Management of lupus nephritis: a systematic literature review informing the 2019 update of the joint EULAR and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations

Myrto Kostopoulou, Antonis Fanouriakis, Kim Cheema, John Boletis, George Bertsias, David Jayne, Dimitrios T Boumpas

ABSTRACT

Objectives To analyse the current evidence for the management of lupus nephritis (LN) informing the 2019 update of the EULAR/European Renal Association-European Dialysis and Transplant Association recommendations.

Methods According to the EULAR standardised operating procedures, a PubMed systematic literature review was performed, from January 1, 2012 to December 31, 2018. Since this was an update of the 2012 recommendations, the final level of evidence (LoE) and grading of recommendations considered the total body of evidence, including literature prior to 2012.

Results We identified 387 relevant articles. High-quality randomised evidence supports the use of immunosuppressive treatment for class III and class IV LN (LoE 1a), and moderate-level evidence supports the use of immunosuppressive treatment for pure class V LN with nephrotic-range proteinuria (LoE 2b). Treatment should aim for at least 25% reduction in proteinuria at 3 months, 50% at 6 months and complete renal response (<500–700 mg/day) at 12 months.

Conclusions There is high-quality evidence to guide the initial and subsequent phases of class III/IV LN treatment, but low-to-moderate quality evidence to guide treatment of class V LN, monitoring and optimal duration of immunosuppression.

INTRODUCTION

Lupus nephritis (LN) affects a significant proportion of patients with systemic lupus erythematosus (SLE) and is accompanied by significant morbidity. To facilitate physician decisions and homogenise patient care, the first set of joint EULAR/European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) recommendations for the management of LN was published in 2012. Since then, a number of randomised...
controlled trials (RCTs) have been conducted and meta-analyses of different treatments have been published, while a number of issues regarding optimal monitoring of LN, duration of immunosuppressive treatment and management of end-stage kidney disease (ESKD) are still a matter of debate. To this end, an update of the 2012 recommendations was recently published, with the participation of a multidisciplinary Task Force.

Here, we report the results of the systematic literature review (SLR) which informed the 2019 update of the EULAR/ERA-EDTA recommendations for the management of LN. These were presented to the Task Force during a dedicated meeting, to provide the current evidence base and facilitate the formulation of overarching principles and individual recommendations.

METHODS

We followed the standardised operating procedures for the development of EULAR-endorsed recommendations and employed the Appraisal of Guidelines Research and Evaluation instrument. A Delphi-based methodology within the Task Force identified 15 research questions covering the following topics related to LN: diagnosis and classification, pharmacologic treatment, monitoring and therapeutic targets, refractory LN, management of LN in pregnancy, anti-phospholipid syndrome-associated nephropathy, chronic kidney disease, comorbidities and adjunctive therapy. Since this was an update of the 2012 recommendations, the SLR considered all PubMed English-language articles published between January 1, 2012 and December 31, 2018. As the search strategy intended to address 15 different questions, instead of performing a single, broad SLR, we chose to perform focused SLRs for each topic separately. This resulted in 14 dedicated search strings (citations both for induction and for maintenance treatments were retrieved using the same search string). All study designs were included (excluding narrative reviews, viewpoints, opinion or consensus papers), with a minimum of 10 patients/study (except in selected research questions with very limited data). The eligible studies were reviewed for snowball references, and for each eligible study, data extraction concerned parameters for all 15 research questions. A detailed description of the search terms and strategy is provided in online supplementary table 1, and the number of initial articles retrieved and final articles included per research question is shown in table 1.

The SLR was performed by three individuals (questions 1, 2, 7, 9: KC, questions 3, 6, 8, 10–15: AF, questions 4, 5: MK), who independently screened all titles and abstracts to identify studies that were eligible for full-text evaluation. References from included studies were hand-searched to consider any additional relevant articles. An independent data extraction from included papers was performed and evidence was summarised in dedicated tables, which were formulated according to the research question. The level of evidence (LoE) and strength of the recommendations were graded according to the 2009 Oxford Centre for Evidence-Based Medicine, based on the design and validity of available studies. Risk of bias (RoB) was assessed using the Cochrane Risk of Bias Assessment Tool for RCTs and the Newcastle-Ottawa scale for observational studies. The methodologist (GB) reviewed a random 20% of the identified papers to resolve any disagreements in grading of evidence. During the formulation and grading of recommendations (GoR), the final LoE/GoR considered the total body of evidence, including studies published before 2012, as both the convenors (DJ, DTB), the methodologist (GB) and several of the Task Force members had also participated in the 2012 recommendations. An overall detailed description of the results of the SLR is shown in online supplementary table 2.

RESULTS

Predictive value of baseline clinical and histologic parameters for long-term outcomes in lupus nephritis

The SLR identified that, at the time of LN diagnosis, (i) compromised kidney function, (ii) hypertension and (iii) increased patient age have been associated with adverse long-term kidney outcomes. With regard to histologic features, proliferative forms of LN (histologic classes III and IV according to the 2003 International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification), increasing percentage of crescents and higher National Institutes of Health histologic activity and chronicity scores have all been associated with adverse long-term kidney outcomes. These associations were confirmed in observational studies captured in the current SLR. However, from the latter, it became evident that additional histologic features may also carry prognostic implications. Specifically, tubulointerstitial lesions, especially interstitial fibrosis, tubular atrophy or their combination, have been associated with increased risk of ESKD or a composite outcome, in retrospective observational studies. In a retrospective study of 105 patients with initial renal biopsy between 1987 and 2011 and a 10-year follow-up, presence of interstitial fibrosis/tubular atrophy in >25% of biopsy area was associated with an almost fourfold increased risk for ESKD (HR: 3.89, 95% CI 1.25 to 12.14). Additionally, evidence of thrombotic microangiopathy may be present in 5–25% of patients with LN. Nevertheless, data from observational studies regarding its impact on prognosis are equivocal; six studies have shown association of thrombotic microangiopathy with poor long-term renal outcomes (OR ranging from 2.14 to 5.80) or worse response to treatment, while five studies have failed to show such an association.

