Host Specific Plant Growth Promoting Activity of IAA Producing and Phosphate Solubilizing Fluorescent *Pseudomonas*

Priyanka¹*, Anil S. Kotasthane¹, Ashish Pradhan², Umesh Shinde², Toshya Agrawal², Najam Waris Zaidi³ and U.S. Singh³

¹Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur (C.G.)-492006, India
²Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur (C.G.)-492006, India
³IRRI India Office, New Delhi, India

*Corresponding author

Fluorescent *Pseudomonas* possesses many traits that make them well suited as biocontrol and growth promoting agents. Host specific plant growth promoting activity of fluorescent *Pseudomonas* isolates was observed. Isolates #P72, P141, P151, P233, P124, P6, P143, P176, P76, P99, P167 were able to induce the formation of increased root and shoot length. Isolates used in the present investigation had the ability (although in different proportions) to solubilize inorganic phosphate, produce Indole acetic acid (IAA) and PHB. Frequency of fluorescent *Pseudomonas* isolates which induced shoot length of crop plants more than fluorescent *Pseudomonas* isolates with the ability to induced root length. It was also observed that Fluorescent *Pseudomonas* isolates reduced root shoot length as compare un-treated control.

Keywords
IAA, PHB, Phosphorus, Fluorescent *Pseudomonas*

Article Info
Accepted: 28 January 2018
Available Online: 10 February 2018

Abstract

Microorganisms, interact with higher plants in soil ecosystem and influences the development of plant root in the soil (Ahmad et al., 2008; Taghavi et al., 2009). Beneficial plant-microbe interactions enhance plant growth and nutrient uptake by different mechanisms, including increased mobilization of insoluble nutrients (Lifshitz et al., 1987; Ahmad et al., 2008), biocontrol of phytopathogenic organisms (Weller, 2007) and/or by production of phytohormones (Dubeikovsky et al., 1993; Spaepen et al., 2007).

Pseudomonas putida are ubiquitous bacteria frequently present in the plant rhizosphere...
Int. J. Curr. Microbiol. App. Sci. (2018) 7(2): 3511-3532

(Timmis 2002; Dos Santos et al., 2004) and possess many traits that make them well suited as biocontrol and growth promoting agents (Fravel, 1988; Lemanceau, 1992; Weller et al., 2002; Fravel, 2005) because of their potential to produce secondary metabolites (Leisinger and Margraff, 1979), growth hormones (Brown 1974), antibiotics (Fravel, 1988; Weller et al., 2002) and chelating compounds (siderophores) (Leong, 1986). Phosphate solubilization is one of the direct mechanisms (Rodrı́guez and Fraga, 1999; Mayak et al., 2004; Shahzad et al., 2010) and production of antibiotics such as 2,4-diacetyl phloroglucinol (DAPG), phenazine, pyoluteorin and pyrrolnitrin against pathogenic fungi and bacteria are among indirect mechanisms of PGPR (McSpadden Gardener et al., 2001; Ramamoorthy et al., 2001). Some of them may also be involved in the biodegradation of natural or man-made toxic chemical compounds (Holloway 1992; Ramos et al., 2009). P. putida show diverse spectrum of metabolic versatility and niche-specific adaptations (Rojo 2010; Wu et al., 2011). Several lines of evidence suggest that PGPB produced IAA which may directly stimulates plant growth, even in the presence of otherwise inhibitory compounds (Wani et al., 2008; Bianco and Defez 2009; Egamberdieva 2009; Bianco and Defez 2010; De-Bashan et al., 2010). IAA synthesized by bacteria may be involved at different levels in plant-bacterial interactions. Fluorescent Pseudomonas may alter the suboptimal or optimal endogenous IAA level in plant roots (Pilet and Saugy 1987) to either optimal or supraoptimal, resulting in plant growth promotion or inhibition, respectively. IAA-deficient mutant of Pseudomonas putida GR12-2(Patten and Glick 2002a) had a reduced root length as compared to wild-type P. putida GR12-2 which induced the formation of roots that were 35–50% longer thus suggesting the role of bacterially produced IAA in root development. On the other hand IAA positive mutants (overproducing) of same strains (Pseudomonas putida GR12-2) (Xie et al., 1996), yielded greater number of shorter roots on inoculation of mung bean cuttings as compared to wild type strain. Combined effect of auxin on growth promotion and inhibition of root elongation by ethylene has been reported (Jackson 1991). Apart from primary and secondary metabolite production, certain fluorescent Pseudomonads (especially P. putida) are suitable as whole-cell biocatalyzers for the production of several value-added industrial compounds such as biodegradable and biocompatible polyesters called polyhydroxyalkanoates (PHA) or polyhydroxybutyrates (PHB). It accumulates as discrete granules and is used as storage material for carbon and for reducing equivalents by P. putida. This property has been widely exploited for their targeted biosynthesis in this organism (Hoffmann and Rehm 2004). Different strains of P. putida such as P. putida KT2440, P. putida Gpo1, P. putida S12, etc. have been investigated for its capacity to accumulate PHAs and PHBs from different carbon sources (Durner et al., 2001; Hartmann et al., 2004; Meijnen et al., 2008). The pha gene cluster is responsible for the accumulation of PHAs and PHBs in P. putida (Vo et al., 2008; Chung et al., 2009; Wang and Nomura 2010). In the present investigation the potential of IAA producing and phosphate solubilizing fluorescent Pseudomonas on Bottlegourd, Chickpea, Greengram, Lathyrus, Rice, Wheat was studied.

Materials and Methods

Bacterial isolates

The experimental material consisted of twenty four isolates of Fluorescent Pseudomonas spp isolated from soil (rhizospheric and non-rhizospheric) samples of different
geographical locations of Chhattisgarh (Table 1). Isolated bacterial colonies after incubation at 28°C for 2 days, were exposed under UV light (366 nm), emitted fluoresces from the colonies and biochemical tests as per the procedures outlined in Bergey’s Manual of Systematic Bacteriology (Sneath et al., 1986) confirmed the identity as fluorescent Pseudomonas. Culture were maintained on King’s B broth (Himedia) containing 50% (w/v) glycerol at -80°C in the Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, and were revived on King’s B slants as and when required.

Screening for polyhydroxybutyrate (PHB) production and its quantitative estimation

Fluorescent Pseudomonas isolates were screened for PHB accumulation qualitatively by following the viable colony method using Sudan Black B dye (Liu et al., 1998). Sterilized Nutrient agar (Himedia) supplemented with 1 % glucose was spot inoculated with the isolates and incubated at 30°C for 24 h. Ethanolic solution (0.02 %) of Sudan Black B was spread over the colony and the plates were kept undisturbed for 30 min. Later, they were washed with ethanol (96 %) to remove the excess stain from the colony. The dark blue colored colony was taken as positive for PHB production. The Sudan Black B positive isolates were subjected to quantification of PHB production as per the method of (Law and Slepecky 1961). The bacterial cells containing the polymer were pelleted at 10,000 rpm for 10 min. and the pellet was washed with acetone and ethanol. Finally, the polymer granules were dissolved in hot chloroform. The chloroform was filtered and to the filtrate, concentrated 10 ml hot H$_2$SO$_4$ was added. The addition of sulfuric acid converts the polymer into crotonic acid which is brown colored. The solution was cooled and the absorbance was read at 235 ηm against a sulfuric acid blank. By referring to the standard curve prepared using Poly[(R)-3-hydroxybutyric acid] (Sigma Aldrich, USA) by following the method of (Law and Slepecky, 1961), the quantity of PHB produced by different bacterial isolates was determined.

