Observation of WWW Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 2 February 2022; accepted 23 June 2022; published 4 August 2022)

This Letter reports the observation of WWW production and a measurement of its cross section using 139 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWW production cross section is measured to be 820 ± 100 (stat) ± 80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of 511 ± 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy.

DOI: 10.1103/PhysRevLett.129.061803

Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions within the standard model (SM) via triple gauge couplings and quartic gauge couplings [1,2]. Any significant deviations from the SM predictions would provide evidence of new physics at a higher energy scale than is presently accessible [3–8]. Triboson final states are among the least-understood SM processes due to their small production cross sections. In particular, searches for the production of three W bosons (WWW) have been performed by both the ATLAS [9,10] and CMS [11,12] Collaborations. Using proton-proton (pp) collisions at a center-of-mass energy (\sqrt{s}) of 13 TeV delivered by the Large Hadron Collider (LHC) [13], the ATLAS Collaboration analyzed 80 fb$^{-1}$ of data and provided evidence for both WWW and WWZ/WZZ production [10], and the CMS Collaboration analyzed 137 fb$^{-1}$ of data and observed the combined production of three massive vector bosons (WWW, WWZ, WZZ, and ZZZ) [12].

This Letter reports the observation of WWW production and a measurement of its cross section using 139 fb$^{-1}$ of data at $\sqrt{s} = 13$ TeV [14] taken with the ATLAS detector. At leading order (LO) in QCD, WWW production can proceed via the radiation of each W boson from a fermion, via a W boson produced in association with an intermediate Z/γ^* or Higgs boson that decays via the WW^* intermediate state, or via a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Fig. 1. The analysis selection is sensitive to processes with both on-shell and off-shell W boson decays. For simplicity all these processes (including $WH \to WW^*$) are generically referred to as WWW throughout this Letter. Two decay channels, $WWW \to \ell^\pm \ell^\pm v qq$ and $WWW \to \ell^\pm \ell^\pm \ell^\pm v$ with $\ell = e$ or μ, are considered and are hereafter referred to as 2ℓ and 3ℓ, respectively. Events with electrons and muons produced through τ leptons are also included. The experimental signature of the 2ℓ channel consists of two same-sign charged leptons, missing transverse momentum, and two jets, while the signature of the 3ℓ channel consists of three charged leptons and missing transverse momentum.

The ATLAS detector [15] is a multipurpose particle physics detector with cylindrical geometry [16]. It consists of an inner tracker (ID) surrounded by a superconducting solenoid, sampling electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) with three toroidal superconducting magnets. A two-level trigger system is used to select events for storage. Events used in this analysis were selected online by single-electron or single-muon triggers [17–19]. An extensive software suite [20] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

The proton interaction vertex with the highest p_T^z sum of associated ID tracks is selected as the primary vertex. Electrons are reconstructed from energy deposits in the EM calorimeter associated with tracks found in the ID. Muons are reconstructed by combining tracks reconstructed in the ID with tracks or track segments found in the MS. Electrons (muons) must have $p_T > 20$ GeV and be reconstructed within $|\eta| < 2.47$ ($|\eta| < 2.5$), excluding electrons within...
1.37 < |\eta| < 1.52. To ensure that selected leptons originate from the primary vertex, their tracks are required to have |d_0/\sigma_{d_0}| < 5(3) for electrons (muons) and |z_0 \sin \theta| < 0.5 mm for both lepton flavors, where d_0 and \sigma_{d_0} are the transverse impact parameter and its uncertainty, and z_0 is the longitudinal impact parameter. Electrons are required to satisfy the “tight” likelihood-based identification criterion defined in Ref. [21], and muons must satisfy the “medium” cut-based identification criterion defined in Ref. [22]. To reject leptons that likely originate from light-hadron decays or heavy-flavor decays, leptons are required to pass a tight isolation requirement (“PLVTight”) [23], which takes into account the energy deposits and charged-particle tracks (including the lepton track) in a cone around the lepton direction. Electrons must also satisfy a charge identification criterion based on a boosted decision tree (BDT) discriminant [24] to reduce the contamination from electrons with misidentified electric charge.