Hydroxychloroquine in lupus nephritis

A detailed SLR concerning the efficacy and safety of hydroxychloroquine (HCQ) was performed in the context of the recently updated EULAR recommendations for the management of SLE. Consequently, the current SLR focused on publications exploring the associations of...
HCQ specifically with LN outcomes; few such data are available. In individual studies, use of HCQ has been associated with a lower risk for tubulointerstitial inflammation on kidney biopsy56 and with a higher likelihood for complete response at 1 year.57 Regarding long-term outcomes, HCQ use has been associated with reduced risk for ESKD/chronic kidney disease (CKD) or doubling of serum creatinine (adjusted HR 0.18–0.40);27, 58, 59a posthoc analysis of the Aspreva Lupus Management Study (ALMS) RCT showed that lack of treatment with antimalarials had more than double risk for treatment failure (defined as death or ESKD or sustained doubling of serum creatinine or renal flare or requirement for rescue therapy) during the maintenance phase (OR 2.4, p = 0.02).60 Data regarding protection from kidney flares are equivocal61, 62; a single study showed lower blood concentrations of HCQ in patients with LN who experienced a flare (0.59 vs 0.81 mg/L; p = 0.005).63

Table 1

Question	Initial number of PubMed hits	Final number of studies included
Diagnosis and classification of lupus nephritis		
1. What is the prognostic significance of kidney biopsy findings?	654	33
2. Risk stratification of patients with lupus nephritis by incorporating demographic, clinical and histological data	973	64
Pharmacologic treatment of lupus nephritis		
3. What is the evidence for the benefits and harms of hydroxychloroquine in lupus nephritis?	208	16
4. ‘Induction’ therapies in lupus nephritis (including dosage of glucocorticoids and use of calcineurin inhibitors)	1227	127
5. ‘Maintenance’ therapies in lupus nephritis (including dosage of glucocorticoids and use of calcineurin inhibitors)		
Monitoring and therapeutic targets		
6. How should lupus nephritis be monitored?	2739	85
7. What is the goal of treatment in lupus nephritis?	354	18
8. Duration of immunosuppressive treatment in lupus nephritis	98	16
Refractory lupus nephritis		
9. What is the definition of refractory lupus nephritis?	270	13
10. How should refractory/flaring lupus nephritis be treated?	286	36
Special topics in lupus nephritis		
11. Management of lupus nephritis during pregnancy and lactation	173	17
12. Management of antiphospholipid syndrome – nephropathy	345	18
Chronic kidney disease in lupus nephritis		
13. Management of end-stage kidney disease in lupus nephritis	109	42
14. Renal transplantation in patients with lupus nephritis	309	44
Comorbidities and adjunct therapy in lupus nephritis		
15. Comorbidities in lupus nephritis (cardiovascular, infections)	419	49

Initial (‘induction’) therapies for lupus nephritis and efficacy of calcineurin inhibitors in LN

The SLR identified 13 RCT comparing different regimens for the initial treatment of LN (table 2 and assessment of RoB of individual studies in online supplementary table 3).

With the exception of the LUNAR trial of rituximab (RTX) in LN, and a recent multicenter phase II RCT testing two doses of the calcineurin inhibitor (CNI) voclosporin, which were both of low RoB, the remaining studies had a higher RoB mainly due to deviations from the intended interventions (blinding) or concerns over the randomisation process (allocation sequence generation and concealment) (table 2). Importantly, five studies compared the two main agents for LN, mycophenolate mofetil (MMF) and cyclophosphamide (CY) (high-dose regimen in three, low dose in one and both regimens in one study), and none found superiority of one regimen over the other. In the LUNAR trial, 144 racially diverse patients with class III–IV LN were randomised to RTX or placebo, together with glucocorticoids and MMF. The study’s primary endpoint (complete remission at 52 weeks) was not met, as 26.4% in the RTX versus 30.6% in the placebo group achieved a complete remission at 52 weeks.15 Seven observational studies (two in pediatric LN) reported on long-term (>3 years) outcomes of patients treated with either CY or MMF as initial
Table 2 Randomised trials of initial (‘induction’) therapy in lupus nephritis

Reference	n	Ethnicity	Intervention	Comparator	MP pulses and prednisone dosing	HCQ	Endpoint	Results (intervention first)	Risk of bias*
MMF vs CY									
Mendonca et al	40 (1:1)	Indian	MMF 1500 mg bid + P	CY 500–1000 mg/m² monthly + P	MP: 500 mg for 3d P: 0.5 mg/kg/d	NR	CR, PR (24 w)	CR: 52.9% vs 47.8%, p = 0.86 PR: 35.3% vs 39.1%, p = ns	High
Sun et al	82 (1:1)	Chinese	MMF 1000 mg/d + CY 400 mg/m² monthly + P	CY 750 mg/m² monthly + P	MP: no P: 1.0 mg/kg/d for 4–8 w and tapering	NR	RR (24 w)	RR: 88.1% vs 77.5%, p = 0.2	High
Rathi et al	100 (1:1)	Indian	MMF 750–1500 mg bid + P	CY 6×500 mg fortnightly + P	MP: 750 mg for 3d P: 1 mg/kg/d for 8 w and tapering	All patients (6 mg/kg/d)	TRR (24 w)	TR: 76.3% vs 75.0%, p = 0.91	Some concerns
Sedhain et al	42(1:1)	Nepalese	MMF 750 mg bid + P	CY 500–1000 mg/m² monthly + P	MP: no P: 1 mg/kg/d for 4 w tapered to 5–7.5 mg/d	All patients	RR (24 w)	TR: 28.6% vs 19%, p = 0.57	Some concerns
Li et al	60 (1:1)	Chinese	TAC 0.08–0.1 mg/kg/d (trough blood level of 6–8 ng/mL) + P	MMF 750–1000 mg bid + P vs CY 500–750 mg/m² monthly+P	MP: no P: 0.8–1.0 mg/kg/d for 2 w tapered to 10 mg/	All patients	RR (24 w)	RR: 45% vs 45% vs 30%, p = 0.65 PR: 30% in each group, p = ns	High
Sahay et al	144 (1:1:1)	Indian	MMF 1200 mg/m²+ P	CY 500 mg/m² monthly (NIH) vs CY 6×500 mg fortnightly (ELNT)	MP: 500 mg for 3d P: 1 mg/kg/d tapered to 10 mg/d	All patients	RR (24 w)	RR: 72.9% vs 71.4% (NIH) vs 65% (EuroLupus), p = 0.9	High
Low-dose vs high-dose CY									
Mehra et al	75 (1:1)	Indian	CY 6×500 mg fortnightly + P	CY 6×750 mg/m² four-weekly	MP: 1000 mg for 3 d P: 1 mg/kg/d for 4 w tapered to 5–7.5 mg/d	All patients (5–6 mg/kg/d)	CR, PR (52 w)	CR: 44% vs 65%, p = 0.08 CR/PR: 50% vs 73%, p = 0.04	Some concerns
RTX+MMF vs MMF									
Rovin et al	144 (1:1)	Mixed	RTX 1000 mg on d 1, 15, 168 and 182+ MMF 3000 mg + P	MMF 3000 mg + P	MP: 1000 mg on d1 and again on3d P: 0.75 mg/kg/d for 16d and tapered to ≤10 mg/d	44% of patients	CR, PR (52 w)	CR: 26.4% vs 30.6%, p = ns PR: 30.6% vs 15.3%, p = ns	Low
CNI vs SoC									
Reference	n	Ethnicity	Intervention	Comparator	MP pulses and prednisone dosing	HCQ	Endpoint	Results (intervention first)	Risk of bias*
---------------	------	-----------	--	-----------------------------	---------------------------------	-----	----------	-------------------------------	---------------
Mok et al16	150	Chinese	TAC 0.06–0.1 mg/kg/d + P	MMF 1000–1500 mg/d bid + P	MP: no P: 0.6 mg/kg/d for 6 w and tapered	51% of patients	CR (24 w)	CR: 62% vs 59%, p = 0.71	Some concerns
Yap et al17	16	Chinese	TAC 0.1–0.15 mg/kg/d (trough blood level of 6–8 mg/L) + P	MMF 750–1000 mg bid + P	MP: no P: 0.8 mg/kg/d for 2 w and tapered to 10 mg	NR	CR, PR (106 w)	CR: 11.1% vs 57.1%, p = 0.049 PR: 44.4% vs 14.3%, p = 0.19	High
Li et al12	60	Chinese	TAC 0.08–0.1 mg/kg/d (trough blood level of 6–8 ng/mL) + P	MMF 750–1000 mg bid + P vs CY 500–750 mg/m² monthly + P	MP: no P: 0.8–1.0 mg/kg/d for 2 w tapered to 10 mg/d	NR	CR, PR (24 w)	CR: 45% vs 45% vs 30% p = 0.65 PR: 30% in each group p = ns	High
Kamanamool et al18	83	Thai	TAC 0.1 mg/kg/d (trough level of 6–10 ng/mL) + P	MMF 750–1000 mg bid + P	MP: no P: 0.7–1.0 mg/kg/d for 4 w tapered to 5 mg/d	NR	CR (52 w)	CR: 46.3% vs 57.1%, p = 0.32	Some concerns

