An Asymptotic Analysis of the MIMO BC under Linear Filtering

Raphael Hunger and Michael Joham
Associate Institute for Signal Processing, Technische Universität München, 80290 Munich, Germany
Telephone: +49 89 289-28508, Fax: +49 89 289-28504, Email: hunger@tum.de

Abstract—We investigate the MIMO broadcast channel in the high SNR regime when linear filtering is applied instead of dirty paper coding. Using a user-wise rate duality where the streams of every single user are not treated as self-interference as in the hitherto existing stream-wise rate dualities for linear filtering, we solve the weighted sum rate maximization problem of the broadcast channel in the dual multiple access channel. Thus, we can exactly quantify the asymptotic rate loss of linear filtering compared to dirty paper coding for any channel realization. Having converted the optimal covariance matrices to the broadcast channel by means of the duality, we observe that the optimal covariance matrices in the broadcast channel feature quite complicated but still closed form expressions, although the respective transmit covariance matrices in the dual multiple access channel share a very simple structure. We immediately come to the conclusion that block-diagonalization is the asymptotically optimal transmit strategy in the broadcast channel. Out of the set of block-diagonalizing precoders, we present the one which achieves the largest sum rate and thus corresponds to the optimum solution found in the dual multiple access channel. Additionally, we quantify the ergodic rate loss of linear coding compared to dirty paper coding for Gaussian channels with correlations at the mobiles.

I. INTRODUCTION

While the sum capacity of the single-user MIMO point-to-point link can be expressed semi-analytically in closed form [1], the simplest multi-user setup with single antenna terminals already allows for the presumption that this will remain infeasible in the broadcast and multiple access channel irrespective of whether linear or nonlinear filtering is considered. Fortunately, the high signal-to-noise ratio regime is an exception to this deflating circumstance, since there, asymptotic results on the sum capacity have been discovered for dirty paper coding and partly for linear filtering.

A. Literature Overview

The single user point-to-point MIMO case was treated in [2], [3], where the Grant-Gauthier lower bound on the mutual information, that becomes asymptotically tight, was decomposed into a supremum capacity term, an instantaneous SNR effect term, and an instantaneous capacity degradation term due to the eigenvalue spread. Outage capacity and throughput of a fading point-to-point MIMO system are analyzed in [4]. The first high-SNR sum capacity analysis of the point-to-multipoint broadcast channel appeared in [5], where single-antenna receivers were considered. Therein, the affine approximation of the sum capacity introduced in [6] and elaborately discussed in [7] was utilized. First, [5] shows that the single-antenna broadcast channel has the same asymptotic sum-capacity as the corresponding point-to-point MIMO link with cooperating receive antennas, and second, how the power offset term in the broadcast channel looks like. Furthermore, the instantaneous and ergodic spectral efficiency loss of linear zero-forcing beamforming with respect to DPC was derived in [5], again for single antenna receivers. The extension to multi-antenna receivers was presented in [8], [9], where the asymptotic equivalence of the nonlinear dirty paper coding sum capacity in the broadcast channel and the sum capacity of the equivalent point-to-point MIMO link with cooperating receivers was proven to hold in the multi-antenna case. Out of the class of linear precoding schemes, zero-forcing and block-diagonalization are considered. However, only ergodic statements for the asymptotic sum rate and the asymptotic rate loss with respect to dirty paper coding are derived, and a very special fading model is a key prerequisite for the presented results. Expressions for the instantaneous rate loss are not possible. Moreover, it is neither known yet, whether block-diagonalization is the asymptotically optimum transmission strategy or not in the broadcast channel when linear filtering is considered, nor how the optimum block-diagonalizing precoder looks like.

B. Contributions

The main contributions of this paper are summarized in the following list:

1) The derivation of the maximum weighted sum rate asymptotically achievable with linear filtering.
2) A closed form expression for the asymptotic rate loss of linear filtering with respect to dirty paper coding for any antenna configuration at the base and the mobiles.
3) A closed form solution of the covariance matrices in the dual uplink achieving this maximum weighted sum rate.
4) We prove, that block diagonalization is asymptotically optimum in the broadcast channel.
5) Finally, we derive the optimum precoding and transmit covariance matrices in the broadcast channel by means of our rate duality in [10].

