FINITE SAMPLE INFECTION IN INCOMPLETE MODELS

LIXIONG LI AND MARC HENRY

ABSTRACT. We propose confidence regions for the parameters of incomplete models with exact coverage of the true parameter in finite samples. Our confidence region inverts a test, which generalizes Monte Carlo tests to incomplete models. The test statistic is a discrete analogue of a new optimal transport characterization of the sharp identified region. Both test statistic and critical values rely on simulation drawn from the distribution of latent variables and are computed using solutions to discrete optimal transport, hence linear programming problems. We also propose a fast preliminary search in the parameter space with an alternative, more conservative yet consistent test, based on a parameter free critical value.

Keywords: Incomplete models, set prediction, multiple equilibria, sharp identification region, simulation-based testing, finite sample inference, optimal transport.

JEL codes: C15, C57, C61

INTRODUCTION

In this paper, we study a class of incomplete econometric models that combines (i) a restriction on the support of the random variables involved in the model specification, and (ii) a restriction on the distribution of those variables in the model, that the analyst cannot observe. The support restriction is implied by economic theory, and usually involves the implications of behavioral assumptions, equilibrium concepts and structural features of the economic environment. A game of perfect information with
a pure strategy equilibrium concept, as in Jovanovic [1989] and Tamer [2003]. Other examples include models of choice with limited attention, as in Barseghyan et al. [2021], discrete choice with endogeneity, as in Chesher et al. [2013]; auction models, as in Haile and Tamer [2003], network formation, as in de Paula et al. [2018], and structural vector autoregressions, as in Giacomini and Kitagawa [2021] and Giacomini et al. [2021]. Molinari [2020] and Chesher and Rosen [2020] provide comprehensive surveys of the literature on incomplete structural models.

Incomplete structural models are called incomplete because the model structure does not predict a single data generating process for the observed variables for all values of the model parameter. Incompleteness arises because of multiple equilibria in games, unobserved heterogeneity in choice sets in limited attention models, interval predictions in auctions, and unknown sample selection mechanisms. Model incompleteness generally leads to partial identification, where more than one value of the model parameter could have given rise to the true data generating process for the observed variables. However, model incompleteness and partial identification are distinct concepts.

The current state of the art in deriving confidence regions for the parameters of incomplete structural models involves the Beresteanu et al. [2011]-Galichon and Henry [2011] characterization of the sharp identified region as a collection of conditional moment inequality restrictions, and the application of one of the existing inference methods with conditional moment inequality models, surveyed in Canay and Shaikh [2018] and Molinari [2020]. This method, however, results in a very large, possibly infinite, number of conditional moment inequalities. Even in cases, where the endogenous variable is discrete, such as discrete games, the cardinality of the number of moment inequalities increases exponentially in the number of strategy profiles.

The challenge is both computational and statistical, as the number of inequalities may be much larger than the sample size, requiring new methods, such as Chernozhukov et al. [2019]. Basing inference on a non sharp reduced collection of inequalities leads to low power and loss of robustness to misspecification. See Li et al. [2020] for a discussion. Methods to reduce the number of conditional moment inequalities without losing sharpness exist. They are based on core determining classes, as proposed in Galichon and Henry [2011] and further developed in Chesher et al. [2013].
Chesher and Rosen [2017], Luo and Wang [2017], Molchanov and Molinari [2018] and Ponomarev [2022]. However, these methods are complex, model specific, and only partially alleviate the problem. In addition, when the conditional moment inequalities are transformed into unconditional ones, as in Andrews and Shi [2013], sharpness is preserved only when the number of moment inequalities increases with sample size, which induces an extra layer of computational burden. Moreover, inference methods in moment inequalities rely on asymptotic arguments and some user chosen tuning parameter to preselect inequalities that are close to binding in the sample and thereby avoid overly conservative inference.

We propose an alternative method to construct confidence regions for the parameters of incomplete structural models that circumvents the many moments and conditioning issues, allows for continuous outcome variables, and avoids tuning parameters and asymptotic arguments. As is customary with moment inequality models, we construct our confidence region by inverting a test. However, the test statistic is based on a different characterization of the sharp identified region, and we show that it controls size in finite samples. Our testing procedure relies on two key ingredients. First, the test statistic is based on an optimal transport characterization of the sharp identified region, inspired by formulations in Galichon and Henry [2006] and Ekeland et al. [2010]. As a result, the test statistic is the solution of a discrete optimal transport problem, which is a special kind of linear programming problem, the computation of which has a long history. Second, the test generalizes Monte Carlo tests of Dwass [1957] and Barnard [1963] to incomplete models to control size in finite samples. The test statistic and critical values are based on simulation draws from the conditional distribution of latent variables.

Our test controls size, hence coverage probability of the confidence region for any finite sample size. Finite sample validity has several advantages, beyond the obvious benefit of avoiding reliance on often questionable asymptotic approximations. First, the support constraint and the dimension of the vector of unobservables may change with sample size, as would arise in applications to games on networks and network

\footnote{The dimensionality of the conditioning set in such models generally precludes the alternative approach to conditional moment inequalities, which involves estimating them, as in Chernozhukov et al. [2013].}

\footnote{See also Dufour [2006] and Dufour and Khalaf [2001].}
formation games. Second, our finite sample validity result requires no restriction on the dependence between observations in the sample. This property is particularly desirable with incomplete models. As discussed in Epstein et al. [2016], it is hard to reconcile the customary independence or mixing assumptions across units of observation with total ignorance of the mechanism that selected each realization from the model prediction set. The degree of dependence between observations does not affect size control, but it does affect the power of the test, hence informativeness of the confidence region. However, a simple ergodicity condition is sufficient to ensure that parameter sequences that violate the optimal transport characterization of the sharp identified region ultimately lie outside the confidence region.

Our method requires a search in the space of parameters. At each value of the parameter in the search, we must compute a test statistic and a critical value. This computational burden is shared by inference methods in partially identified models, where the objective is coverage of the true value of the parameter. In order to accelerate the search, we also propose a conservative superset of our confidence region. The conservative superset is based on a parameter free critical value, and hence covers the sharp identified region. Once this conservative confidence region is computed, all values of the parameter that lie outside of it can be excluded a priori from the exact confidence region in our main proposal.

Additional recent related literature. Two recent Handbook chapters, by Molinari [2020] and Chesher and Rosen [2020], give an excellent account of the theory and applications of incomplete models. In the rest of this section, we only discuss a few more recent or directly relevant contributions, that were not mentioned in the body of the introduction. Cox and Shi [2022] provide an inference method for a class of partially identified models that requires no tuning parameter, and achieves exact finite sample size in normal models. Chernozhukov et al. [2013] and Chernozhukov et al. [2019] derive non asymptotic bounds on the rejection probabilities of their confidence regions. These bounds are useful to derive asymptotic rates of convergence, not for finite sample inference. Chen et al. [2018] provide asymptotically exact inference for identified sets (for full or subvector of parameters) based on Monte Carlo simulations.
from quasi-posteriors. Gu et al. [2022] characterize identified set in incomplete models using minimal relevant partitions, as an alternative to core determining classes. Kaido and Zhang [2019] derive a Neyman-Pearson lemma for incomplete models, and Chen and Kaido [2022] apply it to test model incompleteness, thereby leveraging the completeness of the model under the null hypothesis. Finally, Kaido and Molinari [2024] propose mispecification robust inference in incomplete models based on a relative entropy projection of the empirical distribution on the set of predicted data generating processes.

Notation and preliminaries. All random vectors are defined on the same complete probability space \((\Omega, \mathcal{F}, \mathbb{P})\). All vectors are written as row vectors throughout. Throughout the paper, \((Y, X, U)\) will denote a random vector on \(Y \times \mathcal{X} \times \mathcal{U}\), and \(\theta \in \Theta\) a fixed parameter vector, where \(Y \subseteq \mathbb{R}^{d_Y}\), \(\mathcal{X} \subseteq \mathbb{R}^{d_X}\), \(\mathcal{U} \subseteq \mathbb{R}^{d_U}\), and \(\Theta \subseteq \mathbb{R}^{d_\theta}\). We will denote \(\mathcal{Q}\) and \(\mathcal{P}\) the collections of Borel probability measures on \(\mathcal{U} \times \mathcal{X}\) and \(Y \times \mathcal{X}\) respectively. \(\mathcal{M}(\mathcal{Q}, \mathcal{P})\) is the set of probability measures on \((\mathcal{U} \times \mathcal{X}) \times (Y \times \mathcal{X})\) with marginals \(\mathcal{Q}\) on \(\mathcal{U} \times \mathcal{X}\) and \(\mathcal{P}\) on \(Y \times \mathcal{X}\). We denote by \(d\) a metric on \(\mathcal{U} \times \mathcal{X}\), and the distance \(d(a, A)\) between a point \(a\) and a set \(A\) is be defined as \(d(a, A) = \inf_{a' \in A} d(a, a')\).

The convex hull of a set \(A\) is denoted \(\text{co}A\). We denote \(\mathcal{M}^+_n\) the set of \(n \times n\) non negative matrices, and \(\Pi_n\) the subset of \(\mathcal{M}^+_n\) containing matrices \(\pi\) such that \(n\pi\) is doubly stochastic, i.e., such that \(\Sigma_i \pi_{ij} = \Sigma_j \pi_{ij} = 1/n\), for all \(i, j \leq n\). Finally, \(\mathcal{S}_n\) is the set of permutations \(\sigma\) on \(\{1, \ldots, n\}\), and \(\delta_x\) denotes the Dirac mass concentrated at \(x\). Let \([a]\) denote the component-wise integer part of a vector \(a\) and \(\{a\} := a - [a]\) the non integer part.

