Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

A POTENTIAL EFFECTOR PATHWAY FOR LUMINAL CALCIUM

Received for publication, February 27, 2014, and in revised form, July 7, 2014. Published, JBC Papers in Press, July 8, 2014, DOI 10.1074/jbc.M114.561829

Jared R. Helm1, Marvin Bentley1, Kevin D. Thorsen1, Ting Wang1, Lauren Foltz1, Viola Oorschot1, Judith Klumperman1, and Jesse C. Hay2

From the 1Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana 59812–4824 and the 2Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, AZU Room H02.313, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

Background: Whether ER to Golgi transport requires calcium, the source of calcium, and its mechanism is unknown. Results: A requirement for luminal calcium is demonstrated, and evidence is presented for a molecular effector pathway. Conclusion: Luminal calcium may regulate transport by activating these protein interactions. Significance: The described calcium effector pathway may lead to greater insight into calcium action at multiple transport steps.

Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery.

The ER3-to-Golgi interface is the busiest vesicle trafficking step. Anterograde cargo is captured into a COPII prebudding complex with the activated GTPase Sar1 and the inner coat Sec23/24 heterodimer. Sar1 interacts directly with Sec23, whereas the cargo is bound in several distinct pockets on the membrane-proximal surface of Sec24 (1–4). Sec23 is a GAP for sar1, but its GAP activity is weak initially, preventing premature disassembly. Recruitment of the outer coat layer, composed of Sec13/31 heterotetramers, positions a flexible proline-rich region (PRR) loop of Sec31 across the membrane-distal surface of Sec23 and inserts residues into the Sar1 active site, potentiating the Sec23 GAP activity. Cyclical Sar1 GTPase activity is required for cargo concentration (5). Sec13/31 recruitment involves polymerization of at least 24 heterotetramers (4), triggering vesicle scission. Once free of the ER, the cargo-laden vesicle does not shed all of its coat; interactions with cargo retain ~60% of the original Sec23/24 and ~10% of the outer shell on the vesicle, and this residual coat possesses functions in targeting and the directionality of fusion (6–11). COPII vesicles fuse homotypically to produce vesicular tubular clusters (VTCs). This process involves multiple tethers and the ER/Golgi SNARE complex (12–15). Maturing VTCs are the primary site of cargo concentration (16). In the pericentriolar region, VTCs concentrate and fuse with Golgi cisternae (2).

Although Ca2+ is a required cofactor in evoked exocytosis, it is unclear what role Ca2+ plays in intracellular membrane fusions. Indications that Ca2+ is required for constitutive trafficking have come from in vitro studies of ER-to-Golgi (17), intra-Golgi (18), and endosome and lysosome (19–21) trafficking. These studies all point to a role for Ca2+ directly on the vesicle budding, docking, and/or fusion machinery. Chelator selectivities indicate that Ca2+ acts either through a short pulse.

* This work was supported, in whole or in part, by National Institutes of Health Grant GM106323 (to J. C. H.) and Fellowship NS067834 (to J. R. H.). This work was also supported by the University of Montana Center for Structural and Functional Neuroscience.

1 Present address: Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239.

2 To whom correspondence should be addressed: Division of Biological Sciences, University of Montana, 32 Campus Dr., HS104, Missoula, MT 59812–4824. Tel.: 406-243-2381; Fax: 406-243-4184; E-mail: jesse.hay@umontana.edu.

3 The abbreviations used are: ER, endoplasmic reticulum; ERES, ER exit site(s); ALG-2, apoptosis-linked gene-2; BFA, brefeldin A; CPA, cyclopiazonic acid; IC, intermediate compartment; GAP, GTPase-activating protein; NRK, normal rat kidney; SERCA, sarco-endoplasmic reticulum Ca2+ ATPase; PRR, Sec31A proline-rich region; VSV-G, vesicular stomatitis virus glycoprotein; VTC, vesicular tubular cluster; UPR, unfolded protein response; endo H, endoglycosidase H; AMCA, 7-amino-4-methylcoumarin-3-acetic acid. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
or else a continuous gradient of leaking luminal Ca\(^{2+}\) very near the transport machinery (22, 23). In vivo evidence for a requirement for luminal Ca\(^{2+}\) in Golgi trafficking came with the recognition that mutations of the Golgi Ca\(^{2+}\)-pump SPCA (secretory pathway Ca\(^{2+}\)-ATPase) cause Hailey-Hailey disease (24) and that depletion of SPCA from cells arrests secretion at the Golgi (25, 26). In this case, the luminal Ca\(^{2+}\) may act in the lumen; SPCA-dependent luminal Ca\(^{2+}\) appears to be required in the TGN for sorting of a subset of secretory proteins into exocytic carriers via the luminal Ca\(^{2+}\)-binding protein Cab45 (27, 28). Hence, Ca\(^{2+}\) does not play a universal or necessarily mechanistically consistent role; secretion is a mosaic of Ca\(^{2+}\)-dependent and -independent transport steps (23). At the ER-to-Golgi stage, specific depletion of luminal Ca\(^{2+}\) using the reversible SERCA inhibitor cyclopiazonic acid (CPA) caused Rbet1, a rapidly recycling ER/Golgi SNARE, to accumulate in large peripheral punctate structures (10). Despite this morphological perturbation, potential functional effects of luminal Ca\(^{2+}\) depletion on anterograde ER/Golgi cargo transport remain to be established.

Effector mechanisms for luminal Ca\(^{2+}\) released from organelles are not understood. Calmodulin has been implicated in several transport steps (22), and Ca\(^{2+}\)-dependent phospholipase A2 has been implicated in Golgi membrane dynamics (29, 30). Membrane-permeant BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N\(^\prime\),N\(^\prime\)-tetraacetic acid) destabilizes COPI binding to membranes in vivo (31), but a Ca\(^{2+}\) sensor for this effect is not known. The PEF (penta-EF-hand-containing) protein apoptosis-linked gene-2 (ALG-2) acts as a Ca\(^{2+}\) sensor at ER exit sites and, only when Ca\(^{2+}\) is present, stabilizes association of Sec31 with the membrane (32–35). We previously demonstrated that ALG-2 stabilizes residual Sec31 on COPII fusion intermediates in a Ca\(^{2+}\)-dependent manner and that excess ALG-2 inhibited COPII vesicle fusion in a luminal Ca\(^{2+}\)-dependent manner (10). Recently, an in vitro budding reconstitution using mammalian components demonstrated that excess ALG-2 attenuated budding in a Ca\(^{2+}\)-dependent manner and that ALG-2 binding to Sec31A directly promoted Sec31A/Sec23 interactions (36). Hence, in vitro studies have made significant progress in identifying the ALG-2/Sec31 axis as a potential effector of Ca\(^{2+}\). However, whether the ALG-2/Sec31 interaction is rate-limiting in the cell and at what step(s) has not been demonstrated.

Here we present evidence that luminal Ca\(^{2+}\) and ALG-2/Sec31A interactions regulate early steps in secretory traffic. This is the first functional demonstration that luminal Ca\(^{2+}\) plays a required role in pre-Golgi secretory trafficking. Furthermore, this work sheds light on a Ca\(^{2+}\) signaling mechanism involving ALG-2/Sec31A interactions that contributes to the requirement for Ca\(^{2+}\) in transport.

EXPERIMENTAL PROCEDURES

Antibodies and Expression Constructs— Rabbit polyclonal anti-Sec31 (10) and anti-p24 (14) were produced in rabbits against synthetic peptides and affinity-purified as described previously. Monoclonal anti-Rbet1 antibodies were described before (37). Anti-vesicular stomatitis virus glycoprotein (VSV-G) trimer was obtained from tissue culture supernatant from the I-14 hybridoma (38) kindly provided by Dr. John Ngsee (University of Ottawa). Rabbit polyclonal anti-Sec24c was a kind gift from Dr. William Balch (Scripps Institute). Rabbit polyclonal anti-p58 was a kind gift from Dr. Jaakko Saraste (University of Bergen, Norway). Rabbit polyclonal anti-p115 was a kind gift from Dr. Elizabeth Sztul (University of Alabama, Birmingham). Rabbit polyclonal anti-ALG-2 was a kind gift from Dr. Masayuki Komada (Tokyo Institute of Technology). Mouse monoclonal anti-FLAG was purchased from Sigma (clone M2 product F3165). Rabbit anti-GPP130 antibody was purchased from Covance (product PRB1444C). Rabbit anti-calnexin was from Stressgen (product SPA-865). Mouse monoclonal anti-mannosidase II antibody was purchased from Covance Research Products (product MMS-110R-200). Goat polyclonal anti-phosphoglycerate kinase and rabbit anti-TRAF2 were purchased from Santa Cruz Biotechnology, Inc. (products sc17943 and sc876, respectively). Secondary antibodies were FITC-, Cy3-, AMCA-, or Cy5-conjugated and purchased from Jackson ImmunoResearch Laboratories (West Grove, PA).

A mammalian expression construct encoding full-length, wild type human ALG-2 was provided by Dr. Masayuki Komada (Tokyo Institute of Technology) and was described before (35); point mutations/deletions to this construct and all other constructs were produced by PCR (QuikChange method, Agilent Technologies) and confirmed by sequencing. To produce RFP-ALG-2 for localization studies, tRFP was amplified by PCR from pCMV6-AC-RFP (Origene) with BamHI/EcoRI linker ends and ligated into mammalian expression vector pCDNA3 (+). Next, full-length, wild type ALG-2 was amplified by PCR with EcoRV/Xhol linker ends and subcloned downstream and in-frame to tRFP in pCDNA3 (+).

