Association studies on 11 published colorectal cancer risk loci

Citation for published version:
von Holst, S, Picelli, S, Edler, D, Lenander, C, Dalen, J, Hjern, F, Lundqvist, N, Lindforss, U, Pahlman, L, Smedh, K, Tornqvist, A, Holm, J, Janson, M, Andersson, M, Ekelund, S, Olsson, L, Ghazi, S, Papadogiannakis, N, Tenesa, A, Farrington, SM, Campbell, H, Dunlop, MG & Lindblom, A 2010, 'Association studies on 11 published colorectal cancer risk loci', *British Journal of Cancer*, vol. 103, no. 4, pp. 575-580. https://doi.org/10.1038/sj.bjc.6605774

Digital Object Identifier (DOI):
10.1038/sj.bjc.6605774

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
British Journal of Cancer

Publisher Rights Statement:
Available under Open Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Association studies on 11 published colorectal cancer risk loci

S von Holst1, S Picelli1, D Edler1, C Lenander2, J Dalén3, F Hjern4, N Lundqvist5, U Lindfors1, L Påhlman6, K Smedh7, A Törnvist8, J Holm9, M Janson10, M Andersson11, S Ekelund12, L Olsson1, S Ghazi13, N Papadogiannaki13, A Tenesa14,15, SM Farrington14,15, H Campbell14,15,16, MG Dunlop14,15 and A Lindblom8,1

1Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm S17176, Sweden; 2Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; 3Department of Surgery, St Göran Hospital, Stockholm, Sweden; 4Division of Surgery, Department of Clinical Science, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden; 5Department of Surgery, Upptala University Hospital, Upptala, Sweden; 6Department of Surgery, Department of Surgery, Central Hospital, Västerås, Sweden; 7Department of Surgery, Central Hospital, Karlstad, Sweden; 8Linnéuniversitetet, Gällivare, Sweden; 9Department of Clinical Science, Intervention and Techniques (CLINTEC), Karolinska Institutet, Karolinska University Hospital Huddinge, Sweden; 10Department of Surgery, Örebro University Hospital, Örebro, Sweden; 11Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; 12Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; 13Colon Cancer Genetics Group and Academic Coloproctology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; 14MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK; 15Public Health Sciences, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK

BACKGROUND: Recently, several genome-wide association studies (GWAS) have independently found numerous loci at which common single-nucleotide polymorphisms (SNPs) modestly influence the risk of developing colorectal cancer. The aim of this study was to test 11 loci, reported to be associated with an increased or decreased risk of colorectal cancer: 8q23.3, 8q24.21, 10p14, 11q23.1, 14q22.2, 15q13.3, 16q22.1, 19q13.1 and 20p12.3. According to previous studies, each of these loci is associated with a modest number of risk alleles as reported previously. The loci 9p24 and 14q22.2 could not be confirmed. We show a higher number of risk alleles in affected individuals compared to controls. Four statistically significant genotype–phenotype associations were found; the G allele of rs9929218, 18q21.1 (rs4939827), 9p24 (rs719725), 10p14 (rs10795668), 11q23.1 (rs3802842), 14q22.2 (rs4444235), 15q13.3 (rs4779584), 16q22.1 (rs929218), 18q21.1 (rs4939827), 19q13.1 (rs10411210) and 20p12.3 (rs961253), in a Swedish-based cohort.

RESULTS: Of eleven loci, 5 showed statistically significant odds ratios similar to previously published findings: 8q23.3, 8q24.21, 10p14, 15q13.3 and 18q21.1. The remaining loci 11q23.1, 14q22.2, 19q13.1 and 20p12.3 showed weak trends but somewhat similar to what was previously published. The loci 9p24 and 14q22.2 could not be confirmed. We show a higher number of risk alleles in affected individuals compared to controls. Four statistically significant genotype–phenotype associations were found; the G allele of rs9929218 was associated to older age, the G allele of rs10795668 was associated with a younger age and sporadic cases, and the T allele of rs10411210 was associated with younger age.

CONCLUSIONS: Our study, using a Swedish population, supports most genetic variants published in GWAS. More studies are needed to validate the genotype–phenotype correlations.

