Functional annotation of colon cancer risk SNPs

Lijing Yao, Yu Gyoung Tak, Benjamin P. Berman & Peggy J. Farnham

Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for CRC. A molecular understanding of the functional consequences of this genetic variation has been complicated because each GWAS SNP is a surrogate for hundreds of other SNPs, most of which are located in non-coding regions. Here we use genomic and epigenomic information to test the hypothesis that the GWAS SNPs and/or correlated SNPs are in elements that regulate gene expression, and identify 23 promoters and 28 enhancers. Using gene expression data from normal and tumour cells, we identify 66 putative target genes of the risk-associated enhancers (10 of which were also identified by promoter SNPs). Employing CRISPR nucleases, we delete one risk-associated enhancer and identify genes showing altered expression. We suggest that similar studies be performed to characterize all CRC risk-associated enhancers.
Colorectal cancer (CRC) ranks among the leading causes of cancer-related deaths in the United States. The incidence of death from CRC is in the top 3 of all cancers in the United States for both men and women (http://apps.nccd.cdc.gov/uscs/toptencancers.aspx). It is estimated that 142,820 men and women will be diagnosed with, and 50,830 men and women will die of, cancer of the colon and rectum in 2013 (http://seer.cancer.gov/-statfacts/html/colorect.html). A better understanding of the regulatory factors and signalling pathways that are deregulated in CRC could provide new insights into appropriate chemotherapeutic targets. Decades of studies have revealed that certain genes and pathways, such as WNT, RAS, PI3K, TGF-B, p53 and mismatch repair proteins, are important in the initiation and progression of CRC. In an attempt to obtain a more comprehensive view of CRC, two new approaches have been used: exome sequencing of tumours and genome-wide population analyses of human variation. The Cancer Genome Atlas (TCGA) has taken the first of these new approaches in the hopes of moving closer to a full molecular characterization of the genetic contributions to CRC, analyzing somatic alterations in 224 tumours. These studies again implicated the WNT, RAS and PI3K signalling pathways. The second new approach identifies singlenucleotide polymorphisms (SNPs) associated with specific diseases using genome-wide association studies (GWAS). GWAS has led to the identification of thousands of SNPs associated with a large number of phenotypes. Such studies identify what are known as tag SNPs that are associated with a particular disease. Specifically for CRC, 25–30 tag SNPs have been identified.

Although identification of tag SNPs is an important first step in understanding the relationship between human variation and risk for CRC, a major challenge in the post-GWAS era is to understand the functional significance of the identified SNPs. It is critical to advance the field by progressing from a statistical association between genetic variation and disease to a molecular understanding of the functional consequences of the genetic variation. Progress towards this goal has been mostly successful when the genetic variation falls within a coding region. Unfortunately, most SNPs identified as associated with human disease in large GWAS studies are located within large introns or distal to coding regions, in what in the past has been considered to be the unexplored territory of the genome. However, recent studies from the ENCODE Consortium have shown that introns and regions distal to genes contain regulatory elements. In particular, the ENCODE Consortium has made major progress in defining hundreds of thousands of cell-type-specific distal enhancer regions. Comparison of GWAS SNPs to these enhancer regions has revealed several important findings. For example, work from ENCODE and others have shown that many GWAS SNPs fall within enhancers, DNase hypersensitive sites and transcription factor binding sites. It is also clear that the SNP whose functional role is most strongly supported by ENCODE data is often a SNP in linkage disequilibrium (LD) with the GWAS tag SNP, not the actual coding difference. However, there are hundreds of SNPs in high LD with each tag SNP and it is possible that some of the high LD SNPs may reside in coding exons. To address this possibility we used a bioinformatics programme called FunciSNP to identify SNPs correlated with CRC tag SNPs that also intersect the set of coding exons in the human genome.

In this initial analysis, we chose coding exons from the Gencode 15 data set (http://www.gencodegenes.org/releases/) as the biofeature. Because LD varies with the population, to identify population-based correlated SNPs we specified the Asian population for analysis of the four tag SNPs identified using Asian-derived case-control cohorts and we specified the European population for analysis of the rest of the tag SNPs. Using FunciSNP, we identified 240 unique SNPs that are correlated with the 25 tag SNPs at an r^2 > 0.1 and are within a coding exon (Supplementary Fig. 1). We then used snpeff (http://snpeff.sourceforge.net/ (ref. 22)) to determine that 40 of these correlated SNPs create non-synonymous changes; however, limiting the SNPs to those with an LD of r^2 > 0.5 with the tag SNP reduced the number to only 13. Using polyphen-2 (http://genetics.bwh.harvard.edu/pph2/ (ref. 23)) and provean (http://provean.jcvi.org/index.php (ref. 24)), only two potentially damaging SNPs at r^2 > 0.5 were found, both in POU5F1B (Fig. 1). At the less restrictive r^2 > 0.1, four other genes were also found to harbour a damaging SNP (RHPN2, UTP23, LAMAS and FAM186A). To determine if these genes are expressed in colon cells, we performed two replicates of RNA-seq for HCT116 cells and also used RNA-seq data from the Roadmap Epigenome Mapping Consortium for normal sigmoid colon to examine expression. After analysis of both sets of RNA-seq data, we categorized transcripts that are not expressed as having < 0.5 FPKM (expected fragments per kilobase of transcripts per million fragments sequenced) (Supplementary Fig. 2). Analysis of the RNA-seq data revealed that POU5F1B and FAM186A are not expressed in either the normal sigmoid colon or HCT116 cells (however, these genes are expressed in a cohort of TCGA colon tumours; see Table 2).

Another way to link a SNP to a particular gene is if the SNP falls within a promoter region. We again used FunciSNP, but this time the biofeature analyzed corresponded to the region from −2,000 to +2,000 nucleotides of the transcription start site (TSS) of each transcribed gene (we analyzed coding and non-coding transcripts from GENCODE V15). We chose to include 2 kb upstream and downstream of the start site as the promoter-proximal regions because several studies, as well as visual inspection of the ENCODE TF Chromatin Immunoprecipitation sequencing (ChIP-seq) tracks, have shown that transcription factors can
Table 1 | Summary of regions linked to CRC tag SNPs.

