The effect of various decomposers on quality of organic fertilizer originated from solid waste of super intensive shrimp pond

H S Suwoyo¹, A Tuwo², Haryati², H Anshary³ and S R H Mulyaningrum¹

¹Research Institute for Coastal Aquaculture and Fisheries Extension, Maros, Indonesia
²Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia

Email: hidayat7676@gmail.com

Abstract. This study aims to evaluate and compare the nutrient content of organic fertilizer originated from shrimp pond waste, which use commercial decomposers and indigenous decomposers. The research was carried out at Research Institute for Coastal Aquaculture and Fisheries Extension (RICAFE), Maros, South Sulawesi, Indonesia. The study used a completely randomized design (CRD) with four treatments and 3 replications. Solid waste of shrimp pond with several types of bio activators used in this study. The treatments were types of bio activators, namely: BIO (A), TR-04 (B), EMs (C) and decomposer bacteria isolated from pond waste ISO (D). The composting time lasted for 30 days. Observed variables were macronutrient content (C-O rganic, N-Total, C/N ratio, P2O5 and K2O) and microelements (Fe, Mn, Zn, Cu) as well as temperature and pH of the composting media. The results showed that different bio activators significantly affected the quality of pond waste organic fertilizer (p <0.01). Nutrient contents (C-O rganic, C/N ratio, P2O5, and K2O, Fe, Mn, Zn, Cu) were not significantly different (p> 0.05), while N-total value was significantly different (p <0.05). The quality of produced compost in all bio activator treatments (BIO, TR, EM, and ISO) met Indonesian National Standard (SNI) 2004 and standard of regulation of the ministry of agriculture republic of Indonesia (PERMENTAN) 2019. This study can be an alternative for treating waste of shrimp culture industry.

1. Introduction

L. vannamei is still to be a strategic commodity for national achievement target of shrimp production. Super-intensive technology cultivation of _vannamei_ is a prospective future aquaculture system with a low-volume high-density concept. Super-intensive pond technology has begun to develop for _L. vannamei_ with a stocking density of 1,250 shrimp/m² and productivity of 12.6 tons /1,000 m² [1]. The high stocking density resulting waste load due to the retention of nitrogen (N) (22.27%) and phosphorus (P) (9.79%) of feed, so that nutrients discharged into waters reached 77.73% of nitrogen and 90.21% of phosphorus respectively [2].

Pond sediment was rich of N, P, K and other macro and micronutrients [3,4]. Pond waste had higher organic matter, total nitrogen, and phosphorus value than soil [5]. Solid waste of shrimp ponds contained 1.92% of organic C, 0.54% of N-total and 1.70% of P2O5 [6]. The pond waste can be used as organic fertilizer through the composting process.
Composting is a biotechnological process in which various microbial communities break down organic matter into simpler nutrients to improve soil quality [7]. Microorganisms (bacteria, actinomycetes, fungi, and soil organisms) play an essential role in the composting process [8]. The composting process is an aerobic biological reforming of unstable organic matter resulting in a more stable form of the final product (compost) [9]. There are four main phases of the composting process, including initial mesophilic phase, thermophilic phase, second mesophilic phase and maturation (stabilization) finally [10]. During composting process, microorganisms use crude organic matter as a food source to produce heat, carbon dioxide, vapor and humus [11].

Composting could run in a faster time with the help of bio activators [12]. The use of bio activators in composting has an effect on the provision of nutrients in it. The types of microorganisms present in the bio activator can affect the chemical content of the compost produced. Several types of commercial bio activators on the market are EM Lestari, Fix-Up Plus, SuperDec, BIOTAN, TR-04, Effective Microorganism (EM), Degrasimba, Orgade, Stardec and Harmony [13]. An organic fertilizer from super-intensive shrimp pond solid waste was made using several types of decomposing agents. This study aims to evaluate and compare the nutrient content of organic fertilizer originated from shrimp pond solid waste, which used commercial decomposers and indigenous decomposers.

2. Materials and method

2.1. Location
The research was carried out at Research Institute for Coastal Aquaculture and Fisheries Extension (RICAFE), Maros, South Sulawesi, Indonesia.

