Scattering model description of cascaded cavity configurations

A Dombi and P Domokos

Wigner Research Centre for Physics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest, Hungary
E-mail: dombi.andras@wigner.mta.hu and peter.domokos@wigner.mta.hu

Received 1 August 2012
Accepted for publication 10 September 2012
Published 28 March 2013
Online at stacks.iop.org/PhysScr/T153/014018

Abstract
Cascaded optical cavities appear in various quantum information processing schemes in which atomic qubits are sitting in separate cavities interconnected by photons as flying qubits. The usual theoretical description relies on a coupled-mode Hamiltonian approach. Here we investigate the system of cascaded cavities without modal decomposition by using a scattering model approach and determine the validity regime of the coupled-mode models.

PACS numbers: 42.50.Pq, 42.50.Ex, 42.60.Da

1. Introduction
Complex quantum information communication architectures can be composed of elementary blocks of cavity quantum electrodynamics systems [1] wherein atoms are strongly coupled to the light field of a high-finesse resonator [2]. The q-bit can be stored in metastable internal states of a single atom, and can be efficiently mapped into the quantum state of a single photon inside the cavity [3, 4]. The photon can then be outcoupled, usually coupled into an optical fiber [5], and used as a flying q-bit to interconnect separate nodes. This principle has been demonstrated recently [6].

A very popular model describing the system of fiber connected cavities relies on the simplification that a single bosonic field mode represents the light field in the fiber (the so-called 'short fiber limit') [7], and this mode is linearly coupled to those of the cavities (the coupled-oscillator model) [8]. One might suspect that when the cavity–fiber interfaces redefine the radiation field in the fiber such that it can be described in terms of discrete longitudinal modes (instead of the normal continuum), then all the boundary conditions within the setup together define the mode structure. That is, in the simplest case, two coupled, linear cavities should be considered as an interferometer consisting of four mirrors. In this paper, we will investigate such a four-mirror interferometer by means of a fundamental scattering approach [9, 10]. We aim at checking the coupled-oscillator model: determine its domain of validity and, eventually, uncover possible artifacts which might wrongly be built into a quantum information processing protocol.

2. Cascaded cavities
The system we are studying is schematically depicted in figure 1. It consists of two identical cavities (optical Fabry–Perot resonators), which are coupled via an optical fiber. The same system can be viewed as an ensemble of four mirrors. Considering one-dimensional (1D) propagation only, the fact that the cavities are connected by fiber does not play an essential role.

2.1. Coupled oscillator model
In the case of the coupled oscillator model we consider single-mode fields both in the cavities and in the fiber, the corresponding bosonic annihilation operators are denoted by a, b and that of the fiber mode by c. The resonant frequency of the cavities is ω_C and that of the fiber is ω_F. The Hamiltonian of the system, in units of $\hbar = 1$, is

$$H = \omega_C a^\dagger a + \omega_C b^\dagger b + \omega_F c^\dagger c + g (a^\dagger c + a c^\dagger) + g (b^\dagger c + c b^\dagger),$$

where the linear coupling between the fiber and the cavities is described by the effective coupling constant g. The system can be driven from both directions, with effective...
pump amplitudes \(\eta_L \) and \(\eta_R \), respectively. The laser driving frequency is \(\omega \), so the pump Hamiltonian is
\[
H_{\text{pump}} = \eta_L \left(a^\dagger e^{-i\omega t} + a e^{i\omega t} \right) + \eta_R \left(b^\dagger e^{-i\omega t} e^{-i\phi} + b e^{i\omega t} e^{i\phi} \right),
\]
where \(\phi \) accounts for a phase difference between the left and right pump amplitudes. We assume perfect mirrors so that the only photon loss source is transmission into the free space. This loss is described by the following dissipative terms in the quantum master equation:
\[
\dot{\rho} = i[\rho, H] - \kappa \left(a^\dagger a \rho + \rho a^\dagger a - 2a a^\dagger \rho \right),
\]
and similar terms for the cavity mode \(b \). The cavity photon loss rate is \(2\kappa \). Note that the loss of an isolated Fabry–Perot cavity occurs through both mirrors.

Such a simplified model is needed when the dynamics of a more complex system including atomic \(q \)-bits is considered [11–14]. Then additional atom-field interaction terms have to be included, of course. However, there remains the question whether such a simplified treatment of the field itself is justified.

