Planetary Nebulae with UVIT: A Progress Report.

N. Kameswara Rao1,*, Sutaria F.1, Murthy J.1, Ray A.2,3 & Pandey G.1

1Indian Institute of Astrophysics, Bangalore 560034, India.
2Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India.
3Homi Bhabha Centre for Science Education (TIFR) Mumbai 400088, India.

*Corresponding author. E-mail: nkrao@iiap.res.in

Abstract. The spectral region between 1250 Å -3000 Å contains important spectral lines to understand the morphological structures and evolution of planetary nebulae. This is the region sampled by UVIT through various filter bands both in the continuum and in emission lines (e.g., \textit{C}\textsubscript{iv}, \textit{He}\textsubscript{i, ii}, \textit{Mg}\textsubscript{ii} etc.). We have mapped several planetary nebulae with different characteristics, ranging in morphology from bipolar to wide and diffuse, and in various states of ionization, comparing the UV with the x-ray morphologies wherever the x-ray images were also available. The major unanticipated discovery with UVIT has been the detection of previously undetected, cold, fluorescent, \textit{H}\textsubscript{2} gas surrounding some planetary nebulae. This may be a possible solution to the missing mass problem. Here we present a review of our studies so far done (both published and on-going) with UVIT.

Keywords. Star: AGB and post — AGB stars, winds, outflows — planetary nebulae: ISM: Planetary nebulae: general — planetary nebulae: individual: NGC 6302.

1. Introduction

Planetary nebulae (PNs) are splendid remnants of extraordinary deaths of ordinary stars in the mass range of $1 - 8 M_\odot$. They disburse the nucleosynthetically processed stellar material like Carbon and s-process elements into the interstellar medium, thus enriching the matter which forms the next generation of stars. The extensive, slow, stellar wind, moving at speeds of 10 to 15 km s-1, with a mass-loss rate of $\sim 10^{-7} M_\odot$ yr-1, that starts on the thermally pulsing asymptotic giant branch (AGB) – double shell (He & H) burning sources – transforms into a heavy super-wind with mass-loss rates of $\sim 10^{-4} M_\odot$ yr-1 (Delfosse et al. 1997) as the star evolves to the tip of AGB in the H-R diagram. In a relatively short time most of the mass is lost through a super-wind till the envelope mass falls below $10^{-3} - 10^{-4} M_\odot$, when a structural change occurs to the star as a degenerate CO oxygen core (which ultimately becomes a white dwarf) develops. The photospheric radius shrinks and the effective temperature T_{eff} starts to increase keeping the luminosity almost constant. Consequently, the mass-loss rate stellar wind decreases to about $10^{-8} M_\odot$ yr-1 and the wind speed picks up to 200 to 2000 km s-1. This fast stellar wind plows into the material that was earlier lost through super-wind generating a shock at the interface, while the stellar radiation heats and ionizes the ejecta. The circumstellar material starts to glow as the planetary nebula, and “illuminates the pages of the book that tells the star’s story” (Bianchi 2012). In the interacting stellar wind model (Kwok 1978), it the interaction of the the high speed stellar wind and the slowly expanding super-wind material that shapes the planetary nebulae. Presence of a companion and or magnetic fields may further alter the morphology of the PN. In general, PNe show very many shapes ranging from spherical to bipolar to multipolar, with some even having chaotic geometries. Morphological studies of these objects reveal their past history of mass ejections, their time scales, kinematics, properties of the ionizing source, wind interactions as well as interactions with interstellar medium etc.. The UV region is important for the study of both the central stars (CSPNs) as well as the nebula, because the most important lines of the most abundant elements and their ionization states like \textit{C}\textsubscript{n} 1335 Å, \textit{C}\textsubscript{iv} 1550 Å, \textit{He}\textsubscript{i} 1640 Å, \textit{N}\textsubscript{ii} 1760 ÅC\textsubscript{ii} 2326 Å etc., fall in this region. These lines are important for modeling the ionization structure, shocked regions, chemical composition etc., and for the estimation of the T_{eff} of the hot CSPNs. Moreover, the interstellar extinction through 2179 Åbump can be studied only in the UV band. The Ultraviolet Imaging Telescope(s) (UVIT) on ASTROSAT (ref.), with broad and narrow band filters which cover important spectral lines and continuum with an angular resolution of about 1”5, over a
28' field of view, are well suited for the study of PNs.

Details of UVIT are provided in Kumar et al (2012) and its in-orbit performance is described in Tandon et al (2017a) and in Tandon et al. (2020). UVIT is one of the five payloads on the multiwavelength Indian astronomical satellite ASTROSAT that was launched on 2015 September 28. It consists of two 38 cm aperture telescopes, one of which is optimized for FUV, while the other has a dichroic beam splitter that reflects NUV and transmits the optical. Each UV channel can be studied in five broad and narrow band filters, as well as by low resolution transmission gratings. The Visual channel (VIS channel), which operates only in the integration mode, is used for tracking. Our project uses UVIT imaging of x-ray bright and x-ray faint Planetary Nebulae of different morphologies in various UV emission lines, particularly C iv 1550 Å, [O III] 2326 Å, [O I] 2470 Å, Si iv 1400 Å, Mg ii] 2800 Å, He ii 1640 Å etc., using various filters of the UVIT-FUV and -NUV channels. We aim to study the UV morphologies, shocked regions and correspondence of UV and X-ray emissions in PNs, and to that end, several PNs of varied morphological types in both near (NUV) and far (FUV) UV ranges have been observed. Unfortunately, the NUV channel became dysfunctional after 2017. In this paper, we discuss our observations conducted so far of the selected PNs (Table 1), as well as some of the results and surprises that emerged. Detailed studies of individual objects would be presented elsewhere but some salient observational features particularly brought out by UV studies are dealt in the current presentation. Detailed discussion of NGC 40 and NGC 6302 have been presented in Kameswara Rao (2018a,b).

Table 1 shows a broad morphological classification of the nebulae we observed with UVIT so far which range from compact bipolar nebulae (B) to large elliptical (E) and round (R) nebulae. Some are irregular. Figure 1 illustrates typical nebular emission lines that are enclosed by UVIT filters that were used for our PN studies.

2. Results and Discussion

2.1 Bipolar Nebulae -FUV Halos and Arcs

Most of the nebulae we have observed so far belong to the group of PN with bipolar morphology. Our sample includes NGC 40 (the "Bow tie nebula"), NGC 650, NGC 2440, OH231.8+4.2 (the "Calabash nebula"), NGC 2818, Mz 3, NGC 6302 and NGC 7027. One of the reasons we observed them is to look for systematic features (aspects) in the UV that would characterise the group - e.g. the cold circumstellar H2 gas. Detail UVIT imaging studies of NGC 40 and NGC 6302 are to be found in (Kameswara Rao et al 2018a,b), while and for NGC 2818 in (Kameswara Rao et al., A&A, submitted). Although observations of NGC 650, OH231.8+4.2, Mz3, (and IC 4997) have been done the data is not yet available from ISSDC.

The compact low excitation planetary nebula, NGC 40, was the first object we studied with a view to look for correspondence of high excitation UV line regions with Chandra X-ray images. It has been imaged in the far-ultraviolet filters F169M (UVIT/FUV-F3 with $\lambda_{\text{eff}} = 1608$ Å) and F172M (UVIT/FUV-F5 with λ_{eff} of 1717 Å), as well as in the near-ultraviolet (UVIT/NUV) filters N245M (UVIT/NUV-B13) and N279N (UVIT/NUV-N2 with λ_{eff} of 2792 Å). The filters selected would allow imaging in C iv 1550Å (F169M) and C II] 2326Å (N245M) emission lines, as well as in the continuum (F172M) and (N263). Morphological studies in optical and infrared (IR) show that NGC 40 has ionized high density central core surrounded by faint filamentary halo with circumstellar rings that are seen only in Hr but not in [O m]. UVIT studies show that C II] 2326Å emission is confined mostly to the core and shows similar morphology as low excitation lines in optical. However, strong C iv 1550Å emission is present in the core and shows similar morphology and extent as that of X-ray (0.3-8 keV) emission observed by Chandra, suggesting interaction of the high-speed wind from WC8 central star (CS) with the nebula. An unexpected UVIT discovery is the presence of faint large emission halo in FUV F169M surrounding the central core (Figure 2-top). This FUV halo is absent in the other filters. This emission halo is unlikely to be due to C iv 1550Å emission, or due to dust scattering. Instead, it most likely is due to UV fluorescence emission from Lyman bands of H$_2$ molecules since a few vib-rotational lines have already been detected in the IR from Spitzer spectra. The FUV halo in NGC 40 highlights the extensive existence of cold H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is probably the most dominant molecule and significant for mass-loss studies. Central star and the nebular core occur in the north-west edge of the FUV halo in the direction of the star’s proper motion vector suggesting a possible interaction with the surrounding interstellar medium (ISM).

