A short derivation of the structure theorem for graphs with excluded topological minors

Joshua Erde and Daniel Weißauer

Abstract

As a major step in their proof of Wagner’s conjecture, Robertson and Seymour showed that every graph not containing a fixed graph \(H \) as a minor has a tree-decomposition in which each torso is almost embeddable in a surface of bounded genus. Recently, Grohe and Marx proved a similar result for graphs not containing \(H \) as a topological minor. They showed that every graph which does not contain \(H \) as a topological minor has a tree-decomposition in which every torso is either almost embeddable in a surface of bounded genus, or has a bounded number of vertices of high degree. We give a short proof of the theorem of Grohe and Marx, improving their bounds on a number of the parameters involved.

1 Introduction

A graph \(H \) is a minor of a graph \(G \) if \(H \) can be obtained from a subgraph of \(G \) by contracting edges. In a series of 23 papers, published between 1983 and 2012, Robertson and Seymour developed a deep theory of graph minors which culminated in the proof of Wagner’s Conjecture \cite{18}, which asserts that in any infinite set of finite graphs there is one which is a minor of another. One of the landmark results proved along the way, and indeed a fundamental step in resolving Wagner’s Conjecture, is a structure theorem for graphs excluding a fixed graph as a minor \cite{17}. It is easy to see that \(G \) cannot contain \(H \) as a minor if there is a surface into which \(G \) can be embedded but \(H \) cannot. Loosely speaking, the structure theorem of Robertson and Seymour asserts an approximate converse to this, thereby revealing the deep connection between topological graph theory and the theory of graph minors:

\textbf{Theorem 1} \cite{17} (informal). For any \(n \in \mathbb{N} \), every graph excluding the complete graph \(K_n \) as a minor has a tree-decomposition in which every torso is almost embeddable into a surface into which \(K_n \) is not embeddable.

A graph \(H \) is a topological minor of a graph \(G \) if \(G \) contains a subdivision of \(H \) as a subgraph. It is easy to see that \(G \) then also contains \(H \) as a minor. The converse is not true, as there exist cubic graphs with arbitrarily large complete minors. For topological minors, we thus have an additional degree-based obstruction, which is fundamentally different from the topological obstruction of surface-embeddings for graph minors. Grohe and Marx \cite{10} proved a result in a similar spirit to Theorem 1 for graphs excluding a fixed graph as a topological minor:
Theorem 2 ([10] (informal)). For any \(n \in \mathbb{N} \), every graph excluding \(K_n \) as a
topological minor has a tree-decomposition in which every torso either

(i) has a bounded number of vertices of high degree, or

(ii) is almost embeddable into a surface of bounded genus.

More recently, Dvořák [8] refined the embeddability condition of this theorem
to reflect more closely the topology of embeddings of an arbitrary graph \(H \) which
is to be excluded as a topological minor.

The proof given in [10], which uses Theorem 2 as a block-box, is algorithmic
and explicitly provides a construction of the desired tree-decomposition, however
as a result the proof is quite technical in parts. In this paper, we give a short
proof of Theorem 2 which also provides a good heuristic for the structure of
graphs without a large complete topological minor, as well as improving the
implicit bounds given in [10] on many of the parameters in their theorem. Our
proof is non-constructive, but we note that it can easily be adapted to give an
algorithm to find either a subdivision of \(K_r \) or an appropriate tree-decomposi-
tion. However, the run time of this algorithm will be much slower than that of
the algorithm given in [10].

One of the fundamental structures we consider are \(k \)-blocks. A \(k \)-block in
a graph \(G \) is a set \(B \) of at least \(k \) vertices which is inclusion-maximal with the
property that for every separation \((U, W) \) of order \(< k \), we either have \(B \subseteq U \)
or \(B \subseteq W \). The notion of a \(k \)-block, which was first studied by Mader [14, 13],
has previously been considered in the study of graph decompositions [4, 3, 5].

