Probiotics for the Prevention of Antibiotic-associated Diarrhea in Adults

A Meta-Analysis of Randomized Placebo-Controlled Trials

Wanqian Liao, MM,*† Chongxiang Chen, MD,*† Tianmeng Wen, MBBS,‡ and Qingyu Zhao, MD*†

Objective: This meta-analysis aims to combine the latest research evidence to assess the effect of probiotics on preventing antibiotic-associated diarrhea (AAD) in adults.

Methods: PubMed, Cochrane Library, EMBASE, and Web of Science were searched for randomized placebo-controlled trials on probiotics preventing AAD. A random or fixed effect model was used to combine the incidence of AAD (primary outcome) and the adverse event rates. The authors performed subgroup analyses to explore the effects of different participants population, probiotics species, and dosage.

Results: Thirty-six studies were included with 9312 participants. Probiotics reduced the incidence of AAD by 38% (pooled relative risk, 0.62; 95% confidence interval, 0.51-0.74). The protective effect of probiotics was still significant when grouped by reasons for antibiotics treatment, probiotic duration, probiotic dosage, and time from antibiotic to probiotic. However, there were no statistically significant increased adverse events in the probiotics group (relative risk, 1.00; 95% confidence interval, 0.87-1.14).

Conclusions: This updated meta-analysis suggested that using probiotics as early as possible during antibiotic therapy has a positive and safe effect on preventing AAD in adults. Further studies should focus on the optimal dosage and duration of probiotics to develop a specific recommendation.

Key Words: probiotics, prevention, antibiotic-associated diarrhea, diarrhea, adults

(J Clin Gastroenterol 2021;55:469–480)

