Eutrophication in a tropical estuary: Is it good or bad?

A Damar¹,²,*, A Ervinia¹, F Kurniawan¹,² and B Y Rudianto²

¹Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University (Bogor Agricultural University), Jl. Agatis Darmaga Bogor, Bogor 16680, Indonesia
²Center for Coastal and Marine Resources Studies, IPB University (Bogor Agricultural University), Campus IPB Baranangsiang, Jl. Raya Pajajaran No. 1, Bogor 16127, Indonesia

*Corresponding author: adamar@apps.ipb.ac.id

Abstract. Coastal eutrophication is defined as the increase of rate of organic supply into an estuary. In the recent global discussion, eutrophication is seen as a negative situation, in fact, it has positive impacts such as increase in primary production which lead to the increase of fisheries production and hence, community income. This paper promotes a simple diagram called eutrophication-benefit curve which correlates between levels of eutrophication and its benefits to both ecological and economical aspects. In the beginning of eutrophication process, environment gets benefit from the increase of the nutritional state of the water which leads to the increase of primary production and fisheries production. This is obvious in the comparison between northern and southern coast waters of Java Island, showing a higher primary production and phytoplankton biomass and hence fisheries production in the northern coast waters of Java compared to those of the southern coast waters of Java. However, the rapid increase of eutrophication level of the northern coast waters of Java Island causes eutrophication negative effects such as oxygen depletion, algae bloom and disturbance of coral reef ecosystems. This paper shows the optimum level of eutrophication level that can give benefit to both ecological and social environment.

Keywords: algae bloom; benefits; coastal eutrophication; hypoxia; phytoplankton; primary production

1. Introduction
Coastal eutrophication is defined as the increase of rate of organic supply into an estuary [1, 2] which can lead to both ecological and societal problems. Other definition about eutrophication is the increase of nutrients in a coastal water which can lead to development of algae biomass or blooms. Despite its varied definition and understanding, eutrophication can be viewed from different angles. Eutrophication can be seen as the increase rate of nutrients, which is mostly coming from the land derived by anthropogenic domestic activities. In the recipient waters, organics will be decomposed by bacteria resulting dissolved inorganic nutrients which is needed by algae for growth. Eutrophication can be viewed as two sides, which are positive (good) and negative (bad). Having positive side means that this process can be beneficial to both ecological and society while that of negative side means that this can lead to various negative consequences to environment.
This paper aims to discuss various consequences of eutrophication for the environment and societal aspects and the case of eutrophication of the tropical embayment of Jakarta Bay is much discussed in this paper. Jakarta Bay is an estuary that has received organic materials transported from about 13 small rivers. Liquid waste in the form of a result of domestic activities in the metropolitan area of Jakarta is the reason for the high organic content and nutrients in this bay. About 11 million people live in this region and almost 80% of liquid waste of domestic residents without being processed is released into the waters of Jakarta Bay, making the Bay of Jakarta as a bay that is experiencing high levels of eutrophication [3]. Coastal eutrophication symptoms were observed in Jakarta Bay, in the form of hypoxic of its near-bottom water [4], algal blooms [4-7], and aquatic biota mass mortality [8].

In tropical coastal seas, e.g. in Indonesia, the severe impacts caused by eutrophication occur especially along the populated coastal area such as at the northern coast of West and East Java [9-11], Lampung Bay [12], and at the Banyuasin River mouth [13]. Degradation of the quality of estuary has led to a significant decreased in fisheries’ production [14, 15].

2. Two sides of eutrophication for both ecological and social aspects
It has been discussed in many papers that eutrophication in some cases is negative, causing loss of ecosystem services, and in its turn, create an economic loss of the society [1, 16, 17]. Various negative losses and impacts of this organic material increase are proven to cause negative consequences for both ecology and social economy [18, 19]. Nevertheless, scientists rarely discuss the benefits of eutrophication for both environmental and social aspects. Some of the benefits of eutrophication include the increase of primary productivity of the waters and will eventually be able to increase fisheries production in its adjacent waters. Marine capture fisheries data showed that the production of fisheries, especially coastal fisheries both demersal and small pelagic are higher compared to those of less eutrophic waters as can be seen in figure 1.

