Genomic analyses of a livestock pest, the New World screwworm, find potential targets for genetic control programs

Maxwell J. Scott1,2,3, Joshua B. Benoit2, Rebecca J. Davis1, Samuel T. Bailey2, Virag Varga2, Ellen O. Martinson3, Paul V. Hickner4, Zainulabeuddin Syed4, Gisele A. Cardoso5, Tatiana T. Torres5, Matthew T. Weirauch6,7,8, Elizabeth H. Scholl9, Adam M. Phillippy10, Agustin Sage11, Mario Vasquez11, Gladys Quintero11 & Steven R. Skoda12

The New World Screwworm fly, Cochliomyia hominivorax, is a major pest of livestock in South America and Caribbean. However, few genomic resources have been available for this species. A genome of 534 Mb was assembled from long read PacBio DNA sequencing of DNA from a highly inbred strain. Analysis of molecular evolution identified 40 genes that are likely under positive selection. Developmental RNA-seq analysis identified specific genes associated with each stage. We identify and analyze the expression of genes that are likely important for host-seeking behavior (chemosensory), development of larvae in open wounds in warm-blooded animals (heat shock protein, immune response) and for building transgenic strains for genetic control programs including gene drive (sex determination, germline). This study will underpin future experiments aimed at understanding the parasitic lifestyle of the screwworm fly and greatly facilitate future development of strains for efficient systems for genetic control of screwworm.
he New World Screwworm, Cochliomyia hominivorax, is a blow fly that is an obligate parasite of warm-blooded animals in tropical and subtropical regions of South America and the Caribbean\(^1\). Females seek animals and lay their eggs on the skin, often near open wounds. Larvae feed on the animal’s tissues, enlarging the wound, which can cause death if not treated\(^2\). The common name for the species comes from the larval behavior of burrowing into the host’s tissues. After cessation of feeding, larvae leave the animal and pupate in the soil. The life cycle takes ~3 weeks.

Economic losses due to screwworm infestation of livestock are significant. In 2005 it was estimated that in South America alone annual losses were ~$US 3.6 billion\(^3\). Due to its economic importance, screwworm was eradicated from North and Central America in perhaps the most successful application of the sterile insect technique or SIT\(^4\). SIT involves mass rearing of the insect, sterilization by ionizing radiation, and repeated releases over the targeted area. The current mass rearing facility in Pacora, Panama, produces ~25 million sterile flies per week. The flies are released daily along the Colombian border to prevent reinfestation from South America. As SIT is more efficient if only males are released, considerable effort has been made to make conditional female lethal strains. Several tetracycline-repressible female pupal lethal strains were made and evaluated for characteristics important for mass rearing and performance in the field\(^5\). Since larval diet is a major cost for the mass rearing facility, it is advantageous if females die at the embryo stage. Consequently, we developed two component transgenic embryo sexing strains (TESS) of the related blowfly Lucilia cuprina\(^6,7\). Building these strains required identification of gene promoters active in the early embryo as well as sex determination and proapoptosis genes. For suppression of the targeted pest population, the TESS would be mass-reared and males released at regular intervals in excess of the wild population. As such a program could be costly, several alternative genetic strategies are under development that potentially could be more efficient and thus less expensive\(^8\). For example, strains with Cas9-based homing gene drives targeting genes required for female development or fertility could potentially be much more efficient than male-only SIT\(^9,9\). In addition to identifying suitable target genes, building gene drive strains requires identification of suitable gene promoters for driving Cas9 expression in the germline and for expression of gRNAs.

A better understanding of C. hominivorax development and behavior would facilitate genetic control programs. Female host-seeking behavior is of interest for improving our understanding of the biology of screwworm and for development of improved traps for monitoring and possible control. Gravid screwworm females are attracted to odors from screwworm-infested wounds\(^10\). The odors appear to be produced by bacteria in the wounds and from screwworm larvae\(^10,11\). Some of the odors produced by bacteria that attract flies are also used for swarming\(^12\). That is, blow flies are responding to quorum sensing chemicals used by bacteria for cell–cell communication. The traps currently used for screwworm detection by the eradication program use Swormlure-4 as the attractant\(^13\). Swormlure-4 is a mix of 10 chemicals including dimethyl disulfide, benzoic acid, indole, and phenol. The latter is also a bacterial swarming signal\(^12\). A complete repertoire of chemosensory genes could allow for the identification of more effective chemical control.

In the mass rearing facility, screwworm embryos complete embryo development in 6–7 h at 39 °C\(^14\). The temperature was chosen to closely match the body temperature of cattle. It is not known if under these conditions screwworm embryos and larvae experience thermal stress but the temperatures are higher than is optimal for the black soldier fly\(^14\), a fly which is also found in tropical and subtropical regions of the Americas. In addition to high temperature, in the hostile wound environment screwworm larvae would need to respond to bacteria growing in the wound and possibly also the host immune system. Thus, genes that play a role in the C. hominivorax immune system are of interest in understanding its parasitic lifestyle.

C. hominivorax has five pairs of metacentric autosomes of approximately equal size and a smaller pair of X and Y sex chromosomes\(^15\). The genome size of the J06 strain was determined by flow cytometry to be 441.5 Mb for female and 443.8 Mb for male\(^16\). J06 is the current strain under mass production in Panama. The strain was established by interbreeding 12 isofemale lines that were established from flies caught in Jamaica in 2006\(^1\). With the long-term aims of improving our understanding of screwworm biology and facilitating the further development of strains for genetic control, we have assembled and annotated the genome of the J06 strain, performed community annotation for genes categories of interest, performed selection analyses of predicted genes, and examined gene expression at different stages of development and between sexes.

Results

Genome assembly and gene prediction. The J06 strain was inbred for 10 generations of full-sibling single-pair matings to reduce heterozygosity. High molecular weight genomic DNA (>200 kb) was prepared from late stage (6 h) embryos from the inbred strain. We found this stage of development consistently produced higher quality DNA than DNA prepared from adults, which could be due to the presence of the exoskeleton causing shearing during isolation\(^17\). In all, 20 and 30 kb libraries were prepared for PacBio DNA sequencing. A total of 39255 Mb of sequence was obtained from the long reads (8767–10044 bp) which represents 89-fold coverage given a genome size of 440 Mb. The genome was assembled using Canu with default parameters modified for residual heterozygosity in the inbred strain (Table 1).

The assembly size of 534 Mb is larger than expected and could indicate that some heterozygous alleles were assembled onto separate contigs. To assess the completeness of the assembly, we searched for the presence of 2799 core Diptera genes utilizing BUSCO\(^18\). The results suggest a very complete set (94.1% complete and single copy) with little fragmentation (1.6%). The level of duplication (3.6%) was also low and suggests that, at least for conserved protein-coding genes, few single-copy genes have been placed onto separate contigs due to any residual heterozygosity. Nineteen of the 2799 genes were missing. The BUSCO scores are similar to that for other fly genomes, indicating the C. hominivorax draft genome is of comparable quality (Fig. 1). A protein-coding genes was obtained by first mapping RNAseq reads from different stages (see below) to the reference genome, which was then used as input for Braker to create a training set for Augustus (Supplementary Data 1). Of the 22,491 predicted protein-coding genes, 20,975 have a match to a gene in the NCBI NR database (Supplementary Data 2).

The C. hominivorax genome was searched for repetitive DNA sequences including transposable elements. Repetitive sequences were identified by running Repeatmasker using a de novo repeat

| Table 1 Summary of assembly statistics. |
|------------------|------------------|------------------|
| Contig count | 3663 |
| Average length | 145805.3 bp |
| N50 | 616429 bp |
| Total length | 5341.1 Mb |
| GC content | 27.7% |
library that was made by running RepeatModeler2. Overall, 45.2% of the genome was repetitive with most repeats listed as unknown (25.3% genome). The unknown repeats were typically in the size range of 50–350 bp, repeated hundreds to thousands of times and were detected on most of the contigs. Of the transposable elements, the most abundant were DNA elements (6.9% of the genome) and LINEs (2.3% genome; Supplementary Data 3). 45.2% of the genome was repetitive with most repeats listed as unknown (25.3% genome). The unknown repeats were typically in the size range of 50–350 bp, repeated hundreds to thousands of times and were detected on most of the contigs. Of the transposable elements, the most abundant were DNA elements (6.9% of the genome) and LINEs (2.3% genome; Supplementary Data 3). 45.2% of the genome was repetitive with most repeats listed as unknown (25.3% genome). The unknown repeats were typically in the size range of 50–350 bp, repeated hundreds to thousands of times and were detected on most of the contigs. Of the transposable elements, the most abundant were DNA elements (6.9% of the genome) and LINEs (2.3% genome; Supplementary Data 3). 45.2% of the genome was repetitive with most repeats listed as unknown (25.3% genome). The unknown repeats were typically in the size range of 50–350 bp, repeated hundreds to thousands of times and were detected on most of the contigs. Of the transposable elements, the most abundant were DNA elements (6.9% of the genome) and LINEs (2.3% genome; Supplementary Data 3).

