Development of food safety risk assessment tools based on molecular typing and WGS of *Campylobacter jejuni* genome

Istituto Zooprofilattico Sperimentale dell’ Abruzzo e del Molise “G. Caporale”, Teramo, Italy, AI Ardelean, P Calistri, A Giovannini, G Garofolo, A Di Pasquale, A Conte and D MorelliID

Abstract

The ‘learning-by-doing’ EU-FORA fellowship programme in the development of risk assessment tools based on molecular typing and WGS of *Campylobacter jejuni* genome was structured into two main activities: the primary one focused on training on risk assessment methodology and the secondary one in starting and enhancing the cooperation between the hosting and home organisations, or other joint activities. The primary activities had three subsequent work packages (WPs): WP1 data organisation, WP2 cluster and association analyses, and WP3 development of risk assessment models. The secondary activities have branched into one workshop and the initiation of a cooperation programme between the hosting and home organisations. In the last quarter, the fellow had contributed to the characterisation of some pathogens in possible response to a changing climate, part of the CLEFSA project. The fellow attended various forms of training: online and on-site courses, and also participated at several conferences and meetings for improving his knowledge and skills, contributing to performing the *Campylobacter* risk assessment and source attribution.

© 2019 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: *Campylobacter*, source attribution, risk assessment

Correspondence: eu-fora@efsa.europa.eu
Acknowledgements: This report is funded by EFSA as part of the EU-FORA programme.

Suggested citation: Istituto Zooprofilattico Sperimentale dell’ Abruzzo e del Molise “G. Caporale”, Teramo, Italy, Ardelean AI, Calisti P, Giovannini A, Garofolo G, Di Pasquale A, Conte A and Morelli D, 2019. Development of food safety risk assessment tools based on molecular typing and WGS of Campylobacter jejuni genome. EFSA Journal 2019;17(S2):e170903, 18 pp. https://doi.org/10.2903/j.efsa.2019.e170903

ISSN: 1831-4732

© 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Table of contents

Section	Page
Abstract	1
1. Introduction	4
1.1. About EU-FORA	4
1.2. General framework	4
2. Description of work programme	4
2.1. Aims	4
2.2. Activities/methods	5
2.2.1. WP1. Data organisation	5
2.2.2. WP2. Cluster and association analyses	6
2.2.3. WP3. Development of risk assessment models	7
2.2.4. Secondary activities	7
2.2.4.1. Agreements and cooperation	7
2.2.4.2. Additional activities	8
3. Conclusions	8
3.1. Risk assessment in *C. jejuni*	8
3.2. Building cooperation	10
References	10
Abbreviations	11
Appendix A – The on-site courses and trainings where fellow attended	13
Appendix B – The online courses and training where fellow attended	14
Appendix C – The summary agenda of ‘Animal health risk assessment and vector-borne diseases’ workshop at Bucharest	15
Annex A – Poster Uncertainty assessment in *Campylobacter* spp. source attribution models: some qualitative approaches	16
Annex B – Poster EFSA EU-FORA – The European Food Risk Assessment Fellowship Programme	17
Annex C – Poster The exposure to *Campylobacter* spp. of the food industry workers: a short overview	18
1. Introduction

1.1. About EU-FORA

For building the European Union risk assessment capacity and knowledge community, the European Food Safety Authority (EFSA) initiated the European Food Risk Assessment Fellowship Programme (EU-FORA), as part of the EFSA Strategic Objective. The programme is focused on training in risk assessment and in intensifying exchange and cooperation between different organisations and EFSA. The training is based on ‘learning by doing’ risk assessment methodologies and practices by involving the fellow in one project linked with food safety from the hosting site, where risk assessment is a significant part. The Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’ (IZSAM) initiated many research projects in this field through the Italian National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis.

1.2. General framework

The Campylobacter spp. are worldwide distributed bacteria and represent one important microbiological hazard linked with food-borne zoonosis. The gastroenteritis caused by C. jejuni and C. coli consists of 6 days watery or bloody diarrhoea, self-limiting disease in the majority of the cases, with or without associated fever, weight loss, cramps and headache (Man, 2011; MSD, 2019). Furthermore, C. jejuni is associated with a range of other gastrointestinal and extra-gastrointestinal infectious conditions including bacteremia and sepsis, also it may lead to autoimmune conditions known as Guillain–Barré syndrome (GBS), Miller Fisher syndrome, irritable bowel syndrome and Bell’s palsy (unilateral facial paralysis), and colorectal cancer (Kaakoush et al., 2015; MSD, 2019). Because the precise role of Campylobacter species in the development of these clinical conditions is unknown and the highest prevalence of the gastrointestinal reported conditions caused by this genus, more accurate methodologies in their surveillance and monitoring are necessary. For these reasons the surveillance of Campylobacter spp. is part of the EFSA strategy. The legal framework for its monitoring is Regulation (EC) 2160/2003 (European Union, 2003a) on the control of Salmonella and other specified food-borne zoonotic agents and Directive 2003/99/EC on the monitoring of zoonosis and zoonotic agents, however, reporting Campylobacter infection is not mandatory in all countries (European Union, 2003b).