![Figure 1. Conceptual model on the correlation between eutrophication levels and benefits for human. Graph concept and drawn by Ario Damar.](image-url)
eutrophication are: (1) increase of aquatic primary production [1] and (2) increase of fisheries production that will lead to (3) economic benefits through improvement of local fishermen income [1].

We propose a diagram called the correlation between eutrophication level and benefit which correlates between the levels of eutrophication and its ecological and social benefits as presented in Figure 1. In that figure, the level of eutrophication is shown on axis X and the benefits for humans is shown on axis Y. The optimum eutrophication level (A) deliver maximum benefits (B) for the environment and society. In the X axis, the right area of point A is determined as loss zone while that of the left area of point A is identified as the benefits zone. The slope of the curve (α) shows the rate of eutrophication level in increasing the benefit. It is shown that the benefits curve is in the form of a hyperbolic pattern where at the beginning of the eutrophication stage, the increase of the level of eutrophication will provide benefits to human beings, through increased water productivity and fisheries production. The increased levels of eutrophication from oligotrophic to mesotrophic will lead to an increase of primary production and hence fisheries production (the more to the right of the curve) and benefitting human beings.

The production process of organic materials causes the accumulation of organic materials in the waters that will be further decomposed by bacteria. Bacteria decomposition requires a lot of oxygen taken from the environment and can cause oxygen deficiency. The rate of oxygen deficiency will depend on the rate of oxygen renewal that can either supplied by photosynthetic results or air-water diffusion. Problems will arise when the supply rate of oxygen renewal is smaller than the rate of oxygen consumption. At that moment, the system will experience various problems, such as oxygen deficiency (hypoxia), loss of oxygen (anoxia), smelly water, algae blooms, until the mass mortality of aquatic biota. Hence, the balance point of the new oxygen renewal into the system becomes very important and crucial. The ability of an aquatic system in the renewal of oxygen can be pointed out as the carrying capacity of the system, which is in line with the turning point of the benefits curve (figure 1). In the field of eutrophication management, the point where the turning point (A-in figure 1) is achieved is very important and critical to be identified.

In the curve, the slope of the curve (α) and the carrying capacity of coastal aquatic waters depend on the renewal rate of oxygen into the water, the flushing rate of the water, and the presence of grazing organism. However, each estuary is site-specific, cannot be generalized, and resulting strong need to have detail characters of each estuary [1].

Based on the two different views (positive and negative), the important question is when we have to allow an increase in eutrophication and when we have to stop. From the environmental management perspective, however, it is somewhat too risky to seek environmental benefits from eutrophication with the fact that it is too difficult to control the rate of organics into the waters. We cannot give permission to let the organic pollution take place just only to expect some benefits from the increase in primary production. Thus, in many cases, the next question is the greater the benefits or disadvantages caused by this eutrophication. To answer these questions, the study of ecosystem services will be important. With this study, a thorough study of profits and losses would be identified and would be an important ingredient for policymakers to decide the priorities of management in waters of estuaries.

3. Increased rate of primary production
Coastal waters which is highly affected by nutrient enrichment is a productive system, high in primary production, able to support live of various aquatic biota, and good for a system. Java Island in Indonesia is a good example on how eutrophication can be beneficial for social system despite its negative impacts. In the perspective of the anthropo-system, an increase of primary production can be significantly beneficial, as can be further continued by the increase of secondary and hence fisheries productions. Increase in fisheries production is one good example from this perspective. In the coastal sea of Java, especially on the northern coast of this island, the high rates of nutrient supply from the incoming rivers are the main source of organics to fuel primary production.

Table 1 shows the comparison of primary production and phytoplankton biomass values between estuaries of the northern coast of Java and the southern coast of Java. Those two different sites are
different in the nutrient loads due to the typical hydrological character of the island. Topographic feature of Java is creating a series of the hilly area along its southern coast, resulting in typical south to north flow of the hydrological system. The spatial demographic of people is also more concentrated along the northern coast of the island compared to that of the southern coast. With this specific pattern, coastal waters of the northern coast receive higher nutrients compared to that of the southern coast. As result, higher primary production and hence secondary and fisheries production always characterize the estuaries on the northern coast of this island. Conversely, values of primary production of the estuaries of the southern coast of Java Island are characterized by lower primary production values (table 1).

