Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

Amrendra Kumar1,2, Naveenchandra Suryadevara2, Timothy M. Hill2,3, Jelena S. Bezbradica4, Luc Van Kaer2 and Sebastian Joyce1,2*

1 Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States, 2 Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, 3 Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States, 4 The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom

Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.

Keywords: NKT cells, cancer immunotherapy, microbiota, infectious diseases, evolution

INTRODUCTION TO TYPE I NKT CELLS

The evolutionary appearance of the vertebrate immune system equipped complex organisms with the ability to resist invasion by pathogenic microbes and to sense and respond to a loss of tissue integrity due to infection, aberrant cell growth, or mechanical injury. As organisms became increasingly more complex and lived beyond their fecund years, a finer ability to discriminate self from non-self was required (1, 2). Thus, the maintenance of homeostasis in such organisms requires the concerted action of multiple cell types that stand poised to respond to a hostile world filled with a seemingly endless array of infectious agents, toxic chemicals, and biologics. The first responders in this elaborate defensive network have historically been classified as members of the more archaic, multi-modal innate immune system. Should the innate defenses prove insufficient, the evolutionarily younger, adaptive immune system—consisting of B and T lymphocytes—is recruited to restore the homeostatic state. The quick-acting cells of the innate immune system senses an altered homeostatic state with pattern recognition receptors to detect conserved molecular structures shared by many pathogens alike (3, 4). By contrast, the slow-responding, adaptive immune system senses alterations in homeostasis by using diverse, clonally distributed B cell receptors (BCR and their secreted counterparts, antibodies), and T cell receptors (TCRs), respectively.
Bridging the gap between innate and adaptive immune responses are the innate-like B and T lymphocytes. These are a group of cells that express a relatively restricted repertoire of receptors generated through somatic recombination, yet unlike conventional T and B cells, exhibit innate-like recognition principles and functional responses (5). Innate-like lymphocytes include both T cells (γδ T cells, natural killer T cells, mucosal-associated invariant T lymphocytes, and CD8αα-expressing intestinal intraepithelial lymphocytes) and B cells (B-1 B cells and marginal zone B cells). The evolutionary appearance of this group of immune cells, including natural killer T cells (NKT cells) endowed upon vertebrates the capacity to initiate and amplify both the innate and adaptive immune responses. By virtue of their immunoregulatory functions, innate-like lymphocytes can fine-tune the nature and magnitude of these immune responses (6). Although each immune module plays a specific role, it is the controlled integration of multiple modules that results in an effective inflammatory response that is essential in maintaining a stable milieu intérieur (7).

NKT cells—originally defined as cells that co-express key natural killer (NK) cell surface markers and a conserved αβ TCR repertoire—are thymus-derived, innate-like T lymphocytes. The functions of NKT cells are controlled by CD1d molecules and amplify (6). The majority of NKT cells (type I, invariant NKT) express an invariant TCR α-chain (Vα14α18 in mice; Vα24α18 in humans). The invariant α-chain pairs predominantly with Vβ8.2, Vβ7, or Vβ2 in mouse NKT cells, or Vβ11 almost exclusively in human NKT cells. A small NKT cell population—referred to as type II NKT cells—expresses a more diverse TCR repertoire and recognizes a distinct group of lipid antigens; these, however, are the focus of other reviews (9–14). The recognition of lipid agonists rapidly activates NKT cells, which respond just as quickly by secreting a variety of cytokines and chemokines, and upregulate costimulatory molecules. By acting promptly, NKT cells alert and regulate the effector functions of myeloid and lymphoid cells. In so doing, NKT cells play a critical role in controlling microbial and tumor immunity as well as autoimmune and inflammatory diseases (6, 15–17).

MULTIPLE MECHANISMS ACTIVATE NKT CELL

The functions of NKT cells are controlled by CD1d molecules. CD1d molecules bind to and present a variety of lipid ligands to TCR- and cytokine-mediated mode of NKT cell activation (Figure 1). αGalCer is a potent NKT cell agonist, which when presented by CD1d molecules directly activates NKT cells in a TCR-dependent manner without need for additional signals. This activation mechanism is considered TCR-dominated mode of NKT cell activation (Figure 1).

Sphingomonas spp. biosynthesises an αGalCer-related compound, α-galacturonosylceramide (αGalAcer). Other weak NKT cell agonists include microbial glycosphingolipid [GSL; e.g., αGalCer-related asparagine B (A. fumigatus)], diacylglycerol lipids [e.g., α-galactosyl- (Borellia burgdorferi—the agent of Lyme disease) and α-glucosyl-diacylglycerol (Streptococcus pneumoniae)] and cholesteryl-α-glycoside [e.g., cholesteryl-6-O-acyl α-glucoside (Helicobacter pylori)] (Table 1 and references therein). Being a weak agonist, NKT cell activation by these microbial glycolipids requires a second activation signal from inflammatory cytokines. Such inflammatory cytokines result from dendritic cells (DCs) that are activated through their pattern recognition receptors (45–47). This activation mechanism is considered TCR- and cytokine-mediated mode of NKT cell activation (Figure 1)—a feature that is important for NKT cell activation by weak microbial and self-lipid agonists.

NKT cells react to CD1d molecules presenting self-lipids on host APCs in the presence of a second signal (6, 48). The inability to activate NKT cell hybridomas by using artificial APCs lacking βGlCer synthase (49) and impaired NKT cell development in mice lacking βGlCer synthase in their thymocytes (50), suggested that a cellular, βGlCer-derived GSL is an endogenous mouse NKT cell agonist (49, 50). Several microbes—bacteria (e.g., Staphylococcus aureus, Salmonella typhimurium, Listeria monocytogenes, etc.), fungi (e.g., A. fumigatus) and viruses—activate NKT cells but do not biosynthesise NKT cell agonists. Such microbes induce the biosynthesis and/or presentation of self-lipids, which are thought to be mammalian αGalCer and perhaps iGb3 (19, 28, 35). As self-lipids are weak NKT cell agonists, NKT cell activation is bolstered by IL-12 secreted by DCs activated through dectin-1 DCs (31, 47) or toll-like receptor (TLR)-4 (45, 46). This activation mechanism is a variation on the TCR- and cytokine-mediated mode of NKT cell activation and a feature that is important for NKT cell activation by microbes that do not themselves biosynthesise an NKT cell agonist.

Type I interferon (IFN)—produced by DCs activated by the TLR9 ligand CpG—can serve as a second signal for NKT cell activation in conjunction with the presentation of sialylated cellular glycolipids by CD1d molecules (51). This finding is significant because almost all viral infections induce type I IFN response. Even though viruses do not biosynthesise NKT cell agonists, or any lipid for that matter, viral infections also activate NKT cells (52–62). Perchance, in such a circumstance, NKT cell activation occurs via the recognition of a self-lipid(s) presented by CD1d in the presence of inflammatory signals relayed by type I IFNs.

NKT cells are activated by the combined actions of IL-12 and IL-18. Under such conditions, NKT cell activation does not require the recognition of a CD1d-restricted agonist (63–65). This latter mechanism is considered cytokine-driven NKT cell activation (Figure 1). This mechanism is important for immunity to cytomegalovirus (65). Summarily, these multiple
Lipid (class)	Chain Length*	Structure	Agonist**	Reference
αGalCer (GSL)	C18; C24:1	![Structure](image1)	IFN-γ, IL-4 self	(19)
Agel 9b (GSL)	C17 (C_{16-Me}); phyto C24	![Structure](image2)	Anti-tumor; *Agelas mauritianus*	(20, 21)
KRN7000	C18-phyto; C26	![Structure](image3)	Very strong; robust IFN-γ, IL-4 and other cytokines; synthetic analog of Agel 9b	(22)
αCGal-Cer (GSL)	C18-phyto; C26	![Structure](image4)	Weak (mo)-to-none (hu); IFN-γ; synthetic	(23)
OCH (GSL)	C9-phyto; C24	![Structure](image5)	Weak (mo)-to-none (hu); IL-4 (low-to-no IFN-γ); synthetic	(24)
C20-diene (GSL)	C18-phyto; C20:2	![Structure](image6)	Strong; IL-4 (low-to-no IFN-γ); synthetic	(25)
αGalCer (GSL)	C17-C₃OH; C17	![Structure](image7)	Stimulatory and inhibitory *Bacteroides fragilis*	(26, 27)
αGalU Cer (GSL)	C18-phyto; C14	![Structure](image8)	Weak; *Sphingomonas* spp.	(28–30)
Asp B (GSL)	C20:2-C₆ Me; C16-C₂ OH	![Structure](image9)	Weak; *Aspergillus fumigatus*	(31)
αGlc-6-acyl-Chol	C14	![Structure](image10)	Strong; binds a small NKT cell subset (mo); *Helicobacter pylori*	(32)

(Continued)
modes of activation suggest that NKT cells have evolved many different mechanisms to sense an altered homeostatic state caused by microbial infections. How activated NKT cells steer downstream innate and adaptive immune responses is described below.

TRANSACTIVATION OF INNATE AND ADAPTIVE IMMUNE RESPONSES BY ACTIVATED NKT CELLS

NKT cells form immune synapses upon recognition of lipid agonists presented by CD1d molecules displayed on APCs or planar membranes. The kinetics NKTCR/ligand interactions determine the functional outcome (66). Positive cooperative engagement of CD1d-lipid agonistic complexes by the NKTCR allows NKT cells to recognize subtle changes in cellular lipid content and to actuate a response (67). Upon activation, NKT cells rapidly polarize IFN-γ and lytic granules to the immune synapse to transmit an effector response (66, 68, 69). The synaptic transmission of effector molecules controls downstream innate and adaptive immune responses as described below.

