Advanced Stage at Diagnosis and Worse Clinicopathologic Features in Young Women with Breast Cancer in Brazil: A Subanalysis of the AMAZONA III Study (GBECAM 0115)

Maria Alice Franzoi, MD1,2,3; Daniela D. Rosa, MD, PhD3,4,5; Facundo Zaffaroni, MA3; Gustavo Werutsky, MD1,4; Sérgio Simon, MD, PhD3,4; José Bines, MD, PhD1,4,6; Carlos Barrios, MD3,4; Eduardo Cronemberger, MSc7; Geraldo Silva Queiroz, MD8; Vladimir Cordeiro de Lima, MD, PhD9; Ruffo Freitas Júnior, MD, PhD10; José Couto, PhD11; Karla Emerenciano, MD12; Heloisa Resende, PhD13; Susanne Crocamo, PhD14; Tomás Reintert, MD15; Brigitte Van Eyli, MD16; Yeni Nerón, MD17; Vanessa Dybal, MD18; Nicolás Lazaretti, MSc19; Rita de Cassia Costamillan, MD20; Diocésio Alves Pinto de Andrade, MD21; Clarissa Mathias, MD, PhD22; Giovana Zerwes Vacaro, MD23; Giuliano Borges, MD24; Alessandra Morelle, PhD5; Carlos Alberto Sampaio Filho, MD18; Max Mano, MD, PhD25; and Pedro E. R. Liedke, MD, MSc1,3,4

PURPOSE Breast cancer (BC) in young women is uncommon and tends to present with more aggressive characteristics. To better understand and characterize this scenario in Brazil through real-world data, we performed a subanalysis of AMAZONA III study (ClinicalTrials.gov identifier: NCT02663973).

METHODS The AMAZONA III study (GBECAM 0115) is a prospective registry that included 2,950 women newly diagnosed with invasive BC in Brazil from January 2016 until March 2018 at 22 sites. Valid data were obtained from 2,888 patients regarding age at diagnosis and complete baseline information. To compare epidemiologic and clinicopathological features at the time of diagnosis, patients with BC were divided into two groups according to age: ≤ 40 years and > 40 years. Quantitative variables were described as means, and categorical variables were described as frequencies and percentages and compared using the Pearson’s χ² test.

RESULTS Of 2,888 women diagnosed with BC, 486 (17%) were ≤ 40 years old. Young women had higher educational level, most were employed and a significant number were married (P < .001 for all associations). Younger patients were more symptomatic at BC diagnosis (P < .001), and they also presented more frequently with stage III, T3/T4, grade 3 tumors, HER-2–positive, luminal B, and triple-negative subtypes.

CONCLUSION Brazilian women younger than age 40 years have unfavorable clinicopathological features of BC at diagnosis, with more aggressive subtypes and advanced stage when compared with older women. These differences are not explained by socioeconomic or ethnic imbalances. The causes of a higher prevalence of BC among young women in Brazil deserve additional investigation.

INTRODUCTION:

Breast cancer (BC) is the most common type of cancer and the main cause of cancer-related death in women globally. It has been estimated that there will be > 1.97 million new diagnoses of BC in women worldwide in 2020, and it is expected that 622,000 women will die of this disease.1,2

Brazil is the largest country in Latin America and the fifth largest country in the world in terms of population. In Brazil, the prevalence and incidence of BC has progressively increased over the last years. BC is the main type of cancer among Brazilian women, according to the Instituto Nacional de Câncer. There were 59,700 new BC cases in 2018 and there were 16,724 BC-associated deaths in 2017, with a higher mortality-to-incidence ratio when compared with developed countries. Previous work from our group demonstrated that Brazilian women have a higher risk of being diagnosed with late-stage BC and at a younger age than women in high-income countries. The 5-year overall survival (OS) rates previously reported for early-stage BC in Brazil were 96.84% for stage I and 94.16% for stage II disease. In locally advanced BC (stage III), the 5-year OS is 70.48%. Triple-negative and HER-2–positive BC subtypes were associated with inferior outcomes in terms of OS in patients with stage II or III BC.

According to international guidelines, BC in young women (≤ 40 years) is an uncommon diagnosis, with
a 0.40% to 0.45% cumulative risk of developing BC at the age of 40 years, which represents < 7% of all BC cases diagnosed in developed countries. In Latin American countries, BC is diagnosed at an earlier age when compared with patients from high-income countries, with a higher proportion of BC occurring among young women. Women younger than 40 years represent approximately 20% of the new cases of BC and 14% of the deaths resulting from BC.

