THE EXPLICIT EVALUATIONS FORMULA FOR RAMANUJAN’S SINGULAR MODULI AND RAMANUJAN- SELBERG CONTINUED FRACTION

D. J. PRABHAKARAN AND K. RANJITH KUMAR

Abstract. At scattered places of his notebooks, Ramanujan recorded over 30 values of singular moduli \(\alpha_n \). All those results were proved by Berndt et. al by employing Weber-Ramanujan’s class invariants. In this paper, we initiate to derive the explicit evaluations formula for \(\alpha_{9n} \) and \(\alpha_{n/9} \) by involving class invariant. For this purpose, we establish several new \(P – Q \) mixed modular equations involving theta-functions. Further application of these modular equations, we derive a new formula to explicit evaluation of Ramanujan- Selberg continued fraction.

1. Introduction

Ramanujan’s general theta-function \(\Pi \) is defined by

\[
f(a, b) = \sum_{n=-\infty}^{n=\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1.
\]

By using Jacobi’s fundamental factorization formula, the above theta function takes the form as follows:

\[
f(a, b) = (-a; ab)_\infty \cdot (-b; ab)_\infty \cdot (ab; ab)_\infty.
\]

The following definitions of theta functions \(\varphi, \psi \) and \(f \) with \(|q| < 1 \) are classical:

\[
\varphi(q) = (q, q) = \sum_{n=-\infty}^{\infty} q^n = (-q; q^2)_\infty (q^2; q^2)_\infty, \quad (1.1)
\]

\[
\psi(q) = (q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_\infty}{(q^2; q^2)_\infty}, \quad (1.2)
\]

\[
f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q; q)_\infty, \quad (1.3)
\]

where, \((a; q)_\infty = \prod_{n=0}^{\infty} (1 – aq^n) \).

If \(q = e^{2\pi i \tau} \), then, \(f(-q) = q^{-1/24} \eta(\tau) \), where, \(\eta(\tau) \) is classical Dedekind eta-function.

The ordinary or Gaussian hypergeometric function is defined by

\[
{2}F{1} \left(\begin{array}{c} a, b \\ c \end{array} ; z \right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} z^n, \quad |z| < 1
\]

where,

\[
(a)_n = \begin{cases} a(a+1)(a+2) \cdots (a+n-1), & n = 1, 2, 3, \ldots \nonumber \\
1, & n = 0. \nonumber
\end{cases}
\]

Now, we shall recall the definition of modular equation from \(\Pi \). The complete elliptic integral of the first kind \(K(k) \) of modulus \(k \) is defined by

\[
K(k) = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1-k^2 \sin^2 \theta}} = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(\frac{1}{2})_n^2}{(n!)^2} k^{2n} = \frac{\pi}{2} \frac{\varphi^2}{\varphi^2} \left(e^{-\pi \frac{\varphi^2}{\varphi^2}} \right), \quad (0 < k < 1)
\]

Key words and phrases. Modular equations, singular moduli, continued fraction.
and let $K' = K(k')$, where $k' = \sqrt{1 - k^2}$ is represented as the complementary modulus of k. Let $K, K', L,$ and L' denote the complete elliptic integrals of the first kind associated with the moduli $k, k', l,$ and l' respectively. In case, the equality

$$n \frac{K'}{K} = \frac{L'}{L} \quad \text{(1.5)}$$

holds for a positive integer n, then a modular equation of degree n is the relation between the moduli k, and l, which is implied by equation (1.5). Ramanujan defined his modular equation involving α, and β, where, $\alpha = k^2$ and $\beta = l^2$. Then we say β is of degree n over α if

$$\frac{2F_1(1/2, 1/2; 1; 1 - \beta)}{2F_1(1/2, 1/2; 1; \beta)} = \frac{n \cdot 2F_1(1/2, 1/2; 1; 1 - \alpha)}{2F_1(1/2, 1/2; 1; \alpha)}$$

Ramanujan recorded various degrees of modular equations in his note books. For instance, the modular equation of degree 3 (see [11, Entry 5(ii), (ix), Ch.19, p.230]) as following

$$(\alpha \beta)^{1/4} + ((1 - \alpha)(1 - \beta))^{1/4} = 1,$$ \hspace{1cm} (1.6)

$$(\alpha(1 - \beta))^{1/2} + (\beta(1 - \alpha))^{1/2} = 2(\alpha \beta(1 - \alpha)(1 - \beta))^{1/8}. \quad \text{(1.7)}$$

Also, Ramanujan defined mixed modular equation or modular equation of composite degrees, along with four distinct moduli. Ramanujan recorded 23 P-Q modular equations in terms of their theta function in his notebooks [6]. All those proved by Berndt et al. by employing the theory of theta functions and modular forms.

