Genotypic and phenotypic characterization of *Salmonella enterica* subsp. *enterica* serovar Typhimurium monophasic variants isolated in Thailand and Japan

Toshiyuki MURASE¹,²), Hiroichi OZAKI¹,²), Patchara PHUEKTES³) and Sunpetch ANGKITITRAKUL ³)

¹)Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, 4-101 Koyama, Tottori 680-8553, Japan
²)The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama, Tottori 680-8553, Japan
³)Faculty of Veterinary Medicine, Khon Kaen University, 40002, Thailand

ABSTRACT. Monophasic variants of *Salmonella enterica* serovar Typhimurium isolated in Thailand and Japan were characterized to elucidate the genetic basis of the monophasic phenotype, genetic relatedness, and antimicrobial resistance. A total of 20 *Salmonella* isolates agglutinated with anti-O4 and anti-H:i serum and not agglutinated with either anti-H:1 or anti-H:2 serum were identified as monophasic variants of *Salmonella* serovar Typhimurium because they harbored IS200, specific to this serovar, and lacked the *fljB* gene. An allele-specific PCR-based genotyping method that detects a clade-specific single nucleotide polymorphism indicated that seven swine isolates and one human isolate from Thailand were grouped into clade 1; five isolates from layer chicken houses and layer chicken feces from Japan were grouped into clade 8, together with two *Salmonella* serovar Typhimurium isolates from chicken houses in Japan; and five isolates from swine feces from Thailand and two isolates from layer chicken feces from Japan were grouped into clade 9. Multilocus sequencing typing demonstrated that sequence type (ST) 34 isolates were solely grouped into clade 9. Clade 1 and 8 isolates were assigned as ST19. Pulsed-field gel electrophoresis revealed multiple types within each of the clades. The presence of antimicrobial resistance genes and plasmid replicon type, of the clade 1 and 9 isolates were comparable to those reported for epidemic strains of monophasic variants. Our results suggest that monitoring monophasic variants of serovar Typhimurium is important for understanding of the spread of these variants in Thailand and Japan.

KEY WORDS: antimicrobial resistance, monophasic variant, *Salmonella* serovar Typhimurium, typing

Salmonella enterica subsp. *enterica* serovar 4,[5],12:i:- (Salmonella serovar 4,[5],12:i:-), considered as a monophasic variant of *Salmonella* serovar Typhimurium that has lost the genes encoding the second flagellar antigens or the switching mechanisms of phase variation, has been increasingly isolated around the world [42], including in Thailand [1, 4, 21, 36] and Japan [22, 23, 25], since the mid-1990s. Whole or partial deletions or mutations in the *fljB* gene, encoding the phase 2 flagellin; the *fljA* gene, encoding a negative regulator of the phase 1 flagellin; and the *hin* gene, encoding an invertase regulating phase variation have been reported among monophasic variants in Thailand [21] and Japan [23].

The occurrence of *Salmonella* serovar 4,[5],12:i:- constitutes an animal husbandry and public hygiene concern because the pathogenicity of these strains in farm animals and humans is considered to be comparable to that of *Salmonella* serovar Typhimurium [13, 19]. Additionally, resistance to antimicrobials, including third-generation cephalosporins and plasmid-mediated quinolone resistance (PMQR) genes, have been reported in *Salmonella* serovar 4,[5],12:i:- strains [18]. It is generally believed that one of the reasons for the increased prevalence of antimicrobial-resistant strains in food-producing animals is the usage of antimicrobials in razing practices [43]. Most *Salmonella* serovar 4,[5],12:i:- strains isolated in Thailand were multidrug resistant [21, 36], similar to European strains [20]. The antimicrobial resistance patterns of *Salmonella* serovar 4,[5],12:i:- in Japan range from pan-susceptible to multidrug resistant [23]. A recent study established an allele-specific PCR-based genotyping method that detects a clade-specific nucleotide polymorphism (SNP) and suggested that the increased detection of SNP genotype 9 (clade 9)
among cattle and swine populations in Japan might be part of a pandemic of the European clone [2]. However, Salmonella serovar 4,[5],12:i:- strains isolated in Thailand have yet to be fully characterized.

In the present study, we carried out PCR mapping of the \textit{fljBA} operon and its flanking region, including the \textit{hin} gene, DNA-based typing, and antimicrobial susceptibility testing to elucidate the genetic characteristics and antimicrobial resistance patterns of swine fecal isolates and a human isolate from Thailand and compared these with isolates from laying chickens from Japan.

