Dimensional crossover of the exchange-correlation energy at the semilocal level

Lucian A. Constantin

Department of Physics and Quantum Theory Group, Tulane University, New Orleans, LA 70118

(Dated: June 27, 2009)

Commonly used semilocal density functional approximations for the exchange-correlation energy fail badly when the true two dimensional limit is approached. We show, using a quasi-two-dimensional uniform electron gas in the infinite barrier model, that the semilocal level can correctly recover the exchange-correlation energy of the two-dimensional uniform electron gas. We derive new exact constraints at the semilocal level for the dimensional crossover of the exchange-correlation energy and we propose a method to incorporate them in any exchange-correlation density functional approximation.

PACS numbers: 71.15.Mb, 71.45.Gm, 71.10.Ca

I. INTRODUCTION

In the Kohn-Sham time-independent density functional theory (DFT) the noninteracting kinetic energy is treated as an exact functional of the occupied orbitals and only the exchange-correlation (xc) energy E_{xc} has to be approximated. The "Jacob’s ladder" classification of the ground-state density-functional approximations for E_{xc} has three complete non-empirical rungs: the local-spin-density approximation (LSDA), the generalized gradient approximation (GGA), and the meta-GGA. Higher rungs of the ladder require new ingredients in order to satisfy more exact constraints. Thus, the meta-GGA has as ingredients the spin densities n_{\uparrow} and n_{\downarrow}, their gradients ∇n_{\uparrow} and ∇n_{\downarrow}, and the Kohn-Sham (KS) noninteracting kinetic energy densities τ_{\uparrow} and τ_{\downarrow}. The local and semilocal density functionals (LSDA, GGA, and meta-GGA) give accurate predictions of ground-state for atoms, molecules, solids, and surfaces. They also work for atomic monolayers and other quasi-two-dimensional (quasi-2D) systems, but they fail badly as the true 2D limit is approached. The failure of the semilocal density functionals to describe the dimensional crossover of the exact xc functional can be avoided by using nonlocal models such as the weighted density approximation, or higher rungs of the "Jacob’s ladder". Thus, the fourth-rung hyper-GGA, a nonlocal correlation functional compatible with exact exchange, improves considerably the behaviour of semilocal functionals over the whole thickness range of the quasi-2D electron gas. The numerically expensive fifth-rung approximations such as the inhomogeneous Singwi-Tosi-Land-Sjölander method (ISTLS) and the GW approximation are remarkably accurate for the description of quasi-2D systems.

The quasi-2D electron gas is experimentally realizable in silicon metal-oxide-semiconductor field-effect transistor (MOSFET) and in the widely used semiconductor heterojunction. Other physical systems with strong 2D character are the copper-oxide planes of high-temperature superconductors and the electrons bound to the surface of liquid helium.

The paper is organized as follows. In section III we present the exact constraints at the semilocal level for the dimensional crossover of the exchange-correlation energy. In section IV we construct a simple semilocal functional that incorporates these exact conditions, and we test it for the quasi-2D uniform electron gas, jellium slabs and non-uniformly-scaled hydrogen atom. In section V we summarize our conclusions.

II. EXACT CONDITIONS FOR SEMILOCAL DENSITY FUNCTIONALS

A 2D uniform electron gas is described by the 2D electron-density parameter $r_s^{2D} = 1/\sqrt{\pi n^{2D}} = \sqrt{2}/k_F^{2D}$. (Unless otherwise stated, atomic units are throughout, i.e., $\epsilon^2 = \hbar = m_e = 1$.) Here n^{2D} is the density of electrons per unit area, and k_F^{2D} represents the magnitude of the corresponding 2D Fermi wavevector. The exchange energy per particle of the 2D uniform electron gas is

$$\epsilon_x^{2D} = -(4\sqrt{2}/(3\pi))/r_s^{2D} = -0.6002/r_s^{2D}.\tag{1}$$

The correlation energy per particle of a 2D uniform electron gas in the high-density limit ($r_s^{2D} \to 0$) is

$$\epsilon_c^{2D} = -0.19 - 0.086\ln r_s^{2D} + O(r_s^{2D}),\tag{2}$$

and in the low-density limit ($r_s^{2D} \to \infty$) is

$$\epsilon_c^{2D} = (8/3\pi)^{-2} + 4\sqrt{2}/3\pi)(r_s^{2D})^{-1} + (r_s^{2D})^{-3/2} + O((r_s^{2D})^{-2}).\tag{3}$$