If, as usually quoted in the theory of elliptic functions, $k = k(q)$ denotes the modulus, then, the singular moduli k_n is defined by $k_n = (e^{-\pi \sqrt{n}})$, where n is a positive integer. In terms of Ramanujan, set $\alpha = k^2$ and $\alpha_n = k_n^2$, he hypothesized the values of over 30 singular moduli in his notebooks. Also, he asserted the value of k_{10}^2 which he wrote in his second letter to Hardy [5, p. xxix]), which was earlier proved by Wastson [8] by using a remarkable formula. The formula found can also be in Ramanujan’s first notebook [6] Vol. 1, p. 320]. The same formula can also be used to evaluate various values of α_n, for even values of n. On page 82 of his first notebook, Ramanujan stated three additional theorems for calculating α_n, for even values of n. Particularly, he offered formulae for α_{4p}, α_{6p}, and α_{16p}. Moreover, he recorded several values of α_n for odd values of n in his first and second notebook. All these results were proved by Berndt et al. by employing Ramanujan’s class invariants G_n and g_n. The Ramanujan’s class invariants [2] p.183, (1.3) defined by $q = e^{-\pi \sqrt{n}}$

$$G_n = 2^{-1/4}q^{-1/24}\chi(q) = \frac{f(q)}{2^{1/4}q^{1/24}f(-q^2)}; \quad g_n = 2^{-1/4}q^{-1/24}\chi(-q) = \frac{f(-q)}{2^{1/4}q^{1/24}f(-q^2)}, \quad \text{(1.8)}$$

where, n is a positive rational number and $\chi(q) = (q; q^2)_\infty$. Ramanujan evaluated a total of 116 class invariants [2] p.189-204]. These class invariants were proved by various authors using techniques such as modular equations, Kronecker limit formula, and empirical process (established by Watson) [2] Chapter 34].

By Entry 12(v), (vi)[11, p. 124], and our conclusion (1.8) is that

$$G_n = (4\alpha_n(1 - \alpha_n))^{-1/24} \quad ; \quad g_n = (4\alpha_n(1 - \alpha_n)^{-2})^{-1/24}. \quad \text{(1.9)}$$

It follows the concept that if we know the explicit values of G_n and g_n, then the corresponding values of α_n can be obtained by solving a quadratic equations. However, the expression one obtain are generally unattractive, and so, better algorithm can be sought for evaluations of α_n.

Let, for $|q| < 1$,\n
$$N(q) : = 1 + \frac{q}{1} + \frac{q^2 + q^4}{1 + \frac{q^2}{1 + \frac{q^4}{1 + \frac{q^6}{1 + \frac{q^8}{\cdots}}}}} \quad \text{(1.10)}$$

In his notebooks [6] p. 290], Ramanujan recorded that

$$N(q) = \frac{(-q; q^2)_\infty}{(-q^2; q^4)_\infty}. \quad \text{(1.11)}$$
This formula was at first proved by Selberg [7] and the alternative proof was given by Ramanathan [4]. From [10] and [11], we obtain that

\[S_1(q) := \frac{q^{1/8} N(q)}{1 + \frac{1}{1 + \frac{q + q^2}{1 + \frac{q^2 + q^4}{1 + \cdots}}}, \]

which is called the Ramanujan-Selberg continued fraction. Closely related to \(S_1(q) \) is the continued fraction \(S_2(q) \) (see [10] (1.8), (1.9)), which can be defined by

\[S_2(q) := \frac{q^{1/8}}{1 + \frac{-q}{1 + \frac{-q + q^2}{1 + \frac{-q^2 + q^4}{1 + \cdots}}}} = \frac{q^{1/8}(q^2;q^2)_{\infty}}{(q;q^2)_{\infty}}, \quad |q| < 1 \]

This formula was at first proved by Selberg [7] and the alternative proof was given by Ramanathan [4].

Zhang [10] recorded a general formula to find the explicit evaluations of (1.12) by using Ramanujan’s singular moduli as follows:

\[S_1 \left(e^{-\pi \sqrt{n}} \right) = \frac{\delta_{n/2}^{1/8}}{\sqrt{2}}. \]

Moreover, he established a general formula to calculate \(S_2(q) \) in terms of singular moduli.

The present paper is organized as follows. In Section 2, we state that a few lemmas which are essentials to prove our main results. We establish several new \(P-Q \) mixed modular equations involving theta-functions, which are presented in Section 3. As application of those modular equations, we derive some new general formulae involving Weber-Ramanujan’s class invariants for explicit evaluations of \(\alpha_{9n}, \alpha_{n/9}, S_1(q), \) and \(S_2(q) \), which are discussed in Section 4. Finally, calculate some explicit values of singular moduli and Ramanujan-Selberg continued fraction in Section 5.