Particle-flow jets are reconstructed from tracks in the ID and topological energy clusters in the calorimeter [25]. Jet candidates are required to have p_T > 30 GeV in the forward region (2.5 < |\eta| < 4.5) and p_T > 20 GeV in the central region (|\eta| < 2.5). To reduce the effect from additional pp collisions in the same or a nearby bunch crossing (pileup), jets with 20 GeV < p_T < 60 GeV and |\eta| < 2.5 are required to pass a “jet vertex tagger” requirement [26]. Jets containing b-flavored hadrons (“b jets”) are identified by a multivariate discriminant [27,28] combining track impact parameter values with information from secondary vertices reconstructed within the jet. A working point corresponding to an 85% efficiency for identifying b jets in t\bar{t} events is used. Procedures described in Ref. [10] that ensure the selected electron, muon, and jet candidates do not overlap are applied before the lepton “PLVTight” and |d_0/\sigma_{d_0}| requirements.

The missing transverse momentum, whose magnitude is denoted by E_T^{miss}, is calculated as the negative of the vector sum of the transverse momenta of all reconstructed objects associated with the primary vertex. To account for soft hadronic activity, a term including tracks associated with the primary vertex but not with any of the reconstructed objects is included in the calculation of E_T^{miss} [29].

To select candidates in the 2\ell signal regions (SRs), events are required to have exactly two leptons with the same electric charge, at least two central jets, and no identified b jets. Three final states based on the lepton flavors are considered, namely e^+e^-, e^+\mu^\pm, and \mu^+\mu^-\mu^\mp. The highest-p_T lepton must have p_T > 27 GeV and the dilepton invariant mass m_{\ell\ell} is required to be between 40 and 400 GeV. The two highest-p_T central jets are required to have m_{jj} < 160 GeV and |\Delta\eta_{jj}| < 1.5, where m_{jj} is the dijet invariant mass and \Delta\eta_{jj} is the pseudorapidity separation between the two jets. The m_{jj} and \Delta\eta_{jj} selection suppresses contributions from the W^\pm W^\pm vector-boson scattering process. In the case of the e^+e^- final state, the dilepton system is required to have m_{\ell\ell} < 80 GeV or m_{\ell\ell} > 100 GeV and an E_T^{miss} significance [30] requirement, S(E_T^{miss}) > 3, is applied to suppress contributions from the Z + jets process where the charge of one electron is misidentified. To select candidates in the 3\ell SR, events are required to have exactly three leptons including at least one with p_T > 27 GeV, no identified b jets, and no same-flavor opposite-sign (SFOS) lepton pairs. Events with e^+e^-\mu^\mp and \mu^+\mu^-e^\mp final states are considered. To suppress contributions from W + jets production in the 2\ell SRs and ZZ + jets production in the 3\ell SRs, events are removed if they contain additional electrons (muons) reconstructed with p_T > 7(4.5) GeV and |\eta| < 2.47(2.7) passing the loose [21] (22) identification requirement.

Monte Carlo (MC) simulated samples are used to model the signal WW\rightarrow WWWW process, as well as contributions from other physics processes with prompt leptons. Simulated events were processed through the full ATLAS detector simulation [31] based on GEANT4 [32]. The effects of pileup are included in the simulation.

Events with three on-shell W bosons were generated by SHERPA2.2.2 [33,34] with the NNPDF3.0NNLO parton distribution function (PDF) [35]. Events with an off-shell W boson through WH \rightarrow WW^* were generated using POWHEG BOXv2 [36] interfaced to PYTHIA8.235 [37] for parton showering [38] with the NNPDF2.3LO PDF and the AZNLO set of tuned parameters [39]. Both processes are included in the signal definition and were generated at next-to-leading-order (NLO) QCD accuracy and LO electroweak accuracy with all spin correlations taken into account in the vector-boson decays. The cross section for the process with on-shell (off-shell WH \rightarrow WW^*) W bosons is 209 \pm 17 fb (302 \pm 8 fb). The inclusive cross section is
$\sigma_{\text{pred}}(pp \to WWW) = 511 \pm 18$ fb. The cross sections and uncertainties used in this analysis are consistent with the latest calculations with NLO QCD and NLO electroweak corrections applied for the on-shell WW process [40] and with next-to-next-to-next-to-leading-order (NNNLO) QCD and NLO electroweak corrections applied for the $WH \to WWW$ process [41].

