In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

Othoum, Ghofran; Bougouffa, Salim; Razali, Rozaimi; Bokhari, Ameerah; Alamoudi, Soha; Antunes, André; Gao, Xin; Hoehndorf, Robert; Arold, Stefan T.; Gojobori, Takashi

Published in:
BMC Genomics

Link to article, DOI:
10.1186/s12864-018-4796-5

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Othoum, G., Bougouffa, S., Razali, R., Bokhari, A., Alamoudi, S., Antunes, A., Gao, X., Hoehndorf, R., Arold, S. T., Gojobori, T., Hirt, H., Mijakovic, I., Bajic, V. B., Lafi, F. F., & Essack, M. (2018). In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics, 19, [382]. https://doi.org/10.1186/s12864-018-4796-5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

Ghofran Othoum 1, Salim Bougouffa 1, Rozaimi Razali 1, Ameerah Bokhari 2, Soha Alamoudi 3, André Antunes 4, Xin Gao 1, Robert Hoehndorf 1, Stefan T. Arol 1, Takashi Gojobori 1,2, Heribert Hirt 2, Ivan Mijakovic 5,6, Vladimir B. Bajic 1, Feras F. Lafi 1,7 and Magbubah Essack 1*

Abstract

Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.

Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species.

Conclusions: B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.

Keywords: Bacillus licheniformis, Bacillus paralicheniformis, Antimicrobials, Biosynthetic gene clusters, Genome-mining, Nonribosomal peptides, Polyketides, Bacteriocins, Lanthipeptides, Bioinformatics

Background

Bacillus licheniformis is a Gram-positive facultative anaerobe, dubbed an industrial workhorse due to its use in several fields of biotechnology and its ability to secrete large amounts of commercially-used biomolecules and enzymes [1, 2]. These include specialty chemicals (e.g., citric acid and poly-γ-glutamic acids) and enzymes (e.g., proteases and α-amylases used in the food, detergent, textile and paper industries) [3–6]. Most importantly, the antimicrobial capabilities of B. licheniformis have been widely reported [7–11] and several B. licheniformis strains have been used as biocontrol agents [12–15] (e.g., EcoGuard). Moreover, B. licheniformis strains are used in the petroleum industry for microbially enhanced oil recovery [7, 16] due to their ability to produce lipopeptide biosurfactants.

* Correspondence: magbubah.essack@kaust.edu.sa
1 Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
B. paralicheniformis is a recently described new species within the Bacillus genus [17]. Despite the phylogenetic proximity to B. licheniformis that suggests biotechnological relevance, this species remains largely unexplored. The first description of B. paralicheniformis showed that it displayed a wider range of antimicrobial capabilities than B. licheniformis, despite being unable to produce lichenicidin or bacteriocins as does B. licheniformis [18].

A genomic-scale comparison of strains in both species can provide insights into their potential metabolic processes, their biosynthetic capabilities, and their stress adaptations. The evaluation of these properties helps to identify potential industrially relevant strains with novel and/or improved production capabilities of desired compounds [19–22]. One way of assessing the production capabilities of these strains is through the identification of gene clusters that are co-localized in the genome [23]. These biosynthetic gene clusters (BGCs) include nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs), and ribosomally synthesized and post-translationally modified peptides (RiPPs) [24].

Ecologically, strains of B. licheniformis and B. paralicheniformis inhabit diverse environments including marine, freshwater, and food-related niches. This diversification in ecological, and phenotypic properties has led B. licheniformis to become one of the most studied Bacillus species. Reason being, Bacillus strains such as these that are adapted to survive in high osmolarity environments, and have metabolic capacities similar to industrial strains are highly desirable. As in industrial settings, strains are often challenged with increased external osmolarity due to the high-level secretion of metabolites into the growth medium, threatening their productivity, and/or viability [25–27].

An environment that should be explored for such resilient, productive Bacillus strains is the Red Sea that exhibits relatively high salinity (36–41 p.s.u), and temperature (24 °C in spring, and up to 35 °C in summer) [28]. It is expected that strains from this environment are able to produce a number of thermo-tolerant enzymes, as well as provide robust microbial cell factories that are able to survive frequent exposure to high salinity and high temperature, and produce sturdier enzymes that might be better suited for industrial applications [29].

