A Quantum-Trace Determinantal Formula for Matrix Commutators, and Applications

Dinesh Khurana, T. Y. Lam, and Noam Shomron

Abstract

In this paper, we establish a determinantal formula for 2×2 matrix commutators \([X, Y] = XY - YX\) over a commutative ring, using (among other invariants) the quantum traces of \(X\) and \(Y\). Special forms of this determinantal formula include a “trace version”, and a “supertrace version”. Some applications of these formulas are given to the study of value sets of binary quadratic forms, the factorization of 2×2 integral matrices, and the solution of certain simultaneous diophantine equations over commutative rings.

§1. Introduction

Throughout this paper, the word “commutator” is taken to mean an additive commutator \([X, Y] := XY - YX\), where \(X, Y\) are elements in an (associative) ring \(R\). The case of special interest to us in this paper is when \(R\) is a matrix ring \(M_n(S)\), where \(S\) is a commutative ring (with identity).

In the case \(S\) is a field (or a division ring), several papers in the literature have dealt with the theme of computing the possible ranks of \([X, Y]\), when \(X\) is a given matrix. An important special case of this is to determine when \([X, Y]\) can achieve full rank for a suitable \(Y\); see, e.g. [GL] and [Sá]. More recently, two of the present authors have taken up the study of similar themes when the division ring \(S\) is replaced by a more general ring. Here, it is no longer possible to use effectively the notion of matrix ranks. But the classical full-rank case corresponds to the invertibility of the commutator \([X, Y]\), which is certainly a condition of interest and significance; see [KL1, KL2].

Over a commutative base ring \(S\), a matrix \(M \in M_n(S)\) is invertible iff \(\det(M)\) is a unit in \(S\). Thus, deciding the invertibility of \([X, Y]\) rests on understanding the behavior of its determinant \(\det[X, Y]\). However, there seems to be no general formula available in the literature for the computation of such an \(n \times n\) determinant. It is much more feasible to find nice formulas in the 2×2 case, since 2×2 determinants are so much easier to compute. Indeed, by using the Cayley-Hamilton theorem, or using classical adjoints, several 2×2 formulas can be written down for \(\det[X, Y]\). For a quick survey of this, see §2. These formulas often involve higher powers of \(X\) and \(Y\); unfortunately, this feature tends to greatly limit their applicability, for instance, to the study of the
invertibility of $[X,Y]$. Optimally, we should hope to write down formulas expressing $\det [X,Y]$ in terms of quantities (e.g. traces and determinants) directly associated with the matrices X, Y, XY, and if necessary, YX.

In the beginning phase of our work, we were aware of the following “trace version” of a 2×2 determinantal formula for $\det [X,Y]$ in the context of P.I.-theory and invariant theory: if $X, Y \in M_2(S)$ have traces t, t' and determinants δ, δ', then

$$\det [X,Y] = 4 \delta' \delta - (\tr (XY))^2 - \delta t'^2 - \delta' t^2 + \tr (XY) t' t.$$

While this formula is a natural consequence of the invariant theory of 2×2 matrices (under simultaneous conjugation), it turned out to be not the most suitable for the applications we have in mind. In the search for a better alternative (for our purposes), we stumbled upon a “super-trace version” of a determinantal formula, using the “supertrace” of 2×2 matrices $M = (m_{ij})$, which is defined to be $\str (M) = m_{11} - m_{22} \in S$. (The supertrace terminology and its concomitant notation “str” come from the theory of super-algebras.) If $X, Y \in M_2(S)$ have determinants δ, δ' and supertraces τ, τ', the “supertrace version” of the commutator determinantal formula states the following:

$$- \det [X,Y] = \delta \tau'^2 + \delta' \tau^2 + \tr (XY) \tau' \tau - \str (XY) \str (YX).$$

Contrary to the case of (1.1), the existence of (1.2) does not seem to be predictable by invariant theory since the supertrace of a matrix in $M_2(S)$ is not a similarity invariant. Thus, in a manner of speaking, the existence of the formula (1.2) is a bit surprising.

While the two formulas (1.1) and (1.2) look substantially different (having for instance a different number of terms), they do share some common features. This begs the question whether they are special cases of one single more general formula. In the world of quantum mathematics, it is easy to speculate what might be the case. If q is a fixed element in the ring S, there is a well-known notion of a q-trace for $M = (m_{ij}) \in M_2(S)$, defined by $\tr_q (M) = m_{11} + q m_{22}$. For $q = \pm 1$, this q-trace retrieves the trace and the supertrace respectively. The existence of (1.1) and (1.2) would seem to strongly suggest that there is a hybrid “quantum version” of a determinantal formula for $\det [X,Y]$, which would specialize to (1.1) when $q = 1$, and to (1.2) when $q = -1$.

In §4 of this paper, we prove that this is indeed the case. The main result is given in Theorem 4.1 which, for any given q, expresses $q \cdot \det [X,Y]$ in terms of various quantities, including the q-traces of X, Y, XY, and YX. This theorem is preceded by Theorem 3.4 in §3, which treats the special case of q-traceless matrices X, Y.

Some applications of the determinantal formulas are given in Sections 5–6. In §5, we present a new characteristic-free treatment of a norm theorem of Taussky [T1, T2] for quadratic field extensions, and give an explicit generic version of this result for commutative rings. This is followed by a last section (§6) devoted to the further study of the value sets of binary quadratic forms, and factorization questions on 2×2 matrices over rings. For given elements p, q in a commutative ring S, we show in Theorem 6.3
that a non 0-divisor \(c \in S \) can be written in the form \(pr^2 + qs^2 \) for some \(r, s \in S \) iff the matrix \(
\begin{pmatrix}
0 & cq \\
-cp & 0
\end{pmatrix}
\) can be factored into \(XY \) such that \(\det(X) = cp \), \(\det(Y) = cq \), and \(\det[X, Y] = -c^2 \). Using this factorization theorem, we prove a result (Thm. 6.8) on affine curves over rings which implies that, for any element \(c \in S \) representable in the form \(pr^2 + qs^2 \), there exist \(x, y, z \in S \) such that \(px + qy = -c \) and \(xy - z^2 = -c^2 \). Further applications of the determinantal formulas to the study of invertible commutators in matrix rings can be found in the forthcoming work [KL1].

§2. Preliminary Determinantal Formulas

For the rest of this paper, \(R \) denotes the matrix ring \(M_2(S) \), where \(S \) is a fixed commutative ring. In this section, we put together a few general (mostly known) facts pertaining to the computation of the determinant of a \(2 \times 2 \) matrix commutator \([X, Y] = XY - YX \), where \(X, Y \in R \). This quick survey will pave the way to our more detailed investigations on \(\det[X, Y] \) in the ensuing sections.

To begin with, we note that, since \([X, Y] \) is a \(2 \times 2 \) traceless matrix for all \(X, Y \in R \), the Cayley-Hamilton Theorem implies that

\[
[X, Y]^2 = -\det[X, Y] \cdot I_2.
\]

Thus, computing \(\det[X, Y] \) is tantamount to computing the scalar matrix \(-[X, Y]^2\). This observation leads to the first available formula for \(\det[X, Y] \).

Proposition 2.2. For any \(X, Y \in R \), \(\det[X, Y] = \text{tr}(X^2Y^2) - \text{tr}((XY)^2) \).

Proof. We may assume that \(S \) is the free commutative \(\mathbb{Z} \)-algebra generated by the eight entries of \(X \) and \(Y \). Computing the trace on the matrices in (2.1), we have

\[
2 \det[X, Y] = -\text{tr}([X, Y]^2) = -\text{tr}(XYXY + YXYX - XYYX - YXXY).
\]

On the RHS, \(X(YXY) \) and \((YXY)X \) have the same trace, and \((XY)(YX) \) and \((YX)(XY) \) have the same trace. Therefore, the RHS of (2.3) can be rewritten as

\[-2 \text{tr}((XY)^2) + 2 \text{tr}(XYXY) = -2 \text{tr}((XY)^2) + 2 \text{tr}(X^2Y^2).\]

Cancelling the factors of 2 gives the desired result. \(\Box \)

Next, we’ll prove a determinantal formula involving the adjoint matrix. For a \(2 \times 2 \) matrix \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R \), we’ll write \(M' = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \) for the classical adjoint of \(M \).