Table 1. Comparison of primary production values of some estuaries, comparison between less eutrophic waters of the southern coast of Java (Indian Ocean) with the more eutrophic waters of the northern coast of Java Island (Java Sea).

Area	Area	Annual production (g C m\(^2\) y\(^{-1}\))	Method	Phytoplankton biomass (ug Chl-a L\(^{-1}\))	Method	Reference
Southern coast of Java Island						
Indian Ocean (Indonesia)				< 0.80	RS\(^a\)	[22]
- upwelling period				0.80 – 2.00	RS\(^a\)	[22]
- before upwelling				<0.25	RS\(^a\)	[23]
- upwelling period				>1.00	RS\(^a\)	[23]
Lampung Bay, West of Java						
- inner part (Hurun coast) 1999 \(^a\)		70	O\(_2\)			[24]
- middle part 2000-2001		40	\(^{14}\)C	2.22		[25]
- outer part 2000-2001		31	\(^{14}\)C	0.78		[25]
Semangka Bay (Indian Ocean-Indonesia)						
- inner part (river plume) 2000-2001		14	\(^{14}\)C	7.11		[25]
- middle part 2000-2001		40	\(^{14}\)C	1.21		[25]
- outer part 2000-2001		22	\(^{14}\)C	0.44		[25]
Northern coast of Java Island						
Porong Estuary, East Java				4.75	Spect.\(^b\)	[10]
Wonokromo Estuary, East Java				2.51	Spect.\(^b\)	[10]
Jakarta Bay Java Sea						
- inner part 1983\(^a\)		301	O\(_2\)			[26]
- inner part 1991\(^a\)		166 – 214	O\(_2\)			[27]
- inner part 2000-2001		503	\(^{14}\)C	31.4		[25]
- middle part 1983\(^a\)		49	O\(_2\)			[26]
- middle part 1983\(^a\)		55	O\(_2\)			[26]
- middle part 2000-2001		119	\(^{14}\)C	15.8		[25]
- outer part 2000-2001		47	\(^{14}\)C	2.20		[25]
Banten Bay, Java Sea		163	O\(_2\)			[28]

\(^a\) Remote sensing method

\(^b\) Spectrophotometric method

4. Increase in fisheries production

As further consequences of the increase of primary production, fisheries production is also increased. This can be seen from the elevated value of fish production in the Java Sea from time to time, despite increase in the number of fishermen (figure 2). Theoretically, biomass formed during the process of primary production is then come into the food web where one of the components is fishes, either carnivore, planktivory, or omnivore. Fisheries statistic of Java Sea shows that these waters are higher compared to that of the Indian Ocean in the southern coast of the island where it is commensurate with the difference in primary production.

The primary productivity in the waters of the northern coast of Java is high [29], which is further converted into secondary production, and hence fisheries production. Figure 2 shows the difference in
fish production comparison between Java Sea (Fisheries Management Area-WPP 712) and the Indian Ocean (Fisheries Management Area-WPP 573 eastern). It can be seen that fish productions of WPP 712 are higher than those of WPP 573. This pattern shows that the high eutrophic waters of Java Sea able to support higher fisheries production which in its turn able to deliver economic benefits for the people.

Figure 2. Fisheries production of the more eutrophic waters of the Java Sea and the less eutrophic waters of the Indian Ocean 2005-2013 [30].

Location	Species of algal bloom	Abundance (cells m$^{-3}$)	Condition	Nutrient Impact	Reference
Jakarta Bay, Indonesia	Diatom: *Skeletonema* sp., *Chaetoceros* sp., *Thalassiosira* sp.	2×107 – 2.1×109	Dry seasons	High N/P ratio	Mass mortality of fishes several days after bloom [6]
Johor Strait, Singapore	Dinoflagellate: *Takayama xiamenensis*, *Karldinium*	2×106 – 1.2×1011	Neap tide	High N/P ratio	Massive fish kills in Johor Straits [33]
Rhode Island, United States	Dinoflagellate: *Cochlodinium polykrikoides*	1×105 – 3.4×109	Summer	High N/P ratio	Red coloration in water affect local sport and commercial fisheries [34]
Fujian Water, China	Dinoflagellate: *Prorocentrum donghaiense*, *Karldinium digitatum*	4.58×109 – 1.46×1010	Spring	n.a	Mass mortality of cage-cultured fish [35]

