Therapeutic options for intermediate-advanced hepatocellular carcinoma

Zong-Ming Zhang, Jin-Xing Guo, Zi-Chao Zhang, Nan Jiang, Zhen-Ya Zhang, Li-Jie Pan

Zong-Ming Zhang, Jin-Xing Guo, Zi-Chao Zhang, Nan Jiang, Zhen-Ya Zhang, Li-Jie Pan, Department of General Surgery, Digestive Medical Center, The First Affiliated Hospital, School of Medicine, Tsinghua University, Beijing 100016, China

Author contributions: Zhang ZM designed and wrote the paper; and all other authors revised and approved the final version of the paper.

Supported by the National Natural Science Foundation of China, No. 81071996

Correspondence to: Zong-Ming Zhang, MD, PhD, Professor, Department of General Surgery, Digestive Medical Center, The First Affiliated Hospital, School of Medicine, Tsinghua University, Beijing 100016, China. zhangzongming@mail.tsinghua.edu.cn

Telephone: +86-10-64372362 Fax: +86-10-64361322

Received: December 6, 2010 Revised: January 18, 2011

Accepted: January 25, 2011

Published online: April 7, 2011

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies, ranking the sixth in the world, with 55% of cases occurring in China. Usually, patients with HCC did not present until the late stage of the disease, thus limiting their therapeutic options. Although surgical resection is a potentially curative modality for HCC, most patients with intermediate-advanced HCC are not suitable candidates. The current therapeutic modalities for intermediate-advanced HCC include: (1) surgical procedures, such as radical resection, palliative resection, intraoperative radiofrequency ablation or cryosurgical ablation, intraoperative hepatic artery and portal vein chemotherapeutic pump placement, two-stage hepatectomy and liver transplantation; (2) interventional treatment, such as transcatheater arterial chemoembolization, portal vein embolization and image-guided locoregional therapies; and (3) molecularly targeted therapies. So far, how to choose the therapeutic modalities remains controversial. Surgeons are faced with the challenge of providing the most appropriate treatment for patients with intermediate-advanced HCC. This review focuses on the optional therapeutic modalities for intermediate-advanced HCC.

© 2011 Baishideng. All rights reserved.

Key words: Hepatocellular carcinoma; Intermediate-advanced; Surgical procedure; Interventional treatment; Molecularly targeted therapy

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third most common cause of cancer-related death[1]. Patients at the early stage are those who present with an asymptomatic single HCC with the nodule < 5 cm in diameter or ≤ 3 in number. Patients exceeding these limits, but free of cancer-related symptoms and vascular invasion or extrahepatic spread, are considered at the intermediate stage. The patients with the cancer-related symptoms and vascular invasion or extrhepatic spread are deemed at the advanced stage. HCC is frequently diagnosed at the late stage and has a high mortality rate. Surgical resection is a potentially curative therapy for HCC, however, only 10%-30% of patients with HCC are eligible for curative hepatectomy. Comprehensive therapy for HCC has become the focus of interest in recent years[2-4]. The current therapeutic modalities...
for intermediate-advanced HCC are collected and evaluated as follows.

SURGICAL PROCEDURES

Radical resection is still the first choice for treatment of HCC\(^\text{[7,8]}\); even at the intermediate or advanced stage\(^\text{[9,10]}\). If radical resection is impractical, palliative resection combined with comprehensive therapy can significantly prolong patients’ survival time\(^\text{[11,12]}\). Intraoperative comprehensive therapy includes radiofrequency ablation, cryosurgical ablation, and hepatic artery and portal vein chemotherapeutic pump placement. Two-stage hepatectomy can improve the survival rate in selected patients with advanced HCC\(^\text{[13,14]}\). Liver transplantation has been shown to achieve excellent survival rate in appropriate HCC patients\(^\text{[15,16]}\).

