An analytical calculation and applications of the kinematic characteristics of the motor vehicle movement at an oblique hitting the side of a cable barrier

G P Kolesnikova
Peter the Great Strategic Missile Troops Academy, Balashikha, Russia

E-mail: kolesnikovagp@mail.ru

Abstract. An analytical calculation of the kinematic characteristics of a motor vehicle allows both checking the correctness of the developed FE model of cable barriers and can be used to study the movement of a motor vehicle directly during the construction of the FE model. In the article it has been provided recommendations on the procedure for conducting a virtual test in order to verify the correctness of the construction of the finite element (FE) model of the cable barriers, and also it has been analyzed the possibility of using analytical trajectories in the study of passive safety of the driver/passenger. FE modeling has been performed using the LS-Dyna multipurpose finite element complex. The present work continued researches which has been published as [1] and [2].

Keywords: cable barrier, mathematical modeling, analytical construction, trajectory.

1. Introduction

The road infrastructure of the world continues to develop very actively, therefore, strict laws are constantly being developed and adopted in various countries in the field of organizing traffic flows. Nonetheless cars are still related to the area of increased danger to humans.

Recently, as an element of active safety, cable road barriers was gaining popularity. It was installed on the dividing lane of highways to prevent deliberate and unintentional crossings of vehicles across the road; to separate traffic flows in opposite directions; as well as on the side of the road – to prevent deliberate and unintentional trips of vehicles outside the highway.

The main advantage of cable barrier is the low value of the index of the severity of the injury, relatively low cost, lack of snow retention. [3]. The process when a motor vehicle has been described with oblique collision with side cable barrier has a difficult interaction structure. For the first a cable has a high degree of geometric non-linearity. Then racks and soil have a high degree of physical non-linearity. At least, all emerging processes are transient. [3]. Also, an analytical calculation of the movement of motor vehicle during collisions with cable barriers is associated with the need to take into account a large number of factors characterizing elements of cable barriers Also it possible to use string oscillation equations like it has been done for cable-stayed structures [4, 6-9] and analytical calculation of air finishers [6, 7]. But it is because of complex cable barrier structure like way has

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
issued problem with formulation of crane conditions. [3-10]. All of the above has been lead to use Finite Element modeling (for example, with DYNA, MARK, NASTRAN and so on) for research cable barrier structure and the crash test process. [3, 11].

Other possible way of research is simplification of the mechanical system: replacement of the cable with some physical models that adequately imitate the cable properties which necessary for the task and neglect the insignificant ones in the context of the problem under consideration. [10]. Such way also has been used in [1] и [2] and in present work.

Also it should be noted, that oblique collision of a motor vehicle with side cable barrier is impotent part of field tests to determine the level of active and passive a motor vehicle safety. The using of an analytical description of a motor vehicle, regardless of the complexity of the engineering design of the cable barrier, greatly facilitates the work on assessing the internal passive safety of the driver/passenger, and also it allows to verify the correctness of the developed FE model for virtual crash tests.

2. Recommendations for conducting virtual tests in order to verify the correctness of the construction of the finite element (FE) model of a cable barriers.

As an example, it has been considered two virtual tests, FE models of which have been developed by I. Karpov, a graduate student of the Department of Structural Mechanics, MADI. For these models, it has been constructed the analytical kinematic characteristics of a motor vehicle and compare them with the results of the virtual crash tests.

The angle between the longitudinal axis and the direction of movement of the test ATS used to point it is 20 ° according to GOST P 52721-2007 (ГОСТ Р 52721-2007) (pp. 6.1-6.6). [12].

2.1. Calculation of model No. 1.

A virtual test has been conducted for a motor vehicle weighing 1050 kg at an initial contact speed v₀ = 25 m/c. According to the results of virtual test, the contact time τ of motor vehicle and cable barrier has been taken about 0,7 s, the maximal dynamic deflection Y was 2,5 m, the length of the interaction path was x(τ) ≈ 15 m. Figure 1 presents the results of virtual crash test.

![Figure 1](image-url)

Figure 1. The results of virtual crash test for model No. 1: red line (A) – y-displacement, m; green line (B) – x-displacement, m. (Blue line (C) – z-displacement. It was not necessary for the calculations).

For the first, it needs to find conditional cable frequency p according algorithm of calculation, which has been presented in [1]:

...
According the same algorithm amplitude of oscillation conditional cable was equal to:

\[A_0 = \frac{v_0 \sin \alpha}{p} = \frac{8.55}{4.489} = 1.905, \text{m.} \]

Obtained value \(A_0 \) was less than the maximal dynamic deflection (2.5 m). But, in the [1] it has been showed that condition

\[\frac{A_0}{Y^* \sin pt^*} > 1 \]

is necessary for the existence of a solution to the equation

\[\frac{pt^*}{\tan pt^*} = \ln \left(\frac{A_0}{Y^* \sin pt^*} \right). \]

Here, \(t^* \) is the moment of time when the maximal dynamic deflection has been reached.

Anyway, for checking the operation of the algorithm, it has been found a solution to this equation, which in the present problem took the form:

\[\frac{\zeta}{\tan \zeta} = \ln(0.762 \sin \zeta), \zeta = pt^*. \]

The solution was:

\[\zeta = 1.73. \]

Further it has been calculated:

\[\varepsilon = \frac{p}{\tan pt^*} = \frac{p}{\tan(1.73)} = -0.388, \frac{1}{s}. \]

Thus, a sufficient condition has been violated:

\[\tan pt^* > 0. \]

Because of it, a motor vehicle displacements has been calculated by the second way [1]. According this way of algorithm [1] conditional cable frequency \(p \) was equal to:

\[p = \frac{v_0 \sin \alpha}{Y^*} = \frac{8.55}{2.5} = 3.42, \frac{1}{s}. \]

A rather large discrepancy has been obtained when calculating the frequency for both forms. However, both formulas should give fairly close results. The discrepancy can be explained by the inaccuracy of taking motion data. Inaccuracy manifests itself in the first place in the value of time \(\tau \).

Compare both formulas for calculating the frequency, and reveal the pattern of correction of contact time:

\[\frac{v_0 \sin \alpha}{Y^*} = \frac{\pi}{\tau}, \]

ore

\[\tau = \frac{\pi}{A_0} = \frac{\pi}{v_0 \sin \alpha} Y^*, s. \]

In the context of the calculation in question, it has been obtained:

\[\tau = \frac{\pi}{v_0 \sin \alpha} Y^* = 0.919, s; \]

and

\[p = \frac{\tau}{\pi} = 3.42, \frac{1}{s}. \]
Further, for A_0 it has gave:

$$A_0 = \frac{v_0 \sin \alpha}{p} = 2.5, \text{ m.}$$

As a result, the expressions of displacements have took the form (figure 2):

$$\begin{align*}
x(t) &= -0.375 \sin 3.42t + 24.775 \cdot t, \text{ m;} \\
y(t) &= 2.5 \sin 3.42t, \text{ m.}
\end{align*}$$

Figure 2. The results of analytical calculation (harmonic construction algorithm [1]) for model 1: red line (dotted line) – y-displacement, m; green line (solid line) – x-displacement, m.

