Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas

Murielle Mimeault, Surinder K Batra

Murielle Mimeault, Surinder K Batra, Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States

Author contributions: Mimeault M searched and reviewed the literature and wrote the manuscript; Batra SK reviewed the literature and revised the manuscript; both authors read and approved the final version of manuscript.

Supported by The National Institutes of Health National Cancer Institute (Grants EDRN CA111294, and SPORE CA127297)

Correspondence to: Murielle Mimeault, PhD, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States. mmimeault@unmc.edu

Telephone: +1-402-5595455 Fax: +1-402-5596650

Received: November 6, 2011 Revised: February 12, 2012 Accepted: March 5, 2012 Published online: March 10, 2012

Abstract

Cutaneous malignant melanoma is the most aggressive form of skin cancer with an extremely poor survival rate for the patients diagnosed with locally invasive and metastatic disease states. Intensive research has led in last few years to an improvement of the early detection and curative treatment of primary cutaneous melanomas that are confined to the skin by tumor surgical resection. However, locally advanced and disseminated melanomas are generally resistant to conventional treatments, including ionizing radiation, systemic chemotherapy, immunotherapy and/or adjuvant stem cell-based therapies, and result in the death of patients. The rapid progression of primary melanomas to locally invasive and/or metastatic disease states remains a major obstacle for an early effective diagnosis and a curative therapeutic intervention for melanoma patients. Importantly, recent advances in the melanoma research have led to the identification of different gene products that are often implicated in the malignant transformation of melanocytic cells into melanoma cells, including melanoma stem/progenitor cells, during melanoma initiation and progression to locally advanced and metastatic disease states. The frequent deregulated genes products encompass the oncogenic B-RafV600E and N-RasQ61R mutants, different receptor tyrosine kinases and developmental pathways such as epidermal growth factor receptor (EGFR), stem cell-like factor (SCF) receptor KIT, hedgehog, Wnt/β-catenin, Notch, stromal cell-derived factor-1 (SDF-1)/CXCL chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF)/VEGFR receptor. These growth factors can cooperate to activate distinct tumorigenic downstream signaling elements and epithelial-mesenchymal transition (EMT)-associated molecules, including phosphatidylinositol 3′-kinase (PI3K)/Akt/ molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), macrophage inhibitory cytokine-1 (MIC-1), vimentin, snail and twist. Of therapeutic relevance, these deregulated signal transduction components constitute new potential biomarkers and therapeutic targets of great clinical interest for improving the efficacy of current diagnostic and prognostic methods and management of patients diagnosed with locally advanced, metastatic and/or relapsed melanomas.

© 2012 Baishideng. All rights reserved.

Key words: Cutaneous melanomas; Melanoma stem/progenitor cells; Biomarkers; Screening tests; Diagnosis; Prognosis; Molecular targets; Targeted therapy

Peer reviewer: Simone Mocellin, MD, PhD, Department of Oncological and Surgical Sciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy

Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol 2012; 3(3): 32-42 Available from: URL: http://www.wjgnet.com/2218-4333/full/v3/i3/32.htm DOI: http://dx.doi.org/10.5306/wjco.v3.i3.32
INTRODUCTION

Cutaneous malignant melanoma represents the major cause of mortality among skin cancers and its incidence rate is increasing during last years[1-5]. Although the localized cutaneous melanomas diagnosed in the early stages are usually curable by surgical resection of malignant tumors, the rapid progression to invasive and metastatic disease states is generally associated with a poor median survival of 6 mo to 12 mo and a five year survival rate of less than 10%[6,7,8,9]. The therapeutic options for the patients with unresectable melanomas and metastases at distant organs such as lungs, liver and brain consisting to the radiation therapy and/or chemotherapy are only palliative, aiming to improve the quality of life of patients[8-10]. Especially, the standard treatment with alkylating agent, dacarbazine or its orally active analog temozolomide, alone or in combination with other cytotoxic agents, is ineffective in the most cases and culminate to the death of melanoma patients[8-10].

Importantly, recent advances in melanoma research have led to the establishment of the molecular oncogenic events that may contribute to melanoma initiation and progression and treatment resistance of melanoma cells. It has been observed that the persistent activation of different oncogenic signaling cascades initiated in an autocrine or a paracrine manner by distinct growth factors and cytokines through their cognate receptors is typically involved in the sustained proliferation, survival, invasion and metastases at near lymph nodes and distant sites of melanoma cells and angiogenic process[2,14-21]. These deregulated gene products include B-RafV600E, N-RasQ61R, epidermal growth factor receptor (EGFR), hepatocyte growth factor (HGF) receptor MET, platelet-derived growth factor receptors (PDGFRs), sonic hedgehog, Wnt/β-catenin, Notch, Nodal/Cripto, hyaluronan (HA)/CD44, stem cell factor (SCF) receptor KIT, stromal cell-derived factor-1 (SDF-1)/CXCR chemokine receptor-4 (CXCR4), and vascular endothelial growth factor (VEGF)/VEGFR receptor (Figure 1)[11,14-17,22,23,47]. These tumorigenic pathways can cooperate for the sustained activation of downstream signaling effectors such as mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor-kappaB (NF-kB) and hypoxia-inducible factors (HIFs) for the angiogenic or autocrine or a paracrine manner by distinct growth factors and cytokines through their cognate receptors are frequently overexpressed in primary melanoma patients[11-13].

