Matrix Stiffness Modulates Metabolic Interaction Between Human Stromal and Breast Cancer Cells to Stimulate Epithelial Motility

Ivan Ponce
Instituto de Nutrición y Tecnología de los Alimentos Universidad de Chile: Universidad de Chile Instituto de Nutricion y Tecnologia de los Alimentos

Nelson Garrido
Instituto de Nutrición y Tecnología de los Alimentos Universidad de Chile: Universidad de Chile Instituto de Nutricion y Tecnologia de los Alimentos

Nicolas Tobar
Instituto de Nutrición y Tecnología de los Alimentos Universidad de Chile: Universidad de Chile Instituto de Nutricion y Tecnologia de los Alimentos

Patricio C Smith
Pontificia Universidad Catolica De Chile School of Medicine: Pontificia Universidad Catolica de Chile Escuela de Medicina

Francisco Melo
Departamento de Física, Universidad de Santiago

JORGE MARTINEZ (jmartine@inta.uchile.cl)
Instituto de Nutrición y Tecnología de los Alimentos Universidad de Chile: Universidad de Chile Instituto de Nutricion y Tecnologia de los Alimentos

Research Article

Keywords: stiffness, breast cancer, lactate, monocarboxylate transporters

Posted Date: February 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-186889/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background. Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work is to investigate the possible functional link among these two processes.

Methods. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material to which matrix molecules were covalently-linked. We evaluated metabolite transport in stromal cells using two different FRET nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices.

Results. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner.

Conclusions. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote the metabolic reprograming that also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming and cancer malignancy.

Introduction

Breast tumors belong to a type of epithelial neoplastic lesion characterized by a dense structure that contains mainly stromal cell and abundant extracellular matrix (ECM) molecules. Reciprocal interactions between these components and epithelial cells determine the course of cancer progression in a desmoplastic environment [1]. Desmoplastic tissue can have a heterogeneous composition ranging from a predominantly cellular stroma containing fibroblasts, vascular cells, and immune cells with little ECM, to a dense structure with minimal cells and low ECM content consisting mainly of fibrillar collagen [2]. In the case of mammary tissue, tumor stroma also exhibits a reduction in the size and number of adipocytes, the most abundant phenotype of breast tissue [3].

It has been established that a stiffer tissue structure is a determinant of breast cancer progression. Provenzano and colleagues, using a mice model of breast cancer, observed that higher stromal collagen density in mammary tissue resulted in a threefold increase in tumor number and that tumors displayed a more invasive phenotype with greater local invasion and metastasis [4]. Analysis of human breast cancer samples have revealed that tumor stiffness reflects a more aggressive disease. Particularly, authors have demonstrated that the transition from a non-malignant tissue to an invasive ductal carcinoma corresponds to a significant collagen deposition, linearization and bundling, which leads to a stiffening of the ECM [5].
For many years, desmoplasia was considered to be a reaction of host tissue against invasive cancer cells, which was designated “desmoplastic response” [6]. However, this idea has since been challenged using mammographic studies that identify desmoplastic tissue in normal human breast detected as areas denser that the predominant mammary fat tissue, characteristically designated as “mammary density” (MD). Radiodense areas exhibit several histologic characteristics of malignant stroma, specifically low adipocyte content and high ECM and stromal cell abundancy [7]. The finding that desmoplastic lesions can be present in the absence of tumor cells suggests that desmoplasia may not be a reaction to invasive malignant cells, but, rather, a preexisting condition that creates a proactive milieu that favors the development of cancer [8].

It has also been proposed that an abundant stromal cell population plays an important role in the establishment of the metabolic reprogramming phenomenon characteristic of the majority of tumors [9].

The molecular features of this metabolic modulation can be achieved either in stromal or epithelial populations with a focus on the mechanisms of substrate transport. Lisanti and colleagues has proposed that tumor-associated fibroblasts (also termed as CAFs) establish a cooperative relationship with tumor cells where CAFs act as a glycolytic source of lactate which, in turn, can be used by cancer cells and oxidized in the mitochondria for energy production [10]. Thus, at the whole tumor level, an increased conversion of glucose to lactate, associated with a high glycolytic rate, generates millimolar concentrations of lactic acid that is released to the extracellular compartment [11]. The significance of lactate for the physiology of the mammary environment is still poorly understood.

