Evolution of AAV-delivered therapeutics towards ultimate cures

Xiangjun He1 · Brian Anugerah Urip1 · Zhenjie Zhang1 · Chun Christopher Ngan1,2 · Bo Feng1,2,3,4

Received: 18 August 2020 / Revised: 18 December 2020 / Accepted: 23 December 2020 / Published online: 16 February 2021
© The Author(s) 2021

Abstract
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.

Keywords Gene therapy · Adeno-associated virus · Gene transfer · Gene editing

Development of AAV vector for gene therapy

Adeno-associated virus (AAV) is a small, non-enveloped, single-stranded DNA virus that belongs to the genus Dependovirus in the Parvovirus family. AAV was initially discovered in 1965 as a contaminant of an adenovirus (AdV) preparation [1], and later identified as a new infectant after antibodies to different AAV serotypes were detected in children [2]. As a dependovirus, AAV is replication-defective in the absence of a helper virus such as adenovirus or herpes virus. During the latent phase, AAV will integrate into the host cell genome and remain dormant until co-infection occurs and triggers viral replication [3]. The wild-type AAV (wtAAV) contains a single-stranded DNA genome approximately 4.7 kb in length, which consists of rep and cap genes flanked by two inverted terminal repeats (ITRs). In later years, studies found that the AAV genes could be expressed without integration, and a recombinant DNA sequence between the AAV2 ITRs in an engineered vector could be successfully encapsulated into pseudovirus by providing rep and cap genes in trans [3]. As a result, the engineered AAV vectors possess the capacity to carry a recombinant genome up to ~ 4.7 kb, and can be pseudotyped with ease using different cap genes to generate virions with desired tissue tropisms. Similar to wtAAVs, the recombinant AAVs are low-immunogenic and non-pathogenic, while due to the lack of other viral elements, the AAV vector genome largely remains non-integrative in host cells. Collectively, these features make the AAV system an ideal delivery tool for in vivo gene transfer and gene augmentation therapy [4].
The first AAV-based in vivo gene delivery was reported in 1993 when Flotte et al. stably expressed cystic fibrosis membrane conductance regulator (CFTR) in rabbit lung for up to 6 months [5]. The promising results led to the first phase I clinical trial of AAV-based gene therapy in 1996 which delivered the CFTR gene for treating patients with cystic fibrosis [6]. In 2000, another early study reported the successful delivery of human factor IX (hFIX) using AAV vectors to ameliorate the bleeding symptoms in patients with hemophilia B [7], although the follow-up study of these patients revealed elevated levels of neutralizing antibodies (NAbs) against AAV vectors, which abolished the long-term efficacy of the treatment [8]. As a result, subsequent studies focused on exploring various strategies to overcome the issues associated with adaptive immune responses to AAV vectors. Eventually, successful therapeutic gene transfer was achieved by selectively recruiting patients with low NAbs and administering short-term anti-T cell immunosuppressive agents [9, 10].

Recent progress of AAV-based gene therapy in clinics

Over the last decade, AAV gene therapy has accomplished remarkable progress and is finding its way into medical practice (Fig. 1). In 2012, the European Medicines Agency (EMA) approved the first-ever AAV-based gene therapy Glybera [11], a recombinant AAV product that delivers the human lipoprotein lipase (LPL) gene to treat hereditary lipoprotein lipase deficiency (LPLD) [12]. Five years later, Luxturna (voretigene neparvovec-rxyl), another AAV gene therapy for RPE65-mediated inherited retinal dystrophy, was approved by the United States Food and Drug Administration (FDA) and entered the US market [13, 14]. Recently, Zolgensma (onasemnogene abeparvovec), an AAV product delivering a functional copy of the SMN1 gene for spinal muscular atrophy type 1 (SMA1), was approved by the FDA in 2019 and became the third AAV-based gene therapy product in the market [15–17] (Table 1).

The continuous development of AAV vectors has provided an excellent treatment modality for inherited ocular disorders. The eye is considered an attractive target organ due to (i) high accessibility for AAV delivery; (ii) immune-privileged environment maintained by the blood-retinal barrier; and (iii) enclosed structure and small tissue size which allows using lower vector dose to achieve therapeutic benefits [18]. As a result, the number of new clinical trials for ocular gene therapies has been steadily increasing for the past 5 years. Among the ongoing trials, approximately 80% are currently in phase 1/2, with estimated 70% (more than 40 trials) that are using AAV vectors (https://clinicaltrials.gov/) [18].

Gene therapy trials for hemophilia have been actively pursued since the 1990s. The earlier trials showed that AAV delivery was well tolerated in human patients with transient elevation of liver enzymes which then returned to the normal level without manifesting adverse side effects [7]. The clinical data also revealed that the presence of NAbs against natural AAVs abolished the efficacy of the AAV vector-delivered treatment [8]. These findings suggested to adopt strategies such as selective recruitment of patients with low NAbs and co-administration with a short-term anti-T cell suppressants in subsequent clinical trials, which eventually led to the first long-term success for hemophilia B gene therapy in 2011 [9, 10]. The study recruited patients with severe hemophilia B and divided them into three groups to receive a single dose of scAAV2/8-LP1-hFIXco vectors at 2×10^{11}, 6×10^{11}, and 2×10^{12} vg/kg. The patients from all groups exhibited a stable dose-dependent increase in FIX levels [10]. Markedly, in the high-dose cohort, all six patients showed a consistent increase of plasma FIX that reached $5.1 \pm 1.7\%$ of normal level together with bleeding episodes reduced by more than 90% [10].

Seven years later, a follow-up investigation confirmed stable maintenance of the FIX levels and hemostasis in all of these patients [19]. These promising results prompted subsequent
clinical trial programs to optimize the AAV delivery and input dose. UniQure carried out a clinical trial delivering the scAAV2/8-LP1-hFIXco vector using AAV5 capsid (AMT-060) at the dose of 5×10^{12} and 2×10^{13} vg/kg, and achieved therapeutic efficacy and safety profile similar to the previous clinical trial using the AAV8 capsid (NCT02396342; EudraCT2013-005579-42) [20]. Spark Therapeutics used a modified-AAV8 capsid (SPK-9001) to deliver hyperactive FIX variant (R338L) Padua in a clinical trial for hemophilia B, which further reduced the input dose (5×10^{11} vg/kg) to achieve sustained FIX activity at around 33.7 ± 18.5% of the normal level [21]. These results provided the data necessary for expanding the clinical trial for SPK-9001 into phase 3 (NCT03587116) as well as testing AAV5- and AAVS3-delivered hFIX-Pauda (NCT03489291, NCT03369444) in new phase 1 trials, where long-term monitoring will be necessary to determine the efficacy of the treatment [22].

The advancement of AAV gene therapy for hemophilia B has also expedited the approvals of clinical trials for hemophilia A. In 2017, BioMarin Pharmaceutical reported the success of their first phase 1/2 clinical trial using AAV5 to deliver the codon-optimized B domain-deleted F8 cDNA (BDD-FVIII) (BMN 270) into patients with severe hemophilia A and achieved FVIII activity at around 77% of the normal level in the high-dose (6×10^{13} vg/kg)-treated group [23]. Immediately, BioMarin expanded the testing of BMN270 into two phase 3 trials, with an estimated 170 patients enrolled for the studies (NCT03370913, NCT03392974). In the following year, Spark Therapeutics quickly followed and unveiled the outcome of their phase 1/2 clinical trial using an engineered capsid AAV-LK03 to deliver BDD-FVIII (SPK-8011) with five out of seven patients treated with the high-dose vectors (2×10^{12} vg/kg) exhibited FVIII at 16–49% of the normal levels [24].

The research using hemophilia as a study model has pioneered liver-based gene therapy [22, 25]. The promising results from optimizing different aspects of recombinant AAV for gene delivery, including vectors, capsids, route, dose, toxicity, and immunogenicity, have paved the way for developing gene therapy for many other liver-based inherited diseases which have led to a number of clinical trials to date [26]. These include the AAV-based treatments for alpha 1-antitrypsin (AAT) deficiency, phenylketonuria (PKU), ornithine transcarbamylase deficiency, Crigler-Najjar syndrome, homozygous familial hypercholesterolemia (FH), and glycogen storage disease type 1a (GSD1a) (https://clinicaltrials.gov/) [27, 28].

A number of trials have also been undertaken to explore the therapeutic potential of AAV-based gene delivery into the central nervous system (CNS) to treat various neurological disorders. In the past, AAV delivery targeting the CNS had been challenging due to the protection of the blood-brain barrier (BBB). Since 2009, a series of studies have addressed the issue of BBB by delivering the AAV9 vectors through the
intracerebroventricular or intravenous route, which yielded significant GFP expression in mouse CNS and achieved therapeutic expression of SMN, a gene responsible for the inherited neuromuscular disorder SMA1 [29, 30]. Notably, clinical testing on the AAV9-delivered SMN expression for treating SMA1 [31] has led to the remarkable success of Zolgensma, the AAV gene therapy product approved by the FDA in Dec 2019 [17]. Currently, AAV vectors have been tested in clinical trials for a number of neurological disorders. AAV-based gene therapy using AAV9 and AAVrh10 vectors for Sanfilippo syndrome type A (MPSIII)A had passed safety tests and entered phase 2/3 clinical trials (NCT04360265; NCT03612869) [32]. Additionally, AAV2-delivered aromatic L-amino acid decarboxylase (AADC) gene therapy has completed phase 1/2 trial for pediatric patients with AADC deficiency (NCT02852213, NCT02926066) [33]. The safety profile and therapeutic potential of AAV-based gene therapy in monogenic neurological disorders have prompted researchers to expand gene therapy clinical trials to treat more complex neurological diseases, such as Parkinson’s disease and Alzheimer’s disease (https://clinicaltrials.gov/) [34].

It is noteworthy that hemophilia is low-hanging fruit because a very low level of gene transfer and expression is sufficient to confer therapeutic benefits [22, 25]. In many other diseases, much higher AAV doses are needed to convey therapeutic benefits from transgenes expression and have been reported to be associated with severe toxicity [15, 16, 26]. In a recent study, a clinical trial named “AT132” injected AAVV at 1×10^{14} and 3×10^{14} vg/kg to treat X-linked myotubular myopathy (NCT03199469). Six patients treated with low-dose AAV8 showed significant improvement in motor functions. However, three boys from the high-dose group all died from progressive liver dysfunction followed by sepsis [35]. These clinical deaths highlight the risks associated with intravenous administration of high-dose AAVs and prompt a more thorough assessment for patient recruitment, such as taking account of genetic pre-deposition and pre-existing liver disease [36] (Table 2). Together, further investigations are warranted to reduce input dose; the strategies include but are not limited to (i) enhancing transgene expression, (ii) improving viral capsid and cell-type-specific promoters, and (iii) administrating immunosuppressive agents to eliminate NAbs.

The current limitations and future of AAV-based gene therapy

Rapid loss of episomal AAV vectors in proliferating cells

The recombinant AAV vectors do not integrate into the host DNA but mainly remain as episomes in the transduced cells to stably express transgene for a prolonged period in somatic tissues [45]. However, among the tissues that are at either a growing stage or undergoing continuous turnover, cell proliferation will result in a fast and significant loss of transgene expression due to the dilution of non-replicative AAV vectors [46]. As a result, AAV-based gene delivery is rarely used to target fast-proliferating cells such as hematopoietic progenitors and stem cells. Evidences from multiple clinical studies on AAV-based gene therapy in adult patients with hemophilia B have also reported expression loss, despite a significant reduction in bleeding episodes [26]. Young children are seldom recruited in clinical trials for AAV-based gene therapy due to general safety concerns as well as vector dilution [10, 21]. Currently, there is limited data on the long-term efficacy of AAV gene therapy for the younger age group, which, therefore, warrants further investigations to overcome the challenges as mentioned above.