Radical resection

Radical resection for intermediate-advanced HCC is indicated as follows: (1) single HCC with large or huge tumor nodule, swelling outward, clear border or pseudocapsule, and less than 30% hepatic tissue destroyed measured by computed tomography (CT) or magnetic resonance imaging (MRI) scan, or more than 50% compensatory hepatic hypertrophy; (2) multiple HCC with 3 or fewer nodules localized in one lobe or segment of the liver\(^\text{[17,18]}\). It should be pointed out that tumor nodules limited to the liver are not the absolute operative indication. The outcome of radical resection could be affected by multicentric occurrence of HCC, tumor nodule adjacent to major blood vessel or bile duct, and the hepatic insufficiency induced by coexisting cirrhosis\(^\text{[19]}\).

With the deeper recognition of the pathology of HCC, the rational criteria of negative surgical margin are initially determined as follows: (1) > 2 cm margin free from tumors < 5 cm in diameter; (2) > 1 cm margin free from tumors 5-10 cm; and (3) > 0.5 cm margin free from tumors > 10 cm. More than 90% hepatectomies fulfilling the above-mentioned criteria can achieve negative surgical margin\(^\text{[20]}\). Thereby, healthy hepatic tissue should be preserved as much as possible during radical resection so as to enhance the operative security, to facilitate the postoperative recovery and to help with further treatment.

Palliative resection

The indications of palliative resection for intermediate-advanced HCC are: (1) multiple HCC with 3-5 tumor nodules, exceeding half of the liver; (2) multiple HCC with nodules localized in 2-3 adjacent segments or half of the liver, more than 50% compensatory hepatic hypertrophy in the tumor-free liver demonstrated by image examinations; (3) central HCC with more than 50% compensatory hypertrophy in the tumor-free liver; (4) hilar lymph node metastasis should be cleared up during hepatectomy; and (5) invaded organs around the liver, such as colon, stomach, diaphragm, right adrenal gland, etc., and single metastatic neoplasm far from the liver (e.g. lung metastasis) should be resected\(^\text{[17]}\).

Intraoperative radiofrequency ablation

Radiofrequency ablation (RFA) is a technique in which an electromagnetic energy deposition is used to thermally ablate the hepatic tumor tissue\(^\text{[21]}\). During RFA treatment, heat energy generated by high-frequency alternating currents targeted at the living tissues causes protein denaturation at a temperature of 60-110°C through ionic vibration, resulting in coagulative necrosis of the target lesion. In addition, RFA treatment stimulates the immune system and provides an easy way to achieve *in vivo* vaccination against tumoral antigens\(^\text{[22]}\).

RFA is generally indicated for HCC patients who are not candidates for either liver resection or transplantation\(^\text{[23]}\). HCC patients are required to have ≤ 5 nodules, each < 3 cm in diameter, no evidence of vascular invasion or extrahepatic spread, 0 score performance status of the Eastern Cooperative Oncology Group (ECOG), and liver cirrhosis in Child-Pugh class A or B. The more versatile radiofrequency probes allow ablation of nodule > 5 cm. When complete resection by major hepatectomy is dangerous because of difficult nodule location, selective use of intraoperative RFA will be helpful\(^\text{[24]}\). The integration of intraoperative RFA into resection surgery contributes to complete removal of nodules with adequate margin, diminishes the extent of parenchymal resection, and improves the resectability rate for patients with advanced HCC\(^\text{[24]}\).

Preoperative imaging must carefully define the location of tumor nodule with respect to the surrounding structures for RFA in HCC: nodules located on the surface of the liver can be considered; nodules adjacent to the hepatic vessels may be considered because flowing blood usually protects the vascular wall from thermal injury; nodules adjacent to the hepatic hilum represents a relative contraindication due to the risk of thermal injury of the biliary tract; and nodules adjacent to any part of the gastrointestinal tract must be avoided\(^\text{[25]}\).

