Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents

Mingkang Sun, Francesca Lorandi, Rui Yuan, Sajjad Dadashi-Silab, Tomasz Kowalewski and Krzysztof Matyjaszewski*

Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States

Photoluminescent nanosized quasi-spherical polymeric assemblies prepared by the hydrothermal reaction of polyacrylonitrile (PAN), ht-PLP\textsubscript{PAN}, were demonstrated to have the ability to photo-induce atom transfer radical polymerization (ATRP) catalyzed by low, parts per million concentrations of CuII complex with tris(2-pyridylmethyl)amine (TPMA). Such photo induced ATRP reactions of acrylate and methacrylate monomers were performed in water or organic solvents, using ht-PLP\textsubscript{PAN} as the photo-cocatalyst under blue or green light irradiation. Mechanistic studies indicate that ht-PLP\textsubscript{PAN} helps to sustain the polymerization by facilitating the activation of alkyl bromide species by two modes: 1) green or blue light-driven photoreduction of the CuII catalyst to the activating CuI form, and 2) direct activation of dormant alkyl bromide species which occurs only under blue light. The photoreduction of the CuII complex by ht-PLP\textsubscript{PAN} was confirmed by linear sweep voltammetry performed under illumination. Analysis of the polymerization kinetics in aqueous media indicated even though CuI complexes comprised only 1–1.4% of all Cu species at equilibrium, they exhibited high activation rate constant and activated the alkyl bromide initiators five to six orders of magnitude faster than ht-PLP\textsubscript{PAN}.

Keywords: ATRP, photocatalyst, polyacrylonitrile, carbon dot, luminescence, self-assembly

INTRODUCTION

Photocatalytic reactions play a profound role in various areas of chemical research (Zhu and Wang, 2017; Melchionna and Fornasiero, 2020). As alternatives to traditionally used transition metal complexes, organic photocatalysts (OPC) have received great attention, due to their low cost, highly tunable structures and photophysical properties (Romero and Nicewicz, 2016). More recently, organic photoactive nanostructured objects (OPNO) have emerged as promising materials owing to the growing interest in combining organic chemistry and nanotechnology (Han et al., 2018; Zhang et al., 2020). OPNO can span the range from covalently bonded “carbon dots” (Sun et al., 2006) to “polymer dots” (Zhu et al., 2015a; Zhu et al., 2015b; Tao et al., 2019; Xia et al., 2019) held together via non-covalent interactions. The synthesis of the latter type of OPNOs often relies on the pre-assembly or self-assembly of polymeric substrates, which afford additional control over the structures and properties of OPNOs (Chen and Tseng, 2017; Jia et al., 2017). Because of the heterogeneous nature of their photoactive domains, many OPNOs absorb broadly from UV to near infrared (NIR) light,
making them promising candidates as photocatalysts, due to the tunable irradiation wavelength (Zhu et al., 2015b).

Nonetheless, two main limitations remain for OPNO-based OPCs. First, most reports only focused on reactions in organic solvents. Water-soluble photocatalysts and aqueous photochemical reactions were largely omitted. Second, reactions using long-wavelength irradiations (other than blue or UV light) were underexplored, despite the advantages of long-wavelength irradiations, such as better penetration depths (Romero and Nicewicz, 2016; Han et al., 2018). Overcoming these limitations is necessary for expanding the applications of OPNO-based OPCs, obtaining deeper understandings of the photocatalytic mechanism, and economizing the photocatalytic processes (Zhang et al., 2020).

The key to solve these challenges is advancing the synthesis of OPNOs, which is traditionally limited to a narrow selection of substrates, such as citric acid/ethylenediamine (Zhu et al., 2013), conjugated polymers (Zhao et al., 2019) etc. Recently, polycarboxyls (PAN) has caught the attention of many researchers. PAN has been used as a substrate in the manufacturing of carbon fibers and heteroatom-doped nanocarbons (Tang et al., 2005; Zhong et al., 2012; Kopec et al., 2017; Gottlieb et al., 2019; Kopec et al., 2019; Yuan et al., 2019; Yuan et al., 2020). The photoluminescent properties of PAN were largely ignored, since untreated isolated nitrile groups do not form photoactive conjugated structures. However, recent reports point out that PAN can generate photoluminescence when dissolved at high concentrations or densely grafted from flat silica surfaces (Jiang et al., 2006; Zhou et al., 2016; Kopec et al., 2020). Additionally, there are recent reports of chemical conversion of PAN into photoactive species via microwave (Go et al., 2017), pyrolysis (Cao et al., 2020) and hydrothermal reactions (Ermakov et al., 2000; Sun et al., 2020), which can all induce the crosslinking or the hydrolysis of =C=N, resulting in photoluminescent crosslinked nanoparticles or polymers. In particular, we recently reported the synthesis of visible light-absorbing photoluminescent polymers (PLPs) from PAN via a one-step hydrothermal reaction (Sun et al., 2020). In certain solvents (e.g., water), the resulting PLPs can self-assemble into polymer dot-like OPNOs. For example, the hydrothermally synthesized photoluminescent polymer (ht-PLP\textsubscript{PAN}) assembles in water into spherical aggregates with an average diameter of ca. 20 nm, due to the presence of both hydrophilic (i.e., carboxylic) and hydrophobic (i.e., aliphatic carbons) moieties. The assembly behavior was studied mainly by dynamic light scattering (DLS) in multiple solvents, including water and dimethyl sulfoxide (DMSO) (Sun et al., 2020). The high water solubility (>100 mg/ml) makes ht-PLP\textsubscript{PAN} a promising candidate as an OPNO-based OPC in aqueous systems.

