NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons

Kunal Gupta, Giles E. Hardingh, Siddharthan Chandran

A Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
b Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH9 3XD, United Kingdom
c Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom

HIGHLIGHTS

- Human embryonic stem cell derived neurons develop NMDA and AMPA receptors in culture.
- Enriched HESC-derived neurons develop functional glutamate responses in vitro.
- MK 801 confers a protective effect on glutamate-induced excitotoxic neuronal death.
- Studies using human pluripotent stem cells may aid the discovery of novel therapeutic targets.

ARTICLE INFO

Article history:
Received 20 December 2012
Received in revised form 28 February 2013
Accepted 10 March 2013

Keywords:
Human pluripotent stem cells
MK 801
Excitotoxicity
Glutamate
Disease-modelling

ABSTRACT

Thanks to the development of efficient differentiation strategies, human pluripotent stem cells (HPSCs) offer the opportunity for modelling neuronal injury and dysfunction in human neurons in vitro. Critically, the effective use of HPSC-derived neural cells in disease-modelling and potentially cell replacement therapies hinges on an understanding of the biology of these cells, specifically their development, subtype specification and responses to neurotoxic signalling mediators. Here, we generated neurons from human embryonic stem cells and characterised the development of vulnerability to glutamate excitotoxicity, a key contributor to neuronal injury in several acute and chronic neurodegenerative disorders. Over two months of differentiation we observed a gradual increase in responsiveness of neurons to glutamate-induced Ca\(^{2+}\) influx, attributable to NMDA receptor activity. This increase was concomitant with an increase in expression of mRNA encoding NMDA and AMPA receptor subunits. Differentiated neurons were vulnerable to glutamate excitotoxicity in a dose-dependent manner, which was reduced by NMDA receptor antagonists.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Glutamate excitotoxicity, both acute and chronic, has been implicated widely in the pathogenesis of a range of neurological diseases, including Alzheimer’s disease, Huntington’s disease and traumatic brain injury [25,28]. Knowledge of the role and mechanisms of glutamate excitotoxicity can potentially enhance our understanding of key downstream signalling processes that mediate neuronal death and identify novel therapeutic targets. A major cause of glutamate excitotoxicity is activation of the NMDA subtype of glutamate receptor (NMDAR), which mediates Ca\(^{2+}\)-dependent cell death [26]. Most NMDARs contain two obligate GluN1 subunits plus two GluN2 subunits [11], of which there are four subtypes, GluN2A-D, with GluN2A and GluN2B predominant in the forebrain [30,40]. While physiological patterns of synaptic NMDAR activity have the potential to be neuroprotective [15,19,39], excessive or inappropriate activity is harmful. The work of many laboratories has advanced our understanding of how loss of glutamate homeostasis, ionic imbalance and inappropriate NMDAR activity can contribute to degenerative disorders [8,16,22,25,27].

Antagonism of pathological glutamate-signalling in rodent models of neurological diseases has yielded promising results [6,10], though unsuccessful clinical trials highlight the need for further studies [1,31]. Currently, excitotoxic neuronal cell death has primarily been characterised in rodent systems. Advances in human pluripotent stem cell (HPSC) technology permit the...
generation of enriched neurons of differing positional identities as well as astrocytes from human embryonic stem cells (HESC) and allow investigation of cell injury and rescue paradigms in a human in vitro system [12,13,23,24,35,38]. In light of the inter-species differences between rodent and human [34], studies utilising human in vitro systems may prove informative in interpreting the relevance of findings in rodent studies to the human pathological condition [3,13,18].

Here, we describe the functional maturation of HESC-derived neurons and the development of glutamate-responsiveness, in order to study neuronal responses to pathologically relevant glutamate concentrations [5].

