Ki-67 Can Predict the Response to the Gemcitabine, Oxaliplatin And L-asparaginase Regimen (GELOX) and Prognosis in Patients with Nasal Natural Killer/T-cell Lymphoma

Jing Zhang¹&, Wei Jiang³&, Wei-Da Wang², Cheng-Cheng Liu², Yan-Ping Hu¹*, Zhong-Jun Xia²*

Abstract

GELOX (gemcitabine, oxaliplatin and L-asparaginase) regimen showed an impressive result in our previous study, but the effect of this new regimen is still dissatisfying for some patients, so it is necessary to identify which patients will benefit from this regimen. A total of fifty-one cases with nasal natural killer/T-cell lymphoma receiving initial GELOX chemotherapy were enrolled in this study. The ki-67 expression detected by immunohistochemistry (IHC) in the specimens ranged from 10% to 90%, with a median value of 70%, so cases higher than the median value (≥70%) were defined as high ki-67 expression, and the others were designated as low ki-67 expression. The response rate had no statistical difference between low ki-67 expression group and high ki-67 expression group (P=0.291) though the value in the former group was relatively high. After a median follow-up of 18.03 months, the 3-year progression-free survival (PFS) for patients with low ki-67 expression was significantly higher than those with high ki-67 expression (83.8% vs. 47.9%, P=0.038). In the stage I/II subgroup, 3-year PFS and overall survival (OS) were statistically higher in the patients with low ki-67 expression than those with high ki-67 expression. Multivariate analysis revealed high ki-67 expression was an independent prognostic factor for PFS. These results suggest that low ki-67 expression can predict a good response of GELOX in these patients, and the combination of ki-67 expression and early stage is helpful to identify an excellent prognosis subgroup from patients receiving GELOX in this disease.

Keywords: Ki-67 - gemcitabine - oxaliplatin - l-asparaginase - natural killer/T-cell lymphoma

Introduction

Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is a relatively common disease in China (Liu et al., 2011). It tends to be resistant to conventional chemotherapy, such as CHOP (cyclophosphamide, vincristine, doxorubicin, and prednisone). L-asparaginase (L-asp), showing an excellent activity in acute lymphoblastic leukemia, was firstly reported to have the antitumor role in relapsed or refractory ENKTL (Yong et al., 2000). Then, L-asp induced durable remission in a 60-year-old Japanese woman with relapsed nasal ENKTL after autologous peripheral blood stem cell transplantation (Nagafuji et al., 2001). Thereafter, more studies confirmed the role of L-asp in the salvage chemotherapy of ENKTL (Jaccard et al., 2009; Jaccard et al., 2011; Wen et al., 2014). Based on the low toxicity and good effect of gemcitabine and oxaliplatin in B-cell and T-cell lymphoma (Oki et al., 2005; El Gnaoui et al., 2007; Zinzani et al., 2010), we evaluated the effect of GELOX in the first-line chemotherapy of stage I/II ENKTL in a prospective study (Wang et al., 2013). This new regimen produced an impressive result that the complete response (CR) rate was as high as 55.6% after 2-cycle chemotherapy. But the effect of GELOX is still dissatisfying in some patients. So it is necessary to identify which patients will benefit from the GELOX regimen.

Ki-67 is a nuclear protein synthesized as a cell begins proliferation, and it is expressed in the proliferation-associated phase of the cell cycle (Schluter et al., 1993). The ki-67 proliferation index was taken as a quantitative indicator of unfavorable outcome in B-cell lymphoma, such as diffuse large B cell lymphoma (DLBCL) (Grogn et al., 1988; Li et al., 2012; He et al., 2014), mantle cell lymphoma (MCL) (Aratoff et al., 1997; Raty et al., 2002; Katzenberger et al., 2006). Furthermore, similar prognostic significances of the ki-67 index in T-cell lymphoma and ENKTL were also observed in some studies (Went et al., 2006; Kim et al., 2007; Yasuda et al., 2009). However, the predictive value of ki-67 has never

¹Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, Hubei, ²Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, ³Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China ⁴Equal contributors *For correspondence: xiazhj@sysucc.org.cn, hu_yanping1962@126.com
been studied in patients with ENKTL receiving GELOX regimen. Therefore, we performed this study to explore whether ki-67 index can predict the treatment response of GELOX regimen and prognosis in ENKTL.

