The Transplantation of Human Pluripotent Stem Cells is Safe: A Personal Experience during the Past 5 Years (I)

Taihua Wang1,2,3#, Xiaohui Cui1,2#, Zhenzhen Yang1,2#, Linyu Cui1,2#, Rongrong Li1,2#, Xinyi Shi3#, Xiaoxia Jiang1,2, Shufeng Du1,2, Mengqian Wang1,2, Guoke Yang1,2, Ying Meng1,2, and Gang Zhang1,2,3*

1Interventional Hospital of Shandong Red Cross Society, Jinan, Shandong Province, China.
2Shandong New Medicine Research Institute of Integrated Traditional and Western Medicine Co., Ltd, Jinan, Shandong Province, China.
3Guangdong Cell Biotechnology Co., Ltd, Libin Road, Songshan Lake, Dongguan, Guangdong Province, China.
#These authors contributed equally to this work.

ABSTRACT

The greatest dilemma of human pluripotent stem cell transplantation therapy clinically is the potential risk to form teratomas in the recipient's body. On the one hand, to date, no data can confirm this risk. On the other hand, no data can confirm the safety of human pluripotent stem cell transplantations, either. To break this dilemma, the correspondence author, G Z, decided to accept human pluripotent stem cell transplantations voluntarily. During the past five years, G Z accepted totally 77 times human stem cell transplantations with/without overexpressing different human genes, and the whole number of human stem cells was up to approximately 6.36 X 10^9. After medical examinations, the results demonstrated that G Z's health conditions were basically normal. Thus, our investigations preliminarily proved that intravenous transplantations of human pluripotent stem cells were safe so far, at least for this case.

*Correspondence:
Gang Zhang, Interventional Hospital of Shandong Red Cross Society, Jinan, Shandong Province, China, E-mail: sdblzhanggang@163.com; Tel.: +86-186-5319-7713;
Taihua Wang, Interventional Hospital of Shandong Red Cross Society, Jinan, Shandong Province, China, E-mail: ganxibaowantaihua@163.com.

Received: 10 November 2021; Accepted: 28 December 2021

Key words
dgHPSCs, Overexpression of Transgenes, Lentiviral Transduction, Safety.

Abbreviations
hADSCs: Human Adipose-derived Stem Cells; PSCs: Placental Stem Cells; dgHPSCs: Directly Generated Human Pluripotent Stem Cells; iPSCs: Induced Pluripotent Stem Cells.

Introduction
So far, no evidence can confirm the safety of human induced pluripotent stem cell (iPSC) transplantations. On the one hand, iPSCs have the similar pluripotencies to form all the tissues and cell types as embryonic stem cells (ESCs), which are demonstrated by the formations of “all-iPSC mice” [1-3] and human teratomas in vivo [4,5], which are the “gold standards” for the pluripotencies of mouse and human ESCs and iPSCs, respectively. Therefore, human iPSCs could provide great promise for human stem cell transplantation therapy. On the other hand, the teratoma formation of human iPSCs also evokes great concerns for its clinical application as a renewable source for regenerative medicine.

By scrutinizing the protocols of teratoma formation, we found that the prerequisite to form teratomas, regardless the injection sites, such as subcutaneous injection, intratesticular injection, and injection into the hind limb muscle of nude or SCID mice, etc., is to inject approximately 1 million iPSCs in very small volumes, such as 100µl or 60µl, respectively [1,4-6]. Based on these protocols, we can deduce that the crucial mechanisms for teratoma formation contain three key points. First of all, the injected iPSCs must be...
of large numbers in very small volumes, so that the iPSCs can be aggregated together and almost touch each other to form iPSC clusters. Secondly, the injected iPSCs are confined in the injection sites, and few of them can disperse into the neighbouring regions. Finally, the recipient mice are immunocompromised. These three conditions facilitate the formation of teratomas.

