Analysis of Tectonic Earthquake Characteristics in The Province of Nusa Tenggara Barat Indonesia and Its Surroundings

H J Wattimanela*, S J Latupeirissa
Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon-Indonesia Jalan. Ir. M. Putuhena, Ambon-Indonesia

* E-mail: hwattimanela@yahoo.com

Abstract. The type of earthquake that is most often felt in Indonesia is tectonic earthquakes. This type of earthquake is caused by the movement of the earth's crust due power generated by tectonic plate shifts. Province of Nusa Tenggara Barat is one of the earthquake prone areas in Indonesia. In this research, we will analysis of tectonic earthquakes characteristics in Province of Nusa Tenggara Barat by descriptive statistics concept approach and analysis type of data distribution earthquakes 2018. The Data used are tectonic earthquakes 2018 in Province of Nusa Tenggara Barat of Indonesia and sourced from the USGS earthquake catalog. The results of this study can be used as a reference for the Government of Indonesia and Province of Nusa Tenggara Barat in disaster mitigation planning in Province of Nusa Tenggara Barat.

1. Introduction
Earthquake tectonic activity in Indonesia is relatively high. Meteorological, Climatological, and Geophysical Agency noted that during 2018 there was an earthquake activity of 11,577 times in various magnitudes and depths. It is discovered that the type of earthquake that is most often happened in Indonesia is tectonic earthquakes. This type of earthquake is an earthquake caused by the movement of the earth's crust due to the power generated by tectonic plate shifts. According to plate tectonic theory that the outer portion of the earth's interior is formed of two layers. The first layer is the lithosphere which is rigid and dense. This layer consists of the crust and the top of the earth's mantle. Another layer is the asthenosphere, which is a layer that is dense but can change form into liquid and flow slowly on a very long geological time scale [1,2].

Indonesian territory has a high level of earthquake risk. This relates to the Indonesian archipelago which is a meeting of the world's large plates and several small plates or micro blocks, which are the Pacific and the Indo-Australian plates in the east, and the Eurasian and the Indian plates in the west, as showed in Fig. 1. The existence of large and smaller plates, namely the Caroline and the Philippine Sea plate take the tectonic structure in the Indonesian archipelago to be complicated. As a result of the tectonic process, earthquake often occur in most areas in Indonesia. One of the earthquakes’ sources that have been identified is the active subduction zone in the west to the eastern part of Indonesia. In addition, the energy from the collision process between the plates will cause faults on land or sea on several islands and seas of Indonesia. West Nusa Tenggara Province is one of the Indonesian regions in the active tectonic region [3,4].
Many geologists have examined the characteristics of the earthquake in Province of Nusa Tenggara Barat (NTB). Province of NTB, especially the Lombok Island, is in an active tectonic area [5]. The India-Australian Plate which stretches across the Nusa Tenggara region can be divided into three different zones, namely Roo Rise, Argo Abyssal Plain, and Scott Plateau. Lombok Island, NTB Province is surrounded by several earthquake sources, including the Back Arc Thrust Zone in the north, Megathrust in the south, and the sliding fault system in the west and east. Geographical location data from several earthquake spreads and earthquake focal mechanisms, it is known that the earthquake that occurred is related to the movement of the rising fault in the back arc of Lombok Island [5-8]. On July 29, 2018 an earthquake occurred in the NTB Province which had taken a significant toll with the epicenter located 47 km northeast of Mataram City, NTB Province with a depth of 24 km. Then, on August 5, 2018 the epicenter was 18 km northwest of East Lombok, NTB Province with a depth of 32 km. This earthquake is the main earthquake in the series of earthquakes on Lombok Island since the initial earthquake SR 6.4 [9,10].

In addition, there was also a fairly large earthquake on August 9, 2018 with a magnitude of 6.5 SR that struck the NTB Province. A total of 14,940 houses were damaged by the earthquake and 555 people died due to the earthquake in NTB Province during August 2018. Experts and institutions that interpreted in SAR data showed a fault deformation that caused the northern part of Lombok Island to rise by an average of about 25 cm [9]. The rear arc ascending fault line is usually referred to as the Flores fault because it is associated with the 1992 earthquake-tsunami event. This fault line stretches from Alor-Wetar Island, Flores, Sumbawa, Lombok, to Bali [7,9].

