Lamin B Receptor Recognizes Specific Modifications of Histone H4 in Heterochromatin Formation

Received for publication, July 4, 2012, and in revised form, October 12, 2012 Published, JBC Papers in Press, October 25, 2012, DOI 10.1074/jbc.M112.397950

Yasuhiro Hirano‡, Kohji Hizume§, Hiroshi Kimura‡, Kunio Takeyasu‡, Tokuko Haraguchi¶, and Yasushi Hiraoka†

From the ‡Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan, the §Division of Microbial Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan, the ¶Graduate School of Biosciences, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan, and the †Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan

Background: LBR is an inner nuclear membrane protein that participates in heterochromatin organization. LBR recognizes specific histone modifications and induces chromatin compaction and transcriptional repression. LBR tethers epigenetically marked chromatin to the NE to repress transcription. This finding provides an implication of how transcriptional activities are repressed beneath the NE.

Inner nuclear membrane proteins provide a structural framework for chromatin, modulating transcription beneath the nuclear envelope. Lamin B receptor (LBR) is a classical inner nuclear membrane protein that associates with heterochromatin, and its mutations are known to cause Pelger-Huët anomaly in humans. However, the mechanisms by which LBR organizes heterochromatin remain to be elucidated. Here, we show that LBR represses transcription by binding to chromatin regions that are marked by specific histone modifications. The tudor domain (residues 1–62) of LBR primarily recognizes histone H4 lysine 20 dimethylation and is essential for chromatin compaction, whereas the whole nucleoplasmic region (residues 1–211) is required for transcriptional repression. We propose a model in which the nucleoplasmic domain of LBR tethers epigenetically marked chromatin to the nuclear envelope and transcriptional repressors are loaded onto the chromatin through their interaction with LBR.

The eukaryotic genome is organized within the nucleus, and functional organization of the nucleus is crucial for its activities (1–3). It is known that heterochromatin is formed beneath the nuclear envelope (NE) (4, 5) and that INM proteins can play a key role in heterochromatin formation (6). LBR is a classical member of the conserved INM protein family and binds to various nuclear components via its nucleoplasmic region (Fig. 1A) (7–11). Because chromatin pulled down by LBR is enriched for heterochromatin marks such as histone H3 lysine 9 tri-methylation (H3K9me3) and lysine 27 tri-methylation (H3K27me3), it is thought that LBR is likely to bind to heterochromatin (6). Dominant mutations in LBR are known to cause human Pelger-Huët anomaly which is characterized by an aberrant neutrophil nuclear shape: in contrast to the characteristic hyperlobulated nucleus of normal neutrophils, the neutrophils of patients with Pelger-Huët anomaly have a bi-lobed nucleus (12). Chromatin clumping and disorganization of pericentric heterochromatin (13, 14) are observed in a related LBR-associated disease in mice, ichthyosis. These studies strongly suggest that LBR is one of the key proteins involved in organizing chromatin beneath the NE. However, the mechanism by which LBR binds to chromatin is unclear.

It has been reported that LBR binds to histones and DNA via its tudor domain (amino acid residues 1–62) and RS domain (amino acid residues 53–89), respectively (11, 15). Tudor domains are methylation-specific “histone code-reading” domains, as are chromo, MBT (malignant brain tumor) and WD-repeat domains (16–18). Indeed, the tudor domains of 53BP1 and JMJD2A bind specifically to H4K20me2/H3K9me2 and H3K4me3/H4K20me2, respectively (17, 19). Several aromatic amino acid residues in those tudor domains, which make a structure called a “histone code-reading pocket,” are known to be needed for recognition of specific histone modifications (17). These amino acid residues are also conserved in the tudor domain of LBR (Fig. 1, B and C). Thus, LBR may also recognize some specific histone modifications. However, recent studies show that the tudor domain of LBR does not appear to bind methylated lysine or arginine residues (15). They show that not only the tudor domain but also the RS domain binds to histone and that the binding of LBR to chromatin is affected by the globular II domain in vivo (20) (for the domain structures of LBR, see Fig. 1A), suggesting a role for the nucleoplasmic region, outside the tudor domain, of LBR. Here we demonstrate that the whole nucleoplasmic domain of LBR is required for transcriptional repression beneath the NE, whereas the tudor domain of LBR primarily recognizes histone
H4 lysine 20 dimethylation (H4K20me2) to recruit epigenetically marked chromatin to the NE.