2. Preliminaries

We list a few identities which are useful in establishing our main results.

Lemma 2.1. [1] Entry 12 (i), (ii), (iv) Ch.17, p.124 | We have

\[f(q) = \sqrt{2} q^{1/6} \alpha (1 - \alpha)/q^{1/24}, \]

(2.1)

\[f(-q) = \sqrt{2} q^{-1/6} (1 - \alpha)/q^{1/24}, \]

(2.2)

\[f(-q^4) = \sqrt{2} q^{-2/3} (1 - \alpha)/q^{4/24}. \]

(2.3)

Lemma 2.2. [1] p.39, Entry 24 (iii),(iv) | We have

\[\frac{f(q)}{f(q^2)} = \frac{f(-q^2) f(-q^4)}{f(-q) f(-q^4)}. \]

(2.4)

Lemma 2.3. [3] Theorem 3.1(3.2) | Let

\[K = (256 \alpha \beta \gamma (1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \delta))^{1/24} ; \quad R = \left(\frac{\gamma \delta (1 - \gamma)(1 - \delta)}{\alpha \beta (1 - \alpha)(1 - \beta)} \right)^{1/24}. \]

If \(\alpha, \beta, \gamma, \delta \) is of degree 1,3,3,9, then,

\[8 \left(K^3 + \frac{1}{K^3} \right) \left(R^3 + \frac{1}{R^3} + 1 \right) = \left(R^0 + \frac{1}{R^0} \right) + 10 \left(R^6 + \frac{1}{R^6} \right) + 19 \left(R^3 + \frac{1}{R^3} \right) + 36. \]

(2.5)

3. New Mixed Modular Equations

In this section, we discuss about the establishment of a few novel mixed modular equations using theory of theta functions.
We observe that the first factors of the aforemention equation vanish for that specific value. Dividing them by \(P \) does not vanish for that specific value. Thus, we obtain that

\[
(PQ + \frac{16}{PQ}) \left(\frac{P}{Q} + \frac{Q}{P} + 1 \right) = \left(\frac{P}{Q} + \frac{Q}{P} \right)^3 - 2 \left(\frac{P}{Q} + \frac{Q}{P} \right)^2 - 8 \left(\frac{P}{Q} + \frac{Q}{P} \right) - 8.
\]

Proof. Transcribing \(P \) and \(Q \) using (2.2) and (2.3), then simplifying, we arrive at

\[
\frac{P}{2} = \left(\frac{1 - \alpha}{\alpha \beta} \right)^{1/8}; \quad \frac{Q}{2} = \left(\frac{1 - \gamma}{\gamma \delta} \right)^{1/8}.
\]

Employing (3.1) in (1.3), we have

\[
K = \left(\frac{8PQ}{(P^2 + 4)(Q^2 + 4)} \right)^{1/3}; \quad R = \left(\frac{P^2Q + 4Q}{PQ^2 + 4P} \right)^{1/3},
\]

where, \(K \) and \(R \) are defined as in Lemma 2.3. Now, on applying (3.2) in (2.5), we obtain that

\[
A(P, Q)B(P, Q) = 0,
\]

where,

\[
A(P, Q) = P^6Q^6 - 8P^5Q^5 - 64P^4Q^4 - 80P^3Q^3 - 256P^2Q^2 - 64P^3Q^3 - 768P^2Q^2 - 1024PQ^4 + 2048PQ - 4096,
\]

\[
B(P, Q) = Q^6 - P^3Q^3 - 2PQ^5 - P^4Q^4 - 5P^2Q^2 - 5P^3Q^3 - 12PQ^4 - 16PQ^3 - 16P^3Q + P^6.
\]

We observe that the first factor of (3.3) does not vanish for \(q \to 0 \). Nevertheless, the second factor vanish for that specific value. Dividing them by \(P^3Q^3 \) and rearranging the terms. Hence we complete the proof.

