ANDRESSA BOLSONI LOPES

EFEITOS DO ÁCIDO PALMITOLEICO NA CAPTAÇÃO E METABOLISMO DE GLICOSE E TRIACILGLICEROL EM ADIPÓCITOS BRANCOS

Tese apresentada ao Programa de Pós-Graduação em Fisiologia Humana do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências.

São Paulo
2014
ANDRESSA BOLSONI LOPES

EFEITOS DO ÁCIDO PALMITOLEICO NA CAPTAÇÃO E METABOLISMO DE GLICOSE E TRIACILGLICEROL EM ADIPOCITOS BRANCOS

Tese apresentada ao Programa de Pós-Graduação em Fisiologia Humana do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências.

Área de Concentração: Fisiologia Humana

Orientador: Prof. Dr. Fábio Bessa Lima
Coorientadora: Profa. Dra. Maria Isabel C. Alonso Vale

Versão original

São Paulo
2014
Lopes, Andressa Bolsoni. Efeitos do ácido palmitoleico na captação e metabolismo de glicose e triacilglicerol em adipócitos brancos / Andressa Bolsoni Lopes. -- São Paulo, 2014.

Orientador: Prof. Dr. Fabio Bessa Lima.

Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Fisiologia e Biofísica. Área de concentração: Fisiologia Humana. Linha de pesquisa: Ácidos graxos e o metabolismo do tecido adiposo.

Versão do título para o inglês: Effects of palmitoleic acid on the uptake and metabolism of glucose and triacylglycerol in white adipocytes.

1. Ácido palmitoleico 2. Tecido adiposo 3. Metabolismo 4. Lipólise 5. Lipogênese 6. Captação de glicose I. Lima, Prof. Dr. Fabio Bessa II. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação em Fisiologia Humana III. Título.

ICB/SBiB088/2014
Candidato(a): Andressa Bolsoni Lopes.

Título da Tese: Efeitos do ácido palmitoleico na captação e metabolismo de glicose e triacilglicerol em adipócitos brancos.

Orientador(a): Prof. Dr. Fabio Bessa Lima.

A Comissão Julgadora dos trabalhos de Defesa da Tese de Doutorado, em sessão pública realizada a/........../..........., considerou

() Aprovado(a) () Reprovado(a)

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Presidente: Assinatura: ..
Nome: ..
Instituição: ..
DECLARAÇÃO

Em adendo ao Certificado 98/10/CEUA, datado de 29.09.10 e por solicitação do Prof. Dr. Rui CURI, responsável pela linha de Pesquisa, autorizo a inclusão da aluna Andressa Bolsoni Lopes, ao Projeto de Pesquisa “Controle da expressão gênica por receptores nucleares”, uma vez que se trata de utilização da mesma espécie animal e de métodos experimentais similares ao Projeto.

São Paulo, 25 de abril de 2012.

Prof. Dr. Wothan Tavares de Lima
Coordenador da CEUA
ICB/USP
Dedico este trabalho aos meus pais, Edesio e Angela Maria, e ao William pelo suporte e apoio incondicional oferecido durante a realização deste trabalho.
AGRADECIMENTOS

Aos meus pais, Edesio e Angela Maria, aos meus irmãos Anderson e Caroline e à minha madrinha Glória, por todo suporte e carinho oferecidos durante todos os momentos da minha vida. Meu alicerce.

Ao meu querido William, pela presença e amor. Tudo ficou melhor desde que ele chegou.

Aos amigos, Amanda, Ariclecio, Arnaldo, Felipe, Leonardo, Patricia e Talita, por tornar meus dias mais agradáveis e os problemas mais leves. De fato, são pessoas diferenciadas.

À minha coorientadora e amiga Maria Isabel C. Alonso Vale, pelo auxílio imprescindível na idealização e confiança no desenvolvimento deste seu projeto de pesquisa, pelos ensinamentos, conselhos e carinho.

Ao professor Rui Curi, por ter me recebido na USP e me dado a oportunidade de desenvolver este projeto, também por todos os ensinamentos e suporte. Aos técnicos (Gilson, Roberto e Tatiana) e colegas de laboratório, em especial ao Jean, pela ajuda oferecida.

Ao professor Fábio Bessa Lima, pela orientação e confiança.

Ao professor William Festuccia, pela importante colaboração neste projeto.

À Paula, Maysa e Roberta, sempre dispostas a ajudar.

À professora Sayuri Miyamoto e à doutoranda Priscilla Derogis, pela ajuda na elaboração de resultados.

À professora Hei Sook Sul (Universidade da Califórnia - Berkeley), pela oportunidade de estágio em seu laboratório.

À minha orientadora de mestrado prof. Glauzia R. Abreu, à prof. Sonia A. Gouvêa, à amiga Mariana e colegas de laboratório da UFES, pela ajuda no período de transição entre UFES e USP.

Aos professores e funcionários do Instituto de Ciências Biomédicas, que sempre estavam dispostos a ajudar.

À FAPESP (proc. 2009/53954-1 e proc. 2012/05179-6), pelo auxílio financeiro concedido no formato de bolsa de estudo no Brasil e no exterior (BEPE).
RESUMO

Bolsoni-Lopes A. Efeitos do ácido palmitoleico na captação e metabolismo de glicose e triacilglicerol em adipócitos brancos. [tese (Doutorado em Fisiologia Humana)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2014.

Neste trabalho nós testamos a hipótese que o ácido palmitoleico, um ácido graxo que aumenta a captação de glicose e sensibilidade à insulina no músculo esquelético e fígado e suprime a estatose hepática, modula o metabolismo de glicose e triacilglicerol (TAG) em adipócitos brancos. Para isso, células 3T3-L1 diferenciadas, tratadas com ácido palmitoleico (16:1n7, 200 µM) ou ácido palmitico (16:0, 200 µM) por 24h e adipócitos primários epididimais de camundongos C57BL6 selvagens ou deficientes para PPARα, tratados com 16:1n7 (300 mg/kg/dia) ou ácido oleico (18:1n9, 300 mg/kg/dia), via gavagem durante 10 dias, foram avaliados quanto a captação de glicose e a sua oxidação, conversão em lactato e incorporação em ácidos graxos e glicerol de TAG, bem como, a incorporação de acetato em ácidos graxos, lipólise, síntese de TAG e expressão gênica e proteica de proteínas reguladoras das vias estudadas. Nossos resultados demonstram que o tratamento com 16:1n7, mas não com 18:1n9 (in vivo) ou 16:0 (in vitro), aumenta a captação de glicose basal e estimulada por insulina e o conteúdo de GLUT4 e phosphoThr172AMPKα, sem afetar o GLUT1 ou phosphoSer473AKT. Tal aumento de GLUT4 induzido por 16:1n7 foi abolido pela inibição farmacológica da AMPK. Além disso, o 16:1n7 aumenta a conversão de glicose em lactato e CO2 (oxidação de glicose) e diminui a síntese de novo de ácidos graxos in vitro. Corroborando com esses achados, a atividade das enzimas glicose-6-fosfato desidrogenase e ATP citrato liase também foram reduzidas pelo tratamento de células 3T3-L1 com 16:1n7. Ainda, o tratamento de células 3T3-L1 com 16:1n7, mas não com 16:0, aumentou a lipólise basal e estimulada por isoproterenol, os níveis de mRNA da lipase de triglicerídeos do adipócito (ATGL) e lipase hormônio sensível (HSL), além do conteúdo proteico da ATGL e phosphoSer660HSL. O aumento na lipólise induzido por 16:1n7, que pode ser abolido através da inibição farmacológica de PPARα, foi associado a maior atividade transcrisional de PPARα in vitro. Ademais, 16:1n7 e 16:0 aumentaram a incorporação de ácidos graxos em TAG e a síntese de glicerol 3-fosfato a partir da glicose, sem modificar a gliceroneogênese e a expressão da glicerocinase. Corroborando com os resultados in vitro, o tratamento de camundongos selvagens, mas não os deficientes em PPARα, com 16:1n7 aumentou a lipólise basal e estimulada e os níveis de mRNA da ATGL e HSL em adipócitos epididimais. Em contraste com a lipólise in vivo, o tratamento com 16:1n7 aumentou a incorporação de ácidos graxos em TAG e a síntese de glicerol 3-fosfato a partir da glicose, tanto em camundongos selvagens quanto em deficientes para PPARα. Em resumo, o ácido palmitoleico aumenta a captação de glicose e sua utilização pelos adipócitos brancos, um efeito que está associado com o aumento da expressão de GLUT4 e ativação da AMPK. Além disso, este ácido aumenta a lipólise e lipases em adipócitos por um mecanismo dependente de PPARα.

Palavras-chave: Metabolismo de glicose. Lipogênese. Lipólise. Ácidos graxos.
Herein we investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates glucose and triacylglycerol (TAG) metabolism in white adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 µM) or palmitic acid (16:0, 200 µM) for 24h and primary epididimal adipocytes from wild type or PPARα knockout mice treated with 16:1n7 (300 mg/kg/day) or oleic acid (18:1n9, 300 mg/kg/day) by gavage for 10 days were evaluated for glucose uptake and its oxidation, conversion into lactate and incorporation into fatty acids and glycerol of TAG, as well as, incorporation of acetate into fatty acids, lipolysis, TAG synthesis and gene and protein expression profile. Our results demonstrate that treatment with 16:1n7, but not 18:1n9 (in vivo) or 16:0 (in vitro) acids, increases both basal and in sulin-stimulated glucose uptake and the content of GLUT4 and phosphoThr172AMPKα, without affecting GLUT1 or phosphoSer473AKT. Such increase in GLUT4 induced by 16:1n7 was prevented by pharmacological inhibition of AMPK. In addition, 16:1n7 increases glucose conversion into lactate and CO₂ (glucose oxidation), and decreases de novo fatty acids synthesis in vitro. Corroborating these findings, the activity of glucose-6-phosphate dehydrogenase and ATP-citrate liase enzymes were also decreased by treatment of 3T3-L1 cells with 16:1n7. Furthermore, treatment of 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) and protein content of ATGL and phosphoSer660HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA in vitro. In addition, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose, without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild type, but not PPARα deficient mice with 16:1n7 increased epididimal adipocytes basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis in vivo, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild type and PPARα deficient mice. In conclusion, palmitoleic acid increases glucose uptake and utilization by white adipocytes, an effect that was associated with increase of GLUT4 expression and AMPK activation. Furthermore, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα.

Keywords: Glucose metabolism. Lipogenesis. Lipolysis. Fatty acids.
LISTA DE FIGURAS

Figura 1 - AcilCoA e glicerol 3-fosfato formam triacilglicerol... 20

Figura 2 - Transporte de AcetilCoA para o citosol... 23

Figura 3 - Síntese de novo de ácidos graxos... 24

Figura 4 - Hidrólise do triacilglicerol... 26

Figura 5 - Lipólise não estimulada (basal) e estimulada.. 27

Figura 6 - A lipólise mediada pela enzima ATGL é necessária para sinalização de PPAR e fosforilação oxidativa.. 35

Figura 7 - A - Captação de glicose basal e estimulada com insulina; B - Níveis de RNA mensageiro do transportador de glicose 4 (GLUT4) em adipócitos primários epididimais provenientes de camundongos selvagens tratados, por 10 dias, com gavagens diárias de água (H₂O), ácido oleico (18:1n9, 300 mg/Kg/dia) ou ácido palmitoleico (16:1n7, 300 mg/Kg/dia) (n = 5-6)................... 53

Figura 8 - A e B - Teste de viabilidade; C e D - Teste de fragmentação em células 3T3-L1, 7 dias após diferenciação, tratadas com diferentes concentrações de ácido palmitoleico ou palmitico diluídos em etanol por 24 horas (n = 5).. 54

Figura 9 - A - Captação de glicose; B - Níveis de RNA mensageiro do transportador de glicose 4 (GLUT4); C - Conteúdo proteico de GLUT4, D - GLUT1, E - AKT fosforilada em Serina 473 e F - AMPKα fosforilada em Treonina 172 em células 3T3-L1 tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) em condição basal e estimulada com insulina. G - Conteúdo proteico de GLUT4 em células 3T3-L1 tratadas por 24 horas com veículo, Compound C (Comp.C, 20 µM), ácido palmitoleico (16:1n7, 200 µM) ou Compound C associado com ácido palmitoleico (Comp.C+16:1n7) (n = 3-8).. 57

Figura 10 - A - Conversão de glicose em lactato; B - Oxidação de glicose em CO₂; C - Incorporação de glicose em glicerol-TAG basal e estimulada com insulina, em células 3T3-L1 diferenciadas, tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-10).. 59

Figura 11 - A - Incorporação de acetato em ácidos graxos basal e estimulada com insulina; B - Incorporação de glicose em ácidos graxos-TAG basal e estimulada com insulina; C - Atividade enzimática máxima da ATP-citrat tria liase (ACL); D - Atividade enzimática máxima da Ácido Graxo Sintase (FAS); E - Atividade enzimática máxima da Glicose-6-Fosfato Desidrogenase (G6PDH) em células 3T3-L1 diferenciadas, tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-8)........ 61
Figura 12 - A - Lipólise basal; B - Lipólise estimulada com isoproterenol; C - Níveis de RNA mensageiro da lipase de triglicerídeos do adipócito (ATGL), D - lipase hormônio sensível (HSL), E - lipase de monoglicerídeos (MGL), F - CGI-58, G - Perilipina A e H - G0S2; I - Conteúdo proteico da ATGL, J - HSL e K - HSL fosforilada em Serina 660 em células 3T3-L1 diferenciadas tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM), ácido palmitoleico (16:1n7, 200 µM) ou sua associação (16:0, 100 µM + 16:1n7, 100 µM) (n = 4-9).

Figura 13 - A - Lipólise basal; B - Lipólise estimulada por isoproterenol em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARy (GW9662, 10 µM - DMSO) (n = 7-10).

Figura 14 - A - Lipólise basal; B - Lipólise estimulada por isoproterenol em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARα (GW6471, 10 µM). C - Atividade transcricional de PPARα a partir de extratos nucleares de células 3T3-L1 tratadas durante 12 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-7).

Figura 15 - A - Incorporação de palmitato em TAG basal; B - Incorporação de glicose em glicerol-TAG basal; C - Incorporação de piruvato em glicerol-TAG basal; D - Níveis de RNA mensageiro da fosfoenolpiruvato carboxiquinase (PEPCK) e E - gliceroquinase (GyK) em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo, ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARα (GW6471, 10 µM) (n = 6-8).

Figura 16 - A - Lipólise basal; B - Lipólise estimulada com isoproterenol em adipócitos primários epididimais provenientes de camundongos selvagens tratados, por 10 dias, com gavagens diárias de água (H2O), ácido oleico (18:1n9, 300 mg/Kg/dia) ou ácido palmitoleico (16:1n7, 300 mg/kg/dia) (n = 5-12).

Figura 17 - A - Lipólise basal; B - Lipólise estimulada com isoproterenol, C - Níveis de RNA mensageiro da lipase de triglicerídeos do adipócito (ATGL) e D - lipase hormônio sensível (HSL) de camundongos selvagens (WT) e PPARα knock out (KO) tratados, por 10 dias, com gavagens diárias de água (H2O) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 9-11).

Figura 18 - A - Incorporação de ácidos graxos (palmitato) em TAG basal; B - Incorporação de glicose em glicerol-TAG basal de camundongos selvagens (WT) e PPARα knock out (KO) tratados, por 10 dias, com gavagens diárias de água (H2O), ácido oleico (18:1n9, 300 mg/kg) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 5-8).
LISTA DE TABELAS

Tabela 1 - Sequências *sense* e *antisense* dos *primers* utilizados no PCR tempo-real.

Tabela 2 - Peso corporal e dos órgãos, ingestão alimentar e análise bioquímica plasmática de camundongos selvagens (WT) tratados, por 10 dias, com gavagens diárías de água (H₂O), ácido oleico (18:1n9, 300 mg/kg) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 4-5).

Tabela 3 - Perfil lipídico e conteúdo de ácido palmitico (16:0), palmitoleico (16:1n7), esteárico (18:0), oleico (18:1n9) e vacênico (18:1n7) em células 3T3-L1 diferenciadas tratadas por 24 h com veículo (etanol), ácido palmítico (16:0, 200 µM) ou palmitoleico (16:1n7, 200 µM) (n = 4-5).

Tabela 4 - Peso corporal e dos órgãos, ingestão alimentar e análise bioquímica plasmática de camundongos selvagens (WT) e PPARα knockout (KO) tratados, por 10 dias, com gavagens diárías de água (H₂O) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 4-7).
SUMÁRIO

1 INTRODUÇÃO ... 14
2 REVISÃO DE LITERATURA ... 17
 2.1 O Tecido Adiposo .. 17
 2.2 O Metabolismo do Tecido Adiposo Branco .. 19
 2.2.1 Lipogênese ... 19
 2.2.1.1 A biossíntese de TAG .. 19
 2.2.1.2 Substratos para biossíntese do TAG ... 21
 2.2.1.3 Captação de ácidos graxos pelos adipócitos ... 21
 2.2.1.4 Síntese De Novo de Ácidos Graxos ... 22
 2.2.1.5 Captação de glicose pelos adipócitos ... 24
 2.2.2 Lipólise ... 26
 2.2.2.1 A Lipase de triglicerídeos do Adipócito (ATGL) e sua regulação ... 29
 2.2.2.2 A Lipase Hormônio Sensível (HSL) e sua regulação ... 31
 2.2.2.3 A Lipase de Monoglicerídeos (MGL) ... 32
 2.3 Proteína Quinase Ativada por AMP (AMPK) ... 32
 2.4 Receptores Ativadores da Proliferação de Peroxisoma (PPARS) e o Tecido Adiposo 33
 2.5 Efeitos do Ácido Graxo Palmítico, Ácido Oleico e Ácido Palmitoleico no Controle do Metabolismo Corporal .. 35
3 OBJETIVOS .. 37
 3.1 Objetivos Específicos ... 37
4 MATERIAIS E MÉTODOS ... 38
 4.1 Cultura Celular ... 38
 4.2 Viabilidade Celular .. 38
 4.3 Determinação do Perfil Lipídico dos Adipócitos por Cromatografia Gasosa ... 39
 4.4 Modelo Animal ... 40
 4.4.1 Desenho experimental ... 40
 4.5 Sacrífício dos Animais e Coleta de Sangue e Tecidos .. 41
 4.6 Análise Bioquímica do Plasma ... 41
 4.7 Isolamento e Análise Morfométrica dos Adipócitos .. 41
4.8 Medida da Captação de $[^3]$H-2-Deoxi D-Glicose por Adipócitos 42
4.9 Medida da Conversão de Glicose em Lactato ... 43
4.10 Medida da Oxidação e Incorporação de D-[U-14C]-Glicose em TAG............... 43
4.10.1 Medida da Incorporação de D-[U-14C]-Glicose em Ácidos Graxos 44
4.10.2 Medida de Incorporação de D-[U-14C]-Glicose em Glicerol 44
4.11 Medida da Incorporação de [1-14C]-Piruvato em Glicerol de TAG 45
4.12 Medida da Incorporação de [1-14C]-Acetato em Ácidos Graxos 45
4.13 Determinação da Atividade de Enzimas Lipogênicas .. 45
4.13.1 Atividade Máxima da Enzima Glicose-6-fosfato-desidrogenase (G6PDH) .. 46
4.13.2 Atividade Máxima da Enzima Ácido Graxo Sintase (FAS) 46
4.13.3 Atividade Máxima da Enzima ATP-citrato Liasse (ACL) 46
4.14 Teste de Incorporação de [U-14C]-Palmitato em TAG .. 46
4.15 Lipólise .. 47
4.16 Medida dos Níveis de mRNA em Tempo Real pela Reação em Cadeia da Polimerase (PCR) .. 48
4.17 Determinação do Conteúdo de Proteínas por Western Blotting 49
4.18 Atividade Transcricional de PPARalfa ... 50
4.19 Análise Estatística .. 51
5 RESULTADOS .. 52
5.1 Estudo I: Efeitos do ácido palmitoleico na captação e utilização de glicose em adipócitos brancos .. 52
5.2 Estudo II: Efeitos do ácido palmitoleico no metabolismo de TAG em adipócitos brancos ... 62
6 DISCUSSÃO .. 72
7 CONCLUSÃO .. 80
REFERÊNCIAS .. 81
APÊNDICE A - Bolsoni-Lopes et al. Am J Physiol Endocrinol Metab. 2013 Nov 1;305(9):E1093-102.. 95
APÊNDICE B - Tang et al. Cell Metabolism. 2013 Dec 3;18(6):883-95............. 105
APÊNDICE C - Bolsoni-Lopes et al. Am J Physiol Endocrinol Metab (submetido 04/06/2014) ... 119
1 INTRODUÇÃO

O ácido palmitoleico ou ácido delta-9-cis-hexadecenoico é um ácido graxo monoinsaturado ômega 7 de dezesseis carbonos (16:1n7) sintetizado endogenamente em células como adipócitos e hepatócitos como resultado da dessaturação do ácido palmítico (16:0), processo catalisado pela enzima estearoil-CoA-desaturase 1 (SCD-1). Dessa forma, este ácido graxo é tido como um marcador da síntese de novo de ácidos graxos (1). Além da síntese endógena, o ácido palmitoleico também pode ser encontrado principalmente no óleo de semente de macadâmia (cerca de 30% do total de lipídeos) e na polpa de espinheiro-marítimo (Hippophae rhamnoides, entre 20 e 30%) (2).

Este ácido graxo é facilmente encontrado no plasma e tecido adiposo branco (TAB) de mamíferos e, apesar de praticamente ausente em pré-adipócitos, sua concentração aumenta acentuadamente durante a adipogênese, tornando-se o quarto ou quinto ácido graxo mais abundante que compõe os triacilgliceróis (TAG) de adipócitos humanos (variando conforme o depósito de TAB estudado) (3-5) e o mais abundante nos TAG de células 3T3-L1 (6, 7). Além disso, o ácido palmitoleico ocupa principalmente a posição sn2 da molécula de TAG (8, 9).

Ácidos graxos são importantes moléculas sinalizadoras celular, capazes de modular o metabolismo das células e tecidos por mecanismos distintos, que favorecem ou previnem o desenvolvimento de doenças como o diabetes tipo II, aterosclerose e obesidade (10-13). Em sua estrutura, o tamanho da cadeia carbônica e o número/posição das duplas ligações determinam suas propriedades físicas e químicas, conferindo a cada um deles funções biológicas únicas (14). Neste contexto, o ácido palmitoleico foi recentemente descrito como um hormônio lipídico, denominado lipocina, que é sintetizado e secretado por adipócitos e atua em órgãos alvos distantes modulando importantes processos metabólicos e inflamatórios de tecidos corporais como o músculo, fígado e pâncreas (1, 15).

Estudos in vitro e in vivo (roedores e humanos) encontraram que o ácido palmitoleico possui ações importantes no músculo esquelético e fígado aumentando a captação de glicose e a sensibilidade à insulina, bem como reduzindo a esteatose hepática, respectivamente (1, 16-18). Mais especificamente, estudos verificaram que células musculares esqueléticas tratadas com ácido palmitoleico apresentam
aumento na captação de glicose, maior conteúdo proteico de transportadores de glicose 1 e 4 (GLUTs) na membrana celular e aumento na fosforilação da AKT, do receptor de insulina (IR) e dos substratos do receptor de insulina 1 - 2 (IRS), além de aumento na oxidação de glicose (1, 17, 19). Interessantemente, Dimopoulos et al. (2006) demonstraram que o tratamento com ácido palmitoleico bloqueou os efeitos deletérios do ácido palmítico no metabolismo da glicose e sensibilidade à insulina em células musculares L6 (17).

Já no tecido hepático, o tratamento com ácido palmitoleico também aumentou a fosforilação da AKT, IR e IRS 1, além de inibir a síntese de novo de ácidos graxos, esteatose hepática e a ativação do promotor e expressão gênica da SCD-1 (1). Esse último achado indica a existência de um sistema de retroalimentação negativa no qual o ácido palmitoleico inibe a expressão de SCD-1 e assim a sua formação a partir do ácido palmítico neste tecido.

Corroborando estes estudos, camundongos diabéticos tratados com ácido palmitoleico (300 mg/kg) por quatro semanas apresentaram uma atenuação da hiperglicemia, hipertrigliceridemia e melhora na sensibilidade à insulina. Além disso, houve redução na expressão gênica das enzimas lipogênicas ácido graxo sintase (FAS), SREBP-1 e SCD-1 no fígado e dos mediadores pró-inflamatórios - fator de necrose tumoral alfa (TNF-α) e resistina no TAB (16). Efeitos similares foram também encontrados após tratamento de adipócitos bovinos com concentrações crescentes de ácido palmitoleico (50-300 µM), como evidenciado pela redução na expressão gênica da FAS e SCD-1 e aumento na expressão da enzima carnitina palmitoil-transferase 1A (CPT1), que transporta ácidos graxos para a mitocôndria para serem oxidados (20). Além dos efeitos no metabolismo de glicose e lipídeos, o tratamento com 16:1n7 também produziu efeitos citoprotetores, protegendo células beta pancreáticas da morte induzida por ácido palmítico (15, 21).

Em estudos clínicos também se observam efeitos do ácido palmitoleico na homeostase metabólica de humanos. Hiraoka-Yamamoto et al. (2004) relataram que mulheres japonesas jovens com dieta rica em óleo de macadâmia têm o peso corporal, índice de massa corpórea e concentrações séricas de colesterol total e de LDL significativamente diminuídos (22). Interessantemente, o acúmulo de gordura glúteo-femural em humanos é inversamente associado a riscos cardiovasculares, efeito este, que é parcialmente justificado pelo grande acúmulo e liberação de ácido
palmitoleico por este tecido (5). Além disso, a concentração plasmática deste ácido graxo foi inversamente associada com o risco de câncer (23, 24). Contudo, no plasma de crianças e adultos obesos são detectadas concentrações elevadas de ácido palmitoleico e esses sujeitos também apresentam aumento da atividade da SCD-1 (25, 26).

Apesar de todos estes efeitos metabólicos importantes no fígado, músculo esquelético e células beta pancreáticas, ainda não foi demonstrado se o ácido palmitoleico também modula o metabolismo e funcionamento do TAB, um órgão fundamental para o controle da homeostase energética corporal. No presente estudo, portanto, nós testamos a hipótese de que o ácido palmitoleico é um importante modulador do metabolismo de glicose e triacilglicerol de adipócitos brancos. Para isto, utilizando experimentos in vitro e in vivo com células 3T3-L1 diferenciadas e adipócitos primários de murinos, nós investigamos, em dois estudos distintos, os efeitos e mecanismos de ação do ácido palmitoleico na captação e utilização de glicose (Estudo I) e no metabolismo do TAG (Estudo II) em adipócitos brancos.
2 REVISÃO BIBLIOGRÁFICA

2.1 O Tecido Adiposo

O TAB é um tecido de origem mesenquimal que se desenvolve no período fetal, sofre rápida expansão após o nascimento e tem capacidade de alterar sua massa durante todas as fases da vida (27). Este tecido é composto por células especializadas na captação, armazenamento e mobilização de gordura, denominadas adipócitos, bem como matriz de tecido conjuntivo, células do sistema imune, vasos sanguíneos, linfonodos, inervações simpáticas e parassimpáticas, células tronco e pré-adipócitos (28). O TAB é o principal reservatório energético dos mamíferos devido sua capacidade de captar e armazenar o excesso de energia obtido na dieta na forma de TAG, um lipídeo neutro constituído por três ácidos graxos ligados ao esqueleto de carbono de uma molécula de glicerol (29). Os lipídeos, por serem hidrofóbicos, contêm, por unidade de massa, mais do que o dobro de energia armazenada que as proteínas e carboidratos, fornecendo mais energia metabólica quando oxidados (30).

Os adipócitos possuem tamanho (volume e diâmetro) distintos conforme a quantidade de TAG acumulada (29). A massa de TAB é determinada pelo volume dos adipócitos, que varia conforme a quantidade de TAG estocado ou mobilizado (hipertrofia ou hipotrofia), e também por mudanças no número de adipócitos (hiperplasia ou hipoplasia), que varia conforme a morte ou surgimento de novos adipócitos a partir de pré-adipócitos, num processo chamado adipogênese (29). O peso corporal e a massa do tecido adiposo são determinados pelo equilíbrio entre a ingestão alimentar e gasto energético. Em períodos prolongados de equilíbrio energético positivo que resultam do consumo exacerbado de alimentos industrializados de alto teor calórico e ricos em gordura somado à inatividade física e sedentarismo ocorre um aumento de adiposidade que cronicamente pode levar ao desenvolvimento da obesidade (31).

Os adipócitos do TAB armazenam TAG em uma única e grande gota lipídica que ocupa de 85-90% do citoplasma e empurra o núcleo e uma fina camada de citosol para a periferia da célula. A gota lipídica é circundada por uma monocamada composta de fosfolipídios, proteínas estruturais e enzimas, que confere proteção às
organelas celulares da citotoxicidade gerada pelo TAG. Dentre as diversas proteínas que compõe esta monocamada destacamos a perilipina A, principal perilipina do adipócito, que dependendo do seu estado de ativação pode atuar protegendo e delimitando a gota lipídica ou facilitando o processo hidrólise dos TAG (31, 32).

Existem diferentes depósitos de TAB em humanos que estão distribuídos na região subcutânea e na intra-abdominal (visceral). Em ratos, depósitos podem ser encontrados na região epididimal em machos, periovariana em fêmeas, na omental, na retroperitoneal e na perirrenal, entre outras. Os diferentes depósitos de gordura possuem características morfológicas e metabólicas individuais, variando, por exemplo, quanto ao diâmetro e número de células, densidade de receptores e sensibilidade para os diferentes hormônios, ineração, vascularização, dentre outros (33). A gordura visceral, por exemplo, é mais sensível ao remodelamento, apresenta maior sensibilidade ao estímulo lipolítico, recebe maior vascularização e ineração, e é mais susceptível ao desenvolvimento de processos inflamatórios (34). Assim, indivíduos com aumento da adiposidade visceral apresentam maiores riscos para doenças cardiovasculares e diabetes (35).

Somado a sua função de reservatório energético, o TAB promove a proteção mecânica de órgãos e tecidos corporais contra choques, permite um adequado deslizamento entre vísceras e feixes musculares, bem como, atua como isolante térmico (30). Além disso, a partir de um estudo de 1994 demonstrando que o tecido adiposo produz e secreta uma proteína denominada de leptina, com ações importantes no sistema nervoso central controlando o apetite e o gasto energético, foi atribuído ao TAB à função de órgão endócrino (36). Desde então, foram identificadas muitas citocinas e proteínas produzidas pelo tecido adiposo, e genericamente denominadas de adipocinas, que possuem diferentes efeitos sobre o metabolismo corporal (30).

Além do TAB os mamíferos apresentam um segundo tipo morfologicamente e funcionalmente diferente de tecido adiposo, denominado tecido adiposo marrom (TAM), que é especializado na produção de calor, sendo essencial para a regulação térmica especialmente em recém-nascidos. O TAM é composto por adipócitos multiloculares pequenos (entre 30-40µm), núcleo esférico e ligeiramente excêntrico e numerosas mitocôndrias que possuem capacidade elevada de oxidação de ácidos graxos. A termogênese promovida por este tecido é catalisada pela proteína
desacopladora-1 (UCP-1 ou termogenina) localizada na membrana mitocondrial interna, que quando estimulada dissipa o gradiente de prótons do espaço intermembranoso mitocondrial, liberando na forma de calor a energia potencial que normalmente é utilizada para síntese de ATP (complexo F_1F_0 - ATP sintase). A alta concentração de citocromo oxidase dessas mitocôndrias contribui para a sua coloração mais escurecida (37, 38). Até recentemente, acreditava-se que o TAM existisse apenas em mamíferos hibernantes, fetos e recém-nascidos, diminuindo gradualmente durante a idade adulta. No entanto, TAM metabolicamente ativo foi identificado na região cervical, supraclavicular e paravertebral de seres humanos adultos. Existe uma correlação negativa entre atividade do TAM, peso corporal e massa de TAB, sendo que indivíduos magros apresentam maior atividade do TAM que os obesos (39, 40).

2.2 O Metabolismo do Tecido Adiposo Branco

A quantidade de TAG armazenada nos adipócitos depende do equilíbrio entre os processos de lipogênese definido como a biossíntese, incorporação e armazenamento de TAG na gota de gordura citoplasmática, e de lipólise, definida como a hidrólise sequencial do TAG á ácidos graxos e glicerol (41, 42).

2.2.1 Lipogênese

De maneira geral, a formação do TAG envolve a esterificação de uma molécula de glicerol 3-fosfato com três moléculas de ácidos graxos complexadas com a coenzima A (AcilCoA).

2.2.1.1 A biossíntese de TAG

A síntese de TAG foi descrita há aproximadamente 40 anos por Kennedy et al. (1960) (43). Esta ocorre principalmente no fígado, intestino e tecido adiposo (44), (Figura 1).

A esterificação do glicerol 3-fosfato com acilCoA na posição sn1 é catalisada pela enzima glicerol 3-fosfato aciltransferase (GPAT) formando 1-aci1glicerol-3-
fosfato (ácido lisofosfatídico), uma reação que ocorre tanto no retículo endoplasmático quanto na mitocôndria (44, 45). Posteriormente, o ácido lisofosfatídico é esterificado na posição sn2 com outro acilCoA, um processo catalisado pela enzima 1-acilglicerol-3-fosfato aciltransferase (AGPAT) localizada no retículo endoplasmático e que resulta na formação de 1,2-diacilglicerol-3-fosfato (ácido fosfatídico). Foram identificadas oito isoformas de AGPAT, sendo a isoforma 2 a principal encontrada no tecido adiposo (46, 47). O ácido fosfatídico formado é então utilizado na formação de diferentes fosfolipíditos ou para síntese do TAG. Na síntese de TAG, o grupamento fosfato do carbono 3 do ácido fosfatídico é retirado pela ação da enzima fosfatase de ácido fosfatídico (também conhecida como lipina) formando 1,2-diacilglicerol (48). Finalmente, um terceiro acilCoA é adicionado ao diacilglicerol pela ação da diacilglicerol aciltransferase (DGAT 1 e 2) formando o TAG (49).

Figura 1 - AcilCoA e glicerol-3-fosfato formam triacilglicerol.

Glicerol-3-fosfato (GPAT); 1-acilglicerol-3-fosfato aciltransferase (AGPAT); diacilglicerol aciltransferase (DGAT).
2.2.1.2 Substratos para biossíntese do TAG

Como descrito, o adipócito necessita de uma molécula de glicerol 3-fosfato e de três moléculas de acilCoA para formar TAG. Em mamíferos existem três diferentes processos de geração de glicerol 3-fosfato: 1) a via glicolítica, onde a glicose é convertida em diidroxiacetona e posteriormente em glicerol 3-fosfato pela ação da enzima glicerol 3-fosfato desidrogenase; 2) a via gliceroneogênica, que consiste na conversão de substratos com três carbonos como lactato, aminoácidos e piruvato em glicerol 3-fosfato, processo cuja enzima chave é a fosfoenolpiruvato carboxiquinase (PEPCK); 3) via fosforilação direta do glicerol (captado da circulação ou presente no citosol) a glicerol 3-fosfato pela ação da enzima gliceroquinase (50).

Já os ácidos graxos são, em sua maioria, captados da circulação, provenientes da dieta ou sintetizados no fígado. Contudo, uma proporção dos ácidos graxos incorporados em TAG são sintetizados no próprio adipócito a partir da glicose, piruvato, aminoácidos e outros substratos não lipídicos por um processo denominado síntese de novo de ácidos graxos (vide adiante).

2.2.1.3 Captação de ácidos graxos pelos adipócitos

Grande parte dos ácidos graxos estocados na forma de TAG no TAB são oriundos da dieta ou sintetizados no fígado. Eles são transportados na circulação na forma de TAG ligados a quilomícrons ou lipoproteínas de muito baixa densidade (VLDL). No TAB, estas moléculas de TAG são hidrolisadas por ação da enzima lipase de lipoproteínas (LPL) presente no endotélio capilar, e então, captadas pelos adipócitos (51). O mecanismo pelo qual os ácidos graxos atravessam a membrana celular do adipócito ainda é controverso. Pesquisas descrevem que isto pode ocorrer tanto por um sistema de difusão passiva (flip-flop) (33) quanto por transporte mediado por proteínas transportadoras na membrana celular, incluindo a proteína CD36 (52) e a proteína transportadora de ácidos graxos (FATP) (53). CD36 e FATP são proteínas integrais de membrana.

Uma vez no citosol, os ácidos graxos são carreados pela proteína de ligação aos ácidos graxos (FABP), que transporta estas moléculas até a enzima AcilCoA sintase que adiciona uma coenzima A ao ácido graxo, formando o acilCoA. Finda
esta etapa, o acilCoA é levado pela proteína de ligação ao acilCoA (ACBP) para os locais de esterificação com glicerol 3-fosfato (30).

As FABPs possuem baixo peso molecular (15 kDa) e são membros de uma grande família de proteínas intracelulares que interagem com moléculas hidrofóbicas, como os ácidos graxos, promovendo seu transporte entre os compartimentos celulares ou mesmo conduzindo-o até a membrana celular para que este seja liberado na corrente sanguínea. Camundongos deficientes em FABP4 acumulam ácidos graxos livres no interior da célula (54). O tecido adiposo expressa duas formas de FABP, a forma mais abundante é a FABP4 ou aP2 (produto do gene fabp4) e a outra é a FABP5 (produto do gene fabp5) (31).

