Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to Editors

A genetic insight into vitamin D binding protein and COVID-19

ARTICLE INFO

Keywords
- COVID-19
- DBP
- Genetic polymorphism
- Vitamin D
- Immune response
- Vitamin D deficiency

ABSTRACT

It’s since December 2019 that Corona virus disease (COVID-19) has emerged to be the global issue of concern. A “pandemic”; this is what WHO has declared about the COVID-19 outbreak on March 3rd, 2020. Vitamin D and its deficiency have recently been claimed to be one of the potential factors affecting COVID-19 risks and outcomes [1]. As Selberstein et al., has recently discussed the effect of vitamin D deficiency, and the role of vitamin D supplementation in COVID-19 patients [2], I’d believe that vitamin D binding protein (DBP) is maybe also involved. A closer look on DBP and its action on regulating the circulatory vitamin D levels, its polymorphisms and their impact on COVID-19 prevalence and mortality, will be briefly discussed.

Vitamin D deficiency is considered as a global pandemic, with more than one billion subjects affected [3]. This deficiency is even more obvious in patients with kidney diseases, lacking the 1-hydroxy activating step [4]. However, there is increasing body of evidence supporting the idea of the extra-renal vitamin D metabolism machinery, through extra-renal vitamin D receptors. These receptors are not only regulating the vitamin D circulatory levels [4], but also seems to play a critical role on its immunomodulatory responses [5].

Recently, vitamin D deficiency was accused to be a risk factor for COVID-19. Vitamin D could act as an inhibitor for the virus entry through interacting with the angiotensin converting enzyme-2 receptor (ACE2), the one that serves as the entry point for the virus which having its (S) protein spike [6]. Calcitriol or (di-hydroxy vitamin D) can exert pronounced effects on ACE2/Angiotensin (1–7)/Mas receptor axis, enhancing the expression of ACE2 [7]. However, ACE2 polymorphisms have also been reported in different populations [6]. Additionally, there are increasing evidences reporting the vitamin D modulationary response on the macrophages, preventing them from the extra release of inflammatory cytokines and chemokines (Cytokine storm) [8].

As there are already published data correlating vitamin D deficiency with severe COVID-19, and illustrating the role of vitamin D in both adaptive and innate immunity, various ongoing studies are also addressing the effect of vitamin D and vitamin D related gene polymorphisms on patients with COVID-19 [9,10].

Vitamin D binding protein (DBP); which is mainly produced in liver, is regulating vitamin D circulating metabolites (free and total metabolites)[11,12]. It’s worth noting that DBP is not influenced by vitamin D levels, but it’s regulated by estrogen, glucocorticoids and inflammatory cytokines.

Indeed, DBP is known to be the most polymorphic protein, with it different alleles that are substantially affecting its biologic functions [13]. There are two most common DBP alleles; rs7041 and rs4588, which have been implicated on the pathogenesis of various clinical conditions [11], mainly by their affinity to vitamin D. Higher plasma levels of 25-hydroxy vitamin D (25(OH)D) were shown to be associated with subjects having the AA genotype within the rs4588 locus. While patients with GG genotype have shown less 25(OH)D levels after same dose of vitamin D supplementation [13]. Interestingly, both allelic variants (rs7041 and rs4588) are also donated to be associated to chronic obstructive pulmonary disease (COPD) [14].

On the other hand, it was also noticed that rs7041 locus was found to be associated with higher susceptibility to hepatitis C viral infection [15]. As DBP gene polymorphisms have been greatly correlated with higher susceptibility of infections, and vitamin D deficiency in different population [16–18], they may also have a role in COVID-19.

There are different DBP isoforms influencing vitamin D serum concentration and its bio-availability [14]. By combining this information with the discussed role of vitamin D and its impact on the pathogenesis of COVID-19, I’d hypothesize that a more severe reaction against viral infections is modulated by the human immune system, if no necessary concentrations of bioavailable vitamin D presented.

A recent study has showed the rs7041 locus to be associated with increased risk of COVID-19 infection and mortality [19]. Therefore, the association of the genetic polymorphisms of DBP and COVID-19 may depend on the modulatory pleiotropic effects of the bioavailable vitamin D levels. However, there’s a genome-wide meta-analysis that has illustrated the DBP to have more four SNPs, which are also affecting the concentration of the 25(OH)D levels: rs2282679 (DBP), rs10741657 (near CYP2R1), rs12785878 (near DHCR7), and finally rs6013897 (at CYP24A1) [20].
In conclusion, I’d highlight the need for further genetic analysis regarding the actual role of DBP genetic variations on the bioavailable vitamin D levels. There’s also a need for more detailed studies regarding these genetic alleles, and their relation to the severity and mortality of COVID-19 infected patients. The use of both clinical research and genetic analysis may help us decipher the ambiguities of COVID-19 pandemic.