EXPERIMENTAL PROCEDURES

Materials—Primary antibodies for Western blotting were purchased and used at the indicated dilutions: rabbit polyclonal anti-LBR (1:500, E398L; Epitomics, Burlingame, CA), rabbit polyclonal anti-lamin B1 (1:300; Abcam, Cambridge, MA), rabbit anti-lamin B2 (1:1,000; Epitomics), mouse anti-lamin A/C (1:1,000; 4C11, Sigma-Aldrich), rabbit anti-GAL4 DNA-BD (1:2,000; Sigma-Aldrich), mouse monoclonal anti-GST (1:1,000; G5019, Nakalai Tesque, Kyoto, Japan), monoclonal anti-FLAG M2 (1:2,000; Sigma-Aldrich), anti-panH4 (0.2 μg/ml) and anti-H4K20me2 (0.2 μg/ml) antibodies. Anti-mouse HRP-conjugated IgG and anti-rabbit HRP-conjugated IgG were purchased from GE Healthcare.

Plasmids encoding the full-length and the whole nucleoplasmic region of the LBR protein were constructed as reported previously (7, 21) and used as a template for further plasmid constructions as described below. Specific regions of interest were amplified by PCR using either one of these DNA plasmids as a template. The amplified DNA was inserted into the pGEX-5X-1 vector at the EcoRI and XhoI sites, or the pCMX-GAL4 vector at the EcoRI and BamHI sites. The LBR mutants (NPW16A, LBRW16A, LBRY23A, LBRY23F, and others listed in Fig. 3B) were generated using the GeneTailor™ Site-Directed Mutagenesis System (Invitrogen) according to the manufacturer’s protocol. The DNA sequences of all plasmids used in this study were confirmed using a CEQ2000 DNA sequencer (Beckman Coulter). The 26-kbp DNA plasmids used for chromatin reconstitution experiments were gifts from Dr. W. de Laat at Erasmus University Medical Center, The Netherlands (22). Stealth siRNAs for luciferase, lamin B1 (HSS106098: AAUUG-UAACAGUCUGGCCGUCCCUCU) and lamin B2 (HSS189215: UUCUAUUCAACGCAUCACCGAGG) were purchased from Invitrogen.

Glutathione S-transferase (GST) fused with LBR fragment proteins (GST, GST-fused NPW16A, and GST-fused NPW16A) were expressed in *Escherichia coli* and purified with glutathione-Sepharose 4B beads (GE Healthcare) according to the manufacturer’s methods with the exception that the beads were washed with high salt washing buffer (phosphate-buffered saline (PBS) containing 1 M NaCl, 1% Triton X-100) for 30 min at 4 °C before elution: the proteins bound to the beads were eluted with GSH buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 50 mM reduced glutathione, 0.1% Triton X-100). The purified proteins were subjected to SDS-PAGE, stained with Coomassie Brilliant Blue, and then quantified by measuring the staining intensity using a LAS-3000 mini image analyzer (Fuji-film, Tokyo, Japan) and ImageQuant 5.0 software (GE Healthcare). His-tagged LBR fragment protein (His-NPW16T) was expressed in *E. coli* and purified with Ni2+-nitrilotriacetic acid beads (Qiagen) according to the manufacturer’s method with the exception that the beads were washed with high salt washing buffer as described above. The proteins were eluted with PBS containing 200 mM imidazole and the purified proteins quantified as described above. Core histone proteins for chromatin reconstitution experiments were prepared from HeLa cells by a standard salt extraction method (23). Tail-less histone proteins were prepared according to Hayes et al (24). Recombinant histone H4 proteins with a single modification (unmodified, K20me1 or K20me2) were purchased from Active Motif (Carlsbad, CA).

Cells—HeLa cells were obtained from Riken Cell Bank (Tusukuba, Japan). HEK293T and PANC1 cells were kind gifts from Drs. H. Ogawa and M. Tsuchiya, and N. Matsuura, respectively, at Osaka University. These cells were cultured in DMEM containing 10% fetal bovine serum (FBS) at 37 °C in a humidified 5% CO2 atmosphere.

