Supplementary Information

Ionic Covalent Organic Framework based Electrolyte for Fast-Response Ultra-Low Voltage Electrochemical Actuators

Fei Yu¹, Jing-Hao Ciou¹, Shaohua Chen¹, Wei Church Poh¹, Jian Chen¹, Juntong Chen¹, Kongcharoen Haruethai¹, Jian Lv¹,², Dace Gao¹ and Pooi See Lee¹,²,*

¹School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. ²Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 639798, Singapore.

*E-mail: P S L (pslee@ntu.edu.sg)
Contents

Supplementary Methods
Supplementary Equation 1
Supplementary Equation 2
Supplementary Table
Supplementary Table 1. Fractional atomic coordinates of the structural model of COF-DT.
Supplementary Table 2. Fractional atomic coordinates of the structural model of COF-DT-SO₃H.
Supplementary Table 3. Fractional atomic coordinates of the structural model of COF-DT-SO₃Na.
Supplementary Table 4. Comparison of bending performance of ionic soft actuators.
Supplementary Figures
Supplementary Fig. 3. ATR FT-IR spectra.
Supplementary Fig. 4. SEM and elemental mapping.
Supplementary Fig. 5. Pore size distribution (PSD).
Supplementary Fig. 6. Electrochemical impedance spectroscopy (EIS) of the COF-DT.
Supplementary Fig. 7. Electrochemical impedance spectroscopy (EIS) of the COF-DT-SO₃H.
Supplementary Fig. 8. The peak-to-peak displacement of the actuator reach the equilibrium-bending motion under 0.5 V DC voltage.
Supplementary Fig. 9. Comparison of peak-to-peak displacement of the actuators under different applied frequencies (0.1-20 Hz).
Supplementary Fig. 10. Size distribution of COF-DT-SO₃Na (blue bar).
Supplementary Methods

Chemicals. All starting materials and solvents, unless specified, were obtained from Sigma-Aldrich Chemicals and used without further purification.

Analytical techniques and instruments. Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) of solid samples was performed on a PerkinElmer Frontier spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded with a Bruker AV 300 Spectrometer at 300 MHz (¹H NMR). Powder X-ray diffraction (PXRD) patterns were conducted on PANalytical X’Pert Pro MPD diffractometer using Cu Kα radiation (λ = 1.5406 Å), and operating at 40 kV and 40 mA between 2 and 30° (2θ). Transmission electron microscope (TEM) was conducted on a JEM-2100 (JEOL Ltd., Japan) with an accelerating voltage of 200 kV. Scanning electron microscopy (SEM) images were collected using a JEM-7600 (JEOL Ltd., Japan). The Brunauer–Emmett–Teller (BET) surface areas were calculated from N₂ sorption isotherms at 77 K using a Micromeritics ASAP 2020 surface area and pore size analyzer. Before measurement, the samples were degassed in vacuum at room temperature for 24 h. By using the non-local density functional theory (NLDFT) model, the pore size distribution was derived from the sorption curve. Particle size analysis was performed with a particle size analyzer (SZ-100, HORIBA).

Ionic Conductivity measurement. Ionic conductivity measurements were performed on sample pellets using CHI 760E workstation over a frequency range from 1 MHz to 1 Hz and with an input voltage amplitude of 10 mV (30 % RH, 25 °C). The sample pellets were tightly connected between two platinum electrodes by means of spring, to ensure good contact between sample and each electrode.
Synthetic procedures

Supplementary Fig. 1. Synthesis of starting material. Synthetic route to 2,5-dihydroxyterephthalaldehyde (DHA).

Synthesis of 1,4-bis(chloromethyl)-2,5-dimethoxybenzene (1). To a mixture of 1,4-dimethoxybenzene (5.0 g, 36.1 mmol) and paraformaldehyde (1.5 g, 50 mmol) in 1,4-dioxane (20 mL), formaldehyde solution (37 wt.%, 6 mL) was introduced. The resulting mixture was heated to 90 ºC and then concentrated HCl (10 mL) was added in drops within 20 min. After being heated for another 1 h, HCl (37 wt.%, 15 mL) was added and the resulting mixture was cooled to room temperature. The resulting white precipitate was collected by filtration, washed with water, and dried under vacuum, which was further recrystallized from acetone to give product 1 as a white powder.

