THE SATO–TATE DISTRIBUTION IN FAMILIES OF
ELLIPTIC CURVES WITH A RATIONAL PARAMETER
OF BOUNDED HEIGHT

MIN SHA AND IGOR E. SHPARLINSKI

Abstract. We obtain new results concerning the Sato–Tate conjecture on the distribution of Frobenius angles over parametric families of elliptic curves with a rational parameter of bounded height.

1. Introduction

1.1. Background and motivation. Let \(f(Z), g(Z) \in \mathbb{Z}[Z] \) be polynomials satisfying

\[
\Delta(Z) \neq 0 \quad \text{and} \quad j(Z) \notin \mathbb{Q},
\]

where

\[
\Delta(Z) = -16(4f(Z)^3 + 27g(Z)^2) \quad \text{and} \quad j(Z) = \frac{-1728(4f(Z))^3}{\Delta(Z)}.
\]

Then we consider the elliptic curve

\[
E(Z) : \quad Y^2 = X^3 + f(Z)X + g(Z)
\]

over the function field \(\mathbb{Q}(Z) \). Thus, \(\Delta(Z) \) and \(j(Z) \) are the discriminant and \(j \)-invariant of this elliptic curve, respectively; see [29] for a general background on elliptic curves.

In what follows, we also refer to [29] for the definition of the conductor \(N_E \) of an elliptic curve \(E \) as well as for the notions of CM curves and non-CM curves.

The properties of the specialisations \(E(t) \) modulo consecutive primes \(p \leq x \) for a growing parameter \(x \) and for the parameter \(t \) that runs through some interesting sets \(\mathcal{T} \) have recently being investigated quite intensively, see [10, 23, 27] and also Section 1.2. These sets \(\mathcal{T} \) can be of integer or rational numbers of limited size, and sometimes also of certain arithmetic structure; for example \(\mathcal{T} \) can be a set of primes in a given interval \([1, T]\), see [8].

2010 Mathematics Subject Classification. 11G05, 11G20, 14H52.

Key words and phrases. Sato–Tate conjecture, parametric families of elliptic curves.
Throughout the paper, for an elliptic curve E over \mathbb{Q} and a prime $p \nmid N_E$ we denote by E_p the reduction of E modulo p, which is an elliptic curve defined over the finite field \mathbb{F}_p of p elements. Furthermore, we use $E_p(\mathbb{F}_p)$ to denote the group of \mathbb{F}_p-rational points on E_p. In particular, $a_p(E) = p + 1 - \#E_p(\mathbb{F}_p)$ is the Frobenius trace.

From the Hasse bound (see [29]): $|a_p(E)| \leq 2\sqrt{p}$, we can define the Frobenius angle $\psi_p(E) \in [0, \pi]$ by the equation

$$\cos \psi_p(E) = \frac{a_p(E)}{2\sqrt{p}}.$$

Then, the Sato–Tate conjecture predicts that the angles $\psi_p(E)$ are distributed in $[0, \pi]$ with the Sato–Tate density

$$\mu_{ST}(\alpha, \beta) = \frac{2}{\pi} \int_\alpha^\beta \sin^2 \theta \, d\theta = \frac{2}{\pi} \int_{\cos \beta}^{\cos \alpha} (1 - z^2)^{1/2} \, dz,$$

where $[\alpha, \beta] \subseteq [0, \pi]$.

The Sato–Tate conjecture has been settled only quite recently in the series of works of Barnet-Lamb, Geraghty, Harris and Taylor [6], Clozel, Harris and Taylor [9], Harris, Shepherd-Barron and Taylor [18], and Taylor [30]. In particular, given a non-CM elliptic curve E over \mathbb{Q} of conductor N_E, for the number $\pi_E(\alpha, \beta; x)$ of primes $p \leq x$ with $p \nmid N_E$ for which $\psi_p(E) \in [\alpha, \beta] \subseteq [0, \pi]$, we have

$$\pi_E(\alpha, \beta; x) \sim \mu_{ST}(\alpha, \beta) \cdot \frac{x}{\log x}$$

as $x \to \infty$.

However, the above asymptotic formula is lack of an explicit error term. So, it makes sense to study $\pi_E(\alpha, \beta; x)$ on average over some natural families of elliptic curves. In this paper, we continue this line of research and in particular introduce new families of curves with a rational parameter.

1.2. Previous results. As one of the possible relaxation of the still open Lang–Trotter conjecture, see [20], Fouvry and Murty [16] have introduced the study of the reductions E_p for $p \leq x$ on average over a family of elliptic curves E. More precisely, in [16] the frequency of vanishing $a_p(E_{u,v}) = 0$ is investigated for the family of curves

$$E_{u,v} : Y^2 = X^3 + uX + v,$$

with the integer parameters $(u, v) \in [-U, U] \times [-V, V]$. This has been extended to arbitrary values $a_p(E_{u,v}) = a$ by David and Pappalardi [14] and more recently by Baier [2], see also [3].
The approach of [2, 3, 14, 16] also applies to the Sato–Tate conjecture on average for the family (1.5), see [4], provided that U and V are reasonably large compared to p. Banks and Shparlinski [5] have shown that using a different approach, based on bounds of multiplicative character sums and the large sieve inequality (instead of the exponential sum technique employed in [16]), one can study “thinner” families, that is, establish the Sato–Tate conjecture on average for the curves (1.5) for smaller values of U and V.