Materials and Methods

Eligibility criteria
This study used a retrospective cohort study design. Patients with nasal ENKTL who experienced the initial GELOX regimen in Sun Yat-Sen University Cancer Center between June 2008 and August 2013 were systematically reviewed. All eligible cases were selected consecutively. The inclusion criteria in this study were as follows: (1) pathologically confirmed diagnosis of ENKTL based on the World Health Organization classification; (2) no previous anti-tumor treatment; (3) available ki-67 index detected by IHC at diagnosis; (4) complete follow-up results; (5) without prior or concomitant malignant tumors; (6) without co-existing serious medical problems. This study was approved by the Institutional Review Board of Sun Yat-Sen University Cancer Center, and an informed consent for the collection of medical information was provided in the first visit of all patients. Additionally, this study was conducted in accordance with the Helsinki Declaration. All enrolled patients were staged according to the Ann Arbor staging system based on history, physical examination, whole body positron emission tomography/computed tomography (PET/CT) scans, CT scans or magnetic resonance imaging of the involved organs of the head and neck and CT scans of the chest, abdomen and pelvis.

Treatment
Patients received at least one cycle and a maximum of six cycles of primary GELOX chemotherapy (Wang et al., 2013). After the first-line chemotherapy, patients with early stage were referred to radiation therapy. Involved-field radiotherapy of 50-60 Gy was delivered in daily fractions of 1.8-2.0 Gy with five fractions each week. Whether radiotherapy was given to patients with advanced disease was at the oncologists’ discretion. Tumor response was assessed after every 1-2 cycles of chemotherapy or before and after radiotherapy according to the standardized response criteria for non-Hodgkin lymphomas (NHL) (Cheson et al., 1999). After the completion of treatment, patients were followed by their ambulatory oncologists on a regular interval.

IHC for ki-67
IHC staining for ki-67 was performed through the anti-ki-67 mouse monoclonal antibody (Invitrogen, Carlsbad, CA, USA) as described previously (Jiang et al., 2014). The tissues were deparaffinized with xylene, rehydrated with a ranked series of alcohols, quenched the endogenous peroxidase with 3% hydrogen peroxide, soaked in 10mM citrate buffer (pH 6.0) in a steam pressure cooker for antigen retrieval, blocked with 10% goat serum for 30 min, and then incubated with primary antibody at a 1:100 dilution at 4°C overnight. The slides were removed and washed with phosphate buffer saline (PBS) and distilled water. Then the secondary antibody was applied for 30 min. Slides were again washed with PBS and color was developed by 5-min incubation in diaminobezidine solution. Slides were counterstained with hematoxylin.

The highest ki-67 protein expression area on a thorough high-power scanning of the tissue section was taken for analysis, and at least five hundreds tumor cells were counted. The ki-67 expression level was determined by the number of positive cells expressing nuclear ki-67 among the total number of tumor cells in the high-power field (×400). Slides were reviewed by pathologists (Zhang and Liu) in a single laboratory, and all interpretations of IHC were performed without knowledge of clinical outcome. An average of both values was used for further analysis.

Statistical analysis
Simple descriptive statistics were used to report general clinical information. The correlation of ki-67 expression with clinical variables was evaluated using the chi-squared test or Fisher’s exact test. PFS was measured from the time of diagnosis until disease progression, relapse, or death from any cause or until the last follow-up. OS was measured from the time of diagnosis until death from any cause. PFS and OS were estimated using the Kaplan-Meier method, and compared using the log-rank test. Multivariate analysis was performed using the Cox proportional hazard model. All statistical analyses were performed using PASW Statistics 18.0 software (Apache Software Foundation, Forest Hill, Md). A two-sided P<0.05 was considered statistically significant.

