Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease

Elisia Clark1,3, Joseph Johnson1,3, Yi Na Dong2,3, Elizabeth Mercado-Ayon1,3, Nathan Warren2,3, Mattieu Zhai2,3, Emily McMillan2,3, Amy Salovin2,3, Hong Lin1,3 and David R. Lynch1,3

1Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, U.S.A.; 2Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A.; 3Penn/CHOP Center of Excellence in Friedreich Ataxia, Philadelphia, PA, U.S.A.

Correspondence: David R. Lynch (lynchd@mail.med.upenn.edu)

Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Expanded GAA repeats may form unusual triplex structures, disrupting RNA polymerase and preventing transcription elongation [23]. In addition, epigenetic mechanisms decrease frataxin expression as regions flanking GAA repeat expansion exhibit marks of condensed heterochromatin. There is also increased methylation of specific CpG sites, reduction in histone H3 and H4 acetylation levels, and increased histone H3 lysine 9 (H3K9) trimethylation in FRDA lymphoblasts, peripheral blood, brain, and heart [24-28]. Overall, this leads to a decrease in frataxin mRNA synthesis and a decrease (but not absence) in frataxin protein in people with FRDA [29-32]. As the phenotype of FRDA in subjects with point mutations altering frataxin production or stability is almost identical with those with GAA repeats, the clinical syndrome largely if not entirely reflects the loss of frataxin protein rather than the effects on frataxin mRNA levels.

Frataxin protein structure, function, and role in metabolism

FRDA patients’ peripheral tissues typically have less than 10% of the frataxin levels exhibited by unaffected people, and the level of frataxin inversely correlates with disease severity [29-32]. The FXN gene contains seven exons (exons 1–4, 5a, 5b and 6), with exons 4 and 5a being the most conserved across species [33]. Frataxin mRNA is translated by cytoplasmic ribosomes and translocated to the mitochondria based on an N-terminal mitochondrial localization sequence. Upon entry into the mitochondria, frataxin undergoes a two-step proteolytic cleavage by mitochondria processing peptidase (MPP) to generate the mature protein [34-36]. The mature protein forms a twisted, six-stranded β-antiparallel sheet, flanked by N- and C-terminal α helices (α1 and α2) [37]. The negatively charged residues on the helical plane may bind iron, while the uncharged residues on the surface β sheet can lead to protein–protein interactions [38].

Frataxin functions in iron metabolism, iron storage, and iron–sulphur cluster biosynthesis, with resultant effects on many downstream events [39-43] (Table 2). A conserved primary Fe²⁺-binding site, with a dissociation constant within the micromolar range (3–55 μM), is contained in residues of the acidic ridge in the first α helix. In addition to iron binding, frataxin interacts with mitochondrial aconitase, ferrochelatase, and proteins of the mitochondrial Fe–S cluster synthesis pathway [44]. Iron and Fe–S clusters are essential for metabolic processes including electron transport, DNA synthesis, both redox and non-redox reactions, as well as other cellular functions [45,46]. Iron–sulphur containing proteins play a crucial role in cellular respiration and ATP production; therefore, decreased activity should significantly impair mitochondrial function. Frataxin’s role in iron–sulphur cluster biogenesis makes it essential for enzymatic activity of Fe–S containing aconitase and respiratory chain complexes. Consequently, decreased frataxin levels result in decreased aconitase activity in cell culture models, in vivo, and in heart tissues and biopsies of FRDA patients [47,48]. These effects on key enzymes of energy production lead to a failure of ATP production in FRDA, as

System	Pathology	Clinical result
Neurological	Degeneration of large sensory neurones – proprioception	Loss of balance and coordination
	Degeneration of spinoocerebellar tracts (dorsal)	Loss of deep tendon reflexes
	Degeneration of dentate nucleus of the cerebellum	Loss of balance and coordination
	Degeneration of corticospinal tracts	Dysarthria (slurred speech)
		Eye movement abnormalities (modest)
		Spasticity, pyramidal weakness
Visual	Degeneration of retinal ganglion cells	Optic neuropathy
Auditory	Degeneration of auditory nerve	Auditory neuropathy
Cardiac	Hypertrophic cardiomyopathy, with early hypertrophy, later fibrosis	ECG abnormalities
		Arrhythmias
		Progressive heart failure
Endocrine	Loss of pancreatic islet cells	Diabetes mellitus
		Increased insulin resistance
Orthopedic	Scoliosis	Diabetes mellitus
		Pes cavus (fixed plantar foot flexion; high arched feet)

Abbreviation: ECG, electrocardiogram.
observed in humans in muscle spectroscopy [49-51]. This may represent one of the more important pathophysiological events in FRDA, as it is clearly observable in human muscle in FRDA, and is readily linked to one of the most important symptoms of FRDA, fatigue.

