LETTER

A 2.2 ppm/°C compensated bandgap voltage reference with a double-ended current trimming technique

Wenxin Yu\(^1\), Lenian He\(^2\), Jianxiong Xi\(^3\), Quan Sun\(^4\), and Changyou Men\(^5\)

Abstract This paper presents a high-precision bandgap voltage reference (BGR) with a double-ended current trimming technique. A high-order curvature compensation method is adopted to compensate for the nonlinearity of \(V_{\text{BE}}\). The proposed trimming technique using the one-time programmable (OTP) programming cancels the errors caused by process variation and enables bulk production, which achieves a best TC of 2.2 ppm/°C from -40 °C to 125 °C. The proposed BGR is fabricated in a 0.18-\(\mu\)m BCD process with an active area of 0.329 mm\(^2\). The line sensitivity is 0.18 %/V operating from 2.9 V to 3.6 V.

Key words: bandgap reference, temperature coefficient, current trimming, high-order curvature compensation

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Bandgap voltage reference (BGR), which provides stable voltage or current, plays an indispensable role in mixed systems [1]. The increasing demand for modern high-performance circuits, such as analog-to-digital converters and voltage regulators, raises a need for high-precision, low temperature coefficient (TC) voltage reference.

The basic idea of BGR is to add a proportional to absolute temperature (PTAT) voltage to the emitter-base voltage \(V_{\text{BE}}\) of bipolar junction transistor (BJT) \([2, 3]\), which compensate for the first-order linear term of \(V_{\text{BE}}\). Due to its remaining nonlinear portion, it’s hard to reduce TC to less than 10 ppm/°C [4]. Therefore, several effective high-order curvature compensation techniques are proposed to solve the problem \([5, 6, 7, 8, 9, 10, 11, 12]\). Besides, there still exist other error sources that degrade the performance of BGR, such as base resistance spread, temperature dependence of current gain \(\beta\), and opamp offsets. Chopping technique is used to cancel the opamp offset. The residual errors are mainly PTAT and can be removed by temperature trimming \([13, 14, 15, 16, 17, 18]\). Ref. [19] proposed a two-temperature trimming method based on a new base expansion, which achieves less than 1 ppm/°C simulation result. But this method needs one hot temperature, leading to a long time for measurement and trimming. Ref. [20] proposes a method of resistor trimming, dividing the resistor into several small resistors in series to adjust PTAT voltage. However, it is single-ended and it needs a complex control system to enter trim code. More importantly, due to process variation, the output voltages of different dies are discrete in the vertical direction, meaning they must be trimmed with these techniques.

This paper presents a BGR with a novel double-ended trimming technique. One-time programmable (OTP) with \(\text{°C}\) control is adopted to enter an 8-bit trim code for reducing time and cost. This trimming technique can trim all dies in a wafer at once. Results show that the BGR achieves a low TC of 2.2 ppm/°C over -40 ~125 °C, and a line sensitivity of 0.18 %/V.

The paper is organized as follows. Section II describes the principles of the proposed BGR structure with high-order curvature compensation. The double-ended current trimming technique using OTP is introduced in Section III. Section IV presents the simulation and test results. The conclusions are included in Section V.

2. Proposed BGR structure with high-order compensation

The diagram of the proposed BGR is shown in Fig. 1, which consists of a high-order compensation, a BGR core, a class-AB output, and a current trimming. High-order compensation is used to compensate for the nonlinearity of \(V_{\text{BE}}\). The current trimming technique is a-
applied to improve the accuracy of output voltage and achieve better TC. After testing the V_{OUT} curve as a function of temperature, the trimming circuit works for adjusting the PTAT current generated in BGR core. Then it re-outputs V_{ref} and V_{OUT} as V_{ref_trim} and V_{OUT_trim}. What’s more, the class-AB output increases the drive capacity of V_{OUT} to provide heavy current [21].

