ABSTRACT: Encouragingly, a lot of research studies have demonstrated that two-dimensional (2D) nanosheets applied as an additive in oils show preferable friction-reducing and wear resistance performance. However, the current issue was that an elusive way could be adopted to probe the structure–activity relationship between the structure and tribological properties of bulk layered materials due to the structural evolution during friction testing. In this study, we studied the structure–activity relationship between the structure and tribological properties of bulk layered materials (graphite, h-BN, WS2, and MoS2) by an in situ four-ball friction tester. The morphological and structural changes of the layered materials after in situ four-ball-milling were detected by a series of characterizations. This study revealed the friction-induced nanostructural evolution behaviors of bulk layered materials by a four-ball mode.

INTRODUCTION

Most of the energy consumption and material loss along with growing transportation and other industries were ascribed to friction and wear, as a result accelerating the emission of CO2 and other harmful gases. Currently, the most effective way to control or reduce friction and wear is to use a lubricant with good friction properties.1 The two-dimensional (2D) layered materials as lubricant additives were capable of forming protective films or sliding layers on the contact surface, which were very effective in reducing friction and wear.2 Lately, the bulk layered materials (e.g., graphite, MoS2, WS2, and h-BN) have extensively been used as lubrication additives to improve the friction and wear properties of lubricants.3,4 Due to the intrinsically low friction properties of the 2D layered nanosheets structures, they were desirable in many engineering applications, where friction coefficients were reduced to 0.07–0.27.5–8 The proposed mechanism of the friction-reducing performance, which has been revealed to be a result of a durable boundary film on the rubbing surfaces to prevent metal-to-metal contact, relied on sliding between the layers because of weak van der Waals forces.9–12 Consequently, the structure of 2D layered nanosheets played an intriguing role in the lubrication properties,10,13 thus accounting for an unknown relationship between the structure and friction properties.14,15 The reports showed that graphene with a certain amount of native surface dislocation, vacancies, or interlayer corrugation presented a higher friction coefficient than the defect-free graphene.16,17 Fundamentally, the Raman intensity of the D peak and the \(I_D/I_G \) ratio of the defect-free graphene debris after use increased, suggesting that the defects and disorders emerged in some local regions of graphene.18,19 However, after being tested in the duration of the friction process, the \(I_{2D}/I_G \) ratio of graphene decreased, indicating that graphene was stacked to form thick sheets. This gave rise to the formation of a friction film that separated the two contact surfaces.20,21 Even at the nanoscale, the direct observation of the tribolayers formed on the friction interfaces by high-resolution transmission electron microscopy (HRTEM) also suggested the ordering evolution of graphene.22–24 Hence, the friction-induced structural change for 2D layered nanosheets was generally identified. In other cases, many graphite-like layered materials with an ordered structure also achieved lower friction.25 For producing high-quality 2D layered nanosheets, many exfoliation methods have sprung up in the past decade.26–28 Among these methods, the exfoliation by ball-milling has successfully produced a catalog of 2D layered nanosheets (graphene, MoS2, boron nitride nanosheets
In a liquid phase, we envisioned a study method to reveal the relationship between the structural change and the friction coefficient of 2D layered bulk materials on the basis of a four-ball friction tester.

Through in situ testing of the friction performance in a four-ball tester, we characterized the structure and morphology of the bulk layered materials at different friction times and discussed the relationship between the structural change and friction performance.

RESULTS AND DISCUSSION

Figure 1 provides the particle size distributions of four two-dimensional materials dispersed in glycerol. As a result of three-time measurements of each two-dimensional material, it is found that the bulk particles of the four two-dimensional materials are uniformly distributed in glycerol, and their average particle sizes are approximately 788, 244, 507, and 587 nm, respectively.

