Determination of Axial Length Requiring Adjustment of Measured Circumpapillary Retinal Nerve Fiber Layer Thickness for Ocular Magnification

Kazunori Hirasawa, Nobuyuki Shoji, Yukako Yoshii, Shota Haraguchi
Orthoptics and Visual Science, Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan

Abstract

Purpose: To determine the axial length requiring adjustment of measured circumpapillary retinal nerve fiber layer (cpRNFL) thickness to account for ocular magnification during spectral-domain optical coherence tomography (SD-OCT).

Methods: In this prospective study, 148 eyes of 148 healthy student volunteers were imaged by two examiners using three-dimensional SD-OCT. In 54 randomly selected eyes, total cpRNFL thickness was measured with and without adjustment for ocular magnification to establish intra-examiner and inter-examiner measurement error. The 148 eyes were then divided into three groups according to the error values: control group (difference in the corrected and uncorrected total cpRNFL thickness was within the measurement error range), thinner group (the corrected total cpRNFL thickness was less than the uncorrected one), and thicker group (the corrected total cpRNFL thickness was more than the uncorrected one). The cutoff values of axial length between the control and the other groups were calculated by receiver operating characteristic analysis.

Results: Measurement error ranged from 4.2 to 5.3 µm; the threshold value was defined as 5.3 µm. The cutoff values of axial length between the thinner and the control groups and between the control and the thicker groups were 23.60 (area under the curve [AUC] = 0.959) and 25.55 (AUC = 0.944) mm, respectively.

Conclusions: Axial lengths shorter than 23.60 mm and longer than 25.55 mm require adjustment of measured cpRNFL thickness to account for ocular magnification during SD-OCT.

Clinical Trial Registration: UMIN Clinical Trials Registry (http://www.umin.ac.jp/) under unique trial number UMIN000013248 (date of registration: 02/24/2014)

Citation: Hirasawa K, Shoji N, Yoshii Y, Haraguchi S (2014) Determination of Axial Length Requiring Adjustment of Measured Circumpapillary Retinal Nerve Fiber Layer Thickness for Ocular Magnification. PLoS ONE 9(9): e107553. doi:10.1371/journal.pone.0107553

Editor: Andreas Wedrich, Medical University Graz, Austria

Received April 23, 2014; Accepted August 13, 2014; Published September 12, 2014

Copyright: © 2014 Hirasawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: hirasawa@kitasato-u.ac.jp

Introduction

Circumpapillary retinal nerve fiber layer (cpRNFL) thickness measured by optical coherence tomography (OCT) is extensively used for glaucoma diagnosis. [1–5] It is generally measured in an imaged scan circle approximately 3.4 mm in diameter and centered on the optic nerve head based on the Gullstrand schematic eye (corneal radius = 7.7 mm; refraction = 0 diopter; axial length = 24.39 mm). As the apparent size of the optic nerve head is magnified in hyperopic eyes (short axial length) and minified in myopic eyes (long axial length), [6] the scan circle must be enlarged and reduced, respectively. Accordingly, measured cpRNFL thickness should also be corrected to account for ocular magnification, a drawback of the imaging device.

Reportedly, uncorrected cpRNFL thickness has a negative correlation with axial length. [7–18] On the other hand, corrected cpRNFL thickness has no correlation or only a weak positive correlation with axial length [15–18].

Myopia is highly prevalent worldwide. [19–24] Myopia and hyperopia are risk factors for open-angle [25–29] and angle-closure [30–32] glaucoma, respectively, implying that these defects are inseparable from glaucoma. Of note, the axial lengths requiring correction of measured cpRNFL thickness to account for ocular magnification have not been evaluated. The aim of this study was to determine the axial lengths requiring adjustment of cpRNFL thickness measurements for ocular magnification during spectral-domain OCT (SD-OCT).

Methods

Participants
One hundred forty-eight student volunteers from Kitasato University were recruited. The study followed the tenets of the Declaration of Helsinki, and written informed consent was obtained from each participant after receiving approval from the

All the volunteers underwent comprehensive ophthalmic examinations including noncycloplegic refraction testing (KR-8100PA, Topcon, Japan), visual acuity testing at 5 m using a Landolt ring chart, intraocular pressure (NT-530P, NIDEK, Japan) and axial length measurements (OA-1000, TOMEY, Japan), and fundus examination by a glaucoma specialist. Those with corrected visual acuity of 20/20 or better, intraocular pressure of 21 mmHg or less, normal optic disc, and no fundus disease were included.