A mammalian construct in vector pME-FLAG containing residues 800–1113 of human SEC31A as described (35) was obtained from Dr. Masayuki Komada. Splicing of the human SEC31A gene is highly variable, currently comprising six full-length curated splicing variants with additional variants apparent among reported partial cDNAs. Our construct’s exon structure corresponds closely to splicing variant 1 (NCBI reference sequence NM_014933.3) with the exception that there is a 13-amino acid insertion of ENQSIQDQAPMLE between Thr-989 and Gly-990 of the reference sequence. This exon is also expressed in the cd34 + stem cells (GenBank™ AF161393.1) and is a predicted exon in the original analysis of the human gene structure (GenBank™ EAX05906.1), although it is not present in any of the currently curated full-length reference sequences. This exon is also expressed in the single curated murine transcript (NCBI reference sequence NM_026969.1). Most experiments in this work utilized the construct containing the additional exon; however, for clarity, we refer to amino acid positions relative to the that of human splicing variant 1; for example, when referring to mutation of Trp-995 in Fig. 7, this would actually correspond to amino acid 1008 in our cDNA because it expresses the 13-residue insert between Thr-989 and Gly-990. We did not notice a functional difference between SEC31A splicing variants within the PRR region. For example, the experiment in Fig. 5A employed the construct described above (35), whereas the experiment in Fig. 5B utilized PRR regions subcloned from full-length SEC31A.
expression constructs kindly provided by Dr. Hideki Shibata (Nagoya University, Japan) that had an exon structure identical to human splicing variant 1 (32).

Depletion of Luminal Calcium—Conditions were identical to our extensively characterized protocol (10). Briefly, Ca\(^{2+}\)-free DMEM (U.S. Biological D9802-05B) was supplemented with 10% fetal bovine serum that had been dialyzed (twice for 2 h) in a 100-fold excess of Ca\(^{2+}\)-free PBS. Cells to be depleted of luminal Ca\(^{2+}\) were washed twice with Ca\(^{2+}\)-free DMEM, 10% FBS containing 10 \(\mu\)M CPA (Sigma C1530), 1 mM EGTA, and 25 mM Hepes, pH 7.2, and then incubated in that medium for 15 min. This was followed by a 15-min incubation in Ca\(^{2+}\)-free DMEM, 10% FBS, no CPA, 0.3 mM EGTA, and 25 mM Hepes, pH 7.2. Some treatments (Figs. 1 and 2) included 10 \(\mu\)g/ml cycloheximide for a 30-min period prior to the addition of CPA; in these cases, cycloheximide was also maintained in the medium during the CPA treatment and subsequent Ca\(^{2+}\)-free chase.

Immunofluorescence Microscopy—Coverslips were fixed with 4% paraformaldehyde containing 0.1 M sodium phosphate (pH 7) for 30 min at room temperature and quenched twice for 10 min with PBS containing 0.1 M glycine. Fixed cells were treated for 15 min at room temperature with permeabilization solution containing 0.4% saponin, 1% BSA, and 2% normal goat serum dissolved in PBS. The cells were then incubated with primary antibodies diluted in permeabilization solution for 1 h at room temperature. Next, coverslips were washed three times with permeabilization solution and incubated for 30 min at room temperature with different combinations of FITC-, Cy3-, AMCA-, and/or Cy5-conjugated anti-mouse or anti-rabbit secondary antibodies. After the secondary antibody incubation, coverslips were again washed three times using permeabilization solution and mounted on glass slides using SlowFade Gold antifade reagent (Invitrogen), and the edges were sealed with nail polish. Slides were analyzed using a \(\times 60\) objective on a Nikon E800 microscope with excitation and emission filter wheels (Chroma Tech), a Hamamatsu Orca 2 camera, and a Nikon Z-drive, automated using OpenLab version 5.0 software (Improvision). For transport index assays (see below), following overexpression, typical images collected for each field of cells were VSV-G-GFP (FITC filters), anti-ALG-2 (cy3 filters), anti-FLAG (AMCA filters), and Golgi marker GPP130 (Cy5 filters).

For immunofluorescence co-localization experiments, such as those shown in Figs. 6 and 7, 21 images were captured from each color channel in 200-nm increments. These image stacks were deconvolved using Huygens Essential Widefield software (Scientific Volume Imaging, Hilversum, The Netherlands). Example images for display represent individual image planes near the center of the stack. For quantification of co-localization, deconvolved image planes from 10–12 transfected cells containing RFP-ALG-2 labeling in focus in the peripheral cytoplasm were randomly selected, and the background labeling was removed by defining a dark extracellular area of the image as zero. An RFP-ALG-2 object binary image mask was generated by thresholding the labeling such that 10–15 of the brightest RFP-ALG-2 spots were captured. Each of these objects was then manually tested for co-localization with a spot in the COPII marker plane, with partial overlap scored as positive co-localization. The percentage of bright RFP-ALG-2 objects that overlapped with ERES spots was directly calculated from this analysis for each cell, and the values reported in Fig. 6G represent means plus or minus S.E. of 10–12 cells/condition.

ER-to-Golgi Transport Assay—NRK cells were maintained in DMEM high glucose containing 10% fetal calf serum and penicillin-streptomycin. Suspensions of NRK cells were electroporated with 15 \(\mu\)g of VSV-G-GFP DNA as a mixture of that construct and constructs encoding \(\beta\)-galactosidase, ALG-2, and/or Sec31A-PRR and plated on polylysine-coated coverslips. Mock-transfected cells were electroporated with no DNA present. After 24 h of protein expression at 40 °C, the cells were either depleted of luminal Ca\(^{2+}\) (see above) and shifted to 32 °C or directly shifted to permissive temperature, depending upon the experiment. For the 0-min transport time point, coverslips were directly transferred from 40 °C to fixative. For other time points, coverslips were transferred from 40 °C into 6-well chambers containing pre-equilibrated 32 °C medium for various intervals and then transferred to fixative.

Morphological quantitation of ER-to-Golgi transport was accomplished as described before (39). Briefly, images were collected in a consistent manner with regard to cell morphology, protein expression levels, and exposure. After choosing a fixed exposure time for each color channel that would accommodate the vast majority of cells, we avoided any cell whose intensity values in any color exceeded the saturation value of our camera. We also avoided capturing cells lacking flat morphology and a single, well defined nucleus surrounded on all sides by an expanse of cytoplasm. A single wide field image plane was collected for each color channel for each field of cells randomly encountered; image deconvolution was not performed. Background in all quantification images was removed by defining a dark extracellular area of the image as zero. The Golgi region was defined by GPP130 immunofluorescence; a Golgi mask was created by thresholding the GPP130 image at 25% of its maximum value. This was used to identify the Golgi pixels in the associated VSV-G-GFP image. Transport index was calculated from the VSV-G-GFP image as the maximum pixel intensity within the Golgi region mask divided by the mean pixel intensity in the cell periphery. Maximum intensity was used for the Golgi instead of the mean to avoid having to calculate the precise cross-sectional area of the Golgi, which leads to greater variance. Line profiles across the maximum pixel confirmed that it fell within a peak of similar fluorescence intensity values. The peripheral fluorescence in the denominator of the transport index was derived from a sample of the ER taken by manually drawing an oval-shaped region of interest with the long dimension extending from the edge of the nucleus to roughly the edge of the cell; the surface of the nucleus on which the region of interest abuts was chosen so as to optimally avoid encompassing or being near any Golgi elements. The mean pixel intensity for this region of interest on the VSV-G-GFP image was the denominator of the transport index. Transport index was calculated for each cell separately.

For the brefeldin A (BFA) recovery ER-to-Golgi transport assay, NRK cells were grown at 37 °C on coverslips and treated for 45 min with 2.5 \(\mu\)g/ml BFA. Cells to be Ca\(^{2+}\)-depleted were then switched to calcium-free DMEM, 10% FBS with 0.3 mM EGTA and 10 \(\mu\)M CPA plus 2.5 \(\mu\)g/ml BFA for 15 min, whereas
control cells were incubated for an extra 15 min with 2.5 μg/ml BFA. Coverslips were then washed twice with either calcium-free DMEM, 10% FBS, 0.3 mM EGTA or control medium to remove the BFA and incubated for varying times in the wash medium. Throughout the experiment, all of the medium contained 10 μg/ml cycloheximide. Following the incubations, cells were then fixed as described above and labeled using anti-mannosidase II antibody and FITC-labeled secondary antibody.

Transport was then quantified using one of two methods; the first method employed the ER/Golgi transport index essentially as described above except that mannosidase II was employed as the cargo instead of VSV-G-GFP, and also the maximum ER intensity was used instead of the maximum Golgi intensity to generate a transport index at the early time points before a Golgi area was evident. Alternatively, a mannosidase II-positive object binary image mask was generated by thresholding the labeling at 4 times over its intensity in a peripheral area lacking punctate objects. The mean object size in this mask layer was calculated using Openlab and employed as an indicator of Golgi size; this value increased during the washout period as small puncta coalesced into larger puncta/Golgi fragments and then ribbons.

siRNA Knockdown of ALG-2 and Sec31A—NRK cells were electroporated with 0.5 μM custom-synthesized siRNA (Ambion, Invitrogen). After 2–3 days of normal growth, the cells were resuspended and re-electroporated, this time with a combination of the 0.5 μM siRNA and 15 μg of VSV-G-GFP, and the cells were allowed to recover and grow on coverslips at 40 °C. Twenty-four hours later, the cells were either lysed directly in SDS sample buffer for quantitative immunoblotting analysis or else processed for CPA treatments and transport assays as described above. Syntaxin 5 siRNA (40) and its effect on the transport index (39) were described before. Sec31A siRNA had the following sense strand sequence: 5'-GACCUCUUGUUUACACGAUATT-3' (containing Silencer Select chemical modifications). This target sequence is expressed in all annotated Sec31A splice variants. ALG-2 siRNAs had the following sense strand sequences: siRNA1, 5'-GGAGCGCGAGU-GAUUUACAGA-3' (containing Silencer Select chemical modifications); siRNA2, 5'-GGACAACUCUGGGAUGAUU-3' (Silencer Select); siRNA3, 5'-GCAGAGGUGUGACACAGAU-AAA-3' (lacking Silencer Select modifications). All of the siRNAs employed achieved >95% knockdown in the best experiments, with the primary determinant of success being the precise growth phase and density of the cells.

