Avian Host-Selection by Culex pipiens in Experimental Trials

Jennifer E. Simpson
Yale School of Public Health

Corrine M. Folsom-O’Keefe
Yale School of Public Health

James E. Childs
Yale School of Public Health, james.childs@yale.edu

Leah E. Simons
Stony Brook University

Theodore G. Andreadis
The Connecticut Agricultural Experiment Station

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub

Part of the Veterinary Infectious Diseases Commons

Simpson, Jennifer E.; Folsom-O'Keefe, Corrine M.; Childs, James E.; Simons, Leah E.; Andreadis, Theodore G.; and Diuk-Wasser, Maria A., "Avian Host-Selection by Culex pipiens in Experimental Trials" (2009). Other Publications in Zoonotics and Wildlife Disease. 89.
https://digitalcommons.unl.edu/zoonoticspub/89

This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Jennifer E. Simpson, Corrine M. Folsom-O'Keefe, James E. Childs, Leah E. Simons, Theodore G. Andreadis, and Maria A. Diuk-Wasser
Avian Host-Selection by *Culex pipiens* in Experimental Trials

Jennifer E. Simpson¹, Corrine M. Folsom-O’Keefe¹, James E. Childs¹, Leah E. Simons², Theodore G. Andreadis³, Maria A. Diuk-Wasser¹*

¹ Department of Epidemiology and Public Health, Yale School of Public Health, New Haven, Connecticut, United States of America, ² Department of Biology, Stony Brook University, Stony Brook, New York, United States of America, ³ The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America

Abstract

Evidence from field studies suggests that *Culex pipiens*, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (*Turdus migratorius*). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female *C. pipiens* in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, *Sternus vulgaris* and house sparrow, *Passer domesticus*. Host seeking *C. pipiens* were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by *C. pipiens* mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission.

Introduction

Heterogeneities in contact rates between arthropod vectors and hosts are important to vector-borne disease dynamics, because they can result in increased disease transmission if vector blood meals occur more commonly on pathogen-competent hosts. In contrast, transmission may be reduced if blood meals are ‘diluted’ by feeding on non-competent hosts.

The rate of contact is influenced by a variety of factors including innate host preferences of the vector, host availability and landscape composition and configuration. Traditional means for determining mosquito host-preferences in the field are to estimate the proportion of blood meals on certain hosts [1] or, more specifically, to calculate a feeding index, where the proportion of blood meals acquired from a specific host is assessed in relation to the abundance of that host within the community of potential hosts [2,3].

To control for environmental confounders influencing contact rates, host-choice experiments using traps baited with whole-host odors have been conducted to determine innate host preferences of a vector. Mainly focused on *Anopheles* spp. malaria vectors, these experiments have demonstrated preferential feeding for individuals of a certain host species [4–12]. A limited number of host-preference experiments conducted with other mosquito genera provide inconclusive evidence on the presence of innate host preferences [5,8,13–19].

In the United States, West Nile virus (WNV; family Flaviviridae, genus *Flavivirus*) is maintained in a zoonotic cycle involving mosquito vectors and wild birds serving as amplification hosts. Mammals, including humans, are generally considered non-competent or ‘dilution’ hosts because they do not develop viremias of sufficient magnitude and duration to infect mosquitoes and thus do not contribute to the transmission cycle [20]. WNV was first recognized in North America in 1999, and has since spread throughout the United States and southern Canada, causing more than 28,900 human cases and 1,131 fatalities (Centers for Disease Control and Prevention, 2008). In the northeastern US, the mosquito *Culex pipiens* L. (Diptera: Culicidae) is considered an important enzootic vector for WNV, as numerous isolations of WNV have been obtained from field-collected mosquitoes [21–24] and laboratory studies have confirmed its vector competence [25–27].

Recent studies in the northeastern US and elsewhere, have found that a single host species, the American robin (*Turdus migratorius*), provides between 5 and 71% of all *C. pipiens* blood meals, with most reporting higher than 40% robin-derived blood meals [28–35]. Kilpatrick et al [30] and Hamer et al [35] have further shown that robins are fed upon by *C. pipiens* in excess of what would be expected based on their relative abundance in the host community, as determined by a feeding index >1. Field derived feeding indices, also referred to as a ‘selection’ [35] or ‘forage’ [36] ratio, are, however, limited in their ability to discriminate between an ‘innate’ feeding preference and the effect
of landscape composition and configuration on the contact rate between C. pipiens and robins.

