Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation

Xiaohong Wu, Xiaopeng Ge, Dongsheng Wang, Hongxiao Tang
State Key Lab of Environmental Aquatic Chemistry, RCEES, Chinese Academy of Sciences, POB 2871, Beijing 100085, China

A R T I C L E I N F O

Article history:
Received 12 June 2008
Received in revised form 6 December 2008
Accepted 9 December 2008
Available online 13 December 2008

Keywords:
Particle aggregation
Alum
PACl
DLVO
Coagulation

A B S T R A C T

Interactions of silica microspheres were examined by light scattering in presence of alum and polyaluminum chloride (PACl) with various OH/Al ratios. The coagulation behaviors were investigated using different coagulant dosages at constant pH (6.5) and salt concentration (0.01 mol/L). Based on the measurement of size distribution and zeta potential, charge neutralization was proposed to be the primary coagulation step for all the coagulants while other distinct coagulation steps were also involved depending on in situ formed or preformed hydrolyzing products. Precipitate coverage and sweep flocculation were induced for alum, contrasted to polycation patch and bridge aggregation for PACl. Based on simplified DLVO theory, particle aggregation was explained in terms of interaction forces. It was demonstrated that PACl outperformed alum in particle agglomeration at lower concentration (1–2 μmol/L), owing mainly to the considerable energy barrier reduction and deeper secondary minimum at longer distance induced by high positive polycations. The role of secondary minimum was found to be significant when secondary depth exceeded 12 kT. The interaction energy calculations coincided well with coagulation result for PACl, especially PACl22 with high content Al13. However, other interaction forces prevailed over the electrical repulsion for alum and PACl containing other aluminum species.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Particle aggregation in aquatic systems can be achieved by coagulation and flocculation process through altering interactive forces between particles [1,2]. In water treatment practice, hydrolysis products of metal coagulants of Al or Fe are often responsible for the particle interaction, aggregation and subsequent removal. Many coagulation models, mainly for traditional alum, have been proposed; these generally describe the mechanism as a sequence of physicochemical reactions, e.g. hydrolysis, precipitation, adsorption, charge neutralization, coherence and enmeshment. The reactions may be described as progressing in various pathways, depending upon the composition of the aquatic systems [3–6].

Although the use of inorganic pre-polymerized flocculants (IPFs) has significantly increased, studies of the coagulation process using polyaluminum chloride (PACl) have not been well linked with the earlier conceptual models. Several authors have indicated that the chemical species of PACl and their activities lead it to be more effective in coagulation in some cases [7–10]. However, a coagulation mechanism and a model for IPFs have not been as well established as for alum, though some studies have provided useful guidelines on PACl use [9,10]. The comparative behaviors of traditional metal coagulants such as alum, versus tailor-made IPFs such as PACl, should be more clearly related to mechanism and model in both qualitative and quantitative respects, yet few papers have been published [11–13]. Recently, two distinct adsorption isotherms on microsphere SiO2 at pH 6.5 have been assigned to alum and PACl with high content Al13, suggesting that the chemical species and their adsorptive behaviors determine the coagulation process [14]. To date, a rigorous theoretical understanding based on interaction force calculations has not been completed, even though Derjaguin–Landau–Verwey–Overbeek (DLVO) theory and model [15,16] have long been applied to more conventional coagulation chemicals and processes.

The DLVO theory primarily addresses electrical double layer and physical interactions. Chemical aspects of coagulation have been integrated with the model based on the chemical behaviors of soluble or insoluble hydroxide species, in these cases, the DLVO theory has generally been treated as a qualitative background for the coagulation model [3–6,17]. Other papers have described the efficiency of particle aggregation in water treatment by applying the DLVO principle with the secondary energy minimum, which have been mainly concerned with the water filtration process [18,19]. Few papers have applied the DLVO model quantitatively to this particle aggregation process when it follows charge-neutralization. Such an approach might be advantageous because the model might describe the loose structure of agglomerated flocs if formed by the trapping
effect of the secondary energy minimum, which arise from long range van der Waals attraction.

