Itaconate modulates succinate levels via SDH inhibition

Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels

Thekla Cordes1, Martina Wallace1, Alessandro Michelucci2,3, Ajit S. Divakaruni1, Sean C. Sapcariu1, Carole Sousa2,3, Haruhiko Koseki5, Pedro Cabrales1, Anne N. Murphy4, Karsten Hiller3, Christian M. Metallo1,6

1Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
2NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Belval, Luxembourg
4Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
5RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
6Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA

Running title: Itaconate modulates succinate levels via SDH inhibition

To whom correspondence should be addressed: Christian M. Metallo, Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC-0412 PFBH 204, La Jolla, CA 92093, USA, Telephone: +1 (858) 534-8209, E-mail: cmetallo@ucsd.edu

Keywords: metabolic regulation, macrophage, inflammation, mitochondrial metabolism, mitochondrial respiratory chain complex, succinate dehydrogenase (SDH), succinate, itaconate, immunoresponsive gene 1 (Irg1)

ABSTRACT
Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase (CAD) catalyzes the production of itaconate from the tricarboxylic acid (TCA) cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during lipopolysaccharide (LPS) exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase (SDH) inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1−/− mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and TCA metabolism to function of the electron transport chain.

INTRODUCTION
Immune cells must sense cues from the extracellular microenvironment and respond rapidly to protect against bacteria, viruses or other pathogens (1). An emerging hallmark of inflammation and cells’ innate immune system is metabolic reprogramming (2). One of the most general metabolic changes that occurs under pro-inflammatory conditions is a biochemical switch from oxidative phosphorylation to aerobic glycolysis (3–5), which is mediated, in part, via stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) after pathogen infection (6), LPS binding to toll-like receptors (7), or by cytokine exposure (8). Although it is known that macrophages undergo
drastic metabolic reprogramming upon exposure to inflammatory stimuli, the underlying mechanisms driving this response are not completely understood.

Increased succinate levels in macrophages are important mediators of the inflammatory response linking metabolism to innate immunity. In addition to its role in TCA metabolism succinate acts as a regulatory signal enhancing IL-1β expression through stabilization of HIF-1α, which, in turn, influences the function of various other metabolic pathways (9). Succinate inhibits the hydroxylation of HIF-1α by EGLN1, resulting in pseudohypoxic HIF-1α stabilization under normoxic conditions (10–12). Various mechanisms have been proposed as the cause of succinate accumulation, including increased glutamine anaplerosis and oxidation in the TCA cycle or increased flux through the gamma-aminobutyrate (GABA) shunt (9, 13), though glycolytic metabolism is a prerequisite (14). However, the specific driver(s) of this phenomenon has not yet been identified. Given the central role of succinate as a metabolic signal in inflammation, elucidation of the metabolic pathway(s) involved in succinate accumulation and its regulation may provide new avenues for controlling this process.

Metabolites are important functional triggers that can regulate the activity of enzymes via substrate/product inhibition, post-translational modifications, or allosteric interactions (15). Beyond their direct roles as substrates and products, metabolites often serve as substrates for post-translational modifications as shown for succinate to succinylate proteins (9). On the other hand, fructose 1,6-bisphosphate (16), serine and other amino acids can allosterically influence the activity of the enzyme pyruvate kinase isoform M2 (PKM2) (17, 18). Recently, synthesis of the antimicrobial metabolite itaconate was identified in mammalian immune cells as being selectively upregulated under pro-inflammatory conditions (19). Itaconate exhibits an antibiotic function (20) via inhibition of isocitrate lyase (ICL), a key enzyme of the glyoxylate shunt needed by many bacteria to survive during infection (21–23). In mammals, itaconate is produced through the decarboxylation of the TCA cycle intermediate cis-aconitate, which is catalyzed by mammalian cis-aconitate decarboxylase (CAD, also known as immune-responsive gene 1 (IRG1) protein) encoded by immunoresponsive gene 1 (IRG1) (20). Itaconate production represents one of two characteristic TCA cycle “break-points” discovered in classically activated immune cells (24, 25). The first break occurs at isocitrate dehydrogenase (IDH) leading to the accumulation of citrate, the precursor for itaconate, and the second break occurs at succinate dehydrogenase (SDH) which may allow for succinate accumulation. Although itaconate has previously been shown to inhibit SDH ex vivo (26–28) and LPS-activated murine macrophages produced up to 8 mM intracellular itaconate (20), a potential role of endogenously produced itaconate in succinate accumulation under inflammatory conditions has not yet been addressed and is unknown.

To elucidate the role of itaconate in reprogramming immune cell metabolism, we modulated intracellular itaconate levels in primary bone marrow-derived macrophages (BMDMs), a macrophage cell line, as well as a lung adenocarcinoma cell line. In all cell models we observed metabolic changes reminiscent of SDH inhibition, including succinate accumulation. By measuring substrate specific mitochondrial respiration we demonstrated the inhibition of SDH by itaconate in a dose dependent manner. Furthermore, stimulated BMDMs from Irg1 knockout (KO) mice failed to produce itaconate and exhibited decreased succinate accumulation compared to BMDMs from wild-type (WT) mice. Based on these studies, we have elucidated an Irg1-induced immunomodulatory pathway in macrophages whereby its product, itaconate, acts as an endogenously-produced metabolic regulator of mitochondrial metabolism.

EXPERIMENTAL PROCEDURES

Cell culture and isotopic labeling – RAW 264.7 macrophages (29) (ATCC TIB-71) and A549 (30) (ATCC CCL-185) were maintained in high glucose Dulbecco’s modified Eagle medium (DMEM) (Life Technologies) supplemented with 10% (v/v) FBS, 100 U·ml⁻¹ penicillin/streptomycin, 25 mM glucose and 4 mM L-glutamine. Cell lines were tested negative for mycoplasma contamination using MycoAlert Mycoplasma Detection Kit (Lonza) per manufacturer’s instructions. Purified *Escherichia coli* (E. coli) lipopolysaccharide (LPS) was used for the activation of RAW 264.7 macrophages and BMDMs at a concentration of 10 ng·ml⁻¹. A549, RAW 264.7
cells, and BMDMs were exposed to increasing itaconate concentrations (5, 10 and 25 mM) for 6 hours. For isotopic labeling experiments, RAW 264.7 macrophages were cultured in DMEM medium (Sigma) supplemented with 25 mM glucose, 4 mM [1-13C]glutamine (Cambridge Isotopes Inc) and 10% (v/v) dialyzed FBS for 24 hours prior to addition of LPS for 6 hours. For isotope tracing with exposure to unlabeled itaconate, RAW 264.7 cells were exposed to labeled [U-13C6]glucose and [U-13C3]glutamine tracers over a period of three subcultures and then exposed further for 6 and 24 hours to 10 mM unlabeled itaconate.