In Brazil, the median age at BC diagnosis was reported to be 53 to 55 years; however, the characteristics and prognosis of BC in young women in the Brazilian population are poorly described. Single-institution case series of young women with BC in Brazil have reported more advanced disease stages at the time of diagnosis, with a higher prevalence of metastatic disease.

AMAZONA III (ClinicalTrials.gov identifier: NCT02669373) is a prospective cohort study that includes patients with newly diagnosed BC from January 2016 to March 2018, involving 22 Brazilian sites and representing all five regions of the country. The main objective of this subanalysis was to characterize BC in young women in this population.

METHODS

This is a subanalysis of AMAZONA III study (GBECAM 0115), a prospective registry that included 2,950 women newly diagnosed with invasive BC in Brazil during the period of January 2016 to March 2018 within 22 sites, including patients covered by public and private health systems. Of these women, 2,888 had valid data regarding age at diagnosis and complete baseline information. To compare epidemiologic and clinicopathological features at the time of diagnosis of BC, patients were divided into two groups according to age: ≤ 40 years (group 1) and > 40 years (group 2). Ethnicity was defined according to the Brazilian Institute of Geography and Statistics and race of the patients was classified as white, black, brown, indigenous, and Asian.

BC subtypes were classified by immunohistochemistry for estrogen receptor (ER) status, progesterone receptor (PgR) status, and HER-2 status. All tumor tissue analysis and grading were performed in local laboratories. We used data from pathology reports to classify BC into five subtypes: luminal A (grade 1-2, ER and PgR positive, HER2 negative), luminal B (grade 3, ER and/or PgR positive, HER2 negative), luminal HER2 positive, nonluminal HER2 positive and triple negative (ER and PgR negative, HER2 negative). There was no central pathological review.

Quantitative variables were described as means, and categorical variables were described as frequencies and percentages and compared using the Pearson χ² test and adjusted residuals, when necessary. P < .05 was considered statistically significant. All analyses were performed using SAS, version 9.4 (SAS Institute, Cary, NC).

The AMAZONA III study was approved by the institutional review boards of each participating center and the national ethics committee.

RESULTS

Of 2,888 women diagnosed with invasive BC, we identified 486 (17%) who were ≤ 40 years. The baseline characteristics of younger and older patients are described and compared in Tables 1 and 2.

Women aged ≤ 40 years were mostly of white ethnicity (54.2%), no statistical differences in health insurance coverage between the two age groups were found, and the majority of patients in both groups were insured by the public health system. The mean body mass index (calculated as kilograms divided by square meters) was 24.4 for patients ≤ 40 years and 24.9 for patients older than 40 years.
40 years, with no statistical differences between the two groups. Also, there were no statistical differences in personal income, performance status, and family history of cancer between the two groups.

Women aged ≤ 40 years had significantly higher educational levels ($P < .001$), with group 1 versus group 2 data as follows: rates of illiteracy, 0.4% versus 5.6%; fewer than 8 years of school, 14.4% versus 30.4%; 9 to 11 years of

TABLE 1. Demographic and Socioeconomic Features by Age Groups of Brazilian Women Included in the AMAZONA III Study

