Notes on the distribution, ecology, associated vegetation and conservation status of *Gymnadenia* (Orchidaceae) in Kosovo

Naim Berisha¹, Kimete Lluga Rizani¹, Bujar Kadriaj¹, Fadil Millaku¹,²

¹ Faculty of Mathematics and Natural Sciences, University of Prishtina, St. “Nena Tereze”, nn., 10 000 Prishtina, Kosovo ² Faculty of Agrobussines, University “Haxhi Zeka”, St. “UCK”, nn., 30 000, Peja, Kosovo

Corresponding author: Naim Berisha (naim.berisha@uni-pr.edu)

Abstract

Four species of *Gymnadenia* are native to Kosovo: *G. conopsea*, *G. frivaldii*, *G. nigra*, and *G. odoratissima*. In this study, field expedition data, phytosociological relevés, herbarium specimens along with extensive literature sources were used to analyse vegetation and ecological characteristics, habitat types, distributional patterns as well as provide notes on conservation. *Gymnadenia conopsea* is distributed throughout the country, from lowlands to the alpine belt. It was recorded in various plant communities. *Gymnadenia frivaldii* grows in the alpine zone of mountains, close to streams and in wet meadows. Its relevés belong to the class *Scheuchzerio-Caricetea fuscae*. This species is classified as “Near Threatened” (NT) in Kosovo. *Gymnadenia nigra* grows in subalpine and alpine grassland on preferably calcareous substrate. It has been found in almost all mountains reaching >2000 m a.s.l., and occurs in different plant communities belonging to the class: *Elyno-Seslerietea*. *Gymnadenia odoratissima* was recorded from one locality only in Kosovo, on the massif of Maja e Zezë, Sharri Mts. It was growing in degraded beech forest and meadows on silicate bedrock. Its floristically diverse relevés associate with the class: *Mulgedio-Aconitetea*. Of the four studied species, *G. frivaldii* deserves more conservation attention because of its fragile populations.

Keywords

Flora, orchids, plant conservation, phytosociology, SE Europe

Citation: Berisha N, Rizani KL, Kadriaj B, Millaku F (2021) Notes on the distribution, ecology, associated vegetation and conservation status of *Gymnadenia* (Orchidaceae) in Kosovo. Italian Botanist 12: 1–27. https://doi.org/10.3897/italianbotanist.12.65699
Introduction

As a result of various human activities in recent years, many plant species have become vulnerable, threatened or even extinct. In Kosovo, as in many other parts of Europe, increased agricultural and forestry activities, combined with a cessation of the traditional management of meadows, centralization of farming and expansion of urban areas has deprived many plant species from their natural habitats. The consequence of this being the confinement of once large plant populations to smaller areas, mainly in remote and fragile habitats.

Several studies have shown that habitat fragmentation and small, scattered plant populations adversely affect the genetic structure of a species (Young et al. 1996; Bateman et al. 2003). Fragmented populations are exposed to a higher risk of restricted gene flow and loss of genetic polymorphism (Franklin 1980; Frankel and Soulé 1981; Berisha et al. 2015). In the long term, probably the main adverse effect will be the inability of the species to adapt or respond to ever-changing environmental conditions (Ellstrand 1992).

The aim of different conservation programs nowadays is to preserve natural habitats and with it the existing level of genetic diversity, especially in the case of rare and endangered species (Ellstrand et al. 1993; Gray 1996). Knowing that in developing countries like Kosovo, available resources for the conservation of nature are limited, the identification of conservation priorities is of crucial importance.

Orchidaceae are a very diverse and species-rich family of plants, that represent nearly 10% of all angiosperm species. They are characterized by considerable floral diversity and a unique and often intricate pollination biology. The research focus on the biology of these plants has been mainly directed towards their pollination, adaptations to pollinators, evolution of pollination traits and the evolutionary outcomes of their unique biology (Schiestl et al. 1999; Huber et al. 2004; Cozzolino and Widmer 2005). Additionally, as the family contains numerous rare, threatened and endangered species, studies on members of the group are of fundamental importance in plant conservation efforts (Case et al. 1998; Ávila-Díaz and Oyama 2007; Tsiftsis et al. 2008, 2019).

In the present study, the genus Gymnadenia R.Br. (Orchidaceae) in Kosovo is studied with emphasis on its distribution, species composition, diversity, ecological and associated vegetation characteristics. Gymnadenia is represented in the country by four naturally occurring species: G. conopsea (L.) R.Br., G. frivaldii Hampe ex Griseb., G. nigra (L.) Rchb.f., and G. odoratissima (L.) Rich. Of these, only G. frivaldii is of conservation concern, being categorized as “Near Threatened” (NT) in the Kosovarian Red List of plant species. The main aims of the study were to: a) study the distribution of the four Gymnadenia species in Kosovo and understand their distributional patterns; b) conduct phytosociological relevés in order to provide information about the most common plant communities where these species grow and generally analyze their syntaxonomy; c) provide ecological characteristics for each species concerning EUNIS habitat type preferences; and d) assess conservation implications for G. frivaldii.
Materials and methods

The studied species

According to available literature sources, herbarium specimens as well as based on our own field data, in Kosovo there are four native Gymnadenia species. This study deals with: *G. conopsea* (L.) R. Br., *G. frivaldii* Hampe ex Griseb., *G. nigra* (L.) Rchb.f., and *G. odoratissima* (L.) Rich.

In this context, it is important to briefly discuss the taxonomic position of the species *Gymnadenia nigra* (L.) Rchb.f. Based on a study of this species by Teppner and Klein (1990), it was found that the natural distribution of *G. nigra* [homotypic synonym: *Nigritella nigra* (L.) Rchb. p.] is only in Scandinavia. Whereas in the Balkans *G. nigra* has been repeatedly erroneously reported and these specimens are in fact: *Gymnadenia rhellicani* (Teppner & E.Klein) Teppner & E.Klein [homotypic synonym: *Nigritella rhellicani* Teppner & E.Klein]. However, in the Euro+Med Plant Base (Euro + Med 2006+), on which we relied for the current study, such a conclusion is not yet supported. Consequently, we referred to the species as: *G. nigra*.

Revision of herbarium material and distribution data

In total, 179 herbarium specimens (from the Herbarium of the Faculty of Natural Sciences, University of Prishtina) as well as private herbarium collection of F. Rexhepi (41 specimens) – (see Appendix 2 for details) were studied; the majority of these samples were collected by our team during the compilation of the Red Book of the vascular flora of the Republic of Kosovo (Millaku et al. 2013) between 2009 and 2013.

Due to the fact that during the work for the Red Book, the main focus were certain natural habitats that were rich in endemic plants, some regions of the country remained poorly sampled. To compensate for this, we have conducted twenty-five additional expeditions (between 2014 and 2020) to those poorly explored areas, in order to be more confident that the presented data will allow for general conclusions about the investigated genus in Kosovo.

Plant samples were finally identified by F. Millaku, using identification keys and other relevant literature sources (Diklić 1976; Gözl and Reinhard 1986; Tutin 2010).

To establish the distribution of Gymnadenia species in Kosovo, the literature was extensively examined (Lakušić and Grgić 1971; Diklić 1976; Rexhepi 1986; Krivošej 1997; Randelović et al. 1998; Millaku 1999; Stevanović ed. 1999; Micevski 2001; Bate- man et al. 2006; Millaku ed. 2013; Ponert 2014; Djordjević et al. 2017). Determining the habitat type(s) for each species was done by comparing the habitat data where the species was recorded (from herbarium, literature and relevés) and finding the corresponding EUNIS habitat(s) according to Davies et al. (2004).
Vegetation data

To gain an overview of where the studied Gymnadenia species grow, in terms of phytosociological plant communities and certain related ecological preferences, a total of 15 phytosociological relevés were made (Appendix 1). Based on our field experience as well as from general knowledge from plant ecology, efforts have been made to conduct appropriate and representative phytosociological relevés.