Small packaging capacity of AAV vectors for in vivo gene delivery

Recombinant AAVs are the leading platform for in vivo gene delivery. The most commonly used AAV vector is derived from wtAAV2 with a maximum packaging capacity of ~ 4.7 kb [4]. Several genes used in gene therapy such as dystrophin (for Duchenne muscular dystrophy), FVIII (for hemophilia A), and ABCA4 (for an inherited retinal degeneration) exceed the packaging capacity of AAV and, hence, are difficult to be packaged efficiently. To overcome the size limitation, truncated versions of the transgenes, such as the BDD-FVIII, together with mini promoters and polyA signals, were generated [23]. However, the gene truncation approach was not applicable to the mini-dystrophin gene with a size range of 6–8 kb after the removal of multiple internal regions [47]. Zhang et al. reported a dual-AAV vector approach to deliver split mini-dystrophin genes that will undergo trans-splicing to synthesize the mini-dystrophin protein inside the host cells [48], based on the rationale that the AAV genome undergoes concatemerization in host cells through homologous recombination between their ITR sequences [49]. In order to improve the transfer efficiency of larger genes, intein-mediated trans-splicing technology was also developed [50] and has shown promising gene transfer efficiency in preclinical studies [47, 51].

AAV vector engineering has also aimed at overcoming the slow onset of transgene expression attributed to the time-consuming conversion of single-stranded to double-stranded AAV genome [52]. The rate-limiting step of second-strand synthesis was resolved by introducing mutations into the ITR regions to prevent terminal resolution, thereby promoting self-complementation [53]. The generation of self-complementary AAV (scAAV) vectors allows quicker expression and greater persistence in target cells [53, 54]. The clinical application of scAAV has contributed to the
Table 2	AAV dose and serotypes used for systemic treatment in clinical trials										
Gene therapy names	**Disease**	**Gene to be delivered**	**AAV serotype**	**AAV dose (vg/kg)**	**Age and delivery route**	**Remarks**	**Clinical trials**	**Year**	**Sponsor/ manufacture**	**Ref**	
Hemophilia	Hemophilia B	hFIXco	AAV8	2×10^{11}, 6×10^{11}, 2×10^{12}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT00979238; phase 1	2009	UCL, St Jude Children’s Res Hospital; Children’s GMP in Memphis	[9, 10, 19]	
FLT180a	Hemophilia B	hFIXco	AA03	4.5×10^{11}, 7.5×10^{11}, 9.5×10^{11}, 1.5×10^{12}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT03694444; phase 1	2017	UCL	[22]	
AMT-060	Hemophilia B	hFIXco	AAV5	5×10^{12}, 2×10^{13}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT02396342; EudraCT2013-00579-42; phase 1/2	2015	UniQure	[20]	
AMT-061	Hemophilia B	hFIXco-Padua	AAV5	2×10^{13}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT03489291; phase 2; NCT03569891; phase 3	2018	UniQure; [22, 37]		
SPK-9001	Hemophilia B	hFIXco-Padua	AAV8	5×10^{11}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT02484092; phase 1/2; NCT03569891; phase 3	2015	Spark Therapeutics and Pfizer	[21]	
AAV-Spark100; SB-525	Hemophilia B; Hemophilia A	hFIXco-Padua; BDD-FVIII	AAV6	n.a.	18–64 years, males; i.v. infusion	n.a.	NCT03587116; phase 3	2018	Pfizer	n.a.	
BMN270 (AAV5-hFVIII-SQ)	Hemophilia A	BDD-FVIII	AAV5	6×10^{12}, 2×10^{13}, 4×10^{13}, 6×10^{13}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT02576795; EudraCT2014-003880-38; phase 1/2	2015	BioMarin	[23]	
BMN 270-301	Hemophilia A	BDD-FVIII	AAV5	6×10^{12}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT03370913; phase 3	2017	BioMarin	[38]	
BMN270-302	Hemophilia A	BDD-FVIII	AAV5	4×10^{13}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT03392974; phase 3	2018	BioMarin	n.a.	
SPK-8011	Hemophilia A	BDD-FVIII	AAV-LK03	5×10^{11}, 1×10^{12}, 2×10^{12}	≥ 18 years, males; i.v. infusion	Confirmed efficacy and safety	NCT03003533; phase 1/2	2016	Spark Therapeutics	[24]	
PF-07055480	Hemophilia A	BDD-FVIII	AAV6	3×10^{13}	18–64 years, males; i.v. infusion	Confirmed efficacy and safety	NCT04370054; phase 3	2020	Pfizer	[39]	
Spinal muscular atrophy (SMA)	SMA	SMN	AAV9	6.7×10^{13}, 2×10^{14}	≤ 6 months; i.v. infusion	Confirmed efficacy and safety	FDA approved	NCT02122952; phase 1	2014	AveXis, [15]	
Zolgensma (AVXS-101)	SMA	SMN	AAV9	n.a.	≤ 6 months; i.v. infusion	Confirmed efficacy and safety	FDA approved	NCT03505099; phase 3	2018	Novartis	n.a.
Zolgensma (AVXS-101)	SMA	SMN	AAV9	n.a.	≤ 6 months; i.v. infusion	Confirmed efficacy and safety	FDA approved	NCT03837184; phase 3	2019	Novartis	n.a.
Zolgensma (AVXS-101)	SMA	SMN	AAV9	1.1×10^{14}	≤ 42 days; i.v. infusion	Confirmed efficacy and safety	FDA approved	NCT03505099; phase 3	2018	Novartis	[42]
Systemic treatment for other inherited diseases	PKU	PAH	n.a.	3 dose levels not disclosed	≥ 15 years, i.v. infusion	n.a.	NCT04480567; phase 1/2	2020	BioMarin	n.a.	
aforementioned triumphant in achieving long-term therapeutic benefits in AAV gene therapy for hemophilia B [9, 10] and the FDA approval of Zolgensma [15–17].

Host immune response against AAV

AAVs are highly prevalent, with up to 70% of the world population are positive for AAV serotype 2. Although AAVs have not been reported to cause any clinical disease, humans infected with AAVs often develop immunological memory that renders AAV-based gene therapy ineffective [55].

Humoral immunity against AAV

It is estimated that a considerable proportion of individuals will develop humoral immunity against wtAAV in their lifetime [56]. Among the thirteen naturally occurring AAV serotypes, approximately 70% of the world population are seropositive for AAV1 and AAV2, 45% for AAV6 and AAV9, and 38% for AAV8 [55]. The prevalence of individual serotypes varies across geographical locations [57]. Infants often carry maternal anti-AAV antibodies which decline gradually in a few months after birth [58]. In AAV-based gene therapy, the pre-existing anti-AAV antibodies will recognize and prevent the AAV capsid epitopes from interacting with receptors on the recipient cells, and thus can have a profound impact on cellular transduction and gene delivery efficiencies [59]. Although the pre-existing NAbs may not inhibit gene transfer administered via the eye or parenchyma route, intravenous gene therapy for hemophilia has shown that low titers of pre-existing anti-AAV antibodies are sufficient to neutralize the AAV vectors and abolish the treatment efficacy [60, 61]. Nowadays, prescreening is routinely conducted on clinical trial subjects before receiving AAV-based gene therapy, where subjects with high NAbs, approximately 20–50% in the tested patients as estimated based on the NAbs prevalence [55], are excluded from participating in the majority of the studies [62]. Moreover, re-administration of the same AAV vector is challenging, as previously treated patients develop NAbs which inhibit the efficacy of subsequent treatment [8, 63]. Currently, several clinical trials are testing multiple AAV capsids from different AAV serotypes to deliver the hFIX and hFIX-Padua genes [22, 25, 26] to avoid being targeted by pre-existing NAbs. Generally, NAbs are specific to individual AAV capsids [63]. However, seroprevalence analysis showed that some NAbs exhibited broad cross-reactivity [64], which could render AAV serotypes switching ineffective.

Cellular immunity against AAV

AAV alone does not induce significant inflammatory reactions to trigger cellular immune response. Whereas, AAV
co-infected with helper viruses will activate CD4+ and CD8+ T cells which then leaves a pool of memory T cells throughout the lifetime [65]. The number of people with pre-existing memory T cell to wtAAVs is far lesser than those carrying NAbs, but the presence of these AAV-specific memory T cells contributes to the different responses to the AAV treatment as observed in human and experimental animals [62]. Unlike the NAbs that are largely specific to individual capsids, the memory T cells recognize AAV epitopes that are highly conserved across serotypes [66]. Fortunately, gene therapy studies in patients with hemophilia B demonstrated the effectiveness of using immunomodulating drugs to temporarily suppress T cell responses to the AAV capsids [9, 10], and had achieved long-term FIX expression in patients that alleviated hemophilia B-related symptoms [10, 19]. Overall, the results from these trials highlight the important role of memory T cells in influencing the treatment efficacy of AAV-based gene therapy.

Overcoming the current hurdles in AAV-based therapy

Capsid engineering to evade pre-existing AAV antibodies

Seroprevalence analyses indicate that some NAbs can cross-react with multiple wtAAV serotypes [67], and thus, switching to other naturally occurring AAV serotypes offers limited benefits for immune evasion. Studies on capsid biology revealed distinctive residues that are responsible for antibody binding [54], suggesting that AAV capsid engineering could potentially be the solution to overcome the immune barriers [68].

There are two main strategies for AAV capsid engineering: rational protein design and directed evolution [54]. Rational protein design relies on the prior knowledge of the capsid amino acid sequences and their functionalities. For example, a monoclonal antibody A20 was identified to bind AAV2 through residue 265 of VP1 protein. By inserting a different amino acid at residue 265, a mutant AAV2.5 was generated with a weaker binding affinity to A20 [69]. Directed evolution uses error-prone PCR or DNA shuffling strategy to construct a library of mutant capsids and perform a rigorous selection to identify desired mutants [54]. For instance, AAV-DJ is a chimeric capsid generated from AAV serotypes 2, 8, and 9 through DNA shuffling, which supports gene delivery with higher efficiency than AAV2 into the liver of both naïve and IVIG (intravenous immunoglobulin) treated mice [70]. Another example of engineered immune-evading AAV is the novel variant SCH9 which can efficiently transduce neural stem cells (NSCs) and is ten times more resistant to NAbs than the parental AAV9 [71]. Collectively, the efforts to diversify AAV capsids put forth a hopeful future for creating more efficient vectors.

Besides capsid engineering, alternative approaches have also been explored to overcome the NAb issue. For instance, recent reports showed that plasmapheresis could efficiently remove NAbs to permit AAV re-delivery and transgene expression in rodent models, which can serve as an alternative solution when anti-AAV NAbs cannot be bypassed through other means [72, 73]. Nonetheless, host immune responses to intravenous AAV delivery is far more complex than previously known [67]. Hence, further research is necessary to unlock the full potential of in vivo gene therapy.

