Triboluminescence of a new family of Cu1-NHC complexes in crystalline solid and in amorphous polymer films

Ayumu Karimata1, Pradnya P. Patil1, Robert R. Fayzullin2, Eugene Khaskin1, Sébastien Lapointe1, and Julia R. Khusnutdinova1,*

1 Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, Japan, 904-0495

2 Arbuzov Institute of Organic and Physical Chemistry, FCR Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation

Email: juliak@oist.jp

Abstract

Triboluminescent compounds that generate emission of light in response to mechanical stimulus are promising targets in the development of “smart materials” and damage sensors. Among triboluminescent metal complexes, rare-earth europium and terbium complexes are most widely used, while there is no systematic data on more readily available and inexpensive Cu complexes. We report a new family of photoluminescent Cu-NHC complexes that show bright triboluminescence (TL) in the crystal state visible in ambient indoor light under air. Moreover, when these complexes are blended into amorphous polymer films even at small concentrations, TL is easily observed. Observation of TL in polymer films overcomes the limitation of using crystals and opens up possibilities for the development of mecanoresponsive coatings and materials based on inexpensive metals such as Cu. Our results may also have implications for the understanding of the TL effect’s origin in polymer films.
Introduction

Triboluminescence (TL), which is also called mechanoluminescence or fractoluminescence when emission occurs by fracturing a crystal, has been known to generate light emission from organic or inorganic materials caused upon application of a mechanical stimulus such as crushing, rubbing, or grinding. This phenomenon was first recorded in 1605 by Francis Bacon who reported light emission from scraping hard sugar.\(^{1-3}\) A modern triboluminescent observation is the light emission that occurs upon the peeling of an adhesive tape. Currently, TL materials are considered as promising targets for the development of damage sensors.\(^{4-7}\) Among known TL coordination compounds, complexes of rare earth elements, Eu\(^{III}\) and Tb\(^{III}\), are the most widely known.\(^{8-10}\) A limited number of triboluminescent transition metal (TM) complexes have also been reported, including Ru\(^{II}\), Pt\(^{II}\), Mn\(^{II}\), and Cu\(^{I}\).\(^{11-21}\) Considering that Cu is one of the most abundant and inexpensive metals, TL materials based on Cu present a practical alternative to currently utilized Eu- and Tb-based materials. Until now, only a few scattered examples of triboluminescent crystalline Cu complexes have been published, featuring very diverse ligand frameworks.\(^{16-22}\) In all but one of these reports however, no systematic experimental data were collected.\(^{23}\) All of these reports are also examples of fractoluminescence, where a crystal is required to observe the TL effect.

We previously synthesized a series of photoluminescent (PL) and air-stable Cu-NHC complexes containing N4 pyridinophane ligands, which can be cross-linked into polybutylacrylate films.\(^{24}\) The resulting Cu-containing polymers enable sensitive detection and visualization of mechanical stress via reversible changes in PL intensity when the elastic film is stretched under UV light irradiation (Figure 1).

In this work, we report a new family of air-stable Cu\(^{I}\) complexes showing TL properties not only in the crystalline state but also when physically blended into rigid, amorphous polymer films at low concentrations, when pressure is applied to the polymer. There is currently no precedent for a large family of air-stable TL copper complexes, where variation of the ligand or a counter anion would preserve their TL properties despite changes in the crystalline structure or the presence or absence of coordinating anions. For some of the complexes, bright emission can be seen even in ambient light upon grinding the crystals under air. These robust properties prompted us to transfer the TL property from the crystalline to the amorphous state, which would significantly expand the range of their possible applications. Indeed, we also observed visible light TL in an amorphous polymer film when the Cu complex was incorporated as a non-crystalline additive (Figure 1). The ability to utilize amorphous polymer films
for the observation of TL properties is to the best of our knowledge, the first time TL has been observed in a non-crystalline bulk material. It shows that limitations associated with the use of the crystalline phase can be overcome and offers a convenient method for visualizing the application of mechanical force on polymers.

