Improving control quality of PMSM drive systems based on adaptive fuzzy sliding control method

Tran Duc Chuyen¹, Roan Van Hoa¹, Hoang Dinh Co¹, Tran Thi Huong¹, Bui Thi Hai Linh², Tung Lam Nguyen³

¹Faculty of Electrical, University of Economics and Technology for Industries, Ha Noi, Viet Nam
²Faculty of Electrical, Thai Nguyen University of Technology, Thai Nguyen, Viet Nam
³Department of Industrial Automation, School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Ha Noi, Viet Nam

Article Info

ABSTRACT

In this paper, a solution to improve the precision in speed control for permanent magnet synchronous motors (PMSM) based on fuzzy adaptive sliding mode controller (FASMC) is proposed. In order to tackle the nonlinear tracking problem, continuously switching topologies are embedded. The designed algorithm and the closed electric drive system stability is examined by employing corresponding Lyapunov candidate functions. The results are numerically simulated and experimentally verified in the environment of MATLAB-Simulink, control Desk with dSPACE 1104 card, proving the applicability of the control algorithm which not only works well in simulations but also in practice for possible industrial traction drive applications.

Keywords:
Card dSPACE 1104
Fuzzy adaptive sliding control
Intelligent control
Nonlinear control
Position control

1. INTRODUCTION

For decades, permanent magnet synchronous motors (PMSM) are widely used in industrial applications. The drive provide high-quality speed adjustment applications such as electric vehicles, precise position control such as industrial robots, industrial machining machines, traction drive systems, military radar system, and rocket control systems. In addition, PMSM can be found in medication manufacturing, such as pill-packing machine in the pharmaceutical industry, equipment and machinery for supporting surgical operations in the field of medicine, due to its outstanding characteristics (wide and regularly stable working speed range: from very low speed to high speed, with a large moment/current ratio, less interference, stability with load, high performance, very high precision in position control). These PMSM motors are intended to replace the previous drive control systems (which have been using DC motors, causing errors at all times during speed control and position control), [1], [2]. In order to apply these given issues, an intelligent controller – fuzzy adaptive sliding mode controller (FASMC); is an efficient control method that has been widely applied to control for both linear and nonlinear systems [2]-[7].

In applications to precise control systems with various operating speed ranges such as traction systems in pharmaceutical industry (pill-packing machine); and strict requirement in metalworking industry, and in traction systems of military weapons, [5], [6], [8]-[10]. However, there exist some problems need to be
solved to improve the quality of control. In [4], [6] and [11]-[13], the authors have only recommended fuzzy control methods for PMSM without considering system uncertainties and external disturbances. In [14]-[17] the authors have used adaptive sliding controller and adaptive backstepping controller, with evaluation of the nonlinear component base on the estimators with light power motors hence limiting its practical implementation with high power requirements. This paper have proposed the FASMC to handle mismatched uncertainties and disturbances and alleviate chattering to gain good performances in the close-loop system [18]-[23].

The appropriate structure is designed in the paper to ensure quality in the controlled system. The control is constructed for achieving tracking response of drive systems. In electrical drives, it is necessary to provide quality criteria such as: fast-acting in the control process, ensuring optimization of control law, non-sensitivity to uncertainties in the control process, [1], [15]. This is a multi-objective optimization control problem with various solutions [1], [5], [9], [13], [21]. This paper presents a technique to improve the control quality PMSM in industrial applications; taking into account the nonlinear uncertainty, the dynamics of the actuator and the converters based on the adaptive fuzzy sliding control method, and experimenting with the dSPACE 1104 card to demonstrate the results, [3], [5], [8], [15], [24].

2. MATHEMATICAL MODEL OF PERMANENT MAGNET SYNCHRONOUS MOTORS

The mathematical model of the three-phase PMSM is described as in [4]. By considering the rotor coordinates of PMSM as the reference coordinates, the systems dynamic is represented by (1) [4], [8], [10]:

\[
\begin{align*}
\dot{\omega} &= k_1i_q - k_2\omega - k_3M_L \\
i_q &= -k_4i_q - k_5\omega + k_6V_q - \omega i_d \\
i_d &= -k_4i_d + k_6V_d + \omega i_q
\end{align*}
\]

