Jacobian varieties of reduced tropical curves

Shuhei Yoshitomi

Abstract

On tropical geometry in \mathbb{R}^2, the divisor and the Jacobian variety are defined in analogy to algebraic geometry. For study of these objects, it is important to think of the ‘bunch’ of a tropical curve (Figure 1). In this paper, we will show that if the bunch is a bouquet, then the Jacobian is a higher-dimensional torus.

![Figure 1: Bunch of a tropical curve](image)

1 Introduction

In this paper, the affine space \mathbb{R}^2 is equipped with interior product $(u_1, u_2) \cdot (v_1, v_2) = u_1v_1 + u_2v_2$ and exterior product $(u_1, u_2) \times (v_1, v_2) = u_1v_2 - v_1u_2$.

Let C be a tropical curve in \mathbb{R}^2 (See section 2 for preliminary). The Jacobian variety of C is defined in analogy to algebraic geometry as follows.
Definition. The *divisor group* $\text{Div}(C)$ of C is the free abelian group generated by all points of C. We define a subgroup

$$\text{Div}^0(C) = \left\{ D = \sum_{P \in C} m_P P \in \text{Div}(C) \mid \deg D := \sum_{P} m_P = 0 \right\}.$$

Divisors D, D' are *linearly equivalent*, $D \sim D'$, if there are tropical curves L, L' such that

$$\Delta(L) = \Delta(L'),$$

$$D - D' = C \cdot L - C \cdot L',$$

where Δ denotes the Newton polygon and $C \cdot L$ denotes the stable intersection.

The *Jacobian variety* of C is the residue group

$$\text{Jac}(C) = \text{Div}^0(C)/\sim.$$

![Diagram](https://via.placeholder.com/150)

Figure 2: Tropical elliptic curve

We fix a point $\mathcal{O} \in C$. If C is a tropical elliptic curve, then the ‘bunch’ of C is homeomorphic to S^1 (Figure 2), and we have a map

$$\varphi: \text{Bunch}(C) \rightarrow \text{Jac}(C)$$

$$P \mapsto P - \mathcal{O}.$$

2
Vigeland [6] states that φ is bijective, which concludes that a tropical elliptic curve has a group structure in a smaller part of it. But the proof in [6] is not complete. He has proved the surjectivity of φ.

In this paper, we give a complete proof and some generalization of it.

Definition. A tropical curve C is reduced if every edge is of weight 1. C is smooth if every vertex is 3-varent and of multiplicity 1. (Hence any smooth tropical curve is reduced.)

Definition. An edge $E \subset C$ is tentacle if $C \setminus \text{Int}(E)$ is disconnected. E is a ray if E has only one vertex. We define the bunch of C, $\text{Bunch}(C)$, to be the quotient space of C by every tentacle edge and ray contracted.

Definition. A bouquet is a topological space $B = \Lambda_1 \cup \cdots \cup \Lambda_g$ with a point $O \in B$ such that

\[
\Lambda_i \approx S^1 \quad (1 \leq i \leq g),
\]

\[
\Lambda_i \cap \Lambda_j = \{O\} \quad (i \neq j).
\]

O is called the center of B. (The topological genus of B is g.)

Theorem 1.1. Let C be a reduced tropical curve in \mathbb{R}^2. Suppose that $\text{Bunch}(C)$ is a bouquet of genus g, with center O and cycles $\Lambda_1, \ldots, \Lambda_g$. Then the map

\[
\varphi: \Lambda_1 \times \cdots \times \Lambda_g \longrightarrow \text{Jac}(C)
\]

\[
(P_1, \ldots, P_g) \mapsto P_1 + \cdots + P_g - gO
\]

is bijective.

The statement includes that the map φ is well-defined, i.e. if P_1, P_1' are on the same tentacle edge or on the same ray, then $P_1 \sim P_1'$.

