Adversity in childhood and measures of ageing in mid-life: findings from a cohort of British women

Emma L. Anderson1,2; Jon Heron2; Yoav Ben-Shlomo2; Diana Kuh3, Rachel Cooper3; Debbie A. Lawlor1,2, Abigail Fraser1,2; Laura D. Howe2.

1 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
2 School of Social and Community Medicine, University of Bristol, Bristol, UK
3 MRC Unit for Lifelong Health and Ageing at University College London, London, UK

Correspondence to:
Dr Emma Anderson
School of Social and Community Medicine
Oakfield House,
Oakfield Grove
Bristol BS8 2BN, UK
E-mail: emma.louise.anderson@bristol.ac.uk

Word count manuscript: 2701

Word count abstract: 247

Acknowledgements: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses.

Running head: Childhood adversity and measures of ageing
Funding: This work was supported by a grant from the UK Economic and Social Research Council [ES/M010317/1] and the National Institute on Aging of the National Institutes of Health [R01AG048835]. Laura D Howe and Abigail Fraser are supported by fellowships from the UK Medical Research Council [MR/M020894/1 and MR/M009351/1 respectively]. Laura D Howe, Emma L Anderson, Debbie A Lawlor and Abigail Fraser work in a unit that receives funding from the University of Bristol and the UK Medical Research Council [MC_UU_12013/5 and MC_UU_12013/9]. Debbie A Lawlor is a National Institute of Medical Research Senior Investigator [NF-SI-0611-10196]. Rachel Cooper and Diana Kuh are supported by the UK Medical Research Council [Programme code MC_UU_12019/4]. The UK Medical Research Council, the Wellcome Trust [grant ref: 092731] and the University of Bristol, provided core support for the Avon Longitudinal Study of Parents and their Children. The ALSPAC mother’s study [data used in our study] is funded by the British Heart Foundation [SP/07/008/24066], Medical Research Council [G1001357] and Wellcome Trust [WT092830M]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or any of the other funders.

Conflict of interest: The authors have no conflicts of interest to declare

Financial Disclosure: No financial disclosures were reported by the authors of this paper
ABSTRACT

Background: Very few studies have assessed whether socioeconomic and psychosocial adversity during childhood are associated with objective measures of ageing later in life. We assessed associations of socioeconomic position (SEP) and total psychosocial adversity during childhood, with objectively measured cognitive and physical capability in women during mid-life.

Methods: Adverse childhood experiences were retrospectively reported at mean ages 28-30 years in women from the Avon Longitudinal Study of Parents And Children (N=2,221). We investigated associations of childhood SEP and total psychosocial adversity, with composite measures of cognitive and physical capability at mean age 51 years.

Results: There was evidence that, compared to participants who’s fathers had ‘professional’ occupations, participants who’s father’s had ‘managerial/technical’, ‘skilled non-manual’, ‘skilled manual’ and ‘partly or unskilled manual’ occupations had, on average, lower physical and cognitive capability. There was a clear trend for increasing magnitudes of association with lowering childhood SEP. There was also evidence that greater total psychosocial adversity in childhood was associated with lower physical capability. Total psychosocial adversity in childhood was not associated with cognitive capability.

Conclusions: Lower SEP in childhood is detrimental to cognitive and physical capability in mid-life, at least in part, independently of subsequent SEP in adulthood. Greater psychosocial adversity in childhood is associated with poorer physical capability, independently of social disadvantage in childhood. Our findings highlight the need for interventions to both identify and support children experiencing socioeconomic or psychosocial of adversity as early as possible.

Key words: Childhood; Adversity; Psychosocial; Socioeconomic position; Ageing; Cognitive; Physical.
INTRODUCTION

Maintaining physical and cognitive capabilities in older age is essential for functional independence (Reed et al., 1998) and lower levels of cognitive and physical capability, even in mid-life, are associated with higher rates of all-cause mortality. (Cooper et al., 2010) Thus, determining factors that are associated with poorer cognitive and physical capability is important and may reduce the associated economic (Callahan, Hendrie, & Tierney, 1995) and care burden. (Garand, Dew, Eazor, DeKosky, & Reynolds, 2005) Studies have previously reported both socioeconomic (e.g. low head of household social class, parental education) and psychosocial (e.g. sexual or physical abuse) adversity to be associated with lower cognitive and physical capability later in life. (Birnie et al., 2011; Fors, Lennartsson, & Lundberg, 2009; Lyu & Burr, 2016; Montez & Hayward, 2014; Richards & Wadsworth, 2004; Schussler-Fiorenza Rose, Xie, & Stineman, 2014; Surtees & Wainwright, 2007; Turrell et al., 2002) There are several plausible mechanisms through which these associations could occur, including psychological (e.g. through greater risk of stress, anxiety and depression (Ege, Messias, Thapa, & Krain, 2015)), behavioural (e.g. through increased smoking or alcohol consumption (Dube, Anda, Felitti, Edwards, & Croft, 2002)) and biological (e.g. through higher levels of stress hormones and systemic inflammation (Danese & McEwen, 2012)).

The association between childhood socioeconomic position (SEP) and cognitive capability in adulthood is now well established. (Dugravot et al., 2009; Fors, et al., 2009; Horvat et al., 2014; Kaplan et al., 2001; Lyu & Burr, 2016; Marengoni, Fratiglioni, Bandinelli, & Ferrucci, 2011) However, much less evidence exists for the impact of childhood SEP on objective (as opposed to self-report) measures of physical capability. (Birnie, et al., 2011; Guralnik &
Ferrucci, 2003) Very few studies have examined whether psychosocial adversity carries additional risks for later cognitive and physical health, over and above socioeconomic disadvantage. Furthermore, few studies have assessed whether these associations are mediated by SEP in adulthood (i.e. whether psychosocial adversity in childhood increases risk of lower SEP in adulthood, for example, by reducing self-confidence and the ability to achieve in school or in later employment) which in turn reduce later cognitive and physical capability. Examining potential mediators may help to highlight possible targets for interventions.