For \(E = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), we have the relation \(M' = EM^TE^{-1} \), as was noted in [GK: (2.4)(3)]. This implies, in particular, that \((MN)' = N'M' \) for \(M, N \in R \). The following lemma is a useful observation on the adjoint.
Lemma 2.4. For any matrices $A, B \in R = \mathbb{M}_2(S)$, we have

\begin{equation}
(2.5) \quad \det (A - B) = \det (A) + \det (B) - \tr (AB').
\end{equation}

Proof. For any $N \in R$, we have $N \cdot N' = (\det N) \cdot I_2$, and $N + N' = (\tr N) \cdot I_2$. Applying these facts to the equations

\begin{align*}
(A - B)(A - B)' &= AA' + BB' - AB' - BA' \\
&= AA' + BB' - (AB' + (AB')'),
\end{align*}

we arrive at the desired equation. \qed

Proposition 2.6. For any matrices $X, Y \in R$, we have

\begin{equation}
(2.7) \quad \det [X, Y] = 2 (\det X)(\det Y) - \tr (XYX'Y').
\end{equation}

Proof. In the formula (2.5), let $A = XY$ and $B = YX$. Then the LHS of (2.5) is $\det [X, Y]$, and its RHS is

\[
\det (XY) + \det (YX) - \tr ((XY)(YX)') = 2 (\det X)(\det Y) - \tr (XYX'Y').
\]

\qed

The formulas in (2.2) and (2.7) are interesting, but are not very suitable for practical computations since their RHS’s involve new matrices such as $(XY)^2$, X^2Y^2, and $XYX'Y'$. Ideally, we would like to have formulas that express $\det [X, Y]$ in terms of quantities naturally associated with the matrices X, Y, XY, and YX. Such formulas will be obtained in the next two sections. Nevertheless, combining the two determinantal formulas obtained so far leads to the following curious trace identity.

Corollary 2.8. For $X, Y \in R$, $(\tr (XY))^2 = \tr (X^2Y^2) + \tr (XYX'Y').$

Proof. Equating the two expressions for $\det [X, Y]$ in (2.2) and (2.7), we get

\begin{equation}
(2.9) \quad \tr (X^2Y^2) - \tr ((XY)^2) = 2 (\det X)(\det Y) - \tr (XYX'Y').
\end{equation}

Using the well-known identity $2 \det (M) = (\tr (M))^2 - \tr (M^2)$ for $M = XY$ on the RHS, we can cancel the terms $-\tr ((XY)^2)$ from both sides of (2.9). After this, transposition yields the desired result. \qed

§3. Determinantal Formula: The q-Traceless Case

In this section, we shall embark upon the task of finding a determinantal formula for $\det [X, Y]$ that is suitable for the applications we have in mind. At the beginning stage of our work, we had at our disposal both a “trace version” and a “supertrace version” of such a formula. This suggested to us that there is perhaps a “q-trace version” of the formula, which, for $q = 1$ and $q = -1$ respectively, would specialize to the trace version and the supertrace version. Such a quantum-trace version would then provide some kind
of a “homotopy” from the trace version to the supertrace version, and conversely. In this
and the following section, we shall begin the work to derive such a \(q \)-trace determinantal
formula for \(\det [X, Y] \). Throughout these two sections, the element \(q \in S \) will be regarded
as fixed. Recall that, for any matrix \(M = (m_{ij}) \in \mathbb{M}_2(S) \), the \(q \)-trace \(\text{tr}_q(M) \) is defined
to be \(m_{11} + q m_{22} \in S \).

The strategy of our approach is to first find a \(q \)-trace determinantal formula in the
case where \(X, Y \) are both \(q \)-traceless; that is, where \(\text{tr}_q(X) = \text{tr}_q(Y) = 0 \). To guess
how such a formula might look like, it would be a good idea to start with the case of
the ordinary trace; that is, where \(q = 1 \). Here, a formula for \(\det [X, Y] \) can be derived
from the one in Proposition 2.2; see, e.g. the proof of [BBO: Lemma 6].

Proposition 3.1. Let \(X, Y \in R = \mathbb{M}_2(S) \) be such that \(\text{tr}(X) = \text{tr}(Y) = 0 \). Then
\[
\det [X, Y] = 4 \det (XY) - (\text{tr}(XY))^2.
\]

Proof. It is of interest to observe that the RHS of (3.2) is just the negative of the usual
discriminant of the quadratic characteristic polynomial of the product matrix \(XY \). Let
\(\delta = \det(X) \) and \(\delta' = \det(Y) \) (so that \(\det(XY) = \delta' \delta \)). Since \(X, Y \) are traceless,
Cayley-Hamilton gives \(X^2 = -\delta I_2 \) and \(Y^2 = -\delta' I_2 \). Thus, using (2.2) and the identity
for \(2 \det(M) \) in the proof of (2.8), we have
\[
\det [X, Y] = \text{tr}(\delta' \delta I_2) - \text{tr}((XY)^2) = 2 \delta' \delta - (\text{tr}(XY))^2 + 2 \det(XY),
\]
which simplifies to the RHS of (3.2). \(\square \)

Remark 3.3. We could have also proved (3.2) by applying the methods of Procesi in
[Pr1]. From Procesi’s approach (see [KP: §2.4, p. 21]), it will be enough to prove (3.2) in
the case where the first traceless matrix \(X \) is diagonal. In this case, (3.2) can be easily
checked by a direct computation of both sides of the equation.

To generalize Proposition 3.1 to the case of \(q \)-traces, we’ll use the following standard
notation in quantum computations: with \(q \in S \) fixed, we write
\[
[n] = [n]_q = (q^n - 1)/(q - 1) = q^{n-1} + \cdots + q + 1 \in S \quad (\forall n \in \mathbb{Z}^+).
\]
In fact, we’ll use this notation only for \(n = 2 \); namely, \([2] = 1 + q \). Treating this as
a “quantum 2”, we could use \([2]^2 \) to replace the factor 4 in the formula (3.2). Also,
for \(q \)-traces, \(\text{tr}_q(XY) \) and \(\text{tr}_q(YX) \) may no longer be the same, so it would be wise to
replace the term \((\text{tr}(XY))^2 \) by \(\text{tr}_q(XY) \text{tr}_q(YX) \). Fortuitously, these “replacements”
turn out to give the following correct generalization of Proposition 3.1.

Theorem 3.4. Let \(X, Y \in R = \mathbb{M}_2(S) \) be such that \(\text{tr}_q(X) = \text{tr}_q(Y) = 0 \). Then
\[
q \cdot \det [X, Y] = [2]^2 \det (XY) - \text{tr}_q(XY) \text{tr}_q(YX).
\]

In this formula, the first term on the RHS can also be replaced by \(\text{tr}_q(X^2) \text{tr}_q(Y^2) \).
Proof. To prove the last statement, we note again that Cayley-Hamilton implies \(X^2 = tX - \det(X) I_2 \). Thus, taking \(q \)-traces gives \(\text{tr}_q(X^2) = -[2] \cdot \det(X) \). Multiplying this by a similar equation for \(Y \), we see that \(\text{tr}_q(X^2) \text{tr}_q(Y^2) = [2]^2 \det(XY) \).

To prove (3.5), let \(X = \begin{pmatrix} -qd & b \\ c & d \end{pmatrix} \), and \(Y = \begin{pmatrix} -qh & f \\ g & h \end{pmatrix} \). By direct computation, \([X,Y]\) has the form \(\begin{pmatrix} k & [2]r \\ [2]r' & -k \end{pmatrix} \), where \(k = bg - cf \), \(r = bh - df \), and \(r' = dg - ch \). Therefore, the LHS of (3.5) is

\[
(3.6) \quad q \cdot \det[X,Y] = -q \cdot ([2]^2 r'r + k^2).
\]

To compute the RHS of (3.5), note that, in terms of descending powers of \([2]:\)

\[
(3.7) \quad \text{tr}_q(XY) = q^2dh + q(cf + dh) + bg = [2]^2dh + [2]s + k, \text{ where } s = cf - dh.
\]

Similarly, we have \(\text{tr}_q(YX) = [2]^2dh + [2]s' - k \), where \(s' = bg - dh \). (For later use, note that \(s' - s = k \)). On the other hand,

\[
(3.8) \quad \det(XY) = (qd^2 + bc)(qh^2 + fg) = ([2]^2d^2 + bc - d^2)([2]^2h^2 + fg - h^2).
\]

Using (3.7) and (3.8), we can expand the RHS of (3.5) in the form \(\sum_{t=0}^4 [2]^t a_t \). By quick inspection, \(a_4 = 0 \), \(a_0 = k^2 \), and \(a_1 = sk - s'k = (s - s')k = -k^2 \). Also, by using the definition of \(s \) and \(s' \), we compute easily that

\[
(3.9) \quad a_2 = (bc - d^2)(fg - h^2) - s's = (bh - df)(dg - ch) = r'r, \quad \text{and}
\]

\[
(3.10) \quad a_3 = d^2(fg - h^2) + h^2(bc - d^2) - dh(s + s') = (df - bh)(dg - ch) = -r'r.
\]

With these computations of the \(a_t \)'s, the RHS of (3.5) becomes

\[
-[2]^3 r'r + [2]^2 r'r - [2] k^2 + k^2 = -[2]^2 r'r ([2] - 1) - k^2([2] - 1) = -q \cdot ([2]^2 r'r + k^2),
\]

which is precisely the LHS of (3.5) as computed in (3.6).

\[\square\]

Note that, while Thm. 3.4 generalizes Prop. 3.1, the proof of the former is independent of that of the latter. Thus, in a mathematical sense, we could have completely dispensed with Prop. 3.1. However, this Proposition has clearly played an important role in the discovery (and formulation) of the formula (3.5), so we have included it for motivational reasons. In this regard, one might hope that there is also a shorter (or quicker) proof for (3.5) based on using a similar reduction (as in Remark 3.3) to the case where \(X \) is diagonal. Unfortunately, the \(q \)-trace of a matrix is not invariant under (ordinary) matrix conjugation, so the standard results in the invariant theory of matrices (as developed in [Pr1, Pr2]; see also [Fo] and [KP]) does not apply directly to the setting of Thm. 3.4. It is conceivable that some suitable form of a “quantum invariant theory” (based on an appropriate notion of quantum conjugation) might enable us to
make the above reduction. However, as far as we know, such a quantum invariant theory of matrices is not yet available.

