DESNN Algorithm for Communication Network Intrusion Detection

Fulai Liu1,2 · Jialiang Xu2 · Lijie Zhang2 · Ruiyan Du1,2 · Zhibo Su2 · Aiyi Zhang2 · Zhongyi Hu2

Accepted: 28 May 2022 / Published online: 26 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Intrusion detection is a crucial technology in the communication network security field. In this paper, a dynamic evolutionary sparse neural network (DESNN) is proposed for intrusion detection, named as DESNN algorithm. Firstly, an ensemble neural network model is constructed, which is processed by a dynamic pruning rule and further divided into advantage subnetworks and disadvantage subnetworks. The dynamic pruning rule can effectively reduce the subnetworks weight parameters, thereby increasing the speed of the subnetworks intrusion detection. Then considering the subnetworks performance loss caused by the dynamic pruning rule, a novel evolutionary mechanism is proposed to optimize the training process of the disadvantage subnetworks. The weight of the disadvantage subnetworks approach the weight of the advantage subnetworks by the evolutionary mechanism, such that the performance of the ensemble neural network can be improved. Finally, an optimal subnetwork is selected from the ensemble neural network, which is used to detect multiple types of intrusion. Experiments show that the proposed DESNN algorithm improves intrusion detection speed without causing significant performance loss compare with other fully-connected neural network models.

Keywords Intrusion detection · Deep neural network · Dynamic pruning rule · Neural network compression

Fulai Liu and Lijie Zhang have contributed equally to this study.

Fulai Liu fulailiu@126.com
Lijie Zhang zhanglijie0401@163.com
Jialiang Xu jialiang9102@163.com

1 Engineer Optimization & Smart Antenna Institute, Northeastern University at Qinhuangdao, Qinhuangdao, China
2 School of Computer Science and Engineering, Northeastern University, Shenyang, China
1 Introduction

Intrusion detection system (IDS) plays a crucial role in defending communication network [1, 2]. Several state-of-art intrusion detection algorithms are proposed in recent years [3–7]. However, the rapid development and popularization of the network bring many challenges [8], such as: (1) the intrusion detection performance is unsatisfied due to the diversification of attack types; (2) The detection speed of the IDS is reduced due to the volume of data both stored and passing through networks persistently increase. Fortunately, the deep learning (DL) has the ability to learn and model complex nonlinear relationships that allow it to solve high-dimensional classification or prediction problems, the DL-based IDS is deployed as a potential solution to effectively detect the network intrusions.

It has been proved that the DL-based IDS can effectively detect intrusions recent years. A novel intrusion detection model is introduced, which joints nonsymmetric deep autoencoder (NDAE) and random forests classification algorithm (RF) [3]. This model offers high levels of accuracy, precision and recall together. An intrusion detection model is proposed [4], which is based on fully-connected network, variational autoencoder (AE) and Sequence-to-Sequence (Seq2Seq). Experimental results show that this model has better intrusion detection performance compared with other models. Invoking the convolutional neural network (CNN) based on machine learning (ML), an intrusion detection algorithm is presented [5]. This algorithm improves the accuracy and adaptive ability of the intrusion detection. Combining the Conditional Random Field (CRF) and spider monkey optimization (SMO), a new model is proposed for the intrusion detection problem [6]. In this model, the CRF is applied for selecting the contributed features initially. Then, the SMO is applied for finalizing the useful features from the reduced features dataset. Moreover, the CNN is used for classifying the dataset as normal and the attacks. A unique ensemble framework is proposed [7], which establishes an ensemble by ranking the detection ability of different base classifiers to identify various types of attacks. It is clear that the DL-based IDS performs well in classification performance and can accurately identify attack types.

