The discovery and characterization of a kilometre sized asteroid inside the orbit of Venus

Bryce T. Bolin,1,2* T. Ahumada,3 P. van Dokkum,4 C. Fremling,1 M. Granvik,5,6 K. K. Hardegree-Ullman,7 † Y. Harikane,8,9 J. N. Purdum,10 E. Serabyn,11 J. Southworth12 and C. Zhai11

1 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
2 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA.
3 Department of Astronomy, University of Maryland, College Park, MD 20740, USA.
4 Department of Astronomy, Yale University, New Haven, CT 06520, USA.
5 Department of Physics, University of Helsinki, 00560, Finland.
6 Asteroid Engineering Lab, Luleå University of Technology, Kiruna, 981 28 Sweden.
7 Steward Observatory, University of Arizona, Tucson, AZ 85721, USA.
8 Institute for Cosmic Ray Research, The University of Tokyo Kashiwa, Chiba 277-8582, Japan.
9 National Astronomical Observatory of Japan, Tokyo, 181-8588, Japan.
10 Caltech Optical Observatory, California Institute of Technology, Pasadena, CA 91125, USA.
11 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
12 Astrophysical Research Institute, Liverpool John Moores University, Liverpool, L2 2QP, UK

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT
Near-Earth asteroid population models predict the existence of bodies located inside the orbit of Venus. Despite searches up to the end of 2019, none had been found. We report discovery and follow-up observations of (594913) ‘Ayló’chaxnim, an asteroid with an orbit entirely interior to Venus. (594913) ‘Ayló’chaxnim has an aphelion distance of ~0.65 au, is ~2 km in diameter and is red in colour. The detection of such a large asteroid inside the orbit of Venus is surprising given their rarity according to near-Earth asteroid population models. As the first officially numbered and named asteroid located entirely within the orbit of Venus, we propose that the class of interior to Venus asteroids be referred to as ‘Ayló’chaxnim asteroids.

Key words: minor planets, asteroids; general

1 INTRODUCTION
Almost all of the ~1 million known asteroids are located on orbits exterior to Earth’s orbit compared to just a fraction of a percent that have orbits located entirely inside Earth’s orbit (Benz et al. 2015). Dynamical models predict that a small fraction of the near-Earth asteroid (NEA) population (Bottke et al. 2002; Granvik et al. 2018) consists of Atira asteroids located between the orbit of the Earth and Venus, and inner-Venus asteroids (IVAs) located entirely within the orbit of Venus. However, IVAs have not been observed despite previous searches for objects interior to the orbit of the Earth (Whiteley & Tholen 1998; Zavodny et al. 2008; Bolin et al. 2022). This is in part due to the difficulty of surveying this region of the Solar System within a small angular distance of the Sun with ground-based telescopes (Masi 2003). This postulated IVA population has been provisionally referred to as Vatiras, by analogy with the Atiras (Greenstreet et al. 2012).

The Zwicky Transient Facility (ZTF) mounted on the Palomar Observatory Samuel Oschin Schmidt Telescope is an all-sky survey designed to detect transients in the northern hemisphere (Bellm et al. 2019a; Bolin et al. 2022). A portion of the time for the ZTF survey is designed to observe portions of the sky as close as possible to the Sun during evening and morning twilight called the “Twilight Survey” (Bolin et al. 2022). A preliminary version of the Twilight Survey ran in late 2018 and the first half of 2019 (Ye et al. 2020). An expanded version of the Twilight Survey was executed between 2019 September 20 and 2020 January 30, observing during astronomical twilight on each clear night.

2 OBSERVATIONS
The Twilight Survey is scheduled within the framework of the ZTF scheduler (Bellm et al. 2019b). The Twilight Survey alternates between evening and morning twilight providing a total of 90 ob-

* E-mail: bbolin@caltech.edu (BTB)
† Visiting astronomer, Cerro Tololo Inter-American Observatory at NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

1 "Provisional because it will be abandoned once the first discovered member of this class will be named." (Greenstreet et al. 2012).
serving sessions, on 47 mornings and on 43 evenings between 2019 September 20 and 2020 January 30. The scheduler produces a nearly connecting 10 field pattern that covers 470 square degrees of sky during each observing session at elevations down to ~20 degrees. Each Twilight Survey session lasts for 20–25 minutes. Each field in the pattern is imaged four times with 30 s exposures in r-band (wavelength ~680 nm) (Bellm et al. 2019b). The time between subsequent exposures per single Twilight Survey fields is ~5 minutes. The time spacing of the Twilight Survey cadence enables the detection of objects moving in the range between ~8 arcseconds per hour and >1500 arcseconds per hour (Masci et al. 2019; Duev et al. 2019).

