Introduction

Paddy rice is one of the most important and widely grown crops in China. The total paddy-rice production in 2009 reached 195.1 million tons, and it accounted for 40.5% of the total grain production in China (481.563 million tons) [1]. Timely, objective and quantitative information regarding to paddy-rice yield can be used for planning harvest, storage and marketing activities. Therefore, paddy-rice-yield prediction is important for the food security of China and is considered to be one of the most challenging tasks in agricultural research [2].

Abstract

Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region’s crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha⁻¹. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.

Citation: Huang J, Wang X, Li X, Tian H, Pan Z (2013) Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA’s-AVHRR. PLoS ONE 8(8): e70816. doi:10.1371/journal.pone.0070816

Editor: Wengui Yan, National Rice Research Center, United States of America

Received January 24, 2013; Accepted June 24, 2013; Published August 13, 2013

Copyright: © 2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors’ work was supported from National Key Technology R&D Program of China Grant(2011BAD32B01), the National Natural Science Foundation of China (NSFC) grant (40875070 and 40871158) and Zhejiang Provincial Natural Science Foundation of China grant (Y5100021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wxz05160516@126.com
many of the conditions that affect crop growth, development and ultimately yield could be captured through spectra measurements such as the NDVI [64]. By using long-term historical-yield data as a dependent variable and remotely sensed data as an independent variable, a statistical regression function was generated to perform crop-yield predictions, whereas the actual crop yields depend on many more factors than the presence of spectral-vegetation indices [37]. Hillman et al. [65] noted that increased yields in cereal are mainly the result of greater inputs of fertilizer, water and pesticides, new crop species, and the improvement of management over the last decades. For all developing countries, modern varieties accounted for 21% of the growth in crop yields during the early Green Revolution period [66]. In Asia, rice production has more than doubled as a result of the expansion of cultivated area, the adoption of modern cultivars, increased investments in irrigation, and an increased use of fertilizer over the past 4 decades [67]. Hafner [68] found that linear growth has been the most common trend in maize, rice, and wheat yields for 188 nations over the past 40 years. This scenario also occurs in China. Although the inter-annual variability of NDVI (probably due to unexpected weather conditions or disasters) can reveal crop yield fluctuations [19,59]; however, remotely sensed-NDVI cannot detect those human-induced factors that resulted in increase of rice yield. Therefore, to monitor and predict crop-yield cannot use NDVI measurements solely.

For unit-yield estimation, using one simple regression function (usually known as: \(Y = a + b \times \text{NDVI} \)) would be incompatible as the advance of years, because simple regression would be likely neglect those man-induced factors in yield increase. However, few studies have analyzed the time trends of crop yields, which reflect the influence of technology development, fertilizer application, and management improvement. Moreover, the regression model between statistical data and NDVI cannot be extendable [19,45], because cropping system and rice yield level is natural condition-dependent in China.

In consideration of social factors and regional differences for remotely sensed crop yield estimation in China, the objective of the present paper was to develop a methodological framework that may be adopted for the regional-, national- and international-scale prediction of crop yields. This methodology was based on a time series analysis of historical-yield information. Paddy rice was chosen to test the proposed methodology. To accomplish this objective, we needed to: (1) geographically regionalize rice cultivation area for remotely sensed monitoring; (2) analyze the historical trends in the grain yield of rice; (3) decompose the remotely sensed yield of rice from the long-term historical data; (4) select the optimal predictors, based on a correlation analysis between the remotely sensed yield and the AVHRR-derived NDVIs; (5) construct prediction models for rice yield; and (6) evaluate the potential for rice-grain-yield prediction in China using AVHRR NDVI data as predictors.

Materials and Methodology

2.1. The Remote-Sensing dataset

The research presented in this paper relies on a time series of AVHRR NDVI composite imagery from July 1981 to December 2006, derived from the National Oceanic and Atmospheric Administration’s (NOAA) series of Advanced Very High Resolution Radiometer (AVHRR) instruments, with a spatial resolution of 8 km, by the NASA Global Inventory Monitoring and Modeling Systems (GIMMS) group at the Laboratory for Terrestrial Physics. There are two 15-day composites per month: the first (1a) is a maximum value composite from the first day to 15th of the month; and the 1b composite is from days 16 till the end of the month. All data are available from the University of Maryland Global Land Cover Facility (http://glimc.umd.edu/data/gimms/).

