Two new species in the fern genus *Lomariopsis* (Lomariopsidaceae) from East Asia

Yi-Hsuan Wu¹, Chih-Yun Sun², Atsushi Ebihara³, Ngan Thi Lu⁴,⁵, Germinal Rouhan⁶, Li-Yaung Kuo¹,²

¹ Institute of Molecular & Cellular Biology, National Tsing Hua University, No.101, Sec. 2, Guangfu Rd., Hsinchu City, Taiwan 
² Department of Life Science, National Tsing Hua University, No.101, Sec. 2, Guangfu Rd., Hsinchu City, Taiwan 
³ Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki, Japan 
⁴ Department of Biology, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam 
⁵ Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam 
⁶ Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles; CP 39, 57 rue Cuvier 75005 Paris, France

Corresponding author: Li-Yaung Kuo (lykuo@life.nthu.edu.tw)

Abstract

Two East Asian *Lomariopsis* (Lomariopsidaceae, Polypodiales) species, *Lomariopsis moorei* and *Lomariopsis longini*, which were previously misidentified as *L. spectabilis*, are here described as new species based on evidence from morphological characters and a molecular phylogeny. The two species differ from the three other described species in East Asia by their venation, pinna shapes, and perine morphology. A phylogeny based on a combined dataset of three chloroplast regions (*rbcL* + *rps4-trnS + trnL-L-F) showed that *L. moorei* and *L. longini* each formed a well-supported monophyletic group which was distantly related to both *L. spectabilis* and the other morphologically similar East Asian species, *L. boninensis*.

Keywords

Cryptic species, independent gametophyte, *Lomariopsis boninensis*, *Lomariopsis longini*, *Lomariopsis moorei*, *Lomariopsis spectabilis*, phylogeny, systematics
Introduction

Lomariopsis Fée is the most species rich genus in the fern family Lomariopsidaceae and contains approximately 60 spp., accounting for 85% of the family (PPG I 2016). This genus has a wide distribution in tropical and subtropical regions; there are 15 species in the Neotropics (Moran 2000), nine species in Africa (Roux 2009), 11 species in the islands of the Indian Ocean (Holttum 1939b; Roux 2009; Rakotondrainibe and Jouy 2017), and 12 species in Asia and the Oceanian region (Holttum 1932, 1939a, 1966, 1978). The latest phylogeny of Lomariopsis included 24 species (ca. 40% of the species diversity in Lomariopsis), but only two species from Asia and the Oceanian region have been sampled (Chen et al. 2017) while the vast majority (ca. 10 species) from these areas have not yet been surveyed. In addition, because gametophytes of Lomariopsis species are able to establish as long-lived, asexual colonies in the wild (Watkins and Moran 2019), several species are found as gametophyte-only populations, which is called independent gametophytes (Pinson et al. 2017). In Japan and Taiwan, gametophytes of unknown species have been also reported (Ebihara et al. 2013; Wu et al. in press), a finding which further points out that the efforts of systematics research for Asian Lomariopsis remains inadequate, and there might have been undocumented and cryptic species.

To investigate phylogenetically Lomariopsis from these poorly sampled areas, we sampled most Asian and Oceanian species, including all species in East Asia where two previously unidentified species were discovered. They both had been misidentified as L. spectabilis Mett. One was from Chiayi County in Taiwan and Hainan Island in China, and the other one was from northern Vietnam and west southern China. They are superficially similar to two Asian species, L. boninensis Nakai and L. spectabilis in morphology. In this study, we presented a new Lomariopsis phylogeny supplied with comprehensive East Asian sampling, and reevaluated diagnostic characters leading to the description of these species.

Materials and methods

Perine morphology and spore number in sporangia

Spores were taken from mature sporangia and fixed on double-sided tape, and then gold coated with a sputter-coater for 1–3 min. Spores were subsequently examined with a tabletop SEM (TM 3000; Hitachi, Ibaraki, Japan).

To examine the spore number per sporangium, at least five mature, unopened sporangia per specimen were collected. These sporangia were broken individually, and we counted the number of spores inside under a stereomicroscope.

DNA extraction and chloroplast DNA region sequencing

Twenty-nine samples were included in our molecular phylogenetic study. Voucher information is provided in Appendix 1 (i.e., those samples noted with *). Total DNA
New East Asian *Lomariopsis* species