2.2.1.4 Síntese De Novo de Ácidos Graxos

A síntese de novo de ácidos graxos utiliza substratos não lipídicos para formação dos ácidos graxos e é responsável por aproximadamente 20% do turnover lipídico dentro do TAB (55). Esta síntese ocorre principalmente no fígado e nos adipócitos e é fortemente ativada na presença de insulina (33).

O passo inicial para síntese de novo de ácidos graxos é o transporte de acetilCoA da mitocôndria para o citosol (Figura 2). A acetilCoA é formada no interior da mitocôndria quando o piruvato, proveniente principalmente da via glicolítica, sofre ação da enzima piruvato desidrogenase. A β-oxidação dos ácidos graxos e a degradação de certos aminoácidos, lactato e dos corpos cetônicos também produzem acetilCoA. A acetilCoA é transportada para citosol como citrato, produzido pela condensação do oxaloacetato com acetilCoA, numa reação catalisada pela citrato sintase (enzima que catalisa a primeira etapa do ciclo de Krebs, também conhecido como ciclo do ácido cítico). Isso ocorre quando a concentração de citrato mitocondrial está elevada, observada quando há alta concentração de ATP, que por sua vez inibe a isocitrato desidrogenase (principal enzima que regula a velocidade do ciclo de Krebs). Portanto, o aumento de citrato e ATP favorece a síntese de ácidos graxos, já que esta via necessita de ambos. Desta forma, quando a oferta energética celular é alta, eleva-se a razão ATP/ADP e a acetilCoA fica disponível para servir como substrato para a síntese de novo de ácido graxo (33).
Uma vez no citosol, o citrato é clivado por ação da enzima ATP citrato liase (ACL) gerando novamente acetilCoA e oxalacetato. O oxalacetato formado na transferência de acetilas para o citosol retorna para a mitocôndria. A membrana mitocondrial interna é impermeável ao oxalacetato. Daí ser necessária uma série de reações. Estas reações produzem grande parte do NADPH necessário para a síntese de ácidos graxos. Primeiramente, o oxalacetato é reduzido à malato pelo NADH numa reação catalisada pela malato desidrogenase. Em seguida, o malato sofre descarboxilação oxidativa catalisada pela enzima málica, que está ligada a NADP⁺, formando assim o piruvato, que se difunde facilmente para a mitocôndria, onde é carboxilado o oxalacetato pela piruvato carboxilase. Como consequência, uma molécula de NADPH é gerada para cada acetilCoA transferida da mitocôndria para o citosol. A outra fonte de NADPH para síntese de ácidos graxos é a via das pentoses fosfato, que inclui a reação da enzima glicose-6-fosfato desidrogenase (G6PDH) (33, 42).

Figura 2 - Transporte de AcetilCoA para o citosol.

Por outro lado, a acetilCoA presente no citosol é carboxilada pela enzima acetilCoA carboxilase (ACC) transformando-se em malonil CoA. Este produto entra então na via de síntese de ácidos graxos, que envolve a adição sucessiva de duas
unidades de carbono à cadeia lipídica crescente, catalisada pela FAS, formando, dessa forma, o ácido graxo, numa reação estritamente dependente de NADPH (30, 56), (Figura 3).

Figura 3 - Síntese de novo de ácidos graxos.

![Diagrama de síntese de novo de ácidos graxos](image)

ATP citrato liase (ACL); acetilCoA carboxilase (ACC) e ácido graxo sintase (FAS).

A enzima FAS consiste de um dímero, sendo que cada monômero possui sete atividades enzimáticas diferentes. Faz parte da sintase uma pequena proteína não enzimática, designada proteína carregadora de acila ou ACP, à qual está sempre ligada uma cadeia de ácidos graxos em crescimento (56). O ácido palmitico, um ácido graxo saturado de 16 carbonos é o principal produto final da FAS que pode ser alongado mediante adições sucessivas de unidades de 2 carbonos e/ou dessaturado (adição de duplas ligações) por enzimas denominadas elongases e dessaturases, respectivamente (56).

2.2.1.5 **Captação de glicose pelos adipócitos**

Em indivíduos saudáveis, cerca de 15% da glicose sanguínea é absorvida no TAB, seu principal substrato energético (57). Dentre estes, mais de 50% da glicose captada é utilizada para síntese de glicerol e ácidos graxos do TAG, sendo o restante direcionado para oxidação (~30%), síntese de lactato, glicogênio e demais atividades celulares (58, 59).

A captação de glicose no tecido adiposo é realizada por transportadores de glicose, incluindo GLUT1 e GLUT5 (60), mas a velocidade de captação é intensamente aumentada (10-20 vezes, por aproximadamente 5 ou 7 minutos) após estímulo para a translocação e fusão do GLUT4 com a membrana plasmática (61, 62), sendo que, na ausência de estímulo, a densidade do GLUT4 na membrana é
extremamente baixa. Na verdade, em adipócitos, GLUT4 tem sido descrito como o fator determinante para homeostase da glicose, uma vez que, pequenas alterações na sua concentração proteica podem refletir em alterações da tolerância à glicose (57).

A insulina, o potente hormônio indutor da captação de glicose/translocação de GLUT4, inicia sua sinalização celular após ligação com seu receptor (IR) na superfície da membrana plasmática (57, 63). Este receptor, quando ativado, induz a autofosforilação de sua subunidade β em múltiplos resíduos de tirosina, e assim o recrutamento e fosforilação dos IRS1-4 que funcionam como proteínas de ancoramento para moléculas contendo os domínios SH2, SH3 e domínios PTB (de ligação à fosfotirosina), dentre elas, destaca-se a fosfatidilinositol 3-quinase (PI3-K) que é essencial para diversos processos metabólicos induzidos pela insulina. Sua interação com substratos lipídicos na membrana plasmática, catalisa a conversão do fosfatidilinositol 4,5-bifosfato (PIP2) a fosfatidil-inositol 3,4,5-trifosfato (PIP3). PIP3, então, seguido pelo recrutamento e ativação da proteína quinase-1 dependente de fosfoinositideo (PDK1) e o complexo mTORC2 promovem fosforilação da proteína quinase B ou AKT nos sítios de fosforilação Treonina (Thr) 308 e Serina (Ser) 473, respectivamente (57, 64).

AKT é considerada um pivô da translocação de GLUT4 induzida por insulina (57, 64, 65). Para isto, a AKT fosforila e inativa o substrato de AKT de 160kDa (AS160), permitindo assim a translocação das vesículas de GLUT4 para a membrana (64, 66). Da mesma forma, estudos utilizando músculo esquelético (64) ou adipócitos (67) demonstraram que a proteína quinase ativada por AMP (AMPK) é capaz de fosforilar a AS160, indicando que este parece ser um passo comum de ativação da translocação de GLUT4 pela AMPK e insulina / AKT (66).

Os efeitos da AMPK sobre a captação de glicose também envolvem o aumento da expressão gênica e do conteúdo proteico de GLUT4, que além da translocação deste transportador, são considerados determinantes para promover a absorção de glicose (68, 69).
2.2.2 Lipólise

A lipólise consiste na hidrólise sequencial da molécula de TAG, formando subsequentemente diacilglicerol (DAG), monoacilglicerol (MAG), glicerol e três ácidos graxos livres, processos estes catalisados respectivamente pelas enzimas *lipase de triglicerídeos do adipócito* (ATGL), *lipase hormônio sensível* (HSL) e *lipase de monoglicerídeos* (MGL) (70), (Figura 4).

Figura 4 - Hidrólise do triacilglicerol.

![Diagrama da hidrólise do triacilglicerol](image)

Triacilglicerol (TAG); diacilglicerol (DAG); monoacilglicerol (MAG), ácido graxo (FA).

Em condições basais (não-estimuladas), a HSL permanece predominantemente no citosol, enquanto que a perilipina, a ATGL e seu co-ativador a proteína Abhd5 (*Abhydrolase domain containing 5*) também denominada CGI-58 (*Comparative gene identification 58*) estão presentes na superfície da gota lipídica (31). A ATGL possui alta especificidade para a hidrólise do TAG, sendo responsável por grande parte da atividade lipolítica encontrada tanto em condições basais quanto estimuladas, porém em condições basais seu coativador, o CGI-58, se mantém ligado a perilipina (formando um complexo inativo) o que limita a atividade hidrolítica da enzima (41, 71).

Em situações de jejum alimentar ou de alta demanda energética, o adipócito sofre estímulo lipolítico, gerando uma série de reações intracelulares que culmina com a ativação das quinases proteicas A e G (PKA / PKG), que promovem a fosforilação da HSL e perilipina. Após fosforilação, a HSL transloca-se para a gota lipídica atuando em conjunto com a ATGL acelerando a velocidade de lipólise. Juntas, a ATGL e HSL são responsáveis por aproximadamente 95% da hidrólise do TAG (72). No mesmo sentido, após fosforilação da perilipina, esta sofre um rearranjo de sua posição sobre a gota lipídica facilitando a hidrólise do TAG promovida pelas lipases. Com a fosforilação da perilipina também ocorre liberação do CGI-58 que se
associa a ATGL, formando um complexo ativo (71, 73, 74). A superexpressão da perilipina reduz a lipólise estimulada (75).

A HSL possui maior especificidade para a hidrólise de DAG podendo também hidrolisar TAG e MAG, porém com menor eficiência. Já a MGL localizada tanto no citosol quanto na superfície da gota lipídica, possui maior especificidade para hidrólise de MAG catalisando o passo final da lipólise, ou seja, a conversão de MAG em glicerol e ácido graxo livre (71, 73), (Figura 5).

Figura 5: Lipólise não estimulada (basal) e estimulada.

A gota lipídica está circundada por uma monocamada de fosfolipídeos com diferentes proteínas ancoradas: PLIN1a, PLIN2 (PNDR) e Fsp27/Cidec. No estado basal não estimulado, a ATGL, perilipina e ABHD5 formam um complexo na superfície da gota lipídica. HSL e FABP4 estão no citosol. No estado estimulado, HSL é fosforilada por quinases (PKS) que em sua forma ativa migra para a superfície da gota lipídica. PLIN1a também é fosforilada e sofre modificação de sua estrutura, com isso, a ABHD5 é liberada da PLIN1a e liga-se a ATGL formando um complexo ativo, aumentando a hidrólise dos TAG. DAGs são então transformados em MAG por ação da HSL. Com a hidrólise do MAG por ação da MGL, termina o processo lipolítico e são liberados três ácidos graxos e uma molécula de glicerol. ABHD5, abhydrolase domínio contendo; ADRP, proteína relacionada à diferenciação do adipócito; ATGL, lipase de triglicerídeos do adipócito; DAG, diacilglicerol; FA, ácido graxo; FABP4, proteína ligadora de ácido graxo 4; G0S2, G0/G1 switch gene 2; HSL, lipase hormônio sensível; MAG, monoacilglicerol; MGL, lipase de monoacilglicerol; PLIN1a, perilipina 1A; TAG, triacilglicerol. [Adaptado de Girousse, Langin, 2012 (31)].

A ATGL apresenta uma forte preferência/seletividade para a hidrólise de ácidos graxos de cadeia longa (de 16 ou 18 carbonos) presentes na posição sn2 do esqueleto de glicerol, que incluem principalmente a hidrólise do ácido palmitoleico seguida pelo ácido palmitico e esteárico, liberando, assim, como produto da reação o 1, 3 DAG. Interessantemente, o 1, 3 DAG é o substrato preferencial da DGAT2.
Isto sugere que a ATGL e DGAT2 atuam coordenadamente durante o ciclo de hidrólise / reesterificação do TAG. Por outro lado, após ligação com o CGI-58, a ATGL passa a hidrolisar ácidos graxos presentes também na posição sn1, liberando o 2,3-DAG, que, curiosamente, é o substrato preferencial da HSL (8).

Os ácidos graxos derivados da lipólise são, em sua maioria, liberados na circulação, transportados ligados à albumina, para serem utilizados como substrato energético por outros tecidos, contudo, parte dessas moléculas é mantida no interior dos adipócitos, agindo como precursores para a síntese de outros ácidos graxos e lipídeos, como mediadores de sinalização intracelular, como substratos para oxidação ou ainda aproximadamente 30-40% sofrem reesterificação para TAG (76, 77).

A lipólise é finamente modulada por uma série de fatores incluindo hormônios, nutrientes, sistema nervoso central e fatores locais (76). Entre os hormônios, destacam-se as catecolaminas, liberadas pela medula adrenal ou inervação simpática direta do tecido adiposo, e o peptídeo natriurético atrial (ANP) como importantes ativadores e a insulina como importante inibidor da lipólise. As catecolaminas ligam-se aos receptores β-adrenérgicos que se associam a proteínas G estimulatórias ativando a PKA que promove a fosforilação da HSL e perilipina. O ANP, por sua vez, estimula a lipólise por ativação de PKG (41, 78).

A regulação local, autócrina/parácrina da lipólise no tecido adiposo está sob intensa investigação (76). Já é conhecido que adipócitos secretam vários fatores que podem regular a lipólise localmente, tais como o TNF-α, que estimula a lipólise (29, 78, 79) e prostaglandinas, que dependendo da concentração e espécies testadas, podem inibir, estimular, ou não produzir efeito sobre a lipólise (78, 80, 81), além de fatores como neuropeptídeo Y, ácido nicotínico e adenosina que, quando se ligam em receptores acoplados a proteínas G inibitórias, inibem a lipólise (42). Recentes trabalhos também descreveram que os receptores ativados por proliferadores de peroxissoma (PPARs), do tipo gama (γ) e alfa (α), também modulam positivamente a lipólise (82, 83). Este tema será descrito adiante.
2.2.2.1 A Lipase de triglicerídeos do Adipócito (ATGL) e sua regulação

Por muitos anos acreditou-se que a HSL era a principal enzima envolvida no processo de lipólise. No entanto, em 2004, três grupos de pesquisa independentes caracterizaram uma nova lipase que recebeu diferentes denominações, dentre elas: ATGL, desnutrina, fosfolipase A2 cálcio-independente ou patatin-like phospholipase domain-containing protein A1 a A9 (PNPLA1-9) (84-86). A ATGL, que possui peso molecular de 54 kDa, é encontrada predominantemente no tecido adiposo branco e marrom, mas também está presente nos testículos, ilhota pancreática, músculo cardíaco e músculo esquelético. A ATGL é considerada a principal enzima responsável pela hidrólise de TAG, estando localizada na gota lipídica dos adipócitos (73). Desta forma, sua atividade hidrolítica sobre o TAG ocorre independente da barreira de proteínas que envolvem a gota lipídica, o que torna esta lipase muito importante durante a lipólise basal. Contudo, sua atividade é significativamente aumentada pela interação com a proteína CGI-58, seu coativador, durante a lipólise estimulada por hormônios (31, 70).

Experimentos utilizando animais e células isoladas com redução ou superexpressão de ATGL foram realizados para caracterizar e descrever as funções biológicas dessa enzima e sua participação na homeostase lipídica. Nestes estudos, camundongos e células com deficiência de ATGL apresentaram importante redução da lipólise após estímulo hormonal (71, 87). Já as modificações da lipólise no estado basal (não-estimulada) divergem quanto ao modelo experimental utilizado. Resultados obtidos com cultura de células humanas (hMADS) demonstraram uma redução da lipólise basal (87). No entanto, quando investigada em células isoladas de camundongos deficientes em ATGL, não houve alterações (71).

A principal consequência fenotípica da redução de ATGL é o acúmulo maciço de TAG nos adipócitos e em outros tecidos do corpo (71). Ainda, essa redução da hidrólise do TAG gera comprometimento da termorregulação desses animais devido à redução da oferta de ácidos graxos livres para respiração mitocondrial. Camundongos deficientes para ATGL apresentam hipotermia severa quando expostos ao frio por cinco horas (71).

No músculo cardíaco, por exemplo, a ausência da ATGL causa um aumento em até 20 vezes no conteúdo de TAG causando insuficiência cardíaca seguida de
morte prematura. Interessantemente, o reestabelecimento da expressão de ATGL somente no coração de camundongos deficientes para ATGL, reverte o acúmulo de TAG e a insuficiência cardíaca associada (88).

Com relação ao perfil lipídico, os animais deficientes para ATGL apresentam redução nas concentrações plasmáticas de ácidos graxos livres, TAG, β-hidroxi-butirato, colesterol total, VLDL e HDL (71).

Em ilhotas pancreáticas, a lipólise promovida pela ATGL é importante para a geração de moléculas lipídicas sinalizadoras que modulam a secreção de insulina estimulada por glicose (GSIS), um efeito que depende do receptor nuclear PPAR delta (δ) (89, 90).

Em contraste à deficiência, a superexpressão da ATGL está associada com um aumento da lipólise basal e estimulada (71, 91), redução da deposição de TAG e do tamanho dos adipócitos (92).

Já foram identificados diferentes fatores que regulam a expressão gênica e a atividade hidrolítica da ATGL (93). Os níveis de RNA mensageiro (mRNA) da ATGL são elevados, por exemplo, por agonistas de PPARγ e α, glicocorticóides e jejum alimentar e são reduzidos pela insulina, ativação do complexo 1 da mTOR e a alimentação (77, 94). Recentemente foi demonstrado que a proteína AMPK, mas não a PKA, fosforila a ATGL no sítio Ser406, aumentando sua atividade (73, 84).

Evidências também indicam que a atividade da ATGL é modificada por sua interação com outras proteínas como a CGI-58 (descrita anteriormente), perilipina e a G0/G1 switch gene 2 (G0S2). A G0S2, uma proteína que atua na transição de G0 para G1 do ciclo celular está localizada na gota lipídica, citoplasma, retículo endoplasmático e mitocôndria de adipócitos. Na gota lipídica, a G0S2 inibe a ação da ATGL pela interação física de sua região N-terminal com o domínio N-terminal patatina da ATGL (95, 96).

Adicionalmente, a proteína FSP27 (Fat-specific Protein 27), também presente na gota lipídica, interage com ATGL reduzindo sua atividade e consequentemente a lipólise (97). Outro importante mecanismo de regulação da ATGL envolve a expressão e controle das proteínas que transportam a ATGL do retículo endoplasmático para a gota lipídica, tais como a ADP-ribosylation factor 1, GTB-binding protein 1 (SAR1), Golgi-Brefeldin A resistance factor (GBF-1) (98).
Todos esses achados apontam para ATGL como principal enzima responsável pela hidrólise de TAG. Muitos trabalhos seguem em andamento buscando esclarecer os mecanismos de controle da atividade desta enzima.

2.2.2.2 A Lipase Hormônio Sensível (HSL) e sua regulação

No início da década de 60, observou-se que a atividade lipolítica do tecido adiposo era induzida por estimulação hormonal. Um artigo clássico foi publicado pelo grupo do Dr. Steinberg (99) em que eles isolaram e descreveram a HSL e MGL. Desde então a HSL, proteína de 81 kDa, era considerada a principal lipase do adipócito, uma vez que, não haviam descrito a ATGL. No entanto, Osuga et al. (2000), utilizando camundongos deficientes de HSL, observou que os animais não apresentaram acúmulo de TAG no tecido adiposo e demais tecidos, em vez disso, eles acumulavam grandes quantidades de DAG, determinando assim, a alta especificidade da HSL na hidrólise de DAG (100, 101).

Camundongos com deficiência da HSL apresentam redução da lipólise estimulada (101, 102). No mesmo sentido, camundongos que superexpressam HSL têm atividade lipolítica basal normal e aumento da lipólise estimulada (103).

A regulação da atividade da HSL é altamente influenciada por hormônios. Ela é fortemente ativada na presença de agonistas β-adrenérgicos, que promovem sua fosforilação via PKA ou PKG (catecolaminas e peptídeo natriurético atrial, respectivamente) enquanto que a insulina tem um forte efeito inibitório (77). O efeito anti-lipolítico da insulina é mediado através da ativação da fosfodiesterase 3B, que diminui o AMPc e a atividade da PKA, causando redução da fosforilação da HSL e perilipina (78). Além disso, AMPK e a calmodulina cálcio-dependente também modificam a ação dessa lipase (93). A enzima possui ao menos cinco sítios de fosforilação, dos quais S660 e S663 parecem ser particularmente importantes para sua atividade hidrolítica (104). Como descrito anteriormente, após sua fosforilação a HSL transloca-se para a gota lipídica, porém, para sua ação plena, a HSL liga-se a região NH₂-terminal da perilipina ganhando maior acesso a gota lipídica (75, 105).

Outra forma conhecida de regulação dessa enzima é via FABP. A FABP4 liga-se à HSL quando ela é fosforilada. Isto facilita o transporte de ácidos graxos no interior da célula produzidos durante o processo da lipólise (106). No entanto, a
FABP4 regula sua ação promovendo uma retroalimentação negativa da HSL ao transportar ácido graxo e/ou por afetar a dimerização da enzima na gota lipídica (107).

2.2.2.3 A Lipase de Monoglicerídeos (MGL)

A MGL catalisa o passo final da hidrólise do TAG, ou seja, a hidrólise do MAG em glicerol e ácido graxo. Possui peso molecular de 33 kDa e pertence a superfamília de hidrolases de serina. Estudos, *in vitro*, mostraram evidências de que a MGL hidrolisa especificamente MAG não tendo atividade sobre o TAG ou DAG. A nível celular, a MGL está localizada no citoplasma, membrana plasmática e na gota lipídica. É amplamente expressa no TAB, pulmão, fígado, rins, testículos, cérebro e coração (108). A lipólise estimulada é diminuída em animais com deficiência de MGL, além disso, estes animais apresentaram proteção ao desenvolvimento da intolerância à glicose e resistência à insulina; a redução de sua atividade é parcialmente revertida pela HSL (109).

2.3 Proteína Quinase Ativada por AMP (AMPK)

A AMPK é uma importante molécula reguladora do balanço energético celular, sendo capaz de fosforilar e regular proteínas relacionadas ao metabolismo energético, promovendo a redução das vias anabólicas (consumo de ATP) e aumento das vias catabólicas (geração de ATP). Por isso, a modulação da AMPK tem sido apontada como possível estratégia terapêutica no controle de disfunções metabólicas encontradas na obesidade e resistência à insulina (110). Brevemente, a AMPK é formada por uma subunidade α catalítica e subunidades β e γ regulatórias. Na subunidade γ, três dos seus quatro domínios são ocupados por nucleotídeos de adenina, sendo um específico para ligações com AMP, já os demais podem ser ocupados de maneira competitiva por AMP, ADP ou ATP. A ligação com AMP ou ADP promovem a fosforilação em Thr172 da subunidade α catalítica e assim total ativação da AMPK, enquanto que a ligação com ATP antagoniza sua atividade (110, 111). Dessa forma, a atividade da AMPK é estimulada sob condições de aumento na
demanda energética ou redução da disponibilidade de energia, caracterizado pela redução do ATP intracelular ou aumento do AMP.

Estudos revelaram importantes efeitos da AMPK no metabolismo e inflamação do tecido adiposo. Embora não totalmente esclarecidos e até mesmo controversos, os efeitos da AMPK no tecido adiposo incluem a inibição da síntese de novo de ácidos graxos, da adipogênese e inflamação, por outro lado, promove aumento da β-oxidação, conteúdo mitocondrial, lipólise e fosforilação da ATLG e expressão gênica de receptores nucleares (PPARα, PPARδ) (64, 67, 110, 112-117). Adicionalmente, trabalhos mostram que a ativação da AMPK desencadeia um aumento na captação de glicose concomitantemente com um aumento de expressão (gênica e proteica) e translocação do transportador de glicose GLUT4 para a membrana plasmática (64, 68, 116, 118).

2.4 Receptores Ativadores da Proliferação de Peroxisomata (PPARS) e o Tecido Adiposo

Os PPARs são membros da grande família de receptores nucleares e desempenham funções fundamentais na regulação do metabolismo lipídico, inflamação, crescimento celular e diferenciação (119). PPARs são ativados por uma ampla gama de fosfolipídeos, ácidos graxos e seus derivados (eicosanóides), sendo considerados dessa forma, como sensores de lipídios (119, 120).

Existem três isoformas conhecidas de PPAR, PPARα, PPARδ e PPARγ, que são expressos em tecidos diferentes possuindo funções distintas (121). PPARs são fatores de transcrição que regulam a expressão de genes-alvos pela ligação a sequências específicas no DNA denominadas de elementos responsivos aos proliferadores de peroxissomata (PPREs). Situados na região promotora de diversos genes, os PPREs são formados por dois hexanucleotídeos com uma sequência de consenso AGGTCA A AGGTCA, separada por um único nucleotídeo, também chamado de DR-1 (122). Assim como os demais receptores nucleares, PPAR liga-se ao PPRE após dimerização com o receptor do ácido 9-cis retinóico (RXR). Sob ação de agonistas, a conformação do PPAR é alterada gerando uma mudança na região LBD do receptor que permite a interação com coativadores transcricionais, resultando em aumento na transcrição gênica (123).
Os PPARs são expressos em níveis elevados nos tecidos com grande metabolismo lipídico. Todavia, os três subtipos PPAR exibem função e distribuição diferentes entre os tecidos. PPARδ aumenta a GSIS sendo bastante expresso em células beta-pancreáticas, além de estar envolvido na modulação do metabolismo oxidativo em alguns tecidos (90, 124). Já o PPARγ possui duas isoformas, PPARγ 1 e PPARγ 2 (125). A expressão de PPARγ 2 é quase exclusiva do adipócito, enquanto PPARγ 1 é mais amplamente expressa (124). PPARγ é um grande ativador de diferenciação de adipócitos e desempenha um papel na lipogênese de diferentes tipos celulares (126). Além de modular a expressão de genes envolvidos no transporte de ácidos graxos, na síntese e hidrólise de TAG e a sensibilidade à insulina nos adipócitos (127).

Já o PPARα é descrito como um importante indutor da oxidação de ácidos graxos no fígado, TAM e TAB. Sua ativação aumenta a transcrição de genes envolvidos na β-oxidação (77). Apesar de sua grande participação no metabolismo do TAM e fígado, pesquisas indicam que PPARα também tem importante ação no TAB (128, 129). O tratamento de adipócitos brancos com um agonista de PPARα induziu aumento na expressão de enzimas lipolíticas e do metabolismo oxidativo (130). Ativação de PPARα também está associada com um aumento na expressão da adiponectina e de seu receptor, o ADIPOR2, em células 3T3-L1 (131). Finalmente, o oleoiletanolamida estimula a lipólise através da ativação de PPARα (129).

Como descrito, os ácidos graxos estão diretamente envolvidos na sinalização celular e são importantes ativadores de PPAR. No entanto, segundo Zechner et al. (2012), os ácidos graxos provenientes do plasma, quando entram nas células, não são ligantes diretos de PPAR. Para isso, um ciclo de esterificação e hidrólise dos ácidos graxos é necessário para que estas moléculas possam atuar como ligantes de PPAR (77, 132), (Figura 6). A redução da lipólise presente em animais deficientes de ATGL causou importante redução na sinalização de PPARα, consequentemente reduzindo a oxidação de substratos em diversos tecidos, tais como o fígado, macrófagos e TAM (77, 82, 114, 133). A deficiência de HSL também reduz, de forma moderada, a sinalização de PPARα (132).
Os ácidos graxos provenientes de fontes exógenas ou endógenas são substratos para formação de acil-CoA, que estão sujeitos à oxidação mitocondrial ou formação de TG. A lipólise promovida pela ATGL gera produtos lipolíticos (FA e DG), que podem atuar diretamente como ligantes para os receptores nucleares. A ativação de PPARα através de produtos da hidrólise de TGs é necessária para função mitocondrial e fosforilação oxidativa normais. ATGL, lipase de triglicerídeos do adipócito; CD36, cluster of differentiation 36, DG, diacilglicerol; FA, ácidos graxos; FATP, proteína transportadora de ácidos graxos; LPL, lipase de lipoproteínas; PPAR, receptor ativado por proliferadores de peroxissoma; RA, ácido retinóico; RXR, receptor retinóide X; TG, triglicerídeos. [Adaptado de Zechner et al., 2012 (77)].

2.5 Efeitos do Ácido Graxo Palmítico, Ácido Oleico e Ácido Palmitoleico no Controle do Metabolismo Corporal

Quanto aos ácidos graxos, em sua estrutura, o tamanho da cadeia carbônica e o número/posição das duplas ligações determinam suas propriedades físicas e químicas, conferindo a cada um deles funções biológicas únicas (14), dessa forma, tornando importante a investigação dos efeitos individuais de cada ácido graxo sobre o metabolismo corporal.

Ácidos graxos saturados estão fortemente relacionados com ganho de peso, inflamação, riscos cardiovasculares e síndrome metabólica (134, 135). Entre eles, o ácido palmítico que é o principal produto da via de síntese de novo de ácidos graxos, mas também abundantemente encontrado em diversos alimentos de origem animal (carne, ovos, leite), quando ingerido em excesso, causa hipertrofia dos adipócitos, ganho de peso, inflamação e apoptose via estresse do retículo endoplasmático (136). O ácido palmítico também é conhecido como forte indutor da resistência à insulina, uma vez que, inibe a ativação do IR-1, PI3K, AKT e reduz a liberação de adiponectina (137, 138).

O ácido oleico (16:1n9), um ácido graxo monoinsaturado n9, está frequentemente presente na dieta humana, compondo óleos vegetais,
principalmente o azeite de oliva, mas também está presente nos óleos de sementes de uva, de canola, de gergelim, de girassol, de soja e de palma. Pode ser sintetizado pelo organismo a partir da dessaturação do ácido esteárico (18:0) por ação da enzima SCD-1. Alguns trabalhos destacam os efeitos anti-inflamatórios do ácido oleico. Nesse sentido, já se demonstrou que este ácido suprime a produção de TNF-α, IL-6, MCP-1, NF-κB e vias de *toll-like receptors* no tecido adiposo (139, 140). Observou-se, ainda, que o tratamento com ácido oleico elevou o acúmulo de TAG em cultura de adipócitos de galinha além de elevar as proteínas FABP4 e C/EBPs (141).

Estudos comparando os efeitos do tratamento com ácido palmitício (0.33 e 0.66 mM) e ácido oleico (0.66 e 1.32 mM) por 24 h em modelos *in vitro* de esteatose de células hepáticas (HepG2, HuH7, WRL68) mostraram aumento da ocorrência de apoptosis e redução na sensibilidade à insulina após tratamento com 16:0 quando comparado ao 18:1n9. Em contraste, 18:1n9 foi mais esteatogênico que 16:0 (142).

Já o ácido palmitoleico, um ácido graxo monoinsaturado n7, que, como descrito na introdução, atua sistemicamente nos tecidos periféricos modulando importantes processos metabólicos (1). O 16:1n7 aumenta a captação de glicose no músculo, a sensibilidade à insulina no fígado e atenua a esteatose hepática em ratos alimentados com dieta rica em gordura (1, 16). Efeitos citoprotetores também foram descritos (21), o tratamento com 16:1n7 protegeu células beta pancreáticas da morte induzida por ácido palmitício (15).
3 OBJETIVOS

Investigar os efeitos e mecanismos de ação do ácido graxo palmitoleico (16:1n-7) na captação e metabolismo de glicose e triacilglicerol em adipócitos brancos *in vivo* e *in vitro*.

3.1 Objetivos Específicos

Utilizando adipócitos primários epididimais de camundongos selvagens e deficientes em PPARα (knockout) e células 3T3-L1 diferenciadas foram realizados dois estudos que investigaram os efeitos do tratamento com o ácido graxo palmitoleico e mecanismos de ação sobre:

A. O peso corporal, ingestão alimentar, adiposidade e parâmetros bioquímicos plasmáticos de camundongos;
B. a captação e o metabolismo glicose na presença e ausência de insulina, bem como, a expressão gênica e proteica de proteínas envolvidas na regulação da captação de glicose (GLUT4, GLUT1, AKT e AMPK);
C. a síntese de TAG a partir de ácidos graxos, mediante teste de incorporação de palmitato em TAG;
D. a síntese de ácidos graxos a partir de glicose e acetato;
E. a síntese de glicerol 3-fosfato a partir de glicose e piruvato, bem como a expressão gênica de enzimas envolvidas na gliceroneogênese e fosforilação de glicerol (PEPCK e Gliceróquinase);
F. a lipólise, na presença ou ausência de isoproterenol e de inibidores sintéticos de PPARα e y, bem como, a expressão gênica e proteica de enzimas e proteínas envolvidas na lipólise (ATGL, HSL, MGL, perilipina, CGI-58, G0S2);
G. a atividade transcricional de PPARα.

Todos os resultados obtidos com o ácido graxo palmitoleico foram comparados aos efeitos oriundos do tratamento com os ácidos graxos palmítico (*in vitro*) e oleico (*in vivo*).
4 MATERIAIS E MÉTODOS

4.1 Cultura Celular

Fibroblastos imortalizados obtidos de embriões desagregados de camundongos Swiss (células 3T3-L1) foram cultivados em meio Dulbecco’s modified Eagle (DMEM), contendo 4,5 g/L de glicose, 10% de soro de bezerro (Calf serum), 100 U/mL de penicilina e 100 µg/mL de estreptomicina, a 37 °C, sob atmosfera úmida de 5% de CO₂. As células foram proliferadas até atingirem confluência total e após 2 dias (dia 0) foram diferenciadas em adipócitos mediante o tratamento com coquetel adipogênico composto de 0,5 mM IBMX (3-isobutyl-1-methylxanthine), 1 µM dexametasona, 1,67 µM insulina em meio DMEM acrescido de 10% soro bovino fetal (FBS). Após 48 horas, o meio foi trocado para DMEM (10% FBS) contendo 0,4 µM insulina, sendo este renovado a cada 2 dias (143).

No sexto dia após início da diferenciação celular, as células foram tratadas por 24 horas com ácido palmítico (16:0, 200 µM), ácido palmitoleico (16:1n7, 200 µM) ou veículo (etanol 0,05%). Em um único experimento, além dos tratamentos descritos acima, células foram tratadas com ácido palmítico (16:0, 100 µM) e palmitoleico (16:1n7, 100 µM) em conjunto. Após 20 horas de tratamento com ácidos graxos, o meio de cultura foi trocado para meio idêntico sem FBS e insulina.

Para os ensaios utilizando os inibidores farmacológicos de PPARs e AMPK, o tratamento com ácidos graxos ou veículo foram adicionados 30 minutos após o tratamento com veículo DMSO, GW6471 (10 µM), GW9662 (10 µM) ou Compound C (20 µM), antagonistas sintéticos de PPARα, PPAR γ e AMPK, respectivamente.

4.2 Viabilidade Celular

Para determinação da concentração dos ácidos graxos introduzidos na cultura, não tóxica para nossa célula, testes de citotoxicidade foram realizados. Para isto, as células foram tratadas por 24 horas com concentrações crescentes dos ácidos graxos diluídos em etanol e empregadas para o teste de viabilidade e fragmentação de DNA em citômetro de fluxo.
Para estudos de viabilidade, as células tripsinizadas foram centrifugadas a 2000 x g, por 3 minutos a 4 °C e o precipitado obtido foi ressuspensão em 500 µL de PBS. Em seguida, foram adicionados 50 µl de solução de iodeto de propídio (IP) (20 µg por mL em PBS), como descrito por Nicoletti et al. (1991) (144), e então as amostras foram analisadas usando citômetro de fluxo FACSCalibur (Becton Dickinson, San Juan, CA, USA). O IP é um composto fluorescente altamente solúvel em água que não atravessa membranas intactas e permite detectar as células com perda de integridade de membrana. O IP se liga ao DNA intercalando-se entre as bases, portanto, célula com membrana integra não permite sua entrada, apresentando, assim, baixa fluorescência. Já a célula cuja membrana apresenta-se rompida permite a entrada do IP e emite alta fluorescência quando excitada pelo laser. A fluorescência foi detectada no canal FL2 (fluorescência laranja - avermelhada - 585/42 nm). Foram consideradas viáveis as células 3T3-L1 que emitiam baixa intensidade de fluorescência. Dez mil eventos foram adquiridos por amostra em histograma. Os histogramas foram analisados utilizando o programa “Cell Quest” (Becton Dickinson, San Juan, CA, EUA). Já para estudos de fragmentação do DNA (apoptose), adicionou-se 300 µl de tampão de fragmentação às células, contendo IP 2 µg/mL, 0,1% de citrato de sódio e 0,1% de Triton X-100, agitou-se em vórtex, incubou-se por 30 minutos em temperatura ambiente (protegido da luz). Nesse ensaio, a membrana celular é rompida pelo Triton X-100, permitindo a entrada de IP na célula. Este, então, liga-se ao DNA e as células que o apresentam íntegro emitem alta fluorescência. No entanto, as que apresentam DNA fragmentado pelas endonucleases emitem baixa fluorescência. A fluorescência foi determinada no canal FL2 (fluorescência laranja-avermelhada - 585/42 nm).