Multitarget vs SoC

Reference	n	Ethnicity	Intervention	Comparator	MP pulses and prednisone dosing	HCQ	Endpoint	Results (intervention first)	Risk of bias*
Liu et al18	362	Chinese	MMF 500 mg bid + TAC 2 mg bid + P	CY 750 mg/m² monthly + P	MP: 500 mg/d for 3 d P: 0.6 mg/kg/d for 4 w tapered to 10 mg/d	NR	CR, PR (24 w)	CR: 45.9% vs 25.6%, p < 0.001 CR/PR: 83.5% vs 63.0%, p < 0.001	Some concerns
Rovin et al20	265	Mixed	Vocslosporin (low: 23.7 mg bid- or high dose: 39.5 mg bid) + MMF 2000 mg/d + P	MMF 2000 mg/d + P	MP: 500 mg on d0 and d1 P: 20–25 mg/d tapered to 2.5 mg/d at 16 w	NR	CR rate (48 w)	CR rate: lowdose multitarget vs MMF OR = 3.21, p < 0.001 High-dose multitarget vs MMF OR = 2.10, p = 0.026	Low

*Overall risk of bias was assessed using the Revised Cochrane risk-of-bias tool (ROB2).

bid, twice a day; CNI, calcineurin inhibitors; CR, complete response; CY, cyclophosphamide; d, days; HCQ, hydroxychloroquine; MMF, mycophenolate mofetil; MP, methylprednisolone; NIH, National Institutes of Health; NR, not reported; P, prednisone; PR, partial response; RR, renal response; RTX, rituximab; SoC, standard of care; TAC, tacrolimus; TRR, treatment response rate; w, weeks.
treatment. Although there was a marked heterogeneity between studies (different maintenance treatments and duration of follow-up), the majority of studies did not show any difference in adverse renal outcomes. However, in a posthoc analysis of the ALMS trial, initial treatment with CY was associated with a lower likelihood of treatment failure (OR 0.5, p = 0.05).

Regarding the use of CNI in LN, the majority of studies (RCT and observational) have used tacrolimus (TAC), rather than ciclosporin A (online supplementary table 2, sections 4.1.3 and 4.1.4). CNI (either alone or in combination with MMF) were at least as efficacious as standard of care in a number of RCTs; however, the robustness of evidence is limited as many studies were subject to moderate/high RoB (mostly due to deviations from the intended interventions). A multicenter RCT compared the ‘multitarget’ therapy (TAC 4 mg/day + MMF 1 g/day) against monthly pulses CY (0.5–1 g/m²) for induction therapy in 362 Chinese patients with new-onset LN. Both regimens were combined with glucocorticoids. At 6 months, complete renal response rates were 45.9% with the MMF/TAC combination versus 25.6% coids. At 6 months, complete renal response rates were 45.9% with the MMF/TAC combination versus 25.6% coids.

In the MMF and 62% of patients in the TAC group, complete renal response was achieved by 59% of patients

We found only one small RCT (n = 16) that included exclusively patients with class V, in which MMF was better than TAC in terms of complete renal response (high RoB). A network meta-analysis of 206 patients with class V did not find any difference in renal response or reduction of proteinuria between various treatments (including CNI and MMF).

Regarding multitarget treatment, a meta-analysis of 8 trials that compared TAC + MMF versus CY showed superior efficacy of the former in class V (response rate (RR): 4.24, p = 0.02).

No controlled studies have compared different glucocorticoid regimens in the initial phase of LN. Table 3 shows the glucocorticoid tapering schemes of major RCT in LN over the period 2012–2018. Regarding non-controlled studies, a retrospective observational study in two different centres showed that, following initial pulse intravenous methylprednisolone, a lower starting dose of glucocorticoids (≤0.5 mg/kg/day) was as efficacious as a higher dose. In the RITUXILUP observational study, a single RTX dose, combined with MMF and methylprednisolone pulses, and no oral glucocorticoids, was accompanied by high rates of complete/partial response (90%, 45/50 patients) after median 37 weeks.

Subsequent (‘maintenance’) therapies for lupus nephritis

We found three RCTs specifically designed to compare different treatment regimens for the maintenance therapy in LN (table 4 and assessment of RoB of individual studies in online supplementary table 3).

Table 3 Dosing regimens of glucocorticoids in major LN RCT from 2012 to 2018

Reference	IV-MP	PO prednisone starting dose	Tapering scheme
Rovin, 2019 (voclosporin)	No	20–25 mg/day for 2 weeks	To 2.5 mg/day at week 16
Rathi, 2016 (MMF vs low-dose CY)	3 × 750 mg	1 mg/kg/day for 8 weeks	Not specified
Mok, 2015 (MMF vs TAC)	No	0.6 mg/kg/day for 6 weeks	By 5 mg/day every week to <10 mg/day, then indefinitely
Liu, 2014 (multitarget vs CY)	3 × 500 mg	0.6 mg/kg/day for 4 weeks	By 5 mg/day every 2 weeks to 20 mg/day, then by 2.5 mg/day every 2 weeks to 10 mg/day
Furie 2014 (abatacept)	No	30–60 mg/day	To 10 mg/day by week 12 recommended
Askanase, 2014 (abatacept)	Optional	60 mg/day for 2 weeks	To 10 mg/day by week 10
Rovin, 2012 (RTX)	3 × 1000 mg	0.75 mg/kg/day (max. 60 mg) until day 16	To 10 mg/day by week 16

CY, cyclophosphamide; IV-MP, intravenous methylprednisolone; LN, lupus nephritis; MMF, mycophenolate mofetil; MP, methylprednisolone; PO, per os; RCT, randomised controlled trial; RTX, rituximab; TAC, tacrolimus.
randomised 70 patients to either TAC or AZA following induction; relapse rate did not differ at 24 weeks (OR for relapse of AZA vs TAC: 1.06, p = 0.49), with some concerns regarding RoB.66 In a smaller study, also in an Asian population, Yap et al compared TAC to MMF in 16 patients; primary endpoint was proteinuria, serum albumin and creatinine at 106 weeks and no differences were found between arms (high RoB).17 Another RCT compared the efficacy of MMF with AZA in 81 patients with proliferative disease who were previously treated with CY.77 At 36 months, both the event-free survival rate for the composite endpoint of death or ESKD and the relapse-free survival rate were comparable between arms (95.1% with MMF vs 91.3% with AZA, p = 0.31 and 90.2% with MMF vs 85% with AZA, p = 0.45, respectively).

