Upregulation of cortical GABA_A receptor concentration in fibromyalgia

Florence B. Pomares, Steve Roy, Thomas Funck, Natasha A. Feier, Alexander Thiel, Mary-Ann Fitzcharles, Petra Schweinhardt

Abstract
An imbalance between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABA_A receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABA_A receptors, [(18F)]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABA_A receptor concentration in the attention and default-mode networks. No decrease of GABA_A receptor concentration was observed. Across the 2 groups, GABA_A receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABA_A receptor concentration. This study shows increased GABA_A receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.

Keywords: Fibromyalgia, Flumazenil, PET, GABA_A receptor

1. Introduction
Fibromyalgia (FM) is a chronic pain condition, characterized by widespread pain, sensory hypersensitivities, and cognitive and affective disturbances. An increased ratio between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABA_A receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABA_A receptors, [(18F)]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABA_A receptor concentration in the attention and default-mode networks. No decrease of GABA_A receptor concentration was observed. Across the 2 groups, GABA_A receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABA_A receptor concentration. This study shows increased GABA_A receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.

Keywords: Fibromyalgia, Flumazenil, PET, GABA_A receptor

1. Introduction
Fibromyalgia (FM) is a chronic pain condition, characterized by widespread pain, sensory hypersensitivities, and cognitive and affective disturbances. An increased ratio between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABA_A receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABA_A receptors, [(18F)]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABA_A receptor concentration in the attention and default-mode networks. No decrease of GABA_A receptor concentration was observed. Across the 2 groups, GABA_A receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABA_A receptor concentration. This study shows increased GABA_A receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.

Keywords: Fibromyalgia, Flumazenil, PET, GABA_A receptor

1. Introduction
Fibromyalgia (FM) is a chronic pain condition, characterized by widespread pain, sensory hypersensitivities, and cognitive and affective disturbances. An increased ratio between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABA_A receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABA_A receptors, [(18F)]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABA_A receptor concentration in the attention and default-mode networks. No decrease of GABA_A receptor concentration was observed. Across the 2 groups, GABA_A receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABA_A receptor concentration. This study shows increased GABA_A receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.

Keywords: Fibromyalgia, Flumazenil, PET, GABA_A receptor

1. Introduction
Fibromyalgia (FM) is a chronic pain condition, characterized by widespread pain, sensory hypersensitivities, and cognitive and affective disturbances. An increased ratio between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABA_A receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABA_A receptors, [(18F)]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABA_A receptor concentration in the attention and default-mode networks. No decrease of GABA_A receptor concentration was observed. Across the 2 groups, GABA_A receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABA_A receptor concentration. This study shows increased GABA_A receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.

Keywords: Fibromyalgia, Flumazenil, PET, GABA_A receptor
Positron emission tomography (PET) using the tracer \[^{18}F\]flumazenil yields quantitative voxel-wise, whole-brain information on cortical GABA\textsubscript{A} receptors. Flumazenil binds to the benzodiazepine site of GABA\textsubscript{A} (but not GABA\textsubscript{B}) receptors, which are densely expressed at inhibitory synapses in the cortex.28 We reasoned that quantifying GABA\textsubscript{A} receptors using \[^{18}F\]flumazenil PET allows for investigation of a voxel-wise index of an important part of inhibitory neurotransmission. Cortical GABA\textsubscript{A} receptor concentration was compared between patients with FM and matched controls. We investigated whether GABA\textsubscript{A} receptor concentration is related to clinical characteristics of FM, including pain, sensitivity to mechanical stimuli, and functional, affective, and cognitive function. This work is a secondary analysis of a data set we have previously published on Ref. 38.

2. Methods

2.1. Participants

Twenty-six postmenopausal women with FM were included, with the diagnosis confirmed by an experienced rheumatologist (M.-A.F.) according to the 2012 Canadian Guidelines for diagnosis and management of FM.13 Thus, patients with FM had to have chronic widespread pain for at least 3 months that was not explained by any other cause as well as sleep disturbances, fatigue, cognitive complaints, and/or other somatic symptoms and mood disorders to variable degrees. A group of 25 control participants was matched at the group level to the FM group for age, body mass index, education level, income, and physical activity level (based on the short version of the International Physical Activity Questionnaire7). The McGill Institutional Review Board approved the study (certificate A08-M75-11B), and participants gave written informed consent before inclusion. Exclusion criteria for both groups were pain conditions other than FM, uncontrolled medical conditions, any diagnosed psychiatric or neurological disorders, body mass index greater than 30 kg/m2, and alcohol intake more than 15 glasses/week. There was no significant difference in alcohol intake between groups (controls had on average 2.7 ± 4 units/week and FM patients 1.7 ± 3 units/week, \(P > 0.3\)). Participants using benzodiazepine medication more than once a week were excluded. Participants using benzodiazepines occasionally (4 patients once a week, 2 patients biweekly) were off medication for at least 48 hours before the PET scan to avoid competitive binding with the radiotracer. Additional details on participants can be found in our previous report.38