Tag SNP	Position	Ref/Alt	Exons	Protein-coding TSS	Non-coding TSS	Enhancers	PMID	
rs6691170	chr22:22045446	G/T	0	0	2	0	20972440	
rs6687758	chr22:2164948	A/G	0	0	3	0	20972440	
rs10936599	chr3:1694292101	C/T	0	4	1	0	20972440	
rs647161	chr5:134499099	C/A	0	0	1	6	23263487	
rs1321311	chr6:36622900	C/A	0	1	1	0	22634755	
rs16892766	chr8:1117630683	A/C	1	1	0	0	18372905	
rs10505477	chr8:128407443	A/G	1	1	0	2	17618233	
rs6983267	chr8:128413305	G/T	1	1	0	2	23266556	
rs7014346	chr8:128424792	A/G	1	1	1	2	18372901	
rs10795668	chr10:8701219	G/A	0	0	1	0	18372905	
rs1665650	chr10:118487100	T/C	0	0	0	0	23263487	
rs3824999	chr11:743555650	T/G	0	1	1	0	22634755	
rs3802842	chr11:11171709	C/A	0	3	1	0	18372901	
rs10774214	chr12:4368352	T/C	0	0	0	1	23263487	
rs11169552	chr12:51155663	T/C	0	3	1	0	20972440	
rs4444235	chr14:54410919	T/C	0	1	1	0	1901631	
rs4779584	chr15:32994756	T/C	0	1	1	0	18372905	
rs9929218	chr16:68820946	G/A	0	2	1	4	1901631	
rs4939827	chr18:46453463	T/C	0	3	1	0	20972440	
rs10411210	chr19:33332300	C/T	1	2	0	2	1901631	
rs961253	chr20:6404281	C/A	0	2	0	0	1901631	
rs2423279	chr20:7812350	T/C	0	0	0	1	23263487	
rs4925386	chr20:609210144	T/C	1	1	0	3	4	20972440
rs5934683	chr9:7951474	T/C	0	0	0	0	22634755	

CRC, colorectal cancer; LD, linkage disequilibrium; SNP, single nucleotide polymorphism; TSS, transcription start site; UCSC, the University of California, Santa Cruz.

The positions and classification of the CRC tag SNPs are based on the hg19 UCSC genome browser reference genome; the hg19 reference alleles (Ref) and the alternative alleles (Alt) are indicated; the risk alleles are in red. The number of exons having a non-synonymous, damaging correlated SNP with an LD of \(r^2 > 0.1 \) are reported; the three regions marked with an asterisk are the only ones for which the damaging SNP has an LD of \(r^2 > 0.5 \) with the tag SNP. For TSS and enhancers, the number of different promoters or enhancers having at least one SNP with an LD of \(r^2 > 0.1 \) is reported (note that a given TSS or enhancer can be identified by more than one tag SNP; see Tables 2 and 3 for more details). PMID indicates the PubMed ID for a publication describing the identification of the tag SNP. A list of all correlated SNPs with \(r^2 > 0.1 \) in exons, TSS or enhancers can be found in Supplementary Data 1.

Figure 1 | Identification of potential functional SNPs for CRC. (a) Shown is the number of SNPs identified by FunciSNP in each of three categories for 25 colon cancer risk loci (see Table 1 for information on each CRC risk SNP). For exons, only non-synonymous SNPs are reported; parentheses indicated the number of SNPs that are predicted to be damaging; see Table 2 for a list of the expressed genes associated with the correlated SNPs. For TSS regions, region from –2 kb to +2 kb relative to the start site of all transcripts annotated in GENCODE V15, including coding genes and non-coding RNAs was used; see Table 2 for a list of expressed transcripts associated with the correlated SNPs. For H3K27Ac analyses, ChIP-seq data from normal sigmoid colon and HCT116 tumour cells were used; see Table 3 for further analysis of distal regions harbouring SNPs in normal and tumour colon cells. The SNPs having an \(r^2 > 0.1 \) that overlapped with H3K27Ac sites were identified separately for HCT116 and sigmoid colon data sets. Because more than one SNP could identify the same H3K27Ac-marked region, the SNPs were then collapsed into distinct H3K27Ac peaks. The sites that were within ±2 kb of a promoter region were removed to limit the analysis to distal elements. To obtain a more stringent set of enhancers, those regions having only SNPs with \(r^2 < 0.5 \) were removed. This remaining set of 60 distal H3K27Ac sites were contained within 19 of the 25 risk loci. Visual inspection to identify only the robust enhancers having linked SNPs not at the margins reduced the set to 27 enhancers located in 9 of the 25 risk loci; an additional enhancer was identified in SW480 cells (see Table 3 for the genomic locations of all 28 enhancers). Colour key: green = SNPs or H3K27Ac sites unique to normal colon, red = unique to colon tumour cells, blue = present in both normal and tumour colon.
CRC risk-associated SNPs in distal regulatory regions. Most of the SNPs in LD with the CRC GWAS tag SNPs cannot be easily linked to a specific gene because they do not fall within a coding region or a promoter-proximal region. However, it is possible that a relevant SNP associated with increased risk lies within a distal regulatory element of a gene whose function is important in cell growth or tumorigenicity. To address this possibility, we used the histone modification H3K27Ac to identify active regulatory regions throughout the genome of colon cancer cells or normal sigmoid colon cells. We used HCT116 or sigmoid colon cells; promoter SNPs identified additional expressed genes when a larger number of TCGA colon tumour samples were analyzed (Table 2).

Effects of SNPs on binding motifs in the distal elements. To determine possible effects of the correlated SNPs on transcription factor binding, we first analyzed all SNPs having an \(r^2 > 0.1 \) with the 25 CRC tag SNPs. Using position weight matrices from Factorbook, all correlated SNPs that fell within a critical position in a transcription factor binding motif were identified (Supplementary Data 3). We identified ~800 SNPs that were predicted to impact binding of transcription factor to a known motif. However, most of these SNPs are not in regulatory regions important for CRC. Therefore, we next limited our analysis to the set of correlated SNPs that fall within the 28 robust enhancers (Supplementary Table 2). We found 80 SNPs that cause motif changes in a total of 124 motifs, representing binding sites for 40 different transcription factors. Using RNA-seq data, we found that 36 of these factors are expressed in HCT116 and/or sigmoid colon cells (Table 4), suggesting that perhaps the binding of these factors at the risk-associated enhancers is influenced by the

Table 2 | Expressed transcripts directly linked to CRC tag SNPs.

