Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector

Briana Jill Williams
Louisiana State University Health Sciences Center - Shreveport

Shilpa Bhatia
Louisiana State University Health Sciences Center - Shreveport

Lisa K. Adams
Louisiana State University Health Sciences Center - Shreveport

Susan Boling
Louisiana State University Health Sciences Center - Shreveport

Jennifer L. Carroll
Louisiana State University Health Sciences Center - Shreveport

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K.; Boling, Susan; Carroll, Jennifer L.; Li, Xiao-Lin; Rogers, Donna L.; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V.; Curiel, David T.; and Mathis, Michael, "Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector." PLoS One. 7,10. e46981. (2012). https://digitalcommons.wustl.edu/open_access_pubs/1380

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Introduction

Prostate cancer ranks second among the leading cancer-related deaths in the United States in men, and an estimated 240,890 new cases and 33,720 deaths will have occurred in 2011 [1]. Although treatments are available for organ-confined carcinoma of prostate, there is no effective approach to treat recurrent disease after androgen deprivation therapy fails. This calls for the development of novel strategies to combat this disease. Recent reports suggest suppression of prostate tumor growth is possible following antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an adenovirus vector expressing interferon-gamma (Ad5-IFNα). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNα as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNα in the RM-1-PSMA model. These results suggest that a CD40-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.
the viral vectors, recombinant adenoviral vectors (Ads) have received much attention for cancer therapy because of their high capacity and robust gene expression [12]. Nonetheless, Ad vectors poorly infect DCs because of a lack in expression of the Coxsackie and adenovirus receptor mediating infectious uptake [13]. This limitation could be overcome by using a bispecific adapter molecule that encompasses a fusion of an extracellular domain of the native Coxsackie and adenovirus receptor receptor and the mouse CD40 ligand linked by a trimerization motif from the T4 bacteriophage fibritin protein [14,15]. More recently, this adapter was used successfully for DC-based immunotherapy in a mouse model of melanoma [16,17]. However, other tumor/antigen combinations have not been tested.

In the present study, we evaluated a dendritic cell-targeted Ad vaccine expressing human PSMA in vivo in a mouse model of prostate cancer. We generated an immunocompetent model using the RM-1 mouse prostate cancer cell line that form tumors in syngeneic C57BL6 mice [18], by constitutively expressing the human PSMA antigen. Herein, we show that in vivo delivery of a CD40-targeted Ad5 vector leads to increased cytotoxic T cell responsiveness and enhanced therapeutic efficacy in this model. We also demonstrate that IFNγ as an immunological adjuvant in our vaccine regime increased antigen presentation in target cells and maximized this effect.

Materials and Methods

Ethics Statement

All animals used in this study received humane care based on guidelines set by the American Veterinary Association as well as in accordance with the Guide for the Care and Use of Laboratory Animals (Institute for Laboratory Animal Research, Washington, DC). The experimental protocols involving live animals were reviewed and approved by the Institutional Animal Care and Use Committee of LSU Health Sciences Center at Shreveport (protocol P-10-040). All efforts were made to minimize animal suffering, to reduce the number of animals used and to utilize alternatives to in vivo techniques, if available.

Cell Lines

RM-1, an androgen-insensitive MHC class I-deficient mouse prostate cancer cell line, which is syngeneic in C57BL/6 mice [18], was obtained from Dr. Timothy C. Thompson (Baylor College of Medicine, Scott Department of Urology, Houston, TX). The human transformed embryonic kidney HEK-293 cell line was obtained from the American Type Culture Collection (ATCC; Manassas, VA). The cells were maintained at 37°C and a 5% humidified CO2 atmosphere in Dulbecco’s Minimum Essential Medium (DMEM, Mediatech Inc.; Manassas, VA), containing 10% fetal bovine serum (FBS, Gemini Bioproducts; Woodland, CA) and 1% antibiotic-antimycotic solution (Mediatech Inc.; Manassas, VA).

Animals

Male C57BL/6 mice at 4–6 weeks of age were obtained from Charles River Laboratories (Wilmington, MA).

Generating RM-1 Tumor Cells Expressing Recombinant Human PSMA and GFP

Human elongation factor 1α-subunit promoter (EF-1α) was chosen as a transgene promoter. The human PSMA and the GFP coding sequences were cloned into pEFI/Myc-His vector (Invitrogen; Carlsbad, CA). Constructs with the correct restriction pattern were selected and sequenced, and were used for transfection of RM-1 cells. Cells were then selected by 0.8 mg/mL of G418.
G418 (Alexis) for 2 weeks to obtain single clone. Expression of recombinant human PSMA expression in antibiotic resistant clones was determined by Western blot analysis (using the method described below) with an anti-PSMA monoclonal antibodies recognizing the N-terminus (7E11C5; previously purified from a hybridoma obtained at ATCC) or the C-terminus (YPSMA-1, Abcam; Cambridge, MA). Two clones expressed detectable level of PSMA (RM-1-PSMA clone 1 and RM-1-PSMA clone 3). They were propagated and frozen for further analysis. The RM-1 clones expressing GFP were identified by fluorescence microscopy. One positive clone (RM-1-GFP clone 2) was expanded and frozen for further analysis.