The sensitivity of the Twilight Survey images is brighter than the nominal ZTF limiting V-band (wavelength ~550 nm) magnitude of ~21 (Bellm et al. 2019a). The brighter sensitivity is due to the higher airmass of the observations combined with the higher sky background during astronomical twilight, resulting in a limiting magnitude close to V ~20 (Fig. A1, Bolin et al. 2022). A total of ~40,000 sq. deg. sky was covered during the Twilight Survey between 2019 September to 2020 January. A sky coverage map of the 90 Twilight Survey observing sessions is presented in Fig. 1A. The apparent asymmetry between the morning and evening patches is due to differences in the accessibility of the sky in the Sun’s direction during evening and morning twilight during the September to January months. The solar elongation of the sky covered by the Twilight Survey ranged between 35–60 degrees (Fig. 1B). Approximately half of the sky covered by the Twilight Survey is within the IVA maximum solar elongation range of <46 degrees (Fig. 1B). The near-Earth asteroid model (Granvik et al. 2018) predicts that ~80% of IVAs have a maximum Solar elongation overlapping with the solar elongation range covered by the Twilight Survey (Fig. 1C).

3 RESULTS

3.1 Initial detection

On 2020 January 4, 2020 AV₂ was detected by ZTF in the evening twilight sky ~40 degrees from the Sun (Fig. 2A,B). Follow-up data were obtained with the Kitt Peak Electron Multiplying Charge-Coupled Device Demonstrator (KPED) mounted on the Kitt Peak 84-inch telescope (Coughlin et al. 2019) on 2020 January 9 and were reported to the Minor Planet Center (MPC). The asteroid from the follow-up observations combined with the initial ZTF observations refined the aphelion, \(q \), of 2020 AV₂ as having a value of ~0.65 astronomical units (au), well within the 0.72 au perihelion, \(q \), of Venus, as seen in the top and bottom panels of Fig. 3 (Bolin et al. 2020).

Follow-up data from other observatories were reported during 2020 January 4-23 resulting in a more precise orbit fit with \(Q = 0.653817 \pm 0.000825 \) au. The orbit of 2020 AV₂ was further refined when recovery observations were taken by follow-up observers during its next window of observability from the northern hemisphere in 2020 November 24-26 and reported to the MPC2. These additional recovery observations extended the observing span to 327 days improving the precision of 2020 AV₂’s orbital elements to one part in a million (Table A1, Bolin et al. 2022). A third set of observations confirming the orbit were obtained in 2021 July 17-19 at the Southern Astrophysical Research Telescope and Magellan Telescope (Fig. 2C, Bolin et al. 2022). The more precise orbit fit enabled by these three epochs of observations resulted in 2020 AV₂ receiving the number designation (594913) by the MPC on 2021 September 20 (Payne et al. 2021). On 2021 November 8, the International Astronomical Union Working Group on Small Body Nomenclature officially named the asteroid ‘Ayló’chaxnim, meaning “Venus Girl” in the Luiseño language (Tíchá et al. 2021). We suggest that the class of interior to Venus asteroids be referred to as ‘Ayló’chaxnim following the example of (594913) ‘Ayló’chaxnim as the first known example of this class of asteroids.
Figure 2. ZTF images of 'Ayló’chaxnim. (A) One of the ZTF discovery 30 s r-band images of ‘Ayló’chaxnim taken on 2020 January 4. ‘Ayló’chaxnim is indicated by the red circle. (B) Composite image of the first four ZTF 30 s r-band exposures over a 22 minute time interval. The images were aligned on the background stars before being coadded. ‘Ayló’chaxnim is indicated by the red circles, with the first observation labelled with a red arrow. The apparent faintness of the third detection is due to variations in sky transparency over the 22 minute sequence. The asteroid was moving ~130 arcseconds per hour in the northeast direction resulting in a ~10 arcseconds spacing between the detections of ‘Ayló’chaxnim. The spatial scale in (B) is the same as in (A). (C) Recovery image of ‘Ayló’chaxnim made using the 6.5 m Magellan Baade telescope and Four Star infrared camera on 2021 July 18. The asteroid was moving in the northeast direction at 100 arcseconds per hour. The cardinal directions are indicated.

