Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models

Sara Pérez-Vieites, Joaquín Míguez

Department of Signal Theory & Communications, Universidad Carlos III de Madrid.
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain.

Abstract
We introduce a new sequential methodology to calibrate the fixed parameters and track the stochastic dynamical variables of a state-space system. The proposed method is based on the nested hybrid filtering (NHF) framework of [1], that combines two layers of filters, one inside the other, to compute the joint posterior probability distribution of the static parameters and the state variables. In particular, we explore the use of deterministic sampling techniques for Gaussian approximation in the first layer of the algorithm, instead of the Monte Carlo methods employed in the original procedure. The resulting scheme reduces the computational cost and so makes the algorithms potentially better-suited for high-dimensional state and parameter spaces. We describe a specific instance of the new method and then study its performance and efficiency of the resulting algorithms for a stochastic Lorenz 63 model with uncertain parameters.

Keywords: filtering; Kalman; Monte Carlo; Bayesian inference, parameter estimation.

1. Introduction

State-space models are a popular tool in many fields of science and engineering where researchers and practitioners deal with uncertainty in dynamical systems. A typical state space model consists of:

Email addresses: saperezv@pa.uc3m.es (Sara Pérez-Vieites), joaquin.miguez@uc3m.es (Joaquín Míguez)
A random sequence of state vectors, x_t, that contain the variables of interest for the description of the real-world system at hand, but cannot be observed (at least completely).

A random sequence of noisy observation vectors, y_t, where each y_t can be related to the state x_t through some conditional probability distribution.

A vector θ of static model parameters that determine the model behavior and, typically, have to be estimated from the available data.

Classical filtering methods \([2, 3, 4, 5, 6, 7]\), including both Kalman-based algorithms and Monte Carlo schemes (particle filters \([6]\)) tackle the problem of predicting and tracking the states x_t using the observations y_t, while assuming that the parameters θ are given. This is hardly ever the case in practice, though, and the fixed parameters θ have to be estimated from the data y_t as well. The joint tracking of x_t and estimation of θ involves several practical and theoretical difficulties. The straightforward approach is the use of state augmentation \([8, 9, 10, 11, 12, 13]\), where an extended state is introduced that includes both the static parameters θ and the dynamical variables x_t. This methodology can be applied with any standard filtering technique such as Kalman-like methods (either extended \([8]\) or sigma-point-based \([9]\) approximations) and particle filters (PFs) \([10, 12, 14]\). In the case of PFs, artificial dynamics are usually introduced for the fixed parameters, reinterpreting them as slow-changing dynamical variables in order to avoid the degeneracy of the Monte Carlo approximation. Both with Kalman and particle filtering techniques, state augmentation is easy to apply but the resulting methods are often inefficient and lack theoretical guarantees. When the posterior distribution of the static parameters can be represented by a set of finite statistics, classical state-augmentation can be replaced by a two-stage procedure where one first samples the posterior of the parameters and then the states (conditional on the parameters). Such methods are often referred to as particle learning \([15, 16, 17, 18]\). The assumption of having a description of the posterior distribution of the parameters is rather restrictive, though. A more general strategy is the use of recursive maximum
likelihood methods. These techniques are well-principled and can be applied to a broad class of models. However, they provide point estimates of the unknowns as the observations are collected and not full posterior distributions. Therefore, the uncertainty is not quantified.

On the other hand, some major advances in the last few years have led to well-principled algorithms that can solve (numerically) the joint model inference (parameter estimation) and state tracking problems. They are fundamentally Bayesian methods that aim at computing the posterior probability distribution of the unknown states and parameters given sequentially collected observations. This approach not only provides point estimates but also information about the uncertainty of those estimates. Some examples are the sequential Monte Carlo square (SMC2), the particle Markov chain Monte Carlo (PMCMC) and the nested particle filter (NPF) methods. However, both SMC2 and PMCMC are batch (non recursive) techniques. Therefore, every time a new observation is introduced, the whole sequence of observations may need to be processed in order to compute the new Bayes estimator. A closely-related methodology that is better suited for long sequences of observed data is the NPF. It applies the same principles as SMC2 but NPFs are purely recursive. It is a scheme with two intertwined layers of Monte Carlo methods, one inside the other, using the “inner” layer to track the dynamic state variables and the “outer” layer for parameter estimation. However, since the NPF uses Monte Carlo in both layers of filters, its computational cost becomes prohibitive in high-dimensional problems. With the aim of reducing this cost, the class of nested hybrid filters (NHFs) was introduced. NHFs are recursive algorithms with the same multi-layer structure as NPFs but they enable the use of non-Monte Carlo filtering techniques in the “inner” layer (state tracking). Therefore, an NHF is a general scheme that can approximate the posterior probability distribution of the static parameters with a recursive Monte Carlo or quasi-Monte Carlo method and combine it with different filtering (Monte Carlo or Kalman-based) techniques in order to approximate the posterior probability distribution of the dynamical state variables of the system.
In this paper, we extend the NHF methodology to enable the use of non-Monte Carlo schemes in both layers of the nested filtering procedure. The new scheme, therefore, is a methodological generalization of the algorithms in [1, 25, 26] that comprises a broad class of nested filters for which it is possible to use and combine Gaussian or particle filters in any of the two layers. The new algorithms remain purely recursive and yield numerical approximations of the posterior probability of the unknown state variables and parameters using the sequentially collected observations.

To be specific, in this work we explain in detail the use of a deterministic-sampling Gaussian approximation (such as the unscented Kalman filter (UKF) [5] or the cubature Kalman filter (CKF) [28]) in the outer layer of the nested filtering scheme. Either particle or Gaussian (Kalman-based) filters can be easily plugged into the inner layer (we implement extended Kalman filters in our experiments for simplicity). The key difficulty to be tackled when using non-Monte Carlo methods in the outer layer is to keep the algorithm recursive. This was achieved for the Monte Carlo methods in [25] and [1] using a “jittering” procedure that cannot be extended to Gaussian filters in a practical way. Instead, we place a condition on the update of the filter in the outer layer that depends on a distance defined on the parameter space. When the distance between consecutive parameter updates falls below a prescribed threshold the algorithm operates in a purely recursive manner. This approach can work adequately when the posterior probability distributions of the state variables are continuous with respect to (w.r.t.) the unknown parameters, and we prove that this is the case under regularity assumptions on the state-space model.

In order to assess the performance of the proposed nested methods we have implemented a recursive scheme that employs a UKF in the outer layer (for parameter estimation) and a bank of extended Kalman filters (EKFs) in the inner layer (for state tracking). We have carried out a simulation study to compare the performance of this algorithm with two state-augmented Gaussian filters (a UKF and an ensemble Kalman filter (EnKF) [29]) as well as another nested algorithm that combines a particle filter in the outer layer with EKFs in the
inner layer. The methods are applied to the problem of tracking a stochastic Lorenz 63 model with three unknown parameters in the state equation.

The rest of the paper is organized as follows. In Section 2 we describe the class of state-space models with unknown parameters to be studied through the paper. In Section 3 we derive the family of nested Gaussian filters with sigma-point approximations in the outer layer. Our computer simulation results are presented in Section 4 and, finally, Section 5 is devoted to the conclusions.

2. Problem Statement

2.1. State space models

We are interested in the class of Markov state-space dynamical systems with additive noise that can be described by the pair of equations

\[x_t = f(x_{t-1}, \theta) + v_t, \]
\[y_t = g(x_t, \theta) + r_t, \]

where \(t \in \mathbb{N} \) denotes discrete time, \(x_t \in \mathbb{R}^{d_x} \) is the \(d_x \)-dimensional system state, \(f: \mathbb{R}^{d_x} \times \mathbb{R}^{d_\theta} \rightarrow \mathbb{R}^{d_x} \) and \(g: \mathbb{R}^{d_x} \times \mathbb{R}^{d_\theta} \rightarrow \mathbb{R}^{d_y} \), \(d_x \geq d_y \), are possibly nonlinear functions parameterized by a (random but fixed) vector of unknown parameters, \(\theta \in \mathbb{R}^{d_\theta} \), \(y_t \in \mathbb{R}^{d_y} \) is the observation vector at time \(t \) and \(v_t \) and \(r_t \) are zero-mean random vectors playing the roles of state and observations noises.

