Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review)

YAN-JUN ZHONG1,2, LI-HUA SHAO1,2 and YAN LI1,2

1Department of Oncology, Zhongnan Hospital of Wuhan University; 2Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, P.R. China

Received October 25, 2012; Accepted December 3, 2012

DOI: 10.3892/ijo.2012.1754

Abstract. Doxorubicin (DOX) is one of the most effective cytotoxic anticancer drugs used for the treatment of hematological malignancies, as well as a broad range of solid tumors. However, the clinical applications of this drug have long been limited due to its severe dose-dependent toxicities. Therefore, DOX derivatives and analogs have been developed to address this issue. A type of DOX prodrug, cleaved by cathepsin B (Cat B), which is highly upregulated in malignant tumors and premalignant lesions, has been developed to achieve a higher DOX concentration in tumor tissue and a lower concentration in normal tissue, so as to enhance the efficacy and reduce toxicity to normal cells. In this review, we focused on Cat B-cleavable DOX prodrugs and discussed the efficacy of these prodrugs, demonstrated by preclinical and clinical developments.

Contents

1. Introduction
2. Prodrug strategies in cancer treatment
3. Cathepsin B (Cat B) as a prodrug-activating enzyme
4. Cat B-cleavable DOX prodrugs
5. Conclusions

1. Introduction

Chemotherapy is a major therapeutic approach for the treatment of cancer. Doxorubicin (DOX; Fig. 1), an anthracycline isolated from Streptomyces strains, is one of the most effective anticancer drugs used for the treatment of hematological malignancies and a broad range of solid tumors, including lymphoma, Kaposi’s sarcoma, bone tumors, as well as stomach, breast and ovarian cancers (1,2). DOX in its salt form is readily distributed into almost all tissues and intracellular compartments via passive diffusion or active transport following intravenous administration, resulting in indiscriminate toxic effects on all cells exposed to it. Therefore, the clinical application of DOX is limited by its dose-dependent side-effects, such as bone marrow toxicity, cardiotoxicity, nephrotoxicity and hepatotoxicity.

To reduce the side-effects of this drug, significant efforts have been made to develop DOX derivatives and analogs with less toxic effects and improved pharmacological properties. Several strategies have been investigated in clinical and preclinical trials, including various methods of administration, combinations with other chemotherapeutic drugs [e.g., adriamycin, bleomycin, vinblastine and dacarbazine (ABVD), cyclophosphamide, hydroxydaunomycin, oncovin and prednisone (CHOP)] (3), the addition of antioxidant nutrients (4) and cardioprotectors (5-7), the development of liposomes (8) and nanoparticles (9), the effects of acute exercise (10) and the development of prodrugs (11-13). In this review, we focused on the DOX prodrug strategies.

2. Prodrug strategies in cancer treatment

Prodrugs are derivatives of drugs which remain inactive in their prototype form but are metabolized in the body to generate the active drugs at the site of action. They are particularly useful in the development of novel antitumor chemotherapeutic drugs,
leading to reduced toxicity, improved specificity and the avoidance of multidrug resistance (14,15). The use of prodrugs for targeted therapy is usually based on tumor-associated cell surface markers, such as antigens or receptors, whose expression differs between normal and cancer cells (16,17). Several prodrug strategies have been pursued, including active and passive targeting approaches with antibodies, serum proteins, liposomes and synthetic polymers (18-22). There have been some classic and clinically successful prodrugs, such as capcitabine, an enzyme-activated prodrug, which is converted into 5-fluorouridine or 5-fluoro-2-deoxyuridine in tumor cells to achieve targeted cytotoxicity (23).

Prodrugs can be divided into high- and low-molecular weight drugs in terms of molecular weight (Mw). The former are internalized by passive or active endocytosis and ultimately become localized in the lysosomal components of cells, while the latter usually enter cells mainly by diffusion (24). The Mw and biodistribution of drugs have important impacts on antitumor efficacy. Macromolecular drugs accumulate in tumor tissues due to the enhanced permeability and retention effect (25-27). A Mw below the renal threshold (~50,000 g/mol) is rapidly lost from the circulation; therefore, macromolecular weight drugs may have increased intravascular half-lives, resulting in an increased therapeutic efficacy (27). N-(2-hydroxypropyl) methacrylamide (HPMA), known as one of the most widely used prototypic polymeric drug carriers, was first used to synthesize polymeric drugs in the 1970s, due to its non-immunogenic and non-toxic properties and long circulating half-life (28,29). It has been demonstrated that an HPMA-copolymer Mw of 200,000 to 600,000 g/mol is desirable for the efficient passive targeting of solid tumors (30). Prodrugs bearing HPMA have been developed in preclinical studies and include caplostatin (31,32), P-GDM (33,34) and P-HYD-IgG (35), as well as in phase I/II clinical studies and included HPMA copolymer-Gly-Phe-Leu-Gly-doxorubicin (PK1) (36-39), galactosamine-targeted poly(HPMA)-doxorubicin (PK2) (40-42), PK3 (36), PNU166945 (43), AP5346 (44-48) and AP5280 (49-51).

