Ultrafast Pump–Probe Microscopy on 2D Transition Metal Dichalcogenides

Stephen Boandoh, Fu-He Hsiao, Bongki Shin, Majvor Mack, Linus P. Grote, Rongbin Wang, Yimo Han, Jun Lou, Norbert Koch, Norbert H. Nickel, Chih-Wei Luo, and Yu-Tsung Tsai*

1. Introduction

Transition metal dichalcogenides (TMDs) have attracted enormous attention recently because of their intriguing physical properties such as strong Coulomb interactions,[1] tunable spin-valley physics,[2] magnetic,[3] optical,[4] and electronic properties,[5] making them ideal materials for application in field-effect transistors (FETs),[6] photodetectors,[7] energy conversion,[8] photonic devices,[9] amongst others. The properties of TMDs, like other 2D materials are related to their structure, size, number of layers, crystal orientations, defects, and morphologies, which can be precisely controlled during growth. Recent studies have demonstrated shape-dependent properties of chemical vapor deposition (CVD) grown TMDs attributed to different levels of defects in the tailored morphologies, making them ideal materials for electrocatalysis and optoelectronics.[10] For example, Zhang et al., reported a threefold increase in photoluminescence (PL) intensity in hexagonal molybdenum disulfide (MoS2) compared to PL observed in...
triangular, tetragonal, and pentagonal shape MoS\textsubscript{2} crystals, due to varying defect distribution in these morphologies.[11] Furthermore, nonuniform alternating domains with bright and dark PL emission apparent in hexagonal tungsten disulfide (h-WS\textsubscript{2}) are attributed to the tungsten and sulfur vacancies in this morphology.[12–14] In catalysis, the shape and edge-structure of WS\textsubscript{2} and MoS\textsubscript{2} is considered a dynamic function for hydrogen evolution reaction (HER) due to the existence of varying metal and chalcogen vacancies in these materials.[11,15]

According to the laws of thermodynamics, all crystals grown above 0 K have some level of defects.[16,17] Such defects result in detrimental consequences such as unstable operational circuits, photoluminescence quenching, weak photosensing capabilities, and intense fluctuating of carrier dynamics of 2D materials.[18–22] Although extensive defect studies have been carried out with techniques such as micro-Raman scattering, PL, X-ray photoelectron spectroscopy, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and scanning tunneling microscopy (STM)[18,23–27] visualization of the dynamics of charge carriers, which is essential in photonic applications, cannot be realized with these techniques. This has necessitated the employment of a nondestructive and time-efficient technique such as time-resolved optical pump–probe spectroscopy for direct probing and visualization of the charge carrier dynamics in TMDs. Information on the excited-state lifetime can be obtained from changes in carrier lifetimes in materials. The basic principle of time-resolved pump–probe microscopy is based on comparing the charge carrier dynamic distributions in shape-dependent MoS\textsubscript{2} and WS\textsubscript{2} samples.

In this article, we employ time-resolved pump–probe microscopy to reveal the shape-dependent carrier dynamics in MoS\textsubscript{2} and WS\textsubscript{2} morphologies. In these experiments, transient transmittance changes ($\Delta T/T$) are used to observe the ultrafast dynamics in four morphologies of CVD grown TMDs comprising triangular MoS\textsubscript{2} (t-MoS\textsubscript{2}), curved triangular MoS\textsubscript{2} (c-MoS\textsubscript{2}), triangular WS\textsubscript{2} (t-WS\textsubscript{2}), and hexagonal WS\textsubscript{2} (h-WS\textsubscript{2}). Ultrafast probing of the carrier dynamics in t-MoS\textsubscript{2} and t-WS\textsubscript{2} revealed position-independent $\Delta T/T$. However, the $\Delta T/T$ in c-MoS\textsubscript{2} is sensitive to position, where a quick decay of photexcited carriers occurs at the curved edge and vertices. In addition, position-dependent $\Delta T/T$ and threefold symmetry is observed in h-WS\textsubscript{2}, with defect states as the proposed mechanism. Additionally, with the same pump–probe transmission, a negative transient transmittance is observed in both t-MoS\textsubscript{2} and c-MoS\textsubscript{2} while a positive transient transmittance occurs in both t-WS\textsubscript{2} and h-WS\textsubscript{2} samples after 3–7 ps (defect-dependent), which we attribute to the different defect states in the two materials. The results of carrier dynamic distribution in this work will provide knowledge on specific areas of optoelectronic device fabrication when using MoS\textsubscript{2} or WS\textsubscript{2} of desired shapes.