Overview. Section 1 defines the model and characterizes the sharp identified region. We present the finite sample inference procedure in Section 2. Section 3 proposes a procedure to reduce the computational burden of the search in the parameter space. Section 4 shows consistency of the specification test, and Section 5 is a simulation analysis of the informativeness and computational intensiveness of the proposed procedure. Proofs are collected in the appendix, together with an extended simulation exercise based on Ciliberto et al. [2021].
1. Incomplete models

1.1. Theoretical structural model. We restrict attention to the class of parametric incomplete structural models introduced in Jovanovic [1989]. The vector of variables of interest \((Y, X, U) \in \mathcal{Y} \times \mathcal{X} \times \mathcal{U}\) satisfies support constraint \((Y, X, U) \in \Gamma(\theta_1) \subseteq \mathcal{Y} \times \mathcal{X} \times \mathcal{U}\), and the probability distribution of \(U\) conditional on possible realizations \(x\) of \(X\) is given by \(Q_{U|x; \theta_2}\). The object of inference is the finite dimensional parameter \(\theta := (\theta_1, \theta_2) \in \Theta\). Both vectors or variables \(Y\) and \(X\) are observed, in the sense that available data consists in a sample \(((Y_1, X_1), \ldots, (Y_n, X_n))\). Variables in vector \(U\) are unobserved. Variables in vector \(X\) are exogenous, in the sense that the conditional distribution \(Q_{U|x; \theta_2}\) is fixed a priori, and there are no restrictions on the process generating \((X_1, \ldots, X_n)\). This includes \(U \perp \perp X\) as special case. All endogenous (i.e., non-exogenous) variables are subsumed in vector \(Y\).

The incompleteness of the model is reflected in two ways. First, multiple values of the endogenous variables may be consistent with a single value of the exogenous and unobserved variables. This can be seen in the fact that the set \(\{y \in \mathcal{Y} : (y, x, u) \in \Gamma(\theta_1)\}\) may not be a singleton for all \((u, x) \in \mathcal{U} \times \mathcal{X}\). This corresponds to the fact that the model fails to produce a unique prediction. Second, multiple values of the unobservable variable may be consistent with a single value of the observable variables. This can similarly be seen in the fact that the set \(\{u \in \mathcal{U} : (y, x, u) \in \Gamma(\theta_1)\}\) may not be a singleton for all \((y, x) \in \mathcal{Y} \times \mathcal{X}\). Multiple unobservables could have given rise to the same observations.

1.2. Examples. Incomplete models as described above encompass examples as diverse as static simultaneous move games with complete information and pure strategy equilibrium concepts, choice models with limited attention or partially observed consideration sets, auctions with independent private values. Section 3 in Molinari [2020] gives a detailed account of such incomplete structural models with extensive references. In what follows, we concentrate on three recent examples to illustrate precisely how they fit within the framework.
1.2.1. *Discrete choice with unobserved heterogeneity in consideration sets.* We set out the structural model in [Barseghyan et al. 2021] in their notation, before translating it into our framework. Consider a finite set of alternatives \mathcal{D} for a decision maker to choose from. A decision maker is characterized by observed covariates X on \mathcal{X} and unobserved random vector $\nu \in \mathcal{V}$ with distribution $P_{\nu; \delta_2}$, where δ_2 is a fixed unknown parameter vector (see Assumption 2.1 page 4 of [Barseghyan et al. 2021]). The decision maker makes observed decision d based on the maximization of utility $d^*(G, X, \nu; \delta_1) := \arg\max_{c \in \mathcal{G}} W(c, X, \nu; \delta_1)$, over a subset G of the full set \mathcal{D} of alternatives, where δ_1 is a fixed unknown parameter vector. Unobserved heterogeneity in choice sets is the driver of incompleteness in this model. It is disciplined by the assumption that the realized choice set $C \subseteq \mathcal{D}$ under consideration satisfies $P(|C| \geq \kappa) = 1$, for some $\kappa \geq 2$, fixed and known. The model therefore stipulates that the observed choice d must be in

$$D^*_\kappa := \bigcup_{G \subseteq \mathcal{D}: |G| \geq \kappa} \{d^*(G, X, \nu; \delta_1)\} = \bigcup_{G \subseteq \mathcal{D}: |G| = \kappa} \{d^*(G, X, \nu; \delta_1)\},$$

where the equality follows from Sen’s property α, as shown in [Barseghyan et al. 2021].

This example fits into the current framework, with $Y := d$, $U := \nu$, $\theta = (\theta_1, \theta_2) := (\delta_1, \delta_2)$, $\Gamma(\theta_1) := \{(y, x, u) : y \in D^*_\kappa\}$, and $Q_{U|X; \theta_2} := P_{\nu; \delta_2}$.

1.2.2. *Market Structure and Competition in Airline Markets.* Once again, we set out the structural model in the notation of [Ciliberto et al. 2021], before translating it into our framework. Six firms, indexed by j decide whether to enter a market based on the profit they expect under optimal pricing. If firm j enters, it faces demand $s_j(P, A, y, \xi; \beta)$, which is a function of the vector of endogenous prices P, the vector of exogenous demand relevant firm characteristics A, the binary entry decisions y of all firms, unobservable demand shocks ξ and parameter vector β. Fixed costs of entry for firm j, is $F(Z_j, \nu_j; \gamma)$, and marginal unit cost of production is $c(W_j, \eta_j; \delta)$, where W and Z are the vectors of exogenous observed cost shifters, ν, η are unobserved cost shifters, and γ, δ, are parameters.

3Sen’s property α is the independence of irrelevant alternatives of individual choice theory.
Structural model constraints include for each firm j: equality of predicted and realized demand share

$$S_j = s_j(P, A, y, \xi; \beta),$$ \hspace{1cm} (1.1)

an entry condition, namely $y_j = 1$ if and only if

$$\pi_j := (P_j - c(W_j, \eta_j; \delta))M s_j(P, A, y, \xi; \beta) - F(Z_j, \nu_j; \gamma) \geq 0,$$ \hspace{1cm} (1.2)

and zero otherwise, where M is observed market size, and an equilibrium pricing condition in case of entry

$$(P_j - c(W_j, \eta_j; \delta))\frac{\partial s_j}{\partial p_j}(P, A, y, \xi; \beta) + s_j(P, A, y, \xi; \beta) = 0.$$ \hspace{1cm} (1.3)

This example fits into the current framework with the following notation correspondence: (y, yS, yP) is the endogenous vector Y, (M, A, W, Z) is the vector of covariates X, and (ξ, η, ν) is the vector U of latent variables with distribution $Q_U|X; \theta_2 := N(0, \Sigma)$. The parameter vectors are $\theta_1 = (\beta, \gamma, \delta)$, and $\theta_2 := \Sigma$. The structural model correspondence is $\Gamma((\beta, \gamma, \delta)) := \{(Y, X, U) : Y = (y, yS, yP), X = (M, A, W, Z), U = (\xi, \eta, \nu) \text{ and } (1.1) - (1.3) \text{ hold for all } j\}$.

1.3. **Sharp identified region.** The sample $((y_1, x_1), \ldots, (y_n, x_n))$ of observed data is assumed to be a realization from the random vector $((Y_1, X_1), \ldots, (Y_n, X_n))$ with true distribution $P_0^{(n)}$. The model stipulates that the latter is an element of a subset $P_{\theta}^{(n)}$ of the set of distributions on $(\mathcal{Y} \times \mathcal{X})^n$. The set $P_{\theta}^{(n)}$ is defined as follows.

Definition 1 (Structural model). For each $\theta = (\theta_1, \theta_2) \in \Theta$, $P_{\theta}^{(n)}$ is the set of distributions $P^{(n)}$ on $(\mathcal{Y} \times \mathcal{X})^n$, such that for any random vector $((Y_1, X_1), \ldots, (Y_n, X_n))$ distributed according to $P^{(n)}$, there exists a random vector (U_1, \ldots, U_n) with support \mathcal{U} that satisfies the following constraints:

1. Support restriction: $(Y_i, X_i, U_i) \in \Gamma(\theta_1) \subseteq \mathcal{Y} \times \mathcal{X} \times \mathcal{U}$ for all $i \leq n$, almost surely.
(2) Latent variables generating process restriction: \(U_i \) has distribution \(Q_{U|X_i;\theta_2} \) conditionally on \(X_i \) for all \(i \leq n \), and the \((U_1, \ldots, U_n) \) are independently distributed conditionally on \(X^{(n)} := (X_1, \ldots, X_n) \).

Compatibility between the structural model of Definition 1 and the true data generating process is defined as the fact that \(P_0^{(n)} \) is an element of \(\mathcal{P}_\theta^{(n)} \). Because of the incompleteness of the model, for any given \(\theta \), the structure model may generate multiple predictions for the process generating the observed data, i.e., \(\mathcal{P}_\theta^{(n)} \) may not be a singleton. Conversely, any given true data generating process \(P_0^{(n)} \) may be compatible with the structural model, i.e., \(P_0^{(n)} \in \mathcal{P}_\theta^{(n)} \), for more than one value of the parameter \(\theta \in \Theta \). Hence the parameter vector \(\theta \) can be partially identified. The sharp identified region \(\Theta_I^{(n)} \) is defined as the set of values of the parameter \(\theta \) such that our model is compatible with the true data generating process.

Definition 2. The sharp identification region is defined for each \(n \geq 1 \) as

\[
\Theta_I^{(n)} := \{ \theta \in \Theta : P_0^{(n)} \in \mathcal{P}_\theta^{(n)} \}.
\]

We assume the structural model specification is non trivial in the sense that for all \(n \geq 1 \), there exists \(\theta \in \Theta \) such that \(\mathcal{P}_\theta^{(n)} \neq \emptyset \). In other words, the sharp identification region is non empty for at least one true data generating process. However, the sharp identification region may be empty for some true data generating process \(P_0^{(n)} \), in which case the structural model is incompatible with the data, and should be rejected.