It is clear that a subdivision of a clique on \(k+1 \) vertices yields a \(k \)-block. The
converse is not true for any \(k \geq 4 \), as there exist planar graphs with arbitrarily
large blocks. The second author [20] proved a structure theorem for graphs
without a \(k \)-block:

Theorem 3 ([20]). Let \(G \) be a graph and \(k \geq 2 \). If \(G \) has no \((k+1) \)-block then
\(G \) has a tree-decomposition in which every torso has at most \(k \) vertices of degree
at least \(2k(k-1) \).

Now, since a subdivision of a complete graph gives rise to both a complete
minor and a block, there are two obvious obstructions to the existence of a
large topological minor, the absence of a complete minor or the absence
of a large block. The upshot of Theorem 2 is that in a local sense these are
the only obstructions, any graph without a large topological minor has a tree-
decomposition into parts whose torsos either don’t contain a large minor, or
don’t contain a large block. Furthermore, by Theorem 1 and Theorem 3, the
converse should also be true: if we can decompose the graph into parts whose
torsos either don’t contain a large minor or don’t contain a large block, then
we can refine this tree-decomposition into one satisfying the requirements of
Theorem 2.

The idea of our proof is as follows. Both large minors and large blocks point
towards a ‘big side’ of every separation of low order. A subdivision of a clique
simultaneously gives rise to both a complete minor and a block and, what’s
more, the two are hard to separate in that they choose the same ‘big side’ for
every low-order separation. A qualitative converse to this is already implicit
in previous work on graph minors and linkage problems: if a graph contains a
large complete minor and a large block which cannot be separated from that minor, then the graph contains a subdivision of a complete graph.

Therefore, if we assume our graph does not contain a subdivision of \(K_r \), then we can separate any large minor from every large block. It then follows from the \textit{tangle tree theorem} of Robertson and Seymour \cite{robertson1986graph} – or rather its extension to \textit{profiles} \cite{robertson1995graphs,robertson1995graph,robertson1995graph} – that there exists a tree-decomposition which separates the blocks from the minors. Hence each part is either free of large minors or of large blocks.

However, in order to apply Theorems \ref{thm:1} and \ref{thm:3}, we need to have control over the torsos, and not every tree-decomposition will provide that: it might be, for example, that separating some set of blocks created a large minor in one of the torsos. We therefore contract some parts of our tree-decomposition and use the minimality of the remaining separations to prove that this does not happen.

A second nice feature of our proof is that we avoid the difficulty of constructing such a tree-decomposition by choosing initially a tree-decomposition with certain connectivity properties, the proof of whose existence already exists in the literature, and then simply \textit{deducing} that this tree-decomposition has the required properties.

We are going to prove the following:

\textbf{Theorem 4.} Let \(r \) be a positive integer and let \(G \) be a graph containing no subdivision of \(K_r \). Then \(G \) has a tree-decomposition of adhesion \(< r^2\) such that every torso either

- (i) has fewer than \(r^2 \) vertices of degree at least \(2r^4 \), or
- (ii) has no \(K_{2r,2} \)-minor.

Combining Theorems \ref{thm:1} and \ref{thm:3} then yields Theorem \ref{thm:2}.

Let us briefly compare the bounds we get to the result of Grohe and Marx \cite{grohe2007eulerian}. It is implicit in their results that if \(G \) contains no subdivision of \(K_r \), then \(G \) has a tree-decomposition of adhesion \(O(r^6) \) such that every torso either has \(O(r^6) \) vertices of degree \(\Omega(r^7) \), has no \(K_{\Omega(r^6)} \) minor or has size at most \(O(r^6) \). In this way, Theorem \ref{thm:4} gives an improvement on the bounds for each of the parameters. Recently Liu and Thomas \cite{liu2018approximate} also proved an extension of the work of Dvořák \cite{dvorak2012adhesion}, with the aim to more closely control the bound on the degrees of the vertices in (i). Their results, however, only give this structure ‘relative’ to some tangle.

