Acoustic Characterization of Environments (ACE) Challenge Results Technical Report

James Eaton*, Nikolay D. Gaubitch†, Alastair H. Moore‡, and Patrick A. Naylor§

1Dept. of Electrical and Electronic Engineering, Imperial College London, UK
2SIP Lab, Delft University of Technology, Netherlands, and Pindrop Security

Abstract

This document provides supplementary information, and the results of the tests of acoustic parameter estimation algorithms on the Acoustic Characterization of Environments (ACE) Challenge [1] Evaluation dataset which were subsequently submitted and written up into papers for the Proceedings of the ACE Challenge [2]. This document is supporting material for a forthcoming journal paper on the ACE Challenge which will provide further analysis of the results.

* j.eaton11@imperial.ac.uk
† n.d.gaubitch@tudelft.nl
‡ alastair.h.moore@imperial.ac.uk
§ p.naylor@imperial.ac.uk
Contents

List of Figures 7

List of Tables 8

1 Introduction 9
 1.1 Room recording procedure 9
 1.2 Room properties 9
 1.2.1 Room dimension and microphone positions 9
 1.2.2 Talker positions for babble noise 10
 1.2.3 Distances and look directions 11
 1.3 Taxonomy of algorithms submitted 11
 1.4 Results 14

2 Overall results summary 17
 2.1 Fullband Reverberation Time (T_{60}) estimation overall results 17
 2.2 Fullband Direct-to-Reverberant Ratio (DRR) estimation overall results 19
 2.2.1 Fullband T_{60} estimation results by parameter 21
 2.2.2 Fullband DRR estimation results by parameter 25

3 T_{60} estimation results 29
 3.1 Fullband T_{60} estimation results by noise type 29
 3.1.1 Ambient noise 29
 3.1.2 Babble noise 32
 3.1.3 Fan noise 34
 3.2 Fullband T_{60} estimation results by noise type and Signal-to-Noise Ratio (SNR) ... 36
 3.2.1 Ambient noise at 18 dB SNR 36
 3.2.2 Ambient noise at 12 dB SNR 38
 3.2.3 Ambient noise at −1 dB SNR 40
 3.2.4 Babble noise at 18 dB SNR 42
 3.2.5 Babble noise at 12 dB SNR 44
 3.2.6 Babble noise at −1 dB SNR 46
 3.2.7 Fan noise at 18 dB SNR 48
 3.2.8 Fan noise at 12 dB SNR 50
4.4.2 Babble noise .. 98
4.4.3 Fan noise .. 101
4.5 Frequency-dependent DRR estimation results by noise type and SNR ... 104
 4.5.1 Ambient noise at 18 dB .. 104
 4.5.2 Ambient noise at 12 dB .. 107
 4.5.3 Ambient noise at −1 dB ... 110
 4.5.4 Babble noise at 18 dB ... 113
 4.5.5 Babble noise at 12 dB ... 116
 4.5.6 Babble noise at −1 dB ... 119
 4.5.7 Fan noise at 18 dB .. 122
 4.5.8 Fan noise at 12 dB .. 125
 4.5.9 Fan noise at −1 dB .. 128

List of Figures

1 Coordinate system used in tables .. 10
2 Fullband T_{60} estimation error in all noises for all SNRs 17
3 Fullband DRR estimation error in all noises for all SNRs 19
4 Fullband (FB) T_{60} estimation error in all noises and all SNRs for a) female talkers and b) male talkers 21
5 Single channel FB T_{60} estimation error in all noises and all SNRs for a) $T_{60} < 0.43 \text{s}$ b) $0.43 < T_{60} < 0.75 \text{s}$ and c) $T_{60} \geq 0.75 \text{s}. \text{ Observe that } \rho < 0 \text{ for all except algorithm D} 22
6 FB T_{60} estimation error in all noises at a), 18 dB SNR, b), 12 dB SNR, and c) −1 dB SNR .. 23
7 FB T_{60} estimation error in all noises and all SNRs for a) utterance length < 5 s b) utterance length < 15 s and c) utterance length \(\geq 15 \text{s} \) ... 24
8 FB DRR estimation error in all noises and all SNRs for a) female talkers and b) male talkers 25
9 Single channel FB DRR estimation error in all noises and all SNRs for a) DRR < 2 dB b) $2 \leq \text{ DRR} < 5 \text{ dB}$ and c) DRR \(\geq 5 \text{ dB} \) .. 26
10 Mobile (3-channel) FB DRR estimation error in all noises and all SNRs for a) DRR < 2 dB b) $2 \leq \text{ DRR} < 5 \text{ dB}$ and c) DRR \(\geq 5 \text{ dB} \). Note that for b) there are strong negative correlations for all algorithms ... 26
11 FB DRR estimation error in all noises at a), 18 dB SNR, b), 12 dB SNR, and c) −1 dB SNR 27
12 FB DRR estimation error in all noises and all SNRs for a) utterance length < 5 s b) utterance length < 15 s and c) utterance length \(\geq 15 \text{s} \) ... 28
13 Fullband T_{60} estimation error in ambient noise for all SNRs .. 30
14 Fullband T_{60} estimation error in babble noise for all SNRs .. 32
15 Fullband T_{60} estimation error in fan noise for all SNRs .. 34
16 Fullband T_{60} estimation error in ambient noise at 18 dB SNR .. 36
	Description	Page
17	Fullband DRR estimation error in ambient noise at 12 dB SNR	38
18	Fullband DRR estimation error in ambient noise at -1 dB SNR	40
19	Fullband DRR estimation error in babble noise at 18 dB SNR	42
20	Fullband DRR estimation error in babble noise at 12 dB SNR	44
21	Fullband DRR estimation error in babble noise at -1 dB SNR	46
22	Fullband DRR estimation error in fan noise at 18 dB SNR	48
23	Fullband DRR estimation error in fan noise at 12 dB SNR	50
24	Fullband DRR estimation error in fan noise at -1 dB SNR	52
25	Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm Model-based Subband (SB) RTE [3]	54
26	Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm Model-based SB RTE [3]	55
27	Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm Model-based SB RTE [3]	56
28	Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm Model-based SB RTE [3]	57
29	Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm Model-based SB RTE [3]	58
30	Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm Model-based SB RTE [3]	59
31	Frequency-dependent DRR estimation error in ambient noise at -1 dB SNR for algorithm Model-based SB RTE [3]	60
32	Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm Model-based SB RTE [3]	61
33	Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm Model-based SB RTE [3]	62
34	Frequency-dependent DRR estimation error in babble noise at -1 dB SNR for algorithm Model-based SB RTE [3]	63
35	Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm Model-based SB RTE [3]	64
36	Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm Model-based SB RTE [3]	65
37	Frequency-dependent DRR estimation error in fan noise at -1 dB SNR for algorithm Model-based SB RTE [3]	66
38	Fullband DRR estimation error in ambient noise for all SNRs	68
39	Fullband DRR estimation error in babble noise for all SNRs	70
40	Fullband DRR estimation error in fan noise for all SNRs	72
42	Fullband DRR estimation error in ambient noise at 18 dB SNR	74
43	Fullband DRR estimation error in ambient noise at -1 dB SNR	76
44	Fullband DRR estimation error in babble noise at 18 dB SNR	78
45	Fullband DRR estimation error in babble noise at 12 dB SNR	80
46	Fullband DRR estimation error in babble noise at -1 dB SNR	82
47	Fullband DRR estimation error in fan noise at 18 dB SNR	84
48	Fullband DRR estimation error in fan noise at 12 dB SNR	86
49	Fullband DRR estimation error in fan noise at -1 dB SNR	88
50	Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm Particle Velocity [4]	90

5
Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm DRR Estimation using a Null-Steered Beam-former (DENBE) with FFT derived subbands.

Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in ambient noise at −1 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in ambient noise at −1 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in ambient noise at −1 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in babble noise at −1 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in babble noise at −1 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in babble noise at −1 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm DENBE with FFT derived subbands.

Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm DENBE with filtered subbands.

Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm Particle Velocity.

Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm DENBE with FFT derived subbands.
List of Tables

1 Room dimensions, source, microphone and fan positions ... 11
2 Room dimensions, source, microphone and fan positions continued .. 12
3 Talker positions used to produce babble noise ... 12
4 Source–microphone distances and Direction-of-Arrivals (DoAs) in spherical coordinates 13
5 Fan–microphone distances and DoAs ... 13
6 ACE Challenge participants ... 14
7 T_{60} estimation algorithm performance in all noises for all SNRs .. 18
8 DRR estimation algorithm performance in all noises for all SNRs .. 20
9 T_{60} estimation algorithm performance in ambient noise for all SNRs 31
10 T_{60} estimation algorithm performance in babble noise for all SNRs .. 33
11 T_{60} estimation algorithm performance in fan noise for all SNRs .. 35
12 T_{60} estimation algorithm performance in ambient noise at 18 dB SNR 37
13 T_{60} estimation algorithm performance in ambient noise at 12 dB SNR 39
14 T_{60} estimation algorithm performance in ambient noise at -1 dB SNR 41
15 T_{60} estimation algorithm performance in babble noise at 18 dB SNR ... 43
16 T_{60} estimation algorithm performance in babble noise at 12 dB SNR ... 45
17 T_{60} estimation algorithm performance in babble noise at -1 dB SNR ... 47
18 T_{60} estimation algorithm performance in fan noise at 18 dB SNR .. 49
19 T_{60} estimation algorithm performance in fan noise at 12 dB SNR .. 51
20 T_{60} estimation algorithm performance in fan noise at -1 dB SNR .. 53
21 DRR estimation algorithm performance in ambient noise for all SNRs 69
22 DRR estimation algorithm performance in babble noise for all SNRs .. 71
23 DRR estimation algorithm performance in fan noise for all SNRs .. 73
24 DRR estimation algorithm performance in ambient noise at 18 dB SNR 75
25 DRR estimation algorithm performance in ambient noise at 12 dB SNR 77
26 DRR estimation algorithm performance in ambient noise at -1 dB SNR 79
27 DRR estimation algorithm performance in babble noise at 18 dB SNR 81
Page	Description
28	DRR estimation algorithm performance in babble noise at 12 dB SNR
29	DRR estimation algorithm performance in babble noise at −1 dB SNR
30	DRR estimation algorithm performance in fan noise at 18 dB SNR
31	DRR estimation algorithm performance in fan noise at 12 dB SNR
32	DRR estimation algorithm performance in fan noise at −1 dB SNR
1 Introduction

This document provides supplementary information and the results of the Acoustic Characterization of Environments (ACE) Challenge Phases 1 and 2 for all the tasks, Reverberation Time (T_{60}) and Direct-to-Reverberant Ratio (DRR) estimation in both fullband and in frequency bands.

1.1 Room recording procedure

The recording procedure in each room involved the following steps:

1. Install recording equipment positioning the microphones in Position 1, and document the room dimensions and the positions of all microphones, sources and seats;

2. Make empty-room Acoustic Impulse Response (AIR) measurements and noise recordings; Empty-room measurements were for verification purposes and do not form part of the published corpus since the set is not complete, although they may be used in future experiments;

3. Participating subjects take their seating positions;

4. Make occupied AIR measurements and noise recordings;

5. Move microphones to Position 2 and document their positions;

6. Make occupied AIR measurements and noise recordings;

7. Participants leave the room;

8. Make unoccupied AIR measurements and noise recordings in the second microphone position;

9. Uninstall recording equipment.

1.2 Room properties

1.2.1 Room dimension and microphone positions

Tables 1 and 2 give the room dimensions and positions of the centre of each microphone array. Also included is the position of the source and each of the fans used to create the fan noise. Between 1 and 3 fans were used depending on the size of the room. The microphone elements in the cruciform, mobile, linear array and Chromebook are assumed to be omnidirectional. The look direction is provided for the source and Eigenmike since these do not have an omnidirectional directivity pattern. This look direction also applies to the orientation of the 8-channel linear array which was always perpendicular to the look direction of the Eigenmike. The 3-element mobile array was mounted with the longer edge with two microphones perpendicular to the look direction of the Eigenmike. The individual elements in the Eigenmike are omnidirectional, but are mounted...
on a solid baffle. The look direction is specified in degrees, where 0 degrees is in the direction of \(x = \infty \), and a positive angle is towards \(y = \infty \) as illustrated in Fig. 1. In the ACE Challenge, the Dev dataset used channel 1 of the 8-channel linear array, whilst for the Eval dataset, channel 1 of the 5-channel cruciform was used. Channel 1 of the 5-channel cruciform was the central microphone which is the same position as for the 5-channel array. Therefore, the position of channel 1 of the 8-channel linear array is provided. Where orientation was possible, fans faced in the same look direction as the source.