Additionally, frataxin deficiency may secondarily affect enzymes of intermediary metabolism. In addition to direct effects on iron–sulphur cluster-containing enzymes, specific cellular and mitochondrial enzymes are regulated through frataxin level or the resultant effects on ATP levels. For example, while FRDA patients have normal pyruvate dehydrogenase (PDH) activity in most tissues [52], under certain conditions, including mitochondrial acidification, the dehydrogenase subunit (E3) of PDH exhibits proteolytic activity that is capable of cleaving frataxin [53]. Although PDH is likely not the only enzyme controlled by frataxin levels, it provides an example of how enzyme-specific regulation at the intersection of multiple mitochondrial metabolic pathways could control cellular phenotype through alteration of metabolism. FRDA patient platelets exhibit significantly decreased acetyl Co-A (Ac-CoA) synthesized from palmitate. This emphasizes how the collection of changes in Fe–S containing enzymes alter flux through specific pathways. FRDA patient platelets exhibit significantly decreased acetyl Co-A (Ac-CoA) synthesized from palmitate. This emphasizes how the collection of changes in Fe–S containing enzymes alter flux through specific pathways. Recent evidence additionally suggests that frataxin deficiency may alter p38 kinase signaling, providing further evidence of a role for frataxin in signaling and metabolism [56]. Thus, the alterations in Fe–S containing and other enzymes provide a manner for specific frataxin-related changes in metabolism, which may have deleterious effects on cells.

Frataxin deficiency and mitochondrial dysfunction

Frataxin overexpression demonstrates this protein’s crucial role in mitochondrial energy conversion and oxidative phosphorylation (OXPHOS), as well as regulation of the Krebs cycle [57] (Figure 1). Frataxin directly interacts with Complex II subunits, suggesting it directly supports the electron transport chain by providing Fe–S complexes [58-60]. Endomyocardial biopsies of FRDA patients exhibit decreased Complexes I, II, and III activity [61], and FRDA mouse models demonstrate mitochondrial biogenesis impairment and OXPHOS dysfunction in respiratory chain complexes I, II, and IV in cerebellum [62].

Frataxin deficiency is also linked to mitochondrial dysfunction through iron accumulation and production of reactive oxygen species (ROS). Although produced throughout the cell, 90% of ROS result from mitochondrial respiration. During the transfer of electrons from the mitochondrial respiratory chain to molecular oxygen (O$_2$) in OXPHOS, a small percentage of electrons will leak, resulting in the production of ROS, such as hydroxyl (HO$^-$) and hydrogen peroxide (H$_2$O$_2$) [63-65]. This leak mainly occurs at Complexes I and II [66]; however, when ROS levels rise too high, oxidative damage, also termed as oxidative stress, can occur in the cell, especially in mitochondria. Oxidative stress damages proteins and DNA, especially mtDNA, as mtDNA lacks the protection from histones and the complex nuclear repair system [66]. Oxidative stress induces apoptosis by opening the mitochondrial permeability

Protein	Function
Isu1/Nfs1	Scaffold proteins for Fe–S biogenesis. Frataxin controls iron entry and sulphur production through activation of cysteine desulphurization
Aconitase	FXN facilitates and stabilizes transfer of Fe group to Aconitase to convert it into its active form
Ferrochelatase	FXN mediates iron delivery to Ferrochelatase in heme synthesis
Succinate dehydrogenase	FXN regulates entry of electrons into Complex II of electron transport chain
ATP synthase	FXN regulates entry of electrons into Complex II of electron transport chain. Reduced FXN expression is correlated to a reduction in ATP
Pyruvate dehydrogenase	Pyruvate dehydrogenase subunit E3 may exhibit proteolytic activity capable of cleaving FXN under certain conditions
p38	FXN deficiency may alter p38 mitogen-activated protein kinase signaling
Nrf2	FXN deficiency impairs Nrf2 translocation to the nucleus
Nitric oxide	NO increases as a result of FXN deficiency. This increase is related to the increase in ROS due to iron accumulation. NO increases as a protective effect from Fe-mediated oxidative stress
PGC1α	PGC1α is the master regulator of mitochondrial biogenesis. FXN deficiency results in dysregulation of PGC1α. This is tissue dependent but is down-regulated in most cell types
PDK1	Frataxin deficiency triggers the activation of PDK1 through increasing phosphorylation levels of S241 and may deactivate pyruvate dehydrogenase and decrease cell metabolism
Iron uptake, import, and export protein	Frataxin deficiency causes increased expression of transferrin receptor 1 and mitochondrial iron importer mitoferrin-2, and decreased expression of ferroportin1, contributing to increased iron accumulation in mitochondria

Abbreviations: Nrf2, nuclear factor E2-related factor 2, PGC1α, peroxisome proliferator-activated receptor γ coactivator 1-α.
Figure 1. Mitochondrial features of FRDA
Frataxin deficiency leads to loss of Fe–S groups in Complexes I, II, III with downstream ROS production and other downstream events.

