Binary Additive Problems Involving Naturals with Binary Decompositions of a Special Kind

K.M. Éminyan

Abstract
Let \(h \) and \(l \) be integers such that \(0 \leq h \leq 2, \ 0 \leq l \leq 4 \). We obtain asymptotic formulas for the numbers of solutions of the equations \(n - 3m = h \), \(n - 5m = l \) in positive integers \(m \) and \(n \) of a special kind, \(m \leq X \).

Key words: binary decomposition, binary additive problems.

1. Introduction

Consider the binary decomposition of a positive integer \(n \):

\[
n = \sum_{k=0}^{\infty} \varepsilon_k 2^k,
\]

where \(\varepsilon_k = 0, 1 \) and \(k = 0, 1, \ldots \)

We split the set of positive integers into two nonintersecting classes as follows:

\[
\mathbb{N}_0 = \{ n \in \mathbb{N}, \ \sum_{k=0}^{\infty} \varepsilon_k \equiv 0 \pmod{2}\}, \quad \mathbb{N}_1 = \{ n \in \mathbb{N}, \ \sum_{k=0}^{\infty} \varepsilon_k \equiv 1 \pmod{2}\}.
\]

In 1968, A.O. Gel’fond [1] obtained the following theorem: for the number of integers \(n, n \leq X \), satisfying the conditions \(n \equiv l \pmod{m} \), \(n \in \mathbb{N}_j \ (j = 0, 1) \), the following asymptotic formula is valid:

\[
T_j(X, l, m) = \frac{X}{2m} + O(X^\lambda),
\]

where \(m, l \) are any naturals and \(\lambda = \frac{\ln 3}{\ln 4} = 0.7924818 \ldots \)

Suppose that

\[
\varepsilon(n) = \begin{cases}
1 & \text{for } n \in \mathbb{N}_0, \\
-1 & \text{otherwise}.
\end{cases}
\]

The proof of formula (1) is based on the estimate

\[
|S(\alpha)| \ll X^\lambda
\]
of the trigonometrical sum

\[S(\alpha) = \sum_{n \leq X} \varepsilon(n)e^{2\pi in\alpha}, \]

which is valid for any real values of \(\alpha \).

In 1996, author [2] proved the following theorem: Let \(F_{i,k} \) be the number of solutions of the equation \(n - m = 1 \), where \(n \leq X \), \(n \in \mathbb{N}_i \), \(m \in \mathbb{N}_k \), \(i, k = 0, 1 \). Then the asymptotic formulas hold:

\[
\begin{align*}
F_{0,0}(X) &= \frac{X}{6} + O(\log X), \\
F_{1,1}(X) &= \frac{X}{6} + O(\log X), \\
F_{0,1}(X) &= \frac{X}{3} + O(\log X), \\
F_{1,0}(X) &= \frac{X}{3} + O(\log X).
\end{align*}
\]

It follows from this theorem that the orders of \(F_{i,k}(X) \) strongly depend on the values of \(i \) and \(k \).

In present paper we consider two problems in which the indicated effect vanishes. Our main results are the following theorems.

Theorem 1. Let \(h \) be any integer such that \(0 \leq h \leq 2 \). Let \(I_{i,k}(X, h) \) be the number of solutions of the equation \(n - 3m = h \), where \(m \leq X \), \(m \in \mathbb{N}_i \), \(n \in \mathbb{N}_k \), \(i, k = 0, 1 \). Then the asymptotic formulas hold:

\[I_{i,k}(X, h) = \frac{X}{4} + O(X^{\lambda}). \]

Theorem 2. Let \(l \) be any integer such that \(0 \leq h \leq 4 \). Let \(J_{i,k}(X, l) \) be the number of solutions of the equation \(n - 5m = l \), where \(m \leq X \), \(m \in \mathbb{N}_i \), \(n \in \mathbb{N}_k \), \(i, k = 0, 1 \). Then the asymptotic formulas hold:

\[J_{i,k}(X, l) = \frac{X}{4} + O(X^{\lambda}). \]

Let us introduce two sums:

\[
S_3(X, h) = \sum_{n \leq X} \varepsilon(n)\varepsilon(3n + h), \quad S_5(X, l) = \sum_{n \leq X} \varepsilon(n)\varepsilon(5n + l),
\]

where \(h \) and \(l \) are nonnegative integers.

