Understanding the influence of substrate when growing tumorspheres

Lucía Benítez¹, Lucas Barberis¹, Luciano Vellón² and Carlos A Condat¹
Abstract

Background: Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals.

Methods: A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations.

Results: The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved.

Conclusions: Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. A specific condition for the growth of the cancer stem cell number is also obtained.

Keywords: tumor growth; cancer stem cell; niche; tumorsphere; mathematical modelling

Background

For some time, it has been known that the presence of cancer stem cells (CSCs) is important for the development of many solid tumors [1, 2, 3, 4, 5, 6]. According to the CSC hypothesis these cells are often crucial for the development of resistance
to therapeutic interventions [7, 8]. In healthy tissues the proportion of stem cells is small; homeostatic equilibrium is maintained through the signals that the stem cells receive from their niches. The onset of cancer is likely to destroy this equilibrium and cancerous tissues may exhibit a higher proportion of stem cells than normal tissues [9]. This increased proportion of cancer stem cells may underlie the aggressive behavior of high-grade tumors [2, 10]. As recently explained by Taniguchi [11], the cross-talk between tumor initiating (stem) cells and their niche microenvironment is a possible therapeutic target. Understanding the nature of the interactions between CSCs and their environment is therefore important for the development of effective intervention procedures.

Live cells are generally sensitive to substratum rigidity and texture [12]. A growing tumor must compete for space with the surrounding environment; the resulting mechanical stresses generate signals that impact on the tumor cells. Cells integrate these mechanical cues and respond in ways that are related to their phenotype. Their active response may also lead to phenotype modifications [13, 14]; in fact, mechanical cues generated by the environment can trigger cancer cell invasion [15]. Environmental stiffness may then be associated with tumor progression, a progression that can also be promoted by mechanically activated ion channels [16].

What is the influence of the mechanical environment on cancer stem cells? At each generation, CSCs divide symmetrically, generating either two new CSCs or two differentiated cancer cells, or asymmetrically, generating one CSC and one differentiated cancer cell [17, 7]. Quorum sensing controls differentiation of healthy stem cells, but it is thought to be altered in cancer stem cells [18]. Mechanical inputs are an important component of the altered control mechanism and can be assumed to play a role in the fate of the cancer stem cells. In vitro experiments have been designed to probe the influence of mechanical stresses of various types on tumor cells. The solid-stress inhibition of multicellular spheroid growth was already demonstrated by Helmlinger and coworkers in 1997 [19]. The results of these experiments were shown to follow allometric laws [20]. Interestingly, Koike et al. showed that spheroid formation with Dunning R3327 rat prostate carcinoma AT3.1 cells is facilitated by solid stress [21].

A study by Cheng et al. suggested how tumors grow in confined locations where levels of stress are high, showing that growth-induced solid stress can affect cell...
phenotype [22]. Using spheroid cell aggregates, Montel et al. showed that applied\(^1\) pressure may be used to modulate tumor growth [23] and observed that cells are blocked by compressive stresses at the G1 checkpoint [24]. The organization of cells in a spheroid is modified by physical confinement [25], which likewise modifies the proliferation gradient [26]. The stiffness of hydrogels has been shown to determine the shape of tumor cells, with high stiffnesses leading to spheroidal cells, a feature known to occur in \textit{in vivo} tumors [27]. By studying the behavior of adult neural stem cells under various mechanical cues, Saha et al. showed that soft gels favored differentiation into neurons while harder gels promoted glial cultures. Importantly, they also showed that low substrate stiffness inhibited cell spreading, self-renewal, and differentiation [28]. Osteocyte-like cells were shown to significantly induce compaction of tumor spheroids formed using breast cancer cells [29]. Matrix stiffness was shown to affect, through mechanotransduction events, the osteogenic outcome of human mesenchymal stem cell differentiation [30]. HeLa cells were used to show that both an attractive contact force and a substrate-controlled remote force contribute to the formation of large-scale multicellular structures in cancer [31].

Fifteen years ago, Discher, Janmey, and Wang not only explained that the stiffness of the anchoring substrate can have a strong influence on the cell state, but they also indicated that stem cell differentiation may be influenced by the nature of the substrate [32]. It is relevant that naive mesenchymal stem cells were shown to commit to various phenotypes with high sensitivity to tissue elasticity: They differentiate preferably into neurons and osteocytes if they are cultured on soft and rigid matrices, respectively [33]. On the other hand, human mesenchymal stem cells adhere onto precalcified bones, which are softer than calcified bones [12]. It is also known that hydrodynamic shear stress promotes the conversion of primary patient epithelial tumor cells into specific cancer stem-like cells [34]. Smith et al. found that the mechanical context of the differentiation niche can drive endothelial cell identity from human-induced pluripotent stem cells, showing that stiffness drives mesodermal differentiation, leading to endothelial commitment [35]. Thus, microenvironments help specify stem cell lineages, although it may be difficult to decouple the influence of mechanical interactions and surface topography and stiffness from biochemical effects [12, 35]. Since they are grown in the absence of the complex signaling system prevalent in the environment of real tumors, tumorspheres, spheroids
formed by clonal proliferation out of permanent cell lines, tumor tissue, or blood, are suitable candidates to probe the influence of mechanical stimuli on stem-cell-fueled cancer growth.