Immunoprecipitation Experiments—NRK cells were transfected with mammalian expression constructs encoding full-length, wild type human ALG-2 by itself or with one of three SEC31A pME-FLAG constructs: 1) residues 800–1113 of human SEC31A (PRR 800–1113); 2) a truncated PRR fragment containing residues 800–976 (PRR 800–976); or 3) a deletion mutant PRR fragment lacking the ALG-2 binding site (PRR ΔABS). 20–24 h after transfection, cells were washed with cold PBS and solubilized with 1.5 ml/10-cm plate CHAPS lysis buffer (20 mM Tris–HCl, pH 7.4, 150 mM KCl, 10 mM CHAPS, 2 μg/ml leupeptin, 4 μg/ml aprotinin, 1 μg/ml pepstatin A, and 1 mM PMSF) at 40 °C. Twenty-four hours later, the cells were either lysed directly in SDS sample buffer for quantitative immunoblotting analysis or else processed for CPA treatments and transport assays as described above. Syntaxin 5 siRNA (40) and its effect on the transport index (39) were described before. Sec31A siRNA had the following sense strand sequence: 5'-GACCUCUUGUUUACACGAUATT-3' (containing Silencer Select chemical modifications). This target sequence is expressed in all annotated Sec31A splice variants. ALG-2 siRNAs had the following sense strand sequences: siRNA1, 5'-GGAGCGCGAGU-GAUUUACAGA-3' (containing Silencer Select chemical modifications); siRNA2, 5'-GGACAACUCUGGGAUGAUU-3' (Silencer Select); siRNA3, 5'-GCAGAGGUGUGACACAGAU-AAA-3' (lacking Silencer Select modifications). All of the siRNAs employed achieved >95% knockdown in the best experiments, with the primary determinant of success being the precise growth phase and density of the cells.

Immunoprecipitation Experiments—NRK cells were transfected with mammalian expression constructs encoding full-length, wild type human ALG-2 by itself or with one of three SEC31A pME-FLAG constructs: 1) residues 800–1113 of human SEC31A (PRR 800–1113); 2) a truncated PRR fragment containing residues 800–976 (PRR 800–976); or 3) a deletion mutant PRR fragment lacking the ALG-2 binding site (PRR ΔABS). 20–24 h after transfection, cells were washed with cold PBS and solubilized with 1.5 ml/10-cm plate CHAPS lysis buffer (20 mM Tris–HCl, pH 7.4, 150 mM KCl, 10 mM CHAPS, 2 μg/ml leupeptin, 4 μg/ml aprotinin, 1 μg/ml pepstatin A, and 1 mM PMSF) for 30 min in the cold. Extracts were collected and cen-
of light microscopy and/or section instability associated with two types of imaging. For annotation of EMs, vesicles (as opposed to buds) are defined when the membrane is clearly visible, encompassing at least 80% of a circular profile with no visible neck.

VSV-G Trimer Detection by Immunoprecipitation—NRK cells were transfected with VSV-G-Myc or VSV-G-GFP and incubated for 24 h at 40 °C. Cells were depleted of luminal Ca\(^{2+}\) as described above and incubated for varying times at 32 °C to allow VSV-G trimerization, and then the medium was replaced with cold 25/125 buffer (25 mM HEPES, pH 7.2, 125 mM potassium acetate) containing 1% Triton X-100 and protease inhibitors (pepstatin, leupeptin, aprotinin) and incubated for 10 min at 4 °C. Next, the buffer and cell debris were scraped into a microtube and incubated with end-over-end rotation for at least an additional 10 min prior to removal of the insoluble fraction by centrifugation at 15,000 × g for 15 min. The soluble supernatant was then incubated with protein A beads that had been preincubated in 114 hybridoma culture medium and washed four times with 25/125. After 2 h of end-over-end rotation at 4 °C, the beads were pelleted and washed three times with 25/125. Samples of the washed beads were then analyzed using SDS-PAGE and Western blotting with either anti-GFP or anti-Myc antibodies. To prepare the graph in Fig. 1C from several experiments, 0-min values were subtracted from each data point, and then each point was expressed as a percentage of the maximum value.

ATF-6 Detection in NRK Cells—NRK cells were transfected with FLAG-ATF-6. Two days after electroporation, cells were washed once with PBS and once with swell buffer (10 mM HEPES, pH 7.4, 10 mM KCl, 1.5 mM MgCl\(_2\), 0.5 mM EDTA, 0.5 mM EGTA, 1 mM DTT, and protease inhibitors (IN-(N-acetyl-L-leucyl)-L-leucyl)-L-norleucine, PMSF, leupeptin, pepstatin, and aprotinin). Cells were then incubated on ice for 10 min in 1 ml of swell buffer and then scraped off of the dishes and passed through a syringe 15 times using a 22-gauge needle. After centrifugation at 1,000 × g for 10 min, the pellet containing total membranes was collected and analyzed using SDS-PAGE (8.5% acrylamide) and Western blotting using anti-FLAG and anti-calcineurin antibodies.

RESULTS

Luminal Calcium Depletion Inhibits ER-to-Golgi Transport of VSV-G-GFP—The role of Ca\(^{2+}\) in ER-to-Golgi transport has been controversial (23, 42), and a specific role of luminal Ca\(^{2+}\) has not been addressed. We previously developed conditions for the specific depletion of luminal ER Ca\(^{2+}\) in living normal rat kidney (NRK) cells using CPA (43), a reversible inhibitor of the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) pump. By employing calibrated Ca\(^{2+}\) sensors in living cells, we determined that luminal ionic ER Ca\(^{2+}\) could be reduced by more than 90% from 385 to 23 nM while maintaining resting cytosolic Ca\(^{2+}\) at 50 nM (10); this established the specificity of biological effects for luminal as opposed to cytosolic or total Ca\(^{2+}\). Furthermore, by 30 min, ER-derived pre-Golgi organelles should be depleted as well. Thapsigargin, a chemically unrelated irreversible SERCA inhibitor, produced similar phenotypes.

To test whether luminal Ca\(^{2+}\) was involved in ER-to-Golgi transport, we used the CPA protocol in conjunction with a morphological transport assay employing VSV-G-GFP ts045, which exhibits thermo-reversible assembly and transport (44). Cells were fixed at defined time points following the temperature shift, and a transport index was calculated by image analysis on dozens of cells. The transport index was a robust parameter unaffected by variations in Golgi architecture and cargo expression level (39). As shown in Fig. 1A (left plot), Ca\(^{2+}\) depletion slowed ER-to-Golgi transport of total VSV-G-GFP by 65–75%. Thus, luminal Ca\(^{2+}\) is required for efficient transport in the early secretory pathway. Example wide field fluorescence images are displayed in Fig. 1B. The transport defects observed did not result from effects on cargo folding or assembly because the effect was still pronounced after quantitation using a VSV-G trimer-specific monoclonal antibody (38) (Fig. 1A, right plot). As shown in Fig. 1C, VSV-G trimerization was very rapid and occurred within the first few min whether Ca\(^{2+}\) was present or not. In conjunction with the fact that cycloheximide was employed during transport experiments, these results indicate that the appearance of newly formed trimers did not complicate transport kinetics. As an alternative approach, the inhibition of ER/Golgi transport observed using the morphological assay described above was confirmed using a biochemical transport readout, the acquisition of resistance of VSV-G-Myc ts045 to endoglycosidase H cleavage (Fig. 1D).

A recent study found that activation of the unfolded protein response (UPR) using long term thapsigargin treatment inhibited ER export and led to Golgi dispersal (45). We avoided stress responses by minimizing the CPA treatment and by maintaining cytosolic Ca\(^{2+}\) at resting levels by using low Ca\(^{2+}\) medium to limit capacitative Ca\(^{2+}\) uptake. To confirm that our conditions did not lead to UPR activation, we immunoblotted control and treated cell lysates for the transcription factor ATF6. As shown in Fig. 1E, ATF6 was not cleaved as a result of our protocol. Hence, the effects we observed on transport reflect a direct requirement for luminal Ca\(^{2+}\) in transport.

To examine whether the requirement for luminal Ca\(^{2+}\) extended to an endogenous transmembrane cargo, we monitored the ER-to-Golgi transport of mature Golgi mannosidase II. This cargo was not newly synthesized but rather diverted to the ER by the addition of brefeldin A; its return to the Golgi was then monitored following brefeldin A washout. ER-to-Golgi transport of mannosidase II was involved in ER-to-Golgi transport of mature Golgi mannosidase II. This cargo was not newly synthesized but rather diverted to the ER by the addition of brefeldin A; its return to the Golgi was then monitored following brefeldin A washout. ER-to-Golgi transport of mannosidase II was initially severely impaired, then monitored following brefeldin A washout. ER-to-Golgi transport of mannosidase II was initially severely impaired, whether monitored using the transport index method that measures the relative Golgi area intensity (Fig. 2A) or an algorithm that relies on the cross-sectional area of coalescing Golgi structures (Fig. 2B). These data expand our conclusions to an endogenous cargo whose folding and assembly preceded that of Ca\(^{2+}\) depletion. The data in Figs. 1 and 2 are the first functional demonstration that luminal Ca\(^{2+}\) plays a required role for efficient transport in pre-Golgi secretory trafficking.
does not enter vesicles (46), was not affected by luminal Ca\(^{2+}\) depletion (10). These findings were consistent with the enlarged spots representing aberrantly large early VTCs or abortive vesicle buds. To try to understand the architectural basis of this phenotype, we asked whether the COPII coat itself accumulates on the CPA-induced structures. As shown in Fig. 3A, CPA treatment resulted in a de-emphasis of pericentriolar ribbon-like labeling and an intensification and enlargement of peripheral COPII outer shell Sec31-positive puncta, where it co-localized with Rbet1. The inner shell component Sec24c displayed a similar behavior (Fig. 3B). Hence, the COPII coat accumulates on the CPA structures, in contrast to what had been
observed for Sec16A. However, it is still not clear what precise structures the coat and IC markers accumulate on.