Tag SNP	Exons	RNAs of TSS SNPs
rs10936599	ACTR73, MYNN, (TERC)	
rs1321311	CDK11A	
rs16892766	UTP23, EIF3H	
rs7014346	(RP11-382A18.1)	
rs8324999	POLD3	
rs3802842	C11orf92, C11orf93, C11orf53	
rs7136702	DIP2B	
rs17169552	ATF1, DIP2B	
rs4444235	BMP4	
rs4779584	GREM1	
rs9929218	CDH3, CDH1	
rs10411210	RHPN2, GAPDH, RHPN2	
rs4925386	LAMA5, LAMA5	

CRC, colorectal cancer; SNP, single nucleotide polymorphism; TSS, transcription start site. Only three damaging SNPs having an \(r^2 > 0.1 \) were identified in the exons of genes expressed in either HCT116 or normal sigmoid colon cells; of these, only UTP23 and RHPN2 were identified as damaging by two different programmes. RNAs expressed in HCT116 or sigmoid colon cells and having a correlated SNP with \(r^2 > 0.5 \) within \pm 2 kb of the TSS of protein-coding transcripts or non-coding RNAs are shown. The cases in which the tag SNP is located in the TSS region are in bold and non-coding RNAs are in parentheses. We note that exon SNPs identified two additional expressed genes (POLUBF and FAM186A) and promoter SNPs identified three additional expressed genes (FAM186A, LRRC34 and LRRAQA) when a larger number of TCGA colon tumour samples were analyzed.
correlated SNPs. Of the 36 factors, most were expressed at either approximately the same levels in normal and tumour colon or at higher levels in HCT116 cells than in normal colon. However, several factors showed large decreases in gene expression in HCT116 as compared with sigmoid colon cells, including FOS and JUN which were approximately three different promoter regions. Also, only 27% of the distal elements showed an interaction with the nearest TSS, although this increased to 47% when only expressed genes were used in the analysis. Taken together, these analyses suggest that examining the three nearest genes may produce a reasonable list of genes potentially regulated by the CRC risk-associated enhancers. Therefore, we used the GENCODE V15 data set and identified the three nearest promoters of coding genes and three nearest promoters of non-coding transcripts around each of the 28 enhancers (Supplementary Table 1). We next limited the nearby coding and non-coding transcripts to those expressed in either sigmoid colon RNA or HCT116 cells (Table 3); we note that taking into account expression did not greatly change the list of coding transcripts but eliminated most of the non-coding transcripts, which tend to be expressed in a very cell-type-specific manner. Interestingly, several of the genes nearby the risk-associated enhancers were also identified in the TSS analyses, suggesting that a putative causal gene associated with CRC might be differentially regulated by risk-associated SNPs found in the promoter and in a nearby enhancer (Fig. 2). We note that in these cases, the promoters and enhancers were identified by different risk-associated SNPs in high LD with a tag SNP, with the

Table 3 | Distal regulatory regions correlated with CRC tag SNPs.

Enhancer Tag SNP	No. of correlated SNPs	Chromosome	Start	End	Location	Nearby expressed coding and non-coding RNAs
rs647161.ASN	4	chr5	134468409	134473214	CTC-203F4.1 intron	PITX1, CATSPE3, H2AFY
rs647161.ASN	6	chr5	134474759	134478528	CTC-203F4.1 intron	PITX1, CATSPE3, H2AFY
rs647161.ASN	4	chr5	134520309	134523373	CTC-203F4.1 intron	PITX1, CATSPE3, H2AFY
rs647161.ASN	7	chr5	134525698	1345343162	CTC-203F4.1 intron	PITX1, CATSPE3, H2AFY
rs647161.ASN	7	chr5	134543144	134548023	CTC-203F4.1 intron	H2AFY, PITX1
rs647161.ASN	7	chr5	13451610	134516426	CTC-203F4.1 intron	PITX1, CATSPE3, H2AFY

rs10505477, rs693267, rs7014346	3	chr8	128412778	128414859	RP11-382A18.1 intron	MYC, RP11-382A18.1, RP11-382A18.2, RP11-255B23.3
rs7014346	5	chr8	128420412	128422114	RP11-382A18.1 intron	MYC, RP11-382A18.1, RP11-382A18.2, RP11-255B23.3
rs3824999	4	chr11	74288844	74294943	Intergenic	POLD3, LPT2, KCNE3, AP001372.2
rs10774214.ASN	1	chr12	4378128	4379840	Intergenic	CCND2, C12orf5
rs7136702	1	chr12	50908239	50913757	DIP2B intron	DIP2B, LARP4
rs7136702	2	chr12	50938468	50940796	DIP2B intron	DIP2B, LARP4
rs7136702	2	chr12	51018019	51020503	DIP2B intron	DIP2B, ATF1, LARP4
rs7136702	2	chr12	51012054	51014942	DIP2B intron	DIP2B, ATF1, LARP4
rs11169552	1	chr12	50973150	50974328	DIP2B intron	DIP2B, LARP4
rs11169552	1	chr12	51012054	51014942	DIP2B intron	DIP2B, ATF1, LARP4
rs11169552, rs7136702	3	chr12	51042220	51043071	DIP2B intron	DIP2B, LARP4
rs9929218	1	chr16	68740822	68742561	Intergenic	CDH3, CDH1, TMCO7
rs9929218	4	chr16	68754658	68757192	Intergenic	CDH1, CDH3, TMCO7
rs9929218	5	chr16	68774214	68780161	CDH1 intron	CDH1, CDH3, TMCO7
rs9929218	11	chr16	68784044	68791839	CDH1 intron	CDH1, CDH3, TMCO7
rs4939827	4	chr18	46448530	46450772	SMAD7 intron	SMAD7, CTIF, DYM, RP11-15F12.1
rs4939827	6	chr18	46450800	46454601	SMAD7 intron	SMAD7, CTIF, DYM, RP11-15F12.1
rs10412120	6	chr19	33537399	33541915	RHPN2 intron	RHPN2, GAPATCH1, C19orf40
rs10412120	1	chr19	33530860	33533823	RHPN2 intron	RHPN2, GAPATCH1, C19orf40
rs4925386	3	chr20	60929861	60935447	LAMA5 intron	LAMA5, RPS21, CABLES2, RP11-15F12.1
rs4925386	6	chr20	60948726	60951918	Intergenic	LAMA5, RPS21, CABLES2, RP11-15F12.1
rs4925386	6	chr20	60955085	60958391	Intergenic	RPS21, LAMA5, CABLES2

