On equations of motion on Siegel-Jacobi spaces
generated by linear Hamiltonians in the generators
of the Jacobi group

Stefan Berceanu
National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics,
PO BOX MG-6, Bucharest-Magurele, Romania
E-mail: Berceanu@theory.nipne.ro

Abstract. It is proved that the equations of classical motion and the quantum evolution
on the Siegel-Jacobi disk generated by a Hamiltonian linear in the generators of the Jacobi
group G_j obtained by the Wei-Norman method and a method used in the context of Berezin’s
quantization are identical. In a certain set of variables the motion on the Siegel disk and C are
decoupled. The geometric significance and the meaning in the context of coherent states of this
coordinates are emphasized.

1. Introduction
The Jacobi group G_j - the semidirect product of the Heisenberg group H_n with $\text{Sp}(n, \mathbb{R})$ - is
intensively studied in mathematics [1, 2, 3]. The Jacobi group G_j is relevant in physics, in
particular in quantum mechanics [4], being responsible [5] for the squeezed states in quantum
optics [6, 7, 8]. To the Jacobi group [9] it is associated the so called Siegel-Jacobi ball
$D_j \approx \mathbb{C}^n \times D_n$, where the the Siegel ball $D_n = \text{Sp}(n, \mathbb{R})/U(n)$ admits a realization as a bounded domain [12]. To the
Jacobi group we have attached coherent states [13] based on the Siegel-Jacobi spaces [14, 9, 3, 15].
Different aspects of quantum mechanics via coherent states and geometry on the Siegel-Jacobi
disk D_j are emphasized in [16]. The equations of motion on the Siegel-Jacobi ball and Siegel-
Jacobi upper half plane generated by linear Hamiltonians in the generators of the Jacobi group
are studied in [14, 15, 17] using a method developed in [18, 19, 17] in the context of Berezin’s
approach to quantization [20, 21] for coherent states [13]. On the other side, equations of motion on the Siegel-Jacobi disk are studied in [22] by the Wei-Norman method [23] applied to
the quasienergy operator [24] in the context of Lie systems of differential equations [25, 26]. The
Wei-Norman equations for G_j were studied in [27, 28].

In this note I underline the equivalence between the equations of motion on the Siegel-Jacobi
disk D_j (also called extended Poincaré disk, \mathcal{D}) generated by a hermitian Hamiltonian linear
in the generators of the Jacobi group G_j obtained with apparently different methods - the Wei-
Norman method [22] and Berezin’s method [14, 17, 15, 29]. The equivalence of the equations
of motion on the Siegel-Jacobi disk is proved in a set of variables - called FC-variables - in
which the motion on \mathbb{C} and D_j are decoupled. The FC-transform has a special geometric
interpretation and also has significance in the context of coherent states. If $(z, w) \in \mathbb{C} \times D_j$ are

Published under licence by IOP Publishing Ltd
local coordinates on the Siegel-Jacobi disk [14], it was proved in [17, 15] that under the FC-transform, $FC: (\eta, w) \rightarrow (z = \eta - w\bar{\eta}, w)$ the Kähler to form $\omega_{D_1^J}(z, w)$ becomes just the sum of $\omega_{C}(\eta)$ and $\omega_{D_1}(w)$, recalling the fundamental conjecture for homogeneous Kähler manifolds [30, 31]. The FC-transform expresses also the change of variables from the normalized to the unnormalized coherent state vectors [16]. The equations of motion on \mathfrak{M} associated to a hermitian Hamiltonian linear in the generators of the Jacobi group G^J_1 obtained in [22] are a particular case of equations of motion on the Siegel-Jacobi spaces attached to a hermitian Hamiltonian linear in the generators of G^J_1 [17].

The paper is laid out as follows. §2 recalls the method to obtain what we call Berezin’s equations of motion on a homogeneous Kähler manifold $M = G/H$ generated by a hermitian Hamiltonian linear in the generators of the Lie group G if the Lie algebra \mathfrak{g} admits a certain holomorphic differential representation [18, 19, 32, 17]. §3 briefly summarizes the Wei-Norman method [23] to solve linear differential equations attached to linear operators in the generators of a Lie algebra \mathfrak{g}. §4 recalls the commutation relations of the generators of the Jacobi algebra $\mathfrak{g}^J_1 := \mathfrak{h}_1 \ltimes \mathfrak{su}(1, 1)$ and the operators which appear in the unitary representation of the Jacobi group G^J_1.

§5 presents the quasienergy operator attached to the time-dependent Schrödinger equation on the Siegel-Jacobi disk D_1^J. A hermitian Hamiltonian linear in the generators of the Jacobi group G^J_1 is considered. Using the results from [33, 34] and passing from the complex representation adopted in [14, 17] to the real representation of the Jacobi group G^J_1 used in [22], with the technique of §3, the equations of motion on \mathfrak{M} from [22] are reobtained and shown to be identical with those obtained by Berezin’s method [17]. For completeness, the equations of motion on the Siegel-Jacobi ball [15] are briefly recalled in §5. The main contribution of the paper is contained in Proposition 2. More details are presented in [29].