In addition, the 10-year results of the MAINTAIN trial (AZA vs mycophenolic acid (MPA) for maintenance treatment of LN) represent extended data of a previous RCT.78 Over 10 years, the two groups experienced similar results in terms of renal flares (45% with MPA, 49% with AZA) and ESKD (7.1% with MPA, 2.2% with AZA). AZA/MPA switch occurred in 20% and 14% of AZA and MPA patients, respectively (RoB ‘some concerns’). Additionally, the aforementioned Chinese RCT of ‘multitarget’ therapy for LN also performed a study on subsequent treatment following induction, comparing TAC/MMF combination to AZA.79 In this study, 206 patients were randomised to either MMF+TAC (n = 116) or AZA (n = 90), following the same randomisation with the original induction study. At 18 months, no difference in relapse rates was found between the two arms (5.5% in the multitarget vs 7.6% in the AZA, adj. HR: 0.82, p = 0.7). Finally, a favourable effect of MMF over AZA on renal relapse rates has been reported in two meta-analyses (including one network meta-analysis), involving mostly Asian and/or African American populations, and including trials published before the initiation date of the current SLR.80 81

Monitoring of lupus nephritis and targets of therapy

The SLR focused on the usefulness of common laboratory tests (serological and urinary) to monitor LN, rather than on various investigational biomarkers that have been used in research studies. In this context, proteinuria and serum creatinine were found to be strongly associated with long-term kidney outcomes. Posthoc analyses of RCT and observational studies have shown that reductions in proteinuria within the first 3, 6 or 12 months are associated with favourable long-term outcomes in LN (table 5 and online supplementary table 4).

Posthoc data from the MAINTAIN and Euro-Lupus Nephritis trials (ELNT) showed that proteinuria values 0.7 and 0.8 gr/day, respectively, had the best predictive value for a serum creatinine <1.0 mg/dL at 7 years.82 83 This was confirmed in the large Lupus Nephritis Trials Network (LNTN) surrogate marker study which found that higher levels of proteinuria at 12 months conferred a greater risk for CKD, severe kidney injury in both proliferative and membranous LN, and for kidney replacement therapy.84 Similar results were yielded for serum creatinine at 1 year in the same studies. On the contrary, addition of hematuria to proteinuria and/or serum creatinine not only did not improve, but in some instances decreased the sensitivity of risk models to predict adverse long-term outcomes in LN, in data analysis from ELNT, MAINTAIN, ALMS as well as the LNTN surrogate marker study.

Role of repeat kidney biopsy in lupus nephritis

A total of 26 observational studies since 2012 have evaluated repeat kidney biopsy, performed either per protocol or during an LN flare (online supplementary table 2, section 6.4). Regarding histological transition, the majority of patients with class II (75–80%) progress to class III, IV or V; of patients with class V, 33–43% show histological transition, mostly to proliferative forms. On the contrary, 70–80% of patients with proliferative or mixed classes

Table 4 Randomised trials of subsequent (‘maintenance’) therapy in lupus nephritis

Reference	n	Intervention	Comparator	Prednisone dose	Endpoint	Results	Overall risk of bias*
Chen et al76	70	TAC + P	AZA + P	10 mg/d	24 w relapse	Relapse: AZA vs TAC OR 1.06, p = 0.49	Some concerns
TAC vs MMF							
Yap et al77	16	TAC + P	MMF + P	5–7.5 mg/d	106 w, proteinuria, Alb, sCr	Similar levels between arms, p = ns	High
MMF vs AZA							
Kaballo et al78	81	MMF + P	AZA + P	1 mg/kg for 4 w tapered to 10 mg/d	Death, ESRD	Composite (death/ESRD) survival rate MMF vs AZA: 95.1% vs 91.3%, p = 0.31	Some concerns

*Overall risk of bias was assessed using the Revised Cochrane risk-of-bias tool (ROB2). AZA, azathioprine; Alb, albumin; d, days; ESRD, end-stage renal disease; MMF, mycophenolate mofetil; P, prednisone; sCr Serum creatinine; TAC, tacrolimus; w, weeks.
Duration of immunosuppressive treatment in lupus nephritis

No RCTs have compared different durations of immunosuppressive/biologic treatment in LN and observational data are also limited. In a small RCT, 15 patients with LN and at least partial remission were randomised to either continue or discontinue glucocorticoids. Over 36 months, 4/8 on glucocorticoid continuation exhibited flares compared to 1/7 (14%) in glucocorticoid (GC) withdrawal group (HR: 2.68, p > 0.05). In a single retrospective observational study, immunosuppressive therapy was discontinued in 73 patients who had received median 73 months of therapy; 39% experienced flares at median 3 years following treatment discontinuation. Longer duration of treatment (98 vs 31 months) and longer duration of remission (52.8 vs 12 months) before interruption was associated with a lower risk of flare occurrence.

Finally, open-label extensions of RCT and observational studies suggest that the majority of kidney flares tend to occur within the first 5–6 years of therapy; after this point, their rate decreases significantly but does not reach zero.

Management of end-stage kidney disease in lupus nephritis

A meta-analysis of 187 articles and a total of 18 309 patients reported that the 5-year risk of ESKD in developed countries decreased from 16% in the period 1970–1979 to 11% in the mid-1990s, showing a plateau thereafter. The risk of ESKD in developing countries was higher. After reaching ESKD, all methods of kidney replacement therapy (haemodialysis (HD), peritoneal dialysis (PD) and kidney transplantation (KT)) can be used in patients with LN. A study using data from the United States Renal Data
System (USRDS) on 11,317 LN patients reported that 82.0% initiated HD, 12.2% initiated continuous PD, and only 2.8% underwent KT. We identified five retrospective studies that have compared the three modalities, as regards to patient outcomes in LN (online supplementary table 5). In three studies, HD was compared to continuous PD, while in two additional studies, a KT arm was also included. In the studies comparing HD to PD, no difference was found in overall patient survival; in the two studies that included a KT arm, the latter was found to be associated with higher patient survival rates at 1, 5 and 10 years. Recent data from the USRDS comparing LN-ESKD patients who underwent transplantation versus those who did not (total 9,659 patients) showed a 70% reduction in all-cause mortality (adj. HR: 0.30, 95% CI 0.27 to 0.33), along with reductions in cause-specific mortality (CVD, infections, sepsis, etc).