The major risk of human iPSC transplantations is the formation of teratomas. The aforementioned analyses suggest that if we can avoid the above three conditions, we might avoid the formation of teratomas in clinical human iPSC transplantation therapies. Therefore, we reasoned that if we resuspend appropriate number of human iPSCs in a large volume of saline solution, for example, 100 million iPSCs in 100ml volume, and then transplant them into the patient intravenously, we might avoid the formation of teratomas. Let us do a little math calculation to clarify this point of view. Compared with 1 million iPSCs in 100µl volume, 100 million iPSCs in 100ml volume is up to 10 fold dilution. Under this circumstance, the iPSCs are diluted sufficiently, and very few of them can aggregate together to form clusters. In addition, after intravenous transplantation, iPSCs will circulate along with the blood going to everywhere of the human body, and are further diluted by the blood greatly. Therefore, almost all of the transplanted iPSCs will exist in the patient as single cell. More importantly, the human recipients are with normal immune systems, and not immunocompromised. Therefore, we hypothesized that the above three reasons will ensure the transplanted human iPSCs to absolutely avoid the formation of teratomas.

Although the above analyses seem to be reasonable, it is only a hypothesis necessitated to be confirmed clinically. Previously, we directly generated human pluripotent stem cells (dgHPSCs) from human adipose-derived stem cells (hADSCs) without any genetic modifications [7]. These dgHPSCs showed similar pluripotencies with human iPSCs, such as positively expressing TRA-1-60 marker [7] and formation of embryoid body in vitro (Data not shown). To confirm the safety of human pluripotent stem cell transplantations clinically, one of the corresponding authors of this paper (G. Z) agreed voluntarily to accept human stem cell transplantations overexpressing various human genes (Table 1). The stem cells used in these clinical treatments were stored at our Stem Cell Bank. All these stem cells were isolated and proliferated with the written confirm consent of the participants.

Cell preparation

The isolation of lipoaspirate cells and the induction of dgHPSCs were exactly the same as described [7,8]. The cell lines used in this investigation were Line #1 (derived from Z. G., the correspondence author of this paper), Line #3, Line #4, Line #5, and Line #8 (Table 1), respectively, which were stored at our stem cell bank. Line #3 was derived from a woman volunteer, and all the others were from volunteered men.

Lentivirus vector (LV) construction, production and infection

Clinical level second generation of LVs carrying different human genes, including pWPI/p53WT, pWPI/SRY, pWPI/INSULIN (INS), pWPI/ERRγ, pWPI/p53WT-STAT, and pWPI/SIRT1, were constructed and stored in our lab as previously described [9-12]. All the LVs were produced, and infected into different human stem cell lines according to a previous report [13]. Each infection format was shown in details in Table 1.

Human stem cell transplantation

The intravenous transplantations of different human stem cells with/without overexpressing of different human genes were exactly the same as previously described [14-18]. The transplantation dates, cell types, and cell numbers were listed in Table 1.

Assessment of the effects of human stem cell transplantations

The medical examinations were performed by Jinan kingmed Center for Clinical Laboratory (Jinan, Shandong Province, China). The examinations included liver function, blood lipids, renal function, tumor markers, thyroid function, sex hormones, hepatitis B virus, hepatitis A virus, hepatitis C virus, syphilis, AIDS and diabetes. The detailed medical examination results were listed in Table 2.

Results

To investigate the safety of human pluripotent stem cell transplantations, during the past five years (from October 15 of
Table 1: dgHPSCs transplantations of G Z.