II. SYSTEM MODEL

We consider the communication between an \(N \) antenna base station and \(K \) multi-antenna terminals, where user \(k \) multiplexes \(B_k \) data streams over his \(r_k \) antennas. For a short notation, we define \(r \) as the sum of all antennas at
the terminals, i.e., \(r = \sum_{k=1}^{K} r_k \), and \(b \) as the sum of all transmitted streams, i.e., \(b = \sum_{k=1}^{K} B_k \). In the MAC, user \(k \) applies a precoding matrix \(T_k \in \mathbb{C}^{r_k \times B_k} \) generating his \(r_k \times r_k \) transmit covariance matrix \(Q_k = T_k T_k^H \). The precoded symbol vector propagates over the channel described by the matrix \(H_k \in \mathbb{C}^{N \times r_k} \). At the receiver side, zero-mean noise \(\eta \in \mathbb{C}^N \) with identity covariance matrix is added and the receive filter for user \(k \) is denoted by \(G_k \in \mathbb{C}^{B_k \times N} \). Due to the reversed signal flow in the BC, we characterize the transmission from the base station to terminal \(k \) by the Hermitian channel \(H_k^H \) in the BC, the precoder dedicated to the \(B_k \) streams of user \(k \) is denoted by \(P_k \in \mathbb{C}^{N \times B_k} \), and zero-mean noise zero-mean noise \(\eta_k \in \mathbb{C}^{r_k} \) with identity covariance matrix is added at user \(k \). Throughout this paper, we assume that the base station has at least as many antennas as the terminals have in sum, i.e., \(N \geq r \).

III. Optimum Signalling in the Dual MAC

Introducing the composite channel matrix \(H \) and the composite block-diagonal precoder matrix \(T \) of all \(K \) users via

\[
H = [H_1, \ldots, H_K] \in \mathbb{C}^{N \times r}, \quad T = \text{blockdiag}(T_k)_{k=1}^{K} \in \mathbb{C}^{r \times b},
\]

the rate of user \(k \) seeing interference from all other users can be expressed as (see [10])

\[
R_k = \log_2 | I_N + \left(I_N + \sum_{\ell \neq k} H_{\ell} Q_{\ell} H_{\ell}^H \right)^{-1} H_k Q_k H_k^H | = \log_2 | I_{B_k} - T_k H_k^H X^{-1} H_k T_k |, \tag{1}
\]

where the substitution \(X \) reads as

\[
X = I_N + \sum_{k=1}^{K} H_k Q_k H_k^H = I_N + H T T^H H^H.
\]

Reformulating the rate expression (1), we get

\[
R_k = -\log_2 \left| E_k^T (I_{B_k} - T_k H_k^H X^{-1} H_k T_k) E_k \right| = -\log_2 \left| E_k^T (I_{B_k} + T_k^H H_k^H H T_k^{-1}) E_k \right|, \tag{2}
\]

where the \(k \)th block unit matrix is defined via

\[
E_k^T = [0, \ldots, 0, I_{B_k}, 0, \ldots, 0] \in \{0; 1\}^{B_k \times b}
\]

with the identity matrix at the \(k \)th block. Due to the assumption that the base station has more antennas than the terminals in sum, all \(r \) streams can be activated leading to square precoders \(T_k \) with \(B_k = r_k \). Raising \(P_{Tx} \), all \(r \) streams become active, \(T \) becomes full rank, and all eigenvalues of \(T_k^H H_k^H H T_k \) become much larger than one. In the asymptotic limit, we obtain

\[
R_k \cong -\log_2 \left| T_k^{-1} E_k^T (H_k^H H)^{-1} E_k T_k^{-1} \right| = \log_2 | Q_k | - \log_2 \left| E_k^T (H_k^H H)^{-1} E_k \right|, \tag{3}
\]

