The Borel C_2-equivariant $K(1)$-local sphere

William Balderrama

University of Illinois at Urbana-Champaign

https://faculty.math.illinois.edu/~balderr2/

February 23, 2021
Intro

Big goal

Compute the homotopy groups of the sphere spectrum S.

Recent technique

Compute the homotopy groups of other sphere spectra: Motivic spheres, equivariant spheres, synthetic spheres,

Goal of this talk

Describe a v_1-periodic portion of S_{C_2}.

Everything will be 2-completed.

Outline

1. Intro and motivation;
2. Prior work;
3. The v_1 stuff.
Intro

Big goal
Compute the homotopy groups of the sphere spectrum \mathbb{S}.

Recent technique
Compute the homotopy groups of other sphere spectra: Motivic spheres, equivariant spheres, synthetic spheres,

Goal of this talk
Describe a v_1-periodic portion of \mathbb{S}_{C_2}.

Everything will be 2-completed.

Outline
1. Intro and motivation;
2. Prior work;
3. The v_1 stuff.
Intro

Big goal
Compute the homotopy groups of the sphere spectrum \mathbb{S}.

Recent technique
Compute the homotopy groups of other sphere spectra:
Motivic spheres, equivariant spheres, synthetic spheres,

Goal of this talk
Describe a v_1-periodic portion of \mathbb{S}_{C_2}.

Everything will be 2-completed.

Outline

1. Intro and motivation;
2. Prior work;
3. The v_1 stuff.
Intro

Big goal
Compute the homotopy groups of the sphere spectrum S.

Recent technique
Compute the homotopy groups of other sphere spectra: Motivic spheres, equivariant spheres, synthetic spheres,

Goal of this talk
Describe a v_1-periodic portion of S_{C_2}.

Everything will be 2-completed.

Outline
1. Intro and motivation;
2. Prior work;
3. The v_1 stuff.
Lay of the land

General goal

Compute the homotopy ring \(\pi_\ast, \ast \mathbb{S}_{C_2} \), where \(\mathbb{S}_{C_2} \) = unit of \(\mathbb{S}p_{C_2} \).

Definition and grading

Bigraded homotopy: \(\pi_{s,c} := \pi_{c+(s-c)\sigma} \), with \(\sigma = \) sign rep, so

1. \(\pi_{s,c} \mathbb{S}_{C_2} = \operatorname{colim}_{n \to \infty} \pi_0 \operatorname{Map}^{C_2}(S^{(s+(c-s)\sigma)+n(1+\sigma)}, S^n(1+\sigma)) \);
2. Have diagonal embedding \(\pi_s \to \pi_{s,s} \).

Some basic elements

1. Inclusion of poles \(S^0 \to S^\sigma \) gives “Euler class” \(\rho \in \pi_{-1,0} \);
2. \(\eta \in \pi_1 \mathbb{S} \) gives diagonal element \(\mu \in \pi_{1,1} \mathbb{S}_{C_2} \);
3. \(\eta: S^{1+2\sigma} = S(\mathbb{C}^2) \to \mathbb{C}P^1 = S^{1+\sigma} \) equivariant, so \(\eta \in \pi_{1,0} \mathbb{S}_{C_2} \);
 1. Fixed points: \(-\eta^{C_2} = 2: S^1 \to S^1 \), so \(\eta \) not nilpotent;
 2. Homotopy fixed points of \(\eta: \mathbb{S}^{\sigma} \to \mathbb{S}^0 \) gives transfer \(P_1^\infty \to \mathbb{S} \).
Lay of the land

General goal

Compute the homotopy ring \(\pi_{\ast,\ast}S_{C_2} \), where \(S_{C_2} = \text{unit of } \text{Sp}C_2 \).

Definition and grading

Bigraded homotopy: \(\pi_{s,c} := \pi_{c+(s-c)\sigma} \), with \(\sigma = \text{sign rep} \), so

1. \(\pi_{s,c}S_{C_2} = \colim_{n \to \infty} \pi_0 \text{Map}^C_2(S(s+(c-s)\sigma)+n(1+\sigma), S^n(1+\sigma)) \);
2. Have diagonal embedding \(\pi_s \to \pi_{s,s} \).

Some basic elements

1. Inclusion of poles \(S^0 \to S^\sigma \) gives “Euler class” \(\rho \in \pi_{-1,0} \);
2. \(\eta \in \pi_{1,S} \) gives diagonal element \(\mu \in \pi_{1,1}S_{C_2} \);
3. \(\eta: S^{1+2\sigma} = S(\mathbb{C}^2) \to \mathbb{C}P^1 = S^{1+\sigma} \) equivariant, so \(\eta \in \pi_{1,0}S_{C_2} \);
 1. Fixed points: \(-\eta^C_2 = 2: S^1 \to S^1 \), so \(\eta \) not nilpotent;
 2. Homotopy fixed points of \(\eta: S^\sigma \to S^0 \) gives transfer \(P^\infty_1 \to S \).
Lay of the land

General goal
Compute the homotopy ring $\pi_{*,*}S_{C_2}$, where S_{C_2} = unit of Sp_{C_2}.

Definition and grading
Bigraded homotopy: $\pi_{s,c} := \pi_{c+(s-c)\sigma}$, with $\sigma = \text{sign rep}$, so
1. $\pi_{s,c}S_{C_2} = \lim_{n \to \infty} \pi_0 \text{Map}_{C_2}(S^{(s+(c-s)\sigma)+n(1+\sigma)}, S^{n(1+\sigma)})$;
2. Have diagonal embedding $\pi_s \to \pi_{s,s}$.

Some basic elements
1. Inclusion of poles $S^0 \to S^\sigma$ gives “Euler class” $\rho \in \pi_{-1,0}$;
2. $\eta \in \pi_1S$ gives diagonal element $\mu \in \pi_{1,1}S_{C_2}$;
3. $\eta: S^{1+2\sigma} = S(C^2) \to \mathbb{C}P^1 = S^{1+\sigma}$ equivariant, so $\eta \in \pi_{1,0}S_{C_2}$;
 1. Fixed points: $-\eta^{C_2} = 2: S^1 \to S^1$, so η not nilpotent;
 2. Homotopy fixed points of $\eta: S^\sigma \to S^0$ gives transfer $P_{1}\to S$.
Borel G-equivariant homotopy theory

Borel equivariant stems

1. Simpler equivariant category: $\mathcal{S}p_{BG} = \text{Fun}(BG, \mathcal{S}p)$;
2. Homotopy $RO(G)$-graded; e.g. if $\nu(X) = X$ with trivial action,
 \[
 \pi_V \nu(X) = \pi_0 \text{Map}_{BG}(S^V, X) = \pi_0 F(\text{Th}(V), X).
 \]
3. Forgetful functor $u: \mathcal{S}p_G \to \mathcal{S}p_{BG}$ has fully faithful right adjoint $b: \mathcal{S}p_{BG} \to \mathcal{S}p_G$, giving Borel completion $(-)^\wedge_h = b \circ u$.