(1)

where \(M_L \) is the load torque, \(\omega \) is the rotor angular speed, \(i_q \) and \(i_d \) are linearized d-axis and q-axis stator currents, \(V_q \) is q-axis voltage, \(R_i \) is stator resistance, \(V_d \) is d-axis voltage, and \(k_i, i = 1….6 \) are obtained as (2)-(6):

\[
k_1 = \frac{3}{2} \frac{p^2}{J}, k_2 = \frac{p}{J}, k_3 = \frac{p}{2J}, k_4 = \frac{R_i}{L_s}, k_5 = \frac{\lambda_m}{L_s}, k_6 = \frac{1}{L_s}
\]

(2)

\[
V_q = R_i i_q + L_q i_q + \omega L_d i_d + \omega \lambda_m
\]

(3)

\[
V_d = R_i i_d + L_d i_d - \omega L_i i_q
\]

(4)

\[
M_e = \frac{3}{2} \frac{p}{2} \omega + \frac{J}{p} \dot{\omega}
\]

(5)

\[
M_e = M_L + B \frac{2}{p} \omega + J \frac{\dot{\omega}}{p}
\]

(6)

where \(M_L \) is electromagnetic moment, \(p \) is number of pole pairs, \(R_i \) is stator resistance, \(L_d \) is the d-axis stator inductance and \(L_q \) is the q-axis stator inductance, \(L_s \) is stator inductance, \(J \) is rotor moment of inertia, \(B \) is viscous friction coefficient, is \(\lambda_m \) linkage magnetic flux and \(\omega = \theta \); Hence, a nonlinear control loop of linearization methodology is used to estimate the \(\theta \), the rotor speed \(\omega \) which are the unmeasured components of the motor. Furthermore, the presentation of the d-q reference axis coordinate system of the motor can be obtained as (7) and (8) [4].

\[
\begin{bmatrix}
u_d' \\
u_q' \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
R_s + \sigma L_s p & -\sigma L_s \omega_e & \frac{\lambda_m p}{L_r} & -\frac{\lambda_m \omega e}{L_r} \\
\sigma L_s \omega_e & R_s + \sigma L_s p & \frac{\lambda_m \omega e}{L_r} & -\frac{\lambda_m p}{L_r} \\
-\frac{R_e}{L_r} & 0 & \frac{R_e}{L_r} + p & -\omega_s l \\
0 & -\frac{R_e}{L_r} & \omega_s l & \frac{R_e}{L_r} + p
\end{bmatrix} \begin{bmatrix}i_d' \\
i_q' \\
\phi_d^e \\
\phi_q^e
\end{bmatrix}
\]

(7)

\[
M_e = \frac{3}{2} \frac{n L_m}{2} \frac{p}{2} \omega \left(i_q^e \phi_d^e - i_d^e \phi_q^e\right)
\]

(8)

In the field oriented control (FOC) method, the magnetic flux is oriented completely along d-axis implying \(\omega_q^e = 0 \) and we get:
\[\phi_r^e = \phi_d^e \] \hspace{1cm} (9)

then the slip speed is represented as (10).

\[\omega_{st} = \frac{r_m}{\phi_0} \left(\frac{K_r}{L_r} \right) i_q^e \] \hspace{1cm} (10)

The electromagnetic torque is obtained as in (11):

\[M_e = \frac{3}{2} n \frac{L_m}{L_r} \omega_0^e i_q^e = K_i i_q^e \] \hspace{1cm} (11)

in which:

\[K_i = \frac{3}{2} n \frac{L_m}{L_r} i_d^e \] \hspace{1cm} (12)

the mathematical equation describing the equations of motion of the motor is written as (13):

\[J \dot{\omega}_r(t) + B \omega_r(t) = M_e + M_L \] \hspace{1cm} (13)

where \(J \) is rotor moment of inertia, \(B \) is viscous friction coefficient, \(M_L \) is load moment, by replacing (11) and (12) into (13), derivative of rotor speed \(\dot{\omega}_r(t) \) is given as (14):

\[\dot{\omega}_r(t) = -\frac{B}{J} \omega_r(t) + \frac{K_i}{J} i_q^e - \frac{M_L}{J} = B_p \omega_r + A_p i_q^e + D_p M_L \] \hspace{1cm} (14)