5. Algae blooms
Algae bloom is one of the chronic effects of eutrophication, through the excessive elevation of nutrients. In tropical waters, with its continuous supply of underwater light for phytoplankton growth, the algae bloom can be more severely occurs since light is always available throughout the year. Rapid development of phytoplankton biomass can be a serious problem both for ecological and societal aspects. Coastal seas of the northern coast of Java Island, such as Jakarta Bay, Banten Bay, Semarang, and other coastal embayment’s are routinely affected by the algae bloom. Once the water is bloomed by
algae, it can be further creating mass mortality of the fishes and disturbing the tourism business of the area.

Until now, blooms of algae have not been fully revealed. In principle, bloom will only occur if two main factors determining phytoplankton growth are available, namely nutrients and light. However, not every time bloom occurs, despite the nutrients and abundant light. The involvement of the third factor is the determinant and alleged as the facilitation of the physical factor of aquatic dynamics [31] such as vertical and horizontal water current.

A famous example of algae bloom has been revealed in a eutrophic Jakarta Bay, were experienced with massive algae bloom [7, 21, 32]. In this tropical estuary, the most frequent species responsible for algae bloom were *Skeletonema costatum*, *Pseudonitzschia*, and *Noctiluca scintillans*. High nutrient concentration and abundant irradiance were the most causative factors for the bloom, but the most decisive triggering factor was the hydrodynamic factor. The bloom was mostly occurred during the period of calm water of the dry period and the transition period between the rainy to dry period. In this less movement of water, phytoplankton was allowed to develop in a accumulation of their biomass and form blooms. Table 2 shows the comparison of some algae blooms phenomena across regions globally in the eutrophic estuaries.

Table 2. Comparison of some algae blooms phenomena across regions globally

Location	Hypoxia Type	DO (mg l⁻¹)	Potential Cause	Response	Reference
Jakarta Bay, Indonesia	Seasonal	0 – 6	Large oxygen demand, weak tidal mixing, high river discharge, and lack of continuous convection	Benthic mass mortalities	[20][4]
Pearl River Estuary, China	Episodic	< 2.0	Inflow of nutrients from watersheds and urban areas	n.a	[37]
Tokyo Bay, Japan	Episodic	< 2.0	Influx of oceanic water from the outside of the bay	Mass mortality on juveniles of mantis shrimp	[38]
Chesapeake Bay, United States	Seasonal	< 0.2 – 2	Nitrate loading from the Susquehanna River	Changes on biogeochemistry of the bay, decline in deep-water macrobenthos	[39]
Oregon Coast, United States	Upwelling	0.21-1.57	Upwelling forcing, anomalously strong flow of sub-arctic water	Mass die-offs of fish and invertebrates	[40]

6. **Hypoxia**

Hypoxia is one of the consequences of the high rate of organics decomposition in an estuary. A high rate of oxygen consumption by bacteria during the decomposition process, resulting deficit of dissolved oxygen in the water. It is well-known that many eutrophic estuary experiences with hypoxia and even more anoxic. Mississippi river mouth of the Gulf of Mexico is well known for its dead zone [36], especially during summertime when summer vertical stratification develops. The tropical bay of Jakarta Bay is another example of persistent hypoxia in its near-bottom water [20]. In this tropical bay, the hypoxic area of its near-bottom water occupies a large area, mostly located close to the coastline and river mouths. Jakarta Bay experiences with quasi-persistent hypoxic condition due to low transport of surface to bottom water, causing the isolation of low oxygen of the near-bottom water [20].

Table 3. Comparison of hypoxic areas across regions in the world.

