EXPLORATORY CHANDRA OBSERVATIONS OF THE THREE HIGHEST REDSHIFT QUASARS KNOWN

WILLIAM N. BRANDT,1 DONALD P. SCHNEIDER,1 XIAOHUI FAN,2 MICHAEL A. STRAUSS,3 JAMES E. GUNN,3 GORDON T. RICHARDS,1 SCOTT F. ANDERSON,2 DANIEL E. VANDEN BERK,5 NETA A. BAHCALL,3 J. BRINKMANN,6 ROBERT BRUNNER,7 BING CHEN,6 G. S. HENNESSY,9 DONALD Q. LAMB,10 WOLFGANG VOGES,11 AND DONALD G. YORK10

Received 2002 February 12; accepted 2002 March 8; published 2002 March 15

ABSTRACT

We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a complete set of color-selected, z > 5.7 quasars. X-ray emission is detected from all of the quasars at levels that indicate that the X-ray-to-optical flux ratios of z ≈ 6, optically selected quasars are similar to those of lower redshift quasars. The observations demonstrate that it will be feasible to obtain quality X-ray spectra of z ≈ 6 quasars with current and future X-ray missions.

Subject headings: galaxies: active — galaxies: nuclei — quasars: general — quasars: individual (SDSS J083643.85+005453.3, SDSS J103027.10+052455.0, SDSS J130608.26+035626.3) — X-rays: galaxies

1. INTRODUCTION

One of the main themes in astronomy in the coming decades will be the study of the first generation of objects to form in the universe. Owing to their large luminosities, quasars are among the most accessible of these, particularly at high energies where stars produce little emission. X-ray studies of high-redshift quasars reveal the conditions in the immediate vicinity of their supermassive black holes. Measurements of the X-ray continuum’s shape, amplitude relative to longer wavelength radiation, and variability can provide information about the inner accretion disk and its corona, and thus ultimately about how the black hole is fed. The penetrating nature of X-rays allows even highly obscured black holes to be probed. While some very high-redshift quasars have been discovered via their X-ray emission (e.g., Henry et al. 1994; Zickgraf et al. 1997; Schneider et al. 1998; Silverman et al. 2002; A. J. Barger et al. 2002, in preparation), the vast majority of distant quasars were identified by optical observations.

Recently, the Sloan Digital Sky Survey12 (SDSS; York et al. 2000) discovered the three highest redshift quasars known to date: SDSS 083643.85+005453.3 at z = 5.82, SDSS J103027.10+052455.0 at z = 6.28, and SDSS J130608.26+035626.3 at z = 5.99 (hereafter these quasars are referred to as SDSS 0836+0054, SDSS 1030+0524, and SDSS 1306+0356, respectively; Fan et al. 2001). The SDSS uses a CCD camera (Gunn et al. 1998) on a dedicated 2.5 m telescope at the Apache Point Observatory in New Mexico to obtain images in five broad optical bands (u, g, r, i, z; Fukugita et al. 1996; Stoughton et al. 2002); the images of all three of these quasars have extremely red colors in the SDSS system. All three quasars are luminous and, by the Eddington argument (see § 1.2 of Frank, King, & Raine 1992; Fan et al. 2001), have central black holes with masses of several times 10⁷ M⊙ that formed within a billion years of the big bang.

We have begun a project to determine the X-ray properties of the highest redshift quasars utilizing both the new generation of X-ray observatories and archival data (Kaspi, Brandt, & Schneider 2000; Brandt et al. 2001; Vignali et al. 2001). Thus far we have mostly been making short, exploratory observations designed to define the basic X-ray properties of these quasars and to identify good candidates for future X-ray spectroscopy. Aside from addressing the scientific issues mentioned above, this project is also laying groundwork for future X-ray observatories focused on studying the high-redshift X-ray universe (e.g., Constellation-X, X-Ray Evolving Universe Spectroscopy [XEUS], and Generation-X). After the discoveries of SDSS 0836+0054, SDSS 1030+0524, and SDSS 1306+0356, we requested Director’s Discretionary Time in 2001 August for exploratory Chandra observations of these quasars. This request was approved, and the observations were performed in 2002 January. Here we present the results of the observations. We adopt H₀ = 65 km s⁻¹ Mpc⁻¹, ΩM = ½, and ΩΛ = ½ throughout.

