 Bounds on Optimal Revisit Times in Persistent Monitoring Missions With a Distinct and Remote Service Station

Sai Krishna Kanth Hari, Member, IEEE, Sivakumar Rathinam, Senior Member, IEEE, Swaroop Darbha, Fellow, IEEE, Satyanarayana Gupta Manyam, Krishna Kalyanam, Senior Member, IEEE, and David Casbeer, Senior Member, IEEE

Abstract—Persistent monitoring missions require an up-to-date knowledge of the changing state of the underlying environment. Unmanned aerial vehicles (UAVs) can be gainfully employed to continually visit a set of targets representing tasks (and locations) in the environment and collect data therein for long time periods. The enduring nature of these missions requires the UAV to be regularly recharged at a service station. In this article, we consider the case in which the service station is not colocated with any of the targets. An efficient monitoring requires the revisit time, defined as the maximum of the time elapsed between successive revisits to targets, to be minimized. Here, we consider the problem of determining UAV routes that lead to the minimum revisit time. The problem is NP-hard, and its computational difficulty increases with the fuel capacity of the UAV. We develop an algorithm to construct near-optimal solutions to the problem quickly when the fuel capacity exceeds a threshold. We also develop lower bounds to the optimal revisit time and use these bounds to demonstrate (through numerical simulations) that the constructed solutions are, on an average, at most 0.01% away from the optimum.

Index Terms—Motion and path planning, optimization and optimal control, surveillance systems, sensor networks, unmanned vehicles.

I. INTRODUCTION

In this article, we consider persistent monitoring applications, such as forest fire monitoring and military surveillance,

Manuscript received 13 March 2022; revised 13 August 2022; accepted 16 September 2022. Date of publication 3 November 2022; date of current version 5 April 2023. This article was recommended for publication by Associate Editor J. O’Kane and Editor F. Chaumette upon evaluation of the reviewers’ comments. (Corresponding author: Sai Krishna Kanth Hari.)

Sai Krishna Kanth Hari is with the Applied Mathematics and Plasma Physics Division, Los Alamos National Laboratory, New Mexico, NM 87544 USA (e-mail: hskkanth@gmail.com).

Sivakumar Rathinam and Swaroop Darbha are with the Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA (e-mail: srathinam@gmail.com; dswaroop@tamu.edu).

Satyanarayana Gupta Manyam is with the Infoscitex Corporation, Dayton, OH 45431 USA (e-mail: mngupta@gmail.com).

Krishna Kalyanam is with the Aviation Systems Division, NASA Ames Research Center, Moffett Field, CA 94035 USA (e-mail: krishnak@ucla.edu).

David Casbeer is with the Autonomous Control Branch, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 USA (e-mail: david.casbeer@afrl.af.mil).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/TRO.2022.3210784. Digital Object Identifier 10.1109/TRO.2022.3210784

in which an environment must be continually monitored to maintain an up-to-date knowledge of its changing state. The environment is represented by a set of distinct target locations of equal priority. The monitoring process involves an unmanned aerial vehicle (UAV) continually visiting these targets to collect data therein. A timely acquisition of information can help (for example, in detecting a forest fire or a potential threat to the safety of infrastructure), giving sufficient time to take necessary countermeasures. Toward this end, the maximum of the time between successive visits to every target must be minimized; this is achieved by minimizing the maximum taken over all the targets. This maximum is defined as the revisit time. The revisit time is dependent on the sequence of visits made by the UAV, and this article focuses on determining a sequence of visits that minimizes the revisit time.

As UAVs have a finite fuel capacity, their data collection visits to targets are interrupted regularly by refueling visits to a service station, also known as the depot. In persistent monitoring missions, such as the ones considered here, the service station is situated at a remote location. As a result, the refueling visits to the service station effect not only the revisit time but also the total time spent on monitoring the environment; the higher the number of visits to the depot, the lesser is the amount of time spent on monitoring the environment. Therefore, it is desirable to reduce the number of visits made to the depot. For the ease of modeling the number of visits to the depot while planning the UAV routes, we enforce the finite fuel capacity of the UAV through a constraint on the maximum number of visits (K) the UAV can make before it must be refueled at the depot. The caveats associated with estimating K for a given fuel capacity and a systematic procedure to estimate K for an arbitrary target configuration are discussed in [1, Appendix].

Sometimes minimizing the revisit time may necessitate a UAV to refuel at the depot after making only k visits, where $k \leq K$; correspondingly, there will be $K - k$ wasted visits, i.e., the number of visits a UAV did not avail before refueling. One may penalize wasted visits by modifying the objective to be the sum of revisit time and a penalty associated with wasted visits. However, to address the modified (penalized) objective, it is sufficient to find a sequence of UAV visits that minimizes only the revisit time for a given k. This is because, for a given
value of k, the penalty on the wasted visits is fixed, and one can simply iterate over $k (\leq K)$ to pick the sequence that minimizes the modified (penalized) objective. Therefore, in this article, we focus on finding a feasible sequence of visits for the UAV that minimizes the revisit time for a given value of k. We refer to this problem as persistent monitoring problem with a distinct depot (PMP-D) and state it in the subsequent paragraphs.

Given k, a feasible sequence of visits requires the UAV to start at the depot, make $k - 1$ visits to the targets while visiting each target at least once, and return to the depot for the kth visit. Such a feasible sequence of visits is referred to as a k-visit walk. To ensure persistent monitoring, a k-visit walk is repeated until the end of the mission. Then, PMP-D can be formally stated as follows.

Given that the UAV is recharged after exactly k visits, find a k-visit walk, which when repeated, has the minimum revisit time. Such a sequence of visits is referred to as an optimal k-visit walk. We refer to this sequence that minimizes the revisit time as $\mathcal{W}_D^k(k)$; its revisit time is referred to as the optimal revisit time and is denoted by $RD^k(k)$.

Given a k-visit walk and when $k := n + 1$, the revisit time of the walk is equal to the time required to travel through all the visits in the walk. As a result, the PMP-D is a generalization of the traveling salesman problem (TSP) and is NP-hard. Therefore, the computation time required for finding an optimal solution for PMP-D may not scale well with n and k for every instance of the problem. In this article, we propose methods to swiftly compute near-optimal solutions to the problem for large values of k. We also provide tight bounds to the optimal revisit time, which are helpful in evaluating the quality of heuristic solutions (routes) to this problem.

A. Relevant Literature

Route planning in persistent monitoring missions is different from other search or exploration missions due to the requirement of repeatedly visiting certain targets in the environment. With the aim of obtaining an up-to-date knowledge of the changing information, the problem of finding routes with the least revisit time was first proposed in [2]. Since then, several researchers have worked on the problem of finding an optimal sequence of visits for persistent monitoring of targets (with equal or unequal priorities) using single or multiple UAVs [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].

However, due to the computational complexity of the problem, most of the prior work has ignored the limited fuel/charge capacity of the UAV, the time required to service the UAV, and the location of the service station while planning UAV routes. Nigam et al. [14] and Tiwari [15] highlight the importance of accounting for these factors in planning effective persistent monitoring routes. Utilizing a sequence of visits that neglect the servicing requirements of the UAV can result in higher revisit times in practice, as a practitioner may choose to service the UAV at arbitrary timings. This can also result in the UAV spending more time traveling to and from the servicing station as opposed to monitoring the targets. Therefore, to address these issues, it is imperative to focus on planning optimal/near-optimal routes corresponding to different fuel/charge capacities (k) of a UAV.

In our prior work [1], we considered a special case of PMP-D, referred to as the persistent monitoring problem (PMP), in which the service station is required to be colocated with one of the targets. Every k-visit walk for the PMP with nonzero service time can be perceived as a feasible $k + 2$-visit walk for the PMP-D (by replacing the service time with visits to and from the service station). However, by relaxing the constraint on the location of the service station, the computation and the analysis of solutions to PMP-D become challenging, as will be discussed in this article.

These challenges are similar to that encountered in solving well-known optimization problems in the literature, where modifying just one constraint changes the structure of optimal solutions. For example, in TSP, requiring the vehicle to end its path at node that is different from the starting node leads to new challenges [16], [17]. Typically, such challenges are addressed by building on the work that has been done for the simpler versions of the problem and extending it to solve the generalizations. We use a similar approach in this article also.

An optimal solution for PMP is a repetition of small sequences of visits to targets referred to as revisit sequences. In PMP-D, the presence of a station that is dedicated solely for the purpose of refueling leads to the presence of two different types of revisit sequences in the PMP-D: ones with a visit to the service station and ones without a visit to the service station. This makes the development of lower bounds and heuristic solutions for the PMP-D nontrivial, as explained in the following.

1) The development of lower bounds in our previous work did not require any enumeration. Under the assumption that the service station is also a target, all the revisit sequences were treated as uniform elements, and a simple argument was used to provide a lower bound on the number of visits in the longest revisit sequence of a walk; specifically, this argument was that the maximum of a set of numbers is no less than the average of the numbers. This bound was then used along with the least travel times possible for revisit sequences to develop a lower bound on the revisit times of walks. In PMP-D (this article), however, due to the presence of the service station, such a simple bounding technique cannot be directly applied. Here, the lower bound development requires some enumeration. Nonetheless, for a given number of visits (k), the number of feasible walks is an exponential function of k. Therefore, one cannot naively enumerate all the walks. The enumeration technique applied here requires the following:

- 1) A strategic categorization of walks that makes the development of bounds easier;
- 2) Obtaining new bounds on the revisit times

2Revisit sequences are subsequences of walks that represent the visits made by the UAV between revisits to specified targets. A formal definition of revisit sequences will be provided later.
of walks in each category; and 3) consideration of subtleties specific to the problem that help in pruning certain categories of walks from the enumeration process (refer to Section IV). None of the above utilities follow from our prior work. This work included performing extensive numerical simulations on 100s of instances of the problem, meticulously examining the results of the simulations for different values of \(k\) for each instance, identifying patterns in optimal walks for different values of \(k\), and then identifying the influence of the location of the service station on the optimal routes. During the course of this exercise, we developed new conjectures based on the observations, and then proved these conjectures/lemmas/theorems in this article.

2) Some of the additional work required in the development of bounds includes the following: 1) identifying the relationship between the number of visits in a walk, the number of visits in its longest revisit sequence with a service station, and the number of visits in its longest revisit sequence without the service station; 2) developing a relation between the least possible travel times of revisit sequence of the two different kinds.

3) Construction of large walks by concatenating (joining) smaller walks was straightforward for the PMP because they were all of the same type. On the other hand, in this article, the smaller walks are not all of the same type; so, one cannot just concatenate walks arbitrarily as it may lead to infeasible solutions. Note that there are numerous ways of adding visits to smaller walks or concatenating them, but the difficulty lies in doing so while reducing the revisit time as much as possible. To address these issues, in this article, we focused on the following: 1) the types of walks that need to be concatenated; 2) the number of visits in each type of walk that needs to be concatenated; and 3) a procedure to concatenate walks of different types (including the order of concatenation) such that the revisit time of the resultant walk is not a significantly high value.

Answering these questions required the help of extensive numerical simulations and meticulous observations of the optimal solutions for different values of \(k\).

In fact, the structure of solutions to the PMP and PMP-D is also different, and the same can be observed from the simulation results presented in Section VI.

