The Hexapeptide Inhibitor of Galβ1,3GalNAc-specific α2,3-Sialyltransferase as a Generic Inhibitor of Sialyltransferases*

Ki-Young Lee‡, Hyung Gu Kim§, Mi Ran Hwang‡, Jung Il Chae‡, Jai Myung Yang§, Young Choon Lee®, Young Kug Choo, Young Ik Lee**, Sang-Soo Lee‡‡, and Su-Il Do§§

From the §Animal Cell and Medical Glycobiology Laboratory and **Liver Cell Signal Transduction Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-333, South Korea, the §Department of Life Science, Sogang University, Seoul 100-601, South Korea, the §Division of Natural Resources and Life Science, Dong-A University, Busan 604-022, South Korea, the §Division of Biological Science, WonKwang University, Iksan 570-749, South Korea, and the §§Department of Biochemistry, Pae Chai University, Taejon 302-735, South Korea

Received for publication, September 19, 2002, and in revised form, October 9, 2002

The mammalian Galβ1,3GalNAc-specific α2,3-sialyltransferase (ST3Gal I) was expressed as a secreted glycoprotein in High Five™ (Trichoplusia ni) cells. Using this recombinant ST3Gal I, we screened the synthetic hexapeptide combinatorial library to explore a sialyltransferase inhibitor. We found that the hexapeptide, NH2-GNWWWW, exhibited the most strong inhibition of this recombinant ST3Gal I, among five different hexapeptides that were finally selected. The kinetic analysis of ST3Gal I inhibition demonstrated that this hexapeptide could act as a competitive inhibitor (K_i = 1.1 μM) on CMP-NeuAc binding to the enzyme. Moreover, the hexapeptide was shown to strongly inhibit both N-glycan-specific α2,3- and α2,6-sialyltransferase in vitro, suggesting that this peptide may inhibit the broad range of sialyltransferases regardless of their linkage specificity. The inhibitory activity in vivo was investigated by RCA-I lectin blot analyses and by metabolic [3H]GlcNH2 radiolabelling analyses of N- and O-linked oligosaccharides in Chinese hamster ovary cells. Our results demonstrate that the hexapeptide can act as a generic inhibitor of the N- and O-glycan-specific sialyltransferases in mammalian cells, which results in the significantly reduced NeuAc expression on cellular glycoproteins in vivo.

The cell surface oligosaccharides of mammalian cells have been known to function in various cell adhesions and molecular recognition during development, differentiation, and tumor progression (1). In particular, the NeuAcs (sialic acids) have been strongly implicated in tissue inflammation (2, 3) and cancer metastasis (4). Many studies have shown that the increased sialylation is correlated with up-regulation of metastatic potential (5, 6) and also that the oncogenic transformation results in an increased expression of Galβ1,4GlcNAc-specific α2,6-sialyltransferase (7). The sialylations in vivo are generally exerted by more than a dozen different sialyltransferases, including glycoprotein-specific α2,3-/α2,6-/α2,8-linkage transferring enzymes and glycolipid-specific α2,3-/α2,8-linkage transferring enzymes (8). Among these, Galβ1,3GalNAc-specific α2,3-sialyltransferase (ST3Gal I)1 catalyzes the addition of NeuAc from CMP-NeuAc to Galβ1,3GalNAc in an α2,3-specific linkage and completes the chain elongation of core 1 structure in mucin-type O-glycosylation. The cDNAs encoding ST3Gal I have been isolated from several species, such as mouse (9), human (10), porcine (11), and chicken (12). Previous studies have shown that ST3Gal I can compete with core 2 β1,6-N-acetylglucosaminyltransferase in mucin-type O-glycan synthesis (13). Recently, it has been reported that the activity of ST3Gal I is elevated in breast carcinomas, and this elevation of ST3Gal I strongly blocks the conversion of core 1 to core 2 O-glycan structure, finally resulting in the shorter length and less complex form of O-linked oligosaccharides on MUC1 in breast carcinomas (14). In this regard, the identification of specific inhibitor targeting on sialyltransferases, especially on ST3Gal I, might be an invaluable tool for chemotherapeutic treatment of cancer metastasis and breast carcinoma. Previously, a number of sialyltransferase inhibitors have been reported, such as nucleosides and nucleotide sugar analogues; however, the potency of these inhibitors appears not to be promising for clinical applications (15-22, 61). In addition, other types of priming inhibitors to block the action of sialyltransferases by competing with endogenous substrates have been described (23). More recently, it has been shown that an endogenous protein inhibitor of Galβ1,4GlcNAc:α2,6-sialyltransferase was isolated from rat serum (24). In the present study, we have identified a hexapeptide inhibitor of sialyltransferase from the synthetic hexapeptide combinatorial library using recombinant ST3Gal I enzyme expressed in insect cells. The kinetic analyses show that the hexapeptide inhibitor affects the K_m value of the donor substrate, CMP-NeuAc, demonstrating that this peptide is functioning as a competitive inhibitor on ST3Gal I in terms of the donor substrate binding. Furthermore, our results demonstrate that the hexapeptide turns out to be generically effective both in vivo and in vitro to the broad range of sialyltransferases regardless of their linkage specificities.