Conventions. The Hilbert space \mathfrak{H} considered in this paper is endowed with a scalar product $\langle \cdot, \cdot \rangle$ antilinear in the first argument. \mathbb{R}, \mathbb{C} and \mathbb{N} denotes the field of real, complex numbers, respectively the set of non-negative integers. We denote the imaginary unit $\sqrt{-1}$ by i, and the Real and Imaginary part of a complex number by \Re and \Im respectively, for $z \in \mathbb{C}$ we have $z = \Re z + i \Im z$, and $\bar{z} = \Re z - i \Im z$. Also we use the notation $cc(z) := \bar{z}$ for $z \in \mathbb{C}$ and $cc(A) = A^\dagger$ for an operator A. We denote by $M_n(\mathbb{F})$ the set of $n \times n$ matrices with entries in the field \mathbb{F}. If $A \in M_n(\mathbb{F})$, then $A^t (A^\dagger)$ denotes the transpose (respectively, the hermitian conjugate) of A. I denotes the unit operator, while \mathbb{I}_n denotes the unit matrix of $M_n(\mathbb{F})$. If $A \in M_n(\mathbb{F})$, we denote by $A^* := \frac{1}{2}(A + A^\dagger)$. We use Einstein convention that repeated indices are implicitly summed over. We denote the differential by d. If π is an unitary irreducible representation of a Lie group G with Lie algebra \mathfrak{g} on a complex separable Hilbert space \mathfrak{H}, then we denote for the derived representation $X := d\pi(X), X \in \mathfrak{g}$. If X, Y are elements in the lie algebra \mathfrak{g}, then $\text{ad}X(Y) = [X, Y]$.

2. Berezin’s equations of motion via coherent states

In the group theoretic approach to coherent states [13] it is considered the triplet (G, π, \mathfrak{H}), where π is a continuous, unitary, irreducible representation of the Lie group G on the separable complex Hilbert space \mathfrak{H}.

The normalized (unnormalized) vectors e_x (respectively, e_z), based on the homogeneous manifold $M=G/H$, supposed to be Kählerian, are defined as

$$e_x = \exp(\sum_{\phi \in \Delta^+} x_\phi X^\dagger_\phi - \bar{x}_\phi X^-_\phi) e_0, \quad e_z = \exp(\sum_{\phi \in \Delta^+} z_\phi X^\dagger_\phi) e_0. \quad (1)$$

Above e_0 is the extremal weight vector of the representation π, Δ^+ are the positive roots of the Lie algebra \mathfrak{g} of G, and $X_\phi, \phi \in \Delta$, are the generators. X^\dagger_ϕ (respectively, X^-_ϕ) corresponds to the positive (respectively, negative) generators [13, 32].
We denote by FC [16] (from fundamental conjecture [30, 31]) the change of variables $x \rightarrow z$ in formula (1) such that

$$e_x = \tilde{e}_z, \quad \tilde{e}_z := < e_z, e_z >^{-\frac{1}{2}} e_z, \quad z = FC(x).$$

(2)

By a dequantization procedure, the motion on the classical phase space - a homogeneous Kähler manifold $M = G/H$ - can be described by the local equations of motion [20, 21]

$$\dot{z}_\alpha = i \{ \mathcal{H}, z_\alpha \}, \quad \alpha \in \Delta_+, \quad \mathcal{H} = < e_z, e_z >^{-1} < e_z, \mathcal{H} e_z >$$

(3)

attached to the quantum Hamiltonian \mathcal{H}, and the Poisson bracket $\{,\}$ is introduced using the inverse of the balanced metric [35] matrix $g_{\alpha\bar{\beta}} = \frac{\partial^2}{\partial z_\alpha \partial \bar{z}_\beta} \ln < e_z, e_z >$. The time-dependent Schrödinger equation is expressed as

$$H(t)\psi(t) = i\hbar \frac{d\psi(t)}{dt}.$$

(4)

A linear Hamiltonian in the generators X_λ of the group of symmetry G is considered

$$H = \sum_{\lambda \in \Delta} \epsilon_\lambda X_\lambda.$$

(5)

We look for the solution of the Schrödinger equation of motion (4) generated by the Hamiltonian (5) as

$$\psi(t) = e^{i\phi} \tilde{e}_z.$$

(6)

Let us suppose that the differential action corresponding to the operator X_λ in (5) can be expressed in a local system of coordinates as a holomorphic first order differential operator with polynomial coefficients,

$$X_\lambda = P_\lambda + \sum_{\beta \in \Delta_+} Q_{\lambda,\beta} \frac{\partial}{\partial z_\beta}, \quad \lambda \in \Delta.$$

