SOME QUESTIONS OF EQUIVARIANT MOVABILITY

PAVEL S. GEVORGYAN

ABSTRACT. In this article some questions of equivariant movability, connected with the substitution of the acting group \(G \) on closed subgroup \(H \) and with transitions to spaces of \(H \)-orbits and \(H \)-fixed points spaces, are investigated. In a special case, the characterization of equivariantly movable \(G \)-spaces is given.

1. Introduction

This paper is devoted to equivariant movability of \(G \)-spaces, i.e., topological spaces endowed with an action of a given compact group \(G \).

More precisely, in §3 we define the notion of equivariant movability or \(G \)-movability and we prove several theorems, including the following ones. If \(X \) is \(p \)-paracompact and \(H \subseteq G \) is a closed subgroup, then \(G \)-movability of \(X \) implies its \(H \)-movability (§3 Theorem 1). \(G \)-movability of \(X \) also implies movability of the space \(X[H] \) of \(H \)-fixed points in \(X \) (§4, Theorem 3). In particular, equivariant movability of a \(G \)-space \(X \) implies ordinary movability of the topological space \(X \) (§3 Corollary 1). We construct a non-trivial example which shows, that the converse, in general, is not true, even if we take for \(G \) the cyclic group \(Z_2 \) of order 2 (§5 Example 1). If \(X \) is a metrizable \(G \)-movable space and \(H \) is a closed normal subgroup of \(G \), then the space \(X|_H \) of its \(H \)-orbits is also \(G \)-movable (§6 Theorem 5). In the case \(H = G \) we obtain that \(G \)-movability of a metrizable \(G \)-space implies ordinary movability of the orbit space \(X|_G \) (§6 Corollary 2). The last assertion, in general, is not invertible (§6 Example 2). However, if \(X \) is metrizable, \(G \) is a compact Lie group and the action of \(G \) on \(X \) is free, then \(X \) is \(G \)-movable if and only if the orbit space \(X|_G \) is movable (§7 Theorem 7).

Examples 2 (§6) and 3 (§8) show that in the last theorem the assumption that the group \(G \) is a Lie group and the assumption that the action is free cannot be omitted.

Some of the above listed results with an outline of proof were given in [9].

Let us denote the category of all topological spaces and continuous maps by \(\text{Top} \), the category of all metrizable spaces and continuous maps by \(\text{M} \) and the category of all \(p \)-paracompact spaces and continuous maps by \(\text{P} \). Always in this article it is assumed that all topological spaces are \(p \)-paracompact spaces and the group \(G \) is compact.

The author is extremely grateful to the referee for his helpful remarks and comments.

The reader is referred to the books by K. Borsuk [4] and by S. Mardešić and J. Segal [15] for general information about shape theory and to the book by G. Bredon [5] for introduction to compact transformation groups.

2020 Mathematics Subject Classification. 55P55; 54C56.
Key words and phrases. Equivariant shape theory, equivariant movability.
2. Basic notions and conventions concerning equivariant topology

Let G be a topological group. A topological space X is called a G-space if there is a continuous map $\theta : G \times X \to X$ of the direct product $G \times X$ into X, $\theta(g, x) = gx$, such that

1) $g(hx) = (gh)x; \quad 2) \ ex = x,$

for all $g, h \in G, \ x \in X$; here e is the unity of G. Such a (continuous) map $\theta : G \times X \to X$ is called an (continuous) action of the group G on the topological space X. An evident example is the so called trivial action of G on X: $gx = x$, for all $g \in G, \ x \in X$. Another example is the action of the group G on itself, defined by $(g, x) \to gx$ for all $g \in G, \ x \in G$.

If X and Y are G-spaces, then so is $X \times Y$, where $g(x, y) = (gx, gy), \ g \in G, \ (x, y) \in X \times Y$.

A subset A of a G-space X is called invariant provided $g \in G, a \in A$ implies $ga \in A$. It is evident, that an invariant subset of a G-space is itself a G space. If A is an invariant subset of a G-space X, then every neighborhood of A contains an open invariant neighborhood of A (see [17], Proposition 1.1.14).

Let X be any G-space and let H be a closed and normal subgroup of the group G. The set $Hx = \{hx; \ h \in H\}$ is called the H-orbit of the point $x \in X$. Clearly the H-orbits of any two points in X are either equal or disjoint, in other words X is partitioned by its H-orbits. We denote the set of all H-orbits of the G-space X by $X|_H$. The set $X|_H$ endowed with the quotient topology is called the H-orbit space of X. There is a continuous action of the group G on the space $X|_H$ defined by the formula $gHx = Hgx, \ g \in G, x \in X$. So, $X|_H$ is a G-space. In case $H = G$ the G-orbit of the point $x \in X$ is called the orbit of the point x and the G-orbit space is called the orbit space of the G-space X.

