Learning by message-passing in networks of discrete synapses

Alfredo Braunstein\textsuperscript{1} and Riccardo Zecchina\textsuperscript{1}

\textsuperscript{1}ICTP, Strada Costiera 11, I-34100 Trieste, Italy

We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. $n \approx 10^5 - 10^6$). The algorithm can be turned into an on-line fault tolerant learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.

PACS numbers: 02.50.-r, 75.10.Nr, 87.10.La, 05.45.-a, 87.10+c, 05.20.-y

Learning and memory are implemented in neural systems mostly through distributed changes of synaptic efficacies\cite{1}. The learning problem in neural networks (NN) asks whether one can find values for the synaptic efficacies such that a set of $p$ patterns are stored simultaneously. Depending on the structure of the network — feed-forward or recurrent — the storage problem is either seen as a classification problem (input patterns are classified according to the output of the network) or as an attractor dynamics problem (patterns are the external stimuli which drive the dynamics of the network to the closest attractor)\cite{2}. In any case, understanding the mechanisms underlying synaptic changes constitutes a crucial step for modeling real neural circuits (e.g. the Purkinje cells in the cerebellum\cite{3}). On the purely theoretical side many basic results have been derived, ranging from information theoretic bounds\cite{4,5} and statistical physics analysis of learning capabilities\cite{6} in model NN to concrete algorithms, like artificial pattern recognition systems. Still there exist many open conceptual problems that are related to the need of satisfying realistic constraints\cite{5}. Modeling material synapses is possibly one of the most basic ones, the discrete case (and specifically the switch-like binary one) being of particular experimental\cite{7} and technological interest\cite{8}; recent experiments — at the single synapse resolution level — have shown that some synapses undergo potentiation or depression between a restricted number of discrete stable states through switch-like unitary events\cite{9}. It is has been known since many years that the discreteness of synaptic efficacies makes the learning problem extraordinarily difficult\cite{10}: even the task of finding binary synaptic weights for a single layer network (the binary perceptron) which classifies in two classes a given set of patterns is both NP-complete and computationally hard on average (as observed in classical numerical experiments). In spite of the fact that binary networks can in principle classify correctly an extensive number $p = \alpha n$ of random patterns with $n$ binary synapses\cite{11}, practically there exists no known algorithm which is able to store exactly more than just a logarithmic number $O(\log n)$ as soon as a sub-exponential cut is put on their running time.

Here we present a distributed message-passing algorithm of statistical physics origin which is able to store efficiently an extensive number ($p = \alpha n$ with $\alpha > 0$) of random patterns in binary NN characterized by a wide range of different topologies. We consider single and multi-layer networks with local connectivities of the neurons ranging from finite to extensive. The typical computational complexity of the algorithm will be shown to scale roughly as $O(n^2 \log(n))$, that is almost linearly on the size of the input for an extensive number of patterns. This fact together with the parallel nature of the algorithm allows to easily find optimal synaptic weights for systems as large as $n = 10^6$ with $\alpha$ relatively close the critical value $\alpha_c$ above which perfect learning is no longer possible. From the algorithmic viewpoint, our solution to the binary learning problem should be seen as an example of solution of constraint satisfaction problems over dense factor graphs (a graphical representation of combinatorial constraints used in information theory\cite{14,15}). As such, our result show how the recent progress in combinatorial optimization by statistical physics and message passing techniques which have allowed to solve efficiently famous combinatorial problems like random $K$-satisfiability\cite{16} or random graph $Q$-coloring\cite{17}, can be extended to other classes of problems in which constraints involve an extensive number of variables.