1.4. **Characterization of the sharp identified region.** We discuss a characterization of the sharp identified region that motivates our test statistic. The characterization is derived in case the true data generating process \(P_0^{(n)} \) has \(n \) identical and independent marginals \(P_0 := P_{Y|X,0n} \times P_{X,0n} \) on \(Y \times X \). However, inference results that follow are valid under arbitrary dependence structure.

\(^4\)The assumption of independence of the latent variable across observation units does not imply independence of outcomes. In particular, the outcome selection process may be arbitrarily correlated across observation units.
The existing characterization of the sharp identified region, derived in Beresteanu et al. [2011] and Galichon and Henry [2011], takes the form of a collection of conditional moment inequalities of typically very large cardinality. Our inference strategy is based on a different characterization of the sharp identified region as the solution of an optimal transport problem, and as such, is related to characterization in Galichon and Henry [2006] and Ekeland et al. [2010].

The fundamental idea applied here also underlies characterizations in Galichon and Henry [2006] and Ekeland et al. [2010]: the existence of a joint distribution \(\tilde{\pi} \) for \((Y, X, U)\) that satisfies the model is equivalent to the minimum of \(\tilde{\pi}((Y, X, U) \notin \Gamma(\theta_1)) \) among joint distributions \(\tilde{\pi} \) satisfying the marginal constraints being equal to 0.

The way we treat dependence on exogenous variables \(X \) is crucially different from those previous proposals. It relies on a reformulation of the support constraint in the model. Define the correspondences \(\Gamma_u \) and \(\Gamma_y \) between \(Y \times X \) and \(U \times X \) by:

\[
\Gamma_u(y, x; \theta) = \{(u, x') \in U \times X : x' = x \text{ and } (y, x, u) \in \Gamma(\theta_1)\},
\]
\[
\Gamma_y(u, x; \theta) = \{(y, x') \in Y \times X : x' = x \text{ and } (y, x, u) \in \Gamma(\theta_1)\}.
\]

Correspondence \(\Gamma_y \) defines the set of model predictions for the endogenous variables, whereas correspondence \(\Gamma_u \) defines the set of latent variables that can rationalize the data. We define the correspondences between \(Y \times X \) and \(U \times X \) instead of simply \(U \) in order to avoid conditioning on \(X \).

With the notation of (1.4), and writing \(V := (U, X) \) and \(W := (Y, X) \), the distributional constraint (Constraint (2) in Definition 1) can be written \(V \sim Q := Q_{U|X; \theta_2} \times P_{X; 0n} \). Moreover, for this model to be consistent with the true data generating process, we need \(W \sim P := P_{0n} \). Let \(\mathcal{M}(Q, P) \) be defined as the set of joint distributions with marginals \(Q \) and \(P \) (see notations and preliminaries). Then, the above two restrictions imply that the joint distribution \(\pi \) of \((V, W)\) must satisfy \(\pi \in \mathcal{M}(Q, P) \). Finally, the support constraint in the definition of the structural model (Definition 1) is \(\pi(V \in \Gamma_u(W; \theta)) = 1 \), or, equivalently, \(\int d(v, \Gamma_u(w; \theta))d\pi(v, w) = 0 \) for any metric \(d \) on \(U \times X \), if \(\Gamma_u(w; \theta) \) is closed.
Therefore, if the model and parameter θ are compatible with the true data generating process, the following must hold:

$$\mathcal{D}(Q, P; \theta) := \min_{\pi \in \mathcal{M}(Q, P)} \int d(v, \Gamma_u(w; \theta)) \, d\pi(v, w) = 0. \quad (1.5)$$

Here $\mathcal{D}(Q, P; \theta)$ can be viewed as an optimal transport problem (see Villani [2003]) with cost function $(v, w) \mapsto d(v, \Gamma_u(w; \theta))$. The following theorem shows that condition (1.5) is not only necessary, but also sufficient.

Theorem 1 (Characterization of the sharp identified region). Assume the true data generating process $P_0^{(n)}$ has n identical and independent marginals $P_{0n} := P_{Y|X,0n} \times P_{X,0n}$ on $\mathcal{Y} \times \mathcal{X}$, and Γ_u is closed-valued (i.e., $\Gamma_u(y, x; \theta)$ is closed for all (y, x) and all θ). Then

$$\Theta_1^{(n)} = \{ \theta \in \Theta : \mathcal{D}(Q_{U|X,0n} \times P_{X,0n}, P_{0n}; \theta_1) = 0 \}.$$

An immediate benefit of characterizing the sharp identified region in Theorem 1 with the optimal transport formulation (1.5) is that a sample analogue, where P_{0n} is replaced with the sample empirical distribution, readily provides a test statistic. Although Theorem 1 is shown to hold for independent observations, our inference procedure, detailed in the next section, allows for a general pattern of dependence. This avoids the need for statistical restrictions on the data generating process, such as independence or mixing, whose suitability is difficult to assess in an incomplete model framework (see Epstein et al. [2016] for a discussion).

2. Finite sample inference

The objective of this section is to provide a confidence region for the parameters of interest θ. The confidence region CR_n is obtained by test inversion, as in Anderson and Rubin [1949]. For each value of θ, we test the null hypothesis

$$H_0^{(n)}(\theta) : P_{0n}^{(n)} \in \mathcal{P}_{\theta}^{(n)}.$$

The hypothesis is rejected and θ deemed outside the confidence region if and only if the test statistic $T_n(\theta)$, a function of the sample $((Y_1, X_1), \ldots, (Y_n, X_n))$, is larger
than a corresponding critical value $c_{n,1-\alpha}(\theta)$. Hence

$$CR_n := \{\theta \in \Theta : T_n(\theta) \leq c_{n,1-\alpha}(\theta)\}.$$ \hspace{1cm} (2.1)

The rest of this section is devoted to constructing the test statistic $T_n(\theta)$ and the critical value $c_{n,1-\alpha}(\theta)$ to ensure exact coverage of the true parameter value in finite samples. Finite sample inference is achieved with an extension to incomplete models of traditional Monte Carlo tests of Dwass [1957] and Barnard [1963].

2.1. Test statistic. Our test statistic is based on a sample analogue of the optimal transport problem $D(Q_{U|X;\theta_2} \times P_{X,0n}, P_{0n}; \theta_1)$, which characterizes the sharp identified region in Theorem 1. The sample analogue is $D(Q_{U|X;\theta_2} \times \hat{P}_{X,0n}, \hat{P}_{0n}; \theta_1)$, where the estimated distributions $\hat{P}_{X,0n}$ and \hat{P}_{0n} are empirical distributions based on the data sample $((Y_1, X_1), \ldots, (Y_n, X_n))$. For computational tractability, we replace the resulting semi-discrete optimal transport problem with an approximation, based on a discretization of the latent variable distribution $Q_{U|X;\theta_2}$. In this approximation, the latent variable distribution is replaced with the empirical distribution based on a low discrepancy sequence $\tilde{u}^{(n)}$ (see section 2.3 for details). Our chosen test statistic $T_n(\theta)$, therefore, is the discrete optimal transport solution

$$T_n(\theta) = D_n(C(\theta)),$$

where:

(1) For any $n \times n$ cost matrix $C \in \mathcal{M}_{n}^{+}$, the program D is defined by

$$D_n(C) := \min_{\pi \in \Pi_n} \sum_{i,j=1}^{n} \pi_{ij}C_{ij};$$ \hspace{1cm} (2.2)

where Π_n is the set of $n \times n$ non negative matrices π such that $\Sigma_i \pi_{ij} = \Sigma_j \pi_{ij} = 1/n$, for all $i, j \leq n$, as defined in the notations and preliminaries section.

(2) The cost matrix $C(\theta)$ has entries

$$C_{ij}(\theta) := d((\tilde{u}_i, X_i), \Gamma_u(Y_j, X_j; \theta_1)),$$

for each $i, j \leq n$, \hspace{1cm} (2.3)

where $\tilde{u}^{(n)} := (\tilde{u}_1, \ldots, \tilde{u}_n)$ is the low discrepancy sequence (see details in section 2.3).
Computation of the test statistic is discussed in Section 2.3 below. For now, note that (2.2) solves a discrete optimal transport problem, which is a special kind of linear programming problem. The computation of the cost function can be costly in the case of finite games of complete information with Nash equilibrium solutions, such as Example 1.2.2. We show in Appendix B that in such cases, the cost function (2.3) can be replaced with a measure of deviation from optimality, which is easier to compute.

2.2. Critical values. To achieve valid coverage of the true parameter with confidence region CR_n, we choose as critical value $c_{n,1-\alpha}(\theta)$, the $1 - \alpha$ quantile of a distribution that first order stochastically dominates $T_n(\theta)$ for each $n \geq 1$. We then show exact coverage by exhibiting a data generating process in $P_{\theta}^{(n)}$ such that $T_n(\theta)$ has $1 - \alpha$ quantile $c_{n,1-\alpha}(\theta)$.

Our critical values rely on simulated samples of unobservables.

Definition 3 (Monte Carlo latent samples). A Monte Carlo latent sample $\tilde{U}^{(n)}$ is a collection $(\tilde{U}_1', \ldots, \tilde{U}_n')$ of independent vectors conditional on $X^{(n)} := (X_1, \ldots, X_n)$ such that for each $i \leq n$, \tilde{U}_i' is drawn from the conditional distribution $Q_{U|X,i;\theta_2}$.

A Monte Carlo latent sample $\tilde{U}^{(n)}$ is designed to mimic the true sample $U^{(n)}$ of realizations of the latent variable in the sense that $\tilde{U}^{(n)}$ has the same distribution as $U^{(n)}$ conditionally on the sample of covariates $X^{(n)}$.