Adenoviral Vectors

Ad5-huPSMA was constructed by subcloning the human PSMA cDNA coding sequence into the MfeI - BstXI sites of the pAdenoVatorCMV5 shuttle vector (QBiogene; Carlsbad, CA). The resulting pAdenoVatorCMV5-hu-PSMA shuttle vector was used to construct an adenovirus by homologous recombination with pAdEasy1 (containing the E1 and E3 deleted Ad5 backbone) in *E. coli* using methods previously described [19]. The resultant recombinant plasmid was linearized with Pac I and transfected into HEK-293 cells to generate the Ad5-huPSMA virus. The *Ad5-luc1*, a human Ad serotype 5 vector containing a firefly luciferase expression cassette within the E1 deleted region was provided by Dr. Igor Dmitriev (Washington University School of Medicine, St. Louis, MO). The *Ad5-huPSMA* virus was provided by Dr. Hirofumi Hamada (Department of Molecular Medicine, Sapporo Medical University, Sapporo, Japan). The adenovirus stocks were propagated and amplified using the human transformed embryonic kidney HEK-293 cell line. High titer adenovirus stocks were purified using an Adenopure purification kit (Puresyn, Inc, Malvern, PA). Following purification the viruses were dialyzed overnight in dialysis buffer (potassium phosphate buffered saline containing 1 M sucrose and 0.5% β-cyclodextrin) at 4°C before storage at −80°C.

CD40 Targeting Ligand

A recombinant molecular adaptor protein consisting of the soluble extracellular domain of the Coxsackie and adenovirus receptor linked to the mouse CD40 ligand via a trimerization motif (CFm40L) was constructed, produced and purified as described previously [14], and used to retarget adenoviral vectors to mouse DC.

Western Blot Analysis of TAP Expression

Control RM-1 cells and RM-1 cells incubated for 24 h with *Ad5-IFNγ* at multiplicity of infection (MOI) of 100 ifu/cell were harvested and lysates were prepared in RIPA sample buffer. Protein concentrations of the samples were normalized by Bradford assay. Samples were run on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels and transferred to nitrocellulose membranes. Membranes were blocked for 1 h with 5% bovine serum albumin (BSA) and washed.
with TTBS (1% Tween-20 in Tris-buffered saline). Afterwards, the membranes were incubated with anti-mouse TAP1, anti-mouse TAP2, or anti-mouse GAPDH antibodies (Santa Cruz Biotechnology; Santa Cruz, CA) for 1 h. After three consecutive washes with TTBS, membranes were incubated with horseradish peroxidase-conjugated goat anti-mouse IgG antibody for 1 h, and washed three times for 30 min each with TTBS. Finally the membranes were developed using the ECL substrate (Amersham; Piscataway, NJ), and exposed to X-ray film.

Figure 4. Flow cytometry analysis of MHC class I cell surface expression in RM-1 cells maintained in the absence and presence of IFNγ. Evaluation of binding of anti-MHC class I (H-2Db and H-2Kb) antibodies to (A) RM-1 parental cells, (B) RM-1-GFP clone 2 cells, (C) RM-1-PSMA clone 1 cells, and (D) RM-1-PSMA clone 3 cells. Shown are histogram peaks corresponding to untreated (shaded) and cells infected with Ad5-IFNγ (unshaded).

doi:10.1371/journal.pone.0046981.g004

Flow Cytometry Analysis of MHC Class I Expression

RM-1 cells (parental as well as RM-1-PSMA clones expressing human PSMA) were analyzed for the cell surface expression of MHC class I (Db and Kb). Briefly, RM-1 cells were infected for 24 h with Ad5-IFNγ at MOI 100. At 24 h post-incubation, cells were harvested and immunostained by using a fluorescein isothiocyanate (FITC) labeled anti-mouse H-2Kb/H-2Db antibody (BD Biosciences; San Jose, CA). This antibody reacts with the mouse H-2Kb MHC class I alloantigen haplotype and cross-reacts with H-2Db, but does not react with other haplotypes. Cells were incubated with the antibody (1:1000 dilution) for 20 min at
Prostate Cancer DC Based PSMA Immunotherapy

Immune Response after Direct Vaccination in vivo with Ad5-huPSMA

C57BL/6 mice were immunized by direct i.p. injections with Ad5-huPSMA. Each mouse was injected with 1 x 10^5 ifu of Ad5-huPSMA alone or 1 x 10^5 ifu of Ad5-huPSMA complexed with 1200 ng of CFm40L on day 0. A second dose was administered 14 days later. At 24 days after the initial immunization, the mice were euthanized and the spleens were collected and T-cells cultured as described above.

Generating CTLs and Performing Cytotoxicity Tests

Cultured T-cells from the mouse spleens were re-stimulated for 6 days by the addition of irradiated HEK-293 cells infected with Ad5-huPSMA to over express the PSMA antigen. Following re-stimulation, T-cells were harvested and separated from the dead cells. The cytotoxicity was determined in a standard 4 h chromium release assay using the stimulated T-cells as effector cells (E) and RM-1 cell lines as specific targets (T) at the indicated E:T ratios. The RM-1 cell lines (RM-1-PSMA clone 1, RM-1-PSMA clone 3, and RM-1-GFP clone 2) were used directly as target cells or were previously incubated for 24 h with Ad5-IFNγ (MOI 100). The cells were labeled with 100 μCi of Na₂⁵²CrO₄ for 1.5 h at 37°C. Subsequently, 1 x 10⁵ labeled target cells were cocultured with different numbers of effector cells in a 96-well (v-bottom plates) for 4 h at 37°C. At the end of the culturing, 100 μL of supernatants were collected and radioactivity was measured on a gamma-counter. Maximum and spontaneous release of ⁵¹Cr was obtained from the supernatants of the target cells in 1% Nonidet P-40 and in medium alone respectively. All experiments were performed with quadruplicate wells. The % specific lysis was calculated by the following formula: % specific lysis = [(experimental c.p.m. - spontaneous c.p.m.)/(maximal c.p.m. - spontaneous c.p.m.)] × 100.