Location	Hypoxia Type	DO (mg l⁻¹)	Potential Cause	Response	Reference
Jakarta Bay, Indonesia	Seasonal	0 – 6	Large oxygen demand, weak tidal mixing, high river discharge, and lack of continuous convection	Benthic mass mortalities	[20][4]
Pearl River Estuary, China	Episodic	< 2.0	Inflow of nutrients from watersheds and urban areas	n.a	[37]
Tokyo Bay, Japan	Episodic	< 2.0	Influx of oceanic water from the outside of the bay	Mass mortality on juveniles of mantis shrimp	[38]
Chesapeake Bay, United States	Seasonal	< 0.2 – 2	Nitrate loading from the Susquehanna River	Changes on biogeochemistry of the bay, decline in deep-water macrobenthos	[39]
Oregon Coast, United States	Upwelling	0.21-1.57	Upwelling forcing, anomalously strong flow of sub-arctic water	Mass die-offs of fish and invertebrates	[40]

Organics accumulation occurs in the sediment in the form of a thick layer of muddy-rich of an organic belt, composing an organic pool that should be decomposed by bacteria. It is of normal situation in the
estuary were characterized by thick organic sediment in its seabed. The water column above it is less in physical movement, causing permanent calm water, and allowing rapid decomposition of bacteria which consume a huge amount of oxygen. Usually, an estuary suffered from hypoxia is a calm estuary, less in physical water movement, and located in physically-protected waters like embayment. This low physical movement allows longer water residence time that will create an accumulation of particles in its sediment. The longer water residence time, the higher accumulation rate of organics in its seabed.

It has been recorded a tremendous increase of hypoxic phenomenon in the global estuary in the last 30 years which is related to the increase of nutrient loads to estuaries [36], which most closely related to anthropogenic domestic waste of major cities. Location of the hypoxic estuaries are always in the adjacent area of big cities such as Tokyo, Jakarta, Bangkok, Manila, San Francisco, and Mumbai.

Comparison between tropical and temperate regions, hypoxic condition of temperate estuaries usually occurs during summer where thermocline develops. This temporal thermocline which creates temporal hypoxia is observed in Chesapeake Bay (Maryland, USA), Pamlico river estuary (North Carolina, USA), Mobile Bay (Alabama, USA), Hillsborough Bay (Florida, USA), Seto Inland Sea (Jepang), German Bight (North Sea, Germany), Port Hacking (Australia), Tolo Harbor (Hong Kong), main harbours in Japan, Tome Cove (Jepang), Trieste Bay (Adriatic, Itali) and Black Sea [36]. Table 3 shows examples of some coastal sea’s eutrophication in some area in the world.

7. Mass mortality of aquatic biota
The mass mortality of aquatic biota is the end of various environmental degradation processes caused by eutrophication. Technically, the mass mortality of aquatic biota can be caused by low oxygen content in the water, toxic algae bloom, or toxic gaseous as a result of the intensified process of organic decomposition [1, 36, 37]. In Jakarta Bay, for example, the mass mortality of aquatic biota is a routine phenomenon caused by lifting up the low-oxygen of near-bottom water to the surface, resulting in asphyxia [41]. A similar process was also found in the Oregon coastal waters [42, 43] in the northern Californian waters.

8. Coral reef disturbances
Besides affecting estuary ecosystems, eutrophication also affects the coral reef ecosystem. An increase of nutrient level in the coral reef ecosystem causes some ecological consequences such as the rapid expansion of algae coverage overlapping the growth of corals [44, 45]. Symbiotic mutualism between dinoflagellate of Symbiodinium sp. with coral animal develops a special relationship mechanism. The algae need nutrients but they need light as well. Chronic effects of eutrophication in the coral reef ecosystem create environmental changes such as higher turbidity and higher nutrient concentration in the water [46]. In the normal situation, living coral coverage dominates the bottom coverage of the landscape, leaving macroalgae as minor spatial coverage. In the eutrophic environments, the elevated nutrient concentration will promote the expansion of macroalgae where they can grow much faster and better, resulting in the dominant occupation of macroalgae in the coral ecosystem [44, 45].

Changes in the nutritional state of the coral environment create some further consequences, and one of the most important is the change in the trophic level proportion [44]. An increase of macroalgae and coralline algae coverage will provide a higher number of foods for associated coral animals, such as fish. In the macroalgae less-dominated coral reef ecosystem, the proportion of coral-eating fish and carnivorous fish are abundant, causing the shift of herbivorous fish to take over the food chain [47].

