Proteinuric Kidney Diseases: A Podocyte’s Slit Diaphragm and Cytoskeleton Approach

Samuel Mon-Wei Yu 1*, Pitchaphon Nissaisorakarn 1, Irma Husain 2 and Belinda Jim 1,3

1 Department of Medicine, Jacobi Medical Center, Bronx, NY, United States, 2 Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States, 3 Renal Division, Jacobi Medical Center, Bronx, NY, United States

Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.

Keywords: cytoskeleton, nephrin, podocin, podocyte, slit diaphragm, synaptopodin, Rho/small GTPases, TRPC5/6

INTRODUCTION

The kidney is dubbed the organ that filters out toxins and reabsorbs essential electrolytes from the blood to maintain homeostasis in our bodies. Podocytes, along with endothelial cells in the capillaries and glomerular basement membrane (GBM), form this filtration apparatus. The podocyte is a highly-differentiated cell that is composed of several structures: a cell body, primary process, secondary, and tertiary foot processes (FP) (1–7). Primary processes and foot processes (FPs) are highly supported by a complex cytoskeletal architecture, which in of itself is intertwined by a network of microtubules, intermediate filaments, and actin (8, 9). This complex network (microtubules, intermediate filaments, and actin) not only accommodate podocytes to the constantly changing environment, they are crucial hubs of signal transduction within podocytes (10). Furthermore, the neighboring FPs form an interdigitating structure lining outside of the capillary walls (11) and are connected by a specialized cell junction called the slit diaphragm (SD) (12–15). The SD and the negatively charged surface on FP restrict protein from filtering through. Either a dysregulated podocyte cytoskeleton or the loss of integrity of the SD can result in podocyte foot process effacement (FPE), the most common pathological finding in podocyte diseases. Proteinuria is, therefore, the pathognomonic phenomenon in podocytopathy (16). Research on podocyte pathophysiology is crucial due to their function and their lack of ability to regenerate,
despite more recent data supporting its potential regenerative capacity (17). In this review, we will summarize our current understanding of podocyte signaling pathways via the SD proteins and the actin cytoskeleton and how they cause proteinuric diseases. We will also discuss the latest updates in using the podocyte as a target for drug development.

Slit Diaphragm Proteins and Disease Implications-Nephrin, Podocin, and TRPC

In the past two decades, an increasing number of disease-causing SD proteins has been identified (5). During kidney development, the SD initially incorporates the features of cell-cell junction which eventually matures into a zipper-like structure by molecular cross-linking via proteins such as nephrin, podocin, and Neph1. Other SD-related proteins may either participate in junctional formation (Nck, CD2AP) or not (TRPC). It is now known that the SD not only acts as a filter to prevent proteinuria (18), but serves as a complex signaling hub to divert different chemical and mechanical stimuli to podocytes (19). We will highlight the best-studied proteins on the SD with clinical significance: nephrin, podocin, and transient receptor potential canonical (TRPC) proteins (Figure 1).

Nephrin

Most of our understanding of nephrin stems from the successful cloning from patients with Congenital Nephrotic Syndrome of the Finnish type (CNF) (20). Nephrin, a 180-kDa protein encoded by NPHS1, consists of a cytoplasmic C-terminus, a short transmembrane domain, and an extracellular fibronectin type III motif attached with eight distal IgG-like motifs (19, 21). It acts as an intracellular signaling scaffold (22–24) and a podocyte cytoskeleton modulator (25–27). Consistent with the high mortality in children born with CNF, global nephrin-null mice died soon after birth. The technical difficulties of studying its biological function (28, 29) were overcome by the discovery of podocyte-specific promoters (30–33) and the use of short hairpin RNA (34). Of note, although nephrin-null mice are not compatible with life, more than 80–90% successful knockdown of nephrin only resulted in mild proteinuria unless second renal injuries were implemented, suggesting more pivotal role of nephrin in prenatal slit diaphragm development (34).

Most of the nephrin signaling occurs via the cytoplasmic tail that is enriched by the highly-conserved tyrosine residues (35) which are phosphorylated by a series of Src-family kinases such as Fyn (23, 26, 36–38). Verma et al. (26) and Jones et al. (27) established the concept of a nephrin-Nck complex as an adaptor after nephrin phosphorylation to regulate actin reorganization/polymerization (39–46), in concert with other signaling pathways such as PI3K/Akt/Rac1 (25, 47, 48).

To date, derangement of nephrin can be largely divided into four mechanisms: (1) decreased phosphorylation, (2) increased endocytosis, (3) loss of function due to genetic mutations, and (4) downregulation at both the mRNA and protein level. This loss of the nephrin-led signaling cascade eventually causes the proteinuric phenotype (27, 49, 50). Nephrin dephosphorylation can be induced by angiotensin II (AngII) which results in the diminished interaction with c-Abl and Akt inactivation, pathways that promote cell survival and growth (51); in addition, it can be caused by the c-maf inducing protein (c-mip) which inhibits interactions between Fyn and the cytoskeletal regulator N-WASP as well as between the adaptor protein Nck and nephrin, resulting in actin cytoskeleton disorganization and foot process effacement (52). Decreased nephrin phosphorylation caused by phosphatases were also observed in various models (53), such as protein tyrosine phosphatase 1B (PTP1B) in rat with puromycin aminonucleoside nephrosis (PAN) (54) and Src homology region 2 domain-containing phosphatase-1 (SHP-1) in human podocytes with hyperglycemia (55). The blockade of phosphatases on nephrin may thus be a therapeutic target in proteinuric diseases and has shown positive results in murine models (lipopolysaccharide[LPS]-induced proteinuria) (56, 57). Nephrin endocytosis through β-arrestin can be stimulated by AngII (58) and hyperglycemia, the latter effect occurs via the interaction of β-arrestin2 with PKC-α which can be abrogated by knocking down PKC-α (59, 60). Interestingly, the loss of phosphorylation of nephrin increases nephrin endocytosis via β-arrestin2 (61), suggesting that nephrin is under a location-specific regulation. Apart from the original mutation described in CNF, there are presently almost 200 disease-associated NPHS1 mutations that have been described (62–66). The phenotypic variability of these mutations has shown us that the nephrotic syndrome manifests not only in the first 90 days of life, but can occur much later on in life as well (67). Furthermore, compound heterozygous or homozygous NPHS1 mutations have also been identified in families with adults with focal segmental glomerulosclerosis (FSGS) (65). In addition to mutations, single nucleotide polymorphisms (SNPs) in NPHS1 and WT-1 have also been identified to confer risk end-stage kidney disease in African Americans (68) and FSGS (69), respectively. Nephrin expression is further regulated by transcription factors such as WT1 (70, 71), NF-κB (72), Sp1 (specificity protein 1) (73). Furthermore, studies have demonstrated that Wilms’ tumor 1 (WT1) not only functions as a pivotal gene in kidney development, it also regulates other important SD proteins by binding to the proximal promoters, such as Nphs2, Synaptopodin, and Nck2 (74, 75). Downregulation of nephrin has been observed in many human glomerular diseases by detecting protein and mRNA levels, such as minimal change disease (76), membranous nephropathy, membranoproliferative glomerulonephritis, IgA nephropathy, lupus nephritis (77), diabetic kidney disease (DKD) (78, 79), and preeclampsia (80). Detection of urinary nephrin protein (nephrinuria) or mRNA has already been studied as an early biomarker of disease in DKD, glomerulonephritis, and preeclampsia (81–87) with variable success.