The dominant background originates from the $t\bar{t}lll +$ jets ($WZ +$ jets) process, and its contribution is estimated using simulated events generated with SHERPA2.2.2 using the NNPDF3.0NNLO PDF and a threshold of 4 GeV on the Z boson mass. The matrix element calculations for the WZ process were performed with up to one additional parton at NLO QCD accuracy and up to three additional partons at LO QCD accuracy. To ensure proper modeling of the WZ background, the MC predictions for $WZ + 0$ jets, $WZ + 1$ jet, and $WZ + \geq 2$ jets are multiplied by scale factors obtained during the fit to the data to be described later, which includes three WZ control regions (CR). These CRs are obtained by requiring exactly three leptons with one SFOS lepton pair, E_T^{miss} significance $S(E_T^{\text{miss}}) > 3$, no b jets identified, and a trilepton invariant mass $110 \text{ GeV} < m_{\ell\ell\ell} < 500 \text{ GeV}$.

The contribution from backgrounds with nonprompt leptons from hadron (including b-flavored and c-flavored hadrons) decays and jets misidentified as leptons is estimated using a data-driven method described in Ref. [42]. Lepton-like jets are defined by requiring the estimated using a data-driven method described in hadrons) decays and jets misidentified as leptons is neglectable. The electron charge misidentification rate is found to be negligible. The electron charge misidentification rate is measured using a tag-and-probe method applied to $Z \to e^+e^-$ events, where the two electrons have the same reconstructed charge [42]. The charge-flip background is estimated by applying the measured electron charge misidentification rates to $e^\pm e^\mp$, $e^\pm \mu^\mp$, and $e^\pm \mu^\mp$ data events that meet all signal region requirements except for the SFOS lepton pair veto requirement. This method is validated with events selected using the same set of signal region criteria as used in the $e^\pm e^\mp$ final state, except the dilepton mass must satisfy $80 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV}$ and the E_T^{miss} significance requirement $S(E_T^{\text{miss}}) > 3$ is removed.

Other SM processes with prompt leptons include ttW, $t\bar{t}Z$, $t\bar{t}Z_q$, $t\bar{t}H$, WWZ, WZZ, ZZZ, and $W^\pm W^\pm jj$ production. Their contributions are estimated using simulated events normalized to the integrated luminosity of the data sample and the cross sections provided by the event generators. The $t\bar{t}W$, $t\bar{t}Z$, and $t\bar{t}Z_q$ processes were modeled using MADGRAPH5_AMC@NLO2.3.3 [43] together with PYTHIA8.210, with up to two additional partons in the matrix-element calculations. The $t\bar{t}H$ process was modeled using POWHEG BOX v2 interfaced with PYTHIA8.230. Other triboson processes (WWZ, WZZ, ZZZ) and the strong production of $W^\pm W^\pm jj$ were modeled using SHERPA2.2.2. The calculations for triboson processes were performed with no extra partons at NLO QCD accuracy and up to two additional partons at LO QCD accuracy. The electroweak production of $W^\pm W^\pm jj$ was modeled using SHERPA2.2.11, and the calculations were performed with up to one additional parton at LO QCD accuracy. Contributions from the on-shell WW and $WH \to WW$ processes were removed from $W^\pm W^\pm jj$ production. Contributions from double parton scattering processes are found to be negligible.

To improve the separation between signal and background, two BDTs are trained using the XGBoost [44] package and are applied separately to the 2ℓ and 3ℓ SRs. All backgrounds are included in the BDT training. Each BDT is trained with 11 variables, some of which differ between the two sets. The three variables with the highest discriminating power are $m_{jj} - m_W$, where m_W is the pole mass of the W boson, forward jet p_T, and $S(E_T^{\text{miss}})$ for the 2ℓ channel, and the ratio $S(E_T^{\text{miss}})/E_T^{\text{miss}}$, p_T of the second highest-p_T lepton, and number of jets for the 3ℓ channel. A k-fold cross-validation procedure is used to produce the final discriminant. Fivefold (fourfold) cross-validation BDTs are trained in the 2ℓ SRs (3ℓ SR) and each BDT is trained on 80% (75\%) of the expected signal and
background events. To produce the BDT distribution used in the fit, each of the five (four) trained BDTs is applied to the 20% (25%) of the events not used to train the BDTs.

