Association of atrial fibrillation without cardiovascular comorbidities and stroke risk: From the regards study

Matthew J. Singleton, Wake Forest University
Muhammad Imtiaz-Ahmad, Hospital Medicine Wake
Hooman Kamel, Weill Cornell Medical College
Wesley O'Neal, Emory University
Suzanne E. Judd, The University of Alabama at Birmingham
Virginia J. Howard, The University of Alabama at Birmingham
George Howard, The University of Alabama at Birmingham
Elsayed Z. Soliman, Wake Forest University
Prashant D. Bhave, Wake Forest University

Journal Title: Journal of the American Heart Association
Volume: Volume 9, Number 12
Publisher: American Heart Association | 2020-06-16, Pages e016380-e016380
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1161/JAHA.120.016380
Permanent URL: https://pid.emory.edu/ark:/25593/vpkzv

Final published version: http://dx.doi.org/10.1161/JAHA.120.016380

Copyright information:

© 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed October 26, 2024 1:50 PM EDT
Association of Atrial Fibrillation Without Cardiovascular Comorbidities and Stroke Risk: From the REGARDS Study

Matthew J. Singleton, MD, MBE, MSc, MHS; Muhammad Imtiaz-Ahmad, MD, MS; Hooman Kamel, MD; Wesley T. O’Neal, MD, MPH; Suzanne E. Judd, PhD; Virginia J. Howard, PhD; George Howard, DrPH; Elsayed Z. Soliman, MD, MSc, MS; Prashant D. Bhave, MD

BACKGROUND: Atrial fibrillation (AF) is associated with a 5-fold increased stroke risk. While most patients with AF warrant anticoagulation, optimal treatment remains uncertain for patients with AF without cardiovascular comorbidities because the risk of stroke in this population has not been well-characterized.

METHODS AND RESULTS: Participants (N=28,253; 55% women, mean age 64.6±9.4 years), from the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study (2003–present) were classified into 1 of 4 groups based on the presence or absence of AF and the presence or absence of cardiovascular comorbidities. Cox proportional hazards analysis was used to compare the risk of stroke between groups. During 244,560 person-years of follow-up (median 8.7 years), 1206 strokes occurred. Compared with patients with neither AF nor cardiovascular comorbidities, we did not find an increased stroke risk (hazard ratio [HR], 1.23; 95% CI, 0.62–2.18 [P=0.511]) among participants with AF alone. Participants without AF but with cardiovascular comorbidities had both an elevated stroke risk (HR, 1.77; 95% CI, 1.48–2.18 [P<0.0001]) and an increased risk of cardioembolic stroke (HR, 2.34; 95% CI, 1.48–3.90 [P=0.0002]).

CONCLUSIONS: In this large cohort of participants with AF without cardiovascular comorbidities, we found that AF itself, without cardiovascular comorbidities, did not confer increased risk of stroke. Cardiovascular comorbidities, however, were associated with an increased risk of both stroke of any type and cardioembolic stroke, even in the absence of AF.

Key Words: arrhythmia ■ atrial fibrillation ■ comorbidities ■ risk ■ stroke

Atrial fibrillation (AF) confers a 2-fold increased risk of all-cause mortality.1 This is chiefly mediated by the 5-fold increased risk of stroke among patients with AF2,3 and the fact that strokes are markedly more debilitating in those with AF.4,5 For the majority of patients with nonvalvular AF with a CHA2DS2-VASc score of ≥2,6 anticoagulant therapy is indicated.7,8 However, among patients with “lone AF,” or AF without cardiovascular comorbidities, the risk/benefit profile of anticoagulation remains unclear.

Lone AF has been variably defined over the preceding decades, leading to ambiguity about its prognosis and treatment.9,10 Even after accounting for variable definitions, the risk of stroke among patients with AF without cardiovascular comorbidities is unknown—there is no consensus in the literature. While some studies report a risk of stroke indistinguishable from the general population,11,12 others have found a markedly elevated stroke risk.13–15 These inconsistencies may be attributable to differences in study design, such as the use of actuarial estimates for the reference group11 or by failing to adjust for confounders13 (such as race,16–18 income,19 educational attainment,20 and geographical region21) that are known to be associated with both lone AF and stroke but are not on the causal pathway. Because of
CLINICAL PERSPECTIVE

What Is New?
• In the absence of comorbidities, atrial fibrillation may not confer an increased risk of all-cause stroke, although there may be an increased risk of cardioembolic stroke.
• Use of stroke risk stratification methods, such as the CHA2DS2-VASc score, should be used to identify patients at low risk of thromboembolism.