Wang et al. cultured breast CSCs on soft and hard agar matrix surfaces, investigating the effects that substrate stiffness has on cell state and proliferation [37]. These authors showed that breast cancer stem cells can be kept in states of differentiation, proliferation or quiescence depending on a combination of adherent growth and stem cells growth factors, but they focused on the experimental possibilities and did not draw conclusions about how these agencies may modify the stem cell niche to lead to the observed behavior. Recently, we developed a two-population tumorsphere model to identify the role of the intraspecific and interspecific interactions that determine tumorsphere growth [14]. Application of our model to three breast cancer cell lines studied by Chen and coworkers [9] indicates that while intraspecific interactions are inhibitory, interspecific interactions promote growth. This feature of interspecific interactions was interpreted in terms of the stimulation by CSCs of the growth of differentiated cells in order to consolidate their niches and of the plasticity of the differentiated cells to dedifferentiate into CSCs [14]. Here we use this model to analyze the experimental results of Wang et al. [37], discussing how substrate stiffness influences growth and finding that the concept of cancer stem cell niche is central for its understanding. In the next section we review the model of Ref. [14] and in the following sections we apply it to the results of Ref. [37] and discuss their implications.

Methods

We model mathematically the growth of a tumorsphere considering two cell populations: Cancer stem cells (S) and differentiated cancer cells (D). By including in the last class all cells with any degree of differentiation we can isolate the role played by the stem cells. We further assume that:

- The members of each subpopulation interact with each other (intraspecific interactions) and with the members of the other subpopulation (interspecific interactions). These interactions are quantified by a set of coefficients \(\{ij\} \) that describe either intraspecific \((i = j) \) or interspecific \((i \neq j) \) interactions.

When a CSC undergoes mitosis there is a probability \(p_s \) that two new CSCs
are generated and a probability p_d that two DCCs are generated. Because of normalization, the probability that there is an asymmetric division is $p_a = 1 - p_d - p_s$.

- In Ref. [14] two different basal growth rates were specified for the stem and differentiated cancer cells. Since, in general, it is not possible to discriminate between these rates, we choose the same value r for both (this is what is effectively measured).

We can describe the evolution of the two interacting populations by generalizing the standard equations for two competing species (see, p. ej. [38], p. 67).

\begin{align*}
\frac{dS}{dt} &= r[p_s S \left\{ p_s - p_d \frac{p_s}{p_d} - \alpha_{SS} S - \alpha_{SD} D \right\}] \quad (1a) \\
\frac{dD}{dt} &= r[D + (1 + p_d - p_s) S] \left\{ 1 - \alpha_{DD} D - \alpha_{DS} S \right\}. \quad (1b)
\end{align*}

The first term inside the curly braces on the right-hand side of Eq. (1a) corresponds to the net creation of new CSCs, noting that asymmetric divisions do not change the number of cancer stem cells. The factor in the square brackets on the right-hand side of Eq. (1b) is proportional to the rate of creation, in the absence of interactions, of differentiated cells due to the division of other DCCs (first term), plus the asymmetric division and differentiation of CSCs (second term). Negative interaction coefficients ($\alpha_{ij} < 0$) describe growth-promoting interactions, such that the j population promotes the growth of the i population. Positive values of α_{ij} describe the growth inhibition of population i by population j.

There are no analytic solutions for these differential equations. Their numerical solutions yield the time evolution of both subpopulations, $S(t)$ and $D(t)$. In Additional File 1 we summarize some properties of Eqs. (1) and their solutions that we will use in our analysis.

We can now answer the following question: Given that we start tumorosphere growth from a small CSC seed, what is the minimum size S_m needed for this seed to guarantee CSC population growth? By setting $D = 0$ in Eq. (1b), we see that there are two cases:
a) If differentiation is inhibited, $p_s > p_d$, as in the case of discussed soft and hard experiments discussed below, the initial seed may be arbitrarily small.

b) If $p_s < p_d$, it is easy to see that the condition for initial CSC number increase is $S_0 > S_m$, with

$$S_m = \frac{p_s - p_d}{\alpha S p_s}.$$ \hspace{1cm} (2)

We thus need $\alpha > 0$: The CSCs must cooperate to yield additional cancer stem cells starting from a pure CSC seed. A larger cooperative interaction implies that we can use a smaller seed. In this case, the intraspecific interaction coefficient α plays a key role in the growth determination from the very beginning of the process.

It is worth mentioning that in the experiments discussed here the conditions $p_s < p_d$ and $S_0 > S_m$ are never satisfied simultaneously. Usually, p_s is smaller than p_d, and there is a minimum number of stem cells required to ensure stem cell growth. But if a differentiation - inhibiting agent is added to the system, increasing p_s, a single cancer stem cell may suffice to generate growth. As shown in Additional File 1, we can linearize our equations to describe the initial evolution of a small system, finding that the trajectory in the $S - D$ plane starts as,

$$D(t) = \left(\frac{D_0 + S_0}{S_0}\right) S(t)^{1/(p_s - p_d)} - S(t),$$ \hspace{1cm} (3)

where $S(0) = S_0$ and $D(0) = D_0$. Initially, if $p_d > p_s$, the number of differentiated cells increases, while the number of stem cells decreases, and the representative point gets close to the D–axis. If there is growth in the stem cell subpopulation, it is due to the nonlinear terms.