ROS production occurs in multiple models of FRDA [69-73]. In certain Drosophila models with induced frataxin deficiency, H₂O₂-scavenging enzymes ameliorate features of oxidative stress and restore both ROS-sensitive mitochondrial enzymes and aconitase activities to normal levels. These findings implicate H₂O₂ as a pathogenic mediator of ROS production in FRDA and suggest that H₂O₂-scavenging molecules could play a therapeutic role in treating the disease [64]. In fibroblasts from patients with FRDA, treatment with iron-containing compounds or hydrogen peroxide leads to oxidative stress, activation of caspase 3, and apoptosis [74-76]. Analogous results have been identified across many cell types, and treatment with many proposed antioxidant-based therapies restores the healthy phenotypes [77,78]. Consequently, oxidant-induced cell death remains an area of interest for possible FRDA therapies.

One proposed component of increased ROS sensitivity in FRDA patient cells is the accumulation of mitochondrial iron [79-84]. Based on Fenton chemistry, mitochondrial iron accumulation has the potential to dramatically increase susceptibility to ROS [84]. However, FRDA involves iron maldistribution more than iron overload; cells behave as if they are depleted of iron cytosolically while simultaneously having a mitochondrial iron overload [85-87]. Systemic iron indices such as ferritin levels are normal to low in most FRDA patient tissues, except for the heart, where ferritin excess is noted at autopsy [88]. This raises the possibility that the direct effect of iron in FRDA may be tissue-specific.

The components of ROS production and iron overload are combined in a paradigm of cell death referred to as ferroptosis. Ferroptosis is a form of iron-dependent, oxidation-mediated, programmed cell death implicated in a variety of pathological processes, including neurotoxicity, neuroinflammation, and neurodegenerative diseases such as PD, AD, and ischemic stroke [89-92]. Ferroptosis may share some of the same downstream signaling pathways as apoptosis, but this form of cell death differs from classical apoptosis, and the mechanisms that underlie ferroptosis match many of the abnormal findings of FRDA [89-92]. Upon induction of ferroptosis, there is a lack of morphological or biochemical features of apoptosis, such as chromatin condensation and nuclear shrinkage [89,93]. Additionally, there is no cleavage-mediated activation of caspase 3, and caspase inhibitors do not protect against ferroptosis [89]. Oxidative stress releases iron from ferritin in a redox active form, induces lipid peroxidation, particularly of polyunsaturated fatty acids, and leads to accumulation of lipid-based ROS [89,93,94]. Accumulation of lipid peroxidation products and ROS derived from iron metabolism triggers ferroptosis as a response to these harmful metabolic events [92]. Ferroptosis may also be triggered following depletion of intracellular reduced-glutathione (GSH) levels, further leading to increased cellular availability of iron as a ferroptosis catalyst [91].

In addition to ROS generation, ferroptosis is associated with the loss of mitochondrial integrity [89-92]. EM shows cells treated with ferroptosis inducers exhibit obvious changes in mitochondrial morphology [89]. Investigators have found that a protein originally characterized during pro-apoptotic signaling, BID, translocates to the mitochondria during ferroptotic signaling. BID can act as a sensor of oxidative stress in an iron-dependent manner and its translocation to mitochondria mediates the loss of mitochondrial integrity and function [90]. Induced ferroptosis in neurones leads to loss of mitochondrial membrane potential, increased mitochondrial fragmentation, reduced ATP levels, and...
permeabilization of the outer mitochondrial membrane [90]. Distinct morphological alterations are also apparent, including decreased mitochondrial size, condensed mitochondrial membranes, reduction in mitochondrial cristae, and outer mitochondrial membrane rupture [90-92].

Lipid peroxidation, elevated ROS generation, GSH depletion, and increased iron availability are all pathogenic alterations found in many neurologic diseases, and interestingly, they are also common features of ferroptosis [91]. The dysregulated iron metabolism of FRDA suggests that ferroptosis may also play a role in cell death in FRDA.

ROS production is difficult to demonstrate in humans with FRDA. Although some studies find elevated urinary oxidative stress biomarker levels, specifically the isoprostanes dihydroxanosine and malondialdehyde, isoprostanes are not elevated in FRDA and only a single study has found abnormalities in DNA oxidation [95-99]. Moreover, confounding factors, including the overwhelming use of antioxidant supplements by FRDA patients and the relative inactivity of such patients leading to a lack of ongoing OXPHOS and an absence of ROS, result in further challenges to demonstrate ROS accumulation in FRDA patients [98]. It is also possible, however, that significantly increased ROS production is not continually occurring in FRDA. Not all cell death in animal models of FRDA is associated with detectable ROS production or iron accumulation. In mouse models of FRDA, cell death occurs without detectable accumulation of ROS or iron [100]. Such data provide evidence that in these models, other events such as loss of specific enzymatic activities, failure of ATP production, or other processes may be sufficient to induce cell death in FRDA without inducing ferroptotic pathways.

