FURTHER RESULTS ON THE PERTURBATION ESTIMATIONS FOR THE DRAZIN INVERSE

HAIFENG MA* AND XIAOSHUANG GAO
School of Mathematical Science, Harbin Normal University
Harbin 150025, China.

(Communicated by Yongzhong Song)

Abstract. For \(n \times n \) complex singular matrix \(A \) with \(\text{ind}(A) = k > 1 \), let \(A^D \) be the Drazin inverse of \(A \). If a matrix \(B = A + E \) with \(\text{ind}(B) = 1 \) is said to be an acute perturbation of \(A \), if \(\|E\| \) is small and the spectral radius of \(B_g B - A^D A \) satisfies
\[
\rho(B_g B - A^D A) < 1,
\]
where \(B_g \) is the group inverse of \(B \).

The acute perturbation coincides with the stable perturbation of the group inverse, if the matrix \(B \) satisfies geometrical condition:
\[
\mathcal{R}(B) \cap \mathcal{N}(A^k) = \{0\}, \quad \mathcal{N}(B) \cap \mathcal{R}(A^k) = \{0\}
\]
which introduced by Vélez-Cerrada, Robles, and Castro-González, (Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154–2161).

Furthermore, two examples are provided to illustrate the acute perturbation of the Drazin inverse. We prove the correctness of the conjecture in a special case of \(\text{ind}(B) = 1 \) by Wei (Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135–157).

1. Introduction and preliminaries. The group inverse and Drazin inverse have been investigated from the solution of singular linear systems \([2, 4, 9, 20, 23]\). Recently several papers, \([5, 6, 7, 14, 19, 25, 28, 32, 34, 36, 29]\), provide explicit formulae for the Drazin inverse to present the 2-norm (or Frobenius norm) bounds and the perturbation estimations. For the spectral projectors, one can find many results in \([10, 22, 24]\). There is a recent monograph \([8]\) on the algebraic properties of the generalized inverse.

In this paper, \(\mathbb{C}^{m \times n} \) is the set of \(m \times n \) complex matrices. If \(m = n \), then the identity matrix of order \(n \) and the null matrix in \(\mathbb{C}^{n \times n} \) are denoted simply by \(I_n \) and \(0 \), respectively. For \(A \in \mathbb{C}^{n \times n} \), we denote \(\mathcal{R}(A) \) for its range and \(\mathcal{N}(A) \) for its null space. \(A^* \) is the conjugate transpose of the matrix \(A \). \(\| \cdot \| \) denotes the spectral...
norm. The Drazin inverse of $A \in \mathbb{C}^{n \times n}$ is the unique matrix $A^D \in \mathbb{C}^{n \times n}$ satisfying three equations [1, 4]

$$A^D A = AA^D, \quad A^D AA^D = A^D, \quad A^{l+1} A^D = A^l \quad \text{for all} \ l \geq k,$$

(1)

where k is the smallest nonnegative integer satisfying $\text{rank}(A^{k+1}) = \text{rank}(A^k)$, k is called the Drazin index of A and is denoted by $\text{ind}(A)$. Clearly, $\text{ind}(A) = 0$ if and only if A is nonsingular. If $\text{ind}(A) = 1$, then the Drazin inverse is called the group inverse of A and presented by A_\varnothing. Let $A^\gamma = I_n - AA^D = P_{N(A^k), \mathcal{R}(A^k)}$ be the spectral projector on $\mathcal{R}(A^\gamma) = N(A^k)$ along $N(A^\gamma) = \mathcal{R}(A^k)$.

Let A be a singular matrix with $\text{ind}(A) = k > 1$, and $B = A + E$ be a perturbation of A with $\text{ind}(B) = 1$. Campbell and Meyer [3] presented a necessary and sufficient condition for the continuity of the Drazin inverse,

$$B_g \rightarrow A^D, \quad \text{if and only if} \quad \text{rank}(B) = \text{rank}(A^k).$$

In the general case of the perturbation analysis of the group inverse B_g and the spectral projector $B^\pi_x = I_n - BB_g$, a condition of (C_1) is introduced in [6, 25] for the stable perturbation of A.

Definition 1.1. ([6, 25]) Let the singular matrix A with $\text{ind}(A) = k$ and $B = A + E$, if

$$(C_1) \quad \mathcal{R}(B) \cap N(A^k) = \{0\} \quad \text{and} \quad N(B) \cap \mathcal{R}(A^k) = \{0\},$$

then B is called the stable perturbation of A.