Theorem 3.2. If \(P = \frac{f(-q)f(-q^3)}{f(-q^4)f(-q^{12})} \) and \(Q = \frac{q^{1/4}f(-q)f(-q^{12})}{f(-q^4)f(-q^{12})} \), then

\[
\left(\frac{1}{PQ} + \frac{PQ}{2} \right)^2 = \left(\frac{P}{Q} + \frac{Q}{P} \right)^2 \left(\frac{1}{PQ} + \frac{PQ}{2} + 1 \right) + 4.
\]

Proof. Transcribing \(P \) and \(Q \) using (2.2) and (2.3), then by simplifying, we arrive at

\[
P = \left(\frac{\beta(1 - \alpha)}{\alpha(1 - \beta)} \right)^{1/8}; \quad Q = \left(\frac{\delta(1 - \gamma)}{\gamma(1 - \delta)} \right)^{1/8}.
\]

Employing (3.5) in (1.4), we have

\[
(\alpha \beta(1 - \alpha)(1 - \beta))^{1/8} = \frac{2P^2}{P^4 + 1}; \quad (\gamma \delta(1 - \gamma)(1 - \delta))^{1/8} = \frac{2Q^2}{Q^4 + 1}.
\]

Now applying (3.6) in (2.3), we obtain the following result

\[
(P^2Q^6 - P^5Q^5 + PQ^5 + 2P^4Q^4 + Q^4 + 4P^3Q^3 + P^6Q^2 + 2P^2Q^2 + P^5Q - PQ + P^4) \times (P^2Q^6 + P^5Q^5 - PQ^5 + 2P^4Q^4 + Q^4 + 4P^3Q^3 + P^6Q^2 + 2P^2Q^2 - P^5Q + PQ - P^4) \times (P^4Q^6 - P^5Q^5 + PQ^5 + P^6Q^4 + 2P^3Q^4 - 4P^2Q^4 + 2Q^2 + P^5Q - PQ - P^4) \times (P^4Q^6 + P^5Q^5 - PQ^5 + P^6Q^4 + 2P^2Q^2 + Q^2 + P^4Q^2 + 2Q^2 - P^5Q - PQ + P^4) = 0.
\]

We observe that the first factors of the aforemention equation vanish for \(q \to 0 \), whereas, the other factors do not vanish for that specific value. Thus, we obtain that

\[
P^2Q^6 - P^5Q^5 + PQ^5 + 2P^4Q^4 + Q^4 + 4P^3Q^3 + P^6Q^2 + 2P^2Q^2 + P^5Q - PQ + P^4 = 0.
\]

Dividing the equation by \(P^3Q^3 \) and rearranging the terms, we arrive at the desired result.
Theorem 3.3. If \(P = \frac{f(-q)}{q^{1/3}f(-q^4)} \) and \(Q = \frac{f(-q^9)}{q^{9/8}f(-q^{36})} \), then,

\[
\left(P^4Q^4 + \frac{256}{P^4Q^4} \right) \left(\frac{P}{Q} + \frac{Q}{P} + 1 \right) = \left(\frac{P}{Q} + \frac{Q}{P} \right)^6 - 8 \left(\frac{P}{Q} + \frac{Q}{P} \right)^5 + 4 \left(\frac{P}{Q} + \frac{Q}{P} \right)^4 + 64 \left(\frac{P}{Q} + \frac{Q}{P} \right)^3
\]

\[
-16 \left(\frac{P}{Q} + \frac{Q}{P} \right)^2 - 160 \left(\frac{P}{Q} + \frac{Q}{P} \right) - 96.
\]

(3.7)

Proof. By Theorem 3.1, can be written in the following form,

\[
\left(\frac{f(-q)f(-q^9)f^2(-q^{12})}{q^4f(-q^4)f(-q^{36})f^2(-q^{12})} \right) + 16 \left(\frac{qf(-q)f(-q^9)f^2(-q^{12})}{f(-q)f(-q^9)f^2(-q^3)} \right) = \frac{h^3 - 2h^2 - 8h - 8}{h + 1},
\]

where, \(h = \frac{P}{Q} + Q/P \). Solving the above equation, we arrive at

\[
\frac{f(-q)f(-q^9)f^2(-q^3)}{q^4f(-q^4)f(-q^{36})f^2(-q^{12})} = \frac{h^3 - 2h^2 - 8h - 8 + vh}{2(h + 1)},
\]

where \(v = \pm \sqrt{h^2 - 4h^4 - 12h^2 + 16h + 32} \). Similarly, by Theorem 3.2, we obtain that

\[
\left(\frac{f(-q)f(-q^9)f^2(-q^{12})}{q^4f(-q^4)f(-q^{36})f^2(-q^3)} \right)^2 = \frac{h^2 - 2h - 6 + v}{2(h + 1)}.
\]

Now multiplying (3.8) and (3.9), then employing the value of \(v^2 \), we deduce that

\[
4h^8 - 24h^7 + v(4h^6 - 16h^5 - 44h^4 + 72h^3 + 256h^2 + 224h + 64) - 44h^6 + 256h^5 + 464h^4 + (-8P^4Q^4 - 512)h^3 + (-24P^4Q^4 - 1728)h^2 + (-24P^4Q^4 - 1408)h - 8P^4Q^4 - 384 = 0
\]

