Artery of Davidoff and Schechter Supply in Dural Arteriovenous Fistulas

K.D. Bhatia, H. Kortman, T. Wälchli, I. Radovanovic, V.M. Pereira, and T. Krings

ABSTRACT

SUMMARY: The artery of Davidoff and Schechter is a dural branch of the posterior cerebral artery that can supply the meninges close to the falcotentorial junction. It is usually not identified on angiography except when enlarged in the setting of a dural AVF or meningioma. The impact on treatment of the artery of Davidoff and Schechter supply to a fistula is not well-described in the literature. Our retrospective analysis of patients with dural AVFs treated at the Toronto Western Hospital between 2006 and 2018 identified 6 patients with dural AVFs receiving supply from artery of Davidoff and Schechter (of a total of 173 patients with dural AVFs). All patients were initially treated by transarterial embolization using liquid embolic agents. Three patients required a second endovascular procedure partly due to residual supply from artery of Davidoff and Schechter, and in all cases, angiographic cure was obtained. The treatment approach, challenges encountered, and potential complications of treating such fistulas are described.

ABBREVIATIONS: ADS = artery of Davidoff and Schechter; PCA = posterior cerebral artery; SCA = superior cerebellar artery

The artery of Davidoff and Schechter (ADS) is a dural branch that arises from the posterior cerebral artery and supplies the falcotentorial junction.1 It is usually not identified on angiography except when enlarged in the setting of a dural AVF or meningioma. The impact on treatment of the artery of Davidoff and Schechter supply to a fistula is not well-described in the literature. Our retrospective analysis of patients with dural AVFs treated at the Toronto Western Hospital between 2006 and 2018 identified 6 patients with dural AVFs receiving supply from artery of Davidoff and Schechter (of a total of 173 patients with dural AVFs). All patients were initially treated by transarterial embolization using liquid embolic agents. Three patients required a second endovascular procedure partly due to residual supply from artery of Davidoff and Schechter, and in all cases, angiographic cure was obtained. The treatment approach, challenges encountered, and potential complications of treating such fistulas are described.

Indicates article with supplemental on-line tables.
http://dx.doi.org/10.3174/ajnr.A6380
patients (3 women and 3 men; mean age, 46.5 years) with 6 fistulas demonstrated arterial supply to the AVF from the ADS (3.5% of patients, 3.1% of fistulas) (see On-line Table 1 for individual patient demographics, clinical presentations, and angiographic analysis results). One patient presented with subarachnoid hemorrhage. Four patients were diagnosed with falco-tentorial fistulas (all Cognard type IV); 1 patient, with a parasagittal fistula (Cognard III); and 1 patient, with a superior sagittal sinus fistula (Cognard IIA+b) (Fig 1). Patients 1 and 6 were previously included in our published analysis of AVFs with pial artery supply.

Treatment Planning
Following multidisciplinary discussion among radiosurgery, cerebrovascular neurosurgery, and interventional neuroradiology, the consensus opinion in all 6 cases was for initial endovascular transarterial embolization based on the angiographic features, the extensive vascular structures involved, the deep location, and the perceived natural history.

Endovascular Treatment
All 6 patients initially underwent transarterial embolization using liquid embolic agents (On-line Table 2). Three patients required a second embolization session, in part due to residual supply to the fistula from the ADS. Two patients specifically underwent microcatheter cannulation of the ADS (Figs 2 and 3), and patient 2 underwent embolization via the ADS. All patients demonstrated cure of the fistula on the final DSA (Figs 2E–F and 3E–F). No procedural complications were encountered; in particular, we did not encounter reflux to the PCA.

DISCUSSION
Published Literature
Based on our review of the literature, this is the largest reported series of dural AVFs supplied by the ADS treated by endovascular techniques (the existing literature predominantly being case reports; On-line Table 3). The ADS supply may not be appreciated on angiography due to competitive flow from multiple arterial feeders (Fig 3A, B) and thus may not always have been recognized in large series of tentorial AVFs. Tentorial fistulas constitute <3% of cranial AVFs but are 6 times more likely than nontentorial AVFs to present with hemorrhage, likely a result of the direct cortical venous drainage seen with these AVFs.

