Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19)

Abdul Mannan Baig1 | Erin C. Sanders MSN, WHNP-BC2

1Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Sindh, Pakistan
2Department of Obstetrics and Gynecology, Mount Auburn Hospital, Boston Urogynecology Associates, Cambridge, Massachusetts, United States

Correspondence
Abdul Mannan Baig, Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Sindh, Pakistan. Email: abdul.mannan@aku.edu

Abstract
Coronavirus disease-2019 (COVID-19) was declared a global pandemic on 11 March 2020. Scientists and clinicians must acknowledge that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to attack the human body in multiple ways simultaneously and exploit any weaknesses of its host. A multipronged attack could potentially explain the severity and extensive variety of signs and symptoms observed in patients with COVID-19. Understanding the diverse tactics of this virus to infect the human body is both critical and incredibly complex. Although patients diagnosed with COVID-19 have primarily presented with pulmonary involvement, viral invasion, and injury to diverse end organs is also prevalent and well documented in these patients, but has been largely unheeded. Human organs known for angiotensin-converting enzyme 2 (ACE2) expression including the gastrointestinal tract, kidneys, heart, adrenals, brain, and testicles are examples of extra pulmonary tissues with confirmed invasion by SARS-CoV-2. Initial multiple organ involvement may present with vague signs and symptoms to alert health care professionals early in the course of COVID-19. Another example of an ongoing, yet neglected element of the syndromic features of COVID-19, are the reported findings of loss of smell, altered taste, ataxia, headache, dizziness, and loss of consciousness, which suggest a potential for neural involvement. In this review, we further deliberate on the neuroinvasive potential of SARS-CoV-2, the neurologic symptomology observed in COVID-19, the host-virus interaction, possible routes of SARS-CoV-2 to invade the central nervous system, other neurologic considerations for patients with COVID-19, and a collective call to action.

KEYWORDS
brain, central nervous system, cerebrospinal fluid, coronavirus, COVID-19, neuroinvasive, neuron, neurotropic, olfactory, SARS-CoV-2, transcribrial

1 | INTRODUCTION

The first reports of a cluster of viral pneumonia in Wuhan, China emerged in late December 2019.1-3 The complete genome of SARS-CoV-2 from Wuhan, China was submitted on in the National Center for Biotechnology database on 17 January 2020.4 On 11 February 2020, the virus was given the taxonomic designation “Severe Acute Respiratory Syndrome Coronavirus 2” (SARS-CoV-2) and the World Health Organization (WHO) officially renamed the associated disease as coronavirus disease-2019 (COVID-19).1-3 On 11 March 2020,
WHO declared COVID-19 a global pandemic.1 As of 25 May 2020, per the Johns Hopkins COVID-19 Dashboard, there are currently 5,408,301 cases globally, with 345,104 associated deaths worldwide.5 In the United States (US) alone, there are 1,643,499 cases (30.3% of global cases) with 97,722 associated deaths (28.3% of global deaths).5 Despite entering the seventh month from the initial identification and spread of the zoonotic pathogen SARS-CoV-2, very little is known about viral transmission, organotropism, and pathogenesis, including the mechanisms behind the disturbing prevalence of cardiorespiratory failure in patients with COVID-19. The differential mortality observed in diverse populations concerning geography, culture, policy, age, sex, comorbidities, genetics, epigenetics, and systemic health inequity are captivating and require further study. Similarly, the overlaid and highly varied responses of the human immune system to SARS-CoV-2 are intriguing.

Since originating in China, the overarching spectrum of syndromic manifestations seen in patients with COVID-19 continues to perplex physicians and scientists worldwide.6,7 After a comprehensive examination of the potential routes of infection available to SARS-CoV-2 in humans, we postulate that widespread organ invasion as the major life-threatening aspect of viral pathogenesis, which also corresponds with the varied symptomatology seen in patients with COVID-19 (Figure 1). Involvement of the cardiorespiratory system and central nervous system (CNS) is particularly ominous, as they have been reported as the leading causes of morbidity and mortality in patients with COVID-19.6,7 Moreover, the sophisticated susceptibility of neuronal cells to injury, the location of cardiopulmonary regulatory centers in the brainstem, and the homeostatic regulatory functions performed by a healthy CNS in microbial infections are a few examples of the many functions the CNS is known to execute in health and diseases. This review explores current evidence of neurotropism and neurological injury caused by SARS-CoV-2 and further hypothesizes the multiple pathways to access and damage the CNS in COVID-19.

\textbf{FIGURE 1} Proposed pathogenesis of SARS-CoV-2 to invade the human CNS. Source: Possible access to the human CNS by viral invasion includes the hematogenous route, neuronal retrograde dissemination route, and transcribrial route detailed in this manuscript. The virus can access the CNS through the blood vessels, peripheral neurons, or cerebrospinal fluid (CSF), and then directly damage the brain and nerves, as evidenced by recent autopsy studies.8-13 Access to the vasculature has been established by the extensive endothelial damage seen in postmortem examinations and pathological study of patients with COVID-19.8-17 SARS-CoV-2 has been found in the mucosa of the nose, mouth, and eyes, lungs, liver, kidney, heart, brain, gastrointestinal tract, sperm, and placenta suggesting an affinity for organs with a higher angiotensin-converting enzyme 2 (ACE2) receptor count/expression.8-13,18-19,43 Interestingly, the CNS, eyes, testes, and placenta are all immune-privileged organs. The local endotheliitis, tissue, and organ damage, can lead to widespread inflammation potentially resulting in a cytokine storm picture that has also been frequently observed in patients with COVID-19.44-47 Furthermore, as the ACE2 receptor is the host binding site for SARS-CoV-2, there is potential for decreased available ACE2 in the serum and increased circulating angiotensin II (AngII), creating a hypercoagulative state, and predisposing patients with COVID-19 to pulmonary embolism (PE), deep vein thrombosis (DVT), disseminated intravascular coagulation (DIC), and stroke.48-51 COVID-19, coronavirus disease-2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
2 | NEUROTROPIC VIRAL PATHOGENS: OTHER CoVs AND SARS-COV-1

SARS-CoV-2 causes a wide variety of symptoms across organ systems in patients with COVID-19. A significant amount of evidence exists showing that other viruses and coronaviruses specifically can invade the CNS and induce neurological symptoms. In addition, one study of 18 autopsies positive for SARS-CoV-1 found that viral genome sequences were detected in the brains of all SARS autopsies with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assays. The route of initial SARS-CoV-1 infection to the brain remains unclear, but the viral presence was definitively established in the CNS. Animal studies using transgenic mice have shown that SARS-CoV-1 administered via transnasal route could enter the brain, potentially along the olfactory nerves and spread to specific brain areas including the thalamus and brainstem.