Existing studies assessing associations of psychosocial adversity in childhood and later cognitive and physical health have either not considered possible confounding by childhood SEP, or have focussed on single adverse experiences such as sexual abuse or physical abuse, without considering a possible total effect of multiple adverse experiences.(Feeney, Kamiya, Robertson, & Kenny, 2013) Assessing total psychosocial adversity acknowledges that adverse experiences tend to co-occur and that experiencing multiple forms of adversity may have a greater adverse effect on physical and cognitive ageing than experiencing only one. Very few studies have considered the co-occurrence of multiple forms of psychosocial and/or socioeconomic adversity in relation to impaired cognition in adulthood, and those few existing studies have all used a simple summary adversity scores (i.e. totalling the number of adverse experiences).(Anda et al., 2006; Lovallo et al., 2013; Reuben et al., 2016) This method has important limitations, (Howe, Tilling, & Lawlor, 2015) as it assumes that each adverse experience has the same direction and magnitude of association with the outcome.

In this study, we aimed to investigate associations of retrospectively-reported childhood socioeconomic position (SEP) and psychosocial adversity (both total and individually by
maternal lack of care, maternal overprotection, maladaptive family functioning, parental mental illness, sexual abuse and physical or emotional cruelty or neglect) with cognitive and physical capability in mid-life. We examined (i) whether psychosocial adversity is associated with cognitive and physical capability, over and above childhood SEP (ii) whether any observed associations are mediated by adult SEP and (iii) whether associations of psychosocial adversity with cognitive and physical capability differ in women with high, compared to low childhood SEP and in women with high, compared to low adult SEP.

METHODS

Study population

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective birth cohort study from southwest England that recruited 14,541 pregnant women resident in 3 Bristol-based health districts, with an expected date of delivery between April 1991 and December 1992. Our analysis uses data from the mothers in this cohort.(Fraser et al., 2012) The study website contains details of all available data through a fully searchable data dictionary (www.bris.ac.uk/alspac/researchers/data-access/data-dictionary). Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Approximately 25 years after recruitment into the cohort, women were invited to attend a follow-up research clinic at which cognitive and physical capability were assessed. A total of 2893 women attended this clinic (mean age 51 years, standard deviation 4.4 years). Eligible participants had data for paternal occupational social class, responded to at least one question about psychosocial adversity in childhood and had data for all measures of cognitive and physical capability (n=2221). One hundred and seventy women were excluded due to missing one or more cognitive or physical capability measures (Figure 1).
Assessing SEP and psychosocial adversity in childhood

Psychosocial adversity

Women retrospectively reported childhood psychosocial adversity in questionnaires administered at the time of enrolment into the study, throughout pregnancy and postnatally (from 12 weeks gestation to 33 months postnatally, mean ages at the time of reporting ranged between 28 to 30 years). A priori, we aimed to examine the same adversity measures as the Adverse Childhood Experiences (ACE) study. However, ALSPAC measured many additional forms of adversity to this study. Thus, we decided to include as many types of psychosocial adversity as possible.

The following forms of psychosocial adversity were assessed in the questionnaires: maternal lack of care and maternal overprotection, maladaptive family functioning, parental mental illness, sexual abuse and non-sexual abuse. Questions about maternal care and overprotection were based on a validated instrument for assessing maternal bonding. (Parker, 1990)

Maladaptive family functioning includes questions that assess the nature of the relationship between the participant’s mother and father (i.e. whether the relationship was, for example, stable and predictable, affectionate, violent, respectful). Parental mental illness includes questions about depression, anxiety, schizophrenia or alcoholism in the participant’s mother or father. Sexual abuse questions assessed experiences of various types of sexual abuse by different people (e.g. family members, friends or strangers). Non-sexual abuse includes questions that capture physical or emotional cruelty and neglect by either parent/guardian. It is important to note that although there may appear to be overlap between ‘maternal lack of care’ and ‘emotional cruelty or neglect’, the questions assessing the latter reflect neglect by either parent/guardian; not just the mother. Details of the exact questions asked about each type of psychosocial adversity are provided in the online supplement.
Childhood SEP

At enrolment to the study, women retrospectively reported their mother’s and father’s occupation during their childhood. Missing data was much higher for mother’s occupation than for fathers, likely due to the high proportion of women who did not work outside the home during that period. Thus, we decided to use father’s occupation where this information was available, and only use mother’s occupation when father’s was not reported and mother’s was. Father’s occupation was coded as ‘professional’, ‘managerial and technical’, ‘skilled non-manual’, ‘skilled manual’ and ‘partly or unskilled manual’ occupations, in line with the Standard Occupational Classification 2000.

Assessing cognitive and physical capability in mid-life

Cognitive and physical capability outcomes were assessed at a follow-up research clinic approximately 23 years after the assessment of childhood SEP and psychosocial adversity. All cognitive and physical capability outcomes measured in this study are associated with mortality. (Cooper, et al., 2010; Cooper, Strand, Hardy, Patel, & Kuh, 2014; Small & Backman, 1997) Physical capability was assessed with a height-adjusted grip strength test, a timed chair rise, a timed one leg standing balance test with eyes closed and a 3-metre timed walk test. Cognitive capability was assessed with verbal fluency, (Lezak, 2004) logical memory, (Wechsler, 1998b) delayed logical memory, (Wechsler, 1998b) digit backwards, (Wechsler, 1998a) digit symbol coding (Wechsler, 1998a) and spot the word tests. (Baddeley, Emslie, & Nimmo-Smith, 1993) Full assessment details of each cognitive and physical capability test is provided in the online supplement.

Covariables

Participants’ SEP in adulthood was reported at enrolment into the study (during years 1991-1992) as the highest of own and partner’s occupational class groups using the 1991 British
Office of Population and Census Statistics (OPCS) classification. It was coded as ‘professional’, ‘managerial and technical’, ‘skilled non-manual’, ‘skilled manual’ and ‘partly or unskilled manual’. Women reported their ethnicity in questionnaires administered at enrolment. Age at the time of outcome assessment was recorded.

