The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes

Shara Atambayeva 1*, Raigul Niyazova 1, Anatoliy Ivashchenko 1, Anna Pyrkova 1, Ilya Pinsky 1, Aigul Akimniyazova 1 and Siegfried Labeit 2

Abstract

Background: Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications.

Results: The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The miRNAs of CATAD1, ICA1L, GKS, POLH, and PRR11 genes have six miR-619-5p binding sites, and the miRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes.

Conclusions: The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.

Keywords: miR-619-5p, miRNA, mRNA, Gene, Human, Orthologous genes

Background

miRNAs participate in the regulation of the expression of protein-coding genes at the post-transcriptional stage [1]. miRNAs, as a part of the RNA-induced silencing complex, bind to mRNAs and interfere with translation or promote mRNA destruction [2]. In the last two decades, properties of miRNAs and their influences on the expression of the genes involved in all key cellular processes have been established. The actions of miRNAs on the cell cycle [3], apoptosis [4], differentiation [5], and growth and development of plants [6] and animals [7] have been shown. Connections between miRNA expression and the development of various diseases have been established. miRNA concentrations change in cancer [8] and cardiovascular diseases [9]. Metabolic perturbations change miRNA concentrations in cells [10]. The aforementioned roles do not encompass all of the biological processes in which miRNAs participate, which further proves the importance of their biological functions. Despite the significant success in the study of miRNA properties, there are obstacles in identifying the target genes of miRNAs. Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one miRNA
can be the target of many miRNAs, which significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. There are more than 2,500 miRNAs in the human genome, and they are believed to act on 60% or more genes. Therefore, it is difficult to draw specific conclusions about the participation of miRNAs in specific biological processes, and until then the connections between the majority of miRNAs and their target genes will remain unknown. Recently, a set of unique miRNAs (umiRNA) were identified that have hundreds of target genes and bind to mRNAs with high affinity [11–14]. The binding sites of these umiRNAs are located in the 3' UTRs, CDSs, and 5' UTRs of mRNAs. Among these umiRNAs, miR-619-5p interacts with the largest number of target genes that have the greatest number of binding sites with complete complementarity of miR-619-5p and mRNAs. It is necessary to identify many miRNA binding sites in the mRNAs of these genes for the control of gene expression. Furthermore, it is important to control the expression of the corresponding gene complexes that are functionally associated with miRNAs. Therefore, we have studied a unique miR-619-5p that binds to the mRNAs of several hundred human and orthologous genes.

Methods
The nucleotide sequences of mRNAs of human genes (Homo sapiens – Hsa) and orthologous genes (Bos mutus - The wild yak (Bmu), Callithrix jacchus – The common marmoset (Cja), Camelus dromedarius – Arabian camel (Cdr), Camelus ferus – The wild Bactrian camel (Cfe), Chlorocebus sabaeus – The green monkey (Csa), Colobus angolensis palliatus – The Angola colobus (Can), Equus caballus – The horse (Eca), Gorilla gorilla – The western gorilla (Ggo), Macaca fascicularis – The crab-eating macaque (Mfa), Macaca mulatta – The rhesus macaque (Mmu), Macaca nemestrina – Pig-tailed macaque (Mne), Mandrillus leucophaeus – The drill (Mle), Nomascus leucogenys - The northern white-cheeked gibbon (Nle), Ovis aries – The sheep (Oar), Pan paniscus – Bonobos (Ppa), Pan troglodytes – The common chimpanzee (Ptr), Papio anubis – The olive baboon (Pan), Pongo abelii - The Sumatran orangutan (Pab), Rhinopithecus roxellana – The golden snub-nosed monkey (Rro) were downloaded from NCBI GenBank (http://www.ncbi.nlm.nih.gov) [15] in FASTA format using Lextractor002 script [11]. Nucleotide sequences of human mature miR-619-5p (GCUGGGA UUAAGGCAUGAGCC) were downloaded from the miRBase database (http://mirbase.org) [16]. The miR-619-5p binding sites in the 5'-untranslated regions (5'UTRs), the coding domain sequences (CDSs) and the 3'-untranslated regions (3'UTRs) of several genes were predicted using the MirTarget program [12]. This program defines the features of binding: a) the localization of miRNA binding sites in the 5'UTRs, the CDSs and the 3'UTRs of the mRNAs; b) the free energy of hybridization (ΔG, kJ/mole). The ratio ΔG/ΔGm (%) was determined for each site (ΔGm equals the free energy of miRNA binding with its perfect complementary nucleotide sequence).

