Research Status of Microplastics Pollution in Abiotic Environment in China

Z H Wang and X J Sun
Department of Civil and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China;
Email: wangzhanhua@jlju.edu.cn

Abstract. With the continuous attention to the microplastics pollution in the world, since 2014, Chinese scholars have rapidly carried out a large number of microplastics pollution investigation and experimental research. This paper summarizes the research results of microplastics pollution in abiotic environment (ocean, land water, soil, atmosphere) in this stage, in order to provide support for the future research.

1. Definition, Classification and Source of Microplastics

The definition of microplastics was first published in Science in 2004, that is, plastic fragments or particles with size less than 5 mm[1], which are new environmental pollutants. With the international in-depth development and attention to the research of microplastic pollution, the second United Nations Environment Conference in 2016 listed microplastic as one of the major global environmental issues[2]. Subsequently, Chinese scholars also carried out a lot of research on the pollution of microplastics[3-16], and held the first National Symposium on environmental microplastics pollution and control in 2018, which promoted the research on the causes and control of microplastics pollution in China.

Microplastics come from a wide range of sources in the environment. All kinds of human production and life activities will make microplastics enter the environment. The classification of microplastics in the environment is mainly based on their size, type, shape and source. According to the classification of the size of microplastics, at present, it is mainly based on the classification and literature report of the EU Maritime Strategic Framework Directive[17], the plastic with the size less than 5 mm is microplastics, while the plastic with the size between 1-100 nm as small as nanometer level is called nanometer level microplastics. According to the type and shape of microplastics, it can be divided into fiber, chip, film, particle and foam type plastic. All kinds of microplastics show irregular shape, lender, triangular and circular[18-19]. According to the classification of microplastics sources, it can be divided into primary microplastics (primary microplastics, primary microplastics) and secondary microplastics (new microplastics, secondary microplastics)[20-21]. The former is mainly the industrial raw materials of plastic/resin particles, industrial products containing microplastics particles or cleaning micro beads, such as drugs, polishing materials, personal care products (cosmetics, facial cleansers, toothpastes and body washes) etc.[22-24], the latter refers to the small plastic fragments formed by the physical (abrasion, water disturbance, wave strike, wind), chemical (UV radiation, freeze-thaw cycle) and biological process (degradation) after the large plastic enters the environment. It can be said that various human production activities (industry, agriculture, aquaculture, fishery, tourism, etc.) break down, decompose or reduce in volume) And living activities
(use of plastic products, washing of clothes, pollution control) lead to many large pieces of plastic into the environment, and generate a large number of this life microplastics through migration and transformation[25-28].

2. Research Status of Microplastic Pollution in Abiotic Environment in China

2.1. Study on the Pollution of Microplastics in the Ocean

The initial international research on microplastics started from the marine environment. Since 2014, Chinese scholars have carried out extensive research on microplastics pollution in China's offshore waters, as shown in Table 1[7,13,15,18,29-43]. Microplastics can migrate and transform in the marine environment. Some studies have shown that the deep sea is the sink of microplastics. However, there are few studies on the pollution of microplastics in the deep sea. Therefore, the pollution of microplastics in the deep sea area needs further study.

Sea Area	Research Medium	Research Contents
Bohai Sea	Sea water, seabed sediment, coastal intertidal zone, tidal flat area, benthos	The type, particle size, abundance, spatiotemporal distribution and source of microplastics in media were studied.
Yellow Sea	Tidal flat, sediment, surface seawater, oyster	Assess ecological risks.
South China Sea	Tidal flat, sediment, surface seawater, oyster estuary, seawater, fish	
The East China Sea	Surface water, zooplankton, sediment, beach, sea water and seafood in aquaculture area	
Other Pacific waters	Deep sea sediments, benthos and surface seawater	

2.2. Study on Microplastics Pollution in Water of Land Area

China's research on microplastic pollution in land water environment is later than that in marine environment, and the research medium is mainly water layer and sediment in river, lake and wetland environment, as shown in Table 2[3-5,12,14,44-54]. After entering the land water body, microplastics will enter the bottom of the water body under sedimentation, and can also be transmitted to the ocean through river action, even spread over the global marine environment under the action of current, wind, tide and tsunami, in addition, biological feeding in the land water body will also cause physical damage such as intestinal blockage and chemical damage such as additive leaching, thus causing certain damage ecological risk.

Water Body	Medium	Research Content
River	Surface water and sediment, river water and sediment, estuarine water, beach and organism of urban river	The abundance, type, particle size distribution, surface characteristics, components, temporal and spatial distribution, sources of microplastics in media and their possible effects on the structure and composition of microbial communities were studied.
Lake	Lake water, lake mouth, surface water, sediment, beach, benthos, tilapia	
Reservoir	Surface water and sediment irrigation area drainage ditch water and sediment, wharf water	
Other Water Bodies		

2.3. Study on Microplastic Pollution in Soil

With the deepening of the research on microplastic pollution, the situation of microplastic pollution in the soil environment has attracted the attention of domestic scholars, and the investigation and Research on microplastic pollution in the main regional soil have been carried out, as shown in Table 3[19,28,55-62]. microplastics can affect the structure and other physical properties of soil, absorb
heavy metals and organic pollutants in soil, affect the composition of soil microbial community and the survival of soil animals[20,63].

Soil Type	Research Area	Research Contents
Farmland soil	Dianchi Lake Basin area, typical black soil area of Harbin City, upper and middle reaches of Fenhe River, Hetao irrigation area of Inner Mongolia, vegetable field in Shanghai suburb, northeast soft soil. Daliao River Basin,	The abundance, particle size, mass, surface morphology, spatial distribution and main driving mechanism of microplastics were studied.
Water bank soil	Zhangpu coastal area of Fujian Province, Yangtze River Bank (Chongqing urban section)	

2.4. Study on the Pollution of Microplastics in the Atmosphere

There are few reports on the study of microplastic pollution in the atmosphere. R.Dris[64-65]foreign researchers have found that there are fiber microplastics in the air subsidence of Paris city and suburbs, France. They have observed that there are synthetic fiber, mixed fiber and natural fiber in the air of Paris, France. It is speculated that indoor air microplastics (fiber) pollution may be an important source of microplastics in the atmosphere. China's research on the pollution of microplastics in the atmospheric environment is just in its infancy. K.Liu[66]studied the sources of microplastics in Shanghai's aerosols, conducted potential risk assessment, and also studied the spatial distribution, morphology, appearance and chemical composition of the microplastics in the suspended atmosphere of the western Pacific Ocean, L.J.Cai[67]studied the microplastics in the dust fall of Dongguan's atmospheric environment. The main chemical composition, abundance and surface morphology show that the tested microplastics have undergone different degrees of mechanical wear and chemical weathering. Q.Zhou[46]studied the types, abundances, compositions, fluxes of microplastics in the atmospheric environment of Yantai, a coastal city of China, and the dynamic changes in the four seasons of the year. In addition, The mass concentration, shape and component distribution of indoor and outdoor dust MPs were measured by C.G.Liu[68]. At present, the pollution characteristics and settlement laws of microplastics in the atmospheric environment are not clear enough. The existing research table shows that the surface of microplastics in the atmosphere is subject to different degrees of mechanical wear and obvious weathering characteristics, which can prove that the microplastics in the atmospheric environment come from water and soil. However, these microplastics may enter the water and soil environment through settlement. The mechanism of the formation of "sea land air" microplastics is not clear.

3. Conclusion

Based on the review of the research on microplastics pollution in abiotic environment by Chinese scholars, it is found that there are more researches on microplastics pollution in water environment, more in-depth researches on sediments and seawater in main land waters and coastal waters, but less researches on rivers and groundwater in deep sea and small watershed. In recent two years, the investigation and Research on microplastics pollution in soil environment has increased gradually. However, there are few researches on microplastics pollution in the air environment. In the future, we can focus on the study of microplastics pollution in river water, groundwater, atmospheric environment and special types of soil. At the same time, it is found that the current research focuses on the investigation and traceability of the abundance, type and composition of microplastics pollution in environmental media, and the research on the migration and transformation mechanism of microplastics in environmental media is not deep enough.
Acknowledgements
Thanks to the scholars who are committed to the research of microplastic pollution, which makes the research of microplastic pollution more in-depth in China and in the world.

References
[1] Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S. J., John, A.W., McGonigle, D., Russell, A.E. (2004) Lost at sea: Where is all the plastic?. Science, 304: 838.
[2] Liu, Y., Zhao, W.W., Zhang, X. (2016) Implementation of the environmental goals of the Sustainable Development Agenda - a brief introduction to the second session of the United Nations Environment Assembly. Acta Ecologica Sinica, 36: 3843-3846.
[3] Zhao, S.Y., Zhu, L.X., Wang, T., Li, D.J. (2014) Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Marine Pollution Bulletin, 86: 562-568.
[4] Zhao, S.Y., Zhu, L.X., Li, D.J. (2015) Microplastic in three urban estuaries, China. Environmental Pollution, 206: 597-604.
[5] Su, L., Xue, Y.G., Li, L.Y., Yang, D.Q. (2016) Microplastics in Taihu Lake, China. Environmental Pollution, 216: 711-719.
[6] Li, J.N., Qu, X.Y., Su, L., Zhang, W.W., Yang, D.Q. (2016) Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214: 177-184.
[7] Zhou, Q., Zhang, H.B., Zhou, Y. (2016) Separation of microplastics from a coastal soil and their surface microscopic features Chinese. Science Bulletin, 61: 1604-1611.
[8] Sun, X.X. (2016) Progress and Prospect on the Study of the Ecological Risk of Microplastics in the Ocean. Advances in Earth Science, 31: 560-566.
[9] Liu, Q., Xu, X.D., Huang, W., Xu, X.Q., Shou, L., Zeng, J.N. (2017) Research advances on the ecological effects of microplastic pollution in the marine environment. Journal of ecology, 37: 7397-7409.
[10] Ding, J.N., Zhang, S.S., Zou, H., Zhang, Y., Zhu, R. (2017) Occurrence, Source and Ecotoxicological Effect of Microplastics in Freshwater Environment. Ecology and Environmental Sciences, 26: 1619-1626.
[11] Zhou, Q., Tian, C.G., Luo, Y.M. (2017) Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chinese Science Bulletin, 62: 3902-3909.
[12] Wang, J.D., Peng, J.P., Tan, Z., Gao, Y.F., Zhan, Z.W., Chen, Q.Q., Cai, L. Q. (2017) Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171: 248-258.
[13] Mai, L., Bao, L.J, Shi, L., Liu, L.Y., Zeng, E.Y. (2018) Polycyclic aromatic hydrocarbons affiliated with microplastics in surface waters of Bohai and Huanghai Seas, China. Environmental Pollution, 241: 834-840.
[14] Zhu, X.T., Yi, J., Qiang, L.Y., Cheng, J.P. (2018) Distribution and settlement characteristics of microplastics in surface sediments of tidal flat of the Yangtze River Estuary. Environmental science, 39: 2067-2074.
[15] Zhou, Q., Zhang, H.B., Zhou, Y., Dai, Z.F., Li, Y., Fu, C.C., Tu, C., Wang, W.H., Luo, Y.M. (2018) Surface weathering and composition change of microplastics in tidal flat of Binhai estuary. Science Bulletin, 63: 214-224.
[16] Liu, Z.J., Yang, L.X., Wang, Q., Li, N. (2018) Migration, transformation and environmental effects of microplastics in terrestrial water environment. Environmental science and technology, 41: 59-65.
[17] Chen, Q.Q., Yang, S.Y., Henner, H., Yin, D.Q. (2018) Aquatic ecotoxicity and carrier effect of microplastic pollution. Journal of ecotoxicology, 13: 16-30.
[18] Bai, L., Liu, X.H., Chen, Y.Z., Tu, J.B., Chen, H.W. (2020) Analysis on the current situation of microplastic pollution in Tianjin coastal waters. Environmental Chemistry, 39: 1-8.
[19] Han, L.H., Li, Q.L., Xu, L., Lu, A.X., Li, B.R., Gong, W.W., Tian, J. Y. (2020) Study on the abundance and distribution of microplastics in the soil of Daliao River Basin. Asian Journal of Ecotoxicology, 15: 174-185.

[20] Hou, J.H., Tan, W.B., Yu, Dang, Q.L., Li, R.F., Xi, B.D. (2020) Microplastics In Soil Ecosystem: A Review On Sources, Fate And Ecological Impact. Environmental Engineering, 38:16-27.

[21] Zhao, J.M., Ran, W., Teng, J., Liu, Y.L., Liu, H., Yin, X.N., Cao, R.W., Wang, Q. (2018) Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Science of the Total Environment, 640/641: 637-645.

[22] Napper, I.E., Bakir, A., Rowland, S.J., Rowland, S.J., Thompson, R.C. (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99: 178-185.

[23] Lei, K., Qiao, F., Liu, Q., Wei, Z.L., Qi, H.L., Cui, S., Yue, X., Deng, Y.X., An, L.H. (2017) Microplastics releasing from personal care and cosmetic products in China. Mar Pollut Bull, 123: 122–126.

[24] Liu, S.S., Fu, J.P., Guo, C.L., Dang, Z. (2019) Research progress on environmental behavior and ecological toxicity of microplastics. Journal of Agro Environment Science, 38: 957-969.

[25] Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M. (2009) Accumulation and fragmentation of plastic debris in global environments. Philo T Roy Soc London B Biol Sci., 364: 1985–1998.

[26] Andrady, A. L. (2011) Microplastics in the marine environment. Mar Pollut Bull, 62: 1596–1605.

[27] Mcdevitt, J.P., Criddle, C.S., Morse, M., Hale, R.C., Bott, C.B., Rochman, C.M. (2017) Addressing the issue of microplastics in the wake of the microbead-free waters act—a new standard can facilitate improved policy. Environmental Science & Technology, 51: 6611-6617.

[28] Liu, M.T., Lu, S.B., Song, Y., Lei, L.L., Hu, J.N., Lv, W.W., Zhou, W.Z., Cao, C.J., Shi, H.H., Yang, X., He, D.F. (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental pollution, 242: 855-862.

[29] Dai, Z.F. (2018) The Distribution of Microplastics in the Bohai Sea and Its Influencing Factors. Chinese Academy of Sciences Yantai Institute of Coastal Zone Research, Yantai.

[30] Chen, Y.Q., Luo, W., Sun, C.H., Wu, G.H. (2020) Pollution characteristics of microplastics and heavy metals in the intertidal zone sandy sediments of the offshore area of Qinhuangdao. Haiyang Xuebao, 42: 113–121.

[31] Wang, J. (2019) Numerical Simulation of Distribution Characteristics and Transport Process of Microplastics in the Bohai Sea. Shanghai Ocean University, Shanghai.

[32] Ran, W. (2018) Research on the Status of Microplastics Pollution in Sediments and Oysters in the Bohai Sea and the Yellow Sea. Chinese Academy of Sciences Yantai Institute of Coastal Zone Research, Yantai.

[33] Xiong, K.X., Zhao, X.Y., Zhou, Q., Fu, C.C., Tu, C., Li, L.Z., Luo, Y.M. (2019) The pollution characteristics of microplastics in the water and sediments of Sanggou bay in the Yellow Sea. Marine Environmental Science, 38: 198-204.

[34] Zhao, X.Y. (2019) Compositions, identification and sources of macroplastic debris and microplastics in coastal environments—A case study of Sanggou Bay, Yellow Sea, China. Chinese Academy of Sciences Yantai Institute of Coastal Zone Research, Yantai.

[35] Jiang, Y., Zhao, Y.N., Wang, X. Yang, F., Chen, M., Wang, J. (2020) Microplastics in the surface seawater of the South Yellow Sea as affected by season. Science of the Total Environment, DOI:10.1016/j.scitotenv.2020.138375

[36] Li, R.L., Zhang, L.L., Xue, B.M., Wang, Y.H. (2019) Abundance and characteristics of microplastics in the mangrove sediment of the semienclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions. Environmental Pollution, 244: 685-692.
[37] Huang, Y.J., Yan, M.T., Xu, K.H., Nie, H.Y., Gong, H., Wang, J. (2019) Distribution characteristics of microplastics in Zhubi Reef from South China Sea. Environmental Pollution, DOI:10.1016/j.envpol.2019.113133

[38] Nie, H.Y., Wang, J., Xu, K.H., Huang, Y.J., Yan, M.T. (2019) Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Science of the Total Environment, DOI:10.1016/j.scitotenv.2019.134022.

[39] Tang, G.W., Liu, M.Y., Zhou, Q., He, H.X., Chen, K., Zhang, H.B., Hu, J.H., Huang, Q.H., Luo, Y.M., Ke, H.W., Chen, B., Xu, X.G., Cai, M.G. (2018) Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts. Science of the Total Environment, 634: 811-820.

[40] Zhao, H.R. (2019) Study on Distribution Characteristics of Microplastics and Endocrine-disrupting Compounds in Zhoushan Coastal Area. Zhejiang Ocean University, Zhoushan.

[41] Xu, P., Peng, G.Y., Zhu, L.X., Bai, M.Y., Li, D.J. (2019) Spatial-temporal distribution and pollution load of microplastics in the Changjiang Estuary. China Environmental Science, 39: 2071-2077.

[42] Pan, Z., Sun, X.W., Guo, H.G., Cai, S.Z., Chen, H.Z., Wang, S.M., Zhang, Y.B., Lin, H., Huang, J. (2019) Prevalence of microplastic pollution in the Northwestern Pacific Ocean. Chemosphere, 225:735-744.

[43] Wang, S.M., Chen, H.Z., Zhou, X.W., Tian, Y.Q., Lin, C., Wang, W.L., Zhou, K.W., Zhang, Y. B., Lin, H. (2020) Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental Pollution, DOI:10.1016/j.envpol.2020.114125.

[44] Zhang, Y.D., Li, X.P., Wang, X., Li, K.F. (2019) Study on Analysis of the Microplastics in the Sediments of Fuxi River. Sichuan Environment, 38: 46-52.

[45] Qi, H.Y., Wang, Y.Y., Zhang, D.H., Wang, G.G., Li, X.G. (2019) Microplastics in Moshui River Sediment:Abundance, Morphology and Spatial Distribution. Transaction of Oceanology and Limnology, 3: 69-77.

[46] Wu, N., Zhang, Y., Zhang, X.H., Zhao, Z., He, J.H., Li, W.P., Ma, Y.Z., Niu, Z. G. (2019) Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in Bohai Bay, China. Environmental science Processes & impacts, 21: 1143-1152.

[47] Wang, Z.F., Su, B.B., Xu, X.Q., Di, D., Huang, H., Mei, K. (2018) Preferential accumulation of small (<300 μm) microplastics in the sediments of a coastal plain river network in eastern China. Water research, 144: 393-401.

[48] Yuan, W.K., Chen, Y.L., Wang, J. (2018) Microplastics in surface waters of Dongting Lake and Hong Lake, China. Science of the Total Environment, 633: 539-545.

[49] Yuan, W. K., Liu, X.N., Wang, W.F., Di, M.X., Wang, J. (2018) Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and environmental safety, 170: 108-187.

[50] Li, W.H., Tian, M.F., Yu, H.P., Zhou, L.Y., Liu, S.L. (2019) Characteristics of microplastic pollution and temporal-spatial distribution in the sediments of the five rivers in the Lake Poyang Basin. Journal of Lake Sciences, 31: 397-406.

[51] Mao, R.F., Hu, Y.Y., Zhang, S.Y., Wu, R.R., Guo, X.T. (2020) Microplastics in the surface water of Wuliangshui Lake, northern China. Science of the Total Environment,DOI:10.1016/j.scitotenv.2020.137820

[52] Zhan, K., Gong, W., Lv, J.Z., Xiong, X., Wu, C.X. (2015) Accumulation of floating microplastics behind the Three Gorges Dam. Environmental pollution, 204: 117-123.

[53] Li, C.C., Gan, Y.D., Dong, J.Y., Fang, J.H., Chen, H., Quan, Q., Liu, J. (2020) Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China. Chemosphere, DOI:10.1016/j.chemosphere.2020.126740.

[54] Wang, Z.C., Yang, F., Yang, W.H., Li, W.P., Yang, J.L., Qin, Y.M. (2020) Occurrence Characteristics and Quality Estimation of Microplastics in Drainage Ditches in Hetao
Irrigation District of Inner Mongolia. Environmental Science, DOI: 10.13227/j.hjkx.202003259.

[55] Feng, Z.J., Zhong, W., Luo, X., Hu, S.P., Zhou, Z.Y., Yu, G.L. (2019) Study on Algal Bloom evaluation and micro-plastic pollution characteristics of Xiaxin wharf in Dongting Lake district. Environmental Protection and Circular Economy, 39: 46-49.

[56] Liu, Y.F. (2018) Quantity and distribution of microplastics in farmland soil of lake shore in Dianchi Lake. Yunnan University, Kunming.

[57] Liu, X. (2019) Spatial Distribution of Microplastics in Mollisol Farmland of Northeast China. Northeast Agricultural University, Haerbin.

[58] Tian, H.Q. (2019) Study on the current situation and distribution law of soil micro plastic pollution in farmland along the upper and middle reaches of Fenhe River. In: Joint Symposium of Soil Environment Committee and Soil Chemistry Committee of China Soil Society in 2019. Chongqing. P. 31.

[59] Wang, Z.C., Meng, Q., Yu, L.H., Yang, W.H., Li, P., Yang, L., Yang, F. (2020) Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia. Transactions of the Chinese Society of Agricultural Engineering, 36: 204-209.

[60] Zhang, S.L., Liu, X., Hao, X.H., Wang, J.Q., Zhang, Y. (2019) Distribution of low-density microplastics in the mollisol farmlands of northeast China. Science of the Total Environment, DOI:10.1016/j.scitotenv.2019.135091

[61] Deng, J.C., Chen, X.F., Zhang, Z.P., Zheng, H., Li, S.Q., Chen, Q.H. (2019) On the Accumulation Characteristics of Microplastics from the Surface Soil Offshore of Zhangpu in Fujian Province. Journal of Fuqing Branch of Fujian Normal University, 2: 75-83.

[62] Zhao, G.L. (2019) Distribution characteristics of microplastics in soils along the Yangtze River in the main urban area of Chongqing. In: Joint Symposium of Soil Environment Committee and Soil Chemistry Committee of China Soil Society in 2019. Chongqing. P. 206.

[63] Zhu, Y.G., Zhu, D., Xu, T., Ma, J. (2019) Impacts of microplastics on soil ecosystem: Progress and perspective. Journal of Agro-Environment Science, 38: 1-6.

[64] Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B. (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221: 453-458.

[65] Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B. (2016) Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?. Marine Pollution Bulletin, 104: 290-293.

[66] Liu, K., Wu, T.N., Wang, X.H., Song, Z.Y., Zong, C.X., Wei, N., Li, D.J. (2019) Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environmental science & technology, 53: 10612-10619.

[67] Cai, L.Q., Wang, J.D., Peng, J.P., Tan, Z., Zhan, Z.W, Tan, X.L., Chen, Q.Q. (2017) Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science & Pollution Research, 1526: 24928-24935.

[68] Liu, C.G., LI, J., Zhang, Y.L., Wang. L., Deng, J., Gao, Y., Zhang, J.J., Sun, H.W. (2019) Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environment International, 128: 116-124.