A realistic interpolation (which uses Quantum Monte Carlo data) between the high- and low-density limits of the 2D correlation energy per electron has the following form

$$\epsilon_c^{2D} = 0.5058 \left[\frac{1.3311}{(r_s^{2D})^2} \left(\sqrt{1 + 1.5026r_s^{2D}} - 1 \right) - \frac{1}{r_s^{2D}} \right].\tag{4}$$

Similarly to Ref.\cite{17}, let us consider a quantum well of thickness L in the z-direction. In the infinite-barrier
model (IBM)24 for a quantum well, the KS effective one-electron potential is zero inside the well and infinity outside it, such that the KS orbital is
\[\Psi_{l,k} = \sqrt{\frac{2}{AL}} \sin \left(\frac{l\pi z}{L} \right) e^{i r_1 |k|} \text{ for } 0 \leq z \leq L, \quad l \geq 1, \]
where \(A \) is the area of the \(xy \)-plane, \(l \) is the subband index, and \(r_1 \) and \(k \) are the position and the wavevector parallel to the surface. In this model the electrons cannot leak out of the well, so the true 2D electron-gas limit is recovered by shrinking the well. The energy levels of this model are24
\[E_{l,k} = \frac{1}{2} \left(\frac{l\pi}{L} \right)^2 + k_z^2. \] (6)
When only the lowest level is occupied \(E_{1,k_{xy}} < E_{2,0} \) which implies \(L < \sqrt[3]{2\pi r_{xy}^2} = L_{\text{max}}12 \), the density of states of this system begins to resemble the density of states of a 2D electron gas, the motion in the \(z \)-direction is frozen out, and the system can be considered quasi-two-dimensional.

By shrinking the \(z \)-coordinate without changing the total number of electrons per unit area, the system reaches the 2D electron gas limit. This process is equivalent with a non-uniform scaling in one dimension12, and the 3D scaled density is12
\[n_\lambda^x(z) = \frac{2}{(L/\lambda)^2} \sin^2 \left(\frac{\pi z}{L/\lambda} \right); \quad 0 \leq z \leq L/\lambda, \] (7)
where \(n_\lambda^x(x,y,z) = \lambda n(x,y,\lambda z) \) and \(\lambda \) is the scaling parameter. When \(\lambda \to \infty \), \(L/\lambda \ll L_{\text{max}} \), and the 2D limit is achieved. The corresponding exchange and correlation energies per particle should satisfy the following scaling relations12
\[\lim_{\lambda \to \infty} \frac{1}{N} E_x[n_\lambda^x] > -\infty; \quad \lim_{\lambda \to \infty} \frac{1}{N} E_c[n_\lambda^x] > -\infty, \] (8)
where \(N = \int_0^L n(z)dz \). These equations, which start from those of Ref.24, are not satisfied by LSDA, GGA or meta-GGA.

The GGA exchange-correlation energy per particle of our quantum well of thickness \(L \) is
\[\frac{E_{xc}^{\text{GGA}}}{N} = (\int_0^L n(z)\epsilon_{xc}^{\text{GGA}}(n(z),\nabla n(z))dz)/N, \] (9)
and the meta-GGA exchange-correlation energy per particle is
\[\frac{E_{xc}^{\text{MGGA}}}{N} = (\int_0^L n(z)\epsilon_{xc}^{\text{MGGA}}(n(z),\nabla n(z),\tau(z))dz)/N, \] (10)
where \(\epsilon_{xc}^{\text{GGA}} \) and \(\epsilon_{xc}^{\text{MGGA}} \) are the GGA and meta-GGA xc energies per particle of the 3D system.

The positive kinetic energy density of the IBM quasi-2D electron gas is
\[\tau = \tau^W + \frac{(k_{xy}^2)^4}{4\pi(L/\lambda)^2} \sin^2 \left(\frac{\pi z}{L/\lambda} \right) \geq \tau^W, \] (11)
where \(\tau^W = \pi(k_{xy}^2)^2/(2(L/\lambda)^3) \cos^2 \left(\frac{\pi z}{L/\lambda} \right) \) is the von Weizsäcker kinetic energy density22. When \(\lambda \to \infty, \tau \to \tau^W \sim \lambda^3 \) and \(\tau - \tau^W \sim \lambda \). Eq. (11) can be well described by the Laplacian-level meta-GGA kinetic energy density of Ref.28.