Results
The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. The miRNAs have different miRNA binding site origins, lengths, quantities, and properties. The list of miR-619-5p target genes and the positions of binding sites are outlined in Table 1. miR-619-5p is 22 nucleotides in length and is coded by an intron of the slingshot protein phosphatase 1 (SSH1) gene, which is located on chromosome 12 [17, 18]. miRNAs of 201 genes have complete complementary binding sites for miR-619-5p (ΔGm = 100%). Therefore, the energy of interaction of miR-619-5p with mRNA of all the genes listed in the table is the same and equal to ΔG = −121 kJ/mole.

The miRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The miRNAs of 27 genes have four binding sites, seven genes have five binding sites, and CATADI, ICAI1, GKS, POLH, and PRR11 genes have six miR-619-5p binding sites. The miRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these sites are located in the 3'UTRs of mRNAs. The target genes of the miR-619-5p carry out one or more different functions and are involved in the development of various diseases (Table 1).

The miRNAs of the C17orf75, C8orf44, CIAO1, CPM, CYP20A1, DCAF10, FBKPI4, RAB3BP, SYNJ2BP, VHL genes have two complete complementary binding sites for miR-619-5p, and the mRNA of the CACNG8 gene has three such binding sites. This indicates a stronger dependence of the expression of these genes on miR-619-5p.

One of the methods to establish the credibility of the presence of miRNA binding site in the mRNA is to verify this site in the mRNAs of orthologous genes. In finding the miRNA binding sites raises the question of the level of reliability of the found sites. One effective way to establish the credibility of the binding sites is to establish binding sites in the orthologous genes and the identification of orthologous miRNA. Location of binding site in the protein coding region facilitates its conservation in evolution, especially if the corresponding oligopeptide plays an important role in the function of the protein. miR-619-5p binding sites with complete complementarity (ΔGm = 100%) to the mRNAs of the four genes are located in the 5'UTRs (Table 2).
Gene	Site, nt	Disease or function	PMID	Gene	Site, nt	Disease or function	PMID
ACSL6	4639	prostate cancer	19064571	MRPS25	1609	uncharacterized	26302410
ADAL	2041	proliferation	23645737	MSH3	4139	carcinoma	24934723
ADAM17	3466	breast cancer	22967992	NANO1	3219	retinoblastoma	25100735
AGMAT	2207	renal carcinoma	14648699	NCMAP	2259	uncharacterized	
AK1	1449	hypertension	23863634	NDUF4F7	1697	leukemia	24292274
AKT2	4571	neuroblastoma	23468863	NDUF4C2	1646	colon cancer	25804238
ALDH3A2	2617	detoxification	9829906	NLI	4215	Parkinson's D.	25378390
ANKRD16	2075	atopic asthma	17075290	NRP2	2075	atopic asthma	
AP5B1	4316	differentiation	15146197	NLS1	3063	kinetochore-protein	16585270
ARFX	2642	development	20565723	NYK3	7447	hepatocarcinoma	26883180
ARHGEF39	1307	tumorogenesis	22327280	OPTN	2352	glaucoma	26302410
ARL11	1033	tumorogenesis	18337727	PAG1	8156	prostatic cancer	21092590
ATK1	2991	schizophrenia	19165527	PAQR5	4435	ovarian cancer	21761364
ATP1A2	4410	tumorogenesis	23497007	PARK2	3729	Parkinson's D.	26860075
BCL2L15	2650	apoptosis	16690252	PBD2	2077	hepatocarcinoma	26594708
BPNT1	1128	ovarian cancer	20628624	PCGF5	5089	Alzheimer's D.	16385451
C10orf40	523	uncharacterized	18613	PCSK5	1095	tumorogenesis	21094132
C17orf75	2895	uncharacterized	19355679	PDAP1	1926	proliferation	23555679
C17orf75	3672	uncharacterized	3221	PCDC4	3221	tumorogenesis	26871813
C21orf58	2668	uncharacterized	11707072	PEX2	3056	cerebellar ataxia	21392394
C4orf91	2068	uncharacterized	1476	PGP2	1476	liver cirrhosis	25687677
C6orf170	4113	uncharacterized	20159594	PINK2	3345	tumorogenesis	26677064
C8orf44	336**	uncharacterized	1991	PMLA1	1991	childhood obesity	19390624
C8orf44	1626	uncharacterized	1876	POONL1	1876	uncharacterized	12479732
C9orf85	871	uncharacterized	4679	POUDT1	4679	hepatocarcinoma	27030260
CACNB2	4301	hypertension	25966706	POLH	5550	ovarian cancer	25831546
CACNB2	338	uncharacterized	252858	PPM1K	2192	diabetes mellitus	2344828
CACNBG8	5006	uncharacterized	5156	PPP1R12B	5156	childhood asthma	23640410
CACNBG8	7535	uncharacterized	998	PRRG4	998	Parkinson's D.	19772629
CALHM1	2896	Alzheimer's D.	26944452	PSMB2	2925	proteolysis	21660142
CCBE1	3321	ovarian cancer	19935792	PTCDC3	4116	osteosarcoma	19427859
CCDC114	261*	dyskinesia	23506398	PTK6	2233	tumorogenesis	27311570
CD109	6841	bladder cancer	20946523	QKFIIR1	1949	metabolic S.	16648250
CD36	4042	atherosclerosis	16515687	RAB11FIP1	4928	cell transport	26790954
CD68	1398	carcinomas	21113139	RAB13P	3975	tumorogenesis	12007189
CDAN1	4296	erythropoiesis	19336738	7022	Parkinson's D.		
CCHR3	4878	asthma	25848009	RAB7L1	1693	Parkinson's D.	26914237
CEP68	4934	cervical cancer	17507516	RBBP9	1818	tumorogenesis	21933118
CHST5	2946	colon carcinoma	12107080	RGS3	205**	cardiovascular D.	24375609
CHST6	2979	dystrophy	20592220	RPS6KA6	7136	tumorogenesis	26732474
CHST6	3876		5871	SCN11A	5871	neurophathy	25791876
CIAO1	2416	tumorogenesis	21955663	SEPT1	4033	hepatocarcinoma	20419844
CIAO1	3814		1575	SEPT14	1575	Parkinson's D.	27115672
CLECT19A	1747	lectin	12075309	STG2	3142	lymphopoiesis	2158125