Figure 2 shows the friction coefficient curves and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of four two-dimensional materials before and after ball-milling. It can be seen from Figure 1A that the coefficient of friction (COF) of graphite gradually increases to a maximum of 0.1 within 0−2600 s due to the aggregation and shearing of graphite at the friction interface. Subsequently, the COF gradually decreases to 0.042 in the range of 2600−21 600 s, showing a decrease by 58% compared to the maximum. This phenomenon is attributed to the antifriction effect of graphite. In general, a horizontal slip of low shear force occurs between the layers of graphite with a high-speed sliding of the friction interface. Correspondingly, the SEM and TEM images show that the pristine graphite particles exhibit a typical bulklike structure with a lateral size of 2−4 μm (Figure 2A1,A2). After undergoing ball-milling exfoliation in the four-ball mode, the bulk graphite is significantly converted into a sheetlike structure, accompanied by a 58% reduction in the friction coefficient and a decline to 0.5−1.2 μm in the average size (Figure 2A3,A4). Interestingly, the same results are found in the other three layered materials (Figure 2B−D). In contrast to the rigid and thick raw materials (Figure 2B1,B2,D1,D2), the edges and surfaces of ball-milled materials seem to be curly and coarse (Figure 2B3,B4,D3,D4), suggesting a rather low thickness. It is possible that, as the aid of continuous shearing, the van der Waals forces in the direction perpendicular to the surfaces were overcome, leading to the warping and exfoliation of bulk sheets into nanosheets.

It is noteworthy that except for WS2, the other three materials exhibit a significant reduction in both size and thickness. The WS2 bulk material has not only larger size and thickness but also stronger van der Waals forces in the interlayer, thereby accounting for the difficulty in exfoliation in the four-ball mode (Figure 2C1−C4).

To further understand the structural evolution of the bulk layered materials under friction testing, we conducted HRTEM analysis (Figure 3) for the bulk layered materials before and after ball-milling. Through the in situ ball-milling, we can obtain several to dozen layers of nanosheets from raw materials. The reason is that, with the aid of continuous shearing, the van der Waals forces in the direction perpendicular to the surfaces of 2D materials are overcome, thus leading to the peeling of raw materials into nanosheets. This result further confirms the structural transformation from the bulk layered materials to few layers during sliding. However, the ball-milled h-BN and WS2 show obvious disorders and defects in their structures, which means that highly ordered or less exfoliated bulk layered materials are prone to generating uncertain defects by friction. In all, the results evidently reveal that friction-induced nanostructural evolution occurs.

Figure 4 shows the X-ray diffraction (XRD) and Raman spectra of the bulk layered materials and ball-milled layered samples. For the four ball-milled materials, the XRD
characteristic peaks show weaker intensity and a slight blue shift, suggesting the enlargement of the interlayer spacing and the indication of a weakened $\pi-\pi$ stacking interaction.38,39

The Raman spectra before and after ball-milling are shown in Figure 3B. Compared to the Raman spectra of graphite, the D band of ball-milled graphite at ~1350 cm$^{-1}$ is attributed to the

Figure 2. Friction coefficient curve, corresponding SEM and TEM images of ball-milled graphite (A1–A4), ball-milled h-BN (B1–B4), ball-milled WS$_2$ (C1–C4), and ball-milled MoS$_2$ (D1–D4) at different friction stages.
The defect-induced breathing mode of sp³ rings and the G band at \(\sim 1582 \text{ cm}^{-1} \) is attributed to the E\(_{2g}\) mode of sp²-hybridized carbon bonds.\(^{40}\) Meanwhile, the enhanced D peak indicates an increase in the order degree of the exfoliated graphite.\(^{41}\) For h-BN, the strong peak at 1365 cm\(^{-1}\) is attributed to the interlayer E\(_{2g}\) mode of h-BN. After ball-milling, the E\(_{2g}\) peak of the as-

Figure 3. HRTEM images of ball-milled graphite (A1, A2), ball-milled h-BN (B1, B2), ball-milled WS\(_2\) (C1, C2), and ball-milled MoS\(_2\) (D1, D2) at the lowest friction coefficient.
exfoliated h-BN shows a slight blue shift and a decrease in strength, indicating an increase in disorder and a decrease in the number of layers.42,43 For WS2, the intensity ratios of the two peaks decrease, indicating an increase in structural disorder. On the contrary, the intensity ratio of the two peaks of MoS2 increases, indicating that the structure is more ordered. This is consistent with the results of HRTEM.