To extract the \(\text{WWW} \) inclusive cross section, a binned maximum likelihood fit [45] is performed using the BDT distributions in the \(2\ell \) SRs (\(e^+e^-, e^+\mu^- \), and \(\mu^+\mu^- \)) and the \(3\ell \) SR as well as the \(m_{\ell\ell\ell} \) distributions in the three \(\text{WZ} \) CRs, amounting to seven distributions with 50 bins in total. The fit includes four unconstrained parameters that scale the number of events for a particular process predicted by MC simulation: the signal strength \(\mu(\text{WWW}) \) for \(\text{WWW} \) production and three scale factors for \(\text{WZ} + 0 \) jets, \(\text{WZ} + 1 \) jet, and \(\text{WZ} + \geq 2 \) jets. The ratio of on-shell \(\text{WWW} \) production to \(\text{WH} \rightarrow \text{WWW} \) production is determined from MC simulation and is allowed to vary within the theoretical uncertainties of the two processes.

Systematic uncertainties are included in the fit as nuisance parameters constrained by Gaussian probability density functions. Correlations between systematic uncertainties arising from common sources are maintained across processes and channels. Instrumental systematic uncertainties are related to the lepton trigger, reconstruction and

\(e^+e^- \)	\(e^+\mu^- \)	\(\mu^+\mu^- \)	\(3\ell \)	
WWW signal	28.4 ± 4.3	124 ± 19	82 ± 12	34.8 ± 5.2
WZ	81.1 ± 5.7	346 ± 22	170 ± 10	16.4 ± 1.5
Charge-flip	31.1 ± 7.3	19 ± 5	...	1.7 ± 0.4
\(\gamma \) conversions	60.8 ± 8.5	139 ± 15	...	1.5 ± 0.1
Nonprompt	17.0 ± 4.0	145 ± 23	104 ± 21	26.6 ± 2.9
Other	22.3 ± 2.4	100 ± 10	58 ± 6	8.0 ± 0.9
Total predicted	241 ± 11	873 ± 22	415 ± 17	89.0 ± 5.4
Data	242	885	418	79

To extract the \(\text{WWW} \) inclusive cross section, a binned maximum likelihood fit [45] is performed using the BDT distributions in the \(2\ell \) SRs (\(e^+e^-, e^+\mu^- \), and \(\mu^+\mu^- \)) and the \(3\ell \) SR as well as the \(m_{\ell\ell\ell} \) distributions in the three \(\text{WZ} \) CRs, amounting to seven distributions with 50 bins in total.

The fit includes four unconstrained parameters that scale the number of events for a particular process predicted by MC simulation: the signal strength \(\mu(\text{WWW}) \) for \(\text{WWW} \) production and three scale factors for \(\text{WZ} + 0 \) jets, \(\text{WZ} + 1 \) jet, and \(\text{WZ} + \geq 2 \) jets. The ratio of on-shell \(\text{WWW} \) production to \(\text{WH} \rightarrow \text{WWW} \) production is determined from MC simulation and is allowed to vary within the theoretical uncertainties of the two processes.

Systematic uncertainties are included in the fit as nuisance parameters constrained by Gaussian probability density functions. Correlations between systematic uncertainties arising from common sources are maintained across processes and channels. Instrumental systematic uncertainties are related to the lepton trigger, reconstruction and

The bottom panel of each plot shows the ratio of the data to the total prediction. The uncertainty bands include both the statistical and systematic uncertainties as obtained by the fit. The signal is scaled to the fitted signal strength of 1.61.
identification efficiencies [22,24], lepton isolation criteria [23], lepton energy scale and resolution [22,46], jet energy scale and resolution [47], jet vertex tagging [48,49], b-jet identification [27], modeling of $E_{\text{T}}^{\text{miss}}$ [50] and pileup, and integrated luminosity [14,51]. Theoretical uncertainties associated with the signal processes and the background processes with prompt leptons are evaluated using simulation. For the signal and WZ background, acceptance and distribution shape uncertainties due to the renormalization and factorization scales [52], PDFs [53], and parton showering, are also included in the simultaneous fit. The normalization uncertainties for the processes included in the “Other” background category in Table I and Fig. 2 are between 10% and 20% [54–57]. The fit includes the systematic uncertainties of each of the data-driven background estimates, and also the systematic uncertainties due to limited MC sample size.