2. OBSERVATIONS AND DATA ANALYSIS

The basic properties of the observed quasars, along with the observation dates and exposure times, are given in Table 1. We have also included in Table 1 the z = 5.74 broad absorption line (BAL) quasar SDSS J104443.04—012502.2 (hereafter SDSS 1044—0125; Fan et al. 2000; Maiolino et al. 2001; Goodrich et al. 2001); this quasar has not been observed by Chandra, but it has been detected by XMM-Newton (Brandt et al. 2001). We have included SDSS 1044—0125 in this Letter because it and
the other three quasars form a complete \(z \approx 5.7 \) color-selected sample down to a \(z \) magnitude of \(\approx 20 \) over about 1500 deg\(^2\) (Fan et al. 2001). SDSS 0836+0054 has a 20 cm radio detection of 1.2 mJy in the FIRST survey (Becker, White, & Helfand 1995) and is radio-quiet or radio-intermediate (see Table 1 for their \(R \) parameters).

The other quasars lack radio detections and could be either radio quiet or radio intermediate (see Table 1 for their \(R \) parameters).

All targets were observed at the aim point of the S3 back-illuminated CCD in the Advanced CCD Imaging Spectrometer (ACIS; G. P. Garmire et al. 2002, in preparation). Given previous X-ray studies of \(z > 4 \) quasars and the superb source detection capability of \(Chandra \), these quasars were expected to be detectable with relatively short, 6–8 ks \(Chandra \) observations. Faint mode was used for the event telemetry for the X-ray sources described below, and there is no evidence for transient spurious phenomena affecting the data.

We created images around the quasar positions in each of the four standard bands defined in Table 2, and we show adaptively smoothed full-band images for each of the quasars in Figure 1. Note that in the rest frame we are probing the \(\approx 20 \) keV emission from these quasars. Source detection was performed with WAVDETECT (Freeman et al. 2002). For each image, we calculated wavelet transforms (using a Mexican hat kernel) with wavelet scale sizes of 1–4 pixels. Those peaks whose probability of being false were less than the threshold of \(10^{-3} \) were taken as real. All of the quasars were detected in at least two of the standard bands (see Table 2). The photometry in Table 2 was performed using circular apertures with radii of 2\('\); errors on the photometry due to background subtraction are negligible. In all cases, the full-band X-ray centroid positions lie within 1\('\) of the precise optical positions of the quasars; this is within plausible errors considering the limited number of counts. Given the positional coincidence, the probability of an unrelated, confusing counterpart for even our X-ray faintest quasar (SDSS 1030+0524) is only \(\approx 1 \times 10^{-4} \).

Since our observations do not have sufficient counts for spectral fitting, we have calculated the quasars’ fluxes and luminosities adopting a nominal power-law model with a photon index of \(\Gamma = 2 \) [at energy \(E \) the photon density \(N(E) \propto E^{-\Gamma} \); e.g., Reeves & Turner 2000] and the Galactic absorption column densities in Table 1. This spectral model is consistent with the observed hardness ratios of our targets, although the constraints on the hardness ratios are poor owing to the limited

Table 1

Basic Quasar Properties and Observation Log

Quasar	\(z \)	\(M_{1450} \) (mag)	\(R \)	Galactic \(N_H \) (\(\times 10^{20} \) cm\(^{-2} \))	Observation Date	Time (ks)
SDSS 0836+0054	5.8	18.81	14.2	27.9	2002 Jan 29	5.7
SDSS 1030+0524	6.28	19.66	6.5	27.2	2002 Jan 29	8.0
SDSS 1306+0356	5.99	19.55	7.3	27.2	2002 Jan 29	8.2
SDSS 1044–0125	5.74	19.21	9.8	27.5	2000 May 28	40.0

The slope is calculated between 2500 Å and 2 keV. The error bars on represent the statistical uncertainty associated with the observed counts.

