THE ALGEBRA OF OBSERVABLES IN NONCOMMUTATIVE DEFORMATION THEORY

EIVIND ERIKSEN AND ARVID SIQVELAND

Abstract. We consider the algebra $O(M)$ of observables and the (formally) versal morphism $\eta: A \to O(M)$ defined by the noncommutative deformation functor Def_M of a family $M = \{M_1, \ldots, M_r\}$ of right modules over an associative k-algebra A. By the Generalized Burnside Theorem, due to Laudal, η is an isomorphism when A is finite dimensional, M is the family of simple A-modules, and k is an algebraically closed field. The purpose of this paper is twofold: First, we prove a form of the Generalized Burnside Theorem that is more general, where there is no assumption on the field k. Secondly, we prove that the O-construction is a closure operation when A is any finitely generated k-algebra and M is any family of finite dimensional A-modules, in the sense that $\eta_B: B \to O_B(M)$ is an isomorphism when $B = O(M)$ and M is considered as a family of B-modules.

1. Introduction

Let k be a field, let A be a finite dimensional associative algebra over k, and let $M = \{M_1, \ldots, M_r\}$ be the family of simple right A-modules, up to isomorphism. We consider the algebra homomorphism

$$\rho: A \to \bigoplus_{i=1}^r \text{End}_k(M_i)$$

given by right multiplication of A on the family M. By the extended version of the classical Burnside Theorem, ρ is surjective when k is algebraically closed, and if A is semisimple, then it is an isomorphism. We remark that Artin-Wedderburn theory gives a version of the theorem that holds over any field:

Theorem (Classical Burnside Theorem). Let A be a finite dimensional k-algebra, and let $\{M_1, \ldots, M_r\}$ be the family of simple right A-modules. If $\text{End}_A(M_i) = k$ for $1 \leq i \leq r$, then $\rho: A \to \bigoplus_i \text{End}_k(M_i)$ is surjective.

In Laudal [3], a generalization called the Generalized Burnside Theorem was obtained. This is a structural result for not necessarily semisimple algebras, and the essential idea of Laudal was to replace ρ with the versal morphism η defined by noncommutative deformations of modules. Let us recall the construction:

Let A be an arbitrary associative k-algebra, let $M = \{M_1, \ldots, M_r\}$ be a family of right A-modules, and consider the noncommutative deformation functor Def_M. This functor has a pro-representing hull H and a versal family M_H if M is a swarm. Following Laudal [3], we define the algebra of observables of a swarm M to be $O(M) = \text{End}_H(M_H) \cong \langle H_{ij} \otimes_k \text{Hom}_k(M_i, M_j) \rangle$, and its versal morphism to be the
algebra homomorphism \(\eta : A \to O(M) \) given by right multiplication of \(A \) on the versal family \(M_H \). It fits into the commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\eta} & (H_{ij} \otimes_k \text{Hom}_k(M_i, M_j)) \\
\downarrow^{\rho} & & \downarrow^{\oplus_{i=1}^r \text{End}_k(M_i)} \\
\oplus_{i=1}^r \text{End}_k(M_i) & &
\end{array}
\]

where \(\rho : A \to \oplus_{i=1}^r \text{End}_k(M_i) \) is the algebra homomorphism given by right multiplication of \(A \) on the family \(M \). By Theorem 1.2 in Laudal [3], it follows that \(\eta \) is an isomorphism when \(A \) is finite dimensional, \(M \) is the family of simple \(A \)-modules, and \(k \) is algebraically closed. In this paper, we prove a more general version of this result:

Theorem (Generalized Burnside Theorem). Let \(A \) be a finite dimensional \(k \)-algebra, and let \(M \) be the family of simple right \(A \)-modules, up to isomorphism. The versal morphism \(\eta : A \to O(M) \) is injective. If \(\text{End}_A(M_i) = k \) for \(1 \leq i \leq r \), then \(\eta \) is an isomorphism. In particular, \(\eta \) is an isomorphism if \(k \) is algebraically closed.

In case \(D_i = \text{End}_A(M_i) \) is a division algebra with \(\dim_k D_i > 1 \) for some simple module \(M_i \), it is often not difficult to describe the image of \(\eta \) as a subalgebra of \(O(M) \), and we shall give examples. As an application of the theorem, we introduce the standard form of any finite dimensional algebra \(A \), given as

\[
A \cong O(M) = (H_{ij} \otimes_k \text{Hom}_k(M_i, M_j))
\]

when \(\text{End}_A(M_i) = k \) for \(1 \leq i \leq r \), or as a subalgebra of \(O(M) \) in general.