since \(E_k^T T_k^{-1} = T_k^{-1} E_k^T \). The notation \(x \cong y \) means that the difference \(x - y \) vanishes when the sum power \(P_{Tx} \) goes to infinity. Interestingly, the rate of user \(k \) depends only on the determinant of his own transmit covariance matrix \(Q_k \), and not on the covariance matrices of the other users! Consequently, the eigenbases of all transmit covariance matrices do not influence the rates of the users, only the powers of the eigenmodes are relevant. Let the eigenvalue decomposition of \(Q_k \) read as \(Q_k = V_k \Lambda_k V_k^H \) with unitary \(V_k \) and the diagonal nonnegative power allocation \(\Lambda_k \). Due to the determinant operator, \(V_k \) can be chosen arbitrarily and therefore, we set \(V_k = I_{r_k} \forall k \) without loss of generality. Let the power allocation matrix be composed by the entries \(\Lambda_k = \text{diag}\{\lambda_k^{(i)}\}_{i=1}^{K} \). Due to the sum-power constraint, the determinant \(|Q_k| = |\Lambda_k| \) is then maximized by setting

\[
\lambda_k^{(1)} = \ldots = \lambda_k^{(r_k)} := \lambda_k, \tag{4}
\]

i.e., by evenly distributing the power allocated to that user onto his individual modes, so \(Q_k = \lambda_k I_{r_k} \forall k \) with the sum-power constraint \(\sum_{k=1}^{K} r_k \lambda_k = P_{Tx} \). Introducing nonnegative weight factors \(w_1, \ldots, w_K \) for the rates of the users, the weighted sum rate asymptotically reads as

\[
\sum_{k=1}^{K} w_k R_k \cong \sum_{k=1}^{K} w_k (R_k^2 - \log_2 \left| E_k^T (H_k^H H)^{-1} E_k \right|). \tag{5}
\]

Subject to the sum power constraint \(\sum_{k=1}^{K} r_k \lambda_k = P_{Tx} \), the weighted sum rate in (5) is maximized for

\[
\lambda_k = \frac{w_k}{\sum_{k=1}^{K} w_k r_k} P_{Tx}, \tag{6}
\]

so the power is allocated to the users according to their weights (similar to the single-antenna case proven in [8]), and every user evenly distributes his fraction of power onto his modes. In the case of identical weights \(w_k = 1 \forall k \), the conventional sum rate asymptotically reads as

\[
\sum_{k=1}^{K} R_k \cong \sum_{k=1}^{K} r_k \log_2 P_{Tx} - r \log_2 r - \sum_{k=1}^{K} \log_2 \left| E_k^T (H_k^H H)^{-1} E_k \right|, \tag{7}
\]

and is achieved with \(Q_k = P_{Tx}/r \cdot I_{r_k} \forall k \). So, we are able to quantify the asymptotic sum rate that can be achieved by means of linear filtering for every single channel realization and antenna/user profile in terms of the transmit power \(P_{Tx} \) and the channel itself. In principle, the ergodic rate and the ergodic rate offset to dirty paper coding can be obtained by averaging corresponding to any distribution of the channel. In [9], results on the ergodic rate offset with respect to dirty paper coding were presented for the specific case of Rayleigh fading only, where the channel entries of \(H_1, \ldots, H_K \) all have the same distribution. Simple near-far effects with different average channel powers for example cannot be captured due to this restricting assumption. Moreover, the instantaneous rate offset expression is given by means of bases representing null spaces of shortened channel matrices taken from [11] and not as a function of the channel purely as we do in (7).

Concerning the asymptotic rate expressions, we have now created a smooth transition from the \(r \) single-antenna-users system configuration in [5] where no cooperation exists between the antenna elements at the terminals, to the single-user point-to-point MIMO link where all \(r \) antennas fully
cooperate, see [1] for example. In between, we can now specify any antenna/user profile we want and compute the feasible rate in the asymptotic limit. Using dirty paper coding, the asymptotic sum rate reads as

$$\sum_{k=1}^{K} P_{k}^{DPC} \simeq r \log_{2} P_{Tx} - r \log_{2} r + \log_{2} |H^{H}H|$$