Comparative genomic analyses. The phylogenetic relationship of C. hominivorax to eight other Diptera was examined using a set of 612 single-copy genes present in all genomes. This analysis places C. hominivorax as most closely related to the Australian sheep blow fly, Lucilia cuprina, followed by the flesh fly, Sarcophaga bullata, as expected (Fig. 1). Orthology comparison among these fly proteomes revealed C. hominivorax-specific gene sets, which are predominantly expressed in the embryo and male stages. The male-specific gene set has a high enrichment for secreted peptides, suggesting a putative role as a component of the male ejaculate.

Predicted chemosensory genes. We identified 78 canonical olfactory receptors (ORs) plus the olfactory receptor co-receptor (Orco) in the C. hominivorax genome, which is similar in number to M. domestica and S. calcitrans (Table 2, Supplementary Data 4, and Supplementary Fig. 1). Despite minor differences in the size of some gene lineages due to apparent birth-and-death evolution, most lineages were maintained with at least one gene copy resulting in OR repertoires of similar size and content (Supplementary Data 4 and Supplementary Fig. 1). Seventy-seven gustatory receptor (GR) genes encoding 84 proteins were predicted in C. hominivorax (Table 2, Supplementary Data 4, and Supplementary Fig. 2). The size of the ionotropic receptor (IR) repertoire is smaller than the muscids, with 83 IR genes encoding 88 IRs in C. hominivorax, and 110 and 145 encoded IRs in M. domestica and S. calcitrans, respectively (Table 2, Supplementary Data 4, and Supplementary Fig. 3). The larger number of IRs in the muscids is due primarily to a single, highly expanded lineage neighboring ChomIr137 and ChomIr138 (Supplementary Data 4 and Supplementary Fig. 3). The OBP gene family is comprised of 51 OBPs, which is considerably smaller than the muscids, which have 90–93 OBPs (Table 2, Supplementary Data 4, and Supplementary Fig. 4).

Developmental RNAseq analyses. We performed developmental RNA-seq analyses based on methods used for other dipterans21.
Our goal was to establish specific gene sets enriched within each developmental stage (embryos 0–1 h after oviposition, embryos 6 h after oviposition, larvae, pupae, males, and females). Two methods were used, which consisted of pairwise comparisons among all groups and weighted gene co-expression network analysis (WGCNA)\(^22\). WGCNA identifies genes with co-expression patterns between samples.

Pairwise comparison revealed distinct gene sets for each developmental stage (Fig. 2, Supplementary Data 5). For embryos at 0–1 h and 6–7 h after oviposition, sets of 70 and 86 genes were identified as enriched, respectively. At 39 °C, \(C.\) hominivorax takes ~7 h to complete embryogenesis. The embryo gene sets showed considerable enrichment for developmental processes likely associated with embryogenesis and early larval development (Fig. 2). Larval enriched gene sets were associated with cuticle development and aminoglycan metabolic processes, which play important roles during the rapid larval growth. The pupal period showed enrichment for aspects associated with extracellular region. The 357 genes enriched in males were associated with aspects that underlie sperm generation, such as cilium organization and axoneme assembly. The female gene set includes vitellogenin and vitellogenin receptor, which are critical for oogenesis. As transcription factors (TFs) are critical to many biological aspects, we conducted a large-scale identification and expression analyses of these genes (Fig. 3 and Supplementary Data 6 and 7). The TFs for \(C.\) hominivorax were comparable to that observed for other flies, with the largest families being \(C_{2}H_{2}\) zinc finger and homeodomain. Expression of the TFs across development showed that most TFs have the highest transcript levels in embryos and males (Fig. 3 and Supplementary Data 6). These specific TFs are likely to play critical roles during development or in specific sexes.

WGCNA identified specific modules of genes with similar expression for each developmental stage and sex (Fig. 4 and Supplementary Data 8). GO analysis of genes in stage-specific modules revealed a wide range of GO categories for pupae and males, which were attributed with 49 and 44 GO categories, respectively (Fig. 4c). Male modules showed enrichment in GO categories involved in production of sperm. Pupae modules showed enrichment in numerous development-related GO categories as well as cell signaling and adhesion. Larvae and females had fewer enriched categories based on WGCNA. Embryonic and larval stage modules showed enrichment in GO categories attributed to metabolism and growth. While there was overlap, WGCNA identified many unique GO categories that were not identified in the pairwise comparison of expression.

Fig. 2 Genes uniquely enriched in the screwworm throughout development and associated gene ontology enrichment. a Genes enriched in embryo 0–1 h after egg deposition (left) and gene ontology (right). b Genes enriched in embryo 6 h after egg deposition (left) and gene ontology (right). c Genes enriched in larvae (left) and gene ontology (right). d Genes enriched in pupae (left) and gene ontology (right). e Genes enriched in males (left) and gene ontology (right). f Genes enriched in females (left) and gene ontology (right). Genes are denoted as enriched within a specific stage if expression is significantly higher compared to all other stages. Gene ontology for enriched sets were determined with the use of gProfiler and visualized with REVIGO.

Genes under positive selection in \(C.\) hominivorax and their developmental expression. To identify genes that may be under
positive selection in *C. hominivorax*, we recovered a set of 4489 orthologous genes between *C. hominivorax* and other dipterans (see Methods section). After amino acid alignment, back translation and masking, 14 genes were removed due to poor alignment; 4475 were retained for the molecular evolution analysis. We looked for evidence of positive selection on ortholog genes in the 12 tested species and in the *C. hominivorax* branch. After filtering genes by dS and dN/dS ratio (ω), all orthologs were kept in the model 1 (free ratio model), and 4239 in model 2 (two-rates model). In both models, almost all genes exhibited evidence of strong purifying selection (dN/dS < 1).

We compared the distribution of the dN/dS ratios across categories of genes by using GO terms. The distribution of dN/dS ratios for the genes within each term was also compared to the genome-wide distribution (Fig. 5). All classes of genes retained for this analysis were strongly constrained; the highest median estimate of dN/dS was 0.04 for six terms ("transport", "phosphorylation", "extracellular space", "serine-type endopeptidase activity", "G-protein coupled receptor activity", and "kinase activity"). Comparing the distributions of the ratio across genes within each GO term and the genome, nine terms had distributions that were significantly different from the genome-wide distributions. Four of them had genes more constrained than the other genes of the genome (Mann–Whitney tests, with alpha set to 0.05, and false discovery rate correction for multiple tests): three in the "Biological Process" category ("small GTPase mediated signal transduction", "negative regulation of transcription from RNA polymerase II promoter", and "regulation of transcription from RNA polymerase II promoter"); two in the "Molecular Function" category ("chromatin binding" and "sequence-specific DNA binding transcription factor activity"); and one in the "Cellular Component" category ("nucleus"). Genes binned in these categories are, in general, critical to activities necessary for the maintenance of the cell cycle, and therefore are under strong purifying selection. Some of these classes have a shared constraint across distantly related phyla. The "small GTPase mediated signal transduction" class, for instance, has also shown a similar pattern of purifying selection in very divergent taxa such as nematodes, mammals, and plants23,24. The classes with accelerated evolution compared to the other genes in the *C. hominivorax* genome were "phosphorylation", "extracellular space", and "integral to membrane".