Compared with the FE model, the constructed mathematical model has given displacements with an error of about 2-7%.

The method of polynomial quadratic approximation [2] has been not applicable, since it did not satisfy the necessary condition ($\varepsilon < 0$).

Figure 3 shows the results of using the polynomial cubic approximation [2] with $\tau = 0.6$, s. However, this calculation also has not given a correct result, since the maximum deviation of the y-displacement did not reach the required 2.5 m. Such a result with an external, as it were, successful construction, obtained if the determinant is too close to the zero value. (In this case, the determinant was $\Delta = -0.033$). [2].
Figure 3. The results of analytical calculation (cubic polynomial construction algorithm) for model No. 1: red line (dotted line) – y-displacement, m; green line (solid line) – x-displacement, m.

Thus, none of the methods has gave a correct analytical approximation of displacement, although the angle of inclination of the line of displacements along the x axis with the horizon in all cases was about 87.5°.

The virtual test was carried out incorrectly; therefore, no conclusions can be drawn on the correct construction of the FE model.

2.2. Calculation of model No. 2.

A virtual test has been conducted for a motor vehicle weighing 850 kg at an initial contact speed $v_0 = 25 \cdot 10^3$ mm/s. According to the results of virtual test, the contact time τ of motor vehicle and cable barrier has been taken about 0.565 s.

According to the virtual test data for the motor vehicle, the following data has been obtained for the speeds and displacements of the points (figure 4): the first pair of points (points A and B), the the center of gravity point C, the back point of the point (points D and E). (Tables 1 and 2; data acquisition step was equal to $0,4999499768 \cdot 10^{-2}$, s.).

Figure 4. Points of a motor vehicle, which have been selected for kinematic analysis.
Table 1. Points displacements according to virtual crash test: first pair (points \(A\) and \(B\)), center of gravity point \(C\), back pair of points (points \(D\) and \(E\)).

First pair (points \(A\) and \(B\))	Center of gravity point \(C\)	Back pair of points (points \(D\) and \(E\))		
\(x, \text{mm} \cdot 10^4\)	\(-y, \text{mm} \cdot 10^2\)	\(x, \text{mm} \cdot 10^4\)	\(-y, \text{mm} \cdot 10^2\)	
1.	0.0000000000	0.0000000000	0.0000000000	0.0000000000
2.	0.011735742188	0.42724914551	0.42716430664	0.42816894531
3.	0.023488085938	0.85490905762	0.85421142578	0.85806762695
4.	0.035287304688	1.2813952637	1.2809692383	1.2864416504
5.	0.047186132813	1.6941937256	1.7066859355	1.712830213
6.	0.058922656250	2.0881134033	2.1319311523	2.1394750977
7.	0.070482421875	2.4871514893	2.5571520996	2.5664038086
8.	0.082136132813	2.8929064941	2.9807263184	2.9910021973
9.	0.093833203125	3.2908404541	3.4015979004	3.4170751953
10.	0.10591445313	3.6792816162	3.8197412109	3.8486376953
11.	0.11794902344	4.0100405884	4.2337933350	4.2826110840
12.	0.13020908203	4.3164981079	4.6429376221	4.7162646484
13.	0.14213574219	4.6066687012	5.0470452881	5.1548767090
14.	0.15397841797	4.8462838745	5.4430548096	5.5972607422
15.	0.16570996094	5.013294678	5.8271038818	6.0421716309
16.	0.17708505859	5.1333898926	6.2046942139	6.5009326172
17.	0.18817021484	5.2318072510	6.5761364746	6.9688195801
18.	0.19944218750	5.3511169434	6.9408502197	7.4412304688
19.	0.21087255859	5.4970251465	7.2987225342	7.9208544922
20.	0.22278652344	5.6646405029	7.6523266602	8.4064367676
21.	0.23509130859	5.8772161865	8.000795605	8.9014618116
22.	0.24699335938	6.1782956506	8.3366925049	9.4018176270
23.	0.25467841797	6.2451055908	8.6587805176	9.9043231201
First pair (points \(A\) and \(B\))

\(x, \text{mm} \cdot 10^4\)	\(-y, \text{mm} \cdot 10^2\)
24. 0.26590673828 6.3659613037	0.26950859375 8.9724877930
25. 0.27767089844 6.4696960449	0.27423964844 10.905906982
26. 0.28959960938 6.5938940430	0.28502988821 11.407419434
27. 0.3016039844 6.6850042725	0.29575683594 11.911207275
28. 0.3135662109 6.8124182129	0.30628906250 12.414035645
29. 0.3259010742 6.9219647217	0.31673769531 12.916185303
30. 0.33744785156 6.9999383545	0.32723691406 13.408842773
31. 0.34920966797 7.0548278809	0.33785761719 13.898502197
32. 0.36095673828 7.082365723	0.35830664064 11.162287598
33. 0.37258808594 7.0955639648	0.36981308594 11.386523438
34. 0.38403291016 7.0962664795	0.38095673828 11.159687744
35. 0.39537080078 7.0784619141	0.39211386719 11.790001221
36. 0.40685654297 7.0457293701	0.40328808594 11.971683350
37. 0.41758945313 6.9988562012	0.41441015625 12.147197266
38. 0.42806738281 6.9538006592	0.42548642578 12.320817871
39. 0.43849667969 6.8861230469	0.43651376953 12.492757568
40. 0.44861074219 6.8527166748	0.44752607422 12.663985596
41. 0.45898906250 6.8236669922	0.45849638672 12.829438477
42. 0.46959189453 6.7478466797	0.46941796875 12.982799072
43. 0.48044902344 6.6888824463	0.48035839844 13.127622070
44. 0.49134013672 6.6301873779	0.49127792969 13.259077148
45. 0.50204892578 6.5736145020	0.50217392578 13.374978027
46. 0.51262988281 6.5006811523	0.51305156250 13.476555176
47. 0.52311259766 6.3889666748	0.52392939453 13.563979492
48. 0.53202607422 6.3948315430	0.53474033203 13.636383057
First pair (points A and B)

x, mm·10^4	$-y$, mm·10^2
49. 0.54105947266	6.4408532715
50. 0.55099248047	6.4445196533
51. 0.56204804688	6.4477313232
52. 0.57397929688	6.4904107666
53. 0.58581630859	6.5139556885
54. 0.59803466797	6.521172646
55. 0.6041474609	6.4988488770
56. 0.62283291016	6.4709564209
57. 0.63473535156	6.445794189
58. 0.64655566406	6.441749023
59. 0.65839472666	6.4441064453
60. 0.66973613281	6.442627686
61. 0.68056386719	6.4328570557
62. 0.69116328125	6.442608426
63. 0.70201152344	6.4730926514
64. 0.71261708984	6.5221716309
65. 0.72335068359	6.5659600830
66. 0.73369892578	6.5978259858
67. 0.74410537109	6.6134997559
68. 0.75462587891	6.6403887939
69. 0.76538623047	6.6789794922
70. 0.77611552734	6.7261590576
71. 0.78658925781	6.7768920898
72. 0.79671972656	6.8099963379
73. 0.80669951172	6.8183300781

