Single crystal growth and magnetic properties of pseudo-kagome lattice RRhPb ($R = \text{Nd, Sm and Gd}$)

Y Matsumoto1, R Goto1, Y Haga2, Z Fisk2,3, and S Ohara1

1Department of Engineering Physics, Electronics and Mechanics, Graduate school of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
3Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

E-mail: matsumoto.yuji@nitech.ac.jp

Abstract.

We have synthesized single crystals of RRhPb ($R = \text{Nd, Sm and Gd}$) with hexagonal ZrNiAl-type structure from Pb-flux. The crystal structures were confirmed by powder X-ray diffraction and the compositions were determined by electron-probe micro-analyzer (EPMA). We have measured their magnetic properties of RRhPb. It is found that the RRhPb ($R = \text{Nd, Sm and Gd}$) are antiferromagnets with two successive phase transitions with magnetic ordering occurring at $T_{N1} = 3.6$ K and $T_{N2} = 3.4$ K in NdRhPb, $T_{N1} = 11.5$ K and $T_{N2} = 8.3$ K in SmRhPb and $T_{N1} = 17.6$ K and $T_{N2} = 15.3$ K in GdRhPb.

1. Introduction

Rare earth and actinide intermetallic compounds with the hexagonal ZrNiAl-type structure ($RTX : R=\text{rare earth, actinide, } T=\text{transition metal, } X=\text{Al, Ga, In, Sn and Pb}$) are one of the extensively studied systems $[1, 2]$. The R-T(1) layer and T(2)-X layer are stacked along c-axis as shown in Fig. 1. The R ion of the R-T(1) layer coordinates a pseudo-kagome lattice possessing geometrical frustration. The typical 120° array of magnetic moments observed in TbNiIn, DyNiIn, YbAuIn, DyAuIn and ErAuIn arises from this frustration $[3, 4]$.

In heavy fermion systems, interesting magnetic order has been found. CePdAl is a heavy fermion antiferromagnet with antiferromagnetic temperature $T_N = 2.7$ K and specific heat coefficient $\gamma = 250$ mJ/mol K2 $[5]$. The magnetic structure of CePdAl consists of three inequivalent Ce sites. The magnetic ordering vector $q = (1/2, 0, \tau)$ where $\tau \sim 0.35$ weakly depends on temperature. Two-thirds of the Ce ions order while one-third does not order below T_N. The magnetic structure is considered to originate from the geometrical frustration $[6]$.

The search for new compounds with ZrNiAl-type structure is motivated by the possible discovery of new physical phenomena due to the geometrical frustration. Until now, there are few studies on RTPb systems $[7, 8, 9, 10]$ and physical properties have been only reported for CeTPb ($T = \text{Pd, Rh and Pt}$). This prompted the study of single crystal growth and physical properties of RRhPb ($R = \text{Nd, Sm and Gd}$) reported here.
2. Experimental

The single crystals of RRhPb ($R =$ Nd, Sm and Gd) were grown from Pb-flux. 3N (99.9 %) $R =$ Nd, Sm and Gd, 4N Rh, and 5N Pb were reacted in with starting composition of 1:1:10. These materials were placed in an alumina crucible and sealed in an evacuated quartz tube. The sealed tubes were heated to 1150 °C, soaked for 12 hours, then cooled down to 700 °C in 90 hours. The excess Pb was spun off in a centrifuge.

The single phase of the hexagonal ZrNiAl-type structure was confirmed by powder X-ray diffraction. The powder was obtained from crashed single crystals. Figure 2 shows the powder X-ray diffraction patterns of the RRhPb. We mixed in Si powder as a standard. The X-ray diffraction patterns gave $a = 7.706$ Å, $c = 3.951$ Å for NdRhPb, $a = 7.695$ Å $c = 3.876$ Å for SmRhPb, and $a = 7.697$ Å, $c = 3.826$ Å for GdRhPb.

The crystal compositions and homogeneity were determined by using an electron-probe microanalyzer with wavelength dispersive spectrometers (EPMA-WDS; JEOL-8530). We used NdB$_6$, SmB$_6$, Gd$_3$Ga$_5$O$_{12}$, Rh and PbF$_2$ as standard reference materials for EPMA. The chemical compositions were determined to be Nd:Rh:Pb = 1.00:1.02:1.04, Sm:Rh:Pb = 1.00:0.93:0.96 and Gd:Rh:Pb = 1.00:1.05:1.06, which were in good agreement with the ideal 1:1:1 stoichiometry.

