On Einstein hypersurfaces of a remarkable class of Sasakian manifolds

Dario Di Pinto*¹ and Antonio Lotta**²

¹,²Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.

February 10, 2021

Abstract

We present a non existence result of complete, Einstein hypersurfaces tangent to the Reeb vector field of a regular Sasakian manifold which fibers onto a complex Stein manifold.

Key words: Einstein hypersurface · regular Sasakian manifold · Stein manifold.

Mathematics Subject Classification (2020): 53C25, 53C40, 53B25.

1 Introduction

In [4], I. Hasegawa established that a Sasakian space form with nonconstant sectional curvature admits no Einstein hypersurfaces. The aim of this note is to prove a new non existence result concerning Einstein hypersurfaces of a relevant class of regular Sasakian manifolds:

Theorem. If \((M, \varphi, \xi, \eta, g)\) is a regular Sasakian manifold which fibers onto a complex Stein manifold, then \(M\) does not admit any complete Einstein hypersurface tangent to \(\xi\).

* e-mail: dario.dipinto@uniba.it
** e-mail: antonio.lotta@uniba.it
We recall that a contact manifold \((M, \eta)\) is called regular provided the Reeb vector field \(\xi\) of the contact form \(\eta\) is, i.e. it determines a regular 1-dimensional foliation on \(M\), so that the space \(B = M/\xi\) of maximal integral curves of \(\xi\) is a manifold. When \(M\) carries a Sasakian metric \(g\) associated to \(\eta\), yielding a Sasakian structure \((\varphi, \xi, \eta, g)\) (we use the standard terminology and notation according to [2]), since \(L_\xi \varphi = 0\) and \(L_\xi g = 0\), \(g\) induces in a natural way a metric \(g'\) on \(M/\xi\) and \(\varphi\) also descends to an almost complex structure \(J\). Denoting by \(\pi : M \to B\) the canonical projection, it turns out by construction that \(\pi\) is a Riemannian submersion with \(\ker (d\pi)_x = \mathbb{R}\xi_x\) for every \(x \in N\), and

\[d\pi \circ \varphi = J \circ d\pi\]

and, moreover \((B, J, g')\) is a Kähler manifold (see for instance [9] and [8]). Hence our assumption on the Sasakian manifold is that \(B\), as a complex manifold, can be realized (up to a biholomorphism) as a closed complex submanifold of some Euclidean space \(\mathbb{C}^d\).

For instance, according to a result due to H. Wu ([3], Theorem 4.9), it is known that every simply connected, complete Kähler manifold with non-positive sectional curvature is a Stein manifold; in particular, the Hermitian symmetric spaces of non-compact type are Stein manifolds, hence Takahashi’s Sasakian globally \(\varphi\)-symmetric spaces of non-compact type (see [10]) provide a wide class of examples of Sasakian manifolds to which our result applies.

The proof of our result makes use of the natural CR structure of \(CR\) codimension 2 which is induced over any smooth hypersurface \(N \subset M\), under the assumption that \(N\) is everywhere tangent to the Reeb vector field \(\xi\) (see for instance [7] and section [2]). We establish a basic formula relating the Ricci tensor of \(N\) and the trace of a distinguished scalar Levi form of this \(CR\) structure (see [3.4]), implying that, in the Einstein case, \(\pi(N)\) is a weakly pseudoconcave real hypersurface of \(B\). Hence a non-compactness result by D. Hill and M. Nacinovich for weakly pseudoconcave \(CR\) submanifolds of Stein manifolds [5] is invoked to get the conclusion.

2 Preliminaries

Let’s start by recalling the definitions of \(CR\) manifolds, Levi-Tanaka forms and scalar Levi forms. In the following, given a vector bundle \(E\) over a smooth differential manifold \(M\), we will denote by \(\Gamma(E)\) the \(\mathcal{C}^\infty(M)\)-module
of global smooth sections of E.

