Open Mathematics

Research Article

Mohammed Ali* and Musa Reyyashi

\(L^p \) estimates for maximal functions along surfaces of revolution on product spaces

https://doi.org/10.1515/math-2019-0118
Received June 10, 2018; accepted October 18, 2019

Abstract: This paper is concerned with establishing \(L^p \) estimates for a class of maximal operators associated to surfaces of revolution with kernels in \(L^q(S^{n-1} \times S^{m-1}) \), \(q > 1 \). These estimates are used in extrapolation to obtain the \(L^p \) boundedness of the maximal operators and the related singular integral operators when their kernels are in the \(L((\log L)^{\kappa}(S^{n-1} \times S^{m-1})) \) or in the block space \(B_q^{0, \kappa-1}(S^{n-1} \times S^{m-1}) \). Our results substantially improve and extend some known results.

Keywords: maximal functions, \(L^p \) boundedness, Rough kernels, surfaces of revolution, extrapolation

MSC: Primary 42B20; Secondary 40B25, 47G10

1 Introduction and main results

Let \(n, m \geq 2 \), and let \(\mathbb{R}^N \) (\(N = n \) or \(m \)) be the \(N \)-dimensional Euclidean space. Let \(S^{n-1} \) be the unit sphere in \(\mathbb{R}^n \) equipped with the normalized Lebesgue surface measure \(d\sigma = d\sigma(z) \). Also, let \(x' = x/|x| \) for \(x \in \mathbb{R}^n \setminus \{0\} \), \(y' = y/|y| \) for \(y \in \mathbb{R}^m \setminus \{0\} \).

Let \(K_{\Omega,h}(x,y) = \Omega(x',y')|x'|^{-n}|y'|^{-m}h(|x|, |y|) \), where \(h \) is a measurable function on \(\mathbb{R}^+ \times \mathbb{R}^+ \) and \(\Omega \) is an integrable function on \(S^{n-1} \times S^{m-1} \) that satisfies

\[
\int_{S^{n-1}} \Omega(x', y) d\sigma(x') = \int_{S^{m-1}} \Omega(\cdot, y') d\sigma(y') = 0 \quad \text{and} \quad (1.1)
\]

\[
\Omega(rx, ty) = \Omega(x, y) \quad \text{for all } r, t > 0. \quad (1.2)
\]

For suitable mappings \(\phi, \psi : \mathbb{R}^+ \to \mathbb{R} \), consider the singular integral operator \(T^{P_1, P_2}_{\Omega, h, \phi, \psi} \) defined, initially for \(C_0^\infty \) functions on \(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \), by

\[
T^{P_1, P_2}_{\Omega, h, \phi, \psi}(f)(\xi, \eta) = p.v. \int_{\mathbb{R}^{n+2}} e^{iP_1(u) + iP_2(v)} \times f(x - u, x_{n+1} - \phi(u), y - v, y_{m+1} - \psi(|v|))K_{\Omega,h}(u, v)du dv,
\]

where \((\xi, \eta) = (x_{n+1}, y_{m+1}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \) and \(P_1 : \mathbb{R}^n \to \mathbb{R}, P_2 : \mathbb{R}^m \to \mathbb{R} \) are two real-valued polynomials.

When \(P_1(u) = 0 \) and \(P_2(v) = 0 \), we denote \(T^{P_1, P_2}_{\Omega, h, \phi, \psi} \) by \(T_{\Omega, h, \phi, \psi} \). Also, when \(\phi(t) = \psi(t) = t \), then \(T_{\Omega, h, \phi, \psi} \) (denoted by \(T_{\Omega, h} \)) is just the classical singular integral operator introduced by Fefferman in [1] in which he

*Corresponding Author: Mohammed Ali: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan, E-mail: myali@just.edu.jo
Musa Reyyashi: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan, E-mail: musa-reyyashi@yahoo.com

Open Access. © 2019 Mohammed Ali and Musa Reyyashi, published by De Gruyter.
obtained the L^p boundedness of $T_{\Omega,h}$ for all $1 < p < \infty$ whenever Ω satisfies some regularity conditions and $h \equiv 1$. As a matter of fact, the systematic study of such operator began by Fefferman in [1], and then it was elaborated very much by Fefferman and Stein in [2]. Subsequently, the investigation of the L^p boundedness of $T_{\Omega,h}$ under very various conditions on Ω and h has attracted the attention of many authors. For example, it was proved in [3] that $T_{\Omega,h}$ is bounded on $L^p(\mathbb{R}^n \times \mathbb{R}^m)$ for $1 < p < \infty$ whenever $\Omega \in L(\log L)^2(S^{n-1} \times S^{m-1})$ and h satisfies certain integrability-size condition. Furthermore, the authors of [3] established the optimality of the condition in the sense that the space $L(\log L)^2(S^{n-1} \times S^{m-1})$ cannot be replaced by $L(\log L)^{2-\varepsilon}(S^{n-1} \times S^{m-1})$ for any $0 < \varepsilon < 2$. For more information about the importance and the recent advances on the study of such operators, the readers are referred (for example to [1–5], and the references therein).

On the other side, the study of the singular integrals on product spaces along surfaces of revolution has been started. For example, if ϕ and ψ are in $C^2([0, \infty))$, convex and increasing functions with $\phi(0) = \psi(0) = 0$, then Al-Salman in [4] showed that $T_{\Omega,1,\phi,\psi}$ is bounded on $L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})$ $(1 < p < \infty)$ provided that $\Omega \in L(\log L)^2(S^{n-1} \times S^{m-1})$. Recently, Al-Salman improved this result in [6]. In fact, when ϕ, ψ are given as in [4], he verified the L^p boundedness of $T_{\Omega,h,\phi,\psi}$ for all $p \in (1, \infty)$ under the conditions $\Omega \in L(\log L)(S^{n-1} \times S^{m-1})$ and $h \in L^2(\mathbb{R}^n \times \mathbb{R}^m, \frac{d\mu}{r})$ with $\|h\|_{L^2(\mathbb{R}^n \times \mathbb{R}^m, \frac{d\mu}{r})} \leq 1$.

The maximal operator that relates to our singular integral operator is $M^{\psi(1,\phi,\psi)}_{\Omega,\phi,\psi}$ that given by

$$M^{\psi(1,\phi,\psi)}_{\Omega,\phi,\psi}(f)(\xi,\eta) = \sup_{h \in U} \|T^{\psi(1,\phi,\psi)}_{\Omega,\phi,\psi}(f)(\xi,\eta)\|_{L^1(\mathbb{R}^n \times \mathbb{R}^m, \frac{d\mu}{r})},$$

where $U = \{h \in L^2(\mathbb{R}^n \times \mathbb{R}^m, \frac{d\mu}{r}); \|h\|_{L^2(\mathbb{R}^n \times \mathbb{R}^m, \frac{d\mu}{r})} \leq 1\}$.