Our model therefore generates a simple analytical description of the early stages of tumorsphere evolution and specifies the conditions for a successful implantation of the initial cancer stem cell seed. In the next section we review the experimental results reported in [37] and determine the model parameters.

31 Experimental data

32 Here we use our model to analyze in detail the results of Wang and coworkers [37]. These authors studied the growth of breast cancer cell cultures belonging to
three different cell lines: MCF7, MDA-MB-231 and MDA-MB-435. For each of these
tumor lines they grew tumorspheres using three different environmental conditions:

- In the *soft* experiment, cells were cultured using soft (0.05%) agar as the
 matrix surface for cell contact. Differentiation inhibitors were added to the
 growth medium to increase the CSC fraction.

- In the *hard* experiment, cells were cultured using hard (30%) agar as the con-
 tact matrix surface. Differentiation inhibitors were also added to the growth
 medium.

- In the *control* experiment, cells were cultured using hard (30%) agar as the
 contact matrix surface, but no differentiation inhibitor was added to the
 medium.

Since only the MDA-MB-231 cell line yielded bona fide round spheroids for all
three experimental specifications, we will use this line to compare our findings with
the experimental results. To facilitate the implementation of the model presented
in [14], we report the data in terms of cell numbers.

Some experimental facts in Ref. [37] that we would like to emphasize are:

- The spheroids initially have 4-5 cells that come from one CSC. A remarkably
 high percentage (> 95%) of the cells cultured under *soft* and *hard* conditions
 with growth factors express the stem cell marker Oct4, which is frequently
 used as a marker for undifferentiated cells. Oct-4 expression must be tightly
 regulated; too much or too little leads to cell differentiation (too much could
 even lead to senescence).

- The *soft* and *control* experiments show low activity of telomerase, a marker
 for proliferation. The higher telomerase activity exhibited by *hard* indicates
 a faster growth rate. This is consistent with the expression rates of Ki67-
 positive, which are close to 90% for *hard* and minimal in the other cases.

- The high (95%) CSC fraction and low (< 5%) proliferation rate observed in
 soft at day 8 suggest a population largely consisting of quiescent CSCs. The
 proliferative fraction was higher in *hard*.

- In *control*, markers indicate a strong dominance of the differentiated state.
 The stem cell fraction (~ 5%) and proliferation rate (5% according to Ki-67
 and 22% according to flow cytometry) are both low.
Fitting with the model

The data sets correspond to the total cell number in the spheroids. Thus, we fit the data with \(T = S + D \), where \(S \) and \(D \) are the numerical solutions of the system of Eqs (1). Thereby, our model allows us to obtain information on the dynamics of the CSC and DCC subpopulations and, in particular, on the time evolution of the CSC fraction, from data corresponding to the whole spheroid. Due to the scarcity of data points and the ensuing difficulties of the optimization problem, fitting our model to the data leads to different sets of possible parameter values. To obtain the optimal set, we use a random grid search (RGS). In brief, the RGS algorithm consists of first randomly sweeping the domain of physically reasonable initial conditions in parameter space and then making a statistical analysis of the resulting distributions to obtain the fitting parameters. We provide further details on the method implementation in Additional File 2.

Results

Soft substrate

The medium inhibits differentiation and there is also little incentive for the stem cells to either duplicate or leave their quiescent status. Only the tendency to build a suitable niche may break the quiescence. Hence their small basal growth rate. As a result, a slow exponential growth of CSCs prevails in the early stages of tumorsphere growth as depicted in Fig. 1. Such behavior can be predicted as shown in Eq. 3 and Additional File 1 Eqs. (A3) and (A4), but the basal growth rate is so small that the process appears to be almost linear. The CSCs population (red line) is always much larger than its DCC counterpart; as a matter of fact, Wang et al. reported a 95\% of CSC at day 8 with a low growth rate. The distribution of the fitting values generated by the RGS method is shown in Additional File 2, Fig. A. Note there, and in Table 1, the very high (close to unity) value of \(p_s \), the positive sign of the intraspecific interaction coefficients and the negative sign of the interspecific interaction coefficients.

Hard substrate

For this experiment we expect the model to describe a high fraction of CSCs, as in soft, but now with a higher proliferation rate. Applying the RGS method to this data set, we see that this is indeed so (see Table 1 and Additional File 2, Fig. B for...
the resulting parameters), obtaining the curves depicted in Fig. 2. At early times, growth is nearly linear, as observed in soft, but only for the first four days, speeding up afterwards. The CSCs outnumber the DCCs, reaching 91% of the cell population by day 8, consistently with the results reported in [37]. This fraction is a little lower than in soft but would become much larger than that at later times.

The symmetric CSC reproduction probability is still high, but noticeably lower than in soft, and the basal rate is twice that in soft. The interspecific interaction coefficients are negative, as in soft, but the CSC intraspecific interaction coefficient is now negative, too.

Control substrate

For the sake of comparison, Wang et al. carried out another experiment where the stem-cell promoting factors EGF and bFGF were replaced by neutral serum and the cells were grown on a hard substrate [37]. In this case, although the spheroid cannot preserve its spherical shape at late times, a fitting attempt, shown in Fig. 3, is informative (the corresponding boxplots are shown in Additional File 2, Fig. C).