This can be seen in the study done by Adi [48] in the Thousand Islands coral reef ecosystem of the Jakarta Bay area. Coral reef ecosystem which is located right in front of the eutrophic bay, gradually influenced by its high-nutrient waters. The area consists of around 104 small coral reef-islands, lies in the south to north position, perpendicularly towards Jakarta Bay in the south. Coral reef ecosystem distribution reflects the effects of eutrophication influence brought by Jakarta Bay. Coverage of macroalgae is significantly higher in the southern part of the islands and getting lesser and lesser in the middle and northern part of the islands. Gradual increase of macroalgae coverage and consequently reduce the living coral coverage as it is approaching the mainland is strong evidence emphasizing the
effect of eutrophication in the degradation of coral reef ecosystem, in the form of increase of macro algae coverage and change in the fish composition.

9. Conclusion
It is concluded that although eutrophication is able to deliver positive benefit both for the ecological and social systems, their negative consequences are too much high to be managed. It is too risky to expect benefits from the escalating nutritional status of an estuary. It seems that it is too costly just to expect a productive estuary while its negative consequences are waiting. The best-recommended measures dealing with coastal eutrophication is to reduce riverine nutrient loads into an estuary.

Acknowledgment
The authors would like to thank to the Center for Coastal and Marine Resources Studies, IPB University for partially sponsoring the eutrophication study in Jakarta Bay from the period between 2012-2019.

References
[1] Cloern J E 2001 Our evolving conceptual model of the coastal eutrophication problem *Marine Ecology Progress Series* **210**: 223-253
[2] Selman M 2007 Eutrophication: An Overview of Status, Trends, Policies, and Strategies. World Resources Institute
[3] van der Wulp S A, Damar A, Ladwig N and Hesse K-J 2016 Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia *Mar Poll Bull* **110**: 675–685
[4] Ladwig N, Hesse K-J, van der Wulp S A, Damar A and Koch, D 2016 Pressure on oxygen levels of Jakarta Bay *Mar Poll Bull* **110**: 665–674
[5] Sidabutar T, and Srimariana E S 2020 The connectivity of nutrient ratios on the abundance of phytoplankton population in Jakarta Bay *E3S Web Conf* **147** 02012
[6] Sidabutar T, Srimariana E S and Wouthuyzen S 2020 The potential role of eutrophication, tidal and climatic on the rise of algal bloom phenomenon in Jakarta Bay *IOP Conf Ser EES* **429** 012021
[7] Yuliana 2012 *Implikasi perubahan ketersediaan nutrien terhadap perkembangan pesat (blooming) fitoplankton di Perairan Teluk Jakarta* Ph.D. Thesis, Bogor Agricultural University, Bogor, Indonesia
[8] Breckwoldt A, Dsikowitzky L, Baum G, Ferse S C A, van der Wulp S A, Kusumanti I, Ramadhan and Adrianto L 2016 A review of stressors, uses and management perspectives for the larger Jakarta Bay Area, Indonesia *Mar Poll Bull* **110**: 790–794
[9] Choirun A, Sari S H J and Irnawati F 2015 Phytoplankton harmfull algae bloom (hab) identification during tide period in Brondong coastal waters, Lamongan, East Java *Torani J Fish Mar Sci* **25**: 58–66
[10] Damar A 2003 Net phytoplankton community structure and its biomass dynamics in the Brantas River Estuary, Java, Indonesia in coastal environments: Focus on Asian Regions, Subramanian, V, Ed *Springer: Dordrecht, The Netherlands*, 2012
[11] Buditama G, Damayanti A and Pin T G 2017 Identifying distribution of chlorophyll-a concentration using Landsat 8 OLI on marine waters area of Cirebon. *IOP Conf Ser EES* **98** 012040.
[12] Barokah G R, Putri A K and Gunawan 2016 The abundance of phytoplankton causing HAB (harmful algal bloom) in Lampung Bay during West and East Monsoon *JPB Kelautan dan Perikanan* **11**: 115–126
[13] Aryawati R, Bengen D G, Prartono T and Zulkifli H 2016 Harmful algal in Banyuasin coastal waters, South Sumatera *Biosaintifikasi* **8**: 231–239
[14] Arifin Z 2004 Trend of coastal pollution of Jakarta Bay Indonesia: Its implication for fishery and recreational activities. In Proceedings of the International Workshop on Coastal Resources
Exploration and Conservation, Rachmawati, Aldrian R E, Hendiarti N, and Tejakusuma I, Eds *Badan Pengkajian dan Penerapan Teknologi Jakarta: Jakarta, Indonesia* pp 16–21