Surgical Approach to Falcotentorial AVFs
Most tentorial AVFs carry a high risk of hemorrhage and endovascular approaches can be challenging; thus, some cases may require microsurgical disconnection. The primary surgical goal for tentorial AVFs is the same as for all AVFs—occlusion of...
the proximal portion of the draining vein.21 In principle, the operative strategy is based on an optimal surgical approach with an ideally adapted patient position allowing gravity to retract the brain, open subarachnoid planes, and shorten dissection times to expose and interrupt the draining vein.13,21

Lawton et al,13 in 2008, created a surgical classification of tentorial AVFs based on their experience with 31 cases, differentiating 6 types based on fistula location, dural base, associated sinuses, and direction of venous drainage. Among those 31 patients, arterial supply from branches of the SCA or PCA (including the ADS) was identified in 8 patients.13 Six of these 8 patients had the Galenic subtype, located adjacent to the falcotentorial junction with drainage to the vein of Galen either directly or via cortical veins, requiring a posterior interhemispheric surgical approach after initial transarterial embolization.13 Preoperative embolization is often undertaken to minimize blood loss due to the extensive adjacent arterial and deep venous structures in the operative field.13,22 If a cure can be achieved by endovascular means, this may be preferable to a surgical approach.21

In our overall cohort of 173 patients with intracranial AVFs, only 4 patients had falcotentorial Galenic subtype AVFs13 (2.3%). All 4 patients demonstrated an ADS supply and were included in this study; this finding is consistent with the known high rates of SCA or PCA supply to this AVF subtype.13 All 4 patients underwent endovascular treatment with angiographic cure, and none required surgical intervention.

Endovascular Approaches to Falcotentorial AVFs with ADS Supply

Both transarterial2,3,18 and transvenous23 approaches with the use of liquid embolic agents have been described for the successful treatment of falcotentorial AVFs, with a treatment goal of occlusion of the fistulous point and foot of the draining vein to achieve cure. In our series, all patients initially underwent transarterial embolization using liquid embolics (On-line Table 2), with excellent outcomes, thus eliminating the need for potentially more invasive surgical approaches.

In patient 2, the initial embolization procedure also required microcatheter selection and embolization from the ADS itself (Fig 3) once competitive flow from the middle meningeal artery was excluded. In this instance, a highly distal position was achieved with the microcatheter, allowing deposition of small coils to minimize reflux followed by administration of Onyx

FIG 2. A, Cerebral DSA and endovascular treatment (patient 1) of a falcotentorial dural AVF supplied by the bilateral arteries of Davidoff and Schechter. Anterior-posterior projection of a right vertebral artery injection in the arterial phase shows an enlarged left ADS (black arrow) with early filling of the vein of Galen. Note the mildly enlarged right ADS arising from the right P1–2 junction (white arrow) and the infratentorial venous reflux. B, Axial MIP reconstruction of a 3D rotational angiogram performed via right vertebral artery injection shows the bilateral origins of the ADS from the P1–2 junctions of the posterior cerebral arteries (white arrows). C, Anterior-posterior projection of a microcatheter injection within the right ADS shows early venous filling along the straight and left transverse sinuses. D, Lateral projection of a microcatheter injection within the right ADS shows the course of the vessel along the free edge of the tentorium to the falcotentorial junction, with early venous filling into the vein of Galen. E, Nonsubtracted anterior-posterior projection during right vertebral artery injection after a second-stage transvenous embolization shows no residual early venous filling, with an Onyx cast filling the vein of Galen. F, Spot lateral radiograph of the skull shows the Onyx cast following transarterial and transvenous embolizations.