The technique of [5] has been used in several other problems, see [11, 15, 25, 26]. In particular, the Sato–Tate conjecture has been established on average for several other families of curves. For example, Shparlinski [26] has studied the family of elliptic curves $Y^2 = X^3 + f(u)X + g(v)$ with integers $|u| \leq U$, $|v| \leq V$, where $f, g \in \mathbb{Z}[Z]$.

Sha and Shparlinski [23] have established the Sato–Tate conjecture on average for the families of curves $Y^2 = X^3 + f(u+v)X + g(u+v)$, where u, v both run through some subsets of $\{1, 2, \ldots, T\}$, or both run over the set

$$\mathcal{F}(T) = \{u/v \in \mathbb{Q} : \gcd(u, v) = 1, 1 \leq u, v \leq T\}.$$

For the size of $\mathcal{F}(T)$, it is well known that

$$\# \mathcal{F}(T) \sim \frac{6}{\pi^2} T^2,$$

as $T \to \infty$, see [17, Theorem 331]. We recall that the set $\mathcal{F}(T) \cap [0, 1]$ is the well-known set of Farey fractions. We note that all the related results of [23] hold without any changes if one replaces the set $\mathcal{F}(T)$ with $\mathcal{F}(T) \cap [0, 1]$.

In addition, for the family of curves (1.2), Cojocaru and Hall [12] have given an upper bound on the frequency of the event $a_p(E(t)) = a$ for a fixed integer a, when the parameter t runs through the set $\mathcal{F}(T)$. This bound has been improved by Cojocaru and Shparlinski [13] and then further improved by Sha and Shparlinski [23].

Most recently, de la Bretèche, Sha, Shparlinski and Voloch [8] have established the Sato–Tate conjecture on average for the polynomial family (1.2) of elliptic curves when the variable Z is specialised to a parameter t from sets of prescribed multiplicative structure, such as prime numbers, and geometric progressions. Particularly, the Sato–Tate conjecture on average is true for the families of curves $Y^2 = X^3 + f(uv)X + g(uv)$, where u, v both run through some subsets of $\{1, 2, \ldots, T\}$.

1.3. General notation. As usual the expressions $A = O(B)$ and $A \ll B$ (sometimes we will write this also as $B \gg A$) are both equivalent to
the inequality $|A| \leq cB$ with some absolute constant $c > 0$, $A = o(B)$ means that $A/B \to 0$ and $A \sim B$ means that $A/B \to 1$. We also write $A \asymp B$ if $A \ll B \ll A$.

Throughout the paper the implied constants may, where obvious, depend on the polynomials f and g in (1.2) and the real positive parameter ε, and are absolute otherwise.

Furthermore, the letter p always denotes a prime number. We always assume that the elements of \mathbb{F}_p are represented by the set $\{0, \ldots, p-1\}$ and thus we switch freely between the equations in \mathbb{F}_p and congruences modulo p.

As usual, we use $\pi(x)$ to denote the number of primes $p \leq x$.

For a subset S in the real plane, we denote by $N(S) = \#(S \cap \mathbb{Z}^2)$ the number of integral lattice points in S.

2. Main Results

In this paper, we establish the Sato–Tate conjecture on average for some families of elliptic curves with a rational parameter.

Recall that for any $t \in \mathbb{Q}$ with $\Delta(t) \neq 0$, we use $\pi_{E(t)}(\alpha, \beta; x)$ to denote the number of primes $p \leq x$ with $p \nmid N_{E(t)}$ (or equivalently, $\Delta(t) \neq 0 \pmod{p}$, see Section 3.1) and $\psi_p(E(t)) \in [\alpha, \beta]$.

We start with a general result. Let

\begin{align*}
I(A, T) &= [A + 1, A + T], \\
J(B, T) &= [B + 1, B + T],
\end{align*}

be two intervals of the form (2.1).

Theorem 2.1. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1). Let $I(A, T)$ and $J(B, T)$ be two intervals of the form (2.1). Let $W \subseteq I(A, T) \times J(B, T)$ be an arbitrary convex subset. Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have

\[
\frac{1}{\pi(x)N(W)} \sum_{(u, v) \in W \cap \mathbb{Z}^2_{\Delta(u/v) \neq 0}} \pi_{E(u/v)}(\alpha, \beta; x) - \mu_{ST}(\alpha, \beta) \ll \frac{T \log x}{x} + \frac{T}{N(W)} + \frac{T^{1/4}x^{1/2+o(1)}}{N(W)^{1/2}}.
\]

In particular, we have:

Corollary 2.2. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1). Let $W \subseteq I(A, T) \times J(B, T)$ be an arbitrary convex subset such that

\[
N(W) \gg T^\eta
\]
for some real $\eta > 3/2$. Assume that for sufficiently small $\varepsilon > 0$,
\[x^{2/(2\eta - 1) + \varepsilon} \leq T \leq x^{1 - \varepsilon}. \]

Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have
\[
\frac{1}{\pi(x)\mathcal{N}(\mathcal{W})} \sum_{(u,v) \in \mathcal{W} \cap \mathbb{Z}^2 \setminus \Delta(u/v) \neq 0} \pi_{E(u/v)}(\alpha, \beta; x) = \mu_{\text{ST}}(\alpha, \beta) + O \left(x^{-\varepsilon/2 + o(1)} \right).
\]

Note that the fact $\mathcal{N}(\mathcal{W}) \ll T^2$ and the condition (2.2) imply that we also have $\eta \leq 2$ in Corollary 2.2.

We now give a natural class of subsets that meet the condition (2.2) in Corollary 2.2. Namely, by the Pick’s theorem (see [7, Theorem 2.8]) this holds for any convex simple polygon with vertices on the integral lattice \mathbb{Z}^2 whose area is not less than T^η up to a constant.

