Molecular Characteristics of *Klebsiella pneumoniae* Isolates From Outpatients in Sentinel Hospitals, Beijing, China, 2010–2019

Bing Lu¹, Changying Lin¹, Haican Liu², Xin Zhang¹, Yi Tian¹, Ying Huang¹, Hanqiu Yan¹, Mei Qu¹, Lei Jia¹ and Quanyi Wang¹*

¹Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China, ²State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

Background: *Klebsiella pneumoniae* is an opportunistic pathogen associated with community-acquired and nosocomial infections. Since 2010, *K. pneumoniae* testing has been included into an existing diarrhea-syndrome surveillance system for estimating the prevalence of *K. pneumoniae* in diarrhea-syndrome patients, assessing antibiotic susceptibility, and investigating molecular characteristics of *K. pneumoniae*.

Methods: *Klebsiella pneumoniae* strains were isolated from stool specimens from diarrhea-syndrome outpatients in Beijing, China. Isolates were tested for antibiotic susceptibility, and phylogenetic relationships were explored through whole genome sequence analysis. Multi-locus sequence type (MLST) alleles were extracted from the whole genome sequence (WGS) data. A maximum likelihood tree was generated by MEGAX. Genomes were annotated by Prokka; core genes were produced by Roary; a maximum likelihood phylogenetic tree was generated using FastTree.

Results: Forty-four *K. pneumoniae* strains were isolated from 2010 to July 2019; of these 37 were *K. pneumoniae* and seven were *K. variicola*. Antibiotic susceptibility testing showed that all 44 strains were sensitive to gentamicin, imipenem, amikacin, meropenem, kanamycin; 97.73% were sensitive to cefoxitin and lavo-ofloxacin; the highest antibiotic resistance rate was 79.55%, which was to ampicillin. We found three extended-spectrum beta-lactamase (ESBL) producing strains; we identified high-virulence ST types, including ST307 and ST65; and we found that ST23 has been the epidemic clone since 2010. MLST and core genome sequence analysis showed two distinct clusters of 44 *K. pneumoniae*; 40 alleles were identified in core genome sequence analysis, while 36 alleles were identified in MLST typing.

Conclusions: There is an urgent need for epidemiological and molecular studies to understand the dynamics of antibiotic resistance and virulence gene transmission to guide strategies for *K. pneumoniae* surveillance. WGS analysis provided high discrimination power and reliable and robust data useful for molecular epidemiology.

Keywords: *Klebsiella pneumoniae*, multi-locus sequencing type (MLST), whole genome sequencing (WGS), molecular typing, ESBL
BACKGROUND

Klebsiella pneumoniae is ubiquitous in the environment. *K. pneumoniae* is a Gram-negative opportunistic pathogen associated with community-acquired and nosocomial infections (Moradigaravand et al., 2017). Clinically, *K. pneumoniae* causes pneumoniae, abscesses, bacteremia, urinary tract infections (Podschun and Ullmann, 1998; Wyres and Holt, 2016), and occasionally, diarrhea (Moradigaravand et al., 2017). Nosocomial infections caused by *K. pneumoniae* impose an increasing risk of community infection.

Since 2010, *K. pneumoniae* testing has been included in an existing enteric pathogen surveillance system focused on diarrhea-syndrome outpatients of all ages in 245 sentinel hospitals of the 16 districts of Beijing (Lu et al., 2017). The aim of the system is to monitor the prevalence of *K. pneumoniae* in diarrhea-syndrome outpatients, assess antimicrobial resistance, and explore molecular characteristics of community-acquired *K. pneumoniae* infection strains.

METHODS

Identification of Bacterial Strains

From 2010 to July 2019, stool specimens collected from diarrhea-syndrome outpatients in sentinel hospitals were analyzed using a reverse transcription polymerase chain reaction (RT-PCR) for diarrhea-generating viruses (e.g., rotavirus, norovirus, and calicivirus) (Deng et al., 2012; Gao et al., 2012; Ying et al., 2017) and cultured for isolation of diarrhea-generating bacteria. Any isolated bacteria strains were further tested to identify the pathogens (e.g., *Salmonella*, *Shigella*, *Escherichia coli*, *Vibrio parahaemolyticus*, or *K. pneumoniae*) using Vitek2 Compact Instrument (bioMérieux; Marcy, France).

Isolated *K. pneumoniae* strains were tested for antibiotic susceptibility, deoxyribonucleic acid (DNA) extraction, whole-genome sequencing (WGS) analysis, and determination of their molecular characteristics.

