Primjena propusta za poboljšanje izmjene mora u lukama

Kakvoća mora unutar ograđenih akvatorija može biti ugrožena nezadovoljavajućom količinom izmjene mora. Ovim radom se prikazuju propusti (cijevni, pločasti i kanalski) kao efikasno rješenje u svrhu izbjegavanja stagnacije mora. Uz pozitivan utjecaj povećane cirkulacije morske vode kroz akvatorij prisutnošću propusta, valna energija koja tijekom olujnog vremena penetrira kroz propust u zaštićeno područje može biti ograničavajući čimbenik. Pregledom prethodnih istraživanja i konstrukcijskih rješenja propusta na hrvatskoj obali, u ovom radu se predlažu osnovne preporuke za oblikovanje propusta.

Ključne riječi:
izmjena mora, propust, valovi, luke, lukobran

Use of culverts for improving exchange of seawater in ports

The quality of seawater in enclosed water basins can be negatively affected by inadequate exchange of seawater. Various culverts (pipe culverts, box culverts, and duct culverts) are presented in the paper as an efficient solution for preventing stagnation of seawater. In addition to positive influence of culvert-induced higher circulation of seawater in the basin, the wave energy penetrating during stormy weather into the protected area via culverts may be a limiting factor. Basic culvert shaping recommendations, relying on the study of previous research and structural solutions for culverts used on Croatian coast, are also presented in the paper.

Key words:
seawater exchange, culvert, waves, harbours, breakwater

Anwendung des Durchflusses zur Verbesserung des Meerwasseraustauschs in Häfen

Die Qualität des Meeres innerhalb der eingeschlossenen Aquatorien kann durch eine unbefriedigende Menge an Meerwasseraustausch gefährdet werden. In dieser Abhandlung werden Durchflüsse (Röhren, Platten und Kanäle) als effiziente Lösungen dargestellt, um eine Stagnation des Meeres zu verhindern. Neben dem positiven Einfluss einer erhöhten Meerwassercirculation durch das Aquatorium sind die Durchflüsse effiziente Lösungen. Die Wellenergie, welche während eines Sturms durch den Durchfluss in das gesättigte Gebiet eindringt, ist ein einschränkender Faktor. In dieser Abhandlung werden Untersuchungen und Konstruktionslösungen der Durchflüsse an der kroatischen Küste vorgestellt, damit die Formung des Durchflusses abgegeben wird.

Schlüsselwörter:
Meerwasseraustausch, Durchfluss, Wellen, Häfen, Hafendamm
1. Uvod

Akvatoriji koji su ograđeni lučkom infrastrukturom poput marina i luka, te prirodno ograđeni akvatoriji poput laguna i estuarija imaju problem slabije cirkulacije i izmjene morske vode s vanjskim morem, te kao posljedicu akumulaciju onečišćiva unutar poluzatvorenih akvatorija [1]. Prirodni procesi koji osiguravaju cirkulaciju i izmjenu mora u poluzatvorenim akvatorijima uključuju djelovanje plime i oseke, vjetra, valova, morskih struja te obalnih i podmorskog dohoda voda (rijeke, vruljenje, potoci itd.) [2]. Od navedenih generatora izmjene mora u lukama najčešće istraživan generator je plima i oseka čiji raspon u većini svjetskih priobalnih područja iznosi jedan do nekoliko metara. Prema tzv. “tidal prism” modelu [3], svaka nova plima unosi novu svježu vodu u zatvoreni akvatorij u kojem se dođa trenutačno razrjeđenje po čitavom volumenu zatvorenog akvatorijja. Što je veći volumen vode koju plima unosi, odnosno volumen akvatorijja između razina oseke i plime, to će se brže obavljati izmjena mora u luci. U morima u kojima je raspon plime i oseke jedan metar i manje (Mediteran, Baltičko more, Karipsko more) osjetljivost na onečišćenje je relativno velika [4]. Prema preporukama međunarodne organizacije PIANC [1], odnos volumena vode koji ulazi u akvatorij tijekom plime i ukupnog volumena akvatorijja u trenutku plime treba biti veći od 0,25, preferirano 0,35. Stoga je u područjima s relativno malim oscilacijama plime i oseke potrebno poklanjati posebnu pažnju pasivnim i aktivnim mjerama za poboljšanje cirkulacije. Pasivne mjere se štiti oblikovanja i dimenziranja obalnih građevina prilikom projektiranja luka te uključuju tlocrtne geometrije luka, širine i poziciju ulaza u luku, dubinu luke, nagib dna te primjenu propusta za cirkulaciju koji su ujedno i tema ovog rada. Od aktivnih mjera poboljšanja cirkulacije treba istaknuti primjenu crpki te primjenu aeratora koji su rijetko korištene metode zbog troškova i održavanja. Prema radu [5], tlocrtni omjer dužine X i širine luke B ima značajan utjecaj na brzinu izmjene mora pod djelovanjem plime i oseke (ostali generatori kao što su valovi i vjetar nisu analizirani, analizirane su luke samo s jednim ulazom). Najbolje karakteristike o izmjeni mora imaju luke s omjerom B/X = 1, a prihvatljivi omjeri se nalaze u rasponu B/X = 1/2 - 2. Kod tlocrtnih geometrije kod koje taj omjer nije ostvaren (1/2 > B/X > 2) stvaraju se dvije ili više tlocrtnih cirkulacijskih čelija koje onemogućuju izmjenu mora iz dijelova akvatorija udaljenijih od ulaza u luku. Ekstrapolacija ovih rezultata na raspon oscilacija plime i oseke manji od 1,2 m nije potvrđen u...
2. Izmjena vode kroz propuste pod djelovanjem vjetra i plimnih oscilacija

