RESEARCH ARTICLE

ECO-FRIENDLY, COST EFFECTIVE, AUTO-STERILIZATION OF ISOLATION GOWN: RECENT AND FORTHCOMING ASPECT

Yogita Bisht¹ and Ajay Pratap Singh²

1. Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi 110007, India.
2. Department of Chemistry, University of Delhi, Delhi 110007, India.

Abstract

This review addresses the issue of biomedical waste in the form of PPE (personal protection equipment) kit. COVID-19 pandemic has brought life into standstill. It has affected life of each and every person. This includes both direct effect in terms of health and indirect effect in terms of economic loss, business losses which have also resulted into sudden surge in unemployment. But apart from these directly visible effects there is one particular effect which is far sighted but cruel reality of present condition. It is the problem of biomedical wastage arising due to extensive use of PPE kits especially in the form of face mask and isolation gown. As layman is expected to wear face mask all the time, many countries has made it mandatory. It is very important to think about its effective, environment friendly disposal. Similarly isolation gown has also become very common in many medical and non-medical industries. If we don’t dispose off used gown properly then the whole purpose of its use will get defeated as it further leads to disease transmission. While selecting method of disposal, it is very important to consider its adverse effect on environment. Incineration, shredding and deep pit burial are some of the common method of disposal of biomedical waste approved by health authorities of different countries, but these are not environment friendly. There are some other disinfection methods like ultra-violet (UV) irradiation, chemical disinfection with the help of them medical isolation gown can be reused but these methods have many disadvantages including being expensive, non-eco-friendly, some methods require expertise in handling machine, some affect the virus barrier ability of gown etc. Considering these problems, this review explored the idea of reusable isolation gown which doesn’t require any expertise for its disinfection at the same time it doesn’t adversely affect the environment. We proposed the idea of applying layer of photocatalyst which can inhibit the enzymatic activity of cells of microbes which will stop their replication. This can prove very useful in preventing the disease transmission. There are many reports on antimicrobial properties of various semiconductor photocatalyst which can further be improved by doping it with metal like Cu or Ag which are already popular for their medicinal properties. Major problem with most of the semiconductor...
Introduction:

PPE stands for personal protection equipment for protection of health care worker (HCW) or any wearer from infection. This includes partial coverage kit which comprises gown, gloves and face mask or full coverage kit including goggles, face mask, face shield, gown, gloves, rubber boots, head cover etc. depending upon the nature of the infection. PPE kit is an essential part of health care services especially in case of infectious diseases such as Hepatitis B, Hepatitis C, Human Immunodeficiency Virus as it protect the health workers. (Bell, 1997; Cardo and Bell, 1997; CidC, 1998; Labor, 1991; Lovitt et al., 1992; Lynch et al., 1987; Mahoney et al., 1997; Weber and Rutala, 1989) But in pandemic situation like EBOLA or Covid-19, its role has become even more important. According to different guidelines issued by different countries, even non health workers are ordered to wear PPE kit. These are normally non–health care industries such as saloon, construction, research laboratory etc. These also include those workplaces where government has not directed for use of PPE kit, still people are using it out of fear. This has leads to two major problems firstly, shortage of PPE kits for HCW where these are extremely important and secondly disposal of these PPE kits. There are many reports which have talked about shortage of PPE kits in even developed countries like US. This problem is even more prominent in developing and least developing countries (Livingston et al., 2020). Sudden rise in demand and low supply has left health worker ill-equipped in war against Covid-19. Even WHO has warned that supply of PPE is rapidly depleting. This shortage can be resolved by either providing sufficient supply of these protection kits or by making reusable self-cleaning kit. Increasing the production can solve the immediate problem, but this will leads to another major problem of disposal. In some cases HCW are bound to use polythene, which are not safe. Out of all the components of PPE kit like gowns, face masks, gloves, eye protection, face shields and shoe - head coverings, most of them can easily be sanitized for reuse without damaging the protective layer except for gown and shoe–head cover. This review mainly focuses on self-cleaning gown and shoe- head cover.

Different PPE Kit standard issued by WHO and textile industry

To standardize the quality parameter of Covid-19 PPE kit, it is important to understand its mode of transmission. According to WHO COVID-19 virus is primarily transmitted between people through both indirect and direct routes.(Bai et al., 2020; Burke, 2020; Chan et al., 2020; Huang et al., 2020; Liu et al., 2020; Wang et al., 2020) Indirect contact route include droplet transmission from infected person through coughing or sneezing to a healthy person when he come in 1m close proximity.(Kilinc, 2015) Touching the surface or object like thermometer used on infected person by HCW or any healthy person comes under indirect transmission. Apart from this, airborne transmission (particle size < 5µm) which is different from droplet transmission (particle size > 5-10µm) is not reported in COVID – 19 except under some specific cases like open suction, disconnecting the patient from ventilator, bronchoscopy etc. Considering its mode of transmission WHO has recommended apposite use of all PPE,not only the surgical masks. Gown is a one of the important element of any PPE kit as it cut the direct contact between patient and HCW. But not all the isolation gowns are effective in prevention of transfer of microorganism from patient to wearer.Different microorganism have different survival period ranging from few minutes to several months on PPE kits.(Borkow and Gabbay, 2008; Neely and Orloff, 2001; Sidwell et al., 1966, 1967) Cleaning method of PPE kit also depends upon the nature of the microorganism as few disseminates just by drying whereas some require thorough cleaning. But sometime extreme cleaning methods may damage the gown textile which makes it unsafe to be part of PPE kit. (Kilinc, 2015; Loh et al., 2000; Nicas and Sun, 2006; Perry et al., 2001; Wong et al., 1991)
Fabric used in isolation gowns

Gowns can be classified on the basis of its use and protection level. U. S. food and drug administration has classified gown into four different categories on the basis its protection level.
1. Minimal risk: Level 1 which include basic care, cover gown for visitors
2. Low risk: Level 2 which include during blood draw, or a pathology lab
3. Moderate risk: Level 3 which include inserting an intravenous (IV) line, in the emergency room, or for trauma cases
4. High risk: Level 4 which include long, fluid intense procedures, surgery, when pathogen resistance is needed or infectious diseases are suspected (non-airborne)