Remark 1.2. Tropical geometry is introduced in three approaches. The first is an algebraic approach (e.g.[4],[1]). If $f \in \tilde{\mathbb{R}}[x,y]$ is a tropical polynomial over the tropical algebra $\tilde{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$, then its corner locus is a tropical curve. The second is a valuation-theoretical approach (e.g.[2],[5]). If K is a suitable valuation field, and V is an algebraic curve in K^2, then its image by the valuation map $v: K^2 \rightarrow \tilde{\mathbb{R}}^2$ is a tropical curve. This image is expressed as the limit of amoebas of complex curves. And the last is a geometrical approach (e.g.[5]). A 1-dimensional simplicial complex in \mathbb{R}^2 (or, a graph in \mathbb{R}^2) satisfying some balancing condition is a tropical curve. The equivalence of these definitions is easy to prove (See [2]). In this paper, we take only geometrical approach.
Remark 1.3. In algebraic approach, projective tropical curves are treated as special objects (C is projective if Δ(C) = Δₚ). The above definition of linearly equivalence has another version as follows: \(D \sim_{\text{alg}} D' \) if there are projective tropical curves \(L, L' \) such that

\[
\deg(L) = \deg(L'),
\]

\[
D - D' = C \cdot L - C \cdot L'.
\]

The residue group \(\text{alg Jac}(C) = \text{Div}^0(C)/\sim_{\text{alg}} \) will be called the algebraic Jacobian variety of \(C \). There is a canonical surjection \(\psi: \text{alg Jac}(C) \rightarrow \text{Jac}(C) \). We can think of a map \(\varphi_{\text{alg}}: \text{Bunch}(C) \rightarrow \text{alg Jac}(C) \) instead of \(\varphi: \text{Bunch}(C) \rightarrow \text{Jac}(C) \) (in the case of genus 1). Vigeland \[6\] exactly states that \(\varphi_{\text{alg}} \) is bijective. The injectivity of \(\varphi_{\text{alg}} \) follows from the injectivity of \(\varphi \), but the surjectivity of \(\varphi_{\text{alg}} \) requires extra arguments like \[6\].

\[C\]

\[M\]

\[Q\]

\[P\]

\[L\]

Remark 1.4. One needs to be careful about the ‘degree’ of the tropical curve. Tropical curves \(L, M \) with Newton polygons

\[\Delta(L) = \text{Conv}\{(0, 0), (1, 0), (1, 1)\} \]

\[\Delta(M) = \text{Conv}\{(0, 0), (0, 1), (1, 1)\} \]

are both ‘tropical curves of degree 2’. Figure \[8\] is an example such that \(C \cdot L - C \cdot M = P - Q \). But Theorem \[1.1\] asserts that \(P, Q \) are not linearly equivalent. Note that \(L, M \) are not projective.
2 Preliminary

A primitive vector in \(\mathbb{R}^2 \) is an integral vector \(u = (u_1, u_2) \) such that \(u_1, u_2 \) are relatively prime. Any integral vector \(v \in \mathbb{Z}^2 \) is a primitive vector \(u \) times some natural number \(m \). \(m \) is called the lattice length of \(v \).

Let \(C \) be a 1-dimensional simplicial complex of rational slopes in \(\mathbb{R}^2 \). Each finite edge \(E \subset C \) has two primitive vectors for the directions parallel to \(E \), say \(u, -u \). If the weight \(m \in \mathbb{N} \) of \(E \) is given, we have the weighted primitive vectors \(mu, -mu \) of \(E \). For a vertex \(V \in E \), one of these vectors has the direction from \(V \) to \(E \). We call this, say \(u_E \), the weighted primitive vector of \(E \) starting at \(V \).

If \(E \) is a ray (i.e. an infinite edge), \(E \) has only one weighted primitive vector.

Definition. \(V \) satisfies the balancing condition if the sum of all weighted primitive vectors starting at \(V \) equals 0:

\[
\sum_{E \ni V} u_E = 0.
\]

A tropical curve in \(\mathbb{R}^2 \) is a 1-dimensional weighted simplicial complex of rational slopes such that each vertex satisfies the balancing condition.

Let \(C \) be a tropical curve in \(\mathbb{R}^2 \). Let \(U_1, \ldots, U_r \) be all connected components of \(\mathbb{R}^2 \setminus C \). Let \(N \) be a 1-dimensional simplicial complex with vertex set \(\text{Ver}(N) = \{ w_1, \ldots, w_r \}, w_i \in \mathbb{Z}^2 \).