2. Materials and methods

HESC Culture and manipulation: The human embryonic stem cell (HESC) line H9 (Harvard University, Cambridge, MA) was cultured and passaged regularly on a feeder layer of irradiated mouse embryonic fibroblasts, and naïvalised by established protocols [21]. HESC-derived neurons were generated by methodologies described by Koch et al. [23]. Enriched HESC-derived neural precursor cells (NPCs) were propagated in Advanced DMEM/F12, 1% Glutamax, 1% N2 supplement 1% penicillin-streptomycin, 0.1% B27 supplement, 10 ng/mL FGF and 10 ng/mL EGF. Coverslips were coated with Matrigel (BD Biosciences) for 1 h, diluted 1:30 in DMEM. NPCs were plated in NPC propagation medium without mitogens for 24 h and switched to Neurobasal-A supplemented with 12% non-essential amino acids, 1% N2 supplement, 1% penicillin-streptomycin, 0.5% Glutamax, 10 ng/mL BDNF, 10 µM forskolin, 0.1 µM retinoic acid for neuronal differentiation. 50 µM DAPT [4] was included in the first medium change. These HESC-neural cultures are consistent with those described in Gupta et al. [13] in cellular composition; 95% were neurons and the remainder astrocytes, confirmed by TuJ1 and GFAP immunostaining. Differentiation duration was determined from the day of application of neuronal differentiation medium to NPCs. The day before experiments, HESC-derived neurons were removed from their trophic differentiation medium into a trophically deprived, glutamate-free “minimal medium” [13], which comprises 90% Salt–Glucose–Glycine (SGG) medium [2] and 10% MEM (Minimal Essential Medium, Invitrogen).

Calcium-imaging: The day before imaging, HESC-derived neurons were removed from their trophic differentiation medium into a trophically deprived, glutamate-free minimum medium as described above. HESC-neurons, identified by morphology and confirmed by TuJ1 immunostaining, were imaged at various time-points in artificial cerebrospinal fluid (aCSF) [39] on a 37°C heated stage. Cells were loaded with 11 μM Fluo-3 for 30 min and washed in aCSF. Coverslips were mounted in a perfusion chamber. Fluor-3 fluorescence images (excitation 488 nm/emission 520 nm) were taken at baseline and during saturating glutamate (200 µM) and NMDA (150 µM) stimulation. Glycine (100 µM) was applied as a co-agonist. D-APV (50 µM) was used as an NMDAR antagonist. For calibration, ionomycin was used to saturate the Fluoro-3 signal (50 µM), followed by MnCl2 (10 mM) to quench. The quenched Fluoro-3 signal corresponds to ~100 nM Ca++. The KD of Fluoro-3 was taken as 315 nM and free Ca++ concentration was calculated by the formula Ca++ = Kd (F – Fmin)/(Fmax – F), where F is fluorescence. Images were taken every second for the duration of each experiment (~10 min) [17].

Gene expression analysis: Total RNA was isolated via the Absolutely RNA miniprep kit, as described [13]. cDNA synthesis performed via the AffinityScript CDNA (Stratagene) synthesis kit using oligo-dT and random hexamer primers, and qRT-PCR performed using Brilliant SYBR Green master mix (Stratagene), following the manufacturer’s instructions. Forward and reverse primer sequences:

- GRIN1 AGGAACCCCTCGGACAGTT, GCCGACTTCTCG-TAGTTG; GRIN2A TGACGCTAGCGTGTTG, CCCCAGATTA-GCCAAAG; GRIN2B TCTCGGTGCTCACTCATGG, TGGTCGG-GATCTGTTTACAA; GRIN2C GAGTGTCAAATCTCTACGAC, TGTAGTACCTCCTCCACATAT; GRIN2D CTTGGCTCTGAATGTCCTGG, GGGAGGAAACATCAACTGCA; GRIA1 GGTGTCGCTGGA-AAATCAG, CTTCCCCTGTCGTACCCAGC; GRIA2 AGTTTTC-CACTTGAGTTCAG, CAAATTTGGCTGTTGAGGT; GRIA3 TCCCACCCTTGTCTTTTCTA, TGGGAAATCCTCCGTGAGAAT; GRIA4 GCCATTTCCGTTCAAGAA, GAGGGGGCAATAGCATTCTG; GAPDH AGGGCTGCGGCCTATTGT, CAGTGGTGCGTCGAGAG.

Electrophysiology: Whole-cell NMDA-evoked currents were recorded using an Axopatch 200B amplifier (Molecular Devices) using patch-pipettes made from thick-walled borosilicate glass with a tip resistance of 4–8 MΩ that were filled with an ‘internal’ solution that contained (in mM): K-glutamate 141, NaCl 2.5, HEPES 10, EGTA 11; pH 7.3 with KOH. Experiments were conducted at room temperature (18–21°C) in an ‘external’ solution containing (in mM): NaCl 150, KCl 2.8, HEPES 10, CaCl2 4, glucose 10, pH to 7.3 with NaOH. Picrotoxin (50 µM), strychnine (20 µM) and tetrodotoxin (300 nM) were also included. NMDAR-mediated currents were induced by the addition of saturating concentrations of NMDA (100 µM) and the co-agonist glycine (100 µM) to the external solution. Access resistances were monitored and recordings where this changed by >20% were discarded. Currents were filtered at 2 kHz and digitised online at 5 kHz via a BNC-2090A/PCI-6251 DAQ board interface (National Instruments, Austin, TX, USA).

