Endogenous regulator of brain aging and neurodegeneration—One target multiple therapeutic interventions

Shukla M1 and Govitrapong P2,1

1 Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet Road, Lak Si, Bangkok, Thailand
2 Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand

Abstract
Most of the calamitous brain diseases are neurodegenerative in nature and undergo progressive degeneration with advancing age and eventually death. In spite of the immense human affliction and economic impact the medical need for such diseases is largely unmet and is currently facing many drug-development challenges. The potential of the disease modifying drugs pertaining to its cure, slowing the progression, or prevention of the onset is by itself an expensive and time consuming process. Therefore, therapeutic development in this particular area should emphasize on addressing the underlying cause, drug safety, efficacy, cost effectiveness and since the brain cells are rarely replaced in such disorders, priority should be given to interventions which along with preventing the degeneration of neurons also have the ability to stimulate neurogenesis with least toxic effects. Melatonin, the pineal neurohormone is one such therapeutic agent which not only has proved to halt or reverse the progression of most neurodegenerative diseases but its physiology (synthesis, secretion and endogenous levels) provides information about the development and progression of the disease which aids in identifying successful drug targets thus offering assurance in breakthrough treatment strategies.

Introduction
Neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HT) are age-related and the most challenging of all the central nervous system (CNS) diseases. Characterized by progressive decline in neurological function they pose a great socioeconomic burden also. Aging by itself is one of the major risk factors for these neurodegenerative diseases causing changes in brain size, vasculature and cognition with progressive memory loss along with disturbed neurotransmitter and hormonal homeostasis. There are many challenges confront when it comes to treatment strategies for these diseases and require a deep exploration of specialized mechanisms like safe and efficient delivery of the drugs across the blood brain barrier (BBB), drug toxicity and tolerance, from pharmacokinetics to pharmacodynamics along with drug side effects. In this line of therapeutic intervention melatonin, the pineal neurohormone qualifies to be one of the most potent endogenous regulators of brain aging and neurodegenerative diseases as mentioned above.

Therapeutic potential of melatonin in neurodegenerative and neuropsychiatric disorders
Melatonin is a functionally versatile indoleamine which modulates the physiological and molecular homeostasis. In humans melatonin levels decrease with advancing age and interestingly its levels are reduced in AD [1,2] and HT [3]. Whereas in PD; reduced concentration of circulating melatonin has been reported in PD patients [4] with different variations [3]. Changes in melatonin levels have also been observed in multiple sclerosis and cerebral ischemia [6] along with altered secretion and levels in cancer patients (for review: [7]. CSF melatonin levels are significantly decreased in bipolar disorder whereas decreased serum melatonin levels have been reported in major depressive disorder [8]. Decreased nocturnal synthesis of melatonin has also been accounted in age-related cardiovascular diseases like acute myocardial infarction and coronary artery diseases [9,10]. So, it could be envisioned how melatonin endogenously regulates aging and a plethora of brain disorders.

Melatonin stimulates the neuroprotective mechanisms and prevents neuronal vulnerability to toxic damage. Aging brain is vulnerable to oxidative damage perhaps due to reduced melatonin secretion. In this context, melatonin due to its antioxidant properties [11] provides neuroprotection [12,13] to the aging brain. It has proven to be efficient in treating AD and MCI patients [14] and our latest research delineated a novel mechanism by which melatonin aids in preventing AD pathology [15,16] and reverses age related changes in aged mouse hippocampus [17]. Hippocampal neurogenesis is associated with cognitive abilities and is decreased in AD [18] and melatonin increases stem cell proliferation in hippocampus [19] in a receptor dependent manner [20] whereas when used as a supplement in culture medium it improves the efficiency of in vitro produced mammalian embryos [21]. Several lines of evidence have been accounted regarding neuroprotective role of melatonin in PD [22-24] along with its possible therapeutic use in Multiple sclerosis and cerebral ischemia [6]. Not only that melatonin delays disease onset and mortality in a transgenic mouse model of HT [25] and its administration in cancer patients...
has been associated with improved outcomes and survival along with better tolerance of chemotherapy in such patients [26]. Interestingly, melatonin can exert both direct and indirect antitumor effects [27].

The complex etiology of mental diseases also complicates the development of antidepressive drugs. Although, role of melatonin in psychiatric treatment has been discussed before (for review; [28]), recent advances in melatonin research have focused on mental diseases like anxiety, depression, schizophrenia, autism, attention deficit hyperactivity disorder etc.; emphasizing on alterations in melatonin secretion with associated changes in biological rhythms of such disorders [29]. Melatonin and its agonists (ramelteon and tasimelteon) are recommended for patients with Bipolar disorder [30] and agomelatine, which is an analogue of melatonin shows similar antidepressant effects like venlafaxine, fluoxetine, and sertraline [31] but with negligible adverse reactions.

Therapeutic effects ascribed to melatonin are not only restricted to above mentioned disorders. This magical neurohormone also regulates and modulates the cardiovascular [32], immune [33] systems and hormone secretion and metabolism [34]. With antitumor [35,36], anti-inflammatory [37], and pain modulating properties [38] it qualifies to be a broad-spectrum therapeutic agent. Although substantial research based studies have well documented the beneficial and therapeutic effects of melatonin; advancement in identifying and developing melatonin and its analogues should be targeted to analyze its potential and mechanisms involved in onset and progression of various diseases for more effective and standardized treatments and drug development.