Tate fracture square (Greenlees-May 1995)

For $X \in \mathcal{S}p_G$, there is a Cartesian square

\[
\begin{array}{ccc}
X & \longrightarrow & \Phi_G X \\
\downarrow & & \downarrow \\
X^\wedge_h & \longrightarrow & X^t \\
\end{array}
\]
Borel G-equivariant homotopy theory

Borel equivariant stems

1. Simpler equivariant category: $\mathcal{S}p_{BG} = \text{Fun}(BG, \mathcal{S}p)$;
2. Homotopy $RO(G)$-graded; e.g. if $\nu(X) = X$ with trivial action,
 \[
 \pi_V \nu(X) = \pi_0 \text{Map}_{BG}(S^V, X) = \pi_0 F(\text{Th}(V), X).
 \]
3. Forgetful functor $u: \mathcal{S}p_G \to \mathcal{S}p_{BG}$ has fully faithful right adjoint $b: \mathcal{S}p_{BG} \to \mathcal{S}p_G$, giving Borel completion $(\cdot)^\wedge = b \circ u$.

Tate fracture square (Greenlees-May 1995)

For $X \in \mathcal{S}p_G$, there is a Cartesian square

\[
\begin{array}{ccc}
X & \longrightarrow & \Phi_G X \\
\downarrow & & \downarrow \\
X_h^\wedge & \longrightarrow & X^t
\end{array}
\]
The Segal conjecture

Tate fracture and ρ fracture

Tate fracture for C_2 is even simpler: there is an equivalence

$$
\begin{align*}
X & \longrightarrow \Phi_{C_2} X \\
\downarrow & \downarrow \\
X^\wedge_{h} & \longrightarrow X^{tC_2}
\end{align*} \cong
\begin{align*}
X & \longrightarrow X[\rho^{-1}] \\
\downarrow & \\
X^\wedge_\rho & \longrightarrow X^\wedge[\rho^{-1}]
\end{align*}
$$

Lin’s theorem (1980)

The map $\Phi_{C_2} S_{C_2} \rightarrow (S_{C_2})^{tC_2}$ is an equivalence.

Corollary (Segal conjecture for C_2)

The map $S_{C_2} \rightarrow (S_{C_2})^\wedge_h$ is an equivalence, and thus

$$\pi_{s,c} S_{C_2} = \pi_c D(P_s^{\infty}_{-c}).$$

These use our implicit 2-completion.
The Segal conjecture

Tate fracture and ρ fracture

Tate fracture for C_2 is even simpler: there is an equivalence

$$
\begin{align*}
X & \longrightarrow \Phi_{C_2}X \\
\downarrow & \quad \downarrow \\
X_h^\wedge & \longrightarrow X^{tC_2} \\
\end{align*}
\quad \approx \quad
\begin{align*}
X & \longrightarrow X[\rho^{-1}] \\
\downarrow & \quad \downarrow \\
X_\rho^\wedge & \longrightarrow X_\rho^\wedge[\rho^{-1}] \\
\end{align*}
$$

Lin’s theorem (1980)

The map $\Phi_{C_2}S_{C_2} \rightarrow (S_{C_2})^{tC_2}$ is an equivalence.

Corollary (Segal conjecture for C_2)

The map $S_{C_2} \rightarrow (S_{C_2})_h^\wedge$ is an equivalence, and thus

$$
\pi_{s,c}S_{C_2} = \pi_c D(P_{s-c}^\infty).
$$

These use our implicit 2-completion.
The Segal conjecture

Tate fracture and ρ fracture

Tate fracture for C_2 is even simpler: there is an equivalence

$$
\begin{align*}
X & \longrightarrow \Phi_{C_2} X \\
\downarrow & \quad \downarrow \\
X^\wedge_h & \longrightarrow X^{tC_2}
\end{align*}
\cong
\begin{align*}
X & \longrightarrow X[\rho^{-1}] \\
\downarrow & \quad \downarrow \\
X^\wedge_{\rho} & \longrightarrow X^\wedge_{\rho}[\rho^{-1}]
\end{align*}
$$

Lin’s theorem (1980)

The map $\Phi_{C_2} S_{C_2} \to (S_{C_2})^{tC_2}$ is an equivalence.

Corollary (Segal conjecture for C_2)

The map $S_{C_2} \to (S_{C_2})^\wedge_h$ is an equivalence, and thus

$$
\pi_{s,c} S_{C_2} = \pi_{c} D(P_{s-c}^\infty).
$$

These use our implicit 2-completion.
One reason to care about \mathbb{S}_{C_2}: the root invariant

The root invariant (Mahowald, 1967 in some form)

Lin’s theorem: $\operatorname{colim}_j D(P_{\infty}^{-j}) = \"D(P_{\infty}^{-\infty})\" = \mathbb{S}$. This gives AHSS

$$E_1 = \pi_* \mathbb{S}[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}.$$

The root invariant of $\alpha \in \pi_* \mathbb{S}$ is those $R(\alpha) \subset \pi_* \mathbb{S}$ that detect α.

A reinterpretation

Where $S_{\text{Root}} = \text{filtered spectrum } \cdots \rightarrow D(P_{\infty}^n) \xrightarrow{\rho} D(P_{\infty}^{n-1}) \rightarrow \cdots$,

1. Segal conj.: $\pi_*,* \mathbb{S}_{C_2} = \pi_*,* S_{\text{Root}}$;
2. Lin’s theorem: $S_{\text{Root}}[\rho^{-1}] = \mathbb{S}[\rho^{\pm 1}]$; easy obs: $S_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$;
3. ρ-BSS $\pi_* \mathbb{S}[\tau^{\pm 1}, \rho] \Rightarrow \pi_*,* S_{\text{Root}} = \pi_*,* \mathbb{S}_{C_2}$ deforms the AHSS.

Computing $R(\alpha)$ via $\pi_*,* \mathbb{S}_{C_2}$ (cf. Bruner-Greenlees 1995)

1. Write $\rho^N \alpha = \rho^N + n \beta$ in $\pi_*,* \mathbb{S}_{C_2}$ for n maximal;
2. Where $\varphi: \mathbb{S}_{C_2} \rightarrow \mathbb{S}_{C_2}/(\rho) \approx \mathbb{S}$, get $\varphi(\beta) \in R(\alpha)$.

William Balderrama (UIUC) Borel Im J February 23, 2021
One reason to care about \mathbb{S}_{C_2}: the root invariant

The root invariant (Mahowald, 1967 in some form)

Lin’s theorem: $\text{colim}_j D(P_{-j}^\infty) = "D(P_{-\infty}^\infty)" = \mathbb{S}$. This gives AHSS

$$E_1 = \pi_* \mathbb{S}[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}.$$

The root invariant of $\alpha \in \pi_* \mathbb{S}$ is those $R(\alpha) \subset \pi_* \mathbb{S}$ that detect α.

A reinterpretation

Where $\mathbb{S}_{\text{Root}} = \text{filtered spectrum } \cdots \to D(P_n^\infty) \xrightarrow{\rho} D(P_{n-1}^\infty) \to \cdots$,

1. Segal conj.: $\pi_*,*\mathbb{S}_{C_2} = \pi_*,*\mathbb{S}_{\text{Root}}$;
2. Lin’s theorem: $\mathbb{S}_{\text{Root}}[\rho^{-1}] = \mathbb{S}[\rho^{\pm 1}]$; easy obs: $\mathbb{S}_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$;
3. ρ-BSS $\pi_* \mathbb{S}[\tau^{\pm 1}, \rho] \Rightarrow \pi_*,*\mathbb{S}_{\text{Root}} = \pi_*,*\mathbb{S}_{C_2}$ deforms the AHSS.