Neuronal injury and Cell viability assays: The day before application of the excitotoxic insult, HESC-derived neurons were removed from their trophic differentiation medium into a trophically deprived, glutamate-free minimal medium. Neurons were treated with glutamate with and without MK801 (10 µM) [29]. 24 h after excitotoxic challenge, cell viability was quantified using CellTiter-Glo Luminescence Cell Viability Assay (Promega), following manufacturer’s instructions. Neuronal injury experiments using high-dose NMDA (150 µM) [29], were performed in magnesium-free SGG medium [2]; cell viability was quantified after 24 h by the same protocol.

Data analysis: All experiments were performed with at least 3 biological repeats; within each, 3 technical repeats were generated. qPCR data were normalised to GAPDH. Data are presented as mean ± standard error of the mean; statistical analyses were performed in Microsoft Excel and GraphPad Prism 5 (GraphPad Software, Inc., San Diego) by univariate and two-way ANOVA with Newman-Keuls post-test and two-tailed Students’ t-test. P<0.05 was considered statistically significant.

3. Results

3.1. Temporal profile of in vitro acquisition of HESC-derived neuronal glutamate responses

In order to study excitotoxic responses in a human platform, enriched cultures of HESC-derived neurons were examined for functional glutamate-mediated responses. Neurons were stimulated with saturating glutamate (200 µM) and functional glutamate receptor activity was determined by calcium-imaging over increasing duration in culture. While initially unresponsive to glutamate (including doses of 1 mM glutamate: data not shown), HESC-derived neurons developed calcium currents in response to bath-extracellular glutamate application with increasing duration in culture. 2-week old HESC-derived neurons demonstrated no significant calcium influx, while later time points demonstrated significant calcium influx with glutamate treatment, with peak calcium currents increasing over time to maximal at 6 and
8-weeks duration in culture ($p < 0.001$, Fig. 1a). The proportion of HESC-derived neurons that exhibited glutamate-evoked calcium currents similarly showed a time-dependent increase from 13 ± 3% at 2-weeks and 15 ± 1% at 3-weeks, 54.4 ± 5% at 4-weeks, to 77.7 ± 4% and 73.0 ± 3% at 6 and 8-weeks respectively ($p < 0.001$, Fig. 1b). Thus, HESC-derived neurons acquired functional glutamate responsiveness over time in culture.

3.2. Development of functional glutamate responses coincides with expression of NMDA and AMPA receptor subunits

In order to determine if the temporal emergence of glutamate-responsiveness was due to increasing expression of glutamate receptors, we quantified the expression of NMDAR and AMPAR subunits in glutamate-unresponsive neurons at 2-weeks and in glutamate-responsive neurons at 6 and 8-weeks by qRT–PCR.

The NMDAR is a heterotrimer of two obligatory GluN1 subunits encoded by GRIN1, and two variable GluN2 subunits encoded by GRIN2 genes. Expression of NMDAR subunit GRIN1 increased from 2 to 6 and 8-weeks in culture by 1.9 ± 0.12-fold and 2.8 ± 0.25-fold respectively ($p < 0.01$). GRIN2A expression decreased at 6 and 8-weeks, to 0.6 ± 0.04-fold and 0.6 ± 0.03-fold respectively ($p < 0.01$). GRIN2B expression increased from 2-weeks to 1.4 ± 0.04-fold and 1.7 ± 0.01-fold and 6 and 8-weeks respectively ($p < 0.05$). There was no significant change in GRIN2C expression at 6 and 8-weeks (0.5 ± 0.13 and 1.5 ± 0.2-fold respectively), GRIN2D expression increased to 1.3 ± 0.07 and 1.5 ± 0.1-fold at 6 and 8-weeks respectively ($p < 0.05$, Fig. 1c). These data demonstrated an increase in expression of NMDAR subunits GRIN1, GRIN2B and GRIN2D in HESC-derived neurons over 8-weeks in culture, but not GRIN2A. Analysis of ct values suggested that NMDAR subunits 1 and 2B were the most highly expressed.

