Studies for understanding effects of additions on the strength of cement concrete

R D Bucur1, M Barbuta2, P Konvalina3, A A Serbanoiu2 and J Bernas3

1 University of Agricultural Sciences and Veterinary Medicine in Iasi, 3, Mihail Sadoveanu, 700490, Iasi, Romania
2 “Gheorghe Asachi” Technical University of Iasi, Faculty of Civil Engineering and Services, 45 Mangeron Blvd., 700050, Iasi Romania
3 University of South Bohemia in České Budějovice

E-mail: rbucur@uaiiasi.ro

Abstract. The paper analyzes the effects of different types of additions introduced in concrete mix on the compressive strength. The current studies show that additions contribute to improve some characteristics of concrete and to reduce the cement dosage, so it can obtain concretes which are cheaper and friendlier with environment. In the experimental mixes were introduced: crushed natural aggregates, slag aggregates, silica fume, fly ash, chopped tire, polystyrene granule, glass fibers and metallic fibers. The experimental values of compressive strengths were compared for two concrete grades (C20/25 and C25/30). The study shown that near the well-known possibilities of improving mechanical strengths of cement concrete by increasing cement dosage and strength, by using crushed aggregates and by reducing the water/cement ratio, there are other methods in which less cement is used by replacing it with different wastes or by adding fiber.

1. Introduction

In construction industry one of the most used materials is concrete, which, in the last decades has improved its mechanical and durability properties due to its versatility of combining with different materials. The properties of cement concrete can be improved in different ways, which can contribute to preserving the natural resources and to the consumption of wastes that are polluting the environment. The researchers have replaced parts or totally the cement or even the aggregates with other materials (by-products, polymers, wastes, etc.) [1, 2, 3, 4, 5]. Also in the composition were added powders, fibers, nano-materials, etc., and so new eco-friendly concretes were developed. Some additions such as silica fume, fly ash, fibers, rice husk, etc. had contributed to obtaining high strength and high performance concretes [6, 7, 8, 9, 10, 11].

Concrete properties depend on a lot of factors, such as: components, admixtures, pouring technology, treatment after pouring, etc. [12, 13, 14, 15]. The influence of different components on the properties of cement concrete is studied for new concretes because each material has its own effect in the mix and each depends on a lot of factors. For the application domain of concrete with additions preliminary studies must be done for characterizing and recommending the specific use.

Generally, the constructions realized of concrete do not require all performing characteristics. A concrete with high strength can be realized by using active additions. The influence of additions
wastes on concrete properties was analyzed in the paper for two grades of concrete with cement. It must mention that each result represents the best value obtained from an experimental study made separately for each type of concrete sample [16, 17, 18].

Experimental program

The samples from the experimental study were realized of three types of aggregates (river, crushed and slag), different types of cement and with/ without additions (fly ash, silica fume, chopped tire, polystyrene granule, glass fiber or metallic fibers). All additions are wastes which pollute the environment. An admixture type superplasticizer was used for all mixes.

1.1. **Series 1- Concrete grade C20/25.**

The samples for the first grade of concrete C20/25 were prepared with different cements type: Pa32.5, (concrete sample A1 and A2, with different dosages), P40, (concrete samples A3 and A4), and CEM-II-32.5 [19] (concrete samples A5, A6, A7, A8), Table 1. The aggregates were type: river (all samples except A5 which was with slag aggregate) and slag, in three sorts: 0-4 mm, 4-8 mm and 8-16 mm, Table 1. The additions types: silica fume (SUF), chopped tires (CT) and polystyrene granule (PG) were added in the compositions (A6 with SUF, A7 with CT and A8 with PG).

Table 1. Components dosage for series 1.

Sample	Dosages	W/C	Addition	f_c N mm⁻²									
	Cement kg m⁻³	River aggregate kg m⁻³	Steel slag aggregate kg m⁻³	Water l m⁻³	SUF %	CT %	PG %						
A1:C20/25	343	715	458	659	-	-	-	182	0.53	-	-	-	35.5
Pa35-L1													
A2:C20/25	457	517	408	643	-	-	-	242	0.53	-	-	-	39
Pa35-L4													
A3:C20/25	319	783	464	667	-	-	-	182	0.57	-	-	-	33
P40-L1													
A4:C20/25	425	683	399	575	-	-	-	242	0.57	-	-	-	33.5
P40-L4													
A5:C20/25	350	-	-	-	495	330	1010	185	0.53	-	-	-	36.1
CEM II.32.5													
A6:CEM-II-32.5	360	803	384	559	-	-	-	172	0.48	10	-	-	41.2
A7:C20/25	350	495	330	1180	-	-	-	166	0.47	-	25	-	27.67
CEM II.32.5													
A8:C20/25	385	671	430	621	-	-	-	130	0.34	-	-	15	27.48
CEM II.32.5													

1.2. **Series 2- Concrete grade C25/30**

The samples for the series 2 grade C25/30 were prepared with two types of aggregates: river (samples B1, and B5 to B12) and with crushed aggregates (samples B2, B3 and B4); three types of cement: Pa35 (samples B5 and B6), P40 (samples B7, B8, but with different dosages of cement) and for all other samples the cement was CEM I-42.5 [19]; different additions were added: B9 with fly ash (FA), B10 with silica fume (SUF), B11 with fly ash and disperse glass fiber (FS), B12 with fly ash and disperse metallic fibers (FM) also with fly ash, Table 2. The glass fibers were of 30 mm length and the metallic fibers were of 50 mm length with deformed ends.