Assume that we further have
\[
\#\{(u, v) \in \mathcal{W} \cap \mathbb{Z}^2 : \gcd(u, v) = 1\} \asymp \mathcal{N}(\mathcal{W}).
\]

Then, one can similarly establish the Sato-Tate conjecture on average for $\pi_{E(u/v)}(\alpha, \beta; x)$, where $(u,v) \in \mathcal{W} \cap \mathbb{Z}^2$ with $\gcd(u, v) = 1$, as in Corollary 2.2.

If we choose $\mathcal{W} = \mathcal{I}(A, T) \times \mathcal{J}(B, T)$, then we can take $\eta = 2$ and $x^{2/3 + \varepsilon} \leq T \leq x^{1 - \varepsilon}$ in Corollary 2.2. In the following we want to relax this condition on T in the case when $A, B \leq T$.

We now define the sets:
\[
\mathcal{Z}(A, B, T) = (\mathcal{I}(A, T) \times \mathcal{J}(B, T)) \cap \mathbb{Z}^2,
\]

and
\[
\mathcal{Z}^*(A, B, T) = \{(u,v) \in \mathcal{Z}(A, B, T) : \gcd(u, v) = 1\}.
\]

Theorem 2.3. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1). Let $A, B \leq T$ and let \mathcal{Y} be one of the sets $\mathcal{Z}(A, B, T)$ or $\mathcal{Z}^*(A, B, T)$. Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have
\[
\frac{1}{\pi(x)\#\mathcal{Y}} \sum_{(u,v) \in \mathcal{Y}} \pi_{E(u/v)}(\alpha, \beta; x) - \mu_{\text{ST}}(\alpha, \beta)
\ll x^{-1/4} + T^{-1/2 + o(1)} x^{1/4}.
\]

We remark that $\#\mathcal{Z}(A, B, T) = (T + 1)^2$ and
\[
\#\mathcal{Z}^*(A, B, T) \asymp T^2.
\]
If $T \geq x^{1/2+\varepsilon}$ with some positive $\varepsilon \leq 1/2$, then the error term in Theorem 2.3 becomes $O(x^{-\varepsilon/2+o(1)})$. Note that the set $F(T)$ defined in (1.6) is exactly the following set

$$\{u/v : (u, v) \in \mathbb{Z}^*(0, 0, T)\}.$$

Thus, we have:

Corollary 2.4. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), and for some sufficiently small $\varepsilon > 0$ we have $T \geq x^{1/2+\varepsilon}$.

Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have

$$\frac{1}{\pi(x)\#F(T)} \sum_{s \in F(T), \Delta(s) \neq 0} \pi_{E(s)}(\alpha, \beta; x) = \mu_{ST}(\alpha, \beta) + O(x^{-\varepsilon/2+o(1)}) .$$

One can also consider the Sato-Tate conjecture on average with the product uv for $u, v \in \mathcal{Z}(A, B, T)$.

Here, we present the following result for the family of elliptic curves parameterized by products rs with r, s from arbitrary subsets of $F(T)$.

Theorem 2.5. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1). Then, for any subsets $R, S \subseteq F(T)$, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$ we have

$$\frac{1}{\pi(x)\#R\#S} \sum_{r \in R, s \in S, \Delta(rs) \neq 0} \pi_{E(rs)}(\alpha, \beta; x) = \mu_{ST}(\alpha, \beta) - \mu_{ST}(\alpha, \beta)$$

$$\ll T^4x^{-1/4} + T^3x^{1/4}\log x \frac{\#R\#S}{\#F(T)} .$$

Thus, for $R = S = F(T)$, recalling (1.7), we derive the following multiplicative analogue of [23, Theorem 6]. In turn, we also note that [23, Theorem 6] can be extended to sum sets of arbitrary sets $\mathcal{R}, \mathcal{S} \subseteq F(T)$.

Corollary 2.6. Suppose that the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), and for some sufficiently small $\varepsilon > 0$ we have $T \geq x^{1/4+\varepsilon}$.

Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have

$$\frac{1}{\pi(x)(\#F(T))^2} \sum_{r, s \in F(T), \Delta(rs) \neq 0} \pi_{E(rs)}(\alpha, \beta; x) = \mu_{ST}(\alpha, \beta) + O(x^{-\varepsilon}\log x) .$$
3. Preliminaries

3.1. Primes of good reduction. We start with the observation that the condition (1.1) (over any field \mathbb{K} of characteristic $p > 3$) implies that $\Delta(Z) \in \mathbb{K}[Z]$ is not a constant polynomial. Indeed, if $\Delta(Z) = c \neq 0$ for some $c \in \mathbb{K}$, then $f(Z)$ and $g(Z)$ have no common roots. Since $j(Z)$ is not constant, both f and g are also not constant. Now, considering the derivative $\Delta(Z)' = 0$, we easily see that f and g must have common roots, which leads to a contradiction.

For $t \in \mathbb{Q}$, let $N(t)$ denote the conductor of the specialisation of $E(Z)$ at $Z = t$. We always consider rational numbers in the form of irreducible fraction.

Note that for $t \in \mathbb{Q}$, the discriminant $\Delta(t)$ may be a rational number. However, we know that the elliptic curve $E(t)$ has good reduction at prime p if and only if p does not divide both the numerator and denominator of $\Delta(t)$; see [29, Chapter VII, Proposition 5.1(a)]. So, we can say that for any prime p, $p \nmid N(t)$ (that is, $E(t)$ has good reduction at p) if and only if $\Delta(t) \not\equiv 0 \pmod{p}$ (certainly, it first requires that p does not divide the denominator of $\Delta(t)$).