Definition. \(N \) is a Newton complex of \(C \) if it satisfies the following conditions for any \(i \neq j \).

i) If \(\overline{U_i} \cap \overline{U_j} = \emptyset \), then \([w_i, w_j] \notin \text{Edge}(N)\).

ii) If \(\overline{U_i} \cap \overline{U_j} = E \) for some \(E \in \text{Edge}(C) \), then \([w_i, w_j] \in \text{Edge}(N)\), and \(w_j - w_i \) has lattice length \(\text{wt}(E) \), direction orthogonal to \(E \) from \(U_i \) to \(U_j \).

Proposition 2.1. Let \(C, C_1, C_2 \) be tropical curves in \(\mathbb{R}^2 \).

1) A Newton complex \(\text{Newt}(C) \) of \(C \) exists uniquely up to parallel translation. The convex hull

\[
\Delta(C) = \text{Conv}(\text{Newt}(C))
\]

is called the Newton polygon of \(C \).

2) \(\Delta(C_1 \cup C_2) \) equals the Minkowski sum of \(\Delta(C_1) \) and \(\Delta(C_2) \).
Proof. 1) (See [5], §3.4, if you take an algebraic approach.) Let $w_1 = (0, 0)$, and suppose w_1, \ldots, w_{k-1} are constructed. Rearranging U_k, \ldots, U_r, we may assume $U_i \cap U_k = E_k$ for some $i < k$ and some $E_k \in \text{Edge}(C)$. Let u_k be the primitive vector of direction orthogonal to E_k from U_i to U_k. Let w_k be the vector
\[w_k - w_i = \text{wt}(E_k)u_k. \] (1)
If U_1, \ldots, U_k are adjacent at a common vertex V, the condition (1) is compatible for U_k and U_1, i.e.
\[w_1 - w_k = \text{wt}(E_1)u_1, \]
where E_1 is the boundary of U_k and U_1, and u_1 is the primitive vector of direction orthogonal to E_1 from U_k to U_1. This compatibility follows from the balancing condition
\[\sum_{i=1}^{k} \text{wt}(E_i)u_i = 0. \]
Therefore this construction does not depend on the choice of U_k.

2) $\Delta(C_1)$ depends only on the data of rays of C_1. Rays of $C_1 \cup C_2$ corresponds to rays of C_1 and C_2. \hfill \square

Newt(C) can be considered as a dual object of C, with correspondence from U_i to w_i (Figure 4). A vertex $V \in C$ corresponds to a polygon $T_V \subset \Delta(C)$ as follows.
i) \(U_i, \ldots, U_k \) are adjacent at \(V \),

ii) \(T_V = \text{Conv}\{w_i, \ldots, w_k\} \).

Proposition 2.2 (Global balancing condition). Let \(C \) be a tropical curve in \(\mathbb{R}^2 \). Let \(\Lambda \) be a simple closed curve in \(\mathbb{R}^2 \) intersecting edges of \(C \), say \(E_1, \ldots, E_N \), transversely. Then

\[
\sum_{i=1}^{N} u_{E_i} = 0,
\]

where \(u_{E_i} \) is the weighted primitive vector of \(E_i \) starting at the vertex inside \(\Lambda \).

Proof. For each vertex \(V_j \in C \) inside \(\Lambda \), the balancing condition

\[
\sum_k u_{j,k} = 0
\]

holds. Thus

\[
\sum_{j,k} u_{j,k} = 0.
\]

On the left hand side, two weighted primitive vectors of the same edge inside \(\Lambda \) are canceled. Thus we have the required equation. \(\square \)

A *tangent vector* \((v, P)\) in \(\mathbb{R}^2 \) is a vector \(v \in \mathbb{R}^2 \) with a starting point \(P \in \mathbb{R}^2 \). We fix a point \(P_0 \in \mathbb{R}^2 \). The *moment* of \((v, P)\) is the exterior product

\[
\text{moment}(v, P) = \overrightarrow{P_0P} \times v.
\]

Proposition 2.3 (Moment condition). Under the assumption of Proposition 2.2,

\[
\sum_{i=1}^{N} \text{moment}(u_{E_i}, V_{E_i}) = 0,
\]

where \((u_{E_i}, V_{E_i})\) is the weighted primitive tangent vector of \(E_i \) starting at the vertex inside \(\Lambda \). (See Figure 5.)
Proof. For each vertex $V_j \in C$ inside Λ, the balancing condition

$$\sum_k u_{jk} = 0$$

holds. Thus

$$\sum_{j,k} \overrightarrow{P_0 V_j} \times u_{jk} = 0.$$

On the left hand side, two weighted primitive vectors of the same edge inside Λ are canceled as follows.