The NN models that we shall consider are composed of simple threshold units connected by binary weights $w_{j,k} = \pm 1$. For the sake of simplicity we consider two layer networks with one output unit and with weights of the output layer that are fixed $w_{\ell,\text{out}} = 1$ (see Fig. 1). Each of the $K$ internal units is connected to $c_{\ell}$ inputs in either a tree-like structure or in an overlapping way. We will consider NN with connectivities ranging from finite to extensive, i.e. take $c_{\ell} = O(n^\epsilon)$ where $\epsilon \in [0, 1]$. In order to keep extensive the overall number of synapses we chose $K \propto \langle c \rangle^{-1}$, where $\langle c \rangle$ is the average connectivity. Under these conditions, the information theoretic bounds on the maximum number of bits which can be stored in the binary synapses are compatible with the exact storage of an extensive number of patterns ($p = \alpha n$, $\alpha > 0$)\cite{18}. The output $\tau_{\ell}$ of each internal unit is just the sign...
perceptron is an elementary device which just computes $w_i$. Consider a perceptron with binary weights $w_i$. The system to polarize to a single optimal configuration of the large value of $K$ or for simplicity let’s fix a threshold value $\tau_i$. For instance the storage capacity $\alpha_c$ has been computed for different finite values of $K$. Interestingly enough, the general scenario for binary networks is that while the storage capacity is indeed extensive the geometric structure of the space of solutions in the satisfiable region $\alpha < \alpha_c$ is rather complex. Optimal synaptic configurations are typically far apart in Hamming distance and coexist with an exponential number of sub-optimal configurations in which an extensive number of errors are made. Sub-optimal states act as dynamical traps for learning algorithms. Here we first show how the so-called belief propagation (BP) equations (a variant of the Bethe approximation in statistical physics) can be applied on single problem instances, providing useful information such as the entropy of solutions, agreeing with statistical physics results in the large $n$ limit. Next we modify the equations by introducing a local reinforcement term which forces the system to polarize to a single optimal configuration of synaptic weights, effectively turning BP into a solver for this problem.

For simplicity let’s fix a threshold value $\gamma$ and first consider a perceptron with binary weights $w_i \in \{-1, 1\}$ for $i = 1, \ldots, n$. Given an input pattern $\xi$, the binary perceptron is an elementary device which just computes the function $f_w(\xi) = \text{sign} (\sum_i w_i \xi_i - \gamma) \in \{-1, 1\}$. Patterns $\xi$ will be then classified by this perceptron by its output into the two preimage sets of the function $f_w$. Given two sets of random patterns $\Xi_\pm$ we want to find vector of synaptic weights $w$ such that $f_w(\Xi_\pm) = \pm 1$. Consider the uniform probability space over the set $W$ of all optimal assignment. We are interested in single marginals, that is the probabilities $P(w_i = \pm 1)$ that the single synapses take a certain binary value. Under some weak correlations assumption, it is possible to write a close set of equations for these quantities. Such BP equations provide results which are believed to be exact in certain classes of problems defined over sparse factor graphs in which the size of loops tends to infinity with the problem size (e.g. in low density parity check codes). In the case of problems corresponding to highly connected factor graphs (like the learning problem we discuss here) the validity of the BP approach relies on an apparently stronger condition, the so called clustering hypothesis, in which the weak correlations condition arises from the weak effective interactions among variables. Until recently no algorithmic approach existed that allowed to study the properties of a given problem instance of this type. Previous attempts in this direction were based on iterations of the mean–field TAP equations which turn out to diverge in most cases. Recently BP has been used to study some densely connected problems on which it was shown that BP equations converge while TAP equations do not, even though the fixed point of the two is the same.