One formula for B^π_x is given in [6, Theorem 4.4] under the condition (C_1) is satisfied. It is not easy to judge that $\|B^n - A^x\| < 1$ with respect to 2-norm.

Wedin [26] and Stewart [21] presented the acute perturbation of the Moore-Penrose inverse $A \in \mathbb{C}^{n \times n}$ in 1970s, respectively. They say that the range spaces $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are acute, if $B = A + E$ and

$$\|BB^\dagger - AA^\dagger\| < 1,$$

if and only if

$$\mathcal{R}(A) \cap N(B^\pi_x) = \{0\} \quad \text{and} \quad \mathcal{R}(B) \cap N(A^k) = \{0\}.$$

Similarly, the range spaces $\mathcal{R}(A^\pi_x)$ and $\mathcal{R}(B^\pi_x)$ are acute, if $\|B^\dagger B - A^\dagger A\| < 1$. The matrices A and B are called acute, if $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are acute and $\mathcal{R}(A^\pi_x)$ and $\mathcal{R}(B^\pi_x)$ are acute. In this case, they say that B is an acute perturbation of A [21, 26].

Recently, we extend the acute perturbation from the Moore-Penrose inverse to the weighted Moore-Penrose inverse [17].

This note is organized as follows. In Section 2, we introduce the definition of the acute perturbation of the Drazin inverse, which is equivalent to the condition (C_1) for matrices [6], and present several characterizations of acute perturbations based on the results from [6, 31]. In Section 3 we present our new results on the spectral radius and the spectral norm for the difference of $BB_g - AA^D$ via two examples.

2. Geometrical conditions on the acute perturbation.

Let $A \in \mathbb{C}^{n \times n}$ be singular with $\text{ind}(A) = k > 1$ and $\text{rank}(A^k) = r$. Then A has the Jordan canonical form [1, 4],

$$A = P \begin{pmatrix} D & O \\ O & N \end{pmatrix} P^{-1}$$

(3)

for the invertible transformation matrix P such that

$$D \in \mathbb{C}^{r \times r} \text{ is nonsingular,} \quad N \in \mathbb{C}^{(n-r) \times (n-r)} \text{ is nilpotent.}$$

(4)
Let $C = P^{-1}AP \in \mathbb{C}^{n \times n}$ and $A^\pi = I_n - AA^D$.

It follows from [4, Theorem 7.2.1] that A^D and A^π are given by

$$ P^{-1}A^DP = \begin{pmatrix} D^{-1} & 0 \\ 0 & 0 \end{pmatrix}, \quad P^{-1}A^\pi P = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix}. $$

(5)

Let

$$ P = (P_1 \; P_2), \quad P^{-1} = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}, $$

where P_1 and Q_1^* have the same column dimensions as D.

It is obvious that [27, 28]

$$ AA^D = P_1Q_1, \quad I_n - AA^D = P_2Q_2, \quad Q_1P_1 = I_r, $$

and

$$ \mathcal{R}(P_1) = \mathcal{N}(Q_2) = \mathcal{R}(A^D), \quad \mathcal{R}(P_2) = \mathcal{N}(Q_1) = \mathcal{N}(A^D). $$

Motivated by the acute perturbation of the Moore-Penrose inverse [21, 26], weighted Moore-Penrose inverse [17] and the group inverse [31], we present the acute perturbation for the Drazin inverse with respect to the spectral norm, which extends the recent results on the group inverse by Wei in [31].

Definition 2.1. A matrix $B = A + E \in \mathbb{C}^{n \times n}$ with $\text{ind}(B) = 1$ is said to be an acute perturbation of A with $\text{ind}(A) = k$, if the perturbation matrix $\|E\|$ is small and

$$ \rho(BB_g - AA^D) < 1. $$

We present the geometrical conditions for the stable perturbation for the Drazin inverse.

Lemma 2.2. ([5, 37]) The following statements on $B \in \mathbb{C}^{n \times n}$ with $\text{ind}(B) = 1$ are equivalent:

(a) B is a stable perturbation of A;
(b) $I_n - (B^\pi - A^\pi)^2$ is nonsingular;
(c) B satisfies condition (G_i): $\mathcal{R}(B) \cap \mathcal{N}(A^k) = \{0\}$ and $\mathcal{N}(B) \cap \mathcal{R}(A^k) = \{0\}$;
(d) $\text{rank}(B) = \text{rank}(A^k) = \text{rank}(A^kBA^k)$.

