Stabilization of H_3^+ in the high pressure crystalline structure of H_nCl ($n = 2–7$)

Ziwei Wang, a Hui Wang,*a John S. Tse,*abc Toshiaki Iitakad and Yanming Maac

The particle-swarm optimization method has been used to predict the stable high pressure structures up to 300 GPa of hydrogen-rich group 17 chlorine (H_nCl, $n = 2–7$) compounds. In comparison to the group 1 and 2 hydrides, the structural modification associated with increasing pressure and hydrogen concentration is much less dramatic. The polymeric HCl chains already present in the low temperature phase under ambient pressure persist in all the high pressure structures. No transfer of electrons from the chlorine atoms into the interstitial sites is found. This indicates the chemical bonding at high pressure in group 17 elements is fundamentally different from the alkali and alkaline elements. It is found that almost perfectly triangular H_5^+ ions can be stabilized in the crystalline structure of H_2Cl.

Introduction

The suggestion that the hydrides of main group elements at high pressure may be superconductors with high critical temperature has stimulated recent interest in the search for the possible existence of hydrogen-rich alloys by theoretical and experimental means. The former has been greatly facilitated by the recent developments in practical strategies for the prediction of crystal structures. Although, the predicted hydrides have yet to be confirmed by experiment, the theoretical studies have revealed a myriad of novel structures for the high pressure hydrides and enriched the understanding of the nature of chemical bonding in the rarely explored high pressure regime.

The hydrides of group 1 and 2 elements formed from the reaction of the metal and hydrogen molecules have been the most studied. Most of the structures and structural trends can be explained from the simple concept of electron transfer from the metal to the hydrogen due to the large electronegativity differences between the alkali and alkaline elements and hydrogen molecules. The predicted compounds display rich H species distinguished from the well-known H^+ in hydrides at traditional stoichiometric ratios. Perhaps one of the most exciting predictions is the emergence of symmetric and linear H_3^+ at high pressures as observed in dense CsH3 and BaH6. Moreover, the formation pressures of these compounds of just a few tens of GPa are accessible by experiments. In comparison, the bonding pattern is quite different for group 14 and transition elements. For example, a Van der Waals solid with such molecular H_2 units was found experimentally in SiH4 at low pressure. At higher pressure, the atoms of group 14 elements tend to aggregate to form a 2D layered structure decorated with molecular like H_2 species as predicted for SiH4 and SnH4. In comparison, the high pressure chemistry of hydrogen with electron-rich group 17 halogens has not been investigated. In this paper, we present results on a study of the crystal structures and phase stabilities of hydrogen-rich HCl–H_2 system. A major finding is the stabilization of cationic (H_4^+) (H_2) species in H_2Cl. The geometry of H_3^+ becomes almost an equilateral triangle under very high pressure.

The observation of a triatomic hydrogen cation H_3^+ in the solid state is new and significant. The isolated molecule is important in various branches of science, such as physics, chemistry and astronomy. For example, it is known that the H_3^+ ion with a triangular configuration is stable in the interstellar medium thanks to the low temperature and low density of the interstellar space and the H_3 molecule is commonly formed from the neutralization reaction of H_3^+ and an electron, and rather evanescent as a result of the repulsive nature of its ground state. Furthermore, the multicenter (H_4^+) (H_2) bond in group 17 Cl compounds signifies a deviation in the nature of chemical bonding from the charge transfer interactions in group 1 and 2 hydrides and covalent bonding in group 14 hydrides.