To identify the membrane structures that accumulate COPII and IC markers upon luminal Ca$^{2+}$ depletion and to provide an architectural basis for the secretion defect, we performed correlative light and electron microscopy. CPA-treated cells were fixed in calcium-free medium, whereas control cells recovered in normal medium. At the indicated times, cells were fixed and labeled for mannose-6-phosphate II. Arrival of mannose-6-phosphate II in the Golgi area was quantified using the transport index algorithm as in Fig. 1. No BFA, cells received neither BFA nor CPA (blue triangle). B, a similar experiment except that return to the Golgi was quantified by measuring the area of mannose-6-phosphate II-positive puncta. Single experiments were representative of at least three similar experiments; each value is a mean of ±20 cells. Error bars, S.E.

FIGURE 2. Luminal calcium depletion impairs ER-to-Golgi transport of mannose-6-phosphate II. NRK cells were treated with BFA for 45 min, with CPA or DMSO present for the final 15 min. After BFA removal (t = 0 on plot), CPA-treated cells recovered in calcium-free medium, whereas control cells recovered in normal medium. At the indicated times, cells were fixed and labeled for mannose-6-phosphate II. A, arrival of mannose-6-phosphate II in the Golgi area was quantified using the transport index algorithm as in Fig. 1. No BFA, cells received neither BFA nor CPA (blue triangle). B, a similar experiment except that return to the Golgi was quantified by measuring the area of mannose-6-phosphate II-positive puncta. Single experiments were representative of at least three similar experiments; each value is a mean of ±20 cells. Error bars, S.E.

Luminal Calcium and ER/Golgi Transport

boxed regions in A and C. In these representative peripheral locations lacking Golgi stacks, the labels were associated mainly with a preponderance of COPII buds as well as with clusters of unfused vesicles. Surprisingly, no enlarged or distended structures were observed, and VTCs, defined as apparent fusion products of two or more vesicles, were rare. The abundant buds emerging from the ER did not appear unusually large or elongated as would be expected for a membrane scission defect. Some vesicles near budding sites (marked with a red arrow in Fig. 4D) seemed tethered together into a cluster. Most gold particles were clearly associated with a visible membrane, whereas other gold particles were not (e.g., see Fig. 4D, red asterisks). Because these gold particles were nearly always found near an ERES, however, this label is either associated with membrane that is tangentially out of section or else represents Sec31 that has recently dissociated from a bud or vesicle. A highly useful feature of the immunofluorescence/EM correlation is the ability to identify the membranes comprising the CPA structures even when gold particles are sparse. For example, in Fig. 4C, gold particles are seen in only a subregion of a micrograph, but nevertheless the vesicles and membrane buds in a more extensive region correlated well with swaths of fluorescent labeling (Fig. 4C, white arrowheads). Altogether, we conclude that the CPA-induced, COPII-positive enlarged spots, as seen by immunofluorescence, are not, as previously speculated (10), enlarged VTCs or expanded/abortive budding structures but rather represent a collection of membrane buds and vesicles.

Based upon the ultrastructural analysis, CPA either caused an increase in buds and vesicles or alternatively redistributed coat and IC marker proteins from less and/or more mature structures to make them more concentrated on buds and vesicles. These possibilities are not mutually exclusive. The absence of luminal Ca$^{2+}$ could have caused poor concentration of cargo in nascent vesicles, inefficient sorting of anterograde and retrograde cargo in VTCs, and/or increased vesicle back-fusion, leading to futile stimulation of the budding of vesicles with lower fusion competency due to an imbalance of docking/fusion machinery. Such phenomena would be predicted to both increase the density of active buds and clustered vesicles and cause excessive accumulation of COPII and IC markers at these sites.

ALG-2 Interactions with the Sec31A Proline-rich Region Are Functionally Critical for Transport—Studies of the role of Ca$^{2+}$ in the COPIII pathway have focused on interactions of Sec31A with the Ca$^{2+}$-activated adaptor protein ALG-2 (10, 32, 33, 35, 47); however, a functional role for these interactions in intact cells has not been demonstrated. We tested the hypothesis that this interaction was functionally significant by co-overexpression studies in NRK cells combined with ER-to-Golgi transport assays. First, we expressed the isolated PRR of Sec31, residues 800–1113, containing the ALG-2 binding site (32), in NRK cells to potentially compete with endogenous Sec31A for its binding partners, including that for ALG-2. Overexpression of PRR-FLAG itself mildly inhibited transport (Fig. 5A, bars 2 and 3 versus bar 7). Likewise, overexpression of wild type ALG-2 did not consistently inhibit transport (Fig. 5A, bar 4). Surprisingly, however, simultaneous overexpression of both proteins created
FIGURE 3. Luminal calcium depletion causes COPII proteins to accumulate in enlarged, intensified peripheral puncta. NRK cells were CPA- or mock-treated and then fixed and immunolabeled for the endogenous VTC marker Rbet1 and the COPII subunit Sec31A (A) or Sec24C (B). Shown are single optical sections of deconvolved wide field fluorescence image stacks.
a strongly synergistic inhibition of transport of ~60% (Fig. 5A, bar 8). The two overexpressed proteins together create a uniquely interpretable dominant negative inhibitor; whereas inhibition by either protein alone could be a consequence of titrating out endogenous, functional Sec31 and/or ALG-2, the apparent requirement for overexpressed ALG-2 to bind and place or activate the PRR inhibitor illustrates their specific interaction at a functional, saturable site. That the two must interact is reinforced by the functional inactivity of the ALG-2 F60A mutant (Fig. 5A, bar 9), which lacks interactions with Sec31 but not other ALG-2 effectors (48). Reciprocally, a PRR peptide with a deletion of the 13-amino acid ALG-2 binding site (PRR ΔABS) was also much less active when co-expressed (Fig. 5B). Hence, although ALG-2 inevitably has multiple binding
targets in the cell, Sec31A binding must be involved in the observed effects. In addition, both constructs and the mutants are well expressed (Fig. 5C). Interestingly, the inactivity of the ALG-2 A2Gf mutant (Fig. 5A, bar 10), which reportedly exhibits Sec31 binding but fails to bind several other ALG-2 targets (48), implies that a distinct ALG-2 target may be involved, as predicted by current models of PEF protein function, wherein an ALG-2 dimer cross-links and stabilizes the otherwise weak association of two effectors (47). This scenario is also consistent with the in vitro activity of ALG-2 to kinetically stabilize Sec31A at or near ERES and on COP11 vesicles (10, 32, 33, 35), which implies that ALG-2 cross-links Sec31A to an “anchor” site.

To further demonstrate that the two overexpressed proteins functioned as an inhibitory complex, we performed immunoprecipitations from NRK cell extracts. As shown in Fig. 5D, the transfected human ALG-2 construct ran slightly slower than endogenous rat ALG-2 on SDS gels of CHAPS extracts containing ambient calcium (lane 1 versus lanes 2–5). When the extracts were immunoprecipitated with anti-FLAG antibodies, ALG-2 was specifically co-precipitated, but only in extracts co-transfected with both constructs (lane 6 versus lane 7). Furthermore, co-expression and immunoprecipitation of FLAG-PRR 800–976, a minimal inhibitory fragment containing the ALG-2 binding site but lacking the binding sites for Sec16 and Sec23 (residues 869–884) that may contribute to minor binding in vitro (32). That the constructs exist as a calcium-dependent complex in living cells, as opposed to forming in cell extracts, is definitively demonstrated by the complete dependence of co-immunoprecipitation upon prior treatment of living cells with the reversible cross-linker dithiobis(succinimidyl propionate), when the extracts are produced using chelator-containing extraction buffer (lane 12 versus lane 13).

The observed inhibitory complex displays a preference for the exogenous ALG-2 (Fig. 5D, lanes 7, 8, and 13; note the
prominence of the upper ALG-2 band compared with the lower one). This preference seemed stronger than that expected from the ~4:1 exogenous/endogenous ALG-2 cellular concentration ratio (calculated from the roughly equal abundance of the two bands in extracts and our ~25% electroporation efficiency of NRK cells). Thus, the functional synergy produced by co-over-expressing ALG-2 with PRR is probably not merely a result of mass action driving more ALG-2 into inhibitory ALG-2/PRR complexes. Rather, it may arise from the timing of exogenous versus endogenous ALG-2 expression because endogenous ALG-2 may be less available to form complexes with the newly expressed PRR due to established interactions at multiple other sites in the cell. Alternatively, it may arise from slight structural differences in the human ALG-2 that either increase its binding affinity for the PRR or decrease its affinity for other competing ALG-2 binding sites in the rat cells. In either case, the preference for interaction with exogenous ALG-2 precisely correlates with the functional inhibition, further indicating that the complex functions as the inhibitor, and provides a molecular explanation for why PRR does not inhibit efficiently when expressed by itself, despite the presence of endogenous ALG-2. Taken together, the data of Fig. 5, A–D, represent the first evidence in living cells that the interaction of ALG-2 with Sec31 can regulate ER-to-Golgi transport.