2.2. Equipment and materials
The equipment used included 12 plastic buckets of 80 L volume capacity, which placed in a roofed building, plastic, pH meter, thermometer, shovel, gloves, filters, sacks, scales and basins. Pond solid waste was obtained from a super-intensive shrimp pond in Takalar, South Sulawesi. Pond solid waste was separated from other materials such as plastics, rocks, stones, etc., then weighed and added bio activators.

2.3. Treatments
Different types of activators were used as treatments on composting process of making organic fertilizers, namely:
A: BIOTAN (BIO)
B: TR-04 (TR)
C: EM4 (EM)
D: Indigenous bacteria isolated from pond waste (ISO)
The bio activators were applied on a kg/0.5 tons dose, homogenized by stirring, put in a bucket then covered with a black plastic sheet to keep moisture for 30 days. The stirring of the solid waste pile was done once a week.

2.4. Observed variables
The observed variables were macronutrients content (N-Total, P2O5, K2O, C-Organic), C/N ratio, micronutrients (Fe, Cu, Mn, Zn), temperature and pH of the composting media.

2.5. Data analysis
The data of macronutrients and micronutrients were analyzed statistically using analysis of variant (ANOVA), while data of temperature and pH were analyzed descriptively.
3. Result and discussion

The analysis of macro and micronutrient content, C-organic and C/N ratio of the organic fertilizers produced were presented on Table 1.

Table 1. Macronutrient content, C-organic and C/N ratio of each treatment.

Variabel	Treatment	Quality standard *)			
	BIO	TR	EM	ISO	
N Total (%)	0.61±0.08^{ab}	0.67±0.04^b	0.56±0.01^a	0.70±0.01^b	Minimum 2%
P₂O₅ (%)	1.42±0.39^a	1.50±0.19^a	1.35±0.06^a	1.59±0.29^a	
K₂O (%)	0.89±0.09^a	0.91±0.00^a	0.85±0.03^a	0.90±0.02^a	
C-Organic (%)	9.49±0.96^a	10.41±2.30^a	9.46±0.63^a	10.82±2.62^a	9.8-32%
C/N Ratio	15.30±1.53^a	15.67±4.73^a	17.00±1.00^a	15.30±4.16^a	≤ 25

Note: *Values with the same superscript within the same row are not significantly different at P < 0.05).

Macronutrients needed by organisms are nitrogen (N), phosphorus (P), and potassium (K). The results showed that the different types of bio activators had a significant effect on the nitrogen content of the pond waste organic fertilizer (P <0.01) (Table 1). The highest average of total nitrogen nutrient content was obtained in ISO bio activator (0.70%), TR and BIO had total nitrogen nutrient content of 0.67% and 0.61% respectively, and the lowest one was EM (0.56 %). Statistical analysis showed that the type of bio activator treatment had a significant effect (P <0.01) on the total nitrogen nutrient content. Compare to EM treatment, the total nitrogen content of BIO, TR, and ISO treatments are not significantly different (P> 0.05), but the TR and ISO treatments are significantly different (P <0.05).

Nitrogen and other compounds were obtained from the breakdown of organic matter during the decomposition process by microorganisms. The carbon content (60%-70%) of the decomposed organic material is evaporated into CO₂ and 30%-40% into nitrogen [14]. The organic matter should first be converted into inorganic to be utilized by microalgae. The biological decomposition of organic matter by decomposer microbes will produce macronutrient, micronutrient, hormone, vitamin and growth agent [15]. The N content increased significantly while C content decreased due to organic matter decomposition [16].

The N total content of pond waste organic fertilizer ranged from 0.56% to 0.70%. The N total value of compost was at least 0.4% [17]. N total content from solid waste fertilizer from the pulp industry was about 0.38-0.85% [18]. The total nitrogen content of household waste organic fertilizers, using 3 different types of bio activators (EM, DS, SD) was ranging from 1.23-1.63% [13]. Nitrogen content of 1.45% and phosphorus of 0.48% from organic fertilizer from vegetable waste and tofu waste using a decomposer agent for the type of bacteria Lactobacillus sp [19].