In the present work, using a normal breast stromal cell line, we present evidence that suggests that modulation of ECM dynamics and metabolic reprogramming could constitute mechanistically related processes. Our results show that culture of mammary stromal cells on matrices of increased stiffness display an enhanced production of lactate that correlates with an increased uptake of glucose, an enhanced expression of glucose transporter Glut1 and also a stimulus for the expression of membrane monocarboxylate transporters (MCT4) that facilitates lactate export. Moreover, mammary stromal cells cultured on stiffened matrices generate soluble factors, lactate among them, which stimulate epithelial breast migration in a stiffness-dependent manner. Our analysis is mainly focused in the stromal cells that, in desmoplasic tumors, like the breast lesions, correspond to a main component of tumor architecture and could be responsible for the metabolic rearrangement that characterize these tumors.

Material & Methods

Cell culture, cell lines, and chemicals

We used human cell line RMF-621, which corresponds to an hTert-immortalized fibroblasts derived from a reduction mammoplasty; obtained via a generous gift from Dr. Charlotte Kuperwasser (Tufts University, MA). Cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose (Invitrogen, Carlsbad, CA), supplemented with antibiotics and 10% fetal bovine serum (FBS) (Hyclone,
Logan, UT) and maintained in a humidified atmosphere of 37°C, 5% CO2 (15). MCF-7 and MDA-MB 231, both human breast cancer cell lines, were purchased in ATCC (Manassas, VA), cultured in DMEM/F12 supplemented with 10% FBS and maintained in the same condition as above. MCT1 inhibitor AR-C155858 was acquired from Chem Express (Princeton, NJ) and diclofenac was purchased on Sigma (St. Louis, MO).

Plating of cells in matrices of different stiffness.

In all the experiments in which RMF 621 cells were cultured in matrices with different stiffness, cells (2 X 10^5) were pre-cultured for 3 days in media enriched with 10/o FCS plated on 0.2 kPa low rigidity matrix (Advanced Biomatrix, San Diego, CA) previously coated with 50 µg/cm2 of type I collagen, to simulate the normal (soft) condition of breast tissue. After this, cells were released with trypsin and transferred to plates with increased stiffness (0.2–32 kPa) for an additional 72 h period before being lysed for western blot. In experiments in which media conditioned from these cultures were collected, enriched culture media was replaced by serum-free media during the last 24 h of culture before collection.

Preparation of protein-coated gel substrate.

To measure the effect of ECM rigidity on glucose and lactate transport, we used compliant elastic polyacrylamide gels as substrate material to which ECM molecules can be covalently-linked [12]. For these studies, preactivated coverslips were used to prepare matrices which are cross-linked with 2 mM sulfo-SAMPAH and activated with 7,500 J of UV light for 8 min. After rinsing with PBS, matrices were incubated overnight at 4ºC with 50 µg/cm2 of type I Collagen (Advanced Biomatrix, San Diego, CA) and then washed with PBS. Once collagen is coupled, matrices on coverslips were rinsed with sterile PBS and cells were seeded on top.

Cell imaging

To evaluate glucose transport in cells seeded on coverslips coated with extracellular matrices with different stiffness, we used the FRET nanosensor (FLII|P|lu60060|A|6) incorporated in adenoviral particles (Vector Biolabs, Philadelphia, PA) which exploit resonance energy transferred between a coupled pair of cyan and yellow fluorescent proteins (eCFP, eYFP). This system detects conformational changes induced by a glucose-binding domain derived from chemotactic receptors of bacteria, namely the glucose/galactose-binding protein of Escherichia coli (MglB) [13].