The objective of this study was to obtain a measure of innate host-selection in C. pipiens by comparing the relative attractiveness of American robins when paired with two other bird species common in residential areas, European starling (Sturnus vulgaris) and house sparrow (Passer domesticus), in outdoor caged experiments.

Materials and Methods

Mosquitoes

All C. pipiens mosquitoes used in the experimental host selection trials were reared from field collected egg rafts obtained in New Haven, CT between August 15 and September 29, 2008 using gravid-trap bins baited with a lactalbumin and yeast hay infusion. Egg rafts were collected daily and placed individually in 100 mm diameter Petri dishes filled with approximately 40ml purified water and a small amount of crushed flake fish food, at 70% relative humidity. Larval rearing was conducted at the Connecticut Agricultural Experiment Station's insectary located at Lockwood Farm in Hamden, CT at 22°C under a 16 hr photoperiod. C. pipiens larvae were readily identified to species during the second stadium using standard morphological characters with the aid of a stereo microscope and descriptive keys [37]. Three to 5 egg batches were then transferred simultaneously to larger 30x15 cm screening into the side of each enclosure for inserting mosquitoes, and was then plugged to prevent mosquitoes from escaping.

Within each enclosure, two “lard-can” traps [17,38] baited with a single bird were hung side-by-side separated by one meter. The trap was designed so that mosquitoes could enter from either end but were unable to exit, and contained a mesh screen separating the bird from mosquitoes entering the trap. The bird was identified to species, given a unique identifier (robins were banded) and classified by sex and age if possible. Birds were used in only one trial, held for no more than 24 hours, and all birds were successfully released the morning after the trial at the location of capture.

Prior to trials, captured birds were held individually in 83.3 or 143.3 liter mesh reptarium cages supplied with paper liners in a designated animal room at the Yale Farm at 24°C and 76.0% RH. Perches made of sticks with faux foliage were provided and birds were given unlimited water and ample food. Robins were provided approximately 100 mealworms each, while other species were provided wild bird seed. The room lights were left on, but cages were covered with a light-colored sheet. In this manner, birds could not see beyond their cage, but could still locate their perch, food and water.

Trials

The host selection trials were conducted with three different species of birds, American robin, European starling, and house sparrow outdoors in two 3x3 m mesh enclosures (Bioquip Products, Inc; Rancho Dominguez, CA 90220) that were erected in an open lawn area away from trees or other obstructions at the Yale Farm in Bethany, CT (Figure 1). The enclosures were mosquito-proofed on all sides by attaching a tarp floor and using durable weather-resistant tape to seal all gaps. A small hole was cut into the side of each enclosure for inserting mosquitoes, and was then plugged to prevent mosquitoes from escaping.

Within each enclosure, two “lard-can” traps [17,38] baited with a single bird were hung side-by-side separated by one meter. The trap was designed so that mosquitoes could enter from either end but were unable to exit, and contained a mesh screen separating the bird from mosquitoes entering the trap.

The trials were conducted for a 2 hr interval after sunset coincident with peak host-seeking activity reported for Cx. pipiens [39]. For each trial, one robin and one individual of an alternate species (or a second robin as a control for trap selection bias) were placed within the two lard-can traps. To minimize potential bias due to trap placements, bird placement within the two traps (either left or right trap) was randomized. A trial started as soon as 100–200 (exact number counted for each trial) F1 female C. pipiens mosquitoes were inserted into the enclosure. The start and end times were recorded along with the date. Temperature, humidity, and wind speed measurements were taken midway through the trial using a hand-

Figure 1. Trial Enclosure (A) and Bird-Baited Trap Design (B).

doi:10.1371/journal.pone.0007861.g001
held weather meter (Kestrel® 4000). Mosquitoes remaining in the enclosure after the trial were aspirated using a back-pack aspirator, after which the traps were dismantled, the birds returned to their holding cages and mosquitoes in the collection chambers were frozen and counted. Four American robin-European starling and eight robin-house sparrow trials were conducted. We also ran eight robin-robin pairings, which served as a control.

Data Analysis
We measured the relative attractiveness of robins over the alternate bird species as the probability of a mosquito entering a robin-baited trap (\(P_{\text{robin}}\)) when paired with a trap baited with an alternate bird species.