2. Results and Discussion

Figure 1a shows the schematic depiction of the optical ultrafast pump–probe microscopy (UPPM) setup used for the ultrafast dynamic measurements of MoS\textsubscript{2} and WS\textsubscript{2} samples (See experimental section for details). For the spatial-resolved ultrafast carrier dynamics, a scanning microscope combined with the pump–probe system is adopted to map the MoS\textsubscript{2} or WS\textsubscript{2}. By controlling the time delay between pump and probe pulses, the position-dependent transient transmittance changes ($\Delta T/T$) can be obtained. The measured $\Delta T/T$ can be expressed as[18]

$$\Delta T \approx -2\eta_0 \Delta\sigma_r + \eta_0 \sigma_i \Delta\sigma_i$$

where σ_r, σ_i is the real (imaginary) part of the sample optical conductivity, $n_s \approx 1.45$ is the refractive index of the substrate, and η_0 is the free space impedance. When $\eta_0 \sigma_r$ and $\eta_0 \sigma_i$ are $\ll 1$ at the probe energy,[12] the second term on the right-hand side in Equation (1) becomes much smaller than the first term. Therefore, the differential transmission is predominantly affected by changes in the real part of the optical conductivity as observed in the first term on the right-hand side, as a result of inaduroband and intravalence band.[12]

To check the sample quality, standard micro-Raman mapping measurements on an as-grown t-MoS\textsubscript{2} were carried out. The data shown in Figure 1b reveals a uniform spatial map of the in-plane E_{2g} phonon mode. In addition, the Raman spectrum of E_{1g} and A_{1g} modes are extracted from the vertex, edge, and center of t-MoS\textsubscript{2}, which confirms the uniformity of the t-MoS\textsubscript{2} sample (see Figure S1a,b, Supporting Information). All samples are characterized in the same fashion prior to pump–probe measurements. Three individual $\Delta T/T$ measurements are then performed at the vertex, edge, and center of t-MoS\textsubscript{2} (inset of Figure 1c). As plotted in Figure 1c, all three single-point $\Delta T/T$ measurements exhibited near-identical absorption strength and decay behavior, indicating a homogeneous carrier dynamic distribution. Transient transmittance microscopy of the same sample further revealed a uniform transmission behavior distribution from 0 to 40 ps (Figure 1d), confirming a similar transmittance relaxation time over the entire area of t-MoS\textsubscript{2} flake. As a result, the uniform photexcited carrier dynamic distribution of t-MoS\textsubscript{2} is directly observed with our UPPM.