Lemma 2.3. Let $A \in \mathbb{C}^{n \times n}$ with $\text{ind}(A) = 1$ and $\text{rank}(A) = \text{rank}(A_{11})$, and A be partitioned by

$$ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I_r & S \\ \end{pmatrix} A_{11}(I_r \; T) = \begin{pmatrix} A_{11} & A_{11}T \\ SA_{11} & SA_{11}T \end{pmatrix}, \quad A_{11} \in \mathbb{C}^{r \times r}, $$

where $T = A_{11}^{-1}A_{12} \in \mathbb{C}^{r \times (n-r)}$ and $S = A_{21}A_{11}^{-1} \in \mathbb{C}^{(n-r) \times r}$.

Then A is group invertible if and only if $I_r + TS$ is nonsingular. In this case, A_g and $A^\pi = I_n - AA_g$ can be presented by

$$ A_g = \begin{pmatrix} I_r \\ S \end{pmatrix} (I_r + TS)^{-1}A_{11}^{-1}(I_r + TS)^{-1}(I_r \; T) $$

$$ = \begin{pmatrix} [I_r + TS]A_{11}(I_r + TS)^{-1} & [I_r + TS]A_{11}(I_r + TS)^{-1} \\ S[I_r + TS]A_{11}(I_r + TS)^{-1} & S[I_r + TS]A_{11}(I_r + TS)^{-1} \\ \end{pmatrix} (6) $$
and
\[A^\pi = I_n - \left(\begin{array}{c} I_r \\ S \end{array} \right)(I_r + TS)^{-1}(I_r T) \]
\[= \left(\begin{array}{ccc} I_r - (I_r + TS)^{-1} & -(I_r + TS)^{-1}T \\ -S(I_r + TS)^{-1} & I_{n-r} - S(I_r + TS)^{-1}T \end{array} \right). \] (7)

Now we study the expression \(B_g \) and \(BB_g \) for the perturbation of the Drazin inverse.

Lemma 2.4. ([16, Lemma 2.2, Theorem 2.3], [29, Theorem 3.4]) Let \(B = A + E \in \mathbb{C}^{n \times n} \) with \(\text{ind}(A) = k \) and \(\text{rank}(A^k) = \text{rank}(B) \). If the perturbation \(\|E\| \) satisfies \(\|A^D\|\|E\| < \frac{1}{1+\sqrt{A^D}} \). Then \(\text{ind}(B) = 1 \) with the group inverse,
\[P^{-1}B_gP = (C + F)g \]
\[= \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(D + F_{11})^{-1}X^{-1}(I_r(D + F_{11})^{-1}F_{12}) \]
and the spectral projection,
\[P^{-1}BB_gP = (C + F)(C + F)_g = \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(I_r(D + F_{11})^{-1}F_{12}) \]
where \(X = I_r + (D + F_{11})^{-1}F_{12}F_{21}(D + F_{11})^{-1} \).