In addition, recent advances in skin stem/progenitor cell research have led to the identification of melanoma cells endowed with stem cell-like properties and which can provide critical functions for tumor growth, metastases at distant sites, treatment resistance and disease relapse[17,18,20,21,23,48,49]. More specifically, highly tumorigenic melanoma stem/progenitor cells have been identified in situ and isolated from primary and secondary melanoma tumors, circulating melanoma cells and established melanoma cell lines[20,21,30,48]. Melanoma stem/progenitor cells may express different stem cell-like markers such as CD133, nestin, aldehyde dehydrogenase (ALDH)-6b, CD166, neural crest nerve growth factor receptor (CD271) and/or ATP-binding cassette (ABC) multidrug resistance transporters such as multidrug resistance-1 encoding P-glycoprotein (P-gp), ABCG2 and ABCB5. It has been shown that highly tumorigenic melanoma stem/progenitor cells can give arise to the total tumor cell mass in vivo with the phenotypic features resembling to original patient’s melanomas and metastasize at distant sites[50-58,60,61,63-65]. In this matter, we review the most recent advancements on the gene products that are often altered during melanoma initiation and progression to locally invasive and metastatic disease states and which may be exploited to develop novel multiplex biomarker detection methods for optimizing diagnosis and prognosis and multitargeted therapies for a more effective management of melanoma patients.

NEW BIOMARKERS FOR OPTIMIZING DIAGNOSIS, PROGNOSIS AND INDIVIDUALIZED TREATMENT OF MELANOMA PATIENTS

The clinical diagnosis of cutaneous malignant melanomas at early stages retains a big challenge for the experimented pathologists and is generally made only after they become visible on skin[66]. Moreover, a skin biopsy and different tumor imaging tests such as X-rays, computed tomography (CT) scan, magnetic resonance imaging (MRI) and positron emission tomography (PET) tests are often performed to establish the grades and stages of melanomas and screen for metastatic melanomas[66,67].

In addition, the immunohistochemical staining of tissue specimens with different antibodies directed against different melanocytic markers such as S-100 and melanoma-associated antigen recognized by T-cells (MART-1) also designated as melanocyte antigen (Melan-A), which is expressed by melanoma cells, is useful for improving the accuracy of the pathological diagnosis and prognosis of melanoma patients[58-60]. Moreover, monoclonal antibody gp100 corresponding to clone HMB-45, which is highly specific and sensitive for melanocytic tumors but does not react with other non-melanoma malignancies such as carcinomas, lymphomas and sarcomas and normal melanocytes, may be used for the pathological diagnosis to distinguish poorly differentiated melanoma subtypes of other tumor type[60,71]. The immunohistochemical analysis of the vimentin expression in primary melanoma tissues, which is frequently overexpressed in primary melanoma patients with hematogenous metastasis, also may help to establish the melanoma patients with a high risk to develop hematogenous metastasis[72]. Although this importance advance, few biomarkers in melanoma stem/progenitor cells and their progenies have been validated in the clinics to use in combination in screening methods for an early
and non-invasive detection of cutaneous melanomas and the establishment of the risk of the disease progression, metastases at near lymph nodes and distant sites and relapse. Consequently, the identification and validation of novel molecular biomarkers associated with the melanoma initiation and progression to locally invasive and metastatic disease states and response of melanoma patients to the clinical treatment is of great interest for improving the efficacy of current diagnostic and prognostic methods and therapeutic management of melanoma patients.

Numerous cytogenetic analyses in malignant melanoma tissues and serum samples vs benign melanocytic naevi and normal tissues and serum samples using microarray, immunohistochemical and polymerase chain reaction (PCR)-based techniques have led to the discovery of novel deregulated genes in melanoma cells [18,23,42,73-83]. The gene products often altered during melanoma progression constitute potential biomarkers for a more early diagnosis and accurate prognosis of melanoma patients and effective personalized medicine. The potential biomarkers that may be detected in malignant tissues and/or serum samples, either alone or in combination, to establish the risk of disease progression and as prognostic indicator of melanoma patients include different oncogenic products. Among the more promising molecular biomarkers, there are EGFR, activated pAkt phosphorylated form, microphthalmia-associated transcription factor (MITF), serum amyloid, MIC-1 also designated as growth and differentiation factor-15 (GDF-15), VEGF, interleukin-8 (IL-8) and/or twist [18,23,42,73-79,84-88].

More specifically, it has been observed that the EGFR expression was enhanced in primary and metastatic melanoma tissues from patients relative to non-malignant tissues suggesting that the detection of EGFR could be used as a prognostic indicator to predict the risk of disease progression to metastatic disease states and poor outcome of melanoma patients [86,87]. Moreover, the overexpression of MITF protein has also been detected in 62 of 104 tumor tissues obtained from metastatic melanoma patients and correlated with the chemotherapeutic response and reduced disease-specific survival of melanoma patients [78]. Importantly, the secreted MIC-1 cytokine has also been observed to be overexpressed in 66% of 53 melanoma cell lines analyzed as compared to normal melanocytes [79]. Moreover, the immunohistochemical analyses have indicated that the MIC-1 protein was expressed at low levels in primary melanoma biopsies (15 of 22) while all metastatic melanoma biopsies examined (16 of 16) exhibited strong expression of MIC-1 [79]. The results from another study have also indicated that
MIC-1 was overexpressed in approximately 67% cases of advanced melanomas and secreted MIC-1 protein levels detected in serum samples of melanoma patients were 5-6 fold higher as compared with serum samples from normal individuals[40]. In this matter, it has been reported that the enhanced MIC-1 expression in melanoma cells may be induced at least in part through the constitutively active mutant B-RafV600E and activation of MAPKs, and to a lesser extent via the activated PI3K/Akt pathway[42,74]. The stimulation of SCF receptor KIT, which may contribute to the activation of MAPK pathway and the phosphorylation of MITT, also may result in an up-regulation of the MIC-1 expression[42]. Hence, together these results combined with the fact that the secreted MIC-1 cytokine has been observed to promote the tumorigenicity of melanoma cells in vivo[42,74], support the clinical interest to detect MIC-1 in melanoma tissue biopsies or serum samples for improving the diagnosis and prognosis of melanoma patients.