Earthquake research with a statistical science approach has been carried out by many researchers such as related to the classification and modeling of earthquakes with the stochastic process approach [11-13], the statistical method approach [14-17], and multivariate statistics [13, 18].

This study uses a descriptive statistical approach that aims to determine the characteristics of tectonic earthquakes in Province of NTB, analysis of earthquake distribution 2018 in Province of NTB, and determine the type of earthquake distribution based on earthquake data 2018 in Province of NTB using the Kolmogorov-Smirnov test. The results of this study are expected to be used as a reference for the Regional Government of the Province of NTB in compiling spatial planning and areas in Province of NTB and its surroundings.

2. Data and Methods
The province of NTB is one of the areas that is in earthquake prone areas in Indonesia. In the north side with: Java Sea and Flores Sea, south side with Indonesian Ocean, west side with Lombok Strait and Province of Bali, and east with the Sape Strait (Province of Nusa Tenggara Timur). Province of NTB is located at coordinates 8°.10' - 9°.5' Latitude and 115°.46' - 119°.5' Longitude. Province of NTB consists of two large islands namely Lombok and Sumbawa and hundreds of smaller islands

![Figure 1. The Map of Indonesian Tectonic Plates [3]
Out of 280 islands, only 32 are inhabited. The total area of the Province of NTB is 20,153.15 km². Sumbawa Island has the largest area in Province of NTB, which is 15,414.5 km² (76.49%) [19].

This study uses earthquake data of the United States Geological Survey (USGS) which is earthquake data 2018 in Province of NTB with criteria of magnitude > 3 and depth ≤ 50 km [20]. This data consists of 18 variables, namely: time/date, latitude, longitude, depth, magnitude, magtype, nst, gap, dmin, rms, net, id, upadet place, type, horizontal error, status, location source, mag source. This study only uses 6 variables namely longitude (X_1), latitude (X_2), depth (X_3), magnitude (X_4), date (X_5), and location source (X_6). Earthquake events 2018 in Province of NTB with these criteria are 165 events and in detail the number of events grouped by month during 2018 can be shown in Table 1 and Fig. 3.

Months	Number of Earthquake
January	0
February	2
March	0
April	0
May	0
June	0
July	18
August	115
September	17
October	4
November	4
December	5
Total	165

Based on Table 1 and Fig. 3 shows that earthquake events are high in August 2018 and events are occurring in July and September 2018 while there are no earthquake events in January, March, April and May 2018. Then the earthquake events are relatively low occurred in February, October, November and December 2018.
In this research, observations will be made of the earthquake events distribution in 2018 to areas in Province of NTB based on visualization through mapping. The descriptive statistics are processed for earthquake event data related to several measure of central tendency and dispersion, then analyzed the results of the descriptive statistics [21]. On the other side, the data is presented in the form of scatterplots (2 and 3 dimensions) and boxplots which are then analyzed the results displayed through the boxplot and scatterplot [22,23]. The study continued with determining the type of data distribution of latitude, longitude, depth and magnitude of earthquake events using the Kolmogorov-Smirnov test. Then also shown a graph of the density function of the type of earthquake data distribution that has been tested with the Kolmogorov-Smirnov test approach including a histogram of the data.

3. RESULTS AND DISCUSSION

3.1 Analysis of earthquake characteristics 2018 in province of NTB

In this section, visualization of the earthquake distribution 2018 will be displayed based on regency areas in Province of NTB with criteria of magnitude > 3 and depth ≤ 50 km as shown in Fig. 4. Based on Fig. 4, it appears that the earthquake with these criteria gathered in the Lombok Island region, particularly in North Lombok Regency, Lombok Regency and Alas Strait and only a few earthquakes in Sumbawa Island, namely in Sumbawa and Sumbawa Besar Regencies.