Proof. Let the perturbation matrix be \(E \) and
\[F = P^{-1}EP = \left(\begin{array}{cc} F_{11} & F_{12} \\ F_{21} & F_{22} \end{array} \right) = \left(\begin{array}{cc} Q_1 & \star \\ Q_2 & \star \end{array} \right)E(P_1\ P_2) = \left(\begin{array}{cc} Q_1EP_1 & Q_1EP_2 \\ Q_2EP_1 & Q_2EP_2 \end{array} \right). \]
Let \(C = P^{-1}AP = \left(\begin{array}{cc} D & \star \\ O & N \end{array} \right) = \left(\begin{array}{cc} Q_1 & \star \\ Q_2 & \star \end{array} \right)A(P_1\ P_2) = \left(\begin{array}{cc} Q_1AP_1 & Q_1AP_2 \\ Q_2AP_1 & Q_2AP_2 \end{array} \right). \]
If \(\text{rank}(B) = \text{rank}(A^k) \), then it follows from \([15, 29]\) that
\[N + F_{22} = F_{21}(D + F_{11})^{-1}F_{12} \]
and
\[C + F = P^{-1}(A + E)P = P^{-1}BP \]
\[= \left(\begin{array}{cc} D + F_{11} & F_{12} \\ F_{21} & N + F_{22} \end{array} \right) \]
\[= \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) (D + F_{11})(I_r(D + F_{11})^{-1}F_{12}) \]
\[= \left(\begin{array}{c} I_r \\ S \end{array} \right) (D + F_{11})(I_r T), \]
where \(S = F_{21}(D + F_{11})^{-1} \) and \(T = (D + F_{11})^{-1}F_{12} \).
If the perturbation \(\|E\| \) satisfies \(\|A^D\|\|E\| < \frac{1}{1+\sqrt{A^D}} \leq 1/2 \), then both \(I_n + EA^D \) and \(I_n + A^D E \) are nonsingular and
\[\|A^D\|\|E\|\sqrt{\|A^D\|} < 1 - \|A^D\|\|E\|. \]
Thus
\[\|\left(I_n + A^D E \right)^{-1} \| \leq \frac{1}{1 - \|A^D\|\|E\|}, \quad \|\left(I_n + EA^D \right)^{-1} \| \leq \frac{1}{1 - \|A^D\|\|E\|}. \]
It is obvious that \(D + F_{11} = Q_1(A + E)P_1 \) and \(D^{-1} = Q_1A^D P_1 \) with
\[
(D + F_{11})^{-1} = (I_r + D^{-1}F_{11})^{-1}D^{-1} = Q_1(I_r + A^D)E^{-1}A^DP_1 = Q_1A^D(I_r + EA^D)^{-1}P_1,
\]
and
\[
(D + F_{11})^{-1}F_{12} = Q_1(I_n + A^D)E^{-1}A^DP_1Q_1EP_2 = Q_1(I_n + A^D)E^{-1}A^DP_2,
\]
or
\[
F_{21}(D + F_{11})^{-1} = Q_2EP_1Q_1A^D(I_n + A^D)E^{-1}P_1 = Q_2EA^D(I_n + EA^D)^{-1}P_1,
\]
with
\[
X = I_r + TS = I_r + (D + F_{11})^{-1}F_{12}F_{21}(D + F_{11})^{-1} = Q_1P_1 + Q_1A^D E(I_n + A^D)^{-1}P_2Q_2EA^D(I_n + EA^D)^{-1}P_1
\]
\[
= Q_1(I_n + A^D E(I_n + A^D)^{-1}(I_n - AA^D)(I_n + EA^D)^{-1}EAD
\]
\[
= (I_n + A^D E(I_n + A^D)^{-1}A^D E(I_n - AA^D)EAD(I_n + EA^D)^{-1}P_1
\]
\[
= Q_1(I_n + Y)P_1,
\]
where
\[
Y = A^D E(I_n + A^D)^{-1}(I_n - AA^D)(I_n + EA^D)^{-1}EAD
\]
\[
= (I_n + A^D E(I_n - AA^D)EAD(I_n + EA^D)^{-1},
\]
since \(Q_1P_1 = I_r \) and \(\|I_n - AA^D\| = \|AA^D\| \) (see [24] or [28, Lemma 2.3]) and consequently,
\[
\|Y\| \leq \frac{\|A^D\|^2\|E(I_n - AA^D)E\|}{(1 - \|A^D\|^2\|E\|^2)^2} \leq \frac{\|A^D\|^2\|E\|^2\|AA^D\|}{(1 - \|A^D\|^2\|E\|^2)^2} < 1,
\]
\(I_n + Y \) is nonsingular.

We obtain \(YAA^D = AA^DY = Y \), since \(\mathcal{R}(P_1) = \mathcal{R}(A^D), \mathcal{N}(Q_1) = \mathcal{N}(A^D) \), we shall prove that \(X^{-1} = Q_1(I_n + Y)^{-1}P_1 \).

It is easy to verify that
\[
[Q_1(I_n + Y)P_1][Q_1(I_n + Y)^{-1}P_1] = Q_1(I_n + Y)AA^D(I_n + Y)^{-1}P_1 = Q_1AA^D(I_n + Y)(I_n + Y)^{-1}P_1 = Q_1P_1 = I_r,
\]
similarly, we have \([Q_1(I_n + Y)^{-1}P_1][Q_1(I_n + Y)P_1] = I_r \). Thus
\[
X^{-1} = Q_1(I_n + Y)^{-1}P_1.
\]

It follows from [4, Theorems 7.7.5 and 7.7.7] that
\[
\text{ind}(C + F) = \text{ind}[(D + F_{11})(I + TS)] + 1 = 1,
\]
i.e., \(\text{ind}(B) = \text{ind}(A + E) = \text{ind}(C + F) = 1 \).
By [4, Theorems 7.7.6], we have
\[P^{-1}B_gP = (C + F)_g \]
\[= \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(D + F_{11})^{-1}X^{-1}(I_r(D + F_{11})^{-1}F_{12}), \]
and by simple computations, we obtain
\[P^{-1}BB_gP = P^{-1}BPP^{-1}B_gP = (C + F)(C + F)_g \]
\[= \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(I_r(D + F_{11})^{-1}F_{12}). \]

We can present the estimation for spectral radius of \(BB_g - AA^D \), which sharpens the upper bound of \(BB_g - AA_g \) [31, Theorem 2.1 (a)].

