THE CENTERED CONVEX BODY WHOSE MARGINALS HAVE THE HEAVIEST TAILS

YAM EITAN

ABSTRACT

Given any real numbers $1 < p < q$, we study the norm ratio (i.e., the ratio between the q-norm and the p-norm) of marginals of centered convex bodies. We first show that some marginal of the simplex maximizes said ratio in the class of n-dimensional centered convex bodies. We then pass to the dimension independent (i.e., log-concave) case where we find a 1-parameter family of random variables in which the maximum ratio must be attained, and find the exact maximizer of the ratio when $p = 2$ and q is even. In addition, we find another interesting maximization property of marginals of the simplex involving functions with positive third derivatives.

1. INTRODUCTION

Let $1 < p < q$, $K \subset \mathbb{R}^n$ be a convex body and $X \sim Uni(K)$ be a random vector uniformly distributed over K. From here forth we shall assume K is centered (i.e. $E[X] = 0$). Define:

$$\alpha(K) := \max_{\theta \in S^{n-1}} \frac{\|X \cdot \theta\|_q}{\|X \cdot \theta\|_p}.$$

Here, S^{n-1} is the $(n-1)$-dimensional unit sphere, centered at the origin of \mathbb{R}^n. This quantity can be thought of as a measurement of the “heaviest tail” of any 1-dimensional projection of X. Our main result is the following:

Theorem 1. Let $K \subset \mathbb{R}^n$ be a centered convex body and let Δ_n be an n-dimensional centered simplex. Then:

$$\alpha(K) \leq \alpha(\Delta_n).$$

While one might not be surprised that the simplex is a maximizer of $\alpha(\cdot)$, as it is a maximizer of many other functionals over the family of convex bodies (e.g. [14]), the unit vector for which the maximum ratio is achieved is not always one of the normals of the simplex. In other words, for certain values of p and q there exist non-conic maximizers of $\alpha(\cdot)$. The relation between p, q, n, and the unit vector maximizing the norm ratio for the simplex remains elusive thus far. Recall now the definition of a random vector in isotropic position:

Definition 2. A random vector $X = (X_1, \ldots, X_n)$ is said to be in isotropic position if:

$$E[X] = 0, \quad E[X_iX_j] = \delta_{i,j}, \quad (\forall 0 \leq i, j \leq n),$$

where $\delta_{i,j}$ is the Dirac delta. A convex body is said to be in isotropic position if $X \sim Uni(K)$ is in isotropic position.
Any convex body can be transformed into an isotropic one through an affine map (see [3] for proof). Our second main result is the following:

Theorem 3. Let $K \subset \mathbb{R}^n$ be a convex body in isotropic position and $X \sim \text{Uni}(K)$ be a random variable uniformly distributed over K. Then for any $k \in \{3, 4\}, \phi \in C^k(\mathbb{R})$ such that $\phi^{(k)}(x) > 0 \ \forall x \in \mathbb{R}$, we have:

$$\max_{\theta \in S^{n-1}} \mathbb{E}[\phi(X \cdot \theta)] \leq \max_{\theta \in S^{n-1}} \mathbb{E}[\phi(\Gamma_n \cdot \theta)],$$

where $\Gamma_n \sim \text{Uni}(\Delta_n)$ is also in isotropic position.

Here if $k = 3$, then the inequality is strict unless K is a cone, in which case the maximizing unit vector is normal to (one of) the cone’s base(s). However, if $k = 4$ this isn’t the case, as for some ϕ there exist non-conic maximizers. A version of Theorems 1 and 3 for the symmetric log-concave case can be found in Eskenazis, Nayar, and Tkocs [6]. In fact, we shall use techniques similar to those presented in the said paper here. Recall that a random variable X is called log-concave if it has a density f_X with respect to the Lebesgue measure such that $\log(f_X(\cdot))$ is concave on the support of f_X, where \log is the natural logarithm. The set of log-concave random variables can be defined equivalently as the closure of the set of random variables of the form $X \cdot \theta$ for all convex bodies (regardless of the dimension). Thus our main result concerning the dimension independent case is the following:

Theorem 4. Let X be a centered log-concave random variable, and let n be an even integer. We then have:

$$\frac{\|X\|_n}{\|X\|_2} \leq \left(n! \sum_{i=0}^{n} \frac{(-1)^k}{k!} \right)^{\frac{1}{n}} = (\text{n!})^{\frac{1}{n}},$$

with equality if and only if X coincides with $\pm \Gamma$ in law. Here, n! is the subfactorial of n and Γ is a random variable with density $g(x) = e^{-(x+1)}$ supported on the line $[-1, \infty)$.