Let $\tilde{U}^{(n)}$ be a Monte Carlo latent sample. The critical value we propose is the $1 - \alpha$ quantile $c_{n,1-\alpha}(\theta)$ of the distribution of

$$\tilde{T}_n(\theta) = \sup_{C \in \mathcal{C}_\theta(\tilde{U}^{(n)})} D_n(C),$$

where the supremum is taken over the class $\mathcal{C}_\theta(\tilde{U}^{(n)})$ of $n \times n$ cost matrices with elements C_{ij} satisfying

$$C_{ij} = d((\tilde{u}_i, X_i), \Gamma_u(y, X_j; \theta_1)), \text{ where } (y, X_j) \in \Gamma_y(\tilde{U}_j', X_j; \theta_1),$$

for some $y \in \mathcal{Y}$. The next theorem shows that $\tilde{T}_n(\theta)$ satisfies the desired requirements: it first order stochastically dominates the test statistic $T_n(\theta)$, and we can construct a data generating process under which both $T_n(\theta)$ and $\tilde{T}_n(\theta)$ have the same distribution.
Hence, our proposed confidence region has the correct coverage probability in finite samples.

Theorem 2. For all \(\theta \in \Theta \), all \(\alpha \in (0,1) \) and all \(n \in \mathbb{N} \) such that \(\mathcal{P}_\theta^{(n)} \) is non empty, confidence region \(CR_n \) defined in (2.1) has correct coverage probability,

\[
\inf_{P^{(n)} \in \mathcal{P}_\theta^{(n)}} P^{(n)} \left(T_n(\theta) \leq c_{n,1-\alpha}(\theta) \right) \geq 1 - \alpha,
\]

with equality if the cumulative distribution function of \(\tilde{T}_n(\theta) \) is continuous and increasing in a neighborhood of \(c_{n,1-\alpha}(\theta) \).

The formal proof of Theorem 2 is given in the appendix, where we also give a version of the theorem conditional on \(X^{(n)} \) (see appendix C). Proof heuristics are as follows. By construction, under the null hypothesis, the Monte Carlo latent sample \(\tilde{U}^{(n)} \) has the same distribution as the true latent sample \(U^{(n)} := (U_1, \ldots, U_n) \) conditional on the sample of covariates \(X^{(n)} = (X_1, \ldots, X_n) \). Now, if the true data generating process \(P_0^{(n)} \) is in \(\mathcal{P}_\theta^{(n)} \), then each realization \((Y_j, X_j), j \leq n \), falls in \(\Gamma_y(U_j, X_j; \theta_1) \) almost surely (according to the support restriction in the model). Hence, the cost matrix \(C(\theta) \) in (2.3) belongs to \(\mathcal{C}_\theta(U^{(n)}) \). Hence the test statistic \(T_n(\theta) \) is smaller than sup \(\{ D_n(C) : C \in \mathcal{C}_\theta(U^{(n)}) \} \). Since the latter is identically distributed to sup \(\{ D_n(C) : C \in \mathcal{C}_\theta(\tilde{U}^{(n)}) \} = \tilde{T}_n(\theta) \), size control follows. To see that the inequality in (2.6) is an equality, we find \((Y^{(n)}, X^{(n)}) \) that achieves the maximum of \(T_n(\theta) \) under the constraint \((Y_i, X_i) \in \Gamma_y(\tilde{U}_i', X_i; \theta_1) \).

2.3. Numerical implementation.

Test statistic. Computation of the test statistic requires computing low discrepancy sequence \(\tilde{u}^{(n)} \), computing cost matrix (2.3), and solving optimization problem (2.2).

The sequence \(\tilde{u}^{(n)} = (\tilde{u}_1, \ldots, \tilde{u}_n) \) is constructed for each \(i = 1, \ldots, n \), as follows. A deterministic sequence \(\xi^{(n)} := (\xi_1, \ldots, \xi_n) \) of points in \([0,1]^d\) is derived in such a way that its empirical distribution approximates the distribution of the uniform on \([0,1]^d\) well. Such a sequence is called a quasi-random or low discrepancy sequence. We propose to choose a Kronecker sequence with generic term \(\xi_n := \left\{ n \left(\phi_d^{-1}, \phi_d^{-2}, \ldots, \phi_d^{-d} \right) \right\} \), where \(\phi_d \) be the unique positive root of \(x^{d+1} = x+1 \) (see Roberts [2018]). Each element
of that sequence is then transformed using a map that pushes the uniform $U[0,1]^{d_U}$ to $Q_{U|X_i;\theta_2}$. In many cases, this map can be very simple. For instance, if U has independent marginals, the componentwise quantile function is suitable. If $Q_{U|X_i;\theta_2}$ is a multivariate normal, we can use the composition of quantiles of the standard normal distribution with the linear transformation from the multivariate standard normal to $Q_{U|X_i;\theta_2}$, as we do in the simulations. Generally, we can set $\tilde{u}_i := \nabla \psi_{U|X_i;\theta_2}(\xi_i)$, where $\nabla \psi_{U|X_i;\theta_2}$ is the unique gradient of a convex function that pushes the uniform $U[0,1]^{d_U}$ to $Q_{U|X_i;\theta_2}$ (see McCann [1995] and Chernozhukov et al. [2017]).

The cost matrix requires computing the distance between vector (\tilde{u}_i, X_i) and region $\Gamma_u(Y_i, X_i; \theta_1)$. We propose the following choice of metric for the cost matrix, i.e., the Hausdorff distance based on the Euclidean norm:

$$d((\tilde{u}, \tilde{x}), \Gamma_u(y, x; \theta_1)) := \inf_{(u, x) \in \Gamma_u(y, x; \theta_1)} \| (\tilde{u}, \tilde{x}) - (u, x) \|.$$

An attractive alternative to the Euclidean norm is the data driven norm $v \mapsto \|v\|_\Sigma := \sqrt{v^\top \hat{\Sigma}^{-1} v}$, where $\hat{\Sigma}$ is the empirical variance covariance matrix of $((\tilde{u}_1, X_1), \ldots, (\tilde{u}_n, X_n))$. In appendix C we show size control conditional on $X(n)$, in order to accommodate this alternative choice of norm. The computational complexity of the cost matrix computation is model specific, and common to all inference methods in incomplete models based on sharp characterizations. The metric d can also be replaced, as we do in the simulation exercise of section 5, by a non negative function $\delta(\tilde{u}, \tilde{x}, y, x; \theta_1)$ which is zero if and only if $(\tilde{u}, \tilde{x}) \in \Gamma_u(y, x; \theta_1)$.

Optimization problem (2.2) is a discrete optimal transport problem, which is a special kind of linear programming problem. There is a large literature on its implementation, reviewed in part in Peyr´e and Cuturi [2019]. Discrete optimal transport problems are equivalent to assignment problems, for which many efficient algorithms exist in the literature, most notably the auction algorithm (Bertsekas [1988]) and the Hungarian algorithm (see for instance Section 11.2 of Papadimitriou and Steiglitz [1998]), with $O(n^3)$ computational complexity. It can also be viewed as a network flow problem, for which efficient algorithms are available (see for instance Chapter 6 of Papadimitriou and Steiglitz [1998]). Efficient ready-to-use implementations abound.
For example, The R implementation of the Hungarian algorithm from the package “transport” by Schuhmacher et al. [2020] performs optimal matching of two samples with size 1,000 (resp. 10,000) each in 0.1 (resp. 28) seconds on a standard 2020 MacBookAir. The method is not recommended for sample sizes in the hundreds of thousands.

Critical values. The generic simulation procedure to compute critical value $c_{n,1-\alpha}$ is the following.

(1) Generate S independent Monte Carlo latent samples $\tilde{U}^{(s)} := (\tilde{U}_j^s)_{j \leq n}$.

(2) For each $s \in \{1, \ldots, S\}$, compute

$$\tilde{T}_n^s(\theta) = \sup_{C \in \mathcal{C}_\theta(\tilde{U}^{(s)})} \mathcal{D}_n(C),$$

and let $\tilde{T}^{(s)}_n(\theta)$, $s = 1, \ldots, S$, be the order statistics.

(3) The critical value $c_{n,1-\alpha}(\theta)$ is approximated with

$$\hat{c}_{n,1-\alpha}(\theta) := \tilde{T}_n^{[S(1-\alpha)]}(\theta).$$

In some cases, test statistic $\tilde{T}_n(\theta)$ may be costly to compute. So we also propose an alternative $\tilde{T}'_n(\theta)$ with critical value $c'_{n,1-\alpha}(\theta)$ that satisfies three desiderata. (1) It can be computed efficiently, (2) It is equal to $\tilde{T}_n(\theta)$ under suitable assumptions, (3) it still provides valid finite sample coverage and consistent inference even if the latter assumptions fail.

On Step (2), we the alternative critical values are obtained by replacing $\tilde{T}_n^s(\theta)$ with

$$\tilde{T}'_n^s(\theta) = \min_{\pi \in \Pi_n} \max_{C \in \mathcal{C}_\theta(\tilde{U}^{(s)})} \sum_{i,j} \pi_{ij} C_{ij}$$

$$= \sup_{C \in \text{co}\mathcal{C}_\theta(\tilde{U}^{(s)})} \mathcal{D}_n(C), \quad (2.8)$$

which is obtained from $\tilde{T}_n^s(\theta)$ by exchanging the order of the min and the max. Desideratum (3) follows immediately, since $\min \max \geq \max \min$. Desideratum (2) is fulfilled since $\tilde{T}_n^s(\theta)$ and $\tilde{T}'_n^s(\theta)$ are identical when the set $\mathcal{C}_\theta(\tilde{U}^{(s)})$ is convex. Finally, Desideratum (1) is fulfilled since $\tilde{T}_n^s(\theta)$ is the maximizer of a concave function, namely $\mathcal{D}_n(C)$, on a convex set, namely $\text{co}\mathcal{C}_\theta(\tilde{U}^{(s)})$.
We therefore propose the following algorithm to check if a parameter value \(\theta \) is in the 1\(- \alpha \) level confidence region \(CR_n \).