MATERIALS AND METHODS

Identification and serotyping of bacterial isolates

Twelve isolates were obtained from fecal samples of healthy pigs from four provinces in Thailand from 2012 to 2014. Eleven isolates were obtained from swab samples of chicken houses in a layer farm in prefecture 1 and from chicken feces from another layer farm in prefecture 2 in Japan from 2003 to 2014. A human isolate was recovered from a healthy carrier in Thailand. Identification of Salmonella was carried out based on colony morphology on selective media and biochemical properties. All isolates were serotyped using commercially available anti-Salmonella sera (Denka Seiken Co., Ltd., Tokyo, Japan). Isolates agglutinated with anti-O4 and anti-H:i serum and not agglutinated with either anti-H:1 or anti-H:2 serum were designated as “Salmonella serovar O4:i:-”.

Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) were determined using the agar dilution method based on the guidelines provided by the Clinical Laboratory Standards Institute [12]. \textit{Escherichia coli} ATCC 25922 was used as the quality control strain. MICs were interpreted using the resistance breakpoints defined in a previous study [24] as follows: ampicillin (AMP), 32 µg/ml; cefazolin (CEZ), 32 µg/ml; cefotiofur (CTF), 8 µg/ml; dihydrostreptomycin (DSM), 32 µg/ml; gentamicin (GEN), 16 µg/ml; kanamycin (KAN), 64 µg/ml; oxytetracycline (OTC), 16 µg/ml; chloramphenicol (CHL), 32 µg/ml; nalidixic acid (NAL), 32 mg/ml; enrofloxacin (ERFX), 2 µg/ml; and trimethoprim (TMP), 16 µg/ml. For sulfisoxazole (SUL), 512 µg/ml was adopted as a breakpoint according to CLSI document M100-S20 [11].

PCR

PCR targeting the \textit{fljB-fljA} intergenic regions of Salmonella [15] was performed to confirm the presence of IS200 between the \textit{fljA} and \textit{fljB} genes, which is specific to Salmonella serovar Typhimurium [5]. PCR mapping of the \textit{fljBA} operon and its flanking region, including the \textit{hin} gene, was performed to determine whether Salmonella serovar O4:i:- isolates maintain the \textit{fljAB-hin} region [22]. Primers were designed to amplify the following regions [23]: \textit{up-fljA}, \textit{fljA} and its adjoining region; \textit{fljA-fljB}, the boundary region of \textit{fljA} and \textit{fljB}; \textit{fljB-hin}, the boundary region of \textit{fljB} and \textit{hin}; and \textit{hin-down}, \textit{hin} and its downstream region. All isolates were screened for plasmid-mediated quinolone resistance genes using multiplex (\textit{qnrD} and \textit{qoxAB}) or simplex (\textit{qnrS}, \textit{qnrA}, \textit{qnrB}, \textit{qnrC}, \textit{qepA}, and \textit{aac(6’)-Ib-cr}) PCR [8, 10, 32, 37]. PCR detection of antimicrobial resistance genes in isolates interpreted as resistant to each of the antimicrobials was conducted using specific primers for: \textit{blaTEM} [7]; plasmid-mediated AmpC beta-lactamase genes [33]; \textit{strA} and \textit{strB} [27]; \textit{aadA} [28]; \textit{tet(A)}, \textit{tet(B)}, and \textit{tet(G)} [31]; \textit{cat1}, \textit{cat2}, \textit{cat3}, and \textit{floR} [29]; \textit{sul1} [38], \textit{sul2} [9], and \textit{sul3} [17]; and \textit{dhfrI} and \textit{dhfrX} [35].

Pulsed-field gel electrophoresis (PFGE)

The PFGE patterns of all isolates were analyzed as previously described [30]. Briefly, bacterial DNA prepared in an agar block was digested with 20 units of \textit{BglII} or \textit{XbaI} and the DNA fragments were separated using a CHEF-DRII apparatus (Bio Rad Laboratories, Richmond, CA, U.S.A.) in 0.5 × Tris-borate-EDTA buffer supplemented with 50 µM thiourea at 14C and 6 V/cm. The switching times were increased from 1.0 to 50 sec during a total running time of 20.5 hr. Banding pattern analysis was performed with GelComparII version 6.6 (Applied Maths NV, Sint-Martens-Latem, Belgium). Cluster analysis of the fingerprints obtained using a single enzyme was conducted by means of a similarity matrix calculation using the Dice coefficient followed by dendrogram construction using the unweighted pair group method with arithmetic mean (UPGMA) as the algorithm with optimization and tolerance set at 1% [3]. Isolates were assigned to genetically related clusters using the 80% strain similarity threshold [14] and distinguished numerically.