B. Contributions and Organization

1) Contributions: In this article, we first develop tight lower bounds to the optimal revisit times corresponding to different values of \(k\). Second, utilizing these lower bounds, we develop efficient procedures for constructing optimal/near-optimal feasible solutions to the problem for large values of \(k\), for which the computation of optimal solutions is expensive; specifically, we construct feasible solutions for the case \(k \geq n^2 + 2n + 1\). Finally, we present the results of extensive numerical simulations for 300 instances of the problem, with \(n + 1\) ranging from 4 to 50. The results indicate that the revisit times of the constructed feasible solutions are, on average, only 0.01% away from the lower bounds. In other words, the proposed solutions are either optimal or near-optimal. Furthermore, the time required for computing these solutions is less than a second for instances with no more than 30 targets and is of the order of a few seconds for larger instances.

2) Organization: In Section II, we provide a formal definition of a walk, which includes the restrictions on the permitted sequence of visits. In the same section, we rephrase the definition of revisit time and travel time with regards to the walks. Then, we present a few properties of the revisit times and the travel times of the walks in Section III. Next, in order to obtain lower bounds on the optimal revisit times, we divide the set of all walks corresponding to a given \(n\) and \(k\) into certain categories (the criteria of categorization will be discussed in Section IV). Then, utilizing the aforementioned properties of revisit times and travel times, we provide lower bounds on the revisit times of the walks in each category. Finally, we unify the bounds corresponding to each category to obtain a lower bound on the optimal revisit time for a given \(k\).

Subsequently, in Section V, we utilize these lower bounds to construct optimal/near-optimal feasible walks for large values of \(k\). To aid this construction process, for a given \(k\), we identify a walk with a smaller number of visits that has a revisit time equal to or almost equal to the lower bound to the optimal revisit time. Then, we populate copies of this smaller walk and perform certain operations on these walks such as addition/removal of visits, altering the starting point of the walk, and so on. We introduce these operations in Section II. Then, we combine these modified copies to form a walk with \(k\) visits such that its revisit time either matches or nearly equals the developed lower bound. If the values match, the obtained walk will be optimal. Otherwise, the gap in the revisit times represents the optimality gap. In Section III, we present systematic procedures that aid in combining smaller walks to construct larger walks without increasing the revisit time. Then, in Section V, we utilize these procedures to present feasible solutions for different values of \(k\).

Finally, in Section VI, we present extensive numerical simulations to demonstrate the quality of the proposed feasible solutions and lower bounds. Section VII concludes this article.

II. TERMINOLOGY

A. Permitted Sequences of Visits

The servicing needs of the UAV impose certain restrictions on the sequence in which the UAV can visit the targets and the depot. Throughout this article, we refer to the set of targets that need to be monitored by \(N\), i.e., \(N = \{1, 2, \ldots, n\}\), and the depot by \(d\). We assume that \(n \geq 3\) and that the travel time between any pair of targets and between any target and the depot obeys the triangle inequality. Given that the UAV is recharged at the end of every \(k\) visits, its permitted sequence of visits in a single servicing cycle is referred to as a walk.

1) Walk: A sequence, \((v_0, v_1, v_2, \ldots, v_{k-1}, v_k)\), is defined as a walk with \(k\) visits (or simply, a \(k\)-visit walk) if it satisfies the following conditions: 1) \(v_0 = v_k\); 2) \(v_{i-1} \neq v_i, \forall i \in \{1, 2, \ldots, k\}\); and 3) \(N \subseteq \bigcup_{i=1}^{k} v_i \subseteq N \cup \{d\}\). The element \(v_0\) indicates the
A walk can be considered as a combination of its revisit sequences. For example, the walk \(W(10) = (d, 3, 4, 3, 2, 1, 3, 4, 2, 1, d) \) shown in Fig. 1 can be considered as a combination of its revisit sequences that have target 3 as the terminus, i.e., \((3, 4, 3), (3, 2, 1, 3), \) and \((3, 4, 2, 1, d, 3)\); the same applies for revisit sequences with other targets as the terminus.

2) **Revisit Time of a Walk:** The revisit time of a walk is defined as the maximum of the travel times of all its revisit sequences; due to triangle inequality, it is sufficient to consider only spanning revisit sequences.

C. **Operations on a Walk**

It will be seen in Section III that under certain special conditions, the revisit time of a walk can be related to its travel time. In these cases, we exploit the triangle inequality to develop lower bounds on the revisit/travel time of a walk by skipping one or more visits from the walk.

1) **Shortcutting a Walk:** Skipping one or more visits from a given walk to form a feasible PMP or PMP-D walk is referred to as shortcutting the given walk; the walk obtained after shortcutting is referred to as a shortcut walk. The requirement that the shortcut walk must be a feasible walk imposes certain restrictions on the visits that can be shortcut (or skipped). For example, a target that is visited exactly once cannot be shortcut. The depot alone cannot be shortcut if the targets visited before and after the depot are the same.

To construct feasible solutions, we often consider walks with smaller number of visits and then combine them to form larger walks.

2) **Concatenation:** Concatenation of two walks \(W_1(k) = (v_0, v_1, v_2, \ldots, v_{k-1}, v_0) \) and \(W_2(m) = (v_0, u_1, u_2, \ldots, u_{m-1}, v_0) \) is defined as \(W_1 \circ W_2(k+m) = (v_0, v_1, v_2, \ldots, v_{k-1}, v_0, u_1, u_2, \ldots, u_{m-1}, v_0) \). Note that two walks can be concatenated only when their terminal elements are the same.

To permit concatenation between walks with different terminal elements, we introduce the concept of permutation.

3) **Permutation:** Permutation of a PMP-D or a PMP walk, \(W(k) = (v_0, v_1, \ldots, v_{r-1}, v_r, v_{r+1}, \ldots, v_{k-1}, v_0) \), about \(v_r \) is defined as \(\mathcal{C}(W(k), v_r) = (v_r, v_{r+1}, \ldots, v_{k-1}, v_0, v_1, \ldots, v_{r-1}, v_r) \). Note that the revisit time of a walk is the same as that of its permutation as they have the same revisit sequences.

D. **Notation**

To facilitate a compact presentation of the subsequent material, we introduce the following notation.

1) \(\mathcal{R}(W(k)) \): revisit time of a PMP walk \(W(k) \).
2) \(\mathcal{R}^*(k) \): the least revisit time possible for a PMP walk with \(k \) visits.
3) \(\mathcal{RD}(W(k)) \): revisit time of a PMP-D walk, \(W(k) \).
4) \(\mathcal{RD}^*(k) \): the least revisit time possible for a PMP-D walk with \(k \) visits.
5) \(W^*(k) \): a PMP walk with \(k \) visits that has the least revisit time, i.e., \(\mathcal{R}(W^*(k)) = \mathcal{R}^*(k) \). It is referred to as an optimal PMP walk.
6) \(\mathcal{RD}^*(k) \): a PMP-D walk with \(k \) visits that has the least revisit time, i.e., \(\mathcal{RD}(W^*(k)) = \mathcal{RD}^*(k) \). It is referred to as an optimal PMP-D walk.
7) $\mathcal{T}(S)$: travel time of a sequence (any sequence including walks) S.
8) $\mathcal{T}^r(r)$: minimum travel time possible for a revisit sequence with r visits that does not include the depot.
9) $\mathcal{TD}^*(r)$: minimum travel time possible for a revisit sequence with r visits that includes the depot.

III. PROPERTIES OF \mathcal{T}^r, \mathcal{TD}^*, \mathcal{R}, AND \mathcal{RD}

In this section, we present a few lemmas useful for providing tight bounds on the optimal revisit time; the first three lemmas aid in developing lower bounds, whereas Lemma 4 aids in providing upper bounds.

The first lemma presents the monotonicity property of the minimum travel times of revisit sequences.

Lemma 1: $\mathcal{T}^r(v + 1) \geq \mathcal{T}^r(v), \forall v \geq n$ and $\mathcal{TD}^*(v + 1) \geq \mathcal{TD}^*(v), \forall v \geq n + 1$.

Proof: Let S be any revisit sequence that does not include a visit to the depot; by definition, $v \geq n$ and $\mathcal{T}(S) \geq \mathcal{T}^r(v)$. Consider an optimal spanning revisit sequence S^* corresponding to $(v + 1)$ visits. As $v + 1 \geq n + 1$, there is at least one target t that is visited more than once in S. Now, consider a sequence SS obtained by shortcutting a visit to t from S to get a revisit sequence of v visits. By triangle inequality, $\mathcal{T}^r(v + 1) \geq \mathcal{T}(SS)$; moreover, by definition, $\mathcal{T}(SS) \geq \mathcal{T}^r(v)$. Combining the two inequalities, we get $\mathcal{T}^r(v + 1) \geq \mathcal{T}^r(v), \forall v \geq n$.

Consider an optimal spanning revisit sequence that includes a visit to the depot and has $v + 1$ visits, where $v \geq n + 1$; employing the above shortcutting argument, we get $\mathcal{TD}^*(v + 1) \geq \mathcal{TD}^*(v), \forall v \geq n + 1$.

The following lemma provides a relation between the least travel times of spanning revisit sequences with and without the depot.

Lemma 2: $\mathcal{TD}^*(k + c) \geq \mathcal{T}^r(k), \forall k \geq n$, $c \geq 2$, where $k, c \in \mathbb{Z}_+; \mathcal{TD}^*(n + 1) \geq \mathcal{T}^r(n)$.

Proof: Consider an optimal revisit sequence SD with $k + c$ visits that includes the depot (i.e., SD has the least travel time among all such revisit sequences). Then, we have $\mathcal{T}(SD) = \mathcal{TD}^*(k + c)$. We prove the lemma by shortcutting the depot from SD and considering the two cases: 1) the targets visited immediately before and after the depot in SD are different; 2) the targets visited immediately before and after the depot in SD are the same.

When the targets visited immediately before and after the depot are the same, shortcutting only the depot leads to an infeasible revisit sequence. However, one can simultaneously shortcut visits to the depot and to the target visited prior to the depot. This results in a feasible revisit sequence S_1 with $k + c - 2$ visits with none of the visits being to the depot. Then, because S_1 is a shortcut sequence of SD, we have $\mathcal{T}(SD) \geq \mathcal{T}(S_1)$. As S_1 is a feasible revisit sequence with $k + c - 2$ visits and no visits to the depot, we have $\mathcal{T}(S_1) \geq \mathcal{T}^r(k + c - 2)$. Additionally, we have from Lemma 1 that $\mathcal{T}^r(k + c - 2) \geq \mathcal{T}^r(k)$ whenever $c \geq 2$. Therefore, combining the inequalities, it follows that $\mathcal{T}^r(k + c) \geq \mathcal{T}(SD)$.

When the targets visited immediately before and after the depot are different, one can shortcut the visit to the depot from SD to form a feasible revisit sequence S_2 that has $k + c - 1$ visits, none of which are to the depot. As S_2 is a shortcut sequence of SD, it follows from the triangle inequality that $\mathcal{T}(SD) \geq \mathcal{T}(S_2)$. Furthermore, as S is a feasible revisit sequence with $k + c - 1$ visits and no visits to the depot, we have $\mathcal{T}(S_2) \geq \mathcal{T}^r(k + c - 1)$. Additionally, we have from Lemma 1 that $\mathcal{T}^r(k + c - 1) \geq \mathcal{T}^r(k)$, whenever $c \geq 1$. Therefore, combining the inequalities, it follows that $\mathcal{T}^r(k + c) \geq \mathcal{T}(SD)$.

When $k = n$ and $c = 1$, every target is visited exactly once in SD. Therefore, the argument presented in the previous paragraph holds true, and we have $\mathcal{TD}^*(n + 1) \geq \mathcal{T}^r(n)$.

The next lemma relates the revisit times of walks with their travel times when the number of visits in the walks is at most $2n - 1$ or $2n$.

Lemma 3: Let $W(v)$ be a PMP walk with v visits, where $v \geq n$, and $\mathcal{WD}(k)$ be a PMP-D walk with k visits, where $k \geq n + 1$.