ALG-2/Sec31A-PRR Interactions Acutely Regulate Cargo Receptors and Tethers but Exert Minor Effects on Coat Localization—To better understand the functional significance of disrupted endogenous ALG-2/Sec31-PRR interactions, we needed to examine the ALG-2/PRR inhibitor targeting sites relative to endogenous cellular markers. An RFP-ALG-2 construct was created. RFP-ALG-2 also produced a synergistic inhibition with Sec31P-PRR similarly to wild type ALG-2 (Fig. 5D). As shown in Fig. 6, A and B, illustrates the morphological change in VSV-G-GFP localization during transport and demonstrates that Sec31A is unperturbed by VSV-G-GFP transport. We next asked whether the RFP-ALG-2 construct localized to ERES, as indicated by COPII markers Sec31A (outer shell) and Sec24C (inner shell). As shown in Fig. 6, C and D, the RFP-ALG-2 construct was present in cytoplasmic puncta, a high percentage of which colocalized precisely with ERES marked by both Sec31A (Fig. 6C, Merge) and Sec24C (Fig. 6D, Merge). However, the vast majority of ERES lacked concentrated ALG-2-RFP, indicating that a small subset of ERES were much more heavily targeted. We then asked what happens to the coat when RFP-ALG-2 and FLAG-PRR are co-expressed. As shown in Fig. 6, E and F, RFP-ALG-2 in these triply transfected cells had a similar localization as before; however, VSV-G-GFP was retained in the ER and/or other peripheral sites. The FLAG-PRR construct was highly expressed and displayed a nonspecific localization. Cytoplasmic puncta were visible in some cells, but these never colocalized with secretory pathway markers, indicating that the fraction of FLAG-PRR targeted to ERES may have been very small. We carefully examined ERES markers in the triply transfected cells. Endogenous Sec31A decorated with an N-terminal antibody that does not recognize the PRR region was surprisingly unperturbed; the ratio of cytosolic to particulate Sec31A remained about the same, and the number and size of ERES spots were not noticeably altered (Fig. 6F, middle, compare cell with arrows with surrounding cells). However, upon close inspection, the particular subset of ERES highly enriched in RFP-ALG-2 were usually depleted of Sec31A, resulting in less colocalization of RFP-ALG-2 and Sec31A (Fig. 6, contrast C (Merge) with F (Merge), arrows). A similar result was found for the inner shell component Sec24C (Fig. 6, D and E). The co-localization results for RFP-ALG-2 and COPII subunits Sec24C and Sec31A are quantified from multiple cells in Fig. 6G.

So far, these results support two conclusions. First, despite the transport block, the targeting of COPII to membranes and ERES per se was not generally affected by the inhibitors. Hence, displacement of the coat from the membrane and ERES was not necessary to produce the inhibitory effect because the majority of VSV-G-GFP transport was blocked, but only a small subset of ERES displayed bright RFP-ALG-2 spots and coat displacement (whereas 30–50% of bright RFP-ALG-2 spots co-localized with COPII markers, a much smaller fraction of COPII spots co-localized with RFP-ALG-2). Rather, it seems more likely that the inhibitory effect was due to selective disruption of ALG-2/Sec31A interactions at relatively low concentrations of inhibitor that are not apparent as accumulations by immunofluorescence and that the functionally disrupted ERES contain a normal amount of coat. This conclusion is consistent with the continued presence of COPII proteins on buds and vesicles upon luminal Ca$^{2+}$ depletion (Figs. 3 and 4), another manipulation that should disrupt ALG-2/Sec31A interactions. However, because we did not directly examine ALG-2/Sec31 interactions at these sites, this conclusion is tentative. The second conclusion is that at the highest concentration of inhibitor present at a relatively small percentage of ERES, a fundamental disruption of ERES structure, surprisingly including both inner and outer coat displacement, seems to have occurred. At these sites, the inhibitor present in many copies may have nonspecifically interfered with scaffolding and/or linking interactions mediated through the PRR that are necessary to nucleate multiple ERES components.

The effects of the inhibitors on COPII prompted us to examine other ERES, VTC, and Golgi components. p24 is a type I integral membrane protein required for ER/Golgi transport most likely as a cargo receptor and/or as a coat recruitment accessory protein (49–51); at steady state, it localizes to the early Golgi, VTCs, and ERES. As shown in Fig. 7, A and B, p24 displayed its normal pericentriolar localization in cells transfected with either RFP-ALG-2 (Fig. 7A) or FLAG-PRR (Fig. 7B). In addition to the strong Golgi area labeling, p24 was also present in peripheral spots that co-localized with the RFP-ALG-2 construct (Fig. 7A, merge). Much to our surprise, when the two inhibitor constructs were co-expressed, p24 labeling was strongly reduced or ablated. This is demonstrated in Fig. 7C (Merge), where the cell on the left lacks transfection with RFP-ALG-2, transported VSV-G-GFP efficiently and displays a yellow-containing Golgi area, whereas the triply transfected cell on the right displays a cytoplasmic build-up of cargo and a green-only Golgi area. The p24 labeling pattern in ~50 cells from each condition was quantified in Fig. 8 (left two groups of columns), further demonstrating a dramatic shift toward ablation and/or dispersion of p24 upon ALG-2-RFP-PRR expression. Furthermore, this effect did not require the RFP moiety.
Luminal Calcium and ER/Golgi Transport

VSV-G-GFP	RFP-ALG-2	COPII	FLAG-PRR
0 min			
12 min			

Merge RFP/COPII

![Merge Image](image)

G

% RFP-ALG-2 spots that colocal.	ALG-2/sec24 coloc.	ALG-2/sec31 coloc.
+	**	
-	+	
+	+	**
because it was observed using untagged ALG-2 as well (Fig. 8, far right group of columns). One justification for the ablation of p24 could be ablation of the Golgi itself. However, Fig. 7D illustrates that GPP130, a cis-Golgi integral membrane protein (52), is localized normally in transport-inhibited cells. One possibility is that p24, which requires a phenylalanine motif for binding to Sec23 (53, 54) directly and/or indirectly interacts with the PRR region of Sec31A near the ALG-2 binding site and/or with ALG-2 itself and that this interaction is required for the proper localization and physical stability of p24. Other manipulations that block ER-to-Golgi cargo transport, such as BFA treatment, cause dispersal but not ablation of p24 (data not shown). That p24 was degraded in an acidic compartment as opposed to otherwise masked from immunofluorescence was confirmed by the addition of the lysosomal protease inhibitors leupeptin and aprotinin or by neutralization of acidic compartments with chloroquine, which largely prevented p24 ablation in cells co-expressing the RFP-ALG-2 and PRR (Fig. 8, third and fourth groups of columns).

We wondered whether the structure of the IC and stability of other vesicle machinery were similarly affected. We examined p58, another cargo receptor that rapidly recycles between the ER and Golgi (Fig. 7E), and Rbet1, an ER/Golgi SNARE with similar dynamics (Fig. 7F). In triply transfected cells displaying the expected transport delay, both of these markers did not change significantly compared with non-transfected neighbor cells. However, there may have been a slight intensification of peripheral spots reminiscent of CPA treatment (10), and there appears to have been a displacement of these proteins from the particular ERES most loaded with inhibitor (particularly for Rbet1; arrows in Fig. 7F, merge). The results with p58 and Rbet1 demonstrate that the overall structure and molecular composition of the IC was normal, further emphasizing the specificity of the dependence of p24 on Sec31/ALG-2 interactions.

We also examined the localization of a peripheral membrane tether protein, p115. p115 appears to be packaged in budding COPII vesicles (15), is essential for their fusion (14), and rapidly cycles on and off the membrane (55) presumably as a function of SNARE availability. In triply transfected cells displaying delayed transport, p115 distribution was noticeably altered (Fig. 7G). Rather than displaying mostly an intense Golgi area concentration, p115 in these cells was visible throughout the cytoplasm. Much of the peripheral p115 labeling had a hazy appearance, suggesting cytosol. However, there were a few instances where overlap could be seen between the arrested VSV-G-GFP and p115, suggesting that at least some of the p115 became concentrated at inhibited ERES (Fig. 7G, Merge). The displacement of p115 by the inhibitor constructs suggests that the on/off membrane dynamics of this protein was highly dependent upon Sec31A/ALG-2 interactions.

To summarize, the morphological results suggest unexpectedly that targeting of Sec31A on the membrane per se is not the primary functional locus of ALG-2/Sec31A interactions; rather, these interactions may selectively regulate specific transport machinery, such as cargo receptors and tethers, at ERES.

Sar1-GAP Potentiation and Sar1, Sec23, or Sec16 Binding Are Not Required by the ALG-2-PRR Inhibitor—The Sec31A PRR domain (residues 800–1113) can be visualized as an unstructured chain connecting and perhaps nucleating a number of important ERES components. ALG-2 binding (residues 839–851) (32) is the N-terminal known interaction, followed by a region (residues 981–1015) that contacts both inner shell components Sec23 and Sar1 (1), followed by a region (not precisely known but C-terminal to the others) that binds the coat scaffold Sec16 (56), which also independently interacts with both inner and outer shell coat layers (56). ALG-2/Sec31A interactions might regulate Sec31 interactions with its binding partners along this chain. For example, one possibility was that ALG-2 helped position the Sec31A-PRR onto the Sar1-Sec23 complex, where PRR residues Trp-195 and Asn-196 insert into the Sar1 active site and potentiate Sec23 GAP activity. If this were the case, the inhibitor peptide could work by “falsely” stimulating GAP activity of Sar1. We mutated Sec31A-PRR residues Trp-195 and Asn-196 individually to Ala; both mutations have been shown to inactivate GAP potentiating activity (1). When combined with ALG-2 overexpression, both peptides produced strongly synergistic inhibitions (Fig. 9A), indicating that the GAP potentiating activity was not required for the disruption of transport.