3. Cathepsin B (Cat B) as a prodrug-activating enzyme

Some tumor-associated enzymes, such as proteases, glucuronidas or carboxylesterases, expressed intra- or extracellularly in cancer cells, can release or activate prodrugs. Cat B, a lysosomal cysteine protease in normal cells and tissues, is considered to be one of the best examples of intracellular proteases. It is highly upregulated in malignant tumors and premalignant lesions at the mRNA and protein levels (52). Cat B is localized in perinuclear vesicles, presumably lysosomes in normal cells. However, in tumor cells and oncogene-transformed cells, Cat B is localized in perinuclear vesicles and vesicles throughout the cytoplasm and at the cell periphery (53). Pericellular Cat B participates in degrading processes associated with tumor proliferation, invasion and metastasis. Moreover, exposure to DOX can induce a time- and dose-dependent upregulation of Cat B expression at the mRNA and protein levels (5).

Cat B cleaves Leu, Arg-Arg, Ala-Leu, Phe-Arg, Phe-Lys, Ala-Phe-Lys, Gly-Leu-Phe-Gly, Gly-Phe-Leu-Gly and Ala-Leu-Ala-Leu (18,54-58). There are several low- and high-Mw DOX prodrugs that can be activated by Cat B. Furthermore, DOX immunoconjugates, in which DOX is linked to a carcinoma-specific antibody through Cat B-cleavable oligopeptides, have also been designed (59). All of these conjugates have shown rapid and almost quantitative DOX release in the presence of Cat B. The rate of DOX release depends on the length and structure of the spacer. The tetrapeptide, Gly-Phe-Leu-Gly, has been found to be one of the most suitable spacers. In this regard, the steric interaction between the peptide substrate and Cat B has a significant impact on the release of DOX from prodrugs (60). Therefore, to decrease the steric interaction, it is necessary to integrate a self-immolative spacer, such as para-aminobenzyloxycarbonyl (PABC) between the drug and the oligopeptide substrate.

4. Cat B-cleavable DOX prodrugs

Examples of Cat B-cleavable DOX prodrugs are illustrated in Fig. 2 and summarized in Table I.

DOX prodrugs containing the tetrapeptide Gly-Phe-Leu-Gly. The tetrapeptide, Gly-Phe-Leu-Gly, has been proven to be the most effective with respect to both plasma stability and rapid hydrolysis in the presence of Cat B. Therefore, many DOX prodrugs are based on this tetrapeptide.

PK1. PK1 [FCE28068; (GFLG)-ADR; DOX-HPMA; doxorubicin-HPMA copolymer conjugate; HPMA-doxorubicin, 8 wt% DOX; Fig. 3A], a polymeric prodrug of Mw ~30,000 g/mol, was the first macromolecular prodrug to enter clinical trials, and has reached phase II clinical trials.

Preclinical studies using tumor cells, including L1210 leukemia (61-64), A2780 and DOX-resistant A2780/ADR ovarian carcinoma cells, have shown that PK1 can partially avoid the ATP-driven P-glycoprotein (Pgp) efflux pump compared with free DOX (65-67). The IC_{50} doses of free DOX and PK1 account for the differences in the mechanisms of cellular uptake (65). In preclinical studies using animal models, including B16F10 melanoma, L1210 leukemia, M5076, LS174T human colorectal xenografts (64) and sensitive and resistant human ovarian carcinoma models (68), PK1 has shown enhanced efficacy.
The release of DOX from PK1 in vitro and in vivo using HPLC analysis has shown only a single peak, representing DOX (64). PK1 does not release DOX in the plasma and the covalently-bound drug is biologically inactive following intravenous administration.

Phase I clinical studies on patients with solid tumors, including colorectal, breast, biliary tract, pancreatic, urinary tract, head/neck, non-small cell lung (NSCL), mesothelioma and stomach cancers, have shown that the maximum tolerated dose (MTD) for PK1 is 320 mg/m², which is 4- to 5-fold higher than the usual clinical dose of free DOX (60 -80 mg/m²) (69). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38).

Table I. List of Cat B-cleavable DOX prodrugs.

