Numerical Renormalization Group Study of Kondo Effect in Unconventional Superconductors

Masashige Matsumoto and Mikito Koga

Department of Physics, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan

(Received June 28, 2001)

Orbital degrees of freedom of a Cooper pair play an important role in the unconventional superconductivity. To elucidate the orbital effect in the Kondo problem, we investigated a single magnetic impurity coupled to Cooper pairs with a $p_x + ip_y$ ($d_{x^2-y^2} + id_{xy}$) symmetry using the numerical renormalization group method. It is found that the ground state is always a spin doublet. The analytical solution for the strong coupling limit explicitly shows that the orbital dynamics of the Cooper pair generates the spin 1/2 of the ground state.

KEYWORDS: Kondo effect, unconventional superconductivity, numerical renormalization group

Unconventional superconductivity is characterized by an angular momentum (p, d, or f) of its Cooper pair. It is very sensitive to impurities and surface boundaries, differing from the standard BCS (s-wave) superconductivity. As a result, it displays various phenomena associated with breaking of the Cooper pairs. In the last decade, much attention has been paid to the effects of non-magnetic impurities and static boundaries.

At present, the attention shifts to the study of magnetic impurities in the unconventional superconductivity. Recent experimental studies provided evidence of induced effects: (1) breaking time-reversal invariance and (2) dynamical coupling with quasiparticles.

In this letter, we study a single magnetic impurity at the center in two-dimensional superconducting systems. Since we treat short-range scattering here, the impurity couples with only the electrons having no angular momentum ($l = 0$). For the $p_x + ip_y$-wave, the total angular momentum of the Cooper pair is equal to one. The order parameter is expressed by $\Delta e^{i\phi_k}$, where ϕ_k is the angle of the Fermi vector measured from the k_x axis. Since the angular momentum is a good quantum number for the $p_x + ip_y$-wave, the $l = 0$ and $l = 1$ orbitals are decoupled, and they are decoupled from the other orbitals. This is the reason why the Kondo effect in the $p_x + ip_y$-wave state can be treated within the two angular momentum spaces. Therefore, we can apply the NRG method to the

$\text{(Received June 28, 2001)}$

Department of Physics, Faculty of Education, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan

1 Department of Physics, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan

(Received June 28, 2001)
Kondo problem for the $p_x + ip_y$-wave as we do to the two-channel Kondo problem. Let us begin with the following Hamiltonian $H = H_{p_x+ip_y} + H_{\text{imp}}$:

$$
H_{p_x+ip_y} = \sum_{k\sigma} \sum_{\ell=0,1} \epsilon_k a_k^{\dagger \sigma} a_k^{\sigma} + \sum_{k\sigma} \left[|\Delta|^2 a_k^{\dagger \sigma} a_{k\sigma} + \text{H.c.} \right],
$$

$$
H_{\text{imp}} = \frac{1}{2} \sum_{kk'\sigma\sigma'} \left(-JS \cdot \sigma_{\sigma\sigma'} + V\delta_{\sigma\sigma'} \right) a_k^{\dagger \sigma} a_{k'\sigma'}.
$$

Here, $H_{p_x+ip_y}$ is the Hamiltonian for the $p_x + ip_y$-wave pairing state, and H_{imp} represents exchange interaction and potential scattering of conduction electrons due to the impurity. ϵ_k is the kinetic energy of the conduction electron with wave number k, and Δ is the $p_x + ip_y$-wave order parameter. The subscripts $l(=0,1)$ and $\sigma(=\uparrow, \downarrow)$ in a_k^{σ} represent the angular momentum and spin of the conduction electron, respectively. S and σ are the $S = 1/2$ spin operator and the Pauli matrix for the magnetic impurity and conduction electrons, respectively. $J(< 0)$ and V are the antiferromagnetic and non-magnetic couplings, respectively. Note that the model given by eq. (1) is not a simple two-band Kondo model. Only the $l = 0$ conduction electrons are coupled directly to the local spin. In the normal state, the $l = 1$ electrons are completely decoupled from the local spin. However, in the superconducting state, they are coupled to the $l = 0$ conduction electrons via the $p_x + ip_y$-wave order parameter. We have to take the $l = 1$ electrons into account as well for the $p_x + ip_y$-wave. We can elucidate the orbital effect of the $p_x + ip_y$-wave and compare it with the s-wave, since both superconductors are full-gap systems and have the same density of states. We can obtain a similar Hamiltonian for a $d_{x^2−y^2} + id_{xy}$-wave if we replace Δ by $−\sigma\Delta$ and $l = 1$ by $l = 2$.

