Abstract. If P is a dg-operad acting on a dg-algebra A via algebra homomorphisms, then P acts on the Hochschild complex of A. In the more general case when P is a dg-prop, we show that P still acts on the Hochschild complex, but only up to coherent homotopy. We moreover give a functorial dg-replacement of P that strictifies the action. As an application, we obtain an explicit strictification of the homotopy coherent commutative Hopf algebra structure on the Hochschild complex of a commutative Hopf algebra.

1. Introduction

A dg-prop is a symmetric monoidal dg-category P whose monoid of objects is isomorphic to $(\mathbb{N},+)$. If P is a dg-prop and C a symmetric monoidal dg-category, then a P-algebra in C is a symmetric monoidal functor $P \to C$. A morphism of dg-props is a symmetric monoidal dg-functor which induces an isomorphism of object monoids, and such a morphism is called a quasi-equivalence if it induces quasi-isomorphisms on Hom-complexes. Let dgprop be the subcategory of dgCat generated by the dg-props and morphisms of dg-props. Examples of dg-props arise from dg-operads O by the formula

$$P(n,m) = \bigoplus_{n_1 + \ldots + n_m = n} O(n_1) \otimes \ldots \otimes O(n_m)$$

and composition defined using the composition product of O. With this definition, an algebra over an operad is precisely an algebra over the dg-prop it generates. In the following, we will therefore not distinguish between a dg-operad and the dg-prop it generates.

The Hochschild complex is a functor from A_∞-algebras to chain complexes. If P is a prop equipped with a morphism of props $A_\infty \to P$, the Hochschild complex restricts to a functor from P-algebras. It is an open problem to compute the operations on the Hochschild complex of algebras over such props P. Partial results have been obtained in many cases, see e.g. [6, 7]. One such case is the following.

If P is a dg-operad (or a dg-prop) the tensor product $\text{Ass} \otimes P$ is the dg-prop characterized by the equivalence

$$\text{Fun}^\otimes(\text{Ass} \otimes P, C) \simeq \text{Fun}^\otimes(P, \text{Alg}(C))$$

for any symmetric monoidal dg-category C. Evaluating the right hand side at $1 \in P$, we obtain a functor from $\text{Ass} \otimes P$-algebras to Ass-algebras. The Hochschild complex of an $\text{Ass} \otimes P$-algebra is by definition the Hochschild complex of the associated Ass-algebra. The Hochschild complex functor is lax monoidal. The structure morphisms may be used to prove that for a dg-operad P and an algebra A over the tensor product $\text{Ass} \otimes P$, the Hochschild complex of A admits a P-algebra structure (see [11] and [6 Section 6.9]). On the other hand,
this fails if P is a more general dg-prop. This is due to the failure of the Dold-Kan equivalence to be a symmetric monoidal equivalence. It is however true up to coherent homotopy, as the Dold-Kan equivalence is an \mathbb{E}_∞-monoidal equivalence [5, Section 5]. In this paper, we give an explicit functorial strictification of the natural homotopy coherent P-algebra structure on the Hochschild complex of a $(P \otimes \text{Ass})$-algebra. Formally this is encoded in the following result.

Theorem A. Let k be a commutative ring and let dgprop be the category of dg-props over k. There is a functor

$$\widetilde{(-)} : \text{dgprop} \to \text{dgprop}$$

equipped with a natural quasi-equivalence $\widetilde{(-)} \to \text{id}$ and a natural transformation

$$\widetilde{\alpha} : \text{Fun}^\circ(\text{Ass} \otimes -, \text{Ch}_k) \to \text{Fun}^\circ(\widetilde{(-)}, \text{Ch}_k)$$

of functors $\text{dgprop}^{\text{op}} \to \text{Cat}$ such that for a dg-prop P and an $\text{Ass} \otimes P$-algebra

$$\Phi : \text{Ass} \otimes P \to \text{Ch}_k$$

the value $\widetilde{\alpha}_P(\Phi)(1)$ is equal to the Hochschild complex of $\Phi(1)$.

We use explicit generators and relations to construct the functor $\widetilde{(-)}$, fattening the input prop with the structure maps of the Dold-Kan equivalence. The functor $\widetilde{(-)}$ also admits the structure of a non-unital monad.

Example. (Example 3.12) If $\Phi : \text{CHopf} \to \text{dgAlg}_k$ is a commutative Hopf algebra over any ring k, then

$$\widetilde{\alpha}_{\text{CHopf}}(\Phi) : \widetilde{\text{CHopf}} \to \text{Ch}_k$$

gives an explicit strict model for the coherent commutative Hopf algebra structure of the Hochschild complex of $\Phi(1)$.

Given a dg-prop P, one may ask whether \widetilde{P} is cofibrant in a model structure on dg-props. In [3], Fresse constructs a model structure on the category of props over a field of characteristic zero, and a semi-model structure on certain sub-families of props in positive characteristic. However, for example Hopf algebras in positive characteristic cannot be treated in his framework. Additionally, in characteristic zero, our replacement \widetilde{P} will not be cofibrant. For example, our replacement of the commutative prop still has a strictly commutative multiplication.

Further Questions. Theorem A displays \widetilde{P} as a sub-prop of the prop of natural operations on the Hochschild complex. On the other hand, it leaves open the interaction of the P-action with Connes’ B-operator. The determination of the total prop of natural operations on $C(A)$ is still an interesting open problem with a view toward operations on cyclic homology.

The structure of the paper is as follows. In Section 2 we define the Dold-Kan structure maps and their action on Hochschild complexes, and establish necessary properties. In Section 3 we define the fattening functor $\widetilde{(-)}$ for dg-props and prove the main theorem.
Acknowledgements

I am very grateful to my advisor Nathalie Wahl for helpful discussions, comments and proof-reading, to David Sprehn for proofreading, and to Tobias Barthel for helpful comments. The author was supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

2. The cyclic bar construction and the Dold-Kan equivalence

In this section we will build a dg-category \(\tilde{N}^\Sigma \) from the structure maps of the Dold-Kan correspondence and establish the action of \(\tilde{N}^\Sigma \) on Hochschild complexes of dg-algebras. This dg-category is a key ingredient for the fattening functor we will construct in Section 3.

Convention 2.1. Throughout, we fix a commutative base ring \(k \). All algebras are assumed to be algebras over \(k \). We employ the Kozul sign convention for chain complexes. In particular, our convention for bicomplexes are that the differentials anti-commute.

We begin by recalling some basic notions from homological algebra.

We will work with the categories \(\mathbf{sMod}_k \) of simplicial \(k \)-modules and \(\mathbf{Ch}_k \) of non-negatively graded chain complexes over \(k \) with \(k \)-linear graded maps, where we consider \(\mathbf{Ch}_k \) as a category enriched in itself. \(\mathbf{sMod}_k \) is a symmetric monoidal simplicial category with tensor product given by the degreewise tensor product of \(k \)-modules. We denote this tensor product by \(\otimes \). Similarly, \(\mathbf{Ch}_k \) is a symmetric monoidal category with tensor product denoted by \(\otimes \) and given by \((A \otimes B)_* = \oplus_{p+q=s} A_p \otimes B_q \) and differential \(d_{A \otimes B}(a \otimes b) = d_A(a) \otimes b + (-1)^{|a|} a \otimes d_B(b) \).

The category of monoids in \(\mathbf{sMod}_k \) is denoted by \(\mathbf{sAlg}_k \), and is a symmetric monoidal category with the levelwise tensor product.

For a simplicial chain complex \(A = A_{\bullet, \bullet} \) over \(k \), call \(* \) the differential degree and \(\bullet \) the simplicial degree. Write \(d_{a,b}^* : A_{a,b} \to A_{a-1,b} \) for the differential and \(d_i^{a,b} : A_{a,b} \to A_{a,b-1} \) for the simplicial face maps. Write \(\mathbf{sCh}_k \) for the category of simplicial chain complexes over \(k \).

The Dold-Kan equivalence

\[\tilde{N} : \mathbf{sMod}_k \rightleftarrows \mathbf{Ch}_k : \Gamma \]

gives an equivalence of categories between simplicial \(k \)-modules and connective chain complexes over \(k \). The functor \(\tilde{N} : \mathbf{sMod}_k \to \mathbf{Ch}_k \), is called the normalized Moore complex functor, and takes a simplicial \(k \)-module \(M_{\bullet} \) to the chain complex \(\tilde{N}M_{\bullet} \) with \(\tilde{N}M_p = M_p / sM_{p-1} \), the quotient of \(M_p \) by the degenerate simplices, and \(d : \tilde{N}M_p \to \tilde{N}M_{p-1} \) given by the alternating sum \(d = \sum_{i=0}^p (-1)^i d_i \). The inverse functor \(\Gamma : \mathbf{Ch}_k \to \mathbf{sMod}_k \) is called the Dold-Kan construction. We can also apply \(\tilde{N} \) degreewise to a simplicial chain complex as follows:

Definition 2.2.

1. For \(A \in \mathbf{sCh}_k \), the bicomplex associated to \(A_{\bullet, \bullet} \) is denoted by \(\tilde{N}(A_{\bullet, \bullet})_* \), and is obtained by applying the Moore complex functor levelwise and shifting the differentials by the differential degree of \(A \). Writing this out, we have \(\tilde{N}(A_{\bullet, \bullet})_{a,b} = A_{a,b} \), the horizontal differential is \(d_b = d_A \), and the vertical differential is

\[d_{a,b}^v = (-1)^a \sum_{i=0}^b (-1)^i d_i^{a,b} \]

We write

\[\tilde{N}_b(A) := \text{Tot} (\tilde{N}(A_{\bullet, \bullet})_*). \]
(2) Let A and B be simplicial chain complexes over k and denote by $A \hat{\otimes} B$ the simplicial chain complex which in simplicial degree p is given by $A_{s,p} \otimes B_{s,p}$. The differential of $A \hat{\otimes} B$ is given by
\[
d^p_{A \hat{\otimes} B}(a \otimes b) = d^{|a|}_A a \otimes b + (-1)^{|a| + p} a \otimes d^{|b|}_B b.
\]

Definition 2.3.

1. The cyclic bar construction is the functor $B^c_y : \text{dgAlg}_k \to \text{sCh}_k$ given in simplicial degree p by $B^c_y(A) = A \hat{\otimes} B$. The face maps $d_i : B^c_y(A) \to B^c_y(A)$ are given by
\[d_i : a_0 \otimes \ldots \otimes a_p \mapsto \begin{cases} a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_p, & i = 0, \ldots, p-1 \\ (-1)^{|a_i|(|a_0|+\ldots+|a_{i-1}|)} a_i a_0 \otimes a_1 \otimes \ldots \otimes a_{p-1}, & i = p \end{cases}
\]
and the degeneracies $s_i : B^c_y(A) \to B^c_{y+1}(A)$ are given by
\[s_i : a_0 \otimes \ldots \otimes a_p \mapsto a_0 \otimes \ldots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \ldots \otimes a_p
\]
making $B^c_y(A)$ into a simplicial chain complex, called the cyclic bar construction of A.

2. For a dg-algebra A, the complex
\[C(A) := N_\delta B^c_y(A)
\]
is called the Hochschild complex of A.

Lemma 2.4. The cyclic bar construction $B^c_y : \text{dgAlg}_k \to \text{sCh}_k$ is symmetric monoidal.