3 | NEUROLOGIC SYMPTOMATOLOGY IN COVID-19

3.1 | Hyposmia, hypogeusia, headache, and dizziness

An ongoing, yet neglected element of the syndromic features of COVID-19, is the reported findings of loss of smell and altered taste (Figure 2A,B), ataxia, headache, dizziness, and loss of consciousness. Initial reports from China detailed various clinical features of patients with COVID-19, including symptoms concerning for possible neurological deficit confirmed by physical examination (Figure 2C-E). Of over 200 initial patients evaluated in China, researchers found that severe neurological symptoms were more likely to occur in patients with severe disease. However, nonsevere patients also had episodes of
acute cerebrovascular disease, impaired consciousness, respiratory failure (Figure 2F), and skeletal muscle injury. Rates of dizziness (17 [19.3%], 19 [15.1%]) and headache (15 [17%], 13 [10.3%]) were similar in both severe and nonsevere groups. Interestingly, both hypogeusia (9 [7.1%], 3 [3.4%]) and hyposmia (8 [6.3%], 3 [3.4%]) were significantly higher for the nonsevere group vs severe group, respectively, suggesting an early stage of viral transmission causes direct injury to the epithelium of the nasal/oral mucosa or nasal/oral peripheral nerves. The US Centers for Disease Control and Prevention, WHO, American Society of Otolaryngology and Head-Neck Surgery, as well as the Ear, Nose, and Throat surgeons in the United Kingdom (UK) at the Royal College of Surgeons, have newly recognized loss of smell and altered taste as significant symptoms in patients with COVID-19.

3.2 | Altered mental status and cardiorespiratory failure

The neuroinvasive potential of SARS-CoV-2 and possible role in the acute cardiorespiratory failure of patients with COVID-19 was first proposed by Li et al. in February 2020. In early March 2020, neurotropic mechanisms of SARS-CoV-2 targeting the human CNS were further described. Since that time, several more studies have questioned the impact of SARS-CoV-2 on the human neurological system. Further consideration is warranted that the acute cardiorespiratory failure observed in patients with COVID-19 could directly result from the neurovirulent effect of SARS-CoV-2 to induce the cessation of cardiac function and spontaneous breathing at the level of the brainstem (Figure 3B), which has necessitated the current demand and use of mechanical ventilators (Figure 2F) in the management of these patients.

FIGURE 3 Route of CNS Spread of SARS-CoV-2 via Transcribrial Route. Olfactory mucosa and olfactory bulb (OB) are affected by SARS-CoV-2 entry via the nose (A and B). The nasal and the oral loads cause the virus to then enter the lungs via trachea and bronchi (B, downward arrow) resulting in pneumonia. The nasal load can become a source to affect the olfactory bulb and cleft (B, green circle) by initial infection and inflammation around the cells present in the olfactory mucosa (A, bottom segment) resulting in anosmia. The viral load resulting from rupture of the cells extending from the nasal mucosa to the olfactory bulb (A and B) via cribriform plate (A) can then be transported by the CSF (A, blue waves) to the adjacent and distant areas of the CNS. As CSF is present in the subarachnoid space of the meninges directly supporting the olfactory nerves, the virus can reach the CNS without breaching the BBB. [CNS, central nervous system; CSF, cerebrospinal fluid; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2]
3.3 | Guillain-Barré syndrome

The New England Journal of Medicine, recently published a case series from Italy on five patients with COVID-19 who presented with Guillain-Barré syndrome (GBS). Of the five reported cases, four developed flaccid tetraparesis or tetraplegia, and three required mechanical ventilation.\(^\text{105}\) Notably, the cerebrospinal fluid (CSF) of all five patients tested negative for SARS-CoV-2 by RT-PCR assay. A recent publication from Spain also noted two patients with COVID-19 presenting with Miller Fisher syndrome, a variant of GBS, and polynueuritis cranialis.\(^\text{106}\) The CSF of both patients tested negative for SARS-CoV-2 by RT-PCR assay.\(^\text{106}\) Whether the prevalence of GBS is due to direct viral attack of the myelin sheath resulting in demyelination, or a secondary effect of blood-brain barrier (BBB) permeability due to widespread inflammatory response and cytokine storm in the CNS remains to be determined.\(^\text{44}\)

In addition, long and short term postviral sequelae will be important to monitor. Other neuroinvasive viruses including influenza, poliovirus, and human herpesviruses have invaded and damaged the CNS in a multitude of ways over time.\(^\text{61,107-109}\) Capacity for viral persistence, latency, or reactivation of SARS-CoV-2 are important areas of further study.

3.4 | Multisystem inflammatory syndrome in children

Of recent concern are the increasing cases in Italy, the United States (US), and the United Kingdom (UK) of a Kawasaki-type viral inflammatory illness in children newly termed multisystem inflammatory syndrome in children. A 14-year-old boy in the UK and three children in New York passed away from complications of this disease.\(^\text{110,111}\) Out of the series of eight published in the UK, the 14-year-old boy presented with a headache and suffered from a right middle cerebral artery and anterior cerebral artery infarction.\(^\text{110}\) The only other child to report an initial headache in the series had a severe biventricular impairment.\(^\text{110}\) Despite having close SARS-CoV-2 positive contacts, most children tested negative for the virus via nasal swab. However, five presented with conjunctivitis. Viral conjunctival swab results were not reported. Shockingly, all of the children “progressed to warm, vasogenic shock, refractory to volume resuscitation, and eventually requiring noradrenaline and milrinone for hemodynamic support,” despite a lack of significant respiratory involvement by SARS-CoV-2.\(^\text{110}\) In fact, seven children required mechanical ventilation for cardiovascular stabilization.\(^\text{110}\) These growing cases beg the question of both an occult route of infection as well as possible disruption of cardiorespiratory stability as a pathogenic mechanism of SARS-CoV-2 (Figure 1). Interestingly, the eye is also an immune-privileged site, conjunctivitis has been a documented phenomenon in COVID-19, and RT-PCR of conjunctiva and tears have tested positive for SARS-CoV-2 in several published studies.\(^\text{39,41,112-113,119}\)

4 | CASE REPORTS: POSITIVE CSF DATA AND ENCEPHALOPATHY

In addition to the cases cited above, there have been several other published case reports of encephalopathy in the literature.\(^\text{74,120-123}\) Of the five additional recently published cases of encephalopathy, three patients also had mild/moderate lung findings on chest radiograph and computed tomography (CT) of the chest. Two patients required intubation (Table S1).\(^\text{74,120-123}\) Furthermore, both China and Japan have documented cases of SARS-CoV-2 detected in the CSF.\(^\text{74,120}\)

