Characterization and Phylogenetic Analysis of the Mitochondrial Genome of *Shiraia bambusicola* Reveals Special Features in the Order of Pleosporales

Xiao-Ye Shen¹, Tong Li¹, Shuang Chen¹, Li Fan¹*, Jian Gao², Cheng-Lin Hou¹

¹ College of Life Science, Capital Normal University, Beijing, People’s Republic of China, ² Key Laboratory of Bamboo and Rattan Science and Technology of the SFA, International Centre for Bamboo and Rattan, Beijing, People’s Republic of China

* fanli@mail.cnu.edu.cn

Abstract

Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (*nad1*-6 and *nad4L, cob* and *cox1*-3), one ATP synthase subunit (*atp6*), 4 hypothetical proteins, and two genes for large and small rRNAs (*rnl* and *rns*). There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that *S. bambusicola* clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (*nad6*-*atp6*), block 2 (*nad1*-*cox3*) and block 3 (genes around *rns*). *S. bambusicola* displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around *rns* (*trnR*-*trnY*). Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as *cox3*, *cox1*-*cox2* and *nad2*-*nad3*); these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the *atp6* gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.
Introduction

Shiraia bambusicola P. Henn. is an important pathogen and causative agent of bambusicolous disease, with negative effects on plant growth. *S. bambusicola* is a highly specific pathogen, usually confining infection to *Brachystachyum densiflorum* and related species in China and *Bambusa* species in Japan [1,2]. It is noteworthy that the fruiting bodies of this fungus are widely used in the southern part of China for remedying inflammation, apoplexy and sciatica. The corresponding sporophores or mycelium are usually rich in bioactive compounds, such as hypocrellins, which are photosensitizers that possess antibiotic, antitumor, antiviral and anti-inflammatory properties [3–12].

The corresponding position of *S. bambusicola* has been reclassified several times over one hundred years of taxonomic research. Dating back to 1900, the genus *Shiraia* was first recorded as one member of Nectriaceae, Hypocreales, Pyrenomycetes [13]. Two years later, *Shiraia* was anchored in the Hypocreaceae family based on the base of the larger fleshy stroma [14]. This viewpoint was popular for several decades, until the ascus was observed to not be unitunicate but was instead bitunicate, and *Shiraia* was transferred to the Loculoascomycetes class, the Pleosporales order, and the Pleosporaceae family [15]. As illustrated in the ninth edition of the fungal dictionary, *Shiraia* was characterized as a Dothideales species with an undetermined family affiliation [16]. In recent studies, the taxonomic position of *Shiraia* has been analyzed phylogenetically by DNA sequence analysis in combination with morphological evidence. Sequencing of the 18S rDNA and ITS-5.8S rDNA regions indicated that the genus *Shiraia* should belong to Phaeospheriaceae, Pleosporales [17]. Liu et al. [18] erected a new family Shiraiceae in Pleosporales to accommodate *Shiraia* based on the partial 28S nrDNA nucleotide sequence. It is noticeable that whether regarded as a genus or a family, there is only one representative species present in this group, and no distinct differences were found among fungal isolates from different bamboo hosts [17].

As one of the most important organelles in the cell, the mitochondria play a vital role in generating energy [19]. The origin of the mitochondrial genome dates back to DNA transposable elements from α-proteobacteria in a eukaryotic host cell [20–24], although most of the mtDNA coding genes have been transferred into the nuclear chromosomes during evolution [25]. Because of its high copy number, apparent lack of recombination, and rapid evolution, mitochondrial genomes (mitogenomes) are widely accepted as effective markers for evolutionary studies in the fungal kingdom [26–31]. Fungal mitogenomics have improved tremendously in recent years with the application of new sequencing technology, and the availability of mitochondrial genomes has allowed for the resolution of numerous questions regarding evolutionary history. For example, in February 2013 the largest fungal mitochondrial genome at that time was reported from *Agaricus bisporus*, with 135,005 bp [32]. Several months later, another mitogenome with 235,849 bp arose from *Rhizoctonia solani* [33]. Trans-splicing in organelles was first demonstrated from the fungal species *Gigaspora margarita* by analysis of the complete mitochondrial genome sequence [34]. A similar phenomenon of group I introns in mitochondria from *Gigaspora rosea* revealed an unusual feature: the effect of a third helper RNA fragment in trans. Studies of *Pneumocystis jirovecii*, an important opportunistic pathogen associated with AIDS and other immunodeficiency conditions, displayed a special arrangement of genes among the mitogenomes from closely related species. Thus, detailed analysis of mtDNA sequences raises the possibility of identifying new therapeutic targets [35]. Separate analyses of gene arrangements from the orders Sordariales [36] and Helotiales [37] displayed significantly different conservation patterns; furthermore, fungal mitogenomes exhibit remarkable variation between and within the major fungal phyla in terms of gene order, as demonstrated by a comparison of 38 complete mtDNA sequences published in previous reports [38].
The class Dothideomycetes contains more than 1900 species and is regarded as the largest and most diverse class of Ascomycete fungi [39]. The species are taxonomically classified into 11 orders: Capnodiales, Dothideales, Myriangiales, Hysteriales, Jahnulales, Mytilinidiales, Pleosporales, Botryosphaeriales, Microthyriales, Patellariales and Trypetheliales. Pleosporales is the most diverse fungal order in Dothideomycetes, occupying one quarter of all dothideomycetous species [40]. Species in this order occur in various habitats and were identified as one hundred and five generic types in multigene phylogenetic analyses [41].

Despite the fact that more than 165 fungal mitogenomes have been uploaded into the public database of NCBI and the dominant sequences can be attributed to mitochondria from Ascomycete, there are just two sequences published officially from the Dothideomycetes class: one from Capnodiales (Mycosphaerella graminicola) [42] and the other from Pleosporales [31].

The number of fungal mitogenomes that have been partially or completely sequenced is increasing. These published sequences have the potential to speed up the development of classification, evolution, genetics and breeding engineering for their corresponding mycetes. In this study, we have completed the novel mitochondrial genome sequence of *S. bambusicola*, as well as four additional mitogenic sequences that were analyzed but have not appeared in previous reports. All of the referenced Dothideomycete species are well-known plant pathogens from various hosts, such as *Bipolaris maydis* from southern corn [43], *Leptosphaeria maculans* from oilseed rape [44], and *Phaeosphaeria nodorum* from wheat [45], and have obtained great attention for their impact on the agriculture and forestry industries. Additionally, the hypocrellins from *S. bambusicola* (Dothideomycetes, Dothideales) was found to have a special structure of perylenequinonoid compounds that was also identified in *Cercospora* spp. (Dothideomycetes, Capnodiales) as cercosporin, *Elsinoë* spp. (Dothideomycetidae, Myriangiales) as elsinochrome, and *Cladosporium phlei* (Dothideomycetes, Capnodiales) as phleichrome [46]. It is anticipated that the findings of comparative analysis of mitochondrial genomes will contribute to the understanding of fungal evolutionary biology and enrich the knowledge of fungal infection and toxins from Dothideomycete pathogens.