Keywords: colorectal cancer; SNP (single-nucleotide polymorphism); association study; risk predisposition

Until some years ago, the candidate-gene approach was the only method available to the researchers for identifying potentially pathogenic variants. However, the fast technological development and the consequent acquisition of large amount of data in the past decade shifted the focus of research to genome-wide association studies (GWAS). Recent GWAS have identified multiple genetic loci associated with an increased or decreased risk of colorectal cancer (CRC) on 8q23.3, 8q24.21, 9p24, 10p14, 11q23.1, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.1 and 20p12.3, explaining, at least to some extent, the genetics behind CRC as a complex disease (Broderick et al, 2007; Haiman et al, 2007; Tomlinson et al, 2007, 2008; Zanke et al, 2007; Houlston et al, 2008; Jaeger et al, 2008; Tenesa et al, 2008). Each of these loci is associated with a modest risk and, although fairly common they contribute very little to the overall burden of CRC. This case–control study focused on the known CRC single-nucleotide polymorphisms (SNPs) in a Swedish-based cohort and to compare our results with previous association studies in other populations. It also tested if there were more CRC patients than controls among individuals with higher number of risk alleles as reported previously (Tomlinson et al, 2010). Genotype–phenotype associations were analysed for age of onset, sex, family history of CRC and tumour location.

MATERIALS AND METHODS

Subjects

The case cohort was composed of 1786 consecutive CRC patients of Swedish origin recruited through the Swedish Low-Risk CRC Study Group from 14 different hospitals from central Sweden.
during 2004–2006. The mean age (at diagnosis) was 68.6 years (range 28–95 years), 53% were men and 47% were women and 22% had a family history of CRC among first- or second-degree relatives. The control cohort was composed of 1749 individuals as follows: 1319 blood donors from the general population between the age of 18 and 65 years and 430 unaffected spouses of CRC patients with the mean age of 66.3 (25–92) years, which were cancer-free and did not have a family history of any type of cancer.

Loci and SNPs

Exploiting linkage disequilibrium between SNPs, we selected one SNP from each locus among those published. Thus we genotyped rs6983267 on 8q24.21, rs719725 on 9p24, rs10795668 on 10p14, rs3802842 on 11q23.1, rs4444235 on 14q22.2, rs4779584 on 15q13.3, rs9929218 on 16q22.1, rs4939827 and rs3802842 were performed, using a technology developed by Nanogen, at deCode Genetics, Reykjavik, Iceland (http://www.decode.com).

Quality control

Sequencing was performed using Big-Dye terminator v3.1 cycle sequencing kit (Applied Biosystems), and fragments were separated on an ABI 3730 XL capillary sequencer. Chromatograms were analysed using Sequase v2.5 (Applied Biosystems). Primers and amplification conditions are available upon request.

Genotype–phenotype analysis

We studied sex, age of onset (early vs late, >60 years), family history of CRC (any case of CRC among first- or second-degree relatives), location, colon vs rectum and right vs left (proximal and distal to the splenic flexure).

Statistical analysis

Deviations of the genotype frequencies in cases and controls from those expected under Hardy–Weinberg equilibrium were calculated by \(\chi^2 \)-tests (one degree of freedom). Allelic frequencies of the SNPs in the case and control groups were compared using a \(\chi^2 \)-test (allele 1 (common) vs allele 2 (minor)), except for rs6983267 where the common allele is suggested to be the risk allele (Tomlinson et al, 2007). Where the most common allele G was suggested to be the risk allele (Tomlinson et al, 2007). To make comparisons, we chose to present risk and differences between cases and controls in the Swedish population is shown in Figure 1. There is a clear shift with a higher number of alleles in affected individuals compared to controls.

Genotype–phenotype analysis was performed for all 11 loci and for sex, age, family history and tumour location, and the \(P \)-values for all analyses are shown in Table 2. Four associations were found, three for age and one for family history (Table 3). Being homozygous for the risk allele G for rs6983267 was associated with older age (\(P = 0.0014 \)). In contrast, for rs10795668 the risk allele G was associated with younger age (\(P = 0.035 \)) and sporadic cases (\(P = 0.047 \)). The T allele of rs10411210 was associated with younger age (\(P = 0.045 \)) in homozygotes (Table 3).

DISCUSSION

We studied SNPs on 11 loci published to be associated with an increased or decreased risk for CRC and were able to show statistically significant results for 5 of them. The first SNP, rs6983267 on 8q24.21, was published by Tomlinson et al (2007), where the most common allele G was suggested to be the risk allele. Our study showed similar results as previous studies in other populations (Berndt et al, 2008; Tuapanen et al, 2008; Wokolorczyk et al, 2008; Curtin et al, 2009; Middeldorp et al, 2009). Likewise, the SNP rs16892766 on 8q23.3 was similar to both the GWAS study and one replicative study (Tomlinson et al, 2008; Wijnen et al, 2009). The protective effect associated with rs10795668 on 10p14 was confirmed for homozygous carriers in the Swedish material (Tomlinson et al, 2008). The SNP rs4779584 on 15q13.3, published by Jaeger et al (2008) as a risk association was confirmed and showed similar ORs as in previous publications (Broderick et al, 2007; Tomlinson et al, 2007, 2008; Jaeger et al, 2008). For SNP rs16892766 on 8q23.3, an increased risk of CRC was identified (\(P < 0.002 \)) for homozygous carriers in the recessive model with the highest OR equal to 1.34 (1.13–1.60) for the heterozygous. Likewise, the increased risk suggested for the variant rs6983267 on 8q24.21 was confirmed in all the analyses, with the highest OR equal to 1.37 (1.13–1.67) for the homozygous state. rs4779584 on 15q13.3 has been associated with an increased risk that could be confirmed for the heterozygous individuals, OR = 1.18 (1.02–1.36).

