Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates

Tarik Sidali¹, Adrien Bou¹, Damien Coutancier², Elisabeth Chassaing², Bertrand Theys², Damien Barakel³, Richard Garuz³, Pierre-Yves Thoulon¹, and Daniel Lincot²*,³

¹ Crosslux, 1200 Avenue Olivier Perroy, 13790 Rousset, France
² CNRS, Institut Photovoltaïque Île de France (IPVF), 30 Route Départementale 128, 91120 Palaiseau, France
³ IM2NP, Avenue Escadrille Normandie Niemen, Case 231, 13397 Marseille Cedex 20, France

Received: 25 August 2017 / Accepted: 13 December 2017

Abstract. In this paper, a new way of preparing semi-transparent solar cells using Cu(In₁₋ₓGaₓ)Se₂ (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 x 5 cm²) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%. VOC of 460 mV, JSC of 24 mA/cm² in an area of 0.1 cm² with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.

Keywords: PV glass / BIPV / CIGS thin films / semi-transparent solar cell / electrodeposition / see-through solar cell / submillimetric pattern / bottom-up solar cell

1 Introduction

Photovoltaic glass (PV glass) with controlled transparency is an emerging application in the field of building integrated photovoltaics (BIPV) which is also a new way to produce zero energy buildings. Classically, PV glass is manufactured according to two methods: from a naturally semi-transparent material, by precisely controlling its thickness, or by structuring an opaque thin film material.

Currently, the second solution is the most widespread because it uses technologies with high efficiencies and good reliability, and may exhibit a neutral spectral rendering. This is achieved using crystalline silicon cells spaced apart and laminated in between two sheets of glass. Even if this solution is working and of a high efficiency, this glazing is aesthetically inferior, and quickly reaches its limits from an architectural and thermal point of view.

To perfect the aesthetic factor and play on transparency of the crystalline silicon, Sunways [1] has worked on the industrialization of a laser structuration that allows transparencies between 20 and 30% with 2-5 mm holes. Then, from a certain viewing distance (superior to few meters) from inside to outside of the building windows, the human eyes are unable to distinguish the holes, giving PV glass a “see-through” or tinted appearance. But, the difficulties to realize smaller holes without degrading the PV performances, excessive time processing, and loss of the ablated materials have led to the ending of these studies.

Thin film solar cell technologies are also well adapted for such PV glass applications. Several materials have been investigated during past decades: hydrogenated amorphous silicon cells (a-Si:H), cadmium telluride cells (CdTe), copper indium gallium diselenide cells (CIGS) and all organic solar cells (various materials). The older solution with a-Si:H presents a low efficiency of around 7% on large module (record of 13.6% efficiency for cell efficiency in a multi-junction configuration [2], much lower than CIGS and CdTe single junction counterparts) with transparencies rarely higher than 20% and an amber color. Creation of patterns by photolithography and laser on a-Si:H module to be able to see through the panel allows more neutral color by capturing the whole solar spectrum on the aperture area, but the loss in efficiency limits the transparency to a low value (∼30%) [3–5]. For example, two of the major industrial actors on this...
technology. OnyxSolar and PolySolar, announce output efficiencies around 3% to 30% of transparency.

The CdTe technology has the advantage to have a higher efficiency than a-Si:H (around 22% in cell [2] and 18.6% in industrial module [6]). CdTe can be deposited as semi-transparent thin film or be structured when deposited as a thicker opaque film. For example, PolySolar presents efficiencies between 7 and 8% for solar windows with a visible light transmission of 30% [4]. The problem of the toxicity of cadmium remains a drawback to the deployment into this PV glass field since it can deliver high efficiency (record of 12.4% [13] has been obtained with mean values around 12–13% in cell [2], in strong evolution since 2007).