EXPERIMENTAL PROCEDURES

Materials—Tunicamycin, α2,3-sialyltransferase and α2,6-sialyltransferase were purchased from Roche Molecular Biochemicals. IgG-Sepharose was obtained from Amersham Biosciences. Grace insect culture medium was purchased from Invitrogen. Dowex AG 1-X8 (200–400

* This work was supported by Biological Modulator Project Grant CBS0110212, G7 Project Grant HSM0083014, and Life Phenomena and Function Research Project Grant NS0150233 from the Korea Ministry of Science and Technology. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†† To whom correspondence should be addressed: Cell Biology Division, Animal Cell and Medical Glycobiology Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Taejon 305-333, South Korea. Tel.: 82-42-880-4139; Fax: 82-42-860-4597; E-mail: sid0@kribb.re.kr.

‡‡ The abbreviations used are: ST3Gal I, Galβ1,3GalNAc:α2,3-sialyltransferase; FITC, fluorescein isothiocyanate; CHO, Chinese hamster ovary.

This paper is available on line at http://www.jbc.org
mesh) was obtained from Bio-Rad. Galb3GlcNAc and Me3SO were purchased from Sigma. Retroactive t-n-[6-3H]GlcNH2 (14.0 Ci/mmol) and CMP-[3H]NeuAc (33.2 Ci/mmol) were purchased from PerkinElmer Life Sciences. Fetal bovine serum was purchased from HyClone Laboratories Inc. (Logan, UT). The expression vectors in insect cells using the baculovirus system were obtained from Invitrogen. The synthetic laboratories Inc. (Logan, UT). The expression vectors in insect cells using the baculovirus system were obtained from Invitrogen. The synthetic baculovirus system were obtained from Invitrogen. The synthetic nuclease-polyhedrovirus and recombinant baculovirus expressing ST3Gal I were grown and propagated in SF9 and High Five™ cells.

Construction of the Soluble Form of ST3Gal I cDNA in Insect Cell Expression Vector—The soluble form of cDNA containing the catalytic domain of ST3Gal I, which lacks 55 amino acid residues from the NH2 terminus, was prepared from pUOS n2b-3-sialyltransferase (9) by PCR using an oligonucleotide primer (5'-CTCCGATTGGCTGGCCTGTG-3') containing an EcoRI site and antisense primer (5'-CATCTCAGGGGATCCTCCCCCTTGAAAGT-3') containing an XhoI site. The amplified 0.95-kb fragment was ligated into the EcoRI-XhoI site of pcDNA expression vector (26), and the resulting plasmid was designated as pcdSA-ST3Gal I. To construct baculovirus transfer plasmid, pFastBac-ST3Gal I, first, pcdSA-ST3Gal I was partially digested with PstI and blunted with T4 DNA polymerase, and finally, the 1.2-kb DNA fragment containing the IgM signal sequence, the IgG-binding domain of the baculovirus transfer plasmid, pFastBac-Hta insect cell expression vector (27), was digested with PstI, blunt-ended T4 DNA polymerase, and then digested with XhoI. The insertion of the DNA fragment in the correct orientation was analyzed by restriction mapping, and the right sequence of the insert junctions was confirmed by DNA sequencing.