1. Generate \(S \) independent Monte Carlo latent samples \(\tilde{U}^{(s)} := (\tilde{U}^*_j)_{j \leq n} \).
2. For each \(s \in \{1, \ldots, S\} \), compute \(\tau_s := 1\{T_n(\theta) \leq \tilde{T}_n^{s}(\theta)\} \).
3. Add \(\theta \) to \(CR_n \) if and only if \(\Sigma_s \tau_s / S \geq 1 - \alpha \).

We recommend performing Step (2) with Algorithm 1 in Dhouib et al. [2020]. This algorithm consists in a sequence of linear programming problems and converges from below in a finite number of steps. Since it converges from below, Step (2) does not require computation of \(\tilde{T}_n^{s}(\theta) \), because \(\tau_s \) is known to be equal to 1 as soon as Algorithm 1 in Dhouib et al. [2020] returns a value larger than the test statistic \(T_n(\theta) \).

3. Fast preliminary search in the parameter space

When the dimension of the parameter is large and there is no information about the geometry of the sharp identified region, a major computational hurdle is the search in the parameter space. This computational hurdle is common to all existing inference procedures for incomplete structural models, where the confidence region is based on inverting a test. To reduce the computational burden, we propose a conservative modification of our test, which relies on parameter free critical values. This allows a fast initial search in the parameter space and what amounts to a dramatic reduction of the search area in our Monte Carlo simulations.

To construct an outer confidence region based on parameter free critical values, we need to reformulate the model in such a way that the unobserved variable \(U^* \) in the reformulation has fixed distribution \(Q^*_U \) with support \(U^* \). The basic ingredient in the reformulation is a transformation of the vector of unobservable variables \(U \).

Assumption 1. There is a function \(h \) on \(U^* \times X \times \Theta \) such that for any \(U^* \) with distribution \(Q^*_U \) on \(U^* \), the random vector \(U := h(U^*, X; \theta_2) \) has distribution \(Q_{U|X,\theta_2} \).

Although we state it as an assumption, the function \(h \) in Assumption 1 always exists. When \(U \) is scalar, the conditional quantile transform is an example of such a function.
function h. More generally, the vector quantile of U conditional on X, as defined in Chernozhukov et al. [2017] is an example of such a function h. It can also be computed as the solution of an optimal transport problem. However, simpler transformations often satisfy Assumption 1. For instance, in Example 1.2.2, $Q_{U|X;\theta_2}$ is a multivariate normal with mean zero and variance covariance matrix Σ. In that case, we can simply let Q^*_U be the standard multivariate normal and h be defined by $U = \Sigma^{1/2}U^*$.

Under Assumption 1, the incomplete model can be reformulated as the combination of the support constraint $(Y, X, U^*) \in \Gamma^*(\theta)$, where

$$\Gamma^*(\theta) := \{(y, x, u^*): (y, x, h(u^*, x; \theta_2)) \in \Gamma(\theta_1)\},$$

and the marginal constraint $U^* \sim Q^*_U$ and $U^* \perp X$. The metric d is replaced with a metric d^* on $(U^* \times \mathcal{X}) \times (U^* \times \mathcal{Y})$. Statistics $T^*_n(\theta)$ and $\tilde{T}^*_n(\theta)$ and critical value $c^*_{n,1-\alpha}(\theta)$ are obtained with the same procedure as $T_n(\theta)$, $\hat{T}_n(\theta)$, and $c_{n,1-\alpha}(\theta)$ respectively, with $\Gamma^*(\theta)$ replacing $\Gamma(\theta_1)$ and Q^*_U replacing $Q_{U|X;\theta_2}$. Correspondences Γ^*_u and Γ^*_y are obtained from Γ^* in the same way Γ_u and Γ_y are obtained from Γ in (1.4). The low discrepancy sequence and the Monte Carlo latent samples are generated in the same way, except that $Q_{U|X;\theta_2}$ is replaced with Q^*_U. Finally CR^*_n is the set of parameters θ such that $T^*_n(\theta)$ is smaller than or equal to $c^*_{n,1-\alpha}(\theta)$.

The outer confidence region

$$CR^0_n := \{\theta \in \Theta: T^*_n(\theta) \leq c^0_{n,1-\alpha}\}$$

is defined with test statistic $T^*_n(\theta)$ and parameter free critical value $c^0_{n,1-\alpha}$. Our conservative parameter free critical value $c^0_{n,1-\alpha}$ is chosen to be the $1 - \alpha$ quantile of the distribution of

$$\tilde{T}^0_n = D_n(\tilde{C}^0), \text{ with } \tilde{C}^0_{ij} = d((\tilde{u}^*_i, X_i), (U^*_j, X_j)),$$

where $(\tilde{u}^*_i)_{i \leq n}$ is a low discrepancy sequence, whose empirical distribution approximates Q^*_U, and $(U^*_j)_{j \leq n}$ is a Monte Carlo latent sample, simulated according to Q^*_U.

By construction, for any y such that $(y, X_i) \in \Gamma^*_u(U^*_j, X_j; \theta)$, we have $(U^*_j, X_j) \in \Gamma^*_u(y, X_i; \theta)$. Hence $d((\tilde{u}^*_i, X_i), \Gamma^*_u(y, X_j; \theta)) \leq d((\tilde{u}^*_i, X_i), (U^*_j, X_j))$. It follows that by
construction, for all $\theta \in \Theta$, $\bar{T}_n^*(\theta) \leq \bar{T}_n^0$, and, therefore:

$$\sup_{\theta \in \Theta} c_{n,1-\alpha}(\theta) \leq c_{n,1-\alpha}^0 \quad \text{and} \quad CR_n^* \subseteq CR_n^0. \quad (3.1)$$

From Statement (3.1), we deduce three advantages of the outer confidence region CR_n^0. First, the critical value is independent of the parameter value. Hence, it needs to be computed only once, and only the test statistic $T_n^*(\theta)$ needs to be computed for each value of the parameter θ. Second, the outer confidence region CR_n^0 covers the whole identified set as opposed to each value in the identified set Θ. Third, given that $CR_n^* \subseteq CR_n^0$, the computation of Confidence region CR_n^* can be performed with a search limited to CR_n^0 as opposed to the whole parameter space Θ.

4. Consistency

In this section, we theoretically assess informativeness of the confidence region, as sample size increases. We characterize sequences of data generating processes and parameters that violate the model, and show that such parameter sequences are outside the confidence region, eventually. We prove this consistency result for the conservative outer region CR_n^0. Since the latter includes our proposed confidence region CR_n^*, the result also holds for CR_n^*.

Let $(P_0^{(n)})_{n \geq 1}$ be a sequence of data generating processes. Let $(Y_{i,n}, X_{i,n})_{i \leq n}$ be a triangular array where, for any $n \geq 1$, the size n sample $(Y_{i,n}, X_{i,n})_{i \leq n}$ follows distribution $P_0^{(n)}$. For each n, $P_0^{(n)}$ has identical marginals $P_{0n} := P_{Y|X,0n} \times P_{X,0n}$. We consider parameters θ that violate the condition that characterizes the sharp identified region in Theorem 1. Formally, the alternative is defined as follows, where \mathcal{D} is defined as in (1.5).

Assumption 2 (Sequence of alternatives). Parameter θ satisfies

$$\liminf_{n \to \infty} \mathcal{D}(Q_U^*, P_{X,0n}, P_{0n}; \theta) > 0. \quad (4.1)$$

\footnote{See Section 4.3.1 of Molinari [2020] for a discussion of the distinction between coverage of the identified set and coverage of each of its elements.}
In order to detect violations defined in Assumption 2, or equivalently, to make sure such a parameter ultimately falls outside the confidence region, the data sequence must be sufficiently informative to identify the marginal distributions P_{0n}. Independence across observations or strong mixing assumptions are sufficient, but not necessary, as any dependence structure that allows estimation of P_{0n} from the sequence of empirical distributions $\hat{P}_n := \Sigma_{i \leq n} \delta(Y_i, X_i)/n$ is suitable.

Assumption 3 (Data generating process). *The sequence of data generating processes $P_{0n}^{(n)}$ with marginals $P_{0n} := P_{Y|X,0n} \times P_{X,0n}$ is such that $\{P_{0n} : n \geq 1\}$ is tight, and $d(\hat{P}_n, P_{0n}) \to 0$ almost surely for any distance d that metrizes weak convergence.*

Detection of violations of the type (4.1) also requires continuity of the cost function in the optimal transport problem.

Assumption 4 (Regularity of the structure). *Metric d^* is continuous on $(U^* \times X') \times (U^* \times X')$, and Function $((u^*, x), (y, x')) \mapsto d((u^*, x), \Gamma_u^* ((y, x'); \theta))$ is continuous on $(U^* \times X) \times (Y \times X)$.*

The condition is stated in its most general form. However, sufficient conditions on the model structure can be derived. For instance, by Lemma 16.30 page 538 of [Aliprantis and Border 1999], Assumption 4 holds if Γ_u^* is a continuous correspondence (i.e., both upper- and lower-hemicontinuous) with non empty and compact values.

Theorem 3 (Consistency). *Under Assumptions 1, 2, 3, and 4, for all $\alpha \in (0, 1)$,*

$$\liminf_{n \to \infty} P_{0n}^{(n)}\left(T_n^*(\theta) > c_{0,1-\alpha}^0 \right) = 1.$$

Given that, by (3.1), the exact critical value $c_{n,1-\alpha}^*$ is uniformly smaller than the conservative critical value $c_{n,1-\alpha}^0$, Theorem 3 also implies that Parameter θ defined in Assumption 2 eventually falls outside the confidence region CR_n^*.

