Document AI

• Analyze forms and documents

• Create intelligent search indexes

• Automate business workflows

Uncover latent insights from all your content
Document AI in Real World

Form

Scanned documents (.jpg, .png, ...)

Receipt

Report

Digital-born documents (.pdf, .docx, ...)

Invoice

Layout invariance (key-value, tabular, etc.) among visually-rich documents
Document AI Tasks

Form Understanding

Key	Value
TO	Lorillard Corporation
ADDRESS	666 Fifth Avenue
CITY	New York
Date	

Receipt Understanding

Key	Value
Total	4.95
Company	Starbucks Store
Address	11302 Euclid Avenue
City	Cleveland, OH
Date	12/07/2014

Document Image Classification

Category: Form
Document AI Products

Applications
- Key-value Extraction
- Document Classification
- Document VQA

Downstream Tasks
- Table Detection
- Page Object Detection
- Reading Order Detection

Benchmarks
- TableBank (LREC’20)
- DocBank (COLING’20)
- ReadingBank (EMNLP’21)
- XFUND Benchmark

Foundation Models
- LayoutLM/LayoutLMv2/LayoutXLM
 (KDD’20, ACL’21)

https://aka.ms/document-ai/
LayoutLM
Model Family
LayoutLM -> LayoutLMv2 -> LayoutXLM

Text + Layout → Multi-modal → Multi-modal + Multi-lingual
LayoutLM: Pre-training of Text and Layout for Document Image Understanding, KDD'2020,
SPORTS MARKETING ENTERPRISES
DOCUMENT CLEARANCE SHEET

Date Routed: January 11, 1994
Contract No. 4011 00 00

Contract Subject: Joe's Place Exhibits
Company: SPEVCO, INC.
Brand(s): Camel/Winston
Total Contract Cost: $1,340,000.00
Current Year Cost: 1994-1995
Brief Description: Joe's Place Exhibits for use at Winston Cup, Winston Drag and Camel Super Bike Events.

G/T Code: Program Budget Code

Originator: Michael Wright
Manager: John Powell

REVIEW ROUTING

Insurance
Law
FS - Marketing

REVISIONS TO SHELL
(Other than Tarm., Compensation or Job)

APPROVAL ROUTING
* Sr. Manager (B. J. Powell)
* Director - (G. L. Littell)
** Sr. VP T. W. Robertson

Return To: MARY SEAGRAVES Ext. 1485

* UP TO AND INCLUDING $25,000
** OVER $25,000

Revised 10/26/92

Date Routed: January 11, 1994
Contract No. 4011 00 00

OCR/PDF Parser

Image	Token	Bounding Box (x0,y0,x1,y1)
Date	Date	86 138 112 148
Routed:	Routed:	117 138 162 148
January	January	227 138 277 153
11	11	281 138 293 148
1994	1994	303 139 331 149
Contract	Contract	415 138 464 149
No.	No.	468 139 487 149
4011	4011	556 139 583 150
00 00	0000	589 139 621 150

Input

Tok 0
Tok 1
Tok 2
Tok 3
Tok 4
Tok 5
Tok 6
Tok 7

Token Embeddings

Position Embeddings (x0)

Position Embeddings (y0)

Position Embeddings (x1)

Position Embeddings (y1)
Pre-training Data

11 million scanned document images from IIT-CDIP Test Collection 1.0
https://ir.nist.gov/cdip/
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding, ACL'2021
Pre-training Tasks

• Masked Visual-Language Modeling
• Text-Image Matching
• Text-Image Alignment
LayoutLMv2 -> LayoutXLM

Multi-modal

Multi-modal + Multi-lingual
LayoutXLM: Multi-modal Pre-training for Multi-lingual Document Understanding, Preprint
Language Distribution for Pre-training

Totally 30M document images with 50+ languages used for pre-training the LayoutXLM
Document parsing meets 😊 Transformers!