Computational details

The search for stable high pressure structures of the H_2Cl system was based on global minimization of free energy surfaces using ab initio total energy calculations and the particle–swarm-optimization scheme as implemented in the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization).
Optimization) code. The performance and reliability of this method has been demonstrated on many known systems. An example is the success on the prediction of an insulating orthorhombic (Aba2, Pearson symbol cC40) structure of Li and, more recently, two low-pressure monoclinic structures of Bi2Te3. In both cases, the predicted structures were later confirmed by experiments. Structural searching was performed at 100, 200, and 300 GPa with a simulation cell consisting of 1–4 formula units. \textit{Ab initio} electronic structure calculations and structural relaxations were carried out using density functional theory with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation implemented in the Vienna \textit{ab initio} Simulation Package (VASP) code. The predicted stable structures were carefully optimized at a high level of accuracy. A plane wave energy cutoff of 1000 eV was employed. Large Monkhorst-Pack \(k \)-point sampling grids were used to ensure that all the enthalpy calculations were well converged to an accuracy of 1 meV per atom. The atomic charges were obtained from Bader topological analysis with very large grids to ensure sufficient accuracy. We also performed additional calculations employing the DF-2 van der Waals (vdW) functional to validate the results, in particular for the low pressure structures. Phonons were calculated with the supercell method implemented in the PHONOPY program. In essence, from finite displacements, the Hellmann–Feynman atomic forces computed at the optimized supercell by the VASP code were input to the PHONOPY code to construct the dynamical matrix. Diagonalization of the dynamical matrix gives the normal modes and their frequencies. Converged results were obtained with the use of a 2 \(\times \) 2 \(\times \) 1 supercell and 4 \(\times \) 4 \(\times \) 6 \(k \)-meshes for the \(\text{Cc} \) structure, and a 2 \(\times \) 2 \(\times \) 1 supercell and 4 \(\times \) 4 \(\times \) 6 \(k \)-meshes for the \(\text{C}2/c \) structure.

Results and discussion

Before embarking on a detailed discussion of the structures of the predicted high pressure H\(_2\)Cl polymers, the relative energetics of the H–Cl system with H-rich stoichiometry from 100 to 300 GPa are summarized in the convex hull plot shown in Fig. 1. The enthalpies of formation were evaluated as the difference in the enthalpy of the predicted H\(_2\)Cl structure with solid HCl and H\(_2\) at the selected pressures. Since hydrogen has a small atomic mass, the zero point energy (ZPE) may be important. To investigate the vibrational effects on the phase stability, ZPEs for H\(_2\)Cl and H\(_2\)Cl were estimated at 100–300 GPa from the corresponding phonon spectra using the quasi-harmonic approximation. It is found that the ZPEs are quite small and the inclusion of ZPEs in the phase diagram only resulted in a slight shift in the formation pressures but the stability of both phases remains unaltered. Structures lying on the convex hull are thermodynamically stable or metastable and, in principle, can be synthesized. Fig. 1 reveals that only two HCl–H\(_2\) complexes, H\(_2\)Cl and H\(_2\)Cl are stable at 100 GPa. At this pressure H\(_2\)Cl has the most negative enthalpy of formation. With increasing pressure, the stability of H\(_2\)Cl relative to H\(_2\)Cl increases and becomes the most stable phase at 300 GPa.

vdW effects may play an important role in the stabilization of a molecular solid. We have thus performed additional calculations on the H–Cl system with the vdW-DF2 method. The results show that the differences between calculations with and without vdW corrections on the formation enthalpies of the structures considered in Fig. 1 are small. The formation pressures were found to change slightly. For example, the stabilized pressure of H\(_2\)Cl increased from 21.2 to 21.3 GPa, while for H\(_2\)Cl it increased from 50 to 60 GPa. Otherwise, the energetic order remains the same.