AMPA subunit quantification showed that GRIA1 expression increased significantly from 2 to 6 and 8-weeks, by 2.0 ± 0.08 and 3.0 ± 0.3-fold respectively ($p < 0.01$). GRIA2 similarly increased with duration in culture, to 1.8 ± 0.07-fold and 2.5 ± 0.04-fold after 6 and 8-weeks respectively ($p < 0.01$). GRIA3 and GRIA4 showed no significant change in expression at 6-weeks (1.0 ± 0.04-fold and 1.0 ± 0.03-fold respectively) and a significant, although modest, increase in expression at 8-weeks (1.23 ± 0.027-fold and 1.22 ± 0.033-fold respectively, $p < 0.05$, Fig. 1d). These data demonstrated an increase in AMPAR expression of HESC-derived neurons over time in culture. Analysis of ct values suggested that AMPAR subunits 1 and 2 were the most highly expressed.

The NMDAR and AMPAR profiles were dynamic over the course of the period studied, with increasing expression of AMPAR and NMDAR subunits GluN1 and GluN2B coinciding with the development of functional glutamate responses in vitro. Given that during development rodent neurons undergo a transition from GluN2B subunit-containing NMDARs to GluN2A predominance [41], the NMDAR subunit profile in HESC-derived neurons may change further over time.

3.3. HESC-derived neurons express functional NMDA receptors

In order to determine whether the glutamate-induced calcium influx was dependent on the expression of functional NMDARs, receptor-mediated calcium currents were quantified in 8-week HESC-derived neuronal cultures using NMDA-glycine co-treatment. Data demonstrated that HESC-derived neurons exhibited calcium currents upon NMDA application, which were
blocked with application of D-APV, a selective NMDAR inhibitor \(p < 0.05 \), \(\text{Fig. 2a} \). NMDAR currents were further confirmed by patch-clamp electrophysiology (\(\text{Fig. 2b} \)).

3.4. \textit{HESC-derived neurons demonstrate excitotoxic cell death at pathophysiological glutamate concentrations, and are rescued by MK801-mediated NMDA receptor blockade}

The susceptibility of 7-week-old HESC-derived neurons to glutamate-induced cell death was determined over a range of concentrations. With increasing glutamate concentrations, increasing cell death was observed: at 20 \(\mu \text{M}, 58\% \pm 5.98\% \); at 40 \(\mu \text{M}, 72 \pm 6.45\% \); and at 80 \(\mu \text{M}, 71 \pm 6.64\% \) cell death was noted (\(\text{Fig. 2c} \)). 100% cell death was induced with application of 50 \(\mu \text{M} \) stavudine. As 20 \(\mu \text{M} \) glutamate is in the pathophysiological range for extracellular glutamate concentration in human traumatic brain injury patients [5], MK801 was assayed against this concentration.

\textit{In vitro} studies on rodent neurons demonstrated the efficacy of NMDAR antagonists in preventing excitotoxic neuronal death [6]. To investigate the role of NMDARs in glutamate excitotoxicity in our system, enriched HESC-derived neuronal cultures were exposed to 20 \(\mu \text{M} \) glutamate in the presence and absence of MK801 (10 \(\mu \text{M} \)) for 24 h. MK801 conferred a significant neuroprotective effect against glutamate-induced excitotoxic injury (33.2 \(\pm \) 8.4% cell death compared to control: 57.5 \(\pm \) 3.4%; \(p < 0.05 \), \(\text{Fig. 2d} \)).

When challenged with 150 \(\mu \text{M} \) NMDA, neuronal death was also observed (27.7 \(\pm \) 3.6%; \(p < 0.001 \), \(\text{Fig. 2e} \)), however at lower levels than those induced by glutamate. Further work is required to elucidate the downstream signalling pathways that mediate glutamate and NMDA-induced excitotoxic neuronal dysfunction and death. Establishment of a robust platform for functional glutamate transmission and excitotoxicity in human neurons permits examination of these downstream pathways and could potentially aid the discovery of novel therapeutic targets.