Extraction was done following the modified CTAB protocol of Kuo (2015). Three chloroplast (cp) regions were amplified and sequenced: *trnL*-L-*F* (*trnL* gene + *trnL*-trnF intergenic spacer), the gene *rbcL*, and *rps4*-trn*S (*rps4* gene + intergenic spacer), which were also used in previous phylogenies of *Lomariopsis* and Lomariopsidaceae (Rouhan et al. 2007; Li et al. 2009; Chen et al. 2017). The primers used for PCR amplification and sequencing were: FernL 1Ir1 (Li et al. 2010) and f (Taberlet et al. 1991) for *trnL*-L-*F*; *rps5* (Nadot et al. 1994) and trnS (Souza-Chies et al. 1997) for *rps4*-trn*S*; af (Hasebe et al. 1994) and 1379R (Pryer et al. 2001) for *rbcL*. PCR amplifications were prepared in 15 μL reactions each containing 20 ng of genomic DNA, 1× SuperRed PCR Master Mix RED (TOOLS, Newtaipei City, Taiwan) and 0.5 μM of each primer. A typical amplification program began with one initial denaturation step for 5 min at 94 °C then 35 cycles of 1 min at 94 °C, 30 s at 55 °C, and 1 min at 72 °C followed by a final extension of 10 min at 72 °C and was performed on a SimpliAmp Thermal Cycler. PCR products were cleaned using ExoSAP-IT (Thermo Fisher Scientific, Waltham, Massachusetts, USA), and then sequenced with the same PCR primers with an ABI 3730XL (Thermo Fisher Scientific, Waltham, Massachusetts, USA) by the Genomics BioSci. & Tech. company in Taiwan. GenBank accession numbers of the sequences are listed in Appendix 1.

**Phylogenetic analyses**

In total, we sampled 35 *Lomariopsis* species, including African/Malagasy and Neotropical members sequenced in previous studies (Rouhan et al. 2007; Lehtonen and Cárdenas 2019), and representatives from the three remaining Lomariopsidaceae genera (Chen et al. 2017) as outgroups. Importantly, our *Lomariopsis* sampling covered almost all Asian and Oceanian species (Holttum 1932, 1939a, 1939b, 1978, Moran 2000), including four of which were phylogenetically investigated for the first time. Before this study, three species were known to be distributed in East Asia: *L. lineata* (C.Presl) Holttum (syn. *L. cochinchinensis* Fée), *L. chinensis* Ching, and *L. boninensis*. The materials of East Asian “*L. spectabilis*” belonged to either *L. boninensis* or one of the two new species described here. Except for *L. chinensis*, all East Asian species were included in our sampling. Voucher information for all samples is provided in Appendix 1. The sequences were aligned using MUSCLE (Edgar 2004) as implemented in AliView (Larsson 2014). The alignment of every coding gene was further divided into three partitions based on the codon positions. The portions of *rps4*-trn*S* IGS (intergenic spacer), *trnL* gene, and *trnL*-F IGS were each treated as an independent partition as well. In the phylogenetic analyses, each partition was assigned the appropriate substitution model, which was inferred by ModelFinder (Kalyaanamoorthy et al. 2017) and using the Bayesian information criterion (BIC, Schwarz 1978).

We used IQtree 1.6.8 (Nguyen et al. 2015) to infer maximum likelihood (ML) phylogenies with 1,000 standard bootstrap replicates. The Bayesian phylogenetic analysis was performed using Mr Bayes 3.2.7 (Ronquist et al. 2012). Two simultaneous runs were carried out with four chains (5 × 10⁶ generations each). Each chain was
Results

The combined cpDNA alignment matrix included 3,817 nucleotide sites: *rbcL* (1,431 bp), *rps4-trnS* (1,233 bp), and *trnL*-L-*F* (1,153 bp) with 27.5% of variable sites. In our phylogeny (Fig. 1), the two new species, *L. moorei* and *L. longini*, each formed a monophyletic group, and were genetically distant from *L. boninensis*, *L. spectabilis*, and other Asian and Oceanian species. The line drawings of the two new species are provided in Figs 2 and 3, and their morphological comparisons with the two Asian relatives are summarized in Table 1. Perine morphology of the four species is shown in Fig. 4.

Taxonomic treatment

*Lomariopsis longini* L.Y.Kuo & Y.H.Wu, sp. nov.
urn:lsid:ipni.org:names:77234526-1
Figs 2, 5A

**Diagnosis.** *Lomariopsis longini* differs from the other similar species, *L. spectabilis*, *L. boninensis*, and *L. moorei*, by its lanceolate upper sterile pinna with the widest portion occurring below the middle of the pinna, and the veins end ca. 0.5 mm before the margins.

**Type.** *Vietnam*. Ha Tinh. Huong Son District: Son Kim Municipality, Rao Bun stream, 4 May 2004, *P.K. Loc 5095* (holotype: P [P00888363]! isotype: MO!).

**Description.** Rhizomes stramineous, 0.7–1.2 cm in diam., densely scaly; rhizome scales brown (but blackened at point of attachment), lanceolate, ca. 4–9 × 1.5–3.7 mm. Fronds 1-pinnate, leathery, mature laminae pinnate, dimorphic. Sterile fronds 30–60 cm long, stipes stramineous, 10–20 cm, grooved adaxially, base with scattered
New East Asian Lomariopsis species

scales, lateral pinnae 3–9 pairs, lanceolate, widest in the lower third, 7–16 × 1.5–1.7 cm, apex acuminate; pinna bases cuneate and decurrent, margins entire; lateral pinnae articulate to rachis, swollen ring on abaxial articulation, terminal pinna with a similar size as lateral pinnae, not articulate; upper part of rachis narrowly winged; veins free, simple or furcate, oblique, not extended to margin. Fertile laminae similar to sterile laminae but pinnae much contracted; pinnae linear, 10–20 × ca. 0.2 cm, equilateral, stalks 0.5–1.1 cm, pinna rachis articulate. Sori acrostichoid. Spores 32 per sporangium, perine with cristae.