#LayoutLMv2 and #LayoutXLM by @MSFTResearch are now available! 🔥

They're capable of parsing document images (like PDFs) by incorporating text, layout, and visual information, as in the @gradio demo below ↓

huggingface.co/spaces/nielsr/...
Benchmark Datasets
TableBank: A Benchmark Dataset for Table Detection and Recognition, LREC’2020
Download: https://aka.ms/tablebank
LayoutReader: Pre-training of Text and Layout for Reading Order Detection, EMNLP’2021
Download: https://aka.ms/readingbank
XFUND

LayoutXLM: Multi-modal Pre-training for Multi-lingual Document Understanding, Preprint
Download: https://aka.ms/xfund
Applications
Applications

- **Information Extraction**
 - Form Understanding (*FUNSD*)
 - https://guillaumejaume.github.io/FUNSD/
 - Receipt Understanding (*SROIE, CORD*)
 - https://rrc.cvc.uab.es/?ch=13
 - https://github.com/clovaai/cord
 - Document Information Extraction (*Kleister-NDA*)
 - https://github.com/applicaai/kleister-nda
 - Multi-lingual Form Understanding (*XFUND*)
 - https://aka.ms/xfund

- **Classification**
 - Document Image Classification (*RVL-CDIP*)
 - https://www.cs.cmu.edu/~aharley/rvl-cdip/

- **VQA**
 - Document Visual Question Answering (*DocVQA*)
 - https://rrc.cvc.uab.es/?ch=17

- **Layout Analysis**
 - Table Detection (*TableBank*)
 - https://aka.ms/tablebank
 - Page Object Detection (*DocBank*)
 - https://aka.ms/docbank
 - Reading Order Detection (*ReadingBank*)
 - https://aka.ms/readingbank
| Model | FUNSD | CORD | SROIE | Kleister-NDA |
|---------------------|-------|-------|-------|--------------|
| BERT_BASE | 0.6026| 0.8968| 0.9099| 0.7790 |
| UniLM_v2_BASE | 0.6648| 0.9092| 0.9459| 0.7950 |
| BERT_LARGE | 0.6563| 0.9025| 0.9200| 0.7910 |
| UniLM_v2_LARGE | 0.7072| 0.9205| 0.9488| 0.8180 |
| LayoutLM_BASE | 0.7866| 0.9472| 0.9438| 0.8270 |
| LayoutLM_LARGE | 0.7895| 0.9493| 0.9524| 0.8340 |
| LayoutLM_v2_BASE | 0.8276| 0.9495| 0.9625| 0.8330 |
| LayoutLM_v2_LARGE| **0.8420**| **0.9601**| **0.9781**| **0.8520** |

Table 2: Entity-level F1 scores of the four entity extraction tasks: FUNSD, CORD, SROIE and Kleister-NDA.
Model	Accuracy	#Parameters
BERT$_{\text{BASE}}$	89.81%	110M
UniLMv2$_{\text{BASE}}$	90.06%	125M
BERT$_{\text{LARGE}}$	89.92%	340M
UniLMv2$_{\text{LARGE}}$	90.20%	355M
LayoutLM$_{\text{BASE}}$ (w/ image)	94.42%	160M
LayoutLM$_{\text{LARGE}}$ (w/ image)	94.43%	390M
LayoutLMv2$_{\text{BASE}}$	95.25%	200M
LayoutLMv2$_{\text{LARGE}}$	95.64%	426M
VGG-16 (Afzal et al., 2017)	90.97%	-
Single model (Das et al., 2018)	91.11%	-
Ensemble (Das et al., 2018)	92.21%	-
InceptionResNetV26 (Szegedy et al., 2016)	92.63%	-
LadderNet (Sarkhel & Nandi, 2019)	92.77%	-
Single model (Dauphinee et al., 2019)	93.03%	-
Ensemble (Dauphinee et al., 2019)	93.07%	-

Table 5: Classification accuracy on the RVL-CDIP dataset
Model	Fine-tuning set	ANLS	#Parameters
BERT_BASE	train	0.6354	110M
UniLM_v2_BASE	train	0.7134	125M
BERT_LARGE	train	0.6768	340M
UniLM_v2_LARGE	train	0.7709	355M
LayoutLM_BASE	train	0.6979	113M
LayoutLM_LARGE	train	0.7259	343M
LayoutLM_v2_BASE	train	0.7808	200M
LayoutLM_v2_LARGE	train	0.8348	426M
LayoutLM_v2_LARGE + QG	train + dev	0.8529	426M
Top-1 on DocVQA Leaderboard (30 models ensemble)\(^7\)	-	0.8506	-

