The positive rates of hepatitis B surface antibody in youths after booster vaccination: a 4-year follow-up study with large sample

Xia Zhu¹, Juan Wang¹, Ming Wang¹, Ling-yao Du¹, Yu-lin Ji², Xuan Zhang², Hong Tang¹,*

¹.Center of Infectious Diseases, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, P.R China
².Respiratory & Critical Care Medicine Department, West China Hospital of Sichuan University, Chengdu 610041, P.R China

*Author for correspondence: Tel:+86 2885422650; Fax:+86 28 85423052;
Hong Tang, tanghong6198@wchscu.cn
Xia Zhu, xiazhusea2021@163.com
Juan Wang, wangjuan1979@wchscu.cn
Ming Wang, wangmingrbt@163.com
Ling-yao Du, n.sync@163.com
Yu-lin Ji, huaxijiyulin@163.com
Xuan Zhang, zhangxuansasuke@126.com

Abstract

Background: Hepatitis B virus (HBV) infection is still a public issue of the world. Hepatitis B vaccination is widely used as an effective measure to prevent HBV infection. This large-sample study aimed to evaluate the positive rates of hepatitis B surface antibody (anti-HBs) in youths after booster vaccination.

Methods: A total of 37,788 participants were divided into two groups according to the baseline levels of anti-HBs before booster vaccination: the negative group (anti-HBs (-)); the positive group (anti-HBs (+)). Participants were tested for anti-HBs levels after receiving a booster vaccine 1 year and 4 years.

Results: The positive rates of anti-HBs were 34.50%, 73.8% and 67.32% before booster vaccination at 1 year and 4 years after vaccination, respectively. At four years...
after the booster vaccination, the positive rates of 13 to 18 years were 47.54%, which was the lowest level among all youths age groups. In the anti-HBs (-) group, the positive conversion rates of anti-HBs were 74.62% at 1 year after receiving a booster vaccine, and 67.66% at 4 years after vaccination. In the anti-HBs (+) group, the positive maintenance rates of anti-HBs were 70.16% after 1 year, and 66.66% after 4 years. Compared with the baseline anti-HBs (+) group, the positive rates of the baseline anti-HBs (-) group were higher at 1 year and 4 years after receiving the booster vaccine.

Conclusions: The positive rates of anti-HBs declined over time, especially the positive maintenance rates were the lowest at age of 13 to 18 years.

Key words: Booster vaccination; anti-HBs; positive rates; youths

Running title: Positive rates of anti-HBs in youths
Introduction

Hepatitis B virus (HBV) infection can cause both acute and chronic liver diseases [1, 2]. According to World Health Organization (WHO) report, more than 250 million people were infected with HBV and resulted in 887,000 deaths in 2015 [3]. China is one of the highly endemic areas of HBV infection, with an estimated 93 million carriers of HBV [4]. At present, there is no long-term effective treatment for HBV infection and infection-related diseases. Hepatitis B vaccination is a safe and effective measure that can reduce the risk of HBV-related complications [5]. The 2014 Chinese serosurvey report showed that the HBV infection rates of the population aged 1-29 years have been significantly reduced after decades of hepatitis B vaccination nationwide, especially for children under 5 years decreased by 97% [6].

The primary immunization following the vaccination schedule after birth may not be enough to protect youths from HBV infection, because the protective antibodies induced by the hepatitis B vaccine will gradually disappear over time [7-9]. It is widely considered that hepatitis B surface antibody (anti-HBs) exceeding 10 mIU/mL has a serum protective effect, the risk of infection increases when antibody titers are less than 10 mIU/mL [10, 11]. Previous research has reported that approximately 5% of HBV vaccine recipients may still be infected with HBV [12, 13]. Some researchers suggest that the use of booster dose vaccine may be necessary for youths with undetectable levels of antibodies to the anti-HBs [14-16]. Multiple studies have reported the research of booster dose vaccine in youths [17, 18], but small-sample studies are not universal, large-sample studies are needed.

The purpose of this study was to investigate the positive conversion rates and positive maintenance rates of hepatitis B booster vaccine in youths through a large-sample study.

