Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications

Fen Qiao1 | Kaiyue Sun1 | Huaqiang Chu2 | Junfeng Wang1 | Yi Xie3 | Liping Chen4 | Tingting Yan4

1School of Energy & Power Engineering, Jiangsu University, Zhenjiang, China
2School of Energy and Environment, Anhui University of Technology, Ma’anshan, China
3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
4Wuxi Suntech Power Co., Ltd., Wuxi, China

Correspondence
Fen Qiao, School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu, China.
Email: fqiao@ujs.edu.cn
Huaqiang Chu, School of Energy and Environment, Anhui University of Technology, Huanglong Rd 59, Ma’anshan, China.
Email: hqchust@163.com

Funding information
National Natural Science Foundation of China, Grant/Award Number: 51976081; Key Research and Development Program of Jiangsu Province of China, Grant/Award Number: BE2019009-003; Jiangsu Province Postdoctoral Research Funding Program, Grant/Award Number: 2020Z078

Abstract
ZnO nanorods (NRs) heterojunction arrays have been widely used in photovoltaic cells owing to the outstanding photoelectrical characteristics, high stability and low cost. The NRs arrays structure can integrate multiple functional components, so that it can exhibit more excellent physical and chemical properties that even independent components do not possess. The design of heterojunction nanostructures can effectively solve the problems of light absorption and carrier transport. First, the synthesis methods of ZnO NRs and their heterojunction arrays were systematically introduced, including traditional chemical vapor deposition (CVD), electrodeposition, hydrothermal method, and so on, the different structures and properties of ZnO NRs heterojunctions were analyzed. Then, the selected materials could be further processed and assembled into NRs array heterojunction with integrated functions were discussed. The strategies of maximizing energy conversion performance (structure optimization, heterojunction, surface plasmon resonance, and doping) were emphatically summarized. In addition, the research progress of ZnO NRs and their heterojunctions in photoelectric energy conversion system were summarized, and the application potential of combining nanostructure design with solar cells was summarized. Finally, the challenges and future development prospects of ZnO NRs and their heterojunction arrays in photovoltaic conversion were pointed out.

KEYWORDS
heterojunction array, preparation method, solar cell, ZnO NRs

1 INTRODUCTION

ZnO nanorods (NRs) have become the most researched inorganic materials in the field of solar cells due to their high aspect ratio, large specific surface area, high electron mobility, and good single crystal properties.1–8 However, the disordered arrangement of NRs will lead to poor carrier transport performance, which will become one of the reasons restricting the low efficiency of solar cells. The orderly arrangement of NRs on the substrate has better photoelectrical performance than the randomly stacked NRs.9–13 Therefore, researchers hope to improve the efficiency of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2022 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

Battery Energy. 2022;1:20210008.
https://doi.org/10.1002/BTE2.20210008

onlineibrary.wiley.com/10.1002/bte2.20210008
carrier transport and optimize the photoelectric performance of solar cells by constructing NRs array structures. In particular, the construction of ZnO NRs arrays provides high-speed channels for the transport of electrons with less grain boundaries, thereby effectively promoting the separation of electrons and holes. In addition, when the incident light is scattered among NRs, the light absorption of the materials can be improved. Compared with ZnO nanoparticles (NPs), ZnO NRs arrays have obvious advantages in the process of photo-generated carriers transport. At present, the preparation methods of ZnO NRs arrays mainly include chemical vapor deposition (CVD),37 microwave method,23,24 hydrothermal method,25–35 low-temperature oxidation method,36 electrodeposition method,37–41 and other methods.45–56 However, ZnO as a semiconductor oxide with wide band gap (~3.2 eV), which limits its utilization of light. Therefore, by introducing the heterojunction array structure, the carrier separation channel is increased by the interface area of the heterojunction, thereby improving the carrier separation and collection efficiency. Among them, using ZnO NRs array structure to construct the radial heterostructure can reduce the separation distance of carriers without sacrificing the light absorption of ZnO, so as to improve the transport efficiency of photogenerated carriers, which has become the first strategy to improve the photoelectric performance of ZnO-based solar cells. For example, ZnS,57–60 TiO2,61,62 Cu2O,63,64 and graphene65–68 were combined with ZnO NRs to construct heterostructures and broaden the light absorption range of ZnO. With the aid of interface heterojunction materials of the two materials, it shows more obvious quantum effect and two-dimensional characteristics. With these characteristics, the heterostructures have been widely used in solar cell materials in recent years. In this paper, the preparation methods of ZnO NRs arrays and the research of heterojunction materials in the field of solar cells were reviewed. First, the strategy of regulating ZnO NRs synthesis route, growth conditions, and construction of heterostructures were introduced. Subsequently, the application and photoelectric performance of ZnO NRs arrays in solar cells were emphatically introduced. Finally, the shortcomings of ZnO NRs arrays and their heterojunction materials in the field of solar cells were pointed out, and their future development prospects were prospected.

2 | SYNTHESIS OF ZnO NRs ARRAYS

2.1 | Chemical vapor deposition

As a widely used method for preparing ZnO NRs developed in recent decades, NRs arrays synthesized by CVD method have been reported successively.70–74 That is, the steam is placed under the catalyst, so that the seed layer is concentrated until saturated in the steam. At this time, the steam reacts on the substrate, and the target product gradually solidifies and grows from the catalyst. In addition, Song et al.75 found that oxygen content is an important factor affecting the structure of ZnO NRs when other growth conditions are controlled unchanged. By controlling oxygen content, the morphology of ZnO NRs arrays can be optimized.

ZnO NRs can be grown by metal-organic chemical vapor deposition (MOCVD) method. The size and orientation of NRs are also related to the substrate type. For example, Hassan et al.76 prepared ZnO NRs arrays on silicon and GaN substrates by MOCVD method. It was found that ZnO NRs grown on silicon substrates had tapered tips, these NRs were randomly arranged and inclined relative to the normal line of silicon substrate surface (Figure 1A, B). The reason is that silicon and ZnO belong to different crystal structures, and there is a large lattice mismatch between them. However, ZnO NRs grown on GaN were well arranged. Most of NRs were perpendicular to the GaN substrate and have relatively uniform NRs in length, diameter, distribution, and height (Figure 1C, D).