Computing $R(\alpha)$ via $\pi_*,*\mathbb{S}_{C_2}$ (cf. Bruner-Greenlees 1995)

1. Write $\rho^N \alpha = \rho^{N+n} \beta$ in $\pi_*,*\mathbb{S}_{C_2}$ for n maximal;
2. Where $\varphi: \mathbb{S}_{C_2} \to \mathbb{S}_{C_2}/(\rho) \approx \mathbb{S}$, get $\varphi(\beta) \in R(\alpha)$.
One reason to care about S_{C_2}: the root invariant

The root invariant (Mahowald, 1967 in some form)

Lin’s theorem: $\text{colim}_j D(P_{\infty}^- j) = \text{“} D(P_{\infty}^-) \text{”} = S$. This gives AHSS

$$E_1 = \pi_* S[\tau^{\pm 1}] \Rightarrow \pi_* S.$$

The root invariant of $\alpha \in \pi_* S$ is those $R(\alpha) \subset \pi_* S$ that detect α.

A reinterpretation

Where $S_{\text{Root}} = \text{filtered spectrum } \cdots \to D(P_{\infty}^n) \xrightarrow{\rho} D(P_{\infty}^{n-1}) \to \cdots$,

1. Segal conj.: $\pi_*,*S_{C_2} = \pi_*,*S_{\text{Root}}$;
2. Lin’s theorem: $S_{\text{Root}}[\rho^{-1}] = S[\rho^{\pm 1}]$; easy obs: $S_{\text{Root}}/(\rho) = S[\tau^{\pm 1}]$;
3. ρ-BSS $\pi_* S[\tau^{\pm 1}, \rho] \Rightarrow \pi_*,*S_{\text{Root}} = \pi_*,*S_{C_2}$ deforms the AHSS.

Computing $R(\alpha)$ via $\pi_*,*S_{C_2}$ (cf. Bruner-Greenlees 1995)

1. Write $\rho^N \alpha = \rho^{N+n} \beta$ in $\pi_*,*S_{C_2}$ for n maximal;
2. Where $\varphi: S_{C_2} \to S_{C_2}/(\rho) \approx S$, get $\varphi(\beta) \in R(\alpha)$.
Past calculations

First systematic calculations

Araki-Iriye (1982) study $\pi_{s,c}S_{C_2}$ for $s \leq 8$ with EHP methods. Tools:

1. LES $\cdots \rightarrow \pi_sS \rightarrow \pi_{s,c}S_{C_2} \rightarrow \pi_{s-1,c}S_{C_2} \rightarrow \pi_{s+c-1}S \rightarrow \cdots$;

2. LES $\cdots \rightarrow \pi_{c+1}S \rightarrow \lambda_{s,c} \rightarrow \pi_{s,c}S_{C_2} \rightarrow \pi_cS \rightarrow \cdots$.

Reinterpreting in other terms

1. First LES: associated to $S_{C_2} \xrightarrow{\rho} S_{C_2} \rightarrow C(\rho) \simeq S[\tau^{\pm 1}]$;

2. Second LES: associated to $S_{C_2} \rightarrow S_{C_2}[\rho^{-1}] \simeq S[\rho^{\pm 1}] \rightarrow S_{C_2}/(\rho^\infty)$; can identify $\lambda_{s,c} = \pi_{c-1}P_{c-s-1}^\infty$.

More recent calculations

Adams spectral sequence and motivic methods.
Past calculations

First systematic calculations

Araki-Iriye (1982) study $\pi_{s,c}S_{C_2}$ for $s \leq 8$ with EHP methods. Tools:

1. $\text{LES} \cdots \to \pi_s S \to \pi_{s,c}S_{C_2} \to \pi_{s-1,c}S_{C_2} \to \pi_{s+c-1}S \to \cdots$;

2. $\text{LES} \cdots \to \pi_{c+1}S \to \lambda_{s,c} \to \pi_{s,c}S_{C_2} \to \pi_c S \to \cdots$.

Reinterpreting in other terms

1. First LES: associated to $S_{C_2} \xrightarrow{p} S_{C_2} \to C(p) \simeq S[\tau^{\pm 1}]$;

2. Second LES: associated to $S_{C_2} \to S_{C_2}[\rho^{-1}] \simeq S[\rho^{\pm 1}] \to S_{C_2}/(\rho^\infty)$; can identify $\lambda_{s,c} = \pi_{c-1}P_{c-s-1}^\infty$.

More recent calculations

Adams spectral sequence and motivic methods.
Past calculations

First systematic calculations

Araki-Iriye (1982) study $\pi_{s,c}S_{C_2}$ for $s \leq 8$ with EHP methods. Tools:

1. LES $\cdots \rightarrow \pi_sS \rightarrow \pi_{s,c}S_{C_2} \rightarrow \pi_{s-1,c}S_{C_2} \rightarrow \pi_{s+c-1}s \rightarrow \cdots$

2. LES $\cdots \rightarrow \pi_{c+1}s \rightarrow \lambda_{s,c} \rightarrow \pi_{s,c}S_{C_2} \rightarrow \pi_cS \rightarrow \cdots$

Reinterpreting in other terms

1. First LES: associated to $S_{C_2} \xrightarrow{\rho} S_{C_2} \rightarrow C(\rho) \simeq S[\tau^{\pm 1}]$

2. Second LES: associated to $S_{C_2} \rightarrow S_{C_2}[\rho^{-1}] \simeq S[\rho^{\pm 1}] \rightarrow S_{C_2}/(\rho^\infty)$

 can identify $\lambda_{s,c} = \pi_{c-1}P_c^\infty c-s-1$.

More recent calculations

Adams spectral sequence and motivic methods.
The motivic-equivariant context

A bunch of categories

\[
\begin{array}{c}
\text{Sp}_\mathbb{R} \xrightarrow{\text{Be}} \text{Sp}_\mathbb{C} \xrightarrow{\text{Be}} \text{Sp} \\
\text{Sp}_{BC_2} \xrightarrow{t} \text{Sp} \\
\text{Sp}_{C_2} \xrightarrow{\Phi} \text{Sp}
\end{array}
\]

All of these categories have Adams spectral sequences.

Some names associated to Adams SS computations

1. **C**: Dugger, Isaksen, Wang, Xu, ... (2009 -);
2. **R**: Belmont, Dugger, Guillou, Isaksen, ... (2015 -);
3. **C_2**: Guillou, Hill, Isaksen, Ravenel, ... (2019 - forthcoming);
4. **BC_2**: Understudied, but cf. Lin-Davis-Mahowald-Adams (1979).
The motivic-equivariant context

A bunch of categories

All of these categories have Adams spectral sequences.

