Isomorphic groupoid C^*-algebras associated with different Haar systems

Mădălina Roxana Buneci*
University Constantin Brâncuși, Târgu-Jiu

Abstract

We shall consider a locally compact groupoid endowed with a Haar system ν and having proper orbit space. We shall associated to each appropriated cross section $\sigma : G^{(0)} \rightarrow G^F$ for $d_F : G^F \rightarrow G^{(0)}$ (where F is a Borel subset of $G^{(0)}$ meeting each orbit exactly once) a C^*-algebra $M^*_\sigma (G, \nu)$. We shall prove that the C^*-algebras $M^*_\sigma (G, \nu_i)$ associated with different Haar systems are $*$-isomorphic.

AMS 2000 Subject Classification: 22A22, 43A22, 43A65, 46L99.
Key Words: locally compact groupoid, C^*-algebra, $*$-isomorphism.

1 Introduction

The C^*-algebra of a locally compact groupoid was introduced by J. Renault in [8]. The construction extends the case of a group: the space of continuous functions with compact support on groupoid is made into a $*$-algebra and endowed with the smallest C^*-norm making its representations continuous. In order to define the convolution on groupoid one needs to assume the existence of a Haar system which is an analogue of Haar measure on a group. Unlike the case for groups, Haar systems need not to be unique. A result of Paul Muhly, Jean Renault and Dana Williams establishes that the C^*-algebras of G associated with two Haar systems are strongly Morita equivalent (Theorem 2.8/p. 10 [3]). If the groupoid is transitive they have proved that if G is transitive then the C^*-algebra of G is isomorphic to $C^* (H) \otimes K (L^2 (\mu))$, where H is the isotropy group G^u_μ at any unit $u \in G^{(0)}$, μ is an essentially unique measure on $G^{(0)}$, $C^* (H)$ denotes the group C^*-algebra of H, and $K (L^2 (\mu))$ denotes the compact operators on $L^2 (\mu)$ (Theorem 3.1/p. 16 [3]). Therefore the C^*-algebras of a transitive groupoid G associated with two Haar systems are $*$-isomorphic.

In [7] Arlan Ramsay and Martin E. Walter have associated to a locally compact groupoid G a C^*-algebra denoted $M^* (G, \nu)$. They have considered the universal representation ω of $C^* (G, \nu)$ -the usual C^*-algebra associated to...

*This work was partly supported by the MEC-CNCSIS grant At127/2004 and by the Postdoctoral Training Program HPRN-CT-2002-0277.
a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$ (constructed as in [3]). Since every cyclic representation of $C^* (G, \nu)$ is the integrated form of a representation of G, it follows that ω can be also regarded as a representation of $B_c (G)$, the space of compactly supported Borel bounded function on G. Arlan Ramsay and Martin E. Walter have used the notation $M^* (G, \nu)$ for the operator norm closure of $\omega (B_c (G))$. Since ω is an $*$-isomorphism on $C^* (G, \nu)$, we can regarded $C^* (G, \nu)$ as a subalgebra of $M^* (G, \nu)$.

We shall assume that the orbit space of the groupoid G is proper and we shall choose a Borel subset F of $G^{(0)}$ meeting each orbit exactly once and such that $F \cap [K]$ has a compact closure for each compact subset K of $G^{(0)}$. For each appropriated cross section $\sigma : G^{(0)} \rightarrow G^F$ for $d_F : G^F \rightarrow G^{(0)}$, $d_F (x) = d (x)$, we shall construct a C^*-algebra $M^*_\sigma (G, \nu)$ which can be viewed as a subalgebra of $M^* (G, \nu)$. If $\nu_1 = \{\nu_1^u, u \in G^{(0)}\}$ and $\nu_2 = \{\nu_2^u, u \in G^{(0)}\}$ are two Haar systems on G, we shall prove that the C^*-algebras $M^*_\sigma (G, \nu_1)$ and $M^*_\sigma (G, \nu_2)$ are $*$-isomorphic.

For a transitive (or more generally, a locally transitive) groupoid G we shall prove that the C^*-algebras $C^* (G, \nu)$, $M^* (G, \nu)$ and $M^*_\sigma (G, \nu)$ coincide.

For a principal proper groupoid G, we shall prove that

$$C^* (G, \nu) \subset M^*_\sigma (G, \nu) \subset M^* (G, \nu).$$

Let $\pi : G^{(0)} \rightarrow G^{(0)}/G$ be the quotient map and let $\nu_i = \{\varepsilon_u \times \mu_i^u, u \in G^{(0)}\}$, $i = 1, 2$ be two Haar systems on the principal proper groupoid G. We shall also prove that if the Hilbert bundles determined by the systems of measures $\{\mu_i^u\}$ have continuous bases in the sense of Definition [24] then $*$-isomorphism between $M^*_\sigma (G, \nu_1)$ and $M^*_\sigma (G, \nu_2)$ can be restricted to a $*$-isomorphism between $C^* (G, \nu_1)$ and $C^* (G, \nu_2)$.

For establishing notation, we include some definitions that can be found in several places (e.g. [3, 4]). A groupoid is a set G endowed with a product map

$$(x, y) \rightarrow xy : G^{(2)} \rightarrow G$$

where $G^{(2)}$ is a subset of $G \times G$ called the set of composable pairs, and an inverse map

$$x \rightarrow x^{-1} : G \rightarrow G$$

such that the following conditions hold:

1. If $(x, y) \in G^{(2)}$ and $(y, z) \in G^{(2)}$, then $(xy, z) \in G^{(2)}$, $(x, yz) \in G^{(2)}$ and $(xy)z = x(yz)$.

2. $(x^{-1})^{-1} = x$ for all $x \in G$.

3. For all $x \in G$, $(x, x^{-1}) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$, then $(zx)x^{-1} = z$.

4. For all $x \in G$, $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$, then $x^{-1}(xy) = y$.

The maps r and d on G, defined by the formulae $r (x) = xx^{-1}$ and $d (x) = x^{-1}x$, are called the range and the source maps. It follows easily from the definition that they have a common image called the unit space of G, which is denoted $G^{(0)}$. Its elements are units in the sense that $xd (x) = r (x)x = x$.

2
Units will usually be denoted by letters as \(u, v, w \) while arbitrary elements will be denoted by \(x, y, z \). It is useful to note that a pair \((x, y)\) lies in \(G^{(2)} \) precisely when \(d(x) = r(y) \), and that the cancellation laws hold (e.g., \(xy = xz \) iff \(y = z \)). The fibres of the range and the source maps are denoted \(G^u = r^{-1}(\{u\}) \) and \(G_v = d^{-1}(\{v\}) \), respectively. More generally, given the subsets \(A, B \subset G^{(0)} \), we define \(G^A = r^{-1}(A) \), \(G_B = d^{-1}(B) \) and \(G^A_B = r^{-1}(A) \cap d^{-1}(B) \). The reduction of \(G \) to \(A \subset G^{(0)} \) is \(G|A \). The equivalence relation \(u \sim v \) iff \(G^u \neq \emptyset \) is an equivalence relation on \(G^{(0)} \). Its equivalence classes are called orbits and the orbit of a unit \(u \) is denoted \([u] \). A groupoid is called transitive iff it has a single orbit. The quotient space for this equivalence relation is called the orbit space of \(G \) and denoted \(G^{(0)}/G \). We denote by \(\pi : G^{(0)} \to G^{(0)}/G, \pi(u) = \dot{u} \) the quotient map. A subset of \(G^{(0)} \) is said saturated if it contains the orbits of its elements. For any subset \(A \) of \(G^{(0)} \), we denote by \([A] \) the union of the orbits \([u]\) for all \(u \in A \).

A topological groupoid consists of a groupoid \(G \) and a topology compatible with the groupoid structure. This means that:

1. \(x \to x^{-1} \) \(: G \to G \) is continuous.
2. \((x, y) \) \(: G^{(2)} \to G \) is continuous where \(G^{(2)} \) has the induced topology from \(G \times G \).

We are exclusively concerned with topological groupoids which are second countable, locally compact Hausdorff. It was shown in [6] that measured groupoids may be assume to have locally compact topologies, with no loss in generality.

If \(X \) is a locally compact space, \(C_c(X) \) denotes the space of complex-valuated continuous functions with compact support. The Borel sets of a topological space are taken to be the \(\sigma \)-algebra generated by the open sets. The space of compactly supported bounded Borel function on \(X \) is denoted by \(B_c(X) \).

For a locally compact groupoid \(G \), we denote by

\[G' = \{ x \in G : r(x) = d(x) \} \]

the isotropy group bundle of \(G \). It is closed in \(G \).