Name	Biodegradable spacer	Mw (g/mol)	DOX proportion	Current status	MTD	Refs.
DOX	None	543.5	100%	Clinical	60-80 mg/m²	(69)
PK1	Gly-Phe-Leu-Gly	30,000	8 (wt%)	Phase II	320 mg/m²	(36,38,39,61-71)
PK2	Gly-Phe-Leu-Gly	27,000	8 (wt%)	Phase I/II	160 mg/m²	(10,11,40,41,72-76)
P-DOX	Gly-Phe-Leu-Gly	22,000-1,230,000	NA	Preclinical	ND	26,77,78
P-(GFLG)-DOX-Ab	Gly-Phe-Leu-Gly	270,000	3.3 (wt%)	Preclinical	ND	(59,79-81)
P-(GFLG-DOX)-GalN	Gly-Phe-Leu-Gly	25,000/46,000	5.6/1.5 (wt%)	Preclinical	ND	(59,82,90)
P-(GFLG-DOX)-Lac	Gly-Phe-Leu-Gly	20,000-32,000	1.4 mol%	Preclinical	ND	(90)
P-(GFLG-DOX)-TriGal	Gly-Phe-Leu-Gly	20,000-32,000	2.1 mol%	Preclinical	ND	(90)
Ma-GFLG-DOX	Gly-Phe-Leu-Gly	NA	NA	Preclinical	ND	(91,92)
D2-GFLG-P(DOX³)	Gly-Phe-Leu-Gly	215,000	9.2 (wt%)	Preclinical	ND	(91,93)
HMW1D	Gly-Phe-Leu-Gly	115,000	7.4 (wt%)	Preclinical	ND	(93)
TET1D	Gly-Phe-Leu-Gly	19,600	10.5 (wt%)	Preclinical	ND	(93)
EMC-Arg-Arg-Ala-Leu-Ala-Leu-DOX	Ala-Leu-Ala-Leu	NA	NA	Preclinical	ND	(94-96)
Ac-Phe-Lys-PABC-DOX	Phe-Lys	1045.5	52.0 (wt%)	Preclinical	ND	(12)
EMC-Phe-Lys-PABC-DOX	Phe-Lys	1133	50.0 (wt%)	Preclinical	ND	(2,18,104)
PG-Phe-Lys-DOX	Phe-Lys	1207.8	45.0 (wt%)	Preclinical	ND	(18,41,105)
Z-Phe-Lys-PABC-DOX	Phe-Lys	1074.0	50.6 (wt%)	Preclinical	ND	(104)
BR96-SC-Phe-Lys	Phe-Lys	NA	NA	Preclinical	ND	(104)

Mw, molecular weight; DOX, doxorubicin; MTD, maximum tolerated dose; NA, not available; ND, not done.

The release of DOX from PK1 in vitro and in vivo using HPLC analysis has shown only a single peak, representing DOX (64). PK1 does not release DOX in the plasma and the covalently-bound drug is biologically inactive following intravenous administration.

Phase I clinical studies on patients with solid tumors, including colorectal, breast, biliary tract, pancreatic, urinary tract, head/neck, non-small cell lung (NSCL), mesothelioma and stomach cancers, have shown that the maximum tolerated dose (MTD) for PK1 is 320 mg/m², which is 4- to 5-fold higher than the usual clinical dose of free DOX (60 -80 mg/m²) (69). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39). Phase II studies using PK1 have shown decreased toxicity with evident activity in breast, NSCL and colorectal cancers. Furthermore, SPECT and γ-camera imaging with 123I-labelled drugs have shown obvious tumor accumulation in two metastatic breast cancers (38). PK1 decreases non-specific organ toxicities by several folds and allows the active drug to be delivered intracellularly, while maintaining antitumor activity (36,39).
the liver at 24 h. Moreover, SPECT analysis showed that the radioactivity concentration was 3- to 4-fold higher in peri-tumoral liver tissue than in the tumor tissue itself (40). Phase I/II trials have shown that the MTD of PK2 is 160 mg/m² (DOX equivalent) and several hepatocellular carcinoma patients have displayed partial responses and/or stable disease (41). γ-camera imaging and CT scanning have revealed that 15-20% of total PK2 is retained in the liver and is mostly concentrated in normal liver tissue (normal versus tumor tissue, 5:1), suggesting that the galactosamine-targeted polymer is mainly delivered to normal regions of the liver due to the increased ASGPR expression in the normal liver (75) and the phagocytosis by Kupffer cells with 'galactose particle' receptor expression (76). Despite this disparity in PK2 distribution, the drug concentration in tumor tissue was still 12- to 50-fold higher than it would have been with the administration of free DOX alone.

HPMA copolymer-doxorubicin conjugates (P-DOX).

P-DOX conjugates (Fig. 3C) (77,78) contain the oligopeptide Gly-Phe-Leu-Gly and the N²,N⁵-bis(N-methacryloyl-glycyl-phenylalanyl-leucyl-glycyl) ornithine cross-linker, which permits the synthesis of P-DOX conjugates with various Mws, from 22 to 1230 kDa. The clearance rate of P-DOX from the blood is Mw-dependent and is much slower than that of free DOX (26,77). The therapeutic efficacy has been shown to increase as the Mw of P-DOX increases in nude mice bearing subcutaneous OVCAR-3 xenografts. The low residual concentration of P-DOX in tissues (apart from tumors) helps to avoid potential long-term side-effects (77). The toxicity against hematopoietic precursors and normal lymphocytes of inbred mice is considerably decreased (78).