We denote by $X[H]$ the subspace of fixed points of H on X, or the H-fixed point subspace of the G-space X. Let us recall that $X[H] = \{x \in X; \ hx = x, \text{for any} \ h \in H\}$.

The set $G_x = \{g \in G; \ g(x) = x\}$ is a closed subgroup of the group G, for every $x \in X$. G_x is called the stationary subgroup (or stabilizer) at the point x. The action of the group G on X (or the G-space X) is called free if the stationary subgroup G_x is trivial, for every $x \in X$. It is clear that $G_{gx} = gG_xg^{-1}$, i.e., the stationary subgroups at any two points of the same orbit are conjugate. The orbits Gx and Gy of points x and y, respectively, are said to have the same type if the stationary subgroups G_x and G_y are conjugate.

Let X, Y be G-spaces. A (continuous) map $f : X \to Y$ is called a G-map, or an equivariant map, if $f(gx) = gf(x)$ for every $g \in G, \ x \in X$. Note that the identity map $i : X \to X$ is equivariant and the composition of equivariant maps is equivariant. Therefore, all G-spaces and equivariant maps form a category. Let us denote the category of all topological G-spaces and equivariant maps by Top_G, the category of all metrizable G-spaces and equivariant maps by M_G and the category of all p-paracompact G-spaces and equivariant maps by P_G.

Let Z be a G-space and let $Y \subseteq Z$ be an invariant subset. A G-retraction of Z to Y is a G-map $r : Z \to Y$ such that $r|_Y = 1_Y$.

Let K_G be class of G-spaces. A G-space Y is called a G-absolute neighborhood retract for the class K_G or a $G – \text{ANR}(K_G)$ (G-absolute retract for the class K_G or
a $G - AR(K_G)$, provided $Y \subseteq K_G$ and whenever Y is a closed invariant subset of a G-space $Z \subseteq K_G$, then there exist an invariant neighborhood U of Y and a G-retraction $r : U \to Y$ (there exists a G-retraction $r : Z \to Y$).

A G-space Y is called a G-absolute neighborhood extensor for the class K_G or a $G - ANE(K_G)$ (G-absolute extensor for the class K_G or a $G - AE(K_G)$), provided for any G-space $X \in K_G$ and any closed invariant subset $A \subseteq X$, every equivariant map $f : A \to Y$ admits an equivariant extension $\tilde{f} : U \to Y$, where U is an invariant neighborhood of A in X ($\tilde{f} : X \to Y$).

3. Movability and equivariant movability

The important shape invariant, called movability, was originally introduced by K. Borsuk [2] for metric compacta. Mardešić and Segal [14] generalized the notion of movability to compacta using the ANR-system approach. Kozlowski and Segal in [11] gave a categorical description of this property which applied to arbitrary topological spaces.

Following Mardešić and Segal [14], let us define the notion of equivariant movability or G-movability:

Definition 1. An inverse G-system $\underline{X} = \{X_\alpha, p_{aa'}, A\}$ where each X_α, $\alpha \in A$, is a G-space and every $p_{aa'} : X_{\alpha'} \to X_\alpha$, $\alpha \leq \alpha'$, is a G-homotopy class, is called equivariantly movable or G-movable if for every $\alpha \in A$, there exists an $\alpha' \in A$, $\alpha' \geq \alpha$ such that for all $\alpha'' \in A$, $\alpha'' \geq \alpha$ there exists a G-homotopy class $r^{\alpha'\alpha''} : X_{\alpha'} \to X_{\alpha''}$ such that

$$p_{aa''} \circ r^{\alpha'\alpha''} = p_{aa'}.$$

It is known (see [1], Theorem 2) that every G-space X admits a $G - ANR$-expansion in the sense of Mardešić (see [15], I, § 2.1), which is the same as saying that there is an inverse $G - ANR$-system (G-system consisting of $G - ANR$'s) $\underline{X} = \{X_\alpha, p_{aa'}, A\}$ associated with X in the sense of Morita [16].

Definition 2. A G-space X is called equivariantly movable or G-movable if there is an equivariantly movable inverse $G - ANR$-system $\underline{X} = \{X_\alpha, p_{aa'}, A\}$ associated with X.

Note that the last definition of equivariant movability coincides with the notion of ordinary movability if $G = \{e\}$ is the trivial group.

Let X be an equivariantly movable G-space. The evident question arises: does movability of the space X follows from its equivariant movability? The following, more general theorem gives a positive answer (Corollary 1) to the above question.

Theorem 1. Let H be a closed subgroup of a group G. Every G-movable G-space is H-movable.

To prove this theorem the next result is important.

