CONNECTED COMPONENTS OF THE SPACE OF
CIRCLE-VALUED MORSE FUNCTIONS ON SURFACES

SERGEY MAKSYMENKO

Abstract. We classify the path-components of the space of circle-valued Morse functions on compact surfaces: two Morse functions $f, g : M \to S^1$ belong to same path-component of this space if and only if they are homotopic and have equal numbers of critical points at each index.

1. Introduction

Let M be a smooth (C^∞) connected compact surface, orientable or not, with boundary ∂M or without it, and P a one-dimensional manifold either the real line \mathbb{R}^1 or the circle S^1. Let $\mathcal{M}(M, P)$ denotes the subspace of $C^\infty(M, P)$ consisting of Morse mappings $M \to P$. It is well-known (e.g. Milnor [3]) that for the case $\partial M = \emptyset$ the set $\mathcal{M}(M, P)$ is an everywhere dense open in $C^\infty(M, P)$ with the C^∞ Whitney topology of $C^\infty(M, P)$.

Recently, S. V. Matveev (his proof is included and generalized in E. Kudryavtseva [1]) and V. V. Sharko [4] have obtained a full description of the set $\pi_0\mathcal{M}(M, \mathbb{R}^1)$ of connected path-components of $\mathcal{M}(M, \mathbb{R}^1)$. Their methods are independent and based on different ideas.

For orientable closed surfaces the classification of $\pi_0\mathcal{M}(M, S^1)$ was initially given in author’s Ph.D, see [2]. The problem was proposed to the author by V. V. Sharko. In this note, we extend the results of [2] to all compact surfaces (Theorem 1.0.2) and simplify their proof.

To begin with, let us fix, once and for all, some Riemannian metric on M and some orientation of P.

A C^∞-mapping $f : M \to P$ is Morse if the following conditions hold true:

1. all critical points of f are non-degenerated and belong to the interior of M;
2. f is constant at every connected component of ∂M though its values on different components may differ each from other.

Let $f : M \to P$ be a Morse function and z a non-degenerated critical point f. Define the index of z to be the usual one with respect to an
arbitrary local representation $M \supset \mathbb{R}^2 \xrightarrow{f} \mathbb{R}^1 \subset P$ of f in which ϕ preserves orientations. Denote by $c_i(f)$ ($i = 0, 1, 2$) the number of critical points of f of index i.

Further let V be a connected component of ∂M. Since f has no critical points on V, it follows that the gradient vector field ∇f is transversal to V in every point $z \in V$.

Consider the function $\varepsilon_f : \pi_0 \partial M \to \{-1, 1\}$ such that for every connected component V of ∂M, regarded as an element of $\pi_0 \partial M$, we have $\varepsilon_f(V) = +1$ provided ∇f is directed outward on all of V and $\varepsilon_f(V) = -1$ otherwise. We will call V either f-positive or f-negative in accordance with $\varepsilon_f(V)$. Then the following quadruple:

(1.1) $K(f) = (c_0(f), c_1(f), c_2(f), \varepsilon_f)$

will be called the critical type of a Morse mapping f. Notice that the reversion of the orientation of P interchanges $c_0(f)$ and $c_2(f)$ and replaces ε_V by $-\varepsilon_V$.

Finally we will say that two Morse mappings $f, g : M \to P$ are Σ-homotopic (belong to same connected path-component of $\mathcal{M}(M, P)$), and write $f \cong g$, if there is a continuous mapping $F : M \times I \to P$ such that for every $t \in I$ the function $f_t(x) = F(x, t) : M \to P$ is Morse.

1.0.1. **Theorem** (S. Matveev [1], V. Sharko [4]). Two Morse functions $f, g : M \to \mathbb{R}$ are Σ-homotopic iff $K(f) = K(g)$. Moreover, suppose that $f = g$ is a neighborhood of some open-closed subset V of ∂M. Then $f \cong g$ with respect to some neighborhood of V.

The main result of this note is the following theorem:

1.0.2. **Theorem.** Two Morse functions $f, g : M \to S^1$ are Σ-homotopic if and only if they are homotopic and $K(f) = K(g)$.