Determination of Indole Acetic acid (IAA) production and phosphate solubilization by Pseudomonas spp.

For the quantitative estimation of IAA, active culture of Pseudomonas spp. were inoculated to 20 ml DF salts minimal media (Dworkin and Foster 1958) in 100 ml conical flasks and incubated for 3 days at 28°C. The medium was supplemented with L-tryptophan at a concentration of 1.02 g/l. After incubation for 72 h, the grown bacterial cells were removed from the culture medium by centrifugation at 5,000 rpm for 5 min and the pH of the medium of all isolates was recorded. One ml aliquot of the supernatant was mixed vigorously with 4 ml of Salkowski’s reagent (Gordon and Weber 1951) and allowed to stand at room temperature for 20 min. The absorbance at 535 ηm was measured with DF salts minimal media (plus Salkowski’s reagent) as blank. The concentration of IAA in each culture supernatant was determined using an IAA (Himedia) standard curve.

Screening of phosphate solubilisation ability and its quantitative estimation

Qualitative screening of phosphate solubilising fluorescent Pseudomonas was performed on Pikovskaya agar medium
Int.J.Curr.Microbiol.App.Sci (2018) 7(2): 3511-3532

(Himedia) containing tricalcium phosphate as a phosphate source and bromocresol purple (0.1 g/l) as a pH indicator for acidification (Vazquez et al., 2000). After incubation of fresh cultures of fluorescent Pseudomonas at 28 ± 2 °C for 48 h, phosphate solubilizing isolates turned the media color from purple to yellow in the zones of acidification.

Quantitative estimation of phosphate solubilisation in Pikovskaya broth (Himedia) was performed according to the procedure of (Murphy and Riley 1962). Fresh cultures of fluorescent Pseudomonas isolates were inoculated to 50 ml of Pikovskaya’s broth and incubated at 28 ± 2 °C and 100 rpm. The amount of inorganic phosphate (Pi) released in the broth was estimated after 7 days of incubation in comparison with un-inoculated control.

The broth culture was centrifuged at 10,000 rpm for 10 min to separate the supernatant from the bacterial growth and insoluble phosphate. To the 0.5 ml of the culture supernatant 5 ml of chloromolybdic acid was added and mixed thoroughly.

Volume was made up to 10 ml with distilled water and 125 ll of chlorostannous acid was added to it. Immediately, the final volume was made up to 25 ml with distilled water and mixed thoroughly. After 15 min, the blue color developed was read in a spectrophotometer at 610 nm using a reagent blank.

Corresponding amount of soluble phosphorous was calculated from standard curve of potassium dihydrogen phosphate (KH2PO4). Phosphate solubilizing activity was expressed in terms of tricalcium phosphate solubilization which in turn was measured by lg/ml of available orthophosphate as calibrated from the standard curve of KH2PO4.

Results and Discussion

Quantification of Indole acetic acid (IAA) production by Pseudomonas spp.

Production of IAA and IAA related compounds was evaluated for twenty four isolates of fluorescent Pseudomonas spp. in DF salt culture medium amended with 1.02 g/L from 5mM stock of L-tryptophan as precursor molecule and any IAA precursor molecule as control. The mixture of culture supernatant and Salkowski’s reagent was incubated at room temperature for 20 min and the absorbance was measured at 535 nm. The concentration of IAA and IAA related compounds was evaluated by comparison with a standard curve prepared using serial dilutions (0-100 µg/ml) prepared from commercially available IAA. Interpolation of the colorimeter readings with standard curve were used to quantify the amount of IAA produced by different isolates of Pseudomonas in the media which ranged from 8.09 to 63.18 μg/ml (Table 1).

Twenty four fluorescent Pseudomonas isolates produced varying proportions of IAA from L-tryptophan as a precursor. Fluorescent Pseudomonas isolates P124, P99, P72 and P201 secreated high proportions of IAA in the supernatents. Maximum amount of IAA production was observed with isolate P124 (63.18 µg/ml) whereas isolate P6 (8.09 μg/ml) was the lowest producer (Table 1). Three groups of IAA producers could be resolved after interpolation of the colorimeter readings with standard curve were used to quantify the amount of IAA secreted by different isolates of Pseudomonas in the media: Low IAA secreting fluorescent Psedomonas isolates (8.09 to 9.91(µg/ml)) were P6 P233 P85 P167 and P216; Medium IAA secreting fluorescent Pseudomonas isolates (10.27 to 16.18(µg/ml)) were P141, P76, P176, P143, P247, P179, P11, P151, P126, P67, P248, P5, P161) and
High IAA secreting fluorescent *Pseudomonas* isolates (21 to 63 (µg/ml)) were P129, P205, P201, P72, P99, P124 (Table 1).

Several PGPRs as well as some pathogenic, symbiotic and free living rhizobacterial species are reported to produce IAA and gibberllic acid in the rhizospheric soil and thereby plays a significant role in increasing the root surface area and number of root tips in many plants (Han et al., 2005). Recent investigations on auxin synthesizing rhizobacteria (Spaepen et al., 2007) as phytohormone producer demonstrated that the rhizobacteria can synthesize IAA from tryptophan by different pathways, although the general mechanism of auxin synthesis was basically concentrated on the tryptophan-independent pathways. The phytopathogenic bacteria rather use the indole acetamide pathway to synthesize IAA that has been implicated earlier in the tumor induction in plants. (Swain et al., 2007) reported a positive effect of IAA producing strains of *Bacillus subtilis* on *Dioscorea rotundata* L. They applied a suspension of *B. subtilis* on the surface of the plant, which resulted in an increase in the root: stem ratio as well as number of sprouts as compared with the non-inoculated plants. Potentiality of *Azotobacter* spp., to produce high amount of IAA (7.3–32.8 mg/ml) in agriculture was reported by (Ahmad et al., 2005). Laboratory studies have emphasized on use of plant growth promoting rhizobacteria (PGPR) as biocontrol agents (Hossain et al., 2007) and the role of auxin (IAA) in plant growth promotion (Contreras-Cornejo et al., 2009). Fluorescent *Pseudomonas* are one of the most abundant bacteria in the rhizosphere of many plants (Freitas and Germida 1990; Botelho and Mendonça-Hagler 2006), have large capacity to produce phytohormones, mainly auxins (Patten and Glick 1996; Patten and Glick 2002a; Patten and Glick 2002b; Khalid et al., 2005) and secondary metabolites, such as antibiotics (Bergsma-Vlami et al., 2005), thus they are able to improve plant growth and plant health (Glick 1995; Belimov et al., 2007; Belimov et al., 2009a; Belimov et al., 2009b).

