Effectiveness of Organics with Nitrogen Levels and Bio-fertilizers on Soil Chemico-biological Properties of Wheat (*Triticum aestivum* L.) Crop [Cv.PBW-343] in Inseptisol

L. G. Ramanandan¹*, Narendra Swaroop¹, Arun Alferd David¹ and Tarence Thomas¹

¹Department of Soil Science and Agricultural Chemistry, Naini Agricultural Institute, Sam Higgin Bottom University of Agriculture, Technology and Sciences, Prayagraj-211007, UP, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author LGR designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors NS and AAD managed the analyses of the study. Author TT managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJSSPN/2020/v6i230084

Editor(s):
(1) Dr. Tancredo Souza, University of Coimbra, Portugal.

Reviewers:
(1) Ibrahim Iro Ibrahim, Federal College of Forest Resources Management, Nigeria.
(2) Monier Morad Wahba, National Research Centre, Egypt.

Complete Peer review History: http://www.sdiarticle4.com/review-history/57612

Received 04 April 2020
Accepted 10 June 2020
Published 18 June 2020

ABSTRACT

Aims: To enhance soil quality, production, productivity and profit maximization with higher economic returns through integrated farming practices. In addition, to fulfill the needs of farmers economical point of view, academic, society and social reforms.

Study Design: Effectiveness of organics with nitrogen levels and bio-fertilizers on soil chemico-biological properties of wheat (*Triticum aestivum* L.) crop [Cv.PBW-343] in Inseptisol.

Place and Duration of Study: The cumulative study period of 2018-19 and 2019-20, at research farm, department of soil science and agricultural chemistry, naini agricultural institute, sam higgin bottom university of agriculture, technology and sciences, which is located at 25°58’ North latitude and 81°52’ East longitude with an altitude of 98 meter above mean sea level and is situated 5km away on the right, bank of Yamuna river.

Corresponding author: Email: ramanandanlg@gmail.com
Methodology: Randomized block design followed here with 12 treatment combinations replicated 3 times. Recommended dose of fertilizers i.e. nitrogen, phosphorus and potassium, was applied @ 120:60:40 kg ha⁻¹ as urea (46% N), single super phosphate (16% P₂O₅), muriate of potash (60% K₂O) and zinc sulphate (21% Zn). The Azotobacter spp. and Azospirillum spp. (seed inoculants), applied at 3 kg ha⁻¹ with farm yard manure @ 5 t ha⁻¹, at 5 cm depth in furrows, before seed sowing was done on 13th and 14th of November (2018-2019) with spacing of 22.5 X 5 cm. Wheat cultivar used here is PBW-343 as a test crop.

Results: The cumulative mean of low soil pH (6.82), electrical conductivity (0.37 dS m⁻¹) and free lime content (13.55%), the higher cation exchange capacity (16.37 cmol (p⁺) kg⁻¹), higher available nitrogen, available phosphorus, available potassium and available sulphur of 262.12: 21.75:220.51:32.57 kg ha⁻¹, respectively, high available iron and zinc (i.e. 3.90 and 1.79 mg kg⁻¹), low available manganese and copper (3.77 and 0.31 mg kg⁻¹), further the cumulative mean of dehydrogenase enzyme activity (1.49 µg triphenyl-formazan g⁻¹ day⁻¹), alkaline phosphatase activity (186.35 µg para-nitrophenol g⁻¹ hr⁻¹) and microbial biomass carbon (37.59 g kg⁻¹) was labelled in treatment (T₇) consisting of 75% N + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc in comparison to in-organic application over control.

Conclusion: The combined application of farm yard manure, Azotobacter spp and Azospirillum spp along with in-organics, has led to improvement in soil health potential, nutrient availability and yield sustenance under wheat crop cultivation.

Keywords: Nitrogen levels; bio-fertilizers; soil chemico-biological properties; wheat crop.

1. INTRODUCTION

Wheat is the staple food in the traditional wheat growing northwest and central India, is soft to medium hard, medium protein, white bread wheat, is one of the most important and widely cultivated staple food crops among the cereals which cultivated for its seed and as Botanically, the wheat kernel is a type of fruit called a caryopsis, belongs to family Poaceae. Wheat is consumed at the household level, local restaurants, and eateries in the form of handmade breads called chapattis or rotis or parathas (unleavened flat bread) using atta (whole wheat flour) estimated at around 75-80 percent of total consumption. Wheat yields in largely irrigated northern India (Punjab, Haryana and Western Uttar Pradesh) are about 4.5 to 5.0 tons per hectare, while yields in western and central states (Gujarat, Rajasthan, Madhya Pradesh, Bihar and parts of Uttar Pradesh) are relatively lower at 1.5 to 3.0 tons per hectare [1].

On account of containing world energy crisis and spiraling prices of chemical fertilizer, by means of a high annual productivity of crops resulting in removal of nutrients in substantial amounts that exceed replenishment through chemical fertilizer and manures ultimately leading to poor soil health. Regarding lack of knowledge about the benefits of organic usages, people started using in-organic chemical fertilizers in indiscriminate way to maintain crop productivity. This result to crops more prone to attack of insect pest and drastic decline of the crop yield [2]. Such emerging trends of indiscriminate use of fertilizer without use of organic sources of nutrients are also responsible for deterioration of soil health. Imbalance fertilizer use has resulted in multinutrient deficiency in soils. Therefore, soils encounter a diversity of constraints because of soil quality and ultimately end up with poor functional capacity [3]. Soil microorganisms are important to agroecosystems. They are involved in key roles, such as aggregate formation, humus formation, nutrient cycling, decomposition of various compounds and other transformations in soil [4]. Fertilization usually favors the accumulation of bacterial residues and increases soil microbial biomass. In addition to this, organic matter in soil improves soil structures, nutrient retention, aeration, soil moisture holding capacity and water infiltration [5]. The use of humic acid and soil micro-organisms, particularly bacterium can assist in the potential phyto-technical increase of these crops, as well as reduce the costs of nitrogen inputs used by the same. Traditionally, microbiological counts in soil have its important significance during biotransformation of mineral substance, achieving microbial population with in soil communities. In soil, biological enzyme activities are potential indicators in measuring soil quality because they are sensitive, rapid and inexpensive representatives of the potential metabolic activity of the soil [6]. However; soil which was analysed under research investigation was sandy loam, as a result, the respiration rate of microorganism’s
decreases with decreasing in bio-availability of nutrients. Hence, to optimize crop productivity and maintaining a healthy ecosystem, achieved by providing the necessary conditions and the need for greater use of bio-fertilizers and organics.

2. MATERIALS AND METHODS

2.1 Study Site

The experiment was conducted during the cumulative period, beginning from rabi seasons 2018-19 and 2019-20 at research farm, department of soil science and agricultural chemistry, sam higginbottom university of agriculture, technology and sciences, which is located at 25°58’ north latitude and 81°52’ east longitude with an altitude of 98 meter above mean sea level and is situated 5km away on the right bank of Yamuna river, Prayagraj District of Uttar Pradesh.

2.2 Initial Soil Status of the Experimental Field

The excavated soil sample from experimental site, mentioned that, the land topography range was nearly levelled with 1-3% slope, soil is of sandy loam texture belongs to order Inceptisol and sub group Typic Ustipsamment with neutral to alkaline in reaction (6.82), electrical conductivity was non-saline (0.30 dSm$^{-1}$) in nature, low organic carbon content (0.319%), low to medium available nitrogen (151 kg ha$^{-1}$), available phosphorus (14.80 kg ha$^{-1}$) and available potassium (240.3 kg ha$^{-1}$).

