Identification of the Lowest $T = 2, J^\pi = 0^+$ Isobaric Analog State in 52Co and Its Impact on the Understanding of β-Decay Properties of 52Ni

X. Xu,1 P. Zhang,1,2 P. Shuai,1 R. J. Yan,1 X. L. Yan,1 Y. H. Zhang,1 M. Wang,1 Yu. A. Litvinov,1,3 H. S. Xu,1 T. Bao,1 X. C. Chen,1,3 H. Chen,1,2 C. Y. Fu,1,2 S. Kubono,1 Y. H. Lam,1 D. W. Liu,1,2 R. S. Mao,1 X. W. Ma,1 M. Z. Sun,1,2 X. L. Tu,1,4 Y. M. Xing,1,2 J. C. Yang,1 Y. J. Yuan,1 Q. Zeng,5,1 X. Zhou,1,2 X. H. Zhou,1 W. L. Zhan,1 S. Litvinov,3 K. Blaum,4 G. Audi,6 T. Uesaka,7 Y. Yamaguchi,7 T. Yamaguchi,8 A. Ozawa,9 B. H. Sun,10 Y. Sun,11 A. C. Dai,12 and F. R. Xu12

1Key Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
2Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
3GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
4Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
5Research Center for Hadron Physics, National Laboratory of Heavy Ion Accelerator Facility in Lanzhou and University of Science and Technology of China, Hefei 230026, People’s Republic of China
6CNSSM, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France
7RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan
8Department of Physics, Saitama University, Saitama 338-8570, Japan
9Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan
10School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People’s Republic of China
11Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
12State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People’s Republic of China

Masses of 52g,52mCo were measured for the first time with an accuracy of ~ 10 keV, an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous β-γ measurements of 52Ni, the $T = 2, J^\pi = 0^+$ isobaric analog state (IAS) in 52Co was newly assigned, questioning the conventional identification of IASs from the β-delayed proton emissions. Using our energy of the IAS in 52Co, the masses of the $T = 2$ multiplet fit well into the Isobaric Multiplet Mass Equation. We find that the IAS in 52Co decays predominantly via γ transitions while the proton emission is negligibly small. According to our large-scale shell model calculations, this phenomenon has been interpreted to be due to very low isospin mixing in the IAS.

PACS numbers: 21.10.Dr, 27.40.+z, 29.20.db

The concept of isospin was introduced by Heisenberg and developed by Wigner to describe the charge independence of nuclear forces. This concept is being widely used in particle and nuclear physics. Within the isospin formalism, a nucleus composed of N protons and Z neutrons has a fixed isospin projection of $T_z = (N - Z)/2$, while all states in the nucleus have the same total isospins $T \geq |T_z|$. In other words, states of a given T can occur in a set of isobaric nuclei, except for some odd-odd $N = Z$ nuclei. A set of IASs with fixed A and T are believed to have similar structure and properties and to be energetically degenerated in the framework of isospin symmetry. This energy degeneracy is mainly altered due to the Coulomb interaction, the proton-neutron mass difference, and the charge-dependent forces of nuclear origin. In an isobaric multiplet, the masses of the IASs of a given T can be described in first order approximation by the famous quadratic Isobaric Multiplet Mass Equation IMME

$$ ME(A, T, T_z) = a(A, T) + b(A, T)T_z + c(A, T)T_z^2, \quad (1) $$

where a, b, and c are coefficients.

Identification of IASs and determination of their basic properties, like energies, lifetimes and decay branching ratios, have long been an important research subject. The latter is due to several motivations: (i) extracted Coulomb displacement energies between neighboring IASs constrain nuclear structure theory and allow for investigations of isospin-symmetry breaking effects of different origins (see Refs. [1-13] for reviews); (ii) a complete set of masses for any $T \geq 1$ isobaric multiplet in the sd- or fp-shell can be used to test the validity of the IMME as well as to extract information on the vector and tensor components of the isospin non-conserving forces [17, 18]; (iii) precise mass values of the $T = 1$ IASs are used, in combination with the associated super-allowed $0^+ \rightarrow 0^+$ β decay properties, to test the Conserved Vector Current hypothesis of the electroweak interaction [15, 20], which is an active research field for more than 50-years; (iv) the analysis of the IASs provides accurate mass predictions for neutron-deficient nuclei yet inaccessible in experiments, which in turn are valuable, e.g., for modelling the astrophysical rp-process of nucleosynthesis [21, 22].