Antibiotic-associated diarrhea (AAD) is defined as diarrhea developing from the beginning of antibiotic treatment to 6 to 8 weeks after discontinuation, which may contribute to antimicrobial prescription noncompliance and the overconsumption of second-line antibiotics. The prevalence of AAD varies between 5% and 39% in adults. It largely depends on the antibacterial spectrum and pharmacokinetic characteristics including the absorption rate of oral administration and enterohepatic circulation of parenteral administration. The pathogenesis of AAD includes the following 2 aspects: (1) the direct effect of antibacterial agents on the intestinal mucosa; (2) the interference of antibacterial agents on the intestinal flora ecosystem, which leads to normal metabolic dysfunction and overgrowth of pathogens (especially Clostridioides difficile). As a live microorganism, probiotic with adequate amounts can bring health benefits to the host. The mechanisms by which probiotics work on AAD may associate with the following: (1) altering the gut microbiota composition and metabolism; (2) modulating the solute secretion and absorption; and (3) improving the intestinal barrier function and intestinal immune responses. Although several randomized controlled trials (RCTs) and meta-analyses have shown its efficacy in preventing AAD, there are currently no clear clinical practice guidelines for probiotics use in preventing AAD. A review comparing the effectiveness of multiple probiotics suggested that positive or negative generalization about probiotics was inadequate. Strain specificity, the designated patient population, and various treatment conditions would change the effect of probiotics. Therefore, our meta-analysis aims to combine the latest research evidence and compare the effects of probiotic...
References	Risk of Bias	Setting	Mean Age/Range (Treatment Group; Placebo Group)	Time From Antibiotic to Probiotic, d	Probiotic Species	Dosage Per Day	Probiotic Duration (d)	Follow-up Period (From the Cessation of Antibiotics Treatment)					
Armuzzi et al18	Low	Adults, asymptomatic	30/30 40 NR	0	Lactobacillus GG	1.2×10¹⁰ CFU	14 d, AC†+7	3 wk					
Thomas et al19	Low	Adults, in-patient	133/134 57.2/54.4	1	Lactobacillus GG	1×10¹⁰ CFU	14 d	1 wk					
Cremonini et al20	Low	Adults, asymptomatic	63/20 18-61 NR	0	Lactobacillus GG, Saccharomyces boulardii, or the combination of L. acidophilus and Bifidobacterium lactis	6×10⁹, 5×10⁸, or 5×10⁹ CFU	14 d, AC+7	3 wk					
Armuzzi et al18	Low	Adults, asymptomatic	30/30 40 NR	0	Lactobacillus GG	1.2×10¹⁰ CFU	14 d, AC†+7	3 wk					
Thomas et al19	Low	Adults, in-patient	133/134 57.2/54.4	1	Lactobacillus GG	1×10¹⁰ CFU	14 d	1 wk					
Cremonini et al20	Low	Adults, asymptomatic	63/20 18-61 NR	0	Lactobacillus GG, Saccharomyces boulardii, or the combination of L. acidophilus and Bifidobacterium lactis	6×10⁹, 5×10⁸, or 5×10⁹ CFU	14 d, AC+7	3 wk					
Nista et al21	Unclear	Adults, asymptomatic	54/52 46.0/43.0 NR	0	Bacillus clausii	6×10⁹ CFU	14 d, AC+7	3 wk					
Can et al22	Unclear	Adults, asymptomatic	73/78 25-50 NR	2	S. boulardii	1×10¹⁰ CFU	Various, AC	4 wk					
Beausoleil et al23	High	Adults, in-patient	44/45 68.8/72.9 WHO*	2	A combination of L. acidophilus and L. casei	2.5×10¹⁰ CFU for the first 2 days, 5×10¹⁰ CFU for the remaining days, 1000 mg	14 d, AC+7	3 wk					
Cindoruk et al24	Unclear	Adults	62/62 45.82/47.56 NR	0	S. boulardii	6×10⁹ CFU	14 d, AC	6 wk					
Hickson et al25	Unclear	Adults, in-patient	57/56 73.7/73.9 Other definition	2	A combination of L. casei, S. thermophilus and L. bulgaricus	1.94×10¹⁰, 1.94×10¹⁰, and 1.94×10⁹ CFU, respectively	Various, AC +7	4 wk					
Bravo et al26	High	Adults, out-patient	41/45 49.78/50.98 WHO*	1	Amoxicillin	1×10¹⁰ CFU	12 d, AC+ at least 2 d	At least 11 d					
Koning et al27	Unclear	Adults, healthy volunteers	19/19 25.5/28.2 Other definition	0	Amoxicillin	1×10¹⁰ CFU	14 d, AC+7	8 wk					
Authors	Study Group	Study Design	No.	No. (%)	Treatment	Comparator	Lactic Acid Bacteria	Bifidobacteria	Lactobacillus	Prebiotics	Duration	+*	+**
---------	-------------	--------------	-----	---------	-----------	------------	---------------------	----------------	---------------	------------	-----------	-----	-----
Wenus et al	Unclear Adults, in-patient	34/29	58.8/56.2	Adjusted WHO†	Various	3	A combination of *Lactobacillus GGL.* acidophilus and *Bifidobacterium* \(10^9\), \(10^{10}\), and \(10^{11}\) CFU, respectively			14 d	0		
Gao et al	Unclear Adults, in-patient	171/84	60/60	WHO*	One of penicillin, cephalosporin, or clindamycin	1.5	A combination of *L. acidophilus* and *L. casei*			5×10^9 or 1×10^11 CFU	Various, AC +5	26 d	
Lonnermark et al	Unclear Adults, in-patient and out-patient	80/83	47/43	Adjusted WHO†	Various	2	*L. plantarum*			1×10^10 CFU	Various, AC +7	2 wk	
Song et al	High Adults, in-patient	103/111	61/60	Adjusted WHO†	Various	2	A combination of *L. rhamnosus* and *L. acidophilus*			4×10^9 CFU	14 d	0	
Bekar et al	Unclear Adults	46/36	46/43	NR	*H. pylori* eradication	0	A combination of *Lactobacilli, lactic streptococci, yeasts, and acetic acid bacteria*			500 mL	14 d, AC	0	
Cimperman et al	High Adults, in-patient	13/10	42.8/63.6	Adjusted WHO†	Various	4	*L. reuteri*			2×10^8 CFU	28 d	2 wk	
Manfredi et al	Low Adults	73/76	46.4/50.6	NR	*H. pylori* eradication	0	A combination of *L. acidophilus, L. bulgaricus, B. bifidum, and Streptococcus thermophilus*			2×10^6, 2×10^8, 1×10^9, and 2×10^9 CFU, respectively	10 d, AC	0	
Pozzoni et al	Low Adults, in-patient	106/98	79.9/78.5	Other definition WHO*	Various	2	*S. boulardii*			1×10^10 CFU	Various, AC +7	12 wk	
Allen et al	Low Adults, in-patient	1470/1471	77.2/77.0	Adjusted WHO†	Various	7	A combination of *L. acidophilus, B. bifidum and B. lactis*			6×10^10 CFU	21 d	5 wk	
Chatterjee et al	Low Adults, out-patient	176/167	18-70	Adjusted WHO†	One of cefadroxil or amoxicillin	0	A combination of *L. acidophilus* and *Bifidobacterium*			4×10^9 CFU	14 d, AC+7	1 wk	
Padilla et al	Unclear Adults	29/30	56.6	NR	*H. pylori* eradication	0	*L. rhamnosus*			1.2×10^10 CFU	7 d, AC	0	
References	Risk of Bias (Based on Cochrane Handbook)	Setting	Sample Size (Treatment Group; Placebo Group)	Mean Age/Range (Treatment Group; Placebo Group)	Diarrhea Definition	Antibiotic (s)	Time From Antibiotic to Probiotic, d	Probiotic Species	Dosage Per Day	Probiotic Duration (d)	Follow-up Period (From the Cessation of Antibiotics Treatment)		
------------	--	---------	--	---	---------------------	----------------	-------------------------------	-----------------	--------------	----------------------	--		
Selinger et al 39	Unclear	Adults, in-patient	117/112	57.9/57.0	Other definition	Various	2	A combination of B. breve, B. longum, B. infantis, L. acidophilus, L. plantarum, L. paracasei, L. delbrueckii subsp. Bulgaricus and Streptococcus thermophilus	9×10^{11} CFU	Various, AC	+7	4 wk	
Shavakhi et al 40	Low	Adults	90/90	42.3/42.2	NR	H. pylori eradication	0	A combination of L. casei, L. rhamnosus, L. acidophilus, and L. bulgaricus, B. breve and B. longum, and Streptococcus thermophilus	2×10^{8} CFU	14 d, AC	4 wk		
Francavilla et al 41	Low	Adults, dyspepsia	44/43	49/44	NR	H. pylori eradication	0	A combination of 2 strains of L. reuteri	2×10^{8} CFU	7 d, AC	61 d		
Ouwehand et al 42	Low	Adults, in-patient	336/167	49.9/50.0	WHO*	One of broad-spectrum penicillin, cephalosporin, or clindamycin	1.5	A combination of L. acidophilus, L. paracasei and B. lactis	4.17×10^{9} or 1.70×10^{10} CFU	10-21 d, AC+7	4 wk		
Helps et al 43	Low	Adults, in-patient	44/41	62.27/62.49	WHO*	Various	2	L. casei, Shirotia	1.3×10^{10} CFU	Various, AC+7		12 wk after recruitment	
Wright et al 44	Low	Adults	41/46	85.4/86.1	Adjusted WHO*	Various	NA	L. casei, Shirotia	130 mL	Various, AC		4 wk after recruitment	
Ehrhardt et al 45	Unclear	Adults, in-patient	246/231	60.1/56.5	WHO*	Various	2	S. boulardii	3.6×10^{10} CFU	Various but <8 wk, AC+7		7 wk	
Evans et al 46	Low	Adults, healthy volunteers	80/80	34.6/33.9	Other definition	Amoxicillin-clavulanic acid	0	A combination of L. helveticus and L. rhamnosus	0-4×10^{9} and 7.6×10^{9} CFU, respectively				
Study	Location	Affiliation	Population	Clinical Setting	Cause of Diarrhea	Method of Probiotic Administration	Probiotic Composition	Probiotic Dose	Duration	Notes			
-------	----------	-------------	------------	-----------------	------------------	-------------------------------------	----------------------	---------------	-----------	--------			
Shafaghi et al	High Adults	38/38	43.75/43.35	NR	*H. pylori* eradication	3	A combination of *L. casei*, *L. rhamnosus*, *Streptococcus thermophilus*, *B. breve*, *L. acidophilus*, *B. longum*, *L. bulgaricus*	4×10^8 CFU	17 d, 3 days earlier + AC	1 wk			
Chotivitaya-tarakorn et al	Unclear Adults, dyspepsia	54/54	54.15	NR	*H. pylori* eradication	0	A combination of *L. casei*, *L. rhamnosus*, *Streptococcus thermophilus*, *B. breve*, *L. acidophilus*, *B. longum*, *L. bulgaricus*	3565 mg	7 or 14 d, AC	2-3 wk			
Haghdooost et al	Unclear Adults, dyspepsia	88/88	28.34	NR	*H. pylori* eradication	0	A combination of *L. actobacillus* and *Bifidobacterium*	3×10^9 CFU	38 d, AC + 28	10 wk			
Jiang and Zhu	Unclear Adults	111/111	35.2/34.8	NR	*H. pylori* eradication	0	A combination of *L. casei*, *L. rhamnosus*, *B. breve*, *B. longum*, *B. lactis* and *B. bifidum*	1 capsule	14 d, AC	4 wk			
Trallero et al	Unclear Adults	18/18	38.5	Other definition	*H. pylori* eradication	0	Amoxicillin-clavulanic acid	1×10^4 CFU	30 d, AC + 22	22 d			
Romeo et al	Unclear Adults	74/73	18-65	WHO*	Amoxicillin-clavulanic acid	0	Combination including *Lactobacillus GG*	Unclear	7 d, AC	0			
Rajkumar et al	Unclear Adults, inpatient	549/577	73.7/73.5	Other definition	Various	2	A combination of *L. casei*, *L. delbrueckii subsp. bulgaricus* and *S. thermophilus*	2×10^{10}, 2×10^8, and 2×10^8 CFU, respectively	Various, AC + 7	3 wk			