Flow Cytometry Analysis of NKG2D Ligand Expression

RM-1-PSMA clone 3 cells and YAC-1 cells were plated at 100,000 cells/well into 24-well tissue culture dishes. The cells were allowed to attach by overnight incubation at 37°C. On the following day, the cells were incubated in the absence or presence of Ad5-IFNγ at 100:1 MOI at 37°C in serum-free media. At 2 h post-infection, the virus-containing media was replaced with complete growth medium containing 10% FBS. After 48 h, the untreated or Ad5-IFNγ treated cells were harvested and washed twice with PBS. The cells were incubated for 1 h at 4°C with phycoerythin (PE) labeled rat IgG2A isotype control antibody (R&D Systems, Minneapolis, MN) or with the following antibodies: (a) a PE labeled rat anti-mouse H60 monoclonal antibody (R&D Systems), (b) a PE labeled rat anti-mouse Rae-1 (pan-specific) monoclonal antibody (R&D Systems), or (c) a PE labeled rat anti-mouse MULT-1 monoclonal antibody (R&D Systems). Following the antibody incubation, the cells were washed twice with PBS, resuspended in 0.4 ml PBS, and analyzed by flow cytometry using a FACS Calibur instrument (Becton Dickinson, San Jose, CA).
Cell Viability Assay

RM-1 and RM-1-PSMA clone 3 cells were seeded onto 96-well plates (2,000 cells/well) with DMEM containing 10% fetal bovine serum. Following an overnight incubation, the cells were infected with Ad5-IFN at increasing MOI (0, 0.1, 1, 10, 100, 1000 ifu/cell) in serum-free medium at 37°C. The Ad5-IFN containing medium was aspirated after 2 h and replaced with complete growth medium. A cell viability assay was performed at days 1, 2, 3, and 4 post-infection using the CellTiter-Blue reagent (Promega, Madison, WI) by following manufacturer’s instructions. Briefly, at each time point, 20 μL of CellTiter-Blue reagent was added to the wells and mixed for 10 sec on a shaker. The cells were then incubated for another 22 h at 37°C. Afterwards, the fluorescence signal in each well was analyzed using a Fluoroskan Ascent microplate fluorometer (Thermo Fisher Scientific, Waltham MA) with an excitation setting at 530 nm and an emission setting at 620 nm.

Splenic Effector Cell Isolation

Control (untreated) male C57/B6 mice were euthanized by CO2 asphyxiation. Splenocytes were harvested and homogenized manually between the ends of frosted glass microscope slides and passed through a 70 μm mesh. Dispersed splenocytes were centrifuged at 1,000 rpm in a tabletop centrifuge for 5 min and resuspended in red blood cell (RBC) lysis buffer (138 mM NH4Cl, 1 mM KHCO3, and 0.1 mM EDTA) for 5 min. The remaining splenocytes were washed three times in ice-cold PBS.

Chromium Release Assay

To measure sensitivity of RM-1 cells to mouse NK cell lysis, a chromium release assay was performed. Initially, RM-1 cells or RM-1-PSMA clone 3 cells were plated into 100 mm tissue culture dishes. The cells were allowed to attach by overnight incubation at 37°C. On the following day, the cells were incubated in the absence or presence of Ad5-IFN at 100:1 MOI at 37°C in serum-free media. At 2 h post-infection, the virus-containing media was replaced with complete growth medium containing 10% FBS. After 48 h, the untreated or Ad5-IFN treated cells were harvested by trypsinization and labeled with 51Cr. The target cells were counted and resuspended at a concentration of 1x107 cells/mL of medium. To each cell suspension, 125 μCi of 51Cr (ICN Pharmaceuticals, Costa Mesa, CA) was added as an aqueous solution of sodium chromate and incubated for 90 minutes at 37°C with swirling every 15 minutes. The labeled target cells were washed once in PBS and three times in complete medium. To initiate the chromium release assay, the isolated splenocyte effector cells were added to the wells of U-bottomed 96-well plates (100, 50, 25, and 12.5 μL for each cell target) in replicates of four. All wells were brought to a final volume of 100 μL with complete medium. Two sets of controls were employed instead of effector cells: one set contained only 100 μL of complete medium to account for spontaneous 51Cr release and one set contained 100 μL of 2N HCl to account for maximum 51Cr release. The labeled target cells were adjusted to 1x105 cells/mL, and 100 μL was quickly added to each of the wells on the plate. The plates were then incubated at 37°C for 4 hours. Following incubation, the plates were centrifuged at 1,200 rpm for 5 minutes to pellet the cells. A portion (100 μL) of the resulting supernatant was removed to glass tubes for analysis using a gamma counter, and the percent specific lysis was calculated by the following formula: % specific lysis = ([experimental c.p.m. – spontaneous c.p.m.] / [maximal c.p.m. - spontaneous c.p.m.]) x 100.