\section{Notation and background material}

All graphs considered here are finite and undirected and contain neither loops nor parallel edges. Our notation and terminology mostly follow that of \cite{dvorak2012adhesion}.

Given a tree \(T \) and \(s,t \in V(T) \), we write \(sTt \) for the unique \(s-t \)-path in \(T \). A \textit{separation} of a graph \(G = (V, E) \) is a pair \((A, B)\) with \(V = A \cup B \) such that there are no edges between \(A \setminus B \) and \(B \setminus A \). The \textit{order} of \((A, B)\) is the number of vertices in \(A \cap B \). We call the separation \((A, B)\) \textit{tight} if for all \(x, y \in A \cap B \), both \(G[A] \) and \(G[B] \) contain an \(x-y \)-path with no internal vertices in \(A \cap B \).

The set of all separations of \(G \) of order \(< k \) will be denoted by \(S_k(G) \). An \textit{orientation} of \(S_k(G) \) is a subset of \(S_k(G) \) containing precisely one element from each pair \(\{(A, B), (B, A)\} \subseteq S_k(G) \). The orientation is \textit{consistent} if it
does not contain two separations \((A, B), (C, D)\) with \(B \subseteq C\) and \(D \subseteq A\). A separation distinguishes two orientations \(O_1, O_2\) of \(S_k(G)\) if precisely one of \(O_1, O_2\) contains it. It does so efficiently if it has minimum order among all separations distinguishing them.

Recall that, given an integer \(k\), a set \(B\) of at least \(k\) vertices of \(G\) is a \(k\)-block if it is inclusion-maximal with the property that for every separation \((U, W)\) of order \(< k\), either \(B \subseteq U\) or \(B \subseteq W\). Observe that \(B\) induces a consistent orientation \(O_B := \{(U, W): B \subseteq W\}\) of \(S_k(G)\).

Given an integer \(m\), a model of \(K_m\) is a family \(\mathcal{X}\) of \(m\) pairwise disjoint sets of vertices of \(G\) such that \(G[\mathcal{X}]\) is connected for every \(X \in \mathcal{X}\) and \(G\) has an edge between \(X\) and \(Y\) for any two \(X, Y \in \mathcal{X}\). The elements of \(\mathcal{X}\) are called branch sets. Note that, if \((U, W)\) is a separation of order \(< m\), then exactly one of \(U \setminus W\) and \(W \setminus U\) contains some branch set. In this way, \(\mathcal{X}\) induces a consistent orientation \(O_X\) of \(S_k(G)\), where \((U, W) \in O_X\) if and only if some branch set of \(\mathcal{X}\) is contained in \(W\).

A tree-decomposition of \(G\) is a pair \((T, \mathcal{V})\), where \(T\) is a tree and \(\mathcal{V} = (V_i)_{\in T}\) is a family of sets of vertices of \(G\) such that:

- for every \(v \in V(G)\), the set of \(t \in V(T)\) with \(v \in V_t\) induces a non-empty subtree of \(T\);
- for every edge \(vw \in E(G)\) there is a \(t \in V(T)\) with \(v, w \in V_t\).

If \((T, \mathcal{V})\) is a tree-decomposition of \(G\), then every \(st \in E(T)\) induces a separation

\[
(U_s, W_t) := \left(\bigcup_{u \in T_s} V_u, \bigcup_{v \in T_t} V_v \right).
\]

Note that \(U_s \cap W_t = V_s \cap V_t\). In this way, every edge \(e \in E(T)\) has an order given by the order of the separation it induces, which we will write as \(|e|\). Similarly, an edge of \(T\) (efficiently) distinguishes two orientations if the separation it induces does. We say that \((T, \mathcal{V})\) (efficiently) distinguishes two orientations \(O\) and \(P\) if some edge of \(T\) does. We call \((T, \mathcal{V})\) tight if every separation induced by an edge of \(T\) is tight.

