Metabolomic profiling after meal shows greater changes and lower metabolic flexibility in cardiometabolic diseases

Elaine A. Yu, Tianwei Yu, Dean P. Jones, Manuel Ramirez-Zea, Aryeh D. Stein

1 Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

2 School of Data Science, Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province, China

3 Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA

4 Institute of Nutrition of Central America and Panama Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala

*Corresponding author

Aryeh D. Stein, PhD

Hubert Department of Global Health, Rollins School of Public Health, Emory University

Atlanta, GA 30322, USA

1518 Clifton Road NE, Room 7007

Telephone: (404) 727-4255

Fax: (404) 727-1278

Email: aryeh.stein@emory.edu

© Endocrine Society 2020. js.2020-00133 See https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abbreviations:

BMI: body mass index

C18: carbon 18

CMD: cardiometabolic disease

DBP: diastolic blood pressure

FDR: false discovery rate

HDL: high-density lipoprotein

HILIC: hydrophilic interaction liquid chromatography

INCAP: Institute of Nutrition of Central America and Panama

LC-FT-MS: liquid chromatography Fourier transform mass spectrometry

M/Z: mass-to-charge ratio

MSI: Metabolomics Standards Initiative

mTOR: mammalian target of rapamycin

OPLS-DA: orthogonal partial least squares discriminant analysis

PA: phosphatidic acid

PC: phosphatidylcholine

PCA: principal components analysis
PLS-DA: partial least squares discriminant analysis

PPM: parts per million

SBP: systolic blood pressure

Funding

Research reported in this publication was supported by the National Institutes of Health: HD075784 (A.D.S., Eunice Kennedy Shriver National Institute of Child Health and Human Development); HL007745 (E.A.Y., National Heart, Lung and Blood Institute); S10 OD018006 (D.P.J., Office of the Director). D.P.J. was supported in part by R01 ES023485, U2C ES030163 and P30 ES019776 (National Institute of Environmental Health Sciences). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Heart, Lung and Blood Institute; or National Institute of Environmental Health Sciences.

Conflict of interest

E.A.Y., T.Y., D.P.J., M.R.Z., and A.D.S. have no conflicts of interest.
ABSTRACT

Context: Metabolic flexibility is the physiologic acclimatization to differing energy availability and requirement states. Effectively maintaining metabolic flexibility remains challenging, particularly since metabolic dysregulations in meal consumption during CMD pathophysiology are incompletely understood.

Objective: We compared metabolic flexibility following consumption of a standardized meal challenge among adults with or without CMDs.

Design, Setting, and Participants: Study participants (n=349; 37-54 years, 55% female) received a standardized meal challenge (520 kcal, 67.4 g carbohydrates, 24.3 g fat, 8.0 g protein; 259 mL). Blood samples were collected at baseline and two hours post-challenge. Plasma samples were assayed by high-resolution, non-targeted metabolomics with dual column liquid chromatography and ultra-high-resolution mass spectrometry. Metabolome-wide associations between features and meal challenge timepoint were assessed in multivariable linear regression models.

Results: Sixty-five percent of participants had ≥ one of four CMDs; 33% were obese, 6% had diabetes, 39% had hypertension, and 50% had metabolic syndrome. Log2-normalized ratios of feature peak areas (post-prandial:fasting) clustered separately among participants with versus without any CMDs. Among participants with CMDs, the meal challenge altered 1,756 feature peak areas (1,063 C18, 693 HILIC; all q<0.05). In individuals without CMDs, the meal challenge changed 1,383 feature peak areas (875 C18, 508 HILIC; all q<0.05). There were 108 features (60 C18, 48 HILIC) that differed by the meal challenge
and CMD status, including dipeptides, carnitines, glycerophospholipids, and a bile acid metabolite (all p<0.05).

Conclusions: Among adults with CMDs, more metabolomic features differed after a meal challenge which reflected lower metabolic flexibility, relative to individuals without CMDs.

Keywords: Cardiometabolic disease, metabolomics, metabolic health, meal challenge, post-prandial state
INTRODUCTION

Cardiometabolic diseases (CMDs) and other non-communicable diseases account for over 70% of deaths globally (1). More effectively reducing the disease burden from CMDs remains a major challenge (1). One critical research gap is how to more effectively maintain cardiometabolic health, including metabolic flexibility in daily physiological processes, across the life course (2,3). Metabolic flexibility is broadly defined as the dynamic acclimatization that occurs to maintain energy homeostasis throughout heterogeneous physiologic needs and conditions (2,3). Healthy systems are considered those with metabolic resilience, or the ability to effectively regulate, in response to differing energy states (4).

Impaired metabolic flexibility has been hypothesized to influence CMD pathophysiology (2,3,5), however specific contributions remain incompletely understood. One challenge is the lack of a single, standard definition of metabolic flexibility, particularly in light of numerous interrelated physiological processes involved in maintaining energy homeostasis (2,3,6). Previous studies have begun characterizing different aspects of reduced metabolic flexibility, including the decreased ability to: sense nutrients, maintain energy homeostasis, and shift between macronutrient fuels (6). Few studies have evaluated activity metabolomics in response to meal consumption among people with versus without CMDs.

In this study, we defined metabolic flexibility as the changes in metabolomic profiles following a physiologic meal challenge, relative to while fasting. High-resolution, non-targeted metabolomic profiling provides greater granularity and metabolite coverage relative to standard diagnostic biomarkers (5,7-10). Our study objective was to compare the metabolomic profile response following a standardized meal challenge of adults with CMDs, relative to metabolically healthy participants. We
hypothesized that: 1) there would be increased changes in metabolomic features after the meal challenge among people with CMDs, compared to those without CMDs; and 2) metabolomic features in major energy, macronutrient, and bile acid pathways would be responsive in the meal challenge and differ by CMD status.

MATERIALS AND METHODS

Study participants
We studied adult participants of the Institute of Nutrition of Central America and Panama (INCAP) Nutritional Supplementation Trial Longitudinal Study (11,12). The present analysis focuses on participants enrolled in the follow-up wave conducted from 2015 to 2017 (13).

Meal challenge
After an overnight fast, participants visited the research clinic in the morning. Baseline venous blood samples were drawn after confirming fasting. Individuals were excluded from the meal challenge if their fasting blood glucose was \(\geq 180 \) mg/dL or they self-reported having diabetes. Study participants then received a standardized beverage, which was comprised of Incarapina (a vegetable protein mixture developed by INCAP), skim milk (lactose-free), safflower oil and sugar. Each portion (259 mL) contained 520.0 kcal, 8.0 g protein, 24.3 g fat, and 67.4 g carbohydrate (Supplemental Table 1) (14). This composition was intended to reflect a physiologic meal comprised of relatively higher fat and higher sugar content. Many geographic settings undergoing the nutrition transition have greater availability of higher fat and higher sugar-containing diets, which have been hypothesized to contribute to CMDs (15). Hyperglycemia and hyperlipidemia are components of diabetes and metabolic syndrome, and often co-occur with obesity and hypertension (16-19).
Data collection

Trained phlebotomists collected venous blood samples at baseline (fasting) and 120 minutes after the meal challenge (post-prandial). Plasma samples for metabolomic analysis were collected in heparin tubes. Samples were maintained on ice prior to centrifugation at 3,000 RPM for 10 minutes, and subsequently at \(-80^\circ\)C until assay. Blood samples were assayed for plasma glucose, insulin, and lipids (further details regarding assay methodology and instruments in Supplemental Table 2) (14).