Proof. Let A and B be dg-algebras over k. Define the natural transformation $B^c_y(A) \hat{\otimes} B^c_y(B) \to B^c_y(A \otimes B)$ is given in simplicial degree p by permuting tensor factors:
\[A \hat{\otimes} B \hat{\otimes} p \sigma_p \to (A \otimes B)^{\otimes p+1}
\]
\[a_0 \otimes \ldots \otimes a_p \otimes b_0 \otimes \ldots \otimes b_p \mapsto (-1)^{\text{sgn}(a,b,\sigma)} a_0 \otimes b_0 \otimes \ldots \otimes a_p \otimes b_p
\]
where $\text{sgn}(a,b,\sigma) \in \mathbb{Z}/2$ is the sign of σ weighted by the elements a_i, b_j, which can be computed as
\[\text{sgn}(a,b,\sigma) \equiv \sum_{i=0}^{p-1} |b_i| \left(\sum_{j=i+1}^p |a_j| \right) \pmod{2}
\]
To check that this defines a chain map in simplicial degree p, we must verify that there are no sign issues. It is sufficient to consider each summand of the differential separately. For the differential acting on a_k for $1 \leq k \leq p+1$, the sign we get by permuting first (i.e. the sign associated to $d^{A \hat{\otimes} B \circ \sigma}$) is
\[\text{sgn}(a,b,\sigma) + \left(\sum_{i=0}^{k-1} |a_i| + |b_i| \right)
\]
where the second term comes from the placement of a_k after permuting. The sign we get by permuting second is
\[\left(\sum_{i=0}^{k-1} |a_i| \right) + \text{sgn}(a,b,\sigma) + \sum_{j=0}^{k-1} |b_j|
\]
where the third term is the correction to \(\text{sgn}_{a,b}\sigma\) when the degree of \(a_k\) is decreased by one. We see that the two are equal. For the differential acting on \(b_k\), the sign we get by permuting first is

\[
\text{sgn}(a, b, \sigma) + \left(\sum_{i=0}^{k-1} |a_i| + |b_i|\right) + |a_k|
\]

and the sign we get by permuting second is

\[
\left(\sum_{i=0}^{p} |a_i|\right) + \left(\sum_{j=0}^{k-1} |b_j|\right) + \text{sgn}(a, b, \sigma) + \sum_{j=k+1}^{p} |a_j|
\]

where the fourth term is the correction to \(\text{sgn}_{a,b}\sigma\) when the degree of \(b_k\) is decreased by one. Again we see that the two expressions are equal mod 2, hence we have a chain map.

We now verify that \(\sigma\) is a symmetric monoidal transformation. Let \(\tau\) be the symmetric monoidal twist map of \(\text{Ch}_k\), given by \(A \otimes B \to B \otimes A, a \otimes b \mapsto (-1)^{|a||b|} b \otimes a\). We check that \(\sigma \circ \tau_{p+1,p+1} = (\tau \otimes p+1) \circ \sigma\). The left hand side has sign

\[
\text{sgn}_L = \left(\sum_{i=0}^{p} |a_i|\right) \left(\sum_{j=0}^{p} |b_j|\right) + \left(\sum_{i=0}^{p-1} |a_i|\right) \left(\sum_{j=i+1}^{p} |b_j|\right) = \sum_{i=0}^{p} |a_i| \left(\sum_{j=0}^{i} |b_j|\right)
\]

and the right hand side has sign

\[
\text{sgn}_R = \sum_{i=0}^{p-1} |b_i| \left(\sum_{j=i+1}^{p} |a_j|\right) + \left(\sum_{i=0}^{p} |a_i||b_i|\right) = \sum_{i=0}^{p} |b_i| \left(\sum_{j=0}^{i} |a_j|\right)
\]

Rearranging the order of summation shows that \(\text{sgn}_L = \text{sgn}_R\), and we conclude that \(B^{cy}\) is symmetric monoidal as claimed. \(\square\)

Before discussing the monoidality properties of the cyclic bar construction and the Hochschild complex, we recall some of the monoidality properties of the Dold-Kan equivalence.

Definition 2.5. We will write \(\Sigma_{(p,q)} \subseteq \Sigma_{p+q}\) for the subset of \((p,q)\)-shuffles, i.e. those permutations \(\sigma\) of \((1,...,p+q)\) for which

\[
\sigma(1) < \sigma(2) < ... < \sigma(p)
\]

and

\[
\sigma(p+1) < \sigma(p+2) < ... < \sigma(p+q).
\]

We similarly denote the subgroups of \((p,q,r)\)-shuffles in \(\Sigma_{p+q+r}\) by \(\Sigma_{(p,q,r)}\).

Lemma 2.6. Let \(\Sigma_{p,(q,r)}\) denote the subgroup of \(\Sigma_{(p,q,r)}\) fixing the first \(p\) elements, and similarly let \(\Sigma_{(p,q),r}\) denote the subgroup of \(\Sigma_{(p,q,r)}\) fixing the last \(r\) elements. The sets of shuffles satisfy the relation

\[
\Sigma_{(p+q,r)} \Sigma_{(p,q)} = \Sigma_{(p,q,r)} = \Sigma_{(p,q+r)} \Sigma_{(p,q)}
\]

In other words, every \((p,q,r)\)-shuffle can be written uniquely as the composition of a \((p,q)\)-shuffle with a \((p+q,r)\)-shuffle and as the composition of a \((q,r)\)-shuffle with a \((p,q+r)\)-shuffle.
Proof. Let \(\theta \) be a \((p,q,r)\)-shuffle. We produce a \((p,q)\)-shuffle \(\sigma \) by removing the entries \(\theta(p+q+1),\ldots,\theta(p+q+r) \) from the list \((\theta(1),\theta(2),\ldots,\theta(p+q+r))\). We produce a \((p+q,r)\)-shuffle \(\tau \) by replacing the entries \(\theta(1),\theta(2),\ldots,\theta(p+q) \) by \((1,2,\ldots,p+q)\). It is clear that \(\tau \sigma = \theta \). Now assume \(\tau \sigma = \tau' \sigma' \) for another choice of \(\tau' \in \Sigma_{(p+q,r)} \) and \(\sigma' \in \Sigma_{(p,q)} \). Then \(\tau' = \tau \sigma (\sigma')^{-1} \), and evaluating on the entries \(i = p+q+1,\ldots,p+q+r \), we see that \(\tau(i) = \tau'(i) \) in this range. Since a \((p,q,r)\)-shuffle is determined by its values on \(p+q+1,\ldots,p+q+r \), we have \(\tau = \tau' \). Then \(\sigma' = \tau'^{-1} \tau \sigma = \sigma \), hence this decomposition is unique. The other decomposition follows similarly.

\[\textbf{Definition 2.7.}\] Let \(A \) and \(B \) be simplicial \(k \)-modules. The \textit{shuffle map} (also called the Eilenberg-Zilber map):

\[\text{sh}_{A,B} : N(A) \otimes N(B) \to N(A \hat{\otimes} B)\]

is defined on elementary tensors \(a \otimes b \in A_p \otimes B_q \) as

\[\text{sh}_{A,B}(a \otimes b) = \sum_{\sigma \in \Sigma_{(p,q)}} \text{sgn}(\sigma)s_{\sigma(p+q)}\ldots s_{\sigma(p+1)}a \otimes s_{\sigma(p)}\ldots s_{\sigma(1)}b\]

When there is no risk of confusion, we will omit \(A \) and \(B \) from the notation and simply write \(\text{sh} \) for the shuffle map.

\[\textbf{Definition 2.8.}\] Let \(A \) and \(B \) be simplicial \(k \)-modules. The \textit{Alexander-Whitney map}

\[\text{AW}_{A,B} : N(A \hat{\otimes} B) \to N(A) \otimes N(B)\]

is defined on elementary tensors \(a \otimes b \in A_n \otimes B_n \) as

\[\text{AW}_{A,B} : (a \otimes b) \mapsto \sum_{i=0}^{n} d_{i+1} \ldots d_{n-1} d_n a \otimes (d_0)^i b\]

As with the shuffle map, we omit \(A, B \) from the notation \(\text{AW}_{A,B} \) when there is no risk of confusion.

\[\textbf{Lemma 2.9.}\] The Alexander-Whitney map is associative, i.e. for \(A, B \) and \(C \) simplicial \(k \)-modules, the morphisms \((\text{id} \otimes \text{AW}_{B,C}) \circ \text{AW}_{A,B \hat{\otimes} C} \) and \((\text{AW}_{A,B} \otimes \text{id}) \circ \text{AW}_{A \hat{\otimes} B,C} \) from \(N(A \hat{\otimes} B \hat{\otimes} C) \) to \(N(A) \otimes N(B) \otimes N(C) \) are equal.

\[\textit{Proof.}\] Let \(a \otimes b \otimes c \in A_n \otimes B_n \otimes C_n \). For brevity, we write \(\tilde{d}_i^n = d_{i+1} \ldots d_{n-1} d_n \). Then the two compositions

\[N(A \hat{\otimes} B \hat{\otimes} C) \to N(A) \otimes N(B) \otimes N(C)\]

are

\[a \otimes b \otimes c \xrightarrow{\text{AW}_{A,B \hat{\otimes} C}} \sum_{p=0}^{n} \tilde{d}_p^n a \otimes \tilde{d}_p^n b \otimes d_0^n c\]

\[\xrightarrow{\text{id} \otimes \text{AW}_{B,C}} \sum_{p=0}^{n} \sum_{a=0}^{n-p} \tilde{d}_p^n a \otimes \tilde{d}_a^{n-p} d_0^p b \otimes \tilde{d}_0^{n+s} c\]

and

\[a \otimes b \otimes c \xrightarrow{\text{AW}_{A \hat{\otimes} B,C}} \sum_{q=0}^{n} \tilde{d}_q^n a \otimes \tilde{d}_q^n b \otimes d_0^n c\]

\[\xrightarrow{\text{AW}_{B,C} \otimes \text{id}} \sum_{q=0}^{n} \sum_{t=0}^{q} \tilde{d}_t^q \tilde{d}_q^n a \otimes \tilde{d}_t^q d_0^t \tilde{d}_q^n b \otimes \tilde{d}_0^n c.\]
Note that \(\tilde{d}_q^i \tilde{d}_q^n = \tilde{d}_q^n \). Using the simplicial identity \(d_i d_j = d_{j-1} d_i \) when \(i < j \), observe that \(d_0^n \tilde{d}_q^n = \tilde{d}_q^{n-1} d_0^n \). Writing \((q, t) = (p + s, p) \), we now see that the two expressions are equal. \(\Box \)

The shuffle and Alexander-Whitney maps are mutually inverse quasi-isomorphisms. In particular, \(AW \circ sh = id \) and \(sh \circ AW \simeq id \). The shuffle map is a lax symmetric monoidal transformation witnessing that the Moore complex functor \(N : sMod_k \to Ch_k \), and hence also the Hochschild chains functor \(C : sAlg_k \to Ch_k \) is lax symmetric monoidal. The Alexander-Whitney map is an oplax monoidal transformation witnessing that \(N \), and hence \(C \) is oplax monoidal. However, the Alexander-Whitney map is not symmetric. Still, it is \(E_\infty \) in the following sense (see Lemma 2.13).