To systematically test whether PRR interactions along the chain are required for the functional inhibition, we truncated the FLAG-PRR 800–1113 from the C-terminal end. The PRR 800–1021 construct eliminates known interactions with Sec16. The PRR 800–976 construct eliminates known interactions with Sec16, Sec23, and Sar1. As shown in Fig. 9B, both PRR 800–1021 and PRR 800–976 retained full inhibitory potential compared with the full-length PRR 800–1113 construct. Note that in the presence of excess PRR 800–976, endogenous Sec31A, Sec23, Sar1, and Sec16 can, in principle, still interact through all of their known binding sites, implying that the inhibitor functionally acted by disrupting interactions between Sec31A and ALG-2 itself rather than by directly competing with other binding partners of the PRR. One possibility consistent with the data is that ALG-2/PRR interactions activate PRR interactions with its downstream binding partners by virtue of ALG-2-induced PRR structural changes. Indeed, recent *in vitro* studies demonstrated that the purified Sec31A-Sec13 complex bound to Sec23 only in the presence of ALG-2 and Ca2+, yet ALG-2 itself did not interact with Sec23 (36). A structural
Luminal Calcium and ER/Golgi Transport

VSV-G-GFP	RFP-ALG-2	endog. marker	FLAG-PRR	Merge
![Image A](image1.png)	![Image B](image2.png)	![Image C](image3.png)	![Image D](image4.png)	![Image E](image5.png)
				
![Image F](image11.png)	![Image G](image12.png)			

12 min

20 µm
mechanism of this effect mediated in the context of a proline-rich loop domain remains to be elucidated. However, our experiments demonstrate the regulatory significance for the ALG-2/Sec31A interaction in vivo. Furthermore, our mutagenesis experiments rule out the less incisive interpretation that the targeted PRR construct merely competes with, displaces, and/or directly dysregulates the other binding partners of Sec31A. Thus, it appears that proper ALG-2/PRR interactions per se are required for transport. Although the functionally critical step(s) affected by this interaction remains unknown, several possibilities suggested by in vitro studies include the timed attenuation of budding to allow proper vesicle filling (36), proper on/off dynamics of Sec31A at ERES (32), regulation of cargo receptor p24 stability and trafficking (Fig. 7), or the timing of vesicle uncoating (10) and fusion.

ALG-2/Sec31A Interactions and Sec31A Function in Transport Require Luminal Calcium—To strengthen the link between the luminal calcium requirement for transport (Figs. 1–4) and the effects of ALG-2/Sec31A interactions on transport (Figs. 5–9), we examined the luminal calcium dependence of ALG-2 and Sec31A function using gene silencing and overexpression combined with CPA treatments. First, we examined the functional effects of ALG-2 depletion from NRK cells using siRNAs, the best experiments achieved greater than 95% depletion of ALG-2, as judged from immunoblots of NRK cell extracts (data not shown). Shown are average of three independent replicates of each experiment. Each bar represents ≥90 cells. Error bars, S.E.

![Figure 9. ALG-2/Sec31-PRR inhibits transport independently of known interactions with Sec16, Sec23, or Sar1. A, as in Fig. 5A but employing FLAG-Sec31-PRR residues 800–1113 (PRR) or the indicated PRR construct mutants, B, as in A but employing PRR deletion constructs as indicated rather than point mutations. Asterisks, p values for two-tailed t tests for the indicated value versus the 12-min mock control; *, p < 0.05; **, p < 0.01. Shown are averages of three independent replicates of each experiment. Each bar represents ≥90 cells. Error bars, S.E.](image)

ALG-2/Sec31A Interactions are required for p24 stability and targeting of p115. NRK cells were transfected with VSV-G-GFP along with ALG-2-RFP (A) or FLAG-sec31A (B) or with both (C–G). Cells were shifted to 32 °C for 12 min, fixed, and immunolabeled to detect FLAG-PRR and endogenous p24 (A–G), p58 (E), rbet1 (F), or p115 (G). Shown are single optical sections of deconvolved wide field image stacks. In each set of fields, green arrows are employed in the image plane that was merged as green and red arrows are used in the plane merged as red. White boxes mark regions of ER that co-localize with p115.

![Figure 7. ALG-2/Sec31A interactions are required for p24 stability and targeting of p115.](image)
tial compensatory mechanism that could help account for the mild transport phenotype. Compensatory Sec31A overexpression would also support a positive functional role for ALG-2 in trafficking but does not provide quantitative functional information. Therefore, other components of the proposed effector pathway were targeted.

siRNA-mediated depletion of Sec31A by over 85% caused an ~50% inhibition of VSV-G-GFP transport, using the transport index assay (Fig. 10C, bar 1 versus bar 2), similar to the inhibition caused by depletion of the ER/Golgi SNARE syntaxin 5 (Fig. 10C, bar 2 versus bar 3) (39). It was somewhat surprising that significant VSV-G-GFP transport occurred in the virtual absence of Sec31A because the outer shell is often described as an essential element of COPII vesicle formation. One possibility would be that another gene provides some minimal outer shell function. The Sec31B gene product has not been demonstrated to function in ER/Golgi transport. If Sec31B were expressed and provided some outer shell function, it might involve a very different mechanism of coordination with inner shell components because Sec31B exhibits its lowest sequence similarity to Sec31A in the PRR region and contains no consensus ALG-2 binding sites (not shown). Another possibility to explain the residual transport in the absence of Sec31A is that some cargo transport is possible using primarily or entirely inner shell components, at least for the very efficient cargo VSV-G. Indeed, the inner shell component Sec23 was significantly inhibited by depletion of Sec31A and ALG-2 (Fig. 10C, bar 2 versus bar 3) (39). It was somewhat surprising that significant VSV-G-GFP transport occurred in the virtual absence of Sec31A because the outer shell is often described as an essential element of COPII vesicle formation. One possibility would be that another gene provides some minimal outer shell function. The Sec31B gene product has not been demonstrated to function in ER/Golgi transport. If Sec31B were expressed and provided some outer shell function, it might involve a very different mechanism of coordination with inner shell components because Sec31B exhibits its lowest sequence similarity to Sec31A in the PRR region and contains no consensus ALG-2 binding sites (not shown). Another possibility to explain the residual transport in the absence of Sec31A is that some cargo transport is possible using primarily or entirely inner shell components, at least for the very efficient cargo VSV-G. Indeed, the inner shell component Sec23 was signifi-
FIGURE 11. Model for action of luminal Ca\(^{2+}\), ALG-2, and COPII components. Component "M" represents an unknown membranous site to which ALG-2 targets the PRR loop (shown in red extending downward from Sec31A) in response to escaping luminal Ca\(^{2+}\).

stantly elevated in Sec31A knockdown cells (Fig. 10, A and B), suggesting an artificially enhanced role for the inner shell in the absence of Sec31A. Upon luminal Ca\(^{2+}\) depletion using the CPA protocol, transport was severely inhibited in control NRK cells (Fig. 10C, bar 1 versus bar 4). Interestingly, however, transport was not further inhibited by Sec31A depletion, apparently indicating that Sec31A does not contribute to transport in the absence of luminal Ca\(^{2+}\) (Fig. 10C, bar 4 versus bar 5). This was not due to the transport index algorithm being less sensitive at small values or a non-physiological transport mechanism not due to the transport index algorithm being less sensitive at small values or a non-physiological transport mechanism because syntaxin 5 depletion caused an easily detectable inhibition in the absence of luminal Ca\(^{2+}\) (Fig. 10C, bar 4 versus bar 6) and because Sec31A depletion caused an easily detectable inhibition in the presence of Ca\(^{2+}\) but at time-limited increments of transport (Fig. 10C, bar 7 versus bar 8). In fact, if the background-subtracted transport indices for the normal, CPA-depleted, and time-limited groups are each normalized to their own positive control, we found that the knockdowns inhibited to a similar degree under all conditions except Sec31A depletion after CPA treatment (Fig. 10C, inset). Ca\(^{2+}\) dependence of Sec31A function has not been observed before; this novel finding provides a potential basis for the observed requirement for luminal Ca\(^{2+}\) in ER-to-Golgi transport (Figs. 1–4) and is strongly suggestive of an important role for ALG-2/Sec31A interactions because ALG-2 is the only known Ca\(^{2+}\) binding protein with which Sec31A interacts.

If indeed ALG-2/Sec31A interactions contribute to Sec31- and Ca\(^{2+}\)-dependent traffic, then luminal Ca\(^{2+}\) depletion should also negate the transport inhibition caused by dominant-negative disruption of ALG-2/Sec31A interactions. Indeed, as shown in Fig. 10D, the inhibition caused by ALG-2-PRR overexpression was eliminated following CPA treatment. Likewise and perhaps more importantly, in the presence of ALG-2-PRR overexpression, the further effect of CPA addition was very minimal (Fig. 10D, last bar in the first group versus the last bar in the second group). Hence, luminal Ca\(^{2+}\) and the ALG-2-PRR disruption depend upon each other to effect transport, implying that the protein interactions disrupted by the inhibitors at least in part account for the luminal Ca\(^{2+}\) requirement. This experiment, when combined with the above results, strongly implies an important role for ALG-2/Sec31A interactions in luminal Ca\(^{2+}\)-dependent trafficking from the ER to Golgi. However, more direct experiments will be required to elucidate the precise mechanisms.

DISCUSSION

A Model for Luminal Calcium and ALG-2/Sec31A Interactions in ER-to-Golgi Transport—Here we demonstrate that luminal Ca\(^{2+}\) is required post-cargo folding for ER-to-Golgi transport. Previous studies employing chelators and/or in vitro reconstitutions did not address whether luminal Ca\(^{2+}\) pools, as opposed to resting cytosolic Ca\(^{2+}\), was involved (17, 23, 42). Likewise, previous studies using SERCA inhibitors would have resulted in activation of UPR. Although UPR may additionally regulate ER/Golgi transport machinery (45, 57, 58), our results identify a more direct involvement of luminal Ca\(^{2+}\).