2.2. Data acquisition and image processing

Participants took part in three 1.5-hour long sessions: one psychophysical/questionnaire session, one magnetic resonance imaging (MRI) session, and one PET session. Thirty-eight participants out of 51 had the 3 sessions within a 2-week period, 9 within 1 month, and 4 within 3 months.

The psychophysical/questionnaire session served to assess different diagnostic domains of FM, specifically pain sensitivity, affective disturbances through questionnaires, and cognitive function through 2 validated cognitive tasks. Participants were asked to mark their current pain level on an 11-point numeric scale ranging from 0 (no pain) to 10 (worst bearable pain) and to complete questionnaires on depression (Beck Depression Inventory8), anxiety (Hospital Anxiety and Depression Scale53), and functional status (Fibromyalgia Impact Questionnaire [FIQ]).9 patients with FM were instructed to refer to their clinical pain, and controls were given no specific instructions). Cognitive function of participants was assessed using the Attention Network Task10 and the Auditory Consonant Trigram test25 because it has been shown that memory and attention are the most affected cognitive domains in FM.50 Finally, pressure pain threshold and pressure pain tolerance were assessed using a calibrated hand-held pressure algometer with a 1-cm diameter round tip applied at constant rate on the thumb or index of the nondominant hand. Participants verbally indicated when the first sensation of pain occurred (pain threshold) and when the pain became intolerable (pain tolerance level). The average pressure of 3 assessments was used as pain threshold and tolerance threshold, respectively.

In the PET session, data were acquired using an ECAT High-Resolution Research Tomograph (Siemens Medical Solution, Knoxville, TN), which has a spatial resolution of 2.3 to 3.4 mm at full width at half maximum. The radiopharmaceutical \[^{18}F\]flumazenil was synthesized as published previously.29 After a transmission scan for attenuation correction (\(^{15}C\)-Cs-source), approximately 370 MBq of \[^{18}F\]flumazenil was injected intravenously as a slow bolus over 60 seconds. List-mode data were acquired for 60 minutes after injection and were subsequently binned into fully 3D sinograms for a total of 17 time-frames (40, 20, 2 × 30, 3 × 60, 4 × 150, 3 × 300, and 3 × 600 seconds). Raw PET images were reconstructed by fully 3D-filtered back projection by a 3D-reprojection method and corrected for participants’ head motion. The nondisplaceable binding potential (BP\textsubscript{ND}) maps were computed because they represent the signal arising from the fraction of radiotracer that is specifically bound to the benzodiazepine site of GABA\textsubscript{A} receptors, using the id\textsubscript{SURF} method with the eroded white-matter segments as reference region.17 Higher specific binding of \[^{18}F\]flumazenil can be due to higher receptor concentration or greater ligand affinity.23 Because there is no evidence for GABA\textsubscript{A} receptors to be structurally different in FM, we refer to BP\textsubscript{ND} values as GABA\textsubscript{A} receptor concentration in the remainder of the article. Please note that subcortical regions are not well represented in the gray-matter mask because the pipeline was specifically designed for cortical gray matter. Resulting BP\textsubscript{ND} maps in the Montreal Neurological Institute standard space (ICBM15255) was spatially blurred with a 7 × 7 × 7-mm full width at half maximum Gaussian smoothing kernel.

2.3. Statistical analyses

Pressure pain thresholds and tolerance, questionnaire scores, and performance in the attention network task were analyzed using independent-sample two-sided \(t\)-tests to compare patients with FM and control participants. A two-way repeated-measures analysis of variance was used to assess the interaction between performance for the different recall delays (within-subject factor Recall delay, 4 levels) and Group (2 levels: patients and controls) in the Auditory Consonant Trigram task, followed by pair-wise post hoc tests.
Whole-brain, voxel-wise statistical analysis was performed in SPM8 (revision 4667; Wellcome Trust Centre for Neuroimaging); a general linear model was applied to the BP_{ND} maps to (1) compare FM patients with control participants, including age as a covariate of no interest and (2) investigate voxel-wise regressions with clinical scores and cognitive performance, including age as a covariate of no interest. For statistical inference, a voxel-based threshold of \(P < 0.001 \) uncorrected and a cluster extent threshold of \(k > 53 \), calculated in SPM8 based on the smoothness of the image and random-field theory,\(^49\) were used. Voxel-wise regression analyses were considered exploratory in nature, and therefore, we did not correct for the number of regressions tested.