Characteristic	≤ 40	> 40	\(P \)
Race			
White	254 (54.2)	1,379 (58.7)	.051
Black	24 (5.1)	150 (6.4)	
Brown	183 (39.0)	803 (34.2)	
Indigenous	1 (0.2)	3 (0.1)	
Asian	7 (1.5)	14 (0.6)	
Health insurance			
Public	299 (62.0)	1,538 (64.7)	.270
Private	183 (38.0)	840 (35.3)	
Education			
Illiterate	2 (0.4)	121 (5.6)	< .001
< 8 years of school	64 (14.4)	663 (30.4)	
Completed 8 years of school	63 (14.2)	322 (14.8)	
Between 9 and 11 years of school	168 (37.7)	497 (22.8)	
University degree	148 (33.3)	574 (26.4)	
Personal income, US$			
None	82 (23.8)	350 (19.9)	.236
Less than 1 minimum wage (< 233)	38 (11.0)	207 (11.7)	
1 to 2 minimum wages (880 to 467)	134 (38.8)	788 (44.7)	
2 to 3 minimum wages (467 to 701)	37 (10.7)	153 (8.7)	
3 to 5 minimum wages (701 to 1,167)	34 (9.9)	133 (7.5)	
5 to 10 minimum wages (1,167 to 2,338)	13 (3.8)	91 (5.2)	
10 to 20 minimum wages (2,338 to 4,670)	5 (1.4)	26 (1.5)	
> 20 minimum wages (> 4,670)	2 (0.6)	15 (0.9)	
Formal working activity			
Yes	272 (57.3)	924 (39.8)	< .001
No	203 (42.7)	1,398 (60.2)	
Currently married or lives in common-law marriage			
Yes	332 (69.2)	1,315 (56.5)	< .001
No	148 (30.8)	1,014 (43.5)	
Smoking history			
Never	352 (80.7)	1,448 (65.8)	< .001
Former	52 (11.9)	547 (24.9)	
Current	32 (7.3)	205 (9.3)	
Drinks alcoholic beverages			
Yes	127 (30.4)	479 (22.5)	< .001
No	291 (69.6)	1,648 (77.5)	
BMI, mean, kg/m² (No.)	24.4 (486)	24.9 (2,400)	—
school, 37.7% versus 22.8%; and university degree, 33% versus 26.4%. Also, younger women (group 1) more frequently were employed than were older patients (57.3% versus 39.8%; \(P < .001 \)); and more frequently were married (69.2% versus 56.5%; \(P < .001 \)). In relation to social habits, women in group 1 smoked less (19.2% versus 34.2%; \(P < .001 \)) and consumed more alcohol than women in group 2 (30.4% versus 22.5%; \(P < .001 \)).

There were significant differences regarding previous use of contraceptives in (81.8% versus 35.1%; \(P < .001 \)) and nulliparity (18.7% versus 13.5%; \(P = .004 \)) in younger and older patients. Twelve women \(\leq 40 \) years (3.2%) had a diagnosis of BC during pregnancy, compared with nine patients (0.5%) in the older group (\(P < .001 \)).

The mode how BC was detected differed significantly between the two groups: BC in younger women was more often detected symptomatically than in older women (73.4% versus 64.5%; \(P < .001 \); Table 3). Initial tumor size was also significantly larger among younger women (\(P < .001 \)). The prevalence of T1, T2, T3, and T4 tumors at the time of diagnosis for women in group 1 compared with those in group 2 were, respectively: 27.1% versus 36.9%, 33.6% versus 37.6%, 24.1% versus 13.9%, and 15.2% versus 11.6% (\(\text{Fig 1C; Table 3} \)). There was no statically significant difference in initial positive lymph node status between the two groups (44.1% and 39%, for group 1 and group 2, respectively; \(P = .152 \); Data Supplement).

Stage I disease at diagnosis occurred in 19.2% of patients aged \(\leq 40 \) years and 27.8% in women \(> 40 \) years old (\(P < .001 \)). In contrast, stage III disease was found in 36.8% of younger women and 25.1% of older women (\(P < .001 \); \(\text{Fig 1A; Data Supplement} \)). Women in group 1 had more grade 3 tumors (43.1% versus 30.1%; \(P < .001 \); \(\text{Fig 1B; Data Supplement} \)). Younger women more frequently underwent mastectomy than did older women (54.7% versus 45.7%; \(P < .001 \); Data Supplement), and this difference remained statistically significant when adjusting for initial staging (Mantel-Haenszel method).

The distribution of BC subtypes, as determined by immunohistochemistry, was distinct among young and older women (\(\text{Fig 2; Data Supplement} \)). Younger patients had a higher proportion of luminal B HER2-negative (15.8% versus 11.4%; \(P < .001 \)) and luminal B HER2-positive (22.8% versus 16%; \(P < .001 \)) tumors at diagnosis (\(\text{Fig 2; Data Supplement} \)).

