Body composition impact on survival and toxicity of treatment in pancreatic cancer: cross-sectional pilot study

Ana Paula Noronha Barrere1, Silvia Maria Fraga Piovacari1, Pedro Luiz Serrano Usón Junior2, Rene Claudio Gansl2, Andrea Z Pereira2 and Nelson Hamerschlag3

ABSTRACT – Background – Weight loss and body composition changes are common in patients with pancreatic cancer. Computed tomography (CT) images are helpful to investigate body composition and its changes and to discriminate the different kinds of body tissues. Patients with pancreatic cancer routinely undergo CT scans. Objective – To verify the association of muscle mass and visceral fat measured by CT with toxicity and survival of patients with pancreatic cancer. Methods – We evaluated the imaging of the abdomen of all consecutive adult patients with pancreatic cancer treated between October 2007 and September 2015 in our service, to assess skeletal muscle mass and fat, intramuscular fat and visceral fat. We graded treatment toxicity symptoms according to the Common Toxicity Criteria of the United States National Cancer Institute (version 2.0). Results – The study involved 17 patients, with a mean age of 63 (±10) years (range: 51–73 years). Eleven (65%) were male. The mean initial body mass index (BMI) was 26 kg/m² (±3) and 23 kg/m² (±3) after treatment. The mean weight loss was 10.0 kg (±6.8; 13%). Sarcopenia was present in 47% of patients, and it was not associated with significant differences in muscle mass, visceral fat, toxicity or survival. The mean skeletal muscle attenuation was 36 Hounsfield units, not associated with survival or treatment toxicity. Mean muscle mass was not associated with toxicity either. However, there was a significant inverse association between toxicity and visceral fat. Conclusion – Muscle mass had no impact on the survival or on treatment toxicity among the patients with pancreatic cancer. However, the visceral fat exerted a protective effect against the treatment toxicity. We stress the importance of further studies on visceral fat associated with prognosis and toxicity in cancer patients.

INTRODUCTION

Pancreatic cancer is a highly lethal malignancy, with a survival rate at 5 years ranging from 0.4% to 4%1–4. In Brazil, the disease is responsible for about 2% of all diagnosed cases of cancer and 4% of all deaths5. Weight loss is common in patients with pancreatic cancer at diagnosis (5%–10%) and before death (≤24%), which contributes to a worse prognosis. Associated with weight loss, the individual may show changes in body composition (lean and adipose tissue compartments), resulting from the decrease in food intake and metabolic disorders, and the disease may also lead to cachexia and/or sarcopenia6–9.

Nutritional assessment using body mass index (BMI) solely does not reveal changes in body composition. With the advancement of new technologies, different methods to assess body composition (lean and adipose tissue) have been developed and validated for research, focused on aging and chronic diseases, and have emerged as important predictors of oncology outcomes9–11. Computerized tomography (CT) images are helpful to investigate body composition and its changes throughout the disease evolution and to discriminate the different kinds of body tissues9–11. However, there are limitations in this method such as high-dose radiation exposure, high cost, and low accessibility9,10. Still, because cancer patients routinely undergo routine CT scans, there would be no increment in the risk of exposure to radiation nor difficult access to this technology9,12,13.

We performed a retrospective cross-sectional study designed to evaluate the association of muscle mass and visceral fat with toxicity and survival in patients with pancreatic cancer.

METHODS

Patients and study

This is a cross-sectional study carried out at one private hospital (in São Paulo, Brazil), from October 2007 to September 2015, based on the review of medical records. The Institutional Review Board approved the study (protocol 2098-14), and the anonymity of the patients was guaranteed. Informed consent was waived by the ethics committee since the study is based on medical records review.

Initially, we evaluated all patients with pancreatic cancer undergoing antineoplastic treatment (surgery, chemotherapy and/or radiotherapy) for inclusion in this study. The inclusion criteria for this study were: adult (≥18 years), pancreatic cancer patients who had undergone surgery and chemotherapy and routine CT scans...
for disease staging, containing images at L3. Exclusion criteria: patients who did not have tomographic staging images available, chronic renal failure, congestive heart failure or liver cirrhosis cases. We also excluded patients who had undergone radiotherapy or chemotherapy alone.

Body composition impact on survival and toxicity of treatment in pancreatic cancer: cross-sectional pilot study

Body composition measurements

Anthropometric measurements

We measured the initial and the final weight and height. We recorded weight with a medical balance beam scale and height with a stadiometer. We calculated body mass index (BMI) as weight (kg)/height (m²). For patients aged 18–60 years, we classified the results of BMI as recommended by the World Health Organization (WHO). For elderly patients (≥60 years), we used the SABE/OPAS classification (2003).