4.3 Determinação do Perfil Lipídico dos Adipócitos por Cromatografia Gasosa

Células 3T3-L1 diferenciadas (~8 x 10^5 células/poço) foram lavadas 2 vezes com PBS, raspadas em 50 µL de PBS e transferidas para um tubo de vidro onde foram adicionados 1,6 mL de metanol, 100 µL de cloreto de acetila e 50 µl ácido margárico (10 mM, padrão interno), seguidos de incubação em banho quente (100 °C) por 1 hora. Após resfriamento, foram adicionados às amostras 2,5 mL de água e 0,75 mL de hexano, seguida de agitação em vórtex por 1 minuto e centrifugação a
3000 rpm, por 2 minutos a 4 °C. Posteriormente, a fase orgânica foi retirada, evaporada com N₂ e os lipídeos foram ressuspensos com 50 µl de hexano. Foi injetado 1 µl de hexano de cada amostra no equipamento Gas Chromatograph Trace 1310 (Thermo scientific) para determinação do perfil de ácidos graxos, seguindo o método de cromatografia gasosa descrito previamente (145).

4.4 Modelo Animal

Foram utilizados camundongos machos C57BL6 selvagens (wild type, WT) e deficientes (knockout, KO) para PPARα importados da empresa Jackson Laboratories e mantidos no biotério de camundongos do Instituto de Ciências Biomédicas I da Universidade de São Paulo. O tratamento foi iniciado quando os camundongos apresentavam de 8 a 10 semanas de vida. Os animais foram mantidos em caixas individuais, com água e ração ad libitum (ração padrão para roedores - Nuvilab), sob condições ambientais controladas, temperatura de 23 ± 2 °C, umidade relativa de 55 ± 10% e ciclo de iluminação 12/12 horas claro/escuro.

Todos os procedimentos realizados com os animais foram aprovados pelo Comitê de Ética no Uso de Animais (CEUA), protocolo número: 98/10 do Instituto de Ciências Biomédicas da Universidade de São Paulo, de acordo com as normas da Sociedade Brasileira de Ciências em Animais de Laboratório (SBCAL).

4.4.1 Desenho experimental

Os camundongos selvagens (wild type, WT) e deficientes para PPARα (knockout, KO) foram divididos nos seguintes grupos experimentais:

a) Camundogos WT que receberam gavagem diária de água (WT+H₂O);

b) Camundogos WT que receberam gavagem diária de ácido palmitoleico (WT+16:1n7, 300 mg/kg/dia);

c) Camundogos WT que receberam gavagem diária de ácido oleico (WT+18:1n9, 300 mg/kg/dia);
d) Camundogos KO que receberam gavagem diária com água (KO+H₂O);

e) Camundogos KO que receberam gavagem diária de ácido palmitoleico (KO+16:1n7, 300 mg/kg/dia).

Todos os animais receberam as gavagens diariamente às 16 horas, durante dez dias. Foram avaliados o peso corporal e consumo diário de ração.

4.5 Sacrificio dos Animais e Coleta de Sangue e Tecidos

Os animais foram sacrificados às 09:00 horas da manhã após 8 h de jejum. Para isto, os animais foram anestesiados com isoflurano (inalatório) e sacrificados por deslocamento cervical após coleta de sangue por punção cardíaca. As amostras foram centrífugas a 1.500 rpm por 20 minutos a 4 ºC e o soro devidamente armazenado em freezer -80 ºC para análises posteriores de glicose, insulina, TAG, colesterol total, ácidos graxos séricos. Logo após o sacrifício, diferentes depósitos de tecido adiposo subcutâneo, epididimal, retroperitoneal e tecido adiposo marrom, bem como, o fígado foram dissecados, pesados e armazenados em -80 ºC para análises posteriores.

4.6 Análise Bioquímica do Plasma

A glicemia, trigliceridemia e colesterolemia total foram determinados através de kits comerciais (Labtest Diagnóstica de Lagoa Santa, MG, Brasil). NEFA foi medido utilizando o kit NEFA série RH (Wako de diagnóstico de Richmond, VA, EUA) de acordo com as instruções do fabricante. A insulina sérica foi quantificada por ELISA (kit de Millipore de St. Charles, MO, EUA).

4.7 Isolamento e Análise Morfométrica dos Adipócitos

Os adipócitos do tecido adiposo epididimal foram isolados após digestão do tecido com colagenase como descrito por Rodbell (1964) (146), com algumas
modificações. Resumidamente, a gordura epididimal foi incubada em 4 mL de meio DMEM acrescido de HEPES 25 mM, albumina sérica bovina (BSA) 4% e colagenase tipo II (1,25 mg/mL, Sigma Chemical, St. Louis, MO, Estados Unidos), pH 7,45 por 60 minutos, a 37 °C, em banho-maria, com agitação orbital (150 rpm). Em seguida, a amostra foi filtrada em peneira plástica com malha fina para a retenção dos restos teciduais e vasos não digeridos e lavada por três vezes com 5 mL de tampão composto de HEPES 25 mM, BSA 1%, piruvato de sódio 1 mM, sem glicose, pH 7,45 mantido a 37 °C. Para a determinação do lipócrito (porcentagem de adipócitos contidos na suspensão celular total), aproximadamente 40 µL da suspensão celular foram colocados em capilar de vidro e submetidos à rápida centrifugação (2.000 rpm por 1 minuto). O volume total da suspensão corresponde a 100% e o volume de adipócitos obtido após a centrifugação nos fornece o lipócrito da amostra. Para análise morfométrica, alíquotas de suspensão celular foram avaliadas em microscópio óptico (aumento de 100x) acoplado à câmera digital 1.3 MP (Moticam 1000 - MOTIC). Utilizou-se o programa Motic-Images Plus 2.0 para medida da área transversal celular, da qual se obteve o raio celular médio. Em cada preparação foram medidas 50 células. A partir deste valor, assumindo-se que o adipócito isolado é esférico, foram calculados o volume, a área de superfície celular média e o número de células, conforme as fórmulas propostas por Fine e Girolamo (1997) (147).

4.8 Medida da Captação de [³H]-2-Deoxi D-Glicose por Adipócitos

Células 3T3-L1 diferenciadas (~8 x 10⁵ células/poço) ou adipócitos primários epididimais (1 x 10⁶ células/mL) foram incubados na ausência ou presença de insulina (100 ou 10 nmol/L, para 3T3-L1 e adipócitos epididimais, respectivamente), em tampão composto de 20 mM de HEPES, 140 mM de NaCl, 5 mM de KCl, 2,5 de mM MgSO₄, 1 mM de CaCl₂, 1% de BSA (pH 7,4), durante 20 minutos a 37 °C. No final do período de incubação, [³H]-2-Deoxi D-glicose (0,4 mmol/L, 1850 Bq/tubo) foi adicionado e a reação ocorreu por exatamente 4 minutos para 3T3-L1 e 3 minutos para adipócitos epididimais. A reação foi interrompida pela adição de 250 µl de phloretin (0,3 mmol/L em tampão HEPES e DMSO 0,05%). As células 3T3-L1 foram lavadas três vezes com PBS gelado e incubadas com 300 µL de NaOH (50 mM) sob
rotação suave por cerca de 20 minutos. 250 µL do meio foram coletados e transferidos para frascos contendo coquetel de cintilação biodegradável (EcoLume™, ICN Pharmaceuticals, Costa Mesa, CA, EUA) para a medida da radioatividade beta (1450 LSC, Couter MicroBeta, Trilux; PerkinElmer). Quanto aos adipócitos primários, alíquotas de 200 µL foram transferidos para tubos de microcentrífuga (capacidade de 450 mL) contendo 200 µL de óleo de silicone (densidade de 0,963 mg/mL) e centrifugados por 10 segundos a 11.000 × g. As células residentes no topo da camada de silicone foram recolhidas e a radioatividade foi medida em contador beta. Os resultados foram expressos como µmol de glicose captada por 10^6 células para 3T3-L1 e nmol/cm² de área de superfície para adipócitos epididimais.

4.9 Medida da Conversão de Glicose em Lactato

Células 3T3-L1 diferenciadas (~8 x 10⁵ células/poço) foram incubadas na presença ou ausência de insulina (100 nmol/litro) em tampão Krebs/Ringer/Fosfato contendo BSA 1% e glicose 2 mM, previamente saturado com carbogênio 5% (pH 7,4), durante 2 horas a 37 ºC. Ao final da incubação, foi medida a quantidade de lactato no meio produzido a partir da glicose utilizando o kit comercial Lactato enzimático (Labtest Diagnóstica de Lagoa Santa, MG, Brasil). Os resultados foram expressos em ng de lactato por 10⁶ células.

4.10 Medida da Oxidação e Incorporação de D-[U-¹⁴C]-Glicose em TAG

Células 3T3-L1 diferenciadas (~8 x 10⁵ células/poço) ou adipócitos primários epididimais (1 x 10⁶ células/mL) foram incubadas na presença ou ausência de insulina (100 nmol/L para células 3T3-L1, para adipócitos primários não houve incubação com insulina), em tampão Krebs/Ringer/Fosfato acrescido de BSA 1% e [U-¹⁴C]-glicose (2 mM, 1850 Bq/tubo) previamente saturado com carbogênio 5% (pH 7,4), durante 2 horas a 37 ºC. Apenas em células 3T3-L1, antes das 2 horas de incubação, cada poço foi coberto com um pedaço de papel filtro e a placa foi selada com parafilm. Após o período de incubação, o papel filtro foi embebido com 0,1 ml de etanolamína, para captar o CO₂ produzido, e então 0,2 mL de H₂SO₄ a 8 N foi
injetado nos poços para parar a reação. Após 45 minutos de captura de CO₂, os pedaços de papel filtro foram removidos e transferidos para frascos de cintilação para contagem de radioatividade e o resultado expresso como pmol de glicose oxidada por 10⁶ células (148, 149). Na sequência, ao término da incubação, em células 3T3-L1 e adipócitos epididimais, foi realizada a extração dos lipídios mediante a adição de 2,5 mL de solução de Dole (isopropanol:n-heptano:H₂SO₄ 8N, 4:1:0.25 v:v:v). Para células 3T3-L1, após adição do Dole, a placa foi raspada e todo conteúdo transferido para tubos de ensaio. Em seguida, todas as amostras foram agitadas 4 vezes em vórtex num período de 30 minutos. Ao final do período, foram adicionados 1,5 mL de n-heptano e 1,5 mL de água deionizada. Após a agitação em vórtex, deixou-se a mistura decantar e alíquotas de 0,5 mL da fase superior (contendo os lipídios extraídos no n-heptano) foram transferidas para vials contendo 2,5 mL de líquido de cintilação para contagem da radioatividade beta incorporada. Os resultados foram expressos como nmol de glicose incorporada em TAG por 10⁶ células. Além disso, 1 mL da fase superior também foi separada para realização do ensaio de incorporação de glicose em ácidos graxos de TAG (descrito abaixo).

4.10.1 Medida da Incorporação de D-[U-¹⁴C]-Glicose em Ácidos Graxos

Em 1 mL dos lipídios totais obtidos do experimento de incorporação de D-[U-¹⁴C]-glicose em TAG foram adicionados 1 mL de etanol (95%) e 250 µL de KOH (40%). Os tubos de ensaio foram frouxamente tampados e colocados em banho-maria a 60 ºC por 1 hora. Após resfriamento das amostras, foi adicionado 2 mL de HCL (3 N) e 2 mL de n-heptano. Esta mistura foi homogeneizada em vórtex e deixado em repouso por 10 minutos. Uma amostra de 1 mL da fase superior desta mistura foi retirada e transferida para um tubo contendo 2,5 mL de líquido de cintilação que foi levado ao contador beta. Os resultados foram expressos como nmol de glicose incorporada em ácidos graxos por 10⁶ células.

4.10.2 Medida da Incorporação de D-[U-¹⁴C]-Glicose em Glicerol

A incorporação de D-[U-¹⁴C]-Glicose em glicerol foi obtida através da diferença entre a incorporação de D-[U-¹⁴C]-Glicose em TAG e ácidos graxos (150).
4.11 Medida da Incorporação de [1-14C]-Piruvato em Glicerol de TAG

Células 3T3-L1 diferenciadas (~8 x 10^5 células/poço) foram incubadas em tampão Krebs/Ringer/Fosfato, BSA 1% e [1-14C]-piruvato (5 mM, 1850 Bq/poço), saturado com mistura gasosa de carbogênio 5% (pH 7,4), durante 2 horas a 37 °C. Ao término da incubação, foi realizada a extração dos lipídeos como descrito acima (ver 4.10). Os resultados foram expressos como pmol de piruvato incorporado em glicerol de TAG por 10^6 células.

4.12 Medida da Incorporação de [1-14C]-Acetato em Ácidos Graxos

Células 3T3-L1 diferenciadas (~8 x 10^5 células/poço) foram incubadas na ausência ou presença de insulina (100 nmol/L) em tampão Krebs/Ringer/Fosfato, BSA 1%, glicose 2 mM e [1-14C]-acetato (1 mM, 1850 Bq/poço), saturado de uma mistura gasosa de carbogênio 5% (pH 7,4), durante 2 horas a 37 °C. Ao término da incubação, foi realizada a extração dos lipídios como descrito acima (ver 4.10). Os resultados foram expressos como nmol de acetato incorporado em ácidos graxos por 10^6 células.

4.13 Determinação da Atividade de Enzimas Lipogênicas

Células 3T3-L1 diferenciadas (~8 x 10^5 células/poço) foram homogeneizadas em tampão de extração contendo sacarose (250 mM), EDTA (1 mM), DTT (1 mM), leupeptina (50 µM) e aprotinina (5 µM), pH 7,4. O material mantido em gelo foi homogeneizado em vórtex e centrifugado a 20.000 x g a 4 °C. Após a centrifugação, o infranadante livre de gordura (fat cake free) foi utilizado para a determinação da atividade enzimática máxima. Para todas as enzimas, a absorbância foi medida a 340 nm, sendo o coeficiente de extinção para este comprimento de onda igual a 6,22. As proteínas foram quantificadas pelo kit de ensaio proteico BCA® (PIERCE Biotechnology, Rockford, IL, Estados Unidos). Os resultados foram expressos em nmol.min.µg de proteína presente no extrato.
4.13.1 Atividade Máxima da Enzima Glicose-6-fosfato-desidrogenase (G6PDH)

A atividade da G6PDH foi determinada segundo Bergmeyer et al. (1974) (151), como medida indireta da atividade enzimática da G6PDH, pela produção total de NADPH pela via das pentoses-fosfato.

Para a reação enzimática, 15 µL de amostra foram adicionados a 270 µl de tampão de ensaio contendo Tris-HCL (8,6 mM), MgCl₂.6H₂O (6,9 mM), NADP (0,4 mM) e Triton X-100 (0,05%, v/v), pH 7,6. A reação foi iniciada com a adição de 15 µl de glicose-6-fosfato (1,2 mM) ao extrato enzimático, com monitoramento da absorbância a 340 nm por 10 minutos a 25 ºC.

4.13.2 Atividade Máxima da Enzima Ácido Graxo Sintase (FAS)

A atividade da FAS foi determinada segundo Bazin e Ferré (2001) (152), como medida da oxidação (consumo) total de NADPH.

O tampão de ensaio utilizado (volume de 260 µl por poço) consistiu de KH₂PO₄ (100 mM), acetilCoA (100 µM) e NADPH (200 µM), pH 6,5. A reação foi iniciada com a adição de 10 µL de malonil-CoA (600 µM) e KH₂PO₄ ao extrato enzimático, sendo acompanhada por 10 minutos de leitura a 37 ºC.

4.13.3 Atividade Máxima da Enzima ATP-citrato Líase (ACL)

A atividade da enzima ACL foi determinada segundo Bazin e Ferré (2001) (152). Resumidamente foi utilizado 270 µL de tampão de ensaio contendo Tris-HCl (200 mM), MgCl₂ 6H₂O (20 mM), citrato de potássio (20 mM), DTT (1 mM), malato desidrogenase (1 U/mL), CoA (0,5 mM) e NADP (0,2 mM). A reação foi iniciada com a adição de 15 µl da solução de ATP (60 mM), Tris-HCl (200 mM) e MgCl₂ 6H₂O (20 mM) ao extrato enzimático e incubada por 10 minutos a 37 ºC.

4.14 Teste de Incorporação de [U-¹⁴C]-Palmitato em TAG

Células 3T3-L1 diferenciadas (~8 x 10⁵ células/poço) ou adipócitos primários epididimais (1 x 10⁶ células/mL) foram incubados em tampão Krebs/Ringer/Fosfato,
BSA1%, glicose (2 mM) e [U-14C]-Palmitato (200 µM, 1850Bq/tubo), saturado de uma mistura gasosa de carbogênio 5% (pH 7.4), durante 2 horas a 37 °C. Ao término da incubação, para células 3T3-L1, o tampão foi removido e as células (ainda aderidas à placa) foram lavada com PBS (3 vezes), em seguida, foi realizada a extração dos lipídeos como descrito acima (ver 4.10). Os resultados foram expressos como nmol de palmitato incorporado em TAG por 106 células.

Os adipócitos epididimais após incubação com tampão acima descrito foram transferidos para tubos contendo óleo de silicone (800 µL) e centrifugado em microcentrifuga refrigerada, a 0 °C por 1 minuto a 7.000 rpm, para que os adipócitos fossem, dessa forma, separados do tampão contendo palmitato marcado, evitando, assim, erros na leitura da radioatividade emitida pela amostra. Os resultados foram expressos como µmol de palmitato incorporado em TAG por 106 células.

4.15 Lipólise

A lipólise foi mensurada pela liberação de glicerol pelos adipócitos para o meio de incubação em condições basais (não-estimuladas) e estimuladas com isoproterenol (2 x 10-6 M).

Células 3T3-L1 diferenciadas (~8 x 105 células/poço) ou adipócitos primários epididimais (1x106 células/mL) foram incubados em tampão Krebs/Ringer/phosphato (pH 7.4) contendo BSA (20 mM) e glicose (5 mM) por 30 minutos a 37 °C. Aliquotas (50 µL) do meio de incubação de células 3T3-L1 foram coletadas para a determinação da concentração de glicerol liberado pelas células por método enzimático-colorimétrico (Sigma-Aldrich - \textit{Free Glycerol Determination Kit}, St. Louis, Estados Unidos) (150). Em seguida, as células foram lavadas com PBS e homogeneizadas em tampão para quantificação das proteínas e normalização os dados. Dados foram expressos como µmol/mg de proteína. O meio de incubação dos adipócitos epididimais foi centrifugado em a 0 °C por 5 minutos a 7.000 rpm. Aliquotas (120 µL) do infranadante foram coletadas para a determinação da concentração de glicerol liberado pelas células e os resultados foram expressos em µmol de glicerol liberado por 106 células.
4.16 Medida dos Níveis de mRNA em Tempo Real pela Reação em Cadeia da Polimerase (PCR)

RNA total foi isolado de células 3T3-L1 diferenciadas (~8x10⁵ células/poço) ou tecido adiposo epididimal (100 mg) usando o reagente Trizol (Invitrogen, Carlsbad, CA, EUA). Foram adicionados 0,2 mL de clorofórmio ao homogenato e posteriormente realizada uma centrifugação a 12.000 x g para recuperação da fase aquosa superior onde foi adicionado 0,5 ml de isopropanol e seguido de nova centrifugação a 12.000 x g para obtenção do precipitado. Descartou-se o sobrenadante e ao pellet foi adicionado 1 ml de etanol 75% seguido de centrifugação a 7500 x g. O sobrenadante foi novamente descartado e o procedimento de lavagem com etanol foi repetido. O precipitado final, sem resíduo de etanol, foi novamente suspenso em 30 µl de água ultrapura (Sigma).

A concentração de RNA das amostras foi determinada a 260 nm em espectrofotômetro Nanodrop (Thermo), utilizando-se 1 µl da solução. O DNA complementar (cDNA) foi sintetizado a partir de 1 µg de RNA total com o kit da Superscript III (Invitrogen) seguindo recomendações do fabricante. O PCR em tempo real foi realizado com kit SyberGreen (Sigma, USA), seguindo criteriosamente as recomendações do fabricante e a análise dos resultados foi feita utilizando o software disponibilizado pelo fabricante. Resumidamente, o número arbitrário de cópias dos genes de interesse e constitutivos foram calculados pela fórmula (1000000/2^{CT}) para cada amostra, onde CT é o número de ciclos de amplificação necessários para atingir o limiar determinado na fase exponencial da curva. Valores são apresentados como número de cópias relativas ao controle após correção com o gene constitutivo 36B4 ou GAPDH. Os primers utilizados estão listados na tabela abaixo (Tabela 1).
Tabela 1 - Sequências sense e antisense dos primers utilizados no PCR tempo-real.

Gene	5' Primer (5'-3')	3' Primer (5'-3')	Annealing	Pubmed Id
GAPDH	CCACCACCTGTGGCTGTAG	CTTGGGCTACACTGAGGACC	60 °C	NM_008084.2
36B4	TAAAGACTGGAGACAAAGGTG	GTGTACTCAAGTCTCCACAGA	63 °C	NM_007475
GLUT4	CATTCCCTGGTACCAGTAGTGG	GAAGACGTAGGACCCCCATAGC	60 °C	NM_009204
ATGL	GTGCCCTCTGACATCCCTCTTT	CTGTCCTGAGGGAGATGTC	63 °C	NM_025802
HSL	GGGAGGGCCTCAGGTTCACCA	ATACGCAGGACGTGGTGAGGG	60 °C	NM_010719.5
MGL	TTTTGCTCCATGGAGCTGG	GGGTCAGAGTTGTACAGGCTAA	60 °C	NM_011844
Perilipin	AGTGTGGGTTGTCGTCGCTTG	TGGCAGCTGTAAGCTGGTGAGGG	60 °C	NM_175640
GOS2	ACTGCACCCTAGGCCAGGCCAC	GGCTGCACAGGGTGCGCTCTC	60 °C	NM_008059.3
CGI-58	TGGAGGGTCAGATGGCTGA	GCCCTACGGGTGCTTAGATCTTCA	60 °C	NM_026179
PEPCK	CGATGACATCGCCTGGATGGA	TCTTGCCCTTTGTTTCTGCA	60 °C	NM_011044
GyK	AATCCGGTTACTCCACATGGGA	ACCCGATCTTAACTGTCAAT	58 °C	NM_008194

Fonte: GenBanK, 2012.

4.17 Determinação do Conteúdo de Proteínas por Western Blotting

Para análise do conteúdo proteico de GLUT1 e GLUT4, células 3T3-L1 diferenciadas (~8 x 10^5 células/poço) foram homogeneizadas e processadas em tampão de lise (10 mmol/L Tris-HCl, 1 mmol/L EDTA e 250 mmol/L sacarose) com pH 7,4 e centrifugados a 2000 x g durante 15 minutos a 4 °C como descrito por Papa et al. (1997) (153). Para a análise das demais proteínas, as células 3T3-L1 foram homogeneizadas e processadas em tampão de lise (25 mM Tris-HCl, pH 7,4; 50 mM NaCl; deoxicolato de sódio 0,5%; Nonidet P-40 2%; SDS 2%; 1 mM fenilmetilsulfonil fluoreto (PMSF); 1 mM ortovanadato de sódio, 50 µM leupeptina e 5 µM aprotinina). As amostras foram incubadas em gelo por 15 minutos e centrifugadas por 15 minutos, 13.000 rpm a 4 °C.
O conteúdo proteico de cada sobrenadante foi quantificado em duplicata usando o Kit BCA (Pierce). Em seguida, 10 µg de proteína de cada amostra foram desnaturadas a 95 ºC (misturadas em reducing protein sample buffer 4x: 200mM Tris pH 7,8; 8% SDS; 0,4% de azul de bromofenol; 40% de glicerol; 400mM de DTT) por 10 minutos. As proteínas foram então separadas por eletroforese utilizando-se um gel de poliacrililamida gradiente de 4 a 12% e transferidas para uma membrana de PVDF por 2 horas. As amostras foram coradas com ponceau por 5 minutos e cortadas de acordo com o peso molecular do marcador (Precision Plus Protein Standart - Kaleidoscope- BIO RAD). As membranas foram bloqueadas por três horas com leite (non-fat dry), lavadas três vezes em PBST (PBS-0,1% Tween 20) e incubadas overnight a 4ºC com anticorpos primários diluídos (1:1000) em 5% leite em PBST: GLUT1 (#07-1401) e GLUT4 (#07-1404) (Millipore, Billerica, MA, USA) ou AKT (#9685S), phosphoSer473 AKT (#4060S), AMPKα (#2532), phosphoThr172 AMPKα (#2531), ATGL (#2138), HSL (#4107), phosphoSer660 HSL (#4126) e γ-tubulin (#5886) (Cell Signaling, Beverly, MA, USA) ou GAPDH (G9545, Sigma-Aldrich, USA). Em seguida, as membranas foram novamente lavadas em PBST e incubadas com os respectivos anticorpos secundários anti-coelho ou anti-camundongo (conjugados com peroxidase) por 1 hora em temperatura ambiente, seguidas de tratamento com reagentes de quimioluminescência para visualização das proteínas (ECL Western blotting detection- GE Healthcare Life Sciences).

4.18 Atividade Transcripcional de PPARalpha

A ligação de PPARα em sua sequência consenso de DNA foi mensurada na fração nuclear de células 3T3-L1 diferenciadas (~8 x 10^5 células/poço), tratadas por 12 h com veículo ou 16:1n7 (200 μM), obtidas utilizando um KIT de extração nuclear (Pierce, Rockford, IL). Os extratos nucleares foram incubados em placas com o elemento de resposta ao PPAR (Caymen Chemical, Ann Arbor, MI) e as amostras então reconhecidas por anticorpos específicos para PPARα. As placas foram lidas por método colorimétrico (450 nm). As amostras foram avaliadas pelo controle positivo de PPARα para testar a eficiência do anticorpo utilizado e normalizada pela concentração de proteínas.
4.19 Análise Estatística

Os dados foram expressos como média ± erro padrão da média (EPM). Comparações entre dois grupos foram analisadas através de teste T de *student*. Comparações entre três ou mais grupos foram realizadas através de análise de variância ANOVA de uma via ou duas vias, seguida do pós-teste de Tukey ou Bonferroni, respectivamente. Análises foram realizadas utilizando o GraphPad Prism version 5.0 software (GraphPad Software, Inc., San Diego, CA, USA) e as diferenças consideradas significativas para p ≤ 0,05.
5 RESULTADOS

5.1 Estudo I: Efeitos do ácido palmitoleico sobre a captação e utilização de glicose em adipócitos brancos

Em um primeiro estudo, nós investigamos os efeitos do tratamento com o ácido palmitoleico no metabolismo de glicose em adipócitos brancos. Para isso utilizamos adipócitos primários epididimais de camundongos WT tratados, por gavagem, diariamente, durante 10 dias com água, ácido oleico (300 mg/kg) ou ácido palmitoleico (300 mg/kg). Como apresentado na Tabela 2, nenhum dos tratamentos afetou o peso corporal, a ingestão de alimentos, os pesos do tecido adiposo branco e marrom e fígado e as concentrações plasmáticas de colesterol, ácidos graxos livres, insulina e glicose dos camundongos WT durante o período de tempo avaliado. Em contraste, o tratamento com 18:1n9, mas não 16:1n7, aumentou significativamente os níveis de triglicérides plasmáticos em camundongos.

Tabela 2 - Peso corporal e dos órgãos, ingestão alimentar e análise bioquímica plasmática de camundongos selvagens (WT) tratados, por 10 dias, com gavagens diárias de água (H2O), ácido oleico (18:1n9, 300 mg/kg) ou ácido palmitoleico (16:1n7, 300 mg/kg) ou (n = 4-5).

	WT+H2O	WT+16:1n7	WT+18:1n9
Peso corporal inicial (g)	25,6 ± 0,6	25,4 ± 0,6	26,6 ± 1,3
Peso corporal final (g)	24,4 ± 0,5	24,6 ± 0,4	25,7 ± 1,04
Ingestão alimentar (g/dia)	3,6 ± 0,1	3,8 ± 0,1	3,5 ± 0,1
TAB Epididimal (mg/g)	13,3 ± 1,3	12,5 ± 1,2	13,1 ± 1
TAB Inguinal (mg/g)	8,3 ± 1	9,3 ± 1,4	7,4 ± 0,9
TAB Retroperitoneal (mg/g)	2,3 ± 0,5	2,3 ± 0,6	2,0 ± 0,2
TAM (mg/g)	2,1 ± 0,1	2,3 ± 0,2	2,0 ± 0,1
Fígado (mg/g)	44,7 ± 1,2	46,1 ± 2,1	44 ± 0,6
Triglicérides (mg/dL)	79,6 ± 18,2	79,3 ± 8,7	139,2 ± 17,7
Colesterol total (mg/dL)	87,2 ± 8,6	100 ± 8	107,3 ± 12
Ácido graxo livre (mEq/L)	0,72 ± 0,07	0,60 ± 0,08	0,90 ± 0,15
Insulina (ng/mL)	0,75 ± 0,21	0,89 ± 0,25	0,66 ± 0,04
Glicose (mg/dL)
101 ± 10,6
107 ± 14,1
108,3 ± 16,3

Dados estão expressos como média ± EPM. *P < 0.05 WT+18:1n9 vs. todos os tratamentos. ANOVA de uma via seguido de pós teste de Tukey. TAB, tecido adiposo branco; TAM, tecido adiposo marrom.

Posteriormente, investigamos os efeitos do tratamento com 16:1n7 no metabolismo de glicose em adipócitos primários epididimais. Como apresentado na Figura 7 A, o tratamento com 16:1n7 aumentou significativamente a captação de glicose basal e estimulada pela insulina em adipócitos epididimais quando comparados aos grupos tratados com água ou ácido oleico (~3 vezes e ~1,8 vezes, basal e estimulada pela insulina, respectivamente). Este aumento na captação de glicose induzido pelo 16:1n7 está associado com um aumento nos níveis de mRNA do transportador de glicose GLUT4 (~ 86%) (Figura 7 B).

Figura 7 - A - Captação de glicose basal e estimulada com insulina; **B -** Níveis de RNA mensageiro do transportador de glicose 4 (GLUT4) em adipócitos primários epididimais provenientes de camundongos selvagens tratados, por 10 dias, com gavagens diárias de água (H₂O), ácido oleico (18:1n9, 300 mg/Kg/dia) ou ácido palmítoleico (16:1n7, 300 mg/Kg/dia) (n = 5-6).

Com o objetivo de elucidar os mecanismos moleculares envolvidos no aumento da captação de glicose induzida pelo 16:1n7 *in vivo*, nós realizamos uma série de experimentos *in vitro* utilizando células 3T3-L1 diferenciadas em adipócitos maduros após 24 horas de tratamento com os ácidos graxos 16:1n7, 16:0 ou veículo.
Inicialmente, contudo, realizamos testes de citotoxicidade com o objetivo de determinar a concentração adequada dos ácidos graxos para os experimentos *in vitro*, que não fosse tóxica para os adipócitos. Para isto, adipócitos 3T3-L1 no sexto dia de diferenciação foram tratados por 24 horas com diferentes concentrações dos ácidos palmítico e palmitoleico diluídos em etanol e avaliados para a viabilidade e fragmentação de DNA. Como apresentado na Figura 8, concentrações de ácidos graxos de até 300 µM não foram tóxicas para as células. Baseados nestes dados, decidimos utilizar a dose de 200 µM de ácidos graxos nos experimentos *in vitro*.

Figura 8 - A e C - Teste de viabilidade; **B e D** - Teste de fragmentação em células 3T3-L1, 7 dias após diferenciação, tratadas com diferentes concentrações de ácido palmitoleico ou palmítico diluídos em etanol por 24 horas, (n = 5).

Dados estão expressos em média ± EPM. Letras diferentes são estatisticamente diferentes. P < 0.05 em comparação à concentração zero. ANOVA de uma via seguido de pós teste de Tukey.

Definida a dose de tratamento com os ácidos graxos, nós posteriormente avaliamos os efeitos do tratamento com ácido palmítico ou palmitoleico no perfil de ácidos graxos nas células 3T3-L1, uma vez que adipócitos expressam várias enzimas que podem modificar quimicamente os ácidos graxos (elongases e
dessaturases). Conforme avaliado por cromatografia gasosa, o ácido palmitoleico é o mais abundante ácido graxo (~36%) encontrado em adipócitos 3T3-L1, seguido do ácido palmítico (~23%) e ácido oleico (~10%) (Tabela 3). Apesar dos tratamentos não afetarem significativamente o conteúdo de ácidos graxos totais (veículo= 564 ± 2,7; 16:0= 615 ± 23 e 16:1n7= 629 ± 43 µg/10^6 células, p= 0,11, dados expressos como média ± EPM), o tratamento com o ácido palmítico, durante 24 h, induziu um aumento significativo no conteúdo de ácido palmítico em células 3T3-L1, sem afetar significativamente a composição celular de outros ácidos graxos, tais como palmitoleico, esteárico e oleico, mas tem menores concentrações de vacênico. Similarmente, o tratamento com ácido palmitoleico, durante 24 h, induziu um aumento significativo no conteúdo de ácido palmitoleico em 3T3-L1, sem afetar de forma significativa a concentração dos ácidos palmítico, esteárico, oleico e vacênico.

Tabela 3: Perfil lipídico e conteúdo de ácido palmítico (16:0), palmitoleico (16:1n7), esteárico (18:0), oleico (18:1n9) e vacênico (18:1n7) em células 3T3-L1 diferenciadas tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM) ou palmitoleico (16:1n7, 200 µM) (n = 4-5).

Ácidos graxos Metil Ester (%)	Ácidos graxos/ Ácidos graxos totais(µg/mg)
Veículo 16:0 16:1n7	Veículo 16:0 16:1n7
16:0	23,6 ± 0,08 25,6 ± 0,25* 23,0 ± 0,21
16:1n7	36,4 ± 0,12 36,5 ± 0,30 39,7 ± 0,10*
18:0	2,04 ± 0,02 1,9 ± 0,04 2,1 ± 0,18
18:1n9	10,5 ± 0,02* 9,8 ± 0,11 9,7 ± 0,13
18:1n7	3,3 ± 0,04# 2,9 ± 0,04 3,3 ± 0,14#

DADOS ESTÃO EXPRESSOS COMO MÉDIA ± EPM. *P < 0.05 vs. todos os tratamentos e #P < 0.05 vs. 16:0. ANOVA de uma via seguido de pós teste de Tukey.

Similarmente aos resultados encontrados em adipócitos primários de camundongos tratados com 16:1n7, o tratamento de células 3T3-L1 com 16:1n7, mas não com 16:0, aumentou significativamente a captação de glicose basal e estimulada por insulina (~51% e ~36%, respectivamente) quando comparados ao tratamento com veículo (Figura 9 A). Em contraste, o tratamento com 16:0 reduziu
significativamente a captação de glicose na presença de insulina (~40% vs. veículo e ~90% vs. 16:1n7).

Em associação a maior captação de glicose in vitro, verificamos que o tratamento com 16:1n7 promoveu um aumento tanto dos níveis de mRNA (34%), bem como, do conteúdo proteico de GLUT4 em condições basais ou estimuladas pela insulina em comparação as células tratadas com veículo ou 16:0 (Figura 9 B e C). Além disso, o tratamento de células 3T3-L1 com 16:1n7 também induziu um aumento significativo no conteúdo de AMPKα fosforilada em Thr 172, avaliado tanto na ausência quanto na presença de insulina (Figura 9 F). Nenhum dos tratamentos, entretanto, interferiu com o conteúdo de proteínas de GLUT1 ou AKT fosforilada no resíduo Ser473 (Figura 9 D e E). Contudo, o efeito positivo do tratamento com 16:1n7 no conteúdo proteico de GLUT4 foi completamente abolido após inibição farmacológica de AMPK (Figura 9 G).
Figura 9 - A - Captação de glicose; B - Níveis de RNA mensageiro do transportador de glicose 4 (GLUT4); C - Conteúdo proteico de GLUT4, D - GLUT1, E - AKT fosforilada em Serina 473 e F - AMPKα fosforilada em Treonina 172 em células 3T3-L1 tratadas por 24 horas com veículo (etanol), ácido palmílico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) em condição basal e estimulada com insulina. G - Conteúdo proteico de GLUT4 em células 3T3-L1 tratadas por 24 horas com veículo, Compound C (Comp.C, 20 µM), ácido palmitoleico (16:1n7, 200 µM) ou Compound C associado com ácido palmitoleico (Comp.C+16:1n7) (n = 3-8).

Dados estão expressos como média ± EPM. *P < 0.05 vs. todos os tratamentos. ANOVA de uma via seguido de pós teste de Tukey (Painel A-F) e ANOVA de duas vias seguido de pós teste de Bonferroni (Painel G).
Em seguida, diversos experimentos foram realizados com o objetivo de investigar os efeitos do tratamento com 16:1n7 na utilização e metabolismo de glicose em adipócitos 3T3-L1. Como demonstrado na Figura 10, dentre os seus diversos possíveis destinos metabólicos, o tratamento com 16:1n7 aumentou significativamente a glicólise anaeróbia e aeróbia na presença de insulina, estimadas pela conversão de glicose em lactato e a oxidação completa à CO₂, quando comparado com o grupo veículo (~29% e ~27%, respectivamente) e grupo 16:0 (~29% e ~78%, respectivamente) (Figura 10 A e B). Por outro lado, o tratamento com 16:0 reduziu a oxidação de glicose sob condição basal e condição estimulada com insulina comparado aos demais grupos investigados. Verificou-se ainda, que os tratamentos tanto com 16:0 ou 16:1n7 aumentaram a geração de glicerol 3-fosfato pela via glicolítica em células 3T3-L1 em comparação as células tratadas com veículo (~37% e ~21%, respectivamente), como evidenciado pelas elevadas taxas de incorporação de glicose em glicerol-TAG em condições basais. No entanto, nenhuma diferença foi encontrada nesta variável após estímulo com insulina (Figura 10 C).
Figura 10 - A - Conversão de glicose em lactato; B - Oxidação de glicose em CO₂; C - Incorporação de glicose em glicerol-TAG basal e estimulada com insulina, em células 3T3-L1 diferenciadas, tratadas por 24 horas com veículo (etanol), ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-10).