Considering the concern in public health of the Campylobacter spp. contaminations along the production chain of some food products, the IZSAM is currently involved in several epidemiology studies. The following IZSAM’s units are involved: the Italian National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (COVEPI), the Italian National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatics analysis (GENPAT), and the Italian National Reference Laboratory for Campylobacter (NRL).

2. Description of work programme

2.1. Aims

The first objective of the work programme was ‘learning-by-doing’ of the fellow in the food safety risk assessment methodology, including collecting, normalisation, and analysis of the data and involving in developing and validation of a set of risk assessment epidemiological tools based on molecular typing and WGS of Campylobacter jejuni genomes.

The work programme had three subsequent work packages (WP), focussed on C. jejuni:

- WP1. Data organisation: focuses on reviewing the literature, collecting the raw data available, analysing, normalising and organising the data for subsequent epidemiological analyses.
- WP2. Cluster and association analyses: with the purpose to understanding and gaining practical skills in bioinformatics, becoming familiar with tools used in bioinformatics, being trained by doing various statistical methods and approaches for data analysis.
- WP3. Development of risk assessment models: through involvement in the development and validation of a set of risk assessment model considering the main C. jejuni genotypes and estimating their contribution in the whole exposure of consumers from Italy.

The second objective was to enhance relationships among home and hosting organisation. The IZSAM is FAO Reference Centre for Veterinary Epidemiology and OIE Collaborating Centre for
Veterinary Training, Epidemiology, Food Safety and Animal Welfare, and finding a solution for agreement and cooperation between organisations was considered.

The fellow has been part of the COVEPI’s team involved in the activities of this working programme. In particular, two senior epidemiologists and a statistician have been part of the team, which worked closely with the bioinformaticians of the GENPAT, and the personnel of the NRL for Campylobacter. The two senior epidemiologists of the COVEPI’s team have acted as mentors for the fellow, assisting him on a daily basis during all the activities carried out. A coordination meeting among the fellow, mentor and supervisor has been held regularly, on a weekly basis, to verify the work done and discuss the implications of the results obtained and plan subsequent activities. The fellow specifically worked on the analysis of the data generated by the molecular typing of C. jejuni, and in developing, testing and validation of different tools for the identification of spatiotemporal clusters of epidemiological relevance. The fellow had followed the whole data production and processing process, from the sequencing activities, carried out at laboratory to the bioinformatics analyses and statistical analyses performed on sequence data. In addition, the fellow had benefited greatly by the participation of IZSAM to the activities of the COHESIVE project, with his involvement in selected project meetings.

2.2. Activities/methods

2.2.1. WP1. Data organisation

In the beginning, the advanced literature search has been conducted regarding the EFSA and international guidance in risk assessment and source attribution based on whole genome sequencing and antimicrobial resistance (AMR), to learn and understand better what is the actual scientific level in the field and what are the best ways to approach the study (and not limited to that, including also the scientific literature in the field) (EFSA BIOHAZ Panel, 2013).

![Laboratory flow chart for Campylobacter spp. analysis](image)