(7)

It can be proven [18, 19, 17] that:

Proposition 1. If the generators of the group of symmetry admit the representation (7), then the classical motion and quantum evolution on $M = G/H$ generated by the hermitian linear Hamiltonian (5) are solutions of the first order differential equations

$$i \dot{z}_\alpha = \sum_{\lambda \in \Delta} \epsilon_\lambda Q_{\lambda,\alpha}, \quad \alpha \in \Delta_+.$$

(8)

3. Wei-Norman method

Let us consider a Lie algebra \mathfrak{g} with the generators $\{X_i\}_{i=1,\ldots,n}$ and the linear operator

$$A(t) = \sum_{i=1}^n \epsilon_i(t) X_i,$$

(9)

where $\epsilon_i(t)$ are scalar functions of t. Let us attach to the linear operators U and A the differential equation

$$\frac{dU(t)}{dt} = A(t)U(t), \quad U(0) = I.$$

(10)
In the Wei-Norman method [23] the solution of the equation (10) is searched in the form of product of exponentials

\[U(t) = \prod_{i=1}^{n} \exp(\xi_i(t)X_i). \]

(11)

Then the functions \(\xi \) satisfy a first order differential equation which depends only on the Lie algebra \(\mathfrak{g} \) and the \(\epsilon(t) \)-s:

\[\eta' = \epsilon, \]

(12)

where \(\eta \) is obtained by the formulae

\[\left(\prod_{j=1}^{r} \exp(\xi_jX_j) \right) X_i \left(\prod_{j=1}^{r} \exp(-\xi_jX_j) \right) = \sum_{k=1}^{n} \eta_{ki}X_k, \quad i, r = 1, 2, \ldots, n. \]

(13)

In our calculation, what we need is the following formula

\[U^{-1}(t)U(t) = \sum_{i=1}^{n} \xi_i Y_i, \quad Y_i = \left(\prod_{k=n}^{i-1} \left[\exp(-\xi_k \text{ad} X_k) \right] \right) X_i, \]

(14)

obtained [29] with technique presented in [23] and the Baker-Hausdorff formula [36):

\[e^X Y e^{-X} = \sum_{n=0}^{\infty} \frac{(\text{ad} X)^n}{n!} Y \]

\[= Y + [X, Y] + \frac{1}{2!} [X, [X, Y]] + \cdots + \frac{1}{n!} \left[\underbrace{X, [X, \ldots, [X, \ldots, [X, Y]]}_{n \text{ brackets}}, \ldots \right] + \ldots \]

4. The Jacobi Lie algebra \(\mathfrak{g}_1^J \) and the Lie Jacobi group \(G_1^J \)

The (6-dimensional) Jacobi algebra \(\mathfrak{g}_1^J \) is the semi-direct sum \(\mathfrak{g}_1^J := \mathfrak{h}_1 \rtimes \mathfrak{su}(1,1) \), where \(\mathfrak{h}_1 \) is the 3-dimensional Heisenberg algebra generated by the boson creation (respectively, annihilation) operators \(a^\dagger (a) \), \(\mathfrak{su}(1,1) \) has the generators \(K_{0,+,\pm} \), verifying the non-trivial commutation relations [14]

\[[a, a^\dagger] = I, \]

\[[K_0, K_{\pm}] = \pm K_{\pm}, \quad [K_-, K_+] = 2K_0, \]

(15a)

(15b)

(15c)

To the Heisenberg group \(H_1 \) it is attached the unitary displacement operator

\[D(\alpha) := \exp(\alpha a^\dagger - \bar{\alpha} a) \]

\[= \exp(-\frac{1}{2} |\alpha|^2) \exp(\alpha a^\dagger) \exp(-\bar{\alpha} a) \]

\[= \exp(\frac{1}{2} |\alpha|^2) \exp(-\bar{\alpha} a) \exp(\alpha a^\dagger). \]

(16a)

(16b)

(16c)

We denote by \(S \) the unitary irreducible positive discrete series representation \(D_k^+ \) of the group \(SU(1,1) \) with Bargmann index \(k \) [37] and we introduce the notation \(\mathcal{S}(z) = S(w) \), where

\[\mathcal{S}(z) := \exp(zK_+ - \bar{z}K_-), \quad z \in \mathbb{C}; \]

\[\mathcal{S}(w) = \exp(wK_+) \exp(\rho K_0) \exp(-\bar{w}K_-) \exp(-\rho K_0) \exp(wK_+), \quad |w| < 1; \]

\[w = \frac{z}{|z|} \tanh(|z|), \quad \rho = \ln(1 - w\bar{w}), \quad z \neq 0, \]

(17a)

(17b)

(17c)

(17d)
and \(w = 0 \) for \(z = 0 \) in (17d). We attach to the Jacobi group \(G_1^J \) the unitary operator \([38]\) defined on the Siegel-Jacobi disk \(\mathcal{D}_1^J \) [14]:

\[
T(\xi) = D(\alpha)S(w), \quad \mathcal{D}_1^J \ni \xi = (\alpha, w) \in \mathbb{C} \times \mathcal{D}_1. \tag{18}
\]

In [14] we have introduced unnormalized Perelomov vectors \(e_\xi \) defined in the points \(\xi = (\alpha, w) \) of the Jacobi disk \(\mathcal{D}_1^J \).