Then:
1) $\forall v \leq 2n - 1$, $\mathcal{R}(W(v)) = \mathcal{T}(W(v))$, and $\mathcal{R}^*(v) = \mathcal{T}^r(v)$;
2) $\forall k \leq 2n$, $\mathcal{RD}(W(k)) = \mathcal{T}(WD(k))$, and $\mathcal{RD}^*(k) = \mathcal{TD}^*(k)$.

Proof: Clearly, PMP walks with at most $2n - 1$ visits and PMP-D walks with at most $2n$ visits have at least one target that is visited exactly once. Consider permutations of these walks about one such target (can be different for different walks). Then, it can clearly be seen that such walks are revisit sequences of themselves. Furthermore, due to the triangle inequality, no other sequences in the walks have a greater travel time than the walk itself. Now, recall that by definition, the revisit time of a walk is equal to the maximum of the travel times of all its revisit sequences. Furthermore, revisit times of walks are not altered by permutations. Therefore, we have that $\mathcal{R}(W(v)) = \mathcal{T}(W(v))$, $\forall v \leq 2n - 1$, and $\mathcal{RD}(W(k)) = \mathcal{T}(WD(k))$, $\forall k \leq 2n$.

Every spanning revisit sequence is a feasible walk, and a permutation of every feasible PMP walk with at least $2n - 1$ visits and every PMP-D walk with at least $2n$ visits is a feasible and spanning revisit sequence. Furthermore, from the previous paragraph, we have that the travel times of these walks are equal to their revisit times. Therefore, it follows that $\mathcal{T}^r(v) = \mathcal{R}^*(v), \forall v \leq 2n - 1$, and $\mathcal{TD}^*(k) = \mathcal{RD}^*(k), \forall k \leq 2n$.

The next lemma presents a way to construct larger walks from smaller ones without increasing their revisit times.

Lemma 4:
1) Suppose $k \leq 2n - 1$. The revisit time of a walk obtained by concatenating a k-visit walk with itself or its shortcut walk any number of times is equal to the revisit time of the k-visit walk.
2) Consider two walks W_a and W_b with at most $2n - 1$ visits. Let W_s be a shortcut walk of both W_a and W_b. Then, the revisit time of a walk obtained by concatenating the three walks any number of times in any sequence such that W_a and W_b are not adjacent to each other is equal to the maximum of the revisit times of W_a and W_b.

Proof: A detailed proof for Item 1 of the lemma can be found in [1]. In Item 2, when W_a, W_s, and W_b are concatenated such that W_a and W_b are not adjacent to each other, the newly formed revisit sequences belong to the subset of revisit sequences formed by concatenating either W_a and W_s or W_s and W_b. Therefore, following the discussion on Item 1, none
of the revisit sequences in the concatenated walk have a travel time larger than the ones in \(W_a \) and \(W_b \). Henceforth, from the definition of revisit time, it follows that the revisit time of the concatenated walk is the maximum of that of \(W_a \) and \(W_b \).

IV. LOWER BOUNDS ON THE OPTIMAL REVISIT TIME

Given a number \(k \geq n + 1 \), it can always be expressed as \(k = pn + q + 1 \) for some \(p, q \in \mathbb{Z}_+ \), \(p \geq 1 \), and \(q \leq n - 1 \).

Theorem 1: For any \(k \geq n + 1 \), \(R_D^*(k) \) is lower bounded as follows:

\[
R_D^*(k) \geq \begin{cases}
\min\{R_D^*(n + 2), R^*(n + 1)\}, & \text{if } R_D^*(n + 1) < R^*(n + 1) & q = 1 \\
R^*(n + 1), & \text{if } R_D^*(n + 1) < R^*(n + 1) & q \geq 2 \\
R_D^*(n + 1), & \text{otherwise}
\end{cases}
\]

While the lower bounds of Theorem 1 are valid for any \(k \geq n + 1 \), they are tighter when \(k \geq n^2 + n + 1 \). For smaller \(k \), one can construct tighter lower bounds following the solution to the Diophantine Frobenius problem (DFP) [18] and the arguments provided in the proof of Theorem 1.

A. Proof for Theorem 1 (Lower Bound on \(R_D^*(k) \))

We skip the trivial cases of \(k = n + 1 \) and \(k = n + 2 \), as the bounds clearly hold trivially. For the proof, we may assume without any loss of generality, that \(k \geq n + 3 \). We prove the theorem by binning the walks into different categories based on the number of visits in their spanning revisit sequences and showing that the bound holds for each bin. For convenience, we refer to a spanning revisit sequence that has a visit to the depot as r.s.d and a spanning revisit sequence without a visit to the depot as r.s.n.d. Observe that the minimum number of visits in an r.s.d is \(n + 1 \), whereas that in r.s.n.d is \(n \). By definition, every PMP-D walk has an r.s.d; while PMP-D may have multiple r.s.ds, note that the depot is only visited exactly once in a PMP-D walk and every r.s.d.

Given \(k \geq n + 3 \), let us bin the walks based on the number \(v_d \) of visits in their longest (in number of visits) r.s.d. Note that \(v_d \geq n + 1 \). Let \(B(k, n + 1) \), \(B(k, n + 2) \), and \(B(k, n + 3) \) denote the sets of walks with \(v_d = n + 1 \), \(v_d = n + 2 \), and \(v_d \geq n + 3 \), respectively.

Lemma 5: Suppose \(w \in B(k, n + 3) \). Then
\[
R_D(w) \geq \max\{R_D^*(n + 2), R_D^*(n + 1), R^*(n + 1)\}.
\]

Proof: Recall that the revisit time of a walk is defined as the maximum of the travel times of all its spanning revisit sequences. Consequently, the travel time of every spanning revisit sequence of a walk serves as a lower bound on the revisit time of the walk. Furthermore, every walk in \(B(k, n + 3) \) has an r.s.d with at least \(n + 3 \) visits; from Lemma 1, it follows that the travel time of such a sequence is at least \(T_D^*(n + 3) \). Therefore, for every \(w \in B(k, n + 3) \), we have \(R_D(w) \geq T_D^*(n + 3) \).

Next, from Lemma 1, we have that \(T_D^*(n + 3) \geq T_D^*(n + 2) \geq T_D^*(n + 1) \). Furthermore, from Lemma 2, we have that \(T_D^*(n + 3) \geq T^*(n + 1) \). Finally, from Lemma 3, we have for \(n \geq 3 \) that \(T_D^*(n + 2) = R_D^*(n + 2) \), \(T_D^*(n + 1) = R_D^*(n + 1) \), and \(T^*(n + 1) = R^*(n + 1) \). Combining the equations and the inequalities in this paragraph with \(R_D(w) \geq T_D^*(n + 3) \), it follows that \(R_D(w) \geq R_D^*(n + 2) \). Hence, the theorem is true for all walks with \(v_d \geq n + 3 \).

The rest of the proof is focused on walks in the set \(M(k) := B(k, n + 1) \cup B(k, n + 2) \), i.e., \(\forall w \in B(k, n + 1) \cup B(k, n + 2) \), it follows that \(R_D(w) \geq R_D^*(n + 2) \).

Lemma 6:
1) Every target is visited at least twice in any PMP-D walk in \(M(k) \).
2) Every PMP-D walk in \(M(k) \) has an r.s.n.d.

Proof: 1) Consider an arbitrary walk \(w \in M(k) \). Suppose that a target, \(v_o \in \mathbb{N} \), is visited only once in \(w \). Then, a permutation of \(w \) with \(v_o \) as the terminus is the longest r.s.d of \(w \), and therefore, we have \(v_d = k \). However, this leads to a contradiction as we have \(k \geq n + 3 \) and \(v_d \leq n + 2 \). Hence, every target must be visited at least twice in every walk in \(M(k) \).

2) Refer to Appendix A for a proof.

As a consequence of Lemma 6 1), we have \(k \geq 2n + 1 \) for all walks in \(M(k) \).

To determine a lower bound \(l(k) \) on the revisit times of all walks in \(M(k) \), we first compute lower bounds \(l_B(k, v_d) \) on the revisit times of walks in \(B(k, v_d) \), \(v_d \in \{n + 1, n + 2 \} \). Suppose the minimum of revisit times of all walks in \(B(k, v_d) \) is denoted by \(R_D^k_B(v_d, v_d) \). Then, we have \(R_D^k_B(v_d, v_d) \geq l_B(k, v_d) \). Therefore, \(l(k) \) can be determined as \(l(k) = \min_{v_d \in B(k, v_d)} \{l_B(k, v_d)\} \).

1) Finding \(l_B(k, v_d) \) for the set \(B(k, v_d) \): Let \(w \) be an arbitrary walk in \(B(k, v_d) \). We have from Lemma 6 that \(w \) has an r.s.n.d. Let the number of visits in the largest r.s.n.d of \(w \) be \(v_d \). Let \(\min_{v_d \in B(k, v_d)} \{v_d\} \) be denoted by \(v_{nd}(k, v_d) \). Then, a bound on \(R_D^*(v_d) \) can be obtained by the following lemma.

Lemma 7: \(R_D^*(v_d, v_{nd}(k, v_d)) \geq \max\{T_D^*(v_d), T^*(v_{nd}(k, v_d))\} \).

Proof: By definition, the travel time of every spanning revisit sequence of a walk serves as a lower bound on the revisit time of the walk. Let \(w \) be an arbitrary walk in \(B(k, v_d) \). Then, by definition, \(w \) has an r.s.d with \(v_d \) visits and an r.s.n.d with \(v_{nd} \) visits. Further, the travel time of the r.s.d with \(v_d \) visits is lower bounded by \(T_D^*(v_d) \) and that of the r.s.n.d with \(v_{nd} \) visits is lower bounded by \(T^*(v_{nd}) \). Therefore, it follows that \(R_D(w) \geq T_D^*(v_d) \) and \(R_D(w) \geq T^*(v_{nd}) \), \(\forall w \in B(k, v_d) \). Besides, from Lemma 1, it follows that \(T^*(v_{nd}(k, v_d)) = \min_{v_d \in B(k, v_d)} \{T^*(v_d)\} \). Therefore, we have that \(R_D(w) \geq \max\{T_D^*(v_d), T^*(v_{nd}(k, v_d))\} \), \(\forall w \in B(k, v_d) \). Hence, \(R_D^*(v_d, v_{nd}(k, v_d)) \geq \max\{T_D^*(v_d), T^*(v_{nd}(k, v_d))\} \).

The previous lemma provides a lower bound on \(R_D^k_B(v_d, v_d) \); however, this bound is dependent on \(v_{nd}(k, v_d) \). To obtain an expression for \(l_B(k, v_d) \) that is independent of \(v_{nd}(k, v_d) \), we utilize the following lemma.

Lemma 8: \(v_{nd}(k, v_d) \geq n + 1 \) if \(n + 1 \leq v_d \leq n + q + 1 \), and \(v_{nd}(k, v_d) = n \) if \(v_d = n + q + 1 \).