[15] Arfin Z and Fitriati M 2006 Green mussels cultured in highly polluted area of Jakarta Bay, in Indonesia. In International Conference on Hubs, Harbours and Deltas in Southeast Asia: Multidisciplinary and Intercultural Perspectives Verhasselt Y, Ed *Royal Academy of Overseas Sciences Brussels: Brussels, Belgium* pp 525–536

[16] Cloern J E, Schraga T S, Nejad E and Martin C 2020 Nutrient Status of San Francisco Bay and Its Management Implications *Estuaries and Coasts* https://doi.org/10.1007/s12237-020-00737-w

[17] Andersen J H, Schlüter L and Ærtebjerg G 2006 Coastal eutrophication: recent developments in definitions and implications for monitoring strategies *J Plankton Res* 28(7): 621–628

[18] Anderson D M, Glibert P M and Burkholder J M 2002 Harmful algal blooms and eutrophication: nutrient sources, composition and consequences *Estuaries* 25 704–726

[19] João G F, Andersen J H, Borja A, Bricker S B, Camp J, Cardoso da Silva M, Garcés E, Heiskanen A-S, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N and Claassen U 2011 Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive *Estuarine, Coastal and Shelf Science* 93(2): 117–131

[20] Hayami Y, Morimoto A, Sudaryanto A, Sachoemar S I, Soeyanto E, Rusdiansyah A and Saleh M 2020 A quasi-persistent hypoxic water mass in an equatorial coastal sea, Jakarta Bay, Indonesia *Estuarine, Coastal and Shelf Science* 246: 107030

[21] Damar A, Prismayanti A D, Rudianto B Y, Ramli A and Kurniawan F 2021a Algae bloom phenomenon in Jakarta Bay as symptoms of severe eutrophication: monitoring results of 2014-2016 Submitted to *IOP Conf Ser ISARM*

[22] Hendiarti N, Siegel H and Ohde T 2004 Investigation of different coastal processes in Indonesian waters using SeaWiFS data *Deep Sea Research Part II: Topical Studies in Oceanography* 51: 85–97

[23] Susanto R D, Moore T S and Marna J 2006 Ocean color variability in the Indonesian seas during the SeaWiFS era *Geochemistry, Geophysics, Geosystems* 7(5)

[24] Tambaru R 2000 *Pengaruh intensitas cahaya pada berbagai waktu inkubasi terhadap produktivitas primer fitoplankton di perairan Teluk Hurun, The influence of incubation time on phytoplankton primary productivity in Hurun Bay, Indonesia* MSc Thesis Graduate school of Bogor Agricultural University

[25] Damar A 2003 *Effects of enrichment on nutrient dynamics, phytoplankton dynamics and primary production in Indonesian tropical waters: a comparison between Jakarta Bay, Lampung Bay and Semangka Bay* PhD Thesis University of Kiel, Germany 99 pp

[26] Nontji A 1984 Phytoplankton primary production in Jakarta Bay Paper presented at Coastal Ecology Symposium in Jakarta

[27] Kaswadji R F, Widjaja F and Wardiatno Y 1993 Produktifitas primer dan laju pertumbuhan fitoplankton di perairan pantai Bekasi (Phytoplankton primary productivity and growth rate in the coastal waters of Bekasi Regency) *J Indonesian Aqu Sci and Fish* 1(2): 1-15

[28] Alianto A, Adiwilaga E M, Damar A and Harris E 2010 Estimates on small pelagic fish potential based on the primary production approach in sea waters *In Proceedings of the 6th annual national seminar of the results of fisheries and marine research Gajah Mada University* ISBN: 978-979-19942-0-0

[29] Damar A, Colijn F and Hesse K J 2014 Effects of different nutrient loadings on planktonic primary production in embayments of Indonesia *Journal of Tropical Biology and Conservation* 11: 63–85

[30] Direktorat Jenderal Perikanan Tangkap KKP 2014 *Statistik perikanan tangkap di laut menurut wilayah pengelolaan perikanan negara republik Indonesia (WPP-NRI)* 2005-2013
Kementerian Kelautan dan Perikanan, Direktorat Jenderal Perikanan Tangkap ISSN: 977 2354612 00 884 pp

