Quasi-Projective Reduction of Toric Varieties

Annette A’Campo–Neuen and Jürgen Hausen

Abstract

We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then we show that X has a quasi–projective reduction if and only if its toric quasi–projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi–projective toric variety admits a categorical quotient in the category of quasi–projective varieties.

Introduction

Let X be a complex algebraic variety. We call a regular map $p:X \to X^{\text{qp}}$ from X to a quasi–projective variety X^{qp} a quasi–projective reduction of X if every regular map $f:X \to Z$ to a quasi–projective variety Z factors uniquely through p, i.e., there exists a unique regular map $\tilde{f}:X^{\text{qp}} \to Z$ such $f = \tilde{f} \circ p$.

As a first result of the present article we characterize when a given toric variety X has a quasi–projective reduction. In Section 1 we construct a toric quasi–projective reduction of X, i.e., a toric morphism $q:X \to X^{\text{tpq}}$ to a quasi–projective toric variety X^{tpq} such that every toric morphism from X to a quasi–projective toric variety factors uniquely through q. Then we prove (see Section 2):

Theorem 1. A toric variety X has a quasi–projective reduction if and only if its toric quasi–projective reduction $q:X \to X^{\text{tpq}}$ is surjective. If q is surjective, then it is the quasi–projective reduction of X.

The above theorem implies in particular that every complete toric variety has a projective reduction. But as we show by an explicit example (see 3.1), the quasi–projective reduction
need not exist in general. We apply Theorem 1 to obtain a complete answer to the following problem, posed by A. Białynicki-Birula:

Let X be a quasi–projective toric variety with acting torus T and let $H \subseteq T$ be a subtorus. When does the action of H admit a quotient in the category of quasi–projective varieties, i.e., an H-invariant regular map $s: X \to Y$ to a quasi–projective variety Y such that every H-invariant regular map from X to a quasi–projective variety factors uniquely through s?

In order to state our answer, let $s_1: X \to X\text{ }/\text{ }\text{tor }H$ denote the toric quotient (see [1]). Recall that s_1 is universal with respect to H-invariant toric morphisms. Moreover, let $q: X\text{ }/\text{ }\text{tor }H \to Y$ be the toric quasi–projective reduction. Then our result is the following (for the proof see Section 2):

Theorem 2. The action of H on X admits a quotient in the category of quasi–projective varieties if and only if $s := q \circ s_1$ is surjective. If s is surjective, then it is the quotient for the action of H on X.

Examples of quasi–projective toric varieties with a subtorus action admitting a quotient in the category of quasi–projective varieties are obtained from Mumford’s Geometric Invariant Theory. In 3.4 and 3.5 we discuss examples of subtorus actions that have no such quotient.

Notation

A **toric variety** is a normal algebraic variety X endowed with an effective regular action of an algebraic torus T that has an open orbit. We refer to T as the **acting torus** of X. For every toric variety X we fix a base point x_0 in the open orbit.

A regular map $f: X \to X'$ of toric varieties with base points x_0 and x_0' respectively is called a **toric morphism** if $f(x_0) = f(x_0')$ and there is a homomorphism $\varphi: T \to T'$ of the acting tori such that $f(t \cdot x) = \varphi(t) \cdot f(x)$ holds for every $(t, x) \in T \times X$.

The basic construction in the theory of toric varieties is to associate to a given fan Δ in an n-dimensional lattice an n-dimensional toric variety X_Δ. The assignment $\Delta \mapsto X_\Delta$ is in fact an equivalence of categories (see e.g. [6] or [9]). For our construction of toric quasiprojective reductions we need the following generalization of the notion of a fan:
Let N denote a n-dimensional lattice and set $N_{\mathbb{R}} := \mathbb{R} \otimes_{\mathbb{Z}} N$. A \textit{quasi–fan} in N is a finite set Δ of rational convex polyhedral cones in $N_{\mathbb{R}}$ such that for each $\sigma \in \Delta$ also every face of σ is an element of Δ and any two cones of Δ intersect in a common face. So a quasi–fan is a fan if all its cones are strictly convex. For a quasi–fan Δ, we denote by Δ^{max} the set of its maximal cones and by $|\Delta| := \bigcup_{\sigma \in \Delta} \sigma$ its support.

