China material stocks and flows account for 1978–2018

Lulu Song\(^1,2,3\), Ji Han\(^4,5\), Nan Li\(^1,2,3\), Yuanyi Huang\(^1,6\), Min Hao\(^7\), Min Dai\(^8\) & Wei-Qiang Chen\(^1,2,3\)

As the world’s top material consumer, China has created intense pressure on national or global demand for natural resources. Building an accurate material stocks and flows account of China is a prerequisite for promoting sustainable resource management. However, there is no annually, officially published material stocks and flows data in China. Existing material stocks and flows estimates conducted by scholars exhibit great discrepancies. In this study, we create the Provincial Material Stocks and Flows Database (PMSFD) for China and its 31 provinces. This dataset describes 13 materials’ stocks, demand, and scrap supply in five end-use sectors in each province during 1978–2018. PMSFD is the first version of material stocks and flows inventories in China, and its uniform estimation structure and formatted inventories offer a comprehensive foundation for future accumulation, modification, and enhancement. PMSFD contributes insight into the material metabolism, which is an important database for sustainable development as well as circular economy policy-making in China. This dataset will be updated annually.

Background & Summary
Modern society is enabled by the use of various materials\(^1,2\). The 20th century is an era of explosion of human civilization and accomplished achievements, which is accompanied by the ever-accelerating annual extraction of biomass by a factor of 3.6, of fossil fuels by 12, of ores and minerals by 27, and of construction materials by 34 times\(^3–6\). Foreseeably, with deepening urbanization in developing countries, the size of material stocks in human societies will continue to grow. According to the reports of the United Nations Environment Program (UNEP), the consumption of biomass, minerals, and ores per year will triple between the present and 2050\(^7\). With the intensified resource stresses, material metabolism has been the research hotspot of sustainability science\(^7,8\).

Sustainability science is rapidly evolving and increasingly changing into data-intensive. As one of the concerns of sustainability science, material metabolism, which quantifies the flows of materials and energy into and out of human societies, urgently needs the material stocks and flows data to describe and analyze the metabolic processes\(^8–10\). Furthermore, based on the material stocks and flows data, material efficiency\(^7,12\), criticality\(^13,14\), and recycling\(^15,16\) may be directly analyzed, and related properties, such as energy consumption\(^17\), greenhouse gas emissions\(^18\), and future material demand\(^19\) can be easily and exactly traced. Hence, an accurate accounting of material stocks and flows data is the premise for achieving the above-mentioned goals.

As the world’s top material consumer, China has created intense pressure on national or global demand for natural resources\(^7\). With rapid urbanization and industrialization, the materials stocks in China have been experiencing a sharp increasing pattern\(^4,19–22\), and China’s share of global material stocks increased from 10% to 22%\(^4\). It has been catching up with developed countries since the 1990s, and only took 20 years to get to the stocks level that industrialized countries had achieved within 70 years. Diverse material stocks have increased

1\(^\text{Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian Province, 361021, P. R. China.}\)
2\(^\text{Xiamen Key Lab of Urban Metabolism, Xiamen, Fujian Province, 361021, P. R. China.}\)
3\(^\text{University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.}\)
4\(^\text{Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.}\)
5\(^\text{Institute of Eco-Chongming, 3633N. Zhongshan Road, Shanghai, 200062, P. R. China.}\)
6\(^\text{College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong Province, 518060, P. R. China.}\)
7\(^\text{Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai, 200438, P. R. China.}\)
8\(^\text{Institute of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
9\(^\text{College of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
10\(^\text{College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong Province, 518060, P. R. China.}\)
11\(^\text{College of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
12\(^\text{Institute of Eco-Chongming, 3633N. Zhongshan Road, Shanghai, 200062, P. R. China.}\)
13\(^\text{College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong Province, 518060, P. R. China.}\)
14\(^\text{Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai, 200438, P. R. China.}\)
15\(^\text{Institute of Eco-Chongming, 3633N. Zhongshan Road, Shanghai, 200062, P. R. China.}\)
16\(^\text{College of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
17\(^\text{College of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
18\(^\text{Institute of Eco-Chongming, 3633N. Zhongshan Road, Shanghai, 200062, P. R. China.}\)
19\(^\text{College of Life Sciences, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian Province, 352106, P. R. China.}\)
20\(^\text{Institute of Eco-Chongming, 3633N. Zhongshan Road, Shanghai, 200062, P. R. China.}\)
Material Stocks and Flows Inventory of 31 Provinces in China

Fig. 1 Diagram of material stocks and flows inventory construction.

- **Material Flows Inventory**
 - Material scrap: 39,360 inventories, including 13 materials, 31 provinces, 1978-2018
 - Material demand: 39,360 inventories, including 13 materials, 31 provinces, 1978-2018

- **Material Stocks Inventory**
 - Material stocks: 39,360 inventories, including 13 materials, 31 provinces, 1978-2018

- **Data collection**
 - In-use products stocks: 103 terms of products, 31 provinces, 1978-2018

- **End-use sectors identify**
 - Five end-use sectors: Buildings, Infrastructure, Transportation, Machinery, Domestic appliances

Material stocks exponentially in China: steel stocks increased 2.5-fold in a decade;23 aluminium stocks rose 100-fold during 1950–200924; copper stocks increased 50-fold during 1952–201525,26; cement stocks increased by 40 times during 1990–201021. China’s accelerating materialization process creates serious environmental problems,27,28 which makes understanding the material metabolism crucial for implementing effective resource management policies and providing valuable insights into promoting circular economy.9 However, the material stocks and flows account in China and each province have not been well reported and published. Although previous studies have estimated China’s material stocks20,21,29–31, there is considerable disagreement on the stocks level between these studies. For example, Krausmann et al.4 estimated that the material stocks in China amounted to 136 t/cap in 2010 based upon the top-down approach, while Han and Xiang19 estimated the result to be only 33 t/cap in 2008 based upon the bottom-up approach. The difference may be explained by the inconsistent system boundaries, identified end-use sectors, data sources, and estimation approaches, which makes it difficult to clarify the pattern of material use and identify the mechanism of material metabolism.

Considering the great discrepancies of material stocks account and the lack of provincial material stocks and flows account in China, this paper creates the first version of the Provincial Material Stocks and Flow Database (PMSFD), which contains 13 materials’ stocks and flows in five end-use sectors in 31 provinces of mainland China. The spatial scale of PMSFD ranges from province to nation, and the timescale ranges from 1978 to 2018. There are 200,000+ data records stored in the PMSFD, and we also provide the material intensity used in the estimation for transparency and verifiability. By integrating data records into a unified format, PMSFD has taken a step towards overcoming the limited accessibility due to incomplete data availability.

The comprehensive and consistent data records make the PMSFD an important database for sustainability analyses and assessments. For example, PMSFD may be used to facilitate retrospective analyses and prospective forecasts of stocks and flows to assist in identifying and achieving sustainable development. We will advance this goal through this initial version of PMSFD, and update the PMSFD annually. The rest of this paper introduces the estimation approach used to create the PMSFD, the file format used to record the PMSFD, and the properties of the data in the PMSFD.

Methods

System boundary. A PMSF (Provincial Material Stocks and Flows) model, which combines a bottom-up, stocks-drive-flows, and mass-balanced dynamic model, is constructed for material stocks and flows estimates at the provincial level. This combined model can evaluate material inputs, stocks accumulation, and end-of-life outflows. Considering the availability of intensity data and the wide application in society, 13 types of materials, including steel (Fe), aluminium (Al), copper (Cu), rubber, plastic, glass, lime, asphalt, sand, gravel, brick, cement, and wood, are considered in this study. Drawing on a comprehensive provincial product database, annual provincial material uses and flows are estimated. The time horizon is from 1978 to 2018 and all computations are performed in time-discrete steps of one year. The spatial scope covers 31 provinces in mainland China. The workflow is shown in Fig. 1 and is described in detail in the following sections.

Material stocks. The bottom-up accounting method, which starts from counting every piece of material-containing products, then investigates the material intensity for each product, and finally adds up material contained in all product categories, could complement the top-down method by revealing greater details of technologies and identifying geographical locations of material stocks.23 Since the physical data of product stocks are becoming available on provincial scale, the bottom-up approach is appropriately adopted to estimate the material stocks (S(t)).

A list of 103 commodities, which are divided into five end-use sectors (including buildings, infrastructure, transportation facilities, machinery, and domestic appliances), is identified and revised based on our earlier
Material flows. The material outflow at the time t is defined as the scrap generated from stocks from the end-use sector C of material m, and material inflow at the time t is defined as inputs to stocks of material m. The dynamic stocks-drive-flows model is applied to estimate the material inflows and outflows during 1978–2018 on a sector scale. The annual outflows are determined from stocks using the lifetime model, and the annual inflows are determined from mass balance with outflows and stocks change (Eq. 5):

$$\text{demand} = \text{inflow} = \text{outflow} + \text{stock change}$$

The lifetime distribution expresses the probability of each end-use sector to reach the end-of-life at the time t. According to previous studies, we assume a normally distributed lifetime $\lambda(t, t', L, \sigma)$ ($t' = 1949$) with end-use sectors dependent mean L and standard deviation σ (Eq. 6), which determines the outflow F_{out} from stocks and inflows F_{in} (Eqs. 6–8):

$$\lambda(t, t', L, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(t - t' - L)^2}{2\sigma^2} \right]$$

$$F_{in}(t) = S_{t(0)} - S_{t(t-1)} + F_{out}(t)$$
will be equal to the net stocks. The material stocks at the time \((t)\) will be negative. Hence, to elaborate the negative data of inflow, we will artificially set \(F_{in}(t)\) into zero. The \(F_{out}(t)\) will be equal to the net stocks.

When estimating the inflows and outflows from the year 1978, the stocks and the resulting inflows and outflows before 1978 must be taken into account. These approximations of initial stocks and flows are necessary to make the estimation for the period of 1978–2018 more accurate. Hence, a spin–up period has been implemented, and the length of this spin–up period begins in 1949 when the People’s Republic of China was founded. Due to limited official reporting data that existed in each province before 1978, we use the power function revealed by previous studies to extrapolate the material stocks during 1949–1977 (Eq. 9).

\[
S_p(t_0) = K_{p1} \times e^{(K_{p2} \times t_0)}
\]

where \(S_p(t_0)\) is the material stocks at the time \(t_0\) in province \(p\) (during 1949–1977), \(K_{p1}\) and \(K_{p2}\) are coefficients of the fitting model in each province.

Data Records

The PMSFD datasets, which contain five core tables, and each table is provided as xlsx files, are freely available through Figshare and at the Urban Resources, Ecology & Environment website (UREE, https://uree.org/china-material-stocks-and-flows-account). The heading of tables in PMSFD is hereafter written in italics. A total of 215,333 data records are contained in the datasets. Of these, 96,864 are the account of products in 31 provinces from 1978 to 2018 [File ‘Input data’]; 331 are material intensity data for 13 materials from 1978 to 2018 [File ‘Material intensity’]; 39,360 are national and provincial material stocks inventories (13 materials, from 1978 to 2018) [File ‘Provincial_material_stocks_1978–2018’]; 39,360 are national and provincial material inflows inventories (13 materials, from 1978 to 2018) [File ‘Provincial_material_inflows_1978–2018’]; 39,360 are national and provincial material outflows inventories (13 materials, from 1978 to 2018) [File ‘Provincial_material_outflows_1978–2018’].

The materials stocks and flows inventories, stored by matrices with 29 columns and 41 rows in each sheet table, have a uniform format. The 29 columns are 13 materials stocks in 5 end-use sectors. The 41 rows represent the 41 years. Table 2 is an example of the material stocks of Beijing, and it includes 13 materials stocks in 5 end-use sectors in 2018.

End-use sector	Mean lifetime	Standard deviation
Buildings	50	15.0
Infrastructure	50	15.0
Transportation equipment	25	7.5
Machinery	30	9.0
Domestic appliances	15	4.5

Table 1. Mean lifetime and standard deviation for different end-use sectors.

\[
F_{out}(t) = \sum_{t' \leq t} F_{in}(t') \times \lambda(t, t', \tau, \sigma)
\]

(8)

Since material quality requirements are different between buildings, cars, machines, laptops, and other products, the lifetime can vary greatly. However, it is hard to get a specific lifetime of each product in different regions, we assume that the lifetime of products in the same end-use sector keeps unchanged. The mean lifetime and standard deviation for each end-use sector are given in Table 1. According to Eqs. (6–8), when the net stocks \((S(t) - S(t-1))\) less than zero, the \(F_{in}(t)\) will be negative. Hence, to elaborate the negative data of inflow, we will artificially set \(F_{in}(t)\) into zero. The \(F_{out}(t)\) will be equal to the net stocks.

Technical Validation

Data overview.

Nationally, the total material stocks show a continuously increasing pattern especially after 2000, and get to 182.2 Gt in 2018 (Fig. 2a) (Detailed results are available in Table S1 of Supplementary Information). Average per-capita stocks amount to 130.5 t in 2018, and the stocks of gravel are highest (47.2 t/cap) (Fig. 2b,c) (Detailed results are available in Table S2 of Supplementary Information). The composition of material stocks has changed over the past 40 years. The proportion of sand and brick is decreasing, while the proportion of cement and steel is increasing (Fig. 2d,e). Provincially, a wide disparity exists and five groups can be clarified based on their stocks. A high level of stocks is found in Guangdong, Jiangsu, Shandong, Henan, Zhejiang, and Sichuan provinces (Detailed results are available in Table S3 of Supplementary Information). Material stocks in each province all show an increasing pattern during 1978–2018 (Fig. 3) (Detailed results are available in Table S4 of Supplementary Information). Further understanding of flows in the aforementioned five regions is given in Figs. 4 and 5.

With the increasing stocks, the material demand and scrap grow rapidly (Fig. 4) (Detailed results are available in Tables S5–S6 of Supplementary Information). Nationally, material demand reaches ~7.0 Gt/year, and material scrap gets to ~0.7 Gt/year in 2018. Provincially, eastern coastal provinces generate higher material demand and scrap than inland provinces. For example, Guangdong has the highest material demand and scrap of ~0.9 Gt/year and ~40.8 Mt/year in 2018. In comparison, Tibet’s material demand and scrap are only 10.8 Mt/year and 1.2 Mt/year in 2018, respectively. The material scrap is further broken down into five end-use sectors for each region. Material
scrap in buildings will reach 1.1 Gt/year in 2018, accounting for ~95% of the national total scrap (Fig. 5) (Detailed results in provinces and end-use sectors are available in Table S7 of Supplementary Information).

Comparison with existing estimates. Our results, estimated with the bottom-up accounting method, can complement the previous estimates based upon the top-down accounting method and contribute important knowledge to sustainable management of bulk materials at an unprecedented level of accuracy and resolution. We compare our stocks estimate with previous case studies on the national and provincial scales (Table 3). We find that our results are close to that of previous studies. Specifically, our results are approximately 30% lower than the top-down estimations\(^4\),\(^21\),\(^37\). The difference can be largely explained by the fact that the bottom-up accounting method cannot capture all the products in use in society. Data limitations, especially at the provincial level, prevent us from collecting data for commercial buildings, high-speed trains, water and environmental infrastructures, machinery possessed by small businesses, and appliances for commercial use, which may incorporate large amounts of materials. In addition, our results are generally higher than previous bottom-up accounting estimations. The amount of identified products in different end-use sectors is the main reason for the differences. For example, previous studies only identified less than 50 products in buildings and infrastructure in their studies\(^20\),\(^32\), while we considered 103 products in five end-use sectors in evaluation.

From the aspect of the format, the existing stocks estimated only present the total material stocks of the whole country, or stocks of an individual material (e.g., steel, cement, or copper). Our datasets provide the products-based stocks and flows of five end-use sectors and 13 material stocks to give detailed demonstrations of China’s material use and disposal of the statue as well as its 31 provinces. Our datasets can be a more detailed supplement to the existing stocks and flows estimates.

Limitations and future work. Unavoidably, the datasets bear uncertainties from data selection, handling, and operation.

- The first uncertainty is the material intensity. For each product, we only estimate the average material intensity for a special period. However, the material intensity appears to vary by a wide range in most product categories. The great variations of material intensity contained in technological products of different sizes, weights, and functions should be considered in future work.
The second uncertainty is the lifetime of products. Given that lifetime manifests itself in lifestyle, its impact is significant in determining the material flows15,38. Due to the lack of validated estimation on lifetime changes, especially at the provincial level, our study did not consider the lifetime changes. Future work can focus on regional differences in lifetime of products to reduce uncertainties in estimation.

The third uncertainty is the assumptions when we estimate the material stocks in non-residential buildings and industrial machinery. Although these assumptions are made based on underlying reliable official data and academic research, there is a necessity to increase the results accuracy by cross-checking or enriching the input datasets in our future work.

Our future work will also focus on continuously updating the PMSFD by collecting newly published input data (the number of 103 products in five end-use sectors) based on the constructed data structures and PMSF model. Meanwhile, based on the existing input data datasets, we will estimate the stocks and flows for more materials (e.g., strategic and minor metals) to expand the PMSFD in the future to provide robust support for circular economy and sustainable development.

Usage Notes
Since the dataset format is clear and easy to be understood, the continuous 41-year material stocks and flows records can be used to tracking and analyzing the metabolism of different materials on the provincial and national scale. The dataset can be used to assess the material efficiency/productivity and criticality, and evaluate the environmental impact in conjunction with information of production and recycling and life cycle analyses model.
Fig. 4 Material demand and scrap dynamics in China (a) and five groups (b–f) during 1978–2018. The five groups from I to V are divided according to stocks level. Refer to Fig. 3 for the details of classification. See Tables S5–S6 of the Supplementary Information for provincial material demand and scrap dynamics in the past 40 years.

Group I includes Guangdong, Jiangsu, Shandong, Henan, Zhejiang, and Sichuan.
Group II includes Hunan, Hubei, Hebei, Anhui, Fujian, and Guangxi.
Group III includes Jiangxi, Liaoning, Yunnan, Shaanxi, Shanghai, and Shanxi.
Group IV includes Heilongjiang, Chongqing, Guizhou, Gansu, Inner Mongolia, and Beijing.
Group V includes Xinjiang, Tianjin, Jilin, Hainan, Qinghai, Ningxia, and Tibet.

Fig. 5 Material scrap supply by sectors in China (a) and five groups (b–f) during 1978–2018. The five groups from I to V are divided according to stocks level. Refer to Fig. 3 for the details of classification. See Table S7 of the Supplementary Information for material scrap clarified by five end-use sectors in the past 40 years.
The data files are documented as xlsx files, which can be readily read and processed by many software, such as Matlab, R, and Python. The 13 materials’ stocks can be distinguished into four types based on their properties, including biomass (wood), fossil materials (plastics and asphalt), metals (steel, aluminium, and copper), and non-metallic minerals (gravel, bricks, sand, cement, lime, glass, and rubber). The stocks of biomass, fossil materials, and non-metallic minerals concentrate on buildings, highways, passenger cars, and trucks. Due to the data dispersion, the ARIMA (Autoregressive Integrated Moving Average) methodology is recommended to be used when analyzing the dynamic evolution of material inflows and outflows. Furthermore, the dataset users can evaluate the stocks of other materials or the stocks of the same material in more accounting end-use sectors according to the calculation models of this study.

Code availability

The original input data, the amount of products quantified by per-household, per-capita, and absolute in each province, is stored as xlsx files and shared in Figshare (Input data.xlsx)36. Data processing is performed using MATLAB software (MatlabR2019), and the codes for creating provincial and national stocks and flows datasets are also stored in Figshare (code_calculation.m)36. We share these datasets and scripts for data transparency and computational reproducibility, and to assist users for further exploration and development.

Received: 8 January 2021; Accepted: 15 September 2021; Published online: 25 November 2021

Table 3. Comparisons of stocks estimation between our results with previous estimates.

Region	Method	Year	Material	Earlier estimates	This study	Difference
China	Top-down	2010	Copper	~67.0 Mt12	58.5 Mt	−12.7%
China	Top-down	2010	Copper	~60 Mt11	58.5 Mt	−2.5%
China	Top-down	2010	Material stocks*	181.3 Gt14	137.3 Gt	−27.6%
China	Top-down	2010	Steel	4.1 Gt15	3.8 Gt	−7.3%
China	Top-down	2013	Cement	21.5 Gt21	19.3 Gt	−10.2%
China	Top-down	2016	Aluminium	209.5 Mt342	197.6 Mt	−5.7%
China	Bottom-up	2008	Sandb	28.9 Gt20	31.5 Gt	8.2%
China	Bottom-up	2010	Steel	3.2 Gt17	3.8 Gt	15.7%
Shanghai	Bottom-up	2010	Material stocks*	561 Mt44	582.0 Mt	3.6%
Beijing	Bottom-up	2016	Steel+Copper+Aluminiumd	59.4 Mt52	60.5 Mt	2.0%

Comparisons of stocks estimation between our results with previous estimates. *Materials stocks in buildings without considering glass, rubber, and cement. bSand stocks in residential buildings and infrastructure. cMaterial stocks in residential buildings and infrastructure. dStocks of steel, copper, and aluminium in urban area of Beijing.

References

1. Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. *Proc. Natl. Acad. Sci. USA* **112**, 6295–6300 (2015).
2. Greenfield, A. & Graedel, T. E. The omnivorous diet of modern technology. *Resour. Conserv. Recycl.* **74**, 1–7 (2013).
3. Roberts, M. C. Metal use and the world economy. *Resour. Policy* **22**, 183–196 (1996).
4. Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. *Proc. Natl. Acad. Sci. USA* **114**, 1880–1885 (2017).
5. Graedel, T. E. & Cao, J. Metal spectra as indicators of development. *Proc. Natl. Acad. Sci. USA* **107**, 20905–20910 (2010).
6. International Resource Panel, United Nations Environment Programme. Sustainable Consumption, & Production Branch. Decoupling natural resource use and economic growth. https://www.resourcepanel.org/reports/decoupling-natural-resource-use-and-environmental-impacts-economic-growth (2011).
7. Oberle, B. et al. Global resources outlook 2019: natural resources for the future we want. https://sdg.iisd.org/news/unep-previews-global-resources-outlook-2019 (2019).
8. Myers, R. J., Reck, B. K. & Graedel, T. E. YSTAFDB, a unified database of material stocks and flows for sustainability science. *Sci. Data* **6**, 84 (2019).
9. Weinz, H., Suh, S. & Graedel, T. E. Industrial ecology: the role of manufactured capital in sustainability. *Proc. Natl. Acad. Sci. USA* **112**, 6260–6264 (2015).
10. Heeren, N. & Fishman, T. A database seed for a community-driven material intensity research platform. *Sci Data* **6**, 23 (2019).
11. Zhang, C., Chen, W.-Q., Liu, G. & Zhu, D.-J. Economic growth and the evolution of material cycles: an analytical framework integrating material flow and stock indicators. *Ecol. Econ.* **140**, 265–274 (2017).
12. Voel, E. V. D., Oers, L. V. & Nikolic, I. Dematerialization not just a matter of weight. *J. Ind. Ecol.* **8**, 121–137 (2005).
13. Offerman, S. E. Critical materials: Underlying Causes and Sustainable Mitigation Strategies. Vol. 5 (World Scientific Press, 2019).
14. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. *Proc. Natl. Acad. Sci. USA* **112**, 4257–4262 (2015).
15. Pauliuk, S., Milford, R. L., Muller, D. B. & Allwood, J. M. The steel scrap age. *Environ. Sci. Technol.* **47**, 3448–3454 (2013).
16. Graedel, T. E. et al. What do we know about metal recycling rates? *J. Ind. Ecol.* **15**, 355–366 (2011).
17. Pauliuk, S., Dhaniati, N. M. A. & Muller, D. B. Reconciling sectoral abatement strategies with global climate targets: the case of the Chinese passenger vehicle fleet. *Environ. Sci. Technol.* **46**, 140–147 (2012).
18. Liu, G., Bangs, C. E. & Muller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. *Nat. Clim. Chang.* **3**, 338–342 (2012).
19. Song, L. et al. Mapping provincial steel stocks and flows in China: 1978–2050. *J. Clean. Prod.* **262**, 121393 (2020).
20. Han, J. & Xiang, W.-N. Analysis of material stock accumulation in China’s infrastructure and its regional disparity. *Sustain. Sci.* **8**, 553–564 (2012).
21. Cao, Z. et al. Estimating the in-use cement stock in China: 1920–2013. Resour. Conserv. Recycl. 122, 21–31 (2017).
22. Hao, M. et al. Spatial distribution of copper in-use stocks and flows in China: 1978–2016. J. Clean. Prod. 261 (2020).
23. Wang, T., Müller, D. B. & Hashimoto, S. The ferrous find: Counting iron and steel stocks in China’s economy. J. Ind. Ecol. 9, 877–889 (2015).
24. Chen, W. & Shi, L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China’s aluminum production. Resour. Conserv. Recycl. 65, 18–28 (2012).
25. Zhang, L., Yang, J., Cai, Z. & Yuan, Z. J. Understanding the spatial and temporal patterns of copper in-use stocks in China. Environ. Sci. Technol. 49, 6430–6437 (2015).
26. Soulier, M. et al. The Chinese copper cycle: Tracing copper through the economy with dynamic substance flow and input-output analysis. J. Clean. Prod. 195, 435–447 (2018).
27. Shan, Y. et al. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018).
28. Shan, Y., Liu, J., Liu, Z., Shao, S. & Guan, D. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 6 (2019).
29. Zhang, L., Yang, J., Cai, Z. & Yuan, Z. Understanding the spatial and temporal patterns of copper in-use stocks in China. Environ. Sci. Technol. 49, 6430–6437 (2015).
30. Huang, T., Shi, F., Tanikawa, H., Fei, J. & Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 72, 91–101 (2013).
31. Pauliuk, S., Wang, T. & Müller, D. B. Moving toward the circular economy: the role of stocks in the Chinese steel cycle. Environ. Sci. Technol. 46, 148–154 (2012).
32. Liu, Q. et al. Product and metal stocks accumulation of China’s megacities: patterns, drivers, and implications. Environ. Sci. Technol. 53, 4128–4139 (2019).
33. Hu, M., Bergsdal, H., van der Voet, E., Huppes, G. & Müller, D. B. Dynamics of urban and rural housing stocks in China. Build. Res. Inf. 38, 301–317 (2010).
34. Ministry of Housing and Urban-Rural Development of China. China Urban-Rural Construction Statistical Yearbook. (China Statistics Press, 2000–2018).
35. Fishman, T., Schandl, H. & Tanikawa, H. Stochastic analysis and forecasts of the patterns of speed, acceleration, and levels of material stock accumulation in society. Environ. Sci. Technol. 50, 3729–3737 (2016).
36. Song, L. et al. China material stocks and flows account 1978–2018. figshare https://doi.org/10.6084/m9.figshare.c.5708906.v2 (2021).
37. Dai, M., Wang, P., Chen, W.-Q. & Liu, G. Scenario analysis of China’s aluminium cycle revealing the coming scrap age and the end of primary aluminium boom. J. Clean. Prod. 226, 793–804 (2019).
38. Pauliuk, S., Wang, T. & Müller, D. B. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 71, 22–30 (2013).
39. Maung, K. N., Hashimoto, S., Mizukami, M., Morozumi, M. & Lwin, C. M. Assessment of the secondary copper reserves of nations. Environ. Sci. Technol. 51, 3824–3832 (2017).
40. Maung, K. N. et al. Assessment of the secondary copper reserves of nations. Environ. Sci. Technol. 51, 3824–3832 (2017).
41. Dong, D., Tükker, A. & Van der Voet, E. Modeling copper demand in China up to 2050: A business-as-usual scenario based on dynamic stock and flow analysis. J. Ind. Ecol. 23, 1363–1380 (2019).
42. Yue, Q., Wang, H. & Lu, Z. Quantitative estimation of social stock for metals Al and Cu in China. Trans. Nonferrous. Met. Soc. China 22, 1744–1752 (2012).
43. Wang, T., Müller, D. B. & Graedel, T. E. Forging the anthropogenic iron cycle. Environ. Sci. Technol. 41, 5120–5129 (2007).
44. Han, J., Chen, W. Q., Zhang, L. & Liu, G. Uncovering the spatiotemporal dynamics of urban infrastructure development: a high spatial resolution material stock and flow analysis. Environ. Sci. Technol. 52, 12122–12132 (2018).

Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 41801207), the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences (XDA23030304), and the International Partnership Program of Chinese Academy of Sciences (132C35KYSB2020004).

Author contributions
L.S. collected and assembled the data, run the model, constructed the database, and prepared the manuscript. J.H. revised the manuscript. N.L. revised the manuscript and constructed the database. Y.H. participated in the construction of the database. M.H. and M.D. collected and assembled the data. W.-Q.C. led the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-021-01075-7.

Correspondence and requests for materials should be addressed to N.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2021, corrected publication 2021