Some names associated to Adams SS computations

1. \(\mathbb{C} \): Dugger, Isaksen, Wang, Xu, ... (2009 -);
2. \(\mathbb{R} \): Belmont, Dugger, Guillou, Isaksen, ... (2015 -);
3. \(C_2 \): Guillou, Hill, Isaksen, Ravenel, ... (2019 - forthcoming);
4. \(BC_2 \): Understudied, but cf. Lin-Davis-Mahowald-Adams (1979).
\(\mathbb{R}\)-motivic and \(C_2\)-equivariant homotopy

The \(\mathbb{R}\)-motivic Steenrod algebra

1. Have Steenrod algebra \(A_{\mathbb{R}}\) over \(\mathbb{F}_2[\tau, \rho]\) (Voevodsky 2003);
2. Have Adams SS \(H^*(A_{\mathbb{R}}) \Rightarrow \pi_{*,*}S_{\mathbb{R}}\). Main tools:
 1. \(A_{\mathbb{R}}/(\rho) = A_\mathbb{C}\), giving BSS \(H^*(A_\mathbb{C})[\rho] \Rightarrow H^*(A_{\mathbb{R}})\) (cf. Hill 2009);
 2. \(\text{Iso } Sq^0 : H^*(A_{\mathbb{R}})[\rho^{-1}] \simeq H^*(A) \otimes \mathbb{Z}[\rho^{\pm 1}]\) (Dugger-Isaksen 2017);
Belmont-Isaksen (2020) compute \(\pi_{s,c}S_{\mathbb{R}}\) for \(c \leq 11\) or so.

What happened to the \(C_2\)-stems?

\(\pi_{*,*}S_{\mathbb{R}}\) is a good approximation to \(\pi_{*,*}S_{C_2}\):

1. \(\pi_{*,*}S_{\mathbb{R}} \simeq \pi_{*,*}S_{C_2}\) in a range (Belmont-Guillou-Isaksen 2020);
2. \(H^*(A_{\mathbb{R}})\) is a summand of \(H^*(A_{C_2})\) (\(A_{C_2}\): Hu-Kriz 2001);
3. \(\pi_{*,*}S_{C_2}\) is the “\(\tau\)-periodization” of \(\pi_{*,*}S_{\mathbb{R}}\) (Behrens-Shah 2019).

Time to stare at some charts.

William Balderrama (UIUC)
\mathbb{R}-motivic and C_2-equivariant homotopy

The \mathbb{R}-motivic Steenrod algebra

1. Have Steenrod algebra $A_\mathbb{R}$ over $\mathbb{F}_2[\tau, \rho]$ (Voevodsky 2003);
2. Have Adams SS $H^*(A_\mathbb{R}) \Rightarrow \pi_{*,*}S_\mathbb{R}$. Main tools:
 1. $A_\mathbb{R}/(\rho) = A_C$, giving BSS $H^*(A_C)[\rho] \Rightarrow H^*(A_\mathbb{R})$ (cf. Hill 2009);
 2. Iso $Sq^0 : H^*(A_\mathbb{R})[\rho^{-1}] \simeq H^*(A) \otimes \mathbb{Z}[\rho^{\pm 1}]$ (Dugger-Isaksen 2017);
Belmont-Isaksen (2020) compute $\pi_{s,c}S_\mathbb{R}$ for $c \leq 11$ or so.

What happened to the C_2-stems?

$\pi_{*,*}S_\mathbb{R}$ is a good approximation to $\pi_{*,*}S_{C_2}$:

1. $\pi_{*,*}S_\mathbb{R} \simeq \pi_{*,*}S_{C_2}$ in a range (Belmont-Guillou-Isaksen 2020);
2. $H^*(A_\mathbb{R})$ is a summand of $H^*(A_{C_2})$ (A_{C_2}: Hu-Kriz 2001);
3. $\pi_{*,*}S_{C_2}$ is the “τ-periodization” of $\pi_{*,*}S_\mathbb{R}$ (Behrens-Shah 2019).

Time to stare at some charts.
\mathbb{R}-motivic and C_2-equivariant homotopy

The \mathbb{R}-motivic Steenrod algebra

1. Have Steenrod algebra $A_\mathbb{R}$ over $\mathbb{F}_2[\tau, \rho]$ (Voevodsky 2003);
2. Have Adams SS $H^*(A_\mathbb{R}) \Rightarrow \pi_*,*S_\mathbb{R}$. Main tools:
 1. $A_\mathbb{R}/(\rho) = A_C$, giving BSS $H^*(A_C)[\rho] \Rightarrow H^*(A_\mathbb{R})$ (cf. Hill 2009);
 2. $\text{Iso Sq}^0: H^*(A_\mathbb{R})[\rho^{-1}] \simeq H^*(A) \otimes \mathbb{Z}[\rho^{\pm 1}]$ (Dugger-Isaksen 2017);

Belmont-Isaksen (2020) compute $\pi_{s,c}S_\mathbb{R}$ for $c \leq 11$ or so.

What happened to the C_2-stems?

$\pi_*,*S_\mathbb{R}$ is a good approximation to $\pi_*,*S_{C_2}$:

1. $\pi_*,*S_\mathbb{R} \simeq \pi_*,*S_{C_2}$ in a range (Belmont-Guillou-Isaksen 2020);
2. $H^*(A_\mathbb{R})$ is a summand of $H^*(A_{C_2})$ (A_{C_2}: Hu-Kriz 2001);
3. $\pi_*,*S_{C_2}$ is the “τ-periodization” of $\pi_*,*S_\mathbb{R}$ (Behrens-Shah 2019).

Time to stare at some charts.
\(\tau \)-periodicity

Classical James periodicity

Where \(\gamma(n) = n^{\text{th}} \) Radon-Hurwitz number, have

\[
P_{m}^{n+m} \simeq \sum_{-k}^{-k2\gamma(n)} P_{n+k2\gamma(n)}^{n+m+k2\gamma(n)}.\]

Observation

The cofiber \(C(\rho^{n+1}) \) is built from the spectra \(P_{m}^{m+n} \).

Theorem (Behrens-Shah 2019)

1. There are maps \(\tau^{k2\gamma(n)} : \Sigma^{0,k2\gamma(n)} S_{R}/(\rho^{n+1}) \rightarrow S_{R}/(\rho^{n+1}) \);
2. This Betti realizes to an equivalence \(\tau^{k2\gamma(n)} : C(\rho^{n+1}) \rightarrow C(\rho^{n+1}) \);
3. For \(X \in \text{Sp}_{R}^{\text{cell}} \), have \(\text{Be}(X)^{\wedge}_{\rho} = X^{\wedge}_{\rho}[\tau^{-1}] \).
\(\tau\)-periodicity

Classical James periodicity

Where \(\gamma(n) = n'\)th Radon-Hurwitz number, have

\[
P_{n+m} \cong \sum_{-k2\gamma(n)} P_{n+m+k2\gamma(n)}.
\]

Observation

The cofiber \(C(\rho^{n+1})\) is built from the spectra \(P_{m+n}^m\).

