Ultrasonography of normal and abnormal appendix in children

Noh Hyuck Park, Hwa Eun Oh, Hee Jin Park, Ji Yeon Park

INTRODUCTION

Appendicitis is the most common acute surgical emergency of childhood. Since the original report by Puylaert in 1986, the use of ultrasonography in the diagnosis of appendicitis has been the subject of considerable study. Among the reported diagnostic criteria, the maximal outer diameter (MOD) of the appendix is accepted as the one of the most reliable criteria used to differentiate between a normal appendix and acute appendicitis. However, MOD measurement is subject to inaccuracies because luminal distention by non-compressible, non-inflammatory material such as fecal material, or increased maximal mural thickness due to reactive mucosal lymphoid hyperplasia, or a medical cause due to a generalized gastrointestinal disease, such as Crohn's disease, can cause the measurement to exceed the upper limits of normality. The aim of this article is to introduce the spectrum of ultrasonographic findings in the normal and abnormal appendix and eventually to reduce unnecessary surgery in children.

Key words: Acute appendicitis; Appendix; Children; Ultrasonography

Peer reviewer: Adnan Kabaalioglu, MD, Professor, Akdeniz University Hospital, 07059, Antalya, Turkey
article is to introduce the spectrum of ultrasonographic findings from normal appendix through to overt acute appendicitis.

NORMAL APPENDIX

The appendix is a worm-like extension of the cecum and, for this reason, has been called the vermiform appendix. The average length of the appendix is 8-10 cm (range 2-20 cm). The normal appendix consists of 5 distinct layers; the innermost echogenic layer which represents the interface of mucosa and lumen, the hypoechoic mucosal layer, the echogenic submucosal layer, the hypoechoic muscularis propria layer and the outermost echogenic serosal layer. The typical normal appendix in children has an inner hypoechoic band without folding (Figure 1), and this feature is a distinguishable finding from other bowel structures. Therefore, recognition of this finding reduces the time and effort involved in identifying normal appendix and confidently excluding acute appendicitis[6,7]. This inner hypoechoic band corresponds to the mucosal layer with abundant lymphoid tissue on histologic examination[6] and disappears with aging[8].

Normal appendix is a compressible tubular structure with a blind end. It is generally accepted that normal appendix does not exceed 6 mm in maximal outer diameter (MOD), which is the most important diagnostic criterion to exclude acute appendicitis. However, the MOD may be exaggerated by the presence of intraluminal materials such as gas, feces and non-inflamed fluid. To decrease the false positive rate of this MOD criterion, some radiologists recently tried to determine another size criterion, the maximal mural thickness (MMT) of the appendix[9-12]. Simonovský[9] reported that the differences in the normal appendiceal MMT between groups of young children, adolescents and adults were marginally significant. In addition, a MMT < 3 mm should be regarded as normal in children less than 6 years old.

Wiersma et al[10] also reported that the sizes of the MOD and the MMT in a normal appendix in children was 0.21-0.64 cm and 0.11-0.27 cm, respectively.

NORMAL APPENDIX WITH MUCOSAL LYMPHOID HYPERPLASIA

Viral gastroenteritis produces lymphoid hyperplasia in the ileocecal valve region and appendix, altering the intestinal motility and leading to intussusception[13]. Mucosal lymphoid hyperplasia of the appendix is seen as a discernable hypoechoic band without folding in the inner-most layer of the appendix. Although this finding is seen in the normal appendix of children, in conditions of viral gastroenteritis, mesenteric lymphadenitis colitis or other inflammatory conditions, this hypoechoic band becomes thickened and prominent (Figure 2) when compared with that of normal appendix. In one series, the mean thickness of the inner hypoechoic band was measured as 0.80 mm in mesenteric lymphadenitis and 0.74 mm in viral gastroenteritis[9].

Mucosal lymphoid hyperplasia results in an increase in MMT of the appendix, which may lead to the misdiagnosis of acute appendicitis. However, in most cases, we can differentiate it from acute appendicitis by the points of smooth and even hypoechoic band, no demonstrable intraluminal exudates, absence of periappendiceal fat infiltration and absence of blood flow in thickened appendiceal wall[9].

Fecal material within the appendiceal lumen was
characterized as a heterogeneous mild hyperechoic mass without demonstrable posterior shadowing on ultrasonography. The absence of strong hyperechogenicity and posterior shadowing is a distinguishable finding from appendicolith. Fecal material may be present in whole lumen, focal or in a skipped pattern. Fecal impaction of the appendix increases the MOD, frequently leading to a misdiagnosis of acute appendicitis. However, in the fecal impacted appendix, recognition of the sonographic findings of intraluminal fecal material, preservation of the normal wall layering, smaller MOD, thinner MMT, the absence of periappendiceal mesenteric infiltration and no demonstrable increase in blood flow in the appendiceal wall (Figure 3A and B) is helpful in preventing unnecessary surgery.