In this study, we sequenced and assembled genomes of two Bacillus strains, B. paralicheniformis Bac48 and B. paralicheniformis Bac84, both isolated from the Rabigh Harbor Lagoon of the Red Sea in Saudi Arabia. The reason for this selection has been that we previously reported that antimicrobial activity exhibited by B. paralicheniformis Bac84 is more pronounced than B. licheniformis Bac48, against three-indicator pathogens: Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas syringae [30]. In the current study we aimed at studying the relevant differences between these two species in more details. Specifically, we estimated the biosynthetic potential of the two Red Sea strains, along with nine B. licheniformis and three B. paralicheniformis strains. By grouping identified BGCs into families of gene clusters using genomic similarity, we highlighted the overall unexplored biosynthetic potential of strains from both groups. We further showed the unique presence of putative antimicrobial clusters in the Red Sea strains, focusing on one uniquely structured hybrid PKS/NRPS cluster that was identified in the genome of the B. paralicheniformis Bac48.

Results

Features of the genomes of the Red Sea Bacillus strains

Sequentialing the genomes of the Red Sea strains using the SMRT (single molecule real-time) sequencing platform produced 138,867 subreads with a mean length of 9586 bp (298× genome coverage) for B. paralicheniformis Bac48 and 108,978 subreads with a mean length of 10,964 bp (273× genome coverage) for B. paralicheniformis Bac84 (Additional file 1: Table S1 and Table S2). The assembly produced a single circular chromosome mis 9586 bp (298× genome coverage) for B. paralicheniformis Bac48 and 108,978 subreads with a mean length of 4306 predicted ORFs; 47.8% of genes are on the positive strand and 52.2% are on the negative one. Both genomes contain 4366 predicted open reading frames (ORFs); 51.5% of the genes are on the positive strand, and 48.5% are on the negative one. B. paralicheniformis Bac84’s circular chromosome is 4,464,381 bp in length containing 4366 predicted open reading frames (ORFs); 51.5% of the genes are on the positive strand, and 48.5% are on the negative one. B. paralicheniformis Bac84’s circular chromosome is 4376,831 bp in length containing 4366 predicted open reading frames (ORFs); 51.5% of the genes are on the positive strand, and 48.5% are on the negative one. Both genomes have 24 rRNAs and 81 tRNAs genes (Table 1).

Genomic island (GI) prediction identified five GIs in B. paralicheniformis Bac48 that include three unique regions (totaling 64.3 Kb and representing 1.4% of the genome) and 14 GIs in B. paralicheniformis Bac84 (totaling 142.8 Kb and representing 3.3% of the genome) (Fig. 1, Additional file 1: Table S3). Analysis of prophage sequences in the genome revealed three prophage regions in B. paralicheniformis Bac48 (124 genes), with one of them partially overlapping with a GI. Similar analysis in B. paralicheniformis Bac84 also identified three prophage regions (121 genes), with two of them partially overlapping with GIs as well (Fig. 1, Additional file 1: Table S4). When compared with the complete genome, the percentage of the genome that constitutes prophages is 2.4% for B. paralicheniformis Bac48 and 2.6% for B. paralicheniformis Bac84.

These values suggest a reduced number of horizontally transferred elements, and are comparably lower than values in genomes of other industrially important strains such as B. licheniformis DSM 13 (where GIs represent 4.8% and prophages represent 6.2% of the genome). This
paucity of horizontal gene transfer in *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84 genomes is an advantage, as removing GIs and prophages is a necessary step for stabilizing minimized genomes and for streamlining metabolism in biotechnological hosts [31].

Phylogenetic positioning of the Red Sea *Bacillus* strains

For a comprehensive comparative analysis of the genomes and to ascertain the phylogenetic position of Bac48 and Bac84 within the *Bacillus* genus, a phylogenetic tree was generated using 494 orthogroups (Fig. 2). According to Wang and Ash [32], phylogenetic trees of *Bacillus* that use this approach are more in line with results from the whole genome feature frequency profiling and are more accurate than phylogenetic trees based on single marker genes such 16S rRNA, gryB (gyrase subunit B) or *aroE* (shikimate-5-dehydrogenase) genes.

Other than the two Red Sea strains, our phylogenetic analysis included ten *B. licheniformis* strains, three *B. paralicheniformis* strains and 22 genomes from other representative *Bacilli* [33]. The resulting tree (Fig. 2) shows the phylogenetic proximity of Bac48 and Bac84 to *B. paralicheniformis* strains and reveals them to be more distantly related to *B. licheniformis* than previously reported [30].

Exploring the biosynthetic potential of *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84

To evaluate the biosynthetic potential of the two species (*B. licheniformis* and *B. paralicheniformis*), nine complete *B. licheniformis* and five complete *B. paralicheniformis* genomes, including the two Red Sea strains, were used (Table 1).