Expression and Purification of Soluble ST3Gal I in Insect Cells—The Bac-to-Bac baculovirus expression system based on the site-specific transposition of expression cassette from a donor plasmid into a baculovirus shuttle vector was employed to generate the recombinant virus according to the manufacturer's instruction (Invitrogen). Briefly, pFastBac-ST3Gal I was transformed into Escherichia coli DH10Bac-competent cells harboring bacmid DNA (baculovirus whole genome) and transferred into a baculovirus factory (lacZ) was selected, and recombinant bacmid DNA was isolated by the alkaline lysis method. The recombinant bacmid DNA was transfected into 3 × 10^{10} SF9 cells in a 25-cm² tissue culture flask using Lipofectin™ as recommended by the manufacturer (Invitrogen). After cells and DNA-lipid complex were incubated at 27 °C for 5 h after transfection, the induction mixture was replaced with fresh Grace medium. 3 days after transfection, the culture supernatant was collected and designated as P1 viral stocks. This P1 was used for generation of the high titer viral stocks by reinfection of SF9 cells in a 100-mm dish at 50% cell confluence. After 3-day infection, the high titer viral stocks were obtained from culture supernatant, and finally, to produce recombinant ST3Gal I expression in insect cells, the supernatant was collected and used as the cell lysates were prepared by mild sonication in PBS buffer containing 5% nonfat dry milk and 0.1% Tween 20. The nitrocellulose membrane was blocked for 2 h at room temperature in PBS buffer containing 5% nonfat dry milk and 0.1% Tween 20. After incubation for 1 h with rabbit IgG antibody (rabbit polyclonal anti-protease antibody, prepared in our laboratory, 1:5000 dilution) and then washed with TBS buffer (pH 7.5), 1 μCi of CMP-[3H]NeuAc, 2 mM CaCl2, 10 mM MgCl2, 13 mM Galb3GlcNAc, and 2 μl of recombinant ST3Gal I enzyme. To screen the hexapeptide inhibitor, 2 μl of recombinant ST3Gal I was preincubated with 10 μl of each pool of combinatorial hexapeptide library or solvent (5% Me2SO) as a control at 37 °C for 0.5 h. After preincubation, the fraction mixture was added to the main reaction mixture followed by further incubation for 2 h at 37 °C. After the reaction was completed, the reaction mixture was applied to QAE-Sephadex equilibrated with Tris buffer (pH 9.6) containing 20 mM NaCl, and the flow-through was collected. The radioactivity in the flow-through was measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter. The radioactivity contained in the reaction mixture was further measured in a liquid scintillation counter. The radioactivity contained in the radioactive compounds was further measured in a liquid scintillation counter.
Fig. 1. Recombinant ST3Gal I is secreted as two different molecular mass polypeptides in High Five™ insect cells. A, the High Five™ cells infected with ST3Gal I recombinant baculovirus were cultured for 72 h, and the medium was collected and applied on a column of IgG-Sepharose. The bound ST3Gal I was eluted with low pH buffer as described under “Experimental Procedures.” The flow-through (lane 2) and eluted fractions from the IgG-Sepharose column, F1–F6 (lanes 3–8) were analyzed by SDS-PAGE followed by Coomassie staining. The recombinant ST3Gal I eluted as two different molecular masses was identified by a direct microsequencing of NH2-terminal amino acid sequence as the arrows indicate. B, the ST3Gal I activities of eluted fraction 1 (F1) to fraction 6 (F6) were determined (bar F1 to bar F6), and control cell medium with no ST3Gal I activity was assayed as a control (bar c). C, the flow-through and eluted fractions 1 (F1) to fraction 6 (F6) from IgG-Sepharose applied by tunicamycin-treated cell medium (lanes 3–8) were analyzed by SDS-PAGE followed by Coomassie staining. The molecular weight marker was loaded on the gel (lane 1).

RESULTS

Expression and Purification of Recombinant ST3Gal I as a Functionally Active Enzyme in Insect Cells—We expressed the ST3Gal I in recombinant baculovirus-infected High Five™ cells as a soluble and secreted enzyme fused with IgG-binding domain. The ST3Gal I was purified in one step by an IgG-Sepharose column from culture supernatants, and bound ST3Gal I was eluted with 0.1 M glycine buffer (pH 2.6) followed by an immediate neutralization. The eluted fractions were pooled and analyzed by SDS-PAGE and Coomassie staining (Fig. 1). The soluble form of recombinant ST3Gal I was secreted as two different molecular mass forms corresponding to 41 kDa and 37 kDa (Fig. 1A). To investigate the identity of these polypeptides, first, NH2-terminal amino acid sequence was directly determined by protein microsequencing, and second, ST3Gal I sialyltransferase activities of the eluted fractions...
were measured. As shown in Fig. 1A, the NH2-terminal amino acid sequences of two polypeptides were identical and found to be matched with protein A sequence of IgG-binding domain just after cleavage of IgM signal sequence (26). Furthermore, ST3Gal I sialyltransferase activity was correlated with the protein intensity in Coomassie staining (Fig. 1B). These results suggest that the signal sequence of mouse IgM can be correctly cleaved in High Five™ cells and that the 1-kDa difference of molecular weight forms of ST3Gal I were detected on Western blotting using rabbit IgG as a primary antibody as described under “Experimental Procedures.” The molecular weight marker was loaded on the gel (lane M).