Let \(G \) be a locally compact second countable groupoid equipped with a Haar system, i.e. a family of positive Radon measures on \(G \), \(\{\nu^u, u \in G^{(0)}\} \), such that

1. For all \(u \in G^{(0)} \), \(\text{supp} (\nu^u) = G^u \).
2. For all \(f \in C_c(G) \),
\[
(\nu^u)(f) = \int f(x) \, d\nu^u(x) \quad : \quad G^{(0)} \to \mathbb{C}
\]
is continuous.
3. For all \(f \in C_c(G) \) and all \(x \in G \),
\[
\int f(y) \, d\nu^{r(x)}(y) = \int f(xy) \, d\nu^{d(x)}(y)
\]

As a consequence of the existence of continuous Haar systems, \(r, d : G \to G^{(0)} \) are open maps ([10]). Therefore, in this paper we shall always assume that \(r : G \to G^{(0)} \) is an open map.
If μ is a measure on $G^{(0)}$, then the measure $\nu = \int \nu^u d\mu(u)$, defined by

$$
\int f(y) d\nu(y) = \int \left(\int f(y) d\nu^u(y) \right) d\mu(u), \quad f \geq 0 \text{ Borel}
$$

is called the measure on G induced by μ. The image of ν by the inverse map $x \to x^{-1}$ is denoted ν^{-1}. μ is said quasi-invariant if its induced measure ν is equivalent to its inverse ν^{-1}. A measure belongs to the class of a quasi-invariant measure is also quasi-invariant. We say that the class is invariant.

If μ is a quasi-invariant measure on $G^{(0)}$ and ν is the measure induced on G, then the Radon-Nikodym derivative $\Delta = \frac{d\nu}{d\nu^{-1}}$ is called the modular function of μ.

In order to define the C^*-algebra of a groupoid the space of continuous functions with compact support on groupoid is made into a $*$-algebra and endowed with the smallest C^*-norm making its representations continuous. For $f, g \in C_c(G)$ the convolution is defined by:

$$
f * g(x) = \int f(xy) g(y^{-1}) d\nu^d(x)(y)
$$

and the involution by

$$
f^*(x) = \overline{f(x^{-1})}.
$$

Under these operations, $C_c(G)$ becomes a topological $*$-algebra.

A representation of $C_c(G)$ is a $*$-homomorphism from $C_c(G)$ into $\mathcal{B}(H)$, for some Hilbert space H, that is continuous with respect to the inductive limit topology on $C_c(G)$ and the weak operator topology on $\mathcal{B}(H)$. The full C^*-algebra $C^*(G)$ is defined as the completion of the involutive algebra $C_c(G)$ with respect to the full C^*-norm

$$
\|f\| = \sup \|L(f)\|
$$

where L runs over all non-degenerate representation of $C_c(G)$ which are continuous for the inductive limit topology.

Every representation $(\mu, G^{(0)} \ast \mathcal{H}, L)$ (see Definition 3.20/p.68 [4]) of G can be integrated into a representation, still denoted by L, of $C_c(G)$. The relation between the two representation is:

$$
\langle L(f) \xi_1, \xi_2 \rangle = \int f(x) \langle L(x) \xi_1(d(x)), \xi_2(r(x)) \rangle d\nu^u(x) d\mu(u)
$$

where $f \in C_c(G), \xi_1, \xi_2 \in \int_{G^{(0)}} \mathcal{H}(u) d\mu(u)$.

Conversely, every non-degenerate $*$-representation of $C_c(G)$ is obtained in this fashion (see [8] or [4]).

2 The decomposition of a Haar system over the principal groupoid

First we present some results on the structure of the Haar systems, as developed by J. Renault in Section 1 of [4] and also by A. Ramsay and M.E. Walter in
Section 2 of [7].

In Section 1 of [9] Jean Renault constructs a Borel Haar system for \(G' \). One way to do this is to choose a function \(F_0 \) continuous with conditionally support which is nonnegative and equal to 1 at each \(u \in G^{(0)} \). Then for each \(u \in G^{(0)} \) choose a left Haar measure \(\beta^u \) on \(G_u \) so the integral of \(F_0 \) with respect to \(\beta^u \) is 1.

Renault defines \(\beta^u \) as usual. If \(z \) is another element in \(G_u \), then \(\beta^u(z) = \beta^u(x) \) if \(x \in G_u \). If \(K \) is a compact subset of \(G \), then \(\sup_u \beta^u(K) < \infty \). Renault also defines a 1-cocycle \(\delta \) on \(G \) such that for every \(u \in G^{(0)} \), \(\delta^u \) is the modular function for \(\beta^u \). \(\delta \) and \(\delta^{-1} = 1/\delta \) are bounded on compact sets in \(G \).

Let \(R = (r, d)(G) = \{(r(x), d(x)), x \in G\} \) be the graph of the equivalence relation induced on \(G^{(0)} \). This \(R \) is the image of \(G \) under the homomorphism \((r, d) \), so it is a \(\sigma \)-compact groupoid. With this apparatus in place, Renault describes a decomposition of the Haar system \(\{\nu^u, u \in G^{(0)}\} \) for \(G \) over the equivalence relation \(R \) (the principal groupoid associated to \(G \)). He proves that there is a unique Borel Haar system \(\alpha \) for \(R \) with the property that

\[
\nu^u = \int \beta^u \alpha^u(s, t) \quad \text{for all } u \in G^{(0)}.
\]

In Section 2 [7] A. Ramsay and M.E. Walter prove that

\[
\sup_u \alpha^u((r, d)(K)) < \infty, \text{ for all compact } K \subset G.
\]

For each \(u \in G^{(0)} \) the measure \(\alpha^u \) is concentrated on \(\{u\} \times [u] \). Therefore there is a measure \(\mu^u \) concentrated on \([u] \) such that \(\alpha^u = \varepsilon_u \times \mu^u \), where \(\varepsilon_u \) is the unit point mass at \(u \). Since \(\{\alpha^u, u \in G^{(0)}\} \) is a Haar system, we have \(\mu^u = \mu^v \) for all \((u, v) \in R \), and the function

\[
u^u = \int f(s) \mu^u(s)
\]

is Borel for all \(f \geq 0 \) Borel on \(G^{(0)} \). For each \(u \) the measure \(\mu^u \) is quasi-invariant (Section 2 [7]). Therefore \(\mu^u \) is equivalent to \(d_u(v^u) \) (Lemma 4.5/p. 277 [5]).

If \(\eta \) is a quasi-invariant measure for \(\{\nu^u, u \in G^{(0)}\} \), then \(\eta \) is a quasi-invariant measure for \(\{\alpha^u, u \in G^{(0)}\} \). Also if \(\Delta_R \) is the modular function associated to \(\{\alpha^u, u \in G^{(0)}\} \) and \(\eta \), then \(\Delta = \delta \Delta_R \circ (r, d) \) can serve as the modular function associated to \(\{\nu^u, u \in G^{(0)}\} \) and \(\eta \).

Since \(\mu^u = \mu^v \) for all \((u, v) \in R \), the system of measures \(\{\mu^u\}_u \) may be indexed on the elements of the orbit space \(G^{(0)}/G \).
Definition 1 We shall call the pair of the system of measures

\[\{ \beta^u \}_{(u,v) \in R}, \{ \mu^u \}_{u \in G^{(0)}/G} \]

(described above) the decomposition of the Haar system \(\{ \nu^u, u \in G^{(0)} \} \) over the principal groupoid associated to \(G \). Also we shall call \(\delta \) the 1-cocycle associated to the decomposition.

Remark 2 Let us note that the system of measures \(\{ \beta^u \} \) and the 1-cocycle do not depend on the Haar system.

Lemma 3 Let \(G \) be a locally compact second countable groupoid with the bundle map \(r|G' \) of \(G' \) open. Let \(\{ \nu^u, u \in G^{(0)} \} \) be a Haar system on \(G \) and \((\{ \beta^u \}, \{ \mu^u \}) \) its decomposition over the principal groupoid associated to \(G \). Then for each \(f \in C_c(G) \) the function

\[x \to \int f(y) \, d\beta^r_{d(x)}(y) \]

is continuous on \(G \).

Proof. By Lemma 1.3/p. 6, for each \(f \in C_c(G) \) the function \(u \to \int f(y) \, d\beta^u_{d(x)}(y) \) is continuous.