A compilation of data on the IASs throughout the nuclear
The mass excess of the IAS of 52Co to the ground state of 51Fe, thus giving the mass excess of the IAS of $ME^{(52\text{Co})_{\text{IAS}}} = -31561(14)$ keV.

The coincidence $2407(1)$-keV and $141(1)$-keV γ rays excite the IAS feeding the $\left(^2_+ \right)$ isomer in 52Co (see Refs. [25, 26]). Since the masses of ^{52}Co and 52Ni have been measured in this work, the $ME^{(52\text{Co})_{\text{IAS}}}$ could independently be determined to be $ME^{(52\text{Co})_{\text{IAS}}} = -31426(10)$ keV.

The two ME values disagree by 135(17) keV. This $\sim 8\sigma$ deviation can not be due to experimental uncertainties and calls for a different interpretation of available data, namely that the observed 2407-keV γ and 1352-keV proton sequential transitions were observed. In the following we use the most recent data from Ref. [26].

As conventionally done, the strongest 1352-keV proton peak was first assigned in Ref. [24] and then adopted in Refs. [25, 26] as being due to the de-excitation of the expected IAS in 52Co to the ground state of 51Fe, thus giving the mass excess of the IAS of $ME^{(52\text{Co})_{\text{IAS}}} = -31561(14)$ keV.

The two ME values disagree by 135(17) keV. This $\sim 8\sigma$ deviation can not be due to experimental uncertainties and calls for a different interpretation of available data, namely that the observed 2407-keV γ and 1352-keV proton sequential transitions were observed. In the following we use the most recent data from Ref. [26].

As conventionally done, the strongest 1352-keV proton peak was first assigned in Ref. [24] and then adopted in Refs. [25, 26] as being due to the de-excitation of the expected IAS in 52Co to the ground state of 51Fe, thus giving the mass excess of the IAS of $ME^{(52\text{Co})_{\text{IAS}}} = -31561(14)$ keV. The coincident $2407(1)$-keV and $141(1)$-keV γ rays excite the IAS feeding the $\left(^2_+ \right)$ isomer in 52Co (see Refs. [25, 26]). Since the masses of 52Co and 52Ni have been measured in this work, the $ME^{(52\text{Co})_{\text{IAS}}}$ could independently be determined to be $ME^{(52\text{Co})_{\text{IAS}}} = -31426(10)$ keV.

The two ME values disagree by 135(17) keV. This $\sim 8\sigma$ deviation can not be due to experimental uncertainties and calls for a different interpretation of available data, namely that the observed 2407-keV γ and 1352-keV proton sequential transitions were observed. In the following we use the most recent data from Ref. [26].

As conventionally done, the strongest 1352-keV proton peak was first assigned in Ref. [24] and then adopted in Refs. [25, 26] as being due to the de-excitation of the expected IAS in 52Co to the ground state of 51Fe, thus giving the mass excess of the IAS of $ME^{(52\text{Co})_{\text{IAS}}} = -31561(14)$ keV.
−26254(12) keV can be deduced. The mass of 48Mn was also measured in our present experiment. By taking our $ME^{(48\text{Mn})} = −29299(7)$ keV and the corresponding γ-ray energies from Ref. [23], we get $ME^{(48\text{Mn}^\text{IAS})} = −26263(8)$ keV. We see that two $ME^{(48\text{Mn}^\text{IAS})}$ values from two decay channels of the IAS in 48Mn are in excellent agreement. This agreement supports our approach in the analysis of the 52Co data.

The absolute intensity of 42(10)% for the 2407-keV γ transition measured in 52Co is much stronger than the 13.7(2)% 1352(10)-keV proton emission [24]. Hence, it is reasonable to assign the former as from the IAS in 52Co with $ME = −31426(10)$ keV, and the latter as from a 1+ state with $ME = −31561(14)$ keV, which could be the analog 1+ state to the one identified in the mirror nucleus 52Mn [38, 39].