DISCUSSION

BC incidence is growing in Latin America and it is considered an important health burden.\(^{10,11,19} \) There is limited information about the diagnosis, treatment patterns, and outcomes of young women with BC in Latin American countries. To our knowledge, AMAZONA III is the first prospective, multicentric registry of BC in Brazil; its objective is to better describe the current scenario of BC care in the largest and most populated country in Latin America.
The increased proportion of BC among young women is of utmost importance, since they tend to be diagnosed in later stages and usually bear more aggressive BC subtypes that, at long run, can negatively impact their survival.9,11,20

We have shown that young women diagnosed with BC are more frequently employed and actively working, have a higher educational level, and most are married, highlighting the socioeconomic impact BC may have when afflicting young women. It is well known that BC and its treatment can largely affect the economy of a community, because some BC survivors experience reduced work ability.21-23 Recently, Landeiro et al24 reported return to work (RTW) rates of 30.3% and 60.4% at 12 and 24 months, respectively, after BC diagnosis in a cohort of 125 employed women from a single institution in Brazil. These rates are lower when compared with affected women in high-income countries. Because the cohort of young women in the AMAZONA III study represents an important productive working force from several regions of the country, additional follow-up of the RTW rates and the factors associated with the RTW decision in this population is paramount.

BC in young women is considered a somewhat rare situation, accounting for 5% to 7% of BC cases in developed countries.9,20,25,26 In our cohort, women aged ≤ 40 years represented 17% of patients, a number significantly higher than the rates reported in the literature. In our previous work, we have reported that the median age at

Characteristic	Age at Diagnosis (years)	P	
ECOG performance stage			
0	285 (81.0)	1,358 (74.7)	.080
1	63 (17.9)	405 (22.3)	
2	3 (0.8)	45 (2.4)	
3	1 (0.3)	7 (0.4)	
4	0 (0.0)	3 (0.2)	

Diagnostic

| Screening-detected | 120 (26.6) | 807 (35.5) | .003 |
| Symptomatic | 331 (73.4) | 1,466 (64.5) |

TNM

T1	114 (27.1)	749 (36.9)	.001
T2	141 (33.6)	764 (37.6)	
T3	101 (24.1)	282 (13.9)	
T4	64 (15.2)	235 (11.6)	

Stage at diagnosis

I	76 (19.2)	541 (27.8)	<.001
II	156 (39.4)	816 (41.9)	
III	146 (36.8)	489 (25.1)	
IV	18 (4.6)	101 (5.2)	

Histology

Ductal	392 (94.7)	1,793 (87.6)	.001
Lobular	15 (3.6)	171 (8.3)	
Mucinous	0 (0.0)	30 (1.5)	
Papillary	2 (0.5)	20 (1.0)	
Medullary	3 (0.7)	4 (0.2)	
Mixed	2 (0.5)	29 (1.4)	

| KI-67, mean (No.) | 44.7 (355) | 30.3 (1,984) |

Tumor grade

1	46 (10.7)	381 (17.9)	<.001
2	198 (46.2)	1,110 (52.0)	
3	185 (43.1)	641 (30.1)	

HER-2 status

| Positive | 107 (29.6) | 438 (22.3) | .003 |
| Negative | 255 (70.4) | 1,526 (77.7) |

Hormone receptor

| Positive | 273 (71.1) | 1,846 (78.4) | .001 |
| Negative | 111 (28.9) | 428 (20.6) |

(Continued in next column)
diagnosis of BC in Brazil is 53 to 55 years,6-8 whereas in high-income countries it is approximately 64 years.1,27 Also, a review of the literature undertaken by Villarreal-Garza et al11 reported a higher BC incidence and mortality rate in young women in Latin America when compared with those in developed countries (20% v. 12% and 14% v. 7%, respectively).

Another study, led by Franco-Marina et al,19 confirmed the high incidence of BC in young women in Latin America, estimating that one in every five cases of BC is diagnosed in women younger than 45 years, almost double the frequency observed in developed countries like the United States and Canada. This high incidence of cancer in young women remained statistically significant even after adjusting for the percentage of young women in Latin and North American populations. All these studies suggest a high prevalence of young patients with BC in Latin America, and the causes should be better investigated.

Regarding the potential modifiable risk factors for BC to develop in young women, we recognized in our cohort a significantly higher prevalence of alcohol consumption among young women. Recently, an effort has been made by public health experts and medical societies to emphasize that reducing alcohol consumption is a vital, and largely

FIG 1. Bar graphs of (A) clinical stage, (B) tumor grade, and (C) tumor size at diagnosis by age groups of Brazilian women included in the AMAZONA III study. (*) $P < .001$.

Franzoi et al
© 2019 by American Society of Clinical Oncology
neglected, cancer prevention strategy.28-30 Greater attention to this matter should be given to effectively communicate the role of alcohol as a risk factor for BC and to better investigate its impact on the prevalence of BC in Latin America.