Podocin

After successful cloning of NPHS1, a new mutated gene NPHS2, which encodes for podocin on chromosome 1q25-31, was mapped in patients with autosomal-recessive steroid-resistant nephrotic syndrome (SRNS) (88, 89). Patients’ clinical presentations can range from early-onset nephrotic syndrome (typically from 3 months to 6 years of life), FSGS, to end-stage kidney disease (ESKD) by the first decade of life (90, 91). Podocin
Endocytosis and recycling of proteins on slit diaphragm is controlled by serial phosphorylation and associated proteins such as nephrin and Neph1, another SD protein with a similar homology (PHB) domain of podocin does not participate in hairpin formation or mediate podocin endocytosis, though it may regulate the activity of the TRPC6 channel and act as a mechanic sensor in podocytes. Among the several types of mutations, nonsense and missense mutations of NPHS2 fail to recruit nephrin into raft domains. Other types of nephrotic syndrome (NS), including familial and sporadic steroid resistant nephrotic syndrome (SRNS) (28–40% and 6–19%, respectively) (90, 91, 104–107), adult-onset FSGS (108–110), and non-diabetic ESKD in African Americans (111) have also found to exhibit NPHS2 mutations. The type of mutation, whether heterozygous or homozygous, appears to correlate with individual roles, particularly in different genetic backgrounds (120). Lastly, podocin downregulation has also been observed in lupus nephritis (121), pediatric nephrotic syndrome (122), and FSGS (123), but not in preeclampsia (80).

TRPC

Transient receptor potential canonical (TRPC) channels are a group of seven families of non-selective cationic channels (TRPC1 to TRPC7) and largely divided into TRPC3/6/7 and TRPC1/4/5 based on sequence alignment and functionality (124). Among them, TRPC6 and TRPC5 have been identified in podocytes and have been widely researched in the past decade. The impetus for this research started after a gain-of-function mutation was identified in a family of autosomal FSGS (125, 126). Like other TRPCs, TRPC6 can be activated by phospholipase C (PLC)-dependent pathway via the generation of diacylglycerol (DAG) and inositol 1,4,5-phosphate (IP3), resulting in the subsequent Ca2+ influx into podocytes. Winn et al. demonstrated that a gain-of-function mutation in TRPC6 (proline to glutamine substitution at position 112) enhanced calcium signaling via AngII stimulation and cell surface expression of TRPC6 in HEK 293 cells (126), which ultimately causes eventual podocyte damage.
apoptosis and detachment (127). Recently, a TRPC6 loss-of-function type of mutation was also found to be associated with human FSGS (128), thus providing evidence that reduced physiological TRPC6-mediated calcium entry may also cause disease. In addition to FSGS, TRPC6 has been reported to affect DKD by increasing TRPC6 expression mediated by AngII as seen in streptozotocin-induced diabetic rats; this suggests a role for TRPC6 in causing podocyteopenia and proteinuria (129, 130). TRPC5 and TRPC6 both affect the actin cytoskeleton differently, i.e., upon activation through AngII, TRPC6 couples with Rho A (see section on Rho/Small GTPases) while TRPC5 couples with Rac1, resulting in stress fiber vs. motile phenotype in the podocyte, respectively. TRPC5-mediated signals have been considered as "disease-type" leading to cytoskeletal collapse (131). The function of TRPC5, however, has recently been put in question. There is evidence that deletion of TRPC5, either genetically or pharmacologically, results in decreased glomerular injury when exposed to LPS or protamine sulfate (PS) (132). Recently, Zhou et al. showed that inhibition of TRPC5 with a small molecule inhibitor (AC1903) prevented podocyte loss in a rat model of AT1R overexpression (model of FSGS) and halted the disease progression in the Dahl salt-sensitive rat model of hypertensive kidney disease (133). These findings, however, were contradicted by another study suggesting that the overexpression TRPC5 in mice does not cause proteinuria nor aggravate LPS-induced albuminuria (134). Nonetheless, these conflicting findings further complicate our current understanding of TRPC channellopathy on podocytes, and in fact, echo some of the contradictory results in GTPases studies in this field (see below).

Podocyte Signaling at Actin Cytoskeletons- Rho/Small GTPases, and Synaptopodin

Derangements in the actin cytoskeleton of podocytes have been widely reported to cause proteinuric kidney diseases. Not only does it maintain the structural integrity of the podocytes, but it also mediates complex signal cascades, endocytic pathways, and interactions outside of podocytes such as the GBM (10). Here we will focus on Rho-family of small GTPases and synaptopodin.

GTPases
The Rho-family of small GTPases such as RhoA, Cdc42, and Rac1 regulate actin cytoskeleton remodeling by acting as molecular switches to coordinate signaling by either promoting cell motility or inhibiting cell migration (135). Each GTPase cycles between an active GTP-bound state and an inactive GDP-bound state. Upon activation, Rho GTPases are able to bind to a range of effector proteins to regulate downstream signaling pathways. Rho-dependent pathways are activated by AngII, platelet-derived growth factor, endothelin-1 (136), and promote contractile phenotype with the formation of stress fibers. On the contrary, Cdc42/Rac1 activation leads to lamellipodia/filopodia formation, an unstable phenotype of podocytes which causes FPE (137). Although initially it seemed that RhoA activation with Cdc42/Rac1 suppression was beneficial to the podocyte, studies in the past decade have shown conflicting results. For example, transgenic mice with constitutive activation of RhoA in podocytes resulted in proteinuria with FPE, podocyte apoptosis, decreasing nephrin expression (138) and histologic features of FSGS (139). Inhibiting RhoA signaling was thus shown to mitigate podocyte injury murine chronic kidney disease model (5/6 nephrectomy) and rats with PAN (140, 141). However, constitutive expression of dominant-negative RhoA in mice also caused proteinuria and loss of stress fiber formation in mouse podocytes (138), while preserving RhoA signaling in mice with LPS-induced proteinuria via synaptopodin (142) showed anti-proteinuric effects (143). Thus, the balance of RhoA signaling is imperative for podocyte, and it is likely to be dependent on the specific disease state. In the Cdc42/Rac1 system, podocyte-specific Rac1 knockout mice were shown to exhibit normal podocyte morphology and protection from PS induced-podocyte injury (144). However, these Rac1 knockout mice were also found to exacerbate the injury from chronic hypertensive glomerulosclerosis. Activation of Rac1 has shown to attenuate podocyte injury and expedite recovery in vitro (145, 146), yet hyperactivation of Rac1 has been linked to diseased podocytes in a dose-dependent manner (147–149). For Cdc42, podocyte-specific deletion in mice led to early-onset severe proteinuria, FPE, glomerulosclerosis (144), and congenital nephropathy (150). Similarly, reduced Cdc42 expression resulted in mouse podocyte apoptosis due to downregulated Yes-Associated Protein (YAP) signaling (151, 152) and promoted filopodia formation. Decreased activity of both Cdc42 and Rac1 via FATTI mutation has shown to cause human and mouse glomerulotubular nephropathy (153). These results collectively suggest Rac1 signaling might be dispensable for podocyte development as compared with Cdc42 (150), but whether Rac1 deletion is beneficial or detrimental, again, depends on the type of podocyte injury.

