Can you provide a brief summary of the main findings and conclusions of the research paper on spinel ferrite materials, focusing on their dielectric properties and their potential applications?
range were recorded through an Agilent 4294A impedance analyzer, whose frequency scale is of 40 Hz–110 MHz. For completely excluding the effects of sun shine and other sources of lights, the measurements were conducted under dark.

Results and discussion

From X-ray diffractométre, it is clear that the synthesized compound is single phase (Fig. 1). The Rietveld refinements of the XRD data performed using Fullprof program24 revealed that this compound crystallizes in the cubic structure with the \textit{Pm3m} space group in which \(\alpha = 8312 \, \text{Å} \) and \(V = 586.631 \, \text{Å}^3 \). Fig. 2 show the structure of Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4}. The average particle size \(D_{SC} \) was calculated using Scherrer’s formula:25

\[
D_{SC} = \frac{(0.9 \times \lambda)}{(\beta \times \cos \theta)}
\]

where \(\lambda \) is the used wavelength (\(\lambda_{\text{CuK}} = 1.5406 \, \text{Å} \)), \(\theta \) and \(\beta \) are the Bragg angle and the full width at half maximum after subtracting the instrumental line broadening, respectively, for the most intense diffraction peak:

\[
\beta = (\beta^2_m - \beta^2_i)^{\frac{1}{2}}
\]

where \(\beta_m^2 \) is the experimental full width at half maximum (FWHM) and \(\beta_i^2 \) is the FWHM of a standard silicon sample. The \(D_{SC} \) value of our sample is about 72 nm.

Fig. 3 exhibits the variation of conductance as a function of frequency at different temperatures. This physical entity is expressed by the following relation:

\[
G = \frac{\sigma A}{l}
\]

where \(\sigma \) is the conductivity, \(A \) is the cross-sectional area of the material and \(l \) is its length. We can distinguish two regions. For low frequencies (50 Hz to \(10^3 \) Hz) we notice poor conductance dependence on frequency, contrarily to the strong dependence behavior on temperature seen from the same spectra. Such behavior can be explained by the Maxwell–Wegner two-layer model suggesting that ferrites are made of well conducting grains surrounded by poorly conducting grain boundaries that are more active at lower frequencies. This leads to poor conductance resulting from weak electron hopping in the region.26 The second region that spreads from \(10^3 \) Hz to \(10^6 \) Hz presents a significant increase of conductance with rising frequency and can be described by the power law:27

\[
G(\omega) = A(\omega)^s
\]

where \(A \) is a constant, \(\omega \) is the angular frequency and the exponent \(s \) is the slope of the frequency dependent region \(0 \leq s \leq 1 \). Where \(s \) depends on the temperature and binding energy.27

Fig. 4 exhibits the variation of conductance with temperature. Shown in green and the tetrahedral sites are in orange. It is well known that conduction in ferrites is led by the hopping of charge carriers between the sites.28

The mechanism can be defined by the following equation:29
where B is a constant, T is the absolute temperature, E_a is the activation energy and k_B is Boltzmann constant. We observe an increase of conductance with the rise of temperature at fixed frequency (83 Hz). This is due to an increase of hopping phenomenon with the increase of temperature. As clearly seen the rise is more pronounced at 700 K and the graph shows semiconducting behavior described by the increase of conduction with temperature. The linear relation between $\log(G.T)$ and $1000 \frac{T}{C_0}$ confirms the temperature dependence of conduction at 83 Hz. In fact, the remarkable change is attributed to the decrease of the potential barrier that creates free charge carriers. At high frequencies, we notice an acute decay of impedance that could be explained with the presence of a space-charge region resulting from the decline of charge barrier under the influence of temperature. It is known that grain boundaries are active interfaces for the creation of such region. Indeed, we can clearly observe constant values for Z' at different temperatures for low frequencies suggesting an accumulation of charge carriers at the grain boundaries.

Fig. 5 Variation of $\log(G.T)$ with $1000 \frac{T}{C_0}$ for $x = 50\%$.