On the other hand, the occurrence of polymorphisms in the melanocortin-1-receptor (MC1R), which may lead to the MC1R variants encoding a non-functional MC1R protein and the acquisition of a red hair color (RHC) phenotype, fair skin, freckles and poor tanning ability of individuals, has also been associated with a high risk of developing melanoma[90]. Interestingly, the combined immunohistochemical analyses of expression levels of different cell cycle modulators (p21, p27, p53 and retinoblastoma proteins) and pro-apoptotic factors (Bax and Bak) in primary cutaneous melanoma tissues at stage II a from 31 patients performed during a 10-year follow-up period have also indicated that the down-regulation of these markers may be more appropriate than the detection of a single molecular marker for assessing the risk of melanoma progression and metastases[83].

Of particular therapeutic interest, a multicenter phase II trial has also been undertaken in order to investigate the efficacy of a sensitivity-directed, first-line chemotherapy in patients with metastasized melanomas by performing an in vitro assay using an ATP-based luminescence viability test for evaluating the chemosensitivity of viable melanoma cells obtained from metastatic lesions to seven single drugs and five drug combinations[91]. The results have revealed that among the 53 patients evaluable for all study end points, 22 (42%) were chemosensitive and 31 (58%) chemoresistant patients and the chemosensitive patients showed an increased overall survival of 14.6 months compared with 7.4 mo in chemoresistant patients[91]. In the same way, the results from a recent study have also indicated the possibility to establish the B-RafV600E mutation status in the tissue biopsies and circulating free DNA samples from melanoma patients to assess the patients that could be susceptible to respond to the pharmacological agents targeting oncogenic B-RafV600E mutant[92]. In addition, it has also been noted that the serum concentrations of diverse angiogenic factors such as VEGF, basic fibroblast factor (bFGF) and IL-8 were increased in melanoma patients relative to healthy individuals and associated with advanced stages and poor overall and progression-free survival of melanoma patients[18,23]. More particularly, a study carried out with 35 patients with stage IV melanoma has indicated that 15 patients who responded to chemotherapy showed a significant decrease in the serum IL-8 level while non-responders with progressive disease did not[92]. These data suggest that the detection of serum IL-8 level could serve as an indicator of the potential response of melanoma patients to the chemotherapeutic treatment.

Potential biomarkers in melanoma stem/progenitor cells

Of great clinical interest, the results from recent studies have also indicated the possibility to detect the stem cell-like markers such as ABCB5, nestin, CD133 and CD166 in primary and metastatic melanoma tissue specimens and/or circulating melanoma stem/progenitor cells in combination with current clinical biomarkers to predict the risk of the metastasis formation and overall survival of melanoma patients[51,55,59,63,93-95]. For instance, it has been observed that highly tumorigenic circulating melanoma cells isolated from the peripheral circulation of melanoma patients expressing the stem cell-like marker, ABCB5 multidrug transporter were tumorigenic and able to form the metastases in animal model in vivo[43]. Furthermore, it has been observed that the expression of ABCB5 protein was enhanced in primary and metastatic melanoma specimens as compared to normal skin and benign nevi[51,55,59]. Then, these data support the interest to detect the ABCB5 multidrug transporter in primary melanoma tissue specimens and circulating melanoma cells to predict the risk of progression to metastatic disease states.

The immunohistochemical analysis of nestin, which is a neuroepithelial intermediate filament expressed in proliferative neuroectodermal progenitor cells during embryonic development and adult bulge areas-resident stem cells in hair follicle, has also indicated that its expression was significantly enhanced in primary and metastatic melanoma tissue specimens as compared to benign and normal melanocytes[96-101]. Nestin was also co-expressed with SOX9 and SOX10, which may contribute to its transcriptional up-regulation, in primary and secondary melanoma specimens and associated with a poor survival of melanoma patients[96-101]. The analyses by flow cytometry and quantitative reverse transcription-PCR (qRT-PCR) of the expression level of nestin performed on 23 tissue specimens from patients with stage III-IV melanoma has also indicated that this stem cell-like marker was expressed at a higher level in stage IV patients compared to stage III/IV with no evidence of disease[93]. It has also been noted that the expression of nestin positively correlated with the tumor burden and tyrosinase and melan-A co-expression in malignant tissues[98]. Nestin has also been detected with tyrosinase in a proportion of circulating melanoma cells enriched from peripheral blood samples while no cells expressing nestin were detected in peripheral blood of healthy volunteers[91].
Additionally, it has also been reported that the percentage of circulating melanoma cells expressing stem cell-like markers, nestin and CD133, detected in 32 melanoma patients correlated with tumor burden and number of metastatic sites, and was associated with a shorter overall survival of patients[19]. The immunohistochemical analyses of co-expression of different stem cell-like markers, including nestin, CD133, ABCB5 and CD166 have also indicated that these biomarkers were significantly enhanced in primary and metastatic melanoma specimens as compared to melanocytic nevi[102,103]. On the other hand, a higher proportion of melanoma cells coexpressing stem cell-like markers, CD271 and SOX10, has also been detected within melanoma biopsies of primary tumors, melanoma metastases and melanoma cell lines and associated with higher metastatic potential and poor tumor-specific survival of melanoma patients[64].

Collectively, the recent advancements on the identification of distinct potential biomarkers in melanoma stem/progenitor cells and their differentiated progenies offer now the possibility to assess their expression levels in primary and metastatic melanoma tissue specimens, serum samples and/or circulating melanoma cells detected in peripheral circulation from patients in the clinics. The simultaneous analyses of the expression of these novel molecular biomarkers could be exploited to develop more effective and non-invasive screening tests for improving the current diagnostic and prognostic methods. Moreover, these novel molecular biomarkers could be used to predict the potential response of melanoma patients to the inhibitory agents targeting these deregulated signaling elements, and thereby lead to an optimization of the choice of cytotoxic drugs for their therapeutic treatment in the clinics. In this matter, we review data from recent in vitro and in vivo studies and clinical trials carried out to validate new potential therapeutic targets in melanoma stem/progenitor cells and their progenies for improving current treatments of patients diagnosed with aggressive melanomas.