Thus, in this study, particle aggregation under different coagulants at various dosages was monitored by small angle static light scattering technique (SASLS). The in situ measured size and zeta potential of aggregated particles were used to calculate the interaction energy profile consequently. A qualitative/semi-quantitative comparison of the different coagulation mechanisms of alumin and PACI are provided accordingly.

2. Methods and experimental

2.1. Floc structure determination by static light scattering

Generally, aggregates of colloidal particles or micron-sized flocs have been shown to be mass fractal objects, as fractal dimension represents a structure which should show up at any length scale. With further application of fractal dimension in water and wastewater treatment, static light scattering is thought to be the rapid and straightforward method in gaining insight of floc structure during water treatment, static light scattering is thought to be the rapid and straightforward method in gaining insight of floc structure during treatment processes [20,21]. However, when considering the practical objects in water treatment practice, there always exists a lower limiting characteristic length below which the object cannot be described as a mass fractal [20]. Cautions have been put forward to take care of the results of light scattering, when it is used to derive structure information of flocs from complex systems [20]. Nevertheless, for micron size particles of narrow size distribution, static light scattering has been extensively and successfully applied to probe the fractal nature of aggregates [20–22]. In a scattering experiment, a beam of light is directed onto a sample and the scattering intensity I is measured as a function of wave vector Q, shown as the following:

$$I(Q) \propto Q^{-D_f}$$

(1)

where the magnitude of wave vector can be approximated as follows:

$$Q = \frac{4\pi n \sin(\theta/2)}{\lambda}$$

(2)

where n is the refractive index of the medium, \(\lambda\) is the wavelength of the incident light in vacuum, and \(\theta\) is the scattering angle. The information of floc structure was obtained by plotting \(\log I\) versus \(\log Q\), provided that the Rayleigh–Gans–Debye (RGD) approximation can be applied in this study; the power law region is distinct from the Guinier and Porod regions and polydispersity effects are insignificant [21]. All these factors can be considered not only from investigation of literature but also the experimental results in this study, and will be discussed later.

2.2. DLVO calculation

The DLVO theory assumes that the interaction forces between colloids can be regarded as the sum of two contributions, i.e. van der Waals forces and electrical double layer forces [15,16]. For two identical particles, these forces are always defined as attraction and repulsion, respectively. Dispersed particles will aggregate or remain stable depending on whether attraction or repulsion predominates. For years, methods have been reported to calculate the forces under various conditions. Considering spherical particles in a liquid medium at a sufficiently high electrolyte concentration, a simple but well-documented model is applicable in this study. For the van der Waals force, the well-known Hamaker approach can be applied for two spheres of equal radius as given by [23]:

$$V_A = -\frac{A}{6 \left[\frac{2R^2}{H^2 + 4RH} + \frac{2R^2}{(H+2R)^2} + \ln \left(1 - \frac{4R^2}{(H+2R)^2} \right) \right]}$$

(3)

where A is the Hamaker constant of the interacting media (silica–water–silica), R is the particle radius and H is the separation distance. As the model silica particle is produced artificially with purity above 99.95%, Hamaker constant can be obtained from the calculation and direct measurement. Two values, such as 0.83 \(\times 10^{-20}\) J (measured) and 0.61 \(\times 10^{-20}\) J (calculated), are available for silica in water [24]. The calculated one was chosen in this study in case of the density variation during coagulation process. Since particle radius (3.0 \(\mu m\)) in this study is much larger than the separation distance, R \(\gg H\); Eq. (5) can be simplified as

$$V_A = -\frac{A R}{27H}$$

(4)