Theorem 2.5. Let \(B = A + E \in \mathbb{C}^{n \times n} \) with \(\text{ind}(A) = k \) and \(\text{rank}(A^k) = \text{rank}(B) \). If the perturbation \(||E|| \) satisfies \(||A^D||E|| < \frac{1}{1 + \sqrt{2||A^D||}} \). Then \(\text{ind}(B) = 1 \) and the spectral radius of \(BB_g(I_n - AA^D) \) and \(AA^D(I_n - BB_g) \) are exactly the same, such that

1. \(\rho(BB_g(I_n - AA^D)) = \rho(AA^D(I_n - BB_g)) \leq \frac{\rho(Y)}{1-\rho(Y)} \),
2. \([\rho(BB_g - AA^D)]^2 = \rho(BB_g(I_n - AA^D)) = \rho(AA^D(I_n - BB_g)) < 1 \),

where \(Y = A^D(E(I_n + A^DE)^{-1}(I_n - AA^D)(I_n + EA^D)^{-1}EA^D) \) and \(\rho(Y) < 1/2 \).

Proof. It follows from Lemma 2.3 that
\[P^{-1}BB_g(I_n - AA^D)P = P^{-1}BB_gPP^{-1}(I_n - AA^D)P \]
\[= \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(I_r(D + F_{11})^{-1}F_{12}) \left(\begin{array}{cc} O & O \\ O & I_{n-r} \end{array} \right) \]
\[= \left(\begin{array}{c} O \\ F_{21}(D + F_{11})^{-1}F_{12} \\ O \\ F_{21}(D + F_{11})^{-1}X^{-1}(D + F_{11})^{-1}F_{12} \end{array} \right), \]
and
\[P^{-1}AA^D(I_n - BB_g)P = P^{-1}AA^DPPP^{-1}(I_n - BB_g)P \]
\[= \left(\begin{array}{c} I_r \\ O \\ O \\ O \end{array} \right) \left[I_n - \left(\begin{array}{c} I_r \\ F_{21}(D + F_{11})^{-1} \end{array} \right) X^{-1}(I_r(D + F_{11})^{-1}F_{12}) \right] \]
\[= \left(\begin{array}{c} I_r - X^{-1} \\ -X^{-1}(D + F_{11})^{-1}F_{12} \\ O \\ O \end{array} \right). \]

We obtain
\[I_r - X^{-1} = -(I_r - X)X^{-1} = (D + F_{11})^{-1}F_{12}F_{21}(D + F_{11})^{-1}X^{-1}. \]

From the proof of Lemma 2.3, it is obvious that
\[(D + F_{11})^{-1} = Q_1(I + A^DE)^{-1}A^DP_1 = Q_1A^D(I + EA^D)^{-1}P_1, \]
and
\[(D + F_{11})^{-1}F_{12} = Q_1(I_n + A^DE)^{-1}A^DEP_2, \]
or
\[F_{21}(D + F_{11})^{-1} = Q_2EA^D(I_n + EA^D)^{-1}P_1, \]
with
\[X = Q_1(I_n + Y)P_1, \quad X^{-1} = Q_1(I_n + Y)^{-1}P_1. \]
Since \(||E|| \) is small and \((I_n + Y)^{-1}AA^D = AA^D(I_n + Y)^{-1} \), then the spectral radius of \(I_r - X^{-1} \) satisfies
\[
\rho(I_r - X^{-1}) = \rho(Q_1(I_n + A^D E) - 1 A^D E P_2 Q_2 (I_n + E A^D)^{-1} E A^D P_1 X^{-1})
\]
\[
= \rho(Q_1 A^D E(I_n + A^D E)^{-1} (I_n - A A^D) (I_n + E A^D)^{-1} E A^D P_1 Q_1 (I_n + Y)^{-1} P_1)
\]
\[
= \rho(Y A A^D (I_n + Y)^{-1} P_1 Q_1)
\]
\[
= \rho(Y (I_n + Y)^{-1} A A^D)
\]
\[
= \rho(Y (I_n + Y)^{-1})
\]
\[
\leq \frac{\rho(Y)}{1 - \rho(Y)}.
\]