Presence of much bigger and more extensive FUV halo was discovered around the famous high excitation PN, NGC 6302 the butterfly nebula (Kameswara Rao et al. 2018b). It has been imaged in F169M and F172M, as well as in N279N and in N219M (UVIT/NUV-B15 with λ_{eff} of 2196 Å). Very detailed Hubble Space Telescope (HST) images have been discussed by Szszyka et al (2009) who
Figure 1. IUE low resolution nebular spectra of NGC6302 are shown to illustrate the wavelength range of UVIT filters. FUV is plotted on top and NUV at the bottom. Relative effective areas of various UVIT filters used for PN studies and typical nebular emission lines they include are shown.
Figure 2. (Top:) FUV images of NGC 40 in F172M (left) and in F169M (right). The faint FUV halo in F169M, extending beyond the bright central region, is absent in the F172M image. (Kameswara Rao et al. 2018a). (Bottom:) The extensive FUV lobes and jets in NGC 6302 are shown in the F169M image which extends much beyond the optical image. The F172M image (not shown) does not show these lobes and jets.
Figure 3. (Top) :NUV N219M image (left) is compared with UVIT image in F169M (F3) of NGC 2440.

also identified the elusive central star. The optical narrow band images show two main lobes with complicated clumpy small scale structure in the east-west direction separated by a dark lane of a very dense disc of gas (neutral and molecular) and dust, stretching to north-south. It formed into a toroid, that obscures the central star with visual extinction of about 8 magnitudes (Matsuura et al 2005, Peretto et al 2007, Szyszka et al 2009, Wright et al 2011). Meaburn et al (2008) determined the distance to the nebula as 1.17±0.14 kpc from expansion parallax using proper motions of features in the north-west lobe. This estimate seems to be consistent with measurements of proper motions from Hubble images of the eastern lobe (Szyszka et al 2011). From 3D photoionization modelling of the nebula Wright et al (2011) derived the properties of the central star as hydrogen deficient with T_{eff} of 22000 K, log g of 7, L$_v$ of 14300 L$_\odot$ and mass of 0.73-0.82 M$_\odot$. They also estimated the initial mass to be around 5.5 M$_\odot$.

Extensive studies of the circumstellar torus from infrared to radio wavelengths (Lester & Dinerstein 1984, Kemper et al 2002, Matsuura et al 2005, Peretto et al 2007, and Santander-Garcia et al 20017) suggest the structure is that of a broken disc containing 2.2 M$_\odot$ of dust and molecular gas expanding at 8 km s$^{-1}$, presumably ejected from the star some 5000 years ago, over a duration of ~ 2000 years. The torus also obscures the star and an ionized gas disc (detected in 6 cm free-free continuum) around the star. Kinematical studies of the east and west lobes seem to suggest that an explosive event initiated a kind of Hubble flow (i.e. a flow in which the velocity increases outward in proportion to its distance from the star) in both lobes about 2200 years back (Meaburn et al 2008, Szyszka et al., 2009). The formation and flow of matter probably was directed by the torus into east - west lobes.

Our F169M image of this nebula shows faint emission lobes that extend to about 5’ arc minutes on either side of the central source. Faint orthogonal jets are also present on either side of the FUV lobes through the central source (Figure 2-bottom). These lobes and jets are not present in either of the two NUV filters or in FUV F172M. Optical and IR images of NGC 6302 show brightly emitting bipolar lobes in the east-west direction with a massive torus of molecular gas. Dust is seen as a dark lane in the north-south direction. FUV lobes are much more extended and oriented at a position angle of 113°. The FUV lobes and jets might be remnants of earlier (binary star) evolution, prior to the dramatic explosive event that triggered the Hubble type bipolar flows about 2200 years back. The source of the FUV lobe and jet emission is not known, but most likely is due to fluorescent emission from H$_2$ molecules. The cause of the difference in orientation of optical and FUV lobes is also indeterminate, although we speculate that it could be related to the binary interactions.

2.1.1 NGC 2440: A different kind of FUV halo is seen in the bipolar (multi-polar) PN NGC 2440 in our UVIT observations. The two prominent lobes of bipolar structure prominently seen in the optical images (eg. HST heritage image) are resolved in the various nebular line filter images in to at least two interlock-
Figure 4. Top left panel: Images of NGC 2440 in the filter F169M (left) is shown along with [O iii] 5007Å obtained with HST. The FUV halo and jet are indicated in UVIT image. In the right panel the same image is shown with the three bipolar orientations (PA 35° (a) and 85° (b) are shown. Bottom left panel shows UVIT image of NGC 2440 in F172M shown along with HST image in [N ii] 6584Å. The bottom right panel shows the UVIT image in N265M compared with the HST image in [N ii] 6584Å.
ing, differently oriented, bipolar structures (Lopez et al. 1998). They are oriented at position angles (PA) of 35° and 85°, with a third one at 60° (Lopez et al. 1998). These multipolar structures suggest changes in the direction of sporadic mass outflows from the central object (Lopez et al. 1995, Manchado et al. 1996).

Many molecular emissions and outflows have been mapped. Mapping of H$_2$ ($v = 1 - 0$ (S(1)) rotational transition shows a spiky spherical structure of ~ 73° diameters (Muthu Mariappan et al 2007, Wang et al 2008) with spokes emanating from the centre. CO (3-2) emission closely follows the PA 35° bipolar axis in three clumps extending to about a radius of ~ 36° from the central clump (Wang et al 2008). HCN, HCO$^+$ emission is also detected within the nebular diameter of ~ 71° (Schmidt & Ziurys 2016). Cuesta & Phillips (2000) analysed and modeled the optical nebular line filter images. Ramos-Larios & Phillips (2009) show the Spitzer images at 3.6, 4.8, and 8 μm infra-red emission extending to ~ 80° diameter centered on the central source where two bright nebular knots (NK and SK) separated by ~ 6.2° occur and define another axis. Thus the, ionized, molecular gas and dust are all confined within ~80° diameter centered around the centre. Logo & Costa (2016) modeled the morphokinematical structure with two bipolar components with PA 35° and 85°. The nebular abundances and the central star properties have been studied recently by Miller et al (2019).

Our UVIT images are obtained in the FUV filters F169M and F172M as well as in the NUV filters N245M and N263M (Figure 3). F169M includes the lines of C iv 1550 Å, He ii 1640 Å close to the star whereas F172M mostly displays the continuum and a weakly, the N ii] 1760 Å emission feature. The images of N245M includes C ii] 2326 Å, N263M Mg ii and the continuum. Comparison of UV images with optical nebular lines ground based (Lopez et al. 1998, Cuesta & Phillips 2000) and HST show that N245M and N263M are very similar to[N ii] 6584 Å where as F172M image is similar to that of continuum emission (Cuesta & Phillips 2000) both in size as well as in the presence of the features consistent with low excitation line contribution. However, the images obtained with F169M differ from those of the other UV filters and the optical lines. The bright central part of the image shows broadly similar to the [O iii] 5007 Åimage and shows the two bipolar systems at PA 35° and 85° (Figure 3).

