Retraction

Retraction: Prediction Method of Innovation and Entrepreneurship Intention of Computer Majors Based on Artificial Intelligence Technology (*J. Phys.: Conf. Ser.* 1852 032011)

Published 9 September 2022

This article has been retracted by IOP Publishing following an allegation that raises concerns this article may have been created, manipulated, and/or sold by a commercial entity. In addition, IOP Publishing has seen no evidence that reliable peer review was conducted on this article, despite the clear standards expected of and communicated to conference organisers.

The authors of the article have been given opportunity to present evidence that they were the original and genuine creators of the work, however at the time of publication of this notice, IOP Publishing has not received any response. IOP Publishing has analysed the article and agrees there are enough indicators to cause serious doubts over the legitimacy of the work and agree this article should be retracted. The authors are encouraged to contact IOP Publishing Limited if they have any comments on this retraction.

Retraction published: 9 September 2022

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
Prediction Method of Innovation and Entrepreneurship Intention of Computer Majors Based on Artificial Intelligence Technology

Jinbang Zhang 1*, Yanping Fu 2

1Bozhou vocational and technical college, Bozhou City, Anhui Province, China, 236800
2Primary School Department of Bozhou Hongxue school middle school, Bozhou City, Anhui Province, China, 236800

*Corresponding author e-mail: apaqizhang1@bzy.edu.cn

Abstract. With the rapid development of artificial intelligence technology, the cycle of transforming scientific and technological achievements into actual productivity is getting shorter and shorter, and technological progress and innovation and entrepreneurship have become decisive factors in economic and social development. However, the current stage of innovation and entrepreneurship education in my country has not been integrated into computer majors, which has reduced the effectiveness of innovation and entrepreneurship for computer majors. In this regard, the purpose of this article is to study the method of predicting innovation and entrepreneurial intentions of computer majors based on artificial intelligence technology. This article first understands and analyzes the current situation of innovation and entrepreneurship education in computer majors through questionnaires, visits and analysis, and analyzes the problems faced by innovation and entrepreneurship education in computer majors at this stage. After empirical analysis of the collected data, the experimental results show that the theoretical model based on artificial intelligence technology can effectively analyze the influencing factors of college students' innovation and entrepreneurship intentions, and plan and guide them, and the degree of recognition of college students' innovation and entrepreneurship has also been obtained. An improvement of about 20%, which has important guiding significance for the innovation and entrepreneurship of computer majors.

Keywords: Artificial Intelligence Technology, Computer Major, Innovation and Entrepreneurship, Intention Prediction

1. Introduction
With the rapid development of artificial intelligence technology, the proposal and exploration of innovation and entrepreneurship education has become an inevitable trend and important symbol of the globalization of China's higher education[1]. It is the basic responsibility of higher education in the new era and is the development of knowledge economy and society. Inevitably require [2]. However,
because innovation and entrepreneurship education has not been integrated into the overall teaching system at this stage in our country, it has not formed an organic connection with the development of subject professional education[3], which makes innovation and entrepreneurship education separate from subject and professional, and computer majors lose themselves. Professional advantage, the intention of future innovation and entrepreneurship is vague [4-5]. Therefore, a good prediction of the intention of innovation and entrepreneurship not only meets the needs of computer students for self-development and self-improvement, but also enables high-quality computer talents and innovative talents created by higher education to make contributions in the computer industry and contribute to the stability and prosperity of society. Greater contribution [6-7].

At present, entrepreneurship education has become a worldwide higher education concept. Many countries have taken entrepreneurship education as a strategy for cultivating challenging talents in the future, and actively deployed the implementation plan of entrepreneurship education at the stage of higher education and basic education [8]. In foreign countries, Armaghani founded the Youth Business Club to help students with entrepreneurial aspirations to set up companies, conduct market research, select products, price products, determine sales plans, establish accounts, and calculate company profits and losses. To a certain extent, it gave birth to innovation and entrepreneurship [9]. In China, Yang Jie believes that innovation education is the foundation and starting point of entrepreneurship education, and entrepreneurship education is a logical extension of innovation education in a certain sense [10].