Let M be a smooth real manifold of dimension n, and let $m, k \in \mathbb{N}$ such that $2m + k = n$. If HM is a real vector subbundle of rank $2m$ of the tangent bundle TM and $J : HM \to HM$ is a bundle isomorphism such that $J^2 = -Id$, the couple (HM, J) is called a CR structure on M if the following properties hold for all $X, Y \in \Gamma(HM)$:

(i) $[JX, JY] - [X, Y] \in \Gamma(HM)$;

(ii) $N_J(X, Y) := [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] = 0$.

In this case (M, HM, J) is called a CR manifold of type (m,k) and m, k are the CR dimension and the CR codimension of the CR structure, respectively.

Remark 2.1. Let S be a real submanifold of a complex manifold (M, J) and for any $p \in S$ set $H_pS := T_pS \cap J(T_pS)$. Because of the integrability of J, the couple $(HS, J|HS)$ canonically defines a CR structure on S if the dimension of H_pS is constant. In this case S is termed a CR submanifold of M.

In particular, this condition is always satisfied when S is a real hypersurface of M and hence S is a CR manifold of CR codimension 1.

Definition 2.2. Let (M, HM, J) be a CR manifold of type (m,k). Given a point $x \in M$, the Levi-Tanaka form of M at x is the bilinear map $L_x : H_x M \times H_x M \to T_x M / H_x M$ defined by

$$L_x(X, Y) := p_x([\tilde{X}, J\tilde{Y}]_x) \quad \forall X, Y \in H_x M,$$

where $\tilde{X}, \tilde{Y} \in \Gamma(HM)$ are two arbitrary extensions of X, Y and $p : TM \to TM/HM$ is the canonical projection on the quotient bundle TM/HM.

It is known that L_x is well defined, i.e. the value $p_x([\tilde{X}, J\tilde{Y}]_x)$ only depends on the values of \tilde{X}, \tilde{Y} at x, that is on X and Y.

Moreover, according to (i) above, L_x turns to be a vector valued symmetric Hermitian form on the holomorphic tangent space $H_x M$ with respect to the complex structure $J := J_x$, that is

$$L_x(X, Y) = L_x(JX, JY), \quad L_x(X, Y) = L_x(Y, X)$$

(2.2)
for all $X, Y \in H_xM$.

Given a point x on the CR manifold (M, HM, J), we will denote by

$$H^0_x \overset{\tiny{\text{def}}}{=} \{ \omega \in T^*_xM \mid \omega(X) = 0 \quad \forall X \in H_xM \}$$

the annihilator of $H_xM \subset T_xM$. Then we recall the following definition.

Definition 2.3. Let (M, HM, J) be a CR manifold, $x \in M$ and $\omega \in H^0_xM$. The Hermitian form

$$L_\omega : H_xM \times H_xM \to \mathbb{R} \quad \text{s.t.} \quad L_\omega(X, Y) := \omega L_x(X, Y) \quad (2.3)$$

is called the *scalar Levi form determined by* ω at x.

The next lemma represents a sort of naturality property of the Levi-Tanaka form with respect a particular class of maps between CR manifolds which preserve the CR structures.

Definition 2.4. Let (M, HM, J) and (N, HN, J') be two CR manifolds. A smooth map $\pi : M \to N$ is called CR map if $d\pi(HM) \subset HN$ and $d\pi \circ J = J' \circ d\pi$.

Lemma 2.5. Let (M, HM, J) and (N, HN, J') be two CR manifolds having the same CR dimension, let $\pi : M \to N$ be a CR map and assume that for every $x \in M$, $(d\pi)_x : H_xM \to H_{\pi(x)}N$ is an isomorphism. Then, given $x \in M$, the following diagram commutes:

$$
\begin{array}{ccc}
H_xM \times H_xM & \overset{L_x}{\longrightarrow} & T_xM/H_xM \\
\pi_* \times \pi_* & & \pi_* \\
H_yN \times H_yN & \overset{L'_y}{\longrightarrow} & T_yN/H_yN
\end{array}
$$

where $y = \pi(x)$, $\pi_* = (d\pi)_x$ and L_x, L'_y are the Levi-Tanaka forms of M and N respectively.