CROHN’S DISEASE OF APPENDIX

It was shown that 21% of patients with Crohn’s disease had appendiceal involvement. This incidence is similar to that reported in pathologic studies (20%-36%). Appendiceal involvement in Crohn’s disease was always associated with segmental thickening of the terminal part of the ileum, cecum, or both.

Newly diagnosed Crohn’s disease with involvement of the appendix is difficult to differentiate from acute appendicitis. Distinguishing both entities is important: acute appendicitis usually requires surgery, whereas Crohn’s disease does not. On ultrasonography, Crohn’s appendicitis shows marked thickening of the appendiceal wall, may be up to 3 cm (Figure 4A and B), which is an unusual finding in primary acute appendicitis. Also periappendiceal fibrofatty proliferation and hyperemia of thickened terminal ileum on color Doppler study are important points in differentiating acute appendicitis.

There are two major concerns when isolated Crohn’s appendicitis is diagnosed at the time of emergency laparotomy or during subsequent evaluation of the resected specimens, which are: is there concurrent involvement elsewhere in the gastrointestinal tract and what is the potential risk of local recurrence or development of disease elsewhere in the gastrointestinal tract? Both issues are of obvious critical importance for the optimal management of these patients. Yang et al. and Timmcke reviewed...
the literature and noted that concurrent Crohn’s disease elsewhere in the gastrointestinal tract was present in approximately 25% of patients with Crohn’s appendicitis.

The recurrence rate after appendectomy for localized Crohn’s disease has been reported to be 14%-50% [18-20].

SECONDARY APPENDICITIS DUE TO A GENERALIZED GASTROINTESTINAL INFECTION

Although rare, there are numerous bacterial, viral, fungal and parasitic infections that can affect the appendix as part of a generalized gastrointestinal disease [13]. It is important to differentiate these disorders from primary acute appendicitis, because the former can be treated with medical therapy for the primary causes and the latter should be treated with surgical therapy. Secondary appendicitis due to a generalized gastrointestinal disease is seen as an increase in MMT with preservation of wall layers, no demonstrable intraluminal exudates and no evidence of periappendiceal change in the setting of the presence of cecal and contiguous colonic wall thickening (Figure 5).

ACUTE APPENDICITIS

Acute appendicitis in children is more difficult to recognize clinically than in adults because most children cannot describe their symptoms clearly and abdominal pain is often poorly localized [21]. The use of high frequency sonography with additional compression in children with acute abdominal pain have improved both diagnostic accuracy and treatment outcome [22].

The exact mechanism of appendicitis is not well characterized. However, the etiology is most likely multifactorial, a combination of ischemic mucosal damage and bacterial overgrowth with some luminal obstruction appears to be the most likely pathogenesis [23,24].

In our experience, non-obstructive appendicitis without luminal distention is frequently present on US examination, although its exact incidence rate is not yet documented. Of course, non-obstructive appendicitis does not have appendicolith or demonstrable intraluminal...
nal obstructive lesion. It has increased MMT with some obliteration of wall layers and periappendiceal fat infiltration (Figure 6A and B). We assume that the incidence of perforation in non-obstructive appendicitis may be lower than obstructive appendicitis (Figure 7A and B). Furthermore, antibiotic therapy with close ultrasonographic observation may be an alternative treatment rather than immediate appendectomy in the case of mild non-obstructive appendicitis when the operation is not allowed due to inadequate systemic condition (Figure 8A-C)[25].

A MOD >6 mm has been regarded as the most reliable feature in diagnosing acute appendicitis. In a recent report, a MOD > 5.7 mm was suggested as the optimal
conclusion

Knowledge of ultrasonographic findings of the normal and abnormal appendix is helpful in reducing the time and effort involved in detecting normal appendix and to diagnose or exclude acute appendicitis confidently.

REFERENCES

1. Flum DR, Koepsell T. The clinical and economic correlates of misdiagnosed appendicitis: nationwide analysis. Arch Surg 2002; 137: 799-804; discussion 804.

2. Humes DJ, Simpson J. Acute appendicitis. BMJ 2006; 333: 530-534.

3. Ma KW, Chia NH, Yeung HW, Cheung MT. If not appendicitis, then what else can it be? A retrospective review of 1492 appendectomies. Hong Kong Med J 2010; 16: 12-17.