*WHO, diarrhea was defined as ≥ 3 loose stools within a 24-hour period.
†Adjusted WHO, diarrhea was defined as ≥ 3 loose stools/day for at least 2 days.
AC indicates antibiotic course; NR, not reported; WHO, World Health Organization.
products under different conditions through the most comprehensive subgroup analyses.

METHODS

This meta-analysis was conducted strictly following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.8

Selection Criteria

Inclusion criteria: (1) patients limited to the adults both inpatients and outpatients who were prescribed antibiotics for various reasons with probiotics (experimental groups) or placebo (control group); (2) providing the occurrence of AAD; and (3) the study designed as an RCT.

Exclusion criteria: (1) duplicate studies, animal researches, preclinical studies, and case reports; (2) not-blinded trials; (3) unknown probiotics composition; and (4) existing diarrhea in baseline or containing laxative-related diarrhea.

Literature Search

The databases involving the PubMed, EMBASE, Web of Science, and Cochrane Library were searched for the RCTs on probiotics to prevent AAD. Publications in any language from the databases inception to February 2020 were included. The search terms were the combinations of the following Mesh terms and key words: “probiotic(s),” “diarrhea,” “anti-bacterial agents,” “antibiotic(s),” “antibiotic-associated diarrhea,” “placebo,” “randomized,” and “randomized controlled trial.”

Data Extraction and Quality Assessment

The data extraction was conducted using the standardized form by 2 independent researchers (W.L. and Q.Z.). The primary outcome was the occurrence of AAD during the follow-up period. The secondary outcome was the incidence of adverse events. Other data extracted included demographics, participant setting, indications for antibiotics, probiotics species and dosage, probiotics duration, time from antibiotics to probiotics, follow-up period, and diarrhea definition.