Again, when $P_1(u) = 0$ and $P_2(v) = 0$, we denote $M^{\psi(1,\phi,\psi)}_{\Omega,\phi,\psi}$ by $M_{\Omega,\phi,\psi}$. Also, when $\phi(t) = \psi(t) = t$, then $M_{\Omega,\phi,\psi}$ reduces to the classical maximal operator denoted by M_Ω. Historically, the operator M_Ω was introduced by Ding in [7] in which he proved the L^2 boundedness of M_Ω whenever $\Omega \in L(\log L)^2(S^{n-1} \times S^{m-1})$. This result was improved independently by Al-Qassem and Pan in [8] and by Al-Salman in [9]. Precisely, they showed that M_Ω is of type (p, p) for all $p \geq 2$ provided that $\Omega \in L(\log L)(S^{n-1} \times S^{m-1})$. Moreover, they pointed out that the condition $\Omega \in L(\log L)(S^{n-1} \times S^{m-1})$ is optimal in the sense that the exponent 1 in $L(\log L)(S^{n-1} \times S^{m-1})$ cannot be replaced by any smaller positive number $\varepsilon < 1$ so that M_Ω is bounded on $L^2(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})$. Also, an improvement of the result in [7] was obtained by Al-Qassem in [10]. Indeed, Al-Qassem established the $L^p(2 \leq p < \infty)$ estimates for the class M_Ω whenever Ω belongs to the block space $B_q^{0,0}((S^{n-1} \times S^{m-1})$ for some $q > 1$. Furthermore, he proved that the condition $\Omega \in B_q^{0,0}((S^{n-1} \times S^{m-1})$ is nearly optimal in the sense that the operator M_Ω may lose the L^2 boundedness if Ω is assumed to be in the space $B_q^{0,0}((S^{n-1} \times S^{m-1})$ for some $-1 < \varepsilon < 0$. Recently, it was found in [6] that the maximal operator $M_{\Omega,\phi,\psi}$ is bounded on $L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})$ for any $p \geq 2$ if $\Omega \in L(\log L)(S^{n-1} \times S^{m-1})$, and ϕ, ψ are in $C^2([0, \infty))$, convex and increasing functions with $\phi(0) = \psi(0) = 0$. Very recently, when $\phi(t) = \psi(t) = t$, Al-Dolat and al. found in [11] that the L^p $(p \geq 2)$ boundedness of $M_{\Omega,\phi,\psi}$ is obtained under the condition $\Omega \in L(\log L)(S^{n-1} \times S^{m-1}) \cup B_q^{0,0}((S^{n-1} \times S^{m-1})$ with $q > 1$. Subsequently, the investigation of the L^p boundedness of $M_{\Omega,\phi,\psi}$ under weak conditions has received much attentions from many mathematicians. For the significance of considering the integral operators $M_{\Omega,\phi,\psi}$, we refer the readers to consult [8] and [11–13], among others.

The main result of this work is formulated as follows:

Theorem 1.1. Let $\Omega \in L^q(S^{n-1} \times S^{m-1})$, $q > 1$ and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_{L^q(S^{n-1} \times S^{m-1})} \leq 1$, and let $\mu = \mu_q(\Omega) = \log(e + \|\Omega\|_{L^q(S^{n-1} \times S^{m-1})})$. Assume that ϕ, ψ are in $C^2([0, \infty))$, convex and increasing functions with $\phi(0) = \psi(0) = 0$. Let $P_1 : \mathbb{R}^n \to \mathbb{R}$ and $P_2 : \mathbb{R}^m \to \mathbb{R}^m$ be two real-valued polynomials of degrees d_1, d_2, respectively. Then there exists a constant $C_{p,q} > 0$ such that

$$\|M_{\Omega,\phi,\psi}(f)\|_{L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})} \leq C_{p,q}(1 + \mu) \|f\|_{L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})} \tag{1.3}$$

for all $p \geq 2$, where $C_{p,q} = \left(\frac{2\lambda_q}{2\lambda_q-1}\right)^2 C_p$ and C_p is a positive constant that may depend on the degrees of the polynomials P_1, P_2 but it is independent on Ω, ϕ, ψ, q, and the coefficients of the polynomials P_1, P_2.

We remark that by the result in Theorem 1.1 and using an extrapolation argument, we get that \(N_{\Omega, \phi, \psi} \) is bounded on \(L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) for \(2 \leq p < \infty \) if \(\Omega \in L(\log L)(S^{n-1} \times S^{m-1}) \cup B_q^{(0,0)}(S^{n-1} \times S^{m-1}) \) for some \(q > 1 \).

Here and henceforth, the letter \(C \) denotes a bounded positive constant that may vary at each occurrence but independent of the essential variables.

2 Preliminary lemmas

In this section, we present and prove some lemmas used in the sequel. The first lemma can be derived by applying the same technique that Al-Qassam and Pan used in [14, pp. 64-65].

Lemma 2.1. Let \(\Omega \in L^q(S^{n-1}), q > 1 \) be a homogeneous function of degree zero on \(\mathbb{R}^n \) with \(\| \Omega \|_{L^q(S^{n-1})} \leq 1 \), and let \(\phi: \mathbb{R}^n \to \mathbb{R} \) be a \(C^2([0, \infty)) \), convex and increasing function with \(\phi(0) = 0 \). Consider the maximal function \(N_{\Omega, \phi} \) given by

\[
N_{\Omega, \phi}(x) = \sup_{y \in \mathbb{R}^n} \int_{|z| \leq 2} |f(z - y, x + \phi(y)) - \phi(y)| dy.
\]

Then for \(p > 1 \) and \(f \in L^p(\mathbb{R}^{n+1}) \) there exists a positive number \(C_p \) such that

\[
\| N_{\Omega, \phi}(f) \|_p \leq C_p \| f \|_p.
\]

Lemma 2.2. Assume that \(\phi, \psi \) are \(C^2([0, \infty)) \), convex and increasing functions with \(\phi(0) = \psi(0) = 0 \). Let \(\Omega \in L^q(S^{n-1} \times S^{m-1}), q > 1 \) and satisfy the conditions (1.1)-(1.2) with \(\| \Omega \|_{L^q(S^{n-1} \times S^{m-1})} \leq 1 \). Then for all \(f \in L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) and \(p > 1 \), the maximal function

\[
N_{\Omega, \phi, \psi}(f, y) = \sup_{x, \xi, \eta \in \mathbb{R}^n} \int_{\mathbb{R}^n} |f(x - u, \xi, u + \phi(u), y - v, \eta, v + \psi(v)) - \phi(u) - \psi(v)| \frac{\| \Omega(x, y) \|_{\mathbb{R}^{n+m}}}{{|u|^{n/|y|}}{|v|^{m/|y|}}} du dv
\]

satisfies

\[
\| N_{\Omega, \phi, \psi}(f) \|_p \leq C_p \| f \|_p,
\]

where \(A_{ij} = \left\{ (u, v) \in \mathbb{R}^n \times \mathbb{R}^m : 2^j \leq |u| \leq 2^{j+1}, 2^j \leq |v| \leq 2^{j+1} \} \) and the positive constant \(C_p \) is independent of the functions \(\phi, \psi \) and \(\Omega \).