Mo/CIGS/buffer/ZnO/ AZO structure is to start from a classical configuration on glass/Mo substrate using an electrodeposition route introduced recently in the field, and known as the oxide route [12]. It consists in depositing a layer of mixed copper, indium and gallium oxides/hydroxides by cathodic deposition from an aqueous solution of nitrate salts. Then the oxides are reduced to metals through hydrogen thermal treatment, followed by selenisation to form CIGS (Fig. 1). A record efficiency of 12.4% [13] has been obtained with mean values around

Fig. 1. Processing steps for the fabrication of semi-transparent CIGS solar cells based on the Glass/patterned Mo/CIGS/CdS/ZnO architecture.
11% [14]. This process has been adapted for the deposition on patterned Mo substrates. The deposition have been carried out in an aqueous electrolyte at room temperature containing 13 mM of copper(II) nitrate, 20 mM of indium nitrate and 10 mM of gallium nitrate, acidified by nitric acid addition (pH 1.8). The bath composition was chosen to lead to molar ratios Cu/(In + Ga) and Ga/(Ga + In) of about 0.9 and 0.3, respectively to lead to good quality absorbers. The electrochemical set up was Biologic VSP potentiostat operating in the three electrode configuration with a calomel reference electrode. Typical patterns are ~535 µm diameter holes with ~775 µm spacing, leading to ~240 µm wide Mo channels at minimum (Fig. 2) and total glass aperture of ~35%. The solar cells are completed by the deposition of 50 nm of CdS buffer layer by chemical bath deposition, and a window layer composed of 80 nm intrinsic ZnO and 400 nm Al-doped ZnO by RF sputtering. Optoelectronic properties of devices were determined by current–voltage characteristics measured under standard AM 1.5G conditions using an AAA class solar simulator (Newport); a homemade spectral response (EQE) setup was used to determine the short circuit current in full and semitransparent areas of the device. Photocurrent mapping has been realized by means of specific LBIC equipment dedicated to large area studies and developed in the framework of the Equipex ANR project called DURASOL. This homemade LBIC can perform large-scale photocurrent mappings (1.7 m × 1.2 m, resolution: 1 mm) as well as small-scale photocurrent mappings (1 mm × 1 mm, resolution: 10 µm). The light source is a polychromatic white light but it can also be monochromatic in the visible range from 400 to 1200 nm. In this work, the mappings were obtained with the white light and the small scale and high-resolution mode has been used.

3 Results and discussion

We succeeded in obtaining conformal deposits of CIGS on the patterned Glass/Mo substrates as shown in Figures 2 and 3. Figure 3 shows the surface morphology at the different steps of the production of the CIGS layer. Globally, we can note that the pattern size is preserved in each step validating the bottom-up technique on submillimeter patterns. The SEM images, presented in Figure 3a, show that the patterned Mo is completely covered by the Cu-In-Ga oxide/hydroxide precursor film. No deposition inside the holes can be observed; thereby the transparency of the device is preserved. The deposition is homogeneous with some cracks resulting from partial dehydration of the film. The composition will allow obtaining good performance of CIGS with Cu/(In + Ga) and Ga/(In + Ga) ratios of 0.77 and 0.34, respectively. Differences are observed with the deposition on plain Mo substrates since the diffusion regimes from the solution are different [11], requiring some adjustment in the deposition parameters. After reduction heat treatment under flowing pure hydrogen (Fig. 3b), again, no deposition is observed inside the holes. The precursor has a metallic aspect, which is confirmed by XRD with the formation of metallic indium and a metallic alloy of CuInGa [14]. The CGI and GGI ratios, around 0.84 and 0.30, respectively, change a little bit, probably due to loss of indium by evaporation during annealing. After selenisation (Fig. 3c), the transparency of the sample is also preserved with no deposition inside the holes. The XRD analysis shows two phases: CIS on the top and CIGS [14] with a GGI ratio of 0.25. This explains the decrease in the GGI ratio probably related to the gallium diffusion at the back contact during this annealing step [14]. We can note that this gradient with an increase of gallium towards the Mo contact is very beneficial to the cell performances.