U radovima [15, 16] provedene su analize korištenjem numeričkog modela gdje je na modelu luke pravokutnog akvatorija ispitivan utjecaj vjetra, plimnih oscilacija te razdiobe gustoće na izmjenju mora kroz propuste. U radu [15] pozornost je usmjeren na propuste malog površnog presjeka s omjerom površine površnog presjeka propusta i ulaza $A_p/A = 0.02$, do 0.04, a u radu [16] analizirani su propusti većeg površnog presjeka s omjerom $A_p/A = 0.03$ do 0.4. Glavni je zaključak rada [15] taj da je volumen koji protječe kroz propuste malih površnog presjeka beznačajan u odnosu na volumen koji protječe kroz ulaz luke. Utvrđeno je da je udio volumena koji protječe kroz propust u odnosu na volumen kroz ulaz 1-2%, što vrijedi za djelovanje vjetra zajedno s oscilacijama plime i oseke. Ovaj zaključak je vrlo sličan već navedenom iz rada [11] čime se ponovno pokazuje njegova vrijednost.

Stoga su predloženi stroji za uzrokovavanje vjetra u tijelu lukobrana. Ispitivane su četiri tlocrtna pozicija poprečnih presjeka propusta, gdje se osim utjecaja raznih generatora cirkulacije ispituje i utjecaj tlocrtnog pozicioniranja propusta u tijelu lukobrana. Ispitivanje je provedeno na tlocrtnim pozicijama propusta s površinom P i površinom akvatorija A, i na tlocrtni površini $P/A = 0.01$. Koliko je površina akvatorija ovisna o promjeru propusta u tijelu lukobrana?

U radu [16] provedene su detaljne analize funkcioniranja većih površnih propusta, gdje se osim utjecaja raznih generatora cirkulacije ispituje i utjecaj tlocrtnog pozicioniranja propusta u tijelu lukobrana. Ispitivanje je provedeno na tlocrtnim pozicijama propusta s površinom P i površinom akvatorija A, i na tlocrtni površini $P/A = 0.01$. Koliko je površina akvatorija ovisna o promjeru propusta u tijelu lukobrana?

Stoga je izmjerena površina propusta P i površinu akvatorija A, i na tlocrtni površini $P/A = 0.01$. Koliko je površina akvatorija ovisna o promjeru propusta u tijelu lukobrana?
se njenim povećanjem kvaliteta mora značajno poboljšava. Međutim, takav zaključak vrijedi dakako samo za vjetar kao generator cirkulacije. U slučajevima kad nema vjetra, odnosno kad je generator cirkulacije samo plima i oseka, dobivaju se rezultati prikazani crnim oznakama na slici 2. Može se zaključiti da se vrijednosti \(C_{sr} \) kreću oko veličine 0,9 mg/l za sve pozicije propusta, što upućuje na mnogo slabiju cirkulaciju mora u luci nego u slučaju kad puše vjetar.

Utjecaj vjetra na izmjenu mora kroz propuste je dokazan i izravnim mjerenjem u marini Opatija što je objavljeno u radu [19]. U tom radu pronađena je jasna korelacija između specifične energije vjetra (\(J/m^2 \)) “isporučene” na lokaciji marine i volumena mora (m³) koje je izveden za luku bez propusta i plima i oseka. Ovo upućuje na zaključak da se vrijednosti \(C_{sr} \) kreću oko veličine 0,9 mg/l za sve pozicije propusta, što upućuje da vrijednosti \(C_{sr} \) u odnosu na vrijednosti ostalih pozicija propusta (P2, P3 i P4) u luci bez vjetra.

Kad se radi o malim poprečnim presjecima propusta (\(A_p/A_u \sim 0,02 - 0,05 \)), podaci modela s vjetrom i bez vjetra su relativno bliski (\(C_{sr} \sim 0,92 \text{ mg/l} \) i \(C_{sr} \sim 0,77 \text{ mg/l} \) s podatkom iz analitičkog “tidal prism” modela [20] (\(C_{sr} \sim 0,85 \text{ mg/l} \) koji je izveden za luči bez propusta i plima i oseka. Ovo upućuje na zaključak da, ako se uzmu u obzir sve pretpostavke numeričkog modela (pretpostavke modela prikazane u radu [16]), propusti malog poprečnog presjeka nemaju značajnog utjecaja na izmjenu mora u luci bez obzira na generator cirkulacije (vjetar ili plimne oscilacije), što opet potvrđuje zaključak iz rada [1] o neučinkovitosti propusta malih poprečnih presjeka.