Table 1 Summary of the genomes and annotation of nine *B. licheniformis* and five *B. paralicheniformis* strains

Strain	GenBank accession number	Genome size (Mb)	N contigs	N ORFs	N rRNA genes (5S, 16S, 23S)	N tRNA genes	GC content%	Genomic islands%	Prophage%	Environment	Ref.
B. paralicheniformis											
Bac48	CP023666	4.46	1	4366	24	81	45.87	1.4	2.4	Mangrove mud	–
Bac84	CP023665	4.38	1	4306	24	81	45.84	3.3	2.2	Microbial mat	–
B. licheniformis											
DSM13	AE017333.1	4.22	1	4256	21	72	46.19	4.8	6.2	N/A	[2]
HRBL-15TD	CP014781.1	4.25	1	4293	24	81	45.92	5.8	3.6	Fermented food	–
WX-02	CP012110.1	4.29	1	4343	24	79	46.1	6.6	4.4	Soil from Salt Mine	[74]
BL1202	CP017247.1	4.42	1	4533	24	81	46	9	7.6	Soybean paste	–
SCK B11	CP014795.1	4.3	1	4372	24	81	45.93	6.2	6	Korean soybean paste	–
SCDB 14	CP014842.1 a CP014843.1 b	4.34	2	4369	24	83	46.27	3.5	2.9	Korean soybean paste	–
SCDB 34	CP014793.1	4.48	1	4612	24	81	45.69	12.2	7.9	Korean soybean paste	–
SCCB 37	CP014794.1	4.4	1	4496	24	81	45.96	10	8	Korean soybean paste	–
YNP1-TSU	CM007615.1	4.28	10	4376	6	65	45.87	5.7	4.8	Hot spring	[75]
B. paralicheniformis											
ATCC 9945a	CP005965.1	4.38	1	4392	21	72	45.9	4.8	1.9	Soil	[76]
BL-09	CP010524.1	4.39	1	4421	21	72	45.9	2.3	3	Natural fermented sour congee	–
MDJK30	CP020352.1	4.35	1	4363	24	81	45.9	2.1	1.6	Rhizosphere	–
aChromosome											
bPlasmid											

Othoum et al. BMC Genomics (2018) 19:382 Page 3 of 11
On average, each of the analyzed genomes comprised 34 putative biosynthetic gene clusters that were predicted by antiSMASH [24]. These clusters encode peptides/proteins associated with the biosynthesis of one of the following types of secondary metabolites: bacteriocins, lanthipeptides, NRPS, type III PKSs, hybrid PKS/NRPS clusters and unclassified clusters (Fig. 3). This analysis showed that \textit{B. paralicheniformis} strains have more biosynthetic genes (\~8.5\% of total predicted ORFs) compared to \textit{B. licheniformis} (\~6.3\% of total predicted ORFs). In this study, we focus on two types of compounds that are often associated with high antimicrobial activity: 1/ modular clusters (NRPS and modular PKS), and 2/ ribosomally synthesized peptides, namely modified and unmodified bacteriocins.

A total of 480 BGCs were classified into 54 groups (also referred to as gene cluster families GCFs) using scoring similarity networks as implemented in BiG-SCAPE (Fig. 4) [34]. Interestingly, only 6 GCFs (ca. 11\% of the total) were assigned to clusters that produce known products or have a similar pathway using threshold similarity of 60\% (Additional file 1: Figure S2). This highlights the limited knowledge available for the analyzed strains. Furthermore, these
unexplored secondary metabolites can potentially provide new antimicrobial agents and compounds of industrial importance, thus warranting future studies of these BGCs to identify their functions.

Nonribosomal peptides and modular polyketides

Modular genes in NRPS and PKS clusters are of critical importance when assessing the biotechnological value of strains. Understanding the organization of domains in modules could help advance efforts for the synthesis of products with amended physiochemical properties and enhanced bioactivity [35].

The identified NRPS clusters were grouped into four GCFs with predicted products (Fig. 4). The first group, we found to be conserved across all *B. licheniformis* and *B. paralicheniformis* strains, has 46 genes on average per genome, and shares 46% of its genes with the bacillibac tin cluster, a siderophore commonly produced in the *Bacillus* genus [36]. The second GCF of NRPS clusters has 43 genes that include the lichenysin operon (*licABC*), an efficient biosurfactant from the surfactin family [37–39]. The third and fourth NRPS clusters were only detected in the *B. paralicheniformis* strains, including *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84, with 50 and 45 genes and with 86 and 100% similarity to the BGC of the antifungal fengycin [40–42] and the narrow-spectrum antibiotic bacitracin [43–46], respectively. In fact, hierarchical clustering shows distinctive presence/absence patterns of BGCs in the two different groups (Fig. 4).