Let \(A \) be any finitely generated \(k \)-algebra and let \(M \) be any family of finite dimensional right \(A \)-modules. In this more general situation, the versal morphism \(\eta : A \to O(M) \) is not necessarily an isomorphism. However, we may consider the algebra \(B = O(M) \) of observables, and \(M \) as a family of right \(B \)-modules, and iterate the process. We prove that the operation \((A, M) \mapsto (B, M)\) has the following closure property:

Theorem (Closure Property). Let \(A \) be a finitely generated \(k \)-algebra, let \(M \) be a family of finite dimensional \(A \)-modules, and let \(B = O(M) \). Then the versal morphism \(\eta^B : B \to O^B(M) \) of \(M \), considered as a family of right \(B \)-modules, is an isomorphism.

One may consider a noncommutative algebraic geometry where the closed points are represented by simple modules; see for instance Laudal [3]. With this point of view, one may use versal morphisms \(\eta : A \to O(M) \) for families \(M \) of \(A \)-modules to construct noncommutative localization homomorphisms \(\eta_s : A \to A_s \) for any \(s \in A \). We explain this construction in Section 6. These localization maps are universal \(S \)-inverting localization maps, where \(S = \{1, s, s^2, \ldots \} \), and can be used as an essential building block for structure sheaves on noncommutative schemes.

2. **Noncommutative deformations of modules**

Let \(A \) be an associative algebra over a field \(k \). For any right \(A \)-module \(M \), there is a deformation functor \(\text{Def}_M : I \to \text{Sets} \) defined on the category \(I \) of commutative Artinian local \(k \)-algebras \(R \) with residue field \(k \). We recall that \(\text{Def}_M(R) \) is the set of equivalence classes of pairs \((M_R, \tau_R)\), where \(M_R \) is an \(R \)-flat \(R \times A \) bimodule.
on which \(k \) acts centrally, and \(\tau_R : k \otimes_R M_R \to M \) is an isomorphism of right \(A \)-modules. Deformations in \(\text{Def}_M(R) \) are called \textit{commutative deformations} since the base ring \(R \) is commutative.

\textit{Noncommutative deformations} were introduced in Laudal [3]. The deformations considered by Laudal are defined over certain noncommutative base rings instead of the commutative base rings in \(I \). In what follows, we shall give a brief account of noncommutative deformations of modules. We refer to Laudal [3], Eriksen [2] and Eriksen, Laudal, Siqveland [1] for further details.

For any positive integer \(r \) and any family \(M = \{M_1, \ldots, M_r\} \) of right \(A \)-modules, there is a \textit{noncommutative deformation functor} \(\text{Def}_M : \mathfrak{a}_r \to \text{Sets} \), defined on the category \(\mathfrak{a}_r \) of noncommutative Artinian \(r \)-pointed \(k \)-algebras with exactly \(r \) simple modules (up to isomorphism). We recall that an \(r \)-pointed \(k \)-algebra \(R \) is one fitting into a diagram of rings \(k^r \to R \to k^r \), where the composition is the identity. The condition that \(R \) has exactly \(r \) simple modules holds if and only if \(\overline{R} \cong k^r \), where \(\overline{R} = R/I(R) \) and \(I(R) \) denotes the Jacobson radical of \(R \).

The noncommutative deformations in \(\text{Def}_M(R) \) are equivalence classes of pairs \((M_R, \tau_R) \), where \(M_R \) is an \(R \)-flat \(R \)-\(A \) bimodule on which \(k \) acts centrally, and \(\tau_R : k^r \otimes_R M_R \to M \) is an isomorphism of right \(A \)-modules with \(M = M_1 \oplus \cdots \oplus M_r \).