Ovdje je potrebno napomenuti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.

Utjecaj poprečnog presjeka propusta \(A_p/A_u \) na površinsku koncentraciju konzervativnog trasera \(C_{sr} \) prikazan na slici 2. Može se zaključiti da u okviru numeričkog modela prikazanog u radu [16] nije modeliran utjecaj plovila, gatova i sidrenog sustava na cirkulaciju mora pod djelovanjem vjetra. Intuitivno se može zaključiti da će u tom slučaju biti slabiji prijenos energije vjetra na vodenu masu te posljedično i slabija cirkulacija, što će rezultirati više pozicioniranom plavom i crvenom krivuljom na slici 2.
Još jedno ograničenje koje vrijedi za gornju jednadžbu jest to da ona vrijedi samo za valove s odnosom $H_s/D < 0,8$. Kod valova s odnosom $H_s/D \geq 0,8$ vrijede jednadžbe koje slijede.

Transmisija valne energije kroz cijevne propuste je istraživana na fizikalnom modelu uz pomoć nepravilnih valova u radu [14]. Na osnovi provedenih istraživanj definirane su sljedeće empirijske jednadžbe za određivanje koeficijenata transmisije za tri različite razine mora u odnosu na os cijevi (W1, W2 i W3):

$$W1 \quad K_t = 0,711 \cdot [FP]^{0,316}$$

(2)

$$W2 \quad K_t = 0,678 \cdot [FP]^{0,235}$$

(3)

$$W3 \quad K_t = 1,257 \cdot [FP]^{0,375}$$

(4)

Za opis koeficijenata transmisije u radu [12] je upotrijebljen parametar za koji vrijedi $FP = E_1 \cdot D^2 \cdot H_s/D$ gdje je E_1 parametar gubitka energije i računa se kao umnožak koeficijenta gubitka Lc odnosom Hs_i/D. Koeficijent gubitka A dolazi u raspon $[0,1]$ i opisuje gubitke energije unutar cijevi kao što su trenje s unutrašnjim stijenkama. Iznosi ove analize preporučuje odabir srednju razinu mora kao razinu W2, a za potrebe ove analize korišten je $A = 1$.

Za ilustraciju primjene izraza (1) do (4) izvršen je proračun analize korištenje za izmjerni koeficijent transmisije na os cijevi (W1, W2 i W3) na fizikalnom modelu uz pomoć nepravilnih valova u radu [21]. Slično izgrađeni modeli za stratešku inženjersku cijevi (GR4, GR6 i GR8) imaju gornji rub može se izvršiti podjela na propuste kod kojih su valne visine značajno veće od visine propusta, što je karakterizira omjerom $H_s/D < 0,8$, odnosno $H_s/Hf < 0,8$ te valne visine kod kojih su valovi mali u odnosu na visinu propusta $H_s/D < 0,8$, odnosno $H_s/Hf < 0,8$. Oni prvi se opisuju pomoću koeficijenata transmisije izračunanim prema izrazu (1), a drugi pomoću izraza (3). U slučaju valova kada je $H_s/D \geq 0,8$ tada je disipacija valne energije na školjeri oko ulaza u cijev velika jer grebeni pojedinih valova se izduzivao. U slučaju valova kada je $H_s/D < 0,8$, većina valova ulazi u cijev bez disipacije na ulazu te se stoga ostvaruju veći koeficijenti transmisije, što je prikazano krivuljom za (1).

S druge strane, potrebno je uočiti razlike u koeficijentima transmisije za različite razine vode (W1, W2 i W3) prikazani crtkanim krivuljama na slici 3. Uočava se da se najveći koeficijenti transmisije javljaju kod razine W2 dok su kod ostale dvije razine manji. Iz navedenog razloga je projektirati uronjene propuste s razinom bliskom W1 jer je tada transmisija najmanja. Istraživanje u realnim uvjetima (u marini Opatija) objavljeno u [21] sugeriša da se u pripravi cijevi, ostvarenjem disipacije, iznosi gotovo za dvostruko kada je cijev potpuno ispunjena vodom u cijevi, ostvareno je disipacija valne energije. U realnim uvjetima u izradi [12] je uočeno da su koeficijenti transmisije za različite razine vode (W1, W2 i W3) iznosi sveviše različite. Uočava se da je prosječni koeficijent transmisije za grupu od četiri površine cijevi (GR4, GR6 i GR8) ima veći od onih izmjerenih za jednu cijev (sve za razinu W2), i to je uočljivo jer su veće površine poprečnog presjeka kroz koji ulazi valna energija. Treba napomenuti da je, radi jednostavnosti, u proračunu parametar FP utjecaj vrlo cijevi uzetak na 4·D^2 za GR4 i GR8, te 3·D^2 za GR6 (drugim riječima, uzete su u obzir samo površinske cijevi).