3. Results

3.1. Participants

Patients and control participants were well matched: no significant group differences were observed for age, body mass index, education level, income, and physical activity level (Table 1).

3.2. Increased pain sensitivity in patients with FM

Compared with control participants, patients with FM had higher current pain levels (mean ± SD, controls: 0.7 ± 0.9, FM: 4.7 ± 2.2, \(T = 8.8, P < 0.0001 \)) and were more sensitive to pressure stimuli (pain threshold, controls: 5.3 ± 1.8 kg, FM: 3.8 ± 1.5 kg, \(T = -3.4, P = 0.0016 \); pain tolerance, controls: 8.4 ± 2.0 kg, FM: 6.9 ± 2.0 kg, \(T = -2.6, P = 0.0126 \)). Furthermore, patients with FM had higher scores on the anxiety and depression scales (HAD_total, controls: 6.2 ± 4.1, FM: 15.1 ± 6.2, \(T = 5.52, P < 0.0001 \); HAD_A, controls: 4.7 ± 3.3, FM: 8.8 ± 3.1, \(T = 3.9, P < 0.0001 \); HAD_D, controls: 1.5 ± 1.2, FM: 6.3 ± 4.3, \(T = 4.7, P < 0.0001 \); BDI, controls: 3.6 ± 3.6, FM: 16.2 ± 10.0, \(T = 31.5, P = 0.0001 \)), on the pain catastrophizing scale (controls: 6.8 ± 6.6, FM: 22.3 ± 13.0, \(T = 43.6, P < 0.0001 \)) and the FIQ (controls: 7.0 ± 8.1, FM: 50.5 ± 17.9, \(T = 11.2, P < 0.0001 \)) compared with control participants (Fig. 1). It is important to note that because the FIQ was administered without specific instructions to the elderly control participants, their scores likely reflect the impact of some sort of pain on their daily function. Indeed, some of the controls indicated some pain from, eg, osteoarthritis in the initial interview.

3.3. Delayed recall is affected but not attention in the FM sample

The Auditory Consonant Trigram test was used to assess immediate memory, and results showed that, in accordance with previous studies,\(^45\) when a delay was introduced, patients with FM recalled a significantly smaller number of consonant letters recalled was significantly smaller in patients with FM at the 9-second delay (controls: 12.6 ± 2.8 kg, FM: 10.7 ± 3.3, \(T = 2.2, P = 0.032 \)), 18-second delay (controls: 10.6 ± 3.0, FM: 8.8 ± 2.9, \(T = 2.3, P = 0.028 \)), and 36-second delay (controls: 11.4 ± 2.4, FM: 9.5 ± 2.9, \(T = 2.6, P = 0.013 \)), but no difference was observed at immediate recall (controls: 15.0 ± 0.0, FM: 14.9 ± 0.3, \(T = 2.6, P = 0.13 \)).

In the Attention Network Task, there was no significant difference between groups in reaction time for the different networks: conflict (controls: 90.4 ± 30.26, FM: 108.77 ± 48.95, \(T = -1.6, P = 0.115 \), Fig. 2, right panel), orienting (controls: 22.00 ± 25.26, FM: 24.23 ± 28.13, \(T = -0.3, P = 0.767 \)), or alerting (controls: 4.76 ± 21.78, FM: 3.96 ± 21.16, \(T = 0.1, P = 0.895 \)). The number of errors neither differed significantly between groups (controls: 1.8 ± 2.5, FM: 2.2 ± 2.4, \(T = -0.57, P = 0.572 \)).

3.4. Upregulation of cortical GABA\(_A\) receptor concentration in FM

In controls, the distribution of GABA\(_A\) receptors was similar to what has been previously reported in healthy subjects with the highest concentrations in the visual cortex (Fig. 3).\(^{28,29,47}\) Six clusters showed higher GABA\(_A\) receptor concentration in patients with FM compared with controls, including the right precuneus/cuneus, superior frontal gyrus, right angular gyrus, middle occipital cortex, inferior parietal/supramarginal gyrus, and lingual gyrus (Fig. 4 and Table 2). Mean cluster BP_{ND} was 11% to 31% higher in patients with FM compared with control participants (Table 3). No region showed significantly lower GABA\(_A\) receptor concentration in patients compared with controls.