For a homomorphism $F: N \to N'$ of lattices, let $F_{\mathbb{R}}$ denote the associated homomorphism of real vector spaces. A \textit{map of quasi–fans} Δ in N and Δ' in N' is a lattice homomorphism $F: N \to N'$ such that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ with $F_{\mathbb{R}}(\sigma) \subset \sigma'$. As mentioned above, every map $F: \Delta \to \Delta'$ of fans gives rise to a toric morphism $f: X_{\Delta} \to X_{\Delta'}$.

Every quasi–fan Δ in N defines in a canonical manner a fan: Let V denote the intersection of all cones of Δ. Then V is a linear subspace of $N_{\mathbb{R}}$. Set $L := V \cap N$ and let $Q: N \to \tilde{N} := N/L$ denote the projection. Then the cones $Q_{\mathbb{R}}(\sigma), \sigma \in \Delta^{\text{max}}$, are the maximal cones of a fan $\tilde{\Delta}$ in \tilde{N}. We call $\tilde{\Delta}$ the \textit{quotient fan} of Δ. By construction, Q is a map of the quasi–fans Δ and $\tilde{\Delta}$.

\section{Construction of the Toric Quasi-Projective Reduction}

The construction of the toric quasi–projective reduction is done in the category of fans. Toric morphisms from a complete toric variety X_{Δ} to projective spaces are related to concave support functions of the fan Δ. Since we also want to consider non-complete fans it is more natural to work with the following notion instead of support functions:

Let Δ be a quasi–fan in a lattice N. A finite family $\mathcal{U} := (u_i)_{i \in I}$ of linear forms $u_i \in M := \text{Hom}(N, \mathbb{Z})$ is called Δ-\textit{concave}, if it satisfies the following condition: for every $\sigma \in \Delta^{\text{max}}$ there is an index $i(\sigma)$ such that

\[u_{i(\sigma)}|_{\sigma} \leq u_i|_{\sigma} \text{ for all } i \in I. \]

Note that for two given Δ-concave families $\mathcal{U} := (u_i)_{i \in I}$ and $\mathcal{U}' := (u'_j)_{j \in J}$ of linear forms the \textit{sum family}

\[\mathcal{U} + \mathcal{U}' := (u_i + u'_j)_{(i,j) \in I \times J} \]

is again a Δ-concave family. For a Δ-concave family \mathcal{U} let $P_{\mathcal{U}}$ denote the convex hull of \mathcal{U}. Then $P_{\mathcal{U}}$ is a lattice polytope in $M_{\mathbb{R}}$. Let $\Sigma_{\mathcal{U}}$ denote the normal quasi–fan of $P_{\mathcal{U}}$ in N. Recall that the faces P' of P correspond order-reversingly to the cones of $\Sigma_{\mathcal{U}}$ by

\[P' \mapsto \tau_{P'} := \{ v \in N_{\mathbb{R}}; p'(v) \leq p(v) \text{ for all } (p', p) \in P' \times P \}. \]
If u_1, \ldots, u_r denote the vertices of P_U, then the family $(u_i)_{i=1, \ldots, r}$ is strictly Σ_U-concave, i.e., on every relative interior $\tau^o_{\{u_i\}}$ the linear form u_i is strictly smaller than the forms u_j with $j \neq i$.

Now assume that Δ is a fan. Call a subset R of the set $\Delta^{(1)}$ of extremal rays of Δ indecomposable, if for every Δ-concave family \mathcal{U} the set R is contained in some maximal cone of $\Sigma_{\mathcal{U}}$. Let R_1, \ldots, R_k be the maximal indecomposable subsets of $\Delta^{(1)}$.