What Are the Clinical Implications?
• Further studies that aim to tease out the risk of stroke caused by arrhythmia itself and the risk caused by associated comorbidities may help refine risk stratification, prescribing practices, and patient outcomes.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
AF	atrial fibrillation
ACC/AHA/HRS	American College of Cardiology/ American Heart Association/ Heart Rhythm Society
BMI	body mass index
HR	hazard ratio
REGARDS	Reasons for Geographic and Racial Differences in Stroke
TOAST	Trial of Org 10172 in Acute Stroke Treatment (ischemic stroke specification schema)

this ambiguity, the American College of Cardiology/American Heart Association/Heart Rhythm Society (ACC/AHA/HRS) guidelines offer only class IIa and IIb recommendations for thromboprophylaxis management in these patients. In addition, the European Society of Cardiology guideline recommendations differ from those of the ACC/AHA/HRS guidelines for patients with a CHA2DS2-VASc score of 1. This variability in practice is a consequence of the paucity of conclusive evidence regarding risks and benefits in this population.

We hypothesized that participants in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study with AF alone would not have an increased risk of stroke when compared with the reference group of those with neither AF nor cardiovascular comorbidities. Secondary aims included comparing the risk of stroke in patients with cardiovascular comorbidities without AF with the risk of stroke in those with neither AF nor cardiovascular comorbidities, comparison of the incidence and proportion of the TOAST (Trial of Org 10172 in Acute Stroke Treatment [ischemic stroke specification schema]) subtypes of ischemic stroke in each group, and examining the consistency of these associations in prespecified subgroups.

METHODS

Study Design and Participants
Qualified researchers trained in human subject confidentiality protocols may request access to the data that support the findings of this study by contacting the REGARDS Operations Center at 888-734-2738.

We divided REGARDS study participants into 4 groups based on the presence or absence of AF and the presence or absence of cardiovascular comorbidities. Group 1 (reference group) included participants with no AF and no cardiovascular comorbidities. Group 2 included participants without AF, but with cardiovascular comorbidities. Group 3 included participants with AF, but without cardiovascular comorbidities. Group 4 included participants with both AF and cardiovascular comorbidities.

The design of the REGARDS study has been previously described. Briefly, the REGARDS study is a longitudinal population-based cohort study of 30,239 black and white participants 45 years and older recruited between 2003 and 2007 designed to understand regional and racial disparities in stroke risk. Blacks (42%) and residents of the stroke belt (56%; Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee) were systematically oversampled. Study methods were approved by institutional review boards at participating institutions. All participants provided written informed consent. The authors had full access to the data and take responsibility for its integrity and analysis.

Exposure Variables
AF was defined by either evidence of AF on study ECG or self-reported prior physician diagnosis of AF. The ECGs were read by electrocardiographers blinded to clinical data at Wake Forest School of Medicine (Winston Salem, NC). AF by ECG and self-report have been shown to be similarly predictive of stroke. Self-reported history of any of the following was considered to represent cardiovascular comorbidity: physician diagnosis of diabetes mellitus, myocardial infarction, coronary angioplasty or stenting, coronary artery bypass surgery, surgery for peripheral artery disease, amputation for peripheral artery disease, heart failure (defined as the presence of orthopnea or paroxysmal nocturnal dyspnea), transient
asured from medical record review and ascertainment from October of 2016 were included. Stroke cause was assigned TOAST categories (large-artery atherosclerosis, cardioembolism, small-vessel occlusion, stroke of other determined cause, and stroke of undetermined cause).

Outcome Variables
Details of stroke adjudication have been previously reported. Briefly, report of a possible stroke triggered a request for medical records that were centrally adjudicated by a panel of blinded stroke expert physicians. Incident stroke cases adjudicated by October of 2016 were included. Stroke cause was ascertained from medical record review and assigned TOAST categories (large-artery atherosclerosis, cardioembolism, small-vessel occlusion, stroke of other determined cause, and stroke of undetermined cause).