The magnetic properties were measured by using a commercial superconducting quantum
interference device magnetometer (Quantum Design).

3. Results and discussion

Figure 3 shows the reciprocal magnetic susceptibility $1/\chi(T)$ of NdRhPb as a function of temperature at 0.1 T. Above 70 K, $1/\chi(T)$ can be fit by a Curie-Weiss law. We estimated that the effective moment μ_{eff} and Weiss temperature θ_p are 3.78 μ_B and -1 K for $H \parallel a$, and 3.83 μ_B and -55 K for $H \parallel c$ respectively, indicating that the effective moment is close to the value expected for Nd$^{+3}$ configuration ($\mu_{\text{eff}} = 3.62 \mu_B$). $\chi(T)$ has a broad kink around $T_{M1} = 3.6$ K and a maximum at $T_{M2} = 3.4$ K for $H \parallel a$. On the other hand, $\chi(T)$ has a maximum $T_{M1} = 3.6$ K but anomaly not observed at $T_{M2} = 3.4$ K for $H \parallel c$. The decreasing of $\chi(T)$ below T_{M1} for $H \parallel c$ is about 5 times larger than that for $H \parallel a$, indicating that the NdRhPb is an antiferromagnet with two successive transition and an Ising-like magnetic structure.

![Figure 3](image-url)

Figure 3. The temperature dependence of reciprocal magnetic susceptibility of NdRhPb at 0.1 T for $H \parallel c$ and a. The inset shows the expanded view of the magnetic susceptibility for $H \parallel c$ (circles, left axis), and for $H \parallel a$ (squares, right axis). The dashed lines indicate the T_{M1} and T_{M2}.

Figure 4 shows the reciprocal magnetic susceptibility of SmRhPb as a function of temperature at 1 T. $\chi(T)$ can not be fit with the susceptibility using a modified Curie-Weiss law $\chi = \chi_0 + C/(T - \theta_p)$ because the parameters were not fixed. We need to estimate the energy level splitting and the valence of Sm-ion in SmRhPb. The $\chi(T)$ has a maximum at $T_{M1} = 11.5$ K and a kink at $T_{M2} = 8.3$ K for $H \parallel c$. For $H \parallel a$, $\chi(T)$ has two anomaly at T_{M1} and T_{M2} and $\chi(T)$ is almost independent to the temperature below T_{M2}, indicating that the magnetic hard axis would be around c-axis.

Figure 5 shows $1/\chi(T)$ of GdRhPb measured in 0.1 T. Above 50 K, $1/\chi(T)$ can be fit with a Curie-Weiss law. We estimated that the μ_{eff} and θ_p are 8.04 μ_B and 9 K for $H \parallel c$, and 8.06 μ_B and 10 K for $H \parallel a$, respectively, indicating that the magnetic anisotropy is weak. The effective moment is close to the value expected for Gd$^{+3}$ ($\mu_{\text{eff}} = 7.94 \mu_B$). A peak at $T_{M1} = 17.6$ K and a weak drop at $T_{M2} = 15.3$ K for $H \parallel c$ and a are observed.

We have measured the magnetic properties of RRhPb (R=Nd, Sm and Gd). We summarized the results in table 1. It is found that the RRhPb (R = Nd, Sm and Gd) are antiferromagnets with two successive phase transitions. The successive transitions with ZrNiAl-type structure have been observed in PrNiAl, NdPdAl, NdNiAl, YbAgGe, and so on [11, 12, 13, 14]. These double transitions appear to be a common phenomena in ZrNiAl-type structure.

This structure has the geometrical frustration. Therefore the suppression of T_M is expected, especially strong for SmRhPb because of its magnetic structure. The T_M of RRhPb (R=Nd, Sm and Gd) roughly follows the de-Gennes scaling (T_M vs. $(gJ-1)^2J(J+1)$, where g_J is the
Figure 4. The temperature dependence of the reciprocal magnetic susceptibility of SmRhPb at 1 T for $H \parallel c$ and a. The inset shows the expanded view of the magnetic susceptibility.