Table 2

X-ray Counts and Properties

Quasar	UltraSoft (0.3–0.5 keV)	Soft (0.5–2.0 keV)	Hard (2.0–8.0 keV)	Full (0.5–8.0 keV)	\(F_{0.5–2.0\text{keV}} \)	\(f_{3–8\text{ keV}} \)	\(L_{3–14\text{ keV}} \)	\(\alpha_{ox} \)
SDSS 0836+0054	<6.4	16.9±1.2	3.8±1.4	20.7±6.6	10.29	10.5	45.6	−1.58
SDSS 1030+0524	<4.8	5.9±1.2	<3.0	5.8±2.0	2.43	2.6	45.1	−1.68
SDSS 1306+0356	<4.8	11.8±2.5	4.9±1.4	16.8±4.1	4.63	4.8	45.3	−1.60
SDSS 1044–0125	<4.8	……………	……………	……………	1.22	1.2	44.7	−1.88

\(\alpha_{ox} \) is calculated between 2500 Å and 2 keV. The error bars on \(\alpha_{ox} \) represent the statistical uncertainty associated with the observed number of counts.

Notes

- \(\alpha_{ox} \) is calculated between 2500 Å and 2 keV. The error bars on \(\alpha_{ox} \) represent the statistical uncertainty associated with the observed number of counts.
- \(\alpha_{ox} \) is calculated between 2500 Å and 2 keV. The error bars on \(\alpha_{ox} \) represent the statistical uncertainty associated with the observed number of counts.
- \(\alpha_{ox} \) is calculated between 2500 Å and 2 keV. The error bars on \(\alpha_{ox} \) represent the statistical uncertainty associated with the observed number of counts.
- \(\alpha_{ox} \) is calculated between 2500 Å and 2 keV. The error bars on \(\alpha_{ox} \) represent the statistical uncertainty associated with the observed number of counts.
numbers of counts. Using the Chandra X-Ray Center Portable Interactive Multi-Mission Simulator (PIMMS; Mukai 2001), we find the absorption-corrected 0.5–2.0 keV fluxes given in Table 2. In Table 2 we also present the derived luminosities in the 3.5–14.0 keV rest-frame band; this rest-frame band is well matched to the observed 0.5–2.0 keV band for our objects. Note that for a $\Gamma = 2$ power law, the rest-frame 3.5–14.0 and 0.5–2.0 keV luminosities are the same.

We have calculated α_{ox}^*, the slope of a nominal power law between 2500 Å and 2 keV in the rest frame [$\alpha_{ox} = 0.384 \times \log (f_{2\text{keV}}/f_{2500\text{Å}})$, where $f_{2\text{keV}}$ is the flux density at 2 keV and $f_{2500\text{Å}}$ is the flux density at 2500 Å], for each of our targets (see Table 2). We again adopt $\Gamma = 2$ for the X-ray continuum, and we use an optical power-law slope of $\alpha_o = -0.5$ ($f \propto \lambda^{-\alpha_o}$; e.g., Schneider et al. 2001; Vanden Berk et al. 2001) to estimate the flux density at 2500 Å in the rest frame. We have used the observed soft-band fluxes to find $f_{2\text{keV}}$ in the α_{ox} calculations, so the derived α_{ox} values are actually based on the relative amount of X-ray emission in the \approx3.5–14.0 keV rest-frame band; 2 keV in the rest frame corresponds to \approx0.3 keV in the observed frame for these quasars, and this energy is poorly sampled by ACIS for these faint sources.