Of the genes associated with extracellular space, most have expression across all samples (Fig. 5). A few have enriched expression (fourfold higher) within a specific developmental stage, which have similar expression profiles to orthologs in *Drosophila*25. For phosphorylation, there may be a more direct link to biological significance (Fig. 5). As an example, genes with enriched male expression have orthologs in *Drosophila* with increased expression in either the testes, male accessory gland, or both. Specifically, creatine kinase is highly expressed in the testes of both *C. hominivorax* and *Drosophila*25, highlighting the
Forty genes are likely to be under positive selection in the D. melanogaster branch (Fig. 6 and Supplementary Data 9). The D. melanogaster orthologs of 19 of these genes have no annotated function. This pattern was also observed in the D. melanogaster orthologs of 19 of these genes. The presence of these genes in D. melanogaster suggests that they may have been acquired after the divergence of the two species. These genes are likely to have been acquired through gene duplication or horizontal gene transfer.

Of these 21 genes, four are of particular interest: ChDh31-R (\(\omega = 9.87\), likelihood ratio test, \(p\)-value = 1.77e-94), ChS6k (\(\omega = 3.19\), likelihood ratio test, \(p\)-value = 2.03e-112), Chrobo1 (\(\omega = 1.24\), likelihood ratio test, \(p\)-value = 1.94e-72), and Chrim (\(\omega = 7.27\), likelihood ratio test, \(p\)-value = 1.61e-227). Drosophila flies exhibit a daily cycle of temperature preference; during daytime they prefer higher temperatures, while lower temperatures are preferred at night. This temperature preference rhythm is mediated by the neuropeptide diuretic hormone 31 receptor (Dh31-R) in D. melanogaster during its active phase. Unlike what is found in Drosophila, C. hominivorax larvae are at a constant temperature in the wounds of a living host. Perhaps this gene played a role in adaptation of the species to the body temperature of the host. It will be of interest to determine if ChDh31-R mediates the preference of females for warm-blooded vertebrates. Among many other functions, the ribosomal protein S6 kinase modulates hunger response by insulin-like and neuropeptide Y-like signaling pathways in D. melanogaster larvae. The up-regulation of the S6k gene reduces feeding rate and foraging in starved larvae, while its down-regulation triggers these same behaviors. Studying larval feeding behavior, and the underlying genes and pathways in C. hominivorax is key to understanding the origins and evolution of parasitism in Calliphoridae. The Drosophila roundabout (robo1) gene is regulated by fruitless and plays an important role in male mating behavior. Finally, Drosophila crimped (crim) is one of four Ly6-like proteins required for sepnate junction formation. RNAi knockdown of crim in trachea caused tube size defects. A distinguishing feature of C. hominivorax are the thick and dark larval trachea tubes compared to its close relative C. macellaria.

Expression analysis of the genes under positive selection revealed distinct expression profiles (Fig. 6b). A majority of the genes under selection showed the highest expression levels within the embryos, either at 0 or 6 h of development. This was followed by those expressed highly within males (Fig. 6b). The Chslowpoke (Chslo) and ChDh31-R, discussed previously, are most highly expressed in males and females. Five of the other genes with high male expression have a sex-specific enrichment for Drosophila. Indeed, orthologs for all five of these genes are expressed highly within the testes or accessory glands of male Drosophila. These include CG8292, CG3698, CG3687, and CG10947. One of the five genes, ChObp8a (g14187), is of interest as the expression of odorant-binding proteins in male accessory gland was also previously observed in the tsetse fly. Thus, the ChOBP8 protein could play an important role in accessory gland function in C. hominivorax. Of those with the highest expression in the embryos, most are also expressed at least at moderate levels in...
putative HSPs, a Pfam34 search indicates that 30 genes were used. Some categories have accelerated rates of evolution compared to the other genes of the genome (median dN/dS of the genes in the category is higher than the median of the other genes in the genome). Other categories are more constrained than the genomic average. The center lines in the boxes indicate the median of each distribution. Lower and upper hinges correspond to the first and third quartiles, and the whiskers extend to the largest or smallest value, no further than 1.5x the inter-quartile range. Outliers are not shown. The dashed vertical line shows the genome-wide median. The asterisks show the terms with dN/dS values that are statistically different from the genome-wide distribution (Mann–Whitney U test).

Heat shock protein (hsp) genes. Twenty-two heat shock proteins were identified in the *C. hominivorax* genome, 17 of which were identified via the gene prediction and annotation process and an additional five via Blast search (Supplementary Data 6). Of the 22 putative HSPs, a Pfam34 search indicates five are members of the RHOD (Rhodanese Homology Domain) superfamily and one a member of the GroEL family. The remainder are in the HSP20/alpha-crystalline, HSP70, and HSP90 families. Most of the predicted hsp genes are found in two clusters. The five hsp genes that show homology to *Drosophila* hsp68 and hsp70 are found in one cluster (Supplementary Fig. 5). Nine of the genes that encode small HSPs similar to *Drosophila* HSP23 or HSP27 proteins are found in a second cluster (Supplementary Fig. 5). The remaining genes, orthologs of *Drosophila* hsp60 (g16758), hsp83 (g13430), and additional small hsp genes are single-copy genes found in different contigs.

We next examined the developmental expression profiles of the hsp genes. The hsp68/hsp70 genes show low expression in 0–1 h embryos and adults (Fig. 7 and Supplementary Fig. 6). However, 6 h embryos, larvae and pupae show 10–35 times higher expression than 0–1 h embryos. In all, 6 h embryos and larvae were reared at 39 °C, pupae at 31 °C, and adults and 0–1 h embryos at 25 °C. Thus, it appears that *C. hominivorax* may be responding to higher temperatures used for rearing the pre-adult stages. The highest levels of expression of the hsp68/hsp70 genes are seen in pupae. The small hsp protein genes show distinct expression profiles but most fall into one of two patterns. One group are strongly expressed in adult females and in 0–1 h embryos, suggesting high maternal expression. Expression levels are not as high at other stages. The second group show low expression in 0–1 h embryos but much higher expression by 6 h of development. These hsp genes are not expressed at higher levels in females than males. Not all small hsp fit into these two patterns. For example, g15959 is expressed at much higher levels in females than males.

Immune response genes. We searched for orthologs of 232 *Drosophila melanogaster* genes (some with multiple isoforms) that are part of the immune response and function in seven different pathways. These represent 218 distinct genes, of which 149 had at least one predicted screwworm protein, based on the
Fig. 6 Genes under positive selection in C. hominivorax and their developmental expression. a Forty genes with evidence of positive selection. Dot size indicates dN/dS ratio. The larger the dot, the higher the positive selection onto the protein (averaged over all codons). The color indicates the level of significance in the comparison of the two-ratio model with the null hypothesis of neutral evolution; it shows that the null hypothesis of neutral evolution was rejected for these genes. Adjusted p-values are log transformed. 0, indicates a p value of 0, which cannot be plotted on a log scale. b Expression profiles of the genes evolving under positive selection in six developmental stages, based on Supplementary Data 8. Each expression value represents the average of three biological replicates for each stage. Blocks are based upon similarity in expression among developmental stages.

Fig. 7 Developmental expression profiles of hsp genes. Normalized expression values (transcript per million mapped) at different stages of development for selected small hsp and hsp68/70 genes. Relative expression values for each replicate (n = 3) shown with mean.

Annotations from the gene prediction or a blastp search of the gene prediction protein data (significance 1e-05; Supplementary Data 10). In addition, a cluster of four genes encoding cecropin-like peptides was found in one contig through manual blast searches. There were 21 matches to the 40 antimicrobial peptides, 12 of the 16 genes in cell cycle, 27 of the 32 genes in humoral response, 37 of 45 in the immune deficiency (imd) pathway, 10 of 19 in the JAK/STAT pathway, 9 of 9 in JNK pathway, and 49 of 56 in the Toll pathway. Some of the genes are components of more than one pathway. We next analyzed the developmental expression profiles of the immune response genes (Supplementary Fig. 7). In general, the expression patterns were similar to that reported for the orthologous gene in Drosophila. For example, the antimicrobial cecropin genes are strongly expressed in pupae. It will be of interest to compare the expression profiles of immune response genes of larvae in culture (this study) with larvae taken from a wound environment.