$$\overrightarrow{P_0 V_j} \times u_{jk} + \overrightarrow{P_0 V_{j'}} \times u_{j'k'} = \overrightarrow{P_0 V_j} \times u_{jk} + \overrightarrow{P_0 V_{j'}} \times (-u_{jk})$$

$$= \overrightarrow{V_j' \times u_{jk}}$$

$$= 0.$$

Thus we have the required equation. \qed

Definition. The *multiplicity* of a vertex $V \in C$ is

$$\text{Mult}(V; C) = 2 \cdot \text{area}(T_V).$$

The *intersection multiplicity* of $V \in C_1 \cap C_2$ is

$$\mu_V = \frac{1}{2} (\text{Mult}(V; C_1 \cup C_2) - \text{Mult}(V; C_1) - \text{Mult}(V; C_2)).$$
(If \(V \) is not a vertex of \(C \), we put \(\text{Mult}(V; C) = 0. \))

The formal sum

\[
C_1 \cdot C_2 = \sum_{V \in C_1 \cap C_2} \mu_V V
\]

is called the *stable intersection* of \(C_1 \) and \(C_2 \).

The stable intersection is characterized as the limit of the transversal intersection (See [3], Theorem 4.3). If \(V \in C_1 \cap C_2 \) is a transversal intersection point, this definition is simplified to

\[
\mu_V = |u_E \times u_F|,
\]

where \(E \subset C_1, F \subset C_2 \) are edges passing through \(V \).

Theorem 2.4 (Tropical Bezout’s Theorem). Let \(C_1, C_2 \) be tropical curves in \(\mathbb{R}^2 \). Then the following formula holds.

\[
\deg(C_1 \cdot C_2) = \text{area}(\Delta(C_1) + \Delta(C_2)) - \text{area}(\Delta(C_1)) - \text{area}(\Delta(C_2)),
\]

where \(\Delta(C_1) + \Delta(C_2) \) is the Minkowski sum.

Proof. This follows from the above definition and Proposition 2.1.

For example, let \(c, d \geq 1 \), and suppose \(\Delta(C_1) = \text{Conv}\{(0,0), (c,0), (0,c)\} \), \(\Delta(C_2) = \text{Conv}\{(0,0), (d,0), (0,d)\} \) (In algebraic approach, \(C_2 \) is said to be *projective* of degree \(d \)). Then \(\Delta(C_1) + \Delta(C_2) = \text{Conv}\{(0,0), (c+d,0), (0,c+d)\} \), and \(\deg(C_1 \cdot C_2) = \frac{1}{2}(c + d)^2 - \frac{1}{2}c^2 - \frac{1}{2}d^2 = cd \).

3 Proof of the surjectivity

First we show that \(\varphi \) is well-defined (Lemma 3.4, Lemma 3.5).

Lemma 3.1. Let \(u \in \mathbb{Z}^2 \) be a primitive vector. Then for given \(\varepsilon > 0 \), there is a primitive vector \(v \in \mathbb{Z}^2 \) such that

\[
u \times v = 1, \quad |\theta(u) - \theta(v)| < \varepsilon,
\]

where \(\theta(u) \) denotes the angle of \(u \).

This lemma is easy.
Lemma 3.2. Let E be an edge of C, and let P, P', Q, Q' be points of E such that $PP' = QQ'$. Then $P' - P \sim Q' - Q$.

Proof. (Figure 6) We may assume that P', Q lie on the interval $[P, Q']$, and that Q' lies in the interior $\text{Int}(E)$. Let v_1, v_2, v_3 be primitive vectors such that
\[
|u_E \times v_i| = 1 \quad (i = 1, 2, 3),
\]
\[
\theta(u_E) - \varepsilon < \theta(v_1) < \theta(u_E) < \theta(v_2) < \theta(u_E) + \varepsilon < \theta(v_3).
\]
Then we have a triangle, with vertices P and $R_1, R_2 \in \mathbb{R}^2$, such that
\[
\overrightarrow{PR_i} \text{ has direction } v_i \quad (i = 1, 2),
\]
\[
\overrightarrow{R_1 R_2} \text{ has direction } v_3,
\]
\[
Q' \in [R_1, R_2].
\]
Take $\varepsilon > 0$ small enough so that this triangle is disjoint from $C \setminus E$.