NEW THERAPEUTIC STRATEGIES AGAINST AGGRESSIVE AND METASTATIC MELANOMAS

Molecular targeting strategies

Recent investigations in melanoma research have led to the identification of several molecular pathways and specific gene products that are often deregulated during melanoma initiation and progression to locally advanced and metastatic disease states. The oncogenic products constitute new potential therapeutic targets to eradicate the total melanoma cell mass, including melanoma stem/progenitor cells, and prevent disease progression and relapse. These deregulated gene products include B-RafV600E, N-RasG12K, different receptor tyrosine kinases (RTKs) such as EGFR, KIT, MET, PDGFRs and VEGFRs as well as sonic hedgehog, Wnt/β-catenin, Notch, Nodal/Cripto, HA/CD44 and SDF-1/CXCR4 and their downstream signaling effectors such as PI3K/Akt, NF-κB and MIC-1 as well as ABC multidrug resistance transporters (Figure 1; Table 1)[13,17,22-46]. The blockade of these tumorigenic pathways and targeting of drug resistance-associated molecules by using specific inhibitory agents has been shown to suppress the growth, invasion and/or metastases of melanoma cells and angiogenesis process in vitro and in vivo[17,24,46,104]. For instance, a combination of EGFR tyrosine kinase inhibitor, erlotinib plus adenoviral vector-mediated IL-24 expression was more effective as individual agents at inhibiting growth and inducing apoptosis of different melanoma cell lines in vitro[105]. In the same way, the combined treatment with erlotinib and a monoclonal antibody (mAbs) termed bevacizumab that binds to and inhibits VEGF, also induced supra-additive inhibitory effect on the tumor growth of melanoma cell-derived xenografts and reduced the metastatic spread of melanoma cells to lymph nodes and lungs in mice as compared to single agents[106].

Importantly, the targeting of the stem cell-like marker CD133 using mAbs has also been reported to induce the cytotoxic effects in FEMX-1 melanoma cells in vitro and reduce their metastatic spread in mice in vivo[52]. Moreover, the inhibition of ABCB5 multidrug transporter using a mAb also inhibited the tumor growth of CD133+/ ABCB5+ melanoma cell-derived xenografts in vivo[53]. A combination of a CXCR4 inhibitor AMD3100 plus current chemotherapeutic drug, dacarbazine was also more effective at reducing the tumor growth and metastases of chemo-resistant CD133/CXCR4+ melanoma cells in vivo as compared to single drugs[107]. Additional studies, however, are necessary to further establish the molecular mechanisms at the basis of the cytotoxic effects of these therapeutic agents, alone or in combination therapies with current chemotherapeutic drug, dacarbazine on different melanoma cell models.

In addition, several clinical trials have also been carried out or are undergoing to investigate the anticancerogenic efficacy of new chemopreventive and anticancerogenic agents and diverse immunosuppressive therapeutic strategies such as the use of dendritic cells, high-doses of interferon-α (IFN-α) and/or IL-2 and anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody, alone or in combination with current therapies for treating locally advanced, metastatic and recurrent melano-
mAb against stem cell-like surface marker

- CD133
- ABCB5

Growth factor signaling inhibitor

- EGFR/erbB1 antibody
- EGFR-TKI
- Anti-EGF antibody
- Pan-erbB/erbB2/erbB3/erbB4-TKI
- MET
- Hedgehog
- Notch
- Nodal/Cripto
- KIT
- HA/CD44
- VEGF
- VEGFR2
- VEGFR2/EGFR/RET
- VEGFRs, PDGFRs, Kit
- B-Raf, C-Raf, KIT, PDGFRs, VEGFR2

ECM component/integrin

- CXCR4

Intracellular signaling inhibitor

- B-Raf/MEK/2
- PIKK
- mTOR
- NF-κB
- COX-2

Immunomodulatory agent

- Immune and/or vascular systems

Targeted deregulated element	Name of inhibitory agent
mAb against stem cell-like surface marker	Anti-CD133 mAb
ABCB5	Anti-ABCB5 mAb
Growth factor signaling inhibitor	mAb-C225, cetuximab
EGFR/erbB1 antibody	Gefitinib, erlotinib, AG1478, PLD15305
EGFR-TKI	ABX-EGF
Anti-EGF antibody	CI1033
Pan-erbB/erbB2/erbB3/erbB4-TKI	SU11274
Hedgehog	Anti-SH2 antibody, SMO inhibitor (cyclopamine, GDC-0449, BMS-754802, NVP-LDE225, IPI-926, IPI-26609
Notch	γ-secretase inhibitor (DAPT, MK-0752, GSI-18)
Nodal/Cripto	LEFTY, Anti-Cripto mAb
KIT	Imatinib mesylate, dasatinib
HA/CD44	Anti-CD44 mAb, soluble CD44 protein
VEGF	Anti-VEGF antibody (bevacizumab)
VEGFR2	Anti-VEGFR2 mAb (DC101)
VEGFR2/EGFR/RET	Vandetanib (ZD6474)
VEGFRs, PDGFRs, Kit	Sunitinib
B-Raf, C-Raf, KIT, PDGFRs, VEGFR2	Sorafenib
ECM component/integrin	Anti-integrin antibody
CXCR4	AMD3100