Fig. 2. Analysis of the cell-associated ST3Gal I expressed in High Five™ insect cells. A, the cellular proteins prepared from High Five™ cells were subjected to SDS-PAGE followed by Coomassie staining. Intact High Five™ cell lysates (lane 1), wild-type A. californica nuclear polyhedrosis virus baculovirus-infected cell lysates (lane 2), ST3Gal I recombinant baculovirus-infected cell lysates (lane 3), the ST3Gal I in F4 fraction eluted from the IgG-Sepharose column (lane 4), ST3Gal I recombinant baculovirus-infected cell lysates in the presence of tunicamycin (lane 5), and the eluted F4 fraction from the IgG-Sepharose column applied by tunicamycin-treated culture medium (lane 6) were loaded on the gel, respectively. B, the same gel was analyzed by Western blotting using rabbit IgG as a primary antibody as described under “Experimental Procedures.”

The Expression of Recombinant ST3Gal I after Tunicamycin Treatment—To test whether the 1-kDa difference of molecular mass is caused by N-glycosylation, High Five™ cells expressing ST3Gal I were incubated with 5 μg/ml tunicamycin to block N-glycosylation. The culture medium was applied on a column of IgG-Sepharose, and the bound ST3Gal I was eluted by low pH buffer. But no protein was eluted out of the IgG-Sepharose column (Fig. 1C), indicating that ST3Gal I deficient in N-linked oligosaccharides seemed not to be secreted into medium. We examined the presence of ST3Gal I in the culture medium by trichloroacetic acid precipitation of culture supernatants and Western blotting; however, ST3Gal I was not contained in tunicamycin-treated medium (data not shown). We further examined whether ST3Gal I is present in cell lysates by SDS-PAGE (Fig. 2A) and Western blot analysis (Fig. 2B). When cells were treated with tunicamycin, ST3Gal I was present exclusively in cell lysates (Fig. 2B, lanes 5 and 6), indicating that N-glycosylation of ST3Gal I might be crucial for protein secretion in High Five™ cells. Moreover, ST3Gal I after tunicamycin treatment still gave rise to two different molecular masses with the same 1-kDa difference (Fig. 2B, lane 5), indicating that the difference of molecular mass does not result from N-glycosylation. It should be mentioned that several other molecular weight forms of ST3Gal I were also detected on Western blotting of cell lysates (Fig. 2B, lane 3), indicating that some unprocessed and/or intermediately glycosylated forms of ST3Gal I may reside inside cells.

Screening of Hexapeptide Library Pools for Identifying the Peptide Inhibitor of Recombinant ST3Gal I—The screening of a combinatorial hexapeptide library containing 114 peptide pools allowed us to determine the most effective amino acid residues that can be positioned in a hexapeptide sequence. The screening of the peptide library was performed as shown in Fig. 3. Screening of the first pool containing the NH2-XHXX–XH peptide mixtures showed that NH2–XHXX–XW was found to most strongly inhibit ST3Gal I activity (Fig. 3A). The other three amino acid residues of glycine, asparagine, and arginine at the X1 position appear to be less active than tryptophan. The screening of the second, third, and fourth pool of the peptide library also revealed that the tryptophan residue was the highest inhibitory amino acid at the X2, X3, and X5 positions (Fig. 3, B–D). In the case of the fifth pool of NH2–XXH–XH, asparagine, arginine, tryptophan, and tyrosine were identified as strongly inhibitory amino acid residues, and among these, asparagine showed the highest inhibitory activity at the X2 position (Fig. 3E). Finally, the sixth position was identified as glycine, which was the most inhibitory element among 19 amino acids (Fig. 3F). Based on these results, the five possible hexapeptides were synthesized as follows: the first position from the NH2 terminus, Gly; the second position, Asn and Trp; the third position, Trp and Arg; the fourth position, Trp; the fifth position, Trp; and the sixth position, Trp and Arg. The amino acid sequences of the five hexapeptides finally chosen are listed in Fig. 4A. The relative inhibitory activity of each peptide was tested, showing that the P5 hexapeptide sequence, NH2–GNWWW, was found to most strongly inhibit ST3Gal I activity (Fig. 4B).