3.5. GABA\(_A\) receptor concentration is positively associated with clinical scores

GABA\(_A\) receptor concentration was associated with functional impairment across the 2 groups, as shown by the whole-brain regression analysis of flumazenil BP_{ND} onto FIQ scores. The pattern for this association overlaps with regions showing increased GABA\(_A\) receptor concentration in patients (Fig. 5).

GABA\(_A\) receptor concentration was also associated with participants’ pain, as shown by the whole-brain regression analysis between GABA\(_A\) receptor concentration and current

Table 1	Participants’ demographic and clinical data.		
	Patients, mean (SD)	Controls, mean (SD)	Group difference, \(P \)
Age (y)	61 (5.4)	61 (7.6)	0.86
BMI (kg/m\(^2\))	26 (3.7)	25 (3.9)	0.27
Education (y)	15 (4.1)	16 (4.0)	0.18
Income (in 1000$/year)	44 (24)	40 (28)	0.62
IPAQ score (MET-minutes/week)	2831 (3717)	2735 (2912)	0.92
Time since diagnosis (y)	9 (8)	n/a	
Symptom duration (y)	16 (9)	n/a	
Current pain level (/10)	4.8 (2.2)	0.7 (1)	<0.001
BDI score (/63)	16 (10)	4 (4)	<0.001
HADS score (/42)	16 (6)	6 (4)	<0.001
PCS score (/52)	22 (13)	7 (9)	<0.001
FIQ score (/100)	51 (18)	7 (8)	<0.001

Please note that the FIQ is based on questions such as “Were you able to do laundry with a washer and dryer (in the past week)” and therefore can be completed by control participants. * Bold entries correspond to significant results with \(P < 0.05 \).

BDL: Beck’s Depression Inventory; BMI: body mass index; FIQ: Fibromyalgia Impact Questionnaire; HADS: Hospital Anxiety and Depression Scale; IPAQ: International Physical Activity Questionnaire; median MET-minutes/week (MET = metabolic equivalent intensity levels); 1 MET is a resting metabolic rate obtained during quiet sitting, participants were on average minimally active; PCS: Pain Catastrophizing Scale; n/a, not applicable.
pain level. The pattern for this association overlaps with regions showing increased GABA_A receptor concentration in patients (Fig. 6).

GABA_A receptor concentration in the hippocampus (Montreal Neurological Institute coordinates: −28, −19, −9; P_{clus} < 0.001, k > 53) was negatively associated with participant’s performance in the Auditory Consonant Trigram memory task (recall delay of 18 seconds).

There was no significant whole-brain correlation with attentional measures, pressure pain thresholds, or tolerance levels.

4. Discussion

In this study, we demonstrated for the first time widespread upregulation of GABA_A receptors in patients with FM using ^[18F]flumazenil PET to quantify GABA_A receptor concentration. We showed that the binding potential of flumazenil was more than 10% higher in FM compared with control participants, reflecting a significant increase in GABA_A receptor concentration. There was no significant GABA_A receptor concentration downregulation in patients with FM. The observed change is almost certainly driven by neuronal GABA_A receptors because the concentration of GABA_A receptor mRNA in neurons is nearly 2 magnitudes greater than in astrocytes. However, it is unlikely to be driven by increased concentration of neurons in the gray matter because we also observed GABA_A receptor upregulation in regions without any significant gray-matter change. Because GABA is the most abundant neurotransmitter in the brain and is involved in a myriad of brain functions, an upregulation of GABA_A receptors across multiple brain regions could have important consequences. More specifically, GABA_A (and not GABA_B) receptors contribute to cortical levels of excitability as demonstrated with short-interval intracortical inhibition. In rodent chronic pain models, increased neuronal excitability and decreased inhibition have been demonstrated in the spinal cord and in the brain, mainly in the ACC, that were positively associated with pain sensitivity. The present results are therefore in line with previous reports suggesting an imbalance between neuronal excitation and inhibition in FM and other chronic pain conditions.

