Stress, Sex, and Sugar: Glucocorticoid and Sex Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism

Daniel Ruiz¹,², Vasantha Padmanabhan³, and Robert M. Sargis⁴,⁵*

¹Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL;
²Department of Human Genetics, Emory University School of Medicine, Atlanta, GA;
³Department of Pediatrics, University of Michigan, Ann Arbor, MI;
⁴Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, IL;
⁵ChicAgo Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, IL

*Robert M. Sargis, MD, PhD
University of Illinois at Chicago
Division of Endocrinology, Diabetes, and Metabolism
835 S. Wolcott; Suite E625; MC 640
Chicago, IL 60612
Phone: 312-355-3142
Fax: 312-413-0437
rsargis@uic.edu

© Endocrine Society 2020. js.2020-00052
https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Acknowledgments: This work was supported by the National Institutes of Health (R21 ES021354, R01 ES028879, T32 HD007009, and P30 ES027792). We’d like to thank Amy Koehler for contributing her artwork to this manuscript.

Disclosure Summary: RMS declares honoraria from the American Medical Forum and CVS/Health. The authors declare that there are no conflicts of interest related to this manuscript.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations: AR, androgen receptor; BPA, bisphenol A; CBD, corticosteroid binding globulin; CRH, corticotropin-releasing hormone; COX, cyclooxygenase; DBD, DNA-binding domain; DDT, dichlorodiphenyltrichloroethane; DDE, dichlorodiphenyldichloroethylene; DEX, dexamethasone; DHT, dihydrotestosterone; DOHaD, Developmental Origins of Health and Disease; E2, estradiol; EDCs, endocrine-disrupting chemicals; ER, estrogen receptor; GC, glucocorticoid; GH, growth hormone; GR, glucocorticoid receptor; HPA, hypothalamic-pituitary-adrenal; HPG, hypothalamic-pituitary-gonadal; 11β-HSD, 11β-hydroxysteroid dehydrogenase; IGF-1, insulin-like growth factor-1; IFN, interferon; IL, interleukin; IUGR, intrauterine growth restriction; LBD, ligand-binding domain; MPOA, medial preoptic area; NK, natural killer; NO, nitric oxide; P4, progesterone; PCBs, polychlorinated biphenyls; PR, progesterone receptor; SULT1E1, estrogen sulfotransferase; T, testosterone; VMN, ventromedial nucleus
Abstract

Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can impact glucocorticoid receptor (GR) signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can impact sex steroid-dependent developmental processes. Nonetheless, glucocorticoid-sex steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid-sex steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Introduction

As proposed by the Developmental Origins of Health and Disease (DOHaD) hypothesis, the environment is known to impact fetal development and induce physiological changes that can increase disease risk later in life. Central to organismal survival, normal physiology is dependent on glucose homeostasis, yet glucose regulation is susceptible to developmental misprogramming through disruption of multiple tissues and hormonal axes [1, 2]. Fetal programming of glucose intolerance was initially documented as a result of famine in the early studies that supported the DOHaD hypothesis [3]. Subsequent research has shown that fetal exposures to less severe environmental insults increase metabolic disease risk later in life and can do so in a sex-dependent manner by mechanisms that remain insufficiently characterized [1, 4]. Prenatal insults may alter the development and postnatal function of key metabolic tissues, or can alter the development of tissues that secondarily impact tissues that regulate glucose homeostasis. Work detailing the epigenetic mechanisms by which environmental insults disrupt cellular development is ongoing [5]. Understanding the mechanistic origins of this developmental misprogramming is essential because the long-term metabolic health of those who are developmentally compromised is likely more susceptible to the panoply of modern metabolic disease risk factors, including unhealthy diets, sedentary lifestyles, circadian disruptions, and environmental pollution. Currently, nearly 10% of the U.S. population has diabetes [6], and approximately 463 million people suffer from the disease globally [7]. Additionally, the contribution of insulin resistance and diabetes to the pathogenesis of other devastating diseases with
growing incidence and societal burden is becoming increasingly apparent, including cancer [8] and Alzheimer’s Disease [9]. Thus, understanding the mechanistic bases of metabolic misprogramming holds immense potential for early risk assessment, mitigation, disease treatment, and even prevention of multigenerational disease inheritance.

Misprogramming of Metabolism by Glucocorticoids

Regulated in a circadian, ultradian, and stress-related manner, glucocorticoids (GCs) play an important role in maintaining various metabolic and homeostatic functions essential for life. GCs elicit their actions in large measure by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily that is encoded by the NR3C1 gene, which through alternative splicing and translation gives rise to several GR isoforms [10]. While less is known about many of the translation isoforms, GRα is the most studied splicing isoform and will be the focus of this review. GR signaling is an important target for the developmental misprogramming of metabolism since GCs adjust fetal development in response to adverse environmental conditions to maximize survival [11]. Late in gestation, GCs promote the maturation of fetal tissues, including those that control glucose and lipid homeostasis postnatally, such as the liver, adipose tissue, pancreatic β-cells, and skeletal muscle [12, 13]. Animal models of developmental overexposure to GCs demonstrate numerous metabolic derangements, including glucose intolerance, decreased insulin sensitivity, reduced β-cell mass, alterations in circulating lipids and adipokines, increased hepatic lipid accumulation, and exaggerated hepatic glucose production (reviewed in [11, 14]). Furthermore, many traditional intrauterine growth restriction (IUGR) animal models used to study the developmental origins of
metabolic disease result in fetal overexposure to GCs; these include models employing calorie restriction, protein restriction, and uterine artery ligation (reviewed in [15]). Collectively, these data indicate that multiple perturbations can disrupt regulated endogenous GC action, potentially resulting in alterations in metabolic homeostasis that promote derangements in glucose and lipid homeostasis later in life.

Public Health Relevance of Developmental GR Disruption

Aberrant overactivation of GR signaling during fetal development by factors of public health relevance are increasingly associated with the developmental misprogramming of metabolism. For example, both human studies and animal models reveal that chronic psychological stress during pregnancy leads to fetal GC excess and increases the later-life risk of diabetes and obesity in offspring (reviewed in [1]). Antenatal exposure to pharmacological GCs administered to accelerate lung development and augment the survival of preterm infants has been suggested to lower HOMA-β during early adulthood [16] and reduce insulin sensitivity [17], and thus may increase the offspring’s long-term metabolic disease risk as has been documented in animal models [11]. More studies are needed to comprehensively assess the extent to which antenatal GC treatment affects the metabolic health of aged adults, especially since pharmacological GC treatment during pregnancy is also used in some elective cesarean deliveries and as prophylaxis for women with certain previous pregnancy complications [18, 19].

The potential influence of environmental anthropogenic GR modulators is also being increasingly recognized. The relevance of environmental GR modulators is supported by studies that have found widespread GR-modulating activity from
household dust samples [20] as well as water samples from various countries [21-25]. This GR-modulating activity has been attributed to both the presence of widely prescribed pharmacological GR agonists that migrate into the environment as well as to environmental toxicants with GR-modulating activity. Endocrine-disrupting chemicals (EDCs) are defined as exogenous chemicals, or mixtures of chemicals, that interfere with any aspect of hormone action [26]. Developmental exposures to a variety of EDCs have been shown to promote later-life metabolic derangements in human and animal studies, including glucose intolerance, insulin resistance, altered \(\beta \)-cell function, obesity, and hepatic lipid accumulation [27]. While the capacity of EDCs to modulate sex steroid and thyroid hormone action has been recognized for decades [26], the ability of several of these toxicants to modulate GR signaling is only now becoming clear [28]. A recent study found that a mouse model of perinatal exposure to the GR-activating fungicide tolylfluanid increased hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression and hepatic glucose production selectively in male offspring [29]. An extensive assessment of EDCs that disrupt GR activity and GC homeostasis has recently been published [30]. Collectively, these data indicate that multiple factors of public health relevance may induce long-term adverse effects on metabolic health by aberrantly over-activating GR signaling during fetal development.

Developmental GC Exposure Promotes Sex-Specific Metabolic Misprogramming

While most studies assessing metabolic outcomes following prenatal GC overexposure in animal models have examined outcomes in male offspring only, the few studies that have interrogated offspring in males and females have found evidence for sex-specific outcomes. Observed male-specific outcomes following
prenatal treatment with the synthetic glucocorticoid dexamethasone (DEX) include increased expression of PEPCK [31] and higher circulating insulin levels [31, 32]. One study found that prenatal DEX exposure potentiated diet-induced hepatic steatosis mediated in part by an underactive growth-hormone axis, an effect observed in female offspring only [33]. While more studies are needed to assess the extent of sex-specificity in outcomes related to glucose and lipid homeostasis following prenatal GC overexposure, these examples of sex-specific metabolic derangements coupled with numerous reports of sex differences in other endpoints following prenatal GC overexposure (e.g. hypothalamic-pituitary-adrenal (HPA) responsivity and cardiovascular function (reviewed in [34])) suggest that there is sex specificity in the misprogramming of development by GCs that merits further investigation.

Missing Links: GC-Sex Steroid Crosstalk in Metabolic Programming

Critically, GC-induced misprogramming of metabolism has predominantly been studied in the context of GR activation, with minimal consideration given to crosstalk with sex steroid hormones. This neglect belies clear evidence of interactions between these endocrine axes. First, GCs modify circulating sex steroid levels during fetal development and adulthood, which in turn modulates sex steroid effects by altering activation of their own receptors. Second, GCs can directly alter androgen, estrogen, and progestogen action by modulating cellular sex steroid receptor signaling and gene transcription, as shown in adult-derived human and murine tissues in vitro and ex vivo (Figures 1-3). Importantly, a substantial number of studies have shown that disrupting androgen or estrogen action during fetal development by treatment with native sex steroids, exposure to EDCs, or via other
stressors that modulate endogenous sex steroid levels all can result in later-life metabolic derangements, which often show sex-specificity [35-38]. Thus, GC-sex steroid crosstalk has important implications relevant to DOHaD and the in utero programming of metabolic disease risk.

The mechanisms by which crosstalk between GCs and sex steroids during fetal development contribute to the misprogramming of metabolic physiology have not been directly explored, but these interactions are likely significant since fetal GC overexposure disrupts sex steroid action in the developing fetus, and has lasting effects on reproductive parameters in animal models [39] (Figure 4). Importantly, how GC-induced misprogramming of the hypothalamic-pituitary-gonadal (HPG) axis contributes to metabolic misprogramming has not been directly tested. The reported sex-specific metabolic outcomes following developmental GC overexposures suggests that disruption of sex hormone action is one potential mediator of GC programming of sex-specific outcomes. Herein we review what is known about the mechanisms by which GCs modulate estrogen, androgen, and progestogen signaling. We propose that GC-sex steroid crosstalk is an understudied endocrine mechanism of toxicity that needs to be considered in studies assessing developmental misprogramming, especially when assessing sex-specific metabolic phenotypes.

Glucocorticoid and Estrogen Receptor Crosstalk

Crosstalk between GR and estrogen receptor (ER) signaling has been established in numerous cell types from different species, including humans, rats, and mice. While, three estrogen receptors have been described, including ERα, ERβ, and the G protein-coupled ER, this section will focus on ERα since most crosstalk studies to
date have focused on ERα. ER and GR have been shown to affect each other’s action both by altering receptor and ligand availability as well as by modulating each other’s genomic binding and transcriptional endpoints. This section outlines the current state-of-knowledge regarding GR and ERα crosstalk to contextualize how a common transcriptional mechanism of hormonal communication that is currently understudied during fetal development can lead to a better understanding of developmental misprogramming by aberrant GR signaling.

Work describing the nature of GR-ER crosstalk reviewed herein is based on breast cancer cell models as well as uterine and hepatic tissue, although GR/ERα crosstalk in different brain regions has also been reported [40-42]. Despite clear differences in function and developmental origin among these tissues, evidence of crosstalk between GR and ER has consistently been evident. In the ERα-positive breast cancer cell line MCF-7, along with mouse livers and human hepatocytes, GCs inhibit estradiol (E2) from binding to ERs by upregulating estrogen sulfotransferase (SULT1E1) and inducing estrogen inactivation via sulfation [43]. Likewise, E2 promotes the proteasomal degradation of GR in MCF-7 cells by upregulating p53 and the E3 ubiquitin ligase Mdm2 [44]. E2 can further reduce GR activity by decreasing the activating phosphorylation of GR at Ser-211 via upregulation of protein phosphatase 5 in an ERα-dependent manner [45].