STATISTICAL ANALYSIS

Generating composite scores of cognitive and physical capability

In addition to assessing individual cognitive and physical capability tests which reflect different underlying systems (e.g. fluid vs crystallised intelligence, physical strength vs balance), composite scores of cognitive and physical capability were also created using the method devised by Guralnik et al. (Guralnik, Butterworth, Wadsworth, & Kuh, 2006)

Combining measures into a composite score may identify a much higher risk group (i.e. participants doing very badly on all tests), thus allowing us to assess the extremes of physical and cognitive performance, which may be more revealing in a middle-aged population that is generally functioning well. Grip strength was adjusted for body size by dividing it by height. Each cognitive and physical capability test score was rescaled to lie between 0 and 1, giving all measures equal weight in the final composite scores (see online supplement for further details of the rescaling procedure). Chair rise speed and 3-metre timed walk scores were reversed so that all scores were coded in the same direction, with 0 reflecting poorest and 1 reflecting highest performance. Participants unable to perform a test were assigned a value of 0. Rescaled cognitive and physical capability measures were summed to create normally distributed aggregate cognitive and physical capability scores, with ranges of 0 to 4 and 0 to 6, respectively.

Total psychosocial adversity in childhood
Most existing studies that have assessed total psychosocial adversity in childhood have used simple summary scores (i.e. totalling the number of adverse experiences) (Crowell et al., 2015; Halonen et al., 2015; Su et al., 2015). Summary scores, arguably unrealistically, assume each adverse exposure to have the same direction and magnitude of association with the outcome. We used a data-driven approach to create a total psychosocial adversity score that weights each adversity exposure based on how strongly it correlates with other adversity exposures (i.e. allocating exposures that tend to co-occur with others a higher weight, so that they contribute more to the total adversity score).

As there were multiple questions assessing each specific type of adversity, we first sought to combine all available questions into single variables. Thus, we used confirmatory factor analysis to create single latent constructs for maternal lack of care, maternal overprotection, parental mental illness, household dysfunction, sexual abuse and non-sexual abuse (Figure 2 and Supplemental Table S1). We then estimated a latent construct of total psychosocial adversity in childhood, which was informed by each of these single latent constructs. Latent constructs are variables that are not directly observed, but are inferred from other variables that are observed or measured (i.e. responses to the adversity questions). Higher latent trait values are indicative of greater levels of adversity. Full methods and model fit statistics for the confirmatory factor analyses are provided in the online supplement.

Analyses were conducted using Mplus version 7.31 (Muthén & Muthén, 2008).

Structural equation models (Figure S1 of the online supplement) were used to simultaneously conduct the factor analyses and estimate associations of total psychosocial adversity in childhood with cognitive and physical capability, in the following regression models: (1) unadjusted, (2) adjusted for age at outcome assessment and ethnicity, (3) additionally
adjusted for concurrent forms of adversity (i.e. associations of childhood psychosocial adversity are adjusted for SEP and vice versa) (4) additionally adjusted for potential mediation by adult SEP.

Missing data and additional analyses

Our main analysis dealt with missing data using the weighted least squares means and variance adjusted (WLSMV) estimator, which permits the inclusion of women with incomplete data, assuming data are missing at random conditional on all other exogenous variables in the model. (Edwards, Holden, Felitti, & Anda, 2003) As a sensitivity analysis, we repeated analysis in the sample with no missing data for any variable. We also assessed associations of each specific form of psychosocial adversity with cognitive and physical capability. We examined whether associations between total psychosocial adversity and the outcomes differ in (i) women who have a high (professional, managerial and technical occupations) childhood SEP compared to low (skilled, partly skilled and unskilled occupations), (ii) women who have a high (professional, managerial and technical occupations) adult SEP compared to low (skilled, partly skilled and unskilled occupations). We used binary childhood and adulthood SEP variables to assess these interactions as we do not have a large enough sample size (and thus, statistical power) to investigate interactions between the 5 different SEP categories used for the main analyses. We examined associations of SEP and total psychosocial adversity with each individual cognitive and physical capability measure. Finally, we compared findings from our main analyses to those where we used a more traditional approach of assessing total psychosocial adversity; a simple additive score. The additive score was created for participants with complete data for all the adversity measures, and physical and cognitive outcome data (n=1,535). Full details of the additive score are in the online supplement (Table S2).
RESULTS

There was evidence that women included in these analysis, on average, had a higher 3-metre timed walk speed and higher cognitive capability scores, were more likely to be white and have a higher SEP compared with women excluded due to missing data (Table 1). However, the magnitude of the differences was small. Correlations between each of the cognitive and physical capability measures (supplemental tables S3 and S4) were weak to moderate:

Pearson’s r ranges 0.07 to 0.25, and 0.15 to 0.41 for cognitive and physical capability measures, respectively. Logical memory and delayed logical memory were strongly correlated ($r=0.84$). Women with a low childhood SEP were more likely to have experienced physical neglect, emotional neglect, parental separation or absence and a dysfunctional household compared to women with a high childhood SEP (supplemental Table S5). Of women who had a low childhood SEP, 23% went on to have a high adulthood SEP. Of women with a high childhood SEP, 58% of went on to have a low adulthood SEP.

Associations of childhood SEP with cognitive and physical capability

There was evidence that, compared to participants who’s fathers had ‘professional’ occupations, participants who’s father’s had ‘managerial/technical’, ‘skilled non-manual’, ‘skilled manual’ and ‘partly or unskilled manual’ occupations had, on average, lower physical (Table 2) and cognitive (Table 3) capability. There was evidence of increasing magnitudes of association with lowering childhood SEP, and associations remained even after adjustment for potential confounding my age, ethnicity and total psychosocial adversity in childhood, and for potential mediation by adult SEP.

Associations of total psychosocial adversity with composite cognitive and physical capability scores
There was no evidence of an association between total psychosocial adversity and cognitive capability in any of the models (Table S6 of the online supplement). There was evidence that greater total psychosocial adversity in childhood was associated with lower physical capability, after adjusting for age at outcome assessment and ethnicity (standardised \(\beta = -0.05 \), 95% CI: -0.1 to 0.0004, \(p=0.05 \), Figure 2, Table S7 of the online supplement). The point estimate attenuated very little (from -0.05 to -0.04) after adjusting for potential confounding by SEP in childhood, but confidence intervals widened to include the null (\(p=0.10 \)). There was no evidence of an association after adjusting for potential mediation by adult SEP.