A hybrid PKS/NRPS cluster was identified in the genome of *B. paralicheniformis* Bac48 (Fig. 5). To the best of our knowledge, this is the first trans-acyltransferase (trans-AT) PKS/NRPS cluster reported in strains of this species. Trans-AT PKS biosynthetic clusters are an emerging class of modular PKSs that are becoming more commonly found in microbial genomes [47]. Structurally, a trans-AT PKS cluster is different from a typical cis-AT PKS in that the AT domain, which loads the substrate onto acyl carrier protein domains (ACPs), is encoded in a separate ORF as independent polypeptide and not integrated into the assembly line [47]. Other trans-AT PKS/NRPS clusters reported within the genus *Bacillus* is the antibiotic bacillaene *pksX* cluster found in *B. subtilis* [48] and the *bae* operon in *B. amyloliquefaciens* [48]. The hybrid trans-AT PKS/NRPS cluster is located 14.6 Kb downstream of a lichenysin synthase operon (*licABC*). The cluster was predicted as a single BGC along with the lichenysin operon; however, due to the large non-biosynthetic gap between the two clusters, the predicted cluster was split into two. The resultant BGC is composed of 29 genes. The cluster extends over 82.8 Kb, which is close in size to the bacillaene *pksX* cluster (~80 Kb) [49]. One of the architectural differences between this cluster and the other trans-AT PKS clusters in *Bacillus* is that there is one NRPS module with its domains (adenylation, condensation and peptidyl carrier domains) extended over two ORFs, while on the other hand, the *bae* cluster has two NRPS modules in two ORFs [49].
Fig. 4 Heat map visualization of the number of genes in BGC groups. There are 54 GCFs with BGCs shared by at least two genomes and 20 BGCs identified to be unique (present in one genome). The number of genes in each GCF is normalized based on the maximum number of genes. Putative clusters are predicted using the ClusterFinder algorithm as implemented in antiSMASH [24].

Fig. 5 Structure of the hybrid PKS/NRPS cluster present in *B. paralicheniformis* Bac48. Biosynthetic genes are identified with red arrows while non-biosynthetic genes are identified with blue ones. Domains are abbreviated as follows: adenylation (A), ketosynthase (KS), ketoreductase (KR), condensation domain (C), acyl carrier protein (ACP), peptide carrier domains (PCP), c-methyltransferase (cMTA), o-methyltransferase (oMT), enoyl-CoA hydratases (ECH), dehydratase (DH), acyltransferase docking site (Trans-AT docking) and acyltransferase (AT).
The cluster encodes nine multi-domain ORFs, consisting of one adenylation domain (A), 16 ketosynthese domains (KS), ten ketoreductase domains (KR), two peptidyl carrier domains (PCP), 18 acyl carrier protein domains (ACP), nine dehydratase domains (DH), two enoyl-CoA hydratase domains (ECH), two c-methyltransferase domains (cMT), two o-methyltransferase domains (oMT), and one condensation (C) domain. We also identified truncated AT domains that could be used as binding sites for trans-acting AT. The order of the PKS domains and the absence of integrated AT domains in all of the nine PKS/NRPS ORFs in this gene cluster suggest that this is indeed a trans-AT PKS cluster, with two trans-acting AT domains encoded by ORFs that are independent from the polypeptide assembly line. Moreover, the cluster showed similarity to known trans-AT PKSs (71% to elansolid and 57% to thiomarinol) (Additional file 1: Figure S3). Comparing this cluster to known clusters in *Bacillus* revealed a 57% similarity to the bacillene cluster in *Bacillus amyloliquefaciens* FZB 42. The incomplete homology between the modular genes in this cluster and known clusters in the MIBiG database indicates that the potential active compound synthesized by the trans-AT PKS/NRPS cluster might be a completely novel compound or a compound with similarity in activity to these known compounds. We further identified a putative promoter sequence in the intergenic region upstream of this cluster (Additional file), which strengthens the possible functionality associated with the trans-AT PKS/NRPS cluster.