Theorem (Behrens-Shah 2019)

1. There are maps \(\tau^{k2\gamma(n)} : \Sigma^{0,k2\gamma(n)} S_{\mathbb{R}}/(\rho^{n+1}) \to S_{\mathbb{R}}/(\rho^{n+1})\);
2. This Betti realizes to an equivalence \(\tau^{k2\gamma(n)} : C(\rho^{n+1}) \to C(\rho^{n+1})\);
3. For \(X \in \text{Sp}_{\mathbb{R}}\) cell, have \(\text{Be}(X)_{\rho}^\wedge = X_{\rho}^\wedge[\tau^{-1}]\).
\(\tau\)-periodicity

Classical James periodicity

Where \(\gamma(n) = n\)'th Radon-Hurwitz number, have

\[
P^n_{m+n} \simeq \sum_{-k2^\gamma(n)} P^{n+m+k2^\gamma(n)}_{n+k2^\gamma(n)}.
\]

Observation

The cofiber \(C(\rho^{n+1})\) is built from the spectra \(P^m_{m+n}\).

Theorem (Behrens-Shah 2019)

1. There are maps \(\tau^k 2^\gamma(n) : \Sigma^{0,k2^\gamma(n)} S_R / (\rho^{n+1}) \rightarrow S_R / (\rho^{n+1})\);
2. This Betti realizes to an equivalence \(\tau^k 2^\gamma(n) : C(\rho^{n+1}) \rightarrow C(\rho^{n+1})\);
3. For \(X \in Sp^\text{cell}_R\), have \(\text{Be}(X)^\wedge_\rho = X^\wedge_\rho [\tau^{-1}]\).
The Borel C_2-equivariant $K(1)$-local sphere

Im J-elements

The \mathbb{R}-motivic charts make apparent:

1. Im J-type elements make up a lot of $\pi_\ast,\ast\mathbb{S}_{C_2}$;
2. There is exotic behavior: e.g. $16\sigma \neq 0$.

Detecting Im J

1. Classically, Im J-type elements are detected by $\mathbb{S}_{K(1)}$;
2. Where $\pi_{s,c}\nu(X) = \pi_c F(P_{s-c}^\infty, X)$, have $\pi_{s,c}\mathbb{S}_{C_2} = \pi_{s,c}\nu(\mathbb{S})$.

So one is immediately led to study $\nu(\mathbb{S}_{K(1)})$.

Theorem (B. 2021)

A complete description of the ring $\pi_\ast,\ast\nu(\mathbb{S}_{K(1)})$.
The Borel C_2-equivariant $K(1)$-local sphere

Im J-elements

The \mathbb{R}-motivic charts make apparent:

1. Im J-type elements make up a lot of $\pi_*, *\mathbb{S}_{C_2}$;
2. There is exotic behavior: e.g. $16\sigma \neq 0$.

Detecting Im J

1. Classically, Im J-type elements are detected by $\mathbb{S}_{K(1)}$;
2. Where $\pi_{s,c}\nu(X) = \pi_cF(P_{s-c}, X)$, have $\pi_{s,c}\mathbb{S}_{C_2} = \pi_{s,c}\nu(\mathbb{S})$.

So one is immediately led to study $\nu(\mathbb{S}_{K(1)})$.

Theorem (B. 2021)

A complete description of the ring $\pi_*, *\nu(\mathbb{S}_{K(1)})$.
The Borel C_2-equivariant $K(1)$-local sphere

Im J-elements

The \mathbb{R}-motivic charts make apparent:

1. Im J-type elements make up a lot of $\pi_*, \ast \mathbb{S}_{C_2}$;
2. There is exotic behavior: e.g. $16\sigma \neq 0$.

Detecting Im J

1. Classically, Im J-type elements are detected by $\mathbb{S}_{K(1)}$;
2. Where $\pi_{s,c}\nu(X) = \pi_c F(P_{s-c}^\infty, X)$, have $\pi_{s,c}\mathbb{S}_{C_2} = \pi_{s,c}\nu(\mathbb{S})$.

So one is immediately led to study $\nu(\mathbb{S}_{K(1)})$.

Theorem (B. 2021)

A complete description of the ring $\pi_*, \ast \nu(\mathbb{S}_{K(1)})$.

Some chromatic homotopy

General approach

The chromatic approach seems good for computing equivariant stems:

1. For a finite group G, have ν_G with $\pi_V \nu_G(X) = \pi_0 F(\text{Th}(V), X)$;
2. Segal conjecture (Carlsson 1984): $\pi_* \nu_G(S) = \text{completion of } \pi_* S_G$; so $\pi_* S_G$ is well-represented in the various $\pi_* \nu_G(S_{K(n)})$.

Main tool

Have $\nu_G(S_{K(n)}) = \nu(\mathcal{E}_n)^{hG_n}$, so there is an HFPSS

$$\mathbb{H}^*(G_n; \pi_* \nu_G(\mathcal{E}_n)) \Rightarrow \pi_* \nu_G(S_{K(n)}).$$

Benefits of approach

By $K(n)$-local Tate vanishing, have self-duality

$$F(\text{Th}(V), S_{K(n)}) \simeq L_{K(n)} \text{Th}(-V).$$

So $\nu_G(S_{K(n)})$ is built out of pieces behaving like finite complexes.
Some chromatic homotopy

General approach

The chromatic approach seems good for computing equivariant stems:

1. For a finite group G, have ν_G with $\pi_V \nu_G(X) = \pi_0 F(\text{Th}(V), X)$;
2. Segal conjecture (Carlsson 1984): $\pi_* \nu_G(\mathbb{S}) = \text{completion of } \pi_* \mathbb{S}_G$;

so $\pi_* \mathbb{S}_G$ is well-represented in the various $\pi_* \nu_G(\mathbb{S}_{K(n)})$.

Main tool

Have $\nu_G(\mathbb{S}_{K(n)}) = \nu(E_n)^{hG_n}$, so there is an HFPS

$$H^*(G_n; \pi_* \nu_G(E_n)) \Rightarrow \pi_* \nu_G(\mathbb{S}_{K(n)}).$$

Benefits of approach

By $K(n)$-local Tate vanishing, have self-duality

$$F(\text{Th}(V), \mathbb{S}_{K(n)}) \simeq L_{K(n)} \text{Th}(\neg V).$$

So $\nu_G(\mathbb{S}_{K(n)})$ is built out of pieces behaving like finite complexes.
Some chromatic homotopy

General approach

The chromatic approach seems good for computing equivariant stems:
1. For a finite group G, have ν_G with $\pi_V \nu_G(X) = \pi_0 F(\text{Th}(V), X)$;
2. Segal conjecture (Carlsson 1984): $\pi_* \nu_G(\mathbb{S}) = \text{completion of } \pi_* \mathbb{S}_G$;
so $\pi_* \mathbb{S}_G$ is well-represented in the various $\pi_* \nu_G(\mathbb{S}_{K(n)})$.