Cardiovascular risk and risk for infections in patients with lupus nephritis

Similar to the question on HCQ, a focused SLR regarding infections and cardiovascular disease (CVD) in general SLE was performed in the context of the EULAR recommendations for the management of SLE. The current SLR focused on publications exploring the associations of

Table 6	Efficacy of different therapeutic agents in refractory/non-responding or flaring LN					
Reference	Type of study	n	Intervention	Control	Endpoint	Results
Anutrakulchai et al	RCT	CY:32	CY + P	EC-MPS: 27	12 m CR, PR, TF	CY vs EC-MPS 68% vs 71%, p = ns
Moroni et al	Observational	CY:14	PO CY + P	RTX + P	3y CR	CY vs RTX 92% vs 80%
Choi et al	Observational	MMF + TAC + P	-	12CR, PR	CR: 25.9% vs 29.6%	
Mok et al	Observational	MMF + TAC + P	-	12 CR, PR	CR + PR: 67%	
Kasitanon et al	Observational	MMF + CsA + P add-on to IS	-	12 CR, PR	CR: 33.3% vs 38.1%	
Zhang et al	RCT	CY + RTX + P	CY + P	12 m CR, PR	CR + PR: CY vs RTX + CY 57.1% vs 83.3% p < 0.05	
Kotagiri et al	Observational	RTX + P add-on to IS	-	18 m CR, PR, Relapse	CR + PR: 79% Relapse: 45%	
Davies et al	Observational	RTX + CY + P	-	12 m CR, PR, Relapse	CR + PR: 72% Relapse: 39%	
Jonsdottir et al	Observational	RTX + CY + P	-	36 m CR, PR, Relapse	CR: 64% PR: 88% Relapse: 24%	
Iaccarino et al	Observational	RTX + P ± CY	-	12 m CR, PR, Relapse	CR + PR: 94.1% Relapse: 29.4%	
Contis et al	Observational	RTX + P	-	52 w CR, PR	CR + PR: 53%	
Rivera et al	Observational	MMF + P	-	60 m CR, PR, Relapse	CR: 27% PR: 60% Relapse: 15.7%	

*Overall risk of bias was assessed using the Revised Cochrane risk-of-bias tool (ROB2) for RCT and the Newcastle-Ottawa scale for observational studies.
CY, cyclophosphamide; CR, complete response; CsA, ciclosporin A; EC-MPS, enteric-coated mycophenolate sodium; IS, immunosuppressant; m, months; MMF, mycophenolate mofetil; P, prednisone; PR, partial response; RCT, randomised controlled trial; RTX, rituximab; TF, treatment failure; TAC, tacrolimus; w, weeks; y, years.
these comorbidities specifically with LN. Both disease- and treatment-related factors account for an increased CVD risk in LN. A single meta-analysis correlated LN with CVD (OR 1.6, 95% CI 1.04 to 2.60, although not reporting clearly on the heterogeneity of reported studies)\(^{113}\); however, a number of low-quality trials have failed to prove a significant association. Similarly, contradictory results were obtained from studies that used surrogate CVD endpoints, such as subclinical atherosclerosis.\(^{114-117}\) In the single prospective trial that explored the possible atheroprotective effect of ACE inhibitors and angiotensin receptor blockers in patients with LN, there was no difference in the cumulative occurrence of CVD between the treatment and the control arm (p = 0.7).\(^{118}\) The increased risk for infections in patients with LN is supported by a number of studies (HR: 1.4–5.3)\(^{119-122}\), regarding treatment-related risk factors, a network meta-analysis of 32 RCTs identified that high-dose GC therapy was associated with the highest risk for serious infections compared to TAC as reference drug (OR 12.8, 95% CI 1.53 to 119.90), followed by low-dose CY (OR 4.8, 95% CI 1.48 to 17.64) and high-dose CY (OR 6.6, 95% CI 2.25 to 20.50).\(^{123}\)

DISCUSSION

Kidney involvement in SLE has significant implications for the disease management and prognosis. Several authorities, including the Kidney Disease Improving Global Outcomes (KDIGO) and American College of Rheumatology, have published recommendations for the management of LN.\(^{124}\) The recently published update of the joint EULAR/ERA-EDTA recommendations was based on a dedicated SLR, which covered several aspects of the disease (formed in the 15 research questions) and not just the efficacy and safety of immunosuppressive agents used in the treatment of its different phases. To this end, we followed an inclusive approach during article selection, in order to capture data from observational and non-controlled studies, in topics where randomised controlled studies are absent or scarce. Importantly, because this was an update of previous recommendations published in 2012,\(^{2}\) data retrieval started from the ending date of the previous SLR, although overall LoE and GoR took into account the whole body of evidence.

Kidney biopsy remains a cornerstone in the diagnosis and management of LN, because the prognostic value of histological findings cannot be replaced by any clinical or laboratory parameter. In addition to features with well-established prognostic value (histological class, activity and chronicity indices, presence of crescents), from the review of the literature it became evident that acute or chronic lesions of the tubulointerstitial space (inflammation and fibrosis/tubular atrophy, respectively) are also associated with adverse short- and long-term outcomes. Regarding features of thrombotic microangiopathy, prognostic associations are more equivocal, despite the fact that such lesions may be present in up to one in four kidney biopsies in LN. A current revision of the 2003 ISN/RPS class, which will address these issues, is currently under way. The issue of repeat kidney biopsy, performed either per protocol or during a disease flare, was explored in several observational studies; histological transition is common, often leading to changes in treatment.

Regarding management of LN, our SLR confirmed the equal efficacy of MMF and CY for the initial (‘induction’) phase of LN, as evidenced by a number of RCTs in different ethnic/racial groups, which was recently suggested also by a Cochrane systematic review.\(^{80}\) Importantly, the low-dose CY regimen (ELNT) was tested also in non-exclusively Caucasian populations, with similar results.\(^{10} 13 14 65\) Regarding the use of CNI or ‘multitarget’ therapy (combination of CNI with MMF), it is important to point out that the majority of studies (both randomised and observational) testing this class of drugs have used TAC, hence the respective clarification in the manuscript of the updated EULAR/ERA-EDTA recommendations.\(^{55}\) The scepticism raised by the fact that initial studies using the multitarget regimen were performed in Asian populations has been partly addressed by the multi-ethnic phase II study of voclosporin/MMF combination\(^{20}\), the results of the phase III study, which recently announced positive results, are expected to provide more data regarding a possible future universal recommendation of multitarget regimens for LN.