Dados estão expressos como média ± EPM. *P < 0.05 vs. todos os tratamentos e #P < 0.05 vs. veículo. ANOVA de uma via seguido de pós teste de Tukey.
Continuando nossos estudos sobre o metabolismo da glicose, investigamos se o tratamento com 16:1n7 modifica a síntese de novo de ácidos graxos em células 3T3-L1. Como ilustrado, na Figura 11 A, o tratamento com 16:1n7 ou 16:0 reduziram a síntese de novo de ácido graxo estimulada pela insulina evidenciado pela reduzida velocidade de incorporação de acetato marcado em ácidos graxos em comparação com o veículo. No entanto, não houve diferenças significativas na incorporação de acetato em ácidos graxos em condições basais. Além disso, em condições basais, o tratamento com 16:1n7 reduziu a incorporação de glicose em ácidos graxos de TAG em comparação com os demais tratamentos (~43%) e, em condições estimuladas, ambos 16:1n7 e 16:0 reduziram (~29%) a incorporação de glicose em ácidos graxos de TAG comparados ao veículo em células 3T3-L1 (Figura 11 B). Além das medidas de fluxo metabólico, o tratamento com 16:1n7 reduziu a atividade da ACL (~15%) que catalisa a quebra do citrato em acetil-CoA no citosol e da G6PDH (~15%), uma enzima envolvida na geração de NADPH processos implicados na síntese de novo de ácidos graxos (Figura 11C-E). Em contraste ao 16:1n7, o tratamento com 16:0 diminui apenas a atividade da ACL (~27%). Não foram encontradas diferenças significantes na atividade máxima da FAS para todos os tratamentos.
Figura 11 - A - Incorporação de acetato em ácidos graxos basal e estimulada com insulina; B - Incorporação de glicose em ácidos graxos-TAG basal e estimulada com insulina; C - Atividade enzimática máxima da ATP-citrate liase (ACL); D - Atividade enzimática máxima da Ácido Graxo Sintase (FAS); E - Atividade enzimática máxima da Glicose-6-Fosfato Desidrogenase (G6PDH) em células 3T3-L1 diferenciadas, tratadas por 24 horas com veículo (etanol), ácido palmitico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-8).

Dados estão expressos como média ± EPM. *P < 0.05 vs. veículo e #P < 0.05 vs. 16:0. ANOVA de uma via seguido de pós teste de Tukey.
5.2 Estudo II: Efeitos do ácido palmitoleico no metabolismo de TAG em adipócitos brancos

Em um segundo estudo, nós investigamos os efeitos do tratamento com ácido palmitoleico no metabolismo do TAG e possíveis mecanismos envolvidos. Dessa forma, iniciamos essa investigação avaliando a lipólise em células 3T3-L1 diferenciadas, tratadas 24 horas com veículo, ácido palmítico (200 µM), ácido palmitoleico (200 µM), ou sua associação (16:0, 100 µM + 16:1n7, 100 µM).

Como apresentado na Figura 12 A e B, o tratamento com 16:1n7 aumentou significativamente a lipólise basal e estimulada, como evidenciado pelas elevadas concentrações de glicerol presentes no meio de cultura de células tratadas com 16:1n7 em comparação com os tratados com veículo (~57% e 58%, basal e estimulado, respectivamente) e ácido palmítico (~53% e 56%, basal e estimulado, respectivamente). O tratamento combinado de 16:1n7 + 16:0 não interfere com o aumento na lipólise basal e estimulada induzida por 16:1n7 sozinho. Além disso, o aumento na lipólise induzido pelo 16:1n7 foi associado com um aumento significativo dos níveis de mRNA das lipases ATGL (~64%) e HSL (~100%), mas não da MGL ou de outras proteínas envolvidas na atividade lipolítica, tal como perilipina A, CGI-58 e G0S2 (Figura 12 C - H). Ainda em células 3T3-L1, o tratamento com 16:1n7, mas não 16:0, aumentou significativamente o conteúdo da proteína ATGL e da HSL fosforilada em Ser660 (Figura 12 I - K).
Figura 12 - A - Lipólise basal; B - Lipólise estimulada com isoproterenol; C - Níveis de RNA mensageiro da lipase de triglicerídeos do adipócito (ATGL), D - lipase hormônio sensível (HSL), E - lipase de monoglicerídeos (MGL), F - CGI-58, G - Perilipina A e H - G0S2; I - Conteúdo proteico da ATGL, J - HSL e K - HSL fosforilada em Serina 660 em células 3T3-L1 diferenciadas tratadas por 24 horas com veículo (etanol), ácido palmitico (16:0, 200 µM), ácido palmitoleico (16:1n7, 200 µM) ou sua associação (16:0, 100 µM + 16:1n7, 100 µM) (n = 4-9).

Dados estão expressos como média ± EPM. *P < 0.05 vs. veículo e 16:0. ANOVA de uma via seguido de pós teste de Tukey.
Com o objetivo de investigar os possíveis mecanismos envolvidos no aumento de lipólise induzido pelo 16:1n7, nós testamos a participação dos "sensores de lipídios" PPARs nestes efeitos. Como ilustrado na Figura 13 A e B, a inibição farmacológica de PPARγ (GW9662) não afetou o aumento induzido pelo 16:1n7 na lipólise em condições basais e estimuladas com insulina.

Figura 13 - A - Lipólise basal; B - Lipólise estimulada por isoproterenol em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARγ (GW9662, 10 µM - DMSO) (n = 7-10).

![Diagrama de lipólise basal e estimulada](image)

Dados estão expressos como média ± EPM. *P < 0.05 vs. veículo DMSO. ANOVA de duas vias seguido de pós teste de Bonferroni.

Por outro lado, conforme demonstrado na Figura 14 A e B, a inibição farmacológica de PPARα (GW6471) reduziu a velocidade de liberação de glicerol pelas células 3T3-L1 em condições basais e estimuladas e bloqueou completamente o aumento de lipólise induzido pelo tratamento com 16:1n7. Corroborando com o provável envolvimento de PPARα com as ações do ácido palmitoleico na lipólise, o tratamento com 16:1n7 durante 12 h, aumentou significativamente (~36%) a ligação do PPARα à sua sequência consenso no DNA, também conhecido como PPRE (Figura 14 C).
Figura 14 - A - Lipólise basal; B - Lipólise estimulada por isoproterenol em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARα (GW6471, 10 µM). C - Atividade transcriacional de PPARα a partir de extratos nucleares de células 3T3-L1 tratadas durante 12 horas com veículo ou ácido palmitoleico (16:1n7, 200 µM) (n = 6-7).

Dados estão expressos como média ± EPM. *P ≤ 0,05 vs. veículo DMSO; #P < 0,05 vs. veículo DMSO e 16:1n7; &P < 0,05 vs. 16:1n7. ANOVA de duas vias seguido de pós teste de Bonferroni (Painel A e B) e test T student (Painel C).
Vias anabólicas de formação do TAG também foram investigadas, incluindo a síntese de TAG a partir de ácidos graxos pré-formados. Como apresentado na Figura 15 A, o tratamento de células 3T3-L1 com 16:0 ou 16:1n7 aumentou significativamente a incorporação do ácido graxo palmítico marcado em TAG (~50%). Esse aumento da síntese de TAG induzida por 16:0 ou 16:1n7 foi associado com um aumento significativo (~29%) na incorporação de glicose em glicerol-TAG (Figura 15 B), dado que nós já havíamos demonstrado no Estudo I. Mas é importante ressaltar que neste novo experimento nós observamos que, diferentemente da lipólise, o aumento na incorporação de glicose em glicerol-TAG promovido por 16:1n7 ou 16:0 não foi modificado pela presença do antagonista farmacológico PPARα (GW6471). Apesar do aumento na formação de glicerol 3-fosfato a partir da via glicolítica, o tratamento com 16:0 ou 16:1n7 parece não afetar as duas outras possíveis vias de geração de glicerol 3-fosfato nos adipócitos, como 1) a gliceroneogênese, uma vez que não houve diferenças significativas entre os grupos na incorporação de piruvato em glicerol-TAG (veículo= 4.68 ± 0.34; 16:0= 4.8 ± 0.1; 16:1n7= 4.5 ± 0.31 pmol/10^6 células, p > 0,05) e expressão gênica da PEPCK (Figura 15 C e D), e 2) via glicerokinase, estimado pela sua expressão gênica (Figura 15 E).
Figura 15 - A - Incorporação de palmitato em TAG basal; B - Incorporação de glicose em glicerol-TAG basal; C - Incorporação de piruvato em glicerol-TAG basal; D - Níveis de RNA mensageiro da fosfoenolpiruvato carboxiquinase (PEPCK) e E - glicerquinase (GyK) em células 3T3-L1 diferenciadas tratadas durante 24 horas com veículo, ácido palmítico (16:0, 200 µM) ou ácido palmitoleico (16:1n7, 200 µM) em associação ou não com antagonista de PPARα (GW6471, 10 µM) (n = 6-8).

Dados estão expressos como média ± EPM. *P < 0.05 vs. veículo; †P ≤ 0.05 vs. GW; ‡P < 0.05 vs. 16:0. ANOVA de uma via seguido de pós teste de Tukey.

Na tentativa de pesquisar mais intensamente os efeitos do ácido palmitoleico no metabolismo do TAG de adipócitos, além dos experimentos in vitro, nós realizamos uma série de ensaios in vivo utilizando o mesmo modelo animal experimental do Estudo I.

Conforme ilustrado na Figura 16 A e B, corroborando com os ensaios in vitro, adipócitos primários epididimais de camundongos WT tratados por 10 dias com ácido palmitoleico (300 mg/Kg), mas não após tratamento com ácido oleico (300 mg/Kg), apresentaram aumento de aproximadamente 21% na lipólise basal e estimulada com isoproterenol comparado ao grupo que recebeu água.
Figura 16 - A - Lipólise basal; B - Lipólise estimulada com isoproterenol em adipócitos primários epididimais provenientes de camundongos selvagens tratados, por 10 dias, com gavagens diários de água (H₂O), ácido oleico (18:1n9, 300 mg/Kg/dia) ou ácido palmitoleico (16:1n7, 300 mg/Kg/dia) (n = 5-12).

Dados estão expressos como média ± EPM. *P < 0.05 todos os tratamentos e #P < 0.05 vs. H₂O. ANOVA de uma via seguido de pós teste de Tukey.

Uma vez que os efeitos do 16:1n7 na lipólise também foram confirmados in vivo utilizando animais WT, nós ampliamos nossa investigação sobre a participação do PPARα como um dos possíveis mecanismos da modulação da lipólise e lipases promovida pelo 16:1n7. Para isto, utilizamos animais deficientes em PPARα (KO) tratados por gavagem, durante 10 dias, com ácido palmitoleico (300 mg/Kg/dia) ou água. Como demonstrado na Tabela 4, nenhum dos tratamentos testados afetou o peso corporal, a ingestão de alimentos, peso do tecido adiposo branco e marrom e fígado e as concentrações plasmáticas de colesterol, triglicerídeos, ácidos graxos livres, insulina e glicose dos camundongos WT e KO.
Tabela 4 - Peso corporal e dos órgãos, ingestão alimentar e análise bioquímica plasmática de camundongos selvagens (WT) e PPARα knockout (KO) tratados, por 10 dias, com gavagens diárias de água (H₂O) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 4-7).

	WT+H₂O	WT+16:1n7	KO+H₂O	KO+16:1n7
Peso corporal inicial (g)	25,6 ± 0,6	25,4 ± 0,6	24,8 ± 0,4	24,7 ± 0,4
Peso corporal final (g)	24,4 ± 0,5	24,6 ± 0,4	25,4 ± 0,4	25,2 ± 0,5
Ingestão alimentar (g/dia)	3,6 ± 0,1	3,8 ± 0,1	3,6 ± 0,1	3,8 ± 0,1
TAB Epididimal (mg/g)	13,3 ± 1,3	12,5 ± 1,2	11,1 ± 0,8	10 ± 0,7
TAB Inguinal (mg/g)	8,3 ± 1	9,3 ± 1,4	6,8 ± 0,6	6,4 ± 0,1
TAB Retroperitoneal (mg/g)	2,3 ± 0,5	2,3 ± 0,6	1,7 ± 0,2	1,3 ± 0,4
TAM (mg/g)	2,1 ± 0,1	2,3 ± 0,2	1,9 ± 0,09	2,1 ± 0,06
Fígado (mg/g)	44,7 ± 1,2	46,1 ± 2,1	44 ± 1,3	46,5 ± 1,2
Triglicérides (mg/dL)	79,6 ± 18,2	79,3 ± 8,7	58,9 ± 5,9	83,7 ± 22,1
Colesterol total (mg/dL)	87,2 ± 8,6	100 ± 8	109 ± 1,8	102 ± 10
Ácidos graxos livres (mEq/L)	0,72 ± 0,07	0,60 ± 0,08	0,81 ± 0,12	0,70 ± 0,11
Insulina (ng/mL)	0,75 ± 0,21	0,89 ± 0,25	0,51 ± 0,4	0,75 ± 0,21
Glicose (mg/dL)	101 ± 10,6	107 ± 14,1	103 ± 11,4	109 ± 12,6

Dados estão expressos como média ± EPM. P > 0,05. TAB, tecido adiposo branco; TAM, tecido adiposo marrom.

Corroborando com os dados obtidos *in vitro*, o tratamento de camundongos WT com 16:1n7 aumentou significativamente a lipólise basal e estimulada com isoproterenol (~21%), além da expressão gênica de ATGL (~48%) e HSL (~62%) no tecido adiposo epididimal. Contudo, todos esses efeitos foram completamente abolidos nos adipócitos epididimais dos animais deficientes em PPARα (Figura 17 A-D). Observamos também, que adipócitos epididimais de animais PPARα KO apresentaram, na ausência de qualquer tratamento, uma redução das taxas de lipólise em condições basais e do mRNA da ATGL.
Figura 17- A - Lipólise basal; B - Lipólise estimulada com isoproterenol, C - Níveis de RNA mensageiro da lipase de triglicerídeos do adipócito (ATGL) e D- lipase hormônio sensível (HSL) de camundongos selvagens (WT) e PPARα knockout (KO) tratados, por 10 dias, com gavagens diárias de água (H2O) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 9-11).

No que se refere à síntese de TAG, de forma semelhante aos achados in vitro, o tratamento de camundongos WT com 16:1n7 ou 18:1n9 aumentou significativamente a incorporação do ácido graxo palmítico marcado em TAG, bem como, o tratamento com 16:1n7 aumentou a incorporação de glicose em glicerol-TAG em adipócitos epididimais. Em contraste com a lipólise, a deficiência de PPARα não afetou o aumento induzido por 16:1n7 sobre estes parâmetros (Figura 18 A e B).
Figura 18 - **A** - Incorporação de ácidos graxos (palmitato) em TAG basal; **B** - Incorporação de glicose em glicerol- TAG basal de camundongos selvagens (WT) e PPARα knockout (KO) tratados, por 10 dias, com gavagens diárias de água (H₂O), ácido oleico (18:1n9, 300 mg/kg) ou ácido palmitoleico (16:1n7, 300 mg/kg) (n = 5-8).

Dados estão expressos como média ± EPM. *P ≤ 0.05 WT+ H₂O. ANOVA de uma via seguido de pós teste de Tukey.
6 DISCUSSÃO

Além de servirem como substratos energéticos, estudos indicam que os ácidos graxos são importantes moduladores de diversos processos metabólicos nos tecidos corporais, apresentando propriedades de prevenção ou favorecimento do desenvolvimento de diversas doenças metabólicas, como diabetes tipo II, aterosclerose, hiperlipidemia, obesidade, dentre outras (13, 31, 137, 138, 154, 155). Características estruturais, como o tamanho da cadeia carbônica e o número/posição das duplas ligações, determinam as propriedades físicas e químicas e conferem funções biológicas distintas para cada ácido graxo (14). Dessa forma, faz-se necessário investigar os efeitos individuais de cada ácido graxo no metabolismo corporal.

Motivados pelos recentes achados indicando que o ácido palmitoleico (16:1n7) possui efeitos metabólicos importantes no metabolismo da glicose e lipídeos no músculo esquelético e fígado (1, 16, 17), nós investigamos neste trabalho, através da execução de experimentos in vivo e in vitro, os efeitos do 16:1n7 no metabolismo da glicose e triacilglicerol em adipócitos brancos, bem como os possíveis mecanismos de ação desta molécula nessas células.

Apesar de não induzir alterações significativas no peso corporal, adiposidade, níveis plasmáticos de glicose e insulina em jejum, o tratamento de camundongos com o ácido palmitoleico aumentou significativamente a captação de glicose em adipócitos epididimais em condições basais não-estimuladas, bem como, após estímulo com insulina. Em associação a captação de glicose, o tratamento com ácido palmitoleico aumentou significativamente os níveis de mRNA do principal transportador de glicose de adipócitos, o GLUT4, indicando o envolvimento deste transportador como mediador destas ações do ácido palmitoleico, já que, modificações na expressão deste transportador, tanto no tecido adiposo quanto no músculo esquelético, relacionam-se diretamente com a eficiência da captação de glicose (156).

Corroborando os dados obtidos in vivo, o tratamento de adipócitos 3T3-L1 com ácido palmitoleico in vitro aumentou a captação de glicose em condições basais e após estímulo com insulina, bem como a expressão de GLUT4, indicando uma ação direta deste ácidos graxo em adipócitos. Confirmamos também que o aumento
dos níveis de mRNA de GLUT4 induzido pelo ácido palmitoleico é traduzido em um aumento do conteúdo proteico deste transportador.

Diversas proteínas e vias de sinalização foram demonstradas regular a expressão gênica e o conteúdo de GLUT4 e assim a captação de glicose. Dentre essas, no presente estudo nós investigamos a possível participação da AKT e da AMPK como mediadores das ações do ácido palmitoleico na captação de glicose e expressão de GLUT4 em adipócitos. A AKT é uma quinase da via de sinalização intracelular da insulina que, além de induzir a translocação do GLUT4 para membrana plasmática (57), regula positivamente a expressão gênica e o conteúdo deste transportador (69, 157). Contudo, excluímos a possível participação da AKT no aumento de captação de glicose induzido pelo ácido palmitoleico em adipócitos, pois não foram encontradas alterações significativas no conteúdo de AKT fosforilada em Ser473 sob condição basal ou estimulada pela insulina após tratamento dos adipócitos com este ácido graxo. Estes achados estão em contraste com estudos prévios que indicam que o tratamento com ácido palmitoleico eleva a captação de glicose no músculo esquelético por um mecanismo que envolve o aumento do conteúdo de AKT fosforilada e, assim, a responsividade à insulina (17, 19). Desta forma, nossos dados sugerem que este ácido ativa a captação de glicose em adipócitos por mecanismos distintos de suas ações no músculo esquelético.

Outra proteína que possui função importante no controle da captação de glicose em diversos tipos celulares é a AMPK, uma quinase que é fosforilada e ativada em situações de alta demanda energética e reduzida razão ATP/ADP (66, 110). Além de ativar a translocação do GLUT4 do citosol para membrana plasmática independentemente da insulina (64, 66), a AMPK modula positivamente o conteúdo deste transportador por mecanismos que envolvem a fosforilação direta do coativator-1alfa de PPARgama (PGC-1α) e da histona deacetilase 5 (158, 159). Interessantemente, em associação a captação de glicose, verificamos em nosso estudo que o tratamento com ácido palmitoleico induziu a ativação da AMPK tanto em condições basais quanto após estímulo com a insulina, como evidenciado pelo aumento do conteúdo de AMPKα fosforilada em Thr172 nestas condições. Corroborando a participação desta quinase no aumento de captação de glicose, a inibição farmacológica da AMPK bloqueou completamente o aumento de GLUT4 induzido pelo tratamento com ácido palmitoleico em adipócitos. Estes dados em
conjunto colocam o ácido palmitoleico em uma longa lista de situações e moléculas como o exercício físico, adiponectina, *pachymic acid* que induzem o aumento da captação de glicose pela ativação da AMPK.

No músculo esquelético, por exemplo, o exercício físico melhora a captação de glicose por aumento na expressão e translocação de GLUT4 via ativação da AMPK (68). Da mesma forma, Huang et al. (2010) demonstraram que o *pachymic acid* aumenta a captação de glicose e o conteúdo de GLUT4 em adipócitos 3T3-L1. Essas ações do *pachymic acid* foram completamente bloqueadas na presença de inibidores farmacológicos de PI3K ou AMPK (69).

Além disso, demonstrou-se que a adiponectina, uma adipocina, tem propriedades semelhantes à insulina nos tecidos corporais (160-162). Wu et al. (2003) mostraram que o tratamento celular com adiponectina aumentou a captação de glicose em adipócitos sem modificar a fosforilação do IR, IRS-1, ou mesmo da AKT. Por outro lado, o tratamento com a adiponectina elevou a fosforilação (Thr172) e atividade da AMPKα, mas o seu efeito sobre a captação de glicose foi abolido na presença de inibidores farmacológicos desta quinase (116).

Além da captação de glicose, nossos dados indicam também que o ácido palmitoleico é um importante modulador do metabolismo desta hexose em adipócitos. Dentre os diversos destinos metabólicos da glicose em adipócitos, o tratamento com ácido palmitoleico potencializou não só a conversão desta hexose em lactato pela glicólise anaeróbica, mas também a oxidação completa da glicose à CO₂ pela glicólise aeróbica na presença de insulina. Este aumento da utilização da glicose em vias produtoras de energia induzidas pelo ácido palmitoleico ocorreu em conjunto a uma marcada redução da síntese *de novo* de ácidos graxos, como evidenciado pela redução na incorporação de acetato e glicose em ácidos graxos e na atividade das enzimas lipogênicas ACL (geração de acetil CoA citosólico) e G6PDH (geradora de NADPH). Estes resultados indicam que o ácido palmitoleico potencializa o fluxo metabólico em vias geradoras de energia enquanto inibe vias de armazenamento de energia. A única exceção a esta hipótese foi o aumento induzido pelo ácido palmitoleico da conversão de glicose em glicerol 3-fosfato em condições basais, um substrato necessário para a esterificação de ácidos graxos e síntese de TAG. Em geral a produção de glicerol 3-fosfato celular está relacionada à oferta de
ácidos graxos e a velocidade de esterificação dos mesmos a TAG. Este dado será melhor discutido adiante.

De maneira geral, a exemplo da captação de glicose e conteúdo de GLUT4, a ativação da AMPK pelo ácido palmitoleico pode explicar parte dos efeitos deste ácido graxo no metabolismo da glicose. A ativação de AMPK, por exemplo, está associada com um aumento no metabolismo oxidativo da glicose e uma marcada inibição da síntese de ácido graxo de novo em adipócitos (110, 163), sendo este último devido a fosforilação e inativação da acetil-CoA-carboxilase (ACC) pela AMPK que reduz a formação de malonil-CoA e assim a síntese de ácidos graxos. Este efeito não só leva a uma redução na síntese de novo de ácidos graxos, como também aumenta a velocidade de β-oxidação pela ativação da CPT1 (110, 164).

Dessa forma, quanto ao metabolismo de glicose, os nossos dados indicam que o ácido palmitoleico é um importante modulador positivo da captação de glicose e expressão gênica e proteica de GLUT4, além de favorecer a utilização desta hexose em vias produtoras de energia, incluindo a glicólise aeróbia e anaeróbia. Finalmente, estes efeitos parecem ocorrer, pelo menos em parte, devido à ativação da AMPK pelo ácido palmitoleico.

Os efeitos do tratamento com ácido palmitoleico no metabolismo de adipócitos brancos também englobam a modulação da síntese e hidrólise do TAG. Neste contexto, o tratamento de adipócitos, in vitro ou in vivo, com ácido palmitoleico, mas não palmítico ou oleico, promoveu um aumento significativo na lipólise, sob condições basais e estimuladas com isoproterenol. Coerente com a ativação da lipólise, o ácido palmitoleico aumentou significativamente a expressão gênica das lipases ATGL e HSL in vitro e in vivo, bem como o conteúdo proteico da ATGL in vitro. Apesar de não ser um mecanismo único, existe uma estreita associação entre a expressão gênica e proteica das lipases ATGL e HSL e a velocidade de lipólise celular (84, 165). Além disso, o ácido palmitoleico aumentou o conteúdo de HSL fosforilada em Ser660 em células 3T3-L1, que é catalisada por mecanismos dependentes de AMPc e da PKA, indicando que, além do conteúdo proteico, a sinalização intracelular adrenérgica pode estar sendo modulada por este ácido graxo.

Ácidos graxos ou outros lipídeos são capazes de modular a expressão de vários genes incluindo as lipases de TAG, através da ativação de receptores
nucleares PPARs (83, 119, 166). Dessa forma, nós testamos a hipótese que os efeitos positivos do ácido palmitoleico na lipólise poderiam ser mediados pela ativação destes receptores nucleares. Interessantemente, a inibição farmacológica ou a deficiência genética de PPARα, mas não de PPARγ, aboliu completamente os efeitos positivos do ácido palmitoleico na lipólise e a expressão de lipases. De fato, nossos resultados mostram que a inibição de PPARα reduz, per se, a lipólise basal e o mRNA da ATGL, indicando que este receptor é importante não apenas para a modulação positiva da lipólise exercida pelo ácido palmitoleico, mas também para a regulação da hidrólise de TAG e expressão de lipases em condição basal, não-estimulada. Corroborando com o papel importante de PPARα na regulação da lipólise, uma elevada produção endógena do lipídeo oleoiletanolamida no intestino delgado, estimula a lipólise e a oxidação de ácidos graxos no tecido adiposo epididimal por mecanismos que envolvem a ativação de PPARα (129). Similarmente à oleoiletanolamida, o tratamento de ratos com um agonista de PPARα, o fenofibrato, induz um aumento significativo de 30% na velocidade de lipólise no TAB (167). Em conjunto, estes resultados estabelecem o PPARα como um regulador da lipólise no tecido adiposo, adicionando-se ao seu papel já reconhecido de modulador positivo da β-oxidação e função mitocondrial (128, 130, 168).

Diversos ácidos graxos são capazes de ativar os PPARs, sendo que a eficiência dessa ativação varia conforme o tamanho da cadeia carbônica e o número de duplas ligações (119, 120). Nós demonstramos aqui que o tratamento de células 3T3-L1 com ácido palmitoleico, durante 12 horas, aumentou significativamente a ligação do PPARα à sua sequência de consenso no DNA, o PPRE, que é um indicativo de maior atividade transcricional de PPARα. Estes dados, entretanto, não nos permitem avaliar se o ácido palmitoleico é um ativador direto ou indireto de PPARα. Outros experimentos são necessários para esclarecer esta questão.

Geralmente, o aumento crônico da lipólise está associado com altas concentrações de ácidos graxos circulantes. Contudo, animais que superexpressam ATGL aumentam acentuadamente a velocidade de lipólise sem modificar as concentrações plasmáticas de ácidos graxos, pois estes adipócitos apresentam maior ativação da oxidação e reesterificação dos ácidos graxos em TAG (169). No nosso estudo, apesar de aumentar a lipólise, não foram encontradas alterações
significativas nos níveis circulantes de ácidos graxos *in vivo*, indicando um provável envolvimento do aumento de reesterificação de ácidos graxos em adipócitos.

Estudos anteriores determinaram que aproximadamente 30-40% dos ácidos graxos produzidos pela lipólise em adipócitos são reesterificados a TAG, através de um processo dependente dos níveis intracelulares de glicerol 3-fosfato (99, 170, 171). Em nosso estudo, a ativação da lipólise pelo ácido palmitoleico também está associada a um aumento de incorporação de ácidos graxos em TAG e aumento na formação de glicerol 3-fosfato via glicólise. O tratamento com 16:1n7, mas também com 16:0 *in vitro* e 16:1n7 ou 18:1n9 *in vivo*, sob condição basal, aumentou a incorporação de palmitato em TAG, o que parece ser um efeito comum produzido por diferentes ácidos graxos. Além disso, houve um aumento na incorporação de glicose em glicerol-TAG pelo tratamento com 16:1n7 e 16:0 *in vitro* e 16:1n7 *in vivo*. Estes dados indicam que a disponibilidade de ácidos graxos, mas não a identidade dos mesmos é um importante modulador da síntese de glicerol 3-fosfato em adipócitos. Embora nós tenhamos verificado um aumento na formação de glicerol 3-fosfato via glicólise, aparentemente as demais vias de formação de glicerol 3-fosfato (via gliceroneogênese e gliceroquinase) não foram modificadas pelo tratamento com estes ácidos graxos, uma vez que não houve modificações na incorporação de piruvato em glicerol, ou expressão gênica da PEPCK e da gliceroquinase.

Além disso, em contraste com a lipólise, a ativação da síntese de TAG promovida pelo ácido palmitoleico não depende da atividade do PPARα, como evidenciado por um aumento semelhante na velocidade de incorporação de palmitato em TAG e glicose em glicerol-TAG induzida pelo ácido palmitoleico em células 3T3-L1 tratadas ou não com o antagonista farmacológico de PPARα ou em adipócitos de camundongos selvagens ou deficientes em PPARα.

O aumento concomitante dos processos antagônicos de lipólise e lipogênese (aumento de incorporação de glicose e de ácidos graxos pré-formados em TAG) induzido pelo ácido graxo palmitoleico, sugerem um aumento do ciclo TAG-ácido graxo, embora esta hipótese não tenha sido totalmente investigada neste trabalho. Apesar de sua caracterização como “fútil” por aumentar o gasto energético da célula, evidências indicam este ciclo metabólico é um importante mecanismo de controle da sensibilidade dos processos envolvidos no controle neuro/hormonal (172). Devido ao aumento concomitante da velocidade de síntese e degradação de TAG, pequenas
alterações na concentração de hormônios reguladores destes processos são capazes de alterarem significativamente a direção do fluxo de substratos no ciclo (173, 174).

Apesar de não ter sido alvo de investigação mais profunda neste estudo, dados da literatura indicam a existência de uma relação entre a lipólise celular e a ativação da AMPK no TAB, embora esta relação seja controversa e permaneça sob investigação (66, 175). Um estudo prévio encontrou que a ativação da AMPK com AICAR reduz a lipólise celular através da fosforilação inibitória da HSL em Ser565 (176). Contudo, como demonstrado por Ahmadian et al. (2011), a ativação da AMPK com AICAR leva a fosforilação da ATGL em Ser406, aumentando a atividade desta lipase e assim a lipólise em células HEK293 e adipócitos 3T3-L1 (114). Além disso, em outro estudo, a ativação crônica de AMPK com AICAR em adipócitos epididimais de ratos in vitro e in vivo induziu um aumento de lipólise, do conteúdo proteico da ATGL e da expressão gênica de PPARα, PPARδ e PGC-1α. Além destes efeitos, ativação crônica da AMPK no tecido adiposo induziu um remodelamento do metabolismo dessas células potencializando vias produtoras ao invés de vias de armazenamento de energia (117). Dessa forma, é possível que a ativação da AMPK promovida pelo tratamento com ácido palmitoleico também seja um dos mecanismos pelo qual este ácido graxo aumenta a atividade de PPARα e da lipólise.

Contudo, em contraste a esta hipótese, alguns trabalhos constataram que o aumento da lipólise em adipócitos conduz, consequentemente, a maior ativação da AMPK (177, 178), sugerindo que a ativação desta quinase é secundária a hidrólise exacerbada de TAG. Neste sentido, um importante estudo de Gauthier et al. (2008) demonstrou que quando a lipólise é estimulada, seja por isoproterenol, forskolína ou IBMX, ocorre um aumento significativo da atividade da AMPK que não é mediado pela ação direta do AMPc ou PKA. Os resultados, entretanto, mostram que o aumento da reesterificação de ácidos graxos também encontrado nestes adipócitos (uma consequência da lipólise) que engloba a ação de uma série de enzimas dependentes de ATP, como a AcilCoA sintase que utiliza duas moléculas de ATP para cada AcilCoA formado, levou a uma redução de 25% nas concentrações de ATP celular, induzindo, dessa forma, uma potente ativação da AMPK (175). Assim, também é possível em nosso estudo que a ativação da AMPK seja consequência da ativação do ciclo TAG/ácido graxos promovida pelo ácido palmitoleico. Contudo a
correlação entre estes dois efeitos, aumento da lipólise e atividade da AMPK, induzidos pelo ácido palmitoleico em adipócitos precisa ser investigada.

É interessante destacar que o tratamento de adipócitos com o ácido palmítico, que pode ser convertido intracelularmente à ácido palmitoleico, não apresentou os mesmos efeitos que o 16:1n7 no metabolismo dos adipócitos. De fato, o tratamento de adipócitos com ácido palmítico não é traduzido em uma maior produção intracelular de ácido palmitoleico, como evidenciado, através de cromatografia gasosa, pela ausência de alterações na concentração de ácido palmitoleico de células 3T3-L1 tratadas com ácido palmítico por 24 h. Estes resultados indicam que a SCD1 parece usar preferencialmente ácido palmítico proveniente da síntese de novo de ácidos graxos como substrato para a síntese de ácido palmitoleico em detrimento ao ácido palmítico pré-formado. Corroborando esta hipótese, células 3T3-L1 e camundongos deficientes para AP2, ambas as quais dependem majoritariamente da síntese de novo para a formação de lipídeos, aumentaram sua produção de ácido palmitoleico (1, 179). Além disso, ratos alimentados com uma dieta rica em ácido palmítico tem uma forte redução na síntese de novo de ácidos graxos e do ácido palmitoleico no tecido adiposo (1).

Finalmente, quanto à modulação do metabolismo de TAG, os nossos dados indicam que o ácido palmitoleico é um regulador positivo da lipólise e do conteúdo das principais lipases ATGL e HSL através de um mecanismo dependente de PPARα, além de promover um aumento na formação de TAG, sugerindo uma maior atividade do ciclo fútil (TAG-ácido graxo) em adipócitos brancos. Outros estudos são necessários, no entanto, para investigar um possível efeito protetor do tratamento com ácido palmitoleico contra a deposição excessiva de gordura e obesidade.
CONCLUSÃO

Nossos dados sugerem fortemente que o ácido palmitoleico atua como uma importante molécula sinalizadora capaz de modular o metabolismo da glicose e do TAG em adipócitos brancos. Resumidamente, o tratamento de adipócitos com ácido palmitoleico, diferentemente do ácido palmítico ou oleico, induziu um aumento no conteúdo de GLUT4, na captação e utilização da glicose. Estes efeitos estão, ao menos em parte, associados com ativação da AMPK no tecido adiposo. O ácido palmitoleico também promoveu aumento da lipólise e do conteúdo das lipases ATGL e HSL através de um mecanismo dependente de PPARα. O aumento na lipólise está associado a um aumento concomitante da reesterificação de ácidos graxos a TAG, sugerindo um aumento no ciclo TAG-ácido graxo. Assim, podemos concluir que este ácido parece acelerar o metabolismo celular de adipócitos promovendo a ativação das vias de produção de energia.
REFERÊNCIAS*

1. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933-44.

2. Kallio H, Yang B, Peippo P, Tahvonen R, Pan R. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of Sea Buckthorn (Hippophaë rhamnoides). J Agric Food Chem. 2002;50(10):3004-9.

3. Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, van Dijk TH, et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res. 2011;52(9):1683-92.

4. Caron-Jobin M, Mauvoisin D, Michaud A, Veilleux A, Noël S, Fortier MP, et al. Stearic acid content of abdominal adipose tissues in obese women. Nutr Diabetes. 2012;2:e23.

5. Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes. 2012;61(6):1399-403.

6. Roberts LD, Virtue S, Vidal-Puig A, Nicholls AW, Griffin JL. Metabolic phenotyping of a model of adipocyte differentiation. Physiol Genomics. 2009;39(2):109-19.

7. Bolsoni-Lopes A, Festuccia WT, Farias TS, Chimin P, Torres-Leal FL, Derogis PB, et al. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am J Physiol Endocrinol Metab. 2013;305(9):E1093-102.

8. Eichmann TO, Kumari M, Haas JT, Farese RV, Zimmermann R, Lass A, et al. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem. 2012;287(49):41446-57.

9. Weber N, Bergenthal D, Kokate CK, Mangold HK. Biologically active ether lipids: incorporation of long-chain precursors into 1(3),2-diacylglycerol-3(1)-O-4’-(N,N,N-trimethyl)homoserines and other lipids of Chlorella fusca. J Lipid Mediat. 1989;1(1):37-48.

10. Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease—a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(2):117-30.

*De acordo com:
International Committee of Medical Journal Editors. Uniform requeriments for manuscripts submitted to Biomedical Journal:sample references. Available from: http://www.icmje.org [2011 Jul 15].
11. Queiroz JC, Alonso-Vale Ml, Curi R, Lima FB. [Control of adipogenesis by fatty acids]. Arq Bras Endocrinol Metabol. 2009;53(5):582-94.

12. Parillo M, Riccardi G. Diet composition and the risk of type 2 diabetes: epidemiological and clinical evidence. Br J Nutr. 2004;92(1):7-19.

13. Hirabara SM, Curi R, Maechler P. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol. 2010;222(1):187-94.

14. Leonard AE, Pereira SL, Sprecher H, Huang YS. Elongation of long-chain fatty acids. Prog Lipid Res. 2004;43(1):36-54.