Failure of nuclear factor E2-related factor 2 and mitochondrial biogenesis pathways

Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that regulates cellular antioxidant response under oxidative stress conditions. Under normal conditions, the interaction between Nrf2 and Keap1 leads to the degradation of Nrf2 through the ubiquitin-proteasome pathway [101]. Typical oxidative stress conditions inhibit the interaction between Nrf2 and Keap1, leading to increased levels of active Nrf2 [102,103]; however, Nrf2 is degraded in FRDA patients and laboratory models, which is unexpected in an environment of oxidative stress [102,104].

In the presence of ROS, Nrf2 induces the expression of ROS-response antioxidant genes such as heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Cu/Zn and Mn-superoxide dismutases (SOD 1, 2), glutathione synthetic enzymes, and others by binding to the antioxidant response element (ARE) on nuclear DNA, including an ARE site within FXN [104,105]. In a healthy state, oxidative stress causes Nrf2 translocation to the nucleus, resulting in the expression of antioxidant genes to protect cells from damage. In FRDA models, Nrf2 translocation to the nucleus is compromised in response to oxidative insults, thus leading to reduced expression of antioxidant genes such as NQO1 and SOD-1,2 [101,106]. This may increase vulnerability to oxidative stress and lead to a cascade of oxidant-induced damage in neurons and other cell types. Interestingly, studies to find compounds that induce Nrf2 lead to identifying compounds that up-regulate frataxin gene expression [101]. Thus, Nrf2 expression correlates with frataxin expression. Nrf2 also regulates synthesis of GSH, a tripeptide antioxidant that moderates ROS production and ferroptosis [107]. In FRDA, the altered homeostasis between reduced and oxidized glutathione, increases cells’ susceptibility to oxidative stress [62,104,107].

In addition to increased ROS production and paradoxical loss of Nrf-2, frataxin deficiency is also associated with other components of mitochondrial dysfunction in both FRDA patients and animal models. Mitochondrial biogenesis deficits appear in multiple models of FRDA, including human lymphocytes and mouse models such as the frataxin knockin/knockout (KIKO) mouse [108-110]. Interestingly, the levels of PGC-1a, the master regulator of mitochondrial biogenesis, are significantly decreased in cerebellar homogenates of KIKO mice, even when mice are behaviorally asymptomatic [62]. This suggests early impairment of mitochondrial biogenesis pathways as a potential mediator of mitochondrial loss and dysfunction in FRDA. Parallel dysfunction in downstream genes of the entire PGC-1a/NRF1/Tfam pathway in KIKO mouse cerebellum confirms mitochondrial biogenesis impairment as an early event in this model.

Other markers of mitochondrial number fusion are also altered in FRDA. The mitochondrial chaperone, glucose-related protein 75 (GRP75), which physically interacts with frataxin, and the mitochondrial fusion protein mitofusin-1 (MFN1), are lower in cerebellar homogenates of FRDA KIKO mice [62]. Human FRDA fibroblast and PBMCs also show decreased GRP75 levels [111,112]. Furthermore, in KIKO mice, this decrease is associated with a long-term deficit in mitochondrial number, suggesting that in some brain regions, FRDA may give rise not only to abnormal mitochondria, but also lead to decrease in numbers of mitochondria [62]. Although the correlation between GRP75 levels and the severity of FRDA remains to be determined, GRP75 reduction should result in further
decreases in frataxin levels and iron–sulphur cluster biogenesis and may thus impact mitochondrial function. Alternatively, GRP75 reduction could potentially lead to mtDNA damage, thereby contributing to the progression of FRDA.

Clinical trials and therapeutic strategies
At present, there is no cure or effective treatment for FRDA [113]. Current strategies aim to increase frataxin expression or target downstream pathways affected secondary to frataxin deficiency [114-120]. High-throughput screening with different cellular models is also being used to search for new drugs. Even when restorative therapies for frataxin achieve success, mitochondria-based therapies are still likely to be useful covering the deficiencies in restoration of frataxin levels.

Antioxidants and OXPHOS
Frataxin deficiency potentiates cellular damage from oxidative stress, suggesting that antioxidants might present a therapeutic approach for FRDA. For example, idebenone is a short-chain Coenzyme Q₁₀ (CoQ₁₀) analog that acts as an antioxidant by protecting membrane lipids from peroxidation and stimulating OXPHOS and ATP production by carrying electrons from Complexes I and II to Complex III in the electron transport chain [121]. Initial enthusiasm for idebenone was highly based on its ability to protect respiratory Complex II from iron inactivation and decreased liperoxidation; however, neither idebenone nor other similar agents have proven effective in double-blind trials as compared with placebo [122-125]. Other antioxidants like CoQ₁₀ with vitamin E, and VP20629 have also shown no benefit in clinical trials [126].