Immuno-therapy-based strategies

Among other promising experimental strategies, the results from the clinical trials with a experimental treatment consisting to a topical application of a cream containing 5% an immunomodulatory agent, imiquimod (Aldara) after surgical excision of tumors have revealed that this treatment reduced some melanocytic nevi and melanoma in-situ (lentigo maligna) [9,10,107-109,126,127]. Moreover, the data from a Phase I/II study of a combination of topical imiquimod and intralesional IL-2 have also revealed that its treatment induced a significant clinical response in patients with multiple accessible melanoma metastases by increasing the activated lymphocytes and the production of IFN-γ by peripheral blood mononuclear cells as well as by restoring the Th1/Th2 balance [10,11]. In addition, a therapeutic treatment consisting of an adjuvant immunotherapy with high doses of immunosuppressive agents, IL-2 and/or IFN-α, alone or in combination with chemotherapy or adoptive cell therapy, has also been observed to result in a complete and long-lasting remission in a small subset of melanoma patients [9,10,106,113,116,117,128-130]. In particular, it has been reported that the melanoma cell density in metastases and angiogenesis was significant reduced after a treatment with IFN-α [131]. Moreover, the results of phase II trials with 28 patients with stage IV melanoma showed a partial response for 175 d and 3 patients had stable disease with a mean duration of 37 wk [132].
malignant melanoma without brain metastases have revealed that a combination of dacarbazine plus pegylated IFN-a2a was well tolerated and associated with a response rate of 24% in 25 patients evaluated for response, including 2 long-lasting complete responses[112]. Interestingly, the results of a phase II trial with an oncolytic herpes simplex virus type 1 encoding granulocyte macrophage-colony stimulating factor (GM-CSF), designated as Oncovex (GM-CSF), have also indicated a 28% objective response rate occurred in patients with melanomas which was accompanied by a tumor regression of both injected and non-injected lesions[126,127]. These data suggest that the treatment with Oncovex (GM-CSF) can induce a direct oncolytic effect in injected tumors as well as a secondary immune-mediated anti-tumor effect on non-injected tumors[126,127].

CONCLUSION

Significant advancements made in last few years have provided important information on the molecular signaling pathways and gene products that are frequently deregulated in melanoma stem/progenitor cells and their progenies during melanoma formation and progression to locally advanced and metastatic disease states. Consequently, the combination of different molecular biomarkers or cytotoxic agents targeting distinct gene products altered during melanoma development may constitute more promising therapeutic strategies as the use a single biomarker or monotherapy for improving the accurate of current diagnostic and prognostic methods and efficacy of the treatment of melanoma patients.

REFERENCES

1. Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med 2004; 351: 998-1012
2. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature 2007; 445: 851-857
3. Jemal A, Siegel R, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300
4. Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol 2009; 27: 3-9
5. Houghton AN. Focus on melanoma. Cancer Cell 2002; 2: 275-278
6. Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A, Kirkwood JM, McMasters KM, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson JA, Thompson JP. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 2001; 19: 3635-3648
7. Francken AB, Bastiaannet E, Hoekstra HJ. Follow-up in patients with localised primary cutaneous melanoma. Lancet Oncol 2005; 6: 608-621
8. Bastiaannet E, Beukema JC, Hoekstra HJ. Radiation therapy following lymph node dissection in melanoma patients: treatment, outcome and complications. Cancer Treat Rev 2005; 31: 18-26
9. Buzaid AC. Management of metastatic cutaneous melanoma. Oncology (Williston Park) 2004; 18: 1443-150; discussion 1443-150
10. Danson S, Lorigan P. Improving outcomes in advanced malignant melanoma: update on systemic therapy. Drugs 2005; 65: 733-743
11. Comis RL. DTIC (NSC-45388) in malignant melanoma: a perspective. Cancer Treat Rep 1976; 60: 165-176
12. Hill GJ, Metter GE, Kremetz ET, Fletcher WS, Golomb FM, Ramirez G, Grage TB, Moss SE. DTIC and combination therapy for melanoma. II. Escalating schedules of DTIC with BCNU, CCNU, and vincristine. Cancer Treat Rep 1979; 63: 1989-1992
13. Tawbi HA, Buch SC. Chemotherapy resistance abrogation in metastatic melanoma. Clin Adv Hematol Oncol 2010; 8: 259-266
14. Liu ZJ, Xiao M, Balint K, Smalley KS, Bradford P, Qiu R, Pin-nix CC, Li X, Herlyn M. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/ phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 2006; 66: 4182-4190
15. Mehner K, McCarthy MM, Jivalaunu L, Flaherty KT, Aziz S, Camp RL, Rimm DL, Kluger HM. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol 2010; 41: 375-384
16. Gangjee A, Kurup S, Ilnat MA, Thorpe JE, Shenoy SS. Synthesis and biological activity of N(4)-phenylsubstituted-6-(2,4-dichlorophenylmethyl)-7H-pyrazolo[2,3- d]pyrimidine-2,4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic and antitu mor agents. Bioorg Med Chem 2010; 18: 3575-3587
17. Mimeault M, Bonenfant D, Batra SK. New advances on the functions of epidermal growth factor receptor and cerami des in skin cell differentiation, disorders and cancers. Skin Pharmacol Physiol 2004; 17: 153-166
18. Rosfjord KE, Halser EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 2000; 60: 4932-4938
19. Pinnix CC, Herlyn M. The many faces of Notch signaling in skin-derived cells. Pigment Cell Res 2007; 20: 458-465
20. Fernandez F, Caygill CP, Kirkham JS, Northfield TC, Savalgi R, Hill MJ. Faecal bile acids and bowel cancer risk in gastrointestinal surgery patients. Eur J Cancer Prev 1991; 1 Suppl 2: 79-82
21. Mimeault M, Batra SK. Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. J Cell Mol Med 2010; 14: 116-134
22. Ohshima Y, Yajima I, Takeda K, Iida M, Kumasaka M, Matsumoto Y, Kato M. c-RET molecule in malignant melanoma. J Cell Biochem 2004; 92: 669-676
23. Halsør EF, Vascular endothelial growth factor, inhibition by gefitinib (ZD1839). Clin Oncol 2001; 17: 153-166
24. Grenman R, Salven P, Elenius K. The EGFR inhibitor gefitinib suppresses recruitment of pericytes and bone marrow-derived perivascular cells into tumor vessels. Microvasc Res 2009; 78: 278-285
25. Djerf EA, Trinks C, Abdiiu A, Thunell LK, Hallbeck AL, Walz TM. ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res 2009; 19: 156-166
26. Amin DN, Bielenberg DR, Lifshitz E, Heymach JV, Klagsb-run M. Targeting EGFR activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR-2 dependence in tumor endothelial cells. Microvasc Res 2008; 76: 15-22
27. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20: 2149-2162