Figure 3. Orbital configuration of ‘Ayló’chaxnim. (A) A side view of the plane of the Solar system. The orbits and locations of Earth (purple), Venus (blue), Mercury (red) and ‘Ayló’chaxnim (yellow) on 2020 January 4 are shown looking from the side. (B) The same as panel (A) but looking from above the orbital plane of the inner Solar System. The perihelion and aphelion directions of ‘Ayló’chaxnim and the planets are plotted with dotted and solid lines respectively. The perihelion distance of Venus, qVenus, and the aphelion distance of ‘Ayló’chaxnim, Q-Ayló’chaxnim are indicated with labeled barred lines. The heliocentric cartesian coordinates x, y and z are indicated with the position of the Sun as the origin.

3.2 Orbital dynamics

Previous simulations of the orbital evolution of ‘Ayló’chaxnim (Greenstreet 2020; de la Fuente Marcos & de la Fuente Marcos 2020) indicate its capture into orbital period resonances with Venus, such as the 3:2 mean motion resonance located at 0.552 au. We performed further orbital stability simulations using the orbital solution of ‘Ayló’chaxnim from 2020 November, finding that the nominal orbit of ‘Ayló’chaxnim enters the 3:2 mean motion with Venus ~0.06 Myr from now (Fig. 4A). The amplitude of the variations in the semi-major axis, a, of ‘Ayló’chaxnim is initially large but shrinks after close encounters with Mercury ~0.01 Myr later. The minimum approach distance between ‘Ayló’chaxnim and Venus increases when ‘Ayló’chaxnim enters into this resonance, thereby protecting the asteroid from close encounters with the planet (similar to the 3:2 mean motion resonances between Neptune and Pluto Nesvorný et al. 2000). The integration of the majority of our orbital clones indicates that the asteroid ‘Ayló’chaxnim will remain in resonance with Venus for ~0.01 Myr, and subsequently leave and re-enter the 3:2 mean motion resonance for the next ~0.1 Myr.

Our orbital evolution simulations also indicate that ‘Ayló’chaxnim has only recently migrated entirely inside the orbit Venus, within the last ~1 Myr, remaining inside the orbit of Venus for another ~2 Myr (Fig. 4B). The proximity of the perihelion of ‘Ayló’chaxnim to the orbit of Mercury draws comparison with the perihelion of many ecliptic objects being close to the orbit of Jupiter, indicative of the evolution of their orbits due to close planetary encounters (Duncan et al. 2004). The orbit of ‘Ayló’chaxnim will have aphelion within the orbit of Venus for the next 2 Myr. Previous simulations found a much shorter residence time of <1 Myr for ‘Ayló’chaxnim to remain inside the orbit of Venus (Greenstreet 2020; de la Fuente Marcos & de la Fuente Marcos 2020). We ascribe the differences with our results as due to previous work adopting an earlier version of the orbital parameters for ‘Ayló’chaxnim.

While the current precision of ‘Ayló’chaxnim’s orbit prevents us from predicting its orbital behavior on timescales exceeding ~10 Myr, it is apparent from orbital integration of clones (see Sec. A1.3, Bolin et al. 2022) of its orbit that it is a transitory inhabitant of the inner Venus region of the Solar System. The majority of orbital clones have close encounters with Mercury, Venus and the Earth within 10-20 Myr that scatter and evolve their orbits onto excited trajectories that have very close perihelion passages with the Sun (Fig. 4C). The median time between the start time of the integration of the ‘Ayló’chaxnim clones and their collision with a planet or the Sun is ~10 Myr, and ~90% of the clones have collided with the Sun or a planet by the end of the 30 Myr integration. We integrated the ~10% of clones that survived the first 30 Myr for a total of 50 Myr. On that timescale, ~13% of the ‘Ayló’chaxnim clones collided with the Sun, having a perihelion distance <0.005 au, while 13%, 52%, 16% and 2% collided with Mercury, Venus, the Earth and Mars, respectively. The remaining 4% survived the extended 50 Myr integration or were ejected from the Solar System. Previous simulations of inner-Venus objects found a median collisional lifetime of ~21 Myr (Greenstreet et al. 2012), a factor of 2 larger than we find for ‘Ayló’chaxnim clones. However, the proportion of ‘Ayló’chaxnim clones colliding with the Sun, Mercury, Venus, Earth and Mars is similar to the published simulations of the general inner-Venus object population (Greenstreet et al. 2012).
Ayló et al. 2022) originate from the inner Main Belt (Granvik et al. 2018). Similar orbital elements to (DeMeo & Carry 2013). NEA models predict that asteroids from the inner Main Belt, where S-type asteroids are most abundant like composition (Bus & Binzel 2002), consistent with an origin (Fig. 5). We interpret these as indicating a silicate S-type asteroid-