Crop	reference
wheat	MacDonald et al., 1980; Rudorff et al., 1991; Bullock, 1992; Benedetti et al., 1993; Gupta et al., 1993; Benedetti et al., 1993; Cheng, 1994; Dubey et al., 1994; Srithar et al., 1994; Doraoswamy et al., 1995, 2003; Smith et al., 1995; Hochheim et al., 1998; Huang et al., 1999; Maselli et al., 2001; Boken et al., 2002; Labus et al., 2002; Manjuntah et al., 2002; Mika et al., 2002; Bastiaanssen et al., 2003; Kalubarme et al., 2003; Ferencz et al., 2004; Zhang et al., 2004; Kastensa et al., 2005; Mo et al., 2005; Wang et al., 2005; Patel et al., 2006; Ren et al., 2006; Moriondo et al., 2007; Prasad et al., 2007; Balagh et al., 2008; Ren et al., 2008; Wall et al., 2008; Schut et al., 2009; Becker-Reshef et al., 2010; Mkhabela et al., 2011
maize	Quarmby et al., 1993; Hayes et al., 1996; Unganai et al., 1998; Lewis et al., 1998; Lee et al., 1999; Reynolds et al., 2000; Seiler et al., 2000; Maselli et al., 2001; Milka et al., 2002; Wannebo et al., 2003; Ferencz et al., 2004; Kastensa et al., 2005; Mkhabela et al., 2005; Mo et al., 2005; Prasad et al., 2006; Rojas, 2007; Ren, et al., 2008; Funk et al., 2009
millet	Rasmussen, 1992, 1997, 1998; Groten, 1993; Maselli et al., 2000
sorghum	Potdar, 1993; Fuller, 1998; Maselli et al., 2000; Kastensa et al., 2005
barley	Wendroth et al., 2003; Ferencz et al., 2004; Kastensa et al., 2005; Weisssteiner et al., 2005; Mkhabela et al., 2011
soybean	Liu et al., 2002; Kastensa et al., 2005; Prasad et al., 2006; Esquerdo et al., 2011
ground nut	Rasmussen, 1997; Fuller, 1998
sugar beet	Ferencz et al., 2004
alfalfa	Ferencz et al., 2004
rye	Ferencz et al., 2004
pea	Ferencz et al., 2004; Mkhabela et al., 2011
canola	Mkhabela et al., 2011
rice	Tennakoon et al., 1992; Quarmby et al., 1993; Huang et al., 2002; Wang et al., 2002; Bastiaanssen et al., 2003; Prasad et al., 2007; Huang et al., 2010

doi:10.1371/journal.pone.0070816.t001
2.2. NDVI Variables

A large number of studies found a close relationship between crop yields and NDVI variables. The theory is: the NDVI value presents the yield level corresponding to every single pixel. Therefore, a simple regression function can be explained the yield: yield = a*NDVI + b; then the total yield can be obtained by multiplying planting area. By literature review, previous studies suggest three types of NDVI variables: original NDVI \([13,23,42,63]\), cumulative NDVI \([8,23,38,42,45,63,73,74]\), and average NDVI \([34,45,63]\). The cumulative NDVI and the corresponding average NDVI for the same period were highly correlated because of the linear nature of the operations involved. Only the original NDVIs and the average NDVIs were selected as input data for the prediction models in the present paper.

NDVI variables around the time of the maximum are strongly correlated with final yields \([31,35,75]\). Specifically, the rice yield is most determined by crop conditions during the heading (i.e. peak phenological phase of growth); and yield-reflectance relationships are typically the strongest after mid-season. In contrast, NDVI changes of NDVI value suggests that the NDVIs during the mid-to-late growing period should be a good indicator of rice yield; meanwhile this phenomenon provides an approach to discriminate rice planting area from remote sensing image. Therefore, the first step of this study was to extract the maximum NDVI during the rice-growth period \(\langle NDVImax \rangle\) for each studied province from the remote sensing dataset from the year 1982 to 2006. The maximum NDVI is equal to the peak value of the seasonal NDVI profile. Then, six other original NDVIs were calculated: the first, second,
third and fourth biweekly NDVIs prior to the NDVI_{max} (\text{NDVI}_{maxb4}) and the first and second biweekly NDVIs after the NDVI_{max} (\text{NDVI}_{maxa2}). These seven biweekly composites span 3 months of raw AVHRR imagery, corresponding to the rice-growth period. Focusing on the NDVI response during the rice-growth period helps to identify rice-specific vegetation changes.

Hochheim and Barber [27] also found that NDVI estimators with longer integration periods minimized variability in yield prediction. Therefore, based on the seven original NDVIs, twenty-one average NDVIs, clustered around the time of the peak NDVI, were calculated using a rigorous arithmetic mean framework (Table 2). In total, 28 NDVI variables were generated. They include all of the possible combinations of the original seven NDVIs.