The real base [2, 4] used in [22] and the base (15) of the Lie algebra \(\mathfrak{g}_1^J \) are related by the relations:

\[
\begin{align*}
N_1 &= a + a^\dagger; & N_2 &= i(a - a^\dagger); \\
K_1 &= \frac{1}{2}(K_+ + K_-); & K_2 &= \frac{1}{2i}(K_+ - K_-). \tag{19b}
\end{align*}
\]

In [22] it was considered instead of the representation (18) the equivalent representation

\[
\begin{align*}
T(\xi) &= D(x, y)S(u, v), \quad \xi = (u, v, x, y) \in \mathcal{M}, \quad \text{where} \\
D(x, y) &= \exp(iyN_1 + ixN_2), \quad S(u, v) = \exp(ik_1K_1 + ik_2K_2), \\
k_1 &= \frac{v}{2s}\ln\frac{1 + s}{1 - s}, \quad k_2 = \frac{u}{2s}\ln\frac{1 + s}{1 - s}, \quad s = (u^2 + v^2)^{\frac{1}{2}}, \quad |s| < 1. \tag{20c}
\end{align*}
\]

The parameters in the representations (20b) and (18) are related by the relations

\[
\alpha = x + i y; \quad w = u + i v. \tag{21}
\]

5. Equations of motion on the Siegel-Jacobi disk \(\mathcal{D}_1^J \)

To any linear operator \(A \) defined on \(\mathfrak{g}_1 \), we attach [4, 33, 34] the operator \(\hat{A}(\xi) \) based on the Siegel-Jacobi disk \(\mathcal{D}_1^J \)

\[
\hat{A}(\xi) := T^{-1}(\xi)AT(\xi), \quad \mathcal{D}_1^J \ni \xi = (\alpha, w) \in \mathbb{C} \times \mathcal{D}_1. \tag{22}
\]

As in [22], we consider the following family of unitary operators

\[
U(\xi, \varphi) := \exp(-i\varphi)T(\xi), \tag{23}
\]

where \(\xi \in \mathcal{D}_1^J \) and \(\varphi \) is a real phase. Let \(\tau := \frac{i}{\hbar} \). In [22] it was introduced the quasienergy operator \(E := i \frac{d}{d\tau} - \hat{H} \) [24]. With (22), we get for \(\hat{E}(\xi, \varphi) := U(-\xi, -\varphi)\hat{E}U(\xi, \varphi) \) the expression

\[
\hat{E}(\xi, \varphi) = \frac{d\varphi}{d\tau}I + iT(\xi)^{-1}\dot{T}(\xi) - \dot{\hat{H}}(\xi). \tag{24}
\]

We have the relations [33, 34]:

\[
\begin{align*}
\hat{a}(\alpha, w) &= r(a + wa^\dagger) + \alpha, \quad r = (1 - w\bar{w})^{-\frac{1}{2}}, \\
\hat{K}_0(\alpha, w) &= r^2[wK_- + (1 + |w|^2)K_0 + wK_+] + r\Re[\alpha(a^\dagger + \bar{w}a)] + \frac{1}{2}|\alpha|^2, \\
\hat{K}_-(\alpha, w) &= r^2[K_- + 2wK_0 + w^2K_+] + \alpha r(a + wa^\dagger) + \frac{1}{2}|\alpha|^2. \tag{27}
\end{align*}
\]

We express (18) as product of exponentials of the generators as in (11), where

\[
X_1 = I; \quad X_2 = a^\dagger; \quad X_3 = a; \quad X_4 = K_+; \quad X_5 = K_0; \quad X_6 = K_- . \tag{28}
\]
\[\xi_1 = -\frac{1}{2}|z|^2; \xi_2 = z; \xi_3 = -\bar{z}; \xi_4 = w; \xi_5 = \ln(1 - w\bar{w}); \xi_6 = -\bar{w}. \]

(29)