Theorem 2. Let H be a closed subgroup of a group G. Every $G - AR(P_G)$ ($G - ANR(P_G)$)-space is an $H - AR(P_H)(H - ANR(P_H))$-space.

Proof. According to a theorem of de Vries ([7], Theorem 4.4), it is sufficient to show that if X is a p-paracompact H-space, then the twisted product $G \times_H X$ is also p-paracompact. Indeed, since X is p-paracompact and G is compact, $G \times X$ is p-paracompact. Therefore, the twisted product $G \times_H X$ is p-paracompact. \[\Box\]
Proof of Theorem 1. Let X be any equivariantly movable G-space. With respect to the theorem of Smirnov (13, Theorem 1.3), there is a closed and equivariant embedding of the G-space X to some $G - AR(P_G)$-space Y. Let us consider all open G-invariant neighborhoods of type F_{ρ} of the G-space X in Y. By a result of R. Palais (17, Proposition 1.1.14), these neighborhoods form a cofinal family in the set of all open neighborhoods of X in Y, in particular, in the set of all open and H-invariant neighborhoods of the H-space X in the H-space Y, which, by Theorem 1 is an $H - AR(P_H)$-space. Hence, from the G-movability of the above mentioned family follows its H-movability, i.e. from the G-movability of the G-space X follows the H-movability of the H-space X. \Box

From Theorem 1 we obtain the following corollary if we consider the trivial subgroup $H = \{e\}$ of the group G.

Corollary 1. Every equivariantly movable G-space X is movable.

The converse, in general, is not true, even if one takes for G the cyclic group Z_2 of order 2 (see Example 1).

4. MOVABILITY OF THE H-FIXED POINT SPACE

Theorem 3. Let H be a closed subgroup of a group G. If a G-space X is equivariantly movable, then the H-fixed point space $X[H]$ is movable.

The proof requires the use of the following theorem.

Theorem 4. Let H be a closed subgroup of a group G. Let X be a $G - AR(P_G)(G - ANR(P_G))$-space. Then the H-fixed point space $X[H]$ is an $AR(P)(ANR(P))$-space.

Proof. Let X be a $G - AR(P_G)(G - ANR(P_G))$-space. By Theorem 2, it is sufficient to prove the theorem in the case $H = G$. I.e., we must prove that $X[G]$ is $AR(P)$-space. By a theorem of Smirnov (13, Theorem 1.3), we can consider X as a closed G-subspace of a $G - AR(P_G)$-space $C(G, V) \times \prod D_{\lambda}$ where V is a normed vector space and thus an $AE(M)$-space, $C(G, V)$ is the space of continuous maps from G to V with the compact-open topology and with the action $(g'f)(g) = f(gg')$, $g, g' \in G, f \in C(G, V)$ of the group G and D_{λ} is a closed ball of a finite-dimensional Euclidean space E_{λ} with the orthogonal action of the group G.

First, let us prove that the set $(C(G, V) \times \prod D_{\lambda})[G]$ of all fixed points of the G-space $C(G, V) \times \prod D_{\lambda}$ is an $AR(P)$-space. The spaces $C(G, V)$ and E_{λ} are normed spaces. Since the actions of the group G on $C(G, V)$ and E_{λ} are linear, the sets $C(G, V)[G]$ and $E_{\lambda}[G]$ will be closed convex sets of locally convex spaces $C(G, V)$ and E_{λ}, respectively. Therefore, by a well-known theorem of Kuratowski and Dugundji [3], $C(G, V)$ and E_{λ} are absolute retracts for metrizable spaces. By a theorem of Lisica [12], they are also absolute retracts for p-paracompact spaces. For a closed ball $D_{\lambda} \subset E_{\lambda}$ the last conclusion is true since the set $D_{\lambda}[G] = D_{\lambda} \cap E_{\lambda}[G]$ is closed and convex in E_{λ}.

Since the group G acts on the product $C(G, V) \times \prod D_{\lambda}$ coordinate-wise, $(C(G, V) \times \prod D_{\lambda})[G] = C(G, V)[G] \times \left(\prod D_{\lambda}\right)[G]$.

Hence, $(C(G, V) \times \prod D_{\lambda})[G]$ is an $AR(P)$-space, because it is a product of two $AR(P)$-spaces.
Now let us prove that $X[G]$ is an $AR(P)$-space. Since X is a $G - AR(P_G)$-space, it is a G-retract of the product $C(G, V) \times \prod D_\lambda$. Therefore, $X[G]$ is a retract of the $AR(P)$-space $(C(G, V) \times \prod D_\lambda)[G]$, hence, it is an $AR(P)$-space.