Standard principles and methods of the Zürich-Montpellier school (Braun-Blanquet 1964; Mueller-Dombois and Ellenberg 1974) were applied. Depending on the habitat type, plot sizes of 10 × 10 m and 5 × 10 m respectively were used. For each plot, a complete list of vascular plants was recorded, alongside with cover-abundance values on a five-degree scale (Braun-Blanquet 1932). For the nomenclature of plant taxa, the Euro+Med Plant Base (Euro+Med 2006+) was followed. Relevés were made at elevations ranging from 140 to 2501 m a.s.l.; four relevés were made on communities with G. conopsea, four relevés on communities with G. frivaldii, four relevés on communities with G. nigra and three relevés on communities with G. odoratissima.

Based on diagnostic species, efforts have been made to offer a syntaxonomical classification of these relevés up to the level of Alliance. For this purpose, Mucina et al. (2016), Rexhepi (1994) and Sarić and Kojić (1984) were followed.

Data analysis

Using data obtained from herbarium specimens, phytosociological relevés as well as from literature, we were able to analyze the following parameters: altitude preferences, a set of ecological values (nutrients, pH reaction, moisture, continentality, temperature and light) from accompanying species of plants, using Pignatti indicator values (Pignatti et al. 2005). EUNIS corresponding natural habitat types (Davies et al. 2004) were defined for each species. Additionally, data on the overall species richness (from relevés) and richness of endemic taxa were compared. All of the geographical distributional data were mapped to show the distribution of Gymnadenia species in Kosovo (Fig. 1). R software (R Core Team 2013) for statistical computing was used to do the comparative analysis and generate the graphs.

Results

Distribution of Gymnadenia species in Kosovo based on herbarium and field data

Based on the studied herbarium specimens, data collected from field surveys as well as literature sources, the presence of four Gymnadenia species is confirmed in a total of 88 different localities across Kosovo.

Within these localities, G. conopsea is clearly the most abundant species. Its presence has been confirmed in 60 localities and considering its ecological preferences, the species
Gymnadenia species in Kosovo

Gymnadenia species in Kosovo may have an even broader distribution across the country. Gymnadenia nigra is confirmed in 28 localities while G. frivaldii in 26 localities in Kosovo. Gymnadenia odoratissima is known so far to be present in only one locality in Kosovo (Appendix 2, Fig. 1).

Ecological characteristics and species preferences

Based on the obtained data from 15 phytosociological relevés, general data on each species preferences were evident. In terms of species distribution at different elevations, it was ascertained that the studied species show a narrow distributional preference (Fig. 2). It was established that G. conopsea had a preference for lower altitudes...
(≤1000 m a.s.l.), though it had a wider distributional range. *Gymnadenia frivaldii* showed a greater preference for higher altitudes (>2100 m a.s.l.) and had a wider distribution range compared to *G. nigra*. As for *G. odoratissima*, this parameter shows a narrow median weight due to the fact that is known from a single locality at ~1700 m a.s.l.

Concerning soil fertility and nutrients availability, it was established that all four *Gymnadenia* species communities grow on relatively poor soils, with an average value of 3. In this context, *G. nigra* communities can be distinguished with the lowest median weight compared to *G. frivaldii* and *G. odoratissima* that prefer slightly more nitrogen rich soils (Fig. 3, boxplot 1). As for soil pH reaction (Fig. 3, boxplot 2), it was observed that four studied species communities have a general preference for alkaline soils. Though six relevés were made on silicate soils, the occasionally deep, accumulated soil has a significant effect on reducing acidic influence of soil pH. In terms of soil moisture (Fig. 3, boxplot 3), it was established that plant communities of the four *Gymnadenia* species have a general preference for medium-wet soils, with *G. frivaldii* in particular, preferring wetter soils. With regard to climate-continentality (C) values, it was clear that there are no oceanic species and the average (Fig. 3, boxplot 4) value of 5 is general for all studied species communities. The temperature (T) preferences (Fig. 3, boxplot 5) associate also with the community occurrences at respective elevations above sea level. But, additionally it relates to cold or warm habitats of Europe. In this context, apparent distinction in preferences has been observed namely between communities of *G. conopsea* (6) and *G. nigra* (3). As for light preferences (Fig. 3, boxplot 6), it was obvious that all studied communities have a clear preference for growing under full light, a preference particularly pronounced in the case of *G. nigra*.

Regarding general species richness of all plant communities of the four respective species (Fig. 4, boxplot 1), communities of *G. nigra* and *G. odoratissima* were
particularly distinguished by a large number of plant species. The other analyzed parameter, the number of endemic plant taxa per plant communities of a species, showed that plant communities of *G. nigra* (Fig. 4, boxplot 2) were particularly rich in endemics, while those of *G. conopsea* are notably poor. In this regard, *G. frivaldii* communities were rich in endemics too.

Vegetation characteristics

From 15 phytosociological relevés, after syntaxonomical analysis (relying on differential/characteristic species), it was noted that they belong to six different Classes (Appendix 1), with *Elyno-Seslerietea* Br.-Bl. 1948 (Class of vegetation that entails swards of Alpine and subalpine ranges of Europe) being the most abundant, in terms of relevé numbers.

Four relevés were made with *G. conopsea* communities. Three relevés fall into the alliance *Chrysopogono-Danthonion calycinae* Kojić 1959 (Dry grasslands on deep soils) and the other one into the alliance *Trifolion resupinati* Micevski 1957 (Vegetation of wet meadows).
Four relevés were made with *G. frivaldii* communities. As related with its typical natural habitats, the recorded plant communities (3) belonged to the alliance *Narthecion scardici* Horvat ex Lakušić 1968 (Relict moderately-rich fens of the Balkans) and the remaining one belongs to the alliance *Cirsion appendiculati* Horvat et al. 1937 (Tall-herb vegetation on acidic soils along mountain streams).

Additional four relevés were made with plant communities of *G. nigra*. They all fell into the alliance *Seslerio juncifoliae-Caricion firmae* Trinajstić 2005 (Alpine calcicolous sedge swards in wind-exposed habitats in the alpine belt of the Illyrian region and the Northern Dinarides). These four relevés were characterized by an exceptionally high number of associated endemic plant taxa (Fig. 4, boxplot 2).

Finally, a set of three relevés were made with plant communities where also *G. odoratissima* was growing. Due to a confined habitat (in Maja e Zezë, Sharri Mts.), it was quite difficult to record the relevé data. Two of these relevés, after analysis have shown affiliation to the alliance *Cirsion appendiculati* Horvat et al. 1937 (tall-herb vegetation on acidic soils along mountain streams and water springs at high altitudes), while the third one belonged to the alliance *Epilobion angustifolii* Oberd. 1957 (tall-herb perennial semi-natural vegetation on acidic soils of forest margins).

Discussion

Distributional patterns, habitat type and general environmental characteristics

As expected, all four species of the genus *Gymnadenia* follow different distribution patterns in Kosovo. *Gymnadenia conopsea* is a widely distributed species in Europe. In south-eastern Europe, it is common in the Carpathians, Hungary, Romania, the Balkan Peninsula and up to southern Russian and Ukrainian peninsula of Crimea. In all of these areas, it tends to occur at higher elevations, usually >800 m a.s.l. (Meekers et al. 2012). In Kosovo it represents the most common species of the genus. It was recorded in different habitats ranging from 750 m up to 1550 m a.s.l. As we had records on silicate as well as calcareous substrates, it indicates that this species can successfully grow in either one of these substrate types. Due to the wide distribution of the species, we are convinced that especially *G. conopsea* must have an even wider distribution than we depict on the map (Fig. 1). From the available data, it was confirmed in the following EUNIS Habitat types in Kosovo: E2.1 Permanent mesotrophic pastures and aftermath-grazed meadows; E3.3 Sub-mediterranean humid meadows; E1.2 Perennial calcareous grassland and basic steppes; E1.7 Non-Mediterranean dry acid and neutral closed grassland; E1.73 *Deschampsia flexuosa* grasslands; E4.31 Alpic *Nardus stricta* swards and related communities; and E4.4 Calcareous alpine and subalpine grassland.

