An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers

Lele Peng1,a, Wei Xu1,b, Liming Li1,c, Shubin Zheng1,d

1 College of Urban Railway Transportation, Shanghai University of Engineering Science, Songjiang, Shanghai 201620, China

apeter.peng_01@139.com, b1163718307@qq.com, c liming0028@126.com, d zhengshubin@126.com

Abstract. An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.

1. Introduction
Photovoltaic (PV) generation system is one of the important renewable energy, which has been widely used in motion carriers such as UAV, bike sharing and internet of things[1]. However, the maximum power point of PV module changes with different solar irradiance and temperature [2]. Therefore, it is necessary to use the maximum power point tracking (MPPT) technique in PV system to obtain high power.

During the past decade, the method of maximum power point tracking technique has developed in a variety of directions, and the typical algorithms are as follows: fraction open circuit voltage/short circuit current [3], incremental conductance (IC) [4], artificial neural network (ANN) [5], perturb and observe (P&O) [6], particle swarm optimization (PSO) [7], genetic algorithm (GA) [8], teaching-learning based optimization(TLBO) [9], fuzzy logic controller (FLC) [10] and sliding-mode controller [11]. Moreover, in low cost practical PV system, perturb and observe is the most used in all these algorithms. However, conventional perturb and observe algorithm has two obvious drawbacks in the case of moving carriers. One is near the maximum power point of PV module, the operating point of PV system is forced to go back and forth around maximum power point[12], results in loss power. The other is that perturb and observe is easy to lose the direction, when the environment is varying [13]. Therefore, the traditional perturb and observe is not suitable for photovoltaic motion carriers.

To obtain high power of PV system, an improved perturbation and observation algorithm is proposed in this paper. The output characteristics of the proposed method are test in simulation and experiment. Moreover, it is found that the energy conversion efficiency of the proposed algorithm has increased by approximately 8.2%.
2. The proposed P&O Algorithm

According to the characteristics analysis of the conventional perturbation and observation algorithm [14], it is found that three parameters $V_{pv}(0)$, ΔV_{pv} and sig play a key role in perturbation and observation algorithm, which is depicted in Eq.(1).

\[
V_{pv}(k+1) = V_{pv}(k) + \text{sig} \Delta V_{pv} \quad k=0,1,2 \ldots
\]

(1)

\[
\Delta \text{sig} = \frac{\Delta P_{pv}}{\Delta V_{pv}} = \frac{P_{pv}(k) - P_{pv}(k-1)}{V_{pv}(k) - V_{pv}(k-1)}
\]

(2)

\[
\text{sig} = \begin{cases}
\Delta \text{sig} < 0, & -1 \\
\Delta \text{sig} > 0, & 1
\end{cases}
\]

(3)

And the estimation of initial voltage $V_{pv}(0)$ can be given by:

\[
V_{pv}(0) = V_{oc,ref} - \left(\frac{n_s I_{sc,ref}}{m_p} + \frac{V_{oc,ref}}{m_p n_s R_{p,ref}} \right) R_{s,ref} - n_r V_{th,ref} \ln \left(\frac{n_s n_r V_{th,ref} + V_{oc,ref} - I_{mp,ref} R_{s,ref}}{n_s n_r V_{th,ref}} \right)
\]

(4)

The step size ΔV_{pv} can be calculated by using tangent error method, as shown in Eq.(5), Eq.(6) and Fig.1.

\[
\Delta V_{pv}(k) = \beta \Delta V_{pv}(k-1)
\]

(5)

\[
\beta = \left| \frac{\tan \theta_1}{\tan \theta_2} \right|
\]

(6)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{The method of ΔV_{pv}.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{The relationship of $\Delta P_{pv}/V_{pv}$ under different irradiance levels.}
\end{figure}

By using Lambert W function [15], the disturbance power ΔP can be given by:
\[
\Delta P = \frac{Z_2}{R_s + R_p} \left[R_p (I_L + I_o) - 2V_{mp} \right] - \frac{V_{mp}}{R_s + R_p} \left[R_p (I_L + I_o) - 2V_{mp} \right] \exp \left(\frac{R_o (R_o I_L + R_o I_o + V_{mp})}{n (kT / q)(R_o + R_p)} \right)
\]

Where \(Z_2 = V_{mp} - U \). According to the Eq.(7), it can be seen that when \(V_{pv} \) converges to the maximum power point, \(\Delta P_{pv} \) becomes very small. If \(V_{pv} = V_{mp} \), then \(\Delta P_{pv} = 0 \). Similarly, if \(K = \frac{\Delta P_{pv}}{V_{mp}} \) exceeds the threshold level \(K \), it implies that the environment changes rapidly shown in Fig.2. Therefore, the direction of the perturbation and observation \(\Delta V_{pv} \) can be determined by the value \(\frac{\Delta P_{pv}}{V_{mp}} \). In summary, the proposed algorithm for photovoltaic motion carriers is illustrated in Fig.3, in which the black boxes are added parts with respect to the traditional perturb and observe algorithm.

