Ferroelectric Exchange Bias Affects Interfacial Electronic States

Gal Tuvia, Yiftach Frenkel, Prasanna K. Rout, Itai Silber, Beena Kalisky,* and Yoram Dagan*

In polar oxide interfaces phenomena such as superconductivity, magnetism, 1D conductivity, and quantum Hall states can emerge at the polar discontinuity. Combining controllable ferroelectricity at such interfaces can affect the superconducting properties and sheds light on the mutual effects between the polar oxide and the ferroelectric oxide. Here, the interface between the polar oxide LaAlO$_3$ and the ferroelectric Ca-doped SrTiO$_3$ is studied by means of electrical transport combined with local imaging of the current flow with the use of scanning a superconducting quantum interference device (SQUID). Anomalous behavior of the interface resistivity is observed at low temperatures. The scanning SQUID maps of the current flow suggest that this behavior originates from an intrinsic bias induced by the polar LaAlO$_3$ layer. Such intrinsic bias combined with ferroelectricity can constrain the possible structural domain tiling near the interface. The use of this intrinsic bias is recommended as a method of controlling and tuning the initial state of ferroelectric materials by the design of the polar structure. The hysteretic dependence of the normal and the superconducting state properties on gate voltage can be utilized in multifaceted controllable memory devices.

The interfaces between polar and nonpolar oxides\cite{1} exhibit unique electronic properties such as superconductivity\cite{2,3}, magnetism\cite{4–9}, 1D conductivity\cite{10,11} and quantum Hall states\cite{12} that can be conveniently controlled by applied gate voltage. Understanding the electronic structure of these interfaces is crucial for mastering them and for implementing them in oxide-based electronics\cite{13}. For example, the hallmark interface between LaAlO$_3$ and SrTiO$_3$ (LAO/STO) exhibits a threshold for the conductivity of four LAO epitaxial unit cells\cite{3}. This critical behavior has been explained as the result of electronic reconstruction due to the polar field of the LAO layer, which is also accompanied by lattice distortion on the STO side\cite{14} as observed by X-ray diffraction\cite{15,16} and scanning transmission electron microscopy experiments\cite{17,18}.

G. Tuvia, Dr. P. K. Rout, I. Silber, Prof. Y. Dagan
Raymond and Beverly Sackler School of Physics
Tel Aviv University
Tel Aviv 6997801, Israel
E-mail: yodagan@tauex.tau.ac.il
Y. Frenkel, Prof. B. Kalisky
Department of Physics and Institute of Nanotechnology and Advanced Materials
Bar-Ilan University
Ramat-Gan 5290002, Israel
E-mail: beena@biu.ac.il

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202000216.

STO is a band insulator with a perovskite cubic structure at room temperature. At ≈ 105 K the oxygen octahedron antiferrodistortively rotates around one of its principle axes\cite{19}. Pristine STO is a quantum paraelectric\cite{20}. However, upon being doped with small amounts of Ca or by substituting O18 for O16, the ferroelectric transition recovers with a ferroelectric Curie temperature that depends on the concentration of Ca\cite{21} or O18\cite{22,23}. Creating oxygen vacancies, or substituting Sr by La or Ti by Nb, can turn STO into a conductor and even a superconductor with transition temperature nonmonotonically depending on doping. It has been shown that superconductivity can exist in the ferroelectric-like bulk of doped STO and can even be enhanced by introducing ferroelectricity\cite{24–30}.

Here we explore a new route for realizing a 2D polar metal that can become a superconductor at the interface between a 3D ferroelectric insulator (Sr$_{1-x}$Ca$_x$TiO$_3$ with $x = 0.01$, 0.0025, 0.002) and a polar oxide (LaAlO$_3$). We find tunable 2D superconductivity along with anomalous behavior of the resistivity at low temperatures. To understand this behavior, we combine transport and scanning superconducting quantum interference device (SQUID) measurements to map the spatial distribution of the current flow as a function of gate voltage below the ferroelectric transition temperature. Our data suggest that the top polar layer exerts an effective negative bias (carrier depletion) on the ferroelectric material near the interface. This effective bias is somewhat analogous to the exchange bias often used in magnetic devices\cite{31}. The ferroelectric polarization in the bulk is switchable by an external gate voltage, resulting in a hysteretic sheet resistance and superconducting critical temperature. This memory effect has a controllable initial state by the design of the polar structure.