4.1 | China

In China, a patient was diagnosed with viral encephalitis and SARS-CoV-2 was detected in CSF by gene sequencing. However, the official case report and further details have not yet been published.\(^\text{74}\)

4.2 | Japan

Japan reported a 24-year-old male with transient generalized seizures and negative nasopharyngeal (NP) swab, ultimately diagnosed with aseptic meningitis/encephalitis, and SARS-CoV-2 was detected in CSF by RT-PCR assay on day 1. The NP and CSF samples were retested with the same results.\(^\text{120}\) Imaging also revealed panparanasal sinusitis.\(^\text{120}\) Sampling technique, specimen transport process, lab processing, limited gene presence, or true testing error could all contribute to a false negative result on the NP swab. However, a negative NP swab also suggests the possibility of a viral invasion of the ocular or oral epithelium and peripheral nerve terminals via a synapse connected route, as there have been multiple reported cases of patients with COVID-19 and a negative NP swab test result.\(^\text{110,124}\)

4.3 | United States

In Michigan, a 58-year-old female with altered mental status (AMS), positive NP swab by RT-PCR assay, and suspected SARS-CoV-2 associated acute necrotizing encephalopathy was diagnosed by head CT and magnetic resonance imaging (MRI) of the brain. Unfortunately, the CSF sample was unable to be tested for SARS-CoV-2.\(^\text{121}\) The cause of these symptoms is still unclear, as to whether they were a result of intracranial cytokine storm compromising the BBB or direct viral neuroinvasion. In Florida, a 74-year-old male was diagnosed with encephalopathy and had a positive NP swab by RT-PCR assay, but again, CSF was unable to be tested for SARS-CoV-2.\(^\text{122}\) California also reported a 41-year-old female with meningoencephalitis and positive NP swab who presented with new-onset seizures in early April.\(^\text{123}\) After 9 days of hospitalization, the physicians were still unable to test her CSF for SARS-CoV-2. In addition, a 5-year-old girl
from Michigan with positive NP swab and meningoencephalitis requiring intubation and ventilation succumbed to her injuries on April 19th.125 A case report has not yet been published. As this is the second documented case of encephalitis with COVID-19 in Michigan, exploration of a more virulent strain of SARS-CoV-2 to the CNS may be justified, as China has released preliminary evidence that SARS-CoV-2 has acquired mutations capable of substantially changing its pathogenicity.126

4.4 | Italy

A case from Italy was recently published involving a 60-year-old male with new-onset akinetic mutism and encephalopathy, positive NP swab, and negative CSF by RT-PCR assay tested twice.127 Specifics regarding the above cases have been detailed in Table S1; again exposing the diverse ways that COVID-19 challenges clinical diagnosis and management.

5 | VIRAL ATTACHMENT TO ACE2 EXPRESSED IN HOST CELLS

The variety of symptoms observed in patients with COVID-19 could be explained by the distribution of ACE2 receptors and multiplicity of their expression as described in the legend of Figure 1.18-24 Regarding viral transmission, recent data have shown high expression of ACE2 in the nose and mouth.25-29 ACE2 receptors have also been documented in the aqueous humor and retina but there is an overall scarcity of recent data on the eye concerning SARS-CoV-2.30-41,112,113,119

6 | POTENTIAL NEUROINVASIVE ROUTES OPTED BY SARS-CoV-2

From our current understanding, SARS-CoV-2 is primarily transmitted via respiratory droplets to the mucous membranes through the inhalation route.2,3 Following local invasion, the virus could reach the CNS by several routes (Figures 1 and 3B).

6.1 | Olfactory/transcribrial route to the CNS

Viruses causing upper respiratory tract infections can exploit the olfactory epithelium (OE) as a site for proliferation due to its location both being adjacent to the respiratory epithelium and having direct exposure to the host’s environment.128 SARS-CoV-2 possibly attaches to the OE via ACE2 receptors.2,3 The virus could then further invade the cells in the OE including the olfactory ensheathing cells that surround the olfactory neurons (ON). Preliminary evidence shows that non-neuronal cells in the OE (Figure 3A) express SARS-CoV-2 entry genes and are potentially direct targets for the virus.25 In Italy, ultrastructural analysis of a postmortem patient with COVID-19 examined the olfactory nerve, the gyrus rectus, and the brainstem at the level of the medulla oblongata (Figure 3B).129 Researchers found severe and widespread tissue damage and SARS-CoV-2 virion particles involving the neurons, glia, nerve axons, and myelin sheath.129 These findings support the potential for viral invasion of the olfactory mucosa (Figure 3A). In addition, a postmortem MRI study of patients with COVID-19 from Belgium revealed asymmetric olfactory bulbs (Figure 3A) with or without olfactory cleft obliteration in 4 out of 19 decedents.130

Given the known cytopathic effects, replication of the virus likely potentiates cell rupture, resulting in the release of more virion into the surrounding tissues. It is well established that the OE via ON directly access the olfactory bulb (OB) through a horizontal segment of the ethmoid bone called the cribriform plate (Figure 3A).101,104 As the ON travel through the olfactory foramina in the cribriform plate, they also pass directly through the three layers of the cranial meninges (dura mater, arachnoid mater, and pia mater) before reaching the OB (Figure 3A).101,104 Consequently, the rupturing of infected cells through the subarachnoid space could directly release virion into the CSF (Figure 3A, blue zone). As evidence of the presence of CSF in the meninges that support the OB above is, the phenomenon of CSF rhinorrhea resulting from a fracture of the cribriform plate in trauma involving the base of the skull.131,132 The CSF circulation can then transport the virus throughout the CNS with or without overt damage to the BBB or the OB (Figure 3A). The intrathecal renin-angiotensin system and brain both express ACE2 and could also be potential targets for SARS-CoV-2.133,134

SARS-CoV-2 selecting to manipulate this direct pathway would not be unexpected, as a plethora of viruses and pathogens have been reported to invade the CNS utilizing this exact route.88-100 The transcribrial route (Figure 3A, between the olfactory mucosa and olfactory bulb) has also been proposed as a potential route for drugs to bypass the BBB and also for stem cell delivery in neurodegenerative diseases.96,97 Localized epithelial inflammation, destruction, and damage to the OB (Figure 3A, TOP layer) has already been observed with other viral pathogens and correlated with decreased olfaction.98-100 This mechanism could potentially explain the diminished senses of smell and associated altered taste (Figure 2A,B) in patients with COVID-19.128

