Hyperoxia Early After Hospital Admission in Comatose Patients with Non-Traumatic Out-of-Hospital Cardiac Arrest

Martin Christ
Katharina Isabel von Auenmueller
Michael Brand
Scharbanu Amirie
Benjamin Michel Sasko
Hans-Joachim Trappe

Background:
The clinical effect of hyperoxia in patients with non-traumatic out-of-hospital cardiac arrest (OHCA) remains uncertain. We therefore initiated this study to find out whether there is an association between survival and hyperoxia early after return of spontaneous circulation (ROSC) in OHCA patients admitted to our hospital.

Material/Methods:
All OHCA patients admitted to our hospital between 1 January 2008 and 30 June 2015 were identified by analysis of our central admission register. Data from individual patients were collected from patient health records and anonymously stored on a central database.

Results:
Altogether, there were 280 OHCA patients admitted to our hospital between 1 January 2008 and 30 June 2015, including 35 patients (12.5%) with hyperoxia and 99 patients (35.4%) with normoxia. Comparison of these 2 groups showed lower pH values in OHCA patients admitted with normoxia compared to those with hyperoxia (7.10±0.18 vs. 7.21±0.17; p=0.001) but similar rates of initial lactate (7.92±3.87 mmol/l vs. 11.14±16.40 mmol/l; p=0.072).

Survival rates differed between both groups (34.4% vs. 54.3%; p=0.038) with better survival rates in OHCA patients with hyperoxia at hospital admission.

Conclusions:
Currently, different criteria are used to define hyperoxia following OHCA, but if the negative effects of hyperoxia in OHCA patients are a cumulative effect over time, hyperoxia < 60 min after hospital admission as investigated in this study would be equivalent to a short period of hyperoxia. It may be that the positive effect of buffering metabolic acidosis early after cardiac arrest maintains the negative effects of hyperoxia in general.

MeSH Keywords:
Blood Gas Analysis • Cardiopulmonary Resuscitation • Hyperoxia • Out-of-Hospital Cardiac Arrest

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/897763
Background

The current guidelines of the European Council of Resuscitation (ERC) emphasize the use of 100% oxygen during out-of-hospital cardiac arrest, but to titrate the inspired oxygen concentration after return of spontaneous circulation (ROSC) to maintain the arterial blood oxygen saturation in the range of 94–98% [1]. This recommendation aims to avoid hypoxia as well as hyperoxia during the early post-cardiac arrest phase, as several animal studies have indicated that hyperoxia early after ROSC might cause oxidative stress and harm post-ischemic neurons [2]. However, all human data have been derived from intensive care unit registries, with conflicting results on the potential impact of hyperoxia after resuscitation from cardiac arrest [3]. As such, the clinical impact of hyperoxia for non-traumatic out-of-hospital cardiac arrest (OHCA) patients remains uncertain and further studies in other patient collectives have been recommended [4,5]. We therefore initiated this study to determine whether there is an association between survival and hyperoxia early after ROSC in OHCA patients admitted to our hospital.

Material and Methods

Patient data collection

We identified all victims of non-traumatic out-of-hospital cardiac arrest who were admitted to our hospital between 1 January 2008 and 30 June 2015 by analysis of our central admission registry. Patient data were collected from the health records and anonymously stored on a central database. The study adhered to all criteria of the WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects [6].

Statistical analysis

Statistical analysis was done using SPSS 23.0 (IBM, Armonk, NY, USA) and we expressed continuous variables as the mean ± standard deviation and comparisons of categorical variables among groups were conducted using the chi-square test or Student’s t-test. P-values ≤0.05 were defined as statistically significant.

Results

Patient population

Altogether, there were 280 OHCA patients admitted to our hospital between 1 January 2008 and 30 June 2015. Of these, we excluded 21 patients (7.5%) who regained consciousness before hospital admission and breathed spontaneously, 61 patients (21.8%) who were admitted under continued resuscitation efforts, 40 patients (14.3%) who had no documented arterial blood gas analysis during the first 60 min after hospital admission, and a further 24 patients (8.6%) with hypoxia (Figure 1).

Differences between OHCA patients with normoxia or hyperoxia at hospital admission

During the first 60 min after hospital admission, 99 patients presented with normoxia and 35 patients with hyperoxia. There were no differences between the groups with regard to sex ratio (61.6% male vs. 60.0% male; p=0.866), age (68.47±13.87 years vs. 69.8±14.05 years; p=0.629), rate of witnessed arrest (67.7% vs. 77.1%; p=0.479), bystander resuscitation (46.5% vs. 51.4%; p=0.195), or initial shockable rhythm (34.3% vs. 48.6%; p=0.159). Furthermore, patients with normoxia or hyperoxia showed comparable rates of endotracheal tube use (68.7% vs. 85.7%; p=0.051), the number of required defibrillations (1.95±3.32 shocks vs. 2.30±3.17 shocks; p=0.603), and the dose of epinephrine (2.39±2.77 mg vs. 1.89±2.22 mg; p=0.334). Upon hospital admission, measurements ofystolic blood pressure (120.19±37.75 mmHg vs. 121.69±39.52 mmHg; p=0.843), heart rate (91.86±25.17 beats per min vs. 88.89±25.29 beats per min; p=0.551) auricular body temperature (35.39±1.34°C vs. 35.29±1.16°C; p=0.708), and APACHE II scores (37.00±4.27 vs. 35.30±4.41) [7] yielded comparable
results. There were no differences in the percentage of OHCA patients who presented with ST elevation myocardial infarction (STEMI) (18.2% vs. 22.9%; \(p=0.630 \)), patients who were treated with coronary angiography (55.6% vs. 54.3%; \(p=0.366 \)), or who received percutaneous coronary intervention (PCI) (32.3% vs. 37.1%; \(p=0.431 \)). Also, targeted temperature management (TTM) was used at similar rates (58.6% vs. 54.3%; \(p=0.614 \)).

There were lower pH values in OHCA patients admitted with normoxia compared with those with hyperoxia (7.10±0.18 vs. 7.21±0.17; \(p=0.001 \)), but there were similar rates of initial lactate (7.92±3.87 mmol/l vs. 11.14±16.40 mmol/l; \(p=0.072 \)). Survival rates differed between the groups (34.4% vs. 54.3%; \(p=0.038 \)), with better survival rates in OHCA patients with hyperoxia at hospital admission (Table 1).

Discussion

We performed this study to determine the clinical effect of hyperoxia in OHCA patients. In light of the ongoing discussion about the prognostic value of early hyperoxia following OHCA,
we wanted to investigate in another patient population whether there is an association between survival and hyperoxia in OHCA patients admitted to our hospital.

Previous studies mostly reported the negative effect of hyperoxia on survival in patients following stroke, traumatic brain injury, and (partly) in those resuscitated from cardiac arrest [3,8]. We were surprised to find even better survival rates in OHCA patients admitted with hyperoxia when compared with normoxia in our patient collective. In an attempt to explain this observation, we have to refer to the fact that different criteria have been used in different studies to define hyperoxia in terms of the PaO\textsubscript{2} value, the time of assessment, and predefined cutoffs; this lack of consistency has also been criticized by Damiani et al. [8]. Even though most authors define hyperoxia as PaO\textsubscript{2} \geq 300 mmHg [9–12], the optimal time of assessment has not been defined. Kilgannon et al., for example, reported that arterial hyperoxia is independently associated with increased in-hospital mortality compared with either hypoxia or normoxia [9]. Like us, they used PaO\textsubscript{2} values based on the first arterial blood gas analysis in a collective of non-traumatic out-of-hospital cardiac arrest patients older than 17 years. However, they included all non-traumatic OHCA patients with arterial blood gas analysis performed within 24 h after arrival [9], whereas we only included those patients with arterial blood gas analysis within 60 min after hospital admission. Elmer et al. suggested a shorter time interval and excluded patients if no arterial blood gas was available within 4 h after return of spontaneous circulation, which, in our opinion, may be misleading, because OHCA patients who die after hospital admission do not survive the first 2 days [14]. In any case, Elmer et al. presented 2 important observations. First, they described a cumulative effect of hyperoxia over time with each hour of exposure to severe hyperoxia (PaO\textsubscript{2} $>$ 300 mmHg) associated with an OR of 0.84 (95%CI 0.72–0.98) for survival to discharge. Second, they showed an association between moderate or probable hyperoxia (PaO\textsubscript{2} 101–299 mmHg) and improved organ function at 24 h [13].

Understanding the negative effects of hyperoxia in victims of OHCA as a cumulative effect over time would help to explain our findings. Hyperoxia ≤60 min after hospital admission, as investigated in this study, would be equivalent to a short period of hyperoxia consisting of the sum of minutes needed to transport a patient after ROSC to the hospital in an urban region and the time interval between hospital admission and blood gas analysis. Therefore, it may be that the positive effect of buffering metabolic acidosis early after cardiac arrest maintains the negative effects of hyperoxia in general [15].

Therefore, and with regard to previously published data that describe the impossibility of titrating oxygen in the pre-hospital period following OHCA without inducing phases of too low oxygen saturation in a high percentage of patients [16], we conclude that hyperoxia during the first minutes after ROSC might be acceptable. Nevertheless, the exact period of time in which hyperoxia might be tolerable remains unclear. We also call attention to the limitation that this was a retrospective, single-center trial.

Conclusions

A general recommendation to avoid hyperoxia following OHCA might be too imprecise, as it does not fully consider the different stages of post-cardiac arrest treatment. We highly recommend further studies to test whether post-arrest oxygen exposure has to be targeted according to different time intervals after cardiac arrest or to specific patient subpopulations.

References:

1. Monsieurs KG, Nolan JP, Bossaert LL et al., ERC Guidelines 2015 Writing Group: European resuscitation council guidelines for resuscitation 2015: Section 1. Executive summary. Resuscitation, 2015; 95: 1–80
2. Pilcher J, Weatherall M, Shirtcliffe P et al: The effect of hyperoxia following cardiac arrest – a systematic review and meta-analysis of animal trials. Resuscitation, 2012; 83: 417–22
3. Wang CH, Chang WT, Huang CH et al: The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation, 2014; 85: 1142–48
4. Dell’Anna AM, Lamanna I, Vincent JL, Taccone FS: How much oxygen in adult cardiac arrest? Crit Care, 2014; 18: 535
5. Eastwood GM, Young PJ, Bellomo R: The impact of oxygen and carbon dioxide management on outcome after cardiac arrest. Curr Opin Crit Care, 2014; 20: 266–72
6. World Medical Association: World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 2013; 310: 2191–94
7. Knaus WA, Draper EA, Wagner DP, Zimmerman JE: APACHE II: A severity of disease classification system. Crit Care Med, 1985; 13: 818–29
8. Damiani E, Adario E, Girardis M et al: Arterial hyperoxia and mortality in critically ill patients: A systematic review and meta-analysis. Crit Care, 2014; 18: 711
9. Kilgannon JH, Jones AE, Shapiro NI et al, Emergency Medicine Shock Research Network (EMShockNet) Investigators: Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA, 2010; 303: 2165–71
10. Nelskyla A, Parr MI, Skrifvars MB: Prevalence and factors correlating with hyperoxia exposure following cardiac arrest – an observational single centre study. Scan J Trauma Resusc Emerg Med, 2013; 21: 35
11. Bellomo R, Bailey M, Eastwood GM et al., the Study of Oxygen in Critical Care (SOCO) group: Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care, 2011; 15: R90
12. Ilhe JF, Bernard S, Bailey MJ et al: Hyperoxia in the intensive care unit and outcome after out-of-hospital ventricular fibrillation cardiac arrest. Crit Care Resusc, 2013; 15: 186–90
13. Elmer J, Scutella M, Pullalarevu R et al., Pittsburgh Post-Cardiac Arrest Service (PCAS): The association between hyperoxia and patient outcomes after cardiac arrest: Analysis of a high-resolution database. Intensive Care Med, 2015; 41: 49–57

14. Boyce LW, Vliet Vlieland TP, Bosch J et al: High survival rate of 43% in out-of-hospital cardiac arrest patients in an optimised chain of survival. Neth Heart J, 2015; 23: 20–25

15. Balan IS, Fiskum G, Hazelton J et al: Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke, 2006; 37: 3008–13

16. Young P, Bailey M, Bellomo R et al: HyperOxic Therapy OR NormOxic Therapy after out-of-hospital cardiac arrest (HOT OR NOT): A randomised controlled feasibility trial. Resuscitation, 2019; 85: 1686–91