Original article

Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control

Kuppusamy Elumalai a, Shahid Mahboob b, Khalid A. Al-Ghanimb, Fahad Al-Misned b, Jeganathan Pandiyan c, Puttas Muralidharan Kousik Baabuc, Kaliyamoorthy Krishnappad,e,∗, Marimuthu Govindarajane,d,⇑⇑

a Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
b Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
c Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
d Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India

A R T I C L E I N F O

Article history:
Received 7 July 2020
Revised 22 July 2020
Accepted 30 August 2020
Available online 4 September 2020

Keywords:
Mosquito density and diversity
Physico-chemical characteristics of Bm-AgNPs
Green synthesis
Larval toxicity

A B S T R A C T

The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm-AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vitatus; respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm-AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mosquitoes are well adapting to breed and survive in various extreme habitats (Senthamarai Selvan et al., 2015; Senthamarai Selvan and Jebanesan, 2016; Franklin and Whelan, 2009). Worldwide, mosquitoes are great blood-sucking ectoparasites which provide major health issues to the public. Due to the climate change, urbanization, artificial containers, availability of food sources are significant factors for utilization and rapid multiplication of human vector mosquitoes (HVMs) (Gokulakrishnan et al., 2012; Krishnappa and Elumalai, 2012a; Thomson, 2014; Rafael et al., 2019). They are transmitting many dreadful vector-borne diseases (VBDs) to public as the results causing millions of mortality and morbidity has been occurring every year (Govindarajan et al., 2005, 2013; WHO Zika virus report, 2016a; WHO malaria report, 2016b; WHO filariasis report, 2019; Govindarajan et al., 2016a; Benelli et al., 2017a). The VBDs are mainly transmitted by four genera of Aedes, Anopheles, Culex, and Mansonia of mosquitoes (Sivakumar et al., 2011; Benelli, 2015; Benelli and Govindarajan, 2017; Benelli et al., 2018). Recently, VBDs are very challenging problems and gives social-economic crisis in worldwide (Krishnappa et al., 2012a; Govindarajan and Rajeswary, 2015; Govindarajan et al., 2016b; Benelli et al., 2017b; Rekha et al., 2019).

Aedes is a cosmopolitan major HVM they breed and proliferates in different household water containers even in a tree hole, flower pot, etc., (Govindarajan and Sivakumar, 2012; Govindarajan et al., 2013; Albaba et al., 2015; Sudeep and Shil, 2017). It considerably
Fig. 1. Study area: KWS (Latitude 10°7’–10°28’N and Longitude 77°16’–77°46’E), Theni District, Tamilnadu, India.

Fig. 2. Plant processing: (A) Experimental plant *Blumea mollis* (Asteraceae) leaves, (B) shade dried leaves powdered, (C) Condensed *Blumea mollis* leaf aqueous extract (Bm-LAE) in a Petri plate.

Table 1
Species-wise abundance of mosquito larvae collected from KWS, Tamilnadu, India.

S.No.	Mosquito species	No. of Larvae	Relative Abundance (%)	Mean ± SE	Range	N
1.	*Ae. Aegypti*	250	13.89	15.63 ± 0.84	12–22	16
2.	*Ae. albopictus*	109	6.96	6.81 ± 0.33	5–9	16
3.	*Ae. pseudobocpicus*	23	1.28	1.44 ± 0.18	1–3	16
4.	*Ae. pseudotemniatus*	25	1.39	1.56 ± 0.20	1–3	16
5.	*Ae. stegomyia annandalei*	27	1.50	1.69 ± 0.21	1–4	16
6.	*Ae. Vitatus*	30	1.67	1.88 ± 0.22	1–4	16
7.	*An. culiciformis*	140	7.78	8.75 ± 1.04	4–17	16
8.	*An. jeyporensis*	93	5.17	5.81 ± 0.44	3–9	16
9.	*An. maculatus*	71	3.94	4.44 ± 0.45	2–8	16
10.	*An. Mirans*	30	1.67	1.88 ± 0.22	1–4	16
11.	*An. stephensi*	163	9.06	10.19 ± 1.04	5–19	16
12.	*An. subpictus*	26	1.44	1.62 ± 0.18	1–3	16
13.	*Ar. subalbatus*	61	3.39	3.81 ± 0.46	1–8	16
14.	*Cx. calex mimeticus*	21	1.17	1.31 ± 0.12	1–2	16
15.	*Cx. epedmus*	20	1.11	1.25 ± 0.11	1–2	16
16.	*Cx. minuloides*	22	1.22	1.38 ± 0.18	1–3	16
17.	*Cx. minulius*	98	5.44	6.13 ± 0.56	4–11	16
18.	*Cx. minutissimus*	36	2.00	2.25 ± 0.31	1–4	16
19.	*Cx. nigropunctatus*	19	1.06	1.19 ± 0.10	1–2	16
20.	*Cx. nilgircus*	25	1.39	1.56 ± 0.18	1–3	16
21.	*Cx. pallidothorax*	46	2.56	2.88 ± 0.20	2–4	16
22.	*Cx. pseudovishnui*	79	4.39	4.94 ± 0.50	2–8	16
23.	*Cx. quinquefasciatus*	172	9.56	10.75 ± 1.34	3–20	16
24.	*Cx. Vishnui*	60	3.33	3.75 ± 0.40	2–7	16
25.	*Oc. Grenii*	34	1.89	2.13 ± 0.22	1–4	16
26.	*Or. flavithorax*	30	1.67	1.88 ± 0.20	1–3	16
27.	*Ur. annandalei*	29	1.61	1.81 ± 0.20	1–3	16
28.	*Ur. Campestris*	23	1.28	1.44 ± 0.18	1–3	16
29.	*Ur. Novoscura*	38	2.11	2.38 ± 0.18	1–4	16
Total		1800	100	3.88 ± 0.18	1–22	464