On the basis of uses, gowns can be classified as disposable and reusable. Disposable gown are normally made up of nonwoven material (with basic raw material of synthetic fibers like polyester, polypropylene etc.) in combination with some plastic material which decrease its liquid penetration. Methods of formation of these gowns also play an important role in deciding its effectiveness as contact barrier; there are different methods available namely mechanical, chemical, thermal methods. But considering the possible hazards of disposing huge no of isolation gown, it is recommended to use reusable gown. These are normally made up of cotton or polyester or combination of both. Their reusability depends upon their material and method of synthesis. Both single use and multiple use gowns have to undergo various quality checks like tensile strength, seam strength, tear resistance, lint generation, water vapor transmission (breathability) etc. before their marketing. Cleaning process of reusable gown should also not affect much above mentioned property of that gown. Textile barrier performance is also a very important property of an isolation gown. This is determined by:
1. Smoothness of clothing: fabric with irregular surface is proved to be more effective in controlling transmission of virus/dust particles. (Gupta, 1988; Leonas and Miller, 1990)
2. Microfiber with very fine and thin fabric also provide higher level of protection.
3. Fabric of gown should have higher absorbency like natural fibers cotton, wool etc. as in cloths with low absorbance power (polyester) liquid containing virus can wick along the fabric due to capillary action.
4. Twisted yarns also provide good barrier.
5. Coating with special material, lamination, fabric thickness, smaller pore size can further enhance the protection level of gown (Leonas and Jinkins, 1997; Rutala and Weber, 2001)
6. Outermost layer of an isolation gown should have a layer of water repellent. Normally fluorocarbon based chemicals are used for this purpose. Though these chemicals do not provide resistance against liquid with low surface tension. (Meyer and Beck, 1995; Pissiotis et al., 1997)
7. Antibacterial, antimicrobial, antivirus chemicals are also very important in reducing the disease transmission (Committee, 2012; Huang, 2000)

But application of different layers of barrier should not make gown unbreathable.

Disposal and sterilization process of isolation gowns

Disposal of virus infected PPE kit specially the isolation gown possess great problem as COVID-19 pandemic has resulted into sudden surge in such kind of waste. There are majorly three options for their disposal (1) incineration (2) deep burial pit (3) shredding. All these methods have their own pros and cons and different countries have directed different options based on their facilities. For example in England PPE waste materials come under infectious or offensive, which it need to burn under high temperature to avoid transmission of disease. In India also, incineration is suggested for disposal of biomedical waste but the central pollution control board (CPCB) has also directed disposal of used PPE kit in deep burial pits if the common biomedical waste treatment facility (CBWTF) is not available. Italy has adopted even extra safety procedure which includes storage of waste in multiple layer sealed container which is moved via special corridors. In Wuhan city of China where the waste generation become 6-7 times than normal, new biomedical waste plants were set up to deal with it.

Incineration

Incineration involves thermal decomposition of waste at high temperature to reduce its volume. Combustible waste with high organic content is the best suited for this process. (Vogel, 1983) As a primary solution for disposal of biomedical waste, incineration has many pros and cons. Its main advantage is that the huge pile of wastage can be disposed off within few minutes, leading to complete elimination of virus. (Oppelt, 1987) The energy generated during burning can be used for electricity production. Another advantage of incineration is that, it doesn’t require large land area for its plant setup. Apart from initial set up cost its maintenance is comparatively cheaper. But one of
Chemical disinfection using chlorine derivatives

This is one of the old and popular practice used for sterilization/ disinfection of water and clothing material. It stared in 1920s with introduction of chlorine disinfection and within no time this became extremely popular due to law cost as compared to other disinfection methods. Now a day sodium hypochlorite (bleaching powder) is commonly used for sterilization of isolation gown as it severely damage the DNA and RNA of the microorganisms. This renders them to replicate and duplicate due to which they can’t spread disease though they still remain alive. This process is highly popular as it does not leave any residue of disinfection which can degrade the quality of water/surface as in case of chemical disinfection. Easy operation is another benefit of this method. But this sterilization process has few disadvantages as well. Its first disadvantage is that not readily available naturally. Natural sunlight has three types of UV radiations: UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm). Out of these, ozone blanket absorb most of the UVC. Therefore Earth receive majorly UVA and small amount of UVB which is not enough to sterilize or kill the virus (though kill is not exactly the right word as microbe still remain alive, it just stop duplicating). (Haigh, 2007) UV can be produce artificailly using mercury vapor lamp, high intensity discharge lamps etc. Many industries are using it for disinfection in the form of disinfectant chamber. It is popular disinfectant in water purification industries also. But the problem with these UV radiations is that it leads to genetic mutation in human being which may cause cancer. Moreover not all types of UV radiation can be used for disinfection. Appropriate exposure of low wavelength, high frequency (high energy) UVC is required for this purpose. Artificial UV lamps are both expensive and dangerous to be used by any nonmedical person. Knowledge of appropriate doses of UV exposure required for disinfection is also extremely important. (Bolton and Cotton, 2011; Mori et al., 2007; Rubbo and Gardner, 1965; Wolfe, 1990)

Deep burial pit

Another solution to get rid of the biomedical waste especially isolation gown is burial of waste in landfill. This doesn’t leads to any air pollution due to release of toxic gases. The installation and maintenance cost is also law. But the transportation of waste to such land fill is quite expensive as it involves packaging of biomedical waste in multilayered sealed package to avoid transmission of virus. Normally landfills far away from the main city are chosen for this purpose, which further add to the transportation cost. (Patil and Shekdar, 2001; Singh et al., 2007)

Sterilizing the isolation gown

Considering the huge waste it creates, cleaning and sterilization of isolation gown should be the alternate option of dealing with biomedical waste. There are many options available for sterilization of isolation gown namely, Ultraviolet (UV) rays, chemicals sterilization using chemicals containing chlorine, ozonolysis etc.

