Efficacy and safety of jakinibs in rheumatoid arthritis: a systematic review and meta-analysis

Yufeng Yin 1 · Mengru Liu 2 · Erye Zhou 1 · Xin Chang 1 · Michun He 1 · Mingjun Wang 1 · Jian Wu 1

Received: 14 October 2020 / Revised: 17 January 2021 / Accepted: 8 March 2021 / Published online: 14 May 2021
© International League of Associations for Rheumatology (ILAR) 2021

Abstract

Objectives To assess the efficacy and safety of jakinibs for the treatment of active rheumatoid arthritis (RA) in patients with an inadequate response or intolerance to conventional synthetic or biologic disease-modifying antirheumatic drugs (DMARDs).

Methods A systematic search was conducted in PubMed, Embase, and the Cochrane Library. Randomized placebo-controlled trials (RCTs) of jakinibs in RA patients were eligible. The effective outcome was RA improvement to reach an American College of Rheumatology 20%/50%/70% (ACR20/50/70) response rate at weeks 12 and 24 after treatment. The safety outcomes included treatment-emergent adverse events (TEAEs), serious adverse events (SAEs), and discontinuations due to adverse events, infections, and serious infections.

Results Twenty-eight randomized, double-blind, controlled trials including 14,500 patients were included. At both weeks 12 and 24, the pooled analysis suggested effective treatment with jakinibs, represented as an increased clinical response of ACR20, ACR50, and ACR70. Subgroup analysis based on different types of jakinibs demonstrated that only peficitinib treatment had no impact on the clinical response of ACR50 or ACR70 at week 12. Jakinibs were associated with an increased incidence of infections at week 12 and TEAEs and infections at week 24. No increase in the risk of SAEs, discontinuations due to adverse events, or serious infections was observed in comparisons between treatment with jakinibs and treatment with placebo in these patients.

Conclusions Jakinibs are efficacious and well tolerated in RA patients up to 24 weeks, although they are associated with an increased risk of infectious complications.

Keywords Efficacy · Jakinib · Meta-analysis · Rheumatoid arthritis · Safety

Introduction

Rheumatoid arthritis (RA) is a systemic, chronic, and progressive inflammatory disease with a prevalence of approximately 5 per 1000 adults worldwide [1]. RA primarily affects peripheral joints, leading to synovitis as well as cartilage damage and bone erosion, leading to increased disability and mortality for affected patients [2]. Regarding the treat-to-target strategy, the primary goal of RA treatment is to achieve and maintain rapid remission or at least low disease activity if remission is not possible [3]. RA treatment is based on conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), particularly the anchor drug methotrexate [3]. During the past 2 decades, various options, particularly biologic DMARDs (bDMARDs), such as tumor necrosis factor (TNF) inhibitors available for RA treatment, have been developed [4]. Biologics, as foreign proteins, induce immunogenicity, likely leading to an inadequate response or intolerability [5]. Current...
studies have demonstrated that an American College of Rheumatology 20% improvement criterion (ACR20) cannot be achieved in up to 40% of RA patients treated with TNF inhibitors in a long-term follow-up [6]. Additionally, the restricted conditions for storage and handling and the high acquisition cost significantly increase the economic burden and reduce patient compliance [7]. Therefore, more options should be explored with mechanisms of action that are different from those of the currently used csDMARDs and biologics.

The activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signal transduction pathway plays a pivotal role in the pathogenesis and progression of RA [8]. JAK inhibitors (jakinibs) are small-molecule drugs that interfere with the activation of JAK and then attenuate immune activation of the signaling pathway and production of proinflammatory cytokines [9]. The incorporation of jakinibs has changed the treatment landscape of RA and various other rheumatological conditions, such as systemic lupus erythematosus, giant cell arteritis, and autoinflammatory diseases [10, 11]. Numerous phase II and III clinical studies have shown that treatment with jakinibs, either in combination with csDMARDs or as monotherapy, is beneficial in reducing disease activity in RA patients with an inadequate response or intolerance to csDMARDs or biologics [12, 13]. Many meta-analyses have revealed that jakinibs are associated with increased clinical efficacy and manageable safety compared with biologics or placebo in a short-term follow-up period [14–16]. However, most of the previous studies focused on a single drug, particularly tofacitinib and baricitinib, which were approved early to treat active RA [13]. To our best knowledge, jakinibs have rarely been analyzed as an exclusive entity for their efficacy and safety in RA patients. Therefore, in the present study, we assessed the efficacy and safety of jakinibs in the treatment of these patients via quantitative meta-analysis of data from recently released randomized controlled trials (RCTs).

Data sources and search strategy

We performed an exhaustive search for studies evaluating the efficacy and safety of jakinibs in patients with active RA in bibliographic databases, including PubMed, EMBASE, and the Cochrane Library, from their inceptions to February 1, 2020. The papers were not restricted concerning the publication status or language. A combination of the following keywords was used: “rheumatoid arthritis,” “ra,” and “protein kinases inhibitor” and “janus kinase inhibitor,” “jak inhibitor,” and “jakinib.” The search was independently performed by two investigators (YY and ML), and discrepancies in the study selection were resolved by consensus. The search strategy is listed in online supplementary table S1. The references in the enrolled trials or meta-analyses were also screened manually to find relevant original studies.

Study selection

The relevant data from the RCTs comparing the efficacy and safety of jakinibs with those of a placebo or biologics in the treatment of active RA were potentially eligible for inclusion. We included studies fulfilling the following inclusion criteria: (1) studies with samples of RA patients aged >18 years with an inadequate response or intolerance to csDMARDs or biologics; (2) studies in which jakinibs (including baricitinib, decernotinib, filgotinib, peficitinib, tofacitinib, and upadacitinib) alone or in combination with csDMARDs were compared with a placebo or csDMARDs in RA treatment for a minimum duration of 12 weeks; and (3) studies providing data for assessing the clinical effects and adverse events of jakinibs. Exclusion criteria included a nonrandomized design and an unqualified article type (abstracts without full-text publication, case reports, and duplications with the same samples).

Data extraction and quality assessment

The full-text paper of all the RCTs that were potentially available for inclusion was viewed by two independent investigators (YY and ML). Disagreements at any stage of the data extraction process were resolved by consensus. The modified Jadad tool for randomized clinical trials was used to assess the quality of studies included in the meta-analysis [18]. Jadad contains two questions for randomization and masking and one question assessing the description of withdrawals and/or dropouts. Studies with no less than 3 points are ranked as high quality [18]. The following data were extracted from the RCTs: researcher names, publication year, trial name and phase, numbers of centers and randomized subjects, jakinib type, drug regimen, follow-up period, and outcomes for efficacy and safety. The efficacy outcomes included ACR20, ACR50, and ACR70. Data on adverse events, including

Methods

This systematic review and meta-analysis adhered to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for the meta-analysis of interventional studies [17]. The authors declare that all supporting data are available within the article and/or supplementary materials. This study did not require ethical approval or informed consent because all the analyses were based on previously published data. The study protocol was prospectively registered at International Prospective Register of Systematic Reviews (PROSPERO) (registration ID: CRD42020188015).
treatment-emergent adverse events, serious adverse events, discontinuations due to adverse events, infections, and serious infections, were also collected to explore the safety of jakinibs for the treatment of RA patients.

Statistical and sensitivity analysis

The meta-analyses were performed using the Mantel-Haenszel random effects model to determine the weight given to each study. Comparisons were made between jakinibs and placebo or between jakinibs with DMARDs and placebo with DMARDs. The incidences of adverse events after treatment were also assessed for each study. This produced a weighted estimate of the odds ratio (OR) with a 95% confidence interval (95% CI), considering the different samples. The heterogeneity across studies was examined using the chi-squared (χ^2) test and qualified by I^2 statistics, ranging from 0 to 100%, in which a larger value indicated increasing heterogeneity. The likelihood of publication bias was assessed graphically by generating a funnel plot. All statistical analyses were performed using RevMan statistical software version 5.3 (Nordic Cochrane Centre, Copenhagen, Denmark) and Stata/MP version 13.0 (StataCorp, College Station, TX, USA). Two-sided P values of 0.05 were considered statistically significant.

