Implementation of Voltage Stability System in Distribution Network by using D-STATCOM

S.Shobana, K.Tamil Selvi, P.Abirami, M.Pushpavalli, P.Sivagami

Abstract—This project work presents a proposed D-STATCOM system, Which is implemented in the distribution network. In the present scenario, the customer or consumer should be supplied with a quality power. The power quality issues like voltage sag, swell, lightning surges etc, can be reduced by using several advanced techniques. Among all these power quality issues voltage sag is considered and has been compensated in this project work by using D-STATCOM. The major advantage of D-STATCOM is that instead of installing the compensating device in the transmission and distribution line, the D-STATCOM unit is implemented at the consumers premises to maintain stable voltage for the connected electrical equipment’s and also to provide safe operation of the electrical equipment’s by extending their life time. The software i.e., implemented by using MATLAB Simulink and the results are also verified experimentally by a hardware unit.

Keywords—D-STATCOM, 3-Phase Voltage Source Inverter(VSI), PI Controller, Filters, Diode bridge rectifier, AC load, DC load.

I. INTRODUCTION

The quality of electric power has become an important issue for electric utilities and its customers. As a result, power quality study is gaining interest [1-6]. Degradation in quality of electric power is normally caused by power line disturbances such as voltage sag/swell with and without harmonics, momentary interruption, harmonic distortion, flicker, notch, spike and transients, causing problems such as malfunctions, instabilities, short lifetime, 15 failure of electrical equipments, etc. In an electric distribution network, faults may cause voltage sag or momentary interruption whereas switching off large load or charging of a large capacitor bank may lead to voltage swell. On the other hand, use of solid-state switching devices and nonlinear power electronically switched loads such as rectifiers or inverters may cause harmonic distortion and notching in the voltage and current [7-10]. In this paper we face voltage dip (SAG) and harmonics. It can be compensated by FACTS devices like SVC, STATCOM, TCR, TCS, D-STATCOM. Among these for existing system SVC was used. SVC have limited overload capability and also have poor performance [11-13]. So we are move in to D-STATCOM which have unlimited overload capability and also have good performance [14-16]. Here we use sinusoidal pulse width modulation technique.

This paper presents: a) the proposed D-STATCOM control concepts, b) MATLAB simulation studies c) Laboratory implementation results and d) Hardware implementation.

The remainder of this paper is organized as follows; Section II illustrates the concept of existing and proposed system. Simulation of existing and proposed system in Section III. Section IV concludes the paper.

II. PROPOSED AND EXISTING SYSTEM

A) EXISTING SYSTEM:

The existing system consists of SVC is connected in distribution line with TCR. 3-Phase ac load and dc load also connected in the system. Gate pulses are required for the system, so PI controller is used. The Rectifier used here is to convert ac to dc. Here Low pass filter is there. To convert from 3-phase to 2-phase abc to dq conversion method is used. In this system output voltage is not stable and harmonics also properly not reduced.

![Fig 1: circuit diagram of existing system](image)
B) PROPOSED SYSTEM:

The proposed system consists of controller part, compensating device, linear and non-linear loads. Power is distributed from grid to both linear and non-linear loads. There is the fault on the distribution line. The fault is cleared by using compensating device which is D-STATCOM. This is connected to the PI controller. It generates the gate pulses to the Voltage Source Inverter (VSI) by using PWM technique. Potential and current transformers are used for measuring the voltage and current. The VSI is used to control the magnitude and frequency of the AC output voltage. The D-STATCOM have unlimited overload capacity and can inject the reactive power to distribution line.

III. SIMULATION OF EXISTING AND PROPOSED SYSTEM

In this existing diagram many scopes are connected to see the output of the svc. Scope 1 is connected with the supply to see the input waveform before implementing svc. Scope 2 is connected with svc to see the output of the injected voltage. The output waveform after implementing svc can be seen in scope 3.
Output Waveforms of Existing System without and With Compensation:

Double Line to Ground fault occurs in the Distribution Line. In order to clear this fault SVC is implemented. The fault is not fully cleared. Here we can see that output voltage is not stable. So, to get a stable voltage we are moving to the D-STATCOM.

A. PROPOSED SYSTEM FOR OPEN LOOP:

In this proposed diagram we see the implementation of D-STATCOM. For measuring the voltage and current we connect the measuring elements in both input side and output side also. In load side also we connect the voltage measurement block.

Voltage values are shown in Y-axis and Time values are shown in X-axis. Three phase voltages are shown in the Fig 4.

![Fig 4: Waveform of SVC](image)

![Fig 5: Simulation diagram for open loop](image)

Fig. 5 represents the open loop system there is no controller part for controlling the gate pulses. D-STATCOM connected in the distribution line along with the circuit breaker. Fig.6 shows the uncompensated output voltage and current waveform of the distribution system.
IMPLEMENTATION OF VOLTAGE STABILITY SYSTEM IN DISTRIBUTION NETWORK BY USING D-STATCOM

Fig 6: Voltage waveform without compensation

After implementation of the D-STATCOM Output voltage waveform can be seen in Scope 2.

Fig 7: Voltage waveform with compensation

Fig.8 shows the rectifier output voltage waveform after D-STATCOM before implementing LC filter.