The reduced gradients for exchange \(p = |\nabla n|^2/[4(3\pi^2x)^{2/3}n_{xy}^{4/3}] \sim \lambda^{4/3} \) measures the variation of the density over a Fermi wavelength and that for correlation \(t = |\nabla n|/[4(3\pi/\lambda)^{1/6}n_{xy}^{7/6}] \sim \lambda^{5/6} \) measures the variation of the density over the screening length. Both tend to infinity when the 2D limit is reached \(\lambda \to \infty \), such that in the quasi-2D electron gas regime, the density is rapidly varying almost everywhere. Thus this system is not only a challenge for a semilocal density functional, but it can give exact constraints (at the semilocal level) in the regime where the 3D density and its gradient diverge.

The exact exchange energy per particle of the 2D uniform electron gas (see Eq. (1)) can be correctly recovered by any 3D semilocal density functional approximation for exchange energy if in the large gradient limit \((p \to \infty) \) the 3D exchange energy per particle behaves as \(a_x p^{-1/4} \epsilon_{xc}^{\text{LSDA}} \) (see Ref.28), where
\[a_x = (0.6002\sqrt{2\pi})/(3^{3/2} \int_0^1 dy \sin^7(\pi y) \cos^{-1/2}(\pi y)), \] (12)
was derived in the IBM model using Eqs. (1) and (9). Eq. (12) gives \(a_x = 0.5217 \). The parameter \(a_x \) (as well as the other results of this section), even if calculated using the IBM quasi-2D electron gas, is independent on the quantum well potential model along the confinement \(z \)-direction because the 2D limit \(\lambda \to \infty \) is not relying on the effective potential model.

At a meta-GGA level, we can also use the dimensionless inhomogeneity parameter28
\[\alpha = \frac{\tau - \tau^W}{\tau^\text{unif}} \sim \lambda^{-2/3}, \] (13)
where \(\tau^{\text{unif}} = (3/10)(3\pi^2)^{2/3}n_{xy}^{5/3} \) is the Thomas-Fermi kinetic energy density of the 3D uniform electron gas23. Thus Eq. (1) can also be exactly satisfied by any meta-GGA if in the large gradient limit \((p \to \infty) \) the 3D exchange energy per particle behaves as \(b_x \alpha^{1/2} \epsilon_{xc}^{\text{LSDA}} \), where \(b_x = 1.947 \) was found similarly as \(a_x \), from Eqs. (1) and (11).

Because \(r_{xy}^2 \) enters in a nonlinear manner in Eq. (3), the GGA level can not describe the correlation energy per particle of a 2D uniform electron gas, but it can explain the 2D high- and low-density limits. The high-density limit of Eq. (2) can be exactly recovered by any 3D
GGA that behaves in the large gradient limit \((t \to \infty)\) as
\[
\epsilon^GGA_c \to -0.19 - 0.0497n^{-5/12}\sqrt{\ln(n^{-5/12})},
\]
where \(t \sim \lambda^{5/6}\) is the reduced gradient for correlation. The low-density limit of Eq. (3) can also be exactly recovered by any 3D GGA that behaves in the large gradient limit \((t \to \infty)\) as
\[
\epsilon^GGA_c \to -0.40345n^{5/12}t^{-1/2} + 0.459n^{5/8}t^{-3/4}.
\]
At the meta-GGA level, Eq. (4) can be correctly satisfied by any 3D meta-GGA that behaves in the large gradient limit \((t \to \infty)\) as
\[
\epsilon^M GGA_c \to \epsilon^2D_c,
\]
where \(\epsilon^2D_c\) is given by Eq. (1) and
\[
r^2D_s = 0.4173 n^{-1/3} \alpha^{-1/2} = 0.6727 r^3D_s \alpha^{-1/2}.
\]
Eq. (17) connects \(r^2D_s\) with \(r^3D_s\), showing the importance of the \(\alpha\) ingredient to the dimensional crossover of the exchange-correlation energy, and to the non-uniform scaling in one dimension.

