Magnetism of the antiferromagnetic spin-3/2 dimer compound CrVMoO$_7$ having an antiferromagnetically ordered state†

M. Hase,*1 Y. Ebukuro,*2 H. Kuroe,*2 M. Matsumoto,*3 A. Matsuo,*4 K. Kindo,*4 J. R. Hester,*5 T. J. Sato,*6 and H. Yamazaki†7

In a magnetically ordered state, two types of magnetic excitations exist: gapless transverse-mode (Nambu-Goldstone mode) and gapped longitudinal-mode (amplitude Higgs mode) excitations. The former is well known as spin wave excitation. The longitudinal-mode (L-mode) was observed by inelastic neutron scattering experiments in the pressure-induced magnetically ordered state of TiCuCl$_3$, which is a three-dimensional (3D) interacting antiferromagnetic (AF) spin-1/2 dimer compound.1–3 While the L-mode has weak intensity and spontaneously decays into a pair of transverse-modes, it is well defined in the ordered state in the vicinity of the quantum critical point for 3D systems.4

As for low-dimensional systems, it is difficult to observe the L-mode in longitudinal susceptibility by inelastic neutron scattering, since the longitudinal susceptibility exhibits an infrared singularity that can obscure the amplitude peak at a finite energy. In terms of scalar susceptibility, however, the L-mode can be well defined both in 2D and 3D systems. In magnetic systems, the L-mode was actually observed by Raman scattering experiments (which can measure the scalar susceptibility) in the pressure-induced ordered state of KCuCl$_3$ and in the magnetic-field-induced ordered state of TiCuCl$_3$.5–7

According to the results of theoretical investigations on observing AF spin-cluster compounds, the L-mode excitations can be observed in the antiferromagnetically ordered state that appears on cooling under atmospheric pressure and zero magnetic field.5 A shrinkage of the ordered magnetic moments by quantum fluctuations leads to a large intensity of the L-mode excitations. If the ground state of the isolated spin cluster is a spin-singlet state, the shrinkage of ordered moments can be expected in an ordered state that is generated by introducing intercluster interactions. We expect that an interacting AF spin-3/2 dimer model can be applied to the compound CrVMoO$_7$, judging from its crystal structure (Fig. 1).9,10

We studied the magnetic properties of CrVMoO$_7$ in powder form, using magnetization, specific heat, electron spin resonance, neutron diffraction, and inelastic neutron scattering measurements. An antiferromagnetically ordered state appeared below $T_N = 26.5 \pm 0.8$ K. The magnetic susceptibility at high temperatures was close to that calculated for the isolated AF spin-3/2 dimer with an intradimer interaction of $J = 25 \pm 1$ K and $g = 1.92 \pm 0.02$. We were able to explain the magnetization curves on the basis of the interacting AF spin-3/2 dimer model with an effective interdimer interaction of $J_{\text{eff}} = 8.8 \pm 1$ K. The magnitude of the ordered moment was $0.73(2)\mu_B$, which is much smaller than the classical value of $\sim 3\mu_B$. Using inelastic neutron scattering measurements, the magnetic excitations were observed, and the results were qualitatively explained on the basis of the interacting AF spin-3/2 dimer model.

In conclusion, CrVMoO$_7$ is a rare spin-dimer compound that shows an antiferromagnetically ordered state under atmospheric pressure and zero magnetic field. Though we could not confirm the L-mode in this study, the magnetic excitations of L-mode would be observable in single crystalline CrVMoO$_7$.

Fig. 1. The unit cell of CrVMoO$_7$. An AF spin-3/2 dimer is formed by two neighboring Cr$^{3+}$ ions with a distance of 3.01 Å.

References
1) Ch. Ruegg et al., Phys. Rev. Lett. 100, 205701 (2008).
2) P. Merchant et al., Nat. Phys. 10, 373 (2014).
3) M. Matsumoto et al., Phys. Rev. B 69, 054423 (2004).
4) I. Affleck, G. Wellman, Phys. Rev. B 46, 8934 (1992).
5) H. Kuroe et al., J. Phys.: Conf. Ser. 400, 032042 (2012).
6) M. Matsumoto et al., J. Phys. Soc. Jpn. 77, 033702 (2008).
7) H. Kuroe et al., Phys. Rev. B 77, 134420 (2008).
8) M. Matsumoto et al., J. Phys. Soc. Jpn. 79, 084703 (2010).
9) X. Wang et al., Inorg. Chem. 37, 3252 (1998).
10) K. Knorr et al., Eur. J. Solid State Inorg. Chem. 35, 161 (1998).