Histone Modification-Recognition Assay Using a Histone Peptide Array—Celluspot™, comprising 384 histone tail peptides with various combinations of histone modifications, was pur-
Chromatin Organization by LBR

chased from Active Motif and used to identify what combination of histone modifications bound to the target protein of interest (the NP domain of LBR in this study). Details of the complete matrix of peptides are provided in supplemental Table 1. Celluspot was first treated with Blocking One (Nacalai Tesque) for 1 h at room temperature to block nonspecific binding, and then incubated with 100 nM GST-NPWT, GST-NPWT, or GST-TudWT protein at 4 °C for 1.5 h in binding buffer (20 mM Tris-HCl (pH 7.5), 300 mM NaCl, 250 mM sucrose, 2 mM MgCl₂, 0.1 mM EDTA) with 1 mg/ml BSA. After washing five times with PBS containing 0.05% Tween 20 (PBS-T), Celluspot was incubated with anti-GST antibody as the primary antibody for 1 h at room temperature, washed with PBS-T five times, and then incubated with anti-mouse HRP-conjugated IgG as the secondary antibody. Spots were stained with Chemiluminescence LAS1000 (FujiFilm).

Pulldown Assay of Histone H4 with LBR-Conjugated Beads—LBR fragment protein-conjugated beads were generated as described above. The GST-fused protein-conjugated beads (GST, GST-NPWT, and GST-NPW16A) were incubated with 200 ng each of a recombinant histone H4 protein (unmodified, K20me1 or K20me2) at 4 °C for 1.5 h in binding buffer with 1 mg/ml BSA. Then, the beads were washed five times with the binding buffer and twice with washing buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 250 mM sucrose, 2 mM MgCl₂, 0.1 mM EDTA). The proteins were eluted from the beads with SDS-sample buffer, subjected to SDS-PAGE, and stained with Coomassie Brilliant Blue or analyzed by Western blotting using anti-LBR, anti-panH4 antibody.

Cross-linked Chromatin Immunoprecipitation (ChIP)—A ChIP experiment was performed as described previously with modifications (25). PANC1 cells (5 × 10⁶) were cross-linked with 1% formaldehyde in medium for 10 min at room temperature and then incubated in 200 mM glycerol in medium for 5 min. After washing cells with PBS and addition of lysis buffer, cells were harvested using a cell scraper, collected by centrifugation, and then resuspended in 1 ml Tx-lysis buffer (5 mM Hepes-NaOH (pH 8.0), 200 mM KCl, 1.5 mM MgCl₂, 1 mM CaCl₂, 5% sucrose, 0.5% Triton X-100, 1 mM PMSF, protease inhibitor mixture (Nacalai Tesque)) containing 1 unit/ml DNase (Roche Applied Science) and 100 μg/ml RNase (Sigma-Aldrich). The cell lysate was centrifuged at 15,000 × g for 10 min, and the supernatant was collected. The supernatant was mixed with 10 μl of anti-FLAG antibody-conjugated Sepharose beads (Sigma) and incubated overnight at 4 °C. After washing, the beads were treated with SDS-sample buffer to elute the proteins. The fraction containing the eluted protein was subjected to SDS-PAGE and transferred to PVDF membrane and analyzed by Western blotting using anti-LBR, anti-lamin B1, and anti-lamin B2 antibodies.

Atomic Force Microscopy (AFM) Imaging.—The DNA plasmid, pBlueScript II KS(−), was digested with Scal and XhoI restriction enzymes. The digested 1.8-kbp linear dsDNA was purified by gel extraction and used for chromatin reconstitution experiments as described previously (23). Briefly, the DNA was mixed with core histone proteins in high salt buffer and dialyzed against low salt buffer. The reconstituted chromatin was incubated with LBR fragments for 30 min at 4 °C, fixed for 30 min at room temperature with fixation buffer (10 mM Hepes-KOH (pH 7.4), 50 mM NaCl, 0.1% glutaraldehyde) and then observed using a Nanoscope IIIa (Veeco, Plainview, NY) as described previously (23). The calculation of the molar ratio of LBR to histone is discussed in the supplemental Experimental Procedures.
some sizes were measured as described by Ohniwa et al. (29). The radius of curvature of the cantilever was determined using a DNA width of 2 nm in the images.