Coupling AAV with integrative vectors to support long-term expression

In parallel with the development of AAV, other delivery vectors such as lentivirus, retrovirus, and transposon system are well-established systems and have been adopted for therapeutic applications [74–76]. These vectors have relatively large payloads and can integrate into the genome of both dividing and non-dividing cells to support long-term gene expression. In clinics, integrative vectors have been implemented in ex vivo therapies, to engineer immune cells to treat patients with end-stage cancers [77, 78] or to correct deleterious genetic defects in highly proliferative hematopoietic progenitor cells [79, 80]. However, the application of integrative vectors for in vivo gene transfer is limited.

By taking advantage of the highly efficient AAV-mediated gene delivery system, a hybrid AAV/piggyBac vector system was developed and successfully introduced stable transgene transposition into hepatocyte genome [81, 82]. The high efficiency of in vivo gene delivery using the hybrid AAV/piggyBac vector and stable transgene expression was evident in the livers of neonatal mice, which resulted in the correction of the two genes responsible for inherited urea cycle defects [81]. Recently, the AAV/piggyBac hybrid vector has been adopted to treat cystic fibrosis in pigs using aerosolized AAV vectors carrying CFTR flanked by the piggyBac terminal repeats [83]. Despite the small packaging capacity of AAV and semi-random integrations of transposons, the hybrid AAV/piggyBac vector system offers a stable and long-term transgene expression in treated animals through transgene integrations in transduced cells.

Advancement of in vivo gene editing using AAV-delivered nucleases

Breakthrough in genome editing technologies

The newly developed engineered nucleases, such as zinc-finger nucleases (ZFNs) [84], transcription activator-like
The CRISPR/Cas9 system utilizes a single guide RNA (sgRNA), complexed with Cas9 nuclease, to recognize a variable 20-nucleotide target DNA sequence adjacent to a protospacer adjacent motif (PAM), and cuts the target DNA [87, 88]. The ZFN, TALEN, and CRISPR/Cas9 can all induce DNA double-strand break (DSB) efficiently at a pre-selected target site, which is then repaired via one of the two main mechanisms, the non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathway [89, 90].

The NHEJ repair is error-prone and introduces small insertions or deletions (indels) at the targeted cleavage points [89], thereby abolishing the function of a target gene [91]. Distinctly, the HDR pathway relies on existing homologous genome segments with donor DNA based on the flanking homology sequences [92]. The site-specific gene targeting by ZFN, TALEN, and CRISPR/Cas9 systems have been widely adopted in research to introduce a wide range of genomic modifications, such as targeted mutation, insertion, and large deletion [93]. The CRISPR/Cas9 system is particularly praised by the scientific community for its superior simplicity, ease for reprogramming, and robust performance, which has garnered more popularity than other nuclease tools [94, 95].

Therapeutic potential of using AAV-delivered nucleases for in vivo gene editing

The highly customizable and robust gene editing nucleases present appealing opportunities to develop novel therapeutic strategies. As a proof-of-concept, the AAV-delivered ZFN system was first employed to introduce somatic gene editing in mice for disease corrections [96]. Several studies conducted by K. High et al. have provided concrete evidence demonstrating that somatic gene targeting was able to achieve transgene integration, long-term expression, as well as restoration of hemostasis in mice with hereditary hemophilia [96–98].

Subsequently, AAV-delivered CRISPR/Cas9 was extensively employed for in vivo gene editing. To ensure the efficient delivery of CRISPR/Cas9 system, small promoters such as mouse MeCP2 promoter (235 bp), miniCMV promoter (180 bp), and hybrid EF1α/HTLV (nEF) promoter (493 bp) have been used to express the widely used *Streptococcus pyogenes* Cas9 (SpCas9, ~ 4.2 kb) in one AAV vector, and the sgRNA expression cassette(s) is delivered by another AAV vector [99–101]. The discoveries of smaller Cas9 proteins from *Staphylococcus aureus* (SaCas9, ~ 3.3 kb) and *Streptococcus thermophilus* (St1Cas9, 3.5 kb) enable the packaging of sgRNA and Cas9 in a single AAV vector [102, 103]. Additionally, successful delivery of the intein-split SpCas9 was reported using a dual-AAV vector system [104]. The subsequent analyses in mouse models showed that the cleavage repaired by NHEJ at a single target site introduced indels up to 40–70% of the total alleles [100, 102], while simultaneous cleavages using two sgRNAs induced deletion of pathogenic mutations [105, 106]. Through HDR-mediated DNA replacement, a therapeutic transgene can be inserted at a pre-selected genomic site in the somatic tissues of a living organism, which can potentially be used for correcting inherited diseases [107–109].

The expanding CRISPR toolbox prompts the development of novel strategies for gene therapy

Since the advent of engineered nucleases, researchers have been continuously developing new genome editing strategies. In 2014, Auer et al. exploited the NHEJ mechanism to capture large DNA at Cas9-induced DSB sites and established a distinct homology-independent knock-in approach [110]. In 2016, He et al. compared the NHEJ- and HDR-mediated knock-in side-by-side in various human cell types using a promoterless GFP reporter system and found that the homology-independent knock-in via NHEJ repair mechanism showed superior efficiency compared to HDR methods [111, 112]. This is consistent with the understanding that HDR is associated with DNA replication, while the NHEJ mechanism adopts a more flexible process that is largely active throughout the cell cycle [113]. In the same year, Suzuki et al. applied the homology-independent knock-in approach through AAV-mediated delivery to achieve targeted integration in mouse liver [101].

Continuous discoveries and protein engineering are rapidly expanding the CRISPR toolbox [114, 115]. Efforts in searching for new Cas9 orthologues identified a number of smaller Cas9 proteins, such as SaCas9 and St1Cas9 [102, 103], as well as Cas orthologues with higher fidelity such as Cpf1 (Cas12a) [116]. Research on rational engineering gave rise to new Cas9 variants and orthologues with greater specificity [117–119]. Investigations using protein fusion strategy developed novel gene editing tools. For instance, fusing catalytically inactivated Cas9 (dCas9) with a transcriptional activator (VP64, p65AD, SunTag, or VPR) or repressor (KRAB) generated synthetic transcription factors [120–123]. The coupling of dCas9 or mutant Cas9 (D10A) to a cytidine deaminase, such as AP0BEC1 and AID, produced the base editor (BE) that can catalyze single base pair substitutions within targeted sequences [124, 125]. Collectively, the adaptation of CRISPR technology coupled with gene editing strategies...
unveils great potentials and prompts the development of novel gene therapy strategies [126].

Broadening the prospects of AAV-delivered therapeutics through somatic gene editing

Undoubtedly, the advancement of in vivo gene targeting using AAV-mediated delivery of ZFN or CRISPR has propelled intensive research to develop gene editing therapies for treating deleterious inherited diseases that were previously untreatable. In the following sections, we will summarize the recent progress of AAV-based somatic gene editing used in preclinical and clinical studies (Tables 3 and 4), and discuss the inherent challenges from these in vivo studies.

Correcting genetic mutations by HDR-mediated sequence replacement

AAV-CRISPR-mediated DNA replacement via the HDR mechanism has the potential to correct pathogenic mutations in somatic genome. The correction will then remain stable in the genome even in dividing cells, making the genetic correction strategy a suitable treatment option for neonates. Yang et al. carried out a proof-of-concept study by infusing AAV vectors carrying SaCas9, sgRNA, and HDR donor template into neonatal spf-ash mice, which carries the R129H mutation in Otc gene and exhibited a partial deficiency in the urea cycle enzyme ornithine transcarbamylase (OTC) [108]. The study demonstrated the correction of the mutant Otc gene in 10% of the total hepatocytes, as well as increased survival of mice challenged with a high-protein diet [108]. Using a similar approach but targeting human hepatocytes in mouse models with human hepatocyte engraftment, Ginn et al. achieved targeted correction among 29% of human OTC alleles in the patient-derived primary hepatocytes [127]. Similarly, Zhou et al. performed subcutaneous injection to deliver AAV vectors carrying SpCas9, sgRNA, and donor into neonatal Ldlr^{F208X} mice that harbors a nonsense mutation E208X in the Ldlr gene to mimic familial hypercholesterolemia (FH). The treatment significantly ameliorated atherosclerosis in mice fed with a high-fat diet [128]. In another study, newborn Pah^{cmu2} mice, a disease model for phenylketonuria (PKU), intravenous delivery of AAV vectors carrying SpCas9, sgRNA, and donor DNA yielded significant correction of the mutations as well as reduction of serum phenylalanine levels [129].

Other than providing a donor template for HDR-based mutation correction, Wang et al. reported that inducing cuts simultaneously at two alleles of a gene could also trigger interhomolog translocation and allelic exchange, thereby correcting recessive compound heterozygous mutations through the HDR mechanism. By introducing genome cuts into newborn mice, their study showed allelic exchange and disease rescue in Fah^{neo2} and Idu^{W392X} mice to mimic the disease conditions for hereditary tyrosinemia type I (HT1) and mucopolysaccharidosis type I (MPS I), respectively [130].

Targeted insertion of therapeutic sequences in somatic genome

Given the huge diversity of loss-of-function mutations that may occur within a single disease-related gene, targeted DNA insertion at a defined locus is a more direct strategy to restore gene function. Inherited hemophilia B has been used as a study model for testing various targeted integration strategies for gene therapy. Li et al. and Anguela et al. used HDR-based replacement strategy to introduce targeted insertion of hF9 gene exon (hF9 Ex2-8) at a mutant hF9 transgene locus in mouse liver using AAV-delivered ZFN and reported successful production of functional hFIX as well as the reversal of blood coagulation defect in hemophilia B mice [96, 97]. By using the AAV-delivered SaCas9, Ohmori et al. inserted the normal mF9 gene Ex2-8 [107], and Wang et al. knocked-in the Ex2-8 of the hyperactive hF9 variant (hFIXco-Padua), at the mutant mF9 locus [109]. Both studies achieved successful gene targeting, stable production of circulating FIX, and significant improvement of hemophilia B-related symptoms [107, 109].

Much effort was also focused on surveying general target sites that can potentially be used for different therapeutic targeting. Through AAV-ZFN-mediated HDR-replacement, Sharma et al. showed that targeted insertion at intron 1 of Albumin locus (mAlb In1) could achieve long-term expression of human FVIII and FIX at therapeutic levels [98]. By targeting the same site, the group also successfully produced lysosomal enzymes encoded by GAL, GBA, IDUA, and IDS, which are responsible for Fabry and Gaucher diseases as well as Hurler and Hunter syndromes [98]. Likewise, De Caneva et al. successfully rescued neonatal lethality in mice with Crigler-Najjar syndrome by inserting hUGT1A1 at mAlb Ex14 through AAV- and SaCas9-mediated HDR [131]. Together, these studies suggest that the ALB locus could be a potential universal target locus for targeted insertion to express liver secretory proteins.