Apart from crosstalk at the ligand and receptor level of action, GR and ERα also influence each other’s binding to chromatin and consequential control of gene expression. Indeed, a large overlap of DNA binding sites for ERα, androgen receptor (AR), and GR have been identified in male breast tumors [46]. The potent pharmacological GR agonist DEX inhibits E2-mediated MCF-7 proliferation and downregulates ERα target gene expression by promoting GR recruitment to ERα-
binding regions, causing the destabilization of the ERα transcriptional complex [47]. The observed direct interaction between GR and ERα is mediated through the GR DNA-binding domain (DBD), and the binding of GR to ER binding sites was shown to be mediated by activator protein 1 (AP-1) and the pioneer factor Forkhead Box A1 (FoxA1) [47]. The widespread expression of FoxA1 and AP-1 during development suggests that GR binding to ER binding sites may occur during development as well. Another study found that the co-regulator interaction domain of the ERα ligand-binding domain (LBD) was necessary for the co-recruitment of GR to the estrogen response element (ERE)-rich array in an *in vitro* model, suggesting that coregulator proteins also contribute to GR-ERα crosstalk [48]. Furthermore, ligand-bound SUMOylated GR can repress ER-activated genes by inhibiting the recruitment of the mega transcription factor complex (MegaTrans) to ERα-bound enhancers [49].

DEX has the ability to both inhibit and potentiate ERα target gene expression, indicating that the transcriptional outcome of GR-ERα crosstalk is gene-specific [48]. Co-treatment with E2 and DEX resulted in ERα-assisted loading of GR that was dependent on AP-1 [50]. Another study found similar results in MCF-7 cells, in which ERα and GR co-activation promoted GR chromatin association with ER and AP-1 response elements as well as with FoxO response elements [51]. This study provided important evidence of DEX and E2 co-treatment enhancing ERα target gene expression [51]. Interestingly, the extent of ERα and GR crosstalk may go beyond altering known genes regulated by each hormone receptor alone. For example, in addition to reducing ER chromatin binding at some sites, DEX and E2 co-treatment also gave rise to GR and ERα binding at sites previously not identified in mouse mammary epithelial cell lines in the absence of co-treatment [50]. While this study did not assess gene expression, another study in human uterine
endometrial cancer cells showed that simultaneous activation of GR and ER\(\alpha\) gave rise to differentially expressed genes that were unique to the DEX and E2 co-exposure condition [52].

In addition to crosstalk in liver tissue and breast cancer cells, GCs are known to antagonize uterotrophic estrogen action [53-55]. DEX decreases estrogen-stimulated insulin-like growth factor 1 (IGF-1) gene expression [56] and inhibits the proinflammatory and bactericidal activity of E2 in the rat uterus [57, 58]. Reciprocally, E2 can prevent GR from binding to gene promoters and consequently inhibit gene expression by promoting ER\(\alpha\) binding to GREs and decreasing polymerase 2 occupancy [59] as well as by reducing recruitment of pioneer factors FoxA1/2 to GREs in human endometrial cancer cell lines [60]. In human uterine leiomyoma and myometrium cell types, approximately 97% of the examined genes that were simultaneously regulated by DEX and E2 had similar expression patterns, while a few genes were identified as antagonistically regulated by DEX and E2 [61]. Likewise, co-treatment of DEX and E2 in the human uterine endometrial cancer cell line ECC1 resulted in only 5.2% of the co-regulated genes antagonistically regulated [52]. In the human endometrial adenocarcinoma Ishikawa cell line, DEX and E2 co-treatment resulted in a transcriptional profile that was most similar to that of E2, in part because GR adopted a chromatin binding profile more similar to that of ER\(\alpha\) [62]. Thus, GCs and estrogens crosstalk in numerous ways to antagonize each other’s actions or to cooperate and drive transcription.

Emerging evidence suggests that there is crosstalk between GR and other estrogen receptors besides ER\(\alpha\). In the ER\(\alpha\)-negative A549 lung epithelial cell line, bisphenol A (BPA)-induced suppression of the GR target gene ENaC\(_\gamma\) was attenuated with the ER antagonist ICI 182780, suggesting that ER\(\beta\) mediated this
inhibitory effect, although more definitive studies are needed to validate this conclusion [63]. Furthermore, DEX has been shown to downregulate ERα and upregulate ERβ in cultured human adipose tissue [64].

The mechanisms explaining these different gene- and tissue-specific endpoints remain to be characterized, and the findings described in cancer cell lines need to be validated in metabolic tissues. However, the diverse evidence of GR-ERα crosstalk in multiple tissues suggests that GR-ERα crosstalk may be a common method of controlling the function of tissues sensitive to both GCs and estrogens. While the individual developmental impact of GCs and estrogens have been studied extensively in the context of DOHaD, the implications of GR-ERα crosstalk for DOHaD is a fertile area for exploration given that ERs and GR are expressed in fetal tissues critical for metabolic function, including skeletal muscle, liver, and adipose tissue [65-68].

Glucocorticoid and Androgen Receptor Crosstalk

GCs crosstalk with androgen signaling by lowering circulating androgen levels as well as by directly modulating cellular AR transcriptional endpoints. GCs suppress circulating testosterone (T) levels in men when administered exogenously [69-72] as well as in men with Cushing’s Syndrome [73, 74]. In addition to suppressing the HPG axis, there are numerous cellular mechanisms by which GCs modulate androgen action (Fig. 2). The DNA-binding domains (DBDs) of the androgen receptor (AR) and GR have a high degree of amino acid sequence similarity, including a conserved P-Box, which allows them to bind similar, sometimes even identical, hormone response elements [75-77]; however, GR is unable to bind a subset of androgen response elements (AREs) [76, 78]. The functional overlap between AR and GR is evident in castration-resistant prostate cancer, where GR activity regulates a different yet considerably overlapping transcriptome that renders
androgen-deprivation therapy ineffective [79]. About one-third to one-half of the AR-binding regions overlap with GR-binding regions in antiandrogen-resistant xenograft tumors and GR-expressing LNCaP-1F5 cells [79, 80]. The presence of ligand-bound AR also influences genomic GR binding activity; liganded GR can antagonize AR transcription in the presence of androgens, but GR can promote AR transcriptional endpoints in the absence of androgens [77, 80]. Although the extent of overlap in chromatin binding and transcription between GR and AR in non-prostate cancer tissues needs to be assessed, these results coupled with the structural similarities between the receptors suggest that GR has the ability to crosstalk with AR at the genomic level.

Depending on the DNA binding sequence, both AR and GR can either promote transcription or interfere with transcriptional activity [81, 82]. GR’s inhibitory effects on AR transcription is probably not due to competition for DNA binding, since DEX and dihydrotestosterone (DHT) co-treatment actually results in increased AR chromatin binding [80]. One possible way by which AR and GR inhibit each other’s transcriptional activity at specific genes may be by forming heterodimers at GREs [83]. Coactivators for each hormone receptor likely also play a role in crosstalk between GR and AR since SRC-1, the coactivator for several steroid hormone receptors including GR, can inhibit AR transactivation [84]. Another possible mechanism of AR-mediated GR antagonism is through alternative splicing, as has been shown in monkey kidney fibroblasts in which the weak androgen DHEA was shown to upregulate and preferentially direct splicing of GR mRNA into the β isoform, which is known to inhibit the expression of some GRα-regulated genes [85]. Apart from genomic crosstalk, AR signaling suppresses GR gene expression in prostate cancer [86]; however, whether AR suppresses GR expression in other tissues requires testing. The anabolic steroid oxandrolone antagonized GR transactivation in an in vitro monkey kidney CV-1 cell luciferase model without affecting cortisol binding to GR [87]. This effect was AR-dependent, and interestingly, the dichlorodiphenyltrichloroethane (DDT) metabolite dichlorodiphenyldichloroethylene (DDE), a known anti-androgenic EDC, also
suppressed GR transactivation. This suggests that AR-modulating EDCs may affect GR endpoints as well.

Crosstalk between AR and GR has also been reported in metabolic tissues such as pancreatic β-cells, adipose tissue, and the liver. One study suggested that AR decreases DEX-induced β-cell apoptosis in the INS-1 model [88]. GR was shown to upregulate AR expression and promote nuclear AR translocation during adipogenesis in human pre-adipocytes, while concurrently decreasing AR transcriptional activity [89]. It is possible that the DEX-mediated upregulation of AR during adipogenesis results from the pro-differentiation effects of GR, and that DEX-mediated repression of AR transcriptional activity is needed to promote fat cell development since androgens inhibit adipocyte differentiation [90, 91]. In support of this, DEX promotes the inactivation of DHT into 3α/3β-androstanediol during human pre-adipocyte differentiation [92, 93]. This suggests that some crosstalk mechanisms may be specific to certain developmental windows. T can upregulate 11β-HSD1 in omental adipose tissue from children [94], suggesting that AR crosstalk with GR can also be mediated by altering tissue GC availability since 11β-HSD1 catalyzes the activation of GCs from inactive precursors. DHT and corticosterone co-treatment in white and brown adipose tissues resulted in amplified upregulation of GR-dependent genes that were not upregulated with dihydrotestosterone (DHT) alone, while AR antagonism decreased GR transcriptional activity in adipose and the liver [95]. Finally, androgens were shown to sensitize mice to GC-mediated lipid accumulation and insulin resistance, suggesting that androgen action crosstalks with GCs in metabolically important tissues [96].

Overall, multiple mechanisms of crosstalk between GCs and androgens have been reported in several tissues in mouse models and humans (Fig. 2). While GR-AR crosstalk is a current clinical focus in prostate cancer research, not much is known about the physiological relevance of GR-AR crosstalk during fetal development or its relevance to DOHaD even though both GR and AR are co-expressed in multiple fetal tissues, including
the fetal liver and muscle among others [97, 98]. It is possible that GC-mediated disruption of normal androgen-dependent endpoints during the male fetal T surge may contribute to sex differences in the development of multiple tissues, including those that regulate glucose homeostasis postnatally.

Glucocorticoid and Progesterone Receptor Crosstalk

Progestogens are known to oppose GC action in different physiological settings, including in bone formation and lactation; however, they can also induce GC-like effects, such as immunosuppression during pregnancy [99]. These cell-type specific effects can be attributed to several crosstalk mechanisms that depend on the similarity of GR and the progesterone receptor (PR) and are likely influenced by cellular bioavailability of GCs. PR has two known nuclear isoforms, PR-A and PR-B, in addition to several alternatively spliced truncated isoforms whose function is not well understood [100]. PR-B possesses 164 additional amino acids at the amino terminus compared to PR-A, and is known to act as an activator of transcription, whereas PR-A has been shown to function as a dominant negative trans-repressor of PR-B in a cell- and gene-specific context; however, it may also induce transcription in some contexts [100, 101]. Progesterone (P4) can also act through membrane progestogen receptors and PR membrane components [100].

PR is the sex steroid receptor with the highest similarity to GR. The sequence homology between the DBD of PR and GR is 90%, which allows both receptors to share chromatin binding sites [102, 103]. The LBDs are 55% homologous, allowing P4 to bind GR with significantly higher affinity when compared to T or E2, but with relatively weak affinity in comparison to GCs [104]. As such, P4 and synthetic PR modulators can elicit cellular effects by binding to GR [100, 105-107]. Synthetic GCs (including DEX) and endogenous GCs (e.g. corticosterone) can also bind to PR [105, 108, 109]. While the binding affinity of cortisol appears to be weaker compared to these GCs, it may still induce biological effects through PR [110].
Evidence from *in vitro* experiments employing doses of P4 in the micromolar range in the absence of GCs suggest that P4 is able to act as a GR agonist in physiological settings when endogenous P4 levels are the highest, such as pregnancy. Evidence for P4 acting as a GR agonist in female reproductive tissues has been shown in human primary myometrial cells in which P4 inhibits interleukin-1β (IL-1β)-driven cyclooxygenase 2 (COX-2) expression [111, 112], and in rat luteal cells where it inhibits 20α-hydroxysteroid dehydrogenase [113]. GR agonism by P4 is thought to contribute to immune suppression during pregnancy [114]. This concept is supported by studies showing GR-mediated suppression of several immune processes by P4, such as nitric oxide (NO) production in murine peripheral mononuclear cells and macrophages [115, 116], interferon (IFN)-γ expression in mouse natural killer (NK) cells and human uterine NK cells [117], and IL-6 levels in bone marrow derived dendritic cells [118] as well as by inducing murine T-cell apoptosis [119]. One study found that P4 upregulated the pro-inflammatory cytokine IL-12p40 in the human ectocervical epithelial cell line Ect1/E6E7 by activating GR, suggesting that the direction of P4 immunomodulatory effects are cell-specific [120]. While the results of these studies are likely relevant to tissues with high 11β-HSD2 expression and consequently low GC bioavailability, studies showing that P4 can antagonize GR action when co-administered with GCs also emphasize the capacity of P4 to modulate GR signaling in the presence of endogenous GCs.