From this genus in Kosovo, undoubtedly one of the rarest and most fragile species is the Balkan endemic *G. frivaldii*. It is worth noting that this species previously has been assigned to the genus *Pseudorchis* Ség. (syn.: *Leuorchis* E.May) and just recently, molecular based analysis has confirmed that it belongs to the genus *Gymnadenia*.
Gymnadenia

species in Kosovo

9

(Bateman et al. 2003). Gymnadenia frivaldii is a species with a relatively small range in Europe limited to high-mountain belts on the Carpathians and the central and eastern Balkans (Delforge 2006). It has been reported for Albania, Kosovo, North Macedonia, Greece, Romania, Bulgaria, Montenegro, and Serbia (Điklić 1976; Bateman et al. 2006; Millaku ed. 2013, Djordjević et al. 2016, 2017; Berisha et al. 2020). This species prefers to grow on silicate substrates in fen communities and wet meadows of subalpine and alpine areas; occasionally it has also been recorded in pastures (of calcareous substrates too) as well as shrubs of the same altitudes in the mountains (Millaku ed. 2013). It has been reported (Djordjević et al. 2016) that this species is an indicator of an entire class (Scheuchzerio palustris-Caricetea fuscae Tx. 1937) of sedge-moss vegetation of fens in our region. The elevation distributional range was 1500–2600 m a.s.l. From the available data, mainly from the herbarium specimens, it was confirmed in the following EUNIS Habitat types in Kosovo: D2.2 Poor fens and soft-water spring mires; D2.22 Carex nigra, Carex canescens, Carex echinata fens; D2.26 Eriophorum angustifolium fens; D2.282 Balkan Willemetia fens; D2.3 Transition mires and quaking bogs and D2.38 Sphagnum and Eriophorum rafts.

Gymnadenia nigra was recorded on calcareous substrates of sub-alpine and alpine grasslands, or almost on all mountains exceeding 2000 m a.s.l. Based on the available data, it was confirmed in the following EUNIS Habitat types in Kosovo: E4.4 Calcareous alpine and subalpine grasslands; E1.7 Non-Mediterranean dry acid and neutral closed grassland and E1.72 Agrostis-Festuca grassland. All four relevés (Appendix 1) with this species, syntaxonomically fall into the Alliance: Seslerio juncifoliae-Caricion firmae Trinajstić 2005 (Alpine calcicolous sedge swards in wind-exposed habitats), though it has been reported also in different plant communities growing on limestone substrates (Rexhepi 1994). Also G. nigra previously has been assigned to Nigritella Rich. and Orchis Tourn. ex L., but phylogenetic studies (Bateman et al. 2003) have proved that it belongs to the genus Gymnadenia.

Gymnadenia odoratissima, a species very similar to G. conopsea, has an extensive distribution range in Europe. It is recorded from Spain in the west up to Ukraine in the east. Common in the mountain ranges of central Europe, up to the Sweden in the north and has been recorded also in Greece to the south. In Kosovo, Maja e Zezë massif represents the only known habitat of this species. It was recorded on silicate substrate, scattered in an area of ~1700 m², at an elevation ranging from 1680 m up to 1800 m a.s.l. Its corresponding habitat type was that of (EUNIS - E5.5721) Moesian Balkan thistle tall herb communities, and at the forest (rather degraded) margins of (EUNIS - G1.6933), namely the Balkan range subalpine beech forests.

Vegetation analysis

Of the four relevés with G. conopsea (Relevés 1–4, Appendix 1), relevés 1, 3 and 4 belonged to the Alliance: Chrysopogono-Danthonion calycinae Kojić 1959, with the following species being dominant: Polygala major Jacq., Hypochaeris maculata L., Festuca nigrescens Lam., Danthonia alpina Vest. and Sanguisorba minor Scop. The richest relevé in
terms of number of plant taxa was relevé no. 4., with 36 recorded plant taxa. Relevé no. 2 belonged to the Alliance: *Trifolion resupinati* Micevski 1957. It was recorded at a lower elevation (140 m) compared with the other ones of this group. The most dominant species in this relevé were: *Hordeum secalinum* Schreb. and *Trifolium fragiferum* L. As it is known, *G. conopsea* has a wider, more complex distributional range, though we aimed at offering its most common plant communities for comparative reasons. It was not our aim to define its syntaxonomical status, though this study can assist in that matter.

Of the four relevés with *G. frivaldii* (Relevés 5–8, Appendix 1), relevés 5, 6 and 8 belonged to the Alliance: *Narthecion scardici* Horvat ex Lakušić 1968. In these three calcareous relevés, the following plant taxa have been recorded as dominant ones: *Narthecium scardicum* Košanin, *Pinguicula balcanica* Casper, *Gymnadenia frivaldii* Hampe ex Griseb., *Eriophorum angustifolium* Honck. and *Pinguicula leptoceras* Rchb. Relevé no. 7 belonged to the Alliance: *Cirsion appendiculati* Horvat et al. (1937) based on its differential taxa. The most dominant plant taxa were: *Cirsium appendiculatum* Griseb., *Eriophorum angustifolium* Honck., *Agrostis canina* L. and *Caltha palustris* L. With a total of 31 recorded plant taxa, this was the relevé with the richest floristic diversity.

All four relevés with *G. nigra* (Relevés 9–12, Appendix 1) shared similar characteristics as they were all recorded on calcareous substrates. They all belonged to the alliance: *Seslerio juncifoliae-Caricion firmae* Trinajstić 2005, and the following taxa were recorded as dominant ones: *Helianthemum nummularium* (L.) Mill., *Dryas octopetala* L., *Oxytropis jacquinii* Bunge, *Helianthemum canum* (L.) Baumg., *Bistorta vivipara* (L.) Delarbre and *Gymnadenia nigra* (L.) Rchb.f. All relevés with *G. nigra* had high number of recorded plant taxa, with relevé no. 10 having 72 plant taxa recorded on one sampling site.

Of the three relevés with *G. odoratissima* (Relevés 13–15, Appendix 1), relevés 13 and 14 most likely should belong to the Alliance: *Cirso appendiculata* Horvat et al. (1937), with the following taxa recorded as dominant ones: *Barbarea balcanica* Pančić, *Eriophorum latifolium* Hoppe, *Caltha palustris* L., *Cirsium appendiculatum* Griseb., *Cardamine pratensis* L., and *Helianthemum nummularium* (L.) Mill. While the other remaining relevé on silicates (relevé no. 15) most likely should belong to the Alliance: *Epilobion angustifolii* Oberd. 1957. *Epilobium angustifolium* L. is the most dominant plant taxon in this relevé, as a characteristic species for the forest edges on silicate as well as a potential indicator of previously burned habitats or man-induced deforestation. High cover-abundance values on this relevé had also: *Salix caprea* L., *Pimpinella saxifraga* L. and *Avenella flexuosa* (L.) Drejer.

In the context of the vegetation diversity assessment, from only 15 relevés it was noticeable a very diverse vegetation affiliation by these four species of *Gymnadenia*. Four relevés belonged to *Elyno-Seslerietea*, three relevés to *Festuco-Brometea*, *Schuchezrio palustris-Caricieta fuscae* and *Mulgedio-Aconitetea* respectively, and finally one releve belonged to *Epilobietea angustifolii* and *Molinio-Arrhenatheretea* respectively.

Commonly, all strategies for measuring biodiversity involve protecting a single species or several species of a given genus. Vegetation ecology contributes towards a better understanding of species indices of threats and a variety of interrelated paradigms...
in ecology (Cornell and Karlson 1996; Austin 1999). Furthermore, it also gives an incomparable insight into understanding the complex relationships between plant diversity, vegetation cover and site conditions (Wiesmair et al. 2017).