The system of equations (1) and (2) can be described in terms of a set of relevant probability density functions (pdfs), specifically

\[x_0 \sim p(x_0), \quad \theta \sim p(\theta), \]
\[x_t \sim p(x_t|x_{t-1}, \theta), \]
\[y_t \sim p(y_t|x_t, \theta), \]

We adopt an argument-wise notation for pdfs. If we have two random variables \(x \) and \(y \), we write \(p(x) \) and \(p(y) \) for their respective pdfs which are possibly different. In a similar way, \(p(x, y) \) denotes the joint pdf of the two random variables and \(p(x|y) \) denotes the conditional pdf of \(x \) given \(y \).
where $p(\theta)$ and $p(x_0)$ are the a priori pdfs of the parameters and the state, respectively, $p(x_t|x_{t-1}, \theta)$ is the conditional density of the state x_t given x_{t-1} and the parameter vector θ, and $p(y_t|x_t, \theta)$ is the conditional pdf of the observation y_t given x_t and θ. We assume that y_t is conditionally independent of all other observations (given x_t and θ) and the prior pdfs of the state, $p(x_0)$, and the parameters, $p(\theta)$, are known and the corresponding probability distributions are independent.

2.2. Model inference

The key difficulty in this class of models is the Bayesian estimation of the parameter vector θ, since its calibration is necessary in order to track the state variables and predict the evolution of the system. From the viewpoint of Bayesian analysis, we aim at computing the posterior pdf $p(\theta|y_{1:t})$ as it contains all the relevant information for the estimation task at discrete time t. However, this pdf can be written as

$$p(\theta|y_{1:t}) = \int p(\theta, x_t|y_{1:t})dx_t,$$

leading naturally to approximations for $p(\theta, x_t|y_{1:t})$ for each t. This means that when computing $p(\theta|y_{1:t})$ we may not only estimate the parameter vector θ, but we may also implicitly track the state dynamical variables. The main aim of this paper is to obtain a Gaussian approximation of $p(\theta|y_{1:t})$ within a nested Gaussian filtering scheme, whose second layer of filters will provide, in addition, Gaussian approximations for $p(x_t|y_{1:t}, \theta)$.

3. Nested Gaussian filters

In this section, we introduce a class of nested filter for state-space models with unknown parameters that combine different types of Gaussian approximations in the inner and outer layers. We outline the methodology used to obtain the Gaussian approximations of $p(\theta|y_{1:t})$ (in the outer layer) and $p(x_t|y_{1:t}, \theta)$ (in the inner layer).
In the sequel we keep using \(p(\cdot) \) to denote the actual PDFs. We aim, however, at constructing Gaussian approximations of the posterior PDFs induced by the state-space model (3)-(5) and the sequence of observations. For this purpose, we introduce notation \(N(\bar{x}, C) \) to denote the Gaussian PDF with mean \(\bar{x} \) and covariance matrix \(C \). We will show how to recursively compute approximations \(p(\theta|y_{1:t}) \approx N(\hat{\theta}_t, \hat{C}_{\theta,t}) \), \(p(x_t|y_{1:t}, \theta) \approx N(\hat{x}_t|\bar{x}_t, C_{x,t,\theta}) \) and \(p(x_t|y_{1:t}) \approx N(\hat{x}_t|\bar{x}_t, C_{x,t}) \).

3.1. Sequential Gaussian approximation

Let us aim at computing expectations of the form
\[
E[f(\theta)|y_{1:t}] = \int f(\theta) p(\theta|y_{1:t}) d\theta
\]
for some test function of the parameters, \(f(\theta) \). Using Bayes’ rule, we have
\[
p(\theta|y_{1:t}) = \frac{p(y_t|\theta, y_{1:t-1})}{p(y_t|y_{1:t-1})} \times p(\theta|y_{1:t-1}),
\]
hence, we can rewrite the posterior expectation as
\[
E[f(\theta)|y_{1:t}] = \int \psi(\theta) p(\theta|y_{1:t-1}) d\theta,
\]
where the function \(\psi(\theta) \) is constructed as
\[
\psi(\theta) := \frac{f(\theta)p(y_t|\theta, y_{1:t-1})}{p(y_t|y_{1:t-1})}.
\]
If we assume that \(p(\theta|y_{1:t-1}) \) is Gaussian, then we can approximate (8) using cubature rules [28] or the unscented transform (UT) [5]. Specifically, a Gaussian approximation \(N(\bar{\theta}_{t-1}, C_{\theta,t-1}) \approx p(\theta|y_{1:t-1}) \) can be represented at time \(t \) by a set of reference points and weights, \(\{\theta_i^t, w_i^t\}, i = 1, \ldots, M \), which in turn we may use to approximate the integral in (8) as
\[
\int \psi(\theta)p(\theta|y_{1:t-1}) d\theta \approx \sum_{i=1}^M \psi(\theta_i^t)w_i^t.
\]
On the other hand, the PDF in the denominator of expression (9), \(p(y_t|y_{1:t-1}) \), can be written as
\[
p(y_t|y_{1:t-1}) = \int p(y_t, \theta|y_{1:t-1}) d\theta,
\]
where the joint pdf of y_t and θ given all previous observations can be decomposed as

$$p(y_t, \theta | y_{1:t-1}) = p(y_t | \theta, y_{1:t-1}) p(\theta | y_{1:t-1}).$$

(12)

Then, the integral in (11) can also be approximated using the same set of reference points and weights as

$$p(y_t | y_{1:t-1}) \simeq \sum_{i=1}^{M} p(y_t | y_{1:t-1}, \theta^i_t) w^i_t. \quad (13)$$

Finally, we can approximate the pdf $p(y_t | y_{1:t-1}, \theta^i_t), i = 1, \ldots, M$, using a bank of M Gaussian filters placed in the second layer of the nested filter [1]. Once these densities are computed, we can approximate $p(y_t | y_{1:t-1})$ as in (13).

The argument above enables us to approximate any integral $\int f(\theta) p(\theta | y_{1:t}) d\theta$. In particular, we can compute the mean vector and covariance matrix of $p(\theta | y_{1:t}) \simeq \mathcal{N}(\theta | \hat{\theta}_t, C^\theta_t)$ by taking $f(\theta) = \theta$ and $f(\theta) = (\theta - \hat{\theta}_t)(\theta - \hat{\theta}_t)^\top$, respectively, where

$$\hat{\theta}_t = \int \theta p(\theta | y_{1:t}) d\theta. \quad (14)$$

Specifically, we obtain the formulation for approximating the mean parameter vector, $\hat{\theta}_t$, and its covariance matrix, \hat{C}^θ_t, sequentially as

$$\hat{\theta}_t \simeq \sum_{i=1}^{M} \theta^i_t p(y_t | y_{1:t-1}, \theta^i_t) w^i_t \quad \text{and} \quad (15)$$

$$\hat{C}^\theta_t \simeq \sum_{i=1}^{M} (\theta^i_t - \hat{\theta}_t)(\theta^i_t - \hat{\theta}_t)^\top \frac{p(y_t | y_{1:t-1}, \theta^i_t)}{p(y_t | y_{1:t-1})} w^i_t. \quad (16)$$

We outline the procedure for the sequential computation of the Gaussian approximations $\mathcal{N}(\theta | \hat{\theta}_t, C^\theta_t) \simeq p(\theta | y_{1:t}), t = 1, 2, \ldots$, in Algorithm 1. The calculations done in the second layer of filters are summarized in step 2a. Notice that, at any time $t \geq 1$, we update the reference points $\theta^i_t, i = 1, \ldots, M$, and, therefore, we need to run the M Gaussian filters in the second layer from scratch (i.e., from $n = 0$ to $n = t$) in order to (approximately) evaluate the densities $p(y_t | y_{1:t-1}, \theta^i_t)$. Thus, Algorithm 1 is sequential but not recursive and, as a consequence, not well suited to handle long sequences of observations.
Algorithm 1 Nested Gaussian filters.