Based on Table 1, it can be seen that in August 2018 earthquake frequency with magnitude > 3 and depth ≤ 50 km is high enough, 115 events. Then followed in July 2018 and September 2018, there were 18 and 17 events. The distribution of the earthquake July 2018 in the Province of NTB can be shown in Fig. 5. Based on Fig. 5, it can be seen that the earthquake is only spread in North Lombok and East Lombok Regencies of Lombok Island (July 2018). Whereas for August 2018, the distribution of the earthquake partly spread on Lombok Island (East Lombok and North Lombok Regencies) and
the Alas Strait. While a small portion spread in the Sumbawa Island Region, namely in the Sumbawa Regency (Fig. 6).

Figure 5. Distribution of earthquake July 2018 in Province of NTB

Figure 6. Distribution of earthquake August 2018 in Province of NTB

In September 2018, earthquakes spread rather infrequently in the Lombok Island, especially in North Lombok and East Lombok Regencies, also in the Alas Strait while only one incident occurred on Sumbawa Island (Fig. 7).
The initial stage in analyzing the characteristics of tectonic earthquakes in Province of NTB is to conduct a descriptive statistical analysis. Descriptive statistical results for earthquake data $X_1, X_2, X_3,$ and X_4 in 2018, July 2018, August 2018, and September 2018 can be shown in Table 2, Table 3, Table 4, and Table 5. Then the earthquake data X_1 in 2018, July 2018, August 2018 and September 2018 in Table 2, Table 3, Table 4, and Table 5 shows that the earthquake data X_1 in August 2018 has a high SD of 0.30063 when compared to the SD from the earthquake data X_1 of 2018, July 2018, and September 2018. This means a wider range of variations of the earthquake data X_1 in August 2018 when compared to the earthquake data X_1 in 2018, July 2018, and September 2018. The negative skewness value (<0) for the earthquake data X_1 in 2018, July 2018, August 2018, and September 2018 shows that the form of the distribution of earthquake data X_1 in 2018, July 2018, August 2018, and September 2018 was negatively neglected because the tail of the data distribution point referred to the left. Furthermore, based on kurtosis values it can be seen that the earthquake data X_1 in 2018, July 2018, August 2018, and September 2018 have a central part of the distribution which has a flatter peak because the value of kurtosis is <3 and is called platycurtic.

Based on the earthquake data X_2 in 2018, July 2018, August 2018 and September 2018 in Table 2, Table 3, Table 4, and Table 5 shows that the earthquake data X_2 September 2018 has a high Standard Deviation (SD) which is 0.12814 when compared with SD from earthquake of X_2 in 2018, July 2018, and August 2018. This shows that the wider range of variations of earthquake data X_2 of earthquake in September 2018 when compared with earthquake data X_2 of 2018, July 2018, and August 2018. Negative skewness value (<0) for earthquake data X_2 in 2018, July 2018, August 2018, and September 2018 show that the form of the distribution of earthquake data X_2 in 2018, July 2018, August 2018, and September 2018 was negatively neglected because the tail of the data distribution point referred to the left. Then based on the value of kurtosis, the middle part of the distribution of earthquake data X_2 in 2018 and September 2018 has a flatter peak because the value of kurtosis <3 and is called platykurtic. While the X_2 September 2018 earthquake data has a value of kurtosis >3 so that the center of the data distribution has a sharper peak and is called leptokurtic. On the other hand, the July 2, 2018 earthquake data, the central part of the data distribution has a peak between leptokurtic and platykurtic.

![Figure 7. Distribution of earthquake September 2018 in Province of NTB](image-url)
Table 2. Descriptive statistics of earthquake data 2018 in Province of NTB.

Variable	N	Min	Max	Mean	SD	Skewness	Kurtosis
X₁	165	-8.72	-8.17	-8.3278	0.09472	-0.973	2.127
X₂	165	115.84	116.99	116.5128	0.28499	-0.227	-0.962
X₃	165	3.30	34.56	12.6288	6.27589	2.050	3.607
X₄	165	3.70	6.90	4.5976	0.51796	0.973	4.848

Table 3. Descriptive statistics of earthquake data July 2018 in Province of NTB.