The assignment of the $ME^{(52\text{Co}^\text{IAS})} = −31426(10)$ keV can further be tested by the IMME, see Eq. (1). A deviation to the quadratic form of the IMME can be quantified by adding a cubic term $d \times T_3$. By using the $ME^{(52\text{Co}^\text{IAS})} = −31561(14)$ keV, Dossat et al. found that the d-coefficient deviates significantly from zero. They attributed this deviation to a misidentification of one of the states assigned to this isobaric multiplet. Recently, the experimental IASs from $T = 1/2$ to $T = 3$ have been evaluated and the associated IMME coefficients were investigated in Ref. [27]. The assigned $ME^{(52\text{Co}^\text{IAS})} = −31561(14)$ keV in Refs. [24, 26] had to be excluded from the IMME fit because the c-coefficient dramatically deviates from a smooth trend. In contrast, our $ME^{(52\text{Co}^\text{IAS})} = −31426(10)$ keV combined with known $T = 2$ IASs in 52Fe, 52Mn, and 52Cr fits well into the quadratic form of the IMME with a normalized $\chi^2 = 1.37$. The corresponding calculated d-coefficient, $d = 5.8(4.2)$, is compatible with zero within 1.4σ.

Taking the newly assigned IAS in 52Co and the $β$-p and $β$-γ data of 52Ni [25, 26], we reconstructed the partial decay scheme of 52Ni as shown in Fig. 2. The J^P assignments for the levels in 52Co are inferred from the analogous states in the mirror nucleus 52Mn [39]. By using the IMME, the mass excess of 52Ni is predicted to be $ME^{(52\text{Ni})} = −22699(22)$ keV and the Q_{EC} value of 52Ni is thus deduced to be 11662(23) keV. The main modification in the present level scheme is that we attribute the 1352-keV proton to originate from the decay of the $J^P = 3/2^+$ state rather than from the IAS. The excitation energies of the $1^+\text{}\text{a}$ and 1^+b states are calculated by subtracting the $ME^{(52\text{Co})}$ measured in this work from the ME values deduced from the $β$-p data. The $log f$t values are deduced [41] for each individual $β$ transitions according to this partial level scheme and the $β$-p and $β$-γ intensities given in Ref. [26]. The rather small $log f$t value of 3.33(11) to the IAS is consistent with the super-allowed Fermi decay of 52Ni.

As it is usually expected in the sd- and fp-shell neutron-deficient nuclei, the newly assigned IAS should proceed via a strong 1487(14)-keV proton emission to the ground state of 51Fe. However, such a proton peak was not observed in the high-statistics proton spectrum in Fig. 16 of Ref. [26]. The strongest proton peak there is at 1352 keV and it does not show any visible broadening. Taking into account that the Double-Sided Silicon Strip Detector (DSSSD) used in Ref. [26] had an energy resolution of 70 keV (FWHM), two nearby proton peaks with 135 keV energy difference would clearly be separated in the $β$-p spectrum of 52Ni. Hence, we conclude that the proton decay branch of the IAS in 52Co is negligibly small.

This finding has important implications on the identification of the IASs in the study of $β$-delayed charged-particle emissions [41]. It has been conventionally assumed that the IAS in a neutron-deficient nucleus decays mainly, when it is more than 1 MeV proton-unbound, via a proton emission due to a small isospin mixing [28, 41]. Consequently, the strongest proton peak is often assigned as being from the IAS of a daughter nucleus of the $β$-p precursor [25, 41]. This identification may become unsafe in the fp-shell nuclei, e.g., in the 52Ni decay, if no other information is available. By inspecting Ref. [25] we find that for several neutron-deficient fp-shell nuclei the $β$-p strengths from the IASs are much weaker than the predictions of the super-allowed $β^+$ feeding. Therefore it is crucial to measure $β$-γ data in order to make a firm identification of the IAS. Indeed, such a measurement has been performed recently on 53Ni [42] and the $T = 3/2$ IAS in 52Co was found to be $∼$ 70 keV below the previously assigned IAS on the basis of $β$-p emission data [25].

In this work we identified a new case, 52Co, in which the IAS decays by $γ$ transition rather than by proton emission although it is $∼$ 1.5 MeV proton-unbound. To understand this phenomenon and explore the details of the reconstructed partial decay scheme of 52Ni, we performed large-scale shell model calculations in the full fp-shell by using NuShellIX@MSU code [43]. The isospin non-conserving (INC) Hamiltonian (hereinafter referred to as cd-GXPF1J) is constructed based on the isospin conserving Hamiltonian cd-GXPF1J [44], the Coulomb interaction, and the isovector single-particle energies (IVSPEs) [45] scaled as $\sqrt{\hbar a(A)}$ [18]. A quenching factor $q_e=0.74$ to the Gamow-Teller (GT) operator is employed to calculate the $β$-decay...
strength distribution. The modern GXPF1J interaction has recently been used to reproduce various experimental Gamow-Teller (GT) strengths in the region close to $A = 52$ [39]. The calculated results are shown in the right part of Fig. 2 including the partial level structure of ^{52}Co, ^{52}Ni β-decay branching ratios, BR, and their log ft values. Theoretical calculations agree well to the experiment. Furthermore, the theoretical half-life of 48.2 ms agrees well to the experimental value of 42.8(3) ms [6].