Materials and Methods

Mitochondrial DNA Purification

Strain *zzz816* of *S. bambusicola* was isolated from moso bamboo (*Phyllostachys edulis*) seeds as endophytic fungi and was previously morphologically identified and molecularly characterized by our lab [47]. Fungal cultures were recorded and deposited in the China Forestry Culture Collection Center (CFCC).

The mycelium from subcultured colonies were scraped from the surface of the agar and frozen in liquid nitrogen for mtDNA extraction. The DNase treatment of the whole mitochondrial pellets and then the extraction of mtDNA were dependent on the instructions from the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and Lang’s protocol [48]; nuclear DNA interference was assessed by PCR for the target regions of ITS rDNA [49].

Illumina Sequencing, Scaffold Assembly, and Mitochondrial Genome Annotation

Total mitochondrial DNA of *S. bambusicola* was sequenced using Illumina Hiseq 2000, and the resulting reads were assembled into contigs using the CLC Genomics Workbench (CLCbio). Eight scaffolds were identified by a sequence similarity search using published fungal mitogenomes, and the resulting sequences were combined into a single circular DNA using
PCR to bridge the intergenic gaps. The complete mitochondrial genome was reassured using PCR-based DNA sequencing.

The genomic clones from four other Dothideomycetes species (Pyrenophora tritici-repentis Pt-1C-BFP (NW 002475730), Leptosphaeria maculans (FP929115), Bipolaris maydis C5 (AIDY01000067 and AIDY01000043) and Neofusicoccum parvum UCRNP2 (AORE01000551)) were screened by high levels of sequence identity with fungal mitogenomes referenced in the NCBI database. Fragmented contigs were separately assembled to approximate complete mitogenomic sequences; these contigs contained almost all of the protein coding genes, with a minimum of the genes encoding nad1–6, nad4L, cob, cox1–3, atp6, rnl and rns. Another two mitogenomes from P. nodorum (NC 009746) and M. graminicola (NC 010222) were downloaded from the NCBI public database; both have been analyzed in previous reports [31,42]. In order to assure the consistency of the data, only the larger contigs (over 10 kb), which displayed high similarity with the official sequence of fungal mitogenomes, were selected out and re-analyzed using the methods described below. Some revisions were referenced in published sequence information databases.

Protein coding genes were identified with MFannot [50] and errors were revised with BLASTp and BLASTx (NCBI). tRNA genes were screened using tRNAscan-SE [51], ARWIN [52], AGAGORN [53] and RNAWEASEL [54]. The results were regarded as reliable when genes were predicted by at least two methods. Non-coding regions and rRNA genes were identified manually using BLAST search and alignment with other reference sequences.

Repeat Structure and Sequence Analysis

We utilized the REPuter [55] and Tandem Repeat Finder programs [56] to screen for dispersed and tandem repeats. Direct (forward), inverted (palindrome) and reverse repeats were composed of dispersed repeats, and the corresponding hamming distance was equal to 3 with a size of more than 30 bp. The advanced parameter of the Tandem Repeat Finder program was set at 2 (match), 7 (mismatch), and 7 (indels). The settings of the minimum alignment score and the maximum period size were 50 and 500, respectively. After the two programs were finished, we manually modified the redundant results of dispersed repeats and deleted tandem repeats with less than 15 bp.

Phylogenetic Analysis

Amino acid sequences of the protein-encoding genes atp6, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5 and nad6 were used for phylogenetic analysis. These sequences were found in the mitogenomes of 32 Ascomycete species (S1 Table) and were concatenated using DAMBE software version 5.2.13 [57]. The alignment was performed using Clustal version X 1.83, and amino acids sharing low homology were eliminated by Gblocks. Three species belonging to Saccharomycetales (Candida albicans, Ogataea angusta and Pichia pastoris) were used as outgroup taxa in the phylogenetic analysis. For the Bayesian analysis, cpREV with the Akaike information criterion (AIC) was used to choose a substitution model for the concatenated dataset. The model GRT + I + G was chosen for the combined sequences. The Bayesian analysis was performed with MrBayes 3.1.2 [58,59] with two sets of four chains (one cold and three heated) and the STOPRULE option in effect, halting the analyses at an average standard deviation of split frequencies of 0.01. The sample frequency was set to 100, and the first 25% of trees were removed as burn-in. Bayesian posterior probabilities (PP) were obtained from the 50% majority rule consensus of the remaining trees. Clades receiving PP ≥ 99% were considered to be significantly supported.
GenBank Accession Number

The *S. bambusicola* mitogenome sequence was deposited in GenBank under accession number (KM382246). The other mtDNA sequences were downloaded from reference sequences in the NCBI database (S1 Table).

Results

Mitochondrial Genome Description

The mitochondrial genome of *S. bambusicola* was sequenced using Illumina Hiseq 2000, and eight scaffolds were assembled into a typical circular DNA molecule with a length of 39,030 bp using PCR amplification to successfully span all gaps. The sequence was AT-rich, with an overall G+C content of only 25.19% (Table 1). Protein-coding gene regions had a G+C content of 27.1%, and RNA genes had a slightly higher GC content of 35.4%. In general, the mitochondrial genome of *S. bambusicola* was compact, with 68.96% of the genome containing coding regions.

Protein-coding gene regions accounted for 47.33% of the mitochondrial genome and contained 17 genes encoding proteins. These genes encoded for ATP-synthase complex F0 subunit (*atp6*), three complex IV subunits (*cox1*, *cox2*, and *cox3*), one complex III subunit (*cob*), seven electron transport complex I subunits (*nad1*, *nad2*, *nad3*, *nad4*, *nad4L*, *nad5*, and *nad6*), one ribosomal protein (*rps3*) and four hypothetical proteins (*orf250*, *orf262*, *orf322* and *orf352*) (Fig. 1) (Table 2). These genes appeared on both strands in an unbiased fashion. Thirteen representative mitochondrial genes involved in respiratory chain complexes (OXPHOS) displayed high sequence conservation with other species of filamentous fungi. Specifically, *cox1* was adjacent to *cox2* without intergenic regions, and the ATG initiation codon of *nad5* followed immediately after the termination codon of *nad4L*, with an overlap of one base.