Results

Literature search and study characteristics

The details of the search program in this study are shown in Fig. 1. In total, 5800 articles were retrieved from PubMed, Embase, and the Cochrane Library after the initial implementation of the search strategy, and 3581 remained after duplicates were removed. After screening the titles and abstracts, 308 articles remained. Ultimately, 28 studies with 14,500 randomized RA patients met the eligibility criteria of the meta-analysis. Among these studies, efficacy was evaluated after treatment with jakinibs, including baricitinib (5 trials) [19–23], decernotinib (2 trials) [24, 25], filgotinib (3 trials) [26–28], peficitinib (3 trials) [29–31], tofacitinib (10 trials) [32–41], and upadacitinib (5 trials) [42–46]. In these trials, most of the RA patients were treated with jakinib monotherapy or jakinibs in combination with DMARDs, particularly methotrexate, in the treatment arms and placebo with or without DMARDs in the control arms; patients received methotrexate monotherapy in the control arms in only one study [37]. All the patients had discontinued treatment with bDMARDs more than 4 weeks before randomization; patients with prior bDMARDs use

![Fig. 1 Flowchart of the study selection](image-url)
were excluded in 6 studies [19, 20, 22, 23, 43, 46]. The characteristics of the selected trials and Jadad scores are summarized in Table 1 and online supplementary table S2.

Overall efficacy

The efficacy outcomes for all the included studies are summarized in Table 2. Twenty-four trials with 10,923 patients (7885 RA patients treated with jakinibs and 3038 controls) assessed the efficacy of jakinibs in RA patients at week 12. Trial sequential analysis was conducted to estimate the sample size required in all the included trials and is summarized in Table 3. A t test, which showed no significant evidence of asymmetry (online supplementary figure S1). A pooled analysis demonstrated that treatment with jakinibs was associated with improvement in the clinical response of ACR20 (OR=3.79, 95% CI: 3.14–4.59, P<0.001, χ²=5.84, I²=14.3%), ACR50 (OR=3.83, 95% CI: 3.29–4.46, P<0.001, χ²=25.06, I²=24%), and ACR70 (OR=4.63, 95% CI: 3.61–5.95, P<0.001, χ²=25.97, I²=27%) compared with control treatment (Fig. 2). At week 24, 10 trials focusing on the efficacy of jakinib treatment in RA patients revealed that jakinib treatment also significantly improved the clinical response of ACR20 (OR=3.08, 95% CI: 2.49–3.80, P<0.001, χ²=29.07, I²=66%), ACR50 (OR=3.46, 95% CI: 2.74–4.37, P<0.001, χ²=21.87, I²=59%), and ACR70 (OR=3.96, 95% CI: 3.11–5.05, P<0.001, χ²=12.75, I²=29%) compared with control treatment (online supplementary figure S2). Subgroup analysis based on different types of jakinibs illustrated that only peficitinib treatment had no impact on improvement in ACR50 (OR=3.32, 95% CI: 0.93–11.89, P=0.06, χ²=17.86, I²=89%) or ACR70 (OR=3.69, 95% CI: 0.93–14.59, P=0.06, χ²=8.17, I²=76%) at week 12. Heterogeneity testing showed a moderate degree of heterogeneity, with I²>85% (P_hetero<0.05). Publication bias was evaluated by a funnel plot, which showed no significant evidence of asymmetry (online supplementary figures S3, 4).

Safety profile

The safety profile of jakinibs compared with that of placebo during the placebo-controlled periods was reported in all the included trials and is summarized in Table 3. At week 12, infectious diseases were significantly increased after jakinib treatment compared with placebo (OR=1.21, 95% CI: 1.03–1.42, P=0.02, χ²=11.85, I²=7%). The commonly reported infections were upper respiratory tract infections, nasopharyngitis, and herpes zoster infections. Apart from these, no significant differences were found between jakinibs and the placebo regarding treatment-emergent adverse events (TEAEs) (OR=1.11, 95% CI: 1.00–1.23, P=0.05, χ²=22.81, I²=17%), SAEs (OR=0.97, 95% CI: 0.70–1.35, P=0.87, χ²=23.48, I²=15%), discontinuations due to adverse events (OR=1.02, 95% CI: 0.78–1.33, P=0.90, χ²=22.47, I²=11%), or serious infection (OR=1.18, 95% CI: 0.66–2.12, P=0.57, χ²=11.39, I²=0%) (online supplementary figure S5). At week 24, however, an enhanced risk of both TEAEs (OR=1.27, 95% CI: 1.07–1.51, P=0.007, χ²=16.23, I²=38%) and infectious diseases (OR=1.47, 95% CI: 1.26–1.71, P<0.001, χ²=6.16, I²=0%) in response to jakinibs compared with placebo was observed in RA patients. By contrast, no increase was observed in the risk of SAEs (OR=0.84, 95% CI: 0.62–1.13, P=0.25, χ²=11.36, I²=12%), discontinuations due to adverse events (OR=1.18, 95% CI: 0.90–1.54, P=0.23, χ²=8.80, I²=0%), or serious infection (OR=0.92, 95% CI: 0.58–1.46, P=0.74, χ²=2.58, I²=0%) in comparisons between treatment with jakinibs and treatment with placebo in these RA patients (online supplementary figure S6).

Discussion

A systematic review and meta-analysis is a statistical method that synthesizes quantitative data from separate but similar studies to provide a conclusion that has greater statistical power than any individual study due to the large number of subjects and greater statistical strength. Recent studies of RA treatment have shed light on the small molecules that inhibit intracellular kinases, particularly those from the JAK family [47]. In our meta-analysis of 28 RCTs with 14,500 participants worldwide, we compared the efficacy and safety of jakinibs with those of placebo or csDMARDs in treating patients with RA with an inadequate response or intolerance to csDMARDs or biologics. In most of the included studies, patients who had discontinued other bDMARDs at least 4 weeks could also participate. Most of the trials in this meta-analysis reported a significant improvement in the clinical response of ACR20/50/70 after jakinib treatment in the short-term follow-up. Notably, subgroup analysis showed that only peficitinib treatment had no impact on improvement in ACR50 and ACR70 at week 12, and no data concerning the long-term efficacy of peficitinib in RA were described. Regarding the safety profile, jakinibs were associated with an increase in the incidence of infectious diseases and TEAEs compared with placebo. These findings were consistent with a previous meta-analysis concerning a single type of jakinib [14]. The main strength of the meta-analysis is that most of the included studies were multiple RCTs with good designs and adequate sample sizes. A relatively comprehensive analysis of RA patients strictly recruited from hundreds of centers worldwide was developed. Only mild heterogeneity was observed among the included studies.