Ultraviolet (UV) radiation

UV radiations come under 100 – 400 nm wavelength range of electromagnetic radiations. It is highly effective in sterilizing the isolation gown as it severely damage the DNA and RNA of the microorganisms. This renders them to replicate and duplicate due to which they can’t spread disease though they still remain alive. This process is highly popular as it does not leave any residue of disinfection which can degrade the quality of water/surface as in case of chemical disinfection. Easy operation is another benefit of this method. But this sterilization process has few disadvantages as well. Its first disadvantage is that not readily available naturally. Natural sunlight has three types of UV radiations: UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm). Out of these, ozone blanket absorb most of the UVC. Therefore Earth receive majorly UVA and small amount of UVB which is not enough to sterilize or kill the virus (though kill is not exactly the right word as microbe still remain alive, it just stop duplicating). (Haigh, 2007) UV can be produced artificailly using mercury vapor lamp, high intensity discharge lamps etc. Many industries are using it for disinfection in the form of disinfectant chamber. It is popular disinfectant in water purification industries also. But the problem with these UV radiations is that it leads to genetic mutation in human being which may cause cancer. Moreover not all types of UV radiation can be used for disinfection. Appropriate exposure of low wavelength, high frequency (high energy) UVC is required for this purpose. Artificial UV lamps are both expensive and dangerous to be used by any nonmedical person. Knowledge of appropriate doses of UV exposure required for disinfection is also extremely important. (Bolton and Cotton, 2011; Mori et al., 2007; Rubbo and Gardner, 1965; Wolfe, 1990)
Alternative solution: photocatalyst layer over PPE kit

Photocatalysis
Over the last decades photocatalysis have emerged as one of the best possible solution for treating various type bacteria/virus (microorganism) in our surrounding environment. Photocatalysis can be explained in three major steps;

1) Light absorption- In this first step photocatalyst absorbs the light and promotes electrons from valence band to the conduction band, which leave behind the electronic vacancies (i.e. holes) in the valence band. Photoexcited electrons and holes are also called photoexcitons. Energy of the photoexcitons depends on the energy band gap of the photocatalyst material. Photocatalyst have well defined energy band gap, requirement of this gap is generally different for various uses of photocatalyst. Compared to large band gap material a narrow band gap insures the absorption of a large fraction of the sunlight. Nature of the bandgap (direct/indirect) also plays a significant role in the absorption of light; meanwhile it can modify the absorption coefficient of the photocatalyst. Indirect bandgap gives a low absorption coefficient and direct bandgap gives rise high absorption coefficient.

2) Photoexcitons dissociation- photoexcited electrons and holes have to be dissociated far apart to perform photocatalytic redox reactions. This process is called the photoexcitons dissociation, and need energy to dissociate. This dissociation energy depends on the binding energy (Eb) of photoexcitons. It has to be as low as possible to enable the efficient dissociation. If we are working at room temperature (i.e. ≈ 25°C) and we assume that the photoexcitons will be dissociated by the thermal energy, then Eb should be lower than kBT which is around 25 meV at room temperature.

3) Diffusion of free charge carriers- In this step, photoexcitons have to diffuse to the surface catalytic sites where they will be used before their recombination. Diffusion coefficient ‘D’ of a material represents the efficiency of diffusion of charge carriers in a material. Diffusion coefficient depends on the mobility ‘μ’ of the charge carriers, which further linked with effective mass and on collision time (τ) of the charge carriers. Mobility and diffusion coefficient are increased if the effective mass is low, that leads to high delocalization of the charge carriers. Collision time of charge carriers depends on the defects in materials.

The actual photocatalysis starts when surface reached photoexcitons perform oxidation and reduction. These excitons interact with surroundings i.e. oxygen, water and produce different active radical oxygen species (ROS). These highly active ROS do several reactions, specifically for bacteria and viruses they rupture the cell wall or cell by which it is killed. There are various photoactive materials available, but in particularly semiconductor materials have gained a considerable attention in recent scientific community, due to their various advantageous properties like photo-stability, well defined band gap, and high surface area to volume ratio to work efficiently. Although semiconductors have various desired properties to work as efficient photocatalyst for sterilization, but an unwanted drawback is associated with most of the semiconductor photocatalysts, i.e. they have a large band gap which restricts their use to work under UV light photons only. In our surrounding environment, sun is the primary source of light photons on earth, in which approximately 44% is visible light accounts and UV light accounts only 4-5%.
Even the extensively studied semiconductor photocatalyst like TiO\textsubscript{2}, ZnO, WO\textsubscript{3}, and NaTaO\textsubscript{3} also suffer with this problem. This problem of wide band gap can be engineered to make them workable under visible light active by various methods like,

(i)Doping (ii) Fabrication of heterojunction

Doping
It is one of the effective methods to extend the light absorption of photocatalyst from UV to visible light region. Doping can be done with non-metal, rare earth metal(Kumaresan et al., 2010; Liang et al., 2008) and metal.(Choi et al., 2010; Kim et al., 2005)

Photocatalyst doping with non-metal
Semiconductor photocatalysts have been extensively studied with the non-metal (N, Bi, S, C, F, B, P, I,) doping.(Liu et al., 2005; Ohno et al., 2003; Yu et al., 2003) There are three different opinions regarding modification photocatalytic mechanism of non-metals doped semiconductor; a) band gap narrowing b) impurity energy levels c) oxygen vacancies.

a) Band gap narrowing:
It is found in various studies that when semiconductor is doped with non-metal like ‘N’ then non-metal’s 2p state hybrids with oxygen 2p states in anatase TiO\textsubscript{2} because their energies are very close. Then the band gap of N-TiO\textsubscript{2} is narrowed and able to work under visible light.(Asahi et al., 2001; Chen et al., 2007; Cong et al., 2007; Wang et al., 2016; Wu et al., 2007)

b) Impurity energy level:
In different studies it is found that when TiO\textsubscript{2} oxygen sites substituted by nitrogen and other non-metal elements, form isolated impurity energy levels overhead the valence band. And when it is irradiated with UV light, electrons get excite from TiO\textsubscript{2} valence band and from impurity energy levels, but the irradiation with visible light excites electrons from the impurity energy level only. (Irie et al., 2003)

c) Oxygen vacancies:
Ihara, et. al. (Ihara et al., 2003)found that oxygen-deficient sites are formed in the grain boundaries. These deficient sites are important to emerge visible light photoactivity and nitrogen doped in part of oxygen-deficient sites are also important as a blocker for re-oxidation.