Figure 5 shows the Fourier transform infrared (FT-IR) and UV−vis spectra of the bulk layered materials and ball-milled layered samples. Apparently, the UV−vis characteristic peak of the ball-milled layered materials shifts to a higher peak position, indicating a reduced layer number (Figure 5A).44−46 As shown in the FT-IR spectra of Figure 4B, for ball-milled graphite, the obvious augmentation of the band at 3125 cm−1 is associated with the stretching vibrations of OH47 and that of the band at 1748 cm−1 arises from the asymmetrical stretching of C=O groups, and the peaks in the region of 1500 cm−1 correspond to OH vibrations and single bond energy between C and O stretching of C−O−C and C−OH, corroborating the increase of oxygen content after ball-milling.48 For h-BN, there is no significant change in the infrared spectrum before and after ball-milling. In the infrared spectra of WS2 and MoS2, there appears a decrease in the intensities of the W−S bond and Mo−S bond but an increase in the intensity of the S−O bond. In general, the oxygen contents of several materials after ball-milling significantly increases due to oxidation of the sheet material during the rubbing process.

The wear behavior of different bulk layered materials can be illustrated clearly by the morphology of wear scars at the lowest friction coefficient as shown in Figure 6. Among these wear scars, those of h-BN and WS2 exhibit a deeper and wider wear region (Figure 6B,C) than those of graphite and MoS2 (Figure 6A,D). For MoS2, the abundant active elements such as Mo and S play an important role in reducing the wear and increasing the load capacity.9,50 However, the worn surface of graphite shows smaller wear, which is ascribed to the flexible layered graphite filling the worn grooves by exfoliating off few graphene nanosheets and forming stable transfer films on the worn surface.51−53 Therefore, it can be inferred that the relationship between the structural evolution and friction performance can be revealed by studying the materials before and after ball-milling.

The Raman spectra of wear scar areas are shown in Figure 6. It can be seen that a more noticeable and stronger D peak appears on the friction interface lubricated by the ball-milled graphite (Figure 7A).54 Similarly, the Raman signals of the exfoliated h-BN and WS2 are found on the worn surfaces. These results demonstrate that the exfoliated nanosheets can be filled into the groove of the worn surface in ball-milling.55−57 Therefore, it can be concluded that ball-milling plays a key role in the structural evolution of bulk layered materials, and the coefficient could reflect the structural change in bulk layered materials at the friction interface to some extent. That is to say, the originally integrated structure makes a great contribution to the better lubrication properties.

CONCLUSIONS

In this study, we designed a method to probe the in situ structure−activity relationship between structural evolution during ball-milling and the friction coefficient in the four-ball mode. The results showed that the change of friction coefficient in testing was connected to the structural evolution of the bulk layered materials.

EXPERIMENTAL SECTION

Ball-Milling Procedure. In a typical experiment, 0.1 g of raw material (graphite, h-BN, WS2, MoS2) Sinopharm...
Chemical Reagent Co., Ltd., 99%) and 15 mL of glycerin (Sinopharm Chemical Reagent Co., Ltd., 98.5%) were poured into a container and sonicated for 2 h to obtain a uniform dispersion. Five milliliters of the mixture was then transferred into a stainless steel oil canister in a four-ball friction machine. The ball-milling test of the samples was carried out by a four-ball machine (MMW-1, Jinan Chenda Co., Ltd.). The testing was conducted according to the ASTM D4172 standard method (1200 rpm, 100 N load, and testing duration of 6 h). After the completion, the collected product was washed with absolute ethanol and water and then centrifuged for 15 min at 500 rpm. After centrifugation, the top 80% of the supernatant was pipetted off and the ball-milled layered material was characterized. The illustration of the relationship studied between the coefficient of friction and structure of the bulk layered materials is described in Scheme 1.

Figure 6. Three-dimensional (3D) topography images and 2D profiles across the wear tracks for flat specimens after wear tests with graphite (A), h-BN (B), WS₂ (C), and MoS₂ (D) (100 N, 1200 rpm, 6 h).