Homology-independent knock-in mediated by the NHEJ mechanism does not require homology sequences, which makes AAV delivery much easier. By using SpCas9, Suzuki et al. demonstrated the potential of AAV-delivered homology-independent targeted insertion (also named HITI) to restore Merk gene expression and function in the rat retina, which successfully ameliorated visual impairment associated with retinitis pigmentosa [101]. Using AAV-delivered SaCas9, Chen et al. and Zhang et al. reported NHEJ-mediated insertion of BDD-FVIII at mAlb In13 [132] and multiple sites within
Gene editing strategy	Disease	Target tissue	Gene to be corrected	Nuclease used	AAV serotype and number of vectors used	Route of administration and age for treatment	Outcome and therapeutic effects	Ref
HDR-mediated gene correction	Hyperammonemia	Liver/hepatocyte	Otc	SaCas9	AA8, 2 vectors	i.v. temporal vein at P2	Correction of the mutation in 6.7–20.1% of hepatocytes; partial rescue of lethality in mice fed with high-protein diet.	[108]
Hyperammonemia	Liver/engrafted human primary hepatocyte	hOTC	SaCas9	AAV (NPS9), 2 vectors	i.v., tail vein in adult mice	Correction of the mutation in up to 29% of hOTC alleles in the engrafted primary human hepatocytes.	[127]	
Familial hypercholesterolemia (PKU)	Liver/hepatocyte	Ldlr	SpCas9	AA8, 2 vectors	Subcutaneously injection at P1	Reduced LDLR protein levels to 18.01 ± 2.82%.	[128]	
Phenylketonuria (PKU)	Liver/hepatocyte	Phah	SpCas9	AA8, 2 vectors	i.v., facial vein at P3	Yielded around 10% HDR-corrected reads and reduced serum phenylalanine levels.	[129]	
Allelic exchange through HDR	Hereditary tyrosinemia type I (HT1) and mucopolysaccharidosis type I (MPS1)	Liver/hepatocyte	Fab or khsa	SpCas9	AA8V or AAV9, 2 vectors	i.v., facial vein at P1; tail vein in adult mice	Restored FAH activity in the liver from 0.4 to 1.6% of normal. Restored IDUA activity to ~ 0.5% of the wild-type level, and substantially reduced GAG accumulation in the heart.	[130]
HDR-mediated gene knock-in	Hemophilia B	Liver/hepatocyte	hF9 at Rosa26	ZFN	AA8V, 2 vectors	i.p. at P2	Targeting efficiencies in the 1–3% range, and yielded 3–7% of normal circulating levels of hFIX.	[96]
Hemophilia B	Liver/hepatocyte	hF9 at Aβ In1	ZFN	AA8V, 2 vectors	i.v., tail vein in adult mice	Treated animals exhibited long-term expression of hFIX averaging 23% of normal level (11,466,100 ng/mL) at week 60.	[97]	
Hemophilia A/B	Liver/hepatocyte	hF8, hF9 at Aβ In1	ZFN	AA8V, 2 vectors	i.v., tail vein in adult mice	Achieved long-term expression of hFVIII and hFIX at therapeutic levels in mouse models of hemophilia A and B, respectively.	[98]	
Hemophilia B	Liver/hepatocyte	mF9	SaCas9	AA8V, 2 vectors	i.p. at P0; i.v., tail vein in adult mice	Circulating FIX level reached to 6.01 ± 0.60%.	[107]	
Hemophilia B	Liver/hepatocyte	hF9-Padua at mF9	SaCas9	AA8V, 2 vectors	All treated mice produced therapeutic hFIX in serum at 10.9% ± 1.6% of normal.	Yielded 3–4% of recombinant hepatocytes.	[109]	
Crigler-Najjar syndrome type 1 (CN-1)	Liver/hepatocyte	Ugt1A1 at Aβ Ex14	SaCas9	AA8V, 2 vectors	i.p. or i.v. retro-orbital sinus at P2–P4	Yielded 3–4% of recombinant hepatocytes.	[131]	
NHEJ-mediated gene knock-in	Retinitis pigmentosa	Retina/retinal pigment epithelium	Mertk In1	SpCas9	AA8V, 2 vectors	Subretinal injection in adult rat	Yielded Merit expression around 4.5% of normal.	[101]
Hemophilia A	Liver/hepatocyte	hF9 at Aβ In13	SaCas9	AA8V, 2 vectors	i.v., tail vein in adult mice	Produced circulating FVIII at levels of 2–13% of normal and restored hemostasis.	[102]	
Hemophilia A	Liver/hepatocyte	hF9 at Aβ In1-13	SaCas9	AA8V, 2 vectors	i.v., tail vein in adult mice	Restored hemostasis in mF9β mice.	[133]	
Cholesterol homeostasis	Liver/hepatocyte	Pck9	SaCas9	AA8V, 3 vectors	i.v., tail vein in adult mice	Yielded a 95% decrease of serum Pck9 and a 40% decrease in total cholesterol.	[103]	
Hereditary tyrosinemia, type I (HT1) and type III (HT3)	Liver/hepatocyte	HpdI335M	St1Cas9	AA8V, 1 vector	i.v., retro-orbital sinus at P2 mice	Rescued lethality and metabolic defects in Fah−/− mice.	[134]	
Age-related macular degeneration (AMD)	Retina/retinal pigment epithelium cell	Vegfa or Hif1a	CjCas9	AA8V, 1 vector	Intravitreal injection in 8 weeks mice	CJCas99 targeted to the Vegfa or Hif1a gene in RPE cells reduces the size of laser-induced choroidal neovascularization, suggesting that in vivo genome editing with CJCas99 is a new option for the treatment of age-related macular degeneration.	[135]	
Age-related macular degeneration (AMD)	Retina/retinal pigment epithelium cell	Vegfa or Hif1a	LbCpf1	AA8V, 1 vector	Intravitreal injection in adult mice	LbCpf1 targeted to Vegfa or Hif1a in RPE cells reduced the area of laser-induced choroidal neovascularization as efficiently as aflibercept, an anti-VEGF drug currently used in the clinic, without inducing cone dysfunction.	[136]	
Age-related macular degeneration (AMD)	Retina/retinal pigment epithelium cell	Vegfa or Hif1a	SaCas9	AA8V, 2 vectors for SaCas9	Subretinal injection in adult mice	Successfully VEGF knockdown using AAV-mediated CRISPR systems may be a potential therapeutic	[137]	
Gene editing strategy	Disease	Target tissue	Gene to be corrected	Nuclease	AAV serotype and route of administration	Outcome and therapeutic effects	Ref	
----------------------	---------	---------------	----------------------	----------	--	-------------------------------	-----	
NHEJ-based deletion of mutations	Duchenne muscular dystrophy (DMD)	Muscle	Dmd (IVS26-1)	SpCas9	AAV9-Adenovirus	Reduced levels of dystrophin and improved muscle function	[145]	
				SpCas9	AAV9	i.p. at P3	Improved muscle strength and function in pigs	[146]
				SpCas9	AAV9	i.p. at P4	Partial restoration of dystrophin expression and improved cardiac function	[147]
				SpCas9	AAV9	i.m. at P10	Sustained restoration of dystrophin expression and improved cardiac function	[148]
				SpCas9	AAV9	i.m. in adult mice	Inclusion of exon 2 in ~ 20% of Lama2 transcripts	[149]
				ABE	AAV9	i.v., tail vein in adult mice	Restored dystrophin expression in 17 ± 1% of myofibers	[150]
				ABE	AAV9	i.v., tail vein in adult mice	Restored dystrophin expression and improved muscle function	[151]
				ABE	AAV9	i.v., tail vein in adult mice	Restored dystrophin expression and improved muscle function	[152]
Table 3 (continued)

Gene editing strategy	Disease	Target tissue	Gene to be corrected	Nuclease used	AAV serotype and number of vectors used	Route of administration and age for treatment	Outcome and therapeutic effects
Guided gene silencing or activation	Dravet syndrome	Parvalbumin interneuron	Scn1a	dCas9-VP64	2 vectors AAV9 2 vectors	Intracerebroventricular injection at P0	Recovered the firing ability of parvalbumin interneurons, and attenuated febrile seizures

Table 4 Clinical studies for AAV-delivered gene editing therapies

Product name (AGN-151587)	Date of IND approval, agency	Manufacturer	Disorder/condition	Target tissue	AAV vector	Gene editing tool	Gene to be delivered and locus	Targeting strategy	Clinical trials	Status/clinical outcome	Ref
SB-FIX	Dec 2015, FDA	Sangamo Therapeutics	Hemophilia B	Liver, in vivo	ssAAV6	ZFN	hP9	Targeted insertion at ALB locus	NCT02695160	Entered phase 1 clinical trial, with the first patient dosed in Dec 2018	[154]
SB-318	Feb 2016, FDA	Sangamo Therapeutics	Mucopolysaccharidosis type I (MPS I)	Liver, in vivo	ssAAV6	ZFN	IDUA	Targeted insertion at ALB locus	NCT02702115	Entered phase 1/2 clinical trial, with the first patient dosed in Dec 2018	[155]
SB-913	June 2016, FDA	Sangamo Therapeutics	Mucopolysaccharidosis type II (MPS II)	Liver, in vivo	ssAAV6	ZFN	IDS	Targeted insertion at ALB locus	NCT03041324	Entered phase 1/2 clinical trial, with the first patient dosed in Nov 2017	[156]
EDIT-101 (AGN-151587)	Nov 2018, FDA	Editas Medicine	Leber Congenital Amaurosis type 10 (LCA10)	Retina, in vivo	ssAAV5 1 vector	SaCas9 sgRNAs	Deleting IVS26 mutation in CEP290 In26 via dual-cut targeting	NCT03872479	Entered phase 1/2 clinical trial, with the first patient dosed on March 2020	[157]	
expression. To reduce the risks of unwanted gene activation or uncontrolled tissue-specific manner. These new features could further characterization targeting site can be established to support the insertion and expression of various therapeutic genes in a tissue-specific manner. These new features could further reduce the risks of unwanted gene activation or uncontrolled expression.

Gene (allele) disruption via site-specific targeting followed by NHEJ repair

The versatile AAV-delivered nucleases can also generate frameshift mutations via NHEJ repair in a target gene in the somatic genome to disable the translation of defective proteins. By targeting a cholesterol regulatory gene Pcsk9 in mouse liver using AAV8 encoding SaCas9, Ran et al. introduced indels at around 40% of the target alleles, which significantly reduced serum PCSK9 and total cholesterol levels [102]. Likewise, intravitreal delivery of AAVs carrying CjCas9 [134] and LbCpf1 [135] successfully disrupted angiogenesis-associated genes Vegfa and Hif1a in the mouse retina, which substantially decreased the excessive choroidal neovascularization in a transgenic model for age-related macular degeneration (AMD) [134, 135]. More recently, Chung et al. demonstrated the therapeutic potentials of AAV-delivered SaCas9 and SpCas9 to treat AMD [136]. Markedly, the AAV-CRISPR-mediated in vivo gene disruption also resolved the gain-of-function mutations in the photoreceptor guanylate cyclase (GUCY2D) gene that causes dominant cone-rod dystrophy (CORD6) in nonhuman primate (NHP) [137].

A sgRNA can also be programmed for allele-specific disruption. In an effort to correct autosomal dominant inherited diseases, Xie et al. disrupted the mutant allele encoding PRKAG2H530R using AAV-delivered SpCas9 while sparing the wild-type allele intact, resulting in successful correction of PRKAG2H530R-induced cardiac syndrome in the transgenic mouse model [138]. Similarly, Giannelli et al. corrected Retinitis Pigmentosa caused by the dominant RhoP23H mutation in mice [139]; and Gyorgy et al. prevented deafness in mice carrying the Beethoven mutation (TMC1T1253A) that causes degeneration of cochlear hair cells and progressive hearing loss [140].

Gene editing using AAV-delivered CRISPR/Cas9 has also been explored as antiviral therapeutics and tested for treating chronic viral infections, such as human immunodeficiency virus (HIV). Intravenous injection of AAV vectors carrying multiplexed sgRNAs and SaCas9 was shown to induce pro-viral excision, and subsequently decrease viral gene expression in the HIV-1 Tg26 transgenic mice and humanized mice with chronic HIV-1 infection [141]. More recently, the combined application of sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR/Cas9 showed great potential in complete eradication of HIV in HIV-1-infected humanized mice [142].

