The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

Ya-Pei Peng1,2, Xinqiang Yuan1, Junjie Zhang3 & Long Zhang1

1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China, 2University of Chinese Academy of Sciences, Beijing 100039, China, 3College of Materials Science and Engineering, China Jiliang University, Zhejiang 310018, China.

A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10^{-20} cm^2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system.

Recently, Tm3+ doped glass has been widely investigated for mid-infrared fiber lasers around 2.0 μm since the transitions of Tm3+:3F4 → 3H6. The mid-infrared fiber lasers in the 2.0 μm have generated great interest for its potential applications in several fields, such as medical surgery, remote sensing, eye-safe laser radar, military, and atmospheric pollution monitoring in the last decades. Rare-earth thulium ions are often chosen to produce laser radiation at 1.8 μm through the transitions of Tm3+:3F4 → 3H6. In this paper, Tm3+ has been selected as active ions because the ground state of Tm3+:3H6 can be pumped directly by 808 nm commercial laser diodes. Laser emission at 1.8 μm strongly dependents on the efficiency of the energy transfer process among Tm3+ ions. In order to obtain high-power infrared emissions from Tm3+, the host glass plays an important role. Most researches in Tm3+ doped glass matrix for ~2.0 μm emission have focused on silica, silicate, fluoride, fluorophosphates, tellurite, and germanate based glasses. Due to the energy cross-relaxation process, the host material should be chosen to have high solubility of the thulium ions. Compared with SiO2-based glass, GeO2-TeO2-based glass have the higher solubility for Tm3+ ions and the lower phonon energy (germanate-tellurite glasses is about 800–900 cm\(^{-1}\)), which can avoid very competitive nonradiative decay for Tm3+ ions. High phonon energy leads to faster multi-phonon relaxation and thus results in lower cross-relaxation rate. By contrast with germanate-tellurite glass, fluoride glass also has very low phonon energy (around 500 cm\(^{-1}\)) but the low mechanical strength and damage threshold limit its application in high power or energy fiber laser systems. Therefore, germanate-tellurite glass may have higher ions solubility and appropriate phonon energy for developing more efficient optical devices by comprehensive evaluation.

In this work, we report primarily a series of glass compositions in the Tm3+-doped germanate-tellurite (GT) glasses to study mid-infrared spectroscopic properties. We induce La2O3 to substitute for Nb2O5 to improve the thermal stability and anti-cristallization of this glass system, by reasons of the ratio of La3+ ions (0.12 nm) and coordination number (8) are higher than Nb5+ ions (ratio = 0.07 nm/coordination number = 6). The absorption and emission spectra of Tm3+-doped GT glasses were obtained. Results and analysis reveal that these germanate-tellurite glasses with good spectroscopic properties may provide a high gain as a good medium for high-power level laser.

Experiments and measurements

The germanate-tellurite glass with molar composition of 70GeO2-10TeO2-10K2O-(9-x)Nb2O5-xLa2O3+1Tm2O3 (x = 1, 3, 5, and 7 mol. %) was investigated, which is hereafter denoted as GTLa-x glass. All the samples were prepared by traditional melt-quenching method with using high-purity of GeO2, TeO2, K2CO3, Nb2O5, La2O3, and Tm2O3 powder. Well-mixed 20 g batches of the samples were placed in a platinum crucible and heated with a SiC-resistance electric furnace at 1150°C for 30 min to melt. The melt was poured onto a preheated steel plate and
annealed for 2 hours in a furnace around the glass transition temperature (T_g), after which it was allowed to cool slowly in the furnace to room temperature. The annealed samples were fabricated and polished to 10 × 10 × 1 mm for optical measurements.

The density was tested by Archimedes’ liquid-immersion method in distilled water and the refractive index of the glass samples was measured by prism minimum deviation method. The DSC curve is recorded by NETZSCH STA 409PC. Furthermore, the absorption spectra were recorded with a Perkin-Elmer-Lambda 900 UV/VIS/NIR spectrophotometer in the range of 300–2000 nm, and the emission spectra were measured with a Triax 320 type spectrometer (Jobin-Yvon Co., France) upon excitation at 808 nm. For the fluorescence lifetime measurements, the instrument applied was FLSP 920 fluorescence spectrophotometer (Edinburgh Analytical Instruments Ltd, UK). All the measurements were carried out at room temperature.