Two major features can be observed. First, note that, although the spheroid grows very fast, the CSC number is nearly constant. Because there are no restrictions on differentiation, the DCCs can proliferate indefinitely. Second, growth is faster than exponential as in previous cases, even if the basal growth rate r is lower than in either soft or hard (note, however, that the cell number may be overestimated because the control medium has a hard substrate, we expect that cells will tend to migrate over it, spreading at the contact surface between spheroid and substrate and leading the spheroid to exhibit a larger apparent diameter than in previous cases. Indeed, disaggregation is reported by these authors for the control experiment. As a consequence, the cell number is likely to be overestimated. The values of r and p_s are now much smaller than for soft and hard. The intraspecific interactions have different signs as do the interspecific ones.

All the new relevant information obtained from fitting the experimental data is summarized in Table 1 where we report the values of the parameters of our model. Furthermore, in Table 2, we report some quantities, derived from parameters in Table 1, that will be useful in the following sections.
Discussion

In the soft and hard experiments, the growing tumorspheres must adapt to the non-differentiation restriction imposed by the application of the stem cell maintenance factors EGF and bFGF. We will extract information about the cell dynamics especially from four features: the basal growth rate, the CSC fraction, and the intraspecific and interspecific interaction parameters. The parameter sets resulting from fitting the model to the hard, soft and control experiments, summarized in Table 1, are quite different. We next separately interpret the results of each experiment.

Soft substrate

The computed basal growth rate \(r \) is 0.069 day\(^{-1}\), which means that the population doubling time (PDT) is close to 15 days. This is consistent with the results obtained by Wang et al. [37] using flow cytometry, but somewhat longer than typical cancer cell doubling times, which range from 3 to 11 days, depending on tumor type and culture conditions [39, 40]. DCCs normally reproduce faster but, because in this model \(r \) represents the average growth rate of the whole population, we recover a PDT consistent with that of the dominating CSCs. This lends support to our modeling assumption of a single basal growth rate.

Quiescence is the prevalent state of the stem cells. Since their function is to replenish dead or damaged cells, they enter the cycle when their niches signal the need for new cells. In soft (and in hard) the addition of differentiation inhibitors implies that the CSCs always record low DCC populations. This drives them into the cycle, where they divide but, prevented from differentiating, can only generate new CSCs. The presence of differentiation-inhibiting growth factors in the culture medium is evident not only from the high CSC fraction but also from the overwhelming prevalence of stem cell divisions leading to new stem cells \((p_s = 0.97) \). Differentiation is very unlikely \((p_d = 0.0019) \) and we may neglect it to simplify the analysis. If we do this, there is no linear contribution of the CSCs to DCC generation. With the parameter values in Table 1, the equilibrium point where the two kind of cells coexist is located at \((S^*, D^*) = (-21.7, -7.0)\) cells. Thus, the coexistence point lies in the third quadrant indicating that there is no physical/biological coexistence of the two populations. There are no attractors in the first quadrant and all trajec-
Stories diverge. If there were no intervening limiting phenomenon (not described by the model) the tumorsphere would grow indefinitely. This confirms that CSCs lose their normal quiescent state in a continuous (and futile) attempt to produce more DCCs.

The (positive) intraspecific interaction coefficients α_{ii} are here directly related to the individual maximum population sizes of the respective subpopulations. If we assumed that the two subpopulations did not interact, $ij = 0$, $i \neq j$, Eq. (1a) would read:

$$\frac{dS}{dt} = rS\left[(p_s - p_d) - p_s\alpha_{SS}S\right]$$

which is a logistic equation that leads to a maximum population size $S_c = (p_s - p_d)/(p_s\alpha_{SS}) \approx 12$ cells. In this way, from Eq. (1b), we obtain $D_c = 1/\alpha_{DD} \approx 2$ cells for the DCCs, which is six times smaller than S_c. Therefore, if there were no interactions between subpopulations our model would predict a 14-cell spheroid, a size that would be reached by day 17. Interactions between the populations are needed to understand the faster growth observed in the experiment. The interspecific interaction coefficients are both negative, $\alpha_{ij} < 0$, $i \neq j$. These negative values lead to a positive feedback loop: An increase in one subpopulation drives an increase in the other. The numbers in Table 1, especially the relatively large value of α_{SD} (5 times that of α_{SS}), and the relatively low value of α_{DS} (less than half of α_{DD}), indicate that this interplay favors a net increase in CSC number but is not strong enough to lead to an increase in DCC number. It is worth mentioning that in [14] we described a similar system with a positive feedback loop and bounded growth for another tumorsphere experiment where the same growth factors were used.

The feedback loop mechanism is activated to generate a suitable niche, which requires a low $S/(S + D)$ fraction. The inhibition of differentiation causes the CSC to continuously reproduce in a frustrated attempt to recreate the DCC population required by the niche. Since the population equilibrium corresponding to a stable niche is never reached, cycling CSCs seldom return to quiescence. In Fig. 4, the fraction $S/(S + D)$ is depicted for the three experiments up to day ten. Due to the inhibitor’s efficacy, this fraction falls very slowly for the soft and hard substrates.
(light blue and orange lines, respectively), but decays freely in the case of the control environment.