Bone marrow-derived macrophages (BMDMs) - BMDMs collection was approved by the Institutional Animal Care and Use Committee, and was conducted accordingly to the *Guide for the Care and Use of Laboratory Animals* (US National Research Council, 2010). BMDMs were isolated from femurs and tibias of C57BL/6J mice (Jackson Labs, Bar Harbor, ME). Bones were collected in ice-cold PBS, cleaned of muscle and flushed with 5 ml BMDM growth medium (Dulbecco’s modified Eagle medium (DMEM) (Life Technologies) supplemented with 10% (v/v) FBS, 100 U·ml⁻¹ penicillin/streptomycin, 25 mM glucose, 4 mM L-glutamine, 20 ng·ml⁻¹ r-MCSF (eBioscience) and 3.4 μl·l⁻¹ β-mercaptoethanol). Cells were seeded at 5x10⁶ cells on petri dishes in 10 ml growth medium. 5 ml fresh growth medium was added on day 3. On day 6, BMDMs were collected and replated into 6-well tissue culture plates at a density of 5x10⁵ cells per well in growth medium containing 2 ng·ml⁻¹ r-MCSF. Metabolites were extracted on day 7.

For *Irg1* KO versus WT BMDM experiments, all animal procedures, such as handling and euthanasia, have been performed according to the Federation of European Laboratory Animal Science Associations (FELASA) guidelines for the use of animals in research. The *Irg1* knockout (KO) mice were generated by Dr. Haruhiko Koseki at the RIKEN Institute using stem cells purchased from the Knockout Mouse Project (KOMP) Repository under the strain ID Irg1tm1a(KOMP)Wtsi. Mice were anesthetized by intraperitoneal injection of 50 mg·kg⁻¹ of ketamine hydrochloride and 5 mg·kg⁻¹ xylazine hydrochloride, and bone marrows were isolated and cultured as previously described (31). Briefly, bone marrow was flushed from femurs and tibias of *Irg1* KO and age-matched C57BL/6 WT mice and the resultant cell suspension was passed through a 70 μm filter (Greiner Bio-One). After a 10 min centrifuge at 250 x g, supernatant was discarded and pellet re-suspended in 2 ml hypotonic solution (170 mM NaCl) for 5 min to allow lysis of any remaining extracellular red blood cells. Bone marrow-derived cells were plated in 12-well plates (Greiner Bio-One) at 5x10⁵ cells per well. Cells were cultured for 6 days at 37°C in RPMI 1640 VLE (Biochrom FG 1415) supplemented with 10% FBS and 20% conditioned medium from macrophage-colony stimulating factor-secreting L929 fibroblasts. After 6 days in culture, the BMDMs were used for experiments.

Metabolite quantification - Metabolite levels of itaconate and TCA cycle intermediates were quantified using external standard curves (three biological replicates). For metabolite standard curves, increasing standard solutions were extracted under the conditions of sample preparation. Using the depicted standard curve, metabolite quantity in each cell extract was calculated taking into account cellular diameter (d (μm)) of detached cells and cell number. We assumed spherical shape and calculated the intracellular metabolite concentration using the following equation: [metabolite]=metabolite quantity (mol)/((4/3)(π/6) d²) cell number). Cell number and cell diameter were determined using Countess automated cell counter (Invitrogen).

Cell transfections - *Irg1* gain-of function experiments in A549 cells were performed as previously described (20). Briefly, A549 cells were transfected with pCMV6-Irg1 (Origene) overexpressing plasmid or empty plasmid using Lipofectamine 2000 (Invitrogen) and further incubated for 24 hours.

RNA isolation and RT-PCR - Total RNA was purified from cultured cells using the Qiagen RNeasy Mini Kit (Qiagen) per manufacturer’s instructions. First-strand cDNA was synthesized from total RNA using SuperScript III (Invitrogen) with 1 μl (50μM)/reaction oligo(dT)20 as primer according to the manufacturer’s instructions. Individual 20 μl SYBR Green real-time PCR reactions consisted of 2 μl of diluted cDNA, 10 μl of fast SYBR Green Master Mix (Applied Biosystems), and 0.5 μl of each
10 μM forward and reverse primers. For standardization of quantification, L27 was amplified simultaneously. PCR was carried out in 96 well plates on an Applied Biosystems Viia™ 7 Real-Time PCR System using the following program: 95°C for 20 sec, 40 cycles of 95°C for 1 sec and 60°C for 20 sec. Irg1 (forward GCAACATGATGCTCAAGTCTG, reverse TGCTCCTCGGAATGATACCA), L27 (forward ACATTGACGATGGCACCTC, reverse GCTTGCCGATCTTCTTCTTG).

Oxygen consumption measurements - Respiration was measured in adherent monolayers of RAW 264.7 macrophages or BMDMs using a Seahorse XF96 Analyzer. RAW 264.7 macrophages were plated at 3x10^5 cells/well (for assays with permeabilized cells), 4x10^4 cells/well (for assays with intact cells), and BMDMs at 5x10^4 cells/well 24 hours before measurement. Intact cells were assayed in DMEM (Sigma, #5030) supplemented with 8 mM glucose, 3 mM glutamine, 3 mM pyruvate and 2 mM HEPES. Cells were permeabilized with 3 nm perfringolysin O (commercially XF PMP) as previously described (32). Phosphorylating (State 3), succinate-driven respiration in permeabilized cells was measured in cells offered 4 mM ADP, 2 μM rotenone, two different succinate concentrations (2.5 and 10 mM) and increasing itaconate concentrations (0, 5, 10 and 25 mM). When measuring respiration on different respiratory substrates, permeabilized cells were offered succinate (10 mM)/rotenone (2 μM), glutamate/malate (each 10 mM), pyruvate/malate (each 10 mM), or ascorbate (10 mM) plus TMPD (100 μM) and antimycin A (1 μM). Maximal respiration was calculated as the difference between protonophore-stimulated respiration (600 nM FCCP) and nonmitochondrial respiration (measured after addition of 1 μM antimycin A). All data are mean ± s.e.m. of two or three repeated experiments (with a minimum of five biological replicates per experiment) as indicated in the text. For assays with BMDMs, cells were obtained from three different mice.

