ON GENERALIZATIONS OF BAER'S THEOREMS ABOUT THE HYPERCENTER OF A FINITE GROUP

V. I. Murashka

{mvimath@yandex.net}

Francisk Skorina Gomel State University, Gomel

Abstract. We investigate the intersection of normalizers and \(F \)-subnormalizers of different types of systems of subgroups (\(F \)-maximal, Sylow, cyclic primary). We described all formations \(F = \prod_{i \in I} F_{\pi_i} \) for which the intersection of normalizers of all \(F_{\pi_i} \)-maximal subgroups of \(G \) is the \(F \)-hypercenter of \(G \) for every group \(G \). Also we described all formations \(F \) for which the intersection of \(F \)-subnormalizers of all Sylow (cyclic primary) subgroups of \(G \) is the \(F \)-hypercenter of \(G \) for every group \(G \).

Keywords: saturated formation, hereditary formation, \(F \)-hypercenter, \(F \)-subnormalizer, intersection of subgroups.

Mathematic Subject Classification (2010): 20D25, 20F17, 20F19.

1 Introduction

All considered groups are finite. In [1] R. Baer showed that from one hand the hypercenter \(Z_{\infty}(G) \) of a group \(G \) coincides with the intersection of all maximal nilpotent subgroups of \(G \) and from another hand \(Z_{\infty}(G) \) coincides with the intersection of normalizers of all Sylow subgroups of \(G \).

The concept of hypercenter was extended on classes of groups (see [2, p. 127–128] or [3, p. 6–8]). Let \(\mathcal{X} \) be a class of groups. A chief factor \(H/K \) of a group \(G \) is called \(\mathcal{X} \)-central if \((H/K) \leq G/C_G(H/K) \in \mathcal{X} \). A normal subgroup \(N \) of \(G \) is said to be \(\mathcal{X} \)-hypercentral in \(G \) if \(N = 1 \) or \(N \neq 1 \) and every chief factor of \(G \) below \(N \) is \(\mathcal{X} \)-central. The \(\mathcal{X} \)-hypercenter \(Z_{\mathcal{X}}(G) \) is the product of all normal \(\mathcal{X} \)-hypercentral subgroups of \(G \). So if \(\mathcal{X} = \mathcal{N} \) is the class of all nilpotent groups then \(Z_{\infty}(G) = Z_{\mathcal{N}}(G) \) for every group \(G \).

In [4] A. V. Sidorov showed that for a soluble group \(G \) the intersection of all maximal subgroups of nilpotent length at most \(r \) is \(Z_{\mathcal{N}_r}(G) \). Beidleman and Heineken [5] studied the properties of the intersection \(\text{Int}_{\mathcal{F}}(G) \) of \(\mathcal{F} \)-maximal subgroups of a group \(G \) in case when \(G \) is soluble and \(\mathcal{F} \) is a hereditary saturated formation.

Let \(F \) be the canonical local definition of a local formation \(\mathcal{F} \). Then \(\mathcal{F} \) is said to satisfy the boundary condition [6] if \(\mathcal{F} \) contains every group \(G \) whose all maximal subgroups belong to \(F(p) \) for some prime \(p \).

A. N. Skiba [6] showed that the equality \(\text{Int}_{\mathcal{F}}(G) = Z_{\mathcal{F}}(G) \) holds for every group \(G \) if and only if a hereditary saturated formations \(\mathcal{F} \) satisfies the boundary condition. This and further results was included in the first chapter of [3].

The intersection of normalizers of different systems of subgroups is the main theme of many papers. In [7] Baer considered the intersection of normalizers of all subgroups of a group. Wielandt [8] studied the intersection of normalizers of all subnormal subgroups of a group. Li and Shen [9] considered the intersection of normalizers of all derived subgroups of all subgroups of a group.

Let \(\sigma = \{ \pi_i | i \in I \} \) be a partition of \(\mathbb{P} \) into disjoint subsets, \(\mathcal{X}_i \) be a class of groups such that \(\pi(\mathcal{X}_i) = \pi_i \). Then \(\times_{i \in I} \mathcal{X}_{\pi_i} = (G = \times_{i \in I} O_{\pi_i}(G)|O_{\pi_i}(G) \in \mathcal{X}_i) \). Recall that \(\mathcal{G}_\pi \) is the class of all \(\pi \)-groups. Hence \(\mathfrak{H} = \times_{p \in \mathbb{P}} \mathcal{G}_p \).
In [10] author showed that if $\mathfrak{F} = \times_{i \in I} \mathfrak{G}_\pi$, then for any group G the intersection of all normalizers of all π_i-maximal subgroups of G for all $i \in I$ coincides with the \mathfrak{F}-hypercenter. So the general problem is

Problem A. Let Σ be a subgroup functor. What can be said about the intersection of normalizers of subgroups from $\Sigma(G)$?

Recall [11, p. 206] that a subgroup functor is a function τ which assigns to each group G a possibly empty set $\tau(G)$ of subgroups of G satisfying $f(\tau(G)) = \tau(f(G))$ for any isomorphism $f : G \to G^*$.

Definition 1. Let X be a class of groups and G be a group. Then $\text{NI}_X(G)$ is the intersection of all normalizers of \mathfrak{X}-maximal subgroups of G.

The following proposition shows that if \mathfrak{F} is a hereditary saturated formation and $\pi(\mathfrak{F}) = \mathbb{P}$ then the equality $\text{NI}_\mathfrak{F}(G) = \text{Int}_\mathfrak{F}(G)$ holds for every group G.

Proposition 1. Let \mathfrak{F} be a hereditary saturated formation and $\pi = \pi(\mathfrak{F})$. Then $\text{O}^\pi(\text{NI}_\mathfrak{F}(G)) = \text{Int}_\mathfrak{F}(G)$ for every group G.