Proof: We prove the lemma by showing that in the range \(n + 1 \leq v_d \leq n + q + 1 \), \(v_{nd}(k, v_d) \) can take the value \(n \) only when \(v_d = n + q + 1 \).
Let the set of targets be \(N = \{ t_1, t_2, \ldots, t_{n-1}, t_n \} \). Let us consider an arbitrary walk \(w \in B(k, v_d) \). From Lemma 6, we have that \(w \) has a spanning r.s.n.d. Therefore, \(v_{nd}(k, v_d) \geq n \). Now, let us suppose that \(v_{nd}(k, v_d) = n \). This implies that every spanning r.s.n.d. in \(w \) has exactly \(n \) visits; WLOG, we can assume that each sequence is \(S = (t_1, t_2, \ldots, t_{n-1}, t_n, t_1) \). Then, the next visit in \(w \) that follows this sequence must be \(t_2 \); if not, we get a spanning r.s.n.d. with \(t_2 \) as the terminus (starting from the visit to \(t_2 \) in \(S \) and ending at the visit to \(t_2 \) that is outside \(S \)) that has at least \(n + 1 \) visits. Similarly, the visit after that must be \(t_3 \), and so on. Therefore, \(v_{nd}(k, v_d) = n \) implies that \(S \) must get repeated. Note that we can have at most \(p \) full occurrences of \(S \) because there are a total of \(pn + q + 1 \) visits and every occurrence of \(S \) has exactly \(n \) visits. As a consequence, the \(p \)th occurrence of \(S \) is followed by only the first \(q \) visits from \(S \) and a visit to the depot (note that the depot must be visited exactly once in a PMP-D walk). Then, WLOG, \(w = (d, t_1, v_d, t_2, \ldots, t_{n-1}, t_n, t_1, \ldots, t_{n-1}, t_n, t_1, \ldots, t_q, d) \).

Then, the sequence with \(t_n \) as the terminus (sequence starting with the last visit to \(t_n \) in \(w \) and terminating with the first visit to \(t_n \)) in \(w \) has a visit to the depot, spans all the targets, and has the highest \(v_d \). Note that \(v_d = n + q + 1 \), that is, \(q \) visits to other targets, followed by a visit to the depot, which is further followed by \(n \) visits to targets. Therefore, \(v_{nd}(k, v_d) \) takes the value \(n \) only when \(v_d = n + q + 1 \). Otherwise, \(v_{nd}(k, v_d) \geq n + 1 \).

Now, following Lemmas 8 and 1, we obtain that \(T'(v_{nd}(k, v_d)) \geq T'(n + 1) \) when \(n + 1 \leq v_d \leq n + q \), and \(T'(v_{nd}(k, v_d)) = T'(n) \) when \(v_d = n + q + 1 \). Next, applying these bounds to Lemma 7, we have \(R_{D_2}(k, v_d) \geq \max\{T'(v_d), T'(n + 1)\} \) if \(n + 1 \leq v_d \leq n + q \), and \(R_{D_2}(k, v_d) \geq \max\{T'(v_d), T'(n)\} \) if \(v_d = n + q + 1 \).

Remark: Following the aforementioned results, we set the lower bounds on \(R_{D_2}(k, v_d) \) to be the following: 1) \(l_b(k, v_d) = \max\{T'(v_d), T'(n + 1)\} \) if \(n + 1 \leq v_d \leq n + q \), and 2) \(l_b(k, n + q + 1) = \max\{T'(v_d), T'(n)\} \).

When \(k < n^2 + n + 1 \), the bounds in Lemma 8 (for the case \(n + 1 \leq v_d \leq n + q \)) can further be tightened to obtain improved bounds on \(R_{D_2}(k, v_d) \). However, this is out of the scope of this article.

2) Determination of \(l(k) \): Next, we show that it is sufficient to compute \(l_b(k, v_d) \) for the range \(n + 1 \leq v_d \leq \min\{n + 2, n + q + 1\} \) to determine \(l(k) \).

Lemma 9: \(l_b(k, v_d) \geq l_b(k, n + q + 1) \), \(\forall v_d \geq n + q + 2 \). Therefore, \(l(k) = \min\{l_b(k, v_d): n + 1 \leq v_d \leq \min\{n + 2, n + q + 1\}\} \).

Proof: When \(v_d = n + q + 1 \), we have from Lemma 8 that \(v_{nd}(k, v_d) = n \). Therefore, \(l_b(k, n + q + 1) = \max\{T'(v_d), T'(n)\} \). For \(v_d \geq n + q + 2 \), it follows from Lemma 1 that \(T'(v_d) \geq T'(n + q + 1) \). Furthermore, by definition, \(v_{nd}(k, v_d) \geq n \). Therefore, from Lemma 1, we have that \(T'(v_{nd}(k, v_d)) \geq T'(n) \). As a result, we have \(l_b(k, v_d) = \max\{T'(v_d), T'(v_{nd}(k, v_d))\} \). Hence, \(l(k) = \min\{l_b(k, v_d): n + 1 \leq v_d \leq \min\{n + 2, n + q + 1\}\} \).

Table I

\(q \)	\(v_d \)	\(v_{nd}(k, v_d) \)	\(l_b(k, v_d) \)	
0	\(n + 1 \)	\(n \)	\(\max\{T'D'(n + 1), T'(n)\} \)	
1	\(n + 1 \)	\(n + 2 \)	\(\geq n + 1 \)	\(\max\{T'D'(n + 1), T'(n + 1)\}, T'(n + 1) \}
\(\max\{T'D'(n + 2), T'(n + 1)\} \}				
2	\(n + 1 \)	\(n + 2 \)	\(\geq n + 1 \)	\(\max\{T'D'(n + 1), T'(n + 1)\} \}
\(\max\{T'D'(n + 2), T'(n + 1)\} \}				

When \(q \leq 2 \), the values of \(l_b(k, v_d) \) for the range \(n + 1 \leq v_d \leq \min\{n + 2, n + q + 1\} \) are presented in Table I.

Next, observe that the bounds for the case \(q > 2 \) are the same as that for \(q = 2 \). That is, \(\forall q \geq 2 \), we have \(l_b(k, n + 1) = \max\{T'D'(n + 1), T'(n + 1)\} \) and \(l_b(k, n + 2) = \max\{T'D'(n + 2), T'(n + 1)\} \). Therefore, the values of \(l(k) \) for \(q > 2 \) are the same as that for \(q = 2 \).

By applying Lemmas 1, 2, and \(l(k) = \min\{l_b(k, v_d): n + 1 \leq v_d \leq \min\{n + 2, n + q + 1\}\} \), the values of \(l(k) \) reduce to the following:

\[
l(k) = \begin{cases} T'(n + 1), & \text{if } q = 0 \\ \min\{\max\{T'D'(n + 1), T'(n + 1)\}, T'(n + 2)\}, & \text{if } q = 1 \\ \max\{T'D'(n + 1), T'(n + 1)\}, & \text{if } q \geq 2 \end{cases}
\]

As \(n \geq 2 \), we have from Lemma 3 that \(R_{D'}(n + 2) = \max\{T'D'(n + 2), T'(n + 1)\} \), \(R_D' = \max\{T'D'(n + 1), T'(n + 1)\} \), and \(R_{D'} = \max\{T'D'(n + 1), T'(n + 1)\} \). Substituting these values in \(l(k) \) proves the theorem.

V. OPTIMAL AND SUBOPTIMAL SOLUTIONS

In this section, guided by the lower bounds provided in Section IV, we construct feasible PMP-D solutions with \(k \geq n^2 + 2n + 1 \) visits such that their revisit times nearly match or are equal to the lower bounds. It will be shown in Section VI that these solutions are indeed optimal for all the instances to which optimal solutions were available. Besides, the average percentage gap between upper and lower bounds on the revisit times computed over 300 instances (with \(n + 1 \) ranging from 4 to 50) was 0.01%.

Given \(k \), the idea behind the construction is to start with a smaller walk (at most \(n + 2 \) visits) that has a revisit time equal/nearly equal to the lower bounds provided in Section IV. Utilizing this walk, we derive a set of intermediate walks such that all except one visit in these walks are in the same sequence. Then, using Lemma 4 and the solution to DFP, we concatenate these walks such that the resultant walk has \(k \) visits and its revisit time is the maximum of that of all its concatenated walks.

\footnote{Although we provide upper bounds only for the case \(k \geq n^2 + 2n + 1 \), simulations suggest that these bounds are also valid for \(k \geq n^2 + n + 1 \).}
In the next few paragraphs, we describe the construction procedure in detail. In Section VI-C, we provide an illustrative example with five targets to demonstrate this construction procedure. Nonetheless, to help the readers understand the construction procedure easily, we introduce parts of the example in the current section wherever necessary.

Recall that the lower bounds from Section IV are the revisit times of either an optimal PMP walk (over \(n \) targets) with \(n + 1 \) visits or an optimal PMP-D walk (over \(n \) targets and a depot) with \(n + 1 \) or \(n + 2 \) visits. Suitably, to help with the construction, we start with one of these walks and construct corresponding intermediate walks such that the set of walks consist of the following: one PMP-D walk with either \(n + 1 \) or \(n + 2 \) visits; one PMP walk with \(n \) visits; and in most cases, one PMP walk with \(n + 1 \) visits. These walks must be constructed such that the PMP walk with \(n \) visits is a shortcut walk of the other walks in the set. The construction of these intermediate walks will be discussed in detail and illustrated with an example in the next section. Nonetheless, it is to be noted that the number of visits in these intermediate walks is at most \(n + 2 \) (where \(n \geq 3 \)). Consequently, there exists at least one target, say target \(t \), in every set of walks that is visited exactly once in all the walks of the set. Then, consider a permutation of these walks about \(t \), and denote the walks in the same order as described above by \(W^D(n + 1 \text{ or } n + 2), W^i(n), \text{and } W^d(n + 1). \) Next, concatenate these walks as shown in the following equation to obtain a walk with \(k \) visits:

\[
\mathcal{C}^D(k) = W^D(n + 1 \text{ or } n + 2) \circ W^i(n) \circ W^d(n + 1).
\]

Note that for \(k \geq n^2 + 2n + 1 \), such a construction is always possible following the solution of the DFP.\(^4\) The same is illustrated for a few values of \(k \) using the five-target example in Section VI-C. Finally, the desired walk \(W^D_{\text{desired}}(k) \) can be obtained by performing a permutation of \(\mathcal{C}^D(k) \) about the depot as shown in the following equation:

\[
W^D_{\text{desired}}(k) = \mathcal{C}(\mathcal{C}^D(k), d).
\]

In the next section, we discuss the construction of the intermediate walks that are utilized in developing these desired walks.

A. Sets of Intermediate Walks

We denote the sets of intermediate walks that lead to the construction of optimal solutions by \(O_i \), where \(i \in \{1, 2\} \), and the rest of the sets by \(H_j, \forall j \in \{1, 2, 3\} \), where \(H \) stands for heuristics. Nevertheless, we will later show that in certain cases, the walks constructed using the sets \(H_j, \forall j \in \{1, 2, 3\} \), may also lead to optimal solutions. To illustrate the construction of these intermediate walks, we utilize the 5-target example presented in Section VI-C. In this example, we have \(W^D(n + 2) = (d, 1, 5, 4, 3, 2, 1, d) \), \(W^D(n + 1) = (d, 2, 3, 4, 5, 1, d) \), and \(W^i(n + 1) = (1, 5, 4, 3, 1, 2, 1) \).

1) \(O1 \) - \(W^D(n + 1) \) and its shortcut Walk:
 a) \(W^D(n + 1) \): an optimal PMP-D walk with \(n + 1 \) visits.
 b) \(W^D_{\text{STD}}^1 \): shortcut the depot from \(W^D(n + 1) \).
 c) Example: \(W^D(n + 1) = (d, 2, 3, 4, 5, 1, d) \), \(W^D_{\text{STD}}^1 = (2, 3, 4, 5, 1, d) \).

2) \(O2 \) - \(W^D(n + 2) \) and its shortcut Walk:
 a) \(W^D_{\text{STD}}(n + 2) \): an optimal PMP-D walk with \(n + 2 \) visits.
 b) \(W^D_{\text{STD}}^2 \): shortcut the repeated target and the depot from \(W^D(n + 2) \).
 c) Example: \(W^D(n + 2) = (d, 1, 5, 4, 3, 2, 1, d) \), \(W^D_{\text{STD}}^2 = (1, 5, 4, 3, 2, 1) \). Here, \(W^D_{\text{STD}}^2 \) has exactly one visit to target 1 as the first element of a walk is not counted as a visit.