The adhesion of \((T, \mathcal{V})\) is the maximum order of an edge. If the adhesion of \((T, \mathcal{V})\) is less than \(k\) and \(O\) is an orientation of \(S_k(G)\), then \(O\) induces an orientation of the edges of \(T\) by orienting an edge \(st\) towards \(t\) if \((U_s, W_t) \in O\). If \(O\) is consistent, then all edges will be directed towards some node \(t \in V(T)\), which we denote by \(t_O\) and call the home node of \(O\). When \(O\) is induced by a block \(B\) or model \(\mathcal{X}\), we abbreviate \(t_B := t_{O_B}\) and \(t_X := t_{O_X}\), respectively.

Observe that every edge \(e \in E(T)\) distinguishes two orientations \(O\) and \(P\) if and only if \(e \in E(t_{OTP})\).

Given \(t \in V(T)\), the torso at \(t\) is the graph obtained from \(G[V_t]\) by adding, for every neighbor \(s\) of \(t\), an edge between any two non-adjacent vertices in \(V_s \cap V_t\). More generally, given a subtree \(S \subseteq T\), the torso at \(S\) is the graph obtained from \(G \left[\bigcup_{s \in S} V_s \right]\) by adding, for every edge \(st \in E(T)\) with \(S \cap \{s, t\} = \{s\}\), an edge between any two non-adjacent vertices in \(V_s \cap V_t\).

We also define contractions on tree-decompositions: Given \((T, \mathcal{V})\) and an edge \(st \in E(T)\), to contract the edge \(st\) we form a tree-decomposition \((T', \mathcal{V}')\) where

- \(T'\) is obtained by contracting \(st\) in \(T\) to a new vertex \(x\);
• Let \(V'_x := V_x \cup V_t \) and \(V'_u := V_u \) for all \(u \in V(T) \setminus \{s,t\} \).

It is simple to check that \((T', V')\) is a tree-decomposition. We note that the separations induced by an edge in \(E(T) \setminus \{st\} \) remain the same, as do the torsos of parts \(V_u \) for \(u \neq s, t \).

We say a tree-decomposition \((T,V)\) is \(k\)-lean if it has adhesion \(< k\) and the following holds for all \(p \in [k] \) and \(s, t \in T \): If \(st \) contains no edge of order \(< p \), then every separation \((A,B)\) with \(|A \cap V_s| \geq p\) and \(|B \cap V_t| \geq p\) has order at least \(p \).

Let \(n := |G| \). The fatness of \((T,V)\) is the sequence \((a_0, \ldots , a_n)\), where \(a_i \) denotes the number of parts of order \(n - i \). A tree-decomposition of lexicographically minimal fatness among all tree-decompositions of adhesion smaller than \(k \) is called \(k\)-atomic. These tree-decompositions play a pivotal role in our proof, but we actually only require two properties that follow from this definition. It was observed by Carmesin, Diestel, Hamann and Hundertmark \[2\] that the short proof of Thomas’ Theorem \[19\] given by Bellenbaum and Diestel in \[1\] also shows that \(k\)-atomic tree-decompositions are \(k\)-lean (see also \[9\]).

Lemma 5 (\[1\]). Every \(k\)-atomic tree-decomposition is \(k\)-lean.

It is also not hard to see that \(k\)-atomic tree-decompositions are tight. In \[20\], the second author used \(k\)-atomic tree-decompositions to prove a structure theorem for graphs without a \(k\)-block. In fact, the proof given there yields the following:

Lemma 6 (\[20\]). Let \(G \) be a graph and \(k \) a positive integer. Let \((T,V)\) be a \(k\)-atomic tree-decomposition of \(G \) and \(t \in V(T) \) such that \(V_t \) contains no \(k\)-block of \(G \). Then the torso at \(t \) contains fewer than \(k \) vertices of degree at least \(2k^2 \).