1.2.2 Talker positions for babble noise

Table 3 provides each of the talker positions used to produce the babble noise. The \(z \) coordinates are not provided since these were not captured. However, the talkers were seated and their mouths were situated at approximately the same height as the microphone arrays which were all at 1.19 m
Table 1: Room dimensions, source, microphone and fan positions

Room Name	Mic. Pos.	Dimensions (L, W, H)	Source Position (L, W, H)	Look dir.	5-channel Cruciform Position (L, W, H)	3-channel Mobile Position (L, W, H)	8-channel Linear array Position (L, W, H)
Office 1	1 (3.32, 4.83, 2.95)	(2.06, 1.04, 1.19)	90	(2.66, 2.14, 1.19)	(2.29, 2.15, 1.19)	(1.92, 2.14, 1.19)	
Office 1	2 (3.32, 4.83, 2.95)	(2.06, 1.04, 1.19)	90	(2.49, 3.69, 1.19)	(2.15, 3.69, 1.19)	(1.79, 3.67, 1.19)	
Office 2	1 (3.22, 5.1, 2.94)	(1.41, 1.73, 1.19)	90	(1.25, 2.81, 1.19)	(1.25, 2.62, 1.19)	(0.84, 2.78, 1.19)	
Office 2	2 (3.22, 5.1, 2.94)	(1.41, 1.73, 1.19)	90	(2.25, 4.35, 1.19)	(2.05, 4.16, 1.19)	(1.58, 4.16, 1.19)	
Meeting Room 1	1 (6.61, 5.11, 2.95)	(1.39, 1.26, 1.19)	0	(2.74, 0.48, 1.19)	(2.74, 0.82, 1.19)	(2.74, 1.14, 1.19)	
Meeting Room 1	2 (6.61, 5.11, 2.95)	(1.39, 1.26, 1.19)	0	(3.96, 0.52, 1.19)	(3.96, 0.83, 1.19)	(3.96, 1.14, 1.19)	
Meeting Room 2	1 (10.3, 9.07, 2.63)	(4.65, 4.07, 1.19)	180	(3.439, 1.19)	(3.399, 1.19)	(3.359, 1.19)	
Meeting Room 2	2 (10.3, 9.07, 2.63)	(4.65, 4.07, 1.19)	180	(2.439, 1.19)	(2.399, 1.19)	(2.359, 1.19)	
Lecture Room 1	1 (6.93, 9.73, 3)	(3.65, 3.73, 1.19)	180	(2.81, 3.84, 1.19)	(2.8, 3.44, 1.19)	(2.89, 3.04, 1.19)	
Lecture Room 1	2 (6.93, 9.73, 3)	(3.65, 3.73, 1.19)	180	(1.07, 3.92, 1.19)	(1.07, 3.52, 1.19)	(1.07, 3.12, 1.19)	
Lecture Room 2	1 (13.6, 9.29, 2.94)	(6.03, 3.14, 1.19)	180	(5.09, 5.87, 1.19)	(5.09, 5.47, 1.19)	(5.09, 5.07, 1.19)	
Lecture Room 2	2 (13.6, 9.29, 2.94)	(6.03, 3.14, 1.19)	180	(3.93, 5.87, 1.19)	(3.93, 5.47, 1.19)	(3.93, 5.07, 1.19)	
Building Lobby 1	1 (4.47, 5.13, 3.18)	(1.98, 0.61, 1.19)	90	(2.69, 2.02, 1.19)	(2.33, 2, 1.19)	(1.95, 2.03, 1.19)	
Building Lobby 2	2 (4.47, 5.13, 3.18)	(1.98, 0.61, 1.19)	90	(2.62, 3.51, 1.19)	(2.25, 3.49, 1.19)	(1.86, 3.54, 1.19)	

above the floor.

1.2.3 Distances and look directions

Table 4 provides the source-microphone distances and Direction-of-Arrivals (DoAs) in spherical coordinates, whilst Table 5 provides the fan-microphone distances and DoAs in spherical coordinates.

1.3 Taxonomy of algorithms submitted

There were three main classes of algorithms submitted to the ACE Challenge:

1. Analytical with or without Bias Compensation (ABC);
2. Single Feature with Mapping (SFM);
3. Machine Learning with Multiple Features (MLMF).
Table 2: Room dimensions, source, microphone and fan positions continued

Room Name	Mic. Pos.	32-ch. Eigenmike Position	Look dir.	2-channel Chromebook	Ch 1 of 8-ch. linear	Fan 1	Fan 2	Fan 3
Office 1	1	(2.94, 2.15, 1.19)	-90	(3.02, 2.15, 0.68)	(1.68, 2.14, 1.19)	(0.56, 1.43, 1.19)		
Office 1	2	(2.92, 3.69, 1.19)	-90	(2.97, 3.49, 0.68)	(1.55, 3.67, 1.19)	(0.56, 1.43, 1.19)		
Office 2	1	(2.69, 2.84, 1.19)	-90	(2.04, 2.84, 0.68)	(0.6, 2.78, 1.19)	(2.75, 1.25, 1.19)		
Office 2	2	(1.25, 4.25, 1.19)	-90	(0.83, 4.13, 0.68)	(1.34, 4.16, 1.19)	(2.75, 1.25, 1.19)		
Meeting Room 1	1	(2.74, 0.17, 1.19)	180	(2.74, 1.65, 0.68)	(2.74, 1.38, 1.19)	(1.62, 2.2, 1.19)		
Meeting Room 1	2	(3.96, 0.21, 1.19)	180	(3.96, 1.55, 0.68)	(3.96, 1.38, 1.19)	(1.62, 2.2, 1.19)		
Meeting Room 2	1	(3, 4.79, 1.19)	0	(3, 5.19, 0.68)	(3, 3.35, 1.19)	(3.6, 3.15, 0.35)	(3.9, 3.25, 0.35)	
Meeting Room 2	2	(2, 4.79, 1.19)	0	(2, 5.19, 0.68)	(2, 3.35, 1.19)	(3.6, 3.15, 0.35)	(3.9, 3.25, 0.35)	
Lecture Room 1	1	(2.79, 4.24, 1.19)	0	(2.83, 4.64, 0.68)	(2.89, 2.8, 1.19)	(3.65, 3.98, 0.35)	(3.65, 3.48, 0.35)	
Lecture Room 1	2	(1.16, 4.32, 1.19)	0	(1.16, 4.72, 0.68)	(1.07, 2.88, 1.19)	(3.65, 3.98, 0.35)	(3.65, 3.48, 0.35)	
Lecture Room 2	1	(5.09, 6.27, 1.19)	0	(5.09, 6.67, 0.68)	(5.09, 4.83, 1.19)	(6.1, 2.82, 0.35)	(6.1, 3.43, 0.35)	
Lecture Room 2	2	(3.93, 6.27, 1.19)	0	(3.93, 6.67, 0.68)	(3.93, 4.83, 1.19)	(6.1, 2.82, 0.35)	(6.1, 3.43, 0.35)	
Building Lobby	1	(3.1, 2.04, 1.19)	-90	(2.1, 3.49, 0.72)	(1.71, 2.03, 1.19)	(1.74, 0.68, 0.35)		
Building Lobby	2	(2.95, 3.49, 1.19)	-90	(3.35, 3.41, 0.72)	(1.62, 3.54, 1.19)	(1.74, 0.68, 0.35)		

Table 3: Talker positions used to produce babble noise

Room Name	Talker ID and associated x-y coordinates						
	1	2	3	4	5	6	7
Office 1	F6:(2.95, 0.85)	M10:(2.37, 0.65)	M11:(1.64, 0.68)	M17:(1.25, 1.18)			
Office 2	F7:(0.84, 0.55)	M16:(0.6, 1.39)	M10:(0.55, 2.15)	M12:(2.12, 0.4)	M20:(2.07, 1.25)	M15:(2.48, 1.9)	
Meeting Room 1	F7:(0.4, 0.95)	F8:(1.15, 0.4)	M10:(0.65, 3.25)	M11:(0.55, 0.3)	M12:(0.37, 1.78)	M23:(0.37, 2.7)	
Meeting Room 2	F8:(5.8, 4.53)	M10:(4.39, 2.89)	M11:(5.45, 5.32)	M12:(5.45, 2.95)	M13:(4.98, 5.68)	M14:(4.37, 5.96)	M23:(5.65, 3.73)
Lecture Room 1	F6:(4.75, 3.55)	M11:(4.65, 3.25)	M13:(3.65, 5.08)	M14:(4.45, 2.75)	M18:(4.65, 3.9)	M19:(4.55, 4.38)	
Lecture Room 2	F6:(7.2, 2.75)	M10:(6.27, 4.36)	M11:(6.65, 2.12)	M12:(7.07, 3.49)	M13:(6.11, 1.77)	M14:(5.68, 4.52)	M23:(6.82, 4.01)
Building Lobby	M10:(1.23, 0.53)	M13:(2.72, 0.53)	M14:(2.23, 0.53)	M21:(0.93, 0.53)	M22:(3.21, 0.53)		

The ABC approaches derive the estimate for the acoustic parameter directly from the signal without requiring any prior information. Bias compensation may be performed in order to account for noise or specific aspects of the source material. An example of this is the maximum likelihood...
Table 4: Source–microphone distances and DoAs in spherical coordinates

Name	Pos.	Fan	Crnr.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	
Office 1	1	0	0.847	0	18.8	0	1.2	42.2	0	0.898	18	0	1.03	30.7	0	1.22	30.6	0	1.33	41.8	0	1.16	19.1	0
Lecture Room 1	2	1	1.25	-23.2	42.6	1.21	2.69	44.6	1.22	3.14	30.6	1.2	50.7	0	1.2	42.2	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 1	1	1	1.16	30.7	30.7	1.22	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Lecture Room 2	2	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Lecture Room 1	2	1	1.24	-20.7	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.12	-22	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.12	-22	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.12	-22	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	

Table 5: Fan–microphone distances and DoAs

Name	Pos.	Fan	Crnr.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	ρ (m)	Elev (°)	Azi	Elev (°)	NoCh.	
Office 1	1	0	0.847	0	18.8	0	1.2	42.2	0	0.898	18	0	1.03	30.7	0	1.22	30.6	0	1.33	41.8	0	1.16	19.1	0
Lecture Room 1	2	1	1.25	-23.2	42.6	1.21	2.69	44.6	1.22	3.14	30.6	1.2	50.7	0	1.2	42.2	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 1	1	1	1.16	30.7	30.7	1.22	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Lecture Room 2	2	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	
Meeting Room 2	1	2	2.24	-24.2	30.7	1.21	2.56	30.7	1.21	2.21	30.7	1.22	7.5	0	1.2	30.7	0	1.33	41.8	0	1.16	19.1	0	

method [6] which directly produces the T_{60} estimate. The SFM approaches estimate a parameter from a signal that is correlated with the acoustic parameter to be estimated, and then apply a mapping function to give the acoustic parameter estimate. An example of this is the Spectral Decay Distributions (SDD) method which determines Negative-
Table 6: ACE Challenge participants

Participant	Algorithms submitted (see results tables)
Federal University of Rio de Janeiro	α
Friedrich-Alexander-Universität (FAU)	B, C, D, E
Imperial College London	F, G
Fraunhofer IDMT	H, I, J, K, L, M, N, O
MuSAELab	O, P, Q, R, S, T, U, V, W, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Nuance Communications Inc.	X, Y, Z
Microsoft Research	a, b
University of Auckland/NTT	f, g, h, i, j
Australian National University (ANU)	n

Side Variance (NSV) from STFT bins and then applies a mapping to obtain the T_{60}.

The MLMF approaches typically use many features of the source material to train a neural network which then estimates the acoustic parameter from the features of a test signal. An example of this is the Non-Intrusive Room Acoustics (NIRA) [7] algorithm.

There were no hybrid approaches submitted to the ACE Challenge although several participants applied noise reduction to the source signals before performing parameter estimation.

Algorithms are further classified as being either providing an estimate in Fullband (FB), in frequency bands, or Subbands (SBs).

1.4 Results

The participating institutions in the ACE challenge along with their respective algorithms are listed in Table 6 in order of appearance of their algorithms in the results tables. For the fullband tasks the results are presented as box plots where there is a box shown for each algorithm. Both single and multi-channel algorithms are shown in the same figures and tables. On each box in the box plot, the central notch is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers. Boxes are colour-coded according to algorithm class: ABC: yellow; MLMF: cyan; SFM: green.

Outliers are plotted individually. The algorithms are identified on the box plot by a single character which corresponds to the character in the table after the figure. The results are sorted by the research group which achieved the highest correlation coefficient in the results across all noises and Signal-to-Noise Ratios (SNRs) in fullband. For the T_{60} fullband task, the last three algorithms are those compared in Gaubitch et al. [8] and are included as baselines to enable the progress made in blind T_{60} estimation since 2012 to be assessed. Similarly, for the DRR fullband task, Jeub et
is included as the last algorithm since this was a freely available estimator prior to the ACE Challenge. The correlation coefficient for each algorithm is plotted as a black cross in the same column as the algorithm. The value is provided on the right hand y-axis.

A table of numerical results is also provided following each figure which also provides the legend for the algorithm identifiers, A, B, C, etc. The columns in the table are as follows:

1. Ref., the identifier for each algorithm used on the x-axis of the preceding figure;
2. Algorithm, the name used by the respective ACE Challenge participant to refer to their algorithm;
3. Class, the class of algorithm according to Sec. 1.3;
4. Mic. Config, the microphone configuration of the Evaluation dataset used to test the algorithm. Valid values are Single (1-channel), Chromebook (2-channel), Mobile (3-channel), Crucif (5-channel), Lin8Ch (8-channel), and EM32 (32-channel); Further details of the microphone configurations can be found in [1];
5. Bias, the mean error in the results. Let \(X = [x_0, x_1, \ldots, x_{N-1}] \) equal the set of \(N \) ground truth \(T_{\text{gt}} \) and DRR measurements, and let \(\hat{X} \) equal the set of estimated results defined similarly. Then
 \[
 \text{Bias} = \frac{1}{N} \sum_{n=0}^{N-1} x_n - \hat{x}_n;
 \] (1)
6. MSE, the mean squared error in the estimation results defined as
 \[
 \text{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (x_n - \hat{x}_n)^2.
 \] (2)
7. \(\rho \), the Pearson correlation coefficient between the estimated and the ground truth results defined as
 \[
 \rho = \frac{E(\hat{X}X) - E(\hat{X})E(X)}{\sqrt{(E(X^2) - E(X)^2)(E(X^2) - E(X)^2))}};
 \] (3)
 where \(E(\cdot) \) is the mathematical expectation;
8. RTF, the real-time factor, the total computation time divided by the total duration of all processed speech files. All implementations were in Matlab except for those marked with a \(^1\) which used Matlab for feature extraction and C++ for the machine learning-based mapping, and those marked with a \(^\dagger\) which were implemented entirely in C++.
By considering the bias, MSE, and ρ, it is possible to determine how well the estimator works. For example, an estimator with a low bias and MSE might simply be giving an estimate close to the median for every speech file. However, by examining the ρ, it will be possible to distinguish between such an algorithm, which will have a low correlation, and a better algorithm which is more accurately estimating the parameter concerned which will have a higher correlation. The RTF is useful for determining whether the algorithm has practical applications requiring low computational complexity such as hearing aids and mobile devices.