The variation of frequency dependent Z'' at varying temperature is shown in Fig. 7. We note that Z'' decrease when temperature increase. The plot indicates the presence of two peaks, called relaxation frequencies. The first peak, located between 50 Hz and 10^5 Hz depending on the temperature, is attributed to the grain boundaries. Whereas the second one placed between 10^5 Hz and 10^7 Hz is attributed to the relaxation of the grain boundary. In fact, we can notice the shift towards higher frequencies as the temperature increases. This tendency indicates that charge carriers are thermally activated and are accumulated at the grain boundaries, and further confirms the semiconducting behavior of the nickel ferrites.

Fig. 6 Variation of real impedance Z' with frequency at different temperatures.
On the other side, the resistance is very low and keeps decreasing with the rising heat. Furthermore, for the frequency range around 10^6 we can clearly observe the merging of Z^\prime regardless of temperature, which indicates the decrease of space charge polarization.

In order to determine the value of maximum frequency f_{max} for which the imaginary impedance has maximum value, we superposed both Z^\prime and $Z^\prime\prime$. We observe the presence of two pics which correspond respectively to the two inflexion points for Z^\prime and two maximums for $Z^\prime\prime$. The frequency f_{max} corresponds to the projection of the inflexion point on the frequency axis. For this case we have two inflexion points providing two maximums in agreement with the results discussed in the paragraph above.

Thus, from Fig. 8 we conclude the values of $f_{\text{max}} = 92.6 \text{ Hz}$ and $f_{\text{max}} = 782.4 \times 10^5 \text{ Hz}$.

The plot of normalized imaginary part of impedance $\frac{Z^\prime\prime}{Z^\prime\prime_{\text{max}}}$ as a function of normalized frequency $\frac{f}{f_{\text{max}}}$ is exhibited in Fig. 9.

The representation aims to enable the study of dielectric relaxation. We observe an overlap of spectra into a master curve which denotes that relaxation process is irrespective to temperature. In fact, the temperature independency indicates the existence of one relaxation mechanism for all spectra and the merging behavior could be explained by the emission of space charge. Moreover, the value of full width at half maximum is found to be > 1.14 decades indicating a poly-disperse non-exponential relaxation. This non-Debye (non-exponential) relaxation type may refer to a hopping mechanism of charge carriers along with time dependent mobility of the same type of charge carriers. To ground deeper explanation to this phenomenon we refer to the following relation defining the non-Debye relaxation:

$$\varphi(t) = \exp \left[-\left(\frac{t}{\tau}\right)^\beta\right] ; (0 < \beta < 1) \quad (6)$$

where $\varphi(t)$ is the time evaluation of electric field, τ is the relaxation time at peak and β is the Kohlrausch exponent. The smaller value of β indicates larger deviation of relaxation with respect to Debye type relaxation where $\beta = 1$. To calculate the relaxation time from $Z^\prime\prime$ vs. $\log f$ plot, we use the following relation:

$$\tau = \frac{1}{\omega} = \frac{1}{2\pi f_{\text{max}}} \quad (7)$$

where f_{max} is the relaxation frequency. Logarithmic representation of relaxation frequency as a function of inverse temperature is shown in Fig. 10.

As discussed above we conclude that the relaxation frequency is increasing with temperature. The two slopes, attributed to the two frequencies observed in the impedance spectra, are used to determine the values of activation energies. Following the Arrhenius law:

$$f_{\text{max}} = f_0 e^{\frac{E_a}{k_B T}} \quad (8)$$

where f_{max} is the relaxation frequency, f_0 is the pre-exponential term and k_B is the Boltzmann constant. We obtain activation energy values of 0.250 eV and 0.228 eV corresponding
respectively to the grain and the grain boundaries. Comparing the reported results from conduction and impedance spectra shows close values referring to the same hopping mechanism of charge carriers. *respectively to the grain and the grain boundaries. Comparing the reported results from conduction and impedance spectra shows close values referring to the same hopping mechanism of charge carriers.*

Fig. 11 exhibits the plots of imaginary part as a function of real part of complex impedance at various temperatures of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$. This technique aims to investigate the contribution of grains and grain boundaries based on the frequency range. The plots present two semicircular arcs that are not centered on the axis of real impedance Z' indicating a non-Debye type of relaxation as previously concluded, and the obedience to Cole–Cole formalism. *For complex impedance it is given by the following relation:*

$$Z'(\omega) = \frac{R}{1 + (\frac{\omega}{\omega_0})^{1-n}}$$ \hspace{1cm} (9)

For when $n \rightarrow 0$ it results in the classical Debye’s formalism.

