1. Introduction

Titanium nitride TiN, due to a number of valuable physicochemical properties, refers to promising multifunctional materials [1]. At the same time, numerous studies of its physicochemical properties are quite controversial. For example, thermodynamic, thermal and mechanical parameters of TiN [2-21] are characterized by a significant spread of values (Table 1).

It follows from Table 1 that the differences between the minimum and maximum values of Debye temperature θD are about 20%, for volume coefficient of thermal expansion αV exceed 32%, and for bulk modulus B are within 30-43%. Such differences in the properties of TiN established by different authors [2-21] can be explained by using various methods of its synthesis and determination of physicochemical parameters. From this it follows that the properties of titanium nitride are more correctly represented not by specific values, but by rather wide ranges of values. However, this approach has some drawbacks. After all, modern materials science needs high-precision data. At the same time, the maximum deviations in the value of a certain parameter should not exceed one or several percent. Based on this, the task of this work was formulated—to carry out optimizing calculations that would minimize existing contradictions in the properties of TiN and could reveal the most reliable values of its physicochemical parameters.

Table 1
Values of Debye temperature, volume coefficient of thermal expansion and bulk modulus of TiN at standard conditions established in the works [2-21]
θD, K
700 [2]
780* [3]
799* [4]
809* [3]
841* [4]
870 [5]

Note: *—the difference in the values obtained in one work is due to the use of different research methods.

2. Methods

This work used the methods of Magnus - Lindeman and Debye [22-25]. Basic expressions were [22, 23]:

\[C_V = C_p - \alpha T^{\frac{3}{2}}, \]
\[D(T / \theta_D) = 3(T / \theta_D)^{\frac{1}{3}} \int_0^{\frac{T}{\theta_D}} \frac{x^3}{e^x-1} dx, \]

\[C_p / C_V = B^T / B^T, \]

where \(C_V \) and \(C_p \) - isochoric and isobaric heat capacity respectively; \(\omega \) - design factor; \(T \) - absolute temperature; \(D(T / \theta_D) \) - Debye function; \(R \) - universal gas constant.

Tables of the Debye functions [24] were used to determine \(C_V \) to \(D(T / \theta_D) \).

The Mayer’s relation [26] was used as the test formula:

\[C_p - C_v = \alpha V T B^T, \]

where \(V \) - molar volume; \(B^T \) - isothermal bulk modulus.

The extreme parameter is directly related to the heat capacities [26]:

\[C_p / C_V = B^T / B^T, \]

where \(B^s \) - isentropic bulk modulus.

When calculating, it was assumed that most of the values \(B \) obtained in works [4, 5, 9-21] belong to the isentropic bulk modulus. This is argued by the fact that in studies of elastic properties priority is given to acoustic and acousto-optic methods [19, 20], in which \(B^s \) is directly determined [26, 27].

In this work, \(C_p(T) \) was calculated using the methods of Magnus - Lindeman and Debye [22-25]. This is the average among data [28] and [29] at 298.15 K, which differs only by 2%. Differences between density \(\rho \), melting temperature \(m.p. \), and density of TiN close to the optimal results of bulks modulus exceeds the maximum values from\[30\] was used in this paper. Values of molar mass of TiN and its melting point \(m.p. \) also borrowed from [30].

3. Results

As a result of the analysis, the calculation operations were minimized as much as possible. Their optimized number was reduced to the eight most rational variants, which are grouped in Table 2.

Consider some calculation options in more detail.

Variant I: minimum values of \(\theta_D \) (780 K [3]) and \(\alpha_V \) (19×10^{-9} K^{-1} [4]). For this option, the difference between \(C_p \) and \(C_V \) is 1.25 mJ/(mol×K), and the values of \(B^T \) and \(B^s \) exceed the sizes 950 GPa (Table 2). As can be seen from Table 1, the resulting of bulks modulus exceeds the maximum values from known sources [4, 5, 9-21]. It follows that the suggested option is unlikely.

It should also be noted that if to use [2] as the minimum value of \(\theta_D \) (700 K) from the operation, then come to a neg...

