Efficiency-driven Hardware Optimization for Adversarially Robust Neural Networks

Abhiroop Bhattacharjee*, Abhishek Moitra*, and Priyadarshini Panda
{abhiroop.bhattacharjee, abhishek.moitra, priya.panda}@yale.edu
Department of Electrical Engineering, Yale University, USA

Abstract—With a growing need to enable intelligence in embedded devices in the Internet of Things (IoT) era, secure hardware implementation of Deep Neural Networks (DNNs) has become imperative. We will focus on how to address adversarial robustness for DNNs through efficiency-driven hardware optimizations. Since memory (specifically, dot-product operations) is a key energy-consuming component for DNNs, hardware approaches in the past have focused on optimizing the memory. One such approach is approximate digital CMOS memories with hybrid 6T-8T SRAM cells that enable supply voltage (Vdd) scaling yielding low-power operation, without significantly affecting the performance due to read/write failures incurred in the 6T cells. In this paper, we show how the bit-errors in the 6T cells of hybrid 6T-8T memories minimize the adversarial perturbations in a DNN. Essentially, we find that for different configurations of 8T-6T ratios and scaled Vdd operation, noise incurred in the hybrid memory architectures is bound within specific limits. This hardware noise can potentially interfere in the creation of adversarial attacks in DNNs yielding robustness. Another memory optimization approach involves using analog memristive crossbars that perform Matrix-Vector-Multiplications (MVMs) efficiently with low energy and area requirements. However, crossbars generally suffer from intrinsic non-idealities that cause errors in performing MVMs, leading to degradation in the accuracy of the DNNs. We will show how the intrinsic hardware variations manifested through crossbar non-idealities yield adversarial robustness to the mapped DNNs without any additional optimization.

Index Terms—Deep neural networks, adversarial robustness, hardware noise, memristive crossbars

I. INTRODUCTION

Today, Deep Neural Networks (DNNs) are becoming ubiquitous tools for autonomous computation and edge classification tasks. However, adversarial attacks have been shown to severely degrade the performance of DNNs by adding minute, undetectable perturbations into the input images. This prevents their deployment in critical environments like aircraft and medical diagnostics.

Several algorithmic defenses have been proposed for resisting adversarial attacks. These involve input randomization, image compression, and Gaussian noise augmentation [1]–[3]. Of all the works, adversarial training has been shown to be the best defense against adversarial attacks. Here, the network is trained with clean and adversarial images chosen precisely to offer a defense against all adversarial attacks [4]. The authors in [5] describe popular methods that have been shown to improve the adversarial robustness of DNNs.

Apart from algorithmic defenses, there is a recent body of efficiency-centric techniques [6]–[8] to improve robustness of neural networks against adversarial perturbations. The authors in [6] perform discretization of the input space (i.e. restrict allowed pixel levels from 256 values or 8-bit to 4-bit, 2-bit) to improve the adversarial robustness of DNNs for a substantial range of perturbations, besides improvement in its computational efficiency with minimal loss in test accuracy. Likewise, QUANOS [8] is a framework that performs layer-specific hybrid quantization of DNNs based on a metric termed as Adversarial Noise Sensitivity (ANS) to generate energy-efficient, accurate and adversarially robust models. Thus, previous works [6]–[8] show that efficiency-driven hardware optimization techniques can be leveraged to improve software vulnerability, such as, adversarial attacks, while yielding energy-efficiency. However, in this work we find that the intrinsic hardware noise or non-idealities can inadvertently improve adversarial security of DNNs without any additional optimization.

In the light of efficiency-driven optimization, approximate computing leverages the error tolerance capability of DNNs offering energy efficient computation with slight or no decrease in performance. Similarly, approximate memories like hybrid 8T-6T SRAM memories require low read and write access energy making the design energy efficient [9], [10]. However, at very low voltages, they are prone to high bit-error rates that lead to a large dip in the DNN performance [11]. In this work, we show that these infamous bit-errors can be controlled and introduced into strategically selected DNN layers to improve the adversarial robustness of the DNN. This is done by configuring the hybrid memory configurations: 8T-6T cell ratios and supply voltage [12].