The decentralization could also explain the presence of only one electrical conduction mechanism. *The decentralization could also explain the presence of only one electrical conduction mechanism.* In fact, we can attribute the low frequency semicircle to the grain contribution, whereas the second semicircle is attributed to the grain boundaries contribution.

The formation of two semicircular arcs suggests the existence of two types of relaxation phenomena with the relaxation time given by $\tau_0\omega_{\text{max}} = 1$, where τ is the relaxation time and ω_{max} is the relaxation pulsation. As a matter of fact, these results correspond to the findings reported in the previous paragraphs.

On the other hand, we note that the interception of the plots shifts toward lower values of Z' as the temperatures increases. There is a gradual decrease of resistance while the temperature is rising. This behavior indicates the low grain resistance for high temperatures, and the appearance of semicircles is indicative of semiconducting behavior.

Using Z view software, we have simulated the plots of Z'' vs. Z'. Fig. 12 is showing the simulation accompanied with the equivalent circuit used for the Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sample. The model contains a series of three R-CPE combination circuits where R is the resistance, and CPE is the constant phase element referring to the complex element. The combinations are attributed to grains and grain boundaries. The constant phase element impedance is defined by the following equation:

$$Z_{\text{CPE}} = [A(\omega_0)^{\alpha}\omega]^{-1}$$ \hspace{1cm} (10)

where A is a proportional factor, ω_0 is the angular frequency and α is the exponent between 0 and 1. At $\alpha = 1$ the constant phase element is considered an ideal capacitive element, whereas for $\alpha = 0$ it is equivalent to resistance.

Using the relationship $R = Z'/2$ we calculated the resistance in order to further investigate the relaxation phenomena and the conduction distribution.

Table 1 presents the values of resistance R and constant phase element CPE for each series at different temperature.

This data was used to draw the curve given in Fig. 13 showing the variation of resistance as a function of temperature. We can notice a sharp decrease of resistance between 300 K and 340 K more pronounced for R_1 than R_2 and R_3, thereafter it starts decaying gradually as the temperature increases.
decreasing slowly. The temperature dependent behavior of resistance is attributed to the increase of charge mobility and thus conduction process. As the rate of resistance decreases differently in each plot, the rate of conductance is also increasing differently which indicates different activation energies as previously seen. In fact, following the Arrhenius relation we have:

$$ R = R_0 \exp \left(\frac{E_{ac}}{k_B T} \right) $$

(11)

where R_0 is a pre-exponential term, E_{ac} is the activation energy and k_B is the Boltzmann constant. Based on the plots given in Fig. 13 this law enables us to conclude two different activation energies in agreement with the results reported in the previous paragraphs.

Fig. 14 shows the variation of dielectric constant with frequency at various temperature ranging from 300 K to 400 K. As a matter of fact, we notice a giant permittivity of the order 10^6. In fact, the behavior of the permittivity could be divided according to the frequency. For low frequencies ($<10^3$ Hz) the real part of dielectric constant increases with temperature which indicates the thermal activation of the charge carriers and thus affects the polarization. In order to explain this trend, we resort to Maxwell–Wagner double layer model designed for inhomogeneous structures.7,41

We assume that the material is composed of two layers where the grains possess high conductance and grain boundaries have poor conductance. At lower frequencies the grain boundaries possess high resistance, so the electrons gather and generate polarization at the boundaries which explains the dielectric behavior of the material in the low frequency area. Thereafter we notice a rapid decrease of the dielectric constant independent of temperature. This could be attributed to the reverse electron motion as the frequency increase,7 resulting in