Multilocus sequencing typing (MLST)

The allele sequences of seven housekeeping genes (\textit{aroC}, \textit{dnaN}, \textit{hemD}, \textit{hisD}, \textit{purE}, \textit{sucA}, and \textit{thrA}) were obtained using a 3130 genetic analyzer (Applied Biosystems, Foster City, CA, U.S.A.) and isolates were typed according to a publically accessible MLST database (http://mlst.ucc.ie/mlst/dbs/Senterica).

SNP genotyping

A SNP genotyping system consisting of a combination of nine allele-specific PCRAs [2] was applied to determine the clade to which the tested isolates belong.

Plasmid DNA analysis

Southern blot analysis was performed using the probe prepared from the PCR amplicon produced from primer pairs recognizing
Of the 24 isolates, 20 were serotyped as serovar O4:i:- and four isolates from environmental samples from a layer farm in Japan were assigned to clade 1, whereas all those obtained in Japan, except for two, were assigned to clade 8. These two Salmonella serovar Typhimurium isolates were untypeable by SNP genotyping. Isolates considered to be genetically related based on PFGE analysis were grouped in a single SNP genotype.

RESULTS

Of the 24 isolates, 20 were serotyped as serovar O4:i:- and four isolates from environmental samples from a layer farm in Japan were serotyped as Typhimurium (Table 1). A 1,000-base pair amplicon of the fljB-fljA intergenic region, indicating the presence of Salmonella serovar Typhimurium-specific IS200 [5], was detected in all 24 isolates. PCR mapping of the fljA operon and its flanking region, including the hin gene, revealed that all isolates obtained in Thailand and two isolates from layer chicken feces from Japan lacked all these regions. Four isolates from environmental samples from a layer farm and an isolate from a chicken fecal sample from another farm in Japan were positive for only the hin-down region. The four serovar Typhimurium isolates were grouped in a single SNP genotype.

Table 1. Origin, typing results, and DNA regions related to flagellar phase variation of the Salmonella isolates examined in this study

Isolate#	Area and country	Source	Isolation year	Serotype	PFGE type	MLST Clade	Regions related to flagellar phase variation
D95	Province 3, Thailand	Swine feces	2012	O4:i:-	BlnI:1-XbaI:2	ST19	–
D97	Province 3, Thailand	Swine feces	2012	O4:i:-	BlnI:1-XbaI:2	ST19	–
E99	Province 4, Thailand	Swine feces	2013	O4:i:-	BlnI:3-XbaI:1	ST19	–
F35	Province 1, Thailand	Swine feces	2013	O4:i:-	BlnI:3-XbaI:1	ST19	–
P557	Province 2, Thailand	Swine feces	2014	O4:i:-	BlnI:9-XbaI:3	ST34	–
P560	Province 2, Thailand	Swine feces	2014	O4:i:-	BlnI:9-XbaI:3	ST34	–
P562	Province 2, Thailand	Swine feces	2014	O4:i:-	BlnI:9-XbaI:3	ST34	–
P592	Province 2, Thailand	Swine feces	2014	O4:i:-	BlnI:9-XbaI:3	ST34	–
P5105	Province 2, Thailand	Swine feces	2014	O4:i:-	BlnI:9-XbaI:3	ST34	–
B81	Province 2, Thailand	Swine feces	2013	O4:i:-	BlnI:4-XbaI:1	ND	–
B86	Province 2, Thailand	Swine feces	2013	O4:i:-	BlnI:3-XbaI:1	ST19	–
B92	Province 2, Thailand	Swine feces	2013	O4:i:-	BlnI:3-XbaI:1	ND	–
B95	Province 2, Thailand	Human feces	2012	O4:i:-	BlnI:2-XbaI:2	ST19	–
S1743	Prefecture 1, Japan	Layer house environment	2001	O4:i:-	BlnI:7-XbaI:4	ND	–
S1821	Prefecture 1, Japan	Layer house environment	2004	O4:i:-	BlnI:7-XbaI:4	ND	–
S1910	Prefecture 1, Japan	Layer house environment	2004	O4:i:-	BlnI:6-XbaI:4	ST19	+
S1919	Prefecture 1, Japan	Layer house environment	2004	O4:i:-	BlnI:7-XbaI:4	ST19	–
S1935	Prefecture 1, Japan	Layer house environment	2004	O4:i:-	BlnI:6-XbaI:4	ST19	+
S1938	Prefecture 1, Japan	Layer house environment	2004	O4:i:-	BlnI:7-XbaI:4	ST19	–
S2617	Prefecture 1, Japan	Layer house environment	2012	O4:i:-	BlnI:8-XbaI:4	ST19	UT
S2618	Prefecture 1, Japan	Layer house environment	2012	O4:i:-	BlnI:8-XbaI:4	ST19	UT
S2689	Prefecture 2, Japan	Layer chicken feces	2014	O4:i:-	BlnI:10-XbaI:5	ST34	–
S2690	Prefecture 2, Japan	Layer chicken feces	2014	O4:i:-	BlnI:5-XbaI:4	ST19	–
S2691	Prefecture 2, Japan	Layer chicken feces	2014	O4:i:-	BlnI:10-XbaI:5	ND	–