Now we take two tropical curves L, M as follows. L consists of one vertex P and three rays $L_0, L_1, L_2 \subset \mathbb{R}^2$, with $R_1 \in L_1$, $R_2 \in L_2$. L_0 is parallel to E. $\text{wt}(L_1) = \text{wt}(L_2) = 1$. (The balancing condition at P follows from (2).) M consists of one finite edge $M_0 \subset \mathbb{R}^2$, four rays $M_1, M_2, M_3, M_4 \subset \mathbb{R}^2$, and two vertices $V_1, V_2 \in \mathbb{R}^2$. M_0 is parallel to $[R_1, R_2]$, and passes through Q. $V_1 \in [P, R_1]$, $V_2 \in [P, R_2]$. For $i = 1, 2$, M_i has vertex V_i and passes through R_i. M_3, M_4 are parallel to E. $\text{wt}(M_0) = \text{wt}(M_1) = \text{wt}(M_2) = 1$.

Move L by PP', and denote it by L'. Move M by QQ', and denote it by M'. Then we have a relation
\[
(C \cdot L - P) - (C \cdot L' - P') = (C \cdot M - Q) - (C \cdot M' - Q').
\]
Thus $P' - P$ is linearly equivalent to $Q' - Q$. \qed

Corollary 3.3. Let E be any edge, and suppose that all interior points of E are linearly equivalent. Then all points of E are linearly equivalent.

Lemma 3.4. Let E be a ray of C. Then all points of E are linearly equivalent.

Proof. (Figure 7, left) Let $P, Q \in \text{Int}(E)$. Take a primitive vector v so that
\[
|u_E \times v| = 1, \quad |\theta(u_E) - \theta(v)| < \varepsilon.
\]
There is a small parallelogram $R_1 R_2 R_3 R_4$ such that

- $\overrightarrow{R_3 R_1}, \overrightarrow{R_4 R_2}$ have direction v,
- $\overrightarrow{R_2 R_1}, \overrightarrow{R_4 R_3}$ have direction $w := u_E - v$,
- $P \in [R_1, R_3]$, $Q \in [R_2, R_4]$.

Take $\varepsilon > 0$ small enough so that this parallelogram is disjoint from $C \setminus E$.

Let M_1 be a tropical curve, consisting of one vertex R_1 and three rays $L_0, L_1, L_2 \subset \mathbb{R}^2$, such that L_0 has direction u_E, $R_3 \in L_1$, $R_2 \in L_2$, $\operatorname{wt}(L_0) = \operatorname{wt}(L_1) = 1$. Move M_1 by $\overrightarrow{R_1 R_3}$, and denote it by $M_i (i = 2, 3, 4)$. Then we have a relation

\[C \cdot M_1 + C \cdot M_4 - Q = C \cdot M_2 + C \cdot M_3 - P. \]
Thus $P \sim Q$. \hfill \blacksquare

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Figure 7:}
\end{figure}

\textbf{Lemma 3.5.} Let E be a tentacle edge of C. Then all points of E are linearly equivalent.

\textit{Proof.} (Figure 7 right) Let $P \in \text{Int}(E)$. Since $C \setminus \text{Int}(E)$ is disconnected, E is a boundary of two unbounded convex open sets U_1, U_2 of $\mathbb{R}^2 \setminus C$. For $i = 1, 2$, let θ_i be the angle of any unbounded direction of U_i. For $\delta, \varepsilon > 0$, let

$$W_i = \left\{ P + a + w \mid a, w \in \mathbb{R}^2, |a| < \delta, P + a \in E, \quad |\theta(w) - \theta_i| < \varepsilon \right\},$$

$$W = W_1 \cup W_2.$$

Take $\delta, \varepsilon > 0$ small enough so that W intersects $C \setminus E$ only at points of rays of C.