Methotrexate is considered the most preferred csDMARD and is generally offered as a first-line treatment for RA.
Author (trial name)	Year	Phase	No. of centers	Randomised subjects	Jakinibs regimen	Jakinibs dosage	Control	Time (week)	Jadad score
Baricitinib (JAK-1, 2)									
Dougados (RA-BUILD)	2017	III	182	684	Baricitinib + MTX	2 and 4 mg qd	PLA + MTX	12, 24	5
Fleischmann (RA-BEGIN)	2017	III	198	588	Baricitinib + MTX	4 mg qd	PLA + MTX	24	5
Genovese (RA-BEACON)	2016	III	178	527	Baricitinib + MTX	2 and 4 mg qd	PLA + MTX	12, 24	5
Keystone (RA-BEAM)	2015	III	69	301	Baricitinib + MTX	1, 2, 4 and 8 mg qd	PLA + MTX	12	4
Taylor (RA-BEAM)	2017	III	281	1307	Baricitinib + MTX	4 mg qd	PLA + MTX	12, 24	5
Decernotinib (JAK-3)									
Fleischmann and Damjanov	2015	Ila	54	206	Decernotinib + 1 DMARDs	25, 50, 100, or 150 mg bid	PLA + 1 DMARDs	12	5
Genovese and van Vollenhoven	2016	IIb	103	359	Decernotinib + MTX	100, 150 or 200 mg qd; 100 mg bid	PLA + MTX	12, 24	4
Filgotinib (JAK-1)									
Genovese (FINCH 2)	2019	III	114	449	Filgotinib + 1-2 DMARDs	100, or 200 mg qd	PLA + 1-2 DMARDs	12	5
Kavanaugh (DARWIN 2)	2016	IIb	59	287	Filgotinib	50, 100, or 200 mg qd	PLA	12	5
Westhovens (DARWIN 1)	2017	IIb	106	599	Filgotinib	50, 100, or 200 mg qd; 25, 50, or 100 mg bid	PLA	12, 24	4
Peficitinib (JAK-1, 3)									
Kivitz	2017	IIb	43	379	Peficitinib + MTX	25, 50, 100, or 150 mg qd	PLA + MTX	12	3
Takeuchi (RAJ4)	2019	III	161	519	Peficitinib + MTX	100, or 150 mg qd	PLA + MTX	12	5
Takeuchi and Tanaka	2016	IIb	43	281	Peficitinib	25, 50, 100, or 150 mg qd	PLA	12	4
Tofacitinib (JAK-1, 3)									
Burmester (ORAL Step)	2013	III	82	399	Tofacitinib + MTX	5, 10 mg bid	PLA + MTX	12	5
Fleischmann (ORAL Solo)	2012	III	94	611	Tofacitinib	5, 10 mg bid	PLA	12	5
Fleischmann and Cutolo	2012	IIb	63	386	Tofacitinib	1, 3, 5, 10, 15 mg bid	PLA	12, 24	4
Kremer (ORAL Sync)	2013	III	114	795	Tofacitinib + ≥1 DMARDs	5, 10 mg bid	PLA + ≥1 DMARDs	12	5
Kremer and Cohen	2012	IIb	72	509	Tofacitinib + MTX	1, 3, 5, 10, 15 mg bid; 20 mg qd	PLA + MTX	12	5
Lee	2014	III	151	958	Tofacitinib	5, 10 mg bid	MTX	24, 48, 96	4
Tanaka and Suzuki	2011	II	19	140	Tofacitinib + MTX	1, 3, 5, 10 mg bid	PLA + MTX	12	4
Tanaka and Takeuchi	2015	II	47	318	Tofacitinib	1, 3, 5, 10, 15 mg bid	PLA	12	4
van der Heijde (ORAL Scan)	2013	III	111	797	Tofacitinib + MTX	5, 10 mg bid	PLA + MTX	24	5
van Vollenhoven (ORAL Standard)	2012	III	115	717	Tofacitinib + MTX	5, 10 mg bid	PLA + MTX	24	5
Upadacitinib (JAK-1)									
Burmester (SELECT-NEXT)	2018	III	150	661	Upadacitinib	15, 30 mg qd	PLA	12	5
Genovese (BALANCE 2)	2016	IIb	63	300	Upadacitinib	3, 6, 12, or 18 mg bid; or 24 mg qd	PLA	12	5
Genovese (SELECT-BEYOND)	2018	III	153	499	Upadacitinib	15, 30 mg qd	PLA	12	5
Kremer (BALANCE 1)	2016	IIb	123	276	Upadacitinib	3, 6, 12, or 18 mg bid	PLA	12	4
Smolen (SELECT-MONOTHERAPY)	2019	III	138	648	Upadacitinib	15, 30 mg qd	PLA + MTX	14	5

JAK, Janus kinase; MTX, methotrexate; DMARDs, disease-modifying antirheumatic drugs; PLA, placebo
Author (trial name)	Time (wk)	Dosage	ACR20	ACR50	ACR70
Baricitinib					
Dougados (RA-BUILD)	12	Placebo	90/228(39.5)	29/228(12.7)	7/228(3.1)
		2 mg qd	151/229(65.9)	77/229(33.6)	41/229(17.9)
		4 mg qd	140/227(61.7)	76/227(33.5)	41/227(18.1)
	24	Placebo	96/228(42.1)	49/228(21.5)	18/228(7.9)
		2 mg qd	140/229(61.1)	95/229(41.5)	58/229(25.3)
		4 mg qd	148/227(65.2)	100/227(44.1)	55/227(24.2)
	52	Placebo	130/210(61.9)	136/215(63.3)	85/215(39.5)
		4 mg qd	168/215(78.1)	219/487(45.0)	92/487(18.9)
Fleischmann (RA-BEGIN)	24	Placebo	48/176(27.3)	14/176(8.0)	4/176(2.3)
		2 mg qd	85/174(48.9)	35/174(20.1)	22/174(12.6)
		4 mg qd	98/177(55.4)	50/177(28.2)	20/177(11.3)
	24	Placebo	48/176(27.3)	23/176(13.1)	6/176(3.4)
		2 mg qd	78/174(44.8)	40/174(23.0)	23/174(13.2)
		4 mg qd	82/177(46.3)	52/177(29.4)	30/177(16.9)
Genovese (RA-BEACON)	12	Placebo	40/98(40.8)	10/98(10.2)	2/98(2.0)
		2 mg qd	28/228(53.8)	9/228(17.3)	4/228(7.7)
		4 mg qd	39/227(50.0)	18/227(34.6)	12/227(23.1)
	24	Placebo	196/488(40.2)	219/487(45.0)	92/487(18.9)
		2 mg qd	179/488(36.7)	200 mg	94/488(19.3)
		4 mg qd	360/487(73.9)	246/487(50.5)	145/487(29.8)
Keystone	12	Placebo	179/488(36.7)	200 mg	94/488(19.3)
		2 mg qd	359/487(69.6)	48/487	133/487(27.9)
		4 mg qd	360/487(73.9)	246/487(50.5)	145/487(29.8)
Taylor (RA-BEAM)	12	Placebo	46/148(31.1)	22/148(14.9)	10/148(6.8)
		100 mg qd	88/151(57.5)	49/153(32.0)	22/153(14.4)
		200 mg qd	97/147(66.0)	63/147(42.9)	32/147(21.8)
	24	Placebo	51/148(34.5)	28/148(18.9)	121/148(81)
		100 mg qd	84/153(54.9)	54/153(35.3)	31/153(20.3)
		200 mg qd	102/147(69.4)	67/147(45.6)	47/147(32.0)
Decernotinib	12	Placebo	13/71(18.3)	5/71(7.0)	2/71(2.8)
		100 mg qd	33/71(46.5)	16/71(22.5)	7/71(9.9)
		150 mg qd	48/72(66.7)	28/72(38.9)	8/72(11.1)
		200 mg qd	41/72(56.9)	25/72(34.7)	7/72(9.7)
	24	Placebo	12/71(16.9)	5/71(7.0)	2/71(2.8)
Genovese and van Vollenhoven	12	Placebo	46/148(31.1)	22/148(14.9)	10/148(6.8)
		100 mg qd	88/151(57.5)	49/153(32.0)	22/153(14.4)
		200 mg qd	97/147(66.0)	63/147(42.9)	32/147(21.8)
Filgotinib	12	Placebo	21/72(29.2)	8/72(11.1)	2/72(2.8)
		50 mg qd	48/72(66.7)	25/72(34.7)	6/72(8.3)
		100 mg qd	46/70(65.7)	26/70(37.1)	13/70(18.6)
		200 mg qd	50/69(72.5)	30/69(43.5)	9/69(13.0)
Kavanaugh (DARWIN 2)	12	Placebo	38/86(44.2)	13/86(15.1)	7/86(8.1)
		50 mg qd	46/82(56.1)	27/82(32.9)	13/82(15.9)
		100 mg qd	54/85(63.5)	32/85(37.6)	18/85(21.2)
		200 mg qd	59/86(68.6)	37/86(43.0)	21/86(24.4)
		25 mg qd	49/86(57.0)	24/86(27.9)	12/86(14.0)
		50 mg qd	51/85(60.0)	29/85(34.1)	16/85(18.8)
	24	Placebo	36/86(41.9)	14/86(16.3)	8/86(9.3)
		50 mg qd	45/82(54.9)	29/82(35.4)	18/82(22.0)
Westhovens (DARWIN 1)	12	Placebo	52/85(61.2)	40/85(47.1)	28/85(32.9)