Isolating the terms containing \(v \) on one side of the above equation and squaring both sides, we arrive at

\[
(h + 1)^5(P^4Q^4h^6 - 8P^4Q^4h^5 + 4P^4Q^4h^4 + 64P^4Q^4h^3 - 16P^4Q^4h^2 - P^8Q^8h - 160P^4Q^4h - 256h - 8P^4Q^4 - 96P^4Q^4 - 256) = 0
\]

We observe that the second factors of above equation vanish for \(q \to 0 \) and the first factor does not vanish for that specific value. Dividing the aforementioned equation by \(P^4Q^4 \) and rearranging the terms. Hence we complete the proof. \(\square \)

Theorem 3.4. If \(P = \frac{f(-q)f(-q^9)}{q^{5/4}f(-q^4)f(-q^{36})} \) and \(Q = \frac{f(-q^3)f(-q^{12})}{q^{3/4}f(-q^{12})f(-q^{36})} \), then

\[
\left(\frac{P}{Q} + \frac{Q}{P} \right)^3 = Q^2 + \frac{16}{Q^2}.
\]

(3.10)

Proof. Theorem 3.2 can be written in the form

\[
u^2 - (u + 1)(P/Q + Q/P)^2 - 4 = 0,
\]

(3.11)

where, \(u = \frac{qf(-q)f(-q^9)}{f(-q^4)f(-q^{36})} + \frac{f(-q^3)f(-q^{12})}{f(-q^{12})f(-q^{36})} \).

Solving (3.11) for \(u \) and choosing the appropriate root, then employing in (3.10) we obtain, after a straightforward lengthy calculation that

\[
(Q^6 - P^3Q^5 + 3P^2Q^4 + 3P^4Q^2 - 16P^3Q + P^6)(Q^6 + P^3Q^5 + 3P^2Q^4 + 3P^4Q^2 + 16P^3Q + P^6)
\]

\[
\times (PQ^6 - 16PQ^5 + 3P^3Q^4 + 3P^5Q^2 - P^3Q + P^7)(PQ^6 + 16P^5Q^5 + 3P^3Q^4 + 3P^5Q^2 + P^3Q + P^7)
\]

We observe that the first factors of above equation vanish for \(q \to 0 \) and other factors does not vanish for that specific value. Dividing by \(P^3Q^2 \) and rearranging the terms. Hence we complete the proof. \(\square \)
4. General Formulae and the Explicit Evaluations

In this section, we establish the formulae involving Weber-Ramanujan’s class invariants for explicit evaluations of α_n, $\alpha_{n/9}$, $S_1(q)$, and $S_2(q)$ by modular modular equations to those derived in pervious section.

Theorem 4.1. If g_n is defined as in (1.8) respectively, then

\[
\alpha_{9n} = \left(\sqrt{g_n^{24} + 1} - g_n^{12} \right)^2 \left(\sqrt{g_n^8 + 1} - g_n^4 \right)^4 \times \left(\frac{g_n^8 + 1 + \sqrt{g_n^{16} - g_n^8 + 1}}{2} - \frac{\sqrt{g_n^{16} - g_n^8 + 1}}{2} \right)^8, \tag{4.1}
\]

\[
\alpha_{n/9} = \left(\sqrt{g_n^{24} + 1} - g_n^{12} \right)^2 \left(\sqrt{g_n^8 + 1} - g_n^4 \right)^4 \times \left(\frac{g_n^8 + 1 + \sqrt{g_n^{16} - g_n^8 + 1}}{2} + \frac{\sqrt{g_n^{16} - g_n^8 + 1}}{2} \right)^8. \tag{4.2}
\]

Proof. Combining (2.1) and (2.3) with $q = e^{-\pi \sqrt{n}}$, then simplifying, we obtain that

\[
\alpha_n = \left(\frac{f(q)}{2^{1/2} q^{1/4} f(-q^4)} \right)^{-8}. \tag{4.3}
\]

Employing (2.4) in Theorem 3.2.2 [9, p.21] along with replacing q by q^3, we obtain that

\[
\left(\frac{f(-q^3)}{q^{3/4} f(-q^{12})} \right)^4 + 16 \left(\frac{q^{3/4} f(-q^{12})}{f(-q^3)} \right)^4 = \left(\frac{f(q^3)}{q^{1/4} f(-q^4)} \right)^{12}. \tag{4.4}
\]