§ 4. Quantum-Trace Determinantal Formula

After our preliminary investigations on the case of \(q \)-traceless matrices in §3, we are now in a good position to give the full statement for the quantum-trace determinantal formula. With respect to a fixed element \(q \in S \), this formula expresses \(q \cdot \det [X,Y] \) in terms of various quantities (including the \(q \)-traces) associated with the matrices \(X, Y \) and \(XY, YX \), grouped in descending powers of \([2] := 1 + q \in S \). If \(q \in S \) happens to be a unit (e.g., a root of unity), we can then invert \(q \) and get an equation just for \(\det [X,Y] \). The full statement is as follows.

Theorem 4.1. Let \(X, Y \in R = M_2(S) \), with determinants \(\delta, \delta' \), traces \(t, t' \), and \(q \)-traces \(\tau, \tau' \). Also, let \(\sigma = \text{tr}_q(XY) \), and \(\sigma' = \text{tr}_q(YX) \). Then

\[
q \cdot \det [X,Y] = [2]^2 \delta' \delta - [2] (\delta t' \tau' + \delta' t \tau) + (\delta \tau'^2 + \delta' \tau^2 + \text{tr} (XY) \tau' \tau - \sigma' \sigma).
\]

Here, in the last parenthetical expression on the RHS, the first three terms constitute a quadratic form in \(\tau' \) and \(\tau \), with coefficients \(\delta, \delta' \), and \(\text{tr} (XY) \).

Before we proceed, let us first give the appropriate interpretations of the above formula in the two important special cases where \(q = \pm 1 \). This is conceptually an important step, since Theorem 4.1 could hardly have come into existence without having had these two crucial special cases as its precursors.

We first consider the case \(q = 1 \). Here, \(\tau = t, \tau' = t' \), and \(\sigma = \sigma' = \text{tr} (XY) \). (These are all ordinary traces.) In this case, after a simple combination of terms, (4.2) simplifies to the following **trace version** of the determinantal formula:

\[
\det [X,Y] = 4 \delta' \delta - (\text{tr} (XY))^2 - \delta t'^2 - \delta' t^2 + \text{tr} (XY) t't.
\]

Remark 4.4. (A) As in the general case, the last three terms in the formula above constitute a quadratic form in \(t' \) and \(t \), with coefficients \(-\delta, -\delta' \), and \(\text{tr} (XY) \). In the traceless case, this quadratic form drops out, and the formula boils down to (3.2).

(B) Some more special cases of (4.3) are also worth noting. For instance, if \(\text{tr} (XY) = 0 \), (4.3) gives \(\det [X,Y] = 4 \delta' \delta - \delta t'^2 - \delta' t^2 \). On the other hand, if \(\delta = \delta' = 0 \), (4.3) implies that \(\text{tr} (XY) \) divides \(\det [X,Y] \) in the ring \(S \).

From the viewpoint of Procesi’s papers [Pr1, Pr2] (see also [KP: §2.4]), \(\det [X,Y] \) should be expressible (in case \(2 \in U(S) \)) as a polynomial in the traces and determinants of \(X,Y \), along with \(\text{tr} (XY) \). Thus, the existence of the formula (4.3) is entirely to be expected. In the invariant theory of \(2 \times 2 \) matrices, the two sides of the equation (4.3) represent the Formanek element associated with \(X \) and \(Y \); see, for instance, [JLS]. Note
that, although the Formanek element in [JLS: §3.3] is expressed with the integer 4 in the denominator, this “4” is eventually “cancelled out” to give the RHS of (4.3). We can, of course, also get a formula for \(\det [X, Y] \) using trace elements alone, by expressing all determinants in (4.3) in terms of traces via the formula \(2 \det (M) = (\text{tr} (M))^2 - \text{tr} (M^2) \) (for every \(M \in \mathbb{M}_2 (S) \)). This determinant elimination process results in the following equation:

\[
\det [X, Y] = \text{tr} (X^2) \text{tr} (Y^2) - (\text{tr} (XY))^2 - \frac{\text{tr} (X^2) t'^2 + \text{tr} (Y^2) t^2}{2} + \text{tr} (XY) t't.
\]

This time, the denominator “2” is no longer avoidable, so this formula would be meaningful only over the rings \(S \) in which 2 is invertible. It is, in retrospect, rather fortunate that the formula (4.3) is applicable to all commutative rings \(S \).

Next, we consider the case \(q = -1 \) in Theorem 4.1. Here, for any \(M = (m_{ij}) \in \mathbb{M}_2 (S) \), \(\text{tr}_q (M) \) is the supertrace \(\text{str} (M) := m_{11} - m_{22} \) defined in the Introduction. Thus, \(\tau = \text{str} (X) \), \(\tau' = \text{str} (Y) \), and \(\sigma = \text{str} (XY) \), \(\sigma' = \text{str} (YX) \). Now for \(q = -1 \), we have \([2] = 1 + (-1) = 0 \), so all positive powers of \([2] \) can be dropped! This leads to the following remarkably simple supertrace version of (4.2):

\[
(4.5) \quad - \det [X, Y] = \delta \tau'^2 + \delta' \tau^2 + \text{tr} (XY) \tau' \tau - \text{str} (XY) \text{str} (YX).
\]

Here, as in Thm. 4.1, the first three terms constitute a quadratic form in \(\tau' \) and \(\tau \), with coefficients \(\delta, \delta' \), and \(\text{tr} (XY) \). In (4.5), we have chosen to keep the \((-1\)-factor on the LHS, to remind ourselves of the fact that this LHS is really \(q \cdot \det [X, Y] \).

Remark 4.6. There are several ways to extend the definition of “str” to higher matrix algebras. For instance, one may define “str” on \(T = \mathbb{M}_{2n} (S) \) by thinking of any \(X \in T \) as a \(2 \times 2 \) block matrix \((x_{ij}) \) with four \(n \times n \) blocks, and taking \(\text{str} (X) \) to be \(\text{tr} (x_{11}) - \text{tr} (x_{22}) \in S \). With this particular definition of “str”, the formula (4.5) would remain meaningful. Unfortunately, it will no longer be true if \(n > 1 \). In fact, let \(X = Y = \text{diag} (I_n, 0_n) \). Then \([X, Y] = 0 \), so the LHS of (4.5) is zero. Now \(\det (X) = \det (Y) = 0 \), \(\text{tr} (XY) = n \), and each of \(X, Y, XY, YX \) has also supertrace \(n \). Thus, the RHS of (4.5) is \(n^3 - n^2 = n^2 (n - 1) \). So in this example, (4.5) holds if and only if \(n = 1 \) (assuming, say, \(\text{char} (S) = 0 \)). Exactly the same remark could have been made about the trace version of the determinantal formula in (4.3).

The following are some easy consequences of the supertrace formula (4.5).

Corollary 4.7. Keep the notations used in the formula (4.5).

1. If \(XY \) has a zero diagonal, then \(-\det [X, Y] = \delta \tau'^2 + \delta' \tau^2 \).
2. If \(X \) has a constant diagonal, then \(-\det [X, Y] = \delta \tau'^2 - \text{str} (XY) \text{str} (YX) \).
3. If \(XY = YX \), then \((\text{str} (XY))^2 = \delta \tau'^2 + \delta' \tau^2 + \text{tr} (XY) \tau' \tau \).