6.2 | Other potential routes to the CNS

Primary transmission via respiratory droplets supports further investigation of the mucous membranes of the eyes and mouth as other possible candidates for viral peripheral nerve invasion (Figure 1), as both the oral and ocular epithelium express ACE2.28-41 Direct invasion of the peripheral nerves in the nasal cavity leading to the trigeminal nerve has been proposed as a potential cause for headache symptoms in patients with COVID-19.30 There is also the potential for the virus to enter the peripheral vasculature via epithelial erosion and directly invade the circulation. Once in the blood, the virus may be able to
cross the BBB by causing damage to vessel integrity (Figure 1) and thus increasing permeability.48-51 Recently, the ultrastructural analysis of a postmortem patient with COVID-19 detected SARS-CoV-2 in the frontal lobe of the human brain (Figure 3B), specifically in the neurons and propagating in the capillary endothelium, (Figure 3) bolstering the possibility of a hematogenous route.78

7 | ADDITIONAL NEUROLOGIC CONSIDERATIONS WITH COVID-19

7.1 | Cytokine storm and blood-brain barrier

From a neurological perspective, there are several other essential components to be considered. The significant burden of infection and associated organ and tissue damage could result in a cytokine storm (Figure 1), which has already been reported and could lead to clotting complications and potentially compromise the BBB.44-47

7.2 | Increased risk for clot/stroke

In addition to neurotropism, the presence of a virus utilizing existing ACE2 receptors in endothelia of the blood vessels of multiple organs and serum, would reduce available circulating ACE2, and increase serum levels of angiotensin II. This phenomenon could predispose patients to microthrombi, acute clot, and stroke, which could explain the reported incidence of hypercoagulability in patients with COVID-19 (Figure 1).48-51

8 | CALL FOR ACTION

8.1 | Autopsy evaluation of the CNS

Autopsy examinations and histopathology of patients infected with COVID-19 are expected to provide essential information and clarity in the coming weeks. Of the reported autopsies in China, the US, and worldwide, there is very limited data on the CNS, brainstem, or peripheral nerves of the eye, nose, and mouth.8-13 New postmortem examinations of patients with COVID-19 in Germany revealed that of 21 brains tested, > 8 were positive for SARS-CoV-2 by RT-PCR.13 The same authors initially reported on nonspecific brain findings including two patients with cerebral sclerosis and another with suspected septic encephalomalacia, although brain dissections are still pending.12

8.2 | Increased data acquisition from COVID-19 autopsies

Notably, China has had markedly more time than the rest of the world to perform clinical investigations and autopsy examinations. Despite this advantage, there was an initial paucity of published autopsy and pathology reports on the CNS. Physicians and scientists from China have been vocal about their recommendations and need for more data.135-137 Dr Bin Cong, physician, and dean of the Hebei Medical University School of Forensic Medicine published a paper in February 2020 requesting to strengthen the use of autopsy to better comprehend SARS-CoV-2.136 Dr Hujun Wang, physician and chief expert in forensic medicine at Southern Medical University, also recognized the need of pathologic data on patients with COVID-19 to better understand human SARS-CoV-2 infection.137 The majority of initial published and available reports from China involving autopsy, predominately focused on procedure safety with scarce actual autopsy and pathology reports.11,14-17,137,138-140 Remarkably, only one full autopsy report was identified and able to be accessed in the full text during the early days of the COVID-19 outbreak in China.11 Even after the spread of COVID-19 in the US and Europe, with hundreds of deaths daily, autopsy examinations were not routinely performed and crucial data on organ involvement, and the CNS in particular, remained uninvestigated.

8.3 | Clinical attention to neurologic symptoms

Future neurologic case reports in patients with COVID-19 should include thorough consideration and evaluation of patients with AMS. Physical exams noting the extent of AMS, loss of frontal release reflexes, decerebrate or decorticate posturing, Glasgow Coma Scale, opisthotonos, Adie’s pupil, and trigeminal neuralgia will also be helpful to document an overt neurological deficit (Figure 2D,E). Patient symptoms of anosmia, dysgeusia, headache, eye pain, conjunctivitis, and sore throat are also important to report to better understand possible transmission pathways (Figure 2A,B). Radiological notation of the orbits, sinus, and dura may help further explain the route of infection. CSF testing for SARS-CoV-2 by RT-PCR assay should be done whenever possible and a negative test should be repeated to avoid a testing error. Notation of anticoagulation or cardiac studies would also be beneficial. In addition to imaging studies, there may also be a role for electroencephalogram in these patients, but widespread utility and guidelines have not yet been established.

8.4 | CSF testing

Many countries currently lack any approved testing for SARS-CoV-2 in the CSF. Frontline health care professionals need appropriate RT-PCR assay for CSF, as well as national and global guidance on who to test, when to test, and when to repeat testing.

9 | CONCLUSION

As observed with the taxonomically related SARS-CoV-1, SARS-CoV-2 has the potential to invade the CNS, as this pathogen has been isolated
from the brain and CSF of patients with COVID-19.13,74,120,129 Regardless of the multiple routes (Figure 1), the virus could take to reach the CNS, data is continuously emerging on the true extent of neurologic involvement of SARS-CoV-2. Acute respiratory failure resulting from neuronal damage to the medullary centers (Figure 2B) that control the spontaneous breathing process and cardiac function is conceivable and harrowing. In addition, a more avid receptor-binding domain is postulated to allow SARS-CoV-2 to attach more securely to the human ACE2 receptor and enable it to better infect cells and spread than SARS-CoV-1.1,41 The above literature and clinical observations merit urgent investigation by healthcare professionals and the scientific community into the extent of neuroinvasive potential with SARS-CoV-2, which if overlooked, could result in significantly higher morbidity and mortality for patients with COVID-19.

To fight this virus, we need transparency. We need access to all of the available autopsy and pathology data worldwide. The CNS, brainstem, and peripheral nerves of the eyes, nose, and mouth should be further examined in any existing autopsy specimens. Frontline clinicians also need appropriate testing of CSF with national and global testing guidelines.

Regardless of current specialty in surgery or medicine, the reality is that SARS-CoV-2 and COVID-19 will affect us all. The sub-specialization of medicine has siloed health care professionals, preventing us from seeing the true scope and complexity of this pathogen. The scientific and medical communities must collectively unite and form a multidisciplinary approach to understanding the effects this virus has on all of the various organ systems in the human body and we must act now.

CONFLICT OF INTERESTS
The authors declare no potential conflict of interests.