Main tool

Have $\nu_G(\mathbb{S}_{K(n)}) = \nu(E_n)^{h\mathbb{G}_n}$, so there is an HFPSS

$$H^*(\mathbb{G}_n; \pi_* \nu_G(E_n)) \Rightarrow \pi_* -_* \nu_G(\mathbb{S}_{K(n)}).$$

Benefits of approach

By $K(n)$-local Tate vanishing, have self-duality

$$F(\text{Th}(V), \mathbb{S}_{K(n)}) \simeq L_{K(n)} \text{Th}(-V).$$

So $\nu_G(\mathbb{S}_{K(n)})$ is built out of pieces behaving like finite complexes.
Back to the case at hand

Approach

Computation of $\pi_\ast,\ast\nu(S_{K(1)})$ proceeds via the HFPSS’s

$$H^\ast(C_2; \pi_\ast,\ast\nu(KU)) \Rightarrow \pi_\ast,\ast\nu(KO)$$

$$H^\ast(\mathbb{Z}\{\psi^k\}; \pi_\ast,\ast\nu(KO)) \Rightarrow \pi_\ast,\ast\nu(S_{K(1)}).$$

Basic features of calculation

1. Few differentials: just from $H^\ast(C_2; \pi_\ast KU) \Rightarrow \pi_\ast KO$;
2. Many hidden multiplicative extensions.

Goal

Go over some highlights.

From now on everything is implicitly $K(1)$-local.
Back to the case at hand

Approach

Computation of $\pi_\ast,\ast\nu(S_{K(1)})$ proceeds via the HFPSS’s

\[
H^*(C_2; \pi_\ast,\ast\nu(KU)) \Rightarrow \pi_\ast,\ast\nu(KO)
\]

\[
H^*(\mathbb{Z}\{\psi^k\}; \pi_\ast,\ast\nu(KO)) \Rightarrow \pi_\ast,\ast\nu(S_{K(1)}).
\]

Basic features of calculation

1. Few differentials: just from $H^*(C_2; \pi_\ast KU) \Rightarrow \pi_\ast KO$;
2. Many hidden multiplicative extensions.

Goal

Go over some highlights.

From now on everything is implicitly $K(1)$-local.
Back to the case at hand

Approach

Computation of $\pi_\ast,\ast \nu({\mathcal{S}}_{K(1)})$ proceeds via the HFPSS’s

$$H^\ast(C_2; \pi_\ast,\ast \nu(KU)) \Rightarrow \pi_\ast,\ast \nu(KO)$$

$$H^\ast(\mathbb{Z}\{\psi^k\}; \pi_\ast,\ast \nu(KO)) \Rightarrow \pi_\ast,\ast \nu({\mathcal{S}}_{K(1)}).$$

Basic features of calculation

1. Few differentials: just from $H^\ast(C_2; \pi_\ast KU) \Rightarrow \pi_\ast KO$;
2. Many hidden multiplicative extensions.

Goal

Go over some highlights.

From now on everything is implicitly $K(1)$-local.
Complex K-theory

Recall $\pi_{s,c}(KU) = KU^{-c}P_{s-c}^\infty$.

Where everything starts

Have $\beta \in \pi_{2,2}(KU)$, $\rho \in \pi_{-1,0}(KU)$, $\tau^2 \in \pi_{0,2}(KU)$, and

1. $\pi_{*,*}(KU) = \mathbb{Z}_2[\beta^{\pm 1}, \rho, \tau^{\pm 2}]/(\rho^3 = 2\rho\beta^{-1}\tau^2)$;

2. $\psi^k(\tau^{2a}) = \tau^{2a} + \frac{1}{2}(k^a - 1)\rho^2\beta\tau^{2(a-1)}$.

Here $\tau^2 = \text{Thom class of } -2\sigma$.

Corollary

1. $KU^*P_{2n+1}^\infty \simeq \pi_*KU$ equivariantly, so $P_{2n+1}^\infty \in \text{Pic}^0(\text{Sp}_K(1))$;

2. $P_{2n}^\infty = 2$-cell complex, attaching map with e-invariant $\frac{1}{2}$.

Example

1. $\rho\beta^{-1}\tau^2 = \text{Hurewicz image of } -\eta \in \pi_{1,0}\mathbb{S}_{C_2}$;

2. Follows that $P_1^\infty \simeq \mathbb{S}$ realized by the transfer.
Complex K-theory

Recall $\pi_{s,c} (KU) = KU^{-c} P_\infty$.

Where everything starts

Have $\beta \in \pi_{2,2} (KU)$, $\rho \in \pi_{-1,0} (KU)$, $\tau^2 \in \pi_{0,2} (KU)$, and

1. $\pi_{*,*} (KU) = \mathbb{Z}_2 [\beta^{\pm 1}, \rho, \tau^{\pm 2}] / (\rho^3 = 2 \rho \beta^{-1} \tau^2);$
2. $\psi^k (\tau^2 a) = \tau^2 a + \frac{1}{2} (k^a - 1) \rho^2 \beta \tau^2 (a-1).$

Here $\tau^2 = $ Thom class of -2σ.

Corollary

1. $KU^* P_{2n+1}^\infty \simeq \pi_* KU$ equivariantly, so $P_{2n+1}^\infty \in \text{Pic}^0 (\text{Sp}_{K(1)})$;
2. P_{2n}^∞ = 2-cell complex, attaching map with e-invariant $\frac{1}{2}$.

Example

1. $\rho \beta^{-1} \tau^2 =$ Hurewicz image of $-\eta \in \pi_{1,0} \mathbb{S}_{C_2}$;
2. Follows that $P_1^\infty \simeq \mathbb{S}$ realized by the transfer.
Complex K-theory

Recall $\pi_{s,c}\nu(KU) = KU^{-c}P_{s-c}^{\infty}$.

Where everything starts

Have $\beta \in \pi_{2,2}\nu(KU)$, $\rho \in \pi_{-1,0}\nu(KU)$, $\tau^2 \in \pi_{0,2}\nu(KU)$, and

1. $\pi_{\ast,\ast}\nu(KU) = \mathbb{Z}_2[\beta^{\pm 1}, \rho, \tau^{\pm 2}]/(\rho^3 = 2\rho\beta^{-1}\tau^2);$
2. $\psi^k(\tau^{2a}) = \tau^{2a} + \frac{1}{2}(k^a - 1)\rho^2\beta\tau^{2(a-1)}$.

Here $\tau^2 = $ Thom class of -2σ.

Corollary

1. $KU^\ast P_{2n+1}^{\infty} \simeq \pi_\ast KU$ equivariantly, so $P_{2n+1}^{\infty} \in \text{Pic}^0(\text{Sp}_{K(1)})$;
2. $P_{2n}^{\infty} = 2$-cell complex, attaching map with e-invariant $\frac{1}{2}$.

Example

1. $\rho\beta^{-1}\tau^2 =$ Hurewicz image of $-\eta \in \pi_{1,0}S_{C_2}$;
2. Follows that $P_{1}^{\infty} \simeq S$ realized by the transfer.
Real K-theory

The homotopy fixed point spectral sequence

Have $H^*(\mathbb{Z}/(2)\{\psi^{-1}\}; \pi_\ast,\ast \nu(KU)) \Rightarrow \pi_\ast,\ast \nu(KO)$. Differentials from:

1. Can show $\pi_{0,0} \nu(KU)$ must consist of permanent cycles;
2. Classic differential $d(\beta^2) = \mu^3$ where $\mu = "\text{nonequivariant } \eta"$.