A leading candidate mechanism of action of Ca\(^{2+}\) in ER-to-Golgi transport is regulation of coat dynamics by the Ca\(^{2+}\)-adaptor protein ALG-2 (32, 33, 35, 47). However, the functional role of ALG-2 has been difficult to assess, perhaps due to functional redundancy of PEF proteins (59) or cellular compensatory mechanisms (this work). Here we present evidence that ALG-2 targets the Sec31 PRR to a functionally critical, saturable site. Overexpression of reagents designed to disrupt ALG-2/Sec31A interactions blocks transport, implying a required role. Furthermore, luminal Ca\(^{2+}\) is required for this interaction to modulate transport and for Sec31A function in transport, strongly implying that Ca\(^{2+}\)-dependent ALG-2/Sec31A interactions contribute to the Ca\(^{2+}\) dependence of ER/Golgi transport. Our data are compatible with the model shown in Fig. 11, wherein escaping luminal Ca\(^{2+}\) regulates ALG-2/Sec31A interactions with each other and an unknown membrane anchor site ("M"). This model conforms to the current paradigm that PEF proteins act as Ca\(^{2+}\)-dependent adaptors to stabilize otherwise weak complexes (47). The ALG-2/Sec31/M interaction could directly regulate Sec31A interactions with other components, such as inner shell components (36), cargo receptors, and tethers, and/or directly regulate Sec31 on/off dynamics, including
Luminal Calcium and ER/Golgi Transport

uncoating (10). Our data argue that the localization of Sec31A to ERES, per se, is not a consequence of ALG-2 interactions because a very significant transport block was usually accompanied by very limited effects on coat localization. However, our data do support a role for the Sec31A PRR region as an integrator of ERES components because, at sites where the ALG-2-PRR inhibitor targeted with the highest copy number, several ERES components, including both the inner and outer COPII coat and Rb1t, were displaced.

In an earlier work (10), we reported that Ca$^{2+}$-dependent ALG-2 interactions stabilized Sec31A on isolated vesicles in vitro and inhibited their homotypic fusion. This finding highlighted the question of whether Ca$^{2+}$-dependent mechanisms were required for as opposed to inhibiting the overall transport process. Likewise, recent in vitro budding studies found that Ca$^{2+}$-dependent ALG-2/Sec31A interactions attenuated vesicle budding with purified components (36). Once again, the in vitro model did not illuminate whether this regulatory action of ALG-2 at an isolated step was required for proper transport in cells (e.g., for correct timing of vesicle scission). The present work helps to clarify the physiological role of Ca$^{2+}$ and ALG-2/Sec31A interactions. First, it demonstrates a required role for luminal Ca$^{2+}$ in membrane cargo transport, with Ca$^{2+}$ depletion leading to slowed cargo transport accompanied by dense accumulations of both COPII buds and unfused vesicles. Second, it demonstrates that abrogation of Ca$^{2+}$-dependent ALG-2/Sec31A interactions inhibits transport, implying a required role for these Ca$^{2+}$-dependent interactions. Third, it demonstrates that Sec31A function in transport requires luminal Ca$^{2+}$, again implying a required, overall positive role for Ca$^{2+}$ and implicating ALG-2, as the only known Ca$^{2+}$-binding partner of Sec31A, in that positive role. However, because our results did not pinpoint the precise functional step affected by ALG-2/Sec31A interactions, several potential mechanisms of action, including attenuation-based mechanisms, remain possible.

The potential functional consequences of ALG-2/Sec31A interactions for ER-to-Golgi transport are severalfold. The interactions may facilitate vesicle budding and cargo loading. Cargo loading is only beginning to be understood and appears to involve subtly timed interactions by multiple ERES components to properly regulate vesicle size and content (60, 61). The functional locus of the ALG-2/Sec31A interaction could also be shortly after vesicle formation. Stabilization of the outer coat on budded vesicles by ALG-2 can restrict their fusion (10), which could limit back-fusion with the Ca$^{2+}$-rich ER and/or coordinate fusion with lower-Ca$^{2+}$ mature VTCs. Alternatively, by delaying complete uncoating and contributing to the immobilization of Sec23/24, postbudding ALG-2/Sec31A interactions could create anterograde cargo microdomains on the VTC surface that could facilitate efficient cargo sorting. Any of the potential mechanisms outlined above could result in an overall requirement for luminal Ca$^{2+}$ and ALG-2/Sec31A interactions, although some involve attenuation mechanisms consistent with the observed inhibition of in vitro budding and COPII vesicle fusion by excess ALG-2 (10, 36). The phenotypes we observed upon luminal Ca$^{2+}$ depletion and targeting of ALG-2/Sec31A in intact cells are all consistent with but do not distinguish between the mechanisms above, which are not mutually exclusive.

ALG-2/Sec31A interactions may not be the sole functional pathway for luminal Ca$^{2+}$ in ER-to-Golgi transport. COPII stabilization on membranes in vitro is also Ca$^{2+}$-regulated, but it appears to be independent of ALG-2 (10, 31). Also, Ca$^{2+}$-dependent phospholipase A$_2$ has been implicated in Golgi membrane dynamics (29, 30) where a luminal Ca$^{2+}$ requirement for transport is also evident (24–26). Last, Ca$^{2+}$-dependent cargo receptors, such as ERGIC-53/p58/LMAN1, bind cargo in the ER and release it in the lower Ca$^{2+}$ environment of the VTC (62, 63). Hence, there is ample precedent for multiple calcium sensors that could, in principle, affect ER-to-Golgi transport.

Although most ERES remained intact in the presence of excess ALG-2-PRR, those with the highest targeted inhibitor appeared to conspicuously lack several components, including both inner and outer COPII shells and rb1t. Our best interpretation is that the inhibitor had multiple effects: a functional block of most ERES that remained molecularly intact and, at higher concentrations, a breakdown in ERES structure. Formally, however, we cannot exclude the counterintuitive possibility that the relatively few obviously disrupted ERES were in fact responsible for the block in transport and that the vast majority of ERES that remained intact can never transport VSV-G anyway.

ALG-2 and the Cargo Receptor p24—One of the most striking phenotypes of disrupted ALG-2/Sec31A interactions was the ablation of p24 expression (Fig. 7C). p24 cycles between the ER and Golgi, is a major component of both COPII and COPI vesicles (50), serves as a primer for COPII vesicle formation (51, 64), and, in isoform-specific fashion, appears to serve as a cargo receptor for glycosylphosphatidylinositol-anchored proteins (65, 66), G-protein coupled receptors (67), and the Wnt ligand wingless (68, 69). Proper p24 trafficking and interaction with other binding partners requires hetero-oligomerization among several closely related p24 family isoforms (70–72). The monomeric form appears to be intrinsically unstable (73), such that knocking down one isoform will deplete other members of the hetero-oligomer (74). p24 interacts directly with COPII (54); perhaps this binding is assisted by ALG-2 and promotes or proofreads correct oligomer formation of p24. The binding of ALG-2 to Sec31A in proximity to p24 may therefore promote p24 expression. p24 expression levels appear to be regulated in sync with cargo needs (75). It is thus possible that p24 stability is linked homeostatically to the cargo folding and export environment of the ER through ALG-2/Sec31A interactions and the availability of free luminal Ca$^{2+}$.

Acknowledgments—Many investigators kindly provided reagents (see “Experimental Procedures”); however, we especially thank Dr. Masayuki Komada (Tokyo Institute of Technology) and Dr. Hideki Shibata (Nagoya University, Japan) for providing the ALG-2 reagents.

REFERENCES
1. Bi, X., Mancias, J. D., and Goldberg, J. (2007) Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645
2. Hughes, H., and Stephens, D. J. (2008) Assembly, organization, and func-
Luminal Calcium and ER/Golgi Transport

3. Miller, E. A., and Barlowe, C. (2010) Regulation of coat assembly: sorting things out at the ER. Curr. Opin. Cell Biol. 22, 447–453

4. Stagg, S. M., LaPointe, P., Razvi, A., Gürkan, C., Potter, C. S., Carragher, B., and Balch, W. E. (2008) Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484

5. Tabata, K. V., Sato, K., Ide, T., Nishizaka, T., Nakano, A., and Noji, H. (2009) Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane. EMBO J. 28, 3279–3289

6. Cai, H., Yu, S., Menon, S., Cai, Y., Lazarova, D., Fu, C., Reinsch, K., Hay, J. C., and Ferro-Novick, S. (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944

7. Lord, C., Bhandari, D., Menon, S., Ghassemian, M., Nycz, D., Hay, L., Ghosh, P., and Ferro-Novick, S. (2011) Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186

8. Trahey, M., and Hay, J. C. (2010) Transport vesicle uncoating: it’s later than you think. F1000 Biol. Rep. 2, 47

9. Barlowe, C., Orci, L., Yeung, T., Hosebuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazolla, M., Amberdt, M., and Schekman, R. (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907

10. Bentley, M., Nycz, D. C., Li, J., Wang, W., and Hay, J. C. (2010) Vesicular calcium regulates coat retention, fusogenicity, and size of pre-Golgi intermediates. Mol. Biol. Cell 21, 1033–1046

11. Angers, C. G., and Mera, A. J. (2011) New links between vesicle coats and Rab-mediated vesicle targeting. Semin. Cell Dev. Biol. 22, 18–26

12. Xu, D., and Hay, J. C. (2004) Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J. Cell Biol. 167, 997–1003

13. Yu, S., Satoh, A., Pypaert, M., Mullen, K., Hay, J. C., and Ferro-Novick, S. (2006) mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J. Cell Biol. 174, 359–368

14. Bentley, M., Liang, Y., Menon, K., Xu, D., Sztul, E., and Hay, J. C. (2006) SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J. Biol. Chem. 281, 38825–38833

15. Allan, B. B., Moyer, B. D., and Balch, W. E. (2000) Rab1 recruitment of COPII vesicle fusion and in the reformation of lysosomes from hybrid organelles. The role of intraorganellar Ca2+-dependent secretory cargo sorting at the trans-Golgi network. J. Cell Biol. 199, 1057–1066

16. Micaroni, M., Perinetti, G., Berrie, C. P., and Mironov, A. A. (2010) The ALG-2 binding site in Sec31A influences the retention kinetics of Sec31A at the endoplasmic reticulum exit sites as revealed by live-cell time-lapse imaging. Biocytin Biotech. Biochem. 74, 1819–1826

