Estimation of different data compositions for early-season crop type classification

Pengyu Hao Corresp., 1, 2, 3, Mingquan Wu 2, Zheng Niu Corresp., 2, Li Wang 2, Yulin Zhan 2

1 Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, China. (AGRIRS) / Institute of Agricultural Resources and Regional Planning, Beijing, China
2 Chinese Academy of Sciences, The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Beijing, China
3 Shenzhen University, Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and Geoinformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen, China

Corresponding Authors: Pengyu Hao, Zheng Niu
Email address: haopy8296@163.com, niuzheng@radi.ac.cn

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels.

In this study, we initially acquired daily 30m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40~60 days and 35~45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.
Estimation of different data compositions for early-season crop type classification

Pengyu Hao¹,²,³, Mingquan Wu², Zheng Niu²*, Li Wang², Yulin Zhan²

1. Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, China. (AGRIRS)/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
3. Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China.

* Corresponding author: Zheng Niu

E-mail: niuzheng@radi.ac.cn
Abstract

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels.

In this study, we initially acquired daily 30m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40~60 days and 35~45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.

1. Introduction

Multi-temporal remote sensing data, particularly vegetation indices (VI) time series, can describe crop conditions during the crop growing season and have been widely used to classify
crop types (Boryan et al. 2011; Waldhoff et al. 2017; Wardlow & Egbert 2008). Most previous studies have employed remote sensing images of the entire growing season to generate crop type distribution maps (Howard & Wylie 2014; Zhang et al. 2014), and the crop map is generally acquired after the crop harvest. However, timeline is the first factor when considering a crop type map because an early classification result might benefit decision-makers and the private sector by helping growth monitor, forecasting crop yield and qualifying crop drought (Gallego J. et al. 2008; Skakun et al. 2017).

Considerable researches have been conducted on early-season crop type mapping (Azar et al. 2016; Vaudour et al. 2015; Villa et al. 2015), and there are two vital factors that contribute to early crop identification: the crop calendar and the remote sensing imagery characteristics. Previous early crop identification studies have shown that if crops are separable, high temporal frequency data such as Moderate Resolution Imaging Spectroradiometer (MODIS) can identify crops with a short image time series (Hao et al. 2015c; Zhou et al. 2013). The spatial resolution of high temporal density data, however, are relatively coarse (Verbeiren et al. 2008). Thus, mixed pixels may lead to serious misclassification in a heterogeneous landscape (Hao et al. 2015b). At finer spatial resolution, the possibility of obtaining imagery with dense temporal resolution is low. For example, Landsat ETM+ cannot provide cloud-free image in each season globally, especially during autumn and winter (Ju & Roy 2008). Although Landsat and Huanjing (HJ) images have been used to improve the temporal resolution of image time series (Hao et al. 2014); in addition, Sentinel-2 satellite may provide optical images with higher spatial and temporal resolutions (10m and five-day) (ESA 2016), but the image time series still contain "missing values" due to cloud cover (Hao et al. 2015a).

Most classifiers cannot handle "missing values" within the image time series, but image time series at a good spatial resolution, such as 30m, are generally irregular because of low satellite revisit frequencies and cloud cover. One commonly used method used to reduce the "missing value" pixels is image composition (Xiong et al. 2017). However, the optimal composition period for cropland identification is not clear as short composition periods might describe dynamic land cover changes accurately, but missing pixels caused by cloud cover are also more likely to be included in the short composited image time series (van Leeuwen et al. 1999), and density time series generated from short compositions also lead to information redundancy (Low...
Therefore, the composition period should be a balance between the number of missing pixels and the density of image time series.

To estimate the optimal composition period for crop type mapping at 30m resolution, an image time series with a high temporal density is firstly generated by fusing coarse and medium spatial resolution data (Wu et al. 2015a). Gao et al. (2006) introduced the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to blend MODIS and Landsat data. Some other data fusion methods are based on the assumption that MODIS pixels are a linear combination of each contributing land cover class (Maselli et al. 1998; Zhukov et al. 1999), but this is not the real-case scenario (Wu et al. 2015a). Wu et al. (2012) assumed that pixels of the same land cover have similar temporal variation characteristics and proposed a spatial and temporal data fusion approach (STDFM). This method has the potential to synthesize daily imagery and products such as land surface temperature (LST) and leaf area index (LAI) at a medium resolution (Wu et al. 2015b; Wu et al. 2015c).

The objectives of the study were to (1) generate NDVI time series of four different composition periods (daily, 8-day, 16-day and 32-day) from daily NDVI time series, and evaluate classification performances of the four image compositions and (2) test and analyze the potential of early-season crop identification using the NDVI time series of the four compositions.

2. Study regions and data sets

2.1. Study regions

Xinjiang is the most important cotton-growing region in China, contributing half of the national cotton yield (Wang et al. 2014; Xu et al. 2007). Early crop identification could help manage crop cultivation, particularly in terms of the cotton monitor. In this study, two representative study regions containing major crops in Xinjiang were selected.