HPMA copolymer-DOX-OV-TL16 [P-(GFLG)-DOX-Ab].
P-(GFLG)-DOX-Ab (270,000 g/mol, 3.3 wt% DOX; Fig. 4A) is recognized by the OA3 antigen, which plays a role in membrane transport and/or signal transduction for its multimembrane-spanning domain structure (59,79-81). The P-(GFLG)-DOX-Ab is rapidly absorbed by OVCAR-3 cells and transported into their lysosomal compartment. DOX is subsequently released from the conjugate at the site with a degradable GFLG spacer, diffused via the lysosomal membrane and accumulates in the cell nuclei (80). Preliminary data on the relative retention of DOX in MDR (A2780/AD) cells have indicated a higher intracellular DOX concentration after incubation with HPMA copolymer-DOX conjugate compared with free DOX (59).

HPMA copolymer-Gly-Phe-Lys-Gly-DOX-N-acylated galactosamine [P-(GFLG)-DOX-GalN].
P-(GFLG)-DOX-GalN (25,000 g/mol; Fig. 4B), contains N-acylated galactosamine (GalN), which was designed to be recognized by ASGPR in HepG2 human hepatocellular carcinoma cells (59,82) and individual members of the galectin family (e.g., galectin-3) in human colon adenocarcinoma (83,84). Galectin-3 is expressed in normal tissues and highly expressed in neoplastic tissues (85-87); although the exact opposite has been shown to occur (88,89). In SW-480 and SW-620 cells, the presence of
Figure 3. General chemical structures of (A) PK1, (B) PK2 and (C) P-DOX, in which DOX is complexed with (2-hydroxypropyl) methacrylamide (HPMA), by the tetrapeptide linker, Gly-Phe-Leu-Gly (GFLG).

Figure 4. General chemical structures of (A) P-(GFLG)-DOX-Ab, (B) P-(GFLG)-DOX-GalN, (C) P-(GFLG)-DOX-lac and (D) P-(GFLG)-DOX-TriGal, in which DOX is conjugated with HPMA, by the tetrapeptide linker, Gly-Phe-Leu-Gly (GFLG).
with the cysteine-34 position of D2-GFLG-P-DOX. Ac-Phe-Lys-PABC-DOX (PDOX).

Under mild acidic conditions or in the presence of Cat B (rich pH 7.4 (model of the bloodstream), but releases DOX either in the tumor microenvironment). D2-GFLG-P-DOX has been shown to be at least 10-fold higher than that of the non-glycosylated P-(GFLG)-DOX product in Colo-205, SW-480 and SW-620 colon adenocarcinoma cells (90). This suggests the participation of other galectins, such as galectin-1, -4, -7 or -8, which can also be biorecognized by galectin-3 on the surface of colon adenocarcinoma cells. The cytotoxicity of P-(GFLG)-DOX-GalN targeting.

In vitro study using T-splenocytes and mouse EL-4 T cell lymphoma cells showed that the toxicity of TET1D is much higher compared with that of similar classic conjugates and an in vivo study using EL4 T cell lymphoma mice C57BL/10 showed that the antitumor activity was also significantly increased. An in vitro study showed that TET1D can be cleaved by Cat B; however, Cat B is not essential in the release of DOX, for it also contains a pH-sensitive spacer which is stable under physiological conditions (pH 7.4, e.g., blood) and hydrolytically degradable in a mild acidic environment (pH 5.0, e.g., endosome) (93).

**DOX prodrugs containing the tetrapeptide, Ala-Leu-Ala-Leu 6-Maleimidocaproyl acid-Arg-Arg-Ala-Leu-Leu-DOX (ECM-Arg-Arg-Ala-Leu-Leu-DOX), ECM-Arg-Arg-Ala-Leu-Leu-DOX bears maleimide (94), which can rapidly and selectively react in situ with the cysteine-34 position of circulating albumin after intravenous administration and release the drug at the tumor site (95,96). Albumin is a promising drug carrier due to its passive accumulation in solid tumors, which have a high metabolic turnover, angiogenesis, hypervasculature, defective vascular architecture and impaired lymphatic drainage (97). Albumin has non-toxic, non-immunogenic, biocompatible and biodegradable properties (98) and has promising drug carrier due to its passive accumulation in solid tumors, which have a high metabolic turnover, angiogenesis, hypervasculature, defective vascular architecture and impaired lymphatic drainage (97). Albumin has non-toxic, non-immunogenic, biocompatible and biodegradable properties (98) and has demonstrated preferential tumor uptake in various tumor xenograft animal models (99). The antitumor efficacy of ECM-Arg-Arg-Ala-Leu-Leu-DOX has been shown to be comparable to that of free DOX in a M-3366 breast cancer xenograft model at equivalent doses (94). Moreover, the albumin-binding DOX prodrug, DOX-EMCH (INNO-206), has been examined in clinical trials (100,101).