RESULTS

LBR Specifically Binds to H4K20me2—We expressed the whole nucleoplasmic region of LBR, corresponding to amino acid residues 1–211 (designated the NP domain; see Fig. 1 for LBR domain nomenclature), to investigate whether the LBR NP domain recognizes a specific histone modification (16–18) (Fig. 1B and C). First, we used a Celluspot peptide array comprising 384 histone tail peptides with various combinations of modifications; this array is a powerful tool for determining the specificity of histone modification-recognition domains (31). The array was incubated with the GST-fused wild-type NP domain (NPWT) and then probed with anti-GST antibody. NPWT specifically bound to peptides containing the single modifications H4K20me2 and H4K20ac and exhibited partial binding to H4K20me1 (Fig. 2B; see supplemental Fig. S1 and Table S1 for the complete data). Interestingly, these binding specificities were altered by additional modifications around H4K20 (Fig. 2A; see supplemental Fig. S1 and Table S1 for the complete data).}

Chromatin Organization by LBR

The Histone Modification-specific Binding Activity of LBR Is Necessary to Restrict Its Mobility in the NE—To verify the binding of LBR and H4 modifications in vivo, we carried out a ChIP assay. The ChIP assay revealed that H4K20me2 was enriched with LBR (Fig. 2C). On the other hand, it was difficult to detect the enrichment of H4K20ac because it was significantly less abundant in the cells (data not shown). In addition, we investigated the H4K20me2 distribution in the nucleus by immunostaining. As shown in Fig. 2D, H4K20me2 was enriched beneath the INM (Fig. 2D, arrows). Taken together, we concluded that LBR binds to at least H4K20me2.
previous report (32). In contrast, a tudor domain-deletion mutant, LBRΔ1–53, and the mutants in which aromatic residues were substituted with alanine, LBRW16A and LBRY23A, moved ~7 times faster than the LBRWT (diffusion coefficients were 0.230 ± 0.007, 0.253 ± 0.007, and 0.267 ± 0.006 μm²/s, respectively). A similar result showing increased mobility of a tudor domain-deletion LBR mutant by FRAP analysis was also reported previously (15, 33). Further experiments showed that alanine substitutions of tyrosine 41 and aspartic acid 43 in the histone code-reading pocket of the tudor domain (Fig. 1C) increased the mobility of the LBR relative to the LBRWT (Fig. 3B), consistent with an essential role for the corresponding aromatic residues in the 53BP1 tudor domain in binding to histone modifications (17). On the other hand, a point mutant, in which tyrosine 23 was substituted with another aromatic residue, phenylalanine (LBRY23F), behaved similarly to the LBRWT. Taken together, binding of the LBR tudor domain to histone is necessary to restrict its mobility in the NE, and these findings suggest that LBR forms a stable complex with peripheral chromatin.

Because LBR also binds to lamin B (11), mobility of LBR in the NE can be restricted by its binding to lamin B (34). If so, it is expected that the mutant LBRSs could move faster if the mutations disrupted the binding of LBR to lamin B. Thus, we investigated the effect of lamin binding on LBR dynamics. Lamin B1 and B2 were co-immunoprecipitated with both LBRWT and LBRW16A (Fig. 4A), suggesting that the W16A mutation did not affect the binding of LBR to lamin B. Moreover, siRNA knockdown of lamin B1 and B2 separately or together did not affect LBR dynamics (Fig. 4, B–D). These results indicate that the low mobility of LBR is not attributable to lamin binding.

LBR Induces Chromatin Compaction through Its Histone Modification-specific Interaction—The results also give rise to the possibility that LBR per se participates in chromatin organization beneath the NE. Thus, we examined whether LBR affected chromatin structures by using AFM. We reconstituted chromatin with 1.8-kbp linear dsDNA and human core histones by salt dialysis. In this preparation (Fig. 5A, upper panel, GST), beads-on-a-string chromatin, which had 3–4 nucleosomes on the DNA with an average nucleosome diameter of ~9 nm, was observed (Fig. 5A, bottom panel, GST; see supplemental Fig. S4 for a low power view). This nucleosome density is lower than the physiological density, but this assay system is useful for observing chromatin compaction (23, 35). With the higher nucleosome density, chromatin tended to be compact by itself, and it was difficult to assess the effect of LBR. We then incubated this reconstituted chromatin with GST-fused LBR fragments (Fig. 5A). In the presence of NPWT, highly aggregated chromatin (typically >30 nm in diameter) was formed (Fig. 5A, NPWT, arrow and arrowheads), and beads-on-a-string structures as observed in the control were virtually absent (Fig. 5A, compare GST and NPWT). In these experiments, we used a 4:1 molar ratio of LBRs to histones, based on the calculated molar ratio of these molecules beneath the NE (supplemental Fig. S3); similar results were obtained using a 1:1 molar ratio. A DNA