No.	Date	Cell types	Cell numbers	Auto/Allo
#1	15/10/2016	hADSCs	1.3 X 10^7	Auto
#2	21/10/2016	hADSCs	2.1 X 10^7	Auto
#3	02/11/2016	hADSCs	2.5 X 10^7	Auto
#4	17/01/2017	hADSCs	3.2 X 10^7	Auto
#5	26/02/2017	Line #1 dgHPSCs + 25ml p53WT	1.2 X 10^7	Auto
#6	26/02/2017	Line #1 dgHPSCs	2.0 X 10^7	Auto
#7	05/03/2017	Line #1 dgHPSCs	5.1 X 10^7	Auto
#8	12/03/2017	Line #1 dgHPSCs	2.8 X 10^7	Auto
#9	12/04/2017	Line #1 dgHPSCs	3.24 X 10^7	Auto
#10	19/05/2017	Line #1 dgHPSCs	1.2 X 10^8	Auto
#11	13/06/2017	Line #1 dgHPSCs	8.32 X 10^7	Auto
#12	24/07/2017	Line #1 dgHPSCs	1.8 X 10^8	Auto
#13	24/07/2017	Line #1 dgHPSCs	5.6 X 10^7	Auto
#14	04/08/2017	Line #1 dgHPSCs	1.42 X 10^8	Auto
#15	16/08/2017	Line #1 dgHPSCs + 12.5ml Sry	9.0 X 10^7	Auto
#16	04/09/2017	Line #1 dgHPSCs + 25ml Sry	5.85 X 10^7	Auto
#17	10/10/2017	Line #1 dgHPSCs	5.2 X 10^7	Auto
#18	01/11/2017	Line #1 dgHPSCs + 25ml ERRγ	9.36 X 10^7	Auto
#19	07/11/2017	Line #1 dgHPSCs + 25ml ERRγ	3.7 X 10^7	Auto
#20	13/11/2017	Line #1 dgHPSCs + 25ml ERRγ	4.41 X 10^7	Auto
#21	11/01/2018	Line #1 dgHPSCs + 25ml ERRγ	9.09 X 10^7	Auto
#22	16/01/2018	Line #1 dgHPSCs + 25ml ERRγ	1.23 X 10^7	Auto
#23	23/01/2018	Line #1 dgHPSCs + 25ml ERRγ	9.81 X 10^7	Auto
#24	29/01/2018	Line #1 dgHPSCs + 25ml ERRγ	1.17 X 10^8	Auto
#25	26/05/2018	Line #1 dgHPSCs	6.75 X 10^7	Auto
#26	31/05/2018	Line #1 dgHPSCs + 25ml ERRγ	4.5 X 10^7	Auto
#27	06/06/2018	Line #1 dgHPSCs + 50ml Sry	2.56 X 10^7	Auto
#28	12/06/2018	Line #1 dgHPSCs + 25ml ERRγ	5.85 X 10^7	Auto
#29	18/06/2018	Line #1 dgHPSCs + 50ml Sry	7.54 X 10^7	Auto
#30	24/06/2018	Line #1 dgHPSCs + 50ml Sry	7.38 X 10^7	Auto
#31	30/06/2018	Line #1 dgHPSCs + 50ml Sry	2.7 X 10^7	Auto
#32	06/07/2018	Line #1 dgHPSCs + 50ml Sry	6.57 X 10^7	Auto
#33	13/07/2018	hADSCs + 100ml Sry	2.13 X 10^7	Allo
#34	19/07/2018	Line #1 dgHPSCs + 25ml Sry	1.36 X 10^7	Auto
#35	24/07/2018	Line #1 dgHPSCs + 75ml Sry	7.65 X 10^7	Auto
#36	13/10/2018	Line #1 dgHPSCs + 50ml Sry	4.82 X 10^7	Auto
#37	17/10/2018	PSCs + 50ml Sry	1.3 X 10^7	Allo
#38	06/11/2018	Line #1 dgHPSCs + 50ml Sry	1.098 X 10^8	Auto
#39	09/11/2018	Line #1 dgHPSCs + 50ml Sry	1.053 X 10^8	Auto
#40	26/11/2018	Line #1 dgHPSCs + 75ml Sry	3.85 X 10^8	Auto
#41	26/11/2018	Line #1 dgHPSCs	1.35 X 10^8	Auto
#42	05/12/2018	Line #1 dgHPSCs + 50ml Sry	1.17 X 10^8	Auto
#43	19/12/2018	Line #1 dgHPSCs + 75ml Sry	1.67 X 10^8	Auto
#44	25/12/2018	Line #1 dgHPSCs + 75ml Sry	9.4 X 10^7	Auto
#45	29/12/2018	Line #1 dgHPSCs + 75ml Sry	9.72 X 10^7	Auto
#46	03/01/2019	Line #1 dgHPSCs + 75ml Sry	1.35 X 10^8	Auto
#47	08/01/2019	Line #1 dgHPSCs + 75ml Sry	3.6 X 10^7	Auto
#48	25/01/2019	Line #1 dgHPSCs	2.592 X 10^8	Auto
#49	08/03/2019	Line #1 dgHPSCs + 10ml p53WT-STAT	5.4 X 10^7	Auto
#50	17/03/2019	Line #1 dgHPSCs + 50ml Sry	1.02 X 10^8	Auto
#51	22/03/2019	Line #1 dgHPSCs + 25ml SIRT1	8.18 X 10^7	Auto
#52	29/03/2019	Line #1 dgHPSCs + 50ml Sry	1.18 X 10^8	Auto
#53	07/04/2019	Line #1 dgHPSCs + 30ml p53WT-STAT	1.22 X 10^8	Auto
#54	13/04/2019	Line #5 dgHPSCs + 50ml Sry	1.1 X 10^8	Allo
#55	20/04/2019	Line #5 dgHPSCs + 50ml Sry	9.72 X 10^7	Allo
#56	05/05/2019	Line #5 dgHPSCs + 50ml Sry	6.75 X 10^7	Allo
#57	19/05/2019	Line #5 dgHPSCs + 50ml Sry	8.4 X 10^7	Allo
Table 2: Medical examinations of G Z after human stem cells transplantations.

