Domain Name System (DNS) is a simple domain name to IP address translation service and vice-versa. The IP addresses associated with Web Servers, FTP Servers, Mail Servers, etc., are generally static in nature, meaning they are fixed such that the name to IP address relationship is constant. These name-IP address mapping records in the DNS tend to be manually assigned by the DNS service administrators.

In large corporate networks or home networks, when the machines boot, they are assigned dynamic IP addresses by DHCP service (Dynamic Host Configuration Protocol) usually configured in a home router. Such networks mostly run their own DNS service, with the ability to update the DNS records as a machine boots or as its IP address changes. A DNS service in which the user has the flexibility of controlling the name-IP address mapping is known as Dynamic DNS.

This whitepaper captures the details of the technical alert (TA18-149A) dated 29th May 2018 issued by the US-CERT (United States Computer Emergency Readiness Team). In the alert, the US-CERT had warned of two pieces of malware and claimed as being used by the North Korea’s Hidden Cobra hacker team to attack and access networks worldwide. The two pieces of malware were: Remote Access Trojan (RAT) Joanap and Server Message Block (SMB) Brambul worm malware, which belong to the prolific Advanced Persistent Threat (APT) group of malware [1].

Few resources even claim that the Hidden Cobra actors have likely been using both Joanap and Brambul malware since at least 2009 to target networks and machines spread across the globe. The US government has found Joanap on 87 compromised networks in about 17 countries. The Hidden Cobra actors had planned their act of intrusion and exploitation using the malwares by setting up an infrastructure comprising services registered with Dynamic DNS services and concealing their own network behind proxy services. Few members of the Hidden Cobra team were also involved in authoring the globally popular WannaCry2.0 ransomware in 2017.
The SMB Brambul Worm

Brambul Worm is a malicious Windows 32-bit Server Message Block (SMB) worm that functions as a service *dynamic link library* (dll) file or a *portable executable file* often dropped and installed onto victims’ network by a *dropper malware*. The Server Message Block (SMB) is a method that Microsoft systems use to share files on a network. Brambul Worm, when executed attempts to establish contact with victim systems and IP addresses on victims’ local subnets. If successful, the malware targets insecure or unsecured user accounts and spreads through poorly secured network shares and attempts to gain unauthorized access via the SMB protocol (ports 139 and 445) by launching brute-force password attacks using a list of embedded passwords. Additionally, the malware communicates information about victim’s systems (IP address, host name, username, password etc.) to Hidden Cobra actors using malicious email addresses embedded within it and also generates random IP addresses for further attacks. The Hidden Cobra actors then use the system information to remotely access a compromised system via the SMB protocol.

In brief, the Brambul malware can perform following functions for remote operations: (1) harvesting system information, (2) network propagation using SMB, (3) brute forcing SMB login credentials, (4) generating SMTP email messages, (5) accepting command-line arguments, and (6) generating and executing a suicide script [1].

A dropper belongs to the category of trojans, which embeds a malware within it and installs itself and the malware carried when it gets downloaded. Meredrop, and Destover are popular *dropper malware*. The *Destover malware* also contained a wiper to overwrite or erase system executables or program files, rendering infected computers inoperable; and it also could connect to a webserver whose IP address was hard-coded within it and download web pages to victim machines.

The RAT Joanap malware

Joanap malware is a *Remote Access Trojan* (RAT) that is capable of receiving multiple commands from a remote Command and Control server. Joanap is a 2-stage malware used to establish peer-to-peer communications and to manage botnets designed to enable other operations. It provides Hidden Cobra actors with the ability to exfiltrate data, drop and run secondary payloads, and initialize proxy communications on a compromised windows device where the communication is encrypted using *Rivest Cipher 4 encryption*. With the help of Joanap malware the Hidden Cobra actors could perform following activities on the compromised devices to the level of: (1) process management, (2) file and directory management, and (3) node management. Joanap typically infects a system as a file dropped by dropper malware (Destover, in this case) which users unknowingly downloaded either when they visit compromised sites or when they open malicious emails with attachments or web links [1].
Dynamic DNS or DDNS allows for almost real-time, automatic updating of a name server in the DNS, with active DDNS configured with hostnames, IP addresses and related information. Hence DDNS is a service offered in which the provider will allow users to control the IP address assignment of a domain. The user can access this IP address assignment through the provider and make changes as needed. One of the key aspects of a DDNS service (compared to a traditional DNS service) is that changes to the IP assignments can be set to quickly propagate across the internet, while a traditional DNS service may take longer to propagate or update various sources where a computer might seek to “look up” or resolve a domain [4].

In the networks using Dynamic DNS, when the client machine boots it gets an IP address from the DHCP and then updates the DNS records with the new IP obtained. This routine of updating the DNS records with the new IP address is done by a Dynamic DNS module residing either in the home router or the client machine. Such a feature allowing simple registration of dynamic IP address adds to the convenience of system/network intruders, to commit internet attacks and remain untraceable or go absconding.

DDNS service providers: DynDNS, No-IP, Securepoint, DynDNS, Dynu

To avail a DDNS service, one needs to sign up with a dynamic DNS service provider and install the DDNS client either in their DDNS-enabled home router or the host computer (the server, service provider). The DDNS client keeps monitoring the IP address and updates any change in the IP address to its DDNS service. This implies that as long as the DDNS client does its task, your domain name will continue to direct visitors to your host no matter how many times its IP address changes.