Iron chelating strategy
As the pathogenesis of FRDA involves an imbalance in the intracellular accumulation of iron, with mitochondrial accumulation and relative cytosolic depletion, targeted iron chelation could be beneficial in restoring a healthy iron balance. Deferiprone, an iron chelator that localizes to the mitochondria, rapidly distributes in the CNS, crossing membranes, and can penetrate mitochondria to remove excess iron [127]. Deferiprone has a lower affinity for iron than other iron chelators (pFe³⁺ log stability constant of 19.9 compared with deferoxamine (26.6) and less tendency to cause overall iron depletion, leading to an improved safety profile over other iron chelators in patients with low iron overload [128]. It restores mitochondrial redox potential, reduces ROS, and increases aconitase activity, without affecting frataxin levels [129-133]. The drug is typically well tolerated and can be administered orally. However, exacerbation of tremor occurred at high doses and the risk of agranulocytosis remains a threat of deferiprone treatment [133].

Competing interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
David R. Lynch receives funding from the National Institutes of Health, the Food and Drug Administration, the Friedreich’s Ataxia Research Alliance, and the Muscular Dystrophy Association. Hong Lin receives funding from the Friedreich’s Ataxia Research Alliance. Elizabeth Mercado Ayon receives funding from The California State University Sally Casanova Pre-Doctoral Program.

Author contribution
E.C., J.J., Y.N.D., E.M.-A., N.W., M.Z., E.M., A.S., H.L., and D.R.L. all wrote portions of the first draft and provided critical review.

Abbreviations
Ac-CoA, acetyl Co-A; AD, Alzheimer’s disease; ARE, antioxidant response element; CoQ₁₀, coenzyme Q₁₀; FRDA, Friedreich ataxia; GAA, guanine-adenine-adenine; GRP, glucose related protein; GSH, glutathione; KIKO, knockin/knockout; NrI₂, nuclear factor E₂-related factor 2; NQO₁, NAD(P)H quinone oxidoreductase 1; OXPHOS, oxidative phosphorylation; PD, Parkinson’s disease; PDH, pyruvate dehydrogenase; ROS, reactive oxygen species; SOD, superoxide dismutase.

References
1 Friedreich, N.U. (1863) ber degenerative Atrophie der spinalen Hinterstrange. *Virchows Arch. Pathol. Anat.* 26, 433–459, https://doi.org/10.1007/BF01878006
2 Delatycki, M., Williamson, R. and Forrest, S. (2000) Friedreich ataxia: an overview. *J. Med. Genet.* 37, 1–8, https://doi.org/10.1136/jmg.37.1.1
Harding, A.E. (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 589–620, https://doi.org/10.1093/brain/104.3.589

Lynch, D.R., Farmer, J.M., Balcer, L.J. and Wilson, R.B. (2002) Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch. Neurol. 59, 743–747, https://doi.org/10.1001/archneur.59.5.743

Koeppen, A.H., Becker, A.B., Qian, J., Gelman, B.B. and Mazurkiewicz, J.E. (2017) Friedreich ataxia: developmental failure of the dorsal root entry zone. J. Neuropathol. Exp. Neurol. 76, 969–977, https://doi.org/10.1093/jnen/nlx087

Koeppen, A.H., Becker, A.B., Qian, J. and Feustel, P.J. (2017) Friedreich ataxia: hypoplasia of spinal cord and dorsal root ganglia. J. Neuropathol. Exp. Neurol. 76, 101–108

Koeppen, A.H. and Mazurkiewicz, J.E. (2013) Friedreich ataxia: neuropathology revised. J. Neuropathol. Exp. Neurol. 72, 78–90, https://doi.org/10.1097/NEN.0b013e318275e762

Koeppen, A.H., Davis, A.N. and Morral, J.A. (2011) The cerebellar component of Friedreich’s ataxia. Audiol. Neurotol. 15, 229–240, https://doi.org/10.1159/000255341

10 Montemurri, L., Richter, A., Morgan, K., Justice, C.M., Julien, D., Castellotti, B. et al. (1997) Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann. Neurol. 41, 675–682, https://doi.org/10.1002/ana.4041018

11 Parkinson, M.H., Boesch, S., Nachbauer, W., Mariotti, C. and Giunti, P. (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J. Neurol. 260, 103–117, https://doi.org/10.1111/jnc.12317

12 Seyer, L.A., Galetta, K., Wilson, J., Sakai, R., Perlman, S., Mathews, K. et al. (2013) Analysis of the visual system in Friedreich ataxia. J. Neurol. 260, 2362–2369, https://doi.org/10.1002/ana.200415-013-6978-z

13 Duírr, A., Cossee, M., Agid, Y., Campuzano, V., Mignard, C., Penet, C. et al. (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175, https://doi.org/10.1056/NEJM199610173351601

14 Campuzano, V., Montermini, L., Moth, M.D., Pianese, L., Cossee, M., Cavalcanti, F. et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427, https://doi.org/10.1126/science.271.5254.1423

15 Sharma, R., De Biase, I., Gómez, M., Delatycki, M.B., Ashizawa, T. and Bidichandani, S.I. (2004) Friedreich ataxia in carriers of unstable borderline GAA-triplet-repeat alleles. Ann. Neurol. 56, 898–901, https://doi.org/10.1002/ana.20332