4. Discussion

Pathological stimulation of NMDAR by glutamate has been implicated in excitotoxic injury and channel blockers have been trialled in human conditions to poor effect [20], suggesting that our understanding of human NMDAR-signalling is incomplete and reliable human-based experimental models could be informative, alongside animal studies. However, the development of glutamate-dependent currents was previously uncharacterised in enriched HESC-derived neurons \textit{in vitro}.
In these studies, we demonstrate that HESC-derived neurons, within the context of the current experimental platform, acquired maturation-dependent glutamate-responsiveness over time in culture; knowledge of these characteristics is critical for the use of HESC-neural derivatives in models of neurological injury. By mRNA expression studies, there were large increases in transcription of GRIN1 encoding the constitutive NMDAR1 subunit, GRIA1 encoding the AMPAR1 subunit, and modest increases in further NMDAR and AMPAR subunit genes. These modest transcriptional increases translated to the expression of functional and properly assembled NMDARs as determined by functional studies herein, utilising NMDA as a specific agonist and the selective inhibitor D-APV. Furthermore, quantitative studies of current amplitude and the proportion of glutamate-responsive cells demonstrated gradual increase of receptor function over duration in culture, thus suggesting neuronal-intrinsic modulation of glutamate-receptor expression and functional downstream-signalling over time. Direct confirmation of NMDAR and AMPAR subunit profiles could be elucidated further by electrophysiological studies with appropriate subunit-specific inhibitors. The mRNA expression data also suggested that NMDAR subunit expression was dynamic over the in vitro time course, with GluN2B predominance. It remained to be seen whether the subunit profile would develop over time to recapitulate the conversion from GluN2B to GluN2A predominance in experimental mammalian systems [41].

In this study, glutamate was investigated as a physiologically relevant stressor due to its direct pathophysiological role in disease states. Dose-survival curves demonstrated that HESC-derived neurons underwent glutamate-induced cell death over the range of concentrations seen in human brain injury patients in vivo [5], and could be rescued with MK801 co-administration. Similar concentrations of glutamate and MK801 have also been demonstrated to mediate excitotoxic cell death and protection in rodent in vitro studies [7,37], and in human neurons derived from the human NT2 teratocarcinoma cell-line [14,32].

Interestingly, MK801 did not completely block glutamate-mediated neuronal death and, furthermore, NMDA alone induced a lower level of neuronal death than that mediated by glutamate. These findings suggest other mechanisms of glutamate-induced neuronal death in addition to NMDAR-mediated excitotoxicity. Glutamate in high concentrations has been demonstrated to cause oxidative-stress mediated neuronal death by competitively inhibiting cysteine uptake via the Xct cysteine/glutamate antiporter and impairing glutathione production [33,37]. While the concentrations used to experimentally induce glutamate-induced oxidative cell death are typically in the millimolar range [36], excitotoxic neuronal death at lower glutamate concentrations, mediated by NMDAR activation, has been shown to result in further glutamate release and accumulation in medium to higher concentrations capable of mediating oxidative neuronal death [37]. Calcium-permeable AMPARs, lacking the GluR2 subunit that prevents calcium permeability, have also been demonstrated to mediate hippocampal neuronal death in rodent slice cultures. Oxygen-glucose-deprivation increases synaptic-trafficking of GluR2-lacking AMPARs in CA1 hippocampal neurons, causing AMPAR mediated excitotoxic cell death [9]. The pre-exposure of HESC-neurons to trophically-deprived medium in the current experimental model may have affected the trafficking of AMPAR and partially accounted for the MK801-insensitive excitotoxic neuronal death observed.

5. Conclusions

Human pluripotent stem cell technology, including HESCs and iPSCs, has tremendous potential for modelling neurological disease processes. Technological advances have allowed the generation of enriched human neurons and glia under defined conditions, permitting study of human neural cells in vitro [13,24,35]. Here, we characterised a population of enriched HESC-derived neurons in terms of development of glutamatergic responses and investigated their utility in modelling glutamate-induced neuronal injury. We established that after 2 months in culture, HESC-derived neurons underwent excitotoxic cell death at concentrations of glutamate found in the brains of human patients suffering acquired brain injury, and thus have the potential to recapitulate aspects of human pathophysiology. Furthermore, insights from the development and refinement of HESC-based platforms for in vitro modelling of neuronal injury and rescue will be critical for the development of other HPSC-based complementary systems, including iPSCs.

Conflict of interest

The authors declare no conflicts of interest and have approved the final article.

Acknowledgements

K.G. performed the research; K.G., G.E.H., S.C. prepared the manuscript. The authors thank Sean McKay for assistance with electrophysiological studies. K.G. is funded by a Wellcome Trust Clinical Training Fellowship. G.E.H. and S.C. laboratories are funded by the Medical Research Council, the Biotechnology and Biological Sciences Research Council, and the Wellcome Trust.

