NARINGENIN, CURCUMIN AND ISOQUERCITRIN MITIGATE DAMAGES IN SPERMATOZOA CAUSED BY STAPHYLOCOCCUS AUREUS DURING BACTERIOSPERMIA IN VITRO

Michal Ďuračka*1, Zuzana Liščinská2, Silvia Špániková1, Lucia Galovičová3, Miroslava Kačániová4, Norbert Lukáč5, Eva Tvrdá6

Address(es): MSc. Michal Ďuračka, PhD.
1Slovak University of Agriculture in Nitra, AgroBioTech Research Center, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
2Comenius University Bratislava, Faculty of Natural Sciences, Department of Molecular Biology, Ilkovičova 6, 842 15 Bratislava, Slovakia.
3Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, 949 76 Nitra, Slovakia.
4University of Rzeszow, Institute of Agriculture Sciences, Land Management and Environmental Protection, Department of Bioenergy, Food Technology and Microbiology, 4 Żelmerowica St., 35601 Rzeszow, Poland.
5Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
6Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.

*Corresponding author: michaelduracka@gmail.com
https://doi.org/10.55251/jmbsfs.9489

ARTICLE INFO
Received 31. 7. 2022
Revised 4. 11. 2022
Accepted 15. 11. 2022
Published xx.xx.20xx

ABSTRACT
The presence of bacterial contamination in bovine insemination doses may lead to unexpected economic loss. Currently used antimicrobial supplements are often ineffective due to antibiotic resistance of the common bacterial contaminants. Staphylococcus aureus belongs to the frequent inhabitant of bovine semen with a deleterious effect on spermatozoa quality. Bioactive substances including naringenin, curcumin and isouercitrin were previously studied with various beneficial effects on spermatozoa. Therefore, the study aimed to simulate bacteriospermia in vitro using S. aureus, which was previously isolated from the bovine ejaculate, and to test if the bioactive substances mentioned above would bring some protective properties against the bacterial damage. Density gradient centrifugation was used to avoid contamination by naturally present bacteria. S. aureus was inoculated in BGM-3 medium, and co-incubated with pre-washed spermatozoa and bioactive substances. At times of 0, 2, and 4 h, progressive motility, the membrane potential of mitochondria, reactive oxygen species (ROS) formation, and sperm DNA damage were evaluated. The results showed that S. aureus significantly increased ROS production, sperm cells with damaged mitochondrial membrane potential, and sperm DNA integrity which led to a decrease in the progressive movement of spermatozoa. On the other hand, all three bioactive substances significantly scavenged elevated ROS. Especially, the groups treated with naringenin and isouercitrin showed preserved mitochondrial membrane, DNA integrity inside the sperm head, and improved sperm progressive movement under bacteriospermia in vitro.

Keywords: Staphylococcus aureus, spermatozoa, ROS, progressive motility, sperm DNA, mitochondrial membrane potential

INTRODUCTION
Artificial insemination represents a modern strategy of livestock production with an effective way of spreading valuable genotypes without spreading sexually transmitted diseases. The success of artificial insemination is limited by the quality of the neat semen sample. Despite that animals are kept in a strict hygiene environment, semen collection is not a sterile process, and various bacterial species are often part of ejaculates. Preputial fluid, penile skin, urine, contaminated tools, and laboratory equipment may be a source of ubiquitous bacteria (Rana et al., 2012).

Recent studies showed that the presence of bacteria complexly affects spermatozoa structure and function. The presence of bacterial contamination in bovine insemination doses may lead to unexpected economic loss. Currently used antimicrobial supplements are often ineffective due to antibiotic resistance of the common bacterial contaminants. Staphylococcus aureus belongs to the frequent inhabitant of bovine semen with a deleterious effect on spermatozoa quality. Bioactive substances including naringenin, curcumin and isouercitrin were previously studied with various beneficial effects on spermatozoa. Therefore, the study aimed to simulate bacteriospermia in vitro using S. aureus, which was previously isolated from the bovine ejaculate, and to test if the bioactive substances mentioned above would bring some protective properties against the bacterial damage. Density gradient centrifugation was used to avoid contamination by naturally present bacteria. S. aureus was inoculated in BGM-3 medium, and co-incubated with pre-washed spermatozoa and bioactive substances. At times of 0, 2, and 4 h, progressive motility, the membrane potential of mitochondria, reactive oxygen species (ROS) formation, and sperm DNA damage were evaluated. The results showed that S. aureus significantly increased ROS production, sperm cells with damaged mitochondrial membrane potential, and sperm DNA integrity which led to a decrease in the progressive movement of spermatozoa. On the other hand, all three bioactive substances significantly scavenged elevated ROS. Especially, the groups treated with naringenin and isouercitrin showed preserved mitochondrial membrane, DNA integrity inside the sperm head, and improved sperm progressive movement under bacteriospermia in vitro.