To evaluate lactate transport in living cells, we used the FRET nanosensor Laconic [14] incorporated in adenoviral particles (Vector Biolabs, Philadelphia, PA). Laconic is a fusion protein composed of a ligand-binding moiety (LldR) specific to lactate and the fluorescent proteins mTFP and Venus. Imaging was carried out using a Nikon Ti microscope with a 40 X objective equipped with a monochromator (Cairn Research, Kent, UK), which allows discrete excitation at 430 ± 10 nm. Two windows of emitted light were simultaneously collected at 490–520 nm (mTFP) and over 535 nm (Venus) by means of an optical splitter (Cairn Research). Images were digitized by a CCD camera (ORCA3, Hamamatsu, Japan) and data expressed as the ratio between mTFP and Venus fluorescence. Experiments were conducted 48–72 h
after infection at room temperature (24–26°C) in KRH buffer (in mM: 140 NaCl, 4.7 KCl, 20 Hepes, 1.25 MgSO4, 1.25 CaCl2, pH 7.4) supplemented with lactate.

Cell motility assays

Low migrating mammary epithelial MCF-7 and highly invasive MDA MB-231 cell lines were used as a model of differential migration using a 6.5-mm Transwell chamber with a pore size of 8 mm (Corning, Corning, NY). In these experiments, 5 x 10^4 cells were allowed to migrate (MCF-7 for 24 hours and MDA MB-231 for 16 hours) to the stimulus of conditioned medium by RMF-621 cells previously cultured as described above, on increased stiffness conditions (0.2, 2.0, 16 and 32 kPa) diluted at 50% in culture media enriched with 1% FCS. To analyze the effect of stromal-derived lactate on epithelial migration and the role of MCT1 and MCT4 monocarboxylate transporters, a group of both cells were stimulated to migrate under the stimulus of stromal conditioned media in the presence of 1 µM AR-C155858 (inhibitor of MCT1 and MCT2) or 1 mM diclofenac a structurally-unrelated MCT1 & MCT4 blocker. After migration period, Transwell membrane was fixed in methanol and migratory cells were stained on the lower side of the membrane with 0.2% crystal violet [15]. Migration values correspond to the average of three independent experiments by counting 16 fields from four pictures (X20) per chamber (two chambers per experimental condition).

Lactate assay

Lactate was evaluated in conditioned media by RMF-621 cells (1 x 10^5 cells in a 6 well plate) cultured on matrices of increasing stiffness of 0.2, 2, 16 and 36 kPa. To do so, we previously cultured RMF-621 cells on 0.2 kPa low rigidity matrix as described and then, cells were transferred to a set of dishes coated with matrices of increasing stiffness of 0.2, 2, 16 and 36 kPa. Lactate production was evaluated after 72 h of culture on these matrices of different stiffness levels. In the last four hours of culture, culture media was changed to phenol red-free media in the absence of serum, and lactate abundance in these media was evaluated by gas chromatography coupled with mass spectrometry, GC-MS equipped with a capillary column HP5M. Briefly, an internal standard was added to each sample and the organic acid was oximated and extracted twice with Ethyl acetate as previously described [16]. The organic fraction obtained was dried under nitrogen and derivatized with BSTFA and TMS (1%). Afterwards, one microliter of derivatized sample was injected in the GC-MS. Each metabolite was identified based on its own mass spectra by matching with a spectral library of known metabolites from NIST, NIH. Quantification of lactic and pyruvic acids was carried out through prior elaboration of a calibration curve (quadratic equation) with increasing amounts of each metabolite normalized to Tropic Acid (Internal Standard).

Matrix stiffness measurements

To measure the elastic modulus of matrices used as cell support, an indentation method was implemented. A glass sphere that is pushed against the matrix at constant speed was selected to ensure a defined geometry for indentation. Compression force was determined through a load cell, Futek LBS200 S-Beam, operating in the range of 2N, provided with a signal conditioning module and the respective interface for the conversion and transmission of data to the computer, through the USB computer port.
The sample (1 mm thick and 1 cm diameter) was positioned horizontally under the spherical indenter (5 mm diameter). To press the sample, the indenter is displaced by means of a micro-control system, with 1 µm resolution, at speed of 10 µm/s.