Akin to the cells of the innate immune system (e.g., neutrophils, Mϕ, DCs, and NK cells), NKT cells respond within the first several hours of agonist recognition and secrete copious amounts of effector cytokines and chemokines (Figure 2). The nature of the activating NKT cell agonist controls the nature of the cytokine response (see Table 1). For example, the synthetic agonist αGalCer, within 30–90 min, elicits a wide variety of cytokines (Figure 2). Nonetheless, αGalCer variants containing different lipid chain length or unsaturation typically induce an IL-4 cytokine response (24, 25). By contrast, other αGalCer variants that have an altered glycosidic linkage, a chemically modified acyl-chain, or a modified sphingoid base, potently induce an IFN-γ response (Table 1 and references therein). Thus, it is possible to steer desirable immune responses against cancers by harnessing....

TABLE 1 | Continued

Lipid (class)	Chain Length*	Structure	Agonist**	Reference
αGalCer (GSL)	C18; C24:1	![Structure](image1)	Weak; self	(33, 34)
iGb3 (GSL)	C18; C24	![Structure](image2)	Weak (mo)-to-none (hu); self	(35)
αGal-DAG (GGL)	sn1-C18:1; sn2-C16	![Structure](image3)	Weak (mo)-to-none (hu); Borrelia burgdorferi	(36)
αGlc-DAG (GGL)	sn1-C18:1; sn2-C16	![Structure](image4)	Weak; Streptococcus pneumoniae	(37)
PtdIno (GPL)	sn1-C18:1; sn2-C18:1	![Structure](image5)	Week (mo)-to-no (hu); self	(38, 39)
Plasma-logen (GPL)	sn1-C16 vinyl-ether; sn2-lyso	![Structure](image6)	Positive selection (mo); self	(40)
Lyso-PtdCho (GPL)	sn1-C16; sn2-lyso	![Structure](image7)	Weak (hu)-to-none (mo); GM-CSF (no IL-4, IFN-γ); self	(41)

This table is adapted from Ref. (8, 42).

Agel, agelasphin; Asp B, asparamide B; Chol, cholesterol; DAG, diacylglycerol; GalCer, galactosylceramide; GalUCer, galacturonosylceramide; GlcCer, glucosylceramide; PtdCho, phosphatidylcholine; PtdIno, phosphatidylinositol; sn, stereo nomenclature for glycerolipids; GGL, glycoglycerolipid; GPL, glycerophospholipid; GSL, glycosphingolipid; mo, mouse; hu, human.

*Sphingosine/phytosphingosine chain length indicated first and N-acyl chain length second.

**Agonist strength based on Ref. (43).
lipid agonists that induce therapeutic cytokine responses. This feature of αGalCer variants is further accentuated by the ability of activated NKT cell responses to transactivate cells of the innate and adaptive immune systems as narrated briefly below (see Figure 2).

Dendritic cells, especially CD8α+ DCs, which are a major producer of IL-12 (71), play a critical role in glycolipid agonist presentation and NKT cell activation (72–78). Activated NKT cells reciprocate by activating the interacting DCs. DCs so activated rapidly mature. Hence, they upregulate costimulatory molecules CD40, CD80, and CD86; several molecules critical for protein antigen capture and peptide presentation, such as DEC-205 and MHC class II molecules (79); and induce the production of IFN-γ, tumor necrosis factor (TNF)-α, and IL-12 (80–83). IFN-γ produced by activated NKT cells coupled with CD1d, weakly activate NKT cells directly. In the presence of a second signal—generally a pro-inflammatory cytokine such as IL-12—and such weak agonists strongly activate NKT cells (middle panel), Intriguingly, NKT cells can be activated solely by cytokines—mainly IL-12—in a TCR-independent manner (right panel). This diagram rendering the different strategies to NKT cells is an adaptation of past reviews (6, 44) and is based on works cited in the text.

Table 1

Schematic rendition	TCR-dominated	TCR+cytokine	Cytokine-driven
	NKT	IL-12	IFN-γ
	NKT	IL-12	IFN-γ
	NKT	IL-12+IL-18	IFN-γ
Stimulus	Strong agonist	Weak agonist	IFN-γ
	αGalCer	Self, bacterial	IFN-γ
Response	IFN-γ	IL-4	IFN-γ

FIGURE 1 Three distinct strategies activate mouse NKT cells. Potent NKT cell agonists—such as αGalCer—directly activate NKT cells without the need for a second signal, in a T cell receptor (TCR)-signaling dominated fashion (left panel). Alternatively, microbes containing toll-like receptor (TLR) ligands such as LPS activate NKT cells by inducing IL-12 production by DCs, which amplifies weak responses elicited upon the recognition of CD1d bound with self-glycolipids by the NKT cell. Several endogenous lipid agonists have been identified and characterized (see Table 1). Some microbes such as *Sphingomonas capsulata*, which are α-Proteobacteria, synthesize α-anomeric glycolipids for their cell walls. These glycolipids, when presented by CD1d, weakly activate NKT cells directly. In the presence of a second signal—generally a pro-inflammatory cytokine such as IL-12—such weak agonists strongly activate NKT cells (middle panel). Intriguingly, NKT cells can be activated solely by cytokines—mainly IL-12—in a TCR-independent manner (right panel). This diagram rendering the different strategies to NKT cells is an adaptation of past reviews (6, 44) and is based on works cited in the text.

Figure 2

The immunological effector functions of mouse NKT cells. The interactions between the invariant natural killer T (NKT) cell receptor and its cognate antigen, as well as interactions between costimulatory molecules CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) and CD40L, respectively, activate NKT cells. Activated NKT cells participate in crosstalk with members of the innate and the adaptive immune systems by deploying cytokine and chemokine messengers. Upon activation in vivo, NKT cells rapidly secrete a variety of cytokines and chemokines, which influence the polarization of CD4+ T cells toward Th1 or Th2 cells as well as the differentiation of precursor CD8+ T cells to effector lymphocytes, and B cells to antibody-secreting plasma cells. Some of these mediators facilitate the recruitment, activation and differentiation of macrophages and dendritic cells (DCs), which results in the production of interleukin (IL)-12 and possibly other factors. Interleukin (IL)-12, in turn, stimulates NK cells to secrete interferon (IFN)-γ. Thus, activated NKT cells have the potential to enhance as well as temper the immune response. This schematic rendition of NKT cell effector functions is an adaptation of past reviews (6, 8, 44, 70) and is based on works cited in the text.

IMPLICATIONS FOR CANCER IMMUNOTHERAPY

NKT cells have long represented an attractive target for cancer immunotherapies (98–102). Numerous studies in both humans and mice have demonstrated their ability to directly target CD1d-expressing tumor cells (105–108), recruit and activate anti-tumor effector cells of the innate and adaptive immune systems (100, 109–114), and control the activity of immunosuppressive cells in the tumor microenvironment. After *in vivo* administration of αGalCer, NKT-DC cross-talk-mediated NK cell activation results in IFN-γ response (82) and, potentially, the anti-tumor effect of αGalCer (85, 115).

The potent anti-metastatic activity of αGalCer in mice (20, 116), which is NKT cell mediated (22), prompted investigations in the role of NKT cells in natural immunity against tumors. Such investigations include chemically induced tumors, transplanted tumors, and tumors arising in genetically engineered animals (115). The outcomes of these studies have been promising because NKT cells exhibit natural immunity against different cancer models. Independent studies have sometimes
reported conflicting results as to the importance of NKT cells in the anti-tumor response, particularly with carcinomas induced by the topical carcinogen methylnitrobenzene (117, 118). Such conflicting results were likely due to unknown environmental and/or genetic factors present in the mice used as controls in similar experiments by different groups (117). Studies in mice revealed that αGalCer variants that induce type I inflammatory response (see Table 1) were protective against tumor metastases. The mechanistic basis of this anti-metastatic effect remains elusive. Nonetheless, the ability of NKT cells activated by αGalCer to steer desirable downstream effector functions, such as NK cells, cytotoxic T cells, Th1 and Th17 cells, γδ T cells, IFN-γ, and direct lysis of myeloid lineage cells may underlie the outcome (100, 115). The anti-tumor activities of NKT cell agonists have already been exploited in a variety of clinical trials. The outcomes of these trials have also been promising (103, 104, 119–121).

Genomic Control of NKT Cell Development

NKT cell development and maturation occurs in the thymus (122, 123). Thus, genetically altered mice in which thymocytes do not develop beyond the double-negative (DN2/DN3) stage also fail to develop NK1.1+ T cells (124). [Note: historically, prior to the development of CD1d-lipid tetramers (125, 126), NKT cells were identified by co-expression of the NK1.1 marker and a TCR. Hence, in pre-tetramer literature, they were referred to as NK1.1+ T cells (127).] Thymic NK1.1- NKT cells were later recognized as a CD1d tetramer+ NK1.1- subset that precedes NK1.1+ NKT cells in development (128, 129). Current literature refers to the IFN-γ-producing, mature, stage 3 (st3) NKT cells as NK1.1+ NKT cells (Figure 3). Furthermore, NKT cells do not develop in mice harboring mutations in genes (e.g., Myb, which encodes the transcription factor c-Myb, Rorc, which encodes RORγt, and Tgfβ2 that codes for HEB) that impair survival of immature double-positive (DP) thymocytes—cells that co-express both CD4 and CD8 co-receptors—(130–133). Moreover, Vα14 and Jα18 rearrangement occurs at a late DP stage (130, 132). Consistent with this finding, NKT cells develop in NKT cell-deficient Jα18-deficient (Jα18-/-) mice that receive highly purified tetramer-negative, DP-high thymocytes (134). These findings together support the notion that commitment to the NKT cell lineage occurs at the DP stage much alike conventional T cells (135). That notwithstanding, compelling new data indicate that Vα14 and Jα18 rearrangement can occur within CD4- and CD8-negative (DN) thymocytes. Additional data indicate that a fraction (~15%) of NKT cells that differentiate into NK1 cells emerge from DN thymocytes (136). Hence, an alternative precursor can give rise to functional NKT cells.

