Abstract: In this paper, we obtain pointwise convergence of solutions to the Schrödinger equation along a class of curves in \mathbb{R}^2 by the polynomial partitioning.

Keywords: Schrödinger equation; Pointwise convergence; Polynomial partitioning; Broadness

Mathematics Subject Classification: 35Q41

1 Introduction

The solution to the Schrödinger equation

$$iu_t - \Delta u = 0, \quad (x, t) \in \mathbb{R}^n \times \mathbb{R},$$

with initial datum $u(x, 0) = f$, is formally written as

$$e^{it\Delta}f(x) := \int_{\mathbb{R}^n} e^{i(x \cdot \xi + t|\xi|^2)} \hat{f}(\xi) \, d\xi.$$

The problem about finding optimal s for which

$$\lim_{t \to 0} e^{it\Delta}f(x) = f(x), \text{ a.e.}$$

whenever $f \in H^s(\mathbb{R}^n)$, was first considered by Carleson [1], and extensively studied by Sjölin [9] and Vega [10], who proved independently the convergence for $s > 1/2$ in all dimensions. Dahlberg and Kenig [3] showed that the convergence does not hold for $s < 1/4$ in any dimension. When $n = 2$, Du and Li [5] proved the convergence result for $s > 3/8$ by the polynomial partitioning; Du, Guth and Li [6] obtained the sharp result $s > 1/3$ by the polynomial partitioning and l^2 decoupling method.

By Cho, Lee and Vargas [2], a general generalization of the pointwise convergence problem is to ask a.e. convergence along a wider approach region instead of vertical lines. One of such problems is to

*This work is supported by Natural Science Foundation of China (No.11601427); Natural Science Basic Research Plan in Shaanxi Province of China (No.2017JQ1009); China Postdoctoral Science Foundation (No.2017M613193); The Fundamental Research Funds for the Central University (No.3102017zy035).

†Corresponding author’s email: huijuwang@mail.nwpu.edu.cn.
consider non-tangential convergence to the initial data, it was shown by Sjölin and Sjögren [8] that non-tangential convergence fails for $s \leq n/2$. Another problem is to consider the relation between the degree of the tangency and regularity when (x, t) approaches to $(x, 0)$ tangentially. One of the model problems raised by [2] is

$$\lim_{t \to 0} e^{it\Delta} f(\gamma(x, t)) = f(x) \ a.e. \quad (1.3)$$

when $n = 1$, here the curves γ approach $(x, 0)$ tangentially to the hyperplane $\{(x, t) : t = 0\}$. Ding and Niu [4] improved the result of [2], but this problem is still open for $n \geq 2$.

In this paper, we consider this problem when $n = 2$ and

$$\gamma(x, t) = x - \sqrt{t} \mu, \quad (1.4)$$

where μ is a unit vector in \mathbb{R}^2. The convergence result (1.3) follows from

Theorem 1.1. For $2 \leq p \leq 3.2$, if $f \in H^s(\mathbb{R}^2)$, $s > 3/8$, then there exists a constant $C > 0$ such that

$$\sup_{t \in (0, 1)} \left\| e^{it\Delta} f(\gamma(x, t)) \right\|_{L^p(B(0, 1))} \leq C \| f \|_{H^s}. \quad (1.5)$$

Remark 1.2. When $\mu = (1, 0)$, $s \geq 11/32$ is showed to be necessary if (1.5) holds. In fact, take

$$\hat{f}(\xi) := \psi \left(\frac{\xi - \lambda \mu}{\lambda^{1/2}} \right),$$

ψ is a non-negative Schwartz function. By rescaling, it follows that

$$\left| e^{it\Delta} f(\gamma(x, t)) \right| \sim \lambda$$

when $|t| \leq \lambda^{-1}$ and $|\lambda^{1/2} (x_1 + \sqrt{t} \lambda + 2t \lambda, x_2)| \leq C$, therefore, (1.5) implies that

$$\lambda \lambda^{-1/2p} \leq \lambda^{1/2+s}.$$

The desired condition follows from the fact that λ can be sufficiently large.

By Littlewood-Paley Theorem and parabolic rescaling, Theorem 1.1 can be reduced to

Theorem 1.3. For $2 \leq p \leq 3.2$, $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that

$$\sup_{t \in (0, R]} \left\| e^{it\Delta} f(\gamma(x, t)) \right\|_{L^p(B(0, R))} \leq C_\varepsilon R^{\frac{7}{8} + \frac{5}{8} + \varepsilon} \| f \|_{L^2} \quad (1.6)$$

for all $R \geq 1$, all f with $\text{supp} \hat{f} \subset A(1) = \{\xi : |\xi| = 1\}$.

2 Proof of Theorem 1.1

For convenience of the proof, we define a new operator

$$e^{it\Pi} f(x) := e^{it\Delta} f(\gamma(x, t)) = \int_{\mathbb{R}^2} e^{i(x \cdot \xi - \sqrt{t} \mu \cdot \xi + t|\xi|^2)} \hat{f}(\xi) \, d\xi. \quad (2.1)$$
Proof of Theorem 1.1: For any $f \in H^s(\mathbb{R}^2)$, we use Littlewood-Paley decomposition,

$$f = \sum_{k \geq 0} f_k,$$

(2.2)

where $supp\hat{f}_0 \subset B(0,1), supp\hat{f}_k \subset A(2^k), k \geq 1$. If Theorem 1.3 holds, when $p = 3.2$, for any $R \geq 1$, $\hat{g} \in C^\infty_c(\mathbb{R}^2)$ with $supp\hat{g} \subset A(1)$, it holds

$$\left\| \sup_{t \in (0,R]} |e^{it\mathcal{H}} g| \right\|_{L^p(B(0,R))} \leq C_\varepsilon R^\varepsilon \|g\|_{L^2},$$

(2.3)

this implies

$$\left\| \sup_{t \in (0,R]} |e^{it\mathcal{H}} g| \right\|_{L^p(B(0,R))} \leq \left\| \sup_{t \in (0,R']} |e^{it\mathcal{H}} g| \right\|_{L^p(B(0,R'))} \leq C_\varepsilon R^{2\varepsilon} \|g\|_{L^2}. $$

By parabolic rescaling,

$$\begin{cases} x = Ry, \\ t = R^2 s, \end{cases}$$

we have

$$e^{it\mathcal{H}} g(x) = \int_{\mathbb{R}^2} e^{i(x \cdot \xi - \sqrt{t} |\xi|^2)} \hat{g}(\xi) d\xi = \int_{\mathbb{R}^2} e^{i(y \cdot R\xi - \sqrt{t} |R\xi|^2 + |\xi|^2)} \hat{g}(\xi) d\xi$$

$$= R^{-2} \int_{\mathbb{R}^2} e^{i(y \cdot \eta - \sqrt{t} \mu \cdot \eta + |\eta|^2)} \hat{g}(\eta) d\eta$$

$$= R^{-2} \int_{\mathbb{R}^2} e^{i(y \cdot \eta - \sqrt{t} \mu \cdot \eta + |\eta|^2)} \hat{g}_1(\eta) d\eta$$

$$= R^{-2} e^{is\mathcal{H}} g_1(y),$$

where $\hat{g}_1(\eta) := \hat{g}(\frac{\eta}{R})$, so that $supp\hat{g}_1 \subset A(R)$. It follows that

$$\left\| \sup_{t \in (0,R]} |e^{it\mathcal{H}} g| \right\|_{L^p(B(0,R))} = R^{2/p-2} \left\| \sup_{s \in (0,1]} |e^{is\mathcal{H}} g_1| \right\|_{L^p(B(0,1))}, \|g\|_{L^2} = R^{-1} \|g_1\|_{L^2},$$

combining it with (2.3), we have

$$\left\| \sup_{t \in (0,1]} |e^{it\mathcal{H}} g_1| \right\|_{L^p(B(0,1))} \leq C_\varepsilon R^{1-2/p+2\varepsilon} \|g_1\|_{L^2}$$

(2.4)

for $supp\hat{g}_1 \subset A(R)$. Apply (2.4) to each $f_k, k \geq 1$,

$$\left\| \sup_{t \in (0,1]} |e^{it\mathcal{H}} f_k| \right\|_{L^p(B(0,1))} \leq C_\varepsilon 2^{k(1-2/p+2\varepsilon)} \|f_k\|_{L^2},$$

(2.5)

And for f_0, by (2.8) below, it holds

$$\left\| \sup_{t \in (0,1]} |e^{it\mathcal{H}} f_0| \right\|_{L^p(B(0,1))} \leq \|f_0\|_{L^2},$$

(2.6)
Combining (2.2), (2.5) and (2.6),

\[
\left\| \sup_{t \in (0, R)} |e^{it\mathcal{H}} f| \right\|_{L^p(B(0,1))} \leq \sum_{k \geq 0} \left\| \sup_{t \in (0, R)} |e^{it\mathcal{H}} f_k| \right\|_{L^p(B(0,1))} \leq \sum_{k \geq 0} C_\epsilon 2^{k(1-2/p+2\varepsilon)} \|f_k\|_{L^2} \\
\leq \sum_{k \geq 0} C_\epsilon 2^{k(1-2/p+2\varepsilon)} 2^{-ks} \|f\|_{L^2} \\
\leq C \|f\|_{L^2},
\]

the last inequality follows from the fact that \(s > 3/8 \) and \(\varepsilon \) can be sufficiently small. Notice that the case \(2 \leq p < 3.2 \) can be easily obtained from the case \(p = 3.2 \) by Hölder’s inequality.

Proof of Theorem 1.3. In order to prove (1.6), it suffices to prove that

\[
\left\| \sup_{t \in (0, R)} |e^{it\mathcal{H}} f| \right\|_{L^p(B(0, R))} \leq C_\epsilon M^{-\varepsilon^2} R^{\frac{2}{p} - \frac{2}{p} +

\varepsilon} \|f\|_{L^2} \tag{2.7}
\]

for all \(R \geq 1, \xi_0 \in B(0,1), M \geq 1, \) and any \(f \) with \(\supp \hat{f} \subset B(\xi_0, M^{-1}) \).

We will prove (2.7) by induction on the physical radius \(R \) and frequency radius \(1/M \). So we need to check the base of the induction.