SD-OCT

SD-OCT (3D OCT-2000, version 8.00; Topcon, Japan) was used for cpRNFL thickness measurement. The device operates at a speed of 50,000 A-scans per second and has a depth and lateral resolution of 6 and 20 μm or less, respectively. It requires a pupil size of 2.5 mm or larger for imaging. The measurements were performed in three-dimensional optic disc scan mode, consisting of 512 A-scans per B-scan×128 C-scan resolution and a 6×6 mm scan area.

Uncorrected total cpRNFL thickness was measured in a 3.4 mm diameter scan circle centered on the optic nerve head based on the Gullstrand schematic eye. The imaging device automatically adjusts the scan circle diameter to account for ocular magnification on the basis of both Littman's method [33] and Littman's method modified by Bennett et al. [6] after determining refraction, corneal curvature, and axial length.

Quantification of measurement error and grouping

One randomly selected eye of each participant was imaged with and without correction, in random order, by either examiner A or examiner B. Mydriatic agent were not used. The examiners imaged an equal number of eyes. Total cpRNFL thickness of 54 randomly selected eyes was measured by both examiners to quantify measurement error. For inter-examiner measurement error, the second measurements were analyzed. The obtained measurement error values were used to categorize the all eyes as follows:

Table 1. Demographic and Ocular Characteristics of the Participants.

Parameter	Mean ± SD	Range
Participants (men/women)	132 (41/91)	
Assessed eye (right/left)	132 (65/67)	
Age (years)	21.7±1.6	20 to 28
Spherical refraction (diopters)	−3.0±3.08	−13.00 to 4.00
Astigmatism (diopters)	−0.68±0.83	−6.00 to 0.00
Corneal radius (mm)	7.79±0.27	6.93 to 8.42
Visual acuity (logMAR)	−0.23±0.07	−0.30 to 0.00
Axial length (mm)	24.78±1.51	21.25 to 28.35
Corneal thickness (μm)	539.3±24.5	472.0 to 595.0
Intraocular pressure (mmHg)	14.4±2.2	7.7 to 20.0

SD = standard deviation; logMAR = logarithm of the minimum angle resolution.

doi:10.1371/journal.pone.0107553.t001

Figure 1. Correlation of axial length and total cpRNFL thickness measured with and without adjustment for ocular magnification.

(A) Uncorrected total cpRNFL thickness decreased as axial length increased (y = −2.8015x+174.45; R² = 0.208; p<0.001) whereas (B) the corrected one increased as axial length increased (y = 1.1597x+77.068; R² = 0.039; p = 0.024).

doi:10.1371/journal.pone.0107553.g001
The confidence interval on either side of the estimate of \(S_w\) were set subject variances. When the number of measurements and standard deviation, is the square root of the average of within-operating curve (ROC) analysis. When type I error (\(\alpha\) value of the Youden Index \([37]\) and calculated by receiver area under the curve (AUC) was 0.50 and the expected AUC error) was set as 0.01, null hypothesis value of \(\alpha\) error was 0.01, type II error (\(\beta\) error) was 0.01, and null hypothesis value of the area under the curve (AUC) was 0.50 and the expected AUC values were set to 0.80, 0.85, 0.90, and 0.95, the required sample sizes for this analysis were 44, 31, 23, and 17 eyes, respectively.

Results

Sixteen participants (six and 10 participants measured by examiners A and B, respectively) were excluded because they were less than images quality of 70 or less and lack or deviation of OCT line images after examination, so total 132 participants were measured by examiners A and B, respectively). The demographic data are shown in Table 1.

As shown in Figure 1, uncorrected and corrected total cpRNFL thickness showed negative and weak positive correlations with axial length, respectively. For every 1 mm increase in axial length, uncorrected total cpRNFL thickness decreased by 2.8 \(\mu m\) \((p<0.001)\) and the corrected one slightly increased by 1.2 \(\mu m\) \((p=0.024)\).

With regard to measurement error, three of the 54 participants were excluded because they were less than images quality of 70. Therefore, 51 eyes of 51 participants were analyzed. The measurement error values with and without adjustment ranged from 4.4 to 5.3 \(\mu m\) (Table 2). The threshold value of measurement error was set as 5.3 \(\mu m\). Accordingly, 72, 25, and 35 eyes were classified into the control, thinner, and thicker groups, respectively.

