Draft Genome Sequences of 13 Plant-Associated Actinobacteria of the Family Microbacteriaceae

Sergey V. Tarlachkov,a,b Irina P. Starodumova,a Lubov V. Dorofeeva,a Natalia V. Prisyazhnaya,a Semen A. Leyn,c,d Jaime E. Zlamal,c Sebastian Albu,e Steven A. Nadler,f Sergei A. Subbotin,e,f,g Lyudmila I. Evtushenkoa

a All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
b Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
c Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
d A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
e California Department of Food and Agriculture, Sacramento, California, USA
f Department of Entomology and Nematology, University of California, Davis, California, USA
g Center of Parasitology of A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia

ABSTRACT Draft genome sequences of 13 bacterial strains from the family Microbacteriaceae were generated using Illumina technology. The genome sizes varied from 3.0 to 4.8 Mb, and the DNA G+C content was 68.1 to 72.5%. The sequences obtained will contribute to the development of genome-based taxonomy and understanding of molecular interactions between bacteria and plants.

Members of the family Microbacteriaceae (class Actinobacteria) are widely distributed in various terrestrial and aquatic ecosystems and often occur in association with plants as endophytes and pathogens (1–3).

Novel strains of Microbacteriaceae were recovered from eight different plants of five families (Table 1) collected in various sites in California. Rathayibacter sp. strain VKM Ac-2835 was isolated from a Malus sp. with symptoms of bacterial wetwood disease by macerating several pieces of symptomatic superficial bark tissue in a sterile aqueous solution and then plating it onto Pseudomonas F agar (Becton, Dickinson, USA) amended with cycloheximide (100 mg/liter). The remaining strains were isolated from plants without visible symptoms of diseases, as described (3, 4), but Reasoner’s 2A (R2A) agar (Fluka Analytical, USA) was used as the plating medium for isolation. Rathayibacter agropyri CA-4T (=VKM Ac-2828T) was kindly provided by T. D. Murray. For preservation, strains were grown on R2A agar and lyophilized using standard techniques. All strains were deposited in the All-Russian Collection of Microorganisms (VKM; http://www.vkm.ru).