(8)

and corresponds to the rate of the fully cooperating point-to-point link [9]. Combining (8) and (7), the rate loss $\Delta R = \sum_{k=1}^{K} (R_{k}^{DPC} - R_{k})$ of optimal linear filtering with respect to optimal dirty paper coding reads as

$$\Delta R \simeq \sum_{k=1}^{K} \log_{2} |E_{k}^{T}(H^{H}H)^{-1}E_{k}| - \log_{2} |(H^{H}H)^{-1}|,$$

(9)

which of course vanishes, if all channels are pairwise orthogonal, i.e., if $H^{H}H$ is block-diagonal. Of course, a block-type Hadamard inequality quickly leads to the inequality

$$- \log_{2} |(H^{H}H)^{-1}| \geq - \sum_{k=1}^{K} \log_{2} |E_{k}^{T}(H^{H}H)^{-1}E_{k}|,$$

so linear filtering is obviously inferior to dirty paper coding.

IV. OPTIMUM SIGNALLING IN THE BC

Using our rate duality in [10], we can convert the simple solution for the covariance matrices in the dual MAC to covariance matrices in the BC, where the Hermitian channels are applied. Since this duality explicitly uses the receive filters in the MAC as scaled transmit matrices in the BC, we first compute the MMSE receivers in the dual MAC, as they are feasible rate in the asymptotic limit. Using dirty paper coding, the duality transformation from the MAC to the BC in [10] drastically simplifies and can even be computed in closed form. In particular, the matrices $M_{a,b}$ in [10, Eq. (23)] vanish for $a \neq b$ yielding a diagonal matrix M and therefore, the scaling factors read as

$$\alpha_{k,i} = \sqrt{\frac{P_{Tx}/r}{\|g_{k,i}\|_{2}}}.$$

(12)

In combination with (11), the ith column of the precoder associated to user k reads as

$$p_{k,i} = \sqrt{\frac{P_{Tx}/r}{H(H^{H}H)^{-1}E_{k}W_{k}e_{i}}} \cdot E_{k}W_{k}e_{i},$$

generating the precoder matrix

$$P_{k} = \sqrt{\frac{P_{Tx}/r}{H(H^{H}H)^{-1}E_{k}W_{k}D_{k}^{-1}}},$$

(13)

where the ith diagonal element of the diagonal matrix D_{k} is

$$[D_{k}]_{k,i} = \sqrt{e_{k}^{T}W_{k}^{T}E_{k}^{T}(H^{H}H)^{-1}E_{k}W_{k}e_{i}}.$$

(14)

We can immediately see, that the precoding filters in (13) lead to a block diagonalization of the transmission, since $H^{H}P_{k} = 0$ holds for $k \neq i$. Next, the decorrelation matrix W_{k} which enables the duality is usually chosen as the eigenbasis of $G_{k}H_{k}T_{k} \equiv I_{r,k}$, which asymptotically coincides with the identity matrix due to (10). Since all eigenvalues are identical to one, the decorrelation matrices W_{k} are not given a priori, but can easily be computed such that the BC features the same sum rate as the dual MAC. By means of (13) and the block diagonalization property of the precoders, we obtain for user k’s receive signal

$$y_{k} = H_{k}^{H}P_{k}s_{k} + \eta_{k} = \sqrt{\frac{P_{Tx}/r}{W_{k}D_{k}^{-1}}}s_{k} + \eta_{k},$$

(15)

where $\eta_{k} \in \mathbb{C}^{r,k}$ is the noise and s_{k} the symbol vector of user k both having an identity covariance matrix. From (15), the rate of user k achieved in the BC reads as

$$R_{k} = \log_{2} \left| I_{r,k} + \frac{P_{Tx}/r}{W_{k}D_{k}^{-2}}W_{k}^{T}I_{r,k} \right|,$$

which asymptotically converges to

$$R_{k} \approx r_{k} \log_{2} P_{Tx} - r_{k} \log_{2} r - \log_{2} |D_{k}^{2}|.$$

(16)

Above expression is maximized, if we choose W_{k} as the unitary eigenbasis of $E_{k}^{T}(H^{H}H)^{-1}E_{k}$, see (14), such that D_{k}^{2} contains the eigenvalues, i.e., the elements of D_{k}^{2} are as different as possible. Thus, the transmit covariance matrix $S_{k} = P_{k}P_{k}^{H}$ of user k reads as

$$S_{k} = \frac{P_{Tx}/r}{H^{H}H}E_{k}E_{k}^{T}(H^{H}H)^{-1}E_{k}^{-1}E_{k}^{H},$$