FIGURE 3. The histone modification-specific binding activity of LBR is necessary to restrict its mobility in the NE. A, GFP-fused LBRWT (WT) and its mutants (Δ1–53, W16A, Y23A, and Y23F) expressed in HeLa cells. Mobility was analyzed by fluorescence recovery after bleaching a 2-μm spot (left panels, red circle). The means of the relative intensity in the bleached area are indicated with the S.D. (right panel, n ≥ 7). Enlarged images around the bleached region in the left panels are shown in pseudo-color at the top right. Scale bars, 10 μm. B, summary of FRAP experiments. Calculated diffusion coefficients of LBR and its mutants are shown.
loop was sometimes observed with the aggregated chromatin (Fig. 5A, NP WT, arrowheads), suggesting that NP WT bridges nucleosomes to induce chromatin compaction. For NP W16A and Tud WT (Fig. 5A, NP W16A and Tud WT), the size of the nucleosome-like structures appeared bigger than the control (∼15- and 12-nm diameters, respectively), but aggregated chromatin (>30-nm diameter) was rarely observed. These results indicate that NP W16A and Tud WT bound to nucleosomes but that these proteins were less able to induce chromatin compaction than NP WT. Similar results were obtained when chromatin was reconstituted using a 26-kbp plasmid dsDNA instead of 1.8-kbp linear dsDNA (supplemental Fig. S5). However, NP WT-induced chromatin compaction was not observed when chromatin was reconstituted with tail-less histones (Fig. 5B). These results indicate that chromatin compaction requires modification-specific interaction of histone H4 with the tudor domain of LBR. Importantly, the histone modification-specific binding activity of the LBR tudor domain is not sufficient to induce chromatin compaction because Tud WT alone failed to induce chromatin compaction (Fig. 5A, Tud WT). A DNA loop observed in compacted chromatin suggests that chromatin compaction may involve multimerization of LBR as suggested previously (6). Our bead binding assay experiments indicated that the RS domain of LBR was sufficient for its multimerization (Fig. 6). This result also shows that the multimerization activity of LBR is independent of the histone-modification-binding activity because the bead binding assay does not include histones.

Chromatin compaction by LBR is distinct from H1-induced higher order chromatin formation. When we reconstituted a 30-nm chromatin fiber with histone H1 on the 26-kbp reconstituted chromatin and then incubated it with NP WT, the 30-nm chromatin fiber was further compacted as well as the beads-on-a-string chromatin (Fig. 5C).

Histone Modification-specific Binding Activity Is Required for Transcriptional Repression by LBR—Next, using a luciferase reporter assay, we tested whether LBR modulates transcription (Fig. 7A). GAL4-fused LBR and its fragments were co-transfected with a reporter plasmid, MH100×4-tk-Luc, into HEK293T cells and the luciferase activity driven by the tk promoter was quantified. The cells expressed similar levels of LBR proteins (Fig. 7B, arrows). First, GAL4-LBR WT repressed transcription of the reporter plasmid (Fig. 7A, LBR WT), indicating that LBR was able to repress transcription beneath the NE. Because GAL4-NP WT showed similar transcriptional repression activity to LBR WT (Fig. 7A, WT), we attempted to determine the region responsible for the transcriptional repression using various truncates of the NP fragment. NP ΔTudRS and NP globular II (see Fig. 1A) significantly decreased transcriptional repression activity whereas NP ΔRS showed similar effects to NP WT. On the other hand, NP ΔTud showed a slight decrease in transcriptional repression activity (Fig. 7A, ΔTud, ΔRS, ΔTudRS, and Δglobular II). Histone modification-specific binding activity seems to be crucial for the tudor domain-mediated transcriptional repression because NP W16A showed transcriptional repression activity similar to NP ΔTud (Fig. 7A, W16A and ΔTud). These findings suggest that LBR plays at least two important roles in transcriptional repression: chromatin compaction and transcriptional repressor recruitment.

DISCUSSION

Histone Modification Binding Specificity of LBR—The LBR-mediated reorganization of chromatin beneath the NE possibly leads to transcriptional repression of developmentally regu-
lated genes because the loss of LBR causes abnormal chromatin organization in mouse granulocyte differentiation (13). On the other hand, H4K20me2, which is the main histone modification recognized by LBR, is broadly spread throughout the genome and is the most abundant H4K20 modification (36). Thus, why LBR recognizes the broadly spread H4K20me2 modification and whether this binding regulates any biological pathways remain to be elucidated. Although H4K20me2 is the most abundant and broadly spread, it causes specific biological responses such as the recruitment of 53BP1.