Though the aforementioned methods are promising, the neural network has considerable redundant parameters, which may take more time to detect the types of intrusion. Neural network pruning can effectively improve the real-time performance of intrusion detection while maintaining detection accuracy. The existence of redundant connections in neural networks is proved [8]. Therefore, with a proper strategy, it is possible to compress neural networks without significantly losing their prediction accuracy. A data-free model compression method is introduced [9]. The square difference of neural network output is used to determine whether the neuron connection is deleted or not, such that the impact of data on pruning is avoided. A simple regularization method based on soft weight-sharing is presented [10], which includes both quantization and pruning in network retraining procedure. A network compression method is proposed [11], named as dynamic network surgery (DNS) method, which can significantly reduce network complexity by dynamic pruning. However, it is difficult to determine the appropriate weight evaluation criteria, therefore the pruning process may result in the decline of neural network performance.

In order to solve the problem that pruning may damage the detection performance of neural networks, a dynamic evolutionary sparse neural network (DESNN) is proposed. Firstly, a dynamic pruning (DP)-based ensemble neural network model is constructed
to detect intrusion. Then a novel evolutionary mechanism is proposed to optimize the training process of the ensemble neural network. Finally, an optimal subnetwork is selected from the ensemble neural network, which can detect intrusion faster and better than the other models.

The outline of the paper is organized as follows. The problem model is described in Sect. 2. Section 3 introduces the proposed DESNN algorithm. Section 4 shows some experiment results, the conclusion is given in Sect. 5.

2 System Model

DL can be utilized in intrusion detection for both dimensionality reduction and classification tasks, which automatically learns complex features from multi-dimensional and large-scale data [12-13]. Thus, deep learning models can be trained with large amounts of historical data to build an intrusion detection model. The model classifies the new traffic into either the normal or anomaly class. If a multi-class classification is used, the model can further classify the infected traffic to different classes and subclasses of attacks. Figure 1 illustrates the overall architecture of a DL-based IDS.

KDD-Cup 99 data set is used as the input data to verify the performance of the proposed algorithm. This data set is collected from a simulated United States air force over nine weeks of communication network connection data, which can be divided into labeled training data and unlabeled test data. The test data and training data have different probability distributions, and the test data contains some intrusion types that do not appear in the training data, which makes intrusion detection more realistic.

The date pre-processing including the numericalization of text features and the normalization of numerical features. The text features are converted into the numerical features, furthermore all the numerical features are quantified in the same range through normalization.

The neural network is trained to find the optimal weight of the neural network, the objective function can be expressed as follows

\[
\mathcal{W}^* = \arg \max_{\mathcal{W}} \left[\frac{1}{N} \sum_{i} \sum_{j} (y_{ij} \log(f_j(x_i;\mathcal{W})) + (1 - y_{ij}) \log(1 - f_j(x_i;\mathcal{W}))) \right]
\]

where \(N\) denotes the number of intrusion samples. \(J\) represents the number of intrusion types. \(y_{ij}\) is the expected probability with the \(i\)th sample belongs to the intrusion type \(j\). \(f_j(x_i;\mathcal{W})\) stands for the predicted probability. \(\mathcal{W}\) indicates the neural network weight set. \(\mathcal{W}^*\) means the optimal neural network weight set. Through the neural network training process,
the neural network learns knowledge from the data sample, such that the neural network weight \mathbf{W} gradually converge to the optimal weight \mathbf{W}^*. After the neural network training process, the performance of the neural network is tested under the unlabeled test data. If the intrusion detection performance of the neural network meets the IDS requirements, it can be used as a detection model to detect intrusion types. If not, the neural network needs to be further trained.

3 Algorithm Formula

Redundant connections between neurons may increase intrusion detection time. Combining a dynamic pruning rule and an evolution mechanism, a DESNN algorithm is proposed to eliminate the redundant connections issue without causing significant performance loss. Ensemble neural network based on dynamic pruning rule and evolution mechanism is shown in Fig 2. The process of eliminating redundant connections in the neural network is expressed as an optimization problem. In this section, the optimization problem, the dynamic pruning rule and the evolution mechanism are clarified.