Intraoperative cryosurgical ablation

Although RFA has been the most widely utilized ablation modality for HCC, cryosurgical ablation has several advantages (most significantly, the ability to produce larger and more precise zones of ablation) over RFA\(^\text{[26]}\). Cryosurgical ablation for HCC patient relies on nonspecific tissue necrosis due to freezing as well as microvascular thrombosis. Argon-helium cryosurgical ablation is able to induce the necrosis of tumor cells through the formation of extracellular and intracellular ice crystals and then cell dehydration due to rapidly freezing (< -140°C) as well as rapidly thawing (20-40°C) the tumor tissues with argon/helium gas. Therefore, argon-helium cryosurgical ablation has become one of the major therapeutic approaches for unresectable intermediate-advanced HCC.

The indications of cryosurgical ablation for HCC patient are: (1) nodules < 5 cm in diameter, ≤ 3 in number; (2) nodule > 5 cm with irregular margin, may be given intraoperative cryosurgical ablation with or without excision of nodule. Intraoperative cryosurgical ablation offers...
an effective and safe option for management of advanced HCC. HCC patients with diffuse infiltrative disease or large bilobar nodules (> 50% of liver volume) are not candidates for cryosurgical ablation because complete ablation of the nodules might induce hepatic failure.

Intraoperative hepatic artery and portal vein chemotherapeutic pump placement

The liver has a dual blood supply from the hepatic artery and the portal venous system. For HCC patients who are not suitable for hepatectomy confirmed by intraoperative exploration, two chemotherapeutic pumps could be implanted subcutaneously into the upper abdominal wall near the incision, with the tip of pump catheter separately inserted into the hepatic artery and portal vein during the operation, followed by postoperative chemotherapy. The advantage of intraoperatively implanted chemotherapeutic pump is the ability to accurately and selectively place into the main trunk or branch of hepatic artery and portal vein. For resectable intermediate-advanced HCC, the postoperative hepatic artery and portal vein dual perfusion chemotherapy via chemotherapeutic pumps could prevent tumor recurrence.

Two-stage hepatectomy

Two-stage hepatectomy has been developed as a surgical strategy for extremely difficult patients with intermediate-advanced HCC. This strategy is applied when it is impossible to resect the tumor in a single procedure. The main principles of this strategy are: huge HCC with the remnant liver volume cannot maintain hepatic function after hepatectomy; central or hilar HCC adjacent to or invaded major blood vessel; and serious cirrhosis with possible hepatic decompensation after hepatectomy.

For unresectable HCC, preoperative intervention with transcatheter arterial chemoembolization (TACE), portal vein embolization (PVE), or percutaneous RFA could control tumor progression and invasion, downstage tumor status, increase remnant liver volume, and decrease tumor recurrence rate, thus making the two-stage hepatectomy possible. The indication of two-stage hepatectomy is that tumor diameter reduced to 50% of the initial size, and nonmalignant liver tissue had significant compensatory hyperplasia. Sequential TACE and PVE could broaden the surgical indication and the safety of major hepatic resection for advanced HCC patients with damaged liver.

Non-anatomic local excision of liver cancer or hepatic segmentectomy should be used in the two-stage hepatectomy so as to maximally preserve the normal liver tissue. For the patients with HCC invading the hepatic hilum and inferior vena cava, total hepatic vascular exclusion (HVE) should be prepared to avoid massive hemorrhage during hepatectomy.

Liver transplantation

Liver transplantation is an ideal treatment option, as it simultaneously cures HCC. However, up to date, there are no uniform criteria of liver transplantation for HCC patients in China. The United Network for Organ Sharing (UNOS) criteria for liver transplantation are usually adopted in the world: single tumor ≤ 5 cm; 2-3 tumors, each ≤ 3 cm; no macrovascular invasion; and no extrahepatic spread to surrounding lymph nodes, lungs, abdominal organs, or bones. However, if the UNOS criteria are strictly adopted in China, it means that most HCC patients will lose the opportunity of liver transplantation, because more than 100,000 patients die of advanced HCC each year. For this reason, the indication of liver transplantation for advanced HCC should be relatively loose in China. For the patients with unresectable huge or multiple HCC, if no vascular invasion and no extrahepatic spread, liver transplantation is the treatment of choice. Considering the limited organ supply, high cost, and considerable risk, we suggest that only those HCC patients with a high probability of survival benefit should be selected to receive liver transplantation. The shortage of donor livers is the major constraint of liver transplantation.