One-way ANOVA; df = 28; F = 53.13; N = Number of sample; p < 0.05.
dangerous medical pests in half of the world and humans are severely suffered by chikungunya, dengue, yellow fever and zika (WHO, 2009; Chen and Wilson, 2010; WHO Zika virus report, 2016a). <i>Anopheles</i> is a major HVM of malaria, Japanese encephalitis, etc., in the Asian continent, especially India (Krishnappa et al., 2012b; Thenmozhi et al., 2016; Hasan et al., 2014; Mathivanan et al., 2014; Govindarajan and Benelli, 2016a). Around 120 million people are suffered from lymphatic filariasis, Japanese encephalitis, etc., by <i>Culex</i> and 44 million peoples have chronic manifestation. It is the second most important VBDs in India, accounting for 40% of the global prevalence of infection and it invariably spreads in both urban and rural areas (Govindarajan, 2011; Tyagi et al., 2014; Govindarajan et al., 2015; Thenmozi et al., 2016).

Synthetic chemical pesticides (SCPs) are the most common effective methods of control strategy against HVMs. Recently, unadvisable application of SCPs are increased and statistically significant negative health issues on aquatic and terrestrial organisms (Govindarajan and Rajeswary, 2015; Ndakidemi et al., 2016; Karthika et al., 2017; Abinaya et al., 2018; Divya et al., 2018). Globally, 355,000 deaths were recorded every year with the association of pesticide poisoning (Carvalho, 2017). Therefore, we need to search for unconventional, eco-recyclable indigenous approaches.
Table 5
Larval density and container index of mosquito larvae collected from KWS, Tamilnadu, India.

S. No.	Different containers	A	B	C	D	E
December- 2018						
1.	Rockypool	34	28	109	389.29	82.35
2.	Stream slow flowing	16	12	19	158.33	75.00
3.	Water storage tank	6	6	163	2716.7	100.00
4.	Tree hole	37	14	69	492.86	37.84
5.	Bamboo stump	15	9	12	133.33	60.00
6.	Stagnant pools	53	24	126	525.00	45.28
7.	Animal foot print	68	12	58	483.33	17.65
8.	Leaf axil	42	8	35	437.50	19.05
9.	Flower bracts	35	7	32	457.14	20.00
10.	Spring pool	6	2	35	1750.00	33.33
January- 2019						
1.	Rockypool	28	16	85	531.25	57.14
2.	Stream slow flowing	12	8	32	400.00	66.67
3.	Water storage tank	6	6	115	1916.67	100.00
4.	Tree hole	28	11	40	363.64	39.29
5.	Bamboo stump	12	7	18	257.14	58.33
6.	Stagnant pools	44	18	88	488.89	40.91
7.	Animal foot print	51	10	31	310.00	19.61
8.	Leaf axil	36	6	22	366.67	16.67
9.	Flower bracts	27	5	17	340.00	18.52
10.	Spring pool	6	2	19	950.00	33.33
February- 2019						
1.	Rockypool	21	15	66	440.00	71.43
2.	Stream slow flowing	8	7	21	300.00	87.50
3.	Water storage tank	6	6	113	1883.33	100.00
4.	Tree hole	24	9	29	322.22	37.50
5.	Bamboo stump	9	6	21	350.00	66.67
6.	Stagnant pools	36	15	68	453.33	41.67
7.	Animal foot print	41	9	21	233.33	21.95
8.	Leaf axil	29	5	19	380.00	17.24
9.	Flower bracts	24	4	18	450.00	16.67
10.	Spring pool	5	2	17	850.00	40.00
March- 2019						
1.	Rockypool	18	13	49	376.92	72.22
2.	Stream slow flowing	6	6	21	350.00	100.00
3.	Water storage tank	6	6	67	1116.67	100.00
4.	Tree hole	21	8	24	300.00	38.10
5.	Bamboo stump	7	4	16	400.00	57.14
6.	Stagnant pools	33	15	46	366.67	45.45
7.	Animal foot print	37	8	20	250.00	21.62
8.	Leaf axil	24	4	14	350.00	16.67
9.	Flower bracts	21	4	12	300.00	19.05
10.	Spring pool	4	2	13	650.00	50.00
Total		942	359	1800	23530.18	1961.85