Restoring gene function through dual-sgRNA-directed deletion

AAV-mediated delivery of Cas9 with dual sgRNAs targeting both sides of a sequence could induce targeted deletion via NHEJ repair and has been exploited to eliminate deleterious mutations, such as cryptic splice sites that cause severe splicing errors. Leber congenital amaurosis-10 (LCA10) is an inherited retinal dystrophy that is often attributed to IVS26 mutation in the CEP290 gene which creates a de novo splice donor site and produces transcripts with a premature stop codon [158]. Using AAV5-delivered SpCas9 and carefully selected dual sgRNAs, Ruan et al. excised the IVS26 mutation in mouse photoreceptor cells, which restored the splicing and function of CEP290 and rescued vision loss [143]. Later on, Maeder et al. developed a gene editing therapy based on subretinal delivery of SaCas9 and two sgRNAs in a single AAV5 vector, named EDIT-101, and demonstrated successful excision of the IVS26 containing region and substantial restoration of the CEP290 function in humanized CEP290 mice [157]. Subsequently, a surrogate vector also achieved successful editing of the CEP290 gene and demonstrated therapeutic benefits in NHP [157]. With these efforts, Allergan and Editas Medicine launched their landmark phase 1/2 clinical trial for EDIT-101 and commenced dosing in the first LCA10 patient in March 2020, which sets the record to be the first in vivo CRISPR medicine administered to patients with FDA approval [159].

A similar therapeutic strategy is also intensively tested for treating Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy caused by mutations in the DMD gene. Based on the clinical evidence that exon skipping in DMD patients is associated with milder symptoms, research groups first applied the dual-sgRNA strategy to excise exon 23 carrying a nonsense mutation. Studies using mdx mice achieved successful deletion of the mutant Ex23 in both neonatal and adult mice, which yielded shorter yet partially functional dystrophins and significantly improved muscular organ actions and functions [99, 105, 106, 144]. Other groups have also used the dual-sgRNA strategy to excise longer genomic regions, such as Dmd Ex21-23 or Ex44-45, to restore muscle function in the mdx mice [145, 146]. Moreover, intramuscular injection of AAV9 carrying intein-split SpCas9 to excise DMD Ex51-52 in DMD pigs also improved their skeletal muscle function [147]. Interestingly, Dwi et al. excised Lama2 Ex2 to eliminate an aberrant splicing donor site
causing congenital muscular dystrophy type 1A (MDC1A), which partially restored muscle function in the *dy2J/dy2J* mouse model [148].

Base editing approach for gene correction and knockout

Base editing is a novel DNA-engineering approach which enables programmable base-substitutions in the genome for correcting pathogenic point mutations. Base editors (BEs) are generated by fusing mutant Cas9 with a cytidine or adenine deaminase [124, 125]. Despite the large sizes of the BEs, in vivo delivery was achieved using dual AAV vector systems [104]. By using the intein-split approach, Ryu et al. demonstrated the therapeutic potential of adenine base editors (ABEs) in correcting a nonsense mutation in the *Dmd* gene [149]. Yang et al. applied AAV-delivered cytidine base editor (CBE) to restore the start codon of the mutated *Fah* gene, which yielded functional expression in mouse liver and ameliorated the HT1 symptoms [150]. More recently, Levy et al. reported in vivo base editing at therapeutically relevant efficiencies in a broad range of mouse tissues, including brain (up to 59%), liver (38%), retina (38%), heart (20%), and skeletal muscle (9%) [160]. Through trans-splice strategy, Villiger et al. corrected the *Pah* c.835 T > C mutation through intravenous injection of AAVs carrying split CBE, which subsequently restored Pah enzyme activity and serum phenylalanine levels in *Pah*^{muta} mice [151].

BEs are also used to introduce nonsense mutations to introduce a loss-of-function effect [161]. CBE delivered via adenovirus vector has been tested to reduce the *Pcsk9* and *Hpd* expressions in the mouse model with inherited hypercholesterolemia [162]. In another study, AAV-mediated intein-split delivery of CBE was implemented to disable the mutant *SOD1* allele in *SOD1^{G93A}* mice, which markedly slowed down the progression of amyotrophic lateral sclerosis (ALS) disease and prolonged survival [152].

Feasibility of gene editing therapy in neonate and fetus

In vivo genome editing has presented a promising potential for early gene intervention in neonates or fetuses to treat previously untreatable diseases. Intraperitoneal (i.p.) injection is the most frequently used route of administration and supports the delivery of CRISPR/Cas9 reagents into murine pups at postnatal day 1–4 to correct the congenital or Duchenne muscular dystrophy [99, 106, 148]. Intravenous injection (i.v.) via facial or temporal veins is also widely used in neonatal pups and achieved gene editing in the liver to correct metabolic disorders, such as hyperammonemia [108], PKU [129], and hypercholesterolemia [128] which are caused by genetic defects in the *Otc*, *Pah*, and *Ldlr* genes, respectively. Local injections into the muscles or in the cochlear of neonatal pups have also tested and achieved successful somatic gene editing to correct DMD and hearing loss, respectively [99, 140]. The possibility to perform therapeutic gene editing before birth was also examined, wherein in utero editing of *Pcsk9* and *Hpd* genes confirmed the long-term persistence of edited cells in postnatal mice [162]. Collectively, these studies support the feasibility of using gene editing intervention in fetuses and neonates to correct defective genes before disease onset, which is critical for treating diseases with high morbidity and mortality.

Combined delivery of AAV-donor and non-viral CRISPR/Cas9 for ex vivo gene editing therapy

In earlier studies, the AAV vector was rarely used for transducing hematopoietic stem and progenitor cells (HSPC) because the rapid cell proliferation in the subsequent differentiation processes will quickly dilute the vectors and abolish transgene expression. Soon after the advent of engineered nucleases, studies found that AAV6 transduces HSPC with high efficiency and provides single-stranded DNA as donor template, which enables superior HDR-based gene editing when co-delivered with ZFN mRNA or Cas9/sgRNA ribonucleoprotein (RNP) [163–165]. As a result, there has been rapid development of ex vivo gene editing therapeutics for treating HSPC-based inherited diseases (Table 5).

Ex vivo gene editing in HSPCs provides an ideal strategy for treating inherited hemoglobinopathies and immunodeficiencies, such as sickle cell disease (SCD), β-thalassemia, and X-linked severe combined immunodeficiency (SCID-X1). Earlier studies used ZFN mRNA and integrative deficient lentivirus vector (IDLV) to demonstrate the HDR-based targeted insertion of a corrective cDNA into the *IL2RG* locus of the HSPCs isolated from SCID-X1 patient [166]. Using Cas9/sgRNA RNP and oligonucleotide donors, Dewitt et al. corrected the sickle cell anemia mutation HBB^{E6V} in the HSPCs isolated from SCD patients [167]. More strikingly, the co-administration of AAV6 donor and Cas9/sgRNA RNP for HDR-based gene editing in HSPCs derived from SCD patients achieved significantly higher rates for the correction of sickle mutation E6V and targeted insertion. The edited HSPCs were then transplanted into immunodeficient mice and restored normal β-globin expression in vivo [163]. Additionally, Pavel-Dinu et al. reported the correction of X-SCID and long-term engraftment of the edited HSPCs, which provided substantial preclinical evidence supporting the therapeutic potential of using ex vivo editing for X-SCID [168].

Studies also transduced HSPC with Cas9/sgRNA RNP alone to introduce NHEJ-based gene disruption, and applied
Gene editing strategy	Disease	Target cells	Gene to be corrected	Nuclease used	HDR donor	Purposes and results	Ref
HDR-mediated gene knock-in	-	HSPC	CCR5 and AAVS1	ZFN (mRNA)	AAV6	Achieved site-specific insertion of GFP cassette at the CCR5 and AAVS1 loci, in up to 26% of adult HSPCs and up to 43% of fetal liver HSPCs	[164]
	-	HSPC and T cell	CCR5	SpCas9 (RNP)	AAV6	Achieved targeted insertion of large transgene cassettes in primary human cells using HR-mediated genome editing with AAV vectors	[165]
HDR-mediated gene correction	X-linked severe combined immunity (SCID-X1)	HSPC	IL2RG	ZFN (mRNA)	Integrase-defective lentiviral vector (IDLV)	Achieved targeted gene correction in ~6% of HSPCs, for treating SCID-X1	[166]
	Sickle cell disease (SCD)	HSPC	HBB_{E6V}	SpCas9 (RNP)	AAV6	Achieved targeted correction of ~50% of the HBB_{E6V} alleles in HSPCs derived from SCD patients	[163]
	SCID-X1	HSPC	IL2RG	SpCas9 (RNP)	AAV6	Achieved targeted gene correction in ~25% of the HBB_{E6V} alleles in HSPCs derived from SCD patients	[167]
		HSPC	TRAC	SpCas9 (RNP)	AAV6	HDR knock-in of the CAR into the TRAC locus to generate TCR-negative CAR-T cells	[169]
HDR-based gene disruption	Cancer	T cell	TRAC and PD-1	SpCas9 (lentivirus)	AAV6, AAV9, AAV9	Produced CAR-T cell with HDR knock-in and immune-checkpoint knockout (KIKO CAR-T cell) in one step	[170]
NHEJ-based gene disruption	β-Thalassemia	HSPC	Erythroid enhancer in HBG1/2 locus, at ~102 to ~115 bp upstream of the TSS	SpCas9 (lentivirus)	-	Edited HSPC-produced RBCs with increased HbF levels that inhibited the pathological hypoxia-induced RBC morphology found in SCD	[171]
	β-Thalassemia	HSPC	13 kb of the β-globin locus	SaCas9 (nucleofection)	-	Achieved targeted deletion in 31% of HSPCs. The erythroid colonies with the targeted deletion showed significantly higher γ-globin expression	[172]
	β-Thalassemia	HSPC	HBG1/2 gene promoter, at ~115 and ~200bp upstream of the TSS	SpCas9 (nucleofection)	ssODNs or plasmids	Introduced deletions, disrupted repressor binding and raised γ-globin gene expression	[173]
	β-Thalassemia	HSPC	13 kb of the β-globin locus	SpCas9 (nucleofection)	-	Resulted in a high γ-globin expression in erythroblasts, increased HBF synthesis, and amelioration of the sickling cell phenotype	[174]
HIV	HSPC	CCR5	ZFN (mRNA)	-	Disrupted CCR5 gene in around 17% of the total alleles in human HSPC, significantly lowered HIV-1 levels	[175]	
HIV	HSPC	CCR5	ZFN (mRNA)	-	Achieved bi-allelic CCR5 disruption in up to 72.9% of modified colony-forming units derived from adult HSPC	[176]	
HIV	HSPC	CCR5	SpCas9 (RNP)	-	Achieved efficient CCR5 ablation in long-term HSPCs, which confers HIV-1 resistance in vivo in mouse model	[177]	
HIV	HSPC	CCR5	SpCas9 (RNP)	-	Achieved disruption of CCR5 gene in 5% of lymphocytes; has entered clinical trial (NCT03164135)	[178]	
this strategy to abolish the repression of γ-globin genes HBG1/2 in HSPCs ex vivo for the treatment of SCD and β-thalassemia. The results showed that disruption of the repressor binding motif in the HBG1/2 loci or the β-globin gene HBB locus could re-activate γ-globin expression to ameliorate disease symptoms [171–174]. Markedly, the CRISPR-disruption of BCL11A enhancer developed by CRISPR Therapeutics and sponsored by Vertex Pharmaceuticals, named CTX001, has been approved as the first human CRISPR trial for SCD (NCT03745287) and transfusion-dependent β-thalassemia (NCT03655678).