Synthesis of 2,5-dimethoxyterephthalaldehyde (2). A mixture of 1 (2.0 g, 8.5 mmol) and hexamethylenetetramine (2.5 g, 17.5 mmol) in chloroform (30 mL) was refluxed at 90 ºC for 24 h. After being cooled to room temperature, the pale yellow precipitate was collected by filtration, washed with CHCl₃, dried, and dissolved in water. The aqueous solution was acidified with concentrated HCl (5 mL) and heated at 90 ºC for another 24 h. The mixture was cooled to room temperature, extracted with dichloromethane, and the organic phase was dried over anhydrous MgSO₄. After solvent evaporation, the residue was recrystallized from ethanol to yield compound 2 as a yellow needle-shaped solid. Yield: (0.8 g, 40%). ¹H NMR (400 MHz, d₆-DMSO, 298K, TMS) δ (ppm) 10.4 (s, 2H), 7.44 (s, 2H), 3.94 (s, 6H).

Synthesis of 2,5-dihydroxyterephthalaldehyde (DHA). To a solution of 2 (0.5 g, 2.3 mmol) in dichloromethane (80 mL), BBr₃ (1.5 mL) diluted by CH₂Cl₂ (25 mL) was added dropwise at 0 ºC under N₂ atmosphere. After being stirred for 12 h, water (20 mL) was added to quench the reaction. The residue was extracted with dichloromethane, washed with brine, dried over MgSO₄, and evaporated under reduced pressure, giving the crude
compound which was purified by flash chromatography with hexane/ethyl acetate (5:1) as eluent to afford the title compound as a yellow solid. Yield: 0.45 g (95%). 1H NMR (400 MHz, \textit{d}_6\text{-DMSO}, 298K, TMS) \textit{\delta} (ppm) 10.30 (d, 4H, \textit{J} = 8.8 Hz), 7.23 (s, 2H).

![Chemical structure](image)

Supplementary Fig. 2. Synthesis of starting material. Synthetic route to 1,3,5-tris-(4-aminophenyl)benzene (TAB).

\textbf{1,3,5-tris(4-nitrophenyl)benzene (3).} 4-Nitroacetophenone (50 g), toluene (200 mL), and CF\textsubscript{3}SO\textsubscript{3}H (2.0 mL) were added to a flask equipped with a water separator and a cooling condenser. The mixture was refluxed for 48 h, during this time the formed water was eliminated as a toluene azeotrope. After being cooled to room temperature, the mixture was filtered and washed with DMF under refluxing to yield a grey-green solid product after drying. This product is insoluble in any common solvent.

\textbf{1,3,5-tris-(4-aminophenyl)benzene (TAB).} A suspension of 1,3,5-tris(4-nitrophenyl)benzene (12.5 g, 28.4 mmol) and Pd/C (5 wt\%, 2.0 g) in ethanol (200 mL) was heated to reflux. Hydrazine hydrate (30 mL) was added in portions, and the resulting mixture was refluxed overnight. After that, the mixture was hot filtered through celite, and the filtrate was left undisturbed to fully crystallize the product. The solid was collected by filtration and washed with cold ethanol. Yield: 8.3 g (84%). 1H NMR (400 MHz, \textit{d}_6\text{-DMSO}, 298K, TMS): \textit{\delta}(ppm) 7.50 (t, 9H), 6.69 (d, 6H), 5.22 (s, 6H).

\textbf{Structure modelling.} The structure of COF-DT was determined by modeling, powder indexing, and Pawley refinement based on powder X-ray diffraction (PXRD) pattern. The resulting structure was geometrically optimized using the Forcite module, with a Universal forcefield. The as-obtained model was in good agreement with experimental data. Pawley
refinement was performed on the eclipsed (AA) COFs model in space group $P6/m$ against experimental data. The refinement was based on the Debye-Scherrer geometry and the Thompson-Cox-Hastings peak profile function. The refinement results are depicted in Figure 3a, and the final atomic coordination is enumerated in supplementary table 1.

Supplementary Equation 1

Ionic conductivity. The ionic conductivity (σ) can be calculated with the following equation 1:

$$\sigma = \frac{l}{RA} \cdots \cdots \cdots \cdots \cdots (1)$$

where R is the ionic resistance, and l and A are the thickness and area of the pellet.

Supplementary Equation 2

Bending strain difference (%). The bending strain difference (ε, %) generated in the actuator was estimated by the following equation 2:

$$\varepsilon = \frac{2d\delta}{l^2+\delta^2} \cdots \cdots \cdots \cdots (2)$$

where d, δ, and l are the thickness, the tip displacement, and the free length of the actuator.
Supplementary Table

Supplementary Table 1. Fractional atomic coordinates of the structural model of COF-DT with eclipsed (AA) stacking mode, resulting from Pawley refinement against experimental PXRD data.