In accordance with the Wilson’s NRG procedure, the bare conduction band is discretized logarithmically and the Hamiltonian (1) can be transformed into the following hopping type with staggered potential for both $p_x + ip_y$-wave and $d_{x^2−y^2} + id_{xy}$-wave pairing states:

$$
H_{N+1} = \Lambda^{1/2} H_N + \sum_{\tau\sigma} \left[\varepsilon_N(c_{N+1,\tau\sigma}^\dagger c_{N\tau\sigma} + \text{H.c.}) + (-1)^N \Lambda^{N/2} \sum_{\tau'\sigma'} \Delta_{\tau'\sigma'}^+ c_{N+1,\tau\sigma}^\dagger c_{N\tau'\sigma'} \right],
$$

$$
H_0 = \Lambda^{-1/2} \left[\frac{1}{2} \sum_{\tau'\tau\sigma'\sigma} \left(-JS \cdot \sigma_{\sigma'\sigma'} + \hat{V}\delta_{\sigma\sigma'} \right) c_{\tau\sigma'}^\dagger c_{\tau'\sigma} - \sum_{\tau\sigma} \tau'\tau\sigma' \sigma' \right].
$$

The subscript $\tau = \pm$ represents the two channels constructed by the $l = 0$ and $l = 1$ orbitals. Note that the channels are not independent due to the channel-flip ($\sum_{\tau\tau'}$) terms. This means that only one of the paired electrons ($l = 0$) couples with the local spin as in eq. (1), since the operator of the conduction electron at the impurity is written by

$$
\sum_k a_{k,l=0,\sigma} = c_{N=0,\tau=+,\sigma} + c_{N=0,\tau=-,\sigma}.
$$

Here, $c_{N\tau\sigma}$ is the operator of the NRG fermion quasiparticle in the N-th shell. In eq. (2), ε_N is given by

$$
\varepsilon_N = [1 - \Lambda^{-(N+1)}][1 - \Lambda^{-(2N+1)}]^{-1/2}[1 - \Lambda^{-(2N+3)}]^{-1/2},
$$

where Λ is the discretization parameter. The values with tilde are normalized by $(1 + \Lambda^{-1})/2$. For simplicity, we used the same values for both the superconducting cutoff energy and the band width, which does not alter the results. Throughout this letter, we keep the lowest-lying 500 states at each renormalization step and take $\Lambda = 3$.

First, we discuss the case of $\hat{J} = 0$ to demonstrate the reliability of our NRG results. Figure 1 shows a finite \hat{V} case in which an excited state (bound state) appears below the gap. The appearance of the bound state is due to the pair breaking effect of the potential scattering (non-magnetic impurity effect). The ratio of the renormalized bound state energy and the renormalized energy gap converges as the renormalization step N increases. The convergence value is represented by $(E_{\text{pot}}/\Delta)^*$. In Fig. 1, $(E_{\text{pot}}/\Delta)^*$ decreases with \hat{V} as expected. The NRG result is in good agreement with the analytic solution given by a function of \hat{V}.

$$
E_{\text{pot}} = \Delta \sqrt{1 + (\alpha \hat{V})^2}. \tag{5}
$$

Let us consider the $\hat{J} \neq 0$ case. Since we have confirmed that the potential term \hat{V} does not change the ground state, we restrict ourselves to the $\hat{V} = 0$ case. When $\hat{J} \rightarrow 0$ and $\hat{\Delta} \neq 0$, the impurity spin is decoupled from the quasiparticles and there is no bound state below the superconducting energy gap as expected. In this case, the NRG Hamiltonian has two independent $\tau = \pm$ channels which have the same form as the s-wave except for the sign of the order parameter depending on τ. The NRG energy level structure for the $p_x + ip_y$-wave has particle-hole symmetry. In the opposite limit ($\hat{J} \neq 0$), the NRG energy level structure at the fixed point is given by the admixture of a strong coupling type and a free spin type. The former is for the $l = 0$ orbital and the latter is for the $l = 1$. The NRG energy spectra
Fig. 2. T_K/Δ dependence of the bound state energy $(E_{\text{mag}}/\Delta)^*$ generated by the magnetic impurity. $(E_{\text{mag}}/\Delta)^*$ is measured from the lowest-lying doublet for each T_K/Δ. (a) $p_x + ip_y$-wave case. The ground state is a spin doublet and the first excited state is a particle-hole doublet with no spin (see Table I). The results for fixed T_K are expressed by a circle and a star for $T_K = 9.20 \times 10^{-5}$ and 1.76×10^{-3}, respectively. Triangle-up and triangle-down are the results for fixed $\Delta = 0.001$ and 0.005, respectively. (b) s-wave case. In the positive $(E_{\text{mag}}/\Delta)^*$ region, the ground state is a spin doublet and the first excited state is a spin singlet. In the negative $(E_{\text{mag}}/\Delta)^*$ region, the ground and excited states are interchanged. The level crossover takes place at around $T_K/\Delta = 0.3$.