Table 2 Summary of the clinical efficacy outcomes of Jakinibs in rheumatoid arthritis
Table 2 (continued)

Author (trial name)	Time (wk)	Dosage	ACR20	ACR50	ACR70
Peficitinib					
Kivitz	12	Placebo	32/72 (44.4)	19/72 (26.4)	8/72 (11.1)
		25 mg qd	29/66 (43.9)	12/66 (18.2)	6/66 (9.1)
		50 mg qd	48/78 (61.5)	26/78 (33.3)	12/78 (15.4)
		100 mg qd	39/84 (46.4)	28/84 (33.3)	14/84 (16.7)
		150 mg qd	45/78 (57.7)	29/78 (37.2)	15/78 (19.2)
		200 mg qd	63/86 (73.3)	43/86 (50.0)	25/86 (29.1)
		25 mg bid	48/86 (55.8)	30/86 (34.9)	18/86 (20.9)
		50 mg bid	51/85 (60.0)	30/85 (35.3)	20/85 (23.5)
		100 mg bid	67/84 (79.8)	46/84 (54.8)	33/84 (39.3)
Tofacitinib					
Burmester (ORAL Step)	12	Placebo	32/131 (24.4)	11/131 (8.4)	2/131 (1.5)
		5 mg bid	55/132 (41.7)	35/132 (26.5)	18/132 (13.6)
		10 mg bid	64/133 (48.1)	37/133 (27.8)	14/133 (10.5)
Fleischmann (ORAL Solo)	12	Placebo	33/122 (27)	15/122 (12.3)	7/122 (5.7)
		5 mg bid	145/243 (59.7)	76/243 (31.3)	37/243 (15.2)
		10 mg bid	161/245 (65.7)	90/245 (36.7)	50/245 (20.4)
Fleischmann and Cutolo	12	Placebo	13/59 (22)	6/59 (10.2)	2/59 (3.4)
		1 mg bid	17/54 (31.5)	6/54 (11.1)	3/54 (5.6)
		3 mg bid	20/51 (39.2)	12/51 (23.5)	6/51 (11.8)
		5 mg bid	29/49 (59.2)	18/49 (36.7)	6/49 (12.2)
		10 mg bid	43/61 (70.5)	27/61 (44.3)	15/61 (24.6)
		15 mg bid	41/57 (71.9)	29/57 (50.9)	15/57 (26.3)
	24	Placebo	15/25 (24.5)	6/59 (10.2)	4/59 (6.8)
		1 mg bid	13/54 (24.1)	4/54 (7.4)	3/54 (5.6)
		3 mg bid	19/51 (37.3)	14/51 (27.5)	7/51 (13.7)
		5 mg bid	25/49 (51.0)	17/49 (34.7)	10/49 (20.4)
		10 mg bid	40/61 (65.6)	27/61 (44.3)	23/61 (37.7)
		15 mg bid	38/57 (66.7)	31/57 (54.4)	19/57 (33.3)
Kremer (ORAL Sync)	12	Placebo	43/159 (27.0)	N/A	N/A
		5 mg bid	235/315 (74.6)	N/A	N/A
		10 mg bid	260/318 (81.8)	N/A	N/A
Kremer and Cohen	12	Placebo	23/69 (33.3)	N/A	N/A
		1 mg bid	32/70 (45.7)	N/A	N/A
		3 mg bid	36/68 (52.9)	N/A	N/A
		5 mg bid	36/71 (50.7)	N/A	N/A
		10 mg bid	43/74 (58.1)	N/A	N/A
		15 mg bid	42/75 (56.0)	N/A	N/A
		20 mg bid	43/80 (53.8)	N/A	N/A
Lee	24	Placebo	94/186 (50.5)	49/186 (26.3)	22/186 (11.8)
		5 mg bid	266/373 (71.3)	174/373 (46.6)	141/373 (37.8)
		10 mg bid	302/397 (76.1)	224/397 (56.4)	101/397 (25.4)
	48	Placebo	95/186 (51.1)	63/186 (33.9)	28/186 (15.1)
		5 mg bid	235/373 (67.8)	186/373 (49.9)	142/373 (38.1)
		10 mg bid	284/397 (71.5)	221/397 (55.7)	114/397 (28.7)
	96	Placebo	79/186 (42.5)	53/186 (28.5)	28/186 (15.1)
		5 mg bid	239/373 (64.1)	184/373 (49.3)	128/373 (34.3)
		10 mg bid	255/397 (64.2)	195/397 (49.1)	149/397 (37.5)
Tanaka and Suzuki	12	Placebo	4/28 (14.3)	N/A	N/A
		1 mg bid	18/28 (64.3)	N/A	N/A
		3 mg bid	21/27 (77.8)	N/A	N/A
		5 mg bid	26/27 (96.3)	N/A	N/A
		10 mg bid	21/26 (80.8)	N/A	N/A
However, biologics, particularly TNF inhibitors, administered as a first choice remain an established treatment option for patients who fail or have an inadequate response or intolerance to csDMARDs [48]. However, csDMARDs and biologics are not effective in many patients [49]. For these patients, jakinib treatment has greatly improved the management and reduced the disability from these debilitating diseases [11]. The use of small-molecule inhibitors, including jakinibs, has broadened the clinical armamentarium in the management of RA. Tofacitinib, the first jakinib approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA), is a pan-JAK inhibitor with competitive inhibition of JAK1/2/3 and TYK2 in vitro and potent inhibition of JAK1/3 signaling components with five- to 100-fold increased selectivity over JAK2 in cellular assays [50]. Tofacitinib inhibits STAT-phosphorylation-dependent activation by binding these molecular targets, resulting in the restraint of gene transcription and subsequent cytokine production. Similarly, peficitinib is another pan-JAK inhibitor with more selective inhibition of JAK3 relative to tofacitinib. By contrast, baricitinib selectively inhibits JAK1/2 subtypes with greater potency than the JAK3 and TYK2 subtypes. Baricitinib has also been approved by the FDA and EMA for patients with moderate to severe RA with an inadequate response or intolerance to more than one DMARD as monotherapy or in combination with methotrexate [49]. The selective jakinibs include decernotinib (JAK3) and upadacitinib and filgotinib (JAK1) [1]. Unlike the biologics that are administered by injection, jakinibs are small molecules that can be administered orally. The current available evidence supports the efficacy of jakinibs in the short-term treatment of RA [11]. The main implications of our findings also suggest that jakinibs are beneficial and well tolerated even for RA patients who fail standard treatment with csDMARDs or bDMARDs.