Screening of phosphate solubilizing *Pseudomonas* spp. and its quantification

Phosphorus frequently is the least accessible macronutrient in many ecosystems and its low availability is often limiting to plant growth (Raghothama, 1999). All the 24 isolates were capable of differentially utilizing tri-calcium phosphate in both agar plate and broth assays. By preparing standard curve the amount of inorganic phosphate solubilized by different *Pseudomonas* isolates were estimated wavelength 610nm. Screening of isolates showed variation in their ability to utilized calcium phosphate supplemented in different nutrient constituents. Qualitative and Quantitative estimation of phosphate solubilization, carried out after incubation of 7 days at 28±2°C is presented in (Table 1). *In vitro* phosphate solubilization efficacy of fluorescent *Pseudomonas* spp. isolates as performed on Pikovskaya’s agar by acidification showed positive results for all the 24 isolates tested.

Quantitative estimation of soluble phosphate concentrations in Pikovskaya’s broth was expressed as µg/ml and it varied significantly from 88 to 768µg/ml.

Isolate P216 can be considered as promising inducer of phosphate mobilization. The amount of inorganic phosphate solubilized was 768 µg/ml followed by isolates P67, P201 P72 P76 and P161solubilizing 550 µg/ml, 518 µg/ml and 502 µg/ml, 484 µg/ml, 455µg/ml phosphate. Among 24 isolates screened these were the best phosphate solubilizers (Table 1).

These candidate isolates can be used as microbial inoculants to improve soil fertility
by releasing bound phosphorus thereby increasing the crop yield potential. Stimulation of different crops by plant growth promoting Pseudomonas isolates with potential phosphate solubilization ability may help in exploiting large reserves of phosphorus present in most agricultural soils. Several Pseudomonas species have been reported among the most efficient phosphate-solubilizing bacteria and as important bioinoculants due to their multiple biofertilizing activities of improving soil nutrient status, secretion of plant growth regulators and suppression of soil-borne pathogens (Rodrı́guez and Fraga 1999; Gulati et al., 2008; Agrawal et al., 2015).

Screening of polyhydroxybutyrate (PHB) producers and its quantification

Biodegradable and biocompatible polyesters such as polyhydroxyalkanoates (PHA) have potential pharmaceutical values (Takahashi et al., 1994). In an alkaline environment Pseudomonas has been reported to produce medium-chain-length (R)-3-hydroxy alkanoates (Wang et al., 2007). In the present investigation all the 24 fluorescent Pseudomonas spp. isolates gave positive result for PHB accumulation in Sudan Black B qualitatively screening test in 1%glucose supplemented nutrient agar medium. (Madison and Huisman, 1999) have also reported that these biopolymers are accumulated as inclusions (PHA granules) in the bacterial cytoplasm in response to inorganic nutrient limitations, generally, when the microbes are cultured in the presence of an excess carbon source.

Isolates P99, P161, P233, P151 and P179 also produced significantly higher amounts of PHB (i.e 15.31 mg/ml, 14.52 mg/ml, 14.40 mg/ml and 14.25 mg/ml and 14.05 mg/ml respectively) as compared to other isolates (Table 1).

Two catagories of PHB producers were resolved after 24 fluorescent Pseudomonas spp. isolates gave positive result for PHB accumulation in Sudan Black B qualitatively screening test in 1%glucose supplemented nutrient agar medium PHB production 2.67 to 8.99 (mg/ml) P6, P11, P5, P201, P67, P124, P85; PHB production 10.48 to 15.75 (mg/ml) P143, P141, P205, P216, P167, P247, P76, P72, P248, P129, P176, P179, P151, P233, P161, P99, P126

Apart from primary and secondary metabolite production, certain fluorescent Pseudomonads (especially P. putida) are suitable as whole-cell biocatalyzers for the production of several value-added industrial compounds such as biodegradable and biocompatible polyesters called polyhydroxyalkanoates (PHA) or polyhydroxybutytrates (PHB). It accumulates as discrete granules and is used as storage material for carbon and for reducing equivalents by P. putida. This property has been widely exploited for their targeted biosynthesis in this organism(Hoffmann and Rehm, 2004). Different strains of P. putida such as P. putida KT2440, P. putida GPo1, P. putida S12, etc. have been investigated for its capacity to accumulate PHAs and PHBs from different carbon sources (Durner et al., 2001; Hartmann et al., 2004; Meijnen et al., 2008). The pha gene cluster is responsible for the accumulation of PHAs and PHBs in P. putida (Vo et al., 2008; Chung et al., 2009; Wang and Nomura 2010). Expenditures for large-scale production of PHA were almost evenly divided between carbon source, fermentation process and separation process (Sun et al., 2007; Elbahloul and Steinbüchel 2009).
Therefore, screening for carbohydrate utilization by *Pseudomonas* isolate may help in identifying candidate isolate which dwells upon cheaper carbon sources. Our work reports that all the 24 fluorescent *Pseudomonas* isolates utilized relatively cheaper carbohydrates such as xylose, dextrose, galactose, melibiose, and mannose corroborates earlier reports by Agrawal *et al.*, (2015).

Plant growth promoting response of rice, wheat, greengram, blackgram, lathyrus, chickpea, bottle gourd following seed bacterization with fluorescent *Pseudomonas* isolates