Ribosomally synthesized peptides and post-translationally modified peptides (RiPPs): Bacteriocins and lanthipeptide

There is at least one bacteriocin cluster family in each of the analyzed genomes. One of the families was conserved across all the *B. licheniformis* and *B. paralicheniformis* strains, with an average of nine genes. The clusters in this group had three biosynthetic genes (ribosomal mythelotransferase accessory protein, carbohydrate esterase and an uncharacterized protein) and showed no similarity to any known bacteriocin. Another head-to-tail bacteriocin cluster family was detected in the genomes of *B. paralicheniformis* strains ATCC 9945a, BL-09 and Bac84. Clusters in this family had mostly uncharacterized genes and showed no evident similarity to any known bacteriocin.

Lanthipeptides are a type of bacteriocins that often contain unusual amino acids such as lanthionine and undergo post-translational modification. The fact that these post-translational modification genes are highly conserved assists in the in silico prediction of lanthipeptide clusters [50]. Other features common to lanthipeptide clusters include immunity genes and ABC transporters for bacteriocin export [51].

We found that two-component class II lanthipeptides, in which two peptides processed by a modifying enzyme (*lanM*) [52], are the most common lanthipeptides in the analyzed genomes. *B. licheniformis* strains have three genes mapping to *ichA1, ichA2* and *ichM1* in the class II lanthipeptide lichenicidin VK21 cluster. The absence of lichenicidin post-translational modification genes in *B. paralicheniformis* is a distinguishing feature between the two species. A lanthipeptide cluster was detected in the *B. paralicheniformis* genomes (MDJK30, BL-09 and ATCC 9945a), and in *B. licheniformis* SCDB 34 with a mersacidin-like structural gene. The cluster is predicted to be of class II lanthipeptides as it has the *lanM* post-translational modification enzyme. However, other mersacidin genes (*mrsK2, mrsR2, mrsF, mrsG* and *mrsE*) were not detected, indicating that the cluster might be involved in the synthesis of a new product with partial genomic similarity to the genes encoding for the antibiotic mersacidin. No lanthipeptide clusters were predicted in the Red Sea strains; however, the genomes of *B. paralicheniformis* Bac48 harbored a lantibiotic-like cluster, with the subtilin biosynthesis post-translational modification gene *spaB* that encodes the dehydratase of the lanthionine in the subtilin gene cluster (PFAM: PF04738) and subtilin ABC transporter permease (*spaG*). The cluster was not predicted as a lanthipeptide as it lacked other genomic features including the post-translational modification enzyme necessary for the cyclization of lanthionine (*spaC* in the subtilin cluster) and other immunity genes. Additionally, seven genes in the cluster were similar to genes in the rhizocticin biosynthetic cluster, an unusual peptide with antimicrobial activity.

Discussion

Alignment of the *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84 genomes, showed the two genomes to be highly syntenic, except for three large regions present in the *B. paralicheniformis* Bac48 genome that are absent from the *B. paralicheniformis* Bac84 genome (Additional file 1: Figure S1 A and B). The largest non-syntenic block is a ~ 83 Kb region in which the previously described trans-AT PKS/NRPS cluster resides. More specifically, it is worth noting that the trans-AT PKS/NRPS cluster in *B. paralicheniformis* Bac48 has a 27.59% overlap (8 horizontally transferred genes) with a genomic island. Moreover, a bacteriocin cluster composed of 16 genes, has 62.5% overlap with a genomic island in *B. paralicheniformis* Bac84 (10 horizontally transferred genes) (Fig. 1). Obtaining such foreign genes can alter the genotype of a strain through the acquisition of novel metabolic capabilities or altering the existing ones. Herewith allowing strains to adapt/survive in different ecosystems (in this instance, mangrove mud as
opposed to microbial mat) [53–55]. This makes the discovery interesting as we previously reported [30] that these strains exhibit different antimicrobial activity; specifically, *B. paralicheniformis* Bac84 has stronger antimicrobial potential against three indicator pathogens: *Staphylococcus aureus*, *Salmonella typhimurium*, and *Pseudomonas syringae*. Thus, the disparity associated with the antimicrobial activity could be a consequence of the foreign genes providing a novel product with antimicrobial activity.