Positive selection of NK1.1+ T cells depends on DP thymocytes (122). Developing NKT cell-DP thymocyte interactions involve both self-lipid-bound CD1d/NKTCR (22, 116, 137–139) and signaling lymphocytic activation molecule (SLAM)–SLAM interactions (140–142). These interactions are critical to NKT cell maturation, which involves protein kinase C0-NF-κB (143) and NFAT-Egr2 (144–146) activation downstream of the NKTCR, and SLAM-associated protein-Fyn activation downstream of SLAM (140, 141, 147, 148). Signals so transmitted from the cell surface are relayed through multiple signaling nodes in the cytoplasm and integrated in the nucleus into a unique transcriptional program (Figure 3). A key nuclear event involves the activation of the zinc finger BTB domain-containing-16 (Zbtb16) gene that codes for promyelocytic leukemia zinc finger (PLZF). The PLZF-mediated genomic control distinguishes the unique NKT cell functions from those of the other T lymphocytes (149, 150). NK1.1+ NKT cells undergo several rounds of cell division, retaining some in the thymus with the remaining emigrating and populating the peripheral lymphatic organs. Hence, NK1.1- NKT cells mature to become NK1.1+ NKT cells, both in the thymus and the periphery (Figure 3). A key feature of this maturation process is the acquisition of cytokine secretion function in a less well-understood mechanism (148) and the differentiation into three functional subsets: NK1, NK2, and NK17 (discussed below). These NKT cell subsets marked by the same subset-specific transcription factors and cell surface markers expressed by the corresponding T helper cell subsets (151–156).

Gene regulatory networks (GRNs) are composed of trans-regulatory factors—generally made up of transcription factors and regulatory RNA such as microRNAs and long non-coding RNA—and cis-regulatory regions generally found upstream of
Mice harboring a loss-of-function PLZF mutation develop innate-like functions within NKT cells (Figure 4). These, PLZF works as a master transcription factor controlling the development and function. Among the cell lineages (157). Many transcription factors have been studied in relation to NKT cell development and function. Among these, PLZF works as a master transcription factor controlling the development of innate-like functions within NKT cells (Figure 4) (149, 150, 158). Mice harboring a loss-of-function PLZF mutation or lacking PLZF demonstrated poor NKT cell development, and those NKT cells that developed were NK1.1+ and homed to lymph nodes but not to tissues such as thymus and liver where they are found abundantly in wild type (wt) mice (149, 150). Additional studies indicated that PLZF binds to cis elements of effector cytokine and homing receptor genes to direct their expression within NKT cells (Figure 4) (158). Furthermore, forced expression of a Zbtb16 transgene in all T cells during thymic development resulted in the acquisition of an innate-like phenotype and function in conventional T cells (158). These findings heralded PLZF as a lineage-specific master regulator of transcription (149, 150, 158), and has led to the unveiling of a GRN that controls effector differentiation in developing NKT cells (Figure 4).

The induction of Zbtb16 is controlled in part by acetylated Egr2 (159), which is induced downstream of NKTCR signaling (144). A recent study demonstrated that the gene encoding the histone acetylase GCN (general control non-depressible) 5 acetylates a critical lysine residue in Egr2. DP thymocyte-specific depletion of GCN5 blocked the progression of NKT cell development from stage 0 to stage 1 in a cell intrinsic manner. This stage 0 to stage 1 developmental block was due to transcriptional downregulation of the lineage driving gene Zbtb16 and other genes such as Runx1, Tbx21, and Ii2rb that are essential for proper NKT cell development (159). GCN5 itself is an acetylated protein. Whether its function during NKT cell development depends on acetylation is currently unknown. In some models, the function of GCN5 depends on its deacetylation (160). Should GCN5 function in NKT cells depend on deacetylation, whether and which sirtuins [silent mating type information regulation 2 homologs 1–7 (160)] play this role in NKT cells remains to be established.

Even though the mouse invariant Vα14i TCR α-chain has the potential to pair with virtually all available TCR β-chains, the peripheral NKT cell repertoire consists of Vα14i paired with a restricted set of β-chains, viz., Vβ8, Vβ7, and Vβ2 (161). There are two views to the events that sculpt this semi-invariant NKTCR repertoire: the predominant view is that such a semi-invariant NKTCR repertoire is built exclusively by positive selection (162). The competing hypothesis—that both positive and negative selections sculpt the semi-invariant NKTCR repertoire—is supported by indirect evidence (163–166).

Two lines of evidence support the notion that positive selection sculpts the NKT cell repertoire. CD1d molecules have a recycling motif in their cytoplasmic tail, which is essential for the endo/lysosomal exchange of CD1d-bound lipids and their subsequent presentation to NKT cells. Transgenic mice expressing a mutant CD1d molecule that has lost the ability to recycle do not develop NKT cells, suggesting that positive selection requires a recycling CD1d molecule (167). Another line of support comes from the study of CD1d-null mice, which contain a small number of CD1d-tetramer+ thymocytes. These pre-selection thymocytes also express only the Vβ8, Vβ7, and Vβ2 β-chains expressed by the post-selection NKT cells. Such pre-selection thymocytes expand the same NKTCR repertoire when stimulated with a putative self-glycolipid called isogloboside-3 in vitro (35, 161). These lines of evidence support positive selection as the sole model for sculpting the NKT cell repertoire.

Deletion of the gene coding for NKAP (NF-κB activating protein) in DP thymocytes specifically blocks the development of NKT cells but not conventional T cells (168). NKAP colludes with HDAC3 (histone deacetylase 3) to function as a transcriptional repressor (169). Accordingly, deletion of the Hdac3 gene in DP thymocytes completely blocks NKT cell development, while conventional T cell development proceeds normally (168). Hence, the repression of target genes at the DP thymocytes stage by the combined action of NKAP and HDAC3 is essential for positive selection of the NKT cell lineage.
Three lines of evidence support a potential role for negative selection in pruning self-reactive NKT cells for sculpting a functional repertoire: first, all available TCR β-chains can pair with the Vα14i TCR α-chain and react with CD1d tetramer, yet only Vβ8, Vβ7, and Vβ2 β-chains are expressed by the post-selection NKT cells (161). This finding can be explained only by negative selection of the majority of the β-chains and not by the failure to survive owing to the inability to interact with CD1d or to failed positive selection (38, 161). Second, transgenic overexpression of either mouse or human CD1d in DP thymocytes and thymic myeloid cells results in fewer NKT cells and those that remain display altered Vβ usage (163, 170). Furthermore, only wt 16.5-day post-coitus mouse fetal thymic organ cultures (FTOCs), but not FTOCs from CD1d-overexpressing transgenic animals, fostered NKT cell development (163). Finally, exogenous addition of αGalCer, to wt mouse FTOCs resulted in NKT cell depletion (163, 164). Likewise, in vivo αGalCer injections into neonatal mice also resulted in the intra-thymic depletion of NKT cells (164). Together, these findings provide compelling evidence, albeit indirect, supporting a role for negative selection in sculpting a functional NKT cell repertoire.

Agonistic ligand(s)—those that positively select in the thymus being similar or identical to ligands that activate in the periphery (19, 27, 171)—selects NKT cells, which strikingly contrast antagonist ligand-mediated selection of conventional T cells. Further, SLAM–SLAM interactions, which activate PKC-θ via the SAP-FynT signaling module, mediate persistent interactions between developing NKT cells and the selecting DP cells (140, 141, 147, 172–175). NF-κB provides a survival signal to escape death that could result from these high affinity interactions (166, 176–182). Current evidence suggests that signals relayed through the TCR–PKCθ–CARMA1 axis are integrated by NF-κB to prevent death of developing NKT cells (143, 166, 183). But the signals relayed by the TCR–PKCθ–CARMA1 axis only partially accounts for such death signals. Consistent with this conclusion is the finding that TNF-α ligation of TNF receptor superfamily member 1a (TNFR1) relays caspase 8 and caspase 9 activation signals to mediate NKT cell death. This death signal is also obviated by NF-κB activation (183). Additional signals also mediate NKT cell survival during development (181, 184–192). Hence, escaping cell death from multiple signals may be a key feature of thymic NKT cell development. Whether this cell death is the basis for negative selection of NKT cells currently remains unknown.

NKT cells must tightly regulate NF-κB activation as mice that lack RelA or cannot activate NF-κB poorly develop NKT cells (143, 176, 177). On the other hand, mice that express overactive NF-κB or lack the negative regulator of NF-κB signaling CYLD, develop NKT cells but fail to mature and populate the lymphoid organs and peripheral tissues (181). Hence, NF-κB may function as a rheostat to set the threshold for peripheral NKT cell activation. Such a threshold may be critical as their selection and function are controlled by agonistic ligand(s) so as to prevent autoreactivity. How NF-κB functions as a rheostat in developing NKT cells needs elucidation.

