture propagation with supershear velocity: a secondary “daughter crack” can be triggered by the surface-reflected shear wave, which can be seen in other studies (Huang et al., 2012; Lotto et al., 2017) and in other tectonic regimes such as strike-slip earthquakes (Kaneko & Lapusta, 2010). The “mirror effect” of the free surface to seismic waves can also cause larger coseismic slip even with a constant stress drop value (Luo et al., 2018).
The highly compliant structure of the shallow hanging wall of the megathrust acts as a seismic waveguide. The upper plate low-velocity sediments can trap seismic waves, amplify their amplitudes and extend their duration. This wave propagation effect is similar to how seismic waves amplify when traveling in sedimentary basins (Campillo et al., 1989). Despite differences in model settings, all simulations show that the initial wave emitted at the rupture front, the free-surface reflections, and other wedge captured and scattered waves interfere together to energize rupture propagation and further increase the final slip. In our simulations, these normal stress changes and fault-parallel slip are so extreme, with peak slip rates on the order of 10 m/s, that some models with standard V_p/V_s ratios predict co-seismic backslip (Figure 4a). In simulations with higher V_p/V_s ratios, much lower V_s may delay the propagation of scattered waves in a way that limits their constructive interference back to the fault. Regardless, such extreme values of slip rates generate large dynamic stresses that can cause (not modeled) inelastic failure (Ma & Hirakawa, 2013; Ma & Nie, 2019), wedge flapping (Brune, 1996; Gabuchian et al., 2017). This phenomenon may cause the suggested dynamic overshoot during the Mw 9.0 2011 Tohoku-oki earthquake (Ide et al., 2011).

Figure 6. Spectral properties of the source radiation, shown by the probability distribution from all models. These distributions are obtained from the Box-kernel smoother. (a) Best-fitted spectral falloff rate n along dip from the simulated megathrust earthquake with different model settings. (b) The power ratio of high frequency (HF) 0.06–0.3 Hz and low frequency (LF) 0.001–0.06 Hz slip acceleration along dip. The dark blue solid line shows the median value of all models. Black dashed line and solid line show the median values from all homogeneous models and all heterogeneous models, respectively. The light blue dotted line shows the result from the homogeneous full-space model. The orange bar indicates the location of rupture nucleation.
Moreover, the downgoing plate is fractured and hydrated on the foot-wall side with low velocities and elevated V_p/V_S ratios (10–20 km depth in Figure 2b). Altogether, the structure is similar to that observed in crustal damage zones (Ben-Zion & Sammis, 2003). Harris and Day (1997) suggested that the low-velocity structure around the fault can affect the rupture speed and slip-velocity pulse shape. Furthermore, such a low-velocity structure dramatically impacts rupture propagation and termination, such as multiple slip pulses, supershear rupture velocity, and rotation of background stress (Ampuero & Ben-Zion, 2008; Huang, 2018; Huang, Ampuero, & Helmberger, 2014; Rubin & Ampuero, 2007).

In the homogeneous case with a uniform V_p/V_S ratio of $\sqrt{3}$ and realistic fault and seafloor geometries (REF model in Figures 6 and 8), the rupture velocity for both updip and downdip rupture has a typical value of $0.87V_S$. In the models that have realistic V_p/V_S ratios, the updip rupture velocity becomes greater than the local V_S. This is typical for 2D elastic models of earthquakes on the megathrust of subduction zones (Lotto et al., 2018) and in damaged fault zones (Huang, Ampuero, & Helmberger, 2014; Huang et al., 2016; Weng et al., 2016).

4.2. Downdip Rupture: Pulse-Dominant Rupture Along With the LVZ

As the rupture propagates to the downdip region, there is no impact from free-surface reflections as the rupture ends before waves travel back to the fault. All models present a sharp rupture front (Figure 4a). In the models with a homogeneous structure, the slip-rate functions have typical long tails (Kostrov, 1964). In the models with heterogeneous structures, the slip-rate functions are characterized by a shortening of the slip pulse (stronger healing) with depth (or along dip with hypocentral distance). In both situations, our quantification on the spectrum shows that the HF energy dominates due to the impulsive slip-rate function shape.