An anomalous sharp increase in the LaAlO$_3$/Sr$_{0.99}$Ca$_{0.01}$TiO$_3$ interface sheet resistance is observed below the ferroelectric transition temperature, ≈ 30K, followed by superconductivity below 300 mK (see Figure 1a). Ferroelectricity is also demonstrated in Figure 1b where we show the temperature evolution of reproducible hysteretic loops in the resistance versus gate-voltage characteristics. These loops close as we increase the temperature toward the ferroelectric transition. Ferroelectricity also affects the superconducting properties of the interface, as we show in the inset of Figure 1a. The superconducting transition temperature at zero gate voltage shifts after being approached from either $+20$ V or -20 V, demonstrating control
Figure 1. a) Sheet resistance of the LaAlO$_3$/Sr$_{0.99}$Ca$_{0.01}$TiO$_3$ interface versus temperature on a logarithmic scale. A clear increase of resistance is visible below the ferroelectric transition temperature ≈ 30 K, followed by superconductivity below 300 mK. Inset: Superconducting transitions for zero electric field (no gate voltage) for different gate-sweep directions display different superconducting critical temperatures, demonstrating control of the 2D interface superconductivity by the hysteretic behavior of the 3D ferroelectric bulk. b) Sheet resistance responds to gate hysteretically, the hysteresis loop increases as the temperature is lowered below the ferroelectric critical temperature, above which no hysteresis is observed. c) Illustration of the system: amorphous BaTiO$_3$ (aBTO orange) defines the insulating regions confining the current. The LaAlO$_3$/Sr$_{0.99}$Ca$_{0.01}$TiO$_3$ interface regions (LAO/CSTO: yellow/light blue, respectively) are conducting and can be probed by the SQUID. The black arrow symbolizes current flow through the channel. The blue arrows indicate magnetic field lines probed by the SQUID pick-up loop (grey). A typical SQUID scan is shown with the lithography-defined current width marked by dashed lines. The color code for magnetic flux is also presented. d) SQUID scans of the LaAlO$_3$/Sr$_{0.99}$Ca$_{0.01}$TiO$_3$ interface at 4.2 K. Current occupies only about 80% of the entire lithographically defined channel width for sample cooled at zero electric field (left). When positive gate is applied, the current flows in the entire lithographically defined channel width (right). The black arrows mark the average width of the current path. These results indicate that the channel is cooled with an intrinsic effective negative bias.

of the 2D interface superconductivity by the hysteretic behavior of the 3D ferroelectric bulk.

To understand the anomalous resistance increase at low temperatures and the microscopic details of the current flow, we performed scanning SQUID mapping of the device sketched in Figure 1c. The current produces magnetic flux, which is captured by the SQUID pick-up loop, enabling us to evaluate the details of the 2D current distribution at the interface32 (Experimental Section). Scanning SQUID images of the sample zero-electric-field-cooled to 4.2 K show that the current occupies only part of its entire lithography-available channel (Figure 1d left). The current flow occupies the entire available width only when a positive gate is applied (Figure 1d right).

Figure 2a shows the detailed gate-voltage dependence of the current-flow pattern at 4.2 K in our sample as revealed by scanning SQUID measurements. For samples cooled at zero electric field (no gate voltage applied) the current flow occupies only 80% of the 100 μm available channel as defined by lithography (inset of Figure 2a). Upon applying positive gate voltage (accumulating electrons) the width of the current path increases, reaching saturation at ≈ 15 V when it fully occupies the entire lithography-defined 100 μm width. Similarly, applying negative gate voltage (depleting electrons) narrows the current path further (Figure S3, Supporting Information). A similar effect of negative-gate application has also been demonstrated for the LAO/STO interface.33 However, the initial zero-gate narrow path is unique to the ferroelectric LaAlO$_3$/Sr$_{0.99}$TiO$_3$ (LAO/CSTO) interface.