Tumor Challenge Experiment

Groups of fifteen C57BL/6 mice were immunized by direct i.p. injection with Ad5-huPSMA. Each mouse was injected with 1x109 ifu of Ad5-huPSMA alone or 1x109 ifu of Ad5-huPSMA complexed with 1,200 ng of CFind40L on day 0. A second dose was administered 14 days later. The parental RM-1 cell line or the RM-1-PSMA clone 1 cell line were harvested from cell culture flasks using 1% trypsin and washed with PBS. Subsequently, the cells were injected into the C57BL/6 mice immunized as described above. Each mouse received 4x107 cells injected at day 24 after initiation of the immunization regimen. Subsequently, tumor volume was measured with a digital caliper (VWR INTERNATIONAL; WAYNE, PA) every four days. At each tumor measurement, the greatest longitudinal diameters (length) and the greatest transverse diameters (width) were measured, and the tumor volumes were estimated using the formula: tumor volume = 1/2 × (length × width2).

Statistical Analysis

Data are presented as mean ± standard error (SEM) of the data points. Statistical analysis was performed using Student’s t-test, using GraphPad Prism 5.0 software (GraphPad Software, Inc.; La Jolla, CA). Data were considered statistically significant when P<0.05.

Results

RM-1 Mouse Prostate Cancer Cell Lines Expressing Human PSMA

The full-length human PSMA cDNA sequence was cloned into mammalian expression plasmid vector pEF1/V5-His downstream of the enhancer/promoter elements from the human elongation factor 1α subunit (hEF-1α) for high-level expression in mammalian cells. As a negative control, the green fluorescent protein (GFP) cDNA was also cloned into the pEF1/V5-His expression vector. The mouse prostate cancer cell line RM-1 was transfected with the expression vectors, and individual clones were isolated by G418 selection followed by limiting dilution. Three individual clones were isolated: RM-1-PSMA clone 1 and RM-1-PSMA clone 3 express the human PSMA cDNA and RM-1-GFP clone 2 expresses the GFP cDNA. In order to characterize the growth properties of the clones in culture, the cell numbers were measured over 7 days of culturing. As shown in Fig. 1, the results demonstrate that under normal growth conditions, all three RM-1 cell lines grow in a similar fashion as the parental RM-1 cell line.

Western Blot Analysis of PSMA Expression

To determine the level of PSMA expression in the selected RM-1 clones, Western blot analysis was performed using rabbit polyclonal antibodies prepared from peptides corresponding to the C-terminal sequence or the N-terminal sequence of the human PSMA. Lysates from the two RM-1-PSMA clones were loaded on
Figure 7. CTL assays of T-cells from mice after *ex vivo* infection of DCs with the CD40-targeted Ad5 vectors expressing PSMA or luciferase followed by intraperitoneal administration. Mice were immunized as described in Material and Methods with dendritic cells infected with the CD40-targeted Ad5-luc1 or with the CD40-targeted Ad5-huPSMA. At day 24 after initiation of the experiment, the animals were euthanized, and CTL activity was measured in cells harvested from the spleens. Target cells used were RM-1 parental (), RM-1-PSMA clone 1 cells (▲), RM-1-PSMA clone 3 cells (●), and RM-1-GFP clone 2 cells (■). Target cells were either untreated (A and C) or pre-treated by infection with Ad5-IFNγ (B and D). Each data point represents the mean ± standard error of four replicate wells.

doi:10.1371/journal.pone.0046981.g007
CTL assay of mouse splenocytes after administration of DCs treated ex vivo with CD40 targeted Ad vectors

1 × 10⁶ ifu 1 × 10⁶ ifu 1 × 10⁶ ifu
CTL assay (Ad5-luc1 or Ad5-huPSMA) ± CFm40L

day 0 14 24

A. Naive effector cells + untreated target cells

B. Naive effector cells + Ad5-IFNγ treated target cells

C. Ad5-Luc1 treated effector cells + untreated target cells

D. Ad5-Luc1 treated effector cells + Ad5-IFNγ treated target cells

E. Ad5-huPSMA treated effector cells + untreated target cells

F. Ad5-huPSMA treated effector cells + Ad5-IFNγ treated target cells
cells (Ad5-IFN) of the PSMA antigen. Infection of mouse DCs with huPSMA confirmed PSMA expression (ifu (infectious units) of virus at a multiplicity of infection (MOI) at 100 which peaked at 24 h post-infection and was maintained huPSMA clones. In addition, PSMA detection with antibodies targeting either N-terminal or C-terminal sequences revealed identical staining pattern with no sign of abnormal expression or protein degradation (Fig. 2B).

Constructing a CD40-targeted Ad Vector to Deliver PSMA to DCs

Previous studies have demonstrated that targeting to mouse CD40 enhanced Ad-mediated gene transfer to mouse DC, which was accompanied by phenotypic changes characteristic of DC maturation [14]. This targeting approach was achieved using an adapter molecule that bridges the fiber of the Ad5 to CD40 on mouse DC. We utilized an Ad vector, which incorporated a human PSMA expression cassette within the E1A region under the control of the CMV promoter (Ad5-huPSMA). We then tested this vector on the ability to infect mouse DCs, which has been shown previously to poorly express the Cosxsackie and adenovirus receptor but to be CD40 positive [21]. The optimal CFm40L concentration (lowest amount of CFm40L achieving maximal DC infection) was determined to be 120 ng CFm40L per 1×10⁵ ifu (infectious units) of virus at a multiplicity of infection (MOI) at 100 ifu Ad5-huPSMA per cell (data not shown). Western blot analyses confirmed PSMA expression (Fig. 3A) in cells infected with Ad5-huPSMA which peaked at 24 h post-infection and was maintained for up to 48 h (Fig. 3B). These experiments demonstrate efficient infection of mouse DCs with Ad5-huPSMA and efficient expression of the PSMA antigen.