![Previous work](image)

- Covalent Cu cross-link
- Elastic polymers
- Response to stretching
- Requires UV irradiation to observe photoluminescence (PL) intensity change

This work

- Simple blending of Cu complexes into amorphous films: No crystals required
- Rigid (thermoplastic) polymers
- Does not require UV irradiation
- Mechanical stimulus directly generates emission: triboluminescence (TL) at different wavelength

Fig. 1 (N4)Cu(NHC)-based mechanophores in photoluminescent and triboluminescent mecha-responsive polymers.

Results and discussion

Synthesis, characterization and photophysical properties of (R^N4)Cu(NHC)^+ complexes.

During our previous study, grinding a sample when trying to scrape solid material from a vial, we serendipitously found that several pyridinophane N4 Cu N-heterocyclic carbene (NHC) complexes exhibit bright TL visible under ambient light and while being exposed to air. To further investigate the TL properties of these complexes, we
synthesized a series of \([(^4\text{N}4)\text{Cu(NHC)}]X \) complexes where the counter anion \(X \), \(^{14}\text{N}4\), and NHC ligands (1, 2, and 3a-d) (Scheme 1) were varied, by mixing \(^{14}\text{N}4\) pyridinophane ligand (\(R = \text{^tBu} \) or \(\text{Me} \)) and (NHC)CuCl, followed by a counter anion exchange at ambient temperature. The complexes were isolated in 49-93% yields and characterized by single crystal (SC-XRD) and powder (PXRD) X-ray diffraction, elemental analysis, NMR, UV/vis, and IR spectroscopies. SC-XRD measurements confirmed the presence of a distorted tetrahedral geometry around the Cu atoms (Figure 2). NMR spectra of 1, 2, and 3a-d confirmed a tetracoordinate structure in solution at room temperature (RT).

All complexes displayed a high photoluminescence quantum yield (PLQY) in the solid state (0.66-0.83) (Table 1 and Figure 3). The polymethylmethacrylate (PMMA) films containing these Cu complexes also showed good PLQYs (0.51–0.79) and exceptional air stability: showing no decrease in PLQY after 30 days under air (Figure S21).

Scheme 1 Synthesis of complexes 1, 2, and 3a-d.
Table 1 Photophysical properties of complexes 1, 2, and 3a-d in the solid state and in PMMA films (1 wt%) under N$_2$ at 298 K.a

Complex	Crystal state	PMMA film		
	λ_{max} (nm)b	PLQY	λ_{max} (nm)b	PLQY
1	527	0.66	547	0.51
2	518	0.83	528	0.74
3a	528	0.76	522	0.79
3b	532	0.79	521	0.78
3c	522	0.74	527	0.58
3d	525	0.77	521	0.77

aExcitation at 380 nm. bEmission maximum.
Fig. 3 Normalized PL emission spectra of complexes 1, 2, and 3a-d (a) in the crystal state and (b) in PMMA films. Excitation at 380 nm.

Triboluminescent properties of crystalline samples

Crystals of 1, 2, and 3a-d were found to generate intense emission upon grinding the crystalline sample with a stainless steel spatula or glass rod, or when the single crystals are compressed between glass plates, all under air (Figure 4, a-c). To obtain TL spectra, crystals of 1, 2, and 3a-d were placed in glass vials and ground by a glass tube containing a fiber optic probe (Figure 5). The emission maxima of TL spectra shift to longer wavelength compared to PL spectra, consistent with literature precedents. Representative images showing emission generated upon grinding crystals of 1, 2, and 3a are shown in Figure 4, and a movie showing TL during grinding a crystalline sample or compression of a single crystal under air are given in the SI. A high-speed camera recording of single crystal TL of 1 when it’s compressed between glass plates, shows that emission is generated along the cracks in the crystal (see SI).

An analysis of the relationship between space group and TL for the crystalline samples shows that both centrosymmetric and non-centrosymmetric crystals show TL properties (Table 2). The absence of polymorphs was confirmed by analyzing bulk samples by PXRD (Figure S22-S27), and purity was confirmed by elemental analysis and PXRD pattern comparison. The samples that were recrystallized multiple times also showed the same spectra and TL properties as the samples obtained after one recrystallization.
Fig. 4 Representative images of TL in crystal of 1 (a), 2 (b) and 3a (c) under air and PMMA film containing 10 wt% of 1 (d), 2 (e), and 3a (f) under Ar.