March 10, 2012 | Volume 3 | Issue 3 | www.wjgnet.com

WJCO
28 Curin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340-4346
29 Guo Y, Ma J, Wang J, Che X, Narula J, Bigby M, Wu M, Sy MS. Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res 1994; 54: 1561-1565
30 Ahrens T, Sleeman JP, Schemp CM, Howells N, Hofmann M, Ponta H, Herrlich P, Simon JC. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 2001; 20: 3399-3406
31 Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM. LIFRA signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002; 1: 279-288
32 Smalley KS, Contractor R, Nguyen TK, Xiao M, Edwards R, Muthusamy V, King AJ, Flaherty KT, Bosenberg M, Herlyn M, Nathanson KL. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res 2008; 68: 5743-5752
33 Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A, Jagannathan J, Van den Abbeele AD, Velazquez EF, Demetri GD, Fisher DE. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 2008; 26: 2046-2051
34 Bartolazzi A, Peach R, Arufo A, Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 1994; 180: 53-66
35 Knight LA, Di Nicolantonio F, Whitehouse P, Mercer S, Sharma S, Glaysher S, Johnson P, Cree IA. The in vitro effect of gefitinib (‘Iressa’) alone and in combination with cytotoxic chemotherapy on human solid tumours. BMC Cancer 2004; 4: 83
36 Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem 2008; 283: 22513-22528
37 Qiu L, Wang Q, Di W, Jiang Q, Schefeleber E, Derby S, Wanebo H, Yan B, Wan Y. Transient activation of EGFR/AKT cell survival pathway and expression of survivin contribute to reduced sensitivity of human melanoma cells to betulinic acid. Int J Oncol 2005; 27: 823-830
38 Kumano K, Masuda S, Sata M, Saito T, Lee SY, Sakata-Yamagimoto M, Tomita T, Iwatsubo T, Natsugari H, Kurokawa M, Ogawa S, Chiba S. Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 2008; 21: 70-78
39 Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets 2007; 11: 497-505
40 Postovit LM, Margaryan NV, Seftor EA, Hendrix MJ. Role of nodal signaling and the microenvironment underlying melanoma plasticity. Pigment Cell Melanoma Res 2008; 21: 348-357
41 Nickoloff BJ, Hendrix MJ, Pollock PM, Trent JM, Miele L, Qin JZ. Notch and NOXA-related pathways in melanoma plasticity. Pigment Cell Melanoma Res 2009; 22: 71-83
42 Huh SJ, Chung CY, Sharma A, Robertson GP. Macrophage inhibitory cytokine-1 regulates melanoma vascular development. Am J Pathol 2010; 176: 2948-2957
43 Puri N, Ahmed S, Janananchi V, Tretiakova M, Zumbra O, Krausz T, Jagadeeswaran R, Salgia R. c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 2007; 13: 2246-2253
44 Woodman SE, Trent JC, Stemke-Hale K, Lazar AJ, Pricl S, Pavan GM, Feregilla M, Gopal VN, Yang D, Podoloff DA, Ivan D, Kim KB, Padapadowus N, Hwu P, Mills GB, Davies MA. Activity of dasatinib against L575F KIT mutant melano-
Mimeault M et al. Novel biomarkers and targets in melanomas

Maiser M, Keilholz U. Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. J Invest Dermatol 2011; 131: 487-494

Boonyaratanaornkit J, Yue L, Strachan LR, Scalapino KJ, LeBoit PE, Lu Y, Leong SP, Smith JE, Ghadially R. Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 2010; 130: 2799-2808

Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010; 466: 133-137

Zabierowski SE, Hrelly M. Learning the ABCs of melanoma-initiating cells. Cancer Cell 2008; 13: 185-187

Ma J, Lin YJ, Alloso A, Wilson BJ, Schatton T, Zhan Q, Murphy GF, Waaga-Gasser AM, Gasser M, Stephen Hodi F, Frank NY, Frank MH. Isolation of tumorigenic circulating melanoma cells. Biochim Biophys Acta Commun 2010; 402: 711-717

Civin GI, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M, Sommer L. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 2011; 71: 3098-3109

Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Altalato K, Kim I, Koh GY. CXCRI signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 2010; 70: 10411-10421

Algaazi AP, Soon CW, Daud AI. Treatment of cutaneous melanoma: current approaches and future prospects. Cancer Manag Res 2010; 2: 197-211

Patnana M, Bronstein Y, Szklaruk J, Bedi DG, Hwu WJ, Gershewald JE, Prieto VG, Ng CS. Multiparameter imaging, staging, and spectrum of manifestations of metastatic melanoma. Clin Radiol 2011; 66: 224-236

Nonaka D, Chiriboga L, Rubin BP. Differential expression of Si100 protein subtypes in malignant melanomas, and benign and malignant peripheral nerve sheath tumours. J Cutan Pathol 2008; 35: 1014-1019

Mahmood MN, Lee MW, Lindem MD, Nathanson SD, Hornyk TJ, Zarbo RJ. Diagnostic value of HMB-45 and anti-Melan A staining of sentinel lymph nodes with isolated tumor cells. J Am Acad Dermatol 2005; 53: 1288-1293

Ben-Izhak O, Stark P, Levy R, Bergman R, Lichtig C. Epithelial markers in malignant melanoma. A study of primary lesions and their metastases. Am J Dermatopathol 1994; 16: 241-246

Gown AM, Vogel AM, Hoak D, Gough F, McNutt MA. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am J Pathol 1986; 123: 195-203

Li M, Zhang B, Sun B, Wang X, Ban X, Sun T, Liu Z, Zhao X. A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res 2010; 29: 109

Ugurel S, Houben R, Schrama D, Voigt H, Zapartka M, Schadenordt D, Bröcker EB, Becker JC. Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin Cancer Res 2007; 13: 6344-6350