Mutations in human genes that interfere with Rho GTPase signaling have been identified in nephrotic syndrome (154), FSGS (155), and DKD (156). For example, mutations in ARHGFDIA, which exists in a complex with Rho GTPases, increased levels of Rac1 and Cdc42 (but not RhoA) have been found in individuals with SRNS (Table 1) (154). The human disease mutation in Rac1-GTPase-activating protein (Rac1-GAP) ARHGAP24, which results in elevated Rac1 and CDC42 levels, was also found to be associated with a family with FSGS (155). Hence, we are only beginning to learn more about the significance of these subclasses of the Rho-family of small GTPases as they appear to have divergent roles in specific disease states.

Synaptopodin

Synaptopodin is a proline-rich actin-binding protein highly expressed in dynamic cells such as telencephalic dendrites and podocytes. In podocytes, synaptopodin was found to interact with α-actinin-4, an important protein to cross-link between actin filaments (189). Loss of synaptopodin led to delayed stress fiber formation and development of aberrant nonpolarized filopodia. Although the ultrastructure of podocytes in synaptopodin-deficient (synpo^{−/−}) mice appeared to be normal, these mice showed impaired recovery from both PS- and LPS-induced kidney injury (190). Synaptopodin was later revealed to block Smurf1-mediated ubiquitination of
TABLE 1 | Genes of slit diaphragm and actin cytoskeleton that are associated with proteinuric kidney diseases.

Diabetic nephropathy	Focal segmental glomerulosclerosis	Membranous nephropathy	Minimal change disease
Slit diaphragm			
• TRPC6 (130)	• NPHS1 (178, 157–159)	• NPHS1 (170)	• NPHS1 (76, 172, 173)
• NPHS1 (159)	• NPHS2 (119, 174)		
Actin cytoskeleton			
• Rac1 (175)	• ACTN4 (176–178)	• C-MIP (185)	• KANK (187)
• PTEN (156)	• INF2 (179–181)	• CRK1/2 (186)	• CFLI (188)
	• FAT1 (153)		• C-MIP (185)
	• MYO1E (182)		
	• ARHGAP24 (155)		
	• ARGHDIA (154)		
	• Rhod1 (183)		
	• YAP (184)		

FPE, foot process effacement; TRPC, Transient receptor potential canonical; PTEN, phosphatase and tensin homolog; CD2AP, CD2-associated protein; PLCE1, phospholipase C epsilon 1; ACTN4, alpha-actinin 4; INF2, inverted formin 2; FAT1, fat cadherin 1; MYO1E, myosin IE; ARHGAP24, Rho GTPase activating protein 24; ARGHDIA, Rho-GDP dissociation inhibitor alpha; YAP, yes-associated protein; C-MIP, c-maf-inducing protein; KANK, KN motif and ankyrin repeat domain; CFLI, coflin-1.

RhoA to preserve stress fibers formation by increasing RhoA expression and activation (142). By contrast, synaptopodin inhibits binding of Cdc42 and Mena to IRSp53 and therefore protects aberrant filopodia formation in mouse podocytes (191). Synaptopodin is phosphorylated by PKA/CaMKII and binds 14-3-3 to promote Rho signaling (143). Under TRPC5-mediated calcium influx, synaptopodin is degraded by calcineurin-mediated phosphorylation and promotes Rac1 signaling and ROS formation (192). Cyclosporine A, a calcineurin inhibitor used in immunosuppression, was found to have an anti-proteinuric effect due to blocking calcineurin-mediated dephosphorylation of synaptopodin (143). Additionally, Yu et al. demonstrated that synaptopodin affects TRPC6 localization and function which suggests that decreased synaptopodin levels under diseased conditions will increase TRPC6-mediated calcium influx and induce podocyte apoptosis (193). Clinically, reduced expression of synaptopodin has been observed in FSGS (176, 194), HIV-associated nephropathy (HIVAN) (194–196), IgA nephropathy (197), and idiopathic nephrotic syndrome of childhood (198). Synaptopodin levels have been shown to correlate with disease severity and response to treatment in human FSGS and minimal change disease (MCD) (199, 200). Urinary synaptopodin protein and mRNA excretion have also been used to assess the decline of renal function and certain glomerular diseases (201, 202).

Clinical Implications

Advances in our understanding of podocyte biology have been a great asset to elucidate underlying pathophysiology in proteinuric kidney diseases. DKD, MCD, FSGS, and membranous nephropathy (MN) were all found to have dysfunction at the SD or actin cytoskeletal system (Figure 2). Although the therapeutic options targeted to podocytes are limited, the concept of restoring SD proteins, stabilizing the cytoskeleton, or stimulating podocyte regeneration is showing promise.

Renin-Angiotensin-Aldosterone System Inhibition

Inhibiting AngII has been shown to be beneficial in several models of glomerular diseases. In DKD, there is a large body of evidence that shows inhibition of AngII results in the reduction in proteinuria and the slowing of the rate glomerular filtration rate (GFR) decline in humans. In addition to the well-known hemodynamic effects of inhibiting the renin-angiotensin-aldosterone system (RAAS) (215), both angiotensin-converting enzyme inhibitor (ACEI) and AngII type 1 receptor blocker (ARB) have shown to significantly increase nephrin expression in murine diabetic models (157, 216). A similar effect was also observed in rats models by adriamycin-induced nephropathy and PAN (217, 218). Since AngII has a direct TRPC6-mediated calcium signaling (219, 220) which results in ROS expression (221) and proteinurria (222), inhibiting TRPC6 indirectly via AngII blockade is a feasible strategy in proteinuric diseases such as FSGS.

As described above, the concept of podocyte’s limited capacity of regeneration has been challenged by novel genetic labeling techniques to trace possible podocyte progenitors. The exact origin of the detected newly-developed podocytes is still under debate; to name a few, glomerular parietal epithelial cells (PEC) and cells of renin lineage (CoRL) have been most investigated to date. Surprisingly, RAAS inhibition has been also shown to increase podocyte numbers either from PEC (223, 224) or CoRL (225, 226), suggesting its unique property and potential therapeutic effect.

Glucocorticoid

Glucocorticoid (GC) is the backbone and initial therapy for several nephrotic syndrome including FSGS (209) and MCD (227). In addition to the effects on immunomodulatory cells, cultured murine podocyte was shown to carry glucocorticoid receptor (GR) complex and respond to GC in a dose- and time-dependent manners at both transcriptional and posttranscriptional levels (228). In an immortalized human
podocyte model, the expression of nephrin and other podocyte genes was upregulated after dexamethasone treatment (229, 230). GC was also shown to help to stabilize the actin cytoskeleton system (231), and to increase actin stress fiber formation via overexpression of Krüppel-like factor 15, a downstream target of genes was upregulated after dexamethasone treatment (6). Activation of nephrin-Nck pathway (232). Lastly, in murine model of experimental FSGS (via cytotoxic anti-podocyte antibody), GC might regenerate podocytes from adjacent PECs (233). Therefore, the therapeutic actions of GC in proteinuric diseases may very well be due to its myriad benefits on the podocyte (234).