A logistic regression model was used to examine the effect of covariates on the probability of a mosquito entering a robin-baited trap (Stata/SE 8.0, Stata Co., College Station, TX). The covariates were the alternate individual’s species weight, the robin’s weight, the weight difference between the robin and the alternate species, the age and sex of birds, the date of the trial, starting-time, temperature, humidity, wind-speed and the age of the mosquitoes.

\(C. \text{pipiens}\)’ propensity to engage in host-seeking behavior (‘activation’) was measured as the proportion of mosquitoes that entered either baited trap during each trial. Differences in activation among pairings where assessed using a Chi-square test.

Results
Host-seeking \(C. \text{pipiens}\) were significantly more attracted to robins than to either sparrows or starlings (Table 1), but no difference was detected when trials were conducted with two robins (Additional information for individual trials are provided in Supplementary Tables S1–S3). \(C. \text{pipiens}\) were three times more likely to enter robin-baited traps when paired with starling-baited traps (OR = 3.06; CI [1.42–6.46]) and almost twice more likely when paired with sparrow-baited traps (OR = 1.80; CI = [1.22–2.90]).

Multiple logistic regression analyses indicated that the robin’s weight, alternate species’ weight, the weight difference between the robin and the alternate species, the date of the trial, starting-time, temperature, humidity, wind-speed and the age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird.

Activation was 11.1 ± 2.6% for robin-robin pairings (n = 8), 12.6 ± 0.0% for robin-house sparrow pairings (n = 8), 6.7 ± 1.8% for robin-starling pairings, and 7.3 ± 1.3% for two sparrow-sparrow trials not included in regression analysis due to low sample size. The overall percentage of total introduced mosquitoes entering a bird-baited trap (mean activation) was 10.5% and was not significantly different among the host-choice pairings (Chi-square = 5.51, df, p = 0.14), indicating that \(C. \text{pipiens}\) activation did not influence preferential host-selection in our study. A larger experiment with more replicates would be helpful to confirm this finding.

Discussion
Our results indicate that \(C. \text{pipiens}\) display preference for robins when offered a choice between a robin and one of two locally common, sympatric bird species. The degree of preference varied depending on the alternate species, with robins selected approximately three times over European starlings and two times over house sparrows. This preference was not affected by potential confounders such as age of the mosquito cohort, birds’ weight, age and sex differences in body weight between the trial pair and the environmental conditions (temperature, relative humidity and wind speed) in which trials were held. Furthermore no location bias in trap selection was indicated by the equal probability of mosquitoes entering either trap when both were baited with robins. The only covariate which significantly influenced host choice was the species with which the robin was paired. We acknowledge that the current investigation evaluated the attractiveness of three avian species only, and that further experiments with larger numbers will need to be conducted to determine whether a preference for robins is maintained when paired with other common Passeriform species upon which \(C. \text{pipiens}\) is known to feed.

The preference of \(C. \text{pipiens}\) for robins over both European starlings and house sparrows is consistent with studies reporting \(C. \text{pipiens}\)’ feeding patterns in the field. Apperson et al [29] reported that although all three birds were among the most abundant species in New Jersey and Tennessee, robins were a common blood source for \(C. \text{pipiens}\), while house sparrows were only rarely fed upon and no blood meals were identified from European starlings. Feeding indices calculated from blood meal analyses coupled with estimates of the relative abundance of avian species within the local community [30, 35] also suggest that \(C. \text{pipiens}\) preferentially feed on robins. In a study in Maryland, Kilpatrick et al [30] concluded that robins were fed upon 16.4 ± 4.4 (range 6.4–30.6) times more often than would be expected based upon their abundance. In a Chicago, Illinois, study, Hamer et al [35] also found that robins were fed upon more often than their abundance would predict (index 2.26 ± 0.39, while both European starlings and house sparrows were less often fed upon (indices 0.39 ± 0.17 and 0.32 ± 0.03, respectively). High spatial and temporal variability has been reported in field-derived feeding indices, and this may be expected because interactions with complex biotic and abiotic factors in nature modulate the mosquitoes’ innate host preferences.