Image analysis

We measured regional adipose tissue (visceral and subcutaneous) and muscle tissue in the CT images, in the period of ≤60 days before the start of treatment. We used the third lumbar vertebra (L3) as a reference point because it contains muscle tissue of the psoas, erector spinae, quadratus lumbarum, transversus abdominus, external and internal obliques, rectus abdominus. Taken together, they present excellent correlation to estimate total lean body mass. We used pre-established thresholds of Hounsfield units (HU), and we identified the different tissues by CT, considering the following parameters: muscle mass varies between -29 and +150 HU, subcutaneous and intramuscular fat tissues vary from -190 to -30 HU, and visceral fat from -150 to -50 HU.

We assessed four consecutive slices, from L3 to the iliac crests, to measure the cross-sectional area of muscle and adipose tissue (visceral, subcutaneous and intramuscular), expressed as cm², and the skeletal muscle attenuation. We analyzed images using Slice-O-Matic software V4.3 (Tomovision). To quantify lean mass, intramuscular adipose tissue, subcutaneous adipose tissue, visceral fat, and total adipose tissue. We took these tissue areas in cm² and used them to calculate whole-body mass for each in kilograms (kg).

We also calculated the skeletal muscle index (SMI) according to the equation:

\[
\text{SMI} = \frac{\text{skeletal muscle area of the L3 region (cm}^2\text{)/height (m}^2\text{)}}
\]

We considered individuals as sarcopenic when showing SMI in the region of L3 of <38.5 cm²/m² for women and <52.4 cm²/m² for men.

Toxicity assessment

We graded cancer treatment toxicity (gastrointestinal events) according to the National Cancer Institute Common Toxicity Criteria, version 2.0. We obtained patient toxicity assessments from the medical records.

Statistical analysis

Data were expressed by mean ± standard deviations (SD) in the case of quantitative variables and absolute frequencies and percentages for the qualitative variables. The association of the body composition characteristics with toxicity was assessed with the Mann-Whitney test. Spearman correlations of the initial and final weight/BMI and measures body composition were calculated. The influence of anthropometric measurements and body composition in the survival of patients was evaluated with bivariate Cox regression. The estimate of survival was performed using the Kaplan-Meier function according to the presence of sarcopenia and compared using the log-rank test. The tests were performed at the 5% significance level. Statistical analysis was done using SPSS software.

RESULTS

We identified 60 eligible cases from the hospital’s medical archives, of which 17 underwent surgery followed by chemotherapy and had CT scans available. The most commonly used chemotherapeutics were gemcitabine, cisplatinum, and oxaliplatin. FIGURE 1 shows the flowchart of patients’ inclusion. The study consisted of 11 male patients (65%) and 6 women (35%), with a mean age of 63 years (±10) (51–73 years). The patients’ demographics are described in TABLE 1.

TABLE 1. Anthropometric data of patients with pancreatic cancer in means (standard deviation).

Variables	Patients (n=17)
Age (years)	63 (±10)
Initial weight (kg)	74 (±13)
Initial BMI (kg/m²)	26 (±3.0)
Final weight (kg)	65 (±14)
Final BMI (kg/m²)	23 (±3.0)
Weight loss (kg)	10 (±6.8)

BMI: body mass index.

Over half of the patients (65%) had localized tumors in the pancreas head, followed by 29% and 6% on the tail of the pancreas body. The main histological type was adenocarcinoma, stage II (76%), III (12%) and IV (12%). The adverse events most frequently reported by patients were nausea (76.5%), loss of appetite (59%),...
vomiting (41%), diarrhea (35%), and constipation (12%). Only 2 (12%) patients reported no adverse events resulting from antineo-
plastic therapy. In our population, 10 (59%) patients died, over a period of 8 years. The median overall survival was 19 months (±14).

The initial mean BMI was 26 kg/m² (±3.2), and final BMI was
23 kg/m² (±3.0). At diagnosis, there was 1 (6.0%) malnourished
patient, there were 8 (47.0%) eutrophic, 7 (41.0%) overweight
and 1 (6.0%) obese patients. At the end of study, we observed 8 (47.0%)
malnourished patients, 6 (35.0%) eutrophic, and 3 (18%) were
overweight. The mean weight loss was 10 kg (±6.8) (13%) after
the treatment. TABLE 2 shows the data of body composition
(in cm²), from which we estimated the amount of lean body mass
and adipose tissue, described in TABLE 3.