Definition 2.10. ([4, p.552]) A functor \(F : C \to D \) between symmetric monoidal categories is \(E_\infty \)-**monoidal** if there is an \(E_\infty \) operad \(O \) in \(D \) and maps

\[
\mu_n : O(n) \otimes (F(A_1) \otimes ... \otimes F(A_n)) \to F(A_1 \otimes ... \otimes A_n)
\]

such that

1. the action is unital, i.e. if \(I \) denotes the monoidal unit of \(D \) and \(\eta : I \to O(1) \) is the unit of the operad, then the following diagram commutes:

\[
\begin{array}{ccc}
I \otimes F(A) & \xrightarrow{\eta \otimes id} & O(1) \otimes F(A) \\
\downarrow{\simeq} & & \downarrow{\mu_1} \\
F(A) & & F(A)
\end{array}
\]

2. The action is equivariant: for each \(\sigma \in \Sigma_n \), the action \(\mu_n \) is compatible with the action of \(\Sigma_n \) on \(O(n) \) and by permuting indices of the \(A_i \). I.e. the following diagram commutes:

\[
\begin{array}{ccc}
O(n) \otimes F(A_1) \otimes ... \otimes F(A_n) & \xrightarrow{\mu_n} & F(A_1 \otimes ... \otimes A_n) \\
\downarrow{\sigma \otimes \sigma} & & \downarrow{F(\sigma)} \\
O(n) \otimes F(A_{\sigma^{-1}(1)}) \otimes ... \otimes F(A_{\sigma^{-1}(n)}) & \rightarrow & F(A_{\sigma^{-1}(1)} \otimes ... \otimes A_{\sigma^{-1}(n)})
\end{array}
\]

3. The action is associative, i.e. is compatible with the operad multiplication. \(E_\infty \)-**comonoidal** functors are similarly defined by using structure maps

\[
\nu_n : O(n) \otimes F(A_1 \otimes ... \otimes A_n) \to F(A_1) \otimes ... \otimes F(A_n).
\]

We will now define chain complexes which assemble into a dg-operad (and later a symmetric monoidal dg-category) witnessing that \(AW \) is an \(E_\infty \)-**comonoidal** transformation.

Definition 2.11. Define the functors

\[
N^{\hat{o}}_n, N^{\otimes n} : sMod_k^{\times n} \to Ch_k
\]

given by

\[
N^{\hat{o}}_n(A_1, ..., A_n) = N(A_1 \hat{\otimes} ... \hat{\otimes} A_n)
\]

\[
N^{\otimes n}(A_1, ..., A_n) = N(A_1) \otimes ... \otimes N(A_n)
\]
and let
\[\mathcal{O}(n) := \text{Nat}_{s\mathsf{Mod}_k^n}(N^{\otimes n}, N^{\otimes n}) \]

Notation 2.12. Since the elements of \(\mathcal{O}(n) \), and of the complex \(\tilde{N}^\Sigma((n),(n)) \) which we define below, are natural transformations, we can in particular view them as 2-morphisms in the 2-category of categories, and so 2-categorical constructions, like horizontal composition, can be applied to them. For a 4-tuple of morphisms \(f, f': a \to b \) and \(g, g': b \to c \) and a pair of 2-morphisms \(\alpha : f \to f' \) and \(\beta : g \to g' \), we write \(\beta \circ \alpha \) for their horizontal composition \(\beta \circ \alpha : gf \to g'f' \).

Lemma 2.13. The complexes \(\mathcal{O}(n) \) assemble into an \(\mathbb{E}_\infty \)-operad witnessing that \(N^{\otimes n} \) and \(N^{\otimes n} \) are \(\mathbb{E}_\infty \)-comonoidal functors and that \(AW : N^{\otimes 2} \to N^{\otimes 2} \) is an \(\mathbb{E}_\infty \)-comonoidal transformation.

Proof. Let \(n_1 + ... + n_i = n \) be natural numbers. The operad structure on \(\mathcal{O} \) is given by the maps
\[\mathcal{O}(i) \otimes (\mathcal{O}(n_1) \otimes ... \otimes \mathcal{O}(n_i)) \to \mathcal{O}(n) \]
given by \((\phi, \gamma_1, ..., \gamma_i) \mapsto \phi \circ (\gamma_1 \ast ... \ast \gamma_i) \). The \(\Sigma_n \)-action is given by conjugation, i.e. for \(\chi \in \Sigma_n \) and \(\psi \in \mathcal{O}(n) \) we have \(\chi \cdot \psi = \chi \circ \psi \circ \chi^{-1} \). It is known (see [2, Satz 1.6]) that the complex of natural transformations
\[\mathcal{O}(n) = \text{Nat}_{s\mathsf{Mod}_n^k}(N^{\otimes n}, N^{\otimes n}) \]
is acyclic with zero-th homology \(k \). It follows (see [4, Section 7] and [5, Section 5]) that the functors \(N \) is an \(\mathbb{E}_\infty \)-comonoidal functor and that \(AW : N^{\otimes 2} \to N^{\otimes 2} \) is an \(\mathbb{E}_\infty \)-comonoidal transformation. \(\square \)

We will look at the complex
\[\tilde{N}((n),(n)) := \text{Nat}_{s\mathsf{Mod}_n^k}(N^{\hat{\otimes} n}, N^{\hat{\otimes} n}) \]
which is homotopy equivalent to \(\text{Nat}_{s\mathsf{Mod}_n^k}(N^{\hat{\otimes} n}, N^{\otimes n}) \), seen by post-composing with shuffle and Alexander-Whitney maps, but with the difference that maps in \(\tilde{N}((n),(n)) \) may be composed, giving rise to an algebra structure. In the rest of this section, we will construct a dg-category with morphism complexes built from \(\text{Nat}_{s\mathsf{Mod}_n^k}(N^{\hat{\otimes} n}, N^{\hat{\otimes} n}) \), and the notation is chosen with this in mind.

Definition 2.14. The symmetric group \(\Sigma_n \) acts on \(s\mathsf{Mod}_n^k \) by \(\chi(A_1, ..., A_n) = (A_{\chi^{-1}(1)}, ..., A_{\chi^{-1}(n)}) \). Let \(\tilde{N}^\Sigma((n),(n)) \) be the complex
\[\tilde{N}^\Sigma((n),(n)) = \bigoplus_{\chi \in \Sigma_n} \text{Nat}_{s\mathsf{Mod}_n^k}(N^{\hat{\otimes} n}, N^{\hat{\otimes} n} \circ \chi) =: \bigoplus_{\chi \in \Sigma_n} \tilde{N}^\Sigma_\chi((n),(n)) \]

Lemma 2.15. The chain complex \(\tilde{N}^\Sigma((n),(n)) \) admits a \(\Sigma_n \)-graded algebra structure and contracts to \(k\Sigma_0 \) in degree 0.

Proof. Let \(f \in \tilde{N}^\Sigma_\chi((n),(n)) \) and \(g \in \tilde{N}^\Sigma((n),(n)) \). We treat \(f \) and \(g \) as 2-morphisms in the 2-category of dg-categories as in Remark 2.12. The product of \(g \) and \(f \) is given by \((g \circ \text{id}_\chi) \circ f : N^{\hat{\otimes} n} \to N^{\hat{\otimes} n} \circ (\chi' \chi) \), which may also be visualized by the pasting diagram
This gives the graded algebra structure. As for the contraction, the components $\tilde{N}_\chi^\Sigma((n), (n))$ are isomorphic to $\tilde{N}((n), (n))$ by pre-composition by χ and χ^{-1}. As $\tilde{N}((n), (n))$ contracts onto $\id_{\tilde{N}^\otimes_n}$, $\tilde{N}_\chi^\Sigma((n), (n))$ contracts similarly to χ. □

Definition 2.16. For $A_1, ..., A_k$ simplicial k-modules, we introduce the shorthand

$\mathcal{N}^{(k_1, ..., k_n)}(A_1, ..., A_k) = N(A_1 \otimes ... \otimes A_{k_1} \otimes ... \otimes N(A_{k_1+...+k_{n-1}+1} \otimes ... \otimes A_k)$

where $k = k_1 + ... + k_n$. Let $m_1 + ... + m_l = k$. Writing $\vec{k} = (k_1, ..., k_n)$ and similarly for \vec{m}, define the complex

$\tilde{N}(\vec{k}, \vec{m}) := \text{Nat}_{sMod^k}^\times(N^\vec{k}, N^\vec{m})$

Its symmetrized version $\tilde{N}_\Sigma^\Sigma(\vec{k}, \vec{m})$ is defined as before by

$$\tilde{N}_\Sigma^\Sigma(\vec{k}, \vec{m}) = \bigoplus_{\chi \in \Sigma_k} \text{Nat}_{sMod^k}^\times(\chi^\Sigma N^\vec{k}, \chi^\Sigma N^\vec{m} \circ \chi) =: \bigoplus_{\chi \in \Sigma_k} \tilde{N}_\chi^\Sigma(\vec{k}, \vec{m})$$

- We will refer to a finite sequence of integers $\vec{k} = (k_1, ..., k_n)$ as a **vector**. The sum of the entries of a vector is called its **length** and denoted $|\vec{k}| := k_1 + ... + k_n$.
- We write \tilde{N}_Σ^Σ for the dg-category whose objects are vectors \vec{k}, and whose morphism complexes are given by the $\tilde{N}_\Sigma^\Sigma(\vec{k}, \vec{m})$ defined above.

Notation 2.17. For any $\vec{k} = (k_1, ..., k_n)$ with $|\vec{k}| = k$, by Lemma 2.6 composing shuffle maps gives rise to a well-defined shuffle map which we write $\text{sh}_{\vec{k}} : N^\vec{k} \to N^{(k)} = N^{\otimes k}$. Similarly, the Alexander-Whitney map is associative by Lemma 2.9, so composing AW-maps gives rise to a well-defined map $AW_{\vec{k}} : N^{(k)} \to N^\vec{k}$. Note that $AW_{\vec{k}} \circ \text{sh}_{\vec{k}} \simeq \id_{N^\vec{k}}$ and $\text{sh}_{\vec{k}} \circ AW_{\vec{k}} \simeq \id_{N^{(k)}}$.

Lemma 2.18. For every pair $\vec{k} = (k_1, ..., k_n)$, $\vec{m} = (m_1, ..., m_l)$, the assignment

$$\phi : f \mapsto AW_{\vec{m}} \circ f \circ \text{sh}_{\vec{k}}$$

defines a homotopy equivalence $\tilde{N}_\Sigma^\Sigma((n), (n)) \to \tilde{N}_\Sigma^\Sigma(\vec{k}, \vec{m})$ with homotopy inverse

$$\psi : g \mapsto \text{sh}_{\vec{m}} \circ g \circ AW_{\vec{k}}$$

In particular, $\tilde{N}_\Sigma^\Sigma(\vec{k}, \vec{m})$ contracts onto the degree zero subcomplex of elements of the form $AW_{\vec{m}} \circ \chi \circ \text{sh}_{\vec{k}}$ for some $\chi \in \Sigma_k$.

