Disclosures. S. Paukner
Nabriva: Employee and Shareholder, Salary. R. K. Flammm
Nabriva Therapeutics: Research Contractor. Research support. S. P. Golen
Nabriva Therapeutics: Employee, Equity, Shareholder and Salary. Achoaghen:
Shareholder, Equity, Shareholder. H. S. Sader
Nabriva Therapeutics: Research Contractor, Research support.

1366. In Vitro and In Vivo Activity of Cefiderocol against Stenotrophomonas maltophilia Clinical Isolates
Akinobu Ito, PhD1; Merimee Ota, Bachelor2; Rio Nakamura, Bachelor2;
Masakatsu Tsuji, PhD3; Takafumi Sato, PhD3 and Yoshihiro Yamano, PhD3;1
Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan;
2Takayama Research Institute, Toyonaka, Japan, 3Shionogi & Co., Ltd., Osaka, Japan
Session: 144. Novel Agents
Friday, October 5, 2018: 12:30 PM

Background. Cefiderocol (S-649266, CFDC) is a novel siderophore cephalosporin against Gram-negatives, including carbapenem (CR)-resistant strains. Its spectrum includes both the Enterobacteriaceae but also nonfermenters, including Stenotrophomonas maltophilia—an opportunistic pathogen with intrinsic resistance to carbapenem antibiotics. In this study, in vitro activity and in vivo efficacy of CFDC and comparators against S. maltophilia were determined.

Methods. MICs of CFDC and comparators (trimethoprim/sulfamethoxa-
tole (TMP/SMX), minocycline (MINO), tigecycline (TGC), ciprofloxacin (CPFX), ce-
fepime (CFPM), meropenem (MEPM), and colistin (CL)) were determined by broth microdilution method as recommended by CLSI. The MIC of CFDC was deter-
mined using iron-depleted cation-adjusted Mueller–Hinton broth. In vivo efficacy of CFDC, CFPM, ceftazidime–avibactam (CAZ/AVI), MEPM, and CL was evaluated using neutropenic murine systemic infection model caused by strain SR21970. The 50% effective doses (ED50, s) were calculated by the logit method using the survival number at each dose 7 days after infection.

Results. MICs of CFDC and comparators against the 216 clinical isolates from global countries collected in SIDERO- CR 2014-2016 study are shown in the table. CFDC, TMP/SMX, MINO, and TGC showed good activity with MIC50 of 0.5,
0.25/4.75, 1 and 2 µg/mL, respectively. CFDC, MINO, and TGC inhibited growth of all tested strains at ≤1, ≤4, and ≤8 µg/mL although two strains showed resistance to TMP/SMX. MICs of CFPM, CAZ/AVI, MEPM, and CL were 2-32 µg/mL. The ED50 of CFDC against S. maltophilia strain SR21970 was calculated as 1.17 mg/kg/dose. Conversely, MICs of CFPM, CAZ/AVI, MEPM/CS, and CL against strain SR21970 were 32 µg/mL or higher, and ED50 were >100 mg/kg/dose, showing that CFDC had potent in vivo efficacy against S. maltophilia strain which was resistant to other antibiotics.

Conclusion. CFDC showed potent in vitro activity against S. maltophilia, including TMP/SMX-resistant isolates. CFDC also showed potent in vivo efficacy reflecting in vitro activity against S. maltophilia in murine systemic infection model.

Disclosures. A. B. Shionogi & Co., Ltd.: Employee, Salary. M. Ota
Shionogi & Co., Ltd.: Employee, Salary. M. Tsuji
Shionogi & Co., Ltd.: Employee, Salary. T. Sato
Shionogi & Co., Ltd.: Employee, Salary. Y. Tanno
Shionogi & Co., Ltd.: Employee, Salary.