3. DISCUSSION

These three short Chandra observations provide the highest redshift X-ray detections to date, demonstrating the power of Chandra for probing the high-redshift X-ray universe efficiently. Figure 2 shows a redshift histogram of the known $z > 4$ quasars; the X-ray detections are indicated in the figure.¹⁴ Together with SDSS 1044+0125, the highest redshift X-ray detection obtained previously, the quasars studied here form a small but complete $z \approx 5.7$ color-selected sample that should be representative of the luminous, optically selected quasar

¹⁴ The data used to construct this figure are available from http://www.astro.caltech.edu/~george/z4_qsos and http://www.astro.psu.edu/users/niel/papers/highz-xray-detected.dat.
population at \(z \approx 6 \) (we recognize that optically selected \(z \approx 6 \) quasars may not be representative of the entire \(z \approx 6 \) quasar population, but these quasars are the only ones available for study at present).

In Figure 3 we plot the Galactic absorption-corrected 0.5–2.0 keV flux versus AB 1450 magnitude for the quasars in Table 1 as well as for other \(z > 4 \) quasars (e.g., Kaspi et al. 2000; Vignali et al. 2001; Silverman et al. 2002). While the BAL quasar SDSS 1044−0125 is notably X-ray weak (probably owing to intrinsic X-ray absorption; see Brandt et al. 2001), the \(z \approx 6 \) quasars observed by Chandra appear to lie within the locus of points for other \(z > 4 \) quasars. The spectral region around the C iv line at rest-frame 1549 Å has been observed in both SDSS 1030+0524 and SDSS 1306+0356; neither shows evidence for BALs (Fan et al. 2001; Pentericci et al. 2002). The integrated column density of the intergalactic medium to these quasars, including both ionized and neutral material, is almost certainly too small to produce significant X-ray absorption (e.g., Weinberg et al. 1997; Miralda-Escudé 2000). This is especially true given the intergalactic medium’s low metallicity.

Figure 4 shows that there is no strong evolution in \(\alpha_{\text{ox}} \) for optically selected, radio-quiet quasars (RQQs) out to \(z \approx 6 \) (despite the strong changes in quasar number density over the redshift range shown in this figure; see § 5.3 of Fan et al. 2001 and references therein). The central X-ray power sources of quasars do not appear to evolve strongly out to this redshift, and there is no indication that strong intrinsic obscuration of the X-ray emission generally occurs at \(z \approx 6 \). This result bodes well for attempts to detect the first massive black holes to form in the universe (\(z \approx 8–20 \)) with deep X-ray surveys; our data suggest that these objects are likely to be luminous X-ray emitters. Furthermore, this result helps to validate the bolometric correction factor adopted by Fan et al. (2001) when estimating the black hole masses of these objects via the Eddington argument. Some studies have found evidence that \(\alpha_{\text{ox}} \) depends upon quasar luminosity, with more luminous quasars generally having larger negative values of \(\alpha_{\text{ox}} \) (e.g., Green et al. 1995 and references therein). The \(z \approx 6 \) quasars under study here have comparable luminosities at 2500 Å to those of the typical \(z \approx 4–5 \) quasars studied by Vignali et al. (2001; see their Fig. 5, noting the different cosmology). Therefore, we do not expect luminosity effects on \(\alpha_{\text{ox}} \) to affect our conclusions materially (see § 4.2 of Vignali et al. 2001 for further discussion).

The observations presented here are consistent with the statement that the majority of optically selected quasars at redshifts of \(\approx 6 \) possess similar X-ray properties to those of their low-
redshift counterparts. X-ray observations have now reached what appears to be the redshift regime of the reionization of the intergalactic medium (Becker et al. 2001; Djorgovski et al. 2001). The Chandra observations also indicate that X-ray spectroscopy with XMM-Newton will be feasible for a significant fraction of $z \approx 6$ quasars (with ≈ 100 ks exposures), and high-quality X-ray spectroscopy of this class of objects will be possible with Constellation-X, XEUS, and Generation-X.