One of the most particularly promising photochemical processes in polymer chemistry is photoinduced controlled radical polymerization (CRP), which has emerged as a powerful and versatile method for controlled polymer syntheses (Pan et al., 2016a; Chen et al., 2016; Dadashi-Silab et al., 2016; Corrigan et al., 2020; Parkatzidis et al., 2020). Similar to other externally controlled CRP methods (Chmielarz et al., 2017; Mohapatra et al., 2017; Wang et al., 2017; Pan et al., 2018), photoinduced CRPs exhibit many advantages, such as excellent temporal control. In particular, photoinduced atom transfer radical polymerization (ATRP) (Wang and Matijaszewski, 1995; Matijaszewski and Xia, 2001; Matijaszewski, 2012; Dadashi-Silab et al., 2014; Matijaszewski and Tsarevsky, 2014; Theriot et al., 2016; Matijaszewski, 2018; Lorandi and Matijaszewski, 2020) and reversible addition-fragmentation chain-transfer (RAFT) polymerization (Xu et al., 2015; Pearson et al., 2016; Perrier, 2017; Allegrezza and Konkolewicz, 2021) have largely benefited from the development of OPCs, such as phenothiazine derivatives (Treat et al., 2014; Pan et al., 2016b; Theriot et al., 2016; Dadashi-Silab et al., 2021), eosin Y (Kutahya et al., 2016; El Achi et al., 2020) and halogenated xanthene dyes (Wu et al., 2019). Besides small-molecule OPCs, OPNOs have been applied in photoinduced CRP (Jiang et al., 2018; Kutahya et al., 2020; Hao et al., 2021; Kutahya et al., 2021). For example, heteroatom-doped carbon dots were applied in photoinduced energy/electron transfer RAFT (PET-RAFT) polymerization of (meth)acrylate monomers (Jiang et al., 2018). Doping S or P to the catalyst enabled successful PET-RAFT polymerization under red light. Additionally, photoinduced ATRP using low ppm (parts per million) loadings of Cu complexes was performed using carbon dots or polymer dots under blue light irradiation (Kutahya et al., 2020; Kutahya et al., 2021). In these systems, carbon dots reduced the CuII complex to the corresponding CuI complex, which activated the alkyl bromide initiator. CuI complexes functioned as deactivators to provide control over the polymerization (Kutahya et al., 2020).

Nevertheless, photoinduced CRPs in the presence of OPNOs primarily employed organic solvents and oleophilic monomers (Jiang et al., 2018; Kutahya et al., 2020; Kutahya et al., 2021). Although photoinduced CRPs in aqueous media were reported using other types of catalysts (Konkolewicz et al., 2012; Pan et al., 2015; Szczepaniak et al., 2020), extending these processes to new catalysts with different structures and photoluminescent mechanisms is needed to expand the understanding of the reaction mechanisms. Furthermore, ATRP using OPNOs under long-wavelength irradiations is underexplored compared to RAFT polymerization.

Herein, we expand the applicability of photoinduced ATRP by developing Cu-catalyzed ATRP in the presence of ht-PLP\textsubscript{PAN} as OPCs under blue (\(\lambda_{\text{max}} < 450 \text{ nm}\)) and green (\(\lambda_{\text{max}} < 520 \text{ nm}\)) light irradiation. During initial attempts, ht-PLP\textsubscript{PAN} did not initiate the polymerization when used as a photoinitiator in free radical polymerization (FRP) under inert atmosphere (N\(_2\)). Nonetheless, well-controlled polymerizations were successfully performed in water and in organic solvents (DMSO, dimethylformamide or DMF, and anisole) in the presence of alkyl bromide initiators and 25–50 ppm of CuI complexes (Br-CuI/L, L = ligand). A low loading of ht-PLP\textsubscript{PAN} (<1 mg/ml) and moderate light intensities (4–6 mW.cm\(^{-2}\)) were used. Aqueous Cu-catalyzed ATRP of a water-soluble monomer, oligo (ethylene glycol) methyl ether methacrylate (OEGMA), is shown in Scheme 1. Studies performed under different irradiation wavelengths revealed that under blue light
irradiation \(ht\)-\textit{PLPPAN} could both reduce the CuII complexes and activate alkyl halides. In contrast, under green light irradiation it was only capable to reduce the CuIII complexes.