Keywords: Staphylococcus aureus, spermatozoa, ROS, progressive motility, sperm DNA, mitochondrial membrane potential

Staphylococcus species on the sperm DNA integrity, while S. aureus caused the most damage to the DNA integrity amongst other species (Ďuračka et al., 2021b). The use of antioxidants of plant origin in semen preservation media brings beneficial effects regarding to the maintenance of high semen quality, even after thawing. Naringenin, a bioactive flavonoid richly represented in citrus fruits, was previously observed as a favourable additive in extended boar semen during 72h cultivation (Tvrdá et al., 2020). Curcumin is well-known for its strong antibacterial and antioxidant properties. Especially, at low concentrations curcumin proved protective properties to bull spermatozoa when subjected to oxidative stress (Tvrdá et al., 2016). Isoquercitrin is a derivate of quercetin with higher bioavailability than quercetin (Valentová et al., 2014) and so far, only a little information is available considering sperm quality. Mitochondrial toxicity test proved its protective properties towards mitochondria (Benko et al., 2019). This study aimed to reveal if selected bioactive substances can protect sperm cells from bacterial damage during in vitro simulated bacteriospermia.

MATERIAL AND METHODS
Collection and processing of biological material
Semen samples from Holstein Friesian breeding bulls were gathered at the Slovak Biological Services (Nitra, Slovakia). Each ejaculate (n=5) was gathered using the sterilized artificial vagina and transported within 20 min. to the laboratory in the pre-warmed thermos (37°C). Each semen sample met a minimum of 70% spermatozoa motility to be used for these experiments. Semen was processed using Percoll density gradient media (Cytiva, Marlborough, MA, USA). A discontinuous gradient of 45 and 90% (v/v) Percoll diluted with BGM-3 was pre-warmed to 37°C and covered by approximately 1 × 10⁸ sperm cells. Falcon tubes (15 mL) were centrifuged at 400 × g for 15 min. Non-motile spermatozoa prevailed within the top layer and 45% Percoll fraction. Similarly, the upper part of 90% Percoll fraction contained non-motile spermatozoa. The pellet located at the bottom of the falcon tube contained predominantly motile spermatozoa and was used for our
experiments. Each fraction was separately discarded with Pasteur’s pipettes to avoid contamination of the pellet. The pellet was resuspended with 3 mL BGM-3 medium and subjected to centrifugation (400 × g, 5 min.) to remove residual colloids. Afterward, spermatozoa concentration was adjusted to 50 × 10^6 cells/mL with S. aureus-contaminated or uncontaminated BGM-3. S. aureus was inoculated to the BGM-3 medium at a concentration of 0.5 McFarland, as this concentration was suitable for short-term in vitro bacterial toxicology experiments (Ďuračka et al., 2021b). The negative control (NC) group contained only spermatozoa without added bacteria. The positive control (SA) was contaminated with S. aureus. The experimental groups were contaminated with S. aureus and treated separately with naringenin (NAR), curcumin (CUR), and isoucerisquin (ISOQ) at a concentration of 1 µmol/L. At times of 0, 2, and 4 hours, progressive motility, mitochondrial membrane potential, reactive oxygen species and sperm DNA fragmentation were evaluated.

Evaluation of sperm progressive motility
Sperm progressive motility (PROG) was analysed using the computer-aided semen analysis (CASA) HTM TOX IVOS II (Hamilton-Thorne Biosciences, Beverly, MA, USA). Ten microliters of sample were put into Makler counting chamber (depth 10 µm; Seif Medical Instruments, Haifa, Israel) pre-warmed to 37°C. Objective measurement of spermatozoa motion behaviour was performed in 10 microscopy view fields, when at least 300 cells were analysed. The progressive movement of the sperm cells was expressed in the percentage of the sperm cells moving ≥25 µm/s.