The orientation of the central knots also is similar.

The most intriguing features of the F169M image are the faint halo extending beyond the central bright nebula in the north-east (NE), and to a lesser extent, on the south-west (SW). The faint halo extends beyond the ~ 80° nebular diameter estimated from dust and molecular emission. It extends to ~ 38° beyond the bright nebula on the NE side and ~18° on the SW. The axis of this halo seem to coincide with PA 35° nebular axis. In addition, the most interesting is a thin jet that extends to ~ 44° to the south west beyond the nebula, parallel to the PA 35° axis. (the bright condensation at the southern end of the jet is a field star. It is also present in the F172M image). The FUV halo in NGC 2440 is similar in nature to the other two systems NGC 40 and NGC 6302 and most likely caused by the fluorescent emission from cold H$_2$ molecules, excited by the diffuse UV radiation of the hot central star. This cold H$_2$ might be a product of much earlier mass loss from the system when it (or possibly, the primary) was on early AGB phase. The FUV jet might also be an earlier ejection from the binary system.

2.1.2 NGC 2818: The bipolar PN NGC2818 presents a different kind of FUV emission. Instead of a FUV halo around the PN, NGC 2818 shows FUV emitting circum-nebular arcs at a distance from the nebula, possible remnants of much earlier mass ejections and mass-loss.

The PN NGC 2818 is one of the few known PNs that are members of galactic clusters which makes it possible to estimate a lower limit to the original main sequence mass from the cluster turnover. In the case of NGC 2818 it is around 2.0 to 2.2 M_{\odot}. NGC 2818 is a high excitation nebula with lines of He ii, C iv, N v same time strong lines of low excitation as well as vibrational-rotational lines of H$_2$ in the near and mid-IR. The Spitzer images in mid-IR wavelengths show dust emission extending beyond the optical nebula, particularly on the western lobe (Hora 2007). From the optical spectral analysis the T_{eff} of the central star is estimated to be ~ 169000 K (Mata et al 2016). Very detailed Hubble Space telescope (HST) images (Hubble Heritage image collection) have been discussed by Vazquez(2012) along with its kinematical structure. The kinematical age of the wide lobes is estimated as ~ 8400±3400 years. The optical narrow band images show bipolar lobes in the east-west direction with complicated small scale structure and a pinched, hourglass type narrow equatorial waist in the middle stretching to north-south. The semi-major axis is estimated to extend to 75° through optical nebular lobes in east-west and a minor axis extending to 55° north-south with 14° diameter central region, which is potentially the remnant of an equatorial enhancement A number of cometary knots are seen in images of low excitation lines eg. [N ii], that are preferentially located inside a radius of 20° around the central star Vazquez(2012).

The bipolar planetary nebula, NGC 2818 and the open cluster have been imaged in three far-ultraviolet (FUV) filters, F154W: λ_{eff} of 1541, F169M: λ_{eff} of
Figure 5. UVIT/FUV F154W image of NGC 2818 shows a faint, narrow, nebular, partial ring like feature about 370" east of the nebula and also two nebular arcs at about 170" north-west of the nebula (figures on the right). These features are absent in F172M (top, left) and GALEX NUV (bottom, left) images.
Figure 6. UVIT/FUV F169M image of NGC 2818 is compared with [O\textsc{iii}] 5007 Å ground based, image (inset, Vazquez, 2012). While several features are in common, a major difference is the prominence of radial streamers (or emission filaments) in the F169M image, marked by green arrows. The bandpass of F169M filter covers mainly He\textsc{ii} 1640 Å, and C\textsc{iv} λ 1550 Å emission lines. Presence of these streamers suggest that they might have been swept up by strong stellar wind from the central star.

1608 and F172M: λ_{eff} of 1717 with UVIT. The F154W image shows faint emission of a partial nebular ring and couple of nebular arcs (shell) that surround the central nebula at a distance of 370" and 170" from the central star (Figure 5). F169M image also shows traces of these features but not as prominently as in F154W image. But the images in F172M filter, NUV from GALEX and optical filters do not show any trace of these emission features. The FUV emission from partial ring at a distance of 6.4 pc from the star suggests an ejection that took place about 60000 years back (or more) from the central star. The observed expansion velocity of 105 km s^{-1} of the polar lobes and the distance of 3.56 kpc determined from Gaia parallaxes for both the cluster and the nebula suggests such an age. This is by far the most distant and oldest relic of mass ejection observed for a planetary nebula. The FUV emission in these nebular features is most likely due to UV fluorescent H_{2} molecules. From the T_{eff} and luminosity of the star it appears that enough stellar UV radiation reaches the nebular arc to produce sufficient H_{2} fluorescence. The original formation of the shell (or a ring) might have involved shocks or high temperature and high velocity gas, but in due course that gas has recombined and cooled to the present cold molecular gas.

The FUV images of the central bipolar nebula show bright emission region dominated by He\textsc{ii} λ1640 and to lesser extent C\textsc{iv} λ 1550 emission, around the star. Another prominent morphological aspect of FUV emission, particularly seen in F169M image is the presence of radial filaments (Figure 6) diverging from the central star in almost all directions. These filaments are spread more in the direction of eastern lobe than towards western lobe. They extend to about 48" into eastern lobe. These filaments are much more prominent in F169M image than in [O\textsc{iii}] or F172M images, suggesting that they represent He\textsc{ii} (and C\textsc{iv}) line emitting regions. The filaments have a width of about 0.065 pc at the distance of the nebula. This structure of the filaments is very similar to the radial rays surrounding the main ring in Helix nebula as shown by O’Dell (2004). These radial filaments seem to provide channels for the hot stellar wind to flow.

It is amazing that FUV studies could bring out relics of 60000 years past mass-loss from the pre-CSPN star of NGC 2818.

2.1.3 NGC 7027: Although our analysis of this PN is on going, we illustrate here F154W, F169M and F172M filters image (Figure 5) from our observations and point out some interesting features. NGC 7027 (PN G084.9-03.4) – also known as the "Magic carpet" nebula or
Figure 7. (Top): FUV F154W, F169M and F172M images of NGC 7027. Note that the south-east part is fainter and affected by extinction. FUV is very sensitive to dust extinction. The differential extinction can be studied from UV images.

Figure 8. (Bottom): FUV F154W image (left) is shown along with the x-ray (Kastner et al. 2001) and HST optical image. The faint circular rings seen the optical image are absent in FUV image.
Figure 9. (Top): FUV UVIT F169M (left), N245M and N263M (right) images of NGC 1514. The nebula is brighter in NUV N245M than in FUV F169M. (Bottom) The UVIT N245M image of NGC 1514 is compared with optical image (bottom right) (Resseler et al. 2010). The UV emission is confined to the inner ring and centered around the central star.

"Pink pillow" nebula – is located at 1 kpc (Zijlstra et al. 2008) and has a kinematical age of just 600 years (based on its radio flux - Masson 1989). It is a compact and young PN, one of the brightest nebulae in the sky and the most extensively studied one. NGC 7027 is a carbon-rich nebula with a very high-excitation spectrum showing lines of O iv, Mg V etc. It hosts one of the hottest central stars known to date, with a $T_{\text{eff}} \sim 200000$ K (Latter et al. 2000). A small, essentially ellipsoidal, expanding ionized shell surrounds the central star (Masson 1989). Further outwards, a thin shell indicates the presence of H$_2$ a photo-dissociation region (PDR) and shows signs of recent interaction with collimated outflows (Cox et al. 2002). The nebula also shows many molecular emission lines, e.g. lines of CO, CH$^+$, H$_2$O, and even HeH$^+$ ion have been detected from beyond the PDR (Wesson et. al 2010, Santander-Garca et al 2012, Gusten et al. 2019).

The PN was discovered to be an X-ray source by Kastner et al. (2001), who attributed the X-ray emission to shock heating by a fast wind from the central star impacting the slow wind which the progenitor star ejected while on the asymptotic giant branch (AGB). Zhang et al. detected in the spectrum of this bright young PN of Raman-scattered O iv features at 6830Å and 7088Å pointing to the existence of abundant neutral hydrogen around the ionized region.