15. Diakogiannaki E, Dhayal S, Childs CE, Calder PC, Welthers HJ, Morgan NG. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. J Endocrinol. 2007;194(2):283-91.

16. Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.

17. Dimopoulos N, Watson M, Sakamoto K, Hundal HS. Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J. 2006;399(3):473-81.

18. Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405-7.

19. Obanda DN, Cefalu WT. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. J Nutr Biochem. 2013;24(8):1529-37.

20. Burns TA, Kadegowda AK, Duckett SK, Pratt SL, Jenkins TC. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids. 2012;47(12):1143-53.

21. Morgan NG, Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):231-6.

22. Hiraoka-Yamamoto J, Ikeda K, Negishi H, Mori M, Hirose A, Sawada S, et al. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women. Clin Exp Pharmacol Physiol. 2004;31 Suppl 2:S37-8.

23. Pouchieu C, Chajès V, Laporte F, Kesse-Guyot E, Galan P, Hercberg S, et al. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk - modulation by antioxidants: a nested case-control study. PLoS One. 2014;9(2):e90442.
24. Simonsen NR, Fernandez-Crehuet Navajas J, Martin-Moreno JM, Strain JJ, Huttunen JK, Martin BC, et al. Tissue stores of individual monounsaturated fatty acids and breast cancer: the EURAMIC study. European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. Am J Clin Nutr. 1998;68(1):134-41.

25. Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K. Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr. 2005;82(4):747-50.

26. Kunesová M, Hainer V, Tvrzicka E, Phinney SD, Stich V, Parízková J, et al. Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids. 2002;37(1):27-32.

27. Hausman GJ, Barb CR. Adipose tissue and the reproductive axis: biological aspects. Endocr Dev. 2010;19:31-44.

28. Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 2005;40(4):229-42.

29. Langin D, Arner P. Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab. 2006;17(8):314-20.

30. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. [The adipose tissue as a regulatory center of the metabolism]. Arq Bras Endocrinol Metabol. 2006;50(2):216-29.

31. Girousse A, Langin D. Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obes (Lond). 2012;36(4):581-94.

32. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48(12):2547-59.

33. Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 2004;30(4):294-309.

34. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697-738.

35. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404.

36. Zhang Y, Proenca R, Maffe i M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-32.

37. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277-359.
38. Festuccia WT, Blanchard PG, Deshaies Y. Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPARγ. Front Endocrinol (Lausanne). 2011;2:84.

39. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444-52.

40. Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143-9.

41. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48(5):275-97.

42. Lafontan M. Advances in adipose tissue metabolism. Int J Obes (Lond). 2008;32 Suppl 7:S39-51.

43. WEISS SB, KENNEDY EP, KIYASU JY. The enzymatic synthesis of triglycerides. J Biol Chem. 1960;235:40-4.

44. Dircks L, Sul HS. Acoutransferases of de novo glycerophospholipid biosynthesis. Prog Lipid Res. 1999;38(5-6):461-79.

45. Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res. 1996;35(2):169-201.

46. Agarwal AK, Garg A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol Metab. 2003;14(5):214-21.

47. West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr. 1998;67(3 Suppl):505S-12S.

48. Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31(12):694-9.

49. Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS. Triacylglycerol metabolism in adipose tissue. Future Lipidol. 2007;2(2):229-37.

50. Reshef L, Hanson RW, Ballard FJ. A possible physiological role for glyceroneogenesis in rat adipose tissue. J Biol Chem. 1970;245(22):5979-84.

51. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl). 2002;80(12):753-69.

52. Abumrad NA, el-Maghrali MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268(24):17665-8.

53. Schaffer JE, Lodish HF. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell. 1994;79(3):427-36.
54. Coe NR, Simpson MA, Bernlohr DA. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res. 1999;40(5):967-72.

55. Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab. 2004;286(4):E577-88.

56. Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2001;2(4):282-6.

57. Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 2014.

58. DiGirolamo M, Newby FD, Lovejoy J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 1992;6(7):2405-12.

59. Festuccia WT, Blanchard PG, Turcotte V, Laplante M, Sariahmetoglu M, Brindley DN, et al. Depot-specific effects of the PPARgamma agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res. 2009;50(6):1185-94.

60. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89(1):3-9.

61. Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341(4):248-57.

62. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267-77.

63. Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol. 2012;57(2-4):91-7.

64. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278(17):14599-602.

65. Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR, et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol. 1999;19(6):4008-18.

66. Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194-203.

67. Gaidhu MP, Perry RL, Noor F, Ceddia RB. Disruption of AMPKalpha1 signaling prevents AICAR-induced inhibition of AS160/TBC1D4 phosphorylation and glucose uptake in primary rat adipocytes. Mol Endocrinol. 2010;24(7):1434-40.

68. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017.
69. Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol. 2010;648(1-3):39-49.

70. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79-101.

71. Bézaire V, Langin D. Regulation of adipose tissue lipolysis revisited. Proc Nutr Soc. 2009;68(4):350-60.

72. Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236-41.

73. Ahmadian M, Wang Y, Sul HS. Lipolysis in adipocytes. Int J Biochem Cell Biol. 2010;42(5):555-9.

74. Yamaguchi T, Omatsu N, Matsushita S, Osumi T. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem. 2004;279(29):30490-7.

75. Miyoshi H, Souza SC, Endo M, Sawada T, Perfield JW, Shimizu C, et al. Perilipin overexpression in mice protects against diet-induced obesity. J Lipid Res. 2010;51(5):975-82.

76. Ahmadian M, Duncan RE, Sul HS. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab. 2009;20(9):424-8.

77. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279-91.

78. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G1-4.

79. Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L, et al. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab. 2008;95(3):117-26.

80. Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med. 2009;15(2):159-68.

81. Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M, Sul HS. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem. 2008;283(37):25428-36.
82. Ong KT, Mashek MT, Bu SY, Greenberg AS, Mashek DG. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology. 2011;53(1):116-26.

83. Festuccia WT, Laplante M, Berthiaume M, Gélinas Y, Deshaies Y. PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia. 2006;49(10):2427-36.

84. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383-6.

85. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem. 2004;279(47):48968-75.

86. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem. 2004;279(45):47066-75.

87. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312(5774):734-7.

88. Schoiswohl G, Schweiger M, Schreiber R, Gorkiewicz G, Preiss-Landl K, Taschler U, et al. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. J Lipid Res. 2010;51(3):490-9.

89. Peyot ML, Guay C, Latour MG, Lamontagne J, Lussier R, Pineda M, et al. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J Biol Chem. 2009;284(25):16848-59.

90. Tang T, Abbott MJ, Ahmadian M, Lopes AB, Wang Y, Sul HS. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells. Cell Metab. 2013;18(6):883-95.

91. Kershaw EE, Hamm JK, Verhagen LA, Peroni O, Katic M, Flier JS. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes. 2006;55(1):148-57.

92. Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep. 2006;7(1):106-13.

93. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 2011;50(1):14-27.
94. Chakrabarti P, English T, Shi J, Smas CM, Kandror KV. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 2010;59(4):775-81.

95. Lu X, Yang X, Liu J. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle. 2010;9(14):2719-25.

96. Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem. 2011;286(7):5126-35.

97. Grahn TH, Kaur R, Yin J, Schweiger M, Sharma VM, Lee MJ, et al. Fat-specific Protein 27 (FSP27) Interacts with Adipose Triglyceride Lipase (ATGL) to Regulate Lipolysis and Insulin Sensitivity in Human Adipocytes. J Biol Chem. 2014;289(17):12029-39.

98. Ellong EN, Soni KG, Bui QT, Sougrat R, Golinelli-Cohen MP, Jackson CL. Interaction between the triglyceride lipase ATGL and the Arf1 activator GBF1. PLoS One. 2011;6(7):e21889.

99. VAUGHAN M. The production and release of glycerol by adipose tissue incubated in vitro. J Biol Chem. 1962;237:3354-8.

100. Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000;97(2):787-92.

101. Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem. 2002;277(7):4806-15.

102. Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, et al. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res. 2001;9(2):119-28.

103. Lucas S, Tavernier G, Tiraby C, Mairal A, Langin D. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis. J Lipid Res. 2003;44(1):154-63.

104. Anthonsen MW, Rönstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998;273(1):215-21.

105. Wang H, Hu L, Dalen K, Dorward H, Marcinkiewicz A, Russell D, et al. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J Biol Chem. 2009;284(46):32116-25.
106. Shen WJ, Sridhar K, Bernlohr DA, Kraemer FB. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc Natl Acad Sci U S A. 1999;96(10):5528-32.

107. Smith AJ, Thompson BR, Sanders MA, Bernlohr DA. Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J Biol Chem. 2007;282(44):32424-32.

108. Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem. 1997;272(43):27218-23.

109. Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem. 2011;286(20):17467-77.

110. Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond). 2013;124(8):491-507.

111. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007;449(7161):496-500.

112. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415(6869):339-43.

113. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R, et al. Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci U S A. 2004;101(7):2058-63.

114. Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13(6):739-48.

115. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002;277(28):25226-32.

116. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355-63.

117. Gaidhu MP, Fediuc S, Anthony NM, So M, Mirpourian M, Perry RL, et al. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J Lipid Res. 2009;50(4):704-15.
118. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes. 2006;55(7):2067-76.

119. Poulsen L, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23(6):631-9.

120. Schupp M, Lazar MA. Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem. 2010;285(52):40409-15.

121. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347(6294):645-50.

122. IJpenberg A, Jeannin E, Wahli W, Desvergne B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem. 1997;272(32):20108-17.

123. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, et al. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature. 2008;456(7220):350-6.

124. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology. 2001;142(10):4195-202.

125. Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem. 2002;277(44):41925-30.

126. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79(7):1147-56.

127. Ribon V, Johnson JH, Camp HS, Saltiel AR. Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A. 1998;95(25):14751-6.

128. Ribet C, Montastier E, Valle C, Bezaire V, Mazzucotelli A, Mairal A, et al. Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology. 2010;151(1):123-33.

129. Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849-54.

130. Li P, Zhu Z, Lu Y, Granneman JG. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-alpha. Am J Physiol Endocrinol Metab. 2005;289(4):E617-26.
131. Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vasc Biol. 2007;27(3):635-41.

132. Haemmerle G, Moustafa T, Woelkart G, Büttner S, Schmidt A, van de Weijer T, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med. 2011;17(9):1076-85.

133. Chandak PG, Radovic B, Aflaki E, Kolb D, Buchebner M, Fröhlich E, et al. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase. J Biol Chem. 2010;285(26):20192-201.

134. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50(8):1771-7.

135. Anderson SG, Sanders TA, Cruickshank JK. Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension. 2009;53(5):839-45.

136. Kennedy AD, DeLeo FR. Neutrophil apoptosis and the resolution of infection. Immunol Res. 2009;43(1-3):25-61.

137. Reynoso R, Salgado LM, Calderón V. High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem. 2003;246(1-2):155-62.

138. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419(2):101-9.

139. Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem. 2013;24(4):613-23.

140. Murumalla RK, Gunasekaran MK, Padhan JK, Bencharif K, Gence L, Festy F, et al. Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation. Lipids Health Dis. 2012;11:175.

141. Regassa A, Kim WK. Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol Int. 2013;37(9):961-71.

142. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830-40.

143. Moldes M, Zuo Y, Morrison RF, Silva D, Park BH, Liu J, et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J. 2003;376(Pt 3):607-13.
144. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139(2):271-9.

145. Masood A, Stark KD, Salem N. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res. 2005;46(10):2299-305.

146. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964;239:375-80.

147. Fine JB, DiGirolamo M. A simple method to predict cellular density in adipocyte metabolic incubations. Int J Obes Relat Metab Disord. 1997;21(9):764-8.

148. Amengual J, Petrov P, Bonet ML, Ribot J, Palou A. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. Int J Biochem Cell Biol. 2012;44(11):2019-27.

149. Mercader J, Madsen L, Felipe F, Palou A, Kristiansen K, Bonet ML. All-trans retinoic acid increases oxidative metabolism in mature adipocytes. Cell Physiol Biochem. 2007;20(6):1061-72.

150. Alonso-Vale MI, Andreotti S, Mukai PY, Borges-Silva C, Peres SB, Cipolla-Neto J, et al. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J Pineal Res. 2008;45(4):422-9.

151. Bergmeyer H, Bernt E, Schmidt F, Stork H. In Methods of Enzymatic Analysis. Orlando, FL:: Academic Press; 1974.

152. Bazin R, Ferré P. Assays of lipogenic enzymes. Methods Mol Biol. 2001;155:121-7.

153. Papa PC, Seraphim PM, Machado UF. Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord. 1997;21(11):1065-70.

154. Catalá A. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects. J Lipids. 2013;2013:710290.

155. Harris WS, Dayspring TD, Moran TJ. Omega-3 fatty acids and cardiovascular disease: new developments and applications. Postgrad Med. 2013;125(6):100-13.

156. Thorens B, Charron MJ, Lodish HF. Molecular physiology of glucose transporters. Diabetes Care. 1990;13(3):209-18.

157. Hernandez R, Teruel T, Lorenzo M. Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett. 2001;494(3):225-31.
158. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017-22.

159. McGee SL, van Denderen BJ, Howlett KD, Mollica J, Schertzer JD, Kemp BE, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008;57(4):860-7.

160. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863-6.

161. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947-53.

162. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005-10.

163. Smith AC, Bruce CR, Dyck DJ. AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle. J Physiol. 2005;565(Pt 2):537-46.

164. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994;353(1):33-6.

165. Sztalryd C, Komaromy MC, Kraemer FB. Overexpression of hormone-sensitive lipase prevents triglyceride accumulation in adipocytes. J Clin Invest. 1995;95(6):2652-61.

166. Kobayashi T, Fujimori K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elov3 and PPARγ in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2012;302(12):E1461-71.

167. Ferreira AV, Parreira GG, Green A, Botion LM. Effects of fenofibrate on lipid metabolism in adipose tissue of rats. Metabolism. 2006;55(6):731-5.

168. Lee JY, Hashizaki H, Goto T, Sakamoto T, Takahashi N, Kawada T. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes. Biochem Biophys Res Commun. 2011;407(4):818-22.

169. Ahmadian M, Duncan RE, Varady KA, Frasson D, Hellerstein MK, Birkenfeld AL, et al. Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes. 2009;58(4):855-66.

170. Jensen MD, Ekberg K, Landau BR. Lipid metabolism during fasting. Am J Physiol Endocrinol Metab. 2001;281(4):E789-93.
171. Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278(33):30413-6.

172. Newsholme EA. Reflections on the mechanism of action of hormones. FEBS Lett. 1980;117 Suppl:K121-34.

173. Brooks B, Arch JR, Newsholme EA. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett. 1982;146(2):327-30.

174. Wolfe RR, Klein S, Carraro F, Weber JM. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol. 1990;258(2 Pt 1):E382-9.

175. Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem. 2008;283(24):16514-24.

176. Su CL, Sztalryd C, Contreras JA, Holm C, Kimmel AR, Londos C. Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J Biol Chem. 2003;278(44):43615-9.

177. Yin W, Mu J, Birnbaum MJ. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem. 2003;278(44):43074-80.

178. Moule SK, Denton RM. The activation of p38 MAPK by the beta-adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS Lett. 1998;439(3):287-90.

179. Kurebayashi S, Hirose T, Miyashita Y, Kasayama S, Kishimoto T. Thiazolidinediones downregulate stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. Diabetes. 1997;46(12):2115-8.
APÊNDICE A - Bolsoni-Lopes et al. Am J Physiol Endocrinol Metab. 2013 Nov 1;305(9):E1093-102.
In conclusion, palmitoleic acid increases adipocyte lipolysis and synthesis from glucose in both wild-type and PPAR mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased adipocyte basal and stimulated lipolysis and ATGL and HSL synthesis from glucose without affecting glyceroneogenesis and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg·kg⁻¹·day⁻¹) or oleic acid (18:1n9, 300 mg·kg⁻¹·day⁻¹) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer⁶⁰⁰-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of lipolysis due to the increased adipocyte triglyceride lipase (ATGL) and hormonal factors. Conversely, inhibition of ATGL and HSL increased basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα.

ATGL; HSL; lipogenesis; triacylglycerol/fatty acid cycle

WHITE ADIPOSE TISSUE is the major energetic reservoir in mammals storing the excess of energy from the diet as triacylglycerol (TAG), a neutral lipid composed of three fatty acids bound to the carbon backbone of a glycerol molecule (14). During periods of increased energetic demand, adipose tissue TAG stores are hydrolyzed to fatty acids and glycerol in a process denominated lipolysis. Although most lipolysis-derived fatty acids are released in the circulation to be used as energy substrates by other tissues (9), parts of these molecules are kept inside adipocytes, acting as precursors for the synthesis of other lipids, as intracellular signaling mediators, and as substrates for either oxidation or reesterification into TAG (1, 15, 46).

Lipolysis consists of the sequential hydrolysis of TAG subsequently to diacylglycerol (DAG), monoacylglycerol (MAG), and glycerol and fatty acids catalyzed in a stepwise manner by the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase (MGL), respectively (5, 43). The hydrolytic activities of these lipases are finely regulated by several mechanisms including, but not limited to, 1) covalent modifications driven by neurohormonal factors; 2) allosteric interactions with auxiliary proteins such as perilipins, comparative gene identification-58 (CGI-58), and G0/G1 switch gene 2 (G0S2) that facilitate lipase interactions with lipid droplets and act as coactivator and coinhibitor of ATGL, respectively; and 3) changes in lipase protein content due to the modulation in their gene expression (19, 39, 46).

Recent studies have demonstrated that the lipid sensors and nuclear receptors peroxisome proliferator-activated receptors (PPARs), which are well known for their hypolipidemic effects, also modulate gene expression of proteins involved in lipolytic cascade, acting as an important modulator of lipolysis in adipose tissue. Pharmacological PPARγ activation with rosiglitazone is associated with a marked increase in adipose tissue lipase expression (ATGL and MGL) and lipolysis (7, 16), such as release of lipolytic products that is counteracted by reesterification and reuptake, processes that are also exacerbated by PPARγ activation (7, 28, 41). In addition, the endogenously produced monounsaturated lipid oleoylethanolamide was demonstrated to increase epididymal adipose tissue lipolysis in a PPARα-dependent manner (12). This indicates that, in addition to synthetic compounds, naturally occurring lipids with ligand properties toward PPARs might be important modulators of lipase expression and lipolysis in adipose tissue. Among the several types of lipids produced and released by adipocytes, palmitoleic acid, a monounsaturated n-7 fatty acid (16:1n7) synthesized by the desaturation of palmitic acid (16:0) catalyzed by the stearoyl-CoA desaturase-1 (SCD-1), has been shown to act systemically in peripheral tissues modulating important metabolic processes (3). Accordingly, palmitoleic acid was demonstrated to enhance whole body glucose disposal and to attenuate hepatic steatosis in high-fat-fed mice (3, 45) and to protect pancreatic β-cells from death induced by...
palmitic acid (4, 25). Furthermore, intake of a diet enriched in palmitoleic acid was associated with improvement of circulating lipid profile in both rodents (24) and humans (10, 13). Despite of all these important metabolic effects in liver, skeletal muscle, and β-cells, whether palmitoleic acid also affects adipose tissue TAG metabolism remains to be investigated. In the present study, therefore, by combining in vitro and in vivo experiments with differentiated 3T3-L1 adipocytes and murine primary adipocytes, we tested the hypothesis that palmitoleic acid is an important modulator of TAG metabolism in adipocytes.

MATERIALS AND METHODS

Cell culture. 3T3-L1 preadipocytes were cultured in Dulbecco’s modified Eagle medium (DMEM) containing 10% calf serum and penicillin-streptomycin (1%) and insulin (1.67 μM). After 48 h, medium was replaced with DMEM and 10% FBS containing 0.41 μM insulin (29). Differentiated 3T3-L1 cells (6 days after cocktail) were incubated with vehicle (ethanol 0.05%) or palmitic (16:0, 200 μM) or palmitoleic acid (16:1n7, 200 μM) or a combination of palmitic (100 μM) plus palmitoleic (100 μM) acids. This dose of fatty acids was found to have no cytotoxic or deleterious effects on cell viability, as evaluated by membrane integrity and DNA fragmentation (data not shown).

Importantly, we chose for the in vitro experiments a dose of palmitoleic acid higher than that found in plasma of humans and/or rodents (8, 26, 31, 32), because, in contrast to regular adipocytes, palmitoleic acid is the most abundant fatty acid in differentiated 3T3-L1 cells (11, 35). Thus, a higher dose of palmitoleic acid is required to challenge these cells. After 18 h, cells were washed with PBS and cultured in serum and insulin-free medium containing fatty acids for an additional 6 h. PPARα and PPARγ inhibition was achieved by adding their respective antagonists, GW-6471 (10 μM) and GW-9662 (10 μM) to the medium containing fatty acids. All reagents and drugs were purchased from Sigma Chemical (St. Louis, MO).

Animals. All experimental protocols were approved by the Animal Care Committee of the Institute of Biomedical Sciences, University of São Paulo, Brazil (#98/10/CEUA). Male 8-wk-old C57BL/6 wild-type (WT) or PPARα knockout (KO) mice (from the Animal Facility of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil) were kept individually in cages at 23°C on a 12:12-h light-dark cycle with food (balanced chow pellet diet; Nuvilab CR1, Nuvital, Colombo, PR, Brazil) and water ad libitum. Mice were randomly assigned to one of the five groups that received 300 mg·kg·day⁻¹ of pure palmitoleic acid (16:1n7), oleic acid (18:1n9) (Sigma), or water (45) by gavage. Instead of palmitic acid, a solid that requires previous dissolution in organic vehicle/solvent prior administration, oleic acid was chosen as a control fatty acid for the in vivo experiments. Oleic, similarly to palmitoleic acid, does not require dissolution prior to administration to mice. Gavages were carried daily between 1600 and 1700. Body weight and food intake were measured twice throughout the experiment. After 10 days, mice (6–8 h fasted) were anesthetized with isoflurane and killed by cervical dislocation between 1600 and 1700. Body weight and food intake were measured as described above.

Adipocyte isolation. Adipocyte isolation was performed as previously described (36) with some slight modifications. Briefly, epididymal fat pads were minced in a flask containing DMEM supplemented with HEPES (20 mM), sodium pyruvate (2 mM), bovine serum albumin (BSA, 1%), and collagenase type II (1 mg/ml), pH 7.4, and incubated for 40 min at 37°C in an orbital shaker. Isolated adipocytes were filtered through a plastic mesh (150 μm) and washed three times in the same buffer without collagenase. After washing, medium was thoroughly aspirated and adipocytes were harvested. A small amount of adipocytes was photographed under an optic microscope (×100 magnification) using a microscope camera (Moticam 1000; Motic, Richmond, BC, Canada), and mean adipocyte diameter was determined by measuring 50 cells using Motic-Images Plus 2.0 software.

Plasma biochemical analysis. Blood glucose, TAG, and total cholesterol levels were determined using commercial kits (Labtest Diagnóstica from Lagoa Santa, MG, Brazil). NEFA were measured using the HR NEFA series kit (Wako Diagnostic, Richmond, VA) according to the manufacturer’s instructions. Insulin was quantified by ELISA (Millipore kit, St. Charles, MO).

Lipolysis. Lipolysis was estimated as the rate of glycerol release in the incubation medium. For this, differentiated 3T3-L1 cells or primary epididymal adipocytes (1 × 10⁶ cells/ml) were incubated in Krebs-Ringer-phosphate buffer (pH 7.4) containing BSA (20 mM) and glucose (5 mM) for 30 min at 37°C in the presence or absence of isoproterenol (2 × 10⁻⁶ M). The reaction was stopped on ice, and medium was carefully collected for measurement of glycerol release (Free Glycerol Determination Kit, Sigma). Results are expressed as micromoles of glycerol per milligram of protein per hour for 3T3-L1 cells and as micromoles of glycerol per 1 × 10⁶ adipocytes for epididymal adipocytes.

Incorporation of [1-¹⁴C]palmitate into TAG. Differentiated 3T3-L1 (~8 × 10⁶ cells/well) or primary epididymal adipocytes (10⁶ cells/ml) were incubated in Krebs-Ringer-phosphate buffer (pH 7.4) containing BSA (1%), glucose (2 mM) and [U-¹⁴C]Palmitate (200 μM, 1,850 Bq/tube or well) for 2 h at 37°C in a water bath. At the end of incubation, 3T3-L1 cells were washed with PBS followed by Dole lipid extraction with 2.5 ml of isopropanol-n-heptane-H₂SO₄ (4:1:0.25, vol/vol/vol). For primary isolated adipocytes, the mixture was transferred to 1.5-ml tubes containing 400 μl of silicone oil and centrifuged for 30 s. The cell pellet on the top of the oil layer was transferred to propylene tubes containing 2.5 ml of Dole’s reagent for lipid extraction. After addition of n-heptane (1.5 ml) and distilled water (1.5 ml), tubes were vortexed, and the mixture was decanted for 5 min. An aliquot of the upper phase was collected into a scintillation vial for determination of the radioactivity trapped into TAG (1450 liquid scintillation vial, Coulter MicroBeta, Trilux; PerkinElmer). Results are expressed as nanomoles of palmitate incorporated into TAG per 1 × 10⁶ cells per hour.

Incorporation of [U-¹³C]glucose into glycerol of TAG. Differentiated 3T3-L1 cells or primary epididymal adipocytes (1 × 10⁶ cells/ml) were incubated in Krebs-Ringer-phosphate buffer (pH 7.4) containing BSA (1%) and [U-¹³C]glucose (2 mM, 1,850 Bq/tube or well) for 2 h at 37°C in a water bath. Lipids were extracted by Dole’s method for measurement of glucose incorporation into total TAG as described above. For estimation of glucose incorporation into glycerol of TAG, an aliquot of the upper phase was transferred to a tube containing 1 ml of ethanol (95%) and 250 μl of KOH (40%) and incubated in a water bath at 60°C for 1 h. After incubation, 2 ml of HCl (3 N) and 2 ml of n-heptane were added, tubes were vortexed, and the upper phase was collected (1 ml) into a scintillation vial for the determination of glucose incorporation into fatty acids of TAG. Glucose incorporation into glycerol of TAG was calculated by the difference between the incorporation of [U-¹³C]glucose into TAG and fatty acids. The results were expressed as nanomoles of glucose incorporated into glycerol per 1 × 10⁶ cells per hour.

Incorporation of [L-¹⁴C]pyruvate into glycerol of TAG. Differentiated 3T3-L1 cells were incubated in Krebs-Ringer-phosphate buffer (pH 7.4) containing BSA (1%) and [L-¹⁴C]pyruvate (5 mM, 1,850 Bq/tube or well) for 2 h at 37°C in a water bath. Lipids were extracted by Dole’s method for measurement of pyruvate incorporation into glycerol of TAG as described above. The results were expressed as picomoles of pyruvate incorporated into glycerol per 1 × 10⁶ cells per hour.
RNA extraction and quantitative real-time polymerase chain reaction. Total RNA from 3T3-L1 cells or epididymal adipocytes were extracted with TRIzol reagent (Invitrogen Life Technologies), analyzed for quality on agarose gel and ratios 260/280 and 260/230 nm on NANODROP (Thermo Scientific), and reverse transcribed to cDNA using the High-Capacity cDNA Kit (Applied Biosystems). Gene expression was evaluated by real-time quantitative PCR (qPCR) using a Rotor Gene (Qiagen) and SYBR Green as fluorescent dye with GAPDH as a housekeeping gene for 3T3-L1 cells and 36B4 for epididymal adipocytes. Primers used and annealing temperatures are presented in Table 1. Primer efficiency was evaluated with a standard curve of different cDNA concentrations. After proper setting of the baseline and threshold, the slope of the standard curve was translated into an efficiency (R²) value. Primer efficiencies were around 90–100%. PCR products were run on agarose gel to confirm the size of the fragment and specificity of amplification. Some PCR products were extracted from gel with a kit (Qiagen) and submitted to sequencing for identity confirmation.

Western blot analysis. Protein aliquots (20 μg) of 3T3-L1 lysates were resolved on Nupage gradient gels (4–12%, Life Technologies) and transferred to nitrocellulose membranes. After blockage with 5% milk for 1 h, membranes were incubated overnight at 4°C with the following primary antibodies against: HSL (no. 4107), phospho(p)-Ser660-HSL (no. 4126), ATGL (no. 2138), and γ-tubulin (no. 5886 Cell Signaling, Beverly, MA), in 5% milk (1:1,000). After a 40-min washing, membranes were subsequently incubated with appropriate peroxidase-conjugated secondary antibody (1:5,000) for 1 h and developed using the ECL enhanced chemiluminescence substrate (GE Healthcare Life Sciences, Björkgatan, Uppsala, Sweden). Densitometric analysis was performed using Imagej software (National Institutes of Health, Bethesda, MD).

PPARα DNA binding assay. PPARα DNA binding activity was measured on nuclear extracts from 3T3-L1 cells treated with either vehicle or palmitic acid (200 μM) or palmitoleic acid (200 μM) for 12 h. Nuclear extracts were generated using the NE-PER Nuclear and Cytoplasmic Extraction Reagent Kit (Pierce, Rockford, IL). Nuclear extracts were generated from differentiated 3T3-L1 cells and incubated with immobilized PPARα DNA response element (Cayman Chemical, Ann Arbor, MI). The plate was then probed for antibodies specific to PPARα and read in a colorimetric plate reader. Results were normalized by nuclear protein content.

Gas chromatographic analysis. 3T3-L1 adipocytes treated with either vehicle or palmitic (200 μM) or palmitoleic acid (200 μM) for 24 h were washed, harvested in PBS, and used for the measurement of fatty acid composition by transesterification reaction for gas chromatography (GC) fatty acid methyl ester (FAME) analysis as previously described (23). Briefly, harvested cells were mixed with methanol, acetyl chloride, and an internal standard solution (heptadecanoic acid in methanol) and heated at 100°C for 60 min, and lipid was extracted with hexane. Individual FAMEs were analyzed by GC with flame ionization detection on a Trace 1310 (Thermo Scientific) using a capillary column (DB-FFAP, 15 m × 0.1 mm ID × 0.1 μm film thickness; Agilent Technologies). FAMEs were identified by direct comparison with a FAME standard mix (Supelco 37 Component FAME Mix, Sigma-Aldrich), each individual peak was integrated, and the area was normalized by internal standard. The percentage of individual FAME was calculated in relation to the total area of FAME peaks. Since the fatty acid methyl esters of interest have similar carbon chain length, it was assumed that they would have the same response factor and volatility, allowing the making of a direct comparison of the peak areas to determine sample composition.

Statistical analysis. Data are expressed as means ± SE. One- or two-way ANOVA (when indicated) followed by Tukey and Bonferroni post hoc tests, respectively, were used to compare the effects of different treatments and conditions. Analysis was performed using GraphPad Prism v. 5.0 software (GraphPad Software, San Diego, CA). The level of significance was set at P ≤ 0.05.

RESULTS

Because differentiated 3T3-L1 cells express several enzymes that can chemically modify fatty acids (elongases, desaturases), we first investigated whether treatment with palmitic or palmitoleic acid is associated with changes in 3T3-L1 fatty acid content. As evaluated by GC, palmitoleic acid is the most abundant fatty acid (~36%) found in 3T3-L1 cells, followed by palmitic acid (~23%) and oleic acid (~10%) (Table 1), and treatments did not significantly affect total 3T3-L1 fatty acid content (means ± SE, vehicle, 564 ± 2.7; 16:0, 615 ± 23; and 16:1n7, 629 ± 43 μg/10⁶ cells, P = 0.11). Treatment with palmitic acid for 24 h induced a significant increase in 3T3-L1 palmitic acid content without significantly affecting cell composition of other fatty acids such as palmitoleic, stearic, oleic, and vaccenic acids. Similarly, treatment with palmitoleic acid for 24 h induced a significant increase in 3T3-L1 palmitoleic acid content without significantly affecting cell levels of palmitic, stearic, oleic, and vaccenic acids.

To investigate whether palmitoleic acid (16:1n7) regulates TAG metabolism in adipocytes, differentiated 3T3-L1 cells were evaluated for lipolysis after a 24-h treatment with this fatty acid. As depicted in Fig. 1, A and B, treatment with 16:1n7 at a dose of 200 μM significantly increased basal and stimulated lipolysis, as evidenced by the higher rates of glycerol release into medium from cells treated with 16:1n7 compared with those treated with vehicle (~57 and 58%, respectively) and palmitic acid (200 μM, ~53 and 56%, respectively). Interestingly, combined treatment of 16:1n7 (100 μM) plus palmitic acid (100 μM) does not interfere with the increase in basal and stimulated lipolysis induced by 16:1n7 alone. Importantly, such increase in lipolysis induced by 16:

Table 1. Pairs of primers used for PCR

Gene	5' Primer (5'-3')	3' Primer (5'-3')	Annealing	PubMed ID
GAPDH	CGCAACCCTCTTGGCTCTTAG	CTGGGCTCTACCTGAGGACC	60°C	NM_000804.2
36B4	TAAAGAAGTGGAGAACAAGGTG	GTGATTCTGATGGTGGCA	63°C	NM_007475
ATGL	GTGCTGCTGCACTCCCTCTT	CTGCTGCTGAGGAGATGTTC	63°C	NM_025802
HSL	CAGAGGGCGCTAGTGCTCTACA	ATAGAACGGTGGCTGTAAGGG	60°C	NM_010719.5
MGL	TGTGGTCCCTAGTGGCTGG	GGTGACAGTTGAGTGGC	60°C	NM_011844
Perilipin	AGTGCTGGTGGTCCTGCTGCTG	TGGCGATGTCAGAATCTGGTG	60°C	NM_175640
G052	ACTGACCTCTAGGGCGCGACAC	GCTGACAGGGTGGCCTC	60°C	NM_008059.3
CGI-58	TGAAGGCGTGAGCTGCAGGTA	GCCCTATGCCTGCTGAGTGG	60°C	NM_026179
PEPCCK	CTTGTGGCTGGTGGTG	TCTTTGCTGGTGTCCTTGA	60°C	NM_01044
A1GK	AATCGGTATACGGTAGAG	AGGGGACCATAGCTGGC	58°C	NM_008194

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00082.2013 • www.ajpendo.org
16:1n7 was reproduced at lower doses of this fatty acid (50 μM but not 10 μM; data not shown). Furthermore, the increase in lipolysis induced by 16:1n7 was associated with a significant upregulation in the mRNA levels of the lipases ATGL (~64%) and HSL (~100%) but not those of MGL and other proteins involved in lipolytic cascade such as perilipin A, CGI-58, and G0S2 (Fig. 1, C–H). Furthermore, treatment with 16:1n7, but not 16:0, significantly increased 3T3-L1 protein content of ATGL and pSer660-HSL and tended to increase (P = 0.09) those of total HSL compared with vehicle treated cells (Fig. 1, J–K).

In an attempt to investigate the putative mechanisms underlying this increase in lipolysis induced by 16:1n7, we next tested whether the “lipid sensors” PPARs, previously shown to regulate lipolysis through the modulation of lipase expression, were involved in this effect. As depicted in Fig. 2, A and B, pharmacological inhibition of PPARα (GW-6471), but not PPARγ (GW-9662) (data not shown), significantly reduced rates of glycerol release from 3T3-L1 cells at basal and stimulated conditions and completely blocked the increase in these variables induced by treatment with 16:1n7. Corroborating with a likely involvement of PPARα on palmitoleic acid actions on lipolysis, treatment with 16:1n7, but not 16:0 (data not shown), for 12 h significantly increased rates of PPARα binding to its DNA consensus sequence, also known as peroxisome proliferator-responsive element (PPRE) (Fig. 2C).

A possible modulation of the anabolic branch of TAG metabolism, namely, TAG synthesis by palmitoleic acid, was also investigated. As depicted in Fig. 3A, in contrast to lipolysis, treatment of 3T3-L1 with either 16:0 or 16:1n7 significantly increased TAG synthesis (~50%) as evidenced by the higher rates of fatty acid incorporation into TAG. Noteworthy, since palmitoleic acid increased TAG lipolysis and extracellular levels of fatty acids, this may have led to a dilution of the radioactive labeled fatty acid and a likely underestimation of true values of fatty acid incorporation into TAG in palmitoleic-treated cells. This higher TAG synthesis induced by 16:0 or 16:1n7 was associated with a significant increase in the generation of glycerol 3-phosphate via glycolysis (~29%), as evidenced by the higher rates of glucose incorporation in the glycerol fraction of TAG (Fig. 3B). Importantly, such increase in glucose incorporation into TAG-glycerol was not affected by treatment with the pharmacological PPARα antagonist GW-6471 (Fig. 3B). In contrast to glycolysis, treatment with 16:0 or 16:1n7 did not affect the other two possible pathways of glycerol 3-phosphate generation in adipocytes, namely glyceroneogenesis, estimated by pyruvate incorporation in the glycerol fraction of TAG and PEPCK expression (Fig. 3, C and 3D), and glycerokinase, estimated by its mRNA levels (Fig. 3E).