Spectroscopic observations of Ayló/chaxnim. (A) Evolution of the semi-major axis of Ayló/chaxnim represented by its nominal orbit in Table A1. The plateau in the evolution of the semi-major axis separated by jumps are due to Ayló/chaxnim crossing different resonances with Venus. At around 0.06 Myrs, Ayló/chaxnim entered a 3:2 mean motion resonance with Venus located at 0.552 au that lasts for a 0.01 Myrs before jumping in out of the resonance for the next ~0.1 Myrs. (B) The evolution of the aphelion (orange) and perihelion (blue) distances of the same clone of Ayló/chaxnim representing the nominal orbit integrated to ±10 Myrs. The current aphelion (dashed line) and perihelion distances (dash-dot line) are plotted as horizontal lines for Mercury (red), Venus (cyan) and Earth (purple). (C) Similar to B, but for a selected long-lived clone integrating its orbital evolution to 28 Myrs. The aphelion and perihelion range of Mars is shown in black.

3.3 Spectral type, dynamical pathway and size

Spectroscopic observations of Ayló/chaxnim were made using the Keck telescope on 2020 January 25 indicating a reddish surface with colours in equivalent z (wavelength ~470 nm), r (wavelength ~620 nm) and i (wavelength ~750 nm) bandpasses of g-r = 0.65 ± 0.02 mag, r-i = 0.23 ± 0.01 mag. In addition, the surface of Ayló/chaxnim has a j-z colour of 0.11 ± 0.02 mag where the equivalent z bandpass corresponds to a central wavelength of ~900 nm (Fig. 5). We interpret these as indicating a silicate S-type asteroid-like composition (Bus & Binzel 2002), consistent with an origin from the inner Main Belt, where S-type asteroids are most abundant (DeMeo & Carry 2013). NEA models predict that asteroids with similar orbital elements to Ayló/chaxnim (Table A1, Fig. A1, Bolin et al. 2022) originate from the inner Main Belt (Granvik et al. 2018).

One of the possible dynamical pathway for inner-Venus asteroids (IVAs) is to originate from the Main Belt through source regions located near various major planetary resonances (Granvik et al. 2017). If we assume that Ayló/chaxnim originated from the Main Belt as an asteroid family fragment (Bolin et al. 2017) before crossing inside of the orbit of Venus, asteroids with orbits similar to Ayló/chaxnim most likely originate from the v5 resonance, with a ~77% probability, that forms the boundary of the inner Main Belt at 2.2 au (Morbidelli et al. 1994; Granvik et al. 2018). The second most likely source of Ayló/chaxnim with ~18% probability are the Hungary asteroid population located just interior to the Main Belt at 2.0 au (Milani & Gronchi 2010) and the third most likely at ~4% being the 3:1 mean motion resonance with Jupiter located in the Main Belt at 2.5 au (Wisdom 1983).

The typical albedo value for S-type asteroids is ~0.2 (Thomas et al. 2011; DeMeo & Carry 2013). In addition, we compared the source region probability for Ayló/chaxnim with the medium-resolution version of the NEA albedo (Morbidelli et al. 2020). The NEA albedo model predicts that ~60% of kilometre-size inner-Venus objects should have albedos exceeding 0.2, (see Fig. A3, Bolin et al. 2022) consistent the albedo based on Ayló/chaxnim’s taxonomic type. For an albedo of 0.2 and the absolute magnitude of Ayló/chaxnim, H = 16.2±0.8 mag taken from from the JPL Small Body Database, we estimate that Ayló/chaxnim’s diameter is ~1.7±0.6 km.