![Flow chart of proposed MPPT algorithm.](image)

3. Results and Discussion

In this section, simulation and experimental results of the proposed MPPT algorithm are provided to validate the tracking performance in a common platform [16]. Fig.4 shows the simulation diagram of
photovoltaic motion carrier system. And the specifications for the PV system are listed in Table 1. Moreover, the simulation results with different methods of the PV system are depicted in Fig. 5. Besides, experimental results of PV system under varying environment is given in Fig. 6 and Table 2.

With the Fig. 5, it is easy to see that the proposed perturb and observe algorithm is closest to the theoretical values, which has perfect tracking effect. Compared with the traditional algorithm, it also can be concluded that the proposed method not only has low oscillating power at the stable condition, but also never loses its tracking direction under the fast and slow changing irradiance levels.

Table 1 Specifications for the PV system.

DC-DC converter	MPPT controller
L_1 (mH)	P (W)
C_1 (μF)	I (A)
C_2 (μF)	$V_{mp}(0)$ (V)
f (kHz)	$\Delta V_{mp}(0)$ (V)
2	0.5
470	0.125
1000	16.79
20	0.0012
0.0012	0.14

Fig. 4. Simulation diagram of PV system.

Fig. 5. Simulation results of PV system with different methods.

Fig. 6 shows the experimental results obtained from prototype PV system under varying environment with traditional perturb and observe and proposed method. It is easy to find that the proposed MPPT algorithm not only has higher efficiency but also has faster speed. Moreover, Table 2 reveals that the energy conversion efficiency by the improved method has increased by approximately 8.2%.
Fig. 6. Experimental results of PV system with different methods under varying environment.

Table 2 Output power under different irradiances

Item	Proposed	Conventional
irradiance (W/m²)	300	300
	600	600
	1000	1000
output power (W)	17.56	14.35
	35.89	34.63
	59.77	58.09
efficiency (%)	99.96	81.67
	99.98	96.25
	99.99	97.18

4. Conclusions
This paper proposes an improved perturbation and observation algorithm for photovoltaic motion carriers. By using tangent error method and Lambert W function, a novel technique is proposed to improve the tracking speed and efficiency. Moreover, the tracking performance of the proposed method is evaluated by using simulation and experiment. Comparing with conventional perturb and observe, the proposed method has the best tracking performance, which can be used for motion carriers.

Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant No. 51405287), Shanghai Committee of Science and Technology (Grant No. 15590501400) and Young Teachers Training Plan Foundation of Shanghai University (Grant No. ZZGCD15118)

References
[1] Xiongfeng Zhu, Zheng Guo, Zhongxi Hou. Solar-powered airplanes: A historical perspective and future challenges. Progress in aerospace sciences 2014; 72:36-53.
[2] Mohamed A. Eltawil, Zhengming Zhao. MPPT techniques for photovoltaic applications. Renewable and sustainable energy reviews 2013; 25:793-813.
[3] Hadeed Ahmed Sher, Ali Faisal Murtaza, Abdullah Noman, et al. A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Transactions on Sustainable Energy 2015; 6:1426-1434.
[4] A.Belkaid, I.Colak, O.Isik. Photovoltaic maximum power point tracking under fast varying of solar radiation. Applied Energy 2016; 179:523-530.
[5] Santi Agatino Rizzo, Giacomo Scelba. ANN based MPPT method for rapidly variable shading conditions. Applied Energy 2015; 145:124-132.
[6] Qiyu Li, Shengdun Zhao, Mengqi Wang, Zhongyue Zou, Bin Wang, Qixu Chen. An improved perturbation and observation maximum power point tracking algorithm based on PV module four-parameter model for higher efficiency. Applied Energy 2017; 195:523-537.
[7] Chao K H, Lin Y S, Lai U D. Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays. Applied Energy 2015; 158:609-18.
[8] Dileep G,Singh S N. Application of soft computing techniques for maximum power point tracking of PV system. Solar Energy 2017; 141:182–202.
[9] FathyA,RezkH. A novel methodology for simulating maximum power point trackers using mine blast optimization and teaching learning based optimization algorithms for partially shaded photovoltaic system. J. Renew Sustain Energy 2016; 023503-023511.
[10] L. Suganthi, S. Iniyan, Anand A.Samuel. Applications of fuzzy logic in renewable energy systems-A review. Renewable and sustainable energy reviews 2015; 48:585-607.
[11] Maissa Farhat, Oscar Barambones, Lassaad Sbita. A new maximum power point method based on a sliding mode approach for solar energy harvesting. Applied energy 2017; 185:1185-1198.
[12] Lele Peng, Shubin Zheng, Chai Xiaodong, Liming Li. A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances. Applied Energy 2018; 210(2018):303-306.
[13] Ahmed, Jubaer, Zainal Salam. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy 2015; 150:97-108.
[14] Yuan Lu. Study on maximum power point tracking for photovoltaic power generation system. International Conference on Computer Science and Information Technology 2010.
[15] Peng Lele, Yize Sun, Meng Zhuo. An Improved Model of Photovoltaic Cell Using Lambert Function. Applied Mechanics and Materials; 2013.
[16] Bo-Ruei Peng, Kun-Che Ho, Y. H. Liu. A novel and fast MPPT method suitable for both fast changing and partially shaded conditions. IEEE Transactions on Industrial Electronics, 2017.