Base of the induction. From

\[
|e^{it\mathcal{H}} f| \leq M^{-1} \|f\|_{L^2},
\]

it is easy to see that

\[
\left\| \sup_{t \in (0, R)} |e^{it\mathcal{H}} f| \right\|_{L^p(B(0,R))} \leq M^{-1} R^{\frac{2}{p} - \frac{2}{p} + \varepsilon} \|f\|_{L^2} \tag{2.8}
\]

for all \(R \geq 1, M \geq 1, \) so (2.7) is trivial when \(M \geq R^{10} \).

When \(\sqrt{R} \leq M \leq R^{10} \), we adopt wave packets decomposition for \(f \). Let \(\varphi \) be a Schwartz function from \(\mathbb{R} \) to \(\mathbb{R} \), \(\hat{\varphi} \) is non-negative and supported in a small neighborhood of the origin, and identically 1 in another smaller interval. Let \(\theta = \prod_{j=1}^2 \theta_j \) denote the rectangle in the frequency space with center \((c(\theta_1), c(\theta_2))\) and

\[
\hat{\varphi}_\theta(\xi_1, \xi_2) = \prod_{j=1}^2 \frac{1}{|\theta_j|^{1/2}} \hat{\varphi} \left(\frac{\xi_j - c(\theta_j)}{|\theta_j|} \right).
\]

A rectangle \(\nu \) in the physical space is said to be dual to \(\theta \) if \(|\theta_j| \nu_j = 1, j = 1, 2, \) and \((\theta, \nu)\) is said to be a tile. Let \(T \) be a collection of all tiles with fixed dimensions and coordinate axes. Define

\[
\hat{\varphi}_{\theta, \nu}(\xi) = e^{-ic(\nu) \cdot \xi} \hat{\varphi}_\theta(\xi),
\]

we have the following representation

\[
f = \sum_{(\theta, \nu) \in T} f_{\theta, \nu} = \sum_{(\theta, \nu) \in T} \langle f, \varphi_{\theta, \nu} \rangle \varphi_{\theta, \nu}. \tag{2.9}
\]
We will only use (θ, ν) where θ is an $R^{-1/2}$ cube in frequency space and ν is an $R^{1/2}$ cube in physical space. It is clear that

$$\sum_{(\theta, \nu) \in T} |(f, \varphi_{\theta, \nu})|^2 = \|f\|_{L^2}^2.$$

For any Schwartz function f with $\text{supp} \hat{f} \subset B(0,1)$, we only need to consider all θ’s that range over $\text{supp} \hat{f}$.

Set

$$\psi_{\theta, \nu} = e^{itH} \varphi_{\theta, \nu},$$

by the representation (2.9), we have

$$e^{itH} f = \sum_{(\theta, \nu) \in T} e^{itH} f_{\theta, \nu} = \sum_{(\theta, \nu) \in T} (f, \varphi_{\theta, \nu}) \psi_{\theta, \nu}. \tag{2.10}$$

Next, we consider the localization of $\psi_{\theta, \nu}$ in $B(0,R) \times [0,R]$. In fact,

$$\psi_{\theta, \nu}(x,t) \chi_{[0,R]}(t)$$

$$= \int_{\mathbb{R}^2} e^{i(x - \sqrt{\mu} \xi + t|\xi|^2)} e^{-ic(\nu) \xi} \varphi_{\theta}(\xi) d\xi \times \chi_{[0,R]}(t)$$

$$= \sqrt{R} \int_{\mathbb{R}^2} e^{i(x - \sqrt{\mu} \xi + t|\xi|^2)} e^{-ic(\nu) \xi} \prod_{j=1}^2 \varphi\left(\frac{\xi_j - \epsilon(\theta_j)}{R^{-1/2}}\right) d\xi \times \chi_{[0,R]}(t)$$

$$= \frac{1}{\sqrt{R}} \int_{\mathbb{R}^2} e^{i((x-c(\nu)) - R^{-1/2} \eta + c(\theta)) - \sqrt{\mu} (R^{-1/2} \eta + c(\theta) + t|R^{-1/2} \eta + c(\theta)|^2)} \prod_{j=1}^2 \varphi(\eta_j) d\eta \times \chi_{[0,R]}(t),$$

the phase function

$$\phi(x,t,\eta) = (x-c(\nu) - R^{-1/2} \eta + c(\theta) - \sqrt{\mu} (R^{-1/2} \eta + c(\theta) + t|R^{-1/2} \eta + c(\theta)|^2).$$

By simple calculation,

$$\nabla_{\eta} \phi(x,t,\eta) = R^{-1/2} (x-c(\nu) + 2tc(\theta)) + R^{-1/2} \sqrt{\mu} + 2R^{-1} t\eta.$$

It is obvious that in $B(0,R) \times [0,R]$,

$$|\psi_{\theta, \nu}(x,t)| \leq \frac{1}{\sqrt{R}} \chi_{T_{\theta, \nu}}(x,t), \tag{2.11}$$

where $T_{\theta, \nu} := \{(x,t) : 0 \leq t \leq R, |x-c(\nu) + 2tc(\theta)| \leq R^{\frac{1}{2} + \delta}\}, \delta \ll \varepsilon$, is a tube with direction

$$G(\theta) = (-2c(\theta), 1).$$

When $M \geq \sqrt{R}$, there is only one possible θ, therefore all tubes are in the same direction. By the definition of ν, $|c(\nu_1) - c(\nu_2)| \geq R^{1/2}, \nu_1 \neq \nu_2$, these tubes are also essentially disjoint. What’s more, the projection of $T_{\theta, \nu}$ on x-plane is contained in an $R^{1/2} \times R$ rectangle, denoted by $S_{\theta, \nu}$, by (2.11),

$$|\psi_{\theta, \nu}(x,t)| \leq \frac{1}{\sqrt{R}} \chi_{T_{\theta, \nu}}(x,t) \leq \frac{1}{\sqrt{R}} \chi_{S_{\theta, \nu}}(x) \chi_{[0,R]}(t). \tag{2.12}$$
Combining (2.10) and (2.12), we have
\[
\left\| \sup_{t \in [0, R]} |e^{it\mathbf{H}} f| \right\|_{L^p(B(0, R))}^p = \int_{B(0, R)} \sup_{t \in [0, R]} |e^{it\mathbf{H}} f|^p \, dx \\
\leq \int_{B(0, R)} \sup_{t \in [0, R]} \left| \sum_{(\theta, \nu) \in T} \langle f, \varphi_{\theta, \nu} \rangle \psi_{\theta, \nu} \right|^p \, dx \\
\leq \int_{B(0, R)} \sup_{t \in [0, R]} \sum_{(\theta, \nu) \in T} |\langle f, \varphi_{\theta, \nu} \rangle|^p |\psi_{\theta, \nu}|^p \, dx \\
\leq R^{-p/2} \int_{B(0, R)} \sup_{t \in [0, R]} \sum_{(\theta, \nu) \in T} |\langle f, \varphi_{\theta, \nu} \rangle|^p \chi_{\mathcal{S}_{a, \nu}}(x) \chi_{[0, R]}(t) \, dx \\
\leq R^{\frac{3-2p}{2}} + O(\delta) \| f \|^p_{L^2},
\]
from which (2.7) follows.

Therefore, we only need to consider the case \(M \leq \sqrt{R} \). On the other hand, when \(R \leq C \) for some constant \(C > 0 \), the result is true by (2.8). So we can assume that \(R \) is sufficiently large. This completes the base of our induction. Now we are ready to prove Theorem 1.3.

Choose non-negative Schwartz functions \(\psi_1(t) \) and \(\psi_2(t) \), such that \(\psi_1(t) \) is supported in a sufficiently small neighborhood of \([0, R^{-1}] \), and identically 1 on \([0, R^{-1}] \), \(\psi_2(t) \) is supported in a sufficiently small neighborhood of \([R^{-1}, 1] \), and identically 1 on \([R^{-1}, 1] \). We have
\[
\left\| \sup_{t \in [0, R]} |e^{it\mathbf{H}} f| \right\|_{L^p(B(0, R))} \leq \left\| \sup_{t \in [0, R]} |e^{it\mathbf{H}} f| \psi_1 \left(\frac{t}{R} \right) \right\|_{L^p(B(0, R))} + \left\| \sup_{t \in [0, R]} |e^{it\mathbf{H}} f| \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B(0, R))} =: I_1 + I_2.
\]

If \(I_1 \) dominates, \(t \) is localized in a sufficiently small neighborhood of \([0, R^2] \), the oscillatory integral
\[
e^{it\mathbf{H}} = \int_{\mathbb{R}^2} e^{i(t \xi - \sqrt{1-\xi^2})(\xi^2 + t) \frac{d \xi}{2}}
\]
shows that \(|e^{it\mathbf{H}} f| \psi_1 \left(\frac{t}{R} \right) \) is essentially supported in \(B(0, R^{1-\varepsilon}) \times [0, R^2] \). Therefore,
\[
I_1 \leq \left\| \sup_{t \in [0, R^{1-\varepsilon}]} |e^{it\mathbf{H}} f| \psi_1 \left(\frac{t}{R} \right) \right\|_{L^p(B(0, R^{1-\varepsilon}))} \leq 2C_\varepsilon M^{-\varepsilon} R^{(1-\varepsilon)\left(\frac{3}{2} - \frac{\varepsilon}{2} + \varepsilon\right)} \| f \|^p_{L^2}
\]
\[
\leq R^{-\varepsilon^2} C_\varepsilon M^{-\varepsilon} R^{\frac{3}{2} - \frac{\varepsilon}{2} + \varepsilon} \| f \|^p_{L^2},
\]
since \(R \) is sufficiently large, then (2.13) and (2.14) finished the induction.