Variable	N	Min	Max	Mean	SD	Skewness	Kurtosis
X₁	18	-8.41	-8.17	-8.2607	0.06569	-0.713	0.000
X₂	18	116.36	116.59	116.5018	0.06164	-0.515	0.084
X₃	18	10.00	12.00	11.1111	0.47140	4.243	18.000
X₄	18	4.00	6.40	4.6944	0.57238	1.600	3.668

Table 4. Descriptive statistics of earthquake data August 2018 in Province of NTB.

Variable	N	Min	Max	Mean	SD	Skewness	Kurtosis
X₁	115	-8.72	-8.19	-8.3370	0.08774	-0.796	1.839
X₂	115	115.97	116.99	116.5003	0.30063	-0.109	-1.299
X₃	115	3.30	33.31	12.4069	5.95548	1.936	3.366
X₄	115	3.80	6.90	4.6191	0.53638	1.955	5.096

Table 5. Descriptive statistics of earthquake data September 2018 in Province of NTB.

Variable	N	Min	Max	Mean	SD	Skewness	Kurtosis
X₁	17	-8.71	-8.17	-8.3159	0.12814	-1.859	5.037
X₂	17	116.04	116.99	116.6198	0.25384	-0.583	0.179
X₃	17	6.75	34.56	17.2547	9.97771	0.918	-0.783
X₄	17	4.10	5.00	4.4706	0.30977	0.669	-0.633

Furthermore, based on Table 2, Table 3, Table 4, and Table 5 it can be seen that the X_3 earthquake data for September 2018 has a high SD 9.97771 when compared with the SD data depth of 2018, July 2018, and August 2018. This shows that X_3 earthquake data for September 2018 is wider in variation range compared to the earthquake data X_3 for 2018, July 2018, and September 2018. Positive skewness values (> 0) for the earthquake data X_3 for 2018, July 2018, and August 2018 indicate that the shape of the distribution of earthquake data X_3 in 2018, July 2018, and August 2018 is positively right (Fig. 8). On the other hand, it can be seen that the value of kurtosis of earthquake data X_3 in 2018, July 2018, and August 2018 is greater than 3 so it can be said that the central part of the distribution of earthquake data X_3 in 2018, July 2018, and August 2018 has a sharper peak and is called leptokurtic.
Figure 8. Scatterplot of earthquakes data X_1, X_3, and X_5 in Province of NTB a).2018, b). July 2018, c). August 2018, and d). September 2018.

While the X_3 earthquake data for September 2018 has a kurtosis value < 3 so that the central part of the data distribution is more pointed (leptokurtic). On the other hand, the X_4 earthquake data for July 2018 has an SD value of 0.57238 which is greater than the X_4 earthquake data for 2018, August 2018 and September 2018 (Table 2, Table 3, Table 4, and Table 5). This means that variations in magnitude data for July 2018 are wider in range when compared to earthquake data X_4 in 2018, August 2018, and September 2018. So, positive of skewness values (> 0) for earthquake data X_4 in 2018, July 2018, August 2018, and September 2018 shows that the form of the distribution of earthquake data X_4 in 2018, July 2018, August 2018, and September 2018 was positively skewed because the tail of the data distribution point was intended to the right. Earthquake data X_4 in 2018, July 2018, and August 2018 have a value of kurtosis > 3 (leptokurtic) so that the peak is more pointed in the middle of the distribution of earthquake data X_4 in 2018, July 2018, and August 2018. The earthquake data X_4 in September 2018 has a value of kurtosis < 3 (platykurtic) so that the middle part of the distribution of the X_4 earthquake data for September 2018 has a flatter peak in the middle of the intended data distribution.
Figure 9. Scatterplot of earthquakes data X_3 and X_4 in Province of NTB. a. 2018, b. July 2018, c. August 2018, and d. September 2018.