Next, c-MoS\textsubscript{2} is examined in the same fashion. As shown in the micro-Raman mapping image of the in-plane E_{2g} mode of c-MoS\textsubscript{2}, the intensity of the E_{2g} is low at the vertices and at the edges compared to the center where a fairly uniform intensity is obtained (Figure 2a). Representative Raman spectrum extracted from spots A–C reveal varying Raman intensities at the vertices, edge, and center (see Figure S2, Supporting Information), which
could be related to defect-induced strain. It should be noted that, though defect-induced strain causes changes in the vibrational modes of MoS$_2$ flakes, no apparent shift in the vibrational modes could be observed in our Raman measurements. This could be due to insufficient strain from low defect concentrations that could not be detected in these Raman measurements.[12,13]
This Raman response of defect-induced strain suggests that photoexcited carriers can be trapped with these additional defect states. Figure 2b depicts three individual ΔT/T transients measured at the vertex, edge, and center of c-MoS$_2$ (see inset of Figure 2b). The relaxation time of photoexcited carriers at the vertex and the edge (location A and B) are shorter than the relaxation time in the center (location C), indicating a non-uniform distribution of localized trapping states in c-MoS$_2$. As a result, a nonuniform negative ΔT/T mapping by UPPM is obtained for c-MoS$_2$ flake and shown in Figure 2c. It is apparent from the transient transmittance images that the relaxation times of photoexcited carriers are shorter at the vertices and the edges than in the center of c-MoS$_2$, visualized by the decreasing density of red points with increasing time. UPPM hence confirms this inhomogeneous carrier dynamic distribution in c-MoS$_2$. To provide a much clearer view of the difference in carrier dynamics distribution in t-MoS$_2$ and c-MoS$_2$, the ΔT/T spectra at each pixel within t-MoS$_2$ (Figure 1d) and c-MoS$_2$ (Figure 2c) are fitted by a double-exponential decay to obtain the spatial distribution of relaxation time (τ$_1$ and τ$_2$) (See Figure S3, Supporting Information). It is apparent that both t-MoS$_2$ and c-MoS$_2$ show uniform distribution in shorter relaxation time (τ$_1$) of several picoseconds. However, for a longer relation time (τ$_2$) of several tens of picoseconds, the decay at the center (red-dashed circle in Figure S3d, Supporting Information) of c-MoS$_2$ is significantly longer than those at the vertices (pink-dashed circle in Figure S3d, Supporting Information). This nonuniform distribution is clearly absent in t-MoS$_2$ as shown in Figure S3b, Supporting Information.

Furthermore, the dynamics of charge carriers in WS$_2$ morphologies are examined. Similar to t- and c-MoS$_2$ samples, Figure 3a reveals a uniform micro-Raman mapping of the in-plane E$_{1g}^{2g}$ mode of t-WS$_2$ flake. Raman spectra with the same intensity and peak position were also observed in both the E$_{1g}^{2g}$ and A$_{1g}$ modes (see Figure S4, Supporting Information). Time-resolved ΔT/T was then applied to three locations of the t-WS$_2$ flake, and the measured data are depicted in Figure 3b. Before 4 ps delay time, ΔT/T exhibits a similar behavior compared to the data shown in Figure 1c from t-MoS$_2$, a quick relaxation of negative ΔT/T at all locations. Interestingly, after 4 ps, a positive ΔT/T persists for relaxation time longer than 40 ps.

Contrary to the negative ΔT/T relaxation distribution observed in both t-MoS$_2$ and c-MoS$_2$ as expected from Equation (1), UPPM reveals a positive ΔT/T distribution in t-WS$_2$ after 3 ps with a slow relaxation as shown in Figure 3c. We attribute the sign change of ΔT/T t-WS$_2$ to the partially filled shallow defect states near conduction band minimum (CBM). A more detailed mechanism will be elaborated on later.

Lastly, Figure S5c, Supporting Information, shows a uniform micro-Raman mapped image of the in-plane E$_{1g}^{2g}$ mode of the h-WS$_2$ sample. Raman spectra of the in-plane E$_{1g}^{2g}$ and out-of-plane A$_{1g}$ mode analyzed at different locations exhibit the same Raman peak positions and intensities as shown in Figure S5b, Supporting Information. The discrepancy in the threefold symmetry for h-WS$_2$ in our micro-Raman mapping and previous reports could result from the low defect concentrations, leading to insufficient strain and therefore, hardly affects the Raman spectra at different domains, as revealed in new and aging WS$_2$ flakes. As shown in Figure 4a, UPPM measurements reveal a threefold symmetry of negative (red) ΔT/T and zero (empty) ΔT/T in h-WS$_2$ before 5 ps, which correlates to the threefold symmetry visible in the optical image of the measured h-WS$_2$ flake (inset of Figure 4b).

We assigned the red regions as α domains and empty regions as β domains. These domains were further revealed in ADF-STEM as shown in Figure 4c–e. Figure 4c displays the
domain boundary, while Figure 4d,e show the atomic structure and defects in the β domain and α domain, respectively. In the β domain, a few W vacancies are observed (Figure 4d), whereas in the α domain, large triangular defect areas dominate (Figure 4e). Our results are consistent with the previous h-WS2 study, which also uncovered the defect concentration/sizes with alternating α and β domains by STEM measurements.