1.1 Lemma. There exists a Δ-concave family \mathcal{U} such that every R_i is the intersection of $\Delta^{(1)}$ with some maximal cone of $\Sigma_{\mathcal{U}}$.

Proof. For every decomposable subset S of $\Delta^{(1)}$ choose a Δ-concave family \mathcal{U}_S such that S is not contained in any maximal cone of $\Sigma_{\mathcal{U}_S}$. Let \mathcal{U} be the sum of these families \mathcal{U}_S. Then $P_{\mathcal{U}}$ is the Minkowski-Sum of the $P_{\mathcal{U}_S}$. Consequently $\Sigma_{\mathcal{U}}$ is the common refinement of the $\Sigma_{\mathcal{U}_S}$. This readily yields the claim.

A Δ-concave family \mathcal{U} with the property of Lemma 1.1 will be called generic. As a consequence of the above lemma we obtain the following statement for the sets $\varrho_i := \text{conv}\left(\bigcup_{\varrho \in R_i} \varrho\right)$.

1.2 Remark. The ϱ_i are the maximal cones of a quasi–fan Σ in N. The lattice homomorphism id_N is a map of the quasi–fans Δ and Σ. Moreover, if \mathcal{U} is a generic Δ-concave family, then id_N is an affine map of the quasi–fans Σ and $\Sigma_{\mathcal{U}}$.

Here a map F of quasi–fans Δ in N and Δ' in N' is called affine if for every maximal cone σ' of Δ' the set $F^{-1}(\sigma') \cap |\Delta|$ is a (maximal) cone of Δ. Note that a map of fans is affine if and only if the associated toric morphism is affine.

Now we construct the quasi–projective toric reduction of a toric variety X_{Δ} defined by the fan Δ. Let V denote the minimal cone of the quasi–fan Σ determined by Δ as in Remark 1.2. Set $L := N \cap V$, let $Q: N \to \tilde{N} := N/L$ be the projection and denote by $\tilde{\Delta}$ the quotient-fan of Σ.

1.3 Proposition. The toric morphism $q: X_{\Delta} \to X_{\tilde{\Delta}}$ associated to Q is the toric quasi–projective reduction of X_{Δ}.

Proof. First we show that $X_{\tilde{\Delta}}$ is in fact quasi–projective. Choose a generic Δ-concave family $\mathcal{U} = (u_\sigma)_{\sigma \in \Delta^{\max}}$. Let V_1 denote the minimal cone of the quasi–fan $\Sigma_{\mathcal{U}}$. Set $L_1 :=$
N ∩ V₁, let P: N → \overline{N} := N/L₁ be the projection and denote the quotient-fan of Σᵤ by \overline{Δ}.

Since Σᵤ induces a strictly \overline{Δ}-concave family, the associated toric variety \textit{X}_{\overline{\Sigma}} is projective. The minimal cone \textit{V} of Σ is contained in \textit{V}_₁, so we obtain a lattice homomorphism G: \overline{N} → \overline{N} with G ∘ Q = P. By construction, G is an affine map of the fans \overline{Δ} and \overline{\Sigma}. So the associated toric morphism \textit{g}: \textit{X}_{\overline{\Delta}} → \textit{X}_{\overline{\Sigma}} is affine. Since \textit{X}_{\overline{\Sigma}} is projective we can use [4], Chap. II, Th. 4.5.2, to conclude that \textit{X}_{\overline{\Delta}} is quasi–projective.

Now we verify the universal property of \textit{q}. Let \textit{f}: \textit{X}_{\overline{\Delta}} → \textit{X}' be a toric morphism to a quasi–projective toric variety \textit{X}'. We may assume that \textit{f} arises from a map \textit{F}: N → N' of fans \overline{\Sigma} and \overline{\Delta}'. Choose a polytopal completion \Delta'' of \Delta'. By suitable stellar subdivisions (see [5], p. 72) we achieve that every maximal cone of \Delta'' contains at most one maximal cone of \Delta'.