Women younger than 40 years are usually diagnosed with more aggressive disease and have worse prognosis (based on more advanced clinical stage and worse histopathological characteristics, with a high prevalence of high-grade tumors), and they have a higher risk of recurrence when compared with older women.11,16,19,31 This is especially observed in luminal BC subtypes, for which young women have inferior outcomes compared with older women with the same initial tumor characteristics.12 For these reasons, younger women sometimes receive more aggressive treatment than do older women.17,20,33

Histopathological and immunohistochemical characteristics presented in our study also corroborate the data from the literature,11,17,33,34 with a larger number of locally advanced lesions (T3, T4) and poorly differentiated tumors among young women. Although the luminal subtype is still the most frequent among young women, we reported significant differences in the frequency of the luminal subtype between older and younger women, with more luminal B type (15.8% v 11.4%, group 1 v group 2, respectively) or luminal B/HER-2 positive (22.8% v 16%, group 1 v group 2, respectively) in the latter group. In comparison with series of young women from the United States,35,36 and Europe,37 our population had a greater proportion of triple-negative subtype BC (23% v 14.1%). In a previous retrospective, single-center cohort report (N = 738), a lower proportion of ER-positive tumors were reported in younger women as compared with older women (33.5% v 42.8%), and higher proportion of triple-negative BC (10% v 6.4%) also was reported among young women (n = 376) as compared with older women.34

In our study, we observed striking differences regarding stage distribution between the two age groups. Stage I disease was more frequent among older women than younger women (27.8% v 19.2%, respectively), whereas younger women had significantly more stage III disease (36.9%) than older women (25.1%). Metastatic BC de novo was present in 4.5% of the women ≤ 40 years old and 5.2% of older women. Indeed, 41.4% of the young women in our study were initially diagnosed with stage III or IV BC. Our data are comparable to that of another large cohort of Latin American women, from Mexico, in which 15% of women with BC were ≤ 40 years old.33 Also, young Mexican women had more aggressive disease at presentation, with tumors of higher grade and a larger proportion of luminal B and triple-negative cancers.33 Similar to our data, fewer stage I tumors were found in young women and more stage III and IV disease than in their older counterparts.33

Another important issue to highlight is that in Brazil, there is a gap regarding the access to optimal therapy between patients in the public and private health systems, and this influences patient outcomes.38,39 This disparity will also play an important role in young women diagnosed with advanced disease (stage III and IV), because access to optimal HER2 therapy, ovarian suppression, and CDK 4/6 inhibitors might be restricted to patients in the private health system.

Finally, BC was detected by screening in only 26% of patients ≤ 40 years old, as compared with 35.5% of older women. This finding is not unexpected, because the current national BC screening guideline recommends mammography starting at age 50 years.40 However, they call attention to the low proportion of older women whose diagnosis is established through screening programs in Brazil. Better educational strategies, access to and compliance with screening programs are urgently needed in
Brazil. Organized screening of young, healthy women has been controversial, regarded as inefficient and even deleterious by some experts, and has not been recommended widely. Individualized screening, targeting only some high-risk young women, may be beneficial, although no randomized trial has shown an impact on BC mortality. All recommendations for this younger age group are based on experts' opinions and do not take into account the higher proportion of BC in young women found in our study and in other Latin American cohorts. In these populations, earlier screening should be a subject of additional research.

This study was of a large cohort of young women with BC in Brazil and was a prospective evaluation including patients from all regions of the country, from the private and the public health systems. Longer follow-up of this population will reveal important information regarding treatment patterns and outcomes. Our study has some limitations, especially regarding BC subtypes, because we did not perform central revision of the immunohistochemistry data. At this time, we are not aware of any specific clinical or educational programs focused on this population in Brazil. Particular aspects of the care for young women with BC have been studied and reported in the literature. It would be interesting if at least the major reference centers of cancer care in Brazil could implement specific units for the care of young women with BC, addressing the particular needs of this growing population (eg, fertility preservation, precise psychosocial interventions, genetic evaluation, aspects related to corporal image and reconstructive surgery support, challenges related to a longer survival and follow-up period).

Successful examples of this concept include centers in the United States (Young and Strong Program for Young Women with Breast Cancer), Canada (Breast Cancer Program for Young Women), and Mexico (Joven and Fuerte: Program for Young Women with Breast Cancer in Mexico). A call to action from health policy planners, medical providers, researchers, patients with BC, their families, and the community in general is encouraged for better care of this emergent challenge.