INTERVENTIONAL TREATMENT

Although surgical resection has been the first choice for treatment of HCC, a simple surgical exploration could accelerate the process of disease and even cause death due to the postoperative complication of patients with unresectable HCC. With advances of medical imaging and improvement of interventional technology, interventional treatment has become an effective approach to inoperable HCC. The common approaches of interventional treatments for inoperable HCC include transcatheter arterial chemoembolization, portal vein embolization, and image-guided locoregional therapies.

Transcatheter arterial chemoembolization

For the treatment of inoperable HCC demonstrated by preoperative image examination, the priority is transcatheter arterial chemoembolization (TACE). The theoretical basis of TACE is the special vascular supply of liver and HCC. Liver derives dual blood supply from portal vein and hepatic artery, the former accounts for 2/3 to 3/4 while the latter for only 1/4 to 1/3. HCC derives 90% blood supply from hepatic artery and only 10% from portal vein. Thus, TACE provides a higher local concentration of chemotherapeutic drugs into tumor compared with intravenous perfusion chemotherapy, and meanwhile, it blocks blood supply of HCC, but only exerts little influence on blood supply of the liver. The consequence is that the major portion of cancer nodule becomes necrotic, while hepatic function remains unchanged or little impaired.

Better patient selection and selective segmental chemoembolization may improve the benefit-risk ratio of TACE. TACE is indicated in intermediate-advanced HCC even in the setting of portal vein involvement (excluding main portal vein). The presence of main portal vein thrombosis, extrahepatic metastasis, Child-Pugh class C liver function, and severe hepatic arterio-portal shunts is considered as contraindications for TACE.
Portal vein embolization

Percutaneous transhepatic portal vein embolization (PVE) is a useful procedure for the preoperative intervention of advanced HCC patients selected for hepatectomy. PVE could increase the volume and function of the future remnant liver through the acceleration of hepatocyte proliferation, and embolize possible hepatic artery-portal shunts, so as to prevent postoperative liver insufficiency.

For the treatment of intermediate-advanced HCC, the combination of TACE and PVE not only blocks most blood supply of main tumor and satellite lesions, but also increases the local concentration of chemotherapeutic drugs into tumor, so as to more effectively control the tumor growth and decrease tumor recurrence. Contraindications to PVE include distant metastases, uncontrolled coagulopathy, active cholangitis, portal hypertension, and renal failure.

Image-guided locoregional therapies

Ultrasound or CT guided locoregional therapies have a therapeutic effect in advanced HCC patients by means of thermoablative therapy (radiofrequency ablation, microwave coagulation, laser ablation), cryotherapy (argon-helium knife, liquid nitrogen), or chemical therapy (ethanol injection, acetic acid injection) to destroy tumor tissues. To date, the commonly used therapies include percutaneous RFA, microwave coagulation, cryoablation therapy, and ethanol injection, especially with percutaneous RFA as the first choice to inoperable HCC. The roles of different locoregional therapies may change with further development of technology and availability of data from future prospective randomized trials.

MOLEcularly TARGETed THERAPIES

Recently, molecularly targeted therapies, including sorafenib, sunitinib, brivanib, cetuximab, erlotinib plus bevacizumab, and laptatinib, have emerged as promising therapeutic approaches for advanced HCC. Sorafenib, as an orally-active multikinase inhibitor targeting both tumor cells and the tumor vasculature, and the first agent to improve the overall survival status for patients with advanced HCC, has been approved for systemic therapy in patients with advanced HCC in Eastern and Western countries.