Let \(G \) be a graph and \(Z \subseteq V(G) \). We denote by \(G^{Z} \) the graph obtained from \(G \) by making the vertices of \(Z \) pairwise adjacent. A \(Z\)-based model is a model \(\mathcal{X} \) of \(K_{|Z|} \) such that \(X \cap Z \) consists of a single vertex for every \(X \in \mathcal{X} \).

The following lemma of Robertson and Seymour \[16\] is crucial to our proof.

Lemma 7 (\[16\]). Let \(G \) be a graph, \(Z \subseteq V(G) \) and \(p := |Z| \). Let \(q \geq 2p - 1 \) and let \(\mathcal{X} \) be a model of \(K_q \) in \(G^{Z} \). If \(\mathcal{X} \) and \(Z \) induce the same orientation of \(S_p(G^{Z}) \), then \(G \) has a \(Z\)-based model.

3 The proof

Let us fix throughout this section a graph \(G \) with no subdivision of \(K_r \), let \(k := r(r - 1), m := 2k \), and let \((T,V)\) be a \(k\)-atomic tree-decomposition of \(G \).

First, we will show that \((T,V)\) efficiently distinguishes every \(k\)-block from every model of \(K_m \) in \(G \). This allows us to split \(T \) into two types of sub-trees, those containing a \(k\)-block and those containing a model of \(K_m \). **Lemma 3** allows us to bound the number of high degree vertices in the torsos in the latter components. We will then show that if we choose these sub-trees in a sensible way then we can also bound the order of a complete minor contained in the torsos of the former. Hence, by contracting each of these sub-trees in \((T,V)\) we will have our desired tree-decomposition.

To show that \((T,V)\) distinguishes every \(k\)-block from every model of \(K_m \) in \(G \), we must first show that they are distinguishable, that is, no \(k\)-block and \(K_m \)
induce the same orientation. The following lemma, as well as its proof, is similar to Lemma 6.11 in [10].

Lemma 8. Let B be a k-block and X a model of K_m in G. If B and X induce the same orientation of S_k, then G contains a subdivision of K_r with arbitrarily prescribed branch vertices in B.

Proof. Suppose B and X induce the same orientation and let B_0 be an arbitrary subset of B of size r. Let H be the graph obtained from G by replacing every $b \in B_0$ by an independent set J_b of order $(r - 1)$, where every vertex of J_b is adjacent to every neighbor of b in G and to every vertex of J_c if b, c are adjacent. Let $J := \bigcup J_b$ and note that $|J| = k$. We regard G as a subgraph of H by identifying each $b \in B$ with one arbitrary vertex in J_b. In this way we can regard X as a model of K_m in H.

Assume for a contradiction that there was a separation (U, W) of H such that $|U \cap W| < |J|$. Let $J \subseteq U$ and $X \subseteq W \setminus U$ for some $X \subseteq X$. We may assume without loss of generality that for every $b \in B_0$, either $J_b \subseteq U \cap W$ or $J_b \cap (U \cap W) = \emptyset$. Indeed, if there is a $z \in J_b \setminus (U \cap W)$, then $z \in U \setminus W$, and we can delete any $z' \in J_b \cap W$ from W and maintain a separation (because $N(z) = N(z')$) with the desired properties. In particular, for every $b \in B_0$ we find $b \in W$ if and only if $J_b \subseteq W$. Since $|U \cap W| < |J|$, it follows that there is at least one $b_0 \in B_0$ with $J_{b_0} \subseteq (U \setminus W)$. Let $(U', W') := (U \cap V(G), W \cap V(G))$ be the induced separation of G. Then $X \subseteq W' \setminus U'$ and $b_0 \in U' \setminus W'$. Since $|U' \cap W'| \leq |U \cap W| < k$ and B is a k-block, we have $B \subseteq U'$. But then (U', W') distinguishes B and X, which is a contradiction to our initial assumption.