Additional analyses

There was evidence that having an overprotective or absent parent, being emotionally neglected, being adopted or spending time in local authority care were associated with poorer cognitive capability in mid-life. In contrast, having a physically ill parent was associated with better cognitive capability (Table S8 of the online supplement). Parental lack of care or having a parent be physically cruel during childhood were associated with poorer physical capability. Low childhood SEP was associated with poorer scores for all individual cognitive capability measures (compared to high) and with poorer grip strength and standing balance (Supplemental Table S9). Greater total psychosocial adversity was associated with a slower 3-meter timed walk and a lower digit symbol coding score. Associations of total psychosocial adversity with physical and cognitive capability were similar in women who had a high, compared to low childhood SEP (interaction P values>0.1, Table S10 of the online supplement), and in women with high compared to low adult SEP (interaction p-values >0.1, Table S11 in online supplement). Associations were similar in the sample with no missing data (Supplemental Table S12). Associations were very similar when using an additive score of psychosocial adversity rather than a latent construct, except that confidence intervals were slightly wider due to the reduction in sample size (\(n=2221 \) in the main analysis of the latent
construct compared to n=1535 in the additive score analysis, Table S13 of the online supplement).

DISCUSSION

We found evidence that lower SEP in childhood is associated with poorer cognitive capability and objectively measured physical capability in mid-life, at least in part independently of SEP in adulthood. We also found evidence that greater total psychosocial adversity in childhood is associated with poorer physical capability, independently of socioeconomic disadvantage in childhood. There was no evidence on an association between total psychosocial adversity and childhood SEP. There was no evidence that associations of total psychosocial adversity in childhood with cognitive and physical capability differed in participants with high, compared to low childhood SEP or high, compared to low SEP in adulthood. Overall our findings imply that consequences of childhood SEP on both physical and cognitive capability, and consequences of childhood psychosocial adversity on physical capability in women are likely to persist across the life course.

We did not observe that any particular type of psychosocial adversity was associated with cognitive or physical function more strongly than the other types. This potentially highlights that our study has insufficient power to detect associations with individual types of psychosocial adversity, particularly for those with low prevalences, such as sexual abuse. Importantly, our main analysis using an overall score of psychosocial adversity in childhood incorporates the widely recognised fact that different forms of psychosocial adversity often co-occur,(Vachon, Krueger, Rogosch, & Cicchetti, 2015) and their effects may accumulate to influence cognitive and physical capability.(Edwards, et al., 2003)
In our study we assessed associations between childhood SEP and psychosocial adversity with each cognitive and physical capability test, as well as the composite scores. Different cognitive and physical capability measures reflect different underlying systems (e.g. fluid vs crystallised intelligence, physical strength vs balance) and assessing them individually as opposed to using composite scores may help inform possible underlying pathways of association. Combining measures into a composite score may, however, increase power as summing them together identifies a much higher risk group (i.e. those performing very badly on all tests), which may drive associations. In our study, low childhood SEP (compared to high) was associated with poorer scores for all individual cognitive capability measures, suggesting that there is not one particular aspect of cognition that is largely affected by childhood SEP.

Comparisons with other studies

Several studies have assessed associations of SEP in childhood with cognitive (Fors, et al., 2009; Horvat, et al., 2014; Kobrosly et al., 2011; Lyu & Burr, 2016) and physical capability in mid-life (Birnie, et al., 2011). Similar to our findings, these studies consistently report lower childhood SEP to be associated with poorer cognitive and physical capabilities in adulthood. However, few studies have assessed associations of psychosocial adversity in childhood with cognitive capability later in life. (Anda, et al., 2006; Feeney, et al., 2013; Lovallo, et al., 2013; Navalta, Polcari, Webster, Boghossian, & Teicher, 2006; Reuben, et al., 2016; Richards & Wadsworth, 2004) Most existing studies have found various types of psychosocial adversity (mainly abuse and neglect) to be associated with poorer cognitive capability in later life. (Lovallo, et al., 2013; Navalta, et al., 2006; Richards & Wadsworth, 2004) Only three studies consider the co-occurrence of multiple forms of psychosocial and/or socioeconomic adversity. (Anda, et al., 2006; Lovallo, et al., 2013; Reuben, et al., 2016) All of those studies used a simple additive summary score (i.e. totalled the number of adverse
experiences) and found that greater adversity in childhood and adolescence was associated with poorer cognitive outcomes. We are unaware of any studies that have assessed associations of psychosocial adversity in childhood with objectively measured physical capability later in life; only those using self-reported measures of physical capability (Montez & Hayward, 2014; Schussler-Fiorenza Rose, et al., 2014; Surtees & Wainwright, 2007).

These studies reported psychosocial adversity (maltreatment, abuse and household dysfunction) to be associated with greater risk of physical disability in later life.

Strengths and limitations

To the best of our knowledge, this is the first study to assess associations between psychosocial adversity in childhood and objective measures of physical capability in adulthood. Our analytical approach for assessing the effects of total psychosocial adversity improves on existing studies that either assess the relationship between a single type of adversity (since this ignores co-occurrence and likely total effects), or simply add up the number of adverse experiences into a score (since this weights each form of adversity equally). Alternative weighting methods based on theory would also be possible, but it requires making assumptions about the relative severity of each type of adversity for a particular outcome. We had data for a variety of cognitive and physical capability tests which allowed us to assess the effect of childhood adversity on different aspects of cognition and physical capability, and also on overall cognitive and physical functioning.

One limitation of our study is the possibility of selection bias; outcomes were assessed approximately 25 years after recruitment into the cohort. The sample included in this analysis represents approximately 16% of the original ALSPAC mothers’ cohort, thus, as in all longitudinal cohort studies, selection bias due to loss to follow-up possible. Our study sample also includes a larger proportion of ‘high SEP’ participants than were initially recruited into
ALSPAC. Although this means the prevalence of childhood socioeconomic and psychosocial adversity in our sample may not be representative of the general population, there is evidence that such non-generalisability often does not result in bias in exposure-outcome associations. (Nohr, Frydenberg, Henriksen, & Olsen, 2006) It is also likely that any bias would be towards the null (Howe, Tilling, Galobardes, & Lawlor, 2013) which may, at least in part, explain the lack of an observed association between total psychosocial adversity and cognitive capability.