A: No. of containers searched.
B: No. of containers positive.
C: Total no. of larvae collected.
D: Total larval density.
E: Total container index.

Table 6
Qualitative analysis of phyto-chemical screening different leaf extracts of B. mollis.

S. No.	Phytochemical screening	Blumea mollis - various extracts				
		ACE	DME	EAE	ETL	AQU
1.	Alkaloids	–	–	–	–	+
2.	Anthroquinones	+	–	–	+	+
3.	Carbohydrates	–	+	–	–	–
4.	Coumarins	+	+	+	–	+
5.	Flavonoids	–	–	+	+	+
6.	Phenolics	+	–	+	+	+
7.	Resins	–	+	–	–	+
8.	Saponins	–	+	–	+	+
9.	Tannins	+	+	–	–	+
10.	Triterpenes	+	–	+	–	+

ACE: Acetone; DME: Dichloromethane; EAE: Ethyl acetate; ETL: Ethanol; AQU: Aqueous.
+ = noted for presence of phyto-chemical group.
– = noted for absence of phyto-chemical group.
that should be required for prohibiting HVMs. Naturally available phyto-compounds (PCs) are more preferable and it has bio-viable safer agents for controlling HVMs using in many parts of the world (Mathivanan, et al., 2010; Elumalai and Krishnappa, 2014; Krishnappa and Elumalai, 2012b; Elumalai et al., 2013; Govindarajan and Benelli, 2016b). Plants have consisted of plenty of PCs; it has prospective toxic effects on various life stages of HVMs. India has rich floral diversity country, the flora has a wide variety of PCs and more than 2000 herbaceous species have known as both medicinal and entamotoxic properties (Krishnappa and Elumalai, 2014; Krishnappa and Elumalai, 2013; Govindarajan et al., 2016c,d,e; Govindarajan and Benelli, 2016c,d,e; Krishnappa et al., 2019). Present investigation is the first-hand report on abundance, density, diversity, water physico-chemical characteristics at HVMs breeding habitats of KWS and larval toxicity of *(B. mollis)* leaf aqueous extract-mediated silver nanoparticles *(Bm-AgNPs)* against selected HVMs.

2. Materials and methods

2.1. Study areas

The survey were carried out between December-2018 to April-2019 on the water-holding areas supporting HVMs breeding and it includes different water holding 10 sites (Bridge area, kaludhai oodai, kondaikuthi oodai, lower falls, upper falls, valukkaparai, vanathiparai, vengayaparai, watch tower 1 and watch tower 2) in protected area, KWS, Theni District, Tamilnadu, India (Latitude 10°27′–10°28′N and Longitude 77°16′–77°46′E) (Fig. 1). The vegetation of the study locations consists of residual native forests and grassy areas. The vertebrate species includes fishes, amphibians, reptiles, birds, and mammals. A lot of natural and artificial water bodies are here and it mainly supports to breeding sites HVMs.

2.2. Mosquito collection and meteorological data acquisition

Different water bodies like that rocky pool, stream slow-flowing, water storage tank, tree hole, bamboo stump, stagnant ponds, animal footprint, leaf axil, flower bracts and spring pool were examined for the presence of HVMs larvae. The surveys were carried out every week interval of four months. The larval samples were carefully collected from different habitats in dawn (6–9 am) and dusk (6–9 pm) hours and followed by a standard larval sampling protocol (Silver, 2008; WHO, 2013; Senthamarai Selvan et al., 2015). Weather data like rainfall, relative humidity and temperature were taken into consideration throughout the study period. This was obtained from the Regional Meteorological Centre (RMC), Chennai and Tamilnadu Agricultural University (TNAU), Coimbatore.