Corollary

By looking at when generator of $K^0 P_{2n+1}^\infty$ is a permanent cycle, learn

$$P_{2n+1}^\infty \simeq \begin{cases} S & n \equiv 0, 3 \pmod{4} \\ T & n \equiv 1, 2; \pmod{4} \end{cases}$$

with $T = \text{exotic element of } \text{Pic}(\text{Sp}_K(1))$.

More comments

1. By $(P_1^2 \simeq S^1/(2)) \to (P_1^\infty \simeq S) \to (P_3^\infty \simeq T)$, get "$T = \ast$";
2. $\rho^{n+1} | 2\gamma(n)\rho$: James periodicity; Hur. image $R(2^n)$ for $n \equiv 1, 2 \pmod{4}$.
Real K-theory

The homotopy fixed point spectral sequence

Have $H^*(\mathbb{Z}/(2)\{\psi^{-1}\}; \pi_\ast,\ast \nu(KU)) \Rightarrow \pi_\ast,\ast \nu(KO)$. Differentials from:

1. Can show $\pi_{0,0} \nu(KU)$ must consist of permanent cycles;
2. Classic differential $d(\beta^2) = \mu^3$ where μ = “nonequivariant η”.

Corollary

By looking at when generator of $K^0 P_{2n+1}^\infty$ is a permanent cycle, learn

$$P_{2n+1}^\infty \simeq \begin{cases} \mathbb{S} & n \equiv 0, 3 \pmod{4} \\ T & n \equiv 1, 2; \pmod{4} \end{cases}$$

with $T = \text{exotic element of } \text{Pic}(\text{Sp}_K(1))$.

More comments

1. By $(P_2^1 \simeq S^1/(2)) \rightarrow (P_3^\infty \simeq S) \rightarrow (P_3^\infty \simeq T)$, get “$T = \cdot$”;
2. $\rho^{n+1} | 2^{\gamma(n)}\rho$: James periodicity; Hur. image $R(2^n)$ for $n \equiv 1, 2 \pmod{4}$.
Real K-theory

The homotopy fixed point spectral sequence

Have $H^*(\mathbb{Z}/(2)\{\psi^{-1}\}; \pi_\ast,\ast \nu(KU)) \Rightarrow \pi_\ast,\ast \nu(KO)$. Differentials from:

1. Can show $\pi_{0,0} \nu(KU)$ must consist of permanent cycles;
2. Classic differential $d(\beta^2) = \mu^3$ where $\mu = \text{“nonequivariant } \eta\text”$.

Corollary

By looking at when generator of $K^0P_{2n+1}^\infty$ is a permanent cycle, learn

$$P_{2n+1}^\infty \simeq \begin{cases}
\mathbb{S} & n \equiv 0, 3 \pmod{4} \\
T & n \equiv 1, 2; \pmod{4}
\end{cases}$$

with $T =$ exotic element of $\text{Pic}(\text{Sp}_{K(1)})$.

More comments

1. By $(P_1^2 \simeq \mathbb{S}^1/(2)) \to (P_1^\infty \simeq \mathbb{S}) \to (P_3^\infty \simeq T)$, get “$T = i$”;
2. $\rho^{n+1} \mid 2^\gamma(n) \rho$: James periodicity; Hur. image $R(2^n)$ for $n \equiv 1, 2 \pmod{4}$.

William Balderrama (UIUC)
The Borel C_2-equivariant $K(1)$-local sphere

Abbreviate $\pi_{s,c} = \pi_{s,c}\nu(S_{K(1)})$.

The HFPSS

Where k = generator $\mathbb{Z}_2^\times/\{\pm 1\}$, have HFPSS

$$H^*(\mathbb{Z}\{\psi^k\};\pi_{*,*}\nu(KO)) \Rightarrow \pi_{*,*}.$$

This collapses into the short exact sequences

$$\text{coker}(\psi^k - 1: \pi_{s+1,c+1}\nu(KO)) \rightarrow \pi_{s,c} \rightarrow \ker(\psi^k - 1: \pi_{s,c}\nu(KO)).$$

An important subring: (most of) the Milnor-Witt 0-stem

$R = H^0(\mathbb{Z}\{\psi^k\};\pi_{*0}\nu(KO))$ generated by ω_a, η_a, with:

1. $\omega_0 = \rho$ and $\eta_0 = -\eta$;
2. Under $C(\rho)$, have $\omega_a \mapsto 2^{\ord - 1} \rho_a \in \pi_{8a-1}S$ and $\eta_a \mapsto \mu_a \in \pi_{8a+1}S$;
3. $\omega_a + b \omega_c = \omega_a \omega_{b+c}$ etc., $\omega_0^2 \eta_a = 2\eta_a$, $\eta_0^2 \omega_a = 2\eta_a$, $\eta_0^3 \omega_a = \omega_0^3 \omega_{a+1}$.

This “sees” the root invariants $R(2^n)$.

William Balderrama (UIUC) Borel Im J February 23, 2021
The Borel C_2-equivariant $K(1)$-local sphere

Abbreviate $\pi_{s,c} = \pi_{s,c}\nu(S_{K(1)})$.

The HFPSS

Where $k = \text{generator } \mathbb{Z}_2^\times / \{\pm 1\}$, have HFPSS

$$H^*(\mathbb{Z}\{\psi^k\}; \pi_{*,*}\nu(KO)) \Rightarrow \pi_{*,*}.$$

This collapses into the short exact sequences

$$\text{coker}(\psi^k - 1: \pi_{s+1,c+1}\nu(KO)) \rightarrow \pi_{s,c} \rightarrow \text{ker}(\psi^k - 1: \pi_{s,c}\nu(KO)).$$

An important subring: (most of) the Milnor-Witt 0-stem

$$R = H^0(\mathbb{Z}\{\psi^k\}; \pi_{*,0}\nu(KO))$$ generated by ω_a, η_a, with:

1. $\omega_0 = \rho$ and $\eta_0 = -\eta$;
2. Under $C(\rho)$, have $\omega_a \mapsto 2^{\text{ord}-1}\rho_a \in \pi_{8a-1}\mathbb{S}$ and $\eta_a \mapsto \mu_a \in \pi_{8a+1}\mathbb{S}$;
3. $\omega_{a+b}\omega_c = \omega_a\omega_{b+c}$ etc., $\omega_0^2\eta_a = 2\eta_a$, $\eta_0^2\omega_a = 2\eta_a$, $\eta_0^3\omega_a = \omega_0^3\omega_{a+1}$.

This “sees” the root invariants $R(2^n)$.

Hidden multiplicative extensions

HFPSS collapses, but there are many hidden extensions.

Controlling indeterminacy

1. $\pi_{*,*} \nu(KO)$ is τ^4-periodic, but $\tau^4 \notin \pi_{*,*}$;
2. James periodicity: $\tau^4 = $ secondary operation on ρ^3-torsion;
3. Can bootstrap $\pi_\ast S$ to well-defined generators of $\pi_{*,*}$.

Tools for resolving hidden extensions

1. τ-periodicity to reduce to computations in $\pi_\ast S$;
2. Identification of forgetful map $\pi_{*,*}' \to \pi_\ast S$ as from $\nu(S) \to C(\rho)$;
3. $K(1)$-local cell structure of P_{2n}^∞.
Hidden multiplicative extensions

HFPSS collapses, but there are many hidden extensions.