Many other molecularly targeted agents of blocking epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and mammalian target of rapamycin (mTOR) are at different stages of clinical development for the treatment of advanced HCC.

CONCLUSION

For the treatment of intermediate-advanced HCC, various surgical procedures may produce the definite therapeutic effects. The interventional treatment can also improve the prognosis to a great extent, but so far there is still lack of a special effective approach. In recent years, the model of comprehensive therapies mainly based on surgical resection has been adopted to further enhance the curative effect, prolong the survival time, and improve the life quality of the patients. According to the indications and advantages of each therapeutic method, combined with the patient’s clinical stage, the selection of therapeutic approaches to maximize the efficacy and minimize the adverse effect is very important for designing a more rational therapeutic plan for intermediate-advanced HCC.

REFERENCES

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108
2. He AR, Soe K, El Zouhairi M. Current problems with systemic treatment of advanced hepatocellular cancer. Curr Probl Cancer 2010; 34: 131-149
3. Han KH, Park JY. Systemic treatment in advanced/metastatic hepatocellular carcinoma in the era of targeted therapy. J Gastroenterol Hepatol 2010; 25: 1029-1025
4. Porta C, Paglino C. Medical treatment of unresectable hepatocellular carcinoma: Going beyond sorafenib. World J Hepatol 2010; 2: 103-113
5. Rampone B, Schiavone B, Martino A, Viviano C, Confuorto G. Current management strategy of hepatocellular carcinoma. World J Gastroenterol 2009; 15: 3210-3216
6. Yau T, Chan P, Epstein R, Poon RT. Evolution of systemic therapy of advanced hepatocellular carcinoma. World J Gastroenterol 2008; 14: 6437-6441
7. Wu MC. Status and prospect of comprehensive treatment of liver cancer. Zhonghua Gan Dian Wai Ke Za Zhi 2006; 12: 1-4
8. Liu JH, Chen PW, Asch SM, Busuttil RW, Ko CY. Surgery for hepatocellular carcinoma: does it improve survival? Ann Surg Oncol 2004; 11: 298-303
9. Wakabayashi H, Ushiyama T, Ishimura K, Izuiishi K, Kasa-sawa Y, Masaki T, Watanabe S, Kuriyama S, Maeta H. Significance of reduction surgery in multidisciplinary treatment of advanced hepatocellular carcinoma with multiple intrahepatic lesions. J Surg Oncol 2003; 82: 98-103
10. Yu YQ, Xu DB, Zhou XD, Lu JZ, Tang YZ, Mack P. Experience with liver resection after hepatic arterial chemoembolization for hepatocellular carcinoma. Cancer 1993; 71: 62-65
11. Lin DX, Zhang QY, Li X, Ye QW, Lin F, Li LL. An aggressive approach leads to improved survival in hepatocellular carcinoma patients with portal vein tumor thrombus. J Cancer Res Clin Oncol 2011; 137: 139-149
12. Morris-Stiff G, Gomez D, de Liguori Carino N, Prasad KR. Surgical management of hepatocellular carcinoma: is the jury still out? Surg Oncol 2009; 18: 298-321
13. Zhang Z, Liu Q, He J, Yang J, Yang G, Wu M. The effect of preoperative transcatheter hepatic arterial chemoembolization on disease-free survival after hepatectomy for hepatocellular carcinoma. Cancer 2001; 89: 2606-2612
14. Choi GH, Kim DH, Kang CM, Kim KS, Choi JS, Lee WJ, Kim BR. Is preoperative transarterial chemoembolization needed for a resectable hepatocellular carcinoma? World J Surg 2007; 31: 2370-2377
15. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236
16. Bismuth H, Chiche L, Adam R, Castaing D, Diamond T, Dennison A. Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients. Ann Surg 1993; 218: 145-151
17. Chen XP, Zhang ZW. Attach great importance to standardization of surgical treatment of hepatoma. Zhonghua Xiao Hua Wai Ke Za Zhi 2007; 6: 5-7
18. Ruzzeneente A, Capra F, Pacher S, Iacono C, Piccirillo G, Lunardi M, Pistoso S, Valdegamberi A, D’Onofrio M, Guglielmi A. Is liver resection justified in advanced hepatocellular carcinoma? Results of an observational study in 464
patients. J Gastrointest Surg 2009; 13: 1313-1320