III. CONSTRUCTION AND TESTS OF A SIMPLE SEMILOCAL FUNCTIONAL

The results of Section III can be included in any density functional approximation for the exchange-correlation energy. For simplicity, we incorporate them in the LSDA. Let consider first the exchange part, and define GGA+2D and meta-GGA+2D as
\[
\epsilon_{x}^{GGA+2D} = \epsilon_{x}^{LSDA}\{1 + f(p)[-1 + 0.5217p^{-1/4}]\},
\]
and
\[
\epsilon_{x}^{M GGA+2D} = \epsilon_{x}^{LSDA}\{1 + f(p)[-1 + 1.947\alpha^{1/2}]\},
\]
where \(f(p) = 1\) for \(p = \infty\). The simplest approximation for \(f(p)\) is a step function
\[
f(p) = \lim_{x \to \infty} \theta(p - x),
\]
where \(\theta(x) = 0\) for \(x < 0\) and \(1\) for \(x \geq 0\). This model preserves all the exact constraints that the local or semilocal functional satisfies, and recovers the exchange energy of the 2D uniform electron gas in the limit \(L = 0\) (when \(p = \infty\)). However, this approximation does not improve the behavior of the semilocal functional in the quasi-2D region, and moreover, it gives a discontinuity when \(p \to \infty\).

We propose the following simple analytic model for the function \(f(p)\):
\[
f(p) = \frac{p^4(1 + p^2)}{10^c + p^6},
\]
where \(c > 0\) is an empirical parameter. Eq. (21) recovers the right limit when \(p \to \infty\) \((f(p \to \infty) = 1)\), and for a slowly-varying density, when \(p\) is small \((p < 1)\), it behaves as \(f(p) \sim [p^410^{-c} + \text{higher order terms}]\). This is a good feature because it can accurately preserve the behavior of the semilocal functional in the slowly-varying limit. When \(c\) is large, Eq. (21) starts to model Eq. (20).

In Fig. 1 we show the exchange energy per particle of the quasi-2D electron gas with 2D bulk parameter \(r^2D_s = 4\) for several density functionals: exact exchange, LSDA, PBE GGA, GGA+2D of Eq. (18) and MGGA+2D of Eq. (19), using in Eq. (21) three values for the parameter \(c\) \((c = 2, 8, \text{and } 16)\). LSDA and PBE diverge when \(L = 0\) \((\lambda \to \infty)\). The meta-GGA TPSS, not plotted in Fig. 1, has the same behavior as PBE. Both GGA+2D and MGGA+2D perform better than LSDA at small thicknesses of the quantum well, and both of them recover the exact exchange energy of the 2D uniform electron gas when \(L = 0\). However, we observe that GGA+2D with \(c = 2\) (the curve denoted \((GGA+2D)\)\((a)\)) is the most accurate, and remarkably describes the quasi-2D region. When the value of parameter \(c\) increases, the GGA+2D and meta-GGA+2D have the LSDA behavior over a larger region, and consequently, they are not accurate in the quasi-2D region. We also remark that GGA+2D and meta-GGA+2D calculated with \(c = 8\) (the curves \((GGA+2D)\)\((b)\) and \((MGGA+2D)\)\((b)\)) give a significant improvement over the LSDA in the whole quasi-2D region.

In Fig. 2 we show the exchange energy per particle of a thick jellium slab of bulk parameter \(r^3D_s = 2.07\). (The bulk parameter defined by the equation \(n = 3/4\pi(r^3D_s)^3\), represents the radius of a sphere that encloses on average one electron). The local and semilocal density approximations (LSDA, TPSS, GGA+2D, and MGGA+2D) show an exponential decay of the exchange energy per particle whereas the exact exchange behaves as \(\approx -1/(r^2D_s)^{3/2}\). All the MGGA+2D curves have a bump in the region where \(f(p)\) switches from 0 to 1, and after that they are close to the TPSS meta-GGA exchange energy per particle. (We recall that TPSS meta-GGA has the same large-\(p\) behavior as the PBE-GGA). We observe that for jellium slabs (as well as for many 3D systems) \(E_{x}^{GGA+2D} > E_{x}^{LSDA}\), whereas \(E_{x}^{MGGA+2D} < E_{x}^{LSDA}\), thus one can try also a convex combination between Eq. (18) and Eq. (19). However, the construction of an accurate 3D and quasi-2D semilocal functional is a difficult task, and is beyond the purpose of this paper.