Inputs:

- Prior pdfs $p(x_0)$ and $p(\theta)$. Assume that either $p(x_0)$ is Gaussian or a Gaussian approximation is available.

Procedure:

1. Initialization

 (a) Generate M reference points, θ_i^t, from $p(\theta) \simeq \mathcal{N}(\theta|\theta_0, C_0^\theta)$ for $i = 1, \ldots, M$, with weights w_i^1.

2. Sequential step, $t \geq 1$.

 (a) For each $i = 1, \ldots, M$, use a Gaussian filter to approximately compute $p(y_t|y_{1:t-1}, \theta_i^t)$.

 (b) Compute $\hat{\theta}_t$ and \hat{C}_t^θ via (15) and (16).

 (c) Generate new reference points θ_{i+1}^t and weights w_{i+1}^t, $i = 1, \ldots, M$, from $\hat{\theta}_t$ and \hat{C}_t^θ.

Outputs: $\hat{\theta}_t$ and \hat{C}_t^θ.

9
3.2. Recursive algorithm

For every new observation vector \(y_t \), the pdf’s \(p(y_t|y_{1:t-1},\theta^i) \) are computed by running the nested filters from time 0 until the current time \(t \), which makes the computational cost increase with \(t^2 \).

However, the entries of the covariance matrix, \(\hat{C}_{\theta}^l \), also tend to stabilize over time, which makes the difference between consecutive reference points, \(\theta^i_t - \theta^i_{t-1} \), decrease. If we also assume that the function \(p(y_t|y_{1:t-1},\theta) \) is continuous in \(\theta \), then we can make the computation recursive by assuming that \(p(y_t|y_{1:t-1},\theta^i_t) \approx p(y_t|y_{1:t-1},\theta^i_{t-1}) \) when \(\theta^i_t \approx \theta^i_{t-1} \). For the sake of clarity we summarize the steps for computing \(p(y_t|y_{1:t-1},\theta^i) \) in Algorithm 2, relying on a bank of EKFs.

Let us remark that the second layer of the nested algorithm can be implemented using a variety of filters, e.g., particle filters as in [25] or Gaussian filters as in [1], including UKFs as we have done for the first layer. We choose a bank of EKFs simply because it is the computationally less demanding alternative.

Algorithm 3 outlines a recursive nested Gaussian filter with a UKF or CKF in the first layer and EKFs in the second layer. It can be seen as a recursive and explicit implementation of Algorithm 1. The initialization remains the same (step 1a), computing \(M \) reference points \(\theta^i_1 \) and weights \(w^i_1 \), \(i = 1, \ldots, M \), from the prior \(p(\theta) \sim \mathcal{N}(\theta|\theta_0, C_{\theta}^0) \). Also, we initialize the state and its covariance matrix in every Gaussian filter of the second layer (step 1b) by setting \(\hat{x}^i_0 = \hat{x}_0 \) and \(\hat{C}_{x,i}^0 = C_{x}^0 \), \(i = 1, \ldots, M \), from the prior \(p(x_0) = \mathcal{N}(x_0|\hat{x}_0, C_{x}^0) \).

The sequential procedure starts by approximating \(p(x_t|y_{1:t-1},\theta^i_t) \) with the second layer of Gaussian filters (step 2a). This is done differently depending on whether we assume \(\theta^i_t \approx \theta^i_{t-1} \) or not. To be specific, the norm \(\|\theta^i_t - \theta^i_{t-1}\|_p \) is computed and compared against a prescribed relative threshold \(\lambda > 0 \) in order to determine whether the prediction and update steps in the second layer of filters can be performed recursively or not. Specifically:

- If \(\|\theta^i_t - \theta^i_{t-1}\|_p < \lambda \|\theta^i_{t-1}\|_p \) is not satisfied for \(\theta^i_t \), the \(i \)-th filter runs from

\(^2 \)Although other metrics \(d(\theta^i_t, \theta^i_{t-1}) \) could be used, we adopt p-norms of the difference
scratch following the scheme in Algorithm 2.

- When \(\| \theta^i_t - \theta^i_{t-1} \|_p < \lambda \| \theta^i_{t-1} \|_p \) is satisfied for \(\theta^i_t \), only one prediction and update step (from time \(t - 1 \) to time \(t \)) is needed. In particular, we make the approximation \(p(x_{t-1}|y_{1:t-1}, \theta^i_t) \approx p(x_{t-1}|y_{1:t-1}, \theta^i_{t-1}) \).

In either case, we use \(p(x_t|y_{1:t-1}, \theta^i_t) \) in order to compute \(p(y_t|y_{1:t-1}, \theta^i_t) \) as in step 2b of Algorithm 2. Finally, we can compute the mean vector \(\hat{\theta}_t \) and the covariance matrix \(\hat{C}_{\theta,i} \) at time \(t \) in step 2b, by using (15) and (16). We prepare the new reference points \(\theta^i_{t+1} \) and their weights \(w^i_{t+1} \) from \(\mathcal{N}(\hat{\theta}_t, \hat{C}_{\theta,i}) \) for the next time step.

3.3. State tracking

We can take advantage of the filters in the second layer in order to provide state estimates as well. Let us write the expectation of \(x_t \) as

\[
E[x_t|y_{1:t}] = \int_{\theta} \left[\int_{\mathcal{X}} x_t p(x_t|\theta, y_{1:t}) dx_t \right] p(\theta|y_{1:t}) d\theta,
\]

where the integral in square brackets can be approximated by the M Gaussian filters of the second layer. In this case, we assume they are the EKFs of Algorithm 2 conditional on \(\theta = \theta^i_t \). This yields a Gaussian approximation \(p(x_t|\theta^i_t, y_{1:t}) \approx \mathcal{N}(\hat{x}_t, \hat{C}_{\theta,i}) \), where

\[
\hat{x}_t, \theta^i_t \approx E[x_t|\theta^i_t, y_{1:t}]; \quad \text{and} \quad \hat{C}_{\theta,i}^x \approx E[(x_t - \hat{x}_t, \theta^i_t)(x_t - \hat{x}_t, \theta^i_t)^\top|y_{1:t}, \theta^i_t].
\]

\(\theta^i_t - \theta^i_{t-1} \) for this work. This is a flexible setup that admits several variants, e.g.,

\[
\| \theta^i_t - \theta^i_{t-1} \|_1 = \sum_{j=1}^{d_\theta} |\theta^i_{t,j} - \theta^i_{t-1,j}|;
\]

\[
\| \theta^i_t - \theta^i_{t-1} \|_2 = \sqrt{\sum_{j=1}^{d_\theta} (\theta^i_{t,j} - \theta^i_{t-1,j})^2} \quad \text{and}
\]

\[
\| \theta^i_t - \theta^i_{t-1} \|_\infty = \max_{1 \leq j \leq d_\theta} |\theta^i_{t,j} - \theta^i_{t-1,j}|;
\]

i.e., the taxicab or Manhattan (\(p = 1 \)), the Euclidean norm (\(p = 2 \)) and the maximum norm (\(p = \infty \)) respectively.
Algorithm 2 Extended Kalman filter conditional on θ^t_i, used in the second layer of the nested filter.

Inputs:
- Prior pdf $p(x_0)$ and parameter vector θ^t_i.
- State-space model described in equations (1) and (2). In particular, $f(\cdot)$ denotes the drift function in the state eq. (1) and $g(\cdot)$ is the observation function in eq. (2). The covariance of the state noise is denoted V and the covariance of the observation noise is denoted R.