There are several mechanisms that might underlie the observed increase in GABA_A receptor concentration. Common to all explanations is a decrease in GABA neurotransmitter concentration: a decrease in GABA neurotransmitter would lead to a compensatory increase in receptor concentration that we observed in FM. However, the increase in receptor concentration would still be insufficient because symptoms persist in FM. The notion of decreased GABA levels has been supported in the insula in diabetic neuropathy and has been associated with higher pain levels in the ACC in knee osteoarthritis.

Figure 1. Mean pressure pain sensitivity and mean questionnaire scores for each group. Patients with fibromyalgia have lower pressure pain threshold and tolerance levels compared with control participants. Patients with fibromyalgia have higher pain, depression and anxiety scores, catastrophizing scores, and fibromyalgia impact scores compared with control participants. BDI, Beck depression inventory; CPL, current pain level; FM, patients with fibromyalgia; FIQ, Fibromyalgia Impact Questionnaire; HAD, hospital anxiety and depression scale; PCS, pain catastrophizing scale; ***P < 0.001, **P < 0.005, *P < 0.05.

Figure 2. Impaired immediate memory in patients with fibromyalgia. Left panel, patients with fibromyalgia recalled fewer consonant letters compared with control participants as soon as a recall delay was introduced. Patients and control participants were both able to recall trigrams with no delay, but the longer the delay between test and recall (higher difficulty), the lesser the patients could recall the trigrams, which show a significant impairment of immediate memory in patients with fibromyalgia. Right panel, no difference was observed in the performance on the attention network task between patients with fibromyalgia and control participants. FM, patients with fibromyalgia; NS, nonsignificant, *P < 0.05.
supported by another PET study showing that flumazenil BP ND correlated inversely with plasma levels of GABA. GABA levels could be decreased, for example, by a primary defect in (one of) the enzyme(s) that converts glutamate into GABA, ie, glutamic acid decarboxylase, which would increase glutamate concentration and result in lower GABA concentration. As outlined in the introduction, increased glutamate levels have indeed been observed in FM and other chronic pain conditions. Alternatively, GABA receptors might become excitatory instead of being inhibitory because of a change in the neuron’s depolarization pattern and as has been described for the spinal cord in rodent models of chronic pain. In this scenario, GABA neurotransmitter production would be reduced to compensate for the switch from inhibition to excitation.

As described above, decreased GABA levels in chronic pain have been observed in certain brain regions using MRS, specifically the insula and the ACC. Presumably, these areas were investigated because they are important pain-processing regions. Our study replicates the findings of increased GABA receptor concentration in the ACC and the insula. However, because it afforded a whole-brain analysis approach, impossible with MRS, increases in GABA receptor concentration were observed in additional brain regions. The regions with increased GABA receptor concentration seem to belong to 2 main brain networks: the attention network (superior frontal gyrus and supramarginal gyrus) and the default-mode network (precuneus and medial prefrontal cortex). Interestingly, enhanced connectivity between the medial prefrontal cortex, a key node of the default-mode network, and other regions of the default-mode network has been linked to patients’ degree of rumination about their pain. Furthermore, intrinsic connectivity within the default-mode network has been observed to be inversely related to GABA levels in the default-mode network. Therefore, our findings of increased GABA receptor concentration in the default-mode network and perhaps the attention network might reflect the hypervigilance and impaired disengagement from pain commonly observed in FM and other chronic pain conditions. However, it should be noted that we did not observe a (linear) relationship between GABA receptor concentration and catastrophizing scores or performance in the attention network task, which should at least partly be related to hypervigilance and
impaired disengagement. Nevertheless, increased GABA_A receptor concentration was positively correlated with functional status (FIQ score) and current pain levels, and negatively correlated, in the hippocampus, with performance in the memory task, indicating that there likely is a clinical relevance of altered receptor levels. This notion is supported by the observation that intracortical inhibition, as measured with short-interval intracortical inhibition, is reduced in FM and correlates with fatigue.32

It is important to point out that because the correlations observed between GABA_A levels and clinical measures are present only across groups, it does not appear that an imbalance between increased excitation and decreased inhibition is specific to FM but might be a common feature across different types of chronic pain. Indeed, increased insular glutamate levels have been reported in painful diabetic neuropathy36 and migraine.5 Decreased GABA levels have been reported in the insula in painful diabetic neuropathy36 and GABA levels have been associated with higher pain levels in the ACC in knee osteoarthritis.40 Also, in this study, the scatter plots of the correlations of GABA_A receptor concentration and FIQ scores, respectively, current pain levels, clearly show that some degree of functional impairment/current pain in the controls (eg, back pain, osteoarthritis, and ankle pain) contributed to the significant correlation. Thus, it is unlikely that dysregulation of excitatory and inhibitory neurotransmitter systems constitutes the etiology of FM or of any other pain condition for which increased glutamate/decreased GABA has been reported. Rather, it might be a factor contributing to the maintenance of various symptoms across different chronic pain conditions. Importantly, it might be a factor that can be therapeutically targeted. For example, pregabalin, which blocks the voltage-dependent calcium channel and involved in glutamate release through an increase in Ca^{2+} influx,8,12 has been shown to decrease glutamate levels in the posterior insula of patients with FM,19 and memantine, an NMDA receptor antagonist, improved symptoms in FM compared with placebo.34