Proofs of the theorems 1 and 2 are based on lemmas 1 and 2 consequently (see below), and also on Gel’fond’s estimate (2).

2. Lemmas

Lemma 1. Suppose that \(h \) is an integer such that \(0 \leq h \leq 2 \). The following estimate holds:

\[S_3(X, h) = O(\sqrt{X}). \]
Proof. Grouping summands over even and over odd \(n \) and using obvious formulae
\[\varepsilon(2n) = \varepsilon(n), \varepsilon(2n + 1) = -\varepsilon(n) \]
we have the following equalities
\[
\begin{align*}
S_3(X, 0) &= S_3(X^2^{-1}, 0) + S_3(X^2^{-1}, 1) + O(1), \quad (3) \\
S_3(X, 1) &= -S_3(X^2^{-1}, 0) - S_3(X^2^{-1}, 2) + O(1), \quad (4) \\
S_3(X, 2) &= S_3(X^2^{-1}, 1) + S_3(X^2^{-1}, 2) + O(1). \quad (5)
\end{align*}
\]

Consider the linear combination
\[\alpha_0 S_3(X, 0) + \beta_0 S_3(X, 1) + \gamma_0 S_3(X, 2), \]
where \(\alpha_0, \beta_0, \gamma_0 \) are constants. By (3)–(5) we have
\[
\alpha_0 S_3(X, 0) + \beta_0 S_3(X, 1) + \gamma_0 S_3(X, 2) = \alpha_1 S_3(X^2^{-1}, 0) + \beta_1 S_3(X^2^{-1}, 1) + \gamma_1 S_3(X^2^{-1}, 2) + O(|\alpha_0|) + O(|\beta_0|) + O(|\gamma_0|),
\]
where
\[
\begin{align*}
\alpha_1 &= \alpha_0 - \beta_0, \\
\beta_1 &= \alpha_0 + \gamma_0, \\
\gamma_1 &= \gamma_0 - \beta_0.
\end{align*}
\]

Repeating this reasoning we arrive to the equality
\[
\alpha_0 S_3(X, 0) + \beta_0 S_3(X, 1) + \gamma_0 S_3(X, 2) = \alpha_j S_3(X_j, 0) + \beta_j S_3(X_j, 1) + \gamma_j S_3(X_j, 2) + O(|\alpha_0| + \cdots + |\alpha_{j-1}|) + O(|\beta_0| + \cdots + |\beta_{j-1}|) + O(|\gamma_0| + \cdots + |\gamma_{j-1}|),
\]
where \(j \) is any integer such that \(0 \leq j \leq \log_2 X - 10 \), \(X_j = X 2^{-j} \), and the sequences \(\alpha_j, \beta_j, \gamma_j \) satisfy to the system of recurrent equations
\[
\begin{align*}
\alpha_{j+1} &= \alpha_j - \beta_j, \\
\beta_{j+1} &= \alpha_j + \gamma_j, \\
\gamma_{j+1} &= \gamma_j - \beta_j. \quad (6)
\end{align*}
\]

Let us write (6) in matrix form
\[
\begin{pmatrix}
\alpha_{j+1} \\
\beta_{j+1} \\
\gamma_{j+1}
\end{pmatrix}
=
\begin{pmatrix}
1 & -1 & 0 \\
1 & 0 & 1 \\
0 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
\alpha_j \\
\beta_j \\
\gamma_j
\end{pmatrix}
= A
\begin{pmatrix}
\alpha_j \\
\beta_j \\
\gamma_j
\end{pmatrix}.
\]