The two study regions are located in Xinjiang Province, China (Figure 1). The first study region is Bole County (44°20’–45°23’N, 80°40’–82°42’E), located in the northwest part of Xinjiang. The region has a temperate, continental climate characterized by dryness and drought. The annual average temperature and rainfall are 7.0°C and 202mm. Bole County is a representative region in north Xinjiang because this county contains the major crops such as cotton and grapes. The crop calendar of the crops in this study region is shown in Figure 2. Cotton and maize are sown in the middle of April and develop between May and August. Cotton
is harvested in the middle of August and spring maize is harvested in September. Grapes blossom in April and develop between April and June. Multiple grapes varieties lead to long harvest period of grapes harvest (Figure 2). Watermelon is sown in early May, develops between May and August and is then harvested in late August.

The second study region is Luntai County (41°39’–41°56’N, 84°00’–84°21’E), located at the Bayingoleng Mongolian Autonomous Prefecture between Southern Tianshan and the north of the Tarim Basin. It has a warm, temperate, continental, arid climate, and the annual average temperature and rainfall are 10.9°C and 52mm. The main crops of Luntai are cotton, maize, melons and winter wheat, and the crop calendar of these crops is shown in Figure 2. Winter wheat is sown in early October, develops between October and the following May and matures in early June. After the winter wheat is harvested, summer maize is sown, which develop over July and August, and is harvest in September. Therefore, these fields have a winter wheat-summer maize rotation, and we defined them as "wheat-maize" in this study. Cotton, spring maize and melons are sown in April, melon develops between April and July and is harvest in early August, cotton develops between May and August and is harvested in September and October, spring maize develops between May and the middle of August and is harvested in late August and early September. We define spring maize as "maize" in this study. As well as the crops, there are also some orchards with apple and pear trees in Luntai. These trees blossom in April and the fruits become ripe in late August / September.

2.2. Density NDVI time series

The daily NDVI time series at the 30m resolution were obtained by fusing cloud-free MODIS, Landat, HuanJing (HJ) and GaoFen (GF) NDVI during Day 97~320 for Bole in 2011 and Day 93~315 Luntai in 2013 (Wu et al. 2015d). Landsat, HJ and GF data have medium spatial resolution (Landsat, HJ 30m and GF-WFV 16m). All this data were surface reflectance and the data from Bole was georeferenced with the UTM WGS 84, zone 44N. The data from Luntai was georeferenced with the UTM WGS 84, zone 45N. The HJ and GF data were registered to the TM images, achieving an RMSE of less than 0.3 pixels using a second order polynomial transformation and bi-linear resampling, and the spatial resolution of the data were resampled to 30m. As these three medium resolution sensor systems (Landsat, GF and HJ) have differences in parameters, bandwidth, acquisition time and spectral response (Gao et al. 2006), the Landsat and GF NDVI were calibrated to HJ NDVI because HJ acquired the most cloud-free
137 observations among the three sensor systems. The MOD09GA land surface reflectance product
138 was employed in this study, and the NDVI was then calculated. Next, we used the STDFA to
139 fuse the MODIS NDVI and HJ, GF NDVI and generated the daily NDVI time series. The fusion
140 method and the validation of the fusion NDVI time series were introduced by Wu et al. (2015d)
141 in detail. For each date, if we were able to acquire data in one of the four sensor systems, the
142 NDVI at 30m was recorded and vice versa. In this study, we tried to estimate the potential of
143 early season crop type classification and estimate the performance of the four image time series
144 compositions based on the daily NDVI time series at the 30m resolution generated from the
145 MODIS, Landsat, GF and HJ NDVI fusion.
146 One limitation is that NDVI profiles of some crops included some confusion, which had
147 negative effects on classification performance. Previous studies have shown that multi-spectral
148 bands can achieve higher classification accuracy compared with NDVI (Waldner et al. 2015).
149 However, we only used NDVI in this study because the daily time series were obtained by fusing
150 MODIS NDVI with medium-resolution NDVI data from multi-sensors. We did not fuse MODIS
151 data and 30m images for the multi-spectral bands because multi-spectral bands from multi-
152 sensors have large difference due to different specific band designations and spectral response
153 functions; while, NDVI from multiple sensors have less difference comparing with multi-spectral
154 bands (Hao et al. 2015a; Hao et al. 2014; Wu et al. 2015a). We have evaluated the similarity
155 between Landsat images and HJ images, the correlation between Landsat NDVI and HJ NDVI
156 was more similar to a 1:1 line than multi-spectral bands (Hao et al. 2014). In addition, the
157 optimal features selection results showed that NDVI contributes the most to identifying crop
158 types. Therefore, we used NDVI time series in this study, although they were not perfect (Hao et
159 al. 2015c).

2.3. Image composition strategies

There are four image composition periods in this study: Daily, 8-day, 16-day and 32-day
compositions (Table 1). For each composition period, the composited NDVI was the maximum
NDVI of the time range. For example, the max NDVI between Day 97 and 104 were defined as
the 8-day composition NDVI during that time range; then, if the end of a compositing period is
not reached, for instance at Day 100, the 8-day composited NDVI was the maximum NDVI
among Day 97~100.

2.4. Ground reference data
Ground-reference data were obtained from fieldwork in August 2011 in Bole, and September 2013 in Luntai. Several 300m*300m sampling plots were surveyed across the study areas, and the crop type information was collected. The field boundaries within the plots were recorded using GPS and digitized as polygons. Authorizations to access agricultural fields were given verbally by the National Bureau of Statistics of China (NBS) Survey Office in Xinjiang and the native farmers. Next, plot polygons were extended to field polygons based on very high resolution images (Google Earth). We overlaid the field boundaries on Landsat images and shrunk the field boundaries to ensure that all Landsat pixels enclosed in the polygons were pure crop pixels. Finally, the polygons were converted to pixel format using the TM grid (Figure 3). Several surveyed fields (polygons) were randomly selected for training and the others were used as validation. For both training and validation polygons, a portion of samples were selected randomly from the polygons and were used as training and validation samples. The number of surveyed fields and samples is shown in Table 2.