Kako je već navedeno, prikazani su izmjereni koeficijenti transmisije na grupama cijevi (GR4, GR6 i GR8) na fizikalnom modelu koji je detaljnije opisan u radu [12]. Općenito se uočava da su koeficijenti transmisije na grupama cijevi veći od onih izmjerenih za jednu cijev (sve za razinu W2), što je i očekivano jer su veće površine poprečnog presjeka kroz koji ulazi valna energija. Treba napomenuti da je, radi jednostavnosti, u proračunu parametar FP utjecaj vrlo cijevi uzetak na 4·D^2 za GR4 i GR8, te 3·D^2 za GR6 (drugim riječima, uzete su u obzir samo površinske cijevi). Osim toga, iz izmjerenih podataka uočava se da je prosječni koeficijent transmisije za četiri površinske cijevi ($K_{t-GR4} = 0,15$) veći od podataka za osam cijevi ($K_{t-GR8} = 0,13$), što pokazuje da donji red cijevi nije uzrokovao povećanje transmisije nego je, naprotiv, djelovao na način da za malu veličinu smanjuje transmisiju valne energije. U slučaju grupe od šest cijevi zabilježeni su najmanji koeficijenti transmisije ($K_{t-GR8} = 0,11$), što pokazuje da širina grupe cijevi ima utjecaj na transmisiju.
U okviru laboratorijskih istraživanja na fizikalnim modelima objavljenim u radovima [11, 14] opisana je pojava stvaranja mlaza vode s lučke strane propusta (pločastih i cijevnih) koji je najizraženiji pri razini vode W3 te se smanjuje kako razina raste prema W1. Može se očekivati da doseg mlaza u slučaju razine W3 bude i do dva metra iza cijevi (pri najdužim valovima) računajući u prirodnom mjerilu. Plovila privezana uz cijevni propust pri takvim okolnostima mogu biti ugrožena od djelovanja mlaza. Valne visine s lučke strane propusta su najveće odmah na izlazu iz cijevi te se smanjuju kako se povećava udaljenost od kraja cijevi. Ovaj proces smanjenja valne visine iza cijevi je vrlo sličan smanjenju valne visine uslijed difrakcije kroz otvor kod monokromatskih valova [22], što je također prikazano u radu [12]. Dakle, koeficijenti izračunani pomoću izraza (2) do (4) odnose se na točku na poziciji približno 1,8 m iza cijevi u prirodnom mjerilu, te se očekuju veće valne visine prema cijevi i manje prema luci. U slučaju izraza (1) izračunani K_t se odnosi na srednju vrijednost koeficijenta transmisije, koja je dobivena kao srednja vrijednost na tri pozicije iza propusta [10].

Tablica 1. Područje parametara na kojem vrijede jednadžbe koeficijenata transmisije (parametri definirani na slici 1.): H za pravilne valove, a $H = H_s$ za nepravilne valove; $L = L_p$ za nepravilne valove; $b = D$ za cijevne propuste

Izraz	Tip propusta za koji vrijedi	Vrsta valova	H/λ_f	L_c/L	b/L	b/λ_f	L_c/b	d/L	h_s/λ_f	Područje K_t
(1)	pločasti	pravilni	0,13 - 1,2	0,23 - 1,28	0,064 - 0,24	1 - 4	3,2 - 15	0,15 - 1,0	0,5	0,02 - 0,4
(2) (3) (4)	cijevni	nepravilni (spektralni)	0,51 - 2,48	0,23 - 1,68	0,015 - 0,092	1	9,2 - 32	0,11 - 0,5	0,05 - 0,22	

Podrijele parametara unutar kojih su provedena istraživanja u laboratoriju, odnosno na osnovi kojih je provedena prilagodba, izrazi (1) do (4) odnose se na čišćenje na točku na poziciji približno 1,8 m iza cijevi u prirodnom mjerilu, te se očekuju veće valne visine prema cijevi i manje prema luci. U slučaju izraza (1) izračunani K_t se odnosi na srednju vrijednost koeficijenta transmisije, koja je dobivena kao srednja vrijednost na tri pozicije iza propusta [10]. Područje parametara unutar kojih su provedena istraživanja u laboratoriju, odnosno na osnovi kojih je provedena prilagodba, izrazi (1) do (4), prikazano je u tablici 1. Navedene jednadžbe je moguće primjenjivati u području parametara definiranih u tablici. Za slučaj kanalskih presjeka kakav je prikazan na slici 1. preporučuje se primjena jednadžbe za proračun koeficijenata transmisije za uronjene valolome [23].