In addition, we prove the following result regarding odd moments of log-concave random variables:

Theorem 5. Let X be a centered log-concave random variable. If q is an odd integer, and p is a real number such that $1 < p < q$, then we have:

$$\frac{|\mathbb{E}[X^q]|^{\frac{1}{q}}}{\|X\|^p} \leq \frac{|\mathbb{E}[\Gamma^q]|^{\frac{1}{q}}}{\|\Gamma\|^p},$$

with equality if and only if X coincides with Γ in law (The difference here is that the absolute value in the numerator is taken outside of the expectation).

A different proof of Theorem 5 for the case $p = 2$, $q = 3$ can be found in Bubeck and Eldan [4]. The problem of finding the maximum norm ratio over different families of random variables has been discussed in several other instances in the mathematical literature. The fact that the norm ratios of marginals of convex bodies are bounded by some universal constant was proven first by Berwald in [1] and then by Borell in [2] (one can also find this result in a survey [11] by Milman and Pajor). Borel and Berwald also found the maximum norm ratio of log-concave random variables supported on the real half-line (see [12] for proof). Another example for a problem of a similar type is the Khintchine inequality, which
deals with the maximum norm ratio of linear combinations of independent Bernoulli random variables. The sharp Khintchine inequality for \(p = 2 \) was established by Haagerup in [7]. A simpler proof by Nazarov and Podkorytov can be found in [13]. The case where \(p \) and \(q \) are even numbers was also solved. For a more in-depth history of the Khintchine inequality as well as a proof of the even case see [12]. Eskenazis, Nayar, and Tkocz also found the maximum norm ratio for the \(s \)-norm ball when \(p = 2 \) in the aforementioned [6]. Throughout this paper, by a convex body we mean a convex compact set with non-empty interior, and by a cone we mean the convex hull of a subset of a an affine space of co-dimension one and a point outside of the said affine space.

ACKNOWLEDGEMENTS

This paper is a part of the author’s master thesis under the supervision of Professor Bo’az Klartag, and was partially funded by the Israel Science Foundation.

2. THE DIMENSION DEPENDENT CASE

Recall \(X \sim \text{Uni}(K) \) for some \(n \)-dimensional, centered, convex body \(K \). We start by stating the well-known Brunn principle (see e.g. [15] for proof):

Lemma 6. For any \(\theta \in S^{n-1} \), the random variable \(X \cdot \theta \) has a density \(f_{\theta}(x) \) w.r.t. the Lebesgue measure. In addition \(f_{\theta} \) is supported on a compact interval and \(f_{\theta}^{1/n-1} \) is concave in its support. Finally, if \(f_{\theta}^{1/n-1} \) is affine in its support, then \(K \) is a (perhaps truncated) cone and \(\theta \) is normal to \(K \)’s base.

Brunn’s principle gives us valuable information about the way the graph of \(f_{\theta} \) can intersect the graphs of other certain functions of interest. We shall make use of this information in conjunction with the theory of Chebyshev systems (for an in-depth discussion on Chebyshev systems see [9]):

Definition 7. A system of real functions \(\{u_i(t)\}_{i=0}^k \) is called a Chebyshev system of order \(k \) if any linear combination:

\[
P(t) = \sum_{i=0}^{k} a_i u_i(t) \quad \text{with} \quad \sum_{i=0}^{k} a_i^2 > 0
\]

has at most \(k \) roots.

