OPTIMALLY ACCURATE HIGHER-ORDER FINITE ELEMENT METHODS FOR POLYTOPIAL APPROXIMATIONS OF DOMAINS WITH SMOOTH BOUNDARIES

JAMES CHEUNG, MAURO PEREGO, PAVEL BOCHEV, AND MAX GUNZBURGER

Abstract. Meshing of geometric domains having curved boundaries by affine simplices produces a polytopial approximation of those domains. The resulting error in the representation of the domain limits the accuracy of finite element methods based on such meshes. On the other hand, the simplicity of affine meshes makes them a desirable modeling tool in many applications. In this paper, we develop and analyze higher-order accurate finite element methods that remain stable and optimally accurate on polytopial approximations of domains with smooth boundaries. This is achieved by constraining a judiciously chosen extension of the finite element solution on the polytopial domain to weakly match the prescribed boundary condition on the true geometric boundary. We provide numerical examples that highlight key properties of the new method and that illustrate the optimal H^1 and L^2-norm convergence rates.

1. Introduction

It is well known that standard finite element methods based on piecewise polynomials of degree greater than one do not achieve optimal accuracy whenever a domain Ω having a curved boundary is approximated by a polygonal or polyhedral domain Ω_h. Table 1 illustrates this fact for finite element approximations of a smooth solution of the Poisson equation on the unit disc approximated by inscribed regular polygons with sides of length h. The table shows that in all cases the $L^2(\Omega_h)$-norm convergence rate is capped at approximately 2 whereas the $H^1(\Omega_h)$-norm convergence rate is approximately $3/2$. Of course, the explanation for such loss of precision is also well known: the approximation theoretic convergence rates for higher-degree polynomials are swamped by the geometric error of $O(h^2)$ resulting from defining the finite element discretization on the approximate domain Ω_h instead of the true domain Ω, including imposing the boundary condition on the boundary Γ_h of Ω_h instead of on the exact boundary Γ of Ω. This loss of accuracy is an example of a variational crime [21, Chapter 4, p. 172] and has nothing to...
Table 1. Finite element convergence rates for smooth solutions of a Poisson equation on the unit disk approximated by a sequence of regular inscribed polygons with side length h. The last row shows the theoretical convergence rate of the best approximation (BA) out of each finite element space.

Element type	Quadratic $L^2(\Omega_h)$	Cubic $L^2(\Omega_h)$	Quartic $L^2(\Omega_h)$
Error type	$H^1(\Omega_h)$	$H^1(\Omega_h)$	$H^1(\Omega_h)$
Convergence rate	2.188	2.115	2.151
BA rate	3.0	4.0	5.0

do with the regularity of the exact solution; indeed, the loss occurs for $C^\infty(\Omega)$ and even analytic exact solutions.

In this paper, we develop and analyze a new finite element formulation that remains, under certain assumptions, optimally accurate for finite element spaces of arbitrary orders defined on polytopial approximations of geometric domains with smooth boundaries. The significance of this work stems from the fact that finite element methods based on affine simplicial grids remain one of the most efficient instances of this class of methods, both in terms of mesh generation and computational costs. For example, an affine simplex has a constant Jacobian determinant that can be precomputed, thereby allowing significant savings in the application of various pullbacks necessary for, e.g., compatible finite elements. Yet, because the resulting polytopial approximation of the geometric domain is only at best second-order accurate, such meshes create an accuracy bottleneck for higher-order elements. Overcoming this bottleneck is the main purpose of this paper.

To put our work in a proper context, we briefly discuss relevant mesh types and survey related existing literature.

Siimplicial mesh types. Meshing of a domain Ω with curved boundaries by affine simplices yields a polytopial approximation Ω_h of the former, where Ω_h is the union of all the simplices. In many practical cases, all vertices on the approximate boundary Γ_h lie on the exact boundary Γ. We refer to such meshes as *Type A meshes*. Alternately, for a *Type B mesh*, none or at least not all of the vertices of Γ_h lie on Γ. The simplest examples of Type A and B meshes are inscribed and circumscribed polygons for a disk, respectively. For a Type A mesh the distance between the boundaries of Ω and Ω_h is of $O(h^2)$, where h is a measure of the size of the finite element grid cells. For Type B meshes, this distance can be larger than $O(h^2)$. In this work we restrict attention to Type A meshes and Type B meshes for which the distance between the discrete and continuous boundaries is of order $O(h^2)$.

Existing work. There are two fundamentally different strategies for achieving optimal error bounds for high-order elements on curved domains. The first focuses on reducing the geometric approximation error in Ω_h without modifying the underlying variational formulation for the finite element method. A classical example of this idea is the isoparametric finite element method [13] that maps reference elements to curvilinear elements using polynomial transformations of the same degree as that of the finite element space. However, this approach increases the computational cost and, more importantly, only elements of order $k \leq 2$ are able to achieve optimal convergence with respect to the H^1 norm [15]. For the special case of two
dimensions and cubic elements, one can select nodes for which the finite element interpolant is optimally accurate [7] but, unfortunately, the finite element solution of the Poisson problem remains suboptimally accurate.

Another example of the first strategy is the isogeometric analysis approach (IGA) [11, 17] that uses nonuniform rational B-splines (NURBS) as a finite element basis and achieves optimal accuracy for curved domains. IGA generates a mesh of control points for the NURBS basis and then applies a transformation map to the control points to obtain a highly accurate approximation Ω_h of the curved domain Ω. However, the NURBS basis makes the IGA approach more difficult to implement and more costly to solve than traditional polynomial-based finite elements.

The second, less explored strategy, retains the polytopial domain approximation but modifies the underlying variational problem in order to compensate for the fixed geometric error in Ω_h. For example, optimal error estimates are obtained in [8, 9, 10] for Type B meshes by using polynomial extensions and line integrals to transfer boundary values from the curved boundary Γ to the approximate boundary Γ_h. The primary difficulties of this approach include the construction of line integrals and the additional expense incurred because of the use of the hybridized discontinuous Galerkin method on mixed formulations of elliptic PDEs.

Recently, in [18, 19], a method was developed that achieves optimal error estimates for piecewise linear elements on Type B meshes for Dirichlet elliptic boundary-value problems. A linear extension is constructed to weakly match the boundary conditions by using the Nitsche method. Optimal H^1-norm convergence rates are demonstrated even if the distance between the computational and the real boundaries is $O(h)$. The stability of this approach depends on the specific choices of stabilization parameters. Suboptimal convergence rates estimates are obtained with respect to the L^2 norm and higher-order finite element approximations and Neumann boundary conditions are not considered.

What is new in this paper. Our new approach is an example of the second strategy, i.e., it relies on suitable modifications of the variational formulation when defining the finite element method in order to recover optimal convergence rates on polytopial approximations of curved domains. The method is applicable to both Dirichlet and Neumann boundary conditions. In a nutshell, it forces a polynomial extension of the approximate solution to match the prescribed boundary condition data on the boundary of the given domain Ω; thus, we refer to this approach as the polynomial extension finite element method (PE-FEM). The extended Dirichlet condition is weakly enforced whereas the extended Neumann condition is enforced as a natural condition for a modified weak formulation of the boundary-value problem. We prove stability and optimal $H^1(\Omega_h)$ accuracy for both the Dirichlet and Neumann problems and show that, on convex meshes and under additional regularity assumptions, the former also converges optimally in $L^2(\Omega_h)$. Furthermore, computational studies indicate that optimal $L^2(\Omega_h)$-norm convergence is also achieved for the Neumann problem. In addition to recovering optimal accuracy, the method is computationally efficient and simple to implement.

The paper is organized as follows. Section 2 introduces the necessary technical background. In §3 we describe the PE-FEM Dirichlet and Neumann formulations and then, in §4.1, we prove the well posedness of the discretized problems. Then, in §4.3 we derive optimal error estimates with respect to the $L^2(\Omega_h)$ and $H^1(\Omega_h)$ norms for the Dirichlet problem and optimal $H^1(\Omega_h)$ norm error bounds for the
Neumann problem. To streamline the flow of the paper, we relegate long proofs to the appendix. In §5, we discuss some implementation issues attendant to the PE-FEM and, in §6, we provide illustrative numerical results for the PE-FEM based on Type A meshes. Concluding remarks are provided in §7.

2. Preliminaries

Let $k = 2, 3, \ldots$ and let $\Omega \subset \mathbb{R}^N$, $N = 2, 3$, denote a bounded, open domain having a C^{k+1} boundary Γ with \mathbf{n} denoting the outer unit normal vector. We consider approximations of Ω by affine simplicial meshes Ω_h, i.e., collections of open N-simplices $\{K_j\}$ such that the non-empty intersections of their closures consist of only vertices, complete edges, or complete faces. Here $h := \max_{K_j \in \Omega_h} \text{diam}(K_j)$ denotes the mesh size parameter. Every mesh Ω_h defines a polytopial approximation of Ω, which we also denote by Ω_h; see Figure 1 for a two-dimensional illustration. We note that the boundary Γ_h of Ω_h is a union of $(N-1)$-simplices $\{E_i\}$ so that the outer unit normal vector \mathbf{n}_h to Γ_h is in general a piecewise constant vector and is thus only piecewise continuous. For every $E_i \in \Gamma_h$, let K_{ji} denote the element of Ω_h whose closure contains E_i on its boundary. Throughout, C denotes a positive constant whose value changes from one instance to another but which does not depend on h.

It follows from the smoothness assumption made about Γ that, for every $E_i \in \Gamma_h$, there exists a $C^{k+1}(E_i)$ mapping $\eta_i : E_i \to \Gamma$ such that $\eta_i(\xi) \in \Gamma$ for every $\xi \in E_i$ and such that

$$\max_{E_i \in \Gamma_h} \sup_{\xi \in E_i} |\eta_i(\xi) - \xi| \leq \delta_h$$

for some $\delta_h \in \mathbb{R}^+$, where $|\cdot|$ denotes the Euclidean norm. The mappings η_i define a piecewise C^{k+1} map $\eta : \Gamma_h \to \Gamma$. The value of δ_h in (1) can be viewed as a measure of the geometric error in the approximation of Ω by Ω_h. See the left sketch in Figure 2 for an illustration. The right sketch of Figure 2 illustrates the pullback from Γ to Γ_h, i.e., how the value of a function $v(\eta)$ evaluated at a point $\eta_i \in \Gamma$ is pulled back to the point $\xi \in E_i \subseteq \Gamma_h$.

Let $\alpha = (\alpha_n)_{n=1}^N$, α_n a non-negative integer, denote a multi-index and let $|\alpha| = \sum_{n=1}^N \alpha_n$ and $\alpha! = \prod_{n=1}^N \alpha_n!$. For $\mathcal{D} = \Omega$ or Ω_h and for $m \in \mathbb{N}$, let $H^m(\mathcal{D})$ denote the standard Sobolev space and $(H^m(\mathcal{D}))'$ the corresponding dual.
We also define the discontinuous finite element space D and the discrete differential operator ∇ and the trace space N. The duality pairings over Ω space ξ space; see [1]. Also, for any P and V respectively. On the discrete spaces involving the corresponding “broken” norms given by h respectively. “Broken” Sobolev norms on Ω $\left\| v \right\|_{m,\Omega_h} = \sum_{\kappa_j \in \Omega_h} \int_{\kappa_j} |v|^2 d\kappa_j \quad \forall v \in V_h^k$ and $\left\| w \right\|_{m,\Gamma_h} = \sum_{\xi_i \in \Gamma_h} \int_{\xi_i} |w|^2 d\xi_i \quad \forall w \in W_h^k$, respectively. “Broken” Sobolev norms on Ω_h and Γ_h are defined by $\left\| v \right\|_{m,\Omega_h} \leq Ch^{-1} \left\| v \right\|_{m-1,\Omega_h} \quad \forall v \in V_h^k, \ m = 1, 2, \ldots$ and $\left\| w \right\|_{m+1/2,\Gamma_h} \leq Ch^{-1/2} \left\| w \right\|_{m,\Gamma_h} \quad \forall w \in W_h^k, \ m = 0, 1, \ldots$
The smoothness assumption on Γ implies the existence of a continuous lifting operator $R(\cdot) : H^{k+1/2}(\Gamma) \to H^{k+1}(\Omega)$ such that for all $g \in H^{k+1/2}(\Gamma)$ there exists $v = R(g) \in H^{k+1}(\Omega)$ with $\|v\|_{k+1,\Omega} \leq C_R\|g\|_{k+\frac{1}{2},\Gamma}$. We also have the continuous discrete lifting operator $R_h(\cdot) : W_h^k \to V_h^k$ such that for all $g_h \in W_h^k$ there exists $v_h = R_h(g_h) \in V_h^k$ with $\|v_h\|_{k+1,\Omega_h} \leq C_{R_h}\|g_h\|_{k+\frac{1}{2},\Gamma_h}$.

Finally we recall the approximation theoretic bound
\[
\inf_{\chi \in V_h^k} \|v - \chi\|_{s,\Omega_h} \leq Ch^{k-s+1} |v|_{k+1,\Omega_h} \quad \text{for } s = 0, 1 \text{ and } \forall v \in H^{k+1}(\Omega_h)
\]
that holds under the assumption that Ω_h is a regular mesh Ω.

2.1. Setting. To present the key ideas of the method without unnecessary technical complications we consider the Dirichlet problem
\[
-\nabla \cdot (p(x)\nabla u) = f \quad \text{in } \Omega \quad \text{and} \quad u = g_D \quad \text{on } \Gamma
\]
and the Neumann problem
\[
-\nabla \cdot (p(x)\nabla u) + q(x)u = f \quad \text{in } \Omega \quad \text{and} \quad p\nabla u \cdot n = g_N \quad \text{on } \Gamma.
\]
Here, $p, q \in C^k(\Omega)$, $g_D(x) \in H^{k+1/2}(\Gamma)$, $g_N(x) \in H^{k-1/2}(\Gamma)$, and $f \in H^{k-1}(\Omega)$ are given functions such that $p \leq p(x) \leq \overline{p}$ for some $p > 0$ and $\overline{p} < \infty$ and $q(x) > 0$.