FIGURE 5. LBR induces chromatin compaction. A, chromatin compaction was induced by LBR. Chromatin was reconstituted with 1.8-kbp linear dsDNA and core histones by salt dialysis. The chromatin was incubated with GST-LBR fragments, bound to mica, and then observed using AFM (upper panel). The arrows and arrowhead indicate aggregated chromatin without and with a DNA loop, respectively. Histograms of the nucleosome width are shown at the bottom. B, chromatin reconstituted with tail-less histones is not aggregated by LBR. Tail-less histones were prepared by partial digestion with trypsin (left panel, Coomassie Brilliant Blue stain). Chromatin was reconstituted with 1.8-kbp linear dsDNA and tail-less histones, and observed using AFM. C, chromatin compaction induced by LBRs is independent of histone H1. A 30-nm chromatin fiber on the 26-kbp plasmid was reconstituted according to a previous report (23). After incubation with GST or GST-NPWT, the chromatin was observed using AFM. Scale bars, 200 nm. Scales to indicate height are shown on the right.

FIGURE 6. LBR multimerizes by its RS region. Proteins indicated on the panel were conjugated to glutathione-Sepharose beads. Purified GFP-fused NPWT was incubated with the beads. Phase contrast (upper panel) and fluorescence (lower panel) images of the beads are indicated.
onto DNA double-strand break sites (17, 37, 38). For this specific binding, a histone methyltransferase MMSET detects and then accumulates at double-strand break sites and results in an increase in the local level of H4 methylation, such that 53BP1 is concentrated. This result suggests the local concentration, not overall amount, of H4K20me2 is important in determining the specificity and the formation of stable interactions with 53BP1. This may be applicable to the LBR-H4K20me2 interaction because H4K20me2 is relatively concentrated beneath the NE (Fig. 2D). Another possible determinant of specificity might be modification patterns surrounding H4K20. Here we have presented evidence that LBR recognizes H4K20me2 in combination with certain surrounding modified residues, and this is distinct from the binding specificity of 53BP1 (31). Although the roles of H4R19 and H4R23 methylation have not been identified, the combination appears to be important for LBR functions; that is, for chromatin compaction and transcriptional repression.

H4K20ac was a candidate modification for LBR recognition, but it was significantly less abundant in several of the cancer cell lines examined (data not shown). Thus, it was difficult to evaluate the significance of the LBR-H4K20ac interaction and to determine a biological role for this interaction in vivo.

Model of LBR-mediated Heterochromatin Formation beneath the NE—Based on our data and published data, we propose a model for the induction of transcriptional repression by LBR (Fig. 8). LBR perhaps possesses at least two important roles in transcriptional repression: chromatin compaction and transcriptional repressor recruitment.

In chromatin compaction, LBR binds to histone H4 containing a specific pattern of modifications (Figs. 2 and 8A), and form a complex with epigenetically marked chromatin (Fig. 8B). A previous report showed that the LBR tudor domain binds to histone H3 but not to H4. However, the study also demonstrated that the RS domain of LBR can bind to histone H4 in vitro (15). We argue that the tudor domain is essential for recognition of the H4 modifications because NPW16A lacks histone modification binding specificity. However, that is not sufficient because our Celluspot peptide array experiments showed that the tudor domain alone did not bind to modified histone H4 peptides (data not shown). The globular II domain affects the binding of LBR to chromatin in vivo (20), suggesting that the binding of LBR to chromatin can be regulated by the whole nucleoplasmic region. Thus, we conclude that the whole nucleoplasmic region is necessary for its binding to histone H4 and that the tudor domain determines its histone modification specificity. At the next step, LBR tethers those chromatin regions together to form a stable LBR-chromatin complex, termed primitive heterochromatin (Fig. 8B). Because the tudor domain alone did not induce chromatin compaction (Fig. 5A, TudWT), another factor(s), e.g. the DNA-binding or multimerization activity of LBR (6, 11, 39), may be required. Our finding that LBR multimerizes via the RS domain implies that this domain participates in primitive heterochromatin formation.