Methods

Study design and recipients

This present study recruited 37,788 recipients aged < 18 years who had received vaccinations at 0, 1, and 6 months after birth in Mianyang City, China. In addition,
recipients who received insufficient interval doses or any other booster doses of hepatitis B vaccine were excluded. Hepatitis B surface antigen (HBsAg) of all involved recipients was negative before they received booster doses vaccination. Between June 2013 and October 2015, a recombinant Hepatitis B vaccine (Saccharomyces cerevisiae) with a dose of 10 μg (Hualan Biological Vaccine Company, Chengdu, China; 10μg/0.5mL) was used for all recipients at 0, 1, and 6 months, respectively. The biosynthesis of the HBsAg utilizes a recombinant plasmid containing S protein expressed in the host cell Saccharomyces cerevisiae [19, 20]. The strain producing the vaccine is a recombinant Saccharomyces cerevisiae strain constructed by Merck, USA (strain number: 2150-2-3). The recipients were supplemented with baseline information including age, gender, nationality, family history of hepatitis B. A blood sample from each recipient was collected, and the serum was aseptically separated and stored at -20 °C until testing. All recipients were divided into two groups based on their levels of anti-HBs before using the immune booster: anti-HBs negative group (anti-HBs (-)), the levels of anti-HBs < 10 mIU/mL; anti-HBs positive group (anti-HBs (+)), the levels of anti-HBs ≥ 10 mIU/mL. This study was approved by the Institutional Review Board (IRB) of the West China Hospital, Sichuan University (approval number: No.2013(55)), and all the recipients signed written informed consent. The follow-up period was from June 2017 to January 2019.

Laboratory testing

Serum levels of HBsAg and anti-HBs were analyzed by the ARCHITECT i2000SR analyzer (Abbott Laboratories; Chicago, IL, USA), and quantified by chemiluminescence microparticle immunoassay. The lower limit of detection of anti-HBs was 0.05 mIU/mL and samples with antibody levels above the range of the assay (250 mIU/mL) were diluted (1:500 or 1:1000) and re-test. The experiment process has strictly followed the instructions of the Abbott EIA AxSYM (Abbott, Abbott Park, IL, USA) and the operation manual of the instrument. Evaluation criteria for each indicator were the following: (1) recipient’s HBsAg serum concentration ≥ 0.05 IU/mL was defined as positive, otherwise it was negative; (2) recipient’s anti-HBs serum concentration ≥ 10 mIU/mL was defined as positive, otherwise it was negative.
Statistical analysis

Categorical variables were expressed as the number and percentage (n, %). The chi-square test (χ^2 test) was used to compare the positive rates of different characteristics of the research objects, and the multiple categorical variables with statistical differences were compared afterwards. Visualize the positive rate of anti-HBs at baseline, 1 year after vaccination, and 4 years after vaccination with grouped histogram. The Cochran-Armitage trend test was performed to determine the trend of anti-HBs positive rates. Statistical analysis was performed using the statistical software R (version 4.0.2), and $P < 0.05$ was considered statistically significant.

Results

Characteristics of recipients

A total of 37,788 recipients were involved in this study, with mean age of 8.0 ± 2.8 years, and the ratio of male/female was 1.06/1. 34,695 subjects (91.81%) had no family history of hepatitis B. Before hepatitis B booster vaccination, the positive rates of anti-HBs were 34.50%. At 1 year and 4 years after hepatitis B booster vaccination, the positive rates of anti-HBs were 73.8% and 67.32%, respectively. The anti-HBs expression of the total recipients was shown in Figure 1. In addition, the positive conversion rates of HBsAg were 2.91 cases per 10,000 people. The positive rates of anti-HBs based on gender, age (including 1-6 years, 7-12 years, and 13-18 years), and family history of hepatitis were shown in Figure 2 and Table 1.

The positive rates of anti-HBs in baseline anti-HBs (-) group

A total of 24,751 subjects were anti-HBs negative before the hepatitis B booster vaccination. After receiving the hepatitis B vaccine, the positive conversion rates of anti-HBs were 74.62% (18,469 cases) at 1 year after receiving booster vaccine, and 67.66% (16,747 cases) at 4 years. There was statistically significant difference ($\chi^2 = 291.43, P < 0.001$) in the positive conversion rates of anti-HBs at 1 year and 4 years after vaccination. The negative conversion rates of anti-HBs within 1 to 4 years after vaccination were 20.07% (4,968 cases), the positive conversion rates of anti-HBs
within 1 to 4 years were 13.11% (3,246 cases), and the positive maintenance rates of anti-HBs within 1 to 4 years were 54.55% (13,501 cases).

At 1 year after receiving the booster doses vaccine, statistical difference was observed in the positive rates of anti-HBs between different age groups (1-6 vs 7-12 vs 13-18: 67.58% vs 75.83% vs 75.96%) \((P < 0.001)\), especially, the positive rates of anti-HBs at the age 1-6 years old were the lowest. The positive rates of anti-HBs in different subjects with family history of HBV had statistical difference \((P < 0.001)\), but there was no statistical difference in the positive rates of those with family history of hepatitis B and those without family history \((P > 0.05)\). At 4 years after vaccination, the positive rates of anti-HBs between male and female had statistical difference \((P = 0.001)\), and the positive rates of male were lower (male vs female: 66.67% vs 68.76%).