3.1 Optimization Problem

The DESNN algorithm reduces redundant neuron connections through an unstructured pruning. Figure 3 shows neural network with the unstructured pruning. The corresponding optimization problem can be expressed as

$$\min_{\mathbf{W}_k, \mathbf{T}_k} L(\mathbf{W}_k \odot \mathbf{T}_k)$$

(2)

where $L(\cdot)$ stands for a loss function. \mathbf{W}_k denotes the matrix of neural network connection weights in the kth layer. \odot represents the Hadamard product operator. $\mathbf{T}_k = h_k(\mathbf{W}_k)$
indicates the filter matrix. $h_k(\cdot)$ is a pruning rule. The following describes that the problem (2) is optimized by the dynamic pruning rule.

3.2 Dynamic Pruning Rule

In this paper, a dynamic pruning rule based on weight contribution is used to find redundant connections of neurons. The neural network is pruned by the pruning rule $h_k(\cdot)$, which can be expressed as

$$ h_k(W^{(a,b)}_k) = \begin{cases} 1 & \text{if } |W_k^{(a,b)}| \geq p^k_k, \forall (a,b) \in \mathbb{I} \\ 0 & \text{if } |W_k^{(a,b)}| < p^k_k \end{cases} $$ \hspace{1cm} (3) $$

where $W_k^{(a,b)}$ denotes the neuron connection with indicator (a, b) in the kth layer. $T_k^{(a,b)}$ stands for the filter matrix element with indicator (a, b) in the kth layer. Set \mathbb{I} represents all the entry indices in matrix W_k. a represents the input neuron indicator, b is the output neuron indicator. p_k denotes the pruning threshold of the kth layer.

In the proposed pruning rule $h_k(\cdot)$, the pruning threshold p_k is determined by pruning rate α and the total number of W_k elements n. Sort the absolute value of all elements in the weight matrix W_k by the ascending order as a weight contribution vector c_k. Then the pruning threshold p_k is set as the $(n \times \alpha)$th value in the contribution vector c_k. Then the weight matrix W_k is processed by expression (3), the filter matrix element $T_k^{(a,b)}$ is 1 if the weight matrix element $W_k^{(a,b)}$ has a higher contribution to the neural network; the value of $T_k^{(a,b)}$ is 0 otherwise.

Updating the weight matrix W_k and the filter matrix T_k through the stochastic gradient descent (SGD) method, then the back propagation process of the proposed neural network can be expressed as

$$ W_k^{(a,b)} = W_k^{(a,b)} - \beta \frac{\partial L(W_k \odot T_k)}{\partial (W_k^{(a,b)} T_k^{(a,b)})}, \forall (a,b) \in \mathbb{I} $$ \hspace{1cm} (4) $$

where β is a positive learning rate. Set \mathbb{I} represents all the entry indices in matrix W_k.

Due to the filter matrix T_k is introduced into the back propagation process of the neural network, the weight optimization of sparse neural network $\{W_k \odot T_k : k \in \mathbb{K}\}$ is different from the weight optimization of fully connected neural network $\{W_k : k \in \mathbb{K}\}$, set \mathbb{K} denotes all the entry indices of the neural network layer. The expression (4) updates all
weight elements in the weight matrix W_k, not only the important parameters, but also the unimportant parameters of W_k. The neural network is processed by the dynamic pruning rule to realize the dynamic connection and inhibition of neurons, which enhances the flexibility of pruning.

3.3 Evolutionary Mechanism

Although the dynamic pruning rule can effectively reduce redundant connections, the pruning rate α affects the pruning effect. Excessive pruning rate may cause important connections of the neural network to be inhibited, such that affects the intrusion detection performance of the neural network. In order to address this problem, an ensemble neural network model is constructed. Furthermore, the subnetworks in the ensemble neural network are divided into advantage and disadvantage subnetworks according to their intrusion detection accuracy. Specifically, the subnetwork with the best intrusion detection accuracy is called the advantage subnetwork, and the others are defined as the disadvantage subnetworks. In order to improve the detection performance of disadvantage subnetworks, an evolution mechanism is proposed. The proposed evolutionary mechanism is used to optimize the back propagation of the ensemble neural network, which can be described as follows

$$W_{d_k} = \frac{(W_{op_k} + W_{d_k})}{2}$$

where W_{op_k} denotes the weight matrices of the advantage subnetworks in the kth layer, W_{d_k} represents the weight matrices of the disadvantage subnetworks in the kth layer.