For full transcriptional repression, transcriptional repressor loading at the position recognized by LBR is probably needed because the transcriptional repression activity of LBR is almost completely eliminated by the deletion of the globular II domain (Fig. 7A, Δglobular II). It has been reported that this domain binds to HP1 which is a strong transcriptional repressor (40). As described above, however, HP1 binding to chromatin is not sufficient to repress transcription because ΔTudRS did not repress transcription. Other transcriptional repressors, Mcp2, and lamin B, also bind to LBR and may cooperatively induce
transcriptional repression (41, 42). Thus, we speculate that primitive heterochromatin provides a structural framework to recruit transcriptional repressors to form mature heterochromatin (Fig. 8C). It is likely that LBR is a unique INM protein that plays a role in both chromatin organization and transcriptional repression.

Acknowledgments—We thank Y. Suzuki and H. Takahashi for helping prepare samples for AFM observation and T. Horigome for critical discussion.

REFERENCES

1. Akhtar, A., and Gasser, S. M. (2007) The nuclear envelope and transcriptional control. Nat. Rev. Genet. 8, 507–517
2. Shaklai, S., Amariglio, N., Rechavi, G., and Simon, A. J. (2007) Gene silencing at the nuclear periphery. FEBS J. 274, 1383–1392
3. Towbin, B. D., Meister, P., and Gasser, S. M. (2009) The nuclear envelope protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J. Biol. Chem. 279, 25567–25573
4. Takano, M., Takeuchi, M., Itou, H., Furukawa, K., Sugimoto, K., Omata, S., and Horigome, T. (2002) The binding of lamin B receptor to chromatin is regulated by phosphorylation in the RS region. Eur. J. Biochem. 269, 943–953
5. Martins, S. B., Eide, T., Steen, R. L., Jahnzen, T., Skålhegg, B. S., and Collas, P. (2000) HAH5 is a protein of the chromatin and nuclear matrix regulating nuclear envelope dynamics. J. Cell Sci. 113, 3703–3713
6. Polioudaki, H., Kourmouli, N., Drosou, V., Bakou, A., Theodoropoulos, P. A., Singh, P. B., Giannakourou, T., and Georgatos, S. D. (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J. Biol. Chem. 279, 25567–25573
7. Polioudaki, H., Kourmouli, N., Drosou, V., Bakou, A., Theodoropoulos, P. A., Singh, P. B., Giannakourou, T., and Georgatos, S. D. (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein I. EMBO Rep. 2, 920–925
8. Ye, Q., Callebaut, I., Pezhan, A., Courvalin, I. C., and Wongman, H. J. (1997) Domain-specific interactions of human HP1-type chromodomains proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983–14989
9. Ye, Q., and Wongman, H. J. (1994) Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J. Biol. Chem. 269, 11306–11311
10. Hoffmann, K., Dreger, C. K., Olins, A. L., Olins, D. E., Shultz, L. D., Lucke, B., Karl, H., Kaps, R., Müller, D., Vayá, A., Aznar, J., Ware, R. E., Soto, Cruz, N., Lindner, T. H., Herrmann, H., Reis, A., and Sperling, K. (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat. Genet. 31, 410–416
11. Zwerger, M., Herrmann, H., Gaines, P., Olins, A. L., and Olins, D. E. (2008) Granulocytic nuclear differentiation of lamin B receptor-deficient mouse EPRO cells. Exp. Hematol. 36, 977–987
12. Hoffmann, K., Sperling, K., Olins, A. L., and Olins, D. E. (2007) Granulocytic nucleus and lamin B receptor: avoiding the ovoid. Chromosoma 116, 227–235
13. Liokatis, S., Edlich, C., Soupsaka, K., Giannios, I., Panagiotidou, P., Tripelias, K., Sattler, M., Georgatos, S. D., and Politou, A. S. (2012) Solution structure and molecular interactions of lamin B receptor Tudor domain. J. Biol. Chem. 287, 1032–1042
14. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y., and Xu, R. M. (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMD2A. Science 312, 748–751
15. Botuyan, M. V., Lee, J., Ward, I. M., Kim, J. E., Thompson, J. R., Chen, L., and Mer, G. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BPI and Crb2 in DNA repair. Cell 127, 1361–1373
16. Wysocka, J., Swigut, T., Milne, T. A., Dou, Y., Zhang, X., Burlingame, A. L., Roeder, R. G., Brivanlou, A. H., and Allis, C. D. (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872