Hard substrate

When the substrate hardens the environmental conditions that mediate cell-to-cell signaling change and the CSC phenotype becomes more amenable to proliferation, as seen by comparing Figs. 1 and 2. The growth rate \(r \), which still represents the PDT of the CSCs because of their prevalence, is twice as large as that corresponding to growth on the soft substrate. Our interpretation is that increasing the substrate hardness alters the CSC phenotype required to reach the cell fraction that regulates niche size. As in soft, the CSCs try to increase the DCC population but now they are immersed in a different environment. The duplication of the growth rate \(r \), the reduction of the symmetric duplication probability \(p_s \), and the emergence of a large fraction (\(> 50\% \)) of asymmetric divisions indicates that the direct effect of the differentiation-inhibiting factors is weaker than in soft. Indirect effects appear through the interspecific coefficients, especially the relatively large and negative (-0.53) \(\alpha_{SD} \). As Fig. 4 shows, by day 8 the DCC fraction is not much larger than in soft, indicating that the attempt to establish the niche has also failed in hard.

More remarkable is that the intraspecific CSC coefficient has changed its sign, an indication that CSCs record a stressed environment that they may perceive as due to the presence of damaged tissue. This generates a phenotype different from that in soft [14], which accelerates cell division. On the other hand, the large and positive DCC intraspecific coefficient, \(\alpha_{DD} = 1.83 \) implies a huge increase of the inhibitory signaling between DCCs with respect to soft. In this case, the discussion following Eq. 4 suggests for this system a maximum intrinsic DCC number smaller than unity, \(D_c \approx 0.5 \) cells, meaning that on this substrate the DCC subpopulation would not be able to survive without the CSCs.

The general picture is that of a growing tumorsphere whose response to the substrate is to increase its cell number as fast as possible, aiming to reach a DCC fraction that equilibrates the niche, a goal that cannot be attained due to the presence of differentiation-inhibiting agents. The influence of the niche, as in [14], is thus a cornerstone for the biological interpretation of the model results.
Control substrate

As mentioned in the previous section, we cannot expect the model to give a completely accurate description of the control substrate experiment, but its interpretation may shed light on the system dynamics. In this experiment there is no inhibition of differentiation, allowing CSCs to freely differentiate. These cells record an environment where the proportion of DCCs increases monotonically and the population fractions should tend to those corresponding to niche equilibrium. However, Figs. 3 and 4 suggest that there is no limit to the increase of the DCC fraction. We conjecture that this behavior may be explained by migration: after the spheroid reaches a given size near the end of the experiment, cells start to migrate and the average number of DCCs recorded by each CSC does not increase. One consequence is that the CSC number remains stationary as shown in Fig. 3. In fact, their effective PDT is of about six months, i.e., they are generally quiescent, as they should.

Furthermore, note that the whole PDT leads to a duplication of the first 5 cells after 41 days (1/0.024), which is three times slower than the soft rate (15 days).

To explain the rapid spheroid growth we need to consider the contribution of the interactions. From Table 1 we see that interactions favor DCCs and restrict CSCs proliferation. A more detailed analysis of the evolution of the two subpopulations reveals the following:

- CSCs: The positivity and very low absolute values of α_{SS} and α_{SD} ensure the stability of the CSC number: Since the restricting terms in Eq. (1a) are very small: $r_{ps}\alpha_{SS} \approx 10^{-5}$ for each CSC and $r_{ps}\alpha_{SD} \approx 10^{-4}$ for each DCC, the inhibition would first take place when $D \approx 10,000$ cells, far beyond the experimental range. The dominant contribution to the change in the CSC number is given by the linear term, which yields $|p_{r}r|^{-1} = 185$ days, meaning that the CSCs are quiescent during the whole experiment.

- DCCs: Approximating Eq. (1b) with $S \rightarrow 0$, we get $DC = 1/\alpha_{DD}$. Because $\alpha_{DD} < 0$, the quadratic term always promotes DCC number growth. As mentioned in the case of hard, a negative sign in the intraspecific interaction parameter is related to signaling loss. Observing the disaggregation of the sphere in control, we conclude that it is likely that the hard substrate promotes migration, weakening cell-to-cell interactions. Given that the CSC pool
remains constant while many cells move away from the spheroid, we can also conclude that the migrating cells are likely to be differentiated.

Perhaps the most important conclusion of our analysis of these experiments is that the absence of the stem cell growth factors in control leads to the disappearance of the feedback loop that plays such a crucial role in both soft and hard. The existence of the feedback loops detected in soft and hard can similarly be inferred from tumorsphere growth experiments carried out with the cancer lines SUM159, MCF-7, and T47D, which were also cultured with stem cell growth factors [9, 14].

Conclusion

In normal tissues, homeostasis is guaranteed by factors secreted by differentiated cells that inhibit the division and self-renewal of stem cells [18, 41]. Cancer stem cells may partially escape these controls, but their activity is still influenced by their environment. This environment is sensitive to the nature of an adjacent substrate.