2.1 Schematic of proposed BGR core

The schematic of the proposed BGR core is shown in Fig. 2, including common-mode feedback (CMFB) amplifier, V_{ref} generation block, compensation block, and trimming block. CMFB circuit keeps V_X and V_Y equal to V_{ref} to make the loop stable. I_{trim} is the current produced by trimming block, which is injected into V_X or V_Y. V_{ref} generation block is used to generate bandgap reference V_{ref}. The current flows through R_1 can be written as:

$$I_c = \left(\frac{kT}{qR_1}\right)\ln n$$

(1)

Where k is the Boltzmann constant, q is the electron charge, and n is the ratio of Q_2 and Q_1. The value of n is set to be 9. The reference voltage V_{ref} can be written as:

$$V_{ref} = V_{BE,Q1} + (2R_2/R_1)(kT/q)\ln n$$

(2)

Adjusting the ratio of (R_2/R_1) could compensate for the first-order linear term of V_{BE}.

2.2 High-order curvature compensation

Considering the full expression of the collector current I_c of BJT and assuming that it’s proportional to some power m of T [2],

$$I_c \propto T^m$$

(3)

an accurate description of the temperature dependence of the base-emitter voltage can be written as:

$$V_{BE}(T) = V_g + \left(1 - \frac{T}{T_e}\right)T + \frac{T}{T_e}V_{BE}(T_e)$$

$$- (\eta - m) \frac{kT}{q} \ln \frac{T}{T_e}$$

(4)

where V_g is the extrapolated bandgap voltage at 0 K and η is a process-related parameter [22]. T_e is a reference temperature that is typically chosen as room temperature if the temperature ranges from -20 °C to 80°C [23, 24]. The purpose of the compensation is to extract and cancel the last-high order item of Eq. (4). The first-order linear term has been canceled through BGR core. Hence V_{g0} is left, which is the bandgap voltage we want. The compensation procedure is shown in Fig. 3. The final V_{ref} has been obtained by adding the voltage across R_2 generated by $I_{compensation}$ to the uncompensated one.

The compensation circuit is shown in Fig. 4 with output current $4I_{compensation}$ on the left, utilizing two important BJTs Q_8 and Q_9 which have the same size. Giving a constant current to Q_8 and a PTAT current to Q_9, the V_{BE} difference between Q_8 and Q_9 can be written as:

$$V_{BE,Q9} - V_{BE,Q8} = (kT/q)\ln(T/T_e)$$

(5)

That’s the voltage across R_6. Assuming the current through Q_{13} and Q_{14} are I_2 and I_1, the current $I_{compensation}$ through R_6 can be written as:

$$I_{compensation} = \frac{1}{2}(I_1 - I_2) = \frac{kT}{qR_6} \ln \frac{T}{T_e}$$

(6)

After current copy via BJT, the current through Q_{18} and Q_{19} are $2I_1$ and $2I_2$, respectively. Thus, the output current given to R_2 in Fig. 2 is $2(I_1 - I_2)$. The final output voltage V_{ref} after compensation can be written as:

$$V_{ref} = V_{BE,Q1} + (2I_c + 4I_{compensation})R_2$$

$$= V_{BE,Q1} + \frac{2R_2}{R_1} \frac{kT}{q} \ln n + 4 \frac{R_2}{R_6} \frac{kT}{q} \ln \frac{T}{T_e}$$

(7)
The high-order item of V_{BE} could be canceled through Eq. (7).

3. Current trimming technique using OTP

Trimming resistors is a typical method of the trimming network. Here proposes a new double-ended current trimming technique as shown in Fig. 5. I_{trim}, a portion of PTAT current, is the output current, which is injected into V_X or V_Y in Fig. 2 to adjust the PTAT current across R_2. The current trimming block is separated into two parts. The BIT<7:4> current copy part takes I_{ptat} as input and decreases the current by 1/2 in turn. Opamp A_1 and A_2 are used to make the drain voltage of M_{12} and M_{17} equal to V_D to improve the accuracy of current copy. For the same purpose, bipolar Q_{20}-Q_{24} as a current mirror is chosen for providing a very high output impedance from the collector of Q_{21}, and then reduces it from M_{20} to M_{23} one by one. M_{24}-M_{27} and M_{28}-M_{31} act as switches, which are controlled by an 8-bit trim code BIT<0> to BIT<7>. All trim codes are entered through I2C interface circuit, as Fig. 6 shows. The binary code 0 or 1 from the external interface is stored in 8 registers before sending to OTP. If BIT<3> is 0, x varies from 0 to 7, the current in this branch is added to I_{trim}, else, it is injected into GND, which greatly improves the speed of the circuit.