Let \(x \in G \) and \((x_i) \) be a sequence in \(G \) converging to \(x \). Let \(f \in C_c(G) \) and let \(g \) be a continuous extension on \(G \) of \(y \to f(xy) \, : \, G^d(x) \to \mathbb{C} \). Let \(K \) be the compact set

\[\left(\{ x, x_i, i = 1, 2, .. \}^{-1} \operatorname{supp}(f) \cup \operatorname{supp}(g) \right) \cap r^{-1}(\{ d(x), d(x_i), i = 1, 2, .. \}). \]

We have

\[\left| \int f(y) \, d\beta^r_{d(x)}(y) - \int f(y) \, d\beta^r_{d(x_i)}(y) \right| \]

\[= \left| \int f(xy) \, d\beta^d_{d(x)}(y) - \int f(xy) \, d\beta^d_{d(x_i)}(y) \right| \]

\[= \left| \int g(y) \, d\beta^d_{d(x)}(y) - \int f(xy) \, d\beta^d_{d(x_i)}(y) \right| \]

\[\leq \int g(y) \, d\beta^d_{d(x)}(y) - \int f(xy) \, d\beta^d_{d(x_i)}(y) + \]

\[+ \left| \int g(y) \, d\beta^d_{d(x_i)}(y) - \int f(xy) \, d\beta^d_{d(x_i)}(y) \right| \]

\[\leq \int g(y) \, d\beta^d_{d(x)}(y) - \int g(y) \, d\beta^d_{d(x_i)}(y) + \]

\[+ \sup_{y \in G^d(x_i)} |g(y) - f(xy)| \beta^d_{d(x_i)}(K) \]

A compactness argument shows that \(\sup_{y \in G^d(x_i)} |g(y) - f(xy)| \) converges to 0. Also \(\left| \int g(y) \, d\beta^d_{d(x)}(y) - \int g(y) \, d\beta^d_{d(x_i)}(y) \right| \) converges to 0 because the function \(u \to \int f(y) \, d\beta^u_{d(x)}(y) \) is continuous. Hence

\[\left| \int f(y) \, d\beta^r_{d(x)}(y) - \int f(y) \, d\beta^r_{d(x_i)}(y) \right| \]

converges to 0. \(\blacksquare \)
Definition 4 A locally compact groupoid G is proper if the map $(r, d): G \to G(0) \times G(0)$ is proper (i.e. the inverse of each compact subset of $G(0) \times G(0)$ is compact). (Definition 2.1.9/p. 37 [1]).

Throughout this paper we shall assume that G is a second countable locally compact groupoid for which the orbit space is Hausdorff and the map

$$(r, d): G \to R, \ (r, d) (x) = (r (x), d (x))$$

is open, where R is endowed with the product topology induced from $G(0) \times G(0)$. Therefore R will be a locally compact groupoid. The fact that R is a closed subset of $G(0) \times G(0)$ and that it is endowed with the product topology is equivalent to the fact R is a proper groupoid.

Throughout this paper by a groupoid with proper orbit space we shall mean a groupoid G for which the orbit space is Hausdorff and the map

$$(r, d): G \to R, \ (r, d) (x) = (r (x), d (x))$$

is open, where R is endowed with the product topology induced from $G(0) \times G(0)$.

Proposition 5 Let G be a second countable locally compact groupoid with proper orbit space. Let $\{\nu^u, u \in G(0)\}$ be a Haar system on G and $\{\beta^u_v, \{\mu^u\}\}$ its decomposition over the principal groupoid associated to G. Then for each $g \in C_c (G(0))$, the map

$$u \to \int g (v) d\mu^u (v)$$

is continuous.

Proof. Let $g \in C_c (G(0))$ and $u_0 \in G(0)$. Let K_1 be a compact neighborhood of u_0 and K_2 be the support of g. Since G is locally compact and (r, d) is open from G to $(r, d) (G)$, there is a compact subset K of G such that $(r, d) (K)$ contains $(K_1 \times K_2) \cap (r, d) (G)$. Let $F_1 \in C_c (G)$ be a nonnegative function equal to 1 on a compact neighborhood U of K. Let $F_2 \in C_c (G)$ be a function which extends to G the function $x \to F_1 (x) / \int F_1 (y) d\beta^u_v (y), \ x \in U$. We have $\int F_2 (y) d\beta^u_v (y) = 1$ for all $(u, v) \in (r, d) (K)$. Since for all $u \in K_1$,

$$\int g (v) d\mu^u (v) = \int g (v) \int F_2 (y) d\beta^u_v (y) d\mu^u (v) = \int g (d (y)) F_2 (y) d\nu^u (y),$$

it follows that $u \to \int g (v) d\mu^u (v)$ is continuous at u_0.

Remark 6 Let G be a locally compact second countable groupoid with proper orbit space. Let $\{\nu^u, u \in G(0)\}$ be a Haar system on G and $\{\beta^u_v, \{\mu^u\}\}$ be its decomposition over the associated principal groupoid. If μ is a quasi-invariant probability measure for the Haar system, then $\mu_1 = \int \mu^u d\mu (u)$ is a Radon

7
Let us assume that the range map \(r \).
Conversely, if \(\mu \) follows that there is a Borel set \(\nu \), be the quotient map. Since the quotient space is proper, \(G \) and since \(\mu \) Radon quasi-invariant measure is equivalent to a Radon measure of the form
\[
\int \mu^u d\tilde{\mu}(u),
\]
where \(\tilde{\mu} \) is a probability measure on the orbit space \(G/G^{(0)} \).

3 A \(C^* \)-algebra associated to a locally compact groupoid with proper orbit space

Let \(G \) be a locally compact second countable groupoid with proper orbit space. Let
\[
\pi : G^{(0)} \rightarrow G^{(0)}/G
\]
be the quotient map. Since the quotient space is proper, \(G^{(0)}/G \) is Hausdorff. Let us assume that the range map \(r \) is open. As a consequence, the map \(\pi \) is open. Applying Lemma 1.1 \([2]\) to the locally compact second countable spaces \(G^{(0)} \) and \(G^{(0)}/G \) and to the continuous open surjection \(\pi : G^{(0)} \rightarrow G^{(0)}/G \), it follows that there is a Borel set \(F \) in \(G^{(0)} \) such that:

1. \(F \) contains exactly one element in each orbit \([u] = \pi^{-1}(\pi(u))\).
2. For each compact subset \(K \) of \(G^{(0)} \), \(F \cap [K] = F \cap \pi^{-1}(\pi(K)) \) has a compact closure.

For each unit \(u \) let us define \(e(u) = F \cap [u] \) (\(e(u) \) is the unique element in the orbit of \(u \) contained in \(F \)). For each Borel subset \(B \) of \(G^{(0)} \), \(\pi \) is continuous and one-to-one on \(B \cap F \) and hence \(\pi(B \cap F) \) is Borel in \(G^{(0)}/G \). Therefore the map \(e : G^{(0)} \rightarrow G^{(0)} \) is Borel (for each Borel subset \(B \) of \(G^{(0)} \), \(e^{-1}(B) = [B \cap F] = \pi^{-1}(\pi(B \cap F)) \) is Borel in \(G^{(0)} \)). Also for each compact subset \(K \) of \(G^{(0)} \), \(e(K) \) has a compact closure because \(e(K) \subset F \cap [K] \).

Since the orbit space \(G^{(0)}/G \) is proper the map
\[
(r, d) : G \rightarrow R, (r, d)(x) = (r(x), d(x))
\]
is open and \(R \) is closed in \(G^{(0)} \times G^{(0)} \). Applying Lemma 1.1 \([2]\) to the locally compact second countable spaces \(G \) and \(R \) and to the continuous open surjection \((r, d) : G \rightarrow R \), it follows that there is a regular cross section \(\sigma_0 : R \rightarrow G \). This means that \(\sigma_0 \) is Borel, \((r, d)(\sigma_0(u, v)) = (u, v) \) for all \((u, v) \in R \), and \(\sigma_0(K) \) is relatively compact in \(G \) for each compact subset \(K \) of \(R \).

Let us define \(\sigma : G^{(0)} \rightarrow G^{F} \) by \(\sigma(u) = \sigma_0(e(u), u) \) for all \(u \). It is easy to note that \(\sigma \) is a cross section for \(d : G^{F} \rightarrow G^{(0)} \) and \(\sigma(K) \) is relatively compact in \(G \) for all compact \(K \subset G^{(0)} \).

Replacing \(\sigma \) by
\[
v \mapsto \sigma(e(v))^{-1} \sigma(v)
\]
we may assume that \(\sigma (e(v)) = e(v) \) for all \(v \). Let us define \(q : G \to G^E_F \) by

\[
q(x) = \sigma(r(x)) x \sigma(d(x))^{-1}, \quad x \in G.
\]

Let \(\nu = \{ \nu^u : u \in G^{(0)} \} \) be a Haar system on \(G \) and let \(\{ \beta^u \}, \{ \mu^u \} \) be its decompositions over the principal groupoid. Let \(\delta \) be the 1-cocycle associated to the decomposition.

