Wave Tails in Time Dependent Backgrounds

Shahar Hod
Department of Condensed Matter Physics, Weizmann Institute, Rehovot 76100, Israel
(October 2, 2021)

It is well-known that waves propagating under the influence of a scattering potential develop “tails”. However, the study of late-time tails has so far been restricted to time-independent backgrounds. In this paper we explore the late-time evolution of spherical waves propagating under the influence of a time-dependent scattering potential. It is shown that the tail structure is modified due to the temporal dependence of the potential. The analytical results are confirmed by numerical calculations.

The phenomenon of wave tails have fascinated many physicists and mathematicians from the early explorations of wave theories. Wave tails have found various applications from the first studies in light propagation [1] to the theory behind the proposed experiments to detect gravitational waves [2]. In fact, tail-free propagation seems to be the exception rather than the rule [5,6]. For instance, it is well established that scalar, electromagnetic and gravitational waves in curved spacetimes propagate not only along light cones, but also spread inside them. This implies that waves do not cut off sharply after the passage of the wave front, but rather leave a tail or wake at late times.

From a physical point of view, the most interesting mechanism for the production of late-time tails is the backscattering of waves off a potential (or a spacetime curvature) at asymptotically far regions [6,7]. This can be described as follows. Consider a wave from a source point y. The late-time tail observed at a fixed spatial location, x, and at time t, is a consequence of the wave first propagating to a distant point $x' \gg y, x$, being scattered by $V(x', t')$ at time $t' \simeq t/2$, and then returning to x at a time $t \simeq (x' - y) + (x' - x) \simeq 2x'/3$. Hence, the scattering amplitude (and thus the late-time tail itself) are expected to be proportional to $V(x', t') \simeq V(t/2, t/2)$ (However, in a previous paper [10] we have shown that this picture is somewhat naive, and requires some important modifications.)

The propagation of spherical waves in curved spacetimes or in optical cavities is often governed by the Klein-Gordon (KG) equation [1]

$$\left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} + \frac{1}{x^2} V(x, t)\right] \Psi = 0 , \quad (1)$$

where $V(x, t)$ is an effective curvature potential which determines the scattering of the waves by the background geometry (we henceforth take $x_s = 1$ without loss of generality). It was first demonstrated by Price [8] that a (nearly spherical) collapsing star leaves behind it a “tail” which decays asymptotically as an inverse power of time.

The analysis of Price has been extended by many authors. Gundlach, Price, and Pullin [12] showed that power-law tails are a genuine feature of gravitational collapse – the existence of these tails was demonstrated in full non-linear numerical simulations of the collapse of a self-gravitating scalar field (this was later reproduced in [13]). Moreover, since the late-time tail is a direct consequence of the scattering of the waves at asymptotically far regions, it has been pointed out that the same power-law tails would develop independently of the existence of an horizon [14]. This implies that tails should also be formed when the collapse fails to produce a black hole, or even in the context of stellar dynamics (e.g., in perturbations of neutron stars). In recent years there is a flurry of activity in the field of wave tails, see e.g., [15–47], and references therein.

Yet, in spite of the numerous works addressing the problem of wave tails, a thorough understanding of this fascinating phenomenon is not complete. In particular, most of previous analyses are restricted to the specific class of (time independent) “logarithmic potentials” of the form $V(x) \sim \ln^2 x / x^\beta$ (where $\alpha > 2$ and $\beta = 0, 1$ are parameters) [8]. Recently, we have given a systematic analysis of the tail phenomenon for waves propagating under the influence of a general time-dependent scattering potential [10].

It should be realized, however, that a realistic gravitational collapse produces a time-dependent spacetime geometry, on which the tails are developing. This fact calls for a systematic exploration of the general properties of wave tails in dynamical (time-dependent) backgrounds. This is the aim of the present paper, in which we present our main results.

We consider the evolution of a wave field whose dynamics is governed by a KG-type equation $\Phi_{\nu\nu} + V(r, t) \Phi = 0$. Substituting $\Phi = \Psi(t, r)/r$ (r being the circumferential radius), one obtains a wave equation of the form Eq. [18].

It proofs useful to introduce the double-null coordinates $u \equiv t - x$ and $v \equiv t + x$, which are a retarded time coordinate and an advanced time coordinate, respectively. The initial data is in the form of some compact outgoing pulse in the range $u_0 \leq u \leq u_1$, specified on an outgoing null surface $v = v_0$.