Genes for building sexing strains for genetic control of screwworm. One component of a TESS is the tetracycline transactivator (tTA) driven by a gene promoter active mostly in early embryos (Supplementary Fig. 8). The second component is the proapoptotic gene hid driven by a TTA-regulated promoter. The hid gene contains the sex-specific intron from the transformer gene and consequently only females make HID protein due to sex-specific RNA splicing (Supplementary Fig. 8). Therefore, we placed our emphasis on genes expressed strongly in 0–1 h embryos and less so at other stages, sex-specific genes or genes that positively regulate apoptosis.

Genes expressed in the early (0–1) embryo. The RNA collected from very early stage embryos will mostly be maternally derived but with some transcripts from zygotic genes that are activated early in embryogenesis. Cellularization occurs at ~1.5 h after egg laying. By comparison with other stages, particularly adult females, we sought to identify genes that are mostly active in the
early zygote. Seventy genes were identified that were predominantly expressed in 0–1 h embryos with little expression at other stages (Supplementary Data 5). Among the list are orthologs of the Drosophila zygotic cellularization genes slow as molasses (slam) and halo. Cellularization gene products play important roles in the formation of the cellular blastoderm37. We have used promoters from the cellularization genes bottleneck and nullo to make L. cuprina TESS6,7. Other genes identified include genes important for development of the early zygote such as giant, zerknult and smoothened. The gene list also includes all three members of the Elba complex, Bsg25A, Elba 2, and Elba3. The heterotrimeric Elba complex is required for chromatin boundary function during early embryogenesis38. In general, genes that are expressed highly in 0–1 h screwworm embryos are also expressed highly in 0–4 h Drosophila embryos (Supplementary Data 5). Lastly, there are several genes that match hypothetical proteins with no known function. It will be of interest to determine if these genes are important for early development in screwworm.

In scanning the list of genes expressed in 0–1 h embryos, it is apparent that several screwworm genes are orthologous to the same Drosophila or L. cuprina gene. These include the cellularization genes, slam and halo and genes that match the hypothetical protein FF38_12096 from L. cuprina. Ten of the predicted C. hominivorax genes show similarity to slam and three to halo. The 10 slam-related genes are closely linked and arranged in a head-to-tail array (Supplementary Fig. 9). The first two genes in the cluster show the highest similarity to Drosophila slam (42% identity at the protein level). A comparison with embryo transcripts revealed a single-nucleotide error in the first gene, g13492. Correcting for this error reveals a single long open reading frame spanning g13492 and g13493 that encodes the full-length ChSLAM protein. The other eight downstream genes encode shorter proteins with little similarity to Drosophila SLAM (<15% identity) or to each other. The three halo-related genes are also closely linked in a head-to-tail array (Supplementary Fig. 9). The first gene, g6449 shows the highest similarity to Drosophila halo (protein is 47% identical) and is likely the halo ortholog. The downstream g6450 and g6451 genes show much lower similarity to Drosophila halo (28% identical) but the encoded proteins are 89% identical suggesting either a recent duplication or conserved function. There are 20 C. hominivorax genes that show a blast match to the L. cuprina FF38_12096 protein. The genes are in head-to-tail arrays in five contigs (Supplementary Fig. 10). Sixteen of the encoded proteins show very high identity to each other (94–100%) and high identity to FF38_12096 (~50%). The coding region (297 bp) is a fraction of a larger sequence of ~3 kb that is repeated several times in each of the contigs. Thus, it is possible that the transcripts are not functional but simply due to transcription of one or more of the repeats.

Sex determination genes. In L. cuprina, as in Drosophila, Transformer (TRA) combines with Transformer2 (TRA2) to regulate the splicing of transcripts from the doublesex (dsx) and fruitless (fru) genes39,40. The C. hominivorax tra gene was reported previously36 and the sex-specific intron was used to produce L. cuprina and C. hominivorax transgenic sexing strains5,41. Here we analyzed the C. hominivorax tra2, dsx, and fru genes. The ~4.5-kb Chtra2 gene contains eight exons and encodes a 262 aa protein that shows 84% identity to L. cuprina TRA2 and 43% identity to D. melanogaster TRA2. The RNA-binding domain shows the highest conservation. As in Drosophila, the C. hominivorax dsx and fru genes are large complex genes with sex-specific alternatively spliced transcripts. The Chdsx gene organization is most similar to L. cuprina39 and houssly dsx genes42. The first four exons are present in transcripts in both sexes. One exon is only present in female transcripts whereas three exons are male-specific (Fig. 8). There are nine predicted TRA/TRA2 binding sites within the 3′UTR of the female exon (Fig. 8). This is expected as TRA/TRA2 binding to the dsx precursor RNA enhances the use of the weak female-specific exon splice acceptor site43. The splice acceptor site for the female exon (5′-TTTTTTCTTGTGTATCACAAATTTAG-3′) has several purines in the polypyrimidine tract as found in dsx genes in other flies. Sex-specific dsx transcripts were first detected in third instar larvae. Alignment of transcripts to the Chfru gene suggests that, as in Drosophila, the gene is particularly complex with multiple transcription start sites and termination sites. In Drosophila and houseflies, sex-specific transcripts arise from the most 5′ promoter44,45. Similarly, analysis of the RNAseq data indicates that there are exons well upstream of the main protein-coding exons. However, the exon–intron structure for the beginning of the gene is unclear due to low coverage of RNAseq reads. One of the upstream exons identified contains four predicted TRA/TRA2 binding sites and thus could be the exon that is sex-specifically spliced. Further analysis will be required to confirm the structure and sex-specific expression of the C. hominivorax fru gene.

Genes that positively regulate apoptosis. We searched for orthologs of the 70 D. melanogaster genes identified by the GO

Fig. 8 C. hominivorax doublesex gene organization and sex-specific transcripts. a The Chdsx gene consists of four exons common to both sexes (gray or open boxes), one female-specific exon (red box) and three male-specific exons. Introns are shown with a black line with a gap indicating the intron is larger than shown. Otherwise all exons and introns are drawn to scale. Translation start and stop codons are indicated. Female and male splicing patterns are shown above and below the gene respectively. The location of the predicted TRA/TRA2 sites is indicated above the 3′UTR of the female-specific exon. b The sequences of the nine predicted TRA/TRA2 sites that are at a least a 13 out of 14 match to the consensus sequence 5′-CAACAAATCAACATA-3′ are shown.

Communication Biology | 2020 | 3:424 | https://doi.org/10.1038/s42003-020-01152-4 | www.nature.com/commsbio
term “positive regulation of apoptotic process”, GO: 0043065, identifying 55 genes (Supplementary Data 11). Included within the list were orthologs of the proapoptotic genes hid, reaper (rpr), and grim. In D. melanogaster and the medfly Ceratitis capitata, the three genes are linked along with sickle (skl)19. Moreover, the order of genes is conserved with the 5'-3' order of skl, rpr, grim, and hid. In C. hominivorax, skl and rpr are linked in one contig while hid and grim are linked in another contig (Supplementary Data 1). grim and skl appear to be mostly expressed in 6 h embryos with few transcripts detected at other stages. hid and rpr transcripts were detected at all stages with highest levels seen in pupae. Identification of orthologs of proapoptotic genes will facilitate development of transgenic sexing strains.