If \(||A^D|| ||E|| < \frac{1}{1 + \sqrt{2} ||A A^D||} \) and \(||I_n - A A^D|| = ||A A^D|| \), then
\[
\rho(Y) \leq ||Y|| = ||A^D E(I_n + A^D E)^{-1} (I_n - A A^D) (I_n + E A^D)^{-1} E A^D||
\]
\[
\leq \left(\frac{||A^D|| ||E||}{1 - ||A^D|| ||E||} \right)^2 ||I_n - A A^D||
\]
\[
= \left(\frac{||A^D|| ||E||}{1 - ||A^D|| ||E||} \right)^2 ||A A^D||
\]
\[
< 1/2,
\]

and we can estimate the spectral radius of \(BB_g(I_n - A A^D) \).

\[
\rho(BB_g(I_n - A A^D)) = \rho[A A^D(I_n - BB_g)]
\]
\[
= \rho(F_{21} (D + F_{11})^{-1} X^{-1} (D + F_{11})^{-1} F_{12}]
\]
\[
= \rho([D + F_{11}]^{-1} F_{12} F_{21} (D + F_{11})^{-1} X^{-1}]
\]
\[
= \rho(I_r - X^{-1})
\]
\[
\leq \frac{\rho(Y)}{1 - \rho(Y)} < 1.
\]

Next we reveal the relationship between \(\rho(BB_g - A A^D) \) and \(\rho(BB_g(I_n - A A^D)) \).

It follows from Lemma 2.3 that
\[
[P^{-1}(BB_g - A A^D)P]\^2
\]
\[
= [((C + F)_g (C + F) - CC_g)]^2
\]
\[
= \left(\begin{array}{cc}
X^{-1} - I_r & X^{-1} (D + F_{11})^{-1} F_{12} \\
F_{21} (D + F_{11})^{-1} X^{-1} & F_{21} (D + F_{11})^{-1} X^{-1} (D + F_{11})^{-1} F_{12}
\end{array} \right)^2.
\]

\[
= \left(\begin{array}{cc}
I_r - X^{-1} & O \\
O & F_{21} (D + F_{11})^{-1} X^{-1} (D + F_{11})^{-1} F_{12}
\end{array} \right).
\]

It is obvious that the spectral radius of \(F_{21} (D + F_{11})^{-1} X^{-1} (D + F_{11})^{-1} F_{12} \) are the same as
\[
(D + F_{11})^{-1} F_{12} F_{21} (D + F_{11})^{-1} X^{-1} = I_r - X^{-1}.
\]
Then
\[|
ho(BB_g - AA^D)|^2 = \rho(I_r - X^{-1}) = \rho(BB_g(I_n - AA^D)) \]
\[= \rho(AA^D(I_n - BB_g)) < 1. \]

Now we can give a necessary or sufficient condition for the acute perturbation of the Drazin inverse.

Corollary 1. If \(\text{rank}(A^k) = \text{rank}(B) \) and \(\|A^D\|E < \frac{1}{1 + \sqrt{2}\|AA^D\|} \), then \(B \) is an acute perturbation of \(A \).

Corollary 2. If \(B \) is an acute perturbation of \(A \), then \(\text{rank}(A^k) = \text{rank}(B) \) and \(I_n - (BB_g - AA^D) \) is invertible.

Proof. Denote \(H = BB_g - AA^D \). For a sufficiently small \(\epsilon > 0 \), there exists a matrix norm \[\|\cdot\|_* \) so that \(\|H\|_* < \rho(H) + \epsilon < 1 \). It is obvious that \(I_n - (BB_g - AA^D) \) is invertible.

Based on the well known result [10, Theorem 2.6.4]: if \(\|H\|_* < 1 \) for a matrix norm, then the spectral projection matrices \(BB_g \) and \(AA^D \) have the same rank, i.e.,
\[\text{rank}(B) = \text{rank}(BB_g) = \text{rank}(AA^D) = \text{rank}(A^k). \]

Now we present a necessary and sufficient condition for the acute perturbation of the Drazin inverse, which coincides with the stable perturbation of the Drazin inverse [6].

Theorem 2.6. \(B \) is an acute perturbation of \(A \), if and only if the geometrical conditions are satisfied
\[\mathcal{R}(B) \cap \mathcal{N}(A^k) = \{0\} \quad \text{and} \quad \mathcal{N}(B) \cap \mathcal{R}(A^k) = \{0\}. \]

Proof. If \(\mathcal{R}(B) \cap \mathcal{N}(A^k) \neq \{0\} \), then there exists a nonzero vector \(x \in \mathcal{R}(B) \cap \mathcal{N}(A^k) \) such that
\[BB_g x = x, \quad \text{and} \quad AA^D x = 0. \]
Then
\[(BB_g - AA^D)x = x, \quad \text{i.e.,} \quad \rho(BB_g - AA^D) \geq 1, \]
\(B \) is not an acute perturbation of \(A \).