The general solution to the wave-equation [1] can be written as a series depending on two arbitrary functions.
\[F \text{ and } G \]

\[\Psi = G^{(0)}(u) + F^{(0)}(v) \]
\[+ \sum_{k=0}^{\infty} \left[B_k(u,v)G^{(-k-1)}(u) + C_k(u,v)F^{(-k-1)}(v) \right], \]
\[(2) \]

For any function \(H, H^{(k)} \) is its \(k \)th derivative; negative-order derivatives are to be interpreted as integrals [we shall also denote \(\partial_{\eta}^m \partial_\eta^n H \) by \(H^{(m,n)} \)]. The functions \(B_k(u,v) \) satisfy the recursion relation
\[B_k(u,v) = -B_{k-1,u}u - \frac{1}{4} V B_{k-1}, \]
\[(3) \]
for \(k \geq 1 \), and
\[B_{0,v} = -V/4. \]
\[(4) \]

For the first Born approximation to be valid the scattering potential \(V \) should approach zero faster than \(1/v^2 \) as \(v \to \infty \), see e.g., [8-24]. Otherwise, the scattering potential cannot be neglected at asymptotically far regions [see Eq. (3) below]. The recursion relation, Eq. (3), yields \(B_k(u,v) = (-1)^{k+1} V^{(k-1)/4} \).

It is useful to classify the scattering potentials into two groups, according to their asymptotic behavior:

- Group I: \(|V| \) approaches zero faster than \(|V| \) as \(v \to \infty \).
- Group II: \(|V| \) approaches zero at the same rate as \(|V| \) as \(v \to \infty \).

Group I. — The first stage of the evolution is the scattering of the field in the region \(u_0 \leq u \leq u_1 \). The first sum in Eq. (2) represents the primary waves in the wave front (i.e., the zeroth-order solution, with \(V \equiv 0 \)), while the second sum represents backscattered waves. The interpretation of these integral terms as backscatter comes from the fact that they depend on data spread out over a section of the past light cone, while outgoing waves depend only on data at a fixed \(u \).

After the passage of the primary waves there is no outgoing radiation for \(u > u_1 \), aside from backscattered waves. This means that \(G(u_1) = 0 \). Hence, at \(u = u_1 \) and for \(v > u_1 \) (where \(t \simeq x \simeq v/2 \)), the dominant term in Eq. (2) is
\[\Psi(u = u_1,v) = B_0(u = u_1,v)G^{(-1)}(u_1). \]
\[(5) \]
This is the dominant backscatter of the primary waves.

With this specification of characteristic data on \(u = u_1 \), we shall next consider the asymptotic evolution of the field. We confine our attention to the region \(u > u_1, x \gg x_s \). To a first Born approximation, the spacetime in this region is approximated as flat [8-11]. Thus, to first order in \(V \) (that is, in a first Born approximation) the solution for \(\Psi \) can be written as
\[\Psi = g^{(0)}(u) + f^{(0)}(v). \]
\[(6) \]
Comparing Eq. (6) with the initial data on \(u = u_1 \), Eq. (3), one finds
\[f(v) = -G^{(-1)}(u_1) V^{(0,-1)}(u = u_1,v)/4. \]
\[(7) \]
For late times \(t \gg x \) one can expand \(g(u) = \sum_{n=0}^{\infty} (-1)^n g^{(n)}(t) x^n/n! \) and similarly for \(f(v) \). With these expansions, Eq. (3) can be rewritten as
\[\Psi = \sum_{n=0}^{\infty} K^0_n x^n \left[f^{(n)}(t) + (-1)^n g^{(n)}(t) \right], \]
\[(8) \]
where the coefficients \(K^0_n \) are those given in [8].