Results and discussion

Thermal property. Figure 1 shows the thermal property of GTLa-x glass from 300°C to 900°C. From the DSC curve of present glasses system, we can find out that no crystallization peak is apparent, and the glass transition temperature T_g are 355°C, 459°C, 550°C, respectively. The T_g increase with the contents of La_2O_3 increase. It indicated the introduce La_2O_3 to substitute for Nb_2O_5 can improve the thermal stability and anti-crystallization ability of this glass system. We could conclude that thermal properties of the GTLa-x glass are good for fiber drawing from the analysis of DSC curve.

Absorption spectrum. The absorption spectra were obtained at room temperature over a wavelength region of 300–2000 nm. The absorption spectra of the GTLa-x samples at room temperature over a wavelength region of 300–2000 nm. The performance of the 1.8

\[
\text{m emission. So, improving the OH}^{-}\text{concentration on present glass sample is a crucial issue to obtain efficiently 1.8} \mu m \text{emission.}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Band} & \text{Energy (nm)} & \text{B} & \text{C} & \text{D} & \text{E} & \text{F} \\
\hline
3\text{F}_4 & 1694 & 0.5470 & 0.7355 & 0.2462 & 3.531 & 3.529 \\
3\text{F}_3 & 1208 & 0.2300 & 1.0322 & 0.5880 & 3.836 & 3.844 \\
3\text{H}_4 & 792 & 0.0006 & 0.0355 & 0.2082 & 1.287 & 0.889 \\
\hline
\end{array}
\]

Table 1 | Measured and calculated oscillator strengths of Tm^{3+} in GTLa-1 glass

Figure 1 | DSC curve of GTLa-x glasses.

Figure 2 | Absorption spectra of GT glasses. The insert of figure is the transmittance curve of GTLa-3.

Judd-Olfelt analysis. Judd-Olfelt (J-O) theory\(^{26,27}\) has been commonly applied to determine the important spectroscopic and laser parameters of rare earth ions doped glasses by many researchers. According to the J-O theory, based on absorption spectra, the measured oscillator strengths and some spectroscopic parameters of many trivalent rare earths in solids, such as intensity parameters \(\Omega_2\), radiative transition probability \(A_{\text{rad}}\) and radiative lifetime \(\tau_{\text{rad}}\) can be calculated. The theoretical \(f_{\text{theor}}\) and the measured \(f_{\text{exp}}\) oscillator strengths of the GTLa-1 glass are shown in Table 1.

As is shown in Table 1, the root-mean-square error deviation of intensity parameters is 0.39 × 10^{-6}, which indicates the validity of the J-O theory for predicting the spectral intensities of Tm^{3+} and the reliable calculation. The J-O intensity parameters are important for investigating the local structure and bonding in the vicinity of RE ions. As known large \(\Omega_2\) parameter is related with the amount of the strong covalent bond between rare-earth ions and ligand anions, strongly depends on the asymmetry of the local environment at the Tm^{3+} ion site in the glass hosts, and a strong polarizability of the anion, while the \(\Omega_6\) parameter is related to the overlap integrals of 4f and 5d orbitals.\(^{28,29}\) Values of \(\Omega_2\) and \(\Omega_6\) also provide some information on the rigidity and viscosity of hosts\(^{30}\). In this work, the J-O intensity parameters \(\Omega_2\) are compared with those of various Tm^{3+} doped glasses presented in Table 2. It can be found that the value of \(\Omega_2\) becomes small when La_2O_3 increase but La_2O_3 < Nb_2O_5. When the contents of La_2O_3 approximate that of Nb_2O_5, the value of \(\Omega_2\) increases slightly, while La_2O_3 > Nb_2O_5, the value of \(\Omega_2\) drop down quickly. Similarly, \(\Omega_6\) also changed with the contents of La_2O_3. These proved the change of asymmetry of the local environment at the Tm^{3+} ion site and found a variation in the covalent and bond strength of Tm-O in glass hosts. In table 2, \(\Omega_2\) for GTLa-x glass is
higher than fluoride glasses, because the electronegativity of oxide is smaller than that of fluorine. It means the asymmetry and covalent environment of the Tm-O band in GT glass are stronger than other host glasses.