Proof. Let us denote by $p_x : T_xM \to T_xM/H_xM$ and $q_y : T_yN \to T_yN/H_yN$ the canonical projections. As an immediate consequence of the definition of CR map, the differential π_* descends to the quotient and, with abuse of notation, we still denote the quotient map by $\pi_* : T_xM/H_xM \to T_yN/H_yN$. Now consider $X, Y \in H_xM$: according to (2.1), $L'_y(\pi_*X, \pi_*Y) = q_y[Z, J'W]_y$, where

$$Z = p_xL_x(X) \quad \text{and} \quad W = p_xL_x(Y).$$
where $Z, W \in \Gamma(HN)$ are two extensions of π_*X and π_*Y. Since for every $a \in M$, $(d\pi)_a : H_aM \to H_{\pi(a)}N$ is an isomorphism, we can define two extensions $\tilde{X}, \tilde{Y} \in \Gamma(HM)$ of X and Y respectively by putting

$$
\tilde{X}_a := (d\pi)^{-1}_a(Z_{\pi(a)}), \quad \tilde{Y}_a := (d\pi)^{-1}_a(W_{\pi(a)}).
$$

It turns out that \tilde{X} and \tilde{Y} are π-related to Z and W respectively, and hence $[\tilde{X}, J\tilde{Y}]$ is π-related to $[Z, J'W]$ too, since $d\pi$ commutes with the almost complex structures J and J'. Finally, we have:

$$
\pi_* L_x(X, Y) = \pi_*(p_x[\tilde{X}, J\tilde{Y}]_x) = q_y(\pi_*[\tilde{X}, J\tilde{Y}]_y) = q_y[Z, J'W]_y = L'_y(\pi_*X, \pi_*Y).
$$

\[\square \]

Corollary 2.6. In the same hypothesis and notation of the previous Lemma, for every $\psi \in H^0_0N$ one has that $\pi^*L'_y \psi = L_\pi^*\psi$.

We remark that the scalar Levi forms L_ω are symmetric and hence it makes sense to consider their index $i(L_\omega)$, defined as the minimum between the number of positive and negative eigenvalues of L_ω.

More specifically, we recall the following terminology from CR geometry; see for instance [6].

Definition 2.7. Let (M, HM, J) be a CR manifold of type (m, k) and let $x \in M$.

- M is called **pseudoconvex** at x if L_ω is positive definite for some $\omega \in H^0_xM$.
- If there exists a global section $\omega \in \Gamma(H^0M)$ such that L_ω is positive definite at each point $x \in M$, M is called **strongly pseudoconvex**.
- M is said **pseudoconcave** at x if $i(L_\omega) > 0$ for every $\omega \in H^0_xM$, $\omega \neq 0$.
- M is said **weakly pseudoconcave** at x if $L_\omega = 0$ or $i(L_\omega) > 0$ for every $\omega \in H^0_xM$.

In this regard we recall that a Sasakian manifold (M, ϕ, ξ, η, g), as defined in [2], is a particular kind of strongly pseudoconvex CR manifold of hypersurface type, i.e. of CR codimension 1. We shall refer to [2] for the notation and basic facts concerning Sasakian geometry. We only remark that in this case the CR structure is given by the contact distribution $D = \ker \eta = \langle \xi \rangle ^\perp$ and the almost complex structure is $J = \phi|_D$. Therefore, for any $x \in M$,
$H^0_x M$ is spanned by η_x and, up to scaling, we have only one scalar Levi form \mathcal{L}_{η_x}. Moreover, since M is a contact metric manifold, the identity
\[d\eta(X,Y) = g(X,\varphi Y) \]
yields that
\[\mathcal{L}_{\eta_x} = 2g_x|_{H_x M \times H_x M}. \]

We end this section by recalling the definition of Stein manifold (for more information, see for instance [3]) and a theorem due to Hill and Nacinovich [5, 6], which provides a basic restriction to the topology of CR weakly pseudoconcave submanifolds of a Stein manifold.