One readily sees that \(\{u_i(t)\}_{i=0}^k \) is a Chebyshev system if and only if the determinant of the matrix \(\{u_i(t_j)\}_{i,j=0}^k \) doesn’t vanish for any \(t_0 < \cdots < t_k \in \mathbb{R} \). This in turn is equivalent to the existence of a linear combination of the form (2.1) whose roots are exactly \(t_1, \ldots, t_k \). For a fixed set of numbers \(p_0 < \cdots < p_k \) where \(p_0 = 0, p_1 = 1 \) we define:

\[
u_i(t) = \begin{cases} \left| t \right|^{p_i} \text{sgn}(t) & i \text{ is odd} \\ \left| t \right|^{p_i} & i \text{ is even} \end{cases}
\]

Lemma 8. For \(k < 5 \), \(\{u_i(t)\}_{i=0}^k \) is a Chebyshev system.

Proof. We shall prove the lemma for \(k = 4 \) (the other cases can be proved in a similar yet easier way). Let \(p(t) \) be of the form (2.1), we may assume \(a_4 = 1 \) since
if $a_4 = 0$ we get the case $k = 3$. By Rolle’s theorem it is enough to show $p'(t)$ has at most 3 roots. Define:

$$q(t) = a_2'u_2'(t) + a_3'u_3'(t) + u_4'(t).$$

It is enough to show that there exists a line segment $[b, c] \subset \mathbb{R}$ such that q is monotonically decreasing in $[b, c]$ and monotonically increasing both in (c, ∞) and in $(-\infty, b)$. For $t > 0$ we have:

$$(2.3) \quad q'(t) = \tilde{a}_2t^{p_2-2} + \tilde{a}_3t^{p_3-2} + \tilde{a}_4t^{p_4-2}$$

Notice that a_i and \tilde{a}_i have the same sign. Again by normalizing we may assume $\tilde{a}_4 = 1$. We now have $q'(t) = 0$ if and only if:

$$\tilde{a}_2 + \tilde{a}_3t^{p_3-p_2} + t^{p_4-p_2} = 0.$$

Changing variables to $x = t^{p_3-p_2}$ and defining $\beta = \frac{p_4-p_2}{p_3-p_2} > 1$ we get:

$$(2.4) \quad \tilde{a}_2 + \tilde{a}_3x + x^\beta = 0.$$

Since x^β is strictly convex, it intersects any affine function at most twice. Further inspection shows that the number of positive roots of (2.4) depends on a_2, a_3 in the following way (depicted in Figure 2.1):

(1) If $a_2 \leq 0$, then (2.4) has exactly one positive solution, since the function $|x|^\beta$ is strictly convex in all of \mathbb{R}, but the line $-\tilde{a}_2 - \tilde{a}_3x$ must intersect it once in $(0, \infty)$ and one in $(-\infty, 0]$.

(2) If $a_2 > 0, a_3 \leq 0$, then (2.4) has at most two positive solutions.

(3) If $a_2 > 0, a_3 > 0$, then (2.4) has no positive solutions, since in this case, the left-hand side of (2.4) is positive.

We now examine $t < 0$. Setting $s = -t > 0$ we get:

$$(2.5) \quad q'(s) = \tilde{a}_2s^{p_2-2} - \tilde{a}_3s^{p_3-2} + \tilde{a}_4s^{p_4-2}.$$

But this is just (2.3) with the sign of a_3 changed. Thus, if case 1 holds, for $t > 0$, $q(t)$ can only decrease up to some point $c \geq 0$ and then must increase for $t > c$ (the limit of q at infinity is infinity). For $t < 0$, $q(t)$ must increase up to some point $b \leq 0$ and may only decrease when $t > b$. Thus the claim of the lemma holds for case 1.

If case 2 holds, for $t > 0$, $q(t)$ may change its monotonicity at most twice, but for $t < 0$, $q(t)$ must be monotonically increasing (since for $t < 0$ when checking our list of possible roots of the derivative, we change the sign of a_3). Thus the claim of the lemma still holds. Case 3 is just a reflection of case 2 and so the lemma holds for all cases.