The proof is heavily based on Theorem 1.0.1 and the structure of minimal Morse functions on M.

2. **Preliminaries**

We will regard S^1 as \mathbb{R}/\mathbb{Z}. Let $f : M \to S^1$ be a Morse mapping. Then a point $z \in S^1$ will be called a regular value of f if $f^{-1}(z)$ contains no critical points of f and no connected components of ∂M.

The following construction will often be used. Let $x = 0 \in S^1$ be a regular value of f. Let us cut M along $f^{-1}(0)$ and denote the obtained surface by \tilde{M}. Let also $p : \tilde{M} \to M$ be the factor-map and $q(t) = e^{2\pi it} : \mathbb{R} \to S^1$ a universal covering. Then there is a
Morse function \(\tilde{f} : \tilde{M} \to [0, 1] \), such that the following diagram is commutative:

\[
\begin{array}{ccc}
\tilde{M} & \xrightarrow{\tilde{f}} & [0, 1] \\
p & & q \\
M & \xrightarrow{f} & S^1.
\end{array}
\]

2.1. Orientation of level-sets. Let \(f : M \to S^1 \) be a Morse mapping. Since \(f \) is constant on components of \(\partial M \) we have the following homomorphism \(f^* : H^1(S^1) \to H^1(M, \partial M) \). Let \(\xi \in H^1(S^1) \approx \mathbb{Z} \) be the generator that yields chosen positive orientation of \(S^1 \). Then for every oriented closed curve \(\omega : S^1 \to M \) we have

\[
\text{deg}(f \circ \omega) = f^*(\xi)(\omega).
\]

Suppose that \(M \) is oriented. Then there is an orientation of level-sets of \(f \) such that for every regular point \(x \in M \) of \(f \) and a tangent vector \(v \) to \(f^{-1}(x) \) at \(x \) the pair \((\nabla f(x), v) \) gives the positive orientation of \(T_xM \). Thus the level-sets of \(f \) can be regarded as elements of \(H_1(M, \partial M) \).

Recall that there is an intersection form on \(M \)

\[
\langle \cdot, \cdot \rangle : H_1(M, \partial M) \times H_1(M, \partial M) \to \mathbb{Z}
\]

such that the correspondence \(Z \mapsto \langle Z, \cdot \rangle, Z \in H_1(M, \partial M) \), yields an isomorphism \(H_1(M, \partial M) \approx H^1(M, \partial M) \). Then for \(z \in S^1 \) we have

\[
\text{deg}(f \circ \omega) = f^*(\xi)(\omega) = \langle f^{-1}(z), \omega \rangle.
\]

2.1.1. Lemma. Let \(f, g : M \to S^1 \) be two smooth functions which take constant values on connected components of \(M \). Then the following conditions are equivalent:

1. \(f \) and \(g \) are homotopic;
2. \(f^* = g^* \);
3. for every \(x, y \in S^1 \) the 1-cycles \(f^{-1}(x) \) and \(g^{-1}(y) \) are homological in \(H_1(M, \partial M) \).

Proof. Equivalence (1)\(\Leftrightarrow \) (2) is well-known.

(2)\(\Leftrightarrow \) (3). Let \(x, y \in S^1 \) and \(X = f^{-1}(x) \) and \(Y = g^{-1}(y) \). Then \(X = Y \) in \(H_1(M, \partial M) \) iff \(\langle X, \omega \rangle = \langle Y, \omega \rangle \) for every oriented closed curve in \(M \). In view of (2.4) this is equivalent to the statement that \(f^*(\xi) = g^*(\xi) \). \(\square \)
2.2. **Minimal Morse functions.** Let \(V_0 \) and \(V_1 \) be two disjoint open-closed subsets of \(\partial M \) (we do not require that \(V_0 \cup V_1 = \partial M \)). Then \(V_0 \) and \(V_1 \) consist of connected components of \(\partial M \).

Recall that a Morse function \(f : M \to \mathbb{R} \) is **minimal**, provided \(f \) has minimal number of critical points at each index among all Morse function on \(M \).