At variance with statistical mechanics results where the average over the patterns and the limit $n \to \infty$ are done, here we are interested in single problem instances. Thanks to the concentration of measure of the error-energy function, the so called self-averaging property, we expect the quantities estimated by the equations on single problem instances to match the typical case as $n$ gets large enough. Despite the fact that the approximations behind BP become exact only as $n$ gets large, also at finite $n$ the results provide very good approximations which can be used for algorithmic purposes (see Fig. 2). A large $n$ expansion of the BP equations for the $K = 1$ and $\gamma = 0$ network learning problem read:

$$m^t_{i-a} = \tanh (h^t_{i-a})$$

$$u^t_{b-i} = f \left( \frac{1}{\sqrt{n}} \sum_{k \neq i} \xi^t_k m^t_{k-b}, \frac{1}{n} \sum_{k \neq i} (m^t_{k-b})^2 \right)$$

$$h^t_{i-a} = \frac{1}{\sqrt{n}} \sum_{b \neq a} \xi^t_b u^t_{b-i}$$

where $f(a, b) = \left( \int_0^{+\infty} \exp \left( -\frac{(x-a)^2}{2(1-b)} \right) dx \right)^{-1}$. At the fixed point $m_{i-a}$ represents the mean value of $w_i$ over the set of $W^{(a)}$ of synaptic weight configurations satisfying all patterns except pattern $\xi^a$. The quantity $h_{i-a}$ is referred to as local field that synapse $i$ feels in absence
of pattern $a$. The fixed point of these equations provide the information we are seeking for. Solving the equations by iteration proved itself to be an efficient technique, fully distributed, which is known as a message-passing method (the components of the vectors $u$ and $h$ can be thought as messages running along edges of the factor graph, see Fig. 1). From the fixed point we may compute the list of all probability marginals $P(w_i = \pm 1)$ together with global quantities of interest such as the entropy (normalized logarithm of the size of the set $W$). As expected from the statistical mechanics results [11], the entropy is monotonically decreasing with $\alpha$ and vanishes at $\alpha_c \sim 0.833$ for $n$ large enough. Similar results can be derived for multilayer networks as shown in Fig. 2. The BP equations can be adapted in a straightforward way to networks of arbitrary topology, even if the notation is slightly more encumbered. In general this network will be formed by connecting several perceptron sub-units. The corresponding factor graph can be recovered trivially as in Fig. 1 by just replicating every perceptron for each pattern, and adding a set of auxiliary units to represent the output of every perceptron sub-unit of the network. It will suffice then to derive a set of slightly more general BP equations for the perceptron which we omit for the sake of brevity. We have studied analytically the dynamic behaviour of the BP algorithm in the large $n$ limit by the so called density evolution (DE) technique (see e.g. [20] for details on DE). In the upper inset of Figure 2 we can see the comparison of numerical simulations of large single instances with the analytical prediction of the quantity $Q = 1 - \frac{1}{\sqrt{n}} \sum_b \sum_\alpha m_{b\rightarrow \alpha}^2$ at every iteration step. In the spirit of [10], a way of using the information provided by BP is to “decimate” the problem. This approach is indeed feasible and leads to optimal assignments. However here we focus on a much more efficient and fully distributed version [21] of the algorithm. The idea is to introduce an extra term into Eqs. (1-3) enforcing $h_i = \pm \infty$ at a fixed point, and use $w_i = \text{sign} (h_i)$ as a solution. This term is introduced stochastically (with probability 0 at the first iteration and probability 1 at $t \to \infty$) to improve convergence. We will replace Eq. (3) with Eqs. (4-5)

$$h_i^{t+1} = \frac{1}{\sqrt{n}} \sum_b \epsilon_i^b u_{b \rightarrow i}^t + \left\{ \begin{array}{ll} 0 & \text{w.p. } \gamma_t \\ h_i^t & \text{w.p. } 1 - \gamma_t \end{array} \right.$$  

(4)

$$h_i^{t+1} = h_i^{t+1} - \frac{1}{\sqrt{n}} \epsilon_i^a u_{a \rightarrow i}^t$$  

(5)