Let (u_{σ''})_{σ'' ∈ \Sigma''_{\text{max}}} be a strictly \Delta''-concave family. Then the linear forms u_{σ''} ∘ \textit{F} form a \Delta-concave family. Let σ ∈ \Sigma_{\text{max}}. By construction, σ is mapped by \textit{F}_R into some cone of \Delta''. Moreover, σ is the convex hull of certain extremal rays of \Delta, so \textit{F}_R(σ) is in fact contained in a maximal cone of \Delta'. Hence \textit{F} is a map of the quasi–fans Σ and \Delta'. In particular we have \textit{F}(L) = 0. Thus there is a map \textit{F}: \overline{N} → N' of the fans \overline{\Delta} and \overline{\Delta}' with \textit{F} = \textit{\overline{F}} ∘ Q. The associated toric morphism \textit{\overline{f}}: \textit{X}_{\overline{\Delta}} → \textit{X}' yields the desired factorization of \textit{f}. □

2 Proof of the Theorems

Let \textit{X} be a toric variety with acting torus \textit{T} and assume that \textit{H} ⊂ \textit{T} is an algebraic subgroup. Let \textit{Z} be an arbitrary quasi–projective variety. We need the following decomposition result for regular maps:

2.1 Proposition. Let \textit{f}: \textit{X} → \textit{Z} be an \textit{H}-invariant regular map. Then there exist a locally closed subvariety \textit{W} of some \mathbb{P}_r, an \textit{H}-invariant toric morphism \textit{g}: \textit{X} → \mathbb{P}_r with \textit{g}(\textit{X}) ⊂ \textit{W} and a regular map \textit{h}: \textit{W} → \textit{Z} such that \textit{f} = \textit{h} ∘ \textit{g}.

Proof. In a first step we consider the special case that \textit{Z} = \mathbb{P}_m and \textit{X} is an open toric subvariety of some \mathbb{C}^n. Then there are polynomials \textit{f}_0, \ldots, \textit{f}_m ∈ \mathbb{C}[z_1, \ldots, z_n] having no common zero in \textit{X} such that \textit{f}(z) = [\textit{f}_0(z), \ldots, \textit{f}_m(z)] holds for every \textit{z} ∈ \textit{X}. Clearly we may assume that the \textit{f}_i have no non-trivial common divisor.
Since f is H-invariant, every f_i / f_j is an H-invariant rational function on \mathbb{C}^n. Thus, using $1 \in \gcd(f_0(z), \ldots, f_m(z))$ we can conclude that there is a character $\chi: H \to \mathbb{C}^*$ satisfying $f_i(h \cdot x) = \chi(h) f_i(x)$ for every i and every (h, x) in $H \times X$.

Now every f_i is a sum of monomials q_{i1}, \ldots, q_{ir}. Note that also each of the monomials q_{ij} is homogeneous with respect to the character χ. Moreover, since the f_i have no common zero in X, neither have the q_{ij}. Set $r := \sum r_i$ and define a toric morphism

$$g: X \to \mathbb{P}_r, \quad x \mapsto [q_{01}(x), \ldots, q_{0r_0}(x), \ldots, q_{m1}(x), \ldots, q_{mr_m}(x)].$$

Then g is H-invariant. In order to define an open subset W of \mathbb{P}_r and a regular map $h: W \to \mathbb{P}_m$ with the desired properties, consider the linear forms

$$L_i: [z_{01}, \ldots, z_{0r_0}, \ldots, z_{m1}, \ldots, z_{mr_m}] \mapsto z_{i1} + \ldots + z_{ir_i}$$

on \mathbb{P}_r. Set $W := \mathbb{P}_r \setminus V(\mathbb{P}_r; L_1, \ldots, L_m)$ and

$$h: W \to \mathbb{P}_m, \quad [z] \mapsto [L_0(z), \ldots, L_m(z)].$$

Since the f_i have no common zero in X we obtain $g(X) \subset W$. Moreover, by construction we have $f = h \circ g$. So the assertion is proved for the case that $Z = \mathbb{P}_m$ and X is an open toric subvariety of some \mathbb{C}^n.