As a partial agonist for GR, P4 can antagonize GC action by preventing full GR induction by GCs [121][104, 122]. Evidence that sufficiently high concentrations of P4 outcompete GCs for GR binding has been suggested as one potential mechanism by which P4 prevents GC-mediated bone loss [123]. In human chorion, amnion, and placental tissue, competition for GR by P4 has been suggested to antagonize GC-mediated prostaglandin synthesis by maintaining prostaglandin dehydrogenase activity and inhibiting COX-2 expression [42, 124][125]. P4 competition for GR has also been suggested to antagonize GC action in rat fetal and human lung epithelial cells [126, 127] and in adipose tissue [128-133]. More studies are needed to test the extent to which high endogenous P4 levels during
gestation or during the luteal phase of the menstrual cycle interfere with GC by preventing GC-GR binding, rather than by other mechanisms.

Studies using the human breast cancer cell line T47D/A1-2, which has been transfected with GR to induce similar expression levels as PR, have shown that PR and GR can regulate common genes by distinct mechanisms [102, 134, 135]. Independent treatments of DEX or the synthetic PR ligand R-5020 both upregulated and downregulated common genes in addition to regulating distinct genes [135]. These results suggest that PR and GR regulate distinct sets of genes that overlap; however, the extent that GR induction by R-5020 contributed to the overlapping gene set was not assessed. ChIP-seq after treatment with equal concentrations of either hormone showed that, in addition to having unique chromatin binding sites, PR and GR share common binding sites [102]. Co-treatment experiments in this study revealed various examples of gene-specific regulation, including additive chromatin binding of each receptor and consequent gene upregulation, GR-mediated inhibition of PR genomic binding and gene expression, and reciprocal decreases in chromatin binding of both receptors. More studies are needed to assess the extent to which PR and GR crosstalk by these mechanisms in non-cancer tissues that express normal levels of both receptors.

Additional mechanisms of crosstalk have been proposed in a variety of human and murine tissues. In CV-1 fibroblasts, overexpression of PR-A inhibited GR activity by mechanisms that did not require P4 binding to PR-A or PR-A binding to DNA [101]. Limited evidence suggests that PR-A and GR can physically interact as a form of antagonism or agonism [102, 125, 136]. GR-mediated downregulation of PR-A expression may be one common mechanism of crosstalk, as shown in mouse lung [136]. Modulation of circulating P4 and GC levels may be another mechanism of crosstalk since P4 can regulate GC metabolizing enzymes such as 11β-HSD1 [137, 138] and 11β-HSD2 [139], whereas GC-induced placental corticotropin-releasing hormone (CRH) production can reduce human
trophoblast P4 production [140, 141]. Like endogenous GCs, P4 can also bind to corticosteroid binding globulin (CBG) [142], potentially altering GC levels and bioavailability.

The overall evidence of GCs and P4 crosstalk in several tissues by numerous mechanisms suggests that aberrant GC action during fetal development has the potential to disrupt developmental PR action. More studies are needed to understand the role that PR has on the development of key metabolic tissues and how developmental disruption of PR by aberrant GC exposure alters PR-mediated developmental processes. Since PR is also known to crosstalk with AR and ER [99], studies are needed to test how GC-mediated disruption of fetal T levels or ER activity can disrupt PR action during fetal development.

Sex Steroid and Glucocorticoid Action During Fetal Development

Levels of maternal estrogens, progesterone, and cortisol increase during gestation and peak near term to maintain a successful pregnancy (Figure 5) [143, 144]. Fetal levels of sex steroids and cortisol peak at different gestational periods and induce drastic organizational changes in the developing fetus (Figure 5) [11, 145-147]. Fetal GCs are known to peak towards the end of gestation in a variety of mammalian species, including humans, when they stimulate the maturation of tissues in preparation for postnatal life [11, 147]. Aberrant GC activation during development consistently leads to later life adverse health outcomes, including metabolic defects in numerous species (reviewed in [11, 148, 149]).

The action of sex steroids on the developing fetus is known to be instrumental in the establishment of physiological sex-differences. With the exception of fetuses affected by gonadal dysgenesis, fetal T in males peaks during mid-gestation in humans, and towards the end of gestation in rats [150]. Increased T levels in male fetuses during the masculinization window and during neonatal development are known to establish sexually dimorphic traits in reproductive organs and the brain (reviewed in [151, 152]). Although T levels are markedly higher in developing males, tissue-specific aromatization of androgens to estrogens is
common during development and mediates sex-specific differences in developmental outcomes [153]. Thus, both androgen and estrogen action are important for sex-specific development. While male and female fetuses are exposed to the same amount of P4, sex-differences in fetal P4 action may contribute to sex-differences in brain development since PR expression has been reported to be higher in the male hypothalamus, including the medial preoptic area (MPOA) in neonatal mice and rats, and the ventromedial nucleus (VMN) in neonatal mice [154]. The higher PR expression in the neonatal male hypothalamus has been attributed to upregulation by ERα action induced by aromatized T [155]. Thus, disruption of either sex steroid class during fetal development may alter sex-specific endpoints. Given the extensive evidence of GC crosstalk with AR, ERα, and PR, aberrant GR activation during these early developmental windows may be an underappreciated disruptor of sex steroid-dependent developmental outcomes, which may lead to sex-specific consequences.

The Role of Sex Steroids and Glucocorticoids in Sex-Specific Fetal Programming of Metabolism

GR-driven developmental misprogramming of the HPG axis may alter how sex steroids regulate metabolism in a sex-specific manner. Sex differences in fat distribution, lipid metabolism, insulin sensitivity, and glucose metabolism are well-known and have been reviewed extensively [152, 156]. While numerous factors contribute to sex differences in metabolism, including societal pressures and sex chromosome complement [157, 158], this section will focus on differences in circulating sex steroids [151]. Sex steroids regulate numerous aspects of glucose and lipid homeostasis (reviewed in [159, 160]). E2 is suggested to protect against insulin resistance in females by increasing insulin sensitivity. Conversely, lower T levels in men are associated with increased visceral adiposity and decreased insulin
sensitivity. While its effects on metabolism are less clear, P4 has been shown to modulate β-cell insulin secretion alone or by modulating E2 action, and P4 has also been shown to decrease insulin sensitivity [161]. Thus, developmental insults that disrupt the function of the HPG axis later in life, such as elevated fetal GC levels or in appropriate GR signaling activation, have the potential to disrupt glucose homeostasis by altering the metabolism-regulating activational effects of sex-steroids. Additionally, GC-mediated disruption of sex steroid action on peripheral tissues during development may lead to sex-dependent disruption in the organization of metabolic tissues.

Sex steroids are known to regulate the sexual differentiation of reproductive organs and the brain, yet little is known about how sex steroids influence the development of peripheral metabolic tissues. However, recent work suggests that androgens and estrogens contribute to the development of key metabolic tissues [162-164]. One recent study showed that sex differences in hepatic metabolism in mice can be programmed by neonatal estrogen action [162]. Furthermore, newborn females on average have a lower body weight, more adiposity, and increased circulating insulin compared to newborn males [165-168], suggesting that peripheral tissues undergo sex-specific organizational changes in utero and are thus sensitive to hormonal disruptions during development. As such, the molecular machinery for sex steroid action is present during fetal and neonatal development. Androgen receptors are expressed in the human fetal liver [169], and estrogen receptor expression displays sex-specific differences in the mouse liver late in gestation and during neonatal life [162, 163]. Additionally, estrogen signaling in white adipose progenitors inhibit differentiation into brown adipose [164], further suggesting that estrogen action during early development can induce organizational changes in
adipose tissue in a sex-dependent manner. Whether estrogen action is involved in the early development of other tissues that control glucose homeostasis needs further study, but work in zebrafish demonstrates ER activation in the developing pancreas [65]. Additionally, sex steroid metabolizing enzymes such as aromatase [169-171], estrogen sulfotransferase (SULT1E1) [172, 173], and enzymes responsible for synthesizing the more potent androgen DHT [169] are expressed in the fetal liver. Whether tissue-specific disruption of sex steroid metabolism contributes to the differential programming of peripheral metabolic tissues requires further study. Importantly, GCs upregulate aromatase in fetal hepatocytes [174, 175], while DEX upregulates SULT1E1 expression in adult mouse and human hepatocytes, and consequently decreases circulating estradiol in mice [43]. Collectively this suggests that fetal GC overexposure may affect fetal circulating estrogen levels and impact estrogen-dependent fetal development.

Interestingly, disruption of estrogen, androgen, or GC signaling results in adverse metabolic outcomes later in life (reviewed in [35]), further emphasizing the importance of these hormone classes in the normal development of metabolic physiology. Inhibition of ERα activity during fetal development by inhibiting aromatase in baboons results in later life insulin resistance [176, 177], while prenatal exposure to ERα- and AR-disrupting EDCs is associated with adverse metabolic outcomes in population-based and animal studies [27]. Prenatal overexposure to androgens leads to metabolic perturbations in female offspring characterized by increased adiposity, impairments in insulin secretion, and/or insulin resistance in mice, rats, sheep, and monkeys [178-182]. Further work is needed to determine how aberrant sex steroid action leads to these metabolic perturbations. Direct AR, ERα, or PR modulation in key metabolic tissues could lead to organizational
misprogramming that results in disease. Alternatively, aberrant sex steroid action could alter the development of reproductive or neuronal endpoints that increase susceptibility to metabolic disease by changing eating behavior or sex hormone levels during adulthood. Nonetheless, there is robust evidence showing that aberrant GR activation disrupts sex-steroid action during development. Whether GR disruption results in sex-specific adverse outcomes by altering sex steroid action during the establishment of sex differences of key metabolic tissues remains to be studied.

The potential effects of developmental disruption of PR action on metabolic misprogramming is largely speculative due to limited understanding of the role that PR plays in the development of key metabolic tissues. Higher neonatal expression of PR in male rodent MPOA and VMN, hypothalamic areas involved in maintaining lipid and glucose homeostasis in addition to controlling sexual behavior and other functions [1, 183], suggest that developmental PR disruption may alter the development of these regions and promote-sex specific alterations in postnatal metabolism. Because higher PR expression in the MPOA and VMN of male fetuses has been attributed to increased ERα action by aromatized fetal T, disrupting fetal T levels or ERα expression by aberrant GC action may alter the male development of these hypothalamic areas [155]. Whether there are sex-specific differences in PR expression in other developing tissues critical for controlling postnatal metabolism requires further study. Additionally, the effects that gestational GC overexposure have on adult P4 levels needs further investigation since gestational GC overexposures have been associated with increased apoptosis in fetal ovaries and lasting alterations in the HPG axis as discussed below. Thus, abnormal programming of P4 secretion in females may alter glucose homeostasis during
adulthood given its influence on insulin secretion and insulin sensitivity [161]. Studies are needed to verify these hypotheses and to assess the extent to which developmental PR disruption can contribute to sex-specific misprogramming of metabolism.

Evidence for Developmental Sex Steroid Disruption by Aberrant GR Activation

Early-life GC overexposure from psychological stress or pharmacological GC treatments in animal models disrupts the normal T surge during early development and alters androgen-dependent developmental outcomes in a sex-dependent manner [39]. Early studies showed that maternal exposure to psychological stress or exogenous GCs during the last trimester decreased fetal androgen action, as evidence by decreased anogenital distance and lowered testes weight at birth as well as “feminized” sexual behavior during adulthood in male offspring [184-186]. Subsequent studies suggested that these phenotypes were established during fetal development since prenatal treatments with pharmacological GCs (DEX, betamethasone, or prednisone) as well as chronic stress during late gestation blunted gestational T in mice and rats [187-190]. Critically, the two studies that longitudinally measured fetal T during pregnancy showed that stress increased fetal T at gestational day 17 and decreased T during gestational days 18-19, when fetal T typically peaks [188, 189]. The impact of these time-dependent alterations in fetal T on development need more detailed assessments. Subsequent studies showed that gestational GC overexposure inhibited male genital development in fetal sheep and mice [191-193], suggesting that gestational GC overexposure can interfere with the development of reproductive organs by altering fetal T and/or by inappropriately activating GR signaling in these tissues directly. Interestingly, as opposed to males,
gestational GC overexposure appears to have androgenic effects on female fetuses. Stressful life events have been associated with increased anogenital distance at birth in female infants [194] and “masculinized” play behavior in young girls [195]. In animal studies, prenatal stress has been shown to increase fetal T in female mice [196]. The nature behind sexually dimorphic effects of gestational GC overexposure on fetal androgenic action requires further study.