The Kondo singlet cannot be a ground state in the small T_K/Δ region. Since this level can be occupied by at most two particles, the ground state has fourfold degeneracy. We note that the local spin is quenched completely for $\Delta = 0$.

When J turns on for a finite Δ, a bound state appears below the energy gap due to the magnetic impurity. Figure 2(a) shows the T_K/Δ dependence of the bound state energy $(E_{\text{mag}}/\Delta)^*$ for the $p_x + ip_y$-wave. Here, the Kondo temperature is defined by

$$T_K = \sqrt{|J| \exp(-1/|J|)}.$$

First, we look into the small T_K/Δ region. As shown in Table I(A), the ground state is a spin doublet. The first excited state is a particle-hole doublet with no spin. In the Kondo effect, it is favorable for the magnetic impurity to form a Kondo singlet. However, the magnetic impurity has to break the Cooper pair to couple with one of the paired electrons. Since this costs considerable energy, the Kondo singlet cannot be a ground state in the small T_K/Δ region. As T_K/Δ increases, $(E_{\text{mag}}/\Delta)^*$ decreases monotonically and approaches the ground state energy asymptotically. Thus, the ground state approaches the $\Delta = 0$ result smoothly as T_K/Δ increases to infinity, and it becomes fourfold degenerate. This result shows that the spin singlet ground state is not realized in all the T_K/Δ region, which is completely different from the s-wave result shown in Fig. 2(b). On the other hand, we find that $(E_{\text{mag}}/\Delta)^*$ for the $p_x + ip_y$-wave is scaled by T_K/Δ as for the s-wave. While the interchange of the ground state does not occur in the $p_x + ip_y$-wave case, almost the same T_K/Δ dependence of $(E_{\text{mag}}/\Delta)^*$ is obtained in both cases. For the s-wave, the energy gap suppresses the Kondo effect in the $(E_{\text{mag}}/\Delta)^* > 0$ region, while the Kondo singlet is stabilized against the energy gap in the $(E_{\text{mag}}/\Delta)^* < 0$ region. This crossover occurs at approximately $T_K/\Delta = 0.3$.

In analogy to the s-wave, there is also a crossover at around $(E_{\text{mag}}/\Delta)^* = 0.5$ for the $p_x + ip_y$-wave. Thus, the Kondo effect overcomes the energy gap in the $(E_{\text{mag}}/\Delta)^* < 0.5$ region, although the ground state is still a spin doublet. This implies that the competition between the Kondo effect and the energy gap is characterized by such T_K/Δ dependence of the bound state energy for all types of superconductivity. We mention here that the NRG energy level structure for the $d_{x^2-y^2} + id_{xy}$-wave is the same as that for the $p_x + ip_y$-wave. Their difference appears only in the wave functions.

Let us discuss the strong coupling limit ($|\tilde{J}| \to \infty$) case where the impurity part H_0 is truncated from the conduction electron part. In this limit, the ground state property is given by H_0. Converting from the channel (τ) representation to the angular momentum (l) representation

$$c_{N=0,\tau=\pm,\sigma} = \frac{1}{\sqrt{2}} (f_{l=0,\sigma} \pm f_{l=1,\sigma}),$$

we can express $H_0 = H_{s-d} + H_\Delta$, where

$$H_{s-d} = -\tilde{J} \sum \mathbf{S} \cdot \sigma \sigma' f_{1,\sigma}^\dagger f_{0,\sigma'},$$

$$H_\Delta = -\Delta \sum \sigma \sigma' (f_{0,\sigma} f_{1,\sigma'} + f_{1,\sigma} f_{0,\sigma'}).$$