Also, our analysis showed that the number of NRPS clusters (e.g., lipopeptides) with known predicted products significantly outnumber RiPP clusters with known predicted products, as only lichenicidinVK21 was identified in these clusters. This difference is expected as *Firmicutes* have been one of the most important sources for the discovery of new lipopeptides, especially as lipopeptides are highlighted to be attractive pharmaceutical or/and industrial products. Investigating the functions of genes in RiPPs showed that, although some of their genes are similar to the ones in known clusters, they are incomplete, with genes absent from the clusters in most of the cases, prevents the use of assigned databases such as MIBiG to determine their final products. Genes in RiPPs from other partially sequenced genomes encode known products such as the recently discovered novel lanthipeptide formicin, produced by *B. paralicheniformis* APC 1576 [56], the bacteriocin bacillocin 490 produced by *B. licheniformis* 490/5 [57] and the bacteriocin-like lichen produced by *B. licheniformis* 26 L-10/3RA [58]. However, *B. paralicheniformis* RiPPs are understudied and the data presented in this in silico analysis highlights the potential for these organisms and the need for further work to validate these findings.

Conclusion

Several proteins synthesized by *B. licheniformis* strains have high industrial value and are exploited in many applications. However, the bioactive potential of *B. paralicheniformis* species is not completely explored. Here, we report *B. paralicheniformis* strains are more enriched with lipopeptide encoding genes compared to *B. licheniformis* strains. Moreover, the two Red Sea strains, *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84, were shown to be more enriched with gene clusters that biosynthesize bioactive compounds. In spite of the high syntenic between the two genomes, we show that *B. paralicheniformis* Bac48 is more enriched in structurally unique modular PKS clusters compared to *B. paralicheniformis* and *B. licheniformis* strains. In future work, more experimental testing is needed in order to exhaustively examine all potential bioactive compounds and the cause of antimicrobial discrepancy between the two strains.

Method

Sampling, isolation and purification of bacterial strains

The sampling, isolation and purification of strains Bac48 and Bac84 were previously described by Al-Amoudi et al. (2016) [30]. Both strains were isolated from samples collected from the Rabigh Harbor Lagoon by the Red Sea in Saudi Arabia (39°35.762′ E, 22°45.5.582’ N). Bac48 was isolated from samples that were taken from mangrove mud; while Bac84 was isolated from a microbial mat located 7.5 m away from the lagoon. Eight grams of each sample were homogenized using 10 mL of sterilized Red Sea water at low speed. The supernatant was diluted 5 and 25 folds and plated on media prepared with artificial seawater. Microbial culture containing Bac48 was grown on actinomycetes isolation agar; while culture containing Bac84 was grown on Difo Marine broth 2216 gellan gum media. Inoculated plates were incubated at 28 °C for up to 28 days. Pure colonies were obtained after multiple successful transfers based on morphology then frozen at −80 °C in ddH2O for DNA extraction and 30% glycerol solution for long-term storage.

DNA extraction and sequencing

Biomass of *B. paralicheniformis* Bac48 and *B. paralicheniformis* Bac84 was obtained after growth under optimal conditions [30]. Genomic DNA was extracted using the Sigma’s GenElute Bacterial Genomic DNA Kit (USA) following the manufacturer’s protocol followed by a second purification step using MO BIO PowerClean Pro Clean-Up Kit (USA). As quality control measures, overnight gel electrophoresis and NanoDrop (Thermo Fisher Scientific, USA) were used to assess purity of DNA, while Qubit 2.0 (Life Technologies, Germany) was used to quantify the DNA. Whole genome sequencing was performed at the Core Lab sequencing facility at KAUST using the PacBio RS II sequencing platform (Pacific Biosciences, USA). The large-insert libraries were sequenced in single-molecule real-time (SMRT) sequencing cells using P6-C4 chemistry.

Genome assembly

Raw data from PacBio’s RS II were assembled using PacBio’s SMRT Analysis pipeline v2.3.0, using default parameters and genomeSize of 6,000,000 bp, which produced a single contig per library. We visually checked for overlapping ends using Gepard v1.40 [59] which would indicate circular genomes. To circularize both genomes, one end of each contig was trimmed to reduce the amount of overlap, then each contig was split into two halves which were then rejoined using minimus2 [60]. After circularization, multiple rounds of assembly polishing were performed using the SMRT Analysis Resequencing protocol until convergence (Additional file). To assess the quality of the genomes
and estimate their completeness and contamination, checkM v1.0.6 [61] taxonomic workflow was used, utilizing single copy genes in the genus Bacillus.

Genome functional annotation and analysis
The complete genome sequences for B. paralicheniformis Bac48 and B. paralicheniformis Bac84 were annotated using the Automatic Annotation of Microbial Genomes pipeline (AAMG) [62] with default parameters (BLAST bit score of 30) andProdigal [63] as the chosen gene predictor. For details about the annotation pipeline, tools and databases used, refer to [62].