Figure 1. Maximum likelihood (ML) tree based on the cpDNA rbcL + rps4-trnS + trnL-L-F dataset. Bootstrap supports (BS) and Bayesian inference posterior probabilities (BI PP) are indicated on each branch as BS/BI PP. The arrows indicate the clades consisting of Asian and Oceanian species.
Paratypes. VIETNAM. Nghe An Province: 28 Oct 2014, L.B. Zhang, L. Zhang & N.T. Lu 7185 (CDBI, MO, VNMN); Quang Binh Province: Bo Trach District, Phong Nha-ke Bang National Park, 7 Dec 2004, S.K. Wu and L.K. Phan WP897 (KUN); 13 Dec 2004,
**New East Asian *Lomariopsis* species**

WP1124 (KUN); Quang Tri Province: Dakrong District, Trieu Nguyen Commune, 4 Nov 2009, *Y.H. Chang* 20091104-005 (TAIF); 2 Nov 2009, *C.W. Chen* Wade 983 (TAIF); Vinh Phuc Province: Tam Dao District, Tam Dao National Park, 14 Dec 2010, *L.Y. Kuo* 1862 (TAIF, VNMMN). CHINA. Yunnan Province: 25 Aug 2014, *Q. Wei* WQ243 (KUN); 2 Sep 2011, *S.Y. Dong* 3597 (IBSC); 28 Mar 1987, *W.M. Ju et H.C. Yan* Ju and Yan 21930 (IBK).

**Distribution.** Northern Vietnam, west southern China (Yunnan).

**Ecology.** In shaded places, understory of evergreen broad leaf forests, below 1,000 m in elevation.

**Etymology.** The lanceolate shape of the terminal pinnae of sterile leaves is similar to the holy lance, which is also called Lance of Longinus.

---

**Lomariopsis moorei** Y.H.Wu & L.Y.Kuo, sp. nov.
urn:lsid:ipni.org:names:77234527-1
Figs 3, 5B, 6A

**Diagnosis.** *Lomariopsis moorei* is most similar to *L. boninensis*, but scales on stipes are narrower (usually < 2 mm) in *L. moorei* (Fig. 5B) and broader (usually > 2 mm) in *L. boninensis*. The swollen ring at the region of articulation on the abaxial side (especially upper pinnae) is more obvious in *L. moorei* (Table 1; Fig. 6A).

**Type.** TAIWAN. Chiayi County: Dapu Township, Zengwen Reservoir, 9 November 2020, Y.H. Wu YX052 (holotype: TAIF! isotype: TAIF!).

**Description.** Rhizomes rufous, 1.0–1.2 cm in diam., densely scaly; rhizome scales reddish brown (but blackened at point of attachment), narrowly lanceolate, ca. 4–6 × 0.9–2.2 mm. Fronds 1-pinnate, leathery, juvenile sterile laminae simple, shortly stalked, narrowly lanceolate, 20–25 × 1.0–1.5 cm, base narrowly cuneate, apex acute; mature lamina pinnate, dimorphic. Sterile fronds 30–50 cm long, stipes green, 10–20 cm, grooved adaxially, base with scattered scales, lateral pinnae 6–14 pairs, 1–5 cm apart, narrowly lanceolate, widest in the proximal half, 14–21 × 1.5–2.2 cm, narrowly cuneate, apex acute, base cuneate and decurrent, margin entire or slightly undulate; lateral pinnae articulate to rachis, swollen ring on abaxial articulation, terminal pinna 16–27 × 1.5–2.2 cm, not articulate; upper part of rachis narrowly winged; veins free, simple or furcate, oblique. Fertile laminae similar to sterile laminae but pinnae much contracted; pinnae linear, 10–20 × ca. 0.3 cm, equilateral, pinna rachis 0.3–0.8 cm wide, rachis articulate. Sori acrostichoid; perine consisting with glandular projections. Spores green (= chlorophyllous) and spiny, 64 per sporangium.

**Paratypes.** TAIWAN. Chiayi County: Dapu Township, Zengwen Reservoir, 9 Nov 2020, *Y.H. Wu* YX053 (TAIF). CHINA. Hainan Province: Wuzhishan City, Mt. Wuzhi National Nature Reserve, 16 July 2007, *Y.S. Chao* 1211 (TAIF); Mt. Diaoluo, 27 Feb 2012, *W.H. Wu* 1062 (TAIF); 21 Nov 2000, *G.M. Zhang et D. Li* 117 (PE); 14 Dec 2003, *S.Y. Dong* 1045 (PE).