2.3 Experimental Details

The layout of the research field was depicted in randomized block design (detailed in Table 1) with twelve treatment combinations (Table 2) which is replicated thrice, recommended dose of fertilizers i.e. nitrogen, phosphorus and potassium (100%) was applied in the ratio of 120:60:40 kg ha$^{-1}$, respectively. The sources of nitrogen were through urea (46% N), phosphorus through single super phosphate (16% P$_2$O$_5$), potash through muriate of potash (60% K$_2$O) and zinc through zinc sulphate (21% Zn). The bio-fertilizers i.e. Azotobacter spp and Azospirillum spp used as seed inoculant, was applied at 3 kg ha$^{-1}$ with 5 kg of well decomposed farm yard manure and was applied at 5cm depth in furrows, just before the seed sowing which is carried out on 13th and 14th of November month during 2018 and 2019 with row spacing of 22.5 cm and plant spacing of 5 cm. Wheat cultivar PBW 343, an Attila sib, is a selection made at Punjab Agricultural University, Ludhiana, Punjab, India, from a set of lines called "Very wheat derivatives" developed at CIMMYT, Mexico, based on an initial round of spring wheat × winter

Table 1. Field layout details

Design	Randomized block design
Crop	Wheat (*Triticum aestivum* L.)
Variety	PBW-343
Season	Rabi
Replication	3
Plot size	3 m × 2 m
Number of treatment combinations	12
Total number of plots	12 × 3 = 36
Total length of the area	39.9 m
Total width of the area	8.8 m
Main irrigation channel	1 m
Sub irrigation channel	0.5 m
Width of bund	0.3 m
Gross cultivated area	303.24 m2
Net cultivated area	216 m2
Seed rate	120 kg ha$^{-1}$
Yield	46 – 50 q ha$^{-1}$
Row to row distance	22.5 cm
Plant to plant	5 cm
N:P: K	120:60:40 kg ha$^{-1}$
FYM	5 t ha$^{-1}$

Source: Hand Book of Agriculture by ICAR (2010)
Table 2. Experimental treatment combination of inorganic fertilizers, organic manure and bio-fertilizers

Treatments	Rabi (Wheat-var PBW-343)
T₁	Absolute control
T₂	75 % N
T₃	N₁₂₀P₆₀K₄₀
T₄	T₂ + FYM @ 5 t ha⁻¹
T₅	T₂ + Azotobacter spp + Azospirillum spp @ 3kg ha⁻¹
T₆	T₄ + Azotobacter spp + Azospirillum spp @ 3kg ha⁻¹
T₇	T₂ + Zn @ 25 kg ha⁻¹
T₈	T₄ + Zn @ 25 kg ha⁻¹
T₉	T₅ + Zn @ 25 kg ha⁻¹
T₁₀	50 % N + farm yard manure @ 5 t ha⁻¹
T₁₁	50 % N + Azotobacter spp + Azospirillum spp @ 3kg ha⁻¹
T₁₂	T₄ + Azotobacter spp + Azospirillum spp @ 3kg ha⁻¹ + zinc

Note: Basal dose of phosphorus (60 kg ha⁻¹), potassium (40 kg ha⁻¹) and zinc sulphate (25 kg ha⁻¹) was applied at the start of the experiment.

wheat hybridization. After its release in the North West Plain Zone (NWPZ) of India in 1995, PBW 343 emerged as a mega cultivar.

The study hypothesized that, the integrated nutrients like farm yard manure, nitrogen levels with Zn as micronutrient and bio-fertilizer i.e. “nitroxin” containing Azotobacter spp and Azospirillum spp was used in testing the performance of wheat cv. PBW-343 var (which is a popular, high yielding modern variety with medium to high tillering ability. It matures in 130-135 days and yields about 46-50q grain ha⁻¹), and knowing nutrient availability in soil.

After the completion of post-harvest activity in the experimental site, representative soil sample from each treated plot was collected by driving soil augur, drawn at a depth of 15 cm, which represent entire soil mass and later soil was excavated to shade dry in a clean paper to avoid losses of nutrient and passed over 2 mm sieve. Finally, the chemical properties of soil were analyzed. In parallel to this, soil enzyme activities like microbial biomass carbon (MBC), dehydrogenases activity (DHA) and alkaline phosphatase activity (APA), which constitutes living microorganisms (smaller than 10 μm³) was estimated from the fresh soil sample collected from the experimental site after crop harvest at each plot.

Thus, the outcome of the results was analyzed under lab condition with standard methods employed are presented in Table 3.

2.4 Chemical Properties of Soil

2.4.1 Soil pH

The pH of soil was determined in 1:2.5 soil water suspensions. The buffer standard of known pH values of 4.0, 7.0 and 9.2 at 25°C was maintained. By stirring the samples intermittently for 30 minutes, reading was recorded using a systronics digital-331 pH meter [7].

2.4.2 Electrical conductivity (dS m⁻¹)

Electrical conductivity of the soil was determined in the supernatant of 1:2.5 soil water suspension that kept for stirring constantly for 30 minutes, reading was noted by using systronics digital conductivity meter–304 [8].

2.4.3 Organic carbon (g kg⁻¹)

Initially 2 mm sieved soil sample was ground in agate pestle and mortar and passed through 0.5 mm sieve. Later organic carbon content of the soil was estimated by wet oxidation method [9].

2.4.4 Cation exchange capacity (cmol (p+)/kg)

The cation exchange capacity of the given soil sample was estimated by saturating and leaching the soil with neutral normal sodium acetate solution and excess salts was removed by 60 per cent ethanol. The adsorbed sodium was then replaced by neutral normal ammonium acetate and the concentration of sodium in the leachate was measured by flame photometer.
Table 3. Standard methods employed for analyzing soil properties

I	Chemical properties	Authors	Methods	Units
1	Soil pH (1:2.5)	Jackson, 1973	pH meter	
2	Electrical conductivity (1:2.5)	Wilcox, 1950	EC bridge (Systronics digital conductivity meter–304.)	dS m⁻¹
3	Cation exchange capacity	Black, 1965	Sodium saturation method	cmol (p⁺) kg⁻¹
4	Free lime	Piper, 2002	Rapid acid titration method	%
5	Organic carbon	Walkley and Black, 1947	Walkley and Black Wet oxidation method	%
6	Available nitrogen	Subbiah and Asija, 1956	Modified alkaline permanganate oxidation method	kg ha⁻¹
7	Available phosphorus	Olsen et al. 1954.	Olsen’s extraction followed by Spectrophotometric method	kg ha⁻¹
8	Available potassium	Toth and Prince, 1949	Neutral normal ammonium acetate extraction followed by Flame photometric method	kg ha⁻¹
9	Available sulphur	Chesnin and Yien, 1950	Turbidimetric method	kg ha⁻¹
10	Available Fe, Mn, Cu & Zn	Lindsay and Novell, 1978	DTPA extraction followed by Atomic Absorption	mg kg⁻¹

II Biological properties

I	Dehydrogenase activity	Casida et al., 1964	Triphenyl tetrazolium chloride method	µg TPF g⁻¹ day⁻¹
2	Alkaline phosphatase activity	Tabatabai & Bremner, 1969	p-nitrophenol phosphate method	µg pNP g⁻¹ hr⁻¹
3	Microbial Biomass Carbon	Voroney et al., 1993	CHCl₃ fumigation extraction method	mg kg⁻¹

Note: TPF-Triphenyl-formazan, pNP-Para-nitrophenol.
complex. The concentration of Zn, Cu, Fe and micronutrients in soil solution and form soluble chelating agent and as ability to chelate these using DTPA extractant. This DTPA is a mild Available Zn, Cu, Fe and Mn in the filtrate was read in atomic absorption spectrophotometer [16].

2.5 Biological Properties of Soil

2.5.1 Soil dehydrogenase activity (µg TPF g⁻¹ day⁻¹)

Soil dehydrogenase activity was assayed by triphenyl tetrazolium chloride method [17]. In this method, 5 grams of soil was taken in a stoppered test tube, 2.5 ml of distilled water, 1 ml of 3 per cent triphenyl tetrazolium chloride solution and 0.5 ml of 1 per cent glucose was added and incubated at 37°C for 24 hours. After incubation, 10 ml of methanol was added to each vial and was shaken thoroughly for one minute. The supernatant was filtered through Whatman No. 50 filter paper and the soil was washed repeatedly with methanol till the filtrate was free from red color and the pooled filtrate was diluted to 100 ml. The production of triphenyl formazan (TPF) was measured at wave length of 485 nm in spectrophotometer or colorimeter using methanol as blank.