Center of gravity point C

x, mm·10^4	$-y$, mm·10^2
13.695340576	0.53172958984
13.744777359	0.52370214844
13.789904785	0.55280595703
13.832406006	0.56344570313
13.868077393	0.57453896484
13.892197266	0.58509677734
13.90522705	0.59576074219
13.921384277	0.60648398438
13.923502197	0.61699365234
13.916580811	0.62743281250
13.904781494	0.63811279297
13.890705566	0.64874042969
13.873215332	0.65944326172
13.841600342	0.67003369141
13.800437012	0.68066064453
13.758641357	0.6914233984
13.717397461	0.70205566406
13.670294189	0.71276005859
13.608650066	0.72340761719
13.534730225	0.73398251953
13.447839355	0.74453115234
13.351826172	0.75511923828
13.252973633	0.76565214844
13.157325439	0.77626142578
13.064448242	0.78693662109

Back pair of points (points D and E).

x, mm·10^4	$-y$, mm·10^2					
20.726259766	0.53172958984					
20.937326660	0.54237021484					
21.106718750	0.55280595703					
21.269436035	0.56344570313					
21.401984863	0.57453896484					
21.464702148	0.58509677734					
21.540268555	0.59576074219					
21.573718262	0.60648398438					
21.588176270	0.61699365234					
21.584055176	0.62743281250					
21.569438477	0.63811279297					
21.541318359	0.64874042969					
21.496013184	0.65944326172					
21.444379883	0.67003369141					
21.370612793	0.68066064453					
21.297770996	0.6914233984					
21.208952637	0.70205566406					
21.088505859	0.71276005859					
20.977731934	0.72340761719					
20.865014648	0.73398251953					
20.737910156	0.74453115234					
20.600954590	0.75511923828					
20.456986084	0.76565214844					
20.316046143	0.77626142578					
20.170590820	0.78693662109					
First pair (points A and B)	Center of gravity point C	Back pair of points (points D and E).				
-----------------------------	---------------------------	--------------------------------------				
\(x, \text{mm} \cdot 10^4\)	\(-y, \text{mm} \cdot 10^2\)	\(x, \text{mm} \cdot 10^4\)	\(-y, \text{mm} \cdot 10^2\)			
74.	0.81651787109	6.8042810059	0.81170126953	12.973468018	0.79751357422	20.002503662
75.	0.82290156250	6.8346539307	0.82227978516	12.883597412	0.80802490234	19.822410889
76.	0.83085312500	6.7743542480	0.83276138359	12.792709961	0.81863193359	19.648481445
77.	0.84055917969	6.7756951904	0.84320673828	12.697185059	0.82927929688	19.473464355
78.	0.85028486328	6.7711938477	0.8536830078	12.59722900	0.83987666016	19.295021973
79.	0.85991835938	6.8006359863	0.86410800781	12.496519775	0.85030644531	19.115434570
80.	0.87147822266	6.8140167236	0.87448320313	12.397192383	0.86066054688	18.932738037
81.	0.88402919922	6.8291760254	0.88481005859	12.296574707	0.8709071484	18.747817383
82.	0.89563906250	6.8314605713	0.89513623047	12.196097412	0.88103769531	18.569421393
83.	0.9084009766	6.8276232910	0.90544394531	12.096650391	0.89120214844	18.397570801
84.	0.92036933594	6.8712963867	0.91563564453	11.998245850	0.90140273438	18.211265869
85.	0.93214804688	6.8912194824	0.92578398438	11.899575195	0.91162988281	18.016169434
86.	0.94407558594	6.8808349609	0.93593866719	11.794100342	0.92175976563	17.823281250
87.	0.95508730469	6.8731860352	0.94613193359	11.683602295	0.93175175781	17.63836934
88.	0.96521953125	6.8491229248	0.95634521484	11.571904297	0.94179775391	17.460300293
89.	0.97537792969	6.8210723877	0.96652119141	11.460773926	0.95193369141	17.279895020
90.	0.98445660463	6.7949829102	0.97668759766	11.355078125	0.96214775391	17.107062988
91.	0.99411142578	6.7427233887	0.98686884766	11.25531563	0.9724355078	16.950795898
92.	1.0039439453	6.6933648682	0.9970529297	11.160751953	0.98267802734	16.792612305
93.	1.0138986328	6.6342120361	1.0072476563	11.066726074	0.99292714844	16.627543945
94.	1.0235517578	6.5658294678	1.0174671719	10.970548096	1.0031154297	16.454215088
95.	1.0330688477	6.5005328369	1.0276739258	10.873342285	1.0132407227	16.278198242
96.	1.0427845703	6.4116125488	1.0377941406	10.774819336	1.0234355469	16.105628662
97.	1.0529701172	6.3205737305	1.0478781250	10.673626709	1.0336921875	15.919086914
98.	1.0630866211	6.2386499023	1.0579440430	10.569880371	1.0438461914	15.727788086
Table 2. Points speed according to virtual crash test: first pair (points A and B), center of gravity point C, back pair of points (points D and E).

First pair (points A and B)	Center of gravity point C	Back pair of points (points D and E).	
x, mm $\cdot 10^4$	$-y$, mm $\cdot 10^2$	x, mm $\cdot 10^4$	$-y$, mm $\cdot 10^2$
99. 1.0733368164 6.1494122314	1.0679505859 10.468197021	1.0539175781 15.543571777	
100. 1.0835636719 6.0758154297	1.0779264648 10.366904799	1.0639434570 14.845306396	
101. 1.0937746094 6.0139105225	1.0879120117 10.262816162	1.0739454102 14.681722412	
102. 1.1041771484 5.9437353516	1.0979027344 10.155823975	1.0839296868 14.52030176	
103. 1.1141308594 5.8589379883	1.1079117188 10.045789795	1.1040048828 14.359140625	
104. 1.1238710938 5.7496398926	1.1179051758 9.9336279297	1.114326172 14.2048340	
105. 1.1335179688 5.6317346191	1.1278786133 9.8206072998	1.114326172 13.70438232	
106. 1.1431992188 5.5252899170	1.137861641 9.7084423828	1.124447266 13.54418701	
107. 1.1534025391 5.426330078	1.147882227 9.5993457031	1.1345375000 14.19343994	
108. 1.1639262695 5.3226586914	1.1578958984 9.4953594791	1.147015625 14.02048340	
109. 1.1741462891 5.2270507813	1.167911788 9.3939868164	1.1548791016 13.85799072	
110. 1.1842718750 5.1373718262	1.177919219 9.2946093750	1.1650471680 13.70438232	
111. 1.1933393555 5.0381927490	1.1879085938 9.1957836914	1.1751407227 13.54418701	
112. 1.2031646484 4.8952273560	1.197894375 9.0971765137	1.1851384766 13.38697201	
113. 1.2132005859 4.7502304077	1.2078829578 9.0030029297	1.195059063 13.22875610	
114. 1.2235056641 4.6589648438	1.217838867 8.9120971680	1.2049483398 13.06854492	