Proof. Fix homotopies $\alpha_{\vec{k}} : AW_{\vec{k}} \circ \text{sh}_{\vec{k}} \to \id$ and $\beta_{\vec{k}} : \text{sh}_{\vec{k}} \circ AW_{\vec{k}} \to \id$. Then we get homotopies

$$\beta_{\vec{m}} \ast \id \ast \beta_{\vec{k}} : \psi \circ \phi \to \id$$

$$\alpha_{\vec{m}} \ast \id \ast \alpha_{\vec{k}} : \phi \circ \psi \to \id$$
so that φ and ψ are mutually inverse homotopy equivalences. Now the composition
\[k\Sigma_n \hookrightarrow \tilde{N}^\Sigma((n), (n)) \to \tilde{N}^\Sigma(k, \tilde{m}) \]
takes χ to \(AW_{\tilde{m}} \circ \chi \circ \text{sh}_{\tilde{k}} \) and is a homotopy equivalence since \(k\Sigma_n \hookrightarrow \tilde{N}^\Sigma((n), (n)) \) is by Lemma \ref{lemma:totalization-equivalence}. The inverse
\[\tilde{N}^\Sigma(k, \tilde{m}) \to \tilde{N}^\Sigma((n), (n)) \to k\Sigma_n \]
sends \(AW_{\tilde{m}} \circ \chi \circ \text{sh}_{\tilde{k}} \) to χ, so \(\tilde{N}^\Sigma(k, \tilde{m}) \) contracts as claimed. \(\square \)

We now turn to establishing the action of \(\tilde{N}^\Sigma \) on Hochschild complexes of dg-algebras. We begin by constructing a way of differentially extending functors between additive categories.

Construction 2.19. Let \(\mathcal{A} \) and \(\mathcal{B} \) be additive categories and let \(\text{Fun}^\text{pt}(\mathcal{A}, \mathcal{B}) \) be the category of pointed functors between them, that is, functors \(F : \mathcal{A} \to \mathcal{B} \) such that \(F(0) \simeq 0 \). Note that \(\text{Fun}^\text{pt}(\mathcal{A}, \mathcal{B}) \) is itself an additive category. Denote by \(m\text{-Ch}(\mathcal{B}) \) the additive category of \(m \)-fold chain complexes in \(\mathcal{B} \). We will produce an additive functor
\[(_)_\varepsilon : \text{Fun}^\text{pt}(\mathcal{A}^{\times n}, m\text{-Ch}(\mathcal{B})) \to \text{Fun}^\text{pt}(\text{Ch}(\mathcal{A})^{\times n}, (n + m)\text{-Ch}(\mathcal{B})). \]

Let \(F : \mathcal{A}^{\times n} \to m\text{-Ch}(\mathcal{B}) \) be a pointed functor. Then \(F_\varepsilon \) sends an \(n \)-tuple of chain complexes \((A_1, \ldots, A^n) \) in \(\mathcal{A} \) to the \((n + m)\)-fold chain complex in \(\mathcal{B} \) given in multidegree \((p_1, \ldots, p_n, q_1, \ldots, q_m)\) by \(F(A^1_{p_1}, \ldots, A^n_{p_n})_{q_1, \ldots, q_m} \). In the same multidegree, the differentials are given by
\[d_i = \begin{cases} (-1)^{p_1 + \ldots + p_i - 1}d^{A_i}, & 1 \leq i \leq n \\ (-1)^{p_1 + \ldots + p_n + q_1 + \ldots + q_{i-1} - 1}d^{F(A^1_{p_1}, \ldots, A^n_{p_n})}, & n + 1 \leq i \leq n + m \end{cases} \]
Since \(F \) is a pointed functor, this does indeed define a \((n + m)\)-fold chain complex in \(\mathcal{B} \). Similarly, \(F_\varepsilon \) sends an \(n \)-tuple of morphisms \((f^i : A^i \to B^i)_{1 \leq i \leq n}\) to the morphism given on the first \(n \) multidegrees \((p_1, \ldots, p_n)\) by the morphism
\[F(f^1_{p_1}, \ldots, f^n_{p_n}) : F(A^1_{p_1}, \ldots, A^n_{p_n}) \to F(B^1_{p_1}, \ldots, B^n_{p_n}) \]
Hence \(F_\varepsilon \) is indeed a functor.

Now let \(F, G : \mathcal{A}^{\times n} \to m\text{-Ch}(\mathcal{B}) \) be pointed functors and let \(\alpha : F \to G \) be a natural transformation. Then \(\alpha_\varepsilon \) is the natural transformation given by applying \(\alpha \) levelwise, i.e. for an \(n \)-tuple of chain complexes \((A_1, \ldots, A^n) \) in \(\mathcal{A} \), the morphism
\[(\alpha_\varepsilon)_{(A^1, \ldots, A^n)} : F_\varepsilon(A^1, \ldots, A^n) \to G_\varepsilon(A^1, \ldots, A^n) \]
is given in the first \(n \) multidegrees \((p_1, \ldots, p_n)\) by the morphism
\[\alpha(A^1_{p_1}, \ldots, A^n_{p_n}) : F(A^1_{p_1}, \ldots, A^n_{p_n}) \to G(A^1_{p_1}, \ldots, A^n_{p_n}). \]
With this definition it is clear that \((_)_\varepsilon\) is an additive functor.

Definition 2.20. Building on Construction \ref{construction:pointed-functors} we define the functor
\[(_)_\delta : \text{Fun}^\text{pt}(\mathcal{A}^{\times n}, m\text{-Ch}(\mathcal{B})) \to \text{Fun}^\text{pt}(\text{Ch}(\mathcal{A})^{\times n}, \text{Ch}(\mathcal{B})) \]
as the composition of \((_)_\varepsilon\) with the totalization functor \((n + m)\text{-Ch}(\mathcal{B}) \to \text{Ch}(\mathcal{B})\).

Before considering the monoidality properties of the functor \((_)_\delta\), we need an observation about totalizations of \(n \)-fold chain complexes.
Observation 2.21. Let \mathcal{A} be an additive category. The symmetric group on n letters acts on the category of n-fold chain complexes in \mathcal{A} by reordering the differentials. Specifically, if A is an n-fold chain complex in \mathcal{A} and $\chi \in \Sigma_n$, we have

$$(\chi \cdot A)_{p_1,\ldots,p_n} = A_{p_{\chi^{-1}(1)},\ldots,p_{\chi^{-1}(n)}}$$

and the differentials are similarly reordered. Let $\chi(p_1,\ldots,p_n)$ be the image of χ under the blow-up homomorphism $\Sigma_n \to \Sigma_{p_1+\ldots+p_n}$. There is a natural transformation $g_\chi : \text{Tot} \to \text{Tot} \circ \chi$ given in multidegree (p_1,\ldots,p_n) by the sign of $\chi(p_1,\ldots,p_n)$. Composition of these transformations has the same effect as applying the sign associated to the composite permutation, such that $(g_{\chi'} \circ \text{id}_A) \circ g_\chi = g_{\chi' \chi}$ for any pair $\chi, \chi' \in \Sigma_n$.

Lemma 2.22. Let the pointed functor $F : \mathcal{A}^\times \to \text{Ch}(\mathcal{B})$ be given by $F(A^1,\ldots,A^n) = F'(A^1,\ldots,A^i) \otimes F''(A^{i+1},\ldots,A^n)$ for a pair of pointed functors $F' : \mathcal{A}^{\times i} \to \text{Ch}(\mathcal{B})$ and $F'' : \mathcal{A}^{\times n-i} \to \text{Ch}(\mathcal{B})$. Then there is a natural isomorphism

$$F_{\delta}(A^1,\ldots,A^n) \simeq F_{\delta}'(A^1,\ldots,A^i) \otimes F_{\delta}''(A^{i+1},\ldots,A^n).$$

Furthermore, this isomorphism is associative.

Proof. The tensor product $F'(A^1,\ldots,A^i) \otimes F''(A^{i+1},\ldots,A^n)$ is the totalization of a bicomplex, so we can lift F_{δ} to a functor $F_\epsilon : \text{Ch}_k^{\times n} \to (n+2)-\text{Ch}_k$ such that $\text{Tot} \circ F_\epsilon = F_{\delta}$. As before, the differentials in multidegree (p_1,\ldots,p_n,q_1,q_2) are given by

$$d_i = \begin{cases}
(1)p_1+\ldots+p_{i-1}dA^i, & 1 \leq i \leq n \vspace{1ex} \\
(1)p_1+\ldots+p_n dF'(A^1,\ldots,A^i), & i = n+1 \\
(1)p_1+\ldots+p_n+q_1 dF''(A^{i+1},\ldots,A^n), & i = n+2
\end{cases}$$

Now the tensor product $F_\epsilon'(A^1,\ldots,A^i) \otimes F_\epsilon''(A^{i+1},\ldots,A^n)$ is obtained by reordering the differentials and totalizing. Specifically, we must pass d_{n+1} past d_{i+1},\ldots,d_n, which in multidegree (p_1,\ldots,p_n,q_1,q_2) incurs a sign $(-1)^{q_1(p_{i+1}+\ldots+p_n)}$. The natural isomorphism in the statement of the lemma is thus obtained as the transformation g_χ_1 of Observation 2.21 where χ_1 is the cycle $(i+1,\ldots,n,n+1) \in \Sigma_{n+2}$. The above recipe generalizes readily to a version with more than two tensor factors by replacing χ_1 with the permutation $\chi_{i_1,\ldots,i_m} \in \Sigma_{n+m}$ given by the composition of cycles

$$\chi_{i_1,\ldots,i_m} = (i_1 + \ldots + i_m + 1,\ldots,n+m) \circ \ldots \circ (i_1 + 1,\ldots,n+1)$$

To see that this is associative, it is sufficient to look at the case of three factors:

$$F(A_1,\ldots,A_n) = F^1(A_1,\ldots,A_i) \otimes F^2(A_{i+1},\ldots,A_{i+j}) \otimes F^3(A_{i+j+1},\ldots,A_n)$$

Associativity of the natural isomorphism above now follows from the identity

$$(i+j+2,\ldots,n+1,n+2) \circ (i+1,\ldots,n,n+1) = (i+1,\ldots,n+1,n+2) \circ (i+j+1,\ldots,n+1,n+2)$$

in Σ_{n+2}. \hfill \square

Definition 2.23. Write ζ_n for the natural isomorphism

$$\zeta_n : (F^1 \otimes \ldots \otimes F^n)_{\delta} \xrightarrow{\sim} F^1_{\delta} \otimes \ldots \otimes F^n_{\delta}$$

of functors $\mathcal{A}^{\times i} \to \text{Ch}(\mathcal{B})$ given by Lemma 2.22.
We therefore get a morphism

\[A \mapsto C^\vec{k}(A) = C(A^{\otimes k_1}) \otimes \ldots \otimes C(A^{\otimes k_n}) \]

i.e. \(C^\vec{k}(A) = N_\delta B^{cy}(A^{\otimes k_1}) \otimes \ldots \otimes N_\delta B^{cy}(A^{\otimes k_n}) \).