Therefore, three locations in the alternating bright (α) and dark (β) domains of the apparent three-fold symmetry were examined and ΔT/T plotted in Figure 4f. As shown in the inset of Figure 4b, ΔT/T at β domain shows no decrease or increase (location C) through pump–probe process. In α domains, in contrast, position-independent ΔT/T relaxation behavior was revealed (location A and B), similar to the ΔT/T results in Figure 3b, showing negative ΔT/T relaxation before 7 ps and a persistent positive ΔT/T over 40 ps. These results support our direct observation of the carrier dynamic distribution in alternating domains of h-WS2 by UPPM.

In this section, we present a model to interpret the negative and positive transmittance changes in Figure 5. For all samples, the differential transmittance signal would be zero when only probe laser pulse with a photon energy of 1.55 eV is used (below the bandgap of materials), showing a constant transmittance depicted as t < 0 in Figure 5a,b. When the probe laser pulse is applied after a pump laser pulse with a photon energy of 3.1 eV, electrons in the valence band (VB) are excited to the CB, and the transmission of the material changes temporarily, as shown in t = 0 in Figure 5a,b. The resulting change in transmission depends on the relaxation behavior of these photoexcited carriers.

In Figure 5a, for t-MoS2, the pump laser pulse excites electrons from the VB to the middle of the conduction band, filling the energy states near the CBM with relaxation time τ0. At the same time, electrons from the CBM relax to the deep defect states with relaxation time τ1 or directly to the VB via phonon assist (or to deeper defect states) with long relaxation time τ2, during 0 < t < 2 ps. Because τ0 is shorter than τ1, more excited electrons relax back to the CBM before they have a chance to relax into defect states. The accumulated electrons at CBM contribute to negative ΔT/T even after t > 5 ps. Based on this model, more defects exist at the edge and the vertex for c-MoS2, creating additional relaxation channels for electrons at CBM. As a result, τ1,edge/vertex should be shorter than τ1,center (still longer than τ0), consistent with the slower ΔT/T recovery at the center (location C) observed in Figure 2b. Consequently, for both t-MoS2 and c-MoS2, only negative transmittance recovery to the original transmittance is observed by UPPM shown in red to empty points with time evolution in Figure 2c.

In contrast, for t-WS2 during 0 < t < 3–7 ps (defect-dependent), photoexcited electrons relax to CBM with a relaxation time τ0 while the electrons at CBM relax to the shallow defect states with shorter relaxation time τ1 (τ1 < τ0) shown in
Figure 5b. For the case of h-WS2, the τ_0 is $1.5 \approx 2.3$ ps, which is much longer than 0.4 ps in MoS2. Due to this slow intra-band relaxation of the photoexcited electrons in CB and fast relaxation of the electrons from the CBM into shallow defect states, the unbalance (output rate $>\$input rate) and missing CBM electrons contribute to a positive $\Delta T/T$ observed after $3-7$ ps (defect-dependent) in Figure 3b. It is important to note that because of more defects at the edges of t-WS2, CBM electrons at these locations relax to defects earlier than CBM electrons at the center, shown in red to blue points with time evolution by UPPM in Figure 3c. To provide a much clearer view of lifetimes between t-MoS2 and t-WS2 samples, the lifetime fitting and fitting parameters for all samples are provided (See Figure S6, Supporting Information).

Applying the same absorption mechanism from t-WS2 for h-WS2, we describe the threefold symmetry revealed from UPPM as a result of pumping efficiency difference. In α (bright) domains, photoexcited electrons relax to shallow defects or the VB similarly as the photoexcited electrons relax in t-WS2 as shown in Figure 5b; whereas in β (dark) domains, the pumping efficiency is too low because of the low absorption of visible light range in WS2 with W-vacancy$^{[14]}$ and the limited amount of photoexcited electrons result in non-observable transmittance change as indicated in Figure 3c. Thus, we have developed a useful optical tool UPPM, and corresponding transient absorption mechanism to study and visualize carrier dynamic distribution for 2D TMDs morphology. For the future, carrier dynamic distribution of various shapes, grain boundaries, or lateral heterostructure studies on TMDs can be of great interest by applying UPPM.