The proton- and γ-decay branches from the excited states of ^{52}Co were calculated. The γ widths, Γ_γ, were calculated using the effective electromagnetic operators from Ref. [40]. The total proton width can be described as $\Gamma_p = \sum_{n\ell j} C^2 S(n\ell j) \Gamma_{sp}(n\ell j)$, where $C^2 S(n\ell j)$ is a single-particle spectroscopic factor, and Γ_{sp} denotes a single-particle width for the proton emission from an $(n\ell j)$ quantum orbital [47]. The Γ_{sp} is obtained from proton scattering cross sections described by the Woods-Saxon potential [48][49]. Two important results are obtained:

1. Our theoretical calculations predict a super-allowed β transition of ^{52}Ni to its IAS in ^{52}Co with a branching ratio of 61.5%. Furthermore, three Gamow-Teller transitions are predicted to feed the 1^+ states below IAS with branching ratios of 4% through 18% (see Fig. 2). The four calculated β-decay branches sum to 92.5% of the total decay strength of ^{52}Ni, which is in good agreement with the expected β-decay spectrum deduced from the $^{52}\text{Cr}(^{4}\text{He},t)^{52}\text{Mn}$ charge exchange reaction [39]. Especially the relative strengths of the three Gamow-Teller transitions have been well reproduced.

2. The calculations show that the total proton width of the IAS, Γ_{IAS}^p, is 0.0001 eV, which is three orders of magnitude smaller than $\Gamma_{IAS}^\gamma = 0.25$ eV. This indicates that the IAS in ^{52}Co decays predominantly via γ transitions. The proton emission should be orders of magnitude weaker than the γ transitions and is thus unlikely to be observed experimentally. In fact, the $\beta-\gamma$ emission from IAS is isospin forbidden, and the observation of such a proton emission is usually attributed to the isospin mixing of the IAS with the nearby $T = 1, J^\pi = 0^+$ states. In our shell model calculations, the closest 0^+ state is predicted to be 168 keV below the IAS and the isospin mixing imposed from this 0^+ to the IAS is calculated to be merely 0.23%. The small isospin mixing indicates that no observable proton emission from the IAS is expected, which is consistent with our re-constructed decay scheme of ^{52}Ni (see Fig. 2). Concerning the 1^+_x and 1^+_y states, the total proton widths are 0.6 eV and 37.8 eV, respectively, which are orders of magnitude larger than the γ widths of $\Gamma_\gamma(1^+_x) = 0.05$ eV and $\Gamma_\gamma(1^+_y) = 0.04$ eV, respectively. This is again consistent with experiment that both 1^+ states de-excite predominantly via proton emission and the γ transitions were too weak to be observed [25][26].

Although our shell model calculations provide an overall consistent interpretation of all available data on the β-decay of ^{52}Ni, there are, however, three remaining open questions:

1. The measured intensity of 7.3% for the 1048-keV proton is much weaker than the predicted β feeding of 17.8%.

2. The intensity of 13.7% for the 1352 keV proton emission is much higher than the predicted β feeding of 4.2%.

3. The intensity of 42% for the 2407-keV γ transition is lower than the predicted Fermi β feeding of 61.5%.

The first point may be caused by the un-observed γ rays or protons de-exciting the 1^+_x level. The last two points may be interpreted, at least qualitatively, by assuming an IAS $\rightarrow 1^+_y$ transition via γ and internal electron conversion. Such an exotic β-delayed $\gamma-p$ decay has been observed in its neighboring nucleus ^{56}Zn [50], although the comparable IAS $\rightarrow 1^+_y$ decay branching in ^{52}Co can not be predicted from our theoretical calculations. The questions raised above vitalize us to propose an alternative scenario based on the hypothesis that there would exist a low-lying spherical state in ^{51}Fe to which the IAS of ^{52}Co may decay via proton emission. On the one hand, the ground-state of ^{52}Ni is thought to be spherical due to its semi-magic character. Hence the IAS in ^{52}Co should also be spherical according to the isospin symmetry. On the other hand, the rotation-like bands have been observed in $^{50,51,52}\text{Fe}$ [51][53] indicating that the ground states of these isotopes are slightly deformed. Thus, the proton emission from the spherical $T = 2$ IAS in ^{52}Co to the $T = 1/2$ deformed states in ^{51}Fe are hindered not only by the isospin selection rules but also by the shape changes between the final and initial nuclear states, causing the proton emission from IAS to be less likely. However, if a shape coexistence in ^{51}Fe is considered, it is possible that the soft nucleus ^{51}Fe has in its Potential Energy Surface (PES) a second minimum with a nearly-spherical shape. To check this, we have performed PES calculations [54] for ^{51}Fe. Apart from the deformed minimum at $(\beta_2, \gamma) = (0.16, -10^\circ)$ corresponding to the $5/2^-$ ground state, there exists a shallow – nearly-spherical – minimum ~ 200 keV above the deformed one. If such a spherical minimum exists in ^{51}Fe, one may attribute the 1352-keV protons, or part of them, to be originated from the decay of the IAS to the states in the second minimum of ^{51}Fe. Consequently, the intensity imbalances raised in the questions above could – at least partly – be solved.

In conclusion, ^{58}Ni projectile fragments were addressed by the isochronous mass spectrometry at HIRFL-CSR. Precision mass excess values for ^{52}Co and its low-lying (2^+) isomer have been precisely measured for the first time. Combining our new results with the literature $\beta-\gamma$ measurements of ^{52}Ni, the energy of the $T = 2$ isobaric analog state in ^{52}Co was determined to be 135 keV higher than previously assumed on the basis of the $\beta-p$ data from the ^{52}Ni decay studies. With this new IAS assignment, the mass excesses of the four members of the $A = 52, T = 2$ isobaric multiplet are found to be consistent with the quadratic form of the IMME. Furthermore, a remarkably different decay scheme of ^{52}Ni could be constructed, in which the proton group with the highest relative intensity 23% corresponds to the decay from the 1^+ excited state in ^{52}Co and not from the 0^+, $T = 2$ IAS state. This finding has important implications on the identification of the IASs from β-delayed charged-particle emission studies. The newly determined level scheme of ^{52}Co is consistent with its mirror nucleus ^{52}Mn and can well be reproduced by large-scale shell model calculations using an isospin non-conserving Hamiltonian. Our theoretical calculations indicate that the isospin mixing in the 0^+, $T = 2$ state in ^{52}Co is ex-
tremely low, thus leading to a negligibly small proton emission from this state. An alternative scenario based on a possible shape coexistence is proposed to account for the remaining intensity imbalances observed between experiment and shell model calculations. Further experiments aiming at comprehensive studies of this interesting phenomenon are required.

The authors would like to thank Nicolas Winckler for his invaluable help in advanced data analysis methods and Nadezda A. Smirnova for stimulating discussions on the theoretical details. We thank also the staffs in the accelerator division of IMP for providing stable beam. This work is supported in part by the Major State Basic Research Development Program of China (Contract No. 2013CB834401), the NSFC grants U1232208, U1432125, 11205205, 11035007, 11235001, 11320101004, 11575007, the Chinese Academy of Sciences, and the Helmholtz-CAS Joint Research Group (HJCIRG-108). K.B. acknowledge support by the Nuclear Astrophysics Virtual Institute (NAVI) of the Helmholtz Association. Y.H.L. thanks the support from the Ministry of Science and Technology of China (Talent Young Scientist Program) and from the China Postdoctoral Science Foundation (2014M562481). X.X. thanks the support from CAS “Light of West China” Program.