Matharoo-Ball B, Ratcliffe L, Lancashire L, Ugurel S, Miles AK, Weston DJ, Rees R, Schadenordt D, Ball G, Creaser CS. Diagnostic biomarkers differentiating metastatic melanoma patients from healthy controls identified by an integrated MALDI-TOF mass spectrometry/bioinformatic approach. Proteomics Clin Appl 2007; 1: 605-620

Uitkal J, Schadenordt D, Ugurel S. Serologic and immunohistochemical prognostic biomarkers of cutaneous malignancies. Arch Dermatol Res 2007; 299: 469-477

Boyle GM, Pedley J, Martyn AC, Banducci KJ, Strutton GM, Brown DA, Breit SN, Parsons PG. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol 2009; 129: 383-391

Ugurel S, Thirumaran RK, Bloethner S, Gast A, Sucker A, Mueller-Berghaus J, Rittgen W, Hemminki K, Becker JC, Kumar R, Schadenordt D. B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. Plos One 2007; 2: e236

Findeisen P, Zapatka M, Pecercella T, Matz K, Neumaier M, Schadenordt D, Ugurel S. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol 2009; 27: 2199-2208

Busch C, Geisler J, Knappskog S, Lillehaug JR, Lenning PE. Alterations in the p53 pathway and p16INK4a expression predict overall survival in metastatic melanoma patients treated with dacarbazine. J Invest Dermatol 2010; 130: 2514-2516

Jönsson B, Busch C, Knappskog S, Geisler J, Miletic H, Ringner M, Lillehaug JR, Borg A, Lenning PE. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res 2010; 16: 3356-3367

Grafström E, Egyházi S, Ringborg U, Hansson J, Platz A. Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res 2005; 11: 2991-2997

Bloks WA, van Dijk MC, Ruiter DJ. Molecular cytogenetics of cutaneous melanocytic lesions - diagnostic, prognostic and therapeutic aspects. Histopathology 2010; 56: 121-132

Tchernev G, Orfano CE. Downregulation of cell cycle modulators p21, p27, p53, Rb and proapoptotic Bcl-2-related proteins Bax and Bak in cutaneous melanoma is associated with worse patient prognosis: preliminary findings. J Cutan Pathol 2007; 34: 247-256

de Wit NJ, Rijnjies J, Diepstra JH, van Kuppevelt TH, Weidle UH, Ruiter DJ, van Muijen GN. Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br J Cancer 2005; 92: 2249-2261

Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 2005; 23: 1473-1482

Udalt M, Uitkal J, Kräütner GM, Peter RU. Chromosome 7 aneusomy in nevi, primary malignant melanomas and their metastases. Am J Pathol 2005; 167: 185-187

Rákosy Z, Vízkeleti L, Eccedi S, Vokó Z, Bégály A, Barok M, Krezk Z, Gallai M, Szentirmay Z, Adány R, Baláz M. EGFR gene copy number alterations in primary cutaneous melanoma are associated with poor prognosis. Int J Cancer 2007; 121: 1729-1737

Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombeta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 2004; 64: 5270-5282

Williams PF, Olsen CM, Hayward NK, Whiteman DC. Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden. Int J Cancer 2011; 129: 1730-1740

Ugurel S, Schadenordt D, Pföhler C, Neuber K, Thoelke A, Ulrich J, Hauschild A, Spieß K, Kaatz M, Rittgen W, Delorme S, Tilgen W, Reinhold U. In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group. Clin Cancer Res 2006; 12: 5454-5463
Mimeault M et al. Novel biomarkers and targets in melanomas

91 Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 2009; 101: 1724-1730

92 Brenneck S, Deichmann M, Nacher H, Kurzen H. Defense in angiogenic factors, such as interleukin-8, indicates response to chemotheraphy of metastatic melanoma. Melanoma Res 2005; 15: 515-522

93 Fusì A, Ochsenreither S, Busse A, Rietz A, Keilholz U. Expression of the stem cell marker nestin in peripheral blood of patients with melanoma. Br J Dermatol 2010; 163: 107-114

94 Vásquez-Moctezuma I, Meraz-Rios MA, Villanueva-López CG, Magaña M, Martínez-Macias R, Sánchez-González D, García-Sierra F, Herrera-González NE. ATP-binding cassette transporter ABCB5 gene is expressed with variability in malignant melanoma. Actas Dermosifiliogr 2010; 101: 341-348

95 Laga AC, Zhan Q, Weisshaupt C, Ma J, Frank MH, Murphy GF. SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study. Exp Dermatol 2010; 19: 339-345

96 Flórenes VA, Holm R, Myklebost O, Lendahl U, Fodstad O. Expression of the neuroectodermal intermediate filament nestin in human melanomas. Cancer Res 1994; 54: 354-356

97 Brychтовá S, Fiurášková M, Brychta T, Hirnak J. [The role of intermedial filament nestin in malignant melanoma progression]. Cesk Patol 2005; 41: 143-145

98 Piras F, Perra MT, Murtas D, Minerba L, Floris C, Maxia C, Demurtas P, Ugalde J, Ribatti D, Sirigu P. The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol Rep 2010; 23: 17-24

99 Kanoh M, Amoh Y, Tanabe K, Maejima H, Takasu H, Katsuoka K. Prognostic significance of the hair follicle stem cell marker nestin in patients with malignant melanoma. Eur J Dermatol 2010; 20: 283-288

100 Bakos RM, Maier T, Besch R, Mestel D, Ruzicka T, Sturm RA, Berking C. Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp Dermatol 2010; 19: e89-e94

101 Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR. Increased expression of stem cell markers in malignant melanoma. Mod Pathol 2007; 20: 102-107

102 Sharma BK, Manglik V, Elias EG. Immuno-expression of human melanoma stem cell markers in tissues at different stages of the disease. J Surg Res 2010; 163: e11-e15

103 Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz I Altua A. Melanomas require HEDGE-HOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/ERK pathways. Proc Natl Acad Sci U S A 2007; 104: 5895-5900