Corollary 4.8. For any \(a, b, c, d \in S \), we have

\[
(4.9) \quad (ac - bd)^2 = ab (c - d)^2 + cd (a - b)^2 + (ac + bd) (a - b) (c - d).
\]
Alternatively, if we write $\tau = a - b$ and $\tau' = c - d$, then

\begin{equation}
(4.10) \quad (c \tau + b \tau')^2 = ab \tau'^2 + cd \tau^2 + (ac + bd) \tau' \tau.
\end{equation}

Proof. The universal quartic identity (4.9) is just the result (4.7)(3), applied to a pair of diagonal matrices $X = \text{diag}(a, b)$ and $Y = \text{diag}(c, d)$. The alternative form (4.10) follows from (4.9) upon noting that $c \tau + b \tau' = c(a - b) + b(c - d) = ac - bd$. \qed

The quaternary quartic identity (4.9) does not seem well known. A search of the literature and standard websites such as [Pi] did not turn up this curious algebraic identity. Of course, there is also a more sophisticated “q-version” of (4.9) (in five variables, including q), obtained by writing down the quantum-trace determinantal formula (4.2) for the diagonal matrices X and Y in the proof above. Unlike (4.9), however, this quinary identity is no longer homogeneous.

Corollary 4.11. Assume S is a field, and keep the notations used in the formula (4.5). Then $[X,Y] \notin \text{GL}_2(S)$ iff $\delta \tau'^2 + \delta' \tau^2 + \text{tr}(XY) \tau' \tau = \text{str}(XY) \text{str}(YX)$. Also, X is a scalar matrix iff this equation holds for all $Y \in \mathbb{M}_2(S)$.

Proof. The first statement follows from (4.5), since $\text{det}[X,Y] = 0$ iff $[X,Y] \notin \text{GL}_2(S)$. For the second statement, the “only if” part is clear, and the “if” part follows from the easy fact (see [GL], or [KL: (5.14)]) that, for any non-scalar matrix X (over a field S), there exists some $Y \in \mathbb{M}_2(S)$ such that $[X,Y] \in \text{GL}_2(S)$.

We shall now begin to work toward the proof of Thm. 4.1. Of course, once the determinantal formula (4.2) is written down explicitly, a direct check on Singular or Macaulay2 will instantly confirm that it is a universal identity for polynomials in nine commuting variables (the symbol q together with the eight entries of X and Y). However, such a machine checking exercise would reveal no reason whatsoever for the truth of the formula. In view of this, we feel it still imperative to give a detailed conventional mathematical proof for the formula (4.2). Our proof is preceded by the following lemma.

Lemma 4.12. For $X,Y \in \mathbb{M}_2(S)$ with notations as in Theorem 4.1, we have

\begin{equation}
(4.13) \quad \sigma + \sigma' - t'\tau - t \tau' = [2] \left(\text{tr}(XY) - t't \right).
\end{equation}

Proof. By working generically, we may assume, as in the proof of Prop. 2.2, that 2 is invertible in S. In this case, we can write $\text{det} X = [(\text{tr} X)^2 - \text{tr}(X^2)]/2$. Substituting this into the Cayley-Hamilton equation $X^2 - (\text{tr} X) X + (\text{det} X) I_2 = 0$, and polarizing the resulting equation (via $X \mapsto X + Y$), we get

$$XY + YX - (\text{tr} Y) X - (\text{tr} X) Y + (\text{tr} X) (\text{tr} Y) I_2 - \text{tr}(XY) I_2 = 0.$$

Taking q-traces on both sides gives the desired equation (4.13). \qed

Before proceeding to the proof of Theorem 4.1, we record a couple of consequences of the Lemma above.
Corollary 4.14. (1) For any traceless matrices \(X, Y \in \mathbb{M}_2(S) \), we have
\[
\text{tr}_q(XY) + \text{tr}_q(YX) = [2] \text{tr} (XY).
\]
(2) For any matrices \(X, Y \in \mathbb{M}_2(S) \), we have
\[
\text{str}(XY) + \text{str}(YX) = \text{tr}(X) \text{str}(Y) + \text{tr}(Y) \text{str}(X).
\]
In particular, \(\text{str}(YX) = -\text{str}(XY) \) if \(X \) has a zero diagonal, or \(X, Y \) are both traceless, or \(X, Y \) are both supertraceless.

Proof. (1) is obtained from Lemma 4.12 by setting \(t = t' = 0 \). [In this special case, (4.15) expresses the fact that the ordinary trace \(\text{tr}(XY) \) is a “quantum average” of the quantum traces \(\text{tr}_q(XY) \) and \(\text{tr}_q(YX) \) (for any given \(q \in S \)).]

(2) is obtained by specializing Lemma 4.12 to the case \(q = -1 \), where the \(q \)-trace becomes the supertrace. [In addition, we can check easily that both sides of (4.16) are equal to \(2 \text{str}(X \ast Y) \), where \(X \ast Y \) is the Hadamard product of \(X \) and \(Y \) (obtained by “entry-wise multiplication” of the two matrices).]

We have now all the necessary tools with which to verify our formula (4.2).

Proof of Theorem 4.1. To begin with, note that if the two matrices \(X, Y \) are both \(q \)-traceless (that is, \(\tau = \tau' = 0 \)), then all terms on the RHS of the determinantal formula (4.2) drop out — except the first and the last terms. In this case then, we know that (4.2) holds, thanks to Thm. 3.4. To prove (4.2) in general, we should then try to make a reduction to the \(q \)-traceless case. As before, we may assume that \(S \) is the free commutative \(\mathbb{Q} \)-algebra generated by \(q \) and the eight entries of \(X \) and \(Y \). In particular, \([2]^{-1}\) exists in the quotient field of the integral domain \(S \). To make the desired reduction, let \(X_0 = X - [2]^{-1}\tau I_2 \) and \(Y_0 = Y - [2]^{-1}\tau' I_2 \). These have \(q \)-traces zero since \(\tau, \tau' \) were the \(q \)-traces of \(X \) and \(Y \), and obviously \([X, Y] = [X_0, Y_0] \).

Therefore, by Thm. 3.4, we have
\[
q \cdot \det [X, Y] = [2]^2 \det (X_0Y_0) - \text{tr}_q(X_0Y_0) \text{tr}_q(Y_0X_0).
\]
Our job now is to compute the RHS of (4.17) in terms of the various quantities associated with \(X, Y, XY \), and \(YX \). Taking \(q \)-traces on the equation
\[
X_0Y_0 = XY - [2]^{-1}(\tau'X + \tau Y) + [2]^{-2}\tau'\tau I_2,
\]
we see that \(\text{tr}_q(X_0Y_0) = \sigma - [2]^{-1}\tau'\tau \) where \(\sigma = \text{tr}_q(XY) \), and similarly, \(\text{tr}_q(Y_0X_0) = \sigma' - [2]^{-1}\tau'\tau \), where \(\sigma' = \text{tr}_q(YX) \). On the other hand, since \(\det (X - \lambda I_2) = \lambda^2 - t \lambda + \delta \) for any parameter \(\lambda \in S \) (notations as in Thm. 4.1), we have, for \(\lambda = [2]^{-1}\tau \):
\[
\det (X_0) = [2]^{-2}\tau^2 - [2]^{-1}t \tau + \delta; \text{ similarly, } \det (Y_0) = [2]^{-2}\tau'\tau - [2]^{-1}t'\tau' + \delta'.
\]
Substituting all of these expressions into the RHS of (4.17), we get
\[
q \cdot \det [X, Y] = ([2] \delta - t \tau + [2]^{-1}\tau^2)([2] \delta' - t'\tau' + [2]^{-1}\tau'^2) - (\sigma - [2]^{-1}\tau'\tau)(\sigma' - [2]^{-1}\tau'\tau).
\]
Expanding the RHS formally into $\sum_{i=-2}^{2} [2^i] b_i$, we have clearly $b_{-2} = 0, b_2 = \delta' \delta$, and $b_1 = -(\delta t' \tau' + \delta' t \tau)$. Thus, $[2^2] b_2 + [2] b_1$ already produces the first two groups of terms on the RHS of the formula (4.2). The remaining terms on the RHS of (4.19) are

$$b_0 + [2]^{-1} b_{-1} = (\delta \tau'^2 + \delta' \tau^2 + t^t \tau' \tau - \sigma' \sigma) + [2]^{-1} \tau' (\sigma + \sigma' - t'^t - t \tau')$$

in view of Lemma 4.12. After cancelling the two $t'^t \tau' \tau$ terms, we get precisely the last group of terms in the desired determinantal formula (4.2)!

\[\blacksquare\]

Remark 4.20. Of course, proving the quantum-trace version of the determinantal formula (4.2) in one stroke for all q makes it unnecessary, for instance, to handle separately the cases $q = 1$ and $q = -1$. But more discerningly, working directly in the quantum-trace case actually makes the proof of (4.2) easier as it enables us to “manage” many terms at once by organizing (and simplifying) them in “$[2]$-adic expansions” (as in the proof above). The same proof, written out in the special cases $q = 1$ or $q = -1$ would look harder and more confusing since the pattern of the $[2]$-adic expansions would no longer be apparent. The same remark could have been made about the proof of Thm. 3.4.