19 Capussotti L, Ferrero A, Viganò L, Polastri R, Tabone M. Liver resection for HCC with cirrhosis: surgical perspectives out of EASL/AASLD guidelines. Eur J Surg Oncol 2009; 35: 11-15

20 Wang J. The standardized strategy for hepatocellular carcinoma. Shijong Yixue Zazhi 2007; 23: 783-785

21 Callstrom MR, Charboneau JW. Technologies for ablation of hepatocellular carcinoma. Gastroenterology 2008; 134: 1831-1835

22 Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int 2009; 29: 18-24

23 Kudo M. Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology 2010; 78 Suppl 1: 113-124

24 Cheung TT, Ng KK, Chok KS, Chan SC, Poon RT, Lo CM, Fan ST. Combined resection and radiofrequency ablation for multifocal hepatocellular carcinoma: prognosis and outcome. World J Gastroenterol 2010; 16: 3056-3062

25 Crocetti L, de Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Interv Radiol 2010; 33: 11-17

26 Hinshaw JL, Lee FT Jr. Cryoablation for liver cancer. Tech Vasc Interv Radiol 2007; 10: 47-57

27 Fan YF, Fang CH, Huang ZH, Xiang N, Yang J. [Intraoperative argon cryosurgery in surgical resection of advanced hepatic carcinoma: safety and efficacy]. Nanfang Yike Daaxue Xuebao 2008; 29: 2035-2037

28 Li JC, Lu WQ, Liu HY, Cui SZ, Hu WM, Tang YQ. Hepatic artery and portal vein dual perfusion embolization and chemotherapy after radical resection of primary hepatic carcinoma for preventing tumor recurrence. Zhonghua Zhongli Sheng Bing Ji Jiu Zhi 2004; 11: 1074-1075

29 Shi LP, Zhang DS, Yu J, Bu XY, Chen ZY. Therapeutic effect of hepatocytome combination with hepatic arterial chemoembolization on patients with advanced liver carcinoma. Qilu Yixue Zazhi 2010; 25: 21-23

30 Abulkhir A, Limongelli P, Healey AJ, Damrah O, Tait P, Jackson J, Habib N, Jiao LR. Preoperative portal vein embolization for major liver resection: a meta-analysis. Ann Surg 2008; 247: 49-57

31 Haghghi KS, Glenn D, Gruenberger T, Morris DL. Extending the limits for curative liver resections by portal vein embolization. Int Surg 2009; 94: 43-57

32 Aoki T, Imamura H, Hasegawa K, Matsukura A, Sano K, Sugawara Y, Kokudo N, Makuchii M. Sequential preoperative arterial and portal venous embolizations in patients with hepatocellular carcinoma. Arch Surg 2004; 139: 766-774

33 Di Carlo I, Pulvirenti E, Toro A, Patanè D. Simultaneous transarterial and portal embolization for unresectable tumors of the liver. Hepatogastroenterology 2010; 57: 140-145

34 Benson AB 3rd, Abrams TA, Ben-Josef E, Bloomston PM, Botha JF, Clary BM, Covey A, Curley SA, D’Angelica MI, Davila R, Ensminger WD, Gibbs JB, Laheru D, Malafa MP, Marrero J, Meranze SG, Mullivihl SJ, Park JO, Posey JA, Sachdev J, Salem R, Sigurdson ER, Soffocleous C, Vauthey JN, Venook AP, Goff LW, Yen Y, Zhu AX. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw 2009; 7: 390-391