Using the boundary conditions for small \(r \) [regularity as \(x \to \infty \), at the horizon of a black hole, or at \(x = 0 \), for a non-singular model (e.g., a stellar model)], one finds that at late times \(g(t) = -f(t) \) to first order in the scattering potential \(V \) (see e.g., [8,14] for additional details). That is, the incoming and outgoing parts of the tail are equal in magnitude at late-times. This almost total reflection of the ingoing waves at small \(r \) can easily be understood on physical grounds – it simply manifests the impenetrability of the barrier to low-frequency waves [8] (which are the ones to dominate the late-time evolution [11]). We therefore find that the late-time behavior of the field at a fixed radius \(x \ll t \) is dominated by [see Eq. (8)]
\[\Psi \simeq 2 K^1_w f^{(1)}(t) x, \]
\[(9) \]
which implies
\[\Psi \simeq -2^{-1} K^1_w G^{(-1)}(u_1) x V(u = u_1,v = t), \]
\[(10) \]
or equivalently
\[\Psi(x,t) \simeq -2^{-1} K^1_w G^{(-1)}(u_1) x V(t/2,t/2). \]
\[(11) \]

Group II. — The dominant backscatter of the primary waves is \(\Psi(u = u_1,v) = \sum_{k=0}^{\infty} B_k(u = u_1,v)G^{(-k-1)}(u_1). \)

Using an analysis along the same lines as before, one finds
\[\Psi \simeq \sum_{n=1,\ldots}^{\infty} 2^{-1} K^0_n x^n \sum_{k=0}^{\infty} (-1)^{k+1} \]
\[\times G^{(-k-1)}(u_1) V^{(k,n-1)}(u = u_1,v = t), \]
\[(12) \]
at late-times. Note that Eq. (12) is merely a generalization of Eq. (11), and reduces to it if \(|V_x| \) or \(|V_v| \) approach zero faster than \(|V| \) [in which case \(V^{(0,0)} \) dominates at late-times].
Numerical calculations. — It is straightforward to integrate Eq. (1) using the methods described in [14,27]. The late-time evolution of the field is independent of the form of the initial data used. The results presented here are for a Gaussian pulse.

The temporal evolutions of the waves (under the influence of the various scattering potentials) are shown in Figs. 1 and 2. (We have studied other potentials as well, which are not shown here.) We find an excellent agreement between the analytical results and the numerical calculations.

In summary, we have explored the tail phenomena for spherical waves propagating under the influence of a general time-dependent scattering potential. It was shown that the late-time tail at a fixed spatial location is governed by the scattering potential itself, and by its derivatives (both the spatial and the temporal ones). The analytical results are in agreement with numerical calculations.

We are at present extending the analysis to include scattering potentials that lack spherical symmetry (in which case the scattering problem is of 2+1 dimensions).

ACKNOWLEDGMENTS

I thank Tsvi Piran for discussions. This research was supported by grant 159/99-3 from the Israel Science Foundation.

FIG. 1. Temporal evolution of the field for time-dependent scattering potentials of the form $V(x,t) = 1/x^\alpha t^\beta$ (the results presented here are for $\alpha = 3$.) The power-law indices are -4.04, and -5.08 for $\beta = 1$ (upper graph), and $\beta = 2$, respectively. These values should be compared with the analytically predicted values of -4, and -5, respectively.

FIG. 2. Temporal evolution of the field for time-dependent scattering potentials of the form $V(x,t) = \sin(\omega t)/x^\alpha$ (the results presented here are for $\alpha = 4$, and $\omega = \pi/100$.) The slope (determined from the maxima of the oscillations) is -4.07, in excellent agreement with the analytically predicted value of -4. The frequency of the oscillations is ω to within 1%.