COF-DT	Hexagonal, \(P6/m, a = 38.19 \, \text{Å}, b = 38.19 \, \text{Å}, c = 3.48 \, \text{Å}, \alpha = \beta = 90^\circ, \gamma = 120^\circ \)		
Atom	\(x \)	\(y \)	\(z \)
C1	0.51811	1.04296	1.00000
C2	0.54259	1.02446	1.00000
C3	0.52411	0.98243	1.00000
C4	0.46729	0.91279	1.00000
N5	0.42929	0.88546	1.00000
C6	0.41193	0.84226	1.00000
C7	0.43497	0.82300	1.00000
C8	0.41612	0.78078	1.00000
C9	0.37337	0.75597	1.00000
C10	0.35090	0.77640	1.00000
C11	0.37002	0.81860	1.00000
C12	0.35271	0.70987	1.00000
C13	0.37527	0.68980	1.00000
O14	0.41521	0.95520	1.00000

Supplementary Table 2. Fractional atomic coordinates of the structural model of COF-DT-SO\(_3\)H with eclipsed (AA) stacking mode, resulting from Pawley refinement against experimental PXRD data.

COF-DT-SO\(_3\)H	Triclinic, \(P1, a = 4.45 \, \text{Å}, b = 37.25 \, \text{Å}, c = 37.35 \, \text{Å}, \alpha = 119.75^\circ, \beta = \gamma = 90^\circ \)		
Atom	\(x \)	\(y \)	\(z \)
C1	0.58960	-0.37441	0.45950
C2	0.55046	-0.33138	0.48214
C3	0.51730	-0.30830	0.46206
C4	0.52834	-0.32869	0.41885
C5	0.55950	-0.37188	0.39552
C6	0.59004	-0.39451	0.41624
C7	0.55547	-0.39301	0.34969
C8	0.46627	-0.26303	0.48599
C9	0.62231	-0.39817	0.48138
C10	0.73628	-0.42786	0.32581
C11	0.73382	-0.44694	0.28272
C12	0.55622	-0.43130	0.26276
C13	0.36921	-0.39717	0.28641
---	------	------	------
C14	0.36902	-0.37829	0.32938
C15	0.25850	-0.24434	0.47206
C16	0.21754	-0.20160	0.49368
C17	0.38376	-0.17653	0.52909
C18	0.58869	-0.19508	0.54370
C19	0.62719	-0.23806	0.52245
C20	0.45708	-0.43461	0.46896
C21	0.47131	-0.45512	0.49176
C22	0.65311	-0.43959	0.52715
C23	0.47937	-0.43566	0.19614
C24	0.48747	-0.45961	0.15052
N25	0.56687	-0.45144	0.21858
N26	0.35030	-0.13259	0.54719
C27	0.47937	-0.43566	0.19614
C28	0.33829	-0.44282	0.12902
C29	0.46303	-0.10420	0.58177
C30	0.41896	-0.05981	0.59572
C31	0.61052	-0.52033	0.08508
C32	0.63358	-0.49833	0.12840
C33	0.46287	-0.03125	0.63779
C34	0.44191	0.01160	0.65278
C35	0.35725	0.02566	0.62541
C36	0.31476	-0.00276	0.58345
C37	0.35488	-0.04531	0.56794
C38	0.44373	-0.52622	0.01854
C39	0.33739	0.07024	0.63914
O40	0.80537	-0.51287	0.15041
O41	0.17901	-0.44778	0.06359
O42	0.34105	-0.07293	0.52512
O43	0.51626	0.04125	0.69369
N44	0.28183	0.09712	0.67741
C45	0.29099	0.14109	0.69500
C46	0.13273	0.16562	0.73148
C47	0.15414	0.20873	0.75143
C48	0.34067	0.22794	0.73552
C49	0.50087	0.20315	0.69893
C50	0.47664	0.16012	0.67886
C51	0.37259	0.27359	0.75728
C52	0.39151	0.29444	0.73476
---	-------	-------	-------
C57	0.42806	0.33743	0.75480
C58	0.43563	0.35993	0.79801
C59	0.41830	0.33972	0.82127
C60	0.38982	0.29642	0.80051
C61	0.46306	0.35857	0.73035
C62	0.43289	0.36376	0.86708
C63	0.30789	0.39544	0.74131
C64	0.33729	0.41473	0.71751
C65	0.52415	0.39747	0.68255