Critically, the GC-induced fetal misprogramming of reproductive organs appears to have effects on the HPG axis that persist into adulthood. Developmental overexposure to GCs altered anogenital distance [197-201], delayed puberty [202, 203], and affected reproductive organ weights, function, and sperm parameters [204-206] in rats. Importantly, the most consistent finding from all of these studies was that the different GC overexposure paradigms resulted in ~40-50% reductions in circulating T in male offspring during adulthood. Notably, prenatal DEX exposure during late gestation in rats amplified the developmental alterations in male reproductive organs relative to anti-androgenic phthalate exposure alone, including the severity of hypospadias, incidence of cryptorchidism, reductions in anogenital distance, and lower plasma T concentrations [207]. While none of these studies assessed metabolic parameters in the affected offspring, low T in males is known to impair glucose homeostasis based upon the various roles that androgens play in glucose and lipid control [160]. Similar GC overexposure paradigms in studies that tested for metabolic endpoints have demonstrated reduced insulin sensitivity and impaired glucose tolerance [31, 208-211]. Thus, reductions in later-life circulating T in males may be one mechanism by which developmental GC overexposures can derange metabolism in a sex-specific manner.
Unfortunately, few studies have assessed circulating sex steroids in female offspring following developmental overexposure to GCs. One study showed that maternal stress in guinea pigs increased T levels in female offspring during adulthood [212], whereas prenatal DEX led to reduced circulating FSH and LH in peripubertal rats [213] and lower serum E2 in adult female offspring [214]. The most consistent results reported in female offspring were alterations in the onset of puberty and variations in the length of estrus stages [215-220] as well as decreased numbers of healthy primordial follicles [221, 222], likely due to the pro-apoptotic action of DEX reported on human and rat fetal ovaries [223, 224]. Thus, developmental GC overexposure has the ability to disrupt later-life processes in female offspring that depend on sex steroid action. Critically, decreased circulating T in men, while increased circulating T in women has been associated with type 2 diabetes risk [225, 226]. Given that prenatal GC overexposure in animal models have been shown to decrease T in adult males and increase T in adult females, thorough assessments should test whether these outcomes are consistent in humans. Acute stressful events during gestation in humans and rodent models decrease circulating P4 levels, and can induce premature birth and or miscarriage [227-229]. Interestingly, male offspring have a higher rate of premature birth [230]. The links between GR/PR crosstalk and prematurity should be explored, especially, since premature birth is associated with higher risk of metabolic disease later in life [231, 232].

Work from other animal models that result in fetal GC overexposure further support the idea that abnormal crosstalk between GCs and sex steroids during development leads to the misprogramming of metabolism. For example, gestational caloric and protein restriction increase fetal GC exposure while also leading to
derangements in metabolic and reproductive health (reviewed in [1, 15, 233]). These gestational exposures likely misprogram development differently than psychological stress or pharmacological GC treatments since they increase gestational T levels [234-236]. More work is needed to fully understand how these dietary models misprogram metabolism in the offspring, but given that reproductive perturbations are observed throughout the lifespan of the offspring, they likely involve alterations of the HPG axis (reviewed in [233]). Thus, several animal models that increase fetal GC exposure lead to similar metabolic and reproductive phenotypes in the offspring, some of which exhibit sex-specificity. Further work is needed to understand the mechanisms by which GCs and sex steroids crosstalk during development and how these interactions contribute to adverse metabolic phenotypes.

Misprogramming of Neuroendocrine Pathways Controlling Sex-Specific Metabolic Outcomes

GC-mediated disruption of sex steroid action in the hypothalamus and/or anterior pituitary may lead to postnatal sex-specific derangements in metabolism. The neuroendocrine system undergoes substantial sex-specific organizational changes induced by sex steroids during early development, including in regions that control glucose and lipid homeostasis such as the hypothalamus and anterior pituitary [4, 237]. For example, differences in growth hormone (GH) secretion by sex are established by organizational effects of neonatal sex steroid exposure and are then activated by sex hormones after the onset of puberty (reviewed in [238, 239]). After puberty, females continuously secrete GH, which leads to persistent activation of hepatic signal transducer and activator protein 5b (STAT5b), whereas males display pulsatile GH secretion leading to differences in downstream GH signaling and
consequential sex differences in hepatic gene expression and metabolic function (reviewed in [240]). Partial masculinization of the GH-IGF-1 axis and consequential liver function have been reported in female mice developmentally overexposed to T [241, 242]. In contrast, estrogen is known to masculinize neural pathways [243]. Intriguingly, exposure to the estrogenic EDC bisphenol A (BPA) also results in the “partial masculinization” of the GH/IGF-1 axis [244], underscoring how disruption of sex-steroid action can disrupt a developmental pathway that regulates sex-specific metabolic function postnatally. It is possible that overactivation of GR signaling during early development can alter the sex-specific development of neuroendocrine pathways that are mediated by sex steroids and lead to sex-specific outcomes in glucose and lipid homeostasis, although this hypothesis needs further testing. Interestingly, one study showed that prenatal DEX exposure increased hepatic steatosis in female rat offspring only, at least in part via a reduction in hypothalamic growth hormone-releasing hormone (GHRH) and consequential GH action [33]. More work is needed to assess how GR signaling overactivation affects sex steroid action in neuroendocrine regions that control postnatal metabolism and how these alterations can lead to defects in glucose and lipid homeostasis.
Future Directions

In line with previous analyses [245], the evidence outlined herein presents the current understanding of the multiple mechanisms by which GCs crosstalk with sex steroids in various tissues. In developed tissues and adult animals, GC-sex steroid crosstalk leads to physiologically important effects on reproductive capacity, cancer risk, and metabolic function. Our understanding of how GR-sex steroid crosstalk operates during fetal development is mainly limited to GC overexposure studies that have shown reductions in fetal T levels, alterations in reproductive development, and persistent effects on the HPG axis. We suggest that abnormal GR signaling activation can disrupt sex steroid action in key metabolic tissues during development as well, either by altering sex steroid levels or by directly interfering with AR, ER, or PR transcriptional endpoints, ultimately resulting in organizational changes that affect metabolic health later in life. Given that sex-specificity in metabolic outcomes following developmental GC overexposure is a commonly observed phenotype that remains incompletely understood, further studies examining GC-sex steroid crosstalk are essential for enhancing our understanding of sex-specific metabolic programming. The exciting findings that tissue co-stimulation with GCs and either androgens or estrogens alters the regulation of genes that are not regulated by either hormone alone warrants further study to clarify the molecular mechanisms by which co-exposures modulate gene expression. Furthermore, the ability of GCs and sex steroids to induce unique gene signatures only in the presence of each other warrants investigating how sex steroids and GCs synergize in fetal and neonatal tissues to regulate development. This is especially important since our basic understanding of how sex steroids regulate the development of peripheral metabolic tissues remains limited [89, 162-164, 246]. Thus, studying GC-sex steroid crosstalk is imperative to advancing our understanding of basic mammalian development, but it is also important to better appreciate how disruptions in each of these hormone classes affects development. Further, work is needed to understand the outcomes of prenatal GC overexposures in fetuses with atypical sex steroid profiles, as seen with
children born with Differences in Sexual Development. While this review focuses on metabolic misprogramming, interrogating how environmental and pharmacological GCs as well as prenatal stress crosstalk with sex steroids is essential for understanding the development of outcomes in other areas of health that have been shown to exhibit sex-specific differences resulting from perinatal insults.

From the perspective of environmental health, consideration of GC-sex steroid crosstalk is especially salient for EDC screens and regulatory assessments of chemical safety. In animal models, careful and uniform management of animal stress, a trigger of endogenous GC release, is essential for studying EDCs affecting estrogenic and androgenic endpoints given the antagonistic effects of GCs that have been reported. Further, in vitro screens for sex steroid- and GC-disrupting activity should account for transcriptional crosstalk. The genomic binding and transcriptional overlap that GR exhibits with AR, ER, and PR as well as the ability of AR and ER to promote assisted loading with GR during co-exposures could result in significantly higher activity than when studying one chemical or pathway in isolation. Critically, the dose-response of co-treatments should be evaluated to ascertain how GCs and sex steroids fundamentally alter transcriptional endpoints and physiological outcomes across exposure ranges. This is relevant to EDC screening efforts since the activity of one type of EDC (e.g. estrogenic) in the environmental context of high or low interacting hormone (e.g. GC) may elicit very different outcomes. For example, higher EDC exposures in animal models can possibly raise endogenous GC levels and obscure sex steroid-dependent phenotypes if these endogenous GCs antagonize sex steroid action. Thus, measurements of endogenous GCs and GC-related outcomes in animal models examining sex hormone-disrupting EDCs should be a standardized practice to better understand non-linear responses relevant to assessing safe and acceptable levels of EDC exposures [247, 248].
Furthermore, crosstalk of EDCs that exhibit affinity to both GR and a sex steroid receptor with an opposing function should be considered since it is possible that one chemical can have strong endocrine-disrupting actions at lower doses mediated by one receptor that may be blunted by antagonism through a separate nuclear receptor at higher concentrations. The similarities between the PR and GR LBD and the resulting potential for ligands to bind both receptors with different affinities should be accounted for when testing GR- or PR-active EDCs in tissues expressing both receptors. This same logic applies to the mineralocorticoid receptor, which has even greater similarity to GR than PR but is beyond the scope of the current review [103]. In all of these instances, crosstalk between these hormone classes or differential activation of different receptors may be possible mechanisms for the non-monotonic dose-response relationships for some EDCs. In addition, the issue of GC-sex steroid crosstalk is fundamentally important for understanding the biological impact of exposure to chemical mixtures in which various components may modulate signaling through these intersecting signaling cascades. Furthermore, given the increasing recognition that allostatic load plays an important role in the pathogenesis of metabolic diseases [249], models of concordant exposure to EDCs modulating estrogenic or androgenic signaling with excess endogenous, environmental, or pharmacological GCs may illuminate metabolic misprogramming events that promote the development of human diseases and their sex-specific manifestations.
Conclusions

Evidence from animal studies strongly support the capacity of GCs to disrupt sex steroid action during fetal development. Interestingly, the same exposure doses or stress paradigms that have resulted in altered sexual development have been shown to induce metabolic dysfunction during adulthood in animals, and these metabolic outcomes often show differences by sex. How the sex steroid-disrupting actions of prenatal GC overexposure lead to sex differences in metabolic outcomes has not been explored. Studies focused on metabolic endpoints generally do not measure sex hormone endpoints in their studies, making it difficult to unravel how disruptions of sexual reproduction and metabolism are connected, despite the definite influence of sex steroids on insulin sensitivity, insulin secretion, and adiposity [159, 160]. The role that sex steroids play in the development of organs that are essential in regulating glucose and lipid homeostasis remain incompletely understood, yet estrogen and androgen overexposure studies consistently show adverse metabolic outcomes in animal studies. Furthermore, EDCs that disrupt estrogen and/or androgen action have been shown to misprogram metabolism in animal studies and some epidemiological studies. Considering hormone crosstalk during development is necessary to mechanistically illuminate how metabolism is misprogrammed by EDC exposures and how sex-specific outcomes arise.
References:

[1] Bouret S, Levin BE, Ozanne SE (2015) Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiological reviews 95(1): 47-82

[2] Godfrey KM, Gluckman PD, Hanson MA (2010) Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends in Endocrinology & Metabolism 21(4): 199-205

[3] Ravelli AC, van der Meulen JH, Michels R, et al. (1998) Glucose tolerance in adults after prenatal exposure to famine. The Lancet 351(9097): 173-177

[4] Dearden L, Bouret SG, Ozanne SEJMm (2018) Sex and gender differences in developmental programming of metabolism. 15: 8

[5] Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766): 489-499

[6] CDC (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. In: Atlanta, GA: US Department of health and human services

[7] International Diabetes Federation (2019) IDF Diabetes Atlas 9th Edition. Available from http://www.diabetesatlas.org. Accessed December 14th, 2019

[8] Giovannucci E, Harlan DM, Archer MC, et al. (2010) Diabetes and cancer: a consensus report. CA: a cancer journal for clinicians 60(4): 207-221