The signal strength is measured to be $\mu(\text{WWW}) = 1.61 \pm 0.25$, where the uncertainty also includes the signal cross-section uncertainty (3.6%) affecting the predicted inclusive cross section from the signal MC samples. The three WZ scale factors are found to be 1.12 ± 0.11, 0.98 ± 0.04, and 0.88 ± 0.18 for the 0-jet, 1-jet, and ≥ 2-jet bins. Table I shows the postfit signal and background event yields as well as the observed yield in each SR. The contribution of the WH process to the WWW yield ranges between 40% and 44% in the four SRs. All nuisance parameters remain within their one standard deviation uncertainty after the fit. Figure 2 shows a comparison between data and postfit predictions for the BDT output score distribution in all SRs. For various postfit kinematic distributions in the SRs, data and predictions are found to have a p value greater than 0.05 from a χ^2 test that takes into account the systematic uncertainties and correlations used in the fit to data.

The background-only hypothesis is rejected with an observed (expected) significance of 6.6 (4.0) standard deviations for the $2\ell^\pm$ SRs and 4.8 (3.8) standard deviations for the $3\ell^\pm$ SR calculated using the asymptotic approximation [58]. The combined observed (expected) significance is found to be 8.0 (5.4) standard deviations, constituting the first observation of WWW production. The signal strength is also measured separately by fitting the BDT distribution in each SR with the three WZ CRs. The values are found to be consistent: 1.54 ± 0.76 for e^+e^\pm, 1.44 ± 0.39 for $e^\pm \mu^\pm$, 2.23 ± 0.46 for $\mu^\pm \mu^\pm$, and 1.32 ± 0.39 for $3\ell^\pm$.

The measured inclusive $pp \rightarrow \text{WWW}$ production cross section is calculated as the product of the measured signal strength and the cross section from MC simulation, and is found to be $\sigma_{\text{meas}}(pp \rightarrow \text{WWW}) = 820 \pm 100$ (stat)± 80 (syst) fb. The largest systematic uncertainty contribution is 6% from data-driven estimates (mainly nonprompt background), followed by 3% from prompt-lepton-background modeling uncertainties (primarily WZ theory uncertainties).

In conclusion, the first observation of the $pp \rightarrow \text{WWW}$ process is reported by the ATLAS experiment at the LHC. Events with two same-sign charged leptons in association with at least two jets, as well as events with three charged leptons and no same-flavor opposite-sign lepton pairs, were selected from 139 fb$^{-1}$ of 13 TeV pp collisions. Two BDTs were trained to improve the separation between signal and background. The SM background-only hypothesis is rejected with an observed (expected) significance of 8.0 (5.4) standard deviations. The inclusive $pp \rightarrow \text{WWW}$ production cross section is measured to be 820 ± 100 (stat)± 80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of 511 ± 18 fb calculated at NLO QCD and LO electroweak accuracy.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014–2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].