We conclude that when the sample is cooled to below the ferroelectric transition temperature, an effective negative gate bias (electron depletion) is built. With the use of the 15 V required to fully occupy the channel and the capacitance (Figure S2, Supporting Information), one can estimate the total (all electronic bands) carrier depletion to be 3×10^{12} cm$^{-2}$. This estimate is a lower boundary for the real number as the device’s effective capacitance per unit area can be greater than the parallel-plate approximation.34 We note that, on the assumption of constant carrier density, the decrease of 20% of the current path can account for merely a 25% increase in resistance seen in Figure 1a as the sample is cooled below 30 to 0.3 K.

A broad-view scanning SQUID image of our zero-electric-field-cooled device is shown in Figure 2b. The current density is somewhat greater at the twin boundaries appearing as features tilted by 45° relative to the crystal axis (see Figure S10, Supporting Information, for more information). It has been shown that, for STO-based heterostructures, the current flow is modulated along the structural twin boundaries.35 We observe a clear tendency for the formation of diagonal twin boundaries at 45° with respect to the crystal axis, as shown in this scan (Table S1, Supporting Information). We suggest that the ferroelectric polarization near the interface favors pointing perpendicular to the interface (along the z axis), parallel to the LAO internal dipole moments (see illustration in Figure 3a). Since the polarization of the ferroelectric CSTO is perpendicular to the crystallographic c-axis (axis of rotation of oxygen octahedra),21 X and Y structural domains should be abundant at...
Figure 2. a) Current width through the 100-μm lithographically defined channel measured by scanning SQUID at 4.2 K. The width of the current flow pattern increases as positive gate voltage is applied. For samples cooled at zero electric field, the current occupies only 80% of the lithographically defined channel path. We relate this to an intrinsic effective bias which is a result of the interaction between the polar LaAlO$_3$ and the ferroelectric Sr$_{0.99}$Ca$_{0.01}$TiO$_3$ (1% CSTO). This effective bias is compensated by the application of a positive gate voltage of \(\approx 15 \) V. Inset: SQUID scans at selected gate voltages used to extract the width of the current-flow pattern. In addition to the narrowing current path, the zero-field cooled sample exhibits spots with reduced current flow. These spots gradually disappear when positive gate is applied. b) A wider SQUID scan of our device shows current modulations along domain walls as can be seen by the 45° stripe pattern. The dashed rectangle marks the scanning area of Figure 2a and Figure 1d. White arrows denote the X and Y crystal axis.

Figure 3. a) Illustration of our understanding of the polarization in the LAO/CSTO interface: Ferroelectric polarization is marked with red lines. Polarization near the interface has a preferential alignment as a result of the effective bias exerted by the LaAlO$_3$. Polarization further away from the interface is oriented in some unknown way with zero net polarization. The black arrows indicate electric field. b) The ferroelectric polarization in Ca-doped SrTiO$_3$ is perpendicular to the structural c-axis. Each pair of domains (XY, YZ, ZX) creates a domain wall with a specific angle with respect to the crystal axis (45°, 90°, 0°, respectively). For ferroelectric Sr$_{0.99}$Ca$_{0.01}$TiO$_3$, two domains sharing a domain wall have also a possible common axis of polarization (XY, YZ, and ZX domain pairs may only have similar polarizations along the Z, X, and Y axis, respectively). c) The polarization of ferroelectric domains near the interface prefer pointing down the z direction, resulting in preferred diagonal XY domain boundaries at the interface. The domains further away into the bulk are assumed to return to their unperturbed distribution.
the interface. Boundaries between X and Y domains result in diagonal (45°) twin boundaries,[36] consistent with our experimental observation.

We also note that Honig et al.[36] reported a reduction in the number of Z domains for the standard LAO/STO interface when a large negative gate voltage is applied, consistent with our interpretation of the ferroelectric exchange-bias effect.