The safety of the treatment options was determined based on the number of TEAEs, SAEs, discontinuations due to adverse events, infections, and serious infections. Our meta-analysis showed that the number of RA patients

Table 2 (continued)

Author (trial name)	Time (wk)	Dosage	ACR20	ACR50	ACR70
Tanaka and Takeuchi	12	Placebo	8/52 (15.4)	N/A	N/A
		1 mg bid	20/53 (37.7)	N/A	N/A
		3 mg bid	36/53 (67.9)	N/A	N/A
		5 mg bid	38/52 (73.1)	N/A	N/A
		10 mg bid	45/53 (84.9)	N/A	N/A
		15 mg bid	49/54 (90.7)	N/A	N/A
van der Heijde (ORAL Scan)	24	Placebo	40/160 (25)	13/160 (8.1)	2/160 (1.3)
		5 mg bid	165/321 (51.4)	104/321 (32.4)	47/321 (14.6)
		10 mg bid	195/316 (61.7)	138/316 (43.7)	70/316 (22.2)
van Vollenhoven (ORAL Standard)	24	Placebo	30/106 (28.3)	N/A	N/A
		5 mg bid	101/196 (51.5)	N/A	N/A
		10 mg bid	103/196 (52.6)	N/A	N/A
Upadacitinib Burmester (SELECT-NEXT)	12	Placebo	79/221 (35.7)	33/221 (14.9)	13/221 (5.9)
		15 mg qd	141/221 (63.8)	84/221 (38.0)	46/221 (20.8)
		30 mg qd	145/219 (66.2)	94/219 (42.9)	59/219 (26.9)
Genovese (BALANCE 2)	12	Placebo	23/50 (46)	9/50 (18.0)	3/50 (6.0)
		3 mg bid	31/50 (62.0)	19/50 (38.0)	11/50 (22.0)
		6 mg bid	34/50 (68.0)	23/50 (46.0)	14/50 (28.0)
		12 mg bid	40/50 (80.0)	25/50 (50.0)	8/50 (16.0)
		18 mg bid	32/50 (64.0)	20/50 (40.0)	13/50 (26.0)
		24 mg qd	37/49 (75.5)	19/49 (38.8)	11/49 (22.4)
Genovese (SELECT-BEYOND)	12	Placebo	48/169 (28.4)	20/169 (11.8)	11/169 (6.5)
		15 mg qd	106/164 (64.6)	56/164 (34.1)	19/164 (11.6)
		30 mg qd	93/165 (56.4)	59/165 (35.8)	30/165 (18.2)
Kremer (BALANCE 1)	12	Placebo	19/56 (33.9)	9/56 (16.1)	2/56 (3.6)
		3 mg bid	29/55 (52.7)	13/55 (23.6)	7/55 (12.7)
		6 mg bid	32/55 (58.2)	20/55 (36.4)	14/55 (25.5)
		12 mg bid	39/55 (70.9)	23/55 (41.8)	12/55 (21.8)
		18 mg bid	37/55 (67.3)	21/55 (38.2)	12/55 (21.8)
Smolen (SELECT-MONOTHERAPY)	14	Placebo	89/216 (41.2)	32/216 (14.8)	6/216 (2.8)
		15 mg qd	148/217 (68.2)	91/217 (41.9)	50/217 (23.0)
		30 mg qd	153/215 (71.2)	112/215 (52.1)	71/215 (33.0)
treated with jakinibs who had TEAEs was higher than that in the placebo group. Further subgroup analysis, however, revealed that only one study [25] reported an increased incidence of TEAEs (59.9% vs. 42.3% for decernotinib vs. placebo, respectively) at week 24, such as headache (8.7%) and elevated levels of transaminases, lipoproteins, and creatinine. Additionally, because of their pharmacological action as JAK1/3 inhibitors, jakinibs can cause immunosuppression that induces serious infections. The most commonly reported infections were upper respiratory tract infections, nasopharyngitis, or herpes zoster infections. These conditions did not result in patient Fig. 2 Forest plot diagram for the efficacy of jakinibs according to ACR20 (a), ACR50 (b), and ACR70 (c) in patients with rheumatoid arthritis at 12 weeks.
withdrawal at week 12 or 24, as shown in our meta-analysis. However, there were similar rates of adverse events, including infections associated with jakinibs and TNF inhibitors such as adalimumab [23, 34]. Patients receiving jakinibs should be monitored, and larger trials conducted over longer study periods under pharmacovigilance are required to confirm the long-term safety of the drugs.

Some limitations in our analysis must be noted. First, only 28 studies meeting the inclusion criteria were finally included in our meta-analysis. However, it is reasonable to draw conclusions based on this meta-analysis because of the comprehensive literature search and efforts to obtain as much data as possible. Second, the follow-up periods were limited to 12 or 24 weeks in the final meta-analysis, and long-term studies with more than 52 weeks of follow-up were conducted in very few studies [20]. Longer comparative studies are required to evaluate the long-term effects of jakinib treatment. Third, the types of jakinibs used in each

Fig. 2 continued.
study and differences in the dosages administered also added to the heterogeneity. Because the different dosages of jakinibs were reported in the studies, the total number of all dosages for each jakinib was used in the final meta-analysis. A dose-response relationship was not observed in this meta-analysis. Subgroup analysis based on different dosages for individual jakinibs might be necessary to explore the proper dosage with a balance between therapeutic effects and side effects. Therefore, caution should be taken when interpreting the findings of this meta-analysis.