Date	Line	Treatment	Results	Reference ranges
25/05/2019	#58	dgHPSCs + 50ml Sry	9.0×10^7	Allo
08/06/2019	#59	dgHPSCs + 50ml Sry	7.9×10^7	Allo
15/06/2019	#60	dgHPSCs + 75ml Sry	6.15×10^7	Allo
23/06/2019	#61	dgHPSCs + 50ml Sry	1.02×10^8	Allo
30/06/2019	#62	dgHPSCs + 75ml Sry	9.7×10^7	Allo
07/07/2019	#63	dgHPSCs + 75ml Sry	1.404×10^8	Allo
14/07/2019	#64	dgHPSCs + 75ml Sry	1.85×10^8	Allo
05/10/2019	#65	dgHPSCs	9.8×10^7	Allo
08/06/2019	#66	dgHPSCs	6.3×10^7	Allo
05/11/2019	#67	dgHPSCs + 25ml p53WT	6.1×10^7	Allo
29/12/2019	#68	dgHPSCs + 75ml ERRγ	1.7×10^8	Allo
05/01/2020	#69	dgHPSCs + 50ml ERRγ	1.44×10^8	Allo
14/07/2019	#70	dgHPSCs	6.5×10^7	Allo
05/01/2020	#71	dgHPSCs + 30ml p53WT-STAT	1.31×10^8	Allo
24/05/2020	#72	dgHPSCs + 40ml p53WT-STAT	1.18×10^8	Allo
31/05/2020	#73	dgHPSCs + 40ml p53WT-STAT	8.4×10^7	Allo
07/06/2020	#74	dgHPSCs + 75ml ERRγ	7.07×10^7	Allo
10/01/2021	#75	dgHPSCs + 75ml Sry	1.3×10^8	Allo
17/01/2021	#76	dgHPSCs + 75ml Sry	1.1×10^8	Allo
22/01/2021	#77	dgHPSCs + 75ml INS + 75ml ERRγ	2.9×10^7	Allo