In their study of cell sensitivity to substratum rigidity and texture, Park et al. [12], citing Huang and Hiber [42], state that “Progressively, it is becoming more evident that a rigid substratum can induce more stable focal adhesions (FAs), the sites of cell adhesion and biochemical signaling from ECM, followed by internally well-organized cytoskeletal organization.” However, in non-anchored cells, as is the case analyzed in the present work, clustering of most integrins on the plasma membrane by ECM molecules, and thus FAs formation, is lost. Moreover, in the absence of cell-matrix adhesion, clustering of other receptors like epidermal GFR (EGFR) is also reduced. In normal cells, such events are sufficient to trigger anoikis, but upregulation of specific integrins can confer anoikis resistance. For instance, ανβ3 integrin has the unique ability to maintain receptor clustering in non-adherent cells (reviewed in Hamidi and Ivaska [43]). Interestingly, the MDA-MB-231 cells used by Wang et al. [37] are a ανβ3 integrin-overexpressing breast cancer cell line and highly dependent on ανβ3-emitting signals for proliferation and survival [44, 45], and it is likely that changes in the stiffness of the substratum may alter integrins clustering and consequently, cell proliferation. The analysis of Wang’s data with our model confirms this interpretation and indicates that the substrate regulates the details of tumorsphere evolution and that a powerful engine of tumorsphere growth is the stem cell “memory” of its niche. Cancer stem cells divide trying to reconstitute the
niche, an attempt that is frustrated if stem cell maintenance factors are introduced.\(^1\) The consequence is the continuous generation of CSCs that do not leave the cycle\(^2\) because they do not receive the signals to do so.

Even if the CSC fractions are not far from unity in both *soft* and *hard*, the detailed reasons for their behavior are different. In both cases the cell subpopulations assist each other, generating a positive-feedback cycle that leads to continuous growth, an indication that cell-to-cell signaling is crucial to determine the process. Cooperation between subpopulations is critical to the theoretically indefinite development predicted for spheroids grown in these conditions. Intraspecific interactions are\(^3\) ways inhibitory in *soft*, suggesting that the substrate cannot substantially modify the competition for resources between cells in the same subpopulation. The effect of the substrate on intraspecific interactions in *hard* is much stronger. CSCs are\(^4\) weakly cooperative, but DCCs are so strongly competitive that the DCC population would disappear if it were not for the significant cooperation from the CSCs, which is expressed mainly through a considerable fraction of asymmetric divisions. The competition between DCCs is also likely to induce the phenotype change indicated by the large and negative value of \(\alpha_{SD}\). The parameter \(\alpha_{DS}\), which controls the influence of cancer stem cells on differentiated cancer cells, is always negative, and very strongly so in *control*, suggesting that CSCs have a promoting and protective influence on DCCs, a phenomenon that was already observed by Kim and coworkers. These authors found that CSCs protect DCCs from anoikis promoting tumor formation when the two subpopulations are mixed [46]. The smaller magnitude of \(\alpha_{DS}\) in the *soft* and *hard* experiments suggests that stem cell maintenance factors weaken, but do not cancel, this protective effect.

Unless a potent anti-differentiation agent is added to the growth medium, we expect the differentiation probability \(p_d\) to be larger than \(p_s\). If so, our Eq. (2) predicts the minimum number of stem cells needed to achieve successful spheroid growth. This number depends only on \(p_s\), \(p_d\), and the intraspecific interaction between cancer stem cells, which must be cooperative. Weak cooperation or a small \(p_s\) would mean that the tumorsphere must be started from a large nucleus. When no stem cell maintenance factors are applied, as in the *control* case, the CSC population remains constant. These cells register the unfettered growth of the differentiated cancer cells and receive no signals telling them to leave quiescence. Arguably the situation would
change if the relative fractions corresponding to the niche were reached, but this cannot be verified due to cellular migration away from the spheroid. Comparison of this case with hard suggests that adhesion between CSCs is stronger than between DCCs.

In summary, the ability of stem cells to sense their environment plays a crucial role in tumorsphere evolution. Substratum stiffness has a profound influence on the behavior of cancer stem cells, soft substrates favoring symmetric divisions and hard substrates leading to a large proportion of asymmetric doublings. In vivo studies are needed to further our understanding of niche processes under natural environments.

Abbreviations
CSC: cancer stem cells; DCC: differentiated cancer cells, RGS: random grid search.

Acknowledgements
LBe thanks CONICET for a postgraduate grant. LV is grateful to the Florencio Fiorini, Alberto Roemmers and Rene Barón Foundations, and to the National Institute of Cancer, Argentina.

Authors' contributions
All authors have equally contributed to the work.

Funding
This work was supported by SECyT-UNC (project 05/B457) and CONICET (PIP 11220150100644), Argentina. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests.
The authors have declared no conflicts of interest.

Author details
1 Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, X5000 HUA Córdoba, Argentina. 2 Instituto de Biología y Medicina Experimental, CONICET., C1428 ADN Buenos Aires, Argentina.

References
1. Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645.
2. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274–7282.
3. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.
4. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Research. 2007;67(3):1030–1037.
1. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–110.

2. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation. 2008;15(3):504–514.

3. Battle E, Clevers H. Cancer stem cells revisited. Nature Medicine. 2017;23(10):1124–1134.

4. Jagust P, de Luxán-delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol. 2019;10:203.

5. Chen YC, Ingram PN, Fouladdel S, Mcdermott SP, Azizi E, Wicha MS, et al. High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis. Sci Rep. 2016;6:27301.

6. Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–728.

7. Benitez L, Barberis L, Condat CA. Modeling tumorspheres reveals cancer stem cell niche building and plasticity. Physica A. 2019;533:121906.

8. Taloni A, Ben Amar M, Zapperi S, La Porta CAM. The role of pressure in cancer growth. Eur Phys J Plus. 2015;130:224.

9. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling Stress : The Mechanics of Cancer Progression and Aggression. Frontiers Cell Develop Biol. 2018;6:17.