3) \(H1 \) - shortcut Walks of \(W^D(n + 2) \):
 a) \(W^D_{\text{STD}}^1 \): shortcut the repeated target from \(W^D(n + 2) \).
 b) \(W^D_{\text{STD}}^2 \): shortcut the depot from \(W^D(n + 2) \), if it results in a feasible walk.
 c) \(W^D_{\text{STD}}^3 \): shortcut the repeated target and the depot from \(W^D(n + 2) \).
 d) Example: \(W^D_{\text{STD}}^2 = (d, 1, 5, 4, 3, 2, d), W^D_{\text{STD}}^3 \) does not exist.

4) \(H2 \) - \(W^i(n + 1) \) and its Derived Walks: Here, in addition to \(W^i(n + 1) \) and its shortcut walk, we also consider a walk obtained by adding a visit to the shortcut walk of \(W^i(n + 1) \).
 a) \(W^o(n + 1) \): an optimal PMP walk with \(n + 1 \) visits.
 b) \(W^o_{\text{STD}}^1 \): shortcut the repeated target from \(W^o(n + 1) \).
 c) \(W^o_{\text{STD}}^2 \): the derivation of this walk involves forming \(n + 1 \)-visit walks by inserting the depot between every two visits of \(W^o_{\text{STD}} \). Among the resulting walks, the one with the least travel time is the desired walk.
 d) Example: \(W^o(n + 1) = (1, 5, 4, 3, 1, 2, 1), W^o_{\text{STD}}^1 = (1, 5, 4, 3, 2, 1), W^o_{\text{STD}}^2 = (1, 5, 4, 3, 2, 1) \).

5) \(H3 \) - \(W^D(n + 1) \) and its Derived Walks: Here, in addition to \(W^D(n + 1) \) and its shortcut walk, we also consider a walk obtained by adding a visit to the shortcut walk of \(W^D(n + 1) \).
 a) \(W^D_{\text{STD}}(n + 1) \): an optimal PMP-D walk with \(n + 1 \) visits.
 b) \(W^D_{\text{STD}}^1 \): shortcut the depot from \(W^D(n + 1) \).
 c) \(W^D_{\text{STD}}^2 \): the derivation of this walk involves forming feasible \(n + 1 \)-visit walks by inserting a target between every two visits of \(W^D_{\text{STD}} \) and repeating the same with every target. Among the resulting walks, the one with the least travel time is the desired walk.
 d) Example: \(W^D(n + 1) = (d, 2, 3, 4, 5, 1, d), W^D_{\text{STD}}^1 = (2, 3, 4, 5, 1, 2), W^D_{\text{STD}}^2 = (2, 1, 3, 4, 5, 1, 2) \).

We refer to a solution constructed from the intermediate walks of a set \(O_i \) or \(H_j \) as a solution of type \(O_i \) or \(H_j \), respectively, where \(i \in \{1, 2\} \) and \(j \in \{1, 2, 3\} \).

B. Proposed Solutions

Similar to the lower bounds, the solutions we propose depend on the value of \(k \) (or \(q \)) and the relative values of \(\mathcal{R}^*(n + 1), \mathcal{R}^D(n + 1), \text{and } \mathcal{R}^D(n + 2) \).

\(^4\)Every integer that is at least \(n^2 - n \) can be expressed as a non-negative integeronic combination of \(n \) and \(n + 1 \).
Given a number of visits k that can be expressed as $pn + 1$, where $p \in Z_{++}$, a solution of the type O1 with k visits is optimal for PMP-D.

Theorem 2: Given a number of visits k that can be expressed as $pn + 1$, where $p \in Z_{++}$, a solution of the type O1 with k visits is optimal for PMP-D.

Proof: When $k = pn + 1$, a feasible PMP-D solution of the type O1 can always be constructed by concatenating $p - 1$ copies of Ω^1_{ST} with a copy of Ω^1_{ST} as shown in (1) and (2). As Ω^2_{SD} is a shortcut walk of Ω^2_{SD}, it follows from Lemma 4 that the revisit time of the concatenated walk is equal to the revisit time of Ω^2_{SD}, which is equal to Ω^2_{SD}. Therefore, a solution of the type O1 is optimal.

1) $k = pn + 1$, i.e., $q = 0$: When $q = 0$, the solution we propose is of the type O1, irrespective of the relative values of Ω^1_{ST} and Ω^2_{ST}.

Theorem 3: Given a number of visits k that can be expressed as $pn + 2$, where $p \in Z_{++}$, if $\Omega^1_{ST}(n + 1) > \Omega^2_{SD}(n + 2)$, a solution of the type O2 with k visits is optimal for PMP-D.

Proof: When $k = pn + 2$, a feasible PMP-D solution of the type O2 can always be constructed by concatenating $p - 1$ copies of Ω^2_{ST} with a copy of Ω^1_{ST} as shown in (1) and (2). As the Ω^2_{ST} is a shortcut walk of Ω^2_{SD}, it follows from Lemma 4 that the revisit time of the constructed walk is equal to $\Omega^2_{ST}(n + 2)$. From Theorem 1, we have that the lower bound on the optimal revisit time is $\Omega^2_{ST}(n + 2)$. Therefore, a solution of the type O2 with k visits is optimal.

2) $\Omega^1_{ST}(n + 1) > \Omega^2_{SD}(n + 2)$: We divide this case into two subcases, $q = 1$ and $q \geq 2$, for which the lower bounds on $\Omega^1_{ST}(k)$ are $\Omega^2_{SD}(n + 2)$ and $\Omega^1_{ST}(n + 1)$, respectively.

$q = 1 (k = pn + 2)$: When $q = 1$, the solution we propose is of the type O2.

Theorem 3: Given a number of visits k that can be expressed as $pn + 2$, where $p \in Z_{++}$, if $\Omega^1_{ST}(n + 1) > \Omega^2_{SD}(n + 2)$, a solution of the type O2 with k visits is optimal for PMP-D.

Proof: When $k = pn + 2$, a feasible PMP-D solution of the type O2 can always be constructed by concatenating $p - 1$ copies of Ω^2_{ST} with a copy of Ω^1_{ST} as shown in (1) and (2). As the Ω^2_{ST} is a shortcut walk of Ω^2_{SD}, it follows from Lemma 4 that the revisit time of the constructed walk is equal to $\Omega^2_{ST}(n + 2)$. From Theorem 1, we have that the lower bound on $\Omega^1_{ST}(k)$ for this case is $\Omega^2_{SD}(n + 2)$, which is equal to the revisit time of the constructed solution. Therefore, a solution of the type O2 with k visits is optimal.

$q \geq 2$: In this case, the lower bound on $\Omega^1_{ST}(k)$ is $\Omega^1_{ST}(n + 1)$. Thereby, the solution we propose is of the type H2, which consists of $\Omega^1_{ST}(n + 1)$ and its derived walks. The desired walk consists of one copy of Ω^1_{ST} concatenated with the required number of copies of Ω^1_{ST} and Ω^1_{ST}. Clearly, the cost of Ω^1_{ST} is no more than that of Ω^1_{ST}. Based on extensive numerical simulations, we propose the following conjecture on the cost of Ω^1_{ST}.

Conjecture 1: If $\Omega^1_{ST}(n + 1) > \Omega^2_{SD}(n + 2)$, then $T(\Omega^1_{ST}) \leq T(\Omega^2_{SD}(n + 1))$.

If Conjecture 1 is true, the cost of Ω^1_{ST} is no more than that of Ω^1_{ST} in the current case. Then, from Lemma 4, it follows that the revisit time of the constructed walk is $\Omega^1_{ST}(n + 1)$, which is equal to the lower bound on $\Omega^1_{ST}(k)$. Therefore, the proposed solution is optimal if Conjecture 1 is true.

3) $\Omega^1_{ST}(n + 1) \leq \Omega^2_{SD}(n + 2)$: As we discussed the case $q = 0$ above, here we only discuss the case $q \geq 1$. We further split this case into two subcases based on whether it is possible to shortcut the depot from $\Omega^2_{SD}(n + 2)$.

a) It is possible to shortcut the depot from $\Omega^2_{SD}(n + 2)$: In this case, the proposed solution is the one that has the least revisit times among the solutions of type H1, H2, and H3. Toward this end, we first compute $r_1 = \max\{T(\Omega^2_{SD}), T(\Omega^2_{SD})\}$, $r_2 = \max\{\Omega^1_{ST}(n + 1), T(\Omega^1_{ST})\}$, $r_3 = \max\{\Omega^2_{SD}(n + 1), T(\Omega^2_{SD})\}$. Then, if $\min\{r_1, r_2, r_3\}$ is equal to r_1, the proposed solutions is of the type H1, if it is r_2, the proposed solution is of the type H2, and if it is r_3, the proposed solution is of the type H3. Ties are broken arbitrarily, and the revisit time of the obtained walk is $\min\{r_1, r_2, r_3\}$.

b) It is not possible to shortcut the depot from $\Omega^2_{SD}(n + 2)$: In this case, one cannot construct a solution of the type H1 as Ω^2_{SD} does not exist. Therefore, the proposed solution is of the type H2 if $r_2 \leq r_3$, and it is of the type H3 otherwise, where r_2 and r_3 are computed as shown in above paragraph.

The solutions proposed for different cases are summarized in the form of a flowchart in Fig. 2.

VI. NUMERICAL RESULTS

In this section, we illustrate the structure of optimal PMP-D solutions, evaluate the quality of the upper and lower bounds on the optimal revisit times, and show the effectiveness of the proposed feasible solutions through the results of simulations performed over 300 instances; the number of targets and depot in the instances range from 4 to 50. All the simulations were performed on a Macbook Pro with 16 GB RAM and Intel Core i7 processor with a processing speed of 2.5 GHz.

Given n and k, an optimal solution to the PMP-D can be obtained by solving a mixed binary linear program (MBLP) formulation similar to the one presented in [19]. In this work, we implemented the formulation using Julia [20] with the help of a package named JuMP [21]. The formulation was solved using IBM ILOG CPLEX v12.1. It is to be noted that when $k \leq 2n - 1$, the revisit time of a walk is equal to its travel time. Therefore, one can use standard TSP-type formulations, similar to the integer linear program (ILP) formulation presented in [22], to find an optimal walk with at most $2n - 1$ visits.

A. Optimal Solutions

First, to examine the optimal solutions, for each instance, we solved the MBLP formulation starting from $k = n + 1$ to
Fig. 3. Plot of the optimal revisit time against the number of visits in the walk for an instance with five targets and a depot. For this instance, optimal revisit time takes exactly one value asymptotically.

Fig. 4. Figure illustrating the plot of the optimal revisit time against the number of visits in the walk for an instance with five targets and a depot. For this instance, optimal revisit time takes two different values asymptotically.

Fig. 5. Plot of the optimal revisit time against the number of visits in the walk for an instance with five targets and a depot. For this instance, optimal revisit time takes three values asymptotically.

Fig. 6. Flowchart summarizing the asymptotic nature of $\mathcal{RD}^*(k)$ based on the relative values of $\mathcal{R}^*(n + 1)$, $\mathcal{RD}^*(n + 1)$, and $\mathcal{RD}^*(n + 2)$.