In the recent years, memristive crossbars are being increasingly used to implement DNNs by efficiently computing analog dot-products [13]–[15]. The crossbar synapses have been widely realized using various emerging technologies such as, Resistive RAM (ReRAM), Phase Change Memory (PCM) and Spintronic devices [16]–[18]. These devices exhibit high on-chip storage density, non-volatility, low leakage and low-voltage operation and thus, enable compact and energy-efficient implementation of DNNs [19], [20]. Nevertheless, the analog nature of computing dot-products in crossbars has certain limitations owing to device-level and circuit-level non-idealities such as, interconnect parasitics, process variations in the synaptic devices, driver and sensing resistances, etc. [20]–[22]. These non-idealities manifest as errors in the analog dot-product computations in the crossbars, thereby adversely affecting the computational accuracy of DNNs [22], [23]. Numerous
frameworks have been developed in the past to model the impact of such non-idealities and, accordingly, retraining the synapses to mitigate accuracy losses [21]–[25]. However, an interesting aspect of these non-idealities is in providing resilience to DNNs against adversarial attacks has received little attention. In this work, we bring out the fact that a DNN model mapped on crossbars, while suffering accuracy degradation, can be more adversarially robust than the software baseline [26].

In summary, the key contributions of this work are as follows:

- We show that bit-error noise due to 6T-SRAM cells in hybrid memories can be leveraged to improve the adversarial robustness of the DNN model. Additionally, we show that the bit-error noise depends on the hybrid memory configurations (8T-6T ratios and supply voltage). Using this, we propose a methodology to select the most suitable DNN layers for noise injection and the corresponding amounts of bit-error noise.

- To validate our findings, we perform experiments using CIFAR10 and CIFAR100 datasets on both VGG19 and ResNet18 networks. We launch FGSM attacks of various strengths in order to test the effectiveness of our methodology.

- We study the benefits conferred upon by crossbar non-idealities in terms of adversarial robustness in DNNs by employing a systematic framework in PyTorch to map DNNs onto memristive crossbars. We conduct experiments on state-of-the-art neural networks (VGG8 & VGG16) using benchmark datasets (CIFAR-10 & CIFAR-100) and show that non-idealities lead to higher adversarial robustness (~10–20% for FGSM and PGD attacks) for DNNs on crossbars than baseline software models.

- We further present a comparison of non-ideality driven adversarial defense with other state-of-the-art efficiency-driven quantization techniques, viz. 4-bit discretization of input pixels [6] and QUANOS [8] to illustrate the efficacy of the approach in addressing adversarial vulnerabilities.

II. BACKGROUND AND MOTIVATION

A. Adversarial Attacks

Adversarial attacks are those in which a DNN gets fooled by applying structured but small perturbations to the inputs, leading to high confidence misclassification [8]. The authors in [27] have proposed a method called Fast Gradient Sign Method (FGSM) to generate the adversarial input by linearization of the loss function \(L \) of the trained models with respect to the input \(\mathbf{x} \) as shown in equation (1).

\[
\mathbf{x}_{\text{adv}} = \mathbf{x} + \epsilon \times \text{sign}(\nabla_{\mathbf{x}} L(\theta, \mathbf{x}, y_{\text{true}}))
\]

(1)

Here, \(y_{\text{true}} \) is the true class label for the input \(\mathbf{x} \); \(\theta \) denotes the model parameters (weights, biases etc.) and \(\epsilon \) quantifies the strength of the perturbation added.

The quantity \(\Delta = \epsilon \times \text{sign}(\nabla_{\mathbf{x}} L(\theta, \mathbf{x}, y_{\text{true}})) \) is the net perturbation added to the input \(\mathbf{x} \). It is noteworthy that gradient propagation is, thus, a crucial step in unleashing an adversarial attack. Furthermore, the contribution of gradient to \(\Delta \) would vary for different layers of the network depending upon the activations [8]. In addition in FGSM attacks, multi-step variants of FGSM, such as Projected Gradient Descent (PGD) [4] have also been proposed that cast stronger attacks.

To build resilience against small adversarial perturbations, defense mechanisms such as gradient masking or obfuscation [28] have been proposed. Such methods construct a model devoid of useful gradients, thereby making it difficult to create an adversarial attack. In this work, we show that when DNNs are mapped onto hardware, the intrinsic hardware noise (or non-idealities) inadvertently lead to defense via gradient obfuscation against adversarial perturbations. The entire phenomenon has been summarized in Fig. 1.

In this work, Clean Accuracy refers to the accuracy of a DNN when presented with the test dataset in absence of an adversarial attack. We define Adversarial Accuracy as the accuracy of a DNN on the adversarial dataset created using the test data for a given task. Adversarial Loss (AL) is defined as the difference between clean and adversarial accuracies. Smaller the value of AL, greater the robustness of the DNN.