Biomass for DNA extraction was grown in liquid peptone-yeast medium (5) inoculated with cells from a single colony, followed by cultivation at 28°C for 18 to 20 h on a rotary shaker. Genomic DNA was extracted using a QIAamp DNA minikit (Qiagen, Germany). DNA libraries for strains VKM Ac-2828T, VKM Ac-2835, and VKM Ac-2836 were prepared in-house using a NEBNext Ultra II FS DNA library prep kit for Illumina (New England Biolabs, USA) following the protocol for use with inputs of ≥100 ng with modifications as described previously (6). Pooled DNA libraries were sequenced by Novogene Co., Ltd., on an Illumina HiSeq X Ten instrument to obtain 150-bp paired-end reads. For the remaining strains, DNA library construction and sequencing were conducted by Novogene Co., Ltd. Libraries were generated using a NEBNext DNA library prep kit for Illumina (New England Biolabs) following the manufacturer’s recommendations. Pooled DNA libraries were sequenced on an Illumina NovaSeq 6000 instrument to obtain 150-bp paired-end reads.
Organism	Associated plant (family)	No. of reads	Coverage (X)	No. of scaffolds	Scaffold \(N_{50} \) (bp)	Genome size (Mbp)	G+C content (%)	No. of proteins	SRA accession no.	GenBank accession no.
Rathayibacter agropyri	**Pascopyrum smithii** (Poaceae)	14,362,336	578	25	656,029	0.9	68.1	2,835	SRX8466800	JABRPL0000000000
VKM Ac-2828^T										
Rathayibacter sp. VKM Ac-2835	**Malus domestica** (Rosaceae)	12,953,304	410	6	1,292,012	4.3	72.2	3,849	SRX8466801	JABSNQ0000000000
Rathayibacter sp. VKM Ac-2857	**Brachypodium distachyon** (Poaceae)	21,681,636	692	8	1,409,124	4.6	72.1	4,080	SRX8466811	JABMLE0000000000
Rathayibacter sp. VKM Ac-2856	**Brachypodium distachyon** (Poaceae)	20,040,560	689	9	783,576	4.3	72.5	3,806	SRX8466810	JABMLF0000000000
Rathayibacter sp. VKM Ac-2858	**Brachypodium distachyon** (Poaceae)	22,149,976	762	9	783,576	4.3	72.5	3,806	SRX8466812	JABMLD0000000000
Curtobacterium sp. VKM Ac-2852	**Avena fatua** (Poaceae)	19,012,470	724	7	1,020,126	3.9	70.8	3,580	SXR8466807	JABMUL0000000000
Curtobacterium sp. VKM Ac-2861	**Marah** sp. (Cucurbitaceae)	17,600,848	642	15	624,972	4.0	70.8	3,739	SXR8466804	JABMCLA0000000000
Frigoribacterium sp. VKM Ac-2836	**Fragaria vesca** (Rosaceae)	28,426,948	1,100	10	1,120,753	3.3	70.4	3,010	SXR8466805	JABRPK0000000000
Frigoribacterium sp. VKM Ac-2859	**Brachypodium distachyon** (Poaceae)	14,404,054	638	5	1,688,707	3.3	71.3	3,027	SXR8466812	JABMCL0000000000
Frigoribacterium sp. VKM Ac-2860	**Brachypodium distachyon** (Poaceae)	14,248,970	632	5	1,688,688	3.3	71.3	3,029	SXR8466803	JABMLB0000000000
Herbiconiux sp. VKM Ac-2851	**Soliva sessilis** (Asteraceae)	18,251,960	623	9	1,342,178	4.3	70.7	4,032	SXR8466806	JABMLO0000000000
Microbacteriaceae bacterium	**Myosotis** sp. (Boraginaceae)	42,551,862	1,319	18	721,153	4.8	69.6	4,359	SXR8466808	JABMLH0000000000
Microbacteriaceae bacterium	**Myosotis** sp. (Boraginaceae)									
VKM Ac-2854										
Microbacteriaceae bacterium	**Myosotis** sp. (Boraginaceae)	17,323,178	542	26	386,786	4.7	68.3	4,255	SXR8466809	JABMLG0000000000
Default parameters were used for all software unless otherwise specified. The quality of the reads was checked with FastQC 0.11.8 (7). Adapter sequences and low-quality regions in the raw reads were cut with Trimmomatic 0.39 (8) with the following options: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10, SLIDINGWINDOW:4:15, and MINLEN:50. Trimmed reads were assembled using SPAdes 3.14.1 (9) with the following options: --cov-cutoff, auto; and --careful. The quality of assembly was assessed with QUAST 5.0.2 (10). Assemblies were annotated with NCBI PGAP (11) and the RAST Web server (12, 13).

The pairwise similarity between the 16S rRNA gene sequences was determined using TaxonDC 1.3.1 (14). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were calculated using the JSpecies 1.2.1 (15) and GGDC 2.1 (16) tools, respectively.

Accession numbers and characteristics of the genomes are provided in Table 1. Figure 1 shows the phylogenomic positions of Rathayibacter strains sequenced in this work (in bold) and members of other validly published and some putative (6, 19, 20) Rathayibacter species. The tree was inferred by the balanced minimum evolution method using JolyTree 1.1.181205ac (21) with branch lengths scaled to the estimated number of substitutions per site. Branch support values (rate of elementary quartets) above 0.5 are indicated at the branch points. The genetic sequence of Clavibacter michiganensis subsp. sepedonicus ATCC 33113T (GenBank accession numbers AM849034.1 to AM849036.1) served as an outgroup (not shown) to root the tree.

A BLAST search confirmed the presence of a genomic cluster comprising a complete suite of tunicamyluracil-related biosynthetic genes in R. agropyri CA-4T as already reported by Tancos et al. (18) for this strain. This gene cluster is not present in any other genomes sequenced in this work.
Further whole-genome sequencing of other Microbacteriaceae along with comparative genomic and phenotypic analyses of putative and known species with validly published names will result in valid descriptions of the revealed new taxa, contributing to the development of the genome-based taxonomy of prokaryotes.