Table 1: Positions of miR-619-5p binding sites and disease or function of target genes.
Table 1 Positions of miR-619-5p binding sites and disease or function of target genes (Continued)

Gene	Position	Disease/Function	Accession Number	Disease/Function	Accession Number
CLTC	7006	pancreatic cancer	SH3GLB1	prostate cancer	4856
CORO2A	2227	colon cancer	SLC15A2	hepatocarcinoma	4333
COX18	1264	tumorogenesis	SLC17A5	cardiovascular D	2389
CPM	2698	renal carcinoma	SLC26A2	colorectal cancer	5066
CPM	4996		SLC26A4	hearing loss	4210
CPT2	2557	sudden death	SLC28A2	chronic hepatitis C	2196
CYB5RL	3426	transcription	SLC7A11	tumorogenesis	6304
CYP20A1	2539	tumorogenesis	SLC7A14	breast cancer	8487
CYP20A1	4709		SNX22	liver-disease	902
CYP27C1	3823	self-rated health	SOWAHC	retrotransposon	3417
CYP2W1	2176	colorectal cancer	SPATA13	colorectal cancer	5020
DAP3	1842	breast cancer	SPATA5	microcephaly	5648
DCAF10	3305	lung cancer	SPATS2	breast cancer	3332
DCAF10	4559		SNAI2BP	tumorogenesis	5287
DCLRE1C	2966	Omenn syndrome	STAC2	inherited ataxias	2241
DDOST	1782	hyperglycermia	SYNS2BP	breast cancer	1298
DHODH	1709	melanoma	SYNS2BP	tumorogenesis	4175
DHR59	1281*	tumorogenesis	TCEB1	uncharacterized	1964
DNAL1	4925	dyskinesia	TGD6	uncharacterized	3439
DSCR6	1706	Down syndrome	TMEM156	uncharacterized	1593
ERBB3	5104	tumorogenesis	TMEM19	uncharacterized	3510
FADS6	1777	liver disease	TMEM213	uncharacterized	875
FAM161A	2785	retinal disease	TMEM214	uncharacterized	1190
FAM227A	4981	cancer	TMEM50B	uncharacterized	1026
FAM84B	3626	tumorogenesis	TMEM56	nicotin dependence	1243
FBUM1	2126	breast cancer,	TMF1	prostate cancer	4736
FBXL22	1411	cardiomyopathy	TMCOD2	bladder cancer	7816
FBXO27	1535	leukemia	TNRFS10A	cancer	1621
FGOD4	7619	cancer	TNRFS10D	cancer	1532
FKBP14	1515	ovarian cancer	TOP3A	leukaemia	3814
FKBP14	2129		TRPGL1	uncharacterized	1754
FKBP5	7114	schizophrenia	TRPM2	ischemia	1885
FXN	3288	metabolic disease	TRPM7	neuroblastoma	8079
GDPD1	1559	phosphodiesterase	TRPM7	carcinoma	8221
GEMIN8	2172	neuropathy	TXNDC15	thrombosis	2460
GGT6	1956	ovarian cancer	TWYS	schizophrenia	3692
GKS	3808	glioblastoma	UACA	lung cancer	6120
GKS	6355	glioblastoma	UACA	thyroid diseases	6120
GLB1L	2224	phosphatase	UBIAD1	cancer	2881
GOLGA3	7240	immune disease	UBXN2A	colon cancer	1665
GP2	1877	crohn disease	UBXN2A	colon cancer	1665
GPR65	3309	tumorogenesis	UQCRB	colorectal cancer	1269
GPR65	3309	immune diseases	USP29	protease	2*
GPR82	2664	uncharacterized	VHL	tumorogenesis	3764
GPRIN2	6676	schizophrenia	VHL	uncharacterized	3898
Before the 5’ end and after the 3’ end of miR-619-5p binding site, nucleotides are not homologous. The mRNAs of RGS3 and USP29 orthologous genes have binding sites in H. sapiens, N. leucogenys, P. abelii, M. leucophaeus, C. angolensis palliatus, G. gorilla, and R. roxellana.