Total 6.36×10^9
THYROID FUNCTION			
Hypersensitive thyroid stimulating hormone (H-TSH)	Chemiluminescence	4.523 µIU/mL	0.350-5.100
Free triiodothyronine (FT3)	Chemiluminescence	4.82 pmol/L	2.76-6.45
Total thyroxine (TT4)	Chemiluminescence	85.44 nmol/L	64.36-186.64
Total triiodothyronine (TT3)	Chemiluminescence	1.44 nmol/L	0.89-2.49
Free thyroxine (FT4)	Chemiluminescence	13.53 pmol/L	6.44-18.02
Anti thyroid peroxidase antibody (TPOAb)	Electrochemiluminescence	≤34.00	
Antithyroid globulin antibody (TGAb)	Electrochemiluminescence	182.60 IU/mL	0.00-115.00

SEX HORMONES			
Follicle stimulating hormone (FSH)	Chemiluminescence	8.10 mIU/mL	0.95-11.95
Luteinizing hormone (LH)	Chemiluminescence	2.04 mIU/mL	0.57-12.07
Estradiol (E2)	Chemiluminescence	24.00 pg/mL	11.00-44.00
progesterone (P)	Chemiluminescence	0.30 ng/mL	0.00-0.30
testosterone (T)	Chemiluminescence	14.15 nmol/L	4.94-32.01
Pituitary prolactin (PRL)	Chemiluminescence	4.19 ng/mL	3.46-19.40

HORMONES			
Follicle stimulating hormone (FSH)	Chemiluminescence	8.10 mIU/mL	0.95-11.95
Luteinizing hormone (LH)	Chemiluminescence	2.04 mIU/mL	0.57-12.07
Estradiol (E2)	Chemiluminescence	24.00 pg/mL	11.00-44.00
progesterone (P)	Chemiluminescence	0.30 ng/mL	0.00-0.30
testosterone (T)	Chemiluminescence	14.15 nmol/L	4.94-32.01
Pituitary prolactin (PRL)	Chemiluminescence	4.19 ng/mL	3.46-19.40

HEPATITIS B VIRUS		
Hepatitis B virus surface antigen (HBsAg)	ELISA	Negative (-)
Hepatitis B virus surface antibody (HBsAb)	ELISA	Positive (+)
Hepatitis B virus E antigen (HBeAg)	ELISA	Negative (-)
Hepatitis B virus E antibody (HBeAb)	ELISA	Negative (-)
Hepatitis B virus core antibody (HBcAb)	ELISA	Negative (-)

HEPATITIS A VIRUS		
Hepatitis A virus antibody IgG (HAV-IgG)	ELISA	Positive (+)
Hepatitis A virus antibody IgM (HAV-IgM)	ELISA	Negative (-)

HEPATITIS C VIRUS		
Hepatitis C virus antibody IgG (HCV-IgG)	ELISA	Negative (-)
Hepatitis C virus antibody IgM (HCV-IgM)	ELISA	Negative (-)

SYMPHISIS SEROLOGICAL TEST+ SYMPHISIS ANTIBODY TEST		
Characterization of Treponema pallidum specific antibody (TPPA)	Agglutination reaction	Negative (-)
Syphilis toluidine red unheated serum anti-stress test (TRUST)	Agglutination reaction	Negative (-)

AIDS		
Preliminary screening test of human immunodeficiency virus antibody (Anti-HIV)	Enzyme-linked immunosorbent assay (ELISA)	Negative (-)

DIABETES			
Fasting insulin (F-INS)	Electrochemiluminescence	7.21 µU/mL	2.60-24.90
Fasting C-peptide (F-C-P)	Electrochemiluminescence	1.76 ng/mL	1.10-4.40
Glycosylated hemoglobin (HBA1C)	High performance liquid chromatography (HPLC)	5.2%	4.3-6.1

Table 3: Comparison of health conditions before (Bef.) and after (Aft.) human stem cell transplantations.