Replacing q by $-q$ in (3.10), then applying (4.4), and (4.3) with $q = e^{-\pi \sqrt{n/9}}$, we deduce that

\[
\left(\frac{\alpha_n^2}{\alpha_n \alpha_{n/9}} \right)^{1/8} - \left(\frac{\alpha_n \alpha_{n/9}}{\alpha_n^2} \right)^{1/8} = 2g_n^4.
\]

On solving the above equation and choosing the appropriate root, then we arrive at

\[
\alpha_n \alpha_{n/9} = \alpha_n^2 \left(\sqrt{g_n^8 + 1} - g_n^4 \right)^8. \tag{4.5}
\]

We observed that some representation for α_n in terms of g_n. This is given by [21 p.289, Eq.(9.27)]

\[
\frac{1}{\sqrt{\alpha_n}} - \sqrt{\alpha_n} = 2g_n^{12}. \tag{4.6}
\]

Employing (4.6) in (4.5), we conclude that

\[
\alpha_n \alpha_{n/9} = \left(\sqrt{g_n^{24} + 1} - g_n^{12} \right)^4 \left(\sqrt{g_n^8 + 1} - g_n^4 \right)^8. \tag{4.7}
\]

By Theorem 3.2 we obtain that

\[
l^2 - 2^{3/2} \left(\frac{1}{\sqrt{\alpha_n}} - \sqrt{\alpha_n} \right)^{2/3} = 0, \tag{4.8}
\]

where, $l = (\alpha_{9n}/\alpha_{n/9})^{1/8} + (\alpha_{n/9}/\alpha_{9n})^{1/8}$. Now, employing (4.6) in (4.8), then solving for l and choosing positive real root, we deduce that

\[
\left(\frac{\alpha_n}{\alpha_{n/9}} \right)^{1/8} + \left(\frac{\alpha_{n/9}}{\alpha_n} \right)^{1/8} = 2 \left(g_n^8 + \sqrt{g_n^{16} - g_n^8 + 1} \right). \tag{4.9}
\]
On solving the above equation and choosing the appropriate root, we obtain that
\[\frac{\alpha_{36}}{\alpha_{n/9}} = \left(\frac{g_n^8 + 1 + \sqrt{g_n^{16} - g_n^8 + 1}}{2} - \frac{g_n^8 - 1 + \sqrt{g_n^{16} - g_n^8 + 1}}{2} \right)^{16}. \] (4.10)

By combining (4.7) and (4.10), this completes the proof. □

Corollary 4.1. If \(S_1(q) \) and \(g_n \) are defined as in (1.12), and (1.8) respectively, then
\[S_1 \left(e^{-\pi \sqrt{n/3}} \right) = \frac{1}{\sqrt{2}} \left(\sqrt{g_n^4 + 1 - g_n^{12}} \right)^{1/4} \left(\sqrt{g_n^4 + 1 - g_4^4} \right)^{1/2} \]
\[\times \left(\sqrt{g_n^8 + 1 + \sqrt{g_n^{16} - g_n^8 + 1}} - \sqrt{g_n^8 - 1 + \sqrt{g_n^{16} - g_n^8 + 1}} \right), \] (4.11)
\[S_1 \left(e^{-\pi \sqrt{n/3}} \right) = \frac{1}{\sqrt{2}} \left(\sqrt{g_n^4 + 1 - g_n^{12}} \right)^{1/4} \left(\sqrt{g_n^4 + 1 - g_4^4} \right)^{1/2} \]
\[\times \left(\sqrt{g_n^8 + 1 + \sqrt{g_n^{16} - g_n^8 + 1}} + \sqrt{g_n^8 - 1 + \sqrt{g_n^{16} - g_n^8 + 1}} \right). \] (4.12)

Proof. Employing pervious theorem in (1.11), it is not difficult to deduce to our corollary. □

Theorem 4.2. If \(S_2(q) \) and \(G_n \) are defined as in (1.13), and (1.8) respectively, then
\[S_2 \left(e^{-\pi \sqrt{n/3}} \right) = \frac{1}{\sqrt{2}} \left(G_n^{12} - \sqrt{G_n^{24} - 1} \right)^{1/4} \left(G_n^4 - \sqrt{G_n^{8} - 1} \right)^{1/2} \]
\[\times \left(\sqrt{G_n^8 + 1 + \sqrt{G_n^{16} + G_n^8 + 1}} - \sqrt{G_n^8 - 1 + \sqrt{G_n^{16} + G_n^8 + 1}} \right), \] (4.13)
\[S_2 \left(e^{-\pi \sqrt{n/3}} \right) = \frac{1}{\sqrt{2}} \left(G_n^{12} - \sqrt{G_n^{24} - 1} \right)^{1/4} \left(G_n^4 - \sqrt{G_n^{8} - 1} \right)^{1/2} \]
\[\times \left(\sqrt{G_n^8 + 1 + \sqrt{G_n^{16} + G_n^8 + 1}} + \sqrt{G_n^8 - 1 + \sqrt{G_n^{16} + G_n^8 + 1}} \right). \] (4.14)