Psychosocial adversity data were retrospectively self-reported in adulthood, meaning there is potential for recall bias. There is currently no gold standard method for collecting data on adverse experiences in childhood, and a previous review reported retrospective recall in adult life of exposure to adverse experiences in childhood to be sufficiently valid. (Hardt & Rutter, 2004) Two existing studies have compared associations of prospectively and retrospectively assessed childhood adversity measures, with various health outcomes in adulthood. The first study (Patten et al., 2015) concluded that associations between childhood adversities and health outcomes during adulthood are not merely artefacts of recall bias, and that retrospective and prospective assessment strategies produced very similar results. The second study (Reuben, et al., 2016) reported that retrospective and prospective measures of adversity showed moderate agreement ($r = 0.47, p < 0.001$) and that both associated with all midlife outcomes. They also noted that retrospective childhood adversity measures may biased toward underestimating the impact of adversity on objectively measured life outcomes.

Despite reports of childhood adversity being retrospectively reported, reverse causation is extremely unlikely in this study. Childhood adversity was retrospectively reported an average of 23 years prior to the assessment of physical and cognitive capability (childhood adversity
was retrospectively reported at mean age 29 years, physical and cognitive capability was assessed at mean age 51 years). Thus, we are able to draw some conclusions about temporality of events because cognitive and physical capability at average age 51 years is extremely unlikely to affect (1) whether participants experienced psychosocial adversity (such as sexual abuse or parental divorce) during childhood and (2) whether participants accurately reported experiencing adversity in childhood, 23 years prior to the cognitive and physical capability assessment. The model fit for the non-sexual abuse factor was slightly poorer than the other models (i.e. RMSEA and CFI were greater). That said, the factor loadings for all items were relatively high, and modifications to this factor did not substantially improve model fit. Non-sexual abuse has been identified as a potentially important form of psychosocial adversity to consider from a theoretical perspective, (Edwards, et al., 2003; Lindert et al., 2014; Rich-Edwards et al., 2012) thus, we decided to keep this factor in the analyses despite its slightly lower model fit, particularly given that the overall total psychosocial adversity factor had very good model fit, even with non-sexual abuse included. Our mediation analysis assumes no measurement error in the mediator and, given our single measure of adult SEP (occupational social class), we are unable to rule this out. Finally, we only studied British women, thus we cannot assume that our results would generalise to men or women from different ethnic backgrounds. The UK is has low social mobility, (Social Mobility Commision, 2016) with women in particular facing challenges in trying to mobilise upwards from a low SEP. That said, in our study of women, we do observe social mobility in both directions; 23% of women with low childhood SEP went on to have high adulthood SEP, and 58% of those women with high childhood SEP went on to have a low adulthood SEP.

Conclusions

In conclusion, our results suggest that lower SEP in childhood is detrimental to both
cognitive and physical capability in women in mid-life. Greater psychosocial adversity in
women is also associated with poorer physical capability, independently of social
disadvantage. We found no evidence of an association between psychosocial adversity in
childhood and cognitive capability in women, which may, at least in part, be explained by
selection bias. Thus, further studies are needed to clarify this association. Our findings
suggest that the adverse effects of psychosocial adversity during childhood on objective
measures of physical ageing in women, are independent of social disadvantage in childhood,
and are also not completely mediated through SEP attained in adulthood. Thus, interventions
to both identify and provide support to children experiencing socioeconomic or psychosocial
adversity as early as possible, may help to minimise the adverse consequences on cognitive
and physical health later in life.
Reference List

Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., . . . , Giles, W. H. (2006). The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. *Eur Arch Psychiatry Clin Neurosci*, 256(3), 174-186. doi: 10.1007/s00406-005-0624-4

Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1993). The Spot-the-Word test: a robust estimate of verbal intelligence based on lexical decision. *Br J Clin Psychol*, 32 (Pt 1), 55-65.

Bentler, P. M. (1990). Comparative fit indexes in structural models. *Psychol Bull*, 107(2), 238-246.

Birnie, K., Cooper, R., Martin, R. M., Kuh, D., Sayer, A. A., Alvarado, B. E., . . . team, H. A. s. (2011). Childhood socioeconomic position and objectively measured physical capability levels in adulthood: a systematic review and meta-analysis. *PLoS One*, 6(1), e15564. doi: 10.1371/journal.pone.0015564

Callahan, C. M., Hendrie, H. C., & Tierney, W. M. (1995). Documentation and evaluation of cognitive impairment in elderly primary care patients. *Ann Intern Med*, 122(6), 422-429.

Cooper, R., Kuh, D., Hardy, R., Mortality Review, G., Falcon, & Teams, H. A. s. (2010). Objectively measured physical capability levels and mortality: systematic review and meta-analysis. *BMJ*, 341, c4467. doi: 10.1136/bmj.c4467

Cooper, R., Strand, B. H., Hardy, R., Patel, K. V., & Kuh, D. (2014). Physical capability in mid-life and survival over 13 years of follow-up: British birth cohort study. *BMJ*, 348, g2219. doi: 10.1136/bmj.g2219

Crowell, J. A., Davis, C. R., Joung, K. E., Usher, N., McCormick, S. P., Dearing, E., & Mantzoros, C. S. (2015). Metabolic pathways link childhood adversity to elevated blood pressure in midlife adults. *Obes Res Clin Pract*. doi: 10.1016/j.orcp.2015.10.009

Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostatics, allostatic load, and age-related disease. *Physiol Behav*, 106(1), 29-39. doi: 10.1016/j.physbeh.2011.08.019

Dube, S. R., Anda, R. F., Felitti, V. J., Edwards, V. J., & Croft, J. B. (2002). Adverse childhood experiences and personal alcohol abuse as an adult. *Addict Behav*, 27(5), 713-725.