10. La Porta CAM, Zapperi S, Sethna JP. Senescent Cells in Growing Tumors: Population Dynamics and Cancer Stem Cells. PLoS Computational Biology. 2012;8(1):e1002316.

11. Agur Z, Kogan Y, Levi L, Harrison H, Lamb R, Kinasovsky OU, et al. Disruption of a Quorum Sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biology Direct. 2010 apr;5(1):20.

12. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnol. 1997;15(8):778–783.

13. Delarue M, Montel F, Elgeti J, Vignjevic D, Cappello G, Prost J. Isotropic stress reduces cell proliferation in tumor spheroids. New Journal of Physics. 2012;14:055008.

14. Desmaison A, Struijk CA, D’Amico M, Van Oijen MMG. A new method for simulating spheroid dynamics with cell-cell and cell-ECM interactions. Biophysical Journal. 2014;107(8):1821–1828.

15. Desmaison A, Frongia C, Grenier K, Ducommun B, Lobjois V. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One. 2013;8(2):e54632.

16. Mills KL, Kemkemer R, Rudraraju S, Garikipati K. Elastic Free Energy Drives the Shape of Prevascular Solid Tumors. PLoS One. 2014;9(7):3–9.

17. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophysical Journal. 2008;95(9):4426–4438.

18. Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, et al. Extracellular matrix stiffness controls osteogenic differentiation.
of mesenchymal stem cells mediated by integrin α5. Stem Cell Research and Therapy. 2018;9(1):1–13.

31. Nakano T, Okaie Y, Kinugasa Y, Koujin T, Suda T, Hiraoka Y, et al. Roles of Remote and Contact Forces in Epithelial Cell Structure Formation. Biophysical Journal. 2020;118(6):1468–1478.

32. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–1143.

33. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126(4):677–689.

34. Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Research. 2019;21:6.

35. Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Science Advances. 2017;3(5).

36. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia (New York, NY). 2015;17(1):1–15.

37. Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncology Letters. 2016;12(2):1355–1360.

38. Britton NF. Essential Mathematical Biology. Springer; 2003.

39. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell. 2009;4(6):568–580.

40. Videla Richardson GA, Garcia CP, Roisman A, Slavutsky I, Fernandez Espinosa DD, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells under BMP4 and Noggin Influence. Brain Pathology. 2016;26(1):43–61.

41. Rodriguez-Brenes IA, Komarova NL, Wodarz D. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proceedings of the National Academy of Sciences. 2011;108(47):18983–18988.

42. Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell. 2005;8(3):175–176.

43. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533.

44. Vellon L, Menendez JA, Lupu R. αvβ3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene. 2005;24(23):3759–3773.

45. Vellon L, Menendez JA, Lupu R. A bidirectional αvβ3 integrin-ERK1/ERK2 MAPK connection regulates the proliferation of breast cancer cells. Molecular Carcinogenesis. 2006;45(10):795–804.

46. Kim SY, Hong SH, Basse PH, Wu C, Bartlett DL, Kwon YT, et al. Cancer Stem Cells Protect Non-Stem Cells From Anoikis: Bystander Effects. Journal of Cellular Biochemistry. 2016;107:2289–2301.
Figure 1 Growth in soft experiment. Data-based model results for the CSC (red) and DCC (green) spheroid subpopulations grown on a soft substrate. The blue line fits the total cell population.

Figure 2 Growth in hard experiment. Data-based model results for the CSC (red) and DCC (green) spheroid subpopulations grown on a hard substrate. The hard substrate yields a faster growth rate than the soft substrate, and, at late times, a higher fraction of CSCs.
Figure 3 Growth in control experiment. Fitting the control medium data predicts unlimited growth, faster than in either soft or hard, but now driven by the DCCs. The number of CSCs does not increase.

Figure 4 CSC fractions. Time evolution of the cancer stem cell fraction predicted by the model for the three experiments. In both soft and hard the stem cell fraction remains very high, since the stem cell maintenance factors are a barrier to DCC generation. In control the differentiation barrier is not present and the stem cell fraction decreases towards the value corresponding to the niche.
Tables

Table 1 The three chosen parameter sets obtained from fits to the experimental data.

constant	units	SOFT	HARD	CONTROL
\(r \)	[1/days]	0.0685	0.1335	0.0240
\(p_s \)	none	0.9701	0.7124	0.1646
\(p_d \)	none	0.0019	0.0000	0.3911
\(\alpha_{SS} \)	[1/cells]	0.0873	-0.0456	0.0028
\(\alpha_{SD} \)	[1/cells]	-0.4185	-0.5280	0.0266
\(\alpha_{DS} \)	[1/cells]	-0.2061	-0.1376	-1.0683

Table 2 Useful derived quantities from some values of Table 1.

constant	units	SOFT	HARD	CONTROL
\(\frac{1}{r} \)	[days]	14.59	7.49	41.66
\(r \ast p \)	[1/days]	0.0663	0.0951	-0.0054
\(\frac{1}{rp} \)	[days]	15.08	10.52	-185
\(p = (p_s - p_d) \)	none	0.9682	0.7124	-0.2265

Additional Files

Additional file 1: Some consequences of equation (1). The onset of growth and the fate of a tumorsphere. PDF