ORCID
Abdul Mannan Baig https://orcid.org/0000-0003-0626-216X
Erin C. Sanders https://orcid.org/0000-0001-9835-4373

REFERENCES
1. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 76:71-76. https://doi.org/10.1016/j.ijsu.2020.02.034 https://www.ncbi.nlm.nih.gov/pubmed/32112977
2. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission, and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0 https://www.ncbi.nlm.nih.gov/pubmed/32169119
3. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44-48. https://doi.org/10.1016/j.ijid.2020.03.004 https://www.ncbi.nlm.nih.gov/pubmed/32171952
4. Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1, complete genome [database online]Bethesda, MD: Nucleotide, National Center for Biotechnology Information (NCBI), National Library of Medicine (US). https://www.ncbi.nlm.nih.gov/nuccore/1798174254
5. Kraemer MUG, Xu B COVID-19 dashboard by the Center of Systems Science and Engineering (CSSE) at Johns Hopkins. (UK/USA) (February 19, 2020). https://doi.org/10.1016/S1473-3099(20)30120-1 https://coronavirus.jhu.edu/map.html. Accessed May 23, 2020.
6. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. https://doi.org/10.1001/jama.2020.1585
7. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
8. Santa Clara County Public Health. County of Santa Clara Identifies Three Additional Early COVID-19 Deaths. Santa Clara, CA: County of Santa Clara Emergency Operations Center; April 21, 2020. https://www.sccgov.org/sites/covid19/Pages/press-release-04-21-20-early.aspx
9. Barton LM, Duval E, Stroeger E, Ghosh S, Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725-733. https://doi.org/10.1093/ajcp/aqaa062
10. Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans [published online ahead of print April 10, 2020]. medRxiv. https://doi.org/10.1101/2020.04.06.20050575 https://www.medrxiv.org/content/10.1101/2020.04.06.20050575v1.full.pdf?fbclid=IwAR0Nxtg9Ff6M4b79yCs932hMhBZkORDPHEHtrfZ66o HscolIPYoOcAQ9AUODo
11. Liu Q, Wang RS, Qu QQ, et al. Gross examination report of a COVID-19 death autopsy. J Forensic Med. 2020;36(1):21-23. https://doi.org/10.12116/j.issn.1004-5619.2020.01.005 https://www.ncbi.nlm.nih.gov/pubmed/32198987
12. Wichmann D, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study [published online ahead of print May 06, 2020]. Ann Intern Med. https://doi.org/10.7326/M20-2003
13. Puelles VG, et al. Multiorgan and renal tropism of SARS-CoV-2 [published online ahead of print May 13, 2020]. N Engl J Med. https://doi.org/10.1056/NEJMc2011400 https://www.nejm.org/doi/full/10.1056/NEJMc2011400?query=featured_coronavirus
14. Wang H, Du S, Yue X, et al. Retrospect and prospect of pathological features of coronavirus pneumonia. J Forensic Med. 2020;36(1):16-20. https://doi.org/10.12116/j.issn.1004-5619.2020.01.004 https://www.fyfz.cn/CA/article/downloadArticleFile.do?attachType=PDF&id=323124
15. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. https://doi.org/10.1016/s2213-2600(20)30076-X
16. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700-704. https://doi.org/10.1016/j.jtho.2020.02.010
17. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies [published online ahead of print April 14, 2020]. Mod Pathol. https://doi.org/10.1038/s41379-020-0535-x
18. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185-192. https://doi.org/10.1007/s11684-020-0754-0
19. Qi J, Zhou Y, Hua J, et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to COVID-19 infection [published online ahead of print April 19, 2020]. bioRxiv. https://doi.org/10.1101/2020.04.16.045690
20. Chen R, Wang K, Yu J, Chen Z, Wen C, Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain [published online ahead of print April 09, 2020]. bioRxiv. https://doi.org/10.1101/2020.04.07.030650
21. Lapina C, Rodic M, Peschanski D, Mesmoudi S. The potential genetic network of human brain SARS-CoV-2 infection [published online ahead of print April 06, 2020]. bioRxiv. https://doi.org/10.1101/2020.04.06.202318

22. Bertram S, et al. Influenza and SARS coronavirus activating proenzymes TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012;7:e35876. https://doi.org/10.1371/journal.pone.0035876

23. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631-637. https://doi.org/10.1002/path.1570

24. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-1100. https://doi.org/10.1093/cvr/cva078

25. Brann D, et al. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients [published online ahead of print April 09, 2020]. bioRxiv. https://doi.org/10.1101/2020.03.25.009084

26. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways [published online ahead of print March 13, 2020]. arXiv. https://arxiv.org/pdf/2003.06122.pdf

27. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26:681-687. https://doi.org/10.1038/s41591-020-0868-6

28. Wu C, Zheng M. Single-cell RNA expression profiling shows that ACE2, the putative receptor of COVID-19, has significant expression in nasal and mouth tissues, and is co-expressed with TMPRSS2 and not co-expressed with SLCO1A9 in the tissues [published online ahead of print March 12, 2020]. BMC Infect Dis. https://doi.org/10.1186/s12879-019-4450-4

29. Wu C, Zhang M. Single-cell RNA expression profiling shows that ACE2, the putative receptor of COVID-19, has significant expression in nasal and mouth tissues, and is co-expressed with TMPRSS2 and not co-expressed with SLCO1A9 in the tissues [published online ahead of print March 12, 2020]. BMC Infect Dis. https://doi.org/10.1186/s12879-019-4450-4

30. Holappa M, Vapaattalo H, Vaajanen A. Many faces of renin-angiotensin system – a focus on COVID-19. J Med Virol. 2020;92(3):426-438. https://doi.org/10.1002/jmv.25981

31. Liu J, Bao X, et al. Antihypertensive agents and COVID-19: an analysis in vitro and in vivo. J Transl Med. 2020;18:43. https://doi.org/10.1186/s12967-020-03527-8

32. Verma A, Shan Z, Lei B, et al. ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy. Mol Ther. 2011;20(1):28-36. https://doi.org/10.1038/mt.2011.155

33. Holappa M, Vapaattalo H, Vaajanen A. Many faces of renin-angiotensin system – a focus on COVID-19. J Med Virol. 2020;92(3):426-438. https://doi.org/10.1002/jmv.25981

34. Sramek SJ, Wallow IH, Tewsbury DA, Brandt CR, Poulsen GL. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest Ophthalmol Vis Sci. 1992;33:1627-1632. https://www.ncbi.nlm.nih.gov/pubmed/1559760

35. Foureaux G, Nogueira BS, Coutinho DCO, Raizada MK, Nogueira JC, Ferreira AJ. Activation of endogenous angiotensin converting enzyme 2 prevents early injuries induced by hyperglycemia in rat retina. Braz J Med Biol Res. 2015;48(12):1109-1114. https://doi.org/10.1590/1414-431x20154583