A greater amount of visceral fat was significantly associ-
ated with the absence of symptoms of toxicity (Mann-Whitney
test; P=0.003). However, there was no significant association
of these symptoms with muscle mass (TABLE 4). Age was not
significantly associated with initial body weight, BMI or adipose
tissue. There was no association of muscular attenuations
and survival or toxicity.

TABLE 2. Variables of body composition in patients with pancreatic
cancer in means (standard deviation).

Variables	Values
Lean mass (cm²)	127 (±31.3)
Intramuscular adipose tissue (cm²)	11 (±8.1)
Visceral fat (cm²)	148 (±79.1)
Subcutaneous adipose tissue (cm²)	187 (±79.3)
Total adipose tissue (cm²)	345 (±129.7)
Lean mass (kg)	44 (±9.4)
Visceral fat (kg)	18 (±5.5)
Total adipose tissue (kg)	28 (±5.5)
Muscle attenuation (HU)	36 (±8.9)

HU: Hounsfield units.

TABLE 3. Values of weight and body compartments according to age.

Variables	Patients <60 years (n=06)	Patients >60 years (n=11)	P
Initial weight (kg)	72.5 (±18.0)	75 (±11.0)	0.718
Final weight (kg)	58 (±14.0)	67 (±14.0)	0.265
Initial BMI (kg/m²)	26 (±4.5)	26.5 (±2.5)	0.670
Final BMI (kg/m²)	22 (±3.0)	23 (±2.8)	0.268
Lean mass (kg)	45 (±10.9)	44 (±9.0)	0.884
Visceral fat (kg)	17 (±3.0)	18 (±3.0)	0.149
Muscle attenuation (HU)	40 (±9)	34 (±8.4)	0.149

BMI: body mass index. HU: Hounsfield units.

TABLE 4. Association between adverse effects of treatment and variables
of body composition and anthropometry.

Variables	Adverse effects	P	
	Yes (n=15)	No (n=2)	
Lean mass (kg)	48 (±21.5)	44 (±8.0)	0.941
Visceral fat (kg)	22 (±0.2)	23 (±3.1)	0.029
Skeletal mass index (cm²/m²)	44 (±7.5)	46.5 (±11)	0.721
Initial BMI (kg/m²)	26 (±3.4)	28 (±0.1)	0.721
Final BMI (kg/m²)	23 (±3.0)	20 (±3.1)	0.500
Muscle attenuation (HU)	37 (±6.8)	32 (±24.3)	>0.999

BMI: body mass index. HU: Hounsfield units.

According to the tomographic images, we classified 8 (47%)
patients as sarcopenic. Although more than 50% of patients meet
these criteria, we found no significant differences concerning death,
toxicity, and BMI (initial and final) between sarcopenic and not
sarcopenic patients. The average estimate of survival by Kaplan-
Meier can be seen in FIGURE 2.

FIGURE 2. Survival and correlation with sarcopenia in patients with
pancreatic cancer.

DISCUSSION

In our study, the majority of patients (47%) were overweight
initially (6% were obese and 41% overweight). In fact, it is well
demonstrated in the literature that the prevalence of overweight is
high among pancreas cancer patients(12,21). We found no significant
correlation between BMI and survival in our study, and this could
be explained by the sample size and the severity of pancreatic cancer (59% of deaths).

We observed a mean weight loss of 10 kg (13%) compared to the
weight at diagnosis, which was higher compared to other studies(2,22).
However, the weight loss found in our study was not correlated
with survival(2,3,22). Studies have shown weight loss from 17% to
25% and association with lower survival rates(2,23). It is known that
pancreatic cancer leads to nutritional depletion, with considerable
losses of the body compartments, evidenced anthropometric and
body composition evaluations(24).

Regarding the toxicity of the chemotherapeutic treatment,
unlike other studies, we found a significant and inverse correlation
between the amount of visceral fat and adverse events(25-28). The
findings of this study show that visceral fat promoted a protective
impact in relation to toxicity. In a systematic review by Vrieling
et al., visceral fat showed a positive association with recurrence
of the disease, however, its relation with toxicity was not men-
tioned(25). Kushen et al. found, in a study with patients undergoing
docetaxel chemotherapy, a relationship between higher visceral
fat and lower survival, but also without mentioning anything on
toxicity(26). A study by Wong et al. showed a positive association
between hematologic toxicity and increased visceral fat reserves
in breast cancer patients(28). Perhaps the specific treatment is less
toxic and there may be a greater relapse as the medication is stored in the visceral fat. Therefore, it is important to carry out new studies on visceral fat associated with prognosis and toxicity in cancer patients, as well as in patients with pancreatic cancer, to elucidate these issues.