Genes important for building homing gene drive strains. For population suppression, a Cas9-based gene drive strain would contain Cas9 driven by a germline promoter and one or more gRNAs driven by a promoter for a small RNA gene such as U6 (Supplementary Fig. 11)16. The Cas9/gRNA complex would target a gene required for female fertility or fecundity. Germline promoters that have been used for gene drive strains in mosquitoes include vasa, nanos (nos), and zero population growth (zpg)47–49. C. hominivorax orthologs of vasa and nanos were identified in the predicted gene set. As in Drosophila, transcription appears to initiate well upstream of the Chvasa protein-coding exons (Supplementary Fig. 12). Alignment of assembled transcripts identified three potential transcription start sites. In Drosophila the vasa intronic gene (vig) occurs between the first exon of vasa and the downstream protein-coding exons27. The location of the vig ortholog between the most 5’ exons and the Chvasa protein-coding exons (Supplementary Fig. 12) suggests transcription begins at the more 3’ exons. As in Drosophila, the Chnos gene is very closely linked to the ortholog of the CG11779 gene in a head to head arrangement. The Chnos gene promoter appears to overlap with the ChCG11779 5’ UTR (Supplementary Fig. 13). An ortholog of zpg was not identified in the predicted gene set. The closest match to the Drosophila ZPG protein was annotated as innexin5 (inx5). Innexins are required for gap junction function. ZPG is also known as inx4. In Drosophila the zpg gene is on chromosome 3L and very closely linked to the nudel gene, whereas inx5 is on the X chromosome. The gene identified as inx5 gene is closely linked to the nudel ortholog (Supplementary Fig. 12). Given the synteny observed in higher flies50,51, the gene initially identified as inx5 would appear to be the ortholog of zpg. The Chzpg gene is relatively simple, which could make it easier to identify a functional promoter. Chnos, Chvas, and Chzpg transcripts were abundant in adult females and 0–1 h embryos, which is consistent with expected expression in ovarian nurse cells and deposition in the developing oocyte. A search for U6 snRNA genes identified five linked genes on one contig (1336) and four genes on another (9369). As the contigs show extensive similarity this is likely an assembly error due to heterozygosity in the genomic DNA rather a duplication event. The five U6 genes are closely linked (Supplementary Fig. 14).

Suppression of cage populations of the malaria vector Anopheles gambiae was achieved by using a homing gene drive targeting the highly conserved female-specific exon of the dsx gene49. Thus, the Chdsx gene described above would be an excellent target for a gene drive. Other genes targeted in mosquito cage experiments were the orthologs of the Drosophila female fertility genes yellow-g and nudel52. The ortholog of nudel is closely linked to zpg (see above) and the yellow-g ortholog is a single-copy gene (g18385) on a different scaffold.

Discussion

The whole-genome assembly of the New World screwworm reported in this study will serve as a reference for future genetic investigations of this obligate parasite of warm-blooded animals. For example, studies on screwworm population structure in countries where screwworm remains endemic, will facilitate identification of the point of origin of flies in any outbreaks, such as occurred in Florida in 201653. BUSCO analysis suggests that the genome is of high quality with few genes absent from the assembly and little fragmentation or duplication. Nevertheless, the assembled size is 94 Mb larger than measured, which could indicate assembly errors due to residual heterozygosity in the highly inbred strain that was the source of genomic DNA. We identified orthologs of genes that are known to play important roles in transcription, sex determination, apoptosis, chemosensation, heat shock, and immune response. We also identified genes that appear to be unique to C. hominivorax. These genes are mostly active in the embryo and adult males. It will be of interest to determine if the latter are important for male reproduction or mating performance, since male mating performance is critical for any genetic control program’s. Functional analysis of the male-specific genes and other genes of interest such as Chdsx and Chfru will benefit from our recent work developing efficient CRISPR/Cas9 gene editing technologies in screwworm54.

Along with annotation and analysis of the genome, we conducted, to our knowledge, the first developmental RNA-seq analyses for C. hominivorax. In precelular embryos, RNA-seq studies identified genes that are activated in the early zygote. These include genes that are known to play important roles in cellularization and patterning. We found additional copies of two of the cellularization genes, slant and halo, that were expressed in early embryos. The eight slam-related genes encoded smaller proteins with low similarity to the Drosophila SLAM protein. Of the three genes that were similar to Drosophila halo, one appears to be the true ortholog and the other two encode more distantly related proteins. Functional analyses will be needed to determine if these genes are required for cellularization.

To study the molecular evolution of protein-coding genes in C. hominivorax, we estimated the ratio of non-synonymous to synonymous substitutions (dN/dS) of genes with orthologs in 11 dipteran species. The dN/dS ratio test revealed a strong purifying selection. Although the dN/dS ratio is regarded as a conservative test for positive selection, our analysis indicated 40 genes with an ω > 1, providing evidence of positive selection in C. hominivorax. Almost half of these genes had little or no annotated function. Non-annotated genes have been previously described to be less constrained and with lower P-values for the dN/dS ratio tests compared to genes with annotated functions56. It has been proposed that these genes with no assigned annotations may have an important, yet undiscovered, role in evolution56. The orthologs of Dh31-R, S6k, robl, and crimp are of particular interest for future functional studies given their potential roles in larval temperature regulation, larval feeding, male behavior, and tracheal development respectively. Additionally, several of the unclassified genes have significant expression in male reproductive organs for C. hominivorax and Drosophila, suggesting critical roles in male fertility.

Cost is a significant barrier for implementation of SIT programs to suppress or eradicate C. hominivorax populations in the Caribbean or South America. The genes identified in this study could be used to build TESS, which would have reduced rearing costs since females die early in development. Releases of fertile males carrying dominant female lethal genes should be more efficient than SIT. However, very efficient strains would be needed for control in South America. Importantly, we identified genes that could serve as the basis for developing homing gene

10 COMMUNICATIONS BIOLOGY | (2020) 3:424 | https://doi.org/10.1038/s42003-020-01152-4 | www.nature.com/commsbio
drive strains that target gene sets required for female development (Chdx) or female fertility (Chndk).

Methods

New World Screwworm rearing. The J06 wild-type strain of C. hominivorax was reared at the COPEC biosafetyr facility in Panama as described previously8. To obtain the highly inbred line, 20 crosses were performed between single males and single virgin females. In all, 16 of these initial crosses were fertile. From the offspring of each cross a single male and single virgin female were randomly selected and crossed. The process was repeated for 10 generations so that the final highly inbred line strain of C. hominivorax was obtained after 10 generations of single pair mating. At the highly inbred line, several stages of development were collected and rapidly frozen in liquid nitrogen. Three independent samples were collected for each stage. The stages collected were 0–1 h and 6 h embryos, 72 h wandering 3rd instars, 1-day-old pupae and 6-day-old adult male and female.

Nucleic acid isolation and sequencing. High molecular weight DNA was isolated from mixed sex 6 h embryos of the inbred strain using procedures described previously25,26 for library preparation and Nanopore DNA sequencing. The frozen embryos were ground to powder with a mortar and pestle under liquid nitrogen and then suspended in 4 mL STE buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM EDTA, and pH 8). In all, 200 μl 10% SDS and 8 μl RNase A (Cat R4642 Sigma Aldrich St. Louis, Missouri) were added and samples were incubated at 56°C. After 1 h, 1 mL (Cat P2308 Sigma Aldrich) was added to 100 μg/mL and the sample was incubated overnight at 56°C. In total, 3 mL phenol:chloroform: isosoy alcohol [25:2:4] (Cat#P2069, Sigma) was added and samples were rotated gently for 10 min at room temperature (RT). Samples were then centrifuged 10 min at 3000 rpm at 4°C. The aqueous layer was transferred to a new tube. The extracted DNA was precipitated with 1 volume cold 100% ethanol in 2 volumes 75% ethanol was added. The samples were centrifuged 10 min at 6000 rpm at 4°C. The supernatant was removed from the pellet and it was allowed to air dry 10 min. The last of the supernatant was removed and the pellet was allowed to air dry 10 additional minutes before being resuspended in ~50–100 μl TE Buffer. The average size of the DNA was estimated by using agarose gel electrophoresis with a pippin pulse power supply (Sage Science) following conditions recommended by the manufacturer. DNA that was greater >200 kb in size was used for preparation of 20 and 30 kb DNA libraries following instructions from the manufacturer (Pacific Biosciences). Five SMRT cells were run from the 30-kb library which produced 2592 Mb of sequence with an average read length of 9281 bp. Twenty SMRT cells were run from one the 20-kb libraries at the Yale Center for Genome Analysis which produced 14176 Mb of sequence with an average read length of 8767 bp. Seventeen SMRT cells were run from one of the 20-kb libraries at RTFLGenomics which produced 22487 Mb of sequence with an average read length of 10044 bp. We also obtained single-end 125 bp reads with the Illumina HiSeq 2500 on adult male and female DNA resulting in ~225 million reads for the female sample and 203 million reads for the male sample. Total RNA from adult male and female samples was isolated using the Maxwell 16 System (Promega). RNA isolation was done using Trimmomatic version 0.236 with a sliding window quality cut-off of 15 and a minimum length of 36 required to keep a read. Trimming removed less than 1% of each dataset, resulting in a total of ~224 million reads for the Female sample and ~202 million reads for the male sample.