The following statement is well-known, see e.g. [5]

2.2.1. **Lemma.** Let \(\varepsilon : \pi_0 \partial M \to \{-1, 1\} \) be an arbitrary function such that \(\varepsilon(V_0) = 0 \) and \(\varepsilon(V_1) = 1 \). Then there exists a minimal Morse function \(f : M \to [0, 1] \) such that \(f^{-1}(0) = V_0 \), \(f^{-1}(1) = V_1 \), and \(\varepsilon_f = \varepsilon \). Moreover, for every such a function we have

1) \(c_f(0) = 0 \) provided \(\varepsilon^{-1}(0) \neq \emptyset \); otherwise \(c_f(0) = 1 \).
2) Similarly, if \(\varepsilon^{-1}(1) \neq \emptyset \), then \(c_f(2) = 0 \), otherwise \(c_f(2) = 1 \).

Finally, every Morse function can be obtained from some minimal one by adding proper number of pairs of critical points of indexes 0 and 1 or 1 and 2. \(\square \)

2.3. **Unessential components.** Let \(f : M \to S^1 \) be a Morse mapping, \(x \) a regular value of \(f \) and \(X = f^{-1}(x) \).

A connected component \(C \) of \(M \setminus X \) will be called **essential** if either \(X = \emptyset \) or \(f(C) = S^1 \), otherwise \(C \) is **unessential**.

Let \(C \) be an unessential component of \(M \setminus X \). Then \(C \) lower if \(f(C) \subset [x, x + d) \), for some \(d \in (0, 1) \). Otherwise, \(f(C) \subset (x - d, x] \) for some \(d \in (0, 1) \) and \(C \) will be called **upper**.

Finally, we will say that \(f \) is \(x \)-**reduced**, provided all connected components of \(M \setminus X \) are essential.

2.3.1. **Lemma.** In the above notations, \(f \) is \(\Sigma \)-homotopic to an \(x \)-reduced Morse mapping.

Proof. Let \(C \) be an unessential component of \(M \setminus X \). We can assume that \(C \) is lower so that \(f(C) = [x, d] \), where \(0 < x < d < 1 \) and the interval \([0, x] \) consists of regular values of \(f \) only. Denote by \(D \) the connected component of \(f^{-1}[0, d] \) including \(C \).

Let also \(\mu : [0, 1] \to [0, 1] \) be a \(C^\infty \)-function such that \(\mu(0) = 1 \) and \(\mu(1) = x \). Then it is easy to verify that the following mapping \(F : M \times I \to S^1 \) defined by

\[
F(s, t) = \begin{cases}
\mu(t)f(s), & s \in D \\
 f(s), & s \in M \setminus C.
\end{cases}
\]

is a \(\Sigma \)-homotopy between \(f = F_0 \) and the mapping \(g = F_1 \) such that \(g(C) \subset [x^2, xd] \subset [0, x] \), whence \(g^{-1}(x) = X \setminus C \).

Then our lemma follows by the induction on the number of connected components of \(X \). \(\square \)
2.4. Construction of Morse functions with given regular level-set. Let \(\gamma = \{ \gamma_1, \ldots, \gamma_n \} \subset \text{Int}M \) be a family of mutually disjoint two-sided simple closed curves, \(f : M \to S^1 \) a Morse function, \(x \in S^1 \) a regular value of \(f \), and \(X = f^{-1}(x) \).

2.4.1. Definition. We will say that \(\gamma \) is \((f, x)\)-regular if \(X \cap \gamma = \emptyset \) and for every connected component \(C \) of \(M \setminus (X \cup \gamma) \) we have

1. \(\overline{C} \cap X \neq \emptyset \) and \(\overline{C} \cap \gamma \neq \emptyset \);
2. \(f(\overline{C}) \neq S^1 \).

It follows from (2) that either \(f(\overline{C}) = [x, x + d] \) or \(f(\overline{C}) \subset [x - d, x] \) for some \(d \in (0, 1) \). We will call \(C \) lower in the first case and upper in the second.