[9] Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology 5(1): 64-74
[10] Cain DW, Cidlowski JA (2015) Specificity and sensitivity of glucocorticoid signaling in health and disease. Best practice & research Clinical endocrinology & metabolism 29(4): 545-556

[11] Fowden A, Valenzuela O, Vaughan O, Jellyman J, Forhead A (2016) Glucocorticoid programming of intrauterine development. Domestic animal endocrinology 56: S121-S132

[12] Fowden AL, Forhead AJ (2015) Glucocorticoids as regulatory signals during intrauterine development. Experimental physiology 100(12): 1477-1487

[13] Fowden AL, Li J, Forhead AJ (1998) Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proceedings of the Nutrition Society 57(1): 113-122

[14] Seckl JR (2004) Prenatal glucocorticoids and long-term programming. European journal of endocrinology 151(3): U49

[15] Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Experimental Physiology 94(6): 607-625

[16] Kelly BA, Lewandowski AJ, Worton SA, et al. (2012) Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics 129(5): e1282-e1290

[17] Dalziel SR, Walker NK, Parag V, et al. (2005) Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. The Lancet 365(9474): 1856-1862

[18] Jobe AH, Goldenberg RL (2018) Antenatal corticosteroids: an assessment of anticipated benefits and potential risks. American journal of obstetrics and gynecology 219(1): 62-74
[19] Jobe AH (2019) Antenatal Corticosteroids—A Concern for Lifelong Outcomes. The Journal of Pediatrics

[20] Suzuki G, Tue NM, Malarvannan G, et al. (2013) Similarities in the endocrine-disrupting potencies of indoor dust and flame retardants by using human osteosarcoma (U2OS) cell-based reporter gene assays. Environmental science & technology 47(6): 2898-2908

[21] Stavreva DA, George AA, Klausmeyer P, et al. (2012) Prevalent glucocorticoid and androgen activity in US water sources. Scientific reports 2: 937

[22] Conley JM, Evans N, Cardon MC, et al. (2017) Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters. Environmental science & technology 51(9): 4781-4791

[23] Van Der Linden SC, Heringa MB, Man H-Y, et al. (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environmental science & technology 42(15): 5814-5820

[24] Macikova P, Groh KJ, Ammann AA, Schirmer K, Suter MJ-F (2014) Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss waters: potential impact on fish. Environmental science & technology 48(21): 12902-12911

[25] Jia A, Wu S, Daniels KD, Snyder SA (2016) Balancing the budget: accounting for glucocorticoid bioactivity and fate during water treatment. Environmental science & technology 50(6): 2870-2880
[26] Zoeller RT, Brown TR, Doan LL, et al. (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153(9): 4097-4110. 10.1210/en.2012-1422

[27] Heindel JJ, Blumberg B, Cave M, et al. (2017) Metabolism disrupting chemicals and metabolic disorders. Reproductive toxicology 68: 3-33

[28] Mimoto MS, Nadal A, Sargis RM (2017) Polluted pathways: mechanisms of metabolic disruption by endocrine disrupting chemicals. Current environmental health reports 4(2): 208-222

[29] Ruiz D, Regnier SM, Kirkley AG, et al. (2019) Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reproductive Toxicology 89: 74-82

[30] Zhang J, Yang Y, Liu W, Schlenk D, Liu J (2019) Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. Environment international 133: 105133

[31] O'Regan D, Kenyon C, Seckl J, Holmes M (2004) Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. American Journal of Physiology-Endocrinology and Metabolism 287(5): E863-E870

[32] Sugden MC, Langdown ML, Munns MJ, Holness MJ (2001) Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. European Journal of Endocrinology 145(4): 529-539
Carbone DL, Zuloaga DG, Hiroi R, Foradori CD, Legare ME, Handa RJ (2012) Prenatal dexamethasone exposure potentiates diet-induced hepatosteatosis and decreases plasma IGF-I in a sex-specific fashion. Endocrinology 153(1): 295-306

Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ (2019) Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 44(1): 59-70

Cardoso RC, Padmanabhan V (2019) Prenatal Steroids and Metabolic Dysfunction: Lessons from Sheep. Annual review of animal biosciences 7: 337-360

Huang G, Cherkzian S, Loucks EB, et al. (2018) Sex Differences in the Prenatal Programming of Adult Metabolic Syndrome by Maternal Androgens. The Journal of Clinical Endocrinology & Metabolism 103(11): 3945-3953

Mauvais-Jarvis F (2014) Developmental androgenization programs metabolic dysfunction in adult mice: clinical implications. Adipocyte 3(2): 151-154

Xita N, Tsatsoulis A (2010) Fetal origins of the metabolic syndrome. Annals of the New York Academy of Sciences 1205(1): 148-155

Barrett ES, Swan SH (2015) Stress and androgen activity during fetal development. Endocrinology 156(10): 3435-3441

Haynes L, Lendon C, Barber D, Mitchell I (2003) 17β-oestradiol attenuates dexamethasone-induced lethal and sublethal neuronal damage in the striatum and hippocampus. Neuroscience 120(3): 799-806

Ooishi Y, Mukai H, Hojo Y, et al. (2011) Estradiol rapidly rescues synaptic transmission from corticosterone-induced suppression via synaptic/extranuclear steroid receptors in the hippocampus. Cerebral Cortex 22(4): 926-936

Patel FA, Funder JW, Challis JR (2003) Mechanism of cortisol/progesterone antagonism in the regulation of 15-hydroxyprostaglandin dehydrogenase activity and
messenger ribonucleic acid levels in human chorion and placental trophoblast cells at term. The Journal of Clinical Endocrinology & Metabolism 88(6): 2922-2933

[43] Gong H, Jarzynka MJ, Cole TJ, et al. (2008) Glucocorticoids antagonize estrogens by glucocorticoid receptor–mediated activation of estrogen sulfotransferase. Cancer research 68(18): 7386-7393

[44] Kinyamu HK, Archer TK (2003) Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Molecular and cellular biology 23(16): 5867-5881

[45] Zhang Y, Leung DY, Nordeen SK, Goleva E (2009) Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. Journal of Biological Chemistry 284(36): 24542-24552

[46] Severson TM, Kim Y, Joosten SE, et al. (2018) Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nature communications 9(1): 482

[47] Karmakar S, Jin Y, Nagaich AK (2013) Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. Journal of Biological Chemistry 288(33): 24020-24034

[48] Bolt MJ, Stossi F, Newberg JY, Orjalo A, Johansson HE, Mancini MA (2013) Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic acids research 41(7): 4036-4048

[49] Yang F, Ma Q, Liu Z, et al. (2017) Glucocorticoid receptor: MegaTrans switching mediates the repression of an ERα-regulated transcriptional program. Molecular cell 66(3): 321-331. e326
[50] Miranda TB, Voss TC, Sung M-H, et al. (2013) Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer research 73(16): 5130-5139

[51] West DC, Pan D, Tonsing-Carter EY, et al. (2016) GR and ER coactivation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Molecular Cancer Research 14(8): 707-719

[52] Whirledge S, Xu X, Cidlowski JA (2013) Global gene expression analysis in human uterine epithelial cells defines new targets of glucocorticoid and estradiol antagonism. Biology of reproduction 89(3): 66, 61-17

[53] Velardo JT, Hisaw FL, Bever AT (1956) Inhibitory action of desoxycorticosterone acetate, cortisone acetate, and testosterone on uterine growth induced by estradiol-17β. Endocrinology 59(2): 165-169

[54] Bitman J, Cecil HC (1967) Differential inhibition by cortisol of estrogen-stimulated uterine responses. Endocrinology 80(3): 423-429

[55] Campbell P (1978) The mechanism of the inhibition of uterotrophic responses by acute dexamethasone pretreatment. Endocrinology 103(3): 716-723

[56] Sahlin L (1995) Dexamethasone attenuates the estradiol-induced increase of IGF-I mRNA in the rat uterus. The Journal of steroid biochemistry and molecular biology 55(1): 9-15

[57] Rhen T, Grissom S, Afshari C, Cidlowski JA (2003) Dexamethasone blocks the rapid biological effects of 17β-estradiol in the rat uterus without antagonizing its global genomic actions. The FASEB Journal 17(13): 1849-1870

[58] Rhen T, Cidlowski JA (2006) Estrogens and glucocorticoids have opposing effects on the amount and latent activity of complement proteins in the rat uterus. Biology of reproduction 74(2): 265-274
[59] Whirledge S, Cidlowski JA (2013) Estradiol antagonism of glucocorticoid-induced GILZ expression in human uterine epithelial cells and murine uterus. Endocrinology 154(1): 499-510

[60] Whirledge S, Kisanga EP, Taylor RN, Cidlowski JA (2017) Pioneer Factors FOXA1 and FOXA2 Assist Selective Glucocorticoid Receptor Signaling In Human Endometrial Cells. Endocrinology 158(11): 4076-4092

[61] Whirledge S, Dixon D, Cidlowski JA (2012) Glucocorticoids regulate gene expression and repress cellular proliferation in human uterine leiomyoma cells. Hormones and Cancer 3(3): 79-92

[62] Vahrenkamp JM, Yang C-H, Rodriguez AC, et al. (2018) Clinical and genomic crosstalk between glucocorticoid receptor and estrogen receptor α in endometrial cancer. Cell reports 22(11): 2995-3005

[63] Hijazi A, Guan H, Yang K (2017) Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells. Archives of toxicology 91(4): 1727-1737

[64] Kamble PG, Pereira MJ, Almby K, Eriksson JW (2019) Estrogen interacts with glucocorticoids in the regulation of lipocalin 2 expression in human adipose tissue. Reciprocal roles of estrogen receptor α and β in insulin resistance? Molecular and cellular endocrinology 490: 28-36

[65] Bondesson M, Hao R, Lin C-Y, Williams C, Gustafsson J-Å (2015) Estrogen receptor signaling during vertebrate development. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1849(2): 142-151

[66] Rando G, Tan CK, Khaled N, et al. (2016) Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. Elife 5: e11853
[67] BALLARD PL, BAXTER JD, HIGGINS SJ, ROUSSEAU GG, TOMKINS GM (1974) General presence of glucocorticoid receptors in mammalian tissues. Endocrinology 94(4): 998-1002

[68] Whorwood C, Firth K, Budge H, Symonds M (2001) Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11β-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinology 142(7): 2854-2864

[69] Schaison G, Durand F, Mowszowicz I (1978) Effect of glucocorticoids on plasma testosterone in men. European Journal of Endocrinology 89(1): 126-131

[70] MacADAMS MR, White RH, CHIPPS BE (1986) Reduction of serum testosterone levels during chronic glucocorticoid therapy. Annals of internal medicine 104(5): 648-651

[71] Cumming D, Quigley M, Yen S (1983) Acute suppression of circulating testosterone levels by cortisol in men. The Journal of Clinical Endocrinology & Metabolism 57(3): 671-673

[72] DOERR P, PIRKE KM (1976) Cortisol-induced suppression of plasma testosterone in normal adult males. The Journal of Clinical Endocrinology & Metabolism 43(3): 622-629

[73] Smals A, KLOPPENBORG PC, Benraad TJ (1977) Plasma testosterone profiles in Cushing’s syndrome. The Journal of Clinical Endocrinology & Metabolism 45(2): 240-245

[74] Vierhapper H, Nowotny P, Waldhäusl W (2000) Production rates of testosterone in patients with Cushing’s syndrome. Metabolism 49(2): 229-231
[75] Chang C, Kokontis J, Liao S (1988) Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proceedings of the National Academy of Sciences 85(19): 7211-7215

[76] Claessens F, Alen P, Devos A, Peeters B, Verhoeven G, Rombauts W (1996) The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. Journal of Biological Chemistry 271(32): 19013-19016

[77] Pihlajamaa P, Sahu B, Jänne OA (2015) Determinants of receptor-and tissue-specific actions in androgen signaling. Endocrine reviews 36(4): 357-384

[78] Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F (2010) The rules of DNA recognition by the androgen receptor. Molecular endocrinology 24(5): 898-913

[79] Arora VK, Schenkein E, Murali R, et al. (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155(6): 1309-1322

[80] Sahu B, Laakso M, Pihlajamaa P, et al. (2013) FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer research 73(5): 1570-1580

[81] Yen PM, Liu Y, Palvimo JJ, et al. (1997) Mutant and wild-type androgen receptors exhibit cross-talk on androgen-, glucocorticoid-, and progesterone-mediated transcription. Molecular Endocrinology 11(2): 162-171