Since \(p\) values bigger than 9 are found in the tail of an atom or molecule, where the electron density is negligible, we can choose \(c = 8\) (such that at \(p = 9\), \(f = 0.0053\) and for \(p > 50\), \(f \to 1\)). This choice ensures that the GGA+2D of Eq. (18) and meta-GGA+2D of Eq. (19) perform similarly with LSDA for 3D systems and make a considerable improvement in quasi-2D region, and recover the exchange energy of the 2D uniform electron gas. Thus, from now, all the presented calculations use \(c = 8\).
those given by Eq. (19), using for (MGGA+2D)(a), (MGGA+2D)(b), and (MGGA+2D)(c) are
$c = 2, 8$ and 16 respectively. The curves denoted by (GGA+2D)(a), (GGA+2D)(b), and (GGA+2D)(c) are those given by Eq. (21), with $c = 2, 8$ and 16 respectively. The curves denoted by (MGGA+2D)(a), (MGGA+2D)(b), and (MGGA+2D)(c) are those given by Eq. (11), using for $f(p)$ the analytic model of Eq. (21), with $c = 2, 8$ and 16 respectively. While the LSDA and PBE diverge, all GGA+2D and MGGA+2D curves recover in the limit $\lambda \to \infty$ the corresponding exchange energy (-0.15005) of a 2D electron gas.

FIG. 1: Exchange energy per particle of an IBM quasi-2D electron gas of fixed 2D electron density ($r_s^{2D} = 4$), as a function of the inverse quantum well thickness $1/L$ ($L < L_{\text{max}} = 15.39$). The curves denoted by (GGA+2D)(a), (MGGA+2D)(b), and (MGGA+2D)(c) are those given by Eq. (15), using for $f(p)$ the analytic model of Eq. (21), with $c = 2, 8$ and 16 respectively. The curves denoted by (MGGA+2D)(a), (MGGA+2D)(b), and (MGGA+2D)(c) are those given by Eq. (11), using for $f(p)$ the analytic model of Eq. (21), with $c = 2, 8$ and 16 respectively. While the LSDA and PBE diverge, all GGA+2D and MGGA+2D curves recover in the limit $\lambda \to \infty$ the corresponding exchange energy (-0.15005) of a 2D electron gas.

FIG. 2: Exchange energy per particle at position z versus z in atomic units, at a jellium slab surface. The bulk parameter is $r_s^{2D} = 2.07$, the slab width is $d = \sqrt{2} \lambda_F$ and the jellium surface is at $z = 35.24$ a.u. ($\lambda_F = 2\pi/k_F$ is the Fermi wavelength). The calculations of the exact exchange, LSDA, TPSS, GGA+2D and MGGA+2D use the LSDA Kohn-Sham orbitals. The curves (GGA+2D)(a), (GGA+2D)(b), and (MGGA+2D)(c) are those given by Eq. (21), with $c = 2, 8$ and 16 respectively. While the LSDA and PBE diverge, all GGA+2D and MGGA+2D curves recover in the limit $\lambda \to \infty$ the corresponding exchange energy (-0.15005) of a 2D electron gas.

Similar with the exchange case, the correlation results of Section III can be included in any density functional approximation, however, for simplicity we again show them for the LSDA case. Thus, we define

$$
\epsilon^{\text{MGGA+2D}}_c = \epsilon^{\text{LSDA}}_c + f(t)\left[\epsilon^{\text{LSDA}}_c + \epsilon^{2D}_c \right],
$$

where t is the reduced gradient for correlation, $f(t)$ has the same form as Eq. (21) (with $c = 8$), and ϵ^{2D}_c is given by Eqs. (1) and (17).

Figures 2 and 3 show several approximations of the xc energy per particle versus the quantum-well thickness L, for quasi-2D electron gases of fixed 2D electron-density parameters: $r_s^{2D} = 4$ and $r_s^{2D} = 2/\sqrt{3}$ (as Figs. 1 and 2 of Ref. 12). The ISTLS method 12, a self-consistent approach that depends on all occupied and unoccupied KS orbitals, is remarkably accurate for any thickness $L = L_{\text{max}}/\lambda$ (see Ref. 16). LSDA and PBE are accurate in the limit $L \to L_{\text{max}}$, but they fail badly in the zero thickness limit. MGGA+2D and the xc energy per particle of Eqs. (18) and (22) ($\epsilon^{\text{MGGA+2D}}_c$) are accurate in the limit $L \to L_{\text{max}}$ and improve considerably the behavior of LSDA when $L \ll 0.5 L_{\text{max}}$, approaching the exact 2D limit when $L \to 0$.