Let us denote by \(\mathcal{B}_\sigma (G) \) the linear span of the functions of the form

\[
x \to g_1(r(x)) g(q(x)) g_2(d(x))
\]

where \(g_1, g_2 \) are compactly supported Borel bounded function on \(G^{(0)} \) and \(g \) is a Borel bounded function on \(G^E_F \) such that if \(S \) is the support of \(g \), then the closure of \(\sigma(K_1)^{-1} S \sigma(K_2) \) is compact in \(G \) for all compact subsets \(K_1, K_2 \) of \(G^{(0)} \). \(\mathcal{B}_\sigma (G) \) is a subspace of \(\mathcal{B}_c (G) \), the space of compactly supported Borel bounded function on \(G \).

If \(f_1, f_2 \in \mathcal{B}_\sigma (G) \) are defined by

\[
f_1(x) = g_1(r(x)) g(q(x)) g_2(d(x)) \\
f_2(x) = h_1(r(x)) h(q(x)) h_2(d(x))
\]

then

\[
f_1 * f_2(x) = g * h(q(x)) g_1(r(x)) h_2(d(x)) \left\langle g_2, h_1 \right\rangle_{\pi(r(x))} \\
f_1^*(x) = g_2(r(x)) g(q(x))^{-1} g_1(d(x))
\]

Thus \(\mathcal{B}_\sigma (G) \) is closed under convolution and involution.

Let \(\omega \) be the universal representation of \(C^*(G, \nu) \) the usual \(C^* \)-algebra associated to a Haar system \(\nu = \{ \nu^u, u \in G^{(0)} \} \) (constructed as in [S]). Since every cyclic representation of \(C^*(G, \nu) \) is the integrated form of a representation of \(G \), it follows that \(\omega \) can be also regarded as a representation of \(\mathcal{B}_c (G) \), the space of compactly supported Borel bounded function on \(G \). Arlan Ramsay and Martin E. Walter have used the notation \(M^*(G, \nu) \) for the operator norm closure of \(\omega(\mathcal{B}_c (G)) \). Since \(\omega \) is an *-isomorphism on \(C^*(G, \nu) \), we can regarded \(C^*(G, \nu) \) as a subalgebra of \(M^*(G, \nu) \).

Definition 7 We denote by \(M^*_\sigma (G, \nu) \) the operator norm closure of \(\omega(\mathcal{B}_\sigma (G)) \).

Lemma 8 Let \(\{ \mu_1^u \}_u \) and \(\{ \mu_2^u \}_u \) be two systems of measures on \(G^{(0)} \) satisfying:

1. \(\text{supp} (\mu_i^u) = [u] \) for all \(u, i = 1, 2 \)
2. For all compactly supported Borel bounded function \(f \) on \(G^{(0)} \) the function

\[
u \to \int f(v) \mu_1^{\pi(u)}(v)
\]

is bounded and Borel.
Then there is a family \(\{ U_\bar{u} \}_\bar{u} \) of unitary operators with the following properties:

1. \(U_\bar{u} : L^2 (\mu_1^\delta) \to L^2 (\mu_2^\delta) \) is a unitary operator for each \(\bar{u} \in G^{(0)}/G \).

2. For all Borel bounded function \(f \) on \(G^{(0)} \),

\[
u \mapsto U_{\pi(\nu)} (f)
\]

is a bounded Borel function with compact support.

3. For all Borel bounded function \(f \) on \(G^{(0)} \),

\[
U_{\pi(\nu)} (f) = \overline{U_{\pi(\nu)} (f)}
\]

Proof. Using the same argument as in [6] (p. 323) we can construct a sequence \(f_1, f_2, \ldots \) of real valued Borel bounded function on \(G^{(0)} \) such that \(\dim (L^2 (\mu_1^\delta)) = \infty \) if and only if \(\| f_n \|_2 \) for \(n = 1, 2, \ldots \) and then \(\{ f_1, f_2, \ldots \} \) gives an ortonormate basis of \(L^2 (\mu_1^\delta) \), while \(\dim (L^2 (\mu_2^\delta)) = k < \infty \) if and only if \(\| f_n \|_2 = 1 \) for \(n \leq k \), and \(\| f_n \|_2 = 0 \) for \(n > k \) and then \(\{ f_1, f_2, \ldots, f_k \} \) gives an ortonormate basis of \(L^2 (\mu_2^\delta) \). Let \(g_1, g_2, \ldots \) be a sequence with the same properties as \(f_1, f_2, \ldots \) corresponding to \(\{ \mu_2^\delta \}_\bar{u} \). Let us define \(U_\bar{u} : L^2 (\mu_1^\delta) \to L^2 (\mu_2^\delta) \) by

\[
U_\bar{u} (f_n) = g_n \text{ for all } n
\]

Then the family \(\{ U_\bar{u} \}_\bar{u} \) has the required properties. ■

Theorem 9 Let \(G \) be a locally compact second countable groupoid with proper orbit space. Let \(\{ \nu_i^u, u \in G^{(0)} \} \), \(i = 1, 2 \) be two Haar systems on \(G \). Let \(F \) be a Borel subset of \(G^{(0)} \) containing only one element \(e (u) \) in each orbit \([u]\). Let \(\sigma : G^{(0)} \to G^F \) be a cross section for \(d : G^F \to G^{(0)} \) with \(\sigma (e (u)) = e (v) \) for all \(v \in G^{(0)} \) and \(\sigma (K) \) relatively compact in \(G \) for all compact sets \(K \subset G^{(0)} \).

Then the \(C^* \)-algebras \(M^*_\nu (G, \nu_1) \) and \(M^*_\nu (G, \nu_2) \) are \(*\)-isomorphic.

Proof. Let \(\{ (\beta_i^u), \{ \mu_i^\delta \} \} \) be the decompositions of the Haar systems over the principal groupoid. Let \(\delta \) be the 1-cocycle associated to the decompositions, \(i = 1, 2 \).

We shall denote by \(\langle \cdot, \cdot \rangle_{i, \bar{u}} \) the inner product of \(\{ L^2 (G^{(0)}, \delta (\cdot) \mu_i^\delta) \} \), \(i = 1, 2 \).

Let us define \(q : G \to G^F_\nu \) by

\[
q (x) = \sigma (r (x)) x \sigma (r (d (x)))^{-1} \text{, } x \in G.
\]

We shall define a \(*\)-homomorphism \(\Phi \) from \(\mathcal{B}_\nu (G) \) to \(\mathcal{B}_\nu (G) \). It suffices to define \(\Phi \) on the set of function on \(G \) of the form

\[
x \to g_1 (r (x)) g (q (x)) g_2 (d (x))
\]

10
Let \(\{ U_\tilde{u} \} \) be the family of unitary operators with the properties stated in Lemma \(\mathbb{N} \) associated to the systems of measures \(\{ \delta (\sigma (\cdot)) \mu^\tilde{u}_1 \} \), \(i = 1, 2. \)

Let us define \(\Phi \) by

\[
\Phi (f) = \left(x \to U_{\pi(\tau(x))} (g_1) (r (x)) \right) g (q (x)) U_{\pi(d(x))} (g_2) (d (x))
\]

where \(f \) is defined by

\[
f (x) = g_1 (r (x)) g (q (x)) g_2 (d (x))
\]

If \(f_1 \) and \(f_2 \) are defined by

\[
\begin{align*}
 f_1 (x) &= g_1 (r (x)) g (q (x)) g_2 (d (x)) \\
 f_2 (x) &= h_1 (r (x)) h (q (x)) h_2 (d (x))
\end{align*}
\]

then

\[
f_1 \ast f_2 (x) = g \ast h (q (x)) g_1 (r (x)) h_2 (d (x)) \langle g_2, \overline{h_1} \rangle_{1, \pi(r(x))}
\]

and consequently

\[
\Phi (f_1 \ast f_2) = g \ast h (q (x)) U_{\pi(\tau(x))} (g_1) (r (x)) U_{\pi(r(x))} (h_2) (d (x)) \langle g_2, \overline{h_1} \rangle_{1, \pi(r(x))}
\]

\[
= \Phi (f_1) \ast \Phi (f_2).
\]