The expression (5) can realize that the disadvantage subnetworks weight matrices W_{d_k} approximate the advantage subnetworks weight matrices W_{op_k} in each epoch of training process. Since the the disadvantage subnetworks weight matrices W_{d_k} is closer to the local optimal value, the performance of the disadvantage subnetworks is improved.

4 Experiments

In this section, several experimental results are provided to evaluate the performance of the proposed DESNN algorithm. In the following simulation experiments, the software is set as follows. Python: 3.7.6; keras=2.3.1. The hardware is set as follows. CPU Intel® Xeon® E5-2560, GPU NVIDIA Tesla K80, RAM 64GB.

4.1 Dataset

The intrusion detection dataset KDD-Cup 99 is widely used to verify the performance of intrusion detection algorithms. Each network connection in the KDD-Cup 99 dataset is marked as normal or attack. Specifically, attacks are divided into 4 categories and 39 attack types in detail. The four categories of attack are Dos, Probing, R2L, and U2R, respectively. In addition, among the 39 attack types, 22 attack types appear in the training dataset and 17 unknown attack types appear in the test dataset. In this paper, the performance of all intrusion detection algorithms is obtained based on the same dataset KDD-Cup 99. The details of the dataset are shown in Table 1.
4.2 Model Parameters

To ensure the reproducibility of the experiment, the parameters of the DNN model set in this paper are shown in Table 2. The model is a shallow model, which not only has better intrusion detection classification performance, but also has faster intrusion detection speed. In order to ensure the performance of the model, the parameters of the model are selected based on performance in multiple experiments.

Although the model processed by the dynamic pruning rule can effectively reduce neuron connections, its intrusion detection performance may decrease. In order to solve this problem, this paper proposes the DESNN algorithm. Some hyperparameters are required in the implementation of the proposed algorithm, which have a certain influence on the neural network model. The hyperparameter of the DESNN algorithm are shown in Table 3.

where iteration is 50×10, 50 represents the training epoch of ensemble neural network, 10 denotes the retraining epoch of the subnetwork. The retraining epoch can be understood as the pruning interval, which affects the degree of the subnetwork convergence. The weight of the subnetwork can converge a better local optimal value with the retraining

Table 1 CUP 99 dataset details
Data type
Normal
Dos
Probing
R2L
U2R
Total

Table 2 DNN model
Layer setting
Dense
ReLU
Dense
ReLU
Dense
ReLU
Dense
ReLU
Dense
Softmax

Table 3 Hyperparameter of the DESNN algorithm
Hyperparameter
Iteration
Subnetwork number
Batch size
Pruning rate
Optimizer
epoch value increase. The subnetwork number represents the number of subnetwork in the ensemble neural network. The pruning rate represents the rate of deleted neural network parameters.

4.3 The Evaluation Indicator

This paper evaluates the network performance from two perspectives, including the classification performance and the running time. Invoking [14–18], the evaluation indicators of classification performance adopt accuracy, precision, recall, F-Score, which can be expressed as

$$A_{acc} = \frac{T_p + T_n}{T_p + T_n + F_p + F_n}$$ \hspace{1cm} (6)

where A_{acc} represents the classification accuracy of the neural network. T_p and T_n are the number of normal and intrusion samples correctly classified, respectively. F_p and F_n are the number of normal and intrusion samples mistakenly classified.

$$P_{precision} = \frac{T_p}{T_p + F_p}$$ \hspace{1cm} (7)

where $P_{precision}$ denotes the ratio of the T_p to the total number of intrusion samples.

$$R_{recall} = \frac{T_p}{T_p + F_n}$$ \hspace{1cm} (8)

where R_{recall} represents the ratio of T_p to the predicting the correct samples.

$$F_{score} = \frac{2 \times T_p}{2 \times T_p + F_n + F_p}$$ \hspace{1cm} (9)

where F_{score} is the harmonic average of A_{acc} and R_{recall}.