The radiative transition probabilities for Tm$^{3+}$: F$_4$ → H$_4$ level can be calculated by using J-O intensity parameters. The results of J-O analysis are shown in Table 3. The radiative transition probability A_{rad} for the transition in GTLa-1 glass is 372.1 s$^{-1}$, and this value is slightly higher than those in fluorophosphate glass. Because radiative transition probability depends intensively on the refractive indices, obtaining of larger radiative transition probability is reasonable in GT glass with higher refractive index, and larger values are beneficial in achieving intense near-infrared emission.

Infrared fluorescence spectra. The fluorescence spectra of the samples are measured as shown in figure 3 to investigate the near-infrared emission characteristics of the prepared Tm$^{3+}$-doped GT glasses as a function of the La$_2$O$_3$ contents. Besides, the inset of figure 3 is the energy level diagram and energy transfer sketch map of Tm$^{3+}$ ions pumped at 808 nm. The cross relaxation (CR) and energy migration (EM) into the H$_4$ level are also indicated. The F$_4$ → H$_4$ fluorescence around 1.8 µm is obviously observed, and the intensity is much larger than that of 1.47 µm corresponding to H$_4$ → F$_4$ transition for samples under the 808 nm diode laser. The emission at 1.47 µm due to the H$_4$ → F$_4$ transition is much lower in intensity relative to the 1.8 µm because the cross relaxation between Tm$^{3+}$ ions is efficiency. Moreover, the intensity of 1.8 µm emission firstly decreased and then increased with the increment of La$_2$O$_3$ concentration. But the intensity of 1.8 µm emission slightly increased when the concentration of La$_2$O$_3$ more than the concentration of Nb$_2$O$_5$. The maximum fluorescence peak intensity for GT glass is observed around 1 mol. % La$_2$O$_3$.

Absorption and stimulated emission cross section. According to the absorption spectra, the absorption cross-section (σ_{abs}) can be calculated by using Beer-Lambert equation

$$\sigma_{abs}(\lambda) = \frac{ln[I_0(\lambda)/I(\lambda)]}{Nl}$$

where N is the rare-earth ion concentration (ions/cm3), I is the sample thickness, $I_0(\lambda)$ is the incident optical intensity, and $I(\lambda)$ is the optical intensity throughout the sample.

Glass	S_{rad}	S_{rad}	A_{rad}	β (%)	τ_{rad} (ms)
GTLa-1	4.84	0	372.1	100	2.68
GTLa-3	4.00	0	348.5	100	2.86
GTLa-5	4.07	0	365.6	100	2.73
GTLa-7	2.83	0	236.7	100	4.22

Figure 4 shows the σ_{abs} and σ_{em} for optical transitions involving the ground and first excited states of Tm$^{3+}$ ions of GTLa-1 glass. The calculated maximum σ_{abs} and σ_{em} for Tm$^{3+}$ are 4.17×10^{-21} cm2 at 1700 nm and 14.6×10^{-21} cm2 at 1806 nm, respectively. Moreover, the product of the stimulated emission cross-section and the radiative lifetime (τ_{rad}), $\sigma_{em} \times \tau_{rad}$ is another important parameter to...
characterize laser materials, which is the figure of merit (FOM) for amplifier gain26,34,35.

Table 4 shows the emission cross-section, radiative lifetime, and FOM gain (\(\sigma_{\text{em}} \times \tau_{\text{rad}}\)) of \(^{2}F_{4} \rightarrow ^{3}H_{4}\) transition of Tm3+-doped glasses. For laser glasses, it is generally desirable for the emission cross section to be as large as possible to provide a high gain. This peak emission cross section had reported as 4.3 \(\times 10^{-21}\) \(\text{cm}^{2}\) in silica glass by Turri et al., 4.11 \(\times 10^{-21}\) \(\text{cm}^{2}\) in fluorophosphate by Tian et al., and 9.20 \(\times 10^{-22}\) \(\text{cm}^{2}\) in tellurite by Balda1. It can be seen that the \(\sigma_{\text{em}} \times \tau_{\text{rad}}\) of Tm3+ doped GT glasses is much larger than other Tm3+-doped host glasses. The advantage of GT glass possessing larger emission cross section may prove it to be a promising laser glass with high gain to scale a high power level laser.

