Higgs physics at a muon collider

Luca Giambastiani,
on behalf of the International Muon Collider Collaboration

Higgs 2022
7-11 Nov. 2022
Why a muon collider

	Advantages	Disadvantages
e^+e^- colliders	All the center of mass energy available in the hard collision, no pile-up	Large synchrotron radiation losses
Hadron colliders	Low synchrotron radiation losses	Unknown fraction of E_{CM} available to colliding partons, pile-up from QCD events
Why a muon collider

	Advantages	Disadvantages
e²e⁻ colliders	All the center of mass energy available in the hard collision, no pile-up	Large synchrotron radiation losses
Hadron colliders	Low synchrotron radiation losses	Unknown fraction of E_{CM} available to colliding partons, pile-up from QCD events

Muon collider has advantages from both e²e⁻ and hadron colliders:
- Clean collisions as in e²e⁻ colliders and energy frontier as in hadron colliders

Problem: Beam Induced Background (BIB)
- It is produced by the decay in flight of muons in circulating beams, and subsequent interactions
Features of a muon collider

- **Highest energy efficiency above \(\sim 2\text{TeV} \)**

- **Inclusive Higgs cross section over total cross section**

- **Produced events increase with \(E_{\text{CM}} \) (increase in luminosity considered)**

- **Luminosity increasing as \(E_{\text{CM}}^2 \)**
 - 5 years, 1 experiment

Table

\(\sqrt{s} \) (TeV)	\(\int \mathcal{L} dt \) (ab\(^{-1}\))
3	1
10	10
14	20
Features of a muon collider

- Highest energy efficiency above ~2 TeV
- Inclusive Higgs cross section over total cross section
- Luminosity increasing as E_{CM}^2
- 5 years, 1 experiment

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	1 ab$^{-1}$
10 TeV	10 ab$^{-1}$
14 TeV	20 ab$^{-1}$
Features of a muon collider

- **BIB produced mainly by decays of muons in circulating bunches, and subsequent interactions of decay products with surrounding material**
 - $O(10^8)$ BIB particles enter the detector at each bunch crossing
- **Mitigated by the Machine Detector Interface (MDI): two nozzles made of tungsten and borated polyethylene**
- **Most BIB particles are out of time with respect to bunch crossing**
- **Current MDI optimized for 1.5 TeV muon collider**
 - Preliminary studies on 3 TeV BIB shows that it’s similar to the 1.5 TeV one

$E_{beam} = 750$ GeV, 2×10^{12} μ/bunch

F. Collamati et al., 2021 JINST 15 P11009
Higgs at a muon collider

- At multi-TeV energy, Higgs mainly produced by Vector Boson Fusion (VBF)
- ~500k events expected with 1 ab$^{-1}$ @ 3 TeV
- Higgs physics studies at 3 TeV presented in this talk
 - 1.5 TeV BIB included

The muons Smasher’s guide, Rept.Prog.Phys. 85 (2022) 8, 084201
3 TeV Muon Collider Detector

- High hit multiplicity in tracking system due to BIB particles -> combinatorial problems
- Diffuse BIB background in calorimeters
- High hit multiplicity in the forward region of muon detectors
- Nozzles are fundamental to mitigate BIB, but also reduce acceptance

https://confluence.infn.it/display/muoncollider/Muon+Collider+Detector
Physics object reconstruction

- Particles reconstructed from tracking and calorimeter informations, clustered with $k_T(\Delta R=0.5)$ to make jets
 - Requirement on number of hits in each track applied in track selections
 - Large threshold (2 MeV) applied to calorimeter hits
 - Timing cuts on tracking and calo hits
 - Further suppress fake jets with a requirement on the number of tracks ($N_{trk} > 0$)
Physics object reconstruction

Photons

Muons

Muon Collider

Muon reconstruction efficiency

b tagging efficiency
\[\sigma(\mu^+\mu^-\rightarrow H\nu\nu) \times BR(H\rightarrow bb) \]

- Signal \(\mu\mu\rightarrow(H\rightarrow bb)X \) and background \(\mu\mu\rightarrow qqX \) \((q=b,c)\) generated with Whizard+Pythia8
 - Background mainly from \(Z\rightarrow bb \) and \(Z\rightarrow cc \)
- Two jets with a Secondary Vertex tag are required. Background from light jets considered negligible
- \(S=59\,500, B=65\,400 \) in \(1 \, ab^{-1} \)
- Signal yield from template fit to pseudo-experiments using invariant mass
- Statistical relative uncertainty on \(\sigma \times BR = 0.75\% \)

http://hdl.handle.net/20.500.12608/3238
$\sigma(\mu^+\mu^-\rightarrow H\nu\nu) \times \text{BR}(H\rightarrow WW^*)$