Cell Surface Expression of MHC Class IA Molecules in Response to IFNγ

RM-1 cells have been previously shown to express low levels of MHC class I (Db and Kb) [22], which can be up regulated by treatment with recombinant IFNγ [23]. Cell surface expression of MHC class I molecules on RM-1 cells after infection with Ad5-IFNγ was determined by flow cytometry. Low basal cell surface expression of MHC class I antigens was observed for the parental RM-1 cell line as well as the RM-1-PSMA clones 2, 3, and 4 after infection. As shown in Fig. 6, cell viability was unchanged in cells infected at any concentration of Ad5-IFNγ compared with untreated cells. No decrease was observed up to 4 days after infection, either in RM-1 cells (Fig. 6A) or in RM-1-PSMA clone 3 cells (Fig. 6B); these results indicate that there is no direct effect of IFNγ on cellular viability in vivo.

TAP is a trimeric complex consisting of TAP1, TAP2 and tapasin [24]. To characterize the antigen presentation pathway in RM-1 cells, expression of TAP1 and TAP2 proteins was analyzed by Western blotting. As shown in Fig. 5, TAP1 protein levels were undetectable and TAP2 protein levels were barely detectable in any of the RM-1 cell lines. However, treatment with Ad5-IFNγ for 24 h dramatically increased both TAP1 and TAP2 protein expression in each of the RM-1 cell lines (Fig. 5B and Fig. 5D) compared with the untreated cells. These results demonstrate that Ad5-IFNγ induces expression of the MHC class I antigen presentation pathway in RM-1 cells.

Effect of Ad5-IFNγ on Cellular Viability

IFNγ can activate and suppress a number of different target genes, leading to decreased cellular viability by inducing cell cycle arrest and apoptosis. To determine any effect IFNγ had on cellular viability, RM-1 and RM-1-PSMA clone 3 cells were infected with Ad5-IFNγ ranging from 0.1 to 1,000 ifu/cell and assayed at days 1, 2, 3, and 4 after infection. As shown in Fig. 6, cell viability was unchanged in cells infected at any concentration of Ad5-IFNγ compared with untreated cells. No decrease was observed up to 4 days after infection, either in RM-1 cells (Fig. 6A) or in RM-1-PSMA clone 3 cells (Fig. 6B); these results indicate that there is no direct effect of IFNγ on cellular viability in vivo.

CTL Assay of Mouse Splenocytes after in vivo Administration of DCs Treated ex vivo with the CD40-targeted Ad Vectors

To study the effect of CD40-targeted Ad infection on DC-mediated CTL activation, we used two CD40-targeted Ad vectors: Ad5-luc1 or Ad5-huPSMA. In the experiment shown in Fig. 7, C57BL/6 mice were immunized with 3×10⁶ DCs infected with either the CD40-targeted Ad5-luc1 or the CD40-targeted Ad5-huPSMA. This immunization was repeated at 14 days; at 24 days from initiation of the immunization regimen, the mice were sacrificed and the spleens were removed and T-cells cultured. T-cells from the mice were re-stimulated for 6 days with γ-irradiated 293 cells infected with Ad5-huPSMA. Following re-stimulation, a ⁵¹Cr release CTL assay was performed with the stimulated CTL as effector cells (E) and RM-1 cells targets (T) at the indicated E:T ratios. Cytotoxicity was measured using parental RM-1 target cells, the RM-1 clonal cell lines 1 and 3 expressing PSMA, or the RM-1 clonal cell lines 2 expressing GFP. IFNγ induces the expression of several components of the antigen-processing machinery, leading to enhanced presentation of peptides in the context of HLA class I molecules on the cell surface [25]. Therefore, we decided to enhance CTL lysis of target cells by infecting them with an Ad vector expressing the murine interferon-gamma (Ad5-IFNγ).

T-cells from mice in the vaccination group receiving DCs infected with the CD40-targeted Ad5-luc1 did not acquire CTL activity (Fig. 7A). Likewise, there was no specific lysis using target cells treated with Ad5-IFNγ (Fig. 7B). However, as shown in Fig. 7C, T-cells from mice in the vaccination group receiving DCs infected with the CD40-targeted Ad5-huPSMA exhibited weak specific lysis against RM-1-PSMA clone 3 cells (with a significance of P<0.05
Prostate Cancer DC Based PSMA Immunotherapy

A

![Graph showing specific lysis vs E:T ratio](image)

B

YAC-1

- **Isotype**: 3.5
- **H60**: 26.2
- **MULT-1**: 14.3
- **Rae-1**: 123.4

RM-1

- **Isotype**: 2.1
- **H60**: 2.3
- **MULT-1**: 2.9
- **Rae-1**: 5.7

FL2 mean fluorescent intensity
at E:T ratios of 100:1, 50:1 and 25:1) and RM-1-PSMA clone 1 cells (with a significance of $P < 0.05$ at E:T ratios of 100:1 and 50:1), compared to control RM-1 cells or to RM-1-GFP clone 2 cells. Importantly, as shown in Fig. 7D, CTL lytic activity was significantly enhanced in RM-1-PSMA clone 1 and RM-1-PSMA clone 3 cells, which were pre-treated for 24 h with Ad5-IFNγ. However, neither RM-1 cells nor RM-1-GFP clone 2 cells, which were also pre-treated with Ad5-IFNγ showed any specific lysis. The differences between control RM-1 cells and either of the two cell