The cubic samples of 150 mm sizes were poured and kept in standard conditions. The tests were effectuated at 28 days according to Eurocode SR EN 12390 - 3:2009 [20].

[20]
Table 2. Components dosage for series 2.

Sample	Dosages	Addition	fc N mm$^{-2}$											
	Cement kg m$^{-3}$	River aggregate kg m$^{-3}$	Crushed aggregate kg m$^{-3}$	Water l m$^{-3}$	W/C	FA%	SUF%	FS%	FM%					
0-4	4-8	8-16	0-4	4-8	8-16	0-4	4-8	8-16						
1	360	803	384	559	-	-	-	172	0.48	-	-	-	-	36.62
2	360	803	-	559	384	-	-	172	0.8	-	-	-	-	44.73
3	360	803	384	-	-	559	-	172	0.48	-	-	-	-	43.12
4	360	803	-	-	384	559	-	172	0.48	-	-	-	-	47.06
5: C25/30Pa35-L1	444	575	436	232	-	-	-	182	0.41	-	-	-	-	45
6: C25/30Pa35-L4	617	460	348	586	-	-	-	253	0.41	-	-	-	-	48
7: C25/30P40	387	592	466	735	-	-	-	182	0.47	-	-	-	-	43
8: C25/30P40	538	488	381	601	-	-	-	253	0.47	-	-	-	-	46
9: 10% FA	324	803	384	559	-	-	-	180	0.55	36	-	-	-	44.98
10: 10%SUF	324	803	384	559	-	-	-	180	0.55	36	-	-	-	42.4
11: 10%FA+FS	324	803	384	559	-	-	-	180	0.55	36	0.25	-	-	45.95
12: 10%FA+FM	324	803	384	559	-	-	-	180	0.55	36	-	-	0.25	45.82

The compressive strength on cubes of 150 mm size was determined for experimental mixes according to European standards at 28 days. The test results experimentally obtained are the medium value of three tests [20].

Results and discussion

1.3. Series 1.

The experimental results which are selected from the studies on each type of concrete in previous researches are presented in Figure 1 [16, 17, 18].

![Figure 1. Variation of compressive strength of cement concrete function of components (series 1).](image)

Analyzing the results, it can observe that an improve of compressive strength can be obtained by: increasing the cement dosage, which is not economically, the use of SUF addition in concrete mix (an increase in f_c of about 16% was obtained in comparison with witness A1), and also by the use of slag aggregates (A5), in which case an increase of about 1.7% was obtained in comparison with witness A1. Other additions used in the experiments decreased the compressive strength, but created a more elasticity behavior under load of concrete. The mixes A7 and A8 with chopped tires and respectively
with polystyrene granules had a decrease of f'_c of about 22.1\% in the case of A7 and of about 22.6\% respectively, in comparison with the witness A1.

As conclusion for these types of additions it resulted that for increasing the compressive strength except the classical methods of increasing the cement dosage, using high strength aggregate and reducing W/C ratio, fine addition (SUF) can be used without affecting the compressive strength. Other types of additions such as chopped tires and polystyrene granules can be used in situations in which compressive strength is less important than other characteristics such as elasticity, ductile failure, thermal and acoustical properties, etc.

1.4. Series 2
For the series 2 the experimental results are given in Figure 2.

From the graph - Figure 2 - it can observe that in the case of a higher grade of concrete, an improvement of compressive strength can be obtained by using all the additions which were studied. Evidently, the clearest influence had cement dosage and crushed aggregates that are not economical solutions. For improving the compressive strength of concrete, wastes type FA, SUF, fibers can be used as addition or by replacing parts of cement. The crushed aggregates (mix B4) highly influenced the compressive strength, in which case the maximum value of f'_c was obtained, that means an increase in compressive strength of about 28.5\% in comparison with that of the mix with river aggregate (mix B1), which was considered as witness. The type and dosage of cement also influences the compressive strength, the highest value of f'_c being obtained for a dosage of 617 kg m$^{-3}$ for mix B6 (the increase in strength was of about 31.1\%). The substitution of 10\% cement with fly ash, mix B9, resulted in an increase of compressive strength with 16\% in comparison with the compressive strength of witness concrete. An addition of 10\% of fly ash as replacement of cement and 1\% glass fibers, mix B11, resulted in an increase of compressive strength with 25\% of compressive strength in comparison with that of witness concrete.