We may now apply Lemma 7 to H and find a J-based model $\mathcal{Y} = (Y_j)_{j \in J}$ in H. For each $b \in B_0$, label the vertices of J_b as $(v_{b,j}^c)_{c \in B_0 \setminus \{b\}}$. For $b \neq c$, H has a path $P_{b,c} \subseteq Y_{b,j} \cup Y_{c,j}$ and the paths obtained like this are pairwise disjoint, because the Y_j are, and $P_{b,c} \cap J = \{v_{b,j}^c, v_{c,j}^b\}$. For each such path $P_{b,c}$, obtain $P_{b,c} \subseteq G$ by replacing $v_{b,j}^c$ by b and $v_{c,j}^b$ by c. The collection of these paths $(P_{b,c})_{b,c \in B_0}$ gives a subdivision of K_r with branch vertices in B_0. □

Now we can show that (T, \mathcal{V}) efficiently distinguishes every k-block from every model of K_m in G.

Lemma 9. (T, \mathcal{V}) efficiently distinguishes all orientations of $S_k(G)$ induced by k-blocks or models of K_m.

Proof. Let us call a consistent orientation O of $S_k(G)$ anchored if for every $(U, W) \in O$, there are at least k vertices in $W \cap V_{t_O}$.

Note that every orientation $O = O_B$ induced by a k-block B is trivially anchored, since $B \subseteq V_{t_B}$. But the same is true for the orientation $O = O_X$ induced by a model X of K_m. Indeed, let $(U, W) \in O_X$. Then every set in X meets V_{t_X}. At least k branch sets of X are disjoint from $U \cap W$, say X_1, \ldots, X_k, and they all lie in $W \setminus U$. For $1 \leq i \leq k$, let $x_i \in X_i \cap V_{t_X}$ and note that $R := \{x_1, \ldots, x_k\} \subseteq W \cap V_{t_X}$.

We may now show that (T, \mathcal{V}) efficiently distinguishes all anchored orientations of $S_k(G)$. Let O_1, O_2 be anchored orientations of $S_k(G)$ and let their home nodes be t_1 and t_2 respectively. If $t_1 \neq t_2$, let p be the minimum order of an edge along $t_1 T t_2$, and put $p := k$ otherwise. Choose some $(U, W) \in O_2 \setminus O_1$ of minimum order. Since O_1 and O_2 are anchored, we have $|U \cap V_{t_1}| \geq k$ and
\(|W \cap V_\ell| \geq k\). As \((T, V)\) is \(k\)-lean, it follows that \(|U \cap W| \geq p\). Hence \(t_1 \neq t_2\) and \((T, \mathcal{V})\) efficiently distinguishes \(O_1\) and \(O_2\).

Let us call a node \(t \in V(T)\) a block-node if it is the home node of some \(k\)-block and model-node if it is the home node of a model of \(K_m\).

Let \(F \subseteq E(T)\) be inclusion-minimal such that every \(k\)-block is efficiently distinguished from every model of \(K_m\) by some separation induced by an edge in \(F\). We now define a red/blue colouring \(c : V(T) \to \{r, b\}\) by letting \(c(t) = b\) if the component of \(T - F\) containing \(t\) contains a block-node and letting \(c(t) = r\) if it contains a model-node. Let us first show that this is in fact a colouring of \(V(T)\).

Lemma 10. Every node receives exactly one colour.

Proof. Suppose first that \(t \in V(T)\) is such that the component of \(T - F\) containing \(t\) contains both a block-node and a model-node. Then there is a \(k\)-block \(B\) and a \(K_m\)-minor \(X\) such that \(t_B Tt\) and \(t_X Tt\) both contain no edges of \(F\). But then \(B\) and \(X\) are not separated by the separations induced by \(F\), a contradiction.