In order to evaluate the running time of intrusion detection model, the running time of the model code as an evaluation indicator. The running time in the experimental results is obtained by using a python time module.

4.4 Experiment Results

4.4.1 Experiment 1: Network Degradation Phenomenon

Figure 4 shows the accuracy as functions of iterations for different pruning rates. The pruning rate used by DNN1 is equal to 0.5, the pruning rate used by DNN2 is equal to 0.3. It can be observed that the accuracy of DNN may be reduced by the dynamic pruning rule, named as degradation phenomenon. Due to the selection of the unsuitable pruning threshold p_k, some important connections in the neural network are deleted, which leads to the occurrence of degradation.
4.4.2 Experiment 2: Accuracy Comparison of the DNN, the DESNN and the DPNN

The accuracy of the DNN may be degraded due to the dynamic pruning rule, the DESNN algorithm is proposed to solve this problem.

Figure 5 shows the accuracy versus pruning rate for different neural network model, the xlabed represents pruning rate, the range is [0.1, 0.9] and the interval value is equal to 0.1, the ylabed denotes accuracy of neural network. The DESNN stands for the DNN processed by the DESNN algorithm, the DPNN represents the DNN processed by the dynamic pruning rule.

In the Figure 5, the accuracy of the DPNN and the DNN are generated by averaging 5 independent runs. The accuracy of the DESNN is the optimal network accuracy in the ensemble neural network, which is also generated by averaging 5 independent runs. The accuracy of the DNN is 0.97633. When the pruning rate are equal to 0.2 and 0.3, the corresponding accuracy of the DESNN are 0.97426 and 0.97535, close to the DNN and higher than the DPNN that accuracy are 0.97126 and 0.96820. When the pruning rate is greater than 0.3, the accuracy rate gradually decreased with the increase of pruning rate. Experiment 2 shows that the DESNN algorithm can reduce the damage caused by dynamic pruning rule to the network.

4.4.3 Experiment 3: Weight Distribution Diagram of the DESNN and Fully-Connected DNN

In the experiment 3, the weight elements of the DESNN and the fully-connected DNN are extracted, which frequency distribution histogram (FDH) are drawn.

Figure 6 represents the FDH of the fully-connected DNN weight elements and Fig 7 denotes the FDH of the DESNN weight elements.

It can be seen from Figs. 6 and 7 that the distribution of weight elements is normal distribution. The reason is that the weights of the neural network are initialized according to...
the Gaussian distribution. The training process adjust the weights to make the neural network converge gradually, but the training process does not change the weight distribution type of the neural network.

Figure 8 shows the weight distribution of the two neural networks, with the xlabel denotes the weight value and the ylabel represents the unit frequency. It can be seen that

Fig. 5 Accuracy versus pruning rate for different neural network model

Fig. 6 FDH of the fully-connected DNN weight elements
the weight distribution of DESNN is thinner and higher than fully-connected neural network. The fully-connected DNN is processed by DESNN algorithm that its weight elements approach to 0 as a whole. According to the expression (3), neuron connections with smaller contributions are deleted to speed up the operation of the neural network; Neuron connections with higher contributions are reserved to ensure the intrusion detection performance of the neural network.

4.4.4 Experiment 4: Performance Comparison Between the Proposed Algorithm and Other Intrusion Detection Models

This experiment tests the classification performance and the running time of various deep learning models. The model parameters of the DESNN is shown in Table 2 and the hyper-parameter of the DESNN algorithm is shown in Table 3, the pruning rate is equal to 0.3. It is worth noting that in order to allow the data to be entered into the 2D-CNN model, we use the data slicing to convert 1D data into 2D data.