To measure ‘innate’ host-preference by \(C. \text{pipiens}\), our experimental design used two host-baited traps within a large enclosure to minimize the effect of confounding factors which are often associated with olfactometer and field-based trials. Experiments using laboratory olfactometers or wind-tunnel designs have demonstrated mosquito host-preferences \(Aedes \text{aegypti}\) L. [40], \(Aedes \text{quadrimaculatus}\) Theobald [41, 42], and reviewed in [43], but these designs do not represent host-seeking conditions in nature because they often use artificial airstreams, colony-reared mosquitoes, and/or partial host stimuli. In contrast, studies conducted in the field

Pairing	n trials	total C (range/trial)	% activation	P(robin)*	OR (95% CI)**	p value
robin - sparrow	6	1528 (160–208)	12.68 ± 0.83	0.66 ± 0.04	1.80 (1.22–2.90)	0.004
robin - starling	6	710 (145–200)	6.73 ± 1.80	0.76 ± 0.07	3.06 (1.42–6.46)	0.003
robin - robin	8	1400 (100–200)	11.12 ± 2.60	0.47 ± 0.06	0.08 (0.59–1.08)	>0.15

*shows the probability a mosquito enters the robin-baited trap, or the left trap for robin-robin pairings.
**adjusted odds ratios with corresponding 95% confidence intervals.

doi:10.1371/journal.pone.0007861.t001

Table 1. Results of \(C. \text{pipiens}\) host-choice trials.
using host-baited traps (Anopheles gambiae s.s. Giles [12], An. gambiae s.l. and An. pharaoensis Theobald, [9]), Culex quinquefasciatus Say[13], Culex nigripalpis Theobald [16]) represent natural conditions but cannot control for mosquito densities or account for the presence of other competing hosts.

Our design further provided a measure of host preference, as opposed to measuring feeding success, which may be affected by birds’ defensive behaviors which may reduce mosquito feeding success [13,18,44–46]. It has been documented that starlings will engage in defensive movements or will eat mosquitoes to divert to more permissive hosts [44]. In our trials, mosquitoes that entered the trap were separated from the bird by a mesh screen.

The 10.5% activation level for C. pipiens observed in our study was within the lower ranges reported in olfactometer studies with An. gambiae s.s. (9 to 19%) [12], and An. quadrivittatus (10 to 28%) [45]. Lower activation was most likely due to the absence of artificial airstreams used to induce mosquitoes to engage in appetitive flight.

Innate host preference by C. pipiens for particular host species has epidemiological relevance in that preferential feeding by C. pipiens on WNV-competent hosts, such as robins, may influence transmission dynamics if contact rates are shifted away from other abundant, but less competent hosts. From the experiments conducted herein, we can derive a potential preference index for C. pipiens that can be included in epidemiological models describing WNV enzootic transmission to determine its influence on the dynamics. Current models of WNV enzootic transmission include parameters describing the host community; however, they do not adequately incorporate vector feeding preferences [48–53]. Another parameter measured in this experiment that can be used to inform epidemiological models is the activation level, which provides an estimate of the field-deployed mosquito traps’ recruitment rate. Finally, estimating innate host preference offers additional benefits to epidemiological studies of vector-host interactions. By providing a fixed estimate of the innate feeding preference, this study allows evaluation of the relative influence of other biotic and abiotic factors. Such comparisons may provide insights into how the environment acts to modulate the innate host preference of vectors.

Supporting Information

Table S1 Results for individual robin and house sparrow trials. Found at: doi:10.1371/journal.pone.0007861.s001 (0.04 MB DOC)

Table S2 Results of robin and starling trials. Found at: doi:10.1371/journal.pone.0007861.s002 (0.03 MB DOC)

Table S3 Results of the robin and control trials. Found at: doi:10.1371/journal.pone.0007861.s003 (0.04 MB DOC)

Acknowledgments

Many thanks go to our 2008 field crew, especially Gabrielle Gareau, Emily Fung and Colter Fluman, for their invaluable assistance netting birds and collecting mosquitoes and to Durland fish for logistic support. Also thanks to Paul Cislo and Mike Reddy for scientific feedback; John Shepard, Heidi Stuber, Mike Thomas and Phil Armstrong for providing equipment, insectary space and virus testing; Richard J. Pollack at the Harvard School of Public Health for providing lar can traps; Jayne Amico for providing valuable advice on bird care; and Marjorie Mason and Harold Mendez at the Yale Farm for facilities support.