Procedure:

1. Initialization
 (a) Assume $p(x_0)$ is Gaussian with mean \hat{x}_0 and covariance \hat{C}_0^x, i.e.,
 \[p(x_0) \simeq N(x_0|\hat{x}_0, \hat{C}_0^x). \]

2. Sequential step, $t \geq 1$.
 (a) **Prediction step.** Compute
 \[\hat{x}_{t,\theta^t_i} = f(\hat{x}_{t-1,\theta^t_i}, \theta^t_i), \quad (25) \]
 \[\hat{C}_{t,\theta^t_i}^x = J_{f,\hat{x}_{t-1,\theta^t_i}} \hat{C}_{t-1,\theta^t_i}^x J_{f,\hat{x}_{t-1,\theta^t_i}}^\top + V, \quad (26) \]
 where $J_{f,x}$ is the Jacobian matrix of $f(\cdot)$ evaluated at \hat{x}_{t-1,θ^t_i}.
 (b) Approximate $p(x_t|y_{1:t-1}, \theta^t_i) \simeq N(x_t|\hat{x}_{t,\theta^t_i}, \hat{C}_{t,\theta^t_i}^x)$ and compute
 \[p(y_t|x_t, \theta^t_i) = \int p(y_t|x_t, \theta^t_i)p(x_t|y_{1:t-1}, \theta^t_i)dx_t \]
 \[\simeq \int p(y_t|x_t, \theta^t_i)N(x_t|\hat{x}_{t,\theta^t_i}, \hat{C}_{t,\theta^t_i})dx_t. \quad (27) \]
 \[p(y_t|y_{1:t-1}, \theta^t_i) = \int p(y_t|x_t, \theta^t_i)p(x_t|y_{1:t-1}, \theta^t_i)dx_t \]
 \[\simeq \int p(y_t|x_t, \theta^t_i)N(x_t|\hat{x}_{t,\theta^t_i}, \hat{C}_{t,\theta^t_i})dx_t. \quad (28) \]
 (c) **Update step.** Compute
 \[\hat{x}_{t,\theta^t_i} = \hat{x}_{t,\theta^t_i} + K_t(y_t - g(\hat{x}_{t,\theta^t_i}, \theta^t_i)), \quad (29) \]
 \[\hat{C}_{t,\theta^t_i}^x = (I_{d_x} - K_t J_{g,\hat{x}_{t,\theta^t_i}}) \hat{C}_{t,\theta^t_i}^x, \quad (30) \]
 \[K_t = \hat{C}_{t,\theta^t_i}^x J_{g,\hat{x}_{t,\theta^t_i}} (J_{g,\hat{x}_{t,\theta^t_i}}^\top \hat{C}_{t,\theta^t_i}^x J_{g,\hat{x}_{t,\theta^t_i}}^\top + R), \]
 where $J_{g,x}$ is the Jacobian matrix of $g(\cdot)$ evaluated at \hat{x}_{t,θ^t_i}. Approximate $p(x_t|y_{1:t}, \theta) \simeq N(x_t|\hat{x}_{t,\theta^t_i}, \hat{C}_{t,\theta^t_i})$.

Outputs: \hat{x}_{t,θ^t_i}, $\hat{C}_{t,\theta^t_i}^x$ and $p(y_t|y_{1:t-1}, \theta^t_i)$.
Then, a Gaussian approximation
\[p(x_t | y_{1:t}) \simeq N(x_t | \hat{x}_t, \hat{C}_t^x) \]
can be constructed, where
\[\hat{x}_t \simeq \sum_{i=1}^{M} \hat{x}_{t, \theta_i} p(y_t | y_{1:t-1}, \theta_i^t) w_i^t \]
and
\[\hat{C}_t^x \simeq \sum_{i=1}^{M} (\hat{x}_{t, \theta_i} - \hat{x}_t)(\hat{x}_{t, \theta_i} - \hat{x}_t)^\top \frac{p(y_t | y_{1:t-1}, \theta_i^t)}{p(y_t | y_{1:t-1})} w_i^t. \]

3.4. Continuity of the conditional filter

The key to keep Algorithm 3 recursive is the test in step 2a, which sets
\[p(x_{t-1} | y_{1:t-1}, \theta_i^t) \simeq N(x_{t-1} | \hat{x}_{t-1, \theta_{i-1}}, \hat{C}_{t-1, \theta_{i-1}}) \]
when \(\| \theta_i^t - \theta_{i-1}^t \| < \lambda \) for some prescribed threshold \(\lambda > 0 \). This step relies on the assumption that \(p(x_{t-1} | y_{1:t-1}, \theta) \approx p(x_{t-1} | y_{1:t-1}, \theta') \) when \(\theta \approx \theta' \), i.e., we are assuming that the conditional filtering pdf \(p(x_t | y_{1:t}, \theta) \) is a continuous function of the parameter \(\theta \). In this section we state sufficient conditions for the conditional filter \(p(x_t | y_{1:t}, \theta) \) to be Lipschitz-continuous.

For conciseness, let us denote
\[\pi_t(x_t | \theta) := p(x_t | y_{1:t}, \theta), \]
\[\xi_t(x_t | \theta) := p(x_t | y_{1:t-1}, \theta), \quad \text{and} \]
\[\eta_t(y_t | \theta) := p(y_t | y_{1:t-1}, \theta). \]

Hereafter we assume that the observation sequence \(\{y_t, t \geq 1\} \) is arbitrary but fixed (i.e., deterministic). Additionally, we impose the following regularity assumptions:

Assumption 1. The conditional pdfs \(\pi_t(x_t | \theta) \), \(\xi_t(x_t | \theta) \) and \(\eta_t(y_t | \theta) \) exist for every \(t \geq 1 \), every \(x_t \in \mathbb{R}^{d_x} \) and every parameter vector \(\theta \in \Theta \subseteq \mathbb{R}^{d_\theta} \), where \(\Theta \) denotes the parameter space.
Assumption 2. The transition pdf $p(x_t|x_{t-1}, \theta)$ is Lipschitz w.r.t. θ, i.e., there exists a constant $0 < L < \infty$ such that
\[\sup_{x_{t-1} \in \mathbb{R}^d_x} \int |p(x_t|x_{t-1}, \theta) - p(x_t|x_{t-1}, \theta')|d x_t < L \|\theta - \theta'\| \] (35)
for every $t \geq 1$ and every pair $(\theta, \theta') \in \Theta \times \Theta$.

Remark 1. In Assumption 2, we denote $\|\theta - \theta'\| = \sqrt{\sum_{i=1}^{d_\theta} (\theta_i - \theta'_i)^2}$, the Euclidean distance between θ and θ'.

Assumption 3. The conditional pdfs $p(y_t|x_t, \theta)$ are strictly positive and uniformly Lipschitz w.r.t. θ. In particular, $p(y_t|x_t, \theta) > 0$ and
\[\sup_{x_t \in \mathbb{R}^d_x} \frac{|p(y_t|x_t, \theta) - p(y_t|x_t, \theta')|}{\eta_t(y_t|\theta)} < G_t \|\theta - \theta'\| \] (36)
for some positive $G_t < \infty$.

Assumption 4. The ratio $\frac{p(y_t|x_t, \theta)}{\eta_t(y_t|\theta)}$ is bounded. Specifically, there exist finite constants $0 < M_t < \infty$ such that
\[\sup_{\theta \in \Theta, x_{t-1} \in \mathbb{R}^d_x} \frac{p(y_t|x_t, \theta)}{\eta_t(y_t|\theta)} < M_t. \] (37)

Assumptions 1 and 2 are rather mild and easy to check for a given state-space model. Assumptions 3 and 4, on the other hand, may be restrictive in some problems. We note, however, that for fixed y_t, $t \geq 1$, and a compact parameter support $\Theta \subset \mathbb{R}^{d_\theta}$, the factor $\eta_t(y_t|\theta)$ can often be bounded away from 0, while $p(y_t|x_t, \theta)$ is typically upper bounded. In any case, Assumptions 1-4 lead to the result below regarding the continuity of the filter, $\pi_t(x_t|\theta)$, and predictive, $\xi_t(x_t|\theta)$, pdfs w.r.t. the parameter vector θ.