Photocatalyst doping with transition metal
Visible light driven photoactivity of metal-doped semiconductors can be explained by a new energy level produced in the band gap of parental semiconductor by the dispersion of metal nanoparticles in the semiconductor matrix. Electrons can be excited from the new energy level (i.e. defect state) to the conduction of semiconductor. Supplementary benefit of doping with transition metal is that it improves the trapping of electrons to inhibit electron-hole recombination during irradiation. Decrease of recombination directly enhances the photoactivity. Several approaches have been made to dope semiconductor photocatalyst with metals like, Au, Ag, Pt, Cu, Co, Ni, Cr, Mn, Mo, Nb, V, Fe, Ru, to modify the photocatalytic mechanism of semiconductor photocatalyst.(Anpo, 2000; Chen et al., 2007; Choi et al., 2010; Fuerte et al., 2001; Ihara et al., 2001; Takeuchi et al., 2000; Yamashita et al., 2001)

Doping with rare earth metal
Semiconductor doping with rare earth metals can significantly modify several physical and chemical properties of semiconductor photocatalyst. Rare earth metal doping is one of the extensively studied fields in visible light driven photocatalyst. Xu et al. fabricated several rare earth metal ions, La3+, Ce3+, Er3+, Pr3+, Gd3+, Nd3+, Sm3+ doped TiO\textsubscript{2} nano-photocatalyst, and witnessed the red shift toward visible region wavelength and this doping also reduced the electron-hole pair recombination rate. Among various dopants, Gd3+ doping was found most effective and was consistent.(Xu et al., 2002) On the other hand La3+ doping, being a p-type dopant, the La3+ ions act as electron trapper and prevent the recombination rate which results in enhanced photocatalytic activity.(Hwang et al., 2003; Zhang and Reller, 2001; Zhang et al., 2003)
Fabrication of heterojunction

Fabrication of heterojunction is one of the advanced methods to engineer the semiconductor photocatalyst materials with desired band gap to work in visible light region. In this method two or more different band gap materials chemically joined together by various synthesis methods for example CeO$_2$/TiO$_2$, SnO$_2$/TiO$_2$, CdS/NaTaO$_3$, NaNbO$_3$/Ag$_2$S etc.(Karunakaran and Gomathisankar, 2013; Kumar et al., 2016; Rajkumar et al., 2015; Singh et al., 2019) Fabrication of heterojunction facilitates the interfacial charge transfer between different phases. Various types of heterojunctions have been fabricated like,

(a) Semiconductor/semiconductor
(b) Semiconductor/metal
(c) Semiconductor/electrolyte
(d) Semiconductor/molecules (Dye)

These heterojunctions facilitate interfacial charge transfer and leads to efficient various photocatalytic applications.

Effectiveness of photocatalyst layer as self-sterilizing material

To overcome shortcomings of disposal/ sterilization techniques of isolation gown, it is important to focus on self-cleaning isolation gown.

Photocatalytic activity of TiO$_2$ is well known. It is commonly used for disinfection of water (Carey and Oliver, 1980; Dalrymple et al., 2010), solid surface and textiles. Its photocatalytic properties make it apt covering candidate for self-sterilizing devices. Numerous reports are published which have discussed the capability of TiO$_2$ to kill microorganisms. During photocatalysis under ultraviolet-visible radiations, TiO$_2$ produces reactive oxygen species (ROS) like HO^-, O_2^-, HO$_2^-$, etc. This leads to complete degradation of cytoplasmic membrane/cell wall due to which cellular content leakage out and it prevents the replication of genetic material. The microbe killing and self-cleaning efficiency of TiO$_2$ can further be improved by combing TiO$_2$ with other metal like Ag or Cu which are already famous for their antimicrobial properties.

Matsunaga et al. (Matsunaga et al., 1985) group was among the first few who studied the antimicrobial activity of TiO$_2$. They proved that microbial cells can be killed photo electrochemically with platinum-loaded titanium oxide semiconducting powder. The probable mechanism they explained was photoelectrochemical oxidation of cell of Coenzyme A (CoA). This leads to hindrance in respiration activity of cell which ultimately leads to death of cell. They showed complete destruction of Saccharomyces cerevisiae, Escherichia coli, Lactobacillus acidophilus and Chlorella vulgaris microorganisms within 1-2 hrs. (Matsunaga, 1985; Matsunaga et al., 1988; Matsunaga et al., 1985) TiO$_2$ is also reported to affect prions, a highly infectious neurodegenerative disease. (Paspaltsis et al., 2006) Antibacterial activity of TiO$_2$ has been studied extensively by many researchers, it includes study on both gram positive and gram negative bacteria. TiO$_2$ kills gram negative bacteria more effectively as compared to gram positive due to thinner peptidoglycan layer of gram negative bacteria. (de Lima Perini et al., 2013; Kangwansupamonkon et al., 2009; Kim et al., 2003; Liu and Yang, 2003; Pal et al., 2005; Skorb et al., 2008) Although few reports have suggested opposite trend. (Kangwansupamonkon et al., 2009) Many protozoa and algae species also got affected in the presence of photocatalyst, but mostly some kind doping is required in TiO$_2$ for complete destruction of these microorganisms. Sökmen et al. (Sökmen et al., 2008) reported killing of Giardia intestinalis cysts in the presence of TiO$_2$ (anatase 99.9%) + Ag photocatalytic disinfectant. Rodríguez-González et al. (Rodríguez-González et al., 2010) also used Ag to enhance activity of TiO$_2$ against Tetraselmis suecica. Many fungi can also be killed using TiO$_2$. Giannantonio et al. reported killing of Penicillium oxalicum, Trichoderma asperellum, Fusarium mucor, Epicoccum nigrum, Cladosporium cladosporioides and pestalotiopsis maculans using TiO$_2$. (Giannantonio et al., 2009), Lu et al used 1% Ce$^{3+}$ - TiO$_2$ catalyst as antifungal agent for curing crop disease due to Erysiphe cichoracearum and Peronophythora litchii. (Lu et al., 2006) This combination of photocatalyst is even more important as it absorb in visible range. Killing of virus by TiO$_2$ is also studied by many researchers. Most of the studies are done on virus affecting human and bacteria (especially E. coli bacteriophages). (Belhácová et al., 1999; Gerrity et al., 2008; Guimarães and Barretto, 2003; Lee et al., 1997; Sjogren and Sierka, 1994; Yu et al., 2008) Lin et al(Lin et al., 2006) studied Influenza A/H1N1 which affect the human body. They showed that TiO$_2$ calcined at 400°C is most effective in killing H1N1 influenza virus under 365 nm UV irradiation. Kozlova et al. (Kozlova et al., 2010) showed that Influenza A/H3N2 can be destroyed using TiO$_2$. They reported 90% virus inactivation for undoped TiO$_2$ and 99.8% inactivation for Pt/TiO$_2$ in just 30 minutes. Norovirus which is responsible for gastroenteritis outbreak among humans were studied for photocatalytic inactivation by Kato et al in 2005. (Kato et al., 2005) The main source of this class of virus is consumption of sea food especially shellfish growing in...
polluted water. The combined treatment of ultraviolet disinfection and a photocatalyst decomposes norovirus genes great extent. Human affecting poliovirus type 1 (ATCC VFR-192) can also be destroyed photo-chemically using TiO\textsubscript{2} within 30 minutes. (Watts et al., 1995) SARS coronavirus i.e.serious acute respiratory syndrome coronary virus was photo-catalytically inactivated by Han et al. (Han et al., 2004) They reported that photocatalytic titanium apatite filter (PTAF) can decompose SARS CoV up to 99.99% within 6 hours under non -UV irradiation and complete inactivation of virus under UV irradiation.