Dugravot, A., Gueguen, A., Kivimaki, M., Vahtera, J., Shipley, M., Marmot, M. G., & Singh-Manoux, A. (2009). Socioeconomic position and cognitive decline using data from two waves: what is the role of the wave 1 cognitive measure? *J Epidemiol Community Health*, 63(8), 675-680. doi: 10.1136/jech.2008.jech.2010.081281

Edwards, V. J., Holden, G. W., Felitti, V. J., & Anda, R. F. (2003). Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: results from the adverse childhood experiences study. *Am J Psychiatry*, 160(8), 1453-1460. doi: 10.1176/ajp.160.8.1453

Ege, M. A., Messias, E., Thapa, P. B., & Krain, L. P. (2015). Adverse childhood experiences and geriatric depression: results from the 2010 BRFSS. *Am J Geriatr Psychiatry*, 23(1), 110-114. doi: 10.1016/j.jagp.2014.08.014

Feeney, J., Kamiya, Y., Robertson, I. H., & Kenny, R. A. (2013). Cognitive function is preserved in older adults with a reported history of childhood sexual abuse. *J Trauma Stress*, 26(6), 735-743. doi: 10.1002/jts.21861

Fors, S., Lennartsson, C., & Lundberg, O. (2009). Childhood living conditions, socioeconomic position in adulthood, and cognition in later life: exploring the associations. *J Gerontol B Psychol Sci Soc Sci*, 64(6), 750-757. doi: 10.1093/geronb/gbp029

Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., . . . Lawlor, D. A. (2012). Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. *International Journal of Epidemiology*.

Garand, L., Dew, M. A., Eazor, L. R., DeKosky, S. T., & Reynolds, C. F., 3rd. (2005). Caregiving burden and psychiatric morbidity in spouses of persons with mild cognitive impairment. *Int J Geriatr Psychiatry*, 20(6), 512-522. doi: 10.1002/gps.1318
Guralnik, J. M., Butterworth, S., Wadsworth, M. E., & Kuh, D. (2006). Childhood socioeconomic status predicts physical functioning a half century later. *J Gerontol A Biol Sci Med Sci, 61*(7), 694-701.

Guralnik, J. M., & Ferrucci, L. (2003). Assessing the building blocks of function: utilizing measures of functional limitation. *Am J Prev Med, 25*(3 Suppl 2), 112-121.

Halonen, J. I., Stenholm, S., Pentti, J., Kawachi, I., Subramanian, S. V., Kivimaki, M., & Vahtera, J. (2015). Childhood Psychosocial Adversity and Adult Neighborhood Disadvantage as Predictors of Cardiovascular Disease: A Cohort Study. *Circulation, 132*(5), 371-379. doi: 10.1161/CIRCULATIONAHA.115.015392

Hardt, J., & Rutter, M. (2004). Validity of adult retrospective reports of adverse childhood experiences: review of the evidence. *J Child Psychol Psychiatry, 45*(2), 260-273.

Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R., Tamosiunas, A., . . . Bobak, M. (2014). Life course socioeconomic position and mid-late life cognitive function in Eastern Europe. *J Gerontol B Psychol Sci Soc Sci, 69*(3), 470-481. doi: 10.1093/geronb/gbu014

Howe, L. D., Tilling, K., Galobardes, B., & Lawlor, D. A. (2013). Loss to follow-up in cohort studies: bias in estimates of socioeconomic inequalities. *Epidemiology, 24*(1), 1-9. doi: 10.1097/ED.E.0b013e31827623b1

Howe, L. D., Tilling, K., & Lawlor, D. A. (2015). Studying the life course health consequences of childhood adversity: challenges and opportunities. *Circulation, 131*(19), 1645-1647. doi: 10.1161/CIRCULATIONAHA.115.016251

Kaplan, G. A., Turrell, G., Lynch, J. W., Everson, S. A., Helkala, E. L., & Salonen, J. T. (2001). Childhood socioeconomic position and cognitive function in adulthood. *Int J Epidemiol, 30*(2), 256-263.

Kobrosly, R. W., van Wijngaarden, E., Galea, S., Cory-Slechta, D. A., Love, T., Hong, C., . . . Davidson, P. W. (2011). Socioeconomic position and cognitive function in the Seychelles: a life course analysis. *Neuroepidemiology, 36*(3), 162-168. doi: 10.1159/000325779

Lezak, M. (2004). *Neuropsychological assessment*: Oxford University Press.

Lindert, J., von Ehrenstein, O. S., Grashow, R., Gal, G., Braehler, E., & Weisskopf, M. G. (2014). Sexual and physical abuse in childhood is associated with depression and anxiety over the life course: systematic review and meta-analysis. *Int J Public Health, 59*(2), 359-372. doi: 10.1007/s00038-013-0519-5

Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: studies from the Oklahoma Family Health Patterns Project. *Alcohol Clin Exp Res, 37*(4), 616-623. doi: 10.1111/acer.12016

Lyu, J., & Burr, J. A. (2016). Socioeconomic Status Across the Life Course and Cognitive Function Among Older Adults: An Examination of the Latency, Pathways, and Accumulation Hypotheses. *J Aging Health, 28*(1), 40-67. doi: 10.1177/0898264315585504

Marengoni, A., Fratiglioni, L., Bandinelli, S., & Ferrucci, L. (2011). Socioeconomic status during lifetime and cognitive impairment no-dementia in late life: the population-based aging in the Chianti Area (InCHIANTI) Study. *J Alzheimers Dis, 24*(3), 559-568. doi: 10.3233/JAD-2011-101863

Montez, J. K., & Hayward, M. D. (2014). Cumulative childhood adversity, educational attainment, and active life expectancy among U.S. adults. *Demography, 51*(2), 413-435. doi: 10.1007/s13524-013-0261-x

Navalta, C. P., Polcari, A., Webster, D. M., Bohgossian, A., & Teicher, M. H. (2006). Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. *J Neuropsychiatry Clin Neurosci, 18*(1), 45-53. doi: 10.1176/jnp.18.1.45

Nohr, E. A., Frydenberg, M., Henriksen, T. B., & Olsen, J. (2006). Does low participation in cohort studies induce bias? *Epidemiology, 17*(4), 413-418. doi: 10.1097/01.ede.0000220549.14177.60
Parker, G. (1990). The Parental Bonding Instrument. A decade of research. *Soc Psychiatry Psychiatr Epidemiol*, 25(6), 281-282.