NKT Cell Subsets, Frequency Variation, and Microbial Influences on Function: An Ecological Perspective

Recent findings on NKT cell developmental properties may be best understood from an ecological perspective. These properties include, (a) functional NKT cell subsets and the division of

Mouse subsets	NKT1	NKT2	NKT17	NKT10
Subset-specific transcription factor	PLZF, GATA3, T-bet	PLZF, GATA3	PLZF, GATA3, RORγt	PLZF, E4BP4, Nur77
Surface markers	CD4, CD8, IL-12R, NK1.1, CXCR3, CXCR6	CD4, CD27, IL-25R, NK1.1(+)	CD122, IL-23R, NK1.1(+)	CD4, CD49a, NK1.1(+)
Effectors	IFN-γ, TNF-α, IL-4, granzyme, perforin	IL-4, IL-13	IL-17A, IL-21, IL-22	IL-10
Tissue location	Liver, Spleen	Lungs, Intestine	Lungs, skin, Lymph nodes	Adipose tissue, Spleen
Immunologic function(s)	Anti-tumor immunity	IL-25 induced AHR	Virus/scope-induced AHR; tissue repair, limit systemic pathogen spread	Immune tolerance; resolve inflammation

FIGURE 5 At least four mouse NKT cell subsets divide-up the labor. The four NKT cell subsets reflect T helper (Th)1, Th2, Th17, and Treg subsets. The transcription factors and the prototypic effector molecules as well as the locations and functions, which define the four NKT cell subsets, are represented. The text contains detailed description of each subset. This diagrammatic rendition of NKT cell subsets is an adaptation of a past review (8) and is based on works cited in the text.
labor; (b) NKT cell frequency variation; (c) tissue environment-dependent NKT cell subset frequency variation; and (d) gut microbiota-dependent peripheral NKT cell maturation and reciprocal NKT cell control over gut microbiota.

FUNCTIONAL NKT CELL SUBSETS AND THE DIVISION OF LABOUR

NKT cell activation results in rapid secretion of pro-inflammatory and regulatory cytokines and chemokines. This property in conjunction with the capacity to transactivate a variety of innate and adaptive immune cells—see subsection on Transactivation—allows NKT cells to steer downstream immune responses. NKT cells are heterogeneous, consisting of at least four distinct subsets—NKT1, NKT2, NKT10, and NKT17. In addition, at least one induced subset, NKTfh, is also recognized. As with conventional CD4+ T cell subsets, NKT cell subsets are characterized by prototypic cytokine responses and subset-specific transcription factors (Figure 5). Each subset is represented at different proportions in various mouse strains (151–155).

MOUSE NKT1 CELLS are marked by either the expression of CD4 or the absence of CD4/CD8 co-receptors. NKT1 cell activation results in a Th1-like cytokine response. The majority of mouse spleenic and hepatic NKT cells are NKT1 subset, especially in the C57BL/6 strain. NKT1 cell differentiation depends on T-bet (Tbx21) and IL-15 but less on GATA3 (151, 152, 187, 189–191). Unlike HDAC3 depletion in DP thymocytes, NKT cell lineage-specific deletion of Hdac3 (derived with the use if Zbtb-Cre) results in selective impairment in NKT1 cell development. The selective absence of HDAC3 in NKT cells resulted from reduced H4 acetylation occurs at CNS-30 and CNS+18–20 transcribes the Ifng locus in NKT cells (203, 204). Consistent with this finding, NKT cells showed acetylated histone 4 marks upstream and downstream of the Ifng coding region only when activated by weak (self agonists) or strong signals (phorbolmyristate acetate + ionomycin) but not in resting NKT cells. Furthermore, NKT cells rested after stimulation returned the Ifng locus to an unmarked state (205). H4 acetylation occurs at CNS+18–20, a site essential for human Ifng transcription in NKT cells and conserved within the mouse Ifng locus (203, 205). These findings notwithstanding, it is unclear whether human NKT cells constitutively transcribe the Ifng locus and how mouse NKT cells constitutively transcribe its Ifng locus.

MOUSE NKT17 CELLS do not express CD4 or CD8 co-receptors. They are enriched in the lungs, skin, and peripheral lymph nodes, and are poorly represented in the spleen and liver (206–208). These cells require IL-7, not IL-15, for survival (151, 209). The development of NKT17 cells also requires mTORC2 signaling and the transcription factors Runx1 and NAKP (168, 210–213). Thus, NKT cell-specific Runx1 deletion results in decreased IL-7Ra, BAFF, and c-Maf expression against the backdrop of increased Lef and Bcl11b expression (211). On the other hand, how NAKP controls NKT17 cell development is not understood, but appears not to require mTOR, IL-7, and TGF-β signaling (210).

Akin to Th17 cells, NKT17 cells constitutively express RORγt (206), rapidly produce IL-17A in response to certain bacterial infections, and induce airway neutrophilia when challenged with synthetic glycolipid or LPS (37, 206, 214). NKT17 cells may contribute to ozone-induced airway hypersensitivity (215), the development of experimental autoimmune encephalomyelitis (214), and the pathogenesis of acute hepatitis in mice (216).

MOUSE NKT10 CELLS, the PLZF-independent subset (154), are found in low frequency in unchallenged mouse and in human peripheral blood mononuclear cells (PBMCs). Upon re-activation, NKT10 cells that previously responded to oGalCer in vivo, secrete IL-10 (155). IL-10 produced by activated NKT10 is thought to maintain immune-privilege sites. This NKT cell subset may also control Treg cell functions in adipose tissues (154).

Mouse NKT cells can provide cognate (lipid antigens) or non-cognate (protein antigens) help to B cells and regulate antibody responses (89, 90, 92, 217, 218). Upon immunization with oGalCer a subset of NKT cells acquire a phenotype similar to T follicular helper T cells (Tfh) referred to as NKT follicular helper (NKTfh) cells (218–220). NKTfh cells are characterized by the expression of CXCRI5, ICOS, PD1, Bcl6, and BTLA. Their development is dependent on same factors that drive Tfh development (219). NKTfh cells induce rapid production of germinal centers through IL-21 production that yields detectable levels of antigen-specific IgG (91, 219, 220). Nonetheless, NKTfh cell-induced antibody responses are short-lived and inferior to Tfh cell-induced responses (91, 219, 220). NKTfh cells may play a role in antibody responses against human pathogens such as Borrelia hermsii, Streptococcus pneumoniae, and Plasmodium falciparum (91, 219, 220). NKTfh and Tfh cells can act synergistically to
induce robust antigen-specific antibody responses underscoring the use of αGalCer as a vaccine adjuvant (218).

Human NKT cell responses are as diverse as those of mouse (221), yet NKT cell subsets have not been formalized in humans. Functional dichotomy has been reported in human CD4+ and DN NKT cell subsets: activated human CD4+ NKT cells secrete IL-4. A pathological role has been attributed to human CD4+ NKT cells, which accumulate in the lungs of chronic asthmatic patients and produce IL-4 and IL-13 (222). Hence, human CD4+ NKT cell resembles the mouse NKT2 cell subset. On the other hand, the activated DN NKT cells secrete IFN-γ and TNF-α. Furthermore, both CD4+ and DN human NKT cell subsets upregulate perforin in the presence of inflammatory signals. The DN NKT cells also upregulate NKG2D expression, which together with perforin may mediate cytotoxicity against infected cells and cancer cells (223, 224). These functions of human NKT cells resemble those of mouse NKT1 cells. Activated human NKT cells can also secrete IL-17 (221), suggesting the presence of an NKT17-like subset.

In summary, mouse NKT cells divide labor into four subsets. Global and single cell transcriptome analyzes demonstrated that the thymic NKT1, NKT2, and NKT17 cells were distinct subsets (156, 225). Even though not formalized, human NKT cells also have the potential to mirror mouse NKT cell subsets, but this requires further investigation. That the tissue environment plays a role in the differentiation of NKT cell subsets is supported by the finding that NKT17 differentiation required mammalian target of rapamycin complex-2 (213) or is suppressed by Tet enzymes that modify 5-methylcytosine in DNA by controlling the expression of Tbet and ThPOK transcription factors (226). Another study using somatic cell nuclear transfer to generate mice with monoclonal NKT cell populations demonstrated that tissue homing pattern, and, to a lesser extent, TCR avidity governed NKT cell subset differentiation (208). That NKT1, NKT2, and NKT17 cells differentiated within peripheral tissues of each of the three monoclonal mouse lines, derived from somatic cell nuclear transfer, suggests that the subsets are perhaps NKT cell "reaktionsnorm [German for reaction norm or norm of reaction; Woltereck 1909]" induced by the tissue-specific environment, potentially by local cytokine/chemokine milieu in conjunction with the host microbiota.

NKT Cell Frequency Variation

An intriguing property of NKT cells is their frequency variation observed in lymphoid tissues of different inbred strains of similar age: low in 129 and NOD, intermediate in C57Bl/6, and high in BALB/c, CBA, and DBA/2 mice (152, 153, 228–230). Likewise, NKT cells show striking frequency variation that can range from as little as 0.001% to 5–10% within human PBMCs (221, 231, 232).