The cutoff values of axial length between the thinner and the control groups was 23.60 mm \((AUC=0.959)\) and between the control and the thicker groups was 25.55 mm \((AUC=0.944)\). The data of the ROC analysis are shown in Table 3.

Discussion

In this study, uncorrected total cpRNFL thickness was negatively correlated with axial length and corrected total cpRNFL thickness showed a weak positive correlation with axial length. The variation in uncorrected total cpRNFL thickness per millimeter of axial length would not be negligible. This finding implies that adjustment for ocular magnification is important to measure cpRNFL thickness accurately.

Previous studies showed that uncorrected cpRNFL thickness decreased in the range of \(-1.8\) to \(-4.8\) \(\mu m\) as axial length increased. \([7–9,11,13,14,17]\) On the other hand, corrected cpRNFL thickness increased by \(2.2\) \(\mu m\) with increasing axial length. \([17]\) When cpRNFL is analyzed at 3.4 mm diameter from the center of the optic disc without correction, the fundus image is

Table 2. Measurement Error Values of Total cpRNFL Thickness.

Adjusted for ocular magnification	Examiner A (\(\mu m\))	Examiner B (\(\mu m\))	Inter-examiner (\(\mu m\))
Yes	5.2	4.4	5.3
No	4.9	4.8	4.7

cpRNFL = circumpapillary retinal nerve fiber layer; \(S_w\) = within-subject variation. The values were calculated as 2.77*\(S_w\).

Table 3. Results of the ROC Analysis.

Comparison	Axial length cutoff (mm)	AUC	Sensitivity	Specificity	Youden Index
Thinner vs. control group	23.60	0.959	0.889	0.809	0.698
Control vs. thicker group	25.55	0.944	0.943	0.790	0.733

ROC = receiver operating characteristic; AUC = area under the curve.

doi:10.1371/journal.pone.0107553.t002
minified in the case of longer axial length and the cpRNFL is assessed distantly to the optic disc, whereas that for shorter axial length is magnified and the cpRNFL is analyzed nearer to the optic disc. The actual scan circle diameter adjusted for magnification will be closer to the optic disc in myopic eyes and distant to the optic disc in hyperopic eyes, and the measured cpRNFL will be thicker and thinner, respectively. However, the variation in cpRNFL thickness is not really linear because the cpRNFL is distributed radially. cpRNFL thickness increases nearer to the optic disc but the variation is small compared with the peripheral region. [37] Therefore, the variation in cpRNFL thickness will be greater in the case of long axial length than short axial length, suggesting a weak positive correlation between cpRNFL thickness and axial length.

The measurement error values with and without adjustment ranged from 4.4 to 5.3 μm. Intra-examiner and inter-examiner measurement error values by SD-OCT are reportedly in the range of 3.1 to 11.7 μm. [38–52] The lower values in the present study can be attributed to good fixation during imaging because the participants were young. They also suggest lack of operator bias with the imaging technique. Therefore, 5.3 μm would be a valid criterion to categorize patients.

With the threshold measurement error value of 5.3 μm, the cutoff values of axial length requiring adjustment of measured cpRNFL thickness for ocular magnification were 23.60 and 25.55 mm. cpRNFL thickness was measured in total instead of in quadrant and clock-hour sectors because measurement in smaller sectors reduces repeatability gradually. [38–52] Further, structural changes of the fundus should be considered: in the so-called “temporal shift,” in which the superotemporal and inferotemporal changes of the fundus should be considered: in the so-called sectors reduces repeatability gradually. [38–52] Further, structural changes of the fundus should be considered: in the so-called “temporal shift,” in which the superotemporal and inferotemporal arteries and veins are more closely located toward the temporal horizon in eyes with increased axial length, the peak of the double hump of cpRNFL thickness also shifts toward the temporal horizon. [10,13] Importantly, if a measurement error value smaller than 5.3 μm is used, the cutoff range of axial length narrows, and vice versa. Therefore, 23.60 and 25.55 mm should be recognized as reference values rather than absolute values.