Examinations	13/05/2015 (Bef.)	21/06/2017 (Aft.)	11/10/2021 (Aft.)
Anti-HIV	Negative	Negative	Negative
Syphilis serology	Negative	Negative	Negative
HBsAg	Negative	Negative	Negative
Anti-HCV	Negative	Negative	Negative
ALT (GPT)	24 U/L	20 U/L	19 U/L
Abdomen Ultrasound	Fatty liver	Mild fatty liver	N/A

2016 to January 22 of 2021), one of the correspondence authors (G Z) of this paper, transplanted totally 77 times of human stem cells, and the total number of the stem cells was approximately 6.36 X \(10^9\) (Table 1). Among those transplanted stem cells, four times are hADSCs from G Z himself (Auto), two times are PSCs (Allo), and the rest 71 times are dgHPSCs, either autologous (Auto) or allogenic (Allo) stem cells, respectively (Table 1). In addition, seven times of the stem cells were overexpressing human tumor suppressor p53WT [19] and p53WT-STAT (the protein secreting signal and plasma membrane transduction domain TAT were engineered into p53WT gene sequence at the N-terminal) [20] genes, 36 times were overexpressing human SRY (sex-determining region in Y chromosome, also called testis-determining factor, TDF, which can initiate male development in humans) gene [21], 12 times were overexpressing human ERR\(\gamma\) (estrogen-related receptor \(\gamma\), which is a master regulator of \(\beta\) cell maturation in vivo) gene [22], One time was overexpressing human ERR\(\gamma\) and INS genes, and One time was overexpressing...
From 2016 on, we invented an efficient protocol to directly induce pluripotent stem cells intravenously with overexpressing various human genes. These data laid very important foundations for the application of large scale human pluripotent stem cell-gene transplantation therapies in the foreseeable future.

Five years later, on October 11 of 2021, G Z took detailed health examinations. The medical examinations were performed by Jinan Kingmed Center for Clinical Laboratory. The examination results were listed in Table 2, which included liver function, blood lipids, renal function, tumor markers, thyroid function, sex hormones, hepatitis B virus, hepatitis A virus, hepatitis C virus, syphilis, AIDS and diabetes. The medical examination results preliminarily proved the following conclusions. First of all, G Z’s health conditions are basically normal, except the triglyceride (TG), high density lipoprotein cholesterol (HDL-CH), anti-thyroid peroxidase antibody (TPOAb) and antithyroid globulin antibody (TGAAb) are higher than the reference ranges (Table 2). In addition, G Z’s tumor markers are all within the normal ranges, which demonstrated that human pluripotent stem cell transplantations could not induce the formation of tumors and thus are safe so far, at least for the case of G Z (Table 2). Most importantly, G Z’s preliminary screening test of human immunodeficiency virus antibody (Anti-HIV) is negative (Table 2), which indicated that the second generation lentiviral vectors are an effective and safe transgene vehicle in human stem cell-gene transplantation therapy clinically.

Previously, G Z took two times of Entry-Exit Inspection and Quarantine in the People’s Republic of China at May 13 of 2015 (Qianlingshan Road, Guiyang City, Guizhou Province, P. R. C.) and June 21 of 2017 (No. 9 Jianshe Road, Dongguan, Guangdong Province, P. R. C.), respectively (Table 3). The comparison of health conditions before and after human stem cell transplantations showed that, after human stem cell transplantations, G Z’s alanine aminotransferase (ALT/GPT) levels were decreased from 24 U/L to 20 U/L and 19 U/L, respectively (Table 1, 2 and 3). Furthermore, via abdomen ultrasound examination, the results showed that G Z’s liver was significantly ameliorated, from fatty liver to mild fatty liver (Table 3). Therefore, our data revealed that our strategy and paradigm of intravenous human stem cell transplantations were not only safe but also beneficial to improve human health conditions.