The resulting force, \(F \), as a function of the penetration distance, \(\delta \), is modeled by the Hertz's relation,

\[
F = \frac{4}{3} E' R^{1/2} \delta^{3/2}
\]

With \(E' = E/(1 - \nu^2) \), where \(E \) is the Young's modulus and \(\nu \) is the Poisson's coefficient of the sample, which is assumed to be close to \(\nu = 0.5 \). \(R \) is the indenter's radius of curvature at sample contact. \(E \) is assessed through a standard fitting procedure of the \(F \) vs \(\delta \) curve that is well represented by the Hertz's formula. The values obtained for substrata prepared at two distinct reticulation periods were:

Sample 1: \(E = 4.5 \pm 0.5 \) kPa
Sample 2: \(E = 31.0 \pm 0.5 \) kPa

All force measurements were obtained in samples immersed in PBS buffer under the same conditions to those of the cell cultures.

Western blot and antibodies.

The expression of MCT4 and Glut 1 protein in RMF-621 cells was evaluated by Western-blot. Briefly, cells were lysed in lysis buffer (30 mM Tris-HCl pH 7.5, 5.0 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycolate, 0.1% SDS and 10% glycerol) supplemented with complete protease inhibitors (Roche, Mannheim, Germany). Pellets were incubated for 1 h in lysis buffer at 4°C, and then centrifuged at 14000 g for 15 m at 4°C, keeping the supernatants. The protein concentration of cell lysates was determined using Pierce BCA Protein Assay kit (Thermo, Rockford, IL). Protein extracts were denatured in sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis loading buffer 4 X (240 mM Tris–HCl, pH 6.8, 8% SDS, 40% glycerol, and 20% 2-mercaptoethanol), incubating the samples for 1 h at 37°C. Equal amounts of protein from different treatments were resolved by SDS–polyacrylamide gel electrophoresis in 10% acrylamide gels and electrotransferred to polyvinylidene difluoride membranes using a buffer containing 24 mM Tris, 194 mM glycine, and 20% methanol. Proteins were further analyzed using the Supersignal West Dura Extended Duration Substrate (Thermo, Rockford, IL). Immunoreactions were achieved by incubation of the membranes, previously blocked with a solution containing 5% bovine serum albumin in Tris-buffered saline and 0.05% Tween 20 (Sigma, St. Louis, MO), with anti MCT4 (D-1) mouse monoclonal antibody (sc-376140) from Santa Cruz (Santa Cruz, CA), anti MCT1 rabbit polyclonal antibody (M4470-01B) from US Biological (Salem MA), anti Glut1 mouse monoclonal antibody (MAB14181) from R & D (Minneapolis MN) and mouse anti-alpha tubulin (T5168) from Sigma (St. Louis MO). Densitometric analysis of western blot bands was performed using C-Digit Blot Scanner and Image Studio Digits software v.5.2 from LI-COR Biosciences (Lincoln, NE).
Human Breast Cancer Samples. Breast cancer formalin-fixed samples and paraffin-embedded samples were obtained from the repository of the Arturo Lopez Perez Foundation (FALP, Santiago, Chile). Informed consent was obtained from all individual participants included in the study with the supervision and approval of the Ethics Committees at INTA, University of Chile and FALP. Samples were obtained before the beginning of chemotherapy.

Statistical analysis.

Unless otherwise specified, experiments were repeated between three and five times. All data are presented as means ± standard error of the mean (SEM). Statistical analyses were carried out using GraphPad Prism software version 8.0.2 (GraphPad Software Inc.). Differences between groups were evaluated with the Kruskal-Wallis or Friedman analysis followed by Dunn's multiple comparisons test. A p-value lower than or equal to 0.05 was considered statistically significant and indicated with one, two or three asterisks: * = P \leq 0.05, (**) = P \leq 0.01 and (***) P \leq 0.001.

Results

RMF-621 cells in culture release lactate in a stiffness-dependent manner.