There was significant statistical difference in positive rates of anti-HBs in different age groups (1-6 vs 7-12 vs 13-18: 61.48% vs 72.12% vs 45.60%) \((P < 0.001)\), and the positive rates at the age 12-18 years old were the lowest. Significant difference was observed in the positive rates of anti-HBs between different subjects with family history of HBV but there was no difference in the positive rates of those with family history of HBV and those without family history \((P > 0.05)\). Detailed statistical analysis information was shown in Table 2 and Figure 3.

The positive rates of anti-HBs in baseline anti-HBs (+) group

Before the hepatitis B booster vaccination, 13,037 subjects were anti-HBs positive. After receiving the booster dose vaccine, the positive maintenance rates of anti-HBs were 70.16% (9,147 cases) 1 year later, and 66.66% (8,690 cases) 4 years later. There was significant difference \((\chi^2 = 36.902, P < 0.001)\) in the positive conversion rates of anti-HBs between 1 year and 4 years. The negative conversion rates of anti-HBs within 1 to 4 years were 21.71% (2,830 cases), the positive conversion rates of anti-HBs within 1 to 4 years were 18.20% (2,373 cases), and the positive maintenance rates of anti-HBs within 1 to 4 years were 48.45% (6,317 cases).

At 1 year after receiving the booster doses vaccine, there was significant difference \((P < 0.001)\) in the positive rates of anti-HBs in different age groups (1-6 vs 7-12 vs 13-18: 63.57% vs 71.00% vs 73.71%), especially the positive rates of the age
13-18 years old were the highest. There was no statistical difference in the positive rates of those with family history of hepatitis B and those without family history ($P > 0.05$). Receiving the booster dose vaccine 4 years later, the positive rates of gender and age had statistical differences (all $P < 0.05$). The positive rates of female and the age of 7-12 years old was the highest. Strangely, the positive rates at age of 13-18 years were 49.82%, which was the lowest of all age groups (1-6 vs 7-12 vs 13-18: 61.52% vs 72.60% vs 49.82%). Detailed statistical analysis information was shown in Table 3 and Figure 4.

Comparison of the positive rates between baseline anti-HBs (-) group and anti-HBs (+) group

Compared to baseline anti-HBs (+) group, the positive rates of anti-HBs were higher in baseline anti-HBs (-) group ($\chi^2 = 86.014, P < 0.001$) at 1 year after receiving the booster vaccine. The positive rates of anti-HBs in baseline anti-HBs (-) group were slightly higher than anti-HBs (+) group ($\chi^2 = 3.878, P = 0.049$) at 4 years after receiving the booster vaccine. The statistical results were shown in Table 4.

Cochran-Armitage trend test of anti-HBs positive rates after booster vaccination

The Cochran-Armitage trend test was performed to determine the trend between positive rates of anti-HBs with gender or each age group (Table 5). The results showed that there was an increasing trend of anti-HBs positive rates in all participants ($Z = 91.480, P < 0.001$) after their received booster doses vaccination. In addition, an increasing trend of anti-HBs positive rates in males ($Z = 64.163, P < 0.001$), females ($Z = 65.249, P < 0.001$), age group of 1-6 years ($Z = 25.255, P < 0.001$) and 7-12 years ($Z = 96.182, P < 0.001$). However, no significant increasing trend of anti-HBs positive rates was observed in the age group of 13-18 years ($P = 0.098$).

Discussion

This study involved 37,788 recipients was to evaluate the positive rates and positive maintenance rates of anti-HBs in youths with primary immunization after inoculation with a booster dose hepatitis B vaccine. We analyzed the positive rates of anti-HBs based on gender, age (including 1-6, 7-12, and 13-18 years), nationality,
family history of HBV. The current study found that before hepatitis B booster dose vaccination, the positive maintenance rates of anti-HBs were 34.50% in primary immunization. After receiving the booster dose vaccine, the positive rates of anti-HBs were 73.8% at 1 year, and 67.32% at 4 years. The positive maintenance rates of anti-HBs were the lowest at the age of 13 to 18 years. The Cochran-Armitage trend test showed that there was an increasing trend of anti-HBs positive rates in all participants after receiving booster vaccination.