Gas chromatography-Mass spectrometry (GC-MS) sample preparation and analysis - Polar metabolites were extracted using methanol/water/chloroform as previously described (20). For medium metabolites, medium was centrifuged at 4 °C for 5 min at 300 × g. 10 μl of supernatant was added to 80 μl -20 °C 8:1 methanol/water mixture, mixed for 10 min at 4 °C and centrifuged at 16,000 × g for 10 min at 4 °C. 80 μl was collected and evaporated under vacuum at -4 °C. Metabolite derivatization was performed using a Gerstel MPS. Dried polar metabolites were dissolved in 15 μl of 2% (w/v) methoxyamine hydrochloride (Thermo Scientific) in pyridine and incubated for 60 min at 45 °C. An equal volume of 2,2,2-trifluoro-N-methyl-N-trimethylsilyl-acetamide (MSTFA) or N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyldimethylchlorosilane (TBDMS) (Regis Technologies) was added and incubated further for 30 min at 45 °C. After derivatization, MSTFA derivatized samples were analyzed as previously described (20). Briefly, derivatized samples were analyzed by GC-MS using a DB-35MS column (30 m x 0.25 mm i.d. x 0.25 μm, Agilent J&W Scientific) installed in an Agilent 7890A gas chromatograph (GC) interfaced with an Agilent 5975C mass spectrometer (MS). For MTBSTFA derivatized samples, the GC oven was held at 100 °C for 1 min, increased to 255 °C at 3.5 °C min⁻¹, increased to 320 °C at 15 °C min⁻¹ and held at 320 °C for 3 min. The total run time for one sample was 54.62 min. For Irg1 KO versus WT BMDM metabolite measurements, the GC oven was held at 100 °C for 2 min, increased to 300 °C at 10 °C min⁻¹, and held at 325 °C for 3 min. The total run time for one sample was 26 min.

MSTFA derivatized metabolites were determined using the following quantification ions: itaconate (m/z 259), succinate (m/z 247). Metabolite levels and mass isotopomer distributions of MTBSTFA derivatized samples were analyzed by integrating metabolite fragment ions (itaconate m/z 301-310, succinate m/z 289-294, citrate m/z , α-ketoglutarate m/z 346-355, malate m/z 419-428, fumarate m/z 287-292) and corrected for natural abundance using in-house algorithms.

Statistical analysis - All results shown as averages of one to three repeated experiments with each at least two biological replicates as indicated in the text. A repeated experiment is defined as separate experiment temporally; biological replicates are defined as separate spatial replicates (i.e., wells of a tissue culture plate) within an experiment. In the case of BMDMs repeated experiments are defined as cells
from different mice. Error bars indicate s.e.m. The statistical tool R (33) was used to calculate Pearson correlation coefficient. For comparison of means between two different treatments, the statistical analysis was done by Student two-tailed t-test. *, P value < 0.05; **, P < 0.01; ***, P value < 0.001.

RESULTS

Succinate and itaconate accumulate in LPS-activated RAW 264.7 macrophages - To better understand the relationship between Irg1-mediated itaconate production and the reprogramming of TCA metabolism under LPS-stimulated conditions we quantified the dynamics of itaconate and TCA intermediate abundances in RAW 264.7 macrophages over time. To elicit an immune response we exposed RAW 264.7 macrophages to 10 ng·ml⁻¹ lipopolysaccharide (LPS) for 6 hours, conditions that induce high expression of Irg1 encoding CAD, the enzyme catalyzing itaconate production from cis-aconitate (20). Intriguingly, the levels of itaconate and succinate exhibited similar trends upon activation, in contrast to the dynamics of citrate, α-ketoglutarate, fumarate and malate (Fig. 1a), suggesting itaconate and succinate (or the enzymes metabolizing them) are regulated in a coordinated manner. Notably, basal oxygen consumption rates (OCR) remained unchanged when compared to resting macrophages (Fig. 1b).

Exogenous itaconate drives succinate accumulation - To determine whether itaconate directly contributes to succinate accumulation we next supplemented growth medium of resting and LPS-activated murine RAW 264.7 macrophages with increasing itaconate concentrations for 6 hours and observed how intracellular itaconate levels correlated with that of various TCA cycle intermediates (Figs. 2a-f). LPS-activated murine macrophages can produce up to 8 mM intracellular itaconate (20), but higher levels may accumulate in specific compartments (e.g., mitochondria). Therefore, we considered four different itaconate concentrations ranging from 0 to 25 mM. Exposure to exogenous itaconate resulted in increasing intracellular itaconate levels in a dose-dependent manner (Fig. 2c), indicating cells have the capacity to take up itaconate from medium. However, medium itaconate levels were not appreciably affected (Fig. 2g). Interestingly, no mitochondrial or plasma membrane itaconate transporters have been described in mammalian cells to date.

We next calculated the Pearson correlation coefficient (r) between the intracellular abundance of itaconate and each TCA intermediate to gauge the relationship across each pair. Intriguingly, we observed that intracellular itaconate levels correlated strongly with succinate levels in resting (r = 0.99) as well as LPS-activated macrophages (r = 0.99) such that higher itaconate levels were associated with elevated succinate levels (Fig. 2e). Importantly, levels of other TCA intermediates, including citrate, α-ketoglutarate, fumarate and malate correlated poorly (or in some cases negatively) with intracellular itaconate levels (Figs. 2a, b, d and f). Since succinate accumulates after exposure to exogenous itaconate in RAW 264.7 macrophages (Fig. 2e) as well as BMDMs (Fig. 2h), these data suggest that LPS-induced itaconate production by mammalian CAD contributes to the elevated succinate levels observed in activated macrophages. Importantly, exposure to exogenous itaconate induces succinate accumulation in resting RAW 264.7 macrophages (Fig. 2e) as well as resting BMDMs (Fig. 2h), indicating the mechanism through which itaconate acts is independent of other inflammatory signaling events.