**DOX prodrugs containing the dipeptide, Phe-Lys Ac-Phe-Lys-PABC-DOX. Ac-Phe-Lys-PABC-DOX (PDOX, 1045.5 g/mol, 52.0% DOX, Fig. 6A) contains the dipeptide,
Figure 6. Structure of (A) Ac-Phe-Lys-PABC-DOX, (B) EMC-Phe-Lys-PABC-DOX, (C) Z-Phe-Lys-PABC-DOX and (D) BR96-SC-Phe-Lys-PABC-DOX, in which DOX is linked to the self-immolative spacer, para-aminobenzyloxycarbonyl (PABC) and the dipeptide, Phe-Lys (FL).

Figure 7. Cat B-cleavable prodrug Ac-Phe-Lys-PABC-DOX (PDOX) enhances treatment efficacy and reduces toxicity in treating gastric cancer with peritoneal carcinomatosis [modified from a previous study (12)]. (A) Effects of DOX and PDOX on a peritoneal carcinomatosis model are shown with the detailed experimental peritoneal carcinomatosis index (ePCI) score; both DOX and PDOX significantly reduced the ePCI. PDOX reduced general toxicity and toxicity to the liver, kidney and the heart in particular. (D) Nude mice in the PDOX group had similar body weights to those in the control group throughout the study period, while nude mice in the DOX group showed a progressive decrease in body weight after 4 doses of intraperitoneal injection. Effects of PDOX and DOX on major liver and renal function parameters are shown in (B) ALT, (C) AST, (E) BUN and (F) Cr. PDOX significantly decreased hepatotoxicity compared with DOX in terms of AST. PDOX significantly decreased myocardial toxicity compared with DOX by reducing (G) CK, (H) CK-MB and (I) LDH. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Cr, creatinine; CK, creatine kinase; CK-MB, creatine kinase-MB isoenzyme; LDH, lactate dehydrogenase.
Phe-Lys, which is specific for Cat B and the self-immolative spacer, PABC (12,102-104). An in vivo study using a nude mice model of gastric cancer with peritoneal carcinomatosis showed that, compared with free DOX, PDOX (16 mg/kg, twice that of DOX in terms of equal molecular content) produced better antitumor effects in terms of experimental peritoneal carcinomatosis index (ePCI) (Fig. 7A) and body weight (Fig. 7D), and reduced liver (Fig. 7B and C), kidney (Fig. 7E and F) and heart (Fig. 7G-I) toxicities (12).

\[\text{t-maleimidocaproic acid-Phe-Lys-PABC-DOX (EMC-Phe-Lys-PABC-DOX). EMC-Phe-Lys-PABC-DOX (Fig. 6B) (18,104) has exhibited dramatic differences in antitumor activity between in vitro and in vivo studies. An in vitro cytotoxicity study using the pancreatic tumor cell line, AsPC1 LN, and the melanoma cancer cell line, MDA-MB-231 LN, showed that DOX was ~6-fold more active than the prodrug. However, an in vivo study using a breast cancer xenograft nude mice model of MDA-MB-435 cells showed that the prodrug exhibited superior antitumor activity (tumor size, 15% of that in nude mice treated with the vehicle) compared to DOX (tumor size, 49% of that in nude mice treated with the vehicle) in an equitoxic comparison (2).} \]

\[\text{PG-Phe-Lys-DOX. Hyperbranched polyglycerol-Phe-Lys-DOX (PG-Phe-Lys-DOX, 45% DOX) (18,41,105), contains the dipeptide, Phe-Lys, and hyperbranched polyglycerol. The drug release of the conjugates suggested an effective cleavage of PG-Phe-Lys-DOX and release of DOX in the presence of Cat B. The IC}_50 \text{ of PG-Phe-Lys-DOX in the breast cancer cell line, MDA-MB-231, and the pancreatic carcinoma cell line, AsPC1, was 1.10±0.4 and 2.4±0.6 µM, respectively, both of which were lower than that of free DOX (105).} \]

\[\text{Z-Phe-Lys-PABC-DOX. Benzylxycarbonyl-Phe-Lys-PABC-DOX (Z-Phe-Lys-PABC-DOX; Fig. 6C), is stable in human plasma and rapidly releases DOX in the presence of Cat B at 37˚C, pH 5.0 (half-life, 8 min), which is 30-fold faster than that of the Val-Cit conjugate. On the other hand, the release rate is significantly faster than Z-Phe-Lys-DOX, suggesting that a self immolative spacer, such as PABC, is helpful for DOX release from conjugates (104).} \]