It can be seen from Table 4 that the accuracy of all models exceeds 90% and the model with the highest accuracy is the LSTM. The accuracy of the DESNN is higher than the DNN, indicating that the DESNN algorithm can improve the accuracy of the DNN. Because the DNN may be overfitting, and pruning is a means to solve overfitting. From the perspective of running time, the DESNN is lower than all models. Since the number of parameters of the model is directly related to the running time. In this experiment, the weight parameter of the DNN is only 10 thousand, while the LSTM is 69 thousand and the 2D-CNN is 30 thousand, the operating speed of the DNN is lower than that of the LSTM and the 2D-CNN. If the pruning rate is equal to 0.3, then the weight parameters of the DESNN is 7 thousand, so its running time is lower than the DNN.
In this paper, the DESNN algorithm is proposed by combining the evolutionary mechanism with the dynamic pruning rule to solve the problem that network performance degradation caused by inappropriate pruning threshold. The proposed DESNN algorithm constructs a DP-based ensemble neural network which can be divided into the advantage subnetworks and the disadvantage subnetworks according to the intrusion detection performance. Furthermore, a new evolution mechanism is proposed and used to optimize the training process of the disadvantaged network, such that the performance of the ensemble neural network can be improved. The proposed algorithm not only effectively improves the intrusion detection performance compared with the fully connected neural network, but also improves the intrusion detection speed compared with all other neural network models.

Table 4 Classification performance and running time

Metric	DNN	LSTM	1D-CNN	2D-CNN	DESNN
Accuracy	0.9066	0.9201	0.9167	0.9153	0.9168
Precision	0.9946	0.9958	0.9952	0.9989	0.9948
Recall	0.8887	0.9045	0.9008	0.8957	0.9012
F-score	0.9387	0.9479	0.9457	0.9445	0.9457
Running time (s)	31.56	42.57	42.40	61.68	20.71

The bold words are used to highlight the importance of the work in this paper.

5 Conclusion

In this paper, the DESNN algorithm is proposed by combining the evolutionary mechanism with the dynamic pruning rule to solve the problem that network performance degradation caused by inappropriate pruning threshold. The proposed DESNN algorithm constructs a DP-based ensemble neural network which can be divided into the advantage subnetworks and the disadvantage subnetworks according to the intrusion detection performance. Furthermore, a new evolution mechanism is proposed and used to optimize the training process of the disadvantaged network, such that the performance of the ensemble neural network can be improved. The proposed algorithm not only effectively improves the intrusion detection performance compared with the fully connected neural network, but also improves the intrusion detection speed compared with all other neural network models.
6 Future Scope

Our future work will focus on the following aspects:

1. To solve the problem of network performance degradation caused by inappropriate pruning threshold, the proposed DESNN algorithm constructs a DP-based ensemble neural network which can be divided into the advantage subnetworks and the disadvantage subnetworks according to the intrusion detection performance. However, this process involves the training of multiple neural network models and has a certain computational complexity. Therefore, how to select the appropriate scale of ensemble neural network is the future research work.

2. In the proposed evolutionary mechanism, the evolutionary rules, \(W_k^d = (W_k^{op} + W_k^{op}) / 2 \), is used to optimize the back propagation of the ensemble neural network. In this paper, the evolution parameter is 1/2. In fact, the intrusion detection performance of the proposed algorithm will be affected by this parameter. Therefore, how to select the optimal evolutionary parameter is one of the future research work.

Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant No.61971117, by the Natural Science Foundation of Hebei Province (Grant No. F2020501007).

Funding The authors have not disclosed any funding.

Data Availability The KDD-Cup 99 data in this paper are from its official website as http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Declarations