MATERIALS AND METHODS

Materials

Methyl methacrylate (MMA, 99%, Sigma-Aldrich, United States), oligo (ethylene glycol) methyl ether methacrylate (OEGMA, average MW = 500, Sigma-Aldrich, United States), acrylonitrile (AN, 99%, Sigma-Aldrich) and methyl acrylate (MA, 99%, Sigma-Aldrich, United States) were purified by passing the monomers through a column filled with basic alumina to remove the inhibitor. Deionized water (DI water) was obtained from Millipore-Sigma Milli-Q water purification system. Azobisisobutyronitrile (AIBN, 98%, Sigma-Aldrich, United States) was recrystallized in anisole and stored at 4°C in dark. Tris (2-pyridylmethyl)amine (TPMA) was synthesized based on previous reported methods (Kopeč et al., 2017). Copper bromide (CuBr\textsubscript{2}, 99%, Acros Organics, United States), ethyl \(\alpha\)-bromoisobutyrate (EBiB, 98%, Sigma-Aldrich, United States), \(\alpha\)-bromophenylacetate (EBPA, 97%, Sigma-Aldrich, United States), 2-hydroxyethyl 2-bromoisobutyrate (HO-EBiB, 95%, Sigma-Aldrich, United States), 2-bromopropionitrile (BPN, 97%, Sigma-Aldrich, United States), dimethyl sulfoxide (DMSO, 99.7%, Fisher, United States), dimethylformamide (DMF, 99.8%, Fisher, United States), toluene (99%, Fisher, United States) were used as received. Tetraethylammonium tetrafluoroborate (Et\textsubscript{4}NBF\textsubscript{4}, 99%, Alfa Aesar, United States), toulene (99%, Fisher, United States), anisole (99%, Sigma-Aldrich, United States), dimethyl sulfoxide (DMSO, 99.7%, Fisher, United States), toulene (99%, Fisher, United States), sodium bromide (NaBr, 41.17 mg, 0.4 mmol), OEGMA (2.5 ml, 5.4 mmol, 200 eq.) and tetraethylammonium tetrafluoroborate (Et\textsubscript{4}NBF\textsubscript{4}, 99%, Alfa Aesar, United States), were used as supporting electrolyte for electrochemical analysis, used as a supporting electrolyte for electrochemical analysis, used as the solvent for \(1H\) NMR and \(\text{D}_2\text{O}\) for aqueous ATRP. DMF GPC was equipped with a refractive index (RI) detector, an Agilent 1260 Infinity II pump and a Wyatt Optilab T-REX RI detector, with a PSS GRAM analytical column set (10 µm particle size) and Polymerization in organic solvents used DMSO-d\textsubscript{6} as the solvent for \(1H\) NMR, and \(\text{D}_2\text{O}\) for aqueous ATRP. DMF GPC was equipped with a refractive index (RI) detector, an Agilent 1260 Infinity II pump and a Wyatt Optilab T-REX RI detector, with a PSS GRAM analytical column set (10 µm particle size) and LiBr-containing HPLC grade DMF as the eluent (LiBr: 0.05 M).

Synthesis of \(ht\)-\textit{PLPPAN}

\(ht\)-\textit{PLPPAN}, was synthesized via previously reported procedures (Sun et al., 2020). \(PAN_{165}\) (subscript defines the degree of polymerization) was used to prepare \(ht\)-\textit{PLPPAN} and was synthesized by initiators for continuous activator regeneration (ICAR) ATRP using BPN as the initiator (Lamson et al., 2016; Kopeč et al., 2017). A typical procedure, a 10 mg/ml suspension of ball-milled \(PAN_{165}\) in DI water was prepared. 10 ml suspension was stirred for 10 min and then transferred to a 25 ml autoclave reactor with high-temperature resistant liner. The autoclave reactor was securely sealed and placed in a pre-heated oven (180°C). The heating was turned off after 12 h and the oven was let to cool down to room temperature naturally. The dark brown solution was passed through a 0.22 µm syringe filter with a polyethersulfone membrane. The solution was directly dried by vacuum to yield brown solid \(ht\)-\textit{PLPPAN}.