The absolute neighborhood retract case is proved similarly. □

Proof of Theorem 3. Let X be a G-movable space. By Theorem 1, it is sufficient to prove the theorem in the case $H = G$. So, we must prove movability of the space $X[G]$ of all G-fixed points. We consider the G-space X as a closed and G-invariant space of some $G - AR(P_G)$-space Y ([13], Theorem 1.3). The family of all open, G-invariant F_σ-type neighborhoods U_α of the G-space X in Y, is cofinal in the set of all open neighborhoods of X in Y ([17], Proposition 1.1.14). It consists of $G - ANR(P_G)$-spaces. The intersections $U_\alpha \cap Y[G] = U_\alpha[G]$ are $ANR(P)$-spaces (Theorem 4). They form a cofinal family of neighborhoods of the space $X[G]$ in $Y[G]$. Indeed, for any neighborhood U of the set $X[G]$ in $Y[G]$ there is a neighborhood V of the set $X[G]$ in Y such that $V \cap Y[G] = U$. Then the set $W = (Y \setminus Y[G]) \cup V$ is a neighborhood of the set X in Y, moreover, $W \cap Y[G] = U$. There is an α such that $U_\alpha \subset W$ and therefore $U_\alpha[G] \subset U$. So the family of neighborhoods $U_\alpha[G]$ is cofinal.

Since X is G-movable, for every U_α there is a neighborhood $U_{\alpha'} \subset U_\alpha$ such that, for any other neighborhood $U_{\alpha''} \subset U_{\alpha'}$, there exists a G-equivariant homotopy $F : U_{\alpha'} \times I \to U_\alpha$ such that $F(y, 0) = y$ and $F(y, 1) \in U_{\alpha''}$, for any $y \in U_{\alpha'}$. It is not difficult to verify that the homotopy $F[G] : U_{\alpha'}[G] \times I \to U_\alpha[G]$, induced by F, satisfies the condition of movability of $X[G]$. □

5. EXAMPLE OF A MOVABLE, BUT NOT EQUIVARIANTLY MOVABLE SPACE

Example 1. We will use the idea of S. Mardešić [13]. Let us consider the unit circle $S = \{z \in C; \ |z| = 1\}$. Let us denote $B = [S \times \{1\}] \cup \{(1) \times S\}$. B is the wedge of two copies of the unit circle S with base point $\{1\}$. Let us define a continuous map $f : B \to B$ by the formulas:

$$f(z, 1) = \begin{cases} (z^4, 1), & 0 \leq \arg(z) \leq \frac{\pi}{7} \\ (1, z^4), & \frac{\pi}{2} \leq \arg(z) \leq \pi \\ (z^{-4}, 1), & \pi \leq \arg(z) \leq \frac{3\pi}{2} \\ (1, z^{-4}), & \frac{3\pi}{2} \leq \arg(z) \leq 2\pi \end{cases}$$

$$f(1, t) = \begin{cases} (t^{-4}, 1), & 0 \leq \arg(t) \leq \frac{\pi}{2} \\ (1, t^{-4}), & \frac{\pi}{2} \leq \arg(t) \leq \pi \\ (t^4, 1), & \pi \leq \arg(t) \leq \frac{3\pi}{2} \\ (1, t^4), & \frac{3\pi}{2} \leq \arg(t) \leq 2\pi \end{cases}$$

for every z and t from S. Let us consider the ANR-sequences

$$B \xleftarrow{t^f} B \xleftarrow{t} B \xleftarrow{f} \ldots$$

and

$$\Sigma B \xleftarrow{\Sigma f} \Sigma B \xleftarrow{\Sigma f} \Sigma B \xleftarrow{\Sigma f} \ldots$$

where Σ is the operation of suspension. Let us denote

$$P = \lim \{B, f\}.$$
Then
\[\Sigma P = \lim_{\rightarrow} \{ \Sigma B, \Sigma f \}. \]
Let us define an action of the group \(G = \{ e, g \} \) on \(\Sigma B \) by the formulas
\[e[x, t] = [x, t]; \quad g[x, t] = [x, -t]. \]
for every \([x, t] \in \Sigma B\), \(-1 \leq t \leq 1\). It induces an action on \(\Sigma P \).

Proposition 1. The space \(\Sigma P \) has trivial shape, but it is not \(Z_2 \)-movable.

Proof. The triviality of shape of the space \(\Sigma P \) is proved by the method of Mardešić [13]. Let us prove that the space \(\Sigma P \) is not \(Z_2 \)-movable. Consider the set \(\Sigma P[Z_2] \) of all fixed-points of \(Z_2 \)-space \(\Sigma P \). It is obvious that \(\Sigma P[Z_2] = P \). Hence, by Theorem 3, it is sufficient to prove the following proposition. \(\square \)

Proposition 2. The space \(P \) is not movable.