Figure 1: Laboratory flow chart for *Campylobacter* spp. analysis

The purpose of WP1 was to obtain the *Campylobacter* database containing the molecular typing results and related epidemiologically relevant metadata, ready to be analysed. The large part of this WP it was made in the first step at the Italian National Reference Laboratory (NRL) for *Campylobacter*. The protocol to *Campylobacter* spp. surveillance is routinely performed by Italian NRL’s and is made by cultivation and identification according to EN ISO 10272 part 1 and 2 method (ISO, 2006: Parts 1 and 2). The genotyping characterisation of the isolates are made through species typing by molecularly confirmation by multiplex polymerase chain reaction (PCR) (Wang et al., 2002), flaA-SVR sequencing (Nachamkin et al., 1993), pulsed-field gel electrophoresis (PFGE) (Institute of Environmental Science and Research, 2013) and BioNumerics software version 7.6 (Applied Maths, 2019), in silico multilocus sequence typing (MLST) (Dingle et al., 2008; Jolley et al., 2018; Seemann, 2019), and since 2017, C. jejuni isolates are progressively submitted to Core Genome MLST (cgMLST) for a better discriminatory analysis (O’Mahony et al., 2011; Llarena et al., 2017). Part of these sequencing activities is carried out under various national and international projects. The AMR phenotype characterisation is made by testing of susceptibility to seven antimicrobials with a micro-broth dilution method using the ‘Sensititre’ automated system (TREK Diagnostic Systems, Biomedical Service, Italy) (Kittl et al., 2013; EFSA, 2019).
To date about 3,000 isolates of Campylobacter spp., respectively, collected in entire Italy, are available in the IZSAM's strains collection. In this step, the fellow was actively involved in some specific analytical technique linked with cultivation, genotypic and phenotypic characterisation of Campylobacter, having the opportunity to develop and improve his laboratory skills and get acquainted with the National Veterinary Information System (https://www.vetinfo.sanita.it/), managed by IZSAM. During this WP, the fellow had learned and understood the entire laboratory workflow (Figure 1) until obtaining the raw data and their recording into the Italian information system. At the same time, the fellow became familiar with the international Campylobacter MLST database (https://pubmlst.org/) (Jolley et al., 2018), and used it for comparison and normalisation of the data. IZSAM collects and registers a well-defined set of standardised data for each sample tested in its laboratories. In addition, several samples are collected in the framework of national control plans and all related data are registered into the National Veterinary Information System. All these factors allow IZSAM to retrieve relevant epidemiological data for all tested samples. These epidemiological metadata are fundamental for a correct interpretation of the microbiological results, including the outcomes of molecular typing and phenotyping (ex: antimicrobial resistance). A second step has been done in COVEPI, where a detailed data analysis plan has been developed, including the description of the dataset to be retrieved, the type of data quality checks to be performed and the format of the resulting validated databases. After extracting the raw data, the fellow retrieved, verified, normalised and organised the data for subsequent epidemiological analyses. These data were used in source attribution for human illness through microbial subtyping. (EFSA, 2008, 2019)

![Figure 2: Bioinformatics flow chart for Campylobacter spp. analysis](image)

2.2.2. WP2. Cluster and association analyses

WP2 was focused on obtaining the results from the analyses of molecular typing data and identification of main 'epi-clusters' of C. jejuni by analysing the genotypes and phenotypes data as well as epidemiological metadata. In the first step, the fellow had the opportunity to work in the Italian National Reference Centre for Whole Genome Sequencing of microbial pathogens (GENPAT). The bioinformaticians of the GENPAT supported the manipulation and analysis of sequencing data and introduced the fellow in bioinformatics and familiarised him to the bioinformatics software (Figure 3). For comparative analysis based on cgMLST data, the fellow learned and used the minimum spanning tree with GrapeTree software (Figure 2) (Zhou et al., 2018). The second step had been in COVEPI’s Statistics and GIS Unit where the fellow was trained in using QGIS geographic information system software. During the third step, in the COVEPI, the fellow analysed the data for the purpose of verifying statistically significant genetic clusters of Campylobacter spp. (C. jejuni) associated with: the particular species, farm types, food production products; specific phenotypic characteristics, like AMR patterns; or specific spatiotemporal patterns and persistence in specific groups of farms. Working with a big amount of data was challenging, prompting to consider to use some business intelligence software like MicroStrategy.
2.2.3. WP3. Development of risk assessment models

During WP3, in COVEPI unit, different source attribution methods had been used for finding and characterisation of the main C. jejuni genotypes and estimating their contribution to the whole exposure of Italian consumers. The development and validation of a risk assessment model considering the genotypes and phenotypes were considered. In this step, the fellow analysed the microbial genotypic and phenotypic characteristics of the isolates, to find the common fingerprint and to define the ‘epi-cluster’. Within the team, different biostatistical methodologies were tested.

Another approach has been attempted in order to define a particular methodology designated to assess the sources of uncertainties in source attribution models used in Campylobacter microbial risk assessment (MRA). The considered methodologies were: failure mode effect analysis (FMEA), fault tree analysis (FTA) and key process indicators (KPI)/quality indicators (QIs). Before starting the assessment, the actors and the stages needed to be defined (pre-preanalytical, preanalytical, analytical, postanalytical and post-postanalytical).

2.2.4. Secondary activities

Secondary activities are referred about agreements and cooperation between hosting sites and organisations of origin, cooperation between different organisations and also to other activities not mentioned before, in which the fellow played an active role.

2.2.4.1. Agreements and cooperation

In view of recent epidemics in Europe, taking advantage of this fellowship programme during this period, the foundations have been laid for establishing and strengthening the collaboration between the national reference centres in Italy and Romania, from the IZSAM, Teramo, and the Institute for Diagnosis and Animal Health (IDAH), Bucharest. The first step was to have 2 days ‘Animal health risk assessment and vector-borne diseases’ workshop during the 2–3 April 2019 for the specialists from IDAH in Bucharest, under scientific coordination of the fellow and participation of the tutors from IZSAM, Paolo Calistri, and Federica Monaco, and from Agricultural Research Council – Onderstepoort Veterinary Research (ARC-OVR), Gert Venter. The second step was the assessment of the needs for professional training in epidemiology for Romanian specialists, for the purpose to find the optimum solution to improve and increase the animal health risk assessment capacity. Depending on the size of the training needs, consideration has been given to the temporary training of a limited number of specialists at the IZSAM, or the initiation of a twinning project, if the needs are more complex. This process is in progress.