In conclusion, in Brazil, a higher proportion of patients with BC are diagnosed at ≤ 40 years of age when compared with women in developed countries. Younger patients have unfavorable clinicopathological features, with advanced stages and more aggressive BC subtypes at diagnosis, when compared with older patients. The causes of a high prevalence of BC in young women should be investigated further, as should potential preventive and screening strategies.

AFFILIATIONS

1. Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
2. Jules Bordet Institut, Brussels, Belgium
3. Latin American Cooperative Oncology Group, Porto Alegre, Brazil
4. Grupo Brasileiro de Estudos em Câncer de Mama, Porto Alegre, Brazil
5. Hospital Moinhos de Vento, Porto Alegre, Brazil
6. Instituto Nacional do Cancer, Rio de Janeiro, Brazil
7. Centro Regional Integrado de Oncologia, Fortaleza, Brazil
8. Hospital Araújo Jorge, Goiás, Brazil
9. A.C. Camargo Cancer Center, São Paulo, Brazil
10. Universidade Federal de Goiás, Goiânia, Brazil
11. Hospital do Câncer de Londrina, Londrina, Brazil
12. Liga Norte Riograndense, Natal, Brazil
13. Hospital Jardim Amália, Volta Redonda, Brazil
14. Oncoclinica Rio de Janeiro, Rio de Janeiro, Brazil
15. Centro de Pesquisa e Educação da Serra Gaúcha-DeVita, Caxias do Sul, Brazil
16. Instituto do Câncer Dr Arnaldo, São Paulo, Brazil
17. Centro de Pesquisas em Oncologia, Florianópolis, Brazil
18. Clínica Assistência Multidisciplinar em Oncologia, Salvador, Brazil
19. Centro Integrado de Terapia Onco-Hematológica, Passo Fundo, Brazil
20. Universidade de Caxias do Sul, Caxias do Sul, Brazil
21. Instituto Oncológico de Ribeirão Preto, Ribeirão Preto, Brazil
22. Núcleo Oncológico do Passo Fundo, Porto Alegre, Brazil
23. Clínica de Neoplasia Litoral, Itajai, Brazil
24. Instituto do Câncer de São Paulo, São Paulo, Brazil

CORRESPONDING AUTHOR

Maria Alice Franzoi, MD, Clinical Trials Research Unit, Institut Jules Bordet, Boulevard Waterloo, 121, Brussels, Belgium, 1000; e-mail: franzoi.alice@gmail.com.

SUPPORT

Supported by the Latin American Cooperative Oncology Group (M.A.F.) and Grupo Brasileiro de Estudos em Câncer de Mama (M.A.F.).

AUTHOR CONTRIBUTIONS

Conception and design: Maria Alice Franzoi, Facundo Zaffaroni, Gustavo Werutsky, Carlos Barrios, Rufio Freitas Júnior, Yeni Neron, Clarissa Mathias, Giuliano Borges, Max Mano, Pedro E. R. Liedke

Data analysis and interpretation: Maria Alice Franzoi, Facundo Zaffaroni, Gustavo Werutsky, Carlos Barrios, Eduardo Cronemberger, Geraldo Silva Queiroz, Vladimir Cordeiro de Lima, Rufio Freitas Júnior, José Couto, Heloisa Resende, Susana Crocamo, Tomás Reiner, Yeni Neron, Vanessa Dybal, Rita de Cassia Costamillian, Alessandra Morelle, Carlos Alberto Sampaio Filho

Collection and assembly of data: Maria Alice Franzoi, Facundo Zaffaroni, Gustavo Werutsky, José Bines, Carlos Barrios, Eduardo Cronemberger, Geraldo Silva Queiroz, Vladimir Cordeiro de Lima, Rufio Freitas Júnior, Carla Emerenciano, Heloisa Resende, Susana Crocamo, Tomás Reiner, Brigitte Van Eyli, Yeni Neron, Vanessa Dybal, Nicolas Lazaretti, Rita de Cassia Costamillian, Décio Álves Pinto de Andrade, Clarissa Mathias, Giovana Zerwe Vacaro, Alessandra Morelle, Carlos Alberto Sampaio Filho