The Cochrane Handbook for Systematic Reviews of Interventions9 was applied to assess the quality of the selected studies. Two researchers assessed the eligibility and quality of each article independently. Any discrepancies were resolved through consensus, adjudicated with the support of a third investigator.

Statistical Analyses

We used the RevMan V.5.210 and Stata Release V.15.1 (StataCorp, College Station, TX) to perform the data analyses. The pooled relative risk (RR) and the 95% confidence interval (CI) were determined by a random-effects model (DerSimonian-Laird method11) or a fixed-effects model (Mantel-Haenszel method12). The χ2 test and F statistic were used to evaluate the heterogeneity of included studies.13,14 P < 0.1 or I² > 50% indicated substantial heterogeneity and a random effect would be adopted. Otherwise, a fixed-effects model would be applied. Sensitivity analysis and subgroup analyses were carried out to explore the sources of heterogeneity. In addition, we assessed the publication bias by the funnel plot, Begg test, and Egger tests.15–17

RESULTS

Eligible Studies

A systematic search conducted in February 2020 identified 1789 citations (PubMed 204, Cochrane Library 439, EMBASE 533, and Web of Science 613). Of these studies, 36 RCTs18–53 with 9312 subjects met the inclusion criteria (35 published in English and one in Spanish). Details of the search flow are depicted in Figure 1. The probiotics species studied in the trials primarily included Lactobacillus, Saccharomyces, Bifidobacterium, and Streptococcus. Probiotics were used at the same time as antibiotics or were prolonged by 2 to 28 days after the therapy. Diarrhea was defined by the World Health Organization (WHO) criterion in 8 studies (≥ 3 loose stools within a 24-h period).54 Six studies applied an adjusted WHO criterion (≥ 3 loose or liquid stools/day for at least 2 d). Other RCTs defined diarrhea based on the number of bowel movements per day and the consistency of the stool. Table 1 summarizes the details of participants and intervention.

Quality Assessment

The quality assessment results are shown in Figure 2, whereas Figure 3 displays the risk of bias of individual study. Among the eligible studies, 13 RCTs were triple-blinded, and the reminders were not clearly reported about
Overall Effect of Probiotics

As substantial heterogeneity was observed among the included studies ($P < 0.1$, $I^2 = 58\% > 50\%)$, we calculated the overall AAD rate using a random effect model. Probiotics reduced the incidence of AAD by 38% (RR, 0.62; 95% CI, 0.51-0.74) in comparison with placebo (Fig. 4).

Sensitivity Analyses and Subgroup Analyses

Sensitivity analysis revealed that the pooled RR of probiotic effectiveness was robust. No single study significantly affected the overall effect.

Based on the characteristics of the studies, such as the quality of publications, age, participant setting, dosage, and intervention duration, we carried out a series of subgroup analyses. There were significant differences ($P < 0.1$) among the 4 subgroups including reasons for antibiotics treatment ($P = 0.0007$), probiotic duration ($P = 0.006$), probiotic dosage ($P = 0.05$), and time from antibiotic to probiotic ($P = 0.03$).

Thirteen studies during *Helicobacter pylori* eradication had a higher efficacy than those used antibiotics for other reasons (RR, 0.36; 95% CI, 0.25-0.53; $I^2 = 31\%$ vs. RR, 0.75; 95% CI, 0.63-0.90; $I^2 = 49\%$).

Probiotic duration equal to the antibiotics course is more effective than prolonging at least 7 days after the end of antibacterial treatment (RR, 0.42; 95% CI, 0.33-0.72; $I^2 = 43\%$ vs. RR, 0.77; 95% CI, 0.60-0.98; $I^2 = 52\%$).

The daily dose of probiotics $<10^{10}$ CFU is more effective for preventing AAD (RR, 0.49; 95% CI, 0.33-0.72; $I^2 = 10\%$ vs. RR, 0.74; 95% CI, 0.58-0.95; $I^2 = 55\%$).

Using probiotics within the first 2 days of antibacterial treatment is more beneficial to prevent diarrhea (RR, 0.54; 95% CI, 0.43-0.67; $I^2 = 43\%$ vs. RR, 0.79; 95% CI, 0.60-1.03; $I^2 = 52\%$).

Other subgroups, as shown in Table 2, were also evaluated but were not statistically different.

Adverse Events

A total of 15 studies described adverse events, mainly involving nausea, bloating, and dyspepsia. Four of them reported no adverse events either in the probiotics group or in the placebo, and 2 registered serious adverse events but not attributable to probiotics. There were no statistically significant increased adverse events in the probiotics group (RR, 1.00; 95% CI, 0.87-1.14; $P = 0.97$) (Fig. 5).

Publication Bias

The funnel plot, Begg test, and Egger test were applied to assess the publication bias of the enrolled studies. These results provided evidence of publication bias (Begg test: $z = 2.36$, $Pr > |z| = 0.018 < 0.05$; and Egger test: $t = -4.77$, 95% CI, -2.40 to -0.97; $P < 0.05$). We use the trim and fill method to correct the publication bias and yielded the same pooled RR of 0.62 as initial outcomes, which suggested that results of the overall effect were stable, and publication bias had few effects on the results. Therefore, our asymmetric funnel plot may be caused by other reasons such as studies with low quality or small sample size (Fig. 6).