3. Methods

3.1. Overview of the method

A flowchart of this study is presented in Figure 4. First, we composited the NDVI time series using four composition strategies (daily, 8-day, 16-day, and 32-day compositions). Then, both Jeffries–Matusita (JM) distance and the extension of JM distance (J_{Bh}) were used to calculate the crop separability. Random Forest (RF) algorithm was used to classify the crop types and classification accuracy and uncertainty were both used to evaluate classification performance. The input NDVI time series was increased from one day to the entire crop growing season for each composition strategy. Finally, the potential of early season crop type mapping were evaluated using the crop separability, classification accuracy and uncertainty,

3.2. Separability measure

We used JM distance to measure the separability of each pair-wise crop because previous research proved that JM distance have high potential to measure crop separability (Medjahed et al. 2016; Murakami et al. 2001). The JM distance between a pair of crops could be calculated by equation (1):

$$JM(c_i,c_j) = \int_x (\sqrt{p(x|c_i)} - \sqrt{p(x|c_j)})^2 dx$$ (1)
where \(x \) is a span of VI time series values, and \(c_i \) and \(c_j \) are the two crop types under consideration. Then, equation (1) could be simplified as

\[
JM = 2(1 - e^{-B})
\]

where

\[
B = \frac{1}{8}(\mu_i - \mu_j)^T \left(\frac{C_i + C_j}{2} \right)^{-1}(\mu_i - \mu_j) + \frac{1}{2} \ln \left(\frac{|C_i + C_j|}{|C_i| \times |C_j|} \right)
\] (2)

\(C_i \) and \(C_j \) are the covariance matrices of classes \(i \) and \(j \), and \(|C_i| \) and \(|C_j| \) are the determinants of \(C_i \) and \(C_j \). The JM distance ranges from 0 to 2, and larger JM distance indicates higher level of separability between the two classes (Adam & Mutanga 2009).

When measuring the separability of multiple classes, different classes were given different weights to account for the sample sizes. An extension of the JM distance (\(J_{Bh} \)) was used for this purpose (Bruzzone et al. 1995). \(J_{Bh} \) was calculated using equation (6) based on Bhattacharyya bounds:

\[
J_{Bh} = \sum_{i=1}^{N} \sum_{j>i}^{N} \sqrt{p(w_i) \times p(w_j)} \times JM^2(i,j)
\] (3)

where \(N \) was the number of classes and \(p(w_i) \) and \(p(w_j) \) were the \(\alpha \) priori probabilities of classes \(i \) and \(j \), respectively, which were calculated using the combination of training samples in Table 1.

3.3. Classifier

The Random Forest (RF) classifier was employed in this study. The RF model combines multiple classification trees, and the model output is determined by the majority vote of the single classification trees (Breiman 2001). When training the RF model, each tree is constructed using two-thirds of the training records, and the remaining one-third of the records are used for a test classification, with an error referred to the “out-of-bag error” (OOB error). The RF could handle high dimensional data effectively and have been widely employed for land cover classification (Immitzer et al. 2016; Rodriguez-Galiano et al. 2012). Two free parameters of RF; the number of trees (ntree) and the number of features to split the nodes (mtry), were defined as 1000 and the square root of the total number of input features (Loosvelt et al. 2012), and both the crop-label and probabilistic output were obtained using the Random Forest library for R (Breiman et al. 2013).

3.4. Accuracy assessment
Classification accuracy and uncertainty were both used to evaluate classification performance. The confusion-matrix-derived accuracy metrics, overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and Kappa coefficient, were used in this study (Congalton 1991). RF also provides the probabilistic output for each pixel, \((p_1(x), \ldots, p_k(x), \ldots, p_K(x), k = 1, 2, \ldots, K)\), which could be used to generate classification uncertainties, and we calculated the \(\alpha\) quadratic entropy as classification uncertainty (Pal & Bezdek 1994), (equation 4):

\[
H(p(x)) = \frac{1}{n \times 2^{-2\alpha}} \sum_{k=1}^{K} p_k^\alpha(x)(1 - p_k(x))^\alpha
\] (4)

where \(H(p(x))\) is the \(\alpha\) quadratic entropy of the vector \(p(x), p_1(x), \ldots, p_k(x)\) are the probabilistic outputs, \(\alpha\) is a user-defined value which ranges from 0 and 1, and \(\alpha = 0.5\) is used in this study. And smaller \(H(p(x))\) means more reliable classification. One advantage of the \(\alpha\) quadratic entropy is that it applies all information to the probability vector. Next, we calculated the ratio of the correctly classified pixels and wrongly classified pixels as the uncertainty ratio (equation 5):

\[
\text{Uncertainty Ratio} = \frac{\text{Average(Uncer}_C)}{\text{Average(Uncer}_U)}
\] (5)

where \(\text{Average(Uncer}_C)\) is the average uncertainty of all correctly identified pixels (validation samples), and \(\text{Average(Uncer}_U)\) is the average uncertainty of all misclassified pixels. Therefore, a lower uncertainty ratio corresponds with a better classification performance.