C66	0.67379	0.36074	0.67160
C67	0.64949	0.34152	0.69540
C68	0.26147	0.35190	0.89119
C69	0.27414	0.37482	0.93428
C70	0.45100	0.41036	0.95390
C71	0.62447	0.42223	0.93019
C72	0.61746	0.39897	0.88716
N73	0.45643	0.43365	0.99798
N74	0.54988	0.41462	0.65584
C75	0.48581	0.45211	0.66477
C76	0.51048	0.46500	0.63325
C77	0.50287	0.50741	0.64641
C78	0.52217	0.52163	0.61805
C79	0.55470	0.49276	0.57556
C80	0.55809	0.45027	0.56231
C81	0.53464	0.43607	0.59065
C82	0.57326	0.50580	0.54409
O83	0.56185	0.39371	0.57716
O84	0.53406	0.56422	0.63199
C85	0.52004	-0.06174	0.50029
C86	0.54839	-0.09889	0.45697
C87	0.68699	-0.13602	0.45794
S88	0.80372	-0.17579	0.40639
C89	0.66102	0.02914	0.72000
C90	0.78119	0.06849	0.75672
C91	0.85983	0.06210	0.79304
S92	1.02532	0.10890	0.83513
C93	0.19418	-0.40402	0.08017
C94	0.08412	-0.39461	0.04696
C95	0.15229	-0.35000	0.05722
S96	-0.03977	-0.31093	0.10387
C97	0.91895	-0.55405	0.12982
C98	1.07452	-0.56118	0.16209
C99	1.14377	-0.60706	0.14544
---	---	---	---
S100	1.32048	-0.61525	0.18494
C101	0.36351	0.36598	0.54529
C102	0.55809	0.33281	0.51151
C103	0.37912	0.29797	0.47647
S104	0.24323	0.25947	0.48953
C105	0.32358	0.59051	0.66274
C106	0.17972	0.61828	0.64820
C107	0.07282	0.65931	0.68448
S108	-0.08108	0.69339	0.66694
O109	1.54048	-0.65216	0.16566
O110	-0.28296	-0.32897	0.11986
O111	-0.23207	-0.28314	0.09307
O112	0.15316	-0.27619	0.14741
O113	1.53438	-0.57966	0.21292
O114	1.10853	-0.62339	0.21878
O115	1.01341	-0.15851	0.38561
O116	1.01157	-0.20777	0.40863
O117	0.54926	-0.20574	0.36869
O118	1.25012	0.09836	0.86006
O119	1.23173	0.13158	0.81957
O120	0.80420	0.14741	0.87192
O121	-0.30146	0.72492	0.69913
O122	-0.28833	0.67088	0.62907
O123	0.14961	0.72292	0.65491
O124	-0.00752	0.23388	0.45897
O125	0.07433	0.27743	0.53100
O126	0.47472	0.22222	0.48887
Supplementary Table 3. Fractional atomic coordinates of the structural model of COF-DT-SO$_3$Na with eclipsed (AA) stacking mode, resulting from Pawley refinement against experimental PXRD data.

COF-DT-SO$_3$Na
Triclinic, $P1$, $a = 4.93$ Å, $b = 35.36$ Å, $c = 36.55$ Å, $\alpha = 62.61^\circ$, $\beta = \gamma = 90^\circ$
Atom

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
N25
N26
C27
C28
N29
C30
C31
C32
C33
C34
C35
C36

C37
C38
C39
C40
C41
C42
C43
O44
O45
O46
O47
N48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66
C67
C68
C69
C70
C71
C72
N73
N74
C75
C76
C77
C78
C79

C80
C81
C82
O83
O84
C85
C86
C87
S88
C89
C90
C91
S92
C93
C94
C95
S96
C97
C98
C99
S100
C101
C102
C103
S104
C105
C106
C107
S108
O109
O110
O111
O112
O113
O114
O115
O116
O117
O118
O119
O120
O121
O122

O123
O124
O125
O126
Na205
Na206
Na207
Na208
Na209
Na210
Supplementary Table 4. Comparison of bending performance of ionic soft actuators.