Indole acetic acid affects the physiology of plants in dramatically different ways which is a well know fact. Plant responses to IAA vary from plant to plant tissue involved (roots, shoots, the optimal level of IAA for supporting plant growth is ~5 orders of magnitude lower for roots than for shoots); and as a function of the developmental stage of the plant. However, the endogenous pool of plant IAA may be suboptimal or optimal (Pilet and Saugy 1987) may be altered by the acquisition of IAA that has been secreted by soil bacteria and is important in determining whether bacterial IAA stimulates or suppresses plant growth. Microbial IAA could be involved in the growth stimulation observed in our greenhouse assay. Production of plant growth regulators by the microorganisms is another important mechanism often associated with growth stimulation (Vessey, 2003). The balance between vegetative and reproductive growth is controlled by hormone signaling within the plant and therefore be highly influenced by it (Taiz and Zeiger, 1991). At relatively high concentrations, natural auxins, such as IAA, stimulate shoot elongation and root induction while reducing root elongation (Tanimoto, 2005; Gravel *et al.*, 2007) in his results, reported that *P. putida* subgroup B strain 1 and *T. atroviride* have the ability to synthesize IAA from different precursors in vitro, which supports the theory that microbial IAA could be involved in the growth stimulation observed in our greenhouse assay. In the present investigation we tried to correlate the siderophore producing ability and Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability of Fluorescent *Pseudomonas* with plant growth promoting ability. It was observed that a group of fluorescent *Pseudomonas* isolates induced significant growth effects on root and shoot on different crop plants, some only induce significant growth effects on shoot and or only root. Rice (*Oryza sativa* var. swarna): Efficacy of different isolates of *Pseudomonas* for rice plants varied to induce root and shoot length ranging from 7.15 to 16.00 cm and 19.03 to 24.95 cm respectively. Maximum root length (16 cm) and shoot length (24.95 cm) were recorded when seeds were treated with P247 and P176 respectively (Table 7). Seed treated with isolate P247 has 6.67 cm (41.69%) more root length and isolate P176 has 4.03 cm (16.56%) shoot length as compared to control. Seven isolates were able to exert plant growth promoting activity on rice. Isolates P151, P233 significantly increased the root and shoot growth of rice. Isolates P85, P176, P216 significantly increased the shoot growth of rice. Isolates P67 and P247 significantly increased the root growth of rice. Wheat (*Triticum aestivum* var. GW-272): Efficacy of different isolates of *Pseudomonas* for wheat plants varied to induce root and shoot length ranging from 24.38 to 36.52 cm and 30.77 to 39.78 cm respectively. Maximum root length (36.52 cm) and shoot length (39.78 cm) were recorded when seeds were treated with P124 and P141 respectively as compared to control. Twenty one isolates were
able to exert plant growth promoting activity on wheat. Isolates P124 significantly increased the root and shoot growth of wheat. Isolates P67, P72, P76, P85, P99, P126, P129, P141, P143, P151, P161, P167, P176, P179, P201, P205, P216, P233, P247 and P248 significantly increased the shoot growth. Bottlegourd (*Lagenaria siceraria*): The screening of *Pseudomonas* spp. treated seed of bottle gourd was evaluated 40 days after sowing. The efficacy of different species of *Pseudomonas* isolates varied to induce root length ranged from 20.33 to 112.73 cm for which P248 (112.73cm) isolate measured longest root length and P151(20.33cm) isolate measured shortest root length (Table 8). The shoot length measured ranged from 3.95 to 63.75 cm for which fluorescent *Pseudomonas* spp. isolate P167 (63.75cm) measured longest shoot length and P126 (3.95cm) isolate measured shortest shoot length. Seed treated with isolate P248 has 61.05 cm (68.83%) more root length and isolate P167 has 46.15 cm (72.39%) shoot length as compared to control. Thirteen isolates were able to exert plant growth promoting activity on bottle gourd. Isolates P72, P76, P85, P99, P11, P124, P126, P129, P141, P143, P151, P161, P176, P201, P205, P216, P233, P247 and P248 significantly increased the shoot growth. Seventeen isolates were able to exert plant growth promoting activity on Lathyrus except P216 all the sixteen isolates (P5, P6, P72, P85, P99, P11, P124, P126, P129, P151, P167, P176, P201, P205, P247, P248) significantly promoted the shoot growth of lathyrus. Chickpea (*Cicer arietinum*): Efficacy of different isolates of *Pseudomonas* for chickpea plants varied to induce root and shoot length ranging from 16.75 to 38.85 cm and14.933 to 25.7 cm respectively. Maximum root length (38.85 cm) and shoot length (25.7 cm) were recorded when seeds were treated with P72 as compared to control (Table 8). Seed treated with isolate P72 had 10.52 cm (27.08%) and 9.37 cm (36.45%) more root and shoot length respectively as compared to control. Twenty isolates were able to exert plant growth promoting activity on chickpea. Isolate P72 significantly increase the root and shoot growth of chickpea whereas nineteen isolates P67, P76, P85, P99, P11, P124, P126, P129, P141, P143, P151, P161, P176, P201, P205, P216, P233, P247 significantly increase the shoot growth of chickpea.

Greengram (*Vigna radiata* var. puspa vishal): Efficacy of different isolates of *Pseudomonas* for greengram plants varied to induce root and shoot length ranging from 13.99 to 22.15 cm and 13.7 to 20.385 cm respectively. Maximum root length (19.59cm) and shoot length (20.39 cm) were recorded when seeds were treated with isolate P151 and P11 respectively (Table 9). Seed treated with isolate P11 has 6.61cm (32.81%) more shoot length as compared to control. Isolates P6, P67, P99, P11, P124, P126, P129, P141, P143, P151, P161, P176, P201, P216, P233 and P247 on biopriming greengram seeds promoted shoot growth whereas P141 promoted only increased root and shoot development. Blackgram (*Vigna mungo* var. T-U-94-2): Efficacy of different isolates of *Pseudomonas* for blackgram plants varied to induce root and shoot length ranging from 14.59 to 24.83 cm and 12.34 to18.62 cm respectively.
Table 1: Spectrophotometric determination of Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization in different proportions by fluorescent *Pseudomonas* isolates

S. No.	Isolates	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Broth (µg/ml)	Agar medium with BCP	Agar medium without BCP
1	P6	8.09	2.67	264	++	++
2	P11	13.36	5.37	407	+	++
3	P5	15.36	6.86	379	++	+
4	P201	22.27	6.86	518	++	+
5	P67	13.91	7.56	550	+++	+++
6	P124	63.18	7.82	356	+++	+++
7	P85	9.09	8.99	399	+	+++
8	P143	12.55	10.48	135	++	+
9	P141	10.27	11.55	383	+++	+
10	P205	21.91	11.83	347	++	+
11	P216	9.91	11.93	768	+++	+++
12	P167	9.64	11.97	95	++	+
13	P247	13	12.52	278	++	++
14	P76	11.09	12.91	484	+	++
15	P72	24	13.19	502	+	+
16	P248	14.36	13.24	335	+	+
17	P129	21	13.4	306	++	++
18	P176	12.36	13.9	194	+	++
19	P179	13.27	14.05	239	++	+
20	P151	13.45	14.25	88	+	+
21	P233	8.82	14.4	139	++	++
22	P161	16.18	14.52	455	+	+
23	P99	27.09	15.31	401	+++	+++
24	P126	13.64	15.74	365	+	+
Max.		63.18	15.74	768		
Min.		8.09	2.67	88		
Control				84		

+++: luxuriant/high phosphate solubilization; ++: medium phosphate solubilization; +: low phosphate solubilization; -: no phosphate solubilization.
Table 2: Fluorescent *Pseudomonas* isolates influencing root length in different crop plants