□
Now let \(\theta_1, \theta_2 \) be two outer normal unit vectors to the centered simplex \(\Delta_n \) and recall that \(\Gamma_n \sim Uni(\Delta_n) \). Define:

\[
\Gamma_n^s = \frac{s\theta_1 - (1-s)\theta_2}{|s\theta_1 - (1-s)\theta_2|} \cdot \Gamma_n \quad 0 \leq s \leq 1
\]

and let \(g_n^s(t) \) be the density of \(\Gamma_n^s \). We now state a few important properties of \(g_n^s \):

Lemma 9. The following properties hold for \(g_n^s \):

1. \(g_n^0(x) = g_n^1(-x) \).
2. \((g_n^0(x))^{\frac{1}{n-1}} \) is affine on its support.
3. For \(0 < s < 1 \), let \(\text{Supp} g_n^s = [a_s, b_s] \), then \(\exists c_s \in [a_s, b_s] \) such that \((g_n^s(x))^{\frac{1}{n-1}} \) is affine in \([a_s, c_s]\) and in \([c_s, b_s]\). In addition, \(g_n^s \) is continuous.

Proof. (1) follows from the symmetry of the simplex. (2) follows from the equality case of Brunn’s principle. To see (3) holds notice that we can split \(\Delta_n \) into two simplices whose intersection is a face orthogonal to the unit vector \(\frac{s\theta_1 - (1-s)\theta_2}{|s\theta_1 - (1-s)\theta_2|} \). Thus, using the equality case of Brunn’s principle once again, we see that the claim holds (see e.g. [10] for more details).

Before proving Theorem 1, we give a similar result with regard to the following auxiliary operator:

\[
\alpha^*(K) := \max_{\theta \in S^{n-1}} \frac{\mathbb{E}[|X \cdot \theta|^q \text{sgn}(x)]}{\|X \cdot \theta\|_p^{\frac{1}{q}}}
\]

This operator can be thought of as measuring the largest asymmetry between tails of the marginals of \(K \).

Theorem 10. For any centered convex body \(K \subseteq \mathbb{R}^n \):

\[
\alpha^*(K) \leq \alpha^*(\Delta_n),
\]

where equality holds if and only if \(K \) is a cone. In addition, the unit vectors in which the maximum is achieved are normal to (one of the) the base(s) of the cone.

Proof. As before, for some \(\theta \in S^{n-1} \), let \(f_\theta(x) \) be the density of \(X \cdot \theta \). We shall also abbreviate \(g_n^\theta \) by \(g_n \) for the duration of this proof. By the homogeneity of (2.8) we may assume:

\[
\int |x|^p f_\theta(x) dx = \int |x|^p g_n(x) dx = 1.
\]

Assume by contradiction that:

\[
\int |x|^q \text{sgn}(x) f_\theta(x) dx > \int |x|^q \text{sgn}(x) g_n(x) dx.
\]

Our general idea is to use Lemma 8 to interlace the difference function \(h := g_n - f_\theta \) with appropriate linear combinations of \(\{1, x, |x|^p, |x|^q \text{sgn}(x)\} \). We then use four linear constraints (i.e. (2.9) (2.10) and the fact that \(f_\theta \) and \(g_n \) are centered densities), to force \(h \) to change sign at least four times. This will contradict Lemmas 6 and 9, which state that \((g_n)^{\frac{1}{n-1}} \) is non-negative, affine on \([a_0, b_0]\) and continuous at every point but \(a_0 \), and \((f_\theta)^{\frac{1}{n-1}} \) is non-negative and concave on its support. Thus \(h \) may change sign at most twice at \((a_1, \infty)\) and not at all at \((\infty, a_1)\), making
for a maximum of three possible sign changes. We now show (2.10) implies \(h \) must change sign at least four times. First, since \(f_\theta \) and \(g_n \) are densities, we get:

\[
\int h(x) dx = 0.
\]

Thus \(h \) must change sign at least once. Now if \(h \) changes sign only once, say at a point \(x_1 \in \mathbb{R} \), then \((x-x_1)h(x) \) never changes sign, but since \(f_\theta \) and \(g_n \) are centered densities, we get:

\[
\int (x-x_1)h(x) dx = 0,
\]

which contradicts (2.10). Assume now \(h \) changes sign exactly twice at points \(x_1, x_2 \). Then by Lemma 8 there exists \(p(x) = d_1 + d_2 x + |x|^p \) whose roots are exactly \(x_1, x_2 \) and so \(p(x)h(x) \) never changes sign. Using (2.9) we now get:

\[
\int p(x)h(x) dx = 0,
\]