The following theorem generalizes two above mentioned Baer’s theorems about the hypercenter:

Theorem A. Let $\sigma = \{\pi_i | i \in I\}$ be a partition of \mathbb{P} into disjoint subsets and \mathfrak{F}_i be a hereditary saturated formation such that $\pi(\mathfrak{F}_i) = \pi_i$ and $\mathfrak{F} = \times_{i \in I} \mathfrak{F}_i$. The following statements are equivalent:

1. \mathfrak{F}_i satisfies the boundary condition in the universe of all π_i-groups for all $i \in I$.
2. For every group G holds $\bigcap_{i \in I} \text{NI}_{\mathfrak{F}_i}(G) = Z_{\mathfrak{F}}(G)$.

Corollary A.1 [11]. The hypercenter of a group G is the intersection of all normalizers of all Sylow subgroups of G.

Corollary A.2 [10]. Let $\sigma = \{\pi_i | i \in I\}$ be a partition of \mathbb{P} into disjoint subsets, $\mathfrak{F} = \times_{i \in I} \mathfrak{G}_\pi_i$ and G be a group. Then the intersection of all normalizers of all π_i-maximal subgroups of G for all $i \in I$ is the \mathfrak{F}-hypercenter of G.

From proposition 1 and theorem A when $|I| = 1$ it follows that our theorem A extends theorem A from [9]:

Corollary A.3. Let \mathfrak{F} be a hereditary saturated formation and $\pi(\mathfrak{F}) = \mathbb{P}$. The equality $\text{NI}_\mathfrak{F}(G) = Z_{\mathfrak{F}}(G) = \text{Int}_\mathfrak{F}(G)$ holds for every group G if and only if \mathfrak{F} satisfies the boundary condition.

Corollary A.4 [11]. The hypercenter of a group G is the intersection of all maximal nilpotent subgroups of G.

Let \mathfrak{X} be a class of groups. Recall that a subgroup H of a group G is called \mathfrak{F}-subnormal if either $H = G$ or there is a maximal chain of subgroups $H = H_0 < H_1 < \cdots < H_n = G$ such that $H_i/\text{Core}_{H_i}(H_{i-1}) \in \mathfrak{X}$ for all $i = 1, \ldots, n$.

Let \mathfrak{X} be a class of groups. A \mathfrak{X}-subnormalizer [12, p. 380] of a subgroup H of a group G is a subgroup T of G such that H is \mathfrak{X}-subnormal in T and if H is \mathfrak{X}-subnormal in M and $T \leq M$ then $T = M$. It is clear that a \mathfrak{X}-subnormalizer always exists but may be not unique.

Problem B. Let $\Sigma(G)$ be a subgroup functor and \mathfrak{F} be a formation. What can be said about the intersection $\text{SI}_{\mathfrak{F}}(G)$ of \mathfrak{F}-subnormalizers of subgroups from $\Sigma(G)$?

If $\Sigma(G)$ is the set of all maximal subgroups of G then this intersection coincides with $\Delta_{\mathfrak{F}}(G)$ where $\Delta_{\mathfrak{F}}(G)$ is the intersection of all \mathfrak{F}-abnormal maximal subgroups of G. According to [13] p. 96 if \mathfrak{F} is a hereditary saturated formation then $\Delta_{\mathfrak{F}}(G)/\Phi(G) = Z_{\mathfrak{F}}(G)/\Phi(G)$.

Proposition 2. Let \mathfrak{F} be a hereditary formation and Σ be a subgroup functor. Then $\text{SI}_{\mathfrak{F}}(G)$ is the product of normal subgroups N of a group G such that H is \mathfrak{F}-subnormal in HN for every $H \in \Sigma(G)$.

A.F. Vasil’ev and T.I. Vasil’eva [14] studied a class of groups $\mathfrak{u}\mathfrak{F}$ whose all Sylow subgroups are \mathfrak{F}-subnormal for a given hereditary saturated formation \mathfrak{F}. Let us note that in this case
$Z_{v\mathfrak{F}}(G)$ lies in the intersection of all \mathfrak{F}-subnormalizers of all Sylow subgroups of a group G. Author [15] studied a class of groups $v\mathfrak{F}$ whose all cyclic primary subgroups are \mathfrak{F}-subnormal for a given hereditary saturated formation \mathfrak{F}. Again $Z_{v\mathfrak{F}}(G)$ lies in the intersection of all \mathfrak{F}-subnormalizers of all cyclic primary subgroup of a group G.

In this paper we count the unit group as cyclic primary subgroup and also as Sylow subgroup.

Theorem B. Let \mathfrak{F} be a hereditary saturated formation. The following statements are equivalent:

1. There exists a partition $\sigma = \{\pi_i|i \in I\}$ of $\pi(\mathfrak{F})$ into disjoint subsets such that $\mathfrak{F} = \times_{i \in I} \mathfrak{S}_{\pi_i}$.

2. The intersection of all \mathfrak{F}-subnormalizers of all cyclic primary subgroups of G is the \mathfrak{F}-hypercenter of G for every group G.

3. The intersection of all \mathfrak{F}-subnormalizers of all Sylow subgroups of G is the \mathfrak{F}-hypercenter of G for every group G.

Note that in the universe of all soluble groups the concepts of a subnormal subgroup and a \mathfrak{N}-subnormal subgroup coincides. It is well known that if a Sylow subgroup P of G is subnormal in G then it is normal in G. Hence a \mathfrak{N}-subnormalizer of a Sylow subgroup P of a soluble group G is just the normalizer of P in G. So theorem B can be viewed as the generalization of R. Baer’s theorem about the intersection of normalizers of Sylow subgroups.

Remark. Formations $\mathfrak{F} = \times_{i \in I} \mathfrak{S}_{\pi_i}$ are lattice formations, i.e. formations were \mathfrak{F}-subnormal subgroups form a sublattice of the subgroup’s lattice of every group (for example see chapter 6.3 of [11]). Also properties of the \mathfrak{F}-hypercenter and the \mathfrak{F}-residual for such formations was studied by author in [10]. A. N. Skiba extends the theory of nilpotent groups on such classes (for example see [16]).