The related electrostatic interaction is proposed to be Eq. (5):

$$V_R = \frac{64\pi R n^0 k T \gamma_0^2}{\kappa^2} \exp(-\kappa H)$$

(5)

with \(\gamma_0\) is calculated by

$$\gamma_0 = \frac{e z e z T}{2e e z T}$$

(6)

where \(n^0\) is the bulk ion concentration, z the ion valence, k the Boltzmann constant (1.38 \(\times 10^{-23}\) J/K), T the temperature (298 K), and \(\kappa\) is the electro charge (1.60 \(\times 10^{-19}\) C). \(\Psi_0\) is the surface potential of particles and is replaced by the measured zeta potential. The Debye–Hückel parameter, \(\kappa\), is computed in the usual manner as

$$\kappa^{-1} = \left(\frac{\varepsilon \varepsilon_0 k T}{2e^2 z^2 \varepsilon z} \right)^{1/2}$$

(7)

where \(\varepsilon_0\) and \(\varepsilon\) are the permittivity of free space and the relative permittivity, respectively (\(\varepsilon_0 \varepsilon = 6.95 \times 10^{-10}\) C/V m).

Although other interactions between particles in electrolyte suspension might be considered, such as hydration, hydrophobic and steric forces, it was assumed that the predominant, competing forces governing particle aggregation were those quantified above. In fact, as charge-neutralization dominate the particle destabilization and aggregation for both alum and PACI, electrostatic force outweighs other forces in coagulation with inorganic coagulants. To simplify the calculation and establish rather a practical method for coagulants comparison and selection, other forces were neglected in this study. As a result, the total interaction energy was calculated by the following equation:

$$V_{TOT} = V_A + V_R$$

(8)

2.3. Silica microspheres and coagulants

Silica microspheres with mean diameter of 3.0 \(\mu m\) were used in the coagulation experiment (Suaiwer Company, China). Particle size distribution and characteristics were determined using a Mastersizer 2000 (Malvern Co., UK). The volume-weighted diameter was used in the interaction energy calculations as the most appropriate value. The surface potential of silica particle was replaced by zeta potential, measured by Zetasizer 2000 (Malvern Co., UK). The prepared coagulants included conventional alum and PACI. The preparation and characterization followed the same method as our previous study reported [14]. From Table 1 and Fig. 1, it can be seen that all the PACI coagulants holds various portions of keggin-Al\textsubscript{13}, whereas no keggin-Al\textsubscript{13} can be observed for alum. The portion of monomer decreases with increasing basicty (B) values owing to the injected hydroxyl during pre-hydrolyzation.

2.4. Coagulation test

Silica suspensions were prepared using NaNO\textsubscript{3} (0.01 M) and NaHCO\textsubscript{3} (0.001 M) to provide the desired ionic strength and pH.
Table 1
Characterization and speciation of coagulants.

Coagulants	Al_T (mol/L)	Ferron assay	Al_6 (%)	Al_8 (%)	Al_1 (%)	Al_{13} (%)	Al_1 (%)
Alum	0.1	96.3	2.0	1.7	0	79.2	
PACl 1.0	0.104	56.2	42.9	0.9	41.8	43.5	
PACl 2.2	0.101	9.4	83.8	6.8	76.7	5.9	
PACl 2.5	0.100	1.8	48.6	49.6	37.9	0	

The pH was adjusted to pH 6.5 prior to each coagulation test. Preliminary experiments had demonstrated a pH range of 6.5±0.3 over the range of aluminum concentrations used, and consequently no pH adjustment was performed during the coagulation process. The initial turbidity and zeta potential of working suspension were 130±5 NTU and −72±0.5 mv. Jar tests were conducted in a 1 L beaker connected to the Mastersizer 2000 (Malvern Co., UK). After injection, suspensions were rapidly mixed at 200 rpm for 1 min and stirred slowly at 40 rpm for 20 min. At the same time, a peristaltic pump (BT00-300M, China) drew the suspension out of the jar continuously to the sample cell for aggregates size and structure measurements. The flow rate was maintained at 2.0 mL/s to ensure an integrated floc size distribution. Moreover, zeta potential and residual turbidity were measured after rapid mixing and 10 min sedimentation with Zetasizer 2000 (Malvern Co., UK) and HACH 2100N turbid meter.