A GC dosing regimen pointing towards lower cumulative GC doses was suggested in the recommendations, stating that ‘the use of IV pulses methylprednisolone (total dose 500–2500 mg, depending on disease severity) is recommended, followed by oral prednisone (0.3–0.5 mg/kg/day) for up to 4 weeks, tapered to ≤7.5 mg/day by 3 to 6 months’. Unfortunately, there is a paucity of RCTs that have directly compared different glucocorticoid regimens in LN. Apart from the uncontrolled studies mentioned in the “Results” section, the older open-label, controlled MyLupus study (not included in the current SLR) had shown that lower CG doses with enteric-coated mycophenolate sodium were accompanied by similar rates of complete response at 24 weeks.\(^{125}\) Importantly, the need to minimise the use of GC in general SLE was also emphasised in the 2019 updated EULAR recommendations for the management in SLE.\(^{55}\) Ultimately, despite the lack of robust data, the current recommendations attempt to adapt to the current trend in SLE therapeutics, towards a rationalisation of GC use, with concurrent capitalisation of potent immunosuppressive agents.\(^{126}\)

In terms of monitoring of LN, a number of posthoc analyses of major studies in LN suggested the value of an early proteinuria response, together with a normal serum creatinine, within 12 months, to predict a favourable long-term outcome of patients.\(^{60} 82-85\) By contrast, glomerular haematuria was consistently shown in the same studies to add no predictive value in these prognostic models. Although these findings may not necessarily impact routine clinical practice, where urine microscopy will continue to be part of patient monitoring, however, they
may well carry implications regarding future design of optimal endpoints for clinical trials. Haematuria may be particularly persistent to immunosuppressive treatment; its omission from the components of a ‘clinical response’, owing to its poor prognostic value, may allow more clinical trials of drugs under investigation to reach their target.127 Facing a flare or prior to labelling a patient with LN as ‘ refractory to treatment’, a thorough investigation of possible causes is mandatory. In this regard, assessment of adherence to treatment is of utmost importance; suboptimal compliance rates, especially with HCQ, have been documented in SLE and may correlate with LN flares.128

In summary, the SLR that supported the update of the joint EULAR/ERA-EDTA recommendations found a high quality of data regarding induction and maintenance treatments in the management of LN, but low-to-moderate quality concerning most other aspects of this disease. Issues like long-term efficacy and safety of novel treatment regimens, optimal duration of immunosuppressive therapy after patients reach remission or the role of repeat kidney biopsy need to be further explored.

REFERENCES

1 Hoever PJ, Costenbader KH. Insights into the epidemiology and management of lupus nephritis from the US rheumatologist’s perspective. Kidney Int 2016;90:487–92.
2 Bertias GK, Tektonidou M, Amoura Z, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 2012;71:1771–82.
3 Fanouriakis A, Kostopoulou M, Cheema K, et al. 2019 Update of the joint European League Against Rheumatism and European Renal Association: European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 2020;annrheumdis-2020-216924.
4 van der Heijde D, Zanen E, Carmona L, et al. 2014 Update of the EULAR standardised operating procedures for EULAR-endorsed recommendations. Ann Rheum Dis 2015;74:8–13.
5 OCEBM Levels of Evidence Working Group. Oxford centre for evidence-based medicine. Oxford: Levels of Evidence, 2011.
6 Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;348:k4688.
7 Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of non-randomised studies in metaanalyses 2019.
8 Mendonca S, Gupta D, Ali S, et al. Mycophenolate mofetil or cyclophosphamide in Indian patients with lupus nephritis: which is better? A single-center experience. Saudi J Kidney Dis Tranpl 2017:28:1069–77.
9 Sun J, Zhang H, Ji Y, et al. Efficacy and safety of cyclophosphamide combined with mycophenolate mofetil for induction treatment of class IV lupus nephritis. Int J Clin Exp Med 2015;8:21572–8.
10 Rathi M, Goyal A, Jaryal A, et al. Comparison of low-dose intravenous cyclophosphamide with oral mycophenolate mofetil in the treatment of lupus nephritis. Kidney Int 2016;89:235–42.
11 Sedhain A, Hada R, Agrawal RK, et al. Low dose mycophenolate mofetil versus cyclophosphamide in the induction therapy of lupus nephritis in Nepalese population: a randomized control trial. BMC Nephrol 2018;19:175.
12 X, Ren H, Zhang A, et al. Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant. September 13 2011.
13 Sahay M, Saivani Y, Ismail K, et al. Mycophenolate versus cyclophosphamide for lupus nephritis. Indian J Nephrol 2018;28:35–40.
14 Mehra S, Usadaya JB, Jain VK, et al. Comparing the efficacy of low-dose vs high-dose cyclophosphamide regimens as induction therapy in the treatment of proliferative lupus nephritis: a single center study. Rheumatol Int 2018;38:557–68.
15 Revin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab (LUNAR) study. Arthritis Rheum. 9January2012;64:1215–26.
16 Mok CC, Ying KY, Yim CW, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis 2016;75:30–6.
17 Yap DY, Yu X, Chen XM, et al. Pilot 24-month study to compare mycophenolate mofetil and tacrolimus in the treatment of membranous lupus nephritis with nephrotic syndrome. Nephrology (Carlton) 2012;17:352–7.
18 Kamanamoo N, Ingathi A, Rattanasirirat S, et al. Comparison of disease activity between tacrolimus and mycophenolate mofetil in lupus nephritis: a randomized controlled trial. Lupus 2018;27:647–56.
19 Liu Z, Zhang H, Xing C, et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 2015;162:19–26.
20 Revin BH, Solomons N, Pendergraft WF, et al. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 2019;95:219–31.
21 Yang J, Liang D, Zhang H, et al. Long-term renal outcomes in a cohort of 1814 Chinese patients with biopsy-proven lupus nephritis. *Lupus* 2015;24:1468–78.

22 Momtaz M, Fayed A, Wadie M, et al. Retrospective analysis of nephritis response and renal outcome in a cohort of 928 Egyptian lupus nephritis patients: a university hospital experience. *Lupus* 2017;26:1564–70.

23 Tang Y, Qin W, Peng W, et al. Development and validation of a prediction score system in lupus nephritis. *Medicine (Baltimore)* 2017;96:e8059.

24 Teh CL, Phui VE, Ling GR, et al. Causes and predictors of mortality in biopsy-proven lupus nephritis: the Sarawak experience. *Clin Kidney J* 2018;11:56–61.

25 Srivastava P, Abujam B, Misra R, et al. Outcome of lupus nephritis in an international inception cohort using a multistate model approach: multistate modeling of ln outcomes. *Clin J Am Soc Nephrol* 2018;13:1031–9.

26 Park DJ, Kang JH, Lee JW, et al. Risk factors to predict the development of chronic kidney disease in patients with lupus nephritis. *Lupus* 2017;26:1139–48.

27 Korbet SM, Whittier WL, Lewis EJ, et al. The impact of baseline serum creatinine on complete remission rate and long-term outcome in patients with severe lupus nephritis. *Nephron Extra* 2016;6:12–21.

28 Paketfrat M, Malekmakan L, Kamranpour M, et al. Five consecutive years’ study of renal function outcome among biopsy proven lupus nephritis patients in North and Central Iran: a single-centre experience over 25 years. *Lupus* 2016;25:547–57.