3.2. Preparations for distribution of angles. Given an angle $\vartheta \in [0, \pi]$ and an integer $n \geq 1$, we define the function

$$
\text{sym}_n(\vartheta) = \frac{\sin((n+1)\vartheta)}{\sin \vartheta}.
$$

(3.1)

Note that for any $n \geq 2$, we have

$$
\text{sym}_n(\vartheta) = \frac{\sin n\vartheta}{\sin \vartheta} \cos \vartheta + \cos n\vartheta = \text{sym}_{n-1}(\vartheta) \cos \vartheta + \cos n\vartheta,
$$

which implies (via a simple inductive argument) that

$$
\text{sym}_n(\vartheta) \ll n.
$$

(3.2)

The following result is based on the ideas of Niederreiter [22], and has been used implicitly in a number of works (see, for example, [23]). It is also explicitly given in [8, Corollary 3.2].

Lemma 3.1. Given m arbitrary angles $\psi_1, \ldots, \psi_m \in [0, \pi]$ (not necessarily distinct), assume that for every integer $n \geq 1$ we have

$$
\left| \sum_{i=1}^{m} \text{sym}_n(\psi_i) \right| \leq n\sigma
$$

for some real $\sigma \geq 2$. Then, uniformly over $[\alpha, \beta] \subseteq [0, \pi]$, we have

$$
\# \{ \psi_i \in [\alpha, \beta] : 1 \leq i \leq m \} = \mu_{\text{ST}}(\alpha, \beta)m + O \left(\sqrt{m\sigma} \right).
$$
3.3. Exponential sums with ratios. For an integer m, we denote
\[e_m(z) = \exp(2\pi iz/m). \]
The following result is essentially given in [28, Lemma 7].

Lemma 3.2. Let $T < p$ for a prime p and let $\mathcal{I}(A,T)$ and $\mathcal{J}(B,T)$ be two intervals of the form (2.1). Let $W \subseteq \mathcal{I}(A,T) \times \mathcal{J}(B,T)$ be an arbitrary convex subset. Then
\[
\max_{a \in \mathbb{F}_p^*} \left| \sum_{(u,v) \in W \cap \mathbb{Z}^2} e_p(au/v) \right| \leq T^{1/2}p^{1/2+o(1)}.
\]

The following bound that holds for any prime p and integer $T \geq 2$,

\[
(3.3) \quad \max_{a \in \mathbb{F}_p^*} \left| \sum_{u, v \in \mathcal{F}(T)} e_p(au/v) \right| \leq T(Tp)^{o(1)} + T^2/p,
\]
is actually a corrected form of [23, Lemma 15] where also the term T^2/p has to be added. Indeed in the proof of [23, Lemma 15], we omitted the case $\gcd(v, p) \neq 1$, which makes contributions at most $T(T/p + 1)$, and so one should also add T^8/p^4 to the error term in [23, Lemma 16]. Fortunately, this change does not affect the result in [23, Theorem 5], whose proof relies on [23, Lemma 16].

Now, we need to generalize the bound (3.3). We first note that the proof in [24, Lemma 3] (the condition $L_x < m$ there can be deleted) actually gives the following estimate.

Lemma 3.3. Let U, V, W be arbitrary positive integers with $V < W$. Assume that for each integer v we are given two integers L_v, U_v with $0 \leq L_v < U_v \leq U$. Then for any integer $a \not\equiv 0 \pmod m$, we have
\[
\left| \sum_{v=V}^{W} \sum_{u=L_v+1}^{U_v} e_m(au/v) \right| \leq (U + W)(Wm)^{o(1)}.
\]

We recall the definitions (2.3) and (2.4) of the sets $\mathcal{Z}(A,B,T)$ and $\mathcal{Z}^*(A,B,T)$.

Applying similar arguments as in the proof of [23, Lemma 15] and using Lemma 3.3 (taking $m = p$), we derive:
Lemma 3.4. Let $A, B \leq T$ and let $\mathcal{I}(A,T)$ and $\mathcal{J}(B,T)$ be two intervals of the form (2.1). Then for any prime p, we have

$$\max_{a \in \mathbb{F}_p^*} \left| \sum_{(u,v) \in \mathbb{Z}(A,B,T)} e_p(au/v) \right| \leq T(Tp)^o(1) + T^2/p,$$

and

$$\max_{a \in \mathbb{F}_p^*} \left| \sum_{(u,v) \in \mathbb{Z}^*(A,B,T)} e_p(au/v) \right| \leq T(Tp)^o(1) + T^2/p.$$

3.4. Bounds on some single sums. Michel [21, Proposition 1.1] gives the following bound for the sum of the function $\text{sym}_n(\vartheta)$, given by (3.1) twisted by additive characters, we refer to [19] for a background on characters.

Lemma 3.5. If the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), then for any prime p, we have

$$\sum_{w \in \mathbb{F}_p^*} \text{sym}_n(\psi_p(E(w))) e_p(mw) \ll np^{1/2},$$

uniformly over all integers $m \geq 0$ and $n \geq 1$.

We also need the following analogue of Lemma 3.5, which is given in [8, Lemma 3.4].

Lemma 3.6. If the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), then for any prime p and any multiplicative character χ of \mathbb{F}_p, we have

$$\sum_{w \in \mathbb{F}_p^*} \text{sym}_n(\psi_p(E(w))) \chi(w) \ll np^{1/2},$$

uniformly over all integer $n \geq 1$.