Treatment	Root length (cm)						
	Blackgram	Bottlegourd	Chickpea	Greengram	Lathyrus	Rice	Wheat
C	16.43±0.733	43.92±12.27	28.33±0.43	7.28±0.27	10.18±0.67	9.32±1.15	30.24±0.47
P5	18.56±0.115	45.79±6.74	29.07±0.49	15.39±0.58	20.65±0.95	12.24±1.03	28.42±1.36
P6	20.95±1.401	42.83±0.81	20.53±0.08	18.04±0.18	19.41±0.83	10.25±0.48	27.68±1.85
P7	20.21±1.540	54.05±2.01	27.33±1.20	14.72±0.48	19.38±2.49	14.5±2.48	27.24±1.25
P72	20.22±2.244	83.3±1.15	38.8±6.43	17.47±1.12	19.08±1.46	10±0.97	27.56±1.75
P76	19.15±1.187	70.3±2.77	36.83±2.92	13.39±2.29	12.78±0.58	8.525±0.581	30.66±0.897
P85	20.66±0.959	41.83±12.44	28.83±0.83	16.22±0.68	18.28±2.48	12.17±0.03	27.19±1.11
P99	19.76±0.251	70.8±2.64	34.16±2.35	15.82±1.29	22.35±3.12	9.26±0.46	27.69±1.12
P100	19.92±1.858	44.5±6.01	29.83±0.41	18.03±0.44	22.57±1.42	8.5±0.95	31.86±1.99
P124	18.63±0.884	87.7±7.23	26.83±0.08	17.95±0.77	21.37±3.19	10.3±2.358	36.52±2.76
P126	17.42±0.574	4.95±8.54	23±2.02	15.99±1.49	16.37±1.83	9.77±0.59	30.07±1.31
P129	19.71±1.178	69.88±4.66	27.66±0.82	15.69±2.80	16.46±1.72	10.82±0.49	28.12±1.907
P141	19.65±0.991	67.83±1.11	33.16±2.24	22.15±0.76	15.66±2.07	7.15±0.89	26.56±1.24
P143	22.13±2.148	59.18±4.64	33.65±8.33	18.49±0.84	17.55±2.48	7.62±0.01	31.14±1.775
P151	16.46±0.802	75.63±6.82	31.43±2.59	19.59±1.48	13.96±0.38	13.62±2.75	30.86±1.152
P161	16.78±1.574	42.4±9.24	30.5±2.18	15.94±0.38	15.77±1.70	12.5±0.631	32.28±1.513
P167	17.85±0.218	73.5±16.98	22±4.76	18.63±1.27	18.73±0.67	9.8±0.715	24.38±1.906
P176	22.7±2.257	65.6±10.00	24.2±3.32	17.08±2.33	20.52±2.77	10±1.772	34.5±1.602
P179	17.75±0.207	20.33±1.13	16.75±1.29	20.37±0.17	16.76±1.19	7.8±0.356	28.61±1.74
P201	19.88±1.499	52.88±7.83	24.4±3.14	16.47±1.08	19.91±3.68	8.62±0.23	29.4±1.650
P205	16.95±1.551	42.7±5.66	23.93±0.78	16.60±1.80	18.61±0.74	7.55±0.144	29.75±1.447
P216	19.67±2.523	60±9.37	29.86±3.32	18.00±1.41	25.7±2.97	8.7±0.179	27.41±1.529
P233	24.82±2.510	41.58±4.30	28.66±0.41	17.84±1.07	15.71±0.147	13.9±2.20	32.8±1.641
P247	18.12±1.196	44.5±1.185	31.4±2.38	16.00±0.97	19.31±1.81	16±1.567	33.79±0.666
P248	14.58±0.716	112.7±4.10	38.8±4.38	22.15±0.76	25.7±2.97	16±1.567	36.5±2.766
Max.	24.82±2.510	112.7±4.10	38.8±4.38	22.15±0.76	25.7±2.97	16±1.567	36.5±2.766
Min.	14.58±0.716	20.33±1.13	16.75±1.29	13.99±2.29	12.78±0.58	7.15±0.891	24.38±1.906
CD 0.01	5.7	30.907	11.443	-	7.243	5.077	6.165
CD 0.05	4.298	23.295	8.584	3.923	5.467	3.825	4.652
C V	15.917	27.961	18.49	16.217	20.76	26.234	12.461
F.cal	2.115	5.559	2.835	1.688	2.274	2.987	2.814

Int. J. Curr. Microbiol. App. Sci. (2018) 7(2): 3511-3532
Table 3: Fluorescent *Pseudomonas* isolates influencing shoot length in different crop plants

Isolate #	Shoot length (cm)						
	Blackgram	Bottlegourd	Chickpea	Greengram	Lathyrus	Rice	Wheat
C	12.625	17.6	16.633	13.7	13.365	20.3	31.73
P5	15.815	14.3	14.933	14.665	16.635	20.775	33.04
P6	18.025	16.4	21.066	18.225	19.135	21.652	30.79
P7	13.375	12.7	21.5	17.625	13.883	23.223	36.04
P72	13.165	15.1	25.7	16.1	16.2	19.25	36.35
P76	14.575	36.7	21.266	14.8	13.151	21.85	36.75
P85	16.8	40.6	23.233	14.985	20.815	24.45	37.25
P99	18.615	56.7	21.7	19.125	17.765	23.6	38.85
P11	16.0	11.1	22.8	19.835	21.225	33.78	36.89
P124	15.235	58.9	23.8	17.615	20.2	22.775	38.18
P126	12.5	50.6	20.75	15.325	18.1	22.335	35.83
P129	14.025	24.5	25.0	16.865	20.15	20.355	38.55
P141	17.515	11.4	18.9	14.8	22.15	39.78	37.25
P143	17.685	37.4	21.0	19.175	15.285	21.925	35.75
P151	12.335	20.8	21.0	16.8	24.72	35.58	38.18
P161	13.275	12.5	22.1	16.185	13.115	23.325	35.83
P167	13.885	63.7	16.833	16.465	23.15	34.45	33.36
P176	17.165	37.5	19.5	18.785	24.95	38.27	36.09
P179	16.5	3.9	18.2	13.365	22.15	35.96	37.03
P201	16.75	15.4	19.7	16.065	22.15	21.48	38.59
P205	14.175	14.1	20.166	14.45	22.325	36.81	35.96
P216	14.7	11.5	20.7	15.185	24.675	35.16	36.9
P233	15.585	30.9	22.5	16.056	24.325	35.86	36.38
P247	15.76	7.1	18.7	16.655	22.33	23.28	37.28
P248	16.81	36.7	17.3	15.2	20.825	39.12	38.12
Max.	18.615	63.7	25.7	20.815	24.95	39.78	36.04
Min.	12.335	3.9	14.9	13.115	19.025	30.77	9.65

CD 0.01
- 1.857
- 20.522
- 3.19
- 3.268
- 3.447
- 3.39
- 2.636

CD 0.05
- 1.401
- 15.464
- 2.391
- 2.464
- 2.59
- 2.568
- 1.987

C V
- 6.495
- 41.673
- 7.075
- 10.361
- 10.994
- 8.167
- 4.372

E.cal
- 14.069
- 10.136
- 9.781
- 4.488
- 7.27
- 3.412
- 9.65
Table 4: Fluorescent *Pseudomonas* isolates inducing significant increase in root and shoot length in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Increase in root and shoot growth	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Broth (µg/ml)	Agar medium with BCP	without BCP
1	P6	Blackgram	8.09	2.67	264	++	+
2	P72	Chickpea	24	13.19	502	+	+
3	P76	Bottlegourd	11.09	12.91	484	+	++
4	P99	Bottlegourd	27.09	15.31	401	+++	+++
5	P124	Bottlegourd, Wheat	63.18	7.82	356	+++	+++
6	P141	Greengram	10.27	11.55	383	+++	+
7	P143	Blackgram	12.55	10.48	135	++	+
8	P151	Rice	13.45	14.25	88	+	+
9	P167	Bottlegourd	9.64	11.97	95	++	+
10	P176	Blackgram	13.36	13.9	194	+	++
11	P233	Blackgram, Rice	8.82	14.4	139	++	++