Conclusions

To our best knowledge, this systematic review and meta-analysis estimating the efficacy and safety of 6 different jakinibs in the treatment of active RA patients is one of the most comprehensive. Jakinib therapy showed benefits in achieving ACR20/50/70 responses with acceptable safety profiles in these patients who were refractory to aggressive standard-of-care treatment in the short-term follow-up. Jakinibs can be considered a favorable option for patients with...
Author (trial name)	Time (wk)	Dosage	TEAE	SAE	Discontinuation*	Infection disease	Serious infection
Baricitinib							
	12	Placebo	133/228 (58.3)	8/228 (3.5)	8/228 (3.5)	53/228 (23.2)	3/228 (1.3)
	2 mg qd		122/229 (53.3)	4/229 (1.7)	7/229 (3.1)	45/229 (19.7)	1/229 (0.4)
	4 mg qd		135/227 (59.5)	4/227 (1.8)	8/227 (3.5)	66/227 (29.1)	2/227 (0.9)
	24	Placebo	161/228 (70.6)	11/228 (4.8)	10/228 (4.4)	79/228 (34.6)	4/228 (1.8)
	2 mg qd		154/229 (69.2)	6/229 (2.6)	10/229 (4.4)	70/229 (30.6)	2/229 (0.9)
	4 mg qd		162/227 (71.4)	12/227 (5.3)	12/227 (5.3)	96/227 (42.3)	4/227 (1.8)
Fleischmann	24	Placebo	136/210 (64.8)	9/210 (4.3)	5/210 (2.4)	58/210 (27.6)	2/210 (0.9)
(RA-BEGIN)		4 mg qd	146/215 (67.9)	8/215 (3.7)	15/215 (7.0)	70/215 (32.7)	5/215 (2.3)
Genovese	12	Placebo	96/176 (54.5)	7/176 (4.0)	4/176 (2.3)	35/176 (19.9)	3/176 (1.7)
(RA-BEACON)		2 mg qd	107/174 (61.5)	3/174 (1.7)	7/174 (4.0)	61/174 (35.1)	3/174 (1.7)
		4 mg qd	119/177 (67.2)	11/177 (6.2)	9/177 (5.1)	48/177 (27.1)	3/177 (1.7)
Keystone	12	Placebo	45/98 (45.9)	3/98 (3.1)	5/98 (5.1)	1/98 (0.0)	0/98 (0.0)
		2 mg qd	24/52 (46.2)	1/52 (2.4)	1/52 (1.9)	2/52 (3.8)	0/52 (0.0)
Taylor (RA-BEAM)	24	Placebo	295/488 (60.5)	22/488 (4.5)	17/488 (3.5)	134/488 (27.5)	7/488 (1.4)
Decernotinib							
Fleischmann and	12	Placebo	19/41 (46.3)	1/41 (2.4)	2/41 (4.9)	7/41 (17.1)	0/41 (0.0)
Damjanov		25 mg bid	12/41 (29.3)	0/41 (0.0)	0/41 (0.0)	5/41 (12.2)	0/41 (0.0)
		50 mg bid	18/41 (43.9)	1/41 (2.4)	1/41 (2.4)	5/41 (12.2)	0/41 (0.0)
Genovese and van	24	Placebo	30/71 (42.3)	4/71 (5.6)	N/A	N/A	N/A
Vollenhoven		100 mg qd	37/71 (52.1)	3/71 (4.2)	N/A	N/A	N/A
		150 mg qd	44/72 (61.1)	6/72 (8.3)	N/A	N/A	N/A
		200 mg qd	49/72 (68.1)	5/72 (6.9)	N/A	N/A	N/A
		100 mg bid	42/72 (58.3)	7/72 (9.7)	N/A	N/A	N/A
Filgotinib							
Genovese (FINCH 2)	12	Placebo	80/148 (54.1)	4/148 (2.7)	3/148 (2.0)	27/148 (18.2)	2/148 (1.4)
		100 mg qd	77/153 (50.3)	6/153 (3.9)	6/153 (3.9)	29/153 (19.0)	1/153 (0.7)
		200 mg qd	82/147 (55.8)	4/147 (2.7)	4/147 (2.7)	34/147 (23.1)	1/147 (0.7)
Kavanaugh (DARWIN 2)	12	Placebo	28/72 (38.9)	1/72 (1.4)	4/72 (5.6)	N/A	0/72 (0.0)
		50 mg qd	29/72 (40.3)	1/72 (1.4)	1/72 (1.4)	N/A	0/72 (0.0)
		100 mg qd	23/70 (32.9)	0/70 (0.0)	0/70 (0.0)	N/A	0/70 (0.0)
		200 mg qd	30/69 (43.5)	3/69 (4.3)	1/69 (1.4)	N/A	1/69 (1.4)
Westhovens (DARWIN 1)	24	Placebo	32/56 (57.1)	4/56 (7.1)	2/56 (3.6)	1/56 (1.8)	0/56 (0.0)
		50 mg qd	33/63 (52.4)	0/63 (0.0)	2/63 (3.2)	4/63 (6.3)	0/63 (0.0)
		100 mg qd	37/85 (43.5)	4/85 (4.7)	5/85 (5.9)	8/85 (9.7)	3/85 (3.5)
		200 mg qd	50/86 (58.1)	2/86 (2.3)	3/86 (3.5)	7/86 (8.1)	1/86 (1.2)
		25 mg bid	37/69 (53.6)	1/69 (1.4)	5/69 (7.2)	5/69 (7.2)	0/69 (0.0)
Author (trial name)	Time (wk)	Dosage	TEAE	SAE	Discontinuation*	Infection disease	Serious infection
---------------------	-----------	--------	------	-----	-----------------	------------------	------------------
Peficitinib							
Kivitz	12	Placebo	34/72	0/72	1/72 (1.4)	N/A	0/72 (0.0)
		25 mg qd	28/66	0/66	0/66 (0.0)	N/A	0/66 (0.0)
		50 mg qd	39/78	0/78	0/78 (0.0)	N/A	0/78 (0.0)
		100 mg qd	40/84	2/84	3/84 (3.6)	N/A	1/84 (1.2)
		150 mg qd	39/78	1/78	4/78 (5.1)	N/A	1/78 (1.3)
Takeuchi (RAJ4)	12	Placebo	84/170	4/170	7/170 (4.1)	N/A	0/170 (0.0)
		100 mg qd	89/174	5/174	5/174 (2.9)	N/A	6/174 (3.4)
		150 mg qd	104/174	3/174	5/174 (2.9)	N/A	6/174 (3.4)
Takeuchi and Tanaka	12	Placebo	36/66	1/56	10/56 (17.9)	N/A	12/56 (21.4)
		25 mg qd	39/55	1/55	7/55 (12.7)	N/A	18/55 (32.7)
		50 mg qd	37/57	2/57	5/57 (8.8)	N/A	14/57 (24.6)
		100 mg qd	29/55	3/55	6/55 (10.9)	N/A	7/55 (12.7)
		150 mg qd	39/58	0/58	4/58 (6.9)	N/A	17/58 (29.3)
Tofacitinib							
Burmester	12	Placebo	75/132	6/132	7/132 (5.3)	N/A	0/132 (0.0)
		5 mg bid	71/133	2/133	8/133 (6.0)	N/A	0/133 (0.0)
		10 mg bid	76/134	6/134	6/134 (4.5)	N/A	0/134 (0.0)
Fleischmann	12	Placebo	67/122	6/122	5/122 (4.1)	N/A	0/122 (0.0)
(ORAL Solo)		5 mg bid	124/243	2/243	2/243 (0.8)	N/A	0/243 (0.0)
		10 mg bid	139/245	5/245	6/245 (2.4)	N/A	1/245 (0.4)
Fleischmann	24	Placebo	16/34	2/34	4/34 (5.9)	N/A	1/34 (2.9)
and Cutolo		1 mg bid	19/37	1/37	4/37 (10.8)	N/A	11/37 (29.7)
		3 mg bid	18/34	2/34	3/34 (8.8)	N/A	7/34 (20.6)
		5 mg bid	27/49	1/49	1/49 (2.0)	N/A	17/49 (34.7)
		10 mg bid	36/61	0/61	1/61 (1.6)	N/A	21/61 (34.4)
		15 mg bid	27/49	0/61	1/61 (1.6)	N/A	17/49 (33.3)
Kremer	12	Placebo	97/159	6/159	2/159 (1.3)	N/A	0/159 (0.0)
(ORAL Sync)		5 mg bid	166/315	9/315	13/315 (4.1)	N/A	2/315 (0.6)
		10 mg bid	169/318	8/318	13/318 (4.1)	N/A	4/318 (1.3)
Kremer and Cohen	24	Placebo	29/51	0/51	3/51 (5.9)	N/A	3/51 (5.9)
		1 mg bid	29/49	1/49	3/49 (6.1)	N/A	7/49 (14.3)
		3 mg bid	38/55	2/55	5/55 (10.0)	N/A	2/55 (3.6)
		5 mg bid	47/71	4/71	3/71 (4.2)	N/A	16/71 (22.5)
		10 mg bid	50/74	7/74	5/74 (6.8)	N/A	13/74 (17.6)
		15 mg bid	57/75	6/75	10/75 (13.3)	N/A	14/75 (18.7)
		20 mg bid	41/67	2/67	6/67 (9.0)	N/A	13/67 (19.4)
Lee	24	Placebo	147/186	22/186	25/186 (13.4)	N/A	5/186 (2.7)
		5 mg bid	297/373	40/373	40/373 (10.7)	N/A	11/373 (2.9)
		10 mg bid	334/397	43/397	43/397 (10.8)	N/A	8/397 (2.0)
Tanaka and Suzuki	12	Placebo	N/A	0/28	2/28 (7.1)	6/28 (21.4)	0/28 (0.0)
		1 mg bid	N/A	1/28	0/28 (0.0)	3/28 (10.7)	0/28 (0.0)
		3 mg bid	N/A	1/27	2/27 (7.4)	8/27 (29.6)	0/27 (0.0)
		5 mg bid	N/A	1/27	4/27 (14.8)	3/27 (11.1)	0/27 (0.0)
		10 mg bid	N/A	2/26	4/26 (15.4)	11/26 (42.3)	0/26 (0.0)
Tanaka and Takeuchi	12	Placebo	23/52	1/52	2/52 (3.8)	N/A	0/52 (0.0)
		1 mg bid	21/53	0/53	0/53 (0.0)	N/A	0/53 (0.0)
active RA with an inadequate response or intolerance to csDMARDs or bDMARDs. The results of our analysis should be confirmed in future studies with long-term exposure.