Membrane potential in mitochondria
The sperm mitochondrial membrane was exposed to cationic lipophilic JC-1 dye at a concentration of 5 mg/mL. The JC-1 dye (Cayman Chemical, Ann Arbor, MI, USA) was dissolved in Dulbecco’s phosphate buffered saline (DPBS) solution (Sigma-Aldrich, St. Louis, MO, USA) and at least 1 × 10^6 sperm cells were stained in each group. The principle of the assessment is based on the ability of JC-aggregates formation in cells with healthy mitochondrial membranes. The JC-1 dye stays in monomeric form in cells with low mitochondrial membrane potential. Fluorometric analysis was performed using Glomax Multi+ (Promega, USA) on 96-well dark plate. The JC-aggregates emit red fluorescent light, while the monomeric form emits green fluorescence (Agnihotri et al., 2016). The results were stated as the rate of JC-1 aggregates to JC-1 monomers.

Production of oxygen radicals
Chemiluminescent analysis was performed to determine reactive oxygen species (ROS). Luminol (5 mM; 5-amino-2,3-dihydro-1,4-phthalaldehydione) was used as a probe in tested samples, with negative and positive controls. Blank, negative and positive controls contained 100 µL of DPBS. Hydrogen peroxide (30%, 9.8 M) was added to the positive controls (Agarwal et al., 2016). All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA); The Glomax Multi+ system (Promega, USA) measured chemiluminescence. The results were stated as the relative light units/s/1 × 10^6 spermatozoa.

Sperm chromatin dispersion test
The Halomax® kit (Halotech DNA, Madrid, Spain) was used to detect sperm DNA fragmentation. Before analysis, sperm concentration was adjusted to 15-20 × 10^6 sperm/mL. Diluted sperm samples were attached to a glass slide in an agarose matrix and left to solidify in the refrigerator (5 min.). A series of solutions were applied to lyse and fix samples: lysis solution (5 min.), distilled water (5 min.), ethanol (70%, 90%, 100% - each for 2 min.). The sperm cells were stained with the Brightfield Staining Kit (HT-BFS; Halo-tech DNA, Madrid, Spain). The presence of a big, dispersed halo around the sperm heads defines sperm with fragmented DNA inside, while a small compact halo represents sperm cells carrying undamaged DNA (González-Marín et al., 2011). Minimum of 300 sperm cells were evaluated in each sample as per the manufacturer’s recommendation. The results are specified as the percentage of the sperm cells with fragmented DNA.

Statistical evaluation
The GraphPad Prism (version 8.0 for Mac, GraphPad Software Inc., San Diego, CA, USA) was used for statistical analysis of obtained results. Data were subjected to one-way ANOVA and followed by the Tukey multiple-comparisons test. The significance level was set at *P<0.05, **P<0.01, and ***P<0.001.

RESULTS AND DISCUSSION
Staphylococcus species were previously present in bovine ejaculates with compromised semen quality (Ďuračka et al., 2021a). Besides alterations in the structures of spermatozoa including sperm head, neck, and tail, fluctuations in the biochemical composition of seminal plasma were also detected. Particularly, magnesium and calcium loss were observed during *Staphylococcus*-induced bacteriospermia (Ďuračka et al., 2021b). Our study showed that the presence of *S. aureus in vitro* had a deleterious effect on sperm progressive motility in time. A partial explanation may be found in mitochondrial damage detected as increased representation of JC-monomers. Mitochondrial membrane potential is considered one of the best sperm mitochondrial indicators evaluating its function and reflecting energy status (Paoli et al., 2011). Alamo et al. (2020) found out that mitochondrial membrane potential may predict sperm motility 4 hours in advance. Similar results to our study were previously published by Fracezek et al. (2012) and Drlica et al. (2011, 2014) during experimental in vitro infection induced by *Staphylococcus haemolyticus* as well as our previous study demonstrated loss of mitochondrial membrane potential in the presence of *S. aureus*. Gupta and Prabha (2012) approached to a molecular mechanism of sperm immobilization factor isolated from *S. aureus*. This protein inhibited mitochondrial Mg-ATPase activity in a dose-dependent manner, while sperm flagellar motion is just dependent on ATP.

Any significant differences were not observed during the initial CASA measurement between the control, SA group and the treated groups. However, the group contaminated with *S. aureus* showed after 2 hours significant decrease when compared to the uncontaminated group (NC; *P<0.05*). The group treated with NAR and ISOQ showed significantly higher sperm motility when compared to the SA group (*P<0.05*). After 4 h of the cultivation, the SA group showed a significant decrease when compared to the NC group (*P<0.01*). Contrarily, significantly higher sperm motility (*P<0.05*) was recorded in the NAR-treated group when compared to SA.