[82] List H-J, Lozano C, Lu J, Danielsen M, Wellstein A, Riegel AT (1999) Comparison of chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter by the androgen and glucocorticoid receptor. Experimental cell research 250(2): 414-422
[83] Chen SY, Wang J, Yu GQ, Liu W, Pearce D (1997) Androgen and glucocorticoid receptor heterodimer formation a possible mechanism for mutual inhibition of transcriptional activity. Journal of Biological Chemistry 272(22): 14087-14092

[84] Ikonen T, Palvimo JJ, Jänne OA (1997) Interaction between the amino-and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. Journal of Biological Chemistry 272(47): 29821-29828

[85] Buoso E, Galasso M, Ronfani M, et al. (2017) Role of spliceosome proteins in the regulation of glucocorticoid receptor isoforms by cortisol and dehydroepiandrosterone. Pharmacological research 120: 180-187

[86] Xie N, Cheng H, Lin D, et al. (2015) The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. International journal of cancer 136(4): E27-E38

[87] Zhao J, Bauman WA, Huang R, Caplan AJ, Cardozo C (2004) Oxandrolone blocks glucocorticoid signaling in an androgen receptor-dependent manner. Steroids 69(5): 357-366

[88] Harada N, Katsuki T, Takahashi Y, et al. (2015) Androgen Receptor Silences Thioredoxin-interacting Protein and Competitively Inhibits Glucocorticoid Receptor-Mediated Apoptosis in Pancreatic β-Cells. Journal of cellular biochemistry 116(6): 998-1006

[89] Hartig SM, He B, Newberg JY, et al. (2012) Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. Chemistry & biology 19(9): 1126-1141
Singh R, Artaza JN, Taylor WE, et al. (2006) Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology 147(1): 141-154

Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S (2003) Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144(11): 5081-5088

Blouin K, Nadeau M, Mailloux J, et al. (2009) Pathways of adipose tissue androgen metabolism in women: depot differences and modulation by adipogenesis. American Journal of Physiology-Endocrinology and Metabolism 296(2): E244-E255

Veilleux A, Côté J-A, Blouin K, et al. (2012) Glucocorticoid-induced androgen inactivation by aldo-keto reductase 1C2 promotes adipogenesis in human preadipocytes. American Journal of Physiology-Endocrinology and Metabolism 302(8): E941-E949

Zhu L, Hou M, Sun B, et al. (2010) Testosterone stimulates adipose tissue 11β-hydroxysteroid dehydrogenase type 1 expression in a depot-specific manner in children. The Journal of Clinical Endocrinology & Metabolism 95(7): 3300-3308

Spaanderman DC, Nixon M, Buurstedt JC, et al. (2018) Androgens modulate glucocorticoid receptor activity in adipose tissue and liver. Journal of Endocrinology 1(aop)

Gasparini SJ, Swarbrick MM, Kim S, et al. (2019) Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation. Diabetologia: 1-15
[97] Stubbs A, Engelman J, Walker J, Faik P, Murphy G, Wilkinson M (1994) Measurement of androgen receptor expression in adult liver, fetal liver, and Hep-G2 cells by the polymerase chain reaction. Gut 35(5): 683-686

[98] Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Molecular and cellular endocrinology 120(1): 51-57

[99] Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocrine reviews 18(4): 502-519

[100] Islam S, Afrin S, Jones SI, Segars J (2020) Selective progesterone receptor modulators—mechanisms and therapeutic utility. Endocrine Reviews

[101] Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O'Malley BW, McDonnell DP (1993) Human progesterone receptor A form is a cell-and promoter-specific repressor of human progesterone receptor B function. Molecular Endocrinology 7(10): 1244-1255

[102] Ogara MF, Rodríguez-Seguí SA, Marini M, et al. (2019) The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells. Nucleic acids research 47(20): 10645-10661

[103] Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240(4854): 889-895

[104] Von Langen J, Fritzemeier KH, Diekmann S, Hillisch A (2005) Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol. ChemBioChem 6(6): 1110-1118

[105] Ojasoo T, Dore JC, Gilbert J, Raynaud JP (1988) Binding of steroids to the progestin and glucocorticoid receptors analyzed by correspondence analysis. Journal of medicinal chemistry 31(6): 1160-1169
[106] Allen TK, Nazzal MN, Feng L, Buhimschi IA, Murtha AP (2019) Progestins Inhibit Tumor Necrosis Factor α–Induced Matrix Metalloproteinase 9 Activity via the Glucocorticoid Receptor in Primary Amnion Epithelial Cells. Reproductive Sciences 26(9): 1193-1202

[107] Kontula K, Paavonen T, Luukkainen T, Andersson LC (1983) Binding of progestins to the glucocorticoid receptor: correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochemical pharmacology 32(9): 1511-1518

[108] Issar M, Sahasranaman S, Buchwald P, Hochhaus G (2006) Differences in the glucocorticoid to progesterone receptor selectivity of inhaled glucocorticoids. European Respiratory Journal 27(3): 511-516

[109] Al-Khour H, Greenstein B (1980) Role of corticosteroid-binding globulin in interaction of corticosterone with uterine and brain progesterone receptors. Nature 287(5777): 58-60

[110] Leo JC, Guo C, Woon CT, Aw SE, Lin VC (2004) Glucocorticoid and mineralocorticoid cross-talk with progesterone receptor to induce focal adhesion and growth inhibition in breast cancer cells. Endocrinology 145(3): 1314-1321

[111] Lei K, Chen L, Georgiou EX, et al. (2012) Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1β-induced COX-2 expression in human term myometrial cells. PloS one 7(11)

[112] Lei K, Georgiou E, Chen L, et al. (2015) Progesterone and the repression of myometrial inflammation: the roles of MKP-1 and the AP-1 system. Molecular endocrinology 29(10): 1454-1467
[113] Sugino N, Telleria C, Gibori G (1997) Progesterone inhibits 20α-hydroxysteroid dehydrogenase expression in the rat corpus luteum through the glucocorticoid receptor. Endocrinology 138(10): 4497-4500

[114] Shah NM, Lai PF, Imami N, Johnson MR (2019) Progesterone-related immune modulation of pregnancy and labor. Frontiers in endocrinology 10

[115] Jones LA, Anthony JP, Henriquez FL, et al. (2008) Toll-like receptor-4-mediated macrophage activation is differentially regulated by progesterone via the glucocorticoid and progesterone receptors. Immunology 125(1): 59-69

[116] Wolfson ML, Schander JA, Bariani MV, Correa F, Franchi AM (2015) Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism. European journal of pharmacology 769: 110-116

[117] Guo W, Li P, Zhao G, Fan H, Hu Y, Hou Y (2012) Glucocorticoid receptor mediates the effect of progesterone on uterine natural killer cells. American Journal of Reproductive Immunology 67(6): 463-473

[118] Jones LA, Kreem S, Shweash M, Paul A, Alexander J, Roberts CW (2010) Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. The Journal of Immunology 185(8): 4525-4534

[119] Hierweger AM, Engler JB, Friese MA, et al. (2019) Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. American Journal of Reproductive Immunology 81(2): e13084

[120] Louw-du Toit R, Hapgood JP, Africander D (2014) Medroxyprogesterone acetate differentially regulates interleukin (IL)-12 and IL-10 in a human ectocervical epithelial cell line in a glucocorticoid receptor (GR)-dependent manner. Journal of Biological Chemistry 289(45): 31136-31149
[121] Zhang S, Jonklaas J, Danielsen M (2007) The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids 72(6-7): 600-608

[122] Hackney JF, Holbrook NJ, Grasso RJ (1981) Progesterone as a partial glucocorticoid agonist in L929 mouse fibroblasts: effects on cell growth, glutamine synthetase induction and glucocorticoid receptors. Journal of steroid biochemistry 14(10): 971-977

[123] Prior J (1990) Progesterone as a bone-trophic hormone. Endocrine Reviews 11(2): 386-398

[124] Patel FA, Clifton VL, Chwalisz K, Challis JR (1999) Steroid regulation of prostaglandin dehydrogenase activity and expression in human term placenta and chorio-decidua in relation to labor. The Journal of Clinical Endocrinology & Metabolism 84(1): 291-299

[125] Guo C, Zhu X, Ni X, Yang Z, Myatt L, Sun K (2009) Expression of progesterone receptor A form and its role in the interaction of progesterone with cortisol on cyclooxygenase-2 expression in amnionic fibroblasts. The Journal of Clinical Endocrinology & Metabolism 94(12): 5085-5092

[126] Schmidt C, Klammt J, Thome UH, Laube M (2014) The interaction of glucocorticoids and progesterone distinctively affects epithelial sodium transport. Lung 192(6): 935-946

[127] Kunzmann S, Ottensmeier B, Speer CP, Fehrholz M (2019) Progesterone Antagonizes Dexamethasone-Regulated Surfactant Proteins In Vitro. Reproductive Sciences 26(8): 1062-1070
[128] Schmidt M, Renner C, Loffler G (1998) Progesterone inhibits glucocorticoid-dependent aromatase induction in human adipose fibroblasts. Journal of endocrinology 158(3): 401-408

[129] Pedersen SB, Børglum JD, Møller-Pedersen T, Richelsen B (1992) Characterization of nuclear corticosteroid receptors in rat adipocytes. Regional variations and modulatory effects of hormones. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1134(3): 303-308

[130] Pedersen S, Jønler M, Richelsen B (1994) Characterization of regional and gender differences in glucocorticoid receptors and lipoprotein lipase activity in human adipose tissue. The Journal of Clinical Endocrinology & Metabolism 78(6): 1354-1359

[131] Olefsky JM (1975) Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. The Journal of clinical investigation 56(6): 1499-1508

[132] Xu X, Hoebeke J, Björntorp P (1990) Progestin binds to the glucocorticoid receptor and mediates antiglucocorticoid effect in rat adipose precursor cells. Journal of steroid biochemistry 36(5): 465-471

[133] Pedersen SB, Kristensen K, Richelsen B (2003) Anti-glucocorticoid effects of progesterone in vivo on rat adipose tissue metabolism. Steroids 68(6): 543-550

[134] Nordeen SK, Kühnel B, Lawler-Heavner J, Barber DA, Edwards DP (1989) A quantitative comparison of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Molecular Endocrinology 3(8): 1270-1278
[135] Wan Y, Nordeen SK (2002) Overlapping but distinct gene regulation profiles by glucocorticoids and progestins in human breast cancer cells. Molecular Endocrinology 16(6): 1204-1214

[136] Shao R, Egecioglu E, Weijdegård B, et al. (2006) Developmental and hormonal regulation of progesterone receptor A-form expression in female mouse lung in vivo: interaction with glucocorticoid receptors. Journal of endocrinology 190(3): 857-870

[137] Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ (2009) Changes in the placental glucocorticoid barrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. Biology of reproduction 80(6): 1209-1215

[138] Lei K, Chen L, Cryar B, et al. (2011) Uterine stretch and progesterone action. The Journal of Clinical Endocrinology & Metabolism 96(6): E1013-E1024

[139] Darnel A, Archer T, Yang K (1999) Regulation of 11β-hydroxysteroid dehydrogenase type 2 by steroid hormones and epidermal growth factor in the Ishikawa human endometrial cell line. The Journal of steroid biochemistry and molecular biology 70(4-6): 203-210

[140] Jeschke U, Mylonas I, Richter D-U, et al. (2005) Regulation of progesterone production in human term trophoblasts in vitro by CRH, ACTH and cortisol (prednisolone). Archives of gynecology and obstetrics 272(1): 7-12

[141] Yang R, You X, Tang X, Gao L, Ni X (2006) Corticotropin-releasing hormone inhibits progesterone production in cultured human placental trophoblasts. Journal of molecular endocrinology 37(3): 533-540

[142] Westphal U (1986) Steroid-protein interactions revisited. In: Steroid-Protein Interactions II. Springer, pp 1-7
[143] Albrecht ED, Pepe GJ (2018) Placental Endocrinology.