Table 1 Positions of miR-619-5p binding sites and disease or function of target genes (Continued)

Species	Gene	Position of site, nt	Nucleotide sequence	
Hsa	GTPBP10	1873	prostate cancer	27409348 GWA2 3366 colon cancer 15580307
Hsa	H6PD	5754	tumorogenesis	15221007 WDR73 1736 microcephaly 25466283
Hsa	HM13	1745	glioblastoma	28198167 XIAP 5681 ovarian cancer 26779627
Hsa	IFIT3	1864	pancreatic cancer	25650658 YAE1D1 1548 oral cancer 23318452
Hsa	ISY1	686**	uncharacterized	25667785 ZBTB24 4842 hepatocarcinoma 27730394
Hsa	IYD	1658	hypothyroidism.	18765512 ZC3H12D 4821 Acute lung injury 26059755
Nle	KIAA1456	2536	colorectal cancer	24743840 ZDHHC20 3390 tumorogenesis 20334580
Pab	KIF11	3598	tumorogenesis	28011472 ZFP30 3463 hypertension 19851296
Mle	KLHL23	2570	tumorogenesis	23676014 ZNF114 1827 transcription factor 8467795
Nle	KPN1a	5711	breast cancer	26052702 ZNF197 3446 thyroid cancer 12682018
Nle	KREME1	2199	schizophrenia	20153141 ZNF320 5534 glioblastoma 11536051
Nle	KREME1	2792	schizophrenia	20153141 ZNF429 2081** transcription factor 7865130
Nle	LAX1	2057	uncharacterized	20153141 ZNF445 8820 transcription factor 16368201
Nle	LILRA6	3224	myopathy	25250574 ZNF626 4620 liver diseases 18255255
Nle	LIMD1	3931	breast cancer	27656835 ZNF549 3736 transcription factor 16344560
Nle	LMS5	5711	cancer	27500440 ZNF557 4791 transcription factor 15851553
Nle	LMOD3	3224	myopathy	25250347 ZNF626 4620 liver diseases 18255255
Nle	METTL6	3933	Alzheimer's D	2281374 ZNF667 3240 transcription factor 17397802
Nle	MR1	3664	hepatocarcinoma	26823810 ZNF708 5415 transcription factor 15057824
Nle	MREG	1540	pulmonary D	20463177 ZNF84 4920 transcription factor 11856868

Notes: * - 5’UTR, **- CDS; others – 3’UTR, D - disease

Table 2 Variation of positions and nucleotide sequences of miR-619-5p binding sites in the 5’UTRs of mRNAs of mammal genes

Species	Gene	Position of site, nt	Nucleotide sequence
Hsa	CCDC114	261	GCCUGCCUCCUCGCUUGUAUCUCACGACGUUGG
Hsa	DHR59	1281	GCCUGCCGCLGCCUGCAUGGCUUGUAUCCACGACGUUGG
Hsa	RGS3	205	GCCGCUGCCGCUGCAUGGCUUGUAUCCACGACGUUGG
Pab	RGS3	1	GCCGCUGCCGCUUGCUUGUAUCCACGACGUUGG
Nle	RGS3	205	GCCGCUGGAUCCGCUGCUUGUAUCCACGACGUUGG
Hsa	USP29	2	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Pab	USP29	52	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Nle	USP29	52	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Mle	USP29	47	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Can	USP29	98	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Ggo	USP29	100	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG
Rro	USP29	52	CGUGACCAAGGCGCUAGCUGCUUGUAUCCACGACGUUGG

Notes: In the table 2-5 the bold type indicates the binding site of miR-619-5p
have miR-619-5p binding sites in the 5'UTRs and 3'UTRs, and C8orf44, ISY1, and ZNF714 have miR-619-5p binding sites in the CDSs and 3'UTRs.