Fig. 8 shows scatterplots based on earthquake data X_1, X_2, and X_3 in 2018, July 2018, August 2018, and September 2018. Based on Fig. 9a, it can be seen that the frequency of earthquakes occurring with depth in 2018 is at intervals of $20 \leq X_3 \leq 35$ km less frequently occur when compared with the frequency of earthquake events with a depth interval $X_3 \leq 20$ km. Furthermore, it was seen that the earthquake depth of July 2018 at an interval of $10 \leq X_3 \leq 12$ km and the frequency of earthquake events was rare (Fig. 8b). On the other side, it appears that the frequency of earthquakes in August 2018 is quite high and spreads at depths at intervals $5 \leq X_3 \leq 35$ km. At depths with intervals of $15 \leq X_3 \leq 35$ km and $0 \leq X_3 \leq 10$ km, earthquake frequency rarely occurs compared to the frequency of earthquake occurrence in depth with intervals of $10 \leq X_3 \leq 15$ km (Fig 8c). Then based on Fig. 8d seen for September 2018 that at depths with intervals of $0 \leq X_3 \leq 5$ km and $25 \leq X_3 \leq 31$ km there was no earthquake while the earthquake occurred at depth with intervals of $5 \leq X_3 \leq 24$ km and $32 \leq X_3 \leq 35$ km occur quake with rare frequency. Fig. 9 shows scatterplots based on earthquake data X_3 and X_4 of 2018, July 2018, August 2018, and September 2018. Based on the Fig. 9, it appears that the X_3 and X_4 data points do not form a particular pattern. This means there is no trend to the data.

3.2 Determination of the type of earthquake distribution of 2018 in province of NTB
Before determining the type of distribution, the boxplots will be shown based on earthquake data X_1, X_2, X_3, and X_4 in Province of NTB for 2018, July 2018, August 2018, and September 2018. Fig. 2 shows the X_1 earthquake data boxplot in Province of NTB for 2018, July 2018, August 2018, and September 2018.
Figure 10. Boxplot based on earthquakes data 2018, July 2018, August 2018, and September 2018 in Province of NTB. a. X_1, b. X_2, c. X_3, and d. X_4.

Based on Fig. 10a shows that the median value of earthquake data X_1 in 2018, July 2018, August 2018, and September 2018 are at intervals of $116 \leq X_1 \leq 117$ with the highest median value in earthquake events in 2018 while the lowest median values in earthquake events in August 2018. Then the distribution in Fig. 10a also shows that there are outliers in the 14th data from the September 2018 earthquake because it has the lowest value below the normal diversity. The diversity or variation of the X_1 earthquake data, looks very high at the September 2018 earthquake. This can be seen in the wide boxplot. The minimum value is recorded above 116.2 and the maximum is 117.

Based on Fig. 10b shows that earthquake data X_2 for 2018, July 2018, August 2018, and September 2018 are at intervals of $-8.5 \leq X_2 \leq -8.3$ with the highest median value in the earthquake events data for July 2018 while the lowest in the earthquake events data for August 2018. On the other side, based on the distribution, it can be seen that the earthquake in September 2018 has outliers, namely the third data which is very low under normal diversity. Variance of X_2 data looks very high on the data of earthquake events in August 2018. This can be seen from the wide boxplot. Furthermore, the boxplot for depth data can be shown in Fig. 10c.

Variable	P-Value	Jenis Distribusi	Parameter
X_1	0.69162	GEV	$k= -0.39019; \sigma = 0.30393; \mu = 116.43$
X_2	0.99642	GEV	$k= -0.50927; \sigma = 0.10011; \mu = -8.3499$
X_3	-	-	-
X_4	0.16257	GEV	$k= 0.16976; \sigma = 0.31387; \mu = 4.3537$
Table 7. KS test results of earthquakes data July 2018 in Province of NTB.

Variable	P-Value	Jenis Distribusi	Parameter
X_1	0.92048	Lognormal	$\sigma = 5.1427E-4; \mu = 4.7579$
X_2	0.99184	GEV	$k = -0.6014; \sigma = 0.07435; \mu = -8.2738$
X_3	-	-	-
X_4	0.87054	GEV	$k = 0.17075; \sigma = 0.36104; \mu = 4.4134$

Table 8. KS test results of earthquakes data August 2018 in Province of NTB.