a) Cluster analysis of the single enzyme fingerprints was conducted by means of a similarity matrix calculation using the Dice coefficient followed by a dendrogram constructed using the unweighted pair group method with arithmetic averages (UPGMA). Isolates were assigned to genetically related clusters using the 80% strain similarity threshold and distinguished numerically. b) Multilocus sequencing types. ND, not done. c) Results of an allele-specific PCR-based genotyping method detecting a clade-specific nucleotide polymorphism. UT, untypeable.
All but one isolate from pig feces from Thailand were resistant to AMP, DSM, and OTC (Table 2). Resistance to GEN and NAL was detected in seven of the 12 isolates from swine feces, followed by SUL (five isolates), TMP (five isolates), CHL (four isolates), and KAN (one isolate). None of the isolates exhibited resistance to CEZ, CFT, or ERFX. In addition, none of the NAL-resistant isolates, including the human isolate, carried any PMQR genes. The NAL MIC values in these isolates ranged from 128 to 256 mg/l, suggesting that NAL resistance in these isolates is due to mutations in the quinolone-resistance determining regions of the \textit{gyrA} and/or \textit{parC} genes. All isolates from the environmental samples from the layer farm and layer chicken feces from Japan were resistant to DSM (Table 2). Two isolates from layer chicken feces were additionally resistant to OTC and SUL. Genes conferring resistance to beta-lactams, aminoglycosides, tetracyclines, phenicols, and sulfonamides were detected, whereas trimethoprim resistance genes were not found with the primer pairs used in this study (Table 2).

A recent study [2] revealed that a human monophasic mutant clade 1 isolate harbored the IncA/C plasmid conferring resistance to AMP, sulfonamides, GEN, streptomycin, tetracycline, and TMP. PCR-based replicon typing were performed and revealed that all eight clade 1 isolates from Thailand were positive for the primer pairs recognizing the IncA/C plasmid. Southern blot analysis using S1 nuclease-digested genomic DNA from these isolates separated by PFGE demonstrated that the probe was hybridized with plasmids, of which molecular weights ranged from approximately 120 to 180 kilobase pairs (Fig. 2). Furthermore, the \textit{bla}_{TEM} gene was located on these plasmids (data not shown).

DISCUSSION

PCR mapping analysis revealed two types of amplification patterns, positive for only the \textit{hin}-down and all negative, in the Japanese isolates. These patterns were previously detected in monophasic variants of \textit{Salmonella} serovar Typhimurium obtained from animals and humans in Japan [23]. Ido et al. [23] also reported monophasic variants in which the entire \textit{fljAB–hin} region was detected together with nucleotide mutations in the \textit{fljA} and \textit{hin} genes causing amino-acid substitutions in the FljA and Hin proteins, respectively. Huoy et al. [21] reported a distinct deletion pattern in the \textit{fljAB} region in monophasic variants from various sources in Thailand.