A weak formulation of (3) seeks $u \in H^1(\Omega)$ such that
\[
D(u, v) = \langle f, v \rangle_\Omega \quad \forall v \in H^1_0(\Omega) \quad \text{and} \quad u = g_D \quad \text{on } \Gamma
\]
whereas a weak formulation of (4) seeks $u \in H^1(\Omega)$ such that
\[
N(u, v) = \langle f, v \rangle_\Omega + \langle g_N, v \rangle_\Gamma \quad \forall v \in H^1(\Omega),
\]
where the bilinear forms $D(\cdot, \cdot) : H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ and $N(\cdot, \cdot) : H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ are defined by
\[
D(u, v) := \int_\Omega p\nabla u \cdot \nabla v \, dx \quad \text{and} \quad N(u, v) := \int_\Omega (p\nabla u \cdot \nabla v + quv) \, dx,
\]
respectively. Both (3) and (4) are well-posed for $f \in H^{-1}(\Omega)$, $g_D \in H^{1/2}(\Gamma)$, and $g_N \in H^{-1/2}(\Gamma)$, whereas our regularity assumptions on Γ, g_D, g_N, p, and q imply that $u \in H^{k+1}(\Omega)$.

In general, $\Omega_h \not\subset \Omega$ and $\Omega \not\subset \Omega_h$; see Figure 3 for an illustration. As a result, if $\Omega_h \not\subset \Omega$, the data p, q, and f and the solution u of (3) or (4) may not be defined on all of Ω_h so that extensions of these functions from Ω to $\Omega \cup \Omega_h$ are required. Our regularity assumptions imply the existence of bounded extensions $\overline{p} \in C^k(\mathbb{R}^N)$, $\overline{q} \in C^k(\mathbb{R}^N)$, $\overline{f} \in H^{k-1}(\mathbb{R}^N)$, and $\overline{u} \in H^{k+1}(\mathbb{R}^N)$ such that $\overline{p} = p$, $\overline{q} = q$, $\overline{u} = u$ and, for $k \geq 1$, $\overline{f} = f$ almost everywhere in Ω. For $k = 0$, we

1. The last assumption obviates the need to work in the quotient space $H^1(\Omega) \setminus \mathbb{R}$ for the Neumann problem.
2. The existence of C^k extensions for the problem coefficients is a consequence of the Tietze-Urysohn extension theorem [6]. The existence of bounded extensions $f \in H^{k-1}(\mathbb{R}^N)$ for $k = 2, 3, \ldots$ is a classical result of Sobolev spaces [4]. For $k = 1$, we can construct f by extending f to zero outside of Ω. For $k = 0$, we can construct f_n as follows. Because $L^2(\Omega)$ is dense in $H^{k-1}(\Omega)$, we can write f as the limit of a sequence $f_n \in L^2(\Omega)$. We construct the functions $\tilde{f}_n \in L^2(\mathbb{R}^N)$ by extending the functions f_n to zero outside of Ω. We note that \tilde{f}_n is a Cauchy sequence in $H^{-1}(\mathbb{R}^N)$ because $\|f_n - f_m\|_{-1,\mathbb{R}^N} \leq \|f_n - f_m\|_{-1,\Omega}$ (recall that $\|u\|_{-1,\Omega} := \sup_{v \in H^1(\Omega)} \langle u, v \rangle_\Omega / \|v\|_{1,\Omega}$).

Therefore \tilde{f}_n is convergent in $H^{-1}(\mathbb{R}^N)$ and we define \tilde{f} to be its limit.
have \(\langle \tilde{f}, v \rangle_\Omega = \langle f, v \rangle_\Omega \) for all \(v \in H^1(\Omega) \). In particular, there exist extensions such that \(\| \tilde{u} \|_{k+1, \Omega \cup \Omega_h} \leq C_c \| u \|_{k+1, \Omega} \), \(\| \tilde{f} \|_{k-1, \Omega \cup \Omega_h} \leq C_c \| f \|_{k-1, \Omega} \), \(\| \tilde{p} \|_{C^k(\Omega \cup \Omega_h)} \leq C_c \| p \|_{C^k(\Omega)} \), and \(\| \tilde{q} \|_{C^k(\Omega \cup \Omega_h)} \leq C_c \| q \|_{C^k(\Omega)} \) for a constant \(C_c > 0 \) having value independent of \(u, f, p \), or \(q \).

![Figure 3](image)

Figure 3. The area between the concentric circles is the given domain \(\Omega \) and the area between the concentric octagons is the approximate domain \(\Omega_h \) (the regions covered by the two shades of gray). The light gray region is \(\Omega \cap \Omega_h \). The dark gray regions are in \(\Omega \) but not in \(\Omega \) so extensions of functions defined on \(\Omega \) are needed in those regions.

3. The PE-FEM Method

We now introduce the Polynomial Extension Finite Element Method (PE-FEM) for the approximate solution of (5) or (6) defined on polytopial domains \(\Omega_h \) resulting from meshing of the domain \(\Omega \) by affine simplices. To achieve optimal accuracy even if \(\Omega \) has a curved boundary, we force the extension of the finite element solution to weakly match the given data on the curved boundary of the continuous problem.

We define the bilinear forms \(D_h(\cdot, \cdot) : H^1(\Omega_h) \times H^1(\Omega_h) \to \mathbb{R} \) and \(N_h(\cdot, \cdot) : H^1(\Omega_h) \times H^1(\Omega_h) \to \mathbb{R} \) as

\[
D_h(u, v) := \int_{\Omega_h} \tilde{p} \nabla u \cdot \nabla v \, dx \quad \forall u, v \in H^1(\Omega_h)
\]

\[
N_h(u, v) := \int_{\Omega_h} \langle \tilde{p} \nabla u \cdot \nabla v + \tilde{q} uv \rangle \, dx \quad \forall u, v \in H^1(\Omega_h),
\]

respectively.

We start presenting the PE–FEM method for the Dirichlet and Neumann problems in its simplest form, and then, in the rest of the section, we will derive the method in an equivalent formulation that is more amenable to being mathematically analyzed.
The PE-FEM for the Dirichlet problem. Seek $u_h \in V_h^k$ such that
\begin{equation}
D_h(u_h, v) = \langle \tilde{f}, v \rangle_{\Omega_h} \quad \forall v \in V_h^{k,0}
\end{equation}
and
\begin{equation}
\sum_i \langle E_{K_{j_i}}(u_h) \circ \eta(\xi), \mu \rangle_{E_i} = \langle g_D \circ \eta(\xi), \mu \rangle_{\Gamma_h} \quad \forall \mu \in W_h^k = V_h^k|_{\Gamma_h},
\end{equation}
where $E_{K_{j_i}}(u_h)$ is the operator that extends the polynomial $u_h|_{K_{j_i}}$ to a polynomial over \mathbb{R}^N. Implementation of this method requires the evaluation of $E_{K_{j_i}}(u_h) \circ \eta(\xi)$ at a set of quadrature points \{\(\xi_i\)\} on E_i. This can be accomplished by evaluating the polynomial basis functions that generate $u_h|_{K_{j_i}}$ at the points \{\(\eta(\xi_i)\)\} that can be outside the element K_{j_i}.

The PE-FEM for the Neumann problem. Seek $u_h \in V_h^k$ such that
\begin{equation}
N_h(u_h, v) + \tau_N(u_h, v) = \langle \tilde{f}, v \rangle_{\Omega_h} + \langle g_N \circ \eta(\xi), v \rangle_{\Gamma_h} \quad \forall v \in V_h^k,
\end{equation}
where
\begin{equation}
\tau_N(u_h, v) := \sum_i \langle \tilde{p} \cdot \eta(\xi) \nabla (E_{K_{j_i}}(u_h) \circ \eta(\xi)) \cdot n - \tilde{p} \nabla u_h \cdot n_h, v \rangle_{E_i}
\end{equation}
is an auxiliary term that provides additional accuracy to the standard finite element formulation. When $\Gamma_h = \Gamma$ and η is taken to be the identity operator, we have that $\tau_N(u_h, v) = 0$.

Additional details about the implementation of the method are provided in Section 5.

In order to analyze the method, we reformulate the PE-FEM problem so that it is well defined also for trial functions in $H^k(\Omega_h)$. In particular we need to generalize the extension operator E to functions in Sobolev spaces. We achieve this by using averaged Taylor polynomials. The reformulated Dirichlet and Neumann PE-FEM problems will be equivalent to the ones in (8)-(11) whenever $u_h \in V_h^k$.

3.1. Averaged Taylor polynomial extensions. The mismatch between the exact domain Ω and its polygonal approximation Ω_h requires approximation of the boundary condition data on Γ_h. In this section, we focus on the extension of functions belonging to $H^{k+1}(\Omega_h)$ from the approximate boundary Γ_h onto the true boundary Γ. A common approach is to approximate the true boundary condition data on Γ_h by a low-order reconstruction. However, due to the geometric error resulting from the approximation of the domain, this approach restricts the numerical solution to be at best second-order accurate regardless of the degree of the underlying finite element space. Here, instead of interpolating the boundary condition data, we extend the finite element solution from the approximate boundary Γ_h to the true boundary Γ and require it to weakly match the boundary condition data prescribed on that boundary. The main tool we use for defining the extension is the averaged Taylor polynomials, described below.

For every $E_i \in \Gamma_h$, let K_{j_i} denote the element of Ω_h whose closure contains E_i and let $\{S^{i,\ell}\}$ denote a family, indexed by ℓ, of disjoint star-shaped domains with respect to the balls $\sigma^{i,\ell} \subset K_{j_i} \cap \Omega$ such that $S^{i,\ell} \cap K_{j_{i'}} = \emptyset$ for $i \neq i'$, $\text{diam}(S^{i,\ell}) \leq C \delta_h$, and $\bigcup_{i,\ell} S^{i,\ell} \subset \Omega_h \setminus (\Omega \cap \Omega_h)$. We also require that $S^{i,\ell} \cap \eta(E_i) \subset S^{i,\ell}$ and $\overline{S^{i,\ell} \cap E_i} \subset S^{i,\ell}$ and that $\sup_{i,\ell} \frac{\text{diam}(S^{i,\ell})}{\text{radius}(\sigma^{i,\ell})} \leq C$ with C independent of δ_h. See Figure 4.
for an illustration of how star-shaped domains $S^{i,\ell}$ can be constructed for triangular meshes.

Remark 1. Whereas it possible to construct the star-shaped domains $S^{i,\ell}$ with the properties listed above for simple geometries/meshes, we do not have a proof for general domains and shape-regular meshes considered in this paper. If we allow the domains $S^{i,\ell}$ to overlap up to a finite number of times, it may be possible to follow the construction in [20, Section 2.2]. However, this would further increase the complexity of the analysis so we prefer to limit our analysis to the case for which the domains $S^{i,\ell}$ do not overlap.

Following [4], we define, for $x \in \mathbb{R}^N$ and $v \in L^2(\Omega \cap \Omega_h)$, the averaged Taylor polynomial

$$T^k_h(v)_{|x} := \sum_{i,\ell} 1_{S^{i,\ell}(x)} \int_{\sigma^{i,\ell}} \left(\sum_{|\alpha|=0}^{k} \frac{1}{\alpha!} D^\alpha v(y) (x - y)^\alpha \phi_\ell(y) \right) dy,$$

where $\phi_\ell(y)$ is a cutoff function and $1_{S^{i,\ell}(x)}$ denotes the indicator function for the set $S^{i,\ell}$, i.e., $1_{S^{i,\ell}(x)} = 1$ if $x \in S^{i,\ell}$ and vanishes otherwise. Note that T^k_h is meaningful only for $x \in \bigcup_{i,\ell} S^{i,\ell}$ and is zero otherwise. For any $\xi \in \Gamma_h$ and its image $\eta(\xi) \in \Gamma$ and for $v \in L^2(\Omega)$, we write

$$v \circ \eta(\xi) = T^k_h(v)_{|\eta(\xi)} + R^k_h(v)_{|\eta(\xi)}.$$

For $v \in H^{k+1}(\mathbb{R}^N)$ we have $\|R^k_h(v)_{|\eta(\xi)}\|_{0, \Gamma_h} \leq C \delta_h^{k+\frac{1}{2}} |v|_{k+1, \mathbb{R}^N}$; see Lemma 2. If $v \in \nabla_h$, then in every K_{ji}, v is a polynomial of degree k and therefore $T^k_h(v)$ exactly reproduces v in any K_{ji} adjacent to the boundary and is equivalent to the classical

3Averaged Taylor polynomials on star-shaped domains $S^{i,\ell}$ are defined for functions in $L^1(\sigma^{i,\ell})$; see [4, Corollary 4.1.15.].
Taylor polynomial. For \(v \in V_h^k \) we can therefore write, for a generic \(y_i \in K_j \),
\[
T_h^k(v)|_x = \sum_{i,\ell} 1_{S^{i,\ell}}(x) \sum_{|\alpha|=0}^k \frac{1}{\alpha!} D^\alpha v(y_i)(x_i - y_i)^\alpha \\
= \sum_i 1_{(U_j \cup S^{i,\ell})}(x) \sum_{|\alpha|=0}^k \frac{1}{\alpha!} D^\alpha v(y_i)(x_i - y_i)^\alpha.
\]
Setting \(y_i = \xi \in \mathcal{E}_i \) and \(x = \eta(\xi) \) we now have that
\[
T_h^k(v)|_{\eta(\xi)} = \sum_{|\alpha|=0}^k \frac{1}{\alpha!} D^\alpha v(\eta(\xi)) - \xi)^\alpha
\]
which is well-defined for any \(\xi \in \Gamma_h \) and \(v \in V_h^k \). Note that if \(\xi \in \mathcal{E}_i \) and \(v \) is a polynomial of degree \(k \) defined on \(K_j \), then \(T_h^k(v)|_{\eta(\xi)} = E_{K_j}(v) \circ \eta(\xi) \). For convenience, we also define \(T_h^{k',k} \) as
\[
T_h^{k',k}(v)|_{\eta(\xi)} = \sum_{|\alpha|=0}^k \frac{1}{\alpha!} D^\alpha v(\eta(\xi)) - \xi)^\alpha.
\]
Clearly \(T_h^k = T_h^{0,k} \). For vector functions \(v \), we introduce the vector operator \(T_h^k(v) = (T_h^k v_n)_{n=1}^N \). We use this notation in particular for gradients of scalar functions, i.e., \(T_h^k(\nabla v) \).