To extend the significance and relevance of these in vitro findings, we also investigated whether palmitoleic acid also affects TAG metabolism in vivo. As shown in Table 3, treatment of wild-type and PPARα KO mice with pure 16:1n7 or oleic acid (18:1n9) by gavage for 10 days did not affect body weight, food intake, masses of white and brown adipose depots and liver, and plasma levels of cholesterol, free fatty acids, insulin, and glucose. In contrast to these variables, treatment with 18:1n9, but not 16:1n7, significantly increased plasma TAG levels in wild-type mice. As depicted in Fig. 4, A and B, similarly to its in vitro actions, treatment of wild-type mice by gavage with 16:1n7, but not with 18:1n9, significantly increased basal and stimulated lipolysis (~21%), as evidenced by the higher rates of glycerol release into medium from isolated epididymal adipocytes of mice treated with 16:1n7 compared with those treated with water.

To confirm the involvement of the PPARα pathway in the increase in lipolysis induced by 16:1n7, epididymal adipocytes from wild-type and PPARα KO mice treated with vehicle or 16:1n7 for 10 days were evaluated for glycerol release and lipase expression. Supporting our in vitro findings, treatment of wild-type mice with 16:1n7 significantly increased basal and isoproteanol-stimulated lipolysis as estimated by glycerol release (~21%) and adipose tissue mRNA levels of ATGL (~48%) and HSL (~62%), such effects that were completely blunted in epididymal adipocytes of PPARα KO mice (Fig. 5, A and B). In fact, epididymal adipocytes of PPARα KO mice had reduced rates of lipolysis at basal conditions and lower mRNA levels of ATGL than wild-type mice.

Regarding TAG synthesis, similarly to the in vitro findings, treatment of wild-type mice with either 16:1n7 or 18:1n9 significantly increased the incorporation of fatty acids into TAG, as well as 16:1n7 increased glycerol 3-phosphate generation from glycolysis, as estimated by glucose incorporation into the glycerol fraction of TAG (Fig. 6, A and B). Interestingly, in contrast to lipolysis, PPARα deficiency did not affect the increase induced by 16:1n7 on these parameters.

DISCUSSION

In the present study, we have unveiled important actions of palmitoleic acid (16:1n7) in the regulation of adipose tissue TAG metabolism and possible mechanisms underlying these effects. Our main findings indicate that palmitoleic, but not
Palmitic (in vitro) or oleic (in vivo), acid increases adipose tissue lipolysis under both basal and stimulated conditions as well as the mRNA expression and protein content of the major TAG lipases ATGL and HSL. Here, we present strong evidence suggesting that the positive effects of palmitoleic acid on lipolysis and lipase expression require the proper functioning of the nuclear receptor and lipid sensor PPARα.

Several studies have found compelling evidence indicating that palmitoleic acid is an important signaling molecule, produced mainly by white adipose tissue, that regulates major metabolic processes such as skeletal muscle glucose disposal and insulin sensitivity and hepatic lipid deposition (3, 45). Here, we extend this notion by showing that palmitoleic acid also acts in white adipose tissue, where it modulates both...
catabolic and anabolic branches of TAG metabolism. Accordingly, treatment of differentiated adipocytes in vitro or of mice in vivo with palmitoleic acid was associated with a significant increase in adipocyte lipolysis, under both basal and stimulated conditions. Such upregulation of lipolysis by palmitoleic acid was not affected by the presence of an equimolar concentration of palmitic acid. Interestingly, palmitoleic acid does increase lipolysis in vitro at dose of 50 μM, such a concentration of palmitoleic acid that can be attained in human plasma upon overnight fasting (8). Conversely, adipocyte treatment with palmitic acid, which can be intracellularly converted to palmitoleic acid by the adipocyte-expressed SCD1 had no effects on lipolysis. In fact, adipocyte treatment with palmitic acid did not translate into a higher generation of palmitoleic acid, as evidenced by the absence of changes in 3T3-L1 palmitoleic acid content estimated by GC analysis upon 24-h treatment with palmitic acid. These findings strongly indicate that SCD1 may preferentially use palmitic acid from de novo fatty acid syn-

Fig. 2. Basal and isoproterenol-stimulated rates of glycerol release (μmol/mg protein; A and B, respectively) by 3T3-L1 cells treated for 24 h with vehicle or palmitoleic acid (16:1n7, 200 μM) in association or not with a PPARα antagonist (GW-6471, 10 μM) and PPARα DNA binding activity (absorbance/mg of protein; C) by nuclear extracts from 3T3-L1 cells treated with vehicle or palmitoleic acid (16:1n7, 200 μM) for 12 h. Results are means ± SE (n = 6–7/group). *P ≤ 0.05; 16:1n7 vs. vehicle; #P < 0.05 GW-6471 and GW-6471 + 16:1n7 vs. vehicle and 16:1n7; &P < 0.05 GW-6471 + 16:1n7 vs. 16:1n7.

Fig. 3. Incorporation of fatty acids (A), glucose (B), or pyruvate (C) into triacylglycerol (TAG, nmol/10⁶ cells and pmol/10⁶ cells, respectively) and into the glycerol fraction of TAG (nmol/10⁶ cells), respectively, and mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK; D) and glycerokinase (GyK; E) in 3T3-L1 cells treated for 24 h with vehicle or palmitic acid (16:0, 200 μM) or palmitoleic acid (16:1n7, 200 μM) in the presence or not of DMSO or GW-6471 (GW, 10 μM), a PPARα antagonist. GAPDH was used as a housekeeping gene. Results are means ± SE (n = 6–8/group). *P < 0.05 16:0 and 16:1n7 vs. vehicle; +P ≤ 0.05 GW + 16:0 and GW + 16:1n7 vs. GW; &P < 0.05 16:1n7 vs. 16:0.
Table 3. Body and organ weights, food intake, and plasma biochemical profile in WT or PPARα KO mice daily treated for 10 days by gavage with H2O or palmitoleic acid (16:1 n7, 300 mg/kg) or palmitic acid (18:1 n9, 300 mg/kg)

	WT + H2O	WT + 16:1n7	WT + 18:1n9	KO + H2O	KO + 16:1n7
Initial body weight, g	25.6 ± 0.6	25.4 ± 0.6	26.6 ± 1.3	24.8 ± 0.4	24.7 ± 0.4
Final body weight, g	24.4 ± 0.5	24.6 ± 0.4	25.7 ± 1.04	25.4 ± 0.4	25.2 ± 0.5
Food intake, g/day	3.6 ± 0.1	3.8 ± 0.1	3.5 ± 0.1	3.6 ± 0.1	3.8 ± 0.1
Epididymal WAT, mg/g BW	13.3 ± 1.3	12.5 ± 1.2	13.1 ± 1	11.1 ± 0.8	10 ± 0.7
Inguinal WAT, mg/g BW	8.3 ± 1	9.3 ± 1.4	7.4 ± 0.9	6.8 ± 0.6	6.4 ± 0.1
Retroperitoneal WAT, mg/g BW	2.3 ± 0.5	2.3 ± 0.6	2.0 ± 0.2	1.7 ± 0.2	1.3 ± 0.4
BAT, mg/g BW	2.1 ± 0.1	2.3 ± 0.2	2.0 ± 0.1	1.9 ± 0.09	2.1 ± 0.06
Liver, mg/g BW	44.7 ± 1.2	46.1 ± 2.1	44 ± 0.6	44.3 ± 1	46.5 ± 1.2
Triglyceride, mg/dl	79.6 ± 18.2	79.3 ± 8.7	139.2 ± 17.7*	58.9 ± 5.9	83.7 ± 22.1
Total cholesterol, mg/dl	87.2 ± 8.6	100 ± 8	107.3 ± 12	109 ± 1.8	102 ± 10
Free fatty acid, mEq/l	0.72 ± 0.07	0.60 ± 0.08	0.90 ± 0.15	0.81 ± 0.12	0.70 ± 0.11
Insulin, ng/ml	0.75 ± 0.21	0.89 ± 0.25	0.66 ± 0.04	0.51 ± 0.4	0.75 ± 0.21
Glucose, mg/dl	101 ± 10.6	107 ± 14.1	108.3 ± 16.3	103 ± 11.4	109 ± 12.6

Values are means ± SE; n = 6–7. PPAR, peroxisome proliferator-activated receptor; WT, wild type; KO, knockout; 16:1n7, palmitoleic acid; 18:1n9, oleic acid; BW, body weight; WAT, white adipose tissue; BAT, brown adipose tissue. *P < 0.05 WT + 18:1n9 vs. WT + H2O and WT + 16:1n7.

thesis instead of preformed ones for palmitoleic acid production. Corroborating with this hypothesis, 3T3-L1- and AP2-deficient mice, both of which rely majorly on de novo fatty synthesis for lipid generation, have increased production of palmitoleic acid (3, 18). Finally, mice fed a high-fat diet rich in palmitic acid have a strong reduction in adipose tissue de novo fatty acid synthesis and palmitoleic acid content (3).

Concomitantly and consistently with the activation of lipolysis, palmitoleic acid significantly increased adipocyte mRNA levels of the major TAG lipases ATGL and HSL in vitro and in vivo and ATGL protein content in vitro. Although of not definitive proof, this close association between lipase mRNAs and protein content and lipolysis, together with the previous findings that either ATGL or HSL overexpression in adipocytes enhanced lipolytic rates (40, 47), are indicative of an involvement of lipase upregulation as one of the mechanisms by which palmitoleic acid upregulates TAG hydrolysis. The findings, however, that palmitoleic acid increases the content of HSL phosphorylated at Ser660, a phosphorylation that is exclusively catalyzed by the cAMP-dependent protein kinase A, indicates that, in addition to protein content, changes in pro-lipolysis intracellular signaling and lipase activity might be involved in the activation of lipolysis by palmitoleic acid.

Because unsaturated fatty acids and other lipids have been shown to modulate the expression of several genes such as TAG lipases and others through the activation of the nuclear receptors PPARs (17, 30, 46), we next tested the hypothesis that these receptors are involved in the positive effects of palmitoleic acid on lipolysis. Accordingly, pharmacological inhibition or genetic deletion of PPARα, but not PPARγ, completely abolished the positive modulation of lipolysis and lipase expression induced by palmitoleic acid. In fact, the findings that inhibition of PPARα reduced basal lipolysis and ATGL mRNA levels indicate that this receptor is important not only to the positive modulation of lipolysis and lipase expression by palmitoleic acid but also to the regulation of TAG hydrolysis and ATGL expression at basal, nonstimulated conditions. Supporting an important role of PPARα in the regulation of lipolysis, an elevation in the endogenous production of the monounsaturated lipid oleoylthanolamide is also associated with an increase in epididymal adipose tissue lipolysis in a PPARα-dependent manner (12). All together, these findings establish PPARα as an important regulator of lipolysis in adipose tissue, adding to the previous recognized role of this receptor in the regulation of β-oxidation and mitochondrial function (21, 22, 34).

Unsaturated fatty acids were demonstrated to activate PPARs with such a potency that varies according to the size of the carbon chain and the number of double bonds (30, 38). We have shown herein that treatment with palmitoleic acid for 12 h significantly increased PPARα binding to its DNA consensus sequence (PPRE), which is indicative of PPARα activation. Despite these findings and those previously published showing an increase in PPARγ transcriptional activity in cultured adipocytes treated with palmitoleic acid (37), we cannot establish whether palmitoleic acts as a direct PPARα ligand. Further experiments are required to clarify this issue.

Fig. 4. Basal and isoproterenol-stimulated rates of glycerol release (nmol/10⁶ cells; A and B, respectively) by isolated epididymal adipocytes from wild-type (WT) mice treated for 10 days by gavage with water or oleic acid (18:1n9, 300 mg·kg⁻¹·day⁻¹) or palmitoleic acid (16:1n7, 300 mg·kg⁻¹·day⁻¹). Results are means ± SE (n = 5–12/group). *P < 0.05 16:1n7 vs. water and 18:1n9; #P < 0.05 16:1n7 vs. water.

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00082.2013 • www.ajpendo.org
It is well established that ~30–40% of the fatty acids produced by lipolysis in adipocytes are reesterified back into TAG through a process that depends on intracellular glycerol 3-phosphate levels (15, 33, 42). Here, we have shown that lipolysis activation by palmitoleic acid is associated with an increase in the rates of fatty acid incorporation into TAG. This increase in fatty acid esterification is also associated with an elevation in glucose incorporation into the glycerol fraction of TAG, indicative of a higher glycerol 3-phosphate synthesis via glycolysis. Taken together, these data suggest an elevation in the recycling of the lipolytic product fatty acid back to TAG; however, this hypothesis remains to be investigated. A similar increase in fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glycolysis was also seen upon in vitro treatment with palmitic acid and in vivo treatment with oleic acid, suggesting that, in contrast to lipolysis, which is affected specifically by palmitoleic acid, an elevation into TAG synthesis is a rather common phenotype shared by all fatty acids investigated here. Furthermore, in contrast to lipolysis, TAG synthesis activation by palmitoleic acid does not depend on PPARα activity, as evidenced by the similar increase in TAG and glycerol 3-phosphate synthesis induced by palmitoleic acid in 3T3-L1 cells treated with PPARα antagonist and adipocytes of both wild-type and PPARα KO mice. All together, these findings indicate that palmitoleic acid enhances fatty acid esterification into TAG and glycerol 3-phosphate synthesis independently of lipolysis through a distinct mechanism that does not involve PPARα.

Nevertheless, the concomitant increase in antagonistic processes such as lipolysis and TAG synthesis, defined as TAG-*
fatty acid cycling, by palmitoleic acid is not without precedent, resembling, with minor differences, that induced by pharmacological PPARγ activation with rosiglitazone (6, 7, 20). Whereas palmitoleic acid stimulation of lipolysis is associated with increased expression of ATGL and HSL, activation of TAG hydrolysis by rosiglitazone is associated with an elevation in both ATGL and MGL mRNA levels. Furthermore, palmitoleic acid activation of TAG synthesis is linked to an increase in glycerol 3-phosphate synthesis from glycolysis, whereas PPARγ activation enhances all three possible pathways of glycerol 3-phosphate synthesis, namely glycolysis, glycerooneogenesis, and glycerokinase (6, 7, 20). It is important to note that such an increase in TAG-fatty acid cycling has been shown not only to enhance cell energy expenditure but also to increase the sensitivity of both TAG synthesis and lipolysis to neuro/hormonal control in such a manner that small changes in the concentration of the neuro/hormonal factors regulating these pathways are able to induce dramatic changes in the direction of substrate flux in this cycle (2, 27, 44).

In conclusion, we have presented herein strong evidence indicating that palmitoleic acid, in addition to liver and skeletal muscle, controls important metabolic processes in adipose tissue. Our data indicate that palmitoleic acid is an important positive modulator of adipocyte lipolysis and the content of the major lipases ATGL and HSL through a PPARα-dependent mechanism. Further studies are required, however, to test whether this activation of lipolysis and lipases by palmitoleic acid would confer protective effects against excessive fat deposition found in obesity.

ACKNOWLEDGMENTS

We thank Maysa Mariana Cruz, Lucas Curtolo Poiani, and Barbara Ferreira Lioiti for assistance in some experiments.

GRANTS

This work was supported by grants from São Paulo State Research Foundation (FAPESP) to M. I. Alonso Vale (no. 2011/53964-1) and W. T. Festuccia (no. 2009/53964-1). A. Bolsoni-Lopes is a recipient of a PhD fellowship from FAPESP (no. 2009/53964-1).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: A.-B.L., W.T.F., F.B.L., R.C., and M.I.C.A.-V. conceived and designed of research; A.-B.L., W.T.F., T.M.F., P.C., F.L.T.-L., P.B.M.D., P.B.d.A., S.M., and M.I.C.A.-V. performed experiments; A.-B.L., W.T.F., T.M.F., P.C., F.L.T.-L., P.B.M.D., P.B.d.A., S.M., and M.I.C.A.-V. analyzed data; A.-B.L., W.T.F., T.M.F., P.C., F.L.T.-L., P.B.M.D., P.B.d.A., S.M., F.B.L., R.C., and M.I.C.A.-V. interpreted results of experiments; A.-B.L., W.T.F., P.B.M.D., and M.I.C.A.-V. prepared figures; A.-B.L. and W.T.F. drafted manuscript; A.-B.L., W.T.F., P.C., F.L.T.-L., P.B.d.A., F.B.L., R.C., and M.I.C.A.-V. edited final version of manuscript; F.B.L., R.C., and M.I.C.A.-V. edited and revised manuscript.

REFERENCES

1. Ahmadian M, Duncan RE, Sul HS. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab 20: 424–428, 2009.
2. Brooks B, Arch JR, Newsholme EA. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett 146: 327–330, 1982.
3. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134: 933–944, 2008. 4. Diakogiannaki E, Dhayal S, Childs CE, Calder PC, Welters HJ, Morgan NG. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. J Endocrinol 194: 283–291, 2007.
5. Duncan RE, Ahmadian M, Javorski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr 27: 79–101, 2007.
6. Festuccia WT, Blanchard PG, Turcotte V, Laplante M, Sariahmetoglu M, Brindle DN, Deshaies Y. Depot-specific effects of the PPARα agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res 50: 1185–1194, 2009.
7. Festuccia WT, Laplante M, Berthiaume M, Gelinas Y, Deshaies Y. PPARγ agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia 49: 2427–2436, 2006.
8. Fraser DA, Thoen J, Rustan AC, Forre O, Kjeldsen-Kragh J. Changes in plasma free fatty acid concentrations in rheumatoid arthritis patients during fasting and their effects upon T-lymphocyte proliferation. Rheumatology (Oxford) 38: 948–952, 1999.
9. Girousse A, Langin D. Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obes (Lond) 36: 581–594, 2011.
10. Gómez AE, Cao Y, Bagshaw DD, Cifelli AM, Holub B, Kris-Etherton PM. A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women. J Nutr 138: 761–767, 2008.
11. Gross RW, Han X. Shotgun lipidomics of neutral lipids as an enabling technology for elucidation of lipid-related diseases. Am J Physiol Endocrinol Metab 297: E297–E303, 2009.
12. Guzman M, Lo Verme J, Fu J, Oueisi F, Blazquez C, Piomelli D. Oleoylthanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR alpha). J Biol Chem 279: 27849–27854, 2004.
13. Hiraoka-Yamamoto J, Ikeda K, Negishi H, Mori M, Hirose A, Sawada S, Onobayashi Y, Kitamoto K, Kitano S, Tashiro M, Mikita Y, Yamori Y. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women. Clin Exp Pharmacol Physiol 31, Suppl 2: S37–S38, 2004.
14. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol 293: G1–G4, 2007.
15. Jensen MD, Ekberg K, Landau BR. Lipid metabolism during fasting. Am J Physiol Endocrinol Metab 281: E789–E793, 2001.
16. Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS. PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab 293: E1736–E1745, 2007.
17. Kobayashi T, Fujimori K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elov13 and PPARγ in 3T3-L1 cells. Am J Physiol Endocrinol Metab 302: E1461–E1471, 2012.
18. Kurebayashi S, Hirose T, Miyashita Y, Kasayama S, Kishimoto T. Thiazolidinediones downregulate stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. Diabetes 56: 2115–2118, 1997.
19. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48: 275–297, 2009.
20. Laplante M, Festuccia WT, Soucy G, Gelinas Y, Lalonde J, Berger JP, Deshaies Y. Mechanisms of the depot specificity of peroxisome proliferator-activated receptor γ action on adipose tissue metabolism. Diabetes 55: 2771–2778, 2006.
21. Lee JY, Hashizaki H, Goto T, Sakamoto T, Takahashi N, Kawada T. Activation of peroxisome proliferator-activated receptor-alpha enhances fatty acid oxidation in human adipocytes. Biochem Biophys Res Commun 407: 818–822, 2011.
22. Li P, Zhu Z, Lu Y, Grammaneg J. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptors. Am J Physiol Endocrinol Metab 289: E617–E626, 2005.
23. Massod A, Stark KD, Salem N Jr. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46: 2299–2305, 2005.
24. Matthalin NR, Dillard A, Lecker JL, Ip B, Lichtenstein AH. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the FIB golden Syrian hamster. J Nutr 139: 215–221, 2009.
25. Morgan NG, Dhayal S. Unsatuated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids 82: 231–236, 2010.
26. Nestel P, Clifton P, Noakes M. Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J Lipid Res 35: 656–662, 1994.

27. Newsholme EA. Reflections on the mechanism of action of hormones. FEBS Lett 117. Suppl: K121–K134, 1980.

28. Oakes ND, Thalen PG, Jacinto SM, Ljung B. Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 50: 1158–1165, 2001.

29. Park BH, Qiang L, Farmer SR. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24: 8671–8680, 2004.

30. Poulsen L, Siersbaek M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23: 631–639, 2012.

31. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H, Watkins SM, Sanyal AJ. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50: 1827–1838, 2009.

32. Ralston JC, Zulyniak MA, Nielsen DE, Clarke S, Badawi A, El-Sohemy A, Ma DW, Mutch DM. Ethnic- and sex-specific associations between plasma fatty acids and markers of insulin resistance in healthy young adults. Nutr Metab (Lond) 10: 42, 2013.

33. Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 278: 30413–30416, 2003.

34. Ribet C, Montastier E, Valle C, Bezaire V, Mazzucotelli A, Maira L, Viguier N, Langin D. Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology 151: 123–133, 2010.

35. Roberts LD, Virtue S, Vidal-Puig A, Nichols AW, Griffin JL. Metabolic phenotyping of a model of adipocyte differentiation. Physiol Genomics 39: 109–119, 2009.

36. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239: 375–380, 1964.

37. Sauna L, Stenkula KG, Kjolhede P, Straffors P, Soderstrom M, Nystrom FH. PPAR-gamma response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition 22: 60–68, 2006.

38. Schupp M, Lazar MA. Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem 285: 40409–40415, 2010.

39. Sztalryd C, Komaromy MC, Kraemer FB. Overexpression of hormone-sensitive lipase prevents triglyceride accumulation in adipocytes. J Clin Invest 95: 2652–2661, 1995.

40. Tan GD, Fielding BA, Currie JM, Humphreys SM, Desage M, Frayn KN, Laville M, Vidal H, Harpe F. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia 48: 83–95, 2005.

41. Watt MJ, Spriet LL. Triacylglycerol lipases and metabolic control: implications for health and disease. Am J Physiol Endocrinol Metab 299: E162–E168, 2010.

42. Wolfe RR, Klein S, Carraro F, Weber JM. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol Endocrinol Metab 258: E382–E389, 1990.

43. Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis 10: 120, 2011.

44. Zechnner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. Fat signals—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15: 279–291, 2012.

45. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechnner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–1386, 2004.
APÊNDICE B – Tang et al. Cell Metabolism. 2013 Dec 3;18(6):883-95.
Desnutrin/ATGL Activates PPARδ to Promote Mitochondrial Function for Insulin Secretion in Islet β Cells

Tianyi Tang,1,2 Marcia J. Abbott,2,3 Maryam Ahmadian,2,5 Andressa B. Lopes,2,4 Yuhui Wang,2 and Hei Sook Sul1,2,*

1Endocrinology Program
2Department of Nutritional Science and Toxicology
University of California, Berkeley, Berkeley, CA 94720, USA
3These authors contributed equally to this work
4Present address: Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508, Brazil
5Present address: The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
*Correspondence: hssul@berkeley.edu
http://dx.doi.org/10.1016/j.cmet.2013.10.012

SUMMARY

Excessive caloric intake leading to obesity is associated with insulin resistance and dysfunction of islet β cells. High-fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing that desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function, including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS.

INTRODUCTION

Desnutrin (also called ATGL/PLA2γ/PNPLA2) (Duncan et al., 2010), a patatin-domain-containing protein, was identified by us and others as the major triacylglycerol (TAG) hydrolase. Although desnutrin is highly expressed in adipose tissue, the main energy storage organ, it is also found in other tissues (Jenkins et al., 2004; Villena et al., 2004; Zimmermann et al., 2004). The product of desnutrin-catalyzed TAG lipolysis, diacylglycerol (DAG), undergoes further hydrolysis catalyzed by hormone-sensitive lipase (HSL) to generate monoacylglycerol (MAG), which is finally hydrolyzed by MAG lipase to generate glycerol. Each step of TAG hydrolysis liberates a fatty acid (FA) (Duncan et al., 2007).

FAs produced from TAG hydrolysis in adipose tissue are released into circulation to be taken up by other tissues. In contrast, FAs generated from lipolysis in other tissues where TAG is found in greatly lesser amount are metabolized primarily within the cell. High fat diet (HFD) feeding can cause TAG accumulation not only in adipose tissue, but also in various other tissues (Matsui et al., 2004), and lower desnutrin levels or activity can contribute to TAG accumulation. Ectopic TAG accumulation in various tissues, such as liver and muscle, has been linked to metabolic syndrome and insulin resistance. Although molecular details are not known, increased intracellular lipid metabolites, as well as mitochondrial dysfunction, have been implicated in this process.

Excessive caloric or fat intake leading to obesity has been associated not only with insulin resistance and type 2 diabetes, but also with β cell dysfunction. In rodents, feeding of a HFD has been reported to result in islet β cell dysfunction and impairment of insulin secretion (Ehses et al., 2010; Evans-Molina et al., 2009). It has been well documented that insulin secretion by β cells is in response to catabolism of metabolic fuels involving mitochondrial ATP production (Detimary et al., 1998; Lu et al., 2010). An increase in cytosolic ATP or ATP/ADP ratio induces closure of the ATP-sensitive potassium channel (KATP), resulting in plasma membrane depolarization to allow Ca2+ influx, which in turn triggers insulin secretion from β cells (Detimary et al., 1998). Maintaining mitochondrial function is essential to preserve levels of cellular ATP and insulin secretion. Thus, impairments in mitochondrial morphology and function have been shown to decrease insulin secretion, presumably through blunted ATP production (Lu et al., 2010; Weiss et al., 2012). Still, how mitochondrial function for insulin secretion may become perturbed in type 2 diabetes is not well understood.

The peroxisome proliferator-activated receptor (PPAR) family of nuclear hormone receptors controls expression of genes involved in energy homeostasis and lipid metabolism (Yessoufou and Wahl, 2010). Of the three PPAR family members, PPARγ is highly expressed in oxidative tissues to play a central role in FA oxidation, whereas PPARβ is preferentially expressed in adipose tissue to promote adipogenesis and fat storage. In contrast, PPARδ is widely expressed and implicated in both FA and glucose metabolism. Although PPARs can be activated by...
specific synthetic agonists, endogenous ligands are yet to be clearly defined. In this regard, FAs, and in particular unsaturated FAs, may act as endogenous ligands, or serve as precursors to generate ligands, to transcriptionally activate target genes. However, the sources of intracellular FAs that activate PPARs directly, or indirectly by converting to endogenous ligands, have not been well understood. We previously reported that, RIP-Cre can also be expressed and affect hypothalamic gene expression (Kubota et al., 2004), we did not detect significant differences in mRNA or protein levels of desnutrin in the hypothalamus between jKO and control mice (Figure 1B and Figure S1A available online).

Next, jKO and control floxed or RIP-Cre mice were fed a standard chow or HFD at 4 weeks of age, and mice were examined at 8 weeks of age. There were no differences in food intake or body weights of jKO in comparison to floxed or RIP-Cre mice on either chow or HFD (Figure S1B). All subsequent studies were performed on jKO and control floxed or RIP-Cre mice maintained on HFD. (Initial studies were performed on mice on chow as well as HFD, as indicated.) No significant differences in fasting plasma levels of NEFA, TAG, glucose, or insulin were detected between groups (Figures 1C and S1C). jKO mice on a HFD showed higher postprandial blood glucose and lower insulin levels when compared to the floxed or RIP-Cre mice on HFD (Figure 1C). We next performed glucose tolerance tests (GTTs) and insulin tolerance tests (ITTs). During GTTs of mice on HFD, blood glucose levels of jKO mice at 30 and 60 min were 33% and 30% higher than control groups, respectively (Figure 1D, left). However, we did not detect any alternations in ITT compared to floxed or RIP-Cre mice on chow or HFD diet, strongly suggesting a defect in insulin secretion in jKO mice, especially upon HFD feeding (Figures 1D and S1D, right). Examination of insulin levels during the first 30 min after glucose administration during the GTT indicated that, unlike floxed or RIP-Cre groups with a significant increase in insulin levels from 1.3- to 1.5-fold, jKO mice were unable to raise insulin levels in response to a glucose challenge (Figure 1E, left). We also measured C-peptide levels, which, due to its longer half-life, can be a more sensitive index for insulin secretion. Indeed, C-peptide levels were elevated by approximately 3-fold 30 min after glucose administration in floxed or RIP-Cre mice, whereas the levels did not change in jKO mice (Figure 1E, right). These results point to the idea that insulin secretory function of β cells may be defective in desnutrin jKO mice on a HFD and that the lower desnutrin levels we detected upon HFD feeding may contribute to HFD-associated β cell dysfunction. We also detected similar alterations in β cells function of jKO mice on chow diet. Glucose levels throughout GTT were somewhat higher in jKO mice on chow diet, although they were not statistically significant (Figure S1D, left). Insulin levels during GTT of chow-fed jKO mice, however, were greatly lower, confirming the idea of defective GSIS caused by desnutrin ablation (Figure S1D, middle). In this regard, impairment in insulin secretion in RIP-Cre mice has been described in some reports (Lee et al., 2006). On the other hand, others have reported unaltered glucose tolerance in RIP-Cre mice when bred onto a pure C57BL/6 background (Fex et al., 2007).

In our studies, control RIP-Cre mice did not show any impairment in insulin secretion and had the same glucose and insulin tolerance as floxed mice. Unaltered glucose tolerance in our RIP-Cre mice probably was due to the relatively young 8-week-old male mice on a pure C57BL/6J background that we employed in our studies. To prevent any developmental effect from using RIP-Cre mice, we also employed a tamoxifen-inducible RIP-CreER mouse model. In this regard, this model has been reported to have a very low, but detectable, leakiness in the Cre expression (Liu et al., 2010; Russ et al., 2013).
Our homozygous desnutrin-floxed mice were mated with RIP-CreER mice and, after five injections of tamoxifen in a 2 week period, GTT was performed. The blood glucose levels 30 min after glucose administration were 37% higher in these temporal desnutrin-KO mice (RIP-CreER-desnutrin-KO) compared to floxed or RIP-Cre-ER mice (Figure 1D, right). The degree of glucose intolerance observed in these temporal desnutrin-KO mice was similar to that in RIP-Cre-βKO mice. Overall, our results are consistent with the notion that βKO mice may have defective insulin secretion from islet β cells when challenged with glucose.

![Figure 1. GTT and ITT in Desnutrin βKO Mice](image)

(A) Immunoblotting (left top) and RT-qPCR for desnutrin (left bottom) in pancreatic islets of C57BL/6 mice; TAG content in pancreatic islets (right).
(B) Immunoblotting (top) and RT-qPCR (bottom) for desnutrin expression in islets.
(C) Blood glucose and plasma insulin levels in mice.
(D) GTT (left) and ITT in mice (middle), and GTT in RIP-CreER mice treated with tamoxifen (right).
(E) Plasma insulin (left) and C-peptide levels (right) during GTT. Male mice, n = 6–10. Data are shown as mean ± SEM; *p < 0.05, **p < 0.01. See also Table S1 and Figure S1.

Ablation of Desnutrin in β Cells Impairs Glucose-Stimulated Insulin Secretion
To examine whether lack of desnutrin affects islet β cell phenotype, we examined the morphology of pancreatic islets and also measured islet insulin levels. Hematoxylin and eosin (H&E) staining and quantification showed that the average islet size of βKO pancreas was larger approximately by 120% compared to floxed or RIP-Cre pancreas (Figure 2A, left and middle). We also found that the βKO pancreas contained a higher frequency of larger-sized islets by measuring and counting islets of cryosections of pancreas (Figure 2A, right). In addition,
immunostaining showed stronger intensity of insulin staining (green) in βKO islets than in control islets (Figure 2B, left). Consistent with stronger insulin staining, the content of insulin was 69% and 45% higher in whole pancreas and isolated islets, respectively, in βKO mouse compared to floxed mice (Figure 2B, middle). Electron microscopy indicated a higher density of insulin
granules in jKO islets (Figure 2C, left), and quantification showed the number of insulin granules higher by 50% in jKO islets than in control islets from floxed mice (Figure 2C, right). However, despite this increase in insulin content in the jKO islets, there were no significant differences in INS1 and INS2 mRNA levels in jKO islets compared to floxed or RIP-Cre islets (Figure S1F). These findings indicate that insulin synthesis was not affected in jKO islets.

We next tested whether the lack of increase in insulin levels upon glucose challenge in jKO mice, especially with the increased insulin content in islets of jKO mice, reflects defective insulin secretion. Pancreatic islets were isolated from jKO and floxed mice, and islets were incubated with increasing concentrations of glucose. We detected increased insulin levels in culture media from floxed islets, and insulin levels displayed a dose dependence in response to increasing glucose levels (Figure 2D, left). In contrast, the increase in insulin levels detected in culture media from jKO islets was significantly blunted upon a 15 and 30 mM glucose challenge (Figure 2D, left). In order to eliminate cell-to-cell interaction and to minimize the cell number variation arising from the differences in islet size, we next used dispersed islet cells, representing mainly β cells by eliminating non-β cells through centrifugal elutriation. At 5 min after the addition of glucose, cells from floxed mice showed a marked increase in insulin secretion (a 1.7-fold higher insulin level), which was maintained up to 60 min. In contrast, cells from jKO mice showed only a slight increase in insulin levels of approximately 20% (Figure 2D, right) at all time points, clearly demonstrating defects in insulin secretion upon desnutrin ablation. This time course also demonstrates the early effect of desnutrin on insulin secretion. To confirm that this reduced secretory response was attributed to desnutrin deficiency per se, we transduced dispersed islet cells from jKO mice with adenovirus expressing desnutrin. As verified by immunoblotting, desnutrin level was significantly increased in the jKO islet cells infected with desnutrin-GFP (jKO+Ad-desnutrin) compared to the control jKO islet cells infected with GFP only (jKO+Ad-GFP) (Figure 2E, left). At 48 hr postinfection, insulin levels in desnutrin jKO cells expressing desnutrin were already slightly higher than in control cells. Ten minutes after 20 mM glucose stimulation, insulin level increased only slightly in jKO-GFP cells, and this low level was maintained throughout the time points, consistent with the defective insulin secretion (Figures 2D and 2E, right). In contrast, insulin release in desnutrin-infected jKO islet cells was increased significantly to almost 2-fold over control cells and was maintained throughout the time course (Figure 2E, right). These data indicate that desnutrin expression restores insulin secretion from jKO islets. We also performed lentivirus-mediated shRNA knockdown. shRNA knockdown of desnutrin in INS-1-derived 832/13 cells (INS 832/13 cells) caused an approximately 50% decrease in desnutrin levels compared to control-scrambled shRNA lentivirus-infected cells (Figure S2A, left). Whereas glucose caused a dose-dependent increase in insulin secretion in control cells, desnutrin knockdown resulted in a significantly blunted insulin secretion upon addition of 15 or 30 mM glucose (Figure S2A, middle). An increase in insulin level was detected in control cells 5 min after the glucose addition and continued to increase up to 60 min. In desnutrin knockdown cells, however, insulin secretion was significantly blunted (Figure S2A, right). Conversely, cells infected with desnutrin adenovirus, having approximately 5-fold increase in desnutrin levels (Figure S2B, left), showed higher GSIS when compared to GFP cells, although both cells had a typical dose- and time-dependent increase (Figure S2B, middle and right).

Overall, our studies on GSIS from isolated islets and dispersed islet cells from jKO mice, along with the apparent accumulation of insulin granules in jKO islets, point to the role of desnutrin in the insulin secretory process. Moreover, adenoviral rescue experiments clearly demonstrate that desnutrin functions in islet β cells for proper GSIS.

Desnutrin-Catalyzed Lipolysis Controls TAG and FA Content and FA Utilization in Islet β Cells

Desnutrin has originally been identified to serve as the major lipase catalyzing the hydrolysis of TAG in adipose tissue. TAG accumulation due to desnutrin ablation induces adipocyte hypertrophy (Ahmadian et al., 2011; Villena et al., 2004). It has been shown that TAG can accumulate in pancreatic β cells, especially upon high-fat feeding (Okazaki et al., 2010). We therefore measured TAG content in jKO islets. Total TAG levels extracted from whole pancreas and isolated islets from jKO mice in comparison to floxed mice were 1.5- and 2-fold higher, respectively (Figure 3A, top). Nile red staining for lipids also showed a lipid accumulation in islets from jKO mice, presumably due to a decrease in TAG hydrolysis due to lack of desnutrin (Figure 3A, bottom). However, there were no alterations in DAG content in the jKO islets (Figure S3A). Intracellular content of nonesterified FAs was determined to be 34% lower in the jKO islets (Figure 3B, left). Glycerol release determined as a measure of lipolysis was significantly lower in islets from jKO mice (Figure 3B, right). Taken together, we conclude that desnutrin activity is essential for the hydrolysis of TAG in islet β cells. We propose that the accumulation of TAG in islet β cells might contribute to the increased islet size in jKO mice (Figure 2A).