To improve the vertical orientation of NRs, the seed layer can be introduced to reduce lattice mismatch, it has become a common strategy to adjust the growth position of NRs by using the ZnO seed layer as the active nucleus for the growth of NRs. Compared with the traditional CVD, plasma enhanced chemical vapor deposition (PECVD) can not only achieve conformal deposition on surfaces with complex shapes, but also complete the synthesis of nanostructures on substrates at low temperatures. Since in the process of PECVD, NPs were not needed as catalysts, which simplifies the preparation process while avoiding the entry of metal impurities. Bekermann et al. prepared high-purity and well-arranged ZnO NRs on silicon substrates at 200–300°C using PECVD.77 Well-arranged single crystal ZnO NRs on GaAs substrates using MOCVD were grown. This method can also be used to prepare ZnO NRs by changing the relevant experimental conditions.78

2.2 | Electrochemical deposition

Electrochemical deposition can precisely control the thickness, chemical composition, and structure of the deposited layer on different substrates by controlling the electrodeposition parameters. With its advantages of low cost, simple operation, and time-saving, it has become another way to prepare ZnO NRs arrays.79–91 The electrochemical deposition of ZnO NRs consists of two processes: nucleation and growth of crystal. The
nucleation rate and growth rate directly affect the density and length of ZnO NRs, respectively. When the nucleation rate is faster, the density of ZnO NRs will increase. When the growth rate is relatively fast, the length of ZnO NRs will increase. The concentration of Zn$^{2+}$ precursor, electrodeposition time, electrolyte concentration, and temperature also have important effects on NRs arrays. Usually, high concentration of Zn$^{2+}$ precursors will lead to high nucleation rate. The height of ZnO NRs is mainly affected by the electrodeposition time and the concentration of electrolyte.\cite{92} The higher the electrolyte concentration, the morphology of ZnO will change from rod-like to lamellar.

The higher the electrodeposition temperature, the greater the density of ZnO prepared by electrodeposition, the more uniform the size, and the significantly improved crystalline quality. The increase in electrodeposition voltage not only increases the density of ZnO, but also increases the preferred orientation of the c-axis and improves the crystal quality. Appropriate voltage can form ZnO NRs with good morphology, while too high a voltage will cause the ZnO NRs to transform into a cluster structure.\cite{93} When the deposition time is very short, thin and short NRs are formed. As the deposition time increases, the length and diameter of ZnO NRs increase, and the coalescence between adjacent NRs effectively reduces the packing density of NRs.\cite{94,95} Skompska et al. comprehensively analyzed the influence of Zn$^{2+}$ and OH$^{-}$ precursor types, as well as different adjustment strategies for ZnO nanostructure shapes.\cite{96} Meng et al. prepared ZnO NRs with NPs attached on the surface by two-step electrochemical deposition method. ZnO NRs arrays were first prepared on FTO substrates by simple electrochemical deposition, and then the NRs arrays were placed in zinc acetate solution for secondary deposition to obtain ZnO NRs arrays wrapped by nanoparticles.\cite{97} ZnO NRs were obtained by primary electrodeposition (Figure 2A), and then the electrochemical epitaxial growth of two-layer (Figure 2B,C) or six-layer NRs (Figure 2D) was directed onto the primary nanostructures.\cite{98}

Compared with constant current, pulse electrodeposition can promote the formation of nuclei and other fine grains. By changing cycle time, pulse frequency and duty cycle, ZnO NRs arrays can be prepared through potential pulse electrodeposition, and high density ZnO NRs arrays can be prepared through constant potential-static pulse electrodeposition method.\cite{99}

2.3 | Hydrothermal method

CVD and electrodeposition methods usually require precise instruments and strict experimental conditions.
As another process for large-scale synthesis of ordered ZnO NRs arrays, hydrothermal method has the advantages of low cost, low temperature preparation, and simple and controllable process. In the hydrothermal process, the selection of zinc precursor and alkali source is particularly important. The zinc precursor usually uses zinc nitrate and zinc acetate. The two commonly used alkali sources are ammonia and hexamethylenetetramine (HMT). It was found that the size, surface density, and distribution of NRs can be adjusted by changing substrate type, precursor, heating time, and temperature. To overcome the lattice mismatch, a seed layer is usually grown on the surface of substrate before growing ZnO NRs with hydrothermal reaction. Vayssieres et al. prepared highly oriented ZnO NRs on conductive glass using zinc nitrate and HMT solution. Vayssieres et al. succeeded in reducing the diameter of NRs to 100–200 nm by keeping the ratio of Zn$^{2+}$ to amine at 1:1. Greene et al. explored the morphology and photoluminescence properties of ZnO NRs by synthesizing materials on different substrates. Xu et al. found that high-quality ZnO NRs arrays can also be grown by choosing Zn(C$_2$H$_3$O$_2$)$_2$ and CH$_3$N$_2$O as precursors, and alkali sources of zinc, respectively. Compared with other synthesis routes, the quality of the material prepared by hydrothermal method has declined, and some NRs will deviate from the normal direction of substrate during the growth process. It has also become the development trend to prepare ZnO NRs arrays by other methods assisted hydrothermal method. Fang et al. prepared ZnO seed layer by magnetron sputtering technology, and then successfully synthesized (002) orientated ZnO NRs arrays on silicon substrate by microwave-assisted hydrothermal method. In addition, the diameter distribution of ZnO NRs prepared by hydrothermal method is also wider. Therefore, how to better control the morphology, growth density and diameter distribution of ZnO NRs are still problems to be solved in the process of hydrothermal preparation. Zhang et al. first produced patterned zinc oxide seed regions of different sizes on silicon substrates through e-beam lithography (EBL), and explored the morphology and growth mechanism of NRs arrays. Then, ZnO NRs arrays with different morphologies and densities were prepared on silicon substrates with high precision by hydrothermal method (Figure 3A–D). This study provides a favorable guidance for the application of integrated preparation of NRs devices based on ZnO NRs arrays.