FUV is very sensitive to the internal and external extinction. NGC 7027 has high and variable extinction across the nebula that has been mapped by Walton et al (1988). Montez et al (2018) link the X-ray emission to the distribution of extinction across the nebula. UVIT images in FUV would reflect such extinction variations (Figure 6) that would explored later. UVIT images do not show presence of FUV halo or arcs as in other bipolar PNs listed earlier although deep images in optical (HST) do show faint circular rings around the main nebula. One possible reason is that because of high internal extinction no UV photons from the central star reach to the outer H$_2$ region.

2.2 Round Nebulae - FUV Halos

The members of this group that were observed by UVIT are NGC 1514, A 30, EGB 6, and NGC 3587

2.2.1 NGC 1514: 'shining fluid!' Observing NGC 1514 on 1790 November 13, William Herschel called it ‘a most singular phenomenon!’ . This PN is unusual because of its very bright central star and large diameter low surface brightness nebulosity. The observation by Herschel is termed as 'an important event in the history.
Figure 10. (Top:) PN A30 in various UVIT FUV and NUV filters is shown in the top panel. (Bottom:) The UVIT/FUV F169M image of PN A30 (left) is compared with ground based [O III] image (right). The Knots and cometary-tail like filaments in the centre of the [O III] image appear to have counterparts in the F169M image. The [O III] image was supplied by Arturo Manchado (personal comm.).
Figure 11. (Top, left): A30 image in F169M showing radial streamers from CSPN showing channels of streaming stellar wind (green arrows). The pink arrows point to the arches where the channeled flow hit the outer boundary. (Right): Ground based [O III] image superposed by an inset showing the region of Chandra X-ray emission. (Bottom): Image of A30 F169M superposed by the XMMNewton X-ray continuum counters.
of astronomy’ (Seaton 1980) because of his realisation that ‘we therefore either have a central body which is not a star or have a star which is involved in a shining fluid, of a nature totally unknown to us’ (Seaton 1980).

It turns out that there is not one star at the centre but two, a sdO + A0III. Recent observations show that the binary system has a period of 3306 days and eccentricity of 0.46. The estimates of the mass for the cooler secondary is about 2.3 M⊙ and the hot primary is of 0.9 M⊙ (Jones et al. 2017).

Ressler et al. (2010) described the morphological structure of NGC 1514 (see their figure 1) as a nebula with two shells, inner and outer with diameters of 132” and 183”. The inner shell has numerous bubble structures at its edge pushing into the outer shell. The monochromatic optical images of NGC 1514 show that the amorphous appearance of the nebula contains very little nebular emission within about 30” of the nucleus (Balick 1987). This is also confirmed by the absence of C iii] λ1909 emission which is normally the strongest nebular feature in IUE spectra of PNe (Ressler et al. 2010).

A pair of infrared bright axisymmetric rings that surround the visible nebula were discovered by Ressler et al (2010), particularly dominant in 22 μm. Such a structure is not suggested in any of the visible wavelength images which is probably resulted from binary interaction. NGC 1514 is also a X-ray source (Tarafdar & Apparao 1988, Montez et al. 2015).

We have obtained UVIT images in F154W, F169M, F172M as well as in N245M, N263M, and N279N. Although our analysis is ongoing and not complete, we present few images and show the comparison with the optical image (a combination of B, V, R+I -Ressler et al 2010) in Figure 7. The UV emission seem to be mostly to the inner shell. There is UV (nebular) emission within 30”. The nebular extent in FUV is less than that in near UV and optical. There seems to be streams connecting the central region to the inner shell particularly in F245M. The structure in NUV F245M is very similar to the optical except the bubbles look sharper.

2.2.2 Born-again Planetary Nebula A30 - Abell 30 (PNG208.5+33.2, A30) is archetypal born-again PN of about 2 arc minute diameter. The central star of A30 is believed to have undergone a very late thermal pulse (VLTP) that caused the ejection of hydrogen deficient material, prominently seen in the light of [O iii] lines, about 850 years ago. The inner parts of the nebula are filled with this material whereas the outer rim of the nebula is of H-normal composition and of about 12500 yrs of age. A30 is also an X-ray source showing both a diffuse source covering the inner few arc seconds covering the hydrogen deficient knots and a point source located on the central star.

Born-again planetary nebulae (PNe) are believed to have experienced a VLTP (Iben et al. 1983) while the star was descending the white dwarf cooling track. During this event, the remaining stellar helium envelope reaches the critical mass required to ignite its fusion into carbon and oxygen (e.g., Herwig 2005; Miller Bertolami & Althaus 2006; Lawlor & MacDonald 2006); the sudden increase of pressure leads to the ejection of the newly processed material and, as the stellar envelope expands, its temperature decreases and the star returns in the HertzsprungRussell (HR) diagram to the locus of the asymptotic giant branch (AGB) stars. Soon after, the contraction of the envelope will
Figure 13. Top: Images of NGC 3587 (Owl Nebula) in F169M and Galex NUV showing the halos around the deep images (marked as (a)). The nebula in F169M and Galex NUV with two shells are shown marked as (b). Ground based Hα, [N II] and [O III] images (from García-Díaz et al. 2018) are shown for comparison with UV images. The features of F169M and Galex NUV are similar to [O III] and Hα respectively. Bottom: Image of NGC 3587 in F154W (left) and F169M (right). F169M image shows a jet like feature (shown by the arrow) that is absent in F154W image.
increase the stellar effective temperature, boosting the UV flux, and giving rise to a new fast stellar wind. So far, the only bona fide born-again PNe are Abell 30 (A 30), Abell 58 (A 58, Nova Aql 1919), Abell 78 (A 78), and V4334 Sgr (the Sakurai’s object). Among them, A30 and A78 are the more evolved ones, with large limb-brightened, H-rich outer nebulae surrounding the H-poor, irregular-shaped structures that harbor the cometary knots in the innermost regions (Jacoby 1979; Hazard et al. 1980, Meaburn & López 1996; Meaburn et al. 1998). HST images in the [O III] emission line of the central regions have revealed equatorial rings (ERs) and compact polar outflows (POs) in the central regions of both PNe (Borkowski et al. 1993, 1995). The dynamics are revealing: while the outer nebulae show shell-like structures expanding at velocities of 30 to 40 km s\(^{-1}\), the H-poor clumps present complex structures, with velocity spikes of 200 km s\(^{-1}\) (Meaburn & López 1996; Chu et al. 1997; Meaburn et al. 1998). The morphology and kinematics of the H-poor knots unveil rich dynamical processes in the nebulae. The material photo-evaporated from the knots by the stellar radiation is swept up downstream by the fast stellar wind, which is otherwise mass loaded and slowed down (Pittard et al. 2005). The interactions are complex, resulting in sophisticated velocity structures, as well as x-ray emitting hot gas (Chu & Ho 1995; Guerrero et al. 2012; Toalà et al. 2014).

To study the correspondence of UV emission with the X-ray emission as well as the hydrogen deficient ejecta, we imaged A30 with UVIT in 3 FUV and 2 NUV filters. Two FUV filters, F154M (F2) and F169M (F3; \(\lambda_{\text{eff}} \) 1608 Å) transmit the high excitation lines of He II, C IV etc. as shown in fig. 1. The other FUV filter F172M (F5 with \(\lambda_{\text{eff}} \) 1717 Å) allows mostly the nebular continuum. The NUV filters N219M (B15 with \(\lambda_{\text{eff}} \) 2196 Å) and N279N2 (N2 with \(\lambda_{\text{eff}} \) 2796 Å) allow mostly low excitation lines or continuum. The images of the nebula in these filters are shown in Figure 8. The nebula is most intense in F169M and F154W where He II line emission dominates. The UVIT provides a spatial resolution of \(\sim 1.3'\). In the present work, we contrast the UV images with both X-ray contours as well as ground based [O III] and H-alpha images (Arturo Manchado -personal communication). In the FUV F2, F3 images, the hydrogen deficient nebular knots are not as conspicuous as in the [O III] image (Figure 8).