2.3. Official Statistical Data of Rice Yield

Historical rice-yield data were acquired from the China Statistical Year Book by the National Bureau of Statistics of China (NBSC) from the years 1979 to 2009 [1]. The NBSC is the agency responsible for collecting and publishing agricultural statistics at the national and provincial levels. The NBSC crop statistics are based on data obtained from sub-province sample surveys and released in official documents. Customarily, Chinese provinces have been geographically grouped into 7 regions to present a spatial pattern for paddy rice planting area: Northeastern China (Heilongjiang, Jilin, and Liaoning), Northern China (Shanxi, Beijing, and Tianjin), Northwestern China (Ningxia, Shaanxi, Gansu, Qinghai, and Xinjiang), Central China (Henan, Hunan, and Hubei), Eastern China (Shandong, Jiangsu, Shanghai, Zhejiang, Anhui, and Jiangxi), Southwestern China (Chongqing, Sichuan, Guizhou, Yunnan, and Xizang), Southern China (Guangdong, Guangxi, Hainan) (see Figure 1). Unfortunately, rice planting area and yield information for Hong Kong–Macao–Taiwan areas was not available. According to NBSC crop statistical data (see Table 3), Eastern China was the region with the highest rice acreage and production levels (9808.60 kha and 64984.00 kt, respectively) in 2009. Central China ranked second in both rice acreage and production (6703.60 kha and 46215.00 kt, respectively). The third-largest rice cultivation and production area was Southwestern China (4448.10 kha and 31214.00 kt, respectively). Southern China and Northeastern China ranked fourth and fifth, respectively, in both rice acreage and production (4402.40 kha and 23499.00 kt; 3777.90 kha and 25855.00 kt, respectively). The third-largest rice cultivation area in Eastern China, Central China, Southwestern China, Southern China, and Northeastern China is 29140.60 kha and accounts for 98.36% of the total rice cultivation area in the conterminous China. The total rice production in Eastern China, Central China, Southwestern China, Southern China, and Northeastern China was 191767.00 kt and accounted for 98.29% of the total rice production in the conterminous China in 2009. Northern China and Northwestern China constitute less
2.4. Description of Study Area

We divided China into 7 regions together with 5 representative provinces selected to convey the information of paddy rice planting area: Heilongjiang (HLJ) in Northeastern China, Hunan (HN) in Central China, Jiangxi (JX) in Eastern China, Sichuan (SC) in Southwestern China, and Guangxi (GX) in Southern China. These provinces were selected as the study areas for the present research because these locations: (1) represented the typical cropping system in China, (2) are located in primary rice-production regions, and (3) are geographically and climatologically different (see Figure 1 and Table 4). The life span, cropping system, and planting schedule are all depend on regional hydro-thermal condition. The general information on life span, cropping system, total annual rainfall (mm), annual accumulated temperature (°C), area (kha), and production levels (kt) for the selected provinces is shown in Table 4. The total combined rice-cultivation area in Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan (SC), and Guangxi (GX) is 13942.2 kha, and these regions accounted for 47.06% of the total rice-cultivation area in China in 2009. The total combined rice production in Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan (SC), and Guangxi (GX) was 87251 kt and accounted for 44.72% of the total rice production in China in 2009. The time series of the NBSC province-level rice yields were accounted for 44.72% of the total rice production in China in 2009. The time series of the NBSC province-level rice yields were 33872.67 100.00 29626.70 100.00 143750.00 100.00 195103.00 100.00.

2.4. Description of Study Area

We divided China into 7 regions together with 5 representative provinces selected to convey the information of paddy rice planting area: Heilongjiang (HLJ) in Northeastern China, Hunan (HN) in Central China, Jiangxi (JX) in Eastern China, Sichuan (SC) in Southwestern China, and Guangxi (GX) in Southern China. These provinces were selected as the study areas for the present research because these locations: (1) represented the typical cropping system in China, (2) are located in primary rice-production regions, and (3) are geographically and climatologically different (see Figure 1 and Table 4). The life span, cropping system, and planting schedule are all depend on regional hydro-thermal condition. The general information on life span, cropping system, total annual rainfall (mm), annual accumulated temperature (°C), area (kha), and production levels (kt) for the selected provinces is shown in Table 4. The total combined rice-cultivation area in Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan (SC), and Guangxi (GX) is 13942.2 kha, and these regions accounted for 47.06% of the total rice-cultivation area in China in 2009. The total combined rice production in Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan (SC), and Guangxi (GX) was 87251 kt and accounted for 44.72% of the total rice production in China in 2009. The time series of the NBSC province-level rice yields were accounted for 44.72% of the total rice production in China in 2009. The time series of the NBSC province-level rice yields were 33872.67 100.00 29626.70 100.00 143750.00 100.00 195103.00 100.00.

2.5. Calibration of Rice-Yield Prediction Models

The gradual trend in yields is due to the influence of technological development, fertilizer application, and improved management on the rice cultivation. The results of this analysis suggest that the most common trend of rice yield is a linear growth. The province-specific intercepts account for spatial variations in rice management and soil quality; province-specific time trends account for yield growth due to technology gains. This indicates us the yield is composed from the intrinsic and extrinsic factors. Therefore, we decomposed the historical rice yield \(Y \) into the trend yield \(Y_t \) and the remotely sensed yield \(Y_{RS} \) using the following equation:

\[
Y = Y_t + Y_{RS} \tag{1}
\]

\(Y_t \) represents the component that is regulated by agricultural technology, including (1) the usual biological-chemical technologies (new varieties, fertilizers, herbicides, insecticides, etc.) and the mechanical technologies (machinery, equipment, etc.); (2) the management practices, which involve changes such as the timing of field operations and other practices which may or may not be involved in the purchase of new inputs. \(Y_{RS} \) is defined as the component regulated by natural environmental conditions, such as temperature, precipitation, pests and disease; these environment factors can be detected by a remote sensor.