Trained study staff interviewed study participants regarding sociodemographic and clinical information, including use of medications (13). Standard protocols were used to obtain anthropometric measurements (13).

Random selection of analysis subset

From the 1,139 individuals who participated in the 2015-2017 data collection wave, we sampled a random subset (n=401; Supplemental Figure 1) (14). Exclusion criteria included: 1) pregnancy or lactation (n=4) or missing key clinical variables (n=4); 2) incomplete metabolomic data (<2 timepoints of blood samples; n=44 for carbon 18 \([C18]\), n=47 for hydrophilic interaction liquid chromatography [HILIC]); and 3) failed quality check between technical replicates (n=0 for C18; n=3 for HILIC). After these exclusions, 349 participants with C18 data and 343 participants with HILIC data were included in the analysis.
High-resolution metabolomics

Pairs of plasma samples (fasting, post-prandial state) were randomly ordered for non-targeted metabolomic assay. Each plasma sample (fasting or post-prandial state) was assayed in triplicate for high-resolution metabolomic data. After frozen samples were thawed, acetonitrile (2:1, v/v; HPLC grade; Millipore, MA, USA; Sigma Aldrich, MO, USA) was added to precipitate protein (20). Samples were maintained on ice for 30 min, centrifuged (14,000 g for 10 min at 4°C), and the supernatant was stored at 4°C in a refrigerated autosampler prior to assay (20,21).

The following commercially available, stable isotope-labeled internal standards were included: \[^{13}C_6\]-D-glucose, \[^{15}N\]-indole, [2-\(^{15}N\)]-l-lysine dihydrochloride, [\(^{13}C_5\)]-L-glutamic acid, \[^{13}C_7\]-benzoic acid, [3,4-\(^{13}C_2\)]-cholesterol, [\(^{15}N\)]-L-tyrosine, [trimethyl-\(^{13}C_3\)]-caffeine, [\(^{15}N_2\)]-uracil, [3,3-\(^{13}C_2\)]-cystine, [1,2-\(^{13}C_2\)]-palmitic acid, [\(^{15}N,^{13}C_3\)]-L-methionine, [\(^{15}N\)]-choline chloride, and 2’-deoxyguanosine-\[^{15}N_2,^{13}C_{10}\]-5’-monophosphate (20,21). Human reference plasma from the National Institute of Standards and Technology (standard reference material 1950) and a pooled reference plasma (Q-std3) prepared from commercial human plasma samples (Equitech Bio, TX, USA) were included for quality control (22). Q-std3 was included before and after every 20 samples; specifically, triplicates of two Q-Std3 samples were included as the beginning, middle, or end of every batch of 40 samples.

Liquid chromatography mass spectrometry

Plasma samples were assayed by liquid chromatography Fourier transform mass spectrometry (LC-FT-MS) with two chromatographic columns: C18 (Higgins Analytical, Targa, 2.1 x 50 mm) with negative electrospray ionization, and HILIC (Waters BEH Amide 2.1 x 50 mm) with positive electrospray ionization (21,23). A Switchos control valve (LC Packings) allowed for alternation between the two columns (21). Data acquisition occurred by mass spectrometer (Orbitrap Fusion™ mass spectrometer;
Thermo Fisher Scientific, MA, USA) with specifications as previously described (21). The scan range for the detection of mass-to-charge ratio (m/z) scan was between 85 and 1250, and mass resolution was 120,000.

Data extraction

Raw data (.raw files) were collected throughout the chromatographic separation and converted to .cdf files (Xcalibur software; Thermo Fisher Scientific, CA, US). apLCMS (24) and xMSanalyzer (25) were used for the extraction and initial preprocessing of chromatographic data. Preprocessing included noise reduction, peak identification, retention time correction, peak alignment, feature quantification, weak signal detection, and batch effect adjustment with ComBat (24-26). A feature was defined as a unique combination of m/z and retention time. The ion intensity (peak area) of each feature was integrated.

Standard operating procedures and quality control were based on prior studies, including via xMSanalyzer (25). For each sample, pairwise Pearson correlations between replicates were assessed and averaged. Prior to exclusions of participants and data filtering of features (Supplemental Figure 1 (14)), the median averaged pairwise Pearson correlation between replicates was 98.7% (IQR 97.0%, 99.5%) across samples from C18 data, and 99.5% (IQR 98.6%, 99.8%) across all samples from HILIC data. Samples (n=0 for C18, n=3 for HILIC) with mean Pearson correlation coefficients <0.75 across technical replicates were excluded.

Features observed in < 80% of study participant samples in each column (C18, HILIC) were filtered (27). Any feature peak area values that were missing or zero were subsequently assigned as half of the lowest observed value (limit of detection [LOD]) of the feature peak area across all samples for each column.
Definitions

CMD definitions were based on guidelines of the World Health Organization (WHO), American Diabetes Association, American College of Cardiology, American Heart Association, and National Cholesterol Education Program (Adult Treatment Panel III report; *Supplemental Table 2*) (14,16-19). Participants were characterized as being metabolically unhealthy if they had any of four CMDs (obesity, hypertension, diabetes, metabolic syndrome).

Statistical analysis

Statistical analysis was conducted utilizing R (version 3.5.1; R Foundation for Statistical Computing; Vienna, Austria) and SAS (version 9.4; SAS Institute Inc.; Cary, NC, US). We used a complete case approach (*Supplemental Figure 1*) (14). Prior to analysis, we converted feature intensities (peak areas) to log$_2$-normalized values. For each feature, we calculated the peak area ratio as the post-prandial timepoint divided by the fasting timepoint. Statistical significance was based on two-sided hypothesis tests, and α value < 0.05. After feature-by-feature multivariable regressions with metabolomic data, the p-values were collectively adjusted for a false discovery rate (FDR), which controls the proportion of selected features that incorrectly reject the null hypothesis. FDR adjusted q < 0.05 was considered significant for Stages 1 and 2A. In regressions with interaction terms (Stages 2B), $p<0.05$ was considered significant.

Descriptive analysis and visualizations

Continuous and categorical variables were reported as mean (standard deviation [SD]), median (interquartile range [IQR]), or n (%), respectively. Subgroups were compared by Kruskal-Wallis, Wilcoxon rank-sum, or Mantel-Haenszel chi-square test statistics. Correlations between log$_2$-normalized feature peak areas and their ratios (post-prandial / fasting), and CMD biomarkers were evaluated by Spearman rank correlation coefficients. We compared differences of log$_2$-normalized feature peak area
ratios between participants with versus without any CMDs with MetaboAnalystR (28). As examples, we visualized the clustering of feature peak area ratios with unsupervised dimensionality reduction (principal components analysis [PCA]) and supervised discriminant analysis approaches (e.g. partial least squares discriminant analysis [PLS-DA], orthogonal partial least squares discriminant analysis [OPLS-DA]) (28).