2.5.2 Soil alkaline phosphatase activity (µg pNP g⁻¹ hr⁻¹)

Alkaline phosphatase activity of soil samples was assayed by p-nitrophenol phosphate method [18]. The reaction mixture comprising of one gram of soil, 0.2 ml of toluene, 4 ml of MUB (Modified Universal Buffer) of pH 11 and 1 ml of p-nitro phenyl phosphate solution (made with same buffer) was added in a 50 ml Erlenmeyer flask containing soil sample and. The flask was swirled for a few seconds to mix the contents and then placed in an incubator at 37±2°C. After 1 hour of incubation, one ml of 0.5 M CaCl₂ and 4 ml of 0.5 M NaOH was added to the soil suspension and was filtered through a Whatman no.1 filter paper. The intensity of yellow color was measured at 420 nm using spectrophotometer against the reagent blank.

2.5.3 Microbial biomass carbon (mg kg⁻¹)

Soil microbial biomass carbon was determined using the CHCl₃ fumigation extraction method [19]. To take 10 gram of soil which was subjected to oven dry weight of soil was used in duplicates and K₂SO₄ extractable C was determined using dichromate digestion. Microbial biomass carbon was calculated using the equation

\[\text{Biomass C} = \frac{\text{EC}}{0.54}. \]
Where,

\[EC = (\text{organic C in } K_2SO_4 \text{ from fumigated soil}) - (\text{organic C in } K_2SO_4 \text{ from Un- fumigated soil}). \]

2.6 Statistical Analysis

The data averaged into respective parameter requisite was recorded and subjected to suitable transformation by “Analysis of variance technique”. After analysis, data was accommodated in the table as per the needs of objectives for interpretation of results. For testing the hypothesis, the following ANOVA table was used. The significant and non-significant treatment effect was judged with the help of ‘F’ (variance ratio) table. If the calculated value exceeds the table value, the effect was considered to be significant. The standard procedures in agriculture statistics was consulted throughout [20]. The interpretation of data will be done by using the critical difference value calculated at 0.05 probability level. The level of significance will be expressed at 0.05 probabilities.

The following is the skeleton of analysis of variance Table 4 used in the present study as given.

Table 4. Skeleton of ANOVA table

Source of variation	Df	SS	MSS	F Cal	F Tab at 5%
Due to replications	(r-1)	RSS	RSS (r-1)	MSS(r) EMS	F(r-1) (r-1) (t-1)
Due to treatments	(t-1)	TrSS	TrSS (t-1)	MSS(t) EMS	F(t-1) (r-1) (t-1)
Due to error	(r-1) (t-1)	ESS	ESS (r-1) (t-1)	EMS	
Total	(rt-1)	TSS			

Where,

Standard Error Deviation (S.E.d):

\[S.E. (d) = \sqrt{\frac{2 \times \text{MSSE}}{r}} \]

Co-efficient of variation (CV):

\[CV (\%) = \frac{\sigma}{\bar{X}} \times 100 \]

Critical difference (CD):

\[CD = S.E. (d) \times t' \text{ error degree of freedom at 5% level of significance} \]

Where:

- \(\bar{X} \) = Mean
- \(\sigma \) = Standard deviation
- \(R \) = Number of replications
- \(Df \) = Degree of freedom
- \(SS \) = Sum of squares
- \(RSS \) = Sum of squares due to replication
- \(TrSS \) = Sum of squares due to treatment
- \(TSS \) = Total sum of squares
- \(ESS \) = Error sum of squares
- \(MSS(r) \) = Mean sum of squares due to replication
- \(MSS(t) \) = Mean sum of squares due to treatment
- \(EMSS \) = Error mean sum of squares
- \(S.E.(d) \) = Standard error deviation

3. RESULTS AND DISCUSSION

Appraisal of the data, transcribed from soil analysis, have focused that constituents like farm yard manure, bio-fertilizers and nitrogen levels, have found effective in performing healthier results with regard to soil which have been put under research investigation.
The observations on chemical soil properties with respect to soil pH, variation among the different treatments shows non-significant. The range of soil pH was observed from 6.76-7.31, 6.87-7.40 and 6.82-7.36, respectively, during 2018-19, 2019-20 and on pooled basis. However, the treatment (T₆) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, have got low soil pH i.e. 6.76, 6.87 and 6.82, when compared with chemically treated plot (T₁) consisting of 100% nitrogen i.e. 7.31, 7.40 and 7.36, over control plot (T₁), i.e. 7.06, 7.18 and 7.12, respectively, are presented in Table 5. The results further admitted that, organically treated plots registered less soil pH values in the treatments (T₆) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹), i.e. 6.79, 6.88 and 6.83 and (T₆) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + zinc, i.e. 6.78, 6.89 and 6.83, and (T₁₂) consisting of 50% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, i.e. 6.88, 7.00 and 6.94, which are at par and followed to treatment (T₁₅), respectively.

The decrease in soil pH in the farm yard manure treated plots might be attributed to the production of organic acids and release of carbon dioxide during organic matter decomposition in presence of microbes [21-28].

The data pertaining to electrical conductivity of soil shows that, variation among the different treatments was also existed non-significant. The range of electrical conductivity was observed from 0.26-0.30, 0.34-0.44 and 0.30-0.37 dS m⁻¹, respectively, during 2018-19, 2019-20 and on pooled basis, are presented in Table 5. However, the treatment (T₉) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, have got low electrical conductivity, i.e. 0.30, 0.44 and 0.37 dS m⁻¹, when compared with chemically treated plot (T₃) consisting of 100% nitrogen, i.e. 0.27, 0.39 and 0.33 dS m⁻¹, over control plot (T₁), i.e. 0.26, 0.34 and 0.30 dS m⁻¹, respectively.

However, the treatment (T₉) followed by treatment (T₆) (0.28, 0.43 and 0.36 dS m⁻¹) was at par with each other and on par with treatment (T₈) (0.28, 0.42 and 0.35 dS m⁻¹) respectively, during both the years and on pooled basis. The reason beyond lowering the electrical conductivity values in organic treated plots might be due to increasing in water retaining capacity, due to improvement in soil aggregation thus reducing the salt concentration [23-30].

As per results concerned, the holding capacity of exchangeable cations by experimental soil, differs significantly among varied treatments and soil sample analysed which gave limit range of 11.35-16.32, 11.51-16.41 and 11.43-16.37 cmol (p⁻¹) kg⁻¹, during 2018-19, 2019-20 and on pooled basis. Thus, it said that the treatment enriched in combination of sources like farm yard manure, bio-fertilizers and nitrogen levels, have evidenced higher cation exchange capacity of soil, i.e. T₉ consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, noting 14.74, 15.00 and 14.87 cmol (p⁻¹) kg⁻¹, over control (T₁) i.e. 11.35, 11.51 and 11.43 cmol (p⁻¹) kg⁻¹, respectively, are presented in Table 5.

In addition to this, treatment (T₆) followed by treatment (T₆) (16.05, 16.16 and 16.11 cmol (p⁻¹) kg⁻¹) both stand at par with each other and on par with treatment (T₉) (15.97, 16.10 and 16.04 cmol (p⁻¹) kg⁻¹) respectively, during both the years and on pooled basis.

Increasing in cation exchange capacity of soil might be influenced by incorporation of organic material, in which soil build-up its capacity in holding nutrients through improving clay concentration by beneficial micro-organisms. Hence, exchange of cations take place in presence of clay, adsorption of clay site retains positively charged by electrostatic forces. Thus, improved soil aggregation and structural stability and increased cation exchange capacity could have achieved [22-33].

The presence of free lime content in soil sample, which was ranged from 13.25-23.27, 13.86-24.11 and 13.55-23.69%, respectively. In particularly, treatment (T₉) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, i.e. 13.25, 13.86 and 13.55 %, showed significantly lesser percentage of free lime present in soil, compared with chemically treated plot (T₃) consisting of 100% nitrogen alone, i.e. 18.17, 18.08 and 18.13%, which was high, over control (T₁), i.e. 21.98, 22.60 and 22.29%, respectively.