The protected effects suggested for rs10795668 on 10p14 and rs4939827 on 18q21.1 were both confirmed for homozygous and heterozygous with an OR equal to 0.66 (0.52–0.83) and OR 0.82 (0.70–0.96), respectively. The ORs for rs3802842 on 11q23.1 showed a trend with an OR equal to 1.27 (NS) for homozygous. The rs9929218 on 16q22.1, rs10411210 on 19q13.1 and rs961253 on 20p12.3 showed weak trends in the same direction as published (NS), whereas the two SNPs rs719725 on 9p24 and rs4444235 on 14q22.2 were not confirmed. The distribution of risk alleles between cases and controls in the Swedish population is shown in Figure 1. There is a clear shift with a higher number of alleles in affected individuals compared to controls.
Locus/SNP	OR published	Genotypes	No cases (%)	No controls (%)	OR (95% CI)	P-values
8q23.3						
rs16892766	1.27 (het)	AA	1379 (79)	1404 (83)	1.24 (1.13–1.60)	0.0009
	1.43 (hom)	AC	356 (20)	270 (16)	1.20 (0.63–2.30)	0.586
Tomlinson et al, 2008	AC+CC	Allelic			1.33 (1.13–1.58)	0.0009
		Trend			1.29 (1.10–1.51)	0.0016
8q24.21	1.27 (het)	TT	397 (23)	332 (19)	1.20 (1.01–1.43)	0.04
rs6983267	1.47 (hom)	TG	890 (51)	892 (51)	1.37 (1.13–1.67)	0.001
Tomlinson et al, 2007	AG+GG	Allelic			1.26 (1.07–1.48)	0.006
		Trend			1.16 (1.06–1.28)	0.0015
9p24	1.14 (com)	AA	672 (39)	669 (39)	1.03 (0.89–1.19)	0.733
rs719725		AC	821 (48)	797 (46)	0.91 (0.74–1.12)	0.368
Zanke et al, 2007	CC	Allelic			0.97 (0.88–1.07)	0.554
		Trend			0.96	0.554
10p14	0.87 (het)	GG	853 (48)	745 (44)	0.90 (0.78–1.04)	0.151
rs10795668	0.80 (hom)	GA	779 (44)	754 (44)	0.997 (0.87–1.14)	0.971
Tomlinson et al, 2008	GA+AA	Allelic			0.85 (0.75–0.97)	0.018
		Trend			0.85 (0.76–0.94)	0.001
11q23.1	1.11 (com)	AA	941 (53)	926 (55)	1.03 (0.90–1.19)	0.659
rs3802842		AC	688 (39)	656 (39)	1.27 (0.96–1.66)	0.076
Tenesa et al, 2008	CC	Allelic			1.07 (0.93–1.22)	0.347
		Trend			1.08 (0.97–1.21)	0.143
14q22.2	1.13 (het)	TT	573 (33)	533 (32)	1.02 (0.84–1.23)	0.872
rs444235	1.23 (hom)	TC	829 (47)	838 (49)	0.95 (0.82–0.99)	0.455
Houlston et al, 2008	TC+CC	Allelic			0.997 (0.91–1.10)	0.951
		Trend			1.00	0.952
15q13.3	1.23 (het)	CC	1050 (61)	1104 (65)	1.11 (0.82–1.50)	0.496
rs4779584	1.70 (hom)	CT	572 (35)	511 (30)	1.17 (1.02–1.34)	0.029
Jaeger et al, 2008	TT	Allelic			1.12 (1.00–1.26)	0.051
		Trend			1.096	0.057
16q22.1	0.92 (het)	GG	929 (53)	913 (54)	1.06 (0.92–1.22)	0.404
rs9929218	0.82 (hom)	GA	700 (40)	648 (38)	0.81 (0.62–1.05)	0.108
Houlston et al, 2008	GA+AA	Allelic			1.02 (0.90–1.16)	0.810
		Trend			1.12 (1.00–1.26)	0.051
					0.945	0.566
18q21.1	0.86 (het)	TT	501 (28)	408 (24)	0.82 (0.70–0.96)	0.013
rs4939827	0.73 (hom)	TC	886 (50)	884 (53)	0.83 (0.69–1.01)	0.059
Broderick et al, 2007	TC+CC	Allelic			0.82 (0.71–0.96)	0.011
		Trend			0.91	0.048
19q13.1	0.87 (het)	CC	1490 (84)	1421 (83)	0.93 (0.77–1.11)	0.411
rs10411210	0.72 (hom)	CT	264 (15)	272 (16)	0.89 (0.62–1.22)	0.753
Houlston et al, 2008	CT+TT	Allelic			0.92 (0.77–1.11)	0.389
		Trend			0.93 (0.78–1.10)	0.385
					0.930	0.387
Table 1 (Continued)