Abbreviations ACR, American College of Rheumatology; bDMARD, Biologic disease-modifying antirheumatic drug; csDMARDs, Conventional synthetic disease-modifying antirheumatic drug; DMARD, Disease-modifying antirheumatic drug; EMA, European Medicines Agency; FDA, Food and Drug Administration; JAK, Janus kinase; OR, Odds ratio; RA, Rheumatoid arthritis; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RCT, Randomized controlled trial; SAE, Serious adverse event; TEAE, Treatment-emergent adverse event; TNF, Tumor necrosis factor; 95% CI: 95% confidence interval

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10067-021-05686-8.

Author contribution YY, ML, and JW contributed to the conception and design. YY, ML, MH, and MW contributed to the collection and assembly of the data. YY and JW contributed to the analysis and interpretation of the data. YY and JW contributed to drafting and revision of the manuscript. All the authors read and approved the final manuscript.

Funding This work was supported by the National Natural Science Foundation of China (81771782, 81801595, 81601415), Special Foundation of Diagnosis and Treatment for Key Clinical Diseases of Suzhou City (LCZX201802), Science and Technology Development Plan for Medical Device of Suzhou City (SLT201902), Young Medical Talent Project of Jiangsu Province (QNRC2016754), and Science and Technology Plan Project of Suzhou City (SYS2019043).

Table 3 (continued)

Author (trial name)	Time (wk)	Dosage	TEAE	SAE	Discontinuation*	Infection disease	Serious infection
upadacitinib							
Burmester (SELECT-NEXT)	12	Placebo	108/221 (48.9)	5/221 (2.3)	7/221 (3.2)	47/221 (21.3)	1/221 (0.5)
		15 mg qd	125/221 (56.6)	9/221 (4.1)	7/221 (3.2)	64/221 (29.0)	1/221 (0.5)
		30 mg qd	118/219 (53.9)	6/219 (2.7)	13/219 (5.9)	69/219 (31.5)	3/219 (1.4)
Genovese (BALANCE 2)	12	Placebo	13/50 (26.0)	0/50 (0.0)	1/50 (2.0)	7/50 (14.0)	0/50 (0.0)
		3 mg bid	20/50 (40.0)	0/50 (0.0)	1/50 (2.0)	10/50 (20.0)	0/50 (0.0)
		6 mg bid	23/50 (46.0)	2/50 (4.0)	1/50 (2.0)	7/50 (14.0)	0/50 (0.0)
		12 mg bid	29/50 (58.0)	1/50 (2.0)	1/50 (2.0)	12/50 (24.0)	1/50 (2.0)
		18 mg bid	25/50 (50.0)	3/50 (6.0)	5/50 (10.0)	11/50 (22.0)	0/50 (0.0)
		24 mg qd	17/49 (34.7)	2/49 (4.1)	1/49 (2.0)	9/49 (18.4)	0/49 (0.0)
Genovese (SELECT-BEYOND)	12	Placebo	95/169 (56.2)	0/169 (0.0)	9/169 (5.3)	51/169 (30.2)	0/169 (0.0)
		15 mg qd	91/164 (55.5)	8/164 (4.9)	4/164 (2.4)	54/164 (32.9)	1/164 (0.6)
		30 mg qd	111/165 (67.3)	12/165 (7.3)	15/165 (9.1)	55/165 (33.3)	4/165 (2.4)
Kremer (BALANCE 1)	12	Placebo	25/56 (44.6)	2/56 (3.6)	2/56 (3.6)	13/56 (23.2)	1/56 (1.8)
		3 mg bid	26/55 (47.3)	1/55 (1.8)	0/55 (0.0)	11/55 (20.0)	0/55 (0.0)
		6 mg bid	31/55 (56.4)	2/55 (3.6)	6/55 (10.9)	12/55 (21.8)	0/55 (0.0)
		12 mg bid	37/55 (67.3)	2/55 (3.6)	2/55 (3.6)	22/55 (40.0)	0/55 (0.0)
		18 mg bid	39/55 (70.9)	1/55 (1.8)	2/55 (3.6)	21/55 (38.2)	0/55 (0.0)
Smolen (SELECT-MONOTHERAPY)	14	Placebo	102/216 (47.2)	6/216 (2.8)	6/216 (2.8)	57/216 (26.4)	0/216 (0.0)
		15 mg qd	103/217 (47.5)	11/217 (5.1)	8/217 (3.7)	42/217 (19.4)	1/217 (0.5)
		30 mg qd	105/215 (48.8)	6/215 (2.8)	6/215 (2.8)	54/215 (25.1)	1/215 (0.5)

TEAE, treatment-emergent adverse event; SAE, serious adverse event; PLAB, placebo.*Discontinuations due to adverse events; N/A, not applicable
Data availability All the data generated and analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate This study did not require ethical approval or informed consent because all the analyses were based on previously published data.

Consent for publication Not applicable.

Disclosures None.