Itaconate and Irg1-induced succinate accumulation is not specific to immune cells - To further investigate whether itaconate reprograms TCA metabolism independent of inflammatory signals we supplemented increasing itaconate concentrations (0, 5, 10 and 25 mM) to the growth medium of human A549 lung adenocarcinoma cells and quantified intracellular metabolite concentrations after 6 hours. As before (Fig. 2c), uptake of extracellular itaconate from the medium was evidenced by increasing intracellular itaconate levels (Fig. 3a) while medium itaconate abundances did not change (Fig. 3b). Succinate levels increased linearly with itaconate levels and correlated strongly (r = 0.99) while other TCA cycle intermediates, including citrate, α-ketoglutarate, fumarate and malate did not accumulate (Fig. 3a). These results are consistent with our observations using RAW 264.7 macrophages (Fig. 2), and since A549 cells do not express IRG1 (20) they suggest that itaconate-mediated succinate
succinate occurs, we applied a [1-13C]glutamine tracer to exclude the possibility that degradation of itaconate to succinate has been observed in isolated liver mitochondria (35). To exclude the possibility that degradation of itaconate to succinate occurs, we applied a [1-13C]glutamine tracer to LPS-activated RAW 264.7 macrophages. During oxidative glutamine metabolism, decarboxylation of M1 α-ketoglutarate derived from this tracer results in M0 succinate. In contrast to the oxidative pathway, M1 α-ketoglutarate are converted to M1 isocitrate and citrate via reductive carboxylation (36), subsequently leading to M1 itaconate labeling. Thus, if itaconate is appreciably metabolized to succinate through the aforementioned degradation pathways we would detect significant labeling on succinate from this tracer (Fig. 4a). Although we observed high fractions of M1 itaconate isotopologues (~65%) due to itaconate production via reductive glutamine metabolism, no labeling was detected on succinate (Fig. 4b).

To further demonstrate that itaconate is not metabolized to succinate, we cultured 13C-labeled resting and LPS-activated RAW 264.7 macrophages in the presence of 10 mM unlabeled itaconate and quantified succinate labeling. We exposed cells to labeled [U-13C6]glucose and [U-13C5]glutamine tracers over a period of three subcultures to obtain adequate isotope enrichment in succinate pools (Fig. 4c). Since labeling of succinate after exposure to exogenous, unlabeled itaconate was unchanged (even in the physiological concentration used here) (Fig. 4d), these data therefore confirm that itaconate is not metabolized to succinate in these mammalian cells.

Itaconate modulates succinate levels via SDH inhibition

To determine whether CAD-mediated itaconate production can affect succinate levels in non-immune cells we overexpressed Irg1 in human A549 cells using a pCMV6-plasmid encoding murine Irg1. Irg1 was only produced at detectable levels in pCMV6 Irg1 overexpressing A549 cells (pmIrg1) compared to vector (pCMV6) controls (Fig. 3c). Notably, pmIrg1 cells accumulated significantly higher amounts of succinate compared to pCMV6 controls (Fig. 3d), indicating that ectopic expression of CAD alone is sufficient to impact succinate levels. Collectively, these observations provide strong evidence that itaconate functions as a metabolic trigger to modulate succinate levels.

Itaconate is not metabolized to succinate - One explanation for the above results could be that accumulated itaconate is metabolized to succinate directly or indirectly in macrophages. Indeed, *Pseudomonas sp.* can metabolize itaconate as a carbon source through cleavage into pyruvate and acetyl-CoA (34), and a similar itaconate degradation pathway has been observed in isolated liver mitochondria (35). To exclude the possibility that degradation of itaconate to succinate occurs, we applied a [1-13C]glutamine tracer to LPS-activated RAW 264.7 macrophages. During oxidative glutamine metabolism, decarboxylation of M1 α-ketoglutarate derived from this tracer results in M0 succinate. In contrast to the oxidative pathway, M1 α-ketoglutarate are converted to M1 isocitrate and citrate via reductive carboxylation (36), subsequently leading to M1 itaconate labeling. Thus, if itaconate is appreciably metabolized to succinate through the aforementioned degradation pathways we would detect significant labeling on succinate from this tracer (Fig. 4a). Although we observed high fractions of M1 itaconate isotopologues (~65%) due to itaconate production via reductive glutamine metabolism, no labeling was detected on succinate (Fig. 4b).

To further demonstrate that itaconate is not metabolized to succinate, we cultured 13C-labeled resting and LPS-activated RAW 264.7 macrophages in the presence of 10 mM unlabeled itaconate and quantified succinate labeling. We exposed cells to labeled [U-13C6]glucose and [U-13C5]glutamine tracers over a period of three subcultures to obtain adequate isotope enrichment in succinate pools (Fig. 4c). Since labeling of succinate after exposure to exogenous, unlabeled itaconate was unchanged (even in the physiological concentration used here) (Fig. 4d), these data therefore confirm that itaconate is not metabolized to succinate in these mammalian cells.

Itaconate inhibits succinate dehydrogenase (SDH) - While enhanced flux through succinate-producing pathways from glutamine or glucose is likely contributing to its accumulation in inflammatory cells, our results suggest that itaconate degradation does not occur. An alternative mechanism through which endogenous itaconate could influence succinate levels is through inhibition of SDH/complex II. Indeed, in vitro enzyme activity assays using isolated SDH have indicated that itaconate can reduce the activity of purified SDH (27, 28, 37). Mammalian CAD is localized to mitochondria in murine macrophages (38); therefore, itaconate production within or near this compartment could modulate SDH activity and subsequently succinate levels. To investigate the potential for itaconate to act as a SDH inhibitor we measured mitochondrial respiration in permeabilized murine RAW 264.7 macrophages and BMDMs. First, we exposed permeabilized macrophages to increasing itaconate concentrations (0-25 mM) in the presence of two different succinate concentrations (2.5 and 10 mM) with 2 µM rotenone. Succinate is the substrate for complex II (SDH) of the mitochondrial respiratory chain while rotenone was used to inhibit complex I and to prevent accumulation of the SDH inhibitor oxaloacetate (39), enabling us to directly measure maximal SDH-driven respiration. We observed a dose-dependent inhibition of oxygen consumption rates (OCR) by itaconate in RAW 264.7 macrophages (Fig. 5a) and BMDMs (Fig. 5b), suggesting a regulatory role of itaconate for SDH activity. When the succinate concentration was lowered to 2.5 mM, itaconate had a greater proportional inhibitory effect. Considering the structural similarity of succinate to itaconate (also known as methylene succinate), our data suggest that itaconate acts as a competitive SDH inhibitor in immune cells similar to the mechanisms previously described for inhibition of purified SDH (27) and purified ICL (22).
Itaconate modulates succinate levels via SDH inhibition

Next, to confirm that itaconate specifically inhibits SDH rather than other mitochondrial pathways we offered permeabilized RAW 264.7 macrophages various oxidizable substrates and compared the maximal uncoupler-stimulated OCR in the presence of 0 mM and 10 mM itaconate (Fig. 5c). As expected, itaconate supplementation significantly reduced respiration (>75%) in the presence of succinate (SDH substrate) and rotenone (complex I inhibitor). On the other hand, oxygen consumption rates in permeabilized cells in the presence of either pyruvate with malate or glutamate with malate, substrates that drive respiration via complex I activity, were not affected by itaconate supplementation. Additionally, ascorbate and TMPD were used to supply electrons for complex IV activity in the presence of antimycin A, an inhibitor of complex III. Itaconate also failed to impact this complex IV-mediated respiration. Altogether these data provide evidence that itaconate contributes to succinate accumulation in macrophages by acting as an endogenous SDH inhibitor.