[1] G. Bélanger and F. Boudjema, Probing quartic couplings of weak bosons through three vector production at a 500 GeV NLC, Phys. Lett. B 288, 201 (1992).
[2] S. Godfrey, Quartic gauge boson couplings, AIP Conf. Proc. 350, 209 (1995).
[3] Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, Model-independent probe of anomalous heavy neutral Higgs bosons at the LHC, Phys. Rev. D 90, 115002 (2014).
[4] Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, Further investigation of the model-independent probe of heavy neutral Higgs bosons at LHC Run 2, Chin. Phys. C 40, 023101 (2016).
[5] K. Agashe, P. Du, S. Hong, and R. Sundrum, Flavor universal resonances and warped gravity, J. High Energy Phys. 01 (2017) 016.
[6] K. S. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and R. K. Mishra, LHC signals from cascade decays of warped vector resonances, J. High Energy Phys. 05 (2017) 078.
[7] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and R. K. Mishra, Dedicated strategies for triboson signals from cascade decays of vector resonances, Phys. Rev. D 99, 075016 (2019).
[8] J. A. Aguilar-Saavedra, Profile of multiboson signals, J. High Energy Phys. 05 (2017) 066.
[9] ATLAS Collaboration, Search for triboson $W^+W^-W^\mp$ production in pp collisions at $\sqrt{s} = 8\,\text{TeV}$ with the ATLAS detector, Eur. Phys. J. C 77, 141 (2017).
[10] ATLAS Collaboration, Evidence for the production of three massive vector bosons with the ATLAS detector, Phys. Lett. B 798, 134913 (2019).
[11] CMS Collaboration, Search for the production of $W^+W^-W^\mp$ events at $\sqrt{s} = 13\,\text{TeV}$, Phys. Rev. D 100, 012004 (2019).
[12] CMS Collaboration, Observation of the Production of Three Massive Gauge Bosons at $\sqrt{s} = 13\,\text{TeV}$, Phys. Rev. Lett. 125, 151802 (2020).
[13] L. Evans and P. Bryant, LHC machine, J. Instrum. 3, S08001 (2008).
[14] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 13\,\text{TeV}$ using the ATLAS detector at the LHC, Report No. ATLAS-CONF-2019-021, 2019, https://cds.cern.ch/record/2677054.
[15] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, J. Instrum. 3, S08003 (2008).
[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Momentum in the transverse plane is denoted by p_T.
[17] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).
[18] ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80, 47 (2020).
[19] ATLAS Collaboration, Trigger menu in 2018, Report No. ATL-DAQ-PUB-2019-001, 2019, https://cds.cern.ch/record/2693402.
[20] ATLAS Collaboration, The ATLAS Collaboration software and firmware, Report No. ATL-SOFT-PUB-2021-001, 2021, https://cds.cern.ch/record/2767187.
[21] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data, J. Instrum. 14, P12006 (2019).
[22] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13\,\text{TeV}$, Eur. Phys. J. C 81, 578 (2021).
[23] ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev. D 97, 072003 (2018).
[24] ATLAS Collaboration, Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at $\sqrt{s} = 13\,\text{TeV}$, Eur. Phys. J. C 79, 639 (2019).
[25] ATLAS Collaboration, Jet reconstruction and performance using particle flow with the ATLAS Detector, Eur. Phys. J. C 77, 466 (2017).
[26] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8\,\text{TeV}$ using the ATLAS detector, Eur. Phys. J. C 76, 581 (2016).
[27] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $\ell\ell$ events in pp collisions at $\sqrt{s} = 13\,\text{TeV}$, Eur. Phys. J. C 79, 970 (2019).
[28] ATLAS Collaboration, Calibration of light-flavour b-jet mistagging rates using ATLAS proton-proton collision data at $\sqrt{s} = 13\,\text{TeV}$, Report No. ATLAS-CONF-2018-006, 2018, https://cds.cern.ch/record/2314418.
[29] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at $\sqrt{s} = 13\,\text{TeV}$, Eur. Phys. J. C 78, 903 (2018).
[30] ATLAS Collaboration, Object-based missing transverse momentum significance in the ATLAS detector, Report No. ATLAS-CONF-2018-038, 2018, https://cds.cern.ch/record/2630948.
[31] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).
[32] S. Agostinelli et al. (GEANT4 Collaboration), Geant4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[33] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007.
[34] S. Höche, F. Krauss, S. Schumann, and F. Siegert, QCD matrix elements and truncated showers, J. High Energy Phys. 05 (2009) 053.
[35] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. D. Debbio, S. Forte, A. Guflanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali, Parton distributions for the LHC run II, J. High Energy Phys. 04 (2015) 040.
[36] G. Lusini, P. Nason, C. Oleari, and F. Tramontano, \(HW^+ / HZ^+ \) and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, J. High Energy Phys. 10 (2013) 083.
[37] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to pythia8, Comput. Phys. Commun. 178, 852 (2008).
[38] S. Mrenna and P. Skands, Automated parton-shower variations in pythia8, Phys. Rev. D 94, 074005 (2016).
[39] ATLAS Collaboration, Measurement of the \(W^+ W^- \) boson transverse momentum distribution in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector, J. High Energy Phys. 09 (2014) 145.
[40] S. Dittmaier, A. Huss, and G. Knippen, Next-to-leading-order QCD and electroweak corrections to WW/W\(\gamma \) production at proton-proton colliders, J. High Energy Phys. 09 (2017) 034.
[41] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, and B. Miltberger, High precision determination of the gluon fusion Higgs boson cross-section at the LHC, J. High Energy Phys. 05 (2016) 058.
[42] ATLAS Collaboration, Measurement of \(W^+ W^- \) vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector, Phys. Rev. D 96, 012007 (2017).
[43] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2020) 079.
[44] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (ACM, San Francisco, California, USA, 2016), p. 785, ISBN: 978-1-4503-4232-2, 10.1145/2939672.2939785.
[45] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, Report No. CERN-OPEN-2012-016, 2012, https://inspirehep.net/literature/1236448.