1. 2.3500000000 -8.5500000000 2.3500000000 -8.5500000000 2.3500000000 -8.5500000000
2. 2.3497181641 -8.6555458984 2.3500300781 -8.5378496094 2.3410730469 -8.5510371094
3. 2.3503292969 -8.3975136719 2.3501710938 -8.536982578 2.3524574219 -8.595113281
4. 2.3904964844 -8.5446308594 2.3500402344 -8.5246044922 2.3534710938 -8.5526591797
5. 2.330605469 -8.2488955078 2.3476744141 -8.5015761719 2.3511623047 -8.5470058594
| | First pair (points A and B) | Center of gravity point C | Back pair of points (points D and E). | | | |
|---|---|---|---|---|---|---|
| | \(v_x, \frac{\text{mm}}{s} \cdot 10^4 \) | \(v_y, \frac{\text{mm}}{s} \cdot 10^3 \) | \(v_x, \frac{\text{mm}}{s} \cdot 10^4 \) | \(v_y, \frac{\text{mm}}{s} \cdot 10^3 \) | \(v_x, \frac{\text{mm}}{s} \cdot 10^4 \) | \(v_y, \frac{\text{mm}}{s} \cdot 10^3 \) |
| 6. | 2.3911929688 | -8.2400664063 | 2.3487478516 | -8.5050654297 | 2.3517548828 | -8.5506806641 |
| 7. | 2.2504242188 | -7.8712382813 | 2.3529462891 | -8.503435938 | 2.3426978516 | -8.4919589844 |
| 8. | 2.3737628906 | -8.1691635742 | 2.3482187500 | -8.4408203125 | 2.3420771519 | -8.495765625 |
| 9. | 2.3348908203 | -7.9350426988 | 2.3468988281 | -8.3882382813 | 2.3531248047 | -8.596534766 |
| 10. | 2.3844009766 | -7.0935190430 | 2.374580078 | -8.3292871094 | 2.3395546875 | -8.6673759766 |
| 11. | 2.5130523438 | -5.9837382813 | 2.3483486328 | -8.2263291016 | 2.3222822266 | -8.664279297 |
| 12. | 2.3666103516 | -5.9411293945 | 2.3517601563 | -8.1417539063 | 2.3137687500 | -8.7038574219 |
| 13. | 2.4076935547 | -5.3267885742 | 2.3555451172 | -8.0092133789 | 2.3005273438 | -8.8088466797 |
| 14. | 2.333037109 | -3.7372858887 | 2.349482734 | -7.7844262695 | 2.2907804688 | -8.845260938 |
| 15. | 2.4132353516 | -1.2575129395 | 2.3505066406 | -7.6228632813 | 2.2770000000 | -8.992678109 |
| 16. | 2.2560626953 | -2.382719727 | 2.3572451172 | -7.4964386762 | 2.285591172 | -9.3279482422 |
| 17. | 2.1269867188 | -3.6772185059 | 2.3479044922 | -7.4491894531 | 2.2662019531 | -9.389709609 |
| 18. | 2.2693421875 | -2.8691623535 | 2.3459087891 | -7.2334106445 | 2.2365785156 | -9.508983475 |
| 19. | 2.303902344 | -2.7680339355 | 2.3438148438 | -7.1158779297 | 2.2229646848 | -9.665033203 |
| 20. | 2.609427734 | -3.7204082031 | 2.3316408203 | -7.0454426891 | 2.2072656250 | -9.7674921875 |
| 21. | 2.367439609 | -6.4763813477 | 2.3280130859 | -6.8827377930 | 2.195617578 | -9.983906250 |
| 22. | 2.0339531250 | -7.3022729492 | 2.3262646484 | -6.5856147461 | 2.1824865234 | -10.004263672 |
| 23. | 1.8403169922 | -1.1879824219 | 2.3027365234 | -6.2727148438 | 2.1806009766 | -10.039356445 |
| 24. | 2.4630705078 | -1.5435731201 | 2.6278246094 | -6.3115229492 | 2.1747833984 | -10.02610352 |
| 25. | 2.275509766 | -2.7614809570 | 2.2435986328 | -5.9984057617 | 2.1656676969 | -10.01840391 |
| 26. | 2.3503693359 | -1.9545184326 | 2.2160511719 | -5.8212788086 | 2.1621347656 | -10.0551359 |
| 27. | 2.1237365234 | -1.7325063477 | 2.2116699219 | -5.7461450195 | 2.1249212891 | -10.090327148 |
| 28. | 2.5710923828 | -2.129314766 | 2.2305244141 | -5.5509116211 | 2.0911312500 | -10.025192383 |
| 29. | 2.4631345703 | -2.0570810547 | 2.2283392578 | -5.3469921875 | 2.0910117188 | -9.9863125000 |
| 30. | 2.2149314453 | -1.6782648926 | 2.2181839844 | -5.0546855469 | 2.1079232302 | -9.7703134766 |
| 31. | 2.3363052734 | -0.74081164551 | 2.2204460938 | -4.9181113281 | 2.137917266 | -9.8642929688 |
| 32. | 2.4000728516 | -0.52847991943 | 2.2453542969 | -4.5546484375 | 2.1459798828 | -9.9684394531 |
| First pair (points A and B) | Center of gravity point C | Back pair of points (points D and E) |
|-----------------------------|---------------------------|-------------------------------------|
| $v_x, \frac{mm}{s} \cdot 10^4$ | $v_y, \frac{mm}{s} \cdot 10^3$ | $v_x, \frac{mm}{s} \cdot 10^4$ | $v_y, \frac{mm}{s} \cdot 10^3$ | $v_x, \frac{mm}{s} \cdot 10^4$ | $v_y, \frac{mm}{s} \cdot 10^3$ |
| 33. | 2.2185144531 | 1.1554492950 | 2.317820313 -4.3730449219 | 2.1451955078 -9.7264970703 |
| 34. | 2.3495904297 | 0.066588577271 | 2.2269255859 -4.0297058105 | 2.1309275391 -9.609514684 |
| 35. | 2.3153357422 | 0.44723937988 | 2.2339503906 -3.7965722666 | 2.1247644531 -9.3637470703 |
| 36. | 2.2129755859 | 0.79397991943 | 2.2321394531 -3.5398688965 | 2.1482406250 -9.0140410156 |
| 37. | 2.1964667969 | 0.64619403076 | 2.2206126953 -3.4560539551 | 2.1320431641 -8.6315820313 |
| 38. | 2.1011707031 | 1.3211889648 | 2.2139580078 -3.4073767090 | 2.1200367188 -8.4032255859 |
| 39. | 2.0595019531 | 1.1604498291 | 2.2049853516 -3.3858393555 | 2.153517734 -8.0411162109 |
| 40. | 2.059912109 | 0.27432492065 | 2.1979720703 -3.3866560059 | 2.1329845703 -7.9941567383 |
| 41. | 2.1315636719 | 1.1619736328 | 2.1895158203 -3.2081972727 | 2.1609482422 -7.3785864258 |
| 42. | 2.1390564453 | 1.8520682373 | 2.1811492188 -3.0014074707 | 2.2224207031 -7.0625097656 |
| 43. | 2.1930156250 | 1.0237455444 | 2.1895710938 -2.7663376465 | 2.1123541016 -6.7190439453 |
| 44. | 2.2012392578 | 1.6611018066 | 2.1814810547 -2.4988967285 | 2.1233060547 -6.0310165234 |
| 45. | 2.1367654297 | 1.4245677490 | 2.1775808594 -2.1699145508 | 2.1715361328 -6.0089243164 |
| 46. | 2.1157267578 | 1.5491402588 | 2.175533984 -1.8767637939 | 2.1807857422 -5.186938964 |
| 47. | 2.0161070313 | 0.83905914307 | 2.1720195131 -1.6231989746 | 2.221828906 -5.7759936253 |
| 48. | 1.8617441406 | -0.24874313354 | 2.1478433594 -1.2987268066 | 2.2256804688 -5.0692942192 |
| 49. | 1.7944931641 | -1.1360129395 | 2.1296917969 -1.0414846191 | 2.1352925784 -4.6386069336 |
| 50. | 2.1345740234 | 0.057340698242 | 2.1051185547 -0.92657525635 | 2.0956458984 -3.5658488770 |
| 51. | 2.4405929688 | -0.6557355957 | 2.0970845703 -0.8854935059 | 2.0668859375 -3.2689152832 |
| 52. | 2.3719763672 | -0.64244293213 | 2.1001390625 -0.81822332764 | 2.1572910156 -3.1894394531 |
| 53. | 2.305413672 | -0.09341311317 | 2.1077384766 -0.60312591553 | 2.1501080078 -2.0460627441 |
| 54. | 2.5454982422 | 1.7104362488 | 2.1278564453 -0.37877923584 | 2.1141517119 -1.5966945801 |
| 55. | 2.4588585938 | 0.33533041382 | 2.1126802734 -0.28635156250 | 2.1728123047 -1.303500000 |
| 56. | 2.3524146484 | 1.2773712158 | 2.0997888672 -0.155532313232 | 2.1220757813 -0.33206637573 |
| 57. | 2.3380714844 | 0.32587554932 | 2.1152750000 -0.063586757660 | 2.1047178785 -0.11251281738 |