2.3. Physicochemical characteristics

Water samples were collected in small sterilized 250 mL glass containers at selected HVMs breeding sites. The bottles were covered with perforated caps and foil sheet, labeled it properly. The collected water samples (Within 3 hrs) were carried carefully to the laboratory for analyzing purposes. The breeding water characteristics were recorded using a standard procedure (APHA, 2005). The temperature was regularly measured at the time of sample collection (Senthamarai Selvan et al., 2016).

2.4. Mosquito density and diversity analysis

The abundance of container breeding HVM was calculated by larval density and container index. Overall the collected HVMs larval diversity and dominant species were calculated by Shannon-Weiner’s (1949) diversity index and Simpson’s (1949) dominance index, respectively. Larval density is the study of numerical strength of a species in relation to the total number of individuals of all the species and can be calculated as:

\[
\text{Larval density} = \frac{\text{Total number of larvae collected}}{\text{Total number of Positive containers}} \times 100
\]

\[
\text{Container index} = \frac{\text{Total number of positive containers}}{\text{Total number of containers inspected}} \times 100
\]

2.5. Plant processing and spectral analysis

The fresh floral leaves (Fig. 2A) of *Blumea mollis* (Asteraceae) were collected at Koothur Village (Latitude 11.7794′N, Longitude 78.2034′E), Mayiladuthurai District, Tamilnadu, India. The floral leaves washed with tap water, allowed to shade dried on blotting paper spread at room temperature. The dried plant material...
was powdered (Fig. 2B), which extracted with different solvents by adapting a standard protocol Vogel, 1978. The extract was condensed (Fig. 2C), which stored in aseptic amber bottle vials. Phyto-chemicals of leaves were screened by prescribed methodology Nweze et al. (2004) and Senthilkumar and Reetha (2009). Bm-LAE bio-efficient of PCs were explored by TLC and CC run with different solvent systems in which aqueous and ethyl acetate 9:1 ratio provided maximum fractions and NMR spectroscopy can provide a principal of additional information about peptide in solution. The Bm-AgNPs were illustrated by various spectral (UV–vis, FTIR and XRD) and microscopic (SEM) analysis.

2.6. Insect rearing and larval toxicity

The HVMs larvae collected from KWS and carefully reared in the insectariums. Fresh 3rd instars larvae were carried to assess the larval toxic bioassay. Bm-LAE of AgNPs was evaluated by WHO (2005) protocol and maintained five replications. 3rd instars larvae were transferred to reusable transparent glass container 500 mL capacities in which added 449 mL of chlorine-free H2O+1 mL of emulsifier. The appropriate volume (1–10 μg/mL) of diluted Bm-LAE of AgNPs was added against desired HVMs. Larval toxic bioassay started with the lowest concentration and an equal number of control groups maintained without Bm-LAE of AgNPs.

Fig. 4. NMR spectrum of Blumea mollis leaf aqueous extract. (A) 1H NMR, (B) 13C NMR.
2.7. Statistical analysis

The larval mortality data were counted every 6 h for 24 h, and the percent mortality was calculated by Abbott’s (1925) formula and probit analysis assessed by Finney (1971). The total larval mortality, abundance, density, diversity, species richness, etc., were calculated by using the IBM-SPSS Statistics version 25.0 version.

3. Results and discussion

3.1. A species-wise abundance of mosquito larvae

An HVM survey was conducted at KWS for larvae that were collected during the selected study period, which identified in the species level. A total of 29 species belongs to 7 genera of 1800 individuals were identified (Table 1). Among the 29 species, 5 species were highly abundances in the protected water habitat they were Culex, Anopheles and Aedes genus. Ae. aegypti found 250 larvae, relative abundance 13.89% and its Mean ± SE were 15.63 ± 0.846 and followed by Cx. quinquefasciatus, An. stephensi, An. culiciformis and Ae. albopictus: No. of larvae, relative abundance % and Mean ± SE values were 172, 9.56, 10.75 ± 1.346; 163, 9.06, 10.19 ± 1.046; 140, 7.78, 8.75 ± 1.043 and 109, 6.06, 6.81 ± 0.332 respectively.