which contradicts (2.10). Finally, assume \(h \) changes sign exactly three times at points \(x_1, x_2, x_3 \), again by Lemma 8 there exists \(p(x) = d_1 + d_2 x + d_3 |x|^p + |x|^q sgn(x) \), whose roots are exactly \(x_1, x_2, x_3 \). Also note that in this case \(f_\theta \) and \(g_n \) must intersect twice on \((a_1, \infty) \) and so \(h(x) \) must be non-negative for large values of \(x \), thus \(h(x)p(x) \geq 0 \) for all \(x \in \mathbb{R} \). However (2.9) and (2.10) give us:

\[
\int p(x)h(x) dx < 0,
\]

which is a contradiction. We thus showed:

\[
\frac{\mathbb{E}[|X| sgn(X \cdot \theta)]}{||X \cdot \theta||_p} \leq \frac{\mathbb{E}[|\Gamma^1_n| sgn(\Gamma^1_n)]}{||\Gamma^1_n||_p}
\]

and that equality implies that \(X \cdot \theta \) coincides with \(\Gamma^1_n \) in law, which in turn implies \(K \) is a cone and \(\theta \) is normal to \(K \)'s base by the equality case of Brunn's principle. \(\square \)

Proof of Theorem 1. The proof is very similar to that of Theorem 10. Using the same notations as before we can again assume by homogeneity:

\[
(2.11) \quad \int |x|^p f_\theta(x) dx = \int |x|^p g^*_n(x) dx = 1 \quad \forall 0 \leq s \leq 1
\]

and assume by contradiction:

\[
(2.12) \quad \int |x|^q f_\theta(x) dx > \int |x|^q g^*_n(x) dx \quad \forall 0 \leq s \leq 1.
\]

Now choose some \(p < r < q \). Theorem 10 tells us:

\[
\int |x|^r sgn(x) g^*_n(x) dx \leq \int |x|^r sgn(x) f_\theta(x) dx \leq \int |x|^r sgn(x) g^*_n(x) dx,
\]

where the first inequality just follows from property (1) in Lemma 9. Thus from continuity we may choose some \(0 \leq s_0 \leq 1 \) such that:

\[
(2.13) \quad \int |x|^r sgn(x) f_\theta(x) dx = \int |x|^r sgn(x) g^*_n(x) dx.
\]

We now proceed exactly as we did before; by Lemmas 6 and 9 the difference function \(h = g^*_n - f_\theta \) can change sign at most 4 times. The same arguments as before show that \(h \) must change sign at least 4 times, but if \(h \) changes sign exactly 4 times at points \(x_1, \ldots, x_4 \), again by Lemma 8 there exists \(p(x) = d_1 + d_2 x + \ldots + d_4 x^4 \)
$d_3|x|^p + d_4|x|^r sgn(x) + |x|^q$, whose roots are exactly x_1, \ldots, x_4. Since $g_{\theta_n}^s$ and f_θ must intersect twice in $[c_{\theta_n}, b_{\theta_n}]$ we have $h(x) \geq 0$ for large values of x and so $p(x)h(x) \geq 0$. But (2.11) (2.12) and the fact $g_{\theta_n}^s$ and f_θ are centered densities give us:

$$\int p(x)h(x)dx < 0,$$

which is a contradiction. We thus showed:

$$\|X \cdot \theta\|_q \|X \cdot \theta\|_p \leq \|\Gamma_n \cdot \theta_{\theta_n}\|_q \|\Gamma_n \cdot \theta_{\theta_n}\|_p.$$

As mentioned in the Introduction, the proof of Theorem 1 shows that the marginal for which the maximum norm ratio in the simplex (and in any other convex body) is achieved belongs to the 1-parameter family $\Gamma_{\theta_n}^s$ and thus any convex body which maximizes α can be split into two cones by some hyperplane. Quite unexpectedly, calculations show that for different values of p and q, the maximum norm ratio is achieved in different values of s.

Notice also that all we needed for the proof of Theorem 1 was the Chebyshev system property of $\{1, x, |x|^p, |x|^r sgn(x), |x|^q\}$. Thus, using other Chebyshev systems might bring forth new inequalities. Let us give one more example of a Chebyshev system:

Lemma 11. For any $k \in \mathbb{N}$, let $\phi \in C^k(\mathbb{R})$, if $\phi^{(k)} > 0$ the set $\{1, x, \ldots, x^{k-1}, \phi\}$ is a Chebyshev system.