The SNP genotyping results in the present study showing that all isolates assigned to ST34 by MLST were grouped into clade 9 are comparable to a recent report describing \textit{Salmonella} serovar Typhimurium and O4:i:- isolates obtained from food-producing animals and humans in Japan and Italy [2]. Isolates belonging to clade 9 and ST34 in our study are characterized by the absence of the \textit{fljBA} operon and its flanking region, including the \textit{hin} gene, and the presence of \textit{strA, strB, tet(B), sul2} (only in Japanese isolates), and \textit{bla}_{TEM}. These characteristics are common to an endemic clone of a monophasic variant of serovar Typhimurium, the “European clone” [34], which is classified as ST34 and harbors a composite transposon insertion in the chromosome (containing the antimicrobial resistance genes described above) replacing the \textit{fljAB–hin} region [2]. However, the PFGE type of clade 9 isolates obtained in Thailand was distinguished from that of Japanese isolates. Similar observations that monophasic variants designated as a single MLST type represented considerable PFGE diversity were previously reported [40]. In our study, several clade 1 isolates from Thailand were assigned to ST19 and harbored \textit{bla}_{TEM}, which is assumed to be on an IncA/C plasmid, as well as \textit{aadA, tet(A), sul1, sul2}, and \textit{sul3}. These characteristics were also found in a human isolate from Japan reported by Arai et al. [2], which was assumed to be the “Spanish clone”, the other epidemic clone [26, 40]. However, a detailed investigation, including analysis of
Table 2. Antimicrobial resistance phenotype and distribution of antimicrobial resistance genes

Isolate#	Antimicrobial resistance phenotype	bla_{TEM}	AmpC	strA	strB	aadA	tet(A)	tet(B)	tet(G)	cat1	cat2	cat3	floR	PMQR	sul1	sul2	sul3	dhfr1b	dhfrX
D95	AMP-DSM-GEN-OTC-NAL	+	-	-	+	+	-			-			-				-		
D97	AMP-DSM-GEN-OTC-NAL	+	-	-	-	+	+	-		-			-				-		
E99	AMP-DSM-GEN-OTC-NAL-OTC-CHL-NAL-SUL-TMP	+	-	-	-	+	+	-		-			-	3			+	+	
E35	AMP-DSM-GEN-KAN-OTC-CHL-NAL-SUL-TMP	+	-	-	-	+	+	-		-			-				+	+	
PS57	AMP-DSM-OTC	-	-	+	-	-			+										
PS60	AMP-DSM-OTC	+	-	+	-	-			+										
PS63	AMP-DSM-OTC	+	-	+	-	-			+										
PS92.2	DSM-OTC	-	-	-	-	-				+									
PS105	AMP-DSM-OTC	+	-	+	-	-			+										
B81	AMP-DSM-GEN-OTC-CHL-NAL-SUL-TMP	+	-	-	-	+	+	-		-			-				+		
B86	AMP-DSM-GEN-OTC-CHL-NAL-SUL-TMP	+	-	-	-	+	+	-		-			-	3			+		
B92	AMP-DSM-GEN-OTC-CHL-NAL-SUL-TMP	+	-	-	-	+	+	-		-			-		3		+		
B95	AMP-DSM-GEN-OTC-CHL-NAL-SUL-TMP	+	-	+	+	-		+			+								
S1743	DSM	-	-	-	-	-													
S1821	DSM	-	-	-	-	-													
S1910	DSM	-	-	-	-	-													
S1919	DSM	-	-	-	-	-													
S1935	DSM	-	-	-	-	-													
S1938	DSM	-	-	-	-	-													
S2617	DSM	-	-	-	-	-													
S2618	DSM	-	-	-	-	-													
S2689	DSM-OTC-SUL	+	+	-	-	+													
S2690	DSM	-	-	-	-	-													
S2691	DSM-OTC-SUL	+	+	-	-	+													

a) AMP, ampicillin; DSM, dihydrostreptomycin; GEN, gentamicin; KAN, kanamycin; OTC, oxytetracycline; CHL, chloramphenicol; NAL, nalidixic aid; SUL, sulfisoxazole; TMP, trimethoprim. b) +, positive; -, negative; blank, not done. c) AmpC, plasmid-mediated AmpC beta-lactamase genes. d) PMQR, plasmid-mediated quinolone resistance genes.
integrons and transposons, and conjugation experiments are still required to determine whether the clade 9 and 1 isolates in our study are part of the European and Spanish clones, respectively, or not.

Resistance phenotypes varied among the isolates in our study. Swine isolates showed resistance to multiple drugs similar to that reported in antimicrobial resistant Escherichia coli isolates obtained from pigs in north-eastern Thailand [41]. The human clade 1 isolate in our study harbored the strA, strB, and floR genes in addition to resistance genes present in the clade 1 swine isolates. In contrast, isolates obtained from layer chickens or environmental samples from layer chicken houses were resistant to only a few antimicrobials. A possible explanation for this is that antimicrobials, including feed additives, are not usually used during egg production cycles. Although we did not analyze virulence determinants, the selective advantage of Salmonella serovar 4,[5],12:i:- strains prevalent in certain environments may be conferred not only by antimicrobial resistance, but also by virulence factors [16].