where, \(B_p = -B/J \) and \(A_p = K_i/J > 0; D_p = -1/J < 0 \). In order to obtain a mathematical model that is suitable for control design, the nominal value of the motor parameters must be considered when ignoring influencing factors of nonlinear components and unaffected by any disturbances [13], [14], [17], [19]. Therefore, the kinematic model of the PMSM that given by (14) becomes (15):

\[\dot{\omega}_r(t) = \ddot{B} \omega_r(t) + \dddot{A} i_q^e \] \hspace{1cm} (15)

where, \(\dddot{A} = K_i/J_r \) and \(\dddot{B} = -B/J_r \) are the nominal values of \(A_r \) and \(B_r \), respectively. Therefore, the computations of unmodeled system in the (14) can be rewritten as:

\[\dot{\omega}_r(t) = (\dddot{B} + \Delta B) \omega_r(t) + (\dddot{A} + \Delta A) i_q^e + D_p M_L + \delta = \dddot{B} \omega_r(t) + \dddot{A} i_q^e + L(t) \] \hspace{1cm} (16)

where, \(L(t) = \Delta B \omega_r(t) + \Delta A i_q^e + \Delta D_p M_L + \delta \). In (16), the unknown parameters are represented by \(\Delta A \) and \(\Delta B \); characteristics for the system containing the uncertainty components including the variable parameter and the nonlinear estimation error which are unmeasurable components. In addition, these parameters are the unchangeable depend on the dynamics of the system, so in order to simplify the analysis, calculation and estimation of parameters in the paper, the above parameters are assumed to be constant and is denoted as \(\delta \). In the above question, \(L(t) \) is the unknown components satisfying \(|L(t)| < m \), where \(m \) is a positive constant.

3. FUZZY ADAPTIVE SLIDING MODE CONTROLLER DESIGN

3.1. Conventional sliding mode controller

Sliding mode control offers many advantages in the synthesis of nonlinear control system [5], [8], [12], due to invariance to disturbances on the system and unknown components; the order of the system is decreased when the system on in the sliding surface. We consider the change of speed adjustment error, \(e(t) = \omega_r(t) - \omega_r^e \), thus, in the sliding mode with the space state, \(S(t) \) can be obtained as:

\[S(t) = h(\dot{C}e(t) + \dot{e}(t)) \] \hspace{1cm} (17)

in which, \(C \) and \(h \) are positive constants, substituting (16) into (17), with the first derivative of \(S(t) \) taking the following form:

\[\dot{S}(t) = h(\dot{C} \dot{e}(t) + \dddot{B} \dot{\omega}_r(t) + \dddot{A} u(t) + \dot{L}(t) - \dddot{A} \dot{\omega}_r(t)) \] \hspace{1cm} (18)
in which, \(u(t) = i^e_q(t) \). Setting, \(\dot{S}(t) = 0 \) and \(\ddot{L}(t) = 0 \), then according to the system dynamics, the equivalent control is defined as, \([1, 4, 5, 9, 20]\):

\[
u_{eq}(t) = -(\hat{\lambda})^{-1}[(\mathcal{C} + \hat{B})\dot{e}(t) + \hat{B}\dot{\omega}(t) - \dot{\omega}^*(t)]
\] (19)

Then the reaching law \(u_r(t) \) is designed as:

\[
u_r(t) = -(\hat{\lambda}h)^{-1}k(t)\text{sign}(S(t))
\] (20)

in which, \(k(t) > 0 \) and the “sign” function are defined as follows:

\[
\text{sign}(S(t)) = \begin{cases} 1, & \text{if} \; S(t) > 0 \\ -1, & \text{if} \; S(t) < 0 \\
\end{cases}
\] (21)

The controller is achieved when considering the unmodeled actuator dynamics, which can be defined as following:

\[
u(t) = u_{eq}(t) + u_r(t)
\] (22)

\[
i_q = \frac{1}{\tau} \int_0^t u(t)\,dt
\] (23)

in which, \(\tau \) is the integral positive constant. According to the designed control, a control Lyapunov function (CLF) candidate is chosen in (24):

\[
V(t) = \frac{1}{2} S^2(t)
\] (24)

the stability condition showing the stability can be obtained from the stability theorem of the Lyapunov function of \([1], [5], [8]\).

\[
\dot{V}(t) = S(t)\dddot{S}(t) \leq \eta |S(t)|
\] (25)

