A Unique Case of Allogeneic Fat Grafting Between Brothers

Samuel Kim, MD*
Richard L. Edelson, MD†
Brandon Sumpio, BA‡
Stephanie Kwei, MD*
Deepak Narayan, MD*

Summary: We present a case of a 65-year-old man with cutaneous T-cell lymphoma treated with radiation therapy and an allogeneic hematopoietic stem cell transplant from his human leukocyte antigen-matched brother. Engraftment was successful, but the patient went on to develop painful, radiation-induced ulcers. The ulcers were fat-allografted using liposuctioned fat from his brother because of the patient’s unique chimeric state. Postprocedure follow-up revealed epithelialization of the ulcer sites and significant improvement in neuropathic pain. Our unique case study supports the use of fat grafting for its restorative purposes and for its ability to alleviate chronic neuropathic pain. Additionally, it appears that our case provides a basis of a general approach to the treatment of radiation-induced ulcers in chimeric patients with lymphoid malignancies. (Plast Reconstr Surg Glob Open 2016;4:e1032; doi: 10.1097/GOX.0000000000001032; Published online 16 September 2016.)

From the *Section of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, Conn.; †Department of Dermatology, Yale University School of Medicine, New Haven, Conn.; and ‡Yale University School of Medicine, New Haven, Conn. Received for publication June 1, 2016; accepted July 22, 2016.

Copyright © 2016 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The American Society of Plastic Surgeons. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

DOI: 10.1097/GOX.0000000000001032

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The article processing fees will be paid for by the authors.

Supplemental digital content is available for this article. Clickable URL citations appear in the text.
The patient remained disease free, but he developed painful, radiation-induced ulcers of his bilateral thighs, left flank, and left axilla for which he was referred to us in 2014. The ulcers were exquisitely painful, requiring high doses of oral and transdermal opioid medication (Fig. 1A). Furthermore, they exhibited constant breakdown, were unresponsive to conservative management, and deemed unsuitable for free-flap reconstruction. Autologous fat grafting of the ulcers was not an option because of the lack of subcutaneous tissue and the necessity of preserving potential flap sites. The possibility of fat allografting the ulcers using liposuctioned fat from his human leukocyte antigen-matched brother was discussed because of the patient’s unique chimeric state. Repeat chimerism testing continued to remain stable. After the risks and benefits of the procedure along with its innovative nature were discussed, the patient and his brother consented to the procedure. The Yale University Human Investigation Committee gave their approval as an innovative procedure.

In August of 2015, fat was harvested using liposuction from the brother’s abdomen and purified using Puregraft (Puregraft LLC, Solana Beach, Calif.). A 50 to 60 cm³ of the purified fat was injected into each of the patient’s ulcer sites subcutaneously for a total of 210 cm³. The procedure was completed without complications, and the patient was discharged home.

Clinical assessment on follow-up revealed new epithelialization of the patient’s ulcer sites (Figs. 1B and 2). Additionally, the patient expressed a dramatic improvement in pain symptoms and was eventually able to stop all his opioid medications. Flow cytometry and chimerism studies showed continued cancer remission and a stable chimerism profile (Fig. 3) (Supplemental Digital Content 2, http://links.lww.com/PRSGO/A255).

DISCUSSION

Neuropathic pain is caused by damage to the somatosensory nervous system, which can lead to abnormal processing and sensitization of both peripheral and central neurons. Treatment of neuropathic pain consists of a variety of opioids, antidepressants, anticonvulsants, and lidocaine patches. The difficulty in treating neuropathic pain, however, often leads to the chronic use and abuse of multiple agents. Fat grafting has been shown to improve neuropathic pain from various causes such as postmastectomy pain syndrome, extremity end neuritis, and traumatic and burn scars with sustained responses.8–10