Three open reading frames (ORFs) (*orf250*, *orf262*, *orf322*) were found in the intergenic regions and one ORF (*orf352*) was found in the intron. Most of the ORFs were located on the negative strand, with the exception of *orf352* in the intron of *cox1*. It is remarkable that there was only one group I intron across the entire mitochondrial genome, and only one intronic ORF encoding a putative LAGLIDADG endonuclease family protein with high similarity to other species of filamentous fungi, including *Talaromyces marneffei* and *Candida oxycetoniae*.

Genomes features	Value
Genomes size (bp)	39,030
G+C content (%)	25.19
No. of protein-coding genes	17
G+C content of protein-coding genes (%)	27.1
Structural proteins coding exons (%)	47.33
No. of rRNAs/tRNAs	2/32
G+C content of RNA genes (%)	35.4
rRNAs+tRNAs (%)	18.92
Coding regions (%)	68.96
Intergenic regions (%)	30.51
No. of introns	1
No. of intronic ORFs	1
Introns (%)	3.24

doi:10.1371/journal.pone.0116466.t001
The hypothetical protein encoded by orf322 possessed some homology with YP 001427397, a ribosomal S5-like protein with a domain from the SNF7 superfamily, from \textit{P. nodorum} (length = 323 aa; alignment range: 31–314 aa; identity = 67/291 (23%); e-value = 0.24). The orf262 protein was slightly similar to an unnamed protein product with accession number XM003024124 at the protein amino acid level; this protein is found in the nuclear genome of zoophilic dermatophytes \textit{Trichophyton verrucosum} HKI 0517 (length = 263 aa; alignment range, 81–141 aa; identity = 27/75 (36%); e-value = 1.0). The orf250 protein consisted of 251 amino acids, displayed no similarity with other fungal proteins, and was slightly similar to a hypothetical protein from \textit{Thiohalocapsa} sp. by BLASTx (alignment range, 29–110 aa; identity = 45/83 (54%); e-value = 2.4).

The putative mitochondrial genes (\textit{atp6}, \textit{cob}, \textit{cox1}, \textit{cox2}, \textit{cox3}, \textit{nad1}, \textit{nad2}, \textit{nad3}, \textit{nad4}, \textit{nad4L}, \textit{nad5}, \textit{nad6}, \textit{orf262}, \textit{orf250} and \textit{rps3}) were applied to a study of the frequencies of codon usage for coding functional proteins. The codon usage of intronic genes was evaluated using the orf352 sequence. The “AUG” initiation codon appeared most frequently (Table 3), with the exception of \textit{cox2} with “AAU” and \textit{atp6} with “AUU”. The intronic gene \textit{orf352} started with special codon “UUG”, which was not found in other genes. The coding region of \textit{cox1} was terminated by UGA and \textit{cob} by UCC. \textit{cox2} and \textit{nad4} ended with UAG, and the stop codon used by all other genes was UAA, including intronic \textit{orf352}.

Fig 1. Circular mapping of the complete mitochondrial genome from \textit{S. bambusicola}. The tracks from the outside represent: (1) Forward CDS and tRNA; (2) Reverse CDS and tRNA; (3) %GC plot (Yellow for above 50%, Violet for under 50%); (4) GC skew [(G – C)/(G + C)] (Yellow for plus, Violet for minus). The genes are colored on the basis of their functional groups, and the color scheme is illustrated to the left of the circle. One intron (IB) appeared in the corresponding gene \textit{cox1}. The tRNA genes are indicated with brackets and the anticodon appended to the gene name. The precise positions of genes and introns are listed in Table 2.
Table 2. Gene organization of the mitochondrial genome.

Gene	Start position	Stop position	Length (nt)	Length (aa)	Start Codon	Stop codon
cox1	162	3046	2885	526	ATG	TGA
cox2	3047	3793	747	249	AAT	TAG
tmN	4169	4239	71			
nad6	4563	5129	567	189	ATG	TAA
tmV	5201	5273	73			
tmG	6116	6188	73			
tmD	6191	6262	72			
tmS	6502	6581	80			
tmW	6761	6832	72			
tmI	6934	7005	72			
tmR	7010	7081	72			
tmS	7288	7372	85			
tmP	7564	7636	73			
ndl	7808	11191	3384			
tmT	11299	11369	71			
tmM	11392	11462	71			
tmM	11468	11540	73			
tmE	11719	11791	73			
tmA	11824	11895	72			
tmF	12675	12747	73			
tmL	13201	13283	83			
tmQ	13459	13530	72			
tmH	13534	13607	74			
tmM	13655	13726	72			
atp6	13946	14719	774	258	ATG	TAA
tmC	14824	14895	72			
nad1	15187	16302	1116	372	ATG	TAA
rps5	17580	16612	969	323	ATG	TAA
nad4	19667	17622	2046	682	ATG	TAG
tmK	20096	20002	95			
cob	21573	20416	1158	386	ATG	TCC
nad5	24190	22205	1986	662	ATG	TAA
nad4L	24459	24190	270	90	ATG	TAA
tmV	24563	24491	73			
atp6	25228	24599	630	210	ATT	TAA
orf262	26126	25338	789	263	ATG	TAA
tmM	26415	26344	72			
tmH	26538	26465	74			
tmQ	26613	26542	72			
orf250	27677	26925	753	251	ATG	TAA
nad3	29026	28259	768	256	ATG	TAA
nad2	30778	29027	1752	584	ATG	TAA
cox3	31883	31074	810	270	ATG	TAA
orf564	34882	33188	1695	565	ATG	TAG
tmK	35050	34979	72			
tmV	35152	35080	73			

(Continued)
Table 3 shows that the most frequently used amino acid in the 17 protein genes was isoleucine, followed by serine (Table 3). As shown in Table 1, the mitochondrial genes are strongly biased toward codons with AT (72.9%), and the preference of A and U residues is consistent with overall codon usage. The most frequently used codons are composed exclusively of "U" and "A": UAA (7.03%), AAA (5.29%), UAU (4.92%), UUU (4.90%), AUU (4.84%), AUA (4.43%), AAU (4.37%) and UUA (2.89%). The least frequent codons consist mainly of Cs and Gs (Table 3): CCG (0.03%), UCG (0.05%), CGG (0.06%), CGA (0.08%), GCG (0.10%) and GCC (0.11%).

tRNAscan-SE, ARWIN, AGAGORN, RNAWEASEL and BLAST comparison with other fungal mitochondrial genomes identified two rRNAs and 32 tRNAs in the genome, corresponding to all 20 amino acids (Table 4). Fig. 1 illustrates an ideogram that describes the genomic organization and gene classification; these genes are also located on both strands.