[1] C. Huygens, *Traite de la lumiere* (Leiden: Van der Aa, 1690).
[2] L. Blanchet and T. Damour, Phys. Rev. D 46, 4304 (1992).
[3] L. Blanchet and G. Schafer, Class. Quant. Grav. 10, 2699 (1993).
[4] A. G. Wiseman, Phys. Rev. D 48, 4757 (1993).
[5] F. G. Friedlander, *The Wave Equation on a Curved Spacetime* (Cambridge University Press, Cambridge, 1975).
[6] T. W. Noonan, Class. Quant. Grav. 12, 2327 (1995).
[7] K.S. Thorne, in *Magic without magic: John Archibald Wheeler*, edited by J.Klauder (W.H. Freeman, San Francisco, 1972), p. 231.
[8] R. H. Price, Phys. Rev. D5, 2419 (1972).
[9] E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phys. Rev. Lett. 74, 2414 (1995); Phys. Rev. D 52, 2118 (1995).
[10] S. Hod, Class. Quant. Grav. 18, 1311 (2001).
[11] For a review, see e.g., S. Chandrasekhar, *The Mathematical Theory of Black Holes* (University of Chicago Press, Chicago, 1991).
[12] C. Gundlach, R.H. Price, and J. Pullin, Phys. Rev. D 49, 890 (1994).
[13] L. M. Burko and A. Ori, Phys. Rev. D 56, 7820 (1997).
[14] C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D 49, 883 (1994).
[15] J. Bičák, Gen. Relativ. Gravitation 3, 331 (1972).
[16] E. W. Leaver, Phys. Rev. D 34, 384 (1986).
[17] Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).
[18] L. Bombelli and S. Sonego, J. Phys. A. 27, 7177 (1994).
[19] N. Andersson, Phys. Rev. D 51, 353 (1995).
[20] N. Andersson, Phys. Rev. D 55, 468 (1997).
[21] B. C. Nolan, Class. Quant. Grav. 14, 1295 (1997).
[22] P. R. Brady, C. M. Chambers and W. Krivan, Phys. Rev. D 55, 7538 (1997).
[23] P. R. Brady, C. M. Chambers, W. G. Laarakkers and E. Poisson, Phys. Rev. D 60, 064003 (1999).
[24] S. Hod and T. Piran, Phys. Rev. D 58, 024017 (1998); Phys. Rev. D 58, 024018 (1998); Phys. Rev. D 58, 024019 (1998).
[25] S. Hod and T. Piran, Phys. Rev. D 58, 044018 (1998).
[26] L. Barack, Phys. Rev. D 59, 044016 (1999); Phys. Rev. D 59, 044017 (1999).
[27] S. Hod, Phys. Rev. D 60, 104053 (1999).
[28] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 1999 (1999).
[29] W. Krivan, P. Laguna and P. Papadopoulos, Phys. Rev. D 54, 4728 (1996).
[30] W. Krivan, P. Laguna, P. Papadopoulos and N. Andersson, Phys. Rev. D 56, 3395 (1997).
[31] A. Ori, Gen. Rel. Grav. 29, No. 7, 881 (1997).
[32] L. Barack, in Internal structure of black holes and space-time singularities, Edited by L. M. Burko and A. Ori, Israel Physical Society Vol. XIII (Institute of Physics, Bristol, 1997).
[33] S. Hod, Phys. Rev. D 58, 104022 (1998).
[34] L. Barack and A. Ori, Phys. Rev. Lett. 82, 4388 (1999).
[35] R. G. Cai and A Wang, Gen. Rel. Grav. 31, 1367 (1999).
[36] S. Hod, Phys. Rev. D 61, 024033 (2000).
[37] S. Hod, Phys. Rev. Lett. 84, 10 (2000); Phys. Rev. D 61, 064018 (2000).
[38] L. Barack, Phys. Rev. D 61, 024026 (2000).
[39] W. Krivan, Phys. Rev. D 60, 101501 (1999).
[40] P. Brady, C. Chambers, W. Laarakkers and E. Poisson, Phys. Rev. D 60, 064003 (1999).
[41] N. Andersson and K. Glampedakis, Phys. Rev. Lett. 84, 4537 (2000); Phys. Rev. D 64, 104021 (2001); e-print gr-qc/0003054.
[42] W. G. Laarakkers and E. Poisson, e-print gr-qc/9908041; Phys. Rev. D 64, 084008 (2001).
[43] E. Malec, Phys. Rev. D 62, 084034 (2000).
[44] B. Wang, E. Abdalla and R. B. Mann, e-print hep-th/0107243.
[45] B. Wang, C. M. Mendes and E. Abdalla, Phys. Rev. D 63, 084001 (2001).
[46] R. Moderski and M. Rogatko, Phys. Rev.D 63, 084014 (2001); Phys. Rev. D 64, 044024 (2001); e-print hep-th/0104157.
[47] H. Koyama and A. Tomimatsu, Phys. Rev. D 63, 064032 (2001); Phys. Rev. D 64, 044014 (2001).

[48] For a non-singular spacetime, e.g., that of a star, $r \in (0, \infty)$ maps into $x \in (0, \infty)$, while for a spacetime with an event horizon, r maps into $x \in (-\infty, \infty)$ (x being the so-called “tortoise” coordinate).