2 Preliminaries

We use standard notation and terminology that if necessary can be found in [12]. Recall some of them that are important in this paper. By \mathbb{P} is denoted the set of all primes; $\pi(G)$ is the set of all prime divisors of the order of G; $\pi(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \pi(G)$; a group G is called π-group if $\pi(G) \subseteq \pi$; Z_p is the cyclic group of order p; $O_\pi(G)$ is the greatest normal π-subgroup G; $O^\pi(G)$ is the smallest subgroup of G such that $\pi(G/O^\pi(G)) \subseteq \pi$; G^π is the derived subgroup of G; $G^\mathfrak{F}$ is the \mathfrak{F}-residual for a formation \mathfrak{F}; $O_{p',p}^{G}(G)$ is the p-nilpotent radical of G for $p \in \mathbb{P}$, it also can be defined by $O_{p',p}^{G}(G) = O_{p}(G)/O_{p'}(G)$; $\Phi(G)$ is the Frattini subgroup of a group G; $G = N \rtimes M$ is the semidirect product of groups M and N ($N \triangleleft G$ and $N \cap M = 1$); \mathfrak{S}_π is the class of (soluble, nilpotent) π-groups, where $\pi \subseteq \mathbb{P}$.

A class of groups \mathfrak{X} is called hereditary if from $G \in \mathfrak{X}$ and $H \leq G$ it follows that $H \in \mathfrak{X}$. A class of groups \mathfrak{X} is called saturated if from $G/\Phi(G) \in \mathfrak{X}$ it follows that $G \in \mathfrak{X}$.

By well known Gashutz-Lubeseder-Shmid Theorem saturated formations are exactly local formations, i.e. formations $\mathfrak{F} = LF(f)$ defined by a formation function f: $LF(f) = \{G \in \mathfrak{S} | H/K \text{ is a chief factor of } G \text{ and } p \in \pi(H/K) \text{ then } G/C_G(H/K) \in f(p)\}$. Among all possible local definitions of a local formation \mathfrak{F} there is exactly one, denoted by F, such that F is integrated $(F(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P})$ and full $(\mathfrak{N}_p, F(p) = F(p)$ for all $p \in \mathbb{P})$. F is called the canonical local definition of \mathfrak{F}.

Let \mathfrak{F} be a local formation, F be its canonical local definition and G be a group. Then a chief factor H/K of a group G is \mathfrak{F}-central if and only if $G/C_G(H/K) \in F(p)$ for all $p \in \pi(H/K)$ (see [3, p. 6]).
Let $\mathfrak{F} = LF(F)$ be a hereditary local formation, F be its canonical local definition and $\pi = \pi(\mathfrak{F})$. Then \mathfrak{F} is said to satisfy the boundary condition in the universe of all π-groups if \mathfrak{F} contains every π-group whose all maximal subgroups belong to $F(p)$ for some prime p.

The following lemma can be found in [13] p. 239). For reader’s convenience, we give a direct proof.

Lemma 2.1. Let \mathfrak{X} be a saturated homomorph and N be a normal subgroup of a group G. Then for every \mathfrak{X}-subgroup H/N of G/N there exists a \mathfrak{X}-subgroup M of G such that $MN/N = H/N$.

Proof. Let H/N be a \mathfrak{X}-subgroup of G/N. Let us show that there exists a \mathfrak{X}-subgroup K of G such that $KN/N = H/N$. Let M be a minimal subgroup of H such that $MN = H$ (i.e.

if $M_1 < M$ then $M_1N < H$). Assume that there is a maximal subgroup M_1 of M such that $M_1(M \cap N) = M$. Then $M_1N = H$, a contradiction. Hence $M \cap N \leq \Phi(M)$. Since \mathfrak{X} is saturated and $H/N = MN/N \simeq M/M \cap N \in \mathfrak{X}$, we see that $M \in \mathfrak{X}$. It means that there is a \mathfrak{X}-subgroup M of G such that $H/N = MN/N$. □

Lemma 2.2. Let \mathfrak{F} be a hereditary saturated formation, N be a normal subgroup of a group G, H be a subgroup of G then

1. $\mathfrak{N}_\mathfrak{F}(G)/N \leq \mathfrak{N}_\mathfrak{F}(G/N)$.
2. $\mathfrak{N}_\mathfrak{F}(G) \cap H \leq \mathfrak{N}_\mathfrak{F}(H)$.
3. Let $N \leq \text{Int}_\mathfrak{F}(G)$ then $N \leq \mathfrak{N}_\mathfrak{F}(G)$ and $\mathfrak{N}_\mathfrak{F}(G)/N = \mathfrak{N}_\mathfrak{F}(G/N)$.

Proof. (1) If K/N is a \mathfrak{F}-maximal subgroup of G/N then by lemma 2.1 there exists a \mathfrak{F}-maximal subgroup Q of G such that $QN/N = K/N$. If $x \in N_G(Q)$ then $xN \in N_{G/N}(QN/N) = N_{G/N}(K/N)$. Thus $\mathfrak{N}_\mathfrak{F}(G)/N \leq \mathfrak{N}_\mathfrak{F}(G/N)$.

(2) If M is a \mathfrak{F}-maximal subgroup of H then there exists a \mathfrak{F}-maximal subgroup Q of G such that $Q \cap H = M$. So if $x \in \mathfrak{N}_\mathfrak{F}(G) \cap H$ then $Q^x \cap H^x = Q \cap H = M$. Hence $x \in \mathfrak{N}_\mathfrak{F}(H)$. Thus $\mathfrak{N}_\mathfrak{F}(G) \cap H \leq \mathfrak{N}_\mathfrak{F}(H)$.