The HSPC-based ex vivo gene editing has also provided an appealing treatment strategy for HIV infection. HIV attacks human T cells through binding to the CCR5 receptor [179]. Hence, ex vivo targeting of the CCR5 gene in HSPCs followed by autologous transplantation could potentially provide treatment by preventing HIV entry into the edited HSPCs [164, 175]. Studies using various gene delivery methods have yielded consistent results, showing that the CCR5-ablated human HSPCs indeed conferred HIV-1 resistance in mouse models [175–177]. These promising preclinical outcomes are currently being tested in several clinical trials [178].

Besides HSPCs, ex vivo gene editing also presents enormous potentials to engineer immune cells, especially the revolutionary immunotherapy using chimeric antigen receptor (CAR) T cells (CAR-T). Targeted insertion of anti-CD19 CAR at TRAC locus through co-administration of AAV6 donor and Cas9/sgRNA RNP demonstrated a stable CAR expression and improved effectiveness in the CAR-modified T cells [169]. Moreover, the TRAC gene disruption enables allogeneic transplantation, which permits the generation of “universal” CAR-T cells from healthy donors and supports the manufacturing of off-the-shelf CAR-T products [169]. Dai et al. used a similar strategy to insert the CAR at different immune-modulating gene loci, such as B2M, CD52, HLA-I, and generated CAR-T cells with immune-checkpoint knock-out (KIKO CAR-T cell) [170]. Compared to lentivirus transduction, the targeted CAR insertion via AAV6-Cas9 RNP co-delivery significantly reduced random integrations as well as chances of undesired side effects in the CAR-T cells. As a result, the new CAR-T cells generated through AAV6-Cas9 RNP using multiplex gene editing by CAR insertion and disruption of TRAC or other immune-modulating genes are widely explored for treating various cancers [180].

Challenges for developing AAV-CRISPR therapy for clinical application

Accumulating preclinical studies and ongoing clinical trials using the AAV delivery system have unveiled new challenges for the development of AAV-CRISPR-based gene editing for clinical application.

Integration of AAV vectors at DSB sites of the genome

The AAV vector genomes mainly persist in transduced cells as episomes, while sporadic integrations through DNA DSB capture have been observed [181]. The likelihood for AAV integration to occur is around 0.05% in neonatal mice and between 10E–4 and 10E–5 in the liver and muscle of nonhuman primates and humans [182, 183]. The integration of AAV vector sequences poses risks of insertional mutagenesis, but the tumorigenic potentials in clinical applications remain controversial. Studies in mice have reported an increased incidence of hepatocellular carcinoma (HCC) that was attributed to random AAV integration that inadvertently activated the transcription of oncogenes [184, 185]. On the contrary, other studies provided evidence supporting that the non-integrative nature of AAV does not pose an increased risk for cancer development. Bell et al. conducted a thorough histology analysis of 695 mouse subjects [186] and Li et al. reported an 18-month follow-up of the mouse subjects [187], after AAV-based gene treatment. Both studies reported no correlation between tumorigenesis and AAV-based gene delivery. Similar investigations were conducted in dogs, NHPs, and human patients, which also showed no associated risk for AAV vector-induced malignancy [188, 189]. Furthermore, several studies also examined the correlation between wtAAV integrations and the occurrence of human hepatocellular carcinoma using clinical samples, which reported contradictory findings and remained inconclusive [190, 191].

Another potential issue related to gene editing therapy using AAV vectors is whether CRISPR and other nucleases will increase the incidence of integration events. A recent study by Nelson et al. showed that, while AAV-CRISPR genome editing in mdx mice exhibited sustained restoration of dystrophin function, unintended genome alterations such as the AAV integrations at sgRNA target sites were detected without apparent consequences on the mice [144]. Similarly, through genome-wide mapping of the mouse brain DNA after stereotactic injection of AAV vectors, a high level of AAV integration with strong preference at the target sites was observed [192]. In both studies, the low levels of random AAV integrations were detected throughout the genome, which was not associated with the CRISPR editing and did not pose a risk higher than that introduced by wtAAVs in humans [144, 192]. Collectively, further investigation should be directed to improve targeting strategies to minimize integration-induced mutagenesis, while the consequences of the high-level AAV integration at specific target sites may need to be evaluated on a case-by-case basis.

Off-target effects in genome editing with CRISPR systems

The sgRNA in CRISPR system can tolerate minor mismatches to guide DNA cleavage at an off-target site [193].
Clinically, the CRISPR/Cas mismatch tolerance raises safety concerns and prompts research groups to explore ways to improve targeting specificity [194]. New algorithms are continuously generated to facilitate the selection of sgRNA with high gene editing activity and fidelity [193, 195]. Additionally, new Cas9 orthologues and engineered Cas9 variants, such as the enhanced specificity SpCas9 (eSpCas9), high fidelity SpCas9 (SpCas9-HF1) [117, 118], and the high fidelity SaCas9 (SaCas9-HF) [119], have achieved greater targeting specificity without sacrificing gene editing activity [114, 115]. Moreover, the shortened expression of Cas9 through lipid nanoparticle delivery of mRNA has greatly reduced off-target editing [197].

Extensive efforts have been made to map out off-target events at the genome level, which were later found to be challenging with the technologies that are currently available. Performing whole-genome sequencing (WGS) for edited cells is prohibitively expensive for identifying rare but potentially deleterious off-target events [198]. Gene analysis by targeted deep sequencing is limited by the sequence homology assumptions inherent in the computational prediction of potential off-target sites. To address these challenges, multiple new analysis platforms have been developed to detect Cas9 off-target events throughout the genome [194]. These include DISCOVER-Seq [199], GUIDE-seq [200], BLESS [201], CIRCLE-seq [202], and SITE-seq [203]. However, each of these platforms can only identify a portion of off-target events, and none of which can deliver a comprehensive characterization of off-target modifications to evaluate the overall functional impact. In future, multiple analysis technologies may be used together for identifying off-target events and safety assessment of a newly developed gene editing therapy.

Risk of horizontal and vertical transmission

In clinical studies, human subjects who received systemic administration of AAV vectors were found to carry AAV particles in bodily fluids, such as serum and urine, for several weeks [8, 204]. Since AAV vectors are replication-defective, the risk for horizontal transmission is low and mainly restricted during vector transfer. However, the persistence of AAV particles with broad tissue tropisms in bodily fluids [205] makes it difficult to target specific tissues or organs without diffusing into other tissues in the human body. Consequently, AAV treatments could result in gene expression or genome editing in non-targeted tissues and potentially give rise to pathological features, which should be evaluated thoroughly.

In AAV-based gene editing therapy, vertical transmission of AAV vectors and germline contamination poses a much more serious concern [206]. Earlier studies detected AAV sequences in human semen samples [207], and a similar observation was reported in the murine tests as confirmed by the presence of AAV-delivered reporter expression [208]. Interestingly, although AAV vector sequences were detected in seminal fluids and epithelial cells from genitourinary tracts, they were not found in germ cells and had not passed through germline transmission [209, 210]. Furthermore, after a close investigation, Rajasekaran et al. reported that AAV2 and AAV9 vectors primarily targeted Leydig cells while a modified-AAV2 targeted Sertoli cells of the testis [211]. Notably, none of these vectors transduced sperm progenitor cells [211]. Consistently, in vivo gene targeting studies found no evidence of genome editing in the sperms or offspring derived from the edited mice [144]. Together, these results eliminate the concern regarding the vertical transmission of AAV and whereby induced germline modifications through systemic administration.

Host immune responses to CRISPR and Cas proteins

Host immune responses to CRISPR/Cas9 and its orthologues may present another challenge to the development of gene editing therapy. In a recent analysis of human serums, a large proportion of the human populations was found to carry naturally occurring antibodies to Cas9. Manno et al. reported that 79% of the examined individuals exhibited anti-SaCas9, and 65% had anti-SpCas9 [212]. Wagner et al. reported 96% of the donors in their study showed pre-existing T cell memory responses against SpCas9 [213]. Consequently, the pre-existing antibody could neutralize Cas9 and impair the gene editing efficiency, while pre-existing anti-Cas9 lymphocytes can trigger immune destruction of edited cells due to Cas9 expression [214].

In order to circumvent the host immune responses to CRISPR/Cas system, it is critical to adjust the delivery parameters and strategies, such as lowering the dosage of vectors, optimizing the vector administration route, and shortening the expression of the Cas9 gene. Previously, transient immune suppression made AAV-based gene therapy possible by protecting AAV-transduced cells from the immune responses [10, 21, 215]. Therefore, it is of interest to investigate the potential of using transient immunosuppression to protect Cas9-expressing cells from immune destruction and to sustain the efficacy of gene editing. Additionally, prescreening for the presence and levels of neutralizing antibodies in patients could be implemented to determine the suitability of a treatment regimen as well as to guide the use of AAV vector capsids and Cas9 variants for each individual patient prior to treatment. Furthermore, developing a novel Cas9 variant via protein engineering to overcome the immune barriers is also worth investigating in future.

Expanding horizons for gene therapy

Non-viral delivery of CRISPR

Recent advancements in drug delivery using synthetic nanoparticles (NPs) have made significant progress. In 2018, a
siRNA drug packaged in nanoparticles, marketed under the brand name Onpattro (patisiran), was approved by the FDA for the treatment of hereditary amyloidogetic transthyretin (hATTR, also named ATTRv) amyloidosis [216]. Extensive studies have investigated the potentials of utilizing NPs for CRISPR/Cas9 delivery, among which lipids and lipid-like nanomaterials are potentially suitable for intracellular delivery of genome editing cargos under in vivo conditions [217]. Yin et al. packaged Cas9 mRNA in lipid NPs and used in combination with AAV vectors encoding sgRNA and HDR template to induce gene correction in the Fah−/− mice [197]. Lee et al. applied gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymeric (named CRISPR-Gold) to deliver CRISPR RNPs and donor template to correct DMD mutation in Dmrx mice [218]. To maximize the delivery efficiency, Jiang et al. further developed lipid-like nanoparticles to carry Cas9 mRNA and sgRNA to the liver and demonstrated effective disruption of endogenous Pcsk9 gene, as well as pre-delivered HBV DNA in mice [219]. In the November 2020, Intellia Therapeutics dosed the first patient with a lipid nanoparticles (LNPs)-carried CRISPR/Cas9-gene editing therapy to treat hATTR, which becomes the first systemically delivered CRISPR-based drug candidate tested in clinical trials (NCT04601051)[220]. Currently, there are still several obstacles associated with the therapeutic application of non-viral delivery for gene editing therapy; these include short half-life in the systemic circulation, non-specific delivery, and low accumulation in target tissues. Despite these limitations, the non-viral delivery methods provide invaluable additions to the gene delivery arsenal.