Fig. 5 Normalized TL emission spectra of complexes 1, 2, and 3a-d (a) in the crystal state and (b) in PMMA films (1 wt%) under N₂.

Table 2 TL properties and space group for crystalline and polymer-blended samples of 1, 2 and 3a-d and relationship with TL properties.

Complex	Counter anion	TL (crystal) λ_max (nm)	TL in PMMA films, λ_max (nm)	Space group in crystal
1	PF₆	536	552	P2₁/n (centrosym.)
2	PF₆	527	543	P2₁2₁2₁ (non-centrosym.)
3a	PF₆	544	526	Pca2₁ (non-centrosym.)
3b	OTf	539	530	Pca₂₁ (non-centrosym.)
3c	TFA	536	536	Pca₂₁ (non-centrosym.)
3d	BPh₄	540	527	Pbca (centrosym.)

a 1 wt% Cu complex loading.
Previous studies showed that among some classes of TL materials, non-centrosymmetric (piezoelectric) crystals are more prone to show TL, attributed to the piezoelectric effect. Upon applying mechanical force that causes material fracture, two oppositely charged surfaces are produced generating an electric field; subsequent charge recombination leads to the generation of an excited state and eventual emission.3, 30-32 However, there are currently many examples of centrosymmetric crystals showing TL properties, attributed to a number of possible reasons: including the generation of oppositely charged planes in ionic crystalline compounds upon fracture, or the presence of defects or disorders in the crystal structure leading to local non-centrosymmetry.33-41 The complexes 1, 2, and 3a-d are all ionic compounds, and disordered fragments are clearly present in some of the crystal structures (1 and 3b-d), so neither of these effects can be ruled out as the source of the TL effect. However, it is clear that the centrosymmetry, or lack of it, in the parent space group of a crystal is not tied to TL emission.

Triboluminescent properties in amorphous polymer films

Due to our interest in exploring mechanoresponsive materials such as polymer films modified with co-polymerized photoluminescent metal complexes,24 we decided to see if TL properties can also be observed when these triboluminescent Cu(NHC) complexes were blended into amorphous polymer films. Using polymer films may provide a convenient way to make bulk mechanoresponsive material or coating via simple synthetic methods, avoiding the limited repeatability and fabrication method limitations associated with the use of a crystalline solid. Would a low amount of metal complex in a bulk amorphous material be sufficient to create the conditions necessary for TL to be observed? The bigger question that can be addressed by such study: is the presence of a crystal necessary for observing visible light TL, or can an amorphous bulk material also show similar functional properties?

We prepared metal loaded films by dissolving a powder of polymethylmethacrylate (PMMA), polystyrene or polyvinyl chloride and 1-10 wt% of a Cu complex in dichloromethane, then casting on a glass surface followed by slow evaporation and drying under vacuum to give transparent films. PXRD of the dried PMMA films showed that at low Cu loading, 1-10 wt%, the films were amorphous and did not show crystallinity, also confirmed by fluorescence microscopy imaging. Only at the high Cu loading of 80 wt%, some crystallinity could be observed by PXRD and fluorescence microscopy (Figure S30 and S53).
We found that visible TL was observed in polymer films with as little as 1 wt% Cu loading, upon rubbing the film surface with a glass rod or metal spatula, if the film was placed under a nitrogen gas atmosphere. The TL from polymer films was clearly visible by eye in the dark or in a dimmed room under inert atmosphere (Figure 4, d-f), in contrast with the control PMMA film without a Cu complex. For measurements of polymer TL spectra, only the films with a 1 wt% Cu loading were used. Their TL spectra (Table 2 and Figure 5) displayed a red shift when compared to the PL spectra in PMMA films (Table 1). A representative movie of a triboluminescent PMMA film with 10 wt% of 3a where the TL effect is much more pronounced, generating emission by rubbing with a glass rod is shown in the SI.