In concrete terms, an algebra homomorphism \(\eta : A \to \text{End}_R(M_R) \cong (R_{ij} \otimes_k \text{Hom}_k(M_i, M_j)) \) that lifts \(\rho : A \to \oplus_i \text{End}_k(M_i) \). Explicitly, we interpret \(\eta(a) \) as a right action of \(a \) on \(M_R \) via

\[
\eta_R(a) = \sum_i e_i \otimes \rho_i + \sum_{i,j,l} r_{ij}^l \otimes a_{ij}^l \iff (e_i \otimes m_i)a = e_i \otimes (m_i a) + \sum_{j,l} r_{ij}^l \otimes a_{ij}^l (m_i)
\]

where \(\rho_i : A \to \text{End}_k(M_i) \) is the algebra homomorphism given by the right action of \(A \) on \(M_i \) such that \(\rho = (\rho_1, \ldots, \rho_r) \), and where \(r_{ij}^l \in R_{ij} \) and \(a_{ij}^l \in \text{Hom}_k(M_i, M_j) \). Deformations in \(\text{Def}_M(R) \) can therefore be represented by commutative diagrams

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_R} & (R_{ij} \otimes_k \text{Hom}_k(M_i, M_j)) \\
\rho \downarrow & & \downarrow \rho \\
\oplus_{i=1}^r \text{End}_k(M_i) & & \\
\end{array}
\]

These deformations are called \textit{noncommutative deformations} since the base ring \(R \) is noncommutative.

For any \(r \)-pointed algebra \(R \), with structural maps \(k^r \to R \to k^r \), we write \(I(R) = \ker(R \to k^r) \). Recall that the pro-category \(\widehat{\mathfrak{a}}_r \) is the full subcategory of the category of \(r \)-pointed algebras consisting of algebras \(R \) such that \(R/I(R)^n \) is Artinian for all \(n \) and such that \(R \) is complete in the \(I(R) \)-adic topology.

The family \(M = \{M_1, \ldots, M_r\} \) is called a \textit{swarm} if \(\dim_k \text{Ext}_A^1(M, M) \) is finite. In this case, the noncommutative deformation functor \(\text{Def}_M \) has a pro-representing hull \(H \) in the pro-category \(\widehat{\mathfrak{a}}_r \) and a versal family \(M_H \in \text{Def}_M(H) \); see Theorem 3.1 in Laudal [3]. The defining property of the miniversal pro-couple \((H, M_H) \) is that
the induced natural transformation

$$\phi : \text{Mor}(H, -) \to \text{Def}_M$$

on a_r is smooth (which implies that ϕ_R is surjective for any R in a_r), and that ϕ_R is an isomorphism when $J(R)^2 = 0$. The miniversal pro-couple (H, M_H) is unique up to (non-canonical) isomorphism.

Let M be a swarm of right A-modules, and let (H, M_H) be the miniversal pro-couple of the noncommutative deformation functor $\text{Def}_M : a_r \to \text{Sets}$. We define the algebra of observables of M to be $O(M) = \text{End}_H(M_H) \cong (H_{ij} \hat{\otimes}_k \text{Hom}_k(M_i, M_j))$ where $\hat{\otimes}$ is the completed tensor product (the completion of the tensor product), and write $\eta : A \to O(M)$ for the induced versal morphism, giving the right A-module structure on M_H. By construction, it fits into the commutative diagram

\[A \xrightarrow{\eta} (H_{ij} \hat{\otimes}_k \text{Hom}_k(M_i, M_j)) \xrightarrow{\oplus_{i=1}^r \text{End}_k(M_i)} O(M) \]

Remark 1. Notice that the diagram extends the right action of A on the family M to a right action of $O(M)$, such that M is a family of right $O(M)$-modules.

Remark 2. For any R in a_r and any deformation $M_R \in \text{Def}_M(R)$, there is a morphism $u : H \to R$ in \hat{a}_r such that $\text{Def}_M(u)(M_H) = M_R$ by the versal property, and the deformation M_R is therefore given by the composition $\eta_R = u^* \circ \eta$ in the diagram

\[A \xrightarrow{\eta} (R_{ij} \hat{\otimes}_k \text{Hom}_k(M_i, M_j)) \xrightarrow{u^* = u \otimes \text{id}} O(M) \]

In this sense, the versal morphism $\eta : A \to O(M)$ determines all noncommutative deformations of the family M.