3. Conclusion

In this work, we investigated the shape-dependent ultrafast dynamics of tailored CVD MoS2 and WS2 morphologies and showed that carriers in t-MoS2 and t-WS2 flakes behave homogenously in these two samples. A position-dependent relaxation behavior of photoexcited carriers is revealed in c-MoS2 and h-WS2, which we attribute to varying defect states in these morphologies. Additionally, with the same transmission probe photon energy, a negative/positive transmission change observed in MoS2/WS2 sample is discussed with the existence of shallow defect states below CBM of WS2. The faster relaxation of CBM electrons to shallow defect states than the relaxation of photoexcited electrons to CBM leads to the positive transmission change in WS2 samples. Furthermore, a threefold symmetry of photoexcited carriers is observed in h-WS2 flake, which we attributed to varying defect states near the CBM, resulting in dissimilar pumping efficiency in the alternating domains. Our results provide a paradigm shift in device fabrication, such that, with the revealed carrier behaviors in MoS2 and WS2 samples, one can precisely choose TMDs of desired shapes and carrier dynamics for suitable optoelectronics.

4. Experimental Section

Controlled Growth of Triangular and Curved Triangular MoS2 Flakes:

Triangular and curved triangular MoS2 monolayers were synthesized via chemical vapor deposition (CVD) under atmospheric conditions, using a two-zone furnace fitted with a quartz tube of 7 cm in diameter. Prior to growth, a pre-annealed double-side polished $10 \times 10 \text{mm}^2$ sapphire was cleaned and used as the growth substrate. 0.002 M NaMoO$_4$·2H$_2$O as Mo source was coated on the pre-cleaned sapphire. The substrate was then placed at the center of the quartz tube and sufficient sulfur powder was placed upstream, 34 cm from the growth substrate. The quartz tube was then evacuated to 10^{-6} torr and subsequently purged with N$_2$ gas until an atmospheric condition is attained. Next, the oven was heated up to 850°C in 10 min, and maintained at this temperature for 15 min. For the growth of MoS2 flakes, Ar with a purity of 99.99% was used as the
carrier gas with 60 standard cubic centimeters per minute (sccm) under an inert atmosphere. To obtain triangular MoS$_2$, the growth substrate was placed face-up in a narrow crucible placed inside the 7 cm diameter quartz tube, to serve as a narrow reaction chamber. Curved triangular MoS$_2$ was grown by placing the coated sapphire substrate face-up on the back of a quartz boat in the 7 cm diameter quartz tube to serve as a wide reaction chamber.

Controlled Growth of Triangular and Hexagonal WS$_2$ Flakes: Triangular and hexagonal WS$_2$ monolayers were synthesized via CVD under atmospheric condition, using a two-zone furnace fitted with a quartz tube of 5 cm in diameter. Prior to growth, a pre-annealed double-side polished 10 × 10 mm sapphire was cleaned and used as the growth substrate. 0.008 m NaWO$_4$, ZH$_2$O solution was mixed with 60% w/v solution of iodixanol in water (OptiPrep, density gradient medium (Sigma-Aldrich, D1533)) to serve as the W source and coated on the pre-cleaned sapphire. The coated substrate was then placed at the center of the quartz tube and sufficient sugar powder was placed upstream, 16 cm from the growth substrate. The quartz tube was then evacuated to 10$^{-4}$ torr and subsequently purged with ultra-pure Argon gas till atmospheric pressure is attained. Next, the oven was heated up to 830 °C in 10 min, and maintained at this temperature for 15 min. For the growth of WS$_2$ flakes, Ar with a purity of 99.99% was used as the carrier gas with 60 sccm under an inert atmosphere. To obtain triangular WS$_2$, the growth substrate was placed face-up in a narrow crucible placed inside the 5 cm diameter quartz tube, to serve as a narrow reaction chamber. Hexagonal WS$_2$ was grown by placing the coated sapphire substrate face-up on the back of a quartz boat in the 5 cm diameter quartz tube to serve as a wide reaction chamber.