Expression analysis of candidate risk-associated genes. Although the genes identified by the exon or TSS SNPs are clearly good candidate genes for analysis of their possible role in the development of colon cancer, it is difficult to definitively link a target gene with a distal enhancer region because enhancers can function in either direction and do not necessarily regulate the nearest gene. In fact, the ENCODE Consortium recently reported that, on an average, a distal element can physically associate with approximately three different promoter regions. Also, only 27% of the distal elements showed an interaction with the nearest TSS, although this increased to 47% when only expressed genes were used in the analysis. Taken together, these analyses suggest that examining the three nearest genes may produce a reasonable list of genes potentially regulated by the CRC risk-associated enhancers. Therefore, we used the GENCODE V15 data set and identified the three nearest promoters of coding genes and three nearest promoters of non-coding transcripts around each of the 28 enhancers (Supplementary Table 1). We next limited the nearby coding and non-coding transcripts to those expressed in either sigmoid colon RNA or HCT116 cells (Table 3); we note that taking into account expression did not greatly change the list of coding transcripts but eliminated most of the non-coding transcripts, which tend to be expressed in a very cell-type-specific manner. Interestingly, several of the genes nearby the risk-associated enhancers were also identified in the TSS analyses, suggesting that a putative causal gene associated with CRC might be differentially regulated by risk-associated SNPs found in the promoter and in a nearby enhancer (Fig. 2). We note that in these cases, the promoters and enhancers were identified by different risk-associated SNPs in high LD with a tag SNP, with the
promoters being identified by SNPs within ±2 kb of the TSS and enhancers being identified by distal SNPs. We further analyzed the expression levels of all genes directly linked to the risk SNPs (by exons or TSS) and the expressed genes nearby the risk-associated enhancers in normal colon and HCT116 tumour cells. Shown in Fig. 2 are the expression levels of each of the 41 transcripts and the fold change in expression in HCT116 versus normal cells; several of these genes display robust changes in expression in the tumour cells.

As a second approach to identify transcripts potentially regulated by the identified enhancers, we developed a new statistical approach that employs RNA-seq data from TCGA. We selected the 10 nearest genes 5′ of and the 10 nearest genes 3′ of each of the 28 enhancers. Because of the difference in gene density in different regions of the genome, the 20-gene span ranged from 786 kb to 7.5 MB, depending on the specific enhancer. Because several of the 28 enhancers are clustered near each other, this resulted in a total of 182 unique genes. We downloaded the RNA-seq data for 233 colorectal tumour samples and 21 colorectal normal samples from the TCGA data download website (https://tcga-data.nci.nih.gov/tcga/dataAccess-Matrix.htm) and determined if any of the 182 genes show a significant increase or decrease (greater than twofold change and P-value <0.01) in colon tumours versus normal colon (see Methods and Supplementary Fig. 6 for an analysis of potential TCGA batch effects). We then eliminated those genes whose expression change did not correspond to the nature of the enhancer (for example, a tumour-specific enhancer should not regulate a gene that is higher in normal cells), leaving a total of 39 possible genes whose expression might be differentially regulated in colon cancer by the risk enhancers (Table 5). We note that five of the genes shown to be differentially expressed in the TCGA data (MYC, PITX1, POU5F1B, C5orf20 and CDH3) are also in the set of the nearest three genes to an enhancer having CRC risk-associated SNPs. We found that 0–6 differentially expressed genes were linked to an enhancer using the TCGA data, with an average of 4 transcripts per enhancer that showed correct differential expression in colon tumours. Heatmaps of the expression of the 39 putative enhancer-regulated genes, as well as the expression of the genes identified by exon and promoter SNPs, in the TCGA samples are shown in Supplementary Fig. 7. To determine if we could validate any of the putative enhancer targets, we used expression quantitative trait loci (eQTL) analyses based on data from TCGA. We began by identifying the SNPs within each of the 28 enhancers that are on the Illumina WG SNP6 array used by TCGA. Unfortunately, these arrays include only 8% of the SNPs of interest (that is, the exon, promoter and enhancer SNPs that are correlated with the CRC tag SNPs), greatly limiting our ability to effectively utilize the eQTL methodology. However, we did identify two examples of allelic expression differences in the set of putative enhancer targets that correlated with SNPs in an enhancer region. Both of these SNPs fell within enhancer 19 and showed correlation with allelic expression differences of the TMED6 gene (the two SNPs significantly associated with TMED6 expression had an adjusted P-value False Discovery Rate (FDR) <0.1 for rs7203339 and rs1078621); enhancer 19 falls within the intron of the CDH1 gene, which is 600 kb from the TSS of the TMED6 gene (Fig. 3). A summary of the eQTL analysis of enhancer and promoter risk-associated SNPs can be found in Supplementary Data 4 and Supplementary Fig. 8.

The effect of enhancer deletion on the transcriptome. The expression analyses described above provide a list of genes that potentially are regulated by the CRC risk-associated enhancers. However, it is possible that the enhancers regulate only a subset of those genes and/or the target genes are at a greater distance than was analyzed. One approach to identify targets of the CRC risk-associated enhancers would be to delete an enhancer from the genome and determine changes in gene expression. As an initial test of this method, we selected enhancer 7, located at 8q24. The region encompassing this enhancer has previously been implicated in regulating expression of MYC31, which is located 335 kb from enhancer 7. We introduced guide RNAs that flanked enhancer 7, along with Cas9, into HCT116 cells, and identified cells that showed deletion of the enhancer. We then performed expression analysis using gene expression arrays, identifying 105 genes whose expression was downregulated in the cells having a deleted enhancer (Supplementary Data 5); the closest one was MYC, which was expressed 1.5 times higher in control versus deleted cells (Fig. 4).

Discussion

We have used the programme FunciSNP21, in combination with genomic, epigenomic and transcriptomic data, to analyze 25 tag SNPs (and all SNPs in high LD with those tag SNPs) that have been associated with an increased risk for CRC5–12. Taken together, we have identified a total of 80 genes that may be regulated by risk-associated SNPs. Of these, 24 are directly linked to a gene via a SNP within an exon or proximal promoter region and 56 additional genes are putative target genes of risk-associated enhancers; see Fig. 5 for a schematic summary of the location of the tag and LD SNPs and associated genes, and Supplementary Table 4 for a complete list of genes and how they were identified.