General Procedure for Light-Mediated ATRP in the Presence of \(ht\)-\textit{PLPPAN}

In a typical procedure, 5 mg \(ht\)-\textit{PLPPAN} was added to a 10 ml Schlenk flask containing 0.3 ml DMF and 7.2 ml DI water with a magnetic stir bar. HO-EBiB (3.9 µL, 0.027 mmol, 1 eq.), CuBr\textsubscript{2} (0.60 mg, 2.7 µmol, 0.1 eq.), TPMA (2.35 mg, 8.1 µmol, 0.3 eq.), NaBr (41.17 mg, 0.4 mmol), OEGMA (2.5 ml, 5.4 mmol, 200 eq.) were subsequently added to the Schlenk flask. The Schlenk flask was then purged with N\textsubscript{2} for approx. 25 min, and 0.1 ml of the reaction was withdrawn and was used as the “\(t = 0\)” sample. Finally, the Schlenk flask was placed in the photoreactor, and light was turned on to start the polymerization. The conversion of OEGMA was monitored by \(1H\) NMR by withdrawing samples (~0.1 ml each time) from the reaction mixture at different time points.

General Procedures for Voltammetric Measurements

Linear sweep voltammetries were carried out in a 5-neck electrochemical cell placed inside the photoreactor, equipped with a 3-electrode system and connected to an Autolab PGSTAT302N potentiostat/galvanostat (Metrohm) controlled by NOVA 2.0 software. The 3-electrode system was composed by: 1) a Pt foil counter electrode; 2) a homemade quasi-reference electrode: Ag/AgI(0.1 M \(n\)-Bu\textsubscript{4}NI in DMF); 3) a glassy carbon (GC) disk tip (3 mm dia, Metrohm), connected to a rotating disk electrode (RDE) system, as working electrode. Before each experiment, the GC disk was cleaned by polishing with a 0.25-µm diamond
paste, followed by ultrasonic rinsing in ethanol for 5 min. Ferrocene (Fc) was added at the end of each experiment as an internal standard, to refer all potentials to the saturated calomel electrode [SCE, $E^\circ(\text{Fc}^+/\text{Fc}) = 0.475 \text{ V vs SCE}$ in DMF]. A steady air flow was applied to limit the temperature increase caused by light irradiation, and all experiments were performed under inert atmosphere (N_2).

RESULTS AND DISCUSSION

Photophysical Properties of ht-PLP$_{\text{PAN}}$

ht-PLP$_{\text{PAN}}$ was synthesized based on a previously reported hydrothermal reaction (Sun et al., 2020). Dynamic light scattering (DLS) measurement suggested that ht-PLP$_{\text{PAN}}$ formed aggregates in water (Supplementary Figure 1). Transmission electron microscopy (TEM) revealed that the average diameter of the quasi-spherical assemblies was ca. 20 nm (Supplementary Figure 2). At first, using ht-PLP$_{\text{PAN}}$ as a photoinitiator in FRP was attempted under blue or green light irradiation. However, no polymerization was observed under N_2 atmosphere in the absence of additional initiators (Table 1, entries 5 and 9, discussed in detail later). Thus, our focus shifted to using ht-PLP$_{\text{PAN}}$ as a reducing agent for the CuBr$_2$ complex with a common ATRP ligand, tris(2-pyridylmethyl) amine (TPMA). (Xia and Matyjaszewski, 1999).

To evaluate the capability of ht-PLP$_{\text{PAN}}$ in photoreducing the CuBr$_2$/TPMA complex, photophysical properties of ht-PLP$_{\text{PAN}}$ (Figure 1) were analyzed. Our previous study reported a broad UV-vis absorption profile (Figure 1A) and a short lifetime of the excited state ht-PLP$_{\text{PAN}}$ (<5 ns), suggesting the singlet nature (Sun et al., 2020). Putative photophysical properties of ht-PLP$_{\text{PAN}}$ were modeled using density functional theory (DFT) calculations with model oligoimine-based structures of different conjugation lengths αN (where $N = 3$–10 denotes the number of nitrogen atoms along the backbone), which were deemed likely to arise in the course of hydrothermal treatment (Figure 1B, see Supplementary Material for Cartesian coordinates). (Sun et al., 2020) In all instances, the energies of the lowest unoccupied molecular orbital (LUMO) of αN were higher than the LUMO (β) of [Br-CuI/TPMA]*, indicating conditions favorable for reduction of the CuII complex upon photoexcitation (Figure 1C). The LUMO$_{\alpha N}$-LUMO$_{[\text{Br-Cu}^{II}/\text{TPMA}]}^*$ gap increased, and the wavelength of the lowest-energy transition determined by time-dependent DFT (TDDFT) decreased with the decrease of N (Supplementary Figure 3), suggesting stronger “reducing power” of blue light absorbing species, in agreement with experimental observations. Experimental studies on the photoreduction of the CuII complex were performed using linear sweep voltammetry (LSV), which are discussed in Photocatalytic Mechanism and Comparison Between Activation by CuI Complex and by ht-PLP$_{\text{PAN}}$ section.