Table 6: Average Normalized Levenshtein Similarity (ANLS) score on the DocVQA dataset (until 2020-12-24), “QG” denotes the data augmentation with the question generation dataset.
Models	Word			Latex			Word+Latex			
		Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
ResNeXt-101 (Word)	0.9496	0.8388	0.8908	0.9902	0.5948	0.7432	0.9594	0.7607	0.8486	
ResNeXt-152 (Word)	0.9530	0.8289	0.9166	0.9808	0.6890	0.8094	0.9603	0.8209	0.8851	
ResNeXt-101 (Latex)	0.8288	0.9395	0.8807	0.9854	0.9760	0.9807	0.8744	0.9512	0.9112	
ResNeXt-152 (Latex)	0.8259	0.9562	0.8863	0.9867	0.9754	0.9810	0.8720	0.9624	0.9149	
ResNeXt-101 (Word+Latex)	0.9557	0.8403	0.8943	0.9886	0.9694	0.9789	0.9670	0.8817	0.9224	
ResNeXt-152 (Word+Latex)	0.9540	0.8639	0.9067	0.9885	0.9732	0.9808	0.9657	0.8989	0.9311	

Table 2: Evaluation results on Word and Latex datasets with ResNeXt-\{101,152\} as the backbone networks

Models	Precision	Recall	F1
ICDAR 2013 (train)	0.9748	0.7997	0.8786
UNLV	0.9185	0.9639	0.9406
Marmot	0.7692	0.9844	0.8636
DeepFigures	0.8527	0.9348	0.8918
TableBank (ResNeXt-152, Word)	0.9725	0.8528	0.9087
TableBank (ResNeXt-152, Latex)	0.9658	0.9594	0.9625
TableBank (ResNeXt-152, Word + Latex)	0.9635	0.9039	0.9328
Tesseract	0.9439	0.7144	0.8133
Camelot	0.9785	0.6856	0.8063

Table 3: Evaluation results on ICDAR 2013 dataset
Page Object Detection

Models	Abstract	Author	Caption	Equation	Figure	Footer	List	Paragraph	Reference	Section	Table	Title	Macro average
BERT_BASE	0.9394	0.8484	0.8629	0.8152	1.0000	0.7805	0.7133	0.9619	0.9310	0.9081	0.8296	0.9442	0.8770
RoBERTa_BASE	0.9288	0.8618	0.8944	0.8248	1.0000	0.8014	0.7353	0.9646	0.9341	0.9337	0.8389	0.9511	0.8891
LayoutLM_BASE	**0.9816**	0.8595	0.9597	0.8947	1.0000	0.8957	0.8948	0.9738	0.9338	0.9598	0.8633	**0.9979**	
BERT_LARGE	0.9286	0.8577	0.9650	0.8177	1.0000	0.7814	0.6960	0.9619	0.9284	0.9065	0.8320	0.9430	0.8765
RoBERTa_LARGE	0.9479	0.8724	0.9081	0.8370	1.0000	0.8392	0.7451	0.9665	0.9334	0.9407	0.8494	0.9461	0.8988
LayoutLM_LARGE	0.9784	0.8783	0.9556	0.8974	1.0000	0.9146	0.9004	0.9790	0.9332	0.9596	0.8679	0.9552	0.9350

X101	0.9717	0.8227	0.9435	0.8938	0.8812	0.9029	0.9051	0.9682	0.8798	0.9412	0.8353	0.9158	0.9051
X101+LayoutLM_BASE	0.9815	0.8907	**0.9669**	0.9430	0.9990	0.9292	**0.9300**	0.9843	**0.9437**	0.8664	0.8818	0.9575	0.9478
X101+LayoutLM_LARGE	0.9802	0.8964	0.9666	**0.9440**	0.9994	**0.9352**	0.9293	**0.9844**	**0.9430**	**0.9670**	**0.8875**	0.9531	**0.9488**

Table 4: The performance of BERT, RoBERTa, LayoutLM and Faster R-CNN on the DocBank test set.
Method	Encoder	Avg. Page-level BLEU ↑	ARD ↓
Heuristic Method	-	0.6972	8.46
LayoutReader (text only)	BERT	0.8510	12.08
	UniLM	0.8765	10.65
LayoutReader (layout only)	LayoutLM (layout only)	0.9732	2.31
LayoutReader	LayoutLM	0.9819	1.75

Table 2: Evaluation results of the LayoutReader on the reading order detection task, where the source-side of training/testing data is in the left-to-right and top-to-bottom order.

Method	Avg. Page-level BLEU ↑	ARD ↓
Heuristic Method	0.3391	13.61
Tesseract OCR	0.7532	1.42
LayoutReader	0.9360	0.27

Table 5: Adaptation to text lines of Tesseract OCR

Method	Avg. Page-level BLEU ↑	ARD ↓
Heuristic Method	0.3752	10.17
The commercial OCR	0.8530	2.40
LayoutReader	0.9430	0.59

Table 6: Adaptation to text lines of the commercial OCR
Multilingual Document AI
Table 2: Language-specific fine-tuning accuracy (F1) on the XFUND dataset (fine-tuning on X, testing on X), where “SER” denotes the semantic entity recognition and “RE” denotes the relation extraction.