To assess whether matrix stiffness modulates lactate production, we cultured RMF-621 cells for 3 days in media enriched with 10% FCS on 0.2 kPa low rigidity matrix (Advanced Biomatrix) in an attempt to simulate the normal soft condition of breast tissue. Cells were then transferred to a set of dishes with different elastic moduli of 0.2, 2, 16 and 36 kPa coated with type I Collagen (50 µg/cm2) and incubated for 72 h. Afterwards, lactate production was evaluated in culture media by gas chromatography coupled with mass spectrometry (GC-MS) as detailed in Material and Methods. As Fig. 1 shows, lactate production by stromal cells responds in a linear manner to matrix stiffness which suggests that the mechanical signals derived from the matrix constitute a specific stimulus for glucose reprogramming.

Matrix rigidity favors glucose uptake in mammary stromal cells.

To assess whether matrix stiffness affects the ability of stromal cells to uptake glucose, we plated RMF-621 cells on coverslips coated with an elastic polyacrylamide gel that generates matrices with stiffness of 4.5 and 31 kPa on the top of which type I collagen is covalently cross-linked [12]. Cells were incubated for 4 days in this condition prior to being transduced (for 24 h) with an adenovirus that encoded the FRET glucose imaging biosensor FLIPglu-60060Δ6 that displays a high affinity for glucose [13]. As Fig. 2 shows, cells seeded on stiffer matrix exhibit a consistently higher incorporation of glucose (double V initial value) that allows us to suggest that a rigid microenvironment can favor glucose uptake and incorporate substrate for metabolic reprogramming.

Matrix stiffness stimulates the expression of monocarboxylate and glucose transporters in normal stromal mammary cells.
Next, we assessed whether culture of RMF-621 cells on matrices with different stiffness was able to modulate the expression of transporters involved either in the uptake of glucose by Glut1 and the export of lactate by MCT4, monocarboxylate transporter that appears to be the main mechanism adapted to the release of lactate [17]. Figure 3 shows a western blot of both transporters expressed by RMF-621 cells cultured for 72 h on matrices of increased stiffness. As Fig. 3 indicates, both Glut1 and MCT4 protein expression was stimulated by matrix stiffness. These results allow us to argue that stiffer conditions favor glucose uptake and lactate export.

Matrix stiffness modulates lactate transport in MDA MB-231 cells.

To investigate whether modulation of monocarboxylate expression in epithelial cells by plating in different stiffness matrices are reflected in lactate transport, we performed lactate transport experiments using genetically encoded lactate-sensitive FRET nanosensor Laconic [14]. It is important to note that regardless of the net direction of lactate flux, MCTs transport in both directions, and therefore, their activity may be studied by monitoring influx or efflux, the former being more practical. We used the same experimental approach for glucose transport depicted in Fig. 2: epithelial MDA MB-231 cells were plated on coverslips coated with polyacrylamide and cross-linked with type I collagen. Figure 4 shows that cells plated on a 31 kPa matrix incorporate lactate at a higher rate than cells plated on a 4.5 kPa matrix.

Soluble factors derived from RMF-621 cells cultured in different levels of stiffness stimulate epithelial migration.

To test whether stromal RMF-621 cells cultured on a range of matrices with different rigidity can influence the migratory behavior of their epithelial counterpart, we designed the following experiments. Using MCF-7 cells (a weakly migratory mammary cell line) and MDA MB-231 (a highly invasive cell line), we performed migratory and invasion experiments respectively, using the Transwell system, in which epithelial cells migrated via attraction by the stimulus of 50% media conditioned by RMF-621 cells previously cultured on different matrices. This medium occupies the lower space of the Transwell chamber. To analyze whether lactate produced by these stromal cells plays a role in the migratory stimulus, both epithelial cells were allowed to migrate in the presence of 1 µM MCT1/2 inhibitor ARC155858 [18] and diclofenac, a structurally-unrelated MCT1 & MCT4 blocker [19]. As Fig. 5 shows, in both cell lines epithelial cell migration responds to stiffness-derived stromal stimulus in a directly proportional way i.e. media conditioned from RMF-621 cells cultured on a more rigid matrix generate a more vigorous migratory stimulus. The Figure also shows that both ARC155858 or diclofenac inhibits (in different grade) cell migration in MCF-7 cells suggesting that in these cells lactate, incorporated via the abundantly expressed MCT1 transporter [20] was, at least, partially responsible for epithelial migration at least in the higher stiffness levels. On the other hand, MDA MB-231 cell invasion were insensitive to ARC155858 and lactate-dependent invasion was blocked only by diclofenac. These results suggest that, in our experimental conditions, MDA MB-231 cells incorporate lactate using MCT4, monocarboxylate transporter predominantly expressed in these cells which expression has been associated mainly with lactate export. [20, 21].
MCT1 and MCT4 expression correlates with breast cancer grading.