DISCUSSION

Our meta-analysis indicated a reduction of AAD from 16% in placebo to 13% in probiotic-treated groups (RR, 0.62; 95% CI, 0.51-0.74; random-effects). Further subgroup analyses suggested that the protective effect was still significant when grouped by reasons for antibiotics treatment,
probiotic duration, probiotic dosage, and time from anti-
biotic to probiotic.
Compared with antibiotics treatments for other reasons,
probiotics showed more effective protection during
H. pylori treatment. Certain probiotics, when used as an auxiliary in
H. pylori eradication, can increase the eradication rate and
reduce effects.55 Meta-analyses for *Saccharomyces boulardii*
and *Lactobacillus* both showed statistically promising results.
S. boulardii significantly improved the eradication rates (RR, 1.11; 95% CI, 1.06-1.17) and reduced the incidence of diarrhea
(RR, 0.51; 95% CI, 0.42-0.62).56 So was the *Lactobacillus*
(improving eradication rates: OR, 1.78; 95% CI, 1.21-2.62;
reducing incidence of diarrhea: OR, 0.23; 95% CI, 0.11-0.48).57
In terms of the mechanism of probiotics in
H. pylori eradication, animal investigations have indicated that probiotics may regu-
late immune activity by controlling cytokine and in
flammatory/anti-inflammatory chemokine balance, such as interleukin-8 and
secretory immunoglobulin A, thereby reducing gastric activity
and inflammation. Also, probiotics assisted in promoting the
H. pylori eradication through a physiological or nonspeci-
fic mechanism. Certain probiotics directly or in combination with
their products stimulated gastric epithelium to produce anti-
biotic peptides, inhibited the growth of *H. pylori* by secreting
short-chain fatty acids, competitively inhibited the adhesion of
pathogens to the gastric mucosal layer, improved the epithelial
barrier function, and increased mucin production.58

We also explored the dose effect of probiotics in our
meta-analysis. Our results showed that high-dose probiotics
(≥10^10 CFU/d) were statistically less effective than low-
dose probiotics (*P* = 0.05 < 0.10). However, a previous meta-
analysis conducted by Johnston et al (involving adults and
children) demonstrated that higher dosage (>10^10 CFU/d)
had a more effective trend than lower dosage but not sig-
ificantly (RR, 0.34; 95% CI, 0.23-0.49 vs. RR, 0.61; 95%
CI, 0.08-4.60; *P* = 0.34 > 0.10).59 This may be because we
excluded children and the difference in sample size between
subgroups. Hence, more RCTs on dose-response were
needed to determine whether probiotics in higher doses were
more effective and safe.

Our results are almost consistent with the previous
meta-analysis in terms of the duration and starting time of
probiotics.60,61 It is beneficial to use probiotics as early as
possible to maintain the gut
flora’s stability and prevent the
overgrowth of pathogens. Concerning the optimal duration
of probiotics, we suggested that probiotics use during anti-
biotic therapy can effectively prevent AAD. However,
whether it is necessary to prolong the use of probiotics after
the end of antibiotic treatment still needs more clinical
evidence and theoretical support.

Twelve studies applied *Lactobacillus* as intervention
indicated a more protective trend among all the probiotics
species (RR, 0.67; 95% CI, 0.50-0.91). Among them,
TABLE 2. The Results of Subgroup Analyses

Subgroup	No. Trials	Risk Ratio	95% CI	Heterogeneity Test	P, P	P for Interaction
Overall effect	36	0.62	0.51-0.74	58%, <0.1	—	—
Risk of bias						
Low risk	13	0.72	0.55-0.93	59%, 0.003	0.25	
Unclear risk	18	0.57	0.42-0.77	63%, 0.0002		
High risk	5	0.45	0.27-0.76	0%, 0.82		
Diarrhea definition						
WHO definition	8	0.74	0.55-0.99	64%, 0.007	0.27	
Adjusted WHO definition	6	0.64	0.37-1.11	30%, 0.21		
Others	22	0.53	0.40-0.70	63%, <0.01		
Reasons for antibiotics treatment						
For *H. pylori* eradication	13	0.36	0.25-0.53	31%, 0.13	0.0007	
For other reasons	23	0.75	0.63-0.90	49%, 0.005		
Participant setting						
Hospital	16	0.75	0.60-0.94	61%, 0.0007	0.64	
Community	4	0.69	0.51-0.92	0%, 0.92		
No. antibiotics						
One	8	0.62	0.52-0.75	0%, 0.84	0.68	
Others	28	0.58	0.45-0.75	64%, <0.01		
Probiotic duration						
During antibiotics treatment	12	0.42	0.31-0.58	10%, 0.34	0.006	
At least 1 week after antibiotics	16	0.74	0.58-0.95	55%, 0.004		
No. probiotics species						
One	15	0.64	0.44-0.93	56%, 0.004	0.86	
Mixture	20	0.61	0.49-0.76	60%, 0.0003		
Probiotic dosage (CFU/d)						
≥10¹⁰	14	0.77	0.60-0.98	52%, 0.01	0.05	
<10¹⁰	12	0.49	0.33-0.72	43%, 0.06		
Follow-up duration (from the cessation of antibiotics treatment) (wk)						
≥4	14	0.64	0.47-0.86	64%, 0.0006	0.45	
<4	20	0.54	0.41-0.72	57%, 0.0008		
Probiotic species						
Lactobacillus	12	0.67	0.50-0.91	44%, 0.05	0.10	
S. boulardii	6	0.69	0.39-1.22	47%, 0.09		
Lactobacillus+*Bifidobacterium*	6	0.82	0.57-1.17	56%, 0.04		
Other (mixed) species	12	0.41	0.27-0.63	71%, <0.01		
Time from antibiotic to probiotic (d)						
<2	22	0.54	0.43-0.67	43%, 0.02	0.03	
2-7	13	0.79	0.60-1.03	52%, 0.01		

H. pylori indicates Helicobacter pylori; S. boulardii, Saccharomyces boulardii.

FIGURE 5. Forest plot of adverse events.