The material contrast across the fault can explain the evolution of short and sharp slip pulses downdip of the hypocenter. Theoretical studies have predicted the slip pulse produced by the material contrast at the fault interface (Andrews & Ben-Zion, 1997; Weertman, 1980). Moreover, Shlomai and Fineberg (2016) perform and analyze lab experiments with an in-plane shear of the two blocks with different compliance. They show that such a bimaterial interface can host both rupture modes: one self-healing slip pulse that moves in one direction of rupture and one slip crack that propagates in the opposite direction. The experimental configuration is similar to that of the subduction zones downdip of the seismogenic zone.
AGU Advances

with the contact between the LVZ and the overhanging upper mantle material. As the rupture propagates downdip, in the moving direction of the more compliant oceanic plate, the slip-rate functions are short and sharp pulses (Figure 4a). The corresponding downdip rupture speed V_r is about $0.71 V_{S,local}$ (Figure 4b), which is the local shear wavespeed of the continental crust near the slab (Figure 2c), but is about 5% higher than the shear wavespeed in the LVZ. This has also been shown by the experiments of Shlomai and Fineberg (2016).

Previous theoretical and numerical studies show that the generation of a self-healing slip-pulse on bimaterial interface requires specific conditions of initial stress, friction or geometry (Ampuero & Ben-Zion, 2008; Dalguer & Day, 2009; Olsen-Kettle et al., 2008; Rubin & Ampuero, 2007; Shi & Ben-Zion, 2006). This study has not covered the parameterization of those conditions for our dynamic models of megathrust rupture. But we leave them as a future direction to explore in combination with theoretical studies and constraints on how fault is localized in subduction zones from geological observations.

4.3. Depth-Frequency Relation of Megathrust Earthquakes

In this study, we have shown that all earthquakes simulated in half-spaces exhibit similar along-dip variations in the values of the spectral parameters and HF/LF ratios of the local slip-rate functions (Figures 3 and 6), which is consistent with the observed depth-frequency relation (Figure 1). In contrast, the benchmark full-space simulation is not consistent with the observations. Therefore, we propose that
free-surface effects are the first-order factor in explaining the observed depth-frequency relation of megathrust earthquakes.

The cases of the simulated small earthquake ruptures reveal that the shallower earthquakes are more depleted in high-frequency radiation than the deeper ones (Figure 3). These patterns are consistent with the observed systematic depth variations of source parameters for small-to-moderate earthquakes (Denolle & Shearer, 2016; Houston, 2001; Ko & Kuo, 2016; Ye et al., 2016). The depletion in HF content is mainly caused by the interference between direct rupture and the free-surface reflection (Figure S9).

The cases of the simulated large earthquake ruptures further support the claim that free-surface effects are the leading factor in explaining the depth-frequency relation during large megathrust earthquakes. The deep portion of the rupture has elevated HF radiation compared to the shallow portion, regardless of model setting (Figure 6). Our study suggests that a crack-like rupture mode exemplifies the updip rupture of megathrust earthquakes. In contrast, the sharp slip-pulses are the dominant mode of the downdip ruptures, at least as seen by seismic radiation (Figure 4a).

This study focuses on the Tohoku region, however, our results are generalizable since the free surface dominates the response. We also tested a shallow vertical mode-III (anti-plane) rupture in a homogeneous halfspace and found a similar pattern in the spectral content (Figure S12). These findings imply that the depth-frequency relation may also exist for other types of earthquakes such as strike-slip events at shallow depth. However, there is no observation of such phenomenon, which we attribute to the poor resolution with depth using teleseismic waves. Improvements in the Green’s function for near-surface source may help find the seismic signatures.