The hysteretic behavior versus gate voltage can become very large depending on gate-voltage history and temperature. We show such an example in Figure 4a when strong, reproducible hysteretic behavior is observed in the resistance measured at 600 mK after gate training (Same sample as in Figure 1b, see Supporting Information for more details). We note that this behavior is very different from that of the non-ferroelectric (standard) LAO/STO interfaces where only the initial gate scan is different from the successive scans, which are then independent of the gate-sweep direction as long as the maximum voltage has not been exceeded.[37]

At $T = 300$ mK, a superconducting transition is observed. Ferroelectric hysteresis still plays a role at the superconducting regime as displayed in Figure 4b, where the superconducting critical temperature (T_c) changes for different gate-sweep directions. Our results show that an extremely large response can be achieved at a fixed temperature and zero applied gate by merely sweeping the gate voltage up or down and then back to zero (resistance changing from zero for the higher T_c state to a finite value for the lower T_c state). We note that the superconducting T_c depends only on carrier density[38] while the sheet resistance depends also on the current-flow details as shown by scanning SQUID measurements (see Figure S3, Supporting Information, for more details on how the gate voltage affects the current pattern) and on the mobility, which itself depends strongly on gate voltage.[39] We also note that superconducting T_c seems to be saturated for the positive gate voltage regime (up to 300 V, see Figure S4, Supporting Information) in contrast to the “dome”-shaped superconducting region at the standard LAO/STO interface.[39] To further study the superconducting properties, we show in Figure 4c,d, respectively, the superconducting out-of-plane and in-plane critical magnetic fields with respect to temperature. The out-of-plane critical field exhibits a linear temperature dependence while the in-plane critical field follows a square-root temperature dependence as expected for a 2D superconductor. The in-plane critical field exceeds the Clogston-Chandrasekhar limit indicative of the strong spin-orbit interaction in the Ti bands.[40]

Our understanding of the polar and structural configurations of the system is depicted in Figure 3. Figure 3a describes the polar structure below the ferroelectric transition temperature at zero gate voltage. The direction of polarization near the interface is constrained to be parallel to the LAO internal dipole moments. This constrained polarization near the interface results in the measured effective negative bias. The effect of the interface decays further into the bulk, where average net polarization is zero (see example for domain configuration in typical bulk ferroelectric perovskites[41]). Applying an external electric field (gate voltage) controls polarization in the bulk in a hysteretic fashion, characteristic of ferroelectric materials. Figure 3b,c explains how the diagonal (45°) twin boundaries (see Figure 2b) are a consequence of the Z-pointing polarization.

How can we explain the strong increase in resistance upon cooling from the ferroelectric transition to the superconducting one? We relate this increase to four correlated effects resulting from the intrinsic negative bias: a) narrowing of the current path, b) carrier depletion, c) mobility reduction, d) ferroelectric constraints on domain tiling.

The first two simply increase the resistance. It has been shown for the standard LAO/STO interface that carriers fill the Ti bands a few unit cells away from the interface. A negative bias (or in our case, the exchange bias coming from the ferroelectric polarization) pushes the mobile electrons toward the interface thus reducing their mobility.[39,42] This effect may also apply to our devices and further increase the resistance as the effective bias is built-up upon cooling. It has also been shown...
that twin boundaries are highly conductive at the LAO/STO interface.[35] Our data suggest that the intrinsic bias results in preferred diagonal (45°) X/Y twin boundaries. This diverts some of the current flow for lithography-defined channels patterned along the x or y directions (see Figure S10, Supporting Information). This view is supported by the fact that for large devices measured in a Van der Pauw configuration a much smaller effect is observed (see Figure S5a, Supporting Information).

We note that when 3D bulk conductivity is induced in Ca-doped STO by the creation of oxygen vacancies (obviously without any intrinsic bias), only a small change in the resistance is observed below the ferroelectric transition temperature,[24,43] further demonstrating the importance of the intrinsic bias and current confinement for observing such a large effect. Ferroelectric control of the LAO/STO interface was also demonstrated by polarizing a ferroelectric layer deposited on the LAO.[44] We also note that a polar 2D metal has been realized in the BaTiO$_3$/SrTiO$_3$/LaTiO$_3$ heterostructure.[45] Our system is therefore unique since a tunable 2D polar metal that can become a superconductor is created at the interface between a 3D ferroelectric bulk and a polar insulator.