5. **Simulation evidence**

We derive coverage probabilities and power curves for our testing procedure with a simulated data generating process based on example 1.2.2. The purpose is 3-fold: First, we illustrate the procedure in a realistic situation; second, we illustrate the exact
finite sample size control; third, we show the good finite sample power properties of our test. We first describe in section 5.1 how we generate exogenous, latent and endogenous variables. Then we give details of the simulation procedure and results. The data generating process we use for each simulation is designed to fit as closely as possible with the empirical setting of Ciliberto et al. [2021]. In order to achieve that, we use the empirical distribution of the data in Ciliberto et al. [2021] as the exogenous variables generating process, and we use the structural model and parameter estimates (more precisely confidence interval mid points) from Ciliberto et al. [2021] to generate latent and endogenous variables.

5.1. Data generating process. The sample size n is the number of regional markets in which 6 firms, indexed by j, potentially operate. In each regional market, indexed by i, the firms simultaneously decide whether or not to enter, and the firms who enter compete in prices.

5.1.1. Exogenous variables. Market size M_i^0 of market i is taken from Ciliberto et al. [2021]. Each firm j is associated with three scalar exogenous covariates in each market i: First, the demand relevant firm characteristic A_{ij}^0 is chosen equal to a linear combination of the demand relevant firm characteristics in Ciliberto et al. [2021] weighted by the middle point of the confidence interval reported in Part A, Column (3) of Table 4 in Ciliberto et al. [2021]. Second, the production cost relevant firm characteristic W_{ij}^0 is computed in the same way, using Part B, Column (3) of Table 4 in Ciliberto et al. [2021] for the weights of the linear index. Finally, the market entry cost relevant firm characteristic Z_{ij}^0 is also computed in the same way, using Part C, Column (3) of Table 4 in Ciliberto et al. [2021] for the weights of the linear index.

Call $X_i^0 := (M_i^0, A_i^0, W_i^0, Z_i^0)$ the vector of exogenous variables in market i obtained in the previous paragraph, with $A_i^0 := (A_{ij}^0)_{j=1}^6$, $W_i^0 := (W_{ij}^0)_{j=1}^6$ and $Z_i^0 := (Z_{ij}^0)_{j=1}^6$. The empirical distribution $\Sigma_i \delta_{X_i^0} / n$ is treated as the true data generating process. Simulated values for market size and firms’ characteristics are drawn independently from this distribution for each market and each simulation. In what follows, we omit the market subscript and denote $X := (M, A, W, Z)$ a given market-simulation
specific draw of exogenous variables for all 6 firms, with \(A := (A_j)_{j=1}^6 \), \(W := (W_j)_{j=1}^6 \) and \(Z := (Z_j)_{j=1}^6 \).

5.1.2. Latent variables. We follow the model structure and parametric specifications in Ciliberto et al. [2021]. Firm \(j \) has fixed cost of entry \(\exp(\gamma Z_j + \nu_j) \), where \(\gamma \) is an unknown parameter of interest and \(\nu_j \) is a normally distributed latent variable. Firm \(j \) has marginal unit cost of production \(\exp(W_j + \eta_j) \), where \(\eta_j \) is a normally distributed latent variable. The market share is generated by a nested logit demand model. Specifically, consumer \(l \)’s indirect utility from choosing the outside option is \(\epsilon_l^0 \), whereas their utility from choosing firm \(j \)’s product is \(u_{lj} = A_j - \rho P_j + \xi_j + (1 - \lambda)\epsilon_{lj} \), where \(P_j \) is the product price, \(\rho \) and \(\lambda \) are unknown parameters of interest, \(\xi_j \) is a normally distributed latent variable, and \((\epsilon_{l0}, \epsilon_{l1}, ..., \epsilon_{l6}) \) are independent type I extreme value preference shocks. In each market and each simulation, a value of the vector of latent variables \(U := (\xi, \eta, \nu) \) is drawn from a normal \(N(0, \Sigma) \) where \(\xi = (\xi_1, ..., \xi_6) \), \(\eta = (\eta_1, ..., \eta_6) \), \(\nu = (\nu_1, ..., \nu_6) \) and

\[
\Sigma = \begin{bmatrix}
\sigma^2_{\xi} \cdot I & \sigma_{\xi\eta} \cdot I & \sigma_{\xi\nu} \cdot I \\
\sigma_{\xi\eta} \cdot I & \sigma^2_{\eta} \cdot I & \sigma_{\eta\nu} \cdot I \\
\sigma_{\xi\nu} \cdot I & \sigma_{\eta\nu} \cdot I & \sigma^2_{\nu} \cdot I
\end{bmatrix},
\]

where the parameters in \(\Sigma \) are calibrated to the midpoints of the confidence regions reported in Part D, Column (3) of Table 4 of Ciliberto et al. [2021].

5.1.3. Endogenous variables. We now describe how endogenous variables are derived from each draw of \(X \) and \(U \). The endogenous variable \(y_j \) is equal to 1 if the firm enters the market, and 0 otherwise. Firms who enter then choose price \(P_j \) and realize their market share \(S_j \). Market shares \(S := (S_j)_{j=1}^6 \) are determined by the entry profile \(y := (y_j)_{j=1}^6 \) and the price chosen by firms who entered. Given the nested logit specification, market shares are given by

\[
S_j = \frac{\Lambda^{1-\lambda}}{1 + \Lambda^{1-\lambda}} S_j^†,
\]

\[\text{Together, } \rho \text{ and } \lambda \text{ make up parameter } \beta \text{ in example 1.2.2.} \]
where
\[\Lambda := \sum_{j=1}^{J} y_j \Lambda_j, \quad \Lambda_j := \exp\{(A_j - \rho P_j + \xi_j)/(1 - \lambda)\} \] and \(S_j^\dagger := \Lambda_j/\Lambda. \)

The profit maximizing price for firm \(j \) satisfies the following first order condition:
\[P_j - \exp(W_j + \eta_j) = \frac{1 - \lambda}{\rho \left[1 - \lambda S_j^\dagger - (1 - \lambda) S_j \right]} \tag{5.2} \]

Equations (5.1) and (5.2) are joint equations for prices and market shares of firms that enter the market. The solution for equations, together with the normalization that \(P_j = 1 \) and \(S_j = 0 \) if \(y_j = 0 \), determines \(P \) and \(S \) as functions of \((y, A, \xi)\). Finally, firm \(j \) enters the market if and only if it makes non-negative profit, i.e.,
\[\left(P_j - \exp(W_j + \eta_j) \right) M S_j - \exp(\gamma Z_j + \nu_j) \geq 0. \tag{5.3} \]

The entry profile \(y \) is determined as a pure strategy Nash equilibrium of the full information simultaneous entry game, with payoffs given by (5.3) for a firm who enters, and normalized to zero otherwise. In case of multiple equilibria\(^8\), we select the equilibrium that produces the largest value of the test statistic in the inference procedure.

5.2. Simulation procedure and results. In each simulation instance, we produce one data set with \(n \) independent draws for the exogenous vector \(X := (M, A, W, Z) \) and for the latent vector \(U := (\xi, \eta, \nu) \), from which we obtain the corresponding \(n \) instances of the endogenous vector \(Y = (y, yS, yP) \) as described in section 5.1. The true value of the parameter is \(\theta := (\rho, \gamma, \lambda) = (0.015, 1, 0.2) \). In the notation of definition 1, the support restriction is \((Y, X, U) \in \Gamma(\theta) := \{ (5.1), (5.2) \text{ and } (5.3) \text{ hold.} \} \) and the latent variable generating process restriction is \(U \sim N(0, \Sigma) \). The test is conducted according to the procedure in section 2 based on the \(n \times n \) cost matrix \(C(\theta) \) detailed in appendix B.

5.2.1. Coverage probabilities. Table 1 contains the simulation results for the coverage probability. Sample sizes range over \(n \in \{10, 50, 100, 500, 1000\} \). Nominal levels range

\(^8\)About 0.017% percent of the simulated markets have multiple equilibria. We discard the rare simulation instances with no pure strategy equilibrium.
over $\alpha \in \{0.90, 0.95, 0.99\}$. Coverage probabilities are based on quantiles of $T_n(\theta)$ as critical values. For each sample size, nominal level and choice of critical value, we conduct 5,000 replications of the test. For each replication, we simulate the exogenous, latent and endogenous variables as explained in section 5.1. For each test, the critical values are based on $S = 1000$ latent sample draws. The time columns report total computation time for all 5,000 replications in each cell of the table. We run all our simulations on a single server with dual CPU AMD EPYC 7702 @ 2.0 GHz.

Table 1. Coverage probabilities: “Confidence level” columns report coverage probabilities based on quantiles of $T_n(\theta)$ as critical values. The “Computation time” column reports a total testing time in seconds for all 5,000 replications.

Sample size	Confidence level	Computation time
	0.90 0.95 0.99	
10	0.904 0.954 0.990	91s
50	0.891 0.945 0.988	529s
100	0.891 0.946 0.987	1104s
500	0.897 0.951 0.991	8086s
1,000	0.905 0.950 0.987	23488s

5.2.2. Power curves. Figures 1-3 shows the power curve for λ, ρ, and γ respectively for sample sizes ranging over $n \in \{100, 500, 1000\}$. The dashed line indicates the true value of the parameter. In the computation of the power curve for each parameter, we hold the other two parameters fixed at their true value. We compute the rejection probabilities for a range of regularly spaced values of the parameter. For each value, we conduct 1,000 replications of the simulation described in section 5.1. We conduct the test based on quantiles of $T_n(\theta)$ as critical values (“ncx”) and on $S = 1000$ latent sample draws. Even for low sample sizes, the power curves show good power properties outside a region where the power is lower or equal to the nominal size, pointing to partial identification of the parameters.
Figure 1. Power Curve for the nested logit correlation parameter λ.