We consider the case when \(I_2 \) dominates. Let \(K \) be a large parameter such that \(K \ll R^3 \), we decompose \(B(0, R) \) into balls \(B_K \) of radius \(K \), and interval \([0, R]\) into intervals \(I_K \) of length \(K \). We write
\[
\left\| \sup_{t \in [0, R]} |e^{it\mathbf{H}} f| \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B(0, R))}^p = \sum_{B_K \subset B(0, R)} \int_{B_K} \left(\sup_{I_K \subset [0, R]} \int_{I_K} \right) \left\| e^{it\mathbf{H}} f \right\|^p_{L^p(B(0, R))} \, dx.
\]
We divide $B\left(\xi, M^{-1}\right)$ into balls τ of radius $(KM)^{-1}$, $f = \sum f_\tau$, $\hat{f}_\tau = \hat{f}\big|_\tau$. For each $B_K \times I_K^1$ and a parameter $A \in \mathbb{Z}^+$, we choose 1-dimensional sub-spaces $V_1^0, V_2^0, \ldots, V_A^0$ such that

$$
\mu_{e^{it\varphi}}\left(B_K \times I_K^1\right) := \min_{v_1, v_2, \ldots, v_A} \left(\max_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} \int_{B_K \times I_K^1} |e^{itH}f|_2^p \psi_2\left(\frac{t}{R}\right) dx dt\right)
$$

achieves the minimum. We say that $\tau \in V_0$ if

$$
\inf_{\xi \in \tau} \text{Angle} \left(\frac{(-2\xi, 1)}{(-2\xi, 1)^t}, V_0\right) \leq (KM)^{-1}.
$$

Then from (2.15),

$$
\left\| \sup_{t \in (0, R)} \left| e^{itH}f \right|_2^p \psi_2\left(\frac{t}{R}\right) \right\|_{L^p(B(0, R))}^p
=$n \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \sum_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
\leq \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \sum_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
+ \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \sum_{\tau \in \text{some } V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
=$$n I_3 + I_4.

If I_3 dominates, we have

$$
I_3 \leq \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \sum_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
\leq K^{O(1)} \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \max_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
= K^{O(1)} \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \left| \max_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p dx
= K^{O(1)} \sum_{B_K \subset B(0, R)} \int_{B_K} \sup_{I_K^1 \subset [0, R)} \sup_{t \in I_K^1} \min_{V_1, V_2, \ldots, V_A} \left(\max_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} \int_{B_K \times I_K^1} |e^{itH}f_\tau|_2^p \psi_2\left(\frac{t}{R}\right) d\tau dt\right),
$$

where we used the fact that $|e^{itH}f_\tau|_2^p \psi_2\left(\frac{t}{R}\right)$ is essentially constant c_K^p on $B_K \times I_K^1$. Denote

$$
\left\| e^{itH}f_\tau \left| \psi_2\left(\frac{t}{R}\right) \right|^p \right\|_{L^p(B_K \times I_K^1 \times [0, R))}^p
:= \sum_{B_K \subset B(0, R)} \sup_{I_K^1 \subset [0, R)} \min_{V_1, V_2, \ldots, V_A} \left(\max_{\tau \notin V_0, \alpha = 1, 2, \ldots, A} \int_{B_K \times I_K^1} |e^{itH}f_\tau|_2^p \psi_2\left(\frac{t}{R}\right) d\tau dt\right),
$$

by Theorem 2.1 below, we have

$$
I_3 \leq K^{O(1)} R^{2\alpha^2} \left(\frac{\xi}{\xi} \right)^p M^{-\alpha} R^{2\alpha^2 - 2\alpha + \varepsilon} \|f\|_L^p.
$$
which can be approximated by Theorem 2.1. For \(2 \leq p \leq 3.2 \) and \(k = 2 \), for any \(\varepsilon > 0 \), there exist positive constants \(A = A(\varepsilon) \) and \(C(K, \varepsilon) \) such that
\[
\left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{k,A}L^\infty(B(0,R) \times [0,R])} \leq C(K, \varepsilon) R^{\frac{2}{p} - \frac{1}{2} + \varepsilon} \| f \|_{L^2}, \tag{2.18}
\]
for all \(R \geq 1 \), \(\xi_0 \in B(0,1) \), \(M \geq 1 \), all \(f \) with \(\text{supp} \psi \subset B(\xi_0, M^{-1}) \).

We will prove Theorem 2.1 from Section 3 to Section 7.

3 Preliminaries for the proof of Theorem 2.1

For any subset \(U \subset B(0,R) \times [0,R] \), we define
\[
\left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{k,A}L^\infty(U)} :=
\left(\sum_{B_K \subset B(0,R)} \sup_{I_K' \subset [0,R]} \left| \frac{U \cap (B_K \times I_K')}{|B_K \times I_K'|} \right|^{1/p} \right)^{1/p},
\]
which can be approximated by
\[
\left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{k,A}L^s(U)} :=
\left(\sum_{B_K \subset B(0,R)} \left(\sum_{I_K' \subset [0,R]} \left| \frac{U \cap (B_K \times I_K')}{|B_K \times I_K'|} \right|^{1/p} \right)^{1/q} \right)^{1/p},
\]
i.e.,
\[
\left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{k,A}L^\infty(U)} = \lim_{q \to +\infty} \left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{k,A}L^q(U)},
\]
which implies that Theorem 2.1 can be turned to prove Theorem 3.1.
Theorem 3.1. For $2 \leq p \leq 3.2$ and $k = 2$, for any $\varepsilon > 0$, $1 \leq q < +\infty$, there exist positive constants $A = A(\varepsilon)$ and $C(\varepsilon)$ such that
\[
\left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L_2}(B(0, R) \times [0, R])} \leq C(\varepsilon) R^{\frac{2}{pq} - \frac{3}{2} + \varepsilon} \| f \|_{L^2},
\]
for all $R \geq 1$, $\xi_0 \in B(0, 1), M \geq 1$, all f with $\text{supp} \hat{f} \subset B(\xi_0, M^{-1})$.

Instead of Theorem 3.1, we will prove Theorem 3.2 below.

Theorem 3.2. For $2 \leq p \leq 3.2$ and $k = 2$, for any $\varepsilon > 0$, $1 \leq q < +\infty$, there exist positive constants $\overline{A} = \overline{A}(\varepsilon)$ and $\overline{C}(\varepsilon)$ such that
\[
\left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L_2}(B(0, R') \times [0, R])} \leq C(\varepsilon) R^{\frac{2}{pq} - \frac{3}{2} + \varepsilon} \| f \|_{L^2},
\]
for any fixed $R \geq 1$, all $1 \leq R' \leq R$, $1 \leq A \leq \overline{A}$, $\xi_0 \in B(0, 1), M \geq 1$, all f with $\text{supp} \hat{f} \subset B(\xi_0, M^{-1})$.

We will prove Theorem 3.2 by induction on R' and A, we will check the base of the induction.

The base of the induction. Given $R > 1$, for any $1 \leq R' \leq R$, it is easy to see
\[
\left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L_2}(B(0, R') \times [0, R])} \leq C(\varepsilon) R^{1/pq} R^\frac{2}{pq} \| f \|_{L^2}.
\]
(1) When R' is controlled by some constant C, then (3.1) holds.

(2) When $A = 1$, then (3.1) holds even though A does not appear in the right side of (3.2). In fact, we choose \overline{A} such that $\delta \log \overline{A} = 100$, therefore
\[
\left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L_2}(B(0, R') \times [0, R])} \leq C(\varepsilon) R^{1/pq} R^\frac{2}{pq} \| f \|_{L^2} \\
\leq C(\varepsilon) R^{1/pq} R^{100} \left(R' \right)^{\frac{2}{pq} - \frac{3}{2} + \varepsilon} \| f \|_{L^2} \\
= C(\varepsilon) R^{1/pq} R^{\delta(\log \overline{A} + \log A)} \left(R' \right)^{\frac{2}{pq} - \frac{3}{2} + \varepsilon} \| f \|_{L^2},
\]
this completes the base of the induction. What’s more, by the analysis in Section 2, we only need to consider the case $KM \leq R^{1/2}$.

In order to prove Theorem 3.2, we need some basic inequalities:

Lemma 3.3. (1) If U_1 and U_2 are two subsets of $B(0, R) \times [0, R]$, then for $1 \leq q < +\infty$,
\[
\left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U_1 \cup U_2)} \leq \left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U_1)} + \left\| e^{t\mathbf{H}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U_2)}.
\]
(2) Given non-negative integers A, A_1, A_2, $A = A_1 + A_2$, then for $1 \leq q < +\infty$,
\[
\left\| e^{t\mathbf{H}} (f + g) \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U)} \leq C_p \left(\left\| e^{t\mathbf{H}} f \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U)} + \left\| e^{t\mathbf{H}} g \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^{p}_{L^q}(U)} \right).
\]
(3) If $1 \leq p \leq r$, $U \subset S_U \times I_U \subset B(0, R) \times [0, R]$, where S_U and I_U are subsets paralleled to the x-plane and t-axe respectively, then for $1 \leq q < +\infty$,

$$\left\| e^{itf}f_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U)} \leq C_K \left(|S_U| |I_U|^{1/q} \right)^{\frac{1}{q} - \frac{1}{p}} \left\| e^{itf}f_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U)}.$$

The proof of Lemma 3.3 is very similar to Lemma 3.1, [5], So we omit the proof here.

4 Polynomial partitioning

The main tool we will use is polynomial partitioning.

Lemma 4.1. Suppose $f_1, f_2, ..., f_N$ are functions defined on \mathbb{R}^n with $\text{supp} \tilde{f}_j \subset B^n (0, 1), U_1, U_2, ..., U_N$ are subsets of $B^n (0, R) \times [0, R]$, and $1 \leq p, q < +\infty$, Π is a linear sub-space in \mathbb{R}^{n+1} with dimension m, $1 \leq m \leq n + 1$, π is the orthogonal projection from \mathbb{R}^{n+1} to Π, then there exists a non-zero polynomial P_Π defined on Π of degree no more than $C_m N^{1/m}$, such that $P (z) = P_\Pi (\pi (z)), z \in \mathbb{R}^{n+1}$, satisfies

$$\left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P > 0\})}^{p} = \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P < 0\})}^{p}, \quad j = 1, 2, ..., N. \quad (4.1)$$

Proof: Let $V = \{ P (z) = P_\Pi (\pi (z)) : \text{Deg} P_\Pi \leq D \}$, note that V is a vector space of dimension D^m, choose D such that $D^m \sim N + 1$, i.e., $D \leq C_m N^{1/m}$, without less of generality, we may assume $\text{Dim} V = N + 1$ and identify V with \mathbb{R}^{N+1}. We define a function $G : S^N \subset V \setminus \{0\} \rightarrow \mathbb{R}^N$ as

$$G (P) := \{ G_j (P) \}_{j=1}^{N},$$

where

$$G_j (P) := \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P > 0\})}^{p} - \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P < 0\})}^{p}.$$

It is obvious that $G (-P) = -G (P)$. If the function G is continuous, then Lemma 4.1 follows from the Borsuk - Ulam Theorem. So we only need to check the continuity of G_j.