3.5. Frobenius angles over ratios. In this section, we estimate several sums of the function $\text{sym}_n(\vartheta)$ when ϑ runs through Frobenius angles over ratios. We start with a general result.

Lemma 3.7. Let $T < p$ for a prime p and let $\mathcal{I}(A,T)$ and $\mathcal{J}(B,T)$ be two intervals of the form (2.1). Let $\mathcal{W} \subseteq \mathcal{I}(A,T) \times \mathcal{J}(B,T)$ be an arbitrary convex subset. Then

$$\sum_{(u,v) \in \mathcal{W} \cap \mathbb{Z}^2 \atop \Delta(u/v) \neq 0 \pmod{p}} \text{sym}_n(\psi_p(E(u/v))) \ll nT^{1/2}p^{1+o(1)},$$

uniformly over all integers $n \geq 1$.

Proof. Using the orthogonality of the exponential function, we write

\[
\sum_{(u,v) \in W \cap \mathbb{Z}^2} \mathbb{S}_n(\psi_p(E(u/v))) \\Delta(u/v) \not\equiv 0 \pmod{p}
\]

\[
= \sum_{w \in \mathbb{F}_p} \mathbb{S}_n(\psi_p(E(w))) \sum_{(u,v) \in W \cap \mathbb{Z}^2} \frac{1}{p} \sum_{m=0}^{p-1} e_p(m(w - u/v)) + O(nT),
\]

where the term \(O(nT)\) comes from the case \(\gcd(v,p) \neq 1\) by using (3.2). Note that since \(T < p\), at most one \(v\) is divisible by \(p\). Now, changing the order of summation we obtain:

\[
\sum_{(u,v) \in W \cap \mathbb{Z}^2} \mathbb{S}_n(\psi_p(E(u/v))) \\Delta(u/v) \not\equiv 0 \pmod{p}
\]

\[
= \frac{1}{p} \sum_{m=0}^{p-1} \sum_{w \in \mathbb{F}_p} \mathbb{S}_n(\psi_p(E(w))) e_p(mw) \sum_{\Delta(w) \neq 0} e_p(-mu/v) + O(nT).
\]

Combining Lemma 3.5 with Lemma 3.2, we have

\[
\sum_{(u,v) \in W \cap \mathbb{Z}^2} \mathbb{S}_n(\psi_p(E(u/v))) \\Delta(u/v) \not\equiv 0 \pmod{p}
\]

\[
\ll np^{-1/2} \sum_{m=0}^{p-1} \left| \sum_{(u,v) \in W \cap \mathbb{Z}^2 \atop \gcd(v,p) = 1} e_p(-mu/v) \right| + nT
\]

\[
\ll np^{-1/2} (\mathcal{N}(W) + T^{1/2}p^{3/2+o(1)}) + nT
\]

\[
\ll np^{-1/2} T^2 + nT^{1/2}p^{1+o(1)} + nT
\]

\[
\ll nT^{1/2}p^{1+o(1)},
\]

which concludes the proof. \(\square\)

We again recall the definitions (2.3) and (2.4) of the sets \(Z(A,B,T)\) and \(Z^*(A,B,T)\). The following results gives an improvement upon the estimate in Lemma 3.7 when \(W = I(A,T) \times J(B,T)\). Note that here we do not need the condition \(p > T\) any more. The proof is fully
analogous to that of Lemma 3.7, except that instead of Lemma 3.2 one has to apply Lemma 3.4:

Lemma 3.8. Let $A, B \leq T$, and let \mathcal{Y} be one of the sets $\mathcal{Z}(A, B, T)$ or $\mathcal{Z}^*(A, B, T)$. If the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), then for any prime p, uniformly over all integers $n \geq 1$ we have

$$\sum_{(u,v) \in Y \atop \Delta(u/v) \not\equiv 0 \pmod{p}} \text{sym}_n(\psi_p(E(u/v))) \ll nT^2 p^{-1/2} + nT^{1+o(1)} p^{1/2+o(1)}.$$

Similarly, we get the following over the product set $\mathcal{F}(T) \times \mathcal{F}(T)$.

Lemma 3.9. If the polynomials $f(Z), g(Z) \in \mathbb{Z}[Z]$ satisfy (1.1), then for any prime p, integer $T \geq 2$ and sets $\mathcal{R}, \mathcal{S} \subseteq \mathcal{F}(T)$, we have

$$\sum_{r \in \mathcal{R}, s \in \mathcal{S} \atop \Delta(rs) \not\equiv 0 \pmod{p}} \text{sym}_n(\psi_p(E(rs))) \ll n \left(T^4 p^{-1/2} + T^2 p^{1/2} (\log p)^2\right),$$

uniformly over all integers $n \geq 1$.

Proof. We fix a primitive multiplicative character χ of \mathbb{F}_p. Using the orthogonality of the character function, we write

$$\sum_{r \in \mathcal{R}, s \in \mathcal{S} \atop \Delta(rs) \not\equiv 0 \pmod{p}} \text{sym}_n(\psi_p(E(rs))) = \Omega_1 + \Omega_2,$$

where

$$\Omega_1 = \sum_{r \in \mathcal{R}, s \in \mathcal{S} \atop \Delta(rs) \not\equiv 0 \pmod{p}} \text{sym}_n(\psi_p(E(rs))),$$

$$\Omega_2 = \sum_{w \in \mathbb{F}_p^* \atop \Delta(w) \not\equiv 0} \text{sym}_n(\psi_p(E(w))),$$

and

$$\sum_{u_1/v_1 \in \mathcal{R}, \gcd(u_1 v_1, p) = 1} \sum_{u_2/v_2 \in \mathcal{S}, \gcd(u_2 v_2, p) = 1} \frac{1}{p-1} \sum_{m=1}^{p-1} \chi^m(wv_1 v_2/(u_1 u_2)),$$

where $p \mid t$ means that p divides the denominator or numerator of a rational number $t \neq 0$.

