INFINITE DIVISIBILITY OF RANDOM FIELDS ADMITTING AN INTEGRAL REPRESENTATION WITH AN INFINITELY DIVISIBLE INTEGRATOR

WOLFGANG KARCHER, HANS-PETER SCHEFFLER, AND EVGENY SPODAREV

ABSTRACT. Let Λ be an infinitely divisible random measure. We consider random fields of the form

$$X(t) = \int_{\mathbb{R}^d} f_t(x) \Lambda(dx), \quad t \in \mathbb{R}^q, \quad d, q \geq 1,$$

where $f_t : \mathbb{R}^d \to \mathbb{R}$ is Λ-integrable for all $t \in \mathbb{R}^d$. We show that X is an infinitely divisible random field, that is the law of the random vector $(X(t_1), ..., X(t_n))$ is an infinitely divisible probability measure on \mathbb{R}^n for all $t_1, ..., t_n \in \mathbb{R}^q$.

1. Preliminaries

We start with the definition of an infinitely divisible random measure (see [1], [2] and [3]). Following [1], let R be a Borel subset of \mathbb{R}^d, $\mathcal{B}(R)$ be the Borel sets contained in R, and \mathcal{S} be the δ-ring (a ring closed under countable intersections) of bounded subsets of R. Let $\Lambda = \{\Lambda(A), A \in \mathcal{S}\}$ be a stochastic process with the following three properties.

- Λ is independently scattered: If $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{S}$ is a sequence of disjoint sets, then the random variables $\Lambda(A_n)$, $n \in \mathbb{N}$, are independent.

- Λ is σ-additive: If $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{S}$ is a sequence of disjoint sets and $\bigcup A_n \in \mathcal{S}$, then

$$\Lambda\left(\bigcup A_n\right) = \sum_n \Lambda(A_n) \quad a.s.$$

Date: 7 October 2009.

Key words and phrases. random field, infinitely divisible.
\(\Lambda(A) \) is an infinitely divisible random variable for each \(A \in \mathcal{S} \), i.e. \(\Lambda(A) \) has the law of the sum of \(n \) independent identically distributed random variables for any \(n \geq 1 \).

Then \(\Lambda \) is called *infinitely divisible random measure*.

We now consider the cumulant function \(C_{\Lambda(A)}(t) = \ln(\mathbb{E}e^{it\Lambda(A)}) \) of \(\Lambda(A) \) for a set \(A \) in \(\mathcal{S} \) which is given by the Lévy-Khintchine representation

\[
C_{\Lambda(A)}(t) = ita(A) - \frac{1}{2}t^2b(A) + \int_{\mathbb{R}} \left(e^{itx} - 1 - it\tau(x) \right) F(dx, A),
\]

where \(a \) is a \(\sigma \)-additive set function on \(\mathcal{S} \), \(b \) is a measure on \(\mathcal{B}(\mathbb{R}) \), and \(F(dr, A) \) is a measure on \(\mathcal{B}(\mathbb{R}) \) for fixed \(dr \) and a Lévy measure on \(\mathcal{B}(\mathbb{R}) \) for each fixed \(A \in \mathcal{B}(\mathbb{R}) \), that is \(F(\{0\}, A) = 0 \) and \(\int_{\mathbb{R}} \min\{1, r^2\} F(dr, A) < \infty \), and \(\tau(r) = r\mathbb{1}_{[-1,1]}(r) \). \(F \) is a measure and referred to as the *generalized Lévy measure* and \((a, b, F) \) is called *characteristic triplet* (see [1], [2] and [3]).

Let \(|a| = a^+ + a^- \). The measure \(\lambda \) with

\[
\lambda(A) := |a|(A) + b(A) + \int_{\mathbb{R}} \min\{1, r^2\} F(dr, A), \quad A \in \mathcal{S},
\]

is called *control measure* of the infinitely divisible random measure \(\Lambda \).

Let \(f_t : \mathbb{R}^d \to \mathbb{R}, \ d \geq 1 \), be \(\Lambda \)-integrable for all \(t \in \mathbb{R}^q, \ q \geq 1 \), that is there exists a sequence of simple functions \(\{\tilde{f}_t^{(n)}\}_{n \in \mathbb{N}}, \tilde{f}_t^{(n)} : \mathbb{R}^d \to \mathbb{R} \) for all \(t \in \mathbb{R}^q \), such that

(a) \(\tilde{f}_t^{(n)} \to f_t \ \lambda - \text{a.e.} \),

(b) for every Borel set \(B \in \mathcal{B}(\mathbb{R}) \), the sequence \(\{\int_B \tilde{f}_t^{(n)}(x) \Lambda(dx)\}_{n \in \mathbb{N}} \) converges in probability.

For each \(t \in \mathbb{R}^q \), we define

\[
\int_{\mathbb{R}^d} f_t(x) \Lambda(dx) := \text{plim}_{n \to \infty} \int_{\mathbb{R}^d} \tilde{f}_t^{(n)}(x) \Lambda(dx),
\]

where plim means convergence in probability (see [1], [2] and [3]), and consider random fields of the form

\[
X(t) = \int_{\mathbb{R}^d} f_t(x) \Lambda(dx), \quad t \in \mathbb{R}^q.
\]
2. Main result

Theorem 2.1. The random field X is infinitely divisible, that is the law of the random vector $(X(t_1), ..., X(t_n))$ is an infinitely divisible probability measure on \mathbb{R}^n for all $t_1, ..., t_n \in \mathbb{R}^q$.