To quantify past trends in yields, many different yield de-trend methods have been reported, including least-squares regressions [76,77], moving averages [78,79], exponential algorithms [80], and polynomial regressions [81]. For rice-yield predictions in the present investigation, a linear regression model and a moving average are both generated to fit each separated provincial rice dataset (also see in Figure 2):

\[
y = x + \beta t \tag{2}
\]

where \(Y_t \) is the trend yield in a given province during a given year (kg ha\(^{-1}\)), \(t \) represents the year of harvest (the year 1979 was numeral 1979, 1980 was numeral 1980, etc., until 2009 was numeral 2009), \(x \) and \(\beta \) are the province-specific linear regression coefficients.

In our study, a moving average is used with historical crop-yield data to smooth out short-term fluctuations and highlight longer-term trends. Rice yields were de-trended using their deviations from the 5-year moving average. The mean changes in provincial historical rice yield \(Y_t \), the trend yield \(Y_t \) and the remotely sensed yield \(Y_{RS} \) were calculated for each period as an average of the changes from each single preceding year to the next by using a moving average method. Generally, the moving average method is used to calculate arithmetic mean of each five of the entire dataset: \(y_1, y_2, y_3, y_4, y_5, y_6, \ldots, y_{n-1}, y_n \). Such method has been usually employed in meteorological data analysis to remove the stochastic errors from long-time series of data. Hence, an algorithm for a 5-year moving average is as follows:

\[
Y_i = \frac{y_{i-2} + y_{i-1} + y_i + y_{i+1} + y_{i+2}}{5}
\]

Table 3. Planted area and production changes for rice between 1979 and 2009 for different regions in the conterminous China.

Regions	Area (Kha)	% of China	Production (Kt)	% of China
	1979	2009	1979	2009
Northeastern China	841.73	3777.90	3860.00	25855.00
Northern China	264.07	204.40	1165.00	1343.00
Northwestern China	315.27	281.70	1305.00	1993.00
Central China	7639.13	6703.60	34260.00	46215.00
Eastern China	12926.33	9808.60	56230.00	64984.00
Southwestern China	4803.73	4448.10	21440.00	31214.00
Southern China	7082.40	4402.40	25490.00	34260.00
Total	33872.67	29626.70	143750.00	195103.00

doi:10.1371/journal.pone.0070816.t003
We defined this new time series as the remotely sensed yield.

Technological influences, it is necessary to remove the yield trend between two variables. The symbol \(r \) is a measure of the strength and the direction of a linear relationship for the NDVI variables. The correlation coefficient is a sample’s correlation coefficient; \(x \) and \(y \) represent the remotely sensed yield and the NDVI variables respectively; \(n \) is the number of data pairs.

\[
Y_{RS} = Y - Y_t
\]

Next, correlation analysis was performed between the remotely sensed yield and the NDVI variables. The correlation coefficient is a measure of the strength and the direction of a linear relationship between two variables. The symbol \(r \) in Eq. (5) represents the samples’ correlation coefficient; \(x \) and \(y \) represent the remotely sensed yield and the NDVI variables respectively; \(n \) is the number of data pairs.

\[
r = \frac{n \sum xy - (\sum x \sum y)}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}
\]

Statistical regression models are the most commonly used method for crop-yield prediction based on remotely sensed data [8,36]. They do not require numerous inputs and can be performed directly; also because it requires little computing power and the selected variables are distinctive and non-overlapping. Therefore, each of the provincial \(Y_{RS} \) and NDVI dataset was analyzed separately by means of stepwise regression techniques. These models were constructed via the ‘STEPWISE’ regression process which was available in software Statistical Product and Service Solutions (SPSS) 17.0 [82]. The probability significance thresholds for the entry and retention of candidate independent variables in the model were both set to \(\alpha = 5\% \).

2.6. Evaluation of Rice-Yield Prediction Models

The rice-yield prediction models were evaluated using the following indicators:

Root mean square error (RMSE):

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}
\]

Coefficient of determination \(R^2 \):

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}
\]
F-value (F):

\[F = \frac{\sum_{i=1}^{n} (Y_i - Y)^2 / k}{\sum_{i=1}^{n} (Y_i - Y_{i'}^{'})^2 / (n - k - 1)} \]

and relative error (RE):

\[RE = \frac{Y_i - Y_{i}^{'}}{Y_i} \]

Together with the above, where \(n \) is the number of comparisons; \(k \) is the number of predictors; \(Y_i \) is the statistical rice yield; \(Y \) is the average rice yield, and \(Y_{i}^{'}, Y_i \) is the predicted yield.