Moreover, models that include realistic velocity structures exhibit stronger variations in \(n \) and HF/LF ratios with depth (Figure 6). We attribute this stronger contrast to the wave effects in a realistic velocity structure. First, the shallow, compliant, high-\(V_p/V_s \) accretionary wedge traps waves more effectively, slows their propagation, and increases the duration of slip on the fault, which enhances LF radiation near the trench. Second, the deep strong material contrast between the LVZ and the continental overriding mantle can lead to more pulse-dominant slip histories with more HF radiation in the downdip region. Therefore, the realistic elastic structure in the subduction zone is another controlling factor to the depth-varying frequency-dependence of seismic radiation.

4.4. Implications for Tsunami and Ground Motion Hazards

Our simulations indicate that the final slip distribution varies considerably with the model settings. The final moment magnitude of the homogeneous half-space models is larger than the heterogeneous models, probably due to the greater shear modulus at the shallow portion (Figure 8a). However, the final slip is greater underneath shallow and highly compliant structures (Figure 8b), which was also found by Lotto et al. (2018). The final slip at the trench directly impacts the tsunami height. We apply a simplified relation from Tanioka and Satake (1996) to estimate the initial tsunami height at the trench:

\[
\eta_{\text{ts}} = u_y - m u_x,
\]

where \(u_x, u_y, \) and \(m = -0.1 \) are the horizontal displacement, vertical displacement, and the horizontal gradient of the bathymetry at the trench, respectively. We find that \(\eta_{\text{ts}} = 8.6 \) m for the homogeneous half-space model (REF model), 11.0 m for the heterogeneous model with \(V_p/V_s = \sqrt{3} \) and 11.3 m for the heterogeneous model with \(V_p/V_s = 2.45 \). This simple exercise reaffirms the results from previous studies that the realistic velocity structure, especially the shallow \(V_s \) structure, is necessary to estimate better the potential tsunami hazards (Lotto et al., 2018).

We also compare the ground motions that would be recorded at a station in the coastal region (Figures 8c–8d and S7). The strong ground motions that are responsible for damaging urban infrastructure may arrive as distinct high-frequency bursts from the downdip part of the megathrust (Asano & Iwata, 2012; Frankel, 2013; Kurahashi & Irikura, 2011). Moment-normalized velocity and acceleration seismograms produced by the different models of this study have relatively similar peak amplitudes. The earliest peak amplitudes of ground motions occur when the rupture hits the trench. However, the duration of strong shaking is much greater in realistic structures. We attribute this to the wave reverberation in the wedge (wave propagation effects) and not a source effect since the source duration is comparable (∼60 s). The presence of the LVZ
naturally increases the strong ground motion hazard: it is located nearby the coastal regions and tends to produce three times more HF seismic power than in reference, uniform models (Figure 6). Previous studies have illustrated the existence of distinct strong-motion generation areas (SMGAs) (Asano & Iwata, 2012; Frankel, 2013; Kurahashi & Irikura, 2011). The SMGAs imply that there may be heterogeneity in the LVZ such that the spatial variations in elastic structure may control variations in slip-front healing (i.e., more or less healing of the slip pulse). These can also be modeled by heterogeneity in fault properties (Huang et al., 2012).

5. Conclusion

Global databases of BP images show a systematic depth variation of the frequency content in source radiation. While this finding was discussed in Lay et al. (2012) for several large events, here we show that it is a systematic pattern among most moderate-to-large subduction zone earthquakes. This study provides a simple and generalizable explanation of this observation. We find that the inclusion of Earth’s free surface is sufficient to explain this ubiquitous observation. We propose that the dynamics of shallow rupture are dominated by free-surface effects that are, in turn, the first-order factor in explaining the depth-frequency relation. The second-order effect is the evolution of earthquake rupture in a realistic velocity structure that is typical of shallow subduction zones (<50 km), one that has a compliant wedge and a low-velocity zone atop the downdgoing slab. The presence of anomalously low \(V_P \), relative to \(V_P \), also impacts the rupture behavior and further enhances the depth-dependence of seismic radiation. Furthermore, our findings resonate with previous work that realistic structures are necessary to correctly model tsunami and ground motion hazards in future subduction zone earthquakes (Lotto et al., 2018). Because elastic wavespeed properties are likely better constrained than frictional properties at depth, our study promotes the use of tomographic images in dynamic rupture modeling and ground motion predictions.