For the frequency-dependent tasks, a box plot is provided per algorithm with each box representing the performance in a particular frequency band. Frequency dependent algorithms have also been included in the fullband plots. Where those algorithms themselves produce a fullband estimate, this has been used directly as in the case of the DRR Estimation using a Null-Steered Beamformer (DENBE) [5] and Particle Velocity [4] algorithms. Where no fullband estimate is produced, a fullband estimate was obtained by taking the mean of the results over the 400 to 1250 Hz frequency bands as in the case of the Model-based subband RTE [3] algorithm as recommended in ISO 3382 [10].
2 Overall results summary

2.1 Fullband T_{60} estimation overall results

The overall results for fullband T_{60} estimation are shown in Fig. 2 and Table 7.

Figure 2: Fullband T_{60} estimation error in all noises for all SNRs
Table 7: T_{60} estimation algorithm performance in all noises for all SNRs

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.068	0.0648	0.778	0.4
B	Octave SB-based FB RTE [3]	ABC	Single	-0.104	0.0731	0.738	0.939
C	DCT-based FB RTE [3]	ABC	Single	-0.104	0.0766	0.71	1
D	Model-based SB RTE [3]	ABC	Single	-0.0196	0.0981	0.661	0.451
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0432	0.11	0.387	0.0424
F	SDDSA-G retrained [12]	SFM	Single	0.0167	0.0937	0.608	0.0152
G	SDDSA-G [15]	SFM	Single	-0.0423	0.0803	0.6	0.0164
H	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0967	0.104	0.48	0.0578*
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0497	0.0992	0.46	0.0578*
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.054	0.0933	0.525	0.0589*
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0299	0.082	0.447	0.0556*
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0503	0.1	0.454	0.0569*
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0468	0.0868	0.443	0.0618*
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0602	0.0879	0.43	0.0576*
O	Per acoust. band SRMR Sec. 2.5 [15]	SFM	Single	-0.114	0.109	0.48	0.578
P	NSRMR Sec. 2.4 [16, 15]	SFM	Single	-0.0646	0.119	0.261	0.571
Q	NSRMR Sec. 2.4 [16, 15]	SFM	Chromebook	0.012	0.116	0.291	1.04
R	NSRMR Sec. 2.4 [16, 15]	SFM	Mobile	-0.0504	0.0958	0.281	1.58
S	NSRMR Sec. 2.4 [16, 15]	SFM	Crucif	-0.0516	0.107	0.246	2.62
T	SRMR Sec. 2.3 [15]	SFM	Single	-0.16	0.144	0.22	0.457
U	SRMR Sec. 2.3 [15]	SFM	Chromebook	-0.105	0.132	0.221	0.829
V	SRMR Sec. 2.3 [15]	SFM	Mobile	-0.153	0.12	0.228	1.26
W	SRMR Sec. 2.3 [15]	SFM	Crucif	-0.153	0.128	0.225	2.09
X	NIRAv3 [7]	MLMF	Single	-0.192	0.151	0.302	0.899*
Y	NIRAv1 [7]	MLMF	Single	-0.184	0.151	0.258	0.899*
Z	NIRAv2 [7]	MLMF	Single	-0.179	0.198	-0.0199	0.907*
a	Blur kernel [17]	SFM	Single	0.173	0.15	0.279	8.46
b	Blur kernel with sliding window [18]	SFM	Single	-0.00555	0.139	0.12	0.421
c	Temporal dynamics [19]	SFM	Single	-0.304	0.211	0.269	0.362
d	Improved blind RTE [6]	ABC	Single	-0.0635	0.165	0.166	0.0259
e	SDD [20]	SFM	Single	0.463	305	0.00158	0.0221
2.2 Fullband DRR estimation overall results

The overall results for fullband DRR estimation are shown in Fig. 3 and Table 8.

Figure 3: Fullband DRR estimation error in all noises for all SNRs
Table 8: DRR estimation algorithm performance in all noises for all SNRs

Ref.	Algorithm Description	Class	Misc. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.07	8.14	0.577	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.9	41.8	0.577	3.17
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-5.7	43	0.41	0.844
i	PSD est. by twin BF [22]	ABC	Mobile	-5.71	44.9	0.362	0.614
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.37	61.2	0.244	0.627
k	NIRAv2 [7]	MLMF	Single	-1.85	14.8	0.558	0.899
l	NIRAv3 [7]	MLMF	Single	-1.62	14.7	0.515	0.899
m	NIRAv1 [7]	MLMF	Single	-1.64	15	0.507	0.899
n	Particle velocity [4]	ABC	EM32	-2.38	10.4	0.449	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.14	15.9	0.405	0.0578
p	Multi-layer perceptron P2 [14]	MLMF	Single	-1.52	16.1	0.507	0.0578
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.43	13.6	0.285	0.0589
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-1.67	15	0.403	0.0556
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.5	16	0.503	0.0569
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.64	25.7	0.314	0.0618
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.22	14.6	0.325	0.0576
v	DENBE no noise reduction [24]	ABC	Chromebook	-6.04	51.2	0.308	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-4.25	34.1	0.314	0.0589
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-4.01	32.8	0.303	0.0477
y	DENBE filtered subbands [5]	ABC	Chromebook	-4.01	32.8	0.303	0.775
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-4.01	32.8	0.303	0.0449
0	Normalized Overall SRMR (NOSRMR) Sec. 2.2. [15]	SFM	Chromebook	-3.71	20.6	0.259	0.829
1	Overall SRMR (OSRMR) Sec. 2.2. [15]	SFM	Chromebook	-3.71	20.6	0.259	0.829
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-4.47	32	0.148	1.58
3	OSRMR Sec. 2.2. [15]	SFM	Mobile	-3.28	22.2	0.116	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-4.05	31.1	0.0814	2.62
5	OSRMR Sec. 2.2. [15]	SFM	Crucif	-2.88	22.3	0.0816	2.09
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.16	33.9	-0.0814	0.54
7	OSRMR Sec. 2.2. [15]	SFM	Single	-4.24	34.6	-0.0815	0.446
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.9	22.8	0.00192	0.578
9	Temporal dynamics [23]	SFM	Single	-11.4	147	0.0815	0.082
α	QA Reverb [11]	SFM	Single	2.51	23.6	0.0576	0.391
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-12.1	162	0.305	0.019

Note: The table entries represent the performance metrics for different algorithms under various conditions and configurations. The columns include the reference number, algorithm description, class, microphone configuration, bias, mean square error (MSE), ρ, and relative time factor (RTF).
2.2.1 Fullband T_{60} estimation results by parameter

Figure 4: FB T_{60} estimation error in all noises and all SNRs for a) female talkers and b) male talkers
Figure 5: Single channel FB T_{60} estimation error in all noises and all SNRs for a) $T_{60} < 0.43$ s b) $0.43 \leq T_{60} < 0.75$ s and c) $T_{60} \geq 0.75$ s. Observe that $\rho < 0$ for all except algorithm D.
Figure 6: FB T_{60} estimation error in all noises at a), 18 dB SNR, b), 12 dB SNR, and c) −1 dB SNR
Figure 7: FB T_{60} estimation error in all noises and all SNRs for a) utterance length < 5 s b) utterance length < 15 s and c) utterance length ≥ 15 s
2.2.2 Fullband DRR estimation results by parameter

Figure 8: FB DRR estimation error in all noises and all SNRs for a) female talkers and b) male talkers
Figure 9: Single channel FB DRR estimation error in all noises and all SNRs for a) DRR < 2 dB b) $2 \leq$ DRR < 5 dB and c) DRR ≥ 5 dB

Figure 10: Mobile (3-channel) FB DRR estimation error in all noises and all SNRs for a) DRR < 2 dB b) $2 \leq$ DRR < 5 dB and c) DRR ≥ 5 dB. Note that for b) there are strong negative correlations for all algorithms
Figure 11: FB DRR estimation error in all noises at a) 18 dB SNR, b) 12 dB SNR, and c) −1 dB SNR
Figure 12: FB DRR estimation error in all noises and all SNRs for a) utterance length < 5 s b) utterance length < 15 s and c) utterance length ≥ 15 s
3 T_{60} estimation results

3.1 Fullband T_{60} estimation results by noise type

3.1.1 Ambient noise
Figure 13: Fullband T_{60} estimation error in ambient noise for all SNRs
Table 9: T_{60} estimation algorithm performance in ambient noise for all SNRs

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0682	0.0565	0.833	0.401
B	Octave SB-based FB RTE [3]	ABC	Single	-0.0993	0.068	0.769	1
C	DCT-based FB RTE [3]	ABC	Single	-0.0978	0.0738	0.715	1.04
D	Model-based SB RTE [3]	ABC	Single	-0.0219	0.0891	0.716	0.478
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0411	0.105	0.422	0.0421
F	SDDSA-G retrained [12]	SFM	Single	-0.0817	0.0676	0.723	0.0153
G	SDDSA-G [13]	SFM	Single	-0.117	0.0738	0.729	0.0166
H	Multi-layer perceptron P2 [14]	MLMF	Single	-0.125	0.0977	0.576	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0844	0.0969	0.518	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0704	0.0917	0.553	0.0589
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0581	0.0798	0.492	0.0557
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0852	0.0971	0.518	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0818	0.084	0.508	0.062
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0968	0.084	0.519	0.0578
O	Acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.16	0.113	0.572	0.58
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.0964	0.123	0.27	0.571
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.00429	0.116	0.291	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.0837	0.0976	0.306	1.59
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.0838	0.11	0.256	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.195	0.153	0.249	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.13	0.136	0.239	0.831
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.189	0.129	0.268	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.188	0.137	0.263	2.09
X	NIRAv3 [7]	MLMF	Single	-0.263	0.172	0.406	0.897
Y	NIRAv1 [7]	MLMF	Single	-0.243	0.166	0.363	0.897
Z	NIRAv2 [7]	MLMF	Single	-0.183	0.198	-0.0532	0.912
a	Blur kernel [17]	SFM	Single	0.164	0.15	0.274	8.16
b	Blur kernel with sliding window [18]	SFM	Single	-0.0155	0.137	0.144	0.413
c	Temporal dynamics [19]	SFM	Single	-0.359	0.239	0.319	0.362
d	Improved blind RTE [6]	ABC	Single	-0.0752	0.168	0.159	0.0255
e	SDD [20]	SFM	Single	-0.515	0.355	0.524	0.0219
3.1.2 Babble noise

Figure 14: Fullband T_{60} estimation error in babble noise for all SNRs
Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.109	0.0707	0.805	0.398
B	Octave SB-based FB RTE [3]	ABC	Single	-0.124	0.0701	0.809	0.911
C	DCT-based FB RTE [3]	ABC	Single	-0.106	0.0718	0.755	0.99
D	Model-based SB RTE [3]	ABC	Single	-0.0573	0.0877	0.743	0.443
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0236	0.112	0.36	0.0428
F	SDDSA-G retrained [12]	SFM	Single	0.0688	0.0836	0.673	0.0155
G	SDDSA-G [13]	SFM	Single	-0.000784	0.0718	0.649	0.0162
H	Multi-layer perceptron [14]	MLMF	Single	-0.0684	0.106	0.419	0.0579³
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.045	0.092	0.52	0.0579³
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0534	0.0912	0.543	0.0588³
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0244	0.0796	0.465	0.0555⁵
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0432	0.0948	0.494	0.057⁴
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0277	0.084	0.452	0.0618⁴
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0569	0.0853	0.451	0.0576⁴
O	Per acoust. band SRMR Sec. 2.5 [15]	SFM	Single	-0.0967	0.0992	0.593	0.579
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.0435	0.11	0.347	0.572
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	0.00512	0.11	0.353	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.0287	0.0873	0.364	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.03	0.098	0.335	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.129	0.133	0.246	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.0928	0.13	0.217	0.833
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.12	0.109	0.257	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.121	0.118	0.252	2.1
X	NIRAv3 [7]	MLMF	Single	-0.0965	0.121	0.35	0.906⁴
Y	NIRAv1 [7]	MLMF	Single	-0.0899	0.124	0.292	0.906⁴
Z	NIRAv2 [7]	MLMF	Single	-0.176	0.203	-0.0191	0.901⁴
a	Blur kernel [17]	SFM	Single	0.184	0.152	0.279	8.88
b	Blur kernel with sliding window [18]	SFM	Single	0.0187	0.138	0.106	0.438
c	Temporal dynamics [19]	SFM	Single	-0.257	0.178	0.35	0.365
d	Improved blind RTE [6]	ABC	Single	-0.0357	0.164	0.167	0.0269
e	SDD [20]	SFM	Single	0.593	52.8	0.0524	0.0224
3.1.3 Fan noise

Figure 15: Fullband T_{60} estimation error in fan noise for all SNRs
Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0276	0.0672	0.746	0.4
B	Octave SB-based FB RTE [3]	ABC	Single	-0.0881	0.0811	0.647	0.903
C	DCT-based FB RTE [3]	ABC	Single	-0.109	0.0843	0.659	0.984
D	Model-based SB RTE [3]	ABC	Single	0.0204	0.118	0.55	0.433
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.065	0.112	0.383	0.0421
F	SDDSA-G retrained [12]	SFM	Single	0.0629	0.13	0.484	0.0148
G	SDDSA-G [13]	SFM	Single	-0.00884	0.0952	0.488	0.0164
H	Multi-layer perceptron P2 [14]	MLMF	Single	-0.097	0.108	0.451	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0197	0.109	0.359	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0382	0.0971	0.486	0.059
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.00714	0.0864	0.396	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0224	0.108	0.364	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.031	0.0925	0.384	0.0617
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0268	0.0945	0.339	0.0574
O	Per acoust. band SRMR Sec. 2.5 [15]	SFM	Single	-0.0853	0.114	0.367	0.576
P	NSRMR Sec. 2.4 [16, 15]	SFM	Single	-0.054	0.125	0.195	0.569
Q	NSRMR Sec. 2.4 [16, 15]	SFM	Chromebook	0.0352	0.122	0.26	1.03
R	NSRMR Sec. 2.4 [16, 15]	SFM	Mobile	-0.0389	0.102	0.204	1.58
S	NSRMR Sec. 2.4 [16, 15]	SFM	Crucif	-0.0411	0.113	0.177	2.61
T	SRMR Sec. 2.3 [15]	SFM	Single	-0.156	0.145	0.188	0.455
U	SRMR Sec. 2.3 [15]	SFM	Chromebook	-0.0922	0.131	0.218	0.824
V	SRMR Sec. 2.3 [15]	SFM	Mobile	-0.149	0.123	0.185	1.26
W	SRMR Sec. 2.3 [15]	SFM	Crucif	-0.149	0.13	0.188	2.08
X	NIRAv3 [7]	MLMF	Single	-0.215	0.159	0.283	0.895
Y	NIRAv1 [7]	MLMF	Single	-0.22	0.164	0.247	0.895
Z	NIRAv2 [7]	MLMF	Single	-0.179	0.192	0.0105	0.906
a	Blur kernel [17]	SFM	Single	0.172	0.149	0.285	8.36
b	Blur kernel with sliding window [18]	SFM	Single	-0.0198	0.142	0.111	0.412
c	Temporal dynamics [19]	SFM	Single	-0.295	0.217	0.191	0.358
d	Improved blind RTE [6]	ABC	Single	-0.0795	0.165	0.172	0.0254
e	SDD [20]	SFM	Single	1.31	861	-0.0141	0.0221
3.2 Fullband T_{60} estimation results by noise type and SNR