Conservation aspects

Although all of the four investigated Gymnadenia species are included in the European Red List of Vascular Plants (Bilz et al. 2011), all categorized as “LC” [Least Concern], more attention should be paid to those species that are more vulnerable and have fragmented habitats.

From this point of view, G. frivaldii is characterized by limited populations and a small number of mature individuals, with the exception of those in the Mts. of Gjeravica and Dobrosh. Nonetheless, since species populations are observed to be stable, its categorization as Near Threatened [NT] (Millaku ed. 2013) in Kosovo is completely reasonable.

Due to the large number of associated endemic species and their importance, we suggest that G. nigra populations in Kosovo also be assessed against conservation criteria and that monitoring measures be taken. In addition, the single population of G. odoratissima should be carefully monitored, as it represents the only habitat of the species in Kosovo.

Conclusions

Like all members of the Orchidaceae, Gymnadenia species are under pressure in the wild, primarily for their ornamental merits. These species also face many other threats in the wild, but are mainly affected by the loss, degradation or increasing fragmentation of their natural habitats. This habitat fragmentation is caused by human impacts on the natural environment.

Due to the fact that populations of G. frivaldii grow in habitats near watercourses and wet meadows, the conservation and management of these resources is directly related to the sustainability of the habitats that host them and many accompanying species.

The data presented in this study can help in the decision-making processes of the relevant agencies to implement appropriate conservation programs as well as further research.

Acknowledgements

We are indebted to our colleague in the Department of Geography, Valbon Bytyqi (FNMS), for the help provided with the map. We are also very grateful to the late Ferat Rexhepi (FNMS) for providing us with additional data and also for sharing his private herbarium collections. In addition, we would like to thank the two anonymous reviewers whose comments and suggestions helped to improve the original manuscript.
References

Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22: 465–484. https://doi.org/10.1111/j.1600-0587.1999.tb01276.x

Ávila-Díaz I, Oyama K (2007) Conservation genetics of an endemic and endangered epiphytic *Laelia speciosa* (Orchidaceae). American Journal of Botany 94(2): 184–193. https://doi.org/10.3732/ajb.94.2.184

Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW (2003) Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Botanical Journal of the Linnean Society 142: 1–40. https://doi.org/10.1046/j.1095-8339.2003.00157.x

Bateman RM, Rudall PJ, James KE (2006) Phylogenetic context, generic affinities and evolutionary origin of the enigmatic Balkan orchid *Gymnadenia frivaldii* Hampe ex Griseb. Taxon 55: 107–118. https://doi.org/10.2307/25065532

Berisha N, Ćušterevska R, Millaku F, Kostadinovski M, Matevski V (2020) Contribution to the knowledge on the flora of Mt. Luboten, Sharri Mts., Kosovo. Thaiszia Journal of Botany 30(2): 115–160. https://doi.org/10.33542/TJB2020-2-01

Berisha N, Millaku F, Gashi B, Krasniqi E, Novak J (2015) Initial determination of DNA polymorphism of some *Primula veris* L. populations from Kosovo and Austria. Physiology and Molecular Biology of Plants 21(1): 117–122. https://doi.org/10.1007/s12298-014-0275-x

Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union.

Braun-Blanquet J (1932) Plant sociology: the study of plant communities. McGraw-Hill, New York, 439 pp.

Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer-Verlag, Wien and New York, 880 pp. https://doi.org/10.1007/978-3-7091-8110-2

Case MA, Mlodozeniec HT, Wallace LE, Weldy TW (1998) Conservation genetics and taxonomic status of the rare Kentucky ladys slipper: *Cypripedium kentuckiense* (Orchidaceae). American Journal of Botany 85(12): 1779–1786. https://doi.org/10.2307/2446512

Cornell HV, Karlson RH (1996) Species richness of reef-building corals determined by regional and local processes. Journal of Animal Ecology 65: 233–241. https://doi.org/10.2307/5726

Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends in Ecology & Evolution 20(9): 487–494. https://doi.org/10.1016/j.tree.2005.06.004

Davies CE, Moss D, Hill MO (2004) EUNIS Habitat Classification – Revised 2004. European Topic Centre on Nature Protection and Biodiversity, Paris.

Delforge P (2006) Orchids of Europe, North Africa and the Middle East. London: A.,C. Black. Timber Press, 592 pp.

Diklić N (1976) Orchidaceae Lindl. In: Josifović M (Ed.) Flora of SR Srbija 8. Serbian Academy of Sciences and Arts, Belgrade, 36–116.

Djordjević V, Lakušić D, Jovanović S, Stevanović V (2017) Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain. Wulfenia 24: 143–162.
Gymnadenia species in Kosovo

Djordjević V, Tsiftsis S, Lakušić D, Jovanović S, Stevanović V (2016) Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Systematics and Biodiversity 14(4): 355–370. https://doi.org/10.1080/14772000.2016.1151468

Ellstrand NC (1992) Gene flow among seed plant populations. New Forests 6: 241–256. https://doi.org/10.1007/BF00120647

Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology, Evolution, and Systematics 24: 217–242. https://doi.org/10.1146/annurev.es.24.110193.001245

Euro + Med (2006+ [continuously updated]) Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ [accessed 07 Jul 2020]

Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge.

Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (Eds) Conservation Biology: an Evolutionary Ecological Perspective. Sinauer, Sunderland, MA, 135–149.

Gölz P, Reinhard HR (1986) Orchideen in Jugoslawien. Mitteilungsbl. Arbeitskreises Heimische Orchid. Baden-Württemberg 18: 689–827.

Gray AJ (1996) Genetic diversity and its conservation in natural populations of plants. Diversity Letters 3: 71–80. https://doi.org/10.2307/2999720

Huber, FK, Kaiser R, Sauter W, Schiestl FP (2004) Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142(4): 564–575. https://doi.org/10.1007/s00442-004-1750-9

Krivošej Z (1997) Vascular flora of Mt Ošljak. Dissertation, Faculty of Biology, University of Belgrade.

Lakušić R, Grgić P (1971) Ecology and distribution of the endemic species: Narthecium scardicum, Pinguicula balkanica, Gymnadenia friwaldii and Silene asterias. Ekologija 6(2): 337–350.

Meekers T, Hutchings MJ, Honnay O, Jacquemyn H (2012) Biological Flora of the British Isles: Gymnadenia conopsea s.l. Journal of Ecology 100(5): 1269–1288. https://doi.org/10.1111/j.1365-2745.2012.02006.x

Micevski K (2001) Flora of the Republic of Macedonia. MANU Skopje 1(5): 1121–1430.

Millaku F (1999) Subalpine and alpine flora of the Albanian Alps of Kosovo. PhD Thesis, Faculty of Mathematics and Natural Sciences, University of Pristina, Kosovo.

Millaku F [Ed.], Rexhepi F, Krasniqi E, Pajazitaj Q, Mala Xh, Berisha N (2013) The Red Book of Vascular Flora of the Republic of Kosovo – 1. MESP, Pristina, 435 pp.

Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, García RG, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovic M, Schaminee JHJ, Lysenko T, Didukh PD, Pignatti S, Rodwell SJ, Capelo J, Weber EH, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SH, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19(5): 3–264. https://doi.org/10.1111/avsc.12257
Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, London, 547 pp.

Pignatti S, Menegoni P, Pietrosanti S (2005) Valori di bioindicazione delle piante vascolari della Florad’Italia. Bioindicator values of vascular plants of the Flora of Italy. Braun-Blanquetia 39: 3–95.

Ponert J (2014) Contribution to the orchids of Republic of Macedonia and Serbia. Journal Europäischer Orchideen 46: 561–577.

R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

Ranđelović V, Zlatković B, Amidžić L (1998) Flora and vegetation of high-mountain fens of Mt Šar planina. Zaštita Prirode 50: 377–387.

Rexhepi F (1986) Flora of high mountains of Kosovo. ETMM, Prishtina, 219 pp.

Rexhepi F (1994) Vegetation of Kosovo. FNSM, University of Prishtina, 140 pp.