In south India, rainfall has attained a maximum in November and December simultaneously, proportionate to the HVMs breeding sites and HVMs population also increased in many localities. A similar trend have been noticed in previous research and it well with support to the present study (Basset, 2001; Basset et al., 2012; Gilbert et al., 2014).

3.2. Month-wise, Genus-wise abundance and diversity

The Month-wise abundance and diversity of HVMs larvae were collected from four different months from December- 2018 to March- 2019. Maximum abundance values 5.67 ± 0.49, Shannon Wiener Index: H and Variance H values were 3.03 and 0.001 respectively, Simpsons Index values were 16.237 and Species Richness 29 were observed on December- 2018 and followed by January- 2019, February- 2019 and March- 2019. The data calculated by One-way ANOVA; degrees of freedom = 3; F value = 14.93; p < 0.05. We examined a total of 7 genera were recorded at KWS, the Genus-wise abundance of HVMs larvae values were 5.45, 4.83, 3.81, 3.40, 2.13, 1.88 and 1.88 examined against Anopheles, Aedes, Armi-
geres, Culex, Ochlerotatus, Orthopodomyia and Uranotaenia respectively. The Genus-wise diversity of HVMs larvae were evaluated by Shannon Wiener Index: H/Variance H/Simpsons Index values were 1.3645/0.0001/3.8514, 1.3259/0.0002/3.5707, 1.2945/0.0031/3.5260, 1.3253/0.0002/3.5912, 1.3424/0.0038/4.0071, 1.3512/0.0041/4.1038 and 1.3579/0.0008/3.9111 observed against Aedes, Anopheles, Armigeres, Culex, Ochlerotatus, Orthopodomyia and Uranotaenia respectively. The data were calculated into One-way ANOVA; degrees of freedom = 6; F value = 7.722; p < 0.05 (Tables 2 and 3). The present study demonstrated that the Month-wise abundance and diversity of HVMs at KWS gradually build up during the rainy season, which reached as the maximum in December month followed by January as well as highly declined in April 2019. The percentage of HVMs and related VBDs were preferably increased during the selected months and water physicochemical factors may also play a critical role at larval stages of HVMs habitats (Rajesh et al., 2015; Vijayakumar et al., 2014; Senthamarai Selvan et al., 2015 and 2016). Moreover, Genus-wise abundance and diversity of HVMs at KWS, among the collected genera the Culex were recorded predominantly, followed by Anopheles and Aedes in fresh water habitat. The similar trends of Genus-wise abundance and diversity of HVMs investigation were previously estimated (Suganthi et al., 2014; Makesh Kumar et al., 2015).

3.3. Physico-chemical characteristics

The physicochemical parameters are represented in Table 4. Totally twenty different physicochemical water parameters were assessed in study periods in different HVMs breeding habitats of KWS. One-way ANOVA was employed to calculate physicochemical parameters data, F values are shown in the Table 4 and P values are statistically significant at 0.05%. Similarly, the F values of physicochemical factors were 1651.6, 2102.4, 2665.9, 1502.5, 692.6, 548.0, 936.1, 1312.9, 2996.6, 2303.5, 1625.7, 77.5, 482.5, 7160.3, 2445.1, 36.6, 1215.1, 1844.8, 1853.0 and 1864.8 observed against ammonia, calcium, chloride, dissolved O2, conductivity, fluoride, humidity, iron, magnesium, nitrate, nitrite, pH, phosphate, rainfall, sulphate, temperature, total hardness, total dissolved solids, total salinity and turbidity (Table 4). The physicochemical characteristics are correlated with HVMs breeding habitats; the R values have mentioned two different stars (single star and double stars). *correlation is significant at the 0.05 level (2-tailed) and **-correlation is significant at the 0.01 level (2-tailed). Many of the physicochemical factors had negatively significant and some factors had positively significant to HVMs larval development in different breeding habitats. Seventeen physicochemical factors were negatively significant and its values were -0.270^*, -0.258^*, -0.264^*, -0.251^*, -0.238^*, -0.090^*, -0.263^*, -0.275^*, -0.269^*, -0.264^*, -0.246^*, -0.278^*, -0.116^*, -0.261^*, -0.261^*, -0.270^* and -0.268^* against ammonia, calcium, chloride, conductivity, fluoride, humidity, iron, magnesium, nitrate, nitrite, phosphate, sulphate, temperature, total hardness, total dissolved solids, total salinity and turbidity. Three physicochemical factors were positively significant and its values were 0.270*, 0.093* and 0.294* against dissolved O2, pH and rainfall. Its P values of larval abundance are represented in Table 4. The
maximum numbers of HVMs populations were abundance in December which was based on the higher suitability of pH, temperature, water resources, Turbidity, Dissolved O₂, humidity, etc. This finding elucidates that the water pH 7, optimum temperature 25–30°C and other physicochemical parameters were more supported to HVMs (Sinka et al., 2011; Kaushal et al., 2014; Jerome et al., 2017). Nevertheless, after the rainy season, the availability and non-availability of the breeding habitats. The high number of larval density and container index were examined in the leaf axil 69.63 (Table 5). The different species of HVMs breeding habitats were searched. A total of 942 (10 different types of habitats) breeding containers were searched, in which 359 were positive containers and collected 1800 larvae. The similar types of reports were observed in a previous investigation (Getachew et al., 2015; Senthamarai Selvan and Jebanesan, 2016; Getachew et al., 2018).