Let v be a primitive vector such that $u_E \times v = 1$. Take $w, w' \in \mathbb{Z}^2$ so that

$$w - w' = v,$$

$$|\theta(w) - \theta_1| < \varepsilon,$$

$$|\theta(w') - \theta_1| < \varepsilon.$$

Let L be a tropical curve consisting of three rays $L_0, L_1, L_2 \subset \mathbb{R}^2$ such that

$L_1 \cup L_2 \subset W$;
Moving \(L \) on the direction of \(L_0 \), the intersection point \(P \) changes to other point \(Q \in E \), but all other intersection points of \(L \) and \(C \) are stable except for points of rays of \(C \). We have

\[
(u_E \times w)P \sim (u_E \times w)Q.
\]

Similarly,

\[
(u_E \times w')P \sim (u_E \times w')Q.
\]

Thus \(P \sim Q \).

For a proof of Theorem 1.1, the case of genus 1 is essential. If \(\Lambda := \text{Bunch}(C) \approx S^1 \), then we have a map \(\pi: \mathbb{R} \to \Lambda \) with the following properties.

i) \(\pi(0) = O \).

ii) \(\pi \) is increasing with respect to the positive direction of \(S^1 \).

iii) If \(\pi[a, b] \ (a, b \in \mathbb{R}) \) is contained in an edge of primitive vector \(u \), then

\[
\text{length}(\pi[a, b]) = |u|(b - a).
\]

(In other words, \(\pi \) is compatible with the lattice length.)

Lemma 3.6. If \(\pi(a) = P, \pi(a') = P', \pi(b) = Q, \pi(b') = Q' \), \(a' - a = b' - b \), then \(P' - P \sim Q' - Q \).

Proof. (Figure 5) We may assume that \(a' - a > 0 \) is small enough so that \(P, P' \) lie on the same edge \(E \), and \(Q, Q' \) on \(F \). We may also assume that \(E, F \) are adjacent at a common vertex \(R \), and \(E \neq F \). From Lemma 3.2, we may assume that \(P, P', Q, Q' \) are interior points of edges, and \([P, Q]\) has rational slope.

Let \(L \) be the line passing through \(P, Q' \). Then

\[
E \cdot L = |u_E \times u_L|P,
\]

\[
F \cdot L = |u_F \times u_L|Q.
\]

Let \(P'', Q'' \) be points of \(E, F \) such that

\[
\frac{PP''}{PP'} = \frac{1}{|u_E \times u_L|PP'},
\]

\[
\frac{PP''}{PP'} = \frac{QQ''}{QQ'}.
\]
\[
\overrightarrow{Q'Q''} = \frac{1}{|u_F \times u_L|} \overrightarrow{Q'Q}.
\]

Then
\[
|\overrightarrow{PP''} \times u_L| = \frac{|\overrightarrow{PP''}|}{|u_E|} |u_E \times u_L|
\]
\[
= \frac{|\overrightarrow{PP''}|}{|u_E|}
\]
\[
= \frac{|\overrightarrow{Q'Q''}|}{|u_E|} \quad \text{(because } a' - a = b' - b)\]
\[
= \frac{|\overrightarrow{Q'Q''} \times u_L|}{|u_E|},
\]

which means that \([P'', Q'']\) is parallel to \(L\). Thus
\[
|u_E \times u_L|(P'' - P) \sim |u_F \times u_L|(Q' - Q'').
\]

This means \(P' - P \sim Q' - Q\), from Lemma 3.2.

\[\square\]

Figure 8:

Lemma 3.7 (Interval divisor). *Let \(S, T\) be rays in \(\mathbb{R}^2\) such that \(S \cap C = \emptyset\), \(T \cap C = \emptyset\), \(S \cap T = \emptyset\). Let \(P, P' \in S\), \(Q, Q' \in T\) be points such that \([P, Q]\) is parallel to \([P', Q']\). Then