3.2.1 Ambient noise at 18 dB SNR

Figure 16: Fullband T_{60} estimation error in ambient noise at 18 dB SNR
Table 12: T_{60} estimation algorithm performance in ambient noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0913	0.0519	0.893	0.401
B	Octave SB-based FB RTE [3]	ABC	Single	-0.0979	0.0647	0.788	1.04
C	DCT-based FB RTE [3]	ABC	Single	-0.0934	0.0712	0.724	1.04
D	Model-based SB RTE [3]	ABC	Single	-0.0274	0.0815	0.759	0.478
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0705	0.0959	0.509	0.0421
F	SDDSA-G retrained [12]	SFM	Single	-0.0554	0.0593	0.78	0.0153
G	SDDSA-G [13]	SFM	Single	-0.107	0.0591	0.804	0.0166
H	Multi-layer perceptron [14]	MLMF	Single	-0.11	0.0927	0.588	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0815	0.0947	0.537	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.1	0.0816	0.678	0.0589
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0493	0.0781	0.499	0.0557
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0853	0.0946	0.543	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0793	0.0855	0.488	0.062
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0906	0.0806	0.54	0.0578
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.191	0.118	0.655	0.58
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.128	0.123	0.374	0.571
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.0736	0.113	0.41	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.118	0.0961	0.436	1.59
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.115	0.109	0.363	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.221	0.16	0.312	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.186	0.15	0.29	0.831
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.219	0.136	0.346	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.215	0.144	0.336	2.09
X	NIRAv3 [7]	MLMF	Single	-0.268	0.172	0.442	0.897
Y	NIRAv1 [7]	MLMF	Single	-0.245	0.164	0.408	0.897
Z	NIRAv2 [7]	MLMF	Single	-0.183	0.199	-0.0283	0.912
a	Blur kernel [17]	SFM	Single	0.0888	0.0989	0.513	8.16
b	Blur kernel with sliding window [18]	SFM	Single	-0.045	0.104	0.421	0.413
c	Temporal dynamics [19]	SFM	Single	-0.387	0.253	0.429	0.362
d	Improved blind RTE [6]	ABC	Single	-0.128	0.132	0.354	0.0255
e	SDD [20]	SFM	Single	-0.508	0.329	0.644	0.0219
3.2.2 Ambient noise at 12 dB SNR

Figure 17: Fullband T_{60} estimation error in ambient noise at 12 dB SNR
Table 13: T_{60} estimation algorithm performance in ambient noise at 12 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0795	0.0543	0.873	0.401
B	Octave SB-based FB RTE [3]	ABC	Single	-0.1	0.0657	0.786	1
C	DCT-based FB RTE [3]	ABC	Single	-0.0967	0.069	0.748	1.04
D	Model-based SB RTE [3]	ABC	Single	-0.0281	0.0864	0.733	0.478
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0527	0.0955	0.499	0.0421
F	SDDSA-G retrained [12]	SFM	Single	-0.133	0.0629	0.796	0.0153
G	SDDSA-G [13]	SFM	Single	-0.157	0.075	0.808	0.0166
H	Multi-layer perceptron [14]	MLMF	Single	-0.117	0.0888	0.629	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0899	0.0935	0.556	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.097	0.0827	0.659	0.0589
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0631	0.0781	0.514	0.0557
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0917	0.0927	0.565	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0873	0.0852	0.505	0.062
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.103	0.0821	0.549	0.0578
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.18	0.115	0.64	0.58
P	NSRMR Sec. 2.4. [16] [15]	SFM	Single	-0.121	0.122	0.36	0.571
Q	NSRMR Sec. 2.4. [16] [15]	SFM	Chromebook	-0.0575	0.11	0.42	1.04
R	NSRMR Sec. 2.4. [16] [15]	SFM	Mobile	-0.111	0.0956	0.42	1.59
S	NSRMR Sec. 2.4. [16] [15]	SFM	Crucif	-0.109	0.109	0.345	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.215	0.158	0.305	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.171	0.143	0.314	0.831
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.212	0.133	0.338	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.209	0.142	0.324	2.09
X	NIRAv3 [7]	MLMF	Single	-0.273	0.176	0.433	0.897
Y	NIRAv1 [7]	MLMF	Single	-0.25	0.167	0.399	0.897
Z	NIRAv2 [7]	MLMF	Single	-0.189	0.196	-0.0487	0.912
a	Blur kernel [17]	SFM	Single	0.161	0.138	0.35	8.16
b	Blur kernel with sliding window [18]	SFM	Single	-0.0199	0.117	0.254	0.413
c	Temporal dynamics [19]	SFM	Single	-0.382	0.25	0.423	0.362
d	Improved blind RTE [6]	ABC	Single	-0.0994	0.147	0.249	0.0255
e	SDD [20]	SFM	Single	-0.518	0.356	0.539	0.0219
3.2.3 Ambient noise at -1 dB SNR

Figure 18: Fullband T_{60} estimation error in ambient noise at -1 dB SNR
Table 14: T_{60} estimation algorithm performance in ambient noise at -1 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0339	0.0634	0.757	0.401
B	Octave SB-based FB RTE [13]	ABC	Single	-0.0997	0.0735	0.733	1
C	DCT-based FB RTE [1]	ABC	Single	-0.103	0.0812	0.673	1.04
D	Model-based SB RTE [13]	ABC	Single	-0.0102	0.0994	0.655	0.478
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0001	0.124	0.285	0.0421
F	SDDSA-G retrained [12]	SFM	Single	-0.0564	0.0806	0.62	0.0153
G	SDDSA-G [13]	SFM	Single	-0.0867	0.0874	0.592	0.0166
H	Multi-layer perceptron [14]	MLMF	Single	-0.147	0.112	0.516	0.05782
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0819	0.103	0.47	0.05782
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0138	0.111	0.379	0.05894
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0619	0.0834	0.471	0.05574
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0787	0.104	0.455	0.05694
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0787	0.0812	0.53	0.062
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0972	0.0894	0.474	0.05787
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.108	0.106	0.499	0.58
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.0403	0.124	0.157	0.571
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	0.118	0.125	0.356	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.022	0.101	0.163	1.59
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.0271	0.111	0.148	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.148	0.142	0.164	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.0332	0.114	0.348	0.831
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.135	0.117	0.159	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.14	0.126	0.178	2.09
X	NIRAv3 [7]	MLMF	Single	-0.248	0.168	0.359	0.8974
Y	NIRAv1 [7]	MLMF	Single	-0.235	0.167	0.298	0.8974
Z	NIRAv2 [7]	MLMF	Single	-0.177	0.198	-0.085	0.9122
a	Blur kernel [17]	SFM	Single	0.242	0.214	-0.0718	8.16
b	Blur kernel with sliding window [18]	SFM	Single	0.0183	0.188	-0.0244	0.413
c	Temporal dynamics [19]	SFM	Single	-0.307	0.214	0.211	0.362
d	Improved blind RTE [6]	ABC	Single	0.00207	0.224	-0.0319	0.0255
e	SDD [20]	SFM	Single	-0.518	0.381	0.387	0.0219
3.2.4 Babble noise at 18 dB SNR

Figure 19: Fullband T_{60} estimation error in babble noise at 18 dB SNR
Table 15: T_{60} estimation algorithm performance in babble noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0854	0.058	0.873	0.398
B	Octave SB-based FB RTE [3]	ABC	Single	-0.112	0.064	0.826	0.911
C	DCT-based FB RTE [3]	ABC	Single	-0.1	0.0698	0.756	0.99
D	Model-based SB RTE [3]	ABC	Single	-0.0545	0.0852	0.758	0.443
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0546	0.102	0.448	0.0428
F	SDDSA-G retrained [12]	SFM	Single	0.0931	0.0836	0.713	0.0155
G	SDDSA-G [13]	SFM	Single	0.0104	0.0681	0.674	0.0162
H	Multi-layer perceptron [14]	MLMF	Single	-0.054	0.098	0.474	0.0579
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0373	0.0974	0.467	0.0579
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.056	0.0891	0.562	0.0588
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0197	0.086	0.394	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0431	0.097	0.474	0.057
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0359	0.0897	0.403	0.0618
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0518	0.0876	0.42	0.0576
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.152	0.108	0.648	0.579
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.116	0.119	0.391	0.572
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.0642	0.111	0.414	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.106	0.0924	0.454	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.104	0.105	0.385	2.63
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.207	0.152	0.329	0.457
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.173	0.145	0.29	0.833
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.204	0.128	0.367	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.2	0.137	0.356	2.1
X	NIRAv3 [7]	MLMF	Single	-0.14	0.133	0.33	0.906
Y	NIRAv1 [7]	MLMF	Single	-0.126	0.132	0.288	0.906
Z	NIRAv2 [7]	MLMF	Single	-0.176	0.228	-0.134	0.901
a	Blur kernel [17]	SFM	Single	0.102	0.107	0.472	8.88
b	Blur kernel with sliding window [18]	SFM	Single	-0.026	0.108	0.356	0.438
c	Temporal dynamics [19]	SFM	Single	-0.375	0.243	0.445	0.365
d	Improved blind RTE [6]	ABC	Single	-0.104	0.126	0.355	0.0269
e	SDD [20]	SFM	Single	0.793	141	0.105	0.0224
3.2.5 Babble noise at 12 dB SNR

Figure 20: Fullband T_{60} estimation error in babble noise at 12 dB SNR
Table 16: T_{60} estimation algorithm performance in babble noise at 12 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0796	0.0609	0.851	0.398
B	Octave SB-based FB RTE [3]	ABC	Single	-0.128	0.0735	0.802	0.911
C	DCT-based FB RTE [3]	ABC	Single	-0.11	0.0737	0.751	0.99
D	Model-based SB RTE [3]	ABC	Single	-0.0572	0.0884	0.741	0.443
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0458	0.108	0.389	0.0428
F	SDDSA-G retrained [12]	SFM	Single	0.0875	0.113	0.577	0.0155
G	SDDSA-G [13]	SFM	Single	0.0122	0.0819	0.578	0.0162
H	Multi-layer perceptron [14]	MLMF	Single	-0.0609	0.103	0.443	0.0579
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0513	0.0934	0.514	0.0579
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0474	0.0898	0.548	0.0588
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0195	0.079	0.468	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0445	0.0961	0.483	0.057
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.023	0.0843	0.447	0.0618
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0616	0.0856	0.453	0.0576
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.11	0.101	0.647	0.579
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.0862	0.112	0.422	0.572
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.0337	0.107	0.449	1.04
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.0739	0.0856	0.484	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.0736	0.098	0.429	2.63
T	SRMR Sec. 2.3. [13]	SFM	Single	-0.173	0.138	0.363	0.457
U	SRMR Sec. 2.3. [13]	SFM	Chromebook	-0.135	0.132	0.344	0.833
V	SRMR Sec. 2.3. [13]	SFM	Mobile	-0.166	0.113	0.4	1.26
W	SRMR Sec. 2.3. [13]	SFM	Crucif	-0.164	0.122	0.4	2.1
X	NIRAv3 [7]	MLMF	Single	-0.108	0.12	0.371	0.906
Y	NIRAv1 [7]	MLMF	Single	-0.0969	0.122	0.327	0.906
Z	NIRAv2 [7]	MLMF	Single	-0.167	0.196	0.00486	0.901
a	Blur kernel [17]	SFM	Single	0.187	0.148	0.305	8.88
b	Blur kernel with sliding window [18]	SFM	Single	0.00866	0.127	0.131	0.438
c	Temporal dynamics [19]	SFM	Single	-0.344	0.218	0.472	0.365
d	Improved blind RTE [6]	ABC	Single	-0.0563	0.145	0.224	0.0269
e	SDD [20]	SFM	Single	0.458	5.11	0.153	0.0224
3.2.6 Babble noise at -1 dB SNR