SER: Semantic Entity Recognition (headers, keys, values)
RE: Relation extraction for key-value pairs
	Model	FUNSD	ZH	JA	ES	FR	IT	DE	PT	Avg.
SER	XLM-RoBERTa_BASE	0.667	0.4144	0.3023	0.3055	0.371	0.2767	0.3286	0.3936	0.3824
	InfoXLM_BASE	0.6852	0.4408	0.3603	0.3102	0.4021	0.2880	0.3587	0.4502	0.4119
	LayoutXLM_BASE	**0.794**	**0.6019**	**0.4715**	**0.4565**	**0.5757**	**0.4846**	**0.5252**	**0.539**	**0.5561**
RE	XLM-RoBERTa_LARGE	0.7074	0.5205	0.3939	0.3627	0.4672	0.3398	0.418	0.4997	0.4637
	InfoXLM_LARGE	0.7325	0.5536	0.4132	0.3689	0.4909	0.3598	0.4363	0.5126	0.4835
	LayoutXLM_LARGE	**0.8225**	**0.6896**	**0.519**	**0.4976**	**0.6135**	**0.5517**	**0.5905**	**0.6077**	**0.6115**

Table 3: Zero-shot transfer accuracy (F1) on the XFUND dataset (fine-tuning on FUNSD, testing on X), where “SER” denotes the semantic entity recognition and “RE” denotes the relation extraction.
Multitask Learning

Model	FUNSD	ZH	JA	ES	FR	IT	DE	PT	Avg.
SER									
XLM-RoBERTaBASE	0.6633	0.883	0.7786	0.6223	0.7035	0.6814	0.7146	0.6726	0.7149
InfoXLM_BASE	0.6538	0.8741	0.7855	0.5979	0.7057	0.6826	0.7055	0.6796	0.7106
LayoutXLM_BASE	**0.7924**	**0.8973**	**0.7964**	**0.7798**	**0.8173**	**0.821**	**0.8322**	**0.8241**	**0.8201**
XLM-RoBERTa_LARGE	0.7151	0.8967	0.7828	0.6615	0.7407	0.7165	0.7431	0.7449	0.7502
InfoXLM_LARGE	0.7246	0.8919	0.7998	0.6702	0.7376	0.7180	0.7523	0.7332	0.7534
LayoutXLM_LARGE	**0.8068**	**0.9155**	**0.8216**	**0.8055**	**0.8384**	**0.8372**	**0.853**	**0.8650**	**0.8429**
RE									
XLM-RoBERTaBASE	0.3638	0.6797	0.6829	0.6828	0.6727	0.6937	0.6887	0.6082	0.6341
InfoXLM_BASE	0.3699	0.6493	0.6473	0.6828	0.6831	0.6690	0.6384	0.5763	0.6145
LayoutXLM_BASE	**0.6671**	**0.8241**	**0.8142**	**0.8104**	**0.8221**	**0.8310**	**0.7854**	**0.7044**	**0.7823**
XLM-RoBERTa_LARGE	0.4246	0.7316	0.7350	0.7513	0.7532	0.7520	0.7111	0.6582	0.6896
InfoXLM_LARGE	0.4543	0.7311	0.7510	0.7644	0.7549	0.7504	0.7356	0.6875	0.7037
LayoutXLM_LARGE	**0.7683**	**0.9000**	**0.8621**	**0.8592**	**0.8669**	**0.8675**	**0.8263**	**0.8160**	**0.8458**

Table 4: Multitask fine-tuning accuracy (F1) on the XFUND dataset (fine-tuning on 8 languages all, testing on X), where “SER” denotes the semantic entity recognition and “RE” denotes the relation extraction.
Challenges in Document AI

- Model Limitations
- Data Quality in Real-Word Tasks
- Task Correlations
- Data/Computation Insufficiency
Document AI @MSRA

• Multimodal Pre-trained Models
 • \textit{LayoutLM} (KDD’2020)
 • \textit{LayoutLMv2} (ACL’2021)
 • \textit{LayoutXLM} (Preprint)

• Benchmark Datasets
 • \textit{TableBank} (LREC’2020)
 • \textit{DocBank} (COLING’2020)
 • \textit{ReadingBank} (EMNLP’2021)
 • \textit{XFUND} (with LayoutXLM)

• Our paper \textit{“Document AI: Benchmarks, Models and Applications”} will be publicly available soon