We will use $\gamma_t = \gamma_0^t$ for $0 \leq \gamma_0 \leq 1$ (though other choices are also possible). Choosing $\gamma_0 = 1$ clearly gives back the original BP set of equations, Eqs. (1-3). We note that a similar inertia term $\gamma h_i^t$ (constant $\gamma$) was introduced in [22], which would correspond to average the one in Eq. (1) Note also that the extra term for $\gamma = 0$ corresponds to adding an external field equal to the local field computed in the last step. Remembering that “fixing” a variable as in the standard decimation procedure is equivalent to adding an external field of infinite intensity, one can think of this procedure as a sort of smooth decimation in which all variables (not only the most polarized ones) get an external field, but the intensity is proportional to their polarization. Numerical experiments of learning randomly generated patterns have been carried out on systems of various sizes (up to $n = 10^9$), with different choices of $K$ and with different topologies (overlapping and tree-like). Some are reported in Fig. 3. An easy to use version of the code is made available at [23]. It is not hard to think how the same algorithm could be made effective also in presence of faulty contacts and heterogeneous discrete synaptic values. (which need not to be identified a priori as the message-passing procedure, distributed over the same graph, could incorporate defects by modifying accordingly the messages). Even for the limit case of continuous synapses the process converge to optimal solutions in a wide range of $\alpha$.

Experiments have been performed using an improved version of Eqs. (1-3) Using further linearizations like in [21] one can obtain a new set of equations that are equivalent to Eqs. (1-3) up to an error of $O (n^{-1/2})$, having two main implementation advantages: memory requirements of just $O (n)$ (in addition to the set of patterns which amounts to $\alpha n^2$ bits), and needing just $O (n)$ (slow) hyperbolic function computations in addition to $O (n^2)$ elementary (fast) floating point operations. BP equations can also be simplified by approximating $m_{k \rightarrow b}$ by $m_k$ in Eqs. (1-3) (without correction terms), giving a simple closed expression in the quantities $\{m_i^t\}$. The resulting equation is not asymptotically equivalent to BP
anymore (although the approximation itself has an error of $O(n^{-1/2})$ it participates in a sum of $n$ terms), but nonetheless gives comparable (just slightly worse) algorithmic performances. Of particular interest are the corresponding equations for $\gamma_0 = 0$ (full reinforcement) which take a simple additive form if written in terms of the local fields $h^\tau$:}

$$h_{i}^{\tau+1} = \sum_{t' \leq t} \sum_{b} \frac{\xi_{t'}^{b}}{\sqrt{n}} u_{b}^{\tau} \sim h_{i}^{\tau} + \frac{\xi_{t'}^{b}}{\sqrt{n}} u_{b}^{\tau}, \quad (6)$$

where $u_{b}^{\tau} = f \left( \sum_{k \neq i} \frac{\xi_{t'}^{b}}{\sqrt{n}} \tanh h_{k}^{\tau} - \frac{1}{n} \sum_{k \neq i} \tanh^{2} h_{k}^{\tau} \right)$ and $t$ scales as $\alpha n \tau$. By choosing at time $\tau$ one pattern $\xi_{t'}$, from the set $\Xi$, Eq. (6) implements a sequential learning protocol, still leading to an extensive memory capacity (around $\alpha_{\text{max}} \approx 0.5$ for the binary perceptron). The simplicity of Eq. (6) represents a proof-of-concept of how highly non-trivial learning can take place by message-passing between simple devices disposed over the network itself. This fact could shed some light on the biological treatment of information in neural systems [24].

This work has been supported by the EC, MTR 2002-00319 ‘STIPCO’ and FP6 IST consortium ‘EVERGROW’. We thank the ISI Foundation for hospitality.