Now we examine the development of the high pressure crystal structures in H\(_n\)Cl (\(n = 2–7 \)). The starting point is the crystal structure of HCl under ambient pressure. At low temperature, X-ray and neutron diffraction show HCl crystalized in an orthorhombic structure (\(\text{bB}2m \)). In the crystal, HCl molecules are linked via the H atoms forming zigzag chains running parallel to the crystallographic \(b \) axis. The nearest neighbour Cl–H and second nearest neighbour Cl–Cl distances are 1.25 Å and 2.44 Å, respectively. The Cl–Cl separation is 3.88 Å and the H–Cl–H valence angle is 93.6°. The predicted crystalline phase of H\(_2\)Cl at 100 GPa has a \(\text{C}2/c \) space group and the structure is shown in Fig. 2. The crystal is formed from HCl chains interposed with H\(_2\) molecules. In this case, the H in the HCl chain is midway between the two Cl atoms with an H–Cl...
distance of 1.45 Å. The H–Cl–H angle has opened to 97.9° and
the Cl···Cl separation is shortened to 2.90 Å. The H2 units in the
structure all have a H–H distance of 0.74 Å, which is almost
identical to that of the isolated molecule. The Bader charges for
the H in the chain and Cl atoms are +0.44 and −0.35, respectively
and 0.0 for the H atoms in the H2 units. The closest
contact between a Cl atom and the H2 molecule is 1.98 Å. The
crystal structure of H2Cl at 300 GPa differs little from that at 100
GPa. The H atoms in the H–Cl chains are still situated at the
middle of the two neighbouring Cl atoms with a H–Cl distance
of 1.35 Å. The H–Cl–H angle is 95.5° and the shortest separation
between two Cl atoms has reduced further to 2.69 Å. The H–H
bond length in the H2 unit is 0.73 Å. The closest H⋯Cl distance is.
1.70 Å. Compression has a significant effect on the inter-
atomic distances of the H–Cl chains but does not alter fundamentally
the underlying bonding pattern. A longer H–Cl distance in the chain suggests increased ionicity of the Cl–H bonds.

Although H2Cl and H4Cl are only metastable, it is instructive
to examine the evolution of the crystal structure with increasing
H2 concentration. The structures of H2Cl at 100 and 300 GPa are
shown in Fig. 3. Both are composed of zigzag H–Cl chains. Like
H2Cl, the H atom is equidistant from the two nearest Cl atom
with H–Cl bond distances of 1.44 Å at 100 GPa and 1.43 Å at 300
GPa. The most significant difference between the low and high
pressure structures is that the Cl–H–Cl angle is almost linear at
100 GPa but bends to 135° at 300 GPa. At 300 GPa, the closest
contact between the H2 and the H in the chain is 1.27 Å.
However, in both cases, the H–H distance of the H2 molecule
remains 0.73 Å. The structure of H2Cl at 100 GPa differs
dramatically from all the structures within this series of
compounds. Instead of H–Cl chains, the structure is composed of
isolated HCl and H2 molecules. The H–Cl distance is 1.38 Å
and the H–H bond length is 0.74 Å. For comparison, the H–Cl
bond of a free molecule is 1.276 Å. Therefore, the distance in the
solid state at 100 GPa is slightly longer. The structure of H2Cl at
300 GPa again is different from that at 100 GPa. The basic
building units are isolated Cl atoms, H2 molecules with H–H
distance of 0.74 Å and a novel 2-D layer of slightly puckered
fused hexagonal rings formed from 3 HCl units with additional
H atoms attached to the Cl atoms. Each H atom in the ring is
bonded to three Cl atoms. In addition, each Cl is bonded to an
extra H atom which is not coordinated to other species in the
-crystal. The H–Cl distances in the fused ring are 1.59 Å and the
terminal H–Cl is substantially shorter at 1.49 Å. Interestingly,
the terminal H–Cl–H (ring) angles are 77° and the in-plane H–
Cl–H and Cl–H–Cl angles are between 114–115°.

An interesting structure was observed in H2Cl at 100 GPa.
Although chains formed from Cl and H atoms are still clearly
visible, the detailed construction of the chain is very different.
In H2Cl, instead of placing one H atom midway between the two
nearest neighbour Cl atoms, it is replaced by an H2 unit. The H3
is a distorted isosceles triangle and can be described as a loosely
bound unit of an H atom and an elongated H2 with an apical
angle of 63.8°. The apical H atom is linked to the two nearest Cl
atoms in the chain with H–Cl distances of 1.47 Å. The distances
from the apical H atom to the two H forming the H2 are 1.01 Å
and 0.97 Å, respectively and the intermolecular H–H distance is
0.81 Å. The remaining H2 units in the structure have H–H
distances of 0.74 Å. Moreover, the shortest distance from these
H2 to the H3 is 1.36 Å and, therefore, may be considered as non-
interacting molecules.