Results and Discussion

3.1. Rice Yield Trend Analysis

Figure 2 presents the evolution of the average rice-grain yield in Heilongjiang (HLJ), Jiangxi (JX), Guangxi (GX), Sichuan (SC), and Hunan (HN) from 1979 to 2006; according to their R-square and RMSE, all rice yields showed a visible and significant growth trend over time. Understanding the past rice-yield trends can help us to gauge the importance of the preprocessing procedure for rice-yield prediction using remotely sensed data. The statistical
data of rice yield together with average growth trend from 1979 to 2009 in five provinces of China is summarized in Table 5.

As analysis above (see Figure 2), the social input and advance of technology account for the linear trend of the rice-yield growth, whereas such human-induced factors could not be detected using remotely sensed data. To overcome this problem and make rice-yield prediction methods more robust and easily exportable, one possible strategy is to integrate remote-sensing data with the rice yield time series analysis. De-trending is necessary to properly identify the remote-sensible effects in these panel datasets. Therefore, before the rice-yield predicting models are established using remotely sensed variables as predictors, we suggest that the statistical yield should be decomposed into the trend yield and the remotely sensed yield, methodology was described in Section 2.5.

3.2. Correlation Coefficients between the Remotely Sensed Yield and NDVI Variables

The correlation coefficients between YRS and the NDVI variables for the rice-growth period from the fourth 15-day period before NDVI_{max} (NDVI_{max4}) to the second 15-day period after NDVI_{max} (NDVI_{max2}) for each of the studied provinces are summarized in Table 6. By comparing the correlation coefficients (Column 2 and 3 in Table 6), the YRS that was de-trended by linear regression performance better than the YRS that was de-trended by a 5-year moving average against the NDVI variables.

The correlation coefficients between the YRS that were de-trended by linear regression and the NDVI variables were generally high in HN and SC. According to Table 6, for HN, the correlation coefficients were significant at the 0.01 level between the YRS that was de-trended by linear regression and NDVI_{maxb1}, NDVI_{maxb2}, mNDVI_{maxb4-b2}, mNDVI_{maxb4-b1}, mNDVI_{maxb4-a1}, mNDVI_{maxb2-a1}, mNDVI_{maxb1-a1}, mNDVI_{maxb1-a2}, mNDVI_{maxb1-a2}, and mNDVI_{max1-a2}. The highest correlation coefficient between the YRS that was de-trended by linear regression and NDVI_{maxb1}, mNDVI_{maxb4-max}, mNDVI_{maxb3-a1}, and mNDVI_{maxb1-a2} were significant at the 0.05 level in JX. The correlation coefficients between the YRS that was de-trended by linear regression and the NDVI variables ranged from –0.14 to 0.38 in GX.

The correlation coefficients between the YRS that were de-trended by a 5-year moving average and the NDVI variables were generally low in HLJ, HN, and JX. For SC, the correlation coefficients were significant at the 0.01 level between the YRS that was de-trended by a 5-year moving average and NDVI_{maxb1}, mNDVI_{maxb1-a2}, mNDVI_{maxb1-a2}, mNDVI_{max1-a2}, and mNDVI_{max1-a2}. The correlation coefficients were significant at the 0.01 level between the YRS that was de-trended by a 5-year moving average and NDVI_{maxb1}, NDVI_{maxb5}, NDVI_{maxb4-max}, NDVI_{maxb4}, and NDVI_{maxb5}. The correlation coefficients were significant at the 0.01 level between the YRS that was de-trended by a 5-year moving average and NDVI_{maxb1}, NDVI_{maxb5}, NDVI_{maxb4-max}, NDVI_{maxb4}, and NDVI_{maxb5}.

3.3. Remotely Sensed Yield-Prediction Models

Conclusions drawn in the yield-trend analysis and the correlation analysis between YRS and the NDVI variables encouraged us to attempt to build a simple remotely sensed yield-prediction model for rice based on the NDVI variables. According to the correlation coefficient result summarized in Table 6, the YRS values that were de-trended by linear regression were used as dependent variables in HLJ, HN, JX, and SC. The YRS values that were de-trended by a 5-year moving average were used as dependent variables in GX. The NDVIs were used as independent variables. These models were constructed through the ‘STEPWISE’ regression process in SPSS software. Each model contains variables using the data period from 1982 to 2004. The correlation coefficients of the selected models ranged from 0.42 to 0.92, and all models were significant at the 0.01 level, except for HLJ which is significant at the 0.05 level (see Table 7). This means that increases in NDVI during the rice-growth period are generally related to the final rice-grain yield. The influence of NDVI always had a positive impact on yield. These results are consistent with numerous previous studies [34,36,42,75]. Data from 2005 to 2006 were used for model validation.