The clade 8 isolates in our study were obtained solely from Japan and were susceptible to all the antimicrobials tested, except for DSM. Salmonella serovar Typhimurium isolates were grouped into clade 8 together with the monophasic variant isolates; all clade 8 isolates were classified solely as ST19. Moreover, the XbaI-digested PFGE patterns of the serovar Typhimurium isolates were closely related to those of the clade 8 monophasic isolates. Our findings support the hypothesis that the clade 8 monophasic variants may have originated from serovar Typhimurium strains in this clade. Both monophasic variants and serovar Typhimurium isolates were grouped into clade 8 in a recent Japanese study [2]. However, most clade 8 isolates in the same study [2] were pan-susceptible.

DNA-based typing methods identified the presence of multiple monophasic variant strains in both countries, although only a limited number of isolates were analyzed in the present study, suggesting that monophasic variants of serovar Typhimurium have widely spread in these countries. Because isolates in this study were obtained from different animals in different years, this may influences the results as indispensable factors. Continuous monitoring of monophasic variants of serovar Typhimurium is imperative for gaining a clearer picture of the dissemination of these variants in Thailand and Japan, and understanding the global spread of these variants.

ACKNOWLEDGMENT. This work was supported by the International Platform for Dryland Research and Education, Tottori University.

REFERENCES

1. Amavisit, P., Boonyawiwat, W. and Bangtrakulront, A. 2005. Characterization of Salmonella enterica serovar Typhimurium and monophasic Salmonella serovar 1,4,[5],12:i:- isolates in Thailand. J. Clin. Microbiol. 43: 2736–2740. [Medline] [CrossRef]

2. Arai, N., Sekizuka, T., Tamamura, Y., Tanaka, K., Barco, L., Izumiya, H., Kusumoto, M., Hinenoya, A., Yamasaki, S., Iwata, T., Watanabe, A.,
MONOPHASIC VARIANTS OF TYPHIMURIUM

Kuroda, M., Uchida, I. and Akiba, M. 2018. Phylogenetic characterization of Salmonella enterica serovar Typhimurium and its monophasic variant isolated from food animals in Japan revealed replacement of major epidemic clones in the last 4 decades. J. Clin. Microbiol. 56: e01758–e17. [Medline] [CrossRef]

3. Bertrand, S., Ceyssens, P. J., Yde, M., Dierick, K., Boyen, F., Vanderpas, J., Vanhoof, R. and Matteus, W. 2016. Diversity of Listeria monocytogenes strains of clinical and food chain origins in Belgium between 1985 and 2014. PLoS One 11: e0164283. [Medline] [CrossRef]

5. Burnens, A. P., Stanley, J., Saack, R., Hünziker, P., Broduard, I. and Nicolet, J. 1997. The flagellin N-methylase gene flaB and an adjacent serovar-specific insert in Salmonella typhimurium. Microbiology 143: 1539–1547. [Medline] [CrossRef]

6. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L. and Threlfall, E. J. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219–228. [Medline] [CrossRef]

9. Chu, C., Chiu, C. H., Wu, W. Y., Chu, C. H., Liu, T. P. and Ou, J. T. 2001. Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Typhi. J. Clin. Microbiol. 40: 3212–3219. [Medline] [CrossRef]

10. Ciesielczuk, H., Hornsey, M., Choi, V., Woodford, N. and Wareham, D. W. 2013. Development and evaluation of a multiplex PCR for eight antibiotic resistance genes in Salmonella enterica. Antimicrob. Agents Chemother. 49: 2299–2303. [Medline] [CrossRef]

11. Clinical Laboratory Standards Institute 2010. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement M100-S20. Clinical Laboratory Standards Institute, Wayne.

12. Clinical Laboratory Standards Institute 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A8. Clinical Laboratory Standards Institute, Wayne.