Sarić RM, Kojić M [Eds] (1984) Vegetation of SR Serbia 1.–Serbian Academy of Sciences and Arts. Belgrade, 408 pp.

Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399: 421–422. https://doi.org/10.1038/20829

Stevanović V [Ed.] (1999) The Red Data Book of Flora of Serbia 1: Extinct and critically endangered taxa. Belgrade: Ministry of Environment of the Republic of Serbia, Faculty of Biology, University of Belgrade, Institution for Protection of Nature of the Republic of Serbia.

Teppner H, Klein E (1990) Nigritella rhellicani spec, nova und N. nigra (L.) Rchb. f. s. str. (Orchidaceae – Orchideae). Phyton (Horn, Austria) 31(1): 5–26.

Tsiftsis S, Djordjević V, Tsiripidis I (2019) Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: Threat status and effectiveness of Natura 2000 Network for its conservation. Journal for Nature Conservation 48: 27–35. https://doi.org/10.1016/j.jnc.2019.01.006

Tsiftsis S, Tsiripidis I, Karagiannakidou V, Alifragis D (2008) Niche analysis and conservation of the orchids of east Macedonia (NE Greece). Acta Oecologica 33(1): 27–35. https://doi.org/10.1016/j.actao.2007.08.001

Tutin TG, Walters SM, Valentine DH, Moore DM, Burges NA, Heywood VH (2010) Flora Europaea (Vol. 5). Cambridge University Press, Cambridge, 506 pp.

Wiesmair M, Otte A, Waldhardt R (2017) Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus. Biodiversity Conservation 26: 273–291. https://doi.org/10.1007/s10531-016-1240-5

Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11: 413–418. https://doi.org/10.1016/0169-5347(96)10045-8
Appendix 1

Phytosociological table of 15 relevés. Species of Gymnadenia shown in bold and with grey shaded background.

Relevé syntaxonomic categories – (Class, Order and Alliance)	Number of relevé	Plot area (m²)	Inclination in degree	Exposition	Altitude (m.a.s.l)	Covering (%)	Substrate	Locality
Gymnadenia species in Kosovo	1	100	100	W	1400	95	Silicate	Brezovicë
	2	100	100	SE	140	100	Silicate	Zhleb
	3	100	100	SE	800	100	Silicate	Maja e
	4	100	100	SE	1847	100	Silicate	Maja e
	5	100	100	SE	95	100	Silicate	Maja e
	6	100	100	SE	11	100	Silicate	Maja e
	7	100	100	SE	1509	100	Silicate	Maja e
	8	100	100	SE	2324	100	Silicate	Maja e
	9	100	100	SE	2324	100	Silicate	Maja e
	10	100	100	SE	2324	100	Silicate	Maja e
	11	100	100	SE	2324	100	Silicate	Maja e
	12	100	100	SE	2324	100	Silicate	Maja e
	13	100	100	SE	2324	100	Silicate	Maja e
	14	100	100	SE	2324	100	Silicate	Maja e
	15	100	100	SE	2324	100	Silicate	Maja e

Phytosociological categories – (Class, Order and Alliance):
- Gymnadenio appendiculati-Caricetea fuscae / Ord.: Caricetalia fuscae (Čelak.) Jalas
- Chrysophano-Danthonio calycinae / Ord.: Brachypodietalia pinnati (Čelak.) Jalas
- Trifidion ernestii-Microtus / Ord.: Calamagrostido-Brometea

Species of Gymnadenia shown in bold and with grey shaded background:
- Gymnadenia conopsea (L.) R.Br.
- Scabiosa columbaria L.
- Leontodon hispidus L.
- Anacamptis morio (L.) R.M.Bateman & al.
- Parnassia gigantea Lam.
| Apera cynosbati L. | 1 | | | | | | | | | | | | | |
| Trifolium pratense L. | 1 | | | | | | | | | | | | | |
| Campanula patula L. | 1 | | | | | | | | | | | | | |
| Bromus arvensis L. | | | | | | | | | | | | | | |
| Ribes nigrum L. | 2 | | | | | | | | | | | | | |
| Gentianella lutea (Veen.) Holub | 1 | | | | | | | | | | | | | |
| Gentiana aconitifolia L. | 1 | | | | | | | | | | | | | |
| Euphrasia rostkoviana Hayne | 1 | | | | | | | | | | | | | |
| Arvenella flexuosa (L.) Drejer | 1 | | | | | | | | | | | | | |
| Pilosella hirsuta (Schult. & Schultf.) Sch.Fisch. & Sch.Bip. | 1 | | | | | | | | | | | | | |
| Veratrum album L. | | | | | | | | | | | | | | |
| Gentiana lutea (Veen.) Holub | 1 | | | | | | | | | | | | | |
| Antennaria dioica (L.) Gaertn. | 1 | | | | | | | | | | | | | |
| Silene viscaria (L.) Jess. | 1 | | | | | | | | | | | | | |
| Ranunculus montanus Willd. | 1 | | | | | | | | | | | | | |
| Briza media L. | + | | | | | | | | | | | | | |
| Lotus corniculatus L. | + | | | | | | | | | | | | | |
| Genista tinctoria L. | 1 | | | | | | | | | | | | | |
| Hordeum secalinum L. | 4 | | | | | | | | | | | | | |
| Trifolium fragiferum Schreb. | | | | | | | | | | | | | | |
| Pfa trivialis subsp. syriaca (Guss.) H.Lindb. | 3 | | | | | | | | | | | | | |
| Ranunculus sceleratus Crantz | 2 | | | | | | | | | | | | | |
| Alsophila rugulosa Sol. | 2 | | | | | | | | | | | | | |
| Oenanthe silens L. | 1 | | | | | | | | | | | | | |
| Trifolium pratense L. | | | | | | | | | | | | | | |
| Bromus secalinus L. | | | | | | | | | | | | | | |
| Potentilla reptans L. | 1 | | | | | | | | | | | | | |
| Schedonorus pratensis (Huds.) P.Beauv. | | | | | | | | | | | | | | |
| Trifolium repens L. | | | | | | | | | | | | | | |
| Ranunculus acris L. | | | | | | | | | | | | | | |
| Lolium perenne L. | | | | | | | | | | | | | | |
Common Name	Order	Family	Genus	Species
Gymnadenia species	---	---	Gymnadenia	---

Relevé syntaxonomic categories – (Class, Order and Alliance)

All	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea
ALL: Chrysopogono-Danthonion calycinae	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea
ALL: Chrysopogono-Danthonion calycinae	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea
ALL: Chrysopogono-Danthonion calycinae	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea
ALL: Chrysopogono-Danthonion calycinae	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea	Festuco-Brometea