Patten, S. B., Wilkes, T. C., Williams, J. V., Lavorato, D. H., El-Guebaly, N., Schopflocher, D., . . .

Bulloch, A. G. (2015). Retrospective and prospectively assessed childhood adversity in association with major depression, alcohol consumption and painful conditions. *Epidemiol Psychiatr Sci*, 24(2), 158-165. doi: 10.1017/S2045796014000118

Reed, D. M., Foley, D. J., White, L. R., Heimovitz, H., Burchfiel, C. M., & Masaki, K. (1998). Predictors of healthy aging in men with high life expectancies. *American Journal of Public Health*, 88(10), 1463-1468. doi: 10.2105/AJPH.88.10.1463

Rich-Edwards, J. W., Mason, S., Rexrode, K., Spiegelman, D., Hibert, E., Kawachi, I., . . . Wright, R. J. (2012). Physical and sexual abuse in childhood as predictors of early-onset cardiovascular events in women. *Circulation*, 126(8), 920-927. doi: 10.1161/CIRCULATIONAHA.111.076877

Schussler-Fiorenza Rose, S. M., Xie, D., & Stineman, M. (2014). Adverse childhood experiences and disability in U.S. adults. *PM R*, 6(8), 670-680. doi: 10.1016/j.pmrj.2014.01.013

Small, B. J., & Backman, L. (1997). Cognitive correlates of mortality: evidence from a population-based sample of very old adults. *Psychol Aging*, 12(2), 309-313.

Social Mobility Commission. (2016). State of the nation 2016: Social Mobility in Great Britain.

Steiger, J. L. (1980). *Statistically based tests for the number of common factors*. Paper presented at the Annual Spring Meeting of the Psychometric Society, Iowa City, IA.

Su, S., Wang, X., Pollock, J. S., Treiber, F. A., Xu, X., Snieder, H., . . . Harshfield, G. A. (2015). Adverse childhood experiences and blood pressure trajectories from childhood to young adulthood: the Georgia stress and Heart study. *Circulation*, 131(19), 1674-1681. doi: 10.1161/CIRCULATIONAHA.114.013104

Surtees, P. G., & Wainwright, N. W. (2007). The shackles of misfortune: social adversity assessment and representation in a chronic-disease epidemiological setting. *Soc Sci Med*, 64(1), 95-111. doi: 10.1016/j.socscimed.2006.08.013

Tucker, L. L., C. (1973). A reliability coefficient for maximum likelihood factor analysis. *Psychometrika*, 38(1), 1-10.

Turrell, G., Lynch, J. W., Kaplan, G. A., Everson, S. A., Helkala, E. L., Kauhanen, J., & Salonen, J. T. (2002). Socioeconomic position across the lifecourse and cognitive function in late middle age. *J Gerontol B Psychol Sci Soc Sci*, 57(1), S43-S51.

Vachon, D. D., Krueger, R. F., Rogosch, F. A., & Cicchetti, D. (2015). Assessment of the Harmful Psychiatric and Behavioral Effects of Different Forms of Child Maltreatment. *JAMA Psychiatry*, 72(11), 1135-1142. doi: 10.1001/jamapsychiatry.2015.1792

Wechsler, D. (1998a). *WAIS-III UK administration and scoring manual*. London: The Psychological Corporation.

Wechsler, D. (1998b). *Wechsler Memory Scale: Administration and scoring manual*. London: The Psychological Corporation.
Figure Legends

Figure 1: Participant flow through the study

Figure 2: Scatter plot and regression line of standardised physical capability scores by standardised levels of total psychosocial adversity (n=2221). More psychosocial adversity in childhood was associated with lower physical capability in midlife.
Table 1. Characteristics of participants included in the study (n=2221), and excluded due to missing data

Outcomes	Included participants (n=2221) Mean (SD)/Median(IQR)	N with available data	Excluded participants Mean (SD)/Median(IQR)	P value for difference
Grip strength (kg)	26.1 (6.6)	527	25.8 (7.2)	0.32
Chair rise time (seconds)	23.4 (5.4)	479	23.8 (5.8)	0.14
Standing balance test with eyes closed (seconds)a	4.8 (3.0, 9.9)	506	5.0 (2.9, 9.4)	0.82
3-metre timed walk speed (metres/second)	1.25 (1.07, 1.36)	522	1.20 (1.07, 1.25)	0.01
Logical memory test scorea	16 (13, 18)	487	15 (13, 17)	<0.01
Digit backwards test scorea	7 (5, 9)	485	7 (5, 9)	0.04
Spot the word test scorea	45 (39, 50)	480	44 (37, 49)	0.01
Digit symbol coding test scorea	82 (72, 90)	464	80 (69, 88)	<0.01
Verbal fluency test scorea	43 (35, 51)	464	40 (32, 51)	<0.01
Delayed logical memory test scorea	15 (12, 17)	469	14 (11, 16)	<0.01
Covariables				
Age at outcome assessmenta	50.6 (48, 53.6)	550	50.4 (47.6, 53.7)	0.65
Ethnicity				
White	98.0%	10,027	97.2%	0.04
Non-white	2.0%		2.8%	
Father’s (childhood) SEP				
Non-manual	57.3%	8,093	44.6%	<0.001
Manual	42.7%		55.4%	
Adulthood SEP				
High	68.8%	9,199	51.8%	<0.001
Low	31.2%		48.2%	

SEP – Socioeconomic position. SD – Standard deviation. IQR – Interquartile range.

For continuous variables the difference between the means of those included and excluded from the analysis was tested using an unpaired t-test.
For categorical variables the difference between those included and excluded from the analysis was tested using Pearson’s chi-squared test. For non-normally distributed variables, differences between those included and excluded from the analysis were tested using a Mann-Whitney U-test.

For ease of interpretation of the average values, we present grip strength here. In the analyses, however, we use height-adjusted grip strength.