Proof. Since the movability of an inverse system remains unchanged under the action of a functor, it is sufficient to prove non-movability of the inverse sequence of groups
\[\pi_1(B) \overset{f_*}{\leftarrow} \pi_1(B) \overset{f_*}{\leftarrow} \pi_1(B) \overset{f_*}{\leftarrow} \cdots, \]
where \(\pi_1(B) \) is the fundamental group of the space \(B \) and \(f_* \) is the homomorphism induced by the mapping \(f : B \to B \).

It is known that for sequences of groups movability implies the following condition of Mittag-Leffler, abbreviated as \(ML \) ([14], p. 166, Corollary 4):

The inverse system \(\{ G_{\alpha'}, p_{\alpha'}, A \} \) of the \(pro-\) \(GROUP \) category is said to be \(ML \) provided for every \(\alpha \in A \), there exist \(\alpha' \in A \), \(\alpha' \geq \alpha \), such that \(p_{\alpha'}(G_{\alpha'}) = p_{\alpha''}(G_{\alpha''}) \), for any \(\alpha'' \in A \), \(\alpha'' \geq \alpha \).

Thus, it sufficient to prove that the sequence (1) does not satisfy condition \(ML \). Let us observe that \(\pi_1(B) \) is a free group with two generators \(a \) and \(b \), and \(f_* \) is the homomorphism defined by the formulas
\[f_*(a) = aba^{-1}b^{-1}, \quad f_*(b) = a^{-1}b^{-1}ab. \]

\(f_* \) is a monomorphism, because \(f_*(a) \neq f_*(b) \), but not an epimorphism, because, for example, \(f_*(x) \neq a \), for all \(x \in \pi_1(B) \). Hence, for any natural \(m \) and \(n \), \(\text{Im} f_*^m \subseteq \text{Im} f_*^n \) only if \(m > n \). It means that the inverse sequence (1) does not satisfy condition \(ML \). \(\square \)

6. Movability of the orbit space

Theorem 5. Let \(X \) be a metrizable \(G \)-space. If \(X \) is \(G \)-movable then for any closed and normal subgroup \(H \) of the group \(G \), the \(H \)-orbit space \(X|_H \) is also \(G \)-movable.

Proof. Without losing generality one may suppose that \(X \) is a closed \(G \)-invariant subset of some \(G-AR(M_G) \)-space \(Y \) ([18], Theorem 1.1). \(X|_H \) is a closed \(G \)-invariant subset of \(Y|_H \) ([5], Theorem 3.1).

Let \(\{ X_{\alpha}, \alpha \in A \} \) be the family of all \(G \)-invariant neighborhoods of \(X \) in \(Y \). Let us consider the family \(\{ X_{\alpha}|_H, \alpha \in A \} \), where each \(X_{\alpha}|_H \in G-ANR(M_G) \) and is a \(G \)-invariant neighborhood of \(X|_H \) in \(Y|_H \). Let us prove that the family \(\{ X_{\alpha}|_H, \alpha \in A \} \) is cofinal in the family of all neighborhoods of \(X|_H \) in \(Y|_H \). Let \(U \) be an arbitrary neighborhood of \(X|_H \) in \(Y|_H \). By a theorem of Palais ([17], Proposition 1.1.14), there exists a \(G \)-invariant neighborhood \(V \supseteq X|_H \) laying in \(U \). Let us denote \(\tilde{V} = (pr)^{-1}(V), \)
where \(pr : Y \to Y|_H \) is the \(H \)-orbit projection. It is evident that \(\tilde{V} \) is a \(G \)-invariant neighborhood of the space \(X \) in \(Y \) and \(V = \tilde{V}|_H \). So in any neighborhood of the space \(X|_H \) in \(Y|_H \), there is a neighborhood of type \(X_\alpha|_H \), where \(X_\alpha \) is a \(G \)-invariant neighborhood of \(X \) in \(Y \).

Now let us prove the \(G \)-movability of the space \(X|_H \). Let \(X \) be \(G \)-movable. It means that the inverse system \(\{X_\alpha, i_{\alpha\alpha'}, A\} \) is \(G \)-movable. We must prove that the induced inverse system \(\{X_\alpha|_H, i_{\alpha\alpha'}|_H, A\} \) is \(G \)-movable. Let \(\alpha \in A \) be any index. By the \(G \)-movability of the inverse system \(\{X_\alpha, i_{\alpha\alpha'}, A\} \), there is \(\alpha' \in A \), \(\alpha' > \alpha \), such that for any other index \(\alpha'' \in A \), \(\alpha'' > \alpha \), there exists a \(G \)-mapping \(r_{\alpha'\alpha''} : X_{\alpha'} \to X_{\alpha''} \), which makes the following diagram \(G \)-homotopy commutative

\[
\begin{array}{c}
X_\alpha \\
\downarrow \downarrow i_{\alpha\alpha'} \downarrow \downarrow r_{\alpha'\alpha''} \\
X_{\alpha'} \\
\end{array}
\]

Diagram 1.