Definition 2.25. Recall that the cyclic bar construction \(B^{cy} : \text{dgAlg}_k \to \text{sCh}_k \) is a symmetric monoidal functor. We denote the natural structure isomorphism by

\[\theta : B^{cy}(A_1) \otimes \ldots \otimes B^{cy}(A_n) \to B^{cy}(A_1 \otimes \ldots \otimes A_n) \]

The isomorphism is given in simplicial degree \(k - 1 \) (in which we have \(nk \) tensor factors) by the permutation \(\chi_{nk} \in \Sigma_{nk} \) sending \(i + dk \) to \(d + 1 + (i - 1)n \) for \(0 < i \leq k \) and \(0 \leq d < n \), with a sign like that in the proof of Lemma 2.4.

Proposition 2.26. The dg-category \(\bar{N}_E \) acts on Hochschild complexes of dg-algebras. That is, we have natural transformations

\[\bar{N}_E(\vec{k}, \vec{m}) \otimes C^\vec{k} \to C^{\vec{m}} \]

of functors \(\text{dgAlg}_k \to \text{Ch}_k \) compatible with composition. This action exhibits \(C : \text{dgAlg}_k \to \text{Ch}_k \) as a symmetric monoidal, \(\mathbb{E}_\infty \)-comonoidal functor.

Proof. For \(\vec{k} = (k_1, \ldots, k_n) \) denoting

\[N_\delta \theta_{\vec{k}} = (N_\delta(\theta_{k_1}) \otimes \ldots \otimes N_\delta(\theta_{k_n})) \circ \zeta \]

\[N_\delta(\Delta_k B^{cy}(A)) \to N_\delta B^{cy}(A^{\otimes k_1}) \otimes \ldots \otimes N_\delta B^{cy}(A^{\otimes k_n}) = C^\vec{k}(A) \]

where \(\Delta_k : \text{sCh} \to \text{sCh}^{\times k} \) is the diagonal functor. If \(f \in \bar{N}_E \), we write \((f_\delta)_{(A_1, \ldots, A_n)} \) for the component of \(f_\delta \) at the \(n \)-tuple \((A_1, \ldots, A_n) \) of simplicial chain complexes over \(k \). We now have a composite morphism

\[C^\vec{k}(A) \xrightarrow{N_\delta(\theta_{\vec{k}})^{-1}} N_\delta^\vec{k}(B^{cy}(A), \ldots, B^{cy}(A)) \]

\[\xrightarrow{(f_\delta)_{(B^{cy}(A), \ldots, B^{cy}(A))}} N_\delta^\vec{m}(B^{cy}(A), \ldots, B^{cy}(A)) \]

\[C^{\vec{m}}(A) \xleftarrow{N_\delta(\theta_{\vec{m}})} N_\delta^\vec{m}(B^{cy}(A), \ldots, B^{cy}(A)) \]

We therefore get a morphism

\[i_{\vec{k}, \vec{m}} : \bar{N}_E(\vec{k}, \vec{m}) \to \text{Nat}(C^\vec{k}(A), C^{\vec{m}}(A)) \]

\[f \mapsto N_\delta \theta_{\vec{m}} \circ (f_\delta \ast \text{id}_{\Delta_k \circ B^{cy}}) \circ (N_\delta \theta_{\vec{k}})^{-1} \]

whose adjoint is the morphism in the statement of the proposition. The contractibility of \(\bar{N} \) (see Lemma 2.18) now implies that \(C : \text{dgAlg}_k \to \text{Ch}_k \) is \(\mathbb{E}_\infty \)-monoidal and comonoidal. However, since the shuffle maps are strictly symmetric, it is in fact symmetric monoidal as claimed.

Lemma 2.27. The images of \(\bar{N}_E(\chi((n), (n))) \) and \(\bar{N}_E(\chi'(n), (n))) \) in \(\text{End}_{\text{Ch}_k}(C((\cdot)^{\otimes n})) \) are disjoint for \(\chi \neq \chi' \).
This proves the claim.

\[H_0(C((-)\otimes n)) = HH_0((-)\otimes n) = (-)^{\otimes n}\]

so the induced action of \(f \in \tilde{N}_X((n),(n))\) on \(H_0(C((-)\otimes n))\) is given by permuting tensor factors. Namely, \(\tilde{N}_X((n),(n)) = \tilde{N}((n),(n))\) acts as the identity since each \(f \in \tilde{N}((n),(n))\) is homotopic to the identity map. Now each \(\tilde{N}_X((n),(n))\) is isomorphic to \(\tilde{N}((n),(n))\), the map given by postcomposition by \(\chi_*\), and it follows that each \(f \in \tilde{N}_X((n),(n))\) is homotopic to \(\chi_*\). In particular, for \(A = k[x]\) we see that \(\chi\) and \(\chi'\) act differently on \(k[x]^{\otimes n} \simeq k[x_1,\ldots,x_n]\). This proves the claim.

3. DG-fattening of props

In this section we will build the fattening functor for dg-props and prove Theorem A. The fattening functor will associate to a dg-prop \(P\) a certain full subcategory of the free symmetric monoidal dg-category on \(P\) and \(\tilde{N}_X\), modulo relations expressing that the Dold-Kan morphisms are natural with respect to the morphisms of \(P\).

Remark 3.1. To spell out what Theorem A means, to each dg-prop \(P\), there is a natural homotopy-coherent \(P\)-action on the Hochschild complex of \(\text{Ass} \otimes P\)-algebras. The homotopies that make up the coherencies are encoded in a replacement dg-prop \(\hat{P}\) which strictify the homotopy-coherent \(P\)-action. This strictification is moreover functorial in the prop.

In order to produce the functor \(\widehat{(-)}\), we first construct an auxiliary functor \(Q : \text{dgprop} \to \text{dgCat}^{\otimes}\) landing in symmetric monoidal dg-categories. \(Q\) is constructed using a natural family of generators and relations and will contain \(\widehat{(-)}\) as a full subfunctor, i.e. there will be a natural transformation \(\widehat{(-)} \to Q\) whose components are inclusions of full subcategories.

The following definition describes a way of functorially arranging the entries of an \(n\)-tuple of integers \(\vec{k}\) according to the entries of a vector \(\vec{a}\) of length \(n\), which we use to define the functor \(Q\). Informally one should think of \(\text{Par}_{\vec{k}}(\vec{a})\) as given by arranging the entries of \(\vec{k}\) according to the entries of \(\vec{a}\). Similarly, for a morphism \(\gamma : \vec{a} \to \vec{b}\), one may think of \(\text{Par}_{\vec{k}}(\gamma)\) as the natural transformation whose \((A_1,\ldots,A_k)\)-component equals the \((A_1 \otimes \cdots \otimes A_{k_1},\ldots,A_{k_1+\ldots+k_{i-1}+1} \otimes \cdots \otimes A_k)\)-component of \(\gamma\).

Definition 3.2. For each \(n\)-tuple \(\vec{k} = (k_1,\ldots,k_n), k = |\vec{k}|,\) let \(\iota_{\vec{k}} : \text{Mod}^{\times k} \to \text{Mod}^{\times n}\) be the functor taking a \(k\)-tuple \((A_1,\ldots,A_k)\) to the \(n\)-tuple \((B_1,\ldots,B_n)\) where

\[B_i = A_{k_1+\ldots+k_{i-1}+1} \otimes \cdots \otimes A_{k_1+\ldots+k_i}\]

Writing \(N_n\) for the full subcategory of \(\tilde{N}\) on the objects \(\vec{a}\) with \(|\vec{a}| = n\), let

\[\text{Par}_{\vec{k}} : N_n \to N_k\]

be the functor taking \(\vec{a} = (a_1,\ldots,a_i)\) to

\[\text{Par}_{\vec{k}}(\vec{a}) := (k_1 + \cdots + k_{a_1},k_{a_1+1} + \cdots + k_{a_1+a_2},\ldots,k_{a_1+\ldots+a_{i-1}+1} + \cdots + k_n)\]

i.e. the unique vector such that \(N^\vec{a} \circ \iota_{\vec{k}} = N^{\text{Par}_{\vec{k}}(\vec{a})}\). For a morphism \(\gamma : \vec{a} \to \vec{b}\), \(\text{Par}_{\vec{k}}(\gamma)\) is given by \(\gamma \ast \text{id}_{\vec{k}}\). In particular, the following diagram commutes.
Recollection 3.3. We recall some ideas from enriched category theory. Let \mathcal{V} be a co-complete symmetric monoidal category. Then there is a free-forgetful adjunction between \mathcal{V}-enriched categories and \mathcal{V}-enriched graphs [8, Thm 2.13]. If Γ is a \mathcal{V}-enriched graph, the free \mathcal{V}-enriched category on Γ has morphism objects

$$F \Gamma(a, a') = \bigoplus_{n \geq 0} \Gamma(a_n, a') \otimes \Gamma(a_{n-1}, a_n) \otimes \ldots \otimes \Gamma(a, a_1)$$

We call the objects $\Gamma(a_i, a_{i+1})$ a family of generators of a \mathcal{V}-enriched category \mathcal{C} if \mathcal{C} is a quotient of $F \Gamma$. In the following, we give a definition of $Q(P)$ in terms of generators and relations.

Before giving the definition of the functor Q, we will clarify some technicalities. Using the above free-forgetful adjunction and the monad associated to the commutative prop, we can for a \mathcal{V}-graph Γ make the free symmetric monoidal \mathcal{V}-category $F^{\otimes} \Gamma$, whose objects are given by the free commutative monoid on Ob Γ. If (Ob $\Gamma, +$) is a commutative monoid, we may quotient $F^{\otimes} \Gamma$ by the relation $a \otimes b \sim (a + b)$ for $a, b \in$ Ob Γ. We will write $F^{\otimes}_{\text{Ob}} \Gamma$ for this quotient.

The situation we are interested in is the following. Let Γ be a \mathcal{V}-graph whose objects are equipped with a commutative monoid structure, and $\Gamma(a, b) = C(a, b) \otimes D(a, b)$, where C is a \mathcal{V}-category and D is a symmetric monoidal \mathcal{V}-category such that there is an inclusion Ob $C \hookrightarrow$ Ob D (we write $C(a, b) = 0$ unless both a and b are in Ob C). Then $F^{\otimes}_{\text{Ob}} \Gamma$ contains FC as a subcategory and $F^{\otimes}_{\text{Ob}} D$ as a symmetric monoidal subcategory.

Definition 3.4. Let C and D be as above. By the free symmetric monoidal \mathcal{V}-category generated by C and D we mean the quotient of $F^{\otimes}_{\text{Ob}} (\Gamma)$ by the relations defined by the structure maps

$$FC \to C$$

$$F^{\otimes}_{\text{Ob}} D \to D$$

For a symmetric monoidal \mathcal{V}-category \mathcal{E} to be generated by C and D we mean that \mathcal{E} is a quotient of the free symmetric monoidal \mathcal{V}-category generated by C and D.