Author Contributions

Conceived and designed the experiments: JES CMFO JEC TGA MADW. Performed the experiments: JES CMFO LS. Analyzed the data: JES. Contributed reagents/materials/analysis tools: JES CMFO TGA MADW. Wrote the paper: JES CMFO JEC TGA MADW.

References

1. Garrett-Jones C (1964) The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ 30: 241–261.

2. Hess AD, Hayes RO, Tempelis CH (1968) The use of the forage ratio technique in host preference studies. Mosq News 28: 386–389.

3. Kay BH, Boreham PFL, Edman JD (1979) Application of the feeding index concept to studies of mosquito host-feeding patterns. Mosq News 39: 68–72.

4. Gilles MT (1961) Selection for host preference in Anopheles gambiae. Nature 193: 552 – 554.

5. Knol BGJ, de Jong R, Takken W (1995) Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans Roy Soc Trop Med Hyg 89(6): 604–606.

6. Drieker T, Takken W (1998) Differential responses of mosquito sibling species Anopheles arabiensis and An. quadrivittatus to carbon dioxide, a man or a calf. Med Vet Entomol 12(2): 136–140.

7. Diatta M, Spiegel A, Lochozam L, Fontenille D (1998) Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal. Trans Roy Soc Trop Med Hyg 92: 270–272.

8. Costantini C, Sagnon NF, della Torre A, Diallo M, Brady J, et al. (1998) Olor- mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg 59: 50–63.

9. Duchemin JB, Tsu YM, Kabarison P, Roux J, Coluzzi M, Costantini C (2000) Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol 15: 50–57.

10. Mukabana WR, Takken W, Coe R, Knol BGJ (2002) Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anophelles gambiae. Malaria J. pp 1–17. Available from: http://www.malarialjournal.com/ content/1/1/17.

11. Traversa I, Costantini C, Gibson G, Torr SJ (2006) Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol 20(4): 425–437.

12. Lefèvre T, Gouagna L-C, Dabiré R, Elguero E, Fontenille D, et al. (2009) Evolutionary lability of olfactory-mediated host preference by the malaria vector Anopheles gambiae s.s. aticola. Trop Med Int Health 14: 1–9.

13. Day JF, Edman JD (1984) Mosquito Engorgement on normally defensive hosts depends on host activity patterns. J Med Entomol 21(6): 732–740.

14. Scott TW, Lorenzo LH, Edman JD (1990) Effects of house sparrow age and Arbovirus infection on attraction of mosquitoes. J Med Entomol 27(5): 856–863.

15. Mboera LEG, Takken W (1999) Olor-mediated host preference of Culex quinquefasciatus Giles, a New York Experimentalis et Applicata 92: 83–88.

16. Lord CC, Day JF (2000) Attractiveness of chickens and bobwhite quail for Culex nigripalpis. J Am Mosq Control Assoc 16: 271–273.

17. Darbro JM, Harrington LC (2006) Bird-baited traps for surveillance of West Nile mosquito vectors: Effect of bird species, trap height, and mosquito escape rates. J Med Entomol 43: 81–92.

18. Darbro JM, Dhonu TK, Vermylen FM, Harrington LC (2007) Myxoplasma gallisepticum infection in house finches (Carpodacus mexicanus) affects mosquito blood feeding patterns. Am J Trop Med Hyg 77(3): 480–494.

19. Trevejo RT, Reisen WK (2006) Comparative attractiveness of two chicken breeds to mosquitoes in Southern California. J Am Mosq Control Assoc 22(1): 37–41.

20. Swaddle JP, Calos SE (2005) Increased Avian Diversity Is Associated with Lower Incidence of Human West Nile Infection: Observation of the Dilution Effect.” PLoS ONE 3: e2488 1–8.

21. Andreadis TG, Anderson JF, Voshbrinck CR (2001) Mosquito surveillance for West Nile virus in Connecticut, 2000: Isolation from Culex pipiens, C. restuans, C. variipalpus. J Med Vet Entomol 37: 339–341.

22. Kulasekera VL, Kramer L, Nasci RS, Mostashari F, Cherry B (2001) West Nile Virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg Inf Dis 7: 670–674.

23. Andreadis TG, Anderson JF, Voshbrinck CR, Main AJ (2004) Epidemiology of West Nile virus in Connecticut: A five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360–371.

24. Scudert TW, Lorenz LH, Edman JD (1990) Effects of house sparrow age and Arbovirus infection on attraction of mosquitoes. J Med Entomol 27(5): 856–863.