3.4. Validation of Rice-Yield Prediction Models

The remotely sensed yield (YRS) of rice was calculated using the NDVI variables required by each model described in Table 7. The final rice yield (Y) was the sum of the trend yield (T) and the remotely sensed yield (YRS). Figure 5 shows a scatter plot of the predicted and observed final rice yields for HLJ, HN, JX, SC, and GX from 1982 to 2004, expressed in units of kilogram per hectare. The models performed well, showing a good similarity between the predicted values and the official statistical values in HLJ, HN, JX, SC, and GX from 1982 to 2004 and capturing the fluctuations of rice yields over time. The regression line between the predicted

Province	Yield in 1979 (kg/ha)	Yield in 2009 (kg/ha)	Annual increase, 1979–2009 (kg/ha yr⁻¹)
Heilongjiang (HLJ)	3480	6398.3	94.14
Hunan (HN)	4440	6371.3	62.30
Jiangxi (JX)	3645	5807	69.74
Sichuan (SC)	4777.5	7499.4	87.80
Guangxi (GX)	3562.5	5392.5	59.03

Table 5. Trends in rice yield for five selected provinces in China from 1979 to 2009.
Table 6. Correlation coefficient (R) between the remotely sensed yields and NDVI variables during the rice growth period.

Variables	the remotely sensed yields de-trended by linear models	the remotely sensed yields de-trended by 5-year moving average								
	HLJ	HN	JX	SC	GX	HLJ	HN	JX	SC	GX
NDVImaxb4	−0.02	−0.08	0.05	**0.68**	0.24	−0.12	0.14	0.04	**0.51**	**0.54**
NDVImaxb3	−0.16	−0.02	0.14	**0.73**	**0.36**	−0.21	0.13	0.10	**0.46**	**0.52**
NDVImaxb2	−0.08	0.38	0.21	**0.57**	−0.14	−0.06	0.34	0.14	0.39	−0.30
NDVImaxb1	−0.06	0.56	**0.42**	0.32	0.19	−0.03	0.22	−0.04	0.16	0.09
NDVImanx1	0.13	0.60	**0.09**	−0.06	−0.04	0.20	0.20	0.10	0.10	−0.26
NDVImaxb1-a2	**0.42**	**0.62**	0.28	0.29	−0.01	0.35	0.27	−0.05	0.08	−0.28
NDVImaxb1-a1	0.20	0.49	0.32	−0.11	0.38	0.28	0.18	0.01	−0.22	0.39
mNDVImaxb4-b3	−0.08	−0.05	0.10	**0.73**	0.31	−0.16	0.14	0.08	**0.50**	**0.57**
mNDVImaxb4-b2	−0.09	0.12	0.16	**0.73**	0.19	−0.14	0.25	0.11	**0.50**	0.32
mNDVImaxb4-b1	−0.08	0.25	0.26	**0.66**	0.22	−0.13	0.28	0.08	**0.43**	0.30
mNDVImaxb4-max	−0.07	0.33	0.29	**0.64**	0.22	−0.11	0.30	0.09	**0.44**	0.26
mNDVImaxb4-a1	0.09	0.47	0.31	**0.61**	0.18	0.03	0.33	0.07	0.39	0.12
mNDVImaxb4-a2	0.15	0.56	**0.54**	0.25	0.12	0.35	0.06	0.31	0.20	
mNDVImaxb3-b2	−0.14	0.23	0.20	**0.70**	0.10	−0.15	0.28	0.14	**0.46**	0.06
mNDVImaxb3-b1	−0.12	0.37	0.32	**0.60**	0.15	−0.13	0.30	0.09	0.38	0.08
mNDVImaxb3-max	−0.10	0.45	0.35	**0.58**	0.14	−0.09	0.31	0.10	0.38	0.02
mNDVImaxb3-a1	0.13	0.57	**0.55**	0.09	0.10	0.34	0.07	0.33	−0.10	
mNDVImaxb3-a2	0.19	0.64	**0.46**	0.18	0.19	0.35	0.06	0.24	0.03	
mNDVImaxb2-b1	−0.08	0.51	0.35	**0.47**	0.00	−0.05	0.33	0.07	0.29	−0.15
mNDVImaxb2-max	−0.03	0.59	0.38	**0.44**	−0.01	0.01	0.34	0.08	0.29	−0.21
mNDVImaxb2-a1	0.25	0.66	**0.43**	−0.01	0.23	0.34	0.04	0.25	−0.25	
mNDVImaxb2-a2	0.27	0.69	0.38	0.33	0.10	0.29	0.33	0.04	0.15	−0.09
mNDVImax1-b1	0.02	0.64	**0.46**	0.25	0.13	0.07	0.24	0.01	0.17	−0.05
mNDVImax1-a1	0.34	0.69	**0.42**	0.30	0.06	0.31	0.28	−0.01	0.15	−0.19
mNDVImax1-a2	0.30	0.69	**0.41**	0.18	0.19	0.32	0.27	−0.01	0.02	0.01
mNDVImax1-b2	**0.40**	**0.66**	0.23	−0.02	0.36	0.27	0.00	0.12	−0.31	
mNDVImax1-a2	0.33	0.66	**0.37**	0.07	0.16	0.34	0.26	0.01	−0.06	−0.02
mNDVImax1-a2	0.32	0.62	**0.32**	0.09	0.19	0.33	0.25	−0.02	−0.09	0.04

*significant at 0.05 level; ** significant at 0.01 level, n = 23.
doi:10.1371/journal.pone.0070816.t006

values and the observed values was close to the diagonal (intercept = 0, slope = 1), and the coefficients of determination for the five study areas ranged from 0.84 to 0.98, indicating that the reliability of the forecasts are very high.