In a second step assume that Z is arbitrary but X again is an open toric subvariety of some \mathbb{C}^n. Choose a locally closed embedding $\iota: Z \to \mathbb{P}_m$. By Step one we obtain a decomposition of $f' := \iota \circ f$ as $f' = h' \circ g$, where $g: X \to \mathbb{P}_r$ is an H-invariant toric morphism such that $g(X)$ is contained in an open subset W' of \mathbb{P}_r and $h': W' \to \mathbb{P}_m$ is regular.

Then $W := h'^{-1}(\iota(Z))$ is a locally closed subvariety of W'. Moreover we have $g(X) \subset W$ and there is a unique regular map $h: W \to Z$ with $h' = \iota \circ h$. It follows that $f = h \circ g$ is the desired decomposition.

Finally, let also X be arbitrary. As described in [3], there is an open toric subvariety U of some \mathbb{C}^n and a surjective toric morphism $p: U \to X$ such that p is the good quotient of U by some algebraic subgroup H_0 of $(\mathbb{C}^*)^n$. Consider $f' := f \circ p$. Then f' is invariant by the action of $H' := \pi^{-1}(H)$, where π denotes the homomorphism of the acting tori associated to p.

By the first two steps we can decompose f' as $f' = h' \circ g'$ with an H'-invariant toric morphism $g': U \to \mathbb{P}_r$ and a regular map $h: W \to Z$, where $W \subset \mathbb{P}_r$ is locally closed with $g'(U) \subset W$. Since g' is H'-invariant, it is also invariant by the action of H_0. Thus there
is a unique toric morphism \(g: X \to \mathbb{P}_r \) such that \(g' = g \circ p \). Since \(p \) is surjective, \(g \) is \(H \)-invariant and we have \(f = h \circ g \) which is the desired decomposition of \(f \).

Proof of Theorem 1. Let us first assume that the toric quasi–projective reduction \(q: X \to X^{\text{qp}} \) is surjective. Let \(f: X \to Z \) be a regular map to a quasi–projective variety \(Z \). We have to show that \(f \) factors uniquely through \(q \).

By Proposition 2.1 there is a toric morphism \(g: X \to X' \) to a projective toric variety \(X' \), and a rational map \(h: X' \to Z \) which is regular on \(g(X) \) such that \(f = h \circ g \). Now there is a toric morphism \(\tilde{g}: X^{\text{qp}} \to X' \) such that \(g = \tilde{g} \circ q \). Since \(q \) was assumed to be surjective, we have \(\tilde{g}(X^{\text{qp}}) = g(X) \), and hence \(f \) factors through \(q \).

Now suppose that \(p: X \to X^{\text{qp}} \) is a quasi–projective reduction. Then clearly \(p \) is surjective and \(X^{\text{qp}} \) is normal. Moreover, there is an induced action of the torus \(T \) on \(X^{\text{qp}} \) making \(p \) equivariant. We claim that this action is regular:

According to Proposition 2.1 choose a toric morphism \(g: X \to X' \) to a projective toric variety \(X' \), and a rational map \(h: X' \to X^{\text{qp}} \) such that \(g(X) \) is contained in the domain \(W' \) of definition of \(h \) and \(p = h \circ g \). By the universal property of the toric quasi–projective reduction \(q: X \to X^{\text{qp}} \) there is a toric morphism \(\tilde{g}: X^{\text{qp}} \to X' \) such that \(g = \tilde{g} \circ q \).