Figure 21: Fullband T_{60} estimation error in babble noise at -1 dB SNR
Table 17: T_{60} estimation algorithm performance in babble noise at -1 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.162	0.0934	0.759	0.398
B	Octave SB-based FB RTE [3]	ABC	Single	-0.13	0.0727	0.802	0.911
C	DCT-based FB RTE [3]	ABC	Single	-0.108	0.072	0.759	0.99
D	Model-based SB RTE [3]	ABC	Single	-0.0602	0.0895	0.731	0.443
E	Baseline algorithm for FB RTE [3]	ABC	Single	0.0297	0.127	0.281	0.0428
F	SDDSA-G retrained [12]	SFM	Single	0.0259	0.0541	0.757	0.0155
G	SDDSA-G [13]	SFM	Single	-0.0249	0.0655	0.7	0.0162
H	Multi-layer perceptron [14]	MLMF	Single	-0.0903	0.119	0.345	0.0579*
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0465	0.0853	0.577	0.0579*
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0568	0.0945	0.52	0.0588*
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0339	0.0738	0.528	0.0555*
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0419	0.0912	0.523	0.057*
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0241	0.078	0.506	0.0618*
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0572	0.0826	0.478	0.0576*
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.0282	0.0888	0.81	0.579
P	NSRMR Sec. 2.4, 16, 15 [16]	SFM	Single	0.0712	0.0987	0.777	0.572
Q	NSRMR Sec. 2.4, 16, 15 [16]	SFM	Chromebook	0.113	0.113	0.783	1.04
R	NSRMR Sec. 2.4, 16, 15 [16]	SFM	Mobile	0.0935	0.0841	0.801	1.58
S	NSRMR Sec. 2.4, 16, 15 [16]	SFM	Crucif	0.0871	0.0905	0.828	2.63
T	SRMR Sec. 2.3, 15 [15]	SFM	Single	-0.00916	0.108	0.617	0.457
U	SRMR Sec. 2.3, 15 [15]	SFM	Chromebook	0.029	0.111	0.687	0.833
V	SRMR Sec. 2.3, 15 [15]	SFM	Mobile	0.00906	0.0867	0.671	1.26
W	SRMR Sec. 2.3, 15 [15]	SFM	Crucif	0.00276	0.0948	0.687	2.1
X	NIRAv3 [7]	MLMF	Single	-0.0413	0.109	0.377	0.906
Y	NIRAv1 [7]	MLMF	Single	-0.0465	0.119	0.279	0.906
Z	NIRAv2 [7]	MLMF	Single	-0.184	0.185	0.0865	0.901
a	Blur kernel [17]	SFM	Single	0.263	0.201	0.0261	8.88
b	Blur kernel with sliding window [18]	SFM	Single	0.0733	0.178	-0.0263	0.438
c	Temporal dynamics [19]	SFM	Single	-0.053	0.0728	0.713	0.365
d	Improved blind RTE [6]	ABC	Single	0.0536	0.219	0.0134	0.0269
e	SDD [20]	SFM	Single	0.529	12.5	-0.131	0.0224
3.2.7 Fan noise at 18 dB SNR

Figure 22: Fullband T_{60} estimation error in fan noise at 18 dB SNR
Table 18: T_{60} estimation algorithm performance in fan noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0649	0.055	0.867	0.4
B	Octave SB-based FB RTE [4]	ABC	Single	-0.111	0.0666	0.798	0.903
C	DCT-based FB RTE [3]	ABC	Single	-0.106	0.0705	0.755	0.984
D	Model-based SB RTE [3]	ABC	Single	-0.0363	0.0869	0.737	0.433
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.079	0.098	0.503	0.0421
F	SDDSA-G retrained [12]	SFM	Single	0.0258	0.0717	0.719	0.0148
G	SDDSA-G [13]	SFM	Single	-0.0387	0.0666	0.696	0.0164
H	Multi-layer perceptron [14]	MLMF	Single	-0.0699	0.0938	0.525	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	-0.0325	0.102	0.421	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0706	0.0843	0.614	0.059
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.0177	0.0821	0.435	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0371	0.103	0.418	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0477	0.0931	0.381	0.0617
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0406	0.0872	0.411	0.0574
O	Per acoust. band SRMR Sec. 2.3. [15]	SFM	Single	-0.174	0.115	0.627	0.576
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.124	0.122	0.37	0.569
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.0681	0.111	0.422	1.03
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.114	0.0956	0.431	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.112	0.109	0.358	2.61
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.217	0.158	0.309	0.455
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.179	0.146	0.312	0.824
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.215	0.134	0.342	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.211	0.142	0.33	2.08
X	NIRAv3 [7]	MLMF	Single	-0.223	0.157	0.355	0.895
Y	NIRAv1 [7]	MLMF	Single	-0.207	0.153	0.315	0.895
Z	NIRAv2 [7]	MLMF	Single	-0.164	0.201	-0.0474	0.906
a	Blur kernel [17]	SFM	Single	0.0893	0.103	0.48	8.36
b	Blur kernel with sliding window [18]	SFM	Single	-0.0394	0.109	0.35	0.412
c	Temporal dynamics [19]	SFM	Single	-0.384	0.251	0.427	0.358
d	Improved blind RTE [6]	ABC	Single	-0.134	0.133	0.354	0.0254
e	SDD [20]	SFM	Single	0.666	28.5	0.0185	0.0221
3.2.8 Fan noise at 12 dB SNR

Figure 23: Fullband T_{60} estimation error in fan noise at 12 dB SNR
Table 19: T_{60} estimation algorithm performance in fan noise at 12 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	-0.0315	0.0622	0.8	0.4
B	Octave SB-based FB RTE [3]	ABC	Single	-0.114	0.0755	0.744	0.903
C	DCT-based FB RTE [3]	ABC	Single	-0.117	0.0803	0.705	0.984
D	Model-based SB RTE [3]	ABC	Single	-0.0233	0.0974	0.673	0.433
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0834	0.103	0.465	0.0421
F	SDDSA-G retrained [12]	SFM	Single	-0.05	0.0707	0.671	0.0148
G	SDDSA-G [13]	SFM	Single	-0.0808	0.0782	0.66	0.0164
H	Multi-layer perceptron P2 [14]	MLMF	Single	-0.08	0.0975	0.508	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-0.0644	0.0894	0.565	0.0599
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.00734	0.0834	0.422	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.0295	0.103	0.414	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0329	0.0913	0.391	0.0617
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.0338	0.0891	0.392	0.0574
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.132	0.109	0.554	0.576
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	-0.109	0.121	0.339	0.569
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	-0.0388	0.106	0.452	1.03
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	-0.0978	0.0944	0.396	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	-0.0963	0.107	0.326	2.61
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.201	0.153	0.293	0.455
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	-0.149	0.133	0.38	0.824
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.197	0.129	0.318	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.195	0.137	0.312	2.08
X	NIRAv3 [7]	MLMF	Single	-0.216	0.155	0.337	0.895
Y	NIRAv1 [7]	MLMF	Single	-0.206	0.155	0.293	0.895
Z	NIRAv2 [7]	MLMF	Single	-0.188	0.188	0.0117	0.906
a	Blur kernel [17]	SFM	Single	0.18	0.143	0.34	8.36
b	Blur kernel with sliding window [18]	SFM	Single	-0.0215	0.119	0.238	0.412
c	Temporal dynamics [19]	SFM	Single	-0.371	0.242	0.409	0.358
d	Improved blind RTE [6]	ABC	Single	-0.106	0.143	0.271	0.0254
e	SDD [20]	SFM	Single	0.918	57.2	0.0662	0.0221
3.2.9 Fan noise at –1 dB SNR

Figure 24: Fullband T_{60} estimation error in fan noise at –1 dB SNR
Table 20: T_{60} estimation algorithm performance in fan noise at -1 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
A	QA Reverb [11]	SFM	Single	0.0162	0.0844	0.609	0.4
B	Octave SB-based FB RTE [3]	ABC	Single	-0.0396	0.101	0.438	0.903
C	DCT-based FB RTE [3]	ABC	Single	-0.105	0.102	0.509	0.984
D	Model-based SB RTE [3]	ABC	Single	0.121	0.168	0.324	0.433
E	Baseline algorithm for FB RTE [3]	ABC	Single	-0.0326	0.135	0.21	0.0421
F	SDDSA-G retrained [12]	SFM	Single	0.213	0.247	0.196	0.0148
G	SDDSA-G [13]	SFM	Single	0.093	0.141	0.22	0.0164
H	Multi-layer perceptron [14]	MLMF	Single	-0.141	0.133	0.337	0.0578
I	Multi-layer perceptron P2 [14]	MLMF	Single	0.000904	0.12	0.264	0.0578
J	Multi-layer perceptron P2 [14]	MLMF	Chromebook	0.0206	0.118	0.329	0.0599
K	Multi-layer perceptron P2 [14]	MLMF	Mobile	0.00366	0.0937	0.347	0.0555
L	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.000496	0.119	0.276	0.0569
M	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-0.0123	0.093	0.386	0.0617
N	Multi-layer perceptron P2 [14]	MLMF	EM32	-0.00585	0.107	0.229	0.0574
O	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	0.0497	0.117	0.251	0.576
P	NSRMR Sec. 2.4. [16, 15]	SFM	Single	0.0712	0.132	0.0973	0.569
Q	NSRMR Sec. 2.4. [16, 15]	SFM	Chromebook	0.212	0.151	0.472	1.03
R	NSRMR Sec. 2.4. [16, 15]	SFM	Mobile	0.0952	0.117	0.0296	1.58
S	NSRMR Sec. 2.4. [16, 15]	SFM	Crucif	0.0847	0.122	0.0702	2.61
T	SRMR Sec. 2.3. [15]	SFM	Single	-0.0493	0.124	0.111	0.455
U	SRMR Sec. 2.3. [15]	SFM	Chromebook	0.0513	0.113	0.454	0.824
V	SRMR Sec. 2.3. [15]	SFM	Mobile	-0.0333	0.105	0.0169	1.26
W	SRMR Sec. 2.3. [15]	SFM	Crucif	-0.0408	0.111	0.0942	2.08
X	NIRAv3 [7]	MLMF	Single	-0.207	0.166	0.122	0.895
Y	NIRAv1 [7]	MLMF	Single	-0.246	0.184	0.115	0.895
Z	NIRAv2 [7]	MLMF	Single	-0.185	0.188	0.0698	0.906
a	Blur kernel [17]	SFM	Single	0.248	0.201	0.0335	8.36
b	Blur kernel with sliding window [18]	SFM	Single	0.00154	0.198	-0.0472	0.412
c	Temporal dynamics [19]	SFM	Single	-0.131	0.158	0.119	0.358
d	Improved blind RTE [6]	ABC	Single	0.000833	0.219	-0.00975	0.0254
e	SDD [20]	SFM	Single	2.35	2.5e+03	-0.0369	0.0221
3.3 Frequency-dependent T_{60} estimation results

Figure 25: Frequency-dependent T_{60} estimation error in all noises for all SNRs for algorithm Model-based SB RTE [3]
3.4 Frequency-dependent T_{60} estimation results by noise type

3.4.1 Ambient noise

Figure 26: Frequency-dependent T_{60} estimation error in ambient noise for all SNRs for algorithm Model-based SB RTE [3]
3.4.2 Babble noise

Figure 27: Frequency-dependent T_{60} estimation error in babble noise for all SNRs for algorithm Model-based SB RTE.
3.4.3 Fan noise

Figure 28: Frequency-dependent T_{60} estimation error in fan noise for all SNRs for algorithm Model-based SB RTE [3]
3.5 Frequency-dependent T_{60} estimation results by noise type and SNR

3.5.1 Ambient noise at 18 dB

Figure 29: Frequency-dependent T_{60} estimation error in ambient noise at 18 dB SNR for algorithm Model-based SB RTE [3]
3.5.2 Ambient noise at 12 dB

Figure 30: Frequency-dependent T_{60} estimation error in ambient noise at 12 dB SNR for algorithm Model-based SB RTE [3]
3.5.3 Ambient noise at $-1 \, \text{dB}$

Figure 31: Frequency-dependent T_{60} estimation error in ambient noise at $-1 \, \text{dB SNR}$ for algorithm Model-based SB RTE \[3\]
3.5.4 Babble noise at 18 dB

Figure 32: Frequency-dependent T_{60} estimation error in babble noise at 18 dB SNR for algorithm Model-based SB RTE [3]
3.5.5 Babble noise at 12 dB

Figure 33: Frequency-dependent T_{60} estimation error in babble noise at 12 dB SNR for algorithm Model-based SB RTE [3]
3.5.6 Babble noise at -1 dB

Figure 34: Frequency-dependent T_{60} estimation error in babble noise at -1 dB SNR for algorithm Model-based SB RTE [3]

63
3.5.7 Fan noise at 18 dB

Figure 35: Frequency-dependent T_{60} estimation error in fan noise at 18 dB SNR for algorithm Model-based SB RTE [3]
3.5.8 Fan noise at 12 dB

Figure 36: Frequency-dependent T_{60} estimation error in fan noise at 12 dB SNR for algorithm Model-based SB RTE [3]
3.5.9 Fan noise at -1 dB

Figure 37: Frequency-dependent T_{60} estimation error in fan noise at -1 dB SNR for algorithm Model-based SB RTE [3]
4 DRR estimation results

4.1 Fullband DRR estimation results by noise type

4.1.1 Ambient noise
Figure 38: Fullband DRR estimation error in ambient noise for all SNRs
Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.21	8.32	0.583	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.76	40	0.583	3.15
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-5.46	40.1	0.393	0.844
i	PSD est. by twin BF [22]	ABC	Mobile	-5.34	39.9	0.351	0.614
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.17	65	0.2	0.627
k	NIRAv2 [7]	MLMF	Single	-1.68	14	0.568	0.897
l	NIRAv3 [7]	MLMF	Single	-1.8	15	0.536	0.897
m	NIRAv1 [7]	MLMF	Single	-3.65	13.6	0.32	0.897
n	Particle velocity [4]	ABC	EM32	-1.85	6.62	0.559	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.12	16.2	0.409	0.0578
p	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.38	14.6	0.231	0.0589
q	Multi-layer perceptron P2 [14]	MLMF	Mobile	-1.36	13.6	0.42	0.0557
r	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.33	14.6	0.555	0.0569
s	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.57	24.7	0.34	0.062
t	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.02	13.7	0.32	0.0578
u	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-5.78	46.8	0.272	0.0323
v	DENBE no noise reduction [24]	ABC	Chromebook	-3.53	25.5	0.337	0.0602
w	DENBE spectral subtraction [5]	ABC	Chromebook	-3.24	24.5	0.321	0.0474
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-3.24	24.5	0.321	0.775
y	DENBE filtered subbands [5]	ABC	Chromebook	-3.24	24.5	0.321	0.0449
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-3.24	24.5	0.321	0.0449
o	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-4.75	29.5	0.276	1.04
p	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-3.23	15.6	0.298	0.831
q	OSRMR Sec. 2.2. [15]	SFM	Mobile	-3.96	25.9	0.233	1.59
r	OSRMR Sec. 2.2. [15]	SFM	Mobile	-2.78	17.7	0.215	1.26
s	OSRMR Sec. 2.2. [15]	SFM	Crucif	-3.55	25.3	0.171	2.63
t	OSRMR Sec. 2.2. [15]	SFM	Crucif	-2.39	18	0.169	2.09
u	OSRMR Sec. 2.2. [15]	SFM	Single	-4.19	34.2	-0.168	0.543
v	OSRMR Sec. 2.2. [15]	SFM	Single	-4.28	34.9	-0.185	0.446
w	Per acoust. band SKRM Sec. 2.5. [15]	SFM	Single	-0.0744	22.1	0.0317	0.58
x	Temporal dynamics [23]	SFM	Single	-11.2	142	0.185	0.0819
y	QA Reverb [11]	SFM	Single	2.41	23	0.0583	0.391
z	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-11.4	146	0.266	0.019