The results of nutrient content of P₂O₅, K₂O, C-Organic and the ratio of C/N organic fertilizers from solid waste of shrimp ponds in this study are presented in Table 1. The obtained P₂O₅ nutrient content ranges from 1.35-1.59%, K₂O 0.85-0.91%, Organic C 9.49-10.82%, and the C/N ratio 15.30-17.00. The results of the analysis of variance (ANOVA) on all of these variables indicate that the types of bio activators were not significantly different (P> 0.05) to the nutrient content of P₂O₅, K₂O, C-Organic and C/N ratio of pond waste organic fertilizer.

Carbon is an important element as a builder of organic matter. One of the factors that influence the rate of the organic fertilizer manufacturing process is the C/N ratio. The C/N ratio is the most important factor in the process of making organic fertilizers. This is because the process depends on microorganisms that require carbon as an energy source and nitrogen to form cells [20]. The C/N ratio obtained during composting reaches 15-17 (Table 1). The C/N ratio is an indication of the maturity of the compost. Changes in the C/N ratio occur during composting due to the use of carbon as an energy source and lost in the form of CO₂ so that the carbon content decreases over time [21]. Range ratio of C/N of 15-20 is ideal for compost that is ready to use [22]. The value of the C/N ratio of compost
ranges from 10-20 [17]. This C/N ratio value has met the quality standard for solid organic fertilizer which is ≤ 25 [23]. That maturity compost had a C/N ratio less than or equal to 25 [24]. Cattle farm waste with a composting time of 28 days. obtained a C/N ratio value of 16-18 [25]. Cow feces and Bionic bio activator for 5-9 weeks resulted in a C/N ratio of 11-14 [26]. C/N ratio ranging from 23.54-26.95 using cow feces and bio-ethanol waste bio activator with 28 days of the composting period [27].

The nutrient content of the shrimp pond solid waste organic fertilizer in this study was not much different from the nutrient content of other organic fertilizers. The nutrient content of compost is P₂O₅ 0.09%, K₂O 0.95%, N total 0.37%, 8.95% organic C, and a C/N ratio of 14%. While bokashi fertilizer contained 0.73% N total, P₂O₅ 6.13%, K₂O 3.25%, organic C 9.39%, C/N ratio 12.9 [28]. The manufacture of organic fertilizer from solid waste from the pulp industry (sludge) plus sawdust charcoal obtained N 1.19-1.29%, P₂O₅ 0.53-0.63%, K₂O 0.63-0.68%, organic C 24.17-28.26%, water content 32.90-39.40%, pH 6.70-6.90, and C/N ratio 18.70-23.70 [29]. Nutrient content of solid waste in giant prawn ponds obtained N total 0.14%, P₂O₅ 5.0%, Organic C 1.38%, C/N ratio 9.9 [30]. The macro and micronutrient content of the pulp industry solid waste fertilizer. namely C-Organic 5.33-7.69%, N total 0.38-0.85%, P₂O₅ 0.47-0.65 %, K₂O 0.09-0.22%, C/N ratio 9-14%, pH 6.75-7.0 [18]. The macronutrient content and C-organic from organic fertilizer from household waste through the composting process uses 3 different types of bio activators (EM, DS, SD), namely N total 1.23-1.63%, P₂O₅ 0.55-0.73%, K₂O ranged from 1.05-1.20%, and C-organic ranged from 11.90-17.0% [13]. The nutrient content of compost from plants is P₂O₅ 0.32%, K₂O 1.70%, N total 1.22%, 12.2% organic C, C/N ratio 10 [31]. The nutrient content of cultivation waste contains 0.44% P₂O₅, K₂O 1.53%, N total 0.49%, 21.9% organic C, and C/N ratio 25.67 [32]. The results of the analysis of market waste composted for 45 days have a P content of 0.22%, K 1.05%, N 1.17%, and 11.46% organic C. Furthermore, it is said that good compost contains a C/N ratio between 15-20 [33]. Macro and micronutrients organic chicken manure added with water hyacinth and using Arbuscular Mycorrhizal Fungi (CMA) decomposer agent. namely C 19.18 %, N 1.05%, P₂O₅ 2.18%, K₂O 0.69%, C/N ratio 18.55, pH 7.64 and moisture content 14% [34].