Definition 3.5. For a dg-prop P, let $Q(P)$ be the symmetric monoidal category enriched in bicomplexes whose monoid of objects is the monoid of vectors \vec{k} under concatenation, and is generated as a symmetric monoidal category enriched in bicomplexes by P and \tilde{N}^{Σ}. Here $(f) \in P(n, m)$ has bidegree $(|f|, 0)$ and $\psi \in \tilde{N}^{\Sigma}(\vec{n}, \vec{m})$ has bidegree $(0, |\psi|)$. The horizontal and vertical differentials act on P and \tilde{N}^{Σ} respectively. We write $+$ for the symmetric
monoidal structure of P. For each $\vec{a} = (a_1, ..., a_l)$ in N_n and each n-tuple $f = (f_1, ..., f_n): \vec{k} \to \vec{m}$ of morphisms in P, we have morphisms

$$(k_{a_1+...a_i+1} + ... + k_{a_1+...a_{i+1}}) \xrightarrow{(f_{a_1+...a_i+1}+...+f_{a_1+...a_{i+1}})} (m_{a_1+...a_i+1} + ... + m_{a_1+...a_{i+1}})$$

in P, and we write $\text{Par}_f(\vec{a}): \text{Par}_k(\vec{a}) \to \text{Par}_m(\vec{a})$ for the tensor product of these morphisms for $1 \leq i \leq l$.

These generators are subject to the following relations: for each morphism $\gamma: \vec{a} \to \vec{b}$ in N_n and n-tuple $f = (f_1, ..., f_n): \vec{k} \to \vec{m}$ of morphisms in P, the following diagram commutes:

$$\begin{array}{ccc}
\text{Par}_k(\vec{a}) & \xrightarrow{\text{Par}_f(\vec{a})} & \text{Par}_m(\vec{a}) \\
\downarrow \text{Par}_k(\gamma) & & \downarrow \text{Par}_m(\gamma) \\
\text{Par}_k(\vec{b}) & \xrightarrow{\text{Par}_f(\vec{b})} & \text{Par}_m(\vec{b})
\end{array}$$

For a morphism of dg-props $g: P \to P'$, let $Q(g)$ be the symmetric monoidal functor $Q(P) \to Q(P')$ which is the identity on objects and on generators in \tilde{N}^{Σ}, and acts by g on the generators in P. Note that this assignment preserves the relations.

Remark 3.6. The relations imply that if $\vec{k} = (k_1, ..., k_n)$ with $|\vec{k}| = k$, $\vec{m} = (k'_1, ..., k'_n)$ with $|\vec{k}'| = k'$ and $\vec{f} = (f_1, ..., f_n): \vec{k} \to \vec{k}'$ is an n-tuple of morphisms in P and $f = f_1 \otimes ... \otimes f_n \in P(k, k')$, the following squares commute.

$$\begin{array}{ccc}
\vec{k} & \xrightarrow{\vec{f}} & \vec{k}' \\
\downarrow \text{sh}_n & & \downarrow \text{sh}_n \\
(k) & \xrightarrow{(f)} & (k')
\end{array} \quad \begin{array}{ccc}
(k) & \xrightarrow{(f)} & (k') \\
\downarrow \text{AW}_n & & \downarrow \text{AW}_n \\
\vec{k} & \xrightarrow{\vec{f}} & \vec{k}'
\end{array}$$

Definition 3.7. For \mathcal{C} a category enriched in bicomplexes, let $\text{Tot}(\mathcal{C})$ be the dg-category whose morphism complexes are the \oplus-totalization of the morphism bicomplexes in \mathcal{C}.

Lemma 3.8. There is a natural symmetric monoidal functor $F: \text{Tot}(Q(P)) \to P$ defined on objects by taking \vec{k} to $|\vec{k}|$, and on morphisms by taking $f: (k) \to (m)$ in $P(k, m)$ to $f: k \to m$ and $\gamma: \vec{k} \to \vec{m}$ in $\tilde{N}(\vec{k}, \vec{m})_i$ (if $|\vec{k}| = |\vec{m}|$) to $\text{id}_{|k|}$ if $i = 0$ and 0 otherwise.

Proof. It is clear that the assignment is natural in P if it is well-defined, which we now verify. Given a morphism $\gamma: \vec{a} \to \vec{b}$ in N_n and $f = (f_1, ..., f_n): \vec{k} \to \vec{m}$ in $P^{\times n}$, we must verify that the diagram
remains commutative after applying F. It is sufficient to assume that $\gamma \in \tilde{N}(\tilde{a}, \tilde{b})_0$. But F takes $\text{Par}_k(\gamma)$ to the identity and $F(\text{Par}_f(\tilde{a})) = F(\text{Par}_f((n))) = F(\text{Par}_f(\tilde{b}))$, so F is well defined. To see that F preserves the differentials on each morphism complex, note that for a general morphism

$$g = \gamma^n \circ f^n \circ ... \circ \gamma^0 \circ f^0$$

the differential is given by

$$dg = (d^0 \gamma^n) \circ f^n \circ ... \circ \gamma^0 \circ f^0 + (-1)^{\gamma^n} \gamma^n \circ (d^f f^n) \circ ... \circ \gamma^0 \circ f^0 + ...$$

$$+ (-1)^{\gamma^n + |f^n| + ... + |\gamma^n|} \gamma^n \circ f^n \circ ... \circ \gamma^0 \circ d^h f^0$$

In the case that Fg is non-zero (i.e. each $|\gamma^n| = 0$) this differential is identical to the differential in P. \qed

Notation 3.9. We write $(1)^n$ for the vector $(1, ..., 1)$ of length n. Note that for any n-tuple $f = (f_1, ..., f_n)$ of morphisms in P, we have $\text{Par}_f((1)^n) = f$ and $\text{Par}_f(n) = (F(f))$.

Lemma 3.10. Let P be a dg-prop and let $\tilde{k}, \tilde{m} \in \text{Ob } Q(P)$. The map

$$\text{Hom}_{\text{Tot}(Q(P))}(\tilde{k}, \tilde{m}) \to \text{Hom}_{P}(k, m)$$

induced by F is a quasi-isomorphism.

Proof. Denote by $c_v \text{Hom}_P(k, m)$ the bicomplex which has $\text{Hom}_P(k, m)$ concentrated in vertical degree 0, and consider the map of bicomplexes

$$A : c_v \text{Hom}_P(k, m) \simeq \tilde{N}((m), (m)) \otimes \text{Hom}_P(k, m) \to \text{Hom}_{Q(P)}(\tilde{k}, \tilde{m})$$

taking $\gamma \otimes f$ to $AW_{\tilde{m}} \circ \gamma \circ f \circ \text{sh}_{\tilde{m}}$. We will show that the totalization of A is a quasi-isomorphism and a quasi-inverse to the map induced by F on Hom-complexes. Let $f : \tilde{k} \to \tilde{m}$ with $|f| = (d, d')$ in $Q(P)$ be a composition of generators of $Q(P)$. If for any such f, the homology class of f is represented by a composition $AW_{\tilde{m}} \circ \tilde{\gamma} \circ (F(f)) \circ \text{sh}_{\tilde{m}}$, where $\tilde{\gamma} \in \tilde{N}((m), (m))_{d'}$, then the map A above is a quasi-isomorphism after totalizing. Indeed, assume that f is a cycle with respect to the vertical differential. f is given by a sum

$$f = f_1 + ... + f_n \in \text{Hom}_{Q(P)}(\tilde{k}, \tilde{m})_{d,n}$$

where each f_i is a composition of generators of $Q(P)$. We may assume that each f_i has the form $AW_{\tilde{m}} \circ \gamma_i \circ (F(f_i)) \circ \text{sh}_{\tilde{m}}$. Using the contractibility of \tilde{N}^Σ, we may in fact assume that the γ_i are identical, such that f represents the same homology class as

$$AW_{\tilde{m}} \circ \gamma \circ (F(f)) \circ \text{sh}_{\tilde{m}}$$

in vertical homology for some $\gamma \in \tilde{N}^\Sigma((m), (m))$. Now the vertical differential acts only on γ, which must be a cycle, hence a boundary in $\tilde{N}^\Sigma((m), (m))$ unless $d = 0$, hence this cycle
represents a trivial homology class if \(d > 0 \). In the case \(d = 0 \), \(\gamma = \text{id} \) is a cycle which is not a boundary. It follows that on homology,

\[
H_*(\text{Hom}_{Q(P)}(\tilde{k}, \tilde{m}); d_v) \simeq \text{Hom}_P(k, m).
\]

We get an isomorphism of \(E_1 \)-pages of the spectral sequence for a double complex:

\[
H_*(\tilde{N}^\Sigma((m), (m)) \otimes \text{Hom}_P(k, m); d_v) \xrightarrow{\sim} H_*(\text{Hom}_{Q(P)}(\tilde{k}, \tilde{m}); d_v)
\]

hence \(A \) is a quasi-isomorphism after totalizing. Now, for any \(f \in \text{Hom}_P(k, m) \) we have

\[
F \circ \text{Tot}(A)(f) = F(AW_{\tilde{m}} \circ \gamma \circ (f) \circ \text{sh}_{\tilde{k}}) = f
\]
such that \(F \circ \text{Tot}(A) \) is the identity. The result now follows from the 2-out-of-3 property for quasi-isomorphisms.

In the following, for \(a, b \) elements of a bicomplex \(C \) with \(|a| = |b| = (d, d') \), a vertical homotopy \(h : a \simeq b \) means an element \(h \) of \(C \) with \(|h| = (d, d' + 1) \) such that \(d_v h = b - a \).

We are left to show that each element admits a homotopy to the desired form. This is \textit{a priori} by a sequence of generators

\[
\tilde{k}_{0,0} \xrightarrow{\phi^0} \tilde{k}_{0,1} \xrightarrow{\gamma^0} \tilde{k}_{1,0} \xrightarrow{\phi^1} \ldots \xrightarrow{\gamma^{m-1}} \tilde{k}_{m,0}
\]

where \(\phi^i \in P^{\times n_i} \) and \(\gamma^i \in \tilde{N}(\tilde{k}_{i,1}, \tilde{k}_{i+1,0})_0 \). To begin, we may fix for each \(\gamma^i \) a vertical homotopy \(c(\gamma^i) : \gamma^i \simeq AW_{\tilde{k}_{i+1,0}} \circ \text{sh}_{\tilde{k}_{i,1}} \). Applying the \(c(\gamma^i) \) we obtain a new morphism

\[
g = \tilde{k}_{0,0} \xrightarrow{\phi^0} \tilde{k}_{0,1} \xrightarrow{\text{AW}_{\tilde{k}_{1,0}} \circ \text{sh}_{\tilde{k}_{0,1}}} \tilde{k}_{1,0} \xrightarrow{\phi^1} \ldots \xrightarrow{\text{AW}_{\tilde{k}_{m,0}} \circ \text{sh}_{\tilde{k}_{m-1,1}}} \tilde{k}_{m,0}
\]
equipped with a vertical homotopy \(f \simeq g \). Now repeated application of the relations

\[
\begin{align*}
\tilde{k}_{i,0} & \xrightarrow{\phi^i} \tilde{k}_{i,1} & (k_{i,0}) & \xrightarrow{\text{Par}_{\phi^i}(n_i)} (k_{i,1}) \\
\text{sh}_{\tilde{k}_{i,1}} & & & \\
(k_{i,0}) & \xrightarrow{\text{Par}_{\phi^i}(n_i)} (k_{i,1})
\end{align*}
\]

allows us to rewrite \(g \) as the composition

\[
g = \text{AW}_{\tilde{k}_{m,0}} \circ \text{Par}_{\gamma^{m-1}}(((n_{m-1})) \circ (\text{AW}_{\tilde{k}_{m-1,0}} \circ \text{sh}_{\tilde{k}_{m-1,0}}) \circ \ldots \\
\ldots \circ \text{Par}_{\phi^i}(n_i)) \circ (\text{AW}_{\tilde{k}_{i,0}} \circ \text{sh}_{\tilde{k}_{i,0}}) \circ \text{Par}_{\phi^0}(n_0) \circ \text{sh}_{\tilde{k}_{0,0}}
\]

Now choose vertical homotopies \(\beta_{\tilde{k}_{i,0}} : (\text{AW}_{\tilde{k}_{i,0}} \circ \text{sh}_{\tilde{k}_{i,0}}) \rightarrow \text{id}_{(k_{i,0})} \), giving us a composition of the desired form. This completes the base case.