The number of IVAs in the NEA model brighter than Ayló/chaxnim’s nominal value of H = 16.2 is 0.25. Using the range of H described by its 1-σ uncertainty of 0.8, the number of objects brighter than the 1-σ lower value of H = 15.4 is 0.05, and the number of objects brighter than the 1-σ upper value of H = 17.0 is 0.7. Thus, the number of objects brighter than H < 16.2±0.8 is 0.25±0.3. This is also the upper value of 0.2%. The typical albedo value for S-type asteroids is ~0.2 (Thomas et al. 2010) and without taking into account small number statistics or observational selection effects, there is a ~1-2-σ difference between the discovery of Ayló/chaxnim and the NEA model.

4 DISCUSSION AND CONCLUSION

Ayló/chaxnim seems like an ordinary NEA with a red colour and orbital evolution affected by planetary encounters. However, while asteroid population models predict that there are ~1,000 km-scale NEAs, IVAs are scarce, representing less than 0.3% of the NEA population (Granvik et al. 2018; Morbidelli et al. 2020). The detection of Ayló/chaxnim is surprising given its large size and the relative rarity of IVAs according to the NEA model. However, the twilight sky within 50 degrees of the Sun is relatively unexplored and the comparison between observations and asteroid population models requires future exploration of this phase space. Observations of the near-Sun sky by current surveys such as ZTF and the Dark Energy Camera (Sheppard et al. 2021) along with future surveys such as the Rubin Observatory Legacy Survey of Space and Time (Bianco et al. 2022) will provide coverage of the near-Sun sky and the IVA population.

3 https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html/?sstr=594913
ACKNOWLEDGEMENTS

The authors appreciate the help of Frank Masci with ZTF asteroid identification, Alessandro Morbidelli with synthetic populations, Jacqueline Serón, Carlos Corco and Alfredo Zenteno with SOAR observations, Peter Sencyna, Alan Dressler, Carla Fuentes, Carlos Contreras and Andy Monson with Magellan observations, R. Quimby, M. W. Coughlin and K. B. Burdge, M. J. Graham with follow up. C. F. acknowledges support from the Heising-Simons Foundation (grant follow up. C. F. acknowledges support from the Heising-Simons Foundation). The authors are grateful to Frank Masci with ZTF asteroid identification, Alessandro Morbidelli with synthetic populations, Jacqueline Serón, Carlos Corco and Alfredo Zenteno with SOAR observations, Peter Sencyna, Alan Dressler, Carla Fuentes, Carlos Contreras and Andy Monson with Magellan observations, R. Quimby, M. W. Coughlin and K. B. Burdge, M. J. Graham for follow up. C. F. acknowledges support from the Heising-Simons Foundation (grant #2018-0907). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA 80NM0018D0004.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author. The Twilight Survey data from 2019 September and 2020 January are available in ZTF Public Data Release 7.

SUPPLEMENTAL MATERIAL

The supplemental material for this manuscript is available online.