There are several key limitations to this work and avenues to improve upon it. Free-surface effects consist of multiple factors, including fault geometry/curvature, depth of earthquake rupture, seafloor topography, bulk properties, which could be explored in a rather systematic way in future analysis. Our preliminary attempts to produce a synthetic backprojection by coupling the dynamic rupture models using SPECHEM2D (Tromp et al., 2008) failed due to a poor resolution of the BP peaks in the 2D dynamic modeling setting. Part of this limitation is likely due to the 2D modeling against 3D modeling, which would provide one more spatial dimension to separate the BP peaks. 3D realistic structure effects may matter more for the along-strike propagation of rupture, which is not explored in this setting. We have also ignored the water layer, though this should not affect too much the rupture process (Kozdon et al., 2013). We also have not included inelastic rheology, which would smooth the slip evolution at the trench and further enhance the depth-frequency relation (Ma & Hirakawa, 2013; Ma & Nie, 2019). These are fantastic avenues for future work.

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

The back-projection results used in Figure 1 (a) are downloaded from IRIS data services products: back-projection (https://ds.iris.edu/ds/products/back-projection/, last accessed on 02/27/2021). The Slab2 model is downloaded from U.S. Geological Survey (https://www.sciencebase.gov/catalog/item/5aa1b00ee4b0b1c392e86467, last accessed on 02/27/2021). All the down-sampled simulation results and relevant scripts are in Figshare (https://figshare.com/projects/The_Earth_surface_controls_the_depth-dependent_seismic_radiation_of_megathrust_earthquakes/98360) for result reproduction. This work is supported by the CAREER EAR-1749556 NSF award.)
Acknowledgments
We sincerely thank Seichi Miura at JAMSTEC (Japan Agency for Marine-Earth Science and Technology) for providing the velocity model of the Japan trench. We are grateful to Yih Huang, Alice-Agnes Gabriel and Alexander Hutko for their constructive and productive discussions. We appreciate the insightful comments, which have greatly improved the manuscript, from the three reviewers, Yongfei Wang, Jean-Paul Ampuero and another anonymous reviewer. We are grateful to Jean-Paul Ampuero for developing SEM2DPACK (available at https://github.com/jampuero/sem2dpack).