16 Patel, M., Isacac, C., Seyer, L., Brigatti, K., Belgard, S., Swarzer, C. et al. (2016) Progression of Friedreich ataxia: quantitative characterization over five years. Ann. Clin. Transl. Neurol. 3, 684–694, https://doi.org/10.1002/acn3.332

17 Fillas, A., De Michele, G., Cavalcanti, F., Pianese, L., Monticelli, A., Campanella, G. et al. (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet. 59, 554–560

18 Bidichandani, S. and Delatycki, M. (2014) Friedreich ataxia. GeneReviews, https://www.ncbi.nlm.nih.gov/books/NBK1281/

19 Becker, A.B., Qian, J., Gelman, B.B., Yang, M., Bauer, P. and Koeppen, A.H. (2017) Heart and nervous system pathology in compound heterozygous Friedreich ataxia. J. Neuropathol. Exp. Neurol. 76, 665–675, https://doi.org/10.1093/jnen/nlx047

20 Galea, C.A., Huq, A., Lockhart, P.J., Tai, G., Corben, L.A., Liu, E.M. et al. (2016) Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79, 485–495, https://doi.org/10.1002/ana.24995

21 McCormack, M.L., Gutmann, R.P., Schumann, M., Farmer, J.M., Stolle, C.A., Campuzano, V. et al. (2000) Frataxin point mutations in two patients with Friedreich’s ataxia and unusual clinical features. J. Neurol. Neurosurg. Psychiatry 68, 661–664, https://doi.org/10.1136/jnnp.68.5.661

22 Cossee, M., Dürr, A., Schmitt, M., Daha, N., Trouillas, P., Allinson, P. et al. (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45, 200–206, https://doi.org/10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-U

23 Li, Y., Lu, Y., Polak, U., Lin, K., Shen, J., Farmer, J. et al. (2015) Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FNX locus. Hum. Mol. Genet. 24, 6932–6943

24 Al-Mahdawi, S., Pinto, R., Ismail, O., Varshney, D., Lymeri, S., Sandi, C. et al. (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet. 17, 735–746, https://doi.org/10.1093/hmg/ddm346

25 Castaldo, I., Pinelli, M., Monticelli, A., Acquaviva, F., Giacchetti, M., Fillas, A. et al. (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J. Med. Genet. 45, 808–812, https://doi.org/10.1136/jmg.2007.058594

26 Greene, E., Mahishi, L., Entezam, A., Kumari, D. and Usdin, K. (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res. 35, 3383–3390, https://doi.org/10.1093/nar/gkm271

27 Herman, D., Jenssen, K., Burnett, R., Soragni, E., Perlman, S.L. and Gottesfeld, J.M. (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat. Chem. Biol. 2, 551–558, https://doi.org/10.1038/ncchembio815

28 Evans-Galea, M.V., Carrodeguas, N., Rowley, S.M., Corben, L.A., Tai, G., Saffery, R. et al. (2012) FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann. Neurol. 71, 487–497, https://doi.org/10.1002/ana.22671

29 Campuzano, V., Montermini, L., Lutz, Y., Cova, L., Hindelang, C., Jiralserspong, S. et al. (1997) Fratxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780, https://doi.org/10.1093/hmg/6.11.1771

30 Lazaropulos, M., Dong, Y., Clark, C., Greeley, N.R., Seyer, L.A., Brigatti, K.W. et al. (2015) Measurement of frataxin levels in peripheral tissues in Friedreich ataxia: analysis using repeated measures. Ann. Clin. Transl. Neurol. 2, 831–842, https://doi.org/10.1002/acne.2225

31 Deutsch, E.C., Santani, A.B., Perlman, S.L., Farmer, J.M., Stolle, C.A., Marusch, M.F. et al. (2010) A rapid, noninvasive immunoassay for frataxin: utility in assessment of Friedreich ataxia. Mol. Genet. Metab. 101, 238–245, https://doi.org/10.1016/j.ymgme.2010.07.001

32 Deutsch, E.C., Oglesbee, D., Greeley, N.R. and Lynch, D.R. (2011) Usefulness of frataxin immunoassays for the diagnosis of Friedreich ataxia. J. Neurol. Neurosurg. Psychiatry 85, 994–1002, https://doi.org/10.1136/jnnp-2013-306788
Abbruzzo, P.M., Marini, M., Bolotta, A., Malisardi, G., Manfredini, S., Ghezzo, A. et al. (2013) Frataxin mRNA isoforms in FRDA patients and normal subjects: effect of tocotrienol supplementation. Biomed. Res. Int. 2013, 276808, https://doi.org/10.1155/2013/276808

Branda, S.S., Cavadin, P., Adamiec, J., Kalousek, F., Taroni, F. and Isaya, G. (1999) Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J. Biol. Chem. 274, 22763–22769, https://doi.org/10.1074/jbc.274.32.22763

Cavadin, P., Adamiec, J., Taroni, F., Gakh, O. and Isaya, G. (2000) Two-step processing of human frataxin by mitochondrial processing peptidase. Proc. Natl. Acad. Sci. U.S.A. 97, 7514–7519, https://doi.org/10.1073/pnas.97.15.7514