Statistical Analysis
Among 30,239 REGARDS study participants, 1930 were excluded for prior stroke and 56 withdrew consent, leaving 28,253 eligible patients. Baseline characteristics are reported as mean±SD for continuous variables and frequency (percentage) for categorical variables. Unadjusted analyses used ANOVA for continuous variables and chi-square tests for categorical variables. Two-sided P values <0.05 were considered statistically significant.

Cox proportional hazards modeling was used to compare stroke risk between groups, with group 1 being the reference. Hazard ratios (HRs) are reported with 95% CIs. Time-independent proportionality assumptions were initially assessed by examining the Martingale residual plot. With inclusion of the natural logarithm of follow-up time as a time-dependent covariate, there was no evidence of substantial departures from the assumption of proportionality.

Multivariable analysis was conducted with 4 models. Initial analysis was unadjusted, with subsequent analyses iteratively adjusting for covariates believed to be clinically important, including demographics (model 1 adjusted for age, sex, race, education, income, and geographic region), then modifiable risk factors (model 2 added high-density lipoprotein cholesterol, total cholesterol, body mass index [BMI], and smoking), then medication use (model 2 added aspirin use and warfarin use).

Sensitivity analysis examined the proportion, incidence rates, and adjusted HR for the various TOAST subtypes. We also explored the consistency of the associations in prespecified subgroups by testing for interaction between the exposure variable and the subgroups, comparing the risks in subgroups separated by age, sex, race, smoking status, and BMI. Kaplan–Meier plots and log-rank test were used to compare the stroke-free survival between groups. Analyses were conducted using SAS version 9.4 (SAS Institute Inc.).

RESULTS
Among 28,253 eligible participants, 7837 (27.7%) had neither AF nor cardiovascular comorbidities, 18,103 (64.1%) had no AF but did have cardiovascular comorbidities, 386 (1.4%) had AF but no cardiovascular comorbidities, and 1927 (6.8%) had both AF and cardiovascular comorbidities. Baseline characteristics of the study population are provided in Table 1. There were significant between-group differences in all covariates. After 244,560 person-years of follow-up (median 8.7; interquartile range, 5.8–11.6), 1206 strokes occurred. The observed incidence rates per 1000 person-years of follow-up and multivariable-adjusted HRs are provided in Table 2. The HR for stroke was not significantly elevated in participants with AF without cardiovascular comorbidities (HR, 1.23; CI, 0.62–2.18), after adjusting for covariates.

As a sensitivity analysis, we examined the proportion of strokes in each group by TOAST subtype. Participants with AF, whether with or without cardiovascular comorbidities, had a much higher fraction of cardioembolic strokes (69.2% and 54.8% for participants with AF versus 12.9% and 16.7% for participants without AF, respectively) (Table 3). Despite the similarity in total stroke risk in groups 1 and 3, the risk of cardioembolic stroke differed substantially, with covariate-adjusted HRs of 2.34 (95% CI, 1.48–3.90) for group 2 and 3.12 (95% CI, 1.15–8.46) for group 3, compared with group 1 (Table 4). Stroke-free survival and cardioembolic stroke-free survival by group are depicted in Figure 1.

Subgroup analyses (Figure 2) demonstrated consistency in these relationships when stratified by sex, race, BMI, and smoking, although an interaction between age (<median age of 64 versus ≥64 years) and group emerged as an effect modifier (P = 0.02), with younger participants having a higher magnitude of risk explained by group than older participants.

DISCUSSION
In this analysis of the REGARDS study cohort, we found no evidence of an increased risk of stroke...
Table 1. Baseline Characteristics of the REGARDS Study Participants