Inhibition of Rho-Associated Kinases (ROCKs)

With murine diabetic and PAN models, inhibiting downstream effectors Rho-associated kinases (ROCKs) using ROCK inhibitors can significantly reduce proteinuria and podocyte damage. This suggests that ROCK inhibitors may be a potential therapeutic strategy for proteinuric kidney diseases.
inhibitors has shown renoprotective effects (235, 236). Increased Rac1 and mineralocorticoid receptor signaling were also found to be increased in mice lacking Rho GDP-dissociation inhibitor-alpha [Arhgdia(−/−) mice] with heavy albuminuria and podocyte damage. A Rac-specific small-molecule (NSC23766) and eplerenone (mineralocorticoid receptor antagonist) have successfully ameliorated the renal damages seen in Arhgdia(−/−) mice, suggesting the therapeutic effects by suppressing Rac1 or mineralocorticoid receptor signaling (237). Nevertheless, conflicting data in this field demands additional meticulous studies to further illuminate future therapeutic targets.

Vitamin D and Retinoic Acids

Selective vitamin D receptor activation was proven to lower proteinuria in patients with DKD (238); it was later demonstrated that vitamin D3 analogs might ameliorate podocyte injury by reversing the decrease in nephrin expression induced by hyperglycemia (239–241). The combination of vitamin D analog with an ARB has been shown to have synergetic effects on RAAS blockade, thereby boosting its overall therapeutic effect (242, 243). However, as there is currently no recommended clinical dosage of vitamin D analog for use in DKD, long-term and prospective clinical data is required to assess its safety and efficacy (244, 245). Retinoic acids (RAs) are vitamin A derivatives and appear to have renoprotective effects on various murine nephropathy such as HIV-associated nephropathy (HIVAN) (246) and PAN-induced nephrotic rats (247). Recently, Dai et al. reported that RA treatment activated podocyte retinoic acid receptor-α (RAR-α) and increased synaptopodin expression on PEC in wild type mice with nephrotic serum-induced glomerulonephritis (GN). The group subsequently identified RAR-α expression in human crescentic GN kidney biopsies, substantiating a possible therapeutic option in treating human crescentic GN (248). RA was also found to induce podocyte markers in PECs in a murine model membranous nephropathy (Heymann nephritis) and FSGS (anti-glomerular antibody model) (249). However, the toxicities of RA have hindered it from wide clinical use and have resulted in difficulties in recruiting patients to a Phase II clinical trial of podocyte diseases (MCD, FSGS, collapsing glomerulopathy) (NCT 00098020) (250). Thus, less toxic alternatives, such as Kruppel-like factor-15 and boronic acid retinoid are being explored (250, 251).

Biological Agents

Emerging evidence also suggests that biological agents might regulate the podocyte SD. Rituximab (RTX), an anti-CD20 antibody which depletes B cells, is widely used in different proteinuric diseases such as FSGS (252–254) and steroid-resistant MCD (255–258). Besides its immunological response, RTX was found to preserve sphingomyelin-phosphodiesterase-acid-like 3b (SMPDL-3b), which in turn regulates acid-sphingomyelinase (ASMase) activity in the raft of podocytes (259). SMPDL-3b can partially co-localize with synaptopodin and hence prevent the actin remodeling that occurs after exposure to serum from FSGS patients (259). This concept was supported by a recent clinical observation of the increase in urinary SMPDL-3b in patients at the remission stage after RTX treatment compared with the proteinuric stage (260). Abatacept (CTLA-4-Ig), a costimulatory-inhibitor that targets B7-1 molecule, may be another therapeutic agent to treat nephrotic syndrome via the actin cytoskeleton. Since induction of the T-cell costimulatory molecule B7-1 by LPS has been shown to be associated with nephrotic syndrome and actin reorganization (261), an inhibitor of B7-1 may ameliorate these findings. Though Yu et al. initially reported that treating five FSGS patients with abatacept achieved partial remission (262), these findings have not been successfully replicated (263–266). Presently, there is an ongoing phase II trial of abatacept for patients with FSGS or MCD (NCT02592798).

CONCLUSION

Our improved understanding of the podocyte in terms of its SDs and cytoskeleton has allowed us to target this cell for new treatments for proteinuric diseases (267, 268). However, there is much more to discover. Novel therapeutic target genes or proteins in podocytes are constantly being discovered as we write this review (269–271). Longstanding concepts, such as the function of the SD and the lack of mitotic ability of the podocyte, are already being challenged (272–274). For instance, the use of glycogen synthase kinases 3 inhibitor has already demonstrated initial promising results of transforming renal progenitor cells into podocytes (275). Growing podocytes from induced pluripotent stem cells on the chip also serves as a great tool to assess new drug development (276). At the same time, newer imaging systems to count podocytes (277) and to study their membrane dynamics have enhanced our ability to study this cell (278). The information that we hope to garner from the field of “-omics" (279, 280) reminds us that data is both tremendously helpful and potentially fraught with error, and hence must be interpreted with great care (281, 282). Thus, persistent endeavors to elucidate complex podocyte biology (283, 284), along with long-term patient follow-up (285), would greatly add to our present understanding of these common yet poorly understood proteinuric diseases.

AUTHOR CONTRIBUTIONS

SY, PN, IH, and BJ wrote draft of the manuscript. SY contributed to the figures. SY and BJ reviewed and edited the manuscript before submission.

REFERENCES

1. Mundel P, Kriz W. Structure and function of podocytes: an update. Anat Embryol (Berl) (1995) 192:385–97.
2. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. (2003) 83:253–307. doi:10.1152/physrev.00020.2002
3. Andrews PM. Investigations of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. Kidney Int. (1981) 20:549–62.
4. Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in rat podocytes. *J Histochem Cytochem.* (2003) 51:1589–600. doi: 10.1177/002215540305101203

5. Reiser J, Altintas MM. Podocytes. *F1000Res.* (2016) 5:114. doi: 10.12688/f1000research.17255.1

6. Greka A, Mundel P. Cell biology and pathology of podocytes. *Annu Rev Physiol.* (2012) 74:299–323. doi: 10.1146/annurev-physiol-020911-153328

7. Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. *Phys Rev.* (2008) 88:451–87. doi: 10.1152/physrev.00055.2006

8. Drenckhahn D, Franke RP. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. *Lab Invest.* (1988) 59:673–82.

9. Andrews PM, Bates SB. Filamentous actin bundles in the kidney. *J Biol Chem.* (2006) 281:19777–90. doi: 10.1074/jbc.M505371200

10. Reiser J, Altintas MM. Podocytes. *J Clin Invest.* (2010) 116:799–805. doi: 10.1172/JCI27414

11. Jones N, Bluistig IM, Eremina V, Ruston JM, Bladt F, Li H, et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. *Nature* (2006) 440:818–23. doi: 10.1038/nature4662

12. Fukasawa H, Bornheimer S, Kudlicka K, Farquhar MG. Slit diaphragms contain tight junction proteins. *J Am Soc Nephrol.* (2008) 19:4191–303. doi: 10.1681/asn.2008011517

13. Reiser J, Kruz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. *J Am Soc Nephrol.* (2000) 11:1–8.

14. Benzing T. Signaling at the slit diaphragm. *J Am Soc Nephrol.* (2004) 15:1382–91. doi: 10.1093/asn.00101367.03769.55

15. Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. *Curr Opin Nephrol Hypertens.* (2005) 14:211–6.

16. Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. *Nat Rev Nephrol.* (2013) 9:328–36. doi: 10.1038/nrneph.2013.78

17. Anders HJ. Immune system modulation of kidney regeneration–mechanisms and implications. *Nat Rev Nephrol.* (2014) 10:347–58. doi: 10.1038/nrneph.2014.68

18. Patrakka J, Tryggvason K. New insights into the role of podocytes in proteinuria. *Nat Rev Nephrol.* (2009) 5:463–8. doi: 10.1038/nrneph.2009.108

19. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. *Nat Rev Nephrol.* (2013) 9:587–98. doi: 10.1038/nrneph.2013.169

20. Kestila M, Lenkkeri U, Mannikko M, Lamerin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. *Mol Cell* (1998) 1:575–82.

21. Patrakka J, Tryggvason K. Nephrin—a unique structural and signaling protein of the kidney filter. *Trends Mol Med.* (2007) 13:396–403. doi: 10.1016/j.molmed.2007.06.006

22. Huber TB, Kottgen M, Schilling B, Walg Z, Benzing T. Interaction with podocin facilitates nephrin signaling. *J Biol Chem.* (2001) 276:14513–4. doi: 10.1074/jbc.C100452200

23. Li H, Lemay S, Aoudjit L, Kawachi H, Takano T. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. *J Am Soc Nephrol.* (2004) 15:3506–15. doi: 10.1097/01.ASN.0000146689.80078.80

24. Harita Y, Kurihara H, Kosako H, Tetzuka T, Sekine T, Igarashi T, et al. Nephrin, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. *J Biol Chem.* (2008) 283:9177–86. doi: 10.1074/jbc.M707247200

25. Zhu J, Sun N, Aoudjit L, Li H, Kawachi H, Lemay S, et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. *Kidney Int.* (2008) 73:556–66. doi: 10.1038/ki.200802691

26. Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephlin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. *J Clin Invest.* (2006) 116:1346–59. doi: 10.1172/JCI27414

27. Jones N, Bluistig IM, Eremina V, Ruston JM, Bladt F, Li H, et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. *Nature* (2006) 440:818–23. doi: 10.1038/nature4662
66. Schoeb DS, Chernin G, Heeringa SF, Matejas V, Held S, Vega-Warner V, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. J Am Soc Nephrol. (2019) 20:1533–43. doi: 10.1681/ASN.2019010056

65. Santin S, Garcia-Maset R, Ruiz P, Gimenez I, Zamora I, Pena A, et al. Ovunc B, Ashraf S, Vega-Warner V, Bockenhauer D, Elshakhs NA, Joseph Quack I, Woznowski M, Potthoff SA, Palmer R, Konigshausen E, Walther I, Vinke T, Vonend O, et al. Beta- Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. J Biol Chem. (2015) 290:350–8. doi: 10.1074/jbc.M114.612721

64. Ovunc B, Ashraf S, Vega-Warner V, Bockenhauer D, Elshakhs NA, Joseph Quack I, Woznowski M, Potthoff SA, Palmer R, Konigshausen E, Walther I, Vinke T, Vonend O, et al. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome diagnosis in a case cohort. J Am Soc Nephrol. (2016) 27:2422–35. doi: 10.1681/ASN.2015050504

63. Kumagai T, Baldwin C, Aoudjit L, Nezvitsky L, Robins R, Jiang Tossidou I, Teng B, Menne J, Shushakova N, Park JK, Becker JU, et al. Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem. (2015) 290:350–8. doi: 10.1074/jbc.M114.612721

62. Hsu MF, Bettaiieb A, Ito Y, Graham J, Havel PJ, Haj FG. Protein tyrosine phosphatase 1B inhibition protects against podocyte injury and proteinuria. J Am Soc Nephrol. (2016) 27:1970–83. doi: 10.1681/ASN.2015091048

61. Quack I, Rump LC, Gerke P, Walther I, Vinke T, Vonend O, et al. Nephrin tyrosine phosphorylation is required to stabilize and restore podocyte foot process architecture. J Am Soc Nephrol. (2016) 27:2422–35. doi: 10.1681/ASN.2015050504

60. Tossidou I, Teng B, Menne J, Shushakova N, Park JK, Becker JU, et al. Protein tyrosine phosphorylation regulates nephrin-Akt signaling and induces podocyte injury: role of c-Abl. Mol Biol Cell. (2016) 27:197–208. doi: 10.1091/mbc.E15–04–0223

59. Quack I, Woznowski M, Dahan K, Pawlak A, Ory V, Desvaux D, et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. (2010) 3:a39. doi: 10.1126/scisignal.200678E

58. Geraldes P. Protein phosphatases and podocyte function. Curr Opin Nephrol Hypertens. (2017) 26:496–101. doi: 10.1097/MNH.0000000000000376

57. Kumagai T, Baldwin C, Aoudjit L, Nezvitsky L, Robins R, Jiang Tossidou I, Teng B, Menne J, Shushakova N, Park JK, Becker JU, et al. Nephrin tyrosine phosphorylation 1B inhibition protects against podocyte injury and proteinuria. Am J Pathol. (2014) 184:2211–24. doi: 10.1016/j.ajpath.2014.05.005

56. Denhez B, Lizotte F, Guimond MO, Jones N, Takano T, Geraldes P. Protein phosphatases and podocyte function. Curr Opin Nephrol Hypertens. (2017) 26:496–101. doi: 10.1097/MNH.0000000000000376

55. Hsu MF, Bettaieb A, Ito Y, Graham J, Havel PJ, Haj FG. Protein tyrosine phosphatase 1B deficiency in podocytes attenuates lipopolysaccharide-induced proteinuria. Sci Rep. (2017) 7:461. doi: 10.1038/s41598-017-00564-3

54. Oudjiti L, Jiang R, Lee TH, New LA, Jones N, Takano T. Podocyte protein, nephrin, is a substrate of protein tyrosine phosphatase 1B. J Signal Transduct. (2011) 2011:376543. doi: 10.1155/2011/376543

53. Denhez B, Lizotte F, Guimond MO, Jones N, Takano T, Geraldes P. Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem. (2015) 290:250–8. doi: 10.1074/jbc.M114.612721

52. New LA, Martin CE, Scott RP, Platt MJ, Keyvani Chahi A, Stringer CD, et al. Nck and Nck2 are essential to maintain podocyte viability and function during chronic kidney disease. Kidney Int. (2012) 80:139–51. doi: 10.1038/kid.2011.243

51. Yang Q, Ma Y, Liu Y, Liang W, Chen X, Ren Z, et al. Angiotensin II down-regulates nephrin-Akt signaling and induces podocyte injury: role of c-Abl. Mol Biol Cell. (2016) 27:197–208. doi: 10.1091/mbc.E15–04–0223

50. Canaud G, Bienaime F, Viau A, Treins C, Baron W, Nguyen C, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. J Am Soc Nephrol. (2012) 23:4917–28. doi: 10.1681/ASN.2012030331

49. Jones N, New LA, Martin CE, Scott RP, Platt MJ, Keyvani Chahi A, Stringer CD, et al. Nephrin proteins maintain the adult glomerular filtration barrier. J Am Soc Nephrol. (2020) 20:1533–43. doi: 10.1681/ASN.2020010056

48. Canaud G, Bienaime F, Viau A, Treins C, Baron W, Nguyen C, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. J Am Soc Nephrol. (2012) 23:4917–28. doi: 10.1681/ASN.2012030331