Species

Gymnadenia species in Kosovo

- Trinajstić 2005 [Cl.: Molinio-Verbehnio] (L.)
- Horvat ex Lakušić 1968 [Cl.: Caricion firmae]
- Kojić 1959 [Cl.: Horvitio]
- Horvat et al. 1937 [Cl.: Mulgedio-Scop.]
- Kojić 1959 [Cl.: Horvitio]
- Trinajstić 2005 [Cl.: Molinio-Verbehnio]
- Horvat et al. 1937 [Cl.: Mulgedio-Scop.]
| Relevé syntaxonomic categories – (Class, Order and Alliance) | Trifolion resupinati Micevski 1957 [Cl.: Molino-Caricetea fuscae / Ord.: Caricetalia fuscae] | Chrysopogono-Danthonion calycinae Kojić 1959 [Cl.: Festuco-Brometea / Ord.: Brachypodietalia pinnati] | Cirsion appendiculati Horvat et al. 1937 [Cl.: Mulgedio-Deschampsietea] | Aconitetea / Ord.: Adenostyletalia allii | Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici | Seslerio juncifoliae-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] | Sarcocephalo-Danthonietea / Ord.: Festuco-Brometea | Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae | Aconiteto-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] | Seslerio juncifoliae-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] | Aconiteto-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] | Aconiteto-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] | Aconiteto-Caricion firmae Triñajstić 2005 [Cl.: Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae] |
|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Helleborus odorus Wild. | | | | | | | | | | | | | |
| Lysimachia nummularia L. | | | | | | | | | | | | | |
| Ranunculus repens L. | | | | | | | | | | | | | |
| Scilla bifolia L. | | | | | | | | | | | | | |
| Viola elegans L. | | | | | | | | | | | | | |
| Euphorbia cyrtoidea DC. | | | | | | | | | | | | | |
| Centaurea scabiosa L. | | | | | | | | | | | | | |
| Aralia hispida (L.) Scop. | | | | | | | | | | | | | |
| Hypericum perforatum L. | | | | | | | | | | | | | |
| Dactylis glomerata L. | | | | | | | | | | | | | |
| Phleum repens L. | | | | | | | | | | | | | |
| Koelreuteria paniculata (L.) DC. | | | | | | | | | | | | | |
| Viola elegans L. | | | | | | | | | | | | | |
| Primula vulgaris L. | | | | | | | | | | | | | |
| Saxifraga oppositifolia L. | | | | | | | | | | | | | |
| Trifolium pratense L. | | | | | | | | | | | | | |
| Cirsium arvense (L.) Scop. | | | | | | | | | | | | | |
| Carum carvi L. | | | | | | | | | | | | | |
| Nasturtium officinale R. Br. | | | | | | | | | | | | | |
| Pinguicula vulgaris L. | | | | | | | | | | | | | |
| Carex nigra (L.) Reichenb. | | | | | | | | | | | | | |
| Gymnadenia frivaldii Hammer cv. Griseb. | | | | | | | | | | | | | |
| Trifolium pratense L. | | | | | | | | | | | | | |
| Primula vulgaris L. | | | | | | | | | | | | | |
| J.F.Gmel. Silene caroliniana DC. | | | | | | | | | | | | | |
| Dracunculus vulgaris (Fr.) Soo | | | | | | | | | | | | | |
| Juncus trifolium Ten. | | | | | | | | | | | | | |
Gymnadenia species in Kosovo

Relevé syntaxonomic categories – (Class, Order and Alliance)

Taxon Name	Class	Order	Alliance	Family	Genus	Species	Synonym
Turnusia paederus L.	-	-	-	-	-	-	-
Phlemitis seriata Mitt.	-	-	-	-	-	-	-
Eriophorum angustifolium Honck.	-	-	-	-	-	-	-
Deschampsia cespitosa (L.) P.Beauv.	-	-	-	-	-	-	-
Elatioris acicularis (L.) Roem. & Schult.	-	-	-	-	-	-	-
Carex leptodactyla Tausch	-	-	-	-	-	-	-
Dianthus superbus L.	-	-	-	-	-	-	-
Carex flava	-	-	-	-	-	-	-
Juncus effusus	-	-	-	-	-	-	-
Sanguisorba officinalis L.	-	-	-	-	-	-	-
Blysmus compressus (L.) Link	-	-	-	-	-	-	-
Iris pseudacorus L.	-	-	-	-	-	-	-
Agrostis canina L.	-	-	-	-	-	-	-
Carex kitaibeliana Weihe	-	-	-	-	-	-	-
Ranunculus fontanus C.Presl	-	-	-	-	-	-	-
Barbaea longinervis Velen.	-	-	-	-	-	-	-
Carex micrantha Wald. & Kit.	-	-	-	-	-	-	-
Lemmopappus crispus Vill.	-	-	-	-	-	-	-
Carex kitaibeliana Weihe	-	-	-	-	-	-	-
Nana stricta L.	-	-	-	-	-	-	-
Selaginella selaginoides (L.) Schrank & Murr.	-	-	-	-	-	-	-
Saxifraga rotundifolia L.	-	-	-	-	-	-	-
Silene pusilla Wald. & Kit.	-	-	-	-	-	-	-
Soldanella alpina L.	-	-	-	-	-	-	-
Crepis aurea subsp. glabrescens (Cerbel) Arcang.	-	-	-	-	-	-	-
Daucus carota	-	-	-	-	-	-	-
Dactylorhiza maculata (L.) Soó	-	-	-	-	-	-	-
Equisetum palustre L.	-	-	-	-	-	-	-
Viola aetolica Boiss. & Heldr.	-	-	-	-	-	-	-
Plantago lanceolata L.	-	-	-	-	-	-	-
Plant Species	Frequency	Order and categories – (Class, Order and Alliance)					
---------------	-----------	--					
Cirsium appendiculatum	3	**Festuco-Brometea / Ord.: Brachypodietalia pinnati**					
Cardamine pratensis L.	1	**Arrhenatheretea / Ord.: Trifolio-Hordeetalia**					
Helianthemum nummularium (L.) Mill.	1	**Chrysopogono-Danthonion calycinae / Festuco-Brometea / Ord.: Brachypodietalia pinnati**					
Carex curvula All.	2	**Scheuchzerio palustris-Caricetea fuscae / Ord.: Caricetalia fuscae**					
Alchemilla hybrida (L.) Schloss.	1	**Trifolio-Cardion caniume / Ord.: T rifolio-Hordeetalia**					
Gentianum sylvaticum L.	1	**Cirsion appendiculati / Ord.: Adenostyletalia alliariae**					
Geum coccinum Sibth. & Sm.	1	**Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae**					
Ranunculus bryoninus Crantz.	1	**Narthecion scardici / Ord.: Adenostyletalia alliariae**					
Hypnum cyrtostichum Hoffm.	1	**Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici**					
Calamagrostis varia (Schrad.) Host subsp. varia	1	**Scheuchzerio palustris-Caricetea fuscae / Ord.: Caricetalia fuscae**					
Mentha longifolia (L.) L.	1	**Chrysopogono-Danthonion calycinae / Festuco-Brometea / Ord.: Brachypodietalia pinnati**					
Festuca adscendens (St.-Yves) Markge.-Dann.	1	**Trifolio-Cardion caniume / Ord.: T rifolio-Hordeetalia**					
Veronica chamaedrys L.	1	**Cirsion appendiculati / Ord.: Adenostyletalia alliariae**					
Pedicularis brachypodonta Schloss. & Vuk.	1	**Narthecion scardici / Ord.: Adenostyletalia alliariae**					
Pinguiicula leptocephala Rchb.	1	**Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici**					
Ranunculus diverti Kämmerle & Jäg.	1	**Chrysopogono-Danthonion calycinae / Festuco-Brometea / Ord.: Brachypodietalia pinnati**					
Trollius europaeus L.	1	**Trifolio-Cardion caniume / Ord.: T rifolio-Hordeetalia**					
Saxifraga stellaris Kümmerle & Jäv.	1	**Cirsion appendiculati / Ord.: Adenostyletalia alliariae**					
Phyllitis scolopendrium L.	1	**Narthecion scardici / Ord.: Adenostyletalia alliariae**					
Neottia maculata (Desf.) Stearn	1	**Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici**					
Ranunculus plataniifolius L.	1	**Chrysopogono-Danthonion calycinae / Festuco-Brometea / Ord.: Brachypodietalia pinnati**					
Bisorta officinalis Delarb.	1	**Trifolio-Cardion caniume / Ord.: T rifolio-Hordeetalia**					
Dryas octopetala L.	1	**Cirsion appendiculati / Ord.: Adenostyletalia alliariae**					
Oxytropis jacquinii	1	**Narthecion scardici / Ord.: Adenostyletalia alliariae**					
Bugge	1	**Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici**					
Helianthemum canum (L.) Baumg.	1	**Cirsion appendiculati / Ord.: Adenostyletalia alliariae**					
Erodium schoenophyllum (L.) A.DC.	1	**Narthecion scardici / Ord.: Adenostyletalia alliariae**					
Gymnadenia species in Kosovo	Relevé syntaxonomic	Order and categories – (Class, Subclass, Superorder, Class, Subclass, Order, Family, Genus, Species)					
----------------------------	--------------------	---					
ALL: Chrysopogono-Danthonion calycaeae Kojić 1959 [Cl.: Festuco-Brometa / Ord.: Brachypodietalia pinnati]							
ALL: Trifolion resupinati Mirevski 1957 [Cl.: Molinio-Arthatheretace / Ord.: Trifolio-Hordeeta]							
ALL: Chrysopogono-Danthonion calycaeae Kojić 1959 [Cl.: Festuco-Brometa / Ord.: Brachypodietalia pinnati]							
ALL: Chrysopogono-Danthonion calycaeae Kojić 1959 [Cl.: Festuco-Brometa / Ord.: Brachypodietalia pinnati]							
ALL: Narthecion scardici Horvat ex Lakušić 1968 [Cl.: Scheuchzerio palustris-Caricetae fuscae / Ord.: Carietalia fuscae]							
ALL: Narthecion scardici Horvat ex Lakušić 1968 [Cl.: Scheuchzerio palustris-Caricetae fuscae / Ord.: Carietalia fuscae]							
ALL: Cirsion appendiculati Horvat et al. 1937 [Cl.: Meliodio-Aconiteta / Ord.: Adonolietalia alliariae]							
ALL: Narthecion scardici Horvat ex Lakušić 1968 [Cl.: Scheuchzerio palustris-Caricetae fuscae / Ord.: Carietalia fuscae]							
ALL: Seslerio juncifoliae-Caricion firmae Tribanjić 2005 [Cl.: Elyno-Seslerietae / Ord.: Seslerietalia tenuifoliae]							
ALL: Seslerio juncifoliae-Caricion firmae Tribanjić 2005 [Cl.: Elyno-Seslerietae / Ord.: Seslerietalia tenuifoliae]							
ALL: Seslerio juncifoliae-Caricion firmae Tribanjić 2005 [Cl.: Elyno-Seslerietae / Ord.: Seslerietalia tenuifoliae]							
ALL: Seslerio juncifoliae-Caricion firmae Tribanjić 2005 [Cl.: Elyno-Seslerietae / Ord.: Seslerietalia tenuifoliae]							
ALL: Cirsion appendiculati Horvat et al. 1937 [Cl.: Meliodio-Aconiteta / Ord.: Adonolietalia alliariae]							
ALL: Narthecion scardici Horvat ex Lakušić 1968 [Cl.: Scheuchzerio palustris-Caricetae fuscae / Ord.: Carietalia fuscae]							
ALL: Epilobion angustifolii Oberd. 1957 [Cl.: Epilobietea angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici]							
Relevé syntaxonomic categories – (Class, Order and Alliance)