Suppose now that \(t \in V(T)\) is such that the component \(S\) of \(T - F\) containing \(t\) contains neither a block nor a minor. Let \(f_1, \ldots, f_n\) be the edges of \(T\) between \(S\) and \(T\setminus S\), ordered such that \(|f_i| \geq |f_j|\) for all \(i \leq n\). By minimality of \(F\), there is a block-node \(t_B\) and a model-node \(t_X\) such that \(f_1\) is the only edge of \(F\) that efficiently distinguishes \(B\) and \(X\). Since \(t_B \cap X \notin S\), there is a \(j \geq 2\) such that \(f_j \in E(t_B Tt_X)\), and so \(f_j\) distinguishes \(B\) and \(X\) as well, and since \(|f_1| \geq |f_j|\), it does so efficiently, contradicting our choice of \(B\) and \(X\)

Lemma 11. Let \(s \in E(T)\) and suppose \(s\) is blue and \(t\) is red. Then \(G[W_t]\) has a \((V_s \cap V_t)\)-based model.

Proof. Let \(Q := V_s \cap V_t\). Let \(t_B\) be a block-node in the same component of \(T - F\) as \(s\) and let \(t_X\) be a model-node in the same component as \(t\). Since the separations induced by \(F\) efficiently distinguish \(B\) and \(X\), it must be that \(st \in F\) and \((U_s, W_t)\) efficiently distinguishes \(B\) and \(X\).

Let \(Y := (X \cap W_t)_{X \in X}\). Since \((U_s, W_t) \in O_X\), \(Y\) is a model of \(K_m\) in \(G[W_t]^Q\). We wish to apply Lemma 7 to \(Q\) and \(Y\) in the graph \(G[W_t]\). Suppose \(Q\) and \(Y\) do not induce the same orientation of \(S_Q^G(G[W_t]^Q)\). That is, there is a separation \((U, W)\) of \(G[W_t]^Q\) with \(|U \cap W| < |Q|\) and \(Q \subseteq U\) such that \(Y \cap U = \emptyset\) for some \(Y \in Y\). There is an \(X \in X\) so that \(Y = X \cap G[W_t]\). Note that \(X \cap U\) is empty as well. Now \((U', W') := (U \cup U_s, W)\) is a separation of \(G\). Note that

\[X \cap U' = X \cap U_s = \emptyset,\]

because \(X\) is connected, meets \(W_t\) and does not meet \(Q\). Therefore \(X \subseteq W' \setminus U'\) and \(B \subseteq U_s \subseteq U'\). But \(|U' \cap W'| = |U \cap W| < |Q|\), which contradicts the fact that \((U_s, W_t)\) efficiently distinguishes \(B\) and \(X\). Therefore, by Lemma 7, \(G[W_t]\) has a \(Q\)-based model. \(\square\)

Using the above we can bound the size of a complete minor in the torso of a blue component. The next lemma plays a similar role to Lemma 6.9 in [10].

Lemma 12. Let \(S \subseteq T\) be a maximal subtree consisting of blue nodes. Then the torso of \(S\) has no \(K_m\)-minor.
Proof. Let $F_S := \{(s,t) : st \in E(T), s \in S, t \notin S\}$. For every $(s,t) \in F_S$, the node s is blue and t is red. By Lemma 11 G_t has a $(V_s \cap V_t)$-based complete minor $Y^{s,t}$. Contract each of its branch sets onto the single vertex of $V_s \cap V_t$ that it contains. Do this for every $(s,t) \in F_S$. After deleting any vertices outside of $V_S := \bigcup_{s \in S} V_s$, we obtain the torso of S as a minor of the graph G.

Suppose the torso of S contained a K_m-minor. Then G has a K_m-minor \mathcal{X} such that every $X \in \mathcal{X}$ meets V_S. Therefore \mathcal{X} orients every edge $st \in E(T)$ with $(s,t) \in F_S$ towards s. But then $t_X \in S$, contradicting the assumption that S contains no red nodes.

We can now finish the proof. Let (T', V') be obtained from (T, V) by contracting every maximal subtree consisting of blue nodes and let the vertices of T' inherit the colouring from $V(T)$. We claim that (T', V') satisfies the conditions of Theorem 4.