In the same context, the European BioSafety Association (EBSA), during their 22nd annual conference at Bucharest, from the total of 42, offered sponsored participation for 24 specialists from Romania including from IDAH and ANSVSA, for participation at the preconference courses (8) in the field of biosafety and biosecurity, and also for participation at the conference (6). Considering the importance of the topics in this region, EBSA increased more than four times the numbers of sponsored participation for the persons from Balkan region (Romania, Bulgaria, Republic of Moldova,

Figure 3: The cgMLST data flow chart for Campylobacter spp.
Albania, Croatia, Ukraine, Georgia, and Greece) for this year. After this successful experience, different types of collaboration between organisations and their members have started to be considered.

In the last quarter of the EU-FORA programme, the fellow had contributed to the characterisation of some pathogens (like *Campylobacter jejuni*) in possible response to a changing climate, in terms of possible increase in exposure or pathogenicity under a specific climate change scenario, part of the CLEFSA project, coordinated by Angelo Maggiore (EFSA).

2.2.4.2. Additional activities

During 13–15 November 2018, the fellow participated at the Romanian National Sanitary Veterinary and Food Safety Authority (ANSVSA) meeting in Baia-Mare, Romania, for the presentation of the EU-FORA fellowship programme and introduction in risk management, and basic concepts in risk assessment, to the specialists from the national laboratory network.

The fellow participated in the workshop 'Accounting for uncertainty in data-poor scenarios: Case studies on risk analysis in food safety' and at the International Conference on Uncertainty in Risk Analysis, 20–22 February 2019, Berlin at the German Federal Institute for Risk Assessment (BfR), with 'Uncertainty assessment in *Campylobacter* spp. source attribution models: some qualitative approaches' poster presentation at 'Methods for uncertainty analysis' thematic area.

The fellow participated at the 22nd annual international conference 'Burning topics in Biosafety' of the EBSA at Bucharest, Romania, in 2–5 April 2019, where together with the experts Paolo Calistri (IZSAM) and Uwe Mueller-Doblies (MSD), moderated the break-out 'Biosafety and biosecurity in the field in case of an emergency'. Also, the fellow presented two posters: 'The exposure to *Campylobacter* spp. of the food industry workers: a short overview' and 'EFSA EU-FORA – The European Food Risk Assessment Fellowship Programme'.

Like invited guest and collaborator, the fellow participated at the 'Transylvanian Experimental Neuroscience Summer School – TENSS 2019' during 15–16 June 2019, Pike Lake, Romania, organised by the Transylvanian Institute of Neuroscience (TINS).

3. Conclusions

3.1. Risk assessment in *C. jejuni*

The EFSA EU-FORA ‘learning by doing’ programme is among the few from Europe which is also addressed to mid-career scientists and open to those who do not necessarily come from the academic field, being a real fortune for people from East European countries. This was a great opportunity for the fellow to consolidate his specialised knowledge and skills in food safety and veterinary epidemiology and public health, by working in a prestigious international and national reference centre. He gained experience by participating in the dedicated program and other activities within the host organisation, better understanding the complex workflow in the specific risk assessment and, at the same time, learned how to investigate an outbreak epidemic, its strengths and weaknesses.
This training offered the opportunity to work both independently and in a team, to integrate the multidisciplinary and evidence-based veterinary medicine approach into assessing the risk of Campylobacter and assigning the source in particular.

Applying microbial subtyping methodology in Campylobacter source attribution, some characteristics of its population in Italy has been identified. The complexity and the high volume of data provided by cgMLST, at this time, in the absence of a common database, rendered somehow difficult the source attribution based just on this information, anyway, the evidence indicates the existence within C. jejuni population of one ‘relatively stable’ cluster and one ‘very dynamic’. Analysing the AMR fingerprint data of the ‘relative stable’ C. jejuni population, considering the characteristics of the antimicrobial tested, even in the absence of the direct evidence, has supposed that the population had been selected from strains located from another site than the intestinal tract of the animals. The data gathered were not obtained on the basis of a well-defined sampling program, however, the complexity of the information obtained and analysed allows the initiation of a description of the C. jejuni population from Italy, that

Figure 4: Fault tree analysis diagram in poultry carcass contamination, considering the source of Campylobacter spp. from poultry
will represent the foundation for building the common database and harmonised methodology for sub-
typing, analysis and storage the data and, in the future, the development of linkage mechanisms
(EFSA BIOHAZ Panel, 2013, 2014).