Antimicrobial Resistance Testing

Antimicrobial resistance testing for *K. pneumoniae* strains was assessed using the minimal inhibitory concentration (MIC) method. MICs were interpreted in accordance with the Clinical and Laboratory Standards Institute (CLSI) document, M100-S29:2019. Twenty-seven antimicrobials obtained from Shanghai Xingbai Co. (AST Panel for Aerobic Gram Negative bacilli) were used for antimicrobial resistance testing: ampicillin, ampicillin-sulbactam, amoxicillin with clavulanate potassium, cephazoline, cefepime, cefotaxime, cefoxitin, ceftazidime, aztreonam, imipenem, meropenem, gentamicin, amikacin, kanamycin, azithromycin, tetracycline, minocycline, doxycycline, nalidixic acid, ciprofloxacin, levofloxacin, gemifloxacin, trimethoprim-sulphamethoxazole, sulfisoxazole, chloramphenicol, cefotaxime with clavulanate, and ceftazidime with clavulanate. *Escherichia coli* ATCC 25922 was used as a quality-control strain. MIC levels at 2 µg/mL or above for cefotaxime indicated a possible extended-spectrum beta-lactamase (ESBL)-producing strain, requiring further confirmation. MIC for ceftazidime combined with clavulanatede ceasing at least three two-fold concentrations compared with the MIC value for ceftazidime alone (e.g., ceftazidime MIC = 8 µg/mL; ceftazidime-clavulanate MIC = 1 µg/mL) confirmed an ESBL-producing strain.

DNA Extraction and WGS

DNA was extracted by QiAmp DNA Mini Kit (Qiagen, Hilden, Germany). Quantification of extracted genomic DNA (gDNA) was determined on a NanoDrop spectrophotometer, with verification by agarose gel electrophoresis and fluorometric analysis (Qubit2.0).

Multiplexed paired-end libraries (2 × 300 bp) were prepared for DNA sequencing using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB, USA). Sequences were determined on an Illumina PE150 platform with 100 × coverage at Beijing Novogene technology Co., Ltd.

Raw sequencing data were checked for quality, trimmed, and assembled *de novo* into contiguous segments using CLC Genomics Workbench version 10.1.1 (CLC, Bio-QIAGEN, Aarhus, Denmark) and SPAdes version 3.13 (Bankevich et al., 2012).

The WGS data were matched in the NCBI BLAST database to identify three distinct species of *K. pneumoniae* (*KpI*), *K. quasipneumoniae* (*KpII*), and *K. variicola* (*KpIII*) (Holt et al., 2015).

Plasmid, Antimicrobial Resistant Genes and Multi-Locus Sequence Type (MLST) Analysis

The genomic analysis was based on the Center for Genomic Epidemiology web server (https://cge.cbs.dtu.dk/services/cge/), in which web-based multi-locus sequence type (MLST) 2.0 (Larsen et al., 2012), ResFinder 3.2 (Zankari et al., 2012), and PlasmidFinder 2.1 (Carattoli et al., 2014) were used for cluster sequencing types, investigating antimicrobial resistant genes, and defining content of plasmid replicon types, respectively.

MLST analyses were performed using seven housekeeping genes (*gapA, infB, mdh, pgi, phoE, rpoB, and tonB*) to characterize diversity and epidemiology of *K. pneumoniae* isolates (Diancourt et al., 2005). WGS data were used to generate MLST assignments for each isolate; unknown STs were sent to the *Klebsiella pneumoniae* MLST database at the Pasteur Institute (https://bigd.pasteur.fr/klebsiella/klebsiella.html). Genotyping analysis was based on MLST sequences; maximum likelihood trees were generated by MEGA-X (Kumar et al., 2018).

Annotation and Core Genome Analysis

Genomes were annotated by Prokka, a tool for rapid prokaryotic genome annotation (Seemann, 2014). Phylogenetic analyses were produced by Roary, a tool that rapidly builds large-scale pan
TABLE 1 | Antibiotic susceptibility results for 44 K. pneumoniae strains.