| 58. | 2.3739515625 | -0.20593342590 | 2.1297894531 -0.2358678369 | 2.2135675781 -0.21145855713 |
| 59. | 2.2779357422 | -0.47477972412 | 2.1433677734 -0.3072027827 | 2.1427048828 -0.54630157471 |
| First pair (points A and B) | Center of gravity point C | Back pair of points (points D and E) |
|-----------------------------|---------------------------|--------------------------------------|
| \(v_x, \frac{\text{mm}}{s} \cdot 10^4 \) | \(v_y, \frac{\text{mm}}{s} \cdot 10^3 \) | \(v_x, \frac{\text{mm}}{s} \cdot 10^4 \) | \(v_y, \frac{\text{mm}}{s} \cdot 10^3 \) |
| 60. | 2.2232781250 | 2.1485318359 | 0.28332723999 | 2.1129375000 | 0.85822668457 |
| 61. | 2.1163406250 | 0.010626397133 | 2.1510873047 | 0.47044311523 | 2.1391193359 | 1.0590959473 |
| 62. | 2.1390232442 | -0.7107125444 | 2.1456875000 | 0.78031890869 | 2.1377154297 | 1.8176621094 |
| 63. | 2.1290462891 | -1.1413905029 | 2.1470468750 | 0.85190435791 | 2.1032578125 | 1.5815295410 |
| 64. | 2.1398431641 | -0.8880242920 | 2.1521914063 | 0.87735595703 | 2.0675128906 | 2.1351279297 |
| 65. | 2.0860910156 | -0.30380371094 | 2.1502912109 | 1.0456063232 | 2.1571164063 | 2.3543481445 |
| 66. | 2.0936654297 | -0.3474855619 | 2.1479105469 | 1.3830023193 | 2.1309486328 | 2.0621743164 |
| 67. | 2.1058990234 | 0.74280944824 | 2.1422177334 | 1.6171040039 | 2.0667810547 | 2.549785156 |
| 68. | 2.1852447266 | -0.65991638184 | 2.1395195313 | 1.8458696289 | 2.109443359 | 2.6291000977 |
| 69. | 2.1208880859 | -0.97926971436 | 2.1386921875 | 1.9612816162 | 2.1247441406 | 2.8281806641 |
| 70. | 2.0640798828 | -0.8949516748 | 2.1317316406 | 1.9525555420 | 2.0986451172 | 2.9142971191 |
| 71. | 1.9797785156 | -0.36758981323 | 2.1316871094 | 1.8677653809 | 2.1165974609 | 2.8669692662 |
| 72. | 2.0754289063 | 0.052084087327 | 2.128963359 | 1.8339897461 | 2.1302164063 | 3.0945874023 |
| 73. | 0.9.4561103516 | 0.052084087327 | 2.128963359 | 1.8339897461 | 2.1302164063 | 3.0945874023 |
| 74. | 1.5611399414 | 1.3096927490 | 2.1093292696 | 1.7648854980 | 2.106207344 | 3.6279384766 |
| 75. | 1.510281445 | -0.32684902954 | 2.087894219 | 1.8905595703 | 2.1248398438 | 3.507794336 |
| 76. | 1.8629617188 | 0.68197686768 | 2.0952492188 | 1.9423402100 | 2.1154863281 | 3.634210492 |
| 77. | 1.2957769531 | 0.1972396851 | 2.0915591797 | 2.0466858759 | 2.0928250000 | 3.5193109710 |
| 78. | 2.0012609375 | -0.47319622803 | 2.0765001953 | 1.9769492188 | 2.0769261719 | 3.5991892090 |
| 79. | 2.6633626953 | 0.19673172747 | 2.0683945341 | 1.9528485107 | 2.0507265758 | 3.619344283 |
| 80. | 2.1959064453 | 0.98487045288 | 2.0629580078 | 2.042158693 | 2.0255488281 | 3.6609460449 |
| 81. | 2.5944242188 | 0.52107226563 | 2.067545313 | 1.9819887695 | 2.0195445313 | 3.4508698730 |
| 82. | 2.703105894 | -0.13698130798 | 2.0529554688 | 2.0023527175 | 2.0255144531 | 3.5069333496 |
| 83. | 2.488860156 | -1.3532128806 | 2.0289538984 | 1.9592360840 | 2.0304070301 | 3.8553491211 |
| 84. | 2.6356169922 | 0.29762765503 | 2.0285435547 | 1.994096680 | 2.0472105469 | 3.893498730 |
| 85. | 1.7967576172 | 1.2861058350 | 2.0327158203 | 2.1880737305 | 2.0143554688 | 3.7448010254 |
| | First pair (points A and B) | Center of gravity point C | Back pair of points (points D and E). |
|---|---------------------------------|-----------------------------|--|
| | $v_x, \text{ mm s}^{-1} \cdot 10^3$ | $v_y, \text{ mm s}^{-1} \cdot 10^3$ | $v_x, \text{ mm s}^{-1} \cdot 10^3$ | $v_y, \text{ mm s}^{-1} \cdot 10^3$ | $v_x, \text{ mm s}^{-1} \cdot 10^3$ | $v_y, \text{ mm s}^{-1} \cdot 10^3$ |
| 87 | 2.5708314453 | 1.2086445313 | 2.0437714844 | 2.2316730957 | 2.0040162109 | 3.6060300293 |
| 88 | 2.0637345703 | 0.5047498471 | 2.0393378906 | 2.2509140625 | 2.0278975816 | 3.5957871094 |
| 89 | 1.9594548828 | 0.22800660706 | 2.0313355469 | 2.1550092773 | 2.0366777344 | 3.6236679688 |
| 90 | 1.9789615234 | 0.87765234375 | 2.0352787109 | 2.0492724609 | 2.0533599609 | 3.2321086426 |
| 91 | 1.9525539063 | 1.0362442627 | 2.0355814453 | 1.9410322266 | 2.0462062500 | 3.1268613281 |
| 92 | 1.9679597656 | 1.3187076146 | 2.0387035156 | 1.8790773926 | 2.0483410156 | 3.2311374512 |
| 93 | 1.9128515625 | 1.2674539795 | 2.0434101563 | 1.8964530029 | 2.0440314453 | 3.3464760742 |
| 94 | 1.8796933594 | 1.2852348633 | 2.0453009766 | 1.9482075195 | 2.0325021484 | 3.5757902832 |
| 95 | 1.8198894531 | 1.6047843018 | 2.0319537109 | 1.9415271000 | 2.0271925781 | 3.4157766113 |
| 96 | 2.0929984375 | 2.0260950928 | 2.0166214844 | 1.9941793213 | 2.0502490234 | 3.5645390625 |
| 97 | 1.9904955078 | 1.4561474609 | 2.0153091797 | 2.0448959961 | 2.0395167979 | 3.8365083008 |
| 98 | 2.1014478516 | 1.9770104980 | 2.0071826172 | 2.0541591797 | 2.0288007812 | 3.7335964355 |
| 99 | 2.0630322266 | 1.6719705811 | 1.9988968750 | 2.0373404541 | 2.0141015625 | 3.6517588887 |
| 100 | 2.1351193359 | 1.4529450684 | 1.9936090363 | 2.0360212402 | 1.9977343750 | 3.6391123047 |
| 101 | 2.0903882813 | 1.0358211670 | 1.9979041016 | 2.0993269043 | 1.9935488281 | 3.4998933105 |
| 102 | 2.0535283203 | 1.4383634033 | 2.0001796875 | 2.1787739258 | 2.0040197266 | 3.3543510742 |
| 103 | 2.0492578125 | 1.9754842529 | 2.0016636719 | 2.2210395508 | 2.0266943359 | 3.2804709473 |
| 104 | 1.9095013672 | 2.3883273926 | 1.9951074219 | 2.2455275879 | 2.0363240234 | 3.2512861328 |
| 105 | 1.944156250 | 2.1756193848 | 1.9944352500 | 2.2680755666 | 2.0273894531 | 3.2158173828 |
| 106 | 1.9192414063 | 2.004102783 | 2.006423828 | 2.2126501465 | 2.0091476563 | 3.2607297363 |
| 107 | 2.0726523438 | 2.1180705566 | 2.002630469 | 2.1283324285 | 2.0218271484 | 3.4104054140 |
| 108 | 2.1024945313 | 1.8463615723 | 2.0043001953 | 2.0607863770 | 2.0409355469 | 3.3888381348 |
| 109 | 2.1112583984 | 1.3313614502 | 2.0039183594 | 2.0044637451 | 2.0398616414 | 3.1735908203 |
| 110 | 1.9721968441 | 1.1226138916 | 1.9984845703 | 1.9723289795 | 2.0331263282 | 3.1386374512 |
| 111 | 1.7103490234 | 2.0859785156 | 1.997011788 | 1.9925576172 | 2.0074123047 | 3.1197929688 |
| 112 | 2.0978136719 | 3.4147412109 | 1.9986835938 | 1.9433275146 | 1.9931824129 | 3.1655278320 |
| 113 | 1.9116576172 | 2.5443457031 | 1.9981652344 | 1.8272825928 | 1.9801757813 | 3.1458527832 |
During the virtual test, the vehicle has been located at some distance from the cable barrier. To construct analytical displacements, it has been considered two ways of the approach.