Proof. The proof of our theorem can be obtained by Theorem 4.2 and Theorem 3.4. Since the proof is analogous to Theorem 4.1 and so, we omit the details. □

5. Explicit evaluations

After obtaining class invariants \(G_n \), and \(g_n \), then, Theorem 4.1 Corollary 4.1 and Theorem 4.2 can be utilized to calculate several explicit values of Ramanujan’s singular moduli and Ramanujan-Selberg continued fraction. We conclude the present work with following the computations.

Theorem 5.1. We have
\[\alpha_{36} = \left(\sqrt{2} - 1 \right)^4 \left(\sqrt{3} - \sqrt{2} \right)^4 \left(\sqrt{\frac{\sqrt{3} + 3}{2}} - \frac{\sqrt{\sqrt{3} + 1}}{2} \right)^8, \]
\[\alpha_{4/9} = \left(\sqrt{2} - 1 \right)^4 \left(\sqrt{3} - \sqrt{2} \right)^4 \left(\sqrt{\frac{\sqrt{3} + 3}{2}} + \frac{\sqrt{\sqrt{3} + 1}}{2} \right)^8. \]
Proof. Letting \(n = 4 \), \(g_4 = 2^{1/8} \) [9, Theorem 4.1.2 (i)] and employing this value in (4.1), and (4.2), we evaluate that
\[
\alpha_{36} = (3 - 2\sqrt{2})^2 \left(\sqrt{3} - \sqrt{2}\right)^4 \left(\frac{\sqrt{3} + 3}{2} - \frac{\sqrt{3} + 1}{2}\right), \tag{5.1}
\]
\[
\alpha_{4/9} = (3 - 2\sqrt{2})^2 \left(\sqrt{3} - \sqrt{2}\right)^4 \left(\frac{\sqrt{3} + 3}{2} + \frac{\sqrt{3} + 1}{2}\right). \tag{5.2}
\]
By [2, p.284, Eq.(9.5)], we have
\[
3 - 2\sqrt{2} = \left(\sqrt{2} - 1\right)^2. \tag{5.3}
\]
Employing (5.3) in (5.1), and (5.2), we arrive at desired results. \(\square \)

Theorem 5.2. We have
\[
\alpha_{72} = \left(\frac{\sqrt{2} + 2}{2} - \frac{\sqrt{2}}{2}\right)^{16} \left(\frac{3\sqrt{2} + 6}{2} - \frac{3\sqrt{2} + 4}{2}\right), \tag{5.4}
\]
\[
\alpha_{8/9} = \left(\frac{\sqrt{2} + 2}{2} - \frac{\sqrt{2}}{2}\right)^{16} \left(\frac{3\sqrt{2} + 6}{2} + \frac{3\sqrt{2} + 4}{2}\right). \tag{5.5}
\]
Proof. Letting \(n = 8 \), \(g_8 = 2^{1/8} \left(\sqrt{2} + 1\right)^{1/8} \) [9, Theorem 4.1.2 (ii)]. It follows that
\[
\sqrt{g_8^{34} + 1} = 5 + 4\sqrt{2} ; \quad \sqrt{g_8^{8} + 1} = \sqrt{2} + 1 ; \quad \sqrt{g_8^{16} - g_8^{8} + 1} = 3 + \sqrt{2}. \tag{5.6}
\]
Applying (5.6) in (1.1), we deduce that
\[
\alpha_{72} = \left(5 + 4\sqrt{2} - \sqrt{56 + 40\sqrt{2}}\right)^2 \left(\sqrt{2} + 1 - \sqrt{2 + 2\sqrt{2}}\right)^4 \left(\frac{3\sqrt{2} + 6}{2} - \frac{3\sqrt{2} + 4}{2}\right). \tag{5.7}
\]
Now we apply Lemma 9.10 [2] p. 292] with \(r = 5 + 4\sqrt{2} \). Then \(t = (\sqrt{2} + 1)/2 \) and so
\[
5 + 4\sqrt{2} - \sqrt{56 + 40\sqrt{2}} = \left(\frac{\sqrt{2} + 2}{2} - \frac{\sqrt{2}}{2}\right)^4. \tag{5.8}
\]
Further,
\[
\sqrt{2} + 1 - \sqrt{2 + 2\sqrt{2}} = \left(\frac{\sqrt{2} + 2}{2} - \frac{\sqrt{2}}{2}\right)^2. \tag{5.9}
\]
From (5.7), (5.8), and (5.9), we deduce (5.4). Similarly we arrive at (5.5). \(\square \)
Theorem 5.3. We have