Antibiotic	Resistant n	Intermediate n	Susceptible n
Penicillins			
Ampicillin	35	7	2
β-Lactam/β-lactamase inhibitor combinations			
Amoxicillin with clavulanate potassium	2	3	40
Ampicillin-sulbactam	4	2	28
Cephems			
Cephalozine	4	3	37
Cefepime	3	0	41
Cefotaxime	4	0	40
Cefoxitin	1	2	43
Ceftazidime	0	3	41
Monobactams			
Aztreonam	3	0	41
Carbapenems			
Imipenem	0	0	44
Meropenem	0	0	44
Aminoglycosides			
Gentamicin	0	0	44
Amikacin	0	0	44
Kanamycin	0	0	44
Macrolides			
Azithromycin	2	0	42
Tetracyclines			
Tetracycline	5	2	37
Minocycline	2	13	29
Doxycycline	3	4	37
Quinolons and fluoroquinolones			
Nalidixic acid	2	0	42
Ciprofloxacin	1	0	42
Lavo-floxacin	1	0	43
Gatifloxacin	2	1	41
Folate pathway inhibitors			
Trimethoprim-sulphamethoxazole	6	0	38
Sulfoxazole	6	0	38
Phenicols			
Chloramphenicol	4	1	39

Surveillance led to isolation of 1 to 11 K. pneumoniae strains each year, identifying 44 K. pneumoniae strains from 25,411 stool specimens in 10 years, the detection rate was 0.17% (44/25,411).

Antimicrobial Resistance

All 44 K. pneumoniae strains were sensitive to gentamicin, imipenem, amikacin, meropenem, kanamycin; 97.7% were sensitive to cefoxitin andlavo-oxloxac; 95.5% were sensitive to nalidixic acid, azithromycin, and ciprofloxacin; 79.6% of isolated K. pneumoniae strains manifested resistance to ampicillin, and 13.6% of isolated staphylococci showed resistance to sulfisoxazole, trimethoprim, and sulphamethoxydiazole (Table 1). Three K. pneumoniae strains were confirmed as ESBL-producing strains (Table 2).

WGS NCBI Blast Results

Forty-four K. pneumoniae strains were disambiguated into two species: 37 K. pneumoniae (KpI) strains and 7 K. variicola (KpIII) strains. Surveillance did not identify any K. quasipneumoniae (KpII) strains (Table 2).

MLST Results and MEGA Analysis

MLST of the 44 strains revealed 36 different sequence types (STs), including ST23, which has been detected five times in Beijing in the most recent 10 years, and ST4447, ST4448, ST4449, ST4450, ST4451, and ST4452, which were seen for the first time in the global database. The maximum likelihood tree identified 36 MLST alleles, and 44 strains were disambiguated into two clonal groups: Cluster M1 (containing 7 strains, K. variicola strains) and Cluster M2 (containing 37 strains, K. pneumoniae strains) (Figure 1).