The nucleotide sequences of miR-619-5p binding sites are located in the CDSs of the C8orf44, C8H8orf44, ISY1, ZNF429, and ZNF714 genes and encode the following oligopeptides (Table 3). C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is also present in the orthologous proteins of P. anubis, P. anubis, P. paniscus, and P. troglodytes. The mRNA of transcription factor ZNF429 and ZNF429 genes binding sites are encoded the AHACNP oligopeptide in the another reading frame. The first two oligopeptides are encoded in one open reading frame (ORF) and the amino acid sequences are highly conserved. The homologous oligonucleotide of the miR-619-5p binding site in the mRNA of ZNF714 gene codes for an oligopeptide in a different ORF.

The presence of miR-619-5p binding sites in the CDSs of five genes with different functions and the evolutionary conservation of these sites signify the role of miRNA in the regulation of the expression of these genes. The nucleotide sequences of specific regions of mRNAs of C8H8orf44, C8orf44, ISY1, ZNF429, and ZNF714 genes that contain miR-619-5p binding sites in the CDSs are homologous among themselves and to the binding sites located in the 5'UTRs and 3'UTRs.

The miRNA binding sites in the coding region, as opposed to the 3'UTR and 5'UTR, clearly demonstrate the relationship between miRNA and mRNA by their conserved amino acid sequences in orthologous proteins. miRNA binding site can be translated by two open reading frames that encode WLTPVIPA and AHACNPS oligopeptides. In the third reading frame, the miR-619-5p binding site has a stop codon. However, in the genes studied, no such sequence was found. In the absence of complete complementarity between miR-619-5p and its binding site, miR-619-5p uses a site containing the corresponding mutation in the CDS for the regulation of gene expression. Thus, a single miRNA binding site in the mRNA of various genes may correspond to three different oligopeptides. Generally, one out of these three oligopeptides is present in the proteins encoded by the orthologous genes.

ISY1 orthologous genes in H. sapiens, P. troglodytes, and N. leucogenys encode a protein containing QVRWLMPVIPALWEAEAGGSQA oligopeptide sequence (Table 4).

However, the RAB43 gene, which is paralogous to human ISY1, lacks the nucleotide sequence encoding the QVRWLMPVIPALWEAEAGGSQA oligopeptide. Additionally, ISY1 gene in the genomes of other animals also lacks the nucleotide sequence encoding this oligopeptide (Table 4).

Table 4 Amino acid sequences coding in miR-619-5p binding sites in the mRNA of ISY1 gene of orthologous genes

Species	Gene	Amino acid sequence
Hsa	PWRELFEKQVRWLMPVIPALWEAEAGGSQA LPPPRKTRAELMKA	
Prt	PWRELFEKQVRWLMPVIPALWEAEAGGSQA LPPPRKTRAELMKA	
Nle	PWRELFEKQARWLTPVIPALWEAEAGGSQA LPPPRKTRAELMKA	
Hsa*	PGVRELFEKE	
Bmu	PGVRELFEKE	
Cja	PGVRELFEKE	
Cfa	PGVRELFEKE	
Cdr	PGVRELFEKE	
Eca	PGVRELFEKE	
Ggg	PGVRELFEKE	
Mmu	PGVRELFEKE	
Nle	PGVRELFEKE	
Cja	PGVRELFEKE	
Cfa	PGVRELFEKE	
Cdr	PGVRELFEKE	
Eca	PGVRELFEKE	
Ggg	PGVRELFEKE	
Mmu	PGVRELFEKE	
Nle	PGVRELFEKE	
Oar	PGVRELFEKE	
Pab	PGVRELFEKE	
Ppa	PGVRELFEKE	
Rho	PGVRELFEKE	

* RAB43 - human ISY1 paralog gene
Nucleotide sequences of miR-619-5p binding sites in the mRNAs of ADAM17, ALDH3A2, and ARL11 orthologous genes are shown in Table 5.