Kim et al. prepared three different patterned ZnO seed layers by nanolithography (Figure 4A–C), and
controlled the thickness and exposed area of ZnO seed layers by regulating the polymethyl methacrylate (PMMA) mask layer and the etching time, and then precisely arranged ZnO NRs was prepared by hydrothermal growth method (Figure 4D–F), this highly regular ZnO NRs arrays integrates the excellent optical and electrical properties of ZnO.107

From the perspective of structural design and the application of solar cells, the selection of low-cost and large-scale growing preparation methods become two factors to be considered. Cheng et al. first prepared ZnO NRs arrays on FTO glass (Figure 5A,B), then through the growth of ZnO seed layers coated on NRs arrays (Figure 5C), and the branching ZnO nanostructures (Figure 5D) were prepared, which were directly connected to the main chain of ZnO NRs and could provide a direct path of carriers transport.108

In addition to the above common synthesis methods, there are many other methods to prepare ZnO NRs arrays, such as chemical bath deposition (CBD), sol–gel methods and spray pyrolysis, and so on.

3 | SYNTHESIS OF ZnO NRs HETEROJUNCTION ARRAYS

Although ZnO NRs array provide a direct carrier transport channel, its wide band gap leads to low photovoltaic conversion efficiency (PCE) based on ZnO NRs arrays. Therefore, the construction of heterojunction on ZnO NRs can improve the light capture ability and increase the transport properties. The heterojunction and plasma metal NPs modification are two main forms. Hierarchical structure and core-shell structure are widely used in heterostructures.109 The hierarchical structure usually covers the composite material on the original material, the prominent feature of the core-shell structure is to increase the photocurrent density. In addition, the shell layer as an energy barrier, it can also reduce the loss caused by electron recombination, and make the conduction band move down to increase the amount of electron injection so as to improve the efficiency of electron injection.

The band gap of ZnO/ZnS heterogeneous could be changed by tuning the thickness of ZnS.110 And
Torabi et al. greatly reduced the band gap of heterostructures by adjusting the number of ZnO and ZnS layers, which provides a certain reference value for the research in the field of solar cells.111 Compared with the ordinary core-shell heterojunction structure, the 3D nanoarray structure can capture and rescatter the incident photons to enhance the light absorption, and the branching structure is more conducive to the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Three kinds of ZnO NRs patterns: (A,D) nanoflowers; (B,E) multidomain columns; (C,F) single crystal columns. Reproduced from Kim et al.107 with permission. Copyright @2012, American Chemical Society}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{(A) Schematic growth process and (B–D) SEM images of ZnO arrays. Reproduced from Cheng et al.108 with permission. Copyright @2008, American Chemical Society}
\end{figure}
rapid transport of charge carriers and can enhance the charge separation and collection. Hassan et al. prepared three-dimensional (3D) hierarchical ZnO/ZnS heterojunction branching nanostructures on silicon substrates by MOCVD. The enhancement of light absorption benefited from the heterojunction branching surface, and the transition of ZnO/ZnS interface in the structure is conducive to the efficient transport and photoelectric conversion. ZnO/Si NRs arrays were coated with Ag NPs via a simple current displacement reaction and the 3D layered nanoarray structure was obtained (Figure 6).

Surface plasmon resonance effect can be used to enhance the photovoltaic performance of solar cells. Wu et al. grew ZnO NRs arrays directly on zinc foil by hydrothermal method, and then deposited Au NPs onto the tips of ZnO NRs through photodeposition reduction method, and adjusted the number of modified Au NPs by changing the reaction time, thus forming a match-like ZnO/Au heterostructure (Figure 7A–G). The plasma effect of Au NPs at the tip greatly promoted light collection and accelerated charge transform. This simple and controllable method of in situ growth of semiconductor/metal heterostructure plays an important guiding role in improving PCE of solar cells.

In addition to increasing the light absorption in the active layer of solar cells through near-field plasma enhancement or light scattering, decorating ZnO with Au NPs can also passivate the defects of ZnO. To explore the potential mechanism and electronic interaction between ZnO and Au, Olthof et al. prepared ZnO NRs by CBD. Then, Au NPs with different sizes deposited onto ZnO NRs in vacuum, the increase of energy band bending on ZnO NRs surface caused by Au was related the surface states, which was of great significance for controlling the defects of active layer.

In addition to the above methods, hydrothermal method, continuous ion layer adsorption, CBD combined with spin coating process, electric field assisted aqueous solution (EFAS) process, ion exchange, vulcanization treatment, and electrodeposition are also common methods for preparing ZnO NRs heterojunction arrays.

4 | APPLICATION OF ZnO NRs HETEROJUNCTION ARRAYS IN SOLAR CELLS

ZnO NRs arrays are selected as the main body to construct composite structures of ZnO-based heterojunction arrays, and then are used to fabricate the quantum-dot-sensitized...
FIGURE 7 (A) Schematic image of fabrication of ZnO/Au heterostructure, SEM images of ZnO (B–D) and TEM images of ZnO/Au heterostructure (E–G). Reproduced from Wu et al.114 with permission. Copyright ©2014, American Chemical Society

FIGURE 8 (A) Schematic image of structure and J–V curves (B) of QDSSC device. Reproduced from Majumder et al.120 with permission. Copyright ©2018, Elsevier
solar cells (QDSSCs) or organic–inorganic solar cells. By introducing the composite structure of NRs heterojunction array, the interface areas of heterojunction and the channel of carrier separation were increased through the strategies of energy band matching, structure design and surface modification, thus improving the efficiency of carrier separation and collection. Common heterojunctions include ZnO/CdS, ZnO/CdSe and ZnO/CdTe, ZnO/CuS, TiO₂/ZnO, and graphene/ZnO, and so on.