Moreover, by the universal property of \(p \), there is a regular map \(\alpha: X^{\text{qp}} \to X^{\text{qp}} \) such that \(q = \alpha \circ p \). Note that \(\alpha(X^{\text{qp}}) \subset q(X) \) and \(\tilde{g}(q(X)) \subset W' \). So, using surjectivity of \(p \) and equivariance of \(p \) and \(q \), we obtain for a given pair \((t, y) \in T \times X^{\text{qp}}\) the equality

\[
t \cdot y = h(\tilde{g}(t \cdot \alpha(y))).
\]

This implies regularity of the induced \(T \)-action on \(X^{\text{qp}} \). It follows that \(X^{\text{qp}} \) is in fact a toric variety and \(p \) is a toric morphism. Thus we obtain a toric morphism \(\beta: X^{\text{qp}} \to X^{\text{qp}} \) with \(p = \beta \circ q \). By uniqueness of the factorizations we obtain that \(\alpha \) and \(\beta \) are inverse to each other, i.e., \(q \) is also a quasi–projective reduction of \(X \).

Proof of Theorem 2. Suppose first that \(s: X \to Y \) is a quotient for the action of \(H \) on \(X \) in the category of quasi–projective varieties. As above we see that \(Y \) is a toric variety and \(s \) is a surjective toric morphism. The universal property of the toric quotient \(s_1: X \to X^{\text{tor}}_H \) yields a toric morphism \(q: X^{\text{tor}}_H \to Y \) such that \(s = q \circ s_1 \). Clearly \(q \) satisfies the universal property of the toric quasi–projective reduction of \(X^{\text{tor}}_H \).

Now let \(s_1: X \to X^{\text{tor}}_H \) denote the toric quotient, \(q: X^{\text{tor}}_H \to Y \) the toric quasi–projective reduction and assume that \(q \circ s_1 \) is surjective. Let \(f: X \to Z \) be an \(H \)-invariant
regular map to a quasi–projective variety. Choose a decomposition \(f = h \circ g \) as in Proposition 2.1. Then, by the universal properties of toric quotient and quasi–projective reduction there is a regular map \(\overline{g} \) with \(g = \overline{g} \circ q \circ s_1 \). Since \(q \circ s_1 \) is surjective, \(h \) is defined on \(\overline{g}(Y) \). Thus \(f = (h \circ \overline{g}) \circ (q \circ s_1) \) is the desired factorization of \(f \).

The above proofs yield in fact the following generalization of Theorems 1 and 2: Let \(X \) be any toric variety and let \(H \) be an algebraic subgroup of the acting torus \(T \) of \(X \). Call an \(H \)-invariant regular map \(p: X \to X_{qp}^{\text{op}} \) to a quasi–projective variety \(X_{qp}^{\text{op}} \) an \(H \)-invariant quasi–projective reduction if it is universal with respect to \(H \)-invariant regular maps from \(X \) to quasi–projective varieties.

Now write \(H = \Gamma H^0 \) with a finite subgroup \(\Gamma \) and a subtorus \(H^0 \) of \(T \). Let \(g: X \to X' \) denote the geometric quotient for the action of \(\Gamma \) on \(X' \). Then \(g \) is a toric morphism. Hence there is an induced action of \(H^0 \) on \(X' \). Let \(s_1: X' \to X' / H^0 \) be the toric quotient for this action and let \(q: X' / H^0 \to Y \) be the quasi–projective toric reduction. Then we obtain:

Theorem 3. \(X \) has an \(H \)-invariant quasi–projective reduction if and only if \(q \circ s_1 \) is surjective. If so, then \(q \circ s_1 \circ g \) is the \(H \)-invariant quasi–projective reduction of \(X \).

3 Examples

We first give an example of a 3-dimensional toric variety \(X_\Delta \) that admits no quasi–projective reduction. This variety is an open toric subvariety of the minimal example for a smooth complete but non-projective toric variety presented in [9], Section 2.3.