Of the 25 tag SNPs, only one is found within a coding exon, occurring in the third exon of the MYNN gene and resulting in a synonymous change that does not lead to a coding difference. However, by analysis of SNPs in high LD with the 25 tag SNPs, we identified five genes that harbour damaging SNPs and which are expressed in colon cells (HCT116, normal sigmoid colon or TCGA tumours); these are POU5F1B, RHN2P2, UTP23, LAMAS and FAM186A). Interestingly, the retrogene POU5F1B which encodes a homologue of the stem cell regulator OCT4 has recently been associated with prostate cancer susceptibility32. We also identified 23 genes (21 coding and 2 non-coding) that harbour highly correlated SNPs in their promoter regions and are expressed in colon cells. Several of the genes that we have linked to increased risk for CRC by virtue of promoter SNPs show large changes in gene expression in tumour versus normal colon tissue. For example, TERC, the non-coding RNA that is a component of the telomerase complex, was identified by a promoter SNP and has higher expression in a subset of colon

Table 4 | Effects of SNPs on motifs in the distal regulatory regions.

SNP	Motif	Gene	Tissue
AP1	EGR1	MYC/MAX	TCF12
AP2	ELF1	NR2C2	TCF7L2
BHLHE40	ELK4	PBX3*	TEAD1
CEBPB	ESRRA	PRDM1	THAP1†
CREB1	ETS1	RUNX1	USF1
CTCF	GABP	RXRA	YY1
EZF4	GATA	SPI	ZBTB7A†
EZF4	GFI1	SREBF1	ZEB1
EBF1	HNF4A	STAT1	ZNF281

*Identified by motif UA2, which was the top motif in PBX3 GM12878 ChIP-seq data.
†Identified by motif UAS.
‡Identified by motif UA3, which was the top motif in ZBTB7A K562 ChIP-seq data.
tumours (Supplementary Fig. 7A). Similarly, CDH3 (P-cadherin) was identified by a promoter SNP and shows increased expression in many of the colon tumours. Both TERC and CDH3 have previously been linked to cancer.33,34. Promoter SNPs also identified three uncharacterized protein-coding genes (c11orf93, c11orf92 and c11orf53) clustered together on chromosome 11. Inspection of H3K4me3 and H3K27Ac ChIP-seq signals suggested that these genes are in open chromatin in normal sigmoid colon, but not in HCT116. Accordingly, the TCGA gene expression data showed that all three genes are downregulated in a subset of human CRC tumours (Supplementary Fig. 7A). Additional genes identified by promoter SNPs that have been linked to cancer include ATF1, BMP4, CDH1, CDKN1A, EIF3H, GREM1, LAMA5 and RHPN2 (refs 34–45). For example, BMP4 is upregulated in the HCT116 cells and has been suggested to confer an invasive phenotype during progression of colon cancer.41. Interestingly, we also identified GREM1, an antagonist of BMP proteins, and showed that expression of GREM1 is decreased in HCT116. The downregulation of the antagonist GREM1 and the upregulation of the cancer-promoting BMP4 may cooperate to drive colon cancer progression. LAMA5 is a subunit of laminin-10, laminin-11 and laminin-15. Laminins, a family of extracellular matrix glycoproteins, are the major non-collagenous constituent of basement membranes and have been implicated in a wide

Figure 2 | Expression of risk-associated genes in colon cells. The left panel indicates if a transcript was identified by a SNP located in an exon or a TSS or is nearby a risk-associated enhancer; the middle panel shows the expression values of each of the 41 transcripts in sigmoid colon or HCT116 tumour cells; the right panel shows the fold change of each transcript in the tumour cells (positive indicates higher expression in the tumour).
We identified 28 enhancers, clustered in 9 genomic regions, that harbour correlated SNPs. It is important to note that in our studies we have used the appropriate cell types and the appropriate epigenetic mark to identify CRC-associated enhancers. Previous analyses have attempted to link SNPs to enhancers correlated with colon cancer by many studies due to the fact that it is a downstream mediator of WNT signalling, which is strongly correlated with colon cancer. In addition, PITX1, TEAD4 and ZBTB7C. MYC, of course, has been linked to colon cancer by many studies due to the fact that it can also work at large distances. In fact, the eQTL analysis can also work at large distances. In fact, the eQTL analysis identified TME6 as a potential target of enhancer 19 (over 600 kb away) and deletion of enhancer 7 identified MYC as a potential target (335 kb away). Future analyses of the entire set of genes by examining gene expression data from HCT116 cells and from a large number of colon tumours. Several of the genes that are possible enhancer targets are transcription factors that have previously been linked to cancer, including H2AFY, MYC, SMAD7, PITX1, TEAD4 and ZBTB7C. MYC, of course, has been linked to colon cancer by many studies due to the fact that it is a downstream mediator of WNT signalling, which is strongly correlated with colon cancer. In addition, PITX1, TEAD4 and ZBTB7C are all transcription factors that have been previously linked to the control of cell proliferation, specification of cell fate or regulation of telomerase activity. Also, PVT1 is a MYC-regulated non-coding RNA that may play a role in neoplasia.

In conclusion, we have used epigenomic and transcriptome information from normal and tumour colon cells to identify a set of genes that may be involved in an increased risk for the development of colon cancer. We realize that we cast a rather large net by analyzing 10 genes of each enhancer, we have derived a list of putative CRC risk-associated enhancer target genes by examining gene expression data from HCT116 cells and from a large number of colon tumours. Several of the genes that are possible enhancer targets are transcription factors that have previously been linked to cancer, including H2AFY, MYC, SMAD7, PITX1, TEAD4 and ZBTB7C. MYC, of course, has been linked to colon cancer by many studies due to the fact that it is a downstream mediator of WNT signalling, which is strongly correlated with colon cancer. In addition, PITX1, TEAD4 and ZBTB7C are all transcription factors that have been previously linked to the control of cell proliferation, specification of cell fate or regulation of telomerase activity. Also, PVT1 is a MYC-regulated non-coding RNA that may play a role in neoplasia.

Table 5 | Linking transcripts to enhancers using TCGA data.