Further, treatment (T₉) followed by treatment (T₆) (14.69, 14.21 and 14.46%) and treatment (T₉)
(14.62, 15.33 and 14.98%) both stand statistically similar and at par with treatment (T6), are presented in Table 6.

The lesser values are observed in integrated treatments, it might be due to production of organic acids, which is a potential source in leading to dissolution effect, during organic matter decomposition in soil [22-28,30,34-36].

The organically treated plot including bio-fertilizers and nitrogen-levels marked significantly higher organic carbon content and it varied from 0.31-0.96, 0.37-1.02 and 0.34-0.99%, respectively. In particular, with respect to various treatments, highest percentage of organic carbon labelled in the treatment (T5) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3 kg ha\(^{-1}\)) + zinc, i.e. 0.96, 1.02 and 0.99 %, in comparison with chemical treatment (T3) consisting of 100% nitrogen alone, i.e. 0.66, 0.74 and 0.70%, which was very low, over control (T1) i.e. 0.31, 0.37 and 0.34%, respectively. In treatment (T5) followed by treatment (T6) (0.90, 0.96 and 0.93 %) in which both statistically at par with each other and on par with the treatment (T3) (0.79, 0.91 and 0.85%) and treatment (T12) (0.82, 0.89 and 0.85%), respectively, in which both are found statistically similar, during both the years and on pooled basis, are presented in Table 6.

Besides adding organic carbon, the added organic sources to the treatment plot itself influenced the soil root growth system, resulting in addition of greater root biomass and root exudates to the soil and also observed that, it might be due to build up effect of organic matter in surface soil, over all led to ultimately increasing in soil organic carbon [22-28,30,37-42].

The observational studies after analysing soil samples from respective field, it was noticed that, integral effect of organics and inorganics found highest available nitrogen source in experimental site. The available nitrogen among the treatments ranged from 214.07-261.99, 217.21-262.25 and 217.07-262.12 kg ha\(^{-1}\), respectively. In clarity, treatment (T6) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3kg ha\(^{-1}\)) + zinc, i.e. 261.99, 262.25 and 262.12 kg ha\(^{-1}\), evidenced significantly highest available nitrogen in soil, in comparison with chemical treatment (T3) consisting of 100% nitrogen alone, i.e. 242.08, 242.37 and 242.22 kg ha\(^{-1}\), both stand statistically at par with each other over control (T1) i.e. 216.93, 217.21 and 217.07 kg ha\(^{-1}\). Furthermore, treatment (T9) stand statistically on par with the treatment (T6) (234.74, 235.00 and 234.87 kg ha\(^{-1}\)), respectively, during both the years and on pooled basis, are presented in Table 6.

Increasing in available nitrogen observed under organically treated plot, which might be due to mineralization effect of organic sources [43]. It might be also due to the favourable soil conditions provided by farm yard manure addition might have helped in mineralization process in building-up higher available nitrogen and improved soil fertility [22-28,30,39,40-42,44-48].

On the basis of research studies during the course of two years, it has come with output that, the organically treated plot including bio-fertilizers and nitrogen levels, marked significantly highest available phosphorus in soil and it varied from 16.41-21.52, 16.88-21.98 and 16.75-21.75 kg ha\(^{-1}\), respectively, are presented in Table 7. However, treatment (T9) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3kg ha\(^{-1}\)) + zinc, i.e. 21.52, 21.98 and 21.75 kg ha\(^{-1}\), evidenced significantly highest available P in soil, in comparison with chemical treatment (T3) consisting of 100% nitrogen alone, i.e. 19.41, 20.49 and 19.77 kg ha\(^{-1}\), both stand statistically at par with each other, over control (T1) i.e. 16.63, 16.88 and 16.75 kg ha\(^{-1}\), respectively. Further, treatment (T9) stand slightly on par with the treatment (T6) (19.51, 20.00 and 19.76 kg ha\(^{-1}\)) and treatment (T6) (19.50, 20.01 and 19.76 kg ha\(^{-1}\)) respectively, which are identically same, during both the years and on pooled basis.

The highest available phosphorus in farm yard manure treated plot resulted, which might be due to effective solubilisation of native phosphorus in the soil through the release of various organic acids by farm yard manure. On another side it may also influenced by release of carbon dioxide, which plays a dominant role in enhancing the phosphorus availability, during the decomposition of organic matter which forms carbonic acids, solubilizing certain primary minerals [22-28,30,39,42,49].

The organically treated plot having higher clay content, having higher persistence in soil including bio-fertilizers and nitrogen levels, marked significantly highest available potassium
in soil and it varied from 136.29-136.76 and 136.52 kg ha\(^{-1}\), respectively, are presented in Table 7. Among various treatment (T\(_6\)) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3kg ha\(^{-1}\)) + zinc, i.e. 217.29, 223.73 and 220.51 kg ha\(^{-1}\), evidenced significantly highest available phosphorus in soil, in comparison with chemical treatment (T\(_3\)) consisting of 100% nitrogen alone, i.e. 216.55, 217.02 and 216.79 kg ha\(^{-1}\), both stand statistically at par with each other, over control (T\(_1\)) i.e. 19.61, 19.86 and 19.73 kg ha\(^{-1}\), respectively.

Further, treatment (T\(_6\)) stand statistically on par with the treatment (T\(_8\)) (28.17, 28.43 and 28.30 kg kg\(^{-1}\)) and treatment (T\(_8\)) (27.28, 27.52 and 27.40 kg kg\(^{-1}\)) respectively, during both the years and on pooled basis. Primarily, the increase in available sulphur was due to use of single superphosphate as a source of phosphorus, which contains appreciable amount of sulphur. In addition to this, the highest available sulphur in organic treatment might be attributed to mineralization of available nitrogen, phosphorus, potassium and sulphur nutrients from farm yard manure. Another reason might be that, the suitable soil conditions under organic sources might have promoted for mineralization of nutrients and leading to build-up higher available nitrogen, potassium, phosphorus and sulphur nutrients [22-28,30,51,52].

Outcome of the result says that, the organically treated plot including bio-fertilizers and nitrogen levels, marked significantly highest available iron in soil and it varied from 3.12-3.84, 3.21-3.95 and 3.17-3.90 mg kg\(^{-1}\), respectively. However, the treatment (T\(_6\)) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3kg ha\(^{-1}\)) + zinc, have noted highest available iron, i.e. 3.84, 3.95 and 3.90 mg kg\(^{-1}\), when compared with chemically treated plot (T\(_3\)) consisting of 100% nitrogen, i.e. 3.32, 3.58 and 3.45 mg kg\(^{-1}\), over control plot (T\(_1\)), i.e. 3.12, 3.21 and 3.17 mg kg\(^{-1}\), respectively. The results further revealed that, the treatment (T\(_6\)) followed by treatment (T\(_8\)) (3.72, 3.84 and 3.78 mg kg\(^{-1}\)) and treatment (T\(_9\)) (3.72, 3.81 and 3.77 mg kg\(^{-1}\)) and stand statistically at par with each, respectively, during both the years and on pooled basis, are presented in Table 8.

The data pertaining to manganese availability in soil shows that, significant variation existed among the different treatments. The range of available manganese was ranged from 3.72, 3.84 and 3.78 mg kg\(^{-1}\) respectively, are presented in Table 8. In contrast, treatment (T\(_9\)) consisting of 75% nitrogen + farm yard manure @ 5 t ha\(^{-1}\) + Azotobacter spp + Azospirillum spp (3 kg ha\(^{-1}\)) + zinc, i.e. 3.72, 3.81 and 3.77 mg kg\(^{-1}\), evidenced significantly lowest available manganese in soil, in comparison with chemical treatment (T\(_3\)) consisting of 100% nitrogen alone, i.e. 4.62, 4.69 and 4.64 mg kg\(^{-1}\), respectively.
Further, treatment (T₆) followed by treatment (T₈) (4.30, 4.39 and 4.35 mg kg⁻¹) stand statistically at par with each other, on par with treatment (T₇) (4.50, 4.58 and 4.54 mg kg⁻¹), respectively, during both the years and on pooled basis.