Loss of Irg1 influences succinate levels in BMDMs - To determine how succinate levels are affected in the absence of endogenously produced itaconate, we analyzed BMDMs derived from Irg1 KO mice. We confirmed that Irg1 mRNA was not expressed in LPS-stimulated KO-derived BMDMs (Fig. 6a). Consistent with this result, LPS-stimulated BMDMs from Irg1 KO mice failed to produce significant levels of itaconate (Fig. 6b). Notably, succinate concentrations in stimulated BMDMs from Irg1 KO mice were significantly lower than those quantified in BMDMs from WT mice, suggesting that CAD-derived itaconate influences succinate accumulation in macrophages by acting as an endogenous SDH inhibitor.

These results provide evidence that Irg1-mediated itaconate production plays a role in succinate accumulation within immune cells. Taken together, our data highlight a mechanistic function of itaconate whereby this metabolite acts as a SDH inhibitor to influence TCA cycle metabolism by driving succinate accumulation (Fig. 7).

DISCUSSION

Here we have demonstrated an important function of itaconate, where it acts as a key regulatory metabolite to modulate TCA metabolism and succinate levels. In the cells studied, exogenous and endogenous, CAD-produced itaconate strongly correlated with succinate accumulation. Substrate-specific respirometry studies in permeabilized cells confirmed that itaconate acts as a SDH inhibitor. Finally, modulation of endogenous itaconate production in LPS-activated primary macrophages from Irg1 KO mice reduces succinate levels. Thus, itaconate alters mitochondrial metabolism to influence succinate accumulation in macrophages (Fig. 7).

Numerous metabolic pathways have been implicated in the metabolic reprogramming of immune cells, in particular those that regulate succinate levels which in turn can influence HIF signaling or other pathways (13, 25, 40, 41). Glutamine serves as a major carbon source for succinate production in LPS-activated macrophages via α-ketoglutarate or alternatively through the GABA-shunt (9). A recent systems-based analysis of macrophages under pro-inflammatory conditions described key “break-points” in TCA metabolism at IDH and SDH (25). We have now identified a functional link between these nodes of the TCA cycle, where itaconate produced by mammalian CAD at the first “break-point” regulates SDH activity at the second “break-point.” Within our analyses we did observe variability in succinate accumulation upon LPS stimulation when comparing RAW 264.7 macrophages and BMDMs. This variance is in the range of succinate accumulation levels reported by others and is likely a function of cell, media formulation, and LPS variability (9). However, we consistently observed increased succinate downstream of itaconate production or administration in a variety of cell types.

Succinate accumulation plays important roles during inflammation such that it contributes to the induction of Il-1β expression via HIF-1α stabilization (9). As such, our results suggest that Irg1-mediated itaconate production may influence downstream inflammatory responses in macrophages (e.g. expression of Il-1β or associated inflammatory genes). At present, it is not known if this inflammatory response is accomplished directly by succinate or itaconate or mediated through other mechanisms.
Itaconate modulates succinate levels via SDH inhibition

Succinate inhibits HIF1a signaling through inhibition of PHD2 but can also impact the activity of numerous αKG-dependent dioxygenases (42, 43). As such, itaconate may have pleiotropic effects on cells depending on the expression, K_i, and compartment-specific impacts on succinate concentrations. However, the physiological role of itaconate and Irg1 require further investigations, particularly in the context of macrophage development and differentiation. As noted above, various other pathways (e.g. GABA shunt, glutaminolysis) contribute to succinate synthesis in macrophages and could allow compensation (9, 13, 14). Intracellular signaling pathways also play key roles in macrophage polarization and likely sustain inflammation to some degree in the absence of Irg1 (44).

Given the diverse impacts of inflammation in human disease, the mechanistic interplay between itaconate and succinate is of clinical interest. Itaconate was only recently identified as an endogenous mammalian biochemical (19), and subsequent studies demonstrated that this molecule was produced by mammalian CAD activity on cis-aconitate (20). Itaconate reprograms the metabolism of pathogens, such as Mycobacterium tuberculosis, by inhibition of ICL, a key enzyme in the glyoxylate shunt (45); thus, macrophages produce the antimicrobial metabolite itaconate to combat against invading pathogens (20). Following these discoveries it has recently been speculated that itaconate might contribute to the function of innate immune cells (2, 46). Importantly, IRGI is induced by various non-bacterial stimuli, including influenza A viral infection (47), Marek's disease infection (48), during embryonic implantation (49), neurotropic viral infections of neurons (50), and in murine epidermal cells (51). Given the regulatory role of itaconate in succinate accumulation described here, IRGI-mediated itaconate production may act as a signaling molecule in other inflammatory situations or cellular states. Indeed, succinate can inhibit various other α-ketoglutarate-dependent dioxygenases to impact diverse cellular processes (42, 43). On the other hand, the mechanism outlined here for SDH inhibition could be used to mitigate pathogenic inflammation under certain circumstances (e.g. via CAD inhibition). For example, high levels of succinate have also been reported to occur under ischemic conditions due to reverse SDH activity (40, 41). The accumulated succinate is rapidly oxidized after reperfusion, resulting in increased mitochondrial reactive oxygen species (ROS) production and damage. A similar mechanism has been speculated to occur during sepsis (52). Notably, SDH inhibition protected against brain injury after ischemia/reperfusion (40, 41), suggesting that inhibition of SDH by endogenously produced itaconate may buffer against potential oxidative damage that can occur under such conditions.

Our findings provide critical new insights into the regulatory machinery governing TCA cycle function, with mammalian CAD-produced itaconate serving as a metabolic inhibitor to cause succinate accumulation. Ultimately, these results may be clinically important if drugs that target such metabolic inflammatory signals are identified. The emerging role of itaconate as a regulatory molecule to reprogram immune-cell metabolism provides an intriguing link between innate immunity, metabolism, and disease pathogenesis.

