Title
Anomalous chromomagnetic moments of quarks and large transverse energy jets.

Permalink
https://escholarship.org/uc/item/8gp9f6v5

Journal
Physical review. D, Particles and fields, 54(9)

ISSN
0556-2821

Author
Silverman, D

Publication Date
1996-11-01

DOI
10.1103/physrevd.54.5563

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Anomalous chromomagnetic moments of quarks and large transverse energy jets

Dennis Silverman
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92717-4575

(Received 15 May 1996)

We consider the jet cross sections for gluons coupling to quarks with an anomalous chromomagnetic moment. We then apply this to the deviation and bounds from QCD found in the CDF and D0 Fermilab data, respectively, to find a range of possible values for the anomalous moments. The quadratic and quartic terms in the anomalous moments can fit to the rise of a deviation with transverse energy. Since previous analyses have been done on the top quark total cross section, here we assume the same moment on all quarks except the top quark and find the range \( |\kappa'| = |\kappa/(2m_q)| = 1.0 \pm 0.3 \) TeV\(^{-1}\) for the CDF data. Assuming the anomalous moment is present only on a charm or bottom quark which is pair produced results in a range \( |\kappa'_{c,b}| = 3.5 \pm 1.0 \) TeV\(^{-1}\). The magnitudes here are compared with anomalous magnetic moments that could account for \( R_b \) and found to be in the same general range, as well as not inconsistent with CERN LEP and SLD bounds on \( \Delta \Gamma_{had} \). [S0556-2821(96)05821-3]

PACS number(s): 13.87.Ce, 13.40.Em, 14.65.–q

I. INTRODUCTION

There are several higher-dimensional operators that can be used to evaluate structure from a theory beyond the standard model [1]. In this paper we use the time-honored anomalous magnetic moment as the indicator [2–5], applied to the quark-gluon vertex, or the anomalous chromomagnetic moment. Several papers have been written analyzing the contribution of such a moment to the top production cross section [6–10]. In this paper, we assume such a moment could apply to any or all of the mainly annihilated, scattered or produced quarks other than the top quark. The results of this will be different from those of the four-Fermion contact interaction operators, and also should be included in evaluations of possible structure. Along with the exchange of a spin 3/2 excited quark state [11], the \( E_T \) dependence and angular two-jet behavior could help further limit or establish a composite mechanism, or new interactions from higher mass scales. The same theory that gives an anomalous chromomagnetic moment also may give a four-Fermion contact interaction, but here we analyze only the anomalous moment mechanism in a general context. For a complete analysis of all color current contributions in a particular model, we refer to the recent analysis of the Minimal Supersymmetric Standard Model [12]. The key point in our analysis is that the anomalous moment term \( \kappa' \sigma_{\mu \nu} q^\nu \), when compared to the Dirac current \( \gamma_\mu q \), grows at high \( E_T \) as \( O(\kappa' E_T) \).

In the top production papers, gluon fusion or quark fusion to a virtual gluon are calculated to produce the \( t\bar{t} \) pair. Here we include all quark gluon hadronic processes since quarks commonly present in protons and antiprotons could have the small anomalous moments.

Since next-to-leading order QCD corrections have not been calculated for this general set of anomalous moment processes, to compare with the data we follow the Collider Detector at Fermilab Collaboration (CDF) [13,14] procedure of calculating the ratio of the theory with structure divided by lowest order QCD and comparing it with the ratio of data divided by next to leading order (NLO) QCD. We find that an anomalous chromomagnetic coefficient \( |\kappa'| = |\kappa/(2m_q)| = 1.0 \) TeV\(^{-1}\) fits the CDF rise, and would be roughly upper bounded by 1.3 TeV\(^{-1}\), and lower bounded by 0.7 TeV\(^{-1}\). The central value for the rise in CDF is not directly supported by the D0 [15] data, but is within the one sigma systematic energy calibration error curve for D0, which rises to 120% at \( E_T = 450 \) GeV.