Ferroelectric materials tend to be insulators and were previously believed to exist in a separate domain from superconductivity.[46] Nevertheless, superconductivity and ferroelectricity can coexist in some rare cases,[47] and it has been recently suggested that ferroelectric fluctuations may even increase superconducting T_c.[24–29] We do not report any significant increase of superconducting T_c, even for calcium concentrations of 0.2% and 0.25%, which are close to the ferroelectric quantum critical point where fluctuations are strongly enhanced (Figure S7, Supporting Information). It is possible that the effective bias induced by the LAO constrains the direction of polarization near the interface so that quantum fluctuations are presumably less effective and consequently the assumed T_c enhancement is not observed.

Finally, we note that the critical thickness for conductivity for the LaAlO$_3$/Sr$_{1-x}$Ca$_x$TiO$_3$ ($x = 0.01$, 0.0025, 0.002) heterostructure is reduced to three unit cells of LAO in contrast to the four-unit-cell threshold reported for the standard LAO/STO interface (see Figure S6, Supporting Information). We conjecture that the small calcium ion makes the lattice distortions associated with the charge transfer to the interface[15–18] easier and consequently reduces the critical thickness.

To summarize, we conclude that polar-oxide layers exert an internal electrical bias, orienting the ferroelectric polarization near the interface parallel to the polar-oxide internal dipole moment, thus strongly affecting the electronic properties of conducting oxide interfaces. This effect is analogous to the magnetic exchange bias. We come to this conclusion with the use of the following experimental evidence: a) an anomalous increase in interface resistance as the temperature is decreased to below the ferroelectric transition temperature, b) using scanning SQUID current imaging, we find that the current does not occupy its entire available channel. Upon applying positive bias, the current fully occupies the lithography-defined current path, c) abundance of X–Y twin boundaries indicative of a preferred polarization along the z direction. While the polarization near the interface is constrained, polarization further away into the bulk is switchable by externally applying an electric field. This translates to a hysteretic behavior of the interfacial resistance and its superconducting T_c with respect to the applied gate voltage. The strong hysteresis of the resistance above the superconducting-transition temperature and the superconducting-memory effect can be utilized in future superconducting-memory devices.

Experimental Section

Sample Preparation and Transport Measurements: Epitaxial layers of LaAlO$_3$ were grown with the use of the Pulsed Laser Deposition (PLD) technique monitored by reflection high-energy electron diffraction (RHEED) at a partial pressure of oxygen of 1×10^{-4} Torr, and a temperature of 780 °C, as described in reference.[3] The layers were deposited on atomically flat TiO$_2$ terminated, 0.5 mm thick {100} Sr$_{1-x}$Ca$_x$TiO$_3$ (with $x = 0.01, 0.0025$, and 0.002) substrates. The resulting interface was conducting for LAO thicknesses of three or more unit cells, in contrast to the four-unit-cell threshold of the non-ferroelectric (standard) LAO/STO interface. Au back-gate electrodes were attached to the bottom of the CSTO. The capacitance between the Au and the conducting interface has ferroelectric characteristics (see Figure S2, Supporting Information). When gate voltage was applied, the leakage current was immeasurably small (<1 pA). The gate voltage is defined as positive when electrons accumulate at the interface. Measurements were performed in a dilution refrigerator with a base temperature of 20 mK under magnetic fields of up to 8T. SQUID and superconductivity data were measured with the use of a 100 μm × 700 μm Hall bar device suitable for both SQUID and transport measurements. The current path was defined with the use of an amorphous material hard mask (see ref. [48] for details). Both van der Pauw and Hall configurations showed similar results, differing only in the magnitude of the resistance increase below the ferroelectric transition temperature and response to gate voltage because of their different geometries.[44] Transport results were reproduced for three and ten unit cells of LaAlO$_3$ thick samples. All measurements shown in this paper are for the LaAlO$_3$/Sr$_{0.95}$Ca$_{0.05}$TiO$_3$ interface with 10 unit cells of LAO. Data for different dopings of Ca and for three unit cells of LAO are presented in the Supporting Information. SQUID scans were conducted for several samples with 1% Ca concentration. Five of the six devices showed only diagonal domains while one device showed 90 and 0 domains. The initially narrower current path and its widening by the use of positive gate voltage was reproducibly measured.

