Antiresonance Phase shift in strongly coupled cavity QED

C. Sames et al., PRL 112, 043601 (2014).

Myounggyu Hwang
Quantum field laser laboratory
Group summary

Experiments with single photons and individual atoms
Quantum Dynamics Division, Prof. Gerhard Rempe

1 director
4 scientists
1 postdoc
5 technicians
3 assistants
16 doctoral candidates
4 master student

- Bose Einstein Condensation (BEC)
- Cavity Quantum Electrodynamics
- Quantum Information Processing
- Cold Polar Molecules
Anti-resonance of coupled oscillators

- At anti-resonance frequency, one oscillator has a minimum in the amplitude and a large shift in oscillation phase.

- Anti-resonances are caused by destructive interference between an external driving force and an interaction with another oscillator.
Anti-resonance of coupled oscillators

\[
\begin{align*}
\dot{x}_1 + 2\gamma_1 x_1 + \omega_1^2 x_1 - 2g\omega_1 x_2 &= 2F \cos \omega t \\
\dot{x}_2 + 2\gamma_2 x_2 + \omega_2^2 x_2 - 2g\omega_2 x_1 &= 0
\end{align*}
\]

\[
\begin{align*}
\alpha_1 &= \omega_1 x_1 + ip_1/m_1 \\
\alpha_2 &= \omega_2 x_2 + ip_2/m_1 \\
\Delta_i &= \omega - \omega_i
\end{align*}
\]

In rotating frame of \(\omega\), with r.w.a.,

\[
\begin{align*}
\dot{\alpha}_1 &= i(\Delta_1 + i\gamma_1)\alpha_1 - ig\left(\frac{\omega_1}{\omega_2}\right)\alpha_2 + iF \\
\dot{\alpha}_2 &= i(\Delta_2 + i\gamma_2)\alpha_2 - ig\left(\frac{\omega_2}{\omega_1}\right)\alpha_1
\end{align*}
\]

Steady state solution is

\[
\begin{align*}
\alpha_{1,ss} &= \frac{-F(\Delta_2+i\gamma_2)}{(\Delta_1+i\gamma_1)(\Delta_2+i\gamma_2)-g^2} \\
\alpha_{2,ss} &= \frac{\omega_2}{\omega_1} \frac{-Fg}{(\Delta_1+i\gamma_1)(\Delta_2+i\gamma_2)-g^2}
\end{align*}
\]
Anti-resonance of atom-cavity system

\[
\langle \hat{a} \rangle = \frac{\eta (\Delta_{pa} + i \gamma)}{(\Delta_{pa} + i \gamma)(\Delta_{pc} + i \kappa) - g^2}
\]

\[
\begin{align*}
\Delta_{pa} &= \omega - \omega_{\text{atom}} \\
\Delta_{pc} &= \omega - \omega_{\text{cavity}}
\end{align*}
\]

\[
\times \quad \begin{cases}
\alpha_{1,SS} = \frac{-F(\Delta_2 + i \gamma)}{(\Delta_1 + i \gamma_1)(\Delta_2 + i \gamma_2) - g^2} \\
\alpha_{2,SS} = \frac{\omega_2}{\omega_1} \frac{-Fg}{(\Delta_1 + i \gamma_1)(\Delta_2 + i \gamma_2) - g^2}
\end{cases}
\]
3. Experimental setup

- Single ^{85}Rb in intra-cavity dipole trap (785nm)
- Heterodyne measurement
- Strong coupling: $(g_0, \gamma, \kappa)/2\pi = (16, 3.0, 1.5)\text{MHz}$
- ω_{atom} is controllable by ac Stark shift
4. Result: Δ_{pc} vs. phase shift

- Anti-resonant frequency is at $\Delta_{pa} = 0$. i.e. $\Delta_{pc} = \Delta_{ac} = -3MHz$
- Negative slope occurs at anti-resonant frequency.

\[
\langle \hat{a} \rangle = \frac{\eta (\Delta_{pa} + i\gamma)}{(\Delta_{pa} + i\gamma)(\Delta_{pc} + i\kappa) - g^2}
\]
5. Result: Δ_{pc} vs. phase shift, varying Δ_{ac}

- $\Delta_{ac} = (-14, -5, 12) MHz$
- Netagive slope is at anti-resonant frequency.

$$\langle \hat{a} \rangle = \frac{\eta(\Delta_{pa} + i\gamma)}{(\Delta_{pa} + i\gamma)(\Delta_{pc} + i\kappa) - \xi^2}$$
5. Result: Δ_{pa} vs. phase shift

- $\Delta_{pc} = 0 MHz$.
- $\Delta_{pa} = \Delta_{ca}$ is controlled by dipole trap power.
- 140 degree of phase shift is largest yet observed from a single emitter.

\[
\langle \hat{a} \rangle = \frac{\eta(\Delta_{pa} + i\gamma)}{(\Delta_{pa} + i\gamma)(\Delta_{pc} + i\kappa) - \xi^2}
\]