The macronutrients of cow dung organic fertilizer contain 0.31% P₂O₅, K₂O 0.27%, N total 0.95%, organic C 16.6%, and C/N ratio 17.47. Meanwhile, plant waste contains 0.32% P₂O₅, K₂O 0.51%, N total 1.13%, 20.93% organic C, and a C/N ratio of 18.52 [35]. The solid waste of the vannamei shrimp pond contains P₂O₅ 1.70%, Organic C is 1.92%, N total is 0.14%, and C/N ratio is 3.55 [36]. The nutrient content of pond waste with vermicompost. namely P₂O₅ 0.24%, K₂O 0.45%, N total 0.99%, organic C 16.3%, and C/N ratio 16.46 [37]. Nutrient content of compost organic fertilizer P₂O₅ 1.43%; K₂O 0.58%, total nitrogen 0.60%, organic C 7.90% and C/N ratio of 13.93 [38]. Nutrient content of mushroom compost, namely total Nitrogen 0.98%. P₂O₅ 0.80%; K₂O 0.28%, organic C 14.7% and C/N ratio 15.0 [39]. Nutrient content of livestock waste fertilizers, namely total nitrogen 4.0%, P₂O₅ 0.50%, K₂O 0.40%, 20.82% organic C, and a C/N ratio of 5.21 [40].

Micronutrient elements needed by plants include plankton in small amounts, including iron (Fe), manganese (Mn), zinc (Zn), copper (Cu). The results of an analysis of micronutrient content of pond waste organic fertilizer are presented in Figure 1. Based on the figure, it can be seen that the levels of Fe obtained range from 7707-9022 ppm, Mn ranges from 667-791 ppm, Zn is 57.01-73.43 ppm, Cu ranges from 19.93-29.16 ppm. The levels of these microelements have met the quality standards for solid organic fertilizers following regulation of the Ministry of Agriculture Republic of Indonesia, namely a maximum Fe content of 15.000 ppm, a maximum of Zn of 5.000 ppm, a maximum of 5.000 ppm of Mn and a maximum of 5.000 ppm of Cu.
Bacteria in the anaerobic process require micro-nutrient and metal elements such as nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, iron, nickel, cobalt, zinc, manganese, and copper for optimal growth performance [41]. Although these elements are required in deficient concentrations, a deficiency of these nutrients will harm microbial growth and performance [42]. Micronutrient content of solid waste from aquaculture activities, namely 3.81% Fe, 0.06% Mn, 168 ppm Cu and 250 ppm Zn. The micronutrient contents of rice straw were 0.08% Fe, 0.05% Mn, 5.33 ppm Cu and 178 ppm Zn respectively. Meanwhile, the micronutrient contents of vermicompost solid waste from cultivation activities were 3.64% Fe, 0.55% Mn, 19 ppm Cu, and 266 ppm Zn [32]. Micronutrient content of fertilizers from biogas processing (slurry), namely Co 2.35 ppm, Cd 0.11 ppm, Zn 295 ppm, and Cu 36.3 ppm. Meanwhile, the nutrient content of compost. Co is 1.19 ppm, Cd 0.24 ppm, Zn 195 ppm and Cu 20.4 ppm [43]. Micronutrients from solid waste oil palm sludge (POME), namely Fe 1.09%, Zn 151 ppm, Cu 70.40 ppm, Mn 495.24 ppm [44]. Micronutrient levels from treated palm oil waste, namely Fe 2.24%, Zn 130 ppm, Cu 45.05 ppm, Mn 422.56 ppm, At the same time, the WHO / FAO standards for microelements are Zn 140 ppm, Cu 75.0 ppm, Mn 500 ppm [42]. The results of observing the temperature and pH of the composting media during the study are shown in Table 2.

Variable	BIO	TR	EM	ISO
Temperature (°C)	27.13-31.60	27.20-31.56	27.30-31.90	27.17-33.10
pH	6.64-7.06	6.25-7.14	6.44-7.14	6.44-7.14

The temperature ranges of each type of bio activator during the composting process were BIO = 27.13-31.60 °C; TR=27.20-31.56 °C; EM= 27.30-31.90 °C and ISO= 27.17-33.10 °C (Table 2). This temperature is classified into the mesophilic composting temperature. During the composting process, the raw organic material undergoes a renovation process by microorganisms in the form of fungi and bacteria. The temperature in the compost pile will increase with the decomposition activity. So the