3. Iterated extensions and injectivity of the versal morphism

Let E be a right A-module and let $r \geq 1$ be a positive integer. If E has a cofiltration of length r, given by a sequence

$$E = E_r \xrightarrow{f_r} E_{r-1} \to \cdots \to E_2 \xrightarrow{f_2} E_1 \xrightarrow{f_1} E_0 = 0$$

of surjective right A-module homomorphisms $f_i : E_i \to E_{i-1}$, then we call E an *iterated extension* of the right A-modules M_1, M_2, \ldots, M_r, where $M_i = \ker(f_i)$. In fact, the cofiltration induces short exact sequences

$$0 \to M_i \to E_i \xrightarrow{f_i} E_{i-1} \to 0$$

for $1 \leq i \leq r$. Hence $E_1 \cong M_1$, E_2 is an extension of E_1 by M_2, and in general, E_i is an extension of E_{i-1} by M_i.
Let $M = \{M_1, \ldots, M_r\}$ be a swarm of right A-modules, and let $\text{Def}_M : a_r \to \text{Sets}$ be its noncommutative deformation functor. Then Def_M has a miniversal pro-couple (H, M_H), and we consider the induced versal morphism $\eta : A \to \mathcal{O}(M)$ and its kernel $K = \ker(\eta)$.

We note that Theorem 3.2 in Laudal [3] holds without assumptions on the base field k, since the construction that precedes this theorem works over any field. From this observation, we obtain the following lemma:

Lemma 3. Let M be a swarm of right A-modules. For any iterated extension E of the family M, we have that $E \cdot K = 0$.

Let A be a finite dimensional k-algebra and let M be the family of all simple right A-modules, up to isomorphism. Then M is a swarm, and we consider the versal morphism $\eta : A \to \mathcal{O}(M)$. If k is algebraically closed, then the versal morphism η is injective by Corollary 3.1 in Laudal [3]. Using Lemma 3, we generalize this result:

Proposition 4. If A, considered as a right A-module, is an iterated extension of a swarm M, then the versal morphism $\eta : A \to \mathcal{O}(M)$ is injective. In particular, η is injective when A is a finite dimensional algebra and M is the family of simple right A-modules.

Proof. If A is an iterated extension of M, then $1 \cdot K = 0$ by Lemma 3 and this implies that $K = 0$. If A is finite dimensional, then the right A-module A has finite length, and it is an iterated extension of the simple modules. \qed

We remark that our proof, based on Lemma 3, holds whenever there is an element $e \in E$ such that $a \mapsto e \cdot a$ defines an injective right A-module homomorphism $A \to E$. This means that $\eta : A \to \mathcal{O}(M)$ is injective if there is an iterated extension E of M such that E contains a copy of A_A.

4. The Generalized Burnside Theorem

Let A be a finite dimensional k-algebra, and let $M = \{M_1, \ldots, M_r\}$ be the family of simple right A-modules, up to isomorphism. Then M is a swarm, and we consider the versal morphism $\eta : A \to \mathcal{O}(M)$ and the commutative diagram

$$
\begin{array}{ccc}
A & \xrightarrow{\eta} & (H_{ij} \otimes_k \text{Hom}_k(M_i, M_j)) \\
& \searrow \rho & \\
& & \oplus_{i=1}^r \text{End}_k(M_i)
\end{array}
$$

Clearly, ρ factors through $A/ J(A)$, and if $\text{End}_A(M_i) = k$ for $1 \leq i \leq r$, then $A/ J(A) \to \oplus_i \text{End}_k(M_i)$ is an isomorphism by the Artin-Wedderburn theory for semisimple algebras. This proves the Classical Burnside Theorem mentioned in the introduction. By Theorem 3.4 in Laudal [3], the versal morphism $\eta : A \to \mathcal{O}(M)$ is an isomorphism when k is algebraically closed. We generalize this result:

Theorem 5. Let A be a finite dimensional k-algebra and let M be the family of simple right A-modules, up to isomorphism. Then $\eta : A \to \mathcal{O}(M)$ is injective, and it is an isomorphism if $\text{End}_A(M_i) = k$ for $1 \leq i \leq r$. In particular, the versal morphism $\eta : A \to \mathcal{O}(M)$ is an isomorphism if k is algebraically closed.
Proof: By Proposition 3, the versal morphism η is injective, and it is enough to prove that η is surjective when $\text{End}_k(M_i) = k$ for $1 \leq i \leq r$. Note that η maps the Jacobson radical $J(A)$ of A to the Jacobson radical $J = (J(H))_{\ij} \otimes_k \text{Hom}_k(M_i, M_j)$ of $O(M)$. Moreover, A is $J(A)$-adic complete since it is finite dimensional, and $O(M)$ is clearly J-adic complete. By a standard result for filtered algebras, it is therefore sufficient to show that $\text{gr}_1(\eta) : J(A)/J(A)^2 \rightarrow J/J^2$ is surjective, since $\text{gr}_0(\eta) : A/J(A) \rightarrow \oplus \text{End}_k(M_i)$ is an isomorphism by the Classical Burnside Theorem. We notice that