- 1 Muon + 2 jets final state
- Signal and backgrounds (with and without Higgs) simulated with Whizard+Pythia8
- Cuts on two BDTs to select signal vs backgrounds
- $S=2\,430, B=2\,600$ in $1\,\text{ab}^{-1}$

$$\frac{\Delta \sigma}{\sigma} = \sqrt{S + B} \quad \frac{S}{S} \quad 2.9\%$$

Event	Expected Events
$\mu^+\mu^- \rightarrow H\nu\nu \rightarrow WW^*\nu\nu \rightarrow q\bar{q}\mu\mu\nu\nu$	2430 ± 150
$\mu^+\mu^- \rightarrow q\bar{q}\mu$	2600 ± 1300
$\mu^+\mu^- \rightarrow q\bar{q}l$	$< 100 \text{ C.L.} = 68\%$
$\mu^+\mu^- \rightarrow q\bar{q}\nu\nu$	$< 100 \text{ C.L.} = 68\%$
$\mu^+\mu^- \rightarrow H \rightarrow WW^* \rightarrow qq\bar{q}$	$< 10 \text{ C.L.} = 68\%$
$\mu^+\mu^- \rightarrow H \rightarrow bb$	$< 150 \text{ C.L.} = 68\%$
$\mu^+\mu^- \rightarrow H \rightarrow \tau\tau$	$< 4 \text{ C.L.} = 68\%$

http://hdl.handle.net/20.500.12608/28559
\[\sigma(\mu^+\mu^-\rightarrow H\nu\nu) \times BR(H\rightarrow ZZ^*) \]

- 2 muons + 2 jets final state
- Signal generated with MG5+Pythia8, while inclusive \(\mu^+\mu^- \rightarrow \nu\nu \)
 \(\mu^+\mu^- jj \) background (excluding signal) is generated with Whizard+Pythia8
- BDT used to select signal vs background
- Resolution obtained with cut-based approach and with fit of BDTs, giving the same result

\[\frac{\Delta \sigma}{\sigma} = 17\% \]
\(\sigma(\mu^+\mu^-\rightarrow H\nu\nu)\times BR(H\rightarrow\mu^+\mu^-) \)

- Signal and backgrounds generated with MG5+Pythia8
- BIB not used (low impact in muon chambers)
- \(10^\circ < \theta_\mu < 170^\circ, p_T^{\mu} > 5\) GeV: reject hits from BIB
- Selection cuts on two BDTs trained to discriminate signal from the backgrounds
- Uncertainty on signal yield obtained from unbinned maximum likelihood fit to dimuon invariant mass

Process	Expected events with 1 ab\(^{-1}\)
\([4l]\mu^+\mu^- \rightarrow H\nu\nu\bar{\nu}_\mu, H \rightarrow \mu^+\mu^-\)	24.2
\([4l]\mu^+\mu^- \rightarrow H\mu^+\mu^-\), H \rightarrow \mu^+\mu^-\)	1.6
\(\mu^+\mu^- \rightarrow \mu^+\mu^-\nu\nu_\mu\)	636.5
\(\mu^+\mu^- \rightarrow \mu^+\mu^-\mu^+\mu^-\)	476.4
\([4l]t\bar{t}\mu^+\mu^- \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b}, W^{\pm} \rightarrow \mu^\pm\nu_\mu(\bar{\nu}_\mu)\)	1.1

\(\sigma = 38\%\)

https://doi.org/10.22323/1.398.0579
\[\sigma(\mu^+\mu^- \rightarrow H\nu\nu) \times \text{BR}(H \rightarrow \gamma\gamma) \]

- Signal and backgrounds generated with MG5+Pythia8
- **Preliminary result:** No BIB at the moment and some minor bkg still missing
- Used a BDT to perform signal vs. background separation
- Cut on BDT output to maximize \(S/\sqrt{S+B} \)

\[\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \rightarrow 8.9\% \]

Process	\(\sigma \) (fb)	Events
\(\mu\mu \rightarrow H\nu\nu, H \rightarrow \gamma\gamma \)	0.9025 ± 0.0026	707
\(\mu\mu \rightarrow \nu\nu\gamma \)	81.98 ± 0.27	30168
\(\mu\mu \rightarrow l\gamma\gamma \)	4.419 ± 0.016	2678
\(\mu\mu \rightarrow l\gamma \)	159.0 ± 0.6	4738
\(\mu\mu \rightarrow \gamma\gamma \)	60.15 ± 0.03	59933

\(\bar{\nu}_S = 3\text{TeV}, 1\text{ab}^{-1} \)

\(m_{\tau\tau} \) (GeV)
\[\sigma(\mu^+\mu^- \rightarrow HH\nu\bar{\nu}) \times \text{BR}(H\rightarrow bb)^2 \]

- Signal and backgrounds (H+bb and 4b) generated with Whizard+Pythia8
- Simulation performed without BIB but b-tagging efficiency in the presence of BIB is used to weight events
- Selection requirements:
 - 4 jets, at least 3 of them with \(p_T > 20 \text{ GeV} \), and at least 2 must contain a secondary vertex
 - Jet paired to minimize
 \[M = \sqrt{(m_{ij} - m_H)^2 + (m_{kl} - m_H)^2} \]
 - \(S = 50, B = 432 \) in 1 ab\(^{-1}\)
- BDT trained for sig-vs-bkg discrimination, fit on BDT output to find resolution
 - \(\Delta\sigma/\sigma \) of 30% is found