35 Katamura Y, Aikata H, Kimura Y, Kawaoaka T, Takaki S, Waki K, Hiramatsu A, Kawakami Y, Takahashi S, Ishikawa M, Hieda M, Kakizawa H, Chayama K. Intra-arterial 5-fluorouracil/interferon combination therapy for hepatocellular carcinoma with portal vein tumor thrombosis and extrahepatic metastases. J Gastroenterol Hepatol 2010; 25: 1117-1122

36 Eun JR, Lee HJ, Moon HJ, Kim TN, Kim JW, Chang JC. Hepatic arterial infusion chemotherapy using high-dose 5-fluorouracil and cisplatin with or without interferon-alpha for the treatment of advanced hepatocellular carcinoma with portal vein tumor thrombosis. Scand J Gastroenterol 2009; 44: 1477-1486

37 Han KH, Seong J, Kim JK, Ahn SH, Lee do Y, Chon CY. Pilot clinical trial of localized concurrent chemoradiation therapy for locally advanced hepatocellular carcinoma with portal vein thrombosis. Cancer 2008; 113: 995-1003

38 Poon RT, Fan ST, Tsang FH, Wong J. Locoregional therapies for hepatocellular carcinoma: a critical review from the surgeon’s perspective. Ann Surg 2002; 235: 466-486

39 Schwarz RE, Abou-Alfa GK, Geschwind JF, Krishnan S, Salem R, Venook AP. Nonoperative therapies for combined modality treatment of hepatocellular cancer: expert consensus statement. HPB (Oxford) 2010; 12: 313-320

40 Ribero D, Curley SA, Immamura H, Madoff DC, Nagorney DM, Ng KK, Donadon M, Vilgrain V, Tordzilli G, Roh M, Vauthey JN. Selection for resection of hepatocellular carcinoma and surgical strategy: indications for resection, evaluation of liver function, portal vein embolization, and resection. Ann Surg Oncol 2008; 15: 986-992

41 Dhanasekaran R, Khanna V, Kooby DA, Spivey JR, Parekh S, Knecht SJ, Carew JD, Kauh JS, Kim HS. The effectiveness of locoregional therapies versus supportive care in maintaining survival within the Milan criteria in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2010; 21: 1197-1204; quiz 1204

42 Mahady SE, Charlton B, Fitzgerald P, Kooree DJ, Perry JF, Waugh RC, McCaughan GW, Stassser SL. Locoregional therapies for hepatocellular carcinoma: which patients are most likely to gain a survival advantage? J Gastroenterol Hepatol 2010; 25: 1299-1305

43 Dhanasekaran R, Kooby DA, Staley CA, Kauh JS, Khanna V, Kim HS. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocellular carcinoma (HCC). J Surg Oncol 2010; 101: 476-480

44 Zhu AX. Systemic treatment of hepatocellular carcinoma: dawn of a new era? Ann Surg Oncol 2010; 17: 1247-1256

45 Tanaka S, Arii S. Current status of molecularly targeted therapy for hepatocellular carcinoma: basic science. Int J Clin Oncol 2010; 15: 235-241

46 Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JJ, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz RE, Porta C, Zenouz S, Bolondi L, Goren T, Galle PR, Seitz JF, Borbath I, Hüüsninger D, Giannaris T, Shan M, Moscovic M, Violeotis D, Bruijx J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390

47 Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Violeotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ill randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34

48 Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 2009; 69: 223-240

49 Zhu AX. Beyond sorafenib: novel targeted therapies for advanced hepatocellular carcinoma. Expert Opin Investig Drugs 2010; 19: 669-672

50 Rimassa L, Santoro A. The present and the future landscape of treatment of advanced hepatocellular carcinoma. Dig Liver Dis 2010; 42 Suppl 3: S273-S280

51 Wörns MA, Schuchmann M, Düber C, Otto G, Galle PR, Weinmann A. Sunitinib in patients with advanced hepatocellular carcinoma after progression under sorafenib treatment. Oncolology 2010; 79: 85-92

S-Editor Tian L. L-Editor Ma JY E-Editor Ma WH