Cu-Catalyzed ATRP in Water Using ht-PLP$_{\text{PAN}}$

Blue ($\lambda_{\text{max}} = 450 \text{ nm}$) and green light sources ($\lambda_{\text{max}} = 520 \text{ nm}$) were chosen for photoinduced ATRP using ht-PLP$_{\text{PAN}}$. Oligo (ethylene glycol) methyl ether methacrylate with an average molecular weight of 500 (OEGMA$_{500}$) was polymerized using ATRP catalyzed by a CuBr$_2$ complex with TPMA as the ligand (molar ratio: CuBr$_2$/TPMA $= 1/3$ (Table 1). 100 ppm or 500 ppm (relative to the monomer concentration) of CuBr$_2$/TPMA were used, with 2-hydroxyethyl 2-bromoisobutyrate (HO-EBiB) as the ATRP initiator and 0.5 mg/ml ht-PLP$_{\text{PAN}}$ as the photo-cocatalyst. Additionally, 40 mM of NaBr was added to suppress the dissociation of the weak CuII-Br bond in the ATRP deactivator (Simakova et al., 2012; Fu et al., 2018).

SCHEME 1 | (A) Schematic representation of the synthesis of ht-PLP$_{\text{PAN}}$, and an image of ht-PLP$_{\text{PAN}}$ dissolved in water under UV light excitation (365 nm) (B) Proposed assembled structure of ht-PLP$_{\text{PAN}}$, based on the previous report (Sun et al., 2020), and the use of ht-PLP$_{\text{PAN}}$ as the photo-cocatalyst in Cu-catalyzed light-mediated ATRP. Functional groups highlighted in blue represent typical hydrophilic fragments.
First, polymerizations were performed under blue light irradiation. Linear semilogarithmic kinetic plots for ATRP using both 500 ppm (entry 1, Table 1) and 100 ppm (entry 2, Table 1) of the CuII complex are shown in Figure 2A. Polymer molecular weight and dispersity (Đ) were measured by gel permeation chromatography (GPC) using dimethylformamide (DMF) as the mobile phase (Figure 2B). Increasing the loading of CuBr2/TPMA from 100 ppm (entry 2) to 500 ppm (entry 1) resulted in a decreased Đ from 1.69 (entry 2) to 1.35 (entry 1), due to the higher equilibrium concentration of the deactivator.

Table 1: Cu-catalyzed photoinduced ATRP of OEGMA500 in water with HO-EBiB as the initiator and ht-PLPAN as the photo-cocatalyst (0.5 mg/ml).

Entry	Irradiation	[M]0/[I]0/[CuBr2]0/[TPMA]0	Conv. (%)	\(M_n,\text{theo}\)	\(M_n,\text{GPC}\)	Đ
1	Blue (450 nm)\(^d\)	200/1/0.1/0.3	98 (2.5 h)	98,300	50,700	1.35
2	Blue (450 nm)	200/1/0.02/0.06	92 (3 h)	92,000	72,600	1.69
3	Blue (450 nm)	200/1/0.02/0.06 (no ht-PLPAN)	<5 (8 h)	–	–	–
4	Blue (450 nm)	200/1/0.02/0.06 (no ht-PLPAN)	<5 (12 h)	–	–	–
5	Blue (450 nm)	200/1/0.02/0.06 (no ht-PLPAN)	87 (5 h)	87,700	49,100	1.38
6	Green (520 nm)\(^e\)	200/1/0.1/0.3	81 (12 h)	81,900	62,200	1.55
7	Green (520 nm)	200/1/0.02/0.06	<5 (48 h)	–	–	–
8	Green (520 nm)	200/1/0.02/0.06	<5 (20 h)	–	–	–

\(^a\)General conditions: Vol%(OEGMA) = 25%, and H2O (containing 40 mM NaBr and 3 vol% of DMF as internal standards for \(^1\)H NMR) was used as the solvent.

\(^b\)\(M_n,\text{theo}\) was determined by the monomer conversion monitored by \(^1\)H NMR.

\(^c\)\(M_n,\text{GPC}\) was calculated from a linear PMMA calibration.

\(^d\)Intensity: 5.0 mW cm\(^{-2}\).

\(^e\)No polymer signal was observed from GPC.