We apply (14) to the operator \(T(\xi) \) (18) in the variables \((z, w) \in \mathcal{D}_1^{\ell}\). With the notation:

\[
Y_2 = e^{-\xi_6 a}X_6 e^{-\xi_5 a}X_5 e^{-\xi_4 a}X_4 e^{-\xi_3 a}X_3 X_2, \\
Y_3 = e^{-\xi_6 a}X_6 e^{-\xi_5 a}X_5 e^{-\xi_4 a}X_4 X_3, \\
Y_4 = e^{-\xi_6 a}X_6 e^{-\xi_5 a}X_5 X_4, \\
Y_5 = e^{-\xi_6 a}X_6 X_5, \\
\]

we obtained the expressions:

\[
Y_1 = I; Y_2 = -\xi_3 + e^{\frac{\xi_3}{2}}(a^\dagger - \xi_6 a); Y_3 = (e^{\frac{\xi_3}{2}} - \xi_4 \xi_6 e^{-\frac{\xi_3}{2}}) a + \xi_4 e^{-\frac{\xi_3}{2}} a^\dagger; \\
Y_4 = e^{-\xi_3}(K_+ + 2\xi_4 K_0 + \xi_4^2 K_-); Y_5 = K_0 + \xi_4 K_-; Y_6 = K_-.
\]

(30)

With (30) and (14) we obtain for \(T^{-1}\hat{T}(z, w) \) the value:

\[
T^{-1}\hat{T}(z, w) = i \Im(z\bar{\dot{z}}) + r[(\dot{z} - \bar{z}w)a^\dagger - cc] + [\bar{w}r^2K_+ - cc] + 2i \Im(\bar{w}w)r^2 K_0.
\]

(31)

In the notation of [14, 15], we consider a hermitian Hamiltonian linear in the generators of the Jacobi group \(G_1^{\ell} \):

\[
H_0 = \epsilon_a a + \bar{\epsilon}_a a^\dagger + \epsilon_0 K_0 + \epsilon_+ K_+ + \epsilon_- K_-; \quad \bar{\epsilon}_+ = \epsilon_-; \quad \epsilon_0 = \bar{\epsilon}_0.
\]

(32)

With equations (25)-(27), we calculate \(\hat{H}_0(\xi) \), \(\xi = (\alpha, w) \in \mathbb{C} \times \mathcal{D}_1^{\ell} \):

\[
\hat{H}_0(\alpha, w) = I_0 + C_1 a^\dagger + C_1 a + C_0 K_0 + C_+ K_+ + C_- K_-, \quad \text{where:}
\]

\[
I_0 = \epsilon_a \alpha + \bar{\epsilon}_a \bar{\alpha} + \frac{1}{2}(\epsilon_0 |\alpha|^2 + \epsilon_- |\bar{\alpha}|^2 + \epsilon_+ |\alpha|^2 + \epsilon_- |\bar{\alpha}|^2),
\]

\[
C_1 = \bar{\epsilon}_a + \epsilon_a w + \frac{\epsilon_0}{2}(\alpha + \bar{\alpha}w) + \epsilon_- \alpha w + \epsilon_+ \bar{\alpha},
\]

\[
C_0 = \epsilon_0 (1 + |w|^2) + 2(\epsilon_- w + \epsilon_+ \bar{w}),
\]

\[
C_+ = \epsilon_0 w + \epsilon_- \bar{w} + \epsilon_+.
\]

(33)

In [22] the Hamiltonian (32) was written down in real coordinates as:

\[
H_0 = 2\varepsilon_0 K_0 + 2\varepsilon_1 K_1 + 2\varepsilon_2 K_2 + 2\nu_1 N_1 + 2\nu_2 N_2.
\]

(34)

The correspondence of the coefficients of the Hamiltonians (34) and (32) is

\[
\epsilon_a = \nu_1 + i \nu_2; \quad \epsilon_0 = 2\varepsilon_0; \quad \epsilon_+ = \varepsilon_1 - i \varepsilon_2.
\]

(35)

Now we introduce (31) and (33) into (24), we make the change of variables (21) and operators...
Proposition 2. Let us consider \(\Phi \in \mathfrak{g} \) such that \(K_0 \Phi = k \Phi, \ k \in \mathbb{R} \). Then
\[
\Psi(\xi, \varphi) = U(\xi, \varphi)\Phi = e^{-i\varphi T(\xi)\Phi}, \ \xi = (u, v, x, y) \in \mathfrak{m},
\]
is a solution of (4) for the hermitian Hamiltonian (34) on the Siegel-Jacobi disk \(\mathcal{D}_1^r \). \(x, y \in \mathbb{R} \) verify (36), \(u, v \in \mathcal{D}_1 \) verify (37), while the phase \(\varphi \) in (23) verifies the differential equation:
\[
\dot{\varphi} = \nu_1 x - \nu_2 y + 2k(\varepsilon_0 + \varepsilon_1 u - \varepsilon_2 v).
\]

In the complex variable \(w = u + iv \) the motion (37) on the Siegel disc \(\mathcal{D}_1 \) is described by the Riccati equation
\[
i \dot{w} = \epsilon_+ w + \epsilon_- w^2.
\]