These orthologous genes are characterized by highly conserved nucleotide sequence GGCTCATGCCTGTAATCCCAGC of miR-619-5p binding sites. This shows that the interaction of miR-619-5p with mRNAs of these genes is conserved during evolution. Some of the human miR-619-5p target genes and their corresponding orthologous genes have two miR-619-5p binding sites in their mRNAs.

Table 6 shows the nucleotide sequences of two miR-619-5p binding sites in the 3' UTR of mRNAs of ERBB3, FBLIM1, and FKBP14 orthologous genes.

Table 7 shows the degree of conservation of miR-619-5p binding sites in the 201 mRNAs of target genes. All mRNAs with complete complementarity to miR-619-5p binding sites (ΔG/ΔGm is 100%) were divided into four groups, and the frequency of occurrence of nucleotides was determined in each group. The results suggest that miR-619-5p binding sites are highly conserved. The binding site GGCTCATGCCTGTAATCCCAGC does not change and in each of the four gene groups the observed variability of nucleotides on the right and left is high.

Discussion

Here we have identified many miRNAs binding sites in the mRNAs of 201 human genes which indicates that miRNAs act as coordinators of gene expression by participating in many biological processes. Previous studies have shown the influences of miRNAs on the expression of genes that encode the transcription factors [19, 20] and on the expression of proteins that participate in the cellular cycle [3, 21–23], apoptosis [4, 24–26], and stress responses [27]. It was shown the role of the mir-619-5p in the regulation of different pathological processes [28]. It was investigated the correlations between the expression of MALAT1 and miR-619-5p, in addition to the association between the clinicopathological features and survival outcomes of patients with stage II and III colorectal cancer tumors [28]. It was observed, that hsa-miR-619-5p and hsa-miR-1184 microRNA expression significantly increased in prostatic cancer. MicroRNA-gene-net analysis indicated that miR-619-5p and other some

Species	Gene	Position, nt	Nucleotide sequence
Hsa	ADAM17	3466	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTGAGAGG
Cat	ADAM17	3485	GGGGCAGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mmul	ADAM17	3491	GGGGCAGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mne	ADAM17	3438	GGGGCAGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Ptr	ADAM17	3449	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Rro	ADAM17	3425	GGGGCAGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Hsa	ALDH3A2	2617	GGGGCAGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Cja	ALDH3A2	3444	CCGGCGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Gga	ALDH3A2	2712	CCGGCGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mmul	ALDH3A2	2509	CCGGACATGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mne	ALDH3A2	2504	CCGGACATGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Nle	ALDH3A2	2714	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Pab	ALDH3A2	2297	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Ppa	ALDH3A2	2715	CCGGACATGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Ptr	ALDH3A2	2711	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Rro	ALDH3A2	2727	CCGGACATGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Hsa	ARL11	1033	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Cat	ARL11	1642	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mfa	ARL11	1698	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mmul	ARL11	1747	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mne	ARL11	1024	TGGGAGTGGTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Mne	ARL11	1471	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Ptr	ARL11	1353	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Rro	ARL11	1254	CAGATGCACTGGCTCATGCCTGTAATCCCAGCCTTTGGAGG
Table 6. Variation of nucleotide sequences of two miR-619-5p binding sites in the 3’UTR of mRNAs of ERBB3, FBLIM1, and FKBP14 of orthologs

Species	Gene	Position, nt	Nucleotide sequence
Hsa	ERBB3	4950	CGGGCATGGTGCTCATGCTGTGTAATTCAGCAGTTTGGAG
Hsa	ERBB3	5104	TGCCGATGCGTGCATGCTGTGTAATTCAGCAGCTTTGGAG
Csa	ERBB3	4989	CGGGCATGGTGCTCATGCTGTGTAATTCAGCAGTTTGGAG
Csa	ERBB3	5149	TGGGCATGGTGCTCATGCTGTGTAATTCAGCAGTTTGGAG
Mfa	ERBB3	5114	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mfa	ERBB3	5269	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mmu	ERBB3	5114	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mmu	ERBB3	5269	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mne	ERBB3	5112	CGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mne	ERBB3	5267	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Pan	ERBB3	5106	CGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Pan	ERBB3	5274	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Ppr	ERBB3	5105	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Ppr	ERBB3	5243	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mne	FBUM1	1938	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Mne	FBUM1	5267	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG
Pab	FKBP14	1514	CAGGCACCGTGCTCACGGCTGTGTAATTCAGCAGTTTGGAG
Pab	FKBP14	2128	TGGGCATGCGTGCATGCTGTGTAATTCAGCAGTTTGGAG