(3) Let $N \leq \text{Int}_\mathfrak{F}(G)$. It is clear that $N \leq \mathfrak{N}_\mathfrak{F}(G)$. Note that M is a \mathfrak{F}-maximal subgroup of G if and only if M/N is a \mathfrak{F}-maximal subgroup of G/N. Now $N_G(M)/N = N_{G/N}(M/N)$. Thus $\mathfrak{N}_\mathfrak{F}(G)/N = \mathfrak{N}_\mathfrak{F}(G/N)$. □

Let \mathfrak{F} be a saturated formation. Then in every group exists a \mathfrak{F}-projector [12, p. 292]. Recall that a \mathfrak{F}-projector of a group G is a \mathfrak{F}-maximal subgroup H of G such that HN/N is a \mathfrak{F}-maximal subgroup of G/N for every normal subgroup N of G.

Recall that a group G is called semisimple if G is the direct product of simple groups. A chief factor of a group is the example of a semisimple group.

Lemma 2.3. Let \mathfrak{F} be a hereditarily saturated formation and a group $G = HK$ be a product of normal \mathfrak{F}-subgroups. If K is semisimple then $G \in \mathfrak{F}$.

Proof. Assume the contrary. Let a group G be a counterexample of a minimal order. Then $G = HK$ is a product of normal \mathfrak{F}-subgroups H and K where K is semisimple. Let N be a normal subgroup of G. Then $G/N = (HN/N)(KN/N)$ where HN/N and KN/N are normal \mathfrak{F}-subgroups of G/N and KN/N is semisimple. So $G/N \in \mathfrak{F}$. Since \mathfrak{F} is a saturated formation, we see that $\Phi(G) = 1$ and G has an unique minimal normal subgroup that equals K. Now $K \leq H$. So $G = H \in \mathfrak{F}$, the contradiction. □

The following lemma is well known.

Lemma 2.4. Let \mathfrak{F} be a hereditarily saturated formation and H be a \mathfrak{F}-subgroup of a group G. Then $Z_{\mathfrak{F}}(G)H \in \mathfrak{F}$.

Recall that if \mathfrak{F} is a hereditary formation then a subgroup H of a group G is called \mathfrak{F}-subnormal if either $H = G$ or there is a chain of subgroups $H = H_0 < H_1 < \cdots < H_n = G$ such that $H_i/\text{Core}_{H_i}(H_{i-1}) \in \mathfrak{F}$ for all $i = 1, \ldots, n$. We will need the following facts about \mathfrak{F}-subnormal subgroups.

Lemma 2.5 [11, p. 236]. Let \mathfrak{F} be a hereditary formation, N be a normal subgroup of a group G and H, K be subgroups of G. Then:
(1) If \(H \) is \(\mathfrak{F} \)-subnormal in \(G \) then \(HN/N \) is \(\mathfrak{F} \)-subnormal in \(G/N \).
(2) If \(H/N \) is \(\mathfrak{F} \)-subnormal in \(G/N \) then \(H \) is \(\mathfrak{F} \)-subnormal in \(G \).
(3) If \(H \) is \(\mathfrak{F} \)-subnormal in \(K \) and \(K \) is \(\mathfrak{F} \)-subnormal in \(G \) then \(H \) is \(\mathfrak{F} \)-subnormal in \(G \).

Lemma 2.6 [11, p. 239]. Let \(\mathfrak{F} \) be a saturated formation and a group \(G = HF^*(G) \) where \(H \) is a \(\mathfrak{F} \)-subnormal \(\mathfrak{F} \)-subgroup of \(G \). Then \(G \in \mathfrak{F} \).

Lemma 2.7 [12, p. 390]. Let \(\mathfrak{F} \) be a hereditary saturated formation then \([G^\mathfrak{F}, Z_{\mathfrak{F}}(G)] = 1 \) for any group \(G \).

3 Proves of the main results

3.1 Proof of proposition 1

Let \(\mathfrak{F} \) be a hereditary saturated formation and \(G \) be a group. According to lemma 2.2 all \(\mathfrak{F} \)-maximal subgroups of \(NI_{\mathfrak{F}}(G) \) are normal in \(NI_{\mathfrak{F}}(G) \). Among this \(\mathfrak{F} \)-maximal subgroups there is a \(\mathfrak{F} \)-projector \(H \). Now \(NI_{\mathfrak{F}}(G)/H \) does not contain any \(\mathfrak{F} \)-subgroup. Hence \(NI_{\mathfrak{F}}(G)/H \in \pi(\mathfrak{F})' \).

It is clear that \(\text{Int}_{\mathfrak{F}}(G) \leq O^\pi(NI_{\mathfrak{F}}(G)) \in \mathfrak{F} \). Let us show by induction the the equality \(\text{Int}_{\mathfrak{F}}(G) = O^\pi(NI_{\mathfrak{F}}(G)) \) holds. It is clear that it holds for the unit group. Assume that we prove our statement for groups whose order is less then the order of a group \(G \). Let \(N \) be a minimal normal subgroup of \(G \) such that \(N \leq O^\pi(NI_{\mathfrak{F}}(G)) \) and \(M \) be a \(\mathfrak{F} \)-maximal subgroup of \(G \). So \(M < MN \) and \(N \) is a normal semisimple \(\mathfrak{F} \)-subgroup of \(MN \). By lemma 2.3 \(MN \in \mathfrak{F} \) and hence \(MN = M \) for all \(\mathfrak{F} \)-maximal subgroups \(M \) of \(G \). Hence \(N \leq \text{Int}_{\mathfrak{F}}(G) \).

By induction \(\text{Int}_{\mathfrak{F}}(G/N) = O^\pi(NI_{\mathfrak{F}}(G/N)) \). According to [15] \(\text{Int}_{\mathfrak{F}}(G)/N = \text{Int}_{\mathfrak{F}}(G/N) \). By (3) of lemma 2.2 \(NI_{\mathfrak{F}}(G)/N = NI_{\mathfrak{F}}(G/N) \). From \(\pi(N) \subseteq \pi(\mathfrak{F}) \) it follows that \(O^\pi(NI_{\mathfrak{F}}(G)/N) = O^\pi(NI_{\mathfrak{F}}(G)/N) \). Now \(\text{Int}_{\mathfrak{F}}(G)/N = \text{Int}_{\mathfrak{F}}(G/N) = O^\pi(NI_{\mathfrak{F}}(G/N)) = O^\pi(NI_{\mathfrak{F}}(G)/N) \).