For $k \geq n^2 + n + 1$, we have $\mathcal{RD}^*(k + n) = \mathcal{RD}^*(k)$. Furthermore, based on the relative values of $\mathcal{R}^*(n + 1)$, $\mathcal{RD}^*(n + 1)$, and $\mathcal{RD}^*(n + 2)$, the asymptotic behavior can be classified into three different types: 1) unimodal; 2) bimodal; and 3) trimodal, as shown in Fig. 6.

1) Unimodal: When $\mathcal{R}^*(n + 1) \leq \mathcal{RD}^*(n + 1)$, $\mathcal{RD}^*(k)$ was observed to take exactly one value for all values of $k \geq n^2 + n + 1$, and this value is $\mathcal{RD}^*(n + 1)$. Fig. 3 shows the unimodal behavior of $\mathcal{R}^*(k)$.

2) Bimodal: When $\mathcal{R}^*(n + 1) \leq \mathcal{RD}^*(n + 2)$, $\mathcal{RD}^*(k)$ was observed to take at most two distinct values (for $k \geq n^2 + n + 1$). One of these values is $\mathcal{RD}^*(n + 1)$, which is attained...
TABLE II

Instance No.	n + 1	\(\mathcal{R}^*(k) \) (for \(q \geq 2 \))	U.B.	L.B.	\% gap between U.B. & L.B.
1	7	50.16	50.16	50.16	0
2	7	50.93	50.93	50.93	0
3	7	51.56	51.56	51.56	0
4	7	46.39	46.39	46.39	0
5	7	46.28	46.28	46.28	0
6	7	41.94	41.94	41.94	0
7	7	52.29	52.29	52.29	0
8	7	50.91	50.91	50.91	0
9	7	46.64	46.64	46.64	0
10	7	41.04	41.04	41.04	0
11	6	39.22	39.22	38.98	0.62
12	6	49.86	49.86	49.86	0
13	6	57.90	57.90	57.90	0
14	6	50.42	50.42	50.42	0
15	6	40.00	40.00	40.00	0
16	6	50.20	50.20	50.20	0
17	6	42.66	42.66	42.66	0
18	6	60.34	60.34	60.34	0
19	6	56.70	56.70	56.70	0
20	6	44.56	44.56	44.56	0
21	5	27.23	27.23	27.23	0
22	5	37.85	37.85	37.85	0
23	5	49.72	49.72	49.72	0
24	5	32.94	32.94	32.94	0
25	5	35.07	35.07	35.07	0
26	5	42.68	42.68	42.68	0
27	5	50.59	50.59	50.59	0
28	5	44.6	44.6	44.6	0
29	5	33.86	33.86	33.86	0
30	5	49.07	49.07	49.07	0
31	4	38.07	38.07	38.07	0
32	4	34.59	34.59	34.59	0
33	4	37.25	37.25	37.25	0
34	4	47.91	47.91	47.91	0
35	4	30.01	30.01	30.01	0
36	4	64.83	64.83	64.83	0
37	4	14.05	14.05	14.05	0
38	4	39.70	39.70	39.70	0
39	4	51.52	51.52	51.52	0
40	4	45.50	45.50	45.50	0

when \(q = 0 \) (\(k = pn + 1 \)). Fig. 4 shows the bimodal behavior of \(\mathcal{R}^*(k) \).

2) Quality of the Proposed Heuristics: For each instance, Table III contains the values of \(\mathcal{R}^*(n + 1) \), \(\mathcal{R}^*(n + 2) \), and \(\mathcal{R}^*(n) \), the revisit times of the proposed heuristic solutions: \(H1 \) (if available), \(H2 \), and \(H3 \), the best available upper and lower bounds on the revisits, the type of heuristic that is best for the instance, and the time required for computing all three heuristic solutions. As it can be seen from the table, for most of the instances, the percentage gap between the upper and lower bounds on the optimal revisit time is 0; this is true for 187 out of the 200 instances. This implies that the proposed solutions are proved to be optimal for these instances. For the remaining 13 instances, even though the gap is nonzero, it is not known whether the proposed solution is suboptimal or if the lower bound is not tight. Irrespective of the reason for the nonzero gap, the average and maximum percentage gap over all the instances are 0.01% and 1.04%, respectively. Therefore, for all practical purposes, the proposed solutions are near-optimal. Furthermore, the time required to compute a heuristic solution (averaged over all three heuristics) for instances with \(n + 1 \) ranging from 8 to 50 is a mere 0.73 s on an average, whereas it is extremely difficult, if not impossible, to compute optimal solutions. Henceforth, the proposed algorithms demonstrate to be an efficient way to compute high-quality solutions swiftly and facilitate an online implementation.

B. Proposed Solutions for Larger Instances

As mentioned earlier in this section, optimal solutions are not available for larger instances due to the computational difficulty in solving the problem. These instances provide an opportunity to evaluate the usefulness of the proposed heuristics and lower bounds. For 200 instances with \(n + 1 \) ranging from 8 to 50, we computed heuristic solutions and the lower bounds, and tabulated the results for sample instances in Table III; the table contains results only for the case when \(k \geq n^2 + 2n + 1 \) and \(q = 2 \). We skip the discussion on the uninteresting cases of \(q = 0 \) and \(q = 1 \) for which the results obey Theorems 2 and 3.

1) Trimodal: When \(\mathcal{R}^*(n + 1) > \mathcal{R}^*(n + 2) \), \(\mathcal{R}^*(k) \) was observed to take at most three distinct values (for \(k \geq n^2 + n + 1 \)). When \(q = 1 \) (\(k = pn + 2 \)), it takes the value \(\mathcal{R}^*(n + 2) \), and when \(q = 0 \) (\(k = pn + 1 \)), it takes the value \(\mathcal{R}^*(n + 1) \). Fig. 5 shows the trimodal behavior of \(\mathcal{R}^*(k) \).

When \(k \geq n^2 + n + 1 \), the above-mentioned observations for \(q = 0 \) and \(q = 1 \) corroborate Theorems 2 and 3. For \(q \geq 2 \), we tabulate the optimal revisit times alongside their proposed upper bounds (revisits times of the proposed feasible solutions) and lower bounds (from Theorem 1) for 40 sample instances in Table II. From the table, it can be seen that the upper bounds match the optimal revisit times in 100% of the instances; the same trend was observed in all the 100 instances for which optimal solutions are available. This implies that the proposed solutions for all these instances are indeed optimal. Moreover, for 99 of these instances, even the lower bounds match the optimal values, showing the tightness of the proposed bounds. In one instance, however, there is a gap of 0.69% between the optimal value and the proposed lower bound. This suggests that there is a special case for which the bound can further be tightened.

3) Best Heuristic: Among the proposed heuristic solutions, the ones of the type \(H3 \) were the best in terms of the revisit time. Out of the 300 instances, solutions of the type \(H3 \) had the least revisit times in 290 instances, whereas the ones of the type \(H2 \) and \(H1 \) had the least revisit times in 250 and 248 instances, respectively. With respect to the average computation time, \(H2 \) only marginally trumps \(H3 \). The average computation times for \(H1 \), \(H2 \), and \(H3 \) over the 200 instances were 0.7585, 0.7178, and 0.7180 s, respectively. Therefore, if one decides to implement only one among the three heuristics, \(H3 \) is the recommended one. Figs. 7–9 illustrate walks of the type \(H3 \)
that have been proved to be optimum for sample instances with 19, 29, and 49 targets, respectively.

3) Results Backing Conjecture 1: Recall that the solutions proposed for the cases $R^*(n + 1) > RD^*(n - 1)$ and $q \geq 2$ are optimal if Conjecture 1 is true. To verify this conjecture, in Table IV, we list the values of $T(W_1^{STID})$ and $T(W^*(n + 1))$ for all the relevant instances. It can clearly be seen that $T(W_1^{STID}) \leq T(W^*(n + 1))$ for all the relevant instances. Table III depicts the performance of the proposed solutions and the lower bounds on the optimal revisit times for large instances when $k \geq n^2 + 2n + 1$ and $q \geq 2$. The table includes columns for the instance number, the number of targets, the lower bound $R^*(n + 1)$, the proposed heuristic solution $RD^*(n + 2)$, the best solution $W^*(n + 1)$, the average computation time, the upper bound (U.B.), the lower bound (L.B.), and the percentage gap between the U.B. and L.B. The results are consistent with the proposed solutions and the lower bounds on the optimal revisit times for large instances when $k \geq n^2 + 2n + 1$ and $q \geq 2$.
for all these instances, which supports the claims of Conjecture 1.

C. Illustrative Example

Here, we consider a sample instance to illustrate the construction of the proposed solutions for different values of \(k \), where \(k \geq n^2 + 2n + 1 \). The considered instance contains five targets and a depot, the locations (coordinates) of which are shown in Fig. 10.

For this instance, optimal PMP-D walks with \(n + 1 \) and \(n + 2 \) visits, an optimal PMP walk with \(n + 1 \) visits over the \(n \) targets, and their revisit times were computed to be the following.

1) \(\mathcal{WD}^*(n + 1) = (d, 2, 3, 4, 5, 1, d); \mathcal{RD}^*(n + 1) = 45.72 \).
2) \(\mathcal{WD}^*(n + 2) = (d, 1, 5, 4, 3, 2, 1, d); \mathcal{RD}^*(n + 2) = 47.14 \).
3) \(\mathcal{W}^*(n + 1) = (1, 5, 4, 3, 1, 2, 1); \mathcal{R}^*(n + 1) = 47.77 \).

The plot of the optimal revisit times against the number of visits for this instances is shown in Fig. 5. Clearly, this instance falls under the category \(\mathcal{R}^*(n + 1) > \mathcal{RD}^*(n + 2) \).

When \(q = 0 \), i.e., for \(k = 36, 41, 46 \), etc., an optimal solution is of the type \(\mathcal{O}1 \), and it requires the computation of \(\mathcal{WD}^1_{SD} \). This requires us to shortcut the depot from \(\mathcal{WD}^*(n + 1) \). To do this, consider a permutation of \(\mathcal{WD}^*(n + 1) \) about any target, say target 2. The obtained walk is \((2, 3, 4, 5, 1, d, 2) \). Now, shortcutting the depot from this walk provides \(\mathcal{WD}^1_{SD} = (2, 3, 4, 5, 1, 2) \). The revisit time of this walk was computed to be 44.31 units. Now, suppose the given \(k = 36 = 7(5) + 1 \), we need to concatenate six copies of \(\mathcal{WD}^1_{SD} \) with a copy of \(\mathcal{WD}^*(n + 1) \). Since target 2 is visited exactly once in both the walks, we consider the permutations of these walks about target 2 and concatenate them as the following: \(\mathcal{EDW}^1((36) = (2, 3, 4, 5, 1, d, 2) \circ (2, 3, 4, 5, 1, 2) \circ \cdots \circ (2, 3, 4, 5, 1, 2) \).

Then, the desired PMP-D walk with 36 visits is obtained by concatenating \(\mathcal{E} \mathcal{W} \mathcal{D}(36) \) about \(d \), which gives \(\mathcal{WD}^1((36) = (d, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, \ldots, 2, 3, 4, 5, 1, d) \).

It has been verified that the revisit time of this walk is indeed 45.72 units and matches the optimal revisit time.

When \(q = 1 \), that is, for \(k = 37, 42 \), etc., an optimal solution for this case is of the type \(\mathcal{O}2 \). This requires the computation of \(\mathcal{WD}^2_{STD} \), which similar to the above discussion, is obtained as \((2, 1, 5, 4, 3, 2) \), by shortcutting the repeated target 1, and then shortcutting the depot, from \(\mathcal{WD}^1((n + 2) \). Suppose given \(k = 37 = 7(5) + 2 \), we need to concatenate six copies of \(\mathcal{WD}^2_{STD} \) with a copy of \(\mathcal{WD}^*(n + 2) \) as the following: \(\mathcal{E} \mathcal{W} \mathcal{D}(37) = (2, 1, 5, 4, 3, 2) \circ (2, 1, 5, 4, 3, 2) \circ \cdots \circ (2, 1, 5, 4, 3, 2) \).