The data pertaining to copper availability in soil shows that, significant variation existed among the different treatments. The range of available copper was observed from 0.28-0.98, 0.33-1.01 and 0.31-0.99 mg kg⁻¹, respectively. In contrast, from various treatments, (T₆) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, i.e. 0.28, 0.33 and 0.31 mg kg⁻¹, evidenced significantly lowest available copper in soil, in comparison with chemical treatment (T₁) consisting of 100% nitrogen alone, i.e. 0.98, 1.01 and 0.99 mg kg⁻¹, over control (T₀), i.e. 0.58, 0.62 and 0.60 mg kg⁻¹, respectively. Further, treatment (T₆) followed by treatment (T₈) (0.52, 0.56 and 0.54 mg kg⁻¹) and treatment (T₇) (0.53, 0.55 and 0.54 mg kg⁻¹) both stand statistically similar and at par to treatment (T₉), are presented in Table 8.

The reason for low copper availability in soil mainly depends on the functional groups of the soil reactive particles and their sorption capacity, which is a result of diverse factors (McBride, 1994). However, soil belongs to organically treated plot having neutral to alkaline in reaction, may generally have lower copper availability which is related to the presence of carbonates that favour copper precipitation and adsorption [53]. In addition, organic matter restricts copper availability, because of its high affinity sites and a binding energy capable of making strong complex with the copper metal. Hence its availability is very less [22-28,30,54].

Outcome of the result from the two years says that, the organically treated plot including bio-fertilizers and nitrogen levels, marked significantly highest available zinc in soil and it varied from 1.13-1.78, 1.19-1.80 and 1.16-1.79 mg kg⁻¹, respectively. However, the treatment (T₈) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, have noted highest available zinc, i.e. 1.78, 1.79 and 1.79 mg kg⁻¹, when compared with chemically treated plot (T₉) consisting of 100% nitrogen, i.e. 1.42, 1.53 and 1.47 mg kg⁻¹, over control plot (T₁), i.e. 1.13, 1.19 and 1.16 mg kg⁻¹, respectively.

However, the treatment (T₆) followed by treatment (T₈), i.e. 1.77, 1.79 and 1.78 mg kg⁻¹, both stand statistically at par with each other, on par with treatment (T₀), i.e. 1.75, 1.78 and 1.76 mg kg⁻¹, respectively, during both the years and on pooled basis, are presented in Table 8.

The consequence of overall analysis of chemical parameters influenced well with respect to positive effect of amendment used as bio-fertilizers and farm yard manure, might be attributed to increment in macro and micronutrients availability at the rhizosphere and also due to growing tissues and organs acquisition with higher amounts of nitrogen supported by nitrogen fixing Azospirillum spp and Azotobacter spp on wheat plants [22-28,30,55-59].

The observations on biological soil properties with respect to enzyme activities shows that, significantly higher dehydrogenase enzyme activity was marked in the organically treated plot including bio-fertilizers and nitrogen levels and it varied from 0.84-1.42, 1.00-1.57 and 0.92-1.49 µg triphenyl-formazan g⁻¹ day⁻¹, respectively. The highest percentage of enzyme activity labelled in the treatment (T₆) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, i.e. 1.42, 1.57 and 1.49 µg triphenyl-formazan g⁻¹ day⁻¹, in comparison with chemical treatment (T₉) consisting of 100% nitrogen alone, i.e. 1.24, 1.26 and 1.25 µg triphenyl-formazan g⁻¹ day⁻¹, which was low, over control (T₁), i.e. 0.84, 1.00 and 0.92 µg triphenyl-formazan g⁻¹ day⁻¹, respectively.

Further, the treatment (T₆) followed by the treatment (T₈), i.e. 1.37, 1.52 and 1.44 µg triphenyl-formazan g⁻¹ day⁻¹, in which both was statistically at par with each other, on par with the treatment (T₀), i.e. 1.30, 1.46 and 1.38 µg triphenyl-formazan g⁻¹ day⁻¹, respectively, during both the years and on pooled basis, are presented in Table 9.

Among, different treatment combination, usage of both Azotobacter spp. and Azospirillum spp. as seed inoculant, during experimentation, might have found most effective and efficient, resulted...
Table 5. Effect of integrated nutrients on soil pH, electrical conductivity (dS m^{-1}) and cation exchange capacity (cmol (p^{+}) kg^{-1}) of soil during wheat cultivation

T	Soil pH	EC (dS m^{-1})	CEC (cmol (p^{+}) kg^{-1})						
	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled
T1	7.06	7.18	7.12	0.26	0.34	0.30	11.35	11.51	11.43
T2	7.11	7.24	7.17	0.26	0.37	0.31	12.64	12.76	12.70
T3	7.31	7.40	7.36	0.27	0.39	0.33	14.74	15.00	14.87
T4	6.88	7.02	6.95	0.28	0.39	0.34	15.42	15.53	15.47
T5	6.97	7.11	7.04	0.29	0.38	0.33	14.28	14.51	14.39
T6	6.79	6.88	6.83	0.28	0.43	0.36	16.05	16.16	16.11
T7	7.17	7.31	7.24	0.26	0.40	0.33	14.23	14.29	14.26
T8	6.78	6.89	6.83	0.28	0.42	0.35	15.97	16.10	16.04
T9	6.76	6.87	6.82	0.30	0.44	0.37	16.32	16.41	16.37
T10	6.97	7.08	7.02	0.28	0.39	0.34	15.41	15.47	15.44
T11	7.01	7.13	7.07	0.27	0.37	0.32	13.47	13.80	13.64
T12	6.88	7.00	6.94	0.28	0.41	0.34	15.67	15.78	15.73
F-test	NS	NS	NS	NS	NS	NS	S	S	S
S. Ed.	0.182	0.286	0.209	0.012	0.049	0.026	1.090	1.11	5.51
C. D.	0.377	0.590	0.431	0.024	0.100	0.055	1.350	1.358	0.67

Note: CD at 0.05 level of significance (probability), T-Treatments, NS-Non-significant, S-Significant, EC Electrical conductivity, CEC-Cation exchange capacity.
Table 6. Effect of integrated nutrients on free lime content (%), organic carbon (%) and available nitrogen (kg ha\(^{-1}\)) in soil during wheat cultivation

T	Free lime content (%)	Pooled	Organic carbon (%)	Pooled	Available nitrogen (kg ha\(^{-1}\))	Pooled			
	2018-19	2019-20		2018-19	2019-20		2018-19	2019-20	
T1	21.98	22.60	22.29	0.31	0.37	0.34	216.93	217.21	217.07
T2	23.27	24.11	23.69	0.39	0.47	0.43	224.26	224.53	224.39
T3	18.17	18.08	18.13	0.66	0.74	0.70	242.08	242.37	242.22
T4	15.72	16.39	16.06	0.75	0.82	0.78	227.45	229.74	228.60
T5	17.82	19.29	18.56	0.54	0.64	0.59	226.76	230.44	228.60
T6	14.69	14.21	14.46	0.90	0.96	0.93	234.74	235.00	234.87
T7	18.75	18.45	18.60	0.51	0.59	0.55	227.45	229.70	228.58
T8	14.62	15.33	14.98	0.79	0.91	0.85	231.46	232.00	231.73
T9	13.25	13.86	13.55	0.96	1.02	0.99	261.99	262.25	262.12
T10	17.88	17.69	17.79	0.70	0.81	0.75	217.98	218.23	218.10
T11	19.27	21.05	20.16	0.48	0.57	0.52	217.02	221.26	219.14
T12	14.78	15.38	15.08	0.82	0.89	0.85	214.07	226.34	220.21
F-test	S	S	S	S	S	S	S	S	S
S. Ed.	3.82	1.93	1.51	0.109	0.113	0.110	3.630	3.703	3.659
C. D.	4.688	2.378	1.839	0.225	0.233	0.227	7.493	7.643	7.553