Results

Patient characteristics
A total of fifty-one cases formed the population of the study. The clinical characteristics of the enrolled patients were presented in Table 1. The median age was forty-two years old with a male-female ratio 2.4:1. Most patients had good performance status (Eastern Cooperative Oncology Group 0-1). B symptoms were presented in 43.1% of the patients, and lactate dehydrogenase (LDH) was elevated in 39.2% of the patients. Nine patients (17.6%) initially presented as stage III or IV. 15.7% of patients had good performance status (Eastern Cooperative Oncology Group 0-1). B symptoms were presented in 43.1% of the patients, and lactate dehydrogenase (LDH) was elevated in 39.2% of the patients. Nine patients (17.6%) initially presented as stage III or IV. 15.7% of the patients had unfavorable prognosis according to the International Prognostic Index (IPI). However, 43.1% of the patients showed unfavorable prognosis based on Korean Prognostic Index (KPI).

Ki-67 expression
The ki-67 index in the specimens from the fifty-one patients ranged from 10% to 90%, with a median value of 70%, which was designated as a cut-off value. Thus cases higher than the median value (≥70%) were defined as high ki-67 expression, and less than the median value (<70%) were designated as low ki-67 expression for the further analysis (Figure 1). The ki-67 expressions had no obvious differences in nearly all clinical factors except the lymphocyte counting (Table 1). Patients with a lower lymphocyte counting (less than normal range) had a higher ki-67 expression (P=0.036).
Ki-67 Can Predict the Response to the Gemcitabine, Oxaliplatin And L-asparaginase Regimen (GELOX) and Prognosis in Patients with Nasal Natural Killer/T-cell Lymphoma

Response to treatment and survival analysis

The average cycle number of GELOX chemotherapy in this cohort was 3.63 (range 1-6), and the median cycle number was 3. There were 20 (39.2%) patients in CR, 20 (39.2%) patients in partial remission (PR), 8 (15.7%) patients in stable disease (SD), and 3 (5.9%) patients in progressive disease (PD), respectively. The ki-67 index was no less than 80% in those who experienced PD after initial GELOX chemotherapy. The response rate had no statistical difference between low ki-67 expression group and high ki-67 expression group (P=0.291) though the value in the former group was relatively high.

After a median follow-up of 18.03 months (1.2-57.6 months), the 3-year PFS for all patients was 68.1% (95% CI 68.0-75.5%), and the 3-year OS was 76.9% (95% CI 69.0-84.8%) (Figure 2). The 3-year PFS for patients with low ki-67 expression was 83.8% (95% CI 76.4-91.2%), which was significantly higher than 47.9% (35.2-60.6%) for those with high ki-67 expression (P=0.038). There was no statistical difference on the 3-year OS (low ki-67 expression vs. high ki-67 expression subgroup: 85.4% vs. 70.4%, P=0.282) (Figure 3). Staging also played an important role on the survival without surprise. The median PFS was significantly longer in the patients with early stage than those with advanced stage (25.5 months vs. 16.0 months, P<0.001). With respect to the median OS, it also had a statistical difference between early stage and advanced stage subgroup (26.3 months vs. 22.37 months, P=0.002).

In the stage I/II subgroup, no progression occurred in patients with low ki-67 expression, however, seven patients experienced PD in patients with high ki-67 expression (3-year PFS: 100% vs. 57%, P=0.003). No patients in the early stage died in the low ki-67 expression group, but five patients with high ki-67 expression in the early stage died of ENKTL (3-year OS: 100% vs. 76.1%, P=0.029) (Figure 4). Univariate analysis involving other clinical factors revealed that no factor could be predictive of PFS or OS in this subgroup except the age (Table 2). Young age (≤60 years) could predict longer PFS (P=0.021), but not OS (P=0.145).

Multivariate analysis

The above clinical factors included in the univariate analysis were also involved in the multivariate analysis for all patients (n=51). Multivariate analysis revealed that

Table 1. Clinical Characteristics at Baseline According to Different ki-67 Expression

Characteristics	No.	Total	Ki-67<70%	Ki-67≥70%	P value	
Gender					0.148	
Male	36	20	16			
Female	15	5	10			
Age, y					0.643	
Median (range)	42(16-72)	44	21	23		
≤60	7	4	3			
>60	33	17	16			
ECOG performance status		0	18	8	10	0.629
0	1-2	33	17	16	1.000	
Ann Arbor stage						
I	27	13	14			
II	15	7	8			
III-IV	9	5	4			
B symptoms					0.313	
Present	22	9	13			
Absent	29	16	13			
Serum LDH					0.301	
Normal	31	17	14			
>normal	20	8	12			
IPI					0.478	
0-1	43	22	21			
2-5	8	3	5			
KPI					0.628	
0	12	7	5			
1	17	9	8			
2	10	3	7			
3-4	12	6	6			
Lymphocyte counting		Normal	25	16	9	0.036
<normal	26	9	17			