Common Name	Genus	Type	Class	Order	Alliance
Anaphalis aurora Host	Anaphalis	Herbs	Scrophulariales	Scrophulariales	Festuco-Brometalia
Campylosa rotundifolia L.	Campylosa	Shrubs	Rosales	Rosales	Thymion puberulum
Vaccinium myrtillus L.	Vaccinium	Shrubs	Rosales	Rosales	Sphaerothamnion
Luzula spicata (L.) DC.	Luzula	Shrubs	Rosales	Rosales	Sphagnum
Hypericum richeri subsp. griesbachii (Boin.)	Hypericum	Shrubs	Rosales	Rosales	Sphagnum
Jasione orbiculata Vezen	Jasione	Shrubs	Rosales	Rosales	Sphagnum
Saxifraga moenchata Wulfen	Saxifraga	Shrubs	Rosales	Rosales	Sphagnum
Salix retusa L.	Salix	Shrubs	Rosales	Rosales	Sphagnum
Crepis aura (L.) Cass.	Crepis	Shrubs	Rosales	Rosales	Sphagnum
Hieracium pilosum Froel.	Hieracium	Shrubs	Rosales	Rosales	Sphagnum
Phleum alpinum L.	Phleum	Shrubs	Rosales	Rosales	Sphagnum
Onobrychia montana subsp. scardica (Griseb.)	Onobrychia	Shrubs	Rosales	Rosales	Sphagnum
Carex sempervirens Vill.	Carex	Shrubs	Cyperales	Cyperales	Pooidae
Trinia dalechampii (T.) Janch.	Trinia	Shrubs	Cyperales	Cyperales	Pooidae
Asterol alpinus L.	Asterol	Shrubs	Cyperales	Cyperales	Pooidae
Luzula forsteri (Sm.) DC.	Luzula	Shrubs	Cyperales	Cyperales	Pooidae
Silene saxifraga L.	Silene	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Thymus praecox subsp. zygformis (Heint.	Thymus	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Braun ex Wettst.) Jals	Thymus	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Trifolium pratense Wulfen	Trifolium	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Pha molinieri Balb.	Pha molinieri	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Campanula rotundifolia L.	Campanula	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Luzula forsteri (Sm.) DC.	Luzula	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Oxytropis campestris (L.) DC.	Oxytropis	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Hieracium villorum Jacq.	Hieracium	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Onanthe pudiifoliae Pollich	Onanthe	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Diasthys sylvestri subsp. berticenii Rech.f.	Diasthys sylvestri	Shrubs	Caryophyllales	Caryophyllales	Caryophyllidae
Gymnadenia species in Kosovo

Relevé syntaxonomic categories – (Class, Order and Alliance)

Taxon	Class	Order	Alliance	Suballiance	Characteristic	Presence
Salix caprea L.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	2
Primula elatior (L.) L.	Plantae	Rosids	Trifolion resupinati	Arrhenatheretea	?	1
Galium anisophyllum Vill.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Achillea chryseoma Friv.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Bromopsis cappadocica (Boiss. & Balansa) Holub	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Caryophyllus triandrus (All.) A.Löve & D.Löve	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Koeleria eriostachya Pančić	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Dianthus cardunculus Wettst.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Hieracium nargelium F.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Gentianella bulgarica (Velen.) Holub	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Bupleurum falcatum (Velen.) L.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Daphne caerulescens Voss.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Dianthus microlipidus B.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Anthemis cretica L.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Scrophularia villasii Scop.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Primula polyanthemos H.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Primula elatior	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Trifolium longipes	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Tephroseris papposa subsp. wagneri (Degen) B.Nord.	Plantae	Rosids	Chrysopogono-Danthonion calycinae	Festuco-Brometea	?	1
Relevé syntaxonomic categories – (Class, Order and Alliance)

Plant Name	Class	Order	Alliance
Veronica beccabunga	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Rumex alpinus	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Saxifraga adscendens	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Cystopteris fragilis	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Clinopodium acinos macrorhizum	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Geranium	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Veronica serpyllifolia	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Ornithogalum gussonei aquilegiifolium	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Thalictrum	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Viola gracilis	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Veratrum lobelianum	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Doronicum austriacum	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Dactylorhiza cordigera	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Eriophorum latifolium	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Luzula sylvatica (Huds.) Gaudin	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Alchemilla viridiflora Rich. odoratissima	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Gymnadenia odoratissima (L.) Rich.	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Epilobium palustre (L.) Rothm.	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Filipendula ulmaria (L.) Maxim.	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Dactylorhiza contigua subsp. bosniaca (Beck) Soó	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Barbarea bosniaca Pančić	Testudo-connection testudo candida	Testudo-Caricion segetum candida	Testudo-Caricion segetum candida
Gymnadenia species in Kosovo	Micevski 1957 [Cl.: Molinio-Arrhenatheretalia]		
-----------------------------	---		
		Horvat ex Lakušić 1968 [Cl.:	
		Festuco-Brometalia pinnati	
		Festuco-Brometalia pinnati	
		T rinajstić 2005 [Cl.:	
		Solidago virgaurea	
		Galium mollugo	
		Benth.	
		Stachys alopecuros	
		Valeriana montana (L.) Crantz	
		Ligusticum mutellina (Loisel.) Borbás	
		Linaria angustissima	
		Galium debile	
		Vicia sepium	
		Lathyrus pratensis	
		Silene armeria L.	
		Campanula persicifolia	
		Chaix	
		Sedum ochroleucum	
		Campanula foliosa	
		Wulfen	
		Dianthus sylvestris	
		Vaill.	
		Pilosella officinarum	
		& Kit.	
		Trifolium resupinati	
		Arrhenatheretea / Ord.: T rifilio-Hordeetalia	
		Trifolion resupinati	
		Festuco-Brometea / Ord.: Brachypodietalia pinnati	
		Seslerio juncifoliae-Caricion firmae	
		Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae	
		Seslerio juncifoliae-Caricion firmae	
		Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae	
		Seslerio juncifoliae-Caricion firmae	
		Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae	
		Cirsion appendiculati	
		Aconitetea / Ord.: Adenostyletalia alliariae	
		Cirsion appendiculati	
		Aconitetea / Ord.: Adenostyletalia alliariae	
		Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici	

