Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions

Julie Fowler1, Karen Bell2,3, Kevin S. Burgess4, Emily K. Dobbs2, David Grunewald1, Brice Lawley1, Connor Morozumi1, and Berry J. Brosi2
1Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta GA 30322, USA; 2The University of Western Australia, School of Plant Biology M08A, Perth, WA 6008, Australia; 3CSIRO Land and Water & CSIRO Health and Biosecurity, 147 Underwood Ave, Floreat, WA 6014, Australia; 4Columbus State University, Columbus, Georgia, USA

Abstract

Background: Current knowledge of plant-pollinator visitation networks is based primarily on visual sightings of bees coming and going from various flowers in one location and can lack both accuracy and time depth. Plant-pollinator networks become more detailed. Further advantages in efficiency and accuracy can be achieved when this is coupled with DNA metabarcoding to identify mixed-species pollen batches and high-throughput sequencing. In our experiment we used dual-indexing DNA metabarcoding with the rbcL and ITS2 regions in order to gather data on whether there are plant-pollinator forests in networks being managed for biofuel production.

Results: We were able to successfully construct a quantitative plant-pollinator network using DNA metabarcoding.

Significance: This work demonstrates that non-quantitative DNA metabarcoding can be used in constructing quantitative plant-pollinator networks. This also demonstrates the increased efficiency and cost-effectiveness of DNA metabarcoding for mixed-species pollen batches over traditional barcoding or visual sighting methods.

Figure I: Proportion of sequencing reads for family-level taxonomic identifications from a sample with high DNA content, moderate DNA content, and low DNA content, with varying numbers of PCR cycles. Sequencing reads from rbcL are horizontally striped, sequencing reads from ITS2 are diagonally striped, and different families are represented in different colors. Image and modified caption from Bell et al. 2017.

Figure II: Bipartite pollination network of 37 bee specimens (top nodes) to the 51 plant taxa present in their pollen loads based on ITS2 taxonomic classification (bottom nodes). Interactions were pooled within plant and bee taxa. Links between plants and pollinators are represented with lines whose width is proportional to the strength of the interaction and the frequency of shared family and species. Image and citation from Bell et al. 2017.

Methods

• Bees were collected from longleaf pine forests with 13 individual sites of 7 different land management types
• DNA was isolated and the genes rbcL (primers: rbcL2 and rbcL2af) and ITS2 (primers: ITS2-SF2 and ITS2SR) were amplified using primers appended with MiSeq-specific adapters and index sequences. Following PCR and purification, DNA concentrations were measured and samples were pooled in equal concentrations and sequenced using Illumina MiSeq
• Taxonomic identification followed a modified version of the bioinformatics pipeline of Sickel et al., to include rbcL data.
• We started the network using only the data from the ITS2 data as no clear method exists for combining the two data sets and the ITS2 marker possesses greater database coverage and taxonomic resolution.
• The strength of interactions were quantified based on interaction frequency rather that proportions of sequencing reads, due to variations in copy number of rbcL and ITS2

Results

• We were able to identify 78% and 55% of all plants to at least genus level with ITS2 and rbcL respectively
• The resulting bipartite network contained 37 pollinators and 51 plant taxa based on the ITS2 taxonomic classification

Discussion and Conclusions

We were successfully able to identify mixed-species pollen loads collected from bees using DNA metabarcoding and demonstrated that constructing quantitative plant-pollinator networks is possible. While there are some circumstances when visual identification of pollen is more appropriate, DNA metabarcoding has a number of clear advantages compared with microscope identification. These include increased taxonomic resolution, a distinct time advantage, and much less hands-on work.

There remain a number of factors to be taken into account when applying these techniques in the future. These include choice of barcoding markers, methods of quantification, the effect of increased PCR cycles on low concentration samples, the presence of false positives due to contamination given the ubiquity of pollen, and the possible exclusion of rare species in an attempt to avoid false positives. Despite these concerns, DNA metabarcoding has many advantages over visual identification for pollination network reconstruction. New tools such as this one are needed given the importance of understanding changes in these networks due to anthropogenic climate change and global pollinator declines.

Acknowledgements: The broader project was funded by the U.S. Army Research Office (grants W911NF-13-1-0247 and W911NF-13-1-0160) and the U.S. Department of Agriculture (USDA-NIFA-2012-07050). Julie Fowler was supported by Emory University’s CURP program, and the Army Research Office (URAP program). Finally, support for J. Fowler to attend the International Barcode of Life conference was provided by the Lewis-Conference Grant committee. The authors thank Rachel Gardner for fieldwork assistance and Isabel Gottlieb and Robert Fletcher for assistance with site selection and logistics. Sam Dawies provided assistance with identification of difficult bee taxa. The authors thank Alexander Keller and Markus Ankerström (University of Würzburg) for providing advice on adapting their bioinformatics pipeline to our rbcL reference library.

References: B. Bosch, J., Martin Gonzalez, A. M., Rodrigo, A., & Navarro, D. (2009). Plant-pollinator networks: adding the pollinator’s perspective. Ecology Letters, 12(3), 409-419. 2. Bell, K. L., de Vere, N., Kellner, A., Richardson, R., Goss, A., Burgess, K. S., & Brosi, B. J. (2016). Pollen DNA barcoding: current applications and future prospects. Genome, 59(9), 629-640. 3. Sickel, W., Arkenbout, M. J., Grommer, G., Holochuck, A., Hättel, S., Lemann, J., & Keller, A. (2010). Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecology, 11(5), 20. 4. Bell, K. L., Fowler, J., Burgess, K. S., Dobbs, E. K., Grunewald, D., Lawley, B., & Brosi, B. J. (2017). Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Applications in Weed Sciences, 58(1), 100124. doi:10.3727/apps.1800124