Then we have
\[
\begin{pmatrix}
\alpha_j \\
\beta_j \\
\gamma_j
\end{pmatrix}
= A^j
\begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix}.
\]
One can easily see that $A = CBC^{-1}$, where

$$
C = \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1+i\sqrt{2} \\
-1 & 1 & 1+i\sqrt{2}
\end{pmatrix}, \quad B = \begin{pmatrix}
1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix};
$$

where $1, \lambda_2 = \frac{1+i\sqrt{2}}{2}, \lambda_3 = \frac{1-i\sqrt{2}}{2}$ are eigenvalues of A.

Thus we have

$$
\begin{pmatrix}
\alpha_j \\
\beta_j \\
\gamma_j
\end{pmatrix} = C \begin{pmatrix}
1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix}^{-1} \begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix}.
$$

(7)

Note that $|\lambda_2| = |\lambda_3| = \sqrt{2}$. It follows from (7) that if $\begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}$, or

$$
\begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}, \quad \text{or} \quad \begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
$$

then

$$
|\alpha_j| = O(\sqrt{2}^j), \quad |\beta_j| = O(\sqrt{2}^j), \quad |\gamma_j| = O(\sqrt{2}^j).
$$

(8)

Let J be the largest natural number such that $J \leq \log_2 X - 10$, $\begin{pmatrix}
\alpha_0 \\
\beta_0 \\
\gamma_0
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}$.

It follows from (8) that

$$
|S_3(X, 0)| \leq |\alpha_J||S_3(X_J, 0)| + |\beta_J||s_3(X_J, 2)| + O(\sqrt{X}) = O(\sqrt{X}).
$$

The estimates $S_3(X, 1) = O(\sqrt{X}), S_3(X, 2) = O(\sqrt{X})$ we obtain in a similar way.

Lemma 2. Suppose that l is an integer such that $0 \leq l \leq 4$. The following estimate holds:

$$
S_5(X, l) = O(X^\mu),
$$

where $\mu = 0, 60538\ldots$

Proof. Consider the linear combination

$$
\alpha_0 s_5(X, 0) + \beta_0 s_5(X, 1) + \gamma_0 s_5(X, 2) + \sigma_0 s_5(X, 3) + \tau_0 s_5(X, 4),
$$

where $\alpha_0, \beta_0, \gamma_0, \sigma_0$ and τ_0 are constants.

Repeating the reasoning of the proof of lemma 1 we arrive to the equality

$$
\alpha_0 s_5(X, 0) + \beta_0 s_5(X, 1) + \gamma_0 s_5(X, 2) + \sigma_0 s_5(X, 3) + \tau_0 s_5(X, 4) =
$$

$$
\alpha_J s_5(X_J, 0) + \beta_J s_5(X_J, 1) + \gamma_J s_5(X_J, 2) + \sigma_J s_5(X_J, 3) + \tau_J s_5(X_J, 4) +
$$
+O(|α_0| + \cdots + |α_{J-1}|) + \cdots + O(|τ_0| + \cdots + τ_{J-1}|),

where \(J \) is the largest natural number such that \(J \leq \log_2 X - 10 \), \(X_J = X 2^{-J} \) and vector
\[
\begin{pmatrix}
α_J \\
β_J \\
γ_J \\
σ_J \\
τ_J
\end{pmatrix}
\]
is defined with equation
\[
\begin{pmatrix}
α_J \\
β_J \\
γ_J \\
σ_J \\
τ_J
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}^J \begin{pmatrix}
α_0 \\
β_0 \\
γ_0 \\
σ_0 \\
τ_0
\end{pmatrix} = A_J^{f} \begin{pmatrix}
α_0 \\
β_0 \\
γ_0 \\
σ_0 \\
τ_0
\end{pmatrix}.
\]