The results of anti-HBs (-) group indicated that the positive conversion rates were 74.62% at 1 year after receiving the booster doses vaccine, and 67.66% at 4 years. Compared to the previous study, the positive conversion rates were lower in our study at 1 year [21]. The reasons for this result may be the different vaccine doses and sample size from this study and the previous study. Previous studies have reported that vaccine dose significantly affects the positive rates of anti-HBs [22, 23]. The study of Zhang et al. indicated that the anti-HBs seroconversion rate of the vaccine dose of 20μg group was higher than that of 10μg group (95.3% vs. 88.8%) [22]. In addition, some studies reported that due to factors such as age, gender, obesity, smoking, long-term drinking, and DRB1 and DQB1 HLA class II alleles, 5-30% of immune-competent individuals have not developed HBV serum protective, the levels of anti-HBs in their body are less than 10 mIU/mL [24, 25]. Especially in population with low immune function, the percentage of undeveloped HVB serum protective is higher, and more immunogenic strategies should be adopted for these populations [2].

The persistence of anti-HBs and response to booster vaccination may be related to many factors, including the variety and dosage of vaccine used, the time interval between primary and booster vaccination, and the peak level of anti-HBs after full course of primary immunization [26, 27]. Our results on the anti-HBs (+) group showed that the positive maintenance rates were 70.16% at 1 year after receiving the booster doses vaccine, and 66.66% at 4 years. The positive maintenance rates of antibody levels in the anti-HBs (+) group were lower compared with previous studies [17, 27, 28], especially in the age of 13 to 18 years. Previous studies gave a possible
explanation, that was, antibody titer decreased with age [29] and the titer was < 10 mIU/mL at median 12.9 years [30]. Failure to detect antibody after vaccination did not mean that the vaccine is not protective. According to the report, while vaccine induced anti-HBs antibody, it also produced HBsAg-specific immune memory, which can provide continuous protection in the absence of antibody [31]. Furthermore, the sensitivity of antibody and antigen detection was also an important factor affecting the detection results. Several studies found that among the samples tested negative for HBsAg using conventional testing methods, 1% to 48% were tested positive using more sensitive HBsAg tests [32-34].

This study explored the response of hepatitis B vaccine in youths based on gender, age, nationality, family history of HBV. The results of this study may provide data support for future studies on hepatitis B vaccine. However, there were several limitations in our study. First, compared with non-obese people, obese individuals had a significantly lower antibody response to hepatitis B vaccine, and the risk of hepatitis B vaccine non-reactivity in obese people may increase with body mass index [35-37]. But the positive rates of anti-HBs based on body mass index were not analyzed in this study. Future studies should be performed to explore the effect of obesity on the response to hepatitis B vaccine. Second, the varieties and doses of the hepatitis B vaccine given at the primary vaccination were also important factors that affected the antibody response, but they were not distinguished due to the obstruction of data collection.

Conclusion

This is a large-sample study, which evaluated the positive rates of anti-HBs in youths at 1 year and 4 years after receiving booster dose vaccine. The positive rates of anti-HBs decreased over time, especially the positive maintenance rates were the lowest at the age of 13 to 18 years old. Longer follow-up studies are needed to assess the persistence of immunity in future researches. In addition, improving the success rates of vaccination and the sensitivity of antibody and antigen detection are worthy of attention.
Contributors

Hong Tang, Juan Wang, and Yu-lin Ji contributed to the design. Ming Wang, Ling-yao Du, and Xuan Zhang contributed to the data analysis. All authors contributed to interpretation of study results. Xia Zhu written the first manuscript and all authors reviewed and approved the final manuscript.

Data Availability statement

The data associated with the paper is available and accessed through contacting first author (E-mail:xiazhusea2021@163.com).

Declaration of interests

All authors declare they have no conflicts of interest in this study.

Funding

National Scientific and Technological Major Project for Infectious Diseases Control in China (2018ZX10715-003)

References

1. Whitford K, Liu B, Micallef J, Yin JK, Macartney K, Van Damme P, Kaldor JM: Long-term impact of infant immunization on hepatitis B prevalence: a systematic review and meta-analysis. Bulletin of the World Health Organization 2018, 96(7):484-497.

2. Loubet P, Launay O: Alternative hepatitis B vaccine strategies in healthy non-responders to a first standard vaccination scheme. Lancet Infectious Diseases 2020, 20(1):7-8.

3. Global hepatitis report 2017. World Health Organization https://apps.who.int/iris/bitstream/handle/10665/255016/9789241565455-engpdf;jsessionid=691249E8786F390279C798A0F66C6595?sequence=1 2017 Accessed on Apr 25th, 2021.

4. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY: The Global Burden of Liver Disease: The Major Impact of China. Hepatology 2014, 60(6):2099-2108.

5. Chang MH, Hadzic D, Rouassant SH, Jonas M, Kohn IJ, Negro F, Roberts E, Sibal A: Acute and chronic hepatitis: Working Group Report of the Second World Congress of Pediatric Gastroenterology, Hepatology, and Nutrition. Journal of Pediatric Gastroenterology and Nutrition 2004, 39:5584-5588.

6. Cui F, Shen L, Li L, Wang H, Wang F, Bi S, Liu J, Zhang G, Wang F, Zheng H et al: Prevention of Chronic Hepatitis B after 3 Decades of Escalating Vaccination Policy, China. Emerging Infectious Diseases 2017, 23(5):765-772.

7. Van Der Meeren O, Behre U, Crasta P: Immunity to hepatitis B persists in adolescents 15-16 years of age vaccinated in infancy with three doses of hepatitis B vaccine. Vaccine 2016, 34(24):2745-2749.

8. Zhu C, Liu P, Chen T, Ni Z, Lu L, Huang F, Lu J, Sun Z, Qu C: Presence of immune memory and immunity to hepatitis B virus in adults after neonatal hepatitis B vaccination. Vaccine 2011, 29(44):7835-7841.
9. Dentinger C, McMahon B, Butler J, Dunaway C, Zanis C, Bulkow L, Bruden D, Nainan O, Khristova M, Hennessy T et al: Persistence of antibody to hepatitis B and protection from disease among Alaska natives immunized at birth. *Journal of the Pediatric Infectious Diseases Society* 2005, 24(9):786-792.

10. Yoshida T, Saito I: Hepatitis B booster vaccination for healthcare workers. *Lancet* 2000, 355(9213):1464-1464.

11. Jack AD, Hall AJ, Maine N, Mendy M, Whittle HC: What level of hepatitis B antibody is protective? *Journal of Infectious Diseases* 1999, 179(2):489-492.

12. Su FH, Cheng SH, Li CY, Chen JD, Hsiao CY, Chien CC, Yang YC, Hung HH, Chu FY: Hepatitis B seroprevalence and anamnestic response amongst Taiwanese young adults with full vaccination in infancy, 20 years subsequent to national hepatitis B vaccination. *Vaccine* 2007, 25(47):8085-8090.

13. Kao JT, Wang JH, Hung CH, Yen YH, Hung SF, Hu TH, Lee CM, Lu SN: Long-term efficacy of plasma-derived and recombinant hepatitis B vaccines in a rural township of Central Taiwan. *Journal of Hepatology* 2013, 58(4):684-689.

14. van der Sande MAB, Waight P, Mendy M, Rayco-Solon P, Hutt P, Fulford T, Doherty C, McConkey SJ, Jeffries D, Hall AJ et al: Long-term protection against carriage of hepatitis B virus after infant vaccination. *Journal of Infectious Diseases* 2006, 193(11):1528-1535.

15. Leuridan E, Van Damme P: Hepatitis B and the Need for a Booster Dose. *Clinical Infectious Diseases* 2011, 53(1):68-75.

16. Wang Z-Z, Gao Y-H, Lu W, Jin C-D, Zeng Y, Yan L, Ding F, Li T, Liu X-E, Zhuang H: Long-term persistence in protection and response to a hepatitis B vaccine booster among adolescents immunized in infancy in the western region of China. *Human Vaccines & Immunotherapeutics* 2017, 13(4):909-915.

17. Luo Z, Yao J, Bao H, Chen Y, Lu S, Li J, Yang L, Jiang Z, Ren J, Xu K et al: The effects of booster vaccination of hepatitis B vaccine on children 5-15 years after primary immunization: A 5-year follow-up study. *Human Vaccines Immunotherapeutics* 2018, 14(5):1251-1256.

18. Shouval D: Hepatitis B vaccines. *J Hepatol* 2003, 39 Suppl 1:S70-76.

19. Hbvaxpro, INN-hepatitis B (recombinant) vaccine. https://wwwemaeuropaeu/en/documents/scientific-discussion/hbvaxpro-epar-scientific-discussion_enpdf Accessed on May 3th, 2021.

20. Lu S, Ren J, Li Q, Jiang Z, Chen Y, Xu K, Ruan B, Yang S, Xie T, Yang L et al: Effects of hepatitis B vaccine boosters on anti-HBs-negative children after primary immunization. *Hum Vaccin Immunother* 2017, 13(4):903-908.