Excluded participants are ALSPAC participants that were missing data for all psychosocial adversity variables, at least one of the physical and cognitive outcomes and/or potential confounders.

The ‘N with available data column’ shows the number of excluded participants with data for that particular variable.
Table 2. Associations of childhood SEP with composite scores of cognitive capability at mean age 51 years (N=2221)

Childhood SEP	Unadjusted Standardised β (95% CI)	P	Adjusted for age at outcome assessment and ethnicity Standardised β (95% CI)	P	Adjusted for age at outcome assessment, ethnicity and cumulative psychosocial adversity Standardised β (95% CI)	P	Adjusted for age at outcome assessment, ethnicity and cumulative psychosocial adversity and adult SEP Standardised β (95% CI)	P
Managerial and technical vs professional	-0.21 (-0.35, -0.06)	0.005	-0.20 (-0.34, -0.06)	0.006	-0.20 (-0.34, -0.06)	0.006	-0.16 (-0.30, -0.03)	0.02
Skilled non-manual vs professional	-0.28 (-0.46, -0.13)	0.001	-0.27 (-0.44, -0.11)	0.001	-0.27 (-0.44, -0.11)	0.001	-0.19 (-0.34, -0.03)	0.02
Skilled manual vs professional	-0.66 (-0.80, -0.52)	<0.001	-0.64 (-0.78, -0.50)	<0.001	-0.64 (-0.78, -0.50)	<0.001	-0.50 (-0.64, -0.37)	<0.001
Partly or unskilled manual vs professional	-0.76 (-0.95, -0.57)	<0.001	-0.74 (-0.92, -0.55)	<0.001	-0.73 (-0.92, -0.55)	<0.001	-0.57 (-0.75, -0.39)	<0.001

Covariables

Covariables	Standardised β (95% CI)	P				
Age at outcome assessment	0.01 (0.003, 0.02)	0.01	0.01 (0.003, 0.02)	0.01	-0.001 (-0.01, 0.008)	0.76
Ethnicity (non-white vs white)	-0.27 (-0.55, 0.02)	0.07	-0.26 (-0.55, 0.03)	0.08	-0.18 (-0.46, 0.10)	0.163
Cumulative psychosocial adversity	-0.01 (-0.07, 0.04)	0.63	0.005 (-0.05, 0.06)	0.86		
Adult SEP	-0.29 (-0.34, -0.25)	<0.001				

SEP – socioeconomic position. CI – confidence interval.
Standardised beta coefficients are interpreted as a standardised mean difference in the outcome in each childhood SEP group when compared, ‘Professional SEP’. Results are adjusted for potential confounding by age at outcome assessment, ethnicity and psychosocial adversity. The final model is adjusted for potential mediation by adult SEP, which is a categorical variable with the same categories as childhood SEP but entered as a linear term (i.e. per category increase in adult SEP).
Table 3. Associations of childhood SEP with composite scores of physical capability at mean age 51 years (N=2221)

Childhood SEP	Unadjusted	Adjusted for age at outcome assessment and ethnicity	Adjusted for age at outcome assessment, ethnicity and cumulative psychosocial adversity	Adjusted for age at outcome assessment, ethnicity and cumulative psychosocial adversity and adult SEP				
	Standardised β (95% CI)	P						
Managerial and technical vs professional	-0.09 (-0.24, 0.05)	0.22	-0.11 (-0.26, 0.03)	0.13	-0.11 (-0.26, 0.03)	0.13	-0.10 (-0.24, 0.05)	0.19
Skilled non-manual vs professional	-0.19 (-0.35, -0.02)	0.03	-0.23 (-0.39, -0.06)	0.006	-0.23 (-0.39, -0.07)	0.006	-0.19 (-0.36, -0.03)	0.02
Skilled manual vs professional	-0.26 (-0.40, -0.11)	0.001	-0.33 (-0.47, -0.19)	<0.001	-0.33 (-0.47, -0.18)	<0.001	-0.27 (-0.41, -0.12)	<0.001
Partly or unskilled manual vs professional	-0.34 (-0.53, -0.15)	<0.001	-0.40 (-0.59, -0.21)	<0.001	-0.40 (-0.59, -0.21)	<0.001	-0.33 (-0.52, -0.14)	0.001

Covariables	Standardised β (95% CI)	P						
Age at outcome assessment	-0.04 (-0.05, -0.03)	<0.001	-0.04 (-0.05, -0.03)	<0.001	-0.04 (-0.05, -0.03)	<0.001	-0.05 (-0.06, -0.04)	<0.001
Ethnicity (non-white vs white)	-0.17 (-0.46, 0.12)	0.25	-0.15 (-0.45, 0.14)	0.31	0.12 (-0.41, 0.17)	0.43		
Cumulative psychosocial adversity	-0.04 (-0.09, 0.01)	0.15	-0.03 (-0.08, 0.02)	0.24				
Adult SEP	-0.13 (-0.18, -0.08)	<0.001						

SEP – socioeconomic position. CI – confidence interval.
Standardised beta coefficients are interpreted as a standardised mean difference in the outcome in each childhood SEP group when compared, ‘Professional SEP’.
Results are adjusted for potential confounding by age at outcome assessment, ethnicity and psychosocial adversity. The final model is adjusted for potential
mediation by adult SEP, which is a categorical variable with the same categories as childhood SEP but entered as a linear term (i.e. per category increase in adult SEP).
Figure 1:

Recruited pregnancy cohort	n=14,541
Included pregnancy cohort	n=13,887
Included individual women	n=13,701

Clinical assessment:
- 6834 invited to FOCUS on Mothers 1
- 2803 attended (41% of those invited)

Clinical assessment:
- 6834 invited to FOCUS on Mothers 2
- 2733 attended (40% of those invited)

2733 had all measures of cognitive and physical capability
N=2221 also had at least one measure of early life adversity

Of which 474 excluded:
- 404 no live birth
- 9 unknown outcomes
1 live birth only from a twin pregnancy

100 ab-norms

Figure 2:

![Scatter plot showing relationship between physical capability score (standard deviations) and total psychosocial adversity (standard deviations) with a best-fitting line.](chart2.png)