Characterizations. The morphologies and sizes of the as-prepared samples were observed by a field scanning electron microscope (S-4800II, HITACHI, Japan) equipped with an energy-dispersive spectrum (EDS) and a transmission electron microscope (Tecnai 12, Philips, Netherlands). High-resolution transmission electron microscopy (HR-TEM) was conducted on a Tecnai G2F30S-TWIN field emission transmission electron microscope. The phase composition of the as-prepared samples was investigated using a D8 advance X-ray diffraction instrument (XRD, Bruker AXS, Germany). Raman spectra were investigated (using an In Via Raman spectrometer, Renishaw, Britain). Fourier transform infrared spectroscopy (FT-IR) signals were recorded on a Cary 610/670 micro infrared spectrometer (Varian). Further, the ultraviolet and visible (UV−vis) spectra were investigated by a Cary 5000 spectrophotometer (Varian).
AUTHOR INFORMATION

Corresponding Author

Zhi-Lin Cheng − School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; orcid.org/0000-0003-3164-5883; Phone: +86 514 87975590; Email: zlcheng224@126.com

Authors

Ying-chao Kong − School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Ji-wei Dong − School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Zan Liu − School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.9b03358

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was funded by Jiangsu Province Six Talent Peaks Project (2014-XCL-013) and Jiangsu Industrial–Academic-Research Prospective Joint Project (BY2016069-02). The authors also acknowledge the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B112). The data of this paper originated from the Test Center of Yangzhou University.

REFERENCES

(1) Anand, G.; Saxena, P. A review on graphite and hybrid nanomaterials as lubricant additives. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 149, No. 012201.
(2) Zhang, Z. J.; Simionesie, D.; Schaschke, C. Graphite and hybrid nanomaterials as lubricant additives. Lubricants 2014, 2, 44-65.
(3) Berman, D.; Erdemir, A.; Sumant, A. V. Graphene, a new emerging lubricant. Mater. Today 2014, 17, 31-42.
(4) Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. *Mater. Des.* 2017, 135, 319–332.

(5) Nie, H.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. Excellent Tribological Properties of Lower Reduced Graphene Oxide Composite by Using a One-Step Reduction Molecular-Level Mixing Process. *Materials* 2018, 11, 1–14.

(6) Liang, S.; Shen, Z.; Yi, M.; Liu, L.; Zhang, X.; Ma, S. In-situ exfoliated graphene for high-performance water-based lubricants. *Carbon* 2016, 96, 1181–1190.

(7) Wu, J.; Mu, L.; Zhu, J.; Feng, X.; Lu, X.; Larsson, R.; Shi, Y. Synthesis of hollow fullerene-like molybdenum disulfide/reduced graphene oxide nanocomposites with excellent lubricating properties. *Carbon* 2018, 134, 423–430.

(8) Matsumura, K.; Chiashi, S.; Manuyama, S.; Choi, J. Macroscale tribological properties of fluorinated graphene. *Appl. Surf. Sci.* 2018, 432, 190–195.

(9) Singh, K. K.; Prabhu, B. R.; Choudhary, S.; Pramanik, C.; John, N. S. Effect of Graphene and MoS2 Flakes in Industrial Oils to Enhance Lubrication. *ACS Omega* 2019, 4, 14569–14578.

(10) Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nanostructural evoluation of graphene as a lubrication additive. *Appl. Surf. Sci.* 2018, 434, 21–27.

(11) Gan, C.; Liang, T.; Li, W.; Fan, X.; Zhu, M. Amine-terminated liquid modified graphene oxide/cooper nanocomposite toward efficient lubrication. *Appl. Surf. Sci.* 2019, 491, 105–115.

(12) Bordignon, R.; Sávalro, D.; Binder, C.; Klein, A. N.; Drago, V.; Mello, J. D. Tribological Behaviour of Plasma-Functionalized Graphene as Low-Viscosity Oil Additive. *Tribol. Lett.* 2018, 66, No. 114.

(13) Cho, D. H.; Wang, L.; Kim, J. S.; Lee, G. H.; Kim, E. S.; Lee, S.; Lee, C.; et al. Effect of surface morphology on friction of graphene on various substrates. *Nanoscale* 2013, 5, 3063–3069.

(14) Zheng, D.; Cai, Z. B.; Shen, M. X.; Li, Z. Y.; Zhu, M. H. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface. *Appl. Surf. Sci.* 2016, 387, 66–75.

(15) Li, J.; Ge, X.; Luo, J. Random occurrence of macroscale superlubricity of graphite enabled by tribo-transfer of multilayer graphene nanoflakes. *Carbon* 2018, 138, 154–160.