Data analysis and interpretation: Maria Alice Franzoi, Daniela D. Rosa, Facundo Zaffaroni, Gustavo Werutsky, Sérgio Simon, Vladimir Cordeiro de Lima, Rufio Freitas Júnior, José Couto, Yeni Neron, Clarissa Mathias, Alessandra Morelle, Max Mano, Pedro E. R. Liedke

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate
Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Carlos Barrios
Stock and Other Ownership Interests: Biomarker, MedSIR, Tummi
Consulting or Advisory Role: Roche, Novartis, Pfizer, GlaxoSmithKline, Sanofi, Boehringer Ingelheim, Eisai
Research Funding: Pfizer, Novartis, Amgen, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Roche, Eli Lilly, Sanofi, GlaxoSmithKline, Taiho Pharmaceutical, Mylan, Merrimack, Merck, AbbVie, Astellas Pharma, Biomarin, Bristol-Myers Squibb, Daiichi Sankyo, Abaxis BioScience, AB Science, Asana Biosciences, Medivation, Daiichi Sankyo, Exelixis, ImClone Systems, LEO Pharma, Millennium, Janssen, Atlantis Clinica, INC Research, Halozyme, Covance, Celgene, inVentiv Health
Travel, Accommodations, Expenses: Roche, Novartis, Pfizer, BMS Brazil, AstraZeneca, MSD Oncology

Eduardo Cronemberger
Honorary: Roche, Merck Sharp & Dohme
Consulting or Advisory Role: Roche, Merck Sharp & Dohme
Research Funding: AstraZeneca/MedImmune (Inst), Roche (Inst), MSD Oncology (Inst), Janssen-Cilag (Inst), Merck Serono (Inst)
Travel, Accommodations, Expenses: AstraZeneca, Pfizer

Vladimir Cordeiro de Lima
Honorary: Roche, BMS Brazil, MSD Oncology, AstraZeneca, Boehringer Ingelheim, Pfizer, Merck Serono
Consulting or Advisory Role: Roche, BMS Brazil, AstraZeneca, Pfizer, MSD Oncology
Speakers’ Bureau: Roche, BMS Brazil, Boehringer Ingelheim, MSD Oncology, Merck Serono
Travel, Accommodations, Expenses: Roche, MSD Oncology, AstraZeneca, Boehringer Ingelheim, BMS Brazil

Ruffo Freitas Júnior
Honorary: Roche, Libbs, Pfizer
Consulting or Advisory Role: Roche
Research Funding: Roche (Inst), MSD Oncology (Inst)
Travel, Accommodations, Expenses: Roche, Libbs

Heloisa Resende
Travel, Accommodations, Expenses: Pfizer

Tomás Reinert
Honorary: Novartis, AstraZeneca, Pfizer, Eli Lilly, Pierre Fabre, AstraZeneca

Yeni Neron
Other Relationship: AstraZeneca (Inst), Roche (Inst), Clovis Oncology (Inst), Merck Serono (Inst)

Vanessa Dybal
Speakers’ Bureau: Novartis, Roche
Travel, Accommodations, Expenses: Pfizer, Roche

Nicolas Lazaretti
Research Funding: Acerta Pharma (Inst), BeiGene (Inst), Bristol-Myers Squibb (Inst), AstraZeneca (Inst), Roche (Inst), Merck (Inst), Medivation (Inst), Regeneron (Inst)
Travel, Accommodations, Expenses: MSD Oncology, Roche

Diocésio Alves Pinto de Andrade
Speakers’ Bureau: Novartis

Clarissa Mathias
Consulting or Advisory Role: Roche

Alessandra Morelle
Consulting or Advisory Role: Roche, Amgen, MSD Oncology, Eli Lilly, Novartis

Speakers’ Bureau: Roche, Eli Lilly, Novartis, MSD Oncology

Carlos Alberto Sampaio Filho
Employment: Clínica AMO
Leadership: Clínica AMO Salvador Brazil
Stock and Other Ownership Interests: Clínica AMO
Consulting or Advisory Role: Pneuma Respiratory

Max Mano
Stock and Other Ownership Interests: Biotoscana, Fleury Group, Hypera
Honorary: Roche, Novartis, Oncologia Brasil, Eli Lilly/ImClone
Consulting or Advisory Role: Novartis, Roche, Pfizer, AstraZeneca, Eli Lilly/ImClone
Travel, Accommodations, Expenses: Roche

Pedro E. R. Liedke
Consulting or Advisory Role: Zodiac Pharma
Research Funding: Merck Sharp & Dohme, Merck Serono, Roche, AstraZeneca, Halozyme, Acerta Pharma, Novartis, Bristol-Myers Squibb, Regeneron, Medivation, Myovant Sciences, Janssen, PharmaMar, Eurofarma, Pfizer, PPD, PRA Health Sciences, Covance, Quintiles, ICON Clinical Research, Parexel, Intrials
Travel, Accommodations, Expenses: Pfizer, Roche, Oncoclinicas

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT
Latin America Cooperative Oncology Group thanks Itaú, Avon, SAS Data4Good, and Projeto CURA for their support.

