Supplementary Material

Hypoxic Nonreplicating Persistent *Mycobacterium tuberculosis* Develops Thickened Outer Layer that helps in Restricting Rifampicin Entry

Kishor Jakkala, Parthasarathi Ajitkumar*

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.

*Corresponding author. Parthasarathi Ajitkumar, Tel: 91-80-2293-2344; E-mail: ajitkpartha@gmail.com

This document contains:

- Supplementary Figures (S1 – S5)
- Supplementary Table S1
Figure S1. Size Measurement using Dynamic Light Scattering (DLS) using the Instrument, Malvern Zetasizer nano ZS (Sensitivity - 0.3 nm - 10 µm). (A). Average lengths of NRP stage 2 cells and the proportion of cells of such lengths. (B). Average lengths of MLP cells and the proportion of cells of such lengths. (C & D). Cell length distribution of MLP and NRP stage 2 cells determined using Zetasizer. Each peak represents cell size (nm) and the percentage of cells at that particular cell size range.
Table A: FTIR analysis of MLP

Expected region (cm⁻¹)	Observed values (cm⁻¹)	IR Stretching frequency (cm⁻¹)
3650-3200	3229	OH, Broad peak Hydrogen-bond
3400-2400	2357	OH (intermolecular) stretching frequency
1350-1000	1065	C-N frequency
970-700	976	Trans disubstituted alkenes

Table B: FTIR analysis of NRP-II

Expected region (cm⁻¹)	Observed values (cm⁻¹)	IR Stretching frequency (cm⁻¹)
3650-3200	3276	Broad peak Hydrogen-bonded
2926	2935	CH₂ of methine frequency
1680-1630	1649	C=O of amide frequency
1640-1550	1545	N-H of amide bend frequency
1350-1000	1033	C-N frequency
970-700	976	Trans disubstituted alkenes

Figure S2. (A) Major functional group differences between *Mtb* MLP and NRP stage 2 cells from FTIR analysis. (B) Most probable pairing of carbonyl group with other functional groups. (C) Diagrammatic representation of carbonyl group with amide bend frequency [Pavia et al., 2001].
Figure S3. Chemical structures of the antibiotic (Rifampicin) and the fluorophore 5-carboxyfluorescein (5-FAM). (A). Chemical structure of the antibiotic Rifampicin. (B). The conjugate 5-carboxy fluorescein (5-FAM). Conjugation site for 5-FAM on rifampicin is encircled in red (A).
Figure S4. Flow cytometry profile of the 5-FAM fluorescence as a measure of the permeability of 5-FAM-RIF into *Mtb* MLP and NRP stage 2 cells over a period of 120 min. (A) MLP cells; (B) NRP stage 2 cells; (C) NRP stage 2 bead-beaten cells.
Figure S5. Flow cytometry profile of the 5-FAM fluorescence as a measure of the permeability of 5-FAM-RIF into *Mtb* MLP and NRP stage 2 cells over a period of 120 min. (A) MLP cells; (B) MLP bead-beaten cells; (C) NRP stage 2 cells; (D) NRP stage 2 bead-beaten cells; (E) NRP stage 2 cells post-release from hypoxia into normoxia.
Name	Oligonucleotide sequence	Purpose
Mtb-otsB1-RT-f	5’ – attgtcgggcacagttgat – 3’	qRT-PCR
Mtb-otsB1-RT-r	5’ – gaccttatctcgccgcggg – 3’	qRT-PCR
Mtb-galE2-RT-f	5’ – gatgttcaccgagcagca – 3’	qRT-PCR
Mtb-galE2-RT-r	5’ – caacccgacagacacact – 3’	qRT-PCR
Mtb-pimB-RT-f	5’ – gatgttcaccgagcagca – 3’	qRT-PCR
Mtb-pimB-RT-r	5’ – caacccgacagacacact – 3’	qRT-PCR
Mtb-LdtA-RT-f	5’ – agtgggtcgctagcttcgct – 3’	qRT-PCR
Mtb-LdtA-RT-r	5’ – agtgggtcgctagcttcgct – 3’	qRT-PCR
Mtb-glgB-RT-f	5’ – caacccgacagacacact – 3’	qRT-PCR
Mtb-glgB-RT-r	5’ – caacccgacagacacact – 3’	qRT-PCR
Mtb-malQ-RT-f	5’ – gtttgtcgtcggtgagta – 3’	qRT-PCR
Mtb-malQ-RT-r	5’ – gtttgtcgtcggtgagta – 3’	qRT-PCR
Mtb-udgA-RT-f	5’ – accgtatcgtctcttggtta – 3’	qRT-PCR
Mtb-udgA-RT-r	5’ – accgtatcgtctcttggtta – 3’	qRT-PCR
Mtb-LdtB-RT-f	5’ – cgccgacagacacact – 3’	qRT-PCR
Mtb-LdtB-RT-r	5’ – cgccgacagacacact – 3’	qRT-PCR
Mtb-rpiB-RT-f	5’ – ccaattgatcggcatcggc – 3’	qRT-PCR
Mtb-rpiB-RT-r	5’ – ccaattgatcggcatcggc – 3’	qRT-PCR
Mtb-1635-RT-f	5’ – ggagttgctgtgggccatact – 3’	qRT-PCR
Mtb-1635-RT-r	5’ – ggagttgctgtgggccatact – 3’	qRT-PCR
Mtb-ponA2-RT-f	5’ – ggatcttagagccggccgaa – 3’	qRT-PCR
Mtb-ponA2-RT-r	5’ – ggatcttagagccggccgaa – 3’	qRT-PCR
Mtb-0648-RT-f	5’ – ccggccttggtgctgct – 3’	qRT-PCR
Mtb-0648-RT-r	5’ – ccggccttggtgctgct – 3’	qRT-PCR
Mtb-ald-RT-f	5’ – cggatccacactgcactct – 3’	qRT-PCR
Mtb-ald-RT-r	5’ – cggatccacactgcactct – 3’	qRT-PCR

Table S1. Oligonucleotides used for qRT-PCR in the study