ACKNOWLEDGEMENTS

The authors would like to acknowledge helpful discussions with Gregory Fonseca and Rudi Balling. This study was supported, in part, by NIH grant R01CA188652 (C.M.M.), California Institute of Regenerative Medicine (CIRM) Award RB5-07356 (C.M.M.), a Searle Scholar Award (C.M.M.), an NSF CAREER Award (1454425 to C.M.M.), NIH grants Al082610 NIAID (P.C.), R53HL123015 NHLBI (P.C.), P01HL110900 NHLBI (P.C.), R01HL052684 NHLBI (P.C.), and DK054441 (A.N.M.) as well as the Fonds National de la Recherche, Luxembourg (ATTRACT A10/03, K.H.), AFR Grant 6916713 (C.S.), HICE Virtual Institute (S.C.S) and Deutsche Forschungsgesellschaft (German Research Foundation) (CO1488/1-1 to T.C.).
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS
T.C., M.W., K.H. and C.M.M. designed the research; A.S.D. and A.N.M. designed oxygen consumption assays; T.C. performed experiments and analyzed data; T.C., M.W. and P.C. isolated primary BMDMs; H.K. derived the Irg1 KO mice; A.M., C.S., and S.C.S. performed experiments with Irg1 KO BMDMs; T.C. and C.M.M. wrote the manuscript.
Itaconate modulates succinate levels via SDH inhibition

REFERENCES

1. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell. 124, 783–801
2. Kelly, B., and O’Neill, L. A. (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–84
3. Krawczyk, C. M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R. J., Cross, J. R., Jung, E., Thompson, C. B., Jones, R. G., and Pearce, E. J. (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 115, 4742–4749
4. Pearce, E. L., and Pearce, E. J. (2013) Metabolic pathways in immune cell activation and quiescence. Immunity. 38, 633–43
5. Rodríguez-Prados, J.-C., Través, P. G., Cuenca, J., Rico, D., Aragonés, J., Martín-Sanz, P., Cascante, M., and Boscá, L. (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–14
6. Kempf, V. A. J., Lebiedziejewski, M., Alitalo, K., Wälzlein, J.-H., Ehehalt, U., Fiebig, J., Huber, S., Schütt, B., Sander, C. A., Müller, S., Grassl, G., Yazdi, A. S., Brehm, B., and Autenrieth, I. B. (2005) Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation. 111, 1054–62
7. Blouin, C. C., Pagé, E. L., Soucy, G. M., and Richard, D. E. (2004) Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood. 103, 1124–30
8. Hellwig-Bürgel, T., Rutkowski, K., Metzen, E., Fandrey, J., and Jelkmann, W. (1999) Interleukin-1beta and tumour necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 94, 1561–7
9. Tannahill, G. M., Curtis, a M., Adamik, J., Palsson-McDermott, E. M., McGettrick, a F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, a, Tong, Z., Jany, S. S., Corr, S. C., Haneklaus, M., Caffrey, B. E., Pierce, K., Walmsley, S., Beasley, F. C., Cummins, E., Nizet, V., Whyte, M., Taylor, C. T., Lin, H., Masters, S. L., Gottlieb, E., Kelly, V. P., Clish, C., Auron, P. E., Xavier, R. J., and O’Neill, L. a J. (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496, 238–42
10. Mills, E., and O’Neill, L. A. J. (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–20
11. Palsson-McDermott, E. M., Curtis, A. M., Goel, G., Lauterbach, M. A. R., Sheedy, F. J., Gleeson, L. E., van den Bosch, M. W. M., Quinn, S. R., Domingo-Fernandez, R., Johnson, D. G. W., Jiang, J., Israelsen, W. J., Keane, J., Thomas, C., Clish, C., Vanden Heiden, M., Xavier, R. J., and O’Neill, L. A. J. (2015) Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab. 21, 65–80
12. Bailey, E., Stirpe, F., and Taylor, C. B. (1968) Regulation of rat liver pyruvate kinase. The effect of preincubation, pH, copper ions, fructose 1,6-diphosphate and dietary changes on enzyme activity. Biochem. J. 108, 427–36
Itaconate modulates succinate levels via SDH inhibition

17. Chaneton, B., Hillmann, P., Zheng, L., Martin, A. C. L., Maddocks, O. D. K., Chokkathukalam, A., Coyle, J. E., Jankevics, A., Holding, F. P., Vosden, K. H., Frezza, C., O’Reilly, M., and Gottlieb, E. (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 491, 458–62
18. Chaneton, B., and Gottlieb, E. (2012) Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309–16
19. Strelko, C. L., Lu, W., Dufort, F. J., Seyfried, T. N., Chiles, T. C., Rabinowitz, J. D., and Roberts, M. F. (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–9
20. Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., others, Buttini, M., Linster, C. L., Medina, E., Balling, R., and Hiller, K. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U. S. A. 110, 7820–5
21. Patel, T. R., and McFadden, B. A. (1978) Caenorhabditis elegans and Ascaris suum: inhibition of isocitrate lyase by itaconate. Exp. Parasitol. 44, 262–8
22. McFadden, B. A., Williams, J. O., and Roche, T. E. (1971) Mechanism of action of isocitrate lyase from Pseudomonas indigofera. Biochemistry. 10, 1384–90
23. McFadden, B. a, and Purohit, S. (1977) Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J. Bacteriol. 131, 136–44
24. O’Neill, L. a J. O. (2015) A Broken Krebs Cycle in Macrophages. Immunity. 42, 393–394
25. Jha, A. K., Huang, S. C.-C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Logиничева, E., Chmielewski, K., Stewart, K. M., Ashall, J., Everts, B., Pearce, E. J., Driggers, E. M., and Artyomov, M. N. (2015) Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity. 42, 419–430
26. Booth, A. N., Taylor, J., Wilson, R. H., and Deeds, F. (1952) The inhibitory effects of itaconic acid in vitro and in vivo. J. Biol. Chem. 195, 697–702
27. Ackermann, W. W., and Potter, V. R. (1949) Enzyme inhibition in relation to chemotherapy. Proc. Soc. Exp. Biol. Med. 72, 1–9
28. Dervartanian, D. V, and Veeger, C. (1964) STUDIES ON SUCCINATE DEHYDROGENASE. I. SPECTRAL PROPERTIES OF THE PURIFIED ENZYME AND FORMATION OF ENZYME- COMPETITIVE INHIBITOR COMPLEXES. Biochim. Biophys. Acta. 92, 233–47
29. Raschke, W. C., Baird, S., Ralph, P., and Nakoinz, I. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 15, 261–7
30. Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., and Parks, W. P. (1973) In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived From a Series of Solid Tumors. J Natl Cancer Inst. 51, 1417–1423
31. Zhang, X., Goncalves, R., and Mosser, D. M. (2008) The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. Chapter 14, Unit 14.1
32. Divakaruni, A. S., Rogers, G. W., and Murphy, A. N. (2014) Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark-Type Oxygen Electrode. Curr. Protoc. Toxicol. 60, 25.2.1–25.2.16
33. R Development Core Team (2011) R: A Language and Environment for Statistical Computing
34. Cooper, R. A., and Kornberg, H. L. (1964) The utilization of itaconate by Pseudomonas sp. Biochem. J. 91, 82–91
35. Adler, J., Wang, S.-F. F., and Lardy, H. A. . (1957) The metabolism of itaconic acid by liver mitochondria. J. Biol. Chem. 229, 865–79
36. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., and Stephanopoulos, G. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481, 380–4
Itaconate modulates succinate levels via SDH inhibition