Definition 2.8. A *Stein manifold* is a closed complex submanifold of \mathbb{C}^d, for some $d \geq 1$.

Theorem 2.9. Every weakly pseudoconcave CR submanifold of a Stein manifold cannot be compact.

3 Main result

Let $(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold and let N be a hypersurface of M, tangent to the Reeb vector field ξ. At each point $x \in N$, let us consider the linear subspace of $T_x N$ defined by
\[H_x N := \{ X \in T_x N \mid X \perp \xi_x \text{ and } \varphi X \in T_x N \}. \]
Observe that, if $\nu \in T_x N^\perp$ is a unit normal vector at x, then we have the following orthogonal decomposition:
\[T_x N = \langle \xi_x \rangle \oplus \langle \varphi \nu \rangle \oplus H_x N. \]
It follows that HN is a subbundle of TN with constant rank and in [7] M. Munteanu proved that the couple $(HN, \varphi|_{HN})$ defines a CR structure of CR codimension 2 on N. We remark that he assumes the orientability of N, but this is unnecessary for our aim and the result holds true even if N is not orientable.

The CR structure $(HN, \varphi|_{HN})$ on the hypersurface N allows us to consider, for every unit normal vector ν, the scalar Levi form \mathcal{L}_ω attached to the covector
\[\omega(X) = g_x(X, \varphi \nu) \quad \forall X \in T_x N. \quad (3.1) \]
We shall denote this scalar Levi form with the symbol \mathcal{L}_ν, and in the following proposition we establish the relationship between \mathcal{L}_ν and the second fundamental form of the hypersurface N.

Proposition 3.1. Let $(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold and let $N \subset M$ be a hypersurface, tangent to ξ, with second fundamental form α. Let ν be a unit normal vector at some point $x \in N$. Then one has:

$$\mathcal{L}_\nu(X, X) = g_x(\alpha(X, X) + \alpha(\varphi X, \varphi X), \nu) \tag{3.2}$$

for every $X \in H_x N$.

Proof. First we recall that Sasakian manifolds are characterized by means of the following identity, involving the covariant derivatives of φ with respect to the Levi-Civita connection (see [2]):

$$(\nabla_X \varphi) Y = g(X, Y)\xi - \eta(Y)X. \tag{3.3}$$

Now, fix $x \in N$, $X \in H_x N$ and consider a smooth section in $\Gamma(HN)$ which extends X and a local normal vector field extending ν. Then φX is again tangent to N. Using the fact that X, φX and $\varphi \nu$ are all orthogonal to ξ and identity (3.3), we get:

$$\mathcal{L}_\nu(X, X) =$$

$$= g_x([X, \varphi X], \varphi \nu) =$$

$$= g_x(\nabla_X \varphi X, \varphi \nu) - g_x(\nabla_{\varphi X} X, \varphi \nu) =$$

$$= g_x(\varphi \nabla_X X, \varphi \nu) + g_x(\varphi \nabla_{\varphi X} X, \nu) =$$

$$= g_x(\nabla_X X, \nu) + g_x(\nabla_{\varphi X} \varphi X, \nu) =$$

$$= g_x(\alpha(X, X) + \alpha(\varphi X, \varphi X), \nu).$$

We shall use this formula to establish an identity relating the trace (with respect to g) of \mathcal{L}_ν and the Ricci tensor field of N. Hereinafter we will denote with an overline the relevant geometric entities of the hypersurface N (Levi-Civita connection, curvature, etc.).

Proposition 3.2. Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be a Sasakian manifold and let $N \subset M$ be a hypersurface tangent to ξ. Let $x \in N$ and let $\nu \in T_x N^\perp$ be a unit normal vector. Then one has:

$$\overline{\text{Ric}}(\xi, \varphi \nu) = \frac{1}{2} \text{tr}(\mathcal{L}_\nu). \tag{3.4}$$
Proof. By a well known property of Sasakian manifolds (see [2]), for every $X \in \mathfrak{X}(M)$,

$$R(\xi, X)X = g(X, X)\xi - \eta(X)X.$$ \hfill (3.5)