3.2. PE-FEM methods using averaged Taylor polynomials. Using the averaged Taylor polynomial extensions and Taylor’s theorem allows one to represent the Dirichlet and Neumann data prescribed at \(\eta(\xi) \in \Gamma \) as functions of \(\xi \in \Gamma_h \) given by
\[
g_D \circ \eta(\xi) = T_h^k(\bar{u})|_{\eta(\xi)} + R_h^k(\bar{u})|_{\eta(\xi)}
\]
and
\[
g_N \circ \eta(\xi) = \bar{\nu} \circ \eta(\xi) \left(T_h^{k-1}(\nabla \bar{u})|_{\eta(\xi)} \cdot n + R_h^{k-1}(\nabla \bar{u})|_{\eta(\xi)} \cdot n \right),
\]
respectively, where \(R_h^k(\bar{u})|_{\eta(\xi)} \) and \(R_h^{k-1}(\nabla \bar{u})|_{\eta(\xi)} \) denote the remainder terms of the averaged Taylor polynomials. These representations are used in the definition of the boundary conditions for the PE-FEM formulations.

The PE-FEM Dirichlet problem. We use (16) to supply the Dirichlet boundary condition (9) for the problem posed on the approximate domain \(\Omega_h \). Note that for \(u_h \in V_h^k \), the remainder term in (16) vanishes. Then, for the Taylor polynomial extension approach, the PE-FEM Dirichlet problem (8) and (9) is to seek \(u_h \in V_h^k \) such that
\[
D_h(u_h, v) = \langle f, v \rangle_{\Omega_h} \quad \forall v \in V_h^k
\]
\[
\langle T_h^k u_h(\xi)|_{\eta(\xi)}, \mu \rangle_{\Gamma_h} = \langle g_D \circ \eta(\xi), \mu \rangle_{\Gamma_h} \quad \forall \mu \in W_h^k \quad V_h^k|_{\Gamma_h}.
\]
Remark 2. The problem (18) is not a Dirichlet problem, per se. The boundary condition, i.e., the second equation in (18), involves derivatives of the unknown \(u_h \) of order up to \(k \) evaluated along the boundary edges \(\mathcal{E}_i \) of the approximate domain \(\Gamma_h \). The inclusion of these derivatives in the boundary condition imposed on the
approximate boundary Γ_h is, of course, what leads to the optimal accuracy of the PE-FEM approximation.

In order to use the same space for the trial and test functions, we reformulate the problem (18) as follows. Let $(\cdot)_*: W_h^k \to W_h^k$ denote the trace operator and $\mathcal{R}_h: W_h^k \to V_h^k$ a discrete linear lifting operator. Also, let

$$B_{h,D}^\theta(u,v) := D_h(u,v - \mathcal{R}_h v_\ast) + \theta_h \langle T_h^k u(\xi) \cdot n_\xi, v \rangle_{\Gamma_h}$$

and

$$F_{h,D}^\theta(v) := \langle \tilde{f}, v - \mathcal{R}_h v_\ast \rangle_{\Omega_h} + \theta_h \langle g_D \circ \eta(\xi), v \rangle_{\Gamma_h}.$$

We then seek $u_h \in V_h^k$ such that

$$B_{h,D}^\theta(u_h, v) = F_{h,D}^\theta(v) \quad \forall v \in V_h^k.$$

Because $v - \mathcal{R}_h v_\ast$ spans the entirety of $V_{h,0}^k$, the formulations (18) and (21) are equivalent for any nonzero $\theta_h \in \mathbb{R}$. The choice of scaling factor θ_h and does not affect the solution, but choosing $\theta_h \sim O(h^{-1})$ balances, with respect to h, the two terms on the right-hand side of (19), is needed to prove the coercivity of the bilinear form $B_{h,D}^\theta$, and may positively affect properties of the stiffness matrix; see Remark 4.1.

A careful inspection shows that the problems (21), (18), and (8) are equivalent.

The PE-FEM Neumann problem. The Taylor series representation (17) of the Neumann data implies that

$$0 \approx g_N \circ \eta(\xi) - \tilde{p} \circ \eta(\xi) \cdot T_h^{k-1} (\nabla u_h) \cdot n.$$

By adding $\tilde{p}(\xi) \nabla u_h \cdot n_h$ to both sides, we can approximate the Neumann data as

$$\tilde{p}(\xi) \nabla u_h \cdot n_h \approx g_N \circ \eta(\xi) + \tilde{p}(\xi) \nabla u_h \cdot n_h - \tilde{p} \circ \eta(\xi) \cdot T_h^{k-1} (\nabla u_h) \cdot n.$$

The discrete weak form (10) and (11) of (4) is given by

$$N_h(u_h, v) - \langle \tilde{p}(\xi) \nabla u_h \cdot n_h, v \rangle_{\Gamma_h} = \langle \tilde{f}, v \rangle_{\Omega_h} \quad \forall v \in V_h^k.$$

Incorporating (23) yields the **PE-FEM Neumann formulation**: seek $u_h \in V_h^k$ such that

$$B_{h,N}(u_h, v) = F_{h,N}(v) \quad \forall v \in V_h^k,$$

where

$$B_{h,N}(u_h, v) := N_h(u_h, v) + \tau_N(u_h, v)$$

with

$$\tau_N(u_h, v) := \langle \tilde{p} \circ \eta(\xi) \cdot T_h^{k-1} (\nabla u_h) \cdot n - \tilde{p}(\xi) \nabla u_h \cdot n_h, v \rangle_{\Gamma_h}$$

and

$$F_{h,N}(v) := \langle \tilde{f}, v \rangle_{\Omega_h} + \langle g_N \circ \eta(\xi), v \rangle_{\Gamma_h} \quad \forall v \in V_h^k.$$

A careful inspection shows that the problems (24) and (10) are equivalent.

Remark 3. There is a price to pay for obtaining optimal convergence rates for higher-order finite element methods on polygonal domains for problems posed on non-polygonal domains, namely that the discretized systems (18) and (24) are not symmetric, even for given symmetric problems, i.e., even if $D_h(\cdot, \cdot)$ and $N_h(\cdot, \cdot)$ are symmetric bilinear forms. However, if these forms are indeed symmetric and if an iterative linear system solver is used, the additional computational cost due to any
destruction of symmetry is not so burdensome. The contributions to the stiffness matrices associated with those forms, being associated with interior nodes of the mesh, are much larger than the contributions associated with the terms causing the lack of symmetry because the latter are associated with boundary nodes.

4. Analysis of the PE-FEM formulations

We now show that \((21)\) and \((24)\) are well posed and satisfy a polynomial preserving property. Then, we prove that the PE-FEM formulations for \(k\)th order Lagrangian finite element spaces are optimally accurate in the \(H^1(\Omega_h)\) norm. Additionally, we prove optimal \(L^2(\Omega_h)\) convergence for the PE-FEM Dirichlet formulation under certain conditions on \(\Omega_h\) and additional regularity on \(u\). Throughout the section we assume that \(\Omega_h\) consists of a regular mesh \([5]\) and let \(p := \max_{x \in \Omega_h} p(x),\) \(\overline{p} := \max_{x \in \Omega_h} \overline{p}(x),\) and \(\overline{q} = \min_{x \in \Omega_h} \overline{q}(x)\).

4.1. Well posedness of the PE-FEM methods.

Theorem 1 (Well posedness of the PE-FEM Dirichlet approximation). Let \(B_{h,D}^\theta(\cdot,\cdot)\) be defined as in \(([19])\) with \(p > 0\). Assume that \(\theta_h \geq C_9 h^{-1}\) with \(C_9\) large enough and assume that \(\delta_h = o(h^{1/2})\). Then, for \(h\) small enough and \(k = 1, 2, \ldots,\) we have that

\[
B_{h,D}^\theta(u, v) \leq (p + \theta_h (1 + C \sum_{|\alpha| = 1} h^{1/2} - |\alpha| \delta_h^{1/2})) \|u\|_{1,\Omega_h} \|v\|_{1,\Omega_h} \quad \forall u, v \in V_h^k
\]

and

\[
B_{h,D}^\theta(u, u) \geq \gamma_D \|u\|_{1,\Omega_h}^2 \quad \forall u \in V_h^k.
\]

If \(g_D \circ \eta(\xi) \in H^{1/2}(\Gamma_h)\), then \((21)\) has a unique solution \(u_h\) and that solution satisfies the stability bound

\[
\|u_h\|_{1,\Omega_h} \leq C \left(\|\overline{f}\|_{1,\Omega_h} + \|g_D \circ \eta(\xi)\|_{1/2,\Gamma_h} \right).
\]

The proof is provided in \((D.1)\)

Theorem 2 (Well-posedness of the PE-FEM Neumann approximation). Let \(B_{h,N}(u, v)\), be defined as in \(([25])\). Assume that \(\delta_h = o(h^{1/2})\), \(\overline{p}, \overline{q} > 0\) in \(\Omega_h\) and \(\overline{p} > 0\) on \(\Gamma\). Then, for \(h\) small enough and \(k = 1, 2, \ldots,\) we have that

\[
B_{h,N}(u, v) \leq C \|u\|_{1,\Omega_h} \|v\|_{1,\Omega_h} \quad \forall u, v \in V_h^k
\]

and

\[
B_{h,N}(u, u) \geq \gamma_N \|u\|_{\Omega_h}^2 \quad \forall u \in V_h^k.
\]

If \(g_N \circ \eta(\xi) \in H^{-1/2}(\Gamma_h)\), then \((24)\) has a unique solution \(u_h\) and that solution satisfies the stability bound

\[
\|u_h\|_{1,\Omega_h} \leq C \gamma_N^{-1} \left(\|\overline{f}\|_{1,\Omega_h} + \|g_N \circ \eta(\xi)\|_{-1/2,\Gamma_h} \right).
\]

Finally, for all \(u, v \in H^1(\Omega_h)\) such that \(u|_{K_n} \in H^{k+1}(K_n)\) for all \(K_n \subset \Omega_h\), we have that, for \(k = 2, 3, \ldots,\)

\[
B_{h,N}(u, v) \leq C \left(\|u\|_{1,\Omega_h} + (\delta_h h^{3/2} + h^{3/2}) \|u\|_{1,\Omega_h} \right.
\]

\[
+ \delta_h^{1/2} \|u\|_{2,\Omega_h} + \delta_h^{-1/2} \|u\|_{k+1,\Omega_h} \|v\|_{1,\Omega_h}.
\]
Theorem 3

Remark 4. Theorems 7 and 8 establish well posedness of the PE-FEM Dirichlet and Neumann problems for the linear diffusion-reaction equation. We remark that if a convection operator also appears along with the elliptic operator, the above analysis remains, for the most part, unchanged, i.e., it can be treated in the same manner as convection terms are handled by standard finite element methods.

4.2. Polynomial preserving property. The finite element space V_h^k contains the global polynomial space $P_k(\Omega_h)$. Thus, a desirable property of a finite element method implemented using V_h^k is for it to exactly recovery of global polynomial fields in $P_k(\Omega_h)$. Whereas this “patch test” is not sufficient for optimal convergence, it provides a useful diagnostic tool for code verification.

It is straightforward to show that PE-FEM preserves global polynomial fields. Given an $r \in P_k(\Omega_h)$ and a forcing function $\tilde{f} = Lr$, where L denotes, as appropriate, either the strong operator in (3) for Dirichlet problems or the strong operator in (4) for Neumann problems, it is clear that

$$D_h(r,v) = (\tilde{f},v)_{\Omega_h} \quad \forall v \in V_{h,0}^k$$

and

$$N_h(r,v) = (\tilde{f},v)_{\Omega_h} \quad \forall v \in V_h^k.$$

Because Taylor series preserve polynomials, the boundary conditions of (21) and (24) are satisfied by r if $g_d = r|_\Gamma$ and $g_N = (\bar{p} \nabla r \cdot n)|_\Gamma$. Furthermore, if the conditions in Theorems 1 and 2 hold, $u_h = r$ is the unique solution of the PE-FEM equations. Thus, we have established the following proposition.

Proposition 1. The PE-FEM methods, c.f. (21) and (24), are polynomial preserving.

4.3. Error estimates for PE-FEM approximations. Using results from §4.1 we now prove optimal $H^1(\Omega_h)$-norm error estimates for the Dirichlet and Neumann PE-FEM problems and optimal $L^2(\Omega_h)$-norm error estimates for the Dirichlet PE-FEM problem.