17. Lee, J., Thompson, J. R., Botuyan, M. V., and Mer, G. (2008) Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMD2A-tudor. Nat. Struct. Mol. Biol. 15, 109–111
18. Ma, Y., Cai, S., Lv, Q., Jiang, Q., Zhang, Q., Sodmergen, Zhi, Z., and Zhang, C. (2007) Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin β. J. Cell Sci. 120, 520–530
19. Haraguchi, T., Kosjin, T., Hayakawa, T., Kaneda, T., Tsutsumi, C., Imamoto, N., Akazawa, C., Sukegawa, J., Yoneda, Y., and Hiraoka, Y. (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J. Cell Sci. 113, 779–794
20. Tolhuis, B., Palstra, R. I., Splinter, E., Grosveld, F., and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465
21. Hizume, K., Yoshimura, S. H., and Takeyasu, K. (2005) Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry 44, 12978–12989
22. Hayes, J. J., Clark, D. J., and Wolfe, A. P. (1991) Histone contributions to the structure of DNA in the nucleosome. Proc. Natl. Acad. Sci. U.S.A. 88, 6829–6833
23. Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N., and Nozaki, N. (2008) The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct. Func. 33, 61–73
24. Hirano, Y., Ishii, K., Kumeta, M., Furukawa, K., Takeyasu, K., and Horigome, T. (2009) Proteomic and targeted analytical identification of BXDC1 and EBNA1BP2 as dynamic scaffold proteins in the nucleolus. FEBS J. 277, 155–166
25. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., and Webb, W. W. (1976) Mobility measurement by analysis of fluorescence photo bleaching recovery kinetics. Biophys. J. 16, 1055–1069
26. Sprague, B. L., Pego, R. L., Stavreva, D. A., and McNally, J. G. (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495
27. Ohnishi, R. L., Morikawa, K., Takeshita, S. L., Kim, J., Ohta, T., Wada, C., and Takeyasu, K. (2007) Transcription-coupled nucleoid architecture in bacteria. Genes Cells 12, 1141–1152
28. Tsuchiya, M., Ogawa, H., Suzuki, T., Sugiyama, N., Haraguchi, T., and Hiraoka, Y. (2011) Exportin 4 interacts with Sox9 through the HMGB box and inhibits the DNA binding of Sox9. PLoS One 6, e25694
29. Bock, L., Kudithipudi, S., Tamas, R., Kungulovski, G., Dhayalan, A., and Jehs, A. (2011) Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem. 12, 48
30. Ostlund, C., Sullivan, T., Stewart, C. L., and Worman, H. J. (2006) Dependence of diffusional mobility of integral inner nuclear membrane proteins on A-type lamins. Biochemistry 45, 1374–1382
31. Hirano, Y., Takahashi, H., Kumeta, M., Hizume, K., Hira, Y., Otsuka, S., Yoshimura, S. H., and Takeyasu, K. (2008) Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch. 456, 139–153
32. Moir, R. D., Yoon, M., Khun, S., and Goldman, R. D. (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168
33. Hizume, K., Araki, S., Yoshikawa, K., and Takeyasu, K. (2007) Topoisomerase II, scaffold component, promotes chromatin compaction in vitro in a linker-histone H1-dependent manner. Nucleic Acids Res. 35, 2787–2799
36. Pesavento, J. J., Yang, H., Kelleher, N. L., and Mizzen, C. A. (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol. Cell. Biol. 28, 468–486
37. Greeson, N. T., Sengupta, R., Arida, A. R., Jenuwein, T., and Sanders, S. L. (2008) Dimethyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J. Biol. Chem. 283, 33168–33174
38. Pei, H., Zhang, L., Luo, K., Qin, Y., Chesi, M., Fei, F., Bergsagel, P. L., Wang, L., You, Z., and Lou, Z. (2011) MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124–128
39. Duband-Goulet, I., and Courvalin, J. C. (2000) Inner nuclear membrane protein LBR preferentially interacts with DNA secondary structures and nucleosomal linker. Biochemistry 39, 6483–6488
40. Ye, Q., and Worman, H. J. (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271, 14653–14656
41. Guarda, A., Bolognese, F., Bonapace, I. M., and Badaracco, G. (2009) Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp. Cell Res. 315, 1895–1903
42. Worman, H. J., Yuan, J., Blobel, G., and Georgatos, S. D. (1988) A lamin B receptor in the nuclear envelope. Proc. Natl. Acad. Sci. U.S.A. 85, 8531–8534