In the S. bambusicola mitochondrial genome, 32 tRNAs were identified that clustered roughly into three groups (Fig. 1) with lengths ranging from 70 to 94 bp. The genes carried codons for all 20 amino acids, and some of them existed as multiple tRNAs (Table 4). There were four copies of the trnM-CAU tRNA gene for methionine and three tRNAs for valine with the same anticodon (trnV-UAC). Two different tRNA genes for leucine (trnL-UAG and trnL-UAA), arginine (trnR-UCU and trnR-ACG), and serine (trnR-GCU and trnR-UGA) were found. Two copies of trnN-GUU, trnQ-UUG, trnH-GUG and trnK-UUU were located in different regions; the remaining 11 tRNA genes had only one copy. It is noteworthy that two copies of three continuous genes of trnQ-UUG, trnH-GUG and trnM-CAU were separated by large distances on different DNA strands. All tRNAs exhibited the classic cloverleaf structure based on tRNAscan.

Phylogenetic Relationships of Dothideomycetes

In order to gain additional evidence for the classification of Dothideomycetes species and understand the evolutionary history of the mitochondrial genome, the complete concatenated amino acid sequences of the 12 standard mitochondrial genes (atp6, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6 and cob) were used for phylogenetic construction by maximum parsimony (Fig. 2).

Using three species of Saccharomycetales in the class of Saccharomycetes (Candida albicans, Ogataea angusta and Pichia pastoris) as outgroups, four classes of Pezizomycotina species were identified (Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). In the Dothideomycetes group, the clade of five species belonging to Pleosporales were grouped separately from Botryosphaeriales and Capnodiales species, which clustered in the same clade associated with a posterior probability support of 95%. S. bambusicola was located amongst the species of the Pleosporales order with a high bootstrap support value of 100% and was a sister sequence to four other species in Pleosporales.
Table 3. Codon usage of protein-coding genes in the mitogenome of *Shiraia bambusicola*.

AA	codon	%	
Stop	End	UAA	7.03
K	Lys	AAA	5.29
Y	Tyr	UAU	4.92
F	Phe	UUU	4.9
I	Ile	AUU	4.84
I	Ile	AUA	4.43
N	Asn	AAU	4.37
L	Leu	UUA	2.89
R	Arg	AGA	2.79
F	Phe	UUC	2.74
S	Ser	AGU	2.55
I	Ile	AUC	2.47
Y	Tyr	UAC	2.42
T	Thr	ACU	2.37
C	Cys	UGU	2.29
W	Trp	UGA	2.29
S	Ser	UCU	2.18
T	Thr	ACC	2.14
H	His	CAU	2.03
N	Asn	AAC	2.01
S	Ser	AGC	1.95
E	Glu	GAA	1.77
L	Leu	UUG	1.69
V	Val	GUU	1.66
M	Met	AUG	1.62
S	Ser	UCC	1.38
V	Val	GUA	1.38
T	Thr	ACA	1.35
R	Arg	AGG	1.33
A	Ala	GCU	1.3
C	Cys	UGC	1.28
K	Lys	AAG	1.28
G	Gly	GGU	1.19
S	Ser	UCA	1.15
L	Leu	CUU	1.12
D	Asp	GAU	1.09
Stop	End	UAG	1.02
Q	Gln	CAA	0.97
P	Pro	CCU	0.78
G	Gly	GGA	0.71
A	Ala	GCA	0.7
H	His	CAC	0.55
L	Leu	CUC	0.55
W	Trp	UGG	0.55
T	Thr	ACG	0.45
P	Pro	CCC	0.42

(Continued)
Table 3. (Continued)

AA	codon	%	
P	Pro	CCA	0.41
V	Val	GUG	0.41
G	Gly	GGG	0.37
G	Gly	GGC	0.37
V	Val	GUC	0.36
L	Leu	CUA	0.29
L	Leu	CUG	0.23
R	Arg	CGU	0.23
D	Asp	GAC	0.19
Q	Gln	CAG	0.16
R	Arg	CGC	0.16
E	Glu	GAG	0.13
A	Ala	GCC	0.11
A	Ala	GCG	0.1
R	Arg	CGA	0.08
R	Arg	CGG	0.06
S	Ser	UCG	0.05
P	Pro	CCG	0.03

doi:10.1371/journal.pone.0116466.t003

Table 4. tRNAs in the mitogenome of Shiraia bambusicola.

AA	Anticodon	Numbers
Ala	UGC	1
Arg	ACG	1
Arg	UCU	1
Asn	GUU	2
Asp	GUC	1
Cys	GCA	1
Gln	UUG	2
Glu	UUC	1
Gly	UCC	1
His	GUG	2
Ile	GAU	1
Leu	UAG	1
Leu	UAA	1
Lys	UUU	2
Met	CAU	4
Phe	GAA	1
Pro	UGG	1
Ser	GCU	1
Ser	UGA	1
Thr	UGU	1
Trp	UCA	1
Tyr	GUA	1
Val	UAC	3

doi:10.1371/journal.pone.0116466.t004
Fig 2. Phylogenetic tree from Bayesian analysis of amino acid sequences for Ascomycota mitochondrial genomes. The tree was based on 12 OXPHOS proteins: atp6, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5 and nad6. Sequences were obtained from GenBank: Bipolaris maydis (AIDY01000067 and AIDY01000043), Leptosphaeria maculans (FP929115), Pyrenophora triticarum (NW002475730), Phaeosphaeria nodorum (NC009746), Neofusicoccum parvum (AORE01000551), Mycosphaerella graminicola (NC010222), Beauveria bassiana (NC010652), Fusarium graminearum (NC009493), Fusarium fujikuroi (NC016687), Hypocrea jecorina (NC003388), Metarhizium anisopliae (NC008068), Cochliobolus
Comparative View of Dothideomycetes mtDNAs

The sequenced mitochondrial genomes of Dothideomycetes showed remarkable variation in size, ranging from 39,030 bp (*S. bambusicola*) to over 154,863 bp (*L. maculans*) (S1 Table). The mitochondrial genome size of *S. bambusicola* (39,030 bp) was the smallest among the analyzed Dothideomycetes mtDNAs, including the orders Pleosporales, Botryosphaeriales and Capnodiales. The tremendous change in length can mainly be attributed to the variation in introns, intergenic regions and the presence of hypothetical proteins.

As an effective tool to derive a common evolutionary route in fungi, mitochondrial genomes undergo complicated genome rearrangement. This gene order in *S. bambusicola* was compared with those of Dothideomycetes species whose mitogenomes have been sequenced and annotated completely or nearly completely (S1 Table). Seven mitogenomes were selected from the representative species: five in Pleosporales (*S. bambusicola*, *P. nodorum*, *B. maydis*, *P. triticirepentin* and *L. maculans*), one in Botryosphaeriales (*N. parvum*) and one in Capnodiales (*M. graminicola*). As shown in Fig. 3, the sequences of protein-coding genes revealed significant areas of conservation and the gene order exhibited considerable synteny in the Dothideomycetes species, especially between Pleosporales species.