4. Results and discussions

4.1. Crop separability

Figure 5 showed the effect of time series length on crop separability for each composition strategy. For all four compositions in both study regions, \(J_{Bh}\) distance increased with time series length and reached saturation points; after the saturation points, longer time series did not improve crop separability significantly. In Bole, the daily composition NDVI time series reached the saturated point the earliest (the time series length was 107-day) and the saturated \(J_{Bh}\) was 5.53; the \(J_{Bh}\) distance of the 8-day and 16-day composition NDVI time series saturated at 155-day and 158-day, and the saturated \(J_{Bh}\) distances were 5.63 and 5.22, respectively. \(J_{Bh}\) distance of the 32-day composition time series saturated the latest (193-day time series) and the saturated \(J_{Bh}\) was 4.47. In Luntai, the \(J_{Bh}\) distances of the daily, 8-day and 16-day composition time series reached saturated points at 170-day, and the saturated \(J_{Bh}\) distances were 7.42, 7.21 and 7.02,
respectively. The J_{bh} distance of the 32-day composition time series saturated the latest (196-day), and the saturated J_{bh} distance was 6.67.

Figure 6 and Figure 7 showed the effect of the time series length and image composition strategies on pair-wise crop JM distances. Generally, crop separability increased with the time series length and reached saturated points, and the daily time series reached saturated points the earliest and had the highest JM distance. In Bole, cotton was confused with maize and grapes. For cotton and grapes, the JM distance of the daily composition time series saturated at 88-day and the saturated JM distance was 1.95. The 8-day composition and 16-day composition had similar trends; the JM distance saturated at 134-day and 145-day, and the saturated JM distances were 1.88 and 1.80, respectively. For the 32-day composition time series, although the JM distance saturated early (at 78-day), the saturated JM distance was 1.44, which indicated that the 32-day composition time series cannot distinguish between these two crops. For cotton and maize, the JM distances of the daily, 8-day and 16-day composition time series saturated at 140-day, 153-day and 161-day. The saturated JM distances were 1.94, 1.92 and 1.80. However, the saturated JM distance of the 32-day composition time series was 1.36 at 161-day. In Luntai, wheat-maize was highly separable from the other crops in the early season (30-day). Melon crops were separable from cotton and maize at 90-day, but cotton and maize were still confusion. The JM distances of the daily, 8-day and 16-day composition time series saturated at 143-day, 170-day and 172-day. The saturated JM distances were 1.91, 1.78 and 1.77. 32-day composition had a low separability between these two crops as the saturated JM distance was 1.57 at 186-day.

4.2. Classification accuracy

Figure 8 showed the effect of time series length on overall classification accuracy (OA) and Kappa coefficient for each composition strategy. Generally, the daily composition time series had the best OA, the 8-day and 16-day composition time series had similar performances and the 32-day composition had the lowest accuracy. In Bole, both OA and Kappa coefficient increased gradually with time series length and then saturated. The OA of the daily composition time series saturated at 113-day, and the saturated OA and Kappa coefficient were 86.13% and 0.7505. The OA of the 8-day and 16-day composition time series saturated at 153-day and 156-day, and their saturated OAs were 85.31% and 85.10%. However, the OA of the 32-day composition time series saturated at 172-day, and the saturated OA was 85.22%. In Luntai, the OA and Kappa coefficient increased at 90-day, which was consistent with the separability result that the J_{bh}
distance increased at 90-day in Luntai. The OA of the daily, 8-day, 16-day and 32-day composition time series saturated at 116-day, 133-day, 132-day and 170-day. The saturated OAs were 91.89%, 83.81%, 83.95% and 82.41%.

Figures 9 and 10 showed the effect of time series length on the PAs and UAs of each composition. In Bole, the cotton PAs and UAs of the four image composition strategies had similar trends and saturated at 90-day. The saturated PAs and UAs were about 95% and 87%. The grape PAs and UAs of the daily, 8-day and 16-day image compositions showed similar trends. The PAs saturated at 90-day and the UAs saturated at 120-day. The saturated PAs and UAs were around 95% and 85%, and the PA and UA of the 32-day composition saturated late. The PA saturated at 130-day and the UA saturated at 150-day. For maize and watermelon, the daily composition time series had the highest PA and UA, and the 32-day composition data had the lowest accuracies. The 16-day and 32-day compositions performed similarly. The PA of maize was low as the saturated PA of maize was around 87%. In Luntai, the PAs and UAs of melon, orchards and wheat-maize increased at 90-day, and all four composition strategies had high accuracies (higher than 90%). Meanwhile, cotton and maize were confused, and the saturated PAs of maize were 65.3%, 65.7% and 64.6% at 123-day, 155-day and 156-day for the daily, 8-day and 16-day compositions. The maize PA of the 32-day time series was 47.2% when the entire NDVI time series were used.

Maize and grape in Bole and maize in Luntai had relatively low accuracies for all four composition strategies because of the confusion among the NDVI time series of these crops. The confusion between cotton and grape in Bole was mainly caused by the large standard deviation of grape NDVI profiles (Figure 11), which was consistent with the large variability of grape reference NDVI time series (Hao et al. 2016). In addition, the confusion between cotton and maize in both study regions was caused by the high similarity between the cotton and maize NDVI time series (Figure 11).