[1] D.O. Hebb, Organization of Behavior (New York: Wiley, 1949); P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001)
[2] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City etc., 1991)
[3] N. Brunel, V. Hakim, P. Isole, J.-P. Nadal, B. Barbour, Neuron 43, 745-757 (2004)
[4] G.J. Mitchison, R.M. Durbin, Biological Cybernetics 60, 345-356 (1989)
[5] J.H. Kim, J.R. Roche, J. Comput. System Sci. 56, 223–252 (1998)
[6] A. Engel, C. van den Broeck, Statistical mechanics of learning (Cambridge University Press, 2001).
[7] S.B. Laughlin, T.J. Sejnowski, Science 301, 1870-1874 (2003); A.M. Zador, L.E. Dobrunz, Neuron 19, 1-4 (1997)
[8] D.H. O’Connor, G.M. Wittenberg, S. S.-H. Wang, Proc. Natl. Acad. Sci. USA 102, 9679-9684 (2005); C.C.H. Petersen, R.C. Malenka, R.A. Nicoll, J.J. Hopfield, Proc. Natl. Acad. Sci. USA 95, 4732-4737 (1998)
[9] Ö. Türel, Lee J. Hoon, X. Ma, K. Likharev, Int. J. Circ. Theor. Appl. 32, 277-302 (2004)
[10] A.L. Blum, R.L. Rivest, Neural Networks 5, 117-127 (1992); E. Amaldi, On the complexity of training perceptrons, in Artificial Neural Networks, T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds., Vol. 1, 55-60 (Elsevier Science Publisher, North-Holland, Amsterdam, 1991)
[11] W. Krauth, M. Mézard, J. de Physique 50, 3057-3066 (1989); E. Barkai, D. Hansel, H. Sompolinsky, Phys. Rev. A 45, 4146-4160 (1992); M. Mézard, J. Phys. A 22, 2181 (1989); H.S. Seung, H. Sompolinsky, N. Tishby, Phys. Rev. A 45, 6056 (1992); E. Barkai, I. Kanter, Europhys. Lett. 14, 107 (1991); R. Penney and D. Sherrington, J. Phys. A 26, 6173 (1993)
[12] M. Tsodyks, Mod. Phys. Lett. B 4, 713 (1990); D.J. Amit, S. Fusi, NETWORK 3, 443 (1992); D.J. Amit, S. Fusi, Neural Computation 6, 957-982 (1994)
[13] H. Horner, Z. Phys. B 86, 291-308 (1992)
[14] D.J.C. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge University Press, 2003)
[15] J.S. Yedidia, W.T. Freeman, Y. Weiss, IEEE Transactions on Information Theory 51, 2282 (2005)
[16] R. Monasson, R. Zecchina, Phys. Rev. Lett. 76, 3881 (1996); M. Mézard, R. Zecchina, Phys. Rev. E 66, 056126 (2002); M. Mézard, G. Parisi, R. Zecchina, Science 297, 812-815 (2002); A. Braunstein, M. Mézard, R. Zecchina, Random Structures and Algorithms 21, 201-226 (2005)
[17] R.Mulet, A.Pagnani, M.Weigt, and R.Zecchina, Phys. Rev. Lett. 89, 268701 (2002); A. Braunstein, R. Mulet, A. Pagnani, M. Weigt, R. Zecchina, Phys. Rev E 68, 036702 (2003)
[18] S. Cocco, R. Monasson, R. Zecchina, Phys. Rev. E 54, 717-736 (1996).
[19] D.J. Thouless, P.W. Anderson, R.G Palmers, Philosophical Magazine 35, 593-601 (1977)
[20] Y. Kabashima, J. Phys. Soc. Jpn. 72,1645-1649 (2003); Y. Kabashima, J. Phys. A 36,11111-11121 (2003); J.P. Neirotti and D. Saad, Europhys. Lett. 71, 866 (2005)
[21] J. Chavas, C. Furtelhner, M. Mezard, R. Zecchina, J. Stat. Mech. (2005) P11016
[22] T. Murayama, Phys. Rev. E 69, 035105(R) (2004). H. Hosaka and Y. Kabashima, Statistical mechanics approach to lossy data compression: theory and practice, preprint, arXiv:cs.IT/0509086 (2005)
[23] http://www.ictp.it/~zecchina/SP
[24] C. Baldassi, A. Braunstein, N. Brunel, C. Grosso, R. Zecchina, in preparation (2005)