Proposition 1. : If Assumptions 1 to 4 hold, there exist sequences of finite constants \tilde{L}_t and L_t such that, for $t \geq 1$,
\[\int |\xi_t(x_t|\theta) - \xi_t(x_t|\theta')|d x_t \leq \tilde{L}_t \|\theta - \theta'\|, \text{ and} \] (38)
\[\int |\pi_t(x_t|\theta) - \pi_t(x_t|\theta')|d x_t \leq L_t \|\theta - \theta'\|. \] (39)

See Appendix A for a proof.
Algorithm 3 Recursive nested Gaussian filters.

Inputs:
- Prior pdfs $p(x_0)$ and $p(\theta)$.
- A fixed threshold $\lambda > 0$.

Procedure:

1. Initialization
 (a) Generate M reference points, θ^i_1, for $p(\theta) \approx \mathcal{N}(\theta_0, C^\theta_0)$, $i = 1, \ldots, M$, with weights w^i_1.
 (b) If $p(x_0) = \mathcal{N}(x_0|\bar{x}_0, C^x_0)$, then set $\hat{x}^i_0 = \bar{x}_0$ and $\hat{C}^x_0 = C^x_0$ for $i = 1, \ldots, M$.

2. Sequential step, $t \geq 1$.
 (a) For $i = 1, \ldots, M$:
 i. If $\|\theta^i_t - \theta^i_{t-1}\|_p < \lambda\|\theta^i_{t-1}\|_p$, then compute $p(x_t|y_{1:t-1}, \theta^i_t)$ from $p(x_{t-1}|y_{1:t-1}, \theta^i_t) \approx p(x_{t-1}|y_{1:t-1}, \theta^i_{t-1})$, where $p(x_{t-1}|y_{1:t-1}, \theta^i_{t-1}) \approx \mathcal{N}(x_{t-1}|\hat{x}_{t-1}^i, \hat{C}^x_{t-1}|\theta^i_{t-1})$. Else, approximate $p(x_t|y_{1:t-1}, \theta^i_t)$ from the prior $p(x_0)$.
 ii. Use $p(x_t|y_{1:t-1}, \theta^i_t)$ to compute $p(y_t|y_{1:t-1}, \theta^i_t)$.
 (b) Compute $\hat{\theta}_t$, \hat{C}^θ_t, \hat{x}_t and \hat{C}^x_t from (15), (16), (23) and (24), respectively.
 (c) Generate reference points θ^i_{t+1} and weights w^i_{t+1} from $\hat{\theta}_t$ and \hat{C}^θ_t for $i = 1, \ldots, M$.

Outputs: \hat{x}_t, $\hat{\theta}_t$, \hat{C}^x_t and \hat{C}^θ_t.

15
4. Example

4.1. Stochastic Lorenz 63 model

Consider the 3-dimensional continuous-time stochastic process $x(\tau) = [x_1(\tau), x_2(\tau), x_3(\tau)]^T$, for $\tau \in (0, \infty)$, taking values on \mathbb{R}^3, whose dynamics are described by the system of stochastic differential equations (SDEs)

\begin{align*}
 dx_1 &= -S(x_1 - x_2) + \sigma dv_1, \quad (40) \\
 dx_2 &= Rx_1 - x_2 - x_1 x_3 + \sigma dv_2, \quad (41) \\
 dx_3 &= x_1 x_2 - B x_3 + \sigma dv_3, \quad (42)
\end{align*}

where the v_i's are independent 1-dimensional Wiener processes, $\sigma > 0$ is a known scale parameter and $S, R, B \in \mathbb{R}$ are unknown static model parameters.

Using the Euler-Maruyama scheme in order to integrate the SDEs (40–42), it is straightforward to convert them into the discrete-time state equation

$$x_{t+1} = f_\Delta(x_t, \theta) + \sqrt{\Delta} v_t, \quad t = 1, 2, \ldots$$

(43)

where $f_\Delta : \mathbb{R}^{d_x} \times \mathbb{R}^{d_\theta} \to \mathbb{R}^{d_x}$ ($d_x = d_\theta = 3$) is the function defined by

\begin{align*}
 f_{1,\Delta}(x_t, \theta) &= x_{1,t} - \Delta S(x_{1,t} - x_{2,t}), \\
 f_{2,\Delta}(x_t, \theta) &= x_{2,t} + \Delta [(R - x_{3,t}) x_{1,t} - x_{2,t}], \\
 f_{3,\Delta}(x_t, \theta) &= x_{3,t} + \Delta (x_{1,t} x_{2,t} - B x_{3,t}),
\end{align*}

Δ is the integration time-step, $\theta = (S, R, B)^T$ is the 3×1 vector of unknown parameters and v_t is a sequence of 3-dimensional Gaussian independent random vectors with zero mean and covariance matrix $\sigma^2 x I_3$ (with I_d denoting the $d \times d$ identity matrix). Hence, the state transition density $p(x_t|x_{t-1}, \theta)$ is Gaussian and can be written down as $p(x_t|x_{t-1}, \theta) = \mathcal{N}(x_t|f_\Delta(x_{t-1}, \theta), \sigma^2 \Delta I_d)$. This function is Lipschitz on θ.

In order to complete the specification of a state space model, we need to characterize the observations. For our simulation setup we assume linear obser-
vations of the form

\[y_t = k_o \begin{bmatrix} x_{1,t} \\ x_{3,t} \end{bmatrix} + r_t, \quad (44) \]

where \(k_o \) is a fixed parameter and \(r_t \sim \mathcal{N}(r_t|0, \sigma^2_y I_2) \) is a 2-dimensional additive noise with zero mean and covariance function \(\sigma^2_y I_2 \). Therefore, the conditional part of the observations (and hence the likelihood function) is also Gaussian and can be written as \(p(y_t|x_t) = \mathcal{N}(y_t|Gx_t, \sigma^2_y I_2) \), where \(G = \begin{bmatrix} k_o & 0 & 0 \\ 0 & 0 & k_o \end{bmatrix} \) is the observation matrix. This function has a finite upper bound independent of \(\theta \).

Observations are not collected at every time \(t \). Instead we assume that an observation vector is received every \(M_o \) steps of the state equation.

4.2. Simulation setup

For our computer experiments we have used the stochastic Lorenz 63 model outlined in (43) and (44) in order to generate signals \(x_t \) and \(y_t, t = \{0, 1, \ldots\} \), used as the ground truth and the data, respectively, for the assessment of the algorithm. We integrate the model with the step-size \(\Delta = 2 \times 10^{-4} \) continuous-time units. The true parameters for the generation of the signal and data are \(S = 10, R = 28 \) and \(B = \frac{8}{3} \) (which yield underlying chaotic dynamics); while the initial state is Gaussian with mean \(\hat{x}_0 = [-6, -5.5, -24.5]^{\top} \) and covariance matrix \(I_3 \), i.e., \(p(x_0|\hat{x}_0, I_3) \). The noise scale factors, \(\sigma^2 = 0.1 \) and \(\sigma^2_y = 1 \), are assumed known.

For the estimation task we use Algorithm 3. We assume a Gaussian prior distribution for the unknown parameters, namely \(p(\theta) = \mathcal{N}(\theta|\mu_\theta, I_3) \), where the a priori mean \(\mu_\theta \) is drawn at random from a uniform distribution \(U(\theta_* - \epsilon, \theta_* + \epsilon) \) for each independent simulation. \(\theta_* = [10, 28, \frac{8}{3}]^{\top} \) are the true parameter vector and the offset vector is \(\epsilon = [3, 1, 0.5]^{\top} \). The algorithm does not collect an observation at every time step, but every \(M_o = 5 \) discrete-time steps (10⁻³).

\[\text{3The initial vector } \hat{x}_0 \text{ is taken from a deterministic realization of the Lorenz 63 model.} \]
continuous-time units). Hence, the prediction step of the state variables at the second layer of nested filter corresponds to $M_o = 5$ discrete-time steps of the Euler scheme. When an observation y_t (at time $t = kM_o$ ($k \in \mathbb{N}$)) arrives, both the state and parameter distributions are updated. The length of each simulation run is $T = 40$ continuous-time units (2×10^5 discrete-time steps of the state equation (43)).