The FUV F2, F3 show radial streamers, which are quite prominent almost extending from central region (Figure 9) to the edge of the nebula. They provide the channels for the material photoevaporated from the knots by the stellar radiation is swept up downstream by the fast stellar wind, which is otherwise mass loaded and slowed down (Pittard et al. 2005). At the edge of the channel where it interacts with the nebular boundary, arch type structures are seen suggesting that the boundary is being pushed out by the flow of stellar wind swept material. X-ray emission has been detected within A30 (e.g., Guerrero et al. 2012; Kastner et al. 2012; Montez et al 2015). This born-again PN has been studied with ROSAT (PSPC and HRI), Chandra, and XMM-Newton X-ray satellites (Chu & Ho 1995; Chu et al. 1997; Guerrero et al. 2012). Its X-ray emission originates from the CSPN, but there is also diffuse emission spatially coincident with the cloverleaf-shaped H-poor structure detected in [O III]. The X-ray emission from both the CSPN and the diffuse extended emission is extremely soft. The XMM/Newton x-ray continuum contours (Chu et al 1997) are shown in Figure 9 superposed on F169M image. They are confined mostly to the inner nebular region where the He II dominated gas is present. The Chandra X-ray region is displayed in Figure 9 as an inset displaying the HST image of the inner 10” radius of the nebula. The X-ray region contains both diffuse emission and knots.

2.2.3 FUV Halo: The most surprising result of our UV imaging of A 30 is the presence of a FUV halo in the F154M and F169M filters, extending beyond the known optical and NUV nebular size (Figure 10). The halo is not present in the F172M image, nor in any of the NUV images or even in the optical images. This situation is similar to that in NGC 40, NGC 6302 and NGC 2440. The FUV emission is very likely, the result of H2 molecular fluorescent emission from the AGB ejecta, from molecules excited by the diffuse UV radiation from the CSPN seeping through to the cold molecular region. Inspite of the presence of a very hot central star, with \(T_{\text{eff}} \) of 115000 K (Toalà et al. 2014), and an earlier excursion to hot PN stage (born-again), the nebula seems to still possess some unionized molecular gas. Is this gas a survivor of 12000 years of the PN evolution? The FUV halo seem to be distributed asymmetrically only on one side of the nebula. Earlier, Dinnerstein & Lester (1989) discovered an infra-red disk inside the nebula. A possible connection of this dust disk to the FUV halo needs to be explored.

2.2.4 NGC 3587 - The Owl Nebula This is a well studied PN with an angular size of \(\sim 3' \) and of symmetrical morphology consisting of triple shell structure with a round double shell which forms the main bright nebula, and a faint outer halo (Chu et al. 1987; Kwitter et al. 1992, Guerrero et al 2003). The bright inner shell is about 182” x 168” and resembles the face of the owl with each eye being of \(\sim 35" \). The outer shell is almost circular with a diameter of \(\sim 208" \). The outer shell is about 25% larger than innershell. The surface
Figure 14. Top, 3 Panels: UVIT image of EGB 6 in F148W filter showing the fainter outer nebula and smaller central nebula (shown by the arrow) along with an optical image of EGB 6 in Hα and [N II] (Jacoby et al. 1995) and an optical colour image of the outer nebula. Note that the inner smaller neb is not present in the two optical images. Bottom: Galex FUV image of EGB 6 (left) is compared with UVIT image in F148W. The inner small nebula is shown by the arrow. Note the absence of inner small nebula in the Galex image.
Figure 15. Top, 2 Panels: UVIT image of EGB 6 in F154W filter showing the faint outer nebula and smaller central nebula along with F148W image of the outer nebula. Note that an inner, smaller, nebula is present in the two FUV images. Bottom: FUV image of EGB 6 in F148W. Note that the bow of inner small nebula is towards south-west direction.
Figure 16. Top left panel: Images of A 21 in Hα (Manchado et al. 1996) and in N263M showing the similarity of the filamentary structure. Right panel: The FUV images in F169M and F172M. The arrow points to the faint filament that connects to the CSPN. Bottom: UVIT composite image of A 21 in three colours F169M (blue) N263M (green) N245M (red).
One of the special features seen in the F169M image is a jet in the north-west cavity (see Figure) that is not seen either in F154W or F172M or even NUV images. This could be a hot He\(\text{ii}\) emitting jet, a real sign of activity in a docile nebula.

2.2.5 EGB6: EGB 6 (PN G221.6+46.4) is a large (13' x 11') and very low-surface-brightness planetary nebula, serendipitously discovered by Bond on POSS prints in 1978. The central star, PG 0950+139 is a very hot DAOZ white dwarf with \(T_{\text{eff}} = 105000 \pm 5000\) K, \(\log g = 7.4 \pm 0.4\) (Werner et al. 2018). The CSPN has an apparent cool dwarf companion shrouded in dust at a separation of 0."16, which was initially detected through near infrared excesses (Bond et al. 2016). Initial spectroscopic observations showed the central star has strong \([\text{O}\text{III}]\) emission. Later Liebert et al (1989) showed that the strong \([\text{O}\text{II}]\) nebular lines arise from a compact emission knot (CEK), which is unresolved and appears to coincide with the PNN in ground-based images. However, recent HST observations (Bond et al (2016)) showed that even the emission knot is associated with a companion at 0."166 away from the CSPN. This corresponds to a projected linear separation of \(\sim 118\) AU, for a nominal distance of about 725 pc. The electron density of the CEK is remarkably high, about \(2.2 \times 10^6\) cm\(^{-3}\), according to an emission-line analysis by Dopita & Liebert (1989).

Thus, EGB 6 raises several astrophysical puzzles, including how to explain the existence and survival of a compact dense \([\text{O}\text{II}]\) emission nebula apparently associated with a cool M dwarf, located at least 118 AU from the source of ionizing radiation (Bond et al 2016). It is to be noted that very weak \([\text{O}\text{III}]\) lines have very low-surface-brightness planetary nebulae. The CSPN has a compact emission knot (CEK), which is unresolved and appears to coincide with the PNN in ground-based images. However, recent HST observations (Bond et al (2016)) showed that even the emission knot is associated with a companion at 0."166 away from the CSPN. This corresponds to a projected linear separation of \(\sim 118\) AU, for a nominal distance of about 725 pc. The electron density of the CEK is remarkably high, about \(2.2 \times 10^6\) cm\(^{-3}\), according to an emission-line analysis by Dopita & Liebert (1989).

Thus, EGB 6 raises several astrophysical puzzles, including how to explain the existence and survival of a compact dense \([\text{O}\text{II}]\) emission nebula apparently associated with a cool M dwarf, located at least 118 AU from the source of ionizing radiation (Bond et al 2016). It is to be noted that very weak \([\text{O}\text{III}]\) lines have very low-surface-brightness planetary nebulae. The CSPN has a compact emission knot (CEK), which is unresolved and appears to coincide with the PNN in ground-based images. However, recent HST observations (Bond et al (2016)) showed that even the emission knot is associated with a companion at 0."166 away from the CSPN. This corresponds to a projected linear separation of \(\sim 118\) AU, for a nominal distance of about 725 pc. The electron density of the CEK is remarkably high, about \(2.2 \times 10^6\) cm\(^{-3}\), according to an emission-line analysis by Dopita & Liebert (1989).
The most interesting and unique structure that is only present in FUV filters F148W, F154W and F169M is a smaller nebula close to the CSPN extending to about 2.4 arcminutes away from it. It has a bow like appearance away from the central star (Figures 12, 13) in the general direction of proper motion of the star. This central nebula is not even present in Galex image. The existence of this small nebula adds a new puzzle to the already listed ones by Bond et al (2016).

2.3 Elliptical Nebulae

The members of this group from Table 1 are A21, JrEr1, A70, Hu1-2 and NGC 7293. Reduced level data of LoTr5, JrEr1, A70, Hu1-2 is not available. We present the results on the PN A21, and NGC 7293 in the following sections.