The equations of motion (36) in the complex variable \(\eta = x + iy \) become
\[
i \dot{\eta} = \bar{\epsilon}_a + \epsilon_+ \eta + \frac{\epsilon_0}{2} \eta.
\]

In conclusion, we have proved that the Riccati equation (41) on \(\mathcal{D}_1 \) obtained with the Wei-Norman method coincides with Berezin’s equation of motion (4.8b) or (4.10b) in [15], with the difference of notation \(\epsilon_+ \leftrightarrow \epsilon_- = \bar{\epsilon}_+ \). The equation (42) for \(\eta \in \mathbb{C} \) obtained with the Wei-Norman method is just Berezin’s equation of motion (4.10a) in [15], with the correspondence

(19) and we get:

\[
\dot{E}(u, v, x, y) = G_0 \mathbf{I} + G_1 \mathbf{N}_1 + G_2 \mathbf{N}_2 + H_0 \mathbf{K}_0 + H_1 \mathbf{K}_1 + H_2 \mathbf{K}_2,
\]
where:
\[
G_0 = \dot{\varphi} + y \dot{x} - xy - 2(\nu_1 x - \nu_2 y) - \varepsilon_0(x^2 + y^2) - \varepsilon_1(x^2 - y^2) + 2\varepsilon_2 xy,
\]
\[
- \frac{G_1}{r} = (1 + u) \dot{y} - \dot{x} v + \nu_1 (1 + u) - \nu_2 v + \varepsilon_0 [x(1 + u) + yv]
\]
\[
+ \varepsilon_1 [x(1 + u) - yv] - \varepsilon_2 [y(1 + u) + xv],
\]
\[
\frac{G_2}{r} = -(1 - u) \dot{y} - \dot{x} + \nu_1 v + \nu_2 (u - 1) + \varepsilon_0 [y(1 - u) + xv]
\]
\[
+ \varepsilon_1 [xv + y(u - 1)] + \varepsilon_2 [x(u - 1) - yv],
\]
\[
- \frac{H_0}{2r^2} = \dot{v} u - \dot{u} v + \varepsilon_0 (1 + u^2 + v^2) + 2(\varepsilon_1 u - \varepsilon_2 v),
\]
\[
- \frac{H_1}{2r^2} = \dot{v} + \varepsilon_0 u + \varepsilon_1 (u^2 - v^2 + 1) - 2\varepsilon_2 uv,
\]
\[
\frac{H_2}{2r^2} = -\dot{u} + \varepsilon_0 v + 2\varepsilon_1 uv + \varepsilon_2 (u^2 - v^2 - 1).
\]

Identifying the coefficients of \(\mathbf{N}_1, \mathbf{N}_2 \), and respectively \(\mathbf{K}_1, \mathbf{K}_2 \), we get the equations of motion in the real coordinates \((u, v, x, y)\) and (38)

\[
\dot{x} = -\varepsilon_2 x + (\varepsilon_0 - \varepsilon_1)y - \nu_2,
\]
\[
\dot{y} = -(\varepsilon_0 + \varepsilon_1)x + \varepsilon_2 y - \nu_1;
\]
\[
\dot{u} = 2v(\varepsilon_1 u + \varepsilon_0) - \varepsilon_2 (1 - u^2 + v^2),
\]
\[
\dot{v} = 2u(\varepsilon_2 v - \varepsilon_0) - \varepsilon_1 (1 + u^2 - v^2);
\]
\[
- \frac{H_0}{2} = \varepsilon_0 + \varepsilon_1 u - \varepsilon_2 v, \quad G_0 = \dot{\varphi} - (\nu_1 x - \nu_2 y).
\]
\(\epsilon_a \leftrightarrow \epsilon_a, \epsilon_+ \leftrightarrow \epsilon_- = \epsilon_+ \). The quantum and classical Berezin’s equations of motion on the Siegel-Jacobi disk determined by a hermitian Hamiltonian, linear in the generators of Jacobi group \(G_n^J \), expressed in the FC-coordinates, are the same as the equations obtained applying the Wei-Norman method. The equations of motion (41) on \(D_1 \) and (42) on \(C \) and (36) on \(\mathbb{R}^2 \), determined by the hermitian Hamiltonian (32) or (34) linear in the generators of the Jacobi group \(G_n^J \) obtained with the Wei-Norman method are a particular case of the Berezin’s equations of motion (45a) on \(D_n \), (46) on \(\mathbb{C}^n \) and respectively (48) on \(\mathbb{R}^{2n} \), determined by the hermitian Hamiltonian (43), linear in the generators of the Jacobi group \(G_n^J \). See [29] for a comparison of phases in the two approaches. In the present paper we have proved Proposition 2 by brute-force calculation in the case of the Jacobi group \(G_n^J = H_1 \times SU(1,1) \), but we believe that the identity of the results in the two methods is true in more general situations, for some semidirect products of Lie groups.