(17)

with the channel pseudo-inverse $H^{+} = (H^{H}H)^{-1}H^{H}$. Note that r_{k} eigenvalues of S_{k} are P_{Tx}/r whereas the remaining $N - r_{k}$ ones are zero. Thus, S_{k} is a weighted orthogonal projector. Furthermore, $\text{tr}(S_{k}) = P_{Tx}/r \forall k$, so the power is uniformly allocated to the individual users in the broadcast channel as well. Comparing (17) with the simple solution of the transmit covariance matrix $Q_{k} = P_{Tx}/r \cdot I_{r,k}$ in the dual MAC, it becomes obvious that the optimum covariance matrices are much more difficult to find directly in the BC without using the rate duality, than in the dual MAC. Plugging the optimum D_{k}^{2} containing the eigenvalues of $E_{k}^{T}(H^{H}H)^{-1}E_{k}$ into (17) finally yields

$$R_{k} \approx r_{k} \log_{2} P_{Tx} - r_{k} \log_{2} r - \log_{2} |E_{k}^{T}(H^{H}H)^{-1}E_{k}|.$$

(16)

Hence, the maximum sum rate (7) in the dual MAC is also achieved in the BC.
V. Ergodic Rate Expressions

In this section, we derive expressions for the asymptotic sum rate when averaging over the channel realizations. The simple channel model in [9], [5] is a prerequisite for the application of the ergodic analysis due to the fact that an instantaneous analysis is not possible there. We choose a more realistic channel where near-far effects and channel correlations at the terminals are modeled as well, i.e., the individual users can also have different average channel powers. Thanks to our closed form expression of the maximum asymptotic rate for an instantaneous channel realization, the following ergodic analysis is basically feasible for any distribution of the channel coefficients. The channel matrices of the chosen near-far channel model with transmit correlations (in the MAC) are defined by \(H_k = \tilde{H}_k C_k^\frac{1}{2} \) \(\forall k \), where the elements of \(\tilde{H}_k \) are uncorrelated and share a zero-mean i.i.d. Gaussian distribution with variance one, and the Hermitian matrix \(C_k^\frac{1}{2} \) contains the correlations. An uncorrelated channel purely modeling the near-far effect can be obtained by setting \(C_k = c_k \text{I}_r \), where \(c_k > 0 \) is then the inverse path loss of user \(k \). Let the \(r \times r \) matrix \(C \) be defined via \(C = \text{blockdiag}\{ C_k \}_{k=1}^K \), then the frequently arising inverse of \(H^H H \) reads as \((H^H H)^{-1} = C^{-\frac{1}{2}} (\tilde{H}^H \tilde{H})^{-1} C^{-\frac{1}{2}} \), where \(\tilde{H}^H \tilde{H} \sim \mathcal{W}_r(N, I_r) \) has a Wishart distribution with \(N \) degrees of freedom and \((\tilde{H}^H \tilde{H})^{-1} \sim \mathcal{W}^{-1}_r(N, I_r) \) has an inverse Wishart distribution, see [12], [13]. Thus, the ergodic value for the channel dependent log-summand in the DPC sum rate expression (8) reads as [14]

\[
E[\log_2 |H^H H|] = \frac{1}{\ln 2} \sum_{\ell=0}^{r-1} \psi(N - \ell) + \sum_{k=1}^K \log_2 |C_k|,
\]

where the Digamma-function \(\psi(\cdot) \) with integer arguments is defined via [14]

\[
\psi(n + 1) = \psi(n) + \frac{1}{n} \quad \text{if } n \in \mathbb{N}, \quad \psi(1) = -\gamma,
\]

and \(\gamma \) is the Euler-Mascheroni constant. Note from (19) that different path losses and correlations in the channel coefficients simply lead to a shift of the asymptotic rate curve. Concerning the rate expressions with linear filtering, we exploit the property that the \(k \)th main diagonal block of \((H^H H)^{-1} \) is also inverse Wishart [13]:

\[
E_k^T (\tilde{H}^H \tilde{H})^{-1} E_k \sim \mathcal{W}_r^{-1}(N - r + r_k, I_{r_k}),
\]