[46] ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data, J. Instrum. 14, P03017 (2019).
[47] ATLAS Collaboration, Jet energy scale and resolution measured in proton-proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, Eur. Phys. J. C 81, 689 (2020).
[48] ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector, Report No. ATLAS-CONF-2014-018, 2014, https://cds.cern.ch/record/1700870.
[49] ATLAS Collaboration, Identification and rejection of pileup jets at high pseudorapidity with the ATLAS detector, Eur. Phys. J. C 77, 580 (2017); 77, 712(E) (2017).
[50] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s} = 13 \) TeV, Eur. Phys. J. C 78, 903 (2018).
[51] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, J. Instrum. 13, P07017 (2018).
[52] ATLAS Collaboration, Multi-boson simulation for 13 TeV ATLAS analyses, No. ATL-PHYS-PUB-2016-002, 2016, https://cds.cern.ch/record/2119986.
[53] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43, 023001 (2016).
[54] D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv: 1610.07922.
[55] ATLAS Collaboration, Observation of the associated production of a top quark and a \(Z \) boson in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, J. High Energy Phys. 07 (2020) 124.
[56] ATLAS Collaboration, Observation of Electroweak Production of a Same-Sign \(W \) Boson Pair in Association with Two Jets in \(pp \) Collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 123, 161801 (2019).
[57] ATLAS Collaboration, Measurement of the \(t\bar{t}Z \) and \(t\bar{t}W \) cross sections in proton-proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, Phys. Rev. D 99, 072009 (2019).
[58] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); 73, 2501(E) (2013).
[59] ATLAS Collaboration, ATLAS computing acknowledgments, Report No. ATL-SOFT-PUB-2021-003, https://cds.cern.ch/record/2776662.
13 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15 Physics Department, Tsinghua University, Beijing, China
16 Department of Physics, Nanjing University, Nanjing, China
17 University of Chinese Academy of Science (UCAS), Beijing, China
18 Institute of Physics, University of Belgrade, Belgrade, Serbia
19 Department of Physics and Technology, University of Bergen, Bergen, Norway
20 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
21 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
22 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
23 Department of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
24 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
25 Institute of Physics, University of Belgrade, Belgrade, Serbia
26 Department of Physics, Bogazici University, Istanbul, Turkey
27 Institute of Physics, University of Belgrade, Belgrade, Serbia
28 Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines
29 Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines
30 Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines
31 Department of Physics, University of California, Berkeley, California, USA
32 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33 National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
34 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
35 National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
36 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
37 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
38 Physics Department, Southern Methodist University, Dallas, Texas, USA
39 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 Dipartimento di Fisica, Università della Calabria, Rende, Italy
42 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
43 Nevis Laboratory, Columbia University, Irvington, New York, USA
44 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
45 Dipartimento di Fisica, Università della Calabria, Rende, Italy
46 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
47 Physics Department, Southern Methodist University, Dallas, Texas, USA
48 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
Deceased.
\(^{1}\)Also at Department of Physics, King’s College London, London, United Kingdom.
\(^{2}\)Also at Istanbul University, Dept. of Physics, Istanbul, Turkey.
\(^{3}\)Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain.
\(^{4}\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
\(^{5}\)Also at TRIUMF, Vancouver BC, Canada.
\(^{6}\)Also at Physics Department, An-Najah National University, Nablus, Palestinian Authority.
\(^{7}\)Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
\(^{8}\)Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
\(^{9}\)Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
\(^{10}\)Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\(^{11}\)Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
\(^{12}\)Also at Università di Napoli Parthenope, Napoli, Italy.
\(^{13}\)Also at Institute of Particle Physics (IPP), Canada.
\(^{14}\)Also at Bruno Kessler Foundation, Trento, Italy.
\(^{15}\)Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\(^{16}\)Also at Graduate School of Science, Osaka University, Osaka, Japan.
\(^{17}\)Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
\(^{18}\)Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
\(^{19}\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^{20}\)Also at Editepe University, Physics Department, Istanbul, Turkey.
\(^{21}\)Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
\(^{22}\)Also at CERN, Geneva, Switzerland.
\(^{23}\)Also at Hellenic Open University, Patras, Greece.
\(^{24}\)Also at Center for High Energy Physics, Peking University, China.
\(^{25}\)Also at The City College of New York, New York, New York, USA.
\(^{26}\)Also at Department of Physics, California State University, Sacramento, USA.
\(^{27}\)Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
\(^{28}\)Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
\(^{29}\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\(^{30}\)Also at National Research Nuclear University MEPhI, Moscow, Russia.
\(^{31}\)Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.