Feature selection approach via regressions

We used a two-stage feature selection approach based on multivariable linear mixed regressions with repeated measurements (**Supplemental Figure 2**) (14). In Stage 1, we assessed whether the peak areas of each feature differed by the meal challenge timepoint, adjusting for age and sex. The model equation was:

\[
Y \left(\log_{2}\text{-normalized feature peak area} \right)_{i,j,t} = \beta_{0i,j,t} + \beta_{1}X_{1} (\text{timepoint} [\text{post-prandial, fasting}])_{i,j,t} + \beta_{2}X_{2} (\text{age at study visit})_{i} + \beta_{3}X_{3} (\text{sex})_{i}
\]

where study participant = i, feature = j, and timepoint = t.

Features with beta coefficients of the meal challenge (\(\beta_{1}\)) with FDR-adjusted q<0.05 were annotated, considered in functional pathway analysis, and eligible for Stage 2. In Stage 2A, we assessed whether feature peak areas responded to the meal challenge, accounting for age and sex, among participants either with or without CMDs. The same Stage 1 regression equation was used among these two stratified groups of participants. In Stage 2B, we additionally included CMD status and the two-way multiplicative interaction term between the meal challenge timepoint (post-prandial, fasting) as independent variables in the Stage 1 regressions. The Stage 2B regression equation was:

\[
Y \left(\log_{2}\text{-normalized feature peak area} \right)_{i,j,t} = \beta_{0i,j,t} + \beta_{1}X_{1} (\text{timepoint} [\text{post-prandial, fasting}])_{i,j,t} + \beta_{2}X_{2} (\text{any CMD})_{i} + \beta_{3}X_{3} (\text{age at study visit})_{i} + \beta_{4}X_{4} (\text{sex})_{i} + \beta_{5}X_{5} (\text{timepoint*anyCMD})_{i}
\]

where study participant = i, feature = j, and timepoint = t.
Features with beta coefficients of the interaction term (β_5) with $p<0.05$ were annotated and considered in functional pathways.

Feature annotations

We used annotations from xMSannotator, which considers multiple criteria in its algorithm (29) and incorporates Human Metabolome Database reference database information (30) for putative identification of features (*Supplemental Figure 3*) (14). We considered feature annotation confidence and assigned identification confidence scores to some features, based on the five-level system proposed by the Metabolomics Standards Initiative (MSI; *Supplemental Figure 3*) (14,31). Annotations of select metabolites in Stage 2B regressions were compared to identities by co-elution and MS/MS fragmentation patterns relative to authentic standards.

Ethical conduct of research

The Institutional Review Boards at Emory University (Atlanta, Georgia, US) and INCAP (Guatemala City, Guatemala) approved the study protocol. All participants provided their written informed consent.

RESULTS

Sociodemographic and cardiometabolic health characteristics of the 349 study participants are in *Table 1*. Briefly, among study participants (37-54 years), 116 (33%) had body mass index (BMI) considered obese, 22 (6%) had diabetes, 135 (39%) had hypertension, and 173 (50%) had metabolic syndrome (*Table 2*). One hundred and twenty-three adults were considered metabolically healthy insofar as they had none of these four CMDs (35%; *Table 2*). A lower proportion of men (51%) had at least one CMD compared to among women (76%; $p<0.01$; *Table 2*). Relative to men, greater proportions of women had
obesity (43% vs 21%), metabolic syndrome (65% vs 31%), and any CMD (76% vs 51%; all p<0.01; Table 2). Several CMD indicators (post-prandial glucose, glycated hemoglobin, cholesterol [total, HDL, non-HDL]) differed between men and women (all p<0.01; Table 2).

We observed 9,849 C18 and 13,908 HILIC metabolomic features in total (Supplemental Figure 1) (14). After data filtering, 5,085 C18 and 7,444 HILIC features remained eligible for the feature selection process, (Supplemental Figure 1) (14). Among all participants, 2,090 features (C18: 1,288, HILIC: 802) had peak areas that were altered following the meal challenge, compared to fasting (all q<0.05; Table 3). Among these features, 1,180 (56.5%) had putative annotations (49.2% C18, 68.1% HILIC, Table 3).

Comparing metabolomic response to meal challenge among participants with versus without CMDs

Among participants with CMDs (n=226), 1063 C18 and 693 HILIC features had differential peak areas pre- versus post-meal challenge (all q<0.05; Figure 1A; Table 3). Of these C18 features, 747 increased and 316 decreased after the meal challenge. Among the HILIC features, 400 increased and 293 decreased following the meal challenge.

In individuals without the four CMDs (n=123), 875 C18 and 508 HILIC features had peak areas that differed after the meal challenge (all q<0.05; Figure 1A; Table 3). Of these C18 features, 613 increased and 262 decreased after the meal challenge. Among these HILIC features that were responsive to the meal challenge, 325 features increased and 183 features decreased.
Subtracting the overlapping differential features observed in both groups, 658 feature peak areas (369 C18, 289 HILIC) were altered following the meal challenge only among individuals with CMDs (Figure 1A). In participants without CMDs, 285 unique features (181 C18, 104 HILIC) changed in the meal challenge and were not observed in the CMD subgroup (Figure 1A). Log$_2$-normalized post-prandial:baseline peak area ratios clustered separately among metabolically healthy versus unhealthy participants, based on OPLS-DA (Figure 1B) and PLS-DA (Supplemental Figure 4) (14).

We also assessed whether the response of each metabolomic feature peak area to the meal challenge varied by CMD status by examining the two-way multiplicative interaction between CMD status and the meal challenge timepoint. One hundred and eight feature peak areas (60 C18, 48 HILIC) were associated with this interaction term (all p<0.05; Table 3). Among these features, 59 (54.6%) had putative annotations (45.0% C18, 66.7% HILIC; Table 3). Excluding features with low xMSannotator confidence scores (MSI Level 4), delta parts per million (ppm; ≤ 5), there were 13 features from C18 data and 9 features from HILIC data with annotations (Supplemental Table 3) (14). The interaction term was respectively associated with increased carnitines (trans-2-dodecanoylcarnitine) and dipeptides (histidinyl-tryptophan or tryptophyl-histidine) peak areas (all p<0.05; MSI Levels 2 and 3 (31); Supplemental Table 3 (14), Table 4). The interaction term was also associated with phospholipids, specifically increased phosphatidic acid (PA) 34:2 and decreased phosphatidylcholine (PC) 38:3 peak areas (all p<0.05; Supplemental Table 3 (14), Table 4). An decreased peak area of a bile acid metabolite (chenodeoxycholic acid glycine conjugate or glyoursodeoxycholic acid) was associated with the interaction term (p<0.05; Table 4). Increased 3b-17-b-dihydroxyetiocholane (a steroid hormone) and 1H-indole-3-carboxaldehyde (a microbiome-derived product) peak areas were respectively associated with the interaction term (both p<0.05; MSI Levels 2 and 3 (31); Table 4).
Correlations between log$_2$ feature peak area ratios (post-prandial / fasting) and a panel of CMD biomarkers are in **Figure 2**. The peak area ratio of isovalerylcarnitine or valerylcarnitine (m/z 246.1697, RT 28) was positively correlated with BMI, diastolic blood pressure, and triglycerides (all $p<0.05$), and negatively correlated with HDL-cholesterol ($p<0.01$). The peak area ratio of phosphatidylcholine (38:3; m/z 834.5970, RT 27) was negatively correlated with BMI and fasting plasma glucose (both $p<0.05$). The peak area ratio of histidinyl-tryptophan or tryptophyl-histidine (m/z 346.1367, RT 60) was positively correlated with post-prandial glucose ($p=0.03$).