4. Paulson EK, Kalady MF, Pappas TN. Clinical practice. Suspected appendicitis. N Engl J Med 2003; 348: 236-242.

5. Puylaert JB. Acute appendicitis: US evaluation using graded compression. Radiology 1986; 158: 355-360.

6. Park NH, Song SY, Lee EJ, Kim MS, Park CS, Oh HE, Yang GS. Characteristic sonographic appearance of normal appendix in children: inner hypoechoic band without folding. J Korean Radiol Soc 2004; 51: 663-667.

7. Kim BS, Choi GM, Kim SH, Park JK, Kim K, Kang HW, Kang KS. Usefulness of the inner hypoechoic band of the vermiform appendix as ultrasonographic criteria for the diagnosis of acute appendicitis in children. J Korean Radiol Soc 2007; 57: 483-488.

8. Nonneoplastic diseases of the appendix. In: Fenoglio-Preiser CM, Noffsinger AE, Steenbermann GN, Lantz PE, Isaacson PC, editors. Gastrointestinal pathology: an atlas and text. 3rd ed. Philadelphia: Lippincott Williams and Wilkins, 2008: 497-498.

9. Simonovský V. Normal appendix: is there any significant difference in the maximal mural thickness at US between pediatric and adult populations? Radiology 2002; 224: 333-337.

10. Wiersma F, Sramaek A, Holshcer HC. US features of the normal appendix and surrounding area in children. Radiology 2005; 235: 1018-1022.

11. Flum DR. Misdiagnosed appendicitis: nationwide analysis. JAMA 2007; 298: 872-877.

12. Je BK, Kim SB, Lee SH, Lee KY, Cha SH. Diagnostic value of maximal-outlet diameter and maximal-mural-thickness in use of ultrason for acute appendicitis in children. World J Gastroenterol 2009; 15: 2900-2903.

13. Rabah R. Pathology of the appendix in children: an institutional experience and review of the literature. Pediatr Radiol 2007; 37: 15-20.

14. Rioux M. Sonographic detection of the normal and abnormal appendix. AJR Am J Roentgenol 1992; 158: 773-778.

15. Ripollés T, Martínez MJ, Morote V, Errando J. Appendiceal involvement in Crohn’s disease: gray-scale sonography and color Doppler flow features. AJR Am J Roentgenol 2006; 186: 1071-1078.

16. Lockhart-Mummery HE, Morson BC. Crohn’s disease (regional enteritis) of the large intestine and its distinction from ulcerative colitis. Gut 1960; 1: 87-105.

17. Agha FP, Ghahremani GG, Panella JS, Kaufman MW. Appendicitis as the initial manifestation of Crohn’s disease: radiologic features and prognosis. AJR Am J Roentgenol 1987; 149: 515-518.

18. Yang SS, Gibson P, McCaughey RS, Arcari FA, Bernstein J. Primary Crohn’s disease of the appendix: report of 14 cases and review of the literature. Ann Surg 1979; 190: 334-339.

19. Timmcke AE. Granulomatous appendicitis: is it Crohn’s disease? Report of a case and review of the literature. Am J Gastroenterol 1986; 81: 283-287.

20. Ewen SW, Anderson J, Galloway JM, Miller JD, Kyle J. Crohn’s disease initially confined to the appendix. Gastroenterol...
21 Kottmeier PK. Appendicitis. In: Welch K, Randolph J, Ravitch M, O’Neil J, Rowe M, editors. Pediatric surgery. Chicago: Year Book Medical, 1986: 989-995

22 Patriquin HB, Garcia JM, Lafortune M, Yazbeck S, Russo P, Jequier S, Ouimet A, Filletault D. Appendicitis in children and young adults: Doppler sonographic-pathologic correlation. AJR Am J Roentgenol 1996; 166: 629-633

23 Lamps LW. Appendicitis and infections of the appendix. Semin Diagn Pathol 2004; 21: 86-97

24 Williams RA, Myers P. Pathology of the appendix and its surgical treatment. 1st ed. London: Chapman and Hall Medical press, 1994

25 Styrud J, Eriksson S, Nilsson I, Ahlberg G, Haapaniemi S, Neovius G, Rex L, Badume I, Granström L. Appendectomy versus antibiotic treatment in acute appendicitis, a prospective multicenter randomized controlled trial. World J Surg 2006; 30: 1033-1037

26 Hahn HB, Hoepner FU, Kalle T, Macdonald EB, Prantl F, Spitzer IM, Faerber DR. Sonography of acute appendicitis in children: 7 years experience. Pediatr Radiol 1998; 28: 147-151

27 Simonovský V. Sonographic detection of normal and abnormal appendix. Clin Radiol 1999; 54: 533-539

28 Hayden CK Jr, Kuchelmeister J, Lipscomb TS. Sonography of acute appendicitis in childhood: perforation versus non-perforation. J Ultrasound Med 1992; 11: 209-216

S- Editor Cheng JX L- Editor Webster JR E- Editor Zheng XM