Studies have shown that muscle mass plays an important role in clinical outcomes and that sarcopenia indicates worse prognosis and lower survival rates\(24,30\). In a study by Tan et al., the authors verified 56% of pancreas cancer patients with sarcopenia when evaluating body composition by CT\(^\text{25}\). In our study, although the rates of sarcopenia (47%) were similar to those of other studies addressing gastrointestinal, pancreatic and pulmonary tumors (15%–56%)\(^\text{10,11,31}\), there was no influence of sarcopenia on survival. It should be considered that this is a retrospective study based on medical records and that data on muscle strength and functionality could be obtained only in prospective studies\(^\text{11}\).

Muscle attenuation indices, which theoretically could represent muscle quality, did not reveal associations with survival or toxicity of the treatment in this study. According to Aubrey et al., it is necessary to standardize the cutoff parameters, that is, the establishment of criteria for muscle attenuation is necessary for better analysis of the results\(^\text{11}\).

CONCLUSION

We conclude that CT is a useful method to evaluate body composition, especially in cancer patients, since they already undergo these assessments throughout their oncological treatment (for staging, and prognosis evaluation). Sarcopenia is prevalent in the population of patients with pancreatic cancer, and may promote unfavorable outcomes, such as increased toxicity and shorter survival. However, we found no association between survival and muscle mass in our sample. We did find an inverse relationship between visceral fat and toxicity. There is a need to better elucidate the role of adipose tissue in severe diseases, such as pancreatic cancer, especially with regard to toxicity and survival.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of other researchers that helped in this investigation. We are grateful for Prof. Carla Prado and Ronaldo Baroni for their assistance and training in computed tomography imaging interpretations. We also thank Heloisa Rodrigues, Eduardo Weltman and Wilson Leite Pedreira Junior for providing the infra-structure and access to patients’ medical records.

Authors’ contribution

Barrère APN: study conception and design, data acquisition and analysis, manuscript drafting and final approval. Piovacari SMF, Uson Junior PLS, Gansl RC: data interpretation, manuscript reviewing and final approval. Pereira AZ: study conception and design, data collection and interpretation, manuscript reviewing and final approval. Hamerschlack N: study conception and design, data interpretation, manuscript reviewing and final approval. All authors agree to be accountable for all aspects of the work.

Orcid

Ana Paula Noronha Barrère: 0000-0001-9719-9092.
Silvia Maria Fraga Piovacari: 0000-0002-4107-3463.
Pedro Luiz Serrano Uson Junior: 0000-0001-6122-1374.
Rene Claudio Gansl: 0000-0002-4757-3215.
Andrea Z Pereira: 0000-0002-3572-6405.
Nelson Hamerschlack: 0000-0002-5140-5310.
REFERENCES

1. Duceux M, Cuhna AS, Caramella C, Holliebecque A, Burtin P, Goéré D, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 3):v56-68.

2. Davidson W, Ash S, Capra S, Bauer J. Cancer Cachexia Study Group. Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer. Clin Nutr. 2004;23:239-47.

3. Gekkinger JM, Katibara CM, Bernardin L, Barrère APN, de Gonzalez A, Brotzman M, Elena JW, et al. Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies. Ann Oncol. 2015;26:2257-66.

4. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691-703.

5. Usón Junior PLS, França MS, Rodrigues HV, Macedo ALV, Goldenberg A, Smalete O, et al. Maior sobrevida global em pacientes com câncer pancreático metastático: o impacto de onde e como o tratamento é realizado [Higher overall survival in metastatic pancreatic cancer: the impact of where and how and treatment is delivered]. Einstein (São Paulo). 2015;13:347-51.

6. Van Cutsem E, Arends J. The causes and consequences of cancer-associated malnutrition. Eur J Oncol Nurs. 2005;9(Suppl 2):S51-63.

7. Argilés JM, Busquets S, Felipe A, López-Soriano FJ. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int J Biochem Cell Biol. 2003;35:1084-104.

8. Parson HA, Dhillon N, Hong DS, Kurzrock R. Body composition, symptoms, and survival in advanced cancer patients referred to a phase I service. PLoS One. 2012;7:e29330.

9. Yip C, Dincl G, Mahajan A, Siddique M, Goh V. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging. 2015;6:489-97.

10. Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, Maehler VC. Measurement of skeletal muscle radiation attenuation and basis of its variability. Acta Physiol (Oxf). 2014;210:489-97.

11. Dalal S, Hui D, Bidaut L, Lern K, Del Fabbro E, Crane C, et al. Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: a pilot study. J Pain Symptom Manage. 2012;44:181-91.

12. Gusella M, Toso S, Ferrazzi E, Ferrari M, Padrini R. Relationships between body composition parameters and fluorouracil pharmacokinetics. Br J Clin Pharmacol. 2002;54:131-9.

13. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157-67.

14. Lebrão ML, Duarte YA. SABE – Saúde, Bem-estar e Envelhecimento - O Projeto SABE no município de São Paulo: uma abordagem inicial. Brasília: Organização Pan-Americana; 2003.

15. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A critical evaluation of body composition characterization of Anthropometric Changes that Occur During Neoadjuvant Therapy for Potentially Resectable Pancreatic Cancer. Ann Surg Oncol. 2015;22:2416-23.

16. Parsons HA, Baracos VE, Hong DS, Abbruzzese J, Bruer E, Kurzrock R. The effects of curcumin (diferuloylmethane) on body composition of patients with advanced pancreatic cancer. Oncotarget. 2016;7:20293-304.

17. Di Sebastiano KM, Mourtzakis M. A critical evaluation of body composition modalities used to assess adipose and skeletal muscle tissue in cancer. Appl Physiol Nutr Metab. 2012;37:811-21.

18. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2009;10:629-35.

19. Saad ED, Hoff PM, Carmeló RP, Katz A, Novis YAS, Pietrocola M, et al. Critérios comuns de toxicidade do Instituto Nacional de Câncer dos Estados Unidos [Common toxicity criteria of the National Cancer Institute]. Rev Bras Cancerol. 2002;48:63-96.

20. Li D, Morres IS, Liu J, Hassan MM, Day RS, Bondy ML, et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA. 2009;301:2553-62.

21. Bachmann J, Ketterer K, Marsch C, Fechtner K, Krakowski-Roosen HB, Hicher MW, et al. Pancreatic cancer related cachexia: influence on metabolism and correlation to weight loss and pulmonary function. BMC Cancer. 2009;9:255.

22. Barber MD, Ross KA, Voss AC, Tisdale MJ, Fearon KC. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer. 1999;81:180-6.

23. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539-47.

24. Tan BH, Birdsell LA, Martin L, Baracos VE, Fearon KC. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res. 2009;15:6973-9.

25. Prado CM, Birdsell LA, Baracos VE. The emerging role of computerized tomography in assessing cancer cachexia. Curr Opin Support Palliat Care. 2009;3:269-75.

26. Vieling A, Kampman E, Knippenberg NC, Mulders PF, Sedeelar JFM, Baracos VE, Kriemenay LA. Body Composition in Relation to Clinical Outcomes in Renal Cell Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus. 2016 Dec 4. pii: S2405-4569(16)30167-5. doi: 10.1016/j.euf.2016.11.009. [Epub ahead of print]

27. Cushen SJ, Power DG, Murphy KP, McDermott R, Griffin BT, Lim M, Daly L, MacKenzie J, Sullivan KO, Prado CM, Ryan AM. Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin Nutr ESPEN. 2016;13:e39-e45.

28. Wong AL, Seng KY, Ong EM, Wang LZ, Oscar H, Cordero MT, Copones R, Fan L, Tan SH, Goh BC, Lee SC. Body fat composition impacts the hematologic toxicities and pharmacokinetics of doxorubicin in Asian breast cancer patients. Breast Cancer Res Treat. 2014;144:143-52.

29. González MC, Pastore CA, Orlandi SP, Heymsfield SB. Obesity paradox in cancer: new insights provided by body composition imaging. Eur J Oncol Nurs. 2008;9(Suppl 2):S83-90.

30. Moryoussef F, Dhooge M, Volet J, Barbe C, Brezault C, Hoeffel C, et al. Reversible muscle atrophy due to increased metabolic demands: effect of fish oil supplementation on weight loss and physical performance in patients with advanced cancer. Br J Cancer. 2007;97:1598-602.

31. Cushen SJ, Power DG, Murphy KP, McDermott R, Griffin BT, Lim M, Daly L, MacKenzie J, Sullivan KO, Prado CM, Ryan AM. Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin Nutr ESPEN. 2016;13:e39-e45.

32. Enqvist A, Jönsson L, Nilsson B, Winkel C, Jönsson T, Sten T, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 3):v56-68.