DISCUSSION

Our results showed that a greater number of metabolomic feature peak areas differed following a standardized meal challenge among adults with CMDs (1,756 features), compared to among those without CMDs (1,383 features). This finding reflected reduced metabolic flexibility, or worsened ability to acclimatize to the standardized meal challenge, among adults with CMDs. Metabolomic features that differed by the meal challenge and CMD status included dipeptides, glycerophospholipids, carnitines, and a bile acid metabolite.

Metabolic flexibility in CMDs

Our finding that more features changed after a meal challenge among adults with CMDs was consistent with the increased metabolic dysregulation in CMDs that has been previously described (2-4). Healthy metabolism has been described as having metabolic resilience, or the ability maintain stability in energy homeostasis during dynamic changes, such as caloric availability in a post-absorptive state or deficit in a
fasting state (2-4). One hypothesis is that during CMD pathophysiology, physiologic challenges result in short-term compensatory mechanisms of the body that gradually create an “allostatic load” or an inability to adequately respond, such as abnormal accumulation of lipids (32). Different facets of metabolic inflexibility, including dysregulation of substrate availability (“push”) and requirement (“pull”), are associated with elevated or reduced biomarkers in obesity, insulin resistance and deficiency (2,3).

Increased triglycerides in skeletal muscle are often observed with insulin resistance, and hypothesized to be explained by abnormal muscle glucose oxidation (increased in a basal state, decreased with insulin administration) (33). Other evidence has also shown metabolomic profiles associated with CMD status although many prior studies have been cross-sectional (5,7-10,34) and difficult to directly compare to our findings.

Protein metabolism in CMDs

We found that the meal challenge response of dipeptides and carnitines differed among participants with versus without CMDs. Prior evidence has corroborated that protein catabolites differed in CMDs (5,7-10). Murine studies have provided potential mechanisms of how catabolic protein metabolites affect systemic insulin resistance and obesity (35,36). Decreased relative concentrations of histidine and tryptophan were found in urine of rats with diabetes, compared to healthy controls (37). One explanation is that large neutral amino acids, including tryptophan, phenylalanine, leucine, isoleucine, valine, compete for cellular transport in mammalian cells (10). In a dysregulated state, an imbalance of amino acids could result in decreased activities involving the other amino acids (10). For example, excess BCAAs observed in diabetes could result in decreased neurotransmitters such as serotonin, which is derived from tryptophan (10). Other issues arising from an imbalance of amino acids include: 1) a BCAA valine-derived catabolite increases trans-endothelial fatty acid transport; 2) excess BCAAs activate the
mammalian target of rapamycin (mTOR), which can cause the uncoupling of insulin signaling; and 3) mitotoxic metabolites result in dysregulated beta-cell mitochondrial function (35,36). In vivo human studies have found that plasma tryptophan and histidine concentrations differed by T2DM (37,38) and obesity (39) status.

We found that trans-2-dodecanoylcarnitine peak areas differed by CMD status and the meal challenge. There is limited previous evidence that can be directly compared, however prior studies with other study designs have highlighted the plausibility of our result. Dodecanoylcarnitine (C12) and other acylcarnitine peak intensities were increased among overweight participants after being randomly assigned a low-calorie diet for 12 weeks (40). Several previous studies have reported the association between acylcarnitines and diabetes indicators, however the directionality of findings have been inconsistent (41-43). One study found that lower concentrations of acylcarnitines were associated with improved diabetes indicators such as insulin sensitivity (41). A separate study found that arachidonoylcarnitine was associated with greater plasma glucose concentration (42). A supplementation study among participants with impaired glucose tolerance showed that 2 g/day of L-carnitine increased acylcarnitine concentrations in skeletal muscle, but had no effects on whole-body insulin sensitivity (43).

Putative mechanisms have been hypothesized to explain the observed links between acylcarnitines, obesity, and diabetes (44). Bariatric surgery has been associated with improved Type 2 diabetes and major metabolic alterations including fatty acid metabolism (44,45). Medium- and long-chain fatty acids are transported as acylcarnitines across mitochondrial membranes for β-oxidation (6,46). Dodecanoylcarnitine and other acylcarnitines have a key role in fatty acid β-oxidation and have been hypothesized to indicate metabolic flexibility (44,45).
Three dietary supplementation studies have shown that L-carnitine, a natural form found in red meats, improved metabolic flexibility (43, 47, 48). A randomized, placebo-controlled, double bind crossover trial showed that L-carnitine supplementation restored metabolic flexibility (evaluated by hyperinsulinemic-euglycemic clamp and high-energy meal challenge) among individuals with impaired glucose tolerance (43). Murine studies have also confirmed the links between carnitines and metabolic flexibility (49, 50). One study found that mice with a gene deletion of carnitine acetyltransferase had lower whole body carbohydrate oxidation after a meal challenge (50). L-carnitine supplementation resulted in increased average daily respiratory exchange ratio, which reflected systemic carbohydrate oxidation, among mice with obesity and insulin resistance (47).

Phospholipids in CMDs

Our findings showed that two glycerophospholipids (PC, PA) were associated with the interaction between CMD status and meal challenge timepoint. Prior literature has established links between phospholipids with mitochondrial function (51), which is linked with metabolic flexibility (6). Mitochondria have a central role in energy homeostasis at the cellular level, and the ability to alternate between converting different carbon sources (fatty acids, glucose, amino acids) to acetyl-CoA, which is substrate for the tricarboxylic acid cycle (6). Phosphatidylcholines and phosphatidylethanolamines account for the majority of phospholipids in mitochondrial membranes (52). Fasting plasma insulin was positively associated with membrane lipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelin; all p<0.05) among women with obesity and no diabetes (53).
Bile acids in dysregulated metabolism

In our study, the response of bile-acid metabolite (chenodeoxycholic acid glycine conjugate or glycoursodeoxycholic acid) in a meal challenge differed by CMD status. Prior studies have found associations between glycoursodeoxycholic acid and diabetes treatment (metformin) \(^{(54)}\) as well as outcomes (gestational diabetes) \(^{(55)}\). Metformin upregulates conjugated bile acids such as glycoursodeoxycholic acid, which is hypothesized to explain the lower circulating cholesterol concentrations observed with metformin treatment \(^{(54)}\).