The trimming technique is used to achieve better TC in different corners. If the coefficient of PTAT voltage is larger than that of $V_{BE,Q1}$, I_{trim} will connect to V_X to reduce the PTAT current flows through R_2. On the contrary, it will connect to V_Y. According to the output voltage as a function of temperature before trimming, $(V_{OUT_{max}} - V_{OUT_{min}})$ can be written as:

$$V_{OUT_{max}} - V_{OUT_{min}} = \Delta V_1 = TC \cdot 10^6 \cdot (T_{max} - T_{min}) \cdot V_{avg}$$

Choosing target TC, the desired ΔV_2 can be written as:

$$\Delta V_2 = TC' \cdot 10^6 \cdot (T_{max} - T_{min}) \cdot V_{avg}$$

The voltage that needs to be trimmed can be estimated as:

$$\Delta V = \frac{(\Delta V_1 - \Delta V_2)}{2}$$

Combined with the resistance of R_2 and maximum current of I_{trim}, the trimmed voltage range from -2.6 mV to +2.6 mV.

Except for the current trimming, resistor trimming is also adopted to improve the accuracy of V_{ref}. The structure of resistor trimming is shown in Fig. 7, which separates R_2 into same resistors. Each resistor connects in parallel with a MOSFET under the control of OTP. The resistance of R_2 can be adjusted by controlling whether the MOSFETs are turned on or not.

4. Experimental results and discussion

The proposed BGR circuit was fabricated in a 180 nm BCD process and occupied an active area of 0.329 mm², which is shown in Fig. 8. The post-simulation results sh-
ow that the best post-simulated TC of BGR at tt corner is 1.6 ppm/°C, as shown in Fig. 9.

Fig. 10 presents the TC of 10 runs in different corners with a 3.3 V supply voltage. As shown in Fig. 10 (b), TC of 10 runs are all reduced to less than 2 ppm/°C after trimming and all post-trimmed curves have similar shapes.

Fig. 11 shows the 200 Monte Carlo simulation results of V_{OUT} at 50 °C, 3.3 V. The mean value μ across 200 runs is about 1.662 V with a standard deviation σ of 2.80 mV [30, 31]. Therefore, the σ/μ reaches 0.168%.

To determine trim code, select large samples on a wafer randomly to plot TC distribution. Choose the central value of TC to calculate trim code using Eq. (10). Due to process variation, the calculated results will have a certain deviation. Therefore, test and correct the most appropriate trim code to avoid the repeated burning of OTP on the chip during retest. Afterward, it can be used for all dies in the wafer.

Five chips were chosen to test, the chip microphotograph of BGR is shown in Fig. 12. The measured output voltage at 50 °C with supply voltage varying from 2.9 V to 3.6 V is shown in Fig. 13, which achieves a line sensitivity of 0.18 %/V. Fig. 14 presents the measured output voltage versus temperature [25]. The corresponding measured results after trimming are presented in Fig. 15(b) with all TC less than 10 ppm/°C.

Table 1 summarizes the performance of the proposed BGR in comparison to other reported results. Compared with [28, 29, 30], the proposed BGR achieves a best TC of 2.2 ppm/°C after trimming. And it obtains a wider temperature range than [27, 28, 29, 31]. Besides, it achie-
ves a 0.18 %/V line regulation, which is better than [29].

5. Conclusion

The proposed BGR circuit with a double-ended current trimming technique has been fabricated in a 180 nm BCD process. This technique supports batch trimming, and the obtained trim code could be used for all dies in a wafer. The OTP programming improves the chip and reduces production costs as well. Measurement results show that the BGR achieves a very low temperature coefficient of 2.2 ppm/°C and low line sensitivity of 0.18 %/V.

Acknowledgments

This work is supported by Research and development projects in key areas of Guangdong Province (No.2019B010143002) and Collaborative Innovation Project of Manufacturing High Quality Development Industry Chain of Zhejiang Province (No.SGYHT/20-JS-222).

References

[1] J. Hu et al., “A Novel 1.03 ppm/°C Wide-Temperature-Range Curvature-Compensated Bandgap Voltage Reference,” 2018 IEEE 2nd International Conference on Circuits, System and Simulation (ICCSS) (2018) 22 (DOI: 10.1109/CIRSYSSIM.2018.8525967).