B. Bit-error noise in hybrid 8T-6T memories

In 6T-SRAM cells, with voltage scaling, the time to write into the SRAM cell and the time to read from the SRAM cell increases. This leads to an increase in the bit-error rate at scaled voltages [29]. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages. These bit errors lead to a bit-error noise in hybrid 8T-6T memory architectures which we leverage to improve the adversarial robustness of DNNs. To estimate the amount of bit-error noise, we design a 6T-SRAM cell using 22nm predictive model, having static read noise and write noise error values corresponding to different scaled voltages.
in Fig. 2 corroborate that the bit-error noise can be estimated using the value of r and V_{DD}. The amount of bit-error noise (μ), increases as the number of 6T cells increase. Moreover, the overall bit-error noise increases with higher voltage scaling.

C. Non-idealities in analog crossbar arrays

DNNs can be implemented on memristive crossbars wherein, the activations are mapped as analog voltages V_i input to each row and weights are programmed as synaptic device conductances (G_{ij}) at the cross-points as shown in Fig. 3 (a). For an ideal crossbar array, during inference, the voltages interact with the device conductances and produce a current (governed by Ohm’s Law). Consequently, by Kirchhoff’s current law, the net output current sensed at each column j is the sum of currents through each device, i.e. $I_{j(\text{ideal})} = \sum_{i=1}^{N} G_{ij} \cdot V_i$. We term the matrix G_{ideal} as the collection of all G_{ij}s for a crossbar instance. However, in reality, the analog nature of the computation leads to various non-idealities, such as, circuit-level resistive non-idealities in the crossbars and device-level variations.

Fig. 3(a) describes the equivalent circuit for a crossbar accounting for non-idealities, viz. $R_{\text{driver}}, R_{\text{wire}_\text{row}}, R_{\text{wire}_\text{col}}$ and R_{sense}, modelled as parasitic resistances. This results in a $G_{\text{non-ideal}}$ matrix, with each element G'_{ij} incorporating the effect due to the non-idealities, obtained using circuit laws (Kirchhoff’s laws and Ohm’s law) and linear algebraic operations \otimes (described in Fig. 3 (b)). Consequently, the net output current sensed at each column j becomes $I_{j(\text{non-ideal})} = \sum_{i=1}^{N} G'_{ij} \cdot V_i$, which deviates from its ideal value. This manifests as accuracy degradation for DNNs mapped onto crossbars. So far, crossbar non-idealities have been projected in a negative light since they result in computational accuracy loss for DNNs. However, in this work, we show that greater the impact of non-idealities, more is the resilience of the mapped DNN towards adversarial attacks.
VGG19 and ResNet18 networks. During the FGSM attack, we do not include bit-error noise in the gradient calculation step. We introduce adversarial attacks of strengths ϵ in an incremental fashion from 0.05 to 0.3. For both the datasets, introduction of bit-error noise into the selected layers shown in Table I and Table II lead to a decrease in the adversarial loss (AL) which means higher adversarial robustness. Moreover, among the two network architectures, VGG19 network shows an overall lower AL than ResNet18 networks.

Table I and Table II lead to a decrease in the adversarial loss (AL) which means higher adversarial robustness. Moreover, among the two network architectures, VGG19 network shows an overall lower AL than ResNet18 networks.
framework similar to RxNN to map a DNN onto crossbar arrays (methodology explained in Fig. 3(b)) to assess the impact of the inherent non-idealities on adversarial robustness of the mapped network.

Modes of adversarial attack: We consider two modes of attack for the crossbar-mapped models of the DNNs - (a) *Software-inputs-on-hardware (SH)* mode where the adversarial perturbations for each attack are created using the software-based baseline’s loss function and then added to the clean input that yields the adversarial input. The generated adversaries are then fed to the crossbar-mapped DNN. (b) *Hardware-inputs-on-hardware (HH)* mode where, the adversarial inputs are generated for each attack using the loss from the crossbar-based hardware models. It is evident that HH perturbations will incorporate the effect of the intrinsic hardware non-idealities.

1) **CIFAR-10 results:** In Fig. 6, it can be observed that ALs in case of an adversarial attack on the DNNs mapped onto crossbars of sizes 16 x 16 and 32 x 32 are significantly lesser (∼10 – 15%) than those for the software baseline for different perturbation strengths (ε). This is true for both FGSM and the stronger PGD attacks. In other words, the hardware-based non-idealities that come into play when DNNs are mapped onto crossbars provide robustness against adversarial inputs. Interestingly, we also find that larger crossbar sizes provide greater robustness against adversarial attacks (characterized by ALs for a given ε) than the smaller ones. This is because larger crossbars involve greater number of parasitic components (non-idealities), thereby imparting more robustness. This can be seen in Table III where, the 64 x 64 crossbar shows least AL for a given ε implying better adversarial robustness.