Using (3.2), we directly have

$$(3.4) \quad \Omega_1 \ll nT^3 (T/p + 1).$$
By the Cauchy inequality, we get
\[
\Omega_2 = \frac{1}{p-1} \sum_{m=1}^{p-1} \sum_{w \in \mathbb{F}_p^*} \text{sym}_m(\psi_p(E(w))) \chi^m(w) \sum_{u_1/v_1 \in \mathcal{R}} \chi^m(v_1/u_1) \sum_{u_2/v_2 \in \mathcal{S}} \chi^m(v_2/u_2).
\]

Changing the order of summation, we obtain:
\[
\Omega_2 \ll n^{p-1/2} \sum_{m=1}^{p-1} \sum_{u_1/v_1 \in \mathcal{R}} \chi^m(v_1/u_1) \left| \sum_{u_2/v_2 \in \mathcal{S}} \chi^m(v_2/u_2) \right|^2.
\]

Using Lemma 3.6, we have
\[
\Omega_2 \ll n^{p-1/2} \sum_{m=1}^{p-1} \sum_{u_1/v_1 \in \mathcal{R}} \chi^m(v_1/u_1) \left| \sum_{u_2/v_2 \in \mathcal{S}} \chi^m(v_2/u_2) \right|^2.
\]

By the Cauchy inequality, we get
\[
\Omega_2^2 \ll \frac{n^2}{p} \sum_{m=1}^{p-1} \chi^m(v_1/u_1) \left| \sum_{u_2/v_2 \in \mathcal{S}} \chi^m(v_2/u_2) \right|^2.
\]

Note that for any subset \(Q \subseteq \mathcal{F}(T) \), by the orthogonality of characters, we have
\[
\sum_{m=1}^{p-1} \left| \sum_{u/v \in Q} \chi^m(u/v) \right|^2 = \sum_{m=1}^{p-1} \sum_{u_1/v_1, u_2/v_2 \in Q} \chi^m(u_2v_1/(u_1v_2)) = \sum_{m=1}^{p-1} \sum_{u_1/v_1, u_2/v_2 \in Q} \chi^m(u_2v_1/(u_1v_2)) = (p-1)W,
\]

where \(W \) is number of solutions to the congruence
\[
u_1/v_1 \equiv u_2/v_2 \pmod{p}, \quad u_1/v_1, u_2/v_2 \in Q, \quad \gcd(u_1u_2v_1v_2, p) = 1.
\]

Extending the range of variables to the whole interval \([1, T]\), and using [23, Lemma 14] (in a slightly more precise form with \((\log p)^2\) instead of \(p^{o(1)}\) given in the proof of [23, Lemma 14]), which in turn is essentially
a version of a result of Ayyad, Cochrane and Zheng [1, Theorem 2], we obtain
\[W \ll T^4/p + T^2(\log p)^2. \]
Hence
\[
\left| \sum_{m=1}^{p-1} \sum_{\substack{u/v \in \mathbb{Q} \\
gcd(uv,p) = 1}} \chi^m(v/u) \right|^2 \ll T^4 + T^2p(\log p)^2,
\]
and recalling (3.5) we derive
\[
(3.6) \quad \Omega_2 \ll nT^4p^{-1/2} + nT^2p^{1/2}(\log p)^2.
\]
Since
\[T^4p^{-1/2} + T^2p^{1/2}(\log p)^2 \geq nT^3, \]
the bounds (3.4) and (3.6) imply the desired result. \(\Box\)

4. Proofs of Main Results

4.1. Proof of Theorem 2.1. For any prime \(p\), let
\[\mathcal{W}_p = \{(u, v) \in \mathcal{W} \cap \mathbb{Z}^2 : \Delta(u/v) \not\equiv 0 \pmod{p}\}. \]
We denote by \(M_p(\alpha, \beta; \mathcal{W})\) the number of pairs \((u, v) \in \mathcal{W}_p\) such that \(\psi_p(E(u/v)) \in [\alpha, \beta]\).

It follows from Lemma 3.7 that for prime \(p > T\), we have
\[
\left| \sum_{(u,v)\in \mathcal{W}_p} \text{sym}_n(\psi_p(E(u/v))) \right| \ll nT^{1/2}p^{1+o(1)}.
\]
So, using Lemma 3.1, we have
\[
M_p(\alpha, \beta; \mathcal{W}) = \mu_{\text{ST}}(\alpha, \beta)\#\mathcal{W}_p + O \left(\sqrt{T^{1/2}p^{1+o(1)}\#\mathcal{W}_p} \right).
\]
Noticing for \(p > T\),
\[\mathcal{N}(\mathcal{W}) - T - T\deg \Delta \leq \#\mathcal{W}_p \leq \mathcal{N}(\mathcal{W}) \]
(where the term \(-T\) comes from the exceptional case \(p \mid v\)), we obtain
\[
M_p(\alpha, \beta; \mathcal{W}) - \mu_{\text{ST}}(\alpha, \beta)\mathcal{N}(\mathcal{W}) \ll T + T^{1/4}p^{1/2+o(1)}\mathcal{N}(\mathcal{W})^{1/2}. \tag{4.1}
\]
For \(p \leq T\), we use the trivial bound
\[
M_p(\alpha, \beta; \mathcal{W}) - \mu_{\text{ST}}(\alpha, \beta)\mathcal{N}(\mathcal{W}) \ll \mathcal{N}(\mathcal{W}). \tag{4.2}
\]
Besides, it is easy to see that
\[
\sum_{(u,v) \in W \cap \mathbb{Z}^2 \Delta(u/v) \neq 0} \pi_{E(u/v)}(\alpha, \beta; x) = \sum_{p \leq x} \sum_{\substack{\Delta(u/v) \neq 0 \mod p \\psi_p(E(u/v)) \in [\alpha, \beta]}} 1
\]
\[
= \sum_{p \leq x} \sum_{\Delta(u/v) \neq 0 \mod p} \sum_{\psi_p(E(u/v)) \in [\alpha, \beta]} 1 = \sum_{p \leq x} M_p(\alpha, \beta; W).
\]