**Distribution.** Taiwan (Chiayi County) and China (Hainan Is.).

**Ecology.** In shaded places, understory of evergreen broadleaf forests, below 1,000 m in elevation.
**Figure 3.** Illustration of *Lomariopsis moorei* Y.H. Wu & L.Y. Kuo, sp. nov., based on the holotype Y.H. Wu YX052 (TAIF). A fallen fertile pinna is at the left bottom.

**Etymology.** The name moorei is dedicated to Dr./Mr. Shann-Jye Moore (1966–2010), an enthusiastic fern taxonomist and knowledgeable pteridologist from Taiwan. The Mr. Shann-Jye Moore Memorial Scholarship has been established by the Taiwan
Society of Plant Systematics to commemorate his passions, and to support Taiwanese students studying the systematics of ferns and lycophytes.

**Note.** We have not yet found entire sporophyll from the type locality, but fallen fertile pinnae on 14 Aug 2020 (Fig. 3), which contained intact sporangia with green spores. Although mature sporophytes were found to have a restricted distribution in Taiwan, independent gametophytes of this species were found throughout Taiwan Main Is using a DNA-identification approach to survey gametophyte populations (Wu et al. in press).

**Discussion**

In previous molecular phylogenies of *Lomariopsis*, none of Oceanian species were included, and *L. lineata* and *L. spectabilis* (including the misidentified *L. boninensis* and *L. longini*) were the only Asian species (Rouhan et al. 2007; Li et al. 2009; Chen et al. 2017). Here, with a comprehensive sampling in these areas, the present phylogeny (Fig. 1) provides new insights into the evolutionary relationships and systematics for *Lomariopsis* species from these areas. In the present tree, the nine Asian/Oceanian species are retrieved into two well-supported clades. The first clade consists of *L. boninensis* only, while the second clade accommodates the remaining
eight species. These Asian and Oceanian clades are either nested within, or closely related to other paleotropical species (Africa and Madagascar), but their inter-clade relationships remain unclear (Fig. 1). Data from additional genetic regions will be necessary to better resolve the uncertainties of these nodes, and hence to confirm biogeographical origin(s) of Asian/Oceanian taxa. Among all six described East Asian species, *L. chinensis* is the only one missing from the current phylogeny. To the best of our knowledge, this species has only been collected once, as the type collections. Despite the lack of phylogenetic information, *L. chinensis* is morphologically unique in the genus and easily distinguished from other *Lomariopsis* species because of its reticulate leaf venation.

**Figure 5.** Stipe scales **A** *Lomariopsis longini* (L.Y. Kuo1862, TAIF) **B** *Lomariopsis moorei* (Y.H. Wu YX052, TAIF). Scale bar: 1 mm.
Lomariopsis species diversity in Asia and Oceania could still be underestimated, and more undocumented species could be eventually revealed by phylogenetic analyses using multiple specimens in each morphologically-defined species, similar to the case of discovering the two new species here described. Indeed, *L. moorei* and *L. longini*, together with *L. boninensis*, are genetically distant taxa in East Asia even if all three have been long misidentified and confused under a single name of the South East Asian species, *L. spectabilis*, due to their overall similar morphology (DeVol and Kuo 1975; Tsai and Shieh 1994; Iwatsuki et al. 1995; Yang and Liu 2002; Li et al. 2009; Phan 2010; Xing et al. 2013; Knapp 2014; Chen et al. 2017; Ebihara 2017; TPG 2019). However, clear molecular phylogenetic results spurred us to seek other characters supporting the distinction between these lineages, and these actual species now can be identified based on microscopic characters (Table 1). These characters include perine ornamentation, which has been revealed to have highly diversified forms in *Lomariopsis* (Rouhan et al. 2007). Additionally, we found that the spore number per sporangium varies among these species, which can also help in distinguishing species. However, unlike most cases in ferns of the Polypodiales, such a reduction in the number of spores in sporangia (e.g., 64 to 32) may not represent a reproductive switch to apomixis for Lomariopsidaceae (Chen et al. 2017). Further cytological investigations, e.g., through flow cytometry to infer both spore vs. leaf genome sizes (Kuo et al. 2017), are necessary to clarify whether changes in the two phenomena (i.e., spore number per sporangium and reproductive mode) are linked in these *Lomariopsis* species.

Key to *Lomariopsis longini*, *L. moorei*, *L. spectabilis*, and other morphologically close species in East Asia

1. Sterile lateral pinnae with lateral veins spreading (borne at nearly right angles to the pinna rachis), free, occasionally anastomosing .................*L. chinensis*
2. Sterile lateral pinnae with veins oblique, free .............................................
3. Sterile lateral pinnae, abruptly narrowed to a caudate apex (2–3 cm long) .... .......................................................... *L. lineata*
4. Sterile lateral pinnae with acuminate apex .............................................