4.1 Quantum-dot-sensitized solar cells

To enhance the light collection ability of QDSSCs, it is possible to prepare QDSSCs by depositing different quantum dots (QDs) (CdS, CdSe, CdTe, etc.) on ZnO NRs by using the advantages of high extinction coefficient, adjustable band gap, long lifetime, high stability, and easy synthesis. Using cadmium nitrate as a precursor, Thambidurai et al. deposited CdS QDs (4 nm) on ZnO NRs (diameter: 110–200 nm) through a two-step chemical method and the efficiency of preparing CdS QDs sensitized ZnO NRs was 1.10%. As a commonly used QDs, CdSe (band gap: 1.75 eV) has a higher conduction band edge and excellent light absorption in visible light region, which makes it easier for excited electrons to be injected into ZnO.116 Pandi et al.117 sensitized CdSe QDs on ZnO NRs by continuous ion layer adsorption reaction. Because photogenerated carriers are separated only in a relatively narrow area near the interface, the solar cell with planar structure is not conducive to the
absorption of sunlight and the collection of photo-generated carriers. Therefore, the ZnO NRs array and QDs can form 3D heterojunction to solve this problem. The ZnO NRs array was grown on the seed layer prepared by zinc salt ethanol solution and used them as an N-type semiconductor layer to prepare PbS QDs cell with 3D heterojunction structure, compared with the solar cell with planar heterojunction structure, the short-circuit current density (J_{SC}) increased by about 40%.118 Nano-sized graphene QDs have the common characteristics of graphene and QDs, which provides more possibilities for quantum dot-sensitized batteries. Yang et al.119 prepared graphene QDs modified ZnO NRs arrays on interfinger gold electrode substrate by CBD combined with spin coating process. Under ultraviolet irradiation, the photocurrent was significantly elevated, which provided the possibility for further development of sensitized batteries using graphene QDs. Majumder et al.120 grew tapered ZnO NRs arrays on FTO substrates by hydrothermal method, compared the photoelectrochemistry of NRs and nanotapers grown under various conditions. Compared with ZnO NRs, The photoanode based on the nanotapers exhibits excellent light conversion ability (Figure 8A). Further sensitized by nitrogen-doped graphene QDs, the PEC activity of ZnO nanotapers was further improved, and the maximum light conversion efficiency reached ~1.15% (Figure 8B). In this study, the photoanodes of ZnO nanoarrays modified with nitrogen-doped graphene QDs expand the potential applications in low-cost QDSSCs.
In addition, another strategy to improve the low PCE of ZnO-based sensitized cells can introduce a protective layer on ZnO to construct a heterostructure II-type energy band matching structure. Luo et al.121 used Al-doped ZnO (AZO) glass as ZnO seed crystals and substrates to grow vertically aligned ZnO NRs through a CBD method. Then, ZnO NRs were used as templates to grow ZnO/ZnTe heterostructures in situ by wet chemical method. The optimal PCE of solar cell was 1.9%, and internal quantum efficiency was close to 100%. Rouhi et al.122 synthesized vertical-arranged ZnO/ZnS arrays with a longer carrier lifetime, higher surface area and specific volume, and more prominent light capture effect. The PCE of solar cells was ~4.07%.

To boost the light utilization, it is also a common strategy to develop the morphology and structure design of new nanoarray photoanode materials. Feng et al.123 synthesized vertically layered TiO\textsubscript{2}/ZnO arrays by a two-step hydrothermal approach (Figure 9). The PCE of TiO\textsubscript{2} nanowire/ZnO NRs QDs-based solar cells reached 3.20%. Combined with Cu\textsubscript{2}S counter electrode deposited by chemical bath, the PCE of CdS/CdSe cosensitized QDSSCs could be further optimized to as high as 4.57%.

Zhao et al.124 constructed a highly efficiency QDSSCs based on a photoelectrode of TiO\textsubscript{2}/ZnO NRs array modified with Ag NPs. The introduction of Ag NPs not only improved the light collection efficiency, promoted the dissociation of excitons, but also reduced the surface charge recombination and prolonged the electron lifetime. Therefore, the related fermi level was considered to stimulate a more negative

\textbf{FIGURE 13} Schematic diagram (A) and energy level diagram (B) of solar cell based on ZnO@TiO\textsubscript{2} core-shell arrays. Reproduced from Zhong et al.129 with permission. Copyright @2019, Elsevier

\textbf{FIGURE 14} Schematic diagram of the preparation of vertically arranged ZnO-NRs@ZnS. Reproduced from Chen et al.135 with permission. Copyright @2021, Elsevier
potential upward shift, leading to an increase in the PCE (5.92%) of solar cell containing Ag NPs modified TiO2/ZnO nanosheets photoelectrode, which was ~22% (4.80%) higher than that of solar cells without Ag nanosheets.

4.2 | Organic–inorganic solar cells

ZnO was widely used in organic–inorganic solar cells due to its excellent light transmittance, electron mobility, low cost, and low-temperature preparation. ZnO NRs arrays can provide direct electron transport channels and avoid recombination at grain boundaries, thus improving the collection efficiency of carriers. Liu et al.125 prepared uniform CuS shells surrounding ZnO NRs by consequent ion exchange (Figure 10A), and the PCE of solar cell was up to 1.02% (Figure 10B).

Rakshit et al.126 modified the heterostructure of ZnO NRs with CdS by combining hydrothermal method with pulsed laser deposition (Figure 11A–C, and solar cells were prepared with poly (3-hexylthiophene) (P3HT), CdS modified and unmodified ZnO NRs as active layers, respectively. The PCE of the corresponding solar cell after the modification of ZnO NRs by CdS was elevated by 300% than that of ZnO:P3HT solar cell, thanks to the cascade energy band structure beneficial to charge transfer (Figure 11D).

In recent years, perovskite solar cells (PSCs) based on 1D ZnO NRs still have the problem of efficiency loss. On the one hand, this problem is caused by the non-optimized morphology of ZnO NRs, and on the other hand, it is caused by defects in the active layer or at the interface of ZnO/perovskite, which will cause the recombination of charge carriers. Therefore, the key to reduce the efficiency loss is to optimize the morphology of ZnO NRs, passivate the interface defects and improve the electron transport. Commandeur et al.127 constructed a 3D all-inorganic PSCs (Figure 12). The back electrode was constructed with stripped multilayer graphite, which realized effective hole extraction. In addition, yttrium doping improves the conductivity of ZnO, thus improving the electron transport and increasing the PCE of solar cells by three times. To passivate the surface and reduce charge recombination, nano-scale TiO2 coating modification has the most significant modification on ZnO, which leads to a great improvement in charge transfer. This strategy has increased the PCE of solar cells by a total of nine times. More importantly, all-inorganic solar cells showed excellent stability, and the initial performance did not decrease after being stored for 1000 h under environmental conditions.