$$J/J^2 \cong ((J(H)/J(H)^2)_{\ij} \otimes_k \text{Hom}_k(M_i, M_j)) \cong (\text{Ext}_A^1(M_i, M_j)^* \otimes_k \text{Hom}_k(M_i, M_j))$$

since $J(H)/J(H)^2$ is the dual of the tangent space $(\text{Ext}_A^1(M_i, M_j))$ of Def_M. We note that Lemma 3.7 in Laudal [3] holds over any field. Hence the map

$$J(A)/J(A)^2 \rightarrow (\text{Ext}_A^1(M_i, M_j)^* \otimes_k \text{Hom}_k(M_i, M_j))$$

induced by η is an isomorphism, and this completes the proof.

5. The Closure Property

Let A be a finitely generated k-algebra of the form $A = k\langle x_1, \ldots, x_d \rangle/I$, and let $M = \{M_1, \ldots, M_r\}$ be a family of finite dimensional right A-modules. Then M is a swarm, since

$$\dim_k \text{Ext}_A^1(M_i, M_j) \leq \dim_k \text{Der}_k(A, \text{Hom}_k(M_i, M_j)) \leq \dim_k \text{Hom}_k(M_i, M_j)^d$$

The last inequality follows from the fact that any derivation $D : A \rightarrow \text{Hom}_k(M_i, M_j)$ is determined by $D(x_i) \in \text{Hom}_k(M_i, M_j)$ for $1 \leq i \leq d$. We consider the algebra of observables $B = O(M)$ of the swarm M, and write $\eta : A \rightarrow B$ for its versal morphism. In general, $M = \{M_1, \ldots, M_r\}$ is a family of right B-modules via η.

Lemma 6. The family $M = \{M_1, \ldots, M_r\}$ of right B-modules is the simple right B-modules, and it is swarm of B-modules.

Proof. It follows from the Artin-Wedderburn theory that $M = \{M_1, \ldots, M_r\}$ is the family of simple modules over

$$\overline{B} = B/J(B) \cong (H/J(H) \otimes_k \text{Hom}_k(M_i, M_j)) \cong \oplus \text{End}_k(M_i).$$

Since B and $\overline{B} = B/J(B)$ have the same simple modules, it follows that M is the family of simple right B-modules. We have that $\text{Ext}_B^1(M_i, M_j)$ is a quotient of $\text{Der}_k(B, \text{Hom}_k(M_i, M_j))$, and any derivation $D : B \rightarrow \text{Hom}_k(M_i, M_j)$ satisfies $D(J^2) = JD(J) + D(J)J = 0$ when $J = J(B)$ since M is the family of simple B-modules. From the fact that

$$B/J^2 \cong ((H/J(H)^2)_{\ij} \otimes_k \text{Hom}_k(M_i, M_j))$$

is finite dimensional, and in particular a finitely generated k-algebra, it follows from the argument preceding the lemma that M is a swarm of B-modules.

In this situation, we may iterate the process. Since M is a swarm of right B-modules, the noncommutative deformation functor Def_M^B of M, considered as a family of right B-modules, has a universal pro-couple (H^B, M^B_B). We write $O^B(M) = \text{End}_B(M^B_B) \cong (H^B_{\ij} \otimes_k \text{Hom}_k(M_i, M_j))$ for its algebra of observables and $\eta^B : B \rightarrow O^B(M)$ for its versal morphism.
Theorem 7. Let A be a finitely generated k-algebra, let $M = \{M_1, \ldots, M_r\}$ be a family of finite dimensional A-modules, and let $B = \mathcal{O}(M)$. Then the versal morphism $\eta^B : B \to \mathcal{O}^B(M)$ of M, considered as a family of right B-modules, is an isomorphism.