Figure 5. The temperature dependence of reciprocal magnetic susceptibility of GdRhPb at 0.1 T for $H \parallel c$ and a. The inset shows the expanded view of the magnetic susceptibility.

| Sample | T_{M1} | T_{M2} | de-Gennes factor | $|\theta_p|/T_{M1}$ |
|-----------|----------|----------|-----------------|-------------------------------|
| NdRhPb | 3.6 K | 3.4 K | 1.84 | 0.28 ($H \parallel c$), 16.18 ($H \parallel a$) |
| SmRhPb | 11.5 K | 8.3 K | 4.46 | - |
| GdRhPb | 17.6 K | 15.3 K | 17.6 | 0.51 ($H \parallel c$), 0.57 ($H \parallel a$) |

4. Conclusion
We have succeeded in growing the single crystals of RRhPb ($R=$Nd, Sm and Gd) using Pb-flux. We have confirmed the crystal structures of RRhPb ($R=$Nd, Sm and Gd) using powder X-ray
diffraction. The \(RRhPb \) (\(R = \text{Nd}, \text{Sm} \) and \(\text{Gd} \)) are antiferromagnets with two successive phase transitions. The magnetic transitions occur at \(T_{N1} = 3.6 \) K and \(T_{N2} = 3.4 \) K in \(\text{NdRhPb} \) and appear Ising-like. The magnetic transitions take place at \(T_{N1} = 11.5 \) K and \(T_{N2} = 8.3 \) K in \(\text{SmRhPb} \) with magnetic hard axis \(c \). \(\text{GdRhPb} \) exhibits magnetic transitions at \(T_{N1} = 17.6 \) K and \(T_{N2} = 15.3 \) K. The effect of geometrical frustration in \(RRhPb \) (\(R = \text{Nd}, \text{Sm} \) and \(\text{Gd} \)) appears to be negligible.

Acknowledgments
We thank Ms. A. Iwasaka for technical support of EPMA measurements. We thank Mr. M. Taki and Mr. Y. Minamiguchi for technical support. This work was supported by a Grant-in-Aid for Scientific Research Young Scientists B (No 24740248) and a Grant-in-Aid for Scientific Research C (No 26400333) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society of the Promotion of Science (JSPS).

References
[1] Gupta S, and Suresh K G, 2015 *J. Alloys Comp.* 618 562
[2] Sechovsky V, and Havela L, Handbook of magnetic materials (Elsevier, Holland, 1998) Vol. 11, Chap. 1, p. 3
[3] Gondek L, and Szytula A, 2007 *J. Alloys Comp.* 442 111
[4] Gondek L, Szytula A, Baran S, and Velasco J H, 2004 *J. Magn. Magn. Mater.* 272 e443
[5] Schank C, Jährling F, Luo L, Granel A, Wassilew C, Borth R, Olesch G, Bredl C D, Geibel C, and Steglich F, 1994 *J. Alloys Compounds* 207-208 329
[6] Dönni A, Ehlers G, Maletta H, Fischer P, Kitazawa H, and Zolliker M, 1996 *J. Phys.: Condens. Matter* 8 11213
[7] Melnyk G, Gulay L D, and Tremel W, 2012 *J. Alloys Comp.* 528 70
[8] Marazza R, Mazzone D, Riani P, and Zanicchi G, 1995 *J. Alloys Comp.* 220 241
[9] Gulay L D, Kaczorowski D, Szajek A, Pietraszko A, 2008 *J. Phys. and Chem. Solids.* 69 1934
[10] Hermes W, Payapol S, and Pöttgen R, 2007 *Z. Naturforsch.* 62b 901
[11] Javorsky P, Sechovsky V, Arons R R, Burlet P, Ressouche E, Svoboda P, and Lapertoto G, 1996 *J. Magn. Magn. Mater.* 164 183
[12] Keller L, Dönni A, Kitazawa H, Tang J, Fauth F, and Zolliker M, 1998 *Physica B* 241-243 660
[13] Bud’ko S L, Morosan E, and Canfield P C, 2004 *Phys. Rev. B* 69 014415
[14] Umeo K, Yamane K, Muro Y, Katoh K, Niide Y, Ochiai A, Morie T, Sakakibara T, and Takabatake T, 2004 *J. Phys. Soc. Jpn.* 73 537