![Figure 1. Micro nutrient content of different bio activators.](image-url)
total carbon content will decrease while the nitrogen content will increase. At the end of composting, where ripe compost has been formed, the temperature will decrease [28]. Temperature is one of the most important parameters in the composting process. The rise and fall of temperature during the composting process can be caused by the growth rate, metabolism, and the types of organisms in the compost [45,46]. The temperature of composting organic waste from cattle farms using bioethanol waste decomposer for 28 days of 29.40°C- 29.63°C [27]. Composting phase is categorized into four temperature ranges: mesophilic, thermophilic, cooling (second mesophilic stage), and maturation stage [47]. Composting from organic waste occurs in three temperature ranges known as psychrophilic (0-20 °C), mesophilic (20-40 °C) and thermophilic (more than 45 °C), although the mesophilic temperature is an effective composting [48].

The composting media pH values of all treatments are presented in the Table 2. The range of pH values for each type of bio activator during the composting process were BIO = 6.64-7.06, TR = 6.25-7.14, EM = 6.44-7.14 and ISO = 6.44-7.14, with an average pH value for the whole treatment of 6.79. The optimum pH value for the composting process ranges from 6.5 to 8.0 [49,50]. During the composting process, organic material is utilized by microorganisms which causes a decrease in the pH value in the first week. After that, the pH value increases significantly at the decomposition stage. This increase was caused by an increase in ammonia [51,52], breakdown of organic matter, degradation of acid compounds, and mineralization of organic compounds such as proteins, amino acids, ammonia, and peptides [53,54]. Changes in pH have been found to occur during the composting period and are considered an indicator of biological activity [8]. The pH value range suitable for bacterial development is 6.0-7.5, whereas mushrooms prefer a pH range of 5.5-8.0 [55].

The quality of organic fertilizers produced in this study provides an overview of the ability of each decomposer agent to decompose organic matter in solid waste from shrimp ponds. The nutrient quality of organic fertilizers from the four bio activator treatments (EM, BIO, TR, and ISO) was not significantly different, meaning that although the composition and abundance of species in each bio activator were different, the environmental conditions that occurred in the process were quite optimum for the growth of microorganisms so that the four treatments had the same effectiveness in decomposing organic matter.

4. Conclusion
The quality of organic fertilizers with different type of bio activator treatment (BIO, TR, EM, and ISO) has met the quality standard of organic fertilizer based on Indonesian National Standard (SNI) 2004 and standard of regulation of the ministry of agriculture republic of Indonesia (PERMENTAN) 2019. The use of bacteria isolated from pond waste as bio activator on fertilizer composting had the same quality as commercial bio activators (BIO, TR, EM), therefore this technology can be an alternative for treating waste in the shrimp pond culture industry.

Acknowledgments
This research was funded by the state budget of the Research Institute for Coastal Aquaculture and Fisheries Extension (RICAFE). We would like to acknowledge all technicians and analysts (Hamzah, Ilham, Unggul Adi Utama, Heryadi, Rahmia, and St. Maryam) for their help on sample preparation and analysis.

References
[1] Syah R and Makmur F M 2017 The Litopenaeus vannamei aquaculture under high stocking density Media Akuakultur 12 19–26
[2] Hongsheng Y, Ying L, Kui Y and Shilin L 2008 Design and performance of superintensive shrimp culture system (Institute of Oseanology, Chinese Academy of Sciences)
[3] Rahman M M, Yakupitiyage A and Ranamukhaarachchi S L 2004 Agricultural use of fishpond sediment for environmental amelioration Sci. Technol. Asia 1–10
[4] Avnimelech Y and Ritvo G 2003 Shrimp and fish pond soils: processes and management
Aquaculture 220 549–67

[5] Latt U W 2002 Shrimp pond waste management Aquac. Asia 7 11–48

[6] Tangguda S, Arfiati D and Wiluwendang E A 2015 Characterization of sediment waste of Vanamee shrimp pond (Litopenaeus vannamei) for culture Chlorella sp. Proceedings Seminar Nasional FMIPA Universitas Pendidikan Ganesha V (Bali) pp 381–6

[7] Barrena R, Pagans E, Faltys G and Sánchez A 2006 Effect of inoculation dosing on the composting of source‐selected organic fraction of municipal solid wastes J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 81 420–5

[8] Rajeswari C, Padmavathy P and Aanand S 2018 Composting of fish waste: A review Int. J. Appl. Res. 4 242–9