Discussion

Although the teratoma formation of the transplantation of human pluripotent stem cells (including hiPSCs, hESCs and dgHPSCs) is the greatest concern for their clinical applications as very promising renewable sources for regenerative medicine, G Z’s own dgHPSCs transplantation experience preliminarily suggests that human pluripotent stem cell transplantation therapy is safe. Previously, we envisaged that the tumorigenicity of human pluripotent stem cell transplantations might be avoided and analysed theoretically in a “Mouse Clone Model” [24]. To put the theory into practice, from 2016 on, we invented an efficient protocol to directly induce hADSCs into human pluripotent-like stem cells without any genetic modifications [7,8], therefore removed the potential risks of tumour formation caused by the transgenes, particularly the oncogene c-Myc [4,6]. These human pluripotent-like stem cells manifested similar pluripotencies with human ESCs and iPSCs, such as positively expression of pluripotency marker TRA-1-60 and formation of embryoid body in vitro (Data not shown), and were coined as directly-generated human pluripotent stem cells (dgHPSCs) [7,25].

After large amount transplantations of human stem cells (77 times separately, and the total numbers are up to about 6.36 billion) and relatively long time duration (about five years), the medical examinations of the recipient (G Z) showed that his health conditions are basically normal (Table 2). Among the transplanted human stem cells, the majority was dgHPSCs (71 times in total, Auto and/or Allo, Table 1), which revealed similar pluripotencies with human iPSCs [4, 25]. These data vividly demonstrated the safety of intravenous transplantation strategy of human pluripotent stem cells clinically. In addition, 57 times of the transplanted human stem cells were with transgenes via lentiviral vector transduction, which was derived and engineered from human immunodeficiency virus (HIV) [9]. Yet, five years after the transplantations, G Z’s Anti-HIV test result was negative. This data strongly suggested that the second generation lentiviral vectors could be a safe tool for clinical human gene therapy (Table 1 and 2). More importantly, the comparison of G Z’s ALT (GPT) and abdomen ultrasound examinations before and after human stem cell transplantations showed that G Z’s ALT (GPT) values decreased and his live became better from fatty liver to mild fatty liver (Table 3). Altogether, our data demonstrated that human pluripotent stem cell-gene therapies are not only safe but also beneficial to human health.

Previously, we reported that transplantations of dgHPSCs overexpressing human ERRγ and/or INS genes could significantly decrease the daily dosages of insulin in type 2 diabetes patients, and even further completely cure the disease by sufficient serial transplantations. Furthermore, the diabetic complication symptoms were gradually improved and repaired effectively, and the patient’s physical and mental conditions were ameliorated greatly [7, 14-18]. (G Z started his own human stem cell-gene transplantation trials much earlier than the treatments of these type 2 diabetics). Taken together, these data preliminarily proved that dgHPSC transplantations overexpressing proper human genes were not only safe but also very promising in curing different human diseases. To our knowledge, this is the first report for large amount transplantations of human pluripotent stem cells intravenously with overexpressing various human genes transduced by lentiviral vectors. These data laid very important foundations for the application of large scale human pluripotent stem cell-gene transplantation therapies in the foreseeable future.

Conclusions

Based on our preliminary data, we could make the following conclusions:

1. Intravenous human pluripotent stem cell (such as dgHPSCs)
transplantations are safe.
2. The second generation lentiviral vectors are safe tools for transducing human genes clinically.
3. The transplantations of dgHPSCs are beneficial to human health, and combined with overexpressing of proper human genes, such as ERRγ and INS, could effective treat and even cure some human diseases, for example, human type 2 diabetes.

Availability of supporting data
The datasets generated and/or analysed during the current study are not publicly available due to the protection of the confidential information of the participated patient but are available from the corresponding author on reasonable request.

Authors Contributions
G Z instructed and supervised the whole experimental work. T W instructed and supervised the whole clinical work. X C and S D performed the vector construction. L C and M W charged the lentiviral production and transduction. Z Y did the stem cell culture. R L, X S, X J, G Y and Y M worked on the clinical treatments of the cells. All the authors discussed, read and approved the final manuscripts.