Theorem 3 ($H^1(\Omega_h)$-norm error estimate for the Dirichlet PE-FEM approximation). Assume that $\tilde{f} \in H^{k-1}(\Omega)$, $g_D \in H^{k+\frac{1}{2}}(\Gamma)$, and the hypotheses of Theorem 1 hold with the additional assumption that $\delta_h \sim O(h^2)$ if $d = 2$ and $\delta_h \sim O(h^3)$ if $d = 3$. Let $u_h \in V_h^k$ denote the solution of (21), $u \in H^{k+1}(\Omega)$ the solution to (5), and $\bar{u} \in H^{k+\frac{3}{2}}(\mathbb{R}^N)$ the extension of the latter. Then,

$$\|\bar{u} - u_h\|_{1,\Omega_h} \leq C h^k(\|u\|_{k+1,\Omega} + \|f\|_{k-1,\Omega}) \quad \text{for } k = 2,3,\ldots.$$

The proof is given in §E.1.

Theorem 4 ($L^2(\Omega_h)$-norm error estimate for the Dirichlet PE-FEM approximation). Assume that $\delta_h \sim O(h^2)$, $\tilde{f} \in H^k(\Omega)$, and that the hypotheses of Theorem 1 hold. Let $u_h \in V_h^k$ denote the solution of (21), $u \in H^{k+\frac{1}{2}}(\Omega)$ the solution to (5), and $\bar{u} \in H^{k+\frac{3}{2}}(\mathbb{R}^N)$ the extension of the latter. Then,

$$\|\bar{u} - u_h\|_{0,\Omega_h} \leq C h^{k+s}(\|u\|_{k+1,\Omega} + \|\bar{u}\|_{k+1,\Gamma_h} + \|f\|_{k,\Omega}) \quad \text{for } k = 2,3\ldots$$

where $s \in (\frac{1}{2},1]$ is a constant dependent on the largest interior angle of $\partial \Omega_h$. Given h is small enough. Additionally, if $\partial \Omega_h$ is a convex polytope, we have that (34) holds with $s = 1$.

The proof is given in §E.2.
Theorem 5 ($H^1(\Omega_h)$-norm error estimate for the Neumann PE-FEM approximation). Assume that $f \in H^{k-1}(\Omega)$, $g_N \in H^{k-\frac{1}{2}}(\Gamma_h)$, and that the hypotheses of Theorem 2 hold. Let $u_h \in V_h^k$ denote the solution of (24), $u \in H^{k+1}(\Omega)$ the solution to (6), and $\bar{u} \in H^{k+1}(\mathbb{R}^N)$ the extension of the latter. Then, if $\delta_h \sim O(h^2)$ the we have the bound
\[
\|\bar{u} - u_h\|_{1, \Omega_h} \leq Ch^k(\|u\|_{k+1} + \|f\|_{k-1, \Omega}) \quad \text{for } k = 2, 3, \ldots.
\]

The proof is given in [E.3].

Remark 5. Although our results do not include optimal L^2-norm error estimates for the Neumann problem, numerical results given in Section 6 suggest that the PE-FEM formulation is optimally accurate in this case as well.

5. Implementation

The conversion of any finite element code into a PE-FEM code is a relatively simple matter as it only requires coding the additional terms in (9) and (11) which are relatively minor variations of the standard assembly process on each element.

5.1. The mapping $\eta(\xi)$. Whereas different choices of mappings $\eta : \Gamma_h \to \Gamma$ are possible, in our numerical experiments we use the mapping
\[
\eta(\xi) := \arg\min_{\xi \in \Gamma} |x - \xi|
\]
that guarantees that $|\eta(\xi) - \xi| = O(h^2)$. In the implementation, we apply the mapping to ξ belonging to the set of nodes or quadrature points lying on Γ_h.

5.2. Implementation of the PE-FEM Dirichlet problem. In [9], the essential boundary condition is imposed on the piecewise polynomial extensions in a weak, i.e., variational, sense. In order to compute the boundary integrals using quadrature rules, one can compute the term $(E_{K_{ji}}(u_h) \circ \eta(\xi_q))$ at quadrature points $\xi_q \in \mathcal{E}_i$ by evaluating the polynomial basis functions that generate $u_h|_{K_{ji}}$ at $\eta(\xi_q)$.

Alternatively, for two-dimensional Type A meshes, it is possible to prescribe the Dirichlet condition in a strong sense
\[
E_{K_{ji}}(u_h) \circ \eta(\xi_i) = g_D \circ \eta(\xi_i),
\]
for all nodes $\xi_i \in \Gamma_h$ associated with the degrees of freedom of W^k_h. Here, K_{ji} denotes the element whose closure contains ξ_i. The element K_{ji} is not uniquely defined if ξ_i is a vertex of the triangulation. However, in this case, for two-dimensional Type A meshes we have that $\xi_i \in \Gamma \cap \Gamma_h$ and therefore the extension operators reduce to the identity operator.

5.3. Implementation of the PE-FEM Neumann problem. The PE-FEM Neumann problem can be obtained by adding the term (11)
\[
\sum_i \left(p \circ \eta(\xi) \nabla (E_{K_{ji}}(u_h) \circ \eta(\xi)) \cdot n - p \nabla u_h \cdot n_h, v \right)_{\xi_i}
\]
to a standard finite element implementation, and by evaluating the Neumann data g_N at the points on the true boundary Γ using the mapping η. In particular, when computing the integrals using quadrature rules, one can compute the term $\nabla (E_{K_{ji}}(u_h) \circ \eta(\xi_q))$ at quadrature points by evaluating the gradient of the polynomial basis functions that generates $u_h|_{K_{ji}}$ at $\eta(\xi_q)$ and can compute the right
hand side by evaluating \(g_N \) at \(\eta(\xi_q) \). The outer unit normal vectors \(n_h \) at \(\xi_q \) and \(n \) at \(\eta(\xi_q) \) need to be computed as well.

6. Numerical Examples

In this section, we present illustrative numerical results for the Dirichlet and Neumann PE-FEM methods for both a convex and a non-convex domain.

6.1. Convex domain. The convex domain \(\Omega \) considered is the unit circle centered at \((0,0)\) having radius 1. The coefficients are given by \(p(x) = q(x) = 1 \) and the right-hand side \(f \) is determined so that the exact solution is given by \(u = \cos(x) \cos(y) \). A sample PE-FEM approximate solution is plotted in Figure 5 (left). We report on the convergence history for the PE-FEM method in Table 2. We observe that optimal \(H^1(\Omega_h) \) and \(L^2(\Omega_h) \) convergence rates are achieved in all cases.

6.2. Nonconvex domain. The non-convex domain \(\Omega \) considered is the region within the unit square \([-0.5,0.5]^2\) and outside of the circle of radius \(\frac{1}{4} \) centered at \((0,0)\). The coefficients are given by \(p(x) = q(x) = 1 \) and the right-hand side \(f \) is determined so that the exact solution is given by \(u = -\frac{17}{16} \frac{x^2 + y^2}{x^2 + y^2} \). We use the given Dirichlet boundary conditions on the outer boundary of the square because no special treatment is required for applying boundary conditions along straight edges. The PE-FEM conditions are utilized on the interior circular boundary. A sample PE-FEM approximate solution is plotted in Figure 5 (right). The convergence history for this numerical experiment is reported on in Table 3. We again observe that optimal \(H^1(\Omega_h) \) and \(L^2(\Omega_h) \) convergence rates are achieved in all cases.

7. Concluding remarks

In this paper, we have proposed a numerical method to determine optimally accurate finite element approximation of solutions of second-order elliptic boundary value problems based on polygonal approximations \(\Omega_h \) of domains \(\Omega \) having smooth curved boundaries. Polynomial extensions from the boundary of \(\Omega_h \) to the boundary of \(\Omega \) are instrumental in achieving optimal convergence rates.
Table 2. Convergence histories for the PE-FEM Dirichlet and Neumann PE-FEM approximations for the convex domain example. Optimal convergence rates are achieved with respect to both the $L^2(\Omega_h)$ and $H^1(\Omega_h)$ norms.

h	Quadratic elements ($k = 2$)	Cubic elements ($k = 3$)	Quartic elements ($k = 4$)			
	Dirichlet	Neumann	Dirichlet	Neumann	Dirichlet	Neumann
	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
0.583095	6.83996e-04	1.20924e-02	8.71677e-03	1.18623e-02		
0.315543	8.71107e-05	2.96301e-03	1.29589e-03	7.1952e-04		
0.165152	1.07759e-05	7.21901e-04	1.55799e-04	7.11529e-04		
0.080322	1.59731e-07	4.41786e-05	1.99808e-05	1.79352e-04		
0.045221	1.28123e-09	1.59731e-07	1.81096e-04	1.79352e-04		
Rate	3.2283	2.1605	3.1932	2.1558		
	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
0.583095	3.11001e-05	7.19118e-04	2.74064e-04	7.11022e-04		
0.315543	1.67332e-06	7.63497e-05	1.96586e-05	7.61091e-05		
0.165152	1.06597e-07	1.00175e-05	9.82364e-07	9.95999e-06		
0.080322	6.87903e-09	1.34472e-06	6.63858e-08	1.34119e-06		
0.045221	4.33984e-10	1.66155e-07	2.73326e-09	1.65852e-07		
Rate	4.2922	3.2924	4.4254	3.1993		

Dirichlet boundary conditions, the stability and optimal convergence with respect to the $H^1(\Omega_h)$ and $L^2(\Omega_h)$ norms is proved whereas for Neumann boundary conditions, optimal convergence with respect to the $H^1(\Omega_h)$ norm is proved. Numerical tests are used to illustrate the theory as well as to show that optimal convergence rates are also achieved for errors measured in the $L^2(\Omega_h)$ norm, even for the case of Neumann boundary conditions.

In the future, we will explore applying this method to other equations and engineering benchmark problems. We will also consider using this approach as a mechanism for achieving higher-order accuracy for solutions of interface problems.

References
[1] R. Adams and J. Fournier, Sobolev Spaces, vol. 140, Academic Press, 2003.
[2] J. Barrett and C. Elliott, Finite element approximation of the dirichlet problem using the boundary penalty method, Numerische Mathematik, 49 (1986), pp. 343–366.
Table 3. Convergence histories for PE-FEM Dirichlet and Neumann PE-FEM approximations for the non-convex domain example. Optimal convergence rates are achieved with respect to both the $L^2(\Omega_h)$ and $H^1(\Omega_h)$ norms.

h	Quadratic elements ($k = 2$)	Cubic elements ($k = 3$)	Quartic elements ($k = 4$)	
	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
0.353553	6.39714e-03	1.80907e-01	1.57225e-02	2.15036e-01
0.241519	1.09194e-03	5.26226e-02	2.95796e-03	5.63876e-02
0.136382	1.53631e-04	1.4597e-02	4.05368e-04	1.44241e-02
0.0714398	2.23882e-05	3.99222e-03	5.7218e-05	9.91063e-04
Rate	3.3877	2.2749	3.3502	2.3520
h	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
0.353553	2.22751e-03	8.49656e-02	9.25961e-03	1.23404e-01
0.241519	1.77764e-04	1.31772e-03	1.73737e-03	
0.136382	1.41219e-05	1.96634e-03	1.15194e-04	
0.0714398	1.14619e-06	2.87068e-04	7.63884e-06	
Rate	4.5017	3.3946	4.2777	3.5698
h	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$	$\|u - u_h\|_{0,\Omega_h}$	$\|u - u_h\|_{1,\Omega_h}$
0.353553	7.14676e-04	4.08694e-02	2.03226e-03	5.66714e-02
0.241519	3.26085e-05	3.23267e-03	2.85442e-04	
0.136382	1.77419e-06	2.59726e-04	1.71681e-05	
0.0714398	7.69598e-08	2.01136e-05	4.39592e-07	
Rate	5.4794	4.5304	5.1745	4.6992

[3] P. Bochev and M. Gunzburger, Least-Squares Finite Element Methods, vol. 166, Springer, 2009.
[4] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15, Springer, 2007.
[5] P. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, 2002.
[6] P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013.
[7] P. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Computer Methods in Applied Mechanics and Engineering, 1 (1972), pp. 217–249.
[8] B. Cockburn, W. Qiu, and M. Solano, A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity, Mathematics of Computation, 83 (2014), pp. 665–699.
[9] B. Cockburn and M. Solano, Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains, SIAM Journal on Scientific Computing, 34 (2012), pp. A497–A519.
[10] B. Cockburn and M. Solano, Solving convection-diffusion problems on curved domains by extensions from subdomains, Journal of Scientific Computing, 59 (2014), pp. 512–543.
Appendix A. Analysis of Taylor polynomials on boundaries

In this section, we provide technical lemmas pertaining to properties of the Taylor series extensions we have defined in (3.1).

Lemma 1. Let \(v \in L^2(\Omega_h) \). Then,
\[
\| T^k_h(v) \|_{0,\Gamma_h} \leq C\delta_h^{-\frac{1}{2}} \| v \|_{0,\Omega_h}.
\]

Proof. We have that \(T^k_h(v) \) is a polynomial on each element domain \(S^{i,\ell} \) so that the \(L^\infty \) norm on \(\eta(\xi) \) is bounded by the \(L^\infty \) norm in \(S^{i,\ell} \). It then follows that
\[
\| T^k_h(v) \|_{0,\xi \cap S^{i,\ell}} \leq |\xi| \cap S^{i,\ell}|^{\frac{1}{2}} \| T^k_h(v) \|_{0,\xi \cap S^{i,\ell}} \leq C\delta_h^{\frac{1}{2}} \| T^k_h(v) \|_{L^\infty(\xi \cap S^{i,\ell})}
\]

because \(\text{diam}(S^{i,\ell}) \leq C\delta_h \). From [4, Corollary 4.1.15] and after using a scaling argument and noticing that \(\text{diam}(\sigma^{i,\ell}) \leq C\delta_h \), we have that \(\| T^k_h(v) \|_{L^\infty(S^{i,\ell})} \leq C\delta_h^{-\frac{1}{2}} \| v \|_{L^1(\sigma^{i,\ell})} \). It then follows that
\[
\| T^k_h(v) \|_{0,\xi \cap S^{i,\ell}} \leq C\delta_h^{-\frac{1}{2}} \| v \|_{L^1(\sigma^{i,\ell})}
\]

because \(\text{diam}(S^{i,\ell}) \) are pairwise disjoint. We conclude the proof by summing \(\| T^k_h(v) \|_{0,\xi \cap S^{i,\ell}}^2 \) over all \(i, \ell \) and noticing that the \(\sigma^{i,\ell} \) are pairwise disjoint.