Thus \(\text{Int}_{\mathfrak{F}}(G) = O^\pi(NI_{\mathfrak{F}}(G)) \). □

3.2 Proof of theorem A

The following result directly follows from the proof of the main result of [6].

Let \(\mathfrak{F} \) be a hereditary saturated formation and \(\pi = \pi(\mathfrak{F}) \). Then for every \(\pi \)-group \(G \) the intersection of all \(\mathfrak{F} \)-maximal subgroups of \(G \) is the \(\mathfrak{F} \)-hypercenter of \(G \) if and only if \(\mathfrak{F} \) satisfies the boundary condition in the universe of all \(\pi \)-groups.

According to [11, p. 96] \(\mathfrak{F} \) is a hereditary saturated formation. So \(\mathfrak{F} \) is a local formation. Let \(F \) be the canonical local definition of \(\mathfrak{F} \).

(1) \(\Rightarrow \) (2) Assume that \(\mathfrak{F}_i \) satisfies the boundary condition in the universe of all \(\pi_i \)-groups for all \(i \in I \). Let us show that \(\bigcap_{i \in I} NI_{\mathfrak{F}_i}(G) = Z_{\mathfrak{F}_i}(G) \) holds for every group \(G \).

Let \(G \) be a group and \(D = \bigcap_{i \in I} NI_{\mathfrak{F}_i}(G) \). By proposition 1 \(NI_{\mathfrak{F}_i}(G) \) has the Hall \(\pi_i \)-subgroup that belongs to \(\mathfrak{F}_i \), and is normal in \(G \). Hence \(D \) has the normal Hall \(\pi_i \)-subgroup that belongs to \(\mathfrak{F}_i \) for every \(i \in I \). Thus \(D \in \mathfrak{F} \).

Let \(H/K \) be a chief factor of \(G \) below \(D \). Then \(\pi(H/K) \subseteq \pi_n \) for some \(n \in I \).

(a) \(O^\pi_n(G/K) \leq C_G(H/K) \).

By (1) of lemma 2.2 \(H/K \) normalizes all \(\mathfrak{F}_i \)-maximal subgroups of \(G/K \). Hence \(H/K \) normalizes all \(\mathfrak{F}_i \)-projectors of \(G/K \) for all \(i \in I \setminus \{n\} \). Let \(F/K \) be a \(\mathfrak{F}_n \)-projector of \(G/K \) for some \(i \in I \setminus \{n\} \). From \(\pi_n \cap \pi_i = \emptyset \) it follows that \(F/K \cap H/K = K/K \). Let \(hK \in H/K \) and \(fK \in F/K \). Then from one hand \([fK, hK] = (fK)^{-1}(fK)(hK) \) and from another hand \([fK, hK] = (hK)^{-1}(fK)(hK) \) in \(H/K \). So \([fK, hK] = 1 \). Hence \([H/K, F/K] = 1 \). Thus \(H/K \) centralizes all \(\mathfrak{F}_i \)-projectors of \(G/K \) for all \(i \in I \setminus \{n\} \). Since \(\mathfrak{F}_i \) is a hereditary saturated
formation for all \(i \in I\), we see that \(G/C_G(H/K)\) does not contain any \(\pi_i\)-subgroups for all \(i \in I \setminus \{n\}\). Thus \(O^{\pi_n}(G/K) \leq C_G(H/K)\).

(b) \(H/K \leq Z_{\tilde{\mathfrak{S}}_n}(R/K)\) for every \(\mathfrak{S}_{\pi_n}\)-maximal subgroup \(R/K\) of \(G/K\).

Let \(R/K\) be a \(\mathfrak{S}_{\pi_n}\)-maximal subgroup of \(G/K\). Then \(\pi_n((R/K)(H/K)) \leq \pi_n\). Hence \((R/K)(H/K) = R/K\). So \(H/K \leq R/K\). By (2) of lemma 2.2 \(H/K\) normalizes all \(\mathfrak{S}_{\pi_n}\)-maximal subgroups of \(R/K\). Note that \(H/K\) is semisimple \(\mathfrak{S}_{\pi_n}\)-subgroup. So \((H/K)(F/K) \in \mathfrak{S}_{\pi_n}\) for every \(\mathfrak{S}_{\pi_n}\)-maximal subgroup \(F/K\) of \(R/K\) by lemma 2.3. Hence \((H/K)(F/K) = F/K\) for every \(\mathfrak{S}_{\pi_n}\)-maximal subgroup \(F/K\) of \(R/K\). Thus \(H/K \leq \text{Int}_{\mathfrak{S}_n}(R/K)\). Since \(\mathfrak{S}_n\) satisfies the boundary condition in the universe of all \(\pi_n\)-groups, \(H/K \leq Z_{\mathfrak{S}_n}(R/K)\).

(c) Let \(R/K\) be a \(\mathfrak{S}_{\pi_n}\)-maximal subgroup of \(G/K\) such that \((R/K)O^{\pi_n}(G/K) = G/K\). Then \(H/K\) is a chief factor of \(R/K\).

Assume that \(N/K\) is a minimal normal subgroup of \(R/K\) such that \(K/K \neq N/K < H/K\). From \(O^{\pi_n}(G/K) \leq C_G(H/K)\) it follows that \(O^{\pi_n}(G/K) \leq C_G(N/K)\). From \((R/K)O^{\pi_n}(G/K) = G/K\) it follows that \(N/K\) is normal in \(G/K\). Hence \(H/K\) is not a chief factor of \(G\), a contradiction.

(d) \((R/K)^{F(p)} \leq C_G(H/K)\) for all \(p \in \pi(H/K)\).