![Graph](image)

Figure 9. Assessment of sensitivity to NK cell-mediated cytotoxicity. (A) Cytotoxic activity of NK effector cells on YAC-1 and RM-1 target cells was determined by a 51Cr-release assay at indicated E:T ratios. Target cells used were YAC-1 (●), RM-1 parental (▲), RM-1 parental cells pre-treated by infection with Ad5-IFNγ (■), RM-1-PSMA clone 3 cells (◇), or RM-1-PSMA clone 3 cells pre-treated by infection with Ad5-IFNγ (▲). Each data point represents the mean ± standard error of four replicate wells. (B) Flow cytometry analysis of YAC-1 and RM-1 cells stained with PE labeled anti-H60, anti-MULT-1, or anti-Rae-1 antibodies or with an isotype-matched control antibody. Numbers below the histograms correspond to mean fluorescence intensity of each peak.

doi:10.1371/journal.pone.0046981.g009

![Graph](image)

Figure 10. Assessment of tumor growth after vaccine treatment. Antitumor effect of a CD40-targeted Ad5-huPSMA vaccine was determined using the RM-1-PSMA mouse model. Mice were immunized as described in Material and Methods with the CD40-targeted Ad5-luc1 or CD40-targeted Ad5-huPSMA. At day 24 after initiation of the experiment, each mouse received 4×10^6 RM-1 parental cells or 4×10^6 RM-1-PSMA clone 1 cells injected subcutaneously. Three days later, the treatment groups were injected at the site of tumor cell injection with 1×10^8 ifu of Ad5-IFNγ or with normal saline. Beginning at the time of tumor cell challenge (day 0), the tumors were measured and volumes calculated by the formula: tumor volume = $\frac{1}{2} \times \text{length} \times \text{width}^2$ where length is the longest distance of the tumor. Each data point represents the mean volume of 15 tumors ± standard error.

doi:10.1371/journal.pone.0046981.g010
lines expressing PSMA (RM-1-PSMA clone 1 or RM-1-PSMA clone 3) were statistically significant at all E:T ratios (P<0.01).

CTL Assay after Vaccination with Ad5-huPSMA

The following experiment tested the functionality of the CD40-targeted Ad5-huPSMA to deliver an antigen to DCs in situ. In this experiment, DC-mediated CTL activation was assessed after direct intraperitoneal (i.p.) injection of the CD40-targeted Ad5-huPSMA. As shown in the vaccination schema in Fig. 8, C57BL/6 mice were immunized i.p. with 1×10^9 ifu of either the CD40-targeted Ad5-luc1 or the CD40-targeted Ad5-huPSMA. This immunization was repeated at 14 days with 1×10^9 ifu of the CD40-targeted Ad. At 24 days from initiation of the immunization regimen, the mice were sacrificed and the spleens were removed and T-cells cultured. T-cells from the mice were re-stimulated as described above, followed by a classic 51Cr release CTL assay. Cytotoxicity was measured by 51Cr release from RM-1 target cells or RM-1 clonal cell lines expressing either PSMA or GFP.

As shown in Fig. 8A, T-cells from naive mice exhibited no specific lysis against any of the RM-1 cell lines. In addition, no specific lysis was detected when the target cells were pre-treated with Ad5-IFNγ (Fig. 8B). Similarly, when mice were vaccinated in situ with the CD40-targeted Ad5-luc1, no specific lysis against any of the RM-1 cell lines was observed, regardless of their pre-treatment with Ad5-IFNγ (Fig. 8C and Fig. 8D). When mice were vaccinated with the CD40-targeted Ad5-huPSMA, RM-1-PSMA clone 3 did show weak CTL lysis. However, no significant 51Cr release was observed neither with parental RM-1, cells, nor RM-1-GFP clone 2 or RM-1-PSMA clone 1 (Fig. 8E). Significantly, as shown in Fig. 8F, specific lysis was dramatically enhanced in RM-1-PSMA clone 1 and RM-1-PSMA clone 3, when those cells were pre-treated with Ad5-IFNγ. Importantly, neither RM-1 parental cells nor RM-1-GFP clone 2, which were also pre-treated with Ad5-IFNγ showed any specific lysis.

Assay of RM-1 Cells to Natural Killer (NK) Cell-mediated Cytotoxicity

NK cells play a major role in host defense against developing tumors and virally infected cells; thus, we investigated the sensitivity of RM-1 cells to NK cell-mediated cytotoxicity. To determine the sensitivity of the RM-1 and RM-1-PSMA clone 3 cell lines as targets for NK cell lysis, a chromium release assay was performed using mouse splenocytes. Although NK cells were not purified, they represent the only cell population capable of lysing the effector cells in this assay. As a control, an NK-sensitive cell line (YAC-1 mouse lymphoma cells) was also assayed. As shown in Fig. 9A, both the RM-1 and RM-1-PSMA clone 3 cell lines were insensitive to lysis by NK cells compared with YAC-1 cells. In the 4-hour incubation, very little or no cytolytic activity was detected, even in RM-1 and RM-1-PSMA clone 3 cells pretreated with Ad5-IFNγ. These results suggest that RM-1 cells are resistant to NK-mediated killing. To gain insight into the mechanism responsible for NK resistance, expression of NKGD2 ligands on RM-1 clone 3 cells was investigated, since the expression of NKGD2 ligands has been previously demonstrated to play important role in NK-mediated killing. As shown in Fig. 9B, the mean fluorescence intensities of immunostaining the murine NKGD2 ligands H60, Rae-1, and MULT-1 were lower in RM-1 cells compared to YAC-1 cells [an NK-sensitive cell line] used as positive control. Similar low expression of NKGD2 ligands was observed in RM-1 cells pretreated with Ad5-IFNγ (data not shown). These results suggest that low expression of NKGD2 ligands in RM-1 cells may be involved in the resistance to NK-mediated killing we observed.