We use \( \kappa' \) since in the general case the internal diagram or dynamics might not involve the light external quark, and a new physics model calculation will give \( \kappa' \) directly. The use of the breakup into a vector current \( \gamma_\mu \) and an anomalous chromomagnetic moment term \( i \kappa' \sigma_{\mu \nu} \) includes all anomalous moment vertex corrections in \( \kappa' \) including those of QCD. However, at the very large momentum transfers we are considering here, there are form factors on the QCD vertex corrections making up the anomalous chromomagnetic moment either for virtual gluons or for high \( E_T \) virtual quarks (‘sidewise form factors’ [16]), which will damp like \( [\kappa'_{QCD} = O(m_q/p^2)] \) and become irrelevant. At some \( q^2 \), the anomalous moment from new or composite interactions also will evidence a form factor. That is automatically included in the analysis by considering \( \kappa' \) \( (q^2) \) as a function of \( q^2 \), but in the comparison to the data, we do not need to invoke that dependence yet. We test whether an anomalous magnetic moment equal to the anomalous chromomagnetic moment possibly indicated here would be in conflict with the \( \Gamma_{had} \) accuracy at the CERN \( e^+ e^- \) collider LEP, and find it would not be.

Because of discrepancies in the total hadronic cross sections for charm and bottom production at LEP and the SLAC Large Detector (SLD), \( R_c \) and \( R_b \), we also find a separate range for either the charm or bottom quark only having an anomalous chromomagnetic moment, using the quark-antiquark production cross sections. The range for the CDF data is \( \Delta \Gamma_{had} \). We note that if the \( R_b \) discrepancy is accounted for by an anomalous magnetic mo-
moment, it is the same order of magnitude as the anomalous chromomagnetic moment found here. $A_{FQ}$ is not inconsistent with this interpretation and rules out one of two possible anomalous magnetic moment values. For comparison with results from the top quark total cross section from Ref. [8], we note from their Fig. 3, using present CDF and D0 data on $\sigma_{top}$, that $0<\kappa_2^s<0.35$. This corresponds to $0<\kappa^s<1$ TeV$^{-1}$, and is better than the inclusive jet limits for the $b$ or $c$ quark alone calculated here.

II. ANOMALOUS CHROMOMAGNETIC MOMENT CROSS SECTIONS

The top quark fusion production [7,9,10] with anomalous chromomagnetic moments has been calculated already. We use the simplifications of these for the case of zero quark mass in the various channels in which quark-quark-gluon-gluon processes occur. For completeness, we repeat these formulas here for the massless case along with the massless QCD contribution. We also present here the result with anomalous chromomagnetic moment for quark-antiquark annihilation and scattering to the same quark-antiquark with interference, and its crossed quark-antiquark scattering. We then present the cross sections for different quarks scattering and annihilating. The cross sections are even in powers of $\kappa'$ due to the zero quark mass limit being used. This is because at zero mass only gamma matrices occur in the QCD trace and substitution of an anomalous moment $\sigma_{\mu\nu}$ term for a $\gamma_{\mu}$ would give an odd number of gamma matrices and resulting in a zero trace, unless accompanied by an additional $\sigma_{\mu\nu}$ term. In other terms, at zero quark mass, there is no interference between helicity conserving and helicity flip processes: helicity conserving ones have either no anomalous moment terms or two such terms; helicity flip ones have one anomalous moment for each helicity flipped quark line, and this gets squared in the cross section. Neglect of the mass in a propagator term could give an error of order $m_q/E_T=2.3\%$ in the amplitude at $E_T=200$ GeV, or 4.5% in the cross section.