References
Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x
Allmann, B. F., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1), B01310. https://doi.org/10.1029/2008JB005821
Ampuero, J.-P. (2012). SEM2DPACK, a spectral element software for 2D seismic wave propagation and earthquake source dynamics, v2.3.8. https://doi.org/10.5281/zenodo.230363
Ampuero, J.-P., & Ben-Zion, Y. (2008). Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 173(2), 674–692. https://doi.org/10.1111/j.1365-246X.2008.03736.x
Andrén, H., & Hutko, A. (2008). A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature, 451(7178), 561–565. https://doi.org/10.1038/nature06521
Ampuero, J.-P. (2012). SEM2DPACK, a spectral element software for 2D seismic wave propagation and earthquake source dynamics, v2.3.8. https://doi.org/10.5281/zenodo.230363
Asano, K., & Iwata, T. (2012). Source model for strong ground motion generation in the frequency range 0.1–10 Hz during the 2011 Tohoku earthquake. Earth, Planets and Space, 64(12), 6. https://doi.org/10.5047/eps.2012.05.003
Austin, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711. https://doi.org/10.1038/ngeo2518
Baltay, A. S., Berona, G. C., & Ide, S. (2014). Radiated energy of great earthquakes from Teleseismic Empirical Green’s function deconvolution. Pure and Applied Geophysics, 171(10), 2841–2862. https://doi.org/10.1007/s00024-014-0804-0
Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of fault zones. Pure and Applied Geophysics, 160(3), 677–715. https://doi.org/10.1007/s00024-001-0525-4
Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446. https://doi.org/10.1038/22739
Bostock, M. G. (2013). The Moho in subduction zones. Tectonophysics, 609, 547–557. https://doi.org/10.1016/j.tecto.2012.07.007
Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092. https://doi.org/10.1785/0120050077
Brune, J. N. (1970). Tectonic stress and the spectra of seismic wave amplitudes from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997
Brune, J. N. (1996). Particle motions in a physical model of shallow angle thrust faulting. Proceedings of the Indian Academy of Sciences - Earth & Planetary Sciences, 105(2), 197–206. https://doi.org/10.1007/BF02876014
Campillo, M., Gariel, J., Aki, K., & Sanchez-Sesma, F. (1989). Destructive ground motion in Mexico city: Source, path, and site effects during great 1985 michoacan earthquake. Bulletin of the Seismological Society of America, 79(6), 1718–1735.
Chouet, B. A., & Vallée, M. (2018). Global and interregional characterization of subduction interface earthquakes derived from source time functions properties. Journal of Geophysical Research: Solid Earth, 123(7), 5831–5852. https://doi.org/10.1029/2018JB015932
Chouet, B. A., Vallée, M., Causee, M., & Courboulec, F. (2018). Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity. Tectonophysics, 733, 148–158. https://doi.org/10.1016/j.tecto.2017.11.005
Dalguer, L. A., & Day, S. M. (2009). Asymmetric rupture of large aspect-ratio faults at bimaterial interface in 3D. Geophysical Research Letters, 36(23), L23307. https://doi.org/10.1029/2009gl040303
Denolle, M. A., & Shearer, P. M. (2016). New perspectives on self-similarity for shallow thrust earthquakes. Journal of Geophysical Research: Solid Earth, 121(9), 6333–6355. https://doi.org/10.1002/2016JB013105
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A, 241, 376–396. https://doi.org/10.1098/rspa.1957.0133
Frankel, A. (2013). Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong-motion and high-rate GPS recordings: Subevents radiating energy in different frequency bands. Bulletin of the Seismological Society of America, 103(2B), 1290–1306. https://doi.org/10.1785/0120120148
Fujie, G., Kodaira, S., Yamashita, M., Sato, T., Takahashi, T., & Takahashi, N. (2013). Systematic changes in the incoming plate structure at the Kuril trench. Geophysical Research Letters, 40(1), 88–93. https://doi.org/10.1002/2012GL054340
Fukahata, Y., Yagi, T., & Rivera, L. (2014). Theoretical relationship between back-projection imaging and classical linear inverse solutions. Geophysical Journal International, 196(1), 552–559. https://doi.org/10.1093/gji/ggt039
Galvez, P., Rietbrock, A., Ryder, I. M., Lee, C.-S., & Miller, M. (2014). Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth and Planetary Science Letters, 405, 142–155. https://doi.org/10.1016/j.epsl.2014.08.028
Galvez, P., Rietbrock, A., Ryder, I. M., Lee, C.-S., & Miller, M. (2014). Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth and Planetary Science Letters, 405, 142–155. https://doi.org/10.1016/j.epsl.2014.08.028
Harris, R. A., & Day, S. M. (1997). Effects of a low-velocity zone on a dynamic rupture. Bulletin of the Seismological Society of America, 87(5), 1267–1280.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoeyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723
Hicks, S. P., Rietbrock, A., Ryder, I. M., Lee, C.-S., & Miller, M. (2014). Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth and Planetary Science Letters, 405, 142–155. https://doi.org/10.1016/j.epsl.2014.08.028
Houston, H. (2001). Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. Journal of Geophysical Research: Solid Earth, 106(B6), 11137–11150. https://doi.org/10.1029/2000JB000468
Huang, Y. (2018). Earthquake rupture in fault zones with along-strike material heterogeneity. Journal of Geophysical Research: Solid Earth, 123(11), 9884–9898. https://doi.org/10.1002/2018JB016354
Huang, Y., Ampuero, J.-P., & Helmberger, D. V. (2016). The potential for supershear earthquakes in damaged fault zones—theory and observations. Earth and Planetary Science Letters, 433, 109–115. https://doi.org/10.1016/j.epsl.2015.10.046
Huang, Y., Ampuero, J.-P., & Kanamori, H. (2014). Slip-weakening models of the 2011 Tohoku-Oki earthquake and constraints on stress drop and fracture energy. *Pure and Applied Geophysics*, 171(10), 2555–2568. https://doi.org/10.1007/s00240-013-0718-2