1367. Clinical Cure in Secondary Efficacy Populations in Patients with Complicated Urinary Tract Infection Treated With ZT1-01 (Fosfomycin for Injection): Findings From the ZEUS Trial
Keith Kaye, MD, MPH1; Louis B. Rice, MD, FIDSA2; Viktor Stus, MD, PhD3;
Olesiyi Sagun, MD1; Elena Fedosuk, MD1; Anita Das, PhD3; David Skarinbys, BV
Paul B. Eebbkb, MD1; Kristina Manvelian, MS4 and Evelyn J. Ellis-Grosse, PhD5;
1Department of Internal Medicine, Division of Infectious Diseases, University of Michi-
gan Medical School, Ann Arbor, Michigan, 2Brown University, Providence, Rhode Island, 3Municipal Institute of Medical Research, Ministry of Health of Ukraine, Dnipropetrovsk, Ukraine, 4Department of Urology, Communal Institution Zaporizhzhia Regional Clinical Hospital, Zaporizhzhia, Ukraine, 5Zavante
Therapeutics, Inc., San Diego, California
Session: 144. Novel Agents
Friday, October 5, 2018: 12:30 PM

Background. ZT1-01 (fosfomycin for injection) is an investigational episodic anti-
biotic with a differentiated mechanism of action (MOA) inhibiting an early step in bacterial cell wall synthesis. ZT1-01 has a broad spectrum of in vitro activity, including multidrug-resistant Gram-negative pathogens, and is being developed for the treat-
ment of patients with complicated urinary tract infection (cUTI) and acute pyele-
nephritis (AP) in the United States.

Methods. ZEUS was a multicenter, double-blind, Phase 2/3 trial in hospitalized adults with cUTI and AP to evaluate safety and efficacy. Randomized patients received 6 g ZT1-01 q6h or 4.5 g iv piperacillin/tazobactam (PIP/TAZ) q8h for 7 days; patients
with baseline bacteremia could receive up to 14 days; study continued to late follow-up (LFU, 26 ± 2 days). Oral step-down therapy was prohibited. ZTI-01 met the primary endpoint of noninferiority to PIP-TAZ. Secondary objectives included comparing clinical cure rates (assessed by investigator) in the modified intent-to-treat (MITT), microbiologic MITT (m-MITT), clinical evaluable (CE), and microbiologic evaluable (ME) populations at test of cure (TOC). Day 18 ± 3 days.

Results. There were 464 patients randomized who received study drug. In all populations, clinical cure rates at TOC were high and similar between treatment groups (>90%) (Table). These results demonstrate consistent efficacy in multiple secondary efficacy populations for patients with cUTI and AP who were treated with either ZTI-01 or PIP-TAZ. If approved by FDA, ZTI-01 may provide a new IV option with a different mechanism of action for patients in the United States with serious Gram-negative infections.

Table: Clinical Response at TOC

Population	ZTI-01 (n (%)	PIP-TAZ (n %)	Difference (%)	95% CI
MITT	233	233		
Cure	211 (90.6)	212 (91.8)	−1.2	(−6.8, 4.4)
Failure	11 (4.7)	16 (6.9)		
Indeterminate	11 (4.7)	3 (1.3)		
m-MITT	175	178		
Cure	167 (90.8)	163 (91.6)	−0.8	(−7.2, 5.6)
Failure	9 (4.9)	12 (6.7)		
Indeterminate	8 (4.3)	3 (1.7)		
CE	199	198		
Cure	188 (94.5)	182 (92.9)	1.6	(−3.7, 6.9)
Failure	11 (5.5)	14 (7.1)		
ME	155	145		
Cure	148 (95.5)	135 (93.1)	2.4	(−3.5, 8.3)
Failure	7 (4.5)	10 (6.9)		

95% confidence intervals (CIs, two-sided) were computed using a continuity-corrected Z-statistic.

Disclosures. K. Kaye, Zavante Therapeutics, Inc.: Scientific Advisor, Consulting fee. L. B. Rice, Zavante Therapeutics, Inc.: Scientific Advisor, Consulting fee. V. Stus, Zavante Therapeutics, Inc.: Investigator, Research support. O. Sagan, Zavante Therapeutics, Inc.: Investigator, Research support. A. Das, Zavante Therapeutics, Inc.: Consultant, Consulting fee. D. Skartinsky, Zavante Therapeutics, Inc.: Employee and Shareholder, Salary. P. B. Eckburg, Zavante Therapeutics, Inc.: Consultant and Shareholder, Consulting fee. K. Manvelian, Zavante Therapeutics, Inc.: Employee and Shareholder, Salary. E. J. Ellis-Grosse, Zavante Therapeutics, Inc.: Employee and Shareholder, Salary.

1368. Assessment of the In Vitro Efficacy of Human-Simulated Epithelial Lining Fluid (ELF) Exposure of Meropenem/Nacubactam (MEM/NAC) Combination Against β-Lactamase-Producing Enterobacteriaceae in Neutrophilic Lung Infection Model

Tomasa E. Asempa, PharmD1; Ana Motos, MSc2; Kamila Abdelraouf, PhD2; Caterina Bissar, PhD1; Claudia Zampaloni, PhD2; and David P. Nicolau, PharmD, FCPP, FADA3, 4; Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut; 5Roche Pharma Research and Early Development Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; 6Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; 7Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut

Session: 144. Novel Agents
Friday, October 5, 2018: 12:30 PM

Background. NAC is a novel dual action β-lactamase inhibitor with in vitro activity against class A, class C, and class D β-lactamases and antibacterial activity against Enterobacteriaceae. NAC is being developed as a combination therapy with MEM for the treatment of serious Gram-negative bacterial infections. This study evaluated the efficacy of the human-simulated ELF exposure of MEM/NAC, compared with those of MEM or NAC alone against β-lactamase-producing Enterobacteriaceae isolates in the neutrophilic murine lung infection model.

Methods. Eight clinical MEM-resistant Enterobacteriaceae isolates harboring various β-lactamases (IMI, KPC, OXA, TEM, SHV, and AmpC) were utilized in the study. MEM and MEM/NAC (1:1) combination MICs were determined in triplicate via broth microdilution. ICR mice were rendered transiently neutropenic, and lungs were inoculated with 50 μL bacterial suspensions of 10^9 CFU/mL. Regimens in mice that simulated the human ELF exposures following doses of MEM 2 g q8h and NAC 2 g q8h (1.5 hours infusions) as monotherapies and in combination were established. Treatment mice received MEM human-simulated regimen (HSR), NAC HSR, or MEM/NAC HSR and control mice were vehicle-dosed. Treatment was started 2 hours after inoculation and continued for 24 hours. Efficacy was assessed as the change in log CFU/lung at 24 hours compared with 0 hours controls.

Results. MEM and MEM/NAC MICs were 8–512 and 0.5–8 mg/L, respectively. The average log CFU/lung at 0 hours across all isolates was 6.26 ± 0.26. Relative to 0 hours control, the mean bacterial growth at 24 hours in the untreated control mice, MEM HSR, and NAC HSR treatment groups were 2.93 ± 0.29, 2.72 ± 0.42, and 1.75 ± 0.80 log CFU/lung, respectively. MEM/NAC HSR resulted in up to 2 log-bacterial reductions in isolates with MEM/NAC MIC ≤0.5 mg/L.

Conclusion. MEM/NAC human-simulated ELF exposure produced enhanced efficacy against MEM-resistant β-lactamase-producing Enterobacteriaceae isolates with MEM/NAC MIC ≤0.5 mg/L. These data support a potential role for MEM/NAC for treatment of lung infections due to β-lactamase-producing Enterobacteriaceae and warrant further studies.

This project has been funded in part under HHS BARDA Contract HHSO100201600038C.

Disclosures. C. Bissarant, F Hoffmann La Roche Ltd.: Employee, Salary. C. Zampaloni, F Hoffmann-La Roche Ltd.: Employee, Salary. D. P. Nicolau, Hoffmann-La Roche Ltd.: Grant Investigator, Grant recipient.

1370. Ceftipime/VNRX-5133 Broad-Spectrum Activity Is Maintained Against Emerging KPC- and PDC-Variants in Multidrug-Resistant K. pneumoniae and P. aeruginosa

Denis Daigle, PhD1; Jodie Hamrick, BSc2; Cassandra Chatwin, BSc1; Natalia Kurepina, PhD2; Barry N. Kreiswirth, PhD2; Ryan K. Shields, PharmD2; Antonio Oliver, PhD; Cornelius J. Clancy, MD3; Minh-Hong Nguyen, MD4; Daniel Pevar, PhD5 and Luigi Xeri, PhD6; 1VenotoRx Pharmaceuticals Inc., Malvern, Pennsylvania; 2Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; 3University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; 4Hospital Son Espases, Palma de Mallorca, Spain; 5Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania

Session: 144. Novel Agents
Friday, October 5, 2018: 12:30 PM

Background. VNRX-5133 is a cyclic boronate β-lactamase inhibitor (BLI) currently in clinical development with ceftipime to treat multidrug-resistant (MDR) infections caused by ESBL- and carbapenemase-producing Enterobacteriaceae (ENT) and...