Let us present our results for the non-uniformly-scaled hydrogen atom 26,35, whose density is $n_\lambda(r) = (\lambda/\pi) \exp(-2\sqrt{x^2 + y^2 + (\lambda z)^2})$. The exact xc energy
In summary, we have shown that the dimensional crossover (from 3D to 2D) of the exact xc energy can be significantly improved at a meta-GGA level, and we derive new exact constraints (see Section IV) using an IBM quasi-2D electron gas. Same results can be obtained using the parabolic quantum well of Ref. [37], because the 2D limit is independent on the quasi-2D electron gas model. Thus, a 3D meta-GGA that requires input from the 3D functional and keeps as much as possible the 3D accuracy of the semilocal functionals. However, in order to obtain a good description of the quasi-2D region, the empirical parameter c has to be smaller ($c \approx 2$) than the optimized value ($c = 8$), but such a choice will significantly modify the 3D accuracy of the semilocal functional. In the investigation of physical systems with strong 2D character, Eq. (17) can be seen as an indicator of the quasi-2D electron gas regime. Various indicators of the electron localization have been constructed for 3D systems (see for example Ref. [38]), but Eq. (17) is a better and natural choice in the case of quasi-2D uniform gas. Thus, in the quasi-2D regions, where $r_s^{3D}(z)\alpha^{-1/2}(z)$ is constant, we can choose $c = 2$ and in the other regions we can choose $c = 8$ (or even $c = \infty$). Such a parametrization of c can be more useful in applications than the use of our optimized value for c ($c = 8$).

IV. CONCLUSIONS

FIG. 3: Exchange-correlation energy per particle of an IBM quasi-2D electron gas of fixed 2D electron density ($r_s^{2D} = 4$), as a function of the quantum well thickness L ($L < L_{\text{max}} = 15.39$). While LSDA and PBE diverge in the 2D limit, MGGA+2D and E^{xc}_{GGA} (see Eqs. (18) and (22)) approach the exact 2D limit.

FIG. 4: As in Fig. 3 but now for $r_s^{2D} = 2/\sqrt{3}$ ($L_{\text{max}} = 4.44$).

$$E_{xc}(\lambda) = \begin{cases} \frac{-\pi}{16} \frac{\lambda}{\sqrt{\lambda^2 - 1}} \arctan(\sqrt{\lambda^2 - 1}), & \lambda > 1 \\ \frac{-\pi}{16}, & \lambda = 1 \\ \frac{-\pi}{16} \frac{\lambda}{\ln(\frac{\sqrt{\lambda^2 - 1} + 1}{\lambda})}, & \lambda < 1 \end{cases}$$

When $\lambda \to \infty$, this system can model an electron firmly bound to a surface. Fig. 5 shows that LSDA and PBE fail badly in the extreme oblate case (\(\lambda >> 1 \)). The meta-GGA TPSS\[^{28}\] has the same behavior as PBE. Because in any one-electron system $\tau = \tau^W$ and $\alpha = 0$, the MGGA+2D xc energy will approach slowly zero in the limit $\lambda \to \infty$. The xc energy of Eqs. (18) and (22) ($E^{GGA+2D} + E^{MGGA+2D}$) is very accurate at large values of λ.

In this section we have proposed a method that incorporates the 2D limit of the electron gas in semilocal functionals and keeps as much as possible the 3D accuracy of the semilocal functionals. However, in order to obtain a good description of the quasi-2D region, the empirical parameter c has to be smaller ($c \approx 2$) than the optimized value ($c = 8$), but such a choice will significantly modify the 3D accuracy of the semilocal functional. In the investigation of physical systems with strong 2D character, Eq. (17) can be seen as an indicator of the quasi-2D electron gas regime. Various indicators of the electron localization have been constructed for 3D systems (see for example Ref. [38]), but Eq. (17) is a better and natural choice in the case of quasi-2D uniform gas. Thus, in the quasi-2D regions, where $r_s^{3D}(z)\alpha^{-1/2}(z)$ is constant, we can choose $c = 2$ and in the other regions we can choose $c = 8$ (or even $c = \infty$). Such a parametrization of c can be more useful in applications than the use of our optimized value for c ($c = 8$).
we present it in the case of LSDA. However, future work is needed to construct an accurate meta-GGA that satisfies the dimensional crossover constraints.

The non-uniform scaling in one dimension is closely related to the quasi-2D electron gas. The non-uniformly scaled hydrogen atom in the oblate case ($\lambda \geq 1$), an important and hard test for the density functionals as well as a model for an electron bound to a surface, can be well described by our simple modified LSDAs. Thus we hope that this work can be useful not only for investigation of physical systems with strong 2D character, but also in developing more accurate density functionals.