Kinetic Analysis of ST3Gal I Inhibition by P5 Hexapeptide—The NH2–GNWWW designated as P5 hexapeptide was utilized to study the kinetic mode of ST3Gal I inhibition. In kinetic analysis, first, recombinant ST3Gal I and radioactive CMP-[3H]NeuAc are incubated with varying concentrations of non-radioactive CMP-NeuAc under a fixed concentration of Galβ1,3GalNAc substrate (Fig. 5A). Second, enzyme and CMP-[3H]NeuAc are incubated with varying concentrations of Galβ1,3GalNAc under a fixed concentration of CMP-NeuAc (Fig. 5B). Kinetic assays were demonstrated to be linear with respect to incubation time and amount of recombinant ST3Gal I (data not shown). In Fig. 5A, the apparent Ks and Vmax of ST3Gal I enzyme for CMP-NeuAc were determined to be 38 μM and 650 pmol/h using 2.5 μl of purified ST3Gal I, respectively. In the presence of peptide inhibitor, Ks was changed without alteration of Vmax, suggesting that P5 hexapeptide was acting as a competitive inhibitor (Ks = 1.1 μM) of ST3Gal I in terms of CMP-NeuAc binding (Fig. 5A). In Fig. 5B, the apparent Ks and Vmax of ST3Gal I enzyme for Galβ1,3GalNAc were determined to be 268 μM and Vmax of 1740 pmol/h using 2.5 μl of purified ST3Gal I. In the presence of peptide inhibitor, Vmax was changed without alteration of Ks, indicating that P5 hexapeptide was acting as a noncompetitive inhibitor (Ks = 8.8 μM) of
Inhibition of Other Sialyltransferase Activities by P5 Hexapeptide—Based on these results, it is possible to deduce that P5 hexapeptide may inhibit other types of sialyltransferases because all sialyltransferases known thus far utilize CMP-NeuAc as a common donor substrate. Therefore, we tested whether P5 could inhibit the activities of other sialy-
transferrases such as N-glycan-transferring α2,3- and α2,6-sialyltransferases. As expected, P5 hexapeptide was found to significantly inhibit both α2,3-sialyltransferase (Fig. 6A) and α2,6-sialyltransferase (Fig. 6B).

Inhibition of NeuAc Expression in CHO Cells—To determine whether P5 hexapeptide could inhibit the expression of NeuAc in vivo, CHO cells were treated with P5 hexapeptide in normal complex medium, and cellular glycoproteins were analyzed by RCA-I lectin blotting. It has been generally known that RCA-I interacts with high affinity with Galβ1,4GlcNAc sequence in asialo forms of bi-, tri-, and tetra-antennary N-glycans containing terminal β-linked galactose residues (31) and also interacts weakly with mucin-type Galβ1,3GalNAc sequence in O-glycan structure (32, 33). The CHO cells treated with P5 hexapeptide showed a dose-dependent inhibition of NeuAc expression (Fig. 7A, lanes 3–5), and Me2SO treatment as a control resulted in a similar extent of RCA-I binding as detected in intact cells (Fig. 7A, lane 2). The treatment of CHO cells with a control hexapeptide (NH2-WRGGSG) showed no significant inhibition of NeuAc expression on cellular glycoproteins, and also this control hexapeptide was tested not to inhibit the ST3Gal I activity in vitro (data not shown). As expected, FITC-P5 hexapeptide treatment resulted in much stronger RCA-I binding in dose-dependent fashion (Fig. 7B, lanes 3–5) than P5 hexapeptide treatment. MeSO-treated cell lysates showed a background signal of RCA-I binding as in the case of intact cell lysates (Fig. 7B, lanes 1 and 2). The treatment of CHO cells with FITC-WRGSG showed no significant effect on the inhibition of NeuAc expression (data not shown). These data demonstrate that both P5 and FITC-P5 can substantially inhibit sialyltransferases in vivo, and the FITC conjugation may enhance a peptide delivery in CHO cells. During these peptide treatments of CHO cells, we observed that cell morphology or growth rate was not influenced by the peptides (data not shown). Next, to test the inhibitory efficacy of P5 hexapeptide in a short term treatment of several hours, we used the ChariotTM system, a commercially available liposome system for an efficient peptide delivery into cells. After treatment of P5 hexapeptide together with ChariotTM for 2 h according to the
manipulated hexapeptides (P1–P5) against N-glycan-specific α2,3-sialyltransferase were analyzed using CMP-[3H]NeuAc in the absence (−) and presence of hexapeptides as described under “Experimental Procedures.” B, the inhibitory activities of five individual hexapeptides (P1–P5) against N-glycan-specific α2,6-sialyltransferase were comparatively analyzed.