Let \(\tilde{\eta} \) be a probability measure on \(G^{(0)}/G \) and \(\eta_i = \int \mu^\tilde{u}_i d\tilde{\eta}(\tilde{u}), i = 1, 2. \) Let \(L_1 \) be the integrated form of a representation \((L, \mathcal{H} \ast G^{(0)}, \eta_1) \) and \(L_2 \) be the integrated form of \((L, \mathcal{H} \ast G^{(0)}, \eta_2) \). Let \(B \) be the Borel function defined by:

\[
B (u) = L (\sigma (u))
\]

and \(W : \int_{G^{(0)}}^\oplus \mathcal{H} (u) d\eta_1 (u) \to \int_{G^{(0)}}^\oplus \mathcal{H} (e (u)) d\eta_1 (u) \) be defined by

\[
W (\zeta) = (u \to B (u) (\zeta (u)))
\]

Since every element of \(L^2 (G^{(0)}, \delta (\sigma (\cdot)) \mu^\tilde{w}, \mathcal{H} (e (w))) \) is a limit of linear combinations of elements \(u \to a (u) \xi \) with \(a \in L^2 (G^{(0)}, \delta (\sigma (\cdot)) \mu^\tilde{w}) \) and \(\xi \in \mathcal{H} (e (w)) \), we can define a unitary operator

\[
V_w : L^2 (G^{(0)}, \delta (\sigma (\cdot)) \mu^\tilde{w}, \mathcal{H} (e (w))) \to L^2 (G^{(0)}, \delta (\sigma (\cdot)) \mu^\tilde{w}, \mathcal{H} (e (w)))
\]

by

\[
V_w (u \to a (u) \xi) = U_w (a) \xi
\]

Let \(V : \int_{G^{(0)}}^\oplus \mathcal{H} (e (u)) d\eta_1 (u) \to \int_{G^{(0)}}^\oplus \mathcal{H} (e (u)) d\eta_2 (u) \) be defined by

\[
V (\zeta) = (u \to V_\zeta (\zeta (u)))
\]

If \(\zeta_1, \zeta_2 \in \int_{G^{(0)}}^\oplus \mathcal{H} (e (u)) d\eta_1 (u) \) and \(f \) is of the form

\[
f (x) = g_1 (r (x)) g (q (x)) g_2 (d (x)),
\]
we have

$$\langle W L_1 (f) W^* \zeta_1, \zeta_2 \rangle$$

$$= \int \int g (x) \delta (x) ^{\frac{1}{2}} \langle L (x) A_1 (\dot{w}), B_1 (\dot{w}) \rangle d \beta^{(u)} (x) d \tilde{\eta} (\dot{w})$$

where

$$A_1 (\dot{w}) = \int g_2 (v) \zeta_1 (v) \delta (\sigma (v)) ^{\frac{1}{2}} d \mu^{(v)} (v)$$

$$B_1 (\dot{w}) = \int g_1 (u) \zeta_2 (u) \delta (\sigma (u)) ^{\frac{1}{2}} d \mu^{(u)} (u)$$

Moreover, if f is of the form $f (x) = g_1 (r (x)) g (q (x)) g_2 (d (x))$ and $\zeta_1, \zeta_2 \in \int_{G (0)} H (e (u)) d \eta_2 (u)$, then

$$\langle VWL_1 (f) W^* V^* \zeta_1, \zeta_2 \rangle$$

$$= \int \int g (x) \delta (x) ^{\frac{1}{2}} \langle L (x) A_2 (\dot{w}), B_2 (\dot{w}) \rangle d \beta^{(u)} (x) d \tilde{\eta} (\dot{w})$$

$$= \langle WL_2 (\Phi (f)) W^* \zeta_1, \zeta_2 \rangle$$

where

$$A_2 (\dot{w}) = \int g_2 (v) V^* \zeta_1 (v) \delta (\sigma (v)) ^{\frac{1}{2}} d \mu^{(v)} (v)$$

$$= \int U_\zeta (g_2) (v) \zeta_1 (v) \delta (\sigma (v)) ^{\frac{1}{2}} d \mu^{(v)} (v)$$

$$B_2 (\dot{w}) = \int g_1 (v) V^* \zeta_2 (v) \delta (\sigma (v)) ^{\frac{1}{2}} d \mu^{(v)} (v)$$

$$= \int U_\zeta (g_1) (u) \zeta_2 (u) \delta (\sigma (u)) ^{\frac{1}{2}} d \mu^{(u)} (u)$$

Therefore $\|L_1 (f)\| = \|L_2 (\Phi (f))\|$. Consequently we can extend Φ to a *-homomorphism between the $M^*_n (G, \nu_1)$ and $M^*_n (G, \nu_2)$. It is not hard to see that Φ is in fact a *-isomorphism:

$$\Phi^{-1} (f) = \left(x \to U_{\pi (r (x))}^* (g_1) (r (x)) g (q (x)) U_{\pi (d (x))}^* (g_2) (d (x)) \right)$$

for each f of the form

$$f (x) = g_1 (r (x)) g (q (x)) g_2 (d (x)).$$
4 The case of locally transitive groupoids

A locally compact transitive groupoid G is a groupoid for which all orbits $[u]$ are open in $G^{(0)}$. We shall prove that if G is a locally compact second countable locally transitive groupoid endowed with a Haar system ν, then

$$C^* (G, \nu) = M^* (G, \nu) = M^*_\sigma (G, \nu)$$

for any regular cross section σ.

Notation 10 Let $\{ \nu^u, u \in G^{(0)} \}$ be a fixed Haar system on G. Let μ be a quasi-invariant measure, Δ its modular function, ν_1 be the measure induced by μ on G and $\nu_0 = \Delta^{-\frac{1}{2}} \nu_1$. Let us denote by $II_\mu (G)$ the set

$$\{ f \in L^1 (G, \nu_0) : \| f \|_{II, \mu} < \infty \},$$

where $\| f \|_{II, \mu}$ is defined by

$$\| f \|_{II, \mu} = \sup \left\{ \int |f (x) j (d (x)) k (r (x))| d\nu_0 (x), \int |j|^2 d\mu = \int |k|^2 d\mu = 1 \right\}.$$

If μ_1 and μ_2 are two equivalent quasi-invariant measures, then $\| f \|_{II, \mu_1} = \| f \|_{II, \mu_2}$, because $\| f \|_{II, \mu} = \| II_\mu (|f|) \|$ for each quasi-invariant measure μ, where II_μ is the one dimensional trivial representation on μ.

Define $\| f \|_I$ to be

$$\sup \{ \| f \|_{II, \mu} : \mu \text{ quasi-invariant Radon measure on } G^{(0)} \}$$

The supremum can be taken over the classes of quasi-invariant measure.

If $\| \|_I$ is the full C^*-norm on $C_c (G)$, then

$$\| f \| \leq \| f \|_I \text{ for all } f.$$ (see [7])

Lemma 11 Let G be a locally compact second countable groupoid with proper orbit space. Let $\{ \nu^u, u \in G^{(0)} \}$ be a Haar system on G, $\{ \beta^u_v \}, \{ \mu^u \}$ its decomposition over the principal groupoid associated to G and δ the associated 1-cocycle. If f is a universally measurable function on G, then

$$\| f \|_I \leq \sup_\nu \left(\int \int \left(\int |f (x)| \delta (x)^{-\frac{1}{2}} d\beta^u_v (x) \right)^2 d\mu^u (v) d\mu^w (u) \right)^{\frac{1}{2}}.$$
Proof. Each Radon quasi-invariant measure is equivalent with a Radon measure of the form $\int \mu^\beta d\tilde{\mu}(\dot{u})$, where $\tilde{\mu}$ is a probability measure on the orbit space $G/G^{(0)}$. Therefore for the computation of $\|f\|_{I1}$ it is enough to consider only the quasi-invariant measures of the form $\mu = \int \mu^\beta d\tilde{\mu}(\dot{u})$, where $\tilde{\mu}$ is a probability measure on $G^{(0)}/G$. It is easy to see that the modular function of $\int \mu^\beta d\tilde{\mu}(\dot{u})$ is $\Delta = \delta$.