Then, an optimal PMP-D walk with 37 visits is obtained by permutation \(\mathcal{E} \mathcal{W} \mathcal{D}(37) \) about \(d \) as \(\mathcal{WD}^*(37) = (d, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, \ldots, 2, 1, 5, 4, 3, 2, 1, d) \). This walk

Table IV: Corroboration of Conjecture 1

Instance No.	\(n + 1 \)	\(\mathcal{R}^*(n + 1) \)	\(\mathcal{R}^D(n + 2) \)	\(T(W^1_{STD}) \)
26	5	42.68	41.81	41.81
35	4	30.01	30.01	29.05
71	8	49.15	48.93	47.82
81	50	281.19	280.03	280.03
82	7	289.66	278.76	277.99
83	6	42.54	40.71	40.71
84	6	47.77	47.14	45.72
85	6	51.06	49.97	47.52
86	6	51.06	48.41	43.28
87	6	51.06	49.97	47.52
88	5	50.24	49.10	45.12
89	5	45.71	45.44	43.44
90	4	41.64	39.67	38.98
91	4	54.79	54.49	44.77

An illustrative example discussing the procedure to estimate \(k \) for a given fuel capacity and target configuration can be found in [1].
was verified to have a revisit time of 47.14, which matches the computed optimal revisit time.

When \(q \geq 2 \), the proposed solution is to compute solutions of the types \(H1 \) (if possible), \(H2 \), and \(H3 \), and choose the best among them. The intermediate walks required to construct these solutions, and their travel times, were computed to be the following:

1. \(WD_{ST}^2 = (d, 1, 5, 4, 3, 2, d); T(WD_{ST}^2) = 45.72 \)
2. \(WD_{SD}^2 \) does not exist.
3. \(W_{ST}^1 = (1, 5, 4, 3, 2, 1); T(W_{ST}^1) = 44.31 \)
4. \(W_{STID}^1 = (1, 5, 4, 3, 2, d, 1); T(W_{STID}^1) = 45.72 \)
5. \(WD_{SD}^1 = (2, 3, 4, 5, 1, 2); T(WD_{SD}^1) = 44.31 \)
6. \(WD_{SDIT}^1 = (2, 1, 3, 4, 5, 1, 2); T(WD_{SDIT}^1) = 47.77 \)

It is to be noted that in this case, shortcircuiting the depot alone from \(WD^1(n + 2) \) is not possible. To see this, perform a permutation of \(WD^1(n + 2) \) about target 2, which provides the walk \((2, 1, d, 1, 5, 4, 3, 2)\). In this walk, the target visited before and after the depot is the same (target 1). Therefore, shortcircuiting the depot will result in an infeasible walk with the adjacent visits being the same. Therefore, in this case, \(WD^2_{SD} \) does not exist, and computing a solution of the type \(H1 \) is not possible.

Construction of an \(H2 \) type walk: Suppose the given number of visits \(k \) is 38, i.e., \(q = 2 \). Then, the construction requires the concatenation of a copy of \(W_{STID}^1 \), two copies of \(W(n + 1) \) and four copies of \(W_{ST}^1 \); this constitutes to a total of \(6 + 2(6) + 4(5) = 38 \) visits. The permutations of \(W_{STID}^1 \), \(W(n + 1) \), and \(W_{ST}^1 \) about target 2 are \((2, d, 1, 5, 4, 3, 2), (2, 1, 5, 4, 3, 1, 2), \) and \((2, 1, 5, 4, 3, 2)\) respectively. Then, concatenating these walks as shown in (1) provides \(\mathcal{C}WD(38) = (2, d, 1, 5, 4, 3, 2) \circ (2, 1, 5, 4, 3, 2) \). Then, permuting \(\mathcal{C}WD(38) \) about the depot provides \(WD(38) = (d, 1, 5, 4, 3, 2, 2, 1, 5, 4, 3, 2, 2) \). The revisit time of this walk was computed to be 47.77, which matches the optimal revisit time for 38 visits. Therefore, the solution of type \(H2 \) is optimal for this instance.

Construction of an \(H3 \) type walk: We consider the case \(k = 38 \). Here, the construction requires the concatenation of a copy of \(WD^1(n + 1) \), two copies of \(WD_{SDIT}^1 \), and four copies of \(WD_{SD}^1 \). The permutations of \(WD^1(n + 1) \), \(WD_{SDIT}^1 \), and \(WD_{SD}^1 \) are \((2, 3, 4, 5, 1, d, 2), (2, 3, 4, 5, 1, 2), \) and \((2, 3, 4, 5, 1, 2)\) respectively. Then, concatenating these walks according to (1) provides \(\mathcal{C}WD(38) = (2, 3, 4, 5, 1, d, 2) \circ (2, 3, 4, 5, 1, 2) \circ (2, 1, 3, 4, 5, 1, 2) \circ (2, 3, 4, 5, 1, 2) \). Permutation \(\mathcal{C}WD(38) \) about the depot provides the desired walk, \(WD(38) = (d, 2, 3, 4, 5, 1, 2, 2, 3, 4, 5, 1, d) \). The revisit time of this walk is 47.77, which matches the value of \(\mathcal{R}^1(38) \). Therefore, for this instance, the solution of type \(H3 \) is also optimal.

VII. Conclusion

An optimal UAV routing problem with an objective of minimizing the maximum revisit time of monitoring targets has been considered in this article. Most of the existing literature does not account for the fuel capacity of the UAV, the location of its service station, and the time required to service the UAV. Here, we consider a computationally challenging version of the problem that simultaneously accounts for the dwell times of the UAV at targets, fuel capacity, and the servicing times of the UAV. For this problem, we provided tight lower bounds that help in evaluating the quality of any feasible routes developed. We also provided a method to efficiently compute feasible routes and these routes were verified to be optimal or near-optimal for several instances. The findings of this article suggest that to compute optimal or near-optimal walks with large number \(k \geq n^2 + 2n + 1 \) of visits, it is sufficient to compute an optimal PMP-D walk with \(n + 1 \) and \(n + 2 \) visits and an optimal PMP walk with \(n + 1 \) visits, which are relatively easy to compute.

The proposed methods adequately solve the problem and make way for considering further extensions that increase the problem’s applicability in the real world. Some of these extensions include a gradual transition to weighted targets, considering motion-constrained UAVs, and planning routes for persistent monitoring of targets using multiple UAVs. For insights into these extensions, we refer the readers to the following articles [23], [24] and the dissertation [25].

APPENDIX A

PROOF OF PART (II) OF LEMMA 6

Part 2) of Lemma 6: Every PMP-D walk in \(M(k) \) has an r.s.n.d.

Proof: Recall that \(M \) represents the set of all PMP-D walks with \(k \geq n + 3 \) and \(v_d \leq n + 2 \). We prove the lemma separately for \(v_d \) and \(v_d = n + 2 \).

1) \(v_d = n + 1 \): Let \(S \) be a largest r.s.d of \(w \) and \(t_1 \) be its terminus. Then, \(S \) has a total of \(n + 1 \) visits; every target is visited exactly once and the remaining visit is to the depot. Without loss of generality, let \(S = \{t_1, t_2, \ldots, t_{r-1}, d, t_r, t_{r+1}, \ldots, t_n, t_1\} \). Then, the visit in \(w \) immediately following \(S \) must be \(t_2 \). Otherwise, we obtain an r.s.d with \(t_2 \) as the terminus (starting from the visit to \(t_2 \) in \(S \) that has more than \(n + 1 \) visits. Similarly, the next visit in \(w \) must be \(t_3 \) and so on until \(t_{r-1} \). As every target is visited at least twice, there must be a visit to \(t_r \) in \(w \) that follows (not necessarily the immediate visit) the visit to \(t_{r-1} \). Then, we have a revisit sequence \(\{t_r, t_{r+1}, \ldots, t_n, t_1, t_2, \ldots, t_{r-1}, \ldots, t_r\} \) that starts from \(t_r \) (the visit in \(S \) immediately following \(d \)), visits every target at least once, and ends at \(t_r \) (the visit in \(w \)). This is the desired r.s.n.d.

2) \(v_d = n + 2 \): In this case, one target is visited twice in the largest r.s.d and the rest of the targets are visited exactly once. Let \(S \) be a largest r.s.d and \(t_1 \) be its terminus. Let the target visited twice in \(S \) be \(t_r \). Then, \(S \) can take two different forms: 1) both the visits to \(t_r \) in \(S \) are on the same side of the depot, i.e., \(S = \{t_1, \ldots, d, \ldots, t_r, \ldots, t_r, \ldots, t_1\} \); or 2) the visits to \(t_r \) are on the opposite sides of the depot, i.e., \(S = \{t_1, \ldots, t_r, \ldots, d, \ldots, t_r, \ldots, t_1\} \).
First, let us consider the case in which both the visits to \(t_r \) are on the same side of the depot. That is, \(S = \{ t_1, t_2, \ldots, t_r, s, d, t_{s+1}, \ldots, t_r, \ldots, t_1 \} \). Then, the visit in \(w \) immediately following \(S \) must be \(t_2 \); otherwise, we obtain an r.s.d with \(t_2 \) as the terminus that has more than \(n + 2 \) visits. Similarly, all the visits in \(S \) prior to the visit to \(d \) (i.e., all the visits in \(S \) from \(t_2 \) to \(t_s \)) must be repeated in the same sequence. Next, let \(t_{s+1} \) be the visit immediately following the visit to \(d \) in \(S \) (if \(d \) is immediately followed by \(t_r \), let the visit following \(t_r \) be referred to as \(t_{s+1} \)). Because every target is visited at least twice in \(w \), \(t_{s+1} \) must be visited after (not necessarily immediately) the visit to \(t_s \) in \(w \). Then, the sequence starting from the visit to \(t_{s+1} \) in \(S \) and ending at the visit to \(t_{s+1} \) in \(w \) spans all the targets and is the desired r.s.n.d.

Next, consider the case in which both the visits to \(t_r \) are on the opposite sides of the depot. Without loss of generality, let \(S = \{ t_1, t_2, \ldots, t_r, s, d, t_{s+1}, \ldots, t_r, \ldots, t_1 \} \).

Then, the visit in \(w \) immediately following \(S \) must be \(t_2 \); otherwise, we obtain an r.s.d with \(t_2 \) as the terminus and more than \(n + 2 \) visits. Similarly, all the visits up to \(t_{r-1} \) must be repeated in the same order.

Next, the visits from \(t_{r+1} \) to \(t_s \) must follow (not necessarily in the same order) with one possible visit to another target in between; let this other target be referred to as \(t_u \). Suppose \(t_u \neq t_{s+1} \), where \(t_{s+1} \) is the visit immediately following \(d \). As every target is visited at least twice in \(w \), \(t_{s+1} \) is also visited another time in \(w \). Then, the revisit sequence starting from the visit to \(t_{s+1} \) in \(S \) and ending at the visit to \(t_{s+1} \) that follows \(S \) spans all the targets and is the desired r.s.n.d.

Hence, every walk in \(M \) has an r.s.n.d.