[9] Liang C, Das K C and McLendon R W 2003 The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend Bioresour. Technol. 86 131–7

[10] Insam H and De Bertoldi M 2007 Microbiology of the composting process Waste management series vol 8 (Elsevier) pp 25–48

[11] Tiqia S M 2005 Microbiological parameters as indicators of compost maturity J. Appl. Microbiol. 99 816–28

[12] Kesumaningwati R 2015 The Use of banana weevil moles (Musa paradisiaca) as decomposers for composting oil palm empty bunches J. Fac. Agric. 40 40–5

[13] Sulistyawati E, Mashita N and Choesin D N 2008 Effect of decomposer agents on the quality of compost produced from organic domestic waste National Seminar on Environmental Research in Higher Education (Jakarta: Trisakti University) p 10

[14] Sutanto R 2002 Organic farming: Towards alternative and sustainable agriculture (Yogyakarta: Kanisius)

[15] Zahidah G W and Subhan V 2012 Analysis of population and growth of Daphnia sp. in floating cages culture at cirata reservoirs with waste fertilizers fermented EM4 J. Aquat Sci 3 84–94

[16] Razali W A W, Baharuddin A S, Talib A T, Sulaiman A, Naim M A, Hassan M A and Shirai Y 2012 Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter Bioresources 7 4786–805

[17] National Standardization Agency of Indonesia 2004 SNI 19-7030-2004 : Compost specifications from domestic organic waste. (Jakarta: National Standardization Agency of Indonesia)

[18] Komarayati and Gusmailina 2007 Utilization of pulp industry solid waste for organic fertilizer J. Penelit. Has. Hutan 25 137–46

[19] Pantjara B and Hendrajat E A 2011 Production of milkfish (Chanos chanos) through the application of organic fertilizers J. Rist. Akuakultur 6 253–62

[20] Winarni E, Ratnani R D and Riwayati I 2013 The effect of organic fertilizer types on the growth of coffee plants J. Ilm. MOMENTUM 9

[21] Graves R E, Hattemer G M, Stettler D, Krider J N and Dana C 2000 National Engineering Handbook United States Dep. Agric.

[22] Rosen C J, Halbach T R and Swanson B T 1993 Horticultural uses of municipal solid waste composts Horttechnology 3 167–73

[23] Ministry of Agriculture Regulation of the Minister of Agriculture of the Republic of Indonesia No. 01 of 2019 concerning Registration of Organic Fertilizers, Biological Fertilizers and Soil Improvement (Indonesia)

[24] Oreopoulou V and Russ W 2007 Utilization of By-products and Treatment of Waste in the Food Industry (New York: Springer)

[25] Alfadlli N S, Noor S, Hertanto B S and Cahyadi M 2018 The effect of various decomposers on quality of cattle dung compost Bul. Peternak. 42

[26] Kusmiyarti T B 2013 Compost quality from various combinations of organic waste raw materials J. Agric. Sci. 3 83–92