\(^f\)Intensity: 4.7 mW cm\(^{-2}\).
Clean shifts of the molecular weight distribution (MWD) traces are shown in Supplementary Figure 4. It is worth mentioning that the difference in the molecular weight measured from the light scattering (LS) detector of GPC (M_n,GPC) and the theoretical molecular weight (M_n,theo) was likely due to different polymer-column interactions between poly (OEGMA) and the calibration standard (PMMA) used for the calibration of the LS detector. Figure 2A also illustrates that the rate of polymerization for entry 1 (500 ppm of Cu complex) was faster than that for entry 2 (100 ppm of Cu complex). This difference was attributed to the higher concentration of propagating radicals in entry 1 and faster reduction of the CuI complex. Similar kinetic results were previously reported by several ATRP methods based on activator regeneration (Simakova et al., 2012; Mendonça et al., 2014). Despite the lower monomer conversion determined by 1H NMR, entry 2 showed a higher M_n,GPC than entry 1 (Table 1). This difference indicated that the initiation efficiency of HO-EBiB was lower when a lower loading of CuBr$_2$/TPMA was used in entry 1.

In order to confirm the role of ht-PLP$_{PAN}$, a control experiment was performed in its absence (entry 3, Table 1). No substantial monomer conversion (<5% after 8 h) was observed, indicating that the ht-PLP$_{PAN}$ was required to generate the CuI activator complex. In addition, the possibility of direct activation of the alkyl bromide (R-Br) initiator by the CuI complex and anisole as a less polar solvent (entry 2, Table 1) was also considered. A control experiment (entry 4, Table 1) showed that under blue light irradiation HO-EBiB was indeed activated in the presence of ht-PLP$_{PAN}$ and in the absence of the CuII complex. The polymerization was uncontrolled ($D = 2.74$) due to the absence of CuII deactivators. In comparison, no polymerization occurred when no HO-EBiB was added, indicating that ht-PLP$_{PAN}$ did not generate radicals directly from the monomer. A quantitative comparison between the activation of R-Br by the CuI complex and by ht-PLP$_{PAN}$ is presented in the Photocatalytic Mechanism section.

Similar polymerizations were conducted under green light irradiation (entries 6–7, Table 1 and Figure 2). In general, polymerization rates under green light irradiation were slower than those under blue light irradiation, and proceeded only after an induction period (Figure 2A). Finally, similar control experiments (entries 8 and 9, Table 1) were performed under green light. In contrast with the control experiments performed under blue light, no polymerization was observed under green light irradiation in the absence of CuII, indicating that ht-PLP$_{PAN}$ luminophores excited by this range of wavelengths were not capable to activate the alkyl bromide initiator under green light, even after prolonged irradiation (48 h, entry 8, Table 1).

In addition to the already discussed lower “reducing power” of longer-wavelength luminophores inferred from DFT model calculations, two other factors that could be responsible for the slower polymerization and absence of ht-PLP$_{PAN}$-driven activation of R-Br under green light are: 1) the lower light absorption of ht-PLP$_{PAN}$ at 520 nm (Figure 1), and 2) the slightly lower intensity of the green light photoreactor (4.7 mW.cm$^{-2}$, vs 5.0 mW.cm$^{-2}$ of the blue light photoreactor). Nevertheless, green light irradiation still resulted in reasonably well-controlled polymerization of OEGMA$_{500}$ ($D = 1.38$) using 500 ppm of CuII/TPMA (entry 6, Table 1).

Cu-Catalyzed ATRP in Organic Solvents Using ht-PLP$_{PAN}$

To demonstrate the versatility of ht-PLP$_{PAN}$ as OPCs, a mixed solvent containing 1:1 (v/v) of DMSO and DMF was first used to polymerize MMA with ethyl α-bromophenylacetate (EBPA) as the initiator. It is worth mentioning that ht-PLP$_{PAN}$ only partially dissolved when using DMSO/DMF due to the lower polarity of the reaction media, especially after the addition of MMA. Despite the weaker solubility of ht-PLP$_{PAN}$, well-controlled polymerizations were obtained with ht-PLP$_{PAN}$ dispersed in the solvent using 100 ppm or 25 ppm of CuBr$_2$/TPMA as the catalyst (Table 2).

Similar to the case of aqueous media, better control was obtained for the polymerization of MMA with a higher loading of CuBr$_2$/TPMA (entries 1 and 5, Table 2). However, 500 ppm of the Cu complex were required to control the process in aqueous media (entries 1 and 6, Table 1), while concentrations of CuII complex as low as 25 ppm were sufficient in organic solvents (entry 6, Table 2). Linear semilogarithmic kinetic plots and the GPC traces observed under those conditions are shown in Figure 3. Clean shifts of GPC traces were also observed (Supplementary Figure 5). Additionally, the direct activation of EBPA by ht-PLP$_{PAN}$ was evaluated by control experiments in the absence of CuBr$_2$/TPMA (entries 3 and 7, Table 1). Similar to results in aqueous media, ht-PLP$_{PAN}$ activated EBPA only under blue light irradiation. The supplemental activation of EBPA under blue light irradiation likely contributed to the higher dispersity when 25 ppm loading of CuBr$_2$/TPMA was used (entry 2). The uncontrolled polymerization in the absence of any Cu complexes indicated that no deactivations occurred due to the absence of deactivators.