13. Crayford, G., Coombes, J. L., Humphrey, T. J. and Wigley, P. 2014. Monophasic expression of FliC by Salmonella enterica serovar 4,5,12:i:- monophasic variant. Vet. Microbiol. 160: 2507–2516. [Medline] [CrossRef]

14. Ciesielczuk, H., Hornsey, M., Choi, V., Woodford, N. and Wareham, D. W. 2013. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J. Med. Microbiol. 62: 1823–1827. [Medline] [CrossRef]

15. Echeita, M. A., Herrera, S. and Usera, M. A. 2001. Atypical, flaB-negative Salmonella enterica subsp. enterica strain of serovar 4,5,12:i:- appears to be a monophasic variant of serovar Typhimurium. J. Clin. Microbiol. 39: 2981–2983. [Medline] [CrossRef]

16. Erlemann, T., Tietze, E., Helmuth, R., Junker, E., Blank, K., Prager, R., Rabsch, W., Appel, B., Fruth, A. and Malorny, B. 2010. Pork contaminated with Salmonella enterica serovar Typhimurium monophasic strain circulating in Europe. PLoS One 9: e89635. [Medline] [CrossRef]

17. Guerra, B., Junker, E. and Helmuth, R. 2004. Incidence of the recently described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 48: 2712–2715. [Medline] [CrossRef]

18. Guerra, B., Junker, E. and Helmuth, R. 2004. Incidence of the recently described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 48: 2712–2715. [Medline] [CrossRef]

19. Hauser, E., Tietze, E., Helmuth, R., Junker, E., Blank, K., Prager, R., Rabsch, W., Appel, B., Fruth, A. and Malorny, B. 2010. Pork contaminated with Salmonella enterica serovar 4,5,12:i:-, an emerging health risk for humans. Appl. Environ. Microbiol. 76: 4601–4610. [Medline] [CrossRef]

20. Hopkins, K. L., Kirchner, M., Guerra, B., Granier, S. A., Lucarelli, C., Porro, M. C., Jakubczak, A., Threlfall, E. J. and Mevius, D. J. 2010. Multiresistant Salmonella enterica serovar 4,5,12:i:- in Europe: a new pandemic strain? Euro Surveill. 15: 19580. [Medline] [CrossRef]

21. Huong, L., Pommangwong, S., Pulskarn, C. and Chaturongakul, S. 2014. Molecular characterization of Thai Salmonella enterica serotype typhimurium and serotype 4,5,12:i:- reveals distinct genetic deletion patterns. Foodborne Pathog. Dis. 11: 589–592. [Medline] [CrossRef]

22. Ido, N., Kudo, T., Sasaki, K., Motokawa, M., Iwabuchi, K., Matsudate, H., Seimiya, Y. M. and Akiba, M. 2011. Molecular and phenotypic characteristics of Salmonella enterica serovar 4,5,12:i:- isolated from cattle and humans in Iwate Prefecture, Japan. J. Vet. Med. Sci. 73: 241–244. [Medline] [CrossRef]

23. Ido, N., Lee, K., Iwabuchi, K., Izumiya, H., Uchida, I., Kusumoto, M., Iwata, T., Ohnishi, M. and Akiba, M. 2014. Characteristics of Salmonella enterica serovar 4,5,12:i:- as a monophasic variant of serovar Typhimurium. PLoS One 9: e104380. [Medline] [CrossRef]

24. Kojima, A., Asai, T., Ishihara, K., Mourioka, A., Akimoto, K., Sugimoto, Y., Sato, T., Tamura, Y. and Takahashi, T. 2009. National monitoring for large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob. Agents Chemother. 45: 2299–2303. [Medline] [CrossRef]

25. Kurosawa, A., Imanura, T., Tanaka, K., Tamanura, Y., Uchida, I., Kobayashi, A., Hata, E., Kanno, T., Akiba, M., Yukawa, S. and Tamura, Y. 2012. Molecular typing of Salmonella enterica serovar Typhimurium and serotype 4,5,12:i:- isolates from cattle by multiple-locus variable-number tandem-repeats analysis. Vet. Microbiol. 160: 264–268. [Medline] [CrossRef]

26. Laorden, L., Herrera-León, S., Martínez, I., Sanchez, C., Kromidas, L., Bikandi, J., Rementeria, A., Echeta, A. and Garaziar, J. 2010. Genetic evolution of the Spanish multidrug-resistant Salmonella enterica serovar Typhimurium 4,5,12:i:- monophasic variant. J. Clin. Microbiol. 48: 4563–4566. [Medline] [CrossRef]