It has been demonstrated that increased ECM rigidity correlates with cancer progression and poor disease outcome [22]. To verify whether the modulation of monocarboxylate transporters by matrix stiffness observed in our cellular model correlates with human tumor aggressiveness, we analyzed by the expression of both transporters in fixed samples of human breast tissue derived from tumor-bearing patients with different Elston grade [23] using tissue immunofluorescence. As Fig. 6 shows, the Elston grade I sample shows a strong expression of MCT1 in the almost intact epithelial compartment with low expression in the stroma. On the contrary, the Grade III sample display a strong reactivity to MCT4 associated with the surface of epithelial cells and a weak stain of MCT1 in both compartments. These results are in agreement with data in Fig. 5 in that MDA MB-231 cells, an aggressive cell line, also express a high abundancy of MCT4 [20].

Discussion

Glucose reprogramming and deregulated ECM dynamics acts as fundamental drivers of cancer progression that can be interconnected and act in a cooperative manner [24]. Results of the present work support the notion that matrix stiffness constitutes a specific stimulus for glucose uptake modulation, lactate production and expression of monocarboxylate and glucose transporters by stromal cells. In the same experimental conditions, stromal cells generate soluble factors that stimulate epithelial migration.

It has been proposed that changes in tensional forces and ECM stiffness are determinant features in cancer progression [25]. Moreover, tissues which are normally stiff exhibit greater risk to develop cancer than softer tissues having similar division rates [26]. In the case of breast cancer, mammographic studies have identified that existence of desmoplastic areas that exhibit histologic characteristics of malignant stroma due to the increased proportion of collagen relative to fat-tissue content [7]. The finding that desmoplastic lesions can be present in the absence of tumor cells suggest that desmoplasia may be a preexisting condition favoring the development of cancer [8].

Studies using metformin, an agonist of AMP-activated protein kinase (AMPK), have shown a functional relationship between metabolism and fibrosis. Using a mouse model of cardiac fibrosis, authors demonstrated that metformin reduces levels of TGF-β and activated Smad3, thus decreasing collagen deposition and fibrosis [27]. More recently, it has been shown that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis [28].

In the present work, we tested the hypothesis that a pre-established matrix with increased stiffness constituted a primary mechanical stimulus that favors glucose reprogramming. Previous data from our laboratory shows that mammary fibroblasts behave as lactate producer cells and epithelial cells are avid consumers of this substrate [20]. When mammary stromal cells were exposed to a stiffed matrix their intrinsic lactate production was stimulated in a rigidity-dependent manner. This result, besides those obtained in glucose uptake experiments, allow us to suggest that a combination of surface topography...
and substrate stiffness exert some type of intracellular forces that promote, in the stromal compartment, the expression of regulatory proteins that favor a more efficient uptake of glucose and an enhancement of lactate extrusion. Both phenomena are key elements in the metabolic demand of an epithelia in transformation. The correlation between matrix rigidity and glucose metabolism in the context of malignancy has been suggested by works performed in human prostatic samples. Results show that the mRNA expression of lysyl oxidase (LOX) and GLUT-1, proteins involved in the crosslinking of collagen and glucose transporter correlate well with an increased cancer grade evaluated by the Gleason score [29].