2.4.2. Lemma. Suppose that \(\gamma \) is \((f, x)\)-regular. Then there exists a Morse function \(h : M \to S^1 \) such that

1. \(h^{-1}(x) = X = f^{-1}(x) \) and \(h = f \) near \(X \);
2. \(h^{-1}(y) = \gamma \) for some regular value \(y \) of \(h \);
3. \(K(h) = K(f) \).

Then it follows from Lemma 3.0.3 that \(h \overset{\Sigma}{\sim} f \) with respect to a neighborhood of \(X \).

Proof. We can assume that \(x = 0 \) and \(y = \frac{1}{2} \). Let \(C \) be a connected component of \(M \setminus (X \cup \gamma) \). If \(C \) is lower, then it follows from Definition 2.4.1 and Lemma 2.2.1 that there exists a minimal Morse function \(h_C : \overline{C} \to [0, \frac{1}{2}] \) such that \(h_C^{-1}(\frac{1}{2}) = \overline{C} \cap \gamma \), \(h_C^{-1}(0) = \overline{C} \cap X \), and \(\varepsilon_h = \varepsilon_f \).

Similarly, if \(C \) is upper, then we can construct a minimal Morse function \(h_C : \overline{C} \to [\frac{1}{2}, 1] \) such that \(h_C^{-1}(\frac{1}{2}) = \overline{C} \cap \gamma \), \(h_C^{-1}(1) = \overline{C} \cap X \), and \(\varepsilon_h = \varepsilon_f \).

Then the union of all functions \(h_C \), where \(C \) runs all connected components of \(M \setminus (X \cup \gamma) \), gives a function \(\hat{h} : M \to S^1 \) without critical points of indexes 0 and 2 and such that \(\hat{h}^{-1}(0) = X \), \(\hat{h}^{-1}(\frac{1}{2}) = \gamma \).

Moreover, we can choose these functions so that \(\hat{h} \) is smooth near \(X \cup \gamma \). Then adding to \(\hat{h} \) a necessary number of pairs of critical points of indexes 0 and 1 or 1 and 2 we can obtain a Morse function \(h : M \to S^1 \) satisfying the conditions (1)-(3) of our lemma.

Evidently, the condition (1) implies that \(h \) is homotopic to \(f \), whence by Lemma 3.0.3 we get \(f \overset{\Sigma}{\sim} h \) with respect to a neighborhood of \(X \). \(\square \)

3. Proof of Theorem 1.0.2

The necessity is obvious, therefore we will consider only sufficiency. Let \(f, g : M \to S^1 \) be two Morse mappings that are homotopic and
\(K(f) = K(g) \). We have to show that \(f \overset{\Sigma}{\sim} g \). First consider one particular case.

3.0.3. **Lemma.** Suppose that there exists a common regular value \(x \) of \(f \) and \(g \) such that \(f^{-1}(x) = g^{-1}(x) \), and \(f = g \) in a neighborhood of \(f^{-1}(x) \). Then \(f \overset{\Sigma}{\sim} g \).

Proof. Denote \(X = f^{-1}(x) \). If \(X = \emptyset \), then \(f \) and \(g \) are mappings \(M \to S^1 \setminus \{ x \} \approx \mathbb{R} \), whence by Theorem 1.0.1, \(f \overset{\Sigma}{\sim} g \).

Thus suppose that \(X \neq \emptyset \) and let \(x = 0 \). Then \(X \) is a disjoint union of two-sided simple closed curves. Using the notations of (2.2), we cut \(M \) along \(X \) and obtain liftings \(\tilde{f}, \tilde{g} : \tilde{M} \to [0,1] \) of \(f \) and \(g \) respectively. Then \(\tilde{f} = \tilde{g} \) near \(\tilde{X} = p^{-1}(X) \).

3.0.4. **Claim.** \(f \) is \(\Sigma \)-homotopic to a Morse function \(h : M \to S^1 \) such that \(K(h|\overline{D}) = K(g|\overline{D}) \) for every connected component \(C \) of \(M \setminus X \).