REFERENCES

Bellm E. C., et al., 2019a, PASP, 131, 08002
Bellm E. C., et al., 2019b, PASP, 131, 068003
Bianco F. B., et al., 2022, ApJS, 258, 1
Biello R. P., Reddy V., Dunn T. L., 2015, The Near-Earth Object Population: Connections to Comets, Main-Belt Asteroids, and Meteors, pp 243–263, doi:10.2458/azu_uapress_9780816532131-ch013
Bolin B. T., Delbo M., Morbidelli A., Walsh K. J., 2017, Icarus, 282, 290
Bolin B. T., et al., 2020, Minor Planet Electronic Circulars, 2020-A99
Bolin B. T., et al., 2022, Supplemental Material.
Bottke W. F., Morbidelli A., Jedicke R., Petit J.-M., Levison H. F., Michel P., Metcalfe T. S., 2002a, Icarus, 156, 399
Bottke Jr. W. F., Vokrouhlický D., Rubincam D. P., Nesvorný D., 2006, Annual Review of Earth and Planetary Sciences, 34, 157
Bou Z., Binzel R. P., 2002, Icarus, 158, 146
Clemens J. C., Crain J. A., Anderson R., 2004, in Moorwood A. F. M., Iye M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 5492, Ground-based Instrumentation for Astronomy. pp 331–340, doi:10.1117/12.550069
Coughlin M. W., et al., 2019, MNRAS, 485, 1412
DeMeo F. E., Carry B., 2013, Icarus, 226, 723
Dekany R., et al., 2020, PASP, 132, 038001
Dues D. A., et al., 2019, MNRAS, 486, 4158
Duncan M. C., Levison H., Dones L., 2004, Dynamical evolution of eclipsing comets. p. 193
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2018, A&A, 616, A1
Graham M. J., et al., 2019, PASP, 131, 078001
Granvik M., Morbidelli A., Vokrouhlický D., Bottke W. F., Nesvorný D., Jedicke R., 2017, A&A, 598, A52
Granvik M., et al., 2018, Icarus, 312, 181
Greenstreet S., 2020, MNRAS, 493, L129
Greenstreet S., Ngo H., Gladman B., 2012, Icarus, 217, 385
Jedicke R., Bolin B., Granvik M., Beshore E., 2016, Icarus, 266, 173
Masi F. S., et al., 2019, PASP, 131, 018003
Masi G., 2003, Icarus, 163, 389
McCarthy J. K., et al., 1998, Blue channel of the Keck low-resolution imaging spectrometer. pp 81–92, doi:10.1117/12.316831
Milani A., Gronchi G. P., 2010, Theory of Orbital Determination. Cambridge University Press
Morbidelli A., Gonczi R., Froeschle C., Farinella P., 1994, A&A, 282, 955
Morbidelli A., Delbo M., Granvik M., Bottke W. F., Jedicke R., Bolin B., Michel P., Vokrouhlický D., 2020, Icarus, 340, 113631
Nesvorný D., Rieg P., Ferraz-Mello S., 2000, AJ, 119, 953
Oke J. B., et al., 1995, PASP, 107, 375
Oszkiewicz D. A., Bowell E., Wasserman L. H., Muinonen K., Penttilä A., Puustjärvi T., Trilling D. E., Thomas C. A., 2012, Icarus, 219, 283
Payne M., Rudenko M., Veres P., Bell D., Prema P., 2021, Minor Planet Circulars/Minor Planets and Comets, 133823
Perlay D. A., 2019, PASP, 131, 084503
Persson S. E., et al., 2013, PASP, 125, 654
Popescu M., et al., 2020, MNRAS, 496, 3572
Pravec P., Harris A. W., Kušnirák P., Galád A., Hornoch K., 2012, Icarus, 221, 365
Rein H., Liu S.-F., 2012, A&A, 537, A128
Rein H., Spiegel D. S., 2015, MNRAS, 446, 1424
Sheppard S. T., Tholen D., Pokorny P., Kucinich M., Trujillo C., 2021, in Annual Review of Earth and Planetary Sciences, 34, 157
Thomas C. A., et al., 2011, AJ, 142, 85
Tichá J., Noll K., Williams G., Chernetenko Y., Fernández J., Green D., Kilmartin Pam Nakano S., 2021, in Working Group on Small Body Nomenclature Bulletin, Vol. 1, #11, IAU Working Group on Small Body Nomenclature. p. 14
Tommy J. L., et al., 2012, ApJ, 750, 99
Vereš P., et al., 2015, Icarus, 261, 34
Warner B. D., Harris A. W., Pravec P., 2009, Icarus, 202, 134
Whiteley R. J., Tholen D. J., 1998, Icarus, 136, 154
Wisdom J., 1983, Icarus, 56, 61
Ye Q., et al., 2020, AJ, 159, 70
Zavodny M., Jedicke R., Beshore E. C., Bernardi F., Larson S., 2008, Icarus, 198, 284
de la Fuente Marcos C., de la Fuente Marcos R., 2020, MNRAS, 494, L6

Figure 5. Visible wavelength reflectance spectrum of ‘Aylón’/chaxnim. Taken with the LRIS instrument on Keck I on 2020 January 23, the spectrum of ‘Aylón’/chaxnim is plotted as blue dots with 1-σ uncertainty error bars. The spectrum has been normalised to unity at 550 nm indicated by the black cross. The spectrum was obtained by combining two spectra from the blue camera (blue data points) and the red camera (red data points). The data have been rebinned by a factor of 10 using an error-weighted mean. The dip at ~560 nm, spikes at ~770 nm and ~960 nm are artefacts caused by the dichroic and imperfect removal of telluric H₂O absorption features. The spectral range of S, V and C-type asteroids are over-plotted.

A kilometre sized asteroid inside Venus’ orbit

Bottke W. F., Morbidelli A., Jedicke R., Petit J.-M., Levison H. F., Michel P., Metcalfe T. S., 2002b, Icarus, 156, 399