Fluorescence lifetime. The fluorescence lifetime of Tm3+:F\textsubscript{4} becomes shorter with increasing of the La\textsubscript{2}O\textsubscript{3} concentrations, and the lifetime becomes longer when doped with 7 mol% La\textsubscript{2}O\textsubscript{3}, as shown in table 5. However, it indicated that the measured lifetime is much shorter than that of Tm3+-doped other kinds of glasses. And the \(\sigma_{\text{em}} \times \tau_{\text{rad}}\) of Tm3+ ions themselves, multiphonon decay, etc. Energy transfer processes between the Tm3+ ions themselves are cross-relaxation and energy migration. The cross relaxation energy transfer process between Tm3+ ions described in the introduction does not quench fluorescence by itself, but energy migration is a resonant nonradiative mechanism, which increases the probability of luminescence quenching by impurities. Generally, the relatively longer radiation lifetime is beneficial to reduce the laser oscillation threshold39. Therefore, this Tm3+-doped GT glass can be considered as an appropriate medium to achieve a 1.8 \(\mu\text{m}\) emission laser with high quality.

Summary

Spectroscopic properties of 1.8 \(\mu\text{m}\) emission have been investigated in the Tm3+-doped germanate-tellurite glasses (GeO\textsubscript{2}-TeO\textsubscript{2}-K\textsubscript{2}O-Nb\textsubscript{2}O\textsubscript{5}-La\textsubscript{2}O\textsubscript{3}). We investigate the effect of the spectroscopic properties for different compositions with varying Nb5+/La3+ ions ratio. On the basis of our experimental results, Judd–Ofelt intensity parameter, spontaneous transition probability, radiative lifetime, and absorption cross-section, as well as stimulated emission cross-section are calculated and discussed. For the Tm3+-doped GT glass samples, the fluorescence measurement shows that the maximum value of 1.8 \(\mu\text{m}\) emission intensity occurs in GTLa-1 glass. The optimal concentration of La\textsubscript{2}O\textsubscript{3} for a laser application has been determined, which is 1 mol.% La\textsubscript{2}O\textsubscript{3}. Results indicate that these germanate-tellurite glasses with good spectroscopic properties may provide a high gain as a good medium for mid-infrared laser.

Table 5 | Measured fluorescence lifetime of the Tm: \(^3H_4\) level and Tm: \(^2F_4\) level at 295 K of different Tm3+-doped host glasses

Level	GTLa-1	GTLa-3	GTLa-5	GTLa-7
\(^3F_4\)	428.64	284.40	282.43	482.13
\(^3H_4\)	119.57	107.91	110.49	125.34
31. Balda, R. et al. Spectroscopic properties of the 1.4 μm emission of Tm³⁺ ions in TeO₂-WO₃-PbO glasses. Opt. Express 16, 11836–11846 (2008).
32. Turri, G. et al. Temperature-dependent spectroscopic properties of Tm³⁺ in germanate, silica, and phosphate glasses: A comparative study. J. Appl. Phys. 103, 093104-7 (2008).
33. McCumber, D. Theory of Phonon-Terminated Optical Masers. Phys. Rev. 134, A299–A306 (1964).
34. Zou, X. & Toratani, H. Spectroscopic properties and energy transfers in Tm³⁺ singly- and Tm³⁺/Ho³⁺ doubly-doped glasses. J. Non-Crystal. Solids 195(1), 113–124 (1996).
35. Fan, H. et al. Tm³⁺ doped Bi₂O₃–GeO₂–Na₂O glasses for 1.8 μm fluorescence. Opt. Mater. 32, 627–631 (2010).
36. Xu, R. et al. Spectroscopic properties of Tm³⁺ doped germanate-tellurite glasses for 2 μm emission. Appl. Phys. B 102, 109–116 (2011).
37. Zhang, Q. et al. Spectroscopic properties of Ho³⁺/Yb³⁺ codoped lanthanum-aluminum germanate glasses with efficient energy transfer. J. Appl. Phys. 106, 113102-1-5 (2009).

Acknowledgments
This work is financially supported by National Natural Science Foundation of China (No. 51172252 and 51102253).

Author contributions
Y.P. wrote the main manuscript text and coauthor, X.Y. checked up. J.Z. and L.Z. are responsible for the experiment. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Peng, Y.-P., Yuan, X.Q., Zhang, J.J. & Zhang, L. The effect of La₂O₃ in Tm³⁺-doped germanate-tellurite glasses for 2 μm emission. Sci. Rep. 4, 5256; DOI:10.1038/srep05256 (2014).