For \(d' > 0 \), we may again write \(f \) as a sequence of generators

\[
\tilde{k}_{0,0} \xrightarrow{\phi^0} \tilde{k}_{0,1} \xrightarrow{\gamma^0} \tilde{k}_{1,0} \xrightarrow{\phi^1} \ldots \xrightarrow{\gamma^{m-1}} \tilde{k}_{m,0}
\]

where \(\phi^i \in P^{\times n_i} \) and now \(\gamma^i \in \tilde{N}(\tilde{k}_{i,1}, \tilde{k}_{i+1,0})_{d'} \). We now consider two cases. Assume first that \(d'_i < d' \) for each \(i \). Let \(j \) be the least \(i \) such that \(|\gamma^i| > 0 \). By our assumption on the \(d'_i \), \(j < m - 1 \). Write \(f' \) for the composition

\[
\begin{align*}
\tilde{k}_{j,1,0} & \xrightarrow{\gamma^{j+1}} \tilde{k}_{j+1,1} \xrightarrow{\gamma^{j+2}} \ldots \xrightarrow{\gamma^{m-1}} \tilde{k}_{m,0}
\end{align*}
\]
and write f'' for the composition
\[\overline{k}_{0,0} \overset{\phi^0}{\longrightarrow} \overline{k}_{0,1} \overset{\gamma^0}{\longrightarrow} \overline{k}_{1,0} \overset{\phi^1}{\longrightarrow} ... \overset{\gamma^{m-1}}{\longrightarrow} \overline{k}_{j+1,0}. \]

By induction, we may rewrite f' and f'' up to homotopy as
\[f' \simeq AW_{m} \circ \overline{\gamma}' \circ (F(f')) \circ \text{sh}_{k_{j+1,0}} \]
where $\overline{\gamma}' \in \tilde{N}((m), (m))_{d_{j+1} + ... + d_{m-1}}$ and
\[f'' \simeq AW_{j+1,0} \circ \overline{\gamma}'' \circ (F(f'')) \circ \text{sh}_{\overline{k}} \]
where $\overline{\gamma}'' \in \tilde{N}(([k_{j+1,0}]), (([k_{j+1,0}]))_{d_{j} + ... + d_{j}}$. Hence we get a homotopy
\[f \simeq AW_{m} \circ \overline{\gamma}' \circ (F(f')) \circ \overline{\gamma}'' \circ (F(f'')) \circ \text{sh}_{\overline{k}} \]
We may now rewrite $(F(f')) \circ \overline{\gamma}'' \simeq \overline{\gamma}'' \circ (F(f'))$ to obtain a composition of the desired form.

Finally, assume that there is a j such that $d_{j} = d'$. If $j = m - 1$, then the result follows from the base case and contractibility of $\tilde{N}((m), (m))$. If $j < m - 1$, we will provide a homotopy between f and another morphism f' for which $d_{j+1} = d'$. By the above, this will finish the argument. We apply a homotopy $\gamma^j \simeq AW_{k_{j+1,0}} \circ \overline{\gamma}^j \circ \text{sh}_{k_{j,0}}$ where $\overline{\gamma}^j \in \tilde{N}([k_{j+1,0}], [k_{j+1,0}])_{d_{j}}$. Note that we may assume that γ^j is of the form $\text{Par}_{k_{j,0}}(\gamma^j)$ for a $\gamma^j \in \tilde{N}(([n_{j}]), (n_{j}))$. To name a concrete such element, one can use the (higher) homotopies witnessing sh and AW as mutual homotopy inverses. Now using the relation
\[\begin{array}{c}
(k_{j,0}) \xrightarrow{\text{Par}_{\phi^j}(\gamma^j)} (k_{j,1}) \\
\hspace{1cm} \downarrow \text{Par}_{\phi^j}(\gamma^j) \\
(k_{j,0}) \xrightarrow{\text{Par}_{\phi^j}(\gamma^j)} (k_{j,1})
\end{array} \]
We see that we have a composition
\[f \simeq f' = \overline{k}^j_{0,0} \overset{\phi^0}{\longrightarrow} \overline{k}^j_{0,1} \overset{\gamma^0}{\longrightarrow} \overline{k}^j_{1,0} \overset{\phi^1}{\longrightarrow} ... \overset{\gamma^{m-1}}{\longrightarrow} \overline{k}^j_{m,0} \]
where for $i \neq j + 1$ we have $\overline{k}^j_{i,0} = \overline{k}_{i,0}$, $\overline{k}^j_{i,0} = \overline{k}_{i,0}$, for $i \neq j$ we have $\phi^i = \phi^j$, and for $i \neq j + 1, j$ we have $\gamma^i = \gamma^j$. Finally, $\overline{k}^j_{j+1,0} = (k_{j,0})$, $\overline{k}^j_{j+1,1} = (k_{j+1,1})$, $\phi^j = \text{Par}_{\phi^j}(n_{j})$, $\gamma^j = \text{sh}_{k_{j,1}}$, and $\gamma^{j+1} = \gamma^j \circ AW_{k_{j+1,0}} \circ \text{Par}_{k_{j+1,1}}(\gamma^j)$. We see now that for the composition f', $|\gamma^{j+1}| = d'$, and this finishes the argument. \[\square \]

Recall that for a prop P, a P-algebra is a symmetric monoidal functor $\Phi : P \rightarrow Ch_k$ and a $\mathcal{A}ss \otimes P$-algebra is the same as a symmetric monoidal functor $P \rightarrow \text{dgAlg}_k$.

Lemma 3.11. The functor $\text{Tot}(Q(-)) : \text{dgprop} \rightarrow \text{dgCat}^\otimes$ has the property that there is a natural transformation of functors $\text{dgprop}^{op} \rightarrow \text{Cat}$
\[
\alpha : \text{Fun}^\otimes(-, \text{dgAlg}_k) \rightarrow \text{Fun}^\otimes(\text{Tot}(Q(-)), Ch_k)
\]
such that $\alpha_P(\Phi)(1) = C(\Phi(1))$.

Proof. We divide the proof into several steps. First we construct the functors $\alpha_P(\Phi)$. Then we show functoriality in Φ. Finally we will show naturality in P.

Step 1: Constructing $\alpha_P(\Phi)$.

Let P be a dg-prop, and let $\Phi : P \to \text{dgAlg}_k$ be a symmetric monoidal functor. We will produce a symmetric monoidal functor $\alpha_P(\Phi) : \text{Tot}(Q(P)) \to \text{Ch}_k$ that sends \vec{k} to $C^k(\Phi(1))$. Throughout this section of the proof, we write $A = \Phi(1)$ for ease of notation. We describe the functoriality of $\alpha_P(\Phi)$ in terms of the generators of $\text{Tot}(Q(P))$. If $f : n \to m$ is in P, then (f) acts by

$$C^n(A) \simeq C(\Phi(n)) \xrightarrow{C(f)} C(\Phi(m)) \simeq C^m(A)$$

Furthermore \tilde{N} acts according to Proposition 2.26. This determines how the generators of $\text{Tot}(Q(P))$ act. Now let $f = (f_1, \ldots, f_n) : \vec{k} \to \vec{m}$ be an n-tuple of morphisms in P and let $\gamma : \vec{a} \to \vec{b}$ be a morphism in N_n. We are left to verify that the relations

$$\text{Par}_{\vec{k}}(\vec{a}) \text{Par}_{\vec{m}}(\vec{a})$$

are preserved by the action. Now there is an isomorphism (see Proposition 2.26)

$$\alpha_P(\Phi)(\text{Par}_{\vec{k}}(\vec{a})) = C^{\text{Par}_{\vec{k}}(\vec{a})}(A) \xrightarrow{N\theta_{\vec{a}}^{-1}} N\vec{a}(B^{cy}(A^k_1), \ldots, B^{cy}(A^k_n))$$

Write $N\vec{a}(B^{cy}(A^k))$ for the latter. Consider the following diagrams:

$$\gamma_{B^{cy}(A^k)} \downarrow \quad \gamma_{B^{cy}(A^m)} \quad N\theta_{\vec{a}}^{-1} \quad N\theta_{\vec{a}}^{-1}$$

The left diagram commutes by the definition of \tilde{N}, while the right diagram commutes by the naturality of the symmetric monoidal structure maps of B^{cy}. Finally, observe that

$$\alpha_P(\Phi)(\text{Par}_{\vec{k}}(\gamma)) = N\theta_{\vec{a}} \circ \gamma_{B^{cy}(A^k)} \circ N\theta_{\vec{a}}^{-1}$$

Together these facts imply that the relations in $\text{Tot}(Q(P))$ are preserved by the action, such that $\alpha_P(\Phi)$ is a functor. Then by the definition of C^k it is clearly symmetric monoidal.

Step 2: Showing that α_P is a functor.

We will notationally identify an object in $\text{Fun}^\otimes(\text{Ass} \otimes P, \text{Ch}_k)$ with its value at 1. Let $\phi : A \to B$ be a morphism in $\text{Fun}^\otimes(P, \text{dgAlg}_k)$. We will produce a natural transformation
\(\alpha_P(A) \to \alpha_P(B) \). The component at \(\vec{l} \in Q(P) \) is given by applying \(\phi_1 : A \to B \) component-wise, i.e. \(\alpha_P(\phi)_{\vec{l}} = C^\vec{l}(\phi_1) : C^\vec{l}(A) \to C^\vec{l}(B) \). It is sufficient to check naturality against the generators of \(Q(P) \). If \(f : n \to m \) is a morphism in \(P \), then the following diagram commutes because it commutes before applying \(C(\cdot) \).

\[
\begin{array}{ccc}
C(A^{\otimes n}) & \xrightarrow{C(\phi_n)} & C(B^{\otimes n}) \\
C(f_A) & & C(f_B) \\
C(A^{\otimes m}) & \xrightarrow{C(\phi_m)} & C(B^{\otimes m})
\end{array}
\]

Let \(\gamma : \vec{k} \to \vec{m} \) be a morphism in \(\widetilde{N} \) and consider the following diagrams:

\[
\begin{array}{ccc}
C^\vec{k}(A) & \xrightarrow{N^\vec{k}_{\vec{k}}^{-1}} & N^\vec{k}(B^{cy}(A)) \\
C^\vec{k}(\phi) & & N^\vec{k}(B^{cy}(\phi)) \\
C^\vec{k}(B) & \xrightarrow{N^\vec{k}_{\vec{k}}^{-1}} & N^\vec{k}(B^{cy}(B))
\end{array}
\quad
\begin{array}{ccc}
N^\vec{k}(B^{cy}(A)) & \xrightarrow{N^\vec{k}(B^{cy}(\phi))} & N^\vec{k}(B^{cy}(\phi)) \\
N^\vec{k}(B^{cy}(\vec{m})) & \xrightarrow{N^\vec{k}(B^{cy}(\phi))} & N^\vec{k}(B^{cy}(\vec{m}))
\end{array}
\]

The left diagram commutes by naturality of the symmetric monoidal structure maps of \(B^{cy} \) and the right diagram commutes by the definition of \(\widetilde{N} \). Since \(\gamma \) acts by

\[
\alpha_P(A)(\gamma) = N\theta_m \circ N^\gamma(B^{cy}(A)) \circ N\theta_{\vec{k}}^{-1}
\]

the commutativity of these two families of diagrams implies naturality with respect to the morphisms in \(\tilde{N}^{\Sigma} \).