References

[1] G.W. Albers, W.M. Clark, R.P. Atkinson, K. Madden, J.L. Data, M.J. Whitehouse, Dose escalation study of the NMDA-glycine-site antagonist licencistol in acute ischemic stroke, Stroke 30 (1999) 508–513.
[2] H. Bading, D.D. Ginty, M.E. Greenberg, Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways, Science 260 (1993) 181–186.
[3] K.F. Bell, B. Al-Mubaraj, J.H. Fowler, P.S. Baxter, K. Gupta, T. Tsuchiya, S. Chowdhry, R. Patani, S. Chandran, K. Horsburgh, J.D. Hayes, G.E. Hardingham, Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning, Proc. Natl. Acad. Sci. USA. 108 (2011) E1–E2, author reply E3–4.
[4] L. Borghese, D. Dolezelova, T. Opitz, S. Haupt, A. Leinhais, B. Steinfarz, P. Koch, F. Edenhofer, A. Hampol, O. Brustle, Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo, Stem Cells 28 (2010) 955–964.
[5] R. Bullock, A. Zauner, J.J. Woodward, J. Myseros, S.C. Choi, J.D. Ward, A. Marmarou, H.F. Young, Factors affecting excitatory amino acid release following severe human head injury, J. Neurosurg. 89 (1998) 507–518.
[6] D.W. Choi, Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage, Trends Neurosci. 11 (1988) 465–469.
[7] D.W. Choi, M. Maulucci-Geddle, A.R. Kriegstein, Glutamate neurotoxicity in cortical cell culture, J. Neurosci. 7 (1987) 357–368.
[8] T.M. Dawson, J. Zhang, V.L. Dawson, S.H. Snyder, Nitric oxide: cellular regulation and neuronal injury, Progr. Brain Res. 103 (1994) 365–369.
[9] R.M. Dixon, J.R. Mellor, J.G. Hanley, PICK1-mediated glutamate receptor subunit 2 (GluR2) trafficking contributes to cell death in oxygen/glucose-deprived hippocampal neurons, J. Biol. Chem. 284 (2009) 14230–14235.
[10] E. Ehsani, I. Paterniti, E. Mazzon, T. Genovesi, M. Galuppo, R. Meli, P. Bramanti, S. Cuzzocrea, MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma, BMC Neurosci. 12 (2011) 31.
[11] H. Furukawa, S.K. Singh, R. Mancuso, E. Gouaux, Subunit arrangement and function in NMDA receptors, Nature 438 (2005) 185–192.
[12] K. Gupta, S. Chandran, G.E. Hardingham, Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration, Br. J. Clin. Pharmacol. (2012).
[13] K. Gupta, R. Patani, P. Baxter, A. Serio, D. Story, T. Tsuchiya, J.D. Hayes, R.A. Pedersen, G.E. Hardingham, S. Chandran, Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms, Cell Death Differ. 19 (2012) 779–787.
[14] E. Hanko, T.W. Hansen, R. Almas, R. Paulsen, T. Rootholt, Synergistic protection of a general caspase inhibitor and MK-801 in bilirubin-induced cell death in human NT2 nerve cells, Pediatr. Res. 59 (2006) 72–77.
[15] G.E. Hardingham, Pro-survival signalling from the NMDA receptor, Biochem. Soc. Trans. 34 (2006) 936–938.
[16] G.E. Hardingham, H. Bading, Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders, Nat. Rev. Neurosci. 11 (2010) 682–696.

[17] G.E. Hardingham, S. Chawla, C.M. Johnson, H. Bading, Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression, Nature 385 (1997) 260–265.

[18] G.E. Hardingham, R. Patani, P. Baxter, D.J. Wylie, S. Chandran, Human embryonic stem cell-derived neurons as a tool for studying neuroprotection and neurodegeneration, Mol. Neurobiol. 42 (2010) 97–102.

[19] C. Ikonomidou, F. Bosch, M. Miksa, P. Bittigau, J. Vöckler, K. Dikranian, T.J. Tenkova, V. Stefovska, L. Turski, J.W. Olney, Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain, Science 283 (1999) 70–74.

[20] C. Ikonomidou, L. Turski, Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neuro. 1 (2002) 383–386.