5. Limitations

This study has some limitations that should be noted. Although using [18F]flumazenil PET to measure GABA_A receptors has the
advantage that it allows whole-brain (cortical) quantification, it
does not directly measure GABA levels. Nevertheless, the
observed GABA A receptor alterations indicate some sort of
dysregulation of the GABAergic system, perhaps resulting from
reduced GABA levels. To truly comment on an altered imbalance
between increased excitatory and decreased inhibitory neuro-
transmission, concentrations of inhibitory and excitatory neuro-
transmitters ought to be measured. Furthermore, GABA A
receptor concentration was not measured in subcortical areas
or in the spinal cord, and GABA B receptor levels cannot be
assessed with flumazenil. This limits our interpretation of the
present results as different neurotransmitter systems in different
regions could interact to result in the observed increase in
cortical GABA A receptor levels. In addition, measuring GABA A
receptors in vivo in humans is a coarse measurement and does
not reveal subcellular or molecular processes. Indeed, different
diseases have been related to decreased GABA levels in the
brain (reviewed in Ref. 42) that might be related to different
pathophysiological mechanisms. However, macro-level find-
ings often seem to reflect finer metrics of GABA function and

Table 3

Region name	Side	Control participants, mean (SD)	Fibromyalgia patients, mean (SD)	% BP Nd increase
Inferior temporal gyrus	R	3.63 (0.59)	4.17 (0.40)	14.9
Cerebellum	L	1.73 (0.51)	2.32 (0.46)	34.2
Lingual gyrus	R	1.56 (0.37)	2.06 (0.48)	31.6
Superior frontal gyrus	R	3.17 (0.75)	4.04 (0.61)	27.5
Insula	R	2.99 (0.44)	3.58 (0.36)	19.6
Middle temporal gyrus	L	2.32 (0.83)	3.19 (0.59)	37.7
Inferior frontal gyrus (pars opercularis)	R	1.09 (0.38)	1.54 (0.40)	41.2
Inferior frontal gyrus (pars triangularis)	R	4.42 (0.58)	5.03 (0.38)	14.0
Anterior cingulate cortex	R	4.57 (0.46)	5.09 (0.38)	11.6
Superior frontal gyrus	R	3.46 (0.46)	4.02 (0.41)	16.3
Superior frontal gyrus	R	3.27 (0.25)	3.59 (0.31)	9.8
Middle occipital cortex	L	4.10 (0.42)	4.64 (0.31)	13.1
Angular gyrus	R	2.90 (0.55)	3.46 (0.35)	19.1
Angular gyrus	R	4.10 (0.35)	4.55 (0.35)	11.0
Precuneus/cuneus	R	2.86 (0.55)	3.64 (0.45)	27.2
Middle frontal gyrus	R	4.15 (0.41)	4.76 (0.46)	14.5
Inferior parietal cortex	R	3.45 (0.41)	3.91 (0.27)	13.6
Inferior parietal cortex	R	3.98 (0.38)	4.58 (0.36)	14.9

Figure 5. (A) Regression between GABAA receptor concentration and Fibromyalgia Impact Questionnaire (FIQ) scores. Whole-brain map of the positive association between GABAA receptor concentration (flumazenil BP Nd) and FIQ scores across all subjects. T-values are presented at a voxel-wise threshold of $P < 0.001$ and cluster-extent threshold of $k > 53$, overlaid on the mean anatomical image of the whole sample ($N = 51$). Axial images are displayed in neurological convention, ie, the left hemisphere is on the left. (B) Scatter plot of GABAA receptor concentration extracted from the insular cluster and FIQ score. The insular cluster was chosen because of the highest T-value in the group comparison; the scatter plot only serves to illustrate the positive association of flumazenil BP Nd and FIQ score for the whole sample. FM, patients with fibromyalgia.
provide a link between up-stream biochemical and macro-level behavioral function.9,42 In addition, there could be instances in which it is sufficient or even advantageous to target more down-stream processes, for example, because of redundant or compensatory neurobiological pathways. In support of this notion, (spinal) administration of GABAergic compounds shows considerable promise to reverse pain phenotypes in animal models.26