Region	Enhancer	Correlated transcripts
1	Enhancer 1	PITX1(1.37_L1) C5orf20(-1.96_R2) TIFAB(-1.64_R3) CXCL14(-1.39_R5) SLC25A48(-1.34_R7)
2	Enhancer 2	PITX1(1.37_L1) C5orf20(-1.96_R2) TIFAB(-1.64_R3) CXCL14(-1.39_R5) SLC25A48(-1.34_R7)
3	Enhancer 3	C5orf20(-1.96_R2) TIFAB(-1.64_R3) CXCL14(-1.39_R5) SLC25A48(-1.34_R7)
4	Enhancer 4	PITX1(1.37_L2) C5orf20(-1.96_R1) TIFAB(-1.64_R2) CXCL14(-1.39_R4) SLC25A48(-1.34_R6)
5	Enhancer 5	PITX1(1.37_L2) C5orf20(-1.96_R1) TIFAB(-1.64_R2) CXCL14(-1.39_R4) SLC25A48(-1.34_R6)
6	Enhancer 6	PITX1(1.37_L1)
7	Enhancer 7	SQLE(1.8_L6) FAM84B(1.02_L2) POU5F1B(3.02_L1) MYC(1.58_R2) PVT1(2.44_R3) GSDMC(1.75_R4)
8	Enhancer 8	None
9	Enhancer 9	ARRB1(-1.15_R8)
10	Enhancer 10	NIP2(-1.07_L10) FOXM1(1.47_L19) TEAD4(2.15_L6) RAD51AP1(1.36_R5) GALNT8(-1.58_R9) KCNA6(-2.16_R10)
11	Enhancer 11	LIMA1(-1.16_L4) METTL7A(-2.65_R3) POU6F1(-1.14_R9)
12	Enhancer 12	RACGAPIP1(1.06_L110) ASIC1(1.49_L9) LIMA1(-1.16_L4) METTL7A(-2.65_R3) POU6F1(-1.14_R9)
13	Enhancer 13	LIMA1(-1.16_L4) METTL7A(-2.65_R3) POU6F1(-1.14_R9)
14	Enhancer 14	LIMA1(-1.16_L4) METTL7A(-2.65_R3) POU6F1(-1.14_R9)
15	Enhancer 15	RACGAPIP1(1.06_L110) ASIC1(1.49_L9) LIMA1(-1.16_L4) METTL7A(-2.65_R3) POU6F1(-1.14_R9)
16	Enhancer 16	RACGAPIP1(1.06_L110) ASIC1(1.49_L9)
17	Enhancer 17	SMPD3(1.3_L4) CDH3(6.24_L2) TME6(1.36_R10)
18	Enhancer 18	SMPD3(1.3_L4) TME6(1.36_R10)
19	Enhancer 19	SMPD3(1.3_L4) CDH3(6.24_L2) TME6(1.36_R10)
20	Enhancer 20	SMPD3(1.3_L4) CDH3(6.24_L2) TME6(1.36_R10)
21	Enhancer 21	KATNAL2(-1.06_L9) ZBTB7C(-2.81_L3) LIPG(1.3_R6) ACAA2(-1.43_R7)
22	Enhancer 22	KATNAL2(-1.06_L9) ZBTB7C(-2.81_L3) LIPG(1.3_R6) ACAA2(-1.43_R7)
23	Enhancer 23	CHST8(-2.3_R9) KCTDI(1.02_R10)
24	Enhancer 24	CHST8(-2.3_R9) KCTDI(1.02_R10)
25	Enhancer 25	RBBP8NL(1.33_R3) C20orf166-AS1(-3.81_R6) SLCO4A1(3.19_R7) LOC100127888(2.45_R8) NTSR1(-2.34_R9) MRGBP(1.44_R10)
26	Enhancer 26	RBBP8NL(1.33_R2) C20orf166-AS1(-3.81_R5) SLCO4A1(3.19_R6) LOC100127888(2.45_R7) NTSR1(-2.34_R9) MRGBP(1.44_R9)
27	Enhancer 27	RBBP8NL(1.33_R2) C20orf166-AS1(-3.81_R5) SLCO4A1(3.19_R6) LOC100127888(2.45_R7) NTSR1(-2.34_R9) MRGBP(1.44_R9)
28	Enhancer 28	RBBP8NL(1.33_R2) C20orf166-AS1(-3.81_R5) SLCO4A1(3.19_R6) LOC100127888(2.45_R7) NTSR1(-2.34_R8) MRGBP(1.44_R9)

TCGA, the cancer genome atlas. Shown are the subset of the 10 nearest 5' and 10 nearest 3' transcripts for each enhancer that show significant gene expression differences in normal versus tumour samples, as determined using RNA-seq data from TCGA. The numbers in parentheses indicate the fold change, with positive indicating a higher expression in tumours. The seven normal-specific enhancers are shown in bold and all genes correlated with these enhancers should be expressed higher in normal cells and thus have a negative value. The R versus L designation indicates the direction and relative location of the transcript with respect to each enhancer (for example, R7 indicates that it is the 7th closest transcript to the enhancer on the ‘right’ side).
Figure 3 | Linking a transcript to an enhancer using TCGA data. (a) Shown is the location of enhancer 19 and the position of the three SNPs (in red) identified in the eQTL studies and two other SNPs (in blue) identified by the FunciSNP analysis but not present on the SNParray, in relation to the H3K27Ac, RNA-seq and TCF7L2 ChIP-seq data for that region. Also shown are the ENCODE ChIP-seq transcription factor tracks from the University of California, Santa Cruz genome browser. (b) The expression of the TMED6 RNA is shown for samples having homozygous or heterozygous alleles for three SNPs in enhancer 19. The upper and lower quartiles of the box plots are the 75th and 25th percentiles, respectively. The whisker top and bottom are 90th and 10th percentiles, respectively. The horizontal line through the box is median value. The P-value corresponds to the regression coefficient based on the residue expression level and the germline genotype. Sample size is listed under each genotype. (c) A schematic of the gene structure in the genomic region around enhancer 19 (yellow box) is shown; the arrows indicate the direction of transcription of each gene. The three genes in the enhancer 19 region that showed differential expression in normal versus tumour colon samples (Table 5) are indicated; of these, only TMED6 was identified in the eQTL analysis.
CRC risk-associated enhancers are required to confirm the additional putative long range regulatory loops suggested by our studies. Such studies will provide a high confidence list of genes which, when combined with the genes identified by the TSS risk-associated SNPs, should be prioritized for analysis in tumorigenicity assays.

Methods

RNA-seq. RNA-seq data was downloaded from the Reference Epigenome Mapping Center for analysis of gene expression in sigmoid colon cells (GSM1010974 and GSM1010942). For HCT116 colon cancer cells, RNA was prepared using Trizol (Life Technologies, Carlsbad, CA, USA), paired-end libraries were prepared using the Illumina TrueSeqV2 Sample Prep Kit (Catalogue# 15596-026), starting with 1 μg total RNA. Libraries were barcoded, pooled and sequenced using an Illumina HiSeq. For analysis of RNA-seq data, we used Cufflinks (http://www.bioconductor.org/packages/3.2/bioc/html/cufflinks.html), a programme of aligning to annotation having discontinuous mapping to the reference genome. Messenger RNA (mRNA) abundance was measured by calculating FPKM, to allow inter-sample comparisons. We specified the –G option with the GENCODE V15 comprehensive annotation so that the programme will only do alignments that are structurally compatible with the reference transcript provided. Two biological replicates were performed and the mean FPKM of two biological replicates represents the expression of each gene (GSM1266733 and GSM1266734). We categorized genes into non-expressed, low expressed and expressed based on the log2-transformed the expression data of the 254 TCGA colorectal samples RNA-seq datasets. We selected statistically significant genes that showed a statistically significant twofold change in expression (P<0.01, after adjustment by Benjamini and Hochberg’s FDR Methods).