manufacturer’s protocol, we metabolically radiolabeled CHO cells with [6-3H]GlcNH2 for 8 h in the presence of P5 hexapeptide. We directly analyzed newly synthesized glycoproteins to examine whether the level of NeuAc expression was reduced. First, we analyzed the NeuAc expression on O-linked oligosaccharides by mild alkaline borohydride treatment followed by descending paper chromatography as previously described (28, 29). The majority of β-eliminated O-glycans from P5 hexapeptide-Chariot™-treated CHO cells contained nonsialylated GalNAcitol as a major O-glycan and nonsialylated core 1 structure (Galβ1,3GalNAcitol) as shown by the comigration with authentic standards (Fig. 8D). However, the β-eliminated O-glycans released from intact cells (Fig. 8A), Me2SO-treated cells (Fig. 8D), and control hexapeptide-treated cells (Fig. 8C) were shown to be sialylated core 1 structure (mono- or disialylated Galβ1,3GalNAcitol) and sialylated GalNAcitol as major O-linked oligosaccharides, because desialylation of these samples by mild acid treatment generated Galβ1,3GalNAcitol and GalNAcitol (Fig. 8, E–G). These results demonstrate that P5 hexapeptide may inhibit not only ST3Gal I but also other O-glycan-specific sialyltransferases in vivo, such as ST6GalNAc I (37) and ST6GalNAc III (38). Our finding in the present study that CHO cells synthesize sialylGalNAcitol structure in endogenous glycoproteins seems to be quiet surprising, since no such glycan structure has been detected on any recombinant glycoproteins produced in CHO cells, although there is a report concerning the GalNAcitol structure produced in CHO cells (39). In a repeated experiment, a similar result was consistently obtained (data not shown), but the exact identity of this glycan structure was not further characterized. Second, we analyzed the expression level of NeuAc on N-linked oligosaccharides by QAE-Sephadex of anion exchange chromatography (40). The majority of N-glycans released from the P5 hexapeptide-Chariot™-treated CHO cells were neutral oligosaccharides (Fig. 9, B and D); however, N-glycans released from intact cells, Me2SO-treated cells, and control peptide-treated cells were shown to be mainly 2 and 3 negatively charged oligosaccharides, respectively (Fig. 9, A, C, E, and F). These negative charges were identified as NeuAc residues by mild acid treatment of negatively charged samples followed by rechromatography on QAE-Sephadex (Fig. 9). These results demonstrate that P5 hexapeptide can inhibit N-glycan-specific α2,3-sialyltransferase in CHO cells.

DISCUSSION

NeuAc residues expressed either on glycoproteins or glycolipids at the cell surface are known to exert important biological roles in cell-cell recognition of inflammation process (3) and especially in the metastatic potential of tumor cells (5, 6, 41). Therefore, it would be valuable to find out specific inhibitors of sialyltransferases for the therapeutic disease control. There have been a number of reports concerning the development of sialyltransferase inhibitors, such as CMP, CMP-NeuAc analogues (14), and NeuAc-neucoside conjugates (16, 17, 61). Previous studies have shown that these compounds were evaluated as anti-metastatic agents in a variety of tumor models; however, their inhibition of sialyltransferases appears not to be promising in vivo (42). Recently, it has been reported that the
FIG. 8. Analysis of the NeuAc expression on O-linked oligosaccharides of CHO cells by P5 hexapeptide treatment. A–D, intact CHO cells (A) and cells treated with Chariot™ containing 0.5% Me₂SO (B), 50 μM control hexapeptide (C), and 50 μM P5 hexapeptide (D) were metabolically radiolabeled with D-[6-³H]GlcNH₂ as described under “Experimental Procedures.” The radiolabeled total glycoproteins were incubated with mild alkaline borohydride, and the released O-linked oligosaccharides were analyzed by descending paper chromatography in an 8:2:1 solvent system. E–G, the released O-glycans were treated with mild acid for desialylation. The desialylated materials from intact cells (E), 0.5% Me₂SO-treated cells (F), and control peptide-treated cells (G) were analyzed by descending paper chromatography as described under “Experimental Procedures.” The arrow indicates the migration of authentic standards, [³H]GalNAcitol and Galβ1,3[³H]GalNAcitol.
FIG. 9. Charge analysis of N-linked oligosaccharides by QAE-Sephadex before and after P5 hexapeptide treatment. A–B, total radiolabeled glycoproteins prepared from control CHO cells (A) and P5 hexapeptide-treated CHO cells (B) were applied on Sephadex G-50 before (closed circle) and after (open circle) N-glycanase treatment. C–F, the released N-linked oligosaccharides from intact cells (C), P5 hexapeptide-treated cells (D), 0.5% Me2SO-treated cells (E), and control peptide-treated cells (F) were analyzed by QAE-Sephadex before (open circle) and after (closed circle) desialylation with mild acid treatment as described under "Experimental Procedures." The charged materials were eluted with increasing concentrations of NaCl as indicated by the arrows.
sialylation of core 1 O-glycan by ST3Gal I can compete with a formation of core 2 O-glycan in breast carcinoma cells (12). In addition, ST3Gal I enzyme has been shown to positively correlate with the expression of cancer-associated MUC1 in breast carcinomas (13).