Note: CD at 0.05 level of significance (probability), T-Treatments, S-significant
Table 7. Effect of integrated nutrients on available phosphorus, potassium and sulphur during wheat cultivation

T	Available P (kg ha⁻¹)	Available K (kg ha⁻¹)	Available S (kg ha⁻¹)						
	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled
T₁	16.63	16.88	16.75	136.29	136.76	136.52	19.61	19.86	19.73
T₂	18.12	18.42	18.27	188.55	189.05	188.80	22.46	22.68	22.57
T₃	19.41	20.49	19.77	216.55	217.02	216.79	29.78	30.01	29.89
T₄	19.52	19.99	19.75	205.35	205.81	205.58	25.35	25.60	25.48
T₅	18.02	18.51	18.26	192.29	192.77	192.53	24.38	24.61	24.50
T₆	19.51	20.00	19.76	205.35	205.83	205.59	28.17	28.43	28.30
T₇	19.65	19.84	19.74	196.02	196.47	196.24	23.49	23.70	23.59
T₈	19.50	20.01	19.76	204.35	206.82	205.59	27.28	27.52	27.40
T₉	21.52	21.98	21.75	217.29	223.73	220.51	32.44	32.71	32.57
T₁₀	18.02	18.46	18.24	179.22	179.72	179.47	19.89	20.13	20.01
T₁₁	16.41	17.11	16.76	162.42	162.90	162.66	20.88	20.10	20.99
T₁₂	19.30	20.13	19.74	181.09	181.54	181.31	21.55	21.80	21.67
F- test	S	S	S	S	S	S	S	S	
S. Ed.	1.161	1.185	1.167	13.269	13.704	13.414	0.725	0.951	0.837
C. D.	2.397	2.446	2.409	27.388	28.285	27.687	1.466	1.962	1.728

Note: CD at 0.05 level of significance (probability), T-Treatments, S-significant, P-Phosphorus, K-Potassium, S-Sulphur
Table 8. Effect of integrated nutrients on available soil micro-nutrients during wheat cultivation

T	Available micro-nutrients (mg kg\(^{-1}\)) in soil.											
	2018-19	2019-20	Pooled									
T1	3.12	3.21	3.17	4.89	4.98	4.94	0.58	0.62	0.60	1.13	1.19	1.16
T2	3.31	3.39	3.35	6.10	6.32	6.22	0.87	0.93	0.90	1.33	1.41	1.37
T3	3.32	3.58	3.45	6.20	6.28	6.24	0.98	1.01	0.99	1.42	1.53	1.47
T4	3.56	3.64	3.60	4.56	4.66	4.61	0.57	0.59	0.58	1.59	1.62	1.61
T5	3.54	3.59	3.57	6.08	6.15	6.12	0.88	0.91	0.90	1.42	1.61	1.52
T6	3.72	3.84	3.78	4.30	4.39	4.35	0.52	0.56	0.54	1.77	1.79	1.78
T7	3.23	3.54	3.38	5.72	5.79	5.75	0.77	0.79	0.78	1.51	1.53	1.52
T8	3.72	3.81	3.77	4.50	4.58	4.54	0.53	0.55	0.54	1.75	1.78	1.76
T9	3.84	3.95	3.90	3.72	3.81	3.77	0.28	0.33	0.31	1.78	1.79	1.79
T10	3.60	3.68	3.64	4.82	4.94	4.88	0.77	0.80	0.79	1.52	1.56	1.54
T11	3.46	3.53	3.50	5.71	5.83	5.77	0.70	0.74	0.72	1.48	1.52	1.50
T12	3.67	3.73	3.70	4.64	4.87	4.76	0.56	0.62	0.59	1.70	1.72	1.71

F test	S	S	S	S	S	S	S	S	S	S	S	
S Ed	0.030	0.086	0.054	0.71	0.65	0.43	0.31	0.27	0.14	0.20	0.17	0.18
C.D.	0.062	0.178	0.112	0.54	0.80	0.535	0.23	0.24	0.17	0.25	0.22	0.23

Note: CD at 0.05 level of significance (probability), T-Treatments, S-significant, Fe-Iron, Mn-Manganese, Cu-copper, Zn-Zinc
Table 9. Effect of integrated nutrients on soil enzyme activities during wheat cultivation

T	DHA (µg TPF g$^{-1}$ day$^{-1}$)	APA (µg pNP g$^{-1}$ hr$^{-1}$)	MBC (gm kg$^{-1}$)						
	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled			
T_1	0.84	1.00	0.92	151.81	152.27	152.05	30.19	30.66	30.42
T_2	0.90	1.04	0.97	148.44	170.97	159.71	30.37	32.86	31.61
T_3	1.24	1.26	1.25	164.53	165.25	164.89	34.86	35.35	35.11
T_4	1.20	1.35	1.27	180.98	181.46	181.22	36.24	36.70	36.47
T_5	1.12	1.27	1.20	160.74	161.21	160.98	33.58	34.03	33.80
T_6	1.37	1.52	1.44	183.20	185.78	184.49	36.96	37.43	37.20
T_7	0.99	1.16	1.08	160.23	160.92	160.57	32.75	32.75	32.51
T_8	1.30	1.46	1.38	179.33	183.81	181.57	36.24	36.71	36.48
T_9	1.42	1.57	1.49	185.97	186.73	186.35	37.37	37.81	37.59
T_{10}	1.18	1.36	1.27	175.62	176.26	175.94	34.37	34.87	34.62
T_{11}	0.93	1.06	0.99	153.42	161.94	157.68	29.40	33.85	31.63
T_{12}	1.25	1.36	1.31	180.18	182.78	181.48	35.76	36.24	36.00

F-test	S	S	S	S	S	S	S	S	S
S. Ed.	0.175	0.172	0.172	9.10	6.34	4.61	1.029	0.933	0.975
C. D.	0.360	0.355	0.355	11.294	10.312	5.66	2.124	1.927	2.013

Note: CD at 0.05 level of significance (probability). T-Treatments, S-significant, DHA-Dehydrogenase activity, APA-Alkaline phosphatase activity, MBC-Microbial biomass carbon
in receiving maximum values of plant growth parameter, yield attributing characteristics, grain yield, soil microbial biomass carbon and dehydrogenase activities at all the growth stages of wheat crop [28,30,60-63].

Similarly, alkaline phosphatase activity it varied from 148.44-185.97, 152.27-186.73 and 152.05-186.35 µg para nitrophenol g⁻¹ hr⁻¹, respectively. The highest percentage of phosphatase activity labelled in organic treatment (T₃) consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, *i.e.* 185.97, 186.73 and 186.35 µg para nitrophenol g⁻¹ hr⁻¹, in comparison with chemical treatment (T₅) consisting of 100% nitrogen alone, *i.e.* 164.53, 165.25 and 164.89 µg para nitrophenol g⁻¹ hr⁻¹, which was very low, over control (T₁), *i.e.* 151.81, 152.27 and 152.05 µg para nitrophenol g⁻¹ hr⁻¹, respectively. Further, the treatment (T₆) followed by and statistically at par with treatment (T₅) *i.e.* 183.20, 185.78 and 184.49 µg para nitrophenol g⁻¹ hr⁻¹, during both the years and on pooled basis, are presented in Table 9.

The microbial bio-mass carbon in treated soil sample varied from 29.40-37.37, 30.66-37.87 and 30.42-37.59 gm kg⁻¹, respectively. The highest percentage of microbial bio-mass carbon labelled in the treatment T₃ consisting of 75% nitrogen + farm yard manure @ 5 t ha⁻¹ + Azotobacter spp + Azospirillum spp (3 kg ha⁻¹) + zinc, *i.e.* 37.37, 37.81 and 37.59 gm kg⁻¹, in comparison with chemical treatment (T₅) consisting of 100% nitrogen alone, *i.e.* 34.86, 35.35 and 35.11 gm kg⁻¹, which was very low, over control (T₁), *i.e.* 30.19, 30.66 and 30.42 gm kg⁻¹, respectively, are presented in Table 9.