6. Conclusion and perspectives

We show that cortical GABA_A receptor concentration is upregulated in FM and associated with pain levels and function. This upregulation occurs in a widespread network of brain regions and is not restricted to typical pain-processing regions. This finding adds evidence to the imbalance between excitatory and inhibitory neurotransmission hypothesis, which seems to apply to different chronic pain conditions. Future studies should test for glutamate and GABA neurotransmitter levels as well as the expression of receptors in the same patients, ideally in longitudinal designs, to further investigate the imbalance hypothesis.

Conflicts of interest statement

The authors have no conflicts of interest to declare.

Acknowledgments

This work was supported by a competitive Pfizer Neuropathic Pain Award. The authors thank Lina Naso for interviewing and testing the participants, Alysha Ahmed for her help with participant recruitment, and the personnel at the McConnell Brain Imaging Centre for expert support of MR and PET imaging. The authors thank the participants for taking part in the study.

Appendix A. Supplemental digital content

A video abstract accompanying this article can be found at http://links.lww.com/PAIN/A879.

Figure 6. (A) Regression between GABA_A receptor concentration and current pain level (CPL). Whole-brain map of the positive association between GABA_A receptor concentration (flumazenil BPND) and current pain level across all subjects. T-values are presented at a voxel-wise threshold of P < 0.001 and cluster-extent threshold of k > 53, overlaid on the mean anatomical image of the whole sample (N = 51). Axial images are displayed in neurological convention, ie, the left hemisphere is on the left. (B) Scatter plot of GABA_A receptor concentration extracted from the insular cluster and current pain level. The insular cluster was chosen because of the highest T-value in the group comparison; the scatter plot only serves to illustrate the positive association between flumazenil BPND and current pain level for the whole sample. FM, patients with fibromyalgia.

References

[1] Alger JR. Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain. Top Magn Reson Imaging 2010;21:115–28.
[2] Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561–71.
[3] Bennett RR. The Fibromyalgia Impact Questionnaire (FIQ): a review of its development, current version, operating characteristics and uses. Curr Pain Headache Rep 2002;6:243–7.
[4] Bravo-Hernández M, Corleto JA, Barragán-Iglesias P, González-Ramírez R, Pineda-Farias JB, Félix R, Calcutt NA, Delgado-Lezama R, Marsala M, Granados-Soto V. The a5 subunit containing GABAA receptors contribute to chronic pain. PAIN 2016;157:613–26.
[5] Bridge H, Stagg CJ, Near J, Lau CI, Zsener A, Cader MZ. Altered neurochemical coupling in the occipital cortex in migraine with visual aura. Cephalalgia 2015;35:1025–30.
[6] Cervero F. Spinal cord hyperexcitability and its role in pain and hyperalgesia. Exp Brain Res 2000;196:129–37.
[7] Craig CL, Marshall AL, Sjöstörm M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2005;37:1381–95.
[8] Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RSG. Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Exp J Neurosci 2004;20:1566–76.
[9] Duncan NW, Wiebking C, Nortoft G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev 2014;47:38–52.
[10] Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002;14:340–7.
[11] Fayad N, Andres E, Rojas G, Moreno S, Serrano-Blanco A, Roca M, Garcia-Campayo J. Brain dysfunction in fibromyalgia and somatization disorder using proton magnetic resonance spectroscopy: a controlled study. Acta Psychiatr Scand 2012;126:115–25.
[12] Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, Göthert M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002;42:229–36.
[13] Fitzcharles MA, Ste-Marie PA, Goldenberg DL, Pereira JK, Abbey S, Chomières M, Ko G, Moulin DE, Panopalis P, Proulx J, Shir Y; National Fibromyalgia Guideline Advisory Panel. 2012 Canadian Guidelines for the

Article history:

Received 7 February 2019
Received in revised form 1 August 2019
Accepted 29 August 2019
Available online 27 September 2019

Appendix A. Supplemental digital content

A video abstract accompanying this article can be found at http://links.lww.com/PAIN/A879.