Abbreviations: ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; IPI, international prognostic index; KPI, Korean prognostic index
the independent prognostic factors for PFS were high ki-67 expression ($P=0.026$; relative risk, 6.777; 95% CI 1.234-37.208) and KPI ($P=0.014$; relative risk, 4.463; 95% CI 1.355-14.698). Nonetheless, no factor could be independently predictive of OS.

Discussion

L-asp has a different anticancer mechanism from common chemotherapy drugs, which can hydrolyze serum asparagines and deprives some cells of the required amino acid to yield anticancer effects in certain tumor cells, especially in lymphocytic leukemic cells or lymphoma cells that lack L-asparagine synthetase. So L-asp can overcome the P-glycoprotein mediated multidrug resistance. Based on the remarkable effect of L-asp in refractory or relapsed ENKTL (Jaccard et al., 2011; Yamaguchi et al., 2011), more clinical researchers explored its role in the first-line treatment in this disease. CHOP plus L-asp regimen made on the remarkable effect of L-asp in refractory or relapsed ENKTL (Huang et al., 2011). These results gave a potential explanation for the correlation between lymphocytopenia and ki-67 expression. With respect to response rate, GELOX did not produce a statistical difference between low and high ki-67 expression groups. However, it tended to be relatively high in the former group. The 3-year PFS and OS for all patients in the present study were inferior to historic series, for we enrolled nine patients (17.6%) with B symptoms, bulky disease and extraupper aerodigestive tract NK/T-cell lymphoma (Jiang et al., 2014). Different ki-67 threshold and enrollment criteria may be mainly responsible for these inconsistent results. Previous studies considered lymphocytopenia was correlated with inferior prognosis in lymphoma (Ayoub et al., 1999; Bari et al., 2010). The preexisting immune suppression may contribute to the poor outcome in patients with lymphoma. Another study also found low lymphocyte count ($<1.0\times10^9\text{l}$) at diagnosis was related to more adverse clinical features in ENKTL (Huang et al., 2011). These results gave a potential explanation for the correlation between lymphocytopenia and ki-67 expression.

In the present study, ki-67 expression had no significant differences on most clinical factors except lymphocyte counting. However, high ki-67 expression ($\geq60\%$) was more common in patients with B symptoms, bulky disease and extraperitoneal adenocarcinoma of NK/T-cell lymphoma (Jiang et al., 2014). Different ki-67 threshold and enrollment criteria may be mainly responsible for these inconsistent results. Previous studies considered lymphocytopenia was correlated with inferior prognosis in lymphoma (Ayoub et al., 1999; Bari et al., 2010). The preexisting immune suppression may contribute to the poor outcome in patients with lymphoma. Another study also found low lymphocyte count ($<1.0\times10^9\text{l}$) at diagnosis was related to more adverse clinical features in ENKTL (Huang et al., 2011). These results gave a potential explanation for the correlation between lymphocytopenia and ki-67 expression. With respect to response rate, GELOX did not produce a statistical difference between low and high ki-67 expression groups. However, it tended to be relatively high in the former group. The 3-year PFS and OS for all patients in the present study were inferior to historic series, for we enrolled nine patients (17.6%) with advanced stage. The 3-year PFS was statistically longer in the former group. The 3-year PFS and OS for all patients in the present study were inferior to historic series, for we enrolled nine patients (17.6%) with advanced stage.
especially, no progression and death were observed in patients with early stage and low ki-67 expression, which suggests that ki-67 expression is helpful to identify a subgroup with an excellent prognosis in the patients with early stage ENKTL receiving GELOX chemotherapy. The result of multivariate analysis further proved that low ki-67 expression can be independently predictive of longer PFS. Our results were also consistent with a study in which high expression of ki-67 was shown to be correlated with worse OS and PFS (Huang et al., 2014). Furthermore, in the univariate analysis, young patients showed a better prognosis, which might result from a well tolerance to treatment. Like many published series, in the multivariate analysis, we also found that IPI lost its predictive value, and KPI can be a better prognostic index than IPI in ENKTL. Due to fairly small subgroup and fatal outcome in advanced stage, survival and prognostic analysis were not made in the subgroup with stage III/IV. Since patients with different stages received various salvage treatment, it was unclear whether it would affect the predictive role of ki-67 in this disease.