This paper can be cited using the date of access and the unique DOI number which can be found in the footnotes.
L. rhamnosus GG (LGG) is the most studied. A meta-analysis proposed that LGG significantly reduced the risk of diarrhea (RR, 0.49; 95% CI, 0.29-0.83). This effect may be related to the colonization of LGG in the intestine. It not only enhances the survival rate of the intestinal epithelium survival and preserves cytoskeletal integrity, but also secretes lectin-like proteins 1 and 2 to resist biofilms produced by various pathogens. Unfortunately, because of the insufficient sample size, some probiotics strains cannot be analyzed separately. In addition, we did not find significant differences in the efficacy of single species and multiple species (RR, 0.64; 95% CI, 0.44-0.93 vs. RR, 0.61; 95% CI, 0.49-0.76; \(P = 0.86 > 0.1 \)).

The type of antibiotic was reported as the strongest predictor for AAD. Although ampicillin/amoxicillin, cephalosporins, and clindamycin used alone were most frequently associated with AAD, other antibiotics, when used in combination, also increased the risk of AAD. Unfortunately, many RCTs did not register specific antibiotics, which prevented us from performing subgroup analysis.

We extracted the data related to adverse events from 15 studies and thus calculated the pooled RR of 1.00 with no statistical significance (95% CI, 0.87-1.14; \(P = 0.97 \)). A comprehensive systematic review on probiotics safety based on 622 studies displayed a pooled RR of 1.00 (95% CI, 0.93-1.07; \(P = 0.999 \)), which was close to our finding. These pieces of evidence were sufficient to show that short-term use of probiotics would not bring about serious side effects on a population without severe systemic disease or immunodeficiency. However, specific patients, including critical illness, using a central venous catheter, immunosuppression, should be sensitive to the adverse effects. Some case reports and clinical studies have reported probiotics-related adverse events involving systemic infections, gastrointestinal side effects, deleterious metabolic activities, and gene transfer. In short, probiotics are safe to use in preventing AAD.

There were some limitations. First, some heterogeneity was observed in our results. Both the subgroup analyses and sensitivity analysis failed to explain the source of heterogeneity. Second, some included studies failed to mention all specific characteristics. Thus, several subgroup analyses could not enroll all the 36 RCTs. Nevertheless, our research also had some advantages. We adopted rigorous inclusion criteria to collect more representative data. During the citations identified, we excluded 2 publications with unknown probiotics composition. To avoid interference with baseline conditions, RCTs that included existing diarrhea or containing laxative-related diarrhea were also excluded. In addition, we conducted subgroup analyses as comprehensive as possible, and the trend of probiotics in some specific situations had been explored.

Our study suggests that using probiotics within 2 days during antibiotic treatment significantly reduces the incidence of AAD in adults and is safe. Besides, the existing evidence showed that S. boulardii supplementation or Lactobacillus supplementation in H. pylori eradication therapy significantly increased the eradication rate and reduced the incidence of diarrhea. But the role of other probiotics in H. pylori eradication had not yet been fully clarified. Of course, to match the population included in this meta-analysis, these findings are restricted to adults without immunodeficiency and the history of intensive care unit.

CONCLUSIONS

Our meta-analysis suggested that during antibiotic treatment, taking probiotics as early as possible has a positive and safe effect on preventing antibiotic-related diarrhea in adults. However, further studies should focus on the optimal dosage and duration of probiotics and pay attention to the strain specificity to develop a specific recommendation.

REFERENCES

1. Beaugerie L, Petit J-C. Microbial-gut interactions in health and disease. Antibiotic-associated diarrhea. *Best Practice & Res Clin Gastroenterol*. 2004;18:337–352.
2. McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. *Future Microbiol*. 2008;3:563–578.
3. Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. *N Engl J Med*. 2002;346:334–339.
4. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol*. 2014;11:506–514.
5. Mekonnen SA, Merenstein D, Fraser CM, et al. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. *Curr Opin Biotechnol*. 2020;61:226–234.
6. Guarino A, Guandalini S, Lo Vecchio A. Probiotics for prevention and treatment of diarrhea. *J Clin Gastroenterol*. 2015;49(suppl 1):S37–S45.
7. Brussow H. Probiotics and prebiotics in clinical tests: an update. *F1000Res*. 2019. [Epub ahead of print].
8. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med*. 2009;151:264–269, W64.
9. Higgins JPT, Green S. Cochrane Collaboration Cochrane Handbook for Systematic Reviews of Interventions. Chichester, England/Hoboken NJ: Wiley-Blackwell; 2008.
10. Review Manager (RevMan) [Computer Program]. Version 5.2. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2012.
11. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7:177–188.
12. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. *J Natl Cancer Inst*. 1959;22:719–748.
13. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration 2011. Available at: www.cochrane-handbook.org. Accessed March 18, 2014.
14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002;21:1539–1558.
15. Langan D, Higgins JP, Gregory W, et al. Graphical analyses to the funnel plot assess the impact of additional evidence on a meta-analysis. J Clin Epidemiol. 2012;65:511–519.

16. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–1101.

17. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

18. Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther. 2001;15:163–169.

19. Thomas MR, Litun SC, Osman DR, et al. Lack of effect of Lactobacillus GG on antibiotic-associated diarrhea: a randomized, placebo-controlled trial. Mayo Clin Proc. 2001;76:883–889.

20. Cremonini F, Di Caro S, Covino M, et al. Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol. 2002;97:2744–2749.

21. Nista EC, Candelli M, Cremonini F, et al. Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: randomized, double-blind, placebo controlled trial. Aliments Pharmacol Ther. 2004;20:1181–1188.

22. Can M, Beşirbelioğlu BA, Avci IY, et al. Prophylactic Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea: a prospective study. Med Sci Monit. 2006;12:PI19–PI23.

23. Beausoleil M, Fortier N, Guénette S, et al. Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: a randomized, double-blind, placebo-controlled trial. Can J Gastroenterol. 2007;21:732–736.

24. Cindoruk M, Erkan G, Karakan T, et al. Efficacy and safety of Saccharomyces boulardii in the 14/30-day Helicobacter pylori therapy: a prospective randomized placebo-controlled double-blind study. Helicobacter. 2007;12:309–316.

25. Hickson M, D’Souza AL, Muthu N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ. 2007;335:80.

26. Bravo MV, Bunout D, Leiva L, et al. Effect of probiotic Saccharomyces boulardii on prevention of antibiotic associated diarrhea in adult outpatients with amoebicillism. Rev Med Chil. 2008;136:981–988.

27. Koning CJM, Jonkers D, Stobberingh EE, et al. The effect of a multispecies probiotic on the intestinal microbiota and bowel symptoms during treatment with antibiotics. J Clin Gastroenterol. 2010;44:106–112.

28. Song HJ, Kim JY, Jung SA, et al. Effect of probiotic Lactobacillus rhamnosus (Lactofill® Capry) for the prevention of antibiotic-associated diarrhea: a prospective, randomized, double-blind, multicenter study. J Korean Med Sci. 2010;25:1784–1791.

29. Bekar O, Yilmaz Y, Gulten M. Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. J Med Food. 2011;14:344–347.

30. Cimperman L, Bayless G, Best K, et al. A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults. J Clin Gastroenterol. 2011;45:785–789.

31. Song HJ, Kim JY, Jung SA, et al. Effect of probiotic Lactobacillus rhamnosus (Lactofill® Capry) for the prevention of antibiotic-associated diarrhea: a prospective, randomized, double-blind, multicenter study. J Korean Med Sci. 2010;25:1784–1791.

32. Bekar O, Yilmaz Y, Gulten M. Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. J Med Food. 2011;14:344–347.

33. Cimperman L, Bayless G, Best K, et al. A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults. J Clin Gastroenterol. 2011;45:785–789.

34. Manfredi M, Bizzarri B, Sacchero RI, et al. Helicobacter pylori infection in clinical practice: probiotics and a combination of probiotics + lactoferin improve compliance, but not eradication, in sequential therapy. Helicobacter. 2012;17:254–263.

35. Pozzoni P, Riva A, Bellaloro A, et al. Saccharomyces boulardii for the prevention of antibiotic-associated diarrhea in adult hospitalized patients: a single-center, randomized, double-blind, placebo-controlled trial. Am J Gastroenterol. 2012;107:922–931.

36. Allen SJ, Wareham K, Wang D, et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England). 2013;382:1249–1257.

37. Chatterjee S, Kar P, Das T, et al. Randomised placebo-controlled double blind multicentric trial on efficacy and safety of Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 for prevention of antibiotic-associated diarrhoea. J Assoc Phys India. 2013;61:708–712.

38. Padilla Ruiz M, Fernández Aguirae M, Arce Nuñez M, et al. Lactobacillus rhamnosus GG supplementation to reduce side-effects of anti-Helicobacter pylori treatment. Rev Gastroenterol Peru. 2013;33:121–130.

39. Selinger CP, Bell A, Cairns A, et al. Probiotic VSL#3 prevents antibiotic-associated diarrhoea in a double-blind, randomized, placebo-controlled clinical trial. J Hosp Infect. 2013;84:159–165.

40. Yagoubaki A, Tabesh M, et al. The effects of multistrain probiotic compound on bismuth-containing triple therapy for Helicobacter pylori infection: a randomized placebo-controlled triple-blind study. Helicobacter. 2013;18:280–284.

41. Francavilla R, Polimeni L, Demichina A, et al. Lactobacillus reuteri strain combination in Helicobacter pylori infection: a randomized, double-blind, placebo-controlled study. J Clin Gastroenterol. 2016;50:407–413.

42. Ouwehand AC, DongLian C, Weijian X, et al. Probiotics reduce symptoms of antibiotic use in a hospital setting: a randomized dose response study. Vaccine. 2014;32:458–463.

43. Helps A, Bell E, MacRitchie R. Prospective randomized double-blind study of efficacy of probiotic milk drink in reducing the incidence of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea. Int J Food Microbiol. 2015;11:145–152.