It follows from this claim that \(h \) yields a Morse map \(\tilde{h} : \tilde{M} \to [0,1] \) such that \(K(\tilde{h}|\overline{D}) = K(\tilde{g}|\overline{D}) \) for every connected component \(D \) of \(\tilde{M} \). Then from Theorem 1.0.1 we obtain that \(\tilde{h}|\overline{D} \overset{\Sigma}{\sim} \tilde{g}|\overline{D} \) with respect to a neighborhood of \(\tilde{X} \cap \overline{D} \). Hence \(\tilde{h} \overset{\Sigma}{\sim} \tilde{g} \) with respect to a neighborhood of \(\tilde{X} \) and therefore \(h \overset{\Sigma}{\sim} g \) with respect to a neighborhood of \(X \). Thus \(f \overset{\Sigma}{\sim} h \overset{\Sigma}{\sim} g \). This will prove Lemma 3.0.3.

Proof of Claim. It follows from Lemma 2.2.1 that such a function \(h \) can be obtained from \(f \) by moving pairs of critical points of indexes 0 and 1 and indexes 1 and 2 from some connected components of \(M \setminus X \) to another ones.

Consider the partition of \(M \) by the connected components of level-sets of \(f \). Recall that the factor-space of \(M \) by this partition admits a natural structure of a graph called Reeb graph of \(f \).

Evidently, moves of pairs of critical points yield transformations of Reeb graph of \(f \) shifting edges with vertexes of degree 1, see Figure 3.1, where bold points are the vertices of degree 2.

Every such a transformation can be realized by some \(\Sigma \)-homotopy \(f_t, (t \in [0,1]) \).

Moreover, let \(x \) be a value of \(f \) corresponding to the level-set denoted in Figure 3.1 by long horizontal line. Then \(f_t \) can be chosen so that \(f_0^{-1}(x) = f_1^{-1}(x) \) and \(f_0 = f_1 \) near \(f_0^{-1}(x) \), while it is possible that \(f_0^{-1}(x) \neq f_t^{-1}(x) \) for some \(t \in (0,1) \).

Thus properly moving edges with vertexes of degree 1 we can obtain from \(f \) a Morse function \(h \) satisfying the statement of this lemma. □
Now Theorem 1.0.2 is implied by the following two propositions and previous Lemma 3.0.3.

3.0.5. Proposition. Let x and y be regular values of f and g respectively. Suppose that f and g are reduced with respect to x and y, and $f^{-1}(x) \cap g^{-1}(y) = \emptyset$. Then $f \Sigma \sim g$.

3.0.6. Proposition. The functions f and g are Σ-homotopic to Morse mappings f_1 and g_1 respectively such that x and y are regular values of f_1 and g_1 respectively, and $f_1^{-1}(x) \cap g_1^{-1}(y) = \emptyset$. Then by Proposition 3.0.5, $f_1 \Sigma \sim g_1$, whence $f \Sigma \sim g$.

4. Proof of Proposition 3.0.5

Denote $X = f^{-1}(x)$ and $Y = g^{-1}(y)$, so we have $X \cap Y = \emptyset$. It suffices to prove the following statement.

4.0.7. Claim. Let C be a connected component of $M \setminus (X \cup Y)$. Then $f(C) \neq S^1$ and $C \cap Y \neq \emptyset$. Similarly, $g(C) \neq S^1$ and $C \cap X \neq \emptyset$. Thus Y is (f, x)-regular and X is (g, y)-regular.

It will follow from Lemma 2.4.2 that there exists a Morse function h such that $h^{-1}(x) = X$, $h^{-1}(y) = Y$, $h = f$ near X, and $h = g$ near Y. Then by Lemma 3.0.3 we will get $f \Sigma \sim h \Sigma g$.

Proof of Claim 4.0.7. (1) First suppose that M is orientable. Let us assume that $x = 0$. Cutting M along X we obtain a connected surface \tilde{M}, the projection $p : \tilde{M} \to M$, and a Morse function $\tilde{f} : \tilde{M} \to [0,1]$ such that the commutative diagram (2.2) holds true.

