Circulating level of Angiopoietin-2 is associated with acute kidney injury in coronavirus disease 2019 (COVID-19)

Brandon Michael Henry1 · Maria Helena Santos de Oliveira2 · Isaac Cheruiyot3 · Justin L. Benoit4 · David S. Cooper1,5 · Giuseppe Lippi6 · Timothy D. Le Cras5,7 · Stefanie W. Benoit5,8

Received: 9 January 2021 / Accepted: 8 March 2021 / Published online: 23 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

To the editor,

Emerging evidence suggests that endothelial dysfunction plays a central role in the pathophysiology of coronavirus disease 2019 (COVID-19). Recent post-mortem studies have documented extensive endothelial damage and inflammatory infiltrates in pulmonary and extra-pulmonary capillary beds of COVID-19 patients [1, 2]. This results in loss of endothelial integrity, activation of pro-coagulant pathways, disruption of the alveolar-capillary barrier, and vascular hyperpermeability [2]. Endothelial damage is a common denominator of thrombosis (micro- and macrovascular), acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and multiorgan failure (MOF), which are major drivers of morbidity and mortality in COVID-19 patients [3]. AKI is a common feature of COVID-19, impacting nearly half of all hospitalized patients, and is associated with high mortality, especially among those requiring renal replacement therapy [4–6]. We have recently shown that AKI may be driven in COVID-19 by a secondary thrombotic microangiopathy (TMA) phenomenon, as evidenced by low ADAMTS13 activity to von Willebrand factor (VWF:Ag) ratio [7]. However, the mechanism by which AKI occurs in COVID-19 has yet to be fully elucidated.

With the high frequency of AKI and thromboses in patients with COVID-19, biomarkers of endothelial damage/activation-related biomarkers have become of interest. Angiopoietin-1 (Ang-1) is an angiogenic growth factor that promotes vessel maturation and survival by activation of the Tie2 receptor (Tie2) on endothelial cells [8]. Ang-1 is expressed by pericytes and vascular smooth muscle cells and can stabilize endothelial functions by reducing inflammation and apoptosis of endothelial cells [9]. On the contrary, Angiopoietin-2 (Ang-2) enhances endothelial inflammation and hyperpermeability as it can act as an antagonist to Ang-1 and Tie2 signaling [9, 10]. We hypothesized that elevated Ang-2 would be associated with an increased risk for developing severe COVID-19-related AKI during the course of infection.

In this prospective observational study, adults (≥ 18 years old) presenting to the University of Cincinnati Medical Center Emergency Department (ED) with respiratory symptoms at triage suggestive of COVID-19 and with positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19 via nasopharyngeal swab were enrolled. This study was approved by the University of Cincinnati institutional review board (IRB) and performed under a waiver of informed consent. Blood samples were collected via routine draws for clinical indications in the ED. Circulating levels of Ang-1 and Ang-2 were determined in EDTA plasma using an enzyme-linked immunosorbent assay following the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA) using a DS2 ELISA processing system (Dynex Technologies, Inc, Chantilly, Virginia, USA). Serum creatinine was measured using a kinetic alkaline picrate (modified Jaffe) method using either a Beckman Coulter
AU480 Chemistry Analyzer (Brea, California, USA) or a Beckman Coulter AU5822 Chemistry Analyzer (Brea, California, USA). Patients were monitored through hospitalization until discharge/death if admitted from the ED or for 30 days if discharged from the ED. The primary outcome of interest was the development of severe AKI, defined as Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2 + 3 according to serum creatinine (SCr) criteria [11]. The secondary outcome was the need for renal replacement therapy (RRT). Ang-2 levels were correlated with white blood cell count (WBC), C-reactive protein (CRP), interleukin (IL) 6, 8, 10, tumor necrosis factor-alpha (TNF-α), plasminogen, fibrinogen, D-Dimer, ADAMTS13 activity, VWF:ag, myoglobin, plasma neutrophil gelatinase-associated lipocalin (NGAL), and serum cystatin C.