\[
S_1(e^{-6\pi}) = \frac{1}{\sqrt{2}} \left(\sqrt{2}-1 \right)^{1/2} \left(\sqrt{3} - \sqrt{2} \right)^{1/2} \left(\sqrt{\frac{\sqrt{3}+3}{2}} - \sqrt{\frac{\sqrt{3}+1}{2}} \right),
\]

\[
S_1(e^{-2\pi/3}) = \frac{1}{\sqrt{2}} \left(\sqrt{2}-1 \right)^{1/2} \left(\sqrt{3} - \sqrt{2} \right)^{1/2} \left(\sqrt{\frac{\sqrt{3}+3}{2}} + \sqrt{\frac{\sqrt{3}+1}{2}} \right),
\]

\[
S_1(e^{-\pi\sqrt{2}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\sqrt{2}+2}{2}} - \sqrt{\frac{\sqrt{2}}{2}} \right)^2 \left(\sqrt{\frac{3\sqrt{2}+6}{2}} - \sqrt{\frac{3\sqrt{2}+4}{2}} \right),
\]

\[
S_1(e^{-\pi\sqrt{3}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\sqrt{2}+2}{2}} - \sqrt{\frac{\sqrt{2}}{2}} \right)^2 \left(\sqrt{\frac{3\sqrt{2}+6}{2}} + \sqrt{\frac{3\sqrt{2}+4}{2}} \right).
\]

Proof. The proof of theorem can be obtained by (4.11), and (4.12). Since the proof is analogous to previous theorems, and so, we omit the details. \(\square\)

Theorem 5.4. We have

\[
S_2(e^{-3\pi\sqrt{2}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\sqrt{5}+3}{4}} - \sqrt{\frac{\sqrt{5}-1}{4}} \right)^2 \left(\sqrt{\frac{3\sqrt{5}+7}{4}} - \sqrt{\frac{3\sqrt{5}+3}{4}} \right),
\]

\[
S_2(e^{-\pi\sqrt{5}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\sqrt{5}+3}{4}} - \sqrt{\frac{\sqrt{5}-1}{4}} \right)^2 \left(\sqrt{\frac{3\sqrt{5}+7}{4}} + \sqrt{\frac{3\sqrt{5}+3}{4}} \right),
\]

\[
S_2(e^{-\pi\sqrt{7}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{3-\sqrt{7}}{\sqrt{2}}} \right)^{1/2} \left(\sqrt{\frac{\sqrt{21}+5}{2}} - \sqrt{\frac{\sqrt{21}+3}{2}} \right),
\]

\[
S_2(e^{-\pi\sqrt{3}}) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{3-\sqrt{7}}{\sqrt{2}}} \right)^{1/2} \left(\sqrt{\frac{\sqrt{21}+5}{2}} + \sqrt{\frac{\sqrt{21}+3}{2}} \right).
\]

Proof. Employing the class invariant \(G_5\), and \(G_7\) (see [2, p. 189]) in (1.13), and (1.14), we obtain all the above values. Since the proof is analogous to Theorem 5.3 and Theorem 5.4, and so, we omit the details. \(\square\)

References

[1] B. C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991.
[2] B. C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998.
[3] M. S. Mahadeva Naika, N. P. Suman and S. Chandankumar, Schl¨ afli-type mixed modular equations of degrees 1, 3, n and 3n, Afr. Diaspora J. Math. 18 (2015), no. 1, 55–76.
[4] K. G. Ramanathan, Hypergeometric series and continued fractions, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 277–296 (1988). https://doi.org/10.1007/BF02837830
[5] S. Ramanujan, Collected Papers. Cambridge: Cambridge University Press 1927.
[6] S. Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957.
[7] A. Selberg, Über einige arithmetische Identit¨ aten, Avh. Norske Vid.-Akad. Oslo I, Mat.-Natur. Kl., (1936), 2-23.
[8] G. N. Watson, Theorems Stated by Ramanujan (XII): A Singular Modulus, J. London Math. Soc. 6 (1931), no. 1, 65–70. https://doi.org/10.1112/jlms/s1-6.1.65
[9] Yi J, Construction and Application of Modular Equations, Ph. D. Thesis, University of Illinois USA 2000.
[10] L.-C. Zhang, Explicit evaluations of a Ramanujan-Selberg continued fraction, Proc. Amer. Math. Soc. 130 (2002), no. 1, 9–14. https://doi.org/10.1090/S0002-9939-01-06183-4