Effect of R_{MIN} on adversarial robustness: The effective resistance of a crossbar structure is the parallel combination of resistances along its rows and columns. Earlier works such as [21] have shown that a smaller value of R_{MIN} reduces the effective resistance of the crossbar and induces greater non-idealities. Thus, we expect crossbars with smaller R_{MIN} values to impart better adversarial robustness to DNNs mapped onto them for a given ON/OFF ratio. We find that on decreasing R_{MIN} to 10 kΩ (maintaining a constant R_{MAX}/R_{MIN} ratio of 10), the ALs (for a PGD attack) in case of smaller R_{MIN} are lower than the corresponding ALs for a larger R_{MIN} as shown in Fig. 8(a).

2) **CIFAR-100 results:** The results shown in Fig. 7 are similar to those for CIFAR-10 dataset. Crossbar-based non-idealities impart adversarial robustness to the mapped VGG16 network (>10 – 20%) against both FGSM and PGD attacks. However, with a more complex CIFAR-100 dataset, we clearly observe that DNN shows greater adversarial robustness against PGD attack for HH attack w.r.t SH attack (>7%) than what is observed with CIFAR-10 dataset (>4%).

Comparison with Related works: We compare the performance of non-ideality-driven adversarial robustness in crossbars against state-of-the-art software defenses described in [6], [8]. Note, [6], [8] use efficiency driven transformations (that implicitly translate to hardware benefits) such as, quantization to improve resilience. In contrast, our work utilizes explicit hardware variations to improve robustness. We observe that for single-step FGSM SH mode attack on a VGG16 network mapped on 32x32 crossbars, adversarial robustness due to crossbar non-idealities outperforms all other techniques (Fig. 8b). For multi-step PGD attack, SH ranks second (Fig. 8c). With respect to 4-bit (4b) *pixel discretization* of input data [6], non-idealities in crossbars impart ∼15% greater adversarial robustness in case of FGSM attack and ∼12% greater adversarial robustness in case of PGD attack. In case of FGSM attack, crossbar-based non-idealities impart ∼4% greater adversarial robustness than QUANOS [8], while for PGD attack, QUANOS outperforms by ∼18 – 22%.

IV. CONCLUSION

This work presents an overview of how hardware implementation of DNNs guarantees better adversarial robustness against baseline software models. This is primarily due to the interference of intrinsic hardware noise on the creation of useful gradients responsible for unleashing adversarial attacks. We separately explore the effects of bit-error noise in hybrid 8T-6T CMOS memories as well as non-idealities pertaining to analog crossbar arrays on the robustness of DNNs and determine useful parameters on which the noise (or non-idealities) largely depend on. We finally validate our proposed ideas using CIFAR10 & CIFAR100 datasets on VGG and ResNet architectures and

![Fig. 6. (a)-(b) A plot between AL and ε for Attack-SW, SH and HH attacks (FGSM) on VGG8 with CIFAR-10 dataset for crossbar sizes 16x16 and 32x32; (c)-(d) A plot between AL and ε for Attack-SW, SH and HH attacks (PGD) on VGG8 with CIFAR-10 dataset for crossbar sizes 16x16 and 32x32.](image-url)
Fig. 7. (a)-(b) A plot between AL and ϵ for Attack-SW, SH and HH attacks (FGSM) VGG16 with CIFAR-100 dataset for crossbar sizes 16x16 and 32x32; (c)-(d) A plot between AL and ϵ for Attack-SW, SH and HH attacks (PGD) VGG16 with CIFAR-100 dataset for crossbar sizes 16x16 and 32x32.

Fig. 8. (a) Bar-diagram showing ALs in case of SH and HH attacks (PGD) for a VGG8 network mapped on 32x32 crossbars using CIFAR-10 dataset for two different values of $R_{M,IN}$ at constant $R_{MAX}/R_{M,IN}$ ratio; (b)-(c) Comparison of our proposed method with other state-of-the-art adversarial defenses using VGG16 network and CIFAR-100 dataset during FGSM & PGD attacks respectively.

present a comparison between the performance of hardware noise-driven robustness in hybrid 8T-6T SRAM memories and crossbars against state-of-the-art efficiency-driven quantization techniques to improve adversarial robustness.