From \(H/K \leq Z_{\mathfrak{S}_n}(R/K)\) and \(\mathfrak{S}_n \leq \mathfrak{S}\) it follows that a chief factor \(H/K\) of \(R/K\) lies in \(Z_{\mathfrak{S}}(R/K)\). Now \((R/K)/C_{R/K}(H/K) \in F(p)\) for all \(p \in \pi(H/K)\). Thus \((R/K)^{F(p)} \leq C_G(H/K)\) for all \(p \in \pi(H/K)\).

(e) \(H/K\) is a \(\mathfrak{S}\)-central chief factor of \(G\).

From \(O^{\pi_n}(G/K) \leq C_G(H/K)\), \((R/K)^{F(p)} \leq C_G(H/K)\) for all \(p \in \pi(H/K)\) and \((R/K)O^{\pi_n}(G/K) = G/K\) it follows that \(G/C_G(H/K) \in F(p)\) for all \(p \in \pi(H/K)\). Thus \(H/K\) is a \(\mathfrak{S}\)-central chief factor of \(G\).

(f) \(D \leq Z_{\mathfrak{S}}(G)\).

We showed that every chief factor of \(G\) below \(D\) is \(\mathfrak{S}\)-central. Hence \(D \leq Z_{\mathfrak{S}}(G)\).

(g) \(D \geq Z_{\mathfrak{S}}(G)\) and hence \(D = Z_{\mathfrak{S}}(G)\).

Let \(H\) be a \(\mathfrak{S}_n\)-maximal subgroup of \(G\) for some \(i \in I\). Then \(HZ_{\mathfrak{S}}(G) \in \mathfrak{S}\) by lemma 2.4. Since \(H\) is a \(\mathfrak{S}_n\)-maximal subgroup of \(G\), \(H\) is a \(\mathfrak{S}_n\)-maximal subgroup of \(HZ_{\mathfrak{S}}(G)\). So \(H < HZ_{\mathfrak{S}}(G)\). Hence \(D \geq Z_{\mathfrak{S}}(G)\). Thus \(D = Z_{\mathfrak{S}}(G)\).

(2) \(\Rightarrow\) (1) Suppose now that \(\bigcap_{i \in I} N_{\mathfrak{S}_n}(G) = Z_{\mathfrak{S}}(G)\) holds for every group \(G\). Let us show that \(\mathfrak{S}_n\) satisfies the boundary condition in the universe of all \(\pi_i\)-groups for all \(i \in I\).

Assume the contrary. Then some \(\mathfrak{S}_n\) does not satisfy the boundary condition in the universe of all \(\pi_i\)-groups. So there is \(\pi_i\)-group \(G\) such that \(\text{Int}_{\mathfrak{S}_n}(G) \neq Z_{\mathfrak{S}_n}(G)\). Note that \(\text{Int}_{\mathfrak{S}_n}(G) = N_{\mathfrak{S}_n}(G)\) by proposition 1. Since \(G\) is a \(\pi_i\)-group, \(N_{\mathfrak{S}_n}(G) = \bigcap_{i \in I} N_{\mathfrak{S}_n}(G)\). From \(\mathfrak{S}_{\pi_i} \cap \mathfrak{S} = \mathfrak{S}_n\) it follows that \(Z_{\mathfrak{S}_n}(G) = Z_{\mathfrak{S}}(G)\).

Hence \(\bigcap_{i \in I} N_{\mathfrak{S}_n}(G) = N_{\mathfrak{S}_n}(G) = \text{Int}_{\mathfrak{S}_n}(G) \neq Z_{\mathfrak{S}_n}(G) = Z_{\mathfrak{S}}(G)\), the contradiction.

3.3 Proof of proposition 2

Let \(N\) be a normal subgroup of a group \(G\) such that \(H\) is \(\mathfrak{S}\)-subnormal in \(HN\) for every \(H \in \Sigma(G)\). Let \(S\) be a \(\mathfrak{S}\)-subnormalizer in \(G\) of \(H \in \Sigma(G)\). Then \(HN/N\) is \(\mathfrak{S}\)-subnormal in \(SN/N\) by (1) of lemma 2.5. So \(HN\) is \(\mathfrak{S}\)-subnormal in \(SN\) by (2) of lemma 2.5. Hence \(H\) is \(\mathfrak{S}\)-subnormal in \(SN\) by (3) of lemma 2.5. Thus \(SN = N\). It means that \(N \leq \text{SL}_n(G)\). So every normal subgroup of \(G\) that \(\mathfrak{S}\)-subnormalize all subgroups from \(\Sigma(G)\) lies in \(\text{SL}_n(G)\).

From the other hand \(H\text{SL}_n(G)\) belongs to every \(\mathfrak{S}\)-subnormalizer of \(H\) in \(G\) for every \(H \in \Sigma(G)\). Hence \(H\) is \(\mathfrak{S}\)-subnormal in \(H\text{SL}_n(G)\) for every \(H \in \Sigma(G)\).
3.4 Proof of theorem B

(1) \Rightarrow (2) Assume that there exists a partition \(\sigma = \{ \pi_i | i \in I \} \) of \(\pi(\mathfrak{H}) \) into disjoint subsets such that \(\mathfrak{H} = \times_{i \in I} \mathfrak{H}_{\pi_i} \). Let us show that the intersection of all \(\mathfrak{H} \)-subnormalizers of all cyclic primary subgroups of a group \(G \) is the \(\mathfrak{H} \)-hypercenter of \(G \) for every group \(G \).

Note that \(\mathfrak{H} \) is local formation with the canonical local definition \(F \) where \(F(p) = \mathfrak{S}_{\pi_p} \) for \(p \in \pi_i \) for all \(i \in I \).

Let \(D \) be the intersection of all \(\mathfrak{H} \)-subnormalizers of all cyclic primary subgroups of a group \(G \) and \(H/K \) be a chief factor of \(G \) below \(D \).