Bile acids have non-classical functions in regulating energy homeostasis, including glucose and lipid metabolism \(^{(56-58)}\). Bile acid sequestration reduces plasma glucose and glycated hemoglobin among people with Type 2 diabetes mellitus \(^{(57)}\). Putative mechanisms include the ability of bile acids to activate: a cell surface receptor (G-protein coupled receptor [GPCR] TGR5 [GPR131]) to improve glucose tolerance \(^{(59)}\); and nuclear receptors (pregnane X receptor, constitutive androstane receptor, vitamin D receptor) that can subsequently affect transcriptional activities of bile acid, lipid, and glucose metabolism \(^{(60-62)}\).

Limitations and strengths

We were unable to consider each of the four CMDs separately, given the limited power to detect differences across the respective subsets of people with each individual CMDs (e.g. diabetes). Causal inferences could not be made based on our findings, given that CMD status was assessed during the same study visit as the meal challenge response. Our interpretation that a greater number of feature changes could reflect lower metabolic flexibility was based on the assumption that most metabolomic
features have homeostatic regulation between the study timepoints among healthy individuals. There are still unresolved challenges in non-targeted metabolomics, particularly in resolving the major bottleneck of accurately identifying large numbers of known and unknown features (63). Interpretations of our findings should account for the methodological limitations of non-targeted metabolomics, including that feature peak areas are relative quantifications. Future studies with orthogonal methods, including MS/MS, are needed for validation and confirmation. Features could not be converted to concentrations by reference standardization (22) as known concentrations of the calibrated reference were not available for annotated features selected by Stage 2B regressions. We did not assess the potential influences of genetics, the gut microbiome, adipose or skeletal tissues on our associations of interest (3,64).

Strengths of our study included the standardized meal challenge, which addresses the heterogeneity of meal challenge (e.g. macronutrient composition, intake frequency, follow-up duration) in prior literature considering metabolomics. To our knowledge, our sample size was larger than other metabolomic studies with meal challenges among individuals with metabolic diseases (65,66). Non-targeted high-resolution metabolomic data have greater coverage of metabolites, compared to other approaches (5). The utilization of dual columns (C18, HILIC) and different electrospray ionization modes (positive, negative) additionally provided increased feature coverage (21). Stable isotope-labeled internal standards and two sets of quality controls were included in the metabolomic assays, in order to monitor and correct potential sources of bias (e.g. instrument drift).
Summary

Following a standardized meal challenge, a greater number of metabolomic feature peak areas differed among participants with CMDs, relative to those without CMDs, which could reflect increased metabolic dysregulation and decreased flexibility. Features that were altered by the meal challenge and CMD status included dipeptides, glycerophospholipids, carnitines, and a bile acid metabolite.
Acknowledgments

We thank ViLinh Tran, Ken Liu, and Kristine Dennis for their technical assistance.

Author contributions

A.D.S. conceived and designed this study. D.P.J. developed the high-resolution metabolomic assay protocol and workflow. M.R.Z. directed all field activities and supervised the glucose assays. T.Y. designed the bioinformatic workflow for the initial processing of mass spectrometry data. E.A.Y. and A.D.S. analyzed data, and E.A.Y. wrote the initial manuscript draft. All authors (E.A.Y, T.Y., D.P.J., M.R.Z., A.D.S.) contributed to critically revising the paper. A.D.S. had primary responsibility for final content. All authors read and approved the final manuscript.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.
References

1. World Health Organization. Noncommunicable diseases progress monitor 2020. Geneva: World Health Organization; 2020.

2. Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. *Endocr Rev*. 2018;39(4):489-517.

3. Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. *Cell Metab*. 2017;25(5):1027-1036.

4. van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. *Mass Spectrom Rev*. 2013;32(5):399-415.

5. Newgard CB. Metabolomics and Metabolic Diseases: Where do we stand? *Cell Metab*. 2017;25(1):43-56.

6. Muoio Deborah M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. *Cell*. 2014;159(6):1253-1262.

7. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. *Cell Metab*. 2012;15(5):606-614.

8. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. *Nat Med*. 2011;17:448.

9. Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. *Lancet Diabetes Endocrinol*. 2014;2(1):65-75.

10. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. *Cell Metab*. 2009;9(4):311-326.
11. Stein AD, Melgar P, Hoddinott J, Martorell R. Cohort profile: The Institute of Nutrition of Central America and Panama (INCAP) nutrition trial cohort study. *Int J Epidemiol.* 2008;37(4):716-720.

12. Martorell R, Habicht JP, Rivera JA. History and design of the INCAP longitudinal study (1969-77) and its follow-up (1988-89). *J Nutr.* 1995;125(4 Suppl):1027s-1041s.

13. Ford ND, Behrman JR, Hoddinott JF, Maluccio JA, Martorell R, Ramirez-Zea M, Stein AD. Exposure to improved nutrition from conception to age 2 years and adult cardiometabolic disease risk: a modelling study. *Lancet Glob Health.* 2018;6(8):e875-e884.

14. Yu EA, Yu T, Jones DP, Ramirez-Zea M, Stein AD. Supplemental Materials - Lower metabolic flexibility following a standardized meal challenge among adults with cardiometabolic diseases. UNC Dataverse; 2020. https://doi.org/10.15139/S3/XSZGXR

15. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. *Nutr Rev.* 2012;70(1):3-21.

16. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. WHO Technical Report Series 894. Geneva: World Health Organization; 2000.

17. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. *Diabetes Care.* 2019;42(Suppl 1):S13-S28.

18. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr., Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Jr., Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Sr., Williamson JD, Wright JT, Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. *Hypertension.* 2018;71(6):e13-e115.
19. National Cholesterol Education Program. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-3421.

20. Go Y-M, Uppal K, Walker DI, Tran V, Dury L, Strobel FH, Baubichon-Cortay H, Pennell KD, Roede JR, Jones DP. Mitochondrial metabolomics using high-resolution Fourier-transform mass spectrometry. Methods Mol Biol. 2014;1198:43-73.

21. Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics. 2013;9(1 Suppl):S132-s143.

22. Go YM, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, Strobel F, Quyyumi AA, Ziegler TR, Pennell KD, Miller GW, Jones DP. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol Sci. 2015;148(2):531-543.

23. Fernandes J, Chandler JD, Liu KH, Uppal K, Go YM, Jones DP. Putrescine as indicator of manganese neurotoxicity: dose-response study in human SH-SY5Y cells. Food Chem Toxicol. 2018;116(Pt B):272-280.

24. Yu T, Park Y, Johnson JM, Jones DP. apLCMS--adaptive processing of high-resolution LC/MS data. Bioinformatics. 2009;25(15):1930-1936.

25. Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, Jones DP. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics. 2013;14:15.

26. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118-127.