Variable	P-Value	Jenis Distribusi	Parameter
X_1	0.30228	GEV	$k = -0.34527; \sigma = 0.31621; \mu = 116.40$
X_2	0.97546	GEV	$k = -0.44148; \sigma = 0.09218; \mu = 8.3609$
X_3	-	-	-
X_4	0.37559	Burr	$k = 0.22717; \alpha = 44.899; \beta = 4.1929$

Table 9. KS test results of earthquakes data September 2018 in Province of NTB.

Variable	P-Value	Jenis Distribusi	Parameter
X_1	0.99908	GEV	$k = -0.50343; \sigma = 0.28246; \mu = 116.56$
X_2	0.64781	Logistik	$\sigma = 0.07065; \mu = 8.31590$
X_3	0.26585	GEV	$k = -0.26004; \sigma = 5.7226; \mu = 11.995$
X_4	0.97599	GEV	$k = -0.01562; \sigma = 0.25089; \mu = 413218$

Based on Fig. 10c shows that the median values for earthquake data X_3 in 2018, July 2018, and August 2018 are almost the same location and is a low median value when compared to the median value of earthquake events in September 2018. Earthquake data X_3 in 2018 and August 2018 have many outliers above normal diversity besides there are some that are below the normal limit. Then the variance of earthquake data X_3, it can be seen that the earthquake data X_3 of September 2018 has a high distribution with a minimum number below 10 km and a maximum number approaching 35 km. On the other side, a boxplot for earthquake data X_4 has also been made for the events of 2018, July 2018, August 2018, and September 2018. The results can be shown in Fig. 10d. Based on Fig. 10d shows that the median for earthquake data X_4 in 2018, July 2018, and August 2018 are at intervals of $4.0 \leq X_4 \leq 5.5$ with the highest median value is on the earthquake data X_4 in July 2018 while the lowest median values in the earthquake data X_4 are August 2018 and September 2018. Very high variance is in the earthquake data X_4 for July 2018 as shown by the wider boxplot in Fig. 10d. The minimum magnitude figure is recorded at 4.0 and the maximum is close to 5.5, besides that there is still an outliers of earthquake data X_4 in July 2018 which reached magnitude at 6.4 (Fig. 10d). Furthermore, the type of earthquake distribution will be determined in Province of NTB for 2018, including earthquake distribution in July 2018, August 2018 and September 2018 using the Kolmogorov-Smirnov (KS) Test with a significance level of $\alpha = 0.05$.

Then the type of distribution is determined based on earthquake data variables X_1, X_2, X_3 and X_4 in NTB Province 2018, July 2018, August 2018, and September 2018. Test the type of data distribution using the Kolmogorov-Smirnov Test with a significance level of $\alpha = 0.05$. Based on the test results generally show that each earthquake data variables X_1, X_2, X_3 and X_4 in 2018, July 2018, August 2018, and September 2018 followed several types of distribution but only one type of distribution was chosen based on the selection of the largest P-value. The detailed test results for 2018, July 2018, August 2018, and September 2018 can be shown in Table 4, Table 5, Table 6, and Table 7.

Based on Table 4, Table 5, Table 6, and Table 7, it can be seen that earthquake data variables X_1, X_2, X_3 and X_4 in Province of NTB of 2018, July 2018, August 2018, and September 2018 tended to be dominant following the GEV distribution and followed by the Burr, lognormal and logistic distribution. Then it was also seen that the X_3 earthquake data for 2018, July 2018, and August 2018 did not follow any type of distribution other than the X_3 earthquake data for September 2018.

Figure 11. Histogram and Probability Density Function based on earthquakes data X_1 in Province of NTB a) 2018, b) July 2018, c) August 2018, and d) September 2018.
Figure 12. Histogram and Probability Density Function based on earthquakes data X_2 in Province of NTB a. 2018, b. July 2018, c. August 2018, and d. September 2018.

Figure 13. Histogram and Probability Density Function based on earthquakes data X_3 September 2018 in Province of NTB
Furthermore, graph of histogram and density functions from earthquake data X_1, X_2, X_3 and X_4 in Province of NTB in 2018, July 2018, August 2018, and September 2018 can be shown with Fig. 11, Fig. 12, Fig.13, And Fig. 14.