Table 5: Fluorescent *Pseudomonas* isolates inducing significant increase development of shoot length in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Increase in shoot growth	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Broth (µg/ml)	Agar medium with BCP	without BCP
1	P5	Blackgram, Lathyrus	15.36	6.86	379	++	+
2	P72	Lathyrus, Wheat	24	13.19	502	+	+
3	P161	Chickpea, Wheat	16.18	14.52	455	+	+
4	P179	Blackgram, Wheat	13.27	14.05	239	++	++
5	P6	Chickpea, Greengram, Lathyrus	8.09	2.67	264	++	++
6	P67	Chickpea, Greengram, Wheat	13.91	7.56	550	+++	++
7	P76	Blackgram, Chickpea, Wheat	11.09	12.91	484	+	++
8	P141	Blackgram, Chickpea, Wheat	10.27	11.55	383	+++	++
9	P167	Greengram, Lathyrus, Wheat	9.64	11.97	95	+	+
10	P233	Chickpea, Greengram, Wheat	8.82	14.4	139	++	++
11	P11	Blackgram, Chickpea, Greengram, Lathyrus	13.36	5.37	407	+	++
12	P124	Blackgram, Chickpea, Greengram, Lathyrus	63.18	7.82	356	+++	++
13	P126	Bottlegourd, Chickpea, Lathyrus, Wheat	13.64	15.74	365	+	+
14	P129	Chickpea, Greengram, Lathyrus, Wheat	21	13.4	306	++	++
15	P143	Bottlegourd, Chickpea, Greengram, Wheat	12.55	10.48	135	++	+
16	P151	Chickpea, Greengram, Lathyrus, Wheat;	13.45	14.25	88	+	+
17	P205	Blackgram, Chickpea, Lathyrus, Wheat;	21.91	11.83	347	++	+
18	P248	Blackgram, Bottlegourd, Lathyrus, Wheat	14.36	13.24	335	+	+
19	P99	Blackgram, Chickpea, Greengram, Lathyrus, Wheat;	27.09	15.31	401	+++	+++
20	P201	Blackgram, Chickpea, Greengram, Lathyrus, Wheat	22.27	6.86	518	+	+
21	P216	Blackgram, Chickpea, Greengram, Rice, Wheat	9.91	11.93	768	+++	+++
22	P247	Blackgram, Chickpea, Greengram, Lathyrus, Wheat	13	12.52	278	++	++
23	P85	Blackgram, Bottlegourd, Chickpea, Lathyrus, Rice, Wheat	9.09	8.99	399	+	+++
24	P176	Bottlegourd, Chickpea, Greengram, Lathyrus, Rice, Wheat	12.36	13.9	194	+	+
Table 6 Fluorescent *Pseudomonas* isolates inducing significant increase in root growth in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Increase in root growth	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Broth (µg/ml)	Agar medium with BCP	without BCP
1	P67	Rice	13.91	7.56	550	+++	+++
2	P72	Bottlegourd	24	13.19	502	+	+
3	P129	Bottlegourd	21	13.4	306	++	++
4	P141	Bottlegourd	10.27	11.55	383	+++	++
5	P151	Bottlegourd	13.45	14.25	88	+	+
6	P216	Lathyrus	9.91	11.93	768	+++	+++
7	P247	Rice	13	12.52	278	++	++

Table 7 Fluorescent *Pseudomonas* isolates inducing significant reduction in root and shoot length in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Inhibitory effects on root & shoot development	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Broth (µg/ml)	Agar medium with BCP	without BCP
1	P143	Rice	12.55	10.48	135	++	+
2	P76	Lathyrus	11.09	12.91	484	+	++
3	P6	Wheat, Bottlegourd	8.09	2.67	264	++	++
4	P161	Bottlegourd	16.18	14.52	455	+	+
5	P179	Bottlegourd	13.27	14.05	239	++	++
6	P205	Bottlegourd	21.91	11.83	347	++	+
Table 8 Fluorescent *Pseudomonas* isolates inducing significant reduction in root length in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Inhibitory effects on root development	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Agar medium with BCP	Phosphate solubilization in Pikovskaya’s Agar medium without BCP
1	P72	-	24	13.19	502 + +	+ +
2	P11	Rice	13.36	5.37	407 + ++	++ +
3	P216	Rice;	9.91	11.93	768 +++ +++	+++ +
4	P5	Greengram	15.36	6.86	379 ++ +	+ +
5	P6	Chickpea	8.09	2.67	264 ++ ++	++ +
6	P124	Chickpea	63.18	7.82	356 +++ +++	+++ +
7	P143	Lathyrus	12.55	10.48	135 ++ +	+ +
8	P151	Lathyrus	13.45	14.25	88 + +	+ +
9	P247	Greengram	13	12.52	278 ++ +	++ +
10	P161	Greengram	16.18	14.52	455 + +	+ +
11	P99	Greengram, Rice	27.09	15.31	401 +++ +++	+++ +
12	P76	Greengram, Rice	11.09	12.91	484 + +	+ +
13	P141	Lathyrus, Rice	10.27	11.55	383 +++ ++	++ +
14	P67	Chickpea, Greengram	13.91	7.56	550 +++ +++	+++ +
15	P176	Chickpea, Greengram	12.36	13.9	194 + +	+ +
16	P85	Bottlegourd, Greengram	9.09	8.99	399 + +++	+ +++
17	P233	Bottlegourd, Lathyrus	8.82	14.4	139 ++ ++	++ +
18	P179	Chickpea, Lathyrus, Rice	13.27	14.05	239 ++ ++	++ +
19	P201	Chickpea, Greengram, Rice	22.27	6.86	518 ++ +	+ +
20	P205	Chickpea, Greengram, Rice	21.91	11.83	347 ++ +	+ +
21	P126	Chickpea, Greengram, Lathyrus	13.64	15.74	365 + +	+ +
22	P129	Chickpea, Greengram, Lathyrus	21	13.4	306 ++ ++	++ +
23	P167	Bottlegourd, Greengram, Lathyrus	9.64	11.97	95 ++ +	+ +
24	P248	Blackgram, Chickpea, Greengram	14.36	13.24	335 + +	+ +
Table 9 Fluorescent Pseudomonas isolates inducing significant reduction in shoot length in different crop plants and their Indole acetic acid (IAA), PHB production and inorganic phosphate solubilization ability

S. No.	Isolates	Inhibitory effects on shoot development	IAA production (µg/ml)	PHB Production (mg/ml)	Phosphate solubilization in Pikovskaya’s Agar medium (µg/ml)		
					Broth with BCP	without BCP	
1	P85	Wheat	09.09	8.99	399	+	+++
2	P99	Wheat	27.09	15.31	401	+++	+++
3	P179	Wheat;	13.27	14.05	239	++	+
4	P205	Wheat;	21.91	11.83	347	++	+
5	P248	Wheat	14.36	13.24	335	+	+
6	P151	Blackgram;	13.45	14.25	88	+	+
7	P247	Bottlegourd	13	12.52	278	++	+
8	P11	Rice, Bottlegourd	13.36	5.37	407	+	++
9	P129	Rice, Wheat	21	13.4	306	++	+
10	P67	Bottlegourd, Wheat	13.91	7.56	550	+++	+++
11	P126	Blackgram, Wheat;	13.64	15.74	365	+	+
12	P141	Bottlegourd, Wheat;	10.27	11.55	383	+++	++
13	P201	Bottlegourd, Wheat	22.27	8.66	518	++	+
14	P216	Bottlegourd, Wheat	09.91	11.93	768	+++	+++
15	P72	Bottlegourd, Rice, Wheat	24	13.19	502	+	+

Maximum root length (24.83 cm) and shoot length (18.62 cm) were recorded when seeds were treated with P233 and P99 respectively (Table 9). Seed treated with isolate P233 has 8.39 cm (33.8%) more root length and isolate P99 has 5.99 cm (32.16%) shoot length as compared to control. Fourteen isolates expressed plant growth promoting activity on blackgram. Isolates P6, P143, P176 and P233 were able to promote significantly root and shoot length, whereas isolates P5, P76, P85, P99, P11, P124, P141, P179, P201, P205, P216, P247, P248 promote significantly root length of blackgram.