\[\text{BR96-SC-Phe-Lys-PABC-DOX. BR96-SC-Phe-Lys-PABC-DOX (Fig. 6D) contains the chimeric monoclonal antibody, BR96, that binds specifically to a Lewis^o-related, tumor-associated antigen expressed on the surface of many human carcinoma cells. An in vitro study using human carcinoma cell lines expressing varying levels of the BR96 antigen showed that the cytotoxicity of BR96-Phe-Lys-PABC-DOX was directly related to the level of antigen expression on the cell membrane: the higher level of BR96 antigen, the higher the sensitivity to BR96-Phe-Lys-PABC-DOX. The cytotoxicity of BR96-Phe-Lys-PABC-DOX in high BR96 antigen-expressing cell lines is higher than that of the non-binding IgG-SC-Phe-Lys-PABC-DOX conjugate (>220-fold), confirming its BR96 antigen specificity (104).} \]

\[\text{Other DOX prodrugs containing dipeptides. Dubowich et al (104) and de Groot et al (106) synthesized a series of other DOX prodrugs containing the dipeptides, Phe-Lys, Ala-Lys or Phe-Arg, including Z-Phe-Lys-PABC-DOX-HCl, MC-Phe-Lys(MMT)-PABC-DOX, MC-Phe-Lys-PABC-DOX-Ci, CHCO-H, Z-Phe-Lys(alloc)-DOX, Z-Phe-Lys-DoxHCl, Z-Ala-Lys(alloc)-PABC-DOX, Z-Ala-Lys-PABC-DOX-HCl, Z-Phe-Arg(NO}_3\text{-PABC-DOX, Z-Phe-Arg(Ts)-PABC-DOX, Fmoc-Phe-Lys(Aloc)-PABC-DOX and H-Phe-Lys(Aloc)-PABC-DOX. However, data regarding their antitumor activity are lacking.} \]

\[\text{5. Conclusions} \]

Over the past few decades, significant efforts have been made to develop antitumor prodrugs with increased efficacy and decreased toxicity. Numerous DOX prodrugs have been synthesized by structure modification strategies. Cat B-cleavable DOX prodrugs release the free drugs in the presence of Cat B and in a subacidic environment. A number of in vitro cancer cell studies and in vivo tumor xenograft studies have demonstrated Cat B-cleavable DOX prodrugs to be less toxic in vitro and more effective in vivo, demonstrating the role of Cat B.

However, there remain many challenges and questions. The majority of the studies mentioned in this review are in a very early preclinical stage with little information on physicochemical properties, cytotoxicity and antitumor efficacy in tumor cells and xenografts. The subcellular distribution of the prodrugs, the free drugs released and the antitumor mechanisms remain unclear. Further studies are warranted and should focus on preclinical and clinical evaluation of existing prodrugs, rather than synthesizing novel drug candidates in this field.

\[\text{Acknowledgements} \]

This study was supported by the State Key Research Project on Infectious Diseases (2012ZX10002012-012) and the National Natural Science Foundation of China (no. 81171396) and National University Students Innovation Training Project of China (101048639).

\[\text{References} \]

1. Gianni L, Grasselli G, Cresta S, Locatelli A, Vigano L and Minotti G: Anthracyclines. Cancer Chemother Biol Response Modif 21: 29-40, 2003.

2. Abu Ajaj K, Graeser R, Fichtner I and Kratz F: In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol 64: 413-418, 2009.

3. Ogura M: Adriaemic (doxorubicin). Gan To Kagaku Ryoho 28: 1311-1338, 2001 (In Japanese).

4. Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P and Ramirez-Tortosa MC: New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol 48: 1425-1438, 2010.

5. Herman EH, Ferrans VJ, Jordan W and Ardalab B: Reduction of chronic daunorubicin cardiotoxicity by ICRF-187 in rabbits. Res Commun Chem Pathol Pharmacol 31: 85-97, 1981.

6. Wexler LH, Andrich MP, Venzon D, et al: Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol 14: 362-372, 1996.

7. Lipshtultz SE: Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. J Clin Oncol 14: 328-331, 1996.

8. Cattel L, Ceruti M and Dosio F: From conventional to stealth prodrugs, rather than synthesizing novel drug candidates in this field.
10. Ascensao A, Lumini-Oliveira J, Machado NG, et al: Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Am J Physiol Heart Circ Physiol 291: H1791-1797, 2006.

11. Yeung TK, Hopewell JW, Simmonds RH, et al: Reduced cardiotoxicity of doxorubicin given in the form of N-(2-hydroxypropyl) methacrylamide conjugates: and experimental study in the rat. Cancer Chemother Pharmacol 29: 105-111, 1991.