[2] K. E. Kuijk: “A precision reference voltage source,” IEEE J. Solid-State Circuits 8 (1973) 222 (DOI: 10.1109/JSSC.1973.1050376).

[3] R. J. Widlar: “New developments in IC voltage regulators,” IEEE J. Solid-State Circuits 6 (1971) 2 (DOI: 10.1109/JSSC.1971.1050151).

[4] G. C. M. Meijer, et al.: “A new curvature-corrected bandgap reference,” IEEE J. Solid-State Circuits 17 (1982) 1139 (DOI: 10.1109/JSSC.1982.1051872).

[5] R. Wang, et al.: “A Sub-1ppm/°C Current-Mode CMOS Bandgap Reference With Piecewise Curvature Compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers 65 (2018) 904 (DOI: 10.1109/TCSI.2017.2771801).

[6] G. Zhu, et al.: “A 4.6-ppm/°C High-Order Curvature Compensated Bandgap Reference for BMIC,” IEEE Trans. Circuits Syst. II, Exp. Briefs 66 (2019) 1492 (DOI: 10.1109/TCSII.2018.2889808).

[7] N. Liu, et al.: “Sub-ppm/°C Bandgap References With Natural Basis Expansion for Curvature Cancellation,” IEEE Trans. Circuits Syst. I, Reg. Papers 68 (2021) 3551 (DOI: 10.1109/TCSI.2021.3096166).

[8] C. M. Andreou, et al.: “A Novel Wide-Temperature-Range, 3.9 ppm/°C CMOS Bandgap Reference Circuit,” IEEE J. Solid-State Circuits 47 (2012) 574 (DOI: 10.1109/JSSC.2011.2173267).

[9] J. Jiang, et al.: “A 5.6 ppm/°C Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point,” IEEE J. Solid-State Circuits 52 (2017) 623 (DOI: 10.1109/JSSC.2016.2627544).

[10] G. Pan, et al.: “A 1.8 V 0.918 ppm/°C CMOS bandgap voltage reference with curvature-compensated,” IEICE Electron. Express 16 (2019) 20190616 (DOI: 10.1587/exlex.16.20190616).

[11] P. Malcovati, et al.: “Curvature-compensated BiCMOS bandgap with 1-V supply voltage,” IEEE J. Solid-State Circuits 36 (2001) 1076 (DOI: 10.1109/4.933463).

[12] Y. Takahashi and M. Nawa: Japan Patent 652696 (1971). M. -, Ker, et al.: “New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation,” IEEE Trans. Circuits Syst. II, Exp. Briefs 53 (2006) 667 (DOI: 10.1109/TCSI.2006.876377).

[13] G. Ge, et al.: “A Single-Trim CMOS Bandgap Reference With a 3σ Inaccuracy of ±0.15% From -40°C to 125°C,” IEEE J. Solid-State Circuits 46 (2011) 2693 (DOI: 10.1109/JSSC.2011.2165235).

[14] T. Oshita, et al.: “High-Volume Testing and DC Offset Trimming Technique of On-Die Bandgap Voltage Reference for SOCs and Microprocessors,” in IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27 (2018) 821 (DOI: 10.1109/TVLSI.2018.2882567).

[15] Y. Ahn, et al.: “A Sub-1 ppm/°C CMOS Bandgap Voltage Reference With Process Tolerant Piecewise Second-Order Curvature Compensation,” 2020 IEEE 33rd International System-on-Chip Conference (SOCC) (2020) 231 (DOI:

Designs	[17]	[26]	[27]	[28]	[29]	[30]	[31]	This work
Process (um)	0.13	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Supply Voltage (V)	0.9-5.5	1.8	1.2	1.8	0.9-1.8	0.75-3.50	1.2	3.3
Reference (V)	0.615	1.142	0.707	0.52	0.261	0.319	0.596	1.65
TC (ppm/°C)	5.69-25.23	3.2-5.5	3.4-6.9	14.5 (simulated)	25.9	7.2 (simulated)	2.1 (simulated)	2.2-6.2
Temperature Range (°C)	-50–150	-40–125	-40–120	-40–120	-20–100	-20–80	-40–100	-40–125
PSR@DC (dB)	N/A	-76	-84	N/A	-49	-79	N/A	-68
Line Regulation (%V)	N/A	N/A	0.054	N/A	0.26	0.024 (simulated)	0.44 (simulated)	0.18
Active Area (mn²)	0.1	0.38	0.036	0.0312	0.063	N/A	0.0039	0.329
10.1109/SOCC49529.2020.9524787).