Figure 6. (A) Regression between GABA_A receptor concentration and current pain level (CPL). Whole-brain map of the positive association between GABA_A receptor concentration (flumazenil BPND) and current pain level across all subjects. T-values are presented at a voxel-wise threshold of P < 0.001 and cluster-extent threshold of k > 53, overlaid on the mean anatomical image of the whole sample (N = 51). Axial images are displayed in neurological convention, ie, the left hemisphere is on the left. (B) Scatter plot of GABA_A receptor concentration extracted from the insular cluster and current pain level. The insular cluster was chosen because of the highest T-value in the group comparison; the scatter plot only serves to illustrate the positive association between flumazenil BPND and current pain level for the whole sample. FM, patients with fibromyalgia.
diagnosis and management of fibromyalgia syndrome: executive summary. Pain Res Manag 2013;18:119–26.

Fitzgerald CT, Carter LP. Possible role for glutamic acid decarboxylase in fibromyalgia symptoms: a conceptual model for chronic pain. Med Hypotheses 2011;77:409–15.

Foerster BR, Petrov M, Edden RA, Sundgren PC, Schmidt-Wilcke T, Clauw DJ, Harris RE. Reduced insular y-amino butyric acid in fibromyalgia. Arthritis Rheum 2012;64:579–83.

Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, Fitzgerald CT, Carter LP. Possible role for glutamic acid decarboxylase in chronic pain. Pain 2010;37:565–74.

Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 2013;119:1453–64.

Huang YJ, Grau JW. Ionic plasticity and pain: the loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain. Exp Neurol 2018;306:105–16.

Hubbard CS, Khan SA, Xu S, Cha M, Masri F, Seminowicz DA. Behavioral, metabolic and functional brain changes in a rat model of chronic neuropathic pain: a longitudinal MRI study. NeuroImage 2015;107:353–64.

Huguet G, Belliveau JW.非对称共聚焦显微镜技术检测小鼠脑中GABA-B受体。Neuron 2013;53:351–61.

Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix.” NeuroImage 2011;53:4227–49.

Olivan-Báezquín B, Herrera-Mercadal P, Puebla-Guedesa M, Pérez-Yus MC, Andres E, Fayed N, López-Del-Hoyo Y, Magallón R, Roca M, García-Campayo J. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. PAIN 2014;155:2517–25.

Oelen RW. GABA and inhibitory synaptic transmission in the brain. Semin Neurosci 1991;3:175–81.

Petrov M, Pop-Busui R, Foerster BR, Edden RA, Callaghan BC, Harte SE, Harris RE, Clauw DJ, Feldman EL. Altered excitation-inhibition balance in the brain of patients with diabetic neuropathy. Acad Radiol 2012;19:607–12.

Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain: a review and meta-analysis (2000). Neurophophysiol Clin 2000;30:263–88.

Pomares FB, Funck T, Feier NA, Roy S, Daile-Martel A, Ceko M, Narayanan S, Araujo D, Thiel A, Silkov N, Fitzcharles MA, Schweinhardt P. Histological underpinnings of grey matter changes in fibromyalgia investigated using multimodal brain imaging. J Neurosci 2017;37:1090–101.

Pyke TL, Osmorpher PG, Baines S. Measuring glutamate levels in the brains of fibromyalgia patients and a potential role for glutamate in the pathophysiology of fibromyalgia symptoms: a systematic review. Clin J Pain 2017;33:944–54.

Reckziegel D, Fauchie F, Cottam WJ, Auer DP. Cingulate GABA levels inversely correlate with the intensity of ongoing chronic knee osteoarthritic pain. Mol Pain 2016;12:174486916650690.

Roos RI, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain: a review and meta-analysis (2000). Neurophysiol Clin 2000;30:263–88.

Stagg CJ, Bachtiar V, Johansen-Berg H. What are we measuring with GABA magnetic resonance spectroscopy? Commun Integr Biol 2014;7:53–5.

Stuss DT, Stethem LL, Pelchat G. Three tests of attention and rapid information processing: an extension. Clin Neursci 2008;7:246–50.

Watson CJ. Insular balance of glutamatergic and GABAergic signaling in chronic pain. PAIN 2016;157:2194–207.

Wiebking C, Duncan NW, Qin P, Hayes DJ, Lytelton O, Gravel P, Verhaege J, Kostikov AP, Schirmacher R, Reader AJ, Bajbouj M, Northoff G. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain 2013;14:663–75.

Woodruff AJ, Saltzer MW. Neuronal plasticity: increasing the gain in pain. Science 2000;288:1765–9.

Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC. Detecting changes in nonisotropic images. Hum Brain Mapp 1999;8:98–101.