Proof. We use Rolle’s Theorem iteratively. If for some $p(x) = \sum_{i=0}^{k-1} d_i x^i + d_k \phi(x)$ there are more then k roots, then $p^{(k)}(x) = \phi^{(k)}(x)$ has at least one root, which is, of course, a contradiction (this proof is taken from [11, Chapter 2, Example E]). □

Proof of Theorem 3. The proofs when $k = 3, 4$ are identical to those of Theorems 10 and 1 respectively.

3. THE DIMENSION INDEPENDENT CASE

Looking at the log-concave case, we notice the role of our one-parameter family $\Gamma_{\theta_n}^s$ is taken by following simpler family of random variables:

$$\Gamma^s = s\Gamma - (1-s)\Gamma'.$$

Here, Γ, Γ' are i.i.d with density $g(x) = e^{-(x+1)}1_{[-1, \infty)}$. Indeed, replacing the power of $\frac{1}{\alpha - 1}$ by log, Lemma 6 becomes the definition of a log-concave random variable, and Lemma 9 is easy to verify for $g^s(x)$, the densities of Γ^s. Thus, one can reformulate theorems 1,3 and 10 for the log-concave case and prove them in the exact same way:

Theorem 12. Let X be a centered log concave random variable, then:

$$\frac{\|X\|_q}{\|X\|_p} \leq \max_{0 \leq s \leq 1} \frac{\|\Gamma^s\|_q}{\|\Gamma^s\|_p}.$$
Theorem 13. Let X be a log concave random variable in isotropic position and let $\phi \in C^k(\mathbb{R})$ and $\phi^{(k)}(x) > 0$, $\forall x \in \mathbb{R}$ where $k \in \{3, 4\}$. We then have:

$$E[\phi(X)] \leq \max_{0 \leq s \leq 1} E[\phi(\Gamma^s)].$$

If $k = 3$ the maximum is achieved at $s = 0$ and equality implies X coincides with Γ in law.

Theorem 14. Let X be a centered log concave random variable, then:

$$E[|X|^q \text{sgn}(X)] \leq \frac{E[|\Gamma|^q \text{sgn}(\Gamma)]}{\|\Gamma\|_p},$$

with equality if and only if X coincides with Γ in law.

Note that Theorem 5 follows from Theorem 14. The following question naturally arises: which is the maximizer of the norm ratio among Γ^s for $0 \leq s \leq 1$? We shall use the new convenient formula (3.1) to answer this question when $p = 2$ and q is an even integer, but first, let us recall that the cumulants $\{k_n(X)\}_{n=0}^\infty$ of a random variable X are defined by:

$$\log(E[e^{tX}]) = \sum_{n=2}^\infty \frac{k_n(X)}{n!} t^n.$$

See e.g. [8] for proof that when X is log-concave $E[e^{tX}]$ is analytic in a small neighborhood of zero. Let us also define $\mu_n(X)$ to be the n-th moment of X. Two useful properties of the cumulants of a random variable are the following:

1. For any X, Y independent random variables, $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$, we have:

$$k_n(aX + bY) = a^n k_n(X) + b^n k_n(Y).$$

2. Knowing the value of the cumulants of X (and assuming again that X is centered) we can restore the value of its moments using the following formula:

$$\mu_n(X) = \sum_{i=1}^{n} \binom{n-1}{i-1} k_i(X) \mu_{n-i}(X).$$

We now calculate the cumulants of Γ:

$$\log(E[e^{t\Gamma}]) = \log\left(\int_{-\infty}^{\infty} e^{-x^2} \cdot e^{tx} dx\right) = \log\left(\frac{e^{-t}}{1-t}\right) = -t - \log(1-t) = \sum_{n=2}^\infty \frac{t^n}{n},$$

and so:

$$k_0(\Gamma) = k_1(\Gamma) = 0, \quad k_n(\Gamma) = (n-1)! \quad n \geq 2.$$

Proof of Theorem 4. Reparametrizing (3.2) in Theorem 12, we get:

$$\left(\frac{\|X\|_2}{\|X\|_n}\right)^n \leq \max_{0 \leq t \leq \frac{\pi}{2}} \mu_n(\cos(t)\Gamma - \sin(t)\Gamma'),$$

with equality if and only if $\exists 0 \leq t_0 \leq \frac{\pi}{2}$ such that:

$$\frac{X}{\|X\|_2} = \cos(t_0)\Gamma - \sin(t_0)\Gamma'.$$

Thus, the only remaining thing to prove is:

$$\mu_n(\cos(t)\Gamma - \sin(t)\Gamma') < \mu_n(\Gamma) \quad \forall 0 < t < \frac{\pi}{2}. $$
From the discussion above we see that:

\[
|k_n (\cos(t)\Gamma - \sin(t)\Gamma')| = |\cos^n(t) + (-\sin(t))^{n-1}||n-1|! \quad < \quad (n-1)! = |k_n(\Gamma)| \quad \forall n \geq 2, \quad 0 < t < \frac{\pi}{2}
\]

(3.11)

Here, the strict inequality comes from the classic norm inequality \(\|x\|_n < \|x\|_2\) for any vector \(x\) with at least two non zero coordinates. We now assume by induction that:

\[
|\mu_i (\cos(t)\Gamma - \sin(t)\Gamma')| < |\mu_i(\Gamma)| \quad \forall 2 < i < n, \quad 0 < t < \frac{\pi}{2}.
\]

We thus have:

\[
|\mu_n (\cos(t)\Gamma - \sin(t)\Gamma')| \leq \sum_{i=1}^{n} \left(\frac{n-1}{i-1} \right) |k_i(\cos(t)\Gamma - \sin(t)\Gamma')||\mu_{n-i}(\cos(t)\Gamma - \sin(t)\Gamma')| < \sum_{i=1}^{n} \left(\frac{n-1}{i-1} \right) |k_i(\Gamma)||\mu_{n-i}(\Gamma)| = |\mu_n(\Gamma)|.
\]

This completes our proof.

\[\blacksquare\]

Theorem 12 reduces the problem of finding the maximum norm ratio over all log-concave random variables into finding the maximum norm ratio over \(\Gamma^n\). If \(p\) and \(q\) are even integers, this problem is equivalent to finding:

\[
\max_{0 \leq s \leq 1} \frac{(r_q(s))^p}{(r_p(s))^q},
\]

where \(r_p(s) = E[s\Gamma + (s-1)\Gamma]'\) is a family of polynomials. We now present a technique, which worked for all even integers up to 100, to prove the maximum is achieved exactly at \(s = 0\) and \(s = 1\).

Theorem 15. Let \(X\) be a centered log concave random variable and let \(p, q\) be even numbers such that \(p < q < 100\) then:

\[
\frac{\|X\|_q}{\|X\|_p} \leq \frac{\|\Gamma\|_q}{\|\Gamma\|_p} = \left(\frac{q}{p} \right)^{\frac{1}{2}},
\]

where equality holds if and only if \(X\) coincides with \(\pm \Gamma\) in law.

Proof. Unfortunately, this proof is computer-assisted. First notice that the rational function in (3.12) is symmetric with respect to \(\frac{1}{2}\), and that it is enough to prove our hypothesis for \(p = q = 2\). Thus our goal will be to show:

\[
\frac{d}{ds} \log \left(\frac{(r_q(s))^{q-2}}{(r_{q-2}(s))^q} \right) \leq 0 \quad \forall 0 \leq s \leq \frac{1}{2},
\]

or equivalently:

\[
h_q(s) := (q-2) \cdot r_q'(s) \cdot r_{q-2}(s) - q \cdot r_{q-2}'(s) \cdot r_q(s) \leq 0 \quad \forall 0 \leq s \leq \frac{1}{2}.
\]

Define now:

\[
\tilde{h}_q(s) = \frac{h_q(s - \frac{1}{2})}{s(s - \frac{1}{2})(s + \frac{1}{2})} = \sum a_{i,q}s^{2i}.
\]
Calculating the coefficients of the first few polynomials we get:
\[
\begin{align*}
\tilde{h}_4(s) &= -96 \\
\tilde{h}_6(s) &= -720(15 + 8s^2 + 144s^4) \\
\tilde{h}_8(s) &= -1680(1485 - 2880s^2 + 105696s^4 + 104448s^6 + 268544s^8) \\
\tilde{h}_{10}(s) &= -5040(269325 - 1323000s^2 + 72560880s^4 + 280339200s^6 + 1409629440s^8 + 116262976s^{10} + 1050406912s^{12}).
\end{align*}
\]