Several hypotheses have been proposed for the mechanism of pain relief with fat grafting. Vaienti et al10 proposed that fat grafts act mechanically as cushions around nerve stumps and act biologically by improving local vascularization and reducing inflammation. Sacerdote et al11 showed in a rodent model that systemic administration of adipose-derived mesenchymal stem cells decreased levels of proinflammatory cytokine interleukin (IL)-1β and increased levels of anti-inflammatory cytokine IL-10. They proposed that adipose-derived mesenchymal stem cells improve neuropathic pain through immunomodulation resulting in decreased inflammation. In a recent study by Huang et al, fat grafts were injected into burn-injured hind paws of rats, which significantly reduced pain symptoms. Furthermore, these fat graft injections reduced levels of inflammatory markers such as IL-1β, tumor necrosis tumor–α, COX-2, iNOS, and nNOS in both the spinal cord and burn scars of these rats. The authors concluded that fat grafting had a direct anti-inflammatory effect both peripherally and centrally that reduced neuropathic pain in burn wounds.12

Our concerns during discussions with our patient before allogeneic fat grafting were whether the mesen-

Fig. 1. Left thigh ulcer before and after fat allografting. A, The skin ulcer shows poor epithelialization causing the patient significant pain. B, The skin ulcer shows new epithelialization after the fat allografting procedure. Moreover, the patient’s pain symptoms were significantly decreased after the procedure.
chymal stem cells from the fat transfer would have any adverse effects such as reactivating our patient’s CTCL or altering his chimeric profile. From our experience, it appears that allogeneic fat grafting does not cause these adverse effects.

Our unique case study supports the use of fat grafting not only for its restorative purposes but also for its ability to alleviate chronic neuropathic pain. Additionally, it appears that our case provides a basis of a general approach to the treatment of radiation-induced ulcers in chimeric patients with lymphoid malignancies.

Deepak Narayan, MD
Section of Plastic and Reconstructive Surgery
Yale University School of Medicine
P.O. Box 208062
New Haven, CT 06520
E-mail: deepak.narayan@yale.edu

ACKNOWLEDGMENTS
We would like to thank Sandra Alfono, PhD of the Yale University Human Investigation Committee for the approval, Dr. Jordan Pober and Dr. Richard Flavell for their helpful discussions, and Dr. Anthony Fransway for his expertise in the care of this patient.

REFERENCES
1. Mutis T, Schrama E, van Luxemburg-Heijs SA, et al. HLA class II restricted T-cell reactivity to a developmentally regulated antigen shared by leukemic cells and CD34+ early progenitor cells. Blood 1997;90:1083–1090.
2. Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 2004;34:1–12.
3. Stone HB, Coleman CN, Anscher MS, et al. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4:529–536.
4. Baker DG, Krochak RJ. The response of the microvascular system to radiation: a review. Cancer Invest. 1989;7:287–294.
5. Delanian S, Martin M, Bravard A, et al. Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage. Radiat Oncol. 1998;47:255–261.
6. Zhu M, Ashijian P, De Ugarte DA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295.
7. Rigotti G, Marchi A, Galiè M, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 2007;119:1409–1422; discussion 1423.
8. Huang SH, Wu SH, Chang KP, et al. Alleviation of neuropathic scar pain using autologous fat grafting. Ann Plast Surg. 2015;74:S99–S104.
9. Caviggioli F, Maione L, Forcellini D, et al. Autologous fat graft in postmastectomy pain syndrome. Plast Reconstr Surg. 2011;128:349–352.
10. Vaini L, Gazzola R, Villani F, et al. Perineural fat grafting in the treatment of painful neuromas. Tech Hand Up Extrem Surg. 2012;16:52–55.
11. Sacerdote P, Niada S, Franchi S, et al. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev. 2013;22:1252–1263.
12. Huang SH, Wu SH, Lee SS, et al. Fat grafting in burn scar alleviates neuropathic pain via anti-inflammation effect in scar and spinal cord. PLoS One 2015;10:e0137563.