Let us write out the eigenvalues of the matrix \(A_1 \):
\[
λ_1 = 1, \quad λ_2 = \frac{3^{1/3} + (9 - \sqrt{78})^{2/3}}{2^{1/3}(9 - \sqrt{78})^{1/3}}, \quad λ_3 = \frac{1 + i\sqrt{3}}{2(27 - 3\sqrt{78})^{1/3}} + \frac{(1 - i\sqrt{3})(9 - \sqrt{78})^{1/3}}{2^{3/2}}, \quad λ_4 = \frac{1 - i\sqrt{3}}{2(27 - 3\sqrt{78})^{1/3}} + \frac{(1 + i\sqrt{3})(9 - \sqrt{78})^{1/3}}{2^{3/2}}.
\]

Note that eigenvalues \(λ_2, \ λ_3, \ λ_4 \) are simple and \(λ_1 \) has multiplicity 2.

It is a well known fact of Linear Algebra that there exists a nonsingular matrix \(C_1 \) such that \(A_1 = C_1B_1C_1^{-1} \), where
\[
B_1 = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & λ_2 & 0 & 0 \\
0 & 0 & 0 & λ_3 & 0 \\
0 & 0 & 0 & 0 & λ_4
\end{pmatrix}
\]

Thus we have the equality
\[
\begin{pmatrix}
α_J \\
β_J \\
γ_J \\
σ_J \\
τ_J
\end{pmatrix} = C_1B_1^{f}C_1^{-1} \begin{pmatrix}
α_0 \\
β_0 \\
γ_0 \\
σ_0 \\
τ_0
\end{pmatrix}.
\]

Since \(|λ_2| = \max_{1 \leq j \leq 4} |λ_j| = 1, 52137 \ldots \) it follows from (9) that the inequalities
\[
|α_J| \ll |λ_2|^J, \ldots, |τ_J| \ll |λ_2|^J.
\]
hold and so for any \(l, \ 0 \leq l \leq 4 \) we have the estimate
\[
S_5(X, l) = O(X^\mu),
\]
where \(\mu = \frac{\log λ_2}{\log 2} = 0, 60538 \ldots \)

\[\square\]
3. Proofs of Theorems 1 and 2

Let us prove theorem 1. For any integer h, $0 \leq h \leq 2$, and for any $i, j = 0, 1$ we have

\[
I_{i,k}(X, h) = \sum_{m \leq X} \left(\frac{1 + (-1)^i \varepsilon(m)}{2} \right) \left(\frac{1 + (-1)^k \varepsilon(3m + h)}{2} \right) = \\
\frac{X}{4} + \frac{(-1)^i}{4} \sum_{m \leq X} \varepsilon(n) + \frac{(-1)^k}{4} \sum_{m \leq X} \varepsilon(3m + h) + \frac{(-1)^{i+k}}{4} S_3(X, h) + O(1) = \\
\frac{X}{4} + \frac{(-1)^i}{4} \sum_{m \leq X} \varepsilon(m) + \frac{(-1)^k}{4} \sum_{c = 1}^3 e^{-2\pi i \frac{m}{3}} \sum_{n \leq 3X + h} \varepsilon(n) e^{2\pi i \frac{2n}{3}} + \frac{(-1)^{i+k}}{4} S_3(X, h) + O(1) .
\]

Now theorem 1 follows immediately from obvious inequality $\sum_{m \leq X} \varepsilon(m) = O(1)$, Gel'fond’s estimate (2) and lemma 1.

Proof of theorem 2 essentially coincides with proof of theorem 1. The only distinction is use lemma 2 instead of lemma 1.

References

[1] A.O. Gel’fond Acta Arith., 13, pp. 259–265 (1968)

[2] K.M. Éminyan Math. Notes, 60, No. 4, pp. 476–481 (1996)

Moscow State University of Applied Biotechnologies
E-mail address: eminyan@mail.ru