After applying in microbial risk assessment in poultry of some basic cause-effect and effect-cause
models (like FMEA respectively FTA) and key process indicators methodologies, a potential scoring
system and KPI have been designed and proposed (Table 1) (Wikipedia, the free encyclopedia, 2019a,
b) The results were used to draw the flow chart in source attribution in poultry (Figure 4).

During this programme, the fellow had gained skills in using different software like GrapeTree,
QGIS, MicroStrategy and had been initiated in using R.

3.2. Building cooperation

The future agreement and collaboration between the IZSAM, Teramo, and the IDAH, Bucharest,
represents a priority especially for the Romanian part. In this context, several fields for collaboration
have been designed, like laboratory activity and epidemiology, public health, and risk analysis.

Many fellows from the 2nd series of the EU-FORA programme had worked together at the poster
for the EBSA conference, named 'The exposure to Campylobacter spp. of the food industry workers: a
short overview'. The greatest gain of this project is represented by the established human relationships
and networking. Starting with relationships with the EFSA coordinators experts, continuing with
program coordinators, tutors, experts, and personnel from the hosting sites, and last but not least with
the fellow colleagues, this series adds a brick at the building of the future of the EU.

Table 1: The list of some key performance indicators (KPI)/quality indicators (QIs) tailored for risk
assessment

Stage	Weighting field	KPI/QIs
The KPI with priority 1		a) Number of events, incident or accident/1,000 units of goods
		b) Number of events, incident or accident/1,000 units of time
preanalytical	Weighting the average of the event	c) Number of positive Campylobacter spp. samples/1,000 units of goods
		d) Number of positive Campylobacter spp. samples/units of time
		e) Number of positive Campylobacter spp. CFU/g per 1,000 units of goods
		Number of positive Campylobacter spp. CFU/g per units of time
preanalytical	Weighting the average of the manufacturing process	a) Number of goods/units of time
		b) Number of servings/unit of goods
		c) Number of personnel/organisation
		d) Number of personnel necessary/1,000 units of goods
		e) Number of personnel necessary/units of time
preanalytical	Weighting the average of the transport process	a) Number of goods/units of transport
		b) Number of units of transport/unit of time
		c) Number of goods transported/units of time

CFU: colony forming unit.
The KPI was defined with priority 1, compulsory; 2, important; 3, proposed; 4, valuable.

References

Applied Maths, 2019. BioNumerics version 7.6 released. Available online: http://www.applied-maths.com/bionumerics

Dingle KE, McCarthy ND and Cody AJ, 2008. Extended sequence typing of Campylobacter spp., United Kingdom. Emerging Infectious Diseases, 14, 1620–1622. https://doi.org/10.3201/ eid1410.071109

European Union, 2003a. Directive 2003/99/EC of the European Parliament and of the Council on the monitoring of
zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0099&qid=1561878805470&from=EN
European Union, 2003b. REGULATION (EC) No 2160/2003 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the control of Salmonella and other specified food-borne zoonotic agents. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003R2160&from=EN

EFSA (European Food Safety Authority), 2008. Scientific Opinion of the Panel on Biological Hazards on a request from EFSA on Overview of methods for source attribution for human illness from food borne microbiological hazards. EFSA Journal 2008;17(6):764, 143 pp. https://doi.org/10.2903/j.efsa.2008.764

EFSA (European Food Safety Authority), 2019. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA Journal 2019;17(6):5709, 122 pp. https://doi.org/10.2903/j.efsa.2019.5709

EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: Part 1 evaluation of methods and application. EFSA Journal 2013;11(12):3502, 84 pp. https://doi.org/10.2903/j.efsa.2013.3502

EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2014. Scientific Opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: Part 2: surveillance and data manage. EFSA Journal 2014;12(7):3784, 46 pp. https://doi.org/10.2903/j.efsa.2014.3784

Institute of Environmental Science and Research, 2013. Standard Operating Procedure for PulseNet PFGE of Campylobacter jejuni. (T. I. (ESR), Editor). Available online: http://www.pulseteninternational.org/assets/PulseNet/uploads/pfge/PNL03_CampyPFGe protocol.pdf

ISO 10272-1:2006 (en) Microbiology of the food chain — Horizontal method for detection and enumeration of Campylobacter spp. — Part 1: Detection method.

ISO 10272-2:2006 (en) Microbiology of the food chain — Horizontal method for detection and enumeration of Campylobacter spp. — Part 2: Colony-count technique.