Lemma 2. Let \(U \subset \mathbb{R}^N \) be any domain such that \(\bigcup_{i,j} S^{i,\ell} \subset U \) and \(v \in H^{k+1}(U) \) and let \(m \in \mathbb{N}_0 \). If \(m + 1 \leq k \), then
\[
\| T^k_h(v) \|_{0,\xi \cap S^{i,\ell}} \leq C_{\Omega_h} \delta_h^{k-m+\frac{1}{2}} \| v \|_{k+1,U}.
\]
Let $\alpha \leq m$. For $v \in W^{k,\infty}(\Omega)$, Hölder inequality implies that
\[
\|v\|_{m,\Omega} \leq \sqrt{m+1} \|\Omega^{1/2}\|_{W^{m,\infty}(\Omega)}
\]
Therefore, using techniques similar to those used in the proof of Lemma 3 we have that
\[
\|T_h^k(v)|_{\eta(\xi)} - v \circ \eta(\xi)\|_{m,E_t \cap S^{i,\ell}} \leq C \Omega_{\delta h}^{1/2} \|v\|_{1,\Omega_{\delta h}} + \delta h^{k+\frac{1}{2}} \|v\|_{k+1,\Omega_{\delta h}}.
\]
Note that, in contrast with Lemma 2, v is evaluated at ξ whereas T_h^k is evaluated at $\eta(\xi)$.

Proof. Using techniques similar to those used in the proof of Lemma 3 we obtain
\[
\|T_h^k(v)|_{\eta(\xi)} - v \circ \eta(\xi)\|_{0,\Gamma_h} \leq \|T_h^k(v)|_{\xi} - v(\xi)\|_{0,\Gamma_h} + \|T_h^k(v)|_{\eta(\xi)} - T_h^k(v)|_{\xi}\|_{0,\Gamma_h}.
\]
To bound the first term on the right-hand side of (A) we proceed as in the proof of Lemma 3 but now working on the domains $S^{i,\ell} \cap K_j$ (which are still star-shaped with respect to $\sigma^{i,\ell}$) instead of $S^{i,\ell}$. Also, because $v \notin H^{k+1}(\Omega_h)$, we must instead bound the error by a broken norm, e.g., we have that
\[
\|T_h^k(v)|_{\xi} - v(\xi)\|_{0,\Gamma_h} \leq C \delta h^{k+\frac{1}{2}} \|v\|_{k+1,\Omega_{\delta h}}.
\]
On each $S^{i,\ell}$, the second term on the right-hand-side of (A) features the difference of the same polynomial evaluated at the different points $\eta(\xi)$ and ξ. Hence, using the classical first-order Taylor expansion on the polynomial, we have, for $\xi, \eta(\xi) \in S^{i,\ell}$,
\[
\|T_h^k(v)|_{\eta(\xi)} - T_h^k(v)|_{\xi}\|_{E_t \cap S^{i,\ell}} = \|\nabla T_h^k(v)|_{\xi}(\eta(\xi) - \xi)\|_{E_t \cap S^{i,\ell}} \leq C \delta h^{k+\frac{1}{2}} \|\nabla v\|_{0,\sigma^{i,\ell}},
\]
where $\xi' = t \xi + (1 - t)\eta(\xi)$ for some $t \in [0,1]$. For the first inequality we used the fact that, on each $S^{i,\ell}$, $D^{\alpha}T_h^k(v) = T_h^{k-\vert\alpha\vert}(D^{\alpha}v)$; see [4] Proposition 4.1.17. For the last inequality we proceeded as in the proof of Lemma 3. \qed
Lemma 4. If $v \in V_h^k$, then

\begin{equation}
\left\| T_h^{k,k}(v) \right\|_{0,E_i} \leq C_{\Omega,k} \left(\sum_{|\alpha| = k'} h^{-|\alpha| - \frac{1}{2}} \delta_h |\alpha| \right) \|v\|_{0,\Omega_h}.
\end{equation}

In addition, if $v \in V_h^k$ and $m > 0$, then

\begin{equation}
\left\| T_h^{k,k}(v) \right\|_{0,E_i} \leq C_{\Omega,k} \left(\sum_{|\alpha| = k'} h^{-|\alpha| + \frac{1}{2}} \delta_h |\alpha| \right) \|v\|_{1,\Omega_h}.
\end{equation}

Proof. Let $v \in V_h^k$, then it follows from the definition of $T_h^{k,k}(\cdot)$ that

$$
\left\| T_h^{k,k}(v) \right\|_{0,E_i} = \left\| \sum_{|\alpha| = k'} \frac{1}{\alpha!} D^\alpha v(\xi) \xi - \eta(\xi) \right\|_{0,E_i}
\leq \sum_{|\alpha| = k'} \delta_h |\alpha| \frac{1}{\alpha!} \|D^\alpha v(\xi)\|_{0,E_i} \leq C h^{-\frac{d}{2}} \sum_{|\alpha| = k'} \delta_h |\alpha| \frac{1}{\alpha!} \|D^\alpha v\|_{L^\infty(\mathcal{E}_i)}
\leq C h^{-\frac{d}{2}} \sum_{|\alpha| = k'} \delta_h |\alpha| \frac{1}{\alpha!} \|D^\alpha v\|_{0,K_{ji}}.
$$

Using the inverse inequality we have that

$$
\left\| T_h^{k,k}(v) \right\|_{0,E_i} \leq C h^{-\frac{d}{2}} \sum_{|\alpha| = 1} \delta_h |\alpha| \frac{1}{\alpha!} \|v\|_{0,K_{ji}}
$$

so that (36) follows by summing the terms $\left\| T_h^{k}(v) \right\|_{0,E_i}$.

For $m > 0$, we can write

$$
\left\| T_h^{k,k}(v) \right\|_{0,E_i} \leq C h^{-\frac{d}{2}} \sum_{|\alpha| = k'} \delta_h |\alpha| \frac{1}{\alpha!} \|D^\alpha v\|_{0,K_{ji}}
\leq C h^{-\frac{d}{2}} \sum_{|\alpha| = k'} \delta_h |\alpha| \frac{1}{\alpha!} \|v\|_{1,K_{ji}},
$$

where for the last inequality we used the fact that $D^\alpha v = D^{\beta_\alpha} (\partial_{\alpha_i} v)$ for some β_α such that $|\beta_\alpha| = |\alpha| - 1$ and some $i_\alpha \in \{1, \ldots, d\}$. Hence,

$$
\|D^\alpha v\|_{0,\Omega_h} = \|D^{\beta_\alpha} (\partial_{\alpha_i} v)\|_{0,\Omega_h} \leq C h^{-|\beta_\alpha|} \|\partial_{\alpha_i} v\|_{0,\Omega_h} \leq C h^{-|\alpha|} \|v\|_{1,\Omega_h}
$$

so that (37) follows by summing the square of these terms.

Lemma 5. Let $v \in L^2(\Omega_h)$ and $v|_{K_n} \in H^2(K_n)$, for every $K_n \subset \Omega_h$. Then,

$$
\|v\|_{0,\Gamma_h} \leq C_{\Omega,h} (h^{-\frac{d}{2}} \|v\|_{0,\Omega_h} + h^{\frac{1}{2}} \|v\|_{2,\Omega_h}).
$$

Proof. Letting $Q_1^1(u)$ denote the averaged Taylor polynomial of degree 1 defined on the maximal ball included in K_{ji}, we have

$$
\|v\|_{0,E_i} \leq C |E_i|^{\frac{1}{2}} \|v\|_{L^\infty(E_i)} \leq C h^{-\frac{d}{2}} \|v\|_{L^\infty(K_{ji})}
\leq C h^{-\frac{d}{2}} \left(\|v - Q_1^1 v\|_{L^\infty(K_{ji})} + \|Q_1^1 v\|_{L^\infty(K_{ji})} \right)
\leq C h^{-\frac{d}{2}} \left(h^{\frac{1}{2}} \|v\|_{2,K_{ji}} + h^{-\frac{1}{2}} \|v\|_{L^1(K_{ji})} \right) \leq C h^{\frac{1}{2}} \|v\|_{2,K_{ji}} + C h^{-\frac{1}{2}} \|v\|_{0,K_{ji}},
$$

$$
\|v\|_{0,\Gamma_h} \leq C_{\Omega,h} (h^{-\frac{d}{2}} \|v\|_{0,\Omega_h} + h^{\frac{1}{2}} \|v\|_{2,\Omega_h}).
$$
where, for the fourth inequality we have used [4 Corollary 4.1.13] and [3 Proposition 4.3.2] on the domain K_j, which is star shaped with respect to $\sigma_{t,\ell}$.

\begin{proof}

Using the Bramble-Hilbert lemma (see [4, Lemma 4.3.8]), we have
\[C \parallel \tilde{f} - \tilde{T} \parallel_{m,\Omega_h} = C_{k,d} \delta h^{k-m} \parallel f \parallel_{k,\Omega}. \]

\textbf{Proof.} Because $\tilde{f} = \tilde{T} = f$ in Ω,

\[\parallel \tilde{f} - \tilde{T} \parallel_{k,\Omega_h} \leq \parallel f - \tilde{T} \parallel_{k,\Omega_h \setminus (\Omega \cap \Omega_h)}. \]

Using the Bramble-Hilbert lemma (see [4 Lemma 4.3.8]), we have
\[
\parallel \tilde{T} - T_h^{-1} f \parallel_{m,\Omega_h \setminus (\Omega \cap \Omega_h)}^2 \leq \sum_{i,j} \parallel \tilde{T} - T_h^{-1} f \parallel_{m,S^{i,j}}^2 \leq C_{k,d} \sum_{i,j} \delta h^{2(k-m)} \parallel \tilde{T} \parallel_{S^{i,j}}^2 \\
\leq C_{k,d} \delta h^{2(k-m)} \parallel f \parallel_{k,R^N}^2 \leq C_{k,d} \delta h^{2(k-m)} \parallel f \parallel_{k,\Omega}.
\]

Therefore
\[
\parallel \tilde{f} - T_h^{-1} f \parallel_{m,\Omega_h} \leq C_{k,d} \delta h^{k-m} \parallel f \parallel_{k,\Omega},
\]

which holds for \tilde{T} in place of \tilde{f} as well. The lemma follows from noticing that
\[
\parallel \tilde{f} - T_h^{-1} f \parallel_{m,\Omega_h} \leq \parallel \tilde{f} - T_h^{-1} f \parallel_{m,\Omega_h} + \parallel f - T_h^{-1} f \parallel_{m,\Omega_h}.
\]

\end{proof}

\begin{lemma}

Let f, \tilde{f}, and \tilde{T} be as in Lemma 6. Then,
\[
|\langle \tilde{f} - f, v \rangle_{\Omega_h} | \leq C_{k,d} \delta h^{k + \frac{2}{q} - \frac{1}{2}} \parallel f \parallel_{k,\Omega} \parallel v \parallel_{1,\Omega_h} \quad \forall v \in H^1(\Omega_h),
\]

for $0 \leq m \leq k$ and $2 \leq q < 6$ if $\Omega_h \subset R^3$ and $2 \leq q < \infty$ if $\Omega_h \subset R^2$.

\textbf{Proof.} Let $\Omega_h^{\text{diff}} := \Omega_h \setminus (\Omega \cap \Omega_h)$ and note that $|\Omega_h^{\text{diff}}| \sim O(\delta h)$. Because $H^1(\Omega_h)$ is compactly embedded in $L^q(\Omega_h)$, we have, for $p = (\frac{1}{2} - \frac{1}{q})^{-1}$,
\[
|\langle \tilde{f} - f, v \rangle_{\Omega_h} | = |\langle \tilde{T} - f, v \rangle_{\Omega_h \setminus \Omega_h^{\text{diff}}} | \leq \parallel \tilde{T} - f \parallel_{0,\Omega_h^{\text{diff}}} \parallel v \parallel_{L^q(\Omega_h^{\text{diff}})} \parallel 1 \parallel_{L^p(\Omega_h^{\text{diff}})} \\
\leq C_{k,d} \delta h^k \parallel f \parallel_{k,\Omega} \parallel v \parallel_{L^q(\Omega_h)} \parallel \Omega_h^{\text{diff}}\parallel_{L^p(\Omega_h^{\text{diff}})}^\frac{1}{2} \leq C_{k,d} \delta h^k \parallel f \parallel_{k,\Omega} \parallel v \parallel_{1,\Omega_h},
\]

where for the second inequality we used Lemma 6.

\end{proof}

\section*{APPENDIX C. CONTINUITY OF THE L^2 PROJECTION IN $H^1/2$}

In this section, we analyze the stability of the L^2 projection operator in the $H^{1/2}(\Gamma_h)$ topology.

\begin{lemma}

Let $\pi_h : L^2(\Gamma_h) \rightarrow W^k_h$ be the $L^2(\Gamma_h)$ projection from $L^2(\Gamma_h)$ into the discrete trace approximation space. Then, for all $w \in H^{1/2}(\Gamma_h)$, we have that
\[
\parallel \pi_h w \parallel_{1/2,\Gamma_h} \leq C \parallel w \parallel_{1/2,\Gamma_h},
\]

where the constant C does not depend on the mesh size h.