In conclusion, the present study demonstrated that patients with ENKTL showing low ki-67 expression tended to have a relatively high response rate when receiving GELOX treatment. Additionally, the combination of ki-67 expression and early stage was helpful to identify an excellent prognosis subgroup from patients receiving GELOX in ENKTL. Large prospective studies are essential to further confirm our findings.

Acknowledgements

We thank all the investigators, including the physicians, nurses, pathologists, and laboratory technicians in this study.

References

Argatoff LH, Connors JM, Klasa RJ, et al (1997). Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood, 89, 2067-78.

Ayoub JP, Palmer JL, Huh Y, et al (1999). Therapeutic and prognostic implications of peripheral blood lymphopenia in patients with Hodgkin’s disease. Leuk Lymphoma, 34, 519-27.

Bahmassy AA, Zekri AR, Asaad N, et al (2006). Epstein-Barr viral infection in extranodal lymphoma of the head and neck: correlation with prognosis and response to treatment. Histopathology, 48, 516-28.

Bari A, Marcheselli L, Sacchi S, et al (2010). Prognostic models for diffuse large B-cell lymphoma in the rituximab era: a never-ending story. Ann Oncol, 21, 1486-91.

Broide A, Boycov O, Strenov Y, et al (2009). Role and prognostic significance of the Ki-67 index in non-Hodgkin’s lymphoma. Ann J Hematol, 84, 338-43.

Cheson BD, Horning SJ, Coifffir B, et al (1999). Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored international working group. J Clin Oncol, 17, 1244.

El Gnaoui T, Dupuis J, Belhadj K, et al (2007). Rituximab, gemcitabine and oxaliplatin: an effective salvage regimen for patients with relapsed or refractory B-cell lymphoma not candidates for high-dose therapy. Ann Oncol, 18, 1363-8.
Index as outcome predictors in mantle cell lymphoma. *Eur J Haematol*, 69, 11-20.
Rosenwald A, Ott G (2008). Burkitt lymphoma versus diffuse large B-cell lymphoma. *Ann Oncol*, 19, 67-9.
Schluter C, Duchrow M, Wohlenberg C, et al (1993). The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. *J Cell Biol*, 123, 513-22.
Wang L, Wang ZH, Chen XQ, et al (2013). First-line combination of gemcitabine, oxaliplatin, and L-asparaginase (GELOX) followed by involved-field radiation therapy for patients with stage IE/IIE extranodal natural killer/T-cell lymphoma. *Cancer*, 119, 348-55.
Wen JY, Li M, Li X, et al (2014). Efficacy and tolerance of pegasparagase-based chemotherapy in patients with nasal-type extranodal NK/T-cell lymphoma: a pilot study. *Asian Pac J Cancer Prev*, 15, 6275-81.
Went P, Agostinelli C, Gallamini A, et al (2006). Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. *J Clin Oncol*, 24, 2472-9.
Yamaguchi M, Kwong YL, Kim WS, et al (2011). Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell tumor study group study. *J Clin Oncol*, 29, 4410-6.
Yasuda H, Sugimoto K, Imai H, et al (2009). Expression levels of apoptosis-related proteins and Ki-67 in nasal NK/T-cell lymphoma. *Eur J Haematol*, 82, 39-45.
Yong W, Zhang Y, Zheng W (2000). The efficacy of L-asparaginase in the treatment of refractory midline peripheral T-cell lymphoma. *Zhonghua Xue Ye Xue Za Zhi*, 21, 577-9.
Zinzani PL, Venturini F, Stefani V, et al (2010). Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. *Ann Oncol*, 21, 860-3.