In the preparation of PSCs, it is necessary to consider both PCE and stability. The selection of the electron transport layer should systematically consider factors, such as light absorption performance, interface smoothness, electron transport performance and preparation technology process. PSCs usually adopt TiO2 as a photoanode, but the low electron mobility of TiO2 may lead to unbalanced charge transport in PSCs.128 Zhong et al.129 prepared Glass/FTO/ZnO/ZnO@TiO2/CH3NH3PBI3/Spiro-OMeTAD/Au solar cells using ZnO@TiO2 core-shell structure as electron transport layer (Figure 13A). Based on the matching of the energy level of ZnO@TiO2 electron transport layer and perovskite (Figure 13B), it is conducive to effective electron injection from CH3NH3PBI3 to TiO2 and then from TiO2 to ZnO. Compared with ZnO-based solar cell, the performance of solar cells based on ZnO@TiO2 nanosstructure has been improved. The modification of TiO2 leads to the increase of open circuit voltage (VOC) and fill

TABLE 1 Performance of solar cells based on different structures
Structures
CdSe QDs sensitized ZnO NRs
ZnO/ZnTe
ZnO–ZnS
TiO2/ZnO-CuS
TiO2/Ag/ZnO/CdS/CdSe QDs
ZnO/CuS/P3HT
CdS-decorated ZnO NRs:P3HT
ZnO/TiO₂ NRs
ZnO/Cu₂O
ZnO Nano-Ripple with ALD-ZnO
ZnO/ZnS/perovskite
factor (FF), and the improvement of stability. More CH3NH3PbI3 perovskite in NRs and less PbI2 residue in perovskite film, which is committed to the improvement of JSC. The maximum PCE of solar cell reached 10.24% at the relative humidity of 40%.

In addition, the stability and repeatability of PSCs are also important factors that restrict its development. Although ZnO has high electron mobility, ZnO NRs arrays have the ability to increase light absorption and provide direct electron extraction channels, making them ideal materials for electron transport layers.130-132 However, due to the poor chemical compatibility between ZnO and perovskite layer, the stability based on ZnO is relatively poor.133,134 Zhang et al.135 sulfurized ZnO NRs at about 400 nm and obtained the corresponding ZnO/ZnS heterojunction structure (Figure 14), which promoted the transfer of charge carriers to a certain extent, and the PCE was improved to 11.72% when it was applied to perovskite solar cells.

Overall, the efficiency of solar cells based on ZnO NRs heterojunctions is still low (Table 1), to further improve the efficiency and stability of solar cells, it will be a hot research direction in the future to find low-cost and high-stability ZnO NRs heterojunction array as a light absorption layer, match the corresponding hole transport layer, further simplify the solar cell structure and improve the packaging process. Exploring the photoelectric properties and transport mechanism of ZnO-based NRs heterojunction array structure will contribute to the design of more efficient solar cell materials.

5 CONCLUSIONS AND PROSPECT

ZnO NRs has attracted much attention in optoelectronic devices due to its unique semiconductor characteristics, especially its excellent exciton binding energy, high electron mobility, and high surface area, which are conducive to light collection and has become the main material for constructing solar cells. ZnO NRs are often used as photoanode or active layer of solar cells, but simple ZnO NRs materials can no longer meet the demand for high photoelectric conversion rate. In this paper, we reviewed the recent research on the construction of ZnO NRs heterojunction, improving the light capture ability of NRs and prolong the electron lifetime. CVD, electrochemical deposition, hydrothermal method, and their combined technologies were introduced to construct the heterojunction array of ZnO NRs with controllable structure, which were applied to the preliminary work of different types of solar cells. Although many excellent works have been done in solar cells based on ZnO heterojunction arrays, there are still some limiting factors in the development of solar cells, such as low PCE, short lifetime of solar cells, material instability, high cost and toxicity of materials. Therefore, the future work should focus on optimizing the material growth, structure design, electrode contact and light capture efficiency of solar cells to improve the excellent performance of solar cells. In addition, the growth mechanism of ZnO NRs heterojunction array in the growth process needs to be further studied. Combined with machine learning, the heterojunction materials matching with ZnO NRs are screened, and experimental conditions should be optimized to realize controllable preparation of ZnO NRs heterojunction array in terms of density, size, aspect ratio and growth orientation. With the help of DFT theoretical calculation method, the transport mechanism of heterojunction interface carriers is theoretically provided. By regulating the aspect ratio of NRs, the transport performance of interface carriers can be effectively expanded and improved, and the dissociation probability of excitons can be improved, so as to further improve the photoelectric performance of solar cells, which will also be the future development direction.

ACKNOWLEDGMENTS

This study was financially supported by the National Natural Science Foundation of China (51976081), key research and development program of Jiangsu Province of China (BE2019009-003), and Jiangsu Province Postdoctoral Research Funding Program (2020Z078).