12. Shao LH, Liu SP, Hou JX, et al: Cathepsin B cleavable novel prostaglandin A2-Poly-Lys-PAB-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: an experimental study. Cancer 118: 2986-2996, 2011.

13. Kratz F, Warnecke A, Schmid B, Chung DE and Gitzel M: Prodrugs of anthra[cyclines in cancer chemotherapy. Curr Med Chem 13: 477-572, 2006.

14. Muller MB, Keck ME, Binder EB, et al: ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28: 199-200, 2007.

15. Gottesman MM, Fojo T and Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2: 48-58, 2002.

16. Lu Y, Yang J and Sega E: Issues related to targeted delivery of prodrugs and conjugates. AAPS J 8: E466-E478, 2006.

17. Juillerat-Jeanneret L and Schmitt F: Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27: 574-590, 2007.

18. Calderon M, Graesser R, Kratz F and Haag R: Development of enzymatically cleavable prodrugs derived from dendrimeric polyglycerol. Bioorg Med Chem Lett 19: 3725-3728, 2009.

19. Haag and Kratz F: Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45: 1198-1215, 2006.

20. Duncan R: Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6: 688-701, 2006.

21. Vicent MJ, Dieudonne L, Carbajo RJ and Pineda-Lucena A: Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 5: 593-614, 2008.

22. Knick KL: Materials science. Polymer therapeutics. Science 317: 182-183, 2007.

23. Schilsky RL: Pharmacology and clinical status of capecitabine. Oncology 14: 1297-1306; discussion 1309-1311, 2000.

24. Basu SK: Receptor-mediated endocytosis of macromolecular conjugates in selective drug delivery. Biochem Pharmacol 40: 1941-1946, 1990.

25. Noguchi Y, Wu J, Duncan R, Strohal M, Ulbrich K, Aitaike T and Maeda H: Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89: 307-314, 1998.

26. Shiah JJ, Sun Y, Peterson CM and Kopecek J: Biodistribution of mesochlorin e(6) and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. J Control Release 61: 199-207, 2000.

27. Bogdanov A Jr, Wright SC, Marcoces EM, Bogdanova A, Martin C, Petherick P and Weissleder R: A long-circulating co-polymer in ovarian carcinoma OVCAR-3 xenografts. J Control Release 10: 953-963, 1990.

28. Juneau NE and DiMarchi TD: Isolation of diaminoclohexane-platinum tumor-targeting drug delivery system. Clin Cancer Res 12: 315-323, 2006.

29. Rice JR, Gerberich JL, Nowotnik DP and Howell SB: Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminochloro-

30. POD: Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp 70: 263-276, 2003.

31. Lin X, Zhang Q, Rice JR, Stewart DR, Nowotnik AP and Howell SB: Improved targeting of platinum chemothterapeutics. The antitumour activity of the HPMA-co-polymer platinum agent AP5280 in murine tumour models. Eur J Cancer 40: 291-297, 2004.

32. Podgorski I and Sloane BF: Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp 70: 263-276, 2003.

33. Ishiyama N, Nori A, Malugin A, Kasuya Y, Kopeckova P and Kopecek J: Free and N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res 63: 7876-7882, 2003.

34. Etrych T, Mrkvans R, Rihova B and Ulbrich K: Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release 122: 31-38, 2007.

35. Vasey PA, Kaye SB, Morrison R, et al: Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemo-

36. Vasey PA, Kaye SB, Morrison R, et al: Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemo-

37. Seymour LW, Ferry DR, Kerr DJ, et al: Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 34: 1629-1636, 2009.

38. Thomson AH, Vasey PA, Murray LS, Cassidy J, Fraider A, Frigerio E and Tewes C: Population pharmacokinetics in phase I drug development: a first step of PKI in patients with solid tumours. Br J Cancer 81: 99-109, 1999.

39. Juhan PJ, Seymour LW, Ferry DR, et al: Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosomes. J Control Release 57: 281-299, 1999.

40. Seymour LW, Ferry DR, Anderson D, et al: Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. Cancer Chemother Pharmacol 60: 61697, 2007.

41. Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohal M and Duncan R: N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br J Cancer 63: 859-866, 1991.

42. Meier MT, Woywodt JM, ten Broek Huink W, Schellens JH, et al: Phase I clinical and pharmacokinetic study of PNU166045, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12: 315-323, 2001.

43. Reveen LW, Beijnen JH, Zweegman KE, Zoetekouw SG and Van der Schuit SC: Tumor necrosis factor in human tumors. Cancer Chemother Pharmacol 29: 105-111, 1991.

44. Rice JR, Gerberich JL, Nowotnik DP and Howell SB: Preclinical efficacy and pharmacokinetics of AP5346, a novel diamino-

45. Clohosey SE, et al: Population pharmacokinetics in late solid tumor patients. Cancer Chemother Pharmacol 60: 523-533, 2007.