Similar to the sperm motility analysis, no changes in mitochondrial membrane potential were recorded amongst the observed groups during the initial measurement (Figure 2). A substantial reduction of the mitochondrial membrane potential was observed after 2 h in the SA group compared to NC (*P<0.01*). A growing trend of adverse effects of *S. aureus* on the mitochondrial membrane potential was noticed after 4 h incubation, while the treatment with bioactive molecules mitigates the adverse effects. In particular, CUR- and ISOQ-treated groups showed a significantly higher rate of JC-aggregates (*P<0.01*). Also, NAR significantly mitigated the damage to the mitochondrial membrane caused by the presence of *S. aureus*, but a significant decrease has been shown when compared to the NC group (*P<0.05*). NAR was previously reported to depolarize mitochondrial potential in mitochondria of endometriosis cells (Park et al., 2017). The study of Tvrđá et al. (2020) showed that exposure of boar spermatozoa during long-term preservation to NAR maintained higher mitochondrial succinate dehydrogenase activity when compared to the untreated group. Đuračka et al. (2019) showed that NAR scavenges mitochondrial-produced superoxide in boar spermatozoa. A recent report revealed that NAR stimulates the resting phase of mitochondrial respiration, not the active phase (Ferramosca et al., 2021). Elevated ROS production caused by bacterial contamination is strongly correlated with the formation of JC-1 monomers which are typical for depolarized membranes (Zhao and Drlica, 2014). As previously shown in our study (Ďuračka et al., 2019b),
The nucleopores are well-permeable for ROS. Therefore, the DNA molecule with its specific bonding system is a perfect target for free radicals (Villani et al., 2010). Antioxidant supplementation may improve the sperm DNA fragmentation status and thereby fertilization potential. Particularly, NAR and ISOQ showed potent antioxidant properties leading to a lower percentage of spermatozoa with damaged DNA. In accordance with our results, DNA-protective properties of NAR were previously proved in boar spermatozoa during 72-h preservation (Ďuračka et al., 2019a; Tvrda et al., 2020). Adama et al. (2018) hypothesized that NAR may affect the reparation enzymes of sperm DNA strand breaks or stimulate the antioxidant mechanism to neutralize overproduced ROS. Although CUR showed in our analysis non-significant differences between the NC and SA groups, results published by Tvrda et al. (2018) provided evidence about the DNA-protective properties of CUR against oxidative stress induced by cryopreservation of bovine semen. The beneficial effects of quercetin on the maintenance of sperm DNA integrity are well-known (Tvrda et al., 2020). So far, the effect of ISOQ on sperm DNA was not considered. Boligon et al. (2012) evaluated the protective effects of flavonoids isolated from Scutia buxifolia against H₂O₂-induced chromosomal damage in human lymphocytes. They concluded that ISOQ recovered the mitotic index and chromosomal instability better than another glycoside derivate, quercetin.

The initial analysis (Figure 3) showed an increased level of free oxygen radicals in the SA group when compared to the uncontaminated group (P<0.01). At the same time, the ISOQ-treated group showed significantly reduced ROS concentration when compared to the SA group (P<0.05). After 2 h, the ROS production has significantly grown in SA (P<0.001 compared to NC), while the groups containing bioactive compounds showed significant mitigation of ROS concentration (P<0.01). The final assessment demonstrated similar results: a significant rise in ROS concentration (P<0.001) was recorded in the SA group, while in the presence of bioactive substances was ROS levels reduced (P<0.01 in case of ISOQ; P<0.05 in case of NAR and CUR). However, when compared to the uncontaminated group, ROS levels were significantly increased (P<0.05). NAR played a particular role in our experiments in relation to oxidative balance. The presence of S. aureus promoted oxidative stress during incubation, while the NAR-treated group showed a significantly reduced concentration of global ROS. Cucurmin (CUR) is a well-studied antioxidant with the potential to increase total antioxidant capacity (Jakubczyk et al., 2020). Our study showed that bacterial contamination and resulting high ROS levels were suppressed by the antioxidant activity of CUR. Tvrda et al. (2016) induced oxidative stress in bovine spermatozoa using ferrous ascorbate. In the end, they concluded that CUR exhibits an exceptional antioxidant activity, concerning mitochondrial superoxide generation as well as activity of antioxidant enzymes including superoxide dismutase, catalase, glutathione peroxidase, and non-enzymatic glutathione. So far, there are in vitro studies testing the effect of ISOQ on spermatozoa in a physiologically normal environment (Ďuračka et al., 2017; Benko et al., 2019). The authors observed changes against the control group in mitochondrial metabolic activity, motility analysis as well as ROS production, particularly when analysed after long-term incubation (24 hours). Our study shows that ISOQ can also actively scavenge free radicals in the environment with induced oxidative stress by bacteria.