Suppose $P_l \rightarrow P$ in $V \setminus \{0\}$, note that

$$|G_j (P_l) - G_j (P)| \leq 2 \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P_l \leq 0\})}^{p},$$

so we have

$$\lim_{l \rightarrow +\infty} \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P_l \leq 0\})}^{p} \leq \left\| e^{itf}f_j \psi_2 \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^p L^q(U \cap \{P^{-1} (0) \})}^{p} = 0.$$

This implies that G is continuous on $V \setminus \{0\}$.

We use this Lemma to prove the following partitioning result:
Theorem 4.2. Suppose that \(f \) is a function defined on \(\mathbb{R}^n \) with \(\text{supp} \hat{f} \subset B^n (0,1) \), \(U \) is a subset of \(B^n (0,R) \times [0, R'] \), and \(1 \leq p, q < +\infty \), \(\Pi \) is a linear sub-space in \(\mathbb{R}^{n+1} \) with dimension \(m \), \(1 \leq m \leq n+1 \), \(\pi \) is the orthogonal projection from \(\mathbb{R}^{n+1} \) to \(\Pi \), then there exists a non-zero polynomial \(P_\Pi \) defined on \(\Pi \) of degree no more than \(D \), and \(P(z) = P_\Pi (\pi(z)) \) such that \(\Pi \) is a union of \(\sim_m D^m \) disjoint open sets \(O_{\Pi,i} \), \(\mathbb{R}^{n+1} \setminus Z(P) \) is a union of \(\sim_m D^m \) disjoint open sets \(O_i = \pi^{-1}(O_{\Pi,i}) \), and for each \(i \), we have

\[
\left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U)}^p \leq C_m D^m \left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap O_i)}^p.
\]

(4.2)

Proof: By Lemma 4.1, we obtain a polynomial \(Q_1 \) of degree \(\leq C \),

\[
Q_1(z) = Q_{\Pi,1}(\pi(z)),
\]

such that

\[
\left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 > 0\})}^p = \left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 < 0\})}^p.
\]

Next by Lemma 4.1 again, we have a polynomial \(Q_2 \) of degree \(\leq C_m 2^{1/m} \), such that

\[
\left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 > 0, Q_2 > 0\})}^p = \left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 > 0\} \setminus \{Q_2 < 0\})}^p,
\]

\[
\left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 < 0, Q_2 < 0\})}^p = \left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap \{Q_1 < 0\} \setminus \{Q_2 > 0\})}^p.
\]

Continuing inductively, we construct polynomials \(Q_1, Q_2, \ldots, Q_s \),

\[
Q_l(z) = Q_{\Pi,l}(\pi(z)), l = 1, 2, \ldots, s.
\]

Set \(P := \bigcap_{l=1}^s Q_s \), where \(\deg Q_l \leq C_m 2^{(l-1)/m} \), therefore \(\deg P(z) \leq C_m 2^{s/m} \), and the sign conditions of polynomials cut \(\mathbb{R}^{n+1} \setminus Z(P) \) into \(2^s \) cells \(O_i \) such that

\[
\left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U)}^p \leq C_m 2^s \left\| e^{it\Pi} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{BL_{k,A}^s L^q(U \cap O_i)}^p.
\]

Choose \(s \) such that \(2^{s/m} \in [D/2, D] \), then we have \(\deg P \leq D \) and the number of cells \(O_i \) is \(C_m D^m \). It is obvious that \(\Pi \) is divided by \(C_m D^m \) cells \(O_{\Pi,i} \) determined by the sign conditions of \(Q_{\Pi,l}, l = 1, 2, \ldots, s \). This completes the proof of Theorem 4.2.

Same as the analysis in [5], by a slight modification in Theorem 4.2, we assume that all the varieties appear in our argument are transverse complete intersections. For any \(1 \leq m \leq n \), we say that a variety \(Z(P_1, P_2, ..., P_{n+1-m}) \subset \mathbb{R}^n \times \mathbb{R} \) is a transverse complete intersection if for each \(z \in Z(P_1, P_2, ..., P_{n+1-m}) \),

\[
\nabla P_1(z) \wedge \nabla P_2(z) \wedge \ldots \wedge \nabla P_{n+1-m}(z) \neq 0.
\]

5 Proof of Theorem 3.2

Proof of Theorem 3.2. By Lemma 3.3 (3), it is sufficient to prove Theorem 3.2 for \(p = 3.2 \). We assume that (3.1) holds for \(A \leq \frac{\pi}{2} \) and \(R' \leq \frac{R}{2} \), next prove it for \(A = A' \) and \(R' = R \).
We say that we are in the algebraic case if there is a transverse complete intersection \(Z(P) \) of dimension 2, where \(\deg P(z) \leq D = D(\varepsilon) \), so that
\[
\left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty(B(0,R) \times [0,R])} \leq C \left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty((B(0,R) \times [0,R]) \cap N_{R^{1/2+\delta}}(Z(P)))}, \tag{5.1}
\]
for each \(\theta, \nu \). By the fundamental theorem of Algebra, see [5], for each \((\theta, \nu) \), we have
\[
\left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty(B(0,R) \times [0,R])} \leq C \left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty((B(0,R) \times [0,R]) \cap N_{R^{1/2+\delta}}(Z(P)))}
\]
here \(N_{R^{1/2+\delta}}(Z(P)) \) denotes the \(R^{1/2+\delta} \) neighborhood of \(Z(P) \). Otherwise we are in the cellular case.

Cellular case. We will use polynomial partitioning. By Theorem 4.2, there exists a non-zero polynomial \(P(z) = \prod Q_i(z) \) of degree at most \(D \) such that \((\mathbb{R}^2 \times \mathbb{R}) \setminus Z(P) \) is a union of \(\sim D^3 \) disjoint cells \(O_i \) such that for each \(i \), we have
\[
\left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty(B(0,R) \times [0,R])} \leq CD^3 \left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty((B(0,R) \times [0,R]) \cap O_i)}.
\]
Moreover, \(Z(P) \) is a transverse complete intersection of dimension 2.

Put
\[
W := N_{R^{1/2+\delta}}(Z(P)), O_i^* := O_i \setminus W.
\]
Since we are in the cellular case and \(W \subset \bigcup O_i N_{R^{1/2+\delta}}(Z(Q_i)) \), the contribution from \(W \) is negligible. Hence for each \(i \),
\[
\left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty(B(0,R) \times [0,R])} \leq CD^3 \left\| e^{itH} f_2 \left(\frac{t}{R} \right) \right\|_{BL^p L^\infty((B(0,R) \times [0,R]) \cap O_i^*)}. \tag{5.2}
\]
For each cell \(O_i^* \), we set
\[
T_i := \{ (\theta, v) \in T : T_{\theta,v} \cap O_i^* \neq \emptyset \}.
\]
For the function \(f \), we define
\[
f_i := \sum_{(\theta, v) \in T_i} f_{\theta,v}.
\]
It follows that on \(O_i^* \),
\[
e^{itH} f \sim e^{itH} f_i.
\]
By the fundamental theorem of Algebra, see [5], for each \((\theta, v) \in T \), we have
\[
\text{Card} \{ i : (\theta, v) \in T_i \} \leq D + 1.
\]
Hence
\[
\sum_i \| f_i \|_{L^2}^2 \leq CD \| f \|_{L^2}^2,
\]
by pigeonhole principle, there exists \(O_i^* \) such that
\[
\| f_i \|_{L^2}^2 \leq CD^{-2} \| f \|_{L^2}^2. \tag{5.3}
\]
So for such i, by (5.2), the induction on R' and (5.3), we have
\[
\left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \leq CD^3 \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \\
\leq \sum_{B_{R/2} cover B(0,R)} \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \leq CD^3 \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \\
\leq CD^3 \sum_{B_{R/2} cover B(0,R)} \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \leq CD^3 \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \\
\leq CD^3 \left(C(K, \varepsilon) R^3 \right)^p.
\]
choose D sufficiently large such that $CD^{3-p} \ll 1$, this completes the induction.

Algebraic case. We decompose $B(0,R) \times \{0, R\}$ into balls B_j of radius ρ, $\rho^{1/2+\delta_2} = R^{1/2+\delta}$. Choose $\delta \ll \delta_2$, so that $\rho \sim R^{1-O(\delta_2)}$. For each j we define
\[
T_j := \{(\theta, v) \in T : T_{\theta,v} \cap N_{R^{1/2+\delta}}(Z(P)) \cap B_j \neq \emptyset\},
\]
and
\[
f_j := \sum_{(\theta,v) \in T_j} f_{\theta,v}.
\]
On each $B_j \cap N_{R^{1/2+\delta}}(Z(P))$, we have
\[
e^{i\theta f} \sim e^{i\theta f_j}.
\]
Therefore,
\[
\left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B(0,R)\times \{0, R\})} \leq \sum_{j} \left\| e^{i\theta f_{\psi_2}\left(\frac{t}{R}\right)} \right\|_{BL_{P/2,\infty}^{p}(B_j \cap N_{R^{1/2+\delta}}(Z(P)))}.
\]
We further divide T_j into tubes that are tangential to Z and tubes that are transverse to Z. We say that $T_{\theta,v}$ is tangential to Z in B_j if the following two conditions hold:

Distance condition:

\[
T_{\theta,v} \cap 2B_j \subset N_{R^{1/2+\delta}}(Z(P)) \cap 2B_j = N_{\rho^{1/2+\delta}}(Z(P)) \cap 2B_j.
\]

Angle condition: If $z \in Z \cap N_{O(R^{1/2+\delta})}(T_{\theta,v}) \cap 2B_j = Z \cap N_{O(\rho^{1/2+\delta})}(T_{\theta,v}) \cap 2B_j$, then

\[
\text{Angle}(G(\theta), T_{z}Z) \leq C \rho^{-1/2+\delta_2}.
\]

The tangential wave packets are defined by
\[
T_{j,\text{tang}} := \{(\theta,v) \in T_j : T_{\theta,v} \text{ is tangent to } Z \text{ in } B_j\},
\]
and the transverse wave packets
\[
T_{j,\text{trans}} := T_j \setminus T_{j,\text{tang}}.
\]
Set

$$f_{j,\text{tang}} := \sum_{(\theta, \nu) \in T_{j, \text{tang}}} f_{\theta, \nu}, \quad f_{j, \text{trans}} := \sum_{(\theta, \nu) \in T_{j, \text{trans}}} f_{\theta, \nu},$$

so

$$f_j = f_{j, \text{tang}} + f_{j, \text{trans}}.$$

Therefore, we have

$$\left\| e^{itH} f_{j, \text{tang}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B(0, R) \times [0, R])}^p \leq \sum_j \left\| e^{itH} f_{j, \text{tang}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B_j)}^p \leq \sum_j \left\| e^{itH} f_{j, \text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B_j)}^p + \sum_j \left\| e^{itH} f_{j, \text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B_j)}^p.$$

We will treat the tangential term and the transverse term respectively.