![Graphs of histogram and density functions](image)

Figure 14. Histogram and Probability Density Function based on earthquakes data X_4 in Province of NTB a). 2018, b). July 2018, c). August 2018, and d). September 2018.

Based on Fig. 11., Fig. 12., Fig. 13., And Fig. 14 show that graph of histogram and density function of each earthquake data X_1, X_2, X_3 and X_4 in Province of NTB for 2018, July 2018, August 2018, and September 2018 indicates that the tail is on the left or right side of the distribution. This means that the distribution is not symmetrical so it can be concluded that earthquake data X_1, X_2, X_3 and X_4 in Province of NTB for 2018, July 2018, August 2018, and September 2018 are not normally distributed.

4. Conclusions
Based on the results and discussion, it can be seen that; earthquake events in Province of NTB for 2018 with the criteria of magnitude > 3 and a depth ≤ 50 km if observed per month, the earthquake events are more frequent in August 2018 and followed by July and September 2018 when it compared to other months in 2018. Earthquakes with these criteria gathered in the Lombok Island region, namely in North Lombok Regency and only a few incidents in Sumbawa Island, namely in Sumbawa and Sumbawa Besar Regencies. In addition, earthquake frequency is quite high at a depth interval of $10 \leq X_3 \leq 15$ km for 2018, August 2018, and September 2018 while July 2018 is at a depth interval of $10 \leq X_3 \leq 12$ km.
Based on the results of the boxplot shows that the distribution of earthquake data X_1, X_2, X_3 and X_4 in Province of NTB for 2018, July 2018, August 2018, and September 2018 are not symmetrical so it can be concluded that earthquake data X_1, X_2, X_3 and X_4 in Province of NTB for 2018, July 2018, August 2018, and September 2018 are not normally distributed.

Based on the results of distribution test using KS test for earthquake data in 2018, July 2018, August 2018, and September 2018 with the criteria of magnitude > 3 and depth ≤ 50 km obtained, among others: distribution types based on earthquake longitude data in 2018, August 2018, and September 2018 followed the GEV distribution while the longitude data for July 2018 followed the Lognormal distribution; the type of distribution based on earthquake latitude data in 2018, July 2018, August 2018 follows the GEV distribution while the earthquake latitude data in September 2018 follows the Logistics distribution; the type of distribution based on earthquake depth data for 2018, July 2018, and August 2018 does not follow one of the distributions while the earthquake depth data for September 2018 follows the GEV distribution; and distribution types based on earthquake magnitude data for 2018, July 2018, and September 2018 follow the GEV distribution while magnitude data for August 2018 follows the Burr distribution. This research can be continued by grouping earthquake events in regency areas in Province of NTB using the K-Mean cluster concept. Then proceed with determining the distribution type of each earthquake data of cluster as a result of grouping.

Acknowledgments
The work described in this paper was supported by a grant 2019 from Faculty of Mathematics and Natural Sciences Pattimura University (FMIPA Unpatti) Ambon - Indonesia. The authors would like to thank FMIPA Unpatti.

References

[1] Hall R and Spakman W 2015 Mantle structure and tectonic history of SE Asia, Tectonophysics, 658, 14-15

[2] Railsbacks 2012 Some Fundamentals of Mineralogy and Geochemistry, LBR Plate Tectonic Boundaries, Department of Geology, University of Georgian, Athens, Georgia, USA

[3] Bird P 2003 An Updated Digital Model of Plate Boundaries, Geochem. Geophys. Geosyst., 4(3), 1027, doi:10.1029/2001GC000252.