The overall genome similarities between B. paralicheniformis Bac48 and B. paralicheniformis Bac84 were inspected using a dot plot that was generated with Gepard v1.40 [59]. Genome variation and synteny were inspected between the two strains using Sibelia v3.0.6 [64]. Prediction of genomic islands was done using IslandViewer v3 [65] and the identification of phage inserts was performed using PHASTER [66]. Finally, circular visualization of the genomes and annotated features were plotted using DNAPlotter [67].

Strain identification and phylogeny
To build the phylogeny tree, orthologous protein groups (orthogroups) were obtained using OrthoFinder v2.2.1 [68] with default settings. Briefly, an all-vs-all BLASTp analysis [69] was initially performed for the preliminary assignment of gene pairs. Gene pairs were then filtered based on the length-normalized BLAST bitscores to generate a gene pair graph for all-vs-all species. Next, orthogroups were inferred from the graph using the MCL tool v14.137 [70]. After establishing orthology, gene trees were constructed for all orthogroups in the core genomes (all species present) using the alignment-free tool DendroBlast [71] and FastMe v2.1.10 [72]. The Species tree was then reconstructed with support values from the consensus of all gene trees using STAG v1.0.0 (https://github.com/davidemms/STAG) and rooted based on duplication events using STRIDE v1.0.0 [https://doi.org/10.1093/molbev/msx259]. We visualized the tree using iTOL (https://itol.embl.de/) [68].

Biosynthetic gene cluster prediction
Only published strains with complete genomes were included in the analysis to ensure that the identified variations were indeed due to functional differences and not due to the quality of assembly. At the time of our study (May 2017) 12 strains satisfied these requirements, nine B. licheniformis and three B. paralicheniformis. To avoid potential bias resulting from using different annotation pipelines, all strains were reannotated using the same set of tools and databases.

Bioisynthetic and secondary metabolic gene clusters were predicted using antiSMASH v3.0 [24] with the ClusterFinder option [23]. Additionally, the KnownClusterBlast option was used to identify potential products for the clusters from the MIBiG database. Each BLAST hit for the 54 GCFs were manually checked to ensure the similarity accounts for the core biosynthetic genes in the cluster. The promoter prediction tool provided by Softberry [73] was used to predict promoter sequences in the intergenic region upstream of predicted BGCs in the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84.

Additional file

Additional file 1: Table S1. Basic statistics relating to the PacBio SMRT sequencing that was done for B. paralicheniformis Bac48 and Bac84. A single SMRT cell was sequenced for each strain. Table S2. Levels of completeness and contamination in Bac48 and Bac84 as determined in CheckM. Table S3. List of genomic island regions in the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84, predicted using IslandViewer [6]. Table S4. Predicted prophage regions in B. paralicheniformis Bac48 and B. paralicheniformis Bac84 and their overlap with Gis. Scores were obtained using PHASTER [5] scoring scheme. Most Common Phage shows the phage ID(s) with the highest number of proteins most similar to proteins in the region. Overlap percentage show the length of overlap region with respect to the length of prophage. Figure S1. Similarity network showing 54 groups of similar BGCs. Strains are color coded as per the legend. Figure S2. Similarity network showing 54 groups of similar BGCs. Strains are color coded as per the legend. Figure S3. Summary of genomic stats including the number of genes, proteins, functional annotations, and taxonomic workflow was used, utilizing single copy genes in the genus Bacillus.

Abbreviations
A: Adenylation; ACP: Acyl carrier protein; aroE: Shikimate-5-dehydrogenase; AT: Acyltransferase; BGC: Biosynthetic gene cluster; C: Condensation; oMT: o-methyltransferase domains; DH: Dehydratase; ECH: Enoyl-CoA hydratase; GCF: Gene cluster family; gDNA: G屠杀 subunit B; KR: Ketoreductase; KS: Ketosynthase; NRPS: Nonribosomal peptide synthetase; oMT: o-methyltransferase; PCC: Peptidyl carrier protein; PKS: Polyketide synthase; RIPP: Ribosomally synthesized and post-translationally modified peptide; SMRT: Single molecule real-time

Acknowledgments
The authors wish to acknowledge the experimental support from the King Abdullah University of Science and Technology (KAUST) Bioscience Core Laboratory.

Funding
The research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST) through the Awards Nos. FCC/1/1976–02-01, FCS/1/2911–01-01, BAS/1/1606–01-01, URF/1/1976–06-01, BAS/1/1624–01-01, BAS/1/1659–01-01, BAS/1/1059–01-01 from the Office of Sponsored Research (OSR).