We propose that mammary stromal cells are able to sense the stimulus of matrices of increased stiffness and convert this exogenous signal to an intracellular one, i.e. lactate production that stimulates epithelial motility. Thus, in the context of the tumor environment, lactate expands this functional repertoire from a relevant agent of the Warburg effect to a specific stimulator of the intracellular locomotion machinery. Interestingly, malignant breast cancer cells seem to be adapted to respond to lactate stimulus by the abundant expression of MCT4. This is demonstrated in the MDA MB-231 cell line, that corresponds to a triple-negative (TN) isotype, characterized by its aggressiveness [30], in which we previously reported a high avidity for lactate correlates with the expression of abundant copies of MCT4 and high Km for lactate [20]. It has been previously proposed that MCT4, by its interaction with integrin β1, plays a relevant role in epithelial cell migration [31]. Moreover, MCT4 is the only monocarboxylate transporter which expression is modulated (via HIF-1α) by a hypoxic environment, a feature characteristic of malignant tumors [32]. Our data reinforce the possible association of MCT4 and malignancy in breast cancer by the observation in patient samples that the expression of this MCT4 was also differentially expressed in the epithelial compartment of tumors of different Elston Grade (Fig. 6).

Together, results shown in the present work propose that matrix stiffness constitutes not only a scaffold where a tumor can develop, but also an early signal that promotes a shift of metabolic behavior of the stromal compartment through a glycolytic process that results in a stimuli of tumor malignancy. These new findings will help us to build a more complete picture of the relationship between fibrosis and cancer malignancy.

Declarations

Disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed.

Acknowledgments

The present work was supported by the grant 1181168 from Fondo Nacional de Investigación Científica y Tecnológica of Chile (FONDECYT; PI: JM) and grant PAI77170001 (NT)

References

1. Miles FL, Sikes RA (2014) Insidious changes in stromal matrix fuel cancer progression. Mol Cancer Res 12(3):297–312
2. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

3. Bing C, Trayhurn P (2009) New insights into adipose tissue atrophy in cancer cachexia. Proc Nutr Soc 68(4):385–392

4. Provenzano PP et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

5. Acerbi I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134

6. Guerrero J et al (2010) Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-beta1 and TNF-alpha. Breast Cancer Res Treat 119(2):497–508

7. Li T et al (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14(2):343–349

8. DeClerck YA (2012) Desmoplasia: a response or a niche? Cancer Discov 2(9):772–774

9. Martinez-Outschoorn UE, Lisanti MP (2014) Tumor microenvironment: introduction. Semin Oncol 41(2):145

10. Bonuccelli G et al (2010) Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514

11. Walenta S et al (2001) Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 51(3):840–848

12. Fischer RS et al (2012) Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc 7(11):2056–2066

13. Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778(4):1091–1099

14. San Martin A et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8(2):e57712

15. Tobar N et al (2010) NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br J Cancer 103(7):1040–1047

16. Kumps A et al (1999) Gas chromatography-mass spectrometry analysis of organic acids: altered quantitative response for aqueous calibrators and dilute urine specimens. Clin Chem 45(8 Pt 1):1297–1300

17. Dimmer KS et al (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350 Pt 1:219–227

18. Ovens MJ et al (2010) AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochem J 425(3):523–530
19. Contreras-Baeza Y et al (2019) Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem 294(52):20135–20147
20. Tobar N et al (2017) Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors. J Cell Physiol 232(1):136–144
21. Walenta S et al (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921
22. Northcott JM et al (2018) Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol 6:17
23. Elston CW, Ellis IO, Pinder SE (1998) Prognostic factors in invasive carcinoma of the breast. Clin Oncol (R Coll Radiol) 10(1):14–17
24. Tung JC et al (2015) Tumor mechanics and metabolic dysfunction. Free Radic Biol Med 79:269–280
25. Conklin MW, Keely PJ (2012) Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adh Migr 6(3):249–260
26. Pfeifer CR et al (2017) Genome variation across cancers scales with tissue stiffness - an invasion-mutation mechanism and implications for immune cell infiltration. Curr Opin Syst Biol 2:103–114
27. Xiao H et al (2010) Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 87(3):504–513
28. Ding H et al (2017) Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol 313(3):F561–F575
29. Stewart GD et al (2008) Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol Rep 20(6):1561–1567
30. Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32(1–2):35–48
31. Gallagher SM, Castorino JJ, Philp NJ (2009) Interaction of monocarboxylate transporter 4 with beta1-integrin and its role in cell migration. Am J Physiol Cell Physiol 296(3):C414–C421
32. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9037