Hysteresis measurements of resistance versus gate voltage, presented in Figure 1b and Figure 4a, were conducted with a large 5 × 5 mm2 Van der Pauw sample to demonstrate gate control. All other SQUID and transport measurements presented in this paper were conducted with the same 100-μm-wide device.

Scanning SQUID Measurements: The local measurements were carried out with the use of a custom-built piezoelectric-based scanning SQUID microscope with a 1.8 mm diameter pick-up loop.[49,50] The scanning SQUID microscope was used to image magnetic flux generated by current flow at the samples as a function of position. The measured flux is given by $\Phi = \int g(x,y)B \ dx \ dy$ where the integral is taken over the plane of the SQUID. $g(x,y)$ is the point-spread function of the pickup loop, B is the magnetic field that originated from the sample and Φ_0 is the infinitesimal area vector element pointing normal to the plane of the SQUID. The measurements were performed by applying an AC current to the sample and collecting the flux created by currents in the sample using lock-in techniques allowing $\pm 10^{-4} \Phi_0$ flux sensitivity where Φ_0 is the magnetic flux quantum. Each flux image is a convolution of the magnetic state of the sample and the SQUID point-spread function. A current-carrying wire will appear in our images as red stripes next to blue stripes indicating the positive and negative magnetic-field lines circling the wire.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
Acknowledgements

G.T. and Y.F. contributed equally to this work. Research at TAU was supported by the Israeli Science Foundation under grant 382/17. Y.F. and B.K. were supported by the European Research Council Grant No. ERC-2019-COG-866236, the Israeli Science Foundation grant no. ISF-1281/17, and the QuantERA ERA-NET Cofund in Quantum Technologies (Project No. 731473). The authors acknowledge Ekhard Salje, Margherita Boselli, Gernot Scheerer, Jonathan Ruhman, and Lior Kornblum for useful discussions.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

ferroelectricity, gate bias, polar oxide interfaces, scanning SQUID, superconductivity

Received: January 10, 2020
Revised: April 20, 2020
Published online: June 8, 2020

[1] A. Ohtomo, H. Y. Hwang, Nature 2004, 427, 423.
[2] S. Gariglio, N. Reyren, A. D. Caviglia, J. M. Triscone, J. Phys.: Condens. Matter 2009, 21, 164213.
[3] N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Rüetschi, H. Y. Hwang, J. Mannhart, Phys. Rev. Lett. 2011, 107, 247002.
[4] J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Stucky, G. W. Scheerer, Z. Ren, D. Jaccard, J.-M. Poumirol, K. Ahadi, L. Galletti, Y. Li, S. Salmani-Rezaie, W. Wu, S. Stemmer, Nat. Commun. 2019, 10, 738.
[5] A. Ron, Y. Dagan, H. Y. Hwang, Phys. Rev. Lett. 2014, 113, 216801.
[6] M. A. Roldan, J. Fontcuberta, F. Sánchez, G. Herranz, Phys. Rev. Lett. 2017, 119, 106102.
[7] K. A. Müller, W. Berlinger, F. Waldner, Phys. Rev. Lett. 1968, 21, 814.
[8] K. A. Müller, H. Burkard, Phys. Rev. B 1979, 19, 3593.
[9] J. F. Scott, G. G. Lonzarich, S. S. Saxena, Nat. Phys. 2014, 10, 367.
[10] Y. Cao, Z. Wang, S. Y. Park, Y. Yuan, X. Liu, S. M. Nikitin, H. Akamatsu, Phys. Rev. B 2019, 102, 053704.