Proof. Since M is a swarm of A-modules and of B-modules, we may consider the commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\eta} & B = \mathcal{O}(M) & \xrightarrow{\eta^B} & C = \mathcal{O}^B(M) \\
& \downarrow{\rho} & \downarrow{} & \downarrow{} & \downarrow{\oplus \text{End}_k(M_i)} \\
& & \oplus \text{End}_k(M_i) & & \\
\end{array}
\]

The algebra homomorphism η^B induces maps $B/J(B)^n \to C/J(C)^n$ for all $n \geq 1$, and it is enough to show that each of these induced maps is an isomorphism. For $n = 1$, we have

\[
B/J(B) \cong C/J(C) \cong \oplus \text{End}_k(M_i)
\]

so it is clearly an isomorphism for $n = 1$. For $n \geq 2$, we have that $B_n = B/J(B)^n$ is a finite dimensional algebra with the same simple modules as B since $M_i J^n = 0$. We may therefore consider the versal morphism of the swarm M of right B_n-modules, which is an isomorphism by the Generalized Burnside Theorem since $\text{End}_B(M_i) = k$ for $1 \leq i \leq r$. Finally, any derivation $D : B \to \text{Hom}_k(M_i, M_j)$ satisfies $D(J^n) = 0$ when $n \geq 2$. Therefore, we have that

\[
\text{Ext}^1_{B_n}(M_i, M_j) \cong \text{Ext}^1_B(M_i, M_j)
\]

and this implies that $B/J(B)^n \to C/J(C)^n$ coincides with the versal morphism of the swarm M of right B_n-modules. It is therefore an isomorphism. \qed

Theorem 7 implies that the assignment $(A, M) \mapsto (B, M)$ is a closure operation when A is a finitely generated k-algebra and $M = \{M_1, \ldots, M_r\}$ is a family of finite dimensional right A-modules. In other words, the algebra $B = \mathcal{O}(M)$ has the following properties:

1. The family M is the family of simple right B-modules.
2. The family M has exactly the same module-theoretic properties, in terms of extensions and matric Massey products, considered as a family of B-modules and as a family of A-modules.

Moreover, these properties characterize the algebra of observables $B = \mathcal{O}(M)$.

Remark 8. Assume that k is a field that is not algebraically closed. When A is a finite dimensional k-algebra and M is the family of simple right A-modules, it could happen that the division algebra $D_i = \text{End}_A(M_i)$ has dimension $\dim_k D_i > 1$ for some simple A-modules M_i. In this case, $\eta : A \to \mathcal{O}(M)$ is not necessarily an isomorphism. However, if the subfamily $M' = \{M_i : \text{End}_A(M_i) = k\} \subseteq M$ is non-empty, we may consider the algebra $B = \mathcal{O}(M')$, and it follows from the closure property that $\eta : B \to \mathcal{O}^B(M')$ is an isomorphism. This means that the Generalized Burnside Theorem holds for the family M' of right B-modules.
6. Noncommutative localizations via the algebra of observables

Let A be a finitely generated k-algebra, and denote by $X = \text{Simp}(A)$ the set of (isomorphism classes of) simple finite dimensional right A-modules. For any $s \in A$, we write

$$D(s) = \{ M \in X : M \twoheadrightarrow M \text{ is invertible} \} \subseteq X.$$

We note that $\{ D(s) \}_{s \in A}$ is a base for a topology on X, since $D(s) \cap D(t) = D(st)$, which we call the Jacobson topology on $X = \text{Simp}(A)$.

For any inclusion $M \subseteq M'$ of finite subsets of $D(s)$, there is a surjective algebra homomorphism $\mathcal{O}(M') \rightarrow \mathcal{O}(M)$. We may consider the algebra homomorphism

$$\eta_s : A \rightarrow \lim_{M \subseteq D(s)} \mathcal{O}(M)$$

where the projective limit is taken over all finite subsets $M \subseteq D(s)$. Notice that $\eta_s(s)$ is a unit, since it is a unit in $\mathcal{O}(M)$ for any finite subset $M \subseteq D(s)$. We define A_s to be the subring of the projective limit

$$\lim_{M \subseteq D(s)} \mathcal{O}(M)$$

generated by $\eta_s(A)$ and $\eta_s(s)^{-1}$. By abuse of notation, we write η_s for the algebra homomorphism $\eta_s : A \rightarrow A_s$ into the subring A_s.