2.2. One-dimensional scattering model

The four-mirror interferometer is analyzed by means of the 1D scattering model and the transfer matrix method [9, 10]. In every point along the optical axis, the field is described by the left- and right-propagating plane wave amplitudes. In the transfer matrix method these amplitudes on the left and right sides of an optical element (‘scatterer’) are related to each other by a linear matrix:
\[
\begin{pmatrix} C \\ D \end{pmatrix} = M \begin{pmatrix} A \\ B \end{pmatrix},
\]
where \(C \), \(D \) are on the right and \(A \), \(B \) are on the left side of a scatterer; \(A \), \(C \) are the right and \(B \), \(D \) are the left-propagating plane wave mode amplitudes. There are two types of matrices we need to describe the four-mirror interferometer. Firstly, that of a mirror,
\[
M_{\text{mirror}} = \begin{bmatrix} 1 - i\zeta & -i\zeta \\ i\zeta & 1 + i\zeta \end{bmatrix},
\]
where the mirror is characterized by the single parameter of linear polarizability \(\zeta \), which defines the reflectivity \(r = \frac{1 - \zeta^2}{1 + \zeta^2} \) and transmissivity \(t = \frac{2\zeta}{1 + \zeta^2} \). Here again, we will consider absorption-free, perfect beam splitters as mirrors, which amounts to having a real polarizability parameter \(\zeta \). Secondly, the free propagation between the mirrors, which is given by
\[
M_{\text{prop}} = \begin{bmatrix} e^{ikd} & 0 \\ 0 & e^{-ikd} \end{bmatrix},
\]
where \(k \) is the wavenumber of the plane wave of frequency \(\omega \), and \(d \) is the distance between the two mirrors.

2.3. Matching the parameters

In the following, we will match the parameters on the basis of deriving the same, well-defined, measurable physical quantity in both models. We will make use of the fact that the correspondence between the parameters must be independent of the geometry. Therefore, we can consider a simplified setup to establish the connection.

2.3.1. Single cavity transmitted photo-current

Firstly, let us look at the transmitted photo-current of a single, driven cavity. The driven and lossy oscillator model gives for the outgoing photon number per unit time
\[
j_{\text{out}} = \kappa |\langle a^\dagger a \rangle| = \frac{\kappa |\eta|^2}{(\omega - \omega_C)^2 + \kappa^2},
\]
which is the simple Lorentzian spectrum of a resonator. Note that only half of the outgoing photons leave into one given direction (to the right). The transmitted photon number in the scattering model is
\[
j_{\text{out}} = \frac{2S|e_{\text{sc}}|}{\hbar \omega} |C|^2,
\]
where \(S \) is a (usually fictitious) quantization surface, perpendicular to the optical axis. The outward propagating field amplitude \(C \) can be obtained by straightforward calculation. Close to resonance, the spectrum can be approximated by a Lorentzian, which gives rise to the relations
\[
\kappa = \frac{c}{L_C} \frac{1}{2\pi \sqrt{\zeta^2 + 1}},
\]
\[
\omega_C = \frac{c}{L_C} \left[n \pi + \frac{1}{2} \tan \left(\frac{2\zeta}{1 - \zeta^2} \right) \right],
\]
\[
\eta_i = \sqrt{\kappa} A,
\]
where the scattering model parameters \(L_C \) (cavity length) and \(\zeta \) are used, and \(n \) is an integer number giving the order of the resonance. The pumping amplitude from the left side, \(\eta_i \), is of course related to the incoming field amplitude \(A \) of the scattering model.

2.3.2. Coupled-cavity resonances

We still need to determine the coupling constant \(g \) of the coupled-cavities model. To this end, we consider the resonances of a system of two coupled cavities which have different lengths, \(L_1 \) and \(L_2 \), but have a common resonance frequency \(\omega_C \).
Using the same notations as before, the Hamiltonian of the system is \(H = \omega_c a^\dagger a + \omega_c b^\dagger b + g(a^\dagger b + b^\dagger a) \), and the eigenfrequencies are \(\omega_{\pm} = \omega_c \pm g \).

That is, the splitting is \(2g \). For the three-mirror system, a lengthy but straightforward calculation within the scattering model leads to the normalized transmission spectrum

\[
\frac{|C|^2}{|A|^2} = \left[1 + \zeta^2(1 + \zeta^2)^2 \left(4 \cos^2 \left(\frac{kL_1 + kL_2}{2} \right) - \Phi/2 \right) \right]^{-1},
\]

where \(\Phi \) is a global shift of the spectrum. We find that the splitting between resonances can be expressed by the linear polarizability \(\zeta \) and the lengths of the cavities \(L_1 \) and \(L_2 \) as

\[
2g = \frac{2c}{(L_1 + L_2)\sqrt{1 + \zeta^2}}.
\]

This expression can be applied to the case of the coupling of the fiber and a cavity.

3. Comparison of the transmission spectrums

After matching the parameters, we can return to the problem of cascaded cavities and quantitatively compare the results of the two models. In the first step, we look at the transmission spectrum which shows the positions and widths of the resonances. In figure 2(a), we plot the transmitted photocurrent as a function of the pump laser frequency \(\omega \). The mean photocurrent is \(\langle b^\dagger b \rangle \) in the coupled-oscillator model, whereas in the scattering model it is given by equation (8), and the amplitude \(C \) has to be calculated according to the geometry by the transfer matrix method. The difference between the two models is explicitly represented in figure 2(b), where the separation of the resonance peaks is plotted as a function of mirror polarizability. This representation reveals that the coupled-oscillator model gets better and better with increasing the linear polarizability \(\zeta \), i.e. in the good cavity limit. In the plotted range, the transmissivity of the mirrors is below 1%, and the spectra overlap (apart from some possible uninteresting offset) within a small fraction of the cavity line width \(\kappa \).