Thus, these findings represent the first example of Cu complexes that display TL properties when blended into amorphous polymer films. There are several reports on TL polymers films containing Eu complexes. The detailed study of such Eu-containing polymers showed that TL was observed when a microcrystalline Eu complex was impregnated on the polymer surface, and TL was not observed when the film was prepared by blending, where there was an absence of a crystal phase. In other cases, the details of whether the crystalline phase was present were not reported. A crystal requirement by definition imposes a limit on its response properties and repeatability. For the first time, we definitely show that the presence of a crystalline phase is unnecessary for TL to be observed with a transition metal chromophore.

To further investigate the origin of the excited state produced by mechanical stimuli in polymer films, we recorded TL spectra under an atmosphere of various gases, including N₂, Ar, He, CO₂, and SF₆ (Figure 6). TL in PMMA films containing complexes 1, 2, and 3a was not observed under air but was observed in N₂, Ar, and He. In addition to the broad emission peak of the Cu complexes observed in TL spectra of 1 wt% Cu PMMA samples, the sharp emission peaks characteristic of an electric discharge through the corresponding inert gas (Ar, He, or N₂) were clearly observed.

Unexpectedly, under CO₂ gas and under vacuum (0.5 Torr), the emission spectra showed only the TL peak of the Cu complexes, without the gas discharge spectrum components being present (with exception of complex 2, which showed small N₂ discharge peaks at 0.5 Torr). TL was not observed under an SF₆ atmosphere.

We then examined a control PMMA film without any metal complex. Notably, weak gas emission spectra were also observed upon rubbing pure PMMA films without Cu complex under N₂, Ar, and He; however, in the absence of a Cu complex, the pure polymer emission was weak, and did not allow for the observation of TL with the naked eye even under He, Ar and N₂.
Fig. 6 TL spectra of PMMA films containing 1 wt% of complexes (a) 1; (b) 2; (c) 3a; and (d) PMMA (without Cu complex) recorded under 1 atm of N$_2$, Ar, He, CO$_2$, SF$_6$, and vacuum (0.5 Torr).

Previous detailed studies by Sweeting48 and earlier by Longchambon$^{48-50}$ and other groups identified several possible mechanisms for TL that involve participation of the surrounding gas.3 First, an electric field generated by mechanical stimulus may lead to dielectric breakdown of the surrounding gas, leading to the excitation of the gas molecules by electron bombardment to create emission in the discharged gas. If the excited gas generates emission lines in the UV/vis region, absorption of the gas emission may cause photoluminescence of the PL material, leading to the observation of an emission spectrum in the PL compound. Alternatively, the electrical discharge may also directly excite a photoluminescent compound by electron bombardment.48

In crystalline materials mechanical stimulation typically involves crystal fracture, leading to the generation of oppositely charged planes that create the necessary electric field. By contrast, in polymers, triboelectrification has been reported to create a
sufficient electric field that is able to stimulate gas discharge.51 The latter is consistent with the observation of the discharged gas spectrum in PMMA without a Cu complex. It also explains how TL can be observed in an amorphous organometallic complex when it is embedded inside a material capable of triboelectrification. The absence of TL in SF\textsubscript{6} is consistent with its high dielectric strength, having many vibrational modes, high ionization potential, high mass, and high electron affinity.48 It is important to note that unlike the parent control PMMA film, we were able to observe TL in 1 wt% Cu PMMA films with the naked eye, which is unsurprising due to the complexes’ broad emission peak in the visible region. However, the ability of PMMA to have sufficient triboelectrification to excite the Cu chromophore at these low loadings was not something that we could initially predict. As the TL effect does not depend on the crystallinity of the Cu complex, the emission effect is not decreased drastically over time (as the amount of possible crystal that is left to break decreases).

By contrast to polymer samples, crystalline samples of the pure Cu complex did not show discernible gas discharge lines. Emission of 2 and 1 was observed even under SF\textsubscript{6}, but at lower intensity when compared to N\textsubscript{2}. Brighter emission was seen under He, but also without the characteristic gas discharge peaks (see SI movie and Figure S41). Therefore, although some gas-dependent behavior is observed, alternative mechanisms that do not involve participation of discharged gas cannot be excluded.