29 Joo YB, Kang YM, Kim HA, et al. Outcome and predictors of renal survival in patients with lupus nephritis: comparison between cyclophosphamide and mycophenolate mofetil. *Int J Rheum Dis* 2018;21:1031–9.

30 Wu LH, Yu F, Tan Y, et al. Inclusion of renal vascular lesions in the inclusion of renal vascular lesions in the APNSN. *RMD Open* 2020;6.e001263 on 22 July 2020. Downloaded from http://rmdopen.bmj.com/ RMD Open: first published as 10.1136/rmdopen-2020-001263 on March 14, 2024 by guest. Protected by copyright. 81.

31 Wu CY, Chien H-P, Yang H-Y, et al. Role of tubulointerstitial lesions in predicting renal outcome among pediatric onset lupus nephritis: a retrospective cohort study. *J Microbiol, Immunol Infect* 2015;48:1025–8.

32 Lim CC, Tan HZ, Hao Y, et al. Long-term renal outcomes in multi-ethnic Southeast Asians with lupus nephritis: a descriptive cohort study. *Intern Med J* 2018;48:1117–23.

33 Broder A, Movrey WB, Khan HH, et al. Tubulointerstitial damage predicts end stage renal disease in lupus nephritis with preserved to moderately impaired renal function: a retrospective cohort study. *J Am Soc Nephrol* 2017;28:1801–6.

34 Hsieh C, Chang A, Brandt D, et al. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. *Arthritis Care Res* 2011;63:865–74.

35 Wilson PC, Kashgarian M, Moekel G. Intestinal inflammation and interstitial fibrosis and tubular atrophy predict renal survival in lupus nephritis. *Clin Kidney J* 2018;11:207–18.

36 Rijnjik EC, Teng YK0, Wihelmus S, et al. Clinical and histopathologic characteristics associated with renal outcomes in lupus nephritis. *Clin J Am Soc Nephrol* 2012;7:394–9.

37 Hernandez-Molina G, Garcia-Trejo LP, Uribe N, et al. Thrombotic microangiopathy and poor renal outcome in lupus patients with or without antiphospholipid syndrome. *Clin Exp Rheumatol* 2015;33:503–8.

38 Wu LH, Yu F, Tan Y, et al. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. *Kidney Int* 2013;83:715–23.

39 Gerhardtsson D, Sundelin B, Zickert A, et al. Histological antiphospholipid-associated nephropathy versus lupus nephritis in patients with systemic lupus erythematosus: an observational cross-sectional study with longitudinal follow-up. *Arthritis Res Ther* 2015;17:109.

40 Mejía-Vilte JM, Córdova-Sanchez BM, Uribe-Uribe NO, et al. Prognostic significance of renal vascular pathology in lupus nephritis. *Lupus* 2017;26:1042–50.

41 Song D, Wu LH, Wang FM, et al. The spectrum of renal thrombotic microangiopathy in lupus nephritis. *Arthritis Res Ther* 2013;15:R12.

42 Pattanassetti N, Anakutti H, Ramachandran R, et al. Effect of thrombotic microangiopathy on clinical outcomes in Indian patients with lupus nephritis. *Kidney Int Rep* 2017;2:844–9.

43 Erre GL, Bosincu L, Faedda R, et al. Antiphospholipid syndrome nephropathy (APSN) in patients with lupus nephritis: a retrospective clinical and renal pathology study. *Rheumatol Int* 2014;34:535–41.

44 Silvarino R, Sant F, Espinosa G, et al. Nephropathy associated with antiphospholipid antibodies in patients with systemic lupus erythematosus. *Lupus* 2011;20:721–9.

45 Barrera-Vargas A, Rosado-Canto R, Merayo-Chalico J, et al. Renal thrombotic microangiopathy in proliferative lupus nephritis: risk factors and clinical outcomes: a case-control study. *J Clin Rheumatol* 2016;22:235–40.

46 Barber C, Herzenberg A, Aghdassi E, et al. Evaluation of clinical outcomes and renal vascular pathology among patients with lupus. *Clin J Am Soc Nephrol* 2012;7:754–61.

47 Gonzalo E, Tosdós O, Manezé-Vidal MP, et al. Clinicopathologic correlations of renal microthrombosis and inflammatory markers in proliferative lupus nephritis. *Arthritis Res Ther* 2012;14:R126.

48 Fanourakis A, Kostopoulos M, Alunno A, et al. 2019 Update of the EULAR recommendations for the management of systemic lupus erythematosus: Ann Rheum Dis 2019;78:736–45.

49 Londondo Jimenez A, Movrey WB, Puttermann C, et al. Brief report: tubulointerstitial damage in lupus nephritis: a comparison of the factors associated with tubulointerstitial inflammation and renal scarring. *Kidney Int* 2018;93:726–30.

50 Park DJ, Choi SE, Xu H, et al. Chronicity index, especially glomerular sclerosis, is the most powerful predictor of renal response following immunosuppressive treatment in patients with lupus nephritis. *Int J Rheum Dis* 2018;21:458–67.

51 Galiondo-Izquierdo M, Rodriguez-Almaraz E, Pego-Reigosa JM, et al. Characterization of patients with lupus nephritis included in a large cohort from the Spanish Society of Rheumatology registry of patients with systemic lupus erythematosus (RELESSER). *Medicine (Baltimore)* 2016;95:e8991.

52 Pokroy-Shapira E, De Souza I, Molay O. Evolution of chronic kidney disease in patients with systemic lupus erythematosus over a long-period follow-up: a single-center inception cohort study. *Clin Rheumatol* 2014;33:649–57.

53 Dall’Era M, Levesque V, Solomons N, et al. Identification of clinical and serological factors during induction treatment of lupus nephritis that are associated with renal outcome. *Lupus Sci Med* 2015;2:e000089.

54 Moroni G, Raffaotta F, Ponticelli C. Remission and withdrawal of therapy in lupus nephritis. *J Nephrol* 2016;29:595–60.

55 Yap DYH, Chang C, Ma MKM, et al. Longterm data on disease flares in patients with proliferative lupus nephritis in recent years. *J Rheumatol* 2017;44:1375–83.

56 Cunha C, Alexander S, Ashby D, et al. Hydroxychloroquine blood concentration in lupus nephritis: a determinant of disease outcome? *Nephrol Dial Transplant*. November 23 2017.

57 Furie R, Nicholls K, Cheng TT, et al. Efficacy and safety of abatacept and cyclophosphamide combination efficacy and safety study. *Arthritis Rheumatol* 2014;66:379–89.

58 ACCESS Trial Group. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. *Arthritis Rheumatol* 2014;66:3096–104.

59 Hanaoka H, Kiyokawa T, Iida H, et al. Comparison of renal response to four different induction therapies in Japanese patients with lupus nephritis class III or IV: a single-centre retrospective study. *PLoS One* 2017;12:e0175152.