It is easy to prove the above lemma by using Lemma 2.1 and the inequality \(N_{\Omega, \phi, \psi}(f, y) \leq N_{\Omega, \phi} \circ N_{\Omega, \psi}(f, y) \), where \(N_{\Omega, \phi, \psi}(f, y) = N_{\Omega, \phi}(f, \cdot)(y), N_{\Omega, \phi}(f, \cdot)(y) = N_{\Omega, \phi}(f, \cdot)(y), \) and \(\circ \) denotes the composition of operators.

A significant step toward proving Theorem 1.1 is to estimate the following Fourier transform:

Lemma 2.3. Let \(\Omega \in L^q(S^{n-1} \times S^{m-1}), q > 1 \) and satisfy the conditions (1.1)-(1.2) with \(\| \Omega \|_{L^q(S^{n-1} \times S^{m-1})} \leq 1 \), and let \(\mu = \mu_q(\Omega) = \log(e + \| \Omega \|_{L^q(S^{n-1} \times S^{m-1})}) \). Assume that \(\phi, \psi \) are arbitrary functions on \(\mathbb{R}^n \), and assume also that

\[
P_1 = \sum_{|\alpha| \leq d_1} a_{\alpha} x^\alpha \text{ is a polynomial of degree } d_1 \geq 1 \text{ such that } |x|^{d_1} \text{ is not one of its terms and } \sum_{|\alpha| = d_1} |a_{\alpha}| = 1;
\]

and

\[
P_2 = \sum_{|\beta| \leq d_2} b_{\beta} y^\beta \text{ is a polynomial of degree } d_2 \geq 1 \text{ such that } |y|^{d_2} \text{ is not one of its terms and } \sum_{|\beta| = d_2} |b_{\beta}| = 1.
\]

For \(i, j \in \mathbb{Z}, \) define \(\tilde{j}_{ij}(x, y) : \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \to \mathbb{R} \) by

\[
\tilde{j}_{ij}(x, y) = \int_{1}^{2^{j+1}} \int_{1}^{2^{j+1}} \Omega(u, y) A_{ij}(u, \xi, u + \phi(u), y - v, \eta, v + \psi(v)) d\mu(u) d\mu(v)
\]

where

\[
A_{ij}(u, \xi, u + \phi(u), y - v, \eta, v + \psi(v)) = e^{-i \int [P_1(x^{d_1} \xi u + (2^{(d_1+1)u})^\ast \phi((2^{d_1+1}u)^\ast) \xi u)]} \quad \text{and}
\]

\[
B_{ij}(u, v, \eta, v + \psi(v)) = e^{-i \int [P_2((2^{d_2}u)^\ast \eta v + (2^{(d_2+1)u})^\ast \psi((2^{d_2+1}u)^\ast) \eta v)]}.
\]
Then, a positive constant C exists such that

$$\sup_{(\xi, \eta) \in \mathbb{R}^{n+1}} |\mathcal{A}_{i,j,\Omega,\psi}(\xi, \eta)| \leq C\mu^2 2^{(i+j)/2q'}.$$

Proof. On one hand, it is trivial to get that

$$\mathcal{A}_{i,j,\Omega,\psi}(r, u, \xi, u, \xi_{n+1}) \leq C\mu.$$

Thus, using Hölder’s inequality leads to

$$\mathcal{B}_{j,\Omega,\psi}(t, v, \eta, v, \eta_{m+1}) \leq C\mu.$$

Also, it is easy to see that

$$\mathcal{B}_{j,\Omega,\psi}(t, v, \eta, v, \eta_{m+1}) \leq C\mu.$$

With Van der-Corput Lemma, we obtain

$$\mathcal{B}_{j,\Omega,\psi}(t, v, \eta, v, \eta_{m+1}) \leq C\mu.$$

Then, a positive constant C exists such that

$$\sup_{(\xi, \eta) \in \mathbb{R}^{n+1}} |\mathcal{A}_{i,j,\Omega,\psi}(\xi, \eta)| \leq C\mu^2 2^{(i+j)/2q'}.$$

Proof. On one hand, it is trivial to get that

$$\mathcal{A}_{i,j,\Omega,\psi}(r, u, \xi, u, \xi_{n+1}) \leq C\mu.$$

Also, it is easy to see that

$$\mathcal{B}_{j,\Omega,\psi}(t, v, \eta, v, \eta_{m+1}) \leq C\mu.$$

Thus, using Hölder’s inequality leads to

$$\mathcal{B}_{j,\Omega,\psi}(t, v, \eta, v, \eta_{m+1}) \leq C\mu.$$

Since $\sum_{|\alpha|=d_1} |a_\alpha| = \sum_{|\beta|=d_2} |b_\beta| = 1$, then by taking $\theta = 1/4\mu q'$, we have

$$\mathcal{A}_{i,j,\Omega,\psi}(\xi, \eta) \leq C\mu^2 2^{(i+j)/2q'}.$$

□
We shall need the following Lemma which can be acquired by using the arguments employed in the proof of [6, Theorem 4.1] as well as [15, Theorem 1.6].

Lemma 2.4. Let $\Omega \in L^q(S^{n-1} \times S^{m-1})$, $q > 1$ and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_{L^1(S^{n-1} \times S^{m-1})} \leq 1$. Assume that ϕ, ψ and μ are given as in Theorem 1.1. Then there exists a constant $C_{p,q} > 0$ such that

$$
\|M_{\Omega,\phi,\psi}(f)\|_{L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})} \leq C_{p,q} (1 + \mu) \|f\|_{L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})}
$$

(2.4)

for $2 \leq p < \infty$.

Proof. Choose collections of functions $\{\Phi_i\}_{i \in \mathbb{Z}}$ and $\{\Psi_j\}_{j \in \mathbb{Z}}$ defined on \mathbb{R}^n and \mathbb{R}^m, respectively with the following properties:

(i) $\widehat{\Phi}_i$ is supported in $\{\xi \in \mathbb{R}^n : |\xi| \in 2^i, 2^{-i}\}$;
(ii) $\widehat{\Psi}_j$ is supported in $\{\eta \in \mathbb{R}^m : |\eta| \in 2^j, 2^{-j}\}$;
(iii) $0 \leq \Phi_i, \Psi_j \leq 1$;
(iv) $\sum_{i \in \mathbb{Z}} (\Phi_i)^2(\xi) = \sum_{j \in \mathbb{Z}} (\Psi_j)^2(\eta) = 1$.