21. Zhang W, Han L, Lin C, Wang H, Pang X, Li L, Gao P, Lin H, Gong X, Tang Y et al: Surface antibody and cytokine response to recombinant Chinese hamster ovary cell (CHO) hepatitis B vaccine. *Vaccine* 2011, 29(37):6276-6282.

22. Accrombessi M, Adetola CV, Bacharou S, Dossou Y, Avokpahoe E, Yakoubou A, Koumakpai-Adeothy S, Lozes E, Issifou S: Assessment of the anti-HBs antibody response in Beninese infants following 4 doses of HBV vaccine, including administration at birth, compared to the standard 3 doses regime; a cross-sectional survey. *Vaccine* 2020,
Obiri-Yeboah D, Awuku Y, Adjei G, Cudjoe O, Benjamin A, Obboh E, Amoako-Sakyi D: Post Hepatitis B vaccination sero-conversion among health care workers in the Cape Coast Metropolis of Ghana. PloS One 2019, 14(6):e0219148.

Weinberger B, Haks M, de Paus R, Ottenhoff T, Bauer T, Grubeck-Loebenstein B: Impaired Immune Response to Primary but Not to Booster Vaccination Against Hepatitis B in Older Adults. Frontiers in Immunology 2018, 9:1035.

Bagheri-Jamebozorgi M, Keshavarz J, Nemati M, Mohammadi-Hossainabad S, Rezayati M-T, Nejad-Ghaderi M, Jamalizadeh A, Shokri F, Jafarzadeh A: The persistence of anti-HBs antibody and anamnestic response 20 years after primary vaccination with recombinant hepatitis B vaccine at infancy. Human Vaccines & Immunotherapeutics 2014, 10(12):3731-3736.

Romanò L, Galli C, Tagliacarne C, Tosti ME, Velati C, Fomiatti L, Chironna M, Coppola RC, Cuccia M, Mangione R et al: Persistence of immunity 18–19 years after vaccination against hepatitis B in 2 cohorts of vaccinees primed as infants or as adolescents in Italy. Human Vaccines & Immunotherapeutics 2017, 13(5):981-985.

Zhao Y-L, Han B-H, Zhang X-J, Pan L-L, Zhou H-S, Gao Z, Hao Z-Y, Wu Z-W, Ma T-L, Wang F et al: Immune persistence 17 to 20 years after primary vaccination with recombinant hepatitis B vaccine (CHO) and the effect of booster dose vaccination. BMC Infectious Diseases 2019, 19(1):482.

Zhu Q, Shao XP, Chen SL, Li DL, Chen XH, Liu WJ, Wu XH, Jian ZY, Rutherford S, Zheng HZ: Epidemiological serosurvey of hepatitis B virus among children aged 1-14 years in Guangdong Province, China. International Journal of Infectious Diseases 2018, 71:25-29.

Lee KH, Shim KS, Lim IS, Chae SA, Yoon SW, Lee NM, Choi YB, Yi DY: Changes in hepatitis B virus antibody titers over time among children: a single center study from 2012 to 2015 in an urban of South Korea. Bmc Pediatrics 2017, 17.

FitzSimons D, François G, Hall A, McMahon B, Meheus A, Zanetti A, Duval B, Jilg W, Böcher WO, Lu S-N et al: Long-term efficacy of hepatitis B vaccine, booster policy, and impact of hepatitis B virus mutants. Vaccine 2005, 23(32):4158-4166.

Yang R, Song G, Guan W, Wang Q, Liu Y, Wei L: The Lumipulse G HBsAg-Quant assay for screening and quantification of the hepatitis B surface antigen. Journal of Virological Methods 2016, 228:39-47.

Ozeki I, Nakajima T, Suii H, Tatsumi R, Yamaguchi M, Kimura M, Arakawa T, Kuwata Y, Ohmura T, Hige S et al: Analysis of hepatitis B surface antigen (HBsAg) using high-sensitivity HBsAg assays in hepatitis B virus carriers in whom HBsAg seroclearance was confirmed by conventional assays. Hepatology Research 2018, 48(3):E263-E274.

Seto WK, Tanaka Y, Wong DKH, Lai CL, Shinkai N, Yuen JCH, Tong T, Fung J, Hung IFN, Yuen MF: Evidence of serologic activity in chronic hepatitis B after surface antigen (HBsAg) seroclearance documented by conventional HBsAg assay. Hepatology International 2013, 7(1):98-105.