[31] Huismann J and Sommeijer B 2002 Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters *J Sea Res* **48**: 83–96

[32] Wouthuysen S 2006 *Pemantauan kualitas perairan Teluk Jakarta untuk memprediksi Marak Alge dengan Satelit Terra dan Aqua MODIS* Laporan Penelitian Kompetitif Jabupunjur-LIPI Jakarta 66 pp

[33] Leong S, Yew C, Peng L L, Moon C S, Kit J K W and Ming S T L 2015 Three new records of dinoflagellates in Singapore’s coastal waters, with observations on environmental conditions associated with microalgal growth in the Johor Straits *Raffles Bulletin of Zoology* **31**: 24–36.

[34] Tomas C R and Smaya T J 2008 Red tide blooms of *Cochlodinium polykrikoides* in a coastal cove *Harmful Algae* **7**: 308–317

[35] Cen J, Wang J, Huang L, Ding G, Qi Y, Cao R, Cui L and Lu S 2019 Who is the “murderer” of the bloom in coastal waters of Fujian, China, in 2019? *Journal of Oceanology and Limnology* https://doi.org/10.1007/s00343-019-9178-6.

[36] Diaz R J 2001 Overview of hypoxia around the world *J Environ Qual* **30**: 275–281

[37] Li X, Lu C, Zhang Y, Zhao J, Wang J, Liu H and Yin K 2020 Low dissolved oxygen in the Pearl River estuary in summer: Long-term spatio-temporal patterns, trends, and regulating factors *Marine Pollution Bulletin* **151**: 110814

[38] Kodama K, Horiguchi T, Kume G, Nagayama S, Shimizu T, Shiraishi H, Morita M and Shimizu M 2006 Effects of hypoxia on early life history of the stomatopod *Oratosquilla oratoria* in a coastal sea *Marine Ecology Progress Series* **324**: 197–206

[39] Hagy J D, Boynton W R, Keefe C W and Wood K V 2004 Hypoxia in Chesapeake Bay, 1950-2001: Long-term Change in Relation to Nutrient Loading and River Flow *Estuaries* **27**(4): 634–658

[40] Grantham B A, Chan F, Nielsen K J, Fox D S, Barth J A, Huyer A, Lubchenco J and Menge B A 2004 Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the Northeast Pacific *Nature* **429**: 749s–754

[41] Sutomo A B 1993 Kejadian “Red Tide” dan Kematian Massal Udang Jerbung (Penaeus merguiensis) dan Udang Windu (Penaeus monodon) dalam Budidaya Jaring Apung di Muara Sungai Kramat Kebo, Teluk Naga, Tangerang *Simposium Perikanan Indonesia Satu, Bidang Sumber Daya Perikanan dan Penangkap, Jakarta* 406–412

[42] Sobocinski K L, Ciannelli L, Wakefield W W, Yergey M E and Johnson-Colegrove A 2018 Distribution and abundance of juvenile demersal fishes in relation to summer hypoxia and other environmental variables in coastal Oregon, USA *Estuarine, Coastal and Shelf Science* **205**: 75–90

[43] Peterson J O, Morgan C A, Peterson W T and Di Lorenzo E 2013 Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998-2012 *Limnology and Oceanography* **58**(6): 2279–2292

[44] Lapointe B E, Littler M M and Littler D S 1997 Macro algal overgrowth of fringing coral reefs at Discovery, Jamaica: bottom-up versus top-down control *Proc 8th Int Coral Reef Sym* **1**: 927–932

[45] Bak R P M and Nieuwland G 1995 Long-term change in coral communities along depth gradients off leeward reefs in the Netherlands Antilles *Bulletin of Marine Science* **56**(2): 609–619.

[46] Fabricius K E, Logan M, Weeks S and Brodie J 2014 The effects of river run-off on water clarity across the central Great Barrier Reef *Marine Pollution Bulletin* **84**: 191–200

[47] D’Angelo C and Wiedenmann J 2014 Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival *Environmental Sustainability* **7**: 82–93

[48] Adi I N D 2017 Model Pengelolaan Ekosistem Terumbu Karang Berkelanjutan di Kepulauan Seribu, *PhD Dissertation Graduate School IPB University Indonesia* 187 pp