Variable	Group 1 No AF, No Comorbidities n=7837 (27.7%)	Group 2 No AF, Has Comorbidities n=18103 (64.1%)	Group 3 Has AF, No Comorbidities n=386 (1.4%)	Group 4 Has AF, Has Comorbidities n=1927 (6.8%)	P Value*
Age, y	62.0±9.2	65.4±9.9	66.6±9.9	67.7±9.6	<0.0001
Men, %	43.3	44.8	45.3	46.6	0.034
CHA2DS2VASc†	1.03±0.82	2.83±1.16	1.29±0.89	3.37±1.24	<0.0001
White race, %	71.7	53.2	82.1	60.1	<0.0001
Education					<0.0001
<High school	6.2	14.1	6.2	14.8	
High school graduate	22.2	27.1	26.2	27.4	
Some college	27.2	26.8	26.9	26.5	
College graduate	44.4	32.0	40.7	31.4	
Income, %					<0.0001
<$20 000	10.7	19.6	13.0	23.4	
$21 000 to $34 000	19.8	25.6	24.9	25.7	
$35 000 to $74 000	33.7	29.0	28.2	28.9	
≥$75 000	24.0	13.6	20.0	10.8	
Region, %					<0.0001
Stroke buckle	20.3	21.1	22.0	23.0	
Stroke belt	33.3	35.2	31.6	35.5	
Elsewhere	46.4	43.8	46.4	41.5	
Smoking status, %					<0.0001
Never	50.4	44.4	43.6	40.9	
Former	35.9	40.9	44.2	45.6	
Current	13.7	14.7	12.2	13.5	
Systolic BP, mm Hg	118.5±11.2	131.1±16.9	118.3±10.8	129.7±17.5	<0.0001
Diastolic BP, mm Hg	73.6±7.7	77.9±10.1	72.7±7.9	76.2±10.2	<0.0001
BMI, kg/m²	27.1±6.0	30.3±6.4	26.9±4.9	30.1±6.8	<0.0001
Total cholesterol, mg/dL	200.3±37.5	190.2±40.2	195.3±39.7	181.2±41.3	<0.0001
HDL cholesterol, mg/dL	54.9±16.4	51.0±16.0	53.6±17.3	49.6±16.3	<0.0001
LDL cholesterol, mg/dL	121.6±33.2	112.0±34.9	116.6±32.6	105.6±34.0	<0.0001
Triglycerides, mg/dL	118.9±77.0	136.7±88.4	127.1±107.7	139.3±89.8	<0.0001
eGFR	88.4±19.2	85.2±24.9	85.7±19.3	80.5±26.2	<0.0001
Aspirin use, %	28.3	47.1	36.0	51.9	<0.0001
Warfarin use, %	0.6	1.9	18.7	21.7	<0.0001

Continuous variables are listed as means±SD. Categorical variables are listed as proportion (percentage). Baseline characteristics of the 28,253 eligible participants from the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study at baseline are provided. There were significant between-group differences at baseline in all covariates assessed. AF indicates atrial fibrillation; BMI, body mass index; BP, blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; and LDL, low-density lipoprotein.

*P value as calculated by ANOVA for continuous and chi-square for categorical variables.

†Stroke risk score (see reference 6).
among participants with AF without cardiovascular comorbidities, compared with the reference group of those with neither AF nor cardiovascular comorbidities. This finding was consistent in subgroup analyses. However, there was evidence of effect-modification between age (<64 versus ≥64 years) and group. For those with cardiovascular comorbidities without AF, we found an increased risk of cardioembolic stroke, even in the absence of AF.

Our finding that AF without cardiovascular comorbidities does not convey an increased overall stroke risk is consistent with much of the published literature, although there has been recent research from the Framingham Heart Study suggesting that patients with AF without cardiovascular comorbidities may have an increased risk of major adverse cardiovascular events. The current guidelines do not recommend anticoagulation for men with a CHA2DS2-VASc score of 0 or women with a CHA2DS2-VASc score of 1, as this subgroup of patients has a risk of stroke comparable to the population at large.

Atrial Cardiopathy and Stroke

There is ongoing debate about the relative contribution to stroke risk attributable to clinical AF per se and the often-associated cardiovascular comorbidities. The observation that AF confers a relatively small additive risk of stroke in the absence of cardiovascular comorbidities may be explained by the theory of cardiopathy-dependent risk of atrioembolic stroke, as opposed to the traditionally held arrhythmia-dependent risk of atrioembolic stroke.