3.1 Example. Let \(e_1, e_2 \) and \(e_3 \) denote the canonical basis vectors of the lattice \(\mathbb{Z}^3 \). Consider the vectors

\[
\begin{align*}
v_1 &:= -e_1, & v'_1 &:= e_2 + e_3, \\
v_2 &:= -e_2, & v'_2 &:= e_1 + e_3, \\
v_3 &:= -e_3, & v'_3 &:= e_1 + e_2.
\end{align*}
\]

Let \(\Delta \) be the fan in \(\mathbb{Z}^3 \) with the maximal cones

\[
\tau_1 := \text{cone}(v_1, v'_3), \quad \tau_2 := \text{cone}(v_2, v'_1) \quad \text{and} \quad \tau_3 := \text{cone}(v_3, v'_2).
\]
We claim that the toric quasi–projective reduction \(q \) of \(X_\Delta \) is the toric morphism associated to \(\text{id}_X \) interpreted as a map from \(\Delta \) to the fan \(\tilde{\Delta} \) having as its maximal cones

\[
\sigma_1 := \text{cone}(v_1, v_3, v_1', v_3'), \quad \sigma_2 := \text{cone}(v_1, v_2, v_1', v_2') \quad \text{and} \quad \sigma_3 := \text{cone}(v_2, v_3, v_2', v_3').
\]

Note that \(q \) is not surjective. In order to prove that \(q \) is the toric quasi–projective reduction of \(X_\Delta \), we have to show that every \(\Delta \)-concave family \((u_i)_{i=1,2,3} \) can be extended to a \(\tilde{\Delta} \)-concave family. Note that \(v_1 + v_3' \) equals \(v_3 + v_1' \) and hence we have

\[
u_1(v_1) + u_1(v_3') = u_1(v_3) + u_1(v_1') \geq u_3(v_3) + u_2(v_1').
\]

Similarly we obtain

\[
\begin{align*}
u_2(v_2) + u_2(v_1') &= u_2(v_1) + u_2(v_2') \geq u_1(v_1) + u_3(v_2'), \\
u_3(v_3) + u_3(v_2') &= u_3(v_3') + u_3(v_2) \geq u_1(v_3') + u_2(v_2).
\end{align*}
\]

Summing over these three inequalities, we arrive at an identity, and therefore the inequalities are in fact equalities. This implies

\[
\begin{align*}
u_1(v_1) = u_2(v_1), \quad &u_1(v_1') = u_2(v_1'), \\
u_1(v_3) = u_3(v_3), \quad &u_1(v_3') = u_3(v_3'), \\
u_2(v_2) = u_3(v_2), \quad &u_2(v_2') = u_3(v_2'). \quad \checkmark
\end{align*}
\]

In the above example the quasi–projective toric reduction has a trivial kernel, and the variety \(X_{\tilde{\Delta}} \) has the same dimension as \(X_\Delta \). For the complete case we have more generally:
3.2 Remark. Let Δ be a complete fan in a lattice N. Then $\dim X_\Delta = \dim X^{\text{qp}}_\Delta$ holds if and only if Δ can be defined via a subdivision of a lattice polytope in $N_\mathbb{R}$.

The next example is taken from the book of Fulton. It shows that in general a complete toric variety is very far from its projective reduction.

3.3 Example. Consider the complete fan in \mathbb{Z}^3 obtained by taking the cones over the faces of the standard cube with vertices $(\pm 1, \pm 1, \pm 1)$. Deform this fan into a new complete fan Δ in \mathbb{Z}^3 by moving the vertex $(1,1,1)$ to $(1,2,3)$. The only support functions of Δ are the linear functions in M (see [6], p. 26). So X^{qp}_Δ is a point. ♦

Now we turn to quotients of a quasi–projective toric variety X with acting torus T by subtori $H \subset T$. Examples of such quotients are obtained by Mumford’s Geometric Invariant Theory:

For the sake of simplicity assume $X = \mathbb{P}^n$. Then the choice of a lifting of the T-action to \mathbb{C}^{n+1} yields a notion of H-semistability. The set $X^{\text{ss}} \subset X$ of H-semistable points is T-invariant and there is a quotient $X^{\text{ss}} \to Y$ in the category of quasi–projective varieties for the action of H on X^{ss} (see [8], also [7] and [2]).