§5. Relations to Binary Quadratic Forms

The last two sections of this paper are devoted to some applications of the two determinantal formulas obtained in (4.3) and (4.5). The first applications, given in this section, offer a characteristic-free generalization of a theorem of Olga Taussky relating the determinants of 2×2 commutators of integral matrices to norms in quadratic extensions of \mathbb{Q}, and some extensions of this theorem to the setting of matrices over commutative rings.

In [Ta$_1$], Taussky showed that, if $X, Y \in M_2(\mathbb{Z})$ and an eigenvalue ω of X is irrational, then $-\det [X, Y]$ is a norm from the quadratic number field $\mathbb{Q}(\omega)$. A converse of this theorem was obtained in [Ta$_2$], where Taussky proved that, if $n \in \mathbb{Q}$ is a norm from a quadratic number field K, then $n = -\det [X, Y]$ for some $X, Y \in M_2(\mathbb{Q})$ such that X has its eigenvalues in K. Although Taussky assumed that X, Y were integral matrices in the first theorem above, this assumption was not needed, so both of her theorems may be thought of as results on rational matrices. Actually, the use of the rational field \mathbb{Q} is also not crucial, so one may try to further replace \mathbb{Q} by a field F. However, Taussky’s proofs in [Ta$_1$, Ta$_2$] (and even her later proof using cyclic algebras in [Ta$_3$]) assumed implicitly that char $(F) \neq 2$, and did not apply to all fields.

In the first half of this section, we shall present a new view of both of Taussky’s results, formulating them as a “commutator characterization” for the norm elements under any quadratic field extension K/F (separable or otherwise). Here, we are able to give a rather short proof (motivated by the determinantal formula (4.3)) that works uniformly in all characteristics, and is completely within the realm of matrix theory (independently of the splitting criterion for cyclic algebras used in [Ta$_3$]). Furthermore,
the proofs of the “if” part and the “only if” part below are based essentially on one single argument, and the “if” part will, later in the section, lead to a constructive generic version of the same result for commutative rings.

Taussky’s Norm Theorem 5.1. Let K/F be any quadratic extension of fields of any characteristic. Then an element $n \in F$ is a norm from K iff $n = -\det [X,Y]$ for some $X, Y \in M_2(F)$ such that K is the splitting field of the characteristic polynomial of X.

Proof. We’ll first prove the harder “if” part. Given $n = -\det [X,Y]$ as in the theorem, let $t = \text{tr} (X)$, $\delta = \det (X)$, and let ω be an eigenvalue of X. By assumption, $K = F(\omega)$, so the minimal polynomial for ω over F is $f(\lambda) = \lambda^2 - t \lambda + \delta$ (the characteristic polynomial of X). With respect to the F-basis $\{1, \omega\}$ on K, the norm form of K/F is easily computed to be\(^{\dagger}\)

\[
N(x, y) := N_{K/F}(x + y\omega) = x^2 + y(t x + \delta y), \quad \text{where } x, y \in F.
\]

Since $f(\lambda)$ is irreducible over F, we may assume (after a conjugation in $M_2(F)$) that X is in its rational canonical form; that is, $X = \begin{pmatrix} 0 & -\delta \\ 1 & t \end{pmatrix}$. Also, after subtracting a scalar matrix from Y (which does not change $[X,Y]$), we may assume that $Y = \begin{pmatrix} e & f \\ g & 0 \end{pmatrix}$ (for some $e, f, g \in F$). Since $\text{tr} (XY) = f - \delta g$, the trace formula (4.3) yields:

\[
-\det [X,Y] = 4 \delta fg + (f - \delta g)^2 + \delta e^2 - fg t^2 - (f - \delta g) t e = (f + \delta g)^2 + (e + t g) (\delta e - tf).
\]

Letting $x := -(f + \delta g)$ and $y := e + t g$, we get $-\det [X,Y] = x^2 + y(\delta e - tf)$.

(Of course, this negative determinant could also have been gotten from the supertrace formula (4.5), or even from a direct determinant computation\(^{\ddagger}\). Noting that

\[
t x + \delta y = -t(f + \delta g) + \delta(e + t g) = \delta e - tf,
\]

we conclude from (5.2) that $n = -\det [X,Y] = N(x, y) \in N_{K/F}(K)$.

The converse is now easy! Indeed, we can completely bypass the work in [Ta\(_2\)], and simply “reverse” the above argument to get what we want, as follows. Let $n \in F$ be a norm from K. Write $K = F(\omega)$ for a primitive element ω, and let $\lambda^2 - t \lambda + \delta$ be the minimal polynomial of ω over F. Then $n = N_{K/F}(x + y\omega)$ for some $x, y \in F$.

Defining $X := \begin{pmatrix} 0 & -\delta \\ 1 & t \end{pmatrix}$ and $Y = \begin{pmatrix} y & -x \\ 0 & 0 \end{pmatrix}$, the computation in the last paragraph (with $g = 0$, $f = -x$, and $e = y$) gives $-\det [X,Y] = N_{K/F}(x + y\omega) = n$. Of course, the splitting field of the characteristic polynomial of X is just K.

\[^{\dagger}\]If we had used $\{1, -\omega\}$ as basis instead, the norm form would have been $x^2 - t xy + \delta y^2$, which is precisely the homogenization of the characteristic polynomial of X.

\[^{\ddagger}\]In fact, if we use the supertrace formula (4.5), $x = -(f + \delta g)$ will show up naturally as $\text{str} (XY)$, and we will have $\text{str} (XY) = f + \delta g = -x$, as is also predicted by the formula (4.16).
Remark 5.4. The following observation on the “if” part of Theorem 5.1 is in order. Let $F = \mathbb{Q}$, and assume (as in [Ta1]) that $X, Y \in M_2(\mathbb{Z})$. If X is in its rational canonical form $\begin{pmatrix} 0 & -\delta \\ 1 & t \end{pmatrix}$, the proof of the “if” part above shows that $-\det [X, Y]$ is, in fact, the norm of an algebraic integer in the quadratic field K. However, in general, this need not be the case, as was pointed out by Taussky in [Ta2: p. 1]. For an explicit example, take $X = \begin{pmatrix} 0 & 4 \\ -2 & 1 \end{pmatrix}$ and $Y := \begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}$. Here, the quadratic field K in question is $\mathbb{Q}(\sqrt{-31})$, and $-\det [X, Y] = 419$ is not the norm of an algebraic integer from K, since $x^2 + 31 y^2 = 2^2 \cdot 419 = 1676$ has no solution in \mathbb{Z}. (Of course, X is only “close” — but not equal — to its rational canonical form!) Nevertheless, in confirmation of the “if” part of Thm. 5.1, $4^2 \cdot 419 = 6704 = x^2 + 31 y^2$ is solved by $(x, y) = (\pm 77, \pm 5)$, so $419 = N_{K/\mathbb{Q}}(\alpha)$ for $\alpha = (\pm 77 \pm 5\sqrt{-31})/4$ in $\mathbb{Q}(\sqrt{-31})$. For more information on this example, see Remark 5.15(B) below.

Since (5.1) was formulated as a field-theoretic theorem, a natural question to ask would be whether something in a similar spirit can be said about commutative rings. Note that the proof for the “if” part of Theorem 5.1 does not extend to rings, since we can no longer apply the standard linear algebra theorem on rational canonical forms. Of course, the field-theoretic theorem, applied to the quotient field of a suitable generic ring, would give an existential norm formula on $-\det [X, Y]$ for a pair of generic matrices X, Y. However, this formula would involve an unknown “denominator” factor, which would make it only a strictly formal result. A useful “ring-theoretic version” of Theorem 5.1 should thus be one that gives an implementation of such a formula, with explicit information on the denominator factor. Such a version will be given (for any commutative ring) in Theorem 5.10 below, where we’ll show that the denominator factor can actually be taken to be either one of the off-diagonal entries of the matrix X.

The proof of this theorem is based on a further exploitation of the explicit determinant computation of commutators in the proof of the “if” part of Theorem 5.1.