Jolley KA, Bray JE and Maiden MC, 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; peer review: 2 approved]. Wellcome Open Reserach, 3, 124. https://doi.org/10.12688/wellcomeopenres.14826.1

Kaakouch N, Castano-Rodriguez N, Mitchell HA and Man SM, 2015. Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28, 687–720. https://doi.org/10.1128/cmr.00006-1

Kittl S, Heckel G, Korczak BM and Kuhnert P, 2013. Source attribution of human Campylobacter isolates by MLST and Fla-typing and association of genotypes with Quinolone resistance. PLoS ONE, 8, e81796. https://doi.org/10.1371/journal.pone.0081796

Llarena A, Taboada E and Rossi M, 2017. Whole-genome sequencing in epidemiology of Campylobacter jejuni infections. Journal of Clinical Microbiology, 55, 1269–1275. https://doi.org/10.1128/JCM.00017-17

Man S, 2011. The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology and Hepatology, 25, 669–685. https://doi.org/10.1038/nrgastro.2011.191

MSD, 2019. MSD Manual Professional Version. Available online: https://www.msdmanuals.com/professional/infectious-diseases/gram-negative-bacilli/campylobacter-and-related-infections?query=campylobacter%20jejuni

Nachamin I, Bohachick K and Patton CM, 1993. Flagellin gene typing of Campylobacter jejuni by restriction fragment length polymorphism analysis. Journal of Clinical Microbiology, 31, 1531–1536. https://doi.org/10.1128/JCM.31.6.1531–1536.1993

O’Mahony E, Buckley JF, Bolton D, Whyte P and Fanning S, 2011. Molecular epidemiology of Campylobacter isolates from poultry production units in Southern Ireland. PLoS ONE, 6, e28490. https://doi.org/10.1371/journal.pone.0028490

Seemann T, 2019. mlst Github. Available online: https://github.com/tseemann/mlst

Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, Woodward DL and Rodgers FG, 2002. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. Journal of Clinical Microbiology, 40, 4744–4747. https://doi.org/10.1128/jcm.40.12.4744–4747.2002

Wikipedia, the free encyclopedia, 2019a. Failure mode and effects analysis. Available online: https://en.wikipedia.org/wiki/Failure_mode_andEffects_analysis

Wikipedia, the free encyclopedia, 2019b. Fault tree analysis. Available online: https://en.wikipedia.org/wiki/Fault_tree_analysis

Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N and Vaz C, 2018. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Research, 28, https://doi.org/10.1101/gr.23297.117

Abbreviations

Abbreviation	Description
AMR	antimicrobial resistance
ANSVSA	Romanian National Sanitary Veterinary and Food Safety Authority
ARC-OVR	Agricultural Research Council – Onderstootpoort Veterinary Research, South Africa
BFR	German Federal Institute for Risk Assessment
CFU	colony forming unit
Risk assessment tools based on molecular typing and WGS of *C. jejuni* genome

cgMLST Core Genome MultiLocus Sequence Typing
CLEFSA Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality (CLEFSA)’ project conducted by the EFSA Scientific Committee - Emerging Risks Unit (SCER)
COHESIVE Cohesive – One Health Structure In Europe- is a 3-year project, which aims to develop sustainable One Health approaches with respect to signalling, assessing and controlling zoonoses at the national level within EU countries and across borders
COVEPI Italian National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (IZSAM)
EBSA European BioSafety Association
EU-FORA The European Food Risk Assessment Fellowship Programme
FAO The Food and Agriculture Organization of the United Nations
flaA-SVR The DNA sequence of the flagellin A short variable region
FMEA failure mode effect analysis
FTA fault tree analysis
GENPAT Italian National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatics analysis (IZSAM)
IDAH Institute for Diagnosis and Animal Health, Bucharest, Romania
IZSAM Istituto Zooprofilattico Sperimentale dell’ Abruzzo e del Molise “G. Caporale”, Teramo, Italy
KPI key process indicators
MLST multilocus sequence typing
MRA microbial risk assessment
MSD Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. Kenilworth, NJ, USA
NRL National Reference Laboratory
OIE The World Organisation for Animal Health
PCR polymerase chain reaction
PFGE pulsed-field gel electrophoresis
QIs quality indicators
TEENS-2019 Transylvanian Experimental Neuroscience Summer School –2019
TINS The Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
VBD vector-borne diseases
WGS whole genome sequencing
WP work package
Appendix A – The on-site courses and training where fellow attended