Then, given $X \in \Gamma(HN)$, since ξ and X are normal to $\varphi\nu$, it follows that

$$R(\xi, X, \varphi\nu, X) = g(R(\xi, X)X, \varphi\nu) = 0.$$ \hfill (3.6)

Since $\varphi X = -\nabla_X \xi$ is still tangent to N, we also deduce that the normal component of $\nabla_X \xi$ vanishes, i.e. $\alpha(X, \xi) = 0$. Moreover,

$$\alpha(X, \varphi\nu) = g(\nabla_X \varphi\xi, \nu) = g(-\varphi^2 \nu, \nu) = \nu.$$ \hfill (3.7)

Therefore, by using the Gauss formula, for every $X \in \Gamma(HN)$ we have that

$$\overline{R}(\xi, X, \varphi\nu, X) = g(\alpha(X, X), \nu).$$ \hfill (3.8)

Thus, fixed a local orthonormal frame of TN of type $\{\xi, \varphi\nu, E_i, \varphi E_i\}_{i=1,...,n-1}$, with $E_i, \varphi E_i \in \Gamma(HN)$, from (3.8) and (3.2) we get:

$$\overline{\text{Ric}}(\xi, \varphi\nu) = \sum_{i=1}^{n-1} \left[R(\xi, E_i, \varphi\nu, E_i) + \overline{R}(\xi, \varphi E_i, \varphi\nu, \varphi E_i) \right]$$

$$= \sum_{i=1}^{n-1} g(\alpha(E_i, E_i) + \alpha(\varphi E_i, \varphi E_i), \nu)$$

$$= \sum_{i=1}^{n-1} \mathcal{L}_\nu(E_i, E_i) = \frac{1}{2} \text{tr}(\mathcal{L}_\nu),$$

where the last equality follows from the fact that \mathcal{L}_ν is Hermitian and symmetric. \qed

Now we come to the proof of our main result.\hspace{1em} \textbf{Theorem 3.3.} If $(M, \varphi, \xi, \eta, g)$ is a regular Sasakian manifold which fibers onto a complex Stein manifold, then M does not admit any complete Einstein hypersurface tangent to ξ.

\textit{Proof.} Assume by contradiction that M admits a complete Einstein hypersurface N tangent to ξ, with Einstein constant c.

Let ∇ be the Levi-Civita connection of N. Since $\nabla_\xi \xi = 0$, from the Gauss
equation we deduce that $\nabla_\xi \xi = 0$. Moreover, since ξ is a Killing vector field on N, the operator $A_\xi := -\nabla_\xi$ is skew-symmetric and hence

$$\overline{\text{Ric}}(\xi, \xi) = -\text{div}(A_\xi \xi) - \text{tr}(A_\xi^2) = -\text{tr}(A_\xi^2) \geq 0.$$

It follows that

$$c = cg(\xi, \xi) = \overline{\text{Ric}}(\xi, \xi) \geq 0.$$

If $c = 0$, then $A_\xi = 0$, i.e. ξ is ∇-parallel and this leads to a contradiction. Indeed, if we consider $X \in \Gamma(HN)$, with $X \neq 0$, from $\nabla_X \xi = 0$ and the Gauss equation we would get

$$-\varphi X = \nabla_X \xi = \alpha(X, \xi),$$

where $-\varphi X \in \Gamma(HN)$ is non zero and tangent to N, while $\alpha(X, \xi)$ is normal. Therefore $c > 0$ and, because of completeness of N, Myers’ theorem ensures that N is compact.