4. Brzine vode u propustima uzrokovane valovima

Pod djelovanjem valova na ulazu propusta dolazi do pojave oscilatornog gibanje vode (lijevo-desno) unutar propusta i posljedično prosječnog gibanja mase vode od otvorenog mora prema luci i obrnuto. S obzirom na to da je protok u cijevima pri brzim izmjenama smjera gibanja vode izuzetno zahtjevno mjeriti, u radu [17] su mjerene brzine vode na izlazu iz cijevi pod djelovanjem valova. Srednja horizontalna komponenta brzine na izlazu iz cijevi (slika 1.), osrednjena kroz period djelovanja stacionarnog incidentnog valnog polja, može biti indikator protoka vode uzrokovanih valovima. Prema istraživanjima zaključeno je da srednja brzina unutar propusta uzrokovana površinskim valovima ovisi o više parametara, od kojih je dominantna uronjenost propusta u vodi (izraz (5)). Istraživanje je provedeno isključivo za propuste kružnog poprečnog presjeka i razine vode W1 i W2, stoga se očekuje da i unutar navedenog raspona vrijedi izraz (5). Navedenim izrazom je uronjenost uzeta u obzir kroz koečijent uronjenosti (w), koji je definiran omjerom visinske razlike od donjeg ruba propusta do površine vode i promjerom propusta.

$$v = \sqrt{\frac{gD}{0.097 \cdot \frac{H_s}{H} \cdot \frac{L_c}{L} \cdot \frac{D}{\lambda_f} - 0.11}}$$ \hspace{1cm} (5)

gdje su oznake fizikalnih veličina usklađene prema tablici na slici 1.

Slika 4. Odnos koeficijenata transmisije i brzine unutar cijevnog propusta

Ostali parametri koji utječu na brzinu unutar propusta su valna visina (H_s) i dužina (L_p), te naposljetku promjer (D) i dužina cijevnog propusta (L_c). U prethodnom istraživanju [13] iznosi se pretpostavka da transmisija valne energije (odnosno koeficijent transmisije) ne mora nužno pratiti srednji protok vode kroz propust. Navedene tvrdnje nisu naknadno dokazane te se objavljuju u ovom radu na osnovi rezultata fizikalnog modela opisanog u radovima [14, 17].
Na slici 4. daje se usporedba izmjerenih srednjih brzina na izlazu iz cijevi te izmjerenih koeficijenata transmisije koji su prikazani parametrom $K_t \cdot H_{s-i}/D$, što u biti daje ovisnost transmitirane valne visine $H_t = K_t \cdot H_{s-i}$ i promjera cijevi D. Navedeni dijagram pokazuje bitno drugačiju ovisnost za razinu vode W_1 te razinu W_2. Na grafu se može uočiti načelno linearan odnos između brzine v i parametra $K_t \cdot H_{s-i}/D$. Iz navedene korelacije se može zaključiti da porastom transmitirane valne visine H_t raste i srednja brzina unutar propusta v. U slučaju kada je cijevni propust potpuno uronjen u vodu (W_1), pojavljuje se tok usmjeren prema otvorenom moru (na grafu prikazano negativnom brzinom), što upućuje na to da se u određenim uvjetima incidentne valne klime pojavljaju i izlazni protoci iz luke. Budući da nije potvrđena korelacija između brzine vode i parametra $K_t \cdot H_{s-i}/D$, uočena je bitna protjecajna površina koja se označuje kao mrtva zona (crveni poligon na slici 5.). Cestovni prijelaz (b) izveden na ovaj način (s dvije cijevi) u konačnici smanjuje protjecajnu površinu u odnosu na primjer povoljnijega kanalskog tipa propusta u lučici Vitrenjak (slika 6.), gdje je ostvaren kanalski tip propusta veće protjecajne površine.

5. Postojeća praksa primjene propusta za cirkulaciju

Hrvatskom obalom se rasprostiru brojne lučice i marine koje u svojim građevinama za zaštitu od nepovoljnog utjecaja valova imaju ugrađene propuste u svrhu djelotvorne izmjene mora. Pregledom nekolike primjera i anketiranjem osoblja u pripadajućim marinama, utvrđena su neka kvalitativna opažanja. U ovom radu se prikazuju konstruktivna rješenja propusta na lokacijama lučice Vitrenjak (Zadar), ACI marine Split i marine Kornati u Biogradu, a u sklopu stručnog pregleda još su se obišle marine Zadar (Tankerkomerc), ACI marina Vodice, marina Lav (Podstrana) i gradska lučica Zenta u Splitu. Pregled je proveden tijekom mjeseca lipnja i srpnja 2018. godine.

5.1. Marina Kornati (Biograd)

Marina u Biogradu se sastoji od marine Kornati i od komunalne lučice u unutarnjem dijelu akvatorija (slika 5.). U korijenu zapadnog lukobrana na poziciji (a) nalazi se cijevni propust promjera od 0,5 m2 koji je u vertikalnom smislu smješten kako bi se srednja morska razina nalazila pri gornjem rubu propusta, zbog čega je veći dio vremena izvještava vodama protječe u morsku vodu.