Total RNA was extracted from frozen samples using a Qiagen RNasey mini kit (Qiagen, USA) using the manufacturers recommended procedures. RNA integrity, purity, and concentration were assessed using an Agilent 2100 Bioanalyzer with an RNA 6000 Nano Chip (Agilent Technologies, USA). Purification of messenger RNA (mRNA) was performed using the oligo-dT beads provided in the NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biotabs, USA). Complementary DNA (cDNA) libraries for Illumina sequencing were constructed using the NEBNext Ultra Directional RNA Library Prep Kit (NEB) and NEBNext Multiplex Oligos for Illumina (NEB) using the manufacturer-specified protocol. The amplified library fragments were purified and checked for quality and final concentration using an Agilent 2200 Tapestation with a High Sensitivity DNA chip (Agilent Technologies, USA) and a Qubit fluorometer (ThermoFisher, USA). The final quantified libraries were pooled in equimolar amounts for clustering and sequencing on an Illumina HiSeq 2500 DNA sequencer, utilizing a 125-bp single end sequencing reagent kit (Illumina, USA). A total of 451,814,971 single-end 125 bp reads were produced on the HiSeq across the different life stages. An additional 249 million 150-bp paired-end reads and 196.6 million 300-paired-end reads for the early Embryo stage were run on the NextSeq and MiSeq, respectively. Trimming of adapters and for quality was done using Trimmomatic version 0.2356 with a sliding window quality cut-off of 15 and a minimum length of 36 required to keep a read. Trimming removed <1% of each dataset, resulting in a total of 716,463,678 reads for use across all samples.

Genome assembly and gene prediction. Cana version v1.4 (~62 commits) r8057 (fb7dc42f47a49c8c6c424e886c71e622c77601612) was used to assemble the PacBio data27. Default parameters produced an assembly size much larger than was expected (842 Mb), likely due to the presence of heterozygous alleles that were assembled as separate contigs. Canu parameters were modified to be more permissive of allelic variation using options -o -obitoverrErrorRate=0.15 -oobitErrorRate=0.15 -obitovererrorrate=0.15 -errorRate =0.05 -pachio-corrected. Reassembly with the modified parameters merged some alternative alleles and reduced in a resulted a reduced assembly size of 532 Mb. This assembly was then polished using Arrow version 2.1.0 resulting in a final assembly size of 534 Mb with a mean GC% of 5.46 Mb and a contig NG50 of 0.77 Mb (assuming a haploid genome size of 440 Mb).

RNA reads were mapped to the reference genome with TopHat version 2.1.158. The mapped reads were used as input for Baker v1.977, which calls GeneMark-ET (v4.29) to generate a training set (v2.3.2)75. The resulting initial gene prediction set contains 22,491 protein-coding genes, of which 20,975 have a match to a protein in the NCBI NR database.

Repetitive DNA sequences. To identify interspersed repetitive sequences, RepeatModeler263 was used to construct a de novo repeat library for C. hominivorax. RepeatMasker v. 4.0.764 was then run using the de novo C. hominivorax repeat library that was combined with Drosophila repetitive sequences extracted from the Dfam_Homology library and a combination of the Dfam_Consensus and RepBase databases.

Comparative genomics. A species phylogeny based on 612 protein sequences (231,305 amino acids) was reconstructed to determine the evolutionary relationships among nine dipteran species. The official protein set of Lucilia cuprina (NCBI, GCF_000699065.1), Musca domestica (NCBI, GCF_000317385.1), Sarcoptophaga bullata (PRJNA673617), Stomoxys calcitrans (PRJNA288896), Glossina morsitans (VectorBase, Gmorn), Drosophila melanogaster (GCF_000021125.4), Mayotreola sutula (5sk, Mdes_1.0), Aedes aegypti (VectorBase, AeagL3.3), and Anopheles gambiæ (VectorBase, AgamP3) were downloaded from NCBI, VectorBase, or i5k, and searched against the C. hominivorax gene set using BLASTp. A significant e-value cutoff of ≤1e−5 was applied and only genes that had a single hit across all eight species were included in further analysis. A total of 612 individual proteins were aligned with MAFFT60 using default settings, and alignments were trimmed using gblocks to remove gaps66. The aligned single-copy protein-coding genes were then concatenated and the phylogeny was reconstructed using RAxML version 8.2.848–58 with the PROTGAMMAWAG model and 100 out-of-core replicates. The maximum likelihood was visualized with FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Orthologous groups of genes were also determined among the nine species using OrthoFinder (v 2.2.7) 66 using default settings. Transcription factors were identified based on methods used for other invertebrate genomes23. In brief, putative TFs were identified by scanning the amino acid sequences with all proteins for putative DNA-binding domains using the HMMER software package60 and a compilation of Pfam DNA-binding domain models21. Expression profiles of each TF to determine specific TF candidate are associated with sex and development.

For the molecular evolution analysis of protein-coding genes, we used a slightly modified pipeline to search for evidence of selection22. We used dN/dS ratio estimation based on the nine species previously employed for the phylogenetic reconstruction (L. cuprina, M. domestica, S. bullata, S. calcitrans, G. morsitans, D. melanogaster, M. destructor, A. aegypti, and A. gambiae), and included two other taxa, Ceratitis capitata (NCBI, GCA_000347755.2) and Phormia regina (NCBI, SAMN05678846) to search for orthologs among them. The liverwort C. hominivorax and the fruit fly D. melanogaster were treated as outgroups. After alignment of all the blast results, the hits were filtered by hit fraction length (0.4). Sequences recovered by blast were then clustered with MCL70 with an inflation value of 1.4, and all sequences in a cluster are aligned with MAFFT60. Maximum-likelihood phylogenies were inferred for each cluster using RAxML v8.2.848–58 and only genes without any taxon repeat in the single gene tree were kept for further analyses25. For all genes we used the coding sequences (CDS) with a minimal taxon occupancy of five, i.e. only single-copy orthologs found in at least five of the analyzed species (C. hominivorax, and any other four).

Inferred orthologs were used for the analyses of molecular evolution of C. hominivorax coding sequences. All alignments and alignment cleaning were done with TranslatorX29. CDS were translated into amino acids and aligned with MUSCLE26. Aligned amino acid sequences were back-translated, and poorly aligned regions were marked with GBlocks also implemented in TranslatorX. These alignments were used as inputs to estimate rates of synonymous (dS) and nonsynonymous substitution (dN), and their ratio (dN/dS) with codeml in PAML 4.777. The estimated dN/dS ratios across categories of genes by using GO terms. Only GO terms with at least 30 genes
were used for this term, resulting in 15 terms for the "Biological Process" category, 15 terms for the "Cellular Component" category, and 32 terms for the "Molecular Function" category.

Chemosensory gene analyses. Odorant, gustatory and ionotropic receptors (ORs, GRs, and IRs), and odorant-binding proteins (OBPs) were manually annotated by BLASTn and BLASTn analysis of the genome and transcriptome (C. hominivorax) assemblies using D. melanogaster and M. domestica gene models. BLAST analysis of the C. hominivorax assemblies was conducted using Geneious v6.1.8 (https://www.geneious.com). Chemosensory genome annotation was conducted following protocols described by Hickner et al.79. Gene models were evaluated with the aid of a multiple alignment and phylogenetic tree for each of the four gene families in C. melanogaster, M. domestica, S. calcitrans80, and C. hominivorax. Peptide sequences were multiply aligned then visualized using ClustalX 2.181,82. The maximum likelihood method in RAxML with the PROTGAMMA+AUTO model option and 500 bootstrap replications was used for phylogenetic analysis83. Trees were visualized and figures generated using the Interactive Tree of Life (iTOl) 4.0 software84. Several single nucleotide insertions/deletions (indels) were found in the C. hominivorax genome assembly that were not present in the corresponding transcripts. These were considered functional genes and indicated by "_\text{\textsc{fr}}" in Supplementary Data 4. Indels that could not be evaluated with the corresponding transcript were considered pseudogenes and suffixed with "\text{\textsc{p}}". Due to the complex and sometimes ambiguous orthologous/paralogous relationships among the members of these gene families, we named them based on their position on the scaffolds/contigs. The exceptions include the odorant receptor co-receptor (Orco) and the putative CO2 and sugar receptors where we followed the convention85. In addition, several IRs with clear one-to-one orthologous relationships in the species used for comparative analysis were named in accordance with the D. melanogaster orthologs, and the rest were named as per the contig/position86.