47. Huber TB, Hartleben B, Kim J, Schmidts M, Schermer B, Keil A, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate Akt-dependent signaling. Mol Cell Biol. (2003) 23:4917–28. doi: 10.1093/mcb/jsg128

46. Yu et al. Proteinuric Kidney Diseases
95. Morrow IC, Parton RG. Flotillins and the PHB domain protein: rafts, worms and anaesthetics. *Traffic*, (2005) 6:725–40. doi: 10.1111/j.1600-0854.2005.00318.x

96. Garg P, Verma R, Nihalani D, Johnstone DB, Holzman LB. Nephi cooperates with nephrin to transduce a signal that induces podocyte proliferation. *Mol Cell Biol*. (2007) 27:8696–712. doi: 10.1128/MCB.00948-07

97. Schwartz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. *J Clin Invest.* (2001) 108:1621–9. doi: 10.1172/JCI12849

98. Saleem MA, Ni L, Witherden I, Tryggvason K, Murer T, Zsolnai V, Mundel P, et al. Co-localization of nephrin, podocin, and the actin cytoskeleton: evidence for a role in podocyte foot process formation. *Am J Pathol.* (2002) 161:1459–66. doi: 10.1016/S0002-9440(01)64221-5

99. Kofler P, Brinkkoepper S, Buehler S, Schroeter C, Koehler S, et al. Prohibitin-2 depletion unravels extrasomal mitochondrial functions at the kidney filtration barrier. *Am J Pathol*. (2016) 186:1128–39. doi: 10.1016/j.ajpath.2015.12.018

100. Schurek EM, Volker LA, Tax J, Lammekyter T, Rinschen MM, Ungure D, et al. Disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homolog (PHB) domain protein podocin. *J Biol Chem*. (2014) 289:11262–71. doi: 10.1074/jbc.M113.521773

101. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, et al. Podocin and MECP-2 bind cholesterol to regulate the activity of associated ion channels. *Proc Natl Acad Sci USA*. (2006) 103:17079–86. doi: 10.1073/pnas.0607465103

102. Caridi G, Bertelli R, Di Luca M, Dagnino M, Emma F; Onetti Muda A, et al. Broadening the spectrum of diseases related to podocin mutations. *J Am Soc Nephrol*. (2003) 14:1278–86. doi: 10.1097/01.ASN.0000060578.79050.E0

103. Hinkes B, Vlangos C, Heeringa S, Mucha B, Gadebreesin R, Liu J, et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. *J Am Soc Nephrol*. (2008) 19:365–71. doi: 10.1681/ASN.2007070452

104. Serdaroğlu E, Bak M, Aksu N, et al. NPHS2 (podocin) mutations in Turkish children with idiopathic nephrotic syndrome. *Pediatr Nephrol*. (2007) 22:2031–40. doi: 10.1007/s00467-007-0595-y

105. Caridi G, Bertelli R, Di Luca M, Dagnino M, Emma F; Onetti Muda A, et al. Broadening the spectrum of diseases related to podocin mutations. *J Am Soc Nephrol*. (2003) 14:1278–86. doi: 10.1097/01.ASN.0000060578.79050.E0
122. Guan N, Ding J, Zhang J, Yang J. Expression of nephrin, podocin, alpha-actinin, and WT1 in children with nephrotic syndrome. Pediatr Nephrol. (2003) 18:1122–7. doi: 10.1007/s00467-003-1240-z
123. Koop K, Eikmans M, Baedle HJ, Kawachi H, De Heer E, Paul LC, et al. Expression of podocyte-associated molecules in acquired human kidney diseases. J Am Soc Nephrol. (2013) 24:2965–71. doi: 10.1681/ASN.2009070883.53165.C9
124. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. (2006) 68:619–47. doi: 10.1146/annurev.physiol.68.040204.100431
125. Greka A, Mundel P. Calcium regulates podocyte actin dynamics. Semin Nephrol. (2012) 32:319–26. doi: 10.1016/j.semnephrol.2012.06.003
126. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science (2005) 308:1801–4. doi: 10.1126/science.1106215
127. Ilatovskaya DV, Staruschenko A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol. (2015) 309:F39–7. doi: 10.1152/ajprenal.00186.2015
128. Riehle M, Buscher AK, Gohlke BO, Kassmann M, Kolatsi-Joannou M, Brasen LC, et al. Expression of podocyte-associated molecules in acquired kidney diseases. J Am Soc Nephrol. (2013) 24:2961–5. doi: 10.1681/ASN.2012061146
129. Sonneveld R, van der Vlag J, Baltissen MP, Verkaart SA, Wetzels JF, Heideman G, et al. A small-molecule inhibitor of TRPC5 ion channels suppresses proteinuria in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol. (2013) 24:2961–5. doi: 10.1681/ASN.2012112120
130. Zou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim YO, et al. A small molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Kidney Int. (2013) 83:381–9. doi: 10.1038/ki.2013.108
131. Wieder N, Greka A. Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr Nephrol. (2016) 31:1047–54. doi: 10.1007/s00467-015-3224-1
132. Schaldecker T, Kim S, Tarabanis C, Tian D, Hakroush S, Castonguay P, et al. Inhibition of the TRPC5 ion channel protects the kidney from I/R injury. J Clin Invest. (2013) 123:3298–309. doi: 10.1172/JCI71165
133. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, et al. A small molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science (2017) 358:1332–6. doi: 10.1126/science.aai178
134. Wang X, Danse RR, Yu H, Samelko M, Miller RE, Atlantis MM, et al. TRPC5 does not cause or aggravate Glomerular disease. J Am Soc Nephrol. (2017). doi: 10.1681/ASN.2017060682
135. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature (2002) 420:629–35. doi: 10.1038/nature01148
136. Katz ME, McCormick F. Signal transduction from multiple Ras effectors. Annu Rev Physiol. (2002) 64:1075–108. doi: 10.1146/annurev.physiol.64.090601.100430
137. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin organization in glomerular podocytes. Kidney Int. (2011) 80:629–35. doi: 10.1038/ki.2011.472
138. Gong Y, Sunq A, Roth RA, Hou J. Inducible Expression of Claudin-1 in podocytes. J Am Soc Nephrol. (2015) 26:1621–30. doi: 10.1681/ASN.2014060640
139. Zhu L, Jiang R, Aoudjit L, Jones N, Takano T. Activation of RhoA in podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. J Am Soc Nephrol. (2015) 26:1149–54. doi: 10.1681/ASN.2014120298
140. Huang Z, Zhang L, Chen Y, Zhang H, Zhang Q, Li R, et al. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nswasp/stress fibers/YAP pathway. Cell Death Dis. (2016) 7:e2142. doi: 10.1038/cddis.2016.51
141. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, et al. Podocyte vascular endothelial growth factor. (Vegf-A) causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia (2011) 54:1247–31. doi: 10.1007/s00125-010-2034-x
142. Gong Y, Sunq A, Roth RA, Hou J. Inducible Expression of Claudin-1 in Glomerular Podocytes Generates Abrupt Tight Junctions and Proteinuria through Slit Diaphragm Destabilization. J Am Soc Nephrol. (2017) 28:106–17. doi: 10.1681/ASN.2016120321
143. Kelly DJ, Aaltenon P, Cox AJ, Rumble JR, Langham R, Panagiotopoulos S, et al. Expression of the slit-diaphragm protein, nephrin, in experimental diabetic nephropathy: differing effects of anti-proteinuric therapies. Nephrol Dial Transplant. (2002) 17:1327–32.
144. Mazzone D, Bertuccio CA, Marlier A, Reidy K, Garcia AM, Jimenez J, et al. Podocyte vascular endothelial growth factor. (Vegf-A) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia (2011) 54:1247–31. doi: 10.1007/s00125-010-2034-x
145. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science (2003) 300:298–300. doi: 10.1126/science.1081068
146. Lowel MM, Gregory PJ, Proek I, Lilien MR, Goldschmeding R, Dijkstra HB, et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. (2007) 72:1198–203. doi: 10.1038/sj.ki.5002469
Gigante M, Pontrelli P, Montemurro E, Roca L, Ascella F, Penza R, et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). *Nephrol Dial Transplant.* (2009) 24:1858–64. doi: 10.1093/ndt/gfn712

Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G, et al. A novel TRPC6 mutation that causes childhood FSGS. *PLoS ONE* (2009) 4:e7771. doi: 10.1371/journal.pone.0007771

Hofstra JM, Lainez S, van Kuijk WH, Schoots J, Baltissen MP, Hoesloot LH, et al. New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis. *Nephrol Dial Transplant.* (2013) 28:1830–8. doi: 10.1093/ndt/gfs572

Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. *Nat Genet.* (2005) 37:739–44. doi: 10.1038/ng1592

Ohashi T, Suzuki K, Iwamoto M, Kawachi H, Ohno M, Horita S, et al. New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis. *Nephrol Dial Transplant.* (2009) 24:3089–96. doi: 10.1093/ndt/gfp229

Schlondorf J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR, Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nuernberg K, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. *Nat Genet.* (2005) 37:739–44. doi: 10.1038/ng1592

Santin S, Ars E, Rossetti S, Salado E, Silva I, Garcia-Mase R, et al. TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. *Nephrol Dial Transplant.* (2009) 24:3089–96. doi: 10.1093/ndt/gfp229

Yu et al. Proteinuric Kidney Diseases
responsiveness in primary focal segmental glomerulosclerosis. Life Sci. (2006) 79:757–63. doi: 10.1016/j.lfs.2006.02.031

Wagrowska-Danielwicz M, Danielwicz M. [Sympotopin immunoeexpression in steroid-responsive and steroid-resistant minimal change disease and focal segmental glomerulosclerosis]. Nefrologia (2007) 27:210–5.

Szeto CC, Wang G, Chow KM, Lai FM, Ma TK, Kwan BC, et al. Podocyte mRNA in the urinary sediment of minimal change nephropathy and focal segmental glomerulosclerosis. Clin Nephrol. (2015) 84:198–205. doi: 10.5414/CN106807

Kwon SK, Kim SJ, Kim HY. Urine synaptopodin excretion is an important marker of glomerular disease progression. Korean J Intern Med. (2016) 31:938–43. doi: 10.3904/kjim.2015.226

Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. (2013) 19:1496–504. doi: 10.1038/nm.3363

Susatk K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes (2006) 55:225–33. doi: 10.2373/diabetes.55.01.06.db05-0894

Tejada T, Catatano P, Ijaz A, Santos JV, Xia X, Sanchez P, et al. Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. Kidney Int. (2008) 73:1385–93. doi: 10.1088/ki.2008.05.014

Liang H. Molecular pathology of nephrotic syndrome in childhood: a contemporary approach to diagnosis. Pediatr Dev Pathol. (2008) 11:154–63. doi: 10.2350/0711-0375.1

Garg P, Verma R, Cook L, Soofi A, Venkataderry M, George B, et al. Actin-depolymerizing factor colfin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem. (2010) 285:22676–88. doi: 10.1074/jbc.M110.122292

Sahali D, Sendeoy K, Mangier M, Audard V, Zhang SY, Lang P, et al. Immunopathogenesis of idiopathic nephrotic syndrome with relapse. Semin Immunopathol. (2014) 36:421–9. doi: 10.1007/s00281-013-0415-3

Rosenberg AZ, Kopf JR. Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. (2012) 7:502–17. doi: 10.2215/CJN.05960616

Chen YM, Liapis H. Molecular pathology of nephrotic syndrome in childhood: a comprehensive approach to diagnosis. BMC Nephrol. (2015) 16:101. doi: 10.1186/s12882-015-0090-9

D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. Adv Chronic Kidney Dis. (2014) 21:408–16. doi: 10.1053/j.ackd.2014.05.009

Ponticelli C, Locatelli F. Glucocorticoids in the Treatment of Glomerular Diseases: Pitfalls and Pearls. Clin J Am Soc Nephrol. (2018) 13:815–22. doi: 10.2215/CJN.07050618

Krause MW, Fonseca V A, Shah SV. Combination inhibition of the renin-angiotensin-aldosterone system: is more better? J Clin Pharmacol. (2011) 51:1095–3. doi: 10.1172/JCI82592

Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol. (2015) 16:101. doi: 10.1186/s12882-015-0090-9

D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. New Engl J Med. (2011) 365:2398–411. doi: 10.1056/NEJMra1106556

Jefferson JA, Shankland SJ. The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis. (2014) 21:408–16. doi: 10.1053/j.ackd.2014.05.009

Rheault MN, Gbadebesin RA. The genetics of nephrotic syndrome. J Pediatr Genet. (2016) 5:15–24. doi: 10.1555/1300.0035·1557109

Yu H, Artromov M, Brahler S, Stander MC, Shamsan G, Sampson MG, et al. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. J Clin Invest. (2016) 126:1067–78. doi: 10.1172/JCI82592

Krause MW, Fonseca VA, Shah SV. Combination inhibition of the renin-angiotensin system: is more better? Kidney international. (2011) 80:245–55. doi: 10.1038/ki.2011.142

Xu HZ, Wang WN, Zhang YH, Cheng YL, XU Z. Effect of angiotensin II type 1 receptor blocker on 12-lipoxygenase activity and slit diaphragm protein expression in type 2 diabetic rat glomeruli. J Nephrol. (2016) 29:775–82. doi: 10.2459/jneph.0260-016-0296-3

Wang N, Wei RB, Li P, Li QF, Yang X, Yang Y, et al. Treatment with ibesaten may improve slit diaphragm alterations in rats with adriamycin-induced nephropathy. J Renin Angiotensin Aldosterone Syst. (2016) 17:147032016666884. doi: 10.1177/147032016666884

Mallipattu SK, Guo Y, Revelo MP, Roa-Pena L, Miller T, Ling J, et al. Kruppel-like factor 15 mediates glucocorticoid-induced restoration of mature podocyte architecture. J Clin Invest. (2016) 126:1067–78. doi: 10.1172/JCI82592
study): a randomised controlled trial. *Lancet* (2010) 376:1543–51. doi: 10.1016/S0140-6736(10)61032-X

239. Trohatou O, Tsilibary EF, Charonis A, Iatrou C, Drossopoulou G. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway. *J Cell Mol Med* (2017) 21:2599–609. doi: 10.1111/jcmm.13180

240. Song Z, Guo Y, Zhou M, Zhang X. The PJK/P-Akt signaling pathway participates in calciotropic ameliorating podocyte injury in DN rats. *Metabolism* (2014) 63:1324–33. doi: 10.1016/j.metabol.2014.06.013