Mice show inter-strain variation in thymic NKT cell subset numbers (152). C57Bl/6 mice have high proportion of NKT1 cells and low frequency of NKT2 cells, whereas BALB/c have high frequency of NKT2 and NKT17 suggesting an inverse correlation between frequency of NKT1 cells versus NKT2 cells and mouse strains. Curiously, mouse strains that have a high frequency of NKT2 cells (BALB/c, CBA, and DBA/2) showed high numbers of eomesodermin-expressing memory-like CD8+ thymocytes (152) which was attributed to the steady-state production of IL-4 by the expanded NKT2 population in these mice. In an effort to understand whether genetic polymorphisms between mouse strains controlled NKT cell frequency, recombinant inbred and co-isogenic strains begotten from NOD (low NKT cell frequency) X C57Bl/10 (intermediate NKT cell frequency) crosses were analyzed. The outcomes of several such studies indicated that NKT cell frequency segregated with the genetic background of the mouse (153, 229, 230). Whereas this outcome suggests that NKT cell frequency is under genetic control, whether this control is direct or indirect remains to be ascertained.

DEVELOPMENTAL SYMBIOSIS: GUT MICROBIOTA-DEPENDENT PERIPHERAL NKT CELL FREQUENCY AND NKT CELL CONTROL OVER GUT MICROBIOTA

NKT cells surveil barrier mucosae such as that of the small and large intestine (233, 234). The number, phenotype, and functional maturation of NKT cells in the gut epithelium and lamina propria are controlled by neonatal colonization of the gut by bacterial symbionts. Thus, germ-free (GF) mice have high numbers of NKT cells in the gut epithelium and lamina propria that are immature, and, hence, hypo-responsive to αGalCer (233). Curiously, reconstitution of young, but not adult mouse gut by bacteria that biosynthesise αGalCer or related compounds reverses the hypo-responsiveness of NKT cells found in GF intestinal mucosae (234). Similarly, GF mice also harbor high hepatic and pulmonary, but not thymic and splenic NKT cell frequencies (234). Additional evidence implicates the CXCR6 ligand CXCL16, whose expression is under the control of gut microbiota, in regulating gut NKT cell frequency and maturation (234, 235). Furthermore, αGalCer compounds (see Table 1) synthesized by the bacterial symbiont *Bacteroides fragilis*, exert either an inhibitory effect preventing proliferation, or are stimulatory on developing NKT cells (26, 27). As the gut microbiota varies between individuals of different genetic, ethnic, and geographic backgrounds (236), the above findings in mice suggest the intriguing possibility that the human symbionts may impart an epistatic control over human NKT cell frequency and maturation as well. Because the frequency and functional status are environmentally controlled even though the genotypic of the differentiating NKT cells remains the same, NKT cell frequency and proper maturation are potentially polyphenic (227, 237) properties.

Early-life microbial ecology has implications for health. Thus, GF mice are prone to severe airway hypersensitivity and dextran sodium sulfate-induced colitis (233–235). The latter phenotype is obviated by the interaction of NKT cells with *B. fragilis*-derived glycosphingolipid(s) during early life (26). Not surprisingly, NKT cells can, in turn, control gut microbial ecology and gut physiology (238). Whether similar reciprocal interactions between NKT cells and the gut microbiota occur in humans currently remains unknown.
Microbial ecology has emerged as an important determin-istic factor in the outcome of chemotherapy, radiation therapy, and immunotherapy against cancers (239). NKT cells have been targeted in the clinic for immunotherapy (see Implications for Cancer Immunotherapy), but how each of these therapies impact NKT cells is not known. It is noteworthy that a fraction of NKT cells are radiation resistant (130). This feature can be exploited for NKT cell-targeted immunotherapy against lymphomas and leukemias. Clinical trials have shown that the outcome of NKT cell-targeted immunotherapy varied between recipients (103, 104). Hence, what roles the gut microbiota played in the outcome is worthy of investigation. So also, considering that NKT cells can impact microbial ecology (238), what roles NKT cells play in tumorigenesis and metastasis are also worthy of investigation. Insights into how the microbial community assembles and forms the host–symbiont ecosystem
will facilitate an essential understanding of the molecular underpinnings that govern reciprocal interactions between the host and its internal ecosystem. These new insights can, in turn, impact the way by which new cancer therapies are designed, developed, and refined.

Evolution of Type I NKT Cells

… the struggle against diseases, and especially infectious diseases, has been a very important evolutionary agent and that some of its results have been unlike those of the struggle for life … [(240) within a collection of papers in genetics by Haldane (241)].

Comparative vertebrate genomics, enabled by recent advances in whole-genome sequencing, have revealed molecular signatures of selection upon genes that control many biologic functions, including immune responses. Hence, pathobionts can apply immense selection pressure and play significant roles in the evolution of immune response genes and cells. As early-life symbionts can impact health, microbial ecology may also play roles in the evolution of the immune response genes and cells.

The NKTCR engages its ligand, CD1d-lipid co-complex, with conserved germline-encoded residues in four-to-five of the six complementarity-determining regions of the combined TCR α- and β-chains (242). Hence, phylogenetic studies of genes that encode CD1 molecules and the invariant NKTCR α-chain can reveal the origin and evolution of NKT cells. A recent phylogenomic analysis revealed that the Cd1 gene is an amniote innovation that evolved in the Mesozoic reptiles and was retained in the extant anapsid (green anole lizard *Anolis carolinensis*) and synapsid (Siamese crocodile *Crocodylus siamensis* and Chinese alligator *Alligator sinensis*) reptilians (243). Cd1 genes diversified in mammals, wherein evolved the Cd1d gene that encodes the lipid agonist presenting molecule that controls the functions of NKT cells in eutherians (of placental mammals; Figure 6) (244). Curiously however, the reptilian Cd1 gene has no orthology with avian or mammalian Cd1 genes (243), suggesting that Cd1 genes may have emerged multiple times during amniote evolution. Or alternatively, Cd1 genes may have evolved rapidly and diverged substantially from the reptilian form within extinct synapsid and mammal-like reptiles prior to stabilization within eutherian species. The latter view is supported by the finding that egg-laying monotremes such as platypuses and echidnas do not have Cd1 genes while a Cd1d-like gene exists in a few marsupial species such as the opossum.

A phylogenetic analysis of TRAV10 (encoding the human Vα24 gene segment) or TRAV11 (encoding the mouse Vα14 gene segment) and TRAJ18 (encoding the Jα18 gene segment) revealed that gene elements related to TRAV10/11 and TRAJ18 were found only in placental mammals (244). This finding suggests that NKT cells are a eutherian innovation. As the host–gut microbiota controls NKT cell terminal functional differentiation and NKT cells impact gut microbial ecology, it is postulated that placental development, sudden perinatal exposure to maternal and environmental microbiota, and lactation may have contributed to the evolution of CD1d-restricted type I NKT cells.

A Final Analysis: Under the Spell of PLZF and Host Microbial Ecology, a Curious Case for a “Limbic Immune System!”

The foregoing discusses recent advances in developmental biology of NKT cells and the environmental context in which it develops, matures and differentiates. A final section discusses their evolutionary path and how developmental biology and ecology may have contributed to this unique developmental plan. In addition, how the eco-devo perspective on NKT cells may contribute to cancer immunotherapy is touched upon. Finally, areas that will benefit from further investigation are also pin pointed in their respective sections. Summarily, such areas include, (a) what early events specify NKT cell lineage commitment and turn on the unique lineage-specific GRN?; (b) what signals do symbionts relay to developing NKT cells to specify physiologic functions?; (c) in turn, what signals do NKT cells relay to the microbial community in the gut, and potentially to the microorganisms in skin and lungs, to ensure physiologic community assembly, structure, and organization in early, young, and adult life?; (d) what tissue environmental signals underlie NKT cell subset differentiation?; (e) can radiation resistance of NKT cells be used in cancer immunotherapy?; and (f) what NKT cell intrinsic and environmental signals have retained NKT cells in certain mammalian species but not in others?

As a final note to the devo-eco-evolutionary synthesis, we observed that the unique behavior of a group of innate-like T lymphocytes and innate lymphoid cells (ILCs) are under the control of PLZF (253–255). These include γδ T cells, NKT cells, MAIT cells, and certain ILCs. In addition, the development (MAIT cells, and potentially γδ T cells) and functional differentiation (NKT cells, MAIT cells, and ILCs) of these cells are determined by gut and potentially other barrier (skin and lungs) symbionts. As these immune cells, all of lymphoid origin, function at the edge (limbus in Latin) of the innate and adaptive immune systems, a proposal to group them into the “limbic immune system” is made here. Curiously, γδ T, NK, and NKT cells localize to the inter-follicular region of the lymph nodes, straddling the cells of the innate and adaptive immune systems (256). By virtue of their physiologic functions, other tissue-restricted innate-like lymphocytes, such as CD8α innate-type lymphocytes (257) as well as B1 cells and NK cells (258), can be included in the “limbic immune system” even though their development and function may not be controlled by PLZF or the microbiota. In other words, the “limbic immune system” is anglicized Latin for the “inbetweeners” (259) and, hence, synonymous with it.

AUTHOR CONTRIBUTIONS

All authors wrote and edited the manuscript.

FUNDING

This work was supported by VA Merit Award (BX001444) to SJ and by research (AI042284, AI061721, AI070305, HL089667, AI068149, AI074754, and AI064639) grants.
Kumar et al.

