Supporting Information

Polycatenar liquid crystals based on bent-shaped chalcone and cyanopyridine molecules.

Rafael L. Coelhoa, Eduard Westphala,b, Daniela Z. Mezaliraa and Hugo Gallardoa

aDepartamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil;
bPresent address: Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil

*Email: hugo@qmc.ufsc.br; fax: +55 48 37216850; tel: +55 48 37219544

Experimental

1. Synthesis

\textit{(E)-1,3-bis(4-hydroxyphenyl)prop-2-en-1-one 2}

BF\textsubscript{3}OEt\textsubscript{2} (10 mmol) was added gradually to a solution of 4-hydroxyacetophenone (20 mmol) and 4-hydroxybenzaldehyde (20 mmol) in dioxane (4 mL), and stirred at room temperature for 2 h. The mixture was added to cold ethyl acetate and the precipitate formed was filtered and washed with water. The resulting solid was purified by column chromatography using hexane/EtOAc 1:1 (v/v), affording a yellow solid. Yield: 46%. M.p.: 200.2-202.4 °C. IR (KBr) \(\nu_{\text{max}} \) cm-1: 3298, 3016, 2802, 2684, 2604, 1643, 1603, 1584, 1562, 1509, 1446, 1344, 1280, 1217, 1262, 1113, 1032, 974, 815, 609, 534, 516.
1H NMR (400 MHz, DMSO-d_6) δ ppm: 10.36 (br, 1 H, O–H), 10.06 (br, 1 H, O–H), 8.05 (d, 2 H, $J = 8.6$ Hz, Ar–H), 7.62 (d, 2 H, $J = 8.6$ Hz, Ar–H), 7.68 (d, 1 H, $J = 15.6$ Hz, =C–H), 7.63 (d, 1 H, $J = 15.6$ Hz, =C–H), 6.89 (d, 2 H, $J = 8.6$ Hz, Ar–H), 6.84 (d, 2H, $J = 8.6$ Hz, Ar–H). 13C NMR (100 MHz, DMSO-d_6): δ ppm = 187.09, 161.95, 159.87, 143.23, 131.00, 130.80, 129.48, 126.03, 118.54, 115.82, 115.34.
2. NMR spectra of compounds Ia-c and IIa-d

Figure S1. (a) 1H NMR spectrum of compound Ia (CDCl$_3$) and (b) 13C NMR spectrum of compound Ia (CDCl$_3$).
Figure S2. (a) 1H NMR spectrum of compound Ib (CDCl$_3$) and (b) 13C NMR spectrum of compound Ib (CDCl$_3$).
Figure S3. (a) 1H NMR spectrum of compound Ic (CDCl$_3$) and (b) 13C NMR spectrum of compound Ic (CDCl$_3$).
Figure S4. (a) 1H NMR spectrum of compound IIa (CDCl$_3$) and (b) 13C NMR spectrum of compound IIa (CDCl$_3$).
Figure S5. (a) 1H NMR spectrum of compound IIb (CDCl$_3$) and (b) 13C NMR spectrum of compound IIb (CDCl$_3$).
Figure S6. (a) 1H NMR spectrum of compound IIc (CDCl$_3$) and (b) 13C NMR spectrum of compound IIc (CDCl$_3$).
Figure S7. (a) 1H NMR spectrum of compound IId (CDCl$_3$) and (b) 13C NMR spectrum of compound IId (CDCl$_3$).
3. MS Spectra

Figure S8. Mass Spectra of compound Ia.

Figure S9. Mass spectra of compound Ib.
Figure S10. Mass spectra of compound Ic.

Figure S11. Mass spectra of compound IIa.
Figure S12. Mass spectra of compound IIb.

Figure S13. Mass spectra of compound IIc.
4. DSC Thermograms

Figure S14. Mass spectra of compound IId.

Figure S15. Thermograms obtained by DSC analysis showing the second cycle of heating and cooling (10 °C min⁻¹) in nitrogen atmosphere for compound Ia.
Figure S16. Thermograms obtained by DSC analysis showing the second cycle of heating and cooling ($10 \, ^\circ\text{C} \, \text{min}^{-1}$) in nitrogen atmosphere for compound Ib.

Figure S17. Thermograms obtained by DSC analysis showing the second cycle of heating and cooling ($10 \, ^\circ\text{C} \, \text{min}^{-1}$) in nitrogen atmosphere for compound IIa.
Figure S18. Thermograms obtained by DSC analysis showing the second cycle of heating and cooling (10 °C min\(^{-1}\)) in nitrogen atmosphere for compound IIb.

Figure S19. Thermograms obtained by DSC analysis showing the second cycle of heating and cooling (10 °C min\(^{-1}\)) in nitrogen atmosphere for compound IIId.
5. TGA curves

Figure S20. Thermogram of compound Ia.

Figure S21. Thermogram of compound Ib.
Figure S22. Thermogram of compound Ic.

Figure S23. Thermogram of compound IIa.
Figure S24. Thermogram of compound IIb.

Figure S25. Thermogram of compound IIc.
Figure S26. Thermogram of compound IId.