Figure 4 presents SEM cross section of the complete CIGS solar cell in full area between holes. The CIGS thickness is about 2.6 µm with large grains near the front contact and small grains near the molybdenum back contact which is due to the gallium diffusion [14].

Solar cells characterizations were performed to determine the PV properties. On Figure 5, a photograph is shown of a 5 × 5 cm² sample with a Ni/Al contacting grid with 5 mm distance between the lines. This configuration allows carrying out spectral response measurements on localized zones of the substrate using modulated illumination. Figure 6 shows spectral response measurements on a patterned zone and on a plain one. The
quantum efficiency in the plain zone is typical of good quality CIGS solar cells, with a large plateau with quantum efficiencies approaching 80%, which is expected for cells without antireflective coating. The absorption front in the high wavelength range is abrupt indicating a good electronic quality. The band gap is close to that of pure CIS which is coherent with the XRD experiments. In the case of a structured zone, the plateau on the EQE is about 50%. This corresponds to about 65% of the EQE obtained on the plain area and is a direct consequence of the characteristic of the textured Mo substrate with 35% transparency. The spectral response obtained by using this
Correction factor is shown in the figure and superposes well with that of the plain substrate. This demonstrates that the PV characteristics of the internal CIGS junction are not affected by the structuration of the substrate which is an important information for the relevance of the technology.

The expected photocurrent density under standard AM1.5 1000 W/m² illumination has been calculated by the integration of quantum efficiencies under the solar spectrum. This leads, from Figure 6, to 31.1 and 21.3 mA/cm² for plain and semi-transparent areas respectively.

Figure 7 presents the I-V curves of the complete device (5 × 5 cm²) under illumination and in darkness. The curve under illumination leads to an open circuit potential of 400 mV, a short circuit current around 9 mA/cm² and a fill factor of 27%. While the open circuit voltage is correct, the short circuit current density and the fill factor are much lower than expected, in particular for the photocurrent. As a consequence the conversion efficiency is very low at the percentage level. A shunt resistance effect can be excluded since the slope on the I-V curve in the dark at the origin is much lower than that under illumination, corresponding to a shunt resistance value about 750 Ω.cm². On the contrary, the behavior under illumination fits with a strong series resistance effect which is also visible on the I-V curve in dark with the quasi linear variation in the positive polarization domain. To test this hypothesis, measurements have been carried out on small solar cells distributed all over the substrate, with areas around 10 mm² (Fig. 5b). The results are shown in Figure 7b for a series of cells along the width of the substrate in a structured Mo zone. It appears that the I-V curves are of much better quality with the suppression of the strong detrimental series resistance effect. The PV parameters now reach for the best cell a Voc of 460 mV, a Jsc of 24.4 mA/cm² and a fill factor of 56%. The Jsc value is now consistent with that expected from the spectral response analysis. The corresponding efficiency is 7.7%. Taking into account the transparency factor of 35% leads to an equivalent efficiency on the plain substrate of 11.9%, which is close to the record efficiencies previously obtained on plain substrates for this process [13,14]. This demonstrates that there are no significant losses due to the structuration of the molybdenum back contact. This is key result for the validity of this approach for high efficiency PV glazing.

Further experiments have been carried out to map the properties of the 5 × 5 cm² device and shown in Figure 8. Figure 8a shows an LBIC mapping of the whole device corresponding to the conditions of Figure 7a. We can observe the photocurrent generation on the zones covered with CIGS over the whole substrate. However the amplitude of the LBIC signal is strongly varying from bottom to top. This indicates losses along the vertical direction and confirms the series resistance effect evidenced from the global I-V curve. It can be related to series resistance in the ZnO layer and to resistive Ni/Al contact.

Mapping experiments (Fig. 8b) have been made after the formation of small isolated cells all over the substrate (Fig. 5b) corresponding to the I-V curves presented in Figure 7b. We can see a much more homogeneous and efficient PV response over the whole device, with efficiencies between about 5% and almost 8%, with good performance even in the regions where the LBIC measurement shows low
collection of electrons. This confirms the high impact of the ZnO layer on series resistances over the whole device area.