Sustav od dva cijevna propusta (b), smješten u otvoreni dovodno-odvodni kanal, omogućuje izmjenu morske vode u korijenu dotičnog lukobrana. Na dan pregleda uočena je najbolja kvaliteta morske vode (prozirnost) u unutarnjem dijelu akvatorija (slika 5.). Cestovni prijelaz (b) izveden na ovaj način (s dvije cijevi) u konačnici smanjuje protjecajni profil u odnosu na primjer povoljnijega tehničkog rješenja u lučici Vitrenjak (slika 6.), gdje je ostvaren kanalski tip propusta veće protjecajne površine.

Slika 5. Marina Kornati i komunalna lučica u Biogradu; a) cijevni propust – A = 0,5 m2; b) cijevni propust – A = 1 m2; c) cijevni propust – A = 3,6 m2; d) cijevni propust – A = 1,2 m2; mrtva zona – crveni poligon
Sustav od tri cijevi se nalazi u korijenu središnjeg fiksnog gata (c) kako bi se omogućila cirkulacija unutar marine. U korijenu sjevernog lukobrana (d) nalazi se jedan cijevni propust čija površina poprečnog presjeka iznosi 1,2 m².

5.2. Lučica Vitrenjak (Zadar)

Na lokaciji lučice Vitrenjak u Zadru izveden je propust kanalskog tipa (slika 6.). Kanalski propust se nalazi u korijenu primarnog lukobrana. Na oba pokosa kanalskog propusta predviđena je školjera koja potiče disipaciju dolaznih valova, te time smanjuje nepovoljnu penetraciju valne energije u akvatorij. Širina kanala iznosi 6 m, a dubina pri srednjoj razini mora 0,5 m. Preko kanala je postavljen most koji omogućuje komunikaciju između kopna i odsječenog lukobrana.

5.3. ACI marina Split

Četiri propusta (označena s a, b, c i d na slici 7.) su ugrađena u lučnim građevinama u ACI marini Split i sportskoj lučici pored. Propust (slika 7.a) širine 0,75 m, na izgled nedjelotvorno funkcioniira s obzirom na zatečeno vidljivo onečišćenje mora s južne strane propusta. Veća dva pločasta propusta (slike 7.b i 7.c) koji spajaju akvatorij s otvorenim morem širina su 3,3 m i 3,8 m. U korijenu lukobrana se nalazi pločasti propust (slika 7.d) širine 4 m. Anketom zaposlenika je utvrđeno da je uočena cirkulacija mora kroz propuste b, c i d. Istaknuto je redovito čišćenje propusta od školjkaša s unutarnjih ploha propusta.

5.4. Lučica Zenta (Split)

Tijekom obilaska marina obavljena je i pregled lučice Zenta koja je od ACI marine Split udaljena približno 2,5 km. U gradskoj lučici Zenta uočeno su onečišćeni dijelovi akvatorija, što je najizraženije u istočnom dijelu (crveno na slici 8.). U lučici Zenta nisu utvrđeni propusti za cirkulaciju niti neke druge mjere poboljšanja izmjene mora. Kako se radi o dvjema bliskim lokacijama (ACI Split i Zenta), mogu se očekivati slični oceanografski, klimatski i antropogeni utjecaji u obje luke. Može se pretpostaviti da je lošije stanje kvalitete mora u lučici Zenta uzrokovano nedostatkom provedenih pasivnih ili aktivnih mjera poboljšanja cirkulacije mora u luci. Ta pretpostavka trebala bi biti dokazana primjenom znanstvene metodologije (mjerenje i numeričko modeliranje).

5.5. Marina Lav (Podstrana)

Marina Lav u Podstrani ima izgrađen pločasti propust širine 5 m i dubine 2 m u korijenu glavnog lukobrana. U propust je smješten kameni nasip granulacije za smanjenje transmisije valne energije. Funkcioniranje ovakvog tipa propusta još nije istraženo te nema objavljenih podataka.

5.6. ACI marina Vodice

U marini Vodice postoje cijevni propusti smješteni u glavni i sekundarni lukobran površine poprečnog presjeka 6,65 m² i 1,13 m². Evidentirana je značajna pojava vruša u toj marini.
Primjena propusta za poboljšanje izmjene mora u lukama

Slika 7. ACI marina Split: a) pločasti propust – A = 0,8 m²; b) pločasti propust – A = 4,2 m²; c) pločasti propust – A = 5,3 m²; d) pločasti propust – A = 12 m²

Slika 8. Gradska lučica Zenta u Splitu, mrtva zona – crveni poligon
koja vjerojatno utječe na kvalitetu morske vode. Utjecaj vruša u marini Opatija je prikazan u radu [18].