Analysis of data was carried out using R software (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria). Categorical data were reported as frequencies (%), while continuous data were reported as the median and interquartile range (IQR). Comparison of baseline Ang-1 and Ang-2 levels, as well as other laboratory values between COVID-19 patients with and without severe AKI, was carried out using the Mann–Whitney U-test. Proportions were compared between groups using Fisher’s exact test. Logistic regression analysis was performed to estimate the effect of changes in Ang-1 and Ang-2 levels when adjusted for the presence of comorbidities, and variable selection was performed using the stepwise algorithm.

A total of 51 COVID-19 patients were included. The median age was 50.5 (IQR: 39.3–66.0) years, and 57.7% were males. Their comorbidities are shown in Table 1. A total of 12 (23.5%) COVID-19 patients developed severe AKI, 8 (66.6%) needing RRT, and 3 (25.0%) died. No significant differences were observed in Ang-1 levels (2904.1 [IQR: 737.5–5111.] vs. 2670.7 [IQR: 1321.6–4711.] pg/mL; p = 0.916) or Ang-2/Ang-1 ratio (0.45 [IQR: 0.07–1.08] vs. 1.15 [IQR: 0.53–2.47] pg/mL; p = 0.201) in those who developed severe AKI versus those who did not. Nonetheless, Ang-2 levels were found to be significantly higher in those who developed severe AKI (4715.7 [IQR: 2768.8–17,919.1] vs. 2462.4 [IQR: 1699.0–3641.8] pg/mL; p = 0.047) (Fig. 1a). Moreover, Ang-2 level was the highest in those who required RRT (13,372.7 [IQR: 3604.4–20000] vs. 2556.1 [IQR: 1699–3235] pg/mL; p = 0.037) (Fig. 1b).

Table 1 Baseline demographics of the Cincinnati emergency department COVID-19 cohort

Variable	All patients (n = 51)	KDIGO AKI stage	p-value		
		0 + 1	2 + 3		
Age (years): median (IQR)	50.5 (41–66)	47 (37.5–64.0)	66 (56.5–70.2)	0.005	
Sex (male): n (%)	30	23 (76.7%)	7 (23.3%)	1.000	
BMI: median (IQR)	28.5 (24.8–33.5)	29.5 (25.8–34.5)	24.5 (21.6–27.5)	0.018	
Race: n (%)	Black	21	12 (57.1%)	9 (42.9%)	0.036
	Hispanic	18	17 (94.4%)	1 (5.6%)	0.036
	White	9	7 (77.8%)	2 (22.2%)	0.036
	Other	3	3 (100%)	0 (0%)	0.036
Comorbidities: n (%)	Coronary artery disease	8	3 (37.5%)	5 (62.5%)	0.012
	Heart failure	9	3 (33.3%)	6 (66.7%)	0.003
	Hypertension	26	15 (57.7%)	11 (42.3%)	0.002
	Hyperlipidemia	15	11 (73.3%)	4 (26.7%)	0.730
	Diabetes	21	15 (71.4%)	6 (28.6%)	0.738
	Chronic obstructive pulmonary disease	8	4 (50%)	4 (50%)	0.076
	Asthma	8	6 (75%)	2 (25%)	1.000
	Chronic kidney disease	6	1 (16.7%)	5 (83.3%)	0.002
	Chronic liver disease	7	3 (42.9%)	4 (57.1%)	0.044
	Cerebrovascular disease	1	0 (0%)	1 (100%)	0.375
	Cancer	4	1 (25%)	3 (75%)	0.036
	Acquired immunodeficiency (HIV, transplant)	3	2 (66.7%)	1 (33.3%)	1.000
	Autoimmune disease	2	2 (100%)	0 (0%)	1.000

*BMI Body Mass Index, KDIGO Kidney Disease: Improving Global Outcomes, AKI Acute Kidney Injury

p < 0.05

 Springer
Ang-2 was found to be positively correlated with WBC ($r = 0.596; p < 0.001$), IL-6 ($r = 0.280; p = 0.049$), TNF-α ($r = 0.316; p = 0.024$), fibrinogen ($r = 0.405; p = 0.009$), D-dimer ($r = 0.552; p = 0.008$), cystatin C ($r = 0.345, p = 0.019$), NGAL ($r = 0.431, p = 0.002$), and negatively correlated with plasminogen ($r = −0.370; p = 0.007$) and ADAMTS13 ($r = −0.302; p = 0.031$). No correlation was observed for IL-10 ($p = 0.794$), CRP ($p = 0.11$), or VWF:ag ($p = 0.427$).