241. Deb DK, Sun T, Wong KE, Zhang Z, Ning G, Zhang Y, et al. Molecular mechanism underlying 1,25-dihydroxyvitamin D regulation of nephrin gene expression. *J Biol Chem* (2011) 286:32011–7. doi: 10.1074/jbc.M111.269118

242. Deb DK, Sun T, Wong KE, Zhang Z, Ning G, Zhang Y, et al. Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. *Kidney Int* (2010) 77:1000–9. doi: 10.1038/ki.2010.22

243. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. *Proc Natl Acad Sci USA* (2008) 105:15896–901. doi: 10.1073/pnas.0803751105

244. Fernandez-Fernandez B, Ortiz A. Paricalcitol and albuminuria: tread carefully. *Lancet Diabetes Endocrinol* (2018) 6:3–5. doi: 10.1016/S2213-8587(17)30361-3

245. Parvanova A, Trillini M, Podesta MA, Ilev IP, Ruggiero B, Abbate M, et al. Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria. (PROCEED): a randomised, double-blind, placebo-controlled, crossover trial. *Lancet Diabetes Endocrinol* (2018) 6:27–40. doi: 10.1016/S2213-8587(17)30359-5

246. He JC, Lu TC, Fleet M, Sunamoto M, Husain M, Fang W, et al. Retinoin acid inhibits HIV-1-induced podocyte proliferation through the CAMP pathway. *J Am Soc Nephrol* (2007) 18:93–102. doi: 10.1681/ASN.2006070727

247. Suzuki A, Ito T, Imai E, Yamato M, Iwatani H, Yuan Z, et al. Retinoids regulate the repairing process of the podocytes in purinomycinaminonucleoside-induced nephrotic rats. *J Am Soc Nephrol* (2003) 14:981–9.

248. Dai Y, Chen A, Liu R, Gu L, Sharma S, Cai W, et al. Retinoic acid improves nephrotic serum-induced glomerulonephritis through activation of podocyte retinoin acid receptor alpha. *Kidney Int* (2017) 92:1444–57. doi: 10.1016/j.kint.2017.04.026

249. Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y, Romagnani P, et al. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. *Nephron Exp Nephrol* (2012) 121:e23–37. doi: 10.1159/000342808

250. Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. *Front Med (Lausanne)* (2015) 2:16. doi: 10.3389/fmed.2015.00016

251. Mallipattu SK, Estrada CC, He JC. The critical role of Kruppel-like factors in kidney disease. *Am J Physiol Renal Physiol* (2017) 312:F259–65. doi: 10.1152/ajprenal.00550.2016

252. Kronbichler A, Konig P, Busch M, Wolf G, Mayer G, Rudnicki M. Rituximab treatment of adult patients with steroid-resistant focal and segmental glomerulosclerosis. *Intern Med* (2013) 51:759–62.

253. Ochi A, Takei T, Nakayama K, Iwasaki C, Kamei D, Tsuruta J, et al. Validation of a three-dimensional method for counting and sizing mature induced-pluripotent-stem-cell-derived human podocytes in adults. *Cell Mol Med* (2017) 21:2599–609. doi: 10.1111/jcmm.13180

254. Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasa M, et al. Unsuccessful treatment with abatacept in recurrent focal segmental glomerulosclerosis after kidney transplantation. *Case Rep Nephrol Dial* (2017) 7:1–5. doi: 10.1159/000454947

255. Ruggenenti P, Angeletti A, Remuzzi G. New biologics in the treatment of rare glomerular diseases of childhood. *Curr Opin Pharmacol* (2017) 33:27–33. doi: 10.1016/j.coph.2017.03.010

256. Tian X, Iishihe S. Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. *Nephrol Dial Transplant* (2016) 31:1577–83. doi: 10.1093/ndt/gfw021

257. Cathepsin D in podocytes is important in the development of kidney disease remission and can be pharmacologically enhanced. (2015) 2:16. doi: 10.3389/fmed.2015.00016

258. Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. *Cell Mol Med* (2015) 21:2599–609. doi: 10.1111/jcmm.13180

259. Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou M, et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. *Proc Natl Acad Sci USA* (2017) 114:2958–63. doi: 10.1073/pnas.1616457114

260. Schonдорфф D, Wyatt CM, Campbell KN. Revisiting the determinants of the glomerular filtration barrier: what goes round must come round. *Kidney Int* (2017) 92:533–6. doi: 10.1016/j.kint.2017.06.003

261. Shankland SJ, Freedman BS, Pippin JW. Can podocytes be regenerated in adults? *Curr Opin Nephrol Hypertens* (2017) 26:154–64. doi: 10.1097/MNH.0000000000000311

262. Lasagni L, Angelotti ML, Ronconi E, Lombardi D, Nardi S, Peired A, et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. *Stem Cell Rep* (2015) 5:248–63. doi: 10.1016/j.stemcr.2015.07.003

263. Palou S, Mamamoto A, Ferrante TC, Jeanty SSE, Hirano-Kobayashi M, Mamamoto T, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. *Nat Biomed Eng* (2017) 1. doi: 10.1038/s41551-017-0069

264. Puelles VG, van der Wolde JW, Schulze KE, Short KM, Wong MN, Bensley JG, et al. Validation of a three-dimensional method for counting and sizing
podocytes in whole glomeruli. *J Am Soc Nephrol*. (2016) 27:3093–104. doi: 10.1681/ASN.2015121340

278. Brahler S, Yu H, Suleiman H, Krishnan GM, Saunders BT, Kopp JB, et al. Intravital and kidney slice imaging of podocyte membrane dynamics. *J Am Soc Nephrol*. (2016) 27:3285–90. doi: 10.1681/ASN.2015121303

279. Rinschen MM, Wu X, Konig T, Pistikun T, Hagmann H, Pahn Meyer C, et al. Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier. *J Am Soc Nephrol*. (2014) 25:1509–22. doi: 10.1681/ASN.2013070760

280. Schena FP, Nistor I, Curci C. Transcriptomics in kidney biopsy is an untapped resource for precision therapy in nephrology: a systematic review. *Nephrol Dial Transplant*. (2017). doi: 10.1093/ndt/gfx211

281. Kesselheim A, Ashton E, Bockenhauer D. Potential and pitfalls in the genetic diagnosis of kidney diseases. *Clin Kidney J*. (2017) 10:581–5. doi: 10.1093/ckj/sfx075

282. Weber S, Buscher AK, Hagmann H, Liebau MC, Heberle C, Ludwig M, et al. Dealing with the incidental finding of secondary variants by the example of SRNS patients undergoing targeted next-generation sequencing. *Pediatr Nephrol*. (2016) 31:73–81. doi: 10.1007/s00467-015-3167-6

283. Schell C, Huber TB. The Evolving Complexity of the Podocyte Cytoskeleton. *J Am Soc Nephrol*. (2017) 28:3166–74. doi: 10.1681/ASN.2017020143

284. Assady S, Wanner N, Skorecki KL, Huber TB. New Insights into podocyte biology in glomerular health and disease. *J Am Soc Nephrol*. (2017) 28:1707–15. doi: 10.1681/ASN.2017010027

285. Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS, Bodria M, Ozaltin F, Emma F, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. *J Am Soc Nephrol*. (2017) 28:3055–65. doi: 10.1681/ASN.2016101121

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Yu, Nissaisorakarn, Husain and Jim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.