Further, the treatment (T₅) followed by treatment (T₆) *i.e.* 36.96, 37.43 and 37.20, (in which both are statistically at par with each other), on par with the treatment (T₄) *i.e.* 36.24, 36.70 and 36.47 gm kg⁻¹ and treatment (T₃) *i.e.* 36.24, 36.71 and 36.48 gm kg⁻¹, in which both are found statistically similar, respectively, during both the years and on pooled basis.

From the studies, higher microbial biomass carbon was observed in organic treated plot, which might be the result of cumulative effect of the amendments used and also left-over crop residues on the field after harvest during the previous seasons. Crop residues can have a large effect on soil microbial biomass and activity, which, in turn, affect the ability of soil to supply nutrients to plants through soil organic matter turnover. Microbial biomass carbon has positively correlated with organic carbon content in soil [28,61-65].

4. CONCLUSION

The overall result, during two years (2018-19 and 2019-20) of research investigation, delivered to wheat growers that, for optimum yield requirement of farmers livelihood, the best alternative way to sound success in agriculture production is by effective utilization of higher organic resource during cultivation practices in combination with inorganics at lesser amount, in order to sustain soil health, nutrient availability and economic productivity. However, integrated treatments found better in organic ones in terms of soil dehydrogenase activity, alkaline phosphatase activity, soil urease activity, available nutrient status, organic carbon and cation exchange capacity. Bio-fertilizers like Azatobacter spp and Azospirillum spp (as seed inoculation) @ 3 kg ha⁻¹ and farm yard manure @ 5 tha⁻¹ has proved potential organic inputs for yield sustenance under wheat crop cultivation.

ACKNOWLEDGEMENT

I am grateful for ever-inspiring guidance, constant encouragement, keen interest and scholarly comments and constructive suggestions throughout the course of my studies and investigation, from, head of the department and staff, department of soil science and agricultural chemistry, sam higginbottom university of agriculture, technology and sciences, Prayagraj, Uttar Pradesh.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Grain and Feed Annual. The report contains assessments of commodity and trade issues made by USDA staff and not necessarily statements of official U.S. government policy. Gain Report. 2019;1-42.

2. Dotaniya ML, Meena VD, Basak BB, Meena RS. Potassium uptake by crops as well as microorganisms and potassium solubilizing microorganisms for sustainable
agriculture. Springer. New Delhi. 2016;267-280.
3. Singh AP, Lal AK, Singh AP. Effect of FYM, potassium and zinc on yield, quality and uptake of nutrients in forage oat in alluvial soil. Annals of Plant and Soil Research. 2016;18(4):338-341.
4. Wu F, Dong M, Liu Y, Ma X, An L, Young JPW, Feng H. Effects of long-term fertilization on AM fungal community structure and glomalin related soil protein in the Loess Plateau of China. Plant and Soil. 2011;342:233-247.
5. Mehran M, Ardakani MR, Madani H, Zahedi M. Response of sunflower yield and phytohormonal changes to Azotobacter, Azospirillum, Pseudomonas and animal manure in a chemical free agro-ecosystem. Annals Biol. Res. 2011;2(6):425-430.
6. Liang Q, Chen H, Gong Y, Yang H, Fan M, Kuzyakov Y. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. European Journal of Soil Biology. 2014;60:112-119.
7. Jackson ML. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd. New Delhi. 1973;52.
8. Wilcox LV. Electrical conductivity Am. Water works assoc. J. 1950;42:775-776.
9. Walkley A, Black IA. Rapid titration method of organic carbon of soils. Soil Science. 1947;37: 29-33.
10. Black CA. Method of soil analysis part I and II. Agronomy Monograph 9. American Soc. Agron. Madison, Wisconsin, USA; 1965.
11. Piper CS. Soil and plant analysis. Hans Publishers. Bombay, India; 2002.
12. Subbiah BV, Asija GL. A rapid procedure for determination of available nitrogen in soils. Current Sciences. 1956;25:259-260.
13. Olsen SR, Cole CV, Watababe FS, Dean LA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Dept. of Agric. Circ. 1954;939.
14. Toth SJ, Prince AL. Estimation of cation exchange capacity and exchangeable calcium, available potassium and sodium content of soil by flame photometer technique. Soil Sci. 1949;67:439-445.
15. Chesnin L, Yien CH. Turbidimetric determination of available sulphur in soil. Soil. Sci. Amer. Proc. 1950;15:149-151.
16. Lindsay WL, Norvell WA. Development of DTPA-soil test for Zn, Fe, Mn and Cu. Soil Sci. Soc. America J. 1978;42:421-428.
17. Casida LE, Klein DA, Santoto T. Soil dehydrogenase activity. Soil Sci. 1964;98:371-376.
18. Tabatabai MA, Bremner JM. Use of p-nitro phenyl phosphate for assay of soil phosphatase activity. Soil Biology Biochemistry. 1969;1:301-307.
19. Voroney RP, Winter JP, Beyart RP. Soil microbial biomass carbon and nitrogen. Soil Sampling and Method of Analysis. Lewis. Chelsea. 1993;277-286.
20. Gomez KA, Gomez AA. Statistical procedures for agricultural research. An International Rice Research Institute Book. A Wiley Inter science, John Wiley and Sons Inc New York, USA; 1984.
21. Kumar S, Singh OP. Response of wheat to different combination of integrated nutrient management under irrigated conditions. Green Farming. 2010;1(1):27-29.
22. Upadhyay and Vishwakarma, Influence of preceding crops and nutrient management on productivity of wheat (Triticum aestivum L.) based cropping system. Indian Journal of Agronomy. 2014;58(1):15-18.
23. Ram S, Singh V, Sirari P. Effects of 41 years of application of inorganic fertilizers and farm yard manure on crop yields, soil quality and sustainable yield index under a rice-wheat cropping system on Mollisols of North India, Communications in Soil Science and Plant Analysis, 2016; 47(2):179-193.
24. Gawde N, Singh AK, Agrawal SK, Kumar R. Long term effect of integrated nutrient management on soil nutrient status under rice-wheat cropping system in Inceptisols. International Journal of Chemical Studies. 2017;5(4):1050-1057.
25. Bhatt MK, Labanya R, Joshi HC, Pareek N, Chandra R, Ravetkar KP. Long-term effects of inorganic fertilizers and FYM on soil chemical properties and yield of wheat under rice-wheat cropping system. ENVIS Bulletin Himalayan Ecology. 2017;25:28-35.
26. Bharti B and Raj SP. Long term effect of integrated nutrient management on soil properties and availability of nutrients in a Typic Hapludalfs under maize-wheat cropping. International Journal of
Environmental & Agriculture Research. 2017;3(6):43-48.

27. Brar BS, Singh J, Singh G, Kaur G. Effect of long-term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy. 2015;5:220-238.

28. Patel G, Dwivedi BS, Dwivedi AK, Thakur R, Singh M. Long-term effect of nutrient management on soil biochemical properties in a Vertisol under soybean–wheat cropping sequence. Journal of the Indian Society of Soil Science. 2018;66(2):215-221.

29. Duhan BS, Singh M. Effect of green manuring and nitrogen on yield and uptake of nutrients by rice. Journal of Indian Society of Soil Science. 2002;50:178-80.

30. Bahadur L, Tiwari DD, Mishra J, Gupta BR. Evaluation of integrated nutrient management options in rice (Oryza sativa) – wheat (Triticum aestivum L.) cropping system in reclaimed sodic land. Indian Journal of Agronomy. 2013;58(2):137-145.

31. Das D, Dwivedi BS, Meena MC. Integrated nutrient management for improving soil health and crop productivity. Indian J. Fert. 2015;11(4):64-83.