Define the multiplier operators $S_{j,i}$ in $\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}$ via the Fourier transform given by

$$
\widehat{S_{j,i}}(\xi, \eta) = \widehat{\Phi}_i(\xi) \widehat{\Psi}_j(\eta).
$$

Hence, for any $f \in C_c(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1})$, we have

$$
M_{\Omega,\phi,\psi}(f)(x, \bar{y}) \leq \sum_{j,i \in \mathbb{Z}} T_{\Omega,\phi,\psi,j,i}(f)(x, \bar{y}),
$$

(2.5)

where

$$
T_{\Omega,\phi,\psi,j,i}(f)(x, \bar{y}) = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^m} |\mathcal{W}_{\Omega,\phi,\psi,j,i}(f)(x, y)|^2 \frac{dr dt}{rt} \right)^{1/2},
$$

(\mathcal{W}_{\Omega,\phi,\psi,j,i}(f))(x, y) = \sum_{s, l \in \mathbb{Z}} \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^{m+1}} S_{j+i, l+s}(f)(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) \chi_{\varepsilon_1, \varepsilon_2; \varepsilon_1, \varepsilon_2}(\Omega(u, v)) d\sigma(u) d\sigma(v).
$$

Therefore, by using [6, Theorem 4.1], we get

$$
\|T_{\Omega,\phi,\psi,j,i}(f)\|_p \leq C_{p,q,\mu} 2^{-\varepsilon_1|j|} 2^{-\varepsilon_2|l|} \|f\|_p
$$

(2.6)

for some constants $0 < \varepsilon_1, \varepsilon_2 < 1$ and for all $2 \leq p < \infty$. Consequently, the inequality (2.4) follows by using (2.5) and (2.6).

\[\square\]

3 Proof of Theorem 1.1

The proof of Theorem 1.1 mainly depends on the approaches employed in the proof of [11, Theorem 1.1], which have their roots in [16]. Precisely, we argue the mathematical induction on the degrees of the polynomials P_1 and P_2.

If $d_1 = d_2 = 0$, then by Lemma 2.4, we directly attain

$$
\|M_{\Omega,\phi,\psi}^{P_1, P_2}(f)\|_p \leq C_{p,q} (1 + \mu) \|f\|_p
$$

(3.1)

for all $p \geq 2$. Also, if $d_1 = 0$ or $d_2 = 0$, then by [17, Theorem 1.1], it is easy to satisfy the inequality (1.3) for all $p \geq 2$.

\[\square\]
Now, assume that (1.3) is true for any polynomial P_1 of degree less than or equal to d_1 and for any polynomial P_2 of degree d_2. We need to show that (1.3) is still true if $\text{degree}(P_1) = d_1 + 1$, and $\text{degree}(P_2) = d_2$. Without loss of generality, we may assume $P_1(x) = \sum |a_{\alpha}|d_{\alpha} + 1$ is a polynomial of degree $d_1 + 1$ such that $\sum |a_{\alpha}| = 1$ and does not contain $|x|^{d_1+1}$ as one of its terms. Also, we may assume $P_2(y) = \sum b_{\beta}y^\beta$ is a given polynomial of degree d_2 such that $\sum |b_{\beta}| = 1$ and does not contain $|y|^{d_2}$ as one of its terms. By duality and a simple change of variables, we have

$$M_{\Omega,\phi,\psi,0}^{P_1,P_2}(f)(\bar{x}, \bar{y}) = \left(\int \int \int_{\mathbb{R}^n \times \mathbb{R}^n} |G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t)|^2 \frac{d \bar{r} d \bar{t}}{rt} \right)^{1/2},$$

where

$$G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t) = \int_{S_{n-1} \times S_{n-1}} e^{ip_1(ru) + ip_2(tv)} f(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) Q(u, v) d\sigma(u) d\sigma(v).$$

Choose two collections of c^∞ functions $\{Y_i\}_{i \in \mathbb{Z}}$ and $\{\Gamma_j\}_{j \in \mathbb{Z}}$ on $(0, \infty)$, that satisfying the following conditions:

$$\text{supp } Y_i \subseteq \Gamma_{i,\mu} = \left[2^{-(i+1)\mu}, 2^{-(i-1)\mu} \right]; \supp \Gamma_j \subseteq \Omega_{j,\mu}; \quad 0 \leq Y_i, \Gamma_j \leq 1; \quad \text{and } \sum_{i \in \mathbb{Z}} Y_i(u) = \sum_{j \in \mathbb{Z}} \Gamma_j(v) = 1.$$

Define the multiplier operators $S_{j,i}$ in $\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}$ by

$$S_{j,i}(f)(\bar{\xi}, \bar{\eta}) = Y_i(\bar{\xi}) \Gamma_j(\bar{\eta}) f(\bar{\xi}, \bar{\eta}) \text{ for } (\bar{\xi}, \bar{\eta}) = (\xi, \xi_{n+1}, \eta, \eta_{m+1}) \in R^{n+1} \times R^{m+1}.$$

Set

$$A_\infty(u) = \sum_{i=\infty}^0 Y_i(u), \quad A_0(u) = \sum_{i=0}^\infty Y_i(u), \quad B_\infty(v) = \sum_{j=\infty}^0 \Gamma_j(v), \quad \text{and } B_0(v) = \sum_{j=0}^\infty \Gamma_j(v).$$

Thanks to Minkowski’s inequality, we have

$$M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) \leq M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) + M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) + M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}), \quad (3.2)$$

where

$$M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) = \left(\int \int \int_{2^{-\mu} \times 2^{-\mu}} A_\infty(r)B_\infty(t) G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t)|^2 \frac{d \bar{r} d \bar{t}}{rt} \right)^{1/2},$$

$$M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) = \left(\int \int \int_{2^{-\mu} \times 2^{-\mu}} A_\infty(r)B_0(t) G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t)|^2 \frac{d \bar{r} d \bar{t}}{rt} \right)^{1/2},$$

$$M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) = \left(\int \int \int_{2^{-\mu} \times 2^{-\mu}} A_0(r)B_\infty(t) G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t)|^2 \frac{d \bar{r} d \bar{t}}{rt} \right)^{1/2},$$

and

$$M_{\Omega,\phi,\psi,\infty}^{P_1,P_2}(f)(\bar{x}, \bar{y}) = \left(\int \int \int_{2^{-\mu} \times 2^{-\mu}} A_0(r)B_0(t) G_{P_1,P_2,\phi,\psi,0}(f)(\bar{x}, \bar{y}, r, t)|^2 \frac{d \bar{r} d \bar{t}}{rt} \right)^{1/2}. $$
Let us first estimate the L^p-norm of $M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f)$. Define

$$M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f)(x, y) = \left(\int_{2^{-j-1}r}^{2^{-j}r} \int_{2^{-j-1}r}^{2^{-j}r} \left| g_{P_1, P_2, Ω}(f)(x, y, r, t) \right|^2 \frac{dr dt}{rt} \right)^{1/2}.$$