44. Wright K, Wright H, Murray M. Probiotic treatment for the prevention of antibiotic-associated diarrhoea in geriatric patients: a multicentre randomised controlled pilot study. Aust J Ageing. 2015;34:34–42.

45. Ehrhardt S, Guo N, Hinz R, et al. Saccharomyces boulardii to prevent antibiotic-associated diarrhoea: a randomized, double-masked, placebo-controlled trial. Open Forum Infect Dis. 2016;3:ov011.

46. Evans M, Salewski RP, Christman MC, et al. Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2016;116:94–103.

47. Shafagh A, Pourkazemi A, Khosravani M, et al. The effect of probiotic plus prebiotic supplementation on the tolerance and efficacy of Helicobacter pylori eradication quadruple therapy: a randomized prospective double blind controlled trial. Middle East J Digest Dis. 2016;8:201–210.

48. Chotivitayatarakorn P, Mahachai V, Vilaiachone RK. Effective- ness of 7-day and 14-day moxifloxacin-dexlansoprazole based triple therapy and probiotic supplement for Helicobacter pylori eradication in thai patients with non-ulcer dyspepsia: a double-blind randomized placebo-controlled study. Asian Pac J Cancer Prev. 2017;18:2839–2843.

49. Haghdost M, Taghizadeh S, Montazer M, et al. Double strain probiotic effect on Helicobacter pylori infection treatment: a double-blind randomized controlled trial. Curr J Intern Med. 2017;38:165–171.

50. Jiang L, Zhu W. Probiotics improved the effectiveness and safety of the quadruple Helicobacter pylori eradication therapy. Biomed Res (India). 2018;29:2053–2056.
51. García Trallero O, Herrera Serrano L, Bibián Inglés M, et al. Effect of the administration of a probiotic with a combination of Lactobacillus and Bifidobacterium strains on antibiotic-associated diarrhea. *Rev Esp Quimioter.* 2019;32:268–272.

52. Romeo A, Barreiro C, Miegimolle M, et al. Efficacy of a 7-strain synbiotic mixture in combination with oral antibiotic treatment in preventing antibiotic-associated diarrhea (AAD): prodexigo study. *Turk J Gastroenterol.* 2019;30:S298.

53. Rajkumar C, Wilks M, Islam J, et al. Do probiotics prevent antibiotic associated diarrhoea? Results of a multicentre randomised placebo-controlled trial. *J Hosp Infect.* 2020;105:280–288.

54. WHO. Diarrhoeal disease. Available at: http://www.who.int/mediacentre/factsheets/fs330/en/. Accessed June 1, 2017.

55. Malfertheiner P, Megraud F, 'Morain CA, et al. Management of *Helicobacter pylori* infection— the Maastricht IV/ Florence Consensus Report. *Gut.* 2012;61:646–664.

56. Szajewska H, Horvath A, Kołodziej M. Systematic review with meta-analysis: *Saccharomyces boulardii* supplementation and eradication of *Helicobacter pylori* infection. *Aliment Pharmacol Ther.* 2015;41:1237–1245.

57. Zou J, Dong J, Yu X. Meta-analysis: *Lactobacillus* containing quadruple therapy versus standard triple first-line therapy for *Helicobacter pylori* eradication. *Helicobacter.* 2009;14:97–107.

58. Eslami M, Yousefi B, Kokhaei P, et al. Are probiotics useful for therapy of *Helicobacter pylori* diseases? *Comp Immunol Microbiol Infect Dis.* 2019;64:99–108.

59. Johnston BC, Ma SS, Goldenberg JZ, et al. Probiotics for the prevention of *Clostridium difficile*-associated diarrhea: a systematic review and meta-analysis. *Ann Intern Med.* 2012;157:878–888.

60. Videlo E, Cremonini F. Meta-analysis: probiotics in antibiotic-associated diarrhoea. *Aliment Pharmacol Ther.* 2012;35:1355–1369.

61. Shen NT, Maw A, Tmanova LL, et al. Timely use of probiotics in hospitalized adults prevents *Clostridium difficile* infection: a systematic review with meta-regression analysis. *Gastroenterology.* 2017;152:1889–1900.

62. Szajewska H, Kołodziej M. Systematic review with meta-analysis: *Lactobacillus rhamnosus* GG in the prevention of antibiotic-associated diarrhoea in children and adults. *Aliment Pharmacol Ther.* 2015;42:1149–1157.

63. Mantegazza C, Molinari P, D’Auria E, et al. Probiotics and antibiotic-associated diarrhoea in children: a review and new evidence on *Lactobacillus rhamnosus* GG during and after antibiotic treatment. *Pharmaco Ther.* 2018;128:63–72.

64. Doron S, Snydman DR. Risk and safety of probiotics. *Clin Infect Dis.* 2015;60(suppl 2):S129–S134.

65. Hempel S, Newberry S, Ruelaz A, et al. Safety of probiotics used to reduce risk and prevent or treat disease. *Evid Repl Technol Assess.* 2011;1:1–645.

66. Szajewska H, Konarska Z, Kołodziej M. Probiotic bacterial and fungal strains: claims with evidence. *Digest Dis (Basel, Switzerland).* 2016;34:251–259.

67. McFarland LV. Epidemiology, risk factors and treatments for antibiotic-associated diarrhoea. *Digest Dis (Basel, Switzerland).* 1998;16:292–307.