Where \(\eta \) is a positive constant. From (18), (19) and (22), (25), it can be rewritten as:

\[
\dot{V}(t) = S(t)\dddot{S}(t) = -S(t)h\dot{\omega}u_r(t) + hS(t)\dddot{L}(t)
\]

\[
\dot{V}(t) \leq -k|S(t)| + h|S(t)|\|\dddot{L}(t)\| \Rightarrow \dot{V}(t) \leq -|S(t)|(|k(t) - hm|
\] (26)

compare (25) and (26) then consider \(|\dddot{L}(t)| < m\), the stability of the system is guaranteed if the following equation is fulfilled:

\[
k(t) \geq hm + \eta
\] (27)

In practical applications, we may experience undesirable phenomenon of oscillations especially when \(\eta \) is large respectively. The chattering phenomenon can be reduced by replacing the discontinuous function with a continuous function of \(s/(|s| + \mu) \), in which, \(\mu \) is a positive constant. Thus, when \(\mu \rightarrow 0 \) the approximate controller characteristic which is approached to the original controller as well \([5], [14]\).

A nonlinear state observer to accurately estimate the position and speed of the motor with the influence of unmeasured component parameters in both low and high speed regions control is used in the paper. The design procedure of the nonlinear state observer has been carefully presented in \([21]\). This nonlinear state observer is used to estimate the rotor position \((\theta)\), rotor speed \((\omega)\), load torque component \((M_L)\) and unmeasured component of the system \((d_1, d_2)\), \([25], [26]\).

3.2. Fuzzy adaptive sliding mode controller

In this paper, we investigated the fuzzy adaptive sliding mode controller for the disturbance observer control tracking approach of the PMSM driven system. In field-oriented control (FOC), stator field is continuously updated based on the position of the rotor field, since position and speed of the motor are estimated based on current and voltage information, thus, a nonlinear state estimator which is estimated accurately of the rotor is implemented as well. The block diagram of the FASMC system is shown in the Figure 1, which in speed loop control, the stator current \(i^e_q\) represents its output. The independent control of \(I_d^e\) and \(I_q^e\) consist of two PI regulators. In the present implementation, the rotor position measurement is
derived from an angle sensor. Chattering can be eliminated by smoothing the control discontinuity when the
signum function in (20) is replaced by the saturation action which is represented as:

\[
sat\left(\frac{s}{\psi}\right) = \begin{cases} \text{sign}(s), & |s| > |\psi| \\ \frac{s}{\psi}, & |s| \leq |\psi| \end{cases}
\] (28)

in which, \(\psi \) is the thickness of layer of the sliding surface. Thus, the discontinuous component control is
given by (20) becomes (29).

\[
u_r(t) = -(\dot{A}h)^{-1}k(t)\text{sat}(s(t)/\psi)
\] (29)

to deals with the unknown of the motor mechanical load, fuzzy control strategy is an effective tool to deal
with the unknown process. The control variable \(u_{TMTN} \) of FASMC algorithm is proposed as (30).

\[
u_{TMTN} = TMTN(S(t), \Delta S(t))
\] (30)

Subsequently the reaching law and control law are defined as (31) and (32).

\[
u_r(t) = -(\dot{A}h)^{-1}k(t)u_{TMTN}
\] (31)

\[
u(t) = u_{eq} - (\dot{A}h)^{-1}k(t)u_{TMTN}
\] (32)

Figure 1. Block diagram of control structure of the drive system using PMSM based on FASMC

Because the plant is lack of an integral action, a PI type fuzzy controller is formulated. Additionally,
refer to [8], [14], we can build the structure of the FASMC which is shown in the Figure 1. The fuzzy
controller consists of: two input linguistic variables which are error \(S(t) \), and the error derivative \(\Delta S(t) \); one
output linguistic variable \(U_{TMTN} \). The FASMC structure is depicted in Figure 2 and the fuzzy rule is presented as
in Table 1. Inputs and output relationship of the fuzzy controller is as shown in Fig 2 and the fuzzy rule is presented as
in Table 1. Inputs and output relationship of the fuzzy controller is as shown in Figures 3-5 and Figure 6 the
relationship of the fuzzy controller. It is pivotal to minimize \(L(t) \) which is given in (26). In order to estimate \(\dot{k}(t) \) given in (30) we using the corresponding adaptation law presented in (33) [8].

\[
\dot{k}(t) = \lambda_k|S(t)|
\] (33)