27. Smilde AK, van der Werf MJ, Bijlsma S, van der Werff-van der Vat BJ, Jellema RH. Fusion of mass spectrometry-based metabolomics data. Anal Chem. 2005;77(20):6729-6736.
28. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. *Nucleic Acids Res*. 2018;46(W1):W486-W494.

29. Uppal K, Walker DI, Jones DP. xMSannotator: An R package for network-based annotation of high-resolution metabolomics data. *Anal Chem*. 2017;89(2):1063-1067.

30. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. HMDB 3.0—the Human Metabolome Database in 2013. *Nucleic Acids Res*. 2013;41(Database issue):D801-807.

31. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics*. 2007;3(3):211-221.

32. Orešič M. Systems biology in human health and disease. A systems biology approach to study metabolic syndrome. Springer; 2014:17-23.

33. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. *Diabetes*. 2000;49(5):677.

34. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. *Circ Res*. 2018;122(9):1238-1258.

35. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, Baca LG, Kim E, Ghosh CC, Parikh SM, Jiang A, Chu Q, Forman DE, Lecker SH, Krishnaiah S, Rabinowitz JD, Weljie AM, Baur JA, Kasper DL, Arany Z. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. *Nat Med*. 2016;22(4):421-426.
36. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. *Nat Rev Endocrinol*. 2014;10(12):723-736.

37. Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. *Physiol Genomics*. 2007;29(2):99-108.

38. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. *Nat Med*. 2011;17(4):448-453.

39. Breum L, Rasmussen MH, Hilsted J, Fernstrom JD. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. *Am J Clin Nutr*. 2003;77(5):1112-1118.

40. Kang M, Yoo HJ, Kim M, Kim M, Lee JH. Metabolomics identifies increases in the acylcarnitine profiles in the plasma of overweight subjects in response to mild weight loss: a randomized, controlled design study. *Lipids Health Dis*. 2018;17(1):237.

41. Liepinsh E, Makreka-Kuka M, Makarova E, Volska K, Svalbe B, Sevostjanovs E, Grinberga S, Kuka J, Dambrova M. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. *Pharmacol Res*. 2016;113:788-795.

42. Weng L, Gong Y, Culver J, Gardell SJ, Petucci C, Morse AM, Frye RF, Turner ST, Chapman A, Boerwinkle E, Gums J, Beitelshees AL, Borum PR, Johnson JA, Garrett TJ, McIntyre LM, Cooper-DeHoff RM. Presence of arachidonoyl-carnitine is associated with adverse cardiometabolic responses in hypertensive patients treated with atenolol. *Metabolomics*. 2016;12(10):160.

43. Bruls YMH, de Ligt M, Lindeboom L, Phielix E, Havekes B, Schaart G, Kornips E, Wildberger JE, Hesselink MKC, Muoio D, Schrauwen P, Schrauwen-Hinderling VB. Carnitine supplementation improves metabolic flexibility and skeletal muscle acetylcarnitine formation in
volunteers with impaired glucose tolerance: a randomised controlled trial. *EBioMedicine*. 2019;49:318-330.

44. Samczuk P, Luba M, Godzien J, Mastrangelo A, Hady HR, Dadan J, Barbas C, Gorska M, Kretowski A, Ciborowski M. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. *J Pharm Biomed Anal*. 2018;151:219-226.

45. Grenier-Larouche T, Carreau A-M, Geloën A, Frisch F, Biertho L, Mareau S, Lebel S, Houls F-S, Richard D, Tchernof A, Carpentier AC. Fatty acid metabolic remodeling during Type 2 diabetes remission after bariatric surgery. *Diabetes*. 2017;66(11):2743.

46. Bremer J. Carnitine--metabolism and functions. *Physiol Rev*. 1983;63(4):1420-1480.

47. Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, Muoio DM, Mynatt RL. Carnitine revisited: potential use as adjunctive treatment in diabetes. *Diabetologia*. 2007;50(4):824-832.

48. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. *J Biol Chem*. 2009;284(34):22840-22852.

49. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopashchuk GD, Muoio DM. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. *Cell Metab*. 2008;7(1):45-56.

50. Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, Ilkayeva OR, Stevens RD, Kheterpal I, Zhang J, Covington JD, Bajpeyi S, Ravussin E, Kraus W, Koves TR, Mynatt RL. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. *Cell Metab*. 2012;15(5):764-777.

51. Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, Bruce JE, Busija DW, Dikalov S, Dorn GW, II, Galis ZS, Gottlieb RA, Kelly DP, Kitsis RN, Kohr MJ, Levy D, Lewandowski ED, McClung JM, Mochly-Rosen D, O'Brien KD, O'Rourke B, Park JY, Ping P, Sack MN, Sheu SS, Shi Y, Shiva S, Wallace DC, Weiss RG, Vernon HJ, Wong R, Schwartz
Longacre L. Unlocking the secrets of mitochondria in the cardiovascular system: path to a cure in heart failure—a report from the 2018 National Heart, Lung, and Blood Institute workshop. *Circulation*. 2019;140(14):1205-1216.

52. Horvath SE, Daum G. Lipids of mitochondria. *Progr Lipid Res*. 2013;52(4):590-614.

53. Zeghari N, Younsi M, Meyer L, Donner M, Drouin P, Ziegler O. Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women. *Int J Obes*. 2000;24(12):1600-1607.

54. Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. *Curr Opin Pharmacol*. 2019;49:1-5.

55. Li J, Huo X, Cao Y-F, Li S-N, Du Z, Shao P, Leng J, Zhang C, Sun X-Y, Ma RCW, Fang Z-Z, Yang X. Bile acid metabolites in early pregnancy and risk of gestational diabetes in Chinese women: A nested case-control study. *EBioMedicine*. 2018;35:317-324.

56. van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK, Soeters MR. Clinical relevance of the bile acid receptor TGR5 in metabolism. *Lancet Diabetes Endocrinol*. 2017;5(3):224-233.

57. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap—bile acids in metabolic control. *Nat Rev Endocrinol*. 2014;10(8):488-498.

58. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. *Nat Rev Drug Discov*. 2008;7(8):678-693.

59. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiariulo A, Yamamoto H, Matak C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. *Cell Metab*. 2009;10(3):167-177.

60. Vallim TQdA, Edwards PA. Bile acids have the gall to function as hormones. *Cell Metab*. 2009;10(3):162-164.

61. Zhang Y, Edwards PA. FXR signaling in metabolic disease. *FEBS Lett*. 2008;582(1):10-18.
62. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. *Physiol Rev*. 2009;89(1):147-191.

63. Viant MR, Kurland IJ, Jones MR, Dunn WB. How close are we to complete annotation of metabolomes? *Curr Opin Chem Biol*. 2017;36:64-69.

64. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, Hyotylainen T, Oresic M, Backhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. *Cell Metab*. 2013;17(2):225-235.

65. Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, Brouwer KL, Barritt AS. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. *Dig Dis Sci*. 2015;60(11):3318-3328.