\end{lemma}
Proof: The projection operator \(\pi_h \) is linear and maps \(H^0(\Gamma_h) \) to \(H^0(\Gamma_h) \) and \(H^1(\Gamma_h) \) to \(H^1(\Gamma_h) \). Furthermore, for \(v_0 \in H^0(\Gamma_h) \) and \(v_1 \in H^1(\Gamma_h) \), we have that \(\| \pi_h(v_0) \|_{0, \Gamma_h} \leq C_0 \| v_0 \|_{0, \Gamma_h} \) and \(\| \pi_h(v_1) \|_{1, \Gamma_h} \leq C_1 \| v_1 \|_{1, \Gamma_h} \); see [14, Lemma 1.131]. Using the operator interpolation theory and in particular [4, Proposition 14.1.5], we have that \(\pi_h \) maps \(H^{1/2}(\Gamma_h) \) to \(H^{1/2}(\Gamma_h) \) and that its norm satisfies

\[
\| \pi_h \|_{H^{1/2} \to H^{1/2}} \leq \| \pi_h \|_{H^0 \to H^0} \| \pi_h \|_{H^1 \to H^1} \leq \sqrt{C_0 C_1}.
\]

Hence, for \(w \in H^{1/2}(\Gamma_h) \) we have

\[
\| \pi_h w \|_{1/2, \Gamma_h} \leq \| \pi_h \|_{H^{1/2} \to H^{1/2}} \| w \|_{1/2, \Gamma_h} \leq \sqrt{C_0 C_1} \| w \|_{1/2, \Gamma_h}.
\]

\[\square\]

APPENDIX D. PROOFS OF WELL-POSEDNESS RESULTS

D.1. **Proof of Theorem 1** The bound (27) for \(u, v \in V_h^k \) is derived simply by seeing that

\[
B_{h,D}^0(u, v) = D_h(u, v - R_h u) + \theta_h \langle T_h^k(u) |_{\eta(\xi)}, v \rangle_{\Gamma_h}
\]

\[
\leq C_{\pi, R_h} \| u \|_{1, \Omega_h} \| v \|_{1, \Omega_h} + \theta_h \| T_h^k(u) |_{\eta(\xi)} \|_{0, \Gamma_h} \| v \|_{1, \Omega_h},
\]

where use is made of the trace inequality and Lemma [4].

To show that (28) holds under the hypotheses of the theorem, note that, after applying Lemma [4], we have

\[
\langle T_h^k(u) |_{\eta(\xi)}, u \rangle_{\Gamma_h} = \int_{\Gamma_h} u^2 ds + \langle T_h^k(u) |_{\eta(\xi)} - u, u \rangle_{\Gamma_h}
\]

\[
\geq \| u \|^2_{0, \Gamma_h} - \| T_h^{1,k}(u) |_{\eta(\xi)} \|_{0, \Gamma_h} \| u \|_{0, \Gamma_h}
\]

\[
\geq \| u \|^2_{0, \Gamma_h} - C \left(\sum_{|\alpha| = 1} h^{-|\alpha|} |\delta_h|^{\alpha} \right) \| u \|_{1, \Omega_h} \| u \|_{0, \Gamma_h}.
\]

Second, after applying the Cauchy-Schwarz inequality, Young’s inequality, and the inverse inequality, we have that

\[
D_h(u, u - R_h u) = D_h(u, u) - D_h(u, R_h u)
\]

\[
\geq \| p \|_{1, \Omega_h}^2 - \| R_h \| \| u \|_{1, \Omega_h} \| u \|_{1/2, \Gamma_h} \geq \frac{3}{4} \| p \|_{1, \Omega_h}^2 - \frac{C_{\text{inv}} \| R_h \|}{p h} \| u \|_{0, \Gamma_h}^2.
\]

We then have that

\[
B_{h,D}^0(u, u) \geq \frac{3}{4} \| p \|_{1, \Omega_h}^2 + \left(\theta_h - \frac{C_{\text{inv}} \| R_h \|}{p h} \right) \| u \|_{0, \Gamma_h}^2 - C\theta_h \left(\sum_{|\alpha| = 1} h^{-|\alpha|} |\delta_h|^{\alpha} \right) \| u \|_{1, \Omega_h} \| u \|_{0, \Gamma_h}.
\]

If we assume that \(\theta_h = \frac{C_0}{h} \) with \(C_0 \geq \frac{C_{\text{inv}} \| R_h \|}{\epsilon} \), we have by the Friedrich’s inequality

\[
\frac{3}{4} \| p \|_{1, \Omega_h}^2 + \left(\theta_h - \frac{C_{\text{inv}} \| R_h \|}{p h} \right) \| u \|_{0, \Gamma_h}^2 \geq c \| u \|_{1, \Omega_h}^2;
\]
see \[14\] Lemma B.63]. Hence

\[B^0_{h,D}(u,u) \geq c \|u\|_{1,\Omega_h}^2 - CC_\theta \left(\sum_{|\alpha|=1}^k h^{-\frac{1}{2}} |\alpha| \delta_h |\alpha| \right) \|u\|_{1,\Omega_h} \|u\|_{0,\Gamma_h}. \]

The coercivity condition (28) is achieved given \(\delta_h \sim o(h^{\frac{3}{2}}) \) and \(h \) small enough.

We now prove the stability bound (29). Let \(u_h \) denote the solution to (18) and \(\pi_h : L^2(\Gamma_h) \to W^k_0 \) denote the \(L^2(\Gamma_h) \) projection operator onto \(W^k_0 \). Equation (18)2 is equivalent to

\[u_h(\xi) = \pi_h [g_D \circ \eta(\xi)] - \pi_h \left[T^{1,k}_h(u) \right]_{\eta(\xi)}. \]

Because of this we have that

\[
\|u_h\|_{1,2,\Gamma_h} \leq \|\pi_h[g_D \circ \eta(\xi)]\|_{1,2,\Gamma_h} + \|\pi_h \left[T^{1,k}_h(u) \right]_{\eta(\xi)}\|_{1,2,\Gamma_h}
\]

\[
\leq \|\pi_h[g_D \circ \eta(\xi)]\|_{1,2,\Gamma_h} + C h^{-\frac{1}{2}} \|\pi_h \left[T^{1,k}_h(u) \right]_{\eta(\xi)}\|_{0,\Gamma_h}
\]

\[
\leq C \left(\|g_D \circ \eta(\xi)\|_{1,2,\Gamma_h} + h^{-\frac{1}{2}} \left\| T^{1,k}_h(u) \right\|_{0,\Gamma_h} \right) + \left(\sum_{|\alpha|=1}^k h^{-|\alpha| - \frac{1}{2}} \delta_h |\alpha| \right) \|u_h\|_{1,\Omega_h}
\]

(38)

after utilizing the inequality \(\|\pi_h w\|_{1,2,\Gamma_h} \leq C \|w\|_{1,2,\Gamma_h} \); see Lemma 8, Lemma 4, and the inverse inequality.

Consider now that

\[\|u_h\|_{1,1,\Omega_h}^2 - \|f\|_{-1,\Omega_h} \leq D_h(u_h, u_h - \mathcal{R}_h(u_h)) = \langle \bar{f}, u_h - \mathcal{R}_h(u_h) \rangle_{\Omega_h}. \]

(39)

From this we obtain

\[
\|u_h\|_{1,\Omega_h}^2 \leq C \left(\|\bar{f}\|_{-1,\Omega_h} + \|u_h\|_{1,2,\Gamma_h} \right) \|u_h\|_{1,\Omega_h}.
\]

(40)

Adding \(\|u_h\|_{1,2,\Gamma_h}^2 \) to both sides of the inequality, using the trace inequality, and redefining the constant \(C \), we obtain

\[
\|u_h\|_{1,\Omega_h}^2 + \|u_h\|_{1,2,\Gamma_h}^2 \leq C \left(\|\bar{f}\|_{-1,\Omega_h} + \|u_h\|_{1,2,\Gamma_h} \right) \|u_h\|_{1,\Omega_h}.
\]

We have that \(\|u_h\|_{1,\Omega_h}^2 \leq C(\|u_h\|_{1,\Omega_h}^2 + \|u_h\|_{1,2,\Gamma_h}^2) \); see Thanks to [14] Lemma B.63]. Therefore,

\[
\|u_h\|_{1,\Omega_h} \leq C \left(\|\bar{f}\|_{-1,\Omega_h} + \|u_h\|_{1,2,\Gamma_h} \right).
\]

Subsequently substituting \(\|u_h\|_{1,2,\Gamma_h} \) for its upper bound in (38) yields

\[
\|u_h\|_{1,\Omega_h} - C \left(\sum_{|\alpha|=1}^k h^{-|\alpha| - \frac{1}{2}} \delta_h |\alpha| \right) \|u_h\|_{1,\Omega_h} \leq C \left(\|\bar{f}\|_{-1,\Omega_h} + \|g_D \circ \eta(\xi)\|_{1,2,\Gamma_h} \right).
\]

It then follows that (29) is satisfied if \(\delta_h \sim o(h^{\frac{3}{2}}) \) and \(h \) is small enough.
D.2. Proof of Theorem 2

Recall that $B_{h,N}(u,v) = N_h(u,v) + \tau_N(u,v)$, where

$$\tau_N(u,v) := \langle \overline{p} \circ \eta(\xi) \ T_h^{k-1}(\nabla u) \rangle_{\eta(\xi) \cdot n - \overline{p}(\xi) \ n \ n_h, v \rangle_{\Gamma_h}}.$$

We have

$$\begin{align*}
|\tau_N(u,v)| &\leq \left| \langle (\overline{p} \circ \eta(\xi)) - \overline{p}(\xi) \rangle \nabla u \cdot n_h, v \rangle_{\Gamma_h} \right| + \left| \langle \overline{p} \circ \eta(\xi) \nabla u \cdot (n - n_h), v \rangle_{\Gamma_h} \right|
\end{align*}$$

Because $|\overline{p}(\eta(\xi)) - \overline{p}(\xi)| \leq C\delta_h \|p\|_{C^1(\Gamma_h)}$ and $|\overline{p}(\eta(\xi))(n - n_h)| \leq C\|\overline{p}\|_{C^0(\Gamma_h)}$, we have that

$$|\tau_N(u,v)| \leq C_p(\delta_h + h)\|\nabla u\|_{0,\Gamma_h}\|v\|_{0,\Gamma_h} + C_p\|T_h^{k-1}(\nabla u)\|_{0,\Gamma_h}\|v\|_{0,\Gamma_h}.$$

(41)

Lemma 3 implies that $\|\nabla u\|_{0,\Gamma_h} \leq C h^{-\frac{1}{2}}\|\nabla u\|_{0,\Omega_h} + h^{-\frac{3}{2}}\|\nabla u\|_{2,\Omega_h}$. Combining this with Lemma 3 yields the upper bound

$$|\tau_N(u,v)| \leq C(\delta_h h^{-\frac{1}{2}} + h^{-\frac{3}{2}})\|\nabla u\|_{0,\Omega_h} + (\delta_h h^{-\frac{3}{2}} + h^{-\frac{5}{2}})\|\nabla u\|_{2,\Omega_h} + \delta_h^2\|\nabla u\|_{1,\Omega_h} + \delta_h^k\|\nabla u\|_{k,\Omega_h}$$

where (33) is derived considering that $B_{h,N}(u,v) = N_h(u,v) + \tau_N(u,v)$, $N_h(u,v) \leq M\|u\|_{1,\Omega_h}\|v\|_{1,\Omega_h}$, and the assumption that $\delta_h \sim o(h^{\frac{1}{2}})$.

If $u \in V_h^k$, the discrete continuity bound (40) is derived by proceeding as in the above paragraph but note that using Lemma 3 in (41) to see that

$$\begin{align*}
\|T_h^{k-1}(\nabla u)\|_{\eta(\xi) \cdot n - \overline{p}(\xi) \ n} &\leq \|T_h^{1,k-1}(\nabla u)\|_{\eta(\xi) \cdot n} \\
&\leq C_p\left(\sum_{|\alpha| = 1}^k h^{-\frac{1}{2} - |\alpha|} \delta_h^{|\alpha|} \right) \leq C\|u\|_{0,\Omega_h},
\end{align*}$$

(42)

given that $\delta_h \sim o(h^{\frac{1}{2}})$.

We now show that (31) holds. We have that

$$N_h(u,u) \geq C_{p,q}\|u\|_{1,\Omega_h}^2 \quad \forall u \in V_h^k,$$

(43)

where $C_{p,q} = \min(p, q)$. Using (43), the discrete bound on $|\tau_N(u,v)|$ (i.e., (41) with (42)), and the discrete trace inequality $\|v\|_{0,\Gamma_h} \leq C h^{-\frac{1}{2}}\|v\|_{0,\Omega_h}$ for all $v \in V_h^k$, yields

$$B_{h,N}(u,u) \geq \left[C_{p,q} - C_p\left(\delta_h h^{-\frac{1}{2}} + h^{-\frac{3}{2}} + \sum_{|\alpha| = 1}^k h^{-\frac{1}{2} - |\alpha|} \delta_h^{|\alpha|} \right) \|u\|_{1,\Omega_h} \right] \|u\|_{1,\Omega_h}$$

for all $u \in V_h^k$. This implies (31) if $\delta_h \sim o(h^{\frac{1}{2}})$.