\[C \cdot [P, Q] \sim C \cdot [P', Q']\]**.
Proof. (Figure 9 left) Let \(L \) be the tropical curve with vertex \(P \), consisting of three rays \(L_0, L_1, L_2 \) such that
\[
L_1 \subset S, \quad Q \in L_2,
\]
\[
\text{wt}(L_1) = \text{wt}(L_2) = 1.
\]
Let \(R \) be the point such that
\[
[P, R] \text{ is parallel to } L_0,
\]
\[
[P', R] \text{ is parallel to } [P, Q].
\]
Then we have a triangle \(PP'R \). We may assume that \(|PP'| \) is small enough so that this triangle is disjoint from \(C \). Move \(L \) by \(PR \), and denote it by \(L' \). Then we have a relation
\[
C \cdot L - C \cdot [P, Q, \infty) = C \cdot L' - C \cdot [P', Q', \infty).
\]
Thus
\[
C \cdot [P, Q, \infty) \sim C \cdot [P', Q', \infty).
\]
Similarly,
\[
C \cdot [Q, P, \infty) \sim C \cdot [Q', P', \infty),
\]
\[
C \cdot \text{Line}(P, Q) \sim C \cdot \text{Line}(P', Q').
\]
The statement follows.

Proof of the surjectivity of \(\varphi \). (Figure 9 right) Since the image of \(\Lambda_1 \cup \cdots \cup \Lambda_g \) in \(\text{Bunch}(C) \) is a bouquet, there are \(O_1, \ldots, O_g \sim O \) such that \(O_i \in \Lambda_i \). Because of convexity, there are connected disjoint \(g \) cones \(U_1, \ldots, U_g \subset \mathbb{R}^2 \) with center \(O_1, \ldots, O_g \) such that \(\Lambda_i \subset U_i \). Similarly to the case of genus 1, we have a map \(\pi_i: \mathbb{R} \to \Lambda_i \) for each \(i \). Lemma 3.6 is proved for \(\pi_i \) similarly, only changing \(L \) to an interval divisor \(L \cap U_i \) (Lemma 3.7). Thus we have a homomorphism of abelian groups
\[
\tilde{\varphi}: \mathbb{R}^g \rightarrow \pi_1 \times \cdots \times \pi_g \rightarrow \text{Jac}(C).
\]
Since \(\text{Jac}(C) \) is generated by \(\{ P_i - O | P_i \in \Lambda_i, 1 \leq i \leq g \} \), \(\tilde{\varphi} \) is surjective.
4 Parameter space of tropical plane curves

Let L be a tropical curve with Newton complex \mathcal{N}. Let $V_0 = (b_1, b_2)$ be a fixed vertex of L. Let E_1, \ldots, E_l be all finite edges of L. Let a_i be the lattice length of E_i. Then all tropical curves with Newton complex \mathcal{N} are parametrized by $a_1, \ldots, a_l > 0$ and $b_1, b_2 \in \mathbb{R}$. Let $\mathcal{P}(\mathcal{N}, \mathbb{R}^2) \subset \mathbb{R}^{l+2}$ be the parameter space.

Proposition 4.1. $\mathcal{P}(\mathcal{N}, \mathbb{R}^2)$ is connected.

Proof. Let $\Gamma_1, \ldots, \Gamma_g$ be all convex cycles of L. Let $E_{i(j,1)}, \ldots, E_{i(j,s_j)}$ be all edges of Γ_j. Let $u_{j,k}$ be the primitive vector of $E_{i(j,k)}$ of positive direction of S^1. Then the equation

$$a_{i(j,1)}u_{j,1} + \cdots + a_{i(j,s_j)}u_{j,s_j} = 0$$

is satisfied for any $L \in \mathcal{P}(\mathcal{N}, \mathbb{R}^2)$. Let $H_j \subset \mathbb{R}^{l+2}$ be the linear subspace defined by equation (3). Then

$$\mathcal{P}(\mathcal{N}, \mathbb{R}^2) = \{ (a_1, \ldots, a_l, b_1, b_2) | a_1, \ldots, a_l > 0 \} \cap (H_1 \cap \cdots \cap H_g).$$

Thus $\mathcal{P}(\mathcal{N}, \mathbb{R}^2)$ is a relatively open convex cone in \mathbb{R}^{l+2}, which is connected. \hfill \Box

Definition. A tropical curve L' is a degeneration of L if $\Delta(L') = \Delta(L)$ and $\text{Newt}(L') \subset \text{Newt}(L)$.