Appendix: Berezin’s Equations of motion on the Siegel-Jacobi ball

In [9, 17] we have defined unnormalized coherent state vectors \(e_z,W \), where \(z \in \mathbb{C}^n \), and \(W \in M(n, \mathbb{C}) : W = W^\dagger, \text{Im} - W W^\dagger > 0 \) describes a point in the noncompact hermitian symmetric space \(D_n = \text{Sp}(n, \mathbb{R})/U(n) \), realized as a homogenous bounded domain.

We consider a hermitian Hamiltonian linear in the generators of the group \(G_n^J \) [17]

\[
H = \epsilon_i a_i + \epsilon_i a_i^\dagger + \epsilon_{ij} K_{ij}^0 + \epsilon_{ij} K_{ij}^- + \epsilon_{ij}^* K_{ij}^+,
\]

(43)

\[
\epsilon_0 = \epsilon_0; \quad \epsilon_- = \epsilon_-^*; \quad \epsilon_+ = \epsilon_+^*; \quad \epsilon_- = \epsilon_+.
\]

(44)

With the technique recalled in §2, we have proved in [17] that:

Proposition 3. a) The differential equations for \(W, z \in D_n^J \) are

\[
i W = \epsilon_- + (W\epsilon_0) W + W\epsilon_+ W, \quad W \in D_n,
\]

(45a)

\[
i \dot{z} = \epsilon + W\dot{\bar{\eta}} + \frac{1}{2} \epsilon_\eta \dot{z} + W\epsilon_+ z, \quad z \in \mathbb{C}^n,
\]

(45b)

b) Under the FC transform, \(z = \eta - W\bar{\eta} \), the differential equations in the variables \(\eta \in \mathbb{C}^n \) and \(W \in D_n \) become independent: \(W \) verifies (45a), while \(\eta \) verifies

\[
i \dot{\eta} = \epsilon + \epsilon_- \bar{\eta} + \frac{1}{2} \epsilon_0 \dot{\eta}, \quad \eta \in \mathbb{C}^n.
\]

(46)

c) The linear system of differential equations associated with matrix Riccati equation (45a) reads

\[
\begin{pmatrix}
\dot{X} \\
\dot{Y}
\end{pmatrix} = h_c \begin{pmatrix}
X \\
Y
\end{pmatrix}, \quad h_c = \begin{pmatrix}
-i (\epsilon_0')^t & -i \epsilon_-^* \\
-i \epsilon_+ & i \epsilon_0^t
\end{pmatrix} \in \text{sp}(n, \mathbb{R})_C, \quad W = X/Y \in D_n.
\]

(47)

d) In (46) we introduce \(\eta = \xi - i \zeta, \xi, \zeta \in \mathbb{R}^n \) and we put \(\epsilon = b + i a, \epsilon_- = m + i n, \epsilon_0/2 = p + i q \) where \(a, b \in \mathbb{R}^n, m, n, p, q \in M(n, \mathbb{R}) \). The first order complex differential equation equation (46) is equivalent with a system of first order real differential equations with real coefficients, which we write as

\[
\dot{Z} = h_v Z + F, \quad Z = \begin{pmatrix}
\xi \\
\zeta
\end{pmatrix}, \quad F = \begin{pmatrix}
a \\
b
\end{pmatrix}, \quad h_v = \begin{pmatrix}
n + q & m - p \\
m + p & -n + q
\end{pmatrix} \in \text{sp}(n, \mathbb{R}).
\]

(48)

Acknowledgments

The author expresses his gratitude to the organizers of the Colloquium on Group Theoretical Methods in Physics for the opportunity to deliver a talk at XXX meeting in Ghent, Belgium. This research was conducted in the framework of the ANCS project program PN 09 37 01 02/2009 and the UEFISCDI - Romania program PN-II Contract No. 55/05.10.2011. The author is indebted to the unknown referee for the suggested corrections.
References