Let $j, k \in L^2(G^{(0)}, \mu)$ with $\int |j|^2 d\mu = \int |k|^2 d\mu = 1$. We have

$$\int \int \int \int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) |j(v)| |k(u)| \mu^\beta(v) \mu^\beta(u) d\tilde{\mu}(\dot{u})$$

$$\leq \int \left(\int \int (\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x))^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}} d\tilde{\mu}(\dot{u})$$

$$\cdot \left(\int \int |j(v)|^2 |k(u)|^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}} \mu^\beta(v) \mu^\beta(u)$$

$$= \sup_{\dot{u}} \left(\int \int \left(\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}} d\tilde{\mu}(\dot{u})$$

$$\cdot \left(\int \int |j(v)|^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}} d\tilde{\mu}(\dot{u})$$

$$\leq \sup_{\dot{u}} \left(\int \int \left(\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}}$$

Consequently,

$$\|f\|_{I1} \leq \sup_{\dot{u}} \left(\int \int \left(\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 \mu^\beta(v) \mu^\beta(u) \right)^{\frac{1}{2}}$$

\[\blacksquare\]

If G is locally transitive, each orbit $[u]$ is open in $G^{(0)}$. Each measure μ^β is supported on $[u]$. Since $([u])$ is a partition of $G^{(0)}$ into open sets, it follows that there is a unique Radon measure m on $G^{(0)}$ such that the restriction of m at $C_c([u])$ is μ^β for each $[u]$.

Corollary 12 Let G be a locally compact second countable locally transitive groupoid endowed with a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$. Let f be a universally measurable function such that $\|f\|_{I1} < \infty$.

1. If $(f_n)_n$ is a uniformly bounded sequence of universally measurable functions supported on a compact set, and if $(f_n)_n$ converges pointwise to f, then $(f_n)_n$ converges to f in the norm of $C^*(G, \nu)$.

2. If $(f_n)_n$ is an increasing sequence of universally measurable nonnegative functions on G that converges pointwise to f, then $(f_n)_n$ converges to f in the norm of $C^*(G, \nu)$.
Proof. Let \(\{ \beta_u^v \}, \{ \mu^u \} \) be the decomposition of the Haar system over the principal groupoid associated to \(G \) and \(\delta \) the associated 1-cocycle. Let \(m \) be the unique measure such that restriction of \(m \) at \(C_c([u]) \) is \(\mu^u \) for each \([u] \). Let \((f_n)_n \) be a sequence of universally measurable functions supported on a compact set \(K \). Let us write

\[
M = \sup_{u,v} \beta_u^v (K^{-1}).
\]

and let us assume that \((f_n)_n \) converges pointwise to \(f \). According to Lemma 11, we have

\[
\| f - f_n \|_{II} \leq \sup_{u,v} \left(\int \int \left(|f(x) - f_n(x)|^{2} dg(x) \right)^{2} d\mu^v (v) d\mu^u (u) \right)^{\frac{1}{2}}.
\]

Hence

\[
\| f - f_n \|_{II} \leq M \left(\int \int \left(|f(x) - f_n(x)|^{2} dg(x) \right) dm (v) dm (u) \right)^{\frac{1}{2}}.
\]

If \(\| \| \) denotes the \(C^* \)-norm, then

\[
\lim_n \| f - f_n \| \leq \lim_n \| f - f_n \|_{II} = 0,
\]

because

\[
\int \int \left(|f(x) - f_n(x)|^{2} dg(x) \right) dm (v) dm (u)
\]

converges to zero, by the Dominated Convergence Theorem.

Let \((f_n)_n \) be an increasing sequence of universally measurable nonnegative functions that converges pointwise to \(f \). Since

\[
\| f - f_n \|_{II} \leq \sup_{u,v} \left(\int \int \left(|f(x) - f_n(x)|^{2} dg(x) \right)^{2} d\mu^v (v) d\mu^u (u) \right)^{\frac{1}{2}}
\]

\[
\leq \left(\int \int \left(|f(x) - f_n(x)|^{2} dg(x) \right)^{2} dm (v) dm (u) \right)^{\frac{1}{2}}
\]

it follows that

\[
\lim_n \| f - f_n \|_{II} = 0.
\]

\[\blacksquare\]

Proposition 13 Let \(G \) be a locally compact second countable locally transitive groupoid endowed with a Haar system \(\nu = \{ \nu^u, u \in G^{(0)} \} \). Then any function in \(B_c(G) \), the space of compactly supported Borel bounded function on \(G \), can be viewed as an element of \(C^* (G, \nu) \).
Proof. Let \(\{\beta_u^v, \mu^u\} \) be the decomposition of the Haar system over the principal groupoid associated to \(G \), and \(\delta \) the associated 1-cocycle. Let \(m \) be the unique measure such that restriction of \(m \) at \(C_c([u]) \) is \(\mu^u \) for each \([u]\). Let \(m \) be a dominant for the family \(\{\mu^u\} \). Let \(\nu_1 \) be the measure on \(G \) define by

\[
\int f(x) \, d\nu_1(x) = \left(\int \left(\int f(x) \, d\beta_u^v(x) \right) \, dm(v) \, dm(u) \right)
\]

for all Borel nonnegative function \(f \). If \(f \in B_c(G) \), then \(f \) is the limit in \(L^2(G, \nu_1) \) of a sequence, \((f_n)_n\), in \(C_c(G) \) that is supported on some compact set \(K \) supporting \(f \). If we write

\[
M = \sup_{u,v} \beta_u^v(K^{-1}),
\]
we have

\[
\|f - f_n\|_{L^2} \leq \sup_{u,v} M \left(\int \left(\int |f(x) - f_n(x)|^2 \, d\beta_u^v(x) \right) \, dm(v) \, dm(u) \right)^{\frac{1}{2}}
\]

\[
\leq M \left(\int \left(\int |f(x) - f_n(x)|^2 \, d\beta_u^v(x) \right) \, dm(v) \, dm(u) \right)^{\frac{1}{2}}.
\]

If \(\|\cdot\| \) denotes the \(C^* \)-norm, then

\[
\lim_n \|f - f_n\| \leq \lim_n \|f - f_n\|_{L^2} = 0.
\]
Thus \(f \) can be viewed as an element in \(C^*(G, \nu) \). □

Proposition 14 If \(G \) is a locally compact second countable locally transitive groupoid endowed with a Haar system \(\{\nu^u, u \in G^{(0)}\} \) with bounded decomposition, then

\[
C^*(G, \nu) = M^*(G, \nu).
\]

Proof. It follows from the Proposition 13. □

Remark 15 Let \(G \) be locally compact locally transitive groupoid. Let \(F \) be a subset of \(G^{(0)} \) containing only one element \(e(u) \) in each orbit \([u]\). It is easy to see that \(F \) is a closed subset of \(G \) and that \(F \) is a discrete space. Let \(\sigma : G^{(0)} \to G^F \) be a regular cross section of \(d_F \). Let us endow \(\bigcup_{[u]} [u] \times G_{e(u)}^{c(u)} \times [u] \) with the topology induced from \(G^{(0)} \times G^F_e \times G^{(0)} \). The topology of \(\bigcup_{[u]} [u] \times G_{e(u)}^{c(u)} \times [u] \) is locally compact because \(\bigcup_{[u]} [u] \times G_{e(u)}^{c(u)} \times [u] \) is a closed subset of the locally compact space \(G^{(0)} \times G^F_e \times G^{(0)} \). With the operations:

\[
(u, x, v)(v, y, w) = (u, xy, w) \quad (u, x, v)^{-1} = (v, x^{-1}, u)
\]
\[\bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \] becomes a groupoid. Let us define \(\phi : G \rightarrow \bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \) by
\[
\phi (x) = \left(r(x), \sigma (r(x)) x \sigma (d(x))^{-1}, d(x) \right)
\]
and note that \(\phi \) is a Borel isomorphism which carries compact sets to relatively compact sets.

Lemma 16 Let \(G \) be locally compact second countable locally transitive groupoid. Let \(F \) be a subset of \(G(0) \) containing only one element \(e(u) \) in each orbit \([u] \). Let \(\sigma : G(0) \rightarrow G^F \) be a regular cross section of \(d_F \). Then any compactly supported Borel bounded function on \(G \) is pointwise limit of a uniformly bounded sequence \((f_n)_n\) of Borel functions supported on a compact set supporting \(f \), having the property that each \(f_n \) is a linear combination of functions of the form
\[
x \rightarrow g_1 (r(x)) g \left(\sigma (r(x)) x \sigma (d(x))^{-1} \right) g_2 (d(x))
\]
where \(g_1, g_2 \) are compactly supported Borel bounded function on \(G(0) \) and \(g \) is a compactly supported Borel bounded function on \(G^F \).