Indeed, firstly, the adhesion of (T', V') is at most that of (T, V), and hence is at most k. Secondly, the torso of every red node in (T', V') is the torso of some red node in (T, V), which by Lemma 6 has fewer than k vertices of degree at least $2k^2$. Finally, by Lemma 12 the torso of every blue node in (T', V') has no K_m minor. Since $k = r(r-1)$ and $m = 2k$, the theorem follows.

As claimed in the introduction, it is not hard to turn this proof into an algorithm to find either a subdivision of K_r or an appropriate tree-decomposition. Indeed, the proof of Lemma 5 can easily be adapted to give an algorithm to find a tight k-lean tree-decomposition. Similarly, in order to colour the vertices of the tree red or blue we must check for the existence of a K_m minor or a k-block having this vertex as a home node, both of which can be done algorithmically (see [10] and [2]). However, we note that the running time of such an algorithm, or at least a naive implementation of one, would have run time $\sim |V(G)|^{f(r)}$ for some function of the size of the topological minor K_r we are excluding, whereas the algorithm of Grohe and Marx has run time $g(r)|V(G)|^{O(1)}$, which should be much better for large values of r.

References

[1] P. Bellenbaum and R. Diestel. Two short proofs concerning tree-decompositions. Comb., Probab. Comput., 11:1–7, 2002.

[2] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. k-Blocks: a connectivity invariant for graphs. SIAM J. Discrete Math., 28:1876–1891, 2014.

[3] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canonical tree-decompositions of finite graphs I. Existence and algorithms. J. Combin. Theory Ser. B, 116:1–24, 2016.

[4] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canonical tree-decompositions of finite graphs II. Essential parts. J. Combin. Theory Ser. B, 118:268–283, 2016.

[5] J. Carmesin and P. Gollin. Canonical tree-decompositions of a graph that display its k-blocks. J. Combin. Theory Ser. B, 122:1–20, 2017.
[6] R. Diestel. *Graph Theory*. Springer, 5th edition, 2017.

[7] R. Diestel, F. Hundertmark, and S. Lemanczyk. Profiles of separations: in graphs, matroids, and beyond. arXiv:1110.6207, to appear in *Combinatorica*.

[8] Z. Dvořák. A stronger structure theorem for excluded topological minors. arXiv preprint arXiv:1209.0129, 2012.

[9] J. Geelen and B. Joeris. A generalization of the grid theorem. arXiv preprint arXiv:1609.09098, 2016.

[10] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. *SIAM Journal on Computing*, 44(1):114–159, 2015.

[11] F. Hundertmark. Profiles. An algebraic approach to combinatorial connectivity. arXiv:1110.6207, 2011.

[12] C.-H. Liu and R. Thomas. Excluding subdivisions of bounded degree graphs. arXiv preprint arXiv:1407.4428, 2014.

[13] W. Mader. Kreuzungsfreie a,b-wege in endlichen graphen. *Abh. Math. Sem. Univ. Hamburg*, 42:187–204, 1974.

[14] W. Mader. Über n-fach zusammenhängende Eckenmengen in Graphen. *J. Combin. Theory (Series B)*, 25:74–93, 1978.

[15] N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-decomposition. *J. Combin. Theory (Series B)*, 52:153–190, 1991.

[16] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. *J. Combin. Theory (Series B)*, 63:65–110, 1995.

[17] N. Robertson and P.D. Seymour. Graph minors. XVI. Excluding a non-planar graph. *J. Combin. Theory (Series B)*, 89:43–76, 2003.

[18] N. Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. *J. Combin. Theory (Series B)*, 92:325–357, 2004.

[19] R. Thomas. A Menger-like property of tree-width; the finite case. *J. Combin. Theory (Series B)*, 48:67–76, 1990.

[20] D. Weißauer. On the block number of graphs. arXiv preprint arXiv:1702.04245, 2017.