Algebraic transverse case. In this case, the transverse term dominates, by induction on the radius R',

$$\left\| e^{itH} f_{j, \text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B_j)}^p \leq \left\| e^{itH} f_{j, \text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B(0, R) \times [0, R])}^p \leq C (K, \varepsilon) R^2 \left(\log \frac{R}{\rho} \right) R^R \| f_{j, \text{trans}} \|_{L^2} \leq R^{O(\delta) - 2O(\delta_2)} C (K, \varepsilon) R^{R^2} \| f_j \|_{L^2},$$

where B_{ρ} denotes the projection of B_j on the x-plane. By [5] we have

$$\sum_j \| f_{j, \text{trans}} \|^2_{L^2} \leq C (D) \| f \|^2_{L^2}. \quad (5.4)$$

Then

$$\sum_j \left\| e^{itH} f_{j, \text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{BL^p_{\xi \eta} L^q(B_j)}^p \leq R^{O(\delta) - 2O(\delta_2)} \left[C (K, \varepsilon) R^{R^2 \| f \|_{L^2}} \right]^p \sum_j \| f_{j, \text{trans}} \|^p_{L^2} \leq R^{O(\delta) - 2O(\delta_2)} C (D) \left[C (K, \varepsilon) R^{R^2 \| f \|_{L^2}} \right]^p.$$

The induction follows by choosing $\delta \ll \varepsilon \delta_2$ and the fact that R is sufficiently large.

Algebraic tangential case. in this case, the tangential term dominates, we need to do wave packets decomposition in B_j at scale ρ.

Wave packet decomposition in B_j. Choose $(\overline{B}, \overline{\nu})$ as before where \overline{B} is a $\rho^{-1/2}$-cube in frequency space and $\overline{\nu}$ is a $\rho^{1/2}$-cube in physical space. We can decompose f as

$$f = \sum_{(\overline{B}, \overline{\nu}) \in \Gamma} f_{\overline{B}, \overline{\nu}} = \sum_{(\overline{B}, \overline{\nu}) \in \Gamma} \left(f, \phi_{\overline{B}, \overline{\nu}} \right) \psi_{\overline{B}, \overline{\nu}},$$

where
where
\[
\hat{\varphi}_\varpi (\xi) = e^{-ic(\varpi) \cdot \xi} \hat{\varphi}_\varpi (\xi),
\]
\[
\hat{\varphi}_\varpi (\xi_1, \xi_2) = \frac{1}{\rho^{1/2}} \prod_{j=1}^{2} \hat{\varphi} \left(\frac{\xi_j - c(\theta_j)}{\rho^{1/2}} \right).
\]

Set \((x_0, t_0)\) as the center of \(B_j\). In order to decompose wave packets in \(B_j\), we need to modify the base such that
\[
\hat{\tilde{\varphi}}_\varpi \varpi (x, t) = e^{-ix_0 \cdot \xi + i\sqrt{\rho \mu} \cdot \xi - it_0 |\xi|^2} \hat{\varphi}_\varpi (\xi),
\]
so we set
\[
\hat{\tilde{\varphi}}_\varpi \varpi = e^{-ix_0 \cdot \xi + i\sqrt{\rho \mu} \cdot \xi - it_0 |\xi|^2} \hat{\varphi}_\varpi (\xi),
\]
then
\[
f = \sum_{(\varpi, \varpi) \in T} \langle f, \hat{\tilde{\varphi}}_\varpi \varpi \rangle \hat{\tilde{\varphi}}_\varpi \varpi
\]
Therefore,
\[
e^{itH}f = \sum_{(\varpi, \varpi) \in T} \langle f, \hat{\tilde{\varphi}}_\varpi \varpi \rangle \hat{\tilde{\psi}}_\varpi \varpi,
\]
where
\[
\hat{\tilde{\psi}}_\varpi \varpi = e^{itH} \hat{\tilde{\varphi}}_\varpi \varpi
\]
As the previous analysis, we restrict \(\hat{\tilde{\psi}}_\varpi \varpi\) in \(B_j\), then we have
\[
|\hat{\tilde{\psi}}_\varpi \varpi (x, t)| \leq \rho^{-1/2} \chi_{T_{\varpi \varpi}} (x, t),
\]
the tube \(T_{\varpi \varpi}\) is defined by
\[
T_{\varpi \varpi} := \{(x, t) \in B_j : |x - x_0 - c(\varpi) + 2c(\varpi)(t - t_0)| \leq \rho^{1/2} \delta, |t - t_0| \leq \rho \}.
\]
For each \((\theta, \nu) \in T_{j, \text{tang}}\), we consider the decomposition of \(f_{\theta, \nu}\),
\[
f_{\theta, \nu} = \sum_{(\varpi, \varpi) \in T} \langle f_{\theta, \nu}, \hat{\tilde{\varphi}}_\varpi \varpi \rangle \hat{\tilde{\varphi}}_\varpi \varpi
\]
\((\varpi, \varpi)\) which contribute to \(f_{\theta, \nu}\) satisfy
\[
|c(\theta) - c(\varpi)| \leq 2\rho^{-1/2},
\]
and
\[
|c(\nu) - c(\varpi) - x_0 - 2t_0c(\theta)| \leq R^{1/2} \delta.
\]
From (5.7) we know that
\[
\text{Angle} \left(G(\theta), G(\varpi) \right) \leq 2\rho^{-1/2},
\]
and (5.8) implies that if \((x, t) \in T_{v, \nu} \cap B_j\), then

\[
|x - c(\nu) + 2c(\theta) t| \leq CR^{1/\delta_m}, \tag{5.10}
\]

i.e., \(T_{v, \nu} \subset N_{R^{1/\delta_m}}(T_{v, \nu} \cap B_j)\).

We introduce the definition of \(R^{-1/2+\delta_m}\)-tangent to \(Z\) in \(B\) with radius \(R\). Suppose that \(Z = Z(P_1, ..., P_{3-m})\) is a transverse complete intersection in \(\mathbb{R}^2 \times \mathbb{R}\). We say that \(T_{v, \nu}\) (with scale \(R\)) is \(\left(\frac{R}{2}\right)^{-1/2+\delta_m}\)-tangent to \(Z\) if the following two conditions hold:

1. **Distance condition:**

 \[
 T_{v, \nu} \subset N_{(\frac{R}{2})^{1/2+\delta_m}}(Z) \cap B.
 \]

2. **Angle condition:** If \(Z \cap N_{\theta}(\left(\frac{R}{2}\right)^{1/2+\delta_m}) (T_{v, \nu}) \cap B\), then

 \[
 \angle \left(\frac{R}{2}\right)^{-1/2+\delta_m} \leq C(R^{1/\delta_m}).
 \]

Moreover, set

\[
T_Z := \left\{ (\theta, v) : T_{v, \nu} \text{ is } \left(\frac{R}{2}\right)^{-1/2+\delta_m} \text{-tangent to } Z \text{ in } B \right\},
\]

we say that \(f\) is concentrated in wave packets from \(T_Z\) in \(B\) if

\[
\sum_{(\theta, v) \in T_Z} \|f_{\theta, v}\|_{L^2} \leq \text{RapDec} \left(\frac{R}{2}\right) \|f\|_{L^2}.
\]

We claim that new wave packets of \(f_{j, \nu} \) are \(\rho^{-1/2+\delta_2}\)-tangent to \(Z\) (\(P\)) in \(B_j\) (note that we do not make a separate notation for convenience). In fact, if \(Z \cap N_{\theta}(\rho^{1/\delta_2}) (T_{v, \nu}) \cap B_j\), then \(z \in Z \cap N_{\theta}(\rho^{1/\delta_2}) (T_{v, \nu}) \cap B_j\), therefore

\[
\angle \frac{\rho}{2}\left(\frac{R}{2}\right)^{-1/2+\delta_2} \leq \angle \left(\frac{R}{2}\right)^{-1/2+\delta_2} + \angle \left(\frac{R}{2}\right)^{1/\delta_2} \leq C\rho^{-1/2+\delta_2}.
\]

Also,

\[
T_{v, \nu} \subset N_{R^{1/\delta_2}}(T_{v, \nu} \cap B_j) \cap B_j = N_{\rho^{1/\delta_2}}(T_{v, \nu} \cap B_j) \cap B_j \subset N_{\rho^{1/\delta_2}}(Z(P)) \cap B_j.
\]

Note that \(B_j \subset B_\rho \times [0, R]\), whenever Theorem 5.1 below holds true, we have

\[
\left\| e^{it\mathcal{H}} f_{j, \nu} \psi_2 \left(\frac{t}{\rho}\right) \right\|_{L^p(B_j)} \leq \left[\rho(2+1/q)(1-p^{-1}/(4+\delta)) \right] \left\| e^{it\mathcal{H}} f_{j, \nu} \psi_2 \left(\frac{t}{\rho}\right) \right\|_{L^p(B_j)} \leq \left[\rho(2+1/q)(1-p^{-1}/(4+\delta)) \right] \left\| e^{it\mathcal{H}} f_{j, \nu} \psi_2 \left(\frac{t}{\rho}\right) \right\|_{L^p(B_\rho \times [0, R])} \leq \left[\rho(2+1/q)(1-p^{-1}/(4+\delta)) \right] C \left(\rho^{1/2+\delta_2} \right) \left(\log \frac{\rho}{\log R} \right) \left(\frac{R}{\rho} \right)^{\delta_2} \left\| f_{j, \nu} \psi_2 \right\|_{L^2(B_j)}\]
where we choose $C(K, \varepsilon) \geq C(K, D, \frac{\varepsilon}{2})$, therefore,

$$\sum_j \left\| e^{itH} j_{\text{tang}} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^j(0, R))}^p \leq R^{O(\delta)} R^{O(\delta) - \varepsilon / 2} \left[C(K, \varepsilon) R^d R^e \| f \|_{L^2} \right]^p,$$

the induction closes for the fact that $\delta \ll \delta_2 \ll \varepsilon$ and R is sufficiently large.