It turns out that, for given \(\alpha \in A \), the obtained index \(\alpha' \in A \), \(\alpha' > \alpha \), also satisfies the condition of \(G \)-movability of the inverse system \(\{X_\alpha|_H, i_{\alpha\alpha'}|_H, A\} \). This is obvious, because the \(G \)-homotopy commutativity of Diagram 1 implies the \(G \)-homotopy commutativity of the following diagram

\[
\begin{array}{c}
X_\alpha|_H \\
\downarrow \downarrow i_{\alpha\alpha'}|_H \downarrow \downarrow r_{\alpha'\alpha''}|_H \\
X_{\alpha'}|_H \\
\end{array}
\]

Diagram 2.

where \(r_{\alpha'\alpha''}|_H : X_{\alpha'}|_H \to X_{\alpha''}|_H \) is induced by the mapping \(r_{\alpha'\alpha''} \). So, the \(G \)-movability of the space \(X|_H \) is proved. \(\square \)

Corollary 2. Let \(X \) be a metrizable \(G \)-space. If \(X \) is \(G \)-movable, then the orbit space \(X|_G \) is movable.

Proof. In the case \(H = G \) from the last theorem we obtain that the orbit space \(X|_G \) with the trivial action of the group \(G \) is \(G \)-movable. Therefore, it will be movable by Corollary 1. \(\square \)

Corollary 2 in general is not invertible:

Example 2. Let \(\Sigma \) be a solenoid. It is known ([4], Theorem 13.5) that \(\Sigma \) is a non-movable compact metrizable Abelian group. By Corollary 1, the solenoid \(\Sigma \) with the natural group action is not \(\Sigma \)-movable although the orbit space \(\Sigma|_\Sigma \) as a one-point set is movable.

The converse of Corollary 2 is true if the group \(G \) is a Lie group and the action is free (see Theorem 7).
7. Equivariant movability of a free G-space

Theorem 6. Let G be a compact Lie group and let Y be a metrizable G-AR(M_G)-space. Suppose that a closed invariant subset X of Y has an invariant neighborhood whose orbits have the same type. If the orbit space $X|_G$ is movable, then X is equivariantly movable.

Proof. The orbit space $X|_G$ is closed in $Y|_G$, which is a G-AR(M)-space. Let U be an arbitrary invariant neighborhood of X in Y. By the assumption of the theorem, it follows that there exists a cofinal family of neighborhoods of X in Y, whose orbits have the same type. Therefore, one may suppose that all orbits of the neighborhood U have the same type. The orbit set $U|_G$ will be a neighborhood of the space $X|_G$ in $Y|_G$. From the movability of $X|_G$ it follows that, for the neighborhood $U|_G$, there is a neighborhood \tilde{V} of the space $X|_G$ in $Y|_G$, which lies in the neighborhood $U|_G$ and contracts to any preassigned neighborhood of the space $X|_G$.

Let us denote $V = (pr)^{-1}(\tilde{V})$, where $pr : Y \to Y|_G$ is the orbit projection. It is evident that V is an invariant neighborhood of the space X lying in U. Let us prove that V contracts in U to any preassigned invariant neighborhood of X. Let W be any invariant neighborhood of X in Y. We must prove the existence of an equivariant homotopy $F : V \times I \to U$, which satisfies the condition

$$F(x, 0) = x, \quad F(x, 1) \in W,$$

for any $x \in V$. Since $W|_G$ is a neighborhood of the space $X|_G$ in $Y|_G$, there is a homotopy $\tilde{F} : V|_G \times I \to U|_G$ such that

$$F(\tilde{x}, 0) = \tilde{x}, \quad \tilde{F}(\tilde{x}, 1) \in W|_G,$$

for any $\tilde{x} \in V|_G$. The homotopy $\tilde{F} : V|_G \times I \to U|_G$ preserves the G-orbit structure, because $V \subset U$ and all orbits of U have the same types (see Diagram 3).

![Diagram 3](image)

By the covering homotopy theorem of Palais ([17], Theorem 2.4.1), there is an equivariant homotopy $F : V \times I \to U$, which covers the homotopy \tilde{F} and satisfies $F(x, 0) = i(x) = x$. That is, the following diagram is commutative (Diagram 4).

![Diagram 4](image)
Then $F : V \times I \to U$ is the designed equivariant homotopy. It only remains to verify that $F(x, 1) \in W$. But this immediately follows from (2) and the commutativity of Diagram 4.

Theorem 7. Let G be a compact Lie group. A metrizable free G-space X is equivariantly movable if and only if the orbit space $X|_G$ is movable.