Liu F, Guo Z, Dong C: Influences of obesity on the immunogenicity of Hepatitis B vaccine. Human Vaccines & Immunotherapeutics 2017, 13(5):1014-1017.

Bandaru P, Rajkumar H, Nappanveettil G: Altered or impaired immune response upon vaccination in WNIN/Ob rats. Vaccine 2011, 29(16):3038-3042.
37. Janssen JM, Jackson S, Heyward WL, Janssen RS: **Immunogenicity of an investigational hepatitis B vaccine with a toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in subpopulations of healthy adults 18–70 years of age.** *Vaccine* 2015, **33**(31):3614-3618.

Figure legends

Figure 1 Overview of hepatitis B surface antibody (anti-HBs) expression in all subjects.

Figure 2 Visualize the positive rate of anti-HBs at baseline, 1 year and 4 years after vaccination in all recipients. (A) based on gender; (B) based on age; (C) based on family history of Hepatitis B virus (HBV).

Figure 3 Visualize the positive rate of anti-HBs in baseline anti-HBs (-) group. (A) based on gender; (B) based on age; (C) based on family history of HBV.

Figure 4 Visualize the positive rate of anti-HBs in baseline anti-HBs (+) group. (A) based on gender; (B) based on age; (C) based on family history of HBV.
HbsAg-: 37788

Total

anti-HBs (-): 24751

Baseline

anti-HBs (-): 6282

1 year later

3036

3246

4 years later

anti-HBs (-): 8004

anti-HBs (+): 18469

1 year later

4968

13501

anti-HBs (+): 9147

1 year later

2830

6317

anti-HBs (-): 3890

4 years later

1517

2373

anti-HBs (+): 8690

4 years later
Table 1 The expression of anti-HBs in all recipients at different time points

Characteristics	All recipients (n=37,788)	Baseline (n=13,037)	1 year later (n=27,616)	4 years later (n=10,172)	
		anti-HBs (+)	anti-HBs (-)	anti-HBs (+)	anti-HBs (-)
Gender, n (%)					
Male	19,440 (51.44)	6,651 (34.21)	12,789 (65.79)	14,172 (72.90)	5,268 (27.10)
Female	18,348 (48.56)	6,386 (34.80)	11,962 (65.20)	13,444 (73.27)	4,904 (26.73)
Age (years), n (%)					
1-6	5,971 (15.80)	2,300 (38.52)	3,671 (61.48)	3,943 (66.04)	2,028 (33.96)
7-12	26,844 (71.04)	8,455 (31.50)	18,389 (68.50)	19,947 (74.31)	6,897 (25.69)
13-18	4,973 (13.16)	2,282 (45.89)	2,691 (54.11)	3,726 (74.92)	1,247 (25.08)
Family History of HBV, n (%)					
No	34,695 (91.81)	12,103 (34.88)	22,592 (65.12)	25,193 (72.61)	9,502 (27.39)
Yes	134 (0.35)	48 (35.82)	86 (64.18)	95 (70.90)	39 (29.10)
Unknown	2,959 (7.83)	886 (29.94)	2,073 (70.06)	2,328 (78.68)	631 (21.32)

Note: The relevant data of anti-HBs was expressed in numbers and percentages [n (%)]. “anti-HBs”-hepatitis B surface antibody; “anti-HBs (-)”-the levels of anti-HBs < 10 mIU/mL; “anti-HBs (+)”-the levels of anti-HBs ≥ 10 mIU/mL; “Baseline”-the time point before hepatitis B booster vaccination.
Table 2 The positive rates of anti-HBs in baseline anti-HBs (-) group

Characteristics	1 year later		4 years later			
	anti-HBs (+)	anti-HBs (-)	P	anti-HBs (+)	anti-HBs (-)	P
Gender						
Male	9,477 (74.10)	3,312 (25.90)	0.055	8,526 (66.67)	4,263 (33.33)	0.001
Female	8,992 (75.17)	2,970 (24.83)		8,221 (68.73)	3,741 (31.27)	
Age (years), n (%)			< 0.001			< 0.001
1-6	2,481 (67.58)	1,190 (32.42)		2,257 (61.48)	1,414 (38.52)	
7-12	13,944 (75.83)	4,445 (24.17)		13,263 (72.12)	5,126 (27.88)	
13-18	2,044 (75.96)	647 (24.04)		1,227 (45.60)	1,464 (54.40)	
Family History of HBV, n (%)			< 0.001			0.003
No	16,748 (74.13)	5,844 (25.87)		15,347 (67.93)	7,245 (32.07)	
Yes	62 (72.09)	24 (27.91)		63 (73.26)	23 (26.74)	
Unknown	1,659 (80.03)	414 (19.97)		1,337 (64.50)	736 (35.50)	