Hence, by generalized Minkowski's inequality, it is easy to reach

$$M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f)(x, y) \leq \sum_{j=0}^{∞} M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f)(x, y). \quad (3.3)$$

If $p = 2$, then by a simple change of variables, Plancherel’s theorem, Fubini’s theorem, and Lemma 2.3, we get that

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_2 = \left(\int_{R^{n+1} \times R^{n+1}} \left| \hat{g}(ξ, η) \right|^2 |Ω(ξ, η)| dξ dη \right)^{1/2} \leq C^2 \left\| f \right\|_2.$$

(3.4)

However, if $p > 2$, then by the duality, there exists $b \in L^{p/2'}(R^{n+1} \times R^{n+1})$ with $\|b\|_{L^{p/2'}(R^{n+1} \times R^{n+1})} = 1$ such that

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq \int_{R^{n+1} \times R^{n+1}} |Ω(ξ, η)| dξ dη \left| b(z, 2^{-j}w) \right|^2 \left| f(z, w) \right|^2 \frac{dz dw}{(p/2)\|Ω\|_1},$$

So, by Hölder’s inequality and Lemma 2.2, we conclude that

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq C \left| b(z, 2^{-j}w) \right|^2 \left| f(z, w) \right|^2 \frac{dz dw}{(p/2)\|Ω\|_1},$$

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq C_p (1 + \mu)^2 \left\| f \right\|_p \left\| b \right\|_{L^{p/2'}} \left\| Ω \right\|_1,$$

where $\tilde{b}(z, w) = b(-z, -w)$. Thus,

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq C_p (1 + \mu) \left\| f \right\|_p,$$

which when Combined with (3.4) gives that there is $ε \in (0, 1)$ so that

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq C_p 2^{\frac{ε(p+1)}{p}} (1 + \mu) \left\| f \right\|_p \quad (3.5)$$

for all $p \geq 2$. Therefore, by (3.3) and (3.5), we obtain

$$\left\| M^{P_1, P_2}_{Ω, φ, ψ, ∞, j}(f) \right\|_p \leq C_{p, q} (1 + \mu) \left\| f \right\|_p \quad (3.6)$$
for all \(p \geq 2 \). Now, let us estimate the \(L^p \)-norm of \(\mathcal{N}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2}(f) \). Take \(Q_1(x) = \sum_{|\alpha| \leq d_1} a_\alpha x^\alpha \), and define
\[\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{Q_1, p_2}(f) \] and \(\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f) \) by

\[
\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{Q_1, p_2}(f)(x, y) = \left(\int_0^1 \int_0^1 |\mathcal{J}_{Q_1, p_2, \phi, \psi, 0, 0}(f)(x, y, r, t)|^2 \frac{dr dt}{rt} \right)^{1/2},
\]

and

\[
\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f)(x, y) = \left(\int_0^1 \int_0^1 |\mathcal{J}_{Q_1, p_2, \phi, \psi, 0, 0}(f)(x, y, r, t)|^2 \frac{dr dt}{rt} \right)^{1/2},
\]

where

\[
\mathcal{J}_{Q_1, p_2, \phi, \psi, 0, 0}(f)(x, y, r, t) = \int_{S^{n-1} \times S^{n-1}} \left(e^{ip_2(ru + tv)} - e^{ip_2(ru)} \right) f(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) \Omega(u, v) du dv.
\]

Thus, by Minkowski’s inequality, we deduce

\[
\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f)(x, y) \leq \mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{Q_1, p_2}(f)(x, y) + \mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f)(x, y).
\]

On one hand, since \(\deg(Q_1) \leq d_1 \), then by induction step we have

\[
\left\| \mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{Q_1, p_2}(f) \right\|_p \leq C_{p, q} (1 + \mu) \left\| f \right\|_p
\]

for all \(p \geq 2 \). On the other hand, it is easy to check that

\[
\left| e^{ip_2(ru)} - e^{ip_1(ru)} \right| \leq r^{d_1+1} \left| \sum_{|\alpha| = d_1+1} a_\alpha u^\alpha \right| \leq r^{d_1+1}.
\]

So, by following a similar argument as in [18] and by Cauchy-Schwartz inequality, we have that

\[
\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f)(x, y) \leq C \left(\int_0^1 \int_0^1 \int_{S^{n-1} \times S^{n-1}} e^{ip_2(tv)} f(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right| \right)^{1/2}
\]

\[
\times \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right|^{1/2}
\]

\[
\leq C \left(\int_0^1 \int_0^1 \int_{S^{n-1} \times S^{n-1}} e^{ip_2(tv)} f(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right| \right)^{1/2}
\]

\[
\times \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right|^{1/2}
\]

\[
\leq C \left(\sum_{j=1}^{\infty} \left(2^{-jd_1} \right)^{2^{j+1}} \int_{2^j S^{n-1}} \int_{2^j S^{n-1}} e^{ip_2(tv)} f(x - ru, x_{n+1} - \phi(r), y - tv, y_{m+1} - \psi(t)) \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right| \right)^{1/2}
\]

\[
\times \Omega(u, v) du dv \left| \frac{dr dt}{rt} \right|^{1/2}
\]

\[
\leq C \left(\sum_{j=1}^{\infty} \left(2^{-jd_1} \right)^{2^{j+1}} \int_{2^j S^{n-1}} \left(\mathcal{M}_{\Omega, \phi, \psi, 0, 0}^{p_1, p_2, Q}(f)(x, y) \right)^2 du dv \right)^{1/2}
\]
Assume that

\[\sup_{\Omega, \phi, \psi} \int_{\Omega} (D_{\phi, \psi} f_r(x, y))^2 \, dx \, dy \leq C \left(\int_{\Omega} \left(\sum_{l=1}^{n} (D_{\phi, \psi} f_r(x, y))^2 \right)^{1/2} \, dx \, dy \right)^2 \]

where \(\circ \) denotes the composition of operators, \(N_{\Omega, \phi, \psi} f_r(x, y) = N_{\Omega, \phi, \psi} f_r^r(x, y) \) is the maximal function defined as in Lemma 2.1, and \(M_{\Omega, \phi, \psi} f_r(x, y) = M_{\Omega, \phi, \psi} (f_r(x, y))^r \) is the maximal operator in the one parameter setting defined as in [17, Eq. (1.2)]. Hence, by following a similar argument as in [18, p. 607] together with [17] and Lemma 2.1, we get

\[\left\| M_{\Omega, \phi, \psi} f_r(x, y) \right\|_p \leq C_{p, q} (1 + \mu) \| f \|_p \]

for all \(p \geq 2 \). Therefore, by (3.7)-(3.9), we obtain that for all \(p \geq 2 \),

\[\left\| M_{\Omega, \phi, \psi} f_r(x, y) \right\|_p \leq C_{p, q} (1 + \mu) \| f \|_p \]