Signal	Cross section [fb]
\(\mu^+\mu^- \rightarrow HH\nu\bar{\nu} \)	0.8
Physics background	
\(\mu^+\mu^- \rightarrow bbb\bar{b}\nu\bar{\nu} \)	3.3
\(\mu^+\mu^- \rightarrow bbH\nu\bar{\nu} \) (signal included)	1.7

http://hdl.handle.net/20.500.12608/22861
● Generation (WHIZARD) and simulation of HH from trilinear coupling only
● Two MLPs are used: HH vs 4b and HH from trilinear only vs total HH
● Simulated HH events with different λ_3 hypothesis, resolution on λ_3 obtained from a likelihood scan
 ○ Stat. uncertainty of $\sim20\%$ @ 68% CL is found

http://hdl.handle.net/20.500.12608/22861
Comparison with CLIC

Measurement	Statistical precision
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow b\bar{b})\)	0.4% 0.3%
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow \mu^+\mu^-)\)	38% 25%
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow \gamma\gamma)\)	15% 10%*
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow WW^*)\)	1.0% 0.7%*
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow ZZ^*)\)	5.6% 3.9%*

Measurement	Statistical precision
\(\sigma(ZH) \times BR(H \rightarrow b\bar{b})\)	0.86%
\(\sigma(ZH) \times BR(H \rightarrow WW^*)\)	5.1%
\(\sigma(Hu\bar{u}) \times BR(H \rightarrow b\bar{b})\)	1.9%
\(\Delta[\sigma(HHu\bar{u}\bar{u})] / \sigma(HHu\bar{u}\bar{u})\)	44% at 1.4 TeV, 20% at 3 TeV

\[\Delta \lambda / \lambda = 54\% \text{ at } \sqrt{s} = 1.4 \text{ TeV}, \ 29\% \text{ at } \sqrt{s} = 3 \text{ TeV}\]

Differences:
H->bb from combined measurement of hadronic Higgs decays
H->ZZ* with llqq final state, and \(l = \{e, \mu, \tau\}\)
H->WW* with qqqq and llqq final state, and \(l = \{e, \mu\}\)

Muon Collider
1 ab⁻¹ @ 3 TeV
H->WW 2.9%
H->ZZ 17%
H->bb 0.75%
H->μμ 38%
H->γγ 8.9%
HH->4b 30%
\(\lambda_3\) 20%

Higgs physics at the CLIC
electron–positron linear collider,
Eur. Phys. J. C (2017) 77:475
Comparison with FCC-ee

√s (GeV)	240	365		
Luminosity (ab⁻¹)	5	1.5		
\(\delta(\sigma \text{BR})/\sigma \text{BR} (%)\)	HZ	\(\nu\bar{\nu}\) H	HZ	\(\nu\bar{\nu}\) H
H → b\bar{b}	±0.3	±3.1	±0.5	±0.9
H → W⁺W⁻	±1.2	±2.6	±3.0	
H → ZZ	±4.4	±12	±10	
H → γγ	±9.0	±18	±22	
H → μ⁺μ⁻	±19	±40		

Sensitivity on trilinear coupling \(\lambda\): 42% in global (Higgs+EW) fit, 12% when alone

Future Circular Collider Study, Volume 2 - The Lepton Collider (FCC-ee)
Conclusions

● The Muon Collider is very different from electron-positron and hadron colliders, with new very interesting features
● Muons in beams decay and produce BIB. Full simulation is essential to evaluate the impact of the BIB on physics measurements and understand how to deal with it
● A huge effort is on-going to design the MDI, the detector and the reconstruction algorithms
● This talk demonstrates that Higgs physics at Muon Collider is possible, by using a detailed simulation of the experiment
Comparison with fast sim studies

	Full sim	Fast sim
H->WW	2.9%	1.7%
H->ZZ	17%	11%
H->bb	0.75%	0.76%
H->μμ	38%	40%
H->γγ	8.9%	6.1%
HH->4b	30%	
λ_3	20%	λ_3 (95% CL) 25%

Differences:
- H->bb from combined measurement of hadronic Higgs decays
- H->ZZ* with llqq final state, and $l = \{e, \mu, \tau\}$
- H->WW* with qqqq and llqq final state, and $l = \{e, \mu\}$

- *High precision Higgs from high energy muon colliders, JHEP 08 (2022), 185*
- *Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys.Rev.D 103 (2021) 1, 013002*
BIB in muon chambers

First layer endcap

MuColl_v1

Only BIB $\sqrt{s} = 1.5$ TeV μ^\pm beams

- not in cluster
- in cluster

$\theta = 8^\circ$
$\theta = 10^\circ$
Effects of nozzles on BIB

Figure 11. Comparison of number and energy spectra of the BIB: with nozzles (Y) in solid red line and without nozzles (N) in dotted black line.