2.5. Size distribution and structure analysis

Size distributions and structure information of aggregated particles were determined by small-angle static light scattering with Malvern Mastersizer 2000. The instrument determined the scattered intensity at measuring angles ranging from 0° to 46° with a He–Ne laser light of 632.8 nm. An integration time of 35 s per curve was chosen as a compromise between measuring speed and data quality. The size information of aggregated particle was collected simultaneously during the coagulation process. As a result, fractal information could be calculated by plotting log intensity versus log Q of the scattering wave vector. It should be noted that the absolute aggregate size cannot be obtained, as the observed data are deduced assuming solid spheres rather than porous objects. However, the trend of particle size evolution will be exhibited correctly. The morphology of aggregated particle (floc) was also examined with a HITACHI S-570 scanning electron microscopy. After rapid mixing, a small drop of suspension was placed on the copper tab, which was attached to an aluminum pin stub and allowed to dry at room temperature. In addition, the prepared substrate was sputter coated with gold in case of charging.

Fig. 1. 27Al NMR analysis of PACl at various B values.

3. Results and discussion

3.1. Mechanisms interpretation during coagulation

3.1.1. Zeta potential and particle removal

Generally, colloidal particles are thought to be coagulated and aggregated through the actions of charge neutralization, patch aggregation, bridge connection and sweep flocculation in series or synchronously. Although difficulties exist in distinguishing these mechanisms throughout the aggregation process, some insight can be expected in examining the zeta potential variation and particle removal as a function of coagulants dosage. As Fig. 2 indicates, the coagulation region can be divided into two parts according to the zeta potential, for which part I refer to the negative zone and part II positive zone, respectively. Although similar charge properties of silica particles can be observed upon the injection of the four coagulants, turbidity variation exhibits reversely between alum and PACl. For PACl, residual turbidity of suspension decreases rapidly and lower than that of alum in part I, whereas remarkable increase of turbidity observed in the part II with increasing dosage. Correspondingly, the alum keeps a relatively low turbidity level in the part II. Clearly, the dominant mechanisms for alum and PACl in part I and II are rather distinct due to their dominant species during the coagulation. It was generally accepted that the positively charged keggin-Al$_{13}$ of PACl cause efficient charge compensation and result in effective particle aggregation at the lower dosage [10,11]. Hence, strong charge-neutralization and electro-patch coagulation are
thought to be the dominant mechanisms for PACl in part I. This kind of electro-patch coagulation differs from that of alum, with polycations adsorbing and complexing on the particle’s surface rather than precipitates [13]. On the other hand, bridge-connection can also be included since aggregated Al13 and other polymeric species formed during pre-hydrolyzation [14]. More evidence can be seen from the following floc size distribution and floc structure. In part II, particles are coated with more positive polycations leading to a strong repulsion and no aggregation at higher dosages. It should be noted that a slow turbidity increase is observed for the PACl25 due to the great portions of larger polymers (Table 1). In this regard, bridge-connection enables particle linkage in spite of strong repulsions. For alum, the coagulation behavior agrees well with previous study and the main mechanisms are charge-neutralization and precipitate patch coagulation in part I, and sweep flocculation in part II, respectively. Although the coagulation I mechanisms of such PACl and alum have been studied and summarized extensively [9–12], a quantitative description has not been achieved yet. The following part will discuss the floc structure for both alum and PACl coagulants, particle interaction profiles will be summarized quantitatively later based on the floc size distribution and charge variations.