If \(\mathcal{N}(B) \cap \mathcal{R}(A^k) \neq \{0\} \), then there exists a nonzero vector \(y \in \mathcal{N}(B) \cap \mathcal{R}(A^k) \) such that
\[BB_g y = 0, \quad \text{and} \quad AA^D y = y. \]
Then
\[(BB_g - AA^D)y = -y, \quad \text{i.e.,} \quad \rho(BB_g - AA^D) \geq 1, \]
\(B \) is not an acute perturbation of \(A \).

It follows [5, Theorem 2.1] that
\[\mathcal{R}(B) \cap \mathcal{N}(A^k) = \{0\} \quad \text{and} \quad \mathcal{N}(B) \cap \mathcal{R}(A^k) = \{0\}, \]
which is equivalent to
\[\text{rank}(B) = \text{rank}(A^k) = \text{rank}(A^k BA^k). \]
With the help of Theorem 2.5, we can prove that \(\rho(BB_g - AA^D) < 1 \).

Corollary 3. B is an acute perturbation of A, if and only if

\[
\text{rank}(B) = \text{rank}(A^k) = \text{rank}(A^k BA^k).
\]

Remark 1. Castro-González et al. [6] derived that, if B is a stable perturbation of A, then

1. \(\mathcal{R}(B) \cap \mathcal{N}(A^k) = \{0\} \) and \(\mathcal{N}(B) \cap \mathcal{R}(A^k) = \{0\} \);
2. \(I_n - (BB_g - AA^D)^2 \) is invertible.

If B is not acute perturbation of A and \(\text{rank}(B) \geq \text{rank}(A^k) \), then \(\|BB_g - AA^D\| \geq 1 \) (see [28, 35]).

3. **Examples.** In this section, we provide two examples to illustrate the difference between the acute perturbation for the Drazin inverse and the spectral norm.

Example 3.1. ([29]) Let

\[
A = \begin{pmatrix}
0 & 0.25 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad B = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 + \varepsilon
\end{pmatrix}
\]

for a positive \(\varepsilon \). Then

\[
A^D = AA^D = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad B_g = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 + \varepsilon
\end{pmatrix}, \quad BB_g = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

so \(\text{ind}(A) = 2 \) and \(\text{ind}(B) = 1 \). Thus \(\text{rank}(A^2) = \text{rank}(B) = \text{rank}(A^2 BA^2) \),

\[
BB_g = AA^D,
\]

so B is an acute perturbation of A, and

\[
\rho(BB_g - AA^D) = 0, \quad \text{and} \quad \|B_g - A^D\| = \frac{\varepsilon}{1 + \varepsilon} \approx \varepsilon - \varepsilon^2.
\]

Example 3.2. ([16]) Let

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad B = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

for a positive \(\varepsilon \) (\(< 1/2\)).

Then

\[
A^D = AA^D = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad B_g = BB_g = B,
\]

so \(\text{ind}(A) = 2 \) and \(\text{ind}(B) = 1 \). Thus \(\text{rank}(A^2) = \text{rank}(B) = \text{rank}(A^2 BA^2) \), so B is an acute perturbation of A, and

\[
\rho(BB_g - AA^D) = 0, \quad \text{and} \quad \|BB_g - AA^D\| = \varepsilon.
\]

In this case, \(\rho(BB_g - AA^D) \) is very close to \(\|BB_g - AA^D\| \).
4. **Concluding remarks.** For the general case of $A \in \mathbb{C}^{n \times n}$ with $\text{ind}(A) = k \geq 1$, and B is an acute perturbation of A with $\text{ind}(B) = j \geq 1$, Wei [31] conjectured that

$$\rho(BB^D - AA^D) < 1$$

is the acute perturbation of the Drazin inverse, if and only if B satisfies condition (C_s) [5], i.e.,

$$\mathcal{R}(B^j) \cap \mathcal{N}(A^k) = \{0\} \quad \text{and} \quad \mathcal{N}(B^j) \cap \mathcal{R}(A^k) = \{0\},$$

which is equivalent to the rank condition [5],

$$\text{rank}(B^j) = \text{rank}(A^k) = \text{rank}(A^k B^j A^k).$$

We only prove the correctness of the conjecture in a special case of $\text{ind}(B) = 1$ in this paper.

It will be our future research work for the general case of $\text{ind}(B) > 1$, which will be reported in a forthcoming paper.