Figure 2. Power Curve for the price elasticity parameter ρ.

Discussion

We have proposed a procedure to compute confidence regions in incomplete models with exact coverage in finite samples. Compared to existing approaches, our
Figure 3. Power Curve for the fixed cost parameter γ.

procedure has many advantages, some straightforward and others more subtle. First, finite sample validity avoids reliance on asymptotic approximations, which are often suspect. It also removes the need for user-chosen tuning parameters, that inference results are often very sensitive to. Second, our procedure removes the need for transforming conditional into unconditional moment inequalities, and for reducing the very large number of moment inequalities with complex and model-specific core determining classes. Third, finite sample validity allows us to conduct inference in models, where the specification depends on the sample size. This includes possible future applications to games on networks and network formation games, when a single network is observed. In such cases, the support constraint in the model specification depends on the sample size, and so does the dimension of the latent variable, which involves an individual’s neighbors in the network. Finally, although we haven’t developed it here, our method extends to specifications, where the structural support constraint is individual-specific, thereby allowing us to conduct inference with the structural vector autoregressions proposed in Giacomini and Kitagawa [2021] and Giacomini et al. [2021]. This paper has contributed to a growing literature that shows how optimal transport theory provides a rich set of tools in econometrics in general, and
Appendix A. Proofs of results in the main text

Proof of Theorem 1. Let the true data generating process $P_0^{(n)}$ have n identical and independent marginals P_0. Call $\tilde{\Theta}_I^{(n)}$ the region defined on the right-hand side of (1.5). First show that $\Theta_1^{(n)} \subseteq \tilde{\Theta}_I^{(n)}$. If $\theta \in \Theta_1^{(n)}$, then there exists a joint probability $\tilde{\pi}$ over $\mathcal{Y} \times \mathcal{X} \times \mathcal{U}$ with marginals P_0 and $Q_{U|X;\theta_2}$ such that $\mathbb{E}_{\tilde{\pi}}\{ (Y, X, U) \notin \Gamma(\theta_1) \} = 0$. The latter implies the existence of a probability π on $\mathcal{U} \times \mathcal{X} \times \mathcal{Y} \times \mathcal{U}$, which is in $\mathcal{M}(Q_{U|X;\theta_2} \times P_{X,0n}, P_0)$, $\pi(X = X') = 1$, and such that $\mathbb{E}_{\pi}\{ (U, X) \notin \Gamma_u(Y, X'; \theta_1) \} = 0$. This implies $\mathbb{E}_{\pi}d((U, X), \Gamma_u(Y, X'; \theta_1)) = 0$. Hence, $\theta \in \tilde{\Theta}_I^{(n)}$.

Now show that $\tilde{\Theta}_I^{(n)} \subseteq \Theta_1^{(n)}$. Since d is a metric and Γ_u is closed-valued, if $\theta \in \tilde{\Theta}_I^{(n)}$, then there exists a random vector (U, X, Y, X') such that (U, X) has distribution $Q_{U|X;\theta_2} \times P_{X,0n}$, (Y, X) has distribution P_0, $X' = X$ and $(Y, X, U) \in \Gamma(\theta_1)$ almost surely. Given any sample $(Y_i, X_i)_{i \leq n}$ distributed according to $P_0^{(n)}$, construct $(U_i)_{i \leq n}$ as follows: Conditional on $(Y_i, X_i)_{i \leq n}$, draw $(U_i)_{i \leq n}$ from $\pi_{U|(Y, X)=\cdot \times \cdots \times \cdot}^{*} \pi_{U|(Y, X)=(Y_n, X_n)}$. Then, $(Y_i, X_i, U_i)_{i \leq n}$ satisfies all the conditions of Definition 1, and $\theta \in \Theta_1^{(n)}$.

□

Proof of Theorem 2. We fix an arbitrary θ such that $\mathcal{P}_\theta^{(n)}$ is non empty and an arbitrary $\alpha \in (0, 1)$.

Proof of (2.6). Take an arbitrary distribution $P^{(n)}$ in $\mathcal{P}_\theta^{(n)}$, and let $(Y^{(n)}, X^{(n)})$ be a random vector distributed according to $P^{(n)}$. Let $T_n(\theta)$ be the resulting test statistic. By the definition of $\mathcal{P}_\theta^{(n)}$, there exists a random vector $U^{(n)}$ such that $(Y_i, X_i, U_i) \in \Gamma(\theta_1)$ and $U_i|X_i \sim Q_{U|X_i;\theta_2}$ almost surely for each i. Because $(Y_i, X_i) \in \Gamma_y(U_i, X_i; \theta_1)$, we know that the cost matrix $C(\theta)$ defined in (2.3), which enters the test statistic $T_n(\theta)$, belongs to the set $\mathcal{C}_\theta(U^{(n)})$ of cost matrices defined as in (2.5). Therefore,

$$T_n(\theta) = \mathcal{D}_n(C(\theta)) \leq \sup_{C \in \mathcal{C}_\theta(U^{(n)})} \mathcal{D}_n(C). \quad (A.1)$$
By Definition 3, \((X^{(n)}, U^{(n)})\) and \((\tilde{X}^{(n)}, \tilde{U}^{(n)})\) are identically distributed. Hence, the \(1 - \alpha\) quantile \(c_{n,1-\alpha}(\eta)\) of \(\sup\{D_n(C) : C \in \mathcal{C}_\theta(\tilde{U}^{(n)})\}\) is also the \(1 - \alpha\) quantile of \(\sup\{D_n(C) : C \in \mathcal{C}_\theta(U^{(n)})\}\), so that (2.6) follows from (A.1).

Proof that (2.6) holds as an equality. Fix \(\epsilon > 0\). We show below that for any \(\beta \in (0, 1)\), there exists some \(P^{(n)} \in \mathcal{P}^{(n)}_\theta\) such that

\[
P^{(n)} \left(T_n(\theta) \leq c_{n,1-\beta}(\theta) - \epsilon \right) \leq 1 - \beta.
\]

(A.2)

Suppose the cdf of \(\tilde{T}_n(\theta)\) is continuous and increasing in a neighborhood of \(c_{n,1-\alpha}(\theta)\). For any small enough \(\zeta > 0\),

\[
c_{n,1-\alpha+\zeta}(\theta) - c_{n,1-\alpha}(\eta) > 0.
\]

Let \(\epsilon = c_{n,1-\alpha+\zeta}(\theta) - c_{n,1-\alpha}(\theta)\). Then, (A.2) applied to \(\beta = \alpha - \zeta\) implies that there exists some \(P^{(n)} \in \mathcal{P}^{(n)}_\theta\) such that

\[
P^{(n)} \left(T_n(\theta) \leq c_{n,1-\alpha}(\theta) \right) = P^{(n)} \left(T_n(\theta) \leq c_{n,1-\alpha+\zeta}(\theta) - \epsilon \right) \leq 1 - \alpha + \zeta.
\]

The above inequality holds for arbitrary small \(\zeta > 0\), and the result follows.

Proof of (A.2). By assumption, \(\mathcal{P}^{(n)}_\theta\) is nonempty under the null hypothesis. Hence, there exists a marginal distribution \(P_{X,n}\) such that \(\Gamma_{y}(U, X ; \theta_1)\) is almost surely nonempty if \(X \sim P_{X,n}\) and \(U|X \sim Q_{U|X;\theta_2}\). Let \((X^{(n)}, U^{(n)})\) be a vector of \(n\) i.i.d. draws from \(P_{X,n} \times Q_{U|X;\theta_2}\). Write \(X^{(n)} = (X_1, \ldots, X_n)\) and \(U^{(n)} := (U_1, \ldots, U_n)\).

We will construct a map \(\varphi : X^n \times U^n \to Y^n\) such that the distribution \(P^{(n)}(\varphi(X^{(n)}, U^{(n)}), X^{(n)}, U^{(n)})\) is in \(\mathcal{P}^{(n)}_\theta\) and satisfies (A.2). Note that restriction (2) in the definition of \(\mathcal{P}^{(n)}_\theta\) (Definition 1) is satisfied by the construction of \((X^{(n)}, U^{(n)})\).

In addition, the map \(\varphi\) we construct must satisfy the following.

(i) It must be measurable. To show this, we will rely on a classical theorem on the existence of measurable selections of correspondences, namely Proposition 7.50 page 184 of Bertsekas and Shreve 1996.

(ii) It must be a selection from the correspondence

\[
\mathcal{Y}^{(n)}(X^{(n)}, U^{(n)}) := \{(y_1, \ldots, y_n) \in Y^n : \forall j, (y_j, X_j, U_j) \in \Gamma(\theta_1)\},
\]
so support restriction (1) in the definition of $P^{(n)}_\theta$ (Definition 1) is satisfied. This will be imposed in the construction.

(iii) The distribution $P^{(n)}$ of $(\varphi(X^{(n)}, U^{(n)}), X^{(n)})$ must satisfy (A.2). By definition of $T_n(\theta)$ and $\tilde{T}_n(\theta)$, (A.2) is satisfied if $Y^{(n)} := \varphi(X^{(n)}, U^{(n)})$ satisfies

$$D_n(C(Y^{(n)}, X^{(n)}; \theta) \geq \sup_{C \in C_\theta(U^{(n)})} D_n(C) - \epsilon.$$ \hfill (A.3)

In the display above, $C_\theta(U^{(n)})$ is defined as in (2.5), and $C(Y^{(n)}, X^{(n)}; \theta)$ is the cost matrix with (i, j)th component $d((\tilde{U}_i, X_i), \Gamma_u(Y_j, X_j; \theta_1))$.