The sperm chromatin dispersion test (Figure 4) showed similar fragmentation of DNA in the sperm head in each group at the beginning. The SA group showed significantly damaged sperm DNA after 2 h (Figure 5) of incubation when compared to NC (P<0.001). The contaminated groups treated with CUR and ISOQ did not differ significantly from both, NC and SA. However, the group treated with NAR showed a significantly lower percentage of spermatozoa with damaged DNA when compared to the SA group (P<0.05). The sperm DNA damage was significantly lower also after 4 h of incubation in the case of the NAR and ISOQ treated group (P<0.05). Sperm DNA integrity represents a crucial male factor in successful fertilization. Agarwal et al. (2018) reported that excessive ROS elevation during bacteriospermia leads to sperm DNA fragmentation. A recent study (Ďuračka et al., 2021a) observed bull semen quality concerning the bacterial presence and showed that sperm DNA fragmented with increasing colony-forming units, particularly in the presence of S. aureus.

Figure 2 Evaluation of mitochondrial membrane potential of spermatozoa cultivated under different conditions for 4 hours at 37°C. NC – negative control: no treatment; SA – spermatozoa were treated with *S. aureus*; SA + NAR – spermatozoa were treated with *S. aureus* and naringenin; SA + CUR – spermatozoa were treated with *S. aureus* and curcumin; SA + ISOQ – spermatozoa were treated with *S. aureus* and isoquercitrin. *NC – significant difference (P<0.05) when compared to NC; **NC – significant difference (P<0.01) when compared to NC; ***NC – significant difference (P<0.001) when compared to NC; *SA – significant difference (P<0.05) when compared to SA; **SA – significant difference (P<0.01) when compared to SA.

Figure 3 Formation of reactive oxygen species in the observed groups under different conditions during 4 hours at 37°C. NC – negative control: no treatment; SA – spermatozoa were treated with *S. aureus*; SA + NAR – spermatozoa were treated with *S. aureus* and naringenin; SA + CUR – spermatozoa were treated with *S. aureus* and curcumin; SA + ISOQ – spermatozoa were treated with *S. aureus* and isoquercitrin. *NC – significant difference (P<0.05) when compared to NC; **NC – significant difference (P<0.01) when compared to NC; ***NC – significant difference (P<0.001) when compared to NC; *SA – significant difference (P<0.05) when compared to SA; **SA – significant difference (P<0.01) when compared to SA.

Figure 4 The sperm chromatin dispersion test – staining pattern of sperm DNA fragmentation. A – sperm with fragmented DNA, sperm showing nucleoids with a large and spotty halo of chromatin dispersion. B – sperm without fragmented DNA, sperm showing nucleoids with a small and compact halo of chromatin dispersion.
The overuse of antibiotics and bacterial resistance to uniformly added antimicrobials in insemination doses brings debates about the effects of these bacterial contaminants on spermatozoa quality. The presence of bacterial species in boar semen can increase sperm DNA fragmentation rates: a kinetic experimental approach. Animal reproduction science, 123(3-4), 64-70. https://doi.org/10.1016/j.anireprosci.2010.11.014

Gupta, S., & Prabhu, V. (2012). Human Sperm Interaction with Staphylococcus aureus: A Molecular Approach. Journal of pathogens, 2012, 816536. https://doi.org/10.1155/2012/816536

Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna, K. (2020). Bacterial communities in bovine ejaculates and their impact on spermatozoa quality, extracellular calcium and magnesium content. Animals: an open access journal from MDPI, 11(11). 3309. https://doi.org/10.3390/ani11113309

Dawley rats. Andrology, 6(1), 166–172. https://doi.org/10.1111/andr.12439

Agarwal, A., Gupta, S., Sharma, R. (2016). Reactive Oxygen Species (ROS) Measurement. In: Agarwal, A., Gupta, S., Sharma, R. (eds) Andrological Evaluation of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-319-26797-5_21