Huang, Y., Meng, L., & Ampuero, J.-P. (2012). A dynamic model of the frequency-dependent rupture process of the 2011 Tohoku-Oki earthquake. *Earth, Planets and Space*, 64(12), 1. https://doi.org/10.5047/eps.2012.05.011

Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid pressure in mechanics of overtrust faulting: I. mechanics of fluid-filled porous solids and its application to overtrust faulting. *GSA Bulletin*, 70(2), 115–166. https://doi.org/10.1130/0016-7606(1959)70[115:RFPMT2.0.CO;2]

Ide, S., Balty, A., & Beroza, G. C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 mw 9.0 tohoku-oki earthquake. *Science*, 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020

Incorporated Research Institutions for Seismology Data Management Center. (2011). *Data services products: BackProjection F-wave back-projection rupture imaging*. https://doi.org/10.17611/DP/BP1

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. *Nature*, 435(7044), 913–916. https://doi.org/10.1038/nature03675

Kaneko, Y., & Lapusta, N. (2010). Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults. *Tectonophysics*, 493(3), 272–284. https://doi.org/10.1016/j.tecto.2010.06.015

Kiser, E., Ishii, M., Langmuir, C. H., Shearer, P. M., & Hirose, H. (2011). Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. *Journal of Geophysical Research: Solid Earth*, 116(B6), B06310. https://doi.org/10.1029/2010JB007831

Ko, Y. T.-Y. & Kuo, B.-Y. (2016). Low radiation efficiency of the intermediate-depth earthquake in the Japan subduction zone. *Geophysical Research Letters*, 43(22), GL070993. https://doi.org/10.1002/2016GL070993

Kostrov, B. V. (1964). Selfsimilar problems of propagation of shear cracks. *Journal of Applied Mathematics and Mechanics*, 28(5), 1077–1087. https://doi.org/10.1016/0021-8928(64)90010-3

Kozdon, J. E., Dunham, E. M., & Nordström, J. (2013). Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. *Journal of Scientific Computing*, 58(1), 92–124. https://doi.org/10.1007/s10915-012-9624-5

Kurashishi, S., & Irikura, K. (2011). Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku Earthquake. *Earth, Planets and Space*, 63(7), 11–576. https://doi.org/10.5047/eps.2011.06.044

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust earthquakes. *Journal of Geophysical Research: Solid Earth*, 117(B4), B04311. https://doi.org/10.1029/2011JB009113

Lotto, G. C., Dunham, E. M., Jeppson, T. N., & Tobin, H. J. (2017). The effect of compliant prisms on subduction zone tsunamis. *Earth and Planetary Science Letters*, 458, 213–222. https://doi.org/10.1016/j.epsl.2016.10.050

Lotto, G. C., Jeppson, T. N., & Dunham, E. M. (2018). Fully coupled simulations of megathrust earthquakes and tsunami in the Japan Trench, Nankai trough, and Cascadia subduction zone. *Pure and Applied Geophysics*. https://doi.org/10.1007/s00240-018-1990-y