Plasmid and Drug Resistance Genes Identification

ColRNAI, Col(MGD2), ColpVC, IncR, and IncQ2 plasmid replicons were identified, encompassing 40.9, 13.6, 2.3, 11.4, and 2.3% of the 44 strains, respectively. Among the resistance genes to Beta-lactams, Quinolone, Fosfomycin, Phenicol, Sulphonamide, Tetracycline, Trimethoprim, Macrolide, and Rifampicin, resistance genes Beta-lactam, Quinolone, and Fosfomycin were predominant. Among the resistance genes identified from 3 ESBL-producing strains, blaCTX-M-15 and blaTEM-1B were unique resistance genes to Beta-lactams (Table 2).
Strain ID	Isolation year	Species	MLST type	Plasmid replicon type	ESBL strain	Antibiotic resistance genes
BJ2010005-S1 2010	Klebsiella variicola	ST2362	ColRNAI	blaLEN13	oprA,oprB	fosA
BJ2011355-S2 2011	Klebsiella variicola	ST197		blaLEN16	oprA,oprB	fosA
BJ2011367-S32 2011	Klebsiella pneumoniae	ST23		blaSHV-36	oprA,oprB	fosA
BJ2011375-S36 2011	Klebsiella pneumoniae	ST2363	ColRNAI, ColpVC	blaSHV-1	oprA,oprB	fosA
BJ2012015-S3 2012	Klebsiella pneumoniae	ST23		blaSHV-36	oprA,oprB	fosA
BJ2012035-S4 2012	Klebsiella pneumoniae	ST2364		blaSHV-11	oprA,oprB	fosA
BJ2012036-S33 2012	Klebsiella pneumoniae	ST218		blaSHV-1	oprA,oprB	fosA
BJ2013059-S5 2013	Klebsiella pneumoniae	ST20	ColRNAI	blaSHV-83	oprA,oprB	fosA
BJ2013082-S34 2013	Klebsiella pneumoniae	ST412		blaSHV-11	oprA,oprB	fosA
BJ2013086-S7 2013	Klebsiella pneumoniae	ST1660		blaSHV-36	oprA,oprB	fosA
BJ2013261-S8 2013	Klebsiella pneumoniae	ST1310	ColRNAI, Col(MGD2)	blaSHV-1	oprA,oprB	fosA
BJ2014008-S21 2014	Klebsiella pneumoniae	ST23		blaSHV-36	oprA,oprB	fosA
BJ2014021-S10 2014	Klebsiella pneumoniae	ST65		blaSHV-11	oprA,oprB	fosA
BJ2014039-S57 2014	Klebsiella pneumoniae	ST2367	ColRNAI, Col(MGD2)	blaSHV-11	oprA,oprB	fosA
BJ2014085-S12 2014	Klebsiella pneumoniae	ST592	ColRNAI	blaSHV-26	oprA,oprB	fosA
BJ2014086-S13 2014	Klebsiella pneumoniae	ST34	ColRNAI	blaSHV-26	oprA,oprB	fosA
BJ2014087-S14 2014	Klebsiella pneumoniae	ST2369	ColRNAI, Col(MGD2)	blaSHV-1	oprA,oprB	fosA
BJ2014199-S15 2014	Klebsiella pneumoniae	ST17		blaSHV-11	oprA,oprB	fosA
BJ2014201-S35 2014	Klebsiella pneumoniae	ST2370	ColRNAI, IncR, aadA2, aph(3')-Ib	blaSHV-11	oprA,oprB	fosA, strA, sul1, tet(A), dfrA12, mph(A)
BJ2015035-S16 2015	Klebsiella pneumoniae	ST345		blaSHV-1	oprA,oprB	fosA
BJ2016012-S17 2016	Klebsiella pneumoniae	ST485		blaSHV-27	oprA,oprB	fosA
BJ2016022-S18 2016	Klebsiella pneumoniae	ST35	ColRNAI, Col(MGD2)	blaSHV-33	oprA,oprB	fosA
BJ2017019-S19 2017	Klebsiella variicola	ST4448		blaLEN13	oprA,oprB	fosA
BJ2017021-S20 2017	Klebsiella pneumoniae	ST23		blaSHV-36	oprA,oprB	fosA

(Continued)
Strain ID	Isolation year	Species	MLST type	Plasmid replicon type	ESBL strain	Antibiotic resistance genes
BJ2018022-S9	2018	Klebsiella pneumoniae	ST307	ColRNAI	Yes	aac(6′)-Ib-cr, aph(3′)-Ib, aph(6)-Ib-Id, blaCTX-M-15, aac(6)-Ib-cr, oqxA, oqxB, qnrB1
BJ2018060-S11	2018	Klebsiella variicola	ST4447			
BJ2018062-S23	2018	Klebsiella pneumoniae	ST1307	IncR, Col(MGD2)		aac(3)-Iv, aph(6)-Ib-cr, aadA1, aadA2, aph(4)-Ia, blaDHA-1, aac(6)-Ib-cr, aadA1, oqxA, oqxB, fosA, sul2, tet(A), dfrA14
BJ2018066-S24	2018	Klebsiella pneumoniae	ST4449			
BJ2018083-S25	2018	Klebsiella pneumoniae	ST3277			
BJ2018090-S26	2018	Klebsiella variicola	ST360			
BJ2018100-S27	2018	Klebsiella variicola	ST4450			
BJ2018102-S28	2018	Klebsiella pneumoniae	ST309			
BJ2018103-S29	2018	Klebsiella variicola	ST4451			
BJ2018104-S30	2018	Klebsiella pneumoniae	ST4452	ColRNAI	Yes	aac(6)-Ib-cr, aph(3)-Ib, aph(6)-Ib-Id, blaCTX-M-15, aac(6)-Ib-cr, oqxA, oqxB, qnrB1
BJ2018114-S31	2018	Klebsiella pneumoniae	ST36	ColRNAI, IncR, Col(MGD2)		aac(6)-Ib-cr, aph(3)-Ib, aph(6)-Ib-Id, blaCTX-M-15, aac(6)-Ib-cr, oqxA, oqxB, qnrB1
BJ2018005-S58	2019	Klebsiella pneumoniae	ST564			
BJ2018024-S59	2019	Klebsiella pneumoniae	ST742			
BJ2019046-S95	2019	Klebsiella pneumoniae	ST101	ColRNAI, IncR		
BJ2019047-S96	2019	Klebsiella pneumoniae	ST39	ColRNAI, IncQ2		
BJ2019059-S97	2019	Klebsiella pneumoniae	ST412			
BJ2019060-S98	2019	Klebsiella pneumoniae	ST1537			
BJ2019061-S99	2019	Klebsiella pneumoniae	ST17	ColRNAI	Yes	aac(6′)-Ib-cr, aph(3′)-Ib, aph(6)-Ib-Id, blaCTX-M-15, aac(6)-Ib-cr, oqxA, oqxB, qnrB1, catB3, sul2, tet(A), dfrA14
BJ2019062-S100	2019	Klebsiella pneumoniae	ST23			
BJ2019070-S103	2019	Klebsiella pneumoniae	ST584	IncR		