One can easily check that when \(q \leq 10 \), \(a_{i,q} \leq 0 \) for all \(i \neq 1 \) and \(a_1^2 - 4a_0a_2 < 0 \). Thus \(\tilde{h}_q \) never changes sign and \(\tilde{h}_q(s) \) has the same sign as \(s(s-1)(s+1) \), which proves the theorem. Using computer assistance one can see the same proof still holds for \(q < 100 \). For details see \cite{5}.

We finish this paper with a conjecture which generalizes these empiric results:

Conjecture 16. Let \(X \) be a centered log-concave random variable. Then for even integers \(p < q \), we have:

\[
\frac{\|X\|_q}{\|X\|_p} \leq \frac{\|\Gamma\|_q}{\|\Gamma\|_p} = \left(\frac{\nu}{\lambda} \right)^{\frac{1}{q}} \left(\frac{\lambda}{\nu} \right)^{\frac{1}{p}},
\]

with equality if and only if \(X \) coincides with \(\pm \Gamma \) in law, where \(\Gamma \) is a random variable with density \(g(x) = e^{-(x+1)}1_{[-1,\infty)} \).

References

[1] Berwald, L. (1947). Verallgemeinerung eines Mittelwertsatzes von J. Favard fur positive konkave Funktionen. *Acta Mathematica*, 79(1), 17-37.

[2] Borell, C. (1973). Complements of Lyapunov’s inequality. *Mathematische Annalen*, 205(4), 323-331.

[3] Brazitikos, S., Giannopoulos, A., Valettas, P., & Vritsiou, B. H. (2014). *Geometry of isotropic convex bodies* (Vol. 196). American Mathematical Soc.

[4] Bubeck, S., & Eldan, R. (2014). The entropic barrier: a simple and optimal universal self-concordant barrier. *arXiv preprint arXiv:1412.1587*.

[5] Eitan, Y. (2021). The centered convex body whose marginals have the heaviest tails. M. Sc. Thesis, Weizmann Institute of Science. Available under: https://www.weizmann.ac.il/math/klartag/sites/math.klartag/files/uploads/yam.pdf

[6] Eskenazis, A., Nayar, P., & Tkocz, T. (2018). Sharp comparison of moments and the log-concave moment problem. *Advances in Mathematics*, 334, 389-416.

[7] Haagerup, U. (1981). The best constants in the Khintchine inequality. *Studia Mathematica*, 70, 231-283.

[8] Klartag, B., & Milman, E. (2012). Centroid bodies and the logarithmic Laplace transform—a unified approach. *Journal of Functional Analysis*, 262(1), 10-34.

[9] Krein, M. G., Nudel, A. A., & Louvish, D. (1977). *The Markov moment problem and extremal problems*. American Mathematical Society.

[10] Makai, E., & Martini, H. (1996). The cross-section body, plane sections of convex bodies and approximation of convex bodies, I. *Geometriae Dedicata*, 63(3), 267-296.

[11] Milman, V. D., & Pajor, A. (1989). Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. *In Geometric aspects of functional analysis* (pp. 64-104). Springer, Berlin, Heidelberg.

[12] Nayar, P., & Osikiewicz, K. (2012). Khintchine type inequalities with optimal constants via ultra log-concavity. *Positivity*, 16(2), 359-371.

[13] Nazarov, F. L., & Podkorytov, A. N. (2000). Ball, Haagerup, and distribution functions. In *Complex analysis, operators, and related topics* (pp. 247-267). Birkhauser, Basel.
[14] Rogers, C. A., & Shephard, G. C. (1957). The difference body of a convex body. *Archiv der Mathematik, 8*(3), 220-233.

[15] Schneider, R. (2014). *Convex bodies: the Brunn–Minkowski theory* (No. 151). Cambridge university press.

Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel.

e-mail: yam.eitan@weizmann.ac.il