Notes: The black type indicates the binding site of miR-619-5p

Table 7. Variation of nucleotide sequences of mRNA region with miR-619-5p binding sites (See Additional file 1, 2, 3 and 4)

From	To	Nucleotide sequence
CSL6	COX18	GGGTCATGCTGGCTGTGTAATTCAGCAGTTTGGAG
GK5	HM13	GGGTCATGCTGGCTGTGTAATTCAGCAGTTTGGAG
IFIT3	SLC26A4	GGGTCATGCTGGCTGTGTAATTCAGCAGTTTGGAG
LC28A2	ZNF841	GGGTCATGCTGGCTGTGTAATTCAGCAGTTTGGAG
miRNAs had the most important and extensive regulatory function for Qi-stagnation syndromes and Qi-deficiency syndromes in coronary heart disease [29].

One or several umiRNAs regulating the expression of hundreds of genes can create a system of interconnected processes in cells and organisms. Such role of these umiRNAs is possible because they circulate in the blood and have access to nearly all cells of an organism [30–32]. Our results provide the basis for studying the systemic roles of unique and normal miRNAs in the regulation of gene expression in human cells. The expression of many target genes is regulated by umiRNAs does not allow individual miRNAs of target genes to be expressed in more degree than others. The greater expression of one mRNA, the larger number of umiRNAs bind to this mRNA. This allows one umiRNA to maintain a certain balance of expression of the corresponding target genes. If umiRNA expression changes, such system is vulnerable. This will cause the development of pathology in the cell, tissue or body.

Conclusions
The majority of miR-619-5p binding sites are located in the 3’UTRs of mRNAs of target genes. Some genes have miRNA binding sites in the 5’UTRs of mRNAs. It is necessary to maintain nucleotide sequences of the binding site of umiRNA in the CDSs of several genes. Different genes have binding sites for miRNAs that are read in different open reading frames. Therefore, identical nucleotide sequences encode different amino acids in different proteins. In encoded proteins, these sites encode conservative oligopeptides. The binding sites of miR-619-5p in 3’UTRs, 5’UTRs and CDSs are conservative in the orthologous mammalian genes.

Additional files

Additional file 1: Figure S1. Variation of nucleotide sequences of mRNA region with miR-619-5p binding sites of genes from CSL6 to COX18 (Conservative binding sites are in bold) (PDF 218 kb)

Additional file 2: Figure S2. Variation of nucleotide sequences of mRNA region with miR-619-5p binding sites of genes from GKS to HM13 (Conservative binding sites are in bold) (PDF 106 kb)

Additional file 3: Figure S3. Variation of nucleotide sequences of mRNA region with miR-619-5p binding sites of genes from IFIT3 to SLC26A4 (Conservative binding sites are in bold) (PDF 139 kb)

Additional file 4: Figure S4. Variation of nucleotide sequences of mRNA region with miR-619-5p binding sites of genes from LC28A2 to ZNF841 (Conservative binding sites are in bold). The data given in the Additional files 1, 2, 3 and 4 demonstrate the variability of the nucleotides before and after the binding sites of miR-619-5p, which is shown in the Weblogo schemes in the table 8. (PDF 151 kb)

Abbreviations
CDSs: Coding domain sequences; miRNAs: Micrornas; ORF: Open reading frame; Ummrna: Unique miRNA

Acknowledgements
We thank LEDUCQ Foundation and the European Union project «Muscle Stress Reliefs». Also we thank PhD Berillo O. for her help in the collection of data.

Funding
This study was supported by a grant (N0491/F04) from the Ministry of Education and Science, Kazakhstan Republic, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, and Institute for Anaesthesiology and Intensive Operative Care Medical Faculty Mannheim, Mannheim, Germany.

Availability of data and materials
The data sets supporting the results of this article are included within the article and its additional files and publicly available.

Authors’ contributions
SA, RN and AI conceived of the study and drafted the manuscript. SA, RN, AI, SL, AP, IP and AA made substantial contributions to acquisition of data, to interpretation and modification of the data. All authors involved in drafting the manuscript, read and approved the final version of the manuscript.

Competing interests
The authors declares that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1SRI Of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan. 2Institute for Anaesthesiology and Intensive Operative Care Medical Faculty Mannheim, Mannheim, Germany.