37. Németh, B., Doczi, J., Csete, D., Kacso, G., Ravasz, D., Adams, D., Kiss, G., Nagy, A. M., Horvath, G., Tretter, L., Mócsai, A., Csépányi-Kőmi, R., Jordanov, I., Adam-Vizi, V., and Chinopoulos, C. (2015) Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. *FASEB J.* 10.1096/fj.15-279398

38. Degrandi, D., Hoffmann, R., Beuter-Gunia, C., and Pfeffer, K. (2009) The proinflammatory cytokine-induced Irg1 protein associates with mitochondria. *J. Interferon Cytokine Res.* 29, 55–67

39. Wojtczak, L., Wojtczak, A. B., and Ernst, E. (1969) The inhibition of succinate dehydrogenase by oxaloacetate. *Biochim. Biophys. Acta - Enzymol.* 191, 10–21

40. Chouchani, E. T., Pell, V. R., James, A. M., Work, L. M., Saeb-Parsy, K., Frezza, C., Krieg, T., and Murphy, M. P. (2016) A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. *Cell Metab.* 23, 254–63

41. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijević, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N. J., Smith, A. C., Eyassu, F., Shirley, R., Hu, C.-H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S. H., Brooks, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., and Murphy, M. P. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. *Nature.* 515, 431–435

42. Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., Zhao, S., Ye, D., Xiong, Y., and Guan, K.-L. (2012) Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. *Genes Dev.* 26, 1326–38

43. Metallo, C. M., and Vander Heiden, M. G. (2013) Understanding metabolic regulation and its influence on cell physiology. *Mol. Cell.* 49, 388–98

44. Sica, A., and Mantovani, A. (2012) Macrophage plasticity and polarization: in vivo veritas. *J. Clin. Invest.* 122, 787–95

45. Eoh, H., and Rhee, K. Y. (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. *Proc. Natl. Acad. Sci. U. S. A.* 111, 4976–81

46. Cordes, T., Michelucci, A., and Hiller, K. (2015) Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. *Annu. Rev. Nutr.* 35, 451–473

47. Preusse, M., Tantawy, M. A., Klawonn, F., Schughart, K., and Pessler, F. (2013) Infection- and procedure-dependent effects on pulmonary gene expression in the early phase of influenza A virus infection in mice. *BMC Microbiol.* 13, 293

48. Smith, J., Sadeyen, J.-R., Paton, I. R., Hocking, P. M., Salmon, N., Fife, M., Nair, V., Burt, D. W., and Kaiser, P. (2011) Systems analysis of immune responses in Marek’s disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. *J. Virol.* 85, 11146–58

49. Cheon, Y.-P., Xu, X., Bagchi, M. K., and Bagchi, I. C. (2003) Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. *Endocrinology.* 144, 5623–30

50. Cho, H., Proll, S. C., Szretter, K. J., Katze, M. G., Gale, M., and Diamond, M. S. (2013) Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. *Nat. Med.* 19, 1–8

51. Hall, C. J., Boyle, R. H., Sun, X., Wicker, S. M., Misa, J. P., Krissansen, G. W., Print, C. G., Crosier, K. E., and Crosier, P. S. (2014) Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. *Nat. Commun.* 5, 3880

52. Bar-Or, D., Carrick, M. M., Mains, C. W., Rael, L. T., Slone, D., and Brody, E. N. (2015) Sepsis, oxidative stress, and hypoxia: Are there clues to better treatment? *Redox Rep.*
Itaconate modulates succinate levels via SDH inhibition

FIGURE LEGENDS

Figure 1. Succinate and itaconate accumulate in LPS-activated murine RAW 264.7 macrophages
(a) Dynamics of itaconate, succinate, citrate, α-ketogutarate, fumarate, and malate levels. Cells were exposed to 10 ng·ml⁻¹ LPS and metabolites were extracted every hour over a 6-hour period. Graphs represent mean of time-dependent, intracellular metabolite concentrations [mM] of two repeated experiments each with three biological replicates (± s.e.m.).
(b) Basal oxygen consumption rate (OCR) is unchanged in LPS-activated (LPS) macrophages compared to resting macrophages (Ctr). Bars represent mean of two repeated experiments (± s.e.m.).

Figure 2. Exogenous itaconate drives succinate accumulation
Intracellular TCA cycle intermediate and itaconate quantification in resting (Ctr, continuous line) and LPS-activated (LPS, dashed line) RAW 264.7 macrophages after 6 hrs exposure to increasing extracellular itaconate concentrations (0, 5, 10 and 25 mM). (a) malate, (b) citrate, (c) itaconate, (d) α-ketogutarate (e) succinate and (f) fumarate. Cells were exposed to 10 ng·ml⁻¹ LPS for 6 hours. Graphs represent mean of intracellular metabolite concentrations [mM] of two repeated experiments each with three biological replicates (± s.e.m.). Pearson correlation coefficient (r) represents correlation between intracellular itaconate and TCA cycle intermediate concentrations.

Figure 3. Itaconate and Irg1 induced succinate accumulation is not specific to immune cells
(a) Intracellular itaconate and succinate levels increase in A549 lung adenocarcinoma cells after exposure to increasing exogenous itaconate concentrations (0, 5, 10 and 25 mM). Data represent mean of metabolite levels [mM] of two repeated experiments (± s.e.m.) with each three biological replicates.
(b) Itaconate levels in medium after six hours (grey) are not significantly affected compared to 0 hours (black). Data represent mean of metabolite levels of two repeated experiments (= s.e.m.) with each three biological replicates normalized to 25 mM itaconate at 0 hour.
(c, d) Intracellular levels of itaconate (c, black) and succinate (d, grey) increased in Irg1 overexpression A549 cells after transient transfection with murine pCMV6-Irg1 overexpression (pmIrg1) plasmid compared to empty pCMV6-Entry (pCMV6) control plasmid. Bars represent the intracellular metabolite levels (ion counts) 24 hours after transfection of three biological replicates (± s.e.m.). *, P value < 0.05; **, P < 0.01.