THERMODYNAMIC, THERMAL AND ELASTIC PROPERTIES OF TITANIUM NITRIDE TiN: COMPARISON OF VARIOUS DATA AND DETERMINATION OF THE MOST RELIABLE VALUES

Anton Kozma
PhD, Associate Professor
Department of Physical and Colloid Chemistry
Uzhhorod National University
46 Pidhirna str., Uzhhorod, Ukraine, 88000
Anton_Kozma@yahoo.com

Abstract: The analysis of literary data on thermodynamic, thermal and elastic properties of titanium nitride TiN which included values of Debye temperature \(\theta_D \), volume coefficient of thermal expansion \(\alpha_V \) and bulk modulus \(B \) under standard conditions is carried out. It has been shown that the known data have a significant spread of values from 20 to 43%. The 8 most rational variants of optimizing calculations are proposed, which make it possible to reveal the most reliable values of some TiN parameters. At the same time, the minimum and maximum values of \(\theta_D \) and \(\alpha_V \) were used from literary sources, as well as the least contradictory data on isobaric heat capacity \(C_p \), melting temperature \(m.p. \) and density \(\rho \) of TiN. To improve the calculated results, the values of \(\theta_D(T) \) determined using the methods of Magnus - Lindeman and Debye were also used. The Mayer’s relation was the basic test expression. The obtained values of the bulk modulus were compared with the literature data. This made it possible to distinguish the least and most reliable values of \(\alpha_V \) and \(\theta_D \), as well as make a refinement correction for the last value. As a result, it was found that under standard conditions, the value of \(\theta_D(T) \) close to the optimal should be within 746-769 K, and for its isochoric heat capacity \(C_V \) - in the range 36.55-37.19 J/(mol×K). The range of values, after optimization, does not exceed 3 %, unlike the 20 % available in the literature. A more accurate definition of Debye temperature for TiN needs to radically refine the values of its \(\alpha_V \) and \(B \).

Keywords: titanium nitride, thermodynamic properties, heat capacity, thermal indicators, thermal expansion, mechanical parameters, bulk modulus, calculation methods.
ative size of α_V. In such a case, the TiN should taper upon heating rather than expand. However, this is contrary to all known publications [3–8] on the thermal expansion of titanium nitride.

Variant calculation	θ_θ, K	C_V, J/(mol·K)	α_a, 10⁻⁶ K⁻¹	B², GPa	B^θ, GPa
I	780 [3]	36.25	19 [4]	950<	1000<
II	780 [3]	36.25	28 [8]	450	466
III	870 [5]	33.75	19 [4]	1000<	1000<
IV	870 [5]	33.75	28 [8]	1000<	1000<
V	747	37.16	19 [4]	266	268
VI	747	37.16	28 [8]	122	124
VII	792	35.92	19 [4]	1000<	1000<
VIII	792	35.92	28 [8]	569	594

Variant II: minimum value of θ_θ (780 K [3]) and maximum value of α_a (28×10⁻⁶ K⁻¹ [4, 8]). In this case, the difference C_V-C_α is also 1.25 J/(mol·K), but the values of B² and B^θ take sizes 450 and 466 GPa, respectively. As it is possible to see from Table 1, these values are already approaching those presented in the literature [21].

Similarly, calculations were implemented for variants III and IV. At the same time, overestimated values of B² and B^θ were recorded (Table 2), which makes these variants unlikely. Let’s note that the known data on Debye temperature for TiN [2–5] does not allow to significantly optimize the range of its most likely values. It can only be stated that a more reliable value θ_θ should exceed 700 K, but not exceed 780 K. In this regard, let’s consider an additional 4 variants that can be reached using the methods of Magnus – Lindeman [22] and Debye [22–24]. Consider them below.

Variant V: the value of C_V set according to the Magnus – Lindeman method at 298.15 K, and the minimum coefficient α_a (19×10⁻⁶ K⁻¹ from [4]). For this case, the difference between C_α and C_V is 0.34 J/(mol·K). Herewith B²=266 and B^θ=268 GPa. The values obtained are well consistent with the literature data 257–275 GPa [4, 9–14] (Table 1). Calculated size C_V(TiN)=37.16 J/(mol·K) corresponds to Debye temperature equal to 747 K. This indicator can be considered as one of the minimum in determining the optimal interval of the values of θ_θ(TiN).