Very recently, Ji and Wei [12] extend the notion of the Drazin inverse of a square matrix to an even-order square tensor with Einstein product. It will be very interesting to investigate the perturbation bounds for the Drazin inverse in the tensor case.

Acknowledgments. The authors would like to thank Professor Yongzhong Song and two referees for their very useful comments and detailed suggestions which greatly improve the presentation of the paper.

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, *Generalized Inverses Theory and Applications*, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.

[2] A. Berman and R. Plemmons, *Nonnegative Matrices in the Mathematical Sciences*, SIAM, Philadelphia, 1994.

[3] S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudo-inverses, *Linear Algebra Appl.*, 10 (1975), 77–83.

[4] S. L. Campbell and C. D. Meyer, *Generalized Inverses of Linear Transformations*, Pitman, London, 1979; SIAM, Philadelphia, 2009.

[5] N. Castro-González, J. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, *SIAM. J. Matrix Anal. Appl.*, 30 (2008), 882–897.

[6] N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, *J. Math. Anal. Appl.*, 341 (2008), 1213–1223.

[7] N. Castro-González, M. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, *Electron. J. Linear Algebra*, 22 (2011), 539–556.

[8] D. S. Cvetković-Ilić and Y. Wei, *Algebraic Properties of Generalized Inverses*, Springer, Singapore, 2017.

[9] M. Eierman, I. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, *Numer. Math.*, 53 (1988), 265–283.

[10] A. Galántai, *Projectors and Projection Methods*, Springer, New York, 2004.

[11] R. A. Horn and C. R. Johnson, *Matrix Analysis*, Second Edition, Cambridge University Press, Cambridge, 2013.

[12] J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, *Comput. Math. Appl.*, 75 (2018), 3402–3413.

[13] S. Kirkland and M. Neumann, *Group Inverses of M-Matrices and their Applications*, CRC Press, 2012.

[14] J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, *Appl. Math. Comput.*, 126 (2002), 181–185.
[15] X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, *Linear Algebra Appl.*, **338** (2001), 53–66.
[16] X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, *Appl. Math. Comput.*, **140** (2003), 329–340.
[17] H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, *Int. J. Comput. Math.*, **95** (2018), 710–720.
[18] C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, *SIAM Review*, **17** (1975), 443–464.
[19] G. Rong, The error bound of the perturbation of the Drazin inverse, *Linear Algebra Appl.*, **47** (1982), 159–168.
[20] A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, *Numer. Math.*, **93** (2003), 563–581.
[21] G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, *SIAM Review*, **19** (1977), 634–662.
[22] G. W. Stewart, On the numerical analysis of oblique projectors, *SIAM J. Matrix Anal. Appl.*, **32** (2011), 309–348.
[23] D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, *Numer. Linear Algebra Appl.*, **1** (1994), 151–154.
[24] D. Szyld, The many proofs of an identity on the norm of oblique projections, *Numer. Algorithms*, **42** (2006), 309–323.
[25] J. Y. Vélez-Cerrada, J. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, *Appl. Math. Comput.*, **215** (2009), 2154–2161.
[26] P. Á. Wedin, Perturbation theory for pseudo-inverses, *BIT*, **13** (1973), 217–232.
[27] Y. Wei, Expressions for the Drazin inverse of a 2×2 block matrix, *Linear Multilinear Algebra*, **45** (1998), 131–146.
[28] Y. Wei, On the perturbation of the group inverse and oblique projection, *Appl. Math. Comput.*, **98** (1999), 29–42.
[29] Y. Wei, Perturbation bound of the Drazin inverse, *Appl. Math. Comput.*, **125** (2002), 231–244.
[30] Y. Wei, Generalized inverses of matrices, *Chapter 27 of Handbook of Linear Algebra*, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.
[31] Y. Wei, Acute perturbation of the group inverse, *Linear Algebra Appl.*, **534** (2017), 135–157.
[32] Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, *Numer. Linear Algebra Appl.*, **10** (2003), 563–575.
[33] Y. Wei, X. Li, F. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, *Linear Algebra Appl.*, **419** (2006), 765–771.
[34] Y. Wei, X. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, *SIAM J. Matrix Anal. Appl.*, **27** (2005), 72–81.
[35] Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, *Appl. Math. Lett.*, **13** (2000), 77–83.
[36] Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, *Ann. Oper. Res.*, **103** (2001), 371–378.
[37] Q. Xu, C. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, *SIAM J. Matrix Anal. Appl.*, **31** (2010), 1507–1520.

Received February 2018; 1st revision March 2018; final revision March 2018.

E-mail address: haifengma@aliyun.com
E-mail address: gaoxiaoshuang198@163.com