Acknowledgement
The authors wish to thank the nurses in our hospital for their help and caring of the patients during the clinical treatments.

References
1. Zhao X, Li W, Lv Z, et al. iPSCs produce viable mice through tetraploid complementation. Nature. 2009; 461: 86-90.
2. Kang L, Wang J, Zhang Y, et al. iPSCs support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009; 5: 135-138.
3. Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009; 461: 91-94.
4. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318: 1917-1920.
5. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010; 28: 1568-1570.
6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-676.
7. Wang T, Wang X, Zhang B, et al. Transplantation of human pluripotent stem cells overexpressing ERRγ can efficiently improve the symptoms of type 2 diabetes patient. Adv Tissue Eng Regen Med Open Access. 2018; 4: 457-462.
8. Zúk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13: 4279-4295.
9. Zhang G, Tandon A. Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site. Sci Rep. 2012; 2: 1-8.
10. Zhang G, Tandon A. Combinatorial Strategy: A highly efficient method for cloning different vectors with various clone sites. American Journal of Biomedical Research. 2013; 14: 112-119.
11. Zhang G. A new overview on the old topic: The theoretical analysis of Combinatorial Strategy for DNA recombination. American Journal of Biomedical Research. 2013; 1: 108-111.
12. Zhang G, Zhang Y. On the All or Half law of recombinant DNA. American Journal of Biomedical Research. 2016; 4: 1-4.
13. Zhang G, Wang T. Efficient lentiviral transduction of different human and mouse cells. Int J Bioprocess Biotech: IJBBT-104. 2018; 1: 1-11.
14. Wang T, Wang X, Zhang B, et al. Transplantation of human pluripotent stem cells overexpressing ERRγ can efficiently improve the symptoms of type 2 diabetes patient. Adv Tissue Eng Regen Med Open Access. 2018; 4: 457-462.
15. Wang T, Wang X, Zhang B, et al. Transplantation of Human dgHPSCs Overexpressing Insulin and ERRγ can Efficiently Decrease the Glucose and HbA1c levels, Increase the Secretion of C-peptide and Repair the Complications of Coronary Heart Disease in T2D Patient (Case #1-A). Stem Cells Regen Med. 2018; 2: 1-9.
16. Wang T, Chen X, Cui X, et al. Transplantation of human pluripotent stem cells over expressing insulin/ERRγ can efficiently decrease the HbA1c levels of type 2 diabetes patient (Case #2-A). International Journal of Current Research. 2018; 10: 74690-74696.
17. Wang T, Cui X, Yang Z, et al. Transplantation of Human dgHPSCs Over-expressing Human Insulin/ERRγ Genes Can Not Only Decrease the Glucose Levels but Also Decrease the Hypertension in T2D Patient (Case #1-B). Stem Cells Regen Med. 2019; 3: 1-5.
18. Wang T, Cui X, Yang Z, et al. The Cure of Human Type 2 Diabetes via Systematic Transplantations of dgHPSCs Overexpressing Human ERRγ and/or Insulin Genes (I). Stem Cells Regen Med. 2021; 5: 1-4.
19. Soussi T, K.G. Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007; 12: 303-312.
20. Jin JW, Fan X, del Cid-Pellitero E, et al. Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson’s disease models. Communications Biology. 2021; 4: 232.
21. Phillippe B, Hawkins JR, Sinclair AH, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;
23. Yoshihara E, Wei Z, Lin CL, et al. ERRg is required for the metabolic maturation of therapeutically functional glucose-responsive β Cells. Cell Metabolism. 2016; 23: 622-634.

24. Collins FS. The language of life: DNA and the revolution in personalized medicine. HarperCollins Publishers, New York, NY 10022. 2010; 217.

25. Zhang G, Zhang Y. “Mouse Clone Model” for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells. Stem Cell Research & Therapy. 2015; 6: 255.

26. Dowey SN, Huang X, Chou BK, et al. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 2012; 7: 2013-2021.