Compression of H2Cl to 300 GPa does not change the space
group symmetry. The chain pattern with interpose H3 units is
still maintained, but the local H···H interactions have changed
dramatically. The H3 unit now approaches an equilateral
triangle. The H–H lengths are 0.87, 0.87 and 0.88 Å with bond
angles 59.7, 59.7 and 60.5°. The Cl–H distance has elongated
from 1.47 Å at 100 GPa to 1.60 Å. The large lengthening of the
Cl–H clearly suggests a substantial change in the Cl–H bonds.
More significantly, the isolated H2 molecules are now pushed
towards the H3 units and interact with one of the H atoms
forming almost two H···H bonds at 1.15 Å. Concomitantly,
the distance in H2 is lengthened to 0.76 Å. The Bader charges for
the H atom in the H3 and H2 units and for the Cl atom are +0.16 and
+0.014 and −0.48 respectively. In comparison to H2Cl the
ionicity on both the H and Cl atoms have increased substan-
tially. The plot of the electron localization function (ELF) shown
in Fig. 4 shows localized spin paired electron density within the
H3 ring and in the H2 molecule (ELF over 0.8). Weak pairing is
also observed between one of the H in the H3 ring with the two
H atoms of H2.

Fig. 3 Crystal structures of hydrogen chlorides. Predicted metastable
phase H3Cl (A) and H4Cl (B) at pressures of 100 to 300 GPa.

Fig. 4 (A) crystal structure of Cc-H2Cl recovered at 100 GPa and its
chain style when compressed to 300 GPa. (B) Electron localization
function (ELF) maps of the planes where the hydrogen and chloride
atoms lie for the Cc structure at 300 GPa.
It is tempting to relate the positively charged H$_3^+$ unit to an isolated trihydrogen cation H$_3^+$.

H$_3^+$ has a pyramidal structure with H–H bond distance of 0.90 Å. For comparison, at 300 GPa the average intramolecular H–H distance in the H$_3$ unit in H$_2$Cl is 0.87 Å and a total charge of +0.48 (3 × 0.16). In addition, the H–H distance of 0.76 Å in the H$_2$ unit is only slightly perturbed from the isolated molecule. Therefore, it is not unreasonable to suggest that the high pressure H$_2$Cl structure is composed of H$_3^+$ stabilized in the solid state through primarily ionic interactions with the Cl atoms and secondary weak interactions with a pair of H$_2$ molecules. To investigate further the properties of the H$_3^+$ unit in H$_2$Cl, the phonon densities of states calculated at 300 GPa are shown in Fig. 5. The low-energy vibrations from 100–500 cm$^{-1}$ are dominated by the Cl atomic motions. The phonon modes in the region from 1800 to 3400 cm$^{-1}$ can be assigned to H$_3^+$ molecular vibrations and then near 4000 cm$^{-1}$ to the H$_2$ molecule. The H$_3^+$ bend vibrations are split into two bands centered at 1800 cm$^{-1}$ and 2000 cm$^{-1}$. The peak at 3350 cm$^{-1}$ is attributed to the stretching vibration. In comparison, the fundamental frequencies for isolated H$_3^+$ are v (stretch) = 3220×48 cm$^{-1}$ and v (bend) = 2545 × 99 cm$^{-1}$, the latter is a degenerated mode.31 The vibration frequency is 4350 cm$^{-1}$ for a free H$_2$ molecule. The main mechanism for the synthesis of H$_3^+$ by experiment is via the chemical reaction: 32 H$^+$ + H$_2$ → H$_3^+$. The concentration of H$_3^+$ is the limiting factor on the rate of this reaction. H$_3^+$ can only be produced in interstellar space by the ionization of H$_2$ by a cosmic ray. In H$_2$Cl, the electronegative chlorine atoms acquire electrons from the hydrogen. From previous studies, it is known that high pressure facilitates the formation of multicenter H$_3^+$ molecules. Therefore, it is not unreasonable to relate the unit to the isolated H$_3^+$ molecule. It is also found that the effect of pressure on the electronic structure of group 17 hydrides is very different from the more electropositive group 1 and 2 elements: the electron-rich Cl atom and anion do not transfer their electrons into interstitial space of the crystal under very high compression. In fact electrons are removed from the H atoms leading to the formation of cationic clusters that benefit from multicenter bonding.