(3.10)

In the same manner, we can derive that

\[\left\| M_{\Omega, \phi, \psi} f_r(x, y) \right\|_p \leq C_{p, q} (1 + \mu) \| f \|_p \]

(3.11)

and

\[\left\| M_{\Omega, \phi, \psi} f_r(x, y) \right\|_p \leq C_{p, q} (1 + \mu) \| f \|_p \]

(3.12)

for all \(p \geq 2 \). Consequently, by (3.2), (3.6) and (3.10)-(3.12), we satisfy the inequality (1.3) for any polynomial \(P_1 \) of degree \(d_1 + 1 \) and for any polynomial \(P_2 \) of degree \(d_2 \). Similarly, we can show that the inequality (1.3) holds for any polynomial \(P_2 \) of degree \(d_2 + 1 \) and for any polynomial \(P_1 \) of degree \(d_1 \). This completes the proof of Theorem 1.1.

4 Further results

For \(\gamma > 1 \), define \(A_{\gamma} (R^n \times R^n) \) to be the set of all measurable functions \(h \) on \(R^n \times R^n \) satisfying the condition

\[\sup_{R_1, R_2 > 0} \left(\frac{1}{R_1 R_2} \int_0^{R_1} \int_0^{R_2} |h(t, r)|^{\gamma} \, dr \, dt \right)^{1/\gamma} < \infty \]

and define \(L_{\gamma} (R^n \times R^n) \) as \(L_{\gamma} (R^n \times R^n) = A_{\gamma} (R^n \times R^n) \). Also, for \(1 \leq \gamma < \infty \), define \(L_{\gamma} (R^n \times R^n) \) to be the set of all measurable functions \(h : R^n \times R^n \rightarrow R \) that satisfy the condition \(\| h \|_{L_{\gamma}(R^n \times R^n)} = \left(\int_0^\infty \int_0^\infty |h(t, r)|^{\gamma} \, dt \, dr \right)^{1/\gamma} \leq 1 \) and define \(L_{\gamma}(R^n \times R^n) \) as \(L_{\gamma}(R^n \times R^n) = A_{\gamma} (R^n \times R^n) \).

It is obvious that \(L_{\gamma}(R^n \times R^n) \) is a subset of \(L_{\gamma}(R^n \times R^n) \) for \(1 < \gamma < \infty \), \(A_{\gamma}(R^n \times R^n) \subseteq A_{\gamma}(R^n \times R^n) \) for \(\gamma > 2 \), and \(L_{\gamma}(R^n \times R^n) = L_{\gamma}(R^n \times R^n) \).

The purpose of this section is to study the \(L^p \) boundedness of the singular integral operator \(T_{\Omega, \phi, \psi}(f)(x, y) \) and the maximal operator \(M(f)(x, y) \) under weaker conditions, where \(M(f)(x, y) \) is defined, initially for \(f \in C_0^\infty(R^{n+1} \times R^{m+1}) \), by

\[M(f)(x, y) = \sup_{h \in L_{\gamma}(R^n \times R^n)} \left| T_{\Omega, \phi, \psi}(f)(x, y) \right| . \]

The first result of this section is the following:

Theorem 4.1. Suppose that \(\Omega \in L^q(S^n \times S^m) \), \(q > 1 \) and satisfy the conditions (1.1)-(1.2) with \(\| \Omega \|_1 \leq 1 \). Assume that \(\phi, \psi, \mu, P_1, \) and \(P_2 \) are given as in Theorem 1.1. Then there exists a constant \(C_{p, q} > 0 \) such that

\[\left\| M(f)(x, y) \right\|_p \leq C_{p, q} (1 + \mu)^{2/\gamma} \| f \|_p \]

(4.1)
for all \(\gamma' \leq p < \infty \) with \(1 < \gamma \leq 2 \); and
\[
\left\| M_{p_1, p_2}^{P_1, P_2, \gamma} (f) \right\|_\infty \leq C \| f \|_\infty. \tag{4.2}
\]

Proof. It is clear that if \(\gamma = 2 \), then we have \(M_{p_1, p_2}^{P_1, P_2, \gamma} = M_{p_1, p_2}^{P_1, P_2} \). So, by Theorem 1.1, the inequality (4.1) holds for all \(p > 2 \). However, if \(\gamma = 1 \); we assume that \(h \in L^1(\mathbb{R}^n \times \mathbb{R}^m, \frac{dr dt}{rt}) \) and \(f \in L^\infty(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \). Then for all \((\bar{x}, \bar{y}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \), we have
\[
\left| \int\int_{\mathbb{R}^n \times \mathbb{R}^m} h(r, t) \mathcal{S}_{P_1, P_2, \phi, \psi, D}(f)(\bar{x}, \bar{y}, r, t) \frac{dr dt}{rt} \right| \leq C \| f \|_\infty \| h \|_1.
\]
Hence, by taking the supremum on both sides over all \(h \) with \(\| h \|_1 \leq 1 \), we reach
\[
\mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f)(\bar{x}, \bar{y}) \leq C \| f \|_\infty
\]
for almost every where \((\bar{x}, \bar{y}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \), which leads to
\[
\left\| \mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f) \right\|_\infty \leq C \| f \|_\infty \tag{4.3}
\]
Finally, if \(1 < \gamma \leq 2 \). We follow a similar approach as in [15]. By duality, we get
\[
\mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f)(\bar{x}, \bar{y}) = \left(\int\int_{\mathbb{R}^n \times \mathbb{R}^m} \left| \mathcal{S}_{P_1, P_2, \phi, \psi, D}(f)(\bar{x}, \bar{y}, r, t) \right|^\gamma \frac{dr dt}{rt} \right)^{1/\gamma'} \tag{4.4}
\]
which gives
\[
\left\| \mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f) \right\|_p = \left\| \mathcal{S}_{P_1, P_2, \phi, \psi, D}(f) \right\|_{L^p(\mathbb{R}^n \times \mathbb{R}^m, \frac{dr dt}{rt})} \tag{4.5}
\]
Therefore, by applying the interpolation theorem for the Lebesgue mixed normed spaces to the inequalities (1.3) and (4.3), we directly obtain
\[
\left\| \mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f) \right\|_p \leq C_{p, q} (1 + \mu)^{2/\gamma'} \| f \|_p \tag{4.5}
\]
for \(\gamma' \leq p < \infty \) with \(1 < \gamma \leq 2 \); and \(\left\| \mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma}(f) \right\|_\infty \leq C \| f \|_\infty \). This completes the proof. \(\square \)

It is worth mentioning that when \(\phi(t) = \psi(t) = t \) and \(P_1(u) = P_2(v) = 0 \), Al-Qassem and Pan in [8] extended the results of Theorem 4.1. In fact, they established the \(L^p \) boundedness of \(\mathcal{M}_{p_1, p_2}^{P_1, P_2, \gamma} \) provided that \(\Omega \in L(\log L)^{2/\gamma'}(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) for \(\gamma' \leq p < \infty \) with \(1 < \gamma \leq 2 \).