2.2.1. First way of the approach for model 2.

It has been constructed the analytical displacements so that for the moment of the start of the movement it has been taken a real zero count – that was, a moment that coincided with the zero count of the virtual test. With the proposed organization of the test, analytical construction using the harmonic method [1] was impossible, since the method assumes that the movement of the point under study ceases at the level of the point of origin of movement. That was, the movement of the motor vehicle along the transverse \(y \) axis was close to the half-cycle of the oscillation.

The application of the polynomial quadratic method [2] was extremely cumbersome, because it has lead to the solution of a system of nonlinear equations.

Thus, the analytical construction has been carried out by the cubic polynomial method [2]. For this, a correction of the system of linear algebraic equations has been carried out as follows:

\[
\begin{align*}
\Delta &= \tau t^4 - 2 \tau^2 t^3 + \tau^3 t^2, \\
\alpha_1 &= v_0 \sin \alpha; \\
\alpha_1 \tau + \alpha_2 \tau^2 + \alpha_3 \tau^3 &= Y_k; \\
\alpha_1 t^* + \alpha_2 t^* \tau^2 + \alpha_3 t^* \tau^3 &= Y^*; \\
\alpha_1 + 2 \alpha_2 t^* + 3 \alpha_3 t^* \tau^2 &= 0.
\end{align*}
\]

Here \(Y_k \) – \(y \)-coordinate of the motor vehicle at the end of the movement. System decision regarding coefficients \(\alpha_1, \alpha_2, \alpha_3 \) was:

\[
\begin{align*}
\alpha_1 &= t^* \frac{2Y^* t^* + Y_k t^* \tau^3 - 3Y^* \tau^2 t^*}{\Delta}; \\
\alpha_2 &= -Y^* \tau^3 - 2Y_k \tau^2 t^* t^2; \\
\alpha_3 &= \frac{Y^* \tau^2 + Y_k t^* \tau^2 - 2Y^* \tau t^*}{\Delta}.
\end{align*}
\]

Since the conditions were met \(t \neq 0, \tau^2 + t^*^2 - 2 \tau t^* \neq 0, \tau \neq 0 \), then a solution to the system of linear algebraic equations existed and was unique.

For the first pair of points (points \(A \) and \(B \)), the obtained analytical displacements had the form:

\[
\{ x(t) = -0.15((8.55t - 21.707t^2 + 14.918t^3) \cdot 10^3 + 24.775t \cdot 10^3, \ mm; \\
(8.55t - 21.707t^2 + 14.918t^3) \cdot 10^3, \ mm
\}
\]

The displacements along the \(x \) and \(y \) axes and the velocities for this pair have been shown in figures 5 and 6, respectively.
Figure 5. Points A and B (solid line) and y (dotted line) displacements, mm: grey lines – according to the virtual crash test; black lines – according to the analytical calculation.

Figure 6. Point A and B (solid line) and y (dotted line) velocities, mm/s: grey lines – according to the virtual crash test; black lines – according to the analytical calculation.
In this case, the results of the virtual test reflected bumper vibrations. The incorrectness of the constructed model has associated either with the FE model of the cable barrier, or in organized communications in the nodes of the FE model of the motor vehicle.