[1] W. Heisenberg, Z. Phys. 77, 1 (1932).
[2] E. P. Wigner, Phys. Rev. 51, 106 (1937).
[3] G. A. Miller, A. K. Opper, and E. J. Stephenson, Ann. Rev. Nucl. Part. Sci. 56, 253 (2006).
[4] Isospin in Nuclear Physics, edited by D. H. Wilkinson (North-Holland, Amsterdam, 1969).
[5] J. Jänecke, T. W. O’Donnell and V. I. Goldanskii, Phys. Rev. C 66, 024327 (2002).
[6] M. Wang et al., Chin. Phys. C 36, 1603 (2012), and G. Audi et al., Chin. Phys. C 36, 1157 (2012).
[7] M. A. Bentley and S. M. Lenzi, Prog. Part. Nucl. Phys. 59, 497 (2007).
[8] E. P. Wigner, in Proc. of the R. A. Welch Foundation Conf. on Chemical Research, Houston, edited by W. O. Milligan (R. A. Welch Foundation, Houston, 1957), Vol. 1.
[9] S. Weinberg and S. B. Treiman, Phys. Rev. 116, 466 (1959).
[10] W. Benenson and E. Kashy, Rev. Mod. Phys. 51, 527 (1979).
[11] J. A. Nolen and J. P. Schiffer, Ann. Rev. Nucl. Sci. 19, 471 (1969).
[12] S. Shlomo, Rep. Prog. Phys. 41, 957 (1978).
[13] M. A. Bentley and S. M. Lenzi, Prog. Part. Nucl. Phys. 49, 497 (2007).
[14] K. Blaum et al., Phys. Rev. Lett. 91, 260801 (2003).
[15] A. T. Gallant et al., Phys. Rev. Lett. 113, 082501 (2014).
[16] Y. H. Zhang et al., Phys. Rev. Lett. 109, 102501 (2012).
[17] W. E. Ormand and B. A. Brown, Nucl. Phys. A 491, 1 (1989).
[18] Y. H. Lam, N. A. Smirnova, and E. Courrier, Phys. Rev. C 87, 054304 (2013).
[19] J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (2005).
[20] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
[21] H. Schatz and K. E. Rehm, Nucl. Phys. A777, 601 (2006).
[22] A. Parikh et al., Phys. Rev. C 79, 045802 (2009).
[23] M. S. Antony, A. Pape, and J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).
[24] L. Faux et al., Phys. Rev. C 49, 2440 (1994).
[25] C. Dossat, et al., Nucl. Phys. A792, 18(2007).
[26] S. E. A. Orrigo et al., Phys. Rev. C 93, 044336 (2016).
[27] M. MacCormick and G. Audi, Nucl. Phys. A925, 61 (2014).
[28] J. Cerny and J. C. Hardy, Ann. Rev. Nucl. Part. Sci. 27, 333 (1977).
[29] J. W. Xia et al., Nucl. Instrum. Methods Phys. Res., Sect. A 488, 11 (2002).
[30] X. L. Tu et al., Nucl. Instrum. Methods Phys. Res., Sect. A 654, 213 (2011).
[31] C. Scheidenberger et al., Nucl. Instrum. Methods Phys. Res., Sect. B 142, 441 (1998).
[32] H. Geissel et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992).
[33] M. Hausmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 446, 569 (2000).
[34] O. B. Tarasov and D. Bazin, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4657 (2008).
[35] B. Mei, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 624, 109 (2010).
[36] X. L. Tu, et al., Phys. Rev. Lett. 106, 112501 (2011).
[37] P. Shuai, et al., Phys. Lett. B 735, 327 (2014).
[38] R. M. DelVecchio, Phys. Rev. C 7, 677 (1973).
[39] Y. Fujita et al., Acta Phys. Pol. B 46, 657 (2015).
[40] http://www.nndc.bnl.gov/1ogft/.
[41] B. Blank and M. J. G. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008).
[42] J. Su et al., Phys. Lett. B756, 323 (2016).
[43] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).
[44] M. Honma et al., J. Phys. Conf. Ser. 20, 7 (2005).
[45] W. E. Ormand and B. A. Brown, Nucl. Phys. A440, 274 (1985).
[46] M. Honma et al., Phys. Rev. C 69, 034335 (2004).
[47] M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32, 567 (1960).
[48] Y. H. Lam et al., Astrophys. J. 818, 78 (2016).
[49] B. A. Brown (WSPOP),https://people.nscl.msu.edu/~brown/reaction-codes/home.html
[50] S. E. A. Orrigo et al., Phys. Rev. Lett. 112, 222501 (2014).
[51] S. M. Lenzi et al., Phys. Rev. Lett. 87, 122501 (2001).
[52] M. A. Bentley et al., Phys. Rev. C 62, 051303(R) (2000).
[53] C. A. Ur et al., Phys. Rev. C 58, 3163 (1998).
[54] F. R. Xu, W. Satula, and R. Wyss, Nucl. Phys. A669, 119 (2000).