Figure 6. Articulation of upper pinnae (abaxial surface) to the rachis **A** *Lomariopsis moorei* (Y.H. Wu YX052, TAIF) **B** *Lomariopsis boninensis* (TNS790636).
3 Sterile lateral pinnae lanceolate, widest in the lower third .......... \textit{L. longini}

– Sterile lateral pinnae narrowly lanceolate, widest in the middle ............... \textit{L. spectabilis}

4 Sterile lateral pinnae with pinna stalks (0.3–0.7 cm long), base equilateral...

– Sterile lateral pinnae with, pinna subsessile, base cuneate and decurrent ..... \textit{L. spectabilis}

5 Swollen ring inconspicuous on abaxial articulation (especially upper pinnae), scales on the stipes broadly lanceolate (> 2 mm wide) .......... \textit{L. boninensis}

– Swollen ring obvious on abaxial articulation side (especially upper pinnae), scales on the stipes narrowly lanceolate (< 2 mm wide) ............... \textit{L. moorei}

\textbf{Acknowledgements}

We thank Cheng-Wei Chen, Dirk Nikolaus Karger, Yi-Han Chang, Ran Wei, Leon Perrie, Joel Nitta, Jinmei Lu, and Wei-Hsiu Wu for collecting DNA materials for this study; Fay-Wei Li for generating the DNA sequences of \textit{Lomariopsis sorbifolia}; Alexandria Quinlan for English edits; Robbin Moran, Tom A. Ranker, and Blanca León for the comments on the manuscript revision. The staff in herbaria KUN, P, TAIF, and TNS are gratefully acknowledged for the loan of specimens. The MNHN (Paris, France) gives access to the collections in the framework of the RECOLNAT national Research Infrastructure. This project was supported by MOST project (109-2621-B-007-001-MY3) in Taiwan, the Bioresource Conservation Research Center in College of Life Science from the Higher Education Sprout Project by MOE, Biodiversity Information Fund for Asia project (BIFA6_010), and Mr. Shann-Jye Moore Memorial Scholarship.

\textbf{References}

Chen C-W, Sundue M, Kuo L-Y, Teng W-C, Huang Y-M (2017) Phylogenetic analyses place the monotypic \textit{Dryopolystichum} within Lomariopsidaceae. PhytoKeys 78: 83–107. https://doi.org/10.3897/phytokeys.78.12040

DeVol CE, Kuo CM (1975) Lomariopsidaceae. In: Li H-L, Liu T-S, Huang T-C, Koyama T, DeVol CE (Eds) Flora of Taiwan, 1st, vol. 1. Epoch Publishing Co., Ltd., Taipei, Taiwan, 347–358.

Ebihara A (2017) The Standard of Ferns and Lycophytes in Japan. Vol. 2. Gakken Plus, Tokyo, Japan.

Ebihara A, Yamaoka A, Mizukami N, Sakoda A, Nitta JH, Imaichi R (2013) A survey of the fern gametophyte flora of Japan: Frequent independent occurrences of noncordiform gametophytes. American Journal of Botany 100(4): 735–743. https://doi.org/10.3732/ajb.1200555

Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) RbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences of the United States of America 91(12): 5730–5734. https://doi.org/10.1073/pnas.91.12.5730

Holttum RE (1932) On Stenochlaena, Lomariopsis and Teratophyllum in the Malayan region. Gardens’ Bulletin 5: 245–313.

Holttum RE (1939a) New Species of Lomariopsis. Bulletin of Miscellaneous Information 10: 613–628. https://doi.org/10.2307/4118173

Holttum RE (1939b) The genus Lomariopsis in Madagascar and the Mascarene islands. Notulae Systematicae 8: 48–62.

Holttum RE (1966) The genera Lomariopsis, Teratophyllum, and Lomagramma in the islands of the Pacific and Australia. Blumea 14: 215–223. https://repository.naturalis.nl/pub/525599

Holttum RE (1978) Flora Malesiana. Series II: Pteridophyta. Vol.1, pt. 1: Lomariopsis group. Erven P. Noordhoff, Groningen, the Netherlands, 255–330. https://doi.org/https://doi.org/10.5962/bhl.title.41457

Iwatsuki K, Yamazaki T, Boufford DE, Ohba H [Eds] (1995) Lomariopsidaceae. Flora of Japan, Volume 1, Pteridophyta and Gymnospermae. KODANSHA LTD., Tokyo, Japan, 116 pp.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285

Knapp R (2014) Index to ferns and fern allies of Taiwan. KBCC Press, Pingdong.

Kuo L-Y (2015) Polyploidy and biogeography in genus Deparia and phylogeography in Deparia lancea. Ph. D. thesis, National Taiwan University.