Finally, using (31), one obtains

$$\begin{align*}
\|u_h\|_{1,\Omega_h}^2 &\leq \gamma_N^{-1} B_{h,N}(u_h,u_h) = \gamma_N^{-1} \left(F_h(u_h) + \langle g_N \circ \eta(\xi), u_h \rangle_{\Gamma_h} \right) \\
&\leq C \gamma_N^{-1} \left(\|\overline{f}\|_{-1,\Omega_h} + \|g_N \circ \eta(\xi)\|_{-1/2,\Gamma_h} \right) \|u_h\|_{1,\Omega_h}
\end{align*}$$

and hence (32) is satisfied.
Appendix E. Proofs of error estimates

In this section, we provide the proofs of the error estimates given in Theorems 3 and 5.

E.1. Proof of Theorem 3. We assume that 3 has a solution \(u \in H^{k+1}(\Omega) \) with an extension \(\tilde{u} \in H^{k+1}(\mathbb{R}^N) \). We let \(\tilde{f} = L_D \tilde{u} \), where \(L_D \) denotes the strong operator in 3. The error analysis follows the familiar strategy of breaking up \(u_h \) into a sum of an interpolant \(\tilde{u}_I \) of \(\tilde{u} \) and a discrete error term \(w_h = u_h - u_I \).

We start with a preliminary result that is central to showing optimal convergence in the \(H^1(\Omega_h) \)-norm.

Lemma 9. Let \(u_h \in V_h^k \) denote the solution of the Dirichlet PE-FEM problem (18) and assume that \(g_D \circ \eta(\xi) \in L^2(\Gamma_h) \). Then, we have the stability bound

\[
\|u_h\|_{1,\Omega_h} \leq C(\|\tilde{f}\|_{-1,\Omega_h} + h^{-\frac{1}{2}}\|g_D \circ \eta(\xi)\|_{0,\Gamma_h}).
\]

Proof. From (39) we deduce that

\[
\frac{p}{2} \|u_h\|_{1,\Omega_h}^2 - C\tilde{p} \|u_h\|_{1,\Omega_h} \|u_h\|_{1/2,\Gamma_h} \leq C\|\tilde{f}\|_{-1,\Omega_h} \|u_h\|_{1,\Omega_h}.
\]

Applying the inverse inequality and Cauchy’s inequality gives us

\[
\frac{p}{2} \|u_h\|_{1,\Omega_h}^2 - \frac{Ch^{-1}}{2p} \|u_h\|_{0,\Gamma_h}^2 \leq C\|\tilde{f}\|_{-1,\Omega_h} \|u_h\|_{1,\Omega_h}.
\]

Because we have that

\[
u_h|_{\Gamma_h} = \pi_h[\prod D \circ \eta(\xi) - T_h^{1,k}(u_h)|_{\eta(\xi)}],
\]

where \(\pi_h : L^2(\Gamma_h) \to W_h^k \) is the \(L^2(\Gamma_h) \) projection operator into \(W_h^k \), it follows from Lemma 4 and the continuity of the projection operator in the \(L^2(\Gamma_h) \) topology that

\[
\|u_h\|_{0,\Gamma_h} \leq C \sum_{|\alpha| = 1} h^{-|\alpha|+\frac{1}{2}} \tilde{T}_h^{1,k}(u_h)|_{1,\Omega_h} + C\|g_D \circ \eta(\xi)\|_{0,\Gamma_h}.
\]

Inserting this inequality into (45) yields

\[
\left(\frac{p^2}{4} - C \sum_{|\alpha| = 1} h^{-|\alpha|+\frac{1}{2}} \tilde{T}_h^{1,k}(u_h)|_{1,\Omega_h}^2 \right) \|u_h\|_{1,\Omega_h}^2 \leq C\|\tilde{f}\|_{-1,\Omega_h} \|u_h\|_{1,\Omega_h}^2 + \frac{Ch^{-1}}{2p} \|g_D \circ \eta(\xi)\|_{0,\Gamma_h}^2.
\]

Adding (46) to this inequality and subsequently using Friedrich’s inequality (i.e. \(C\|u\|_{1,\Omega_h}^2 \leq \|u\|_{0,\Gamma_h}^2 + |u|_{1,\Omega_h}^2 \)) and the Cauchy inequality yields

\[
\|u_h\|_{1,\Omega_h}^2 \leq C(\|\tilde{f}\|_{-1,\Omega_h}^2 + h^{-1}\|g_D \circ \eta(\xi)\|_{0,\Gamma_h}^2)
\]

after applying the assumption that \(\delta_h \sim o(h) \).

We proceed with the main result.
Proof of Theorem. Application of the triangle inequality yields an error bound
\begin{equation}
\|\tilde{u} - u_h\|_{1, \Omega_h} \leq \|\tilde{u} - u_I\|_{1, \Omega_h} + \|w_h\|_{1, \Omega_h},
\end{equation}
in terms of the interpolation error and the discrete error, where \(w_h = u_h - u_I\). Standard interpolation results imply optimal convergence of the first term. Thus, to complete the proof it remains to show that the discrete error is also optimal. By linearity, \(w_h \in V_h^k\) satisfies the equation
\begin{equation}
B_{h,D}(w_h, v) = \left\langle \tilde{f} - [-\nabla \cdot (p(x) \nabla u_I)], v - R_h v, \right\rangle_{\Omega_h} + \theta_h \left\langle g_D \circ \eta(\xi) - T_h^k(u_I) \right|_{\eta(\xi)}, v \right\rangle_{\Gamma_h}, \quad \forall v \in V_h^k,
\end{equation}
so that Lemma 5 implies the stability bound
\begin{equation}
\|w_h\|_{1, \Omega_h} \leq C \left\{ \|\tilde{f} - [-\nabla \cdot (p \nabla u_I)]\|_{-1, \Omega_h} + h^{-\frac{1}{2}} \|g_D \circ \eta(\xi) - T_h^k(u_I)\|_{\eta(\xi)} \right\}_{0, \Gamma_h},
\end{equation}
Recalling that \(\tilde{f} = L_D \tilde{u}\), the first term on the right-hand side of (48) satisfies the bound
\begin{equation}
\|\tilde{f} - [-\nabla \cdot (p \nabla u_I)]\|_{-1, \Omega_h} \leq \|\tilde{f} - \tilde{f}\|_{-1, \Omega_h} + \|\nabla \cdot [p \nabla (\tilde{u} - u_I)]\|_{-1, \Omega_h}.
\end{equation}
From Lemma 7 we have that
\begin{equation}
\|\tilde{f} - \tilde{f}\|_{-1, \Omega_h} = \sup_{\chi \in H^1_0(\Omega_h)} \|\tilde{f} - \tilde{f}, \chi\|_{\Omega_h} \leq \begin{cases} \|g_D \circ \eta(\xi) - T_h^k(u_I)\|_{\eta(\xi)} \|f\|_{k-1, \Omega} & \text{if } d = 2, \\
C_{k, d} \delta^k_h \|f\|_{k-1, \Omega} & \text{if } d = 3,
\end{cases}
\end{equation}
whereas standard interpolation theory implies that
\begin{equation}
\|\nabla \cdot [p \nabla (\tilde{u} - u_I)]\|_{-1, \Omega_h} = \sup_{\chi \in H^1_0(\Omega_h)} \|\nabla \cdot (p \nabla (\tilde{u} - u_I) - \nabla \chi)\|_{\Omega_h} \leq C \|\tilde{u} - u_I\|_{1, \Omega_h} \leq C h^k \|u\|_{k+1, \Omega},
\end{equation}
after applying the extension bound, i.e., \(\|\tilde{u}\|_{k+1, \Omega_h} \leq C \|u\|_{k+1, \Omega_h}\). As a result,
\begin{equation}
\|\tilde{f} - [-\nabla \cdot (p \nabla u_I)]\|_{-1, \Omega_h} \leq C h^k (\|u\|_{k+1, \Omega} + \|f\|_{k-1, \Omega}),
\end{equation}
after recalling that \(\delta^h \sim O(h^2)\) if \(d = 2\) and \(\delta^h \sim O(h^3)\), if \(d = 3\).
We now take \(\delta^h \sim O(h^2)\) for \(d = 2, 3\) to simplify the remainder of the proof. To estimate the second term on the right-hand side of (48) we first see that
\begin{equation}
\|g_D \circ \eta(\xi) - T_h^k(u_I)\|_{\eta(\xi)} \|0, \Gamma_h \leq \|g_D \circ \eta(\xi) - T_h^k(u)\|_{\eta(\xi)} \|0, \Gamma_h + \|T_h^k(u)\|_{\eta(\xi)} \|0, \Gamma_h.,
\end{equation}
By Lemma 2 we have that
\begin{equation}
\|g_D \circ \eta(\xi) - T_h^k(u)\|_{\eta(\xi)} \|0, \Gamma_h = \|\tilde{u} \circ \eta(\xi) - T_h^k(u)\|_{\eta(\xi)} \|0, \Gamma_h \leq C_{\Omega, \delta} \|\tilde{u} \circ \eta(\xi) - T_h^k(u)\|_{\eta(\xi)} \|0, \Gamma_h \leq C_{\Omega, h} \|u\|_{k+1, \Omega}.
\end{equation}
after applying the assumption \(\delta \sim o(h^{\frac{3}{2}}) \) in Theorem 1 and the extension bound. Additionally, let \(e_I = \tilde{u} - u_I \) be the interpolation error defined over \(\Omega_h \), then we have that

\[
\| T_h^k(e_I) \|_{\Omega_h} \leq \| T_h^k(e_I) \| - e_I \|_{\Omega_h} + \| e_I \|_{\Omega_h}.
\]

By Lemma 3, we have that

\[
\| T_h^k(e_I) \| - e_I \|_{\Omega_h} \leq C_{\Omega_h} \left(\delta_h \frac{2}{3} \| e_I \|_{1, \Omega_h} + \delta_h k^{\frac{1}{2}} \| e_I \|_{k+1, \Omega_h} \right)
\]

\[
\leq C_{\Omega_h} \left(\delta_h \frac{2}{3} k^2 + \delta_h k^{\frac{3}{2}} \right) \| u \|_{k+1, \Omega}
\]

\[
\leq C_{\Omega_h} k^{\frac{3}{2}} \| u \|_{k+1, \Omega},
\]

where we have again applied the assumption that \(\delta \sim o(h^{\frac{3}{2}}) \) and the extension bound. Further, using the following trace inequality \[1 \] for \(v \in H^1(D) \) and \(D \subset \mathbb{R}^N \) a Lipschitz domain

\[
\| v \|_{\partial D} \leq C \| v \|_{H^1(D)}^{\frac{1}{2}} \| v \|_{L^2(D)}^{\frac{3}{2}},
\]

we have that

\[
\| e_I \|_{\partial \Omega_h} \leq C_{\Omega_h} \| e_I \|_{0, \Omega_h} \| e_I \|_{H^1(\Omega)} \leq C_{\Omega_h} k^{\frac{3}{2}} \| u \|_{k+1, \Omega},
\]

after applying the standard interpolation error bounds and extension bounds. Thus, from this analysis, we have that

\[
\| g_D \circ \eta(\xi) - T_h^k(u_I) \|_{\partial \Omega_h} \leq C h^{k+\frac{1}{2}} \| u \|_{k+1, \Omega}.
\]

Combining (50) and (52) yields the optimal bound

\[
\| u_h \|_{1, \Omega_h} \leq C h^k \left\{ \| u \|_{k+1, \Omega} + \| f \|_{k-1, \Omega} \right\}
\]

for the discrete error which completes the proof.

E.2. Proof of Theorem 4. Our strategy is to couch the PE-FEM problem into a standard Dirichlet finite element formulation, under the additional assumption that \(u \in H^{k+\frac{3}{2}}(\Omega) \) and \(f \in H^{k}(\Omega) \) (and thus, \(\tilde{u} \in H^{k+\frac{3}{2}}(\mathbb{R}^N) \) and \(f \in H^k(\mathbb{R}^N) \)), and then apply the well-known Aubin-Nitsche duality argument to the latter.

We begin with two technical lemmas.