Proposed sterilization mechanism

Among the various studied photocatalyst materials, semiconductors are the primary choice of scientific community. The photocatalytic sterilization process based on semiconductors can be briefly described in simple steps: (i) when photocatalyst semiconductor is irradiated by appropriate light, photogenerated electron (e-) and hole (h+) are obtained. These photoelectrons and holes form reactive oxygen species (ROS), including O\textsubscript{2}\ -, OH. These ROS participate in the photocatalytic firefighting bacteria/virus process.(ii) ROS attack on the cell membrane by which cell membrane gets damaged, resulting in inhibition of cell membrane dependent respiration, which eventually causes cell death. Simultaneously ROS also attack on coenzyme A, by which coenzyme gets oxidized into dimer form, resulting in inhibition of coenzyme dependent respiration, which eventually also cause cell death. Various other studies have also supported the above sterilization mechanism by ROS, mentioning that ROS after rupturing cell membrane enter into cells to further oxidize macromolecular substances such as nucleic acids and proteins.(Ning et al., 2017; Wu et al., 2010) There are other studies, have suggested that the sterilization mechanism by photocatalyst is the oxidation of cell membrane/ cell wall by reactive oxygen species, which break down cell membranes and cell wall, by which cell cations (such as K+) and intracellular macromolecules (nucleic acids and proteins) leak out and finally lead to the death of the cell.(Ganguly et al., 2018; Liang et al., 2016; Saito et al., 1992; Wang et al., 2017; Wang et al., 2012; Wu et al., 2010)There are few studies on sterilization mechanism of viruses. Most viruses coat their genetic material by protein shells so viruses have simple structure than bacteria. Therefore, the sterilization of mechanism similarly can be easily understood. When ROS rupture the surface protein, it leads to leakage and rapid destruction of RNA, which ultimately kills the virus so that its regeneration stops. (Liu et al., 2016) The above sterilization mechanism involves various factors like, different type of bacterial and virus strain and complexity in microorganism, different type of photocatalyst, so photogenerated ROS efficiency is not same for all microorganisms and it is proposed only. Therefore, it is still essential to study in detail the mechanism of photocatalytic sterilization. (Byrne et al., 2015)

Conclusions:-

In this review we have suggested methods to reduce the wastage occurring due to medical isolation gown. This include application a layer of TiO\textsubscript{2} or ZnO or similar type of metal oxide over isolation gown textile which can undergo photocatalysis on irradiation under ultraviolet (UV) – visible light. This will ease out the disinfection process without affecting the virus barrier capability of gown. These metal oxides are popular for their microbial properties. During photocatalysis process reactive oxygen species (ROS) species HO•−, O\textsubscript{2}\ -, HO\textsubscript{2}, are produced which affect the duplication property of microbe due to degradation of cytoplasmic membrane and cell wall. Doping with certain metals with medicinal properties like Cu and Ag can further improve its effectiveness. Irradiation under UV light is one of the disadvantages of TiO\textsubscript{2} and similar metal oxide. Different methods are also discussed to bring their photo activation under visible range. Under the situation of COVID-19 pandemic this small step can lower down the biomedical waste by huge fraction without compromising with the health of the human kind.

Acknowledgements:-

Y. Bisht, and A.P.S, thank University of Delhi for providing basic requirements to do this work.

References:-

1. Allsopp, M., Costner, P., Johnston, P., 2001. Incineration and human health. Environmental Science and Pollution Research 8, 141-145.
2. Anpo, M., 2000. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and applied chemistry 72, 1787-1792.
3. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. science 293, 269-271.
4. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., Wang, M., 2020. Presumed asymptomatic carrier transmission of COVID-19. Jama 323, 1406-1407.
5. Belháčová, L., Krýša, J., Geryk, J., Jirkovský, J., 1999. Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 74, 149-154.

6. Bell, D.M., 1997. Occupational risk of human immunodeficiency virus infection in healthcare workers: an overview. The American journal of medicine 102, 9-15.

7. Bloomfield, S., Arthur, M., Looney, E., Begun, K., Patel, H., 1991. Comparative testing of disinfectant and antiseptic products using proposed European suspension testing methods. Letters in applied microbiology 13, 233-237.

8. Bolton, J.R., Cotton, C.A., 2011. The ultraviolet disinfection handbook. American Water Works Association.

9. Bond, W.W., Favero, M.S., Petersen, N.J., Ebert, J.W., 1983. Inactivation of hepatitis B virus by intermediate-to-high-level disinfectant chemicals. Journal of Clinical Microbiology 18, 535-538.

10. Borkow, G., Gabbay, J., 2008. Biocidal textiles can help fight nosocomial infections. Medical hypotheses 70, 990-994.

11. Brunner, C.R., 1993. Hazardous waste incineration.

12. Burke, R.M., 2020. Active monitoring of persons exposed to patients with confirmed COVID-19—United States, January–February 2020. MMWR. Morbidity and mortality weekly report 69.

13. Byrne, J.A., Dunlop, P.S.M., Hamilton, J.W.J., Fernández-Ibáñez, P., Polo-López, I., Sharma, P.K., Vennard, A.S.M., 2015. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20, 5574-5615.