Kuo L-Y, Huang Y-J, Chang J, Chiou W-L, Huang Y-M (2017) Evaluating the spore genome sizes of ferns and lycophytes: A flow cytometry approach. The New Phytologist 213(4): 1974–1983. https://doi.org/10.1111/nph.14291

Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics (Oxford, England) 30(22): 3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Lehtonen S, Cárdenas GG (2019) Dynamism in plastome structure observed across the phylogenetic tree of ferns. Botanical Journal of the Linnean Society 190(3): 229–241. https://doi.org/10.1093/botlinnean/boz020

Li F-W, Tan BC, Buchbender V, Moran RC, Rouhan G, Wang C-N, Quandt D (2009) Identifying a mysterious aquatic fern gametophyte. Plant Systematics and Evolution 281(1–4): 77–86. https://doi.org/10.1007/s00606-009-0188-2

Li F-W, Kuo L-Y, Huang Y-M, Chiou W-L, Wang C-N (2010) Tissue-direct PCR, a rapid and extraction-free method for barcoding of ferns. Molecular Ecology Resources 10(1): 92–95. https://doi.org/10.1111/j.1755-0998.2009.02745.x

Moran RC (2000) Monograph of the neotropical species of Lomariopsis (Lomariopsidaceae). Brittonia 52(1): 55–111. https://doi.org/10.2307/2666495

Nadot S, Bajon R, Lejeune B (1994) The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Plant Systematics and Evolution 191(1–2): 27–38. https://doi.org/10.1007/BF00985340
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300

Phan KL (2010) The updated checklist of the fern flora of Vietnam following the classification scheme of A. Smith et al. (2006). Journal of Fairy Lake Botanical Garden 9: 1–13.

Pinson JB, Chambers SM, Nitta JH, Kuo L-Y, Sessa EB (2017) The separation of generations: Biology and biogeography of long-lived sporophyteless fern gametophytes. International Journal of Plant Sciences 178(1): 1–18. https://doi.org/10.1086/688773

PPG I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systems and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229

Pryer KM, Smith AR, Hunt JS, Dubuisson J-Y (2001) RbcL data reveal two monophyletic groups of filmy ferns (Filicopsida: Hymenophyllaceae). American Journal of Botany 88(6): 1118–1130. https://doi.org/10.2307/2657095

Rakotondrainibe F, Jouy A (2017) Nouveautés dans le genre *Lomariopsis* Fée (Pteridophyta, Lomariopsidaceae) à Madagascar: Trois espèces nouvelles et une espèce africaine nouvellement signalée. Adansonia 39(2): 101–110. https://doi.org/10.5252/a2017n2a1

Rambaut A, Drummond AJ (2013) Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Rouhan G, Hanks JG, McClelland D, Moran RC (2007) Preliminary phylogenetic analysis of the fern genus *Lomariopsis* (Lomariopsidaceae). Brittonia 59(2): 115–128. https://doi.org/10.1663/0007-196X(2007)59[115:PPATO]2.0.CO;2

Roux JP (2009) Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands. South African National Biodiversity Institute, Pretoria. https://www.cabdirect.org/cabdirect/abstract/20093165885 [accessed: October 21, 2021]

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6(2): 461–464. https://doi.org/10.1214/aos/1176344136

Souza-Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B (1997) Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene *rps4*. Plant Systematics and Evolution 204(1–2): 109–123. https://doi.org/10.1007/BF00982535

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17(5): 1105–1109. https://doi.org/10.1007/BF00037152

TPG (2019) Updating Taiwanese pteridophyte checklist: A new phylogenetic classification. Taiwania 64: 367–395. https://doi.org/10.6165/tai.2019.64.367

Tsai JL, Shieh WC (1994) Lomariopsidaceae. In: Huang TC (Ed.) Flora of Taiwan, 2nd, vol. 1. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, 352–363.

Watkins Jr JEJ, Moran RC (2019) Gametophytes of the fern genera *Dracoglossum* and *Lomariopsis* (Lomariopsidaceae) and their phylogenetic significance. International Journal of Plant Sciences 180(9): 1004–1015. https://doi.org/10.1086/705587
### Appendix I

Voucher information and GenBank accession numbers. –, sequences not available. *sequences obtained in this study.