27. Levings, R. S., Partridge, S. R., Lightfoot, D., Hall, R. M. and Djordjevic, S. P. 2005. New integron-associated gene cassette encoding a 3-V-amino-5-methylcyclohexane-1-carboxylic acid methyltransferase. Antimicrob. Agents Chemother. 49: 1238–1241. [Medline] [CrossRef]

28. Madsen, L., Aarestrup, F. M. and Olsen, J. E. 2000. Characterisation of staphylococin resistance determinants in Danish isolates of Staphylococcus aureus. Vet. Microbiol. 75: 73–82. [Medline] [CrossRef]

29. Maynard, C., Fairbrother, J. M., Bekal, S., Sanschagrin, F., Levesque, R. C., Broussseau, R., Masson, L., Lariviére, S. and Harel, J. 2003. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 47: 3214–3221. [Medline] [CrossRef]

30. Murase, T., Nagato, M., Shiruta, K., Kato, H. and Otsuki, K. 2004. Pulsed-field gel electrophoresis-based subtyping of DNA degradation-sensitive Salmonella enterica serovar Livingstone and serovar Cerro isolates obtained from a chicken layer farm. Vet. Microbiol. 99: 139–143. [Medline] [CrossRef]

31. Ng, L. K., Martin, I., Alfa, M. and Mulvey, M. 2001. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 15: 209–215. [Medline] [CrossRef]

32. Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D. and Hooper, D. C. 2006. Prevalence in the United States of aac(6’)-Ib-cr encoding a
ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50: 3953–3955. [Medline] [CrossRef]

33. Pérez-Pérez, F. J. and Hanson, N. D. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153–2162. [Medline] [CrossRef]

34. Petrovska, L., Mather, A. E., AbuOun, M., Branchu, P., Harris, S. R., Connor, T., Hopkins, K. L., Underwood, A., Lettini, A. A., Page, A., Bagnall, M., Wain, J., Parkhill, J., Dougan, G., Davies, R. and Kingsley, R. A. 2016. Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005–2010. Emerg. Infect. Dis. 22: 617–624. [Medline] [CrossRef]

35. Poppe, C., Ziebell, K., Martin, L. and Allen, K. 2002. Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb. Drug Resist. 8: 107–122. [Medline] [CrossRef]

36. Pornruangwong, S., Srijapai, T., Pulskirkak, C., Sawanpanyalert, P., Boonmar, S. and Bangtrakulnonth, A. 2008. The epidemiological relationship between Salmonella enterica serovar typhimurium and Salmonella enterica serovar 4,[5],12:i:- isolates from humans and swine in Thailand. Southeast Asian J. Trop. Med. Public Health 39: 288–296. [Medline]

37. Robicsek, A., Strahilevitz, J., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. 2006. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 50: 2872–2874. [Medline] [CrossRef]

38. Sandvang, D., Aarestrup, F. M. and Jensen, L. B. 1997. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol. Lett. 157: 177–181. [Medline] [CrossRef]

39. Shahada, F., Sekizuka, T., Kuroda, M., Kusumoto, M., Ohishi, D., Matsumoto, A., Okazaki, H., Tanaka, K., Uchida, I., Izumiya, H., Watanabe, H., Tamamura, Y., Iwata, T. and Akiha, M. 2011. Characterization of Salmonella enterica serovar Typhimurium isolates harboring a chromosomally encoded CMY-2 β-lactamase gene located on a multidrug resistance genomic island. Antimicrob. Agents Chemother. 55: 4114–4121. [Medline] [CrossRef]

40. Soyer, Y., Moreno Switt, A., Davis, M. A., Maurer, J., McDonough, P. L., Schoonmaker-Bopp, D. J., Dumas, N. B., Root, T., Warnick, L. D., Gröhn, Y. T. and Wiedmann, M. 2009. Salmonella enterica serotype 4,5,12:i:-, an emerging Salmonella serotype that represents multiple distinct clones. J. Clin. Microbiol. 47: 3546–3556. [Medline] [CrossRef]

41. Ström, G., Halje, M., Karlsson, D., Jiwakanon, J., Pringle, M., Fernström, L. L. and Magnusson, U. 2017. Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand. Antimicrob. Resist. Infect. Control 6: 75. [Medline] [CrossRef]

42. Switt, A. I., Soyer, Y., Warnick, L. D. and Wiedmann, M. 2009. Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathog. Dis. 6: 407–415. [Medline] [CrossRef]

43. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A. and Laxminarayan, R. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U.S.A. 112: 5649–5654. [Medline] [CrossRef]