Note: The relevant data of anti-HBs was expressed in numbers and percentages [n (%)]. “anti-HBs”-hepatitis B surface antibody; “anti-HBs (-)”-the levels of anti-HBs < 10 mIU/mL; “anti-HBs (+)”-the levels of anti-HBs ≥ 10 mIU/mL; “Baseline”-the time point before hepatitis B booster vaccination. “a”, “b”, “c” indicated comparison between groups, the same letter indicated that there was no statistical difference between the two rows, and the different letters indicated that the rows had statistical differences.
Table 3 The positive rates of anti-HBs in baseline anti-HBs (+) group

Characteristics	1 year later		4 years later			
	anti-HBs (+)	anti-HBs (-)	P	anti-HBs (+)	anti-HBs (-)	P
Gender, n (%)						
Male	4,695 (70.59)	1,956 (29.41)	0.283	4,373 (65.75)	2,278 (34.25)	0.026
Female	4,452 (69.72)	1,934 (30.28)		4,317 (67.60)	2,069 (32.40)	
Age (years), n (%)			<0.001			<0.001
1-6	1,462 (63.57) a	838 (36.43) a		1,415 (61.52) a	885 (38.48) a	
7-12	6,003 (71.00) b	2,452 (29.00) b		6,138 (72.60) b	2,317 (27.40) b	
13-18	1,682 (73.71) c	600 (26.29) c		1,137 (49.82) c	1,145 (50.18) c	
Family History HBV, n (%)			0.002			0.938
No	8,445 (69.78) a	3,658 (30.22) a		8,064 (66.63)	4,039 (33.37)	
Yes	33 (68.75) ab	15 (31.25) ab		33 (68.75)	15 (31.25)	
Unknown	669 (75.51) b	217 (24.49) b		593 (66.93)	293 (33.07)	

Note: The relevant data of anti-HBs was expressed in numbers and percentages [n (%)]. “a”, “b”, “c” indicated comparison between groups, the same letter indicated that there was no statistical difference between the two rows, and the different letters indicated that the rows had statistical differences.
Table 4 Comparison of the positive rates between baseline anti-HBs (-) group and anti-HBs (+) group.

	Baseline anti-HBs (-) group, n (%)	Baseline anti-HBs (+) group, n (%)	P
1 year later			<0.001
anti-HBs (+)	18,469 (74.62)	9,147 (70.16)	
anti-HBs (-)	6,282 (25.38)	3,890 (29.84)	
4 years later			0.049
anti-HBs (+)	16,747 (67.66)	8,690 (66.66)	
anti-HBs (-)	8,004 (32.34)	4,347 (33.34)	

Note: The relevant data of anti-HBs was expressed in numbers and percentages [n (%)].
Table 5 The Cochran-Armitage trend test of anti-HBs positive rates after receiving booster vaccination.

Populations, n (%)	Times	Subgroup	anti-HBs (+)	anti-HBs (-)	Z	P
Overall					91.480	<0.001
	Baseline	13,037 (34.50)	24,751 (65.50)			
	1 year	27,616 (73.08)	10,172 (26.92)			
	4 years	25,437 (67.32)	12,351 (32.68)			
Males					64.163	<0.001
	Baseline	6,651 (34.21)	12,789 (65.79)			
	1 year	14,172 (72.90)	5,268 (27.10)			
	4 years	12,899 (66.35)	6,541 (33.65)			
Females					65.249	<0.001
	Baseline	6,386 (34.80)	11,962 (65.20)			
	1 year	13,444 (73.27)	4,904 (26.73)			
	4 years	12,538 (68.33)	5,810 (31.67)			
1-6 years					25.255	<0.001
	Baseline	2,300 (38.52)	3,671 (61.48)			
	1 year	3,943 (66.04)	2,028 (33.96)			
	4 years	3,672 (61.50)	2,299 (38.50)			
7-12 years					96.182	<0.001
	Baseline	8,455 (31.50)	18,389 (68.50)			
	1 year	19,947 (74.31)	6,897 (25.69)			
	4 years	19,401 (72.27)	7,443 (27.73)			
13-18 years					1.657	0.098
	Baseline	2,282 (45.89)	2,691 (54.11)			
	1 year	3,726 (74.92)	1,247 (25.08)			
	4 years	2,364 (47.54)	2,609 (52.46)			

Note: The relevant data of anti-HBs was expressed in numbers and percentages [n (%)].