| Species name | Locality                  | Voucher (Herbarium) | GenBank accession number |
|--------------|---------------------------|---------------------|--------------------------|
| *Cyclopeltis crenata* | China, Hainan           | Wu935 (TAIF)        | OL420736* OL473642* OL473665* |
| *Cyclopeltis novoguineensis* | Solomon Islands | SITW068 (TAIF)      | KY397974 KY397978 KY397970 |
| *Cyclopeltis semicordata* | Costa Rica               | CJR et al. 08-195 (DUKE) | EF463234 KY397977 KY397969 |
| *Dracoglossum plantagineum* | Guadeloupe               | Christenhusz 4065 (TUR) | KY397975 KC914565 KY397971 |
| *Dryopolystichum phaeostigma* | Solomon Islands | SITW10443 (BSE, TAIF, TNM) | KY397972 KY397976 KY397968 |
| *Lomariopsis aff. brackenridgei* | Vanuatu, Espiritu Santo Is. | Matsumoto 01-857 (TNS) | - - OL473666* |
| *Lomariopsis boninensis* | Japan, Bonin Is.         | TNS 763923 (TNS)    | AB575226 OL420734* OL473667* |
| *Lomariopsis boninensis* | Japan, Ishigaki Is.      | Ebihara 2957 (TNS)  | OL420737* OL473664* OL473668* |
| *Lomariopsis boninensis* | Taiwan, Orchid Is.       | CYH20091123_03 (TAIF) | OL420738* OL473665* OL473669* |
| *Lomariopsis boninensis* | Taiwan, Orchid Is.       | CYH20110918_25 (TAIF) | - - OL473667* OL473670* |
| *Lomariopsis boninensis* | Taiwan                    | Kuo 2423 (TAIF)     | OL420739* OL473667* OL473671* |
| *Lomariopsis boninensis* | Taiwan                    | Kuo 976 (TAIF)      | OL420740* OL473668* OL473672* |
| *Lomariopsis brackenridgei* | Fiji                      | FJ_2011_207 (WELT)  | OL420741* OL473669* OL473673* |
| *Lomariopsis brackenridgei* | FRENCH POLYNESIA, Moorea | JNG3191 (UC)         | - - OL473674* |
| *Lomariopsis cf. lineata* | Unknown Origin            | F042 (SING)         | OL420742* AM497063 AM496393 |
| *Lomariopsis japonensis* | Unknown Origin            | Lehtonen 989 (TUR)  | MK705752 MK705752 MK705752 |
| *Lomariopsis kingii* | Indonesia, Bacan         | DK1398 (UC)         | OL420743* OL473650* OL473675* |
| *Lomariopsis kingii* | New Guinea                | DK2800 (UC)         | OL420744* OL473651* OL473676* |
| *Lomariopsis leptocarpa* | Micronesia                | Masuda 6919 (TNS)   | OL420745* OL473652* OL473677* |
| *Lomariopsis lineata* | Indonesia, Sulawesi      | DK925 (UC)          | OL420746* OL473653* OL473678* |
| *Lomariopsis lineata* | Philippines               | Kuo 2052 (TAIF)     | OL420747* OL473654* OL473679* |
| *Lomariopsis lineata* | Philippines               | Wade 3946 (TAIF)    | - - OL473680* |
| *Lomariopsis novacaledoniensis* | New CALEDONIA          | Nakamura 2157 (TNS) | - OL473655* OL473681* |
| *Lomariopsis orbifolia* | Guadeloupe               | Christenhusz 4070 (TUR) | EF463236 OL473656* OL473682* |
| *Lomariopsis longinii* | China, Yunnan            | Dong 3597 (IBSC)    | OL420748* OL473657* OL473683* |
| *Lomariopsis longinii* | China, Yunnan            | WQ243 (KUN)         | OL420749* OL473658* OL473684* |
| *Lomariopsis longinii* | Vietnam                   | Wade983 (TAIF)      | OL420750* OL473659* OL473685* |
| *Lomariopsis longinii* | Vietnam                   | Zhang et al. 7185   | KU605187 KU605086 KU605107 |
| *Lomariopsis longinii* | Vietnam                   | WP897 (KUN)         | - - OL473686* |
| *Lomariopsis longinii* | Vietnam                   | WP1124 (KUN)        | - - OL473687* |
| *Lomariopsis moorei* | Taiwan                    | YY052 (TAIF)        | OL420751* OL473660* OL473688* |
| *Lomariopsis moorei* | China, Hainan             | HN197 (PE)          | OL420752* OL473661* OL473689* |
| *Lomariopsis moorei* | Taiwan                    | Ha 10**             | - - OL473690* |
| *Lomariopsis moorei* | China, Hainan             | WU 1062 (TAIF)      | OL420753* OL473662* OL473691* |
| *Lomariopsis spectabilis* | Indonesia, Java          | Wade 1100 (TAIF)    | OL420754* OL473663* OL473692* |
| Species name         | Locality                | Voucher (Herbarium) | GenBank accession number |
|----------------------|-------------------------|---------------------|--------------------------|
| Lomariopsis spectabilis | Indonesia, Java         | Wade 1838 (TAIF)    | OL420755* OL473664* OL473693* |
| Lomariopsis cordata    | Madagascar              | Rakotondrainibe 1771 (P) | - - DQ396558 |