2.3.1 Abell 21, Medusa Nebula, A21: A21 (PNG205.1+14.2) is a very wide (685” x 530”) evolved PN with a very hot white dwarf central star WD0726+133 also known as YM29. The T$_{\text{eff}}$ and log g of the CSPN are estimated to be 140000 K and 6.5 respectively.

The WD central star appears as a point source superposed on diffuse emission in the MIPS 24μm image (Chu et al. 2009). The flux density in the MIPS 24μm band is almost three orders of magnitude higher than the expected photospheric emission. However, WD 0726+133 remains as a puzzle since no companion has been detected (Ciardullo et al. 1999). The IR excess is attributed to a dust disk. The origin of the dust is unclear whether it is accreted material or remnants of the dusty AGB phase. Whether the star is a binary is also a possibility (Clayton et al. 2014). A21 shares this property with JrEr1 and NGC 7293.

Short exposure UVIT observations have been obtained in F169M and F172M in FUV and N263M and N245 in NUV filters. The central star as expected is conspicuous. The images are very similar to the optical ones. The NUV images show great similarity to Hα image with a large number of filaments (Figure 14). However the FUV images look more diffuse similar to [OIII] A5007 image (Manchado et al 1996). The F169M (includes HeII 1640 Å and CIV 1540 Å) image shows a faint filament connecting the central star. However better observations are required.

2.3.2 NGC 7293, Helix Nebula: Helix Nebula (PNG036.1-57.1) is one of the nearest (Gaia distance of 201 pc) and well studied PN in almost all wavelengths (O’Dell et al 2004,2005, 2007; Meaburn et al 2005,2008; Hora et al. 2006; Mentez et al 2015; Van de Steene et al 2015). It is also the largest PN in the sky with a diameter of about 13.5’. A wide verity of phenomena has been studied in this PN ranging from exotic molecules, to X-rays, number of intriguing structures, from small cometary knots to large-scale arcs, to bipolar outflows, dusty disks, shock fronts etc. The inner helical structure is composed of thousands of cometary knots of lowly ionized and molecular gas (O’Dell et al 2007, Etxaluze et al. 2014).

The white dwarf central star WD 2226-210 with a surface temperature of 103600± 5500 K (Napiwotzki 1999) ionizes the AGB nebula. Su et al. (2007) also showed the presence of a 35-150 AU diameter debris disk around this central star.

The main nebula consists of two rings of highly ionized gas and a faint outer filament. The three-dimensional (3D) structure of the main nebula has been investigated by Zeigler et al. (2013) who noted that the structure of the Helix projects as if it were a thick walled barrel composed of red and blue-shifted halves in a bipolar geometry. The barrel axis of the Helix is tilted about 10° east and 6° south relative to the line of sight.

There are two intriguing aspects that were revealed by infrared studies. Strong emission lines of [OIII] 25.9 μm and [NeV] 24.3 μm have been detected in the Spitzer spectrum. This source of emission is identified with a point source centred on the CSPN. The excitation of [OIII] requires photons of 54.9 eV. In such a case, HeII lines which also needs 54.4 eV for ionization (and recombination) are expected to produce a strong point source centered on the star. Images of HeII λ4686 have not shown such a point source. Secondly it has been known that Chandra X-ray imaging showed a hard X-ray point source, even at subarc second resolution, centered on the CSPN. The source of X-rays is unknown. The surface temperature of CSPN is not hot enough to generate hard X-rays from its photosphere. FUV region contains HeII 1640 Å line, which is expected to be about 16 times stronger (recombination) than HeII λ4686, occurs in the F169M filter of UVIT. With a view to map the hot gas at higher spatial resolution (1.”3) we observed the central regions of Helix nebula.

We observed the central region of Helix in the first instance in two FUV filters F169M and F172M and two NUV filters N245M and N263M. F172M images expected to provide the continuum emission in contrast to F169M. NUV filters might include mostly the nebular continuum inaddition to some low excitation emissions. IUE spectra up to 2 arc minutes away from CSPN show that HeII 1640 Å line provides strongest emission in the inner regions. Figure 15 show the relative comparison of the spatial resolution of UVIT with respect to Galex both in FUV and NUV. Several nebular knots (cometary) seen in HST optical images (O’Dell 2007) are also present in UV (Figure 18, 19).
Figure 17. NUV image of NGC7293 in N245M (left) compared with Galex NUV image. Image in N263M (right) is again compared with NUV Galex image of NGC 7293. Note the higher spatial resolution of UVIT images and the radial filaments.

F169 images of the central region of Helix showed mainly two surprising features in contrast to F172M (and N245M and N263M). The region around CSPN has nebulous clumps surrounding the point source (Figure 15). The intensity contours around the central source show few arc seconds extended regions suggesting that the central source is surrounded by clouds of He II (Figure 17). Secondly, there is a nebulus streamer connecting the central region to the outer ring (Figure 16). The He II streamers could possibly be providing mass flow to and from the central source. Could this be the source of accretion to the central WD?

Although NGC 7293 is of great astrophysical interest, it is not an easy object to observe because of its low surface brightness and its large angular extent in the sky. The field of view of UVIT is adequate to cover major portions of the nebula at any given pointing. We have observed two more locations in NGC 7293 covering the whole nebula including the shocked regions. Some of the data is not yet available. We hope to present a detailed paper later.

3. Concluding remarks:

In this paper, we have presented UVIT observations of 11 of the 19 proposed objects in our program. This compendium forms an "atlas" of sorts, of deep UV imaging of these objects, with a spatial resolution of 1".5. The data for the 8 objects is not yet available. The main theme that has been developed here is existence of the FUV haloes. Halos around PN are well known and well studied (Ramos-Larios & Phillips 2009). E.g., in NGC 3587, the halo is seen in all wavelengths from UV (sec.2.2.3) to the optical, and consists mainly of ionized gases (Guerrero & Manchado 1999). Extended ionized halo has been found around 60% of the PNs for which proper imaging has been done (Contrada et al. 2003). The halos are thought to be a result of mass-loss at the end of the AGB phase, their edges being the signature of the last thermal pulse (Shteffer & Schonberner 2003). In contrast, the UVIT discovered FUV halos, and jets around bipolar nebulae and A 30 are only seen in wavelengths shortward of 1650 not in longer wavelength images. Warner and Lyman bands of H2 start appearing shortward of 1650. Ultraviolet fluorescence spectra of H2 as modeled by France et al. (2005) with IC 63, show strong emission peak at 1608 (Aeff of F169M filter) and no emission shortward of 1650.

UVIT studies have brought out a totally new aspect to the hidden mass of the planetary nebulae namely existence of FUV halos, jets and arcs, mostly due to very cold H2 gas around young, bipolar and even some old
Figure 18. Top, 2 Panels: UVIT image of NGC 7293 in F169M filter (red) showing the outer nebula and the He II filament (marked by arrow) connecting the central region (and the star). The top right panel shows the absence of He II filament in the N245M image. Bottom 2 Panels: Inner 4’ regions of NGC 7293 in F169M (left) and F172M (right) superposed with intensity contours. The He II filament is seen in the F169M image (marked by arrow) where as it is absent in the F172M image.
Figure 19. A surface and contour study of NGC 7293 in UVIT/FUV F169 and F172M bands. Top: Surface contours of the central source in F169 (left) and F172M (right) showing distorted contours for F169M indicating the possible presence of \text{He} \text{ii} bright clouds or clumps around the CSPN. In F172M the contours more circular and suggests the presence of CSPN alone. Bottom: The figure shows the volume contours of the central source in F169M (\text{He} \text{ii} emission line) and F172M (continuum) filters. The CSPN is seen to be accompanied by three \text{He} \text{ii} clumps in F169M where as the profile in F172M shows CSPN alone.