A natural question to ask is whether the co-polymerized copper complexes earlier reported by us, that were shown to be capable of changing their PL properties in response to stretching of the polymer film, would be considered obsolete when compared to the new TL technique of blending Cu complexes into polymer films (Figure 1)? The Cu complexes in both applications use the same ligand framework, but the co-polymerized complexes require specialized ligands that can polymerize and require more synthetic effort. The measurements of photoluminescence (PL) intensity change need to be done under UV light irradiation. The advantages of the triboluminescence (TL) process include visible light emission without the need for external irradiation and a more straightforward sample preparation. We would submit that the two techniques are complementary. The PL co-polymerized complexes have recently been shown to display PL under air, and they’ve been shown to alter their response proportionally to gradually applied mechanical stress. A stretched film will have a very different PL intensity compared to its non-stretched counterpart. This response can only be observed in elastomers and is not applicable to the currently used PMMA, polystyrene or PVC samples that are rigid at RT. TL is a direct generation of emission in response to a mechanical action, and we indeed did not observe it on
stretching the polymer in the previous work. TL also displays a red-shift with regard to the PL emission wavelength; thus potentially two types of mechanical stress can be differentiated by the same co-polymerized complex if the difference in λ_{max} can be optimized, and the correct stretchable and malleable polymer matrix can be found. Two different metal probes in the same polymer could also accomplish this task; each one would ideally be sensitive to only one type of stimulus and/or have a sufficiently different λ_{max}. We are currently exploring this research direction.

Conclusions

In summary, we report a new family of six triboluminescent (TL) Cu(NHC) complexes. These findings also significantly expand the library of known TL copper complexes, an earth-abundant and inexpensive metal. We showed that triboluminescence can be observed both in the crystal state and when the complex is amorphous and dispersed in polymer films. In the latter case, the ability of the polymer to create an electric field upon mechanical stimulus that excited the Cu complex appears to be mechanism that allows for the observation of a visual response to applying fast mechanical force. This finding may provide an explanation for the TL effect in a number of metal complexes, and it allows for the active exploration of repeatable TL effect in polymer films.

The ability to utilize solution cast polymer films diversifies the range of practical applications of such TL materials for visualization of applied mechanical force and damage sensing in polymers. Currently, we are investigating the scope of luminophores and polymers that can be used to prepare triboluminescent polymer films. We seek to develop a general approach to generate visible triboluminescence in polymers under ambient conditions, as well as to create materials that can show either a PL or TL selective response to different types of mechanical stress.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K05247. We thank Dr. Olga Gladkovskaya for synthesis of ligand precursor. We also thank Dr. Takuya Miyazawa and Dr. Hyung Been Kang, (MEMS, OIST), Dr. Michael Roy (IAS, OIST), Engineering support section and Imaging section at OIST for technical support, and Dr. Julio Manuel Barros Jr (OIST) for supporting the observation of TL using a high speed camera.
Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available: detailed experimental procedures, X-ray structure determination details, and the movies showing triboluminescence in crystalline samples and polymer films.

Correspondence should be addressed to J.R.K. (email: juliak@oist.jp)