Temperature (K)	R_1 (Ω)	CPE1T (F)	CPE1P (F)	R_2 (Ω)	CPE2T (F)	CPE2P (F)	R_3 (Ω)	CPE3T (F)	CPE3P (F)
300	16 161	312 × 10^{-6}	0.59627	4382	11 332 × 10^{-8}	0.76477	6377	1320 × 10^{-10}	0.95868
320	7412	1726 × 10^{-6}	0.69692	2956	27 092 × 10^{-8}	0.70014	3695	1390 × 10^{-10}	0.962
340	4088	14 846 × 10^{-6}	0.74431	1626	13 597 × 10^{-7}	0.61015	2406	1912 × 10^{-10}	0.943
360	2259	10 538 × 10^{-6}	0.8178	778.7	32 877 × 10^{-6}	0.46832	1912	5821 × 10^{-10}	0.86629
380	1189	76 433 × 10^{-7}	0.89876	529	11 626 × 10^{-5}	0.50459	1428	1607 × 10^{-9}	0.79896
400	685.2	6138 × 10^{-7}	0.95869	429.2	47 528 × 10^{-6}	0.646	1034	5586 × 10^{-9}	0.72454
420	463.3	56 788 × 10^{-7}	0.98073	326.4	33 432 × 10^{-6}	0.696	738.6	10 148 × 10^{-8}	0.68974

![Fig. 13](image1.png)
Fig. 13 Temperature dependence of resistance.

![Fig. 15](image2.png)
Fig. 15 Variation of imaginary part of dielectric constant with frequency at different temperatures.

![Fig. 14](image3.png)
Fig. 14 Evolution of real part of dielectric permittivity (ε') as a function of frequency.
The evolution of ac conductance as a function of temperature and frequency is found to follow Maxwell–Wagner two-layer model. Complex impedance plots have revealed the presence of two semicircular arcs (grain and boundary grain). This behavior was modeled by an electrical equivalent circuit composed of three series sets of resistance and capacitance in parallel. Nyquist plots show two semicircles, revealing the presence of two relaxations processes in our material associated with grains and grain boundaries. Moreover, the real and imaginary part of dielectric constant were studied as a function both of temperature and frequency. The decrease of giant permittivity values with the increase in frequency proves the dispersion in low frequency range and is showing the Maxwell–Wagner interfacial polarization.

We note a light increase of dielectric loss. This behavior could be explained by the piling up of the electrons at the grain boundaries after reaching the area through hopping mechanism.

Conclusions

$\text{Zn}_{0.5}\text{Ni}_{0.5}\text{Fe}_2\text{O}_4$ spinel ferrite is synthesized using the solid-state reaction technique. X-ray diffractogramme reveals that our sample is pure and crystallizes in the orthorhombic system with $Pbnm$ space group. The dielectric study is performed by complex impedance spectroscopy in a wide range of temperature [300–420 K] and frequency [40–107 Hz]. The relaxation frequency values are determined from impedance spectroscopy, which are thermally activated.

Conflicts of interest

There are no conflicts to declare.

References

1. M. K. Shobana, K. Kim and J. H. Kim, Impact of magnesium substitution in nickel ferrites: optical and electrochemical studies, Phys. E, 2019, 108, 100–104.
2. M. Amiri, K. Eskandari and M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application, Adv. Colloid Interface Sci., 2019, 271, 101982.
3. V. Uskokovic, M. Drofenik and I. Ban, The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion, J. Magn. Magn. Mater., 2004, 284, 294–302.
4. Y. P. He, S. Q. Wang, C. R. Li, Y. M. Miao, Z. Y. Wu and B. S. Zou, Synthesis and characterization of functionalized silica-coated Fe_2O_4 superparamagnetic nanocrystals for biological applications, J. Phys. D: Appl. Phys., 2005, 38, 1342–1350.
5. Y. Ma, J. Fu, Z. Gao, L. Zhang, C. Li and T. Wang, Dicyclopentadiene Hydroformylation to Value-Added Fine Chemicals over Magnetically Separable Fe3O4-Supported Co–Rh Bimetallic Catalysts: Effects of Cobalt Loading, Catalysts, 2017, 7, 103.
6. S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert and E. Duguet, Magnetic nanoparticle design for medical applications, Prog. Solid State Chem., 2006, 34, 237–247.
7. M. Atif and M. Nadeem, Sol–gel synthesis of nanocrystalline $\text{Zn}_{1-x}\text{Ni}_x\text{Fe}_2\text{O}_4$ ceramics and its structural, magnetic and dielectric properties, J. Sol-Gel Sci. Technol., 2014, 72, 615–626.
8. S. Deka and P. A. Joy, Enhanced permeability and dielectric constant of Ni–Zn ferrite synthesized in nanocrystalline form by a combustion method, J. Am. Ceram. Soc., 2007, 90, 1494–1499.
9. M. U. Islam, T. Abbas, S. B. Niazi, Z. Ahmad, S. Sabeen and M. A. Chaudhry, Electrical behavior of fine particle, co-