14. Cardo, D.M., Bell, D.M., 1997. Bloodborne pathogen transmission in health care workers: risks and prevention strategies. Infectious disease clinics of North America 11, 331-346.

15. Carey, J.H., Oliver, B.G., 1980. The photochemical treatment of wastewater by ultraviolet irradiation of semiconductors. Water Quality Research Journal 15, 157-186.

16. CDC, C., 1998. Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV-related chronic disease. Morbidity Mortality Weekly Rep 47, 1-39.

17. Chan, J.F.-W., Yuan, S., Kok, K.-H., To, K.K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C.C.-Y., Poon, R.W.-S., 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 395, 514-523.

18. Chen, D., Jiang, Z., Geng, J., Wang, Q., Yang, D., 2007. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial & engineering chemistry research 46, 2741-2746.

19. Choi, J., Park, H., Hoffmann, M.R., 2010. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C 114, 783-792.

20. Committee, A.P.B., 2012. ANSI/AAMI PB70: 2012, Liquid barrier performance and classification of protective apparel and drapes intended for use in health care facilities. Association for the Advancement of Medical Instrumentation.

21. Cong, Y., Zhang, J., Chen, F., Anpo, M., 2007. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C 111, 6976-6982.

22. Croughan, W.S., Behbehani, A.M., 1988. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents. Journal of clinical microbiology 26, 213-215.

23. Cursons, R., Brown, T., Keys, E., 1980. Effect of disinfectants on pathogenic free-living amoebae: in axenic conditions. Applied and environmental microbiology 40, 62-66.

24. Dalrymple, O.K., Stefanakos, E., Trotz, M.A., Goswami, D.Y., 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental 98, 27-38.

25. de Lima Perini, J.A., Perez-Moya, M., Nogueira, R.F.P., 2013. Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. Journal of Photochemistry and Photobiology A: Chemistry 259, 53-58.

26. Fuerte, A., Fernández-Alonso, M., Maira, A., Martínez-Arias, A., Fernández-Garcia, M., Conesa, J., Soria, J., 2001. Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications, 2718-2719.

27. Garguly, P., Byrne, C., Breen, A., Pillai, S.C., 2018. Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental 225, 51-75.

28. Gautam, V., Thapar, R., Sharma, M., 2010. Biomedical waste management: Incineration vs. environmental safety. Indian journal of medical microbiology 28, 191.