A. Gluon processes

The well-known result [17] for gluon-gluon scattering is

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{9}{2} \left( 3 - \frac{\hat{u}}{\hat{s}} - \frac{\hat{t}}{\hat{s}} + \frac{\hat{u}\hat{t}}{\hat{s}^2} - \frac{\hat{s}\hat{t}}{\hat{s}^2} \right).$$

(1)

For quark-antiquark to gluon-gluon [18,17,7,9], the cross section is

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{16}{72} \left[ 8 \left( \frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} \right) + 12 \frac{\hat{u}}{\hat{s}} - 6 + \frac{28}{3} \kappa'z + 16 \frac{1}{3} \kappa'2\hat{t} \right].$$

(2)

For gluon-gluon to quark-antiquark, we use the above, replacing the coefficient $16/72$ by $16/256$, for either the quark or antiquark being observed.

For gluon-quark to gluon-quark observed (or gluon-antiquark to gluon-antiquark), the cross section is

$$\frac{d\hat{\sigma}}{d\hat{t}} = -\frac{\pi\alpha_s^2}{\hat{s}^2} \frac{16}{96} \left[ \frac{8}{3} \left( \frac{\hat{t}}{\hat{u}} - \frac{\hat{t}}{\hat{s}} \right) + 12 \frac{\hat{u}}{\hat{s}^2} - 6 + \frac{28}{3} \kappa'z + 16 \frac{1}{3} \kappa'2\hat{t} \right] + \frac{16}{3} \kappa'4\hat{s}\hat{t}.$$  

(3)

For quark-antiquark to gluon-gluon with the quark observed (or gluon-antiquark to gluon-antiquark), we interchange $\hat{t}$ with $\hat{u}$ in the above equation.

B. Quark processes

For quark-antiquark to the same quark antiquark including $t$-channel exchange as well as $s$-channel annihilation with their interference, and observing the quark, we have

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{16}{36} \left[ \left( \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} \right) + \frac{1}{3} \left( \frac{\hat{u}}{\hat{s}} + \frac{1}{\hat{s}} \right) + \frac{1}{3} \left( \frac{\hat{t}}{\hat{s}} + \frac{1}{\hat{s}} \right) \right] + \kappa^2 \left[ \frac{4\hat{s}\hat{t}}{\hat{s}^2} + \frac{1}{9} \left( \frac{\hat{u}}{\hat{s}} + \frac{1}{\hat{s}} \right) + \frac{1}{3} \left( \frac{\hat{t}}{\hat{s}} + \frac{1}{\hat{s}} \right) \right] + \frac{1}{2} \kappa'^4 \left( \frac{\hat{u} - \hat{t}}{\hat{s}} \right)^2.$$

(4)

For the above process observing the antiquark, we interchange $\hat{t}$ and $\hat{u}$ in the above formula. For identical quarks scattering to the same identical quarks, we interchange $\hat{s}$ and $\hat{u}$ in the above equation, and add a factor of 1/2 for the identical final state quarks.

For a quark-antiquark annihilation to a virtual gluon creating a different quark-antiquark pair, as in charm and bottom production, summing over identical cross sections for either quark or antiquark observed (which will later be multiplied by 4 for four other light quarks being created), we have for the $s$-channel gluon exchange

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{16}{36} \left( \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} + 4\kappa'\hat{s}\hat{r}\hat{u} + \frac{1}{2} \kappa'^4 \left( \frac{\hat{u} - \hat{t}}{\hat{s}} \right)^2 \right),$$

(5)

For $q + \bar{q} \rightarrow q + \bar{q}$ observing the final quark, we have for the $t$-channel gluon exchange

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{16}{36} \left( \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + 4\kappa'\hat{s}\hat{r}\hat{u} + \frac{1}{2} \kappa'^4 \left( \frac{\hat{s} - \hat{u}}{\hat{t}} \right)^2 \right).$$

(6)

For observing the final antiquark, we use the above equation with $\hat{t}$ and $\hat{u}$ exchanged. For $q + q' \rightarrow q + q'$ observing the quark, we use the above formula and interchange $\hat{s}$ and $\hat{u}$ in the large parentheses. For $q + q'$ to $q + q'$ observing $q'$, we
interchange \( \hat{t} \) and \( \hat{u} \) in the large parenthses of the above formula.