CONFLICT OF INTERESTS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ORCID

Fen Qiao http://orcid.org/0000-0002-2661-0937

REFERENCES

1. Zhang Z, Chen X, Kang J, et al. Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat Commun. 2021;12:1-9.
2. Wang J, Jia Z, Liu X, Dou J, Xu B, Wang B. Engineering porous structure in Bi-component-active ZnO quantum dots anchored vanadium nitride boosts reaction kinetics for zinc storage. Nano Energy. 2021;89:106386.
3. Xie Y, Nie Y, Zheng Y, et al. The influence of β-Ga2O3, film thickness on the optoelectronic properties of β-Ga2O3@ZnO nanocomposite heterogeneous materials. Mater Today Commun. 2021;29:102873.
21. Fujisawa H, Kobayashi C, Nakashima S, Shimizu M. Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities. J Korean Phys Soc. 2013;62:1164-1168.
22. Kim AY, Jang S, Lee DH, Yim SY, Byun D. Effects of temperature on ZnO hybrids grown by metal-organic chemical vapor deposition. Mater Res Bull. 2012;47:2888-2890.
23. Tang J, Chai J, Huang J, et al. ZnO nanorods with low intrinsic defects and high optical performance grown by facile microwave-assisted solution method. ACS Appl Mater Interfaces. 2015;7:4737-4743.
24. Galoppini E, Rochford J, Chen H, et al. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B. 2006;110:16159-16161.
25. Guo T, Luo Y, Zhang Y, Jin Y-H, Nan C-W. Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photosresponse current. Cryst Growth Des. 2014;14:2329-2334.
26. Zhou HL, Shao PG, Chua SJ, et al. Selective growth of ZnO nanorod arrays on a GaN/sapphire substrate using a proton beam written mask. Cryst Growth Des. 2008;8:4445-4448.
27. Li WJ, Shi EW, Zhong WZ, Yin ZW. Influence factors on correct diagnosis of non-epileptic paroxysmal disorders in childhood. J Cyst Growth. 1999;203:186-196.
28. Yu J, Huang B, Qin X, Zhang X, Wang Z, Liu H. Hydrothermal synthesis and characterization of ZnO films with different nanostructures. Appl Surf Sci. 2011;257:5563-5565.
29. Govender K, Boyle DS, Kenway PB, O’Brien P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem. 2004;14:2575-2591.
30. Song J, Baek S, Lee J, Lim S. Role of OH— in the low temperature hydrothermal synthesis of ZnO nanorods. J Chem Technol Biotechnol. 2008;83:345-350.
31. Rivera A, Zeller J, Sood A, Anwar M. A Comparison of ZnO nanowires and nanorods grown using MOCVD and hydrothermal processes. J Electron Mater. 2013;42:894-900.
32. Qiao F, Chen Z, Xie Y, Mao B, Zhang D, Chu H. Construction of microsphere-shaped ZnSe-AgZnInS and its charge transport property. J Mater Res Technol. 2020;9:2230-2236.
33. Chen Z, Qiao F, Liu W. Influence of cleaning treatment on structure, optical and electrical properties of Ag/ZnSe microspheres prepared by silver mirror reaction. Vacuum. 2020;173:109110.
34. Qiao F, Kang R, Liang Q, Cai Y, Bian J, Hou X. Tunability in the optical and electronic properties of ZnSe microspheres via Ag and Mn doping. ACS Omega. 2019;4:12271-12277.
35. Liang Q, Qiao F, Cui X, Hou X. Controlling the morphology of ZnO structures via low temperature hydrothermal method and their optoelectronic application. Mat Sci Semicon Proc. 2019;89:154-160.
36. Gu Z, Paranthaman MP, Xu J, Pan ZW. Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidation method. ACS Nano. 2009;3:273-278.
37. Villarreal CC, Pirzada D, Wong A, Mulchandani A. Electro-deposition of ZnO nanorods on graphene: tuning the topography for application as tin oxide-free electron transport layer. J Appl Electrochem. 2021;51:977-989.
38. Solis D, Jimenez F, Jauregui G, Gau D, Dalchiele EA. Optimization of Ag2S quantum dots decorated ZnO nanorod array photoanodes for enhanced photoelectrochemical performances. J Electrochem Soc. 2021;168:056516.
40. Peulon S, Lincot D. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films.
 Ad Mater. 1996;8:166-170.

41. Canava B, Lincot D. Nucleation effects on structural and optical properties of electrodeposited zinc oxide on tin oxide.
 J Appl Electrochem. 2000;30:711-716.

42. Gao XD, Feng F, Li XM, Yu WD, Qu JJ. Growth of highly oriented ZnO films by the two-step electrodeposition technique.
 J Mater Sci. 2007;42:9638-9644.

43. Elias J, Tena-Zaera R, Lévy-Clément C. Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films. 2007;515:8553-8557.

44. Pauporté T, Lincot D, Viana B, Pelle F. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electro-deposition. Appl Phys Lett. 2006;89:233112.

45. Pan YW, Peng SJ, Ma YL, Cao PJ, Hu F. Flat-type gas sensors based on ZnO nanorod arrays. J Nanosyst Nanotechnol. 2020;20:7800-7807.

46. Pani I, Jurai K, Krsultovni N, et al. ZnO@TiO2 core-shell nanostructures grown on Zn foil substrate by hydrothermal method for photoelectrochemical water splitting. Int J Hydrog Energy. 2019;44:25416-25427.

47. Fang X, Zhai T, Gautam UK, et al. High glucose condition upregulated Tnxin expression level in rat mesangial cells through ROS/MEK/MAPK pathway. Prog Mater Sci. 2011;56:175-287.

48. Zhong M, Chai L, Wang Y, Di J. Enhanced efficiency and stability of perovskite solar cell by adding polymer mixture in perovskite photoactive layer. J Alloy Compd. 2021;864:158793.

49. Cui YY, Wang WD, Li N, Ding R, Hong KQ. Hetero-seed mediated method to synthesize ZnO/TiO2 multipod nanostructures with ultra-high yield for dye-sensitized solar cells. J Alloy Compd. 2019;805:686-872.

50. Yang TH, Li CY, Yin NQ, Liu XL, Li P. Photovoltaic performance improvement via designing nanorod parameter in composite-structure solar cells. J Alloy Compd. 2020;821:153251-1-6.

51. Wang H, Zhang J, Zhang Q, Wu H, Xu X. Ultrathin Al2O3 modified the interface of ZnO nanorod arrays/Cu2O heterojunction for enhanced photoelectrochemical performance. Appl Surf Sci. 2021;545:149082-1-8.

52. Liu J, Zhang WH, Wang AY, Zhang ZY, Lv YY. Preparation and field emission performance of metal-doped ZnO NRAs/graphene composite material. Integr Ferroelectr. 2020;209:98-109.

53. Lee Y, Kim DY, Lee S. Low-power graphene/ZnO Schottky UV photodiodes with enhanced lateral schottky barrier homogeneity. Nanomaterials. 2019;9:799-1-13.

54. Chu H, Ya Y, Nie X, Qiao F, E J. Effects of adding cyclohexane, n-hexane, ethanol, and 2.5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combust Flame. 2021;225:120-135.

55. Chu H, Han W, Cao W, Gu M, Xu G. Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame. Energy. 2019;166:392-400.

56. Xiang L, Jiang H, Ren F, Chu H, Wang P. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane. Int J Hydrog Energy. 2020;45:20501-20514.

57. Shi Z, Walker AV. Promising in vitro and in vivo inhibition of multidrug-resistant Helicobacter pylori by linezolid and novel oxazolidinone analogues. Thin Solid Films. 2016;606:105-112.

58. Poornajar M, Marashi P, Fatmehsari DH, Esfahani MK. Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram. Inter. 2016;42:173-184.