| Lomariopsis crassifolia | Madagascar             | Janssen et al. 2527 (P) | - - DQ396602 |
| Lomariopsis crassifolia | Madagascar              | Humblot 442 (P)     | - - DQ396559 |
| Lomariopsis guineensis | Sierra Leone            | Fay & Fay s.n., in 1985 (NY) | - - DQ396560 |
| Lomariopsis hederaea   | Cameroon                | Raynal 9954 (P)     | - - DQ396561 |
| Lomariopsis jamatensis | Jamaica                 | Maxon & Killip 1463 (NY) | - - DQ396562 |
| Lomariopsis japurensis | Ecuador                 | Moran 6021 (NY, QCA, QCNE) | - - DQ396566 |
| Lomariopsis japurensis | Ecuador                 | Moran 6061 (NY, QCA, QCNE) | - - DQ396565 |
| Lomariopsis japurensis | Costa Rica              | Moran 6381 (CR, INB, NY) | - - DQ396567 |
| Lomariopsis japurensis | Bolivia                 | Sundue 708 (LPB, NY, USZ) | - - DQ396563 |
| Lomariopsis japurensis | Peru                    | Bell 88180 (NY)     | - - DQ396564 |
| Lomariopsis japurensis | Bolivia                 | Jimenez 2016 (LPB, NY) | - - DQ396568 |
| Lomariopsis kunzeana   | Haiti                   | Zanoni 28649 (EHH, NY) | - - DQ396570 |
| Lomariopsis kunzeana   | United States           | Peck s.n. (NY)       | - - DQ396569 |
| Lomariopsis latipinna  | Ecuador                 | Moran 6027 (NY, QCA, QCNE, TUR) | - - DQ396571 |
| Lomariopsis lineata    | Thailand                | Larsen 45851 (AAU, NY) | - - DQ396572 |
| Lomariopsis longicaudata | Madagascar             | Janssen 2493 (P)    | - - DQ396574 |
| Lomariopsis longicaudata | Madagascar            | Rakotondrainibe 6191 (P) | - - DQ396573 |
| Lomariopsis madagascariaca | Madagascar        | Kessler 12786 (NY)  | - - DQ396575 |
| Lomariopsis madagascariaca | Madagascar         | Decary 18186 (NY)   | - - DQ396576 |
| Lomariopsis manni     | Democratic Republic Of Congo | Kassner s.n., in 1914 (P) | - - DQ396577 |
| Lomariopsis marginata  | Brazil                  | Pires et al. 50316 (NY) | - - DQ396579 |
| Lomariopsis marginata  | Brazil                  | Amorim 1920 (CEPEC, NY) | - - AY540045 |
| Lomariopsis marginata  | Brazil                  | Labiak 104 (NY, UPCB) | - - DQ396578 |
| Lomariopsis maxonii    | Costa Rica              | Moran 4172 (CR, NY, UC) | - - DQ396580 |
| Lomariopsis maxonii    | Costa Rica              | Smith 1660 (CR, NY, UC) | - - DQ396581 |
| Lomariopsis nigropaleata | Ecuador                 | Moran 6053 (NY)     | - - DQ396584 |
| Lomariopsis nigropaleata | Bolivia                | Jimenez 1949 (LPB, NY) | - - DQ396583 |
| Lomariopsis palustris  | Sierra Leone            | Fay 1124 (NY)       | - - DQ396585 |
| Lomariopsis pervillei  | Madagascar              | Rakotondrainibe et al. 6626 (P) | - - DQ396586 |
| Lomariopsis pervillei  | Madagascar              | Rakotondrainibe et al. 6623 (P) | - - DQ396587 |
| Lomariopsis warneckei  | Comoros                 | Rakotondrainibe et al. 6707 (P) | - - DQ396588 |
| Lomariopsis politcina  | Madagascar              | Kessler 12785 (GOET, NY) | - - DQ396589 |
| Lomariopsis pricuriana | Venezuela               | Cortez 475 (NY, VEN) | - - DQ396591 |
| Lomariopsis pricuriana | Panama                  | Moran 5080 (MO, NY, PMA) | - - DQ396590 |
| Lomariopsis recurvata  | Mexico                  | Rivera 1343 (NY)    | - - DQ396592 |
| Lomariopsis recurvata  | Mexico                  | Hernandez 2286 (NY) | - - DQ396593 |
| Lomariopsis rossii     | Liberia                 | Fay 1237 (NY)       | - - DQ396594 |
| Lomariopsis salsiferia | Ecuador                 | Moran 6022 (AAU, NY, QCA, QCNE, TUR) | - - DQ396597 |
| Lomariopsis salsiferia | Ecuador                 | Moran 6129 (NY, QCA, QCNE) | - - DQ396595 |
| Lomariopsis salsiferia | Ecuador                 | Moran 6956 (NY, QCA, QCNE) | - - DQ396596 |
| Lomariopsis warneckei  | Madagascar              | Janssen et al. 2444 (P) | - - DQ396601 |
| Lomariopsis warneckei  | Madagascar              | Rouhan et al. 318 (P) | - - DQ396603 |
| Lomariopsis veritata   | Costa Rica              | Moran 6382 (CR, INB, NY, USJ) | - - DQ396598 |
| Lomariopsis veritata   | Costa Rica              | Folsom 9011 (NY)    | - - DQ396599 |
| Lomariopsis wrightii   | Cuba                    | Underwood 948 (NY)  | - - DQ396600 |