Thus, applying (4.1) and (4.2) we deduce that
\[
\sum_{(u,v) \in W \cap \mathbb{Z}^2 \Delta(u/v) \neq 0} \pi_{E(u/v)}(\alpha, \beta; x) - \sum_{p \leq x} \mu_{ST}(\alpha, \beta) \mathcal{N}(W)
\]
\[
= \sum_{p \leq x} (M_p(\alpha, \beta; W) - \mu_{ST}(\alpha, \beta) \mathcal{N}(W))
\]
\[
\ll T \mathcal{N}(W) + \sum_{T < p \leq x} (T + T^{1/4} p^{1/2+o(1)} \mathcal{N}(W)^{1/2})
\]
\[
\ll T \mathcal{N}(W) + T \pi(x) + T^{1/4} x^{1/2+o(1)} \mathcal{N}(W)^{1/2} \pi(x).
\]

Now, the desired result follows from dividing both sides by \(\pi(x) \mathcal{N}(W)\).

4.2. **Proof of Theorem 2.3.** Since the proofs of the two cases are similar, we only present a proof for one case.

For any prime \(p\), let
\[
Z_p = \{(u, v) \in Z(A, B, T) : \Delta(u/v) \equiv 0 \pmod{p}\}.
\]
We denote by \(M_p(\alpha, \beta; Z)\) the number of pairs \((u, v) \in Z_p\) such that \(\psi_p(E(u/v)) \in [\alpha, \beta]\).

It follows from Lemma 3.8 that
\[
\left| \sum_{(u,v) \in Z_p} \text{sym}_n(\psi_p(E(u/v))) \right| \ll nT^2 p^{-1/2} + nT^{1+o(1)} p^{1/2+o(1)}.
\]

So, using Lemma 3.1, we have
\[
M_p(\alpha, \beta; Z) = \mu_{ST}(\alpha, \beta) \# Z_p
\]
\[
+ O \left(\sqrt{(T^2 p^{-1/2} + T^{1+o(1)} p^{1/2+o(1)}) \# Z_p} \right).
\]

Noticing that
\[
\# Z(A, B, T) - T(T/p + 1) - T(T/p + 1) \deg \Delta \leq \# Z_p \leq \# Z(A, B, T)
\]
(where the term \(-T(T/p + 1)\) comes from the exceptional case \(p | v\)), we obtain

\[
M_p(\alpha, \beta; Z) - \mu_{\text{ST}}(\alpha, \beta) \# Z(A, B, T) \\
\ll T^2 p^{-1/4} + T^{3/2+o(1)} p^{1/4+o(1)}.
\]

In addition, as in the above it is easy to see that

\[
\sum_{(u, v) \in Z(A, B, T) \atop \Delta(u/v) \neq 0} \pi_{E(u/v)}(\alpha, \beta; x) = \sum_{p \leq x} M_p(\alpha, \beta; Z).
\]

Thus, applying (4.3) we deduce that

\[
\sum_{(u, v) \in Z(A, B, T) \atop \Delta(u/v) \neq 0} \pi_{E(u/v)}(\alpha, \beta; x) - \sum_{p \leq x} \mu_{\text{ST}}(\alpha, \beta) \# Z(A, B, T)
\ll \sum_{p \leq x} \left(T^2 p^{-1/4} + T^{3/2+o(1)} p^{1/4+o(1)} \right)
\ll T^2 x^{3/4} / \log x + T^{3/2+o(1)} x^{1/4+o(1)} \pi(x) \\
\ll T^2 x^{3/4} / \log x + T^{3/2+o(1)} x^{5/4+o(1)}.
\]

Then, the desired result follows easily from dividing both sides by \(\pi(x) \# Z(A, B, T)\) and the fact that \(\# Z(A, B, T) \asymp T^2\).

4.3. Proof of Theorem 2.5. Denote \(\mathcal{T} = \mathcal{R} \times \mathcal{S}\). For any prime \(p\), let

\[
\mathcal{T}_p = \{(r, s) \in \mathcal{T} : \Delta(rs) \equiv 0 \pmod{p}\}.
\]

We denote by \(M_p(\alpha, \beta; \mathcal{T})\) the number of pairs \((r, s) \in \mathcal{T}_p\) such that \(\psi_p(E(rs)) \in [\alpha, \beta]\).