In which, \(\lambda_k \) is a positive constant. In fact, \(k(t) \) is as an adaptive filter to minimize control errors.

\[
\dot{k}(t) = \lambda_k|S(t)|
\] (33)

Consider the following Lyapunov candidate function:

\[
V(t) = \frac{1}{2}S(t)^2 + \frac{1}{2\lambda_k}(k(t) - \dot{k})^2
\] (34)
substitute (18) and (34) for (25) to get |S(t)| < ψ(t) as (35).

$$\dot{V}(t) = S(t)h(\dot{A}u_r(t) + \dot{L}(t)) + \frac{1}{\lambda_k}(k(t) - \hat{k})\dot{k}(t) = S(t)h(-\hat{A}k(t)(h\hat{A})^{-1}sgn(S) + \dot{L}(t)) + \frac{1}{\lambda_k}(k(t) - \hat{k})\dot{k}(t) = -S(t)k(t)sgn(S) + hS(t)\dot{L}(t) + \frac{1}{\lambda_k}(k(t) - \hat{k})\dot{k}(t).$$ (35)

Substitute (33) for (35) and alter (25), we get (36).

$$\dot{V}(t) \leq |k(t) - \hat{k} - \tilde{k}|S(t)| + h|\dot{L}(t)||S(t)| + |k(t) - \hat{k}||S(t)| < -|k(t) - \hat{k}|S(t)| - \dot{k}\tilde{S}(t)| + hm|S(t)| + |k(t) - \hat{k}||S(t)| < (-\hat{k} + hm)|S(t)|$$ (36)

Compare (25) and (36), we get (37).

$$\dot{V}(t) < (-\hat{k} + hm)|S(t)| \leq \eta|S(t)|$$ (37)

Table 1. The rule base of fuzzy controller
\(u_{TMTN} \)
\(\Delta S(t) \)
GV
H
TV
TN

Therefore, the component \(\hat{k} \) can be selected such that \(-\hat{k} + mh + \eta \) is negative. It is straightforward to have \(-\hat{k} \geq +mh + \eta \). In this paper, by applying the proposed adaptive fuzzy sliding controller along with the designed fuzzy rules and the mentioned conditions, the system stability condition in (25) is satisfied. In practical, the factors of frictional moment, elasticity, and clearance always exist in the electromechanical drive system including motor and working structure. By using the proposed FASMC, the effects of the nonlinear factors on the quality of the drive system have been resolved [14]-[16].
Parameters V_p, V_I are chosen based on Zeigler - Nichols experimental method. After choosing parameters V_p, V_I, we can calculate parameters V_p and d. However, due to experimental method, in order to improve control quality: short transient time and small overshoot since two parameters V_p and d need to be adjusted furtherly. Parameters is set: $V_p=0.01$; $d=0.99$ (with $T=0.002$). The quality of the PI controller after calculating the selection, we obtain: $K_p=0.3$; $K_I=0.0001$. The PID-controller design process is considered in [1], [14], [17], [18], [19].

Figure 6. The relationship of the fuzzy controller

4. SIMULATION AND EXPERIMENTAL RESULTS

The Simulation and experimental results of FASMC are shown as following. The parameters of PMSM parameters are: Power $P=2.1$ kW; rated speed 3000 rpm; voltage $U=315$ V; rated current $I=4.4$ A; number of poles $2p=8$; static torque $M_s=8.0$ Nm; Rated torque $M_{dn}=6.8$ Nm; coefficient of viscous friction $B=0.0001$ N.m.s/rad; moment of inertia $J=14200$ kgcm²; maximum speed 6000 rpm; Simulation results is presented in the following cases.
- Case 1: Simulation of evaluation the system’s working ability when the speed changes with amplitude of 1000 rpm to-1000rpm, the load moment changes in sinusoidal form, the load torque is 0.5 Nm which shows in Figure 7 to Figure 10. Where M is the loading torque, M(Obs) is the observed torque.
- Case 2: The motor speed with amplitude of 50 rpm and 0.5 rpm is examined to test the system ability in low speed range. The responses are shown in Figure 11 to Figure 14.
- Case 3: The system’s response when when reference position is set according $X_r=Vt$, ($V=1$rad/s) constant load moment $M_c=0.5$Nm that shown in Figure 15 and Figure 16.