66. Zhu P, Zhang J, Chen Y, Yin S, Su M, Xie G, Brouwer KLR, Liu C, Lan K, Jia W. Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. *Anal Bioanal Chem*. 2018.
Table 1: Sociodemographic and clinical characteristics of adult study participants (n=349)

	Overall	Males	Females	p
	n=349	n=157	n=192	
Sociodemographics				
Age at follow-up (years) c	349	157	192	0.79
Anthropometry				
BMI (kg/m²)	349	157	192	<0.01
Biochemical indicators				
Glucose profile				
Fasting blood glucose (mg/dL)	349	157	192	0.65
Post-prandial glucose (mg/dL)	349	157	192	<0.01
Glycated hemoglobin (%)	348	157	191	<0.01
Lipid profile				
Triglycerides (mg/dL)	349	157	192	0.89
Total cholesterol (mg/dL)	349	157	192	<0.01
HDL cholesterol (mg/dL)	349	157	192	<0.01
Non-HDL cholesterol (mg/dL) d	349	157	192	<0.01
Clinical				
Systolic blood pressure (mm Hg)	349	157	192	0.24
Diastolic blood pressure (mm Hg)	349	157	192	0.60

a Data values are either median (IQR) or n (%). Abbreviations: body mass index (BMI), cardiometabolic diseases (CMDs), high-density lipoprotein (HDL). Among study participants with available metabolomic data at both timepoints and key variables of interest (CMDs, Atolé exposure).
b P values based on Wilcoxon rank-sum tests
c At study visit date (of biological sample collection) in 2015-2017 data collection
d Non-HDL cholesterol (mg/dL) calculated as the difference between total (mg/dL) and HDL cholesterol (mg/dL) plasma concentrations
Table 2: CMDs among Guatemalan adults (n=349) *

CMDs	Overall N=349	Males n=157	Females n=192	p
Obesity c	116 (33%)	33 (21%)	83 (43%)	<0.01
Diabetes d	22 (6%)	8 (5%)	14 (7%)	0.40
Pre-diabetes d	130 (37%)	52 (33%)	78 (41%)	0.15
Hypertension e	135 (39%)	59 (38%)	76 (40%)	0.70
Pre-hypertension e	67 (19%)	36 (23%)	31 (16%)	0.11
Metabolic syndrome f	173 (50%)	48 (31%)	125 (65%)	<0.01
Central obesity	210 (60%)	35 (22%)	175 (91%)	<0.01
High fasting blood glucose or medication use	151 (43%)	60 (38%)	91 (47%)	0.09
High triglycerides or statin use	167 (48%)	76 (48%)	91 (47%)	0.85
Low HDL-cholesterol f	241 (69%)	91 (58%)	150 (78%)	<0.01
High blood pressure or medication use	113 (32%)	48 (31%)	65 (34%)	0.52
Any CMD g	226 (65%)	80 (51%)	146 (76%)	<0.01

* Data values are either median (IQR) or n (%). Abbreviations: body mass index (BMI), cardiometabolic diseases (CMDs), high-density lipoprotein (HDL). Among study participants with available metabolomic data at both timepoints and key variables of interest (CMDs, Atole exposure).

P values based on Mantel-Haenszel chi-square tests.

Defined by the World Health Organization (16).

Defined by recommendations of the American Diabetes Association (17) (See Supplemental Table 2 (14)).

Defined by hypertension diagnosis cut-off values from the 2017 American College of Cardiology/American Heart Association Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults (18) (See Supplemental Table 2 (14)).

Defined by the National Cholesterol Education Program guidelines (19) (See Supplemental Table 2 (14)).

* Metabolically unhealthy defined as having any of the four assessed CMDs. In other words, presence of obesity, hypertension, diabetes, and/or metabolic syndrome, including comorbidities.
Table 3: Summary of metabolomic features differing by meal challenge and CMD status

Differing features (#)	Meal Challenge	Any CMD		
LC-FT-MS columns	C18	HILIC	C18	HILIC
n	349	343	349	343

Feature selection

Stage 1: Overall linear regression	q<0.05	1,288	802	---	---
Stage 2A: Stratified linear regression	q<0.05	---	---	1,063	693
CMDs subgroup					
No CMDs subgroup	q<0.05	---	---	875	508

Stage 2B: Overall linear regression

Interaction term (subgroup x time)	p<0.05	60	48		
Annotated features	634	546	27	32	
Total annotations	3,406	5,238	153	281	

*Values in this table indicate the number of features with log2-normalized peak areas, which differed by the key subgroups of interest (meal challenge, any CMDs). The total features observed were 9,849 (C18) and 13,908 (HILIC). After data filtering, 5,085 (C18) and 7,444 (HILIC) features remained eligible for the feature selection approach. A complete case approach was utilized in multivariable regressions. All regressions with C18 data were available among 349 participants with two samples (fasting, post-prandial) of metabolomic data and key variables of interest (utilized to define CMDs). HILIC regressions were among 343 participants, based on data availability of key variables. Stage 1 feature selection was based on multivariable regressions. For each feature, a linear model with repeated measurements was utilized (Proc Mixed in SAS); the model equation was: \(Y (\log_2\text{-normalized feature peak area})_{i,j,t} = \beta_{0i,j,t} + \beta_{1} (\text{timepoint} \ [\text{post-prandial, baseline}])_{i,j,t} + \beta_{2} (\text{age at study visit})_{i} + \beta_{3} (\text{sex})_{i} \), where each study participant was denoted as \(i \), feature was \(j \), and timepoint was \(t \). Features remained eligible for Stage 2 feature selection if the beta coefficient of the meal challenge timepoint (\(\beta_{1} \)) had FDR-adjusted p-value (q) < 0.05. These features were subsequently eligible for visualizations, annotations, and pathway analysis. Stage 2A feature selection utilized the same regression equation as in Stage 1, except these sets of regressions were stratified by CMD status (any versus none). In each subgroup, the total number of features with q<0.05 of the beta-coefficient (\(\beta_{1} \)) of the meal challenge timepoint are included in this table. Among 1,288 C18 features, or among 802 HILIC features, these were also considered with multivariable regressions that additionally considered subgroups of interest and their interaction terms with meal challenge as independent variables (Stage 2B). A linear model with repeated measurements was utilized (Proc Mixed in SAS); the model equation was: \(Y (\log_2\text{-normalized feature peak area})_{i,j,t} = \beta_{0i,j,t} + \beta_{1} (\text{timepoint} \ [\text{post-prandial challenge, baseline}])_{i,j,t} + \beta_{2} (\text{any CMDs})_{i} + \beta_{3} (\text{age at study visit})_{i} + \beta_{4} (\text{sex})_{i} + \beta_{5} (\text{any CMDs*timepoint})_{i,j,t} \), where each study participant was denoted as \(i \), feature was \(j \), and timepoint was \(t \). The number of features with p<0.05 and q<0.05 the beta-coefficient (\(\beta_{5} \)) of the interaction term were included in this table.