[16] Sen-Wen Hsiao, et al.: “A 1.5-V 10-ppm°C 2nd-order curvature-compensated CMOS bandgap reference with trimming,” 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 4 (DOI: 10.1109/ISCAS.2006.1692648).

[17] S. Sano, et al.: “A sub-1V 3.9μW bandgap reference with a 3σ inaccuracy of ±0.34% from −50°C to +150°C using piecewise-linear-current curvature compensation,” 2012 Symposium on VLSI Circuits (VLSIC) (2012) 22 (DOI: 10.1109/VLSIC.2012.6243770).

[18] C. Cai, et al.: “A high accuracy low-power bandgap voltage reference with trimming,” 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014) 1 (DOI: 10.1109/ICSICT.2014.7021565).

[19] N. Liu, et al.: “Bandgap Voltage VGO Extraction with Two-Temperature Trimming for Designing Sub-ppm°C Voltage References,” 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (2019) 1 (DOI: 10.1109/ISCAS.2019.8702697).

[20] Fei Lu, et al.: “Ultra-high precision bandgap voltage reference using a novel current trimming technique,” 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2016) 77 (DOI: 10.1109/ICSICT.2016.7998843).

[21] Y. Shen, et al.: “A 1.2 ppm°C TC, 0.094% Inaccuracy 3–18 V Supply-Range Bandgap Reference with Self-Compensation,” 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) (2021) 139 (DOI: 10.1109/ICTA53157.2021.9661711).

[22] Z. Yan, et al.: “Low-Voltage Bandgap Reference Circuit in 28nm CMOS,” 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2018) 14 (DOI: 10.1109/APCCAS.2018.8605676).

[23] Y. P. Tsividis: “Accurate analysis of temperature effects in I/SUB c/V/SUB BE/ characteristics with application to bandgap reference sources,” IEEE J. Solid-State Circuits 15 (1980) 1076 (DOI: 10.1109/JSSC.1980.1051519).

[24] S. Huang, et al.: “A Sub-1 ppm°C Bandgap Voltage Reference With High-Order Temperature Compensation in 0.18-μm CMOS Process,” IEEE Trans. Circuits Syst. I, Reg. Papers 69 (2022) 1408 (DOI: 10.1109/TCSI.2021.3139908).

[25] P. Li, et al.: “A Simple Bandgap Reference Based on VGO Extraction with Single-Temperature Trimming,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) 1 (DOI: 10.1109/ISCAS45731.2020.9180859).

[26] J. -H. Boo, et al.: “A Single-Trim Switched Capacitor CMOS Bandgap Reference With a 3σ Inaccuracy of +0.02%, −0.12% for Battery-Monitoring Applications,” IEEE J. Solid-State Circuits 56 (2021) 1197 (DOI: 10.1109/JSSC.2020.3044165).

[27] B. Ma and F. Yu: “A Novel 1.2–4.5-ppm°C Curvature-Compensated CMOS Bandgap Reference,” IEEE Trans. Circuits Syst. I, Reg. Papers 61 (2014) 1026 (DOI: 10.1109/TCSI.2013.2286032).

[28] Ran X, et al.: “A CMOS bandgap reference based on switched capacitor with temperature compensation method,” IEICE Electron. Express 19 (2022) 20210538 (DOI: 10.1587/elex.19.20210538).

[29] J. Hu, et al.: “A 1.8-nW sub-1-V self-biased sub-bandgap reference for low-power systems,” IEICE Electron. Express 18 (2021) 20210204 (DOI: 10.1587/elex.18.20210204).

[30] Y. Zeng, et al.: “A 12.8 nA and 7.2 ppm°C CMOS voltage reference without amplifier,” IEICE Electron. Express 15 (2018) 20171220 (DOI: 10.1587/elex.15.20171220).

[31] H. Xu, et al.: “A 2.1 ppm°C all-MOSFET voltage reference with a 1.2 V supply voltage,” IEICE Electron. Express 15 (2018)