Fig 8: output voltage waveform before LC filter

Rectifier output waveform after implementing LC filter can be seen in Fig.9

Fig 9: output voltage waveform after LC filter

After implementing the LC filter also there is some distortion in the waveform in the starting then only it is coming to the stable position. So, to overcome this distortion in the starting closed loop is implemented.

B. PROPOSED SYSTEM FOR CLOSED LOOP:

Here PI controller is connected with D-STATCOM to get the stable output voltage waveform.

Fig 10: simulation diagram of closed loop
Distribution network voltage waveform with disturbance is shown in fig 11.

Fig 11: voltage waveform before compensation

Compensated voltage and current waveforms with D-STATCOM is shown in fig 12.

Fig 12: voltage and current waveforms after D-STATCOM

IV. HARDWARE DESCRIPTION & RESULTS

Fig 13 represents the hardware circuit with inductive load for implementation of DSTATCOM for maintaining the stable voltage at the distribution network. The Circuit consists of power supply unit, controller unit, Driver unit, Inverter Circuit and Inductive Load part. The experimental results are verified with CRO and Multimeter. The controller used here is pic microcontroller which is programmed to activate the DSTATCOM unit. The inverter circuit consists of IRF 840 MOSFET and the pulses to the MOSFETs are generated by using Sinusoidal Pulse Width Modulation technique. The Inductive load is used here which generates voltage sag that is compensated by the proposed system.

Fig 14 shows the output voltage of the distribution system measured using a multimeter which shows the value as 31.5 V AC before compensation.

Fig 15 shows the output voltage of the distribution system measured using a multimeter which shows the value as 43.8 V AC after compensation.

Fig 16: Voltage waveform of the proposed system before compensation
IMPLEMENTATION OF VOLTAGE STABILITY SYSTEM IN DISTRIBUTION NETWORK BY USING D-STATCOM

Fig 16 represents the Voltage waveform of the proposed system before compensation. From the waveform we can analyze that the voltage of the distribution system gets distorted because of the voltage sag problem due to the application of inductive load.

Fig 17 represents the Voltage waveform of the proposed system after compensation. Thus the dip in voltage has been compensated by the dstatcom device utilized here.

V. CONCLUSION

In this proposed work D-STATCOM has been used as a compensating device for voltage fluctuations obtained during the application of inductive load in the distribution network. The D-STATCOM device has been tested by means of software and hardware. The matlab simulink software was used to obtained the simulation results. The simulation has carried out for both open loop and closed loop system. In closed loop PI controller was implemented. From the simulation results, we concluded that the closed loop system performed well when compared with the open loop system. Hardware implementation has been carried out for single phase system. The experimental results have verified by using both multimeter and CRO. Here, the hardware was implemented by considering the voltage sag parameter. From the above-obtained results we can conclude that, D-STATCOM is a better compensating device for voltage fluctuation in distribution network when compared with SVC. So, that it can provide a quality power at the consumer’s premises itself.

REFERENCES

1. CASEY L.F, C. SCHAUER, J. CLEARY, AND M. ROPP, “ADVANCED INVERTERS FACILITATE HIGH PENETRATION OF RENEWABLE GENERATION ON MEDIUM VOLTAGE FEEDERS - IMPACT AND BENEFITS FOR THE UTILITY,” IN INNOVATIVE TECHNOLOGIES FOR AN EFFICIENT AND RELIABLE ELECTRICITY SUPPLY (CITRES), 2010 IEEE CONFERENCE ON, SEPT 2010, PP. 86-93.
2. Dinavahi, V., R. Iravani, and R. Boner, “Design of a real-time digital simulator for a d-statcom system,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1001–1008, Oct 2004.
3. EPRI, “Common functions for smart inverters, version 3,” Palo Alto, CA, Feb 2014.
4. Hingorani N.G and L. Gyugyi, Understanding FACTS. IEEE press, 2000.
5. IEEE Standards Association, “IEEE standard for interconnecting distributed resources with electric power systems - amendment 1,” IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), pp. 1–16, May 2014.
6. Leonhard.W, Control of electrical drives. Springer Science & Business Media, 2001.
7. Liserre M, F. Blaabjerg, and S. Hansen, “Design and control of an lclfilter- based three-phase active rectifier,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281–1291, Sept 2005.
8. Liu L, H. Li, Y. Xue, and W. Liu, “Reactive power compensation and optimization strategy for grid-active cascadable photovoltaic systems,” IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 188–202, Jan 2015.
9. Mather B, “NREL/SCE high-penetration PV integration project: Report on field demonstration of advanced inverter functionality in Fontana, CA,” National Renewable Energy Laboratory (NREL), Golden, CO., Tech. Rep., 2014, Report NREL/TP-5D00-62483.
10. M. D. Anichkov, V. Chadiev, and S. Soni, “A grid-friendly Morjaria plant: The role of utility-scale photovoltaic plants in grid stability and reliability,” IEEE Power and Energy Magazine, vol. 12, no. 3, pp. 87–95, May 2014.
11. [11]. Schauder C, Advanced inverter technology for high penetration levels of PV generation in distribution systems. National Renewable Energy Laboratory, March 2014.