Agarwal, A., Rana, M., Qiu, E., AlBunni, H., Bui, A. D., & Henkel, R. (2018). Role of oxidative stress, infection and inflammation in male infertility. Andrologia, 50(11), e13126. https://doi.org/10.1111/andr.13126

Aggarwal, J., & Prabhu, V. (2006). Contractive effect of sperm-agglutinating factor isolated from Staphylococcus aureus in mouse. BJOG: an international journal of obstetrics and gynaecology, 113(9), 1039–1043. https://doi.org/10.1111/j.1471-0528.2006.01024.x

Agnihotri, S. K., Agrawal, A. B., Hakim, B. A., Vishwakarma, L. A., Narendran, T., Sachan, R., & Sachdev, M. (2016). Mitochondrial membrane potential (MMP) regulates sperm motility. In vitro cellular & developmental biology. Animal, 52(9), 953–960. https://doi.org/10.1007/s11626-016-0106-x

Añon, A. D. de Luca, C. M. Baracchi, I. M., Barbaradello, F., Cannarella, R., La Vignera, S., Calogero, A. E., & Condorelli, R. A. (2020). Mitochondrial Membrane Potential Predicts 4-Hour Sperm Motility. Biomedicines, 8(7), 196. https://doi.org/10.3390/biomedicines8070196

Benko, F., Greifvöl, H., & Tvrď, E. (2019). IN VITRO EFFECTS OF ISOQUERCITRIN ON SELECTED VITALITY MARKERS OF BOVINE SPERMATOZOA. Archives of Toxicology, 12(1): 18–23. https://doi.org/10.1007/s00204-019-182-18-23

Boligon, A. A., Sargirol, M. R., Machado, L. F., de Souza Filho, O., Machado, M. M., da Cruz, I. B., & Atlhaye, M. L. (2012). Protective effects of extracts and flavonoids isolated from aquilegia viscosa against oxidative stress in human lymphocytes exposed to hydrogen peroxide. Molecules (Basel, Switzerland), 17(5), 5757–5769. https://doi.org/10.3390/molecules17055757

Ďuračka, M., & Tvrď, E. (2018). The presence of bacterial species in boar semen and their impact on the sperm quality and oxidative balance. Journal of Animal Science, 96, Issue suppl 3, 501. https://doi.org/10.1093/jas/sky404.1094

Ďuračka, M., Belič, L., Tokárová, K., Žiarovská, K., Kačániová, M., Lukáč, N., & Tvrď, E. (2021a). Bacterial communities in bovine ejaculates and their impact on the semen quality. Systems biology in reproductive medicine, 67(6), 438–449. https://doi.org/10.1080/19396368.2021.1958028

Ďuračka, M., Debacker, M., Bučko, O., Lukáč, N., & Tvrď, E. (2019a). The effect of kaempferol and naringenin may improve the in vitro quality of stored boar semen. Journal of Central European Agriculture, 20(4), 1069-1075. https://doi.org/10.55547/jceaa120/4.2294

Ďuračka, M., Halenář, M., & Tvrď, E. (2021). IN VITRO EFFECTS OF SELECTED BIOLOGICALLY ACTIVE COMPOUNDS ON RABBIT SPERMATOZOA MOTILITY AND VIABILITY. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 1290-1294. https://doi.org/10.15141/jmbfs.2017.6.6.1290-1294

Ďuračka, M., Husarčíková, K., Jančová, M., Galovičová, L., Kačániová, M., Lukáč, N., & Tvrď, E. (2019b). Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content. Animals: an open access journal from MDPI, 11(11). 3309. https://doi.org/10.3390/ani11113309

Ďuračka, M., Kováčik, A., Kačániová, M., Lukáč, N., & Tvrď, E. (2020). Bacteria may deteriorate progressive motility of bovine spermatozoa and biochemical parameters of seminal plasma. Journal of microbiology, biotechnology and food sciences, 2021, 844-847. https://doi.org/10.3390/antibiotics9040844

Ďuračka, M., Lukáč, N., Kanacínová, M., Kantor, A., Fileva, L., Ondruska, L., & Tvrď, E. (2019b). Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Sperm. Molecules (Basel, Switzerland), 24(23), 4329. https://doi.org/10.3390/molecules24234329