We have assessed the ability of several Bayesian computation algorithms to jointly track the state x_t and estimate the parameters $\theta = (S, R, B)^\top$ of this model. To be specific, we have coded and run the following schemes:

- The proposed Algorithm 3 using an UKF in the first layer and a bank of EKFs in the second layer.
- A UKF [5] algorithm with state augmentation [8, 9] where the parameters are added to the state vector.
- An EnKF [29] algorithm with state augmentation as well.
- A NHF [1] with a sequential Monte Carlo (SMC) algorithm in the first layer and a bank of EKFs in the second layer.

The accuracy of the various algorithms is compared in terms of the normalized mean square error (NMSE) of the predictor of the state and the predictor of the parameters. We assess the empirical NMSE resulting directly from the simulations, namely,

$$
\text{NMSE}_{x,t} = \frac{\|x_t - \hat{x}_t\|^2}{\|x_t\|^2}, \quad \text{NMSE}_{\theta,t} = \frac{\|\theta_t - \hat{\theta}_t\|^2}{\|\theta_t\|^2},
$$

as well as the averages $\text{NMSE}_x = \frac{1}{T} \sum_{t=0}^{T-1} \text{NMSE}_{x,t}$ and $\text{NMSE}_\theta = \frac{1}{T} \sum_{t=0}^{T-1} \text{NMSE}_{\theta,t}$.

4.3. Numerical results

In the first computer experiments we study the choice of norm $\|\theta_t - \hat{\theta}_{t-1}\|_p$ in step 2(a) of Algorithm 3. Specifically, we have considered a setup where the model parameters $\theta = (S, R, B)^\top$ are assumed known and the goal is to track the state x_t using an EKF. We first generate a sequence of observations $y_{1:T}$
from the model with parameters \(\theta = (10, 28, \frac{8}{3})^T \). Then, for this sequence, the EKF runs with a perturbed set of parameters of the form \(\theta' = \theta + \epsilon \), where \(\epsilon \sim \mathcal{N}(0, \sigma_e^2) \) is a zero-mean Gaussian perturbation. We carry out 100 independent simulations for each value of \(\sigma_e^2 \) for \(\sigma_e^2 = \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\} \).

Figure 1 summarizes the outcome of this experiment. In particular, it displays the NMSE in the tracking of \(x_t \), averaged over all 100 simulation runs, versus the average norms \(\| \theta - \theta' \|_2 \) and \(\| \theta - \theta' \|_\infty \). The plot illustrates that:

i. The NMSE \(x \) is a continuous magnitude w.r.t. the perturbation \(\| \theta - \theta' \| \), both with Euclidean or maximum norms. The NMSE \(x \) remains below \(10^{-4} \) when \(\| \theta - \theta' \| \) is approximately below \(10^{-2} \).

ii. The NMSE \(x \) is slightly higher when the parameter perturbation is given in terms of the norm \(\| \theta - \theta' \|_\infty \).

![Figure 1: EKF performance with known parameters, \(\theta' \), that are obtained by modifying the true parameters, \(\theta \). In the abscissa axis, we represent the average distance of the simulation runs to the ground truth.](image)

In a second experiment, Figure 2 shows the results of using Algorithm 3 with both \(\| \cdot \|_2 \) and \(\| \cdot \|_\infty \) norms for several values of \(\lambda \). Again, each point of the graphs represents the average of 80 independent simulation runs. We display NMSE\(\theta \), NMSE\(x \), and run-times in minutes \(4 \) in Figures 2a, 2b, and 2c.

4The algorithms have been coded in MATLAB R2017a and run on a computer with 128 GB of DRAM and equipped with two Intel Xeon Gold 5115 10-Core CPU processors (running at 2.40 GHz).
respectively. In Figure 2a we see that NMSE_θ increases with λ. This is as expected because the larger λ the worse the approximation \(p(x_{t-1}|y_{1:t-1}, \theta^i_t) \sim p(x_{t-1}|y_{1:t-1}, \theta^{i-1}_{t-1}) \). We also see that the Euclidean norm \(\| \cdot \|_2 \) yields a smaller error. However, in the results obtained for NMSE_x in Figure 2b we observe that below \(\lambda = 10^{-3} \) there is almost no improvement in the error, and the curve is similar to the one in Figure 1. Finally, Figure 2c shows that the runtime of the nested filtering Algorithm 3 increases significantly when \(\lambda < 10^{-3} \) (because the algorithm takes longer to become strictly recursive). Therefore, we set \(\lambda = 10^{-3} \) in the following experiments as it appears to yield a good trade-off between accuracy and computational cost.

In the next experiment we compare the proposed nested Gaussian filters (Algorithm 3) with two classical methods: the unscented Kalman filter [30] and the ensemble Kalman filter [29], both relying on the state-augmentation technique [10, 11] to incorporate the unknown parameters. To be specific, this approach implies that the system state \(x_t \) is extended with the parameter vector to obtain the augmented state \(\tilde{x}_t = \begin{bmatrix} x_t \\ \theta \end{bmatrix} \). The [UKF] and [EnKF] algorithms are used to track \(\tilde{x}_t \) instead of \(x_t \).

We have carried out two sets of computer simulations. In the first one we assume that the observation vectors are of the form \(y_t = k_0 x_t + r_t \), i.e., all
the state variables are observed in Gaussian noise. The results are displayed in Fig. 3a and Fig. 3b, which show the NMSE for the parameters θ and the state x_t over time, respectively, for the three competing algorithms. The nested scheme outperforms the augmented-state methods clearly in terms of parameter estimation (Fig. 3a) and by a smaller margin in terms of state tracking (Fig. 3b).

When the observations are reduced to two state variables $y_t = k_0 \begin{bmatrix} x_{1,t} \\ x_{3,t} \end{bmatrix} + r_t$, in Gaussian noise, the advantage of the nested scheme becomes larger, as shown in Figs. 3c and 3d.

Figure 3: Performance of UKF (red), EnKF (blue) and UKF-EKFs (yellow) for two different setups, averaged over 50 independent simulation runs. Figures 3a and 3b show NMSE$_{\theta,t}$ and NMSE$_{x,t}$ respectively, where the whole state vector is observed. In figures 3c and 3d the error is plotted for a setup where only the first and third components of the state (x_1 and x_3) are observed.

Figure 4: Performance of a SMC-EKF (red) and a UKF-EKF (blue) averaged over 100 simulation runs. Figure 4a shows NMSE$_{\theta,t}$ and figure 4b shows NMSE$_{x,t}$.
Next, we compare the performance of the UKF-EKF nested filter (Algorithm 3) with one of the nested hybrid filters in [1]. The latter method consists of a SMC filter with 120 particles for the first layer and a bank of EKFs for the second layer. Figures 4a and 4b show the $\text{NMSE}_{\theta,t}$ and the $\text{NMSE}_{x,t}$ respectively, for both the SMC-EKF (red line) and the UKF-EKF (blue line) methods. Although the time of convergence of the SMC-EKF scheme can be reduced, the UKF-EKF algorithm converges clearly faster. Also, once it converges, the estimation error for both parameters and states is slightly lower for the UKF-EKF method. However, the greatest improvement is related to the computational cost. For this experiment the UKF-EKF algorithm is three times faster (4.5 minutes run-time versus 14.8) than the SMC-EKF scheme. Therefore, it considerably reduces the computational cost while obtaining similar or slightly better results in estimation error.