302 Bhatia Feb 2020 www.ajnr.org
(Covidien, Irvine, California) directly to the fistulous point using a modified pressure-cooker technique. Understanding the complex arterial anatomy and using imaging-based treatment were the keys to a complete, safe, and successful endovascular treatment approach in this case. In patient 1, the right ADS was cannulated with a microcatheter (Fig 2), but a distal position adjacent to the fistula could not be obtained. Our opinion was that successful injection of a liquid embolic agent from this proximal position would require initial formation of a long plug of embolic agent, thus increasing the risk of reflux into the PCA and basilar artery. This patient was subsequently cured by transvenous embolization.

Impact of ADS Supply on the Endovascular Approach

The key to avoiding reflux across the ADS was initial recognition of its supply to the AVF. Given the potential difficulties of identifying the ADS supply when there is competitive flow (Fig 3) and the high likelihood of pial supply from the SCA or PCA to a Galenic-type tentorial AVFs,13 it would be reasonable to assume that most fistulas in this location have potential ADS supply. Therefore, care should be taken to assess

Table: Risk-reduction strategies for endovascular treatment of falcotentorial dural AVFs

Category	Risk-Reduction Strategy	Patients Treated
Anatomic assessment; to identify supply from ADS	Magnified high-frame-rate angiography; 3D rotational angiography with multiplanar reconstructions	1–6
Transarterial embolization; strategies to avoid reflux across ADS	Initial embolization from non-ADS arterial supplies (to reduce competitive flow)	1–6
Embolization directly via ADS; strategies to treat via ADS while avoiding reflux	Close monitoring for linear reflux anteriorly from the vein of Galen (along the expected course of ADS)	1–6
Strategies for residual ADS supply	Direct cannulation of ADS with embolization if distal access achieved (pressure-cooker technique to minimize reflux)	2
	Aborting embolization attempts from ADS if distal access not achieved (insufficient safety margin)	1
	Staged embolization over multiple sessions as required	1, 3, 5
	Transvenous approach (eg, reverse pressure-cooker technique)	1
the ADS supply with magnified, high-frame-rate DSA and MPRs of 3D rotational angiography (Fig 2B) when treating these fistulas. Even if such a supply is not identified, care should still be taken during embolization to assess any linear reflux anteriorly from the vein of Galen and along the expected course of the free tentorial edge, because this could represent reflux back toward the PCA and basilar artery. We have summarized the strategies we used to avoid dangerous reflux across ADS in the Table.

Study Limitations

This study is limited by the small sample size, retrospective design, and the already-discussed difficulties associated with identifying the ADS supply (potentially underestimating the true rate of supply). The requirement for follow-up imaging may have excluded patients with low-grade fistulas (less of a concern in tentorial AVFs, which are usually high-grade).

CONCLUSIONS

Dural AVFs supplied by the ADS are rare and difficult to treat by surgical or endovascular means. Endovascular treatment can be successfully undertaken by incorporating detailed anatomic assessment with risk-reduction strategies. Recognition of the ADS supply to falcotentorial junction fistulas is key to avoiding iatrogenic posterior circulation stroke.

Disclosures: Kartik D. Bhatia—UNRELATED: Employment: University Health Network, Toronto. Comments: Clinical Fellow in interventional neuroradiology. Vitor Mendes Pereira—UNRELATED: Consultancy: Stryker, Medtronic. Philips Healthcare, Balt, Cerenovus. Timo Krings—UNRELATED: Consultancy: Stryker, Medtronic, Penumbra; Royalties: Thieme; Stock/Stock Options: Marblehead. *Money paid to the institution.