Funding

No source of funding or sponsorship.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Alshahawey M. COVID-19 and Vitamin D deficiency; the two pandemics. Are they correlated? Int J Vitam Nutr Res 2020;1:1–2.

[2] Silberstein M. Vitamin D: a simpler alternative to tocilizumab for trial in COVID-19? Med Hypotheses 2020;140:109767. https://doi.org/10.1016/j.mehy.2020.109767.

[3] Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocrine Metabolic Disorders 2017;18(2):153–65.

[4] Alshahawey M, El Wakeel L, Elsaid T, Sabri NA. The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: a randomized placebo controlled study. Nutrition, Metabolism and Cardiovascular Diseases. 2020.

[5] Azmi H, Hassou N, Ennaji MM. Vitamin D Immunomodulatory role in chronic and acute viral diseases. Emerging and Reemerging Viral Pathogens: Elsevier; 2020. p. 489-506.

[6] Alshahawey M, Raslan M, Sabri N. Sex-mediated effects of ACE2 and TMPRSS2 on the incidence and severity of COVID-19; the need for genetic implementation. Curr Res Transl Med 2020;68(4):149–50.

[7] Cui C, Xu P, Li G, Qiao Yi, Han W, Geng C, et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol 2019;26:101295. https://doi.org/10.1016/j.redox.2019.101295.

[8] Helming L, Bose J, Ehrchen J, Schiebe S, Frahm T, Geffers R, et al. 1α, 25-dihydroxyvitamin D3 is a potent suppressor of interferon γ-mediated macrophage activation. Blood 2005;106:4351–8.

[9] Xu Yi, Baylink DJ, Chen C-S, Reeves ME, Xiao J, Lacy C, et al. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuro-protective treatment for COVID-19. J Transl Med 2020;18(1). https://doi.org/10.1186/s12967-020-02488-5.

[10] Teymoori- Rad M, Marashi SM. Vitamin D and Covid-19: From potential therapeutic effects to unanswered questions. Rev Med Virol 2020;e2159.

[11] Bilde BD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol 2019; 10:317.

[12] Chun RF, Peery BE, Orwell ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 2014;144:132–7.

[13] Mehramiz M, Khayatzadeh SS, Esmaeily H, Ghasemi F, Sadeghi-Ardekani K, Teyf M, et al. Associations of vitamin D binding protein variants with the vitamin D-induced increase in serum 25-hydroxyvitamin D. Clin Nutr ESPEN 2019;29:59–64.

[14] Khanna R, Nandy D, Senapati S. Systematic review and meta-analysis to establish the association of common genetic variations in Vitamin D binding protein with chronic obstructive pulmonary disease. Front Genet 2019;10:413.

[15] Xie C-N, Yue M, Huang P, Tian T, Fan H-Z, Wu M-P, et al. Vitamin D binding protein polymorphisms influence susceptibility to hepatitis C virus infection in a high-risk Chinese population. Gene 2018;679:405-11.

[16] Takiar R, Lutsey PL, Zhao Di, Guallar E, Schneider ALC, Grans ME, et al. The associations of 25-hydroxyvitamin D levels, vitamin D binding protein gene polymorphisms, and race with risk of incident fracture-related hospitalization: twenty-year follow-up in a bi-ethnic cohort (the ARIC Study). Bone 2015;78:94-101.

[17] Michos ED, Misialek JR, Selvin E, Folsom AR, Pankow JS, Post WS, et al. 25-hydroxyvitamin D levels, vitamin D binding protein gene polymorphisms and incident coronary heart disease among whites and blacks: the ARIC study. Atherosclerosis 2015;241(1):12–7.

[18] Khan AH, Jafri L, Siddiqui A, Naureen G, Morris H, Moatter T. Polymorphisms in the GC gene for vitamin D binding protein and their association with vitamin D and bone mass in young adults. Metabolism 2019;9:11.

[19] Karcioglu Batur L, Hekim N. The role of DBP gene polymorphisms in the prevalence of new coronavirus disease 2019 infection and mortality rate. J Med Virol 2020;93(3):1409–13.

[20] Wang T, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. The Lancet 2010;376(9736):180–8.

Mona Alshahawey*

Department of Clinical Pharmacy, Faculty of Pharmacy Ain Shams University, Cairo, Egypt

* Address: Building 13, Omar Bin Khattab St., Sefarat District, Nasr City, Cairo, Egypt.

E-mail address: mona.elshahawy@pharm.asu.edu.eg.