3.5. Phytochemical screening

The phytochemical screening of B. mollis various extracts were evaluated. The presence of important phyto groups were noticed in the Bm-LAE (Table 6).

3.6. TLC, CC and NMR analysis

The bio-effectiveness of B. mollis extracts were subjected to TLC (Fig. 3A) and CC (Fig. 3B, C) analysis, the maximum of five fractions gathered from Bm-LAE. The following PCs identified from Bm-LAE. 1H NMR and 13C NMR spectral analysis of Bm-LAE was performed and its spectral peaks are displayed in the Fig. 4A, B. The following PCs identified from Bm-LAE: Atalantin; terpenes; Atalaphylline; 6-Methoxy-3,3,12-trimethyl-3,1 2-dihydro-7H-pyano[2,3-c]acridine-7-thione; Lunacrine, trypportant; Methylation; Noracronycine; Limonoid (Tetranortriterpenoids); Coumarins; Cyclopiptasolanin; Limonin; Dehydroaotalantin; Sesquiterpene; Rutaevin.

3.7. AgNP synthesis and its characterization analysis

Silver ions significantly reduced to metallic nanosilver when the Bm-LAE was added to the solution. According to scientific reports, Silver ions significantly reduced to metallic nanosilver when the Bm-LAE was added to the solution. According to scientific reports,
AgNPs solution has turned from light yellowish to brown and change into dark brown after the reaction (Fig. 5A–C) and indicates the sign of AgNPs formation, which is strong agreement with earlier published works (Ramesh Kumar et al., 2014; Priya et al., 2014). The establishment of AgNPs was observed upon the colour change and UV–vis spectrum and it is shown in Fig. 6 (Panchawat and Sisodia, 2010; Jain et al., 2011). FTIR spectroscopy (Fig. 7) elucidate the identity of the biomolecules responsible for the reduction and efficient stabilization of the AgNPs (Prasad and Elumalai, 2011; Mukunthan et al., 2011; Esan et al., 2020). The crystalline nature of the AgNPs was confine by XRD analysis (Fig. 8). The morphological characterization of synthesized AgNPs size and shape are shown in Fig. 9. SEM analyses clearly showed the particle size ranged from 23 to 31 nm which magnified at 50000X. The particles appeared to beads shaped it belongs to the category of NPs (Morejon et al., 2018; Anandan et al., 2019; Pilaquinga et al., 2019).

3.8. Larval toxicity of Bm-AgNPs

The larval toxicity of Bm-AgNPs tested against the 3rd instar larvae of various HVMs and shown in Table 7. Bm-AgNPs provided maximum toxic effects its LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 mg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus respectively. Moreover, very low LC50/LC90 values of 31.85/48.58 mg/mL were noticed on An. jeyporiensis. The various similar explanations were recorded in earlier reports (Ramesh Kumar et al., 2014; Velayutham et al., 2016; Govindarajan et al., 2016d; Govindarajan and Benelli, 2017).