To further confirm the role of desnutrin-catalyzed lipolysis in islet β cells, we performed adenovirus-mediated overexpression of desnutrin in INS 832/13 cells. TAG content as judged by Nile red staining, as well as measurement of TAG from lipid extraction, was decreased greatly upon desnutrin overexpression (Figure 3C, top). Glycerol release, and thus lipolysis, was increased significantly upon desnutrin overexpression (Figure 3C, bottom left). Consistent with our previous studies in adipocytes (Ahmadian et al., 2009), FA oxidation in desnutrin-overexpressing INS 832/13 cells was also increased (Figure 3C, bottom right), while FA uptake was not significantly changed (Figure S3B). These data clearly demonstrate that desnutrin regulates lipolysis in islet β cells to control intracellular TAG and free FA levels and affect FA oxidation. Since desnutrin-catalyzed lipolysis affects intracellular FA levels in islet β cells, we next tested whether supplementation with exogenous FAs could restore the GSIS in jKO islet cells. We added oleate to dispersed islet cells. As predicted, addition of oleate caused a robust increase in insulin release in islet cells from floxed mice. In contrast, addition of oleate to dispersed islet cells from desnutrin jKO mice did not cause an increase in insulin release (Figure S3C), demonstrating that exogenous FAs could not substitute for desnutrin-catalyzed lipolysis. Overall, these results clearly show the specific role of desnutrin-catalyzed lipolysis in GSIS.
Desnutrin/ATGL and PPARβ in Insulin Secretion

Figure 3. TAG Content and Lipolysis in β Cells
As we have observed in adipocytes, we found increased FA oxidation by desnutrin overexpression in β cells. However, exogenous FAs could not restore impaired GSIS brought on by desnutrin ablation. Therefore, we next examined mitochondrial function of βKO islets. Mitochondrial membrane potential has been regarded as a sensitive marker of mitochondrial activity. Hence, we used glucose-treated dispersed islet cells to examine mitochondrial membrane potential. We employed MitoTracker red, which stains functional mitochondria, and MitoTracker green, which stains total mitochondria independent of mitochondrial membrane potential (Figure 4A, left). As shown in confocal fluorescence microscopy, although islet β cells from desnutrin βKO mice are larger, they showed similar staining of MitoTracker green when compared to control cells from floxed mice. On the other hand, βKO cells had very low MitoTracker red staining when compared to floxed cells. Thus, the density of functional mitochondria, as expressed as MitoTracker red/green ratio, was decreased by 50% in βKO cells (Figure 4A, right). The total mitochondrial density as reflected by mitochondrial DNA (mtDNA) to nuclear DNA ratio remained similar in the floxed and βKO islets (Figure 4B). Additionally, we stained functional mitochondria in desnutrin overexpressing INS 832/13 cells. Overexpression of desnutrin resulted in an increase in MitoTracker red staining over GFP control cells, showing that overexpression of desnutrin caused an enhancement of mitochondrial activity (Figure S4B). We conclude that impaired GSIS caused by ablation of desnutrin in islet β cells accompanies diminished mitochondrial function. Some mitochondria appeared to be fused together in βKO islets with increased expression of Mitofusin 1 and 2 and Fis-1 (Figures S4C and S4D).

Next, we examined expression levels for those genes involved in mitochondrial oxidation, such as Mdh2 and Sdhb, which are involved in the TCA cycle and may regulate GSIS. We examined expression of Cpt1, Acardv, and Hadhb, which are also related to FA oxidation (Roberts et al., 2011). We found a significant decrease in mRNA levels for all of these genes in βKO islets compared to floxed islets (Figure 4B). Additionally, we also employed citrate, which inhibits ATP synthase, resulted in a decrease in respiration to about 2-fold of the basal level. However, βKO islets only showed a 1.2-fold increase. Addition of 5 μM FCCP, which causes uncoupling of the oxidative phosphorylation from the electron transport chain, led to a sharp, 2.4-fold increase over the basal level of OCR in floxed islets. In contrast, the increase of OCR by FCCP was only 1.6-fold in the βKO islets, indicative of lower respiratory capacity. As expected, injection of 5 μM rotenone resulted in OCR shut down in both groups (Figure 4C, bottom left). We also measured activity of citrate dehydrogenase and mitochondrial density as reflected by MitoTracker red/green ratio, which inhibits ATP synthase, resulted in a decrease in respiration to about 2-fold of the basal level. However, βKO islets only showed a 1.2-fold increase. Addition of 5 μM FCCP, which causes uncoupling of the oxidative phosphorylation from the electron transport chain, led to a sharp, 2.4-fold increase over the basal level of OCR in floxed islets. In contrast, the increase of OCR by FCCP was only 1.6-fold in the βKO islets, indicative of lower respiratory capacity. As expected, injection of 5 μM rotenone resulted in OCR shut down in both groups (Figure 4C, bottom left). We also measured activity of citrate dehydrogenase and mitochondrial density as reflected by MitoTracker red/green ratio, which inhibits ATP synthase, resulted in a decrease in respiration to about 2-fold of the basal level. However, βKO islets only showed a 1.2-fold increase. Addition of 5 μM FCCP, which causes uncoupling of the oxidative phosphorylation from the electron transport chain, led to a sharp, 2.4-fold increase over the basal level of OCR in floxed islets. In contrast, the increase of OCR by FCCP was only 1.6-fold in the βKO islets, indicative of lower respiratory capacity. As expected, injection of 5 μM rotenone resulted in OCR shut down in both groups (Figure 4C, bottom left).
Figure 4. Desnutrin Is Required for Mitochondrial Function
(A) MitoTracker red/green staining of mitochondria in dispersed β cells (left); scale: 100 μm. Quantification of MitoTracker red/green ratio (right).
(B) Mitochondrial DNA to nuclear DNA ratio.
(C) RT-qPCR of mitochondrial function related genes (top left) and unrelated genes (top right), OCR (bottom left), CS activity (bottom middle), and ATP/ADP ratio in isolated islets (bottom right).
(D) RT-qPCR (top right and left), OCR (bottom left), and ATP/ADP ratio (bottom right) in βKO islets infected with adenoviral GFP or desnutrin GFP. Data are shown as mean ± SEM; *p < 0.05, **p < 0.01. See also Figure S4.
Figure 5. Desnutrin Regulates GSIS by Activating PPARδ

(A) RT-qPCR of PPARα, PPARδ, and PPARγ in islets.

(B) GTT of mice treated with the PPARδ agonist, GW501516 (left), or fed with PPARα agonist, WY 14643 (right).

(C) GSIS of isolated islets from GW501516-treated mice.

(legend continued on next page)
synthase (CS), which is a rate-limiting enzyme in the Krebs cycle. CS activity was significantly lower in islets from ΔKO mice than in those from control mice, confirming impairment of mitochondrial oxidative function in desnutrin-KO β cells (Figure 4C, bottom middle). Next, we tested the effect of desnutrin ablation on production of ATP known to be required for the triggering of insulin secretion. Isolated islets were incubated with increasing concentrations of glucose before measuring ATP and ADP levels and determining ATP/ADP ratio. We found a dose-dependent increase in ATP/ADP ratio in islets from control, floxed, or RIP-Cre mice (Figure 4C, bottom right; Figure S4A). In contrast, ATP/ADP ratio in ΔKO islets showed a blunted rise upon glucose stimulation (Figure 4C, bottom right). Decreased ATP/ADP ratio in ΔKO islets and restoration of ATP/ADP ratio by desnutrin overexpression (Figure 4D, bottom right) were correlated with the changes in GSIS, as shown in Figures 2D and 2E. Although FAs and their metabolites have been implicated in controlling KATP channels and insulin granule exocytosis in β cells (Komatsu et al., 1999; Nolan and Prentki, 2008), we did not detect any changes in KCL-stimulated basal insulin secretion in desnutrin-ablated ΔKO islets (Figure S2D) or in INS 832/13 cells upon desnutrin overexpression or knockdown. In addition, we did not detect significant alterations in insulin secretion in ΔKO islets in the presence of KCl with and without the KATP channel opener, diazoxide, 5 min after 10 mM glucose addition, a time point when we could clearly detect desnutrin effect on GSIS as shown in Figure 2D, right panel (Figure S2E). We also did not detect association of desnutrin with insulin granules, which was reported with HSL (Lindvall et al., 2004). Nor did we detect any changes in mRNA levels for genes involved in vesicle exocytosis, such as Vamp2, Stx1a, and SNAP25 (Figure 4C, top right; Bhatnagar et al., 2011; Hou et al., 2009), suggesting that capacity for insulin granule exocytosis was not affected by desnutrin-catalyzed lipolysis. Overall, our results support the idea that impaired GSIS in ΔKO islets is correlated with impaired mitochondrial function and ATP production required for insulin secretion.

To confirm that mitochondrial dysfunction in ΔKO islets is specifically due to desnutrin deficiency, we performed rescue experiments by adenoviral desnutrin expression to ΔKO islets (Figure 2E). We found that desnutrin overexpression increased mRNA levels of genes involved in mitochondrial oxidation, such as Cpt2, Acadvl, Hadhb, and Sdhb (Figure 4D, top left). In addition, OCR performed in ΔKO islets after adenoviral overexpression of desnutrin also increased OCR, restoring the oxidative capacity (Figure 4D, bottom left). Upon adenoviral overexpression of desnutrin, ATP/ADP ratio in ΔKO islets was also increased when stimulated with glucose, evidence that impaired GSIS by desnutrin ablation in β cells is most likely due to impaired mitochondrial oxidation and ATP production (Figure 4D, bottom right).

PPARβ Mediates the Effects of Desnutrin-Catalyzed Lipolysis on Insulin Secretion

We and others reported that desnutrin-catalyzed lipolysis provides ligands for PPARβ to promote mitochondrial function and FA oxidation in brown adipose tissue, as well as in the heart (Ahmadian et al., 2011; Haemmerle et al., 2011). Therefore, we hypothesized that desnutrin-catalyzed lipolysis in islet β cells may also affect PPARβ. However, unlike brown adipose or muscle tissues that have high PPARβ levels, we found PPARβ level in islets to be very low and PPARβ to be the most highly expressed among the PPARs (Figure 5A). We predicted that, rather than PPARβ, PPARγ may mediate effects of desnutrin-catalyzed lipolysis in islet β cell function. To test this possibility, we administered a PPARγ agonist, GW501516, to floxed and ΔKO mice by intraperitoneal injection for 2 weeks. Administration of GW501516 to floxed mice did not alter glucose tolerance significantly. Administration of GW501516 to ΔKO mice, however, improved glucose intolerance resulting from β cell-specific desnutrin deletion to the level of tolerance found in floxed mice (Figure 5B, left), suggesting that GW501516 can substitute for desnutrin. We also performed similar experiments with a PPARβ agonist, WY14643, which was given to floxed and ΔKO mice in their food after weaning. However, glucose tolerance in ΔKO mice treated with WY14643 was not different from untreated ΔKO mice, pointing to the specificity of PPARβ (Figure 5B, right).

We next measured insulin secretion upon 15 and 30 mM glucose stimulation in islets from ΔKO and floxed mice treated with GW501516 or WY14643. Consistent with the GTT results, impaired GSIS observed in islets from ΔKO mice was restored by treatment with GW501516 (15 mM GSIS: floxed 111, ΔKO 70; GW501516: floxed 150, ΔKO 132 pg/islet/2 hr) (Figure 5C). However, WY14643 treatment did not affect GSIS in ΔKO islets (15 mM GSIS: floxed 111, ΔKO 70; WY14643: floxed 101, ΔKO 72 pg/islet/2 hr) (Figure 5D). It is clear that activation of PPARβ, but not PPARβ, was able to rescue the ΔKO islets in regards to insulin secretion. To test if the GW501516 effect we observed in ΔKO mice was due to its effect on islet β cells, we utilized lentivirus-mediated desnutrin knockdown in INS 832/13 cells. As shown in Figure S2A, GSIS in INS 832/13 cells was significantly decreased upon desnutrin knockdown. More importantly, treatment of desnutrin knockdown cells with GW501516 restored the GSIS to normal levels (Figure S4E). These results show that desnutrin-catalyzed lipolysis affect GSIS probably via activation of PPARβ in islet β cells.

Next, to further demonstrate alterations in PPAR function, nuclear extracts prepared from islets of floxed and ΔKO mice were assayed for PPARβ, as well as PPARα, binding activity. There was a significant decrease in PPARβ binding activity in the ΔKO islets compared to control floxed islets (Figure 5E, left). In contrast, there was no significant difference in PPARα binding activity between the islets from floxed and ΔKO mice (Figure 5E, middle). Furthermore, we observed greatly increased PPARβ binding activity in the islets from ΔKO mice upon administration of GW501516 (Figure 5E, right), showing that desnutrin-catalyzed lipolysis specifically increases PPARβ binding. We also examined whether lack of desnutrin results in alterations in expression levels of various PPARβ target genes. Indeed, mitochondrial oxidation-related genes, such as Pdk4, Cpt1b
(Ravnskjaer et al., 2010; Wan et al., 2010), Cpt2, Mdh2, and Acadvl, which are known to be PPARγ target genes, were all downregulated in the iKO islets. Furthermore, treatment with GW501516 restored expression levels of these genes to normal (Figure 5F). Yet other genes, such as Vamp2 and SNAP25 for exocytosis, were not changed. Taken together, our results indicate that desnutrin provides ligands for PPARγ to activate PPARγ target genes in islet β cells. Thus, desnutrin promotes maintenance of mitochondrial function required for GSIS in islet β cells.

DISCUSSION

While FAs generated upon lipolysis in white adipose tissue are released into the circulation to provide an energy source for other tissues, we show here that lipolysis within the β cells is essential for mitochondrial function by providing ligands for PPARγ. Our findings in vivo, in isolated islets, as well as in β cells in culture, all show that desnutrin is required for proper GSIS. We provide evidence for the importance of desnutrin activity in maintaining the mitochondrial oxidation/respiration and ATP production for the facilitation of insulin secretion. Our present studies reveal a critical link between desnutrin-catalyzed lipolysis and PPARγ activation in islet β cells.

Nutrition overload, such as HFD, induces ectopic TAG storage. It has been reported that TAG accumulation may occur with lower levels of enzymes in TAG hydrolysis in various tissues, including pancreatic islets (Winzell et al., 2003). In line with this, we detected high TAG accumulation with decreased desnutrin expression in islets of HFD-fed mice. Excess TAG storage in β cells is associated with a negative impact on insulin secretion (Unger, 2002). However, it is unclear whether TAG accumulation per se or other lipid metabolites contribute to the failure of GSIS from β cells. In this process, importance of glycerolipid/FA cycling has also been proposed. In this regard, we and others identified desnutrin (adipose triglyceride lipase, TTS-2, iPLA2-δ, and PNPLA2) as the primary TAG hydrolase in white adipose tissue. Desnutrin, however, is also found in other tissues, albeit at a low level. Thus, global deletion of desnutrin results in massive TAG accumulation in multiple tissues, in addition to adipose tissue, and causes premature death in mice (Haemmerle et al., 2006), suggesting the importance of desnutrin activity in other tissues besides adipose tissue. In addition to desnutrin, HSL, which is now accepted to be a DAG lipase, is also found in pancreatic β cells, and these lipases may function in regulating GSIS (Fex et al., 2009; Peyot et al., 2009; Winzell et al., 2001). However, studies employing global knockout desnutrin/ATGL knockout (desnutrin-KO) or HSL knockout (HSL-KO) mice showed conflicting results: global HSL-KO mice were reported to have perturbed insulin secretion in vivo or vigorous GSIS ex vivo (Peyot et al., 2004; Roduit et al., 2001). Global desnutrin-KO mice were shown to be protected from HFD-induced insulin resistance and glucose intolerance, while others found them to be hypoinsulinemic and hypoglycemic (Hoy et al., 2011; Peyot et al., 2009). In addition, global desnutrin-KO mice had 50% reduction in insulin content in islets, and glucose oxidation was reported to be unaltered (Peyot et al., 2009). These studies on global knockout mice could not distinguish indirect from direct events within the islets, and conflicting results may arise under different physiological conditions (Peyot et al., 2009; Peyot et al., 2004). In our present studies, β cell-specific desnutrin deletion showed glucose intolerance, but with increased insulin content and insulin granules in islets, with defective GSIS. The differences in phenotypes between our specific deletion of desnutrin in β cells and global desnutrin-KO mice clearly show the influence of peripheral tissue lipid metabolism on islet function and demonstrate the validity of our present work in dissecting the function of intracellular β cell TAG metabolism. Interestingly, unlike our iKO mice, HSL-iKO mice generated using the same RIP-Cre mice did not show any lipid accumulation within the islets (Fex et al., 2009). Yet, similar to our desnutrin iKO mice, HSL-iKO mice had hyperglycemia with increased insulin content and islet mass (Fex et al., 2009). These observations suggest that TAG accumulation per se may not affect GSIS. In this regard, HSL has been reported to associate with the insulin granule to affect membrane depolarization in promoting exocytosis (Fex et al., 2009; Lindvall et al., 2004), and K_{ATP}-independent effects of HSL on insulin secretion have been reported. In addition, desnutrin-catalyzed lipolysis has been implicated in controlling K_{ATP} channel for GSIS. However, we detected neither desnutrin association with insulin granule nor alterations in K_{ATP} channel activity in desnutrin loss- or gain-of-function experiments (Figure 5D). Regardless, the discordant phenotype between the β cell-specific desnutrin and HSL ablation suggests that these lipases affect GSIS via divergent mechanisms.

Although widely utilized, the validity of the RIP-Cre mouse model has been questioned due to some reports indicating RIP-Cre expression in hypothalamic region and that expression of Cre itself impaired glucose/insulin homeostasis (Lee et al., 2009). Here, although other β cell-specific Cre lines have been reported recently, due to accessibility, we have used RIP-Cre mice in generating desnutrin iKO mice. However, we did not detect significant changes in desnutrin expression in hypothalamus, even when desnutrin expression was 80% lower in islets upon mating of desnutrin floxed mice with RIP-Cre mice. Nor did we detect impaired glucose/insulin homeostasis in our control RIP-Cre mice, probably due to the relatively young age of mice (8 weeks) and their pure C57BL/6 background, as previously reported (Fex et al., 2007). In addition, temporal ablation of desnutrin only in adult stage by RIP-CreER (Liu et al., 2010) confirmed the phenotype of our iKO mice using RIP-Cre mice. More importantly, our studies of restoration of GSIS by adenosine-3′,5′-monophosphate-mediated overexpression of desnutrin in iKO islet cells clearly demonstrate that lack of desnutrin in β cells is responsible for the observed defects in GSIS in iKO mice.

Mitochondrial oxidation is essential for production of ATP required for GSIS. Mitochondrial anaplerosis and mitochondrial-cytosolic substrate cycling regulate insulin secretion (Cline, 2011; Jitrapakdee et al., 2010). Here, we show that desnutrin-catalyzed lipolysis regulates GSIS by promoting mitochondrial respiration in β cells. Consistent with a low mitochondrial capacity, we detected a blunted increase in ATP/ADP ratio in iKO islets upon glucose stimulation. We also detected decreased density of active mitochondria without changes in total mitochondrial density and lower CS activity. OCR in response to glucose and to uncoupling agent, FCCP, were both lower in the iKO islets. Furthermore, we detected downregulation of
genes associated with mitochondrial oxidation in βKO islets. Among those genes were Mdh2 and Sdhb, enzymes involved in the TCA cycle that are critical for glucose oxidation during GSIS. Others, such as Hadhb, Cpt1b, Cpt2, Pdk4, and Acadvl, which are involved in FA metabolism in mitochondria, were also downregulated. Importantly, adenovirus-mediated desnutrin expression rescued all of those defects observed in βKO islets, including expression of the genes involved in mitochondrial oxidative function, OCR, and ATP/ADP ratio. It is clear that desnutrin promotes oxidative capacity of mitochondria to maintain GSIS in islet β cells.

We and others previously provided evidence that PPARβ mediates the desnutrin effect in various tissues, such as adipose tissue and cardiac muscle (Ahmadian et al., 2011; Haemmerle et al., 2011). We showed that desnutrin promotes a brown adipose phenotype by providing a ligand(s) for PPARβ, which in turn promotes transcription of oxidative genes. Similar findings were shown in cardiac muscle in which desnutrin/ATGL-KO mice had lower mitochondrial oxidation with lower PPARβ expression (Hoy et al., 2011) and PPARβ ligand could rescue the mitochondrial function. Here, we propose that the role of desnutrin in activation of PPAR family members may be tissue specific. PPARβ is more highly expressed in β cells than PPARα and PPARγ. PPARβ has been shown to improve glucose responsiveness and insulin secretion in db/db mice (Ravnskjær et al., 2010; Winzell et al., 2010). It has also been reported that PPARβ serves as a FA sensor in β cells and protects against FA-induced β cell dysfunction (Ravnskjær et al., 2010). More importantly, we were able to restore GSIS in desnutrin βKO mice with a PPARβ agonist, but not with a PPARγ agonist, and to induce PPARβ target genes that are involved in mitochondrial oxidation. Although desnutrin effects on mitochondrial oxidative genes were reported to be through PPARγ, PPARβ was shown to be required for a high-level expression of mitochondrial genes and energy production in skeletal muscle and heart (Cheng et al., 2004; Narkar et al., 2008; Wang et al., 2004). Overall, our present studies clearly demonstrate that desnutrin-catalyzed lipolysis in islet β cells targets PPARβ, rather than PPARγ, for the maintenance of mitochondrial function required for GSIS. However, the exact metabolite(s) that is generated by desnutrin-catalyzed lipolysis to activate PPARβ in islet β cells is not known. In this regard, oxidized lipid products, such as 4-hydroxy-2E-nonenal, were reported to be through PPARγ in islets, including expression of the genes involved in mitochondrial oxidative function, OCR, and ATP/ADP ratio. It is clear that desnutrin promotes oxidative capacity of mitochondria to maintain GSIS in islet β cells.

In conclusion, we show that desnutrin-catalyzed lipolysis is required for GSIS. Specifically, we show that desnutrin activity is necessary to promote mitochondrial function of β cells through activation of PPARβ. Targeting pathways that promote desnutrin activity in β cells may provide strategies to help treat and/or prevent dysregulation of insulin secretion.

EXPERIMENTAL PROCEDURES

Generation and Maintenance of β Cell-Specific Desnutrin Knockout Mice

All experiments were performed on male mice at 8 weeks of age on a HFD at weaning, except those indicated as standard chow diet. All experimental protocols used were approved by the Animal Care and Use Committee of the University of California, Berkeley. Mice were maintained on a HFD (45% fat, 35% carbohydrate, and 20% protein; Research Dieta) or standard chow diet ad libitum at weaning. At 6 weeks of age, RIP-CreER mice were injected intraperitoneally with tamoxifen (Sigma) dissolved in ethanol and then in corn oil for 5 consecutive days. Eight-week-old male mice on HFD were used for experiments, except when indicated as fed chow diet. Generation and maintenance of various mouse strains are described in the Supplemental Experimental Procedures.

Islet Isolation, Dispersion, and Culture of INS 832/13 Cells

Islets were isolated by collagenase (Roche) perfusion through the common bile duct into the pancreas, and islets were dispersed by incubation with 1 mg/ml trypsin and 30 μg/ml DNase. Islet β cells were roughly separated from α cells by centrifugation at 800 × g. INS 832/13 cells were provided by Dr. Chris Newgard (Duke University).

Adenoviral Overexpression and shRNA Knockdown of Desnutrin

Adenoviral overexpression or shRNA knockdown of desnutrin in isolated islets, dispersed islet cells, and INS 832/13 cells was performed as described previously (Ahmadian et al., 2011). Experiments were performed 72 hr postinfection.

Glucose and Insulin Tolerance Tests

Glucose and insulin tolerance tests were done according to the method of Hirshman et al. (1996). Tail vein bloods were collected for measurements.

Measurements for TAG Content and FA Uptake and Oxidation

Total neutral lipids were extracted from the whole pancreas, isolated islets, and INS 832/13 cells according to Folch method. Thin-layer chromatography was performed to separate lipids following lipid extraction. TAG levels were measured with lipids solubilized in 1% Triton X-100 (Thermo). FA oxidation was determined upon incubation with [14C]-palmitic acid (20 μCi/ml) for 2 hr by gentle shaking. The buffer was acidified with perchloric acid, and the [14C]CO₂ was trapped on Whatman paper with ethanolamine before quantification of radioactivity via scintillation counting. FA uptake was measured by using BODIPY-labeled FA (Invitrogen) and fluorescence-activated cell sorting (BD FACSCalibur).

H&E Staining, Immunostaining, and Nile Red Staining

For immunostaining, islets were handpicked under a stereomicroscope and fixed in a 10% formaldehyde solution. Islets were stained with primary antibodies against insulin (Cell Signaling) followed by Alexa Fluor 488 secondary antibody and DAPI was used to visualize nuclei. Sections or islets were visualized with a fluorescence microscope. Nile red was used to stain isolated islets or INS 832/13 cells grown on coverslips and fixed in 10% formaldehyde.

RT-qPCR and Immunoblotting

RT-qPCR was performed using primers indicated in Table S1, and various antibodies used in immunoblotting and immunoprecipitation are described in Supplemental Experimental Procedures.

Insulin Secretion and Insulin, Glycerol, and FFA Levels

Islets or dispersed islet cells were incubated in secretagogue buffer (0.2% BSA, 20 mM HEPES [pH 7.2], 114 mM NaCl, 4.7 mM KCl, 1.2 mM KH₂PO₄, 1.16 mM MgSO₄, 2.5 mM CaCl₂, and 3 mM glucose) for 2 hr. The buffer was replaced with that containing varying concentrations of glucose, in the presence or absence of 0.4 mM oleate, 30 mM KCl, and/or 250 μM diazoxide. Insulin release was measured in the SAB using ELISA (Alpco). For time-dependent GSIS, media was aliquoted at various time points and centrifuged for 5 min at 4 °C to remove any cell debris before insulin measurement. For insulin content, insulin was extracted from whole pancreas or isolated islets by acid/ethanol extraction and was normalized to protein content determined by Bradford method (Bio-Rad). Measurements of glycerol and intracellular free FA concentrations in isolated islets or INS 832/13 cells are described in the Supplemental Experimental Procedures.
Transmission Electron Microscopy
Isolated islets fixed in 2% glutaraldehyde were postfixed 1% OsO4 and embedded in an Epon-Araldite. Sections of 0.2 μm were mounted on 150-mesh copper grids for transmission electron microscopy.

ATP/ADP Ratio and CS Activity
For determination of ATP/ADP ratio, ATP and ADP contents were measured by fluorometric assay kit after deproteinization (BioVision). CS activity was measured using citrate synthase assay kit (Sigma).

Measurement of OCR and MitoTracker Red/Green Staining
OCR of the isolated islets was measured in XF24 respirometer platform (Seahorse Bioscience XF24 Extracellular Flux Analyzer). Eighty to one hundred islets per well were preincubated for 2 h at 37°C without CO2 in media containing 3 mM glucose, 0.8 mM Mg2+, 1.8 mM Ca2+, 143 mM NaCl, 5.4 mM KCl, 0.91 mM NaH2PO4, phenol red 15 mg/ml, and 1% fetal bovine serum. To optimize the islet respiration condition, 10 mM pyruvate and 2 mM glutamine were added into the assay media. Glucose at 20 mM was added to stimulate cellular oxygen consumption. Oligomycin (5 μM), FCCP (1 μM), or Rotenone (5 μM) were added at indicated time points.

Mitochondrial membrane potential in dispersed islet cells and in INS 832/13 cells was measured using MitoTracker red/green. Total and mtDNA from isolated islets were extracted using phenol-chloroform method and used for qPCR with primers indicated in Table S1.

PPAR Binding
PPARα and PPARγ binding activities were measured by PPARα, γ Complete Transcription Factor Assay Kit (Cayman) using nuclear extracts from isolated islets.

Statistical Analysis
The results are expressed as means ± SEM. An ANOVA was used for comparisons among multiple groups with a Tukey-Kramer post hoc test and a Student’s t test for comparisons between two groups. All significance levels were set at p < 0.05.

SUPPLEMENTAL INFORMATION
Supplemental Information includes four figures, one table, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.cmet.2013.10.012.

ACKNOWLEDGMENTS
The work was supported in part by DK75682 and DK33928 (H.S.S.) from the National Institutes of Health. The authors thank Dr. C. Newgard, Duke University, for providing INS 832/13 cells.

Received: March 1, 2012
Revised: July 31, 2013
Accepted: October 8, 2013
Published: November 21, 2013

REFERENCES
Ahmadian, M., Duncan, R.E., Varady, K.A., Frasson, D., Hellerstein, M.K., Birkenfeld, A.L., Samuel, V.T., Shulman, G.I., Wang, Y., Kang, C., and Sul, H.S. (2009). Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes 58, 855–866.

Ahmadian, M., Abbott, M.J., Tang, T., Hudak, C.S., Kim, Y., Bruss, M., Hellerstein, M.K., Lee, H.Y., Samuel, V.T., Shulman, G.I., et al. (2011). Desnutrin/ATGL is regulated by AMPK and is required for a brown adipocyte phenotype. Cell Metab. 13, 739–748.

Bhatnagar, S., Oler, A.T., Rabaglia, M.E., Stapleton, D.S., Schueler, K.L., Truchan, N.A., Worzel, S.L., Stoehr, J.P., Clee, S.M., Yandell, B.S., et al. (2011). Positional cloning of a type 2 diabetes quantitative trait locus tomosyn-2, a negative regulator of insulin secretion. PLoS Genet. 7, e1002323.

Cheng, L., Ding, G., Qin, Q., Huang, Y., Lewis, W., He, N., Evans, R.M., Schneider, M.D., Brako, F.A., Xiao, Y., et al. (2004). Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 10, 1245–1250.

Cline, G.W. (2011). Fuel-stimulated insulin secretion depends upon mitochondrial activation and the integration of mitochondrial and cytosolic substrate cycles. Diabetes Metab. J. 35, 458–465.

Detimary, P., Dejonghe, S., Ling, Z., Pipeleers, D., Schuit, F., and Henquin, J.C. (1998). The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J. Biol. Chem. 273, 33905–33908.

Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101.

Duncan, R.E., Wang, Y., Ahmadian, M., Lu, J., Sarkadi-Nagy, E., and Sul, H.S. (2010). Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells. J. Lipid Res. 51, 309–317.

Ehnes, J.A., Meier, D.T., Wueest, S., Rytka, J., Boller, S., Wielinga, P.Y., Schraenen, A., Lemaire, K., Debray, S., Van Lommel, L., et al. (2010). Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 53, 1795–1806.

Evans-Molina, C., Robbins, R.D., Kono, T., Tersey, S.A., Vestermark, G.L., Nunnenkamp, C.S., Garmey, J.C., Deering, T.G., Keller, S.R., Maier, B., and Mirrilla, R.G. (2009). Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol. Cell. Biol. 29, 2053–2067.

Fex, M., Wierup, N., Nitert, M.D., Ristow, M., and Mulder, H. (2007). Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance. J. Endocrinol. 194, 551–555.

Fex, M., Haemmerle, G., Wierup, N., Dekker-Nitert, M., Rehn, M., Ristow, M., Zechner, R., Sunderl, F., Holm, C., Eliasson, L., and Mulder, H. (2009). A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia 52, 271–280.

Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussli, C., Eder, S., et al. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.

Haemmerle, G., Moustafa, T., Woelkart, G., Büttner, S., Schmidt, A., van de Weijer, J., Hesselink, M., Jaeger, D., Kienesberger, P.C., Zierler, K., et al. (2011). ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1076–1085.

Hou, J.C., Min, L., and Pessin, J.E. (2009). Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm. 80, 473–506.

Hoy, A.J., Bruce, C.R., Turpin, S.M., Morris, A.J., Febbraio, M.A., and Watt, M.J. (2011). Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Endocrinology 152, 48–58.

Jenkins, C.M., Mancuso, D.J., Yan, W., Sims, H.F., Gibson, B., and Gross, R.W. (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975.

Jitrakapdee, S., Wutthisathapornchai, A., Wallace, J.C., and MacDonald, M.J. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53, 1019–1032.

Komatsu, M., Yajima, H., Yamada, S., Kaneko, T., Sato, Y., Yamauchi, K., Hashizume, K., and Aizawa, T. (1999). Augmentation of Ca2+-stimulated insulin secretion by glucose and long-chain fatty acids in rat pancreatic islets: free fatty acids mimic ATP-sensitive K+ channel-independent insulinotropic action of glucose. Diabetes 48, 1543–1549.

Kubota, N., Terauchi, Y., Toke, K., Yano, W., Suzuki, R., Ukii, K., Takamoto, I., Satoh, H., Makita, T., Kubota, T., et al. (2004). Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J. Clin. Invest. 114, 917–927.
Desnutrin/ATGL and PPARδ in Insulin Secretion

Lee, J.Y., Ristow, M., Lin, X., White, M.F., Magnuson, M.A., and Hennighausen, L. (2006). RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J. Biol. Chem. 281, 2649–2653.

Lindvall, H., Nevsten, P., Ström, K., Wallenberg, R., Sundler, F., Langin, D., Winzell, M.S., and Holm, C. (2004). A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J. Biol. Chem. 279, 3828–3836.

Liu, Y., Suckale, J., Matijik, J., Magro, M.G., Steffen, A., Anastassiadis, K., and Solimena, M. (2010). Tamoxifen-independent recombination in the RIP-CreER mouse. PLoS ONE 5, e13533.

Lu, H., Koshkin, V., Allister, E.M., Gyulichandanyan, A.V., and Wheeler, M.B. (2010). Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59, 448–459.

Matsui, J., Terauchi, Y., Kubota, N., Takamoto, I., Eto, K., Yamashita, T., Komeda, K., Yamachiuchi, T., Kamon, J., Kita, S., et al. (2004). Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-gamma-deficient mice on a high-fat diet. Diabetes 53, 2844–2854.

Narkar, V.A., Downes, M., Yu, R.T., Embler, E., Wang, Y.X., Banayo, E., Mihaylova, M.M., Nelson, M.C., Zou, Y., Juguilon, H., et al. (2008). AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405–415.

Nolan, C.J., and Prentki, M. (2008). The islet beta-cell: fuel responsive and vulnerable. Trends Endocrinol. Metab. 19, 285–291.

Okazaki, Y., Eto, K., Yamashita, T., Okamoto, M., Ohsugi, M., Noda, M., Terauchi, Y., Ueki, K., and Kadowaki, T. (2010). Decreased insulin secretion and accumulation of triglyceride in beta cells overexpressing a dominant-negative form of AMP-activated protein kinase. Endocrin. J. 57, 141–152.

Peyot, M.L., Nolan, C.J., Soni, K., Joly, E., Lussier, R., Corkey, B.E., Wang, S.P., Mitchell, G.A., and Prentki, M. (2004). Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53, 1733–1742.

Peyot, M.L., Guay, C., Latour, M.G., Lamontagne, J., Lussier, R., Pineda, M., Ruderman, N.B., Haemmerle, G., Zechner, R., Joly, E., et al. (2009). Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J. Biol. Chem. 284, 16648–16659.

Ravnskjær, K., Friggeri, F., Boergesen, M., Nielsen, T., Maecheler, P., and Mandrup, S. (2010). PPARdelta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J. Lipid Res. 51, 1370–1379.

Roberts, L.D., Murray, A.J., Menassa, D., Ashmore, T., Nicholls, A.W., and Griffin, J.L. (2011). The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biol. 12, R75.

Roduit, R., Maselli, P., Wang, S.P., Li, H., Mitchell, G.A., and Prentki, M. (2001). A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50, 1970–1975.

Russ, H.A., Ravassard, P., Kerr-Conte, J., Pattou, F., and Efrat, S. (2009). Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS ONE 4, e6417.

Unger, R.H. (2002). Lipotoxic diseases. Annu. Rev. Med. 53, 319–336.

Villena, J.A., Roy, S., Sarkadi-Nagy, E., Kim, K.H., and Sul, H.S. (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279, 47066–47075.

Wan, J., Jiang, L., Liu, Q., Ke, L., Li, X., and Tong, N. (2010). Activation of PPARdelta up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 391, 1567–1572.

Wang, Y.X., Zhang, C.L., Yu, R.T., Cho, H.K., Nelson, M.C., Bayuga-Ocampo, C.R., Ham, J., Kang, H., and Evans, R.M. (2004). Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2, e294.

Weiss, H., Wester-Rosenlof, L., Koch, C., Koch, F., Baltrusch, S., Tiedge, M., and Ibrahim, S. (2012). The mitochondrial Atp8 mutation reduces mitochondrial ROS generation, secretory dysfunction, and β-cell mass adaptation in congenital B6-mfVB mice. Endocrinology 153, 4666–4676.

Wikstrom, J.D., Sereda, S.B., Stiles, L., Elorza, A., Allister, E.M., Neilson, A., Ferrick, D.A., Wheeler, M.B., and Shirihai, O.S. (2012). A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS ONE 7, e33023.

Winzell, M.S., Svensson, H., Arner, P., Ahrén, B., and Holm, C. (2001). The expression of hormone-sensitive lipase in clonal beta-cells and rat islets is induced by long-term exposure to high glucose. Diabetes 50, 2225–2230.

Winzell, M.S., Holm, C., and Ahrén, B. (2003). Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem. Biophys. Res. Commun. 304, 273–278.

Winzell, M.S., Wulff, E.M., Olsen, G.S., Sauerberg, P., Gottfredsen, C.F., and Ahrén, B. (2010). Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice. Eur. J. Pharmacol. 626, 297–305.

Yessoufou, A., and Wahl, W. (2010). Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med. Wkly. 140, w13071.

Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., and Zechner, R. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.
APÊNDICE C – Bolsoni-Lopes et al. Am J Physiol Endocrinol Metab (submetido 04/06/2014).
: Electronic Copyright Form Due

edwyer@the-aps.org <edwyer@the-aps.org> 4 de junho de 2014 23:54
Responder a: edwyer@the-aps.org
Para: andressabolsonilopes@gmail.com

Dear Dr. Bolsoni-Lopes:

You are listed as an author on, "Palmitoleic acid (n-7) increases glucose uptake and utilization by white adipocytes through AMPK activation", recently submitted to the American Journal of Physiology - Endocrinology and Metabolism.