Table 2. HRs for Stroke

Group	No AF, No Comorbidities	No AF, Has Comorbidities	Has AF, No Comorbidities	Has AF, Has Comorbidities
Group 1	n=7837 (27.7%)	n=18103 (64.1%)	n=386 (1.4%)	n=1927 (6.8%)
Strokes	175	867	18	146
Total follow-up, person-y	72900	153578	3330	14752
Stroke incidence rate (per 1000 person-y)	2.4	5.6	5.4	9.9
Unadjusted HR	1.0 (reference)	2.34 (1.99–2.76)	2.24 (1.33–3.54)	4.08 (2.27–5.06)
Model 1	1.0 (reference)	1.79 (1.50–2.14)	1.55 (0.84–2.62)	2.79 (2.00–3.54)
Model 2	1.0 (reference)	1.83 (1.53–2.20)	1.38 (0.70–2.42)	2.91 (2.27–3.73)
Model 3	1.0 (reference)	1.77 (1.48–2.14)	1.23 (0.62–2.18)	2.52 (1.93–3.28)

Model 1 adjusts for age, sex, race, education, income, and geographic region. Model 2 adjusts for the covariates in model 1, with the addition of high-density lipoprotein cholesterol, total cholesterol, body mass index, and smoking. Model 3 adjusts for the covariates in model 2, with the addition of regular aspirin use and warfarin use. Raw incidence rates and multivariable-adjusted hazard ratios (HRs) for stroke in groups based on the presence or absence of atrial fibrillation (AF) and the presence or absence of cardiovascular comorbidities are provided. After adjustment for covariates, the hazard for stroke was not significantly elevated in group 3 (patients with AF without comorbidities).

Table 3. TOAST Stroke Subtype Incidence Rates

Group 1	No AF, No Comorbidities	No AF, Has Comorbidities	Has AF, No Comorbidities	Has AF, Has Comorbidities
Group 2	n=7837 (27.7%)	n=18103 (64.1%)	n=386 (1.4%)	n=1927 (6.8%)
Strokes	175	867	18	146
Total stroke incidence rate	2.4	5.6	5.4	9.9
Ischemic stroke incidence rate	2.1	5.1	3.9	9.2
Cardioembolic	0.27 (12.9%)	0.85 (16.7%)	2.70 (69.2%)	5.04 (54.8%)
Large-vessel	0.24 (11.6%)	0.65 (12.7%)	––	1.30 (14.1%)
Small-vessel	0.33 (15.5%)	0.81 (15.9%)	––	0.40 (4.4%)
Other	0.11 (5.1%)	0.25 (4.9%)	––	0.34 (3.7%)
Unknown	1.15 (54.8%)	2.54 (49.9%)	1.20 (30.8%)	2.12 (23.0%)
Hemorrhagic stroke incidence rate	0.3	0.6	1.5	0.7

Incidence rates are per 1000 person-years of follow-up. Percentages refer to the fraction of all ischemic strokes in a given group assigned to each TOAST (Trial of Org 10172 in Acute Stroke Treatment [ischemic stroke classification stroke subtype]). Raw incidence rates by stroke subtype in each group, as well as proportions of all strokes attributed to each cause. AF indicates atrial fibrillation.

Singleton et al AF Without Cardiovascular Comorbidities and Stroke
stroke, in which the fibrillating atrium or the postconversion atrium itself causes stasis and thrombogenesis.39 If AF is in the causal pathway for atrioembolic stroke, then patients with AF without cardiovascular comorbidities (group 3) should have a markedly increased risk of stroke. Our findings of no increased risk of stroke in this group adds support to the hypothesis that arrhythmia alone may be insufficient for increasing stroke risk.

In addition to AF appearing insufficient to increase stroke risk in the absence of cardiovascular comorbidities, there is a growing body of literature suggesting that some patients have a heightened risk of atrioembolic stroke, even without AF. For instance, patients without AF can still have left atrial appendage thrombi40 or greatly impaired left atrial function,41 which can lead to stroke in some cases.42 In addition, the lack of temporal relationship between arrhythmia and stroke has been noted,43 to the extent that many people with presumed AF-related stroke had been in sinus rhythm continuously for over 1 year at the time of stroke.44 In light of these findings being discrepant with clinical arrhythmia being required for atrioembolic stroke, the theory of fibrotic atrial cardiopathy has been advanced,35 in which a chronically diseased atrium develops both electrophysiologic and mechanical dysfunction.36 Our findings of a 2-fold increased risk of cardioembolic stroke in patients without AF but with cardiovascular comorbidities may support this theory.