3.1.2. Floc size distribution and floc structure

The rate of particle aggregation is significantly influenced by the coagulation mechanisms. With different mechanisms dominate the coagulation process at part I and part II, floc size during the coagulation process and size distributions for coagulants under various dosages are shown in Figs. 3 and 4. For alum and PACl coagulants, the size increasing curves are indicated in Fig. 3 (a) and (b). At lower aluminum concentration, floc size increased to $\sim 200 \mu m$ for PACl. For alum, the floc diameter began to increase at $10 \mu mol/L (\sim 50 \mu m)$ and reached to hundreds micrometers at much higher dosages.
higher dosage of 100μmol/L (not shown). Particle aggregation occurs initially due to the particle–particle collisions, which leads to small aggregates (microflocs) and later particle–aggregate and aggregate–aggregate collisions. As a result, larger aggregates (flocs) formed as porous objects with highly irregular and open structure. As can be seen from Fig. 4(a) and (b), PACl coagulants exhibit a wider size range of larger flocs at the lower dosages of 1–2μmol/L. While for alum, there are almost no particle aggregation occurred at 1μmol/L, and aggregates with larger size formed till dosage of 5μmol/L. It can be suggested that the Al13 of PACl enhanced the particle collision and resulted in aggregates size increase at lower dosage. With high content Al13 and larger size hydroxyl aluminum polymers, microflocs of 20–30μm and flocs of 200–300μm were formed for PACl22 and PACl25 at dosage of 1μmol/L, respectively. However, higher dosages of 5–10 and 100μmol/L were required to achieve the same size increase for alum as Fig. 4(b–d) indicates. On the other side, no aggregation occurred for PACl at higher dosages due to the strong repulsion between positively charged particles, coinciding with the re-stabilization area in Fig. 3. Generally, the adsorption of positively charged polynuclear species onto the negatively charged particles is responsible for the charge neutralization coagulation [17]. As the coagulant dosage would affect the conformation of polynuclear species and subsequent adsorption, different mechanisms are involved for alum and PACl. With stable and high positively charged keggin-Al13, PACl can easily adsorb and neutralize more than one of the negatively charged silica particles. Due to the strong electrostatic attraction and inorganic polymer bridging, they may bind together to form the primary aggregates. In virtue of the open surface structure and residual positive charge, these primary aggregate can continue to agglomerate each other so as to form micro-flocs through self-assembling. Accordingly, particle aggregation mechanisms as polycation-patch coagulation and bridge connection are thought to be operative besides charge neutralization for PACl. As coagulant dosage increased, negatively charged particles transferred to be positively polymer-coated aggregates. This kind of aggregate would repel each other and aggregation would be impaired consequently. For alum, with in situ hydrolyzed species of lower positive charge, particle destabilization can also be viewed as an adsorption process. However, owing to the species transformation of such in situ formed polynuclear species, precipitates would appear on the surface and result in precipitate coverage on the charged surface. As dosages increase, more precipitates formed not only on the particle surface but also in the solution, particle collisions expanded from particle–particle to particle–precipitate and precipitate–precipitate, leading to larger flocs at the higher dosage. Obviously, the structure of such flocs is different from that of PACl, owing to their distinct particle aggregation mechanisms induced.

The corresponding mass fractal dimensions of all the coagulants under various dosages are presented in Table 2. The \(D_f\) value of initial silica suspension was also measured and was about 2.2. It should be noted that silica particles experienced stabilization–aggregation–restabilization along the increasing dosage of coagulants. In this regard, the scattering exponent of power-law region was extracted as mass fractal dimension when floc grows rapidly. Comparing the \(D_f\) values between alum and PACl, for optimal dosage, it is possible to observe that PACl produce denser flocs than alum, due to the more pronounced polycation-patch coagulation at the lower concentration for PACl (part I). However, looser flocs formed at the dosage of 100μmol/L for alum, \(D_f\) ~ 1.88, owing much to the sweep flocculation then. In addition, the mass fractal dimension variation during the coagulation process is also shown in Fig. 5, for PACl and alum under different concentrations. For PACl and alum, the \(D_f\) decreases abruptly during the first minutes of coagulation because single silica particles were aggregated into porous aggregates with addition of coagulants. For alum, \(D_f\) decreases and then increases slightly, because the formed flocs are rather loose and would break down more easily with the turbulent environment. Whereas for PACl, the \(D_f\) values change with the coagulant dosages as different mechanisms are competing depend on coagulants speciation. For PACl22 (higher dosage of 2μmol/L) and PACl10 (higher dosage of 5μmol/L), denser flocs formed as patch-coagulation mechanism is more pronounced associating with higher positive charge density then. On the other side, with certain degree of bridge connection occurred for PACl25, PACl22 (lower dosage of 1μmol/L) and PACl10 (lower dosage of 2μmol/L), the mass fractal dimension decreases and increases slightly, since these flocs are more porous and become denser with further mixing. Compared with the coagulation test results, coagulation mechanisms deduced from the floc structure variation correspond well with that from zeta potential and residual turbidity.