59. Djurisic AB, Leung YH. Optical properties of ZnO nanostructures. Small. 2006;2:944-961.

60. Zhang XX, Zhao D, Gao M, Dong HB, Zhou WY, Xie SS. Site-specific multi-stage CVD of large-scale arrays of ultrafine ZnO nanorods. Nanotechology. 2011;22:135603-1-8.

61. Wang X, Summers CJ, Wang ZL. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nanoptoelectronics and nanosensor arrays. Nano Lett. 2004;4:423-426.
89. Poornajar M, Marashi P, Fatmehsari DH, Esfahani MK. Synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance. ACS Sustainable Chem Eng. 2018;6:16047-16054.

90. Illy BN, Cruickshank AC, Schumann S, et al. Electrodeposition of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Solid Films. 2003;488:159-167.

91. Xu L, Wang X, Qian L, et al. The dependence of the optical properties of ZnO nanorod arrays on their growth time. J Mat Sci. 2016;51:5589-5597.

92. Peulon S, Lincot D. Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxylchloride films from oxygenated aqueous zinc chloride solutions. J Electrochem Soc. 1998;145:864-874.

93. Tena-Zaera R, Elias J, L’evy-Cl’ement C, Mora-Sero I, Luo Y, Bisquert J. Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Phys Stat Sol (a). 2008;205:2345-2350.

94. Chettah H, Abdi D. Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties. Thin Solid Films. 2013;537:119-123.

95. Dunkel C, Luttich F, Graaf H, Oekermann T, Wark M. Investigation of the pulsed electrochemical deposition of ZnO. Electrochim Acta. 2012;80:60-67.

96. Xu L, Wang X, Qian L, et al. Effect of the optical properties of ZnO nanorod arrays on their growth time. Optik. 2020;202:163634-1-7.

97. Taik Y, Park D, Yong K. Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method. J Vac Sci Technol B. 2006;24:2047-2052.

98. Poornajar M, Marashi P, Fatmehsari DH, Esfahani MK. Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram Int. 2016;42:173-184.

99. Wang Y, Jing Li, Fan X, et al. Strong red emissions in Pr3+-doped (K0.5Na0.5)NbO3-CaTiO3 diphasic ceramics. J Ceram. 2015;36:601-609.

100. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G. Deconstruction reconstruction of full-view and limited-view photo-acoustic tomography: a simulation study. Angew Chem Int Ed. 2008;120:2436-2440.

101. Ghannam H, Bazin C, Chaaboun A, Turmine M. Control of the growth of electrodeposited zinc oxide on FTO glass. CrystEngComm. 2018;20:6618-6628.

102. Feng M, Liu ZW. Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram Int. 2017;43:6955-6962.

103. Zhang DB, Wang SJ, Cheng K, et al. Controllable fabrication of patterned ZnO nanorod arrays: investigations into the impacts on their morphology. ACS Appl Mater Interfaces. 2012;4:2969-2977.

104. Kim H, Jin YM, Lee HS. Growth of ZnO nanorods on various substrates by electrodeposition. Electrochem Acta. 2011;5:135-138.

105. Skompska M, Zarebska K. Electrodeposition of ZnO nanorod arrays on transparent conducting substrates—a review. Electrochim Acta. 2014;127:467-488.

106. Meng Y, Lin Y, Lin Y. Electrodeposition for the synthesis of ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications. Cryst Eng. 2014;40:1693-1698.

107. Xu L, Chen QW, Xu DS. Hierarchical ZnO nanostructures obtained by electrodeposition. J Phys Chem C. 2007;11:11560-11565.

108. Prade T, Siopa D, Martins AF, et al. Optoelectronic characterization of ZnO nanorod arrays obtained by pulse electrodeposition. J Electrochem Soc. 2018;165:D595-D603.

109. Tam KH, Cheung CK, Leung YH, et al. Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B. 2006;110:20865-20871.

110. Vergés MA, Mifusad A, Serna CJ. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans J Chem Soc, Faraday Trans. 1990;86:959-963.

111. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater. 2001;13:4395-4398.

112. Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater. 2003;15:464-466.

113. Greene LE, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem. 2003;115:3139-3142.

114. Zhang H, Lee WW, Yi J, Park WI, Kim JS, Nichols WT. Single-crystalline ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications. J Phys Chem C. 2008;112:16359-16364.

115. Feng M, Liu ZW. Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram Int. 2017;43:6955-6962.

116. Zhang DB, Wang SJ, Cheng K, et al. Controllable fabrication of patterned ZnO nanorod arrays: investigations into the impacts on their morphology. ACS Appl Mater Interfaces. 2012;4:2969-2977.

117. Kim SB, Lee WW, Yi J, Park WI, Kim JS, Nichols WT. Simple, large-scale patterning of hydrophobic ZnO nanorod arrays. ACS Appl Mater Interfaces. 2012;4:3910-3915.

118. Cheng HM, Chiu WH, Lee CH, Tsai SY, Hsieh WF. Formation of branched ZnO nanowires from solvolithothermal method and dye-sensitized solar cells applications. J Phys Chem C. 2008;112:16359-16364.

119. Flores EM, Gouvea RA, Piotrowski MJ, Moreira ML. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study. Phys Chem Chem Phys. 2018;20:4953-4961.

120. Saha S, Sarkar S, Pal S, Sarkar P. Tuning the energy levels of ZnO/ZnS Core/shell nanowires to design an efficient nanowire-based dye-sensitized solar cell. J Phys Chem C. 2013;117:15890-15900.
111. Torabi A, Staroverov VN. Band gap reduction in ZnO and ZnS by creating layered ZnO/ZnS heterostructures. *J Phys Chem Lett.* 2015;6:2075-2080.

112. Hassan MA, Waseem A, Johar MA, Bagal IV, Ha JS, Ryu SW. Single-step fabrication of 3D hierarchical ZnO/ZnS heterojunction branched nanowires by MOCVD for enhanced photoelectrochemical water splitting. *J Mater Chem A.* 2020;8:3830-3832.

113. Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. *ACS Appl Mater Interfaces.* 2015;7:5725-5735.

114. Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. *ACS Appl Mater Interfaces.* 2014;6:15052-15060.

115. Oltlho T., Marszalek M, Peukert A, et al. Control of surface defects in ZnO nanorod arrays with thermally deposited au nanoparticles for perovskite photovoltaics. *ACS Appl Energy Mater.* 2019;2:3736-3748.

116. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C, Kim JY. Synthesis of ZnO nanorods and their application in quantum dot sensitized solar cells. *J Sol-gel Sci Technol.* 2012;64:750-755.

117. Pandi DV, Muthukumarasamy N, Agilan S, Velauthapillai D. CdSe quantum dots sensitized ZnO nanorods for solar cell application. *Mater Lett.* 2018;223:227-230.

118. Xie RW, Zhai GM, Wang H, Zhang JT, Zhang H, Xu BS. Configuration adjustment of ZnO/PBS quantum dot heterojunction solar cells. *J Synth Cryst.* 2015;44:1509-1515.

119. Yang B, Chen JT, Cui LF, Liu WW. Enhanced photocurrent of a ZnO nanorod array sensitized with graphene quantum dots. *RSC Adv.* 2015;5:59204-59207.

120. Majumder T, Dhar S, Chakraborty P, Debnath K. Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications. *J Electroanal Chem.* 2018;813:92-101.

121. Luo S, He X, Shen H, et al. Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance. *RSC Adv.* 2017;7:14837-14845.

122. Rouhi J, Mamat MH, Ooi CHR, Mahmud S, Mahmoob MR. High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructure nanocoone photoanodes. *PLoS One.* 2015;10:0123433-1-14.

123. Feng HL, Wu WQ, Rao HS, et al. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells. *ACS Appl Mater Interfaces.* 2015;7:5199-5205.

124. Zhao H, Huang F, Hou J, et al. Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. *ACS Appl Mater Interfaces.* 2016;8:26675-26682.

125. Liu Z, Han J, Li H, et al. Fabrication of ZnO/CuS core/shell nanoarrays for inorganic–organic heterojunction solar cells. *Mater Chem Phys.* 2013;141:804-809.

126. Rakshit T, Mondal SP, Mannia I, Ray SK. CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices. *ACS Appl Mater Interfaces.* 2012;4:6085-6095.

127. Commandeur D, Morrissey H, Chen Q. Solar cells with high short circuit currents based on CsPbBr3 perovskite-modified ZnO nanorod composites. *ACS Appl Nano Mater.* 2020;3:5576-5586.

128. Ponseca CS Jr., Savenije TJ, Abdellah M, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. *J Am Chem Soc.* 2014;36:5189-5192.

129. Zhong M, Chai L, Wang Y. Core-shell structure of ZnO–SrO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability. *Appl Surf Sci.* 2019;464:301-310.

130. Zang Z. Efficiency enhancement of ZnO/CuZO solar cells with well oriented and micrometer grain sized Cu2O films. *Appl Phys Lett.* 2018;112:042106.

131. Zang Z, Nakamura A, Temmyo J. Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. *Opt Exp.* 2013;21:11448-11456.

132. Kim KD, Lim DC, Hu J, et al. Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics. *ACS Appl Mater Interf.* 2013;5:8718-8723.

133. Bi D, Boschloo G, Schwarzmueller S, Yang L, Johansson EMJ, Hagfeldt A. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. *Nanoscale.* 2013;5:11686-11691.

134. Xiong L, Qin M, Yang G, et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. *J Mater Chem A.* 2016;4:8374-8383.

135. Chen K, Tang W, Chen Y, et al. A facile solution processed ZnO@ZnS core–shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability. *J Energy Chem.* 2021;61:553-560.

AUTHOR BIOGRAPHIES

Fen Qiao received her Ph.D. degree from Dalian University of Technology in 2010. From 2010 to 2012, she worked as a postdoctoral researcher in Liberto Manna’s group at Italian Institute of Technology (IIT), Italy. And then worked at Jiangsu University as a professor. Her current research interests mainly focused on the design of functional semiconductor nanocrystals and their applications in optoelectronic devices. She has published more than 70 papers in international journals.

Kai-Yue Sun received his bachelor’s degree from Tianjin Urban Construction University in 2020. Since 2020, under the guidance of Professor Qiao Fen, he is currently studying for a master’s degree in the School of Energy and Power Engineering, Jiangsu University. The current research
direction is to design electrode materials based on transition metals and their applications in catalytic hydrogen production.

Huaqiang Chu is a professor in Anhui University of Technology (AHUT). He received his Ph.D degree from Huazhong University of Science and Technology (HUST) in 2012. From 2010 to 2012, he worked as a visiting doctor in Institute for Chemical Process and Environmental Technology (ICPET) of the National Research Council of Canada (NRC). He joined AHUT in 2012. His current research interests are radiative heat transfer, boiling and combustion synthesis of carbon nanomaterials. He has published more than 50 papers in international journals and hold 12 patents.

Junfeng Wang the Dean of School of Energy and Power Engineering of Jiangsu University. He received his Ph.D degree from Jiangsu University in 2002. His main research fields are charged multiphase flow and its applications in engineering including new energy, environment protection, energy saving, and so on. He is also engaged in the basic theory studies on electrostatic atomization, multiphase flow, non-Newtonian fluids, and spray technology in industry and agriculture.

Yi Xie is a professor in State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT). He received his Ph.D. degree from WUT in 2008. He worked as postdoctoral researcher at Korea Advanced Institute of Science and Technology (KAIST) from 2008 to 2010, and Italian Institute of Technology (IIT) from 2010 to 2015, respectively. He joined WUT as a professor in 2015. His current research interests are inorganic nanocrystals and nanostructures (e.g., perovskite, metal sulfide and metal oxide), two-dimensional layered materials (e.g., black phosphorus, Mxene) and their applications. He had around 60 publications in materials science and technology, and held one patent in nanotechnology.

Liping Chen she obtained her Master’s degree in optical engineering and an MBA from Tongji University. She joined Suntech (Wuxi) in August 2005, and has more than 16 years of experience in high-efficiency solar cell research and development and technology management.

Tingting Yan She received her Master’s degree from Jiangnan University, Wuxi, China, in 2010. Her current main research interests include crystalline silicon solar cells efficiency improvement, R&D and industrialization.

How to cite this article: Qiao F, Sun K, Chu H, et al. Design strategies of ZnO Heterojunction Arrays towards Effective Photovoltaic Applications. *Battery Energy*. 2022;1:20210008. doi:10.1002/BTE2.20210008