[144] Kerlan V, Nahoul K, Le Martelot MT, Bercovici JP (1994) Longitudinal study of maternal plasma bioavailable testosterone and androstanediol glucuronide levels during pregnancy. Clinical endocrinology 40(2): 263-267

[145] Reyes F, Boroditsky R, Winter J, Faiman C (1974) Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. The Journal of Clinical Endocrinology & Metabolism 38(4): 612-617

[146] Hill M, Pařízek A, Cibula D, et al. (2010) Steroid metabolome in fetal and maternal body fluids in human late pregnancy. The Journal of steroid biochemistry and molecular biology 122(4): 114-132

[147] Donaldson A, Nicolini U, Symes EK, Rodeck CH, Tannirandorn Y (1991) Changes in concentrations of cortisol, dehydroepiandrosterone sulphate and progesterone in fetal and maternal serum during pregnancy. Clinical endocrinology 35(5): 447-451

[148] Jellyman J, Valenzuela O, Fowden A (2015) Horse species symposium: glucocorticoid programming of hypothalamic-pituitary-adrenal axis and metabolic function: animal studies from mouse to horse. Journal of animal science 93(7): 3245-3260

[149] Fowden AL, Giussani DA, Forhead AJ (2005) Endocrine and metabolic programming during intrauterine development. Early human development 81(9): 723-734

[150] Scott HM, Mason JI, Sharpe RM (2009) Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocrine reviews 30(7): 883-925
[151] Mauvais-Jarvis F, Arnold AP, Reue K (2017) A guide for the design of pre-clinical studies on sex differences in metabolism. Cell metabolism 25(6): 1216-1230

[152] Mauvais-Jarvis F (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biology of sex differences 6(1): 14

[153] McCarthy MM (2008) Estradiol and the developing brain. Physiological reviews 88(1): 91-134

[154] Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E (2010) Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Frontiers in neuroendocrinology 31(3): 341-358

[155] Wagner CK (2006) The many faces of progesterone: a role in adult and developing male brain. Frontiers in neuroendocrinology 27(3): 340-359

[156] Varlamov O, Bethea CL, Roberts Jr CT (2015) Sex-specific differences in lipid and glucose metabolism. Frontiers in endocrinology 5: 241

[157] Zore T, Palafox M, Reue K (2018) Sex differences in obesity, lipid metabolism, and inflammation—A role for the sex chromosomes? Molecular metabolism 15: 35-44

[158] Chen X, McClusky R, Chen J, et al. (2012) The number of X chromosomes causes sex differences in adiposity in mice. PLoS genetics 8(5): e1002709

[159] Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocrine reviews 34(3): 309-338

[160] Navarro G, Allard C, Xu W, Mauvais-Jarvis F (2015) The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity 23(4): 713-719

[161] Handgraaf S, Philippe J (2019) The Role of Sexual Hormones on the Enteroinsular Axis. Endocrine reviews 40(4): 1152-1162
Della Torre S, Mitro N, Meda C, et al. (2018) Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell metabolism 28(2): 256-267. e255

Della Torre S, Rando G, Meda C, Ciana P, Ottobrini L, Maggi A (2018) Transcriptional activity of oestrogen receptors in the course of embryo development. Journal of Endocrinology 238(3): 165-176

Lapid K, Lim A, Clegg DJ, Zeve D, Graff JM (2014) Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells. Nature communications 5: 5196

Ibánez, Sebastiani G, López-Bermejo A, Díaz M, Gomez-Roig MD, de Zegher F (2008) Gender specificity of body adiposity and circulating adiponectin, visfatin, insulin, and insulin growth factor-I at term birth: relation to prenatal growth. The Journal of Clinical Endocrinology & Metabolism 93(7): 2774-2778

Hammami M, Koo W, Hockman EM (2003) Body composition of neonates from fan beam dual energy X-ray absorptiometry measurement. Journal of Parenteral and Enteral Nutrition 27(6): 423-426

Shields BM, Knight B, Hopper H, et al. (2007) Measurement of cord insulin and insulin-related peptides suggests that girls are more insulin resistant than boys at birth. Diabetes Care 30(10): 2661-2666

Verkauskiene R, Beltrand J, Claris O, et al. (2007) Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age. European Journal of Endocrinology 157(5): 605-612

O'Shaughnessy P, Monteiro A, Bhattacharya S, Fraser M, Fowler P (2012) Steroidogenic enzyme expression in the human fetal liver and potential role in the
endocrinology of pregnancy. MHR: Basic science of reproductive medicine 19(3): 177-187

[170] Toda K, Simpson ER, Mendelson CR, Shizuta Y, Kilgore MW (1994) Expression of the gene encoding aromatase cytochrome P450 (CYP19) in fetal tissues. Molecular Endocrinology 8(2): 210-217

[171] Price T, Aitken J, Simpson E (1992) Relative expression of aromatase cytochrome P450 in human fetal tissues as determined by competitive polymerase chain reaction amplification. The Journal of Clinical Endocrinology & Metabolism 74(4): 879-883

[172] Duanmu Z, Weckle A, Koukouritaki SB, et al. (2006) Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver. Journal of Pharmacology and Experimental Therapeutics 316(3): 1310-1317

[173] Dubaisi S, Caruso JA, Gaedigk R, et al. (2019) Developmental Expression of the Cytosolic Sulfotransferases in Human Liver. Drug Metabolism and Disposition 47(6): 592-600

[174] LANOUX MJ, CLELAND WH, MENDELSON CR, CARR BR, SIMPSON ER (1985) Factors affecting the conversion of androstenedione to estrogens by human fetal hepatocytes in monolayer culture. Endocrinology 117(1): 361-368

[175] Zhao Y, Mendelson CR, Simpson ER (1995) Characterization of the sequences of the human CYP19 (aromatase) gene that mediate regulation by glucocorticoids in adipose stromal cells and fetal hepatocytes. Molecular endocrinology 9(3): 340-349
[176] Maniu A, Aberdeen GW, Lynch TJ, et al. (2016) Estrogen deprivation in primate pregnancy leads to insulin resistance in offspring. The Journal of endocrinology 230(2): 171

[177] Pepe GJ, Maniu A, Aberdeen G, et al. (2016) Insulin resistance elicited in postpubertal primate offspring deprived of estrogen in utero. Endocrine 54(3): 788-797

[178] Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH (2000) Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. The Journal of Clinical Endocrinology & Metabolism 85(3): 1206-1210

[179] Hakim C, Padmanabhan V, Vyas AK (2016) Gestational hyperandrogenism in developmental programming. Endocrinology 158(2): 199-212

[180] Roland AV, Nunemaker CS, Keller SR, Moenter SM (2010) Prenatal androgen exposure programs metabolic dysfunction in female mice. The Journal of endocrinology 207(2): 213

[181] Demissie M, Lazic M, Foecking EM, Aird F, Dunaif A, Levine JE (2008) Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. American Journal of Physiology-Endocrinology and Metabolism 295(2): E262-E268

[182] Recabarren SE, Padmanabhan V, Codner E, et al. (2005) Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. American Journal of Physiology-Endocrinology And Metabolism 289(5): E801-E806
[183] Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 276(6): R1569-R1578
[184] Dahlöf L-G, Hård E, Larsson K (1978) Sexual differentiation of offspring of mothers treated with cortisone during pregnancy. Physiology & behavior 21(4): 673-674
[185] Dahlöf L-G, Hård E, Larsson K (1977) Influence of maternal stress on offspring sexual behaviour. Animal Behaviour 25: 958-963
[186] Ward IL (1972) Prenatal stress feminizes and demasculinizes the behavior of males. Science 175(4017): 82-84
[187] Lalau J-D, Aubert ML, Carmignac DF, Grégoire I, Dupouy J-P (1990) Reduction in testicular function in rats. Neuroendocrinology 51(3): 284-288
[188] Ward IL, Weisz J (1984) Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114(5): 1635-1644
[189] Ward IL, Weisz J (1980) Maternal stress alters plasma testosterone in fetal males. Science 207(4428): 328-329
[190] Yun HJ, Lee J-Y, Kim MH (2016) Prenatal exposure to dexamethasone disturbs sex-determining gene expression and fetal testosterone production in male embryos. Biochemical and biophysical research communications 471(1): 149-155
[191] Pedrana G, Sloboda D, Perez W, Newnham J, Bielli A, Martin G (2008) Effects of pre-natal glucocorticoids on testicular development in sheep. Anatomia, histologia, embryologia 37(5): 352-358
[192] Pedrana G, Viotti M, Souza E, et al. (2013) Apoptosis-Related Protein Expression During Pre-and Post-Natal Testicular Development After Administration
of Glucocorticoid in utero in the Sheep. Reproduction in Domestic Animals 48(5): 795-802

[193] Yucel S, Desouza A, Baskin LS (2004) In utero prednisone exposure affects genital development. The Journal of urology 172(4 Part 2): 1725-1730

[194] Barrett ES, Parlett LE, Sathyanarayana S, et al. (2013) Prenatal exposure to stressful life events is associated with masculinized anogenital distance (AGD) in female infants. Physiology & behavior 114: 14-20

[195] Barrett ES, Redmon JB, Wang C, Sparks A, Swan SH (2014) Exposure to prenatal life events stress is associated with masculinized play behavior in girls. Neurotoxicology 41: 20-27

[196] Vom Saal F, Quadagno D, Even M, Keisler L, Keisler D, Khan S (1990) Paradoxical effects of maternal stress on fetal steroids and postnatal reproductive traits in female mice from different intrauterine positions. Biology of Reproduction 43(5): 751-761

[197] Holson R, Gough B, Sullivan P, Badger T, Sheehan D (1995) Prenatal dexamethasone or stress but not ACTH or corticosterone alter sexual behavior in male rats. Neurotoxicology and teratology 17(4): 393-401

[198] Pereira OC, Arena AC, Yasuhara F, Kempinas WG (2003) Effects of prenatal hydrocortisone acetate exposure on fertility and sexual behavior in male rats. Regulatory Toxicology and Pharmacology 38(1): 36-42

[199] Gerardin DC, Pereira OC, Kempinas WG, Florio JC, Moreira EG, Bernardi MM (2005) Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiology & behavior 84(1): 97-104
[200] Piffer RC, Garcia PC, Pereira OC (2009) Adult partner preference and sexual behavior of male rats exposed prenatally to betamethasone. Physiology & behavior 98(1-2): 163-167

[201] Pallarés ME, Adrover E, Baier CJ, et al. (2013) Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress 16(4): 429-440

[202] Pereira OCM, Piffer RC (2005) Puberty installation and adrenergic response of seminal vesicle from rats exposed prenatally to hydrocortisone. Life sciences 77(12): 1381-1390

[203] Borges CS, Dias AFM, Rosa JL, et al. (2016) Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming. Reproductive Toxicology 63: 125-134

[204] Piffer RC, Garcia PC, Gerardin DC, Kempinas WG, Pereira OC (2009) Semen parameters, fertility and testosterone levels in male rats exposed prenatally to betamethasone. Reproduction, Fertility and Development 21(5): 634-639

[205] Borges CdS, Dias AFM, Silva PV, et al. (2017) Long-term adverse effects on reproductive function in male rats exposed prenatally to the glucocorticoid betamethasone. Toxicology 376: 15-22

[206] Pereira O, Yasuhara F, Arena A (2003) Cholinergic responses of seminal vesicles isolated from rats exposed perinatally to hydrocortisone. Pharmacological research 48(1): 91-95

[207] Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, Sharpe RM (2009) Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology 150(11): 5055-5064
[208] Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. Journal of Clinical Investigation 101(10): 2174

[209] Somm E, Vauthay DM, Guérardel A, et al. (2012) Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats. PloS one 7(11): e50131

[210] Buhl ES, Neschen S, Yonemitsu S, et al. (2007) Increased hypothalamic-pituitary-adrenal axis activity and hepatic insulin resistance in low-birth-weight rats. American Journal of Physiology-Endocrinology and Metabolism 293(5): E1451-E1458

[211] Pantaleão LC, Murata G, Teixeira CJ, et al. (2017) Prolonged fasting elicits increased hepatic triglyceride accumulation in rats born to dexamethasone-treated mothers. Scientific Reports 7

[212] Kaiser S, Sachser N (1998) The social environment during pregnancy and lactation affects the female offsprings’ endocrine status and behaviour in guinea pigs. Physiology & behavior 63(3): 361-366

[213] Ristić N, Severs W, Nestorović N, et al. (2016) Effects of prenatal dexamethasone on the rat pituitary gland and gonadotrophic cells in female offspring. Cells Tissues Organs 201(2): 148-158

[214] Lv F, Wan Y, Chen Y, et al. (2018) Prenatal dexamethasone exposure induced ovarian developmental toxicity and transgenerational effect in rat offspring. Endocrinology 159(3): 1401-1415
[215] McCoy SJ, Shirley BA (1992) Effects of prenatal administration of testosterone and cortisone on the reproductive system of the female rat. Life sciences 50(9): 621-628

[216] Borges CS, Pacheco TL, Guerra MT, et al. (2017) Reproductive disorders in female rats after prenatal exposure to betamethasone. Journal of Applied Toxicology 37(9): 1065-1072

[217] Smith JT, Waddell BJ (2000) Increased fetal glucocorticoid exposure delays puberty onset in postnatal life. Endocrinology 141(7): 2422-2428