Relevé syntaxonomic order and category — (Class, Family, Genus, Species)	Order	Category	Class	Family	Genus	Species	ALL:
							Chrysopogono-Danthonion calycinae Kojić 1959 [Cl.: Festuco-Brometalia pinnati]
						Trifolion resupinati	
						Festuco-Brometea / Ord.: Brachypodietalia pinnati	
						Seslerio juncifoliae-Caricion firmae	
						Elyno-Seslerietea / Ord.: Seslerietalia tenuifoliae	
						Cirsion appendiculati	
						Aconitetea / Ord.: Adenostyletalia alliariae	
						Epilobion angustifolii / Ord.: Galeopsio-Senecionetalia sylvatici	
Appendix 2

List of localities based on studied herbarium specimens of *Gymnadenia conopsea* [G.c.], *Gymnadenia frivaldii* [G.f.], *Gymnadenia nigra* [G.n.] and *Gymnadenia odoratissima* [G.o.] from Kosovo.

No.	Locality	Source data
1	Bistër	G.o. = Berisha, N. (2019), G.c. = Berisha, N. (2011), G.f. = Berisha, N. (2014), G.n. = Rexhepi, F. (2004)
2	Brezovicié	G.f. = Rexhepi, F. (1980⁹ / 1997 / 2001), Berisha, N. (2011), Millaku, F. (2012, 2014)
3	Jezer	G.c. = Millaku, F. (2004)
4	Luboten	G.n. = Berisha, N. (2011, 2017), G.c. = Berisha, N. (2011), G.f. = Berisha, N. (2013, 2015, 2018), Rexhepi, F. (1983⁹)
5	Nerodime (E)	G.c. = Millaku, F. (2004)
6	Përrojet e Durlës	G.f. = Rexhepi, F. (2013), Millaku, F. (2013), Berisha, N. (2014)
7	Pirëreg	G.f. = Rexhepi, F. (1998⁹ / 2009)
8	Shëptia e Malorëve	G.f. = Millaku, F. (2004), Berisha, N. (2014)
9	Tupan	G.c. = Berisha, N. (2011)
10	Vërtop	G.n. = Millaku, F. (2012)
11	Ferizaj District	
12	Bistër	
13	G.f. = Rexhepi, F. (2013), Millaku, F. (2013), Berisha, N. (2014)	
14	Bistër	G.n. = Millaku, F. (2011, 2017), G.c. = Berisha, N. (2011), G.f. = Berisha, N. (2013, 2015, 2018), Rexhepi, F. (1983⁹)
15	Bistër	G.f. = Millaku, F. (2015), G.c. = Millaku, F. (1991, 2007)
16	Bistër	G.f. = Millaku, F. (1988, 2013)
17	G.f. = Millaku, F. (2013), Millaku, F. (2013), Berisha, N. (2011)	
18	G.f. = Millaku, F. (1991, 2007)	
19	Bistër	G.f. = Millaku, F. (2015), G.c. = Millaku, F. (2013), Berisha, N. (2011)
20	Bistër	G.f. = Millaku, F. (1998⁹ / 2009)
21	Bistër	G.f. = Millaku, F. (1998⁹ / 2009)
22	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
23	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
24	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
25	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
26	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
27	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
28	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
29	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
30	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
31	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
32	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
33	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
34	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
35	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
36	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
37	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
38	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
39	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
40	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
41	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
42	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
43	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
44	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
45	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
46	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
47	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
48	Bistër	G.f. = Millaku, F. (2004), Berisha, N. (2014)
No.	Locality	Source data
-----	-------------------	---
49	Kuqishtë	G.c. = Millaku, F. (2006, 2008, 2011); G.n. = Millaku, F. (2008),
50	Leqinat	G.c. = Millaku, F. (2006), Berisha, N. (2018), G.f. = Millaku, F. (1997), Berisha, N. (2015), G.n. = Berisha, N. (2015, 2018)
51	Lumbardh	G.c. = Millaku, F. (1989, 2001)
52	Maja e Rusolë	G.f. = Berisha, N. (2010, 2015), G.n. = Millaku, F. (2012)
53	Mali Mokna	G.f. = Millaku, F. (2013), Berisha, N. (2015), G.c. = Berisha, N. (2012)
54	Marijash	G.n. = Millaku, F. (2009)
55	Peklen	G.n. = Berisha, N. (2019)
56	Qafë e Bogoçës	G.f. = Berisha, N. (2012, 2015)
57	Radvac	G.c. = Millaku, F. (2001)
58	Rekë e Allagës	G.c. = Rexhepi, F. (1997), Millaku, F. (2009)
59	Roshkodol	G.c. = Millaku, F. (2005)
60	Shtupeç	G.c. = Millaku, F. (2005)
61	Shushicë	G.c. = Millaku, F. (2001)
62	Zajm	G.c. = Millaku, F. (2010)
63	Zhleb	G.n. = Millaku, F. (2001)
64	Bellobërë	G.c. = Rexhepi, F. (2005)
65	Bërrençë	G.c. = Rexhepi, F. (1999⁴, 2004)
66	Çirez	G.c. = Millaku, F. (2007)
67	Çubrel	G.c. = Rexhepi, F. (2005)
68	Drurar	G.c. = Rexhepi, F. (1981)
69	Kaçandoll	G.c. = Rexhepi, F (1988⁵, 2000); G.n. = Millaku, F. (2009)
70	Kopaonik	G.n. = Rexhepi, F. (1979⁵)
71	Oshtro Koplje	G.n. = Berisha, N. (2018)
72	Rakinçë	G.c. = Rexhepi, F. (1987⁵, 2005)
73	Rashan	G.c. = Rexhepi, F. (1989)
74	Runik	G.c. = Rexhepi, F. (2000⁵, 2005)
75	Türincec	G.c. = Rexhepi, F. (2005)
76	Vesekovc	G.c. = Millaku, F. (2009), Rexhepi, F. (1997⁵), G.n. = Berisha, N. (2012)

Mitrovica District

77	Batllavë	G.c. = Rexhepi, F. (2001)
78	Bëlnajë	G.c. = Millaku, F. (2014)
79	Bradash	G.c. = Rexhepi, F. (2001)
80	Gërmë	G.c. = Rexhepi, F. (2000⁶, 2009), Berisha, N. (2017)
81	Golešë	G.c. = Berisha, N. (2016)
82	Kolçë	G.c. = Millaku, F. (2000)

Prishtina District

83	Busovatë	G.c. = Rexhepi, F. (1999)
84	Gmicë	G.c. = Millaku, F. (2004)
85	Novoibërë	G.c. = Rexhepi, F. (1977, 1982⁵, 2001)
86	Prallovë	G.c. = Rexhepi, F. (2004)
87	Qarrak	G.c. = Rexhepi, F. (2001)
88	Smirë	G.c. = Rexhepi, F. (2001)

Note: Private vouchers offered by prof. F. Rexhepi are indicated with a letter ⁵.