[21] A.J. Joannides, C. Fiore-Heriche, A.A. Batterby, P. Athauda-Arachchi, L.A. Bouhon, L. Williams, K. Westmore, P.J. Kemp, A. Compston, N.D. Allen, S. Chandran, A scaleable and defined system for generating neural stem cells from human embryonic stem cells, Stem Cells 25 (2007) 731–737.

[22] L.V. Kalia, S.K. Kalia, M.W. Salter, NMDA receptors in clinical neurology: excitatory times ahead, Lancet Neurol. 7 (2008) 742–755.

[23] P. Koch, T. Optiz, J. Steinbeck, J. Ladewig, O. Brustle, A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 3225–3230.

[24] R. Krencik, J.P. Weick, Y. Liu, Z.J. Zhang, S.C. Zhang, Specification of transplantable astroglial subtypes from human pluripotent stem cells, Nat. Neurosci. 14 (2011) 526–534.

[25] A. Lau, M. Tyimsanski, Glutamate receptors, neurotoxicity and neurodegeneration, Pfuglers Arch. 460 (2010) 525–542.

[26] S.A. Lipton, Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond, Nat. Rev. 5 (2006) 160–170.

[27] S.A. Lipton, P.A. Rosenberg, Excitatory amino acids as a final common pathway for neurologic disorders, N. Engl. J. Med. 330 (1994) 613–621.

[28] N.J. Maragakis, J.D. Rothstein, Glutamate transporters in neurologic disease, Arch. Neurol. 58 (2001) 365–370.

[29] M.A. Martel, T.J. Ryan, K.F. Bell, J.H. Fowler, A. McMahon, B. Al-Mubarak, N.H. Komiyama, K. Horsburgh, P.C. Kind, S.G. Grant, D.J. Wylie, G.E. Hardingham, The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults, Neuron 74 (2012) 543–556.

[30] H. Monyer, N. Burnashev, D.J. Laurie, B. Sakmann, P.H. Seeburg, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron 12 (1994) 529–540.

[31] G.F. Morris, R. Bullock, S.B. Marshall, A. Marmarou, A. Maas, L.F. Marshall, Failure of the competitive N-methyl-d-aspartate antagonist Selgotel (CGS 79755) in the treatment of severe head injury: results of two phase III clinical trials. The Selgotel Investigators, J. Neurosurg. 91 (1999) 737–743.

[32] M. Munir, L. Lu, P. McGonigle, Excitotoxic cell death and delayed rescue in human neurons derived from NT2 cells, J. Neurosci. 15 (1995) 7847–7860.

[33] T.H. Murphy, M. Miyamoto, A. Sastre, R.L. Schnaar, J.T. Coyle, Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress, Neuron 2 (1989) 1547–1558.

[34] N.A. Oberheim, T. Takano, X. Han, W. He, J.H. Lin, F. Wang, Q. Xu, J.D. Wyatt, W. Pilcher, J.G. Ojemann, B.R. Ransom, S.A. Goldman, M. Nedergaard, Uniquely bominid features of adult human astrocytes, J. Neurosci. 29 (2009) 3276–3287.

[35] R. Patani, D.A. Compston, C. Puddifoot, D.J. Wylie, G.E. Hardingham, N.D. Allen, S. Chandran, Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity, PLoS One 4 (2009) e7327.

[36] R.R. Ratan, T.H. Murphy, J.M. Baraban, Oxidative stress induces apoptosis in embryonic cortical neurons, J. Neurochem. 62 (1994) 376–379.

[37] D. Schubert, D. Pasecki, Oxidative glutamate toxicity can be a component of the excitotoxicity cascade, J. Neurosci. 21 (2001) 7455–7462.

[38] S. Shin, S. Dalton, S.L. Stice, Human motor neuron differentiation from human embryonic stem cells, Stem Cells Dev. 14 (2005) 266–269.

[39] F.X. Soriano, S. Papadia, F. Hofmann, N.R. Hardingham, H. Bading, G.E. Hardingham, Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability, J. Neurosci. 26 (2006) 4509–4518.

[40] S.F. Traynelis, L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, R. Dingledine, Glutamate receptor ion channels: structure, regulation, and function, Pharmacol. Rev. 62 (2010) 405–496.

[41] A. Wenzel, J.M. Fritschy, H. Mohler, D. Beske, NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins, J. Neurochem. 68 (1997) 469–478.