Let S be the multiplicative subset $S = \{ 1, s, s^2, \ldots \} \subseteq A$. Then $\eta_s : A \rightarrow A_s$ is an S-inverting algebra homomorphism, and it has the following universal property: If $\phi : A \rightarrow B$ is any S-inverting algebra homomorphism, then there is a unique algebra homomorphism $\phi_s : A_s \rightarrow B$ such that $\phi_s \circ \eta_s = \phi$. We remark that A_s is a finitely generated k-algebra, generated by the images of the generators of A and $\eta_s(s)^{-1}$. In general, it is not a (left or right) ring of fractions.

7. Applications

Let A be a finite dimensional k-algebra. We consider the family $M = \{ M_1, \ldots, M_r \}$ of simple right A-modules. By the Generalized Burnside Theorem, A can be written in standard form as

$$A \cong \text{im}(\eta) \subseteq (H_{ij} \otimes_k \text{Hom}_k(M_i, M_j)) = \mathcal{O}(M)$$

If $\text{End}_A(M_i) = k$ for $1 \leq i \leq r$, then the standard form of A is $A \cong \mathcal{O}(M)$, and in general, it is a subalgebra of $\mathcal{O}(M)$.

The standard form can, for instance, be used to compare finite dimensional algebras and determine when they are isomorphic. Let us illustrate this with a simple example. Let k be a field, and let $A = k[G]$ be the group algebra of $G = \mathbb{Z}_3$. In concrete terms, we have that $A \cong k[x]/(x^3 - 1)$, and over a fixed algebraic closure \overline{k} of k, we have that

$$x^3 - 1 = (x - 1)(x^2 + x + 1) = (x - 1)(x - \omega)(x - \omega^2)$$

with $\omega \in \overline{k}$. If $\text{char}(k) \neq 3$ and $\omega \in k$, then the simple A-modules are given by $M = \{ M_0, M_1, M_2 \}$, where $M_i = A/(x - \omega^i)$. Furthermore, a calculation shows that $\text{Ext}_A^1(M_i, M_j) = 0$ for $0 \leq i, j \leq 2$. Hence, the noncommutative deformation functor Def_M has a pro-representing hull $H = k^3$ (it is rigid), and the versal morphism $\eta : A \rightarrow \mathcal{O}(M)$ is an isomorphism. The standard form of A is therefore given
by
\[A = k[Z_3] \cong k^3 = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}. \]

If char\((k) = 3 \), then \(M_0 \) is the only simple \(A \)-module since \(x^3 - 1 = (x - 1)^3 \), and we find that \(\text{Ext}^1_A(M_0, M_0) = k \). In this case, it turns out that \(H \cong k[[t]]/(t^3) \), and the standard form of \(A \) is given by \(A = k[Z_3] \cong k[t]/(t^3) \). In both cases, it follows from the Generalized Burnside Theorem that \(\eta \) is an isomorphism, since \(\text{End}_A(M) = k \) for all the simple \(A \)-modules \(M \).

If char\((k) \neq 3 \) and \(\omega \notin k \), then the simple \(A \)-modules are given by \(M = \{ M, N \} \), where \(M = M_0 = A/(x - 1) \) is 1-dimensional, and \(N = A/(x^2 + x + 1) \cong k(\omega) = K \) is 2-dimensional. In this case, we have that \(\text{End}_A(M) = k \) and \(\text{End}_A(N) = K \), and we find that the standard form of \(A \) is given by
\[H = \begin{pmatrix} k & 0 \\ 0 & 0 \\ k \end{pmatrix} \Rightarrow A \cong \text{im}(\eta) = \begin{pmatrix} k & 0 \\ 0 & K \end{pmatrix} \subseteq \text{O}(M) = \begin{pmatrix} k & 0 \\ 0 & \text{End}_k(K) \end{pmatrix}. \]

It follows from Proposition 4 that \(\eta : A \to \text{O}(M) \) is injective. However, it is not an isomorphism in this case.

References

[1] E. Eriksen, O. A. Laudal, and A. Siqveland. Noncommutative deformation theory. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2017.
[2] Eivind Eriksen. An introduction to noncommutative deformations of modules. In Noncommutative algebra and geometry, volume 243 of Lect. Notes Pure Appl. Math., pages 90–125. Chapman & Hall/CRC, Boca Raton, FL, 2006.
[3] O. A. Laudal. Noncommutative deformations of modules. Homology Homotopy Appl., 4(2, part 2):357–396, 2002. The Roos Festschrift volume, 2.
[4] Olav A. Laudal. Noncommutative algebraic geometry. In Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001), volume 19, pages 509–580, 2003.