17. Shibata, H., Inuzuka, T., Yoshida, H., Sugihara, H., Wada, I., and Maki, M. (2010) The ALG-2 binding site in Sec31A stabilizes the Sec31A complex. Biochem. Biophys. Res. Commun. 353, 756–763

18. Lesch, H., Haukkainen, T., Fedorov, V., Steegmaier, M., Kuo, C. S., and Scheller, R. H. (1998) Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell Biol. 141, 1499–1502

19. Lefrançois, L., and Lyles, D. S. (1983) The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. J. Cell Sci. 61, 157–167

20. Paryani, N., Hand, J., Hay, J. C., and Ferro-Novick, S. (2006) The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the Sec31A complex. PLoS One 8, e75309

21. Lesch, H., Oorschot, V., Steegmaier, M., Kuo, C. S., and Scheller, R. H. (1998) Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell Biol. 141, 1499–1502

22. Gallione, C. J., and Rose, J. K. (1985) A single amino acid substitution in a domain of the vesicular stomatitis virus. J. Cell Biol. 105, 1053–1062

23. Hu, Z., Bonifas, J. M., Beech, I., Bench, G., Shigihara, T., Ogawa, H., Ikeda, S., Mauro, T., and Epstein, E. H. (2000) Mutations in ATP2C1, encoding a luminal Ca2+-ATPase isofrom 1 impairs Ca2+ homeostasis in the Golgi and disturbs neural polarity. J. Neurosci. 29, 12174–12182

24. Micaroni, M., Perinetti, G., Berrie, C. P., and Mironov, A. A. (2010) The SPAC1 Ca2+-pump and intracellular membrane trafficking. Traffic 11, 1315–1333

25. von Blume, J., Alleaume, A.-M., Cantero-Recasens, G., Curwin, A., Carreras-Sureda, A., Zimmermann, T., van Galen, J., Wakana, Y., Valverde, M. A., and Malhotra, V. (2011) ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+-ATPase SPAC1. Dev. Cell 20, 652–662

26. von Blume, J., Alleaume, A.-M., Kienzle, C., Carreras-Sureda, A., Valverde, M., and Malhotra, V. (2012) Cab45 is required for Ca2+-dependent secretory cargo sorting at the trans-Golgi network. J. Cell Biol. 199, 1057–1066

27. Amodio, G., Renna, M., Paladino, S., Venturi, C., Tacchetti, C., Moltedo, B., and Mironov, A. A. (2010) The ALG-2 binding site in Sec31A stabilizes the Sec31A complex. Biochem. Biophys. Res. Commun. 353, 1063–1067

28. Shibata, H., Haukkainen, T., Yoshida, H., Sugihara, H., Wada, I., and Maki, M. (2007) The ALG-2-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the Sec31A complex. F1000 Biol. Rep. 2, 54

29. Flanagan, J. J., and Barlowe, C. (2006) Cysteine-disulfide cross-linking to monitor SNARE complex assembly during endoplasmic reticulum-Golgi transport. J. Biol. Chem. 281, 2281–2288

30. Mason, M. J., García-Rodríguez, C., and Grinstein, S. (1991) Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J. Biol. Chem. 266, 20856–20862

31. Gallione, C. J., and Rose, J. K. (1985) A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 54, 374–382

32. Amodio, G., Mattana, P., Baladino, S., Venturi, C., Tacchetti, C., Molteno, O., Franceschelli, S., Mallard, M., Bonatti, S., and Remondelli, P. (2009) Endoplasmic reticulum stress reduces the export from the ER and alters the architecture of post-ER compartments. Int. J. Biochem. Cell Biol. 41, 2511–2521

33. Hughes, H., Budnik, A., Schmidt, K., Palmer, K. J., Mantell, J., Noakes, C., Johnson, A., Carter, D. A., Verkade, P., Watson, P., and Stephens, D. J.
Luminal Calcium and ER/Golgi Transport

(2009) Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER. J. Cell Sci. 122, 2924–2934
47. Maki, M., and Shibata, H. (2007) The penta-EF-hand protein ALG-2 and its interacting proteins. Calcium Binding Proteins 2, 4–10
48. Shibata, H., Suzuki, H., Kakiuchi, T., Inuzuka, T., Yoshida, H., Mizuno, T., and Maki, M. (2008) Identification of Alix-type and non-Alix-type ALG-2-binding sites in human phospholipid scramblase 3: differential binding to an alternatively spliced isoform and amino acid-substituted mutants. J. Biol. Chem. 283, 9623–9632
49. Bonnon, C., Wendeler, M. W., Paccaud, J.-P., and Hauri, H.-P. (2010) Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123, 1705–1715
50. Strating, J. R. P. M., and Martens, G. J. M. (2009) The p24 family and selective transport processes at the ER-Golgi interface. Biol. Cell 101, 495–509
51. Aguilera-Romero, A., Kaminska, J., Spang, A., Riezman, H., and Muñiz, M. (2008) The yeast p24 complex is required for the formation of COPII retromer-Golgi transport factor p115 and ALG-2, members of the penta-EF-hand protein family, form a heterodimer that dissociates in a Ca2+-dependent manner. J. Biol. Chem. 283, 560–567
52. Mukhopadhyay, S., Bachert, C., Smith, D. R., and Linstedt, A. D. (2010) Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol. Biol. Cell 21, 1282–1292
53. Conteras, I., Yang, Y., Robinson, D. G., and Aniento, F. (2004) Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat. Plant Cell Physiol. 45, 1779–1786
54. Dominguez, M., Dejgaard, K., Füllekrug, J., Dahan, S., Fazel, A., Paccaud, J. P., Thomas, D. Y., Bergeron, J. J., and Nilsson, T. (1998) gp25L/emp24/gp25 and COPII. J. Cell Biol. 140, 713–720
55. Mukhopadhyay, S., Bachert, C., Smith, D. R., and Linstedt, A. D. (2010) Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol. Biol. Cell 21, 1282–1292
56. Contreras, I., Yang, Y., Robinson, D. G., and Aniento, F. (2004) Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat. Plant Cell Physiol. 45, 1779–1786
57. Dominguez, M., Dejgaard, K., Füllekrug, J., Dahan, S., Fazel, A., Paccaud, J. P., Thomas, D. Y., Bergeron, J. J., and Nilsson, T. (1998) gp25L/emp24/gp25 and COPII. J. Cell Biol. 140, 713–720
58. Contreras, I., Yang, Y., Robinson, D. G., and Aniento, F. (2004) Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat. Plant Cell Physiol. 45, 1779–1786
59. Dominguez, M., Dejgaard, K., Füllekrug, J., Dahan, S., Fazel, A., Paccaud, J. P., Thomas, D. Y., Bergeron, J. J., and Nilsson, T. (1998) gp25L/emp24/gp25 and COPII. J. Cell Biol. 140, 713–720
60. Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., Reid, R. J. D., Rothstein, R., Hamamoto, S., Snapp, E. L., Schekman, R., and Miller, E. A. (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J. 31, 1014–1027
61. Gillon, A. D., Latham, C. F., and Miller, E. A. (2012) Vesicle-mediated ER export of proteins and lipids. Biochim. Biophys. Acta 1821, 1040–1049
62. Appenzeller-Herzog, C., Roche, A.-C., Nufer, O., and Hauri, H.-P. (2004) pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J. Biol. Chem. 279, 12943–12950
63. Zhang, B., Kaufman, R. J., and Ginsburg, D. (2005) LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J. Biol. Chem. 280, 25881–25886
64. Mitrovic, S., Ben-Tekaya, H., Koegler, E., Gruenberg, J., and Hauri, H.-P. (2008) The cargo receptors Sur4, endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53, and p25 are required to maintain the architecture of ERGIC and Golgi. Mol. Biol. Cell 19, 1796–1990
65. Takida, S., Maeda, Y., and Kinoshita, T. (2008) Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem. J. 409, 555–562
66. Muñiz, M., Nuoffer, C., Hauri, H. P., and Riezman, H. (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derivated vesicles. J. Cell Biol. 148, 925–930
67. Bartoszewski, S., Luschig, S., Desjieux, L., Grosshans, J., and Nüsslein-Volhard, C. (2004) Drosophila p24 homologues exclair and baier are necessary for the activity of the maternally expressed Tkv receptor during early embryogenesis. Mech. Dev. 121, 1259–1273
68. Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M., and Boutros, M. (2011) p24 proteins are required for secretion of Wnt ligands. EMBO Rep. 12, 1265–1272
69. Port, F., Hausmann, G., and Basler, K. (2011) A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO Rep. 12, 1144–1152
70. Béthune, J., Kol, M., Hoffmann, J., Reckmann, I., Brügger, B., and Wieland, F. (2006) Coatomer, the coat protein of COPII transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins. Mol. Cell. Biol. 26, 8011–8021
71. Barr, F. A., Preisinger, C., Kopajtich, R., and Körner, R. (2001) Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus. J. Cell Biol. 155, 885–891
72. Füllekrug, J., Suganuma, T., Tang, B. L., Hong, W., Storrie, B., and Nilsson, T. (1999) Localization and recycling of gp27 (hp24+y): complex formation with other p24 family members. Mol. Biol. Cell 10, 1939–1955
73. Belden, W. J., and Barlowe, C. (1996) Env25p, a component of COPII-coated vesicles, forms a complex with Env25p that is required for efficient endoplasmic reticulum to Golgi transport. J. Biol. Chem. 271, 26939–26946
74. Denzel, A., Otto, F., Girod, A., Pepperkok, R., Watson, R., Rosewell, I., Bergeron, J. J., Solari, R. C., and Owen, M. J. (2000) The p24 family member p23 is required for early embryonic development. Curr. Biol. 10, 55–58
75. Rötter, J., Kuiper, R. P., Bouw, G., and Martens, G. J. M. (2002) Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors. J. Cell Sci. 115, 1049–1058