Electrode layer	Electrolyte layer	Input potential and frequency	Length (mm)	Thickness (µm)	Peak-to-peak displacement (mm)	Bending strain difference (%)	Force (mN)	References
BS-COF-C900/PEDOT:PSS	Nafion/EMIMBF₄	±0.5 V, 1 Hz	20	>85	~3.8	~0.28	-	*Adv. Funct. Mater.* **29**, 1900161 (2019)¹
BS-COF-C700/PEDOT:PSS	Nafion/EMIMBF₄	±0.5 V, 1 Hz	20	>85	~3.0	~0.23	-	
TP6/PEDOT:PSS	Nafion/EMIMBF₄	±0.5 V, 1 Hz	25	~115	~3.8	~0.13	~1.20	*Nat. Commun.* **11**, 5358 (2020)²
PVdF/Graphdiyne	PVdF/EMIMBF₄	±0.5 V, 0.1 Hz	25	~80	~18.0	~0.78	3.37	*Nat. Commun.* **9**, 752 (2018)³
PVdF/CNT	PVdF/EMIMBF₄	±0.5 V, 0.1 Hz	25	~80	~2.0	~0.04	1.38	
PVdF/Graphene	PVdF/EMIMBF₄	±0.5 V, 0.1 Hz	25	~80	~6.0	~0.12	1.92	
Ni-CAT NWAs/CNF	PVdF/EMImTFSI	±3 V, 1 Hz	25	~80	~6.0	~0.22	1.45	*J. Am. Chem. Soc.* **143**, 4017-4023 (2021)⁴
RGO/MWCNT	PVdF/BMIMBF₄	±2 V, 1 Hz	30	~130	~0.7	~0.03	0.41	*Adv. Mater.* **24**, 4317-4321 (2012)⁵
MWCNT	PVdF/BMIMBF₄	±2 V, 1 Hz	30	~130	~0.3	~0.01	0.22	
RGO	PVdF/BMIMBF₄	±2 V, 1 Hz	30	~130	~0.3	~0.01	0.5	
PEDOT:PSS	COF-DT-SO₃Na	±0.5 V, 1 Hz	20	~60	~9.6	~0.38	1.5	*This work*
Supplementary Figures

Supplementary Fig. 3. ATR FT-IR spectra. Full width stacked ATR FT-IR spectra of COF-DT (green line), COF-DT-SO$_3$H (blue line), and COF-DT-SO$_3$Na (orange line).
Supplementary Fig. 4. SEM and elemental mappings. SEM mapping of a COF-DT, b COF-DT-SO_3H, and c COF-DT-SO_3Na, respectively. Elemental mapping of d COF-DT, e COF-DT-SO_3H, and f COF-DT-SO_3Na.
Supplementary Fig. 5. Pore size distribution (PSD). a COF-DT, b COF-DT-SO$_3$H, and c COF-DT-SO$_3$Na by using Non-Local Density Functional Theory (NLDFT) modeling, cumulative volume (blue circle line), dV/dw (orange circle line).
Supplementary Fig. 6. Electrochemical impedance spectroscopy (EIS) of the COF-DT (blue circle).

Supplementary Fig. 7. Electrochemical impedance spectroscopy (EIS) of the COF-DT-SO$_3$H (blue circle).
Supplementary Fig. 8. The peak-to-peak displacement (blue circle line) of the actuator reach the equilibrium-bending motion under 0.5 V DC voltage.

Supplementary Fig. 9. Comparison of peak-to-peak displacement of the actuators under different applied frequencies (0.1-20 Hz). Nafion based actuator (red cycle line), COF-DT-SO$_3$Na based actuator (blue circle line).
Supplementary Fig. 10. Size distribution of COF-DT-SO$_3$Na (blue bar).
Supplementary References

1. Roy, S., et al. Collectively exhaustive electrodes based on covalent organic framework and antagonistic Co-doping for electroactive ionic artificial muscles. *Adv. Funct. Mater.* **29**, 1900161 (2019).

2. Mahato, M., et al. CTF-based soft touch actuator for playing electronic piano. *Nat. Commun.* **11**, 5358 (2020).

3. Lu, C., et al. High-performance graphdiyne-based electrochemical actuators. *Nat. Commun.* **9**, 752 (2018).

4. Shi, Y.-X., et al. Soft electrochemical actuators with a two-dimensional conductive metal-organic framework nanowire array. *J. Am. Chem. Soc.* **143**, 4017-4023 (2021).

5. Lu, L., et al. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. *Adv. Mater.* **24**, 4317-4321 (2012).