Fluorescent Pseudomonas isolates inducing significant increase in root and shoot growth in different crop plants

Increase in root and shoot length in one crop: P72 Chickpea; P141 Greengram; P151 Rice. Increase in root and shoot length in two crops: P233 Blackgram, Rice; P124 Bottlegourd, Wheat. Three fluorescent Pseudomonas isolates increased the root and shoot length of the same crop: P6, P143, P176 (Blackgram); P76, P99, P167 (Bottlegourd).

Isolates inducing significant increase in shoot growth in different crop plants

It was observed that Fluorescent Pseudomonas isolates the frequency of inducing shoot length was more as compared to root length.

In the order of decreasing frequency of fluorescent Pseudomonas isolates inducing increased shoot growth in different crops is as follows: Wheat (20)> Chickpea (19)> Lathyrus (16)> Greengram (14)> Blackgram (13)> Bottlegourd (5)> Rice (3).

Fluorescent Pseudomonas isolates P5, P6, P11, P124 did not increased the shoot length in rice or wheat. Among cereals wheat was
more responsive and expressed increased shoot length with 20 different Fluorescent Pseudomonas isolates whereas rice expressed increased shoot length with only three isolates P216, P85 and P176.

Bottlegourd are very responsive to IAA but expressed increased shoot length with only P126, P143, P248. Fluorescent Pseudomonas isolate P124 was the highest IAA producer but was not able to induce increased root or shoot length in bottlegourd.

Fluorescent Pseudomonas isolates increased the shoot length only in one legume crop P161 Chickpea; P72 Lathyrus; P179 Blackgram

Fluorescent Pseudomonas isolates increased the shoot length in any two legume crop P5, P248 Blackgram, Lathyrus; P167 Greengram, Lathyrus; P126 Chickpea, Lathyrus; P67, P143, P233 Chickpea, Greengram; P76, P141 Blackgram, Chickpea.

Fluorescent Pseudomonas isolates increased the shoot length in three legumes crop P6, P129, P151, P176 Chickpea, Greengram, Lathyrus; P85, P205 Blackgram, Chickpea, Lathyrus; P216 Blackgram, Chickpea, Greengram

Fluorescent Pseudomonas isolates increase the shoot length in all four legumes (Blackgram, Chickpea, Greengram, Lathyrus) P11, P124, P99, P201, P247.

Isolates inducing significant increase in root growth in different crop plants

The frequency of Fluorescent Pseudomonas isolates inducing increased root length was four (P72, P129, P141 and P151) whereas only two P67 and P247 induced increased root length in rice and only one in lathyrus by P216.

PGPR can alter root architecture and promote plant development with the production of different phytohormones like IAA, gibberellic acid and cytokinins (Kloeper et al., 2007). Similarly, significant shoot growths in maize and rice dwarf mutants were promoted by gibberellins-like substances excreted by Azospirillum spp. (Boiero et al., 2007). IAA-mediated ethylene production could increase root biomass, root hair number and consequently the root surface area of PGPR inoculated tomato plants (Ribaudo et al., 2006). Involvement of PGPR formulated cytokinins were also observed in root initiation, cell division, cell enlargement and increase in root surface area of crop plants through enhanced formation of lateral and adventitious roots(Werner et al., 2003). Recently, it has been established that the working pathways of these phytostimulators leading to overall development in crop plants are differently regulated by catabolite repression (Zaidi et al., 2009) as physiological regulator of biofilm formation.IAA biosynthesis has been correlated with stimulation of root proliferation by rhizosphere bacteria (Persello-Cartieaux et al., 2003; Spaepen et al., 2007), which enhanced uptake of nutrients by the associated plants (Lifshitz et al., 1987). Moreover, inoculation with an Azospirillum brasilense Sp245 mutant strain, strongly reduced in auxin biosynthesis or addition of increasing concentrations of exogenous auxin to the plant growth medium, indicated that the differential response to A. brasilense Sp245 among the common bean (Phaseolus vulgaris L.) genotypes is related to the bacterial produced auxin (Remans et al., 2008). IAA affects plant cell division, extension, and differentiation; stimulates seed and tuber germination; increases the rate of xylem and root development; controls processes of vegetative growth; initiates lateral and adventitious root formation; mediates responses to light, gravity and florescence;
Affects photosynthesis, pigment formation, biosynthesis of various metabolites, and resistance to stressful conditions (Tsavkelova et al., 2006; Spaepen and Vanderleyden 2011). IAA synthesized by bacteria may be involved at different levels in plant-bacterial interactions. In particular, plant growth promotion and root nodulation are both affected by IAA. The role of IAA that was synthesized by the PGPB Pseudomonas putida GR12-2 in the development of canola roots was studied following the construction of an IAA-deficient mutant of this strain (Patten and Glick 2002a). Seed inoculation with wild-type P. putida GR12-2 induced the formation of roots that were 35–50% longer than the roots from seeds treated with the IAA-deficient mutant and the roots from uninoculated seeds. On the other hand, inoculation of mung bean cuttings with a mutant of the same strain (Xie et al., 1996), which overproduces IAA, yielded a much greater number of shorter roots compared with controls (Mayak et al., 1999).

This result was explained by the combined effect of auxin on growth promotion and inhibition of root elongation by ethylene (Jackson 1991). The bacterial IAA that was incorporated by the plant stimulated the activity of the enzyme ACC synthase, resulting in increased synthesis of ACC (Jackson 1991), and a subsequent rise in ethylene that inhibited root elongation (Riov and Yang 1989). Overall, bacterial IAA increases root surface area and length, and thereby provides the plant has greater access to soil nutrients. In addition, bacterial IAA loosens plant cell walls and as a result facilitates an increasing amount of root exudation that provides additional nutrients to support the growth of rhizosphere bacteria.

It was observed that Fluorescent Pseudomonas isolates also reduced root shoot length as compared un-treated control.

Fluorescent Pseudomonas isolates inducing reduced root and shoot length in different crop plants

In the order of decreasing frequency of fluorescent Pseudomonas isolates inducing reduction in root and shoot length in Bottlegourd (4), Rice (1), Lathyrus (1) and Wheat (1).

Fluorescent Pseudomonas isolates inducing reduced root length in different crop plants

Except isolate P72 all the isolates induced reduction in root length. Because seed biopriming places the bacterium directly in contact with soil and after germination with rhizoplane / rhizosphere of the germinated seed, suggesting that the compatible / incompatible interaction between the host and bacterium might result into induced increased or decreased growth of the root. This might be the reason why the frequency of fluorescent Pseudomonas isolates inducing reduction in root length (23 out of 24 isolates) in different crop plants was very high as compared to isolates inducing reduction in shoot length (16 out of 24 isolates).

Fluorescent Pseudomonas isolates inducing reduced shoot length in different crop plants

In the order of decreasing frequency of fluorescent Pseudomonas isolates inducing reduction in shoot length in Wheat (12), Bottlegourd (7), Rice (3) Blackgram (2).