Luo, Y., Ampuero, J.-P., Miyakoshi, K., & Irikura, K. (2018). Surface rupture effects on earthquake moment-area scaling relations. In L. A. Dalguer, Y. Fukushima, K. Irikura, & C. Wu (Eds.), *Best practices in physics-based fault rupture models for seismic hazard assessment of nuclear installations*. (pp. 7–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-72799-7_2

Ma, S., & Beroza, G. C. (2008). Rupture dynamics on a bimaterial interface for dipping Faults. *Journal of Geophysical Research: Solid Earth*, 113(B4), B04311. https://doi.org/10.1029/2007JB005454

Ma, S., & Hirose, H. (2011). Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. *Journal of Geophysical Research: Solid Earth*, 116(B6), B06310. https://doi.org/10.1029/2010JB007831

Ma, S., & Hirakawa, E. T. (2013). Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes. *Earth and Planetary Science Letters*, 375, 113–122. https://doi.org/10.1016/j.epsl.2013.05.016

Ma, S., & Nie, S. (2019). Dynamic wedge failure and along-arc variations of tsunamigenesis in the Japan trench margin. *Geophysical Research Letters*, 46(15), 8782–8790. https://doi.org/10.1029/2019GL083148

Madariaga, R. (1976). Dynamics of an expanding circular fault. *Bulletin of the Seismological Society of America*, 66(3), 639–666.

Melgar, D., Fan, W., Riquelme, S., Geng, J., Liang, C., Fuentes, M., & Fielding, E. J. (2016). Slip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake. *Earthquake Spectra*, 32(4), 1642–1658. https://doi.org/10.1193/120807201

Murphy, S., Di Toro, G., Romano, F., Scala, A., Lorito, S., Spagnuolo, E., & Nielsen, S. (2018). Tsunamigenic earthquake simulations using experimentally derived friction laws. *Earth and Planetary Science Letters*, 486, 155–165. https://doi.org/10.1016/j.epsl.2018.01.011

Naif, S., Key, K., Constable, S., & Evans, R. L. (2015). Water-rich bending faults at the Middle America Trench. *Journal of Geophysical Research: Solid Earth*, 120(5), 5045–5059. https://doi.org/10.1002/2015JB013629

Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. *Nature*, 493(7433), 518–521. https://doi.org/10.1038/nature11703

Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on dipping faults: The effects of broken symmetry. *Science*, 280(5366), 1055–1059. https://doi.org/10.1126/science.280.5366.1055

Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (2000). Dynamics of dip-slip faulting: Explorations in two dimensions. *Journal of Geophysical Research: Solid Earth*, 105(B6), 13643–13653. https://doi.org/10.1029/2000JB900055

Olsen-Kettle, J. M., Wettherley, D., Saez, E., Gross, L., Mihalcea, H.-B., & Xing, H. L. (2008). Analysis of slip-weakening frictional laws with static restrengthening and their implications on the scaling, asymmetry, and mode of dynamic rupture on homogeneous and bi-material interfaces. *Journal of Geophysical Research: Solid Earth*, 113(B8). https://doi.org/10.1029/2007JB005454
Yue, H., Simons, M., Duputel, Z., Jiang, J., Fielding, E., Liang, C., & Samsonov, S. V. (2016). Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake. *Tectonophysics*. https://doi.org/10.1016/j.tecto.2016.07.005

Zhu, J., Canales, J. P., Han, S., Carbotte, S. M., Arnulf, A., & Nedimović, M. R. (2020). Vp/vs ratio of incoming sediments off Cascadia subduction zone from analysis of controlled-source multicomponent obs records. *Journal of Geophysical Research: Solid Earth*, 125(6), e2019JB019239. https://doi.org/10.1029/2019JB019239

Reference From the Supporting Information

Huang, Y., Ampuero, J.-P., & Helmberger, D. V. (2014). Earthquake ruptures modulated by waves in damaged fault zones. *Journal of Geophysical Research: Solid Earth*, 119(4), 3133–3154. https://doi.org/10.1002/2013JB010724