3.4 Example. Let Δ be the fan in \mathbb{R}^4 that has $\sigma_1 := \text{cone}(e_1, e_2)$ and $\sigma_2 := \text{cone}(e_3, e_4)$ as maximal cones. Then X_Δ is an open toric subvariety of \mathbb{C}^4 with acting torus $T = \mathbb{C}^*^4$. Define a projection $S_1: \mathbb{Z}^4 \to \mathbb{Z}^3$ by setting

$$S_1(e_1) := e_1, \quad S_1(e_2) := e_2, \quad S_1(e_3) := e_3, \quad S_1(e_4) := e_1 + e_2.$$

Then $S_1(e_1), \ldots, S_1(e_4)$ generate $\tau := \text{cone}(e_1, e_2, e_3) \subset \mathbb{R}^3$. The faces $\text{cone}(e_1, e_3)$ and $\text{cone}(e_2, e_3)$ of τ are not containd in $S_1(|\Delta|)$.

By [1], the toric morphism $s_1: X_\Delta \to X_\tau$ defined by S_1 is the toric quotient for the action of the subtorus $H \subset T$ corresponding to the sublattice $\text{ker}(S_1)$ of \mathbb{Z}^4. In particular, s_1 is not surjective. So the action of H on X_Δ has no quotient in the category of quasi–projective varieties. ♦
Note that surjectivity of the toric quotient $s_1: X \to X_{\text{tor}} / H$ does not imply the existence of a quotient in the category of quasi–projective varieties:

3.5 Example. Let Δ' be the fan in \mathbb{R}^3 with the maximal cones

$$
\tau_1 := \text{cone}(e_1, e_2), \quad \tau_2 := \text{cone}(e_3, e_4), \quad \tau_3 := \text{cone}(e_5, e_6).
$$

Then the associated toric variety $X_{\Delta'}$ is an open toric subvariety of \mathbb{C}^6. In the notation of Example 3.1, define a projection $S_1: \mathbb{Z}^6 \to \mathbb{Z}^3$ by

$$
S_1(e_1) := -e_1, \quad S_1(e_2) := v'_1, \\
S_1(e_3) := -e_2, \quad S_1(e_4) := v'_2, \\
S_1(e_5) := -e_3, \quad S_1(e_6) := v'_3.
$$

Then S_1 is a map of the fan Δ' and the fan Δ of 3.1, in fact the (surjective) toric morphism $s_1: X_{\Delta'} \to X_{\Delta}$ associated to S_1 is the toric quotient of the action of the subtorus H of \mathbb{C}^*^6 corresponding to the sublattice $\ker(S_1) \subset \mathbb{Z}^6$. Since the quasi–projective reduction of X_{Δ} is not surjective, there is no quotient in the category of quasi–projective varieties for the action of H on $X_{\Delta'}$.

References

[1] A. A’Campo-Neuen, J. Hausen, Quotients of Toric Varieties by the Action of a Subtorus, to appear in Tôhoku Math. J..

[2] A. Białynicki-Birula, J. Święcicka, Open Subsets of Projective Spaces with a Good Quotient by an Action of a Reductive Group, Transformation Groups Vol.1, No. 3 (1996), 153-185.

[3] D. Cox, The Homogeneous Coordinate Ring of a Toric Variety, J. Algebraic Geometry 4 (1995), 17-51.

[4] A. Grothendieck, J. Dieudonné, Éléments de géometrie algébrique, Chap. II, Étude globale élémentaire de quelques classes de morphismes, Publications mathématiques de l’IHES, n. 8, 1961.

[5] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer, New York, 1996.
[6] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, 1993.

[7] M. Kapranov, B. Sturmfels, A. V. Zelevinsky, Quotients of Toric Varieties, Math. Ann. 290 (1991), 643-655.

[8] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd enlarged edition, Springer, Berlin, 1994.

[9] T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin, 1988.

Fakultät für Mathematik und Informatik
Universität Konstanz
Fach D197
D-78457 Konstanz
Germany

E-mail address: Annette.ACampo@uni-konstanz.de
Juergen.Hausen@uni-konstanz.de