29. Gerrity, D., Ryu, H., Crittenden, J., Abbaszadegan, M., 2008. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. Journal of Environmental Science and Health, Part A 43, 1261-1270.
30. Giannantoni, D.J., Kurth, J.C., Kurtis, K.E., Sobecky, P.A., 2009. Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration & Biodegradation 63, 252-259.
31. Guimaraes, J., Barretto, A., 2003. Photocatalytic inactivation of Clostridium perfringens and coliphages in water. Brazilian Journal of Chemical Engineering 20, 403-411.
32. Gupta, B., 1988. The effect of structural factors on the absorbent characteristics of nonwovens. Tappi journal 71, 147-152.
33. Haigh, J.D., 2007. The Sun and the Earth’s climate. Living reviews in solar physics 4, 2.
34. Han, W., Zhang, P.H., Cao, W.C., Yang, D.L., Taira, S., Okamoto, Y., Arai, J.I., Yan, X.Y., 2004. The inactivation effect of photocatalytic titanium nitride filter on SARS virus. Progress in Biochemistry and Biophysics 31.
35. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet 395, 497-506.
36. Huang, W., 2000. Evaluation of a one-bath process for imparting repellency and antimicrobial activity to nonwoven surgical gown and patient drape fabrics.
37. Hwang, D.W., Lee, J.S., Li, W., Oh, S.H., 2003. Electronic band structure and photocatalytic activity of Ln2TiO7 (Ln= La, Pr, Nd). The Journal of Physical Chemistry B 107, 4963-4970.
38. Ihara, T., Miyoshi, M., Ando, M., Sugihara, S., Iriyama, Y., 2001. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. Journal of materials science 36, 4201-4207.
39. Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sugihara, S., 2003. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B: Environmental 42, 403-409.
40. Irie, H., Watanabe, Y., Hashimoto, K., 2003. Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders. The Journal of Physical Chemistry B 107, 5483-5486.
41. Jarroll, E.L., Bingham, A.K., Meyer, E.A., 1981. Effect of chlorine on Giardia lamblia cyst viability. Applied and environmental microbiology 41, 483-487.
42. Kangwansupamonkon, W., Lauruengtana, V., Surassmo, S., Ruktanonchai, U., 2009. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine: Nanotechnology, Biology and Medicine 5, 240-249.
43. Karunakaran, C., Gomathisankar, P., 2013. Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustainable Chemistry & Engineering 1, 1555-1563.
44. Kato, T., Tohma, H., Miki, O., Shibata, T., Tamura, M., 2005. Degradation of norovirus in sewage treatment water by photocatalytic ultraviolet disinfection. Nippon Steel Technical Report 92, 41-44.
45. Keswick, B., Satterwhite, T.K., Johnson, P.C., DuPont, H.L., Secor, S.L., Bitsura, J.A., Gary, G.W., Hoff, J.C., 1985. Inactivation of Norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50, 261-264.
46. Kilinc, F.S., 2015. A review of isolation gowns in healthcare: fabric and gown properties. Journal of engineered fibers and fabrics 10, 155892501501000313.
47. Kim, B., Kim, D., Cho, D., Cho, S., 2003. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52, 277-281.
48. Kim, S., Hwang, S.-J., Choi, W., 2005. Visible light active platinum-ion-doped TiO2 photocatalyst. The Journal of Physical Chemistry B 109, 24260-24267.
49. Korich, D., Mead, J., Madore, M., Sinclair, N., Sterling, C.R., 1990. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Applied and environmental microbiology 56, 1423-1428.
50. Kozlova, E., Safatov, A., Kiselev, S., Marchenko, V.Y., Sergeev, A., Skarnovich, M., Emelyanova, E., Smetannikova, M., Buryak, G., Vorontsov, A., 2010. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2. Environmental science & technology 44, 5121-5126.
51. Kumar, S., Singh, A.P., Bera, C., Thirumal, M., Mehta, B., Ganguli, A.K., 2016. Visible-Light-Driven Photocatalytic Performance of NaNbO3/Ag2S Core–Shell Heterostructures. ChemSusChem 9, 1850-1858.
52. Kumaressan, L., Mahalakshmi, M., Palanichamy, M., Murugesan, V., 2010. Optical and dielectric properties of the co-doped TiO 2. Ind. Eng. Chem. Res. 49, 1480-1485.
53. Labor, D.o., 1991. Occupational Safety and Health Administration. Occupational exposure to blood borne pathogens; Final rule. Federal Register 56, 64175-64182.
54. Lee, S., Nishida, K., Otaki, M., Ohgaki, S., 1997. Photocatalytic inactivation of phage Qβ by immobilized titanium dioxide mediated photocatalyst. Water Science and Technology 35, 101-106.
55. Leonas, K., Miller, E., 1990. Transmission of two bacterial species through selected fabrics-nonwoven and woven. INDA Journal of Nonwovens Research 2, 29-32.
56. Leonas, K.K., Jinkins, R.S., 1997. The relationship of selected fabric characteristics and the barrier effectiveness of surgical gown fabrics. American Journal of Infection Control 25, 16-23.
57. Liang, C.-H., Li, F.-B., Liu, C.-S., Lü, J.-L., Wang, X.-G., 2008. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes and pigments 76, 477-484.
58. Liang, J., Deng, J., Li, M., Tong, M., 2016. Bactericidal activity and mechanism of Agl/AgBr/BiOBr0. 75I0. 25 under visible light irradiation. Colloids and Surfaces B: Biointerfaces 138, 102-109.
59. Lin, Z., Li, Z., Wang, X., Fu, X., Yang, G., Lin, H., Meng, C., 2006. Inactivation Efficiency of TiO-2 on H1N1 Influenza Virus. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE EDITION- 27, 721.
60. Liu, H.-L., Yang, T.C.-K., 2003. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochemistry 39, 475-481.
61. Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., Wang, Z., Wang, F.-S., Liu, L., Zhang, Z., 2020. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020.
62. Liu, J., Wang, H., Antonietti, M., 2016. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chemical Society Reviews 45, 2308-2326.
63. Liu, Y., Chen, X., Li, J., Burda, C., 2005. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61, 11-18.
64. Livingston, E., Desai, A., Berkwits, M., 2020. Sourcing personal protective equipment during the COVID-19 pandemic. Jama 323, 1912-1914.
65. Loh, W., Ng, V., Holton, J., 2000. Bacterial flora on the white coats of medical students. Journal of Hospital Infection 45, 65-68.
66. Lovitt, S.A., Nichols, R.L., Smith, J.W., Muzik, A.C., Pearce, P.F., 1992. Isolation gowns: a false sense of security? American Journal of Infection Control 20, 185-191.
67. Lu, J.-w., Li, F.-b., Guo, T., Lin, L.-w., Hou, M.-f., Liu, T.-x., 2006. TiO2 photocatalytic antifungal technique for crops diseases control. Journal of Environmental Sciences 18, 397-401.
68. LYNCH, P., JACKSON, M.M., CUMMINGS, M.J., STAMM, W.E., 1987. Rethinking the role of isolation practices in the prevention of nosocomial infections. Annals of Internal Medicine 107, 243-246.
69. Mahoney, F.J., Stewart, K., Hu, H.,Coleman, P., Alter, M.J., 1997. Progress toward the elimination of hepatitis B virus transmission among health care workers in the United States. Archives of Internal Medicine 157, 2601-2605.
70. Matsunaga, T., 1985. Sterilization with particulate photo semiconductor. J Antibact Antifungic Agents 13, 211-220.
71. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T., 1988. Continuous-sterilization system that uses photosemiconductor powders. Applied and environmental microbiology 54, 1330-1333.
72. Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology letters 29, 211-214.
73. Meyer, K.K., Beck, W.C., 1995. Gown-glove interface: a possible solution to the danger zone. Infection Control & Hospital Epidemiology 16, 488-490.
74. Mori, M., Hamamoto, A., Takahashi, A., Nakano, M., Wakikawa, N., Tachibana, S., Ikehara, T., Nakaya, Y., Akutagawa, M., Kinouchi, Y., 2007. Development of a new water sterilization device with a 365 nm UV-LED. Medical & biological engineering & computing 45, 1237-1241.
75. Neely, A.N., Orloff, M.M., 2001. Survival of some medically important fungi on hospital fabrics and plastics. Journal of Clinical Microbiology 39, 3360-3361.
76. Nicas, M., Sun, G., 2006. An integrated model of infection risk in a health-care environment. Risk Analysis 26, 1085-1096.
77. Ning, S., Lin, H., Tong, Y., Zhang, X., Lin, Q., Zhang, Y., Long, J., Wang, X., 2017. Dual couples Bi metal depositing and Ag@ Agl islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light. Applied Catalysis B: Environmental 204, 1-10.
78. Ohno, T., Mitsui, T., Matsumura, M., 2003. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry letters 32, 364-365.
79. Oppelt, E.T., 1987. Incineration of hazardous waste. JAPCA 37, 558-586.
80. Pal, A., Min, X., Liya, E.Y., Pekkonen, S.O., Ray, M.B., 2005. Photocatalytic inactivation of bioaerosols by TiO2 coated membrane. International Journal of Chemical Reactor Engineering 3.

81. Paspaltitis, I., Kotta, K., Lagoudaki, R., Grigoriadis, N., Poulis, I., Sklavadi, T., 2006. Titanium dioxide photocatalytic inactivation of prions. Journal of general virology 87, 3125-3130.

82. Patil, A., Shekdar, A., 2001. Health-care waste management in India. Journal of Environmental Management 63, 211-220.

83. Perry, C., Marshall, R., Jones, E., 2001. Bacterial contamination of uniforms. Journal of Hospital Infection 48, 238-241.

84. Pissiotis, C.A., Komborozos, V., Papoutsis, C., Skrekas, G., 1997. Factors that influence the effectiveness of surgical gowns in the operating theatre. The European Journal of Surgery= Acta Chirurgica 163, 597-604.

85. Rajkumar, K., Vairaselvi, P., Saravanap, P., Vinod, V., Cernik, M., Kumar, R.R., 2015. Visible-light-driven SnO 2/TiO 2 nanotube nanocomposite for textile effluent degradation. RSC advances 5, 20424-20431.