Subject	Organisation	Location	Period	Time	Tutor’s
Internal training on risk assessment methods	IZSAM	Teramo, Italy	29.10.2018	6 h	Paolo Calistri
Introduction in bioinformatics	IZSAM	Teramo, Italy	8.11.2018	2 h	Adriano Di Pasquale Antonio Rinaldi
The use of GIS and QGIS software	IZSAM	Teramo, Italy	13.3–13.4.2019	16 h	Susanna Tora
Microstrategy Dashboarding Data with Dossiers	Microstrategy	Milano, Italy	11.3.2017	8 h	Stefano Sartorio
Microstrategy Dashboarding Data with Dossiers	Microstrategy	Roma, Italy	6.5.2017	8 h	Stefano Sartorio
Microstrategy Advanced Reporting	Microstrategy	Roma, Italy	7.5.2017	8 h	Stefano Sartorio
Microstrategy Enterprise Mobility	Microstrategy	Roma, Italy	8.5.2017	8 h	Stefano Sartorio
Microstrategy Enterprise Applications	Microstrategy	Roma, Italy	9.5.2017	8 h	Stefano Sartorio
Transylvanian Experimental Neuroscience Summer School – TENSS 2019 (advanced modelling of biological systems, basic and advanced concepts in signal processing, statistical methods for the evaluation of dynamical systems, principal component analysis, machine learning)	TINS	Pike Lake, Romania	15–16 June 2019	6 h	Raul C. Muresan Vasile V.Moca Christian Machens Fede Carnevale
Appendix B – The online courses and training where fellow attended

Subject	Organisation	Period	Time	Tutor’s
The FoodEx2 classification system and guidance on its harmonised use	EFSA	26 September 2018	1 h	Sofia Ioannidou, Laura Kirwan, Alban Shahaj
The FoodEx2 classification system and guidance on its harmonised use	EFSA	3 October 2018	1 h	Sofia Ioannidou, Laura Kirwan, Alban Shahaj
How to report surveillance data on Transmissible Spongiform Encephalopathies using the EFSA tool	EFSA	21 January 2019	1 h	wel PoiGhe
Learn more about the risk assessment of phthalates used in plastic food contact materials	EFSA	15 March 2019	1 h	wel PoiGhe
EFSA’s new dedicated support to SMEs	EFSA	24 May 2019	1/2 h	Remigio Marano, Patricia Romero
EPI-interactive webinar: Introduction to R Shiny	EPI-Interactive	30 May 2019	1 h	Uli Muellner
IHU BioSecurity Free Webinar	International Hellenic University	15 May 2019	2 h	Gijsbert van Willigen, Patrick Rudelsheim
Medical School Pathology Courses	Dr. Minarcik’s Online Medical School Pathology Course	1.9.2018-31.5.2019	24 h	John R. Minarcik
Illness Outbreaks linked to Enteric Zoonoses and the Interconnectedness of Human and Animal Health	Pet Poison Helpline	24 April 2019	1 h	Megin Nichols
Appendix C – The summary agenda of ‘Animal health risk assessment and vector-borne diseases’ workshop at Bucharest

Subject	Tutors
The *Culicoides* diseases in an endemic area	G. Venter
The vector collection methods	G. Venter
Workgroup schedule	G. Venter/A.I. Ardelean
Epidemiological surveillance and risk factors	P. Calistri
Introduction to risk assessment in animal health	P. Calistri
Lumpy skin disease: epidemiology and control aspects	F. Monaco/P. Calistri
Surveillance of West Nile disease in Italy: example of an integrated One Health approach	F. Monaco/P. Calistri
Geographical information systems: tools for VBD surveillance and control	P. Calistri

VBD: vector-borne disease.
Annex A – Poster Uncertainty assessment in *Campylobacter* spp. source attribution models: some qualitative approaches

Introduction:

In the majority of the EU countries, with the exception of Nordic countries, about 30-50% of broiler flocks are contaminated when tested at the end of the rearing period, before slaughter. In the contaminated flocks about 10-40% of animals that survive the rearing period are still shedding *Campylobacter jejuni* at slaughter. The sources of contaminated flocks vary among countries. In Germany, the prevalence of contaminated flocks varies annually, from zero to 84%. The prevalence of *Campylobacter* spp. in broiler flocks is not only a problem for human health, but also for animal welfare and productivity. However, no systematic studies have been done to explain this high level of contamination in flocks. A different approach considering the origin of the birds was taken in this study. The contribution of broiler meat to the burden of *Campylobacter* infections in humans, the continuous improvement of microbiological risk assessment (MRA) and the development of sophisticated source attribution models, incorporating genomic and typing data, are more often used as investigating tools. Therefore, we developed a source attribution model to investigate whether the contribution of broiler meat to the burden of *Campylobacter* infections in humans is real and how it can be improved. This research was supported by the EU EFSA fellowship program cohort 2018-2019.

Method:

For the purpose of identifying the uncertainty sources, we considered some methodologies as PHRA, PTA, and KPI. Before starting the assessment, the entire workflow was well-defined, which is key for performing a proper analysis. The uncertainty sources were evaluated using pre-analytical, analytical, post-analytical and post-post-analytical. Also, the actors were defined for each stage.

Results:

During the high level analysis (HIA) by using cause-effect diagram, some failure mode events were identified. The standard PHRA does not contain any direct input linked with HIA, therefore, for this purpose the health effect factor (H) was considered. The combined uncertainty sources were evaluated using the KPI model. The uncertainty sources were also considered. The major risk categories were adapted and proposed to be linked with any failure mode events, including, and security.