36. Foureaux G, Nogueira JC, Nogueira BS, et al. Antigliquamocytic effects of the activation of intrinsic angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci. 2013;54:4296-4306. https://doi.org/10.1167/iovs.12-114427

37. Tikellis C, Johnston CI, Forbes JM, et al. Identification of angiotensin converting enzyme 2 in the rodent retina. Curr Eye Res. 2004;29:419-427. https://doi.org/10.1016/j.curreye.2004.09.017

38. Senanayake P, Drzaiba J, Shadrach K, et al. Angiotensin II and its receptor subtypes in the human retina. Invest Ophthalmol Vis Sci. 2007;48:3301-3311. https://doi.org/10.1167/iovs.06-1024

39. Qiu Y, Shil PK, Zhu P, et al. Angiotensin-converting enzyme 2 (ACE2) activator dimenazene aceturate ameliorates endotoxin-induced uveitis in mice. Invest Ophthalmol Vis Sci. 2014;55(6):3809-3818. https://doi.org/10.1167/iovs.13-14883

40. Lange C, Wolf J, Auw-Haedicr C, et al. Expression of the COVID-19 receptor ACE2 in the human conjunctiva [published online ahead of print May 06, 2020]. J Med Virol. https://doi.org/10.1002/jmv.25981

41. Hui KPY, Cheung M-C, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in vitro cultures [published online ahead of print May 07, 2020]. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(20)30193-4

42. Li D, Jin M, Bao P, et al. Clinical characteristics and results of semen tests among men with coronavirus disease 2019 [published online ahead of print May 07, 2020]. JAMA Netw Open. https://doi.org/10.1001/jamanetworkopen.2020.8292, https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2765654

43. Hosier H, et al. SARS-CoV-2 infection of the placenta [published online ahead of print May 12, 2020]. medRxiv. https://doi.org/10.1101/2020.04.30.20083907

44. Mehta P, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0

45. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629. https://doi.org/10.1172/JCI137244

46. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging [published online ahead of print March 27, 2020]. J Clin Invest. https://doi.org/10.1172/JCI137647

47. McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):P1033-P1034. https://doi.org/10.1016/S0140-6736(20)30628-0

48. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. https://doi.org/10.1111/jth.14768

49. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment against development of diabetic retinopathy. Mol Ther. 2017;25:1100-1114. https://doi.org/10.1016/j.ymthe.2016.12.019
51. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases [published online ahead of print April 15, 2020]. Transl Res. https://doi.org/10.1016/j.trsl.2020.04.007, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158248/

52. Desforges M, Le Coupance A, Dubau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):14. https://doi.org/10.3390/v12010014, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020001/

53. Montalvo M, Cho T. Infectious myelopathies. Neurol Clin. 2018;36:789-808. https://doi.org/10.1016/j.ncl.2018.06.001

54. Ekmekci H, Ege F, Ozturk S. Cerebrospinal fluid abnormalities in viral encephalitis, Sergey Tkachev. London, UK: IntechOpen; 2013. https://www.intechopen.com/books/encephalitis/cerebrospinal-fluid-abnormalities-in-viral-encephalitis, https://doi.org/10.5772/54590

55. Cho T, Vaitkevicius H. Infectious myelopathies. Continuum (Minneap Minn). 2012;18(6):1351-1373. https://doi.org/10.1212/01.COM.0000423851630172a, https://www.ncbi.nlm.nih.gov/pubmed/23221845

56. Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2012;521(1):203-212. https://doi.org/10.1002/cne.23171

57. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012;163(2):628-635. https://doi.org/10.1016/j.viruses.2011.12.021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711492/

58. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7:439-450. https://doi.org/10.1038/nrmicro2147, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1943049/0?dopt=Abstract

59. Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of viral invasion for intraneurally inoculated influenza a virus in mice. Vet Pathol. 2004;41:101-107. https://doi.org/10.1354/vp.41-2-101

60. Compton SR, Barthold SW, Smith AL. The cellular and molecular pathogenesis of coronaviruses. Lab Anim Sci. 1993;43:15-28. https://doi.org/10.1016/S0140-6736(20)30211-7

61. Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/c mice. Virology. 2006;349(2):335-346. https://doi.org/10.1016/j.virol.2006.01.049, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111850/

62. Gu J, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424. https://doi.org/10.1084/jem.20050828, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2210388/

63. Hung EC, Chin SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49:2108-2109. https://doi.org/10.1373/clinchem.2003.025437, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2210388/

64. Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089-1096. https://doi.org/10.1086/444461, https://www.ncbi.nlm.nih.gov/pubmed/16163626

65. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-1147. https://doi.org/10.2353/ajpath.2007.061088, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829448/

66. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275. https://doi.org/10.1128/JVI.00737-08, https://www.ncbi.nlm.nih.gov/pubmed/18495771

67. Mao L, Wang M, Chen S, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study [published online ahead of print February 25, 2020]. medRxiv. https://doi.org/10.1101/2020.02.22.20026500, https://www.medrxiv.org/content/10.1101/2020.02.22.20026500v1, https://doi.org/10.3390/v12010014

68. Li YC, Bai W-Z, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-555. https://doi.org/10.1002/jmv.25728

69. Li Y, Bai W, Hashikawa T. Response to commentary on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients” [published online ahead of print April 04, 2020]. J Med Virol. https://doi.org/10.1002/jmv.25824
81. Giacomelli A, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study [published online ahead of print March 26, 2020]. *Clin Infect Dis.* https://doi.org/10.1093/cid/ciaa330

82. Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19 [published online ahead of print April 08, 2020]. *JAMA Otolaryngol Head Neck Surg.* https://doi.org/10.1001/jamaotolaryngology/fullarticle/2764417

83. Giacomelli A, et al. Self-reported taste disorders in SARS-CoV-2 and COVID-19: a systematic review of the current evidence [published online ahead of print April 10, 2020]. *Laryngoscope Investig Otolaryngol.* https://doi.org/10.1002/ioi.2384

84. American Academy of Otolaryngology - Head and Neck Surgery. AAO-HNS: Anosmia, Hyposmia, and Dysgeusia Symptoms of Coronavirus Disease. [22 Mar 2020]. https://www.entnet.org/content/coronavirus-disease-2019-resources

85. Baig AM, Khan NA. Tackling infection owing to brain eating amoeba. *CBM Neuroeyes.* 2021;3(4):510-512. https://doi.org/10.1001/jmey.2021.12225

86. St John JA, Ekberg JAK, Dando SJ, et al. Olfactory transmission of *SARS-CoV-2* and COVID-19: a systematic review of the current evidence [published online ahead of print April 10, 2020]. *Laryngoscope Investig Otolaryngol.* https://doi.org/10.1002/ioi.2384