Figure 20. Details of UVIT image of NGC 7293 in the N263M filter. There are some new structures that are not seen in optical images.
PNs like born-again PNs as well. Such cold gas could only be seen through UV fluorescence of H$_2$ molecule. Big FUV lobes, and jets much bigger than optical nebulae have been detected through FUV studies by UVIT.

UV imaging in each case of PNs we studied revealed a new aspect observationally which reiterates the importance of UV studies.

‘Planetary nebulae are like a box of chocolates, you never know what you are going to get’ – Monic Yourcg

4. Acknowledgements:

We would like to express our sincere thanks to several people who have helped us in carrying out this study of PNs, especially K. Sriram, Arturo Manchado for supplying ground based images of some the PN in nebular lines, Annapurni Subramaniam for the contour images of NGC 7293.

UVIT and ASTROSAT observatory development took about two decades before launch. Several people from several agencies were involved in this effort. We would like to thank them all collectively. NKR would like thank Department of science and technology for their support through grant SERB/F/2143/2016-17 ‘Aspects in Stellar and Galactic Evolution’.

Some of the data presented in this paper (eg.Galex, IUE, HST) were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

References

Ackers, A., Ochsenbein, F., Stenholm, B., et al., 1992, ‘Strasbourg-ESO Catalogue of Galactic Planetary Nebulae’
Balick, B., 1987, AJ, 94, 671
Balick, B., Frank, A., 2002, ARAA, 40, 439
Balick, B., Frank, A., Liu, B., Huart-Espinosa, H., 2017, ApJ, 843, 208
Bianchi, L., 2012, ‘Planetary Nebulae’ ed. IAU Symp., 283, 45
Bond, H.E., Ciardullo, R., Esplin, T.L., Hawley, S.A., Libert, J., Munari, U., ApJ, 826, 139
Borkowski, K.J., Harrington, J.P., Tsvetanov, Z., 1995, ApJ, 449, L143
Borkowski, K.J., Harrington, J.P., Tsvetanov, Z., Clegg, R.E.S., 1993, ApJ, 415, 47
Clayton, G.C., De Marco, O., Nordhaus, J., et al., 2014, AJ, 147, 142
Chu, Y.-H., Chang, T.H., Conway, G.M., 1997, ApJ, 482, 891
Chu, Y.-H., Ho, C.-H., 1995, ApJ, 448, 127
Chu, Y.-H., Grundl, R.A., Conway, G.M., 1987, AJ, 116, 1882
Chu, Y.-H., Su, K.Y.L., Bilikov, J., et al. 2011, AJ, 142, 75
Chu, Y.-H., Gruendl, R.A., Guerrero, M.A., et al., 2009, AJ, 138, 691
Corradi, R. L. M., Schonberner, D., Steffen, M., Perinotto, M., 2003, MNRAS, 340, 417

Cox, P., Huggins, P.J., Maillard, J.-P., et al. 2002, A&A, 384,603

Cuesta, L., Phillips, J.P., 2000, ApJ, 543, 754

Cuesta, L., Phillips, J.P., 2000, AJ, 120, 266

Delfosse, X., Kahane, C., Forveille, T., 1997, A&A, 320, 249

De Marco, O., 2009, PASP, 121, 316

Dinerstein, H.L., Lester, D.F., 1984, ApJ, 281, 702

Dopita, M.A., Liebert, J., 1989, ApJ, 347, 910

Etxaluze, M., Cernicharo, J., Goicoechea, J.R., et al. 2014, A&A, 566, 78

Fang, X., Guerrero, M.A., Marquez-Lugo, R.A., Toala, J.A., et al., 2014, ApJ, 797, 100

Feibelman, W.A., 2001, ApJ, 550, 785

France, K., Andersson, B.-G., McCandliss, S.R., Feldman, P.D., 2005, ApJ, 628, 750

Garca-Segura, G., Villaver, E., Langer, N., Yoon, S.-C., Manchado, A., 2014, ApJ, 783, 74

Garcia-Diaz, M.T., Steffen, W., Henny, W.J., et al., 2018, MNRAS, 479, 3909

Gusten, R., Wiesemeyer, H., Neufeld, D., 2019, Nature, 568, 357

Guerrero, M.A.; Manchado, A., 1999, ApJ, 522, 378

Guerrero, M.A., Ruiz, N., Hamann, W.-R., et al. 2012, ApJ, 755,129

Guerrero, M.A., Chu, Y.-H., Manchado, A., Kwitter, K.B., 2003, AJ, 125, 321

Hazard, C., Terlevich, R., Morton, D.C., Sargent, W.L.W., Ferland, G, 1980, Nature, 285, 463

Hajian, A.R., Frank, A., Balick, B., Terzian, Y., 1997, ApJ, 477, 226

Herald, J.E., Bianchi, L., 2011, MNRAS, 417, 2440

Herwig, F., 2005, ARA&A, 43, 435

Hora, J.L. Latter, W.B., Smith, H.A., 2007, 652, 426

Hsia, C.-H., Chau, W., Zhang, Y., Kwok, S., 2014, 787, 25

Hua, C. T., Dopita, M. A., Martinis, J., 1998, A&A, 133, 361

Iben, I.Jr., Kaler, J.B., Truran, J.W., Renzini, A., 1983, ApJ, 264, 605

Jacoby, G.H., 1979, PASP, 91, 754

Jacoby, G.H., Van De Steene, G., 1995, AJ, 110, 1285

Jones, D., Van Winckel, H., Aller, A., Exter, K., De Marco, O., 2017, A&A, 600, 9

Lang, D., Hogg, D.W., Mierle, K., Blanton, M., Roweis, S., 2010, AJ, 139, 1762

Latter, W.B., Kelly, D.M., Hora, J.L., Deutsch, L.K., 1995, ApJS, 100, 159

Lawlor, T. M., MacDonald, J., 2006, MNRAS, 371, 263

Lester, D.F., Dinerstein, H.L., 1984, ApJ, 281, L67

Liebert, J., Green, R., Bond, H.E., Holberg, J.B., et al., 1989, ApJ, 346, 251

Lopez, J.A., Vazquez, R., Rodriguez, L.F., 1995, ApJ, 455, L63

Lopez, J.A., Meaburn, J., Bryce, M., Holloway, A.J., 1998, ApJ, 493, 803

Kameswara Rao, N., Sutaria, F., Murthy, J., Krishna, S., Mohan, R., Ray, A., 2018, A&A, 609, L1

Kameswara Rao, N., De Marco, O., Krishna, S., Murthy, J., Ray, A., Sutaria, F., Mohan, R., 2018, A&A, 620, 138

Kastner, J.H., Vrtilek, S.D., Soker, N., 2001, Apj, 550, 189

Kemper, F., Molster, F.J., Jager, C., Waters, L.B.F.M., 2002, A&A, 394, 679

Kumar, A., Ghosh, S.K., Hutchings, J., et al. 2012, in Proc. SPIE, Vol. 8443

Kwitter, K.B., Chu, Y.H., Downes, R.A., 1993, IAUSS, 155, 209

Kwok, S., Burton, C.R., Fitzgerald, P.M., 1978, ApJ, 219, L125

Lago, P. J. A., Costa, R. D. D., 2016, RmxAA, 52, 329

Latter, W.B., Dayal, A., Bieging, J.H., Meakin, C., et al. 2000, ApJ, 539, 783

Manchado, A., Stanghellini, L., Guerrero, M.A., 1996, ApJ, 466, L95

Manchado, A., Guerrero, M.A., Stanghellini, L., Serrabierta, M., 1996, ‘The IAC Morphological Catalog of Northern Galactic Planetary Nebulae’. IAC, La Laguna

Mata, H., Ramos-Larios, G., Guerrero M.A., et al., 2016, MNRAS, 459, 841

Matsuura, M., Zijlstra, A.A., Molster, F.J., Waters, L.B.F.M., Nomura, H., Sahai, R., Hoare, M.G., 2005, MNRAS, 359, 383