III. COMPARISON WITH POSSIBLE ANOMALOUS MAGNETIC MOMENTS IN Z COUPLINGS

The possibility of anomalous magnetic moments of quarks appearing at LEP and SLD at the Z peak and their forward-backward asymmetry has been considered [4,8]. Here we just get values to indicate the order of magnitude, referring the reader to the more careful and complete analysis by T.G. Rizzo [8], which gives \(-0.012 \leq \kappa^\prime_8 \leq -0.002\) at 95% CL, updated to Moriond 1996 data [19]. With an anomalous electric dipole moment as well, it allows positive \( \kappa^\prime_8 = 0.025 \). Using the integrated cross section [4,8] for \( b \) production at the Z peak, we find with \( m_b = 4.5 \text{ GeV} \) (and with \( F_2^e = \kappa^e_b \))

\[
\sigma \propto \left[ v^2_8 + a^2_8 + 3v_8a_8\kappa^e_b + m_8^2\kappa^2_b \right] / (8m^2_b),
\]

\[
\sigma \propto (0.365 - 1.03\kappa^e_b + 51.1\kappa^2_b).
\]

Letting the \( \kappa^e_b \) terms account for the discrepancy [20], \( \Delta R_b/R_b = 0.026 \) gives two solutions, \( \kappa^e_b = 0.027 \), and \( \kappa^e_b = -0.0069 \), corresponding to \( \kappa^e_b = 3.0 \text{ TeV}^{-1} \) and \( \kappa^e_b = -0.77 \text{ TeV}^{-1} \).

\( A^b_{FB} \) isolates the \( \cos \theta \) term in the Z cross section, which can be partly due to the anomalous magnetic moment [4,8]

\[
A^b_{FB} = 3 \left( A^b_{SM} + A_c(1 + \kappa^e_b/v_8) / (1 + \Delta R_b/R_b) \right),
\]

where the inverse power term has been taken here to match \( 1 + \Delta R_b/R_b \). Using the SM value for \( A^b_{SM} \) the positive \( \kappa^e_b = 0.027 \) gives a 3.1\( \sigma \) discrepancy with [20] \( A^b_{FB} = 0.1002 \pm 0.0028 \), and is eliminated. The negative \( \kappa^e_b = -0.0069 \) (\( \kappa^e_b = -0.77 \text{ TeV}^{-1} \)) value only gives a 0.4\( \sigma \) deviation and is consistent. The error on \( A^b = A^b_{SM}(1 + \kappa^e_b/v_8) / (1 + \Delta R_b/R_b) \) is about 6\( \% \), and it is 11\( \% \) below theory. The correction of the anomalous moment only lowers theory by 0.5\( \% \).

Our calculated CDF jet cross sections do not depend on the sign of \( \kappa^e_8 \) and for the case of only the \( b \) quark having the anomalous chromomagnetic moment \( |\kappa^e_8| = 3.5 \pm 1 \text{ TeV}^{-1} \) is not inconsistent with the \( \Delta R_b \) anomalous magnetic moment since there will be a numerical factor depending on how the electric and color charges are distributed among the internal constituents with different masses.

For the case where all quarks except top are given the anomalous chromomagnetic moment, allowing an equal anomalous magnetic moment for each, we find changes in \( \Delta \Gamma_{\text{had}}/\Gamma_{\text{had}} \) of 0.0017, 0.0005, and \(-0.0005\), corresponding to the \( \kappa^\prime = 1.3, 1.0, \) and 0.7 \text{ TeV}^{-1} \) cases, respectively. This is at most a one \( \sigma \) discrepancy since the fractional error [20] on \( \Delta \Gamma_{\text{had}}/\Gamma_{\text{had}} \) is \( \pm 0.0019 \).