86. Rodríguez-González, V., Alfaro, S.O., Torres-Martínez, L., Cho, S.-H., Lee, S.-W., 2010. Silver–TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Applied Catalysis B: Environmental 98, 229-234.

87. Rubbo, S.D., Gardner, J.F., 1965. A Review of Sterilization and Disinfection as applied to Medical, Industrial and Laboratory Practice. A Review of Sterilization and Disinfection as applied to Medical, Industrial and Laboratory Practice.

88. Rutala, W.A., Cole, E.C., Wannamaker, N.S., Weber, D.J., 1991. Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. The American journal of medicine 91, S267-S271.

89. Rutala, W.A., Weber, D.J., 1997. Uses of inorganic hypochlorite (bleach) in health-care facilities. Clinical microbiology reviews 10, 597-610.

90. Rutala, W.A., Weber, D.J., 2001. A review of single-use and reusable gowns and drapes in health care. Infection Control and Hospital Epidemiology 22, 248-257.

91. Saño, T., Iwase, T., Horie, J., Morioka, T., 1992. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutants streptococci. Journal of Photochemistry and Photobiology B: Biology 14, 369-379.

92. Sidwell, R.W., Dixon, G.J., McNeil, E., 1966. Quantitative studies on fabrics as disseminators of viruses: I. Persistence of vaccinia virus on cotton and wool fabrics. Applied microbiology 14, 55-59.

93. Sidwell, R.W., Dixon, G.J., McNeil, E., 1967. Quantitative studies on fabrics as disseminators of viruses: III. Persistence of vaccinia virus on fabrics impregnated with a virucidal agent. Applied microbiology 15, 921-927.

94. Singh, A.P., Kumar, S., Thirumal, M., 2019. Efficient Charge Transfer in Heterostructures of CdS/NaTaO3 with Improved Visible-Light-Driven Photocatalytic Activity. ACS omega 4, 12175-12185.

95. Singh, V.P., Biswas, G., Sharma, J.J., 2007. Biomedical waste management-an emerging concern in Indian hospitals. Indian Journal of Forensic Medicine &Toxicology 1, 39-44.

96. Sjogren, J.C., Sierka, R.A., 1994. Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Applied and Environmental Microbiology 60, 344-347.

97. Skalny, P., Thompson, T.A., Gorman, G.W., Morris, G.K., McEachern, H.V., Mackel, D.C., 1980. Laboratory studies of disinfectants against Legionella pneumophila. Applied and Environmental Microbiology 40, 697-700.

98. Skorb, E., Antonouskaya, L., Belyasova, N., Shchukin, D., Möhwald, H., Sviridov, D., 2008. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Applied Catalysis B: Environmental 84, 94-99.

99. Sobsey, M.D., Fuji, T., Shields, P.A., 1988. Inactivation of hepatitis A virus and model viruses in water by free chlorine and monochloramine. Water Science and Technology 20, 385-391.

100. Sökmen, M., Değerli, S., Aslan, A., 2008. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Experimental parasitology 119, 44-48.

101. Sykes, G., 1970. (Symposium on bacterial spores: paper XII) The sporicidal properties of chemical disinfectants. Journal of Applied Bacteriology 33, 147-156.

102. Takeuchi, K., Nakamura, I., Matsumoto, O., Sugihara, S., Ando, M., Ihara, T., 2000. Preparation of visible-light-responsive titanium oxide photocatalysts by plasma treatment. Chemistry letters 29, 1354-1355.

103. Vogel, G., 1983. Composition of hazardous waste streams currently incinerated. Mitre Corp., US EPA.

104. Wang, J., Zhou, M., Liu, F., 2020. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J Hosp Infect 1051.

105. Wang, W., Li, G., Xia, D., An, T., Zhao, H., Wong, P.K., 2017. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environmental Science: Nano 4, 782-799.
106. Wang, W., Yu, Y., An, T., Li, G., Yip, H.Y., Yu, J.C., Wong, P.K., 2012. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environmental science & technology 46, 4599-4606.
107. Wang, W., Zhu, D., Shen, Z., Peng, J., Luo, J., Liu, X., 2016. One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity. Industrial & Engineering Chemistry Research 55, 6373-6383.
108. Watts, R.J., Kong, S., Orr, M.P., Miller, G.C., Henry, B.E., 1995. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water research 29, 95-100.
109. Weber, D.J., Rutala, W.A., 1989. Hepatitis B immunization update. Infect Control Hosp Epidemiol 10, 26.
110. Whitmore, T., Denny, S., 1992. The effect of disinfectants on a geosmin-producing strain of Streptomyces griseus. Journal of applied bacteriology 72, 160-165.
111. Wolfe, R.L., 1990. Ultraviolet disinfection of potable water. Environmental Science & Technology 24, 768-773.
112. Wong, D., Nye, K., Hollis, P., 1991. Microbial flora on doctors' white coats. British Medical Journal 303, 1602-1604.
113. Wu, G., Nishikawa, T., Ohtani, B., Chen, A., 2007. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chemistry of Materials 19, 4530-4537.
114. Wu, P., Imlay, J.A., Shang, J.K., 2010. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials 31, 6373-6383.
115. Xu, A.-W., Gao, Y., Liu, H.-Q., 2002. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of catalysis 207, 151-157.
116. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ichihashi, Y., Goto, F., Ishida, M., Sasaki, T., Anpo, M., 2001. Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. Journal of Synchrotron Radiation 8, 569-571.
117. Yu, J.C., Zhang, L., Zheng, Z., Zhao, J., 2003. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 15, 2280-2286.
118. Yu, K.-P., Lee, G.W.-M., Lin, S.-Y., Huang, C.P., 2008. Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions. Journal of Aerosol Science 39, 377-392.
119. Zhang, Y.-H., Reller, A., 2001. Nanocrystalline iron-doped mesoporous titania and its phase transition. Journal of Materials Chemistry 11, 2537-2541.
120. Zhang, Y., Ebbinghaus, S.G., Weidenkaff, A., Kurz, T., Krug von Nidda, H.-A., Klar, P.J., Güngerich, M., Reller, A., 2003. Controlled iron-doping of macrotextured nanocrystalline titania. Chemistry of materials 15, 4028-4033.