Note that the order parameter corresponds to the hopping parameter between the $l = 0$ and $l = 1$ local orbital sites, since the $p_x + ip_y$-wave Cooper pair is formed by the $l = 0$ and $l = 1$ particles. When $|\tilde{J}| \to \infty$, the $l = 0$ particle couples with the local spin strongly to form a spin singlet $|s\rangle = f_{0,\uparrow}^\dagger |\downarrow\rangle - f_{0,\downarrow}^\dagger |\uparrow\rangle$. Here, $|\sigma\rangle (\sigma = \uparrow, \downarrow)$
is the wavefunction of the local spin. The spin doublet \(\langle f_1 \downarrow | s \rangle \) and spin singlet \(\langle f_1 \uparrow f_1 \downarrow | s \rangle \) are degenerate since the hopping between \(l = 0 \) and \(l = 1 \) is forbidden. At a finite \(|J|, \Delta \) in eq. (8) lifts the degeneracy. The wavefunctions for the spin doublet \(\psi_{S=1/2} \) and spin singlet \(\psi_{S=0} \) are given by the linear combination of the following terms:

\[
\psi_{S=1/2} = c_1 \left(f_{1\downarrow} | s \rangle + c_2 \left(f_{0\uparrow} f_{1\downarrow} | \sigma \rangle + c_3 \left(f_{1\uparrow} f_{1\downarrow} | \sigma \rangle \right) + c_4 \left(f_{1\uparrow} f_{1\downarrow} | \sigma \rangle \right) \right),
\]

\[
\psi_{S=0} = c_6 | s \rangle + c_7 \left(f_{1\uparrow} \downarrow - f_{1\downarrow} \uparrow \right) \]

Here, \(c \) is a coefficient. The perturbation theory shows that \(\psi_{S=1/2} \) is the ground state, whose energy is lower than that of \(\psi_{S=0} = -\frac{2}{3} |J| (|\Delta|/J)^2 \). When \(|J| \) is very large, coefficient \(c_1 \) of the first term in \(\psi_{S=1/2} \) is the largest. In the strong coupling limit, the local spin is almost quenched by the \(l = 0 \) particle forming the Kondo singlet \(|s\rangle \). However, the \(l = 1 \) particle is connected weakly to the quenched local spin \(|s\rangle \). This does not mean that the \(l = 1 \) electrons destroy the Kondo singlet. They gain the superconducting condensation energy and then generate the spin \(1/2 \) of the ground state in the strong coupling limit. As \(|\Delta| \) decreases, coefficients \(c_2 \) and \(c_3 \) of the second and third terms, respectively, in \(\psi_{S=1/2} \) increase. This indicates that the weight of the local spin becomes larger in the spin of the ground state. Thus, the ground state always has a spin \(1/2 \) for the \(p_x + ip_y \)-wave. The \(T_K/\Delta \) dependence of the bound state energy shown in Fig. 2(a) reflects the continuous change of the wavefunction of the spin doublet ground state.

Contrary to the \(p_x + ip_y \)-wave, the wavefunctions for the \(s \)-wave are given by \(\varphi_{S=0} = |s\rangle \) and \(\varphi_{S=1/2} = f_{0\uparrow} f_{1\downarrow} |\sigma \rangle \) in the strong coupling limit. In this case, the hopping between the \(l = 0 \) and \(l = 1 \) orbital sites is replaced by the potential at the \(l = 0 \) site:

\[
H_\Delta = -\Delta \left(f_{0\uparrow} f_{0\downarrow} + f_{1\uparrow} f_{1\downarrow} - 1 \right). \]

This is because the \(s \)-wave Cooper pair is formed by only the \(l = 0 \) particles. The ground state is characterized by \(\varphi_{S=0} \) (\(\varphi_{S=1/2} \)) in a large (small) \(T_K/\Delta \) region. For the \(s \)-wave, the \(l \neq 0 \) conduction electrons are completely decoupled from the local spin.

In conclusion, we have studied the Kondo effect unique to the \(p_x + ip_y \)-wave superconductor, where the orbital dynamics of the Cooper pair produce the spin of the ground state. For large \(T_K \), the \(l = 0 \) electrons couple with a local spin strongly to form a Kondo singlet, while the other electrons with \(l = 1 \) are coupled to the Kondo singlet weakly via the superconducting order parameter. The NRG study has shown that the ground state is a spin doublet in all the \(T_K/\Delta \) region, which is different from the results for the \(s \)-wave and \(d_{x^2-y^2} \)-wave cases. It is interesting to search for a new type of Kondo effect due to the orbital effect of the Cooper pair in unconventional superconductors.

We are grateful to H. Kusunose, R. Shiina, and K. Ueda for helpful comments.