Figure 7. Response speed ω_d and actual speed ω of motor in case 1

Figure 8. Response torque and estimated torque in case 1

Figure 9. Current response i_q in Case 1

Figure 10. Current response i_d in case 1
The simulation results of some cases shows that the FASMC is proposed with the sustainability, stability of the control law against the effects of unknown parameters which will change the transition time, increase the fast response of the system. Moreover, in the transient mode, the application of proposed controller given a good performance response as well.

The experimental structure diagram as shown in Figure 17(a) and the experimental system in real time is depicted in Figure 17(b) with its designed, built and simulated on MATLAB Simulink’s 2021 and connected to the control board dSPACE 1104 with a combination of graphical control desk software in controlling; observe system characteristics in real time. Combined with power electronics, and current measurement sensors connected to the dSPACE panel. The PMSM motor parameters used in the experiment are the same as those used in simulations, encoder AM 2048 S/R, DC motor used to generate loads, symbol DOLIN - SH.198V with voltage U=190 V, I=13.5A, n=175 rpm.

Studying the process of changing low speed from 50 rad/s (478 rpm) to -50 rad/s (-478 rpm, timing the conversion is 2.5s in the total response time of 5s, Figure 18. The results show that the FASMC controller response is working well, the output is close to the input in the balance process, the current response value I_d and I_q in Figure 19 shows the correct working process of the system.
5. CONCLUSION

The traction drive system in industry applications needs very high reliability and accuracy. The paper presented a new approach, researched and built an adaptive FASMC for industrial traction drive systems. The main effectiveness of this method is that the robustness of the system is introduced. The second advantage of the proposed FASMC is that the chattering phenomenon is significantly reduced. Theoretical research and simulation results show that the proposed FASMC algorithm for PMSM which achieves good quality and more stable operation. The results of simulation and experimental studies with the dSPACE 1104 card show that the above control algorithm exhibits good dynamical responses when compared to other works. This study has proven the correctness of the FASMC algorithm which has ability to apply in practice to the traction electric drive systems.

ACKNOWLEDGEMENTS

This research was supported by Faculty of Electrical Engineering, University of Economics-Technology for Industries, Viet Nam.

REFERENCES

[1] A. Bacciotti, “Stability and Control of Linear Systems,” Springer Nature Switzerland AG, 2019, doi: 10.1007/978-3-030-02405-5.
[2] A. Emadi, “Advanced Electric Drive Vehicles,” CRC Press is an imprint of Taylor & Francis Group, an Informa business, Springer International Publishing; USA, 2017, doi: 10.1201/9781315215570.
[3] M. Jufer, “Electric Drives,” John Wiley & Sons Inc London, Feb. 2013. doi: 10.1002978118622735.
[4] J. Connor and S. Lafortune, “Advanced control theory,” Springer International Publishing Switzerland, May 2014, doi: 10.1007/978-3-319-06281-5_10.
[5] E. Gelenbe and I. Mitrani, “Analysis and Synthesis of Computer Systems,” Publisher: Imperial College Press, 2010, doi: 10.1142/p643
[6] M. Steinberger, M. Horn, and L. Fridman, “Variable-Structure Systems and Sliding-Mode Control from theory to practice,” Springer nature Switzerland, 2020, doi: 10.1007/978-3-030-36621-6.
BIographies of authors

Tran Duc Chuyen received the Ph.D degree in Industrial Automation from Le Qui Don Technical University (MTA), Hanoi, Vietnam in 2016. Now, works at Faculty of Electrical Engineering, University of Economics - Technology for Industries. He is currently the President of Council the Science of Faculty of Electrical Engineering. Dr Tran Duc Chuyen's main researches: Electric machine, drive system, control theory, power electronics and application, adaptive control, neural network control, automatic robot control, motion control, artificial intelligence. He can be contacted at email: tdcchuyen@uneti.edu.vn.

Roan Van Hoa Graduated Engineering Degree major in Electronic Engineering at Thai Nguyen University of Technology in 2008. Defended Master Degree in Control Engineering and Automation at Thai Nguyen university of technology, Vietnam in 2011. Now, works at Department of Electrical Engineering, University of Economics - Technology for Industries. The main researches: Adaptive control, fuzzy logic control, neural network control, artificial intelligence. He can be contacted at email: rvhoa@uneti.edu.vn.
Improving control quality of PMSM drive systems based on adaptive fuzzy sliding ... (Tung Lam Nguyen)