For the center of gravity of the vehicle (point C), the constructed analytical approximation of displacements had the form:

\[
\begin{align*}
 x(t) &= -0.15 \cdot ((8.55t - 15.454t^2 + 5.538t^3) \cdot 10^3 + 24.775t \cdot 10^3, \text{mm}; \\
 y(t) &= (8.55t - 15.454t^2 + 5.538t^3) \cdot 10^3, \text{mm}.
\end{align*}
\]

Point C displacements and velocities along the x and y axes have been shown in figures 7 and 8, respectively.

![Figure 7](image)

Figure 7. Point C x (solid line) and y (dotted line) displacements, mm: grey lines – according to the virtual crash test; black lines – according to the analytical calculation.
Figure 8. Point C x (solid line) and y (dotted line) velocities, mm/s: grey line – according to the virtual crash test; black line – according to the analytical calculation.

Points D and E displacements were equal to:

\[
\begin{align*}
 x(t) &= -0.15 \cdot (8.55t - 0.398t^2 - 18.842t^3) \cdot 10^3 + 24.775t \cdot 10^3, \text{ mm;} \\
 y(t) &= (8.55t - 0.398t^2 - 18.842t^3) \cdot 10^3, \text{ mm.}
\end{align*}
\]

Points D and E displacements and velocities along the x and y axes have been shown in figures 9 and 10, respectively.

Figure 9. Points D and E x (solid line) and y (dotted line) displacements, mm: grey lines – according to the virtual crash test; black lines – according to the analytical calculation.
Figure 10. Points D and E (solid line) and y (dotted line) velocities, mm/s: grey lines – according to the virtual crash test; black lines – according to the analytical calculation.

For points D and E, the time offset error of the maximum deviation along the y axis was 21.4%. For all points, the error of the final analytically calculated displacements along the x axis were 20-23%.

2.2.2. Second way of the approach for model 2

The greatest error in the analytical construction was associated with the construction of displacements for points D and E. Therefore, it needs to reconstruct for these points. To do this, for the beginning of a new zero point in time \hat{t}_0 it has been taken the point in time at which the motor vehicle at the beginning of the movement was as close as possible to the deviation along the y axis at the level of the final value of this coordinate at the end of the movement. According to the virtual test (table 1), the final value of the deviation along the y axis for points D и E was $Y_k = 1306.8544922$, mm.

Close to this value was $y = 1291.6185303$, mm (29th step, $t = 0.1399995$, s) and $y = 1340.8842773$, mm (30th step, $t = 0.1449999$, s). As a new start \hat{t}_0 it has been taken:

$$\hat{t}_0 = \frac{0.1399995 + 0.1449999}{2} = 0.1424997, \text{s};$$

for a new level of the new coordinate system it has been taken:

$$\hat{Y}_0 = \frac{1291.6185303 + 1340.8842773}{2} = 1316.2514, \text{mm}.$$

Thus, the new maximum deviation value \hat{Y}^* along y axis was:

$$\hat{Y}^* = Y^* - \hat{Y}_0 = 2158.405 - 1316.2514 = 851.55, \text{mm}.$$

The new period of contact between the motor vehicle and the cable barrier was equal to:

$$\hat{t} = 0.565 - 0.1424997 = 0.4224996, \text{s}.$$

An analytical construction of the trajectory has been done using the harmonic construction algorithm [1], neglecting the loss of speed over the passed time interval. To do this, it has been calculated:

$$p = \frac{\pi}{\hat{t}} = 7.436, \frac{1}{\text{s}};$$
The necessary condition has been met: $A_0 > \hat{Y}$. So, the time moment \hat{t}^* of the maximum dynamic deflection along y axis (with new time scale) has been found solving the equation:

$$\frac{7,436 \hat{t}^*}{tg(7,436 \hat{t}^*)} = \ln(1,667 \sin(7,436 \hat{t}^*)).$$

The result of solution was:

$$\hat{t}^* = 0,062, s.$$

Thus parameter ε has been counted:

$$\varepsilon = \frac{p}{tg(7,436 \hat{t}^*)} = 2,721, \frac{1}{s}.$$

According to new time scale the equations of displacements were:

$$\begin{cases} y(t) = 1420e^{-2.721t \sin(7,436t)}, \text{mm}; \\ x(t) = -0,15y(t) + 24775t, \text{mm}. \end{cases}$$

For convenient comparison with the data of a virtual test, the correction of the obtained equations of displacements has been done:

$$\begin{cases} \hat{y}(t) = 1420e^{-2.732(t-0.142)} \sin(7,436(t-0.142)) - 1306,85, \text{mm}; \\ \hat{x}(t) = -0,15\hat{y}(t) + 24775(t-0.142) + 3167,377, \text{mm}. \end{cases}$$

That is, to transfer the obtained analytical functions to the old frame of reference, the following changes has been made:

$$\begin{cases} y(t) = A_0e^{-\varepsilon(t-t_0)} \sin(7,436(t-t_0))) - Y_k, \text{mm}; \\ x(t) = -0,15y(t) + 24775(t-t_0)) + \hat{x}(t_0), \text{mm}. \end{cases}$$

The results of the analytical calculation of displacements and speeds have been presented in figures 11 and 12 (respectively) in comparison with the results of the virtual test and the results of the analytical calculation which has been done in 2.2.1.

The analytical construction for points D and E in the second version of the calculation have gave good convergence with the data of the virtual calculation: there was a complete coincidence at the time of the maximum deviation of the motor vehicle along the y axis. The error of the final displacement along the y axis was 13.22%.
Figure 11. Points D and E: x (solid line) and y (dotted line) displacements, mm: grey lines – according to the virtual crash test; black lines – according to the analytical calculation (first way of approach); dot-and-dash lines – according to the analytical calculation (second way of approach).

Figure 12. Points D and E: x (solid line) and y (dotted line) velocities, mm/s: grey lines – according to the virtual crash test; black lines – according to the analytical calculation; dot-and-dash lines – according to the analytical calculation (second way of approach).
As a result of the calculation, it can be assumed that the development of the FE model has been carried out quite correctly.

In the above virtual experiments (model No. 1 and model No. 2), a motor vehicle has approached the point of contact from a certain distance with the stated initial speed $v_0 = 25 \text{ m/s}$. But when directly at the beginning of the contact, the speed has been lost. Therefore, there was a mismatch between the analytical and calculated displacements, as well as the moment of maximum deviation along the y axis.

In the case of model No. 2, the results of the virtual test reflected the vibrations of the bumper. A certain incorrectness of the data has been associated with the organization of connections in the nodes of the FE model of a motor vehicle.

In total, according to the analysis of FE models, it is possible to conclude that when conducting a virtual test in order to verify the correctness of the constructed FE model, it is necessary to organize the test in such a way that the start time of the test coincides with the moment of contact of the motor vehicle and the cable barrier.

3. The use of analytical displacements in the research of passive safety of the driver/passenger.

To analyze the passive safety of the driver/passenger in order to ensure human viability during oblique collision of a motor vehicle with side road cable barrier, the LS-DYNA calculation package was chosen. [10].