4. Conclusion

Various anthropogenic activities and lack of public awareness about HVMs/VBDs, etc., have highly responsible for increased the population of HVMs much beyond their natural levels. As well as the nomadic communities every year migrates with farm animals and there is high level of interaction between humans, wildlife, livestock and HVMs vectors in the migration routes. Nowadays, environmental safety is the paramount significance, present study green synthesis AgNPs are considered as target specific, eco-friendly, inexpensive, highly biodegradable, readily available and effective alternate insecticidal agents to the synthetic chemical pesticides. India possesses vast plants diversity and is used in traditional medicine. Most surprisingly, despite the B. mollis being a miraculous plant, very few studies have been done. There is an urgent requirement for intensive studies on this plant to exploit it for the control of medical pests for human health importance across the world.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors express their sincere appreciation to the Researchers Supporting Project No. RSP-2020-93 the King Saud University, Riyadh, Saudi Arabia. Authors are expressing their sincere gratefully acknowledged to Tamilnadu Forest Department, PCCF, Chief Wildlife Warden, Government of Tamilnadu. Chennai – 600 015 and sincerely acknowledge the Professor and Head, Department of Zoology and Wildlife Biology, Principal, A.V.C. College (Autonomous), Maviladuthurai, for their support and laboratory facilities provided.
chikutungya and Japanese encephalitis mosquito vectors?. RSC Adv. 6, 59021–59029.

Govindarajan, M., Benjelloun, K., 2016b. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and bioactivity on three non-target aquatic organisms. Parasitol. Res. 115, 925–935.

Govindarajan, M., Benjelloun, K., 2016c. α-humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles stephensi and Culex quinquefasciatus. J.cls. Dis. Sci. 40, 88–94.

Govindarajan, K., Dhanasekaran, K., Gokulakrishnan, J., 2012b. Larvicidal and phytochemical properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae). J. Phyto. Med. Res. 1, 47–54.

Govindarajan, K., Pandiyian, J., Elumalai, K., Baranitharan, M., Jayakumar, S., 2013. Larvicidal and phytochemical properties of Erythrina corallodendron against human malarial vector mosquitoes (Diptera : Culicidae). Acad. J. Med. Plants. 7, 261–268.

Makarem, K., Abdulbasir, A., Rasheed, M., Shamsheer, S., 2015. Aedes mosquitoes in arboviral epidemic prone area of Chidambaram town, Cuddalore District, Tamil Nadu, India. TN. J. Fil. Res. 1, 37–41.

Mathivanan, T., Govindarajan, M., Elumalai, K., Krishnappa, K., Kanthan, A., 2010. Larvicidal mosquito and phytochemical properties of Erythrina corallodendron. Staph. (Family: Apocynaceae). J. Vector Borne Dis. 47, 178–180.

Mathivanan, T., Krishnappa, K., Elumalai, K., 2014. Pesticidal and mosquitocidal properties of Clausena lanceolata with chlorosis. J. (F) (Nudiptera: Lepadoptera) and Aedes aegypti L. (Diptera : Culicidae) Liston. J. Trop. Biomed. 1, 4–8.

Mukundaraju, S., Elumalai, K., Patel, T.N., Murty, V.R., 2011. Calthoranthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac. J. Biomed. 1, 270–274.

Nadkarni, B., Mite, K., Nadkarni, P.A., 2016. Impacts of synthetic and botanical larvicides on beneficial insects. Agric. Sci. 7, 364–372.

Nwede, E.L, Okafor, J.I., Njoku, I., 2004. Antimicrobial activities of methanolic extracts of Trema guineensis (Schumm and Thom) and Morinda lucida Benth used in Nigerian. Bio. Res. 2, 39–46.

Phanawat, A., Sisodla, S. M, malia, Dengue, and lymphatic filariasis mosquito vectors?. Parasitol. Res. 115, 1807–1816.

Rajesh, K., Dhanasekaran, D., Tyagi, B.K., 2015. Mosquito survey and larvicidal potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae): an eco-friendly natural source for the synthesis of silver nanoparticles. Asian Pac. J. Trop. Biomed. 1, 103–107.

Rajesh, K., Dhanasekaran, D., Tyagi, B.K., 2015. Mosquito survey and larvicidal potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae): an eco-friendly natural source for the synthesis of silver nanoparticles. Asian Pac. J. Trop. Biomed. 1, 1–46.

Rekha, R., Vaseeharan, B., Vijayakumar, S., Abinaya, M., Govindarajan, M., Alharbi, N., 2016. Entomofaunal diversity of veterinary importance and Phytoremediation. J. (Rev. Med. 1, 323–331.

Rijika, S., Murugan, K., Priya, A, Dinesh, D., Panneerselvam, C., Durga Devi, G., Chandramohan, B., Mahesh Kumar, P., Barnard, D.R., Xue, R.D., Hwang, J.S., Nicoli, M., Chandrasekar, A., Ramesh, K., Nattuthurai, N., Ponraj, G., Tirupathi, M., 2014. Synthesis of eco-friendly silver nanoparticles using Asparagus officinalis. Asian J. Pharm. Appl. Biosci. 1, 32–39.