Proof. The necessity in a more general case was proved in Corollary 2. Let us prove the sufficiency. Let the orbit space $X|_G$ be movable. One can consider the G-space X as a closed and invariant subset of some $G - AR(M_G)$-space Y. Let $P \subset X$ be any orbit. From the existence of slices it follows that around P there is such an invariant neighborhood $U(P)$ in Y that $typeQ \geq typeP$, for any orbit Q from $U(P)$ ([5], Corollary 5.5). Since the action of the group G on X is free, $typeQ = typeP = typeG$, for any orbit Q lying in $U(P)$. Let us denote $V = \cup\{U(P); \ P \in X|_G\}$. It is evident that V is an invariant neighborhood of the space X in Y and that all of its orbits have the same type. Then, by Theorem 6, X is equivariantly movable. □

Example 2 shows that the assumption that G is a Lie group is essential in the above theorem. The Example 3 which follows shows that the condition of freeness of the action of the group G is also essential in the above theorem.

8. **Example of a non-free not Z_2-movable space with a movable orbit space**

Example 3. Let us consider the space $P = \lim\{B, f\}$ constructed in Example 1. Let us define an action of the group $Z_2 = \{e, g\}$ on the space B by the formulas

\[
\begin{align*}
e(z, 1) &= (z, 1) \\
e(1, t) &= (1, t) \\
g(z, 1) &= (1, z^{-1}) \\
g(1, t) &= (t^{-1}, 1),
\end{align*}
\]

for any z and t from S. B is a $Z_2 - ANR(M_{Z_2})$ space with the fixed-point $b_0 = (1, 1)$.

Proposition 3. The mapping $f : B \to B$, defined by formulas (3), is equivariant.

Proof. It is necessary to prove the following two equalities:

\[
\begin{align*}
f(g(z, 1)) &= g(f(z, 1)) \\
f(g(1, t)) &= g(f(1, t)),
\end{align*}
\]

for any z and t from S. Let us prove the first one. Consider the following cases:

Case 1. $0 \leq argz \leq \frac{\pi}{2} \iff \frac{3\pi}{2} \leq argz^{-1} \leq 2\pi$.

Then $f(g(z, 1)) = f(1, z^{-1}) = (1, z^{-4}) = g(z^4, 1) = g(f(z, 1))$.

Case 2. $\frac{\pi}{2} \leq argz \leq \pi \iff \pi \leq argz^{-1} \leq \frac{3\pi}{2}$.

Then $f(g(z, 1)) = f(1, z^{-1}) = (z^{-4}, 1) = g(1, z^4) = f(z, 1)$.

Case 3. $\pi \leq argz \leq \frac{3\pi}{2} \iff \frac{\pi}{2} \leq argz^{-1} \leq \pi$.

Then $f(g(z, 1)) = f(1, z^{-1}) = (1, z^4) = g(z^{-4}, 1) = f(z, 1)$.

Case 4. $\frac{3\pi}{2} \leq argz \leq 2\pi \iff 0 \leq argz^{-1} \leq \frac{\pi}{2}$.

Then $f(g(z, 1)) = f(1, z^{-1}) = (z^4, 1) = g(1, z^{-4}) = f(z, 1)$.

The second equality of (4) is proved in a similar way. □
Proposition 4. P is a connected, compact, metrizable and equivariantly non-movable Z_2-space which is free at all points except at the only fixed point (b_0, b_0, \ldots) and $sh(P|_{Z_2})=0$.

Proof. P is a Z_2-space because it is an inverse limit of $Z_2 - ANR(M_{Z_2})$-spaces B and f is an equivariant mapping. The uniqueness of the fixed point is evident. The connectedness, compactness and metrizability follows from the properties of inverse systems ([8], Theorem 6.1.20, Corollary 4.2.5). The non Z_2-movability follows from Proposition 2 and Corollary 1.

Let us prove that $sh(P|_{Z_2})=0$ and thus the orbit space $P|_{Z_2}$ is movable.

Let $X = \lim \{B|_{Z_2}, f|_{Z_2}\}$. X is equimorphic to the orbit space $P|_{Z_2}$. Indeed, let us define a mapping $h : X \to P|_{Z_2}$ in the following way:

$$h([(x_1], [x_2], \ldots)) = [(x_1, x_2, \ldots)]$$

where $((x_1], [x_2], \ldots) \in X$, and x_1, x_2, \ldots are selected from the classes $[x_1], [x_2], \ldots$ in such way that $(x_1, x_2, \ldots) \in P$ or what is the same $f(x_{n+1}) = x_n$, for any $n = 1, 2, \ldots$. Let us prove that the mapping h is defined correctly. Let x_1, \bar{x}_2, \ldots be some other representatives of the classes $[x_1], [x_2], \ldots$, respectively, satisfying the conditions $f(g_{x_{n+1}}) = x_n$ for any $n \in N$. Since each class $[x_n]$ has two representatives: x_n and g_{x_n}, where $g \in Z_2 = \{e, g\}$, either $\bar{x}_n = g_{x_n}$ or $\bar{x}_n = x_n$. But it is obvious that, if for some $n_0 \in N$, $\bar{x}_{n_0} = g_{x_{n_0}}$, then, for any $n \in N$, $\bar{x}_n = g_{x_n}$, because f is equivariant. Thus, in the case of another choice of the representatives of the classes $[x_1], [x_2], \ldots$, we have