References
1. Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pevet P, et al. (1990) Daily and mechanisms involved in onset and progression of various diseases melatonin and its analogues should be targeted to analyze its potential be a broad-spectrum therapeutic agent. Although substantial research
2. Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF, et al. (1999) Decreased hormone secretion and metabolism [34]. With antitumor [35,36], anti-inflammatory [37], and pain modulating properties [38] it qualifies to be a broad-spectrum therapeutic agent. Although substantial research
3. Kalliolia E, Silajdzic E, Nambron R, Hill NR, Doshi A, et al. (2014) Plasma melatonin
4. Liu JY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF, et al. (1999) Decreased hormone secretion and metabolism [34]. With antitumor [35,36], anti-inflammatory [37], and pain modulating properties [38] it qualifies to be a broad-spectrum therapeutic agent. Although substantial research
5. Escribano BM, Colin-Gonzalez AL, Santamaria A, Tunez I (2014) The role of melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder.
6. Rondanelli M, Faliva MA, Perna S, Antoniello N (2013) Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin Exp Res 25: 499-510.
7. Bumb JM, Enning F, Mueller JK, van der List T, Rohleder C, et al. (2016) Differential melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder. Compr Psychiatry 68: 34-39.
8. Yaprac M, Altun A, Vardar A, Aktor M, Ciftci S, et al. (2003) Decreased nocturnal synthesis of melatonin in patients with coronary artery disease. Int J Cardiol 89: 103-107.
9. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia MJ, Sanchez J, Marreto F, et al. (2002) Decreased nocturnal melatonin levels during acute myocardial infarction. J Pineal Res 33: 248-252.
10. Sofic E, Rimpapa Z, Kundurovic Z, Sapcanin A, Tahirovic I, et al. (2005) Antioxidant capacity of the neurohormone melatonin. J Neural Transm (Vienna) 112: 349-358.
11. Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R, et al. (2006) Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2: 15.
12. Medeiros CA, Carvalheiro de Bruin PF, Lopes LA, Magalhaes MC, de Lourdes Seabra M, et al. (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neural 254: 459-464.
13. Cardinali DP, Furio AM, Brosoff LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8: 218-227.
14. Shukla M, Hoo HH, Wintachai P, Hernandez JF, DuBois C, et al. (2015) Melatonin stimulates the nonamyloidogenic processing of betaAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res 55: 151-165.
15. Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, et al. (2015) Melatonin regulates the transcription of betaAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res 59: 308-320.
16. Mukda S, Panmanee J, Boontem P, Govitrapong P (2016) Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neurosci Lett 621: 39-46.
17. Martinez-Canabal A (2014) Reconsidering hippocampal neurogenesis in Alzheimer’s disease. Front Neurosci 8: 147.
18. Sontibundhu A, Phansawan-Pujito P, Govitrapong P (2010) Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res 49: 291-300.
19. Tocharus C, Puriboriboon Y, Jumnanee T, Tocharus J, Ethikhuwpragnke K, Govitrapong P (2014) Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 275: 314-321.
20. Komminou ER, Remiao MH, Lucas CG, Domingues WB, Basso AC, et al. (2016) Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model. PLoS One 11: e0157651.
21. Mayo JC, Sintz RM, Tan DX, Antolin I, Rodriguez C, et al. (2005) Melatonin and Parkinson’s disease. Endocrine 27: 169-178.
22. Nutto ND, Polan DP, Iacoviti L (2002) Antioxidant compounds protect dopamine neurons from death due to oxidative stress in vitro. Brain Res 931: 181-185.
23. Ortiz GG, Crespo-Lopez ME, Moran-Moguel C, Garcia JI, Reiter RJ, et al. (2003) Protective role of melatonin against MPTP-induced mouse brain cell death DNA fragmentation and apoptosis in vivo. Neuro Endocrinol Lett 22: 101-108.
24. Wang X, Sirianni A, Pei Z, Corriner K, Smith K, et al. (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31: 14406-14507.
25. Cutando A, Lopez-Valverde A, Arias-Santiago S, J DEV, RG DED, et al. (2012) Role of melatonin in cancer treatment. Anticancer Res 32: 2747-2753.
26. Di Bella G, Mascia F, Guaitani L, Di Bella L (2013) Melatonin anti-cancer effects: review. Int J Mol Sci 14: 2410-2430.
27. Vacchi R, Cuppi C, Iapichino S, Bossini L, Pieraccini F, Castrogiovanni P, et al. (2001) Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol 22: 18-32.
28. Sun X, Wang Y, Jiang N, Du Z, Sun H, et al. (2016) The Potential Role of Melatonin on Mental Disorders: Insights from Physiology and Pharmacology. Bipolar Disorder 2: 1-4.
29. Geoffroy PA, Etain B, Franchi JA, Bellivier F, Ritter P, et al. (2015) Melatonin and Melatonin Agonists as Adjunctive Treatments in Bipolar Disorders. Curr Pharm Des 21: 3352-3358.
30. Hickie IB, Rogers NL (2011) Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancer 378: 621-631.
31. Sewerynek E (2002) Melatonin and the cardiovascular system. Neuro Endocrinol Lett 23 Suppl 1: 79-83.
32. Dafreto-Vico A, Reiter RJ, Lardone PJ, Herrera JL, Fernandez-Montesinos R, et al. (2006) The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs 7: 423-431.
33. Barrenetxe J, Delargunpe P, Martinez IA (2004) Physiological and metabolic functions of melatonin in cancer treatment. J Pineal Res 38: 14507.
34. Bueterева L, Sauer LA, Daubich RT (2002) Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem 2: 113-132.
36. Mills E, Wu P, Seely D, Guyatt G (2005) Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. *J Pineal Res* 39: 360-366.

37. Genovese T, Mazzon E, Muia C, Bramanti P, De Sarro A, et al. (2005) Attenuation in the evolution of experimental spinal cord trauma by treatment with melatonin. *J Pineal Res* 38: 198-208.

38. Peres MF (2005) Melatonin, the pineal gland and their implications for headache disorders. *Cephalalgia* 25: 403-411.

*Copyright*: ©2017 Shukla M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.