Livermore Software Technology Corporation (LSTC), an LS-DYNA provider, offers a range of virtual dummies for examining passive driver / passenger safety. To study internal passive safety, a 3D model of the Hybrid III mannequin, height 160 cm, weight 50 kg, was recommended as a human test model. [13].

To conduct a study on ensuring human viability during oblique collision of a vehicle, the trajectories, speeds, and accelerations of a motor vehicle, constructed using analytical calculations for a motor vehicle of the Mercedes-Benz-0345 type (at a speed of about 69.4 km/h as a initial speed) were taken in comparison with the kinematic characteristics of a motor vehicle obtained during the virtual test. The analytical and calculated trajectories were given the movement of the Hybrid III virtual dummy (height 160 cm, weight 50 kg – figure 14), with an initial relative speed of 0 m/s.

FE model of crash-test has been constructed by I. Karpov (graduate student of the Department of Structural Mechanics, MADI), A. Gasaniev (master student of the Department of Structural Mechanics, MADI, graduation 2018) and the author of the article.

As a result, in two versions, the displacements and accelerations of the mannequin's head were calculated. Graphs of relative displacements and accelerations has been given in tables 3 and 4, respectively.
Table 3. Relative displacements according to a data of the analytical calculation and the virtual crash test.
Relative displacements of virtual dummy obtained using analytically constructed displacements
Along the longitudinal axis (x axis) of movement of a motor vehicle.
Along the transverse axis (y axis) of movement of a motor vehicle.

Table 4. Relative acceleration according to data of analytical calculation and the virtual crash test.
Relative accelerations obtained using analytically constructed displacements of a motor vehicle.
Relative accelerations obtained using displacements of a motor vehicle obtained as a result of a virtual crash test.

In both cases, the HIC index has been derived. [14]. Head injury criterion (HIC) is an indicator of the likelihood of a head injury caused by a blow. HIC is used to assess the safety associated with a motor vehicles, personal protective equipment and sports equipment and is calculated by the formula:
Here t_1 and t_2 – start and end time (in seconds) selected to maximize HIC, and acceleration $j(t)$ measured in gs (standard gravity acceleration). [14].

Time duration $(t_2 - t_1)$ limited to a maximum value of 36 ms, usually 15 ms. This means that the HIC includes the effects of head acceleration and duration of acceleration. Large accelerations can be tolerated for a very short time.

With a HIC of 1000, there is a 18% chance of a severe head injury, a 55% chance of a fairly serious injury, and a 90% chance of a moderate head injury in an adult. A HIC value of 700 is the maximum allowable and implies a 5 percent risk of serious injury. [14].

According to table 6, the HIC index has been produced. The time duration $(t_2 - t_1)$ has been taken for 15 ms. Using analytically obtained displacements of a motor vehicle, the HIC was 168.7; when using the displacements calculated according to the results of the virtual crash test – 172.2. The relative error of calculations using the analytical model of a motor vehicle was 2%.

Thus, analytically obtained displacements of a motor vehicle can be used in the analysis of passive safety of the driver / passenger.

4. Conclusion

In the article possible ways to verify the construction of FE models have been presented. The check has been based on the use of an analytical calculation of the displacements of a motor vehicle.

Analytical calculations were on algorithms, which has been obtain in [1] and [2]: harmonic construction algorithm and cubic polynomial construction algorithm. The correction of both algorithms has been done in 2.2.1 and 2.2.2.

Also it has been noted that quadratic polynomial construction algorithm [2] was extremely cumbersome, because it has lead to the solution of a system of nonlinear equations.

Finally, recommendations on the procedure for conducting a virtual test in order to verify the correctness of the construction of the FE model of the cable barriers have been provided.

It has been also shown that analytically calculated displacements of a motor vehicle can be used in the study of passive safety of the driver / passenger.

References

[1] Kolesnikova G P, Gasaniev A R 2018 Priblizhennoe matematicheskoe modelirovanie traektorii dvizheniya ATS pri kosom naezde na bokovye trosovye ogradhdeniya J. Avtomobil, doroga, infrastruktura 1(15)
[2] Kolesnikova G P 2018 Approximate methods of analytical modeling of the trajectory of motor vehicle movement at an oblique hitting the side of a cable barrier J. Avtomobil, doroga, infrastruktura 2(16)
[3] Karpov I A 2014 Development of finite element models rope guardrails using the software package LS-DYNA J. Avtomobil, doroga, infrastruktura 2(2)
[4] Dyad'kin S N 2004 Obosnovanie, tekhnologiya navesnoj sborki i monitoring vantovyh proletnyh stroenij mosov s uchetom klimaticeskih faktorov : na primere mosta cherez reku Ob' u g. Surguta (Dissertaciya kand. teh. nauk : 05.23.11) Nauchnaya biblioteka dissertacij i avtoreferatov disserCat
[5] Le Thu Hyong 1999 Optimizaciya parametrov proletnyh stroenij visyachih mostov, usilennyh i
не усиленных наклонными вантами, при их проектировании с примением PK (Диссертация канд. техн. наук: 05.23.15) Nauchnaya biblioteka dissertacij i avtoreferatov disserCat

[6] Los' M V 2000 Chislennoe modelirovanie povedeniya sistemy "telo-tros" s uchetom izgibnoj zhestkosti trosa i mekhanizm petleobrazovaniya (Dissertaciya kand. f.-m. nauk 01.02.01) Nauchnaya biblioteka dissertacij i avtoreferatov disserCat

[7] Mihalyuk D S 2009 Konechno-elementnoe modelirovanie i issledovanie dinamiki palubnogo aerofinishera (dissertaciya kand. teh. nauk : 01.02.06) Nauchnaya biblioteka dissertacij i avtoreferatov disserCat

[8] Nuralieva A B 2012 O dinamike trosa kosmicheskogo liftatema (Dissertaciya kand. f.-m. nauk : 01.02.01) Nauchnaya biblioteka dissertacij i avtoreferatov disserCat

[9] Rajnus G E 1968 Raschet mnogoproletnyh trosov i mnogoproletnyh ferm iz trosov. (Leningrad: Strojizdat) p 135

[10] Ledkov A S, Sobolev R G 2018 Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection J. Vestnik Tomskogo gosudarstvennoj universiteta. Matematika i mekhanika 52 pp 63–74

[11] Dem'yanushko I V, Obschev A G 2012 Raschetno-eksperimental'nyj analiz trosovyh dorozhnyh ograzhdenij bezopasnosti. J. Voprosy stroitel'noj mekhaniki i nadezhnosti mashin i konstrukcij (Moscow: Moskovskij avtomobil'no-dorozhnyj gosudarstvennyj tehnhicheskij universitet) pp 34-44

[12] GOST R 52721-2007. Nacional'nyj standart Rossii skoj Federacii Tekhnicheskie sredstva organizacii dorozhnoj dvizheniya. Metody ispytanj dorozhnyh ograzhdenij (Moscow: Standartinform) p 18

[13] Corporate Profile Livermore Software Technology Corp (Electronic Materials)

[14] Head Injury Criterion (HIC) 2019 Interactive Mathematics Site by M. Bourne (Singapore) (Electronic Materials)