Abbreviations: carbon 18 (C18), cardiometabolic diseases (CMDs), false discovery rate (FDR), hydrophilic interaction liquid chromatography (HILIC), liquid chromatography Fourier transform mass spectrometry (LC-FT-MS)
Table 4: Associations between metabolomic response to meal challenge and CMD status

Feature	Adjusted association with interaction term (meal challenge \(\times\) any CMDs)\(^a\)	Technical column						
Feature	\(\beta\)	SE	p	C18				
671.4670	275	PA (34:2)	HMDB07860	672.4730	M-H	0.54	0.23	0.02
834.5970	27	PC (38:3)\(^b\)	HMDB08020\(^d\)	811.6091\(^e\)	M+Na\(^e\)	-0.10	0.04	0.01
246.1697	28	Isovalerylcarnitine, valerylcarnitine	HMDB00688, HMDB13128	245.1627	M+H	-0.19	0.06	<0.01
343.2669	23	Trans-2-dodecenoylcarnitine	HMDB13326	---	M+H [+1]	0.60	0.29	0.03
364.1367	60	Histidinyl-tryptophan, tryptophyl-histidine	HMDB28896, HMD29085	341.1488	M+Na	1.80	0.79	0.02
386.1198	57	Histidinyl-tryptophan, tryptophyl-histidine	HMDB28896, HMD29085	341.1488	M+2Na-H	0.86	0.40	0.03
159.0652	282	Succinylacetone	HMDB00635	158.0579	M+H	-0.19	0.09	0.04
292.2369	232	3β,17β-dihydroxyetiocholane	HMDB00369	---	M-H [-1]	0.73	0.35	0.04
450.3143	26	Chondroxycholic acid glycin conjugate, glycosuchoxycholic acid	HMD20637, HMD20708	---	M-H [+2]	-0.87	0.42	0.04
144.0454	240	1H-indole-3-carboxaldehyde	HMDB29737	145.0528	M-H	0.72	0.27	0.01

\(^a\)In this table, features were selected in Stage 2B regressions among all participants (n=349), based on associations with interaction terms between any CMDs and meal challenge (p<0.05). Among annotated features, those with energy, macronutrient metabolism, excretory or bile acids, and microbiome-derived metabolites included in this table.

\(^b\)For each feature peak area, a linear model with repeated measurements was utilized (Proc Mixed in SAS; Stage 2B regressions). The model equation was: \(Y (\log_{2}-\text{normalized feature peak area})_{i,t} = \beta_{0i,t} + \beta_{1}X_{1}(\text{timepoint [post-prandial, baseline]}_{i,t} + \beta_{2}X_{2}(\text{any CMDs})_{i} + \beta_{3}X_{3}(\text{age at study visit})_{i} + \beta_{4}X_{4}(\text{sex})_{i} + \beta_{5}X_{5}(\text{any CMDs*timepoint})_{i,t}\) where each study participant was denoted as \(i\), feature was \(j\), and timepoint was \(t\). In this table, the beta coefficient, SE, and p-value of the interaction term in each regression were included.

\(^c\)Details regarding other phosphatidylcholines in Supplemental Table 3 (14)

Abbreviations: carbon 18 (C18), cardiometabolic disease (CMD), hydrophilic interaction liquid chromatography (HILIC), mass-to-charge ratio (M/Z), liquid chromatography Fourier transform mass spectrometry (LC-FT-MS), orthogonal partial least squares-discriminant analysis (OPLS-DA), phosphatidic acid (PA), phosphatidylcholine (PC), retention time (RT)
Figure 1: Metabolomic feature peak area changes following standardized meal challenge differed between metabolically healthy versus unhealthy individuals.
Fig 1A: In this Venn diagram, each circle represents the numbers of features with beta coefficients with FDR-adjusted p-values (q)<0.05 in stratified regressions (Stage 2A in feature selection approach) in each subgroup (metabolically healthy or unhealthy). Circle diameters were proportionally scaled by the number of features (C18, HILIC) represented. **Fig 1B:** OPLS-DA was used to compare whether feature peak area ratios (post-prandial/fasting) clustered in distinct patterns among metabolically healthy versus unhealthy participants. Each circle represents an individual (metabolically healthy – light grey, metabolic unhealthy – dark grey). Data are from LC-FT-MS (C18, negative electrospray ionization). **Fig 1C:** Examples of C18 (*) and HILIC (**) feature peak areas with putative annotations (from xMSannotator results among features selected in Stage 2B regressions with p<0.05) are represented in boxplots, stratified by sex, meal challenge, and CMD status ([Supplemental Table 4](14)).

Abbreviations: carbon 18 (C18), cardiometabolic disease (CMD), false discovery rate (FDR), hydrophilic interaction liquid chromatography (HILIC), liquid chromatography Fourier transform mass spectrometry (LC-FT-MS), orthogonal partial least squares-discriminant analysis (OPLS-DA)
Figure 2: Correlations between CMD biomarkers and metabolomic feature peak area ratios (post-prandial / fasting), stratified by column

Feature peak areas ratios (post-prandial / fasting)	BMI (kg/m²)	Fasting plasma glucose (mg/dL)	Postprandial plasma glucose (mg/dL)	Systolic blood pressure (mmHg)	Diastolic blood pressure (mmHg)	Triglycerides (mg/dL)	HDL-cholesterol (mg/dL)
A. C18							
PA 34:2 (m/z 671.4670, RT 275)	0.13	0.15	0.06	0.01	0.05	0.07	-0.01
Glycoursodeoxycholic acid** (m/z 450.3143, RT 26)	-0.19	-0.13	-0.11	-0.11	-0.20	-0.10	<0.01
3b, 17b-dihydroxyetiocholane (m/z 292.2369, RT 232)	<0.01	0.05	0.03	0.10	0.07	0.22	-0.01
1H-indole-3-carboxaldehyde (m/z 144.0454, RT 240)	0.06	0.07	0.07	0.04	-0.05	-0.03	0.04

B. HILIC							
Phosphatidylserine *** (m/z 386.1198, RT 57)	-0.06	-0.05	-0.08	-0.01	-0.05	-0.07	-0.05
Histidinyl-tryptophan, tryptophyl-histidine (m/z 364.1367, RT 60)	0.09	0.04	0.11	-0.07	-0.03	0.06	0.02
Trans-2-dodecenoylcarnitine (m/z 343.2669, RT 23)	0.05	-0.01	0.04	-0.05	-0.06	-0.02	0.01
Isovalerylarnitine, valerylcarnitine (m/z 246.1697, RT 28)	0.12	0.04	-0.05	0.08	0.13	0.25	-0.20
PC(38:3) (m/z 834.5970, RT 27)	-0.16	-0.11	-0.08	-0.03	-0.06	-0.02	-0.03
Succinylacetone (m/z 159.0652, RT 282)	-0.08	-0.01	-0.14	0.03	0.04	-0.02	0.01
* All values are Spearman rank correlations of each bivariate associations between a log$_2$-normalized feature peak area ratio (post-prandial / fasting) and CMD biomarker. ** Chenodeoxycholic acid glucine conjugate was another potential annotation. *** Other potential annotations included histidinyl-tryptophan and tryptophyl-histidine.

Abbreviations: mass-to-charge ratio (m/z), retention time (RT)