In multivariate logistic regression, both pre-existing chronic kidney disease and hypertension were significantly associated with increased odds of severe AKI, with adjusted odds ratios (ORs) of 31.8 (95% CI 1.18–854.88) and 22.0 (95% CI 1.15–420.32), respectively. An increase in 1000 pg/mL of Ang-2 was associated with a 39% increase in odds of severe AKI (OR $1.39 [95\% CI 1.05–1.86]$). Full results are presented in Supplemental Table 1.

In this prospective study, we observed that Ang-2 levels measured at ED presentation are significantly increased in patients at risk of developing severe AKI. Moreover, we observed that elevated Ang-2 is an independent predictor of severe AKI and RRT. Our findings are in agreement with Smadja et al. [12], who reported significantly higher levels of Ang-2 in intensive care unit-admitted COVID-19 patients. They observed that patients with Ang-2 levels greater than 5000 pg/mL had ninefold higher odds of ICU admission. Our findings are also in agreement with Araujo et al. [13] who observed that elevated Ang-2 levels were significantly associated with increased odds of severe AKI and need for RRT in ICU-admitted non-COVID-19 acute respiratory distress syndrome (ARDS) patients.

Overall, our results are consistent with a picture of endothelial injury and a thrombotic microangiopathy phenomenon in COVID-19-associated AKI, further supported by the negative correlation with ADAMTS13 activity and positive correlations with fibrinogen and D-dimer. These results are consistent with elevations of Ang-2 observed in other forms of TMA [14–16]. Ang-2 was also correlated with several pro-inflammatory biomarkers, consistent with a hyperinflammatory response that can produce endothelial injury. Endothelium activation can lead to the release of Ang-2 from Weibel–Palade (WP) bodies [17]. Interestingly, however, we did not observe significant correlation between Ang-2 and VWF:ag ($p = 0.427$). Philippe et al. [18] reported observing two distinct biomarker profiles, with VWF:ag increased in accordance with disease severity, while Ang-2 was elevated only in the critically ill. Taken together, this suggests that endothelial VWF secretion in COVID-19 may in part occur via pathways different than that of Ang-2. Indeed, while VWF is also secreted via WP bodies in the basal and regulated secretory pathways, the endothelium may also directly secrete VWF via a constitutive secretory pathway using small anterograde carriers [19]. Moreover, COVID-19 is associated with platelet hyperactivity, which occurs via multiple mechanisms, including spike protein binding to platelet angiotensin-converting enzyme 2 (ACE2) receptors, resulting in platelet activation and alpha granule release, which contains VWF in high molecular weight forms [20].

Ang-2 inhibits the protective anti-inflammatory Ang-1/Tie2 signaling cascade [17]. The Tie2 receptor is a central regulator in protecting the vasculature against thrombus formation in the setting of systemic inflammation, such as that seen in sepsis [21]. In a pilot study of critically ill patients with TMA and anti-glomerular basement membrane disease, plasma exchange was shown to be an effective method to remove excess circulating Ang-2, returning to almost normal values with ≤ 4 treatments [17]. As such, the investigation of the pathophysiologic role of Ang-2 in COVID-19 should be prioritized as targeting Ang-2 via plasma exchange or other inhibitory approaches are potential therapies in patients with
severe COVID-19. Future longitudinal studies are needed to fully elucidate the role of Ang-2 in COVID-19 endothelial dysfunction and multiorgan injury and the specificity of Ang-2 for COVID-19 AKI.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10456-021-09782-w.