References

1. Zink, J. I. Triboluminescence. Acc. Chem. Res. 1978, 11, 289-95.
2. Jha, P.; Chandra, B. P. Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 2014, 29, 977-993.
3. Xie, Y.; Li, Z. Triboluminescence: Recalling Interest and New Aspects. Chem 2018, 4, 943-971.
4. Sage, I.; Bourhill, G. Triboluminescent materials for structural damage monitoring. J. Mater. Chem. 2001, 11, 231-245.
5. Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z. L. Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Adv. Mater. 2015, 27, 2324-2331.
6. Olawale, D. O.; Kliwer, K.; Okoye, A.; Dickens, T. J.; Uddin, M. J.; Okoli, O. I. Real time failure detection in unreinforced cementitious composites with triboluminescent sensor. J. Lumin. 2014, 147, 235-241.
7. Mukherjee, S.; Thilagar, P. Renaissance of Organic Triboluminescent Materials. Angew. Chem. Int. Ed. 2019, 58, 7922-7932.
8. Bünzli, J.-C. G.; Wong, K.-L. Lanthanide mechanoluminescence. J. Rare Earth 2018, 36, 1-41.
9. Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Triboluminescence of Lanthanide Coordination Polymers with Face-to-Face Arranged Substituents. Angew. Chem. Int. Ed. 2017, 56, 7171-7175.
10. Hurt, C. R.; McAvoy, N.; Bjorklund, S.; Filipescu, N. High-intensity triboluminescence in europium tetrakis(dibenzoylmethide)triethylammonium. Nature 1966, 212, 179-80.
11. Sharipov, G. L.; Tukhbatullin, A. A. Triboluminescence of tris(2,2′-bipyridyl)ruthenium(II) dichloride hexahydrate. *J. Lumin.* **2019**, *215*, 116691.
12. Hsu, C.-W.; Ly, K. T.; Lee, W.-K.; Wu, C.-C.; Wu, L.-C.; Lee, J.-J.; Lin, T.-C.; Liu, S.-H.; Chou, P.-T.; Lee, G.-H.; Chi, Y. Triboluminescence and Metal Phosphor for Organic Light-Emitting Diodes: Functional Pt(II) Complexes with Both 2-Pyridylimidazol-2-ylidene and Bipyrazolate Chelates. *ACS Appl. Mater. Interfaces* **2016**, *8*, 33888-33898.
13. Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. Absorption Spectra and Electronic Structures of Some Tetrahedral Manganese(II) Complexes. *J. Am. Chem. Soc.* **1962**, *84*, 167-172.
14. Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Triboluminescence and Vapor-Induced Phase Transitions in the Solids of Methyltriphenylphosphonium Tetralomanganate(II) Complexes. *Inorg. Chem.* **2014**, *53*, 6054-6059.
15. Chen, J.; Zhang, Q.; Zheng, F.-K.; Liu, Z.-F.; Wang, S.-H.; Wu, A. Q.; Guo, G.-C. Intense photo- and tribo-luminescence of three tetrahedral manganese(II) dihalides with chelating bidentate phosphine oxide ligand. *Dalton Trans.* **2015**, *44*, 3289-3294.
16. Knotter, D. M.; Janssen, M. D.; Grove, D. M.; Smeets, W. J. J.; Horn, E.; Spek, A. L.; Van Koten, G. Synthesis and molecular structure of copper(I) and organozinc(II) arenethiolates with chelating amino and ether groups: x-ray structure of [CuSC₆H₄(CH₂N(Me)CH₂CH₂OMe)-2]₄ and [Zn(Me){SC₆H₄((R)-CH(Me)NMe₂)-2}]₂. *Inorg. Chem.* **1991**, *30*, 4361-6.
17. Knotter, D. M.; Van Maanen, H. L.; Grove, D. M.; Spek, A. L.; Van Koten, G. Synthesis and properties of trimeric ortho-chelated (arenethiolato)copper(I) complexes. *Inorg. Chem.* **1991**, *30*, 3309-3317.
18. Marchetti, F.; Di Nicola, C.; Pettinari, R.; Timokhin, I.; Pettinari, C. Synthesis of a Photoluminescent and Triboluminescent Copper(I) Compound: An Experiment for an Advanced Inorganic Chemistry Laboratory. *J. Chem. Educ.* **2012**, *89*, 652-655.
19. Knotter, D. M.; Blasse, G.; Van Vliet, J. P. M.; Van Koten, G. Luminescence of copper(I) arenethiolates and its relation to copper(I) luminescence in other complexes. *Inorg. Chem.* **1992**, *31*, 2196-201.
20. Knotter, D. M.; Spek, A. L.; Grove, D. M.; Van Koten, G. Novel trinuclear and hexanuclear heteroorganocopper compounds with phosphine ligands, bridging alkynyls, and intramolecularly coordinating bridging arenethiolates. X-ray structures of
$[\text{Cu}_3\text{Sc}_6\text{H}_4(\text{CH(R)NMe}_2)\text{-2}]_2(\text{C}≡\text{C-tert-Bu})_2$ (R = H, Me). *Organometallics* **1992**, 11, 4083-90.