Proof. Let us endow \(\bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \) with the topology induced from \(G(0) \times G^F \times G(0) \) as in Remark 15. The topology of \(\bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \) is locally compact. Any compactly supported Borel bounded function on \(G(0) \times G^F \times G(0) \) is pointwise limit of uniformly bounded sequences \((f_n)_n\) of Borel functions supported on a compact set, such that each function \(f_n \) is a linear combination of functions of the form
\[
(u, x, v) \rightarrow g_1 (u) g (x) g_2 (v)
\]
where \(g_1, g_2 \) are compactly supported Borel bounded function on \(G(0) \) and \(g \) is a compactly supported Borel bounded function on \(G^F \). Consequently, any compactly supported Borel bounded function on \(\bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \) has the same property. Since \(\phi : G \rightarrow \bigcup_{[u]} [u] \times G_{e(u)}^u \times [u] \) defined by
\[
\phi (x) = \left(r(x), \sigma (r(x)) x \sigma (d(x))^{-1}, d(x) \right)
\]
is a Borel isomorphism which carries compact sets to relatively compact sets, it follows that any compactly supported Borel bounded function on \(G \) can be represented as a pointwise limit of a uniformly bounded sequence \((f_n)_n\) of Borel functions supported on a compact set supporting \(f \), having the property that each \(f_n \) is a linear combination of functions of the form
\[
x \rightarrow g_1 (r(x)) g \left(\sigma (r(x)) x \sigma (d(x))^{-1} \right) g_2 (d(x))
\]
Corollary 17 Let G be locally compact second countable locally transitive groupoid. Let F be a subset of $G^{(0)}$ containing only one element $e(u)$ in each orbit $[u]$. Let $\sigma : G^{(0)} \to GF$ be a regular cross section of d_F. Then the linear span of the functions of the form

$$x \to g_1(r(x)) g \left(\sigma(r(x)) x \sigma(d(x))^{-1} \right) g_2(d(x))$$

where $g_1, g_2 \in \mathcal{B}_c \big(G^{(0)}\big)$ and $g \in \mathcal{B}_c \big(G^F_F\big)$, is dense in the full C^*-algebra of G.

Proof. Let f be a function on G, defined by

$$f(x) = g_1(r(x)) g \left(\sigma(r(x)) x \sigma(d(x))^{-1} \right) g_2(d(x))$$

where $g_1, g_2 \in \mathcal{B}_c \big(G^{(0)}\big)$ and $g \in \mathcal{B}_c \big(G^F_F\big)$. Then $f \in \mathcal{B}_c(G)$, therefore it can be viewed as an element of the $C^*(G, \nu)$ as we note in Proposition 18. Each $f \in \mathcal{B}_c(G)$ (in particular in $C_c(G)$) is the limit (pointwise and consequently in the C^*-norm according to Corollary 18) of a uniformly bounded sequence $(f_n)_n$ of Borel functions supported on a compact set supporting f, having the property that each f_n is a linear combination of functions of the required form.

Proposition 18 Let G is a locally compact second countable locally transitive groupoid endowed with a Haar system $\{\nu^u, u \in G^{(0)}\}$. Let F be a subset of $G^{(0)}$ containing only one element $e(u)$ in each orbit $[u]$. Let $\sigma : G^{(0)} \to GF$ be a regular cross section of d_F. Then

$$C^*(G, \nu) = M^*(G, \nu) = M^*_\sigma(G, \nu).$$

Proof. We have proved that $C^*(G, \nu) = M^*(G, \nu)$. From the preceding corollary, it follows that the linear span of the functions of the form

$$x \to g_1(r(x)) g \left(\sigma(r(x)) x \sigma(d(x))^{-1} \right) g_2(d(x))$$

where $g_1, g_2 \in \mathcal{B}_c \big(G^{(0)}\big)$ and $g \in \mathcal{B}_c \big(G^F_F\big)$ is dense in $C^*(G, \nu)$. But this space is contained in $\mathcal{B}_\sigma(G)$. Therefore $C^*(G, \nu) = M^*(G, \nu) = M^*_\sigma(G, \nu)$.

5 The case of principal proper groupoids case

Notation 19 Let G be a locally compact second countable groupoid with proper orbit space. Let F be a Borel subset of $G^{(0)}$ containing only one element $e(u)$ in each orbit $[u]$. Let $\sigma : G^{(0)} \to GF$ be a regular cross section for $d_F : GF \to$
$G^{(0)}, \sigma_{F}(x) = d(x)$ with $\sigma(e(v)) = c(v)$ for all $v \in G^{(0)}$. Let $q : G \rightarrow G_{F}^{\sigma}$ be defined by

$$q(x) = \sigma(r(x)) x \sigma(d(x))^{-1}$$

We shall endow G_{F}^{σ} with the quotient topology induced by q. We shall denote by $C_{\sigma}(G)$ the linear span of the functions of the form

$$x \rightarrow g_{1}(r(x)) g \left(\sigma(r(x)) x \sigma(d(x))^{-1}\right) g_{2}(d(x))$$

where $g_{1}, g_{2} \in C_{c}(G^{(0)})$ and $g \in C_{c}(G_{F}^{\sigma})$.

Proposition 20 With the Notation $\mathbb{1}$, if the space of continuous functions with compact support on G_{F}^{σ} (with the respect to the quotient topology induced by q) separates the points of G_{F}^{σ}, then $C_{\sigma}(G)$ is dense in $C_{c}(G)$ (for the inductive limit topology). In particular, if the quotient topology induced by q on G_{F}^{σ} is a locally compact (Hausdorff) topology, then $C_{\sigma}(G)$ is dense in $C_{c}(G)$.

Proof. If the space of continuous functions with compact support on G_{F}^{σ} (with the respect to the quotient topology induced by q) separates the points of G_{F}^{σ}, then $C_{\sigma}(G)$ separates the points of G. By Stone-Weierstrass Theorem, it follows that $C_{\sigma}(G)$ is dense in $C_{c}(G)$ (for the inductive limit topology).

Proposition 21 Let G be a locally compact principal groupoid. If G is proper, then the quotient topology induced by q on G_{F}^{σ} is a locally compact (Hausdorff) topology. Consequently, $C_{\sigma}(G)$ is dense in $C_{c}(G)$ for the inductive limit topology (we use the Notation $\mathbb{1}$).

Proof. Let $\pi : G \rightarrow G^{(0)}/G$ be the canonical projection. Let us note that for a principal groupoid the condition

$$q(x) = q(y)$$

is equivalent with

$$\pi(r(x)) = \pi(r(y)).$$

First we shall prove that the topology on G_{F}^{σ} is Hausdorff. Let $(x_{i})_{i}$ and $(y_{i})_{i}$ be two nets with $q(x_{i}) = q(y_{i})$ for every i. Let us suppose that $(x_{i})_{i}$ converges to x and $(y_{i})_{i}$ converges to y. Then

$$\lim \pi(r(x_{i})) = \lim \pi(r(y_{i})) = \pi(r(x)) = \pi(r(y))$$

Hence $q(x) = q(y)$, and therefore the topology on G_{F}^{σ} is Hausdorff. We shall prove that q is open. If $(z_{i})_{i}$ is a net converging to $q(x)$ in G_{F}^{σ}, then $\pi \circ r(z_{i})$ converges to $\pi \circ r(x)$. Since

$$\pi \circ r : G \rightarrow G^{(0)}/G$$

is an open map, there is a net $(x_{i})_{i}$ converging to x, such that $\pi \circ r(x_{i}) = \pi \circ r(z_{i})$, and consequently $q(x_{i}) = q(z_{i}) = z_{i}$. Hence q is an open map and the quotient topology induced by q on G_{F}^{σ} is locally compact.
Theorem 22 Let G be a locally compact second countable groupoid with proper orbit space. Let F be a Borel subset of $G^{(0)}$ meeting each orbit exactly once. Let $\sigma : G^{(0)} \to G^F$ be a regular cross section for $d : G^F \to G$. Let us assume that the quotient topology induced by q on G^F is a locally compact (Hausdorff) topology. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G. Then

$$C^*(G, \nu) \subset M^*_\sigma(G, \nu) \subset M^*(G, \nu).$$

Proof. From Proposition 20 $C^*_\sigma(G)$ is dense in $C_c(G)$ for the inductive limit topology and hence is dense in $C^*(G, \nu)$. Since $C^*_\sigma(G) \subset B^*_\sigma(G)$, it follows that $C^*(G, \nu) \subset M^*_\sigma(G, \nu)$.

Corollary 23 Let G be a locally compact second countable principal proper groupoid. Let F be a Borel subset of $G^{(0)}$ meeting each orbit exactly once. Let $\sigma : G^{(0)} \to G^F$ be a regular cross section for $d : G^F \to G$. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G. Then

$$C^*(G, \nu) \subset M^*_\sigma(G, \nu) \subset M^*(G, \nu).$$

Proof. Applying Proposition 21, we obtain that the quotient topology induced by q on G^F is a locally compact (Hausdorff) topology. Therefore G satisfies the hypothesis of Theorem 22.