Availability of data and materials
All data used in this study have been included in this article and its Additional files.

Authors’ contributions
The study was conceived and designed by GO, IM, VBB, and ME. Data was generated by GO, AB, SA, HH, and FFL. Data analysis was performed by GO,
SB, RR, and ME. Discussion of analyzed data was provided by XG, RH, STA, TG and IM. The manuscript was written by GO, SB, VB, AA, and ME. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate
Samples were collected as previously reported in [30] by KAUST.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. 2Department of Biology, Science and Arts College, King Abdulaziz University, Rabigh 21589, Kingdom of Saudi Arabia. 3Department of Biology, Department, Edge Hill University, L39 4QP, Ormskirk, Lancashire, UK. 4Department of Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. 5Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden. 6Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark. 7Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, PO Box 2882, Madaba, Amman JO-11821, Jordan.

Received: 28 January 2018 Accepted: 14 May 2018
Published online: 22 May 2018

References
1. Clements LD, Miller BS, Steeps UN. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol. 2002;25(2):284–6.
2. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehenepeich P, Baumer S, Herine A, Liesegang H, Merk R, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 2004;7(4):204–11.
3. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Othoum XG, Rhimes RR, and Al-Mandhari MS. The manuscript was written by GO, SB, VB, AA, and ME. All authors read and approved the final version of the manuscript.

Othoum et al. BMC Genomics (2018) 19:382

Page 10 of 11

4. Fujiwara S, Fujisawa M. Industrial applications of alkali-halites and their enzymes-past, present and future. Environ Technol. 2010;31(8–9):845–56.
5. Gossert G. Microbial production of industrial chemicals. Introduction. J Mol Microbiol Biotechnol. 2008;15(1):5–7.
6. Erickson R. Industrial applications of the bacilli: a review and prospectus: Microbiology American Society for Microbiology, Washington, DC, 1976. p. 40–69.
7. De Almeida DG, Rita de Cássia F, JML S, Rufino RD, Santos VA, Banat IM, Sarubbo LA. Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. 2016;7.
8. Das P, Mukherjee S, Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008;104(6):1675–84.
9. Perez KJ, dos Santos VJ, Lopes FC, Pereira JQ, dos Santos DM, Oliveira JS, de França OA, dos Santos VJ, Oliveira JS, de França OA. Antimicrobial potential of a lipopeptide biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt J Pet. 2015;24(2):155–62.
10. Bouizgarne B. Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management. Berlin: Springer; 2013. p. 15–47.
11. Neyra C, Atkinson L, Olubayi O, Sadasivan L, Zaurow D, Zappi E. Novel microbial technologies for the enhancement of plant growth and biocontrol of fungal diseases in crops. Cahiers Opt Méd. 1996;3:447–56.
12. Lee JP, Lee S-W, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol Control. 2006;37(3):329–37.
13. Kim JH, Lee SH, Kim CS, Lim BK, Choi KH, Kong HG, Kim DW, Lee SW, Moon BJ. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J Microbiol Biotechnol. 2007;17:438–44.
14. Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MS. Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol. 2016;7.
15. Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol. 2015;65(10):3487–92.
16. Dhakal R, Chauhan K, Seale RB, Deeth HC, Pillidge CJ, Powell IB, Craven H, Turner MS. Genotyping of dairy Bacillus licheniformis isolates by high resolution melt analysis of multiple variable number tandem repeat loci. Food Microbiol. 2013;34(2):344–51.
17. Hoffmann K, Daum G, Stover hydrolysate by an Escherichia coli ethanologen. Appl Environ Microbiol. 2004;70(5):2734–40.
18. Weber B, Holm B, Brucelleri R, Linsey WW, Fishbach MA, Müller R, Wohlenberg W. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2013;41(23):W237–43.
19. Underwood SA, Ruszko ML, Sherbourn KG, Loomis LA. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli K111 during xylose fermentation. Appl Environ Microbiol. 2004;70(5):2374–40.
20. Schwabach MB, Kelling DH, Tremaine M, Mamer WD, Zhang Y, Botfield W, Higbee A, Grace JA, Cotten C, Reed JL, et al. Complex physiology and compound stress responses during fermentation of algal-pretreated corn Stover hydrolysatate by an Escherichia coli ethanologen. Appl Environ Microbiol. 2012;78(9):3442–57.
21. Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, Jurgen B, Bajic VB. Bioprospecting Red Sea coastal ecosystems for Culturable facultative anaerobes Bacillus species. Genome Biol. 2004;5(10):r77.