Micro-Raman Scattering: Raman scattering was performed with a 442 nm Ar-Ion laser focused on the sample using a 100x long-range objective, resulting in a laser spot size of 1 μm2 at the sample surface. The Raman spectra were obtained with a nitrogen-cooled charge-coupled device (CCD) camera and the spectrum resolution is 0.4 cm$^{-1}$.

Optical UPPM: The light source is a Ti:sapphire laser (Femtosource scientific XL300, Femtolaser) with a central wavelength of 800 nm, a repetition rate of 5.2 MHz, and a pulse width of 100 fs. For the pump pulses, a β-BaB$_2$O$_4$ nonlinear crystal is used to convert the wavelength from 800 nm into the probe frequency of a lock-in amplifier. The polarization of the pump and probe pulses were set to be perpendicular to eliminate the coherent spike around the zero-time delay.[43] Finally, the pump and probe pulses are combined by a dichroic beam splitter and collimated to a microscope combined with the pump and probe pulses are set to be perpendicular to eliminate the coherent spike around the zero-time delay.[43]

ADF-STEM Sample Preparation and Characterization: The WS$_2$ was grown by CVD on a sapphire substrate. The substrate was spin-coated with PMMA with 3000 rpm for 1 minute. The edges of the substrate were coated up onto sodium hydroxide face-up in a narrow crucible placed inside the 5 cm diameter quartz tube, to serve as a narrow reaction chamber. Hexagonal WS$_2$ was grown by placing the coated sapphire substrate face-up on the back of a quartz boat in the 5 cm diameter quartz tube to serve as a wide reaction chamber.

Received: February 24, 2022
Revised: March 22, 2022
Published online: April 3, 2022

Acknowledgements
S.B., M.M., L.G., N.H.N., and Y.T. acknowledge the support from the Federal Ministry of Education and Research (BMBF) under the “Make Our Planet Great Again - German Research Initiative” (MOPGA-GRI), 57429784, implemented by the German Academic Exchange Service Deutscher Akademischer Austauschdienst (DAAD). R.W. and N.K. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 182087777 - SFB 951. F.H. and C.L. acknowledge the support from the Ministry of Science and Technology of the Republic of China, Taiwan (Grant No’s. 109-2112-M-009-020-MY3 and 109-2121-M-009-003-MY3) and the Center for Emergent Functional Matter Science of National Yang-Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. B.S. and Y.H. acknowledge the support from Welch Foundation (C-2065-20210327).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.

Keywords
carrier bleaching effect, carrier dynamic distribution, MoS$_2$ and WS$_2$ morphology, shape-dependent properties, ultrafast pump–probe microscopy

[1] X. Xu, W. Yao, D. Xiao, T. F. Heinz, Nat. Phys. 2014, 10, 343.
[2] S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 2011, 5, 9703.
[3] A. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, ACS Nano 2012, 6, 1695.
[4] Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, Y. Iwasa, Science 2014, 344, 725.
[5] D. Lembke, S. Bertolazzi, A. Kis, Acc. Chem. Res 2015, 48, 100.
[6] M. Cetina, M. Jag, R. S. Louis, I. Fritsche, J. T. M. Walraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, E. Demler, Science 2016, 354, 96.
[7] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 2013, 8, 497.
[8] S. Memaran, N. R. Pradhan, Z. Lu, D. Rhodes, J. Ludwig, Q. Zhou, O. Ogunsolu, P. M. Ajayan, D. Smirnov, A. I. Fernández-Domínguez, F. J. García-Vidal, L. Balicas, Nano Lett. 2015, 15, 7512.
[9] X. Liu, T. Galfsky, Z. Sun, F. Xia, E. C. Lin, Y. H. Lee, S. Kéna-Cohen, V. M. Menon, Nat. Photonics 2014, 9, 30.
[10] A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone, Nat. Mater. 2013, 12, 554.
[11] G. Zhang, J. Wang, Z. Wu, R. Shi, W. OuYang, A. Amin, B. N. Chandrashekar, N. Wang, C. Cheng, ACS Appl. Mater. Interfaces 2017, 9, 763.