In the present study, we expressed mouse cDNA encoding ST3Gal I in High Five™ cells, and we screened hexapeptide combinatorial library until the individual peptide sequence was obtained. To our knowledge, this is the first report to identify a hexapeptide inhibitor of ST3Gal I and to reveal that this hexapeptide functions as a generic inhibitor of a broad range of other sialyltransferases. In our expression system of High Five™ cells (43, 44), the level of secreted recombinant ST3Gal I was ~4–5 mg/liter, and protein A sequence linked to ST3Gal I was able to be efficiently utilized in a one-step purification of recombinant enzyme by IgG-Sepharose as shown in previous studies (45). Moreover, our data suggest that mammal-derived IgM signal sequence could efficiently be cleaved in High Five™ cells (Fig. 1A), and, based on tunicamycin treatment, the 1-kDa difference of molecular mass might be caused by other posttranslational modifications, such as O-glycosylation, phosphorylation, and sulfation (Fig. 2B). Recombinant ST3Gal I without N-glycosylation was found not to be secreted in the insect cell system, indicating that the exit of nonglycosylated ST3Gal I from the endoplasmic reticulum might be blocked as in mammalian cell system (46–48).

We finally obtained five different hexapeptides, and only P5 hexapeptide was found to significantly inhibit ST3Gal I sialytransferase (Fig. 4B). The kinetic analysis of ST3Gal I inhibition showed that P5 can strongly compete with CMP-NeuAc binding to ST3Gal I enzyme. It is possible to consider some explanations for the molecular basis of an inhibitory mechanism. First, the P5 sequence may contain a structural similarity with CMP-NeuAc. This possibility suggests that the sequence of P5 hexapeptide can mimic a structural conformation of CMP-NeuAc. Alternatively, it is also feasible that P5 hexapeptide can partially mimic a portion of CMP-NeuAc. Recently, many studies have shown that the structural conformation of specific carbohydrate sequences can be sufficiently adopted by the specific peptide sequences (49–51). Furthermore, several studies on the carbohydrate-mimicking peptides have shown that aromatic amino acids in the peptide sequence could function as a critical factor to reflect the specific carbohydrate conformations (52–55). Second, the P5 hexapeptide sequence might be able to possess a similar conformation of the CMP-NeuAc binding pocket in ST3Gal I enzyme. It is now known that the sialylmotif L in mammalian sialyltransferases is highly conserved and involved in CMP-NeuAc binding (8). Interestingly, the first two amino acids of P5 hexapeptide sequence are well conserved in the sialylmotif L of mammalian sialyltransferases. Therefore, we can hypothesize that these two amino acid residues, Gly and Asn, in the sialylmotif L may provide a likely contact point to the CMP-NeuAc. At present, the molecular details of how the P5 hexapeptide sequence interacts with ST3Gal I enzyme are under investigation. Based on the present data of kinetic analysis, our study is highly suggestive that P5 hexapeptide can inhibit a broad range of sialyltransferases, such as N-O-glycan-transferring sialyltransferases (8) as well as glycolipid-specific sialyltransferases (56). Therefore, we tested this idea and confirmed that the P5 hexapeptide inhibited both N-glycan-specific α2,3- and α2,6-sialyltransferase regardless of its linkage specificity (Fig. 6).