4. Spatial distribution of the field in the cascaded cavity setup

In a quantum communication setup the \(q \)-bits couple to the field in their position and the local field intensity is the essential quantity which determines the atom–field coupling. In the oscillator model the modes \(a, b \) and \(c \) are confined to the spatial domains of the respective cavities and the...
fiber. The eigenmodes of the total system, however, are spatially delocalized, and the resonant excitations couple simultaneously to different qubits. Therefore, it is important to analyze the spatial distribution of the field associated with the resonances.

As a first example, in figures 3(a) and (b), we plot the cavity photon number in the left and right cavities, respectively, corresponding to the transmission spectrum of figure 2. Obviously, the plot of the local field intensities reflects the same difference in the position of the resonant frequencies as found in the transmission spectrum. In addition, we get a difference in magnitude of the intensities in the two models. This means that the true modes (associated with the observable resonances) have a spatial distribution that cannot be mimicked by the coupled-oscillator model, so it does not provide for the precise values of the coupling to a qubit.

4.1. Are there dark modes?

There is an interesting possibility to demonstrate the difference between the spatial distributions obtained from the two models. The coupled-oscillator model allows for the occurrence of dark modes for certain linear combinations of a two-sided pumping. In particular, if the left and right cavities are pumped with the same amplitude but opposite phase ($\eta_L = -\eta_R$, $\phi = \pi$ in equation (2)), the symmetric mode $a + b$ decouples from the pump. Furthermore, this symmetric mode couples to the fiber mode c; therefore the field in the intermediate domain should vanish. In principle, exact suppression is expected. Note that this is impossible in the scattering model: if both propagating field mode amplitudes are exactly zero at any point, the field must vanish everywhere.

Figure 4(a) shows the intensity in the fiber as a function of the pump frequency (spectrum) and also as a function of the relative phase between the left and right pumps. The fiber intensity is resonantly enhanced for the two side resonances, in accordance with the coupled-oscillator model. The third, much smaller resonance in between is absent in the coupled-oscillator model in which this mode does not involve the mode c. In the whole frequency range, the intensity depends sinusoidally on the relative phase ϕ. As can be seen in figure 4(b), the destructive interference is almost perfect at $\phi = 0$.

In conclusion, we showed that the cascaded cavities configuration can be well treated by the very simple coupled-oscillator model in the good cavity limit, e.g. provided that the reflectivity of the mirrors is above 99%. However, one must be careful when the coupling of the local field to atomic qubits is considered: no local addressing is possible; the field extends in the whole setup with a highly non-trivial manner reflecting interferometric sensitivity to the parameters. This might lead to effects detrimental to a given protocol, if not taken into account a priori.

Acknowledgments

This work was supported by the EU FP7 (ITN, CCQED-264666), the Hungarian National Office for Research and Technology under the contract ERC_HU_09 OPTOMEC and the Hungarian Academy of Sciences (Lendület Program, LP2011-016).

References

[1] Wilk T, Webster S C, Kuhn A and Rempe G 2007 Single-atom single-photon quantum interface Science 317 488–90
[2] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Quantum state transfer and entanglement distribution among distant nodes in a quantum network Phys. Rev. Lett. 78 3221–4
[3] Hjumlah M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 A single-photon server with just one atom Nature Phys. 3 253–5
[4] Bina M, Casagrande F, Genoni M G, Lulli A and Paris M G A 2010 Tripartite quantum state mapping and discontinuous entanglement transfer in a cavity QED open system Phys. Scr. T140 014015
[5] Trupke M, Goldwin J, Duruquie B, Dutier G, Eriksson S, Ashmore J and Hinds E A 2007 Atom detection and photon production in a scalable, open, optical microcavity Phys. Rev. Lett. 99 063601
[6] Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mucke M, Figueroa E, Bochmann J and Rempe G 2012 An elementary quantum network of single atoms in optical cavities Nature 484 195–200
[7] Serafini A, Mancini S and Bose S 2006 Distributed quantum computation via optical fibers *Phys. Rev. Lett.* **96** 010503

[8] Busch J and Beige A 2010 Generating single-mode behavior in fiber-coupled optical cavities *Phys. Rev. A* **82** 053824

[9] Asbóth J K, Ritsch H and Domokos P 2008 Optomechanical coupling in a one-dimensional optical lattice *Phys. Rev. A* **77** 063424

[10] Xuereb A, Freegarde T, Horak P and Domokos P 2010 Optomechanical cooling with generalized interferometers *Phys. Rev. Lett.* **105** 013602

[11] Ogden C D, Irish E K and Kim M S 2008 Dynamics in a coupled-cavity array *Phys. Rev. A* **78** 063805

[12] Montenegro V, Eremeev V and Orszag M 2012 Entanglement of two distant qubits driven by thermal environments *Phys. Scr.* **T147** 014022

[13] Alexanian M 2011 Two-photon exchange between two three-level atoms in separate cavities *Phys. Rev. A* **83** 023814

[14] Shi-Biao Z and Dao-Ming L 2011 Entangling two atomic ensembles trapped in separated cavities *Commun. Theor. Phys.* **56** 1075