The remaining variants VI–VIII have lower accuracy of results (Table 2). Thus, the best agreement between the various literature data was achieved with the calculated variants II and V. They were used for subsequent optimization. From variant V, it is possible to reach the following result. If in the expression (5) let’s substitute the smallest value of B^θ equal to 245 GPa [4] (Table 1), then let’s obtain C_V(TiN)=37.19 J/(mol·K), which corresponds to θ_θ(TiN)=746 K. It is this value of Debye temperature that is most rational to consider the lower bound of optimal values θ_θ(TiN). Of variants II and VIII (Table 2), the upper bound of the most probable value θ_θ(TiN) was determined. By optimizing calculations, let’s come to the value C_V(TiN)=36.55 J/(mol·K), which corresponds to θ_θ(TiN)=769 K. If to use it with the value α_a=28×10⁻⁶ K⁻¹ from [4, 8], then obtain B²=342 and B^θ=351 GPa. The latter value is in good agreement with the maximum size of parameter B set in [21].

Let’s note that 3 of the 4 considered variants (with numbers I, III, VII) with a minimum value of α_a (19×10⁻⁶ K⁻¹) [4]) lead to significantly overestimated values of B [Tables 1, 2]. At the same time, when calculating using the maximum value α_a (28×10⁻⁶ K⁻¹) [8], only 1 of the 4 variants (variant of number IV) gives significant deviations from the known quantities of B. From this it follows that the most reliable value of thermal expansion TiN is closer to the size 28×10⁻⁶ K⁻¹ [8] than to 19×10⁻⁶ K⁻¹ [4]. It is also noted that for 6 of the 8 variants considered (Table 2), the values of B² and B^θ are obtained, which are closer to the maximum sizes of [21] than to the minimum of [4, 9]. It follows that the TiN should have a higher resistance to external pressure than was thought in the works [4, 9].

4. Discussion

The results obtained can be explained by the integrated approach applied in this work. The use in Mayer’s relation (4) of most of the known values of θ_θ and α_a leads to both significantly underestimated and in some cases underestimated values of the bulk modulus B. Many calculated values are significantly outside the known range B=245–352 GPa (Tables 1, 2). Thanks to the analysis of literary data [2–21] and the use of the methods of Magnus – Lindeman and Debye, it was possible to significantly optimize the values of θ_θ(TiN) from 700–870 K to 746–769 K. This led to a decrease in the existing scatter of literary data from 20 % to 3 %. The carried-out clarification of sizes θ_θ(TiN) also allowed to reveal the most probable intervals of values α_a(TiN) and B(TiN) which don’t contradict Mayer’s relation (4). So, for titanium nitride, the most reliable are the values α_a=(25–28)×10⁻⁶ K⁻¹ and B=310–350 GPa obtained in works [3, 4, 6–8] and [6, 19–21] respectively. A disadvantage of this work is the impossibility of determining the true θ_θ(TiN) to one degree. Achieving such high accuracy is possible only after radical refinement of the values α_a and B.

The results obtained, together with the previously known [1–21, 28], serve as an additional confirmation of the practical importance of the TiN as a weakly expandable material when heated that can be used at high external pressures. The established range of optimal values of θ_θ(TiN) is important for subsequent thermodynamic and thermophysical studies and allows in the future to more accurately determine its thermal and elastic properties.

The approach proposed in this work to identify the most reliable parameters of titanium nitride can be used for many similar compounds. These include nitrides of the composition XN, where X = Boron, Aluminum, Scandum, Vanadium, Yttrium, Zirconium, Niobium, Lanthanum, Hafnium, Tantalum and others. Also in the future, it is planned to significantly develop the approach used and identify the most accurate values of θ_θ, C_V, α_a and B for XN in a wide temperature range of 300–3200 K.

5. Conclusions

Analysis of literature data regarding thermodynamic, thermal and elastic properties of titanium nitride TiN was carried out, which included values of its θ_θ, α_a and B under standard conditions. It was shown that the previous results are characterized by a significant spread of values from 20 to 43 %. There are 8 basic variants of optimizing calculations, which made it possible to identify the most reliable values of some parameters of TiN. It has been established that under
standard conditions, the size of $\theta_D(TiN)$ close to the optimal should be within 746–769 K, and for $C_T(TiN)$ – in the range of 36.55–37.19 J/(mol×K). The spread of values for optimized parameters does not exceed 3%.