Moreover, from Proposition 3.2 we have:

$$\text{tr}(L_\nu) = 2\overline{\text{Ric}}(\xi, \varphi \nu) = 2cg(\xi, \varphi \nu) = 0. \quad (3.9)$$

Now, let $\pi : M \to M/\xi$ be the canonical projection, where $(M/\xi, J, g')$ is a Stein manifold; π is a Riemannian submersion whose fibers are 1-dimensional submanifolds of M tangent to ξ and

$$d\pi \circ \varphi = J \circ d\pi. \quad (3.10)$$

Since at every $x \in M$, $\ker(d\pi)_x = \mathbb{R}\xi_x$, we have that $\pi|_N : N \to M/\xi$ has constant rank. Hence, according to Theorem 3.5.18 in [1], $S := \pi(N)$ is a smooth hypersurface of M/ξ and it carries a CR structure (defined as in Remark 2.2), having the same CR dimension of N. Moreover, (3.10) implies that $\pi : N \to S$ is a CR map, such that at every point $x \in N$ the differential $(d\pi)_x : H^0_x N \to H^0_{\pi(x)} S$ is an isomorphism.

Fix a point $y = \pi(x) \in S$, with $x \in N$; if $\psi \in H^0_y S$, then $\pi^* \psi$ belongs to the vector space $H^0_x N$, which is spanned by ω and η, with ω as in (3.1). Actually, if $\pi^* \psi = \alpha \omega + \beta \eta$, for some numbers α, β, evaluating at ξ we obtain $\beta = 0$ and hence $\pi^* \psi = \alpha \omega$. Using Corollary 2.6 we get

$$\pi^* \mathcal{L}_\psi = \mathcal{L}_{\pi^* \psi} = \alpha \mathcal{L}_\nu$$

and by (3.9) we conclude that $\text{tr}(\mathcal{L}_\psi) = 0$, so that $\mathcal{L}_\psi = 0$ or $i(\mathcal{L}_\psi) > 0$. Therefore S is a compact weakly pseudoconcave CR hypersurface of the complex Stein manifold M/ξ, thus contradicting Theorem 2.9. □
With just a small change in the previous proof, we also get the following result.

Theorem 3.4. If $(M, \varphi, \xi, \eta, g)$ is a regular Sasakian manifold which fibers on a complex Stein manifold, then M cannot admit any compact hypersurface N, tangent to ξ and such that at any point of N ξ is an eigenvector of the Ricci operator Q of N.

Proof. It suffices to note that if $Q\xi = \alpha \xi$ along N, with $\alpha \in C^\infty(N)$, then one has
\[
\text{tr}(\mathcal{L}_\nu) = 2\text{Ric}(\xi, \varphi \nu) = 2g(Q\xi, \varphi \nu) = 0.
\]
Hence the proof ends with the same argument of the previous one. \qed

References

[1] Abraham, R., Marsden, J. E., Ratiu T.: Manifolds, tensor analysis and Applications, Third Edition. Applied Mathematical Sciences **75**, Springer-Verlag, New York (2002).

[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition. Progress in Mathematics **203**, Birkhäuser, Boston (2010).

[3] Dillen, F.J.E., Verstraelen L.C.A.: Handbook of Differential Geometry, Volume II. North Holland (2006).

[4] Hasegawa, I.: A note on hypersurfaces in Sasakian space form, J. Hokkaido Univ. Ed., **41** (1990), 1-9.

[5] Hill, C. D., Nacinovich M.: A necessary condition for global Stein immersion of compact CR-manifolds, Riv. Mat. Univ. Parma (5) **1** (1992), 175-182.

[6] Hill, C. D., Nacinovich M.: The topology of Stein CR manifolds and the Lefschetz theorem, Ann. Inst. Fourier (Grenoble) **43**, 2 (1993), 459-468.

[7] Munteanu, M. I.: New aspects on CR-structures of codimension 2 on hypersurfaces of Sasakian manifolds, Arch. Math. (Brno) **42** (2006), 69-84.

[8] Ogiue, K.: On fiberings of almost contact manifolds, Kodai Mathematical Seminar Reports **17** (1965), n. 1, 53-62.
[9] Reckziegel, H.: A correspondence between horizontal submanifolds of Sasakian manifolds and totally real submanifolds of Kählerian manifolds, Colloquia Mathematica Societatis János Bolyai 46, Topics in Differential Geometry, Debrecen (Hungary), 1984, 1063-1081.

[10] Takahashi, T.: Sasakian ϕ-symmetric spaces, Tôhoku Math. Journ. 29 (1977), 91-113.