3.2. DLVO calculation

3.2.1. Interaction energy profile

Given the condition of DLVO theory for predicting particle stability as summarized earlier, the total interaction energy was

![Fig. 5. Mass fractal dimension during coagulation for alum and PACl under several dosages.](image-url)
The net attraction occurs at different dosages for alum, PACl10 and PACl22 respectively. The depth and location of the secondary minimum are highlighted in the (a)-1 and (b)-1 energy profiles under other dosages were calculated, we choose coagulation for different coagulants. The interaction energy calculation can be viewed as a practical method for dosage prediction in water treatment, whereas some modifications need to be made beforehand. For PACl containing keggin-Al13 with high positive charge, electrostatic force is the driving force to create effective particle collisions and later particle aggregation. The interaction energy calculations show that a much lower dosage is needed for PACl than that of alum to produce a favorable condition, when no repulsion exists between particles (Fig. 6(c)). In fact, such optimum dosage of PACl10 and PACl22 proportions to the content of keggin-Al13 in this study. Although other forces may prevail over the electrostatic repulsion that fast coagulation occurred for PACl25 without any favorable conditions, a stoichiometry relationship between keggin-Al13 concentration and optimum dosage can be deduced based on the coagulation results and calculation data. However, study on this issue pays much less attention on the aspect of interaction calculation due to the complexity and transformation of aluminum species. By virtue of its stability and convenient confirmation, keggin-Al13 can be used not only to evaluate the coagulation efficiency, but also predict the optimum dosage of PACl. Further work on the bridging force of Al13 is required, as bridge formation was one of the dominant mechanisms for PACl in part I accounting for the deviation of PACl25 in interaction energy profile.

3.2.2. Particle aggregation trapped at the secondary energy minimum

It is well known that particles should be held together in the deep primary minimum on curves where the potential energy barrier is overcome at close separation distances. However, owing to the different distance dependences of the attractive and repulsive forces, a shallow secondary minimum also arise at larger distance, with the attractive force again predominating. This secondary minimum is mainly related to the particle size and ionic strength, which determine the value of κ, and hence the repulsion range. Particles of 1 μm or larger may have a deep secondary minimum of a few KT to initiate reversible particle aggregation [24]. Table 3 indicates the depth and corresponding distance of the secondary minimum. It can be seen that the secondary well depth of silica particles changes with the dosage for different coagulants. On the whole, the deepest well for PACl appears at low dosages of 1–2 \times 10^{-6} mol/L and a relatively high dosage of 5 \times 10^{-6} mol/L for alum. Previous reports stated that “As the height of the potential energy barrier increase, for a given value of the depth of the secondary minimum, the fraction of particles that coagulating in the primary minimum becomes negligible and secondary minimum coagulation dominates” [25]. In addition, the importance of reversible attachment of colloidal particles in secondary energy minimum has been well proved by the deposition and reentrainment through porous media [18,19]. Based on the discussion on coagulation mechanisms in the former section, patch coagulation and bridge connection are thought to prevail over charge neutralization when particle surfaces have charges of the same sign. For PACl22 with high content of Al13, the deepest...
Table 3
Calculated depth and distance of secondary minimum.

Coagulant	Coagulant dosage (μmol/L)	1	2	5	10	100						
	VT (kT)	h (nm)	VT (kT)	h (nm)	VT (kT)	h (nm)	VT (kT)	h (nm)	VT (kT)	h (nm)		
Alum	10.10	26	12.35	21	14.65	19	-	-	13.04	20		
PACIB10	8.64	27	17.39	21	-	-	-	-	10.26	22	8.77	26
PACIB22	16.28	20	-	-	10.85	22	9.20	25	-	-	8.62	25
PACIB25	9.73	26	13.63	24	12.24	19	10.10	21	-	-	9.22	24

Fig. 7. The secondary energy minimum as a function of distance for silica particles added with (a) alum and (b) PACIB22 under different dosages.