60 Mejía-Vilte JM, Arreola-Guerra JM, Cordova-Sanchez BM, et al. Comparison of lupus nephritis induction treatments in a Hispanic population: a single-center cohort analysis. *Rheumatol Int* 2015;42:2082–91.

61 Alvarado AS, Malvar A, Lococo B, et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. *Lupus* 2014;23:840–7.
mofetil and tacrolimus for lupus nephritis with suboptimal response to standard therapy: a 12-month prospective study. Lupus 2013;22:1135–41.

2. Jang J, Zhao Z, Hu X. Effect of rituximab on serum levels of anti-c1q and antineutrophil cytoplasmic autoantibodies in refractory severe lupus nephritis. Cell Biochem Biophys 2015;72:197–201.

3. Kotagiri P, Martin A, Hughes P, et al. Single-dose rituximab in refractory lupus nephritis. Intern Med J 2016;46:899–901.

4. Davies RJ, Sangre SR, Jordan NP, et al. Rituximab in the treatment of resistant lupus nephritis: therapy failure in rapidly progressive crescentic lupus nephritis. Lupus 2013;22:574–82.

5. Jonsdottir T, Zicker T, Sundelin B, et al. Long-term follow-up in lupus nephritis patients treated with rituximab: clinical and histopathological response. Rheumatology (Oxford) 2013;52:847–53.

6. Iaccarino L, Bartoloni E, Carli L, et al. Efficacy and safety of off-label use of rituximab in refractory lupus: data from the Italian multicentre registry. Clin Exp Rheumatol 2015;33:449–56.

7. Comiti A, Vanquaethem H, Truchetet ME, et al. Analysis of the effectiveness and safety of rituximab in refractory lupus nephritis: a chart review. Clin Rheumatol 2016;35:517–22.

8. Rivera F, Merida E, Illescas ML, et al. Mycophenolate mofetil and tacrolimus for refractory lupus nephritis. Am J Nephrol 2014;40:105–12.

9. Dooley MA, Houssias F, Aranow C, et al. Effect of belimumab treatment on renal outcomes: Lessons from the phase 3 belimumab clinical trial in patients with SLE. Lupus 2013;22:63–72.

10. Available https://www.gsk.com/en-gb/media/press-releases/gsk-announces-positive-headline-results-in-phase-3-study-of-belnylstar®-patients-lupus-nephritis. Accessed June 2018.

11. Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971–2015: a systematic review and bayesian meta-analysis. Arthritis Rheumatol 2016;68:1432–41.

12. Devlin A, Waitak SS, Solomon DH, et al. Variation in initial kidney replacement therapy for end-stage renal disease due to lupus nephritis in the United States. Arthritis Care Res (Hoboken) 2011;63:1642–53.

13. Contreras G, Pagan J, Chokahi R, et al. Comparison of mortality of ESRD patients with lupus by initial dialysis modality. Clin J Am Soc Nephrol 2014;9:1949–56.

14. Chang YS, Liu CJ, Wu TH, et al. Survival analysis in systemic lupus erythematosus patients on maintenance dialysis: a nationwide population-based study in Taiwan. Rheumatology (Oxford) 2011;50:1687–94.

15. Levy B, Couchoud C, Rougier JP, et al. Outcome of patients with systemic lupus erythematosus on chronic dialysis: an observational study of incident patients of the French national registry 2002–2012. Lupus 2015;24:1111–21.

16. Wu MJ, Lo YC, Lan JL, et al. Outcome of lupus nephritis after entering into end-stage renal disease and comparison between different treatment modalities: a nationwide population-based cohort study in Taiwan. Transplant Proc 2014;46:339–41.

17. Kang SH, Chung SH, Choi SR, et al. Comparison of clinical outcomes by different renal replacement therapy in patients with end-stage renal disease secondary to lupus nephritis. Korean J Intern Med 2011;26:60–7.

18. Jorge A, Wallace ZS, Lu N, et al. Renal transplantation and survival among patients with lupus nephritis: a cohort study. Ann Intern Med 2019;170:240.

19. Ballocio F, D’Ascenzo F, Moretti C, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol 2015;22:1435–41.

20. Gustafsson JT, Herlitz Lindberg M, Gunnarsson I, et al. Excess atherosclerosis in systemic lupus erythematosus, a matter of renal involvement: case control study of 281 SLE patients and 281 individually matched population controls. PLoS One 2017;12: e0174572.

21. Wu GC, Liu HR, Leng RX, et al. Subclinical atherosclerosis in patients with systemic lupus erythematosus: a systemic review and meta-analysis. Autoimmun Rev 2016;15:22–37.

Kostopoulos M, et al. RMD Open 2020;6:e001263. doi:10.1136/rmdopen-2020-001263 on March 14, 2024 by guest. Protected by copyright.
116 Kay SD, Poulsen MK, Diederichsen AC, et al. Coronary, carotid, and lower-extremity atherosclerosis and their interrelationship in Danish patients with systemic lupus erythematosus. *J Rheumatol* 2016;43:315–22.

117 Atukorala I, Weeratunga P, Kalubowila J, et al. Cardiovascular risk in lupus nephritis: do renal disease-related and other traditional risk factors play a role? *Saudi J Kidney Dis Transpl* 2015;26:526–35.

118 Tselios K, Gladman DD, Su J, et al. Does renin-angiotensin system blockade protect lupus nephritis patients from atherosclerotic cardiovascular events? A case-control study. *Arthritis Care Res (Hoboken)* 2016;68:1497–504.

119 Feldman CH, Hiraki LT, Winkelmayer WC, et al. Serious infections among adult medicaid beneficiaries with systemic lupus erythematosus and lupus nephritis. *Arthritis Rheumatol* 2015;67:1577–85.

120 Rua-Figueroa I, Lopez-Longo J, Galindo-Izquierdo M, et al. Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. *Semin Arthritis Rheum* 2017;47:38–45.

121 Hiraki LT, Feldman CH, Marty FM, et al. Serious infection rates among children with systemic lupus erythematosus enrolled in medicaid. *Arthritis Care Res (Hoboken)* 2017;69:1620–6.

122 Herrinton LJ, Liu L, Goldfien R, et al. Risk of serious infection for patients with systemic lupus erythematosus starting glucocorticoids with or without antimalarials. *J Rheumatol* 2016;43:1503–9.

123 Singh JA, Hossain A, Kotb A, et al. Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis. *BMC Med* 2016;14:137.

124 Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. *Arthritis Care Res (Hoboken)* 2012;64:797–808.

125 Zeher M, Doria A, Lan J, et al. Efficacy and safety of enteric-coated mycophenolate sodium in combination with two glucocorticoid regimens for the treatment of active lupus nephritis. *Lupus* 2011;20:1484–93.

126 Houssiau FA. Time to change the primary outcome of lupus trials. *Ann Rheum Dis* 2019;78:581.

127 Houssiau FA. Why will lupus nephritis trials not fail anymore? *Rheumatology* 2016;kew252.

128 Mok CC, Penn HJ, Chan KL, et al. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. *Arthritis Care Res (Hoboken)* 2016;68:1295–302.