[218] Gandelman R, Rosenthal C (1981) Deleterious effects of prenatal prednisolone exposure upon morphological and behavioral development of mice. Teratology 24(3): 293-301

[219] Harvey P, Chevins P (1985) Androstenedione or corticosterone treatment during pregnancy alters estrous cycle of adult female offspring in mice. Experientia 41(4): 492-494

[220] Iwasa T, Matsuzaki T, Murakami M, et al. (2011) Delayed puberty in prenatally glucocorticoid administered female rats occurs independently of the hypothalamic Kiss1–Kiss1r–GnRH system. International Journal of Developmental Neuroscience 29(2): 183-188

[221] Ristić N, Nestorović N, MANOJLOVIĆ-STOJANOSKI M, et al. (2008) Maternal dexamethasone treatment reduces ovarian follicle number in neonatal rat offspring. Journal of microscopy 232(3): 549-557

[222] Hulas-Stasiak M, Dobrowolski P, Tomaszweska E (2016) Prenatally administered dexamethasone impairs folliculogenesis in spiny mouse offspring. Reproduction, Fertility and Development 28(7): 1038-1048
[223] Ristić N, Nestorović N, Manojlović-Stojanoski M, et al. (2019) Adverse effect of dexamethasone on development of the fetal rat ovary. Fundamental & clinical pharmacology 33(2): 199-207

[224] Poulain M, Frydman N, Duquenne C, et al. (2012) Dexamethasone induces germ cell apoptosis in the human fetal ovary. The Journal of Clinical Endocrinology & Metabolism 97(10): E1890-E1897

[225] Ruth KS, Day FR, Tyrrell J, et al. (2020) Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine: 1-7

[226] Rasmussen JJ, Selmer C, Frøssing S, et al. (2020) Endogenous testosterone levels are associated with risk of type 2 diabetes in women without established comorbidity. Journal of the Endocrine Society

[227] Solano ME, Kowal MK, O'Rourke GE, et al. (2015) Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation. The Journal of clinical investigation 125(4): 1726-1738

[228] Arck PC, Rücke M, Rose M, et al. (2008) Early risk factors for miscarriage: a prospective cohort study in pregnant women. Reproductive biomedicine online 17(1): 101-113

[229] Joachim R, Zenclussen AC, Polgar B, et al. (2003) The progesterone derivative dydrogesterone abrogates murine stress-triggered abortion by inducing a Th2 biased local immune response. Steroids 68(10-13): 931-940

[230] Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM (2007) Does fetal sex affect pregnancy outcome? Gender medicine 4(1): 19-30

[231] Hofman PL, Regan F, Jackson WE, et al. (2004) Premature birth and later insulin resistance. New England Journal of Medicine 351(21): 2179-2186
[232] Kajantie E, Osmond C, Barker DJ, Eriksson JG (2010) Preterm birth—a risk factor for type 2 diabetes?: the Helsinki Birth cohort study. Diabetes care 33(12): 2623-2625

[233] Zambrano E, Guzmán C, Rodríguez-González GL, Durand-Carbajal M, Nathanielsz PW (2014) Fetal programming of sexual development and reproductive function. Molecular and Cellular Endocrinology 382(1): 538-549

[234] Zambrano E, Rodriguez-Gonzalez G, Guzman C, et al. (2005) A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. The Journal of physiology 563(1): 275-284

[235] Mossa F, Carter F, Walsh SW, et al. (2013) Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biology of Reproduction 88(4): 92, 91-99

[236] Rae M, Rhind S, Fowler P, Miller DW, Kyle C, Brooks A (2002) Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses. REPRODUCTION-CAMBRIDGE- 124(1): 33-39

[237] Chowen JA, Freire-Regatillo A, Argente J (2018) Neurobiological characteristics underlying metabolic differences between males and females. Progress in neurobiology

[238] Chowen JA, Frago LM, Argente J (2004) The regulation of GH secretion by sex steroids. European journal of endocrinology 151(Suppl_3): U95-100

[239] Brie B, Ramirez MC, De Winne C, et al. (2019) Brain Control of Sexually Dimorphic Liver Function and Disease: The Endocrine Connection. Cellular and molecular neurobiology 39(2): 169-180
[240] Waxman DJ, O'Connor C (2006) Growth hormone regulation of sex-dependent liver gene expression. Molecular endocrinology 20(11): 2613-2629

[241] Ramirez MC, Luque GM, Ornstein AM, Becu-Villalobos D (2010) Differential neonatal testosterone imprinting of GH-dependent liver proteins and genes in female mice. The Journal of endocrinology 207(3): 301-308

[242] Ramirez MC, Zubeldía-Brenner L, Wargon V, Ornstein AM, Becu-Villalobos D (2014) Expression and methylation status of female-predominant GH-dependent liver genes are modified by neonatal androgenization in female mice. Molecular and cellular endocrinology 382(2): 825-834

[243] Wu MV, Manoli DS, Fraser EJ, et al. (2009) Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139(1): 61-72

[244] Ramirez MC, Bourguignon NS, Bonaventura MM, Lux-Lantos V, Libertun C, Becu-Villalobos D (2012) Neonatal xenoestrogen exposure alters growth hormone-dependent liver proteins and genes in adult female rats. Toxicology letters 213(3): 325-331

[245] Kroon J, Pereira AM, Meijer OC (2020) Glucocorticoid Sexual Dimorphism in Metabolism: Dissecting the Role of Sex Hormones. Trends in Endocrinology & Metabolism

[246] Zheng D, Wang X, Antonson P, Gustafsson J-Å, Li Z (2018) Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. Molecular and cellular endocrinology 471: 33-41

[247] Vandenberg LN, Colborn T, Hayes TB, et al. (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocrine reviews 33(3): 378-455
[248] Vandenberg LN (2019) Low dose effects challenge the evaluation of endocrine disrupting chemicals. Trends in food science & technology 84: 58-61

[249] Picard M, Juster R-P, McEwen BS (2014) Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids. Nature Reviews Endocrinology 10(5): 303
Figure 1. Summary of Proposed Glucocorticoid and Estrogen Cellular Crosstalk Mechanisms From Multiple Tissues.

a) Glucocorticoids upregulate estrogen sulfotransferase (SULT1E1), which reduces estrogen bioavailability by sulfation in human and mouse hepatocytes, and the human breast cancer MCF-7 cells (Gong et al. 2008).

b) Estrogen promotes GR proteasomal degradation by upregulating p53 and the E3 ubiquitin ligase Mdm2 in MCF-7 cells (Kinyamu and Archer 2003).

c) Estrogen upregulates protein phosphatase 5 (PP5), which reduces glucocorticoid action by dephosphorylating GR Ser-211 in breast cancer cell lines (Zhang et al. 2009).

d) GR inhibits ER transcription assembly for some genes. DNA-bound ER is bound by GR’s DBD. AP-1 and FOXA1 assist in GR/ER association in breast cancer cell lines (Karmakar et al. 2013; Yang et al. 2017). GR SUMOylation is needed for destabilization of transcription complexes in certain enhancers (Yang et al. 2017).

e) Co-treatment results in increased chromatin accessibility and unique ER and GR genome binding and consequent gene expression not observed during either single hormone treatment in breast and uterine cancer cell lines (Miranda et al. 2013; Vahrenkamp et al. 2018; West et al. 2016).

f) Estrogen inhibits GR target gene expression for some genes. This is characterized by lower chromatin accessibility and consequent lower GR, FOXA1/2, and transcription machinery binding to GBRs in human uterine cells (Whirledge and Cidlowski 2013; Whirledge et al. 2017).

DBD: DNA Binding Domain; DEX: Dexamethasone; E: Estrogen; ER: Estrogen Receptor; G: Glucocorticoid; GBR: Glucocorticoid Binding Region, GR: Glucocorticoid Receptor; p: phosphate; PP5: Protein Phosphatase 5; SULT1E1: Estrogen Sulfotransferase; S: Sulfate.
Figure 2. Summary of Proposed Glucocorticoid and Androgen Cellular Crosstalk Mechanisms From Multiple Tissues.

a) Testosterone (T) can increase GC bioavailability by upregulating 11β-HSD1 gene expression in omental adipose tissue from children (Zhu et al. 2010).

b) DEX promotes the inactivation of DHT into 3α/β-diol in human preadipocytes (Blouin et al. 2009; Veilleux et al. 2012).

c) AR signaling suppresses GR gene expression in human prostate cancer and suppresses GR transactivation in CV-1 monkey kidney fibroblasts (Xie et al. 2015; Zhao et al. 2004).

d) DHEA upregulates and preferentially directs splicing of GR mRNA towards the β isoform in human promyelocytic THP-1 cells (Buoso et al. 2017).

e) GR upregulates AR-target genes in absence of T in prostate cancer cells (Arora et al. 2013; Sahu et al. 2013).

f) AR promotes GR-dependent gene expression in 3T3-L1s, brown adipose, and prostate cancer cells (Sahu et al. 2013; Spaanderman et al. 2018) (List et al. 1999).

g) GR interferes with some AR- transcriptional endpoints in co-treatment in prostate cancer cells (Sahu et al. 2013).

h) AR and GR may inhibit each other by forming heterodimers (Chen et al. 1997).

A: Androgen; AR: Androgen Receptor; ARE: Androgen Response Element; DEX: Dexamethasone; G: Glucocorticoid; GR: Glucocorticoid Receptor; GRE: Glucocorticoid Response Element; p: phosphate.
Figure 3. Summary of Proposed Glucocorticoid and Progesterone Cellular Crosstalk Mechanisms From Multiple Tissues.

a) Progesterone (P) can bind to GR and act as an agonist or antagonist, depending on GC bioavailability.

b) Progesterone receptor (PR) can modulate GC bioavailability by regulating the expression of 11β-HSD1 and 11β-HSD2 (Darnel et al 1999, Mark et al. 2009, Lei et al. 2011).

c) GR action can suppress progesterone production by upregulating placental CRH (Jeschke et al. 2005, Yang et al. 2006).

d) GR can downregulate PR-A expression (Shao et al. 2006).

e) GR and PR can bind and regulate common genes separately (Wan et al. 2002, Ogara et al. 2019).

f) GR and PR can co-regulate common genes when both reports are activated (Ogara et al. 2019).

g) GR and PR-A may physically interact as a form of antagonism or agonism (Shao et al. 2006, Guo et al. 2009, Ogara et al. 2019).

CRH: Corticotropin-releasing hormone; DEX: Dexamethasone; G: Glucocorticoid; GR: Glucocorticoid Receptor; p: phosphate; P: progesterone; PR: Progesterone Receptor.
Figure 4. Schema of proposed sex-specific developmental misprogramming following developmental GR disruption. Exposure to psychological stress, pharmacological GCs, or GR-disrupting EDCs during fetal development lead to increased endogenous GCs and/or alter GR signaling activity in the developing fetus. This leads to disrupted fetal sex steroid levels and/or disrupted sex steroid transcriptional activity, which can have organizational effects on metabolic tissues during development and activational effects on metabolic tissues later in life. The end result of these effects are sex-specific developmental outcomes in the offspring.

Figure 5. Maternal and fetal patterns of cortisol, progesterone, estradiol, and testosterone during human pregnancy. Levels of each hormone are shown relative to its basal gestation levels. Maternal patterns are shown in solid lines, fetal patterns are shown as shaded areas. This figure was transformed from Albrecht and Pepe 2018; Donaldson et al. 1991; Fowden et al. 2016; Hill et al. 2010; Kerlan et al. 1994; and Reyes et al. 1974 to capture normal patterns of maternal and fetal hormone changes during gestation, disruptions in which may alter endocrine cross-talk that results in sex-specific misprogramming of development and potential long-term health consequences.
Figure 3

Diagram showing the interaction between cytosolic and nuclear receptors, PR and GR, and the effects of P4 and DEX. The diagram illustrates:

- Cytosol:
 - PR and GR receptors
 - 11β-HSD1/2 enzyme

- Nucleus:
 - P4 + DEX
 - Independent Regulation of Overlapping Genes
 - Co-regulation of Overlapping Genes
 - PR and GR Antagonism or Agonism

Arrows indicate various interactions and regulatory pathways between the receptors and genes.
Figure 4

Increased Endogenous GCs and/or Altered GR Signaling Activity

Disrupted Sex Steroid Levels

Disrupted Sex Steroid Transcriptional Activity

Organizational Effects on Metabolic Tissues

Activational Effects on Metabolic Tissues

Sex-Specific Developmental Misprogramming
Figure 5