We then evaluated how early we can identify crops (when both the PA and UA are higher than 85%, Table 3) using time series with different composition strategies. In Bole, as the cotton was harvested in late August (Figure 2), it could be identified 60 days before the harvest using the daily NDVI time series and 40 days before the harvest using the 8-day and 16-day composition time series. In Luntai, cotton was harvested in early September as the PAs and UAs of the daily, 8-day and 16-day NDVI time series were higher than 85% at 104-day, 113-day and
115-day, and the cotton could be mapped 35–45 days before harvest. Meanwhile, as the cotton PA and UA of the 32-day composition reached 85% at 162-day and 170-day in Bole and Luntai, the 32-day composition cannot support early-season cotton identification. Accuracies of watermelon reached 85% at 89-day, 123-day, 131-day and 131-day when using the daily, 8-day, 16-day and 32-day time series. As watermelon was harvested in late August in Bole, the daily composition data was able to identify watermelon 40 days before the harvest. However, as grape was harvested between late June and September in Bole and melon was harvested in early August in Luntai (Figure 2), the early harvesting of grape in Bole and melon in Luntai cannot be correctly identified by the four compositions in the early season.

Fundamentally, dense NDVI time series can describe crop growth conditions more precisely (Zhan et al. 2017). For example, Zhang et al. (2009) found that vegetation phenology parameters could be estimated higher accuracies using denser time series. As most summer crops have different green-up speeds, dense time series have a higher probability of identifying such tiny differences. While long composition periods (such as the 32-day composition) lead to late classification saturation and low classification accuracy.

Although the daily NDVI time series achieved the best classification accuracy and the best temporal efficiency, the 30m image time series cannot be obtained at daily frequency in the most cases. Thus, data composition should be considered in order to make full use of partly high-quality data such as the Landsat-7 SCL-off data and partly cloud-free data (Google 2015; NASA 2015). Among the 8-day, 16-day and 32-day compositions, the 8-day and 16-day composition data have earlier saturation data and a higher accuracy than the 32-day composition; thus, the 16-day composition strategy is recommended in this study for the identification of crop types if the daily NDVI time series cannot be acquired.

4.3. Classification uncertainty

Figure 12 showed the classification uncertainty of the two study regions. In both study regions, the uncertainty ratio decreased with time series length. In Bole, the daily composition time series had the lowest uncertainty ratio when the time series length was shorter than 140 days. After day 140, the daily, 8-day and 16-day composition strategies had similar classification uncertainties and the saturated uncertainty was around 0.4 at 140-day. The 32-day composition had high classification uncertainty and the uncertainty ratio decreased to 0.4 at 170-day. In Luntai, the daily, 8-day and 16-day time series had similar uncertainties and the uncertainty ratio
dropped at 90-day and finally decreased to 0.3. The classification uncertainty of the 32-day composition time series was higher than the other compositions over the entire growing season.

4.4. Crop Distributions

Figures 13 and 14 showed that the crop distribution maps generated from the four NDVI time series composition strategies were similar. Cotton was the dominant crop in both study regions. In Bole, the crop fields were characterized by homogenous crop fields with large field sizes. Compared with crop the distribution maps generated from the daily, 8-day and 16-day composition time series, the crop map derived from the 32-day composition time series result was more speckled, in particular some cotton pixels at the field boundaries were mislabeled as grape crops. The cropland in Luntai was fragmented, so there were a large number of mixed pixels in the 30m image time series. These mixed pixels had low NDVI because they comprised crops and the farm lanes. As melon had lower NDVI than cotton, maize and orchards, the mixed pixels were mostly misclassified as melon. As our validation samples were all pure pixels, the accuracy assessments did not describe the misclassifications of the mixed pixels in Luntai.

5. Conclusion

This study compared the performances of daily, 8-day, 16-day and 32-day composition NDVI time series for crop types classification and reached the following conclusions: (1) the crops could be classified early as crop separability, classification accuracies and uncertainties saturated early. When using the daily composition NDVI time series, the OAs saturated at 113-day and 116-day, and the saturated OAs were 86.13% and 91.89% in Bole and Luntai. Longer time series could not improve the classification accuracy. (2) Cotton could be identified 40–60 days and 35–45 days before harvesting in Bole and Luntai when using the daily, 8-day and 16-day composition NDVI time series as both the PAs and UAs were higher than 85%. (3) The daily NDVI time series outperformed the other composition strategies because of the higher classification accuracies. However, if the daily NDVI time series cannot be acquired, the 16-day composition strategy was recommended in this study as the 8-day and 16-day compositions generated similar classification accuracies and outperformed the 32-day composition results. In the future, as more sensors or even geosynchronous orbit satellites (Xu et al. 2017) at a medium resolution become available, we would further improve the crop classification in early season.

Acknowledgments:
We thank the National Bureau of Statistics of China (NBS) Survey Office in Xinjiang and the native farmers for help us collect field data in Xinjiang.

References

Adam E, and Mutanga O. 2009. Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. Isprs Journal of Photogrammetry and Remote Sensing 64:612-620. http://dx.doi.org/10.1016/j.isprsjprs.2009.04.004

Azar R, Villa P, Stroppiana D, Crema A, Boschetti M, and Brivio PA. 2016. Assessing in-season crop classification performance using satellite data: a test case in Northern Italy. European Journal of Remote Sensing 49:361-380. 10.5721/EuJRS20164920

Boryan C, Yang ZW, Mueller R, and Craig M. 2011. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International 26:341-358. 10.1080/10106049.2011.562309

Breiman L. 2001. Random forests. Machine Learning 45:5-32. 10.1023/a:1010933404324

Breiman L, Cutler A, Liaw A, and Wiener M. 2013. Breiman and Cutler's random forests for classification and regression.