Martin, C., Hurwitz, M., Bowyer, S., 1990, 354, 220

Masson, C.R., 1989, ApJ, 336, 294

Meaburn, J., Lopez, J.A., Steffen, W., Graham, M.F., Holloway, AJ, 130, 2303

Meaburn, J., Lopez, J.A., Bryce, M., Redman, M.P., 1998, A&A, 334, 670

Meaburn, J., Lloyd, M., Vaytet, N.M.H., Lopez, J.A., 2008, MNRAS, 385, 269

Miller, T.R., Henry, R.B.C., Balick, B., et al. 2019, MNRAS, 482, 278
Miller Bertolami, M. M., Althaus, L. G., 2006, RMxAC, 26, 48
Montez, R. Jr., Kastner, H., Balick, B., et al., 2015, ApJ, 800, 8
Montez, R., Kastner, J.H., 2018, ApJ, 861, 45
Murthy, J., Rahna, P., Sutaria, F., et al., 2017, A&C, 20, 120
Napiwotzki, R., 1999, A&A, 350, 101
O’Dell, C.R., McCullough, P.R., Meixner, M., 2004, AJ, 128, 2339
O’Dell, C.R., Henney, W.J., Ferland, G.J., 2005, AJ, 130, 1720
O’Dell, C.R., Henney, W.J., Ferland, G.J., 2007, AJ, 133, 2343
Peretto, N., Fuller, G.A., Zijlstra, A.A., Patel, N.A., 2007, A&A, 437,207
Rahana, P.T., Murthy, J., Sazonova,M., et al. 2017, MNRAS, 471, 3028
Ramos-Larios, G., Phillips, J.P., 2009, MNRAS, 400, 575
Ressler, M.E., Cohen, M., Wachter, S., et al., 2010, AJ, 140, 1882
Seaton, M.J., 1980, QJRAS, 21, 229
Santander-Garcia, M., Bujarrabal, V., Alcolea, J., Castro-Carrizo, A., Sanchez Contreras, C., Quintana-Lacaci, G., Corradi, R. L. M., Neri, R., 2017, A&A, 597, 27
Schmidt, D.R., Ziurys, L.M., 2016, ApJ, 817, 175
Steffen, M.; Schnberner, D., 2003, IAUS, 209, 439
Su, K.Y.L., Chu, Y.-H., Rieke, G.H., Huggins, P.J., et al., 2007, ApJ, 657L, 41
Szyszka, C., Walsh, J.R., Zijlstra, A.A., Tsamis, Y.G., 2009, ApJ, 707, L32
Szyszka, C., Zijlstra, A.A., Walsh, J.R., 2011, MNRAS, 416, 715
Tandon, S.N., Hutchings, J.B., Gosh, S.K., et al., 2017a, JApA, 38, 28
Tandon, S.N., Subramaniam, A., Girish, V., et al., 2017b, AJ, 154, 128
Tandon, S.N., et al., 2020, AJ, 159, 158
Taraefdar, S.P., Apparao, K.M.V., 1988, ApJ, 327, 342
Toalá, J.A., Guerrero, M.A., Todt, H., Hamann, W.-R., et al., 2015, ApJ, 799, 67
Van De Steene G.C., Van Hoof, P.A.M., Exter, K.M., Barlow, M., et al., 2015, A&A, 574, 134
Vazquez, R., 2012, ApJ, 751, 116
Walton, N. A., Pottasch, S. R., Reay, N.K., 1988, A&A, 200, 21
Wang,M.-Y., Muthumariappan,C., Kwok, S.,2006, IAUS, 234,537
Wang M.-Y., Hasegawa T.I., Kwok S., 2008, ApJ, 673, 264
Werner, K., Rauch, T., Kruk, J.W., 2018, A&A, 616, 73
Werner, K., Rauch, T., Reindl, N., 2019, MNRAS, 483, 5291
Wesson, R., Cernicharo, J., Barlow, M.J. et al. 2010, A&A, 518, 144
Witt, A.N., Stecher, T.P., Boroson, T.A., Bohlin, R.C., 1989, ApJ, 336, L21
Wright, N.J., Barlow, M.J., Ercolano, B., Rauch, T., 2011, MNRAS, 418, 370
Zeigler, N.R., Zack, L.N., Woolf, N.J., Ziurys, L.M., 2013, ApJ, 778, 16
Zijlstra, A.A., Van Hoof, P.A.M., Perley, R.A., 2008, ApJ, 681, 1296
Target characteristics, and observation log of the PNs selected for our program. The morphological classification is as follows: Compact Bipolar nebulae (B), large Elliptical (E) and round (R). Subscripts "s", "m" and "a" refer to inner structure, multiple shells and ansae respectively. Objects that have been proposed but not observed to date are noted in the last column as "n.d."

Nebula	α, δ (2000)	type (a)	size (arcmin)	proposal ID	Date	FUV filter	NUV filter	Comments
NGC 40	00 13 01.0 +72 31 19.1	B	0.61 x 0.61	G06.065	2016.12.09	F3,F5	B4,N2,Gr	A&A
NGC 650	01 42 19.7 +51 34 31.5	Br	3.2 x 1.97	A07.059Tol1	2019.10.04	F2,F3,F5		n.d.
NGC 1514	04 09 17.0 +30 46 33.5	R	1.67 x 1.67	G06.066	2016.12.26	F2,F3,F5	B4,B13,N2	
A 21	07 29 02.7 +13 14 48.4	Es	10.25 x 10.25	G05.178T01	2016.09.30	F3,F5	B4,B13	
NGC 2440	07 41 54.9 -18 12 29.7	B,M	0.55 x 0.55	G07.034	2017.04.04	F3,F5	B4,B13	
OH231.8+4.2	07 42 16.9 -14 42 50.2	B	0.5 x 0.83	A05.103	2019.03.03	F3,F5		
JEr1	07 57 51.6 +53 25 16.9	Es	6.3 x 6.3	G06.061	2019.01.22	F2,F3,F5		
A 30	08 46 53.5 +17 52 46.8	Rs	0.29 x 0.13	G06.068	2016.12.26	F2,F3,F5	B15,N2,Gr	Hyd.def
NGC 2818	09 16 01.5 -36 37 37.4	B	0.67 x 0.67	A05.149	2018.12.21	F2,F3,F5,Gr	A&A(p)	
EGB6	09 52 59.0 +13 44 34.9	R	0.16 x 0.16	G08.029	2018.04.04	F1,F2,F3,F5	B4,B13,N2,B15	
NGC 3587	11 14 52.8 +55 02 00.0	Rsm	3.5 x 3.5	A05.149T03	2018.12.22	F2,F3,F5		
Lo Tr5	12 55 33.8 +25 53 30.6	E	0.18 x 0.18	G05.182	2016.06.04	F3,F5	B13,B4	
MyCn18	13 39 35.1 -67 22 51.7	B	0.21 x 0.21	G09.061T02	2020.06.06	F2,F3,F5	n.d.	
Mz 3	16 17 15.0 -51 59 42.2	B	0.10 x 0.10	A05.103	2019.07.26	F2,F3,F5		n.d.
NGC 6302	17 13 44.4 -37 06 11.0	B	1.0 x 1.0	G06.071	2017.03.18	F2,F3,F5	B15,Gr,N2	A&A
NGC 70	20 31 33.2 -07 05 18.0	E	0.8 x 0.65	A07.134T03	2020.05.14	F2,F3,F5	n.d.	
NGC 7027	21 07 01.8 +42 14 10.0	B	0.5 x 0.4	A05.149T01	2018.10.05	F2,F3,F5		n.d.
Hu 1-2	21 33 08.3 +39 38 09.5	Ea	0.67 x 0.3	A07.059T05	2019.10.24	F3,F5		n.d.
NGC 7293	22 29 38.5 -20 50 13.6	E	13.4 x 13.4	G05.187	2016.09.30	F3,F5	B4,B13	

Notes:
1. The types are taken from IAC Morphological Catalog of Northern Galactic Planetary Nebulae (Manchado et al. 1996).
2. n.d.- data is not available, level 2 data not received from ISSDC
3. Galex FUV size is bigger -7'