APPENDIX B

**BOUNDS ON THE REVISIT TIME WHEN THE UAV DOES NOT HAVE SUFFICIENT FUEL TO VISIT ALL THE TARGETS BEFORE RETURNING TO THE DEPOT (CASE: \(k \leq K \leq n \))

In this case, the depot must be visited multiple times before all the targets can be visited. Hence, the structure of solutions is different to the ones discussed in the rest of this article; an illustrative solution for this case is shown in Fig. 12. Nevertheless, feasible solutions to this case can be constructed using solutions to the PMP-D. An approach to achieve this is to apply the tour splitting heuristic discussed in [26] to a PMP-D solution of choice. For example, a PMP-D solution shown in Fig. 11 can be converted to a feasible solution with \(k \leq n \) by requiring the UAV to return to the depot after every few visits, as shown in Fig. 12.

Another approach to compute feasible solutions for this case is to reformulate the problem as a multiple vehicle single depot TSP (MVSDT) problem with \(\left\lceil \frac{n+1}{K} \right\rceil \) vehicles; for example, each part (solid/dotted/dashed) of the solution in Fig. 12 can be associated with a different vehicle starting from the same depot. The MVSDT can then be solved using one of the many heuristics available in the literature [27], [28], [29].

ACKNOWLEDGMENT

Sai Krishna Kanth Hari would like to thank the Laboratory Directed Research and Development project, “The Optimization of Machine Learning: Imposing Requirements on Artificial Intelligence”, of Los Alamos National Laboratory, for supporting this work. The authors would also like to thank Air Force Research Laboratory for supporting this work. This document has been approved for public release and assigned the number LA-UR-21-21482.
REFERENCES

[1] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Optimal UAV route planning for persistent monitoring missions,” *IEEE Trans. Robot.*, vol. 37, no. 2, pp. 550–566, Apr. 2021.

[2] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul, “Multi-agent patrolling: An empirical analysis of alternative architectures,” in *Proc. Int. Workshop Multi-Agent Syst. Agent-Based Simul.*, 2002, pp. 155–170.

[3] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling problem,” in *Proc. IEEE/WIC/ACM Int. Conf. Infell. Agent Technol.*, 2004, pp. 302–308.

[4] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations,” *Int. J. Robot. Res.*, vol. 33, no. 1, pp. 138–154, 2014.

[5] F. Pasqualetti, A. Franchi, and F. Bullo, “On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms,” *IEEE Trans. Robot.*, vol. 28, no. 3, pp. 592–606, Jun. 2012.

[6] C. G. Cassandras, X. C. Ding, and X. Lin, “An optimal control approach for the persistent monitoring problem,” in *Proc. 50th IEEE Conf. Decis. Control Eur. Control Conf.*, 2011, pp. 2907–2912.

[7] K. Kalyanam, S. Manyam, A. Von Moll, D. Casbeer, and M. Pachter, “Scalable and exact MILP methods for UAV persistent visitation problem,” in *Proc. IEEE Conf. Control Technol. Appl.*, Copenhagen, Denmark, 2018, pp. 337–342.

[8] G. Mageesh, “Persistent surveillance using a network of MAVs,” Master’s thesis, Aerosp. Eng., Indian Inst. Sci., Bangalore, India, 2011.

[9] J. Scherer and B. Rinner, “Persistent multi-UAV surveillance with energy and communication constraints,” in *Proc. IEEE Int. Conf. Automat. Sci. Eng.*, 2016, pp. 1225–1230.

[10] S. G. Manyam, S. Rasmussen, D. W. Casbeer, K. Kalyanam, and S. Manickam, “Multi-UAV routing for persistent intelligence surveillance & reconnaissance missions,” in *Proc. Int. Conf. Unmanned Air. Syst.*, 2017, pp. 573–580.

[11] Y.-W. Yang, Y.-W. Wei, X.-K. Liu, N. Zhou, and C. G. Cassandras, “Optimal persistent monitoring using second-order agents with physical constraints,” *IEEE Trans. Autom. Control*, vol. 64, no. 8, pp. 3239–3252, Aug. 2019.

[12] I. Las Fargeas, B. Hyun, P. Kabamba, and A. Girard, “Persistent visitation under revisit constraints,” in *Proc. Int. Conf. Unmanned Air. Syst.*, 2013, pp. 952–957.

[13] E. Tuyishime, A. Bagula, S. Rekhis, and N. Bouardiga, “Cooperative data muling from ground sensors to base stations using UAVs,” in *Proc. IEEE Symp. Comput. Commun.*, 2017, pp. 35–41.

[14] N. G. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of multiple UAVs for persistent surveillance: Algorithm and flight test results,” *IEEE Trans. Control Syst. Technol.*, vol. 20, no. 5, pp. 1236–1251, Sep. 2012.

[15] K. Tiwari, “Multi-robot resource constrained decentralized active sensing for online environment monitoring,” Ph.D. dissertation, School Inf. Sci., Japan Adv. Inst. Sci. Technol., Nomi, Japan, Mar. 2018. [Online]. Available: http://hdl.handle.net/10119/15336

[16] O. Svensson, J. Tamawski, and L. A. Végh, “A constant-factor approximation algorithm for the asymmetric traveling salesman problem,” *J. ACM*, vol. 67, no. 6, pp. 1–53, 2020.

[17] F. Lam and A. Newman, “Traveling salesman path problems,” *Math. Program.*, vol. 113, no. 1, pp. 39–59, 2008.

[18] J. R. Alfonsin, *The Diophantine Frobenius Problem*. Oxford, U.K.: Oxford Univ. Press, 2005.

[19] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Persistent monitoring of dynamically changing environments using an unmanned vehicle,” 2018, arXiv:1808.02545.

[20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” *SIAM Rev.*, vol. 59, no. 1, pp. 65–98, 2017.

[21] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language for mathematical optimization,” *SIAM Rev.*, vol. 59, no. 2, pp. 295–320, 2017.

[22] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Efficient computation of optimal UAV routes for persistent monitoring of targets,” in *Proc. Int. Conf. Unmanned Air. Syst.*, 2019, pp. 605–614.

[23] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Bounding algorithms for persistent monitoring of targets using unmanned vehicles,” in *Proc. Int. Conf. Unmanned Air. Syst.*, 2019, pp. 615–621.

[24] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “The generalized persistent monitoring problem,” in *Proc. Amer. Control Conf.*, 2019, pp. 2783–2788.

[25] S. K. K. Hari, “Optimal routing of unmanned vehicles in persistent monitoring missions,” Ph.D. dissertation, Dept. Mech. Eng., Texas A&M University, College Station, TX, USA, Dec. 2019.

[26] G. N. Frederickson, M. S. Hecht, and C. E. Kim, “Approximation algorithms for some routing problems,” in *Proc. 17th Annu. Symp. Found. Comput. Sci.*, 1976, pp. 216–227.

[27] S. Hong and M. W. Padberg, “A note on the symmetric multiple traveling salesman problem with fixed charges,” *Oper. Res.*, vol. 25, no. 5, pp. 871–874, 1977.

[28] M. Rao, “A note on the multiple traveling salesmen problem,” *Oper. Res.*, vol. 28, no. 3, Pt I, pp. 628–632, 1980.

[29] R. Jonker and T. Volgenant, “An improved transformation of the symmetric multiple traveling salesman problem,” *Oper. Res.*, vol. 36, no. 1, pp. 163–167, 1988.

Sai Krishna Kanth Hari (Member, IEEE) received the B.Tech. (Hons.) degree in civil engineering from the Indian Institute of Technology, Kharagpur, India, in 2014, and the M.S. and Ph.D. degrees in mechanical engineering from Texas A&M University, College Station, TX, USA, in 2016 and 2019, respectively. He is currently a Research Scientist with the Applied Mathematics and Plasma Physics Group of the Los Alamos National Laboratory, Los Alamos, NM, USA. His research interests include route planning and localization of autonomous vehicles, and control and optimization of critical infrastructure networks. Dr. Hari was a recipient of Emil Beuhler Aerodynamic Analog Fellowship by the Texas A&M University in 2017 and 2018. He is a member of IEEE-RAS and ASME.

Sivakumar Rathinam (Senior Member, IEEE) received the Ph.D. degree in civil systems engineering from the University of California, Berkeley, CA, USA, in 2007. He is a Professor with the Department of Mechanical Engineering, Texas A&M University. He was a Research Scientist with the NASA Ames Research Center in California from 2007 to 2008. He has been with Texas A&M since 2009. His research interests broadly include autonomous vehicles, motion planning, optimization, vision-based control, and air traffic control. Dr. Rathinam was a recipient of a faculty fellowships from ONR and AFRL and the Best Paper Award in the 2015 International Conference on Unmanned Aircraft Systems. He is currently an Associate Editor for IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, and the ASME Journal on Dynamic Systems, Measurement, and Control.

Swaroop Darbha (Fellow, IEEE) received the Bachelor of Technology degree from the Indian Institute of Technology—Madras, Chennai, India, in 1989, and the M.S. and Ph.D. degrees from the University of California, Berkeley, CA, USA, in 1992 and 1994, respectively, in mechanical engineering. He was a Postdoctoral Researcher with the California PATH program from 1995 to 1996. Since 1997, he has been the Faculty of mechanical engineering with Texas A&M University, where he is currently the Gulf Oil/Thomas A Dietz Professor. He is a Fellow of ASME. His current research interests include the development of vehicle control and diagnostic systems for autonomous ground vehicles, development of planning, and control and resource allocation algorithms for a collection of unmanned aerial vehicles.
Satyanarayana Gupta Manyam received the B.E. degree in mechanical engineering from the Birla Institute of Technology and Science—Pilani, Pilani, India, in 2004, the M.S. degree in mechanical engineering from the State University of New York at Buffalo, Buffalo, NY, USA, in 2008, and the Ph.D. degree in mechanical engineering from Texas A&M University, College Station, TX, USA, in 2015.

He is a Research Scientist with Infoscitex Corporation and a Contractor for Air-Force Research Laboratories, WPAFB, OH, USA. He was a NRC Postdoctoral Research Associate with Controls Center of Excellence, AFRL, WPAFB, OH. His main research interests include cooperative routing and control of multiagent systems, optimal path and trajectory planning for autonomous vehicles and approximation algorithms.

Dr. Manyam was a recipient of the Best Paper Award at the International Conference on Unmanned Aircraft Systems, 2015.

Krishna Kalyanam (Senior Member, IEEE) received the B.Tech. degree in mechanical engineering from the Indian Institute of Technology—Madras, Chennai, India, in 2000, and the M.S. and Ph.D. degrees in mechanical engineering from the University of California at Los Angeles, Los Angeles, CA, USA, in 2003 and 2005, respectively.

He was a Research Engineer with GE Global Research from 2005 to 2009. From 2009 to 2021, he was a DoD Contractor/Scientist affiliated with the Autonomous Controls branch at AFRL, InfoSciTex Corporation and Palo Alto Research Center. He is currently with the Aviation Systems Division, NASA Ames Research Center, Mountain View, CA, USA. His research interests include autonomous systems, urban air mobility, and NextGen air traffic management.

David Casbeer (Senior Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering from Brigham Young University, Provo, UT, USA, where he advanced theory describing the statistics of decentralized estimation techniques, in 2003 and 2009, respectively.

He is the Team Lead for the UAV Cooperative and Intelligent Control Team within the Control Science Center of Excellence in the Air Force Research Laboratory’s Aerospace Systems Directorate. The UAV team focuses on decision making, planning, and coordination for multiple autonomous UAVs acting and reacting in uncertain and adversarial environments. This UAV team was awarded the AFOSR Star Team award for 2018–2020 for excellence in basic research.

Dr. Casbeer was a recipient of the AFRL’s Early Career Award for distinguished foundational research in multiagent control in 2016. He serves as a Senior Editor for the Journal of Intelligent and Robotic Systems and an Editor for the AIAA Journal of Aerospace Information Systems.