Tumor Response after Vaccination in vivo

Finally, we asked if CD40-targeted Ad5-huPSMA vaccine could induce an immune response to control tumor growth. In this experiment, C57BL/6 mice were immunized by intraperitoneal injection of 1×10^8 ifu of untargeted Ad5-huPSMA or CD40-targeted Ad5-huPSMA. The animals received a boost immunization at 10 days after the initial immunization. At the 14th day after the second immunization, the mice were challenged subcutaneously with 4×10^7 RM-1 parental cells or RM-1-PSMA clone 1 cells. Three days later, the treatment groups were injected at the site of tumor cell injection with 1×10^8 ifu of Ad5-IFNγ or with normal saline. As shown in Fig. 10, immunization with CD40-targeted Ad5-huPSMA alone or with non-targeted Ad5-huPSMA + Ad5-IFNγ similarly diminish tumor growth in animals challenged with RM-1-PSMA cells. This tumor growth was significantly delayed compared with the animals immunized with the CD40-targeted Ad5-huPSMA but challenged with parental RM-1 cells (that do not express the human PSMA antigen). Importantly, mice immunized with the CD40-targeted Ad5-huPSMA and Ad5-IFNγ demonstrated the greatest inhibition of tumor growth when challenged with RM-1-PSMA cells compared with the other groups.

Discussion

In this study, we evaluated a prostate cancer vaccine based on adenoviral vector delivering PSMA antigen targeted by means of a bispecific adapter approach to CD40 expressing DCs. PSMA is a prostate tumor antigen that is widely expressed on the surface of prostate cancer cells. Generation of an appropriate immune response against tumor-specific antigens leading to eradication of tumors is of prime importance. Thus, our main goal in the study was to determine a proof-of-principle in using the Ad vaccine to directly stimulate DCs in vivo to target PSMA expressing prostate cancer cells. The major hurdle in targeting dendritic cells by means of adenoviral vectors is the lack of the native Coxsackie and Adenovirus receptor on the cell surface. We demonstrated expression of PSMA upon infection of DCs using a CD40-targeted Ad5-huPSMA vector, while using an untargeted vector resulted in undetectable PSMA expression. A major advantage using the adapter-based CD40-targeting approach is flexibility to use different sets of Ad vectors expressing unique tumor associated antigens. Our results also have relevance that would encourage the use of Ad vectors in immunotherapies targeting additional cancers in addition to prostate cancer.

MHC molecules play a critical role in the immune response against target antigens. Several studies have reported that MHC class I allele is frequently down regulated in as many as 85% of prostate tumors. The loss of MHC expression may be one of the potential mechanisms by which cancer cells evade host immunosurveillance. We show in this study that the parental RM-1 cells and their derivative clonal cell lines do not express detectable levels of MHC class I on their cell surface. However, pretreatment of RM-1 cells with Ad5-IFNγ led to significant up regulation of MHC class I as evident by flow cytometry analysis. Furthermore, since TAP1 and TAP2 form important components of the antigen presentation pathway, we studied their expression in RM-1 cells by Western blot analysis. These results indicate that RM-1 cells express low levels of TAP1 and TAP2, which may explain their propensity to form tumors and evade the immune response. Importantly, infection with Ad5-IFNγ induces TAP1 and TAP2 expression in the RM-1 cell lines. Thus, these results suggest that effective vaccine therapy in the context of the RM-1 model requires combination vaccine therapy using an immunomodulatory molecule to stimulate antigen presentation in target cells.
DCs play a functional role in eliciting cellular immune response against tumor specific antigens. We assessed the ability of CD40-targeted Ad infection on DC-mediated CTL activation in an in vivo 32P release CTL assay. We found efficient killing of the target RM-1 clone 1 and clone 3 cells expressing PSMA antigen by the T cells obtained from mice injected with DCs infected with Ad5-huPSMA. This lytic activity was further enhanced by infections of cells with an Ad vector expressing murine IFNγ. However, the CTL killing activity was absent in the group of animals receiving DCs infected with untargeted vector Ad5-luc1. The efficacy of CD40-targeted Ad5-huPSMA to deliver the antigen to DCs and induce CTL response was further tested using an in vivo CTL assay. Our data demonstrate weak killing of target RM-1-PSMA clone 3 by the T cells isolated from the mice immunized with Ad5-huPSMA as opposed to the animals treated with Ad5-luc1. This CTL lytic activity was dramatically enhanced in the PSMA expressing RM-1 clonal cell lines upon the treatment with Ad5-IFNγ, emphasizing on the significance of the combination vaccination therapy using immunomodulatory molecules to stimulate the CTL activity against tumor antigens.

In our experiments, we observed the most significant delay in the growth of RM-1-PSMA tumors in mice immunized with the CD40-targeted Ad5-huPSMA when the mice were also administered Ad5-IFNγ. Mice challenged with RM-1 cells that do not express human PSMA did not show inhibition of tumor growth. This suggests that the DC-based vaccine may confer resistance to the prostate tumor growth in vivo in an antigen specific manner.