21. Pettinari, C.; di Nicola, C.; Marchetti, F.; Pettinari, R.; Skelton, B. W.; Somers, N.; White, A. H.; Robinson, W. T.; Chierotti, M. R.; Gobetto, R.; Nervi, C. Synthesis, characterization, spectroscopic and photophysical properties of new $[\text{Cu(NCS)}(\text{L-N})_2$ or $(\text{L'-N N})(\text{PPh}_3)]$ complexes (L-N, L'-N N = aromatic nitrogen base). *Eur. J. Inorg. Chem.* **2008**, 1974-1984.

22. Romanov, A. S.; Becker, C. R.; James, C. E.; Di, D.; Credgington, D.; Linnolahti, M.; Bochmann, M. Copper and Gold Cyclic (Alkyl)(amino)carbene Complexes with Sub-Microsecond Photoemissions: Structure and Substituent Effects on Redox and Luminescent Properties. *Chem. Eur. J.* **2017**, 23, 4625-4637.

23. İncel, A.; Varlikli, C.; McMillen, C. D.; Demir, M. M. Triboluminescent Electrospun Mats with Blue-Green Emission under Mechanical Force. *J. Phys. Chem. C* **2017**, 121, 11709-11716.

24. Karimata, A.; Patil, P. H.; Khaskin, E.; Lapointe, S.; Fayzullin, R. R.; Stampoulis, P.; Khusnutdinova, J. R. Highly sensitive mechano-controlled luminescence in polymer films modified by dynamic CuI-based cross-linkers. *Chem. Commun.* **2020**, 56, 50-53.

25. Deposition numbers 2009593-2009597 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

26. Takada, N.; Sugiyama, J.-i.; Katoh, R.; Minami, N.; Hieda, S. Mechanoluminescent properties of europium complexes. *Synth. Met.* **1997**, 91, 351-354.

27. Duignan, J. P.; Oswald, I. D. H.; Sage, I. C.; Sweeting, L. M.; Tanaka, K.; Ishihara, T.; Hirao, K.; Bourhill, G. Do triboluminescence spectra really show a spectral shift relative to photoluminescence spectra? *J. Lumin.* **2002**, 97, 115-126.

28. Nishida, J.-i.; Ohura, H.; Kita, Y.; Hasegawa, H.; Kawase, T.; Takada, N.; Sato, H.; Sei, Y.; Yamashita, Y. Phthalimide Compounds Containing a Trifluoromethylphenyl Group and Electron-Donating Aryl Groups: Color-Tuning and Enhancement of Triboluminescence. *J. Org. Chem.* **2016**, 81, 433-441.

29. Neena, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Diarylboryl-phenothiazine based multifunctional molecular siblings. *Chem. Commun.* **2017**, 53, 3641-3644.

30. Hardy, G. E.; Kaska, W. C.; Chandra, B. P.; Zink, J. I. Triboluminescence-structure relationships in polymorphs of
hexaphenylcarbodiphosphorane and anthranilic acid, molecular crystals, and salts. *J. Am. Chem. Soc.* **1981**, *103*, 1074-9.

31. Chandra, B. P. Mechanoluminescence and piezoelectric behaviour of molecular crystals. *Phys. Status Solidi A* **1981**, *64*, 395-405.

32. Chandra, B. P.; Zink, J. I. Triboluminescence of inorganic sulfates. *Inorg. Chem.* **1980**, *19*, 3098-102.

33. Sweeting, L. M.; Rheingold, A. L. Crystal disorder and triboluminescence: triethylammonium tetrakis(dibenzoylmethanato)europate. *J. Am. Chem. Soc.* **1987**, *109*, 2652-8.

34. Rheingold, A. L.; King, W. Crystal structures of three brilliantly triboluminescent centrosymmetric lanthanide complexes: piperidinium tetrakis(benzoylacetonato)europate, hexakis(antipyrine)terbium triiodide, and hexaaquadichloroterbium chloride. *Inorg. Chem.* **1989**, *28*, 1715-19.