Figure 4. Itaconate is not metabolized to succinate in RAW 264.7 macrophages
(a) Carbon labeling indicating oxidative (black lines) and reductive (grey lines) glutamine metabolism using [1-¹³C]glutamine. Labeled itaconate (M1) is only synthesized through reductive glutamine metabolism (grey) and if it is metabolized to succinate it would result in succinate containing one labeled carbon (M1).
(b) Mass isotopomer distribution of itaconate (black) and succinate (white) of LPS-activated RAW 264.7 macrophages after 24 hours exposure to [1-¹³C]glutamine tracer and 6 hours to 10 ng·ml⁻¹ LPS. The major fraction of labeled itaconate contains one labeled carbon, whereas no labeling was found on succinate. Bars represent the mean of mass isotopomer levels (± s.e.m.) of three biological replicates.
(c) Carbon labeling of TCA cycle intermediates using [U-¹³C₅]glucose and [U-¹³C₆]glutamine tracer. If exogenous, unlabeled itaconate is metabolized to succinate then labeling would decrease but does not here.
(d) Mass isotopomer distribution of succinate in resting and LPS-activated RAW 264.7 macrophages after 6
Itaconate modulates succinate levels via SDH inhibition

(black) and 24 hours (grey) exposure to exogenous, unlabeled itaconate remains appr. 90% indicating that itaconate is not metabolized to succinate. Cells were pre-labeled with [U-13C₆]glucose and [U-13C₅]glutamine over a period of three subcultures. Bars represent the mean of mass isotopomer levels (± s.e.m.) of three biological replicates.

Figure 5. Itaconate inhibits succinate dehydrogenase (SDH)

(a, b) Itaconate inhibits oxygen consumption rate (OCR) in (a) RAW 264.7 macrophages and (b) BMDMs in a dose dependent manner. Normalized OCR of resting permeabilized cells exposed to increasing itaconate concentrations (0, 2.5, 5, 10 and 25 mM) with either 10 mM (continuous line) or 2.5 mM (dashed line) succinate. Data represent the mean of three repeated experiments (± s.e.m.).

(b) Itaconate inhibits SDH of the respiratory chain. Normalized maximal uncoupled OCR of permeabilized resting RAW 264.7 macrophages exposed to various substrates in the presence of 0 mM (black) or 10 mM (white) itaconate. Data represent the mean of three repeated experiments (± s.e.m.) normalized to conditions with 0 mM itaconate and 10 mM succinate.

Figure 6. Loss of *Irg1* decreases itaconate and succinate levels in *Irg1* KO BMDMs

(a) *Irg1* expression levels in LPS-activated (24 hours, 10 ng·ml⁻¹ LPS) BMDMs obtained from *Irg1* knockout (KO) and wild-type (WT) mice. Bars represent expression levels obtained from two independent mice (± s.e.m.) relative to L27.

(b, c) I taconate and succinate levels in BMDMs obtained from *Irg1* KO and WT mice. Cells were activated for 6 hours with 10 ng·ml⁻¹ LPS. Bars represent mean of metabolite levels [mM] (± s.e.m.) of six biological replicates obtained from two independent mice.

Figure 7. Mechanism of LPS induced succinate accumulation

Under inflammatory conditions, such as LPS stimulation, mammalian *cis*-aconitate decarboxylase (CAD) catalyzes the decarboxylation of the TCA cycle intermediate *cis*-aconitate to produce itaconate. This metabolite contributes to succinate accumulation in macrophages by acting as an endogenous succinate dehydrogenase (SDH) inhibitor.
Itaconate modulates succinate levels via SDH inhibition

Figure 1

(a) Itaconate

(b) Succinate

Citr

LPS

Citrate

a-Ketoglutarate

Fumarate

Malate

Time (h)

Intracellular levels (mM)

Time (h)

Intracellular levels (mM)
Itaconate modulates succinate levels via SDH inhibition

Figure 2

Figure 2a: Malate

Figure 2b: Citrate

Figure 2c: Itaconate

Figure 2d: a-Ketoglutarate

Figure 2e: Succinate

Figure 2f: Fumarate

Figure 2g: Itaconate in medium (RAW264.7)

Figure 2h: Succinate in BMDMs
Itaconate modulates succinate levels via SDH inhibition

Figure 3

- **a**
 - Malate: \(r = 0.72 \)
 - Fumarate: \(r = 0.72 \)
 - Succinate: \(r = 0.99 \)
 - a-Ketoglutarate: \(r = -0.22 \)

- **b**
 - Itaconate in medium (A549)

- **c**
 - Itaconate abundance (ion counts)

- **d**
 - Succinate abundance (ion counts)
Itaconate modulates succinate levels via SDH inhibition

Figure 4

(a) TCA cycle

(b) % labeling from [U-\(^{13}\)C]glutamine with different treatments.

(c) TCA cycle with [U-\(^{13}\)C]glucose.

(d) % labeling from [U-\(^{13}\)C]glucose and [U-\(^{13}\)C]glutamine with LPS treatment.
Itaconate modulates succinate levels via SDH inhibition

Figure 5

a) permeabilized RAW264.7 cells

b) permeabilized BMDMs

C) permeabilized RAW264.7 cells
Itaconate modulates succinate levels via SDH inhibition

Figure 6

(a) *Irg1* expression level relative to L27

(b) Intracellular itaconate [mM]

(c) Intracellular succinate [mM]

WT Irg1 KO

0.0 0.5 1.0 1.5 2.0

WT Irg1 KO

0 2 4 6 8 10

WT Irg1 KO

0 1 2 3 4 5

**
Itaconate modulates succinate levels via SDH inhibition

Figure 7

Itaconate modulates succinate levels via SDH inhibition
Immunoresponse gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
Thekla Cordes, Martina Wallace, Alessandro Michelucci, Ajit S. Divakaruni, Sean C. Sapcariu, Carole Sousa, Haruhiko Koseki, Pedro Cabrales, Anne N. Murphy, Karsten Hiller and Christian M. Metallo

J. Biol. Chem. published online May 9, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M115.685792

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2016/05/09/jbc.M115.685792.full.html#ref-list-1