Bruzzone L, Roli F, and Serpico SB. 1995. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. Ieee Transactions on Geoscience and Remote Sensing 33:1318-1321. 10.1109/36.477187

Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37:35-46. http://dx.doi.org/10.1016/0034-4257(91)90048-B

ESA. 2016. Sentinel-2 for Agriculture. Available at http://www.esa-sen2agri.org/SitePages/sentinel2.aspx.

Gallego J., Craig M., Michaelsen J., Bossyns B., and S. F. 2008. Best practices for crop area estimation with Remote Sensing.

Gao F, Masek J, Schwaller M, and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. Ieee Transactions on Geoscience and Remote Sensing 44:2207-2218. 10.1109/tgrs.2006.872081

Gong P, Wang J, Yu L, Zhao YC, Zhao YY, Liang L, Niu ZG, Huang XM, Fu HH, Liu S, Li CC, Li XY, Fu W, Liu CX, Xu Y, Wang XY, Cheng Q, Hu LY, Yao WB, Zhang H, Zhu P, Zhao ZY, Zhang HY, Zheng YM, Ji LY, ZhangYW, Chen H, Yan A, Guo JH, Yu L, Wang L, Liu XJ, Shi TT, Zhu MH, Chen YL, Yang GW, Tang P, Xu B, Giri C, Clinton N, Zhu ZL, Chen J, and Chen J. 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing 34:2607-2654. 10.1080/01431161.2012.748992

Google. 2015. Google Earth Engine. Available at https://developers.google.com/earth-engine/.

Hao P, Wang L, and Niu Z. 2015a. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China. PLoS ONE 10:e0137748. 10.1371/journal.pone.0137748

Hao P, Wang L, and Niu Z. 2015b. Potential of multitemporal Gaofen-1 panchromatic/multispectral images for crop classification: case study in Xinjiang Uygur Autonomous Region, China. Journal of Applied Remote Sensing
Hao P, Wang L, Zhan Y, and Niu Z. 2016. Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China. *Isprs International Journal of Geo-Information* 5:67.

Hao PY, Zhan YL, Wang L, Niu Z, and Shakir M. 2015c. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. *Remote Sensing* 7:5347-5369. 10.3390/rs70505347

Hao; P, Wang; L, Niu; Z, Aablikim; A, Huang; N, Xu; S, and Chen; F. 2014. The Potential of Time Series Merged from Landsat-5 TM and HJ-1 CCD for Crop Classification: A Case Study for Bole and Manas Counties in Xinjiang, China. *Remote Sensing* 6:7610-7631. 10.3390/rs6087610

Howard DM, and Wylie BK. 2014. Annual Crop Type Classification of the US Great Plains for 2000 to 2011. *Photogrammetric Engineering and Remote Sensing* 80:537-549.

Immitzer M, Vuolo F, and Atzberger C. 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. *Remote Sensing* 8:166.

Ju JC, and Roy DP. 2008. The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally. *Remote Sensing of Environment* 112:1196-1211. 10.1016/j.rse.2007.08.011

Loosvelt L, Peters J, Skriver H, Lievens H, Van Coillie FMB, De Baets B, and Verhoest NEC. 2012. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. *International Journal of Applied Earth Observation and Geoinformation* 19:173-184. 10.1016/j.jag.2012.05.011

Low F, Michel U, Dech S, and Conrad C. 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. *Isprs Journal of Photogrammetry and Remote Sensing* 85:102-119. 10.1016/j.isprsjprs.2013.08.007

Maselli F, Gilabert MA, and Conese C. 1998. Integration of high and low resolution NDVI data for monitoring vegetation in Mediterranean environments. *Remote Sensing of Environment* 63:208-218. 10.1016/s0034-4257(97)00131-4

Medjahed SA, Ait Saadi T, Benyettou A, and Ouali M. 2016. Gray Wolf Optimizer for hyperspectral band selection. *Applied Soft Computing* 40:178-186. 10.1016/j.asoc.2015.09.045

Murakami T, Ogawa S, Ishitsuka N, Kumagai K, and Saito G. 2001. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. *International Journal of Remote Sensing* 22:1335-1348. 10.1080/01431160151144378

NASA. 2015. MODIS: Moderate Resolution Imaging Spectroradiometer. *Available at http://nsidc.org/data/modis/* (accessed Dec, 31, 2015).