46. Van der Schuit SC, Nuijen B, Sood P, Thurmond KB II, Stewart DR, Rice JR and Beijnen JH: Pharmaceutical development, quality control, stability and compatibility of a parenteral lipophilized formulation of the investigational polymer-conju-

47. gated platinum antineoplastic agent AP5346. Pharmazie 61: 835-844, 2006.

48. Sood P, Thurmond KB II, Jacob JE, Waller KL, Silva GO, Stewart DR and Nowotnik DP: Synthesis and characterization of AP5346, a novel polymer-linked diaminochloro-

49. Platinum copolymer. J Controlled Release 122: 31-38, 2006.

50. Podgorski I and Sloane BF: Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp 70: 263-276, 2003.
53. Calkins CC, Sameni M, Koblisti J, Sloane BF and Moin K: Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. J Histochem Cytochem 46: 745-751, 1998.

54. Kovar M, Strolah J, Etrchy T, Ulbrich K and Rihova B: Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug Chem 13: 235-242, 2002.

55. Thanou M and Duncan R: Polymer-protein and polymer-drug conjugates in cancer therapy. Curr Opin Investig Drugs 4: 701-709, 2003.

56. Mai J, Waisman DM and Sloane BF: Cell surface complex of an N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugate: in vitro and in vivo studies. Proc Natl Acad Sci USA 79: 626-629, 1982.

57. Omelyanenko V, Kopeckova P, Gentry C and Kopecek J: Targetable HPMA copolymer-adradiamycin conjugates. Recognition, internalization and subcellular fate. J Control Release 53: 25-37, 1998.

58. Carl PL, Chakravarty PK and Katzenellenbogen JA: A novel connector linkage applicable in prodrug design. J Med Chem 24: 479-480, 2000.

59. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free doxorubicin or HPMA copolymer-bound mesochlorine e6 does not induce multidrug resistance in a solid tumor model of ovarian carcinoma. Int J Cancer 86: 108-117, 2000.

60. Thanou M, Kopeckova P, Minko T and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. I. Effect of the method of synthesis on the binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. J Drug Target 3: 385-395, 1996.

61. ZHONG et al.: CATHEPSIN B-CLEAVABLE DOXORUBICIN PRODRUGS

62. Thanou M, Kopeckova P, Minko T and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer 75: 600-608, 1998.

63. O'Grady J and Sinzinger H: Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a Gamma scintigraphy of a 125I-labelled N-(2-hydroxypropyl)methacrylamide copolymer-drug conjugate: in vivo and/or liver macrophages. Exp Cell Res 165: 133-148, 1999.

64. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

65. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

66. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

67. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

68. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

69. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.

70. Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorine e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials 21: 2203-2210, 2000.
90. David A, Kopeckova P, Minko T, Rubinstein A and Kopecek J: Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer-doxorubicin conjugates to human colon cancer cells. Eur J Cancer 40: 148-157, 2004.

91. Etrych T, Strohalm J, Chytíl P, Cernoch P, Starovoytova L, Pechar M and Ulbrich K: Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur J Pharm Sci 42: 527-539, 2011.

92. Dvorák M, Kopeckova P and Kopecek J: High-molecular weight HPMA copolymer-adriamycin conjugates. J Control Release 60: 321-332, 1999.

93. Etrych T, Jelinkova M, Rihova B and Ulbrich K: New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release 73: 89-102, 2001.

94. Schmid B, Chung DE, Warnecke A, Fichtner I and Kratz F: Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem 18: 702-716, 2007.

95. Kratz F, Warnecke A, Scheuermann K, et al: Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem 45: 5523-5533, 2002.

96. Warnecke A and Kratz F: Maleimide-oligo(ethylene glycol) derivatives of camptothecin as albumin-binding prodrugs: synthesis and antitumor efficacy. Bioconjug Chem 14: 377-387, 2003.

97. Kratz F and Beyer U: Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv 5: 281-299, 1998.

98. Elzoghby AO, Samy WM and Elgindy NA: Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157: 168-182, 2012.

99. Kratz F: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132: 171-183, 2008.

100. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Kratz F and Walker UA: The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 120: 927-934, 2007.

101. Unger C, Haring B, Medinger M, Drevs J, Steinbild S, Kratz F and Mross K: Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res 13: 4858-4866, 2007.

102. Dubowchik GM and Firestone RA: Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett 8: 3341-3346, 1998.

103. Dubowchik GM, Mosure K, Kniep J and Firestone RA: Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett 8: 3347-3352, 1998.

104. Dubowchik GM, Firestone RA, Padilla L, et al: Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem 13: 855-869, 2002.

105. Calderón M, Quadir MA, Strumia M and Haag R: Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92: 1242-1251, 2010.

106. De Groot FM, Broxterman HJ, Adams HP, et al: Design, synthesis and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther 1: 901-911, 2002.