The calculated cutoff values of axial length represent moderate hyperopia and myopia. Because of the recent high prevalence of myopia, [19–24] the number of people with longer axial lengths of 25.55 mm is expected to increase worldwide. Therefore, cpRNFL thickness would require careful assessment in myopia, especially in a cross-sectional sample. If cpRNFL thickness of hyperopic or myopic eyes is imaged without adjustment, it will be overestimated or underestimated, respectively. On the other hand, in a longitudinal evaluation of the same condition, the influence of ocular magnification would be negligible. However, when mixed-result with and without adjustment was evaluated intra-participants, it is needed for careful to misreading depending on the axial length.

In conclusion, measured cpRNFL thickness is significantly influenced by whether or not it is corrected for ocular magnification depending on axial length. If the measurement error of cpRNFL thickness is 5.3 μm, the influence of ocular magnification might be small for axial lengths in the 23.60–25.55 mm range. However, in eyes with axial lengths shorter than 23.60 mm or longer than 25.55 mm, cpRNFL thickness can be accurately measured and compared among subjects if it is corrected for ocular magnification.

Author Contributions
Conceived and designed the experiments: KH NS. Performed the experiments: YY SH. Analyzed the data: KH YY SH NS. Contributed reagents/materials/analysis tools: NS KH. Contributed to the writing of the manuscript: KH YY SH NS.

References
1. Zangwill LM, Williams J, Berry KC, Knauer S, Weinreb RN (2000) A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology 107: 1309–1315.
2. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, et al. (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 139: 44–55.
3. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, et al. (2009) Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 50: 5741–5748.
4. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, et al. (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117: 1692–1699.e1.
5. Mwanza JC, Oakley JD, Budenz DL, Anderson DR (2011) Cirrus Optical Coherence Tomography Normative Database Study Group. Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 118: 241–248.e1.
6. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232: 361–367.
7. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, et al. (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47: 5171–5176.
8. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, et al. (2007) Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 114: 1046–1052.
9. Hougard JL, Osterfeld C, Herj H, Bengston B (2006) Modelling the normal retinal nerve fibre layer thickness as measured by Stratus optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 244: 1607–1614.
10. Kim MJ, Lee EJ, Kim TW (2010) Peripapillary retinal nerve fiber layer thickness profile in subjects with myopia measured using the Stratus optical coherence tomography. Br J Ophthalmol 94: 115–120.
11. Bendtsen T, Dornow RP, Horn FK, Laemmer R, Roesler CW, et al. (2010) Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 19: 475–482.
12. Cheung CY, Chen D, Wong TY, Tham YC, Wu R, et al. (2011) Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Invest Ophthalmol Vis Sci 52: 9629–9633.
13. Yoo YC, Lee CM, Park JH (2011) Changes in peripapillary retinal nerve fiber layer distribution by axial length. Optom Vis Sci 88: 4–11.
14. Huang D, Chopra V, Lu AT, Tan O, Francis B, et al. (2012) Advanced Imaging for Glaucoma Study/AGS Group. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? Invest Ophthalmol Vis Sci 53: 4990–4997.
15. Aykut V, Onur V, Tav M, Içcan MF, Içcan Y (2013) Effect of refractive status on peripapillary retinal nerve fibre layer thickness in children: a study by RTVue spectral-domain optical coherence tomography. Cur Med Res 38: 1214–1227.
16. Onur V, Aykut V, Tas M, Akkus MF, Ican Y (2013) Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography. Br J Ophthalmol 97: 75–79.
17. Kang SH, Hong SW, Im SK, Lee SH, Ahn MD (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51: 4075–4083.
18. Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96: 57–61.
19. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, et al. (2000) Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 41: 2486–2494.
20. Cheng CY, Hoo WM, Liu JH, Tsai SY, Chou P (2005) Refractive errors in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Invest Ophthalmol Vis Sci 44: 4630–4638.
21. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, et al. (2004) Eye Diseases Prevalence Research Group. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122: 495–505.
22. Bourne RR, Dineen BP, Ali SM, Noorul Haq DM, Johnson GJ (2004) Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and Low Vision Survey of Bangladesh. Ophthalmology. 111: 1130–1140.
23. Saw SM, Chan YH, Wong WL, Shankar A, Sandur M, et al. (2008) Prevalence and risk factors for refractive errors in the Singapore Malay Eye Survey. Ophthalmology115: 1715–1719.

24. Liang YB, Wong TY, Sun LP, Tao QS, Wang JJ, et al. (2009) Refractive errors in a rural Chinese adult population: the Handan eye study. Ophthalmology 116: 2119–2127.

25. Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, et al. (2006) Tajimi Study Group. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology 113: 1613–1617.