However, mice immunized with CD40-targeted Ad5-huPSMA without Ad5-IFNγ, and challenged with RM-1-PSMA cells offered intermediate protection against tumors. Likewise, mice immunized with untargeted Ad5-huPSMA but including Ad5-IFNγ, and challenged with RM-1-PSMA cells offered similar intermediate protection against tumors. It is possible that weak CTL activity was sufficient to offer some protection in these contexts. It is also possible that IFNγ itself offered some indirect anti-cancer protection. IFNγ has been shown to be capable of bestowing increased sensitivity to Fas-mediated cell death in prostate cancer cells [20].

Although delayed, growth of RM-1-PSMA tumors ultimately resumed in mice immunized with the CD40-targeted Ad5-huPSMA co-treated with Ad5-IFNγ. Nonetheless, these mice demonstrated a prolonged survival advantage. In conclusion, our study may aid the development of dendritic cell based cancer gene therapy approaches for the therapeutic intervention of prostate carcinoma. Future studies are warranted to explore the mechanisms involved in mediating protection against the PSMA expressing tumors as well as to maximize the therapeutic effect.

Acknowledgments

We acknowledge the expert technical assistance of Ms. Bing Cheng and Mr. Larry Smart.

Author Contributions

Conceived and designed the experiments: BJW IK AVP DTC JMM. Performed the experiments: SB LKA SLB JLC XL DLR NK. Analyzed the data: BJW SB LKA SLB JLC XL NK AVP DTC JMM. Contributed reagents/materials/analysis tools: BJW IK AVP DTC JMM. Wrote the paper: BJW SB LKA SLB JLC XL DLR NK AVP IK DTC JMM.

References

1. Siegel R, Ward E, Brawley O, Jemal A Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61: 212–236.
2. Di Lorenzo G, Buonarora C, Kantoff PW Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 8: 551–561.
3. Sonpavde G, Agarwal N, Choueiri TK, Kantoff PW Recent advances in immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther 11: 997–1009.
4. Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91: 528–539.
5. Doehn C, Bohmer T, Kausch I, Sommerauer M, Jocham D (2008) Prostate cancer vaccines: current status and future potential. BioDrugs 22: 71-84.
6. Olson WC, Heston WD, Rajasekaran AK (2007) Clinical trials of cancer therapies targeting prostate-specific membrane antigen. J Immunother Cancer Immunol 35: 1524–1533.
7. Furssel S, Meye A, Schmitz M, Zastrow S, Linne C, et al. (2006) Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 66: 811-821.
8. Verdijk P, Aamtenen EH, Punt CJ, de Vries JF, Fijgter CG (2000) Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 8: 865–874.
9. Bolhasani A, Salianyn S, Rafati S Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10: 3.
10. Reiz DT, Beidenbach M, Curiel DT (2006) Current developments in adenovirus-based cancer gene therapy. Future Oncol 2: 137–143.
11. Stocklin LH, Matzov T, Georgopoulos NT, Stanbridge IJ, Jones SV, et al. (2002) Engineered expression of the Concave B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J Immunol Methods 259: 205–215.
12. Verehower D, Nagle JM, Shakkottai MA, Triozzi PL, Matthews QL, et al. (2004) Enhanced transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol Ther 9: 712–720.
13. Brandao JG, Scheper RJ, Lougheed SM, Curiel DT, Tillman BW, et al. (2003) CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytootoxic T cell activation. Vaccine 21: 2268–2272.
14. Hanagalapura BN, Oosterhoff D, de Groot J, Boon L, Tuting T, et al. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine. Cancer Res 67: 5827–5837.
15. Hanagalapura BN, Oosterhoff D, Aggarwal S, Wijnands PG, van den B, et al. Selective transduction of dendritic cells in human lymph nodes and superior induction of high-avidity melanoma-reactive cytotoxic T cells by a CD40-targeted adenovirus. J Immunother 33: 706–715.
16. Baleya PA, Yoshida K, Qiao W, Schgal I, Thompson TC (1995) Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J Steroid Biochem Mol Biol 52: 403–413.
17. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, et al. (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95: 2509–2514.
18. Li XL, Zhang D, Knight D, Odaka Y, Glass J, et al. (2009) Priming of immune responses against tumor-associated antigens by genetically modified adenoviral vaccines. J Gene Med 11: 1420–1428.
19. Izumi M, Kawakami Y, Glasgow JN, Belousova N, Everts M, et al. (2005) In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. J Gene Med 7: 1517–1525.
20. Neeley JG, McDonagh KT, Overwijk WW, Restifo NP, Sanda MG (2002) Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requirements against class II MHC presented by human dendritic cells. J Immunother 25: 53–60.
21. Martini M, Testi MG, Pasotti M, Pichchio MG, Inamorati G, et al. IFN-gamma-mediated upregulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine 28: 3548–3557.
22. Prockop DE, Aaldert R (2009) Antigen processing and presentation: TAP into ABC transporters. Curr Opin Immunol 21: 84–91.
23. Strebl B, Seifen U, Kruger E, Heinisch K, Kuckelkorn U, et al. (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 197: 19–30.
24. Selleck WA, Canfield SE, Hasson WA, Mesec M, Kuzmin AI, et al. (2003) IFN-gamma sensitization of prostate cancer cells to Fas-mediated death: a gene therapy approach. Molecular Therapy: the Journal of the American Society of Gene Therapy 7: 185–192.