References

1. Zhang, S., Sun, D., Fu, Y., Du, H. (2005). Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, 198 (1–3), 2–8. doi: https://doi.org/10.1016/j.surfcoat.2004.10.020

2. Houska, C. R. (1964). Thermal expansion and atomic vibration amplitudes for TiC, TiN, ZrC, ZrN, and pure tungsten. Journal of Physics and Chemistry of Solids, 25 (4), 359–366. doi: https://doi.org/10.1016/0022-3697(64)90001-0

3. Ajami, F. I., MacCrone, R. K. (1974). Thermal expansion, Debye temperature and Gruneisen constant of carbides and nitrides. Journal of the Less Common Metals, 38 (2–3), 101–110. doi: https://doi.org/10.1016/0022-5088(74)90053-8

4. Seifitokaldani, A., Gheribi, A. E., Dollé, M., Chartrand, P. (2016). Thermophysical properties of titanium and vanadium nitrides: Thermodynamically self-consistent approach coupled with density functional theory. Journal of Alloys and Compounds, 662, 240–251. doi: https://doi.org/10.1016/j.jallcom.2015.12.013

5. Mohammadpour, E., Altarawneh, M., Al-Nu’airat, J., Jiang, Z.-T., Mondonis, N., Dlugogorski, B. Z. (2018). Thermo-mechanical properties of cubic titanium nitride. Molecular Simulation, 44 (5), 415–423. doi: https://doi.org/10.1080/08927022.2017.1393810

6. Aigner, K., Lengauer, W., Rafaja, D., Ettmayer, P. (1994). Lattice parameters and thermal expansion of Ti(C,N)$_1$–x, Zr(C,N)$_1$–x, Hf(C,N)$_1$–x and Ti(N)$_{1-x}$ from 298 to 1473 K as investigated by high-temperature X-ray diffraction. Journal of Alloys and Compounds, 215 (1–2), 121–126. doi: https://doi.org/10.1016/0022-5884(94)90828-1

7. Pierson, H. O. (1996). Handbook of refractory carbides and nitrides: Properties, characteristics, processing and applications. William Andrew Inc., 362.

8. Erolgu, S., Gallois, B. (1993). Residual stresses in chemically vapor deposited coatings in the Ti-C-N system. Le Journal de Physique IV, 03 (C3), C3-155–C3-162. doi: https://doi.org/10.1051/jp4:1993319

9. Brik, M. G., Ma, C.-G. (2012). First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb). Computational Materials Science, 51 (1), 380–388. doi: https://doi.org/10.1016/j.commatsci.2011.08.008

10. Adhikari, V., Szymanski, N. J., Khatri, I., Gall, D., Khare, S. V. (2019). First principles investigation into the phase stability and enhanced hardness of TiN-ScN and TiN-YN alloys. Thin Solid Films, 688, 137284. doi: https://doi.org/10.1016/j.tsf.2019.05.003

11. Isaev, E. I., Simak, S. I., Abrikosov, I. A., Ahuja, R., Vekilov, Y. K., Katsnelson, M. I. et. al. (2007). Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. Journal of Applied Physics, 101 (12), 123519. doi: https://doi.org/10.1063/1.2747230

12. Hu, Q.-M., Kadas, K., Hogmark, S., Yang, R., Johansson, B., Vitos, L. (2008). Hardness and elastic properties of covalent/ionic solid solutions from first-principles theory. Journal of Applied Physics, 103 (8), 083505. doi: https://doi.org/10.1063/1.2904857

13. Djemia, P., Benhamida, M., Bouamama, K., Belliard, L., Faurie, D., Abadias, G. (2013). Structural and elastic properties of ternary metal nitrides Ti$_x$Ta$_{1-x}$N alloys: First-principles calculations versus experiments. Surface and Coatings Technology, 215, 199–208. doi: https://doi.org/10.1016/j.surfcoat.2012.09.059