Theorem 5.1. Suppose that $Z(P) \subset \mathbb{R}^2 \times \mathbb{R}$ is a transverse complete intersection determined by some $P(z)$ with $\deg P(z) \leq D_Z$. For all f with $\text{supp} \tilde{f} \subset B(0, 1)$, and fixed $R \geq 1$, if $B(0, R') \times [0, R]$ contains a ball (tube) B of radius R' such that f is concentrated in wave packets from T_Z in B, here $1 \leq R' \leq R$, then for any $\varepsilon > 0$ and $p > 4$, there exist positive constants $\overline{A} = \overline{A}(\varepsilon)$ and $C(K, D_Z, \varepsilon)$ such that

$$\left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R') \times [0, R])} \leq C(K, D_Z, \varepsilon) R^d \log(\overline{A}) R^e \left(\frac{R}{R'} \right)^{\frac{d}{2} + \varepsilon} \| f \|_{L^2}$$

(5.11)

holds for all $1 \leq A \leq \overline{A}$.

6 Proof of Theorem 5.1

We will again use the induction on R' and A to prove Theorem 5.1, the base of the induction is done as in Section 3. And we only consider the case $KM < R^{1/2 - O(\delta_1)}$. We assume that the result holds for $A \leq \overline{A}$ and $R' \leq \frac{2}{3}$, next prove it for $A = \overline{A}$ and $R' = R$, this completes the induction.

Set $D = D(\varepsilon, D_Z)$, we say we are in algebraic case if there is transverse complete intersection $Y \subset Z$ of dimension 1 defined using polynomials of degree no more than D, such that

$$\left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R') \times [0, R])} \leq C \left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R') \times [0, R]) \cap N_{R^{1/2 + \delta_2}}(Y)}.$$

Otherwise we are in the cellular case.

Cellular case. We first identify a significant piece N_1 of $(B(0, R) \times [0, R]) \cap N_{R^{1/2 + \delta_2}}(Z(P))$, where locally $Z(P)$ behaves like a 2-plane V, such that

$$\left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R) \times [0, R])} \leq C \left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R) \times [0, R]) \cap N_{R^{1/2 + \delta_2}}(Z(P))} \leq C \left\| e^{itH} f \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(B^0(0, R) \times [0, R]) \cap N_{R^{1/2 + \delta_2}}(N_1)}.$$

(6.1)

By Theorem 4.2, there exists a polynomial $Q(z) := \prod_{l=1}^s Q_l$ with $\deg Q(z) \leq D$, where polynomials $Q_1, Q_2, ..., Q_s$

$$Q_l(z) = Q_{V,l}(\pi(z)), \, l = 1, 2, ..., s,$$
π is the orthogonal projection from \(\mathbb{R}^2 \times \mathbb{R} \) to \(\mathbb{R}^2 \times \mathbb{R}/Z(Q) \) is divided into \(D^2 \) cells \(O_i \) such that
\[
\left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(N_1)}^p \leq CD^2 \left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(N_1 \cap O_i)}^p .
\] (6.2)

For each \(l \), the variety \(Y_l = Z(P, Q_l) \) is a transverse complete intersection of dimension 1. Define \(W := N_{R^{1/2}+\varepsilon} (Z(Q)) \), \(O'_i := O_i \setminus W \). By the analysis in [7], we have
\[
W \cap N_1 \subset \cup_i N_{O_i(R^{1/2}+\varepsilon)}(Y_l),
\]
since we are in the cellular case, the contribution from \(W \) is negligible. So we have
\[
\left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(N_1)}^p \leq CD^2 \left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(N_1 \cap O'_i)}^p .
\] (6.3)

Therefore, from (6.1)-(6.3) we actually obtain
\[
\left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(B(0,R) \times [0,R])}^p \leq CD^2 \left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(B(0,R) \times [0,R])}^p .
\] (6.4)

For each cell \(O'_i \), we set
\[
T_i := \left\{ (\theta, v) \in T : T_{\theta, v} \cap O'_i \neq \emptyset \right\} .
\]

For the function \(f \), we define
\[
f_i := \sum_{(\theta, v) \in T_i} f_{\theta, v}.
\]

It follows that on \(O'_i \),
\[
e^{itH} f \sim e^{itH} f_i .
\] (6.5)

By the fundamental theorem of Algebra, for each \((\theta, v) \in T \), we have
\[
\text{Card} \{ i : (\theta, v) \in T_i \} \leq D + 1.
\]

Hence
\[
\sum_i \| f_i \|_{L^2}^2 \leq CD \| f \|_{L^2}^2 ,
\]

by pigeonhole principle, there exists \(O'_i \) such that
\[
\| f_i \|_{L^2}^2 \leq CD^{-1} \| f \|_{L^2}^2 .
\] (6.6)

So by (6.4), (6.5), the induction on \(R' \), and (6.6), we have
\[
\left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(B(0,R) \times [0,R])}^p \leq CD^2 \left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(B(0,R) \times [0,R])}^p \leq CD^2 \sum_{B_{R/2} \text{ cover } B(0,R)} \left\| e^{itH} f \phi_2 \left(\frac{t}{R} \right) \right\|_{BL_{\infty, A}^p L^q(B_{R/2} \times [0,R])}^p \leq CD^2 \left(C(\kappa, D_{Z, \varepsilon}) R^{\frac{1}{2\varepsilon}} \frac{R}{2} \left\| f \right\|_{L^2} + \varepsilon \right)^p \leq CD^2 \left(C(\kappa, D_{Z, \varepsilon}) R^{\frac{1}{2\varepsilon}} R^{\frac{1}{2\varepsilon} - \frac{1}{2} + \varepsilon} \| f \|_{L^2} \right)^p ,
\]
choose D sufficiently large such that $CD^{2-\frac{2}{p}} \ll 1$, this completes the induction.

Algebraic case. In the algebraic case, there exists a transverse complete intersection $Y \subset Z(P)$ of dimension 1, determined by polynomial with degree no more than $D = D(\varepsilon, D_Z)$, so that

$$\|e^{itH}f\psi_2 \left(\frac{t}{R} \right) \|_{BL^p_{x,A}L^q(B(0,R) \times [0,R])} \leq C \|e^{itH}f\psi_2 \left(\frac{t}{R} \right) \|_{BL^p_{x,A}L^q((B(0,R) \times [0,R])\cap N_{R^{1/2+\delta_2}}(Y))}.$$

We decompose $B(0,R) \times [0,R]$ into balls B_j of radius ρ, $\rho = R^{1/2+\delta_2}$, $\delta_2 \ll \delta_1$, in fact $\rho \sim R^{-O(\delta_1)}$.

For each j, we define

$$T_j := \{(\theta, \nu) \in T : T_{\theta,\nu} \cap N_{R^{1/2+\delta_2}}(Y) \cap B_j \neq \emptyset \},$$

and

$$f_j := \sum_{(\theta, \nu) \in T_j} f_{\theta,\nu}.$$

On each $B_j \cap N_{R^{1/2+\delta_2}}(Y)$, we have

$$e^{itH}f \sim e^{itH}f_j.$$

Therefore,

$$\|e^{itH}f\psi_2 \left(\frac{t}{R} \right) \|_{BL^p_{x,A}L^q(B(0,R) \times [0,R])}^p \leq \sum_j \|e^{itH}f\psi_2 \left(\frac{t}{R} \right) \|_{BL^p_{x,A}L^q(B_j)}^p.$$

We further divide T_j into tubes that are tangential to Y and tubes that are transverse to Y. We say that $T_{\theta,\nu}$ is tangential to Y in B_j if the following two conditions hold:

Distance condition:

$$T_{\theta,\nu} \cap 2B_j \subset N_{R^{1/2+\delta_2}}(Y) \cap 2B_j = N_{R^{1/2+\delta_2}}(Y) \cap 2B_j. \quad (6.7)$$

Angle condition: If $z \in Y \cap N_{O(R^{1/2+\delta_2})}(T_{\theta,\nu}) \cap 2B_j = Y \cap N_{O(R^{1/2+\delta_2})}(T_{\theta,\nu}) \cap 2B_j$, then

$$\text{Angle}(G(\theta), T_z Y) \leq C\rho^{-1/2+\delta_1}. \quad (6.8)$$

The tangential wave packets is defined by

$$T_{j,tang} := \{(\theta, \nu) \in T_j : T_{\theta,\nu} \text{ is tangent to } Y \text{ in } B_j \},$$

and the transverse wave packets

$$T_{j,trans} := T_j \setminus T_{j,tang}.$$

Set

$$f_{j,tang} := \sum_{(\theta, \nu) \in T_{j,tang}} f_{\theta,\nu}, \quad f_{j,trans} := \sum_{(\theta, \nu) \in T_{j,trans}} f_{\theta,\nu},$$

so

$$f_j = f_{j,tang} + f_{j,trans}.$$
Therefore, we have
\[
\left\| e^{it\mathcal{H}} f_j \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B(0, R) \times [0, R])} \leq \sum_j \left\| e^{it\mathcal{H}} f_j \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)}
\leq \sum_j \left\| e^{it\mathcal{H}} f_j,\text{tang} \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)}
+ \sum_j \left\| e^{it\mathcal{H}} f_j,\text{trans} \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)}.
\]

We will treat the tangential term and the transverse term respectively. Again, we need to use wave packets decomposition in B_j.