By the conclusion in Theorem 4.1 and applying an extrapolation argument (see [16, 19, 20]), we shall improve and extend the corresponding results in [4, 6, 8, 11, 13]. Precisely, we obtain the following:

Theorem 4.2. Suppose that \(P_1, P_2, \phi, \psi \) are given as in Theorem 1.1. Assume that \(\Omega \in L(\log L)^{2/\gamma'}(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \cup B^{0,2/\gamma'-1}(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) with \(q > 1 \). Then \(\mathcal{M}_{\Omega, p_1, p_2}^{P_1, P_2, \gamma}(f) \) is bounded on \(L^p(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) for \(\gamma' \leq p < \infty \) with \(1 < \gamma \leq 2 \); and it is bounded on \(L^{\infty}(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) for \(\gamma = 1 \).

Proof. The idea of proving Theorem 4.2 is taken form [17], which has its roots in [16] as well as in [19]. When \(\Omega \in L(\log L)^{2/\gamma'}(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) with \(1 < \gamma \leq 2 \) and \(\Omega \) satisfies the conditions (1.1)-(1.2), then \(\Omega \) can be decomposed as a sum of functions in \(L^2(\mathbb{R}^{n+1} \times \mathbb{R}^{m+1}) \) (see [21]). In fact, we have
\[
\Omega = \sum_{k = 0}^{\infty} \Omega_k, \tag{4.6}
\]
where

\[
\int_{\mathbb{S}^{n-1}} \Omega_k(x',)d\sigma(x') = \int_{\mathbb{S}^{n-1}} \Omega_k(\cdot, y')d\sigma(y') = 0,
\]

\[
\Omega_0 \in L^2(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}), \quad \|\Omega_k\|_{\infty} \leq C 2^k, \quad \|\Omega_k\|_1 \leq C,
\]

and

\[
\sum_{i=1}^{\infty} k^{2/\gamma'} \|\Omega_k\|_1 \leq C \|\Omega\|_{L(\log L)^{2/\gamma'}(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})} \text{ for } k = 0, 1, 2, \ldots.
\]

Hence, it is easy to see that

\[
\mathcal{M}_{\Omega, \phi, \psi}^{(P_1, P_2, \gamma)}(f)(x, y) \leq \mathcal{M}_{\Omega, \phi, \psi}^{(P_1, P_2, \gamma)}(f)(x, y) + \sum_{k=1}^{\infty} \|\Omega_k\|_1 \mathcal{M}_{\tilde{\Omega}, \tilde{\phi}, \tilde{\psi}}^{(P_1, P_2, \gamma)}(f)(x, y)
\]

and

\[
(1 + \log^{2/\gamma'}(e + \|\Omega_k\|_{\infty})) \leq (1 + \log^{2/\gamma'}(e + C 2^k)) \leq C k^{2/\gamma'}.
\]

As \(\Omega_0 \in L^2(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})\), then by Theorem 4.1 we get

\[
\left\|\mathcal{M}_{\Omega_0, \phi, \psi}^{(P_1, P_2, \gamma)}(f)\right\|_p \leq C_p \left(1 + \log^{2/\gamma'}(e + \|\Omega_0\|_p)\right) \|f\|_p
\]

for \(\gamma' \leq p < \infty\). Therefore, by Minkowskii’s inequality and (4.7)-(4.9), we obtain that

\[
\left\|\mathcal{M}_{\Omega, \phi, \psi}^{(P_1, P_2, \gamma)}(f)\right\|_p \leq \left\|\mathcal{M}_{\Omega_0, \phi, \psi}^{(P_1, P_2, \gamma)}(f)\right\|_p + \sum_{k=1}^{\infty} \|\Omega_k\|_1 \left\|\mathcal{M}_{\tilde{\Omega}, \tilde{\phi}, \tilde{\psi}}^{(P_1, P_2, \gamma)}(f)\right\|_p
\]

\[
\leq C_p \left(1 + \sum_{k=1}^{\infty} \|\Omega_k\|_1 k^{2/\gamma'}\right) \|f\|_p
\]

\[
\leq C_p \|\Omega\|_{L(\log L)^{2/\gamma'}(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})} \|f\|_p \leq C_p \|f\|_p.
\]

However, when \(\Omega \in B_q^{(0, 2/\gamma' - 1)}(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})\) with \(q > 1, 1 < \gamma \leq 2\) and \(\Omega\) satisfies the conditions (1.1)-(1.2), then \(\Omega\) can be written as

\[
\Omega = \sum_{\mu=1}^{\infty} c_{\mu} b_{\mu},
\]

where each \(c_{\mu}\) is a complex number, each \(b_{\mu}\) is a \(q\)-block supported in an interval \(I_{\mu}\) on \((\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})\) and

\[
M_q^{(0, 2/\gamma' - 1)}(\{c_{\mu}\}) = \sum_{\mu=1}^{\infty} |c_{\mu}| \left(1 + \log^{2/\gamma'}(|I_{\mu}|^{-1})\right) < \infty.
\]

For each \(\mu\), define the blocklike function \(\tilde{b}_{\mu}\) by

\[
\tilde{b}_{\mu}(x, y) = b_{\mu}(x, y) - \int_{\mathbb{S}^{n-1}} b_{\mu}(u, y)d\sigma(u) - \int_{\mathbb{S}^{n-1}} b_{\mu}(x, v)d\sigma(v) + \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} b_{\mu}(u, v)d\sigma(u)d\sigma(v).
\]

It is clear that each \(\tilde{b}_{\mu}(x, y)\) satisfies the following:

\[
\int_{\mathbb{S}^{n-1}} \tilde{b}_{\mu}(x, \cdot) d\sigma(u) = \int_{\mathbb{S}^{n-1}} \tilde{b}_{\mu}(\cdot, v) d\sigma(v) = 0,
\]

\[
\left\|\tilde{b}_{\mu}\right\|_q \leq C |I_{\mu}|^{-1/q'}, \quad \text{and} \quad \left\|\tilde{b}_{\mu}\right\|_1 \leq C.
\]
Without loss of generality, we may assume that \(|I_\mu| < 1\). Therefore, by Minkowski’s inequality, Theorem 4.1 and (4.10)-(4.13), we obtain that
\[
\left\| M_{\Omega,\phi\psi}^{p_1,p_2}(\gamma)(f) \right\|_p \leq \sum_{\mu=1}^{\infty} |c_\mu| \left\| M_{\Omega,\phi\psi}^{p_1,p_2}(\gamma)(f) \right\|_p \\
\leq C_{p,q} \sum_{\mu=1}^{\infty} |c_\mu| \left(1 + \log^{2\gamma}(e + |I_\mu|^{-1}) \right) \|f\|_p \\
\leq C_{p,q} \|f\|_p
\]
for all \(p \geq \gamma'\).