The yield data for 2005 and 2006 were not included in the model construction and instead were used to evaluate the prediction models independently. These data provide independent estimates of the predictive power of the selected models (Table 8).

Table 7. Results of the stepwise regression models for remotely sensed rice yield using AVHRR-derived NDVI measures as independent variables.

Study areas	Model	R	F-test value	RMSE
HLJ	\(Y_{\text{eq}} = -849.158 + 0.137 \text{NDVI}_{\text{max}x1} \)	0.42*	4.508	361.99
HN	\(Y_{\text{eq}} = -1240.690 + 0.229 \text{mNDVI}_{\text{max}1-a2} \)	0.69**	19.342	114.57
JX	\(Y_{\text{eq}} = -1553.145 + 0.261 \text{mNDVI}_{\text{max}1-max} \)	0.46**	5.689	166.38
SC	\(Y_{\text{eq}} = -1495.515 + 0.403 \text{mNDVI}_{\text{max}b4-b3} \)	0.73**	24.238	207.07
GX	\(Y_{\text{eq}} = -1832.285 + 1.318 \text{mNDVI}_{\text{max}b4-b3} + 0.214\text{NDVI}_{\text{max}2-a1} - 1.315 \text{mNDVI}_{\text{max}b4-b3} + 0.307 \text{mNDVI}_{\text{max}2-b1} \)	0.92**	25.103	87.70

R: multiple correlation coefficient.
*significant at 0.05 level; ** significant at 0.01 level.
doi:10.1371/journal.pone.0070816.t007
The differences between the predicted values and the official statistical values were 5% or less in seven out of ten years. These results demonstrate the potential of a NDVI rice-yield estimate that is based on model calibration with historical data at the provincial level. However, it is noticeable that the predicted relative errors were greater than 10%, but less than 19% in both 2005 and 2006 for SC and in 2006 in HLJ when compared with the official statistical data. These error rates are likely due to a number of contamination sources that can confound the potential relationship between NDVIs and rice yield. For instance, cloud and atmospheric-moisture contamination can influence the NDVI signal. Vegetation signals from before or after the selected NDVIs can impact the final yield of rice.

Conclusion

This study focused on the obvious and important role that advance of technology plays in rice yields increase. The results of this analysis suggest that the most common trend of rice yields in China during the years 1979–2009 is a linear growth. In the light of rice-yield trend could not be detected directly by a satellite remote sensor therefore, yield de-trended analysis was necessary to properly identify the remote-sensible effects and obtain an accurate prediction for rice yield. Only with de-trending analysis could we interpret the NDVI’s evolution as being mainly due to variations in the photosynthetic activity and growth conditions of rice and then predict the rice yield using NDVI variables.

The AVHRR-based indices explored in the present research were useful for the remotely sensed rice yield-prediction in major
rice cultivation areas of China. This method allowed us to have a fine provincial estimate which satellite image could be difficult to obtain, or else a similar cost and a similar time frame data is easily available. However, it is cautious to restrict these analysis to those areas where the common trend of the crop yield is linear growth for the period considered.

The two steps for de-trending the statistical yield to obtain new time series, that are the trend yield \(Y_t \) and the remotely sensed yield \(Y_{RS} \): And by constructing the prediction models of \(Y_{RS} \) using NDVI variables enabled the development of a robust, simple, remotely sensed data-based model that was applicable at the provincial level in China. We believe the approach introduced here has a wide applicability to other rice-producing countries as well as other crops, such as wheat and corn.

More empirical studies should be performed on the use of AVHRR-derived NDVI time series as predictors for crop yield to enhance the understanding its forecasting capacity and limitations, and to validate the methods of remotely sensed yield estimation further. A future study should also include the application of a longer AVHRR NDVI time series in combination with other data sets such as SPOT-VEG, MODIS and SeaWIFS, especially in the event of one of these dataset’s unexpected absence.

Acknowledgments

We thank the NASA/GSFC Global Inventory Modeling and Mapping Studies (GIMMS) group for providing access to the AVHRR NDVI data and the National Bureau of Statistics of China for providing rice yield data. We also appreciate professor Jiwei (jiwei@umkc.edu) and anonymous reviewers who provided very valuable comments.

Author Contributions

Conceived and designed the experiments: JH XW. Performed the experiments: JH XL. Analyzed the data: JH XW XL. Wrote the paper: JH XW XL ZP. Reviewed and revised this manuscript: XL HT ZP.