Conflict of interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Ahmim, A., Derdour, M., & Ferrag, M.A. (2018). An intrusion detection system based on combining probability predictions of a tree of classifiers. International Journal of Communication Systems, 31(9).
2. Ahmad, Z., Khan, A.S., & Shiang, C.W., et al. (2020). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies. 32(1)
3. Wei, P., Li, Y., Zhang, Z., et al. (2019). An optimization method for intrusion detection classification model based on deep belief network. IEEE Access., 7, 87593–87605.
4. Malaiya, R. K., Kwon, D., Suh, S. C., et al. (2019). An empirical evaluation of deep learning for network anomaly detection. IEEE Access., 7, 140806–140817.
5. Zheng, S. (2021). Network intrusion detection model based on convolutional neural network. IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 634-637
6. Parimala, G., & Kayalvizhi, R. (2021). An effective intrusion detection system for securing IoT using feature selection and deep learning. International Conference on Computer Communication and Informatics (ICCCI), 1–4
7. Seth, S., Kaur, K., & Singh, G. (2021). A novel ensemble framework for an intelligent intrusion detection system. IEEE Access
8. Denil, M., Shakibi, B., Dinh, L., et al. (2013). Predicting parameters in deep learning. Conference and Workshop on Neural Information Processing Systems. 2148-2156
9. Srinivas, S., & Babu, R.V. (2015). Data-free parameter pruning for deep neural networks. *British Machine Vision Conference*. 2830-2838
10. Ullrich, K., Meeds, E., & Welling, M. (2017). Soft weight-sharing for neural network compression. *International Conference on Learning Representations*
11. Guo, Y.W., Yao, A.B., & Chen, Y.R. (2016). Dynamic network surgery for efficient DNNs. *Conference and Workshop on Neural Information Processing Systems*. 1379-1387
12. Aldweesh, A., Derhab, A., & Emam, A. Z. (2020). Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. *Knowledge-Based Systems*, 189, 2020.
13. Vani, R. (2017). Towards efficient intrusion detection using deep learning techniques: a review. *International Journal of Advanced Research in Computer Science and Electronics Engineering*, 6(10), 375–384.
14. Kang, M. J., Kang, J. W., & Tang, T. (2016). Intrusion detection system using deep neural network for in-vehicle network security[J]. *Plos One*, 11(6), e0155781.
15. Kim, J., Kim, J., Thu, H., & Kim, H. (2016). Long short term memory recurrent neural network classifier for intrusion detection. *International Conference on Platform Technology and Service*. 1-5
16. Feng, F., Liu, X., Yong, B., et al. (2019). Anomaly detection in ad-hoc networks based on deep learning model: A plug and play device. *Ad Hoc Netw*, 84, 82–89.
17. Liu, G.J., & Zhang, J.B. (2020). CNID: Research of network intrusion detection based on convolutional neural network. *Discrete Dynamics in Nature and Society*
18. Marín, G., & Casas, P. (2018). Rawpower. Deep learning based anomaly detection from raw network traffic measurements, in: ACM SIGCOMM 2018 Conference on Posters and Demo. 7: 75–77. 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fulai Liu received the M.S. degree and Ph.D. degree from Northeastern University, Shenyang, China, in 2002 and in 2005, respectively. Since 2010, he is a professor in Northeastern University, Qinhuangdao, China. His research interests include array signal processing and its applications, cognitive radio, millimeter wave MIMO system, etc.
Jialiang Xu received the B.S. degree from Shandong University of Technology, Zibo, China, in 2017. He is currently pursuing the M.S. degree at Northeastern University. His research interests include artificial intelligence and neural network.

Lijie Zhang received the B.S. degree from Hebei University, Baoding, China, in 2019. She is currently pursuing the M.S. degree at Northeastern University. Her research interests include deep learning and millimeter wave communications.

Ruiyan Du received her B.S. degree from Hebei Normal University, Shijiazhuang, China, in 1999, the M.S. degree from Yanshan University, Qinhuangdao, China, in 2006, and the Ph.D. degree from Northeastern University, Shenyang, China, in 2012. Since 2012, she is an associate professor in Northeastern University, Qinhuangdao, China. Her research interests include wireless communications, signal processing for communications.
Zhibo Su received the B.S. degree from Zhengzhou University, Zhengzhou, China, in 2020. He is currently pursuing the M.S. degree at Northeastern University. His research interests include deep learning and array signal processing.

Aiyi Zhang received the M.S. degree from Kunming University of Science and Technology, Kunming, China, in 2017. Currently, she is pursuing the PhD at the School of Computer Science and Engineering, Northeastern University, Shenyang, China. Her research interests include tensor analysis, machine learning, signal processing and wireless communications.

Zhongyi Hu received the B.S. degree from Northeastern University, Shenyang, China, in 2017. He is currently pursuing the M.S. degree at Northeastern University. He research interests include artificial intelligence and neural network.