Data availability. These whole-genome shotgun projects have been deposited in DDBJ/ENA/GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

We thank Andrei L. Osterman for his valuable help during work with this project, Timothy D. Murray for providing the Rathayibacter agropyri CA-47 strain, and Dean Kelch and Robert Price for plant identification.

This work was supported by the U.S. Department of Agriculture Animal and Plant Health Inspection Service according to the research project AP18PPQS&T00C159 (18-Kelch and Robert Price for plant identification.

REFERENCES

1. Evtushenko LI. 2015. Microbacteriaceae. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (ed), Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781119060698.fm0035.

2. Murray TD, Schroeder BK, Schneider WL, Luster DG, Sechler A, Rogers EE, Subbotin SA. 2017. Rathayibacter toxicus, other Rathayibacter species inducing bacterial head blight of grasses, and the potential for livestock poisonings. Phytopathology 107:804–815. https://doi.org/10.1094/PHYTO-02-17-0047-RVW.

3. Dorofeeva LV, Starodumova IP, Krausova VI, Prisazhnaya NV, Vinokurova NG, Lysanskaya VY, Tarlachkov SV, Evtushenko LI. 2018. Rathayibacter okolensis sp. nov., a novel actinobacterium from Androsace kosa-poljanski Ovcz. (Primulaceae) endemic to Central Russian Upland. Int J Syst Evol Microbiol 68:1442–1447. https://doi.org/10.1099/ijsem.0.002681.

4. Dorofeeva LV, Krausova VI, Evtushenko LI, Tiedje JM. 2003. Agromyces albips sp. nov., isolated from a plant (Androsace sp.). Int J Syst Evol Microbiol 53:1435–1438. https://doi.org/10.1099/ijsem.0.02428-0.

5. Naumova IB, Kuznetsov VD, Kudrina KS, Bezuzenkova AP. 1980. The occurrence of tetrachic acids in Streptomyces. Arch Microbiol 126:71–75. https://doi.org/10.1007/BF00421893.

6. Tarlachkov SV, Starodumova IP, Dorofeeva LV, Prisazhnaya NV, Leyn SA, Zlamal JE, Elane ML, Osterman AL, Nadler SA, Subbotin SA, Evtushenko LI. 2017. Complete and draft genome sequences of 12 plant-associated Microbacteriaceae species collected from Australia, Africa, Eurasia, and North America. Front Microbiol 10:2914. https://doi.org/10.3389/fmicb.2019.02914.

7. Chun J, Oren A, Ventosa A, Christensen H, Kämpfer P, Trujillo ME, Chuang JH, Schroeder BK, Murray TD, Rogers EE. 2019. The identification and conservation of tunicamycin-luraci-related biosynthetic gene clusters in several Rathayibacter species collected from Australia, Africa, Eurasia, and North America. Front Microbiol 10:2914. https://doi.org/10.3389/fmicb.2019.02914.

8. Bankewich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Phystkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

9. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106.

10. Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassilieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75.

11. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106.

12. Heistermann M, Kohn J, Braune M, Chijindu EK, Marchant SB, Schmidt GW, Vega HMP, Gómez CA, Kolenbrander WE, Jones EM. 2019. Genomic analyses of a bacterial endosymbiont in the ant Polyergus rufescens. Cell Host Microbe 25:645–655. https://doi.org/10.1016/j.chom.2019.04.008.

13. Overbeek RA, Les IY, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226.

14. Köster H, Osterman AL, Nadler SA, Subbotin SA, Evtushenko LI. 2016. Draft genome sequence of Rathayibacter oskolecensis sp. VKM Ac-2630 isolated from leaf gall induced by the knapweed nematode Tanacetum vulgare in- fested by a foliar nematode. Genome Announc 4:e00512-16. https://doi.org/10.1128/genomeA.00512-16.

15. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106.

16. Meier-Kolthoff JP, Auffach AH, Klenk HP, Güker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60.