NKT Cells: An Eco-Evo-Devo Perspective

44. Florence WC, Bhat RK, Joyce S. CD1d-restricted glycolipid antigens: presentation principles, recognition logic and functional consequences. *Expert Rev Mol Med* (2008) 10:e35. doi:10.1517/14623994.2008.807037

45. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. *Nat Immunol* (2003) 4(12):1230–7. doi:10.1038/ni1002

46. Brigl M, Taitturi RV, Watts GF, Bhowruth V, Leadbetter EA, Barton N, et al. Innate and cytokine-driven signals, rather than microbial agonists, dominate in natural killer T cell activation during microbial infection. *J Exp Med* (2011) 208(6):1163–77. doi:10.1084/jem.20102555

47. Cohen NR, Tatituri RV, Rivera A, Watts GF, Kim EY, Chiba A, et al. Innate recognition of cell wall beta-glucans drives invariant natural killer T cell responses against fungi. *Cell Host Microbe* (2011) 10(3):457–60. doi:10.1016/j.chom.2011.09.011

48. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. *Annu Rev Immunol* (2007) 25:297–336. doi:10.1146/annurev.immunol.25.091206.044114

49. Stanic AK, De Silva AD, Park JJ, Sriram V, Ichikawa S, Hirabyashi Y, et al. The mechanism of invariant NKT cell responses to viral danger signals. *J Immunol* (2008) 181(7):4452–6. doi:10.4049/jimmunol.181.7.4452

50. Wesley JD, Tessmer MS, Chaukos D, Brossay L. NK cell-like behavior of Valpha14i NK T cells during MCMV infection. *PLoS Pathog* (2008) 4(7):e1000106. doi:10.1371/journal.ppat.1000106

51. McCarthy C, Shepherd D, Fleire S, Stronge VS, Koch M, Illarionov PA, et al. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. *J Exp Med* (2007) 204(5):1131–44. doi:10.1084/jem.20062342

52. Stanic AK, Shashidharamurthy R, Bertrand CA, Matsuji N, Yoshimura Y, Miyake S, et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Valpha14i natural T(NK) cell receptor [corrected]. *J Immunol* (2003) 171(9):4539–51. doi:10.4049/jimmunol.171.9.4539

53. Bezbradica JS, Gordy LE, Stanic AK, Dragovic S, Hill T, Hawiger J, et al. Granulocyte-macrophage colony-stimulating factor regulates effector differentiation of invariant natural killer T cells during thymic ontogeny. *Immunity* (2006) 25(3):487–97. doi:10.1016/j.immuni.2006.06.017

54. Das R, Bassini H, Guan F, Wiener S, Banerjee PP, Zhong MC, et al. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. *Blood* (2013) 121(17):3386–95. doi:10.1182/blood-2012-11-468868

55. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, Goldszmid RS, et al. α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. *Nat Rev Immunol* (2005) 5(1):31–42. doi:10.1038/nri1531

56. Mashayekhi M, et al. CD1α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by *Toxoplasma gondii* tachyzoites. *Immunity* (2011) 35(2):249–59. doi:10.1016/j.immuni.2011.08.008

57. Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, Thomas JW, et al. Distinct roles of dendritic cells and B cells in Va14i natural T cell activation in vivo. *J Immunol* (2005) 174(4):4696–705. doi:10.4049/jimmunol.174.4.4696

58. Bai L, Constantines MD, Thomas SY, Reboulet R, Meng F, Koenig F, et al. Distinct APCs explain the cytokine bias of alpha-galactosylceramide variants in vivo. *J Immunol* (2012) 188(7):3035–61. doi:10.4049/jimmunol.1102414

59. Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-γ-mediating NKT receptor expression with alpha-galactosylceramide-loaded DCs. *Nat Immunol* (2003) 4(9):867–74. doi:10.1038/nri10827

60. Arora P, Baena A, Yu KO, Saini NK, Kharkwal SS, Goldberg MF, et al. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. *Immunity* (2014) 40(1):165–16. doi:10.1016/j.immuni.2013.12.004

61. Bialecki E, Macho Fernandez E, Ivanov S, Paget C, Fontaine J, Rodriguez F, et al. Spleen-resident CD4+ and CD4- CD8αβ- dendritic cells subsets differ in their ability to prime invariant natural killer T lymphocytes. *PLoS One* (2011) 6(10):e26919. doi:10.1371/journal.pone.0026919

62. Macho Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, et al. Targeted delivery of alpha-galactosylceramide to CD8αβ- dendritic cells optimizes type 1 NKT cell-based antitumor responses. *J Immunol* (2014) 192(2):961–9. doi:10.4049/jimmunol.1303029

63. Nagarajan NA, Kronenberg M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. *J Immunol* (2007) 178(5):2706–13. doi:10.4049/jimmunol.207026

64. Tynnik AJ, Tupin E, Nagarajan NA, Her MJ, Benedict CA, Kronenberg M. The mechanism of invariant NKT cell responses to viral danger signals. *J Immunol* (2008) 181(7):4452–6. doi:10.4049/jimmunol.181.7.4452

65. Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB. CD19-dependent dendritic cell instruction. *Nat Immunol* (2002) 3(2):1163–8. doi:10.1038/nm851
Kumar et al.

NKT Cells: An Eco-Evo-Devo Perspective

82. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. *J Immunol* (1999) 163(9):4647–50.

83. Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directly conventional T cells to the acquisition of a Th2 phenotype. *J Immunol* (1999) 163(5):2373–7.

84. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. *J Exp Med* (1999) 189(7):1121–8. doi:10.1084/jem.189.7.1121

85. Shimizu K, Asakura M, Shinga J, Sato Y, Kitahara S, Hoshino K, et al. Invariant NKT cells induce plasmacytoid dendritic cell (DC) cross-talk with conventional DCs for efficient memory CD8+ T cell induction. *J Immunol* (2013) 190(11):5609–19. doi:10.4049/jimmunol.1300033

86. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4+CD8- NKT cell population. *Proc Natl Acad Sci USA* (2008) 105(32):11287–92. doi:10.1073/pnas.0801631105

87. Chaudhry MS, Karadimitris A. Role and regulation of CD1d in normal and pathological B cells. *J Immunol* (2014) 193(10):4761–8. doi:10.4049/jimmunol.1401805

88. Lang GA, Esley MA, Lang ML. The CD1d-binding glycolipid alpha-galactosylceramide enhances humoral immunity to T-dependent and T-independent antigen in a CD1d-dependent manner. *Immunochemistry* (2006) 119(1):116–25. doi:10.1111/j.1365-2567.2006.02413.x

89. Toni E, Galli G, Malzone C, Abrignani S, Casarotti G, DellaBona P. NKT-cell help to B lymphocytes can occur independently of cognate interaction. *Blood* (2009) 113(2):370–6. doi:10.1182/blood-2008-06-166249

90. Leadbetter EA, Brigl M, Illarionov P, Cohen N, Lutner MC, Pillai S, et al. NK T cells provide lipid antigen-specific cognate help for B cells. *Proc Natl Acad Sci USA* (2008) 105(24):8339–44. doi:10.1073/pnas.0801375105

91. King IL, Fortier A, Tighe M, Dibble J, Watts GF, Veerapen N, et al. Invariant natural killer T cells directly B cells responses to cognate lipid antigen in an IL-21-dependent manner. *Nat Immunol* (2012) 13(1):44–50. doi:10.1038/ni.2172

92. Barral P, Eckl-Dorna J, Harwood NE, De Santo C, Salio M, Illarionov P, et al. Distinct lung-interstitium-resident memory CD8+ T cells provide lipid antigen-specific cognate help for B lymphocytes can occur independently of cognate interaction. *Blood* (2015) 125(24):3929–35. doi:10.1182/blood-2015-04-672964

93. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, et al. The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8+ T cell generation. *Front Immunol* (2015) 6:379. doi:10.3389/fimmu.2015.00379

94. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, et al. Requirement for Bcl-6-dependent follicular helper NKT cells that provide cognate help to B lymphocytes can occur independently of cognate interaction. *Front Immunol* (2017) 8:570. doi:10.3389/fimmu.2017.00570

95. Gottschalk C, Mette K, Kurts C. The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8+ T cell generation. *Front Immunol* (2016) 7:379. doi:10.3389/fimmu.2015.00379

96. Wingender G, Krebs P, Beutler B, Kronenberg M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178 dependent and is correlated with antigenic potency. *J Immunol* (2010) 185(5):2721–9. doi:10.4049/jimmunol.1001018

97. Hagihara M, Gansbudv B, Ueda Y, Tsuihaya T, Masui A, Tazume K, et al. Killing activity of human umbilical cord blood-derived TCRValpha24+ NKT cells against normal and malignant hematological cells in vitro: a comparative study with NK cells or OKT3 activated T lymphocytes or with adult peripheral blood NKT cells. *Cancer Immunol Immunother* (2002) 51(1):1–8. doi:10.1007/s00262-001-0246-2

98. Fujii S, Shimizu K, Okamoto Y, Kunii N, Nakayama T, Motohashi S, et al. Oligotyping NKT cells licenced T cells to generate long-lasting cytotoxic antitumor immunity in vivo. *Cancer Res* (2006) 66(13):6843–50. doi:10.1158/0008-5472.CAN-06-0889

99. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. *J Exp Med* (2005) 202(9):1279–88. doi:10.1084/jem.20050953