Pal NR, and Bezdek JC. 1994. MEASURING FUZZY UNCERTAINTY. *IEEE Transactions on Fuzzy Systems* 2:107-118. 10.1109/91.277960

Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, and Jeganathan C. 2012. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. *Remote Sensing of Environment* 121:93-107. 10.1016/j.rse.2011.12.003

Skakun S, Franch B, Vermote E, Roger J-C, Becker-Reshef I, Justice C, and Kussul N. 2017. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture
van Leeuwen WJD, Huete AR, and Laing TW. 1999. MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data. *Remote Sensing of Environment* 69:264-280. https://doi.org/10.1016/S0034-4257(99)00022-X

Vaudour E, Noirot-Cosson PE, and Membrive O. 2015. Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images. *International Journal of Applied Earth Observation and Geoinformation* 42:128-141. 10.1016/j.jag.2015.06.003

Verbeiren S, Eerens H, Piccard I, Bauwens I, and Van Orshoven J. 2008. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. *International Journal of Applied Earth Observation and Geoinformation* 10:486-497. 10.1016/j.jag.2006.12.003

Villa P, Stroppiana D, Fontanelli G, Azar R, and Brivio P. 2015. In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features. *Remote Sensing* 7:12859-12886. 10.3390/rs71012859

Waldhoff G, Lussem U, and Bareth G. 2017. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. *International Journal of Applied Earth Observation and Geoinformation* 61:55-69. https://doi.org/10.1016/j.jag.2017.04.009

Wardlow BD, and Egbert SL. 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. *Remote Sensing of Environment* 112:1096-1116. http://dx.doi.org/10.1016/j.rse.2007.07.019

Wardlow BD, and Egbert SL. 2010. A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas. *International Journal of Remote Sensing* 31:805-830. 10.1080/01431160902897858

Wu M, Huang W, Niu Z, and Wang C. 2015a. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data. *Sensors* 15:24002-24025. 10.3390/s150924002

Wu M, Li H, Huang W, Niu Z, and Wang C. 2015b. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land temperature products for environmental process monitoring. *Environmental Science-Processes & Impacts* 17:1396-1404. 10.1039/c5em00254k

Wu M, Wu C, Huang W, Niu Z, and Wang C. 2015c. High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. *Computers and Electronics in Agriculture* 115:1-11. 10.1016/j.compag.2015.05.003

Wu M, Zhang X, Huang W, Niu Z, Wang C, Li W, and Hao P. 2015d. Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WVF, Landsat, and MODIS Data for Crop Monitoring. *Remote Sensing* 7:16293-16314. 10.3390/rs71215826

Wu MQ, Niu Z, Wang CY, Wu CY, and Wang L. 2012. Use of MODIS and Landsat time series data to generate high-
resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. *Journal of Applied Remote Sensing* 6. 10.1117/1.jrs.6.063507

Xiong J, Thenkabail P, Tilton J, Gumma M, Teluguntla P, Oliphant A, Congalton R, Yadav K, and Gorelick N. 2017. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. *Remote Sensing* 9:1065.

Xu J, Liang Y, Liu J, and Huang Z. 2017. Multi-Frame Super-Resolution of Gaofen-4 Remote Sensing Images. *Sensors* 17:2142.

Xu W, Xinxiang NIU, and Xiuju B. 2007. The Calculations and Analyses on Thermal Production Potential of Cotton in Xinjiang. *Cotton Science* 19:455-460.

Zhan Y, Shakir M, Hao P, and Niu Z. 2017. The effect of EVI time series density on crop classification accuracy. *Optik - International Journal for Light and Electron Optics* 157.

Zhang JH, Feng LL, and Yao FM. 2014. Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. *Isprs Journal of Photogrammetry and Remote Sensing* 94:102-113. 10.1016/j.isprsjprs.2014.04.023

Zhang X, Friedl MA, and Schaaf CB. 2009. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. *International Journal of Remote Sensing* 30:2061-2074. 10.1080/01431160802549237

Zhou FQ, Zhang AN, and Townley-Smith L. 2013. A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level. *Isprs Journal of Photogrammetry and Remote Sensing* 84:114-129. 10.1016/j.isprsjprs.2013.07.008

Zhukov B, Oertel D, Lanzl F, and Reinhackel G. 1999. Unmixing-based multisensor multiresolution image fusion. *Ieee Transactions on Geoscience and Remote Sensing* 37:1212-1226. 10.1109/36.763276
Figure 1

The location of Study regions in Xinjiang

The location of Bole County and Luntai County in Xinjiang and; zoom into the study region (right part).
Figure 2

Crop calendar of the major crops in this study

(a) **Bole**

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cotton	I	II	III									
	Planting	Developing	Harvesting									
Grape												
Watermelon												
Spring Maize												

(b) **Luntai**

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Winter Wheat												
Spring Maize												
Summer Maize												
Cotton												
Melon												
Figure 3

Converting the field survey plots to polygons

(a) Three field surveyed plots; (b) the polygons extended from field plots and (c) the sample points (green points) on the Landsat image.
Figure 4

Flowchart of this study

- MODIS, Landsat, HJ and Gaofen fusion data
- Daily NDVI time series
- 8-day composition NDVI data
- 16-day composition NDVI data
- 32-day composition NDVI data
- JM distance J_{NM} distance
- Random Forest
- Crop separability
- Crop classification map
- Crop classification uncertainty
- Effect of time series length on classification performance
- Comparison of four composition strategies
Figure 5

Crop separability of four image composition strategies in Bole and Luntai
Figure 6

Pair-wise JM distance for different composition strategies (Bole)
Figure 7

Pair-wise JM distance for different composition strategies (Luntai)
Figure 8

Overall accuracy and Kappa coefficient in Bole and Luntai
Figure 9

Producer's accuracies and user's accuracies in Bole
Figure 10

Producer's accuracies and user's accuracies in Luntai
Figure 11

Temporal NDVI time series of some confusion crops

Black lines are the mean NDVI time series of each crop, blue lines are the Standard Deviation as Y error.
Figure 12