Finally, ATRP using ht-PLP$_{PAN}$ was extended to other monomers and solvents (Supplementary Table 1). For example, methyl acrylate (MA) was polymerized using 100 ppm of the CuBr$_2$/TPMA complex and ethyl α-bromoisobutyr ate (EBiB) as the initiator (entry 1, Supplementary Table 1). Good control over the polymerization was illustrated by the low $D = 1.16$ of the polymer (Supplementary Figures 6A, B). Additionally, ATRP of MMA was performed using 100 ppm of the CuBr$_2$/TPMA complex and anisole as a less polar solvent (entry 2, Supplementary Table 1). The rate of polymerization was slower in anisole compared to DMSO/DMF, as expected from the variation of the ATRP equilibrium constant, K_{ATRP}, with solvent polarity (Ribelli et al., 2019). Nonetheless, well-controlled polymerization ($D = 1.19$) was still observed (Supplementary Figures 6C, D).

Photocatalytic Mechanism and Comparison Between Activation by CuI Complex and by ht-PLP$_{PAN}$

In some ATRP methods with regeneration of the CuI/L activator, the agent used for the activator regeneration can also contribute
to the activation of dormant alkyl bromides to form propagating radicals, which generally occurs by reaction between the agent and the alkyl bromide (Konkolewicz et al., 2013; Konkolewicz et al., 2014a; Konkolewicz et al., 2014b; Zhang et al., 2011). To better understand the polymerization mechanism of the current system, the photoreduction of the CuII complex by \(\text{ht-PLPPAN} \) was first monitored by linear sweep voltammetry (LSV). As shown in Figure 4, LSV was scanned from ca. 0.5 V (vs SCE) where the Cu(I) complex is oxidized if it exists. Indeed, the increased intensity of the anodic current under blue or green
light irradiation confirmed the formation of CuI/TPMA complex in DMSO/DMF (volume ratio: 1/1) (Dadashi-Silab et al., 2021). The role of ht-PLP\textsubscript{PAN} as the primary factor behind the observed reduction of CuII/TPMA complexes after 3 h of blue light irradiation was confirmed by comparing the fraction of CuI complexes estimated from the current values in the presence of ht-PLP\textsubscript{PAN} (ca. 2.5%) and in its absence (<0.5%, Supplementary Figure 7A). The small extent of photoreduction in the latter case was likely caused by the presence of excess ligand that can act as the electron donor. Notably, the LSV traces acquired in water did not show a consistent increase of CuI/L concentration (Supplementary Figure 7B), in contrast with polymerization results (Table 1) that indicated ht-PLP\textsubscript{PAN} was capable of photoreducing the CuII complex in water. This apparent discrepancy indicates that the amount of CuI produced by ht-PLP\textsubscript{PAN} in water was below the reliable LSV detectability threshold but was still sufficient to effectively initiate polymerization owing to the higher \(K_{\text{ATRP}}\) of Cu catalysts in water (Tang et al., 2008; Fantin et al., 2015). It should be pointed out that the apparent lower reducing efficiency of ht-PLP\textsubscript{PAN} in water in comparison with organic solvents could be caused by its nano-assembly, which, while important for allowing these mostly hydrophobic species to function in water, would inevitably decrease the number of accessible photocatalytic sites.

To further understand the composition of the catalytic system for aqueous ATRP under blue light irradiation, the following calculations were performed to quantify the concentrations of CuI and CuII species in polymerizations corresponding to conditions in Table 1. The activation rates of alkyl bromides by CuI/L and ht-PLP\textsubscript{PAN} were estimated for the polymerization of OEGMA (entries 1, 2 and 4 of Table 1). First, the rate of activation by the CuI complex (\(R_{a1}\)) was given by Eq. (1), (Matyjaszewski 2012; Krys et al. 2016; Krys and Matyjaszewski 2017) thus the concentration of the CuI complex ([CuI/L]) was calculated. Eq. 2 shows the relationship between [CuI/L] and the rate of polymerization, \(R_p\):

\[
R_{a1} = k_{a1} [\text{Cu}I/L] [\text{RX}]
\]

\[
R_p = k_p \left(\frac{[\text{RX}][\text{Cu}I/L]}{[\text{Br - Cu}II/L][\text{M}]}\right)
\]

where, [RX], [M], [CuI/L] and [Br-CuII/L] correspond to the concentration of the alkyl bromide initiator, monomer, CuI complex and CuII complex, respectively, \(k_{a1}\) is the activation rate constant of HO-EBiB by CuI/TPMA. \(K_{\text{ATRP}}\) is the ATRP equilibrium constant for CuI/TPMA with HO-EBiB, and \(k_p\) is the rate coefficient of propagation for OEGMA. (Smolne et al., 2016)