The conclusion of compared experimental results it is evident that near the well-known possibilities of improving mechanical strengths of cement concrete by increasing dosage and strength of cement, by using crushed aggregates or by reducing the W/C ratio, there are other methods in which less cement is used by replacing it with powder type SUF or FA or by adding disperse fibers type glass or metallic.

Conclusions
The addition of different wastes in cement concrete is a possibility of obtaining new building materials with specific requirements and to consume the wastes. In experimental tests there were studied some types of additions such as silica fume and fly ash, chopped tires, polystyrene granules and disperse
fibers (glass and metallic), the results were compared for a better understanding of properties of new concretes. From the study it can observe that some additions had improved the mechanical strengths and other had changed the physical properties of cement concrete. It resulted that the additions such as: silica fume, fly ash and disperse fibers type glass and metallic improved the compressive strength. Other additions, such as: chopped tire and polystyrene granules had improved the elasticity of concrete and a more ductile failure was observed.

In conclusion, different types of additions can be used for improving properties of concrete and to obtain building materials friendlier with environment. Function the predominant characteristic of the new concrete there are necessary experimental tests for a better understanding of effects of additions and clearer definition of the specific properties of each concrete for recommending the use domain.

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI - UEFISCDI, project number 109 BM / 2017.

References

[1] Juenger C G M and Siddique R 2015 Recent advances in understanding the role of supplementary cementitious materials in concrete Cement and Concrete Research 78 71-80
[2] Hamza A R, Haggar S E and Khedr S 2011 Marble and Granite Waste: Characterization and Utilization in Concrete Bricks International Journal of Bioscience, Biochemistry and Bioinformatics, 1 (4) 286-291
[3] Kayali O. 2008 Fly ash lightweight aggregates in high performance concrete Construction and Building Materials 22, 2393-2399
[4] Barbuta M, Harja M, Ciobanu G. 2014 Mechanical properties of polymer concrete containing tire waste powder Journal of Food, Agriculture & Environment 12 (2) 1186-1190
[5] Boháč M, Palou M, Novotný R, Mášilko J, Všianský D and Staněk T 2014 Investigation on early hydration of ternary Portland cement-blast-furnace slag-metakaolin blends Construction and Building Materials 64 333-341 http://dx.doi.org/10.1016/j.conbuildmat.2014.04.018
[6] Hunchate S R Chandupalle S Ghorpode V G and Reddy T C V 2014 Mix Design of High Performance Concrete Using Silica Fume and Superplasticizer International Journal of Innovative Research in Science, Engineering and Technology 3(3) 10735 - 10742
[7] Yu R, Spiesz P and Brouwers H J H 2015 Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses Cement & Concrete Composites 55 383-394
[8] Wang W, Liu J, Agostini F, Davy C A, Skoczylas F and Corvez D. 2014 Durability of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) under progressive aging. Cement and Concrete Researches 55 1-13
[9] Rossi P. 2013 Influence of fibre geometry and matrix maturity on the mechanical performance of ultra-highperformance cement-based composites Cem Concr Comp 37 246-248
[10] Tuan N V, Ye G, Breugel K and Copuroglu O. 2011 Hydration and microstructure of ultra-high performance concrete incorporating rice husk ash Cem Concr Res 41 1104-1111
[11] Barbuta M, Bucur R D, Cimpeanu S M, Paraschiv G and Bucur D. 2015 Wastes in building materials industry, In: Agroecology, Pilipavicius V. ed., 81 - 100, Intech, ISBN 978-953-51-4193-8
[12] Yazici H, Deniz E and Baradan B. 2013 The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete Construction and Building Materials 42 53-63
[13] Ghafari E, Costa H, Júlio E, Portugal A and Durães L 2014 The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete Materials & Design 59 1-9
[14] Fabbri B, Gualtieri S and Leonardi C 2013 Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin *Applied Clay Science* **73** 2 - 10

[15] Marin E, Barbuta M, Ciobanu L and Cioara I 2014 Practical issues related to processing of fiberreinforced concrete made with recycled materials, 14th International multidisciplinary scientific geoconference SGEM 2014, Energy and Clean Technology, Nuclear Technology, recycling, air pollution and climate change, vol. II. 191-198, 17-26 June, Albena, Bulgaria, ISBN 978-619-7105-16-2, ISSN 1314-2704, DOI:10.5593/sgem2014B42

[16] Barbuta M 2006 *Aggregate influence on concrete strengths* Academic Society Publishing House Mihai Teiu Botez Iasi Romania (in Romanian)

[17] Barbuta M 2010 *Concrete with additions* Academic Society Publishing House Mihai Teiu Botez Iasi Romania (in Romanian)

[18] Barbuta M 2015 *Experimental Studies in Characterizing and Obtaining New Modern Concretes* Habilitation Thesis, PIM Publishing House Iasi Romania

[19] Romanian Standard Association, SR EN 197-1:2011. Cement, Part 1: Composition, specifications and conformity criteria for common cements

[20] SR EN 12390-3:2009 Testing hardened concrete. Part 3: *Compressive strength of test specimens*. British Standard