TABLE 2 | Continued
FIGURE 1 | Molecular phylogenetic analysis by maximum likelihood method based on MLST sequences of 44 K. pneumoniae strains.
Core Genome Analysis

The whole genome sequence of the 44 strains identified 3,428 core genes. In maximum-likelihood phylogenies trees, these core genome sequences showed 40 allele differences that grouped into two distinct clusters: cluster C1 (containing 7 K. varricola strains), and cluster C2 (containing 37 K. pneumoniae strains) (Figure 2).

DISCUSSION

K. pneumoniae has been reported to be a leading cause of hospital associated infections and a common cause of community-acquired infections in many countries (Pendleton et al., 2013; Moradigaravand et al., 2017; Musicha et al., 2017). Beijing outpatient-based diarrhea-syndromes surveillance detected K. pneumoniae every year since 2010 demonstrating the existence of community-acquired infection caused by K. pneumoniae. Detection of five ST23 strains from 2010 to 2019 further demonstrated that the ST23 strain has persisted in Beijing throughout these years. Our results should alert public health officials since ST23 of K. pneumoniae has well-known virulence and is able to cause severe disease in otherwise healthy individuals (Turton et al., 2007; Brisse et al., 2009; Holt et al., 2015). It typically carries all four acquired siderophore systems as well as rmpA (Brisse et al., 2009). K. pneumoniae ST23 is the most predominant sequence type causing invasive community-acquired infections in Asia (Chung et al., 2012). Surveillance also detected an ST65 strain, which carries colibactin and rmpA (Brisse et al., 2009), and which is associated with lethal infections in humans and marine mammals (Liao et al., 2014).

The three community-acquired K. pneumoniae ESBL-producing strains (ST307, ST4452, and ST17) that were identified in the most recent 2-years period provide a significant signal of drug resistance in the population. All three ESBLs producing strains harbor blaCTX-M-15 and blaTEM-1B antibiotic resistance genes. CTX-M-15 belonged to the CTX-M-1 group, and is widespread in east Asia (Bonnet, 2004). The blaCTX-M was first reported in 1990 in a cefotaxime resistant E. coli strain isolated from the fecal flora of a laboratory dog (Bauernfeind et al., 1990). Since then, the CTX-M enzymes have formed a rapidly growing family of ESBLs distributed over wide geographic areas and among a wide range of clinical bacteria, particularly among members of the Enterobacteriaceae family (Bonnet, 2004). Outbreaks have been described in several countries (Yan et al., 2000; Baraniak et al., 2002). Since 1999, CTX-M has been reported to have become the most frequent ESBL in the Enterobacteriaceae in China (Chanawong et al., 2002; Xiong et al., 2002; Wang et al., 2003). Notably, the K. pneumoniae ST307 ESBL-producing strain has a novel lineage with potential to become an epidemic or “high-risk” clone. It has been recognized as a candidate for becoming one of the most clinically-relevant clones since its worldwide emergence during recent years (Villa et al., 2017). The ST307 lineage displays an association with CTX-M-15- and Carbapenemase (KPC)-producing encoding plasmids (Villa et al., 2017). The K. pneumoniae ST307 detected in our study did not harbor the blaKPC gene, but KPC producing factor could be acquired through horizontal plasmids transfer. The ability of this clone...
lineage to acquire novel genetic features may contribute to its increased persistence in the environment and highlights its potential public health threat of dramatically disseminated multiple drug resistance among bacteria.