25. Mboera LEG, Takken W (1999) Olor-mediated host preference of Culex quinquefasciatus Giles, a New York Experimentalis et Applicata 92: 83–88.

26. Lord CC, Day JF (2000) Attractiveness of chickens and bobwhite quail for Culex nigripalpis. J Am Mosq Control Assoc 16: 271–273.

27. Darbro JM, Harrington LC (2006) Bird-baited traps for surveillance of West Nile mosquito vectors: Effect of bird species, trap height, and mosquito escape rates. J Med Entomol 43: 81–92.

28. Darbro JM, Dhouit TK, Vermylen FM, Harrington LC (2007) Myxoplasma gallisepticum infection in house finches (Carpodacus mexicanus) affects mosquito blood feeding patterns. Am J Trop Med Hyg 77(3): 480–494.

29. Trevejo RT, Reisen WK (2006) Comparative attractiveness of two chicken breeds to mosquitoes in Southern California. J Am Mosq Control Assoc 22(1): 37–41.

30. Swaddle JP, Calos SE (2005) Increased Avian Diversity Is Associated with Lower Incidence of Human West Nile Infection: Observation of the Dilution Effect.” PLoS ONE 3: e2488 1–8.

31. Andreadis TG, Anderson JF, Voshbrinck CR (2001) Mosquito surveillance for West Nile virus in Connecticut, 2000: Isolation from Culex pipiens, C. restuans, C. variipalpus. J Med Vet Entomol 37: 339–341.
27. Goddard LB, Roth AM, Reisen WK, Scott TW (2002) Vector competence of California mosquitoes for West Nile virus. Emerg Inf Dis 8: 1385–1391.
28. Apperson CS, Harrison BR, Umnasch TR, Hassan HK, Irby WS, et al. (2002) Host-feeding habits of Culex and other mosquitoes [Diptera: Culicidae] in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39: 777–783.
29. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, et al. (2004) Host-feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis 4: 71–82.
30. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006) Host heterogeneity dominates West Nile virus transmission. Proc Roy Soc Lond [Biol] 273: 2327–2333.
31. Molaei G, Andreadis TA, Armstrong PM, Anderson JF, Vossbrinck CR (2006) Host-feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Inf Dis 12: 468–474.
32. Patrican LA, Hackett LE, Brigg JE, McGowan JW, Umnasch TR, et al. (2007) Host-feeding patterns of Culex mosquitoes in relation to trap habitat. Emerg Inf Dis 13: 1921–1923.
33. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, et al. (2007) Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002-2003. Vector Borne Zoonotic Dis 7: 365–386.
34. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, et al. (2008) Culex pipiens (Diptera: Culicidae): A bridge vector of West Nile virus to humans. J Med Entomol 45: 125–128.
35. Kent R, Juliasson L, Weissman M, Evans S, Komar N (2009) Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380–390.
36. Lepore TJ, Pollack RJ, Spielman A, Reiter P (2004) A readily constructed lard-can trap for sampling host-seeking mosquitoes. J Am Mosq Control Assoc 20: 321–323.
37. Reddy MR, Lepore TJ, Pollack RJ, Kiszewski AE, Spielman A, et al. (2007) Early evening questing and oviposition activity by the Culex (Diptera: Culicidae) vectors of West Nile virus in northeastern North America. J Med Entomol 44: 211–214.
38. Lord CC, Day JK (2001) Simulation studies of St. Louis encephalitis in south Florida. Vector Borne Zoonotic Dis 1: 299–316.
39. Wonham MJ, de-Camino-Beck T, Lewis MA (2004) An epidemiological model for West Nile Virus: invasion analysis and control applications. Proc R Soc Lond B 271: 501–507.
40. Cruz-Pacheco G, Esteva L, Montañó-Hirose JA, Vargas C (2005) Modeling dynamics of West Nile virus. Bull Math Biol 67: 1157–1172.
41. Kappelle JH, Compton BW, Leimgruber P, Robertson J, King Dl, et al. (2006) Modeling movement of West Nile virus in the Western Hemisphere. Vector Borne Zoonotic Dis 6(2): 128–139.
42. Unnasch RS, Sprenger T, Katholi CR, Cupp EW, Hill GE, Umnasch TR (2006) A dynamic transmission model of eastern equine encephalitis virus. Ecol Modeling 192: 425–440.