Inhibitory effect of some deleterious rhizobacteria through IAA secretion has been related to various bacterial species including Enterobacter taylorae, Klebsiella planticola, Alcaligenes faecalis, Xanthomonas maltophilia, Pseudomonas sp. and Flavobacterium sp. (Sarwar and Kremer 1995; Suzuki et al., 2003). Mutants of...
Pseudomonas putida that produced high levels of IAA inhibited root growth of seedlings of canola (Brassica campestris) by ca. 33% (Xie et al., 1996). Thus, ambiguity about effect of IAA on growth of root, shoot and rate of seedling emergence has been reported (Freitas and Germida 1990; Sarwar and Kremer 1995; Barazani and Friedman 1999) (Table 2–6). Despite the potential of allelopathic bacteria and growth-mediating allelochemicals in agriculture, it is one of the poorly understood areas of plantmicrobe interactions. Further work is needed to characterize bacteria and allelochemicals from the rhizosphere soil and to study their effect on the crop plants.

References

Agrawal T, Kotasthane AS, Kushwah R (2015) Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech 5:45–60.

Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181.

Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34.

Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406.

Belimov AA, Dodd IC, Hontzeas N, et al., (2009a) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495.

Belimov AA, Dodd IC, Safronova VI, et al., (2009b) ACC deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water-limited conditions. Asp Appl Biol 163–169.

Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM (2005) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:993–1003.

Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107.

Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632.

Boiero L, Perrig D, Masciarelli O, et al., (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880.

Botelho GR, Mendonça-Hagler LC (2006) Fluorescent Pseudomonads associated with the rhizosphere of crops: an overview. Brazilian J Microbiol 37:401–416.

Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197.

Chung A, Liu Q, Ouyang S-P, et al., (2009) Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene. Appl Microbiol Biotechnol 83:513–519.

Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an
auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592.
De-Bashan LE, Hernandez J-P, Nelson KN, et al., (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60:915–927.
Dos Santos VAP, Heim S, Moore ERB, et al., (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286.
Dubeikovsky AN, Mordukhova EA, Kochetkov VV, et al., (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281.
Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly [(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol Bioeng 72:278–288.
Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592.
Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864.
Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly (3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651.
Fravel DR (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–359.
Fravel DR (1988) Role of antibiotic in the biocontrol of plant diseases*. Annu Rev Phytopathol 26:75–91.
Freitas JR de, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272.
Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117.
Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192.
Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977.
Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79.
Han J, Sun L, Dong X, et al., (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76. doi: http://dx.doi.org/10.1016/j.syapm.2004.09.003
Hartmann R, Hany R, Geiger T, et al., (2004) Tailored Biosynthesis of Olefinic Medium-Chain-Length Poly [(R)-3-hydroxyalkanoates] in Pseudomonas putida GPo1 with Improved Thermal Properties. Macromolecules 37:6780–6785.
Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7.
Holloway BW (1992) Pseudomonas in the late twentieth century. In: FEMS Symposium. Plenum Press, p 1
Hossain MM, Sultana F, Kubota M, et al., (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736.
Jackson MB (1991) Ethylene in root growth and development. Plant Horm Ethyl 159–181.
Khalid A, Tahir S, Arshad M, Zahir ZA (2005) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Soil Res 42:921–926.
Kloepfer JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of
growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167.

Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36.

Leisinger T, Margraff R (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 43:422.

Lemanceau P (1992) beneficial-effects of rhizobacteria on plants-example of fluorescent Pseudomonas SPP. Agronomie 12:413–437.

Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209.

Lifshitz R, Kloepper JW, Kozlowski M, et al., (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395.

Liu M, González JE, Willis LB, Walker GC (1998) A novel screening method for isolating exopolysaccharide-deficient mutants. Appl Environ Microbiol 64:4600–4602.

Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53.

Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53.

Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. doi: 10.1016/j.plaphy.2004.05.009

McSpadden Gardener BB, Mavrodi D V, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2, 4-diacetylphloroglucinol-producing bacteria. Phytopathology 91:44–54.

Meijnen J-P, de Winde JH, Ruijsenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of D-xyllose and L-arabinose. Appl Environ Microbiol 74:5031–5037.

Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.

Patten CL, Glick BR (2002a) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801.

Patten CL, Glick BR (2002b) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642.

Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220.

Persello- Cartieux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular. Plant Cell Environ 26:189–199.

Pilet P-E, Saugy M (1987) Effect on Root Growth of Endogenous and Applied IAA and ABA A Critical Reexamination. Plant Physiol 83:33–38.

Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Biol 50:665–693.

Rajkumar M, Nagendra R, Lee KJ, et al., (2006) Influence of plant growth promoting bacteria and Cr 6+ on the growth of Indian mustard. Chemosphere 62:741–748.

Ramamoorthy V, Viswanathan R, Raguchander T, et al., (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. doi: http://dx.doi.org/10.1016/S0261-2203(00)00056-9

Ramos JL, Krell T, Daniels C, et al., (2009) Responses of< i> Pseudomonas</i> to small toxic molecules by a mosaic of domains. Curr Opin Microbiol 12:215–220.

Remans R, Beebe S, Blair M, et al., (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161.

Ribaudo CM, Krumpholz EM, Cassán FD, et al., (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25:175–185.
Riov J, Yang SF (1989) Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean cuttings. In: Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Springer, pp 151–156.

Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339.

Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684.

Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285.

Shahzad SM, Khalid A, Arshad M (2010) Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Environ 29:38–46.

Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042.

Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, Vol. 2.

Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438.

Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448.

Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish J Microbiol 56:103.

Taghavi S, Garafola C, Monchy S, et al., (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757.

Taiz L, Zeiger E (1991) Plant Physiology., The Benjamin.

Takahashi K, Murakami T, Kamata A, et al., (1994) Pharmacokinetic analysis of the absorption enhancing action of decanoic acid and its derivatives in rats. Pharm Res 11:388–392.

Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. CRC Crit Rev Plant Sci 24:249–265.

Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781.

Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126.

Vazquez P, Holguin G, Puente ME, et al., (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468.

Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586.

Vo MT, Lee K-W, Jung Y-M, Lee Y-H (2008) Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng 106:95–98.

Wang L, Armbruster W, Jendrossek D (2007) Production of medium-chain-length hydroxyalkanoic acids from Pseudomonas putida in pH stat. Appl Microbiol Biotechnol 75:1047–1053.

Wang Q, Nomura CT (2010) Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440.
grown on different carbon sources. J Biosci Bioeng 110:653–659.

Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42.

Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45.

Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256.

Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Annu Rev Phytopathol 40:309–348.

Werner T, Motyka V, Laucou V, et al. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550.

Wu X, Monchy S, Taghavi S, et al. (2011) Comparative genomics and functional analysis of niche specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323.

Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71.

Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284.

How to cite this article:

Priyanka, Anil S. Kotasthane, Ashish Pradhan, Umesh Shinde, Toshya Agrawal, Najam Waris Zaidi and Singh, U.S. 2018. Host Specific Plant Growth Promoting Activity of IAA Producing and Phosphate Solubilizing Fluorescent Pseudomonas. Int.J.Curr.Microbiol.App.Sci. 7(02): 3511-3532. doi: https://doi.org/10.20546/ijemas.2018.702.418