Received: 19 March 2017 Accepted: 22 May 2017
Published online: 01 June 2017

References
1. Doxakis E. Principles of miRNA-Target Regulation in Metazoan Models. Int J Mol Sci. 2013;14:16280–902.
2. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30:106–14.
3. Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, Huang Y, Fang L. MiR-15a is underepressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43:1212–8.
4. Li X, Chen YT, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, Huang WC. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013;8:e70987.
5. Qian NS, Liu WH, Lv WP, Xiang X, Su M, Raut V, Chen YL, Dong JH. Upregulated MicroRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPβ. PLoS One. 2013;8:e68004.
6. Poethig RS. Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol. 2013;105:125–52.
7. Ling YH, Deng JP, Zhang XD, Wang LJ, Zhang YH, Li YS, Zhang ZJ, Zhang XR. Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology. Genet Mol Res. 2013;12:1951–61.
8. Knyazev EN, Fomicheva KA, Mikhalenko DS, et al. Plasma Levels of hsa-miR-619-5p and hsa-miR-1184 Differ in Prostatic Benign Hyperplasia and Cancer. Bull Exp Biol Med. 2016;161:108–11.
9. Hou J, Wang J, Lin C, Fu J, Ren J, Li L, Guo H, Han X, Liu J. Circulating MicroRNA Profiles Differ between Qi-Stagnation and Qi-Deficiency in Coronary Heart Disease Patients with Blood Stasis Syndrome. Evid Based Complement Alternat Med. 2014;2014:926962.
10. Swaminathan S, Suzuki K, Seddiki N, Kaplan W, Cowley MJ, Hood CL, et al. Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol. 2012;188:238–46.

11. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S. MiR-3960 binding sites with mRNA of human genes. Bioinformation. 2014;10(7):423–7.

12. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S. The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes. Biomed Res Int. 2014;2014:720715.

13. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R. Binding Sites of miR-1273 Family on the mRNA of Target Genes. Biomed Res Int. 2014;2014:620530.

14. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S. The binding sites of unique microRNAs in the human mRNAs. J Biotechnol. 2014;185:125–37.

15. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

16. Griffiths-Jones S, Grocock R, von Dongen S, Bateman A, Enright A. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140–4.

17. Cummins JM, He Y, Leary RJ, Pagliarini D, Diaz Jr LA, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labouvier E, Raymond CK, Roberts BS, Juhi H, Kiroter KW, Vogelstein B, Velculescu VE. The colorectal microRNAome. Proc Natl Acad Sci U S A. 2006;103:3687–92.

18. Ple H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P. The repertoire and features of human platelet microRNAs. PLoS One. 2012;7:e50746.

19. Cui Q, Yu Z, Pan Y, Punisima EQ, Wang E. MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun. 2007;352(9):733–8.

20. Yan L, Kang M, Qin Z, Zhang W, Li Y, Ou H. An intrinsic miRNA regulates expression of the human endothelial nitric oxide synthase gene and proliferation of endothelial cells by a mechanism related to the transcription factor SP-1. PLoS One. 2013;8:e70658.

21. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko Jr RJ, Lazo JS, Wang Z, Zhang L, Yu J. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2013;69:8157–65.

22. Cui X, Witalison EE, Chumanevich AP, Chumanevich AA, Poudyal D, et al. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest. PLoS One. 2013;8:e33791.

23. Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, et al. MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PLoS One. 2012;7:e41693.

24. Wang Y, Lee CG. MicroRNA and cancer focus on apoptosis. J Cell Mol Med. 2009;13:12–23.

25. Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ. Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol. 2012;39:739–46.

26. Lima RT, Busaca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47:163–74.

27. Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One. 2013;8:e73870.

28. Qiu G, Zhang X, Liu P, Wu W, Zhang J, Bai S, et al. Dysregulation of MALAT1 and miR-619-5p as a prognostic indicator in advanced colorectal carcinoma. Oncol Lett. 2016;12(6):5036–42.

29. Hou J, Wang J, Lin C, Fu J, Ren J, Li L, Guo H, Han X, Liu J. Circulating MicroRNA Profiles Differ between QI-Stagnation and Q1-Deficiency in Coronary Heart Disease Patients with Blood Stasis Syndrome. Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine. 2014;2014:1–9.

30. Kumar S, Keerthana R, Pazhanimuthu A, Perumal P. Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys. 2013;50:210–4.

31. Smith-Nikos T, Slack F. MicroRNAs circulate around Alzheimer’s disease. Genome Biol. 2013;14(7):125.

32. Reshmi G, Chanda SS, Babu VI, Babu PS, Santhi WS, Ramachandran S, Lakshmhi S, Nair AS, Pillai MR. Identification and analysis of novel microRNAs from fragile sites of human cervical cancer: computational and experimental approach. Genomics. 2011;97:333–40.