35. Chen, X.-F.; Zhu, X.-H.; Xu, Y.-H.; Shanmuga Sundara Raj, S.; Ozturk, S.; Fun, H.-K.; Ma, J.; You, X.-Z. Triboluminescence and crystal structures of non-ionic europium complexes. *J. Mater. Chem.* **1999**, *9*, 2919-2922.

36. Chen, X.-F.; Duan, C.-Y.; Zhu, X.-H.; You, X.-Z.; Shanmuga Sundara Raj, S.; Fun, H.-K.; Wu, J. Triboluminescence and crystal structures of europium(III) complexes. *Mater. Chem. Phys.* **2001**, *72*, 11-15.

37. Wong, H.-Y.; Lo, W.-S.; Chan, W. T. K.; Law, G.-L. Mechanistic Investigation of Inducing Triboluminescence in Lanthanide(III) β-Diketonate Complexes. *Inorg. Chem.* **2017**, *56*, 5135-5140.

38. Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Mechanoluminescence from pure hydrocarbon AIEgen. *Chem. Commun.* **2017**, *53*, 11330-11333.

39. Bukvetskii, B. V.; Shishov, A. S.; Mirochnik, A. G. Triboluminescence and crystal structure of the centrosymmetric complex [Tb(NO\textsubscript{3})\textsubscript{2}(Acac)(Phen)\textsubscript{2}]-H\textsubscript{2}O. *Luminescence* **2016**, *31*, 1329-1334.

40. Bukvetskii, B. V.; Mirochnik, A. G.; Shishov, A. S. Triboluminescence and crystal structure of centrosymmetric complex Tb(AcAc)\textsubscript{3}Phen. *J. Lumin.* **2018**, *195*, 44-48.

41. Bukvetskii, B. V.; Mirochnik, A. G.; Zhikhareva, P. A.; Karasev, V. E. Crystal structure and triboluminescence of centrosymmetric complex [Eu(NO\textsubscript{3})\textsubscript{3}(HMPA)\textsubscript{3}]. *J. Struct. Chem.* **2010**, *51*, 1164-1169.

42. The previous report on the Cu-impregnated polymer contains microcrystalline phase: see Ref 23.
43. İncel, A.; Emirdag-Eanes, M.; McMillen, C. D.; Demir, M. M. Integration of Triboluminescent EuD₄TEA Crystals to Transparent Polymers: Impact Sensor Application. *ACS Appl. Mater. Interfaces* **2017**, *9*, 6488-6496.
44. Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D.; Penn, B. G. Incorporating strongly triboluminescent europium dibenzoylmethide triethylammonium into simple polymers. *Polym. J. (Tokyo, Jpn.)* **2014**, *46*, 111-116.
45. George, T. M.; Sajan, M. J.; Gopakumar, N.; Reddy, M. L. P. Bright red luminescence and triboluminescence from PMMA-doped polymer film materials supported by Eu³⁺-triphenylphosphine based β-diketonate and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide. *J. Photochem. Photobiol. B* **2016**, *317*, 88-99.
46. Nakayama, K.; Nevshupa, R. A. Characteristics and Pattern of Plasma Generated at Sliding Contact. *J. Tribol.* **2003**, *125*, 780-787.
47. Olawale, D. O.; Okoli, O. O. I.; Fontenot, R. S.; Hollerman, W. A. *Triboluminescence: Theory, Synthesis, and Application*. Springer International Publishing: 2016.
48. Sweeting, L. M. Triboluminescence with and without Air. *Chem. Mater.* **2001**, *13*, 854-870.
49. Longchambon, H. Spectral study of the triboluminescence of sucrose. *Compt. rend.* **1922**, *174*, 1633-4.
50. Longchambon, H. Spectral study of the triboluminescence of substances. *Compt. rend.* **1923**, *176*, 691-3.
51. Puhan, D.; Nevshupa, R.; Wong, J. S. S.; Reddyhoff, T. Transient aspects of plasma luminescence induced by triboelectrification of polymers. *Tribol. Int.* **2019**, *130*, 366-377.