MLST and core genomes sequences consistently differentiated 44 K. pneumoniae into 7 V. parvicola strains and 37 K. pneumoniae strains. However, the core genome sequences increase discriminatory power for bacterial pathogen subtyping. For example, BJ2013086-S7 strain is very close to BJ2014039-S57 in an MLST molecular phylogenetic tree (see Figure 1), however, BJ2013086-S7 was separated from BJ2014039-S57 in the phylogenetic tree generated by the core genome, and was closer to ST23 strain. Similar distinction was made for BJ2013261-S8 and BJ2019005-S58 stains, BJ2019059-S97 and BJ2013082-S34, and BJ2019061-S99 and BJ2014199-S15. Since WGS consists of sequencing chromosome information, both inherited from ancestors and their mutations, in theory, this powerful tool can deduce the chains of potential cross transmission of K. pneumoniae infection (Croucher and Didelot, 2015) and facilitate study of the population structure and pathogen evolution (Bialek-Davenet et al., 2014; Struve et al., 2015; Zhou et al., 2017).

However, its discriminatory power relies on reliable, and robust, and long-term WGS data from different geographic areas. It will be valuable to establish a K. pneumoniae identification network for information sharing.

This study suffers two main limitations. First, the sentinel surveillance could have underestimated the prevalence of K. pneumoniae in diarrhea-syndrome outpatients since K. pneumoniae is one of the most prevalent causative-pathogen. Second, lack of comparison with molecular characteristics of hospital-acquired K. pneumoniae infection strains encourages more effort should be made to provide complete molecular spectrum in future studies.

CONCLUSIONS

Outpatient-based diarrhea-syndrome surveillance in Beijing China identified 3 ESBLs-producing strains in 2018 and 2019 that had not been detected previously. We identified high virulence ST types, such as ST307 and ST65, and we showed that ST23 has been the epidemic clone since 2010. There is an urgent need for epidemiological and molecular studies to understand the dynamics of antibiotic resistance and virulence gene transmission to guide strategies for K. pneumoniae surveillance. WGS analysis provides high discrimination power, and reliable and robust data for molecular epidemiology.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

ETHICS STATEMENT

The study was approved by the Ethics Committee of the Beijing Center for Disease Prevention and Control.

AUTHOR CONTRIBUTIONS

BL participated in data analysis and drafted the manuscript. CL and HL managed the bio information analysis. HY carried out the molecular genetic studies. HY and YT managed the strains and data collection. MQ and QW participated in the design of the study. All authors read and approved the final manuscript.

FUNDING

This work was supported by National Science and Technology Support Projects for the Thirteenth Five-Year Plan for Infectious Diseases of China (2018ZX10714002-003-002).

ACKNOWLEDGMENTS

We thank the team of curators of the Institute Pasteur MLST and whole genome MLST databases for curating the data and making them publicly available at http://bigsdb.pasteur.fr/. We thank the epidemiological investigation teams of all 16 districts in Beijing, China.

REFERENCES

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 19, 455–477. doi: 10.1089/cmb.2012.0021

Baraniak, A., Fiett, J., Sulikowska, A., Hryniewicz, W., and Gniadkowski, M. (2002). Countrywide spread of CTX-M-3 extended-spectrum beta-lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. *Antimicrob. Agents Chemother.* 46, 151–159. doi: 10.1128/aac.46.1.151-159.2002

Bauerfeind, A., Grimm, H., and Schweiggart, S. (1990). A new plasmidic cefotaximase in a clinical isolate of *Escherichia coli*. *Infection* 18, 294–298. doi: 10.1007/bf01647010

Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Jones, L., Delannoy-Vieillard, A. S., et al. (2014). Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. *Emerg. Infect. Dis.* 20, 1812–1820. doi: 10.3201/eid2011.140206

Bonnet, R. (2004). Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. *Antimicrob. Agents Chemother.* 48, 1–14. doi: 10.1128/aac.48.1.1-14.2004

Brisse, S., Fevre, C., Passet, V., Issenhuth-Jeanjean, S., Tournebize, R., Diancourt, L., et al. (2009). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. *PLoS ONE* 4:e4982. doi: 10.1371/journal.pone.0004982

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., et al. (2014). In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. *Antimicrob. Agents Chemother.* 58, 3895–3903. doi: 10.1128/AAC.02412-14

Chanawong, A., M’Zali, F. H., Heritage, J., Xiong, J. H., and Hawkey, P. M. (2002). Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among...