Acknowledgements

The authors appreciatively acknowledge the financial support by NSFC under Grant nos. 11104104, 11474126, 11474128, and 91022029, China 973 Program under Grant no. 2011CB808200, the 2013 Program for New Century Excellent Talents in University, 2012 Changjiang Scholar of Ministry of Education, Changjiang Scholar and Innovative Research Team in University (Grant no. IRT1132). T.I. was supported by MEXT of Japan (Grant nos. 20103001–20103005) and the RIKEN iTHES project. Part of the calculations were performed in the computing facilities at RIKEN Integrated Cluster of Clusters system (Japan) and the High Performance Computing Center of Jilin University. The work at the University of Saskatchewan was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

Notes and references

1. N. W. Ashcroft, Phys. Rev. Lett., 1968, 21, 1748.
2. J. Hooper and E. Zurek, Chem.–Eur. J., 2012, 18(16), 5013–5021.
3. E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov and A. O. Lyakhov, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 17640.
4. J. Hooper and E. Zurek, J. Phys. Chem. C, 2012, 116(24), 13322–13328.
5 Z. Wang, Y. Yao, L. Zhu, H. Liu, T. Itaka, H. Wang and Y. Ma, J. Chem. Phys., 2014, 140, 124707.
6 D. C. Lonie, J. Hooper, B. Altintas and E. Zurek, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 87, 054107.
7 A. Shamp, J. Hooper and E. Zurek, Inorg. Chem., 2012, 51(17), 9333–9342.
8 J. Hooper, B. Altintas, A. Shamp and E. Zurek, J. Phys. Chem. C., 2013, 117, 2982.
9 T. A. Strobel, A. F. Goncharov, C. T. Seagle, Z. Liu, M. Somayazulu, V. V. Struzhkin and R. J. Hemley, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 144102.
10 Y. Li, G. Gao, Q. Li, Y. Ma and G. Zou, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 064104.
11 G. Gao, et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 1317.
12 D. Martin, E. McDaniel and M. Meeks, Astrophys. J., 1961, 134, 1012.
13 Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 094116.
14 Y. Wang, J. Lv, L. Zhu and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun., 2012, 183, 2063–2070, CALYPSO code is free for academic use, please register at http://www.calypso.cn.
15 P. Li, G. Gao, Y. Wang and Y. Ma, J. Phys. Chem. C, 2010, 114, 21745.
16 J. Lv, Y. Wang, L. Zhu and Y. Ma, Phys. Rev. Lett., 2011, 106, 015503.
17 L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma and G. Zou, Phys. Rev. Lett., 2011, 106, 145501.
18 C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin and H. K. Mao, Nat. Phys., 2011, 7, 211.
19 L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma and G. Zou, Phys. Rev. Lett., 2011, 106, 145501.
20 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
21 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169.
22 H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State, 1976, 13, 5188.
23 R. F. W. Bader, Acc. Chem. Res., 1985, 18, 9.
24 G. Henkelman, A. Arnaldsson and H. Jónsson, Comput. Mater. Sci., 2006, 36, 354.
25 W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter, 2009, 21, 084204.
26 J. Klimeš, D. R. Bowler and A. Michaelides, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 195131.
27 K. Parlinski, Z. Q. Li and Y. Kawazoe, Phys. Rev. Lett., 1997, 78, 4063.
28 A. Togo, F. Oba and I. Tanaka, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 134106.
29 Y. Ma and J. S. Tse, Solid State Commun., 2007, 143, 161.
30 E. Sándor and R. Farrow, Nature, 1967, 213, 171.
31 G. D. Carney, Mol. Phys., 1980, 39(4), 923–933.
32 T. R. Hogness and E. G. Lunn, Phys. Rev., 1925, 26, 44.