We point out that under the assumptions \(\Omega\) belongs to the block space \(B_q^{0,1}(S^{n-1} \times S^{m-1}), h \in A_\gamma (R^+ \times R^+)\) for some \(q, \gamma > 1\), and when \(\phi, \psi\) are \(C^\infty([0,\infty))\), convex increasing functions with \(\phi(0) = \psi(0) = 0\), the author of [22] proved that for every \(p\) satisfying \(|1/p - 1/2| < \min \{1/2, 1/\gamma'\}\), there exists a constant \(C_p\) such that
\[
\|T_{\Omega,\phi\psi}^{P_1,P_2}(f)\|_p \leq C_p \|f\|_p
\]
for every \(f \in L^p(R^{n+1} \times R^{m+1})\). By this result, it is clear that the range of \(p\) is the full range \((1, \infty)\) whenever \(h \in \mathcal{L}^\gamma(R^+ \times R^+)\) with \(\gamma \geq 2\). But what is about the \(L^p\) boundedness of \(T_{\Omega,\phi\psi}^{P_1,P_2}\) when \(h \in \mathcal{L}^\gamma(R^+ \times R^+)\) for \(1 < \gamma < 2\) ? We shall obtain an answer to this question in the affirmative as described in the following theorem.

Theorem 4.3. Assume that \(\Omega \in L(\log L)^{(2/\gamma')} (S^{n-1} \times S^{m-1}) \cup B_q^{0,2/\gamma'-1}(S^{n-1} \times S^{m-1}), q > 1\), and satisfying the conditions (1.1)-(1.2). Let \(h \in \mathcal{L}^\gamma(R^+ \times R^+)\) for some \(1 < \gamma < 2\), and let \(\phi, \psi\) be given as in Theorem 1.1. Then the singular integral operator \(T_{\Omega,\phi\psi}^{P_1,P_2}(f)(x, y)\) is bounded on \(L^p(R^{n+1} \times R^{m+1})\) for all \(1 < p < \infty\).

Proof. As a direct consequence of Theorem 4.2 and the statement that
\[
\left| T_{\Omega,\phi\psi}^{P_1,P_2}(f)(x, y) \right| \leq \|h\|_{\mathcal{L}^\gamma(R^+ \times R^+, \frac{d\mu}{d\gamma})} \gamma_{\Omega,\phi\psi}^{P_1,P_2}(\gamma)(f)(x, y),
\]
we achieve that \(T_{\Omega,\phi\psi}^{P_1,P_2}\) is bounded on \(L^p(R^{n+1} \times R^{m+1})\) for \(\gamma' < p < \infty\) with \(1 < \gamma < 2\). Moreover, by a standard duality argument, we can show that \(T_{\Omega,\phi\psi}^{P_1,P_2}\) is bounded on \(L^p\) for \(1 < p < \gamma'\) with \(1 < \gamma < 2\). So, if \(\gamma = 2\), then we are done. However, if \(1 < \gamma < 2\), then we apply the real interpolation theorem to acquire the \(L^p\) boundedness of \(T_{\Omega,\phi\psi}^{P_1,P_2}\) for \((\gamma < p < \gamma')\). This completes the proof.

Acknowledgement: The authors would like to thank the referees for their valuable comments and suggestions.

References

[1] Fefferman R., Singular integrals on product domains, Bull. Amer. Math. Soc., 1981, 4, 195–201.
[2] Fefferman R., Stein M., Singular integrals on product spaces, Adv. Math., 1982, 45, 117–143.
[3] Al-Salman A., Al-Qassem H., Pan Y., Singular integrals on product domains, Indiana Univ. Math. J., 2006, 55(1), 369–387.
[4] Al-Salman A., Flat singular integrals on product domains, Filomat (Nis), 2004, 18, 1–13.
[5] Duoandikoetxea J., Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble), 1986, 36, 185–206.
[6] Al-Salman A., Maximal functions associated to surfaces of revolution on product domains, J. Math. Anal. Appl., 2009, 351, 43–56.
[7] Ding Y., A note on a class of rough maximal operators on product domains, J. Math. Anal. Appl., 1999, 232, 222–228.
[8] Al-Qassem H., Pan Y., A class of maximal operators related to rough singular integrals on product spaces, J. Int. Eq. Appl., 2005, 17(4), 331–356.
[9] Al-Salman A., Maximal operators with rough kernels on product domains, J. Math. Anal. Appl., 2005, 311, 338–351.
[10] Al-Qassem H., \(L^p\) estimates for a rough maximal operator on product spaces, J. Korean Math. Soc., 2005, 42(3), 405–434.
[11] Al-Dolat M., Ali M., Jaradat I., Al-Zoubi K., On the boundedness of a certain class of maximal functions on product spaces and extrapolation, Anal. Math. Phys., 2018, DOI10.1007/s13324-018-0208-x.
[12] Al-Qassem H., Cheng L., Pan Y., On the boundedness of a class of rough maximal operators on product spaces, Hokkaido Math. J., 2011, 40(1), 1–32.
[13] Al-Salman A., Maximal functions along surfaces on product domains, Anal. Math., 2008, 34, 163–175.
[14] Al-Qassem H., Pan Y., Singular integrals along surfaces of revolution with rough kernels, CSUT J. Math., 2003, 39(1), 55–70.
[15] Al-Qassem H., On the boundedness of maximal operators and singular operators with kernels in $L^{\log L}(\mathbb{S}^{n-1})$, J. Ineq. Appl., 2006, Article ID 96732.
[16] Al-Salman A., A unifying approach for certain class of maximal functions, J. Ineq. Appl., 2006, Article ID 56272, https://doi.org/10.1186/s13660-018-1900-y.
[17] Ali M., Al-Mohammed O., Boundedness of a class of rough maximal functions, J. Ineq. Appl., 2018, Article number: 305.
[18] Al-Qassem H., Pan Y., L^p boundedness for singular integrals with rough kernels on product domains, Hokkaido Math. J., 2002, 31(3), 555–613.
[19] Al-Qassem H., Pan Y., On certain estimates for Marcinkiewicz integrals and extrapolation, Collect. Math., 2009, 60(2), 123–145.
[20] Sato S., Estimates for singular integrals and extrapolation, arXiv:0704.1537v1.
[21] Al-Salman A., Pan Y., Singular integrals with rough kernels in $L^{\log^* L}(\mathbb{S}^{n-1})$, J. London Math. Soc., 2002, 66(2), 153–174.
[22] Al-Qassem H., Singular integrals along surfaces on product domains, Anal. Theory and Appl., 2004, 20(2), 99–112.