Fig. 8. SEM images of aggregated silica particles with addition of alum and PACIB22 under the dosage of 10^{-6} mol/L (a) and (c), and 10^{-4} mol/L (b) and (d).
secondary well appeared and significant particle removal reached at the same time. For alum and other PACI with different content Al\(_{13}\), particle aggregation stepped into critical coagulation when secondary well depth exceeded 12 kT. However, the secondary minimum depth decreases after charge neutralization with increasing dosage for all the coagulants, whereas minor reduction of less than 2 kT for alum. In this regard, the secondary well is important for PACI to trap more particles at rather lower dosages, and increasing electrostatic forces would pull away particles of same positive charge at the high dosages. On the contrary, the secondary well would still contribute to the particle aggregation with the addition of alum, as other forces like complexation would be the controlling forces at higher dosages (Fig. 7).

3.3. Floc morphology

Observation of floc morphology was performed by SEM to provide more evidence for the distinct particle aggregation mechanisms induced by alum and PACI. It should be noted that images were taken after 24 h air-drying, which means species may have experienced transformation. Nevertheless, the observed floc morphology can provide valuable information on particle interactions and allow inferences regarding coagulation mechanisms. Selected images were taken at \(1 \times 10^{-6}\) mol/L and \(1 \times 10^{-4}\) mol/L for alum and PACI\(_{22}\), respectively, highlighting the significance of kegging-Al\(_{13}\) in this regard. At the low dosage, as seen in Fig. 8(a) and (c), silica particles form primary aggregates for alum (Fig. 8(a)) and micro-flocs for PACI\(_{22}\) (Fig. 8(c)), respectively. The corresponding floc sizes increase from \(\sim 10\) to \(\sim 30\) μm, which are similar to the results by light scattering. According to the coagulation results and interaction energy calculations, the relatively larger floc formed by PACI\(_{22}\) attribute much to the high positively charged Al\(_{13}\) and the deeper secondary well between polycation-patched particles. Although hydrolizing species of alum would also absorb on the negative particle forming positive patches, this relatively low positive patches can attract few particles prevented by high-energy barriers. With further coagulant addition, those hydrolizing species increased and transformed into most amorphous precipitates. Consequently, particles with positive patches cannot only aggregate through attraction, but also be wrapped by those amorphous precipitates forming larger flocs of \(\sim 100\) μm (Fig. 8(b)). On the other side, further hydrolyzation of PACI was postponed by virtue of its stability. Thus few precipitates formed and polycation-patched particles repel to each other when they were completely positively charged, as Fig. 8(d) indicates. In this regard, the floc morphology allows the aggregation pathways induced by different coagulants to be distinguished. It may also be predicted that the voluminous flocs produced by heavy alum dosage would be advantageous in processes utilizing gravity sedimentation, and the lesser dosages of PACI\(_{22}\) inducing micro-aggregates would be optimal for contact coagulation technologies such as microfloc or membrane filtration, flotation, etc.

4. Conclusion

Particle aggregation induced by alum and PACI can be interpreted through jar test, light scattering and interaction energy calculation. As a result, distinct coagulation mechanisms were demonstrated by variations of zeta potential, mass fractal dimensions and interaction energy profiles. Charge neutralization and polycation-patch coagulation are suggested to be the main coagulation mechanisms for PACI, coupled with bridge connection when larger polymer species formed in situ or in advance. On the other side, charge neutralization and sweep flocculation are involved for alum due to the hydrolizing species in the solution. Water treatment technologies such as micro-floc filtration and flotation would be better employed for PACI application, as their coagulation pathways and formed structure are distinct from alum.

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (NSFC) in support of this project (No. 20537020, No. 50678167 and No. 20077003).