26. Xu L, Wang Y, Wang S, Wang Y, Jonas JB (2007) High myopia and glaucoma susceptibility: the Beijing Eye Study. Ophthalmology 114: 216–220.

27. Casson RJ, Gupta A, Neudorf HS, McGovern S, Muecke J, et al. (2007) Risk factors for primary open-angle glaucoma in a Burmese population: the Meiktila Eye Study. Clin Experiment Ophthalmol35: 739–744.

28. Perera SA, Wong TY, Tay WT, Foster PJ, Saw SM, et al. (2010) Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmal128: 900–905.

29. Kuzin AA, Varma R, Reddy HS, Torres M, Azen SP, et al. (2010) Ocular biometry and open-angle glaucoma: the Los Angeles Latino Eye Study. Ophthalmology 117: 1713–1719.

30. Andona L, Andona R, Mandal P, Srinivas M, John RK, et al. (2000) Angle-closure glaucoma in an urban population in southern India: the Andhra Pradesh eye disease study. Ophthalmology 107: 1710–1716.

31. Vijaya L, George R, Arivind H, Baskaran M, Ve Ramesh S, et al. (2008) Prevalence of primary angle-closure disease in an urban south Indian population and comparison with a rural population: the Chennai Glaucoma Study. Ophthalmology 115: 653–660. e1.

32. Sawaguchi S, Sakai H, Iwase A, Yamamoto T, Abe H, et al. (2012) Prevalence of primary angle closure and primary angle-closure glaucoma in a southwestern rural population of Japan: the Kumejima Study. Ophthalmology 119: 1134–1142.

33. Bland JM, Altman DG (1996) Measurement error. BMJ 313: 744.

34. Bland JM, Altman DG (1996) Measurement error proportional to the mean. BMJ 313: 106.

35. Bland JM, Altman DG (1996) Measurement error proportional to the mean. BMJ 313: 744.

36. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3: 32–35.

37. Hirassaw H, Tomidoko K, Araie M, Konno S, Saito H, et al. (2007) High myopia and glaucoma susceptibility: the Beijing Eye Study. Ophthalmology 114: 216–220.

38. Menke MN, Knecht PB, Funk J, Menke MN (2012) Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol250: 279–287.

39. Vizzei G, Weinreb RN, Gonzalez-Garcia AO, Bofel C, Medeiros FA, et al. (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol93: 775–781.

40. Shpak AA, Sevostyantsov MA, Ogerodnikova SN, Shormaz IN (2012) Comparison of measurement error of Cirrus HD-OCT and Heidelberg Retina Tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol250: 279–287.

41. Toteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN (2012) Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol250: 279–287.

42. Vizzei G, Weinreb RN, Gonzalez-Garcia AO, Bofel C, Medeiros FA, et al. (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol93: 775–781.

43. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, et al. (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116: 1257–1263. e1–2.

44. Gonzalez-Garcia AO, Vizzei G, Bofel C, Medeiros FA, Zangwill LM, et al. (2009) Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol147: 1067–1074. e1.

45. Garas A, Vargha P, Holló G (2010) Reproducibility of retinal nerve fiber layer thickness values measured by Cirrus Spectral OCT. Graefes Arch Clin Exp Ophthalmol117: 739–746.

46. Hong S, Kim CY, Lee WS, Seong GJ (2010) Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral-domain Cirrus high-definition optical coherence tomography in normal eyes. Jpn J Ophthalmol 54: 43–47.

47. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Grendy MG, et al. (2010) Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci 51: 5724–5730.

48. Stuhl M, Mandara N, Kohsuk MY (2010) Comparison of retinal nerve fiber layer thickness and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 117: 739–746.

49. Wu H, de Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. Am J Ophthalmol150: 807–814.

50. Tan BB, Natividad M, Chua KC, Yap LW (2012) Comparison of retinal nerve fiber layer thickness measurements between 2 spectral domain OCT instruments. J Glaucoma 21: 266–273.

51. Carpinetto P, Nobile M, Agnifili L, Toto L, Aharrh-Gnama A, et al. (2012) Reproducibility and repeatability of CirrusTM-HD-OCT peripapillary retinal nerve fibre layer thickness measurements in young normal subjects. Ophthalmologica 227: 139–145.

52. Hwang J, Sung KR, Cho JW, Van SC, Kang SY, et al. (2012) Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J Ophthalmol26: 32–38.