5.7. Marina Zadar (Tankerkomerc)

U marini Zadar, koja se nalazi uнутar Zadarskog zaljeva u uvali Vrulje, cirkulacija s “vanjskim morem” je osigurana primjenom propusnog lukobrana na pilotima. Također je uочен dotok svježe vode potokom Vrulje koji je na dan pregleda procijenjen na 1,5 m³/s (metodom mjerenja površinske brzine vode).

5.8. Parametarska analiza izmjene morske vode

Osim pokazatelja o kvaliteti vode, izračunane su oblikovne (projektne) karakteristike pojedinih luksa prema literaturi opisanoj u uvodnom poglavlju (slika 9.). Valja napomenuti da su navedene oblikovne karakteristike razrađene u literaturi kako bi se procijenila djelotvornost izmjene vode isključivo pod utjecajem plimne i oseke (bez uključenih propusta za cirkulaciju). Promatrajući indikator “udio plimne prizme”, odnosno omjer količine morske vode koja protječe kroz akvatorij tijekom svake plimne oscilacije i ukupni volumen vode unutar akvatorija, u većini pregledanih luksa taj pokazatelj odražava loše uvjete. Za sve pregledane luče je indikator bitno ispod praga zadovoljavajućeg stanja u iznosu od 0,25. “Planform” faktor upućuje na dobre uvjete jedino u ACI marini Vodice, dok luči ACI Split, Zenta i Biograd imaju loše uvjete; a ostale tri luči (Vitrenjak, Belvedere i Zadar) srednje. Omjer površine poprečnog presjeka ulaza i površine akvatorija upućuje na srednje uvjete, a jedino u marinama Belvedere i Zadar zbog relativno velikog ulaza s obzirom na njihovu površinu akvatorija, na loše stanje. Iako analizirani indikatori prikazani na slici 9 upućuju na loše do srednje stanje kvalitete mora u analiziranim lučicama, pregled proveden na terenu upućuje na bolje stanje.

Naime, propusti poboljšavaju kvalitetu mora u svojoj neposrednoj blizini (lokalno oko propusta) te time obogaćuju tzv. mrtve zone akvatorija udaljenije od ulaza u luku. Ovaj proces je ujedno uоchen kroz analize korištenjem numeričkog modela [13]. Veličina lokalnog utjecaja na kvalitetu morske vode ovisi o geometrijskim parametrima propusta i oceanografskim uvjetima na lokaciji te je tema za buduća istraživanja. Trebalo bi osim toga ispitati utjecaj kvalitete mora u marinama i lučicama na dojam turista i nautičara te primjeru pasivnih i aktivnih mjera koje osiguravaju zadovoljavajuće stanje. S obzirom na nepovoljne uvjete uzrokovane malim oscilacijama plime i oseke te povoljna pojava vjetrova tijekom ljetnih mjeseci (maestral), preporuka je da se cijevni propusti primjenjuju pri gradnji ili revitalizaciji lučke infrastrukture (pogotovo turističke). Naročito je pozitivan njihov utjecaj na kvalitetu mora u takozvanim mrtvim zonama luka.

6. Zaključak

U radu je opisan pregled dosadašnjih istraživanja o djelovanju propusta i utjecaju na izmjenu mora u malim zatvorenim akvatorijima (lučicama). Ustanovljena je osnovna podjela tipova propusta te su tako definirani: cijevni, pločasti i kanalski s osnovnim utjecajnim parametrima. Dosadašnja istraživanja upućuju na značajan utjecaj vjetra na izmjenu mora kroz propuste veće površine poprečnog presjeka, pogotovo u područjima s malim plimnim oscilacijama kakvo je Mediteran. Potvrđeno je da površina poprečnog presjeka propusta A_u u odnosu na površinu ulaza A_u također značajno utječe na kvalitetu mora u čitavom akvatoriju. Definirane su jednadžbe za proračun koeficijenata transmisije od djelovanja dubokovodnih valova, te proračun srednjih brzina koje se pojavljuju u propustima pod djelovanjem valova. Dan je pregled primjene propusta u nekoliko marina i lučica u Hrvatskoj, iako propusti (malog poprečnog presjeka) ne utječu bitno na ukupnu cirkulaciju vode u čitavom akvatoriju luke, važan je njihov utjecaj na izmjenu mora u uвučenim takozvanim mrtvим zonama.

Zahvala

Ovaj rad je financirala Hrvatska zaklada za znanost u okviru projekta “Primjena cijevnih propusta za poboljšanje kvalitete mora u lukama/marinama” (UIP-2014-09-6774). Posebne zahvale tehničkom vodstvu tvrtke ACI d.d, marine Zadar (Tankerkomerc), marine Kornati (Biograd), marine Lav (Podstrana) na omogućenoj provedbi istraživanja za potrebe ovog znanstvenog projekta.
Primjena propusta za poboljšanje izmjene mora u lukama

LITERATURA

[1] Recreational navigation Commission: Protecting water quality in marinas, 2008.