4 Conclusion

In this paper, we have presented a successful experimental process to prepare semi-transparent solar cells using Cu(In1−xGax)Se2 (CIGS) chalcopyrite semiconductors as absorber for BIPV applications via electrodeposition on structured Mo substrates with submillimetric patterns.

We obtained a 7.7% efficiency value for a see-through solar cell with 35% of aperture area on glass corresponding to a Mo substrate comprising holes of about 535 μm in diameter. This represents an equivalent efficiency of 11.9% for a solar cell on plain substrate, which is similar to the highest values previously achieved with this process. The transparency of the sample is preserved all along the process. These first results already represent the proof of concept of the electrodeposition approach for PV glazing.

This work has been done in the frame of a collaboration contract between Crosslux and CNRS at IRDEP. The IRDEP team is acknowledged for its support.

We would like to thank Anne-Marie GONCALVES and Arnaud ETCHEBERRY from the Institut Lavoisier de Versailles (ILV) for their experimental support.

These results have been presented at PVTC 2017 in Marseille and partially presented at JNPV 2016.

References

1. P. Fath, S. Keller, A. Boueke, R. Kuhn, E. Bucher, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (Cat. No.00CH37036), IEEE (2000), pp. 335–338

2. Best research-Cell Efficiencies, National Renewable Energy Laboratory: www.nrel.gov/pv/assets/images/efficiency-chart.png

3. A. Takeoka, S. Kouzuma, H. Tanaka, H. Inoue, K. Murata, M. Morizane, N. Nakamura, H. Nishiwaki, M. Ohnishi, S. Nakano, Y. Kuwano, Sol. Energy Mater. Sol. Cells 29, 243 (1993)
4. Polysolar, Building Integrated Transparent Photovoltaic Glass, http://www.polysolar.co.uk
5. ASI Glass, http://www.schott.com/d/france/a753c14ec34c-4c3-9289-90c790ec7da1/1.0/schott asi glass_brochure_fr.pdf
6. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Prog. Photovoltaics Res. Appl. 25, 668 (2017)
7. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi – Rapid Res. Lett. 10, 583 (2016)
8. J. Nam, Y. Kang, D. Lee, J. Yang, Y.-S. Kim, C.B. Mo, S. Park, D. Kim, Prog. Photovoltaics Res. Appl. 24, 175 (2016)
9. K. Rui, Y. Takeshi, A. Shunsuke, H. Atsushi, F.T. Kong, K. Takuya, S. Hiroki, in 2016 IEEE 43th Photovolt. Spec.
10. C. Broussilou, C. Viscogliosi, A. Rogee, S. Angle, P.P. Grand, S. Bodnar, C. Debauche, J.L. Allary, B. Bertrand, C. Guillou, L. Parissi, S. Coletti, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), IEEE (2015), pp. 1–5.
11. A. Duchatelet, K. Nguyen, P.P. Grand, D. Lincot, M. Paire, Appl. Phys. Lett. 109, 253901 (2016)
12. A. Duchatelet, G. Savidand, N. Loones, E. Chassaing, D. Lincot, J. Electrochem. Soc. 161, D3120 (2014)
13. A. Duchatelet, T. Sidali, N. Loones, G. Savidand, E. Chassaing, D. Lincot, Sol. Energy Mater. Sol. Cells 119, 241 (2013)
14. T. Sidali, A. Duchatelet, E. Chassaing, D. Lincot, Thin Solid Films 582, 69 (2015)

Cite this article as: Tarik Sidali, Adrien Bou, Damien Coutancier, Elisabeth Chassaing, Bertrand Theys, Damien Barakel, Richard Garuz, Pierre-Yves Thoulon, Daniel Lincot, Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates, EPJ Photovoltaics 9, 2 (2018)