It follows from Lemma 3.9 that

\[
\left| \sum_{(r, s) \in \mathcal{W}_p} \operatorname{sym}_n(\psi_p(E(rs))) \right| \ll n \left(T^4 p^{-1/2} + T^2 p^{1/2} (\log p)^2 \right).
\]

So, using Lemma 3.1, we have

\[
M_p(\alpha, \beta; \mathcal{T}) - \mu_{\text{ST}}(\alpha, \beta) \# \mathcal{T}_p \ll \sqrt{(T^4 p^{-1/2} + T^2 p^{1/2} (\log p)^2) \# \mathcal{T}_p}.
\]

Noticing that

\[
\# \mathcal{R} \# \mathcal{S} - 2T^3(T/p + 1) - T^3(T/p + 1) \deg \Delta \leq \# \mathcal{T}_p \leq \# \mathcal{R} \# \mathcal{S},
\]

we obtain

\[
(4.4) \quad M_p(\alpha, \beta; \mathcal{T}) - \mu_{\text{ST}}(\alpha, \beta) \# \mathcal{R} \# \mathcal{S} \ll T^4 p^{-1/4} + T^3 p^{1/4} \log p.
\]
Besides, as in the above we have
\[\sum_{r \in R, s \in S, \Delta(rs) \neq 0} \pi_{E(rs)}(\alpha, \beta; x) = \sum_{p \leq x} M_p(\alpha, \beta; T). \]

Thus, applying (4.4) we deduce that
\[\sum_{r \in R, s \in S, \Delta(rs) \neq 0} \pi_{E(rs)}(\alpha, \beta; x) - \mu_{ST}(\alpha, \beta) \# R \# S \pi(x) \ll \sum_{p \leq x} \left(T^4 p^{-1/4} + T^3 p^{1/4} \log p \right) \ll T^4 x^{3/4} / \log x + T^3 x^{5/4}, \]
and the desired result now follows.

Acknowledgements

This work was supported by the Australian Research Council Grant DP130100237.

References

[1] A. Ayyad, T. Cochrane and Z. Zheng, *The congruence $x_1 x_2 \equiv x_3 x_4 \pmod{p}$, the equation $x_1 x_2 = x_3 x_4$ and the mean values of character sums*, J. Number Theory 59 (1996), 398-413.
[2] S. Baier, *The Lang–Trotter conjecture on average*, J. Ramanujan Math. Soc. 22 (2007), 299–314.
[3] S. Baier, *A remark on the Lang–Trotter conjecture*, in: New Directions in Value-Distribution Theory of Zeta and L-functions, R. Steuding and J. Steuding (eds.), Shaker Verlag, 2009, 11–18.
[4] S. Baier and L. Zhao, *The Sato–Tate conjecture on average for small angles*, Trans. Amer. Math. Soc. 361 (2009), 1811–1832.
[5] W. D. Banks and I. E. Shparlinski, *Sato–Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height*, Israel J. Math. 173 (2009), 253–277.
[6] T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, *A family of Calabi-Yau varieties and potential automorphy II*, Publ. Res. Inst. Math. Sci. 47 (2011), 29–98.
[7] M. Beck and S. Robins, *Computing the continuous discretely*, Second Edition, Springer, New York, 2015.
[8] R. de la Bretèche, M. Sha, I. E. Shparlinski and J. F. Voloch, *The Sato–Tate distribution in thin parametric families of elliptic curves*, preprint, 2015, available at http://arxiv.org/abs/1509.03009.
[9] L. Clozel, M. Harris and R. Taylor, *Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations*, Publ. Math. IHES 108 (2008), 1–181.
[10] A. C. Cojocaru, *Questions about the reductions modulo primes of an elliptic curve*, in: Proc. 7th Meeting of the Canadian Number Theory Association (CRM Proceedings and Lecture Notes 36), E. Goren and H. Kisilevsky (ed.), Amer. Math. Soc., 2004, 61–79.

[11] A. C. Cojocaru and C. Hall, *Uniform results for Serre’s theorem for elliptic curves*, Int. Math. Res. Not. **2005** (2005), 3065–3080.

[12] A. C. Cojocaru and I. E. Shparlinski, *Distribution of Farey fractions in residue classes and Lang–Trotter conjectures on average*, Proc. Amer. Math. Soc. **136** (2008), 1977–1986.

[13] A. C. Cojocaru and C. David, *Frobenius fields for elliptic curves*, Amer. J. Math. **130** (2008), 1535–1560.

[14] E. Fouvry and M. R. Murty, *On the distribution of supersingular primes*, Canad. J. Math. **48** (1996), 81–104.

[15] H. Iwaniec and E. Kowalski, *Analytic Number Theory*, Amer. Math. Soc., Providence, RI, 2004.

[16] M. Harris, N. Shepherd-Barron and R. Taylor, *A family of Calabi-Yau varieties and potential automorphy*, Ann. Math. **171** (2010), 779–813.

[17] P. Michel, *Rang moyen de familles de courbes elliptiques et lois de Sato–Tate*, Monatsh. Math. **120** (1995), 127–136.

[18] H. Niederreiter, *The distribution of values of Kloosterman sums*, Arch. Math. **56** (1991), 270–277.

[19] M. Sha and I. E. Shparlinski, *Lang–Trotter and Sato–Tate distributions in single and double parametric families of elliptic curves*, Acta Arith. **170** (2015), 299–325.

[20] J. H. Silverman, *The arithmetic of elliptic curves*, Springer, Berlin, 2009.

[21] I. E. Shparlinski, *Linear congruences with ratios*, Proc. Amer. Math. Soc., to appear, available at http://arxiv.org/abs/1503.03196.
School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
E-mail address: shamin2010@gmail.com

School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
E-mail address: igor.shparlinski@unsw.edu.au