Lemma 10. Assume the hypotheses in Theorem 7 and in addition assume that \(u \in H^{k+\frac{3}{2}}(\Omega) \) and \(\delta_h \sim O(h^2) \). Then, the trace of the discrete error \(u_h \) satisfies the bound

\[
\| u_h \|_{0, \Gamma_h} \leq C h^{k+1} \left\{ \| u \|_{k+1, \Omega} + |\tilde{u}|_{k+1, \Gamma_h} + \| f \|_{k-1, \Omega} \right\}.
\]

Proof. First, we begin with a technical result that arises from the assumption that \(\tilde{u} \in H^{k+\frac{3}{2}}(\mathbb{R}^N) \) and \(\delta_h \sim O(h^2) \). Under these assumptions we may modify the analysis on the \(\| g_D \circ \eta(\xi) - T_h^k(u_I) \|_{\eta(\xi) \partial \Omega_h} \) term in the proof of Theorem 6 so that

\[
\| g_D \circ \eta(\xi) - T_h^k(u_I) \|_{\eta(\xi) \partial \Omega_h} \leq C h^{k+1} \left\{ \| u \|_{k+1, \Omega} + |\tilde{u}|_{k+1, \Gamma_h} \right\}.
\]

This result is immediate after seeing that

\[
|\tilde{u} - u_I|_{0, \Gamma_h} \leq C h^{k+1} |\tilde{u}|_{k+1, \Gamma_h},
\]

and taking \(\delta_h \sim O(h^2) \).
From (18), we have that
\[w_h = \pi_h \left(g_D \circ \eta(x) - T_h^k(u_I) \right)_{\eta(\xi)} - T_h^{1,k}(w_h)_{\eta(\xi)} \]
where \(\pi_h : L^2(\Gamma_h) \to W_h^k \) is the \(L^2 \) projection onto \(W_h^k \). Using the continuity of \(\pi_h \) in \(L^2(\Gamma_h) \), \(\| \cdot \|_{L^2} \), Lemma 4 and (53), we have that
\[
\| w_h \|_{0,\Gamma_h} \leq C \left(\left\| g_D \circ \eta(x) - T_h^k(u_I) \right\|_{\eta(\xi)} \| \eta \|_{0,\Gamma_h} + \left\| T_h^{1,k}(w_h) \right\|_{\eta(\xi)} \right)
\]
\[
\leq C \left(h^{k+1} (\| u \|_{k+1,\Omega} + |\bar{u}|_{k+1,\Gamma_h}) + \left\| T_h^{1,k}(w_h) \right\|_{\eta(\xi)} \right)
\]
\[
\leq C \left(h^{k+1} (\| u \|_{k+1,\Omega} + |\bar{u}|_{k+1,\Gamma_h}) + \sum_{|\alpha| = 1}^{k} h^{-|\alpha|+\frac{1}{2}} \delta_\alpha \| w_h \|_{1,\Omega_h} \right)
\]
\[
\leq C \left(h^{k+1} (\| u \|_{k+1,\Omega} + |\bar{u}|_{k+1,\Gamma_h}) + \sum_{|\alpha| = 1}^{k} h^{k+|\alpha|+\frac{1}{2}} (\| u \|_{k+1,\Omega} + \| f \|_{k-1,\Omega}) \right)
\]
\[
\leq Ch^{k+1} (\| u \|_{k+1,\Omega} + |\bar{u}|_{k+1,\Gamma_h} + \| f \|_{k-1,\Omega}),
\]
thereby proving the result of this lemma.

\[\square \]

Lemma 11. Assume that \(u \in H^{k+\frac{1}{2}}(\Omega) \), \(\delta_h \sim O(h^2) \), and that \(\phi_h \in V_h^k \) satisfies the conditions
\[
\phi_h |_{\Gamma_h} = w_h, \quad \sup_{\xi \in \Gamma_h} |\phi_h| = \sup_{\xi \in \Gamma_h} |w_h|, \quad \text{and} \quad \phi_h = 0 \text{ over } \Omega_h^0,
\]
where \(\Omega_h^0 := \{ \xi \in \mathcal{K}_h : \mathcal{K}_h \cap \Gamma_h = \emptyset \} \). Then,
\[
\| \phi_h \|_{0,\Omega_h} \leq C h^{k+\frac{1}{2}} (\| u \|_{k+1,\Omega} + |\bar{u}|_{k+1,\Gamma_h} + \| f \|_{k-1,\Omega}).
\]

Proof. Let \(\Omega_h^0 := \Omega_h \setminus \Omega_h^0 \). Because \(\phi_h = 0 \) on \(\Omega_h^0 \), the inverse inequality implies
\[
\| \phi_h \|^2_{0,\Omega_h} \leq \sum_{\mathcal{K}_h \in \Omega_h^0} \| \phi_h \|^2_{0,\mathcal{K}_h} \leq \sum_{\mathcal{K}_h \in \Omega_h^0} Ch^d \| \phi_h \|^2_{L^\infty(\mathcal{K}_h)}
\]
\[
= \sum_i Ch^d \| w_h \|^2_{L^\infty(\mathcal{E}_i)} \leq \sum_i Ch \| w_h \|^2_{0,\mathcal{E}_i} = Ch \| w_h \|^2_{0,\Gamma_h}.
\]
The proof follows by an application of Lemma 10. \[\square \]

We proceed with the main result.

Proof of Theorem 4. We couch the PE-FEM Dirichlet problem into an equivalent standard FEM Dirichlet problem as follows. Then, for the extension \(\bar{u} \) we have that \(\bar{u} \in H^1(\Omega_h) \) satisfies
\[
D_h(\bar{u}, v) = \left\langle \bar{f}, v \right\rangle_{\Omega_h} \quad \forall v \in H^1_0(\Omega_h).
\]
Let \(\phi_h \in V_h^k \) denote a function satisfying the hypothesis of Lemma 11. Then, it is not difficult to see that the solution \(u_h \in V_h^k \) of the Dirichlet PE-FEM problem (18) is also a solution to the following weak problem: seek \(u_h \in V_h^k + u_I + \phi_h \) such that
\[
D_h(u_h, v) = \left\langle \bar{f}, v \right\rangle_{\Omega_h} \quad \forall v \in V_h^k.
\]
where \(u_I \in V^k_h \) denotes the interpolant of \(\bar{u} \) over \(\Omega_h \). These results imply that
\[
D_h(\bar{u} - u_h, v) = \left\langle \hat{f} - \hat{f}, v \right\rangle_{\Omega_h}, \quad \forall v \in V^k_h.
\]

Let \(u_h^0 = u_h - u_I - \phi_h \), and consider the following continuous and discrete dual problems: seek \(\psi \in H^1_0(\Omega_h) \) such that
\[
D_h(\chi, \psi) = (u_h^0, \chi)_{\Omega_h} \quad \forall \chi \in H^1_0(\Omega_h)
\]
and \(\psi_h \in V^k_{h,0} \) such that
\[
D_h(\chi, \psi_h) = (u^0_h, \chi)_{\Omega_h} \quad \forall \chi \in V^k_{h,0}.
\]

Under the assumptions made on the domain in the statement of the theorem, we have that (57) satisfies the following continuity bound on polytopial domains [12, 16]
\[
\|\psi\|_{1+s,\Omega_h} \leq C\|u_h^0\|_{0,\Omega_h},
\]
where \(s \in (\frac{1}{2}, 1] \) is a constant dependent on the largest interior angle of \(\partial \Omega_h \). If all interior angles are bounded above by \(\pi \) we have that \(s = 1 \). We also have that the solution of (58) satisfies
\[
\|\psi_h\|_{1,\Omega_h} \leq C\|u_h^0\|_{-1,\Omega_h}.
\]

Combining these results with standard finite element error bounds obtained from Céa’s lemma allows us to conclude that
\[
\|\psi - \psi_h\|_{1,\Omega_h} \leq C h^s \|\psi\|_{1+s,\Omega_h} \leq C h^s \|u_h^0\|_{0,\Omega_h}.
\]

Applying Lemmas 7 and 11 together with standard interpolation results, (56), (59a), and (59b) yields
\[
\|u_h^0\|^2_{0,\Omega_h} = D_h(u_h^0, \psi) = D_h(u_h, \psi) - D_h(u_I + \phi_h, \psi)
\]
\[
= D_h(u_h - \bar{u}, \psi) + D_h(u_I - \bar{u} + \phi_h, \psi)
\]
\[
= D_h(u_h - \bar{u}, \psi - \phi_h) + D_h(u_h - \bar{u}, \psi_h) + D_h(u_I - \bar{u} + \phi_h, \psi - \phi_h)
\]
\[
= D_h(u_h - \bar{u}, \psi - \phi_h) + \left\langle \hat{f} - \hat{f}, \psi_h \right\rangle_{\Omega_h} - \left\langle u_I - \bar{u} + \phi_h, u_h^0 \right\rangle_{\Omega_h}
\]
\[
- \langle u_I - \bar{u} + \phi_h, \bar{p} \nabla \psi \cdot n_h \rangle_{\Gamma_h}
\]
\[
\leq C \left(\|\bar{u} - u_I\|_{1,\Omega_h} \|\psi - \phi_h\|_{1,\Omega_h} + \|\hat{f} - \hat{f}\|_{-1,\Omega_h} \|\psi_h\|_{1,\Omega_h} + \|\bar{u} - u_I\|_{0,\Omega_h} + \|\bar{u} - u_I\|_{0,\Gamma_h} + \|\phi_h\|_{0,\Omega_h} + \|\phi_h\|_{0,\Gamma_h} \right) \|u_h^0\|_{0,\Omega_h}
\]
\[
\leq C h^{k+s} (\|u\|_{k+1,\Omega_h} + \|\bar{u}\|_{k+1,\Gamma_h} + \|f\|_{k,\Omega_h}) \|u_h^0\|_{0,\Omega_h},
\]

after seeing that
\[
D_h(u_I - \bar{u} + \phi_h, \psi) := \int_{\Omega_h} \bar{p} \nabla (u_I - \bar{u} + \phi_h) \cdot \nabla \psi dx
\]
\[
= \int_{\Omega_h} (u_I - \bar{u} + \phi_h) L_D \psi dx + \int_{\Gamma_h} (u_I - \bar{u} + \phi_h) \bar{p} \nabla \psi \cdot n_h ds
\]
from Green’s identity, recalling that $L_D\psi = u^0_h$, and subsequently having that
\[
\langle u_I - \bar{u} + \phi_h, \bar{\nabla} \psi \cdot n_h \rangle_{\Gamma_h} \leq p \left(\| u_I - \bar{u} \|_{1/2, s, \Gamma_h} + \| \phi_h \|_{1/2, s, \Gamma_h} \right) \| \nabla \psi \|_{s - 1/2, \Gamma_h} \\
\leq p \left(\| u_I - \bar{u} \|_{0, \Gamma_h} + \| \phi_h \|_{0, \Gamma_h} \right) \| \psi \|_{1+s, \Omega_h},
\]
Here, the trace is well-defined since we have taken $s > \frac{1}{2}$ (see Remark 7). To complete the proof we use the above result in conjunction with the triangle inequality to obtain
\[
\| \bar{u} - u_h \|_{0, \Omega_h} \leq \| u_h^0 \|_{0, \Omega_h} + \| \bar{u} - u_I \|_{0, \Omega_h} + \| \phi_h \|_{0, \Omega_h}
\]
from which the result of the theorem follows after applying (60), standard interpolation bounds, and Lemma [1].

Remark 7. Because we have assumed that Γ is C^{k+1} smooth, there exists an h_0 such that for all $h < h_0$ we have that the largest interior angle of Γ_h is bounded above by $\frac{\pi}{2}$. This implies that $\psi \in H^{1+s}(\Omega_h)$ with $s > \frac{1}{2}$. Additionally, because the largest interior angle of Γ_h approaches π as $h \to 0$, we have that $s \to 1$ as $h \to 0$. Therefore the L^2 estimate presented above for nonconvex polytopal domains is asymptotically optimal.

E.3. Proof of Theorem [5] We assume that (6) has a solution $u \in H^{k+1}(\Omega)$ with an extension $\tilde{u} \in H^{k+1}(\mathbb{R}^n)$. We denote $\tilde{f} = L_N \tilde{u}$, where L_N is the strong operator in (4). It follows that \tilde{u} satisfies
\[
N_h(\tilde{u}, v_h) - \langle \bar{p} \nabla \tilde{u} \cdot n_h, v_h \rangle_{\Gamma_h} = \left\langle \tilde{f}, v_h \right\rangle_{\Omega_h}, \forall v_h \in V^k_h(\Omega_h).
\]

From the derivation of Strang’s lemma [4, Theorem 10.1.1], we have that
\[
\| \bar{u} - u_h \|_{1, \Omega_h} \leq C_1 \inf_{w \in V^k_h} \left[\| \bar{u} - w \|_{1, \Omega_h} \right. \\
+ \sup_{v \in V^k_h \atop \| v \|_{1, \Omega_h} = 1} \left(|B_{h,N}(\bar{u} - w, v)| + |B_{h,N}(\tilde{u}, v) - F_{h,N}(v)| \right) \right].
\]

Setting $w = u_I$, where $u_I \in V^k_h$ is the Lagrange interpolant of \bar{u}, we have, by (33) and standard interpolation bounds and recalling that we have now required that $\delta_h \leq Ch^2$, that
\[
\sup_{v \in V^k_h \atop \| v \|_{1, \Omega_h} = 1} |B_{h,N}(\bar{u} - w, v)| \leq Ch^k |u|_{k+1, \Omega_h}.
\]
From the definition of $B_{h,N}$ and (61), we have
\[
B_{h,N}(\bar{u}, v) = \left\langle \tilde{f}, v \right\rangle_{\Omega_h} + \left\langle \bar{p} \circ \eta(\xi) T^{-1}_h(\nabla \bar{u})|_{\eta(\xi)} \cdot n, v \right\rangle_{\Gamma_h}.
\]
Recalling (17) we have that
\[
B_{h,N}(\bar{u}, v) = \left\langle \tilde{f}, v \right\rangle_{\Omega_h} + \left\langle g_N \circ \eta(\xi) - \bar{p} \circ \eta(\xi) R^{-1}_h (\nabla \bar{u})|_{\eta(\xi)} \cdot n, v \right\rangle_{\Gamma_h}.
\]
Thus, we have from Lemmas 2 and 7 that

\[
\sup_{v \in V_h^k, \|v\|_{1,\Omega_h} = 1} |B_{h,N}(\tilde{u}, v) - F_{h,N}(v)|
\]

(64)

\[
= \sup_{v \in V_h^k, \|v\|_{1,\Omega_h} = 1} \left| \left\langle \tilde{f} - \bar{f}, v \right\rangle_{\Omega_h} - \left\langle \tilde{p} \circ \eta(\xi) R_h^{k-1}(\nabla \tilde{u}) \eta(\xi) \cdot n, v \right\rangle_{\Gamma_h} \right|
\]

\[
\leq C\delta_h^{k-1} \|f\|_{k-1,\Omega} + C\delta_h^{k+1} \|u\|_{k+1,\Omega} \leq C h^k \left(\|f\|_{k-1,\Omega} + \|u\|_{k+1,\Omega} \right).
\]

The result of the theorem follows by inserting (63) and (64) into (62) and subsequently applying the approximation bound (2).