On the other hand, the activation rate of alkyl bromides by ht-PLP\textsubscript{PAN} (\(R_{a-\text{pc}}\)) was determined from Eq. 3:

\[
R_p, \text{without Cu} = k_p [\text{M}] [\text{R}] = k_p [\text{M}] \sqrt{\frac{R_{a-\text{pc}}}{k_t}}
\]

where, \(R_p, \text{without Cu}\) refers to the rate of polymerization in the absence of CuII complex. \(k_t\) is the termination rate constant of OEGMA, (Smolne et al., 2016) and [R-\text{pc}] is the concentration of propagating radicals.

Details of the calculation, including the scaling of kinetic parameters, are included in the Supplementary Material (Supplementary Tables 2–4) (Fantin et al., 2015; Fantin et al., 2017). Specifically, \(R_p, \text{without Cu}\) was monitored by \(^1\text{H} \text{NMR}\) (entry 4 of Table 1, Supplementary Figure 8). The polymerization was slower when no Cu complex was present, and polymers with high molecular weight (over seven times higher than \(M_{n,\text{theo}}\)) were observed by GPC, indicating a low initiation efficiency when ht-PLP\textsubscript{PAN} was the only activator.

As shown in Table 3, the calculated \(R_p, \text{without Cu}\) was \(6.34 \times 10^{-6}\) M.s-1, which was ca. one order of magnitude smaller than \(R_p\) (0.1 ppm) = \(5.46 \times 10^{-5}\) M.s-1, \(R_p\) (500 ppm) = \(7.22 \times 10^{-5}\) M.s-1). Based on these values, the calculated [CuI/L] was \(5.5 \times 10^{-7}\) M for ATRP using 100 ppm of CuBr\textsubscript{2}/TPMA, and
Although Cu I/L only consisted of 1.0% (entry 1, Table 2) and 1.4 (entry 2, Table 3) of the total Cu species, the calculated values of \(R_{31} \) (Table 3) were five to six orders of magnitude higher than \(R_{3-pc} \) \(\left(9.3 \times 10^{-10} \text{ M.s}^{-1}\right) \). This significant difference in the activation rate was due to the high \(k_{31} \) value of \([\text{Cu}^1/\text{TPMA}]^+ \) in aqueous media (Fanti et al., 2017), making Cu I/L the predominant activator over \(\text{ht-PLPPAN} \) in this system.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MS designed and performed the experiments. FL designed and performed the voltammetric analysis. RY prepared the polymer substrate. MS, FL, SD-S, TK and KM discussed the photocatalytic mechanism. TK performed the DFT calculations. All authors contributed to the preparation and revision of the manuscript.

FUNDING

Financial support from the Department of Energy (ER45998) is greatly appreciated.

ACKNOWLEDGMENTS

The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by grant MCF-677785.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.734076/full#supplementary-material

REFERENCES

Allegrezza, M. L., and Konkolewicz, D. (2021). PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett. 10, 433–446. doi:10.1021/acsmaclett.1c00046

Cao, S., Le, A. N., Chen, A., and Zhong, M. (2020). Scalable Synthesis of Fluorescent Organic Nanodots by Block Copolymer Templating. J. Polym. Sci. 58, 30–34. doi:10.1002/pola.2946610.1002/pol20190265

Chai, J.-D., and Head-Gordon, M. (2008). Long-range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 10, 6615–6620. doi:10.1039/B810189B

Chen, M., Zhong, M., and Johnson, J. A. (2016). Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 116, 10167–10211. doi:10.1021/acs.chemrev.5b00671

Chen, T.-H., and Tseng, W.-L. (2017). Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron(III) Sensing. Anal. Chem. 89, 11348–11356. doi:10.1021/acs.analchem.7b02193

Chmielarz, P., Fantin, M., Park, S., Isse, A. A., Gennaro, A., Magenau, A. J. D., et al. (2017). Electrochemically Mediated Atom Transfer Radical Polymerization (eATRP). Prog. Polym. Sci. 69, 47–78. doi:10.1016/j.progpolsci.2017.02.005

Corrigan, N., Jung, K., Moad, G., Hawker, C. J., Matyjaszewski, K., and Boyer, C. (2020). Reversible-deactivation Radical Polymerization (Controlled/living Radical Polymerization: Mechanisms, Methods, and Applications). Chem. Rev. 116, 10167–10211. doi:10.1021/acs.chemrev.5b00671