Denote $\tilde{X}_0 = \tilde{f}^{-1}(0)$, $\tilde{X}_1 = \tilde{f}^{-1}(1)$, $\tilde{Y} = p^{-1}(Y)$, and $D = p^{-1}(C)$.

Since f and g are homotopic and M is orientable, it follows from Lemma 2.4.1 that 1-cycles $[X]$ and $[Y]$ are homological modulo ∂M. Whence \tilde{Y} separates \tilde{X}_0 and \tilde{X}_1 in \tilde{M}, i.e. for every connected subset $U \subset \tilde{M}$ such that $U \cap \tilde{X}_i \neq \emptyset$ ($i = 0, 1$) we have that $U \setminus \tilde{Y}$ can be
represented as a union of two disjoint open-closed subsets U_i such that $U \cap \tilde{X}_i \subset U_i$.

Suppose that $f(C) = S^1$. Then $\tilde{f}(\tilde{D}) = [0, 1]$. Therefore $\tilde{D} \cap \tilde{X}_i \neq \emptyset$ for $i = 0, 1$. Hence $\tilde{D} \setminus \tilde{Y}, \tilde{C} \setminus Y$, and therefore $C \setminus Y$ are not connected which contradicts to the assumption.

If $\overline{C} \cap Y = \emptyset$, then C is a connected component of $M \setminus X$. But $f(C) \neq S^1$, whence C is unessential for (f, x), i.e. f is not x-reduced.

(2) Suppose now that M is non-orientable. Let $\tau : \hat{M} \to M$ be the oriented double covering, $\hat{f} = f \circ \tau, \hat{g} = g \circ \tau : \hat{M} \to S^1$, $\hat{X} = \tau^{-1}(X) = \hat{f}^{-1}(x), \hat{Y} = \tau^{-1}(Y) = \hat{g}^{-1}(y)$, and $\hat{C} = \tau^{-1}(C)$.

If C is orientable, then \hat{C} consists of two components each homeomorphic to C. Otherwise, C is non-orientable, and \hat{C} is an oriented double covering of C.

Notice that \hat{f} is x-reduced and \hat{g} is y-reduced. Indeed, for every connected component D of $\hat{M} \setminus \hat{X}$ the set $\tau(D)$ is a connected component of $M \setminus X$, whence $\hat{f}(D) = f(\tau(D)) \neq S^1$. The proof for \hat{g} is similar.

Let \hat{D} be a connected component of \hat{C}. Since $\hat{X} \cap \hat{Y} = \emptyset$, we get from orientable case of this claim that

$$f(C) = \hat{f}(\hat{D}) \neq S^1 \quad \text{and} \quad \overline{C} \cap Y \supset \tau(\overline{D} \cap \hat{Y}) \neq \emptyset.$$

This completes Claim 4.0.7 and Proposition 3.0.6

5. Proof of Proposition 3.0.6

We can assume that the intersection X and Y is transversal. Let $n = \#(X \cap Y)$. If $n = 0$, then our statement is just Proposition 3.0.5.

Suppose that $n > 0$. We will show how to reduce the number of intersection points $X \cap Y$ by Σ-homotopy.

For simplicity let $x = 0$. We can also assume that f is x-reduced.

Cutting M along X we obtain a connected surface \hat{M}, the projection $p : \hat{M} \to M$, and a Morse function $\hat{f} : \hat{M} \to [0, 1]$ such that the commutative diagram (2.2) holds true. Denote $\hat{X}_0 = \hat{f}^{-1}(0), \hat{X}_1 = \hat{f}^{-1}(1)$, and $\hat{Y} = p^{-1}(Y)$.

Notice that \hat{Y} consists of simple closed curves and arcs with ends at \hat{X}. Let us divide \hat{Y} by the following four disjoint subsets:

$$L_0, L_1, L_0^1, L_c,$$

where L_0 (L_1) consists of arcs whose both ends belong to \hat{X}_0 (\hat{X}_1), L_0^1 consists of arcs of \hat{Y} connecting \hat{X}_0 with \hat{X}_1, and L_c consists of simple closed curves of \hat{Y}.
Since \(f \) and \(g \) are homotopic, it follows from (2.3), that the restriction \(f|_Y \) is null-homotopic. Hence \(L_0 \neq \emptyset \) and \(L_1 \neq \emptyset \).