![Figure 5: Sequences of posterior-mean estimates, $\hat{\theta}_t$, over time obtained from 50 independent simulation runs.](image)

For the next computer experiment, Figure 5 shows the parameter estimates obtained by running 50 independent simulations of the proposed UKF-EKF nested filter. The three dimensions of $\hat{\theta}_t$ are displayed over time in order to illustrate how they converge as observations are collected. Although the length of the simulations is $T = 40$ continuous-time units, we have plotted just the intervals of time where the estimates converge. The interval varies from one plot to another because the time of convergence is not the same for all parameters (having shorter times for B and longer times for S). In spite of that,
this figure shows how all parameters converge to the true values for different initializations.

Figure 6: The mean NMSE_{x,t} of 50 simulation runs over time is plotted in (a). Figures (b), (c) and (d) show the posterior density of parameters (dashed lines) at time $t = T$ and their true values (black vertical lines).

Figure 7: NMSE_{θ} (a) and NMSE_{x} (b) of UKF-EKF, averaged over 50 simulation runs, for different values of the noise variance σ^2_y.

Figure (a) on the other hand, illustrates the accuracy of state estimates, \hat{x}_t, by averaging the NMSE_{x,t} obtained for the same set of 50 simulation runs as in Figure 5. The error NMSE_{x,t} decreases with time as the parameter estimates get closer to their true values, being its value stabilized around $t = 5$. By that time, all parameter estimates in Figure 5 have already converged (or at least got closer to their steady values) and, consequently, the state estimates become reliable.

In Figures (b), (c) and (d), the estimated marginal pdfs of each element in $\hat{θ}_t$
at time $t = 40$ are plotted for a typical simulation run. These plots illustrate the uncertainty associated to each parameter. The means of these Gaussian pdfs are close to the true parameters, in agreement with results seen in Figure 5. In addition, the variances are small, being all the probability distributions tightly packed around the ground truth.

Finally, Figure 7 displays the average performance of the UKF-EKF nested filter for different observation noise variances, σ_y^2. Although all the previous experiments are done with $\sigma_y^2 = 1$, in figure 7a we obtain similar results of NMSE for $\sigma_y^2 = 2$ and slightly worse errors for $\sigma_y^2 = 4$ and $\sigma_y^2 = 10$. Although the errors increase for values of σ_y^2 greater than one, the general performance of the algorithm is still accurate for larger values of the variance in the observation noise.

5. Conclusions

We have introduced a generalization of the NHF methodology of [1] that, using long sequences of observations collected over time, estimates the static parameters and tracks the stochastic dynamical variables of a state space model. This scheme combines two layers of filters, one inside the other, in order to compute the joint posterior probability distribution of the parameters and the states. In this generalization of the methodology, we introduce the use of deterministic sampling techniques in the first layer of the algorithm (the cubature Kalman filter (CKF) or the unscented Kalman filter (UKF)), instead of Monte Carlo methods, describing in detail how the algorithms can work sequentially and recursively. We have presented numerical results for a stochastic Lorenz 63 model, using a scheme with an UKF for the parameters in the first layer, and EKFs for the time-varying state variables in the second layer. We have introduced and assessed the values of a relative threshold that enables the algorithm to work recursively, and we have evaluated the performance of the algorithm in terms of the normalized mean square errors for the parameters and the dynamic state variables. We have also compared these results with other algorithms, such
as the ensemble Kalman filter (EnKF) or the unscented Kalman filter (UKF),
that implement state augmentation (i.e., an extended state that includes both
parameters and state), and also with a NHF with a SMC in the first layer with
EKF in the second layer. The use of Gaussian filters in the two layers of the
algorithm not only leads to a significant reduction in computational com-
xplexity compared to Monte Carlo-based implementations but also increases
the accuracy compared to the state-augmented Gaussian filters.

6. Acknowledgment

This research was partially supported by Agencia Estatal de Investigación
of Spain (RTI2018-099655-BI00 CLARA), the regional government of Madrid
(project no. Y2018/TCS-4705 PRACTICO) and the Office of Naval Research
(award no. N0014-19-1-2226).

Appendix A. Proof of Proposition 1

We proceed by induction in the time index \(t \). For \(t = 0 \) we have \(\pi_0(x_0|\theta) = p(x_0) \) independently of \(\theta \), hence for any pair \((\theta, \theta') \in \Theta \times \Theta\) we obtain
\[
\int |\pi_0(x_0|\theta) - \pi_0(x_0|\theta')| dx_0 = \int |p(x_0) - p(x_0')| = L_0 ||\theta - \theta'||
\]
for \(L_0 = 0 \).

For the induction step, assume that
\[
\int |\pi_{t-1}(x_{t-1}|\theta) - \pi_{t-1}(x_{t-1}|\theta')| dx_{t-1} < L_{t-1} ||\theta - \theta'||
\]
(A.1)
for some \(L_{t-1} < \infty \). Straightforward calculations yield
\[
\int |\xi_t(x_t|\theta) - \xi_t(x_t|\theta')| dx_t =
\]
\[
= \int \left| \int p(x_t|x_{t-1},\theta)\pi_{t-1}(x_{t-1}|\theta)dx_{t-1} - \int p(x_t|x_{t-1},\theta')\pi_{t-1}(x_{t-1}|\theta')dx_{t-1} \right| dx_t
\]
\[
\pm \int p(x_t|x_{t-1},\theta)\pi_{t-1}(x_{t-1}|\theta')dx_{t-1} - \int p(x_t|x_{t-1},\theta')\pi_{t-1}(x_{t-1}|\theta)dx_{t-1} \right| dx_t
\]
\[
\leq \int \left| \int p(x_t|x_{t-1},\theta)|\pi_{t-1}(x_{t-1}|\theta) - \pi_{t-1}(x_{t-1}|\theta')|dx_{t-1} \right| dx_t
\]
\[
+ \int \left| \int p(x_t|x_{t-1},\theta) - p(x_t|x_{t-1},\theta')|\pi_{t-1}(x_{t-1}|\theta')dx_{t-1} \right| dx_t
\]
and reordering the integrals we obtain

\[
\int |\xi_t(x_t|\theta) - \xi_t(x_t|\theta')| \, dx_t \leq \\
\leq \int \left[\int p(x_t|x_{t-1}, \theta) \, dx_t \right] |\pi_{t-1}(x_{t-1}|\theta) - \pi_{t-1}(x_{t-1}|\theta')| \, dx_{t-1} \\
+ \int \left[\int p(x_t|x_{t-1}, \theta) - p(x_t|x_{t-1}, \theta') \, dx_t \right] \pi_{t-1}(x_{t-1}|\theta') \, dx_{t-1} \tag{A.2}
\]

However, \(\int p(x_t|x_{t-1}, \theta) \, dx_t = 1 \) for any \(x_{t-1} \) and any \(\theta \), while Assumption 2 yields \(\int |p(x_t|x_{t-1}, \theta) - p(x_t|x_{t-1}, \theta')| \, dx_t \leq L \|\theta - \theta'\| \). Therefore, (A.2) becomes

\[
\int |\xi_t(x_t|\theta) - \xi_t(x_t|\theta')| \, dx_t \leq \int |\pi_{t-1}(x_{t-1}|\theta) - \pi_{t-1}(x_{t-1}|\theta')| \, dx_{t-1} \\
+ L \|\theta - \theta'\| \int \pi_{t-1}(x_{t-1}|\theta') \, dx_{t-1} \\
\leq (L_{t-1} + L) \|\theta - \theta'\| \tag{A.3}
\]

where the second inequality follows from the induction hypothesis (A.1).