References

[1] C.R. O’Melia, The aquasols: the behavior of small particles in aquatic systems, Environ. Sci. Technol. 14 (1980) 1052–1060.
[2] W. Stumm, Chemistry of the Solid–Water Interface, Wiley Interscience, New York, 1992.
[3] W. Stumm, J.J. Morgan, Chemical aspects of coagulation, J. Am. Water Works Assoc. 54 (1962) 971–994.
[4] W. Stumm, C.R. O’Melia, Stoichiometry of coagulation, J. Am. Water Works Assoc. 60 (1968) 514–539.
[5] R.D. Letterman, D. Iyengar, Modeling the effects of adsorbed hydroyzable aluminum and solution chemistry on flocculation kinetics, Environ. Sci. Technol. 19 (1985) 673–681.
[6] S.K. Dentel, Application of the precipitation–charge neutralization model of coagulation, Environ. Sci. Technol. 22 (1988) 825–832.
[7] J.L. Anderson, D. Schubert, M.A.V. Anees, P. Queissman, F. Flessinger, Flocculation of silica colloids with hydroxy aluminum polycations: relation between floc structure and aggregation mechanisms, Langmuir 6 (1990) 596–602.
[8] J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation using aluminum salts. I. Hydrolytic reactions of alum and polyaluminum chloride, Water Res. 24 (1990) 1519–1526.
[9] D.J. Permitsky, J.K. Edzwald, Selection of alum and polyaluminum coagulants: principle and applications, J. Water SRT-Aqua. 55 (2006) 121–141.
[10] J.M. Duan, J. Gregory, Coagulation by hydrolizing metal salts, Adv. Colloid Interface Sci. 100–102 (2003) 475–502.
[11] H.X. Tang, Z.K. Luan, The differences of behavior and coagulating mechanism between inorganic polymer flocculants and traditional coagulants, in: H.H. Hahn, E. Hoffmann, H. Oedegaard (Eds.), Chemical Water and Waste water Treatment, vol. IV, Springer–Verlag, 1996, pp. 83–93.
[12] D.S. Wang, H.X. Tang, Quantitative model of coagulation with inorganic polymer flocculants PACI: application of the PCNM, J. ASC Environ. Eng. 132 (2006) 434–441.
[13] C.Q. Ye, D.S. Wang, B.Y. Shi, J.F. Yu, J.H. Qu, M. Edwalz, H.X. Tang, Alkalinity effect of coagulation with polyaluminum chloride: role of electrostatic patch, Colloid Surf. A-Physicochem. Eng. Asp. 294 (2007) 163–173.
[14] X.H. Wu, X.P. Ge, D.S. Wang, H.X. Tang, Distinct coagulation mechanism and model between alum and high Al\(_{13}\)-PACI, Colloid Surf. A-Physicochem. Eng. Asp. 305 (2007) 89–96.
[15] B.V. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols, in: H.H. Hahn, E. Hoffmann, H. Oedegaard (Eds.), Chemical Water and Wastewater Treatment, vol. IX, IWA Publishing, 2007, pp. 171–188.
[16] M. Elimelech, C.R. O’Melia, Effect of particle size on collision efficiency in the deposition of Brawnian particles with electrostatic energy barriers, Langmuir 6 (1990) 1153–1163.
[17] M.W. Hahn, D. Abadac, C.R. O’Melia, Aquasols: on the role of secondary minimum, Environ. Sci. Technol. 38 (2004) 5915–5924.
[18] T.D. Waite, Microstructure in solution and implications for floc structure in water and wastewater treatment, Colloid Surf. A-Physicochem. Eng. Asp. 15 (1999) 27–41.
[19] T.D. Waite, Fractal structure of hematite aggregates, J. Colloid Interface Sci. 140 (1990) 158–168.
[20] T.D. Waite, Microstructure in solution and implications for floc structure in water and wastewater treatment, Colloid Surf. A-Physicochem. Eng. Asp. 15 (1999) 27–41.