(a) \(H/K \) lies in the intersection of all \(\mathfrak{H} \)-subnormalizers of all cyclic primary subgroups of a group \(G/K \).

Let \(C/K \) be a cyclic primary subgroup of \(G/K \). According to lemma 2.1 we may assume that \(C \) is a cyclic primary subgroup of \(G \). Now \(C \) is \(\mathfrak{H} \)-subnormal in \(HC/K \) by proposition 2. So \(C/K \) is \(\mathfrak{H} \)-subnormal in \(HC/K \) by (1) of lemma 2.5. Hence \(H/K \) lies in the intersection of \(\mathfrak{H} \)-subnormalizers of all cyclic primary subgroups of \(G/K \).

(b) \(H/K \in \mathfrak{H} \).

Now \(K/K \) is a \(\mathfrak{H} \)-subnormal \(\mathfrak{H} \)-subgroup of a quasinilpotent group \(H/K \). By lemma 2.6 \(H/K \in \mathfrak{H} \). Hence \(\pi(H/K) \subseteq \pi_n \) for some \(n \in I \).

(c) \(C/K \leq C_G(H/K) \) for every cyclic primary \(\pi(\mathfrak{H})' \)-subgroup of \(G/K \).

Let \(C/K \) be a cyclic primary \(\pi(\mathfrak{H})' \)-subgroup of \(G/K \). Since \(C/K \) is a \(\mathfrak{H} \)-subnormal \(\pi(\mathfrak{H})' \)-subgroup of \(HC/K \), \((C/K)^{\mathfrak{H}} = (C/K) \) is subnormal in \(HC/K \) by (1) of lemma 6.1. Hence \(H/K \in \mathfrak{H} \) by lemma 2.6. So \(C/K \leq C_G(H/K) \).

(d) \(C/K \leq C_G(H/K) \) for every cyclic primary \(\pi(\mathfrak{H}) \cap (\pi_p') \)-subgroup of \(G/K \).

Let \(C/K \) be a cyclic primary \(\pi(\mathfrak{H}) \cap (\pi_p') \)-subgroup of \(G/K \). Since \(C/K \) is \(\mathfrak{H} \)-subnormal in \(HC/K \), \(HC/K \in \mathfrak{H} \) by lemma 2.6. So \(C/K \leq C_G(H/K) \).

(e) \(H/K \) is a \(\mathfrak{H} \)-central chief factor of \(G \) and \(D \leq Z_{\mathfrak{H}}(G) \).

From (c) and (d) it follows that \(O^{\pi_n}(G) \leq C_G(H/K) \). Hence \(G/C_G(H/K) \in \mathfrak{S}_{\pi_n} = F(p) \) for all \(p \in \pi(H/K) \). So \(H/K \) is a \(\mathfrak{H} \)-central chief factor of \(G \). It means that \(D \leq Z_{\mathfrak{H}}(G) \).

(f) \(Z_{\mathfrak{H}}(G) \leq D \) and hence \(D = Z_{\mathfrak{H}}(G) \).

Let \(\mathcal{C} \) be a cyclic \(p \)-subgroup of a group \(G \). If \(p \in \pi(\mathfrak{H}) \) then \(CZ_{\mathfrak{H}}(G) \in \mathfrak{H} \) by lemma 2.4. Hence \(C \) is \(\mathfrak{H} \)-subnormal in \(CZ_{\mathfrak{H}}(G) \). If \(p \notin \pi(\mathfrak{H}) \) then \(C \leq G^\delta \). By lemma 2.7 \(C \leq C_G(Z_{\mathfrak{H}}(G)) \). Hence \((CZ_{\mathfrak{H}}(G))^\delta = C \). So \(C \) is \(\mathfrak{H} \)-subnormal in \(CZ_{\mathfrak{H}}(G) \). Hence \(Z_{\mathfrak{H}}(G) \leq D \). Thus \(D = Z_{\mathfrak{H}}(G) \).

(2) \Rightarrow (3) Let \(P \) be a Sylow \(p \)-subgroup of \(G \). If \(p \in \pi(\mathfrak{H}) \) then \(P \in \mathfrak{H} \) and hence \(PZ_{\mathfrak{H}}(G) \in \mathfrak{H} \) by lemma 2.4. So \(P \) is \(\mathfrak{H} \)-subnormal in \(PZ_{\mathfrak{H}}(G) \).

If \(p \notin \pi(\mathfrak{H}) \) then \(P \leq G^\delta \). By lemma 2.7 \([G^\delta, Z_{\mathfrak{H}}(G)] = 1 \). So \(PZ_{\mathfrak{H}}(G) = P \times Z_{\mathfrak{H}}(G) \). Hence \(P \) is \(\mathfrak{H} \)-subnormal in \(PZ_{\mathfrak{H}}(G) \).

Thus \(Z_{\mathfrak{H}}(G) \) lies in the intersection \(D \) of all \(\mathfrak{H} \)-subnormalizers of all Sylow subgroups of \(G \). Since the unit subgroup is \(\mathfrak{H} \)-subnormal in \(D \), we see that \(\pi(D) \subseteq \pi(\mathfrak{H}) \).

Now let \(\mathcal{C} \) be a cyclic primary \(p \)-subgroup of \(G \). Then there is a Sylow \(p \)-subgroup \(P \) of \(G \) such that \(C \leq P \). If \(p \in \pi(\mathfrak{H}) \) then \(C \) is \(\mathfrak{H} \)-subnormal in \(P \) and \(P \) is \(\mathfrak{H} \)-subnormal in \(PD \). Hence \(C \) is \(\mathfrak{H} \)-subnormal in \(PD \) and also in \(CD \) by lemma 2.5.