Figure 9:
The set of all degenerations of L is parametrized by $\mathcal{P}(\mathcal{N}, \mathbb{R}^2)$. If a Newton polygon Δ is fixed, all tropical curves have a common degeneration (that is, a tropical curve consisting of one vertex). All the Newton polygons is countable. Therefore, the space $\mathcal{P}(\mathbb{R}^2)$ of all tropical curves is a disjoint union of countable closed cones in affine spaces.

Corollary 4.2. Tropical curves $L, L' \in \mathcal{P}(\mathbb{R}^2)$ lie in the same connected component if and only if $\Delta(L) = \Delta(L')$.

5 Proof of the injectivity

Let $\pi: \mathbb{R} \to \Lambda$ be the map defined in section 3. Λ is considered as a residue group of \mathbb{R}. Let E_1, \ldots, E_N be all edges of Λ ordered by the positive direction of S^1. Let $\lambda: C \to \Lambda$ be the canonical surjection. For a tropical curve $L \in \mathcal{P}(\mathbb{R}^2)$, we define $\sigma(L) \in \Lambda$ as follows.

$$C \cdot L = P_1 + \cdots + P_r,$$

$$\sigma(L) = \lambda(P_1) + \cdots + \lambda(P_r).$$

Lemma 5.1. $\sigma: \mathcal{P}(\mathbb{R}^2) \to \Lambda$ is locally constant.

Proof. σ is continuous by definition of the stable intersection. Let $\{L_t|0 \leq t \leq 1\}$ be a continuous family of tropical curves with Newton complex \mathcal{N} such that C intersects L_t transversely for any t. Then there are points $P_{ijt} \in E_i$, edges $L_{ijt} \subset L_t$, and vectors $u_{ij} \in \mathbb{R}^2$ such that

i) $E_i \cdot L_t = \sum_j P_{ijt},$

ii) $E_i \cap L_{ijt} = P_{ijt},$

iii) u_{ij} is the weighted primitive vector of L_{ijt} starting at the vertex inside Λ, divided by $\mu_{P_{ijt}}$.

For L_0 and L_1, we have the moment condition inside Λ:

$$\sum_{i,j} \text{moment}(u_{ij}, P_{ij0}) = 0,$$

$$\sum_{i,j} \text{moment}(u_{ij}, P_{ij1}) = 0.$$

From these,

$$\sum_{i,j} \left(\overrightarrow{P_{ij0}P_{ij1}} \times u_{ij} \right) = 0.$$
Since $u_{E,i} \times u_{ij} = -1$, this means
\[\sum_{i,j} (\lambda(P_{ij0}) - \lambda(P_{ij1})) = 0. \]

Thus $\sigma(L_0) = \sigma(L_1)$. \qed

![Figure 10:](image)

Proof of the injectivity of φ. (Figure 10) Suppose
\[
(P_1 + \cdots + P_g) - (Q_1 + \cdots + Q_g) = C \cdot L - C \cdot L',
\]
where $P_i, Q_i \in \Lambda_i \setminus \text{Ver}(\Lambda_i)$,
\[\Delta(L) = \Delta(L'). \]

Let \tilde{C} be the tropical curve consisting of Λ_1 and N rays F_1, \ldots, F_N. Then $\deg(F_i \cdot L) = \deg(F_i \cdot L')$ because of the tropical Bezout’s theorem. From Corollary 4.2 and Lemma 5.1, we have $\sigma(L) = \sigma(L')$. Thus $P_1 = Q_1$. \qed

References

[1] T. Bogart, A. Jensen, D. Speyer, B. Sturmfels, R. Thomas. Computing tropical varieties. Preprint, [arXiv:math.AG/0507563](http://arxiv.org/abs/math.AG/0507563)
[2] A. Gathmann. Tropical algebraic geometry. Preprint, arXiv:math.AG/0601322.

[3] J. Richter-Gebert, B. Sturmfels, and T. Theobald. First Steps in Tropical Geometry. Preprint, arXiv:math.AG/0306366.

[4] Z. Izhakian. Tropical Varieties, Ideals and An Algebraic Nullstellensatz. Preprint, arXiv:math.AC/0511059.

[5] G. Mikhalkin. Enumerative tropical algebraic geometry in \mathbb{R}^2. Preprint, arXiv:math.AG/0312530.

[6] M. D. Vigeland. The group law on a tropical elliptic curve. Preprint, arXiv:math.AG/0411485.