Based on artificial intelligence technology, this paper studies the method of predicting innovation and entrepreneurship intention of computer majors. This article first understands and analyzes the current situation of innovation and entrepreneurship education in computer majors through questionnaires, visits and analysis, and analyzes the problems faced by innovation and entrepreneurship education in computer majors at this stage. Then, according to the relationship between the variables of innovation and entrepreneurship and the interaction mechanism between the dimensions of the variables, this paper uses artificial intelligence technology to propose a theoretical model, and uses SPSS software and Amos software to test the theoretical hypothesis of this paper. The theoretical model proposed in this paper can effectively analyze the innovation and entrepreneurial intentions of computer majors and provide them with reliable relevant guidance.

2. Technical Research on the Prediction Method of Innovation and Entrepreneurship Intention of Computer Majors Based on Artificial Intelligence Technology

2.1. Computer Professional Innovation and Entrepreneurship Intention Prediction Model Based on Artificial Intelligence Technology

The vigorous development of science and technology and the advent of the era of artificial intelligence have also made it possible to use more advanced and advanced information technology and intelligent prediction of innovation and entrepreneurial intentions. Artificial intelligence contains a hidden layer of feedforward neural networks that can usually approximate any nonlinear function with arbitrary precision. This feature also makes artificial intelligence technology commonly used to predict complex nonlinear systems. In addition, compared with traditional models, the superior learning ability of artificial intelligence for dynamic systems also makes it a more powerful tool for studying innovation and entrepreneurial intentions.

In the general iterative method of intention analysis, multi-step estimation is an iteration based on precise one-step estimation. However, even if the one-step forecasting model is very accurate, repeating the iterative process of one-step forecasting will accumulate forecast errors, resulting in poor forecasting performance. Proved the effectiveness of the prediction model of innovation and entrepreneurship intention. Creatively presents a new artificial intelligence model that enables the model to make autonomous predictions without any prior information on parameters, so that decision makers can more efficiently deal with the problem of innovation and entrepreneurial intention prediction. The related algorithm is as follows:
(1) Artificial intelligence PSO algorithm

In order to better solve the three-factor coordination problem of the fitness function in the planning method and give full play to the advantages of the PSO algorithm in solving combinatorial optimization problems, it is proposed to use the PSO algorithm to solve the autonomous optimization problem, which will be more helpful to improve the system The autonomy of control. The fitness function of the optimization algorithm is:

\[G = \frac{|F - W| \times f_2}{f_1 \times f_3} \] (1)

Where \(F \) represents a three-dimensional vector, namely \(F = (f_1, f_2, f_3) \), \(W \) represents the three-dimensional space of the particle swarm, namely \(W = (w_1, w_2, w_3) \), \(|F - W| \) represents the modulus of the vector \(F - W \). We can see that the fitness function \(G \) is directly related to the weight coefficients \(w_1, w_2, \) and \(w_3 \) to be optimized. As long as a set of \(f_1, f_2, \) and \(f_3 \) values are given, an \(F \) can be determined, thereby determining a \(G \). The purpose of PSO algorithm optimization is to find the weight coefficients \(w_1, w_2 \) and \(w_3 \) when the fitness function \(G \) takes the minimum value.

(2) Fitness function

The fitness function is the standard to measure the quality of each individual. Obviously, the cost of the small spanning tree with satisfaction constraints corresponding to each binary code is the best standard to measure the quality of the individual. To this end, for each binary code \(\alpha \), first define a cost function:

\[F(\alpha) = \sum_{e \in t} t(e) \] (2)

Among them, \(t \) represents the minimum spanning tree, \(e \) represents the edge of the tree, so the fitness function \(\text{Fit}(\alpha) \) can be defined as:

\[\text{Fit}(\alpha) = \max_{a \in \alpha} - F(a) \] (3)

Among them, \(\max \) is a large number that has nothing to do with the individual, and it guarantees that \(\text{Fit}(a) \) is a positive number.

(3) Mathematical model

In the multicast routing considered in this paper, a data packet is transmitted from a source node to a group of destination nodes. The multicast data stream is transmitted from the source node \(s \) to all destination nodes via the multicast tree \(\mathfrak{t} \), and the data packet is at the branch of the tree after daylight saving Forward it. among them#. The degree constraint of the node specifies the number of data packets copied by each bamboo node. The total cost of the multicast tree is defined as:

\[\text{cost}(T) = \sum_{e \in t} \text{cost}(e) \] (4)

At the same time, the degree constraint of each node \(i \) in the tree is \(k \). We are interested in finding the minimum cost multicast tree that satisfies the degree constraint, that is, consider:

\[\min \sum_{e \in t} \text{cost}(e) \] (5)

Among them, \(d \) represents the actual degree of node \(i \) in the multicast tree \(T \), and \(k \) represents the degree constraint of each node. Since each node in the network should at least meet the ability to forward information, the degree constraint of each node Should be greater than or equal to 2.