Proof. Let $\varphi_{(t_1, ..., t_n)}$ be the characteristic function of $(X(t_1), ..., X(t_n))$. It is enough to show that $\varphi_{(t_1, ..., t_n)}^\gamma$ is a characteristic function for all $\gamma > 0$, cf. [4].

Due to the linearity of the integral (1) and the fact that any linear combination of Λ-integrable functions is Λ-integrable (cf. [3], p. 81), we have

$$
\sum_{j=1}^n x_j X(t_j) = \int_{\mathbb{R}^d} \left(\sum_{j=1}^n x_j f_{t_j}(s) \right) \Lambda(ds)
$$

and the characteristic function $\varphi_{(t_1, ..., t_n)}$ is given by

$$
\varphi_{(t_1, ..., t_n)}(x) = \varphi_{\sum_{j=1}^n x_j X(t_j)}(1)
$$

$$
= \exp \left\{ i a \sum_{j=1}^n x_j f_{t_j} - \frac{1}{2} b \sum_{j=1}^n x_j f_{t_j} + \int_{\mathbb{R}^d} \int_{\mathbb{R}} c \sum_{j=1}^n x_j f_{t_j}(s, y) F(ds, dy) \right\},
$$

cf. [1], where

$$
a \sum_{j=1}^n x_j f_{t_j} = \int_{\mathbb{R}^d} \left(\sum_{j=1}^n x_j f_{t_j}(s) \right) a(ds),
$$

$$
b \sum_{j=1}^n x_j f_{t_j} = \int_{\mathbb{R}^d} \left(\sum_{j=1}^n x_j f_{t_j}(s) \right)^2 b(ds),
$$

$$
c \sum_{j=1}^n x_j f_{t_j}(s, y) = e^{i \sum_{j=1}^n x_j f_{t_j}(s)y} - 1 - i \sum_{j=1}^n x_j f_{t_j}(s)\tau(y).
$$

Let $\gamma > 0$. Then

$$
\varphi_{(t_1, ..., t_n)}^\gamma(x) = \exp \left\{ i \gamma a \sum_{j=1}^n x_j f_{t_j} - \frac{1}{2} \gamma b \sum_{j=1}^n x_j f_{t_j} + \int_{\mathbb{R}^d} \int_{\mathbb{R}} c \sum_{j=1}^n x_j f_{t_j}(s, y) \gamma F(ds, dy) \right\}
$$
with
\[
\gamma a \sum x_j f_{t_j} = \int_{\mathbb{R}^d} \left(\sum_{j=1}^n x_j f_{t_j}(s) \right) \gamma a(ds),
\]
\[
\gamma b \sum x_j f_{t_j} = \int_{\mathbb{R}^d} \left(\sum_{j=1}^n x_j f_{t_j}(s) \right)^2 \gamma b(ds).
\]

Since \(a^* := \gamma a \) is a \(\sigma \)-additive set function on \(\mathcal{S} \), \(b^* := \gamma b \) is a measure on \(\mathcal{B}(\mathbb{R}) \), and \(F^*(dr, A) := \gamma F(dr, A) \) is a measure on \(\mathcal{B}(\mathbb{R}) \) for fixed \(dr \) and a Lévy measure on \(\mathcal{B}(\mathbb{R}) \) for each fixed \(A \in \mathcal{B}(\mathbb{R}) \), there exists an infinitely divisible random measure \(\Lambda^* \) with characteristic triplet \((a^*, b^*, F^*) \), cf. Proposition 2.1.(b) in [2]. Therefore, \(\varphi_{\gamma}^{\gamma}(t_1, ..., t_n) \) is the characteristic function of \((Y(t_1), ..., Y(t_n)) \) with
\[
Y(t) = \int_{\mathbb{R}^d} f_t(x) \Lambda^*(dx).
\]

\[\square\]

References

[1] Hellmund, G., Prokešová, M. and Vedel Jensen, E. B., Lévy-based Cox point processes, *Adv. in Appl. Probab.*, 40(3): 603-629, 2008.

[2] Rajput, B. S. and Rosinski, J., Spectral Representations of Infinitely Divisible Processes, *Probab. Th. Rel. Fields*, 82: 451-487, 1989.

[3] Janicki, A. and Weron, A., Simulation and Chaotic Behavior of \(\alpha \)-Stable Stochastic Processes, *Marcel Dekker*, New York, 1994.

[4] Horn, R. A. and Steutel, F. W., On multivariate infinitely divisible distributions, *Stochastic Processes and Their Applications*, 6: 139-151, 1978.

Wolfgang Karcher, Ulm University, Institute of Stochastics, Helmholtzstr. 18, 89081 Ulm, Germany

E-mail address: wolfgang.karcher@uni-ulm.de

Hans-Peter Scheffler, University of Siegen, Fachbereich 6, Mathematik, Emmy-Noether-Campus, Walter-Flex-Str. 3, 57068 Siegen, Germany

E-mail address: scheffler@mathematik.uni-siegen.de

Evgeny Spodarev, Ulm University, Institute of Stochastics, Helmholtzstr. 18, 89081 Ulm, Germany

E-mail address: evgeny.spodarev@uni-ulm.de