Controlling indeterminacy

1. $\pi_\ast,\ast\nu(KO)$ is τ^4-periodic, but $\tau^4 \notin \pi_\ast,\ast$;
2. James periodicity: $\tau^4 = \text{secondary operation on } \rho^3$-torsion;
3. Can bootstrap $\pi_\ast S$ to well-defined generators of π_\ast,\ast.

Tools for resolving hidden extensions

1. τ-periodicity to reduce to computations in $\pi_\ast S$;
2. Identification of forgetful map $\pi_\ast,\ast' \to \pi_\ast S$ as from $\nu(S) \to C(\rho)$;
3. $K(1)$-local cell structure of P^∞_{2n}.
Hidden multiplicative extensions

HFPSS collapses, but there are many hidden extensions.

Controlling indeterminacy

1. $\pi_{*,*}\nu(KO)$ is τ^4-periodic, but $\tau^4 \notin \pi_{*,*}$;
2. James periodicity: τ^4 is secondary operation on ρ^3-torsion;
3. Can bootstrap π_*S to well-defined generators of $\pi_{*,*}$.

Tools for resolving hidden extensions

1. τ-periodicity to reduce to computations in π_*S;
2. Identification of forgetful map $\pi_{*,*'} \rightarrow \pi_*S$ as from $\nu(S) \rightarrow C(\rho)$;
3. $K(1)$-local cell structure of P_{2n}^∞.
A sample of $\pi_{*,*}$

Multiplicative generators

$$\omega_a \in \pi_{8a-1,0}, \quad \eta_a \in \pi_{8a+1,0}, \quad \tau^{2b} h \in \pi_{0,2b} \quad (b \neq 0)$$

$$\tau^{4b} \mu_a \in \pi_{8a+1,4b+1}, \quad \tau^{4b} \zeta_a \in \pi_{8a+3,4b+1}$$

$$\rho_{a,b} \in \pi_{8a-1,4b-1}, \quad \xi_{a,b} \in \pi_{8a+3,4b-1}.$$

Notation

$$\pi_{4a-1} S = \mathbb{Z}_2/(2^{ja})$$ and $u_{a,b} = \frac{2^{ja}}{2^{ja-b}} \frac{k^{2b} - k^{2a}}{k^{2a} - 1} \in \mathbb{Z}^*_2$ (indep. of k mod 2^{jb}).

Some fun relations

1. Have $\pi_{8a-1,4b-1} = \mathbb{Z}_2 \{ \rho_{a,b}, \omega_0 \eta_0 \rho_{a,b} \}$ mod:

 $$2^{j2a} \rho_{a,b} + 2^{j_b-2a-1} u_{2a,b} \omega_0 \eta_0 \rho_{a,b} = 0, \quad 2^{j_b} \omega_0 \eta_0 \rho_{a,b} = 0;$$

2. In $\pi_{8a+3,8b-1}$, relation $\mu_0^2 \cdot \tau^{4(2b-1)} \mu_a = (4 + 2 u_{2a+1,2b} \omega_0 \eta_0) \xi_{a,2b};$

3. In $\pi_{8a+1,4(b+c)-1}$, relation $\tau^{4b} \mu_a \cdot \tau^{2(2c-1)} h = 2^{j_b+c-1} \eta_0^2 \rho_{a,b+c}.$
A sample of $\pi_{*,*}$

Multiplicative generators

$\omega_a \in \pi_{8a-1,0}$, $\eta_a \in \pi_{8a+1,0}$, $\tau^{2b} h \in \pi_{0,2b}$ ($b \neq 0$)

$\tau^{4b} \mu_a \in \pi_{8a+1,4b+1}$, $\tau^{4b} \zeta_a \in \pi_{8a+3,4b+1}$

$\rho_{a,b} \in \pi_{8a-1,4b-1}$, $\xi_{a,b} \in \pi_{8a+3,4b-1}$.

Notation

$\pi_{4a-1}S = \mathbb{Z}_2/(2^{ja})$ and $u_{a,b} = \frac{2^{ja} k^{2b}_2 - k^{2a}_2}{2^{ja-b} k^{2a}_2 - 1} \in \mathbb{Z}_2^\times$ (indep. of k mod 2^{jb}?).

Some fun relations

1. Have $\pi_{8a-1,4b-1} = \mathbb{Z}_2 \{ \rho_{a,b}, \omega_0 \eta_0 \rho_{a,b} \}$ mod:

 $2^{j2a} \rho_{a,b} + 2^{j_b-2a-1} u_{2a,b} \omega_0 \eta_0 \rho_{a,b} = 0$, $2^{j_b} \omega_0 \eta_0 \rho_{a,b} = 0$;

2. In $\pi_{8a+3,4b-1}$, relation $\mu_0^2 \cdot \tau^{4(2b-1)} \mu_a = (4 + 2 u_{2a+1,2b} \omega_0 \eta_0) \xi_{a,2b}$;

3. In $\pi_{8a+1,4(b+c)-1}$, relation $\tau^{4b} \mu_a \cdot \tau^{2(2c-1)} h = 2^{j_b+c-1} \eta_0^2 \rho_{a,b+c}$.
A sample of $\pi_{*,*}$

Multiplicative generators

$$\omega_a \in \pi_{8a-1,0}, \quad \eta_a \in \pi_{8a+1,0}, \quad \tau^{2b}h \in \pi_{0,2b} \quad (b \neq 0)$$

$$\tau^{4b}\mu_a \in \pi_{8a+1,4b+1}, \quad \tau^{4b}\zeta_a \in \pi_{8a+3,4b+1}$$

$$\rho_{a,b} \in \pi_{8a-1,4b-1}, \quad \xi_{a,b} \in \pi_{8a+3,4b-1}.$$

Notation

$$\pi_{4a-1}S = \mathbb{Z}_2/(2^{ja}) \text{ and } u_{a,b} = \frac{2^{ja}}{2^{ja-b}} \frac{k^{2b}-k^{2a}}{k^{2a}-1} \in \mathbb{Z}_2^\times \text{ (indep. of } k \text{ mod } 2^{jb}?).$$

Some fun relations

1. Have $\pi_{8a-1,4b-1} = \mathbb{Z}_2\{\rho_{a,b}, \omega_0\eta_0\rho_{a,b}\} \text{ mod:}$

 $$2^{j2a}\rho_{a,b} + 2^{j_b-2a-1}u_{2a,b}\omega_0\eta_0\rho_{a,b} = 0, \quad 2^{j_b}\omega_0\eta_0\rho_{a,b} = 0;$$

2. In $\pi_{8a+3,8b-1}$, relation $\mu_0^2 \cdot \tau^{4(2b-1)}\mu_a = (4 + 2u_{2a+1,2b}\omega_0\eta_0)\xi_{a,2b};$

3. In $\pi_{8a+1,4(b+c)-1}$, relation $\tau^{4b}\mu_a \cdot \tau^{2(2c-1)}h = 2^{j_b+c-1}\eta_0^2\rho_{a,b+c}.$