(16) Wu, J.; Mu, L.; Zhu, J.; Feng, X.; Lu, X.; Larsson, R.; Shi, Y. Synthesis of hollow fullerene-like molybdenum disulfide/reduced graphene oxide nanocomposites with excellent lubricating properties. *Carbon* 2018, 134, 423–430.

(17) Peng, Y.; Wang, Z.; Zou, K. Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants. *Langmuir* 2015, 31, 7782–7791.

(18) Fan, K.; Chen, X.; Wang, X.; Liu, X.; Liu, Y.; Lai, W.; Liu, X. Toward Excellent Tribological Performance as Oil-Based Lubricant Additive: ParticularTribological Behavior of Fluorinated Graphene. *ACS Appl. Mater. Interfaces* 2018, 10, 28828–28838.

(19) Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nanostructural evoluation of graphene as a lubrication additive. *Appl. Surf. Sci.* 2018, 434, 21–27.

(20) Zhang, L.; Pu, J.; Wang, L.; Xue, Q. Frictional dependence of graphite and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum. *Carbon* 2014, 80, 734–745.

(21) Fan, X.; Xia, Y.; Wang, L.; Li, W. Multilayer Graphene as a Lubricating Additive in Bentonite Grease. *Tribol. Lett.* 2014, 55, 455–464.

(22) Merkle, A. P.; Erdemir, A.; Eryilmaz, O. L.; Johnson, J. A.; Marks, L. D. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. *Carbon* 2010, 48, 587–591.

(23) Zhang, L.; He, Y.; Zhu, L.; Yang, C.; Niu, Q.; An, C. In situ alkylated graphene as oil dispersible additive for friction and wear reduction. *Ind. Eng. Chem. Res.* 2017, 56, 9029–9034.

(24) Cho, D. H.; Wang, L.; Kim, J. S.; Lee, G. H.; Kim, E. S.; Lee, S.; Lee, C.; et al. Effect of surface morphology on friction of graphene on various substrates. *Nanoscale* 2013, 5, 3063–3069.

(25) Zhang, S.; Ma, T.; Erdemir, A.; Li, Q. Tribology of two-dimensional materials, from mechanisms to modulating strategies. *Mater. Today* 2019, 26, 67–86.

(26) Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. *Adv. Colloid Interface Sci.* 2017, 245, 40–61.

(27) Paredes, J. I.; Villar-Rodil, S. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. *Nanoscale* 2016, 8, 15389–15413.

(28) Zhu, J.; Wang, H.; Liu, J.; Ouyang, L.; Zhu, M. Exfoliation of MoS2 and h-BN nanosheets by hydrollysis of LiBH4. *Nanotechnology* 2017, 28, No. 115604.

(29) Ji, H.; Hu, S.; Jiang, Z.; Shi, S.; Hou, W.; Yang, G. Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance. *Electrochim. Acta* 2019, 299, 143–151.

(30) Fan, D.; Feng, J.; Liu, J.; Gao, T.; Ye, Z.; Chen, M.; Lv, X. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. *Ceram. Int.* 2016, 42, 7155–7163.

(31) Amiri, A.; Zubir, M. N. M.; Dimiev, A. M.; Teng, K. H.; Shanbedi, M.; Kazi, S. N.; Rozali, S. B. Facile, environmentally friendly, cost effective and scalable production of few-layered graphene. *Chem. Eng. J.* 2017, 326, 1105–1115.

(32) Gao, X.; Yue, H.; Guo, E.; Zhang, S.; Yao, L.; Lin, X.; Guan, E.; et al. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. *J. Mater. Sci. Technol.* 2018, 34, 1925–1931.

(33) Lin, J.; Chen, D.; Dong, J.; Chen, G. Preparation of polyvinylpyrrolidone-derodified hydrophilic graphene via in situ ball milling. *J. Mater. Sci. Technol.* 2015, 50, 8057–8063.

(34) Anantharaj, S.; Valapalli, M. O.; Karthick, K.; Pillai, V. K.; Abwarappan, S.; Kundu, S. Electrochemically chopped WS2 quantum dots as an efficient and stable electrocatalyst for water reduction. *Catal. Sci. Technol.* 2019, 9, 223–231.