References

1. National Bureau of Statistics of China (2010) China Statistical Year Book. Beijing: China Statistical Press.
2. Wang RC, Huang JF (2002) Rice yield estimation using remote sensing data. Beijing: China Agriculture Press. 287 p. (in Chinese with English abstract).
3. Prasad AK, Chai L, Singh RP, Kafatos M (2006) Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation 8: 26–33.
4. Manjunath KR, Potdar MB, Purohit NL (2002) Large area operational wheat yield model development and validation based on spectral and meteorological data. International Journal of Remote Sensing 23: 3025–3038.
5. Salazar L, Kogan F, Roytman L (2007) Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing 28: 3795–3811.
6. Zhang F, Wu BF, Luo ZM (2004) Winter wheat yield predicting for America using remote sensing data. Journal of remote sensing 8: 611–617. (in Chinese with English abstract).
7. Wang CY, Lin WP (2003) Winter wheat yield estimation based on MODIS EVI. Transactions of the Chinese Society of Agricultural Engineering 21: 90–94. (in Chinese with English abstract).
8. Wall L, Lacroix D, Leger PM (2008) The early explanatory power of NDVI in crop yield modelling. International Journal of Remote Sensing 29: 2211–2225.
9. Sriraha VN, Dhadwal VK, Chaudhari KN, Sharma R, Bajraj G, et al. (1994) Wheat production forecasting for a predominantly irrigated region in Madhya-Pradesh (India). International Journal of Remote Sensing 15: 1307–1316.
10. Smith RCG, Adams J, Stephens DJ, Hick PT (1995) Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research 46: 113–125.
11. Schut AGT, Stephens DJ, Stovold RGH, Adams M, Craig RL (2009) Improved wheat yield and production forecasting with a moisture stress index, AVHRR and MODIS data. Crop & Pasture Science 60: 60–70.
12. Rudorff BFT, Baista GT (1991) Wheat yield estimation at the farm level using TM-Landsat and agrometeorological data. International Journal of Remote Sensing 12: 2477–2484.
13. Ren JQ, Chen ZX, Zhou QB, Tang HJ (2008) Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation 10: 803–413.
14. Ren JQ, Chen ZX, Tang HJ (2006) Regional scale remote sensing-based yield estimation of winter wheat by using MODIS-NDVI data: A case study of Jining City in Shandong Province. Chinese Journal of Applied Ecology 17: 2371–2375. (in Chinese with English abstract).
15. Prasad AK, Singh RP, Tare V, Kafatos M (2007) Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International Journal of Remote Sensing 28: 5207–5235.
16. Patel NR, Bhattacharjee B, Mohammed AJ, Tamriya B, Saha SK (2006) Remote sensing of regional yield assessment of wheat in Haryana, India. International Journal of Remote Sensing 27: 4071–4090.
17. Morinondo M, Maselli F, Bindl M (2007) A simple model of regional wheat yield based on NDVI data. European Journal of Agronomy 26: 266–274.
18. Mo X, Liu S, Lin Z, Xu Y, Xiang Y, et al. (2005) Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling 183: 301–322.
19. Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y (2011) Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology 151: 385–393.
20. Mika J, Kerenny J, Rimoczi-Paal A, Merza A, Szinell C, et al. (2002) On correlation of maize and wheat yield with NDVI: Example of Hungary (1985–1990). In: Fellous JL, LeMarshall JF, Choudhury BJ, Menenti M, Paxton LJ et al., editors. Earth’s Atmosphere, Ocean and Surface Studies. 2399–2404.
21. Maselli F, Rembold F (2001) Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering and Remote Sensing 67: 595–602.

Table 8. Observed and predicted rice yields (independent test).

Provinces	Year	Observed(kg/ha)	Predicted(kg/ha)	Relative Error (%)
Heilongjiang (HLJ)	2005	6795.7	6780.7	−0.22
	2006	6261.3	6897.8	10.17
Hunan (HN)	2005	6050.3	6337.5	4.75
	2006	6141.3	6441.2	4.88
Jiangxi (JX)	2005	5328.2	5545.9	4.09
	2006	5475.1	5634.9	2.92
Sichuan (SC)	2005	7213.0	8018.4	11.17
	2006	6420.7	7680.3	19.62
Guangxi (GX)	2005	4953.0	5028.9	1.53
	2006	5088.0	5053.44	−0.68

doi:10.1371/journal.pone.0070816.t008
77. Clarke FR, Baker RJ, Depauw RM (1994) Moving mean and least-squares smoothing for analysis of grain-yield data. Crop Science 34: 1479–1483.
78. Peltonen-Sainio P, Jauhiainen L, Laurila IP (2009) Cereal yield trends in northern European conditions: Changes in yield potential and its realisation. Field Crops Research 110: 85–90.
79. Epplin FM, Peper TF (1998) Influence of planting date and environment on Oklahoma wheat grain yield trend from 1963 to 1995. Canadian Journal of Plant Science 78: 71–77.
80. Stergiou KI, Christou ED (1996) Modelling and forecasting annual fisheries catches: Comparison of regression, univariate and multivariate time series methods. Fisheries Research 25: 105–138.
81. Foody GM, Boyd DS, Cutler MEJ (2005) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment 85: 463–474.
82. Sirkin RM (2006) Statistics for the social sciences. Thousand OaksCalifornia: Sage Publications, Inc. 244 p.