14. Holec, D., Friák, M., Neugebauer, J., Mayrhofer, P. H. (2012). Trends in the elastic response of binary early transition metal nitrides. Physical Review B, 85 (6), 064101. doi: https://doi.org/10.1103/physrevb.85.064101

15. Chen, D., Chen, J., Zhao, Y., Yu, B., Wang, C., Shi, D. (2009). Theoretical study of the elastic properties of titanium nitride. Acta Metallurgica Sinica (English Letters), 22 (2), 146–152. doi: https://doi.org/10.1007/s10600-008-0082-4

16. Shebanova, O., Soignard, E., McMillan, P. F. (2006). Compressibilities and phonon spectra of high-hardness transition metal-nitride materials. High Pressure Research, 26 (2), 87–97. doi: https://doi.org/10.1080/08957950600765186

17. Sangiovanni, D. G., Chirita, V., Hultman, L. (2010). Electronic mechanism for toughness enhancement in Ti$_x$M$_{1-x}$N(M=Mo and W). Physical Review B, 81 (10), 104107. doi: https://doi.org/10.1103/physrevb.81.104107

18. Yu, S., Zeng, Q., Oganov, A. R., Frapper, G., Zhang, L. (2015). Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Physical Chemistry Chemical Physics, 17 (17), 11763–11769. doi: https://doi.org/10.1039/c5cp00156k

19. Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Shinn, M., Barnett, S. A. (1992). Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. Journal of Applied Physics, 72 (5), 1805–1811. doi: https://doi.org/10.1063/1.351651

20. Goupy, J., Djemia, P., Pouget, S., Belliard, L., Abadias, G., Villégier, J. C. et. al. (2013). Structure, electrical conductivity, critical superconducting temperature and mechanical properties of TiNxOy thin films. Surface and Coatings Technology, 237, 196–204. doi: https://doi.org/10.1016/j.surfcoat.2013.09.019
21. Wolf, W., Podloucky, R., Antretter, T., Fischer, F. D. (1999). First-principles study of elastic and thermal properties of refractory carbides and nitrides. Philosophical Magazine B, 79 (6), 839–858. doi: https://doi.org/10.1080/13642819908214844
22. Morachevskiy, A. G., Sladkov, I. B. (1985). Termodinamicheskie raschety v metallurgii. Spravochnik. Moscow: Metallurgiya, 136.
23. Levanov, A. V., Antipenko, E. E. (2006). Opredelenie termodinamicheskikh svoystv statisticheskimi metodami. Real’nye gazy. Zhidkosti. Tverdye tela. Moscow: MGU im. M.V. Lomonosova, 40.
24. Kilpatrick, J. E., Sherman, R. H. (1964). Six-place tables of the Debye functions (E-E_0)/3RT, C_v/3R, and S/3R. Los Alamos: Scientific Laboratory of the University of California, 64.
25. Kozma, A. A. (2019). Advantages of Using Semi-Empirical Methods in Teaching Students at the Faculty of Chemistry of Uzhhorod National University. International Journal of Education and Science, 2 (2), 22. doi: https://doi.org/10.26697/ijes.2019.2.09
26. Stepanov, I. A. (2016). The isochoric heat capacity of ZrW2O8 and Sc2W3O12 is greater than their isobaric one. Materials Letters, 177, 112–115. doi: https://doi.org/10.1016/j.matlet.2016.04.153
27. Ledbetter, H. M. (1980). Sound velocities and elastic-constant averaging for polycrystalline copper. Journal of Physics D: Applied Physics, 13 (10), 1879–1884. doi: https://doi.org/10.1088/0022-3727/13/10/017
28. Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A., Debuigne, J., Groboth, G. (1995). Solid state properties of group IVb carbonitrides. Journal of Alloys and Compounds, 217 (1), 137–147. doi: https://doi.org/10.1016/0925-8388(94)01315-9
29. Barin, I. (1995). Thermochemical Data of Pure Substances. John Wiley & Sons. doi: https://doi.org/10.1002/9783527619825
30. Lide, D. R. (Ed.) (2003–2004). Handbook of Chemistry and Physics. CRC Press.

Received date 23.09.2020
Accepted date 02.11.2020
Published date 30.11.2020

© The Author(s) 2020
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0).