In combination with \(E_k^T C^{-\frac{1}{2}} E_k^{\frac{1}{2}} = C_k^{-\frac{1}{2}} E_k^{\frac{1}{2}} \), this leads to the ergodic expression

\[
E[\log_2 |C_k|^{-\frac{1}{2}} E_k^T (\tilde{H}^H \tilde{H})^{-1} E_k C_k^{-\frac{1}{2}} |] = - \log_2 |C_k| - \frac{1}{\ln 2} \sum_{\ell=0}^{r_k-1} \psi(N - r + r_k - \ell),
\]

By means of (19) and (21), averaging over the asymptotic rate difference \(\Delta R \) in (9) between linear filtering and DPC yields

\[
E[\Delta R] \approx \frac{1}{\ln 2} \sum_{\ell=0}^{r-1} \psi(N - \ell) - \sum_{k=1}^K \sum_{\ell=0}^{r_k-1} \psi(N - r + r_k - \ell),
\]

from which we can observe that the near-far effect with different path losses and channel correlations does not influence the rate difference, since both DPC and linear filtering are affected in the same way.

The general expression (22) for the ergodic rate loss \(E[\Delta R] \) can be simplified by means of (20), when all users are equipped with the same number of antennas. For the first special case, assume that each user has \(\bar{r} > 1 \) antennas, i.e., \(r_1 = \ldots = r_K = \bar{r} \), such that the total number of antennas therefore is \(r = K \bar{r} \). After some manipulations, we obtain

\[
E[\Delta R] \approx \frac{1}{\ln 2} \sum_{\ell=1}^{K-1} \frac{(K-1)\bar{r}}{N - \ell} + \sum_{\ell=1}^{\bar{r}-1} \frac{(K-1)\ell}{N - K \bar{r} + \ell},
\]

which coincides with the results in [8], [9], but is a different representation. For convenience, we assume that the summation vanishes if the upper limit of a sum is smaller than the lower one, which happens for \(\bar{r} = 1 \). In this second special case with single antenna receivers, i.e., \(\bar{r} = 1 = r_k \) \(\forall k \) and \(r = K \), the second sum in (23) consequently vanishes, and the ergodic rate loss simplifies to

\[
E[\Delta R] \approx \frac{1}{\ln 2} \sum_{\ell=1}^{K-1} \frac{\ell}{N - \ell},
\]

which is also a result of [5].

VI. Numerical Examples

In Table I, we present the ergodic rate loss of linear filtering with respect to dirty paper coding for different parameters \(N, K, \bar{r}, r_1, \) and \(r_2 \), where we employed (23) and (24) for the case \(\bar{r} = r_1 = \ldots = r_K = \bar{r} \) (cf. [5], [8], [9]) and (22) for the case of different numbers of antennas \(r_1, r_2 \). It can be seen that a fully loaded single antenna system with \(K = N \) and \(\bar{r} = 1 \) has to face a significant rate reduction when switching from nonlinear to linear filtering. Moreover, comparing the \(K = 2 \) and \(\bar{r} = 3 \) system with the one where \(K = 3 \) and \(\bar{r} = 2 \), we observe that the rate loss in the first system is only 65 percent of the one in the second system for \(N = 6 \). We can infer that fewer terminals with many antennas have to face smaller rate losses than many terminals with only few antennas.