2.2. Innovation and Entrepreneurship Intention

Intention refers to an individual's positive commitment to take a certain behavior in the future according to the actual situation. It prompts the individual to focus on a specific object and its realization method. Entrepreneurship intention is to introduce the concept of intention into the entrepreneurial field. Entrepreneurship intention is before entrepreneurial action, and it is a reliable indicator to predict whether an individual will take entrepreneurial behavior. Some specific influencing factors are as follows:
(1) Personality characteristics
Personality is formed when individual attitudes reach a stable state after a period of time. Personality is a concentrated expression of attitude. Personality is a variable of individual characteristics with subjective initiative and has a certain period of stability. It can be used as a factor to predict a specific behavior of an individual, and personality factors can reflect the tendency of an individual to actively influence the surrounding environment.

(2) Cognitive characteristics
This factor is an important internal perception factor in the entrepreneurial field, and self-efficacy is a part of social cognitive theory. The theory of self-efficacy is specifically applied to the field of entrepreneurship. The theory believes that individual entrepreneurs will make subjective judgments on their entrepreneurial skills and abilities based on past experience and actual conditions at the current stage, thereby forming a kind of success in entrepreneurship. Self-confidence.

3. Experimental Research on the Prediction Method of Innovation and Entrepreneurship Intention of Computer Majors Based on Artificial Intelligence Technology

3.1. Experimental Data
The results of the survey are directly affected by the subjects of the survey, so choose schools and students as much as possible when choosing the subjects of research. This article selects four colleges and universities majoring in computer science as the research objects, and considers the security of university data. The letters are substituted as: University A, University B, University C, University D. And adopt a random sampling method, randomly enter the open student study room to distribute questionnaires, try to control the survey subjects from different grades, majors, gender, etc., to ensure that the samples can fully meet the needs of normal distribution. Each university issued 100 questionnaires, among which 90 questionnaires were collected from University A, 90 from University B, 85 from University C, and 95 from University D. A total of 400 questionnaires were distributed, 360 were returned, 40 were invalid questionnaires, and 350 valid questionnaires.

3.2. Experimental Process
In this paper, a total of 350 valid sample data are collected. First, the reliability of each variable in the research theoretical model is tested to determine the reliability and validity of each scale. Specifically, the three main variables studied in this paper are innovation and entrepreneurship education, entrepreneurial skills, and entrepreneurial intentions. The theoretical model is used to test the reliability and validity of the three variables, so as to do a good job of follow-up research. When drawing on the scale, this article deletes the items of the scale according to actual needs. In order to ensure the rigor of the research, this article believes that it is necessary to test the reliability and validity. In order to ensure the smoothness of the research, this research uses basic information such as school, gender, grade, and major as control variables.

4. Experimental Analysis of the Prediction Method of Innovation and Entrepreneurship Intention of Computer Majors Based on Artificial Intelligence Technology

4.1. Computer Majors’ Views on Innovation and Entrepreneurship
In this paper, in order to study the relevant views of college computer students on innovation and entrepreneurship, the data collected in the questionnaire survey is statistically analyzed and compared. As shown in Table 1 and Figure 1.
Table 1. Computer majors' views on innovation and entrepreneurship

	Know well	Has plans	Strong entrepreneurial awareness	Have the conditions to start a business
A University	55.4%	39.6%	26.8%	27.6%
B University	50.1%	33.6%	25.8%	26.9%
C University	47.5%	40.5%	23.4%	25.6%
D University	54.7%	41.8%	29.7%	30.2%

Figure 1. Computer majors' views on innovation and entrepreneurship

It can be seen from the survey data that only about 50% of the interviewees have some or very good knowledge about innovation and entrepreneurship education, and those who do not understand account for half of the interviewees, which shows that a considerable number of students do not know What innovation and entrepreneurship is or did not form the concept of innovation and entrepreneurship in consciousness. However, innovation and entrepreneurship are considered to be very important.