Figures
RMF-621 cells behave as a lactate producer cells in a stiffness-dependent manner. Mammary human stromal cells (RMF-621 cells) were cultured (3 days) in media enriched with 10% FCS on 0.2 kPa low rigidity matrix (Advanced Biomatrix) to simulate the normal soft condition of breast tissue. Cells were then transferred to a set of matrices with increasing stiffness (0.2, 2, 16 and 36 kPa) for 72 h, after which lactate present in serum-free medium was evaluated as explained in Material and Methods. Data are presented as means ± standard error (SEM). ** indicates statistically significant differences a p ≤ 0.01, with respect to 0.2 kPa using the Kruskal-Wallis test followed by Dunn's multiple comparisons test.
Figure 2

Glucose uptake is favored in mammary stromal cells cultured in rigid matrices. Time course curve of glucose incorporation measured as the fluorescence ratio of FLIPglu-60060Δ6 biosensor in RMF-621 cells cultivated for 4 days on coverslips coated with an elastic polyacrylamide gel to which type I collagen (50 µg/cm²) was covalently cross-linked and exposed to 5 mM glucose. Fluorescence was recorded every 10 sec. Open circles correspond to cells cultured on a soft matrix (4.5 KPa) and closed circles to cells cultured in a more stiffed matrix (31 KPa). Data correspond to the average of almost 20 single cell recordings in four independent experiments. The continuous line represents the best fit of a double rectangular hyperbola and Vi values were estimated from the slope of each glucose filling curve.
Figure 3

Extracellular matrix stiffness modulates the expression of monocarboxylate transporters in mammary stromal cells. RMF 621 cells (2.5x10^5 per plate) were incubated on plates displaying increasing stiffness and coated with collagen I in media + 10% FCS as described above. Next, (72h) cells were lysed and western blots to MCT4 and Glut1 (A) was performed according to Material and Methods. Densitometric analysis were performed from three independent experiments and shown in C. Data are presented as means ± standard error (SEM). * and ** indicate statistically significant differences at P ≤ 0.05 and P ≤ 0.01, respectively compared to 0.2 kPa, using the Friedman test followed by Dunn’s post-hoc test.
Figure 4. Lactate transport is favored in mammary MDA-MB-231 cells cultured in rigid matrices. Time course curve of lactate incorporation in MDA-MB-231 cells measured as the fluorescence ratio of LACONIC biosensor. Cells were cultivated for 4 days on coverslips coated with an elastic polyacrylamide gel to which type I collagen was covalently cross-linked and then exposed to 5 mM lactate. Fluorescence was recorded every 10 sec. Open circles correspond to cells cultured on a soft matrix (4.5 KPa) and closed circles to cells cultured in a stiffed matrix (31 KPa). Data correspond to the average of three single-cell recordings in two independent experiments. The continuous line represents the best fit of a double rectangular hyperbola and V_i values were estimated from the slope of each lactate filling curve.
Epithelial migration was stimulated by media conditioned by stromal cells previously plated on increasing stiffness surfaces. Differential role of monocarboxylate transporters. MCF-7 and MDA-MB-231 epithelial cells (5 x 10⁴) were stimulated to migrate in a Transwell system for 24 and 16 hours, respectively under the stimulus of 50% media conditioned by RMF 621 cells previously plated on surfaces with increasing stiffness. To test the role of MCTs in this stimulus, cell migration was performed in the presence of 1µM of AR–C155858 in one group (which blocks MCT1 and MCT2 but not MCT4) and, in another group, in the presence of 1mM of Diclofenac (a structurally-unrelated MCT1 & MCT4 blocker). Data are presented as means ± standard error (SEM). *** indicates statistically significant differences at P ≤ 0.001 using Kruskal-Wallis test followed by Dunn's multiple comparisons test.
Figure 6

Monocarboxylate expression in human breast cancer samples. Representative immunohistochemical staining of human breast tumors samples with different Elston grade stained for MCT1 (green) and MCT4 (red) taken with 20x magnification. The third column represents the control stain with hematoxylin-eosin. Asterisks (*) indicate epithelial cells and arrow heads (>) show stromal cells.