As for the difference between \(\pi_t(\cdot|\theta) \) and \(\pi_t(\cdot|\theta') \), the Bayes theorem readily yields

\[
\int |\pi_t(x_t|\theta) - \pi_t(x_t|\theta')| \, dx_t = \int \left| \frac{p(y_t|x_t, \theta) \xi_t(x_t|\theta)}{\eta_t(y_t|\theta)} - \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta')}{\eta_t(y_t|\theta')} \right| \, dx_t \tag{A.4}
\]

and the absolute difference in the integrand of (A.4) can be rewritten as

\[
\left| \frac{p(y_t|x_t, \theta) \xi_t(x_t|\theta)}{\eta_t(y_t|\theta)} - \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta')}{\eta_t(y_t|\theta')} \right| = \left| \frac{p(y_t|x_t, \theta) \xi_t(x_t|\theta)}{\eta_t(y_t|\theta)} \pm \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta')}{\eta_t(y_t|\theta')} - \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta')}{\eta_t(y_t|\theta')} \right| \\
= \left| \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta) - p(y_t|x_t, \theta') \xi_t(x_t|\theta')}{\eta_t(y_t|\theta)} + \pi_t(x_t|\theta') \frac{\eta_t(y_t|\theta') - \eta_t(y_t|\theta)}{\eta_t(y_t|\theta')} \right| \tag{A.5}
\]

where we have used the relationship \(\pi_t(x_t|\theta') = \frac{p(y_t|x_t, \theta') \xi_t(x_t|\theta)}{\eta_t(y_t|\theta')} \) to obtain the second identity. Now, if we substitute (A.5) into (A.4) and then realize that

\[
\left| \eta_t(y_t|\theta) - \eta_t(y_t|\theta') \right| \leq \int |p(y_t|x_t, \theta) \xi_t(x_t|\theta) - p(y_t|x_t, \theta') \xi_t(x_t|\theta')| \, dx_t
\]

26
and \(\int \pi_t(x_t | \theta') dx_t = 1 \), we obtain the upper bounds

\[
\int |\pi_t(x_t | \theta) - \pi_t(x_t | \theta')| dx_t \\
\leq \frac{2}{\eta_t(y_t | \theta)} \int \left| p(y_t | x_t, \theta) \xi_t(x_t | \theta) - p(y_t | x_t, \theta') \xi_t(x_t | \theta') \right| dx_t \quad (A.6)
\]

\[
\leq \frac{2}{\eta_t(y_t | \theta)} \left[\int \left| p(y_t | x_t, \theta) \xi_t(x_t | \theta) - \xi_t(x_t | \theta') \right| dx_t \\
+ \int \left| p(y_t | x_t, \theta) - p(y_t | x_t, \theta') \right| \xi_t(x_t | \theta') dx_t \right] \quad (A.7)
\]

where (A.7) is obtained by applying a triangular inequality in (A.6).

The first integral in (A.7) can be bounded using Assumption 4 and inequality (A.3), which together yield,

\[
\int \frac{p(y_t | x_t, \theta)}{\eta_t(y_t | \theta)} \left| \xi_t(x_t | \theta) - \xi_t(x_t | \theta') \right| dx_t \\
\leq M_t \int \left| \xi_t(x_t | \theta) - \xi_t(x_t | \theta') \right| dx_t \\
\leq M_t (L_{t-1} + L) \| \theta - \theta' \|, \quad (A.8)
\]

while the second integral can be bounded using Assumption 3 which leads to

\[
\frac{2}{\eta_t(y_t | \theta)} \int \left| p(y_t | x_t, \theta) - p(y_t | x_t, \theta') \right| \xi_t(x_t | \theta') dx_t \\
\leq 2G_t \| \theta - \theta' \| \int \xi_t(x_t | \theta') dx_t \\
= 2G_t \| \theta - \theta' \|. \quad (A.9)
\]

Plugging (A.8) and (A.9) into (A.7) yields

\[
\int |\pi_t(x_t | \theta) - \pi_t(x_t | \theta')| \leq M_t (L_{t-1} + L) \| \theta - \theta' \| + 2G_t \| \theta - \theta' \| \\
\leq L_t \| \theta - \theta' \|
\]

with \(L_t = M_t (L_{t-1} + L) + 2G_t < \infty \). \(\Box \)

References

References

[1] J. M. S. Pérez-Vieites, I. P. Mariño, Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems, Physical Review E 98(6), 063305.
[2] B. D. O. Anderson, J. B. Moore, Optimal Filtering, Englewood Cliffs, 1979.

[3] N. Gordon, D. Salmond, A. F. M. Smith, Novel approach to nonlinear and non-Gaussian Bayesian state estimation, IEE Proceedings-F 140 (2) (1993) 107–113.

[4] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo Sampling methods for Bayesian filtering, Statistics and Computing 10 (3) (2000) 197–208.

[5] J. U. S. J. Julier, H. F. Durrant-Whyte, A new method for the non linear transformation of means and covariances in filters and estimators, IEEE Transactions Automatic Control 3 (2000) 477–482.

[6] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, J. Míguez, Particle filtering, IEEE Signal Processing Magazine 20 (5) (2003) 19–38.

[7] B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, Boston, 2004.

[8] E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force identification in structural dynamics, Mechanical Systems and Signal Processing 27 (2012) 446–460.

[9] I. Hassanzadeh, A. Mehditi, Design of augmented extended and unscented Kalman filters, Journal of Applied Sciences 8 (16) (2008) 2901–2906.

[10] J. S. Liu, R. Chen, T. Logvinenko, A theoretical framework for sequential importance sampling with resampling, in: A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, Springer, 2001, Ch. 11, pp. 225–246.

[11] C. Andrieu, A. Doucet, S. S. Singh, V. B. Tadić, Particle methods for change detection, system identification and control, Proceedings of the IEEE 92 (3) (2004) 423–438.
[12] G. Kitagawa, A self-organizing state-space model, Journal of the American Statistical Association (1998) 1203–1215.

[13] H. Zhang, H.-J. Franssen, X. Han, J. A. Vrugt, H. Vereecken, State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter, Hydrology and Earth System Sciences 21 (9) (2017) 4927–4958.

[14] J. Liu, M. West, Combined parameter and state estimation in simulation-based filtering, in: A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, Springer, 2001, Ch. 10, pp. 197–223.

[15] C. M. Carvalho, M. S. Johannes, H. F. Lopes, N. G. Polson, Particle learning and smoothing, Statistical Science 25 (1) (2010) 88–106.

[16] G. Storvik, Particle filters for state-space models with the presence of unknown static parameters, IEEE Transactions Signal Processing 50 (2) (2002) 281–289.

[17] P. M. Djurić, J. Míguez, Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters, in: Proceedings of ICASSP, 2002.

[18] C. Nemeth, P. Fearnhead, L. Mihaylova, Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments, IEEE Transactions on Signal Processing 62 (5) (2013) 1245–1255.

[19] N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski, N. Chopin, On particle methods for parameter estimation in state-space models, Statistical Science 30 (2015) 328–351.

[20] C. Andrieu, A. Doucet, V. B. Tadić, One-line parameter estimation in general state-space models using a pseudo-likelihood approach, IFAC Proceedings Volumes 45 (16) (2012) 500–505.
[21] V. B. Tadic, Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden markov models, IEEE Transactions on Information Theory 56 (12) (2010) 6406–6432.

[22] F. Ding, State filtering and parameter estimation for state space systems with scarce measurements, Signal Processing 104 (2014) 369–380.

[23] N. Chopin, P. E. Jacob, O. Papaspiliopoulos, SMC2: an efficient algorithm for sequential analysis of state space models, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75 (3) (2013) 397–426.

[24] C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society B 72 (2010) 269–342.

[25] D. Crisan, J. Miguez, et al., Nested particle filters for online parameter estimation in discrete-time state-space Markov models, Bernoulli 24 (4A) (2018) 3039–3086.

[26] D. Crisan, J. Miguez, Uniform convergence over time of a nested particle filtering scheme for recursive parameter estimation in state-space Markov models, Advances in Applied Probability 49 (4) (2017) 1170–1200.

[27] M. Gerber, N. Chopin, Sequential quasi Monte Carlo, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 (3) (2015) 509–579.

[28] I. Arasaratnam, S. Haykin, Cubature kalman filters, IEEE Transactions on Automatic Control 54 (6) (2009) 1254–1269.

[29] G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean dynamics 53 (4) (2003) 343–367.

[30] S. J. Julier, J. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE 92 (2) (2004) 401–422.
This figure "fig1.png" is available in "png" format from:

http://arxiv.org/ps/2103.12666v1