The system of equations (1) can be solved numerically, yielding solutions that describe the time evolution of the subpopulations. The equilibrium values of the subpopulations are obtained by setting the time derivatives in Eqs. (1) equal to zero. We will refer to these solutions as “equilibrium points”. Our mathematical model has three relevant equilibrium points [14] First, a zero population point (0,0) corresponding to the complete absence of cells. Second, a differentiated cell point \((0, \frac{1}{\alpha_{DD}})\), corresponding to a system that contains \(1/\alpha_{DD}\) DCCs and no CSCs. Finally, a coexistence point \((S^*, D^*)\), which corresponds to a mixture of the two kind of cells, whose numbers are:

\[
S^* = \alpha_{DD}(p_s - p_d) - \alpha_{DD} p_s (\alpha_{SS} \alpha_{DD} - \alpha_{SD} \alpha_{DS}) p_s
\]
\[(A1a)\]

\[
D^* = \alpha_{SS} p_s - \alpha_{DD}(p_s - p_d)(\alpha_{SS} \alpha_{DD} - \alpha_{SD} \alpha_{DS}) p_s
\]
\[(A1b)\]

As shown in [14], this system undergoes a transcritical bifurcation. This means that there is a parameter range where a small change in one parameter leads to a switch in the tumor fate from the state containing only differentiated cells to the state of coexistence. The end point of the tumorsphere evolution is the differentiated cell equilibrium if \(\alpha_{SD} \alpha_{DD} > (1 - \frac{p_d}{p_s})\).
\[(A2)\]

The tumor will reach the coexistence point if this inequality is reversed. These solutions have two interesting features: The DCC point occurs only if \(\alpha_{DD} > 0\), when the differentiated cancer cells inhibit each other.

Strengthening the inhibition, the fixed point moves towards the origin implying a smaller final size. The location of this point, but not its stability, is independent of the other parameters. For small values of \(p_s\), when few stem cells divide symmetrically, and \(\alpha_{SD} > 0\), the DCC point is stable, while the unstable coexistence point moves to very large values, as \(1/p_s\), c.f. Eqs. (A1). The initial evolution of a small system can be approximately described using a linearized version of our dynamic equations. Assuming \(S(0) = S_0\) and \(D(0) = D_0\) and linearizing either Eqs. (1)...
or their non dimensional counterparts, we can find the initial shape of the trajectories in the \(S - D \) plane. In the special case \(S_0 = 0 \), \(D(t) = D_0 \exp(rt) \), and the tumor begins to grow exponentially along the DDC line. In the more useful (experimental) situation \(S_0 \neq 0 \), and,

\[
S(t) = S_0 \exp[−(p_D - p_S)rt]
\]

The trajectory in the \(S - D \) plane starts as,

\[
D(t) = \frac{(D_0 + S_0)}{S_0} S(t)^{1/(p_S - p_D)} - S(t)
\]

Additional file 2: Technical aspects of the fitting method using a Random Grid Search algorithm and a nonlinear statistical estimator. PDF

The Random Grid Search algorithm consists in first randomly sweeping the domain of physically reasonable initial conditions in parameter space. We then collect in a histogram all the parameters that match two selection criteria: (a) a relative error lower than 5% for the curve fitting the data points, and (b) the non-negativity of the subpopulations up to day 8. To implement the first criterion we define a relative error measure given by the nonlinear estimator

\[
R = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - Y(t_i)}{y_i^2} \right).
\]

Here \(n \) is the number of data points, \(y_i \), the data value at time \(t_i \), and \(Y(t_i) \) the function value obtained by fitting the data. This estimator is the same as the function we minimize through the fitting process (the classical \(R^2 \) parameter also used as a minimization - objective function, is not a good reporter for a nonlinear problem). The first selection criterion of the RGS algorithm ensures that no accepted parameter set has an accuracy below 95%. A consistent interpretation of the process requires that the order of magnitude and, especially, the sign of each parameter be the same in all realizations. Therefore, even if different combinations of the fitting parameters yield acceptable descriptions of the experimental results, the qualitative mechanisms that control spheroid growth can be satisfactorily identified. We thus find a distribution of values for each parameter and select the median as its representative value. These representative values, whose accuracy is of about 98%, are the ones specified in Table 1 for the three experiments.

In Figs. A, B and C, we illustrate the result of implementing our fitting method as box-plots of the distributions of the obtained data. For each parameter, specified in the upper-right corner of the box-plot, we mark the values obtained and draw the box where half the points fall and the median of the distribution. The latter becomes the chosen value of the corresponding parameter.
Figure A Parameter distributions of soft experiment. Boxplot representation of the fitting parameter distributions obtained by RGS for the soft experiment. The box in each panel contains 50% of the data around the center of the corresponding distribution. The middle vertical line indicates the median of the distribution.
Figure B Parameter distributions of hard experiment. Boxplot representation of the fitting parameter distributions obtained by RGS for the hard experiment. The box in each panel contains 50% of the data around the center of the corresponding distribution. The middle vertical line indicates the median of the distribution.
Figure C Parameters distributions of control experiment. Boxplot representation of the fitting parameter distributions obtained by RGS for the control experiment. The box in each panel contains 50% of the data around the center of the corresponding distribution. The middle vertical line indicates the median of the distribution.