Next, we plot the ergodic sum capacity with DPC and the ergodic sum rate when linear filtering is applied versus the transmit power \(P_{Tx} \) to see how large \(P_{Tx} \) must be to let the asymptotic affine approximations become tight. To this end, we choose a system configuration where \(K = 2 \) users each having \(\bar{r} = 2 \) antennas are served by an \(N = 5 \) antenna base station. Different path losses are modeled by setting \(C_1 = I_2 \) and \(C_2 = 2 I_2 \), i.e., user 2 has a stronger channel on average, and we averaged over 1000 channel realizations. While the DPC sum capacity can easily be computed via the
algorithms in [15] or [16], an algorithm proven to reach the maximum sum rate under linear filtering does not seem to be available yet. Hence, we utilize our combinatorial approach in [17], which obtains the best sum rate hitherto known in the case of linear filtering. Fig. 1 shows that the asymptotic affine approximations become tight already for P_{Tx} smaller than 20dB and confirms the asymptotic ergodic rate loss $E[\Delta R]$ ≈ 2.04 from Table I which is independent of the different average channel powers. For a multiplexing gain of $r = 4$ as in the chosen system configuration, this translates to an asymptotic power loss of 1.54dB of linear filtering with respect to DPC.

VII. CONCLUSION

In this paper, we derived the asymptotic sum capacity which is maximally achievable with linear filtering in the broadcast channel by means of our rate duality linking the rate region of the multiple access channel with the broadcast channel rate region. Due to the closed form expression of the asymptotic sum capacity for every single channel realization, the instantaneous rate loss with respect to dirty paper coding was presented, and the ergodic rate loss can quickly be computed or simulated for any distribution of the fading process. As an example, we presented the solution of the ergodic rate loss for a simple fading model incorporating the near-far effect and correlations at the mobiles. Another key result proven is that block-diagonalization is the asymptotically optimum transmission strategy in the broadcast channel.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–596, November/December 1999.

[2] J. Salo, P. Suvikunnas, H. M. El-Sallabi, and P. Vainikainen, “Some results on MIMO mutual information: the high SNR case,” in Global Telecommunications Conference (Globecom ‘04), vol. 2, December 2004, pp. 943–947.

[3] J. Salo and P. Suvikunnas and H. M. El-Sallabi and P. Vainikainen, “Some Insights into MIMO Mutual Information: The High SNR Case,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3299–3301, November 2006.

[4] N. Prasad and M. K. Varanasi, “Throughput analysis for MIMO systems in the high SNR regime,” in International Symposium on Information Theory (ISIT), July 2006, pp. 1954–1958.

[5] N. Jindal, “High SNR Analysis of MIMO Broadcast Channels,” in International Symposium on Information Theory (ISIT) 2005, September 2005, pp. 2310–2314.

[6] S. Shamai and S. Verdú, “The Impact of Frequency-Flat Fading on the Spectral Efficiency of CDMA,” IEEE Transactions on Information Theory, vol. 47, no. 4, pp. 1302–1327, May 2001.

[7] A. Lozano, A. M. Tulino, and S. Verdú, “High-SNR Power Offset in Multiantenna Communication,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4134–4151, December 2005.

[8] J. Lee and N. Jindal, “Dirty Paper Coding vs. Linear Precoding for MIMO Broadcast Channels,” in 40th Asilomar Conference on Signals, Systems, and Computers (Asilomar 2006), October 2006, pp. 779–783.

[9] ——, “High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding Versus Linear Precoding,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4787–4792, December 2007.

[10] R. Hunger and M. Joham, “A General Rate Duality of the MIMO Multiple Access Channel and the MIMO Broadcast Channel,” April 2008, Accepted for presentation at Globecom 2008. Available at http://arxiv.org/abs/0803.2427.

[11] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multituser MIMO Channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461–471, February 2004.

[12] R. J. Muirhead, Aspects of Multivariate Statistical Theory, 2nd ed. Wiley, 2005.

[13] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. Chapman & Hall /CRC, 1999.

[14] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless Communications. Now Publishers Inc, 2004.

[15] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. J. Goldsmith, “Sum Power Iterative Water-Filling for Multi-Antenna Gaussian Broadcast Channels,” IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1570–1580, 2005.

[16] R. Hunger, D. A. Schmidt, and W. Utschick, “Sum-Capacity and MMSE for the MIMO Broadcast Channel without Eigenvalue Decompositions,” in IEEE International Symposium on Information Theory (ISIT), Nice, June 2007.

[17] R. Hunger, D. A. Schmidt, and M. Joham, “A Combinatorial Approach to Maximizing the Sum Rate in the MIMO BC with Linear Precoding,” Submitted to Asilomar 2008.