As in the earlier sections, S will continue to denote a commutative ring. Instead of working with the norms from various degree 2 extensions of S, we now choose to work directly with binary quadratic forms over S. For any $s, t, \delta \in S$, let us denote the “value set” (over S) of the quadratic form $s x^2 + t xy + \delta y^2$ by $V[s, t, \delta]$; that is,

$$V[s, t, \delta] := \{ s r_1^2 + t r_1 r_2 + \delta r_2^2 : r_1, r_2 \in S \}. \quad (5.5)$$

In the case where $t = 0$, we’ll simply write $V[s, \delta]$ for $V[s, 0, \delta]$. Over the ring of integers, of course, the study of these value sets is an important and time-honored enterprise that goes back to the classical work of Fermat, Euler, Lagrange, Legendre, and Gauss. In the rest of this section, we’ll work over a commutative ring S in the case $s = 1$, since $x^2 + t xy + \delta y^2$ arises precisely as a norm form of the quadratic S-algebra $S [\lambda]/(\lambda^2 - t \lambda + \delta)$. Before coming to the ring-theoretic version of Thm. 5.1, we first recall the following elementary result on the value sets $V[1, t, \delta]$ over S. A short proof is included for the reader’s convenience.
Proposition 5.6. For any \(t, \delta \in S \) and \(\Delta := t^2 - 4\delta \), we have the following inclusions:

\[
4V[1, t, \delta] \subseteq V[1, -\Delta] \subseteq V[1, t, \delta].
\]

If 2 is invertible in \(S \), then \(V[1, -\Delta] = V[1, t, \delta] \).

Proof. For any \(w, z \in S \), we have an identity:

\[
w^2 - (t^2 - 4\delta) z^2 = (w - tz)^2 + t(w- tz)(2z) + \delta(2z)^2.
\]

This implies that the set \(\{x^2 + txy + \delta y^2 : x \in S, y \in 2S\} \) is equal to the set \(\{w^2 - \Delta z^2 : w, z \in S\} \). The second inclusion in (5.7) follows from this observation. The first inclusion follows from the usual "completion of squares" identity:

\[
4(x^2 + txy + \delta y^2) = (2x + ty)^2 - (t^2 - 4\delta)y^2.
\]

The last conclusion of the Proposition is clear from (5.7). \(\square \)

We are now in a position to extend Theorem 5.1 to the setting of rings.

Norm Theorem 5.10. (Ring Version) (1) Given \(t, \delta \in S \), any \(n \in V[1, t, \delta] \) has the form \(-\det [X, Y]\) for some \(X, Y \in \mathbb{M}_2(S) \) such that \(\operatorname{tr}(X) = t \) and \(\det(X) = \delta \).

(2) For any \(X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(S) \), let \(t = \operatorname{tr}(X) \), \(\delta = \det(X) \), and \(\Delta = t^2 - 4\delta \). For any \(Y \in \mathbb{M}_2(S) \), we have \(-c^2\det [X, Y] \in V[1, t, \delta] \), and \(-4c^2\det [X, Y] \in V[1, -\Delta] \).

(3) Keep the notations in (2) above. If \(t = \operatorname{tr}(X) \) and \(t' = \operatorname{tr}(Y) \) are both in \(2S \), then \(-c^2\det [X, Y] \in V[1, -\Delta] \).

Proof. (1) follows from the last paragraph in the proof of Theorem 5.1, since the construction there works over any commutative ring \(S \).

(2) After subtracting a scalar matrix from \(Y \), we may assume that \(Y = \begin{pmatrix} e & f \\ g & 0 \end{pmatrix} \). We can work generically and thus assume that \(S \) is the polynomial ring over \(\mathbb{Z} \) generated by the seven (commuting) variables \(a, b, c, d, e, f, g \). In this way, \(c^{-1} \) makes sense in the quotient field \(F \) of \(S \). Let \(X_1 = \begin{pmatrix} 0 & c^{-1}b \\ 1 & c^{-1}(d-a) \end{pmatrix} \in \mathbb{M}_2(F) \). Applying formally the calculation in the proof of the "if" part of Thm. 5.1, we can write

\[
-\det [X_1, Y] = x^2 + c^{-1}(d-a)xy - c^{-1}by^2,
\]

where \(x = -(f - c^{-1}bg) \), and \(y = e + g c^{-1}(d-a) \). From these, we have \(cx, cy \in S \).

Defining \(X_2 = c \cdot X_1 = \begin{pmatrix} 0 & b \\ c & d-a \end{pmatrix} \) and multiplying (5.11) by \(c^4 \), we see that

\[
-c^2\det [X_2, Y] = (c^2x)^2 + (d-a)(c^2x)(cy) - bc(cy)^2.
\]
Letting $\alpha = c^2 x \in S$ and $\beta = cy \in S$, the RHS of (5.12) can be transformed as follows:

\[
\alpha^2 + (d - a) \alpha \beta - b c \beta^2 = \alpha^2 + (t - 2a) \alpha \beta + (\delta - ad) \beta^2 = (\alpha - a \beta)^2 + t \alpha \beta - a (a + d) \beta^2 + \delta \beta^2 = (\alpha - a \beta)^2 + t (\alpha - a \beta) \beta + \delta \beta^2 \in V[1, t, \delta].
\]

Since $[X_2, Y] = [X_2 + a I_2, Y] = [X, Y]$, this proves the first conclusion in (2). The second conclusion follows from this and the first inclusion in (5.7).

(3) Write $t = 2s$ and $t' = 2s'$ (for suitable $s, s' \in S$). Suppose the desired conclusion is true for traceless matrices. Then it holds for $X_0 := X - s I_2$ and $Y_0 := Y - s' I_2$; that is, $-c^2 \det [X_0, Y_0] \in V[1, 4 \det (X_0)]$. (Note that X_0 has discriminant $-4 \det (X_0)$, and the $(2, 1)$-entry of X_0 remains to be c.) To compute $\det (X_0)$, we use the fact that $\det (X - \lambda I_2) = \lambda^2 - t \lambda + \delta$. For $\lambda = s$, this leads to

\[
(5.13) \quad 4 \det (X_0) = 4 (s^2 - t s + \delta) = t^2 - 2t^2 + 4 \delta = -(t^2 - 4 \delta) = -\Delta.
\]

Therefore, $-c^2 \det [X_0, Y_0] \in V[1, -\Delta]$. Since $[X, Y] = [X_0, Y_0]$, this proves (3). Starting afresh, we may thus assume that $X = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ and $Y = \begin{pmatrix} e & f \\ g & -e \end{pmatrix}$. In this case, (3) can be proved by checking the explicit equation $-c^2 \det [X, Y] = P^2 - \Delta Q^2$, where

\[
(5.14) \quad P = 2 a (a g - c e) + c (b g - c f), \quad \text{and} \quad Q = a g - c e.
\]

Since in any case such an equation can be quickly checked by hand or by machine, we will not give its detailed derivation here. \qed

Remark 5.15. (A) Note that, in the case where S is a field F, the results in (1) and (2) above do retrieve the Norm Theorem 5.1. In fact, in part (2), if the characteristic polynomial of the matrix X has a quadratic splitting field K/F, then the off-diagonal entries b, c of X cannot both be zero. If $c \neq 0$, then the conclusion $-c^2 \det [X, Y] \in V[1, t, \delta]$ amounts to $-\det [X, Y] \in V[1, t, \delta]$, since c is invertible, and $V[1, t, \delta]$ is closed under multiplication by squares. If $b \neq 0$, a simple transposition argument gives the same conclusion. But of course, the proof of Thm. 5.10 would not have been possible if we had not first worked out the proof of the field-theoretic version Thm. 5.1.

(B) Since the proof of (5.10)(2) is completely constructive, we can very easily implement it and test its accuracy. For instance, let us apply it to the two matrices X, Y in Remark 5.4 over the ring $S = \mathbb{Z}$. Here, Y already has the desired form in the proof of (5.10)(2), with $e = 4$ and $f = g = 3$, while $(a, b, c, d) = (0, 4, -2, 1)$, with $t = 1$, $\delta = 8$, $\Delta = -31$, and $-\det [X, Y] = 419$. We know that $419 \notin V[1, 1, 8]$ (since 419 is not the norm of an algebraic integer in $\mathbb{Q}(\sqrt{31})$), so the c^2 factor cannot be dropped from the first conclusion of (5.10)(2). On the other hand, following the proof of (5.10)(2), we compute easily that $\alpha = -36$, and $\beta = -5$. Since $a = 0$ and $c = -2$, this proof predicts that $c^2 \cdot 419 = 1676 \in V[1, 1, 8]$, with the equation $1676 = \alpha^2 + \alpha \beta + 8 \beta^2$ solved by $(\alpha, \beta) = (-36, -5)$. In view of this and the equation (5.9), the last part of (5.10)(2) also predicts that $4 c^2 \cdot 419 = 6704 \in V[1, 31]$, with the equation $6704 = \alpha_0^2 + 31 \beta_0^2$ solved
by \((\alpha_0, \beta_0) = (2\alpha + \beta, \beta) = (-77, -5)\), as we have already mentioned in Remark 5.4. Since \(c^2 \cdot 419 = 1676 \notin V[1, 31]\), this shows that the factor of 4 also cannot be dropped from the second conclusion of (5.10)(2). (We leave it to the reader to check the same statement if we had started instead with \(-\det [Y, X] = 419\). Note that (5.10)(3) does not apply to either case since \(\text{tr}(X) = 1\) and \(\text{tr}(Y) = 4\) are not both even!)

We’ll close this section with a supplement to Theorem 5.10 in the case where the matrix \(X\) has a constant diagonal. In this case, we have good control on the values of \(-\det [X, Y]\) without pre-multiplying them by the factor \(c^2\). The following result is not covered by Theorem 5.10, but its proof is straightforward in light of the supertrace determinantal formula (applied in its special form in (4.7)(2)).

Proposition 5.16. Let \(X = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in R = \mathbb{M}_2(S)\), and assume that \(bS + cS = rS\) for some \(r \in S\). Then \(\{ -\det [X, Y] : Y \in R \} = V[r^2, -bc]\). If \(b, c\) are coprime in \(S\), this set is equal to \(V[1, -bc]\).

Proof. We may assume that \(a = 0\), and that \(Y = \begin{pmatrix} w & x \\ y & 0 \end{pmatrix}\). Then, by (4.7)(2) (or by a direct computation), we have \(-\det [X, Y] = (by - cx)^2 - bcw^2\). Since \(w\) ranges over \(S\) and \(by - cx\) ranges over the principal ideal \(rS\), these values comprise precisely the set \(V[r^2, -bc] \subseteq V[1, -bc]\). If \(bS + cS = S\), we can take \(r = 1\), in which case the inclusion becomes an equality.

§6. Applications to Matrix Factorizations and Affine Curves

Continuing the work in §5, we shall give in this section some applications of the supertrace determinantal formula (4.5). The main themes of our study will now be the factorization of \(2 \times 2\) matrices, and the solution of certain quadratic diophantine equations over a commutative ring \(S\). The norm forms of quadratic ring extensions over \(S\) studied in the last section are the binary quadratic forms \(x^2 + txy + \delta y^2\), which are monic in \(x\). In this section, we shall take up the case of a binary diagonal quadratic form \(px^2 + qy^2\) (which is no longer monic in \(x\)). In the spirit of the results (5.1) and (5.10), we would like to give a “commutator characterization” for the value set of such a diagonal form over \(S\); that is,

\[
V[p, q] := \{ pr_1^2 + qr_2^2 : r_1, r_2 \in S \}.
\]

The study of these sets is of interest over both rings and fields. For example, \(V[1, 1]\) consists of all sums of two squares in \(S\), and asking if \(-1 \in V[1, -d]\) amounts to solving the “negative Pell’s equation” \(x^2 - dy^2 = -1\) over \(S\). If \(F\) is a field of characteristic \(\neq 2\), the criterion for the splitting of the \(F\)-quaternion algebra

\[
\langle i, j | i^2 = p, j^2 = q, ij = -ji \rangle \ (\text{where } p, q \in F \setminus \{0\})
\]

is given by \(1 \in V[p, q]\) (see [La: p. 58]). Accordingly, the Hilbert symbol \((p, q)_F\) is defined to be 1 or \(-1\), depending on whether or not the quadratic form \(px^2 + qy^2\) represents 1 over \(F\).
Remark 6.7. (A) In the case where both c and p are non 0-divisors, the condition in (2) that $\det(Y) = cq$ could have been dropped, since it would have followed from

\begin{align*}
\det([X_1, Y_1]) &= \det([Y', -X']) = -Y'X' + X'Y' \\
&= -(XY)' + (YX)' = -[X, Y]' \\
\end{align*}

implying that $\det[X_1, Y_1] = \det[X, Y] = -c^2$, as desired. \qed
Theorem 6.8. \(XY = c \cdot A \) and \(\det (X) = cp \). However, the present form of the statement in (2) is more symmetrical. (The same remark can be made about the statement (3).)

(B) The implications \((3) \Rightarrow (1)\) and \((2) \Rightarrow (1)\) in Thm. 6.3 need not hold if \(c \in S \) is a 0-divisor. For instance, let \(S \) be the commutative local \(\mathbb{Q}\)-algebra generated by \(x, y \) with the relations \(x^2 = y^2 = xy = 0 \), and let \(c = x, \ p = q = y \). Then \((2)\) and \((3)\) are trivially satisfied by the matrices \(X = Y = X_1 = Y_1 = 0 \). However, \(c = x \not\in V[\ y, y]\).

By further developing the ideas used in the proof of the implication \((1) \Rightarrow (2)\) above, we get also the following unexpected algebro-geometric result on affine curves over commutative rings.

Theorem 6.8. Given \(p, q, c \in S \), let \(C = C_{p,q,c} \) be the plane conic \(\{(r, s) \in S^2 : pr^2 + qs^2 = c\} \). Let \(Q = Q_c \) be the quadric surface \(\{(x, y, z) : xy - z^2 = -c^2\} \), and let \(P = P_{p,q,c} \) be the “vertical plane” \(\{(x, y, z) : px + qy = -c\} \) (both in \(S^3 \)). Then there is an affine morphism \(f : C \to P \cap Q \) defined by

\[
(6.9) \quad f(r, s) = (r (2qs - r), -s (2pr + s), rs + pr^2 - qs^2) \quad (\forall (r, s) \in C).
\]

Proof. Before proceeding with the proof, note that the conic \(C \) is nonempty iff \(c \in V[p, q] \). In the case \(C = \emptyset \), of course, the statement of the theorem is vacuous. In the following, we may thus assume that \(C \neq \emptyset \).

Given any point \((r, s) \in C \) (that is, with \(pr^2 + qs^2 = c \)), let us use the notations and conclusions in the proof of \((1) \Rightarrow (2)\) in Thm. 6.3 (recalling that this implication did not require \(c \) to be a non-0-divisor in \(S \)). Since \(M := [X, Y] \) has trace zero, it can be written in the form \(M = \begin{pmatrix} -z & x \\ -y & z \end{pmatrix} \) (for some \(x, y, z \in S \)). To compute this matrix, we use the definitions of \(X, Y \) in (6.4) (and the fact that \(XY = c \cdot A \)):

\[
M = XY - YX = \begin{pmatrix} 0 & qc \\ -pc & 0 \end{pmatrix} - \begin{pmatrix} b & qr \\ -a & -qs \end{pmatrix} \begin{pmatrix} a & b \\ ps & pr \end{pmatrix} = \begin{pmatrix} -ab + pqr s & q(c - pr^2) - b^2 \\ ab + pqs r & ab + pqr s \end{pmatrix}.
\]

Recalling that \(a = s + pr \) and \(b = r - qs \), we have

\[
(6.10) \quad \begin{cases} x = a^2 s^2 - b^2 = (qs + b)(qs - b) = r(2qs - r), \\ y = p^2 r^2 - a^2 = (pr - a)(pr + a) = -s(2pr + s), \\ z = ab + pqr s = (s + pr)(r - qs) + pqr s = rs + pr^2 - qs^2. \end{cases}
\]

These are quadratic forms in \(\{r, s\} \) (if we think of \(\{p, q\} \) as constants), which define an affine morphism \(f \) from \(C \) to \(S^3 \), with the obvious property that \(f(-r, -s) = f(r, s) \). Furthermore, the fact (from (6.3)(2)) that \(-c^2 = \det [X, Y] = xy - z^2 \) implies that \(f(C) \subseteq Q \). Finally, for \(x, y \in S \) as defined above, we have

\[
(6.11) \quad px + qy = pr(2qs - r) - qs(2pr + s) = -(pr^2 + qs^2) = -c,
\]

so we have \(f(C) \subseteq P \) also, as desired.\(\square \)
Remark 6.12. Some congruence properties of the values of \(x, y, z\) are noteworthy. For any \((r, s) \in C\), (6.10) clearly implies that \(x \equiv -r^2 \pmod{2q}\), and \(y \equiv -s^2 \pmod{2p}\). As for \(z\), we can rewrite it as follows:

\[
(6.13) \quad z = rs + (c - qs^2) - qs^2 = s(r - 2qs) + c.
\]

We did not use this expression for \(z\) in (6.10) since it is not symmetrical in \(p\) and \(q\) (and also not homogeneous in \(r\) and \(s\)). However, this new expression does give some additional information on \(z\); that is, \(z \equiv c \pmod{s}\). Similarly, we can write \(z = r(s + 2pr) - c\), so \(z \equiv -c \pmod{r}\) as well.

To make the meaning of Thm. 6.8 more explicit from the viewpoint of arithmetic geometry, it is best to work in the case \(S = \mathbb{Z}\). In this case, \(pr^2 + qs^2 = c\) defines a conic \(\mathcal{C} \subseteq \mathbb{C}^2\), \(px + qy = -c\) defines a “horizontal plane” \(\mathcal{P} \subseteq \mathbb{C}^3\), while \(xy - z^2 = -c^2\) defines a quadric surface \(\mathcal{Q} \subseteq \mathbb{C}^3\). The map \(f : \mathcal{C} \to \mathcal{P} \cap \mathcal{Q}\) given by the polynomials in (6.10) is then an affine morphism defined over \(\mathbb{Z}\), taking integer points to integer points. Furthermore, the ring \(\mathbb{Z}\) can be replaced throughout by an arbitrary ring of algebraic integers.

Example 6.14. Over \(S = \mathbb{Z}\), let \(p = -3\), \(q = 8\), and \(c = 5\). Obviously, all four points \((\pm 1, \pm 1)\) are on the conic \(C\). Using (6.10), we compute easily that

\[
(6.15) \quad f(1, 1) = f(-1, -1) = (15, 5, -10), \quad f(1, -1) = f(-1, 1) = (-17, -7, -12),
\]

which all lie on the curve \(P \cap Q\). However, the map \(f : C \to P \cap Q\) is not surjective in this example. For instance, we claim that \((15, 5, 10) \in P \cap Q\) is not in \(f(C)\). To see this, assume for the moment that \(f(r, s) = (15, 5, 10)\) for some \((r, s) \in C\). By Remark 6.12, we must have \(10 \equiv 5 \pmod{s}\), so \(s\) divides 5. If \(s = \pm 5\), then \(-3r^2 + 8s^2 = 5\) leads to a quick contradiction. Thus, \(s = \pm 1\), and hence also \(r = \pm 1\). But according to (6.15), the \(z\)-coordinate of \(f(r, s)\) must then be either \(-10\) or \(-12\), a contradiction. (In (6.18)(C) below, we’ll actually give some examples where \(C = \emptyset\), but \(P \cap Q \neq \emptyset\).) To test the accuracy of the formulas (6.10), it is worthwhile to compute a few more image points for the map \(f\). For instance, for \((\pm 3, 2)\) on the conic \(C\), we have

\[
(6.16) \quad f(3, 2) = (87, 32, -53), \quad f(-3, 2) = (-105, -40, -65),
\]

which are indeed points in \(P \cap Q\). (Recall that the functions \(x, y, z\) grow quadratically with respect to the two variables \(r\) and \(s\).)

We record the following consequence of Theorem 6.8, since we cannot locate a reference for it (or for any similar result) in the literature.

Corollary 6.17. For any \(p, q \in S\), we have the following:

1. If \(c \in V[p, q]\), there exist \(x, y, z \in S\) such that \(px + qy = -c\) and \(xy - z^2 = -c^2\).
2. If \(V[p, q]\) contains a unit of \(S\), then there exist \(x_2, y_2, z_2 \in S\) such that \(px_2 + qy_2 = x_2y_2 - z_2^2 = -1\).
Proof. (1) follows from Thm. 6.8, and the parenthetical statement follows from the main statement by taking \((x_1, y_1, z_1)\) to be \((-x, -y, \pm z)\).

(2) Fix a unit \(c \in V[p, q]\), and take \(x, y, z\) as in (1). Then \(x_2 = c^{-1}x, y_2 = c^{-1}y,\) and \(z_2 = c^{-1}z\) satisfy the required conditions. \(\square\)

Remark 6.18. (A) Note that, in (1) above, we cannot say that “there exist \(x_3, y_3, z_3 \in S\) such that \(px_3 + qy_3 = c\) and \(x_3y_3 - z_3^2 = c^2\)” Indeed, for \(S = \mathbb{Z}\), take \(p = -4, q = 13,\) and \(c = 1\). We have \(c \in V[p, q]\) since \(1 = -4r^2 + 13s^2\) for \((r, s) = (9, 5)\). However, using standard software for solving binary quadratic equations (such as [Alp]), we can easily check that there do not exist integers \(x_3, y_3, z_3\) such that \(-4x_3 + 13y_3 = x_3y_3 - z_3^2 = 1\).

(B) For \(S = \mathbb{Z}\), the following numerical example shows that, in case \(V[p, q]\) contains a unit, say 1, the representation of 1 in the form \(pr^2 + qs^2\) may involve very large integers \(r\) and \(s\), even though \(p, q\) are pretty small. For instance, let \(p = 37\) and \(q = -67\). Then \(1 \in V[p, q]\) according to [Alp], but the smallest solution for \(37r^2 - 67s^2 = 1\) is
\[
(6.19) \quad r = 264,638,639,242, \quad \text{and} \quad s = 196,660,308,201.
\]
Confirming our result in Cor. 6.17, [Alp] showed that indeed solutions exist for the equations \(37x_2 - 67y_2 = x_2y_2 - z_2^2 = -1\). However, the numbers \(x_2, y_2, z_2\) have at least 19 digits! Of course, the specific solution \((x, y, z)\) constructed from (6.10) by using the point \((r, s)\) in (6.19) is even larger.

(C) We should also point out that the converse to the main statement in (6.17)(1) is not true in general. For instance, let \(S = \mathbb{Z}\) again, and take \(c = 1\). For any \(p > 1\) and \(q = p + 1\), the equations \(px + qy = xy - z^2 = -1\) are solved by \((x, y, z) = (1, -1, 0)\), but obviously \(\pm 1 \notin V[p, p + 1]\). It is, however, possibly more interesting to give an example where \(\pm 1 \in V[p, q]\) is not simply ruled out “by absolute values”. For this, we can take, for instance, \(p = -8, q = 13\), for which the equations \(px + qy = xy - z^2 = -1\) are solved by \((x, y, z) = (5, 3, 4)\). Nevertheless, \(\pm 1 \notin V[p, q]\), in view of the fact that \(\pm 13\) (or \(\pm 5\)) is not a square modulo 8.

In [KL$_1$], two of the authors study the problem of factorizing a matrix \(A\) into a product \(XY\) in such a way that the commutator \([X, Y]\) is invertible. The matrices \(A\) that admit such a factorization are said to be reflectable. For some applications of the results (6.3), (6.8), and (6.17) in this section to the study of reflectable matrices over commutative rings, see §5 in [KL$_1$].

References

[Alp] D. Alpern: http://www.alpertron.com.ar/QUAD.HTM (Generic two integer variable equation solver).

[BBO] L. Le Bruyn, M. Van den Bergh, and F. Van Oystaeyen: Proj of generic matrices and trace rings. Comm. Algebra 14 (1986), 1687–1706.
[Fo] E. Formanek: *The invariants of $n \times n$ matrices.* Lecture Notes in Math., Vol. 1278, pp. 18-43, Springer-Verlag, Berlin-Heidelberg-New York, 1987.

[GK] R. N. Gupta, A. Khurana, D. Khurana and T.Y. Lam: *Rings over which the transpose of every invertible matrix is invertible.* J. Alg. 322 (2009), 1627–1636.

[GL] R. Guralnick and C. Lanski: *The rank of a commutator.* Lin. and Multilin. Algebra 13 (1983), 167–175.

[JLS] S. Jøndrup, O. Laudal, and A. Sletsjøe: *Noncommutative plane curves.* Institut Mittag-Leffler Report, No. 20, pp. 1-31; see also http://arXiv.org/ pdf/math/0405350v1, 2004.

[KL1] D. Khurana and T.Y. Lam: *Invertible commutators of integral matrices.* Preprint, 2010.

[KL2] D. Khurana and T.Y. Lam: *Commutators and reflectable elements in rings.* In preparation.

[KP] H. Kraft and C. Procesi: http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf (*Classical Invariant Theory, A Primer.* Lecture Notes, Preliminary Version, 2000).

[La] T.Y. Lam: *Introduction to Quadratic Forms over Fields.* Graduate Studies in Math., Vol. 67, Amer. Math. Soc., Providence, R.I., 2005.

[Pi] T. Piezas, III: http://sites.google.com/site/tpiezas/Home (A collection of algebraic identities).

[Pr1] C. Procesi: *The invariant theory of $n \times n$ matrices.* Advances in Math. 19 (1976), 306–381.

[Pr2] C. Procesi: *Computing with 2×2 matrices.* J. Algebra 87 (1984), 342–359.

[Sá] E.M. de Sá: *The rank of a difference of similar matrices.* Portugal. Math. 46 (1989), 177–187.

[Ta1] O. Taussky: *Additive commutators between 2×2 integral representations of orders in identical or different quadratic number fields.* Bull. Amer. Math. Soc. 80 (1974), 885–887.

[Ta2] O. Taussky: *Additive commutators of rational 2×2 matrices.* Lin. Alg. Appl. 12 (1975), 1–6.

[Ta3] O. Taussky: *From cyclic algebras of quadratic fields to central polynomials.* J. Austral. Math. Soc. 25 (1978), 503–506.
Faculty of Mathematics
Indian Inst. of Science Education & Research, Mohali
MGSIPA Transit Campus, Sector 19
Chandigarh 160019, India
dkhurana@iisermohali.ac.in

Department of Mathematics
University of California
Berkeley, CA 94720
lam@math.berkeley.edu

Berkeley, CA 94720
shomron@ocf.berkeley.edu