87. Hopkins C, Kumar N. Loss of sense of smell as marker of COVID-19 infection [published online ahead of print April 18, 2020]. *ENTUK R Coll Surg Engl.* https://www.entuk.org/sites/default/files/files/LOS%20of%20sense%20of%20smell%20 marker%20of%20COVID.pdf

88. Wheeler DL, Athmer J, Meyerholz DK, Perlman S. Murine coronavirus SARS-CoV-2 and COVID-19: a systematic review of the current evidence [published online ahead of print April 17, 2020]. *JAMA Otolaryngol Head Neck Surg.* https://doi.org/10.1001/jamaoto.2020.0919

89. van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. *J Pathol.* 2015;235:277-287. https://doi.org/10.1002/path.4461, https://onlinelibrary.wiley.com/doi/full/10.1002/path.4461

90. Majde JA, Bohnet SG, Ellis GA, et al. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. *J Neurovirol.* 2007;13:399-409. https://doi.org/10.1080/13550280701427069, https://link.springer.com/article/10.1080%2F13550280701427069

91. Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. *J Neurovirol.* 2005;11:129-137. https://doi.org/10.1080/1355028050922793, https://link.springer.com/article/10.1080%2F1355028050922793

92. Faber HK, Gebhardt LP. Localizations of the virus of poliomyelitis in the central nervous system during the preparalytic period, after intranasal instillation. *J Exp Med.* 1933;57:933-945. https://doi.org/10.1084/jem.57.6.933

93. St John JA, Ekberg JAK, Dando SJ, et al. *Burkholderia pseudomallei* penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. *mBio.* 2014;5(2):e00025-14. https://doi.org/10.1128/mBio.00025-14, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993850/

94. Baig AM, Khan NA. Tackling infection owing to brain-eating amoeba. *Acta Trop.* 2014;144:86-88. https://doi.org/10.1016/j.actatropica.2014.11.004

95. Baig AM, Khan NA. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to *Naegleria fowleri*. *CNS Neurosci Ther.* 2014;20(3):289-290. https://doi.org/10.1111/cns.12225

96. Baig AM. Designer’s microglia with novel delivery system in neurodegenerative diseases. *Med Hypotheses.* 2014;83(4):510-512. https://doi.org/10.1016/j.mehy.2014.08.003

97. Baig AM. Emerging insights for better delivery of chemicals and stem cells to the brain. *ACS Chem Neurosci.* 2017;8(6):1119-1121. https://doi.org/10.1021/acschemneuro.7b00106

98. Younentob SL, Schwob JE, Saha S, Manglapus G, Jurbelt B. Functional consequences following infection of the olfactory system by intranasal infusion of the olfactory bulb line variant (OBLV) of mouse hepatitis strain JHM. *Chem Senses.* 2001;26:953-963. https://doi.org/10.1093/chemse/26.8.953, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110209/

99. Schwob JE, Saha S, Younentob SL, Jurbelt B. Intranasal inoculation with the olfactory bulb line variant of mouse hepatitis virus causes extensive destruction of the olfactory bulb and accelerated turnover of neurons in the olfactory epithelium of mice. *Chem Senses.* 2001; 26:937-952. https://doi.org/10.1093/chemse/26.8.937, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110028/

100. Murthy VN. Olfactory maps in the brain. *Annu Rev Neurosci.* 2011;34: 233-258. https://doi.org/10.1146/annurev-neuro-061010-113738

101. Standing S. *Gray’s Anatomy: The Anatomical Basis of Clinical Practice.* 41st ed. London, UK: Elsevier Health Sciences; 2016. https://www.elsevier.com/books/gray’s-anatomy/standing/978-0-7020-5220-9

102. Ganjaei KG, Soler ZM, Mappus ED, et al. Novel radiographic assessment of the cribriform plate. *Am J Rhinol Allergy.* 2018;32(3):175-180. https://doi.org/10.1177/1945892418768159, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346299/

103. Rai R, Iwanaga J, Loukas M, Oskouian RJ, Tubbs RS. Brain herniation through the cribriform plate: review and comparison to encephaloceles in the same region. *Cureus.* 2018;10(7):e2961. https://doi.org/10.7759/cureus.2961, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132595/#REF

104. Patron V, Berkaoui J, Jankowski R, Lechapt Zalcman E, Moreau S, Hitrier M. The forgotten foramina: a study of the anterior cribriform plate. *Surg Radiol Anat.* 2015;37(7):835-840. https://doi.org/10.1007/s00276-015-1471-2

105. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barre syndrome associated with SARS-CoV-2 [published online ahead of print April 17, 2020]. *N Engl J Med.* https://doi.org/10.1056/NEJMc2009191, https://www.nejm.org/doi/pdf/10.1056/NEJMc2009191?articleTools=true

106. Gutierrez-Ortiz C, Mendez A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19 [published online ahead of print April 17, 2020]. *Neurology.* https://n.neurology.org/content/early/2020/04/17/WNL.0000000000009619

107. Whitley RJ. Medical Microbiology. In: Baron S, ed. Chapter 68 Herpesviruses. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996. https://www.ncbi.nlm.nih.gov/books/NBK8157/

108. World Health Organization. Poliomyelitis. [July 22, 2019]. http://www.who.int/mediacentre/factsheets/fs114/en/

109. World Health Organization. Influenza (Avian and Other Zoonotic). [November 13, 2018]. https://www.who.int/news-room/fact-sheets/detail/influenza-(avian-and-other-zoonotic)

110. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607-1608. https://doi.org/10.1016/S0140-6736(20)31094-1

111. Russo M. Up to 147 NYC Kids Sickened by Severe New COVID Syndrome: 12 Cases Confirmed in NJ 2020. https://www.nbcnewyork.com/news/local/cdc-confirms-link-of-inflammatory-syndrome-in-children-to-covid-19-145-potential-cases-in-ny/2421547/, Accessed May 18, 2020.