Locus/SNP	OR published	Genotypes	No cases (%)	No controls (%)	OR (95% CI)	P-values
20p12.3		CC	694 (39)	693 (40)	1	
rs961253	1.14 (het)	CA	806 (46)	791 (46)	1.02 (0.88 – 1.18)	0.813
	1.24 (hom)	AA	265 (15)	237 (14)	1.12 (0.91 – 1.37)	0.290
Houlston et al., 2008		CA+AA			1.04 (0.91 – 1.19)	0.568
		Allelic			1.05 (0.95 – 1.16)	0.344
		Trend			1.05	0.349

Abbreviations: allelic = allele frequency difference; trend = Armitage’s trend test; com = common odds ratio; hom = homozygous; het = heterozygous; all = allelic. Minor allele frequencies Swedish cohort cases/controls: 8q23.3 (0.11/0.09), 8q24.21 (0.49/0.45), 9p24 (0.37/0.38), 10p14 (0.30/0.34), 11q23.1 (0.27/0.26), 14q22.2 (0.44/0.44), 15q13.3 (0.22/0.20), 16q22.1 (0.27/0.27), 18q21.1 (0.47/0.49), 19q13.1 (0.08/0.09), 20p12.3 (0.38/0.37). The bold values indicate P < 0.005.

Figure 1 Polygenic model of 11 CRC-related SNPs. Distribution of risk alleles among cases and controls: black, cases; grey, controls.
more studies aiming to define additional SNPs and hopefully also some more high-penetrant predisposing genes are welcomed.

ACKNOWLEDGEMENTS

We thank the patients for collaboration and Berith Wejderot for excellent administrative service. This study was funded by The Swedish Cancer Society, the Swedish Research Council, Stockholm County Council and the Stockholm Cancer Society. The work carried out in Edinburgh was funded by grants from Cancer Research UK (C348/A8896); a Centre Grant from CORE as part of the Digestive Cancer Campaign (http://www.corecharity.org.uk); Scottish Government Chief Scientist Office (K/OPR/2/2/D333); Medical Research Council (G0000657-53203).

REFERENCES

Berndt SI, Potter JD, Hazra A, Yeager M, Thomas G, Makar KW, Welch R, Cross AJ, Huang WY, Schoen RE, Giovannucci E, Chan AT, Chanock SJ, Peters U, Hunter DJ, Hayes RB (2008) Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet 17: 2665–2672.

Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, Jaeger E, Vijayakrishnan J, Kemp Z, Gorman M, Chandler I, Papaemmanuil E, Penegar S, Wood W, Sellick G, Qureshi M, Teixeira A, Domingo E, Barclay E, Martin L, Sieber O, Kerr D, Gray R, Petö J, Cazier JB, Tomlinson I, Houlston RS (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39: 1315–1317.

Curtin K, Lin WY, George R, Katory M, Shorto J, Cannon-Albright LA, Bishop DT, Cox A, Camp NJ (2009) Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev 18: 616–621.

Haiman CA, Le Marchand L, Yamamato J, Stram DO, Kolonel LN, Wu AH, Reich D, Henderson BE (2007) A common genetic risk factor for colorectal and prostate cancer. Nat Genet 39: 954–956.
Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, Chandler I, Vijayakrishnan J, Sullivan K, Penegar S, Carvajal-Carmona L, Howarth K, Jaeger E, Spain SL, Walther A, Barclay E, Martin L, Gorman M, Domingo E, Teixeira AS, Kerr D, Cazier JB, Niittymaki I, Tuupanen S, Karhu A, Aaltonen LA, Tomlinson IP, Farrington SM, Tenesa A, Prendergast JG, Barnetson RA, Catnerrsky R, Porteous ME, Pharoah PD, Koessler T, Hampe J, Busch S, Schafmayer C, Tepel J, Schreiber S, Volzke H, Chang-Claude J, Hoffmeister M, Brenner H, Zanke BW, Montpetit A, Hudson TJ, Gallinger S, Campbell H, Dunlop MG (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40: 1426–1435.

Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P, Walther A, Spain S, Pittman A, Kemp Z, Sullivan K, Heinimann K, Lubbe S, Domingo E, Barclay E, Martin L, Gorman M, Chandler I, Vijayakrishnan J, Wood W, Pappaemmanil E, Penegar S, Qureshi M, Farrington S, Tenesa A, Cazier JB, Kerr D, Gray R, Peto J, Dunlop M, Campbell H, Thomas H, Houlston R, Tomlinson I (2008) Common genetic variants at the CRACI (HMFS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40: 26–28.

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skyttåe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78–85.

Middeldorp A, Jagmohan-Changur S, van Eijk R, Tops C, Devilee P, Van HS, Hes FJ, Houlston R, Tomlinson I, Hoving-Duistermaat JJ, Wijn Jten JT, Morreau H, van Wezel T (2009) Enrichment of low penetrance susceptibility loci in a Dutch familial colorectal cancer cohort. Cancer Epidemiol Biomarkers Prev 18: 3062–3067.

Pittman AM, Webb E, Carvajal-Carmona L, Howarth K, Di Bernardo MC, Broderick P, Spain S, Walther A, Price A, Sullivan K, Twiss P, Fielding S, Rowan A, Jaeger E, Vijayakrishnan J, Chandler I, Penegar S, Qureshi M, Lubbe S, Domingo E, Kemp Z, Barclay E, Wood W, Martin L, Gorman M, Thomas H, Peto J, Bishop T, Gray R, Maher ER, Lucassen A, Kerr D, Evans DG, Schafmayer C, Buch S, Volzke H, Hampe J, Schreiber S, John U, Koessler T, Pharoah P, van Wezel T, Morreau H, Wijn Jten JT, Hopper JL, Southey MC, Giles GG, Severi G, Castelli-Bel S, Ruiz-Ponte C, Carracedo A, Castells A, Forsti A, Hemminki K, Vodicka P, Naccarati A, Aaltonen L, Houlston S, Chung KL, Sham PC, Raj J, Agundez JA, Ladero JM, de la Hoya M, Caldes T, Niittymaki I, Tuupanen S, Karhu A, Aaltonen LA, Cazier JB, Campbell H, Dunlop MG, Houlston RS (2008) A genome-wide association study identifies colorectal cancer susceptibility locus on chromosomes 10p14 and 8q23.3. Nat Genet 40: 623–630.

Tuupanen S, Niittymaki I, Nousiainen K, Vanharanta S, Mecklin JP, Nuovoa K, Javvini H, Hautaniemi S, Karhu A, Aaltonen LA (2008) Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res 68: 14–17.

Wijten JT, Brohet RM, van Eijk R, Jagmohan-Changur S, Middeldorp A, Tops CM, van Puijenbroek M, Ausems MG, Gomez Garcia E, Hes FJ, Hooijerbrugge N, Menko FH, van Os TA, Sijmons RH, Verhoef S, Wagner A, Nørgaard KF, Fleibeuker JH, Devilee P, Morreau H, Goldgar D, Tomlinson IP, Houlston RS, van Wezel T, Van HS, Hes FJ (2009) Chromosome 8q23.3 and 11q23.1 variation on the risk of colorectal cancer. Gastroenterology 136: 131–137.

Wokordorczik D, Gliniewicz B, Sikorski A, Złowocza E, Masoj B, Debnia T, Matyjaski J, Mierzewski M, Greed K, Oszutowska D, Suchy J, Gronwald J, Teodorczyk U, Huzarski T, Byrski T, Kubakowska A, Gorski B, van de Wetering T, Walczak S, Narod SA, Lubinski J, Cybulski C (2008) A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res 68: 9982–9986.

Zanke BW, Greenwood CM, Rangej R, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olischwag S, Chiang T, Crowdy E, Ferretti V, Laffamme P, Sundararak J, Roumy S, Olivier J, Robidoix F, Sladek R, Montpetit A, Campbell B, Bezieau S, O'Shaa AM, Cotterchio M, Newcomb P, McLaughlin J, Youngusband B, Green R, Green J, Porteous ME, Campbell H, Blanche H, Shabatou M, Tubacher E, Bonaiti-Pellie C, Buecher B, Bribi E, Kury S, Canjon T, Potter J, Thomas G, Gallego S, Houlston T, Dunlop MG (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39: 989–994.