[27] Bachtiar R A, Rifki M, Nurhayat Y R, Wulandari S, Kutsiaidi R A, Hanifa A and Cahyadi M
2018 Composition of compost nutrients made with the help of bioethanol waste decomposer agents at different levels Sains Peternak. 16 63–8
[28] Suriadikarta D A and Setyorini D 2005 Research Report on Quality Standards for Organic Fertilizers (Bogor)
[29] Komarayati S 2009 Characteristics of organic fertilizer solid waste industrial pulp plus sawdust charcoal. Research Result Report (Bogor)
[30] Wudtisin I and Boyd C E 2006 Physical and chemical characteristics of sediments in catfish, freshwater prawn and carp ponds in Thailand Aquac. Res. 37 1202–14
[31] Janakiram T and Srividevi K 2010 Conversion of waste into wealth: A study in solid waste management E-Journal Chem. 7 1340–5
[32] Birch S, Bell R, Nair J and Cao P V 2010 Feasibility of vermicomposting of aquaculture solid waste on the Mekong Delta, Vietnam: A pilot study (Global Science Books, Ltd.)
[33] Nurhayati 2010 Utilization of market waste compost for organic mustard cultivation (University of North Sumatra)
[34] Asngad A 2013 Chicken manure and water hyacinth organic fertilizer innovation combined with granule form mycorrhizal biotechnology J. MIPA 36 1–7
[35] Khater E S G 2015 Some physical and chemical properties of compost Int. J. Waste Resour. 5 1–5
[36] Tangguda S, Diana A and Arning W E 2015 Utilization of solid waste from White Shrimp (Litopenaeus vannamei) farm on the growth and Chlorophyll content in Chlorella sp J. Life Sci. Biomed 5 81–5
[37] Londhe P B and Bhosale S M 2015 Recycling of solid wastes into organic fertilizers using low cost treatment: Vermicomposting Int J Innov Eng Res Technol 2 1–11
[38] Jigme N, Jayamangkala P, Sutigoolabud J, Inthasan J and Sakonwasee S 2015 The effect of organic fertilizers on growth and yield of broccoli (Brassica oleracea L. var. italica Plenck cv. Top Green) J. Org. Syst. 10 9–14
[39] Wiafe-Kwagyan M and Odamtten G T 2018 Use of Pleurotus eous strain P-31 spent mushroom compost (SMC) as soil conditioner on the growth and yield performance of Capsicum annuum L. and Solanum lycopersicon L. seedlings under greenhouse conditions in Ghana Trop. life Sci. Res. 29 173
[40] Joardar J C and Rahman M M 2018 Poultry feather waste management and effects on plant growth Int. J. Recycl. Org. Waste Agric. 7 183–8
[41] Rajeshwari K V, Balakrishnan M, Kansal A, Lata K and Kishore V V N 2000 State-of-the-art of anaerobic digestion technology for industrial wastewater treatment Renew. Sustain. energy Rev. 4 135–56
[42] Khaireuddin M N, Zakaria A J, Isa I M, Jol H, Rahman W M N W A and Salleh M K S 2016 The potential of treated palm oil mill effluent (POME) sludge as an organic fertilizer AGRIVITA, J. Agric. Sci. 38 142–54
[43] Karabcova H, Pospíšilová L, Fiala K, Škarpa P and Bjelkova M 2015 Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent grassland Soil Water Res. 10 228–35
[44] Baharuddin A S, Hock L S, Yusof M Z, Rahman N A A, Shah U K, Hassan M A, Wakisaka M, Sakai K and Shirai Y 2010 Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m3 of closed anaerobic methane digested tank on pressed-shredded empty fruit bunch (EFB) composting process African J. Biotechnol. 9 2427–36
[45] Tiquia S M and Tam N F Y 2002 Characterization and composting of poultry litter in forced-aeration piles Process Biochem. 37 869–80
[46] Sapareng S, Ala A, Kuswinanti T and Rasyid B 2017 The role of rot fungi in composting process of empty fruit bunches of oil palm Int. J. Curr. Res. Biosci. Plant Biol 4 17–22
[47] Diaz L F, De Bertoldi M and Bidlingmaier W 2011 Compost science and technology (Elsevier)
[48] Smith S R and Jasim S 2009 Small-scale home composting of biodegradable household waste:
overview of key results from a 3-year research programme in West London Waste Manag. Res. 27 941–50

[49] Pace M G, Miller B E and Farrell-Poe K L 1995 The composting process

[50] Said-Pullicino D, Erriquens F G and Gigliotti G 2007 Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity Bioresour. Technol. 98 1822–31

[51] Gajalakshmi S and Abbasi S A 2008 Solid waste management by composting: state of the art Crit. Rev. Environ. Sci. Technol. 38 311–400

[52] Petric I, Šestan A and Šestan I 2009 Influence of wheat straw addition on composting of poultry manure Process Saf. Environ. Prot. 87 206–12

[53] Ishak N F, Ahmad A L and Ismail S 2014 Feasibility of Anaerobic Co-composting Empty Fruit Bunch with Activated Sludge from Palm Oil Mill Wastes for Soil Conditioner. J. Phys. Sci. 25

[54] Jie Wei V S, Han Bing C, Saptoro A and Nandong J 2016 Effects of temperature, aeration rate and reaction time on composting of empty fruit bunches of oil-palm Iran. J. Energy Environ. 7 156–62

[55] Zorpas A A, Arapoglou D and Panagiotis K 2003 Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production Waste Manag. 23 27–35