Definition 24 Let $\{\mu^u\}_{\hat{u}}$ be a system of measures on $G^{(0)}$ satisfying:

1. $\text{supp} (\mu^u) = [u]$ for all \hat{u}.

2. For all compactly supported continuous functions f on $G^{(0)}$ the function

$$u \mapsto \int f(v) \mu^{\pi(u)}(v)$$

is continuous.

We shall say that the Hilbert bundle determined by the system of measures $\{\mu^u\}_{\hat{u}}$ has a continuous basis if there is sequence f_1, f_2, \ldots of real valued continuous functions on $G^{(0)}$ such that $\dim (L^2(\mu^u)) = \infty$ if and only if $\|f_n\|_2$ for $n = 1, 2, \ldots$ and then $\{f_1, f_2, \ldots\}$ gives an orthonormate basis of $L^2(\mu^u)$, while $\dim (L^2(\mu^u)) = k < \infty$ if and only if $\|f_n\|_2 = 1$ for $n \leq k$, and $\|f_n\|_2 = 0$ for $n > k$ and then $\{f_1, f_2, \ldots f_k\}$ gives an orthonormate basis of $L^2(\mu^u)$.

Remark 25 Let $\{\mu_1^u\}_{\hat{u}}$ and $\{\mu_2^u\}_{\hat{u}}$ be two systems of measures on $G^{(0)}$ satisfying:

1. $\text{supp} (\mu_i^u) = [u]$ for all \hat{u}, $i = 1, 2$.

20
2. For all compactly supported continuous functions \(f \) on \(G^{(0)} \) the function

\[
 u \mapsto \int f(v) \mu^{\pi(u)}(v)
\]

is continuous

Let us assume that the Hilbert bundles determined by the systems of measures \(\{\mu^{\hat{u}}_1\}_{\hat{u}} \) have continuous bases. Let \(f_1, f_2, \ldots \) be a continuous basis for Hilbert bundle determined by \(\{\mu^{\hat{u}}_1\}_{\hat{u}} \) and let \(g_1, g_2, \ldots \) be a continuous basis for Hilbert bundle determined by \(\{\mu^{\hat{u}}_2\}_{\hat{u}} \). Let us define a unitary operator \(U_{\hat{u}} : L^2(\mu^{\hat{u}}_1) \to L^2(\mu^{\hat{u}}_2) \) by

\[
 U_{\hat{u}}(f_n) = g_n \quad \text{for all } n
\]

Then the family \(\{U_{\hat{u}}\}_{\hat{u}} \) has the following properties:

1. For all Borel bounded function \(f \) on \(G^{(0)} \),

\[
 u \mapsto U_{\pi(u)}(f)
\]

is a bounded Borel function with compact support.

2. For all Borel bounded function \(f \) on \(G^{(0)} \),

\[
 U_{\pi(u)}(f) = \overline{U_{\pi(u)}(f)}
\]

3. For all compactly supported continuous functions \(f \) on \(G^{(0)} \) there is a sequence \((h_n)_n \) of compactly supported continuous functions on \(G^{(0)} \) such that

\[
 \sup_{\hat{u}} \int |U_{\hat{u}}(f) - h_n|^2 d\mu^{\hat{u}}_2 \to 0 \ (n \to \infty)
\]

Indeed, we can define

\[
 h_n(v) = \sum_{k=1}^n g_k(v) \int f(u) f_k(u) \mu^{\pi(v)}(u).
\]

Remark 26 Let \(G \) be a locally compact second countable groupoid with proper orbit space. Let \(F \) be a Borel subset of \(G^{(0)} \) containing only one element \(e(u) \) in each orbit \([u]\). Let us assume that \(F \cap [K] \) has a compact closure for each compact subset \(K \) of \(G^{(0)} \), and let \(\sigma : G^{(0)} \to GF \) be a regular cross section for \(d_F : GF \to G^{(0)} \). Let us endow \(GF \) with the quotient topology induced by \(q : G \to GF \)

\[
 q(x) = \sigma(r(x)) x \sigma(d(x))^{-1}, \ x \in G
\]

If \(g \in C_c \left(G^{(0)}_F\right) \) and \(g_1, g_2 \) are two functions on \(G^{(0)} \) with the property that there
is two sequences \((h^1_n)_n\) and \((h^2_n)_n\) of compactly supported continuous functions on \(G^{(0)}\) such that

\[
\sup_u \int |g_i - h^i_n|^2 \, d\mu^u_2 \to 0 \quad (n \to \infty)
\]

for \(i = 1, 2\), then

\[
x \xrightarrow{\mathcal{L}} g_1(r(x)) \ g \left(\sigma(r(x)) \ x \sigma(d(x))^{-1} \right) g_2(d(x))
\]

can be viewed as an element of \(C^* \ (G, \nu)\). Indeed, it is easy to see that

\[
\|f - (h^1_n \circ r) \ (g \circ q) \ (h^2_n \circ d)\|_{L^1} \to 0 \quad (n \to \infty).
\]

Proposition 27 Let \(G\) be a locally compact second countable principal proper groupoid. Let \(\nu_i = \{\nu^u_i, u \in G^{(0)}\}, i = 1, 2\) be two Haar system on \(G\) and \((\{\beta^u_i\}, \{\mu^q_i\})\) the corresponding decompositions over the principal groupoid. If the Hilbert bundles determined by the systems of measures \(\{\mu^q_i\}_u\) have continuous bases, then the \(C^*\)-algebras \(C^* \ (G, \nu_1)\) and \(C^* \ (G, \nu_2)\) are \(*\)-isomorphic.

Proof. We use the Notation [19]. From Proposition 20 \(C^*_\sigma(G)\) is dense in \(C_c(G)\) for the inductive limit topology and hence is dense in \(C^* \ (G, \nu_1)\). We shall define a \(*\)-homomorphism \(\Phi\) from \(C^*_\sigma(G)\) to \(C^* \ (G, \nu_2)\). It suffices to define \(\Phi\) on the set of function on \(G\) of the form

\[
x \rightarrow g_1(r(x)) \ g(q(x)) \ g_2(d(x))
\]

where \(g_1, g_2 \in C_c(G^{(0)})\) and \(g \in C_c(G^F_F)\). Let \(\{U^u_i\}_u\) be the family of unitary operators with the properties stated in Remark 24 associated to the systems of measures \(\{\mu^q_i\}_u, i = 1, 2\).

Let us define \(\Phi\) by

\[
\Phi(f) = (x \to U_{\pi(r(x))} (g_1(r(x)) \ g(q(x)) \ U_{\pi(d(x))} (g_2)(d(x))))
\]

where \(f\) is defined by

\[
f(x) = g_1(r(x)) \ g(q(x)) \ g_2(d(x))
\]

with \(g_1, g_2 \in C_c(G^{(0)})\) and \(g \in C_c(G^F_F)\).

We noted in Remark 24 that the functions of the form \(\Phi(f)\) can be viewed as elements of \(C^* \ (G, \nu_2)\). With the same argument as in the proof of Theorem 4 it follows that \(\Phi\) can be extended to \(*\)-isomorphism between \(C^* \ (G, \nu_1)\) and \(C^* \ (G, \nu_2)\).
References

[1] C. Anantharaman-Delaroche, J. Renault, *Amenable groupoids*, Monographie de L’Enseignement Mathematique No 36, Geneve, 2000.

[2] G. Mackey, *Induced representations of locally compact groups. I*, Ann. of Math., 55(1952), 101-139.

[3] P. Muhly, J. Renault and D. Williams, *Equivalence and isomorphism for groupoid C*-algebras*, J. Operator Theory 17(1987), 3-22.

[4] P. Muhly, *Coordinates in operator algebra*, (Book in preparation).

[5] A. Ramsay, *Virtual groups and groups actions*, Adv. in Math. 6(1971), 253-322.

[6] A. Ramsay, *Topologies on measured groupoids*, J. Funct. Anal. 47(1982), 314-343.

[7] A. Ramsay and M. E. Walter, *Fourier-Stieltjes Algebras of locally compact groupoids*, J. Funct. Anal. 148(1997), 314-367.

[8] J. Renault, *A groupoid approach to C*- algebras*, Lecture Notes in Math., Springer-Verlag, 793, 1980.

[9] J. Renault, *The ideal structure of groupoid crossed product algebras*, J. Operator Theory, 25(1991), 3-36.

[10] J. Westman, *Nontransitive groupoid algebras*, Univ. of California at Irvine, 1967.

University Constantin Brâncuşi of Târgu-Jiu
Bulevardul Republicii, Nr. 1,
210152 Târgu-Jiu , Gorj
Romania
e-mail: ada@utgjiu.ro