32. Verma G, Mathur AK, Bhandari SC, Kanthaliya PC. Long-term effect of integrated nutrient management on properties of a Typic Haplustert under maize-wheat cropping system. Journal of the Indian Society of Soil Science. 2010;58:299-302.

33. Sepehya S. Long-term effect of integrated nutrient management on dynamics of nitrogen, phosphorus and potassium in rice-wheat system. Department of Soil Science. CSK Himachal Pradesh Krishi Vishwavidyalaya. Palampur. India. 2011;179.

34. Sangwan BS, Singh K. Vertical distribution of Zn, Mn, Cu and Fe in the semi-arid soils of Haryana and their relationship with soil chemical properties. Journal of Indian Society Soil Science. 1993;41(3):463-467.

35. Dang YP, Verma KS. Nutrient management in sugarcane in Haryana State: Key to improved sugar production. In: Sugar cane research towards efficient and sustainable production. (Ed. Wilson JR, Hogarth DM, Campbell JA, Garside AL). CSIRO Division of Tropical Crops and Pastures, Brisbane, Australia. 1996;203-205.

36. Satyavathy PLA. Influence of structural condition of Vertisols on water relation characteristics Journal of the Indian Society of Soil Science. 1998;46(1):129-132.

37. Muhhammad H, Zaman A, Khalil SK, Shah Z. Effect of beneficial microbes (BM) on the efficiency of organic and inorganic N fertilizers on wheat crop. Sarhad Journal of Agriculture. 2014;30(1):7-13.

38. El-dardiry E, Hellal F, Mansour H, Hady MAE. Assessment cultivated period and farm yard manure addition in some soil properties, nutrient content and wheat yield under sprinkler system. Agricultural Sciences. 2013;4(1):14-22.

39. Tadesse T, Dechassa N, Bayu W, Gebeyehu S. Effects of farmyard manure and inorganic fertilizer application on soil physicochemical properties and nutrient balance in rain-fed lowland rice ecosystem. American J. Plant Sci. 2013;4:309-316.

40. Yadavanshi NPS, Sharma DR, Swarp A. Impact of integrated nutrient management on soil properties and yield of rice and wheat in a long-term experiment on a reclaimed sodic soil. Journal of the Indian Society of Soil Science. 2013;61:188-194.

41. Parewa HP, Yadav J, Rakshit A. Effect of fertilizer levels, FYM and bio inoculants on soil properties in Inceptisol of Varanasi, Uttar Pradesh, India. International Journal of Agriculture, Environment & Biotechnology. 2014;7(3):517-525.

42. Singh R, Kumar H, Shweta SP, Kumar A, Yadav BK, Kumar S. Production and economics of irrigated wheat (Triticum aestivum L.) as influenced by integrated nutrient management. Plant Archives. 2014;14(2):919-922.

43. Tabassum S, Reddy KS, Vaishya UK, Singh M, Biswas AK. Changes in organic and inorganic forms of N in a Typic Haplustert under soyabean-wheat system due to conjoint use of inorganic fertilizers and organic manures. Journal of Indian Society of Soil Science. 2010;58(1):76-85.

44. Santhy P, Muthuvel P, Murugappan V, Selvi D. Long-term effects of continuous cropping and fertilization on crop yields and soil fertility status. Journal of the Indian Society of Soil Science. 1998;46:391-395.
45. Sarin T, Tanaka Y, Kitagawa. Utilization of organic matter for vegetable cultivation under a paddy upland rotation system. Nara Agricultural Experiment Station. 1991;22:57-64.

46. Kumar D. Influence of nutrient sources and inclusion of mung bean on productivity, soil fertility and profitability of organic rice-wheat cropping system. Building Organic Bridges at the Organic World Congress. 2014;255-257.

47. Davari MR, Sharma SN, Mirzakhani M. Effect of combinations of organic materials and biofertilizers on productivity, grain quality, nutrient uptake and economics in organic farming of wheat. Journal of Organic Systems. 2012;7(2):28-35.

48. Essam A, Lattief AE. Influence of integrated nutrient management on productivity and grain protein content of wheat under sandy soils conditions. Bio-life Journal. 2014;2(4):1359-1364.

49. Singh M. Wanjari RH. Research bulletin on lessons learnt from long-term fertilizer experiments and measures to sustain productivity in Alfisols. AICRP on LTFE to study changes in soil quality, crop productivity and sustainability. Indian Institute of Soil Science. Bhopal; 2007.

50. Kher D, Minhas RS. Effect of continuous liming, manuring and cropping on different forms of soil acidity in an Alfisol. Journal of the Indian Society of Soil Science. 1991;39:169-171.

51. Agarwal M, Ram N, Ram S. Long-term effect of inorganic fertilizers and manure on physical and chemical properties of soil after 35 years of continuous cropping of rice-wheat. Pantnagar Journal of Research. 2010;8(1):76-80.

52. Ravankar HN, Gajbhiye NN, Sarap PA. Effect of organic manures and inorganic fertilizers on yield and availability of nutrients under sorghum–wheat sequence. Indian Journal of Agriculture Research. 2005;39:142-145.

53. Bradl HB. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science. 2004;277:1– 18.

54. Croue JP, Benedetti MF, Violleau D, Leenheer JA. Characterization and copper binding of humic and non-humic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site. Environmental Science and Technology. 2003;37:328–36.

55. Madhu D, Upadhyay RM, Dwivedi GK, Dwivedi M. Effect of inorganic, organic and bio-fertilizers on yield and nutritional quality of black gram and wheat grown in sequence. Indian Journal of Agricultural-Chemistry. 1993;26:111-122.

56. Amara MA, Nasr SA, Rabie KAK. Phytohormonal interaction between Pseudomonas, Fluorescens, Rhodium, Legumin Sarum and Triticum aestivum. Annals of Agricultural Science Cario. 1995;40(1):81-97.

57. Patel JG, Malvia DD, Kaneria BB, Khanpara VD, Mathukia RK. Effect of N, P and bio-fertilizers on yield, quality and nutrients uptake in wheat. Gujarat Agricultural University Research Journal. 1996;22(1):118-120.

58. Panwar JDS, Ompal S, Singh O. Response of Azospirillum and Bacillus on growth and yield of wheat under field conditions. Indian Journal of Plant Physiology. 2000;5:108-110.

59. El-Bakry AA, Abd-Elmonhim M, El-Banna AM, Hassan HT, Massoud ON. Effect of Azospirillum, Arbuscular-Mycorrhiza and organic matter on growth and yield of wheat and sorghum. Bull. Fac. Assiut Univ. 2001;30(1-3):53-66.

60. Singh, Ripudaman, Kumar H, Shweta, Kumar A. Growth and yield of late sowed wheat as influenced by irrigation schedules and integrated nutrient management. Research Environmental Life Science. 2015;8(2):275-277.

61. Bhatt M, Singh AP, Singh V, Kala DC, Kumar V. Long-term effect of organic and inorganic fertilizers on soil physico-chemical properties of a silty clay loam soil under rice-wheat cropping system in Tarai region of Uttarakhand. Journal of Pharmacognosy and Phytochemistry, 2016; 8(1):2113-2118.

62. Akram MA, Depar N, Memon MY. Synergistic use of nitrogen and zinc to bio-fortify zinc in wheat grains. Eurasian J Soil Sci. 2017;6(4):319-326.

63. Bhavani S, Shaker CK, Jayashree G, Padmaja B. Effects of long-term application of inorganic and organic fertilizers on soil biological properties of...
rice. Journal of Pharmacognosy and Phytochemistry. 2017;6(5):1107–1110.

64. Beck T, Joergensen RG, Kandeler ME, Nuss F, Oberholzer HR, Scheu S. An inter-laboratory comparison of ten different ways of measuring soil microbial carbon. Soil Biol. Biochem. 1997; 29:1023–1032.

65. Leiros MC, Trasar-Cepeda C, Seoane S, GilSotress F. Biochemical properties of acid soils under climax vegetation (Atlantic oak wood) in an area of European temperature-humid zone (Galicia, NW Spain): General parameters. Soil Biol. Biochem. 2000;32:733–745.