Ramesh Kumar, K., Nattuthurai, N., Ponraj, G., Tirupathi, M., 2014. Synthesis of eco-friendly silver nanoparticles using Solanum mammosum L. and Solanaceae fruit extract and its larvicidal activity against Aedes aegypti L. (Diptera : Culicidae). Plos ONE 14, e0224105.

Prasad, N.T.K.V., Elumalai, K., 2011. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Biomed. 1, 439–443.

Priya, S., Murugan, K., Priya, A, Dinesh, D., Panneerselvam, C., Durga Devi, G., Chandramohan, B., Mahesh Kumar, P., Barnard, D.R., Xue, R.D., Hwang, J.S., Nicoli, M., Chandrasekar, A., Ramesh, K., Nattuthurai, N., Ponraj, G., Tirupathi, M., 2014. Synthesis of eco-friendly silver nanoparticles using Solanum mammosum L. fruit extract and its larvicidal activity against Aedes aegypti L. (Diptera : Culicidae). Plots ONE 14, e0224105.

Rajesh, K., Dhanasekaran, D., Tyagi, B.K., 2015. Mosquito survey and larvicidal activity of five medicinal plants against Culex larvae (Diptera : Culicidae). J. Trop. Biomed. 1, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.

Sharma, S., Mathur, S., Pawar, K., 2012. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) against Culex quinquefasciatus Say. Trop. Biomed. 51, 1–8.
Sivakumar, R., Jebanesan, A., Govindarajan, M., Rajasekar, P., 2011. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera:Culicidae). Asian Pac. J. Trop. Med. 4, 706–710.

Sudeep, A.B., Shil, P., 2017. Aedes vittatus (Bigot) mosquito: an emerging threat to public health. J. Vect. Borne. Dis. 54, 295–300.

Suganthi, P., Govindaraju, M., Thenmozhi, V., Tyagi, B.K., 2014. Survey of mosquito vector abundance in and around tribal residential areas. J. Entomol. Zool. Stud. 2, 233–239.

Thenmozhi, V., Balaji, T., Venkatasubramani, K., Dhananjeyan, K.J., Selvam, A., Rajamanannar, V., Tyagi B.K., 2016. Role of Anopheles subpictus Grassi in Japanese encephalitis virus transmission in Tirunelveli, South India. Ind. J. Med. Res. 144, 477–481.

Thomson, M.C., 2014. Emerging infectious diseases, vector-borne diseases, and climate change. Global Environ. Chang. 1, 623–628.

Tyagi, B.K., Thenmozhi, V., Karthigai Selvi, S., 2014. Transmission dynamics of Japanese encephalitis with emphasis on gaps in understanding and priority areas for research on Japanese encephalitis and other acute encephalitis syndrome in India. J. Commun. Dis. 46, 24–34.

Velayutham, K., Ramanabai, R., Umadevi, M., 2016. Green synthesis of silver nanoparticles using Manihot esculenta leaves against Aedes aegypti and Culex quinquefasciatus. J. Basic Appl. Zool. 74, 37–40.

Vijayakumar, K., Kumar, T.K.S., Nujum, Z.T., Umarul, F., Kuriakose, A., 2014. A study on container breeding mosquitoes with special reference to Aedes (Stegomyia) aegypti and Aedes albopictus in Thruvananthapuram district. India. J. Vector Borne Dis. 51, 27–32.

Vogel, A.L., 1978. Textbook of Practical Organic Chemistry. The English Language Book Society and Longman, London, p. 1368.

WHO, 2005. Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO/CDS/WHOPES/GCDPP/1.3, WHO, Geneva.

WHO, 2009. Guidelines for efficacy testing of mosquito repellents for human skins. (https://apps.who.int/iris/handle/10665/70072).

WHO, 2013. World Malaria Report, World Health Organization, Geneva, pp. 1–284.

WHO, 2016a. Zika virus, Fact sheet, viewed 9th August 2017. (http://www.who.int/mediacentre/factsheets/zika/en).

WHO, 2016b. World malaria report, Geneva, World Health Organization. (https://www.who.int/malaria/publications/world-malaria-report2016/report/en/).

WHO, 2018. Worldmalariaireport, Geneva, November19. (https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/).

WHO, 2019. World lymphatic filariasis report, April 12. (https://www.who.int/lymphatic-filariasis/resources/by-year/en/).