REFERENCES

1. Griessenauer CJ, Loukas M, Scott JA, et al. The artery of Davidoff and Schechter: an anatomical study with neurosurgical case correlates. Br J Neurosurg 2013;27:815–18 CrossRef Medline
2. Puri AS. Dural arteriovenous fistula supplied by the artery of Davidoff and Schechter. Radiol Case Rep 2010;5:375 CrossRef Medline
3. Gioppo A, Farago G, Caldiera V, et al. Medial tentorial dural arteriovenous fistula embolization: single experience with embolic liquid polymer SQUID and review of the literature. World Neurosurg 2017;107:1050.e1–57 CrossRef Medline
4. Hart JL, Davagnanan I, Chandrashekar HS, et al. Angiography and selective microcatheter embolization of a falcine meningioma supplied by the artery of Davidoff and Schechter: case report. J Neurosurg 2011;114:710–13 CrossRef Medline
5. Uchino A, Ohno M. Cerebellar hemangioblastoma supplied by the artery of Davidoff and Schechter: a case report. Nihon Igaku Hoshasen Gakkai Zasshi 1986;46:1194–97 CrossRef Medline
6. Martins C, Yasuda A, Campero A, et al. Microsurgical anatomy of the dural arteries. Neurosurgery 2005;56(2 Suppl):211–51; discussion 211–51 Medline
7. Wollschlaeger PB, Wollschlaeger G. An infratentorial meningeal artery [in German]. Radiologe 1965;5:451–52 Medline
8. Weinstein M, Stein R, Pollock J, et al. Meningeal branch of the posterior cerebral artery. Neuroradiology 1974;7:129–31 CrossRef Medline
9. Byrne JV, Garcia M. Tentorial dural fistulas: endovascular management and description of the medial dural-tentorial branch of the superior cerebellar artery. AJNR Am J Neuroradiol 2013;34:1798–804 CrossRef Medline
10. Tayebi Meybodi A, Vigo V, Lawton MT, et al. The artery of Wollschlaeger and Wollschlaeger: an anatomical-clinical illustration. Br J Neurosurg 2017;31:593–95 CrossRef Medline
11. Kraft PR, Liu SS, Agarwala PK, et al. The meningeal branch of the superior cerebellar artery. Br J Neurosurg 2018;32:273–75 CrossRef Medline
12. Umeoka K, Takusakawa Y, Kominami S, et al. The meningeal branches of the superior cerebellar artery: a surgical observation study. J Neurosurg 2016;124:244–47 CrossRef Medline
13. Lawton MT, Sanchez-Mejia RO, Pham D, et al. Tentorial dural arteriovenous fistulas: operative strategies and microsurgical results for six types. Neurosurgery 2008;62:110–24; discussion 124–25 Medline
14. Osada T, Krings T. Intracranial dural arteriovenous fistulas with pial arterial supply. Neurosurgery 2019;84:104–15 CrossRef Medline
15. Signorelli F, Gory B, Maduri R, et al. Intracranial dural arteriovenous fistulas: a review of their current management based on emerging knowledge. J Neurosurg Sci 2017;61:193–206 CrossRef Medline
16. Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg 1995;82:166–79 CrossRef Medline
17. Cognard C, Gobin YP, Pierot L, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 1995;194:671–80 CrossRef Medline
18. Choudhri O, Marks MP. Endovascular treatment of a tentorial dural arteriovenous fistula. Neurosurg Focus 2014;37:1 CrossRef Medline
19. Tomak PR, Cloft HJ, Kaga A, et al. Evolution of the management of tentorial dural arteriovenous malformations. Neurosurgery 2003;52:750–60; discussion 760–62 CrossRef Medline
20. Hiramatsu M, Sugiu K, Hishikawa T, et al. Epidemiology of dural arteriovenous fistula in Japan: analysis of Japanese Registry of Neuroendovascular Therapy (JR-NET2). Neurol Med Chir (Tokyo) 2014;54:63–71 CrossRef Medline
21. Radovanovic I, Wallace M. Cranial dural arteriovenous fistula disconnection. In: Jandial R, McCormick P, Black P, eds. Core Techniques in Operative Neurosurgery. Philadelphia: Elsevier; 2019
22. Zhou LF, Chen L, Song DL, et al. Tentorial dural arteriovenous fistulas. Surg Neurol 2007;67:472–81; discussion 481–82 CrossRef Medline
23. Beet-Furlan A, Dasenbrock HH, Joshi KC, et al. Transarterial and transvenous approaches for embolization of tentorial dural arteriovenous fistula. Neurosurg Focus 2019;46(Suppl 2):V10 CrossRef Medline