[2] Sanford, L.P., Boicourt, W.C., Rives, S.R.: Model For Estimating Tidal Flushing of Small Embayments, J. Waterw. port, coastal, Ocean Eng., 118 (1992), pp. 635–654, https://doi.org/10.1061/(ASCE)0733-950X(1992)118:6(635)

[3] Van de Kreeke, J.: Residence Time: Application to Small Boat Basins, J. Waterw. port, coastal, Ocean Eng, 109 (1983) 4, pp. 416–428.

[4] Gómez, A.G., Ondiviela, B., Fernández, M., Juanes, J.A.: Atlas of susceptibility to pollution in marinas. Application to the Spanish coast, Mar. Pollut. Bull., 114 (2017) 1, pp. 239–246.

[5] Nece, B.R.E., Asce, F.: Planform effects on tidal flushing of marinas, J. Waterw. Port. Coastal. Ocean Eng., 110 (1984) 2, pp. 251–269.

[6] Environmental Protection Agency, Coastal marina assessment handbook, Atlanta, 1985.

[7] Kim, K.H., Seo, H., Kobayashi, N.: Field assessment of seawater exchange breakwater, J. Waterw. Port, Coast. Ocean Eng., 137 (2011) 3, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000059

[8] Ohmura, Y.: Mass transport induced flow in seawater exchange structures with perforated wall, in Proceedings of the Coastal Engineering Conference, pp. 3509–3521, 2009.

[9] Ohmura, Y.: Wave set-up induced flow in seawater exchange structures with blockwork mounds, in Proceedings of the Coastal Engineering Conference, pp. 4374–4385, 2007, https://doi.org/10.1142/9789812709554_0367

[10] Tsoukala, V.K., Moutzouris, C.I.: Wave transmission in harbors through flushing culverts, Ocean Eng., 36 (2009) 6–7, pp. 434–445.

[11] Tsoukala, V.K., Katsardi, V., Belibassakis, K.A.: Wave transformation through flushing culverts operating at seawater level in coastal structures, Ocean Eng., 89 (2014) 1, pp. 211–229.

[12] Belibassakis, K.A., Tsoukala, V.K., Katsardi, V.: Three-dimensional wave diffraction in the vicinity of openings in coastal structures, Appl. Ocean Res., 45 (2014), pp. 40–54, https://doi.org/10.1016/j.apor.2013.12.005

[13] Stagonas, D., Müller, G., Magagna, D., Warbrick, D.: Fundamental investigation of water flow in harbors through a flushing culvert, in Water Engineering for a Sustainable Environment ranging, 1 (2009), pp. 7288–7295.

[14] Carević, D., Mostečak, H., Bujak, D., Lončar, G.: Influence of water-level variations on wave transmission through flushing culverts positioned in a breakwater body, J. Waterw. port Coast. Ocean Eng., 144 (2018) 5, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000464

[15] Lončar, G., Bukić, D., Carević, D., Bujak, D., Bartolić, I., Beg Paklar, G.: The impact of culverts on the seawater exchange and wave action in marina waters, Hrvat. Vode, 24 (2016) 98.

[16] Lončar, G., Carević, D., Bujak, D., Bartolić, I., Beg Paklar, G.: Analysis of the impact of winds, tide oscillations and density distribution on the sea exchange through culverts in the marinas as exemplified by the Ičići marina, Hrvat. Vode, 25 (2017) 101.

[17] Bujak, D., Carević, D., Mostečak, H.: Velocities inside flushing culverts induced by waves, Proc. Inst. Civ. Eng. - Marit. Eng., 170 (2017) 3–4, pp. 112–121.

[18] Bartolić, I., Lončar, G., Bujak, D., Carević, D.: The Flow Generator Relations for Water Renewal through the Flushing Culverts in Marinas, Water, 10 (2018) 7, pp. 936.

[19] Bujak, D., Carević, D., Gliša, G.: The influence of the natural generators on discharge through the flushing culverts, in Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), 2018, pp. 1–10.

[20] Barber, R.W., Wearing, M.I.: A simplified model for predicting the pollution exchange coefficient of small tidal embayments, Water. Air. Soil Pollut., pp. 87–100, 2004, https://doi.org/10.1023/B:WAFO.0000044789.67230.3e

[21] Bujak, D., Carević, D., Ramuščak, R., Gašpar, A.: Volumetric analysis of flow through flushing culverts embedded in breakwaters, in 4th Coastal and Maritime Mediterranean Conference, pp. 191–196, 2017, https://doi.org/10.5150/cmcn.2017.035

[22] Johnson, J.W.: Generalized wave diffraction diagrams, in 2nd international conference on coastal engineering, pp. 6–23, 1952.

[23] D'Angremond, K., der Meer, V., de Jong, R.: Wave transmission at low-crested structures, in Proc. ICCE, pp. 3305–3318, 1996.