In the mitochondrial genome of *S. bambusicola*, the gene order could be identified for three representative regions, which include block 1 (*nad6-ctp6*), block 2 (*nad1-cpx3*) and block 3 (genes around *rns*) (Fig. 1). There was little diversity in gene arrangement in block 1 when compared with other Dothideomycetes species. In contrast, genes in block 2 underwent complex rearrangements among different species and the relative positions of the genes (*nad4*-*nad1-nad5-nad4L*) showed diverse patterns and different orientations. It is noteworthy that the block 3 organization of *S. bambusicola* was unique and differed from four adjacent species in the same order. Some specific genes were found to cluster together, indicating a strong relationship. For example, the gene pair *nad2-nad3* was permanently associated in all seven of the mitochondrial genomes analyzed, and no modifications were observed for gene pair *cox1-cox2* in six species (Fig. 3A).

To investigate if a similar pattern occurred in other closely related classes, the species of Eurotiomycetes, Leotiomycetes and Sordariomycetes were selected for genomic synteny analysis. Complete or nearly complete mitogenomes published from Pezizomycotina were limited to three classes, similar to our observations with Dothideomycetes. There was similar synteny in gene order between Chaetothyriales, Eurotiiales and Onygenales (Fig. 3B). The parallel phenomenon remained when the species of Sordariomycetes were included in the analysis (Fig. 3C). Two subclasses (Hypocreomycetidae and Sordariomycetidae) did not show marked differences in gene arrangement. Two exceptions are the mitochondrial genome organization of *Verticillium dahliae* and *Podospora anserine*, which have special locations of *cox2*, *nad4L*, *nad5*, *nad4L*, *cob*, *nad4*, *cox1*, *nad1*, *atp8* and *atp6*. The mitogenome gene arrangement of the four species from Leotiomycetes also displayed a high degree of conservation in block 1 (*cox3-trnM*) and block 3 (genes around *rns*), while genes in block 2 exhibited variable order compared to different species (Fig. 3D). It is interesting that all genes for most of the known Pezizomycotina mtDNAs were encoded on the same strand with the exception of the
Fig 3. Mitochondrial gene orders of 29 fungal species from 4 classes. The classes are Dothideomycetes (A), Eurotiomycetes (B), Sordariomycetes (C) and Leotiomycetes (D). The genes are colored on the basis of their functional groups as in Fig. 1, and the positions of the tRNA genes are depicted using their one letter amino acid code. The noncoding region (NCR) is not indicated. An asterisk (*) indicates the opposite direction of transcription of genes.

doi:10.1371/journal.pone.0116466.g003
Dothideomycetes species, and the diverse positions of \textit{cox3} can be considered a class-specific feature. Among 29 mitogenomes from four classes, the gene arrangement of Eurotiomycetes and Sordariomycetes were the most conserved. For Leotiomycetes, four mitogenomes demonstrated three types of gene order in block 2. There were no regular arrangements of genes in block 2 of mtDNAs from Dothideomycetes, and some species also revealed unique locations of genes around \textit{rns}. Furthermore, the distribution of mitogenomic genes in different strands improved the complexity of mitochondrial DNA sequences. In all, although more mitogenomes of Dothideomycetes species are required for an in-depth study, the existing open-source data allowed us to conclude that the mitochondrial gene orders in the class Dothideomycetes display more complex diversity than other species of Pezizomycotina.

\textbf{Introns and Intrinsic ORFs}

Intronic elements in the mitochondrial genomes of Dothideomycetes species exhibit sequence variability, and intron insertion occurred irregularly in the coding genes (S2 Table). There were differences in the number of introns and in the length and content of intronic regions, particularly with regards to regions encoding open reading frames (ORFs).

Most fungal mitochondrial genomes that have been sequenced to date contain at least one group I and few group II introns. In the Pezizomycotina subphylum (including all published mitogenomes), the largest number of mitochondrial introns (\(n = 39\)) was documented for \textit{P. tritici-repentis} in our analysis (S2 Table), while \textit{M. graminicola} is currently the only species of filamentous fungi entirely lacking mitochondrial introns (S2 Table) \cite{42}.

There was only one intron in the \textit{cox1} gene sequence of \textit{S. bambusicola}, and homologs of mobile elements were found to be inserted at a similar position (\textit{cox1}) in \textit{P. tritici-repentis}, \textit{L. maculans}, \textit{B. maydis} and \textit{N. parvum} UCRNP2. These intronic ORFs (\textit{orf352}, \textit{orf324–1}, \textit{orf324–2}, \textit{orf318} and \textit{orf321}) share high sequence identity (S3 Table). It is noteworthy that the existing introns of \textit{cox1} genes from Dothideomycetes species were always found to contain these hypothetical proteins. The complete sequence of \textit{orf324} appeared repeatedly in mitogenomes of \textit{P. tritici-repentis} and \textit{L. maculans}. There was no identical sequence from other species, including \textit{B. maydis} in the same family (Pleosporaceae) as \textit{P. tritici-repentis}. \textit{L. maculans} intron II (domain V) from the \textit{rns} gene also appeared at the same position in \textit{N. parvum}, but their intronic sequences share low identity (S2 Table). It was interesting that the intronic ORFs encoding the genes appeared in the mitogenomes of \textit{S. bambusicola} and \textit{P. nodorum} less frequently and that similar mobile elements were usually found in other Dothideomycetes species. Many unidentified intronic ORFs encoding genes were found in \textit{B. maydis}, \textit{P. tritici-repentis}, \textit{L. maculans} and \textit{N. parvum}. Some of these were attributed to other fungal species, because the invasive ORFs exhibited higher comparative identity with the unknown proteins from distant relative species of filamentous fungi and even mushrooms.

\textbf{Unidentified Open Reading Frames and Conserved Open Reading Frames in the Intergenic Regions}

The mitochondrial genome of \textit{S. bambusicola} included functional genes that are generally found in other species; however, unique ORFs were identified in the intergenic regions of the unknown proteins. Three ORFs were detected in strain \textit{S. bambusicola}, compared with 5 in \textit{P. nodorum}, 64 in \textit{B. maydis}, 36 in \textit{P. tritici-repentis}, 28 in \textit{L. maculans}, 8 in \textit{N. parvum} and 15 in \textit{M. graminicola}. These strains exhibited a broad spectrum of numbers of predicted ORFs, from the lowest ORF content (three in \textit{S. bambusicola}) to the highest (64 in \textit{B. maydis}). This variation in the number of predicted ORFs could partly explain the variation in genome size, and
calculation of the percent identity of each genome revealed that most divergences were found in the intergenic regions.