(35) Yuwen, L.; Yu, H.; Yang, X.; Zhou, J.; Zhang, Q.; Zhang, Y.; Wang, L. Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. *Chem. Commun.* 2015, 52, 529–532.

(36) Li, X.; Shen, J.; Wu, J.; Wu, K. Ball-Mill-Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. *Small* 2019, 15, No. 1805567.

(37) Cho, D. H.; Wang, L.; Kim, J. S.; Lee, G. H.; Kim, E. S.; Lee, S.; Lee, C.; et al. Effect of surface morphology on friction of graphene on various substrates. *Nanoscale* 2013, 5, 3063–3069.

(38) Shi, P. C.; Guo, J. P.; Liang, X.; Cheng, S.; Zheng, H.; Wang, Y.; Chen, C. H.; Xiang, H. F. Large-scale production of high-quality graphene sheets by a non-electrolytic electrochemical exfoliation method. *Carbon* 2018, 126, 507–513.

(39) Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Sun, X.; et al. High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. *J. Mater. Chem. B* 2012, 22, 8775–8777.

(40) Graf, D.; Molitor, F.; Ensslin, K.; Stappmaier, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially Resolved Raman Spectroscopy of Small BN, MoS2, and Graphene. *Nature Nanotech.* 2009, 4, 1455–1459.
(44) Wu, P. R.; Li, W.; Liu, Z.; Cheng, Z. L. Preparation and tribological properties of oleic acid-decorated MoS2 nanosheets with good oil dispersion. J. Dispersion Sci. Technol. 2018, 39, 1742–1751.
(45) Ma, Z. S.; Wu, P. R.; Liu, Z.; Cheng, Z. L. Hydrothermal exfoliation of boron nitride into few-layer nanosheets in mixed NaOH/KOH solution. Mater. Lett. 2019, 240, 108–112.
(46) Zhao, G.; Wu, Y.; Shao, Y.; Hao, X. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 2016, 8, 5407–5411.
(47) Tian, G.; Liu, L.; Meng, Q.; Cao, B. Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping. J. Power Sources 2015, 274, 851–861.
(48) Yang, J.; Shi, G.; Tu, Y.; Fang, H. High correlation between oxidation loci on graphene oxide. Angew. Chem., Int. Ed. 2014, 53, 10190–10194.
(49) Jha, R.; Guha, P. K. An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets. J. Mater. Sci. 2017, 52, 7256–7268.
(50) Spear, J. C.; Ewers, B. W.; Batteas, J. D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 2015, 10, 301–314.
(51) Zhang, L.; He, Y.; Zhu, L.; Yang, C.; Niu, Q.; An, C. In situ alkylated graphene as oil dispersible additive for friction and wear reduction. Ind. Eng. Chem. Res. 2017, 56, 9029–9034.
(52) Wang, S.; Han, S.; Xin, G.; Lin, J.; Wei, R.; Lian, J.; Yu, Q.; et al. High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater. Des. 2018, 139, 181–187.
(53) Taha-Tijerina, J.; Peña-Paras, L.; Narayanan, T. N.; Garza, L.; Lapray, C.; Gonzalez, J.; Ajayan, P. M.; et al. Multifunctional nanofluids with 2D nanosheets for thermal and tribological management. Wear 2013, 302, 1241–1248.
(54) Li, J.; Yan, H.; Dang, D.; Wei, W.; Meng, L. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large-scale production of high-quality graphene. J. Colloid Interface Sci. 2019, 535, 92–99.
(55) Jiang, F.; Sun, H.; Chen, L.; Lei, F.; Sun, D. Dispersion-tribological property relationship in mineral oils containing 2D layered α-zirconium phosphate nanoplatelets. Friction 2019, 1–13.
(56) Baby, M.; Rajeev Kumar, K. Synthesis and characterisation of MoS2 quantum dots by liquid nitrogen quenching. Mater. Sci. Technol. 2019, 35, 1416–1427.
(57) Li, H.; Xie, F.; Li, W.; Fahlman, B. D.; Chen, M.; Li, W. Preparation and adsorption capacity of porous MoS2 nanosheets. RSC Adv. 2016, 6, 105222–105230.