Funding This study was funded by the University of Cincinnati College of Medicine Special Coronavirus (COVID-19) Research Pilot Grant Program and the Lymphatic Malformation Institute.

Declarations

Conflict of interest The authors do not have any conflicts of interest concerning this publication.

References

1. Bradley BT, Maioli H, Johnston R et al (2020) Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. The Lancet 396:320–332
2. Varga Z, Flammer AJ, Steiger P et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418
3. Pons S, Fedil S, Azoulay E et al (2020) The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care 24:353
4. Gupta S, Coca SG, Chan L, et al. (2020) AKI Treated with Renal Replacement Therapy in Critically Ill Patients with COVID-19. JASN [Internet]. [cited 2020 Nov 11]; Available from: https://jasn.asnjournals.org/content/early/2020/09/02/ASN.2020050615.
5. Chan L, Chaudhary K, Saha A, et al. (2020) AKI in Hospitalized Patients with COVID-19. JASN [Internet]. [cited 2020 Nov 11]; Available from: https://jasn.asnjournals.org/content/early/2020/09/02/ASN.2020050615.
6. Cheruiyot I, Henry B, Lippi G, et al. Acute Kidney Injury is Associated with Worse Prognosis In COVID-19 Patients: A Systematic Review and Meta-analysis. 1. 2020;91:ahead of print-ahead of print.
7. Henry BM, Benoit SW, de Oliveira MHS et al (2020) ADAMTS13 activity to von Willebrand factor antigen ratio predicts acute kidney injury in patients with COVID-19: Evidence of SARS-CoV-2 induced secondary thrombotic microangiopathy. Int J Lab Hematol. https://doi.org/10.1111/ijlh.13415
8. Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248
9. Neuhäuss A-K, Gutbier B, Friedemann T, et al. Angiopoietins: Possible biomarkers in severe pneumonia? European Respiratory Journal [Internet]. 2012 [cited 2020 Nov 5];40. Available from: https://erj.ersjournals.com/content/40/Suppl_56/P830.
10. Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2:a006550
11. KDIGO AKI Working Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney International Suppl 2:1
12. Smadja DM, Guerin CL, Chocron R et al (2020) Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 23(4):611–620
13. Araújo CB, de Oliveira Neves FM, de Freitas DF et al (2019) Angiopoietin-2 as a predictor of acute kidney injury in critically ill patients and association with ARDS. Respirology 24:345–351
14. Lukasz A, Bencej Thamm K, et al. Involvement of Angiopoietin-2 and Tie2 Receptor Phosphorylation in STEC-HUS Mediated by Escherichia coli O104:H4 [Internet]. Mediators of Inflammation. Hindawi; 2015 [cited 2020 Dec 29]. p. e670248. Available from: https://www.hindawi.com/journals/mi/2015/670248/.
15. Ueda N, Chihara D, Kohno A et al (2014) Predictive Value of Circulating Angiopoietin-2 for Endothelial Damage-Related Complications in Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 20:1335–1340
16. Shimizu M, Inoue N, Kuroda M et al (2017) Angiopoietin-1 and -2 as markers for disease severity in hemolytic uremic syndrome induced by enterohemorrhagic Escherichia coli. Clin Exp Nephrol 21:76–82
17. Lovric S, Lukasz A, Hafer C et al (2010) Removal of elevated circulating angiopoietin-2 by plasma exchange—a pilot study in critically ill patients with thrombotic microangiopathy and anti-glomerular basement membrane disease. Thromb Haemost 104:1038–1043
18. Philippe A, Chocron R, Gendron N et al (2021) Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis. https://doi.org/10.1007/s10456-020-09762-6
19. Lopes da Silva M, Cutler DF (2016) von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 128:277–285
20. Zhang S, Liu Y, Wang X et al (2020) SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 13:120
21. Higgins SJ, De Ceunynck K, Kellum JA et al (2018) Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest. 128:1471–1484

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.