Table 21: DRR estimation algorithm performance in ambient noise for all SNRs
4.1.2 Babble noise

Figure 39: Fullband DRR estimation error in babble noise for all SNRs
Table 22: DRR estimation algorithm performance in babble noise for all SNRs

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
1	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	0.839	8.2	0.555	0.757
2	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-6.13	45	0.555	3.17
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-6.1	48.4	0.42	0.843
i	PSD est. by twin BF [22]	ABC	Mobile	-6.38	54.6	0.358	0.615
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.6	57	0.29	0.627
k	NIRAv2 [7]	MLMF	Single	-1.66	13.2	0.61	0.906
l	NIRAv3 [7]	MLMF	Single	-1.17	12.7	0.57	0.906
m	NIRAv1 [7]	MLMF	Single	-1.14	12.6	0.571	0.906
n	Particle velocity [4]	ABC	EM32	-3.13	16.2	0.356	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.53	15.7	0.455	0.0579
p	Multi-layer perceptron P2 [14]	MLMF	Single	-1.95	17	0.528	0.0579
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.31	13	0.328	0.0888
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-2.25	17.3	0.386	0.0555
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.93	17.2	0.506	0.057
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.75	28.4	0.185	0.0618
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.6	16.4	0.329	0.0576
v	DENBE no noise reduction [24]	ABC	Chromebook	-6.59	59.3	0.24	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-5.74	50	0.237	0.0577
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-5.5	47.6	0.232	0.0476
y	DENBE filtered subbands [5]	ABC	Chromebook	-5.5	47.6	0.232	0.0778
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-5.5	47.6	0.232	0.0448
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-4.72	27.7	0.315	1.04
1	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-3.68	19.5	0.257	0.833
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-4.71	35.3	0.0325	1.58
3	OSRMR Sec. 2.2. [15]	SFM	Mobile	-3.73	27.2	0.0231	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-4.29	34.6	-0.0707	2.63
5	OSRMR Sec. 2.2. [15]	SFM	Crucif	-3.31	27.1	-0.0591	2.1
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.14	33.6	0.0538	0.534
7	OSRMR Sec. 2.2. [15]	SFM	Single	-4.21	34.2	0.0352	0.444
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-1.3	22.5	-0.0786	0.579
9	Temporal dynamics [23]	SFM	Single	-11.6	152	-0.0352	0.0823
α	QA Reverb [11]	SFM	Single	2.79	25.5	0.00216	0.392
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-12.8	179	0.261	0.019
4.1.3 Fan noise

Figure 40: Fullband DRR estimation error in fan noise for all SNRs
Table 23: DRR estimation algorithm performance in fan noise for all SNRs

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp.	ABC	Mobile	1.16	7.89	0.608	0.757
g	PSD est. in beamspace (Raw)	ABC	Mobile	-5.8	40.2	0.608	3.18
h	PSD est. in beamspace v2	ABC	Mobile	-5.54	40.4	0.428	0.844
i	PSD est. by twin BF	ABC	Mobile	-5.42	40	0.4	0.613
j	Spatial Covariance in matrix mode	ABC	Mobile	-5.33	61.4	0.254	0.627
k	NIRA v2	MLMF	Single	-2.23	17.2	0.511	0.895
l	NIRA v3	MLMF	Single	-1.88	16.5	0.467	0.895
m	NIRA v1	MLMF	Single	-1.93	16.9	0.455	0.895
n	Particle velocity	ABC	EM32	-2.15	8.28	0.515	0.134
o	Multi-layer perceptron	MLMF	Single	-0.773	15.9	0.363	0.0578
p	Multi-layer perceptron	MLMF	Single	-1.2	15.9	0.465	0.0578
q	Multi-layer perceptron	MLMF	Chromebook	-2.41	13.4	0.23	0.059
r	Multi-layer perceptron	MLMF	Mobile	-1.39	13.9	0.412	0.0555
s	Multi-layer perceptron	MLMF	Crucif	-1.24	16.3	0.451	0.0569
t	Multi-layer perceptron	MLMF	Lin8Ch	-3.62	24.2	0.41	0.0617
u	Multi-layer perceptron	MLMF	EM32	-2.04	13.9	0.33	0.0574
v	DENBE no noise reduction	ABC	Chromebook	-5.77	47.4	0.411	0.0322
w	DENBE spectral subtraction	ABC	Chromebook	-3.48	26.9	0.401	0.0588
x	DENBE spec. sub. Gerkmann	ABC	Chromebook	-3.27	26.4	0.386	0.048
y	DENBE filtered subbands	ABC	Chromebook	-3.27	26.4	0.386	0.774
z	DENBE FFT derived subbands	ABC	Chromebook	-3.27	26.4	0.386	0.0452
0	NOSRMR Sec. 2.2.	SFM	Chromebook	-5.82	45.6	0.281	1.03
1	OSRMR Sec. 2.2.	SFM	Chromebook	-4.21	26.8	0.275	0.824
2	OSRMR Sec. 2.2.	SFM	Mobile	-4.74	34.9	0.199	1.58
3	OSRMR Sec. 2.2.	SFM	Mobile	-3.33	21.8	0.193	1.26
4	OSRMR Sec. 2.2.	SFM	Crucif	-4.3	33.2	0.155	2.61
5	OSRMR Sec. 2.2.	SFM	Crucif	-2.93	21.6	0.158	2.08
6	NOSRMR Sec. 2.2.	SFM	Single	-4.14	33.8	-0.151	0.543
7	OSRMR Sec. 2.2.	SFM	Single	-4.24	34.5	-0.173	0.447
8	Per acoust. band SRMR Sec. 2.5.	SFM	Single	-1.33	23.7	0.0307	0.576
9	Temporal dynamics	ABC	SFM	-11.4	147	0.173	0.0818
α	QA Reverb	SFM	Single	-2.34	22.1	0.116	0.391
β	Blind est. of coherent-to-diffuse energy ratio	ABC	Chromebook	-12	160	0.391	0.019
4.2 Fullband DRR estimation results by noise type and SNR

4.2.1 Ambient noise at 18 dB SNR

Figure 41: Fullband DRR estimation error in ambient noise at 18 dB SNR
Table 24: DRR estimation algorithm performance in ambient noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC Mobile	1.14	7.81	0.632	0.757	
g	PSD est. in beamspace (Raw) [21]	ABC Mobile	-5.82	40.4	0.632	3.15	
h	PSD est. in beamspace v2 [21]	ABC Mobile	-5.37	40.7	0.413	0.844	
i	PSD est. by twin BF [22]	ABC Mobile	-5.11	39.2	0.381	0.614	
j	Spatial Covariance in matrix mode [23]	ABC Mobile	-5.22	53	0.389	0.642	
k	NIRAv2 [7]	MLMF Single	-1.73	13.9	0.821	0.897	
l	NIRAv3 [7]	MLMF Single	-1.81	14.6	0.561	0.897	
m	NIRAv1 [7]	MLMF Single	-1.90	14.9	0.597	0.897	
n	Particle velocity [4]	ABC EM32	-1.44	4.89	0.613	0.134	
o	Multi-layer perceptron [14]	MLMF Single	-1.14	15.4	0.48	0.0578	
p	Multi-layer perceptron P2 [14]	MLMF Single	-1.29	14.3	0.567	0.0578	
q	Multi-layer perceptron P2 [14]	MLMF Chromebook	-2.28	11.6	0.331	0.0589	
r	Multi-layer perceptron P2 [14]	MLMF Mobile	-1.17	12.8	0.428	0.0557	
s	Multi-layer perceptron P2 [14]	MLMF Crucif	-1.16	13.5	0.592	0.0569	
t	Multi-layer perceptron P2 [14]	MLMF Lin8Ch	-3.37	21.1	0.428	0.062	
u	Multi-layer perceptron P2 [14]	MLMF EM32	-1.93	11.9	0.373	0.0578	
v	DENBE no noise reduction [24]	ABC Chromebook	-3.51	21.4	0.437	0.0323	
w	DENBE spectral subtraction [5]	ABC Chromebook	-1.91	14.2	0.42	0.0602	
x	DENBE spec. sub. Gerkmann [24]	ABC Chromebook	-1.58	13.8	0.403	0.0474	
y	DENBE filtered subbands [5]	ABC Chromebook	-1.58	13.8	0.403	0.775	
z	DENBE FFT derived subbands [5]	ABC Chromebook	-1.58	13.8	0.403	0.0449	
0	NOSRMR Sec. 2.2. [15]	SFM Chromebook	-3.66	17.8	0.377	1.04	
1	OSRMR Sec. 2.2. [15]	SFM Chromebook	-2.51	10.7	0.382	0.831	
2	OSRMR Sec. 2.2. [15]	SFM Chromebook	-3.51	23.2	0.121	1.59	
3	OSRMR Sec. 2.2. [15]	SFM Mobile	-2.53	16.8	0.0908	1.26	
4	OSRMR Sec. 2.2. [15]	SFM Crucif	-3.16	23.3	0.0551	2.63	
5	OSRMR Sec. 2.2. [15]	SFM Crucif	-2.15	17.3	0.0185	2.09	
6	OSRMR Sec. 2.2. [15]	SFM Single	-4.22	34.3	-0.0427	0.543	
7	OSRMR Sec. 2.2. [15]	SFM Single	-4.35	35	-0.0515	0.446	
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM Single	0.511	24.1	-0.0548	0.58	
9	Temporal dynamics [25]	SFM Single	-11.1	140	0.0515	0.0819	
α	QA Reverb [11]	SFM Single	2.41	23.5	0.0488	0.391	
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC Chromebook	-9.71	109	0.337	0.019	

75
4.2.2 Ambient noise at 12 dB SNR

Figure 42: Fullband DRR estimation error in ambient noise at 12 dB SNR
Table 25: DRR estimation algorithm performance in ambient noise at 12 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
1	PSD est. in beamspace, bias comp.	ABC	Mobile	1.18	7.63	0.632	0.757
2	PSD est. in beamspace (Raw)	ABC	Mobile	-5.79	39.8	0.632	3.15
3	PSD est. in beamspace v2	ABC	Mobile	-5.38	39.2	0.419	0.844
4	PSD est. by twin BF	ABC	Mobile	-5.16	38.1	0.37	0.614
5	Spatial Covariance in matrix mode	ABC	Mobile	-5.11	52.6	0.251	0.627
6	NIRAv2	MLMF	Single	-1.71	14.2	0.562	0.897
7	NIRAv3	MLMF	Single	-1.82	14.9	0.543	0.897
8	NIRAv1	MLMF	Single	-1.84	15.1	0.539	0.897
9	Particle velocity	ABC	EM32	-1.64	5.2	0.632	0.134
10	Multi-layer perceptron	MLMF	Single	-1.06	15.2	0.46	0.0578
11	Multi-layer perceptron P2	MLMF	Single	-1.33	15	0.545	0.0578
12	Multi-layer perceptron P2 P2	MLMF	Chromebook	-2.27	12.2	0.279	0.0589
13	Multi-layer perceptron P2 P2	MLMF	Mobile	-1.1	12.8	0.426	0.0557
14	Multi-layer perceptron P2 P2	MLMF	Crucif	-1.15	13.2	0.592	0.0569
15	Multi-layer perceptron P2 P2	MLMF	Lin8Ch	-3.37	21.5	0.435	0.062
16	Multi-layer perceptron P2 P2	MLMF	EM32	-1.88	11.8	0.386	0.0578
17	DENBE no noise reduction	ABC	Chromebook	-4.96	33.2	0.404	0.0323
18	DENBE spectral subtraction	ABC	Chromebook	-2.68	16.6	0.42	0.0602
19	DENBE spec. sub. Gerkmann	ABC	Chromebook	-2.28	15.2	0.399	0.0474
20	DENBE filtered subbands	ABC	Chromebook	-2.28	15.2	0.399	0.775
21	DENBE FFT derived subbands	ABC	Chromebook	-2.28	15.2	0.399	0.0449
22	NOSRMR Sec. 2.2.	SFM	Chromebook	-3.83	19	0.392	1.04
23	NOSRMR Sec. 2.2.	SFM	Chromebook	-2.62	11.2	0.41	0.831
24	NOSRMR Sec. 2.2.	SFM	Mobile	-3.6	23.4	0.15	1.59
25	NOSRMR Sec. 2.2.	SFM	Mobile	-2.56	16.9	0.116	1.26
26	NOSRMR Sec. 2.2.	SFM	Crucif	-3.22	23.5	0.0688	2.63
27	NOSRMR Sec. 2.2.	SFM	Crucif	-2.18	17.3	0.0496	2.09
28	NOSRMR Sec. 2.2.	SFM	Single	-4.22	34.3	-0.0748	0.543
29	NOSRMR Sec. 2.2.	SFM	Single	-4.29	35	-0.0777	0.446
30	Per acoust. band SRMR Sec. 2.5.	SFM	Single	0.283	22.8	-0.0139	0.58
31	Temporal dynamics	SFM	Single	-11.1	140	0.0777	0.0819
32	QA Reverb	SFM	Single	2.37	23.5	0.0171	0.391
33	Blind est. of coherent-to-diffuse energy ratio	ABC	Chromebook	-10.9	131	0.327	0.019
4.2.3 Ambient noise at -1 dB SNR