Let \(U \) be a regular neighborhood of \(\tilde{X}_0 \cup L_0 \) such that \(\partial U \) does not intersect \(L^1 \cup L_c \) and transversely intersects every arc of \(L_0 \) at a unique point.

Let also \(V \) be the union of closures of those connected components \(D \) of \(\tilde{M} \setminus (\tilde{X} \cup \gamma) \) for which \(\overline{D} \cap \tilde{X} = \emptyset \).

Denote \(U' = U \cup V, \tilde{\gamma} = \partial U', \) and \(\gamma = p(\tilde{\gamma}). \) Then

\[
\#(\gamma \cap Y) < \#(X \cap Y) = n.
\]

5.0.8. **Claim.** \(\gamma \) is \((f, x)\)-regular.

Then by Lemma 2.4.2 we can construct a Morse function \(h : M \to S^1 \) such that \(h^{-1}(0) = X, h^{-1}(1/2) = \gamma, \) \(h = f \) near \(X, \) and \(h \sim f. \) It will follow from (5.5) by the induction on \(n \) that \(h \sim g. \)

Proof of Claim 5.0.8. We have to show that for every connected component \(C \) of \(M \setminus (X \cup \gamma) \) the following conditions hold true:

\[
C \cap \gamma \neq \emptyset, \quad C \cap X \neq \emptyset.
\]

Denote \(D = p^{-1}(C). \) Then (5.6) are equivalent to the following ones:

\[
\tilde{f}(\overline{D}) \notin [0, 1], \quad \overline{D} \cap \tilde{\gamma} \neq \emptyset, \quad \overline{D} \cap \tilde{X} \neq \emptyset.
\]

Since \(\partial U \) separates \(\tilde{X}_0 \) and \(\tilde{X}_1 \) in \(\tilde{M} \), we get \(\tilde{f}(\overline{D}) \notin [0, 1]. \)

Moreover, if \(\overline{D} \cap \tilde{\gamma} = \emptyset \), then \(D \) is in fact a connected component of \(\tilde{M} \). But \(\tilde{f}(\overline{D}) \notin [0, 1] \) implies \(f(\overline{C}) \notin S^1 \), whence \(C \) is unessential with respect to \((f, x)\) which contradicts to the assumption.

Suppose that \(\overline{D} \cap \tilde{X} = \emptyset \). Then \(D \) is a connected component of \(\tilde{M} \setminus \gamma \).

Therefore, \(\overline{D} \cap U \subset \partial U \), whence \(D \subset V. \) But every connected component of \(V \) evidently intersect \(\tilde{X}_0 \), thus \(D \cap \tilde{X}_0 \neq \emptyset \) which contradicts to the assumption. \(\square \)

6. **Acknowledgements**

I am sincerely grateful to V. V. Sharko for help and attention to my work. I also want to thank my colleagues M. A. Pankov, E. A. Polulyah, A. O. Prishlyak, and I. Y. Vlasenko for many useful discussions.

References

[1] E. A. Kudryavtzeva, Realization of smooth functions on surfaces as height functions, Mathematicheskiy sbornik, 190 (1999) 29-88 (in Russian).
[2] S. Maksymenko, Path-components of Morse mapping spaces of surfaces, in Proceedings of Institute of Mathematics of Ukrainian National Academy of Science “Some problems of modern mathematics”, 25 (1998) 408-434 (in Russian).

[3] J. Milnor, Lectures on the h-cobordism theorem. Princeton, 1965.

[4] V. V. Sharko, Functions on surfaces, I. in Proceedings of Institute of Mathematics of Ukrainian National Academy of Science “Some problems of modern mathematics”, 25 (1998) 408-434 (in Russian).

[5] A. Wallace, Differential topology. New York, 1968.