Identification of transcription factors. We identified likely transcription factors (TFs) by scanning the amino acid sequences of predicted protein-coding genes for putative DNA binding domains (DBDs), and when possible, we predicted the DNA binding specificity of each TF using the procedures described in Weirath et al.87. Briefly, predicted amino acid sequences for putative DBDs using the 81 Pfam models listed in Weirath and Hughes87 and the HMMER tool88, with the recommended detection thresholds of Per-sequence Eval < 0.01 and Per-domain conditional Eval < 0.01. Each protein was classified into a family based on its DBDs and their order in the protein sequence (e.g., bZIP1x1, AP2x2, Homeodomain+Pou). We then aligned the resulting DBD sequences within each family using ClustalOmega89, with default settings. For protein pairs with multiple DBDs, each DBD was aligned separately. From these alignments, we calculated the sequence identity of DBD sequence pairs (i.e. the percent of amino acid residues that are exactly the same across all positions in the alignment). Using previously established sequence identity thresholds for each family90, we mapped the predicted DNA binding specificities by simple transfer. For example, the 144 protein sequences in 87% identity to the Drosophila melanogaster Antp protein. Since the DNA-binding specificity of Antp has already been experimentally determined, and the cutoff for the homedomain family of TFs is 70%, we can infer that g19927.11 will have the same binding specificity as Antp.

Usage note. In the above procedure, we identified a total of 982 putative TFs in the C. hominivorax genome, representing 4.7% of the total number of C. hominivorax genes. This fraction is similar to that seen in related species, such as Drosophila melanogaster (5.5%), Bombyx mori (5.3%), and Danaus plexippus (4.9%). The distribution of C. hominivorax TFs across families is similar to that of other insects (Fig. 2). Of the 982 C. hominivorax TFs, we were able to infer motifs for 389 (40%) (Supplementary Data 7), mostly based on DNA binding specificity data from D. melanogaster (355 TFs), but also from species as distant as human (23 TFs). Many of the largest TF families have inferred motifs for a substantial proportion of their TFs, including Homeodomain (104 of 106, 98%), bHLH (67 of 67, 100%), and nuclear receptors (227 of 229, 93%). As expected, the largest gap is for the Zinc fingers (only 43 of 351, ~12%), which evolve quickly by shuffling their many zinc finger arrays, resulting in largely dissimilar DBD sequences across organisms87.

Developmental expression analyses. RNA-seq analyses were conducted according to Attardo et al.21. Briefly, Illumina reads were examined for quality with FASTQC and trimmed/cleaned with Trimmomatic to remove low quality reads. Reads were mapped to the predicted genes with the use of CLC Genomics (Qiagen), allowed two mismatches with over 90% similarity. Expression values were converted to transcription per million mapped (TPM). EdgeR92 was utilized for statistical comparison under standard setting with a false detection rate (FDR) at 0.001. Genes with over twofold enrichment or reduction were used to create development pairwise comparisons. Genes that were enriched in a single developmental stage compared to all other stages were deemed stage-specific. Heat maps for stage-specific gene sets were produced with the "pheatmap" function in R. Putative function was assigned through BLAST comparison to proteomes of other flies. Lastly, GO analyses were conducted by examining the Drosophila melanogaster orthologs with gProfiler93 and visualization of the GO results through REVIGO94.

Along with our comparative analysis between each set, a gene co-expression network was created utilizing the WGCNA95. R software package (https://hווה́th. geneva.uc.edu/html/CoeXpressionNetwork/Bookkeeper/WGCNA/). This approach was used to correlate genes that are similarly expressed across developmental stages and sexes, place them into modules, and relate the resulting modules to the samples.

To prepare our expression data for WGCNA, genes of zero variance were removed (e.g. expression values of 0 for all sets) from the dataset, leaving 11217 genes for an unsupervised network construction. A soft thresholding power of 10 was chosen based on the scale-free topology fit index curve made prior to network construction. The minimum module size for this network was set to 20. To identify identity of each module, the developmental stages were used as input traits during network construction. The modules exhibiting the greatest significance to the trait data (<0.05) were further analyzed to determine function and relationship to the developmental stages and sexes GO analyses were conducted as before by examining the Drosophila melanogaster orthologs with gProfiler94.

Statistics and reproducibility. For the developmental gene expression analysis, three independent samples were collected for each stage and all datasets have been made public on the NCBI Sequence Read Archive. CLC Genomics was used for mapping of reads to predicted genes. Statistical analyses and generation of figures for RNA-seq studies were performed in the R software environment and described in each section of the paper. The package 'dplyr' was used for large data manipulation and the package 'ggplot2' was used for creating graphics. Mann–Whitney tests were done with the 'wilcox.test' function of the core R package. The significance level, alpha, was set to 0.05, and false discovery rate correction was done for multiple tests. Other specific tests used in this study are described in the relevant section (e.g. comparative genomics).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The genbank accession for the genome assembly is ASMA30292v1. The Illumina and PacBio reads from genomic DNA and the RNA sequencing data were deposited at NCBI under SRA accession PRJNA641284. The datasets supporting the conclusions of this article are included within the article and its supplementary files. The supplementary data files are available at Dryad, https://doi.org/10.5061/dryad.x6p9czg2.

Received: 30 December 2019; Accepted: 14 July 2020; Published online: 04 August 2020

References
1. Scott, M. J. et al. A transgenic male-only strain of the New World screwworm for Cas9-mediated gene drive systems for agricultural pest control. Mol. Genet. Genomics 295, 287–298 (2020).
2. Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 59, 205–224 (2014).
3. Scott, M. J. et al. Agricultural production: assessment of the potential use of Cas9-mediated gene drive systems for agricultural pest control. J. Responsible Innov. 5, 598–S120 (2018).
4. Chaudhury, M. F., Skoda, S. R., Sagel, A. & Welch, J. B. Volatiles emitted from the New World screwworm to oviposit. J. Med. Entomol. 47, 349–354 (2010).
5. Yan, Y. et al. Transgenic male-only strain of the New World screwworm for an improved control program using the sterile insect technique. BMC Biol. 14, 72 (2016).
6. Yan, Y. et al. Transgenic neonatal sexing strain for genetic control of the Australian sheep blow fly Lucilia cuprina. Sci. Rep. 5, 16990 (2015).
7. Concha, C. et al. A transgenic sheep blow flyLucilia cuprina. Sci. Rep. 5, 16990 (2015).
8. Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 59, 205–224 (2014).
9. Scott, M. J. et al. Agricultural production: assessment of the potential use of Cas9-mediated gene drive systems for agricultural pest control. J. Responsible Innov. 5, 598–S120 (2018).
10. Chaudhury, M. F., Skoda, S. R., Sagel, A. & Welch, J. B. Volatiles emitted from female New World flies and the potential to attract gravid females. Proc. Natl Acad. Sci. 112, 11119–11124 (2015).
11. Chaudhury, M. F., Zhu, J. J., Sagel, A., Chen, H. & Skoda, S. R. Volatiles from waste larval rearing media attract gravid screwworm flies (Diptera: Calliphoridae) to oviposit. J. Med. Entomol. 47, 349–354 (2010).
12. Ma, Q. et al. Proteus mirabilis interkingdom swimming signals attract blow flies. ISME J. 6, 1356–1366 (2012).
13. Mastrangelo, T. & Welch, J. B. An overview of the components of AW-IPM campaigns against the new world screwworm. Insects 3, 930–953 (2012).

14. Chen, E. Y. et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: implications for mass production. PLoS ONE 13, e0206097 (2018).

15. McNinis, D. O. Cytogenetics of a local population of the screwworm, Cochliomyia hominivorax, from Northeastern Mexico. Ann. Entomol. Soc. Am. 76, 589–598 (1983).