The DIGITAL signature of the corresponding author satisfies the current requirement, but it is in the best interest of all concerned to have all authors signatures. We have gone paperless.

Thank you for your cooperation.

Regards,
Editorial Staff

Confidentiality Notice: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, copy, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.
Palmitoleic acid (n-7) increases glucose uptake and utilization by white adipocytes through AMPK activation

Andressa Bolsoni-Lopes¹, William T. Festuccia¹, Patricia Chimin¹, Talita S. M. Farias¹, Francisco L. Torres-Leal¹, Maysa M. Cruz²; Paula B. Andrade³, Sandro M. Hirabara³, Fabio B. Lima¹, Rui Curi¹, Maria Isabel C. Alonso-Vale²#.

¹Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
²Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, Diadema, Brazil.
³Institute of Physical Activity Sciences and Sports, Program of Post-Graduate in Human Movement Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil.

Running title: Palmitoleic acid increases glucose uptake

#Corresponding author

Maria Isabel Cardoso Alonso Vale

Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo

210, São Nicolau St., Diadema, Brazil, 09913-030

Email: alonsovale@gmail.com

Key Words: GLUT4; AMPK; Akt; de novo lipogenesis; glucose oxidation; glucose metabolism.
Abstract

Palmitoleic acid was previously shown to improve glucose homeostasis by reducing hepatic glucose production and by enhancing insulin-stimulated glucose uptake in skeletal muscle. Herein we tested the hypothesis that palmitoleic acid positively modulates glucose uptake and metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from mice treated with 16:1n7 (300 mg/kg/day) or oleic acid (18:1n9, 300 mg/kg/day) by gavage for 10 days were evaluated for glucose uptake, oxidation, conversion to lactate and incorporation into fatty acids and glycerol components of TAG along with the activity and expression of lipogenic enzymes. Treatment of adipocytes with palmitoleic, but not oleic (in vivo) or palmitic (in vitro) acids, increased basal and insulin-stimulated glucose uptake and GLUT4 mRNA levels and protein content. Along with uptake, palmitoleic acid enhanced glucose oxidation (aerobic glycolysis), conversion to lactate (anaerobic glycolysis) and incorporation into glycerol-TAG, but reduced de novo fatty acid synthesis from glucose and acetate and the activity of lipogenic enzymes glucose 6-phosphate dehydrogenase and ATP-citrate lyase. Importantly, palmitoleic acid induced upregulation in adipocytes glucose uptake and metabolism were associated with AMPK activation as evidenced by the increased protein content of phospho(p)Thr172AMPKα, but no changes in pSer473Akt. Importantly, such increase in GLUT4 content induced by 16:1n7, was partially prevented by pharmacological inhibition of AMPK with compound C. In conclusion, palmitoleic acid increases glucose uptake and the expression of GLUT4 by a mechanism that involves AMPK activation.
Introduction

White adipose tissue (WAT) plays an important role in the determination of whole-body energy homeostasis through the storage and mobilization of energy in periods of surplus and demand, respectively, along with the secretion of a large variety of hormones that modulate important metabolic processes in body tissues (13, 23). WAT also contributes to whole-body glucose homeostasis in healthy individuals responding for approximately 15% of total glucose disposal, being this hexose an important metabolic substrate for energy production and storage in adipocytes (11, 14).

Glucose uptake in adipocytes is carried out independently of insulin by specific glucose transporters (GLUTs) namely GLUT1 and GLUT5 located in the plasma membrane that display low efficiency of transport for the hexose (42). In the presence of insulin, however, glucose uptake in adipocytes is drastically enhanced (by 10-20 fold) after translocation and fusion of intracellular vesicles containing GLUT4 to the plasma membrane (7, 38) induced by activation of the canonical insulin receptor substrate (IRS) - phosphoinositide 3-kinase (PI3K) - Akt pathway by this hormone (7, 18, 37). In addition to translocation, insulin through the very same IRS-PI3K-Akt pathway also modulates GLUT4 protein content (19, 21).

Another intracellular signaling pathway that plays an important role in the regulation of glucose uptake in adipocytes is the AMP-activated protein kinase (AMPK) (4, 9), a heterotrimeric protein that is activated by the lower ATP/AMP ratio commonly found in situations of higher energy demand. Upon its activation, AMPK promotes GLUT4 translocation to the plasma membrane and glucose uptake independently of insulin (4, 24, 43). Along with translocation, AMPK also positively modulates GLUT4 transcription and protein levels (35).
Evidences accumulated over the years have shown that fatty acids, according to the carbon chain length and number of double bounds, have the ability to affect rates of glucose uptake through the modulation of above-mentioned intracellular signaling pathways (32).

Indeed, saturated long-chain fatty acids such as palmitic (16:0) and stearic (18:0) acids were shown to impair glucose uptake (20, 34), whereas monounsaturated n-7 palmitoleic acid (16:1n7) was found to improve glucose uptake by affecting insulin responsivity (8). More specifically to latter, palmitoleic acid, which is synthesized by the desaturation of palmitic acid (16:0) catalyzed by the stearoyl-CoA desaturase 1 (SCD-1), was shown to improve glucose homeostasis by enhancing Akt activation and plasma membrane GLUT1 and GLUT4 protein content in skeletal muscle (8, 12, 30) and by reducing hepatic steatosis and improving insulin signaling in the liver (8, 44). Furthermore, palmitoleic acid was also shown to protect pancreatic β-cells from the deleterious effects of palmitic acid (10, 28) and to increase lipolysis and the content of the major lipases ATGL and HSL in adipose tissue (5).

In the present study, we tested the hypothesis that, similarly to skeletal muscle, palmitoleic acid is an important modulator of glucose uptake and metabolism in adipocytes. For this adipocytes were evaluated for glucose uptake and metabolism after treatment with palmitoleic acid. Putative mechanisms underlying palmitoleic acid actions in adipocytes were also investigated.
Materials and Methods

Animals. All experimental protocols were approved by the Animal Ethical Care Committee of the Institute of Biomedical Sciences, University of Sao Paulo, Brazil, (#98/10/CEUA). Male 8-wk-old C57BL/6 wild type (WT) mice (from the Animal Facility of the Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil) were kept individually in cages at 23°C on a 12:12-h light-dark cycle with food (chow pellet diet; Nuvilab CR1, Nuvital SA, Colombo, PR, Brazil) and water ad libitum. Mice were randomly assigned in one of the three groups that received 300 mg/kg/day of pure palmitoleic acid (16:1n7), oleic acid (18:1n9) (Sigma, St. Louis) or water by gavage (5, 44). Instead of palmitic acid, which requires previous dissolution in organic solvent prior to administration, oleic acid was chosen as a control fatty acid for the in vivo experiments. Oleic acid, similarly to palmitoleic acid, does not require dissolution prior administration to mice. Gavages were carried daily between 16:00 and 17:00h. Body weight and food intake were measured twice throughout the experiment. After 10 days, 6 h fasted mice were anesthetized with isoflurane and killed by cervical dislocation after blood collection through cardiac puncture. Blood samples were centrifuged at 1,500 rpm for 20 min at 4°C and serum was stored at -80°C. Adipose fat pads (epididymal, inguinal and retroperitoneal) were harvested, weighed and processed as described below.

Adipocyte isolation. Adipocyte isolation was performed as previously described (36) with slight modifications. Briefly, epididymal fat pads were digested in Dulbecco’s modified Eagle Medium (DMEM) supplemented with HEPES (20 mM), sodium pyruvate (2 mM), bovine serum albumin (BSA, 1%), and collagenase type II (1 mg/mL), pH 7.4 at 37°C in an orbital bath shaker. Isolated adipocytes were filtered and washed three times in the same buffer without collagenase. A small amount of adipocytes were photographed under an optical microscope (×100 magnification) using a microscope camera (Moticam 1000; Motic,
Richmond, British Columbia, Canada), and mean adipocyte diameter was determined by measuring 50 cells using Motic-Images Plus 2.0 software.

Cell Culture. 3T3-L1 preadipocytes were cultured in DMEM containing 10% calf serum and penicillin/streptozotocin at 1% until confluence. After 2–3 days post-confluence, differentiation was induced by a cocktail composed of dexamethasone (1 µM), isobutylmethylxanthine (0.5 mM) and insulin (1.67 µM). After 48 h, medium was replaced by DMEM with 10% FBS containing 0.41 µM insulin (33). Differentiated 3T3-L1 cells (6 days after cocktail) were incubated either with vehicle (ethanol 0.05%), or palmitic acid (16:0, 200 µM) or palmitoleic acid (16:1n7, 200 µM). Because 3T3-L1 cells are abundant in palmitoleic acid, a dose of fatty acids slightly higher than that commonly found in plasma of rodents and humans was chosen to challenge these cells in vitro. As evaluated by membrane integrity and DNA fragmentation (data not shown), this dose of fatty acid is not cytotoxic or deleterious to 3T3-L1. After 18h of treatment, cells were washed with PBS and starved from serum and insulin in the presence of fatty acids for 6h. Treatment with palmitoleic acid for 24 h induced a significant increase in 3T3-L1 palmitoleic acid content, without affecting cell levels of palmitic, stearic, oleic, and vaccenic acids (5). AMPK inhibition was achieved by treatment with 6-[4-(2-Piperidin-1-ylethoxy)phenyl]-3-pyridin-4-ylpyrazolo[1,5-a]pyrimidine (Compound C, 20 µM in DMSO) to the medium containing fatty acids, for 24 h. All reagents and drugs were purchased from Sigma Chemical Company (St. Louis, MO, USA).

2-Deoxy-D-glucose (2-DG) uptake. Differentiated 3T3-L1 cells (~ 8 x 10^5cells/ well) or primary epididymal adipocytes (10^6 cells/ mL) were incubated with or without insulin (100 or 10 nmol/L, for 3T3-L1 and primary adipocytes, respectively) in buffer composed of (mM): 140 NaCl, 20 Hepes, 5 KCl, 2.5 MgSO4, 1 CaCl2, BSA 1% (pH 7.4), for 20 min at 37°C. Subsequently, 2-deoxy-D-[^3H]-glucose (0.4 mmol/L, 1850 Bq/tube or well) was added and the reaction was allowed to occur for exactly 4 or 3 min, for 3T3-L1 and primary adipocytes,
respectively. The reaction was interrupted by adding 250 μl of ice-cold phloretin (0.3 mmol/L in Earle's salts, HEPES 10 mm, BSA 1% and DMSO 0.05%). 3T3-L1 cells were washed with cold PBS, 300 μl of NaOH 50 mM was added to each well, the plate was rotated for 20 min and 250 μL was collected to measure the radioactivity (1450 LSC, Couter MicroBeta, Trilux; PerkinElmer). For epididymal primary adipocytes, 200-μl aliquots of this final mixture were layered with 200 μl of silicone oil (density of 0.963 mg/ml) in microfuge tubes and centrifuged for 10 sec at 11,000 × g. The cell pellet on the top of the oil layer was collected, transferred to vials containing scintillation cocktail for radioactivity measurement.

Glucose oxidation and incorporation into fatty acids and glycerol of TAG. Differentiated 3T3-L1 cells (~ 8 x 10^5 cells/ well) were incubated in Krebs/Ringer/phosphate buffer (pH 7.4) containing BSA (1%) and [U-14C]-glucose (2 mM, 1850 Bq/tube or well), saturated with a gas mixture of 95% O₂ and 5% CO₂, in the presence or absence of insulin (100 nM), for 2 h at 37°C. Prior to 2 h incubation period, each well was covered with a piece of Whatman filter paper and the plate was sealed with parafilm. Following the 2 h incubation, the filter paper was soaked with 0.1 mL of ethanolamine to trap the CO₂ produced, and 0.2 mL of 8 N H₂SO₄ was injected into the wells to stop the reaction. After 45 min of CO₂ trapping, the filter paper was removed and transferred to scintillation vials for radioactivity counting (1, 27). Then, 2.5 mL of Dole's reagent (isopropanol:heptane:H₂SO₄, 4:1:0.25, vol/vol/vol) were added into the plates for lipid extraction. Right after the addition of heptane (1.5 mL) and distilled water (1.5 mL), the tubes were vortexed and the mixture decanted for 5 min. An aliquot of the upper phase was collected into a scintillation vial for determination of the radioactivity incorporated into TAG. For the estimation of glucose incorporation into fatty acids and glycerol of TAG, an aliquot of upper phase was transferred to a tube containing 1 mL of ethanol (95%) and 250 μL of KOH (40%) and incubated in a water bath at 60°C for 1h. After incubation, 2 mL of HCl (3N) and 2 ml of heptane were added, tubes were vortexed
and the upper phase was transferred (1 mL) to a scintillation vial for the determination of glucose incorporation into fatty acids of TAG. Glucose incorporation into the glycerol fraction of TAG was calculated by the difference between the incorporation of [U-14C]-glucose into TAG and fatty acids.

Incorporation of [14C]-acetate into fatty acids. Differentiated 3T3-L1 cells (~8 x 105 cells/well) were incubated in Krebs/Ringer/phosphate buffer (pH 7.4) containing BSA (1%), glucose (2 mM) and [14C]-acetate (1 mM, 1850 Bq/tube or well) for 2 h at 37°C in a water bath. At the end of incubation, the lipids were extracted by the Dole's method for measurement of acetate incorporation into fatty acids as described above.

Maximal activity of the enzymes involved in the de novo fatty acid synthesis. The activities of glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49), ATP citrate lyase (ACL) (EC 4.1.3.8) and fatty acid synthase (FAS) (EC 2.3.1.85) were analyzed.

Differentiated 3T3-L1 (~8 x 105 cells/ well) were homogenized in extraction buffer containing sucrose (0.25 M), EDTA (1 mM), DTT (1 mM), leupeptin (20 µg ml-1) and aprotinin (5 µg ml-1) (1:1, pH 7.4) and centrifuged at 20,000 x g at 4°C for 5 min. The fat cake free supernatant fraction was used for quantification of enzyme activities as previously described (2).

Glucose conversion into lactate. Differentiated 3T3-L1 (~ 8 x 105 cells/ well) were incubated in Krebs/Ringer/phosphate buffer (pH 7.4) containing BSA (1%), glucose (2 mM) for 2 h at 37°C. At the end of incubation, the medium was collected to measure the glucose converted into lactate using commercial kit (Enzymatic Lactate - Labtest Diagnóstica from Lagoa Santa, MG, Brazil).

RNA extraction and quantitative real-time polymerase chain reaction (Real-Time qRT-PCR). Total RNA from 3T3-L1 cells or epididymal adipocytes was extracted with Trizol.
(Invitrogen Life Technologies), analyzed for quality on agarose gel and absorbance ratios of 260/280 and 260/230 nm, and reverse transcribed to cDNA using the High-Capacity cDNA kit (Applied Biosystems). Gene expression was evaluated by real-time qRT-PCR using a Rotor Gene (Qiagen) and SYBR Green as fluorescent dye with 36B4 as a housekeeping gene. PCR products were run on agarose gel to confirm the size of the fragment and specificity of amplification. Some PCR products were extracted from gel with a kit (Qiagen) and submitted to sequencing for identity confirmation. Primers used and annealing temperatures are presented: 36B4 (5’-3’ sense: TAAAGACTGGAGACAAGGTG; 5’-3’ antisense: GTGTACTCAGTCTCCACAGA; 63°C; NM_007475) and GLUT4 (5’-3’ sense: CATTCCCTGGTTCATTGTGG; 5’-3’ antisense: GAAGACGTAAGGACCCATAGC; 60°C; NM_009204).

Western blot analysis. For GLUT1 and GLUT 4 protein content analysis, 3T3-L1 cells were homogenized and processed in buffer composed in mM: 10 Tris-HCl, 1 EDTA and 250 sucrose, 7.4 pH and centrifuged at 2,000 x g for 15 minutes at 4°C as previously described (31). For the analysis of other proteins, 3T3-L1 cells were homogenized and processed in buffer composed in mM: 50 HEPES, 40 NaCl, 50 NaF, 2 EDTA, 10 sodium pyrophosphate, 10 sodium glycerophosphate, 2 sodium orthovanadate, 1% Triton-X100, and EDTA-free protease inhibitors. Identical amounts of protein aliquots of 3T3-L1 lysates cells were resolved on Nupage gradient gels (4-12%, Life Technologies) and transferred to nitrocellulose membranes. After blockage with 5% milk for 1 h, membranes were incubated overnight at 4°C with the following primary antibodies: GLUT 1 (#07-1401), GLUT4 (#07-1404) (Millipore, Billerica, MA, USA) or Akt (#9685S), phosphoSer473 Akt (#4060S), AMPKα (#2532) and phosphoThr172 AMPKα (#2531) (Cell Signaling, Beverly, MA, USA) or GAPDH (G9545, Sigma) in 5% milk (1:1000). After washing, membranes were subsequently incubated with appropriated peroxidase-conjugated secondary antibody
(1:5000) for 1 h and developed using the ECL enhanced chemiluminescence substrate (GE Healthcare Life Sciences, Björkgatan, Uppsala). Densitometric analyses were performed using the ImageJ software (National Institutes of Health, Bethesda, MD).

Statistical analysis. Data are expressed as mean ± SEM. Student t-Test or One-Way ANOVA (as indicated in the figure legends) followed by Tukey post-hoc test were used to compare the effects of different treatments and conditions. Analysis was performed using GraphPad Prism 5.0 software (GraphPad Software, Inc., San Diego, CA, USA). The level of significance was set at $p \leq 0.05$.
Confirming our previous study (5), palmitoleic acid administration to mice for 10 days did not affect body weight, food intake, adiposity and plasma levels of free fatty acids, insulin and glucose (data not shown). Despite the absence of changes in these variables, treatment of mice with 16:1n7, but not 18:1n9 induced a significant increase in primary epididymal adipocyte basal and insulin-stimulated glucose uptake in comparison to water treated control mice (~3-fold and 1.8-fold, respectively, Figure 1A). Importantly, such increase in glucose uptake induced by 16:1n7 was associated with a marked upregulation in adipose tissue GLUT4 mRNA levels (~86%, Figure 1B).

In an attempt to investigate whether palmitoleic acid enhances glucose uptake \textit{in vivo} by acting directly on adipocytes and, if so, to unveil mechanisms underlying this action, we next evaluated the effects of this fatty acid on 3T3-L1 adipocytes glucose uptake \textit{in vitro}. In agreement with \textit{in vivo} findings, 24 h treatment with 16:1n7 significantly increased basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes (51% and 36%, respectively, Figure 2A), whereas treatment with 16:0 had no effect on basal, but significantly reduced insulin-stimulated glucose uptake (40%) in these cells. Similarly to \textit{in vivo} findings, the increase in 3T3-L1 adipocytes glucose uptake induced by 16:1n7 was associated with a significant upregulation in GLUT4 mRNA levels (34%) and protein content at both basal (78%) and insulin-stimulated (18%) conditions (Figure 2 B and C). No effects of 16:0 were seen on GLUT4 expression or protein content and, none of these fatty acids significantly affected GLUT1 protein levels (Figure 2D).

In face of these changes in glucose uptake, we next investigated whether 16:1n7 also affects glucose metabolism in 3T3-L1 adipocytes. As depicted in Figure 3A and B, palmitoleic acid significantly increased insulin-stimulated glucose conversion into lactate and oxidation to CO2 in comparison to vehicle treated cells (~29% and 27%, respectively).
Treatment with 16:0, on the other hand, significantly reduced glucose oxidation at both basal and insulin stimulated conditions, without however, affecting lactate production from glucose. Despite having opposite actions on glycolysis, treatment with both 16:1n7 and 16:0 significantly increased the generation of glycerol 3-phosphate from glucose (~37% and 21%, respectively), as evidenced by the higher rates of glucose incorporation in the glycerol fraction of TAG under basal, but not insulin stimulated conditions in comparison to vehicle treated cells (Figure 3C).

In contrast to the synthesis of glycerol from TAG, treatment with both 16:1n7 and 16:0 decreased insulin-stimulated de novo lipogenesis from all sources and from glucose as estimated by acetate and glucose incorporation into fatty acids of TAG, respectively (Figure 4A and B). Treatment with 16:1n7, but not 16:0 also reduced fatty acid synthesis from glucose at basal non-stimulated conditions. Corroborating with the reduction in lipogenesis, the maximal activity of ACL, an enzyme that generates acetil-CoA in the citosol for fatty acid synthesis, was significantly reduced by treatment with both 16:1n7 and 16:0 (Figures 4C). Indeed, 16:1n7 alone reduced the activity of G6PDH that catalyzes the generation of NAPDH required for lipogenesis. No effects of 16:1n7 and 16:0 were seen on maximal FAS activity (Figure 4D-E).

In an attempt to unveil the mechanisms underlying the above described 16:1n7 actions in adipocytes, we next investigated the effects of this fatty acid on the activation status of intracellular signaling proteins, namely Akt and AMPK, previously implicated in the regulation of glucose uptake and metabolism. As illustrated in the Figure 5A, treatment with either with 16:1n7 or 16:0 did not affect Akt activation in 3T3-L1 adipocytes as evidenced by the absence of changes in the content of phospho(p)Ser473 Akt at both basal and insulin stimulated conditions. In contrast to Akt, however, treatment with 16:1n7, but not 16:0, significantly increased AMPK activity as evidenced by the higher content of
pThr172AMPKα at both basal and insulin stimulated conditions (Figure 5B). Accordingly with a likely involvement of AMPK activation as a mediator of the increase in glucose uptake induced by 16:1n7, pharmacological inhibition of this kinase with compound C completely blocked the increased in GLUT4 protein content induced by treatment with 16:1n7 (Figure 5C).
Discussion

Herein we tested the hypothesis that palmitoleic acid positively modulates glucose uptake and metabolism in white adipocytes. Through a combination of *in vivo* and *in vitro* experiments, we have found that palmitoleic acid increases adipocytes glucose uptake and the expression and content of the major glucose transporter GLUT4. Along with uptake, palmitoleic acid enhances adipocyte glucose metabolism through energy-producing instead of energy-storing pathways as evidenced by the increased rates of aerobic and anaerobic glycolysis and inhibition of *de novo* lipogenesis. Our findings also indicate that at least part of these palmitoleic acid actions are due to an increase in AMPK activity in adipocytes. Altogether our results suggest that palmitoleic acid is an important positive modulator of adipocytes glucose metabolism through energy producing pathways.

The seminal discovery that palmitoleic acid, a fatty acid endogenously synthesized by the desaturation of palmitic acid (16:0) catalyzed by SCD-1, acts as an signaling molecule that improves glucose homeostasis by enhancing glucose disposal and insulin sensitivity in skeletal muscle and by reducing glucose production and lipid deposition in liver (8, 44), motivated us to investigate possible actions of this fatty acid on adipocytes glucose uptake and metabolism. Similarly to skeletal muscle, we demonstrate herein that palmitoleic acid is a positive modulator of glucose uptake and GLUT4 expression and content in white adipocytes. Importantly, our findings that palmitoleic acid increases glucose uptake at basal non-stimulated and insulin-stimulated conditions without affecting pAkt content strongly indicate that other intracellular signaling pathway than the canonical insulin regulated IRS-PI3K-Akt is involved in these palmitoleic acid actions. These findings, which are in contrast to previous studies showing that palmitoleic acid increases pAkt and IRS-1 and 2 contents in liver and skeletal muscle (8, 12, 30), also indicates that palmitoleic acid increases glucose uptake in adipocytes through different mechanisms of action. In this sense, we have found
that palmitoleic acid induces at both basal and insulin-stimulated conditions a marked activation of AMPK in adipocytes, a heterotrimeric kinase activated by an impairment in the ratio ATP/AMP in situations of increased energy demand (4, 9). In addition to the activation of GLUT4 translocation into the membrane independently of insulin (4), AMPK is also a positive modulator of GLUT4 expression and content, such effects that seem to involve the phosphorylation and activation of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and histone deacetylase 5 (HDAC5) (22, 26). Further supporting our hypothesis that palmitoleic acid increases glucose uptake and GLUT4 content in adipocytes by activating AMPK, pharmacological inhibition of this kinase with Compound C completely blocked the increased in GLUT4 content induced by palmitoleic acid. Altogether our findings add palmitoleic acid to the extensive list of conditions and/or molecules such as exercise, AICAR, adiponectin, pachymic acid among others, previously shown to enhance glucose uptake through AMPK activation (3, 15, 16, 25, 43).

In addition to uptake, palmitoleic acid significantly modulated glucose flux through its major metabolic pathways in adipocytes. At basal, non-stimulated conditions, both palmitoleic and palmitic acids enhanced glucose conversion into glycerol 3-phosphate, the carbon backbone for fatty acid esterification and TAG synthesis. Although of unknown underlying mechanism, these findings suggest that adipocytes adjust rates of glycerol 3-phosphate generation according to availability of fatty acid, but independently of their identity. More specifically to palmitoleic acid, however, we have shown in previous study (5) that this fatty acid increases glycerol 3-phosphate generation concomitantly to lipolysis, thus promoting an elevation in the recycling of lipolysis-derived fatty acid back to TAG. This process defined as TAG-fatty acid cycling has been shown to enhance cell energy expenditure and the sensitivity of neuro/hormonal control (6, 29, 41). The absence of changes in both glucose oxidation and conversion to lactate at basal, non-stimulated conditions
indicate, however, that other substrates than glucose, are being metabolized to account for the increased demand of energy promoted by the enhanced TAG-fatty acid cycle.

Upon insulin stimulation, however, palmitoleic acid enhanced glucose metabolism to both CO2 and lactate and significantly reduced de novo fatty synthesis as evidenced by the impaired incorporation of acetate (total) and glucose into fatty acids and the activities of G6PDH and ACL enzymes. These findings suggest that in the presence of insulin, palmitoleic acid favors the activation of energy-producing instead of energy-storing metabolic pathways. Similarly to glucose uptake, AMPK may account for at least part of these palmitoleic acid actions, since activation of this kinase has been shown not only to increase glucose flux through glycolysis leading to higher rates of hexose oxidation (16, 39), but also to inhibit de novo lipogenesis by phosphorylating and inactivating acetyl-CoA-carboxylase (ACC), thus reducing the conversion of citosolic acetil-CoA to malonyl-CoA, a precursor for fatty acid synthesis (4, 40). Importantly, our findings that palmitic acid also reduces de novo lipogenesis in adipocytes not only suggest that this process, similarly to glycerol 3-phosphate generation, is modulated by cell fatty acid availability, but also that AMPK may not be the only mechanism underlying these effects of fatty acids, since in contrast to palmitoleic acid, palmitic acid did not affect the activity of this kinase.

Although the mechanisms by which palmitoleic acid activates AMPK in adipocytes were not elucidated here, our recent findings that this fatty acid enhances lipolysis and TAG-fatty cycle (5) suggest a relationship between these processes. Corroborating this statement, previous study has found that lipolysis activation leads to a significant increase in AMPK activity that seems to be due to a reduction of 25% in cellular ATP levels associated to an increase in the activity of acyl-CoA synthase and fatty acid reesterification into TAG (17). Further studies, however, are required to test this hypothesis and to define the mechanisms by which palmitoleic acid activates AMPK in adipocytes.
In summary, we have presented evidence that palmitoleic acid, in addition to its
effects on liver and skeletal muscle, is a key regulator of glucose uptake and metabolism in
white adipose tissue. Our data indicate that palmitoleic acid is an important positive
modulator of glucose uptake and protein and mRNA content of GLUT4 favoring the cellular
glucose utilization towards energy producing pathways, such effects that seem to be occur, at
least in part, due to AMPK activation. Future studies however are required to elucidate the
mechanisms through which palmitoleic acid activates AMPK and whether adipose tissue
contributes to the improvement in whole body glucose homeostasis induced by this fatty acid.
Grants

This work was supported by grants from FAPESP to MIAV (#2011/51627-8), WTF (#2009/15354-7 and 2010/10909-8). ABL is the recipient of Ph.D. fellowship from FAPESP (#2009/53964-1).

Author’s Contribution

ABL and WTF designed and performed the study, analyzed the results and wrote the manuscript. TMF, PC, FLTL, PBA, SH, MMC performed the experiments, analyzed the results and revised the manuscript. FBL and RC designed the study, analyzed the results and revised the manuscript. MICAV designed the study, analyzed the results, revised the manuscript and supervised the study.

Disclosures

The authors declare no conflict of interest.
References

1. Amengual J, Petrov P, Bonet ML, Ribot J, and Palou A. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. *Int J Biochem Cell Biol* 44: 2019-2027, 2012.

2. Bazin R and Ferre P. Assays of lipogenic enzymes. *Methods Mol Biol* 155: 121-127, 2001.

3. Berg AH, Combs TP, and Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. *Trends Endocrinol Metab* 13: 84-89, 2002.

4. Bijland S, Mancini SJ, and Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. *Clin Sci (Lond)* 124: 491-507, 2013.

5. Bolsoni-Lopes A, Festuccia WT, Farias TS, Chimin P, Torres-Leal FL, Derogis PB, de Andrade PB, Miyamoto S, Lima FB, Curi R, and Alonso-Vale MI. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARalpha-dependent manner. *Am J Physiol Endocrinol Metab* 305: E1093-1102, 2013.

6. Brooks B, Arch JR, and Newsholme EA. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. *FEBS Lett* 146: 327-330, 1982.

7. Bryant NJ, Govers R, and James DE. Regulated transport of the glucose transporter GLUT4. *Nat Rev Mol Cell Biol* 3: 267-277, 2002.

8. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, and Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. *Cell* 134: 933-944, 2008.
9. Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. *Mol Cell Endocrinol* 366: 194-203, 2013.

10. Diakogiannaki E, Dhayal S, Childs CE, Calder PC, Walters HJ, and Morgan NG. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. *J Endocrinol* 194: 283-291, 2007.

11. DiGirolamo M, Newby FD, and Lovejoy J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. *FASEB J* 6: 2405-2412, 1992.

12. Dimopoulos N, Watson M, Sakamoto K, and Hundal HS. Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. *Biochem J* 399: 473-481, 2006.

13. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, and Sul HS. Regulation of lipolysis in adipocytes. *Annu Rev Nutr* 27: 79-101, 2007.

14. Festuccia WT, Blanchard PG, Turcotte V, Laplante M, Sariahmetoglu M, Brindley DN, and Deshaies Y. Depot-specific effects of the PPAR{gamma} agonist rosiglitazone on adipose tissue glucose uptake and metabolism. *J Lipid Res* 50: 1185-1194, 2009.

15. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, and Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. *Proc Natl Acad Sci U S A* 98: 2005-2010, 2001.

16. Gaidhu MP, Fediuc S, Anthony NM, So M, Mirpourian M, Perry RL, and Ceddia RB. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation
17. Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, and Ruderman NB. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. *J Biol Chem* 283: 16514-16524, 2008.

18. Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. *Diabetes Metab*, 2014.

19. Hernandez R, Teruel T, and Lorenzo M. Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. *FEBS Lett* 494: 225-231, 2001.

20. Hirabara SM, Curi R, and Maechler P. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. *J Cell Physiol* 222: 187-194, 2010.

21. Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, and Chang TC. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. *Eur J Pharmacol* 648: 39-49, 2010.

22. Jager S, Handschin C, St-Pierre J, and Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. *Proc Natl Acad Sci U S A* 104: 12017-12022, 2007.

23. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, and Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. *Am J Physiol Gastrointest Liver Physiol* 293: G1-4, 2007.
24. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, and Goodyear LJ. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. *Diabetes* 55: 2067-2076, 2006.

25. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, and Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. *J Biol Chem* 277: 25863-25866, 2002.

26. McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, and Hargreaves M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. *Diabetes* 57: 860-867, 2008.

27. Mercader J, Madsen L, Felipe F, Palou A, Kristiansen K, and Bonet ML. All-trans retinoic acid increases oxidative metabolism in mature adipocytes. *Cell Physiol Biochem* 20: 1061-1072, 2007.

28. Morgan NG and Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. *Prostaglandins Leukot Essent Fatty Acids* 82: 231-236, 2010.

29. Newsholme EA. Reflections on the mechanism of action of hormones. *FEBS Lett* 117 Suppl: K121-134, 1980.

30. Obanda DN and Cefalu WT. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. *J Nutr Biochem* 24: 1529-1537, 2013.

31. Papa PC, Seraphim PM, and Machado UF. Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. *Int J Obes Relat Metab Disord* 21: 1065-1070, 1997.
32. Parillo M and Ricardi G. Diet composition and the risk of type 2 diabetes: epidemiological and clinical evidence. Br J Nutr 92: 7-19, 2004.

33. Park BH, Qiang L, and Farmer SR. Phosphorylation of C/EBPβ at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24: 8671-8680, 2004.

34. Reynoso R, Salgado LM, and Calderon V. High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem 246: 155-162, 2003.

35. Richter EA and Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93: 993-1017, 2013.

36. Rodbell M. Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis. J Biol Chem 239: 375-380, 1964.

37. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, and Lienhard GE. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278: 14599-14602, 2003.

38. Shepherd PR and Kahn BB. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341: 248-257, 1999.

39. Smith AC, Bruce CR, and Dyck DJ. AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle. J Physiol 565: 537-546, 2005.

40. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, and Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353: 33-36, 1994.
494 41. Wolfe RR, Klein S, Carraro F, and Weber JM. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. *Am J Physiol* 258: E382-389, 1990.

497 42. Wood IS and Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. *Br J Nutr* 89: 3-9, 2003.

499 43. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, and Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. *Diabetes* 52: 1355-1363, 2003.

502 44. Yang ZH, Miyahara H, and Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. *Lipids Health Dis* 10: 120, 2011.
Figure Legends

Figure 1. Basal and insulin-stimulated rates of glucose uptake (Panel A), mRNA levels of glucose transporter 4 (GLUT4, Panel B) in isolated epididymal adipocytes from mice treated for 10 days by gavage with either water (H2O), oleic acid (18:1n9, 300 mg/kg/day) or palmitoleic acid (16:1n7, 300 mg/kg/day). Results are means ± SE (n=5-6/group). *P<0.05 16:1n7 vs. all groups.

Figure 2. Basal and insulin-stimulated rates of glucose uptake (Panel A), basal mRNA levels of glucose transporter 4 (GLUT4, Panel B), basal and insulin-stimulated protein content of GLUT4 (Panel C) and glucose transporter 1 (GLUT1, Panel D) in differentiated 3T3-L1 cells treated for 24 h with either vehicle, palmitic acid (16:0, 200 µM) or palmitoleic acid (16:1n7, 200 µM). Results are means ± SE (n=4-8/group). *P<0.05 vs. all groups.

Figure 3. Basal and insulin-stimulated rates of glucose conversion into lactate (Panel A), glucose oxidation (Panel B) and glucose incorporation into glycerol fraction of triacylglycerol (Panel C), in differentiated 3T3-L1 cells treated for 24 h with either vehicle, palmitic acid (16:0, 200 µM) or palmitoleic acid (16:1n7, 200 µM). Results are means ± SE (n=6-10/group). *P<0.05 vs. all groups and #P<0.05 vs. vehicle.

Figure 4. Basal and insulin-stimulated rates of acetate (Panel A) and glucose (Panel B) incorporation in fatty acids of triacylglycerol and maximal activities of ATP citrate lyase (ACL, Panel C), fatty acid synthase (FAS, Panel D) and glucose-6-phosphate dehydrogenase (G6PDH, Panel E), in differentiated 3T3-L1 cells treated for 24 h with either vehicle, palmitic acid (16:0, 200 µM) or palmitoleic acid (16:1n7, 200 µM). Results are means ± SE (n=6-8/group). *P<0.05 vs. vehicle and #P<0.05 vs. 16:0.

Figure 5. Basal and insulin-stimulated protein content of phospho(p) Ser473 Akt (Panel A) and pThr172 AMP-activated protein kinase alpha (Panel B) in differentiated 3T3-L1 cells...
treated for 24 h with either vehicle, palmitic acid (16:0, 200 µM) or palmitoleic acid (16:1n7, 200 µM). Basal protein content of glucose transporter 4 (GLUT4, Panel C) in differentiated 3T3-L1 cells treated for 24 h with either vehicle, palmitoleic acid (16:1n7, 200 µM), Compound C (Comp. C, 20 µM) or palmitoleic acid associated with Compound C (Comp. C+16:1n7). Results are means ± SE (n=3-4/group). *P<0.05 16:1n7 vs. all groups.
FIGURE 1

A. Glucose uptake

- Basal
- Insulin

B. GLUT-4/36B4 mRNA

H2O, 18:1n9, 16:1n7
FIGURE 2

A. Glucose uptake

B. GLUT-4/36B4 mRNA

C. Basal GLUT-4/GAPDH

D. Insulin GLUT-1/GAPDH
FIGURE 3

Lactate production from glucose

B. Glucose oxidation

C. Glucose incorporation into glycerol

A. Basal

	Vehicle	16:0	16:1n7
Lactate	100	150	200

	Vehicle	16:0	16:1n7
Insulin	200	250	300

	Vehicle	16:0	16:1n7
Glucose	0.005	0.010	0.015

	Vehicle	16:0	16:1n7
Glucose	0.010	0.015	0.020

	Vehicle	16:0	16:1n7
Insulin	0.04	0.03	0.04

	Vehicle	16:0	16:1n7
Glucose	0.03	0.03	0.04

Notes:

- Basal conditions.
- Insulin stimulation.
- Significant differences indicated by asterisks (*).