4.2. Effect of the Theoretical Model of Innovation and Entrepreneurship Intention Prediction

In order to further verify the changes in the innovation and entrepreneurship intentions of college computer students, this paper adopts a random sampling method to randomly select 1 student from each surveyed college computer student. According to the data in the questionnaire survey, it is targeted It is necessary to use the theoretical model of prediction of innovation and entrepreneurship intention to conduct analysis. And judge the changes in their views on innovation and entrepreneurship based on the students' subsequent responses, visualize them, and perform curve fitting according to the mean values. As shown in Table 2 and Figure 2.

Table 2. Changes of Undergraduates' Intentions of Innovation

School in which	After 10 days	After 20 days	After 30 days	After 40 days	
Student 1	A University	56.8%	60.3%	65.9%	73.3%
Student 2	B University	54.6%	58.5%	60.2%	63.1%
Student 3	C University	55.1%	63.1%	69.5%	78.4%
Figure 2. Changes of Undergraduates' Intentions of Innovation

This paper conducts statistics on selected four computer majors in order to observe the changes in their recognition of innovation and entrepreneurship and the changes in their intentions for innovation and entrepreneurship. This is because this article uses artificial intelligence technology, uses innovative and entrepreneurial intention prediction theoretical models, makes reasonable designs and predictions according to the actual situation of each college student, and combines the past innovation and entrepreneurship of computer majors to formulate a targeted innovation and entrepreneurship plan.

In order to give guidance on innovation and entrepreneurship intentions.

5. Conclusions

Based on artificial intelligence technology, this paper studies the method of predicting innovation and entrepreneurship intention of computer majors. This article first understands and analyzes the current situation of innovation and entrepreneurship education for computer majors through questionnaire surveys, interviews and analysis, and analyzes the current problems of innovation and entrepreneurship education for computer majors. Then systematically combed and summarized previous scholars' research results on innovation and entrepreneurship education, entrepreneurial skills and entrepreneurial intentions, looked for the relationship between variables and the interaction mechanism between variable dimensions, and used artificial intelligence technology to put forward the theory of innovation and entrepreneurship intention prediction model. This theoretical model of innovation and entrepreneurship intention prediction can effectively predict and analyze innovation and entrepreneurship intentions, and help computer majors in entrepreneurship guidance, which has important guiding significance.

References

[1] Xu J., Liu F. Research on Entrepreneurship Policy of College Students Based on Quantitative Analysis of Text Data Mining[J]. Journal of Physics: Conference Series, 2020,
[2] Liang Q, Nan Y, Coppola G, et al. Weakly Supervised Biomedical Image Segmentation by Reiterative Learning[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(3):1205-1214.

[3] Li Miaoran, Zhai Mingyue, Cao Yujie. Research on the Impact of Innovation and Entrepreneurship education Reform on College Students’ Employment and entrepreneurship[J]. China University Student Employment (Theoretical Edition), 2019, 000(007):55-59.

[4] Tong Xiangbin. Research on the Development of Innovation and Entrepreneurship Education Promoted by Science, Technology and Finance in Colleges and Universities[J]. Joint Journal of Tianjin Vocational Colleges, 2019, 021(003):107-110,121.

[5] Song Yanzhao, Zhan Yue, Qiao Qian, et al. Research on the Cultivation of Innovation and Entrepreneurship by College Students' Participation in Scientific Research[J]. Research and Practice on Innovation and Entrepreneurship, 2018, 001(009):72-73.

[6] Zhao Feng. Study of Innovation and Entrepreneurship Education in Universities——Based on the Theory of “Driving-Pressure-State-Impact-Response”[J]. Journal of National Academy of Educational Administration, 2018, 000(006):69-74.

[7] Lan Guohui, Chen Yashu. Research on the evaluation of College Students' ability of innovation and entrepreneurship under the background of "Internet +"[J]. Journal of Anhui University of Science and Technology (Social Sciences Edition), 2017, 019(005):94-99.

[8] Chen Wanru. Analysis on Chinese National Policy of "Mass Entrepreneurship and Innovation" Based on Content Analysis Method[J]. Journal of Shanxi Institute of Youth Management, 2018, 031(003):74-77.

[9] Armaghani D J, Mohamad E T, Momeni E, et al. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young's modulus: a study on Main Range granite[J]. Bulletin of Engineering Geology & the Environment, 2015, 74(4):1301-1319.

[10] Yang Jie. Research on Perfecting College Students' Innovation and Entrepreneurship Education System in the Era of Mass Entrepreneurship and Innovation[J]. Journal of Jiaying University, 2017, 035(001):87-91.