If \(p \notin \pi(\mathfrak{H}) \) then \(C \) is subnormal in \(P \) and \(P \) is normal in \(PD \). Hence \(C \) is subnormal in \(PD \) and also in \(CD \). So \(C \) is the normal Sylow subgroup of \(CD \). By our assumption the unit group is a Sylow subgroup. Hence \(1 \) is \(\mathfrak{H} \)-subnormal in \(D \). Now \(C/C \) is \(\mathfrak{H} \)-subnormal in \(CD/C \). Hence \(C \) is \(\mathfrak{H} \)-subnormal in \(CD \).

Thus \(D \) lies in the intersection of all \(\mathfrak{H} \)-subnormalizers of all cyclic primary subgroups of \(G \). Hence \(Z_{\mathfrak{H}}(G) \leq D \leq Z_{\mathfrak{H}}(G) \). Thus \(D = Z_{\mathfrak{H}}(G) \).

Consider the following statement:
\((4)\) \mathfrak{F} has the canonical local definition F such that for every prime p, $F(p)$ contains every group G whose all Sylow subgroups belong to $F(p)$.

\((3)\Rightarrow(4)\) Let the intersection of all \mathfrak{F}-subnormalizers of all Sylow subgroups of G be the \mathfrak{F}-hypercenter of G for every group G. Assume that there exist a prime p and groups G such that $G \not\in F(p)$ but for every Sylow subgroup P of G, $P \in F(p)$. Let us chose the minimal order group G from such groups.

It is clear that $O_p(G) = 1$ and G has an unique minimal normal subgroup. Then by lemma 2.6 from [8] there exists a faithful irreducible \mathfrak{F}-module N over the field F_p. Let H be the semidirect product of N and G. Note that $NP \in \mathfrak{F}$ for every Sylow subgroup P of H. Hence N lies in the intersection of all \mathfrak{F}-subnormalizers of Sylow subgroups of H by proposition 2. But $H/C_H(N) \not\in F(p)$. So $N \not\subseteq Z_\mathfrak{F}(H)$, the contradiction.

\((4)\Rightarrow(1)\). Assume that $Z_q \in F(p)$ for primes $p \neq q$. Suppose that $F(q) \cap \mathfrak{N}_p \neq \mathfrak{N}_p$. Let P be the minimal order p-group from $\mathfrak{N}_p \setminus (F(q) \cap \mathfrak{N}_p)$. Then P has an unique minimal normal subgroup and $P \in F(p)$. There exists a faithful irreducible P-module Q over the field F_q. Note that $Q \in F(p)$. Hence the semidirect product $G = Q \rtimes P \in F(p) \subseteq \mathfrak{F}$. Now $G/O_{q,p}(G) = G/Q \simeq P \in F(q)$, a contradiction.

So from $Z_q \in F(p)$ it follows that $F(q) \cap \mathfrak{N}_p = \mathfrak{N}_p$ and hence $F(p) \cap \mathfrak{N}_q = \mathfrak{N}_q$. So $\mathfrak{N}_{r(F(p))} \subseteq F(p)$. Let a group G be a s-critical for $F(p)$. Since $F(p)$ is hereditary, we see that G is r-group for some prime r. Now $r \not\in \pi(F(p))$. Hence $G \simeq Z_r$. It means that $F(p) = \mathfrak{G}_{\pi(F(p))}$ for all $p \in \pi(\mathfrak{F})$.

Assume now that for three different primes p, q, and r we have that $\{p, q\} \subseteq \pi(F(r))$. Let us show that $q \in \pi(F(p))$. By theorem 10.3B [12] there exists a faithful irreducible Z_q-module P over the field F_p. Let G be the semidirect product P and Z_q. Then $T \in F(r) \subseteq \mathfrak{F}$. Thus $G/O_{p,q}(G) = G/P \simeq Z_q \in F(p)$.

It means that there exists a partition $\sigma = \{\pi_i|i \in I\}$ of $\pi(\mathfrak{F})$ into disjoint subsets such that $F(p) = \mathfrak{G}_{\pi_i}$ for all $p \in \pi_i$ and for all $i \in I$. Now $\mathfrak{F} = \times_{i \in I} \mathfrak{G}_{\pi_i}$.

References

[1] R. Baer, Group Elements of Prime Power Index, Trans. Amer. Math Soc. 75(1) (1953), 20–47.
[2] L. A. Shemetkov and A. N. Skiba, Formations of algebraic systems, Nauka, 1989.
[3] Wenbin Guo, Structure theory for canonical classes of finite groups. Springer 2015.
[4] A. V. Sidorov, On properties of \mathfrak{F}-hypercenter of a finite group, in Problems in Algebra. 10 (1996), 141–143. (In Russian)
[5] J. C. Beidleman and H. Heineken, A note of intersection of maximal \mathfrak{F}-subgroups, J. Algebra. 333 (2010), 120–127.
[6] A. N. Skiba, On the \mathfrak{F}-hypercenter and the intersection of all \mathfrak{F}-maximal subgroups of a finite group, Journal of Pure and Applied Algebra. 216(4) (2012), 789–799.
[7] R. Baer, Der Kern eine charakteristische Untergruppe, Compos. Math. 1 (1935), 254-285.
[8] H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463–465.
[9] S. Li and Z. Shen, On the intersection of the normalizers of derived subgroups of all subgroups of a finite group, J. Algebra. 323(5) (2010), 1349–1357.
[10] V. I. Murashka, On one generalization of Baer’s theorems on hypercenter and nilpotent residual, Prob Fiz. Mat. Tech. 16 (2013), 84–88.

[11] A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Springer, 2006.

[12] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, 1992.

[13] L. A. Shemetkov, Formations of finite groups. Nauka, 1978. (In Russian)

[14] A. F. Vasil’ev and T. I. Vasil’eva, On finite groups with generalized subnormal Sylow subgroups, Prob. Fiz. Mat. Tech. 4 (2011), 86–91.

[15] V. I. Murashka, Classes of finite groups with generalized subnormal cyclic primary subgroups, Siberian J. Math. 55(6) (2014), 1353–1367.

[16] A. N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra. 436 (2015), 1–16.