Ferramosca, A., Lorenzetti, S., Di Giacomo, M., Lunetti, P., Murrieri, F., Capobianco, L., Dole, V., Coppola, L., & Zara, V. (2021). Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants (Basel, Switzerland), 10(2), 217. https://doi.org/10.3390/antioxidants10020217

Fraczek, M., Piasecka, M., Gaczarczewsic, D., Szumala-Kakol, A., Zakzenko, A., Lipovsczyzny, N., Kupisz, M. (2012). Membrane stability and activity of mitochondrial human ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus. Andrologia, 44(5), 315–329. https://doi.org/10.1111/andr.12082

González-Marín, C., Roy, R., López-Fernández, C., Dicz, B., Caraballo, M. J., Fernández, J. L., Kjelland, M. E., Moreno, J. F., & Gosálvez, J. (2011). Bacteria in bovine semen can increase sperm DNA fragmentation rates: a kinetic experimental approach. Animal reproduction science, 123(3-4), 139–148. https://doi.org/10.1016/j.anireprosci.2010.11.014

Gupta, S., & Prabhu, V. (2012). Human Sperm Interaction with Staphylococcus aureus: A Molecular Approach. Journal of pathogens, 2012, 816536. https://doi.org/10.1155/2012/816536

Jakubczyk, C., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant Potential of Curcumin and Bioactive Substances Isolated from Bovine Semen. Antioxidants (Basel, Switzerland), 9(11), 1092. https://doi.org/10.3390/antioxidants9111092

Ohri, M., & Prabha, V. (2005). Isolation of a sperm-agglutinating factor from Staphylococcus aureus isolated from a woman with unexplained infertility. Fertility and Sterility, 84(5), 1539–1541. https://doi.org/10.1016/j.fertnstert.2005.05.030

Paoli, D., Gallo, M., Rizzo, F., Baldi, E., Francavilla, S., Lenzi, A., Lombardo, F., & Gandini, L. (2011). Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertility and Sterility, 95(7), 2315–2319. https://doi.org/10.1016/j.fertnstert.2011.03.059

Park, S., Lim, W., Bazer, F. W., & Song, G. (2017). Naringenin induces mitochondrial apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells, Molecular human reproduction, 23(12), 842–854. https://doi.org/10.1093/molehr/gax057
Rana, N., Vaid, R. K., Phulia, S. K., & Singh, P. (2012). Assessment of bacterial diversity in fresh bubaline semen. Indian Journal of Animal Sciences, 82(6), 596.

Tvrdá, E., Debacher, M., Ďuračka, M., Kovác, J., & Bučko, O. (2020). Quercetin and Naringenin Provide Functional and Antioxidant Protection to Stored Boar Semen. Animals: an open access journal from MDPI, 10(10), 1930. https://doi.org/10.3390/ani10101930

Tvrdá, E., Kňažická, Z., Bárdoš, L., Massányi, P., & Lukáč, N. (2011). Impact of oxidative stress on male fertility - a review. Acta veterinaria Hungarica, 59(4), 465–484. https://doi.org/10.1556/AVet.2011.034

Tvrdá, E., Tušimová, E., Kováč, A., Pažil, D., Greifová, H., Abdramanov, A., & Lukáč, N. (2016). Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Animal reproduction science, 172, 10–20. https://doi.org/10.1016/j.anireprosci.2016.06.008

Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: pharmacology, toxicology, and metabolism. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 68, 267–282. https://doi.org/10.1016/j.fct.2014.03.018

Villani, P., Eleuteri, P., Grollino, M. G., Rescia, M., Altavista, P., Spinò, M., Paccheriotti, F., & Cordelli, E. (2010). Sperm DNA fragmentation induced by DNase I and hydrogen peroxide: an in vitro comparative study among different mammalian species. Reproduction (Cambridge, England), 140(3), 445–452. https://doi.org/10.1530/REP-10-0176

Wang, X., Sharma, R. K., Gupta, A., George, V., Thomas, A. J., Falcone, T., & Agarwal, A. (2003). Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertility and sterility, 80 Suppl 2, 844–850. https://doi.org/10.1016/s0015-0282(03)60983-x

Zhao, X., & Drlica, K. (2014). Reactive oxygen species and the bacterial response to lethal stress. Current opinion in microbiology, 21, 1–6. https://doi.org/10.1016/j.mib.2014.06.008