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018
2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA Cancer J Clin 68:7-30, 2018
3. World Bank: DataBank. World development indicators. https://databank.worldbank.org/reports.aspx?source=2&series=SP.POP.TOTL&country=WLD
4. Instituto Nacional de Cáncer José Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância: Estimativa 2018: Incidência de Câncer no Brasil. https://www.inca.gov.br/publicacoes/livros/estimativa-2018-incidencia-de-cancer-no-brasil

5. Instituto Nacional de Cáncer, Ministério da Saúde: Atlas On-line de Mortalidade. https://mortalidade.inca.gov.br/MortalidadeWeb

6. Lee BL, Liedke PE, Barros CH, et al: Breast cancer in Brazil: Present status and future goals. Lancet Oncol 13:e95-e102, 2012

7. Simon SD, Bines J, Wersbuky G, et al: Characteristics and prognosis of stage III breast cancer subtypes in Brazil: The AMAZONA retrospective cohort study. Breast 44:113-119, 2019

8. Rosa D, Barros C, Bines J, et al: Abstract P1-08-29: Current status of clinical and pathological characteristics of breast cancer patients in Brazil: Results of the AMAZONA III study (GBECAM 0115). Cancer Res 79, 2019 (abstr P1-08-29)

9. Paluch-Shimon S, Pagani O, Partridge AH, et al: ESO-ESMO 3rd International Consensus Guidelines for Breast Cancer in Young Women (BCY3). Breast 35:203-217, 2017

10. Cazap E: Breast cancer in Latin America: A map of the disease in the region. Am Soc Clin Oncol Educ Book 38:451-456, 2018

11. Villarreal-Garza C, Aguila C, Magallanes-Hoyos MC, et al: Breast cancer in young women in Latin America: An unmet, growing burden. Oncologist 18:1298-1306, 2013

12. Rocha-Brischiliani SC, Oliveira RR, Andrade L, et al: The rise in mortality from breast cancer in young women: Trend analysis in Brazil. PLoS One 12:e0168950, 2017

13. Cecilio AP, Takakura ET, Jumes JJ, et al: Breast cancer in Brazil: Epidemiology and treatment challenges. Breast Cancer (Dove Med Press) 7:43-49, 2015

14. Fujimoto RHP, Koffman RJ, Silva IFD: Survival rates of breast cancer and predictive factors: A hospital-based study from western Amazon area in Brazil. Cien Saude Colet 24:261-273, 2019

15. Si Dibio A, Abriata G, Forman D, et al: Female breast cancer in Central and South America. Cancer Epidemiol 44:S110-S120, 2016 (Suppl 1)

16. Eugénio DS, Souza JA, Chojnacki R, et al: Breast cancer features in women under the age of 40 years. Rev Assoc Med Bras (1992) 62:755-761, 2016

17. Costa NCD, Morsch DM, Oppermann CP, et al: Biological features of breast cancer according to age at diagnosis in southern Brazil: An analysis of retrospective data of 1128 women. Breast J 25:760-762, 2019

18. Instituto Brasileiro de Geografia e Estatística: https://www2.ibge.gov.br/english/estatistica/populacao/caracteristicas_raciais/default_raciais.shtm

19. Francisco-Marin F, López-Carrillo L, Keating NL, et al: Breast cancer age at diagnosis patterns in four Latin American Populations: A comparison with North American countries. Cancer Epidemiol 39:831-837, 2015

20. Azim HA, Jr, Partridge AH: Biology of breast cancer in young women. Breast Cancer Res 15:R95, 2013

21. Villarreal-Garza C, Castro-Sánchez A, Platas A, et al: “Joven & Fuerte”: Program for young women with breast cancer in Mexico - initial results. Rev Invest Clin 69:223-228, 2017

Franzoi et al