Koutroukov, H., Campuzano, V. and Koenig, M. (1998) Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum. Mol. Genet. 7, 1485–1489, https://doi.org/10.1093/hmg/7.9.1485

De-Paganon, S., Shigeta, R., Chi, Y., Ristow, M. and Shoelson, S.E. (2000) Crystal structure of human frataxin. J. Biol. Chem. 275, 30753–30756, https://doi.org/10.1074/jbc.C000407200

Bencze, K.Z., Yoon, T., Millan-Pacheco, C., Bradley, P.B., Pastor, N., Cowan, J.A. et al. (2007) Human frataxin: iron and ferrochelatase binding surface. Chem. Commun. 14, 1798–1800, https://doi.org/10.1039/b703195E

Bultea, A.L., O’neill, H.A., Kennedy, M.C., Ikeda-Saito, M., Isaya, G. and Szewda, L.I. (2004) Frataxin acts as an iron chaperone to modulate mitochondrial aconitate activity. Science 305, 242–245, https://doi.org/10.1126/science.1098991

Adinolfi, S., Trifuonggi, M., Politou, A.S., Martin, S. and Pastore, A. (2002) A structural approach to understanding the iron-binding properties of phylogenetically different frataxins. Hum. Mol. Genet. 11, 1865–1877, https://doi.org/10.1093/hmg/11.16.1865

Cavadini, P., Geller, C., Patel, P. and Isaya, G. (2009) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet. 18, 2523–2530, https://doi.org/10.1093/hmg/ddp178

Gerber, J., Muhlenhoff, U. and Lill, R. (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep. 4, 906–911, https://doi.org/10.1038/sj.emboj.7800918

Yoon, T. and Cowan, J.A. (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J. Biol. Chem. 279, 25943–25946, https://doi.org/10.1074/jbc.C400107200

Martelli, A. and Puccio, H. (2014) Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front. Pharmacol. 5, 130, https://doi.org/10.3389/fphar.2014.00130

Gonzalez-Cabo, P. and Palau, F. (2013) Mitochondrial pathophysiology in Friedreich's ataxia. J. Neurochem. 126, 53–64, https://doi.org/10.1111/jnc.12303

Pastore, A. and Puccio, H. (2013) Frataxin: a protein in search for a function. J. Neurochem. 126, 43–52, https://doi.org/10.1111/jnc.12220

Rotig, A., de Lonlay, P., Chretien, D., Foury, F., Koenig, M., Sidi, D. et al. (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17, 215–217, https://doi.org/10.1038/ng.1097-215

Walden, W.E. (2002) From bacteria to mitochondria: aconitase yields surprises. Proc. Natl. Acad. Sci. U.S.A. 99, 4138–4140, https://doi.org/10.1073/pnas.082108799

Lynch, D.R., Lech, G., Farmer, J.M., Balcer, L.J., Bank, W., Chance, B. et al. (2002) Near infrared muscle spectroscopy in patients with Friedreich’s ataxia. Muscle Nerve 25, 664–673, https://doi.org/10.1002/mus.10077

DeBrosse, C., Nanga, R.P., Wilson, N., D’Aquia, K., Elliott, M., Harirhan, H. et al. (2016) Muscle oxidative phosphorylation quantification using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight 1, e88207, https://doi.org/10.1172/jci.insight.88207

Lodi, R., Cooper, J.M., Bradley, J.L., Manners, D., Styles, P., Taylor, D.J. et al. (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Nat. Genet. 22, 1143–1149, https://doi.org/10.1038/17482

Evans, O.B. (1983) Human muscle pyruvate dehydrogenase activity. Neurology 33, 51–56, https://doi.org/10.1212/wnl.33.1.51

Vaubel, R.A., Rustin, P. and Isaya, G. (2011) Mutations in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells. J. Biol. Chem. 286, 40232–40245, https://doi.org/10.1074/jbc.M111.274415

Basu, S.S., Deutsch, E.C., Schmaier, A.A., Lynch, D.R. and Blair, I.A. (2013) Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis 5, 3009–3021, https://doi.org/10.4155/bio.13.1269

Worth, A.J., Basu, S.S., Deutsch, E.C., Hwang, W.T., Snyder, N.W., Lynch, D.R. et al. (2015) Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich’s ataxia platelets. Bioanalysis 7, 1843–1855, https://doi.org/10.4155/bio.15.118

Cotticelli, M.G., Xia, S., Kaur, A., Lin, D., Wang, Y., Ruff, E. et al. (2018) Identification of p38 MAPK as a novel therapeutic target for Friedreich’s ataxia. Sci. Rep. 8, 5007, https://doi.org/10.1038/s41598-018-23161-x

Ristow, M., Pfister, M., Yee, A., Schubert, M., Michael, L., Zhang, C.Y. et al. (2000) Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 97, 12239–12243, https://doi.org/10.1073/pnas.97.23.12239