Stroke Subtyping by TOAST Criteria

As the REGARDS study collected data on ischemic stroke cause, we explored the proportion of strokes in each group by TOAST subtype. We found that: (1) the majority of strokes that occurred in patients with AF without cardiovascular comorbidities were cardioembolic; and (2) the relative risk of cardioembolic stroke was comparatively high in this group, with a 10-fold increased incidence rate, compared with those with neither AF nor cardiovascular comorbidities. Although the absolute risk, reflected in the observed incidence rate of 2.70 cardioembolic strokes per 1000 person-years of follow-up in patients with AF without cardiovascular comorbidities, is low, the markedly higher morbidity and mortality associated with cardioembolic stroke45,46 (as compared with other stroke subtypes) could suggest a benefit for therapeutic anticoagulation, even in this group that does not currently receive anticoagulation because of a low overall stroke risk. Even after accounting for the contribution of covariates, a 3-fold increased risk of cardioembolic stroke remains.

We note that this finding may be explained by the fact that attribution of stroke cause is dependent on known cardiovascular comorbidities—if someone with AF without cardiovascular comorbidities experiences a stroke, it may be classified as cardioembolic, when the same stroke might be classified as of unknown cause if AF were not present. In light of this probable confounding in TOAST assignment by the presence of AF, the observed findings may not be meaningfully interpretable. In contrast, the finding of increased risk of cardioembolic stroke among patients with cardiovascular comorbidities in the absence of AF (group 2) is not confounded in this manner.

Interactions

In subgroup analyses, there was no significant interaction by sex, race, BMI, or smoking status, but the age×group interaction term was significant. Specifically, among patients with AF without cardiovascular comorbidities, participants older than the median (64 years) had no increased risk of stroke, while those younger than the median had an adjusted HR for stroke of 2.70 (95% CI, 0.81–6.73). Although the 95% CI crosses 1.0, the point estimate suggests that, in the absence of cardiovascular comorbidities, AF may convey more risk of stroke among younger participants than among older participants. This finding should be considered hypothesis-generating, particularly in light of the fact

Table 4. HRs for Cardioembolic Stroke

	Group 1	Group 2	Group 3	Group 4
	No AF, No Comorbidities	No AF, Has Comorbidities	Has AF, No Comorbidities	Has AF, Has Comorbidities
	n=7837 (27.7%)	n=18 103 (64.1%)	n=386 (1.4%)	n=1927 (6.8%)
Cardioembolic strokes	23	165	9	86
Cardioembolic stroke incidence rate (per 1000 person-yr)	0.31	0.94	3.74	5.43
Unadjusted HR	1.0 (reference)	3.40 (2.24–5.39)	8.54 (3.75–17.85)	18.38 (11.81–29.79)
Model 1	1.0 (reference)	2.57 (1.64–4.25)	4.77 (1.74–11.23)	11.95 (7.28–19.68)
Model 2	1.0 (reference)	2.38 (1.51–3.96)	4.01 (1.33–9.94)	11.02 (6.62–18.33)
Model 3	1.0 (reference)	2.34 (1.48–3.90)	3.12 (1.15–8.46)	8.25 (4.79–14.21)

Model 1 adjusts for age, sex, race, education, income, and geographic region. Model 2 adjusts for the covariates in model 1, with the addition of high-density lipoprotein cholesterol, total cholesterol, body mass index, and smoking. Model 3 adjusts for the covariates in model 2, with the addition of regular aspirin use and warfarin use. Incidence rates and hazard ratios (HRs) specific to cardioembolic stroke for each group. The hazard for cardioembolic stroke remained elevated in group 3 after adjustment. AF indicates atrial fibrillation.
that the P value for interaction is not statistically significant when correcting for multiple comparisons. Further studies focusing on the AF-attributable risk of stroke in younger adults could prove valuable.