Figure 43: Fullband DRR estimation error in ambient noise at -1 dB SNR
Table 26: DRR estimation algorithm performance in ambient noise at -1 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.3	9.51	0.578	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.67	39.9	0.578	3.15
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-5.63	40.2	0.431	0.844
i	PSD est. by twin BF [23]	ABC	Mobile	-5.76	42.4	0.344	0.614
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.17	89.4	0.0787	0.627
k	NIRAv2 [7]	MLMF	Single	-1.6	13.9	0.561	0.897
l	NIRAv3 [7]	MLMF	Single	-1.78	15.5	0.503	0.897
m	NIRAv1 [7]	MLMF	Single	-1.86	16.1	0.488	0.897
n	Particle velocity [4]	ABC	EM32	-2.48	9.77	0.479	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.15	17.9	0.253	0.0578
p	Multi-layer perceptron P2 [14]	MLMF	Single	-1.63	17	0.486	0.0578
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-3.17	20	0.116	0.0589
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-1.81	15.2	0.412	0.0557
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.66	17.1	0.481	0.0569
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.97	31.4	0.178	0.0622
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.23	17.4	0.223	0.0578
v	DENBE no noise reduction [24]	ABC	Chromebook	-8.85	85.7	0.152	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-5.99	45.8	0.308	0.0602
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-5.88	44.5	0.302	0.0474
y	DENBE filtered subbands [5]	ABC	Chromebook	-5.88	44.5	0.302	0.775
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-5.88	44.5	0.302	0.0449
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-6.77	51.5	0.411	1.04
1	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-4.55	24.8	0.479	0.831
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-4.74	31	0.423	1.59
3	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-3.26	19.3	0.422	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-4.28	29.2	0.374	2.63
5	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-2.84	19	0.389	2.09
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.14	34	-0.335	0.543
7	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.25	34.8	-0.393	0.446
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-1.02	19.5	0.181	0.58
9	Temporal dynamics [23]	SFM	Single	-11.4	145	0.393	0.0819
α	QA Reverb [11]	SFM	Single	2.43	22.2	0.137	0.391
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-13.8	199	0.212	0.019

79
4.2.4 Babble noise at 18 dB SNR

Figure 44: Fullband DRR estimation error in babble noise at 18 dB SNR
Table 27: DRR estimation algorithm performance in babble noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.12	7.96	0.631	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.85	40.9	0.629	3.17
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-5.38	41.2	0.422	0.843
i	PSD est. by twin BF [21]	ABC	Mobile	-5.13	40	0.382	0.615
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.09	51.7	0.312	0.627
k	NIRAv2 [7]	MLMF	Single	-1.67	12.8	0.633	0.906
l	NIRAv3 [7]	MLMF	Single	-1.35	13	0.576	0.906
m	NIRAv1 [7]	MLMF	Single	-1.35	12.9	0.579	0.906
n	Particle velocity [4]	ABC	EM32	-1.62	5.28	0.623	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.54	15.5	0.485	0.0579
p	Multi-layer perceptron P2 [14]	MLMF	Mobile	-1.6	14.1	0.586	0.0579
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.16	11.1	0.363	0.0588
r	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.76	13.8	0.434	0.0555
s	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-1.62	14.6	0.557	0.057
t	Multi-layer perceptron P2 [14]	MLMF	EM32	-3.56	23.3	0.368	0.0618
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.2	13.5	0.369	0.0576
v	DENBE no noise reduction [24]	ABC	Chromebook	-4.11	27.4	0.406	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-3.27	22	0.393	0.0577
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-3.02	20.6	0.385	0.0476
y	DENBE filtered subbands [5]	ABC	Chromebook	-3.02	20.6	0.385	0.778
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-3.02	20.6	0.385	0.0448
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-3.76	18.5	0.373	1.04
1	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-2.6	11.1	0.384	0.833
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-3.66	24.2	0.106	1.58
3	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-2.62	17.4	0.0805	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-3.28	24.3	0.0103	2.63
5	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-2.24	18	-0.00234	2.7
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.21	34.3	-0.0213	0.534
7	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.29	34.9	-0.0334	0.444
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.337	21.5	-0.0605	0.579
9	Temporal dynamics [25]	SFM	Single	-11.1	141	0.0354	0.0823
α	QA Reverb [11]	SFM	Single	2.63	24.8	0.0256	0.392
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-10.8	133	0.329	0.019

81
4.2.5 Babble noise at 12 dB SNR

Figure 45: Fullband DRR estimation error in babble noise at 12 dB SNR
Table 28: DRR estimation algorithm performance in babble noise at 12 dB SNR

Ref.	Algorithm Description	Class	Mic. Config.	Bias	MSE	\(\rho \)	RTF
f	PSD est. in beamspace, bias comp. [24]	ABC	Mobile	1.11	7.41	0.651	0.757
g	PSD est. in beamspace (Raw) [24]	ABC	Mobile	-2.86	40.5	0.651	3.17
h	PSD est. in beamspace v2 [24]	ABC	Mobile	-3.49	40.9	0.434	0.843
i	PSD est. by twin BF [24]	ABC	Mobile	-5.4	40.8	0.416	0.615
j	Spatial Covariance in matrix mode [24]	ABC	Mobile	-5.2	48.4	0.342	0.627
k	NIRAv2 [7]	MLMF	Single	-1.73	13.7	0.596	0.906
l	NIRAv3 [7]	MLMF	Single	-1.26	13	0.561	0.906
m	NIRAv1 [7]	MLMF	Single	-1.23	12.9	0.564	0.906
n	Particle velocity [4]	ABC	EM32	-2.15	7.25	0.604	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.57	15.4	0.483	0.0579
p	Multi-layer perceptron P2 [14]	MLMF	Single	-1.8	15.5	0.558	0.0579
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.11	11.3	0.349	0.0588
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-2.01	15.6	0.416	0.0555
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-1.64	14.8	0.551	0.057
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.64	25.8	0.246	0.0618
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-2.51	14.1	0.413	0.0576
v	DENBE no noise reduction [24]	ABC	Chromebook	-5.91	46	0.331	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-4.9	35.7	0.325	0.0577
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-4.62	33	0.324	0.0476
y	DENBE filtered subbands [5]	ABC	Chromebook	-4.62	33	0.324	0.778
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-4.62	33	0.324	0.0448
0	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-4.09	21.1	0.388	1.04
1	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-2.88	12.6	0.411	0.833
2	OSRMR Sec. 2.2. [15]	SFM	Mobile	-4	27	0.0937	1.58
3	OSRMR Sec. 2.2. [15]	SFM	Mobile	-2.88	18.8	0.0782	1.26
4	OSRMR Sec. 2.2. [15]	SFM	Crucif	-3.59	26.7	-0.014	2.63
5	OSRMR Sec. 2.2. [15]	SFM	Crucif	-2.49	19.3	-0.0169	2.1
6	OSRMR Sec. 2.2. [15]	SFM	Single	-4.19	34	-0.000435	0.534
7	OSRMR Sec. 2.2. [15]	SFM	Single	-4.27	34.8	-0.0218	0.444
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-1.12	21.2	-0.0696	0.579
9	Temporal dynamics [24]	SFM	Single	-11.2	143	0.0218	0.0823
α	QA Reverb [11]	SFM	Single	2.8	25.5	0.0333	0.392

β Blind est. of coherent-to-diffuse energy ratio [9] ABC Chromebook -12.2 163 0.31 0.019
4.2.6 Babble noise at -1 dB SNR

Figure 46: Fullband DRR estimation error in babble noise at -1 dB SNR
Table 29: DRR estimation algorithm performance in babble noise at \(-1\) dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	\(\rho\)	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	0.289	9.23	0.362	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-6.67	53.7	0.362	3.17
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-7.42	63.1	0.496	0.843
i	PSD est. by twin BF [22]	ABC	Mobile	-6.61	83.1	0.447	0.615
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-6.51	71.2	0.23	0.627
k	NIRAv2 [7]	MLMF	Single	-1.58	13.1	0.601	0.906
l	NIRAv3 [7]	MLMF	Single	-0.885	12.1	0.594	0.906
m	NIRAv1 [7]	MLMF	Single	-0.848	12.1	0.595	0.906
n	Particle velocity [4]	ABC	EM32	-5.63	36.2	0.259	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-1.46	16.1	0.395	0.0579
p	Multi-layer perceptron P2 [14]	MLMF	Single	-2.45	21.5	0.454	0.0579
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.66	16.5	0.293	0.0588
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-2.99	22.6	0.331	0.0555
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-2.54	22.2	0.434	0.057
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-4.04	36	-0.0201	0.0618
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-3.07	21.5	0.23	0.0576
v	DENBE no noise reduction [24]	ABC	Chromebook	-9.74	105	0.124	0.0323
w	DENBE spectral subtraction [5]	ABC	Chromebook	-9.03	92.2	0.142	0.0577
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-8.87	89.1	0.137	0.0476
y	DENBE filtered subbands [5]	ABC	Chromebook	-8.87	89.1	0.137	0.778
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-8.87	89.1	0.137	0.0448
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-6.33	43.6	0.351	1.04
1	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-3.57	34.7	0.539	0.833
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-6.47	54.7	-0.0348	1.58
3	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-5.69	45.5	0.00456	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-3.99	52.9	-0.253	2.63
5	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-5.21	44.1	-0.19	2.1
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.02	32.5	0.197	0.334
7	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.07	32.9	0.136	0.444
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-2.45	24.9	-0.201	0.579
9	Temporal dynamics [23]	SFM	Single	-12.4	172	-0.136	0.0823
α	QA Reverb [11]	SFM	Single	2.96	26.3	-0.0876	0.392
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-15.3	241	0.244	0.019

85
4.2.7 Fan noise at 18 dB SNR

Figure 47: Fullband DRR estimation error in fan noise at 18 dB SNR
Table 30: DRR estimation algorithm performance in fan noise at 18 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.13	7.67	0.638	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.83	40.4	0.639	3.18
h	PSD est. in beamspace v2 [21]	ABC	Mobile	-5.38	40.9	0.416	0.844
i	PSD est. by twin BF [22]	ABC	Mobile	-5.09	39.4	0.378	0.613
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.18	52.6	0.301	0.627
k	NIRAv2 [7]	MLMF	Single	-1.97	14.8	0.583	0.895
l	NIRAv3 [7]	MLMF	Single	-1.85	15.1	0.537	0.895
m	NIRAv1 [7]	MLMF	Single	-1.86	15.3	0.531	0.895
n	Particle velocity [4]	ABC	EM32	-1.45	4.9	0.624	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-0.829	14.4	0.476	0.0578^t
p	Multi-layer perceptron P2 [14]	MLMF	Single	-0.883	14.3	0.512	0.0578^t
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.09	10.8	0.306	0.059^t
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.997	11.7	0.472	0.0555^t
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.985	14.3	0.526	0.0569^t
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.19	19.3	0.514	0.0617^t
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-1.61	11.2	0.403	0.0574^t
v	DENBE no noise reduction [24]	ABC	Chromebook	-3.49	22.8	0.497	0.0322
w	DENBE spectral subtraction [5]	ABC	Chromebook	-1.83	15.5	0.439	0.0588
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-1.55	15.2	0.418	0.048
y	DENBE filtered subbands [5]	ABC	Chromebook	-1.55	15.2	0.418	0.774
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-1.55	15.2	0.418	0.0452
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-3.72	18.2	0.386	1.03
1	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-2.56	10.9	0.398	0.824
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-3.58	23.4	0.127	1.58
3	OSRMR Sec. 2.2. [15]	SFM	Mobile	-2.55	16.9	0.0964	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-3.2	23.5	0.0412	2.61
5	OSRMR Sec. 2.2. [15]	SFM	Crucif	-2.17	17.6	0.0264	2.08
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.22	34.3	-0.0485	0.543
7	OSRMR Sec. 2.2. [15]	SFM	Single	-4.3	35	-0.0587	0.447
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	0.136	22.2	-0.0161	0.576
9	Temporal dynamics [25]	SFM	Single	-11.1	140	0.0587	0.0818
α	QA Reverb [11]	SFM	Single	2.39	22.9	0.086	0.391
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-10.2	120	0.419	0.019

87
4.2.8 Fan noise at 12 dB SNR

Figure 48: Fullband DRR estimation error in fan noise at 12 dB SNR
Table 31: DRR estimation algorithm performance in fan noise at 12 dB SNR

Ref.	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21]	ABC	Mobile	1.15	7.15	0.662	0.757
g	PSD est. in beamspace (Raw) [21]	ABC	Mobile	-5.81	39.6	0.662	3.18
h	PSD est. in beamspace v3 [21]	ABC	Mobile	-5.48	39.7	0.464	0.844
i	PSD est. by twin BF [22]	ABC	Mobile	-5.3	38.6	0.434	0.613
j	Spatial Covariance in matrix mode [23]	ABC	Mobile	-5.4	50.5	0.357	0.627
k	NIRAv2 [7]	MLMF	Single	-2.04	15.3	0.57	0.895
l	NIRAv3 [7]	MLMF	Single	-1.92	16.1	0.5	0.895
m	NIRAv1 [7]	MLMF	Single	-1.93	16.3	0.493	0.895
n	Particle velocity [4]	ABC	EM32	-1.67	5.69	0.589	0.134
o	Multi-layer perceptron [14]	MLMF	Single	-0.743	14.4	0.449	0.0578
p	Multi-layer perceptron P2 [14]	MLMF	Single	-0.941	14.7	0.498	0.0578
q	Multi-layer perceptron P2 [14]	MLMF	Chromebook	-2.06	10.1	0.288	0.059
r	Multi-layer perceptron P2 [14]	MLMF	Mobile	-0.905	11.7	0.476	0.0555
s	Multi-layer perceptron P2 [14]	MLMF	Crucif	-0.893	14	0.513	0.0569
t	Multi-layer perceptron P2 [14]	MLMF	Lin8Ch	-3.22	20.5	0.456	0.0617
u	Multi-layer perceptron P2 [14]	MLMF	EM32	-1.65	11.8	0.388	0.0574
v	DENBE no noise reduction [24]	ABC	Chromebook	-5.06	36.3	0.501	0.0322
w	DENBE spectral subtraction [5]	ABC	Chromebook	-2.58	17.6	0.455	0.0588
x	DENBE spec. sub. Gerkmann [24]	ABC	Chromebook	-2.21	16.4	0.432	0.048
y	DENBE filtered subbands [5]	ABC	Chromebook	-2.21	16.4	0.432	0.774
z	DENBE FFT derived subbands [5]	ABC	Chromebook	-2.21	16.4	0.432	0.0452
0	NOSRMR Sec. 2.2. [15]	SFM	Chromebook	-4.07	20.8	0.418	1.03
1	OSRMR Sec. 2.2. [15]	SFM	Chromebook	-2.78	11.9	0.452	0.824
2	NOSRMR Sec. 2.2. [15]	SFM	Mobile	-3.74	24.4	0.172	1.58
3	OSRMR Sec. 2.2. [15]	SFM	Mobile	-2.65	17.3	0.137	1.26
4	NOSRMR Sec. 2.2. [15]	SFM	Crucif	-3.36	24.3	0.09	2.61
5	OSRMR Sec. 2.2. [15]	SFM	Crucif	-2.27	17.8	0.0731	2.08
6	NOSRMR Sec. 2.2. [15]	SFM	Single	-4.21	34.3	-0.0954	0.543
7	OSRMR Sec. 2.2. [15]	SFM	Single	-4.29	34.9	-0.105	0.447
8	Per acoust. band SRMR Sec. 2.5. [15]	SFM	Single	-0.669	20.3	0.0451	0.576
9	Temporal dynamics [25]	SFM	Single	-11.2	141	0.105	0.0818
α	QA Reverb [11]	SFM	Single	2.41	22.7	0.104	0.391
β	Blind est. of coherent-to-diffuse energy ratio [9]	ABC	Chromebook	-11.5	147	0.428	0.019
4.2.9 Fan noise at -1 dB SNR