References

1. Aletaha D, Smolen JS (2018) Diagnosis and management of rheumatoid arthritis: a review. JAMA. 320(13):1360–1372
2. Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity. 46(2):183–196
3. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Tourbah A, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M, Combe B, Cuthbertson A, Emery P, Finckh A, Gabay C, Gershon-Reino J, Gossec L, Gottenberg JE, Hazes JM, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X, McInnes I, Mysler E, Nash P, Pavelka K, Poor G, Riechelmann H, van Riel P, Rubbert-Roth A, Saag K, da Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D (2017) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 76(6):960–977
4. Burmester GR, Bijlsma JWJ, Cuthbertson A, McInnes IB (2017) Managing rheumatoid and musculoskeletal diseases: past, present and future. Nat Rev Rheumatol. 13(7):443–448
5. Garces S, Demengeot J (2018) The immunogenicity of biologic therapies. Curr Probl Dermatol. 53:537–5348
6. Rubbert-Roth A, Finckh A (2009) Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther. 11 Suppl 1:S1
7. Manova M, Savova A, Vasileva M, Terezova S, Kamusheva M, Grekova D, Petkova V, Petrova G (2018) Comparative price analysis of biological products for treatment of rheumatoid arthritis. Front Pharmacol. 9:1070
8. Soliman F, Meier K, Ghoreschi K (2019) Emerging topical and systemic JAK inhibitors in dermatology. Front Immunol. 10:2847
9. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, Spleth J (2017) JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 16(12):843–862
10. Garber K (2011) Pfizer’s JAK inhibitor sails through phase 3 in rheumatoid arthritis. Nat Biotechnol. 29(6):467–468
11. Jamiloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Seve P (2019) JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmunity reviews. 18(11):102390
12. Coombs JH, Bloom BJ, Bredveld FC, Fehl C, Grube D, Kremer JM, Burns-Gargas R, Wilkinson B, Zerbini CA, Zwillich SH (2010) Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 69(2):413–416
13. Nakayamada S, Kubo S, Iwata S, Tanaka Y (2016) Recent progress in JAK inhibitors for the treatment of rheumatoid arthritis. Biodrugs. 30(5):407–419
14. Bechman K, Subesinghe S, Norton S, Atzeni F, Galli M, Cope AP, Winthrop KL, Galloway JB (2019) A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology. 58(10):1755–1766
15. Camean-Castillo M, Gimeno-Ballester V, Rios-Sanchez E, Fenix-Caballero S, Vazquez-Real M, Alegre-Del RE (2019) Network meta-analysis of tocافتinib versus biologic treatments in moderate-to-severe rheumatoid arthritis patients. J Clin Pharm Ther. 44(3):384–396
16. Xie W, Huang Y, Xiao S, Sun X, Fan Y, Zhang Z (2019) Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann Rheum Dis. 78(8):1048–1054
17. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF (2015) Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA. 313(16):1657–1665
18. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, McGavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 17(1):1–12
19. Dougados M, van der Heijde D, Chen YC, Greenwald M, Drescher E, Liu J, Beattie S, Witt S, de la Torre I, Gaich C, Rooney T, Schluchting D, de Bono S, Emery P (2017) Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis. 76(1):88–95
20. Fleischmann R, Schiff M, van der Heijde D, Ramos-Remus C, Spindler A, Stanislav M, Zerbini CA, Gurbusza S, Dickson C, de Bono S, Schluchting D, Beattie S, Kuo WL, Rooney T, Macias W, Takeuchi T (2017) Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis & Rheumatology (Hoboken, NJ) 69(3):506–517
21. Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, Beattie SD, Koch AE, Cardillo TE, Rooney TP, Macias WL, de Bono S, Schluchting DE, Smolen JS (2016) Baricitinib in Patients with refractory rheumatoid arthritis. N Engl J Med. 374(13):1243–1252
22. Keystone EC, Taylor PC, Drescher E, Schluchting DE, Beattie SD, Berdalaz PY, Lee CH, Fidelius-Gort RK, Luchi ME, Rooney TP, Macias WL, Genovese MC (2015) Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 74(2):333–340
23. Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen Morales L, Reyes Gonzalez J, Yakuushin S, Ishii T, Emoto K, Beattie S, Arora V, Gaich C, Rooney T, Schluchting D, Macias WL, de Bono S, Tanaka Y (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 376(7):652–662
24. Fleischmann RM, Damjanov NS, Kivitz AJ, Ljegeda Z, Hoock T, Kinman N (2015) A randomized, double-blind, placebo-controlled, twelve-week, dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis & rheumatology (Hoboken, NJ) 67(2):334–343
25. Genovese MC, van Vollenhoven RF, Pacheco-Tena C, Zhang Y, Kinman N (2016) VX-509 (Decernotinib), an oral selective JAK-3 Inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis & rheumatology (Hoboken, NJ) 68(1):46–55
26. Genovese MC, Kalunian K, Gottenberg JE, Mozaffarian N, Bartok B, Matzkies F, Gao J, Guo Y, Tasset C, Sunden JS, de Vlam K,
Walker D, Takeuchi T (2019) Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the FINCH 2 randomized clinical trial. JAMA. 322(4):315–325

27. Kavannah A, Kremer J, Ponce L, Cseuz R, Reshetko OV, Stanislavchuk M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P (2017) Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis. 76(6):1009–1019

28. Westhoven R, Taylor PC, Alten R, Pavlova D, Enriquez-Sosa F, Mazar M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P (2017) Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. 76(6):998–1008

29. Kivitz AJ, Gutierrez-Urena SR, Poiley J, Genovese MC, Kristy R, Shay K, Wang X, Garg JP, Zubryzcka-Sienkiewicz A (2017) Peficitinib, a JAK inhibitor, in the treatment of moderate-to-severe rheumatoid arthritis in patients with an inadequate response to methotrexate. Arthritis & rheumatology (Hoboken, NJ) 69(4):709–719

30. Takeuchi T, Tanaka Y, Tanaka S, Kawakami A, Iwasaki M, Katayama K, Rokuda M, Izutsu H, Ushijima S, Kaneko Y, Shiomi T, Yamada E, van der Heijde D (2019) Efficacy and safety of peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled trial (RAJ4) in Japan. Ann Rheum Dis. 78(10):1305–1319

31. Takeuchi T, Tanaka Y, Iwasaki M, Ishikura H, Saeki S, Kaneko Y (2016) Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase Ib study. Ann Rheum Dis. 75(6):1057–1064

32. Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Soma K, Bradley J, Mebus C (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 381(9865):451–460

33. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, Gruben D, Wallenstein GV, Zwillich SH, Kanik KS (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 367(6):495–507

34. Fleischmann R, Cutolo M, Genovese MC, Lee EB, Kanik KS, Sadis S, Connell CA, Gruben D, Krishnaswami S, Wallenstein G, Wilkinson BE, Zwillich SH (2012) Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 64(3):617–629

35. Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, Isaacs JD, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Riese R, Bradley J (2013) Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomised trial. Ann Intern Med. 159(4):253–261

36. Kremer JM, Cohen S, Wilkinson BE, Connell CA, French JL, Gomez-Reino J, Gruben D, Kanik KS, Krishnaswami S, Pascual-Ramos V, Wallenstein G, Zwillich SH (2012) A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 64(4):970–981

37. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, Koncz T, Krishnaswami S, Wallenstein GV, Zang C, Zwillich SH, van Vollenhoven RF (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 370(25):2377–2386

38. Tanaka Y, Suzuki M, Nakamura H, Toyozumi S, Zwillich SH (2011) Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken). 63(8):1150–1158

39. Tanaka Y, Takeuchi T, Yamanaka H, Nakamura H, Toyozumi S, Zwillich S (2015) Efficacy and safety of tofacitinib as monotherapy in Japanese patients with active rheumatoid arthritis: a 12-week, randomised, phase 2 study. Mod Rheumatol. 25(4):514–521

40. van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, Cardiel MH, Cohen S, Nash P, Song YW, Tegzova D, Wyman BT, Gruben D, Benda B, Wallenstein G, Krishnaswami S, Zwillich SH, Bradley JD, Connell CA (2013) Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 65(3):559–570

41. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, Forejotova S, Zwillich SH, Gruben D, Koncz T, Wallenstein GV, Krishnaswami S, Bradley JD, Wilkinson B (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 367(6):508–519

42. Burmester GR, Kremer JM, Van den Bosch F, Kivitz A, Bessette L, Li Y, Zhou Y, Othman AA, Pangan AL, Camp HS (2018) Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 391(10139):2503–2512

43. Genovese MC, Smolen JS, Weinblatt ME, Burmester GR, Meerwein S, Camp HS, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S (2016) Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis & rheumatology (Hoboken, NJ) 68(12):2857–2866

44. Genovese MC, Fleischmann R, Combe B, Hall S, Rubbert-Roth A, Zhang Y, Zhou Y, Mohamed MF, Meierwein S, Pangan AL (2018) Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, placebo-controlled phase 3 trial. Lancet. 391(10139):2513–2524

45. Kremer JM, Emery P, Camp HS, Friedman A, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S, Keystone EC (2016) A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis & rheumatology (Hoboken, NJ) 68(12):2867–2877

46. Smolen JS, Pangan AL, Emery P, Rigby W, Tanaka Y, Vargus II, Zhang Y, Damjanov N, Friedman A, Othman AA, Camp HS, Cohen S (2019) Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. Lancet. 393(10188):2303–2311

47. Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, OShea JJ (2019) Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford). 58(Suppl 1):i4–i16
48. Wiens A, Correr CJ, Venson R, Grochocki MC, Otuki MF, Pontarolo R (2009) A meta-analysis of the efficacy and safety of using infliximab for the treatment of rheumatoid arthritis. Clin Rheumatol. 28(12):1365–1373

49. Burmester GR, Pope JE (2017) Novel treatment strategies in rheumatoid arthritis. Lancet. 389(10086):2338–2348

50. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, Gross CJ, Dowty ME, Ramaiah SK, Hirsch JL, Saabye MJ, Barks JL, Kishore N, Morris DL (2010) Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond) 7:41

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.