In the mitogenome of *L. maculans*, one intergenic region contained an open reading frame (orf221). The putative homolog of this hypothetical protein was also found in the closely related *P. tritici-repentis* mitochondrial genome (orf493). Likewise, similar ORFs were discovered between the mitochondrial genomes of *L. maculans* (orf207, orf535 and orf158) and *P. tritici-repentis* (orf205 and orf243). It should be noted that although orf221 (orf493) contained the conserved coding LAGLIDADG endonuclease region observed in other mycelial species (such as *Ceratocystis cacaofunesta* and *Annulohypoxylon stygium*), orf158, orf205, orf207, orf243 and orf535 sequences contained unique sequence structure features with no obviously matched regions detected in other species from the NCBI database.

Other Notable Features

We found a number of repeats in the intergenic spacer (IGS) and coding sequence (CDS) regions of *S. bambusicola*, which were classified as 17 forward (direct), 22 inverted (palindromic), 6 reverse and 25 tandem repeats (S4 Table). Three repeats (P1, P2, and P3) were particularly long. P1 was the longest repeat with 485 bp and appeared in the CDS of *atp6*. Interestingly, there are only two partial copies of the *atp6* gene in the mitogenome, and neither of them encodes the complete *atp6* protein. P2 was located in the IGS region of the *trnL-trnQ* gene and the IGS of the *trnM-trnH* gene, and P3 appeared in the IGS sequences of orf250, *nad3* and *trnR*, and *cox1*. It is generally accepted that repeats can lead to genetic recombination, with the direct and inverted repeats represented during the loop-out process giving rise to submolecules, and a flip-flop mechanism giving rise to inversion.

In our study, the *atp8* and *atp9* genes only co-occurred in the mitogenome of *M. graminicola*, while another *atp9* gene was found in *N. parvum*. Neither the *atp8* or *atp9* genes were identified from the mtDNA of five Pleosporales species; thus, only 12 genes coding for proteins related to oxidative phosphorylation without two ATP synthase subunits were used for phylogenetic studies on these species. It is noteworthy that a pair of *atp6* genes was found in the mitogenome of *S. bambusicola*; neither CDS could individually encode the complete ATP synthase F0 subunit 6, but the combination of the two fragments could assemble the complete gene. Their crossed region has a length of 543 bp, with the two partial genes appearing on different strands. This interesting phenomenon was verified by polymerase chain reaction (PCR) and conventional sequencing methods.

Discussion

As one of the largest and most ecologically diverse classes of fungi, the comprehensive phylogenetic reference data were derived from the combination of five genes (nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2) for 356 isolates in 41 families of Dothideomycetes [39]. Previously, 18 members of these species have been analyzed by comparing genome features. The order Pleosporales comprised more genes than Capnodiales, possibly implying the use of different modes of pathogenesis [60]. However, there are few reports of mitogenomic analysis. Although this approach is generally regarded as useful for evolutionary analysis, it has been applied only to Pleosporales and Dothideomycete species. To the best of our knowledge, this is the first study describing an intraspecific comparison of Dothideomycetes mitogenomes. We used seven complete or nearly complete mitogenomic sequences of Dothideomycetes species in this work: two (*P. nodorum* and *M. graminicola*) cited by published reports [31,42], four (*P. tritici-repentis, L. maculans, C. heterostrophus* and *N. parvum*) assembled from contigs online, and one (*S. bambusicola*) sequenced by us. Analysis of mitogenomes from *P. tritici-repentis, L. maculans,*
C. heterostrophus and N. parvum was performed using sequence data downloaded from the NCBI database; thus, these sequences were not verified in this study (S. bambusicola) or previous studies (P. nodorum and M. graminicola). In future studies, PCR experiments should be applied to screening and correcting possible errors in the sequence data.

As illustrated in S1 Table, the mitochondrial genome of S. bambusicola displayed a circular DNA molecule with a length of 39,030 bp, which was the smallest of the closely related species. In contrast, the L. maculans mtDNA sequence comprised 154,863 bp. The various sizes were partly attributed to different intron and intergenic regions; for example, the intergenic region of the S. bambusicola mitogenome contains just one intron and three ORFs.

The phylogeny of Shiraia and related genera are still under debate, because the relative position of this group indicated special characteristics according to marker gene sequences (LSU rDNA, ITS regions and tub2) [17,61]. Recently, Shiraia species were deduced to be a new family anchored in the order of Pleosporales [18]. The phylogenetic tree based on mtDNA encoded proteins in our work suggested that four species grouped together as sister clades to S. bambusicola in the Pleosporales cluster. This new version of the relative position of S. bambusicola reinforces the hypothesis that Shiraia species should be included in the Pleosporales order.

Comparative analysis of gene arrangements is generally used to derive the evolutionary route. Here, we found that although S. bambusicola has been classified into the order of Pleosporales, the genomic organization of S. bambusicola differed considerably from other species (Fig. 3). Furthermore, the gene and tRNA order from Dothideomycete species seemed less conserved than other Pezizomycotina species (Eurotiomycetes, Leotiomycetes and Sordariomycetes). Protein coding genes and tRNAs appeared on different strands, which inferred a more complex organization of their relative positions. To investigate the high variability of mitochondrial gene order among Dothideomycetes species, further studies are required to exploit the additional mitogenomic sequences. tRNA genes that clustered as groups were generally regarded as a unique characteristic of fungal mitochondrial genomes [26], where the relevant contents and positions always display similar features in closely related species (Fig. 3). In the mitogenomes of Dothideomycetes species, the tRNA genes were distributed into three groups. There were large tRNA gene clusters around the rns gene, a conserved pattern that also appeared in Eurotiomycetes, Leotiomycetes and Sordariomycetes species. The tRNA genes near rns contained a consensus RRLV from Pleosporales species. With the exception of special features contained by S. bambusicola, no similar order was found in other Ascomycete species. The analysis of mitogenomic sequences from Eurotiomycetes, Leotiomycetes and Sordariomycetes suggested that all genes were located on the positive strand, and arrangement of protein coding and tRNA genes displayed high sequence conservation, whether separately or reciprocally. It is remarkable that Dothideomycete species always contain several genes (such as nad2, nad3 and cox3) located on different strands, especially in M. graminicola (Capnodiales) and S. bambusicola (Pleosporales), where the genes were distributed almost evenly between the two strands (especially rns and rnl). To the best of our knowledge, no similar pattern has been found in other Pezizomycotina mtDNA sequences. Kouvelis et al. [62] suggested that gene pairs nad2-nad3, nad1-nad4, nad4L-nad5, atp6-atp8, and cob-cox1 usually remain joined in Ascomycetes, as was shown for Eurotiomycetes, Leotiomycetes and Sordariomycetes. However, in most mitogenomes present in Dothideomycetes species, the atp8–9 genes were not present, and the cytb-cox1 and nad1-nad4 genes were uncoupled. Only two of these gene pairs were coupled (nad2-nad3 and nad4L-nad5) on sections, and the cox1-cox2 gene pair could be regarded as a typical trait for Dothideomycetes species, with the exception of M. graminicola from Capnodiales.