L.A.C. thanks Professor John P. Perdew and Professor J.M. Pitarke for many valuable discussions and suggestions. L.A.C. acknowledges NSF support (Grant No. DMR05-01588).

1. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
2. J. P. Perdew and K. Sham, Density Functional Theory and Its Application to Materials, V. Van Doren et al. (American Institute of Physics, Melville, NY, 2001).
3. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
4. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
5. J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
6. S. Kurth, J.P. Perdew and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).
7. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Phys. Rev. B. 69, 075102 (2003).
8. L.A. Constantin, J.M. Pitarke, J.F. Dobson, A. Garcia-Lekue, and J.P. Perdew, Phys. Rev. Lett. 100, 036401 (2008); J.M. Pitarke, L.A. Constantin, and J.P. Perdew, Phys. Rev. B 74, 045121 (2006); L.A. Constantin, J.P. Perdew, and J. Tao, Phys. Rev. B 73, 205104 (2006).
9. K. Rytikönen, J. Akola, and M. Manninen, Phys. Rev. B. 75, 075401 (2007).
10. M.C. Valero, P. Raybaud, and P. Sautet, Phys. Rev. B. 75, 045427 (2007).
11. S.M. Reinann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
12. L. Pollack, and J.P. Perdew, J. Phys.:Condens. Matter 12, 1239 (2000).
13. Y. Kim, I. Lee, S. Nagaraja, J. Leburton, R.Q. Hood, and R.M. Martin, Phys. Rev. B. 61, 5202 (2000).
14. P. García-González, Phys. Rev. B 62, 2321 (2000).
15. P. García-González and R.W. Godby, Phys. Rev. Lett. 88, 056406 (2002).
16. O. Gunnarsson, M. Jonson, and B.I. Lundqvist, Phys. Rev. B 20, 3136 (1979).
17. L.A. Constantin, J.P. Perdew and J.M. Pitarke, Phys. Rev. Lett. 101, 016406 (2008).
18. V.N. Staroverov, J.P. Perdew, J. Tao, and G.E. Scuseria, unpublished.
19. J.F. Dobson, J. Wang, and T. Gould, Phys. Rev. B 66, 081108(R) (2002).
20. L. Hedin, Phys. Rev. 139, A796 (1965).
21. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
22. M. Seidl, J.P. Perdew, and M. Levy, Phys. Rev. A 59, 542 (1999), and references therein.
23. D.M. Newns, Phys. Rev. B 1, 3304 (1970).
24. M. Levy and H. Ou-Yang, Phys. Rev. A 42, 651 (1990); H. Ou-Yang and M. Levy, Phys. Rev. A 42, 155 (1990).
25. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935).
26. J.P. Perdew and L.A. Constantin, Phys. Rev. B 75, 155109 (2007).
27. This choice, found from the L-dependence of n and p, is necessary and sufficient that the exchange energy per particle of the quantum well (see Eq. (9)) to be finite (and nonzero) when $L = 0$.
28. J.P. Perdew, J. Tao, V.N. Staroverov and G.E. Scuseria, J. Chem. Phys. 120, 6898 (2004).
29. L.H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1926), E. Fermi, Rend. Accad. Naz. Lizei 6, 602 (1927).
30. A smooth function that also interpolates between 0 and 1 was used in construction of the Laplacian-level meta-GGA kinetic energy density (see Fig. 1 of Ref. 26).
31. For example, TPSS meta-GGA recovers the fourth-order gradient expansion for a slowly varying density.
32. A. Solomatín and V. Sahni, Phys. Rev. B 56, 3655 (1997); O. Gunnarsson, M. Jonson and B.I. Lundqvist, Phys. Rev. B 20, 3136 (1979).
33. The satisfaction of Lieb-Oxford bound, that is an important constraint in construction of accurate density functionals, is a challenge for a GGA+2D whose enhancement factor tends to zero when p becomes large.
34. E.H. Lieb and S. Oxford, Int. J. Quantum Chem. XIX, 427 (1981).
35. S. Kurth, J. Mol. Struct. (THEOCHEM) 501 – 502, 189 (2000).
36. J. Tao, G. Vignale and I.V. Tokatly, Phys. Rev. Lett. 100, 206405 (2008).
37. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).