Figure 1: A representation of a dynamic update of DNS records in DDNS
Proxy Services

A proxy service is provided by a proxy server, which shows its IP address to the external networks while concealing the IP address of the machine from which the request originated. The proxy server acts as an intermediary for requests from clients seeking resources from servers in other networks.

Such proxy services are often used by intruders as anonymizing services that can be used as a relay to conceal one’s true IP address, and thus one’s location. When such a service is used, the website being visited only “sees” the IP address of the proxy, not the user’s true “home” IP address.

The Intrusion

1) As in any intrusion, this one too was preceded by a period of reconnaissance, during which the Hidden Cobra actors surveyed the Internet and social media activities of their target victims. The results of the reconnaissance were used by the Hidden Cobra actors to perform spear-phishing attack using messages inviting the victims’ interest. As an outcome of which the Hidden Cobra actors either stole the user credentials to install malware or directly installed malware on to the victims’ machines.
2) The Brambul worm seated on the victims’ machines then crawled through the network by exploiting the SMB protocol by brute force using the list of hard-coded passwords available with it, and gathered details of users and systems; which it sent via hard-coded email ids to Hidden Cobra actors through an SMTP server hosted by the actors themselves and registered with a DDNS service. By this, the Hidden Cobra actors were able to get access to more and more machines in the compromised networks. The SMTP could change its IP frequently as it was registered with DDNS, hence tracking the SMTP server and its location became challenging [3].

3) The Hidden Cobra Actors used a Command and Control (C&C) server and send commands to RAT Joanap malware installed in the victims’ machines to control their activities. The C&C server hosted by them too was registered with a DDNS service.

Figure 4: A representation of the possible network architecture of the whole intrusion event

Figure 5: A flow chart representation of the intrusion events
The Malware is a portable executable dll file implemented in VC++ for MS Windows

Malware Analysis Report

Name: 4731CBAEE7ACA37B596E38690160A749
Size: 208896 bytes
Type: PE32 executable (GUI) Intel 80386, for MS Windows
MD5: 4731cbae7aca37b596e38690160a749
SHA1: 80fac6361184a3e24b33f6acb8688a6b7276b0f2
SHA256: 077d9e0e12357d27f7f0c336239e961a7049971446f7a3f10268d9439ef67885
SHA512: 9fdc1bf087d3e2fa80ff4ed749b11a2b3f863bed7a59850f6330fc1467c38eed052e2e0337d2f82f9e8e145f68199b966ae3c08f7ad1475b665beb3cd29f6d7
Entropy: 7.731026

Description:
This 32-bit Windows executable file drops two malicious applications. The first (a1c483b0ee740291b91b11e18dd05f0a460127a1cfcc19d47b446d11c0e26d717) is a fully functioning RAT. This malware has been identified as a RAT, providing a remote actor with the ability to exfiltrate data, drop and run secondary payloads, and provide proxy capabilities on a compromised Windows device. The malware binds to port 443 and listens for incoming connections from a remote operator, using the Rivest Cipher 4 (RC4) encryption algorithm to protect communications with its C&C. The second application (ea46ed5ae9d00c9f0115e1cd446c8b3e101912f9f80e9170e1a1c20440c8781) is an SMB worm that will spread to local subnets and external networks. The malware also creates a log entry in a file named “msscardprv.ax”, located in the %WINDIR%\system32 folder. The log entry includes the victim's Internet Protocol (IP) address, host name, and current system time [2].

Mitigation plan

- Maintain up-to-date antivirus signatures and engines
- Keep operating system patches up-to-date
- Disable File and Printer sharing services. If these services are required, use strong passwords or Active Directory authentication
- Restrict users’ ability (permissions) to install and run software
- Enforce a strong password policy and regular password changes
- Exercise caution when opening e-mail attachments
- Enable a personal firewall on agency workstations
- Disable unnecessary services on agency workstations and servers
- Scan for and remove suspicious e-mail attachments
- Monitor users' web browsing habits; restrict access to sites with unfavorable content
- Exercise caution when using removable media
- Scan all software downloaded from the Internet prior to executing
- Maintain situational awareness of the latest threats and implement appropriate ACLs [2]
Acknowledgements

We express our sincere thanks to National Internet Exchange of India (NIXI) and Ministry of Electronics & Information Technology (MiTY) for their continued support.

References

[1] US-CERT Technical Alert (TA18-149A): https://www.us-cert.gov/ncas/alerts/TA18-149A
[2] Malware Analysis Report (AR18-149A): https://www.us-cert.gov/ncas/analysis-reports/AR18-149A
[3] InfoSecurity Magazine news: https://www.infosecurity-magazine.com/news/us-government-warns-north-korean/
[4] DDNS: https://www.lifewire.com/definition-of-dynamic-dns-816294

About the Authors

- Gopinath Palaniappan, Principal Technical Officer at CDAC, Bangalore, a researcher in Malware
- Dr. Balaji Rajendran, Joint Director at CDAC, Bangalore, a researcher in Cyber Security
- Dr. S Sangeetha, Assistant Professor at NIT, Tiruchirapalli, a researcher in NLP
- Dr. Kumari Roshni V S, Senior Director at CDAC, Bangalore, a researcher in Image processing

Cite as: Gopinath Palaniappan, Balaji Rajendran, S Sangeetha, Kumari Roshni V S. (2019, January). An Intrusion using Malware and DDNS. DOI: https://doi.org/10.17605/osf.io/zwnha