To generate the heatmap showing expression of genes in the TCGA samples, we log2-transformed the expression data of the 254 TCGA colorectal samples RNA-seq [log2(RSEM + 1)]. Then we computed the mean and s.d. of the expression of the each gene (X̄_s) and s). We normalized gene expression by \(\frac{X}{s} \).

Hierarchical clustering with Ward’s method was used to normalize TSS/exon gene expression.

ChIP-seq analysis. Two replicate H3K27Ac ChIP-seq data sets from HCT116 cells (ENCODE accession number wgEncodeEH002873 and two replicate H3K27Ac ChIP-seq data sets from normal sigmoid colon (www.genboree.org/EdaccData/Current-Release/sampleexperiment/Sigmoid_Colon/Histone_H3K27ac/) were analyzed using the Solo-search ChIP-seq peak calling programme27,28 using the following parameters: Permutation, 5; Fragment, 250; AlphaValue, 0.00010 = 1.0E – 4; FDR, 0.00010 = 1.0E – 4; PeakMergeDistance, 0; HistoneBlurLength, 1.200. Each data set was analyzed separately and also analyzed as a merged data set for HCT116 or sigmoid colon. The merged H3K27Ac peaks from HCT116 or Sigmoid colon were analyzed using the GenomicRanges package of biocductor to identify promoter versus distal peaks.

Enhancer deletion. Guide RNAs designed to recognize chr8: 128412821-128412843 and chr8: 128414816-128414838 (hg19) were cloned into a genomic RNA cloning vector (Addgene plasmid 41824) and introduced into HCT116 cells by transfection, along with a plasmid encoding Cas9 and green fluorescent protein. Cells were sorted using a flow cytometer to capture the cells having high green fluorescent protein signals and then colonies were grown from single cells. Complete deletion of all alleles for enhancer 7 was confirmed by PCR using primers flanking the enhancer. RNA analysis was performed in triplicate using HumanHT-12 v4 Expression BeadChip arrays (Illumina), comparing the deleted cells to parental HCT116 cells.

Analysis of FunciSNP and correlated SNPs effects. To identify SNPs correlated with the 25 CRC tag SNPs and those that overlap with chromatin biofeatures, we use the R package for FunciSNP (http://www.bioconductor.org/packages/2.12/bioc/html/GenomicRanges.html). To identify transcripts differentially expressed in the tumour samples, we selected the 10 nearest genes 5’ of and the 10 nearest genes 3’ of each of the 28 enhancers. After removing the non-expressed genes, we then log2 transformed the expression data [log2(RESEM + 1)], and performed a t-test on gene expression between the normal group and the tumour group for each gene using 254 TCGA colorectal RNA-seq data sets. We selected statistically significant genomic regions that showed a statistically significant twofold change in expression (P<0.01, after adjustment by Benjamini and Hochberg’s FDR Methods).
H3K27ac ChIP-seq data from HCT116 cells and sigmoid colon tissue and as biofeatures we used exon, intron, UTR and TSS annotations generated from GENCODE V15. We ran FunciSNP with the following parameters: ± 200 kb around each of the 25 tag SNPs and $r^2 > 0.1$. To analyze the potential effects of correlated SNPs on protein coding, we employed SnpEff and Provean using suggested default parameters. For analysis of SNPs on transcription factor motifs, we employ a method developed by Hazelett et al. Batch effects analysis. We note that TCGA has strict sample criteria. Each frozen primary tumour specimen has a companion normal tissue specimen which could be blood/blood components (including DNA extracted at the tissue source site), or adjacent normal tissue taken from greater than 2 cm from the tumour. Each tumour and adjacent normal tissue specimen (if available) were embedded in optimal cutting temperature medium and a histologic section was obtained for review. Each haematoxylin and eosin stained case was reviewed by a board-certified pathologist to confirm that the tumour specimen was histologically consistent with colon adenocarcinoma and the adjacent normal specimen contained no tumour cells. The tumour sections were required to contain an average of 60% tumour cell nuclei (TCGA has found that this provides a sufficient proportion so that the tumour signal can be distinguished from other cells), with less than 20% necrosis for inclusion in the study per TCGA protocol requirements. To address potential batch effects, we applied MBatch software, which was developed by the MD Anderson Cancer Center and has been widely used to address batch effects in the TCGA Consortium, to perform hierarchical clustering and Principal Component Analysis (PCA) to address any potential batch effects in the colorectal TCGA data sets: level 3 mRNA expression (RNA-seq Illumina Hiseq), level 3 DNA methylation (Infinium HM450K microarray), level 4 SNPs copy number variation (CNV) by gene (GW SNP 6). We assessed batch effects for two variables: batch ID and tissue source site. For hierarchical clustering, MBatch uses the average linkage method.
algorithm with 1 minus the Pearson correlation coefficient as the dissimilarity measure. The samples were clustered after labelling with different colours, each of which corresponds to a batch ID or a tissue source site. (Supplementary Figs 6a.1b.1 and 6c.1). For PCA, MBatch plotted four principal components (Supplementary Figs 6a.2, 6b.2, 6c.2, 6d.2). Samples with the same batch ID (or tissue source site) were labelled as same colour and shape and were connected to the batch centroids. The centroids were computed by taking the mean across all samples in the same batch. To assess batch effects on mRNA expression (Supplementary Fig. 6a), genes with zero values were removed and normalized gene expression values were log2 transformed before analyzing batch effects. Batch 132 and 154 stood out in one comparison (Comp1 versus Comp2) but not in the other comparisons (Supplementary Fig. 6a.2). The remaining batches or tissue source sites did not stand out in clustering or in any of the PCA plots; thus the data is not supportive of a strong batch effect and all data was used for analysis. When batch effect on CNV (Supplementary Fig. 6b) was analyzed, the centroid for the NH tissue source site stood out among other batches. The remaining batches or tissue source sites did not stand out in clustering or in any of the PCA plots. We did not apply correction on the data because (i) there were only two samples and a centroid calculated by only two samples is likely not accurate, (ii) the two samples within the NH batch were not far from other individual samples and (iii) two samples would not dramatically affect our analysis of 233 samples. When assessing batch effects on DNA methylation analysis, no batches or tissue source sites stood out in clustering or in any of the PCA plots (Supplementary Fig. 6c). In summary, none of the samples consistently show batch effects in both clustering and PCA algorithms. Based on the above analysis, we believe that batch effects among the data sets are not dramatically influencing our analysis.