[4] The Map of Indonesia Tectonic Plates Retrieved from https://www.google.com/search?q=indonesia+tectonic+plates&tbm=isch&source=univ&safe=strict&sa=X&ved=2ahUKEwiJhKC88v_lAhWUzjgGTe-ctonic+PlatesHUB3BeYQsAR6BAgBEAE&biw=1366&bih=654#imgrc=foe2CKu4N_xVyM: Downloaded on December 22, 2017

[5] Mueck M 2013 Tsunami hazard maps for Lombok, GIZ IS and DLR in the frame of the PROTECS project

[6] Rutherford E, Burke and Lytwyn J 2001 Tectonic history of Sumba Island, Indonesia, since the Late Cretaceous and its rapid escape into the forearc in the Miocene, Journal of Asian Earth Sciences 19, 453-479
[7] Alfonsi L, Piersanti A and Giorgio Spada 1997 Did the 1977 Sumba earthquake excite the Chandler wobble? *Earth and Planetary Science Letters* **153**, 287-292

[8] Rochester W A, Skewes T D, Suadnya I W, Butler J R A, Lyne V D, Handayani T, Habibi P, Karman and Cokrowati N 2016 A typology of natural resource use for livelihood impact assessments in Nusa Tenggara Barat Province, Indonesia, *Climate Risk Management* **12** 59–68

[9] Tim Pusat Studi Nasional 2018 *Rangkaian Gempa Lombok Provinsi Nusa Tenggara Barat, Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat*

[10] Ganas A, Tsironi V and Valkaniotis S 2018 *A preliminary report on the 2018 Lombok region - Indonesia earthquakes*, National Observatory of Athens, Institute of Geodynamics, 11810 Athens, Greece

[11] Wattimanela H J, Pasaribu U S, Puspito N T and Indratno S W 2015 Classification of Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach, *International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering* **Vol:9**, No:12, 1324-1325

[12] Holden L, Sannan S and Bungum H 2003 A stochastics marked point process model for earthquakes, *Natural Hazards and Earth System Sciences*, **3**, 95-101

[13] Grillenzoni C 2014 Detection of Tectonic faults by spatial clustering of Earthquake hypocenters, *Spatial Statistics*, **7**, 62-78

[14] Hammer O 2009 New statistical methods for detecting point alignments, *Computer & Geosciences*, **35**, 659 - 666

[15] Liu S-H, Lin C-W and Tseng C-M 2013 A statistical model for the impact of the 1999 Chi-Chi earthquake on the subsequent rainfall-induced landslides, *Engineering Geology*, **156**, 11-19

[16] Schorlemmer D., Gerstenberger M C., Wiemer S, Jackson, D D and Rhoades D. A 2007, Earthquake likelihood model testing, *Seismological Research Letters*, **78**,17-27

[17] Wattimanela H J, Pasaribu U S, Puspito N T and Indratno S W 2014 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods, *International Journal of Environmental, Ecological, Geological and Mining Engineering* **Vol:8** No:12, 704-708

[18] Wattimanela H J, Pasaribu U S, Puspito N T and Indratno S W 2015 Earthquakes Clustering Based on the Magnitude and the Depths in Molluca Province, *AIP Conference Proceedings* **1692**, 020021 (2015); doi: 10.1063/1.4936449

[19] Statistics of Nusa Tenggara Barat Province, *Nusa Tenggara Barat in Figure 2018*, CV Maharani, ISSN 0215-2215

[20] *United States Geological Survey* (USGS): Retrieved from https://earthquake.usgs.gov/earthquakes/search/: Downloaded on January 22, 2019

[21] Walpole R E, Myers R H, Myers S L and Ye K, 2011 *Probability and Statistica for Engineers and Scientist*, Prentice Hall
[22] Friendly M and Denis D 2005 The Early Origins and Development of The Scatterplot: *Journal of history of the behavioral Sciences*, Vol 41(2), 103-130

[23] Chambers J, William C, Beat K and Paul Tukey 1983 *Graphical Methods for Data Analysis*, Wadsworth

[24] Simard R and L’ecuyer P 2011 Computing The Two-Sided Kolmogorov-Smirnov Distribution, *J. Stat. Softw.*, 39, 1–18

[25] Marsaglia G, Tsang W W and Wang J 2003 Evaluating Kolmogorov’s Distribution. *J. Stat. Softw.* 8, 1–4

[26] Facchinetti S 2009 A Procedure To Find Exact Critical Values Exact Critical Values Of Kolmogorov-Smirnov Test, *Statistica Applicata – Italian Journal Of Applied Statistics* Vol. 21 N. 3-4