This work would not have been possible without the enormous efforts of the entire Chandra team. We thank H. D. Tananbaum for kindly allocating the time for these observations and S. N. Virani for help with observation planning. We thank S. C. Gallagher, S. Kaspi, C. Vignali, and an anonymous referee for helpful discussions. We gratefully acknowledge the financial support of NASA LTSA grant NAG 5-8107 (W. N. B.), NSF grant AST 99-00703 (D. P. S., G. T. R.), and NSF grant AST 00-71091 (M. A. S.). The Sloan Digital Sky Survey is a joint project of the University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Max-Planck-Institute for Astronomy, the Max-Planck-Institute for Astrophysics, New Mexico State University, Princeton University, the US Naval Observatory, and the University of Washington. Apache Point Observatory, site of the SDSS telescopes, is operated by the Astrophysical Research Consortium. Funding for the project has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society.

REFERENCES

Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Becker, R. H., et al. 2001, AJ, 122, 2850
Brandt, W. N., Guainazzi, M., Kaspi, S., Fan, X., Schneider, D. P., Strauss, M. A., Clavel, J., & Gunn, J. E. 2001, AJ, 121, 591
Brandt, W. N., Laor, A., & Wills, B. J. 2000, ApJ, 528, 637
Djorgovski, S. G., Castro, S. M., Stern, D., & Mahabal, A. A. 2001, ApJ, 560, L5
Ebeling, H., White, D. A., & Rangarajan, F. V. N. 2002, MNRAS, submitted
Fan, X., et al. 2000, AJ, 120, 1167
Frank, J., King, A., & Raine, D. 1992, Accretion Power in Astrophysics (Cambridge: Cambridge Univ. Press)
Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Gehrels, N. 1986, ApJ, 303, 336
Goodrich, R. W., et al. 2001, ApJ, 561, L23
Green, P. J., et al. 1995, ApJ, 450, 51
Gunn, J. E., et al. 1998, AJ, 116, 3040
Henry, P. J., et al. 1994, AJ, 107, 1270
Hewett, P. C., Foltz, C. B., & Chaffee, F. H. 1995, AJ, 109, 1498
Kaspi, S., Brandt, W. N., & Schade, M. D. 2000, AJ, 119, 2031
Kellermann, K. I., Sramek, R., Schmidt, M., Shafter, D. B., & Green, R. 1989, AJ, 98, 1195
Kraft, R. P., Burrows, D. N., & Nousek, J. A. 1991, ApJ, 374, 344
Maiolino, R., Mannucci, F., Baffa, C., Gennari, S., & Oliva, E. 2001, A&A, 372, L5
Miralda-Escudé, J. 2000, ApJ, 528, L1
Mukai, K. 2001, PIMMS Users’ Guide (Greenbelt: NASA/GSFC)
Pentericci, L., et al. 2002, AJ, in press (astro-ph/0112075)
Reeves, J. N., & Turner, M. J. L. 2000, MNRAS, 316, 234
Schneider, D. P., Schmidt, M., Hasinger, G., Lehmann, I., Gunn, J. E., Giaconi, R., Trümper, J., & Zamorani, G. 1998, AJ, 115, 1230
Schneider, D. P., et al. 2001, AJ, 121, 1232
Silverman, J. D., et al. 2002, ApJ, submitted (astro-ph/0201379)
Stark, A. A., Gammie, C. F., Wilson, R. W., Bally, J., Linke, R., Heiles, C., & Hurwitz, M. 1992, ApJS, 79, 77
Stoughton, C., et al. 2002, AJ, 123, 485
Vandenberg Berk, D. E., et al. 2001, AJ, 122, 549
Vignali, C., Brandt, W. N., Fan, X., Gunn, J. E., Kaspi, S., Schneider, D. P., & Strauss, M. A. 2001, AJ, 122, 2143
Weedman, D. W. 1986, Quasar Astronomy (Cambridge: Cambridge Univ. Press)
Weinberg, D. H., Miralda-Escudé, J., Hernquist, L., & Katz, N. 1997, ApJ, 490, 564
York, D. G., et al. 2000, AJ, 120, 1579
Zickgraf, F. J., Voges, W., Krautter, J., Thiering, I., Appenzeller, I., Mujica, R., & Serrano, A. 1997, A&A, 323, L21