16. Picard, C. J., Johnston, J. S. & Tarone, A. M. Genome sizes of forensically relevant Diptera. J. Med. Entomol. 49, 192–197 (2012).

17. Rabino, L., Barea, A. & Hyde, J. A simple method for isolation of very high molecular weight DNA from Drosophila embryos. Nucleic Acids Res. 21, 4985–4986 (1993).

18. Scoppettuolo, M., Mantle, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1626, 227–245 (2019).

19. Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).

20. Wiegmann, B. M. et al. Episodic radiations in the fly tree of life. Proc. Natl Acad. Sci. USA 108, 5690–5695 (2011).

21. Attardo, G. M. et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 20, 187 (2019).

22. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article 17 (2005).

23. Castillo-Davis, C. I., Kodrashov, F. A., Hartl, D. L. & Kulaithal, R. J. The functional genomic distribution of protein divergence in two animal phyla: coevolution, genomic conflict, and constraint. Genome Res. 14, 802–811 (2004).

24. Slote, T. et al. Genomic determinants of protein evolution and polymorphism in Arabidopsis. Genome Biol. Evol. 3, 1210–1219 (2011).

25. Brown, J. B. et al. Diversity and dynamics of the Drosophila transcriptome. Nature 512, 393–399 (2014).

26. Drosophila 12 Genomes Consortium. Evolution of genomes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

27. Thurmond, J., E. et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 47, D759–D765 (2019).

28. Goda, T. et al. Calcinonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev. 32, 140–155 (2018).

29. Wu, Q., Zhang, Y., Xu, J. & Shen, P. Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc. Natl Acad. Sci. USA 102, 13289–13294 (2005).

30. Ito, H., Sato, K., Kondo, S., Ueda, R. & Yamamoto, D. Fruitless represses trh1 transcription to shape male-specific neural ribosomal S6 kinase in Drosophila. Sci. Rep. 6, 20334 (2016).

31. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, 39–46 (2019).

32. Scolari, F. et al. The spermatophore in Bactrocera: male reproductive structures and their role in mate choice. J. Med. Entomol. 54, 213–222 (1993).

33. Sim, S. B. & Geib, S. M. A chromosome-scale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae. G3 7, 1927–1940 (2017).

34. Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 1062–1066 (2018).

35. Skoda, S. R., Phillips, P. L. & Welch, J. B. Screwworm (Diptera: Calliphoridae) in the United States: response to and elimination of the 2016–2017 outbreak in Florida. J. Med. Entomol. 55, 777–786 (2018).

36. Paolo, D. F. et al. Specific gene disruption in the major livestock pests Cochliomyia hominivorax and Lucilia cuprina using CRISPR/Cas9. G3 https://doi.org/10.1534/g3.119.400544 (2019).

37. Linger, R. J., Belkoff, E. J. & Scott, M. J. Dosage compensation of X-linked Muller element F genes but not X-linked transgenes in the Australian sheep blowfly. PLoS ONE 10, e0141544 (2015).

38. Bolger, A. M., Lohse, M. & Usadel, B. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

39. Koren, S. et al. Canu: scalable and accurate long-read assembly via iterative k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

40. Kim, D. et al. TopHat2: accurate alignment of transcripts in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

41. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER: unsupervised RNA-seq based genome annotation with GeneMark-ET and AUGUSTUS. Biomolecules 32, 767–769 (2018).

42. Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).

43. Stanke, M., Schoffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform. 7, 62 (2006).

44. Stanke, M., Diekhans, M., Baetisch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

45. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1902106117 (2020).

46. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genome sequences. Curr. Protoc. Bioinformatics. https://doi.org/10.1002/9780471295959.bio14b25 (2009).

47. Katah, K., Misawa, K., Kuma, K. & Mita, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

48. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

49. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

50. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

51. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. M. & Kelly, T. M. T. BLAST: finding solutions fundamental biases in whole genome comparisons dramatically improves orthogroups inference accuracy. Genome Biol. 16, 157 (2015).
70. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. *Genome Inform.* 23, 205–211 (2009).

71. Weirusch, M. T. & Hughes, T. R. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. *Subcell. Biochem.* 52, 25–73, https://doi.org/10.1007/978-90-481-9069-0_3 (2011).

72. Yang, Y. & Smith, S. A. Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix completion. *Mol. Biol. Evol.* 31, 3081–3092, https://doi.org/10.1093/molbev/msx245 (2014).

73. van Dongen, S. M. Graph Clustering by Flow Simulation Ph.D. thesis, University of Utrecht, (2000).

74. Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. *Nucleic Acids Res.* 38, W7–W13, https://doi.org/10.1093/nar/gkq291 (2010).

75. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* 14, 585–593 (1997).

76. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* 39, W268–W272 (2011).

77. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780, https://doi.org/10.1093/molbev/msx010 (2013).

78. Scott, J. G. et al. Genome of the house fly, *Musca domestica* L., a global vector of diseases with adaptations to a septic environment. *Genome Biol.* 15, 466 (2014).

79. Hickner, P. V. et al. The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive pest. *Evol. Appl.* 7, 533–552, https://doi.org/10.1111/eva.12035 (2014).

80. Olafson, P. U. et al. Functional genomics of the stable fly, *Stomoxys calcitrans*, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control. *BioRxiv*, 623009 (2019).

81. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 25, 4876–4882 (1997).

82. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. *Bioinformatics* 23, 2947–2948 (2007).

83. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* (2019).

84. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. *Cell* 158, 1431–1443, https://doi.org/10.1016/j.cell.2014.08.009 (2014).

85. Finch, R. D. et al. The Pfam protein families database. *Nucleic Acids Res.* 38, D211–D222, https://doi.org/10.1093/nar/gkp985 (2010).

86. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7, 539, https://doi.org/10.1038/msb.2011.75 (2011).

87. Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. *Nat. Biotechnol.* 33, 555–562, https://doi.org/10.1038/nbt.3128 (2015).

88. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140, https://doi.org/10.1093/bioinformatics/btp616 (2010).

89. Raudvere, U. et al. pGProfer: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Res.* 47, W191–W198, https://doi.org/10.1093/nar/gkz369 (2019).

90. Supek, F., Bosniak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS one* 6, e21800, https://doi.org/10.1371/journal.pone.0021800 (2011).

91. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinforma.* 9, 559, https://doi.org/10.1186/1471-2105-9-559 (2008).

92. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).

93. Huntley, R. P. et al. The GOA database: Gene Ontology annotation updates for 2015. *Nucleic Acids Res.* 43, D1057–D1063, https://doi.org/10.1093/nar/gku1113 (2015).

Acknowledgements

We are grateful for technical assistance from Nicolas Mendoza, Domininlo Martinez, Rosaura Sanchez, Hermogenes Gonzalez, Brigido Gonzalez, and Jaime Ceballos at the ARS-COPEG laboratory. We thank Ying Yan for the transgenic embryonic sexing strain (Supplementary Fig. 8). Funding is gratefully acknowledged from specific cooperative agreements between the USDA-ARS and NCsu and from the Panama-United States Commission for the Eradication and Prevention of Screwworm (COPEG) and USDA-APHIS. Mention of a proprietary product does not constitute endorsement or recommendation for its use by the USDA. USDA is an equal opportunity provider and employer.

Author contributions

M.J.S. designed research, performed research, analyzed data, and obtained funding for this project. R.I.D. isolated high molecular weight DNA and organized illumina DNA sequencing. Differential RNA expression analyses were performed by S.B., V.V., E.O.M., and J.B.B.; J.B.B., G.A.C., and T.T.T. performed comparative genomics analyses. M.T.W. performed transcription factor analyses. Assembly of the genome from PacBio reads was performed by A.M.P. Gene predictions and BUSCO analyses were performed by E.H.S. Chemosensory gene analyses were conducted by P.V.H. and Z.S.; A.S., G.Q., and M.V. performed crosses to create the inbred strain and then collected samples for nucleic acid isolation. S.R.S. supervised research in Panama and obtained funding for this project. M.J.S., P.V.H., T.T.T., E.H.S., and J.B.B. wrote and edited the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-01152-4.

Correspondence and requests for materials should be addressed to M.J.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020