100. Keller CW, Freigang S, Lüinemann JD. Reciprocal crosstalk between dendritic cells and natural killer T cells: mechanisms and therapeutic potential. *Front Immunol* (2017) 8:570. doi:10.3389/fimmu.2017.00570

101. Singh AK, Gaur P, Das SN. Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. *Hum Immunol* (2014) 75(33):250–60. doi:10.1016/j.humimm.2013.12.004

102. Carreno LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. *Immunotherapy* (2014) 6(3):309–20. doi:10.2217/imt.13.175

103. Nair S, Dhodapkar MV. Natural killer T cells in cancer immunotherapy. *Front Immunol* (2017) 8:1178. doi:10.3389/fimmu.2017.01178

104. Waldowska M, Bojarska-Junak A, Rolinski J. A brief review of clinical trials involving manipulation of invariant NKT cells as a promising approach in future cancer therapies. *Cancer Eur* (2017) 42(2):181–95. doi:10.5114/cej.2017.69361

105. Bassiri H, Das R, Guan P, Barrett DM, Brennan PJ, Banerjee PP, et al. NKT cell cytotoxic responses control T lymphoma growth in vitro and in vivo. *Cancer Immunol Immunother* (2014) 2(1):59–69. doi:10.1158/2326-6066.CIR-13-0104
134. Gapin L, Matsuda JL, Mattarollo SR. Invariant natural killer T cells in immune regulation of blood cancers: harnessing their potential in immunotherapies. *Front Immunol* (2017) 8:1355. doi:10.3389/fimmu.2017.01355

135. Coles MC, Raulet DH. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. *J Immunol* (2000) 164(5):2412–8. doi:10.4049/jimmunol.164.5.2412

136. Boeosteanu A, Silva AD, Nakajima H, Leonard WJ, Peschon JJ, Joyce S. Distinct roles for signals relayed through the common cytokine receptor gamma chain and interleukin 7 receptor alpha chain in natural T cell development. *J Exp Med* (1997) 186(2):331–6. doi:10.1084/jem.186.2.333

137. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. *J Exp Med* (2000) 191(11):1895–903. doi:10.1084/jem.191.11.1895

138. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. *J Exp Med* (2000) 192(5):741–54. doi:10.1084/jem.192.5.741

139. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NK1.1(-)CD4(-)CD8(-) thymocytes that are positively selected by CD1d. *Nat Immunol* (2000) 1(4):321–7. doi:10.1038/nti940

140. Matzinger P. The danger model-specific triggering of an innate immune response. *Science* (1997) 276(5316):1028–32. doi:10.1126/science.276.5316.1028

141. Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, Feske S, et al. The cell surface receptor SLAM controls T cell and macrophage functions. *J Exp Med* (2004) 199(9):1255–64. doi:10.1084/jem.20031835

142. Jordan MA, Fletcher JM, Jose R, Chowdhury S, Gerlach N, Allison J, et al. Role of SLAM in NKT cell development revealed by transgenic complementation in NOD mice. *J Immunol* (2011) 186(7):3953–65. doi:10.4049/jimmunol.1003305

143. Stanic AK, Bezbradica JS, Park JJ, Van Kaer L, Boothby MR, Joyce S. Cutting edge: the ontogeny and function of Val4i18 natural T lymphocytes require signal processing by protein kinase C theta and NF-kappa B. *J Immunol* (2004) 172(8):4667–71. doi:10.4049/jimmunol.172.8.4667

144. Lazarevic V, Zullo AJ, Schweitzer MN, Staton TL, Gallo EM, Crabtree GR, et al. The gene encoding early growth response 2, a target of the transcription factor NEAT, is required for the development and maturation of natural killer T cells. *Nat Immunol* (2009) 10(3):306–13. doi:10.1038/ni.1696

145. Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K, Meng F, et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. *Nat Immunol* (2012) 13(3):264–71. doi:10.1038/ni.2230

146. Qi Q, Kannan AK, August A. Tcf family kinases: Itk signaling and the development of NKT alphabeta and gammadelta T cells. *FEBS J* (2011) 278(12):1970–9. doi:10.1111/j.1742-4658.2011.08074.x

147. Nicholas KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, et al. Regulation of NKT cell development by SAP: the protein defective in XLP. *Nat Med* (2005) 11(3):340–5. doi:10.1038/nm1189

148. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. *Nat Immunol* (2010) 11(3):197–206. doi:10.1038/ni.1841

149. Savage AK, Constantines MG, Han J, Picard D, Martin E, Li B, et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. *Immunity* (2008) 29(3):391–403. doi:10.1016/j.immuni.2008.07.011

150. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. *Nat Immunol* (2008) 9(9):1055–64. doi:10.1038/ni.1641

151. Watarai H, Sekine-Kondo E, Shigeta T, Motomura Y, Yasuda T, Sato R, et al. Development and function of invariant natural killer T cells producing Th(2) and Th(17) cytokines. *PloS Biol* (2010) 8(2):e1000155. doi:10.1371/journal.pbio.0010155

152. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hoggquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of INKT cells. *Nat Immunol* (2013) 14(11):1146–54. doi:10.1038/ni.2731

153. Hammond JK, Pellicci DG, Poulton LD, Naidenko OV, Scala AA, Baxter AG, et al. CD1d-restricted NKT cells: an interstrain comparison. *J Immunol* (2001) 167(3):1164–73. doi:10.4049/jimmunol.167.3.1164

154. Lynch L, Mchellet X, Zhang S, Brennan PJ, Moseman A, Lester C, et al. Regulatory INKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. *Nat Immunol* (2015) 16(1):85–95. doi:10.1038/ni.3047

155. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. *J Clin Invest* (2014) 124(9):3725–40. doi:10.1172/JCI72308

156. Engel I, Seumos G, Chavez J, Samaniego-Castuita D, White B, Chawla A, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. *Nat Immunol* (2016) 17(6):728–39. doi:10.1038/ni.3437

157. Peter I, Davidson E. Genomic Control Process: Development and Evolution. London: Academic Press (2015).

158. Mao AP, Constantines MG, Mathew R, Zuo Z, Chen X, Weirach MT, et al. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. *Proc Natl Acad Sci U S A* (2016) 113(27):7602–7. doi:10.1073/pnas.160540111

159. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The lysine acetyltransferase GCN5 is required for INKT cell development through EGR2 acetylation. *Cell Rep* (2017) 20(3):600–12. doi:10.1016/j.celrep.2017.06.065

160. Dominy JE Jr, Lee Y, Jedrychowski MP, Chhim H, Jurczak MJ, Camporez JP, et al. The deacetylase Sir2H activates the acetyltransferase GCN5
and suppresses hepatic gluconeogenesis. Mol Cell (2012) 48(6):900–13. doi:10.1016/j.molcel.2012.09.030

161. Malek AJ, Sont-Brouwer JP, Matsuda JL, Young MH, Pellicci DG, Patel O, et al. T cell receptor CD2R2 beta and CD2R3 beta loops cooperate functionally to shape the iNKT cell repertoire. Immunity (2009) 31(1):60–71. doi:10.1016/j.immuni.2009.05.010

162. Wei DG, Curran SA, Savage PB, Teyton L, Bendelac A. Mechanisms imposing the Vbeta of Valpha4 natural killer T cells and consequences for microbial glycolipid recognition. J Exp Med (2006) 203(5):1197–207. doi:10.1084/jem.20060418

163. Chunj T, et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of iNKT cells. J Exp Med (2003) 197(7):907–18. doi:10.1084/jem.20021366

164. Pellicci DG, Udrich AP, Kyprassoudis K, Crowe NY, Brooks AG, Hammond KJ, et al. Intrathymic NKT cell development is blocked by the presence of alpha-galactosylceramide. Eur J Immunol (2003) 33(7):1816–23. doi:10.1002/eji.200323894

165. Schümann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G. Differential effects of CD1d on transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha4iNKT cells. J Immunol (2005) 175(11):7303–10. doi:10.4049/jimmunol.175.11.7303

166. Stanic AK, Bezzardica JS, Park JJ, Matsuki N, Mora AL, Van Kael L, et al. NF-kappa B controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J Immunol (2004) 172(4):2265–73. doi:10.1016/j.molimm.2004.12.001

167. Chiu YH, Park SH, Benlagha K, Forester C, Jayawardena-Wolf I, Savage PB, et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol (2002) 3(1):55–60. doi:10.1038/ni740

168. Thapa P, Das J, McWilliams D, Shapiro M, Sundsbak R, Nelson-Holte M, et al. T cell receptor CDR2 beta and CDR3 beta loops collaborate functionally to shape the iNKT cell repertoire. J Immunol (2013) 190(7):3299–308. doi:10.4049/jimmunol.1203466

169. Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, Bendelac A. Establishment of iNKT17 cells in the absence of DOCK8 is critical for the survival and function of NKT cells. Blood (2013) 122(2):2052–61. doi:10.1182/blood-2013-08-483331

170. OKamura K, Itamura A, Sasaki Y, Chung DH, Kagami S, Iwai K, et al. Survival of mature T cells depends on signaling through HOIP. Sci Rep (2016) 6:30664. doi:10.1038/srep30664

171. Mallevaey T, Scott-Browne JP, Matsuda JL, Young MH, Pellicci DG, Patel O, et al. T cell receptor CD2R1 and CD2R2 control negative selection of Valpha14iNKT cells. J Exp Med (2015) 202(2):239–48. doi:10.1084/jem.20140413

172. Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, et al. DOCK8 is critical for the survival and function of NKT cells. Blood (2013) 122(2):2052–61. doi:10.1182/blood-2013-08-483331

173. Kodicek J, Tschissel P, Distinct roles in NKT cell maturation and function for the different transcription factors in the classical NF-kappa B pathway. Immunity (2011) 39(2):294–303. doi:10.1016/j.immuni.2010.9.013

174. Crawford G, Enders A, Gileadi U, Stankovic S, Zhang Q, Lambe T, et al. DOCK8 is critical for the survival and function of NKT cells. Blood (2013) 122(2):2052–61. doi:10.1182/blood-2013-08-483331

175. Mallevaey T, Scott-Browne JP, Matsuda JL, Young MH, Pellicci DG, Patel O, et al. DOCK8 is critical for the survival and function of NKT cells. Blood (2013) 122(2):2052–61. doi:10.1182/blood-2013-08-483331

176. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-associated protein favors the development of iNKT2 over iNKT17 cells. Eur J Immunol (2013) 43(10):2771–82. doi:10.1002/eji.2013438510

177. Shum Study, P, Beaudoin L, Teyton L, Bendelac A. Mechanisms imposing the Vbeta of Valpha4 natural killer T cells and consequences for micro-
Kumar et al.