Fig. 16 Variation of dielectric loss tangent as a function of frequency at various temperatures.
precipitation prepared Ni–Zn ferrites, Solid State Commun., 2004, 130, 353–356.
10 R. V. Mangalraja, S. Ananthakumar, P. Manohar and F. D. Gnaman, Dielectric behavior of Ni$_1$–$_3$Zn$_2$Fe$_2$O$_4$ prepared by flash combustion technique, Mater. Lett., 2003, 57, 1151–1155.
11 C. Upadhyay, D. Mishra, H. C. Verma, S. Anand and R. P. Das, Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique, J. Magn. Magn. Mater., 2003, 260, 188–194.
12 N. M. Deraz and O. H. Abd-Elkader, Production and characterization of nano-magnetic Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ spinel solid solution, J. Anal. Appl. Pyrolysis, 2014, 106, 171–176.
13 P. Sivakumar, R. Rameech, A. Ramanand, S. Ponnysamy and C. Muthamizhchelvan, Synthesis and characterization of NiFe$_2$O$_4$ nanoparticles and nanorods, J. Alloys Compd., 2013, 563, 6–11.
14 A. C. F. M. Costa, A. P. A. Diniz, A. G. B. de Melo, R. H. G. A. Kiminami, D. R. Cornejo, A. A. Costa and L. Gama, Ni–Zn–Sm nanopowder ferrites: Morphological aspects and magnetic properties, J. Magn. Magn. Mater., 2008, 320, 742–749.
15 K. Wu, J. Li and C. Zhang, Zinc ferrite based gas sensors : A review, Ceram. Int., 2019, 45, 11143–11157.
16 V. D. Kapse, S. A. Ghosh, F. C. Raghuvanshi and S. D. Kapse, Nanocrystalline spinel Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$: A novel material for H$_2$S sensing, Mater. Chem. Phys., 2009, 113, 638–644.
17 V. G. Harris, Modern microwave ferrites, IEEE Trans. Magn., 2012, 84, 1075–1104.
18 J. S. Hardy, C. A. Coyle, J. F. Bonnett, J. W. Templeton, N. L. Canfield, D. J. Edwards, S. M. Mahserejian, L. Ge, B. J. Ingram and J. W. Stevenson, Evaluation of cation migration in lanthanum strontium cobalt ferrite solid oxide fuel cell cathodes via in-operando X-ray diffraction, J. Mater. Chem. A, 2018, 6, 1787–1801.
19 R. Rani, G. Kumar, K. M. Batoo and M. Singh, Electric and Dielectric Study of Zinc Substituted Cobalt Nanoferrites Prepared by Solution Combustion Method, Am. J. Nanomater., 2013, 1, 9–12.
20 H. Parmar, R. V. Upadhyay, S. Rayaprol and V. Siruguri, Structural and magnetic properties of nickel–zinc ferrite nanocrystalline magnetic particles prepared by microwave combustion method, Indian J. Phys., 2014, 88, 1257–1264.
21 P. P. Hankare, U. Sankpal, R. Patil, I. Mulla, R. Sasikala, A. Tripathi and K. Garadarak, Synthesis and characterization of nanocrystalline zinc substituted nickel ferrites, J. Alloys Compd., 2010, 496, 256–260.
22 N. Gupta, A. Verma, S. C. Kashyap and D. C. Dube, Dielectric behavior of spin deposited nanocrystalline nickel–zinc ferrite thin films processed by citrate-route, Solid State Commun., 2005, 134, 689–694.
23 H. Rahmouni, A. Benali, B. Cherif, E. Dhahri, M. Boukhobza, K. Khirouni and M. Sajiedine, Structural and electrical properties of Zn$_{1.3}$Ni$_{0.7}$Fe$_2$O$_4$ ferrite, Phys. B, 2015, 31–37.