$$h([(x_1], [x_2], \ldots)) = [(\bar{x}_1, \bar{x}_2, \ldots)] = [(g_{x_1}, g_{x_2}, \ldots)] = [g(x_1, x_2, \ldots)] = [(x_1, x_2, \ldots)].$$

However, h is a continuous bijection and thus, it is a homeomorphism ([8], Theorem 3.1.13).

Consequently,

$$P|_{Z_2} = \lim \{B|_{Z_2}, f|_{Z_2}\},$$

where $B|_{Z_2} \cong S$ and the mapping $\bar{f} = f|_{Z_2} : S \to S$ is defined by the formulas:

$$\bar{f}(z) = \begin{cases} z^4, & 0 \leq \arg(z) \leq \frac{\pi}{2} \\ z^{-4}, & \frac{\pi}{2} \leq \arg(z) \leq \frac{3\pi}{2} \\ z^4, & \frac{3\pi}{2} \leq \arg(z) \leq 2\pi \end{cases}$$

for any $z \in S$. Thus, we conclude that the orbit space $P|_{Z_2}$ is a limit of the inverse sequence

$$S \xleftarrow{\bar{f}} S \xleftarrow{\bar{f}} S \xleftarrow{\bar{f}} \ldots$$

By formula (5), the mapping \bar{f} induces a homomorphism $\bar{f}_* : \pi_1(S) \to \pi_1(S)$, which acts as follows:

$$\bar{f}_*(a) = aa^{-1}a^{-1}a,$$

where $a \in \pi_1(S) \cong Z$ is the generator of the group Z. From the above formula, it follows that \bar{f}_* is the null-homomorphism and thus, $deg\bar{f} = 0$. For any $k = 1, 2, \ldots$, \bar{f}_k is also a null-homomorphism and thus, $deg\bar{f}_k = 0$. Therefore, by the classical Hopf theorem ([10], Section 2.8, Theorem H^n) all $\bar{f}_k : S \to S$ are null-homotopic and $sh(P|_{Z_2}) = 0$. □
References

[1] Antonian S. A., Mardešić S., Equivariant shape, Fund. Math. 127 (1987), 213-224.
[2] Borsuk K., On movable compacta, Fund. Math., 66, N 1 (1969), 137-146.
[3] Borsuk K., Theory of retracts, (Warszawa, 1967).
[4] Borsuk K., Theory of shape, Lecture notes series 28 (1970).
[5] Bredon G. E., Introduction to compact transformation groups, (New York, 1972).
[6] Čerin Z., Equivariant shape theory, Math. Proc. Camb. Phil. Soc., N 117 (1995), 303-320.
[7] De Vries J., Topics in the theory of topological transformation groups, Topological structures II, Mathematical centre tracts, v. 116 (1979), 291-304.
[8] Engelking R., General Topology, (Warszawa, 1977).
[9] Gevorgyan P. S., G-movability of G-spaces (Russian), Uspehi Mat. Nauk, v. 43, N 3 (1988), 177-178.
[10] Hu Sze-Tsen, Homotopy Theory, (New York, 1959).
[11] Kozłowski G., Segal J., Movability and shape-connectivity, Fund. Math. 93 (1976), 145-154.
[12] Lisica Yu. T., Extension of continuous maps, (Russian), Sibirski Matem. Ž., v. 14, N 1 (1973), 128-139.
[13] Mardešić S., A non-movable compactum with movable suspension, Bull.Acad. Polon. Sci., v. 19, N 12 (1971), 1101-1103.
[14] Mardešić S., Segal J., Movable compacta and ANR-systems, Bull.Acad. Polon. Sci., v. 18 (1970), 649-654.
[15] Mardešić S., Segal J., Shape theory - The inverse system approach, North-Holland, Amsterdam, 1982.
[16] Morita K., On shapes of topological spaces, Fund. Math. 86(1975), 251-259.
[17] Palais R.S., The classification of G-spaces, Mem. AMS, N 36 (1960).
[18] Smirnov Yu. M., Shape theory for G-pairs, (Russian), Uspehi matem. nauk, v. 40, N 2 (1985), 151-165.

Moscow Pedagogical State University
Email address: pgev@yandex.ru