IV. RESULTS AND CONCLUSIONS

In calculating the jet transverse energy distributions, we have used the parton distribution functions MRSA’ [21]. Since we are taking ratios of anomalous moment contributions to strict QCD, both in leading order, most variance with parton distribution functions (PDFs) drops out, only being about 2\( \% \) at \( E_T = 450 \text{ GeV} \) among the Martin-Roberts-Stirling (MRS) set of PDFs, or between MRSA’ and CTEQ3M. Assuming all quarks except the top have the same anomalous chromomagnetic moment, we find in Fig. 1 that the range \( |\kappa^\prime| = 1.0 \pm 0.3 \text{ TeV}^{-1} \) will fit the CDF data [13,14], and be in the allowed systematic error range of the D0 data [15]. The quadratic and quartic terms in \( \kappa^\prime \) give a natural fit to the possible curvature in the data, and indicate
why the corrections do not show up significantly until $E_T > 200$ GeV. It is not inconsistent with an equal anomalous magnetic moment being present for the quarks at the $Z$ peak.

If the charm or bottom quark alone among the lighter quarks possesses a sizable anomalous chromomagnetic moment, we find in Fig. 2 the range $|\kappa_{b,c}^\prime| = 3.5 \pm 1$ TeV$^{-1}$ will fit the CDF data, and be in the allowed range of the D0 data. It is not inconsistent with a comparable anomalous magnetic moment explanation [8] of $R_b$.

ACKNOWLEDGMENTS

The author thanks Professor Myron Bander for help with the conceptual framework and numerous helpful discussions. We also thank W. Giele for supplying the structure function program. The author thanks the SLAC theory group for their hospitality and acknowledges discussions with S. Drell, S. Brodsky, L. Dixon, and T.G. Rizzo. This research was supported in part by the U.S. Department of Energy under Contract No. DE-FG03-91ER40679.

[1] E. Eichten, K. Lane, and M. Peskin, Phys. Rev. Lett. 50, 811 (1983).
[2] S.J. Brodsky and S.D. Drell, Phys. Rev. D 22, 2236 (1980).
[3] G.L. Shaw, D. Silverman, and R. Slansky, Phys. Lett. 94B, 57 (1980).
[4] D. Silverman and G.L. Shaw, Phys. Rev. D 22, 1196 (1983).
[5] J. Reid, M. Samuel, K.A. Milton, and T.G. Rizzo, Phys. Rev. D 30, 245 (1984).
[6] D. Atwood, A. Aeppli, and A. Soni, Phys. Rev. Lett. 69, 2754 (1992).
[7] D. Atwood, A. Kagan, and T.G. Rizzo, Phys. Rev. D 52, 6264 (1995).
[8] T.G. Rizzo, Phys. Rev. D 53, 2326 (1996).
[9] P. Haberl, O. Nachtmann, and A. Wilch, Phys. Rev. D 53, 4875 (1996).
[10] K. Cheung, Phys. Rev. D 53, 3604 (1996).
[11] M. Bander, Phys. Rev. Lett. 77, 601 (1996).
[12] J. Ellis and D.A. Ross, Report No. CERN-TH/96-108, hep-ph/9604432 (unpublished).
[13] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 77, 438 (1996).
[14] CDF Collaboration, B. Flaugher, talk given at DPF, Indianapolis, 1996 (unpublished), webpage: http://wwwcdf.fnal.gov/physics/new/qcd/qcd_plots/inclusive_jets/public/inclusive_jet_1b.html
[15] D0 Collaboration, J. Blazey, talk given at Recontre de Moriond, 1996, Report No. FERMILAB-CONF-96-132-E, 199 (unpublished), webpage: http://d0sgi0.fnal.gov/public/inclusive_jets.html
[16] Shown for QED in D. Silverman, Ph.D. thesis, Stanford University, 1968.
[17] E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 599 (1984).
[18] B.L. Combridge, Nucl. Phys. B151, 429 (1979).
[19] T.G. Rizzo (private communication).
[20] LEP Electroweak Working Group and SLD Heavy Flavor Group, Report No. LEPWWG/96-01, 1996 (unpublished) [SLD Physics Note 47 (unpublished)].
[21] A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Lett. B 354, 155 (1995).