By the definition of $Y^{(n)}(X^{(n)}, U^{(n)})$, we have:

$$\sup_{C \in C_\theta(U^{(n)})} D_n(C) = \sup_{y^{(n)} \in Y^{(n)}(X^{(n)}, U^{(n)})} D_n(C(y^{(n)}, X^{(n)}; \theta)) < \infty.$$ \hfill (A.4)

Thus (A.3) is equivalent to

$$D_n(C(y^{(n)}, X^{(n)}; \theta) \geq \sup_{\tilde{y}^{(n)} \in \tilde{Y}^{(n)}(X^{(n)}, U^{(n)})} D_n(C(\tilde{y}^{(n)}, X^{(n)}; \theta) - \epsilon.$$ \hfill (A.4)

Define the correspondence $\Phi : \mathcal{X}^n \times \mathcal{U}^n \Rightarrow \mathcal{Y}^n$ by

$$\Phi \left(X^{(n)}, U^{(n)}\right) := \{y^{(n)} \in Y^{(n)}(X^{(n)}, U^{(n)}): \text{(A.4) holds}\}.$$ \hfill (A.4)

We fulfill requirements (i), (ii), and (iii) by showing that Φ admits a measurable selection φ. This follows directly from Theorem 17.40 page 184 of Bertsekas and Shreve [1996]: The correspondence Φ admits a universally measurable selection φ on $\mathcal{X}^n \times \mathcal{U}^n$. We have therefore proved that the distribution $P^{(n)}$ of $(Y^{(n)}, X^{(n)})$ is in $P^{(n)}_\theta$ and satisfies (A.2) as desired. \hfill \square

Proof of Theorem. Call $(\tilde{u}_i)_{i \geq 1}$ the low discrepancy sequence. For each $n \in \mathbb{N}$, call $Q^{*}_{U,n} := \Sigma_{i \leq n} \delta_{\tilde{u}_i}/n$ the empirical distribution associated with the low discrepancy sample. By construction, $Q^{*}_{U,n}$ converges in distribution to Q^{*}_U. Fix an arbitrary realizations of the triangular array $(Y_{i,n}, X_{i,n})_{i \leq n}, n \in \mathbb{N}$. Let $\{n_k, k \in \mathbb{N}\}$, be a subsequence such that $\lim inf T^{*}_{n}(\theta) = \lim T^{*}_{n_k}(\theta)$. Since $\{P_{bn} : n \geq 1\}$ is tight, we can extract a further subsequence, still denoted n_k, such that P_{bn_k} converges
to some distribution $P^* := P_Y^* \times P_X^*$ as $k \to \infty$. Then, $P_{X,0n_k} \times Q_{U,n_k}^*$ converges to $P_X^* \times Q_U^*$. Because $(y, x) \mapsto \Gamma_u(y, x; \theta)$ is continuous, $d((\tilde{u}, \tilde{x}), \Gamma_u(y, x; \theta))$ is continuous in $(\tilde{u}, \tilde{x}, y, x)$. Hence, by Theorem 5.20 in Villani [2009], we have

$$
D(Q_U^* \times P_X^*, P^*; \theta) = \lim_{k \to \infty} D(Q_{U,n_k}^* \times P_{X,0n_k}^*, P_{0n_k}^*; \theta) \geq \lim\inf_{n \to \infty} D(Q_{U,n}^* \times P_{X,0n}^*, P_{0n}^*; \theta) > 0.
$$

On the other hand, Assumption 3 implies that \hat{P}_n also converges in distribution to P^* with probability 1. Hence, by Theorem 5.20 in Villani [2009], we also have

$$
\lim_{n \to \infty} T_n^*(\theta) = D(Q_U^* \times P_X^*, P^*; \theta) > 0.
$$

There remains to show that $\lim_{n \to \infty} \tilde{T}_n^0 = 0$. Indeed, by Theorem 5.20 in Villani [2009],

$$
\lim_{n \to \infty} \tilde{T}_n^0 = \min_{\pi \in \mathcal{M}(Q_U^* \times P_X^*, Q_U^* \times P_X^*)} \mathbb{E}_\pi d((U, X), (U', X')) = 0.
$$

\[\square\]

Appendix B. Cost matrix for Example 1.2.2

The implementation of the test in example 1.2.2 for the purposes of the simulation experiment requires a non negative cost function $c(Y, X, \tilde{U}, \tilde{X}; \theta) = 0$ if and only if $(Y, \tilde{X}, \tilde{U}) \in \Gamma(\theta)$ and $X = \tilde{X}$. Now $(Y, \tilde{X}, \tilde{U}) \in \Gamma(\theta)$ if and only if for each firm j, $S_j = s(y, \tilde{X}, \tilde{U}; \theta)$, $P_j = p(y, \tilde{X}, \tilde{U}; \theta)$ and $y_j = 1 \Leftrightarrow \pi_j(y, \tilde{X}, \tilde{U}, \theta) = 1$, where $p(y, X, U; \theta)$ and $s(y, X, U; \theta)$ are the solutions to the system of equations (5.1) and (5.2), and $\pi_j(y, X, U; \theta) := (p_j(y, X, U; \theta) - \exp(W_j + \eta_j)) \mathcal{M}(y, X, U; \theta) - \exp(\gamma Z_j + \nu_j).

Define the difference between P and $p(y, \tilde{X}, \tilde{U}, \theta)$ as

$$
\Delta p(Y, \tilde{U}, \tilde{X}; \theta) = \left(y_j \frac{P_j - p_j(y, \tilde{X}, \tilde{U}; \theta)}{(P_j + p_j(y, \tilde{X}, \tilde{U}; \theta))/2} \right)_{j=1}^6.
$$

Similarly, define the difference between S and $s(y, X, U, \theta_1)$ as

$$
\Delta s(Y, \tilde{U}, \tilde{X}; \theta) = \left(y_j \frac{S_j - s_j(y, \tilde{X}, \tilde{U}, \theta_1)}{(S_j + s_j(y, \tilde{X}, \tilde{U}, \theta_1))/2} \right)_{j=1}^6.
$$
The discrepancy in entry decisions is defined as
\[\Delta \pi(Y, \tilde{U}, \tilde{X}; \theta) = \left(1 \{ \pi_j((y_j, y_{-j}), \tilde{X}, \tilde{U}, \theta) < \pi_j((1 - y_j, y_{-j}), \tilde{X}, \tilde{U}, \theta) \} \right)_{j=1}^6. \]

We add a moment to improve the power relative to the nested logit parameter \(\lambda \).

Define the within nest market share and its entropy as
\[S_j^w = \begin{cases} \frac{S_j}{\sum_j S_j} & \text{if } \sum_j y_j > 0, \\ 1 & \text{if } \sum_j y_j = 0, \end{cases} \quad \mathcal{E} = -\sum_{j:y_j=1} S_j^w \log(S_j^w), \]
and its model prediction as
\[e(y, \tilde{X}, \tilde{U}, \theta_1) = -\sum_{j:y_j=1} s_j^w(y, \tilde{X}, \tilde{U}, \theta_1) \log(s_j^w(y, \tilde{X}, \tilde{U}, \theta_1)), \]
where
\[s_j^w(y, \tilde{X}, \tilde{U}, \theta_1) = \begin{cases} \frac{s_j(y, \tilde{X}, \tilde{U}, \theta_1)}{\sum_j s_j(y, \tilde{X}, \tilde{U}, \theta_1)} & \text{if } \sum_j y_j > 0, \\ 1 & \text{if } \sum_j y_j = 0. \end{cases} \]

Define the within nest product share entropy discrepancy as
\[\Delta \mathcal{E}(Y, \tilde{U}, \tilde{X}; \theta_1) = \begin{cases} \mathcal{E} - e(y, \tilde{X}, \tilde{U}, \theta_1) & \text{if } \sum_j y_j > 0, \\ \frac{1}{2}(\mathcal{E} + e(y, \tilde{X}, \tilde{U}, \theta_1)) & \text{if } \sum_j y_j = 0. \end{cases} \]

Finally, we define the cost function \(c(Y, X, \tilde{U}, \tilde{X}; \theta_1) \) as
\[c(Y, X, \tilde{U}, \tilde{X}; \theta_1) = \Delta \mu(Y, X, \tilde{U}, \tilde{X}; \theta_1)' \mathcal{W}_\theta \Delta \mu(Y, X, \tilde{U}, \tilde{X}; \theta_1), \]
where
\[\Delta \mu(Y, X, \tilde{U}, \tilde{X}; \theta_1) := \begin{pmatrix} \Delta p(Y, \tilde{U}, \tilde{X}; \theta_1) \\ \Delta s(Y, \tilde{U}, \tilde{X}; \theta_1) \\ \Delta \mathcal{E}(Y, \tilde{U}, \tilde{X}; \theta_1) \\ \Delta \pi(Y, \tilde{U}, \tilde{X}) \\ X - \tilde{X} \end{pmatrix} \]
and W_{θ} is a weighting matrix that only depends on $X^{(n)} = (X_1, \ldots, X_n)$ and θ. Specifically, W_{θ} is defined as

$$W_{\theta} = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} E[\Delta\mu(Y, X, \tilde{U}, \tilde{X}; \theta_1)\Delta\mu'(Y, X, \tilde{U}, \tilde{X}; \theta_1)|X = X_i, \tilde{X} = X_j] \right]^{-1}$$

where the expectation is taken over (Y, \tilde{U}), where Y is generated from $Y \in \Gamma(X, U; \theta)$ with uniform equilibrium selection, and \tilde{U} and Y are independent.

Appendix C. Conditional size control

In this section, we provide size control results that are analogue to Theorem 2, except for the conditioning on the sample $X^{(n)}$ of realized covