8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification

Ja Young Hahm 1,2,4, Jongyeun Park 1,2,4, Eun-Sook Jang 1,2 and Sung Wook Chi 1,2,3✉

© The Author(s) 2022

In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G-A in base pairing, o8G alters structural and functional RNA–RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.

INTRODUCTION

Reactive oxygen species (ROS), including hydroxyl radicals, superoxide, and hydrogen peroxide (H2O2), are continuously generated as byproducts of aerobic metabolism (e.g., cellular respiration in the mitochondria)1,2. The ROS concentration must be balanced to maintain a normal redox state and hence actively controlled by antioxidant pathways. However, increasing ROS production induced by environmental stress or pathophysiological conditions overwhelms homeostatic regulation, thereby imposing oxidative stress. Oxidative stress is involved in various pathogeneses, including tumorigenesis and neurodegenerative disorders1,2. Depending on the concentration and compartmentalization of ROS, oxidative stress differentially oxidizes biomolecules such as lipids, proteins, and nucleic acids, resulting in varying effects on redox signaling as second messengers or on cellular components as oxidative damage2.

Among the oxidative modifications, the guanine of nucleic acids susceptibly forms 8-oxoguanine (8-oxo-7,8-dihydroguanine), a tautomer known as 8-hydroxyguanine3. 8-Oxoguanine was first discovered in DNA during the characterization of carcinogenic molecules related to oxidative stress3; thus, it has been widely used as a ROS biomarker1,5. 8-Oxoguanine can be either produced directly at the DNA (8-oxo-dG) and RNA (o8G) levels or at the free nucleotide level (8-oxo-dGTP or o8GTP), which can be incorporated through DNA replication6 or RNA transcription7. The critical feature of 8-oxoguanine is that its syn conformation uses a Hoogsteen edge to base pair with adenine, whereas its anti conformation still pairs with cytosine as an unoxidized guanine6 (Fig. 1a). Therefore, 8-oxo-dG causes guanine-to-thymine transversion, causing mutations (G > T, the same as C > A)8, especially in the cancer genome9. To prevent this damage, 8-oxoguanine DNA glycosylase (OGG1) recognizes, removes, and repairs 8-oxo-dG via base excision repair (BER) pathways10 (Fig. 1b). In addition to changes in genetic information, 8-oxo-dG, particularly produced through physiologically oxidative metabolism, acts as an epigenetic marker that affects regulatory elements in promoters, methylation of CpG islands, and distribution of histone modifications, thereby regulating gene expression.

Upon exposure to oxidative stress, guanine in RNA is more vulnerable to producing o8G than guanine in DNA, but less attention has been given to o8G because RNA is a relatively unstable and temporal intermediate11. Nonetheless, inappropriate o8G-A base pairing impacts RNA structure and functions at the posttranscriptional level; o8G induces translational errors, and its extensive occurrence in mRNA deteriorates translational activity11,12. Therefore, damaged RNAs generally undergo decay via surveillance mechanisms for RNA quality control12,13. Beyond damage, o8G can serve as an epitranscriptional modification that alters regulatory RNA–RNA interactions in a redox-dependent manner12,13.

Currently, there are an increasing number of studies on the epigenetic14,15 and epitranscriptional16 roles of 8-oxoguanine. Here, we review the functions of 8-oxoguanine as an oxidative modification in DNA (8-oxo-dG) and RNA (o8G), describing oxidative damage, which necessitates repair or quality control, and regulatory mechanisms for redox-mediated gene expression at the transcriptional and posttranscriptional levels.
8-OXOGUANINE IN DNA

8-Oxo-dG

As accurate transmission of genomic information is essential to preserve genome stability, DNA must be protected from the accumulation of mutations. Genomes are continually threatened by chemical assaults, including ROS, alkylating reagents, ultraviolet light, and carcinogens. It is estimated that an average of ~70,000 nucleobases are damaged in each human cell every day. As damaged DNA can result in deleterious mutations, cells trigger specific DNA damage responses to defend and repair these changes. Among this damage, DNA oxidation is the most abundant and relevant to diverse redox-mediated biological consequences, such as cell cycle checkpoint and BER pathways. 8-Oxo-dG is recognized and removed by DNA glycosylases, which have broad substrate specificity and stress-induced premature senescence. Currently, over 100 oxidative DNA adducts have been identified, ranging from those with modifications of the bases (e.g., 8-oxo-dG, 8-oxo-dA, thymidine glycol, 5-hydroxycytosine, and 5-hydroxuryracil) and nucleotides (abasic or cyclic forms; e.g., 2-deoxyribonolactone, 5′,8-cyclo-2′-deoxyguanosine, and 5′,8-cyclo-2′-deoxyadenosine) to those with breakage of the phosphate backbone.

Due to the lowest redox potential of guanine relative to the other bases (G: -3.0 V, A: -2.71 V, C: -2.56 V, and T: -2.32 V), 8-oxo-dG is the most prevalent oxidized form generated by reacting with oxygen at the C8 position, which of the double bond in guanine is directly attacked by the hydroxyl radical (‘OH). 8-oxo-dG is estimated to be present at approximately 0.5 ppb per Mbp (millions of base pairs; steady state of the human lymphocyte genome). The redox potential of guanine oxidation is largely affected by the flanking sequence composition, at which purine-rich sequences, specifically guanine at the 5′-end or GG repeats, and those neighboring oxidized bases are favored, presumably due to the migration of radical cations. Two or more oxidative lesions often occur within 10 bp, called oxidative clustered DNA lesions (OCDLs). The OCDL level is 0.02 to 0.8 per Mbp in normal human primary and cancer cells. Some OCDLs seem more difficult to repair than individual lesions and are thus more likely to induce pathological mutations. 8-Oxo-dG is highly mutagenic because of its propensity to pair with adenine in a syn conformation (Fig. 1a), causing a guanine-to-thymine mutation (G > T, the same as C > A) during DNA replication. DNA polymerase β (pol β) accommodates the 8-oxo-dG template in the syn conformation, hence incorporating adenine into the replicating strand (Fig. 1b). 8-Oxo-dG can be formed not only in DNA molecules but also in free nucleotides (Fig. 1b), the pools of which are especially vulnerable to oxidative damage (8-oxo-dGTP). As 8-oxo-dGTP provokes changes in the active site of pol β, its syn conformation can be inserted in the opposite adenine, avoiding recognition as damaged, thus resulting in an A > C mutation (the same as T > G) termed polymerase-induced cytotoxicity (Fig. 1b).

8-Oxo-dG repair pathways

BER is a DNA repair mechanism that corrects small base lesions unless the DNA helix is distorted. First, the damaged base is removed by DNA glycosylases, which have broad substrate specificity to aid in fast repair. The remaining apurinic/apyrimidinic (AP) site is further processed through endonuclease activity, and the AP sugar-phosphate backbone is cleaved to form a single-strand break (SSB). Then, the resulting gap in the SSB is filled and rejoined by replacing the AP site with a proper single-nucleotide match (short-patch BER) or by synthesizing a few long matches (a stretch of 2–10 nucleotides, long-patch BER) to correct the damage. A wide variety of glycosylases are used in BER to repair different types of damage, such as those induced by oxidation (e.g., 8-oxo-dG, 8-oxo-dA, and formamidopyrimidine, such as fapyG or fapyA), alkylation (e.g., 3-methyladenine and 7-oxoguanine (anti) : Cytosine (anti))

8-Oxoguanine (syn) : Adenine (anti)

8-Oxoguanine (*G), formed by reacting with oxygen at the C8 position (highlighted in red), pairs with cytosine (C) through its anticonformation (*G•C; upper panel). 8-Oxoguanine (*G) in syn conformation uses a Hoogsteen edge to pair with adenine (*G•A; lower panel). 8-Oxoguanine (*G) is recognized and removed by OGG1, subsequently processed into nicks by APE1 and repaired either by short-patch or long-patch BER (upper panel). *GA mismatch is recognized by MUTYH, followed by the APE1 reaction, and repaired by MUTYH-initiated BER (middle panel). Unrepaired 8-oxo-dG results in G > T transversion (same as C > A) during DNA replication (lower left panel). ROS induce oxidation of free nucleotide (8-oxo-dGTP), which is actively hydrolyzed by MTH1 (8-oxo-dGMP) to prevent its incorporation from DNA replication. The unrepaired 8-oxo-dG results in an A > C mutation (same as T > G; lower panel).

Fig. 1 Characteristics of 8-oxoguanine underlying base pairing, mutagenesis, and DNA repair. a 8-Oxoguanine (*G), formed by reacting with oxygen at the C8 position (highlighted in red), pairs with cytosine (C) through its anticonformation (*G•C; upper panel). 8-Oxoguanine (*G) in syn conformation uses a Hoogsteen edge to pair with adenine (*G•A; lower panel). b 8-Oxoguanine-induced mutagenesis and its repair pathways. 8-Oxo-dG (*G) is recognized and removed by OGG1, subsequently processed into nicks by APE1 and repaired either by short-patch or long-patch BER (upper panel). *GA mismatch is recognized by MUTYH, followed by the APE1 reaction, and repaired by MUTHY-initiated BER (middle panel). Unrepaired 8-oxo-dG results in G > T transversion (same as C > A) during DNA replication (lower left panel). ROS induce oxidation of free nucleotide (8-oxo-dGTP), which is actively hydrolyzed by MTH1 (8-oxo-dGMP) to prevent its incorporation from DNA replication. The unrepaired 8-oxo-dG results in an A > C mutation (same as T > G; lower panel).
methylguaninosine), and deamination (e.g., hypoxanthine, xanthine, and uracil)12. Examples of DNA glycosylases for damaged bases include OGG1 for 8-oxoguanine, Mag1 for 3-methyladenine, and UNG for uracil. Depending on their AP lyase activity, DNA glycosylases are divided into two classes, monofunctional and bifunctional. Separate AP endonucleases (APE1 and APE2) are required for monofunctional DNA glycosylases, whereas bifunctional endonucleases are sufficient to produce SSB for BER33. OGG1 is primarily responsible for removing 8-oxo-dG (Fig. 1b); it excises 8-oxo-dG opposite to the cytosine base and generates an AP site10. OGG1 is a bifunctional DNA glycosylase capable of cleaving the 3′-end of the AP site; 3′-deoxyribose phosphate (3′-dRP) and 5′-phosphate are produced via a β-elimination mechanism in addition, apurinic/apyrimidic endonuclease 1 (APE1) catalyzes the hydrolysis of the phosphodiester bond at the 5′-end of the AP site, yielding 3′-hydroxyl (OH) and 5′-dRP at the termini42. Although both enzymes cleave the backbone at the AP site, because of the low efficiency of the AP lyase in OGG1, they produce the AP site or single-nucleotide gap, harboring different types of unconventional DNA ends (AP endonuclease, 3′-OH, 5′-dRP; AP lyase, 3′-dRP, 5′-phosphate)15. The produced SSBs are detected and occupied by poly(ADP-ribose) polymerase 1 (PARP1) and PARP2, which synthesize poly(ADP-ribose) (PAR) and activate PARylation at the damaged site, resulting in the rapid recruitment of downstream repair proteins (e.g., pol β and X-ray repair cross-complementing protein 1, XRCC1) and relaxation of the chromatin structure35. PAR synthesis from PARP1 is also involved in 8-oxo-dG BER, which is reported to be mediated by the nuclear membrane protein laminA14. The dRP lyase activity of pol β is used to fill and ligate SSB, and the process undergoes either short- or long-patch BER. In short-patch BER, pol β excises downstream of 5′-dRP and inserts a single nucleotide into the gap. Then, the nick in the incorporated site is ligated by DNA ligase III and complexed with XRCC135. In long-patch BER, which is frequently used for OCDL, pol β inserts the first nucleotide, and the remaining nucleotides are subsequently elongated by other replicative DNA polymerases (pol δ and/or ε)46. The “flap” structure produced is resolved by flap endonuclease 1 (FEN1), which removes displaced oligonucleotides and is sealed by DNA ligase I. Additionally, several accessory proteins are required for a successful repair. Proliferating cell nuclear antigen (PCNA) helps pol δ to properly synthesize a repaired strand by serving as a DNA sliding clamp and interacts with FEN1 to stimulate its excision activity37. Replication factor C (RFC) facilitates PCNA loading and replication protein A (RPA) stabilizes the newly synthesized DNA strand for pol δ or pol ε39. 8-Oxo-dG can be repaired by MutY DNA glycosylases (MUTYHs; Fig. 1b), which remove bases including adenine when inappropriately paired with 8-oxo-dG40,41. Since MUTYH is monofunctional, the AP site opposite of 8-oxo-dG is only excised by APE1, replaced with cytosine-containing nucleotides by DNA polymerase λ (pol λ) as a complex with PCNA and RPA, processed by FEN1, and ligated by DNA ligase I39. Additionally, 8-oxo-dG is removed by Nε-lactamase DNA glycosylase 1 (NεLG1), homologous to bacterial fapy-DNA glycosylase (Fpg), which removes diverse oxidized bases, including 8-oxo-dG, but NEIL1 mainly functions in oxidized pyrimidines and ring-opened purines (e.g., fapyG and fapyA)39,46. In addition to BER, other repair systems can be used to treat 8-oxo-dG. As a fundamental mechanism for the clearance of 8-oxo-dG from the nucleotide pool, MutT homolog 1 (MTH1) hydrolyzes 8-oxo-dGTP in cells to prevent DNA polymerase from incorporating it42 (Fig. 1b). In addition, transcription-coupled nucleotide excision repair (TC-NER) can also remove 8-oxo-dG in the transcribed strand, where Cockayne syndrome B (CSB)43 and xeroderma pigmentosum complementation group C (XPC)44 recruit and activate APE1 for removal of the oxidized lesion. After DNA replication, the remaining 8-oxo-dG mismatch (8-oxo-dG-A) has the opportunity to be removed by mismatch repair (MMR), in which MMR proteins (e.g., MSH2/6) play a role with MUTYH and PCNA41. Moreover, other enzymes, such as N-methylpurine DNA glycosylase (MPG)45 and 40 S ribosomal protein S3 (RPS3)36,46, have the capacity to cleave 8-oxo-dG-containing DNA. As summarized in Table 1, 8-oxo-dG repair pathways have overlapping substrate specificities and recognition, serving as backups for the main repair pathway mediated by OGG1 in BER. 8-Oxo-dG-induced mutation and genome instability in cancer 8-Oxo-dG is involved in the pathogenicity of ROS-related diseases such as premature aging, neurodegeneration, and cancer31,44,47. Although chromosomes are continuously monitored and repaired by DNA repair enzymes, oxidative formation of 8-oxo-dG can easily accumulate by the overload of free radicals and induce harmful mutations, which are frequently observed in cancer with deficiency of a specific 8-oxo-dG repair mechanism. Impairment of 8-oxo-dG repair increases genomic alterations, particularly in cancer47. 8-Oxo-dG-induced G > T mutation (also C > A) was initially proven to be detrimental using the proto-oncogene HRas with synthetic 8-oxo-dG (codon 12: G32CAG > T33GTC, codon 61: T34QAG > K35AAG)48. Mutagenic 8-oxo-dG-A pairing structurally mimics the T-A base pair, at which the repair proteins can hardly recognize the damage; however, promutagenic 8-oxo-dG-C base pairs can be readily recognized due to the different DNA helix structures49. Therefore, 8-oxo-dG should be repaired rapidly during this initial stage49. In support of this observation, genetic studies have revealed the importance of 8-oxo-dG repair in cancer47. OGG1 knockout (KO) mice display elevated 8-oxo-dG concentrations, G > T mutation frequency, and susceptibility to genotoxic drug-induced tumor development, albeit displaying no other distinct phenotypic change. MUTYH KO50 and MTH1 KO51 spontaneously produce a higher tumor incidence, where an increased G > T frequency was more frequently observed in oxidative stress-induced tumorigenesis. Under KBrO\textsubscript{3} treatment, MUTYH KO mice are prone to intestinal cancer50,52, and MTH KO confers G > T mutations in the tumor suppressor APC gene, as observed in patients with tumors with MUTYH mutation35,54. OGG1/MUTYH double KO mice resulted in a G > T mutation in the KRAS (codon 12) oncogene and were prone to developing tumors (e.g., lung and ovarian cancers and lymphomas)55. Moreover, OGG1/MUTYH/MTH1 triple KO mice, which had a short lifespan and developed various types of tumors, displayed substantial accumulation of 8-oxo-dG causing spontaneous and inheritable de novo G > T mutations in the germline36. Defects in 8-oxo-dG repair are often found in patients with cancer; for example, the OGG1 locus on chromosome 3p26.2 is frequently deleted in several cancer types57. The 8-oxo-dG-induced G > T mutation is widespread in cancer; copy number loss of OGG1 and MUTYH in patients with neuroblastoma causes high levels of G > T substitutions with a poor survival rate58. Sequencing analyses of coding regions in 518 protein kinase genes have revealed that G > T is a major somatic mutation in 210 diverse human cancers59. Mutation signatures with G > T are distinctly categorized as typical patterns in the analyses of single base substitutions (SBS) of the human cancer genome, SBS18 and SBS56 in the Catalogue of Somatic Mutations in Cancer (COSMIC) database60. SBS18 is proposed to be caused by ROS damage, commonly occurring in various cancer types as a background signature (e.g., neuroblastoma from unknown cause). SBS36 is a signature of defective BER caused by MUTYH mutations, often observed in endocrine pancreatic carcinoma and non-Hodgkin B-cell lymphomas51. Moreover, SBS signatures of tobacco smoking (SBS4) and tobacco chewing (SBS29) and defective DNA mismatch repair with microsatellite instability (SBS14) also confer a preference for the G > T mutation. In addition to cancer, embryonic cell cultures without antioxidants increase 8-oxo-dG levels, inducing mutations in the Tbx5i promoter and leading to cardiac-like differentiation42.
If DNA repair is not sufficient for fixing the present damage in the cell, the genome becomes unstable and promotes cell death or tumorigenesis. Repair of 8-oxo-dG is important for maintaining genomic stability. Defects in OGG1 reduce cell viability, and defects in MUTYH, APE1, and NEIL1 induce the accumulation of SSBs caused by incomplete repair of 8-oxo-dG. Intriguingly, high BER activity impairs the maintenance of genome stability and leads to tumorigenesis, presumably because it can accommodate overwhelming genomic mutations and instability rather than cell death. High levels of APE1 have been reported in many types of cancer, including prostate and ovarian cancers. Moreover, incomplete or misrepaired 8-oxo-dG can hinder the delicate control of genome topology, resulting in genome destabilization.

Unrepaired 8-oxo-dG affects the catalytic activity of human topoisomerase I (TOPI), which plays a key role in DNA replication. Transient cleavage by TOPI is indispensable for DNA replication to relax and unwind DNA without creating extreme torsional stress during the process. However, 8-oxo-dG increases the DNA-binding affinity of TOPI and promotes the overload of TOPI, inducing abnormal and excessive cleavage of DNA strands. This increase in TOPI-DNA binding can potentially lead to DNA damage, cell death, recombination, and mutagenic effects. Finally, the 8-oxo-dG and AP sites can induce conformational changes in the DNA secondary structure. By stalling the DNA replication machinery, oxidized DNA can induce structural changes around the replication fork, interfering with DNA replication and causing genomic instability, thereby profoundly contributing to tumor development.

8-Oxo-dG-induced transcriptional mutations in diseases

8-Oxo-dG modification not only alters DNA information during replication (G > T transversion) but also mediates mutations in transcription and regulates genetic information. Despite the high fidelity of RNA polymerases, 8-oxo-dG in the template strand can be directly transcribed, resulting in C > A transversion in mRNA due to 8-oxo-dG-A base pairing. This phenomenon is called transcriptional mutation (TM), in which 8-oxo-dG located in the coding sequence leads to the translation of erroneous proteins, which are subjected to nonproliferating cells without undergoing DNA replication. TM was initially demonstrated in *Escherichia coli*, in which 8-oxo-dG lesions produce mutant transcripts and defective activity of the luciferase reporter gene.

As 8-oxo-dG is bypassed by RNA polymerase II in vitro, the luciferase reporter gene with 8-oxo-dG escapes transcription-coupled repair and produces mutations in the transcripts and proteins, even in OGG1 KO mammalian cells. TM is supported by a structural study showing that 8-oxo-dG can pair with adenine at the active site of RNA polymerase II, and the prerequisite of ATP incorporation appears to depend on base pairing at the adjacent upstream position.

The physiological outcomes of TM have been implicated in tumor development and neuronal degeneration. 8-Oxo-dG in HRas was mutated in mRNA by TM and produced a constitutively active protein (codon 61; Q^61A > K^61A), particularly under deficient BER (OGG1 KO) or transcription-coupled repair (CSB KO). As oxidative DNA damage correlates with functional impairment of nonproliferating neuronal cells, TM has been proposed as a mechanism to generate neurotoxic proteins, which may potentially cause α-SYN aggregation in Parkinson’s disease. Moreover, 8-oxo-dG-induced TM can deteriorate splicing fidelity, in that the minigene splicing reporter of proteolipid protein 1 (PLP1), which harbors synthetic 8-oxo-dG, produces a detrimental DM20 splicing variant that causes X-linked leukodystrophy.

8-oxo-dG-induced defective regulatory elements in aging

8-Oxo-dG and its repair intermediates (e.g., AP site) can affect gene expression by deteriorating the integrity of transcriptional elements. When the promoter regions of genes become oxidized, the activity of regulatory sequences, particularly those...
containing runs of guanine, becomes defective. Synthetic oligonucleotides, which contain 8-oxo-dG in transcription factor-binding sites, have reduced binding affinity for SP1, NF-κB, and CREB. Given that the repair intermediates of 8-oxo-dG, processed by OGG1, are AP sites that contain no base for pairing, 8-oxo-dG is suggested to elicit significant repressive roles in transcription and by inducing transcriptional stalling in the coding regions. In support of this, 8-oxo-dG in the aged human brain with increasing ROS markedly accumulates in the promoter regions of transcriptionally decreasing genes (e.g., CaM1, Calb1, Calb2,
Fig. 2 Epigenetic roles of 8-oxo-dG. a 8-Oxo-dG-induced transcriptional mutation, which is caused by 8-oxo-dG in the template strand during transcription, triggering a C > A point mutation in mRNA via 8-oxo-dG:A base pairing. b 8-Oxo-dG-induced loss of integrity in transcriptional regulatory elements. 8-Oxo-dG and its repair intermediate, AP site (O), deteriorate the integrity of transcriptional regulatory elements, thus hindering the binding of transcription factors (TFs). 8-Oxo-dG, AP sites, and subsequent nicks in coding regions also inhibit mRNA transcription. c Transcriptional regulation mediated by 8-oxo-dG and its repair proteins. 8-Oxo-dG, bound by OGG1, and its intermediate AP site induce folding of quadruplex-forming sequences (PQS) into a G-quadruplex structure (G4), which recruits various TFs to transcriptionally activate downstream genes (upper panel). Ligand-mediated activation (e.g., TNFα) of the toll-like receptor pathway generates ROS, which oxidize DNA sequences near NF-κB binding sites. The produced 8-oxo-dG recruits the OGG1-NF-κB complex, thus activating the transcription of downstream genes (lower panel). d Interplay of 8-oxo-dG with epigenetic histone modifications. During the histone demethylation reaction, LSD1 generates local ROS (H2O2) that lead to the formation of 8-oxo-dG and AP sites in the promoter, which are occupied by OGG1 and APE1. Then, APE1 recruits other TFs, and its nick formation associates with topoisomerase II, eventually activating the transcription of downstream genes. e Interplay of 8-oxo-dG with DNA cytosine methylation (5mC). 8-Oxo-dG near CpG islands inhibits the binding of DNMT and MeCP2, thus passively interfering with 5mC (left panel). OGG1, which is associated with 8-oxo-dG, interacts with TET1, which oxidizes adjacent 5mC to 5-hydroxymethylcytosine (5hmC) for DNA demethylation (upper middle panel). During the DNA demethylation process of CpG islands, TET1 generates local ROS, which induce 8-oxo-dG associated with OGG1, thus activating the transcription of downstream genes (upper right panel). Oxidative DNA damage triggers the formation of the 8-oxo-dG and OGG1 complex, which recruits repressive complexes, including DNMT, and induces methylation of CpG islands, finally resulting in chromatin condensation and silencing of damaged DNA regions.

sortilin, and PKCy)81. Similarly, 8-oxo-dG and its repair intermediates, even those located in nontranscribed DNA strands of coding genes, also suppress transcription82, presumably by dysregulating regulatory elements in transcription, which usually function bidirectionally.

EPIGENETIC ROLES OF 8-OXOGUANINE

Transcriptional regulation: G-quadruplex and NF-κ-binding site

8-Oxo-dG modification not only damages DNA information but also functions as an epigenetic mark that mediates transcriptional regulation together with its repair intermediates14,15. Although 8-oxo-dG changes and its repair intermediate, the AP site, loses base pairing information, such adducts can serve for the recruitment of repair proteins (e.g., OGG1 and APE1) to control transcription by actively interacting with other regulatory elements and structures14,15 (Fig. 2c). The synthetic modification of 8-oxo-dG in some promoter regions, possibly occurring in the VEGF83, TNFα84, BCL285, and SIRT186 genes, was initially found to activate the transcription of reporter genes. Intriguingly, although oxidative stress oxidizes the VEGF promoter, reduced binding of SP1 to G-rich elements increases transcription87. Later, the G-rich element was found to form a G-quadruplex structure (potential quadruplex-forming sequences; PQS), which can be thermodynamically driven by the AP site and processed from 8-oxo-dG by OGG1-mediated BER88. Furthermore, by recruiting APE1 to this AP site, the G-quadruplex structure enables the utilization of the redox-effector factor-1 (ref. 1) domain of APE1, independent of its catalytic activity, thereby interacting with other transcription factors to increase transcription (e.g., HIF1α, STAT3, and CBP/P30087). Similarly, the NTHL188, PCNA89, KRas90, and HRas91 promoters harbor PQS, of which the 8-oxo-dG modification potentially increases transcription. In contrast, 8-oxo-dG formation in G-quadruplex represses transcription, possibly through topological changes of the G-quadruplex, as shown in reporter genes with the RAD1792 and NEIL393 promoters. Moreover, synthetic 8-oxo-dG, which was introduced into the template strand of PQS, produces transcriptional repression, which is shown on the VEGF gene promoter84.

In addition to the G-quadruplex, the regulatory binding site of the NF-κB transcription factor interacts with 8-oxo-dG together with OGG1 to contribute to transcriptional activation (Fig. 2c). This was observed in ROS production and subsequent 8-oxo-dG modification during ligand-induced gene activation, particularly in TNFα-responsive NF-κB target genes84. During the exposure of cells to TNFα, 8-oxo-dG recruits OGG1 upstream of NF-κB binding sites located in promoter regions of proinflammatory genes (e.g., TNFα, CCL20, CXCL1, B2M, IL1B, and CXCL284,95,96). Regardless of the enzymatic activity, promoter-associated OGG1 increases the occupancy of NF-κB, facilitates the assembly of the transcriptional machinery, and finally activates the transcription of target genes84,95,96. As OGG1 searches for 8-oxo-dG through rotational diffusion and introduces a bend in the DNA duplex97,98, the OGG1-associated recruitment can be mediated by inducing allosteric changes in the chromatin that create an interface for transcription factor binding (e.g., NF-κB and estrogen receptor). Moreover, hypoxia-induced genes, including VEGF, have been found to recruit OGG1 and APE1 to their oxidized promoter regions, thereby facilitating the binding of hypoxia-inducible factor-1α (HIF1α) to the responsive element to increase their transcription83. Intriguingly, in response to oxidative stress, multiprotein complexes, including OGG1, APE1, Ku70, and RNA pol II, are recruited to negative calcium responsive elements (nCaRe) and activate the transcription of the sirtuin-1 (SIRT1) deacetylase, indicating their involvement with other epigenetic regulations86.

Crosstalk with histone modifications

8-Oxo-dG is associated with histone demethylation, wherein DNA oxidation is induced by local ROS generated during the demethylation reaction and subsequently bound by OGG1, which mediates transcriptional regulation (Fig. 2d). This regulation was initially observed in the activation of the estrogen receptor, which led to the transcriptional activation of its target genes (e.g., BCL2 and TET1) in breast cancer cells93. Upon activation, the estrogen receptor binds to the promoter of the target gene and activates the resident histone lysine-specific demethylase (LSD1, also known as KDM1A) to remove H3K9me2, which is associated with transcriptional repression85. During this enzymatic reaction, H2O2 is produced as a byproduct in the nucleus and oxidizes local DNA to produce 8-oxo-dG, which interacts with repair proteins. OGG1 recruits transcription factors, and APE1 induces nicks in the DNA to be assembled by topoisomerase II (TOPIIβ), eventually triggering chromatin conformation changes and transcriptional activation.

A similar mechanism was observed for the demethylation of another histone, H3K4me2, upon activation of the Myc transcription factor99. During tumor transformation, hyperactivated Myc occupies its responsive element E-box on the promoter of critical target genes (e.g., nucleolin and carbamoyltransferase-dihydroorotase) and activates LSD1 to demethylate H3K4me2 with the production of H2O299. Then, local oxidation of DNA is triggered and bound by OGG1 and APE1, thus facilitating the activation of transcription. Likewise, in prostate cancer cells, activation of androgen receptors mediates the increased transcription of the target gene by following the serial activation of the androgen receptor, monoamine oxidase LSD1,
H3K4me2 demethylation, H2O2 production, local 8-oxo-dG oxidation, OGG1-APE1 recruitment, and transcription of androgen-induced target genes, including miRNAs (e.g., KLK3, TPMRSS2, miR-125b2, and miR-133b)100. In addition, during TGFβ-induced target gene activation, 8-oxo-dG oxidation, generated by ROS production during histone demethylation and ligand activation, is required to direct target gene transcription for epithelial-to-mesenchymal transition (EMT)107. This regulation, upon initial activation of phosphorylated SMAD2/3, the regulation axis of LSD1-H3K4me2-DNA oxidation-OGG1-APE1 is activated for transcription of EMT genes (e.g., SNAI1 and WIF1)108. The second oxidative wave from TGFβ stimulation further accumulates 8-oxo-dG and the OGG1 complex, thereby guiding the formation of repressive complexes (LSD1, HDAC3, NcoR1, and newly synthesized SNAI1, which silence target genes)109.

Crosstalk with DNA methylation

For DNA cytosine methylation (5-methylcytosine, 5mC), 8-oxo-dG reduces the binding affinity to DNA methyltransferases (DNMTs), thereby inhibiting the methylation of CpG islands as part of a passive mechanism102-104 (Fig. 2e). Furthermore, 8-oxo-dG occurs in methylated CpG islands and interferes with the binding of methyl-CpG binding proteins (MBPs), including MeCP2, thereby inhibiting their transcriptional suppression activity105. Moreover, even in cases where 8-oxo-dG is not directly formed in the DNA methylation sites, demethylation of adjacent 5mC is stimulated, as shown in some cancer cells (e.g., prostate cancer)106. In this oxidative stress-induced DNA demethylation, OGG1 has essential roles in recognizing 8-oxo-dG lesions and recruiting TET1, which can oxidize adjacent 5mC to 5-hydroxymethylcytosine (5hmC) for DNA demethylation107 (Fig. 2e). Similar to histone demethylation, CpG island demethylation by TET1 produces nuclear ROS. Therefore, resident DNA can be oxidized to 8-oxo-dG and bound by OGG1, thus directing target gene transcription via the oxidative DNA damage response, as shown in TNFa ligand-induced gene activation108 (Fig. 2e). In contrast, 8-oxo-dG DNA oxidation has been reported to contribute to the DNA damage response mechanism, which suppresses the expression of damaged regions by inducing CpG island methylation and chromatin silencing109. 8-Oxo-dG-bound OGG1 interacts with chromodomain helicase DNA-binding protein 4 (CHD4) to recruit repressive chromatin proteins (e.g., CHEK1 and DNMT1) in the genome110. The effect of 8-oxo-dG on DNA methylation may depend on the different contexts of promoter sequences and cellular status, further study is required to clarify the general effect of 8-oxo-dG on DNA methylation.

SEQUENCING OF 8-OXOGUANINE IN THE GENOME

Although various epigenetic functions of 8-oxo-dG have been observed in biochemical studies, the genome-wide distribution of 8-oxo-dG should be determined to conclusively understand the interplay between 8-oxo-dG and other epigenetic modifications. Initially, using an 8-oxo-dG antibody, fluorescence in situ detection of 8-oxo-dG (~1000 kb resolution) in metaphase chromosomes (human peripheral lymphocytes) revealed that 8-oxo-dG is unevenly located within the preferred regions of recombination and single-nucleotide polymorphism111. Subsequently, 8-oxo-dG-containing DNA fragments in the rat kidney genome were identified by immunoprecipitation followed by microarray analysis (approximately 10 kb resolution)114. This study showed that 8-oxo-dG predominantly occurs within gene deserts in correlation with lamina-associated domains (LADs), suggesting that the genome in the nuclear periphery might be spatially prone to oxidative damage.

Recently, several high-throughput sequencing methods have been developed to map 8-oxo-dG in the genome (Table 2) and have revealed that the distribution of 8-oxo-dG is heterogeneous and not uniformly detected throughout the genome112. Using selective biotin conjugation of 8-oxo-dG under mild oxidation, genomic fragments with biotin-labeled 8-oxo-dG were isolated and sequenced (OG-Seq) in mouse embryonic fibroblasts (MEFs in the OGG1 null background) and found to be enriched in the promoter, 5′UTR, and 3′UTR regions relative to the expected frequency113. To investigate 8-oxo-dG at single-nucleotide resolution, Click-code-seq was developed, which analyzed the locations of barcode sequences after ligation to Click-dGTPs that were incorporated into 8-oxo-dG excision sites prepared by in vitro treatment of repair enzymes (Fpg and APE1)114. In the yeast genome, Click-code-seq revealed that 8-oxo-dG accumulates at sites of high nucleosome occupancy compared to nucleosome-free linker regions. Based on OG-Seq, CLAPS-seq (chemical labeling and polymerase stalls sequencing) was developed for single-nucleotide resolution, which relies on the feature that DNA polymerase stalls before biotin-labeled 8-oxo-dG117. In its application to a human HeLa cell genome, CLAPS-seq showed that 8-oxo-dG is underrepresented in the G-quadruplex and promoter sequences with high GC content117. As 8-oxo-dG can be converted to AP sites by OGG1 treatment, a method called AP-Seq was developed by conjugating AP sites using a biotin-labeled aldehyde reactive probe (ARP) for affinity purification and sequencing in X-ray-irradiated HepG2 cells118. The AP sites containing 8-oxo-dG are largely accumulated in retrotransposons (long interspersed elements (LINES) and short interspersed elements (SINEs)) and microsatellites and are generally abundant in open chromatin features (e.g., H3K4me3 and H3K9ac), correlated with GC content, but deficient in closed chromatin (e.g., H3K9me3)118. In particular, 8-oxo-dG-derived AP sites are relatively more abundant in G-quadruplex sequences than in total AP sites118.

High-throughput sequencing of DNA fragments isolated by immunoprecipitation with an 8-oxoguanine antibody was developed (OxiDIP-Seq) and applied to human and mouse genomes (MCF10A and MEFs)117. Approximately 42% of the 8-oxo-dG peaks identified were localized at gene loci and correlated with the activation of the DNA damage response (DDR) with double strand breaks (e.g., H2AX ChIP-Seq)119. Within human gene loci, 8-oxo-dG peaks accumulated in promoter regions with repair proteins (OGG1 and PARP ChIP-Seq) and prevailed in G-quadruplex, CG skew, and bidirectional transcription. As 8-oxo-dG peaks are reduced in the genome of quiescent (G0) cells120, 8-oxo-dG DNA damage appeared to depend on DNA replication and/or transcription. Similarly, using enTRAP-Seq, which employs a catalytically inactive OGG1 mutant (K249Q) to isolate 8-oxo-dG lesions, OGG1-bound 8-oxo-dG is enriched in open chromatin regions and regulatory elements (e.g., promoters, CpG islands, and 5′UTR)121.

In addition, 8-oxo-dG sequencing based on the binding sites of hyperactivated OGG1 (acetylated OGG1 ChIP-Seq) was recently attempted together with sequencing AP sites (AP-Seq), activated APE1 binding sites (APE1 and acetylated APE1 ChIP-Seq; repair-seq), and G-quadruplex sequences (G4 ChIP-Seq using G-quadruplex-specific antibody, BG4) in cancer cell lines (A549 and HCT116)122. This comparative analysis revealed that 8-oxo-dG modification and the subsequent AP1 site with APE1 binding were required to form G-quadruplex structures in the genome, which coincided with the results of previous biochemical studies112,122. As described above, the genome-wide distribution of 8-oxo-dG was examined to yield insights into the global nature of 8-oxo-dG within the genome. Indeed, tracking the distribution of 8-oxo-dG is essential for understanding the general mechanisms that regulate gene expression and redox-dependent pathogenesis. The development of various sequencing methods.
Table 2. Genome-wide 8-oxo-dG-sequencing methods.

	OG-Seq¹¹⁵	Click-code-seq¹¹⁶	CLAPS-seq¹¹⁷	AP-Seq¹¹⁸	OxiDIP-Seq^{119,120}	enTRAP-Seq¹²¹	ChIP-Seq¹²²
Prerequisite	- 8-oxo-dG-specific in vitro oxidation - Biotin conjugation	- In vitro digestion with Fpg and APE1 - Incorporation of Click-dGTP - Biotin conjugation with code sequences	- 8-oxo-dG-specific in vitro oxidation - Biotin conjugation	- In vitro digestion with OGG1 - ARP conjugation	- None	- None	Formaldehyde treatment for crosslinking
8-Oxo-dG isolation	Streptavidin-biotin interaction	Streptavidin-biotin interaction	Streptavidin-biotin interaction	Streptavidin-biotin interaction	Immunoprecipitation with 8-oxo-dG antibody	Affinity purification with K249Q hOGG1 protein	Immunoprecipitation with OGG1 and APE1 antibodies (acyetylated active forms)
Analysis of 8-oxo-dG distribution	Peak analysis of compiled reads	Nucleotide after code sequence	Peak analysis of compiled reads and polymerase stalling site	Peak analysis of compiled reads			
Estimated resolution	~150 bp	Single-nucleotide	~250 bp	~200-800 bp	~100–1000 bp	Size of DNA fragmentation	
Applied genome	Mouse embryonic fibroblast (MEF)	S. Cerevisiae (Yeast)	HeLa	X-ray irradiated HepG2	MEF¹¹⁹ and MCF10A^{119,120}	MEF	A549 and HCT116
Results from 8-oxo-dG sequencing	- Enriched in regulatory elements (promoter, 5′UTR and 3′UTR)	- Enriched in regions with high nucleosome occupancy	- Underrepresented in G-quadruplex and promoter	- Enriched in retrotransposons and microsatellites, open chromatin regions and G-quadruplex; Underrepresented in closed chromatin regions	- Enriched in DNA damaged regions (double strand breaks)¹¹⁹, promoter regions (enriched in repair proteins, G-quadruplex, CG skew, and bidirectional transcription)¹²⁰	- Enriched in open chromatin regions and regulatory elements (promoters, CpG islands, and 5′UTR)	- Located in putative quadruplex sequences (PQS)
for 8-oxo-dG has set up stages to further inspect the epigenetic roles of 8-oxo-dG at the genome-wide level in conjunction with other interacting repair proteins, functional elements, and epigenetic modifications. However, diverging conclusions have been drawn from distinct methodologies and perspectives. Therefore, the distribution of 8-oxo-dG in the genome still needs to be clarified with further development of precise sequencing methods and analyses.

8-OXOGUANINE IN RNA

o^8G. Compared with the studies on 8-oxo-dG, there are only a few studies on o^8G, and its repair mechanisms and regulatory functions are largely unknown. Although both DNA and RNA can react with ROS, the unique characteristics of RNA make it vulnerable to oxidation. This is probably because RNA is more reactive (2’-hydroxyl group), exposed (single-strand, absence of protein protection, such as histones, and cellular location in the vicinity of ROS production), and unsecured (lack of redundant repair systems) than DNA. Numerous forms of oxidized RNA are generated, analogous to oxidized forms in DNA (e.g., o^8G, 8-oxoadenine, 5-hydroxyuridine, and 5-hydroxycytidine). Among them, o^8G is the most abundant product and is susceptible to further oxidation, strand breakage, and base removal. However, o^8G has drawn less attention because of the rapid turnover of the RNA molecule. Nevertheless, not every RNA is unstable: a considerable number of RNAs have long half-lives, as documented for rRNA and tRNA, which even last for several days. RNA plays a wide range of biological roles from imparting genetic information to regulating gene expression; thus, RNA oxidation can critically lead to miscellaneous dysfunctions and regulation of both coding and noncoding RNAs, which are related to pathophysiological consequences under oxidative stress.

Fig. 3 Epitranscriptional roles of o^8G. a Defective protein synthesis induced by o^8G. ROS-induced o^8G in mRNA lowers its coding capacity and causes ribosome stalling, thus advertently producing abortive proteins. ROS can oxidize the free ribonucleotide o^8GTP, which can be incorporated during RNA transcription and cause U \(\rightarrow \text{o}^8\text{G} \) mutation in mRNA. b Ribosome-based quality control of o^8G-mRNAs. o^8G-induced ribosome stalling in mRNA triggers NMD, of which the complex consists of DOM34 and Cue2, cleaves o^8G-mRNAs, and induces degradation using decay machinery, comprising exosomes and Xrn1. c o^8G-mRNA degradation mediated by ribonucleases and RBPs. PNPase binds o^8G and degrades o^8G-containing RNAs. APE1 binds o^8G or o^8G-derived abasic sites to recognize oxidized RNAs and triggers cleavage for degradation, YB-1 interacts with o^8G and induces RNA decay or stabilization. d o^8G modulates signaling pathways by interacting with RBPs and G proteins. PCBP1 and PCBP2 recognize heavily oxidized RNAs by binding to two o^8G sites, leading to the opposite effects; PCBP1 activates but PCBP2 inhibits apoptotic signaling (upper panel). ROS induce oxidation of free ribonucleotide (o^8GTP), which binds to G protein and modulates the function in signal transduction (lower panel). e o^8G-induced global repression of translation. Under ROS production, o^8G modification, which predominantly occurs in rRNA and tRNA, induces decay and cleavage of oxidized rRNA and tRNA, resulting in the global suppression of translation. f o^8G regulates the functions of noncoding RNAs. Position-specific o^8G in the seed region of miRNAs redirects its target recognition via o^8G-A base pairing, resulting in the induction of pathophysiological changes (e.g., cardiac hypertrophy induced by o^8G-miR-1; upper left panel). Position-specific o^8G in rRNA may regulate translational activity (upper right panel). Oxidative stress-induced cleavage of tRNA may be regulated by o^8G, generating tsRNAs as regulators of the stress response. o^8G modification in tRNA may result in changes in other modifications, which lead to alterations in tRNA function (lower panel).
The \(\text{oG} \) in mRNA seems to be generated by a direct oxidative reaction on guanine, but it can be alternatively synthesized during mRNA transcription by incorporating oxidized \(\text{oGTP} \) into RNA polymerase (Fig. 3a), as observed by the adduct of 8-oxo-dGTP during DNA replication. Although the rate of \(\text{oGTP} \) incorporation is low in humans (~2%)\(^{138} \), the pool size of ribonucleotides is much larger than that of 2'-deoxyribonucleotides, and as a consequence, \(\text{oG} \) modification is more likely to be incorporated into mRNA\(^{125} \). In support of this hypothesis, the \(\text{oG} \) adduct was detected at much higher concentrations in mRNA relative to the 8-oxo-dG adduct in DNA, as measured by treating the human lung epithelial cell line with isotope-labeled \(\text{H}_2\text{O}_2 \).\(^{139} \) To prevent the \(\text{oG} \) adduct, MTH1 and NUDT5 proteins in humans degrade \(\text{oGTP} \) and \(\text{oGDP} \) to \(\text{oGMP} \), which is unusable for RNA synthesis\(^{138,140} \). MTH1 and NUDT5 also hydrolyze 8-oxo-dGTP and 8-oxo-dGDP, thus preventing the misincorporation of oxidized nucleotides into DNA and mRNA. In line with this, \(\text{oGTP} \) treatment in MTH1-knockdown cells drastically increased the \(\text{oG} \) mRNA content\(^{73} \). It should be noted that the incorporation of \(\text{oG} \) into the nucleotide position, where it should be U for base pairing with A during mRNA transcription, can direct transcriptional mutation, resulting in the suppression of a nonsense mutation in the luciferase reporter gene by triggering U \(\rightarrow \) \(\text{oG} \) changes in its mRNA sequences (Fig. 3a). While \(\text{oG} \) in this reporter system represents a possible \(\text{oG} \)-directed editing of mRNA transcripts that leads to changes in protein sequence, \(\text{oG} \) in mRNA also shows adventent translation to pathogenic proteins, while excessive \(\text{oG} \) in mRNA induces the accumulation of aggregable amyloid \(\beta \) peptides in cells expressing amyloid precursor proteins\(^{141} \). Although it still remains elusive, the \(\text{oG} \) adduct in mRNA is speculated to specifically induce mutations during transcription and ribosome stalling, which can be used as a regulatory mechanism for selectively producing defective proteins in response to the cellular redox status.

Ribosome-based quality control of \(\text{oG} \)-mRNA

\(\text{oG} \) in mRNA is highly deleterious to its coding ability, as it causes ribosome stalling and subsequently generates abortive proteins, which increases cytotoxicity and deteriorates ribosome homeostasis\(^{1,2,12} \). In the cell, potentially deleterious RNAs containing chemical damage or premature termination codons are subjected to RNA surveillance pathways, which monitor the quality of RNAs and limit the use of aberrant ones by inducing RNA decay, chemical modification, localization, and sequence conversion\(^{13} \). Although RNA surveillance of oxidized mRNA has not been extensively investigated, recent studies have shown that \(\text{oG} \)-mRNAs activate no-go decay (NGD) by stalling ribosomes (Fig. 3b). In a defined in vitro system, a single modified \(\text{oG} \) in the codon was shown to cause ribosome stalling by disrupting tRNA selection regardless of the position\(^{142} \), wherein its frequent \(\text{syn} \) conformation on ribosomes and potential pairing with adenosine cannot sufficiently promote the required conformational changes to proceed with peptide-bond formation\(^{143} \). Then, the activated NGD degrades target RNA using decay machinery (5'-3' \(\text{Xrn1} \)-dependent and 3'-5' exosome-dependent degradations) after inducing endonucleolytic cleavage (e.g., \(\text{Cue2}^{134} \)). \(\text{oG} \)-mRNA accumulates in the absence of NGD factors in yeasts (\(\text{Dom34p} \) and \(\text{Xrn1p} \))\(^{42} \). Notably, recent in vitro assays showed that \(\text{Xrn1} \) stalls at the \(\text{oG} \) sites, suggesting the presence of other factors that contribute to the decay of oxidized RNA\(^{145} \). Concomitantly, the associated ribosome quality control is activated, depending on LTN1 and Hel2 expression with oxidation and alkylation damage agents in yeasts\(^{46} \). Therefore, incomplete nascent peptides and stalled ribosomes can be removed and dissociated, which is necessary for avoiding the toxicity of aberrant proteins and rescuing diminished translation capacity. Although ribosome-based quality control exists to secure the proper coding capacity of mRNA and in part functions for \(\text{oG} \)-

EPITRANSCRIPTIONAL ROLES OF 8-OXOGUANINE

oG-mRNA-mediated defective protein synthesis

In the analysis of RNA oxidation, cytoplasmic RNAs undergo pathological oxidation (as in neurodegenerative disorders), and \(\text{oG} \) modification occurs in mRNA derived from the brains of patients with Alzheimer’s disease (AD)\(^{12} \), which is associated with increasing ROS. \(\text{oG} \) was also identified in the brains of patients with Parkinson’s disease\(^{130} \) and aged mouse brains\(^{131} \), wherein the quantity of \(\text{oG} \) correlated with memory loss and mitochondrial decay, which could be partially reversed by antioxidant treatment\(^{132} \). Based on these observations, the oxidative modification of cytoplasmic RNAs, which may include mRNA, rRNA, tRNA, and miRNA, has been proposed to function in redox-related disease phenotypes, especially in the case of neurodegenerative disorders. In addition to the focus on neuronal diseases (e.g., AD, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), spinal cord injury, epilepsy, dementia of Lewy bodies, prion disease, and subacute sclerosing panencephalitis)\(^{11} \), \(\text{oG} \)-RNA has been investigated in many other diseases, such as atherosclerosis, Down syndrome, hepatocarcinogenesis, xeroderma pigmentosum, hereditary hemochromatosis, disuse atrophy, rimmed vacuole myopathy, emphysematous lungs, chronic obstructive pulmonary disease, and aging\(^{126} \); however, little is known about the direct causality and underlying mechanisms despite its potential dysfunction.

stress\(^{11,126} \). Therefore, \(\text{oG} \) is not only involved in oxidative damage but also serves as an epitranscriptional modification, as we have discussed for 8-oxo-dG.

\(\text{oG} \) in diseases. Initially, \(\text{oG} \) was detected using HPLC separation coupled with electrochemical measurement, in which the amount was higher than that of 8-oxo-dG in the study of hepatocarcinogens (e.g., 2-nitropropane) in rats\(^{27} \). Under normal conditions, 8-oxoguanine and its derivatives, including \(\text{oG} \), were selectively detected in human blood using an 8-oxoguanine-specific antibody\(^{128} \). These early reports suggested the occurrence of \(\text{oG} \), which could be relevant to biological phenotypes, as observed in 8-oxo-dG. Later, \(\text{oG} \) was confirmed to occur in cytoplasmic RNAs by observing retained 8-oxoguanine immunostaining\(^{12} \), DNase I-treated brains of patients with Alzheimer’s disease (AD)\(^{12} \), which is associated with increasing ROS. \(\text{oG} \) was also identified in the brains of patients with Parkinson’s disease\(^{130} \) and aged mouse brains\(^{131} \), wherein the quantity of \(\text{oG} \) correlated with memory loss and mitochondrial decay, which could be partially reversed by antioxidant treatment\(^{132} \). Based on these observations, the oxidative modification of cytoplasmic RNAs, which may include mRNA, rRNA, tRNA, and miRNA, has been proposed to function in redox-related disease phenotypes, especially in the case of neurodegenerative disorders. In addition to the focus on neuronal diseases (e.g., AD, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), spinal cord injury, epilepsy, dementia of Lewy bodies, prion disease, and subacute sclerosing panencephalitis)\(^{11} \), \(\text{oG} \)-RNA has been investigated in many other diseases, such as atherosclerosis, Down syndrome, hepatocarcinogenesis, xeroderma pigmentosum, hereditary hemochromatosis, disuse atrophy, rimmed vacuole myopathy, emphysematous lungs, chronic obstructive pulmonary disease, and aging\(^{126} \); however, little is known about the direct causality and underlying mechanisms despite its potential dysfunction.

Experimental & Molecular Medicine (2022) 54:1626 – 1642
mRNAs, rapid degradation of oG-mRNAs may be used to selectively repress their expression depending on the redox state (Fig. 3b). The possibility of redox-mediated regulation remains to be elucidated in mammalian cells, but to some degree, it has been shown with in vitro-generated mRNAs that one oG adduct in the coding sequence can destabilize mRNA in human cells 146.

Ribonuclease- and RBP-mediated oG-mRNA degradation

In an attempt to identify regulatory proteins for oG, polynucleotide phosphorylase (PNPase), an exoribonuclease in the RNA degradosome complex 147, was isolated as an interacting partner of oG-RNA; its overexpression protected E. coli from oxidative stress 148. Human PNPase (PNPNT) binds oG 149, functions in the mitochondria for its homeostasis 150, reduces RNA damage, and induces tolerance to oxidative stress 151 (Fig. 3c). Increased PNPase binding to oG, designed by computational evolution, renders cells resistant to H2O2 treatment 152. This evidence suggests that PNPase can directly recognize oG-RNA and trigger its degradation to tolerate oxidative stress. In addition, a DNA repair enzyme for BER, APE1, has been proposed to function in oG degradation 153. APE1 can cleave abasic single-stranded RNA 154 and regulate c-Myc mRNA levels in tumor cells 155, implying its putative nonrepair role in regulating posttranscriptional gene expression. Supporting APE-mediated oG degradation, APE1 knockdown increases oG levels of total RNA and rRNA in H2O2-treated HeLa cells 156. In addition, APE1 functions in ribosome biogenesis and RNA processing by interacting with several protein partners, such as nucleophosmin and nucleolin 157. However, it is still questionable whether APE1 directly reacts with the oG site because APE displays marginal activity on the oG substrate relative to abasic DNA, even though the substrate is artificially generated by embedding oG into DNA 158. Therefore, APE1 may act on oG-derived abasic sites, which are processed either by RNA glycosylases such as MGP 159 or by subsequent oxidative reactions that lead to hydrolysis (e.g., oxidative depurination of oG, facilitated by cytochrome c 158) (Fig. 3c). It was recently reported that APE1 destabilizes abasic mRNAs derived from ROS-generating mitochondria, which function in oxidative phosphorylation 160.

Several RNA-binding proteins (RBPs) have been identified with oG. Y-box binding protein 1 (YB-1, also called YBX) preferentially binds oG-containing RNAs through its cold shock domain (Fig. 3c), and its overexpression in E. coli confers tolerance against oxidative stress 154. However, the detailed mechanism and consequences of this interaction remain unknown. It has been proposed that YB-1 likely triggers RNA decay by recruiting other ribonucleases as components of processing bodies. Otherwise, YB-1 can stabilize oG-containing mRNAs by conferring RNA-chaperone function 162, preventing the decapping process 163, or sequestering the mRNAs into stress granules for protection under oxidative stress 164. Through mass spectrometry of oG-interacting proteins, AU-rich element RNA-binding protein 1 (AUF1, also called HNRNPC) and HNRNPC were identified in HeLa cells, wherein knockdown of these genes increases sensitivity to oxidative conditions 165. Among them, AUF1 can destabilize oG-containing mRNA 166, consistent with its known function to promote mRNA decay by binding to AU-rich elements 166 (Fig. 3c). Oxidized mRNA increases in AUF1-deficient human cells 166. Overall, oG is recognized directly by ribonucleolytic enzymes (PNPase and APE1) and RBPs (YB-1 and AUF1) as part of ribosome-independent mRNA quality control, but oG can be used as an epitranscriptional modification that marks selective mRNA degradation in terms of posttranscriptional gene repression (Fig. 3c).

Modulation of the signaling pathway

Another RBP, poly(C)-binding protein 1 (PCBP1, also called HNRNP1), was identified using oligoribonucleotides containing two oGAs and mass spectrometry 168. Intriguingly, PCBP1 only binds heavily oxidized RNAs through its two RNA-binding KH domains and does not destabilize target mRNAs but instead activates signaling pathways that lead to apoptotic cell death 169 (Fig. 3d). Decreased caspase-3 activation and PARP cleavage are observed in the absence of PCBP1. Based on this, PCBP1 binding to excessive oGAs was suggested to initiate a damage-signaling pathway that leads to apoptosis under oxidative stress. In contrast, even though PCBP2 binds heavily oxidized oG-RNA, PCBP2 suppressed ROS-mediated cell death 169 (Fig. 3d). This opposite effect is hypothesized to be caused by counteracting PCBP1 but remains elusive. In addition, cytochrome c interacts with oG and has been proposed to induce apoptosis by catalyzing oG oxidation to depurination and crosslinking, which may facilitate cytochrome c release from mitochondria 159. Furthermore, increased concentrations of free oGTP during oxidative stress have been reported to modulate the activity of small G proteins (Fig. 3d). oGTPyS, an oxidized unhydrolyzable analog of GTP, activated Ras-ERK pathways in vitro more than its unoxidized form 170 but inactivated Rac1 and NADPH oxidase (NOX) 171. Consistently, oGTPyS inhibits Rac1 activation and NOX-derived ROS production, resulting in the downregulation of inflammatory neutrophil activation 171. Similarly, exogenous 8-oxo-dGTP was shown to inhibit Rac1 and NOX 172, ameliorating various inflammation-related diseases 173. Under certain conditions, oG modulates several signaling pathways through oG-RNA or free oGTP, which induces apoptosis and suppresses inflammatory responses 174. Further studies are required to elucidate the detailed roles and mechanisms of oGs in modulating signaling pathways.

Global translation repression

To properly respond and adapt to redox changes, the suppression of global translation should be precisely and timely controlled to initiate the synthesis of new stress-defense proteins. oG modification appears to have a negative effect on gene expression, decreasing the efficiency and fidelity of translation 174,175. oG in RNA was dramatically increased in H2O2-treated E. coli, and the folding structure of rRNA and tRNA did not protect their oxidation in vitro 176. In the brains of patients with AD, ribosome dysfunction is associated with increased RNA oxidation as an early event, resulting in a decreased rate and capacity for protein synthesis 177. This implies that the overall translation can be immediately reduced by producing an oG modification in the translational machinery, which may be actively used to hold translation with regard to oxidative stress and lead to pathophysiological changes (Fig. 3e). oRNA has been proposed to be sensitive to ROS levels by interacting with iron. In neurons of patients with AD, rRNA is bound by redox-active iron (Fe2+ , iron(II)) 178, which is competent to produce reactive hydroxyl radicals (Fenton reaction with H2O2) and hence readily oxidized to oG. Oxidized ribosomes show a significant reduction in translation 179. Ribosomal activities in translation largely depend on precisely tuned conformational transitions within the RNA folding framework. Therefore, oG modification potently perturbs the critical RNA structure by disrupting existing interactions and/or rearranging new structures via altered base pairing (oG-A) 180. In line with this, mitochondrial rRNA sequences are evolutionarily shifted to minimize guanines located in exposed surfaces as well as the overall RNA content in the ribosome, converging into a more protein-based architecture. This is presumably driven by cellular fitness to eliminate potent oG sites in the ribosome because they are vulnerable to ROS generation during mitochondrial energy production.

The impairment in ribosome function correlates with reduced rRNA and tRNA levels, as observed in the brains of patients with AD and many other cases 177. This is likely caused by RNA quality control, which detects and degrades defective rRNAs and modification-deficient tRNAs through nonfunctional RNA decay (RNR) 183,184 and rapid tRNA decay (RTD) 185 pathways. Intriguingly, the recognition of RTD for tRNA modification...
depends on the overall stability of the tertiary structure, implying that oG may be involved in this process by inducing unconventional base pairing (oG-G-A). Moreover, tRNA undergoes specific cleavage in response to oxidative stress, resulting in the downregulation of functional tRNA pools that can limit the translational elongation process. Considering that the majority of RNA in cells consists of rRNA and tRNA, the overall direction of oG modification would be the suppression of global translation to the extent that it relies on the cellular redox state (Fig. 3e).

Regulation of noncoding RNAs

Beyond damage signals from extensive oG oxidation, position-specific oG can serve as an epitranscriptional modification that alters regulatory RNA–RNA interactions via oG-G-A base pairing, which is particularly important for noncoding RNAs in response to redox changes. Recently, oG oxidation has been observed in miRNAs, which are regulatory noncoding RNAs that recognize hundreds of target mRNAs through base pairing to their seed regions (positions 2–8) and suppress their expression by reducing mRNA stability and/or translation. Depending on the functions of their targets, miRNAs have diverse pathophysiological roles. For this reason, any change in the seed sequence can alter different sets of target transcripts, resulting in the redirection of miRNA-mediated functions (Fig. 3f). Indeed, extensive oxidation of miR-184 has been reported to target Bcl-xL and Bcl-w, thereby increasing cardiomyocyte cell death and ischemia–reperfusion (IR) injury, implicating that oxidized damage in miRNA can alter its biological function.

Most certainly, oG modification in cardiac miRNAs has been precisely identified by developing the oG sequencing method (oG-miSeq), which isolates oG-miRNA by immunoprecipitation with an oG-specific antibody and determines oG positions at single-nucleotide resolution by analyzing the oG>T mutation in cDNA. Under oxidative hypertrophic conditions, oG is generated predominantly at position 7 of miR-1 (7oG-miR-1), which results in the redirected recognition and silencing of target genes. This effect is dependent on oG-A base pairing because substitution of oG with U at position 7 of miR-1 (7U-miR-1) causes the cardiac phenotype in transgenic mice. Furthermore, antagonizing 7oG-miR-1 using its sponge inhibitor (competitive target sites of oG-miR-A base pairing) prevented cardiac hypertrophy in mice, demonstrating that 7oG-miR-1 serves as an endogenous driver of related pathogenesis. As cardiac hypertrophy is not the only disease involving ROS, other redox-associated conditions, such as tumors, can be regulated by the oG modification of miRNAs. Additionally, oG and its associated proteins can function in miRNA processing. APE1 recognizes oG-derived abasic RNAs, mediating the processing of miR-221/222 through its endonuclease activity and interaction with a component of the microprocessor Drosha, which are enhanced by oxidative stress. Therefore, APE1 consequently induces repression of miR-221/222 target genes, including the tumor suppressor PTEN, in cancer cells. An oG binding protein, PCBP1, modulates miRNA processing as a component of the miRNA-processing pathway that regulates miRNA biogenesis in myoblasts, resulting in the control of skeletal muscle differentiation.

Although excessive oxidation of rRNA and tRNA tends to cause global repression of translation, specific oG oxidation can exert regulatory roles in functional transition. In H2O2-treated E. coli, oG was predominantly identified in the large subunit of the ribosome by oG immunoprecipitation and sequencing. Generally, oxidation in ribosomes inhibits their activity, but the oxidation of a specific position in the active site surprisingly facilitates translation. While this experiment used oxidized nucleotides instead of oG, this study suggests the importance of positional oxidation in terms of functional transition in rRNA. Regarding tRNA oxidation, since tRNA already contains various base modifications, oxidation in tRNA appears to alter other modifications, including redox-sensitive sulfur-containing nucleotides, such as 2-thiouridine (S2U), rather than generating oG. Reprogramming of tRNA modification mediates codon-biased translation (TTG codon, recognized by increased cognate tRNA), which occurs in yeast under oxidative stress. In addition, oxidative stress has been shown to induce tRNA cleavage through specific enzymes (e.g., angiogenin in humans, Rny1 in yeasts) to confer specific regulation and function, not just generated by byproducts of oxidative damage (Fig. 3f). tRNA fragments (tRNA-derived small RNAs; tsRNAs) promote cell death and stress granule assembly, suppress translational initiation, and induce RNA-mediated silencing, similar to miRNAs. Furthermore, CCA deactivation, a cleavage of the conserved 3-CCA termini of tRNAs by angiogenin, was observed to be rapidly induced by oxidative stress but quickly restored by the CCA-adding enzyme to reactive translation in the absence of ROS. Under mild oxidative stress, tRNA undergoes site-specific cleavage, which may regulate a specific function. However, there is still a lack of direct evidence that oG is involved in this regulation. Therefore, further studies are needed to determine the relationship between noncoding RNAs and oG oxidation.

CONCLUDING REMARKS

To date, 8-oxoguanine has been mainly described as a product of oxidative damage, but growing evidence has highlighted that 8-oxoguanine can function as an epigenetic (Fig. 2) and epitranscriptional modification (Fig. 3). Such features seem to be intrinsically inherited from the ability of 8-oxoguanine to pair with adenine and are closely related to subsequent DNA repair or RNA surveillance. As a coordinated action for regulatory modification, 8-oxoguanine seems to follow unusual writer, reader, and eraser effectors. ROS directly writes 8-oxoguanine, DNA repair proteins read and/or erase 8-oxo-dG, and RBPs read oG, although the nature of 8-oxoguanine as a result of oxidative damage makes it difficult to decisively categorize it. Furthermore, direct repair of oG is still unknown, but it could present as in the case of an RNA repair system that directly seals ribotoxin-induced breakage of tRNA.

Since 8-oxo-dG behaves as a potent oncogenic mutagen (G > T and T > G), its excessive occurrence in the genome is prohibited by a specific BER with the aid of other alternative DNA repair pathways (e.g., MUTYH and MTH1). However, the remaining 8-oxo-dG can induce transcriptional mutations (C > A) and deteriorate the integrity of regulatory sequences. 8-Oxo-dG and the subsequent repair intermediate AP site can control transcription by interacting with repair proteins (OGG1 and APE1), which recruit transcriptional regulators for functional elements (e.g., G-quadruplex and NF-kB binding sites). In addition to interfering with CpG methylation (DNMT1 and MBP), 8-oxo-dG also mediates transcriptional regulation in association with other epigenetic modifications (histone and CpG island methylation), where local ROS production, generated by the demethylation process (LSD1 and TET1), modifies resident elements to 8-oxo-dG. The recent development of 8-oxo-dG sequencing has now set the stage for the study of its distribution in the genome. Future investigation should aim to advance the precision of 8-oxo-dG genome sequencing to yield proper insights into the epigenetic roles of 8-oxo-dG, particularly in conjunction with other transcriptional regulators and epigenetic modifications.

However, little is known about oG, despite its prominent quantity (more than that of oxidized DNA) in ROS-related diseases. Incorporation of oGTP during transcription can induce a translational error, and oG in mRNA typically degenerates its coding capacity, stalls the ribosome, and produces abortive peptides, which are then subjected to NGD and ribosome quality control, leading to selective mRNA degradation. Regardless of ribosomes, several oG-bound ribonucleases (PNPase and APE1) and RBPs (Y-B1 and AUF1) facilitate oG-RNA decay. While oG-mediated translational repression...
and RNA degradation appear to protect against oxidative RNA damage, these regulations can be interpreted as epitranscriptional regulations for global and selective downregulation of gene expression in response to the redox state. In line with this, some oG-bound RBPs regulate apoptotic signaling pathways (PCBP1 and PCBP2), as oGTP modulates small G proteins in signaling cascades. In general, RNA oxidation triggers the repression of global translation through oG modification in rRNA and tRNA, accompanied by their destabilization. However, oG in regulatory noncoding RNAs such as miRNAs (e.g., miR-1) can reprogram their regulatory targets and function via oG-A base pairing. Such position-specific oG is likely to be used in noncoding RNAs, including rRNA and tRNA, where oG is likely involved in oxidative stress-induced cleavage to produce their regulatory forms.

Based on oG immunoprecipitation, oG-containing RNAs have been identified using microarrays in an ALS mouse model or high-throughput sequencing in H2O2-treated yeast and bacteria and in air pollution- or formaldehyde-treated high-throughput sequencing in H2O2-treated yeast and bac-

REFERENCES

1. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. *Annu. Rev. Biochem.* **86**, 715–748 (2017).

2. Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of reductive-dependent signalling. *Nat. Rev. Mol. Cell Biol.* **15**, 411–421 (2014).

3. Kasai, H. & Nishimura, S. Hydroxylation of deoxyguanosine by ascorbic acid and other reducing agents. *Nucleic Acids Res.* **12**, 2137–2145 (1984).

4. Kasai, H. & Nishimura, S. Hydroxylation of rRNA and tRNA, where oG is likely involved in oxidative stress-induced cleavage to produce their regulatory forms.

5. Such position-specific oG is likely to be used in noncoding RNAs, including rRNA and tRNA, where oG is likely involved in oxidative stress-induced cleavage to produce their regulatory forms.

6. Based on oG immunoprecipitation, oG-containing RNAs have been identified using microarrays in an ALS mouse model or high-throughput sequencing in H2O2-treated yeast and bacteria and in air pollution- or formaldehyde-treated bronchial epithelial cells. Nevertheless, signal-to-noise issues have been raised for the mild immunoprecipitation conditions these studies used; thus, these techniques were recently revised for redox-related diseases. By determining the transcriptome-wide distribution of oG, our knowledge of oG can be expanded, particularly to investigate whether oG interacts with other RNA modifications.

7. The biological significance of 8-oxoguanine is now expanding to its regulatory role in redox-mediated epigenetic and epitranscriptional modifications. However, many aspects of the biological functions postulated here need to be confirmed.
44. d’Enrico, M. et al. New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J. 25, 4305–4315 (2006).
45. Beshero, T. et al. Repair of 8-oxoguanine in DNA by mammalian N-methylpurine-DNA glycosylase. Proc. Natl Acad. Sci. USA 90, 8901–8904 (1993).
46. Yacoub, A., Auger, L., Kelley, M. R., Doetsch, P. W. & Deutsch, W. A. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. Proc. Natl Acad. Sci. USA 115, 2336–2342 (1998).
47. Nishimura, S. 8-Hydroxyguanine: a base for discovery. Mutat. Res. 450, 157–161 (2000).
48. Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA in Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 10548–10553 (2002).
49. Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA in Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 10548–10553 (2002).
50. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 503, 411–416 (2013).
51. Tsuzuki, T. et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene. Cancer Res. 63, 2360–2366 (2003).
52. Ruggieri, V. et al. Loss of MUTYH function in human cells leads to accumulation of 8-oxoguanine. Nucleic Acids Res. 32, 1362–1369 (2004).
53. Ohno, M. et al. 8-oxoguanine causes spontaneous de novo germline mutations. Proc. Natl Acad. Sci. USA 104, 19798–19803 (2007).
54. van den Boogaard, M. L. et al. Defects in 8-oxo-guanine repair pathway cause defects in the repair of DNA lesions induced by oxidative DNA damage. Nucleic Acids Res. 42, 6529–6538 (2014).
55. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 464, 1069–1072 (2010).
56. Li, M. et al. APE1 deficiency impairs cellular senescence and premature aging features. Nucleic Acids Res. 46, 5664–5677 (2018).
57. Naylor, S. L., Johnson, B. E., Mimna, J. D. & Sakaguchi, A. Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329, 451–454 (1987).
58. van den Boogaard, M. L. et al. Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma. Proc. Natl Acad. Sci. USA 118, e2007898118 (2021).
59. Greenspan, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 464, 153–158 (2007).
60. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 505, 415–421 (2013).
61. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 429, 883–891 (2004).
62. Allgayer, J., Kitscha, N., Bartelt, S., Epe, B. & Khokha, A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxo-guanine. Nucleic Acids Res. 44, 7267–7280 (2016).
63. Pastushk, V. et al. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L1367–L1375 (2015).
64. Pan, L. et al. Oxidized DNA base lesions function in 8-oxoguanine DNA glycosylase-1-mediated epigenetic regulation of nuclear factor κB-driven gene expression. J. Biol. Chem. 291, 25553–25566 (2016).
65. Perillo, B. et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319, 202–206 (2008).
66. Antoniali, G. et al. SIRT1 gene expression upon genotoxic damage is regulated by APE1 through nCAl-promoter elements. Mol. Biol. Cell 25, 532–547 (2014).
67. Schäfer, G. et al. Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1 and Sp3-dependent activation of two proximal GC-rich promoter elements. J. Biol. Chem. 278, 8190–8198 (2003).
68. Fleming, A. M., Ding, Y. & Burrows, C. J. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc. Natl Acad. Sci. USA 114, 2604–2609 (2017).
69. Redstone, S. C., Fleming, A. M. & Burrows, C. J. Oxidative modification of the potential G-quadruplex sequence in the PCNA gene promoter can turn on transcription. Chem. Res. Toxicol. 32, 437–446 (2019).
70. Cogoi, S., Ferino, A., Miglietta, G., Pedersen, E. B. & Xodo, L. E. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res. 46, 661–676 (2018).
71. Membrino, A., Cogoi, S., Pedersen, E. B. & Xodo, L. E. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One 6, e24421 (2011).
72. Zhu, J., Fleming, A. M. & Burrows, C. J. The RAD17 promoter sequence contains a potential G-quadruplex sequence in the human HRAS promoter element. J. Biol. Chem. 278, 19249–19258 (2003).
73. Fleming, A. M., Zhu, J., Ding, Y. & Burrows, C. J. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc. Natl Acad. Sci. USA 114, 2604–2609 (2017).
74. Brégeon, J., Yacoub, A., Augeri, L., Kelley, M. R., Doetsch, P. W. & Deutsch, W. A. A Drosophila ribosomal protein contains 8-oxo-guanine and abasic site DNA repair activities. Proc. Natl Acad. Sci. USA 104, 19798–19803 (2007).
75. Konovalov, K. A. et al. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. J. Biol. Chem. 294, 4924–4933 (2019).
76. Saxowsky, T. T., Meadows, K. L., Klungland, A. & Doetsch, P. W. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Natl Acad. Sci. USA 105, 18877–18882 (2008).
77. Yacoub, A., Augeri, L., Kelley, M. R., Doetsch, P. W. & Deutsch, W. A. A Drosophila ribosomal protein contains 8-oxo-guanine and abasic site DNA repair activities. Proc. Natl Acad. Sci. USA 104, 19798–19803 (2007).
78. Ramon, O. et al. Effects of 8-oxo-7, 8-dihydro-2′-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic. Res. 31, 217–229 (1999).
79. Haller-Morrisson, M. K., Kotler, J. J., Martin, B. D. & Sugden, K. D. Oxidized guanine lesions as modulators of gene transcription. Altered p53 binding affinity and repair shielding by 7, 8-dihydro-8-oxo-2′-deoxyguanosine lesions in the NF-κB promoter element. Biochemistry 42, 9761–9770 (2003).
80. Moore, S. P., Toomire, K. J. & Strauss, P. R. DNA modifications repaired by base excision repair are epigenetic. DNA Repair (Amst.) 12, 1152–1158 (2013).
81. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 728–732 (2004).
82. Ali, J.Y. Hahm et al. Nucleic Acids Res. 39, 14751–14761 (2011).
83. Ba, X. et al. 8-oxoguanine DNA glycosylase-1 augments promi-
103. Malteva, D. V., Baykov, A. A., Jeltsch, A. & Gromova, E. S. Impact of 7, 8-dihydro-8-oxo-guanine on methylation of the CpG site by Dnmt3a. Biochemistry 48, 1361–1368 (2009).

104. Turk, P. W., Laayoun, A., Smith, S. S. & Weitzman, S. A. DNA adduct 8-hydroxy-2'-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16, 1253–1255 (1995).

105. Calinak V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

106. Donkena, K. V., Young, C. Y. & Tindall, D. J. Oxidative stress and DNA methylation in prostate cancer. Obstet. Gynecol. Int. 2010, 302051 (2010).

107. Zhou, X. et al. OGG1 is essential in oxidative stress induced DNA demethylation. Cell Rep. 28, 11661–1173 (2019).

108. Sengupta, S. et al. Ligand-induced gene activation is associated with oxidative genome damage whose repair is required for transcription. Proc. Natl Acad. Sci. USA 117, 22183–22192 (2020).

109. O'Hagan, H. M. et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20, 606–619 (2011).

110. Xia, L. et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 31, 653–668, e657 (2017).

111. Lim, S.-O. et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135, 2128–2140, e2128 (2008).

112. Poetsch, A. R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 18, 207–219 (2020).

113. Ohno, M. et al. A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res. 16, 567–575 (2006).

114. Yoshihara, M., Jiang, L., Akatsuka, S., Suyama, M. & Toyokuni, S. Genome-wide profiling of 8-oxo-guanine reveals its association with spatial positioning in nucleus. DNA Res. 21, 603–612 (2014).

115. Ding, Y., Fleming, A. M. & Burrows, C. J. Sequencing the mouse genome for the oxidatively modified base 8-oxo-7, 8-dihydroxyguanine by OGG-Seq. J. Am. Chem. Soc. 139, 2569–2572 (2017).

116. Wu, J., McKeague, M. & Sturla, S. J. Nucleotide-resolution genome-wide mapping of oxidative DNA damage by click-code-seq. J. Am. Chem. Soc. 140, 9783–9787 (2018).

117. An, J. et al. Genome-wide analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine at single-nucleotide resolution unveils reduced occurrence of oxidative damage at G-quadruplex sites. Nucleic Acids Res. 49, 12252–12267 (2021).

118. Poetsch, A. R., Boulton, S. J. & Loscombie, N. M. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis. Genome Biol. 19, 1–23 (2018).

119. Amente, S. et al. Genome-wide mapping of 8-oxo-7, 8-dihydro-2'-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA G-quadruplex sites. Biochemistry 59, 85–89 (2019).

120. Roychoudhury, S. et al. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc. Natl Acad. Sci. USA 117, 11409–11420 (2020).

121. Yan, L. L., Simms, C. L., McLaughlin, F., Vierstra, R. D. & Zaher, H. S. Oxidation and alkylations stresses activate ribosome-quality control. Nat. Commun. 10, 1–15 (2019).

122. Carpousis, A. J., Van Houwe, G., Ehretsmann, C. & Krisch, H. M. Copurification of E. coli RNAase E and PNpase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76, 889–900 (1994).

123. Wu, J. et al. Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48, 2012–2020 (2009).

124. Hayakawa, H. et al. Methylated base 8-oxo-7,8-dihydroguanine by OG-Seq. J. Am. Chem. Soc. 1256 (1999).

125. Barchiesi, A. et al. DNA repair protein APE1 degrades dysfunctional abasic mRNA in stalled ribosomes during No Go Decay. Elife 8, e49117 (2019).

126. Phillips, C. N. et al. Processing of RNA Containing 8-Oxo-7,8-Dihydroguanine (8-oxoG) by the Exoribonuclease Xrn-1. Front. Mol. Biol. 8, 703115 (2021).

127. Yan, L. L., Simms, C. L., McLoughlin, F., Vierstra, R. D. & Zaher, H. S. Oxidation and alkylations stress activate ribosome-quality control. Nat. Commun. 10, 1–15 (2019).

128. Carpousis, A. J., Van Houwe, G., Ehretsmann, C. & Krisch, H. M. Copurification of E. coli RNAase E and PNpase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76, 889–900 (1994).

129. Wu, J. et al. Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48, 2012–2020 (2009).

130. Hayakawa, H. & Sekiguchi, M. Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry 45, 6749–6755 (2006).

131. Chen, H-W. et al. Mammalian polynucleotide phosphorylase is an intermembrane space mase that maintains mitochondrial homeostasis. Mol. Cell. Biol. 26, 8475–8487 (2006).

132. Wu, J. & Li, Z. Human polynucleotide phosphorylase reduces oxidative DNA damage and protects Hela cell against oxidative stress. Biochem. Biophys. Res. Commun. 372, 288–292 (2008).

133. Gonzalez-Riversa, I. C. et al. Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding. Comput. Struct. Biotechnol. J. 18, 137–152 (2020).

134. Malfatti, M. C., Antoniali, G., Cordich, M. & Tell, G. Coping with RNA damage with a focus on APE1, a BER enzyme at the crossroad between DNA damage repair and RNA processing/decay. DNA Repair (Amst.) 104, 103133 (2021).

135. Berquist, B. R., McNiel, D. R. & Wilson, D. M. Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on AP site incision. J. Mol. Biol. 379, 17–27 (2008).

136. Barnes, T. et al. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endonuclease that cleaves c-myc mRNA. Nucleic Acids Res. 37, 3946–3958 (2009).

137. Viscotto, C. et al. APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the RNA quality control process. Mol. Cell. Biol. 29, 1834–1854 (2009).

138. Malfatti, M. C. et al. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res. 45, 11193–11212 (2017).

139. Liu, Y. et al. RNA abasic sites in yeast and human cells. Proc. Natl Acad. Sci. USA 117, 20689–20695 (2020).

140. Tanaka, M. et al. RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radic. Biol. Med. 53, 854–862 (2012).

141. Barchiesi, A. et al. DNA repair protein APE1 degrades dysfunctional abasic mRNA in mitochondria affecting oxidative phosphorylation. J. Mol. Biol. 433, 167125 (2021).