Recent advances in CRISPR technologies

The research on CRISPR technology and its applications is on the rise, with new tools and strategies being developed and tested continuously. Primer editors (PEs) are a newly developed gene editing tool, which consists of a chimera PE protein generated through fusing mutant Cas9 (H840A) with a reverse transcriptase and a primer editing guide RNA (pegRNA) that carries desired gene information and recognizes a target sequence via base-pairing. Together, the PE/pegRNA complex can directly write new genetic information into a specified DNA site [221]. Using the prime editing technology, Anzalone et al. achieved targeted insertions, deletions, and all 12 types of point mutations in human cells, including the correction of mutations that cause sickle cell disease and Tay-Sachs disease [221].

Distinctly, the Cas orthologues in the Cas13 family possess unique properties for RNA editing, which enables a novel RNA editing approach for gene therapy [222]. Compared to RNA interference (RNAi) for RNA editing, the RNA targeting by CRISPR/Cas13 triggers targeted degradation of a selected RNA with high specificity [223, 224]. Lipid-based delivery of Cas13a protein and guide RNA has been used for in vivo experiments to target a mutant KRAS transcript and was found to effectively impair tumor proliferation of pancreatic cancer in a xenograft mouse model [225]. In early 2020, CRISPR/Cas13-based RNA targeting, multiplexed with crRNAs targeting conservative sequences of the coronaviruses, has been shown to effectively degrade more than 90% of coronaviruses, including SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells [226].

Finally, guided transcriptional regulators generated by incorporating a repressor or activator domain to the inactivated Cas9 protein, named CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) respectively, have also been investigated for disease treatment. Thakore et al. used intein-split dual AAV8 vectors to deliver dCas9-KRAB into the mouse liver to target Pcsk9, which successfully repressed Pcsk9 expression and lowered the cholesterol levels in mice with LPL deficiency [153]. Colasante et al. reported that guided transcription activation using AAV-delivered dCas9-VP64 upregulated Scn1a gene expression to attenuate seizures in a Scn1a haploinsufficiency mouse model of Dravet syndrome [154]. Besides the examples mentioned above, additional gene editing strategies and preclinical studies could also be found in recent reviews [28, 227, 228]. Altogether, these new CRISPR tools showed potentials to treat human diseases through distinct strategies, which warrant more investigations to improve delivery efficiency and address safety concerns in the future.

Conclusions

In this review, we have provided an overview of milestones achieved, current trends, and challenges of gene therapy using AAV vectors. Gene therapy is a multidisciplinary field, significant innovations have been made in the areas of gene editing, vector engineering, nanoparticles, and other technology platforms. The clinical application of using AAV vector as a tool for gene delivery already has a long history of success in preclinical and clinical studies. Currently, the AAV vector is the leading platform for in vivo gene therapy delivery. As with other viral vectors, the toxicity associated with high-dose AAV delivery and risk for inadvertent insertional mutagenesis are the major concerns and warrant further investigation in clinical applications. With the advancement of CRISPR/Cas9 genome editing technology, AAV vector carrying the CRISPR components have been an attractive tool, with therapeutic potentials validated in both in vivo and ex vivo gene editing. Given the encouraging results and continuous expansion of the CRISPR toolbox, the AAV-CRISPR approach will expand the repertoire of gene therapy strategies and pave the
way to the new era of innovative medicine. Further improvement in the performance of engineered AAV capsids and mass production technology is essential to streamline the development of any type of AAV-based therapeutics to deliver the cures for diseases, while further confirmation of the safety in using CRISPR in vivo is needed to harness the full potential of the AAV-CRISPR system for gene editing therapy.

Authors’ contributions X. H. and Z. Z. drew the figure and the tables; X. H., B. U., Z. Z., C. N. and B. F. wrote the paper. All authors have read and approved the final manuscript.

Funding This study was supported by funds provided by the Research Grants Council of Hong Kong (14119518, 14116719, 14115520 to B.F.; This study was supported by funds provided by the Research Funding H., B. U., Z. Z., C. N. and B. F. wrote the paper. All authors have read and approved the final manuscript.

Data availability This article reviews literature and therefore does not contain any associated data and materials.

Compliance with ethical standards This article reviews literature and therefore does not require ethics approval and consent to participate.

Conflict of interest The authors declare that they have no competing interests.

Consent for publication Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-Associated Defective Virus Particles. Science 149:754–756
2. Blacklow NR, Hoggan MD, Rowe WP (1967) Isolation of adenovirus-associated viruses from man. Proc Natl Acad Sci U S A 58:1410–1415
3. Balakrishnan B, Jayandharan GR (2014) Basic biology of adenovirus-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 14:86–100
4. Samulski RJ, Muzycka N (2014) AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annu Rev Virol 1:427–451
5. Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H et al (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A 90:10613–10617
6. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenberg B et al (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 7:1145–1159
7. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24:257–261
8. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko J et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limiting epitope imposed by the host immune response. Nat Med 12:342–347
9. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365
10. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994–2004
11. Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20:1831–1832
12. Scott LJ (2015) Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. Drugs 75:175–182
13. Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A et al (2019) Efficacy, Safety, and Durability of Voretigene Neparvovec-ryzl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology 126:1273–1285
14. FDA (2017) FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. Press release
15. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW et al (2017) Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 377:1713–1722
16. Al-Zaidy S, Pickard AS, Kotha K, Alfano LN, Lowes L, Paul G et al (2019) Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol 54:179–185
17. Urquhart L (2019) FDA new drug approvals in Q2 2019. Nature Reviews Drug Discovery 18:575
18. Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW et al (2019) Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 68:31–53
19. Nathwani AC (2019) Gene therapy for hemophilia. Hematology Am Soc Hematol Edu Program 2019:1–8
20. Miesbach W, Meijer K, Coppens M, Kampmann P, Klamroth R, Schutgens R et al (2017) Adeno-Associated Virus-Associated Defective Virus Particles. Science 149:754–756
21. George LA, Sullivan SK, Giemzasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J et al (2017) Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. N Engl J Med 377:2215–2227
22. Perrin GQ, Herzog RW, Markusic DM (2019) Update on clinical gene therapy for hemophilia. Blood 133:407–414
23. Rangarajan S, Walsh L, Lester W, Perry D, Madan B, Laffan M et al (2017) AAV5-Factor VIII Gene Transfer in Severe Hemophilia A. N Engl J Med 377:2519–2530
24. High KA, George LA, Eyster ME, Sullivan SK, Ragni MV, Croteau SE et al (2018) A Phase 1/2 Trial of Investigational
25. Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R (2020) A Molecular Revolution in the Treatment of Hemophilia. Mol Ther 28:997–1015

26. Pipe S, Leebeek FWG, Ferreira V, Sawyer EK, Pasi J (2019) Clinical Considerations for Capsid Choice in the Development of Liver-Targeted AAV-Based Gene Transfer. Mol Ther Methods Clin Dev 15:170–178

27. Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR et al (2016) Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 27:947–961

28. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18: 358–378

29. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

30. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28:271–274

31. Pattali R, Mou Y, Li XJ (2019) AAV9 Vector: a Novel Modality in gene therapy for spinal muscular atrophy. Gene Ther 26:287–295

32. Pearse Y, Iacovino M (2020) A Cure for Sanfilippo Syndrome? A Summary of Current Therapeutic Approaches and their Promise. MedRes Arch 8

33. Chien YH, Lee NC, Tseng SH, Tai CH, Muramatsu SL, Byrne BJ et al (2017) Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adolesc Health 1:265–273

34. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY (2018) Gene therapy for neurological disorders: progress and prospects. Nature Reviews Drug Discovery 17:641–659

35. (2020) High-dose AAV gene therapy deaths. Nat Biotechnol 38: 910–915

36. Wilson JM, Flotte TR (2020) Moving Forward After Two Deaths in a Gene Therapy Trial of Myotubular Myopathy. Hum Gene Ther 31:695–696

37. Pipe SW, Giermasz A, Castaman G, Key NS, Lattimore S, Pearse Y, Iacovino M (2020) A Cure for Sanfilippo Syndrome? A Summary of Current Therapeutic Approaches and their Promise. MedRes Arch 8

38. Rosen S, Tiefenbacher S, Robinson M, Huang M, Srimani J, Mackenzie D et al (2020) Activity of transgene-produced B-domain-deleted factor VIII in human plasma following AAV gene therapy. Blood 136:2524–2534

39. Philippidis A (2020) Pfizer and Sangamo Hemophilia A Gene Therapy Aces First Clinical Test. Hum Gene Ther 31:705–708

40. Mercuri E, Baranello G, Masson R, Boesplug-Tanguy O, Bruno C, Corti S et al (2020) SMA–THERAPY: P. 258 Onasemnogene abeparvovec gene therapy for spinal muscular atrophy type 1 (SMA1): Phase 3 study update (STRIVE-EU). Neuromuscular Disorders 30:S121

41. Zhang L, Cho JH, Arnaoutova I, Mansfield BC, Chou JY (2019) An evolutionary approach to optimizing glucose-6-phosphatase-alpha enzymatic activity for gene therapy of glycogen storage disease type Ia. J Inherit Metab Dis 42:470–479

42. Farrar M, Swoboda KJ, Schultz M, McMillan H, Parsons J, Alexander IE et al (2019) 014 AVXS-101 gene-replacement therapy (GRT) in presymptomatic spinal muscular atrophy (SMA): study update. Journal of Neurology, Neurosurgery &. Psychiatry 90:A5–A6

43. Zhang Y, Duan D (2012) Novel mini-dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. Hum Gene Ther 23:99–103

44. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23:1435–1439

45. Li J, Sun W, Wang B, Xiao X, Liu QX (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19:958–964

46. Tornabene P, Trapani I, Menegoni R, Centrulo M, Lupo M, Comodoro S, et al. (2019) Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 11

47. Weitzman MD, Linden RM (2011) Adeno-associated virus biology. Methods Mol Biol 807:1–23

48. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8:1248–1254

49. Li C, Samulski RJ (2020) Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21:255–272

50. Boulton M, Monteiell V, Veron P, Leborgne C, Benveniste O, Montus MF et al (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712

51. Calcedo R, Wilson JM (2013) Humoral Immune Response to AAV. Front Immunol 4:341

52. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199:381–390

53. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D et al (2011) Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 18:1586–1588

54. Li C, Narkhunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ et al (2012) Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther 19:288–294

55. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas IA et al (2006) Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 108:3321–3328

56. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S et al (2006) Human immunoglobulin inhibits liver
transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 107:1810–1817
62. Mingozzi F, High KA (2017) Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 4:511–534
63. Li H, Lin SW, Giles-Davis W, Li Y, Zhou D, Xiang ZQ et al (2009) A preclinical animal model to assess the effect of pre-existing immunity on AAV-mediated gene transfer. Mol Ther 17:1215–1224
64. Kruzik A, Fetahagic D, Hartlieb B, Dorn S, Koppensteiner H, Kebriaei P, Izsvak Z, Narayanavari SA, Singh H, Ivics Z (2017) Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng 17:63
65. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al (2007) CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419–422
66. Hui DJ, Edmonson SC, Poddakoff GM, Pien GC, Ivanciu L, Camire RM et al (2015) AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Mol Ther Methods Clin Dev 2:15029
67. Verdera HC, Kuranda K, Mingozzi F (2020) AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 28:723–746
68. Bunning H, Srivastava A (2019) Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. Mol Ther Methods Clin Dev 12:248–265
69. Li C, Diprimio N, Bowles DE, Hirsch ML, Monahan PE, Asokan A et al (2012) Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J Virol 86:7752–7759
70. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA et al (2017) Escape. Annu Rev Virol 4:511
71. Garg G et al (2015) Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system. Hepatology 62:417–428
72. Siew SM, Cunningham SC, Zhu E, Tay SS, Venuti E, Bolitho C et al (2019) Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAV-piggyBac Gene Therapy. Hepatology 70:2047–2061
73. Bertin B, Veron P, Leborgne C, Deschamps JY, Moullec S, Wilkins O, Keeler AM, Flotte TR (2017) CAR T-Cell Therapy:—
74. Kotterman MA, Chalberg TW, Schaffer DV (2018) In Vivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Mol Ther 26:304–319
75. Orlowski A, Katz MG, Gubara SM, Fargnoli AS, Fish KM, Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al (2015) AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Mol Ther Methods Clin Dev 2:15029
76. Yant SR, Meuse L, Chiu W, Ivics Z, Kay MA (2000) Endonuclease in adaptive bacterial immunity. Science 337:816–821
77. Hsu PD, Lander ES, Zhang F (2014) Development and application of CRISPR-Cas9 for genome engineering. Cell 157:1262–1275
78. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297
79. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211
80. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas-mediated genome engineering. Cell 153:910–918
81. Wang H, Yang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell 154:1370–1379
82. Siew SM, Cunningham SC, Zhu E, Tay SS, Venuti E, Bolitho C et al (2019) Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAV-piggyBac Gene Therapy. Hepatology 70:2047–2061
83. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1275
84. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M et al (2008) Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301
85. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297
86. Yant SR, Meuse L, Chiu W, Ivics Z, Kay MA (2000) Endonuclease in adaptive bacterial immunity. Science 337:816–821
87. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas-mediated genome engineering. Cell 153:910–918
88. Wang H, Yang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell 154:1370–1379
89. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211
90. Heyer WD, Ehmnsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139
91. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas9-mediated genome engineering. Cell 153:910–918
92. Wang H, Yang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell 154:1370–1379
93. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131
94. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
95. Doudna JA, Charpentier E (2014) Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
96. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221
97. Anguella XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V et al (2013) Robust ZFN-mediated genome editing in adult hematopoietic mice. Blood 122:3283–3287
98. Sharma R, Anguella XM, Doyon Y, Wechsler T, Dekelver RC, Sproul S et al (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126:1777–1784
99. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

100. Swiec L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombeta J et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106

101. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ et al (2016) In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration. Nature 540:144–149

102. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

103. Agudelo D, Carter S, Velimirovic M, Duringer A, Rivest JF, Yang Y, Wang L, Bell P, McMenamin D, He Z, White J et al. (2019) The next generation of CRISPR-Cas9. Nature 520:186

104. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH et al. (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13:868–874

105. Tabebordbar M, Zhu K, Cheng IWK, Chew WL, Widrick JJ, Yan WX et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411

106. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407

107. Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu SI, Ozawa K et al (2017) CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures hemophilia B mice. Sci Rep 7:4159

108. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J et al. (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334–338

109. Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y et al. (2019) CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice. Blood 133:2745–2752

110. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F et al. (2019) Highly efficient CRISPR/Cas9-mediated knock-in by zebrafish by homology-independent DNA repair. Genome Res 24:142–153

111. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, et al., (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research: 1–14

112. Zhang C, He X, Kwok YK, Wang F, Xue J, Zhao H et al. (2018) Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. BMC Biol 16:151

113. Yang D, Scavuzzo MA, Chmielowicz J, Sharp R, Bajic A, Borowiak M (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6:21264

114. Wang J, Zhang C, Feng B (2020) The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. J Cell Mol Med 20:490–507

115. Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR-Cas9 technologies and applications. Nature Reviews Molecular Cell Biology 20:490–507

116. Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar M, Slaymaker Ian M, Makarova Kira S, Essletzbichler P et al (2015) Cpf1 is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163:759–771

117. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature

118. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

119. Tan Y, Chu AYH, Bao S, Huang DA, Kebede FT, Xiong W et al (2019) Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 116:20969–20976

120. Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X et al (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42:4375–4390

121. Thakore PI, Ippolito AMD, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods 12

122. Gilbert LA, Horlbek MA, Adamson B, Villalta JE, Chen Y, Whitehead EH et al (2014) Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 159:647–661

123. Perez-pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. (2013) RNA-guided gene activation by CRISPR-Cas9 – based transcription factors. Nature 10

124. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

125. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DJ et al (2017) Programmable base editing of A to G with Cas9 in genomic DNA without DNA cleavage. Nature 551:464

126. Wang D, Zhang F, Gao G (2020) CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors. Cell 181:136–150

127. Ginn SL, Amaya AK, Liao SHY, Zhu E, Cunningham SC, Lee M et al (2020) Efficient in vivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Rep 2:100065

128. Zhao H, Li Y, He L, Pu W, Yu W, Li Y et al. (2020) In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 141:67–79

129. Richards DY, Winn SR, Dudley S, Nygaard S, Mihgell TL, Grompe M et al (2020) AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. Mol Ther Methods Clin Dev 7:173–234

130. Zhang J-P, Cheng X-X, Zhao M, Li G-H, Xu J, Zhang F, et al. (2019) CRISPR-Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nat Biotechnol 36:839–842

131. De Carneva A, Porro F, Bortolussi G, Sola R, Lisjak M, Barzel A, et al. (2019) Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclelease to efficiently correct liver metabolic diseases. JCI Insight 5

132. Chen H, Shi M, Gilm M, Zheng Q, Zhang Y, Afrikanova I et al (2019) Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci Rep 9:16838

133. Zhang J-P, Cheng X-X, Zhao M, Li G-H, Xu J, Zhang F, et al. (2019) Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biology 20

134. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY et al. (2017) In vivo genome editing of a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500

135. Koo T, Park SW, Jo DH, Kim D, Kim HY et al. (2018) CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat Commun 9:1855

136. Chung SH, Molhoff IN, Nguyen U, Nguyen A, Stucka N, Tieu E et al. (2020) Factors Impacting Efficacy of AAV-Mediated...
CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization. Mol Ther Methods Clin Dev 17:409–417

137. McCullough KT, Boye SL, Fajardo D, Calabro K, Peterson JJ, Strang CE et al (2019) Somatic Gene Editing of GUCA2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque. Hum Gene Ther 30:571–589

138. Xie C, Zhang YP, Song L, Luo J, Qi W, Hu J et al (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26:1099–1111

139. Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D et al (2018) Cas9 sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27:761–779

140. Gyorgy B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP et al (2019) Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 25:1123–1130

141. Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X et al (2017) CRISPR/Cas9 Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Mol Ther 25:331–341

142. Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM et al (2017) CRISPR/Cas9-Mediated CRISPR Genome Editing in Duchenne muscular dystrophy. Nat Med 25:427–432

143. Xu L, Lau YS, Gao Y, Li H, Han R (2019) Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice. Mol Ther

144. Zhang Y, Li H, Min YL, Sanchez-Ortiz E, Huang J, Mireault AA et al (2020) Enhanced CRISPR/Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv 6:eay6812

145. Moretti A, Fonteyne L, Giesert F, Hopmann P, Meier AB, Bozoglu T et al (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26:207–214

146. Kemaladewi DU, Maino E, Hyatt E, Hou H, Ding M, Place KM et al (2017) Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med 23:984–989

147. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36:536–539

148. Yang L, Wang L, Huan Y, Chen X, Yin S, Hu Y, et al. (2020) Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol Ther

149. Volliger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G et al (2018) Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 24:1519–1525

150. Lim CKW, Gapisnke M, Brooks AK, Woods WS, Powell JE, Zeballos CM et al (2020) Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol Ther 28:1177–1189

151. Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML et al (2018) RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun 9:1674

152. Colasante G, Lignani G, Brusco S, Di Berardino C, Carpenter J, Giannelli S et al (2020) dCas9-Based Scn1A Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Mol Ther 28:235–253

153. Ou L, Przybilla MJ, Ahlat O, Kim S, Ovem P, James J et al (2020) A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol Ther 28:1442–1454

154. Muenzer J, Prada CE, Burton B, Lau HA, Ficicioglu C, Foo CWP et al (2019) CHAMPIONS: A phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome). Mol. Genet. Metab. 126:S104

155. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounouts G et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25:229–233

156. Coppieters F, Leefer S, Leroy BP, De Baere E (2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290 base. Hum Mutat 31:1097–1108

157. Philippidis A (2020) One Small Dose, One Giant Leap for CRISPR Gene Editing. Hum Gene Ther 31:402–404

158. Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R et al (2020) Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 4:97–110

159. Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, Wei X et al (2017) CRISPR-STOP: gene silencing through nonsense mutations. Nature Publishing Group 14:2–6

160. Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H et al (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518

161. Dever DP, Bak RO, Reimisch A, Camarena J, Washington G, Nicolas CE et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389

162. Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW et al (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263

163. Bak RO, Porteus MH (2017) CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Rep 20:750–756

164. Genovese P, Schirolgi G, Escolar G, Di Tomaso T, Fririto C, Cabalira A et al (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–240

165. Dewitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F et al (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem / progenitor cells. Science Translational Medicine 8:360ra134

166. Pavel-Dinu M, Wiebinga V, Dejene BT, Srifa W, Mantri S, Nicolas CE et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10:1634

167. Eysen JM, Mansilla-Soto J, Giavridi T, Van der Stegen SJ, Hamieh M, Cunanan KM et al (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–117

168. Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y et al (2019) One-step generation of modular CAR-T cells with AAV-Cpf1. Science 362:159–163
172. Ye L, Wang J, Tan Y, Beyer AL, Xie F, Muench MO et al (2016) Genome editing using CRISPR-Cas9 to create the HPHH genotype in HSPCs: an approach for treating sickle cell disease and beta-thalassemia. Proc Natl Acad Sci U S A 113:10661–10665

173. Martyn GE, Wieneret B, Yang L, Shah M, Norton LJ, Burdach J et al (2018) Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet 50:498–503

174. Antoniani C, Meneghini V, Lattanzi A, Felix T, Romano O, Martyn GE, Wienert B, Yang L, Shah M, Norton LJ, Bu...
210. Favaro P, Downey HD, Zhou JS, Wright JF, Hauck B, Mingozzi F et al (2009) Host and vector-dependent effects on the risk of germline transmission of AAV vectors. Mol Ther 17:1022–1030

211. Rajasekaran S, Thatte J, Periasamy J, Javali A, Jayaram M, Sen D et al (2018) Infectivity of adeno-associated virus serotypes in mouse testis. BMC Biotechnol 18:70

212. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK et al (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25:249–254

213. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyuz L, Reinke P et al (2019) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25:242–248

214. Crudele JM, Chamberlain JS (2018) Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 9:3497

215. McIntosh J, Lenting PJ, Rosales C, Lee D, Rabbanian S, Raj D et al (2013) Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 121:3335–3344

216. Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R (2019) Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Acc Chem Res 52:2435–2444

217. Rui Y, Wilson DR, Green JJ (2019) Non-Viral Delivery To Enable Genome Editing. Trends Biotechnol 37:281–293

218. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA et al (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1:889–901

219. Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y et al (2017) A non-viral CRISPR/Cas9 delivery system for therapeutic gene targeting in vivo. Cell Res

220. Dolgin E (2020) Specter of eye toxicity looms over BCMA-targeted therapy. Nat Biotechnol 38:1363–1365

221. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature

222. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

223. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. (2017) RNA targeting with CRISPR-Cas13. Nature

224. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173:665–76 e14

225. Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X et al (2018) A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett 431:171–181

226. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, et al. (2020) Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza. bioRxiv preprint

227. Cring MR, Sheffield VC (2020) Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther

228. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.