104 Deng WG, Kwon J, EmkeMcCoulg S, Poindexter NJ, Grimm EA. IL-24 gene transfer sensitizes melanoma cells to erlotinib through modulation of the Apaf-1 and Akt signaling pathways. Melanoma Res 2010

105 Schicker N, Paulitschke V, Mestel DS, Grimmler H, Rüttimann B, Pehamberger H, Hoeller C. Erlo tinib and bevacizumab have synergistic activity against melanoma. Clin Cancer Res 2009; 15: 3495-3502

106 Turza K, Dengel LT, Harris RC, Patterson JW, White K, Grosh WW, Slingluff CL. Effectiveness of imiquimod limited to dermal melanoma metastases, with simultaneous resistance of subcutaneous metastasis. J Cutan Pathol 2010; 37: 94-98

107 Buettiker UV, Yawalkar NY, Braathen LR, Hunger RE. Imiquimod treatment of lentigo maligna: an open-label study of 34 primary lesions in 32 patients. Arch Dermatol 2008; 144: 943-945

108 Wolf IH, Cerroni L, Kodama K, Kerl H. Treatment of lentigo maligna (melanoma in situ) with the immune response modifier imiquimod. Arch Dermatol 2007; 143: 510-514

109 Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD. Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the TH1/TH2 balance in patients with metastatic melanoma. Br J Dermatol 2008; 159: 608-614

110 Krauze MT, Tarhini A, Gogas H, Kirkwood JM. Prognostic significance of autoimmunity during treatment of melanoma with interferon. Semin Immunopathol 2011; 33: 385-391

111 Weide B, Eigentler TK, Pflugfelder A, Leiter U, Meier F, Bauer J, Schmidt D, Radny P, Pfohler C, Garbe C. Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother 2011; 60: 487-493

112 Bediakyn AY, Johnson MM, Warneke CL, Papapoulos NE, Kim KB, Hwu WJ, McIntyre S, Rofilis M, Homsj J, Hwu P. Does complete response to systemic therapy in patients with stage IV melanoma translate into long-term survival? Melanoma Res 2010

113 Ridolfi L, Petroni M, Fiammenghi L, Garantzo AM, Ancarani V, Pancisi E, Scarpì E, Guidoboni M, Migliori G, Sanna S, Taufel C, Verdecchia GM, Riccobon A, Valmorri L, Ridolfi R. Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol 2010; 2010: 504797

114 Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M, Dumm M, Urbas P, Daud A, DeConti R, Antonia S, Gabrilovich D, Fishman M. Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 2010; 33: 817-827

115 Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, Eggermont AM, Espinosa E, Guo J, Hauschild A, Petrella T, Schachter J, Hersey P. Immunotherapy of distant metastatic disease. Ann Oncol 2009; 20 Suppl 6: v41-v50

116 Becker JC, Bröcker EB, Schadendorf D, Ugurel S. Imatinib in melanoma: a selective treatment option based on KIT mutation status? J Clin Oncol 2007; 25: e9

117 Agarwala SS. Novel immunotherapies as potential thera peutic partners for traditional or targeted agents: cytotoxic T-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Res 2010; 20: 1-10

118 Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee R, Grippo JF, Nolop K, Chapman PA. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809-819

119 Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang S, West BL, Powell B, Shelloo R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PA, Flaherty KT, Xu N, Nathanson KL, Nolop K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596-599

120 Ledford H. Rare victory in fight against melanoma. Nature 2010; 467: 140-141

121 Dummer R, Robert C, Chapman PB, Sosman JA, Middleton M, Bastholt L, Kemsley K, Cantarini MV, Morris C, Kirkwood JM. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in pa-
Mimeault M et al. Novel biomarkers and targets in melanomas

tients (pts) with advanced melanoma: an open-label, random-
ized, multicenter, phase II study. J Clin Oncol 2008; 26: abstr 9033

124 Banerji U, Camidge DR, Verheul HM, Agarwal R, Sarker D, Kaye SB, Desar IM, Timmer-Bonte JN, Eckhardt SG, Lewis KD, Brown KH, Cantarini MV, Morris C, George SM, Smith PD, van Herpen CM. The first-in-human study of the hydro-
gen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res 2010; 16: 1613-1623

125 Ott PA, Hamilton A, Min C, Safarzadeh-Amiri S, Goldberg L, Yoon J, Yee H, Buckley M, Christos PJ, Wright JJ, Polsky D, Osman L, Liebes L, Pavlick AC. A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 2010; 5: e15588

126 Kaufman HL, Bines SD. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 2010; 6: 941-949

127 Kaufman HL, Kim DW, DeRaffele G, Mitchell J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV mela-
noma. Ann Surg Oncol 2010; 17: 718-730

128 Dréau D, Foster M, Hogg M, Swiggett J, Holder WD, White RL. Angiogenic and immune parameters during recombi-
nant interferon-alpha2b adjuvant treatment in patients with melanoma. Oncol Res 2000; 12: 241-251

129 Fateh S, Schell TD, Gingrich R, Neves RI, Drabick JJ. Unsuccess-
ful high dose IL-2 therapy followed immediately by near continuous low dose temozolomide can result in rapid durable complete and near-complete remissions in meta-
static melanoma. Cancer Biol Ther 2010; 10: 1091-1097

130 Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, Sherry RM. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 2010; 16: 4892-4898

131 Häkansson A, Gustafsson B, Krysander L, Häkansson L. Effect of IFN-alpha on tumor-infiltrating mononuclear cells and regressive changes in metastatic malignant melanoma. J Interferon Cytokine Res 1998; 18: 33-39

132 Hauchild A, Dummer R, Ugurel S, Kaehtler KC, Egberts F, Fink W, Both-Skalsky J, Laetsch B, Schadendorf D. Com-
bined treatment with pegylated interferon-alpha-2a and da-
carbazine in patients with advanced metastatic melanoma: a phase 2 study. Cancer 2008; 113: 1404-1411

S- Editor Yang XC L- Editor A E- Editor Yang XC