There are two genetic origins (nuclear and mitochondrial) for the fungal ATP synthase. The atp6 gene from mitochondrial DNA usually encodes an essential subunit of the ATP synthase.
proton translocating domain, and we only identified two partial segments of duplications located in disperse positions of different strands from the mitogenome of *S. bambusicola*. For organelle genes, the case of trans-splicing has been reported in higher plants (such as wheat [63] and *Oenothera* [64]) and fungi (such as *Gigaspora rosea* [65]), but to the best of our knowledge, a similar case has not been described in ATP synthase genes from fungal species. Our further studies would focus on analysis of this gene expression and function to explore the internal mechanism.

As the largest order in the Dothideomycetes, Pleosporales included different species [40], most of which could be divided into epiphytes, endophytes or parasites of living leaves or stems, hyperparasites on fungi or insects, lichens, or saprobes of dead plant stems, leaves or bark [41,66]. Fungi belonging to the class Dothideomycetes are mostly soil-, wood- and dung-inhabiting fungi, and the seven described here belong to pathogens from living tissues of plants. *Shiraia* is a specific parasite of bamboo, infecting species of *Brachystachyum densiflorum*, *Bambusa*, and *Phyllostachys edulis*. We compared the ORFs of the intergenic regions and intronic ORFs of *S. bambusicola* with other species, including plant and animal fungi, and no potential mobile elements were found with high similarities. Seven Dothideomycete species used in this study are generally regarded as plant pathogens, and the complexity of gene arrangements in their mitogenomes inferred a possible impression from hosts to parasites. It is anticipated that further mitogenomic analyses would improve the understanding of plant-Dothideomycete pathogen interactions.

Supporting Information

S1 Table: Selected fungal species with published mitogenomes.
(DOC)

S2 Table: Introns found in mitochondrial genes from Dothideomycetes species.
(DOC)

S3 Table: ORFs found in mitochondrial genes from Dothideomycetes species.
(DOC)

S4 Table: Distribution of large repeat loci in the mitochondrial genome of *S. bambusicola*.
(DOC)

Author Contributions

Conceived and designed the experiments: XYS LF. Performed the experiments: XYS TL SC. Analyzed the data: XYS LF JG CLH. Contributed reagents/materials/analysis tools: XYS LF JG CLH. Wrote the paper: XYS LF JG CLH.

References

1. Hino I (1961) Icones fungorum bambusicolorum japonicorum. The Fuji Bamboo Garden, Gotenba, Japan.
2. Li XM, Gao J, Yue YD, Hou CL (2009) Studies on systematics, biology and bioactive substance of *Shiraia bambusicola*. Forest Research 22: 279–284. doi: 10.1016/j.fup.2009.03.003 PMID: 19328861
3. Diwu ZJ, Haugland RP, Liu J, Lown JW, Miller GG, et al. (1996) Photosensitization by anticancer agents 21: new perylene- and aminonaphthoquinones. Free Radical Biology and Medicine 20: 589–593. PMID: 8904300
4. Mirossay A, Mojjis J, Tothova J, Hajikova M, Lackova A, et al. (2000) Hypocrellin and hypericin-induced phototoxicity of HL-60 cells: apoptosis or necrosis? Phytomedicine 7: 471–476. PMID: 11194175
5. Tao W, Jianquan S, Aimin S, Shen C, Manhua Z, et al. (2000) Photodynamic action of amino substituted hypocrellins: EPR studies on the photogenerations of active oxygen and free radical species. Journal of Photochemistry and Photobiology B Biology 57: 14–21. PMID: 11100833

6. Ali SM, Chee SK, Yuen GY, Olivo M (2001) Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells. Journal of Photochemistry and Photobiology B Biology 65: 59–73. PMID: 11748006

7. Ali SM, Olivo M (2002) Efficacy of hypocrellin pharmacokinetics in phototherapy. International Journal of Oncology 21: 1229–1237. PMID: 12429972

8. Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, et al. (2004) Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrobial Agents and Chemotherapy 48: 4450–4452. PMID: 15504880

9. Olivo M, Chin W (2006) Perylenequinones in photodynamic therapy: cellular versus vascular response. Journal of Environmental Pathology Toxicology and Oncology 25: 223–237. PMID: 16566720

10. Su Y, Sun J, Rao S, Cai Y, Yang Y (2011) Photodynamic antimicrobial activity of hypocrellin A. Journal of Photochemistry and Photobiology B Biology 103: 29–34. doi:10.1016/j.jphotobiol.2011.01.008 PMID: 21300554

11. Su YJ, Si SH, Qiao LW, Cai YJ, Xu ZM, et al. (2011) The effect of a hypocrellin A enriched diet on egg yolk quality and hypocrellin A distributions in the meat of laying hens. European Food Research and Technology 232: 935–940.

12. Mulrooney CA, O'Brien EM, Morgan BJ, Kozlowski MC (2012) Perylenequinones: Isolation, synthesis, and biological activity. European Journal of Organic Chemistry 21: 3887–3904. PMID: 24039544

13. Hennings P (1900) Fungi japonici. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 28: 259–280.

14. Saccardo PA (1901) Sylloge fungorum omnium hucusque cognitorum: sumptibus auctoris.

15. Amano N (1980) Studies on the Japanese Loculoascomycetes. II. Taxonomic position of the genus Shiria. Bulletin of the National Science Museum Series B: Botany.

16. Kirk P, Cannon P, David J, Stalpers J (2011) Ainsworth & Bisby's Dictionary of the Fungi. 9th Edn 2011 CAB International, Wallingford.

17. Cheng TF, Jia XM, Ma XH, Lin HP, Zhao YH (2004) Phylogenetic study on Shiria bambusicola by rDNA sequence analyses. Journal of Basic Microbiology 44: 339–350. PMID: 15378525

18. Liu YX, Hyde KD, Ariyawansa HA, Li WJ, Zhou DQ, et al. (2013) Shiriaecaeae, new family of Pleosporales (Dothideomycetes, Ascomycota). Phytotaxa 103: 51–60.

19. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283: 1488–1493. PMID: 10066163

20. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140. PMID: 9823893

21. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481. PMID: 10066161

22. Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annual Review of Genetics 33: 351–397. PMID: 10690412

23. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: From endosymbionts to organelles. Science 304: 253–257. PMID: 15073369

24. Poole AM, Penny D (2007) Evaluating hypotheses for the origin of eukaryotes. Bioessays 29: 74–84. PMID: 17187354

25. Herrmann JM (2003) Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends in Microbiology 11: 74–79. PMID: 12598129

26. Ghikas DV, Kouvelis VN, Typas MA (2006) The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and tm gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Archives of Microbiology 185: 393–401. PMID: 16552680

27. Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J (2006) Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Research 34: 2472–2481. PMID: 16684995

28. Pantou MP, Kouvelis VN, Tyпас MA (2006) The complete mitochondrial genome of the vascular wilt fungus Verticillium dahliae: a novel gene order for Verticillium and a diagnostic tool for species identification. Current Genetics 50: 125–136. PMID: 16733756
29. Tambor JH, Guedes RF, Nobrega MP, Nobrega FG (2006) The complete DNA sequence of the mitochondrial genome of the dermatophyte fungus *Epidermophyton floccosum*. Current Genetics 49: 302–308. PMID: 16450111

30. Cardoso MA, Tambor JH, Nobrega FG (2007) The mitochondrial genome from the thermal dimorphic fungus *Paracoccidioides brasiliensis*. Yeast 24: 607–616. PMID: 17492801

31. Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, et al. (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen *Stagonospora nodorum*. Plant Cell 19: 3347–3368. PMID: 18024570

32. Ferrandon C, Xu JP, Barroso G (2013) The 135 kbp mitochondrial genome of *Agaricus bisporus* is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genetics and Biology 55: 85–91. doi: 10.1016/j.fgb.2013.01.009 PMID: 2328625

33. Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, et al. (2014) Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen *Rhizoctonia solani* AG-3. Fems Microbiology Letters 352: 165–173. doi: 10.1111/1574-6968.12387 PMID: 24461055

34. Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, et al. (2012) The mitochondrial genome of the arbuscular mycorrhizal fungus *Gigaspora margarita* reveals two unsuspected trans-spooling events of group I introns. New Phytologist 194: 836–845. doi: 10.1111/j.1469-8137.2012.04072.x PMID: 22320438

35. Ma L, Huang DW, Cuomo CA, Sykes S, Fantoni G, et al. (2013) Sequencing and characterization of the complete mitochondrial genomes of three *Pneumocystis* species provide new insights into divergence between human and rodent Pneumocystis. Faseb Journal 27: 1962–1972. doi: 10.1096/fj.12-224444 PMID: 23392351

36. van de Sande WW (2012) Phylogenetic analysis of the complete mitochondrial genome of *Macrolella mycetomatis* confirms its taxonomic position within the order Sordariales. PLoS One 7: e38654. doi: 10.1371/journal.pone.0038654 PMID: 22701687

37. Youssar L, Gruning BA, Gunther S, Huttel W (2013) Characterization and phylogenetic analysis of the mitochondrial genome of *Glarea luzoyensis* indicates high diversity within the order Helotiales. PLoS One 8: e74792. doi: 10.1371/journal.pone.0074792 PMID: 24086376

38. Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, et al. (2014) High variability of mitochondrial gene order among fungi. Genome Biology and Evolution 6: 451–465. doi: 10.1093/gbe/evu028 PMID: 24504088

39. Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, et al. (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1. doi: 10.3114/sim.2009.64.01 PMID: 20169021

40. Kirk P, Cannon P, Minter D, Stalpers J (2008) Dictionary of the fungi (10th edn.) CAB International. Wallingford, UK.

41. Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 53: 1–221. PMID: 23097638

42. Torrioni SF, Goodwin SB, Kema GH, Pangilinan JL, McDonald BA (2008) Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus *Mycotheca graminicola*. Fungal Genetics and Biology 45: 628–637. doi: 10.1016/j.fgb.2007.12.005 PMID: 18226935

43. White DG (1999) Compendium of corn diseases: American Phytopathological Society (APS Press).

44. West JS, Kharbanda PD, Barbetti MJ, Fit BD (2001) Epidemiology and management of *Leptosphaeria maculans* (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology 50: 10–27.

45. Bhatthal JS, Loughman R, Speijers J (2003) Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and *Septoria nodorum* blotch. European Journal of Plant Pathology 109: 435–443.

46. Daub ME, Herrero S, Chung KR (2013) Reactive oxygen species in plant pathogenesis: the role of per-ylenequinone photosensitizers. Antioxidants & Redox Signaling 19: 970–989.

47. Shen XY, Cheng YL, Cai CJ, Fan L, Gao J, et al. (2014) Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS One 9: e95838. doi: 10.1371/journal.pone.0095838 PMID: 24759896

48. Lang BF, Burgos G (2007) Purification of mitochondrial and plastid DNA. Nature Protocols. 2: 652–660. PMID: 17406227

49. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. PMID: 8180733

50. Beck N, Lang B (2010) MFannot, organelle genome annotation webservice. http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl,
51. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33: W686–689. PMID: 15980563

52. Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172–175. PMID: 18033792

53. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research 32: 11–16. PMID: 14704338

54. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. Journal of Molecular Biology 313: 1003–1011. PMID: 11700055

55. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, et al. (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29: 4633–4642. PMID: 11713313

56. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580. PMID: 9862982

57. Xia X, Xie Z (2001) DAMBE: Software package for data analysis in molecular biology and evolution. Journal of Heredity 92: 371–373. PMID: 11535656

58. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. PMID: 11524383

59. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PMID: 12912839

60. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, et al. (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathogens 8: e1003037. doi:10.1371/journal.ppat.1003037 PMID: 23236275

61. Morakotkarn D, Kawasaki H, Tanaka K, Okane I, Seki T (2008) Taxonomic characterization of Shiraia-like fungi isolated from bamboos in Japan. Mycoscience 49: 258–265.

62. Kouvelis VN, Ghikas DV, Typas MA (2004) The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fungal Genetics and Biology 41: 930–940. PMID: 15341915

63. Chapdelaine Y, Bonen L. (1991) The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65: 465–472. PMID: 1902143

64. Börner GV, Mörl M, Wissinger B, Brennicke A, Schmelzer C (1995) RNA editing of a group II intron in Oenothera as a prerequisite for splicing. Molecular & General Genetics 246: 739–744.

65. Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea, and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Molecular Biology and Evolution 29: 2199–2210. doi: 10.1093/molbev/msq088 PMID: 22411852

66. Kruys A, Eriksson OE, Wedin M (2006) Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycological Research 110: 527–536. PMID: 16769507