To test the inhibition of sialyltransferase in vitro, we treated CHO cells with P5 and FITC-P5, a derivative of P5. FITC-P5 was synthesized through a conjugation of FITC onto primary amine at the NH₂ terminus of the P5 hexapeptide sequence to increase peptide lipophilicity. The inhibitory activity of FITC-P5 in vitro was tested to be fully active as much as P5, indicating that the modification of the primary amino group of P5 must not be crucial for ST3Gal I inhibition.

In our inhibition assay in vivo using RCA-I blotting, both P5 and FITC-P5 peptide can inhibit the expression of NeuAc in CHO cells. Moreover, FITC-P5 appears to have much stronger inhibition than P5, indicating that peptide delivery might be important for an efficient inhibition of sialyltransferases in vivo. The smeared pattern of RCA-I blotting, which covers 30–200-kDa glycoproteins indicates that the whole range of glycoproteins might be affected regardless of N- and O-linked glycans (Fig. 7). It should be noted that the significant detection of nonsialylated and terminally galactosylated glycoproteins by RCA-I blotting requires a sufficient accumulation of newly synthesized glycoproteins and also a complete turnover of presynthesized glycoproteins during the peptide treatment of CHO cells. Considering the fact that the half-life (t½) of membrane glycoproteins, in general, could be longer than 20–24 h, we maintained cells up to 72 h in the presence of P5 hexapeptide to maximize the detection of RCA-I blotting (Fig. 7). We also tested the inhibitory efficacy of P5 in a short term treatment of CHO cells for several hours. In this case, we treated cells with P5 hexapeptide encapsulated by Chariot™ to facilitate a peptide delivery into cells. The structural analyses of newly synthesized N- and O-linked oligosaccharides showed that P5 substantially inhibited more than 90% of glycoprotein sialylation in CHO cells. Furthermore, our results demonstrate that the expression of NeuAc on both N- and O-linked oligosaccharides was significantly reduced within a 10-h treatment of P5 hexapeptide (Figs. 8 and 9). Our present results further confirm that the P5 hexapeptide may inhibit ST3Gal I as well as other sialyltransferases such as ST6GalNAc I (37), ST6GalNAc III (38), and ST3Gal III (57) in vivo. Unexpectedly, we found that the endogenous O-linked oligosaccharides synthesized in CHO cells maintained sialylated GalNAc structure, although the exact identity of O-linked sialylated GalNAc structure needs to be further characterized. Until now, it has been reported that most recombinant glycoproteins produced in CHO cells were identified to contain sialylated core 1 structure as a major O-linked oligosaccharides (58–60) and, in some cases, contain Tn carbohydrate (57, 58).

In conclusion, these results suggest that P5 hexapeptide, NH₂-GNWWWW, may function as a generic inhibitor of a broad range of N- and O-glycan-specific sialyltransferases as predicted in our kinetic analysis. Further studies are needed to define the molecular basis of how P5 hexapeptide interacts with sialyltransferases in vivo. The inhibitory activity of P5 hexapeptide against a broad spectrum of sialyltransferases may be applied as a therapeutic tool to treat human diseases, such as inflammation, cancer metastasis, and viral infection.

REFERENCES

1. Hakomori, S. I. (1989) Adv. Cancer Res. 52, 257–331
2. Yang, J., Furie, B. C., and Furie, B. (1999) Thromb. Haemostasis 81, 1–7
3. McEver, R. P., and Cummings, R. D. (1997) J. Clin. Invest. 100, 485–491
4. Bernacki, R. J., and Kim, U. (1977) Science 195, 577–580
5. Whitesell, C., Burchell, J., Gschmeissner, S., Brockhausen, I., Lloyd, K. O., and Taylor-Papakimitriou, J. (1997) J. Cell Biol. 137, 1229–1241
6. Fujita, S., Nakao, M., and Taylor-Papakimitriou, J. (1999) J. Biochem. 126, 377–385
7. Chang, M. L., Riedy, R. L., Shou, T. B., and Lai, J. (1995) Glycobiology 5, 319–325
8. Kurosawa, N., Hamamoto, T., Nakao, T., and Tsuji, S. (1995) Eur. J. Biochem. 216, 377–385
9. Fujita, S., Nakao, M., and Taylor-Papakimitriou, J. (1999) J. Biochem. 126, 377–385