Step 3: Showing that \(\alpha \) is natural in \(P \).

Let \(i : P \to P' \) be a morphism of dg-props. We need to check commutativity of the diagram

\[
\begin{array}{ccc}
\text{Fun}^{\otimes}(P', \text{dgAlg}_k) & \xrightarrow{\alpha_{P'}} & \text{Fun}^{\otimes}(\text{Tot}(Q(P')), \text{Ch}_k) \\
i^* & & \text{Tot}(Q(i))^* \\
\text{Fun}^{\otimes}(P, \text{dgAlg}_k) & \xrightarrow{\alpha_P} & \text{Fun}^{\otimes}(\text{Tot}(Q(P)), \text{Ch}_k)
\end{array}
\]

Let \(\Phi : P' \to \text{dgAlg}_k \) be a symmetric monoidal functor. We first show that the functors \(\alpha_P(i^*\Phi) \) and \(\text{Tot}(Q(i))^*\alpha_{P'}(\Phi) \) are equal. Since \(i \) and \(\text{Tot}(Q(i)) \) are isomorphisms on objects, we have

\[
\alpha_P(i^*\Phi)(\vec{k}) = C^\vec{k}(i^*\Phi(1)) = C^\vec{k}(\Phi(1))
\]

and

\[
\text{Tot}(Q(i))^*\alpha_{P'}(\Phi)(\vec{k}) = \alpha_{P'}(\Phi)(\vec{k}) = C^\vec{k}(\Phi(1))
\]
so they are equal on objects. Let $\gamma : \tilde{k} \to \tilde{m}$ be a morphism in \tilde{N}^Σ. Since $\text{Tot}(Q(i))$ is the identity on \tilde{N}^Σ, we similarly have

$$\text{Tot}(Q(i))^* \alpha_{P'}(\Phi)(\gamma) = \alpha_{P'}(\Phi)(\gamma) = N\theta_m \circ N^\gamma(B^w(\Phi(1))) \circ N\theta_k^{-1}$$

and

$$\alpha_P(i^*\Phi)(\gamma) = N\theta_m \circ N^\gamma(B^w(i^*\Phi(1))) \circ N\theta_k^{-1} = N\theta_m \circ N^\gamma(B^w(\Phi(1))) \circ N\theta_k^{-1}$$

so the action of \tilde{N}^Σ coincides as well. We now compare the action by a morphism $f : k \to m$ in P. We have

$$\alpha_P(i^*\Phi)(f) : C(k)(\Phi(1)) \simeq C(\Phi(k)) \overset{C(id_k)}{\longrightarrow} C(\Phi(m)) \simeq C(m)(\Phi(1)).$$

Notice that $\alpha_P(i^*\Phi)(f) = \alpha_{P'}(\Phi)(i(f))$. Now since $\text{Tot}(Q(i))(f) = i(f)$ in $\text{Tot}(Q(P'))$, we have

$$\text{Tot}(Q(i))^* \alpha_{P'}(\Phi)(f) = \alpha_{P'}(\Phi)(i(f))$$

so the two functors coincide on objects.

Before we verify that the functors also agree on morphisms, we recall a basic fact about compositions of natural transformations. If $\mathcal{C}, \mathcal{C}', \mathcal{D}$ are categories, $j : \mathcal{C} \to \mathcal{C}'$ is a functor and $\alpha : F \Rightarrow G : \mathcal{C}' \to \mathcal{D}$ is a natural transformation, then the pullback of α along j is given componentwise by $(\alpha \ast \text{id}_{j(\cdot)})_c = \alpha_{j(c)}$.

For a morphism: $\psi : \Phi \to \Psi$, we have the natural transformations

$$\alpha_P(i^*\psi) : \alpha_P(i^*\Phi) \to \alpha_P(i^*\Psi)$$

and

$$\text{Tot}(Q(i))^* \alpha_{P'}(\psi) : \text{Tot}(Q(i))^* \alpha_{P'}(\Phi) \to \text{Tot}(Q(i))^* \alpha_{P'}(\Psi)$$

of functors $\text{Tot}(Q(P)) \to \text{Ch}_k$. It is sufficient to check that they coincide on components. Let \tilde{k} be an object of $\text{Tot}(Q(P))$. Then since i is an isomorphism on objects, we get

$$\alpha_P(i^*\psi)(\tilde{k}) = C_{\tilde{k}}(i^*\psi(1)) = C_{\tilde{k}}(\psi(1))$$

and

$$\text{Tot}(Q(i))^* \alpha_{P'}(\psi)(\tilde{k}) = \alpha_{P'}(\psi)(\tilde{k}) = C_{\tilde{k}}(\psi(1))$$

so they are equal. \hfill \square

Proof of Theorem A: Define $\overline{(-)} : \text{dgprop} \to \text{dgprop}$ to be the functor taking a dg-prop P to the full subcategory of $\text{Tot}(Q(P))$ generated by the objects $\{(1)^n\}_{n \geq 0}$. To see that this defines a functor, recall from Definition 3.3 that for a morphism of dg-props $P \to P'$, the induced symmetric monoidal functor $\text{Tot}(Q(P)) \to \text{Tot}(Q(P'))$ is the identity on object monoids, hence it restricts to a prop morphism $\overline{P} \to \overline{P}'$.

The natural quasi-equivalence $\overline{(-)} \to \text{id}.$

Let $F|_{\overline{P}} : \overline{P} \to P$ be the composition

$$\overline{P} \hookrightarrow \text{Tot}(Q(P)) \xrightarrow{F} P$$

It is clear that $F|_{\overline{P}}$ induces an isomorphism on object monoids. By Lemma 3.10, $F|_{\overline{P}}$ also induces quasi-isomorphisms on Hom-complexes, hence it is a quasi-equivalence. Naturality of F and the inclusion $\overline{P} \to \text{Tot}(Q(P))$ imply that $F|_{\overline{P}}$ is a natural quasi-equivalence.
The natural transformation $\tilde{\alpha}$.

To produce the natural transformation $\tilde{\alpha}$, we use the transformation α from Lemma 3.11. Recall that there is an equivalence of categories
\[
\text{Fun}^\otimes(\text{Ass} \otimes P, \text{Ch}_k) \simeq \text{Fun}^\otimes(P, \text{dgAlg}_k).
\]
The natural inclusion $i : (-) \to \text{Tot}(Q(-))$ gives us a natural transformation
\[
i^* : \text{Fun}^\otimes(\text{Tot}(Q(-)), \text{Ch}_k) \to \text{Fun}^\otimes((-), \text{Ch}_k)
\]
and we define $\tilde{\alpha}$ to be the composition
\[
\tilde{\alpha} = i^* \circ \alpha : \text{Fun}^\otimes(\text{Ass} \otimes -, \text{Ch}_k) \to \text{Fun}^\otimes((-), \text{Ch}_k).
\]
Because $\tilde{\alpha}$ is a restriction of α, we have that for any prop P, and symmetric monoidal functor $\Phi : \text{Ass} \otimes P \to \text{Ch}_k$, there is an equality $\tilde{\alpha}_P(\Phi)(1) = \alpha_P(\Phi)(1) = C(\Phi(1))$, hence $\tilde{\alpha}$ has the stated properties.

Example 3.12. Consider the example $P = \mathcal{CH}\text{opf}$, the prop encoding a commutative Hopf algebra structure. Note that every morphism in $\mathcal{CH}\text{opf}$ is an algebra homomorphism, hence we have an equivalence $\text{Ass} \otimes \mathcal{CH}\text{opf} \simeq \mathcal{CH}\text{opf}$ and Theorem A gives a recipe for the natural coherent commutative Hopf algebra structure on Hochschild chains of commutative Hopf algebras. In particular, $\mathcal{CH}\text{opf}$ is generated in degree 0 by the morphisms
\[
(\alpha) \xrightarrow{\eta} (1)
\]
\[
(1,1) \xrightarrow{\text{sh}} (2) \xrightarrow{m} (1)
\]
\[
(1) \xrightarrow{\Delta} (1,1)
\]
\[
(1) \xrightarrow{\epsilon} (1)
\]
An example of a generator in degree 1 is the bialgebra relation, in which we need the homotopy $\theta \in \tilde{N}^\Sigma((2,2),(2,2))_1$ to interpolate between the upper and lower legs of the diagram. Here $F \in \Sigma_4$ is the transposition $(2,3)$.
In a similar way, we need the contraction \(\alpha_{(1,1)} : AW \circ \text{sh} \simeq \text{id} \in \tilde{N}^\Sigma((1,1),(1,1)) \) for the antipode diagrams.

Note that \(\tilde{C\text{Hopf}} \) still has a strictly commutative multiplication. If \(C\mathbb{E}_n\text{Hopf} \) encodes commutative and \(\mathbb{E}_n \)-cocommutative Hopf algebras, then \(C\tilde{\mathbb{E}_n\text{Hopf}} \) will also be \(\mathbb{E}_n \) cocommutative for \(n \leq \infty \), but if \(C\text{Hopf} \) is the prop encoding a Hopf algebra structure which is both commutative and cocommutative, then \(C\tilde{\text{Hopf}} \) is strictly commutative but only \(\mathbb{E}_\infty \)-cocommutative, since \(AW \) is not a symmetric monoidal transformation.

References

[1] Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt, *On the multiplicative structure of topological Hochschild homology*, Algebr. Geom. Topol., 7:16331650, 2007

[2] Albrecht Dold, *Über die Steenrodschen Kohomologieoperationen*, Ann. of Math. 73, 1961, 258-294.

[3] Benoit Fresse, *Props in model categories and homotopy invariance of structures*, arXiv:0812.2738v4, 5 Dec 2008.

[4] Birgit Richter, \(\mathbb{E}_\infty \)-structure for \(Q_*(R) \), Math. Ann. 316, 547-564 (2000).

[5] Birgit Richter, *Symmetry Properties of the Dold-Kan Correspondence*, Mathematical Proceedings of the Cambridge Philosophical Society, 134(1), pp. 95102, 2003.

[6] Nathalie Wahl and Craig Westerland, *Hochschild homology of structured algebras*, Advances in Math. 288 (2016), 240-307.

[7] Nathalie Wahl, *Universal operations in Hochschild homology*, J. Reine Angew. Math., to appear, 2012.

[8] Harvey Wolff, *V-cat and V-graph*, J. Pure Appl. Algebra 4 (1974), 123135.