24 H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1965, 2, 65–71.
25 Théorie et Technique de la radiocrystallographie, ed. A. Guinier and X. Dunod, 3rd edn, 1964, p. 462.
26 J. Sharma, J. Parashar, V. K. Saxena, D. Bhatnagar and K. B. Sharma, Study of dielectric properties of nanocrystalline cobalt ferrite up to microwave frequencies, Macromol. Symp., 2015, 357, 38–42.
27 S. Mollah, K. K. Som, K. Bose and B. K. Chaudri, J. Appl. Phys., 1993, 74, 931.
28 S. A. Mazen and A. M. El Taher, The conduction mechanism of Cu–Ge ferrite, Solid State Commun., 2010, 150, 1719–1724.
29 N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press/Oxford University press, 2nd edn, 1979.
30 S. A. Mazen and A. M. El Taher, The conduction mechanism of Cu–Si ferrite, J. Alloys Compd., 2010, 498, 19–25.
31 B. Kumar, Ceramic nanocomposites for energy storage and power generation, Ceramic Nanocomposites, 2013, 509–529.
32 L. S. Lobo and A. B. Kumar, Structural and electrical properties of ZnCo$_2$O$_4$ spinel synthesized by sol–gel combustion method, J. Non-Cryst. Solids, 2019, 505, 301–309.
33 F. Borsa, D. R. Torgeson, S. W. Martin and H. K. Patel, Relaxation and fluctuations in glassy-fast-ion conductors : Wide-frequency-range NMR and conductivity measurements, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 795.
34 E. V. Ramana, S. V. Suryanarayana and T. B. Sankaram, Ac impedance studies of ferro electromagnetic SrBi$_2$La$_x$Ti$_4$Fe$_{18}$ ceramics, Mater. Res. Bull., 2006, 41, 1077–1088.
35 A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M. A. Valente, M. P. F. Graça and L. C. Costa, Electrical conductivity and dielectric analysis of La$_{0.75}$(Ca,Sr)$_{0.25}$Mn$_{0.85}$Ga$_{0.15}$O$_3$ perovskite compound, J. Alloys Compd., 2012, 536, 173–178.
36 M. A. Valente, Opt. Mater., 2001, 33, 1964.
37 N. V. Prasad, C. S. Manda and G. S. Kumar, Impedance spectroscopic studies on lead based perovskite materials, Ferroelectrics, 2008, 366, 55–66.
38 S. Lilly, K. Kumari, K. Prasad and R. N. P. Choudhary, Impedance spectroscopy of (Na$_0.5$Bi$_0.5$)[Zr$_{0.25}$Ti$_{0.75}$]O$_3$ lead-free ceramic, J. Alloys Compd., 2008, 453, 325–331.
39 K. Ashok, M. B. Suresh and P. Sarah, Electrical properties of Li and Nd doped SrBi$_2$Ti$_4$O$_{15}$ ceramics, Int. J. Pure Appl. Res. Eng. Technol., 2013, 2, 3299–3307.
40 K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys., 1941, 9, 341.
41 L. S. Lobo and A. B. Kumar, Structural and electrical properties of ZnCo$_2$O$_4$ spinel synthesized by sol–gel combustion method, J. Non-Cryst. Solids, 2019, 505, 301–309.
42 E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy theory, Experiment and Applications, 2nd edn, 2005, p. 18.
43 A. K. Roy, K. Prasad and A. Prasad, Piezoelectric, impedance, electric modulus and Ac conductivity studies on (Bi$_0.5$Na$_0.5$)$_{0.95}$Ba$_{0.05}$TiO$_3$ ceramic, Process. Appl. Ceram., 2013, 7, 81–91.