Figure 49: Fullband DRR estimation error in fan noise at -1 dB SNR
Table 32: DRR estimation algorithm performance in fan noise at −1 dB SNR

Ref	Algorithm	Class	Mic. Config.	Bias	MSE	ρ	RTF
f	PSD est. in beamspace, bias comp. [21] ABC	Mobile	1.2	8.85	0.609	0.757	
g	PSD est. in beamspace (Raw) [21] ABC	Mobile	-5.76	40.6	0.609	3.18	
h	PSD est. in beamspace v2 [21] ABC	Mobile	-5.75	40.6	0.553	0.844	
i	PSD est. by twin BF [23] ABC Mobile	Mobile	-5.86	42.1	0.51	0.613	
j	Spatial Covariance in matrix mode [24] ABC	Mobile	-5.4	81.2	0.161	0.627	
k	NIRA v2 [7] MLMF Single ABC Mobile		-2.67	21.5	0.384	0.895	
l	NIRA v3 [7] MLMF Single ABC Mobile		-1.89	18.3	0.354	0.895	
m	NIRA v1 [7] MLMF Single ABC Mobile		-1.98	19.1	0.33	0.895	
n	Particle velocity [4] ABC EM32		-3.32	14.3	0.474	0.134	
o	Multi-layer perceptron [14] MLMF Single		-0.747	18.7	0.053	0.0578	
p	Multi-layer perceptron P2 [14] MLMF Single		-1.77	18.7	0.387	0.0578	
q	Multi-layer perceptron P2 [14] MLMF Chromebook		-3.08	19.2	0.149	0.059	
r	Multi-layer perceptron P2 [14] MLMF Mobile		-2.26	18.3	0.302	0.0555	
s	Multi-layer perceptron P2 [14] MLMF Crucif		-1.83	20.6	0.312	0.0569	
t	Multi-layer perceptron P2 [14] MLMF Lin8Ch		-4.44	32.6	0.274	0.0617	
u	Multi-layer perceptron P2 [14] MLMF EM32		-2.86	18.6	0.212	0.0574	
v	DENBE no noise reduction [24] ABC Chromebook		-8.75	83	0.481	0.0322	
w	DENBE spectral subtraction [5] ABC Chromebook		-6.05	47.6	0.45	0.0588	
x	DENBE spec. sub. Gerkmann [24] ABC Chromebook		-6.05	47.5	0.46	0.048	
y	DENBE filtered subbands [5] ABC Chromebook		-6.05	47.5	0.46	0.774	
z	DENBE FFT derived subbands [5] ABC Chromebook		-6.05	47.5	0.46	0.0452	
0	NOSRMR Sec. 2.2. [15] SFM Chromebook		-9.66	97.8	0.667	1.03	
1	NOSRMR Sec. 2.2. [15] SFM Chromebook		-7.29	57.5	0.639	0.824	
2	NOSRMR Sec. 2.2. [15] SFM Mobile		-6.9	57	0.429	1.58	
3	NOSRMR Sec. 2.2. [15] SFM Mobile		-4.78	31.1	0.449	1.26	
4	NOSRMR Sec. 2.2. [15] SFM Crucif		-6.34	52	0.374	2.61	
5	NOSRMR Sec. 2.2. [15] SFM Crucif		-4.35	29.5	0.398	2.08	
6	NOSRMR Sec. 2.2. [15] SFM Single		-3.99	32.9	-0.347	0.543	
7	NOSRMR Sec. 2.2. [15] SFM Single		-4.13	34	-0.397	0.447	
8	Per acoust. band SRMR Sec. 2.5. [15] SFM		-3.44	28.6	0.136	0.576	
9	Temporal dynamics [25] SFM		-12.1	160	0.397	0.0818	
α	QA Reverb [11] SFM		2.22	20.8	0.198	0.391	
β	Blind est. of coherent-to-diffuse energy ratio [9]		-14.3	211	0.451	0.019	
4.3 Frequency-dependent DRR estimation results

Figure 50: Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm Particle Velocity.

Figure 50: Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm Particle Velocity.
Figure 51: Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm DENBE with FFT derived subbands [5]
Figure 52: Frequency-dependent DRR estimation error in all noises for all SNRs for algorithm DENBE with filtered subbands [5]
4.4 Frequency-dependent DRR estimation results by noise type

4.4.1 Ambient noise

Figure 53: Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm Particle Velocity.
Figure 54: Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm DENBE with FFT derived subbands [5]
Figure 55: Frequency-dependent DRR estimation error in ambient noise for all SNRs for algorithm DENBE with filtered subbands [5]
4.4.2 Babble noise

Figure 56: Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm Particle Velocity

98
Figure 57: Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm DENBE with FFT derived subbands [5]
Figure 58: Frequency-dependent DRR estimation error in babble noise for all SNRs for algorithm DENBE with filtered subbands
4.4.3 Fan noise

![Graph showing frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm Particle Velocity](image)

Figure 59: Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm Particle Velocity
Figure 60: Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm DENBE with FFT derived subbands.
Figure 61: Frequency-dependent DRR estimation error in fan noise for all SNRs for algorithm DENBE with filtered subbands [5]
4.5 Frequency-dependent DRR estimation results by noise type and SNR

4.5.1 Ambient noise at 18 dB

Figure 62: Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm Particle Velocity [4]
Figure 63: Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 64: Frequency-dependent DRR estimation error in ambient noise at 18 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.2 Ambient noise at 12 dB

Figure 65: Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm Particle Velocity.
Figure 66: Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 67: Frequency-dependent DRR estimation error in ambient noise at 12 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.3 Ambient noise at $-1 \, \text{dB}$

Figure 68: Frequency-dependent DRR estimation error in ambient noise at $-1 \, \text{dB SNR}$ for algorithm Particle Velocity [4]

110
Figure 69: Frequency-dependent DRR estimation error in ambient noise at −1 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 70: Frequency-dependent DRR estimation error in ambient noise at –1 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.4 Babble noise at 18 dB

Figure 71: Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm Particle Velocity

113
Figure 72: Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 73: Frequency-dependent DRR estimation error in babble noise at 18 dB SNR for algorithm DENBE with filtered subbands \[5\]
4.5.5 Babble noise at 12 dB

Figure 74: Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm Particle Velocity

116
Figure 75: Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 76: Frequency-dependent DRR estimation error in babble noise at 12 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.6 Babble noise at -1 dB

Figure 77: Frequency-dependent DRR estimation error in babble noise at -1 dB SNR for algorithm Particle Velocity [4]
Figure 78: Frequency-dependent DRR estimation error in babble noise at -1 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 79: Frequency-dependent DRR estimation error in babble noise at -1 dB SNR for algorithm DENBE with filtered subbands
4.5.7 Fan noise at 18 dB

![Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm Particle Velocity](image)

Figure 80: Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm Particle Velocity
Figure 81: Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm DENBE with FFT derived subbands
Figure 82: Frequency-dependent DRR estimation error in fan noise at 18 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.8 Fan noise at 12 dB

Figure 83: Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm Particle Velocity [4]
Figure 84: Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 85: Frequency-dependent DRR estimation error in fan noise at 12 dB SNR for algorithm DENBE with filtered subbands [5]
4.5.9 Fan noise at -1 dB

Figure 86: Frequency-dependent DRR estimation error in fan noise at -1 dB SNR for algorithm Particle Velocity

128
Figure 87: Frequency-dependent DRR estimation error in fan noise at −1 dB SNR for algorithm DENBE with FFT derived subbands [5]
Figure 88: Frequency-dependent DRR estimation error in fan noise at −1 dB SNR for algorithm DENBE with filtered subbands.
References

[1] J. Eaton, N. D. Gaubitch, A. H. Moore, and P. A. Naylor, “The ACE Challenge - corpus description and performance evaluation,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2015.

[2] ———, “Proceedings of the ACE Challenge Workshop, a satellite event of IEEE-WASPAA,” New Paltz, NY, USA, 2015. [Online]. Available: http://arxiv.org/abs/1510.00383

[3] H. W. Löllmann, A. Brendel, P. Vary, and W. Kellermann, “Single-channel maximum-likelihood T60 estimation exploiting subband information,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[4] H. Chen, P. N. Samarasinghe, T. D. Abhayapala, and W. Zhang, “Estimation of the direct-to-reverberant energy ratio using a spherical microphone array,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[5] J. Eaton and P. A. Naylor, “Direct-to-reverberant ratio estimation on the ACE corpus using a two-channel beamformer,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[6] H. W. Löllmann, E. Yilmaz, M. Jeub, and P. Vary, “An improved algorithm for blind reverberation time estimation,” in Proc. Intl. on Workshop Acoust. Echo and Noise Control (IWAENC), Tel-Aviv, Israel, Aug. 2010, pp. 1–4.

[7] P. P. Parada, D. Sharma, T. van Waterschoot, and P. A. Naylor, “Evaluating the non-intrusive room acoustics algorithm with the ACE challenge,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[8] N. D. Gaubitch, H. W. Löllmann, M. Jeub, T. H. Falk, P. A. Naylor, P. Vary, and M. Brookes, “Performance comparison of algorithms for blind reverberation time estimation from speech,” in Proc. Intl. Workshop on Acoustic Signal Enhancement (IWAENC), Aachen, Germany, Sept. 2012.

[9] M. Jeub, C. Nelke, C. Beaugeant, and P. Vary, “Blind estimation of the coherent-to-diffuse energy ratio from noisy speech signals,” in Proc. European Signal Processing Conf. (EUSIPCO), Barcelona, Spain, 2011, pp. 1347–1351.

[10] Acoustics - Measurement of the Reverberation Time of Rooms with Reference to Other Acoustical Parameters, Intl. Org. for Standardization (ISO) Recommendation ISO-3382, May 2009.

[11] T. de M. Prego, A. A. de Lima, R. Zambrano-López, and S. L. Netto, “Blind estimators for reverberation time and direct-to-reverberant energy ratio using subband speech decomposition,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2015.

[12] J. Eaton and P. A. Naylor, “Reverberation time estimation on the ACE corpus using the SDD method,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.
[13] J. Eaton, N. D. Gaubitch, and P. A. Naylor, “Noise-robust reverberation time estimation using spectral decay distributions with reduced computational cost,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013, pp. 161–165.

[14] F. Xiong, S. Goetze, and B. T. Meyer, “Joint estimation of reverberation time and direct-to-reverberation ratio from speech using auditory inspired features,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[15] M. Senoussaoui, J. F. Santos, and T. H. Falk, “SRMR variants for improved blind room acoustics characterization,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[16] J. F. Santos, M. Senoussaoui, and T. H. Falk, “An improved non-intrusive intelligibility metric for noisy and reverberant speech,” in Proc. Intl. Workshop on Acoustic Signal Enhancement (IWAENC), Sept. 2014, pp. 55–59.

[17] F. Lim, M. R. P. Thomas, and I. J. Tashev, “Blur kernel estimation approach to blind reverberation time estimation,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 41–45.

[18] F. Lim, M. R. P. Thomas, P. A. Naylor, and I. J. Tashev, “Acoustic blur kernel with sliding window for blind estimation of reverberation time,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2015.

[19] T. H. Falk, C. Zheng, and W.-Y. Chan, “A non-intrusive quality and intelligibility measure of reverberant and dereverberated speech,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 7, pp. 1766–1774, Sept. 2010.

[20] J. Y. C. Wen, E. A. P. Habets, and P. A. Naylor, “Blind estimation of reverberation time based on the distribution of signal decay rates,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, Apr. 2008, pp. 329–332.

[21] Y. Hioka and K. Niwa, “PSD estimation in beamspace for estimating direct-to-reverberant ratio from a reverberant speech signal,” in Proc. ACE Challenge Workshop, a satellite of IEEE-WASPAA, New Paltz, NY, USA, 2015.

[22] Y. Hioka, K. Furuya, K. Niwa, and Y. Haneda, “Estimating direct-to-reverberant energy ratio using D/R spatial correlation matrix model,” in Proc. Intl. Workshop on Acoustic Signal Enhancement (IWAENC), Sept 2012.

[23] Y. Hioka, K. Niwa, S. Sakauchi, K. Furuya, and Y. Haneda, “Estimating direct-to-reverberant energy ratio using D/R spatial correlation matrix model,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 8, pp. 2374–2384, Nov 2011.

[24] J. Eaton, A. H. Moore, P. A. Naylor, and J. Skoglund, “Direct-to-reverberant ratio estimation using a null-steered beamformer,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 46–50.

[25] T. H. Falk and W.-Y. Chan, “Temporal dynamics for blind measurement of room acoustical parameters,” IEEE Trans. Instrum. Meas., vol. 59, no. 4, pp. 978–989, 2010.