Discussion:

For a powerful MRA a harmonized mutual agreed methodology (referring to PHRA, PTA and KPI) is more necessary to verify. Given that it can only be the opportunity to continue the research on the source attribution model and the opportunity to evaluate whether the contribution of broiler meat to the burden of *Campylobacter* infections in humans is real and how it can be improved.
Risk assessment tools based on molecular typing and WGS of *C. jejuni* genome

Annex B – Poster EFSA EU-FORA – The European Food Risk Assessment Fellowship Programme

EBSA22- Annual Meeting of the European Biosafety Association

4-5 April 2019
Caro Hotel, Bucharest, Romania

EU-FORA – The European Food Risk Assessment Fellowship Programme

Stylianos KOULOURIS (1), Cristina Alonso ANDICOBERRY (1), Christoph UNGER (2), Adrian I. ARDELEAN (3)

(1) European Food Safety Authority
(2) Austrian Agency for Health and Food Safety
(3) European Food Safety Authority-EU-FORA Fellow at Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Italy

- one-week training module in Berlin at the German Federal Institute for Risk Assessment (BfR), and
- one-week training module in Athens at Hellenic Food Authority (EFET).

The EU-FORA Cohort 2018-2019

The programme aims to attract and train a new generation of scientists with professional backgrounds in: medicine, veterinary medicine, food microbiology, food microbiology, public health, molecular biology, and toxicology.

The participants come from Cyprus, Germany, Greece, Italy, Portugal, Romania, Spain, and UK.

The EU-FORA concept

Is based on learning by doing and practicing through the placement of a competent authority in a Member State, with high capacity in performing Food Risk Assessment, accompanied by a specific and uniform risk assessment training programme for 15 fellows (and 15 additional participants in Parma) during the programme:

- Three-week induction training in Parma at EFSA premises in September,
- One-week training module in Vienna at Austrian Agency for Health and Food Safety (AGES),
- One-week training module in Athens at Hellenic Food Authority (EFET).

Email: ardelean.adrian-cj@ansvsa.ro

Acknowledgment: To the staff of EFSA, Austrian Agency for Health and Food Safety, German Federal Institute for Risk Assessment, The Hellenic Food Authority together with all the tutors and technical personnel involved in the trainings. To the EU-FORA fellows cohort 2018-2019: Elena Anastasi, Ricardo Manuel Abreu de Assunção, Maria Cabral, Giorgiana Mihaela. Cătineșcu, Eleni Chatzidimitriou, Laura Escrivá Llorens, Carolin Fechner, Juliana Rodrigues Gadelha, Cristiana Garnino, Chryssalena HadjiCharalambous, Márta de Jesús Monteiro; Dimitrios Pavlidis, Irina Smeu, Christina Vlachou.
Annex C – Poster The exposure to *Campylobacter* spp. of the food industry workers: a short overview

INTRODUCTION

Infection by *Campylobacter* spp. is the main foodborne zoonotic disease in Europe, despite a still high number of cases remaining non-identified. Therefore, the risk of exposure for meat food industry workers (0.84 million employees in the EU) is currently underestimated. This infection presents high relevance due to issues related with:

- human safety and security at work
- risk to remain residual source of contamination

MATERIAL AND METHODS

A literature-based research and a qualitative risk assessment of worker’s exposure to this agent were performed based on the established risk assessment steps (Fig. 1).

Target population category

Poultry slaughterhouses employees

Qualitative methods

- supporting method (brainstorming)
- scenario analysis
- function analysis

Control measures evaluated to mitigate the risk

- engineering control
- administrative control
- personal control

RESULTS AND DISCUSSION

Campylobacter spp. is a fastidious bacterium, sensitive to desiccation at high/low temperatures with specific growth requirements. Transmission occurs mainly through oral route by ingestion of undercooked poultry meat and poultry products, or aerosol inhalation (infectious dose: 500-800 CFU).

Workflow evaluation (Fig. 2)

- Main critical points identified:
 - a) place for handling the live bird
 - b) exsiccation
 - c) digestive tract manipulation
 - d) waste material manipulation

CONCLUSION:

The food industry workers, in our case the personnel from the poultry slaughterhouses, can be exposed to different health hazards. From the category of biological agents, *Campylobacter* spp. is one of high relevance.

According to the performed qualitative risk assessment, some main critical points during the poultry slaughter were identified and could present risk for the workers involved in the process, due to *Campylobacter* spp. exposure. Further research, through a quantitative approach, should be implemented to characterize the risk and contribute to the establishment of control measures.

Acknowledgment: EU-FORA fellowship programme (EFSA), cohort 2018-2019.