112. Loffredo L, Pacella F, Pacella E, Tiscione G, Oliva A, Violi F. Conjunctivitis and COVID-19: a meta-analysis [published online ahead
of print April 24, 2020]. J Med Virol. https://doi.org/10.1002/jmv.25938

113. Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. 2020;395:e39. https://doi.org/10.1016/S0140-6736(20)30313-5, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133551/

114. Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92:589-594. https://doi.org/10.1002/jmv.25725

115. Sun X, Zhang S, Chen X, et al. The infection evidence of SARS-CoV-2 in ocular surface: a single-center cross-sectional study [published online ahead of print February 26, 2020]. medRxiv. https://doi.org/10.1101/2020.02.26.20027938

116. Qing H, Li Z, Yang Z, et al. The possibility of COVID-19 transmission from eye to nose. Acta Ophthalmol. 2020-08-10. https://doi.org/10.1111/aos.14412

117. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China [published online ahead of print March 31, 2020]. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2020.1291, https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2764083

118. Chen L, Liu M, Zhang Z, et al. Ocular manifestations of a hospitalized patient with confirmed 2019 novel coronavirus disease. Br J Ophthalmol. 2020;104:748-751. https://doi.org/10.1136/bjophthalmol-2020-316304

119. Colavita F, et al. SARS-CoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection [published online ahead of print April 17, 2020]. Ann Intern Med. https://doi.org/10.7326/M20-1176

120. Maruguchi T, Harri N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55-58. https://doi.org/10.1016/j.ijid.2020.03.062D

121. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. 2019 novel coronavirus disease (COVID-19) in a patient with chronic kidney disease: epiSTEMe COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features [published online ahead of print March 31, 2020]. Radiology. https://doi.org/10.1148/radiol.202021187

122. Filatov A, Sharma P, Hindi F, et al. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Currereus. 2020;12(3):7352. https://www.cureus.com/articles/29414-neurological-complications-of-coronavirus-disease-2019-encephalopathy

123. Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in downtown Los Angeles, early April 2020 [published online ahead of print April 17, 2020]. Brain Behav Immun. 2020;04:024

124. Winichakoon P, Chaivarih R, Liwrisakun C, Salee P, Limskun A, Kaewpoom Q, Negative nasopharyngeal and oropharyngeal swab does not rule out COVID-19 [published online ahead of print February 26, 2020]. J Clin Microbiol. https://doi.org/10.1128/JCM.0297-20, https://jcm.asm.org/content/early/2020/02/20/JCM.00297-20

125. Barmore J. 5-year-old with rare complication becomes first Michigan child to die of COVID-19. The Detroit News. 2020. https://www.detroitnews.com/story/news/local/detroit-city/2020/04/19/5-year-old-first-michigan-child-dies-coronavirus/5163094002/, Accessed April 19, 2020.

126. Yao H, Lu X, Chen O, et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2 [published online ahead of print April 19, 2020]. medRxiv. https://doi.org/10.1101/2020.04.14.20060160, https://www.medrxiv.org/content/10.1101/2020.04.14.20060160v1

127. Polito A, Odolini A, Masciocchi S, et al. Steroid-responsive severe encephalopathy in SARS-CoV-2 infection [published online ahead of print May 14, 2020]. medRxiv. https://doi.org/10.1101/2020.04.12.20062646

128. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection [published online ahead of print April 13, 2020]. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.0c00172, https://pubs.acs.org/doi/10.1021/acschemneuro.0c00172

129. Fulmante G, Chiumento D, Canevini MP, et al. First ultrastructural autopic findings of SARS-CoV-2 in olfactory pathways and brainstem [published online ahead of print May 13, 2020]. Minerva Anestesiol. https://doi.org/10.23736/S0375-9393.20.14772-2, https://pubmed.ncbi.nlm.nih.gov/32401000/

130. Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors [published online ahead of print May 08, 2020]. medRxiv. https://doi.org/10.1101/2020.05.04.20090316

131. Ng M, Maceri DR, Levy MM, et al. Extracranial repair of pediatric traumatic cerebrospinal fluid rhinorrhea. Arch Otolaryngol Head Neck Surg. 1998;124(10):1125-1130. https://doi.org/10.1001/archotol.124.10.1125, https://jamanetwork.com/journals/jamaotolaryngology/fullarticle/220970

132. Schick B, Weber B, Kahle G, Draf W, Lackmann GM. Late manifestations of traumatic lesions of the anterior skull base. Skull Base Surg. 1997;7(2):77-83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165697/?page=1

133. Kawajiri M, Mogi M, Higaki N, et al. Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scir. 2009;15:262-265. https://doi.org/10.1177/135245850987923, https://journals.sagepub.com/doi/abs/10.1177/135245850987923

134. Kehoe PG, Al Mulhim N, Zetterberg H, Blennow K, Miners JS. Cerebrospinal fluid changes in the renin-angiotensin system in Alzheimer’s disease. J Alzheimer’s Dis. 2019;72(2):525-535. https://doi.org/10.3233/JAD-190721, https://content.iopscience.com/articles/journal-of-alzheimers-disease/jad190721?resultNumber=0&start=0&totalResults=4166&q=Cerebrospinal+fluid+changes+in+the+renin-angiotensin+system+in+Alzheimer%27s+disease&resultsPageSize=10&rows=10E

135. Buckley C. Chinese Doctor, Silenced After Warning of Outbreak, Dies From Coronavirus. New York Times. (USA) [February 07, 2020]. https://www.nytimes.com/2020/02/06/world/asia/chinese-doctor-Li-Wenliang-coronavirus.html

136. Cong B. Academician Cong Bin: autopsy of SARS-CoV-2: Responses and challenges of forensic infectious disease autopsy. Fa Yi Xue Za Zhi (J Foren Med). 2020;36(1):4-5. https://doi.org/10.12116/jissn.1004-5619.2020.01.002

137. Wang H. From SARS-CoV to SARS-CoV-2: Responses and challenges of forensic infectious disease autopsy. Fa Yi Xue Za Zhi. 2020;36(1):1-3. https://doi.org/10.12116/jissn.1004-5619.2020.01.001, http://www.fyxzz.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23208

138. Mao D, Zhou N, Zheng D, et al. Recommended guide for forensic pathology examination of deaths related to new coronavirus infection. J Forensic Med. 2020;36(1):6-15. https://doi.org/10.12116/jissn.1004-5619.2020.01.003, http://www.fyxzz.cn/CN/article/downlOADArticleFile.do?attachType=PDF&id=23208

139. Qiu H, Wang H, Chen Q, Yue X. Safety protection of forensic autopsy of new coronavirus during epidemic situation. J Forensic Med. 2020;36(1):24-28. https://doi.org/10.12116/jissn.1004-5619.2020.01.006, http://www.fyxzz.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23212

140. Pang H, Xu L, Niu Y. Forensic on-site inspection and corpse inspection protection during the epidemic of new coronavirus
pneumonia. *J Forensic Med*. 2020;36(1):29-34. https://doi.org/10.12116/j.issn.1004-5619.2020.01.007

141. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2 [published online ahead of print March 30, 2020]. *Nature*. https://doi.org/10.1038/s41586-020-2179-y

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Baig AM, Sanders EC. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). *J Med Virol*. 2020;92:1845–1857. https://doi.org/10.1002/jmv.26105