ACKNOWLEDGEMENT

This work was supported in part by the National Science Foundation, the Amazon Research Award, and the Technology Innovation Institute, Abu Dhabi.

REFERENCES

[1] Dziugaite et al., “A study of the effect of jpeg compression on adversarial images,” arXiv:1608.00853, 2016.
[2] Xie et al., “Adversarial examples for semantic segmentation and object detection,” in Proceedings of the IEEE ICCV, 2017.
[3] He et al., “Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 588–597.
[4] Madry et al., “Towards deep learning models resistant to adversarial attacks,” arXiv:1706.06083, 2017.
[5] Akhtar et al., “Threat of adversarial attacks on deep learning in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410–14430, 2018.
[6] Panda et al., “Discritization based solutions for secure machine learning against adversarial attacks,” IEEE Access, vol. 7, p. 70157–70168, 2019.
[7] Lin et al., “Defensive quantization: When efficiency meets robustness,” arXiv:1904.08444, 2019.
[8] P.Panda, “Quanos-adversarial noise sensitivity driven hybrid quantization of neural networks,” arXiv:2004.11233, 2020.
[9] Bortolotti et al., “Approximate compressed sensing: ultra-low power biosignal processing via aggressive voltage scaling on a hybrid memory multi-core processor,” in 2014 ISLPED.
[10] Chang et al., “A priority-based 60sb hybrid sram architecture for aggressive voltage scaling in video applications,” IEEE transactions on circuits and systems for video technology, vol. 21, no. 2, pp. 101–112, 2011.
[11] Srinivasan et al., “Significance driven hybrid 8t-6t sram for energy-efficient synaptic storage in artificial neural networks,” in DATE, 2016.
[12] Moitra et al., “Exposing the robustness and vulnerability of hybrid 8t-6t sram memory architectures to adversarial attacks in deep neural networks,” arXiv:2011.13392, 2020.
[13] Schuman et al., “A survey of neuromorphic computing and neural networks in hardware,” arXiv:1705.06963, 2017.
[14] Wong et al., “Metal-oxide rram,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.
[15] Sharad et al., “Spin neuron for ultra low power computational hardware,” 70th Device Research Conference, pp. 221–222, 2012.
[16] Wei et al., “Circuit design for beyond von neumann applications using emerging memory: From nonvolatile logics to neuromorphic computing,” ISQED, pp. 23–28, 2017.
[17] Sengupta et al., “Proposal for an all-spin artificial neural network: Emulating neural and synaptic functionalities through domain wall motion in ferromagnets,” IITcAS, 2016.
[18] Fan et al., “Sit-sm: A spin-transfer-torque based soft-limiting non-linear neuron for low-power artificial neural networks,” IEEE Transactions on Nanotechnology, vol. 14, no. 6, pp. 1013–1023, 2015.
[19] Ankit et al., “Puma: A programmable ultra-efficient memristor-based accelerator for machine learning inference,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 715–731.
[20] Jain et al., “Rxnn: A framework for evaluating deep neural networks on resistive crossbars,” ITJCAD, 2020.
[21] Chakraborty et al., “Geniex: A generalized approach to emulating non-ideality in memristive xbars using neural networks,” arXiv:2003.06902, 2020.
[22] Jain et al., “Cxdnn: Hardware-software compensation methods for deep neural networks on resistive crossbar systems,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 6, 2019.
[23] Lee et al., “Learning to predict ir drop with effective training for reram-based neural network hardware,” in DAC, 2020.
[24] Agrawal et al., “X-changr: Changing memristive crossbar mapping for mitigating line-resistance induced accuracy degradation in deep neural networks,” arXiv:1907.00285, 2019.
[25] Chakraborty et al., “Technology Aware training in memristive neuromorphic systems for nonideal synaptic crossbars,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 5, pp. 335–344, 2018.
[26] Bhattacharjee et al., “Rethinking non-idealities in memristive crossbars for adversarial robustness in neural networks,” arXiv:2008.11298, 2020.
[27] Goodfellow et al., “Explaining and harnessing adversarial examples,” arXiv:1412.6572, 2014.
[28] Papernot et al., “Practical black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia conference on computer and communications security, 2017, pp. 506–519.
[29] Mukhopadhyay et al., “Modeling of failure probability and statistical design of sram array for yield enhancement in nanoscaled cmos,” ITJCAD.