[1] Eichler M and Zagier D 1985 The Theory of Jacobi Forms Progress in Mathematics 55 (Boston: Birkhäuser)
[2] Berndt R and Schmidt R 1998 Elements of the Representation Theory of the Jacobi Group Progress in Mathematics 163 (Basel: Birkhäuser)
[3] Berceanu S and Gheorghe A 2011 On the geometry of Siegel-Jacobi domains Int. J. Geom. Methods Mod. Phys. 8 1783–98 (Preprint mathDG/1011.3317)
[4] Berceanu S and Gheorghe A 2008 Applications of the Jacobi group to Quantum Mechanics Romanian J. Phys. 53 1013–21 (Preprint math.DG/0812.0448)
[5] Berceanu S 2008 AIP Conf. Proc., Geometric Methods in Physics 1191 ed P Kielanowski, S T Ali et al pp 21–29 (Preprint mathDG/0910.5563)
[6] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[7] Ali S T, Antoine J P and Gazeau J P 2000 Coherent States, Wavelets, and their Generalizations (New York: Springer-Verlag)
[8] Drummond P D and Ficek D 2004 Quantum Squeezing (Berlin: Springer)
[9] Berceanu S 2008 Perspectives in Operator Algebra and Mathematical Physics ed F P.Boca, R Purice et al (Bucharest: The Theta Foundation) pp 1-25 (Preprint mathDG/060404381)
[10] Yang J H 2002 The method of orbits for real Lie groups Kyungpook Math. J. 42 199–272
[11] Yang J H 2010 Invariant metrics and Laplacians on the Siegel-Jacobi disk Chin. Ann. Math. 31B 85–100
[12] S. Helgason 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic Press)
[13] Perelomov A M 1986 Generalized Coherent States and their Applications (Springer: Berlin)
[14] Berceanu S 2006 A holomorphic representation of the Jacobi algebra Rev. Math. Phys. 18 163-99; — 2012 Errata Rev. Math. Phys. 24 1292001 p 2 (Preprint math.DG/0408219v3)
[15] Berceanu S 2013 Consequences of the fundamental conjecture for the motion on the Siegel-Jacobi disk Int. J. Geom. Methods Mod. Phys. 10 1250076 p 18 (Preprint mathDG/1110.5469v2)
[16] Berceanu S 2014 Coherent states and geometry on the Siegel-Jacobi disk Int. J. Geom. Methods Mod. Phys. 1450035 p 25 (Preprint math.DG/1307.4219v2)
[17] Berceanu S 2012 A convenient coordinatization of Siegel-Jacobi domains Rev. Math. Phys. 24 1250024 p 38 (Preprint mathDG/1204.5610)
[18] Berceanu S and Gheorghe A 1992 On equations of motion on hermitian symmetric spaces J. Math. Phys. 33 998–1007
[19] Berceanu S and Boutet de Monvel L 1993 Linear dynamical systems, coherent state manifolds, flows and matrix Riccati equation J. Math. Phys. 34 2353–71
[20] Berezi F A 1975 Quantization in complex symmetric spaces Izv. Akad. Nauk SSSR Ser. Mat. 39 363–402, 472
[21] Berezi F A 1978 Models of Gross-Neveu type are quantization of a Classical Mechanics with a nonlinear phase space Commun. Math. Phys. 63 131–53
[22] Gheorghe A 2013 Quantum and classical Lie systems for extended symplectic groups Romanian J. Phys. 58 1436–45
[23] Wei J and Norman E 1964 On global representations of the solutions of linear differential equations as a product of exponentials Proc. AMS 15 327–334
[24] J. Howland S 1974 Stationary scattering theory for time-dependent Hamiltonians Math. Ann. 207 315–35
[25] S. Lie 1880 Allgemeine Untersuchungen über Differentialgleichungen, die eine continuirliche endliche Gruppe gestatteten Math. Ann. 6 441–528
[26] Lie S and Scheffers G 1893 Vorlesungen Über Continuierliche Gruppen mit Geometrischen und Anderen Anwendungen (Leipzig: Teubner)
[27] Cariñena J, Grabowski J and Marmo G 2000 Lie-Scheffers Systems: a Geometric Approach (Naples: Bibliopolis)
[28] Cariñena J F, Grabowski J and Ramos A 2001 Reduction of time-dependent systems admitting a superposition principle Acta Appl. Math. 66 67–87
[29] Berceanu S 2014 Wei-Norman and Berezin’s equations of motion on the Siegel-Jacobi disk Preprint mathDG/1403.6594
[30] Vinberg E B and Gindikin S G 1976 Kählerian manifolds admitting a transitive solvable automorphism group Math. Sb. 74 (116) 333–51
[31] Dorfmeiser J and Nakajima K 1988 The fundamental conjecture for homogeneous Kähler manifolds Acta Mathematica 161 23–70
[32] Berceanu S 2005 Advances in Operator Algebras and Mathematical Physics ed F. Boca, O. Bratteli et al (Bucharest: The Theta Foundation) pp 1–24 (Preprint math.DG/060404381v2)
[33] Berceanu S 2011 Generalized coherent states based on Siegel-Jacobi disk Romanian J. Phys. 56 856–67
[34] Berceanu S and Gheorghe A 2011 Matrix elements of the Jacobi group Romanian J. Phys. 56 1056–68
[35] Berceanu S 2014 Bergman representative coordinates on the Siegel-Jacobi disk Preprint mathDG/1409.0368
[36] Magnus W 1954 On the exponential solution of differential equations for a linear operator Comm. Pure Appl. Math. 7 649–73
[37] Bargmann V 1947 Irreducible unitary representations of the Lorentz group Ann. of Math. 48 568–640
[38] Stoler P 1970 Equivalence classes of minimum uncertainty packets Phys. Rev. D 1 3217–3219