eQTL analyses. We employed a two-step linear regression model which considers somatic germline genotype, CNV and DNA methylation at gene promoters to perform eQTL analysis42. We selected 228 patients with both tumour samples and matched normal blood or normal tissue samples from the TCGA CRC data set. For each of the patients, we obtained the germline genotypes from normal blood or normal tissue samples using data from the GW SNP6 array platform. We directly downloaded gene-level somatic copy number, gene isoform expression (from the RNAseqHiseq Illumina platform) and DNA methylation data (from the HM450K platform) for each tumour sample from the TCGA data download website (http://gdac.broadinstitute.org/runs/analyses__2014_01_15/data/COAD/20140115/). To determine DNA methylation of a promoter, we calculated the average DNA methylation at 100 bp upstream of and 700 bp downstream of the TSS for a transcript. We fit the germline genotype of patients, the continuous DNA methylation level of promoters, and the CNV of matched tumour samples into the two-step multivariate linear regression model. Sixty SNPs, including 6 tag SNPs, 18 SNPs within risk enhancers and 45 SNPs within TSS regions, were present on the macroH2A1.2 interacts with HER-2 protein in cancer cells. J. Biol. Chem. 287, 23171–23183 (2012).

Li, Q. et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 335, 168–174 (2013).

Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

Zhang, L., Smit-McBride, Z., Pan, X., Rheinhardt, J. & Hershey, J. W. An oncogenic role for the phosphorylated β-subunit of human translation initiation factor eIF3. J. Biol. Chem. 283, 24047–24060 (2008).

Wang, J. et al. The atypical p53 protein interacts with HER-2 protein in cancer cells. J. Biol. Chem. 287, 23171–23183 (2012).

Li, Q. et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 335, 168–174 (2013).

Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

Zhang, L., Smit-McBride, Z., Pan, X., Rheinhardt, J. & Hershey, J. W. An oncogenic role for the phosphorylated β-subunit of human translation initiation factor eIF3. J. Biol. Chem. 283, 24047–24060 (2008).

Wang, J. et al. The atypical p53 protein interacts with HER-2 protein in cancer cells. J. Biol. Chem. 287, 23171–23183 (2012).

Li, Q. et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 335, 168–174 (2013).

Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

Zhang, L., Smit-McBride, Z., Pan, X., Rheinhardt, J. & Hershey, J. W. An oncogenic role for the phosphorylated β-subunit of human translation initiation factor eIF3. J. Biol. Chem. 283, 24047–24060 (2008).

Wang, J. et al. The atypical p53 protein interacts with HER-2 protein in cancer cells. J. Biol. Chem. 287, 23171–23183 (2012).

Li, Q. et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 335, 168–174 (2013).
40. Hu, Y., Sun, Z., Zhang, A. & Zhang, J. SMAD7 rs12953717 polymorphism contributes to increased risk of colorectal cancer. Tumour Biol. 35, 695–699 (2013).
41. Deng, H. et al. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Exp. Cell Res. 313, 1033–1044 (2007).
42. Danussi, C. et al. RHPN2 drives mesenchymal transformation in malignant glioma by triggering RhoA activation. Cancer Res. 73, 5140–5150 (2013).
43. Carneiro, P. et al. Therapeutic targets associated to E-cadherin dysfunction in gastric cancer. Expert Opin. Ther. Targets 17, 1187–1201 (2013).
44. Garte, S. J. The c-myc oncogene in tumor progression. Crit. Rev. Oncog. 4, 435–449 (1993).
45. Cheung, E. C. et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell 25, 463–477 (2013).
46. Aumailley, M. The laminin family. Cell Adh. Migr. 7, 48–55 (2013).
47. Carvajal-Carmona, L. G. et al. Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. Hum. Mol. Genet. 20, 2879–2888 (2011).
48. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).
49. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).
50. Bonn, S. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44, 148–156 (2012).
51. Home, P. et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc. Natl Acad. Sci. USA 109, 7362–7367 (2012).
52. Jeon, B. N. et al. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A. Cancer Res. 72, 1137–1148 (2012).
53. Knosel, T. et al. Loss of desmocollin 1-3 and homeobox genes PITX1 and CDX2 are associated with tumor progression and survival in colorectal carcinoma. Int. J. Colorectal. Dis. 27, 1391–1399 (2012).
54. Qi, D. L. et al. Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol. Cell Biol. 31, 1624–1636 (2011).
55. Guan, Y. et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin. Cancer Res. 13, 5745–5755 (2007).
56. Huppi, K., Pitt, J. J., Walilberg, B. M. & Caplen, N. J. The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front. Genet. 3, 69 (2012).
57. Trappnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
58. Hazelet, D. J. et al. Comprehensive functional annotation of 77 prostate cancer risk loci. PloS Genet. 10, e1004102 (2014).
59. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
60. Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).
61. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

Acknowledgements
We thank the UCSD Roadmap Epigenome Mapping Center for use of the H3K27Ac and RNA-seq data from sigmoid colon prior to publication by the Roadmap Epigenomics Consortium (http://nihroadmap.nih.gov/epigenomics/); Shafima Iyengar and Michael Kahn for use of their SW480 ChIP-seq data; Adam Blattler, Fides Lay and Peter Jones for use of their HCT116 RNA-seq data; David Segal and Mital Bhakta for guidance and assistance with the CRISPR technology; the DNA Production Facility at the USC Epigenome Center for library construction and sequencing of RNA samples; and the USC high performance computing and communications center. The HCT116 H3K27Ac ChIP-seq data was produced in the Farnham lab as part of the ENCODE Consortium. This work was supported in part by SR31HG006761, U01 ES017154 and P30CA014089 from the National Cancer Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions
L.Y. performed all bioinformatic analyses and assisted with manuscript preparation; Y.G.T. performed enhancer characterizations and edited the manuscript; B.P.B. advised L.Y. in bioinformatic analyses; F.J.F. conceived the project and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Yao, L. et al. Functional annotation of colon cancer risk SNPs. Nat. Commun. 5:5114 doi: 10.1038/ncomms6114 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/