Comparison to Prior Literature

To the best of our knowledge, our subcohort of participants with AF without cardiovascular comorbidities is larger than any previously reported in the literature.
Despite this, we found no increased risk of total stroke in patients with AF without cardiovascular comorbidities, but did find evidence of both effect modification by age and that social and demographic covariates (eg, smoking and income) accounted for some of the stroke risk. This may explain some of the discrepant findings previously reported in the literature. For example, in Swedish registries, patients with AF without cardiovascular comorbidities had HRs for stroke of 3.1 (95% CI, 2.6–3.7) in women and 2.2 (95% CI, 1.8–2.5) in men, but this analysis only matched on age and sex,

The most plausible explanation for these discrepant conclusions about stroke risk hinges on the interplay between socioeconomic status, AF, and risk of stroke. In our study, we adjusted for age, sex, race, education, income, geographic region, high-density lipoprotein cholesterol, total cholesterol, body mass index (BMI), smoking, regular aspirin use, and warfarin use. To the best of our knowledge, this is the most complete adjustment performed in analyses of patients with AF without cardiovascular comorbidities. In contrast, prior analyses that have found significant differences in risk of stroke or cardiovascular outcomes only matched for sex and age. Given that prior literature has demonstrated that race, educational achievement, and income are each correlated with risk of stroke,

Subgroup	Group	Number of Events / Number of Participants (%)	HR (95% CI)	p-value	Interaction p-value
All Participants	1	175/7,837 (2.2%)	Reference	--	0.12
	2	867/17,236 (4.8%)	1.16 (0.50 – 2.67)	0.0007	--
	3	18/386 (4.7%)	1.52 (1.20 – 1.95)	0.0007	--
	4	146/1,927 (7.6%)	1.16 (0.50 – 2.67)	0.73	--
< 64	1	47/4,702 (1.0%)	Reference	--	0.020
	2	223/7,979 (2.8%)	1.59 (1.29 – 1.98)	0.0001	--
	3	4/175 (2.3%)	0.91 (0.38 – 1.84)	0.82	--
	4	30/898 (4.3%)	2.35 (1.73 – 3.19)	0.0001	--
≥ 64	1	128/3,135 (4.1%)	Reference	--	0.12
	2	644/10,124 (6.4%)	1.16 (0.50 – 2.67)	0.73	--
	3	14/211 (6.6%)	2.49 (1.75 – 3.56)	< 0.0001	--
	4	116/1,229 (9.4%)	1.36 (0.47 – 3.10)	0.51	--

Figure 2. Hazard ratios (HRs) for stroke in subgroups. Interaction analysis in prespecified subgroups demonstrates consistency in the reported relationships overall, although group assignment (reflecting the presence or absence of atrial fibrillation and the presence or absence of comorbidities) appears to explain more of the risk of stroke among participants younger than the median. Model is adjusted for age, sex, race, education, income, geographic region, high-density lipoprotein cholesterol, total cholesterol, body mass index (BMI), smoking, regular aspirin use, and warfarin use.
between-group differences, as participants with prior prebaseline stroke may have limited our power to detect discussed above. The exclusion of participants with a history of AF may influence TOAST classification, as stroke are those with the highest risk of future stroke.

cord and long-term follow-up was available.

was formal adjudication of events from the medical re-

adjust for race, education, and income by utilizing a

is the first analysis of a large cohort of patients with AF adds substantively to the existing literature owing to

therapy for prevention of stroke in people without AF

so any hypotheses regarding the utility of anticoagulant

research project is supported by cooperative agreement U01

REFERENCES

1. Ruddox V, Sandven I, Munkhaugen J, Skattebu J, Edvardsen T, Otterstad JE. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24:1555–1566.

2. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82:2N–9N.

3. Wolf PA, Dawber TR, Thomas HE, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke—Framingham Study. Neurology. 1978;28:973–977.

4. Steger C, Pratter A, Martinek-Bregel M, Avanzini M, Slany J, Stollberger C. Stroke patients with atrial fibrillation have a worse prognosis than patients without: data from the Austrian Stroke registry. Eur Heart J. 2004;25:1734–1740.

5. Lin HJ, Wolf PA, Kelly-Hayes M, Beiser AS, Kase CS, Benjamin EJ, D’Agostino RB. Stroke severity in atrial fibrillation. The Framingham Study. Stroke. 1996;27:1760–1764.

6. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation. Chest. 2010;137:263–272.

7. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2014;130:E199–E267.