Classification uncertainty ratio in Bole and Luntai

(a) Bole
(b) Luntai

Uncertainty ratio
0.0 0.2 0.4 0.6 0.8 1.0
0 30 60 90 120 150 180 210
Time series Length

Time Series Length

Daily 8 day 16 day 32 day
Figure 13

Subset Crop - type mapping in Bole

This Figure was obtained using images of the entire time series of each image composition strategies.
Figure 14

Subset Crop type mapping in Luntai

This Figure was obtained using images of the entire time series from each image composition strategy.
Table 1 (on next page)

Four image composition strategies
Data	Daily Composition	8-day Composition	16-day Composition	32-day Composition
97	NDVI$_{97}$	max(NDVI$_{97}$)	max(NDVI$_{97}$)	max(NDVI$_{97}$)
98	NDVI$_{97}$, NDVI$_{98}$	max(NDVI$_{97}$−NDVI$_{98}$)	max(NDVI$_{97}$−NDVI$_{98}$)	max(NDVI$_{97}$−NDVI$_{98}$)
99	NDVI$_{97}$, NDVI$_{98}$, NDVI$_{99}$	max(NDVI$_{97}$−NDVI$_{99}$)	max(NDVI$_{97}$−NDVI$_{99}$)	max(NDVI$_{97}$−NDVI$_{99}$)
100	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{100}$	max(NDVI$_{97}$−NDVI$_{100}$)	max(NDVI$_{97}$−NDVI$_{100}$)	max(NDVI$_{97}$−NDVI$_{100}$)
101	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{101}$	max(NDVI$_{97}$−NDVI$_{101}$)	max(NDVI$_{97}$−NDVI$_{101}$)	max(NDVI$_{97}$−NDVI$_{101}$)
102	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{102}$	max(NDVI$_{97}$−NDVI$_{102}$)	max(NDVI$_{97}$−NDVI$_{102}$)	max(NDVI$_{97}$−NDVI$_{102}$)
103	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{103}$	max(NDVI$_{97}$−NDVI$_{103}$)	max(NDVI$_{97}$−NDVI$_{103}$)	max(NDVI$_{97}$−NDVI$_{103}$)
104	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{104}$	max(NDVI$_{97}$−NDVI$_{104}$)	max(NDVI$_{97}$−NDVI$_{104}$)	max(NDVI$_{97}$−NDVI$_{104}$)
105	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{105}$	max(NDVI$_{97}$−NDVI$_{105}$)	max(NDVI$_{97}$−NDVI$_{105}$)	max(NDVI$_{97}$−NDVI$_{105}$)
106	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{106}$	max(NDVI$_{97}$−NDVI$_{106}$)	max(NDVI$_{97}$−NDVI$_{106}$)	max(NDVI$_{97}$−NDVI$_{106}$)
107	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{107}$	max(NDVI$_{97}$−NDVI$_{107}$)	max(NDVI$_{97}$−NDVI$_{107}$)	max(NDVI$_{97}$−NDVI$_{107}$)
108	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{108}$	max(NDVI$_{97}$−NDVI$_{108}$)	max(NDVI$_{97}$−NDVI$_{108}$)	max(NDVI$_{97}$−NDVI$_{108}$)
109	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{109}$	max(NDVI$_{97}$−NDVI$_{109}$)	max(NDVI$_{97}$−NDVI$_{109}$)	max(NDVI$_{97}$−NDVI$_{109}$)
110	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{110}$	max(NDVI$_{97}$−NDVI$_{110}$)	max(NDVI$_{97}$−NDVI$_{110}$)	max(NDVI$_{97}$−NDVI$_{110}$)
111	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{111}$	max(NDVI$_{97}$−NDVI$_{111}$)	max(NDVI$_{97}$−NDVI$_{111}$)	max(NDVI$_{97}$−NDVI$_{111}$)
112	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{112}$	max(NDVI$_{97}$−NDVI$_{112}$)	max(NDVI$_{97}$−NDVI$_{112}$)	max(NDVI$_{97}$−NDVI$_{112}$)
113	NDVI$_{97}$, NDVI$_{98}$,... NDVI$_{113}$	max(NDVI$_{97}$−NDVI$_{113}$)	max(NDVI$_{97}$−NDVI$_{113}$)	max(NDVI$_{97}$−NDVI$_{113}$)
Table 2 (on next page)

Number of surveyed fields, training and validation samples in the study area
	Training	Validation		
	Polygon Number	Sample number	Polygon Number	Sample number
Bole				
Cotton	54	1510	29	486
Grape	26	852	11	130
Maize	28	657	23	210
Watermelon	7	726	5	232
Luntai				
Cotton	50	309	44	236
Maize	20	138	18	89
Melon	19	106	12	56
Orchard	23	118	25	91
Wheat-Maize	22	111	29	74
Table 3 (on next page)

Shortest time series length when both the PA and UA were higher than 85%

"-" in the table either PA or UA of the crop was lower than 85% using the corresponding composition strategy
Bole

	Cotton	Grape	Maize	Watermelon
Daily	85	90	156	89
8-day	102	112	190	123
16-day	107	121	202	131
32-day	162	153	-	131

Luntai

	Cotton	Maize	Melon	Orchard	Wheat-maize
Daily	104	-	97	97	97
8-day	113	-	113	98	113
16-day	115	-	113	98	113
32-day	170	-	109	115	113