NKT Cells: An Eco-Evo-Devo Perspective

208. Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, et al. Cutting edge: discrete functions of mTOR signaling in NKT cells.

211. Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Price AE, Reinhardt RL, Liang HE, Locksley RM. Marking and quantifying DB, et al. NKAP regulates invariant NKT cell proliferation and differentiation. J Immunol (2013) 191(1):159–71. doi:10.4049/jimmunol.1200214

212. Sklarz T, Guo P, Gohil M, Cotton RM, Ge MQ, Haczku A, et al. Distal regions of the human IFNG locus direct cell type-specific expression. J Immunol (2008) 180(6):3124–9. doi:10.4049/jimmunol.0700532

213. Wei J, Yang K, Chi H. Cutting edge: discrete functions of mTOR signaling in NKT cells.

214. Price AE, Reinhardt RL, Liang HE, Locksley RM. Marking and quantifying DB, et al. NKAP regulates invariant NKT cell proliferation and differentiation. J Immunol (2013) 191(1):159–71. doi:10.4049/jimmunol.1200214

215. Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Price AE, Reinhardt RL, Liang HE, Locksley RM. Marking and quantifying DB, et al. NKAP regulates invariant NKT cell proliferation and differentiation. J Immunol (2013) 191(1):159–71. doi:10.4049/jimmunol.1200214

216. Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolicanin Z, et al. Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transpl (2017) 23(8):1040–50. doi:10.1002/lit.24784

217. Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, et al. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA (2007) 104(3):858–9. doi:10.1073/pnas.0700191104

218. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - THF cells in human health and disease. Nat Rev Immunol (2013) 13(6):412–26. doi:10.1038/nri3447

219. Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol (2011) 13(1):35–43. doi:10.1038/nri2166

220. Tonti E, Fedeli M, Napolitano A, Iannacone M, von Andrian UH, Guidotti LG, et al. Follicular helper NKT cells induce limited B cell responses and germinal center formation in the absence of CD4(+) T cell help. J Immunol (2012) 188(7):3217–22. doi:10.4049/jimmunol.1103501

221. Chan AC, Leansyah E, Cochrane A, d’Udekem d’Acoz Y, Mittag D, Harrison LC, et al. Ex vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(−) subsets. Clin Exp Immunol (2013) 172(1):129–37. doi:10.1111/cei.12045

222. Akbari O, Paul JL, Hoyte EG, Berry GJ, Wahlström J, Kronenberg M, et al. CD4+ invariant T-cell receptor+ natural killer T cells in bronchial asthma. N Engl J Med (2006) 354(11):1117–29. doi:10.1056/NEJMoa053614

223. Gumpertz JE, Miyake S, Yamamura T, Brenner MB. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Immunol (2002) 169(5):625–36. doi:10.4049/jimmunol.1692176

224. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity (2015) 43(5):566–78. doi:10.1016/j.immuni.2015.06.025

225. Matsuki N, Stancic AK, Emergs ME, Van Kaer L, Dirita V, Micsik A, Takeda M, et al. Ex vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(−) subsets. Clin Exp Immunol (2013) 172(1):129–37. doi:10.1111/cei.12045

226. Gilbert SE, Eped E. Ecological Development of Biology. Sunderland, MA: Sinaur (2015), 357 p.

227. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity (2015) 43(5):566–78. doi:10.1016/j.immuni.2015.06.025

228. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity (2015) 43(5):566–78. doi:10.1016/j.immuni.2015.06.025

229. Matsuki N, Stancic AK, Emergs ME, Van Kaer L, Dirita V, Micsik A, Takeda M, et al. Ex vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(−) subsets. Clin Exp Immunol (2013) 172(1):129–37. doi:10.1111/cei.12045

230. Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenov O, et al. Cytometric and functional analyses of NK and NKT cell deficiencies in autoimmune-prone mice. Int Immunol (2001) 13(7):887–96. doi:10.1093/immunol/13.7.887

231. Lee PT, Putnam A, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med (2002) 195(5):637–41. doi:10.1084/jem.200119908

232. Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med (2002) 195(7):869–79. doi:10.1084/jem.200111712

233. Wingender G, Stempniak D, Krebs P, Lin L, McBride S, Wei B, et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology (2012) 143(2):418–28. doi:10.1053/j.gastro.2012.04.017

234. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science (2012) 336(6080):489–93. doi:10.1126/science.1219328

235. Zeissig S, Blumberg RS. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol (2013) 25(6):690–6. doi:10.1016/j.coi.2013.09.012

236. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature (2012) 486(7407):207–14. doi:10.1038/nature11234

237. South SE. Organism & Environment: Ecological Development, niche Construction, and Adaptation. Oxford, UK: Oxford University Press (2015).

238. Selvanathan T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, et al. NKT cell-deficient mice harbor an altered microbiota that fuels
intestinal inflammation during chemically induced colitis. *J Immunol* (2016) 197(11):4464–72. doi:10.4049/jimmunol.1601410

239. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. *Nat Rev Cancer* (2017) 17(5):271–85. doi:10.1038/nrc.2017.13

240. Haldane JBS. Disease and evolution. *La ricerca scientifico, supplemento* (1949) 19:68–75.

241. Dronamraju KR, editor. *Selected Genetic Papers of J.B.S. Haldane*. New York/ London: Garland Publishing (1990). 542 p.

242. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol* (2015) 33:169–200. doi:10.1146/annurev-immunol-032414-112334

243. Yang Z, Wang C, Wang T, Bai J, Zhao Y, Liu X, et al. Analysis of the reptile CD1 genes: evolutionary implications. *Immunogenetics* (2015) 67(5–6):337–46. doi:10.1007/s00251-015-0837-2

244. Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc MP, Lantz O. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. *Proc Natl Acad Sci U S A* (2016) 113(21):E2983–92. doi:10.1073/pnas.1600674113

245. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* (1987) 4(4):406–25.

246. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* (1985) 39(4):783–91. doi:10.1111/j.1558-5646.1985.tb00420.x

247. Nei M, Kumar S. *Molecular Evolution and Phylogenetics*. New York: Oxford University Press (2000).

248. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* (2013) 30(12):2725–9. doi:10.1093/molbev/ms317

249. Wund M, Myers P. *The Animal Diversity Web*. (2017). Available from: http://animaldiversity.org/accounts/Mammalia/

250. Corbert G, Hill J. A *World List of Mammalian Species*. New York/London: Facts on File Publications/British Museum of Natural History (1991).

251. Palmer D. *Evolution: The Story of Life*. Berkley, Los Angeles: University of California (2009).

252. Louis A, Nguyen NT, Muffato M, Roest Crollius H. Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics. *Nucleic Acids Res* (2015) 43(Database issue):D682–9. doi:10.1093/nar/gku1112

253. Alonzo ES, Sant’Angelo DB. Development of PLZF-expressing innate T cells. *Curr Opin Immunol* (2011) 23(2):220–7. doi:10.1016/j.coi.2010.12.016

254. Constantinides MG, Bendelac A. Transcriptional regulation of the NKT cell lineage. *Curr Opin Immunol* (2013) 25(2):161–7. doi:10.1016/j.coi.2013.01.003

255. Ishizuka IE, Constantinides MG, Gujdjonson H, Bendelac A. The innate lymphoid cell precursor. *Ann Rev Immunol* (2016) 34:299–316. doi:10.1146/annurev-immunol-041015-053549

256. Kastenmüller W, Torabi-Parizi P, Subramanian N, Lammermann T, Germain RN. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. *Cell* (2012) 150(6):1235–48. doi:10.1016/j.cell.2012.07.021

257. Van Kaer L, Algood HMS, Singh K, Parekh VV, Greer MJ, Piazuelo MB, et al. CD8alphaalpha(+) innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. *Immunity* (2014) 41(3):451–64. doi:10.1016/j.immuni.2014.08.010

258. Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design: innate B and T lymphocytes. *Nat Rev Immunol* (2001) 1(3):177–86. doi:10.1038/35105052

259. Multiple. Focus on: the inbetweeners: innate-like lymphocytes. *Nat Rev Immunol* (2013) 13(February):73–149.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Kumar, Suryadevara, Hill, Bezbradica, Van Kaer and Joyce. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.