Vazquez-Manrique, R.P., Gonzalez-Cabo, P., Ros, S., Aziz, H., Baylis, H.A. and Palau, F. (2006) Reduction of Caenorhabditis elegans frataxin increases sensitivity to oxidative stress, reduces lifespan, and causes lethality in a mitochondrial complex II mutant. FASEB J. 20, 172–174, https://doi.org/10.1096/fj.05-4212fie

Yoon, T. and Cowan, J.A. (2003) Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 125, 6078–6084, https://doi.org/10.1021/ja0279671

Schmucker, S., Martelli, A., Colín, F., Page, A., Wattenhofer-Donzé, M., Reutenauer, L. et al. (2011) Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 6, e16199, https://doi.org/10.1371/journal.pone.0016199

Gonzalez-Cabo, P., Vazquez-Manrique, R.P., Garcia-Gimeno, M.A., Sanz, P. and Palau, F. (2005) Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum. Mol. Genet. 14, 2091–2098, https://doi.org/10.1093/hmg/ddi214

Lin, H., Magrane, J., Rattelle, A., Stepanova, A., Galkin, A., Clark, E.M. et al. (2017) Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis. Model Mech. 10, 1343–1352, https://doi.org/10.1242/dmm.030502
117 Soragni, E., Miao, W., Ludicello, M., Jacoby, D., De Mercanti, S., Clerico, M. et al. (2014) Epigenetic therapy for Friedreich ataxia. *Ann. Neurol.** 76*, 489–508, https://doi.org/10.1002/ana.24260

118 Gottesfeld, J.M., Rusche, J.R. and Pandolfo, M. (2013) Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich's ataxia. *J. Neurochem.** 126*, 147–154, https://doi.org/10.1111/jnc.12302

119 Perdomini, M., Belbellia, B., Monassier, L., Reutenauer, L., Messaddeq, N., Cartier, N. et al. (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. *Nat. Med.** 20*, 542–547

120 Piquet, F., de Montigny, C., Vaucamps, N., Reutenauer, L., Eisenmann, A. and Puccio, H. (2018) Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. *Lancet Neurol.** 17*, 878–886, https://doi.org/10.1016/S1474-4422(18)30220-X

121 Meier, T. and Buyse, G. (2009) Idebenone: an emerging therapy for Friedreich ataxia. *J. Neurol.** 256*, 25–30, https://doi.org/10.1007/s00415-009-1005-0

122 Rustin, P., von Kleist-Retzow, J.C., Chantrel-Groussard, K., Sidi, D., Munnich, A. and Rötig, A. (1999) Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study. *Lancet** 354*, 477–479, https://doi.org/10.1016/S0140-6736(99)01341-0

123 Meier, T., Perlman, S.L., Rummey, C., Coppard, N.J. and Lynch, D.R. (2012) Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. *J. Neurol.** 259*, 284–291, https://doi.org/10.1007/s00415-011-6174-y

124 Lynch, D.R., Perlman, S.L. and Meier, T. (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. *Arch. Neurol.** 67*, 941–947, https://doi.org/10.1001/archneur.2010.168

125 Hart, P.E., Lodì, R., Rajagopalan, B., Taylor, D.J., Crilley, J.G., Bradley, J.L. et al. (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. *Arch. Neurol.** 62*, 621–626, https://doi.org/10.1001/archneur.62.4.621

126 Boddaert, N., Le Quan Sang, K.H., Rotig, A., Leroy-Willig, A., Gallet, S., Brunelle, F. et al. (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. *Blood** 110*, 401–408, https://doi.org/10.1182/blood-2006-12-065433

127 Daar, S., Al-Khabori, M.K., Al-Huneini, I.M., Al-Hashim, I.I., Al-Kemyani, I.I. (2016) Long-term iron chelation therapy with deferiprone in patients with thalassemia major and low iron load. *Blood** 128*, 3626

128 Goncalves, S., Paupe, V., Dassa, E.P. and Rustin, P. (2008) Deferiprone targets aconitase: implication for Friedreich's ataxia treatment. *BMC Neurol.** 8*, 20, https://doi.org/10.1186/1471-2379-8-20

129 Kakhlon, O., Manning, H., Breuer, W., Melamed-Book, N., Lu, C., Cortopassi, G. et al. (2008) Cell functions impaired by frataxin deficiency are restored by drug mediated iron relocation. *Blood** 112*, 5219–5227, https://doi.org/10.1182/blood-2008-06-161919

130 Richardson, D.R. (2003) Friedreich's ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? *Expert Opin. Invest. Drugs** 12*, 235–245, https://doi.org/10.1517/13543784.12.2.235

131 Sohn, Y., Breuer, W., Munnich, A. and Cabantchik, Z.I. (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. *Blood** 111*, 1690–1699, https://doi.org/10.1182/blood-2007-07-102335

132 Pandolfo, M., Arpa, J., Delatycki, M.B., Le Quan Sang, K.H., Mariotti, C., Munnich, A. et al. (2014) Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. *Ann. Neurol.** 76*, 509–521, https://doi.org/10.1002/ana.24248