Algebraic tangential case. In this case, the tangential term dominates. We claim that the new wave packets of f_j,tang are $\rho^{-1/2+\delta_1}$-tangent to Y in B_j. In fact, by (5.9) and (5.10), if $z \in Y \cap N_{O(\rho^{1/2+\delta_1})} \left(T_{\bar{\theta},\bar{\tau}} \right) \cap B_j$, then $z \in Y \cap N_{O(\rho^{1/2+\delta_2})} \left(T_{\bar{\theta},\bar{u}} \right) \cap B_j$, we have
\[
\text{Angle} \left(G(\bar{\theta}), T_\tau Y \right) \leq \text{Angle} \left(G(\bar{\theta}), G(\theta) \right) + \text{Angle} \left(G(\theta), T_\tau Y \right) \leq C\rho^{-1/2+\delta_1}.
\]
Also,
\[
T_{\bar{\theta},\bar{\tau}} \subset N_{\rho^{1/2+\delta_2}} \left(T_{\bar{\theta},\bar{u}} \cap B_j \right) \cap B_j = N_{\rho^{1/2+\delta_1}} \left(T_{\bar{\theta},\bar{u}} \cap B_j \right) \cap B_j \subset N_{O(\rho^{1/2+\delta_1})} \left(Y \right) \cap B_j.
\]
So, we can assume that f_j,tang is concentrated in wave packets from T_Y in B_j. Consider $B_K \times I_K^j$ such that
\[
\left[N_{O(\rho^{1/2+\delta_1})} \left(Y \right) \cap B_j \right] \cap \left(B_K \times I_K^j \right) \neq \emptyset,
\]
there exists $z_0 \in Y \cap B_j \cap N_{O(\rho^{1/2+\delta_1})} \left(B_K \times I_K^j \right)$, for each $T_{\bar{\theta},\bar{\tau}}$ such that $T_{\bar{\theta},\bar{\tau}} \cap \left(B_K \times I_K^j \right) \neq \emptyset$, we have that $z_0 \in Y \cap B_j \cap N_{O(\rho^{1/2+\delta_1})} \left(T_{\bar{\theta},\bar{\tau}} \right)$, it holds
\[
\text{Angle} \left(G(\bar{\theta}), T_{\tau_0} Y \right) \leq C\rho^{-1/2+\delta_1}.
\]
Then for each τ with such a θ in it, it follows
\[
\text{Angle} \left(G(\tau), T_{\tau_0} Y \right) \leq C\rho^{-1/2+\delta_1} \leq (KM)^{-1},
\]
such τ does not contribute to $\left\| e^{it\mathcal{H}} f_j,\text{tang} \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)}$. Since f_j,tang is concentrated in wave packets from T_Y in B_j,
\[
\left\| e^{it\mathcal{H}} f_j,\text{tang} \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)} \leq \text{RapDec}(\rho) \left\| f \right\|^p_{L^2},
\]
which can be negligible. So we only need to consider the transverse case.

Algebraic transverse case. In this case, the transverse term dominates. So we need to estimate
\[
\sum_j \left\| e^{it\mathcal{H}} f_j,\text{trans} \psi_2 \left(\frac{t}{R} \right) \right\|^p_{BL^p_{\ell,\ell} L^p(B_j)}.
\]
Consider the new wave packets decomposition of \(f_{j,\text{trans}} \) in \(B_j \), by (5.9) and (5.10), the new wave packets \(T_{\vec{\theta},\nu} \) satisfy

\[
T_{\vec{\theta},\nu} \subset N_{R^{1/2+\delta}} (T_{\vec{\theta},\nu} \cap B_j) \cap B_j \subset N_{R^{1/2+\delta}} (Z) \cap B_j.
\]

(6.11)

And if \(z \in Z \cap N_{O(\rho^{1/2+\delta})} \left(T_{\vec{\theta},\nu} \right) \cap B_j \), then

\[
\text{Angle} \left(G(z), T_z Z \right) \leq \text{Angle} \left(G(\vec{\theta}), T_z Z \right) + \text{Angle} \left(G(\vec{\theta}), G(z) \right) \leq C\rho^{-1/2+\delta}.
\]

(6.12)

So \(T_{\vec{\theta},\nu} \) is no longer \(\rho^{-1/2+\delta} \)-tangent to \(Z \) in \(B_j \) because the distance condition is not satisfied.

For each vector \(b \) with \(|b| \leq R^{1/2+\delta} \), define

\[
T_{Z+b} := \left\{ (\vec{\theta}, \nu) : T_{\vec{\theta},\nu} \text{ is } \rho^{-1/2+\delta} \text{-tangent to } Z+b \text{ in } B_j \right\}.
\]

By the angle condition, it turns out that each \(T_{\vec{\theta},\nu} \in T_{Z+b} \) for some \(b \). We set

\[
f_{j,\text{trans},b} := \sum_{(\vec{\theta},\nu) \in T_{Z+b}} f_{\vec{\theta},\nu}
\]

Then on \(B_j \), it holds

\[
\left| e^{itH} f_{j,\text{trans},b} \right|_2 \left(\frac{t}{R} \right) \sim \chi_{N_{\rho^{1/2+\delta}}(Z+b)} (x,t) \left| e^{itH} f_{j,\text{trans}} \right|_2 \left(\frac{t}{R} \right).
\]

(6.13)

Next we choose a set of vectors \(b \in B_{R^{1/2+\delta}} \). We cover \(N_{R^{1/2+\delta}} (Z) \cap B_j \) with disjoint balls of radius \(R^{1/2+\delta} \), and in each ball \(B \) we note the value of \(N_{\rho^{1/2+\delta}} (Z) \cap B \). We will dyadically pigeonhole this volume.

For

\[
B_s := \left\{ B \left(x_0, R^{1/2+\delta} \right) \subset N_{R^{1/2+\delta}} (Z) \cap B_j : B \left(x_0, R^{1/2+\delta} \right) \cap N_{\rho^{1/2+\delta}} (Z) \sim 2^s \right\}.
\]

We select a value of \(s \) so that

\[
\left\| e^{itH} f_{j,\text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(\cup_{s \in B_s} B_j)} \leq (\log R) \left\| e^{itH} f_{j,\text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(\cup_{s \in B_s} B_j)}.
\]

Therefore, we only consider \(\theta, \nu \) such that \(T_{\theta,\nu} \) meets at least one of the balls in \(B_s \). We choose a random set of \(|B_{R^{1/2+\delta}}| / 2^s \) vectors \(b \in B_{R^{1/2+\delta}} \). For a typical ball \(B \left(x_0, R^{1/2+\delta} \right) \in B_s \), the union \(\cup_b N_{\rho^{1/2+\delta}} (Z+b) \cap B_j \) covers a definite fraction of the ball with high probability. It follows

\[
\left\| e^{itH} f_{j,\text{trans}} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(\cup_{s \in B_s} B_j)} \leq (\log R) \sum_b \left\| e^{itH} f_{j,\text{trans},b} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^p(\cup_{s \in B_s} B_j)}.
\]

(6.14)
By the induction on R', we have

$$\left\| e^{LH} f_{j,\text{trans},b} \left(\frac{t}{R} \right) \right\|^p_{BL^p_{k+1} L^q(B_j)} \leq \left\| e^{LH} f_{j,\text{trans},b} \left(\frac{t}{R} \right) \right\|^p_{BL^p_{k+1} L^q(B_j)} \leq \left\| e^{LH} f_{j,\text{trans},b} \left(\frac{t}{R} \right) \right\|^p_{BL^p_{k+1} L^q(B_j)} \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f_{j,\text{trans},b} \right\|_{L^2}^p \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f_{j,\text{trans},b} \right\|_{L^2}^p,$$

therefore, if

$$\sum_j \sum_b \left\| f_{j,\text{trans},b} \right\|^2_{L^2} \sim \sum_j \left\| f_{j,\text{trans}} \right\|^2_{L^2} \leq D \left\| f \right\|^2_{L^2}, \quad (6.15)$$

$$\max_b \left\| f_{j,\text{trans},b} \right\|^2_{L^2} \leq R^{O(\delta_2)} \left(\frac{R}{p} \right)^{-1/2} \left\| f_{j,\text{trans}} \right\|_{L^2}, \quad (6.16)$$

then we have

$$\sum_j \sum_b \left\| e^{LH} f_{j,\text{trans}} \left(\frac{t}{R} \right) \right\|^p_{BL^p_{k+1} L^q(B_j)} \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f_{j,\text{trans}} \right\|_{L^2}^p \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f_{j,\text{trans}} \right\|_{L^2}^p \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f \right\|^p_{L^2} \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f \right\|^p_{L^2} \leq \left[C \left(K, D, \varepsilon \right) R^4 \left(\log \frac{R}{T} - \log \frac{1}{\varepsilon} \right) R^{1/p} (\rho)^{\frac{1}{p} - \frac{1}{q} + \varepsilon} \right] \left\| f \right\|^p_{L^2},$$

so the induction closes by choosing $\delta_2 \ll \varepsilon \delta_1$ and the fact that R is sufficiently large. This completes the proof of Theorem 5.1.

Next we will prove (6.15) and (6.16). For each $(\theta, \nu) \in T_{j,\text{trans}}$, if $T_{\theta,\nu}$ contributes, then $T_{\theta,\nu}$ intersects some $B \left(x_0, R^{1/2+\delta_2} \right)$ in B_s. We have

$$\left\| f_{\theta,\nu} \right\|^2_{L^2} \sim R^{-1/2-\delta_2} \left\| e^{LH} f_{\theta,\nu} \left(\frac{t}{R} \right) \right\|^2_{L^2 \left(B \left(x_0, R^{1/2+\delta_2} \right) \right)}, \quad (6.17)$$
provided Theorem 7.3 below holds true. Set

\[f_{\theta, \nu, b} := \sum_{(\overline{\theta}, \overline{\nu}) \in T_{x, b} \cap (\theta, \nu)^{\sim}} f_{\overline{\theta}, \overline{\nu}} \] \tag{6.18}

here (\theta, \nu)^{\sim} denotes the wave packets decomposition of \(f_{\theta, \nu} \) in \(B_j \), it follows

\[\left\| e^{itH} f_{\theta, \nu, b} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \sim \left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2, \] \tag{6.19}

using Theorem 7.3 again,

\[\| f_{\theta, \nu, b} \|_{L^2}^2 \sim R^{-1/2 - \delta_2} \left\| e^{itH} f_{\theta, \nu, b} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2. \] \tag{6.20}

Notice that the sets \(N_{\rho, 1/2 + \delta_2} (Z + b) \) are essentially disjoint, hence (6.17), (6.18) and (6.20) imply

\[
\sum_b \| f_{\theta, \nu, b} \|_{L^2}^2 \sim R^{-1/2 - \delta_2} \sum_b \left\| e^{itH} f_{\theta, \nu, b} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \\
\leq R^{-1/2 - \delta_2} \left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \\
\sim \| f_{\theta, \nu} \|_{L^2}^2.
\]

Therefore

\[
\sum_b \| f_{j, \text{trans}, b} \|_{L^2}^2 = \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \sum_b \| f_{\theta, \nu, b} \|_{L^2}^2 \leq \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \| f_{\theta, \nu} \|_{L^2}^2 = \| f_{j, \text{trans}} \|_{L^2}^2.
\] \tag{6.21}

Then by (5.4) and (6.21), (6.15) holds.

If Theorem 7.2 below holds true, then for each \(b \),

\[
\| f_{j, \text{trans}, b} \|_{L^2}^2 \leq \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \| f_{\theta, \nu, b} \|_{L^2}^2 \sim R^{-1/2 - \delta_2} \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \left\| e^{itH} f_{\theta, \nu, b} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \\
\sim R^{-1/2 - \delta_2} \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2, \\
\end{align}

and

\[
\left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \leq CR^{Q(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2,
\]

therefore

\[
\| f_{j, \text{trans}, b} \|_{L^2}^2 \leq CR^{Q(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} R^{-1/2 - \delta_2} \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \left\| e^{itH} f_{\theta, \nu} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0, R^{1/2 + \delta}))}^2 \\
\leq CR^{Q(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \sum_{(\theta, \nu) \in T_{j, \text{trans}}} \| f_{\theta, \nu} \|_{L^2}^2 \\
\leq CR^{Q(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \| f_{j, \text{trans}} \|_{L^2}^2,
\]

in the second inequality above we used Theorem 7.3 again, and (6.16) is obtained.
The following Theorem 7.2 is a generalization of Lemma 6.2 in [7], which is needed in the proof of Theorem 5.1. In order to prove Theorem 7.2, we need a version of the Heisenberg uncertainly principle in [7]:

Lemma 7.1. ([7]) Suppose that \(G : \mathbb{R}^n \to \mathbb{C} \) is a function, and that \(\hat{G} \) is supported in a ball \(B(\xi_0, r) \), then for any ball \(B_\rho \) with \(\rho \leq r^{-1} \), we have the inequality

\[
\int_{B_\rho} |G|^2 \leq C \frac{|B_\rho|}{|B_{r^{-1}}|} \int_{B_{r^{-1}}} |G|^2. \tag{7.1}
\]

Theorem 7.2. Suppose that \(f \) is concentrated in wave packets from \(T_Z, Z = Z(P) \) is a transverse complete intersection of dimension 2, \(B \) is a ball of radius \(R^{1/2+\delta_2} \) contained in \(B(0, R) \times [0, R] \), \(T_{Z,B} := \{(\theta, \nu) \in T_Z : T_{\theta,\nu} \cap B \neq \emptyset \} \), if

\[
f = \sum_{(\theta, \nu) \in T_{Z,B}} f_{\theta,\nu},
\]

then

\[
\left\| e^{it\hbar} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{L^2(B \cap N_{R^{1/2+\delta_2}}(Z))} \leq C R^{O(\delta_2)} \left(\frac{R^{1/2}}{R^{1/2}} \right)^{-1} \left\| e^{it\hbar} f_{\psi_2} \left(\frac{t}{R} \right) \right\|_{L^2(2B)}. \tag{7.2}
\]

Proof: If \(B \cap N_{R^{1/2+\delta_2}}(Z) = \emptyset \), then \(T_{Z,B} = \emptyset \), and there is nothing to prove. So we can assume that \(B \cap N_{R^{1/2+\delta_2}}(Z) \neq \emptyset \), then there exists a point \(z_0 \in Z \) such that \(z_0 \in Z \cap N_{R^{1/2+\delta_2}}(B) \), then for each wave packet \((\theta, \nu) \in T_{Z,B}\), we have

\[
z_0 \in Z \cap N_{R^{1/2+\delta_2}}(T_{\theta,\nu}).
\]

By the definition of \(T_Z \), we have

\[
\text{Angle} \left(G(\theta), T_{\theta,\nu} \right) \leq R^{-1/2+\delta_2}. \tag{7.3}
\]

We can assume \(T_{\theta,\nu} \) is given by

\[
a_1 x_1 + a_2 x_2 + bt = 0, \quad a_1^2 + a_2^2 + b^2 = 1, \quad |(a_1, a_2)| \geq 1,
\]

(7.3) and (7.4) imply

\[
| -2c(\theta) \cdot a + b | \leq CR^{-1/2+\delta_2},
\]

this restricts all \(\theta \) to a strip of width \(R^{-1/2+\delta_2} \) paralleled to \((a_2, -a_1)\), we denote it by \(S \). The Fourier transform of \(e^{it\hbar} f_{\psi_2}(\hbar) \) is supported in

\[
\left\{ (\xi_1, \xi_2, \xi_3) : (\xi_1, \xi_2) \in \theta, \left| \xi_3 - \xi_1^2 - \xi_2^2 \right| \leq R^{-\varepsilon/2} \right\},
\]

therefore, the Fourier transform of \(e^{it\hbar} f_{\psi_2}(\hbar) \) is supported in

\[
\left\{ (\xi_1, \xi_2, \xi_3) : (\xi_1, \xi_2) \in S, \left| \xi_3 - \xi_1^2 - \xi_2^2 \right| \leq R^{-\varepsilon/2} \right\}.
\]
Suppose that Π is a 1-dimension linear sub-space of \mathbb{R}^3 parallel to $(a_1,a_2,0)$, then the projection of the Fourier transform of $e^{itH}\psi_2(\frac{t}{R})$ on Π is supported in a ball of radius $R^{-1/2+\delta_2}$. If we view $e^{itH}\psi_2(\frac{t}{R})$ as a function defined on Π, then for each $x \in B \cap \Pi$, Lemma 7.1 implies

$$
\int_{\Pi \cap B(x,\rho^{1/2+\delta_2})} \left| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right|^2 \leq \sum_{B_{\rho^{1/2+\delta_2}} \text{ cover } B(x,\rho^{1/2+\delta_2})} \int_{\Pi \cap B(x,\rho^{1/2+\delta_2})} \left| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right|^2 \leq R^{O(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \int_{\Pi \cap B(x,\rho^{1/2+\delta_2})} \left| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right|^2 \leq R^{O(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \int_{\Pi \cap B(x,\rho^{1/2+\delta_2})} \left| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right|^2,
$$

here we used the fact that on Π which passing through B, $e^{itH}\psi_2(\frac{t}{R})$ is essentially supported in $\Pi \cap 2B$, see also [7]. By [7], $\Pi \cap B \cap N_{\rho^{1/2+\delta_2}}(Z) \subset N_{\rho^{1/2+\delta_2}}(\Pi \cap Z) \cap B(2\Pi \cap 2B)$, and $N_{\rho^{1/2+\delta_2}}(\Pi \cap Z) \cap B(2\Pi \cap 2B)$ can be covered by $R^{O(\delta_2)}$ balls $\Pi \cap B(x,\rho^{1/2+\delta_2})$, $x \in B \cap \Pi$, so we get the bound

$$
\left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(\Pi \cap B \cap 2B)}^2 \leq R^{O(\delta_2)} \left(\frac{R^{1/2}}{\rho^{1/2}} \right)^{-1} \left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(\Pi \cap 2B)}^2,
$$

(7.2) is obtained by integrating over all Π paralleled to $(a_1,a_2,0)$ and this completes the proof of Theorem 7.2.

In the proof of Theorem 5.1, we also used the following generalization of Lemma 3.4 in [7]:

Theorem 7.3. Suppose that f is concentrated in a set of wave packets T and that for every $(\theta, \nu) \in T$, $T_{\theta,\nu} \cap B(\theta,R) \neq \emptyset$, $z = (x_0,t_0)$, $t_0 \leq R$, for some radius $r \sim R^{1/2+\delta_2}$. Then

$$
\left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(z,10r))}^2 \sim r \|f\|_{L^2}^2.
$$

Proof: Suppose $z = (x_0,t_0)$, for each t in the range $t_0 - r \leq t \leq t_0 + r$, each $(\theta, \nu) \in T$, $T_{\theta,\nu} \cap (\mathbb{R}^2 \times \{t\}) \subset B(x_0,5r)$, therefore, (7.5) follows from the facts that

$$
\left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(z,10r))}^2 \geq \left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(x_0,5r) \times (t_0-r,t_0+r))}^2 = \int_{t_0-r}^{t_0+r} \int_{B(x_0,5r)} |e^{itH}f|^2 \psi_2 \left(\frac{t}{R} \right) dx dt = \int_{t_0-r}^{t_0+r} \int_{B(x_0,5r)} |f|^2 \psi_2 \left(\frac{t}{R} \right) dx dt = \|f\|_{L^2}^2 \int_{t_0-r}^{t_0+r} \left\| e^{itH}\psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(z,10r))}^2 dt \geq \left(\frac{r}{2} \right) \|f\|_{L^2}^2,
$$

and
\[
\left\| e^{itH} \psi_2 \left(\frac{t}{R} \right) \right\|_{L^2(B(z,10r))}^2 \leq \int_{t_0-10r}^{t_0+10r} \int_{\mathbb{R}^2} \left| e^{itH} f \right|^2 \, dx \left| \psi_2 \left(\frac{t}{R} \right) \right|^2 \, dt = \| f \|_{L^2}^2 \int_{t_0-10r}^{t_0+10r} \left| \psi_2 \left(\frac{t}{R} \right) \right|^2 \, dt \\
\leq \| f \|_{L^2}^2 \int_{t_0-10r}^{t_0+10r} 1 \, dt \leq 20r \| f \|_{L^2}^2 .
\]

References

[1] Carleson L., Some analytic problems related to statistical mechanics. Euclidean harmonic analysis. Springer, Berlin, Heidelberg, 1980: 5-45.

[2] Cho C. H., Lee S., Vargas A., Problems on pointwise convergence of solutions to the Schrödinger equation. Journal of Fourier Analysis and Applications, 2012, 18(5): 972-994.

[3] Dahlberg B. E. J., Kenig C. E., A note on the almost everywhere behavior of solutions to the Schrödinger equation. Harmonic analysis. Springer, Berlin, Heidelberg, 1982: 205-209.

[4] Ding Y., Niu Y., Weighted maximal estimates along curve associated with dispersive equations. Analysis and Applications, 2017, 15(02): 225-240.

[5] Du X., Li X., L^p-estimates of maximal function related to Schrödinger Equation in \mathbb{R}^2. arXiv preprint arXiv:1508.05437, 2015.

[6] Du X., Guth L., Li X., A sharp Schrödinger maximal estimate in \mathbb{R}^2. Annals of Mathematics, 2017: 607-640.

[7] Guth L., Restriction estimates using polynomial partitioning II, preprint, 2016. arXiv preprint arXiv:1603.04250.

[8] Sjögren P., Sjölin P., Convergence properties for the time-dependent Schrödinger equation. Annales Academiæ Scientiarum Fennicæ, Series A. I. Mathematica, 1987, 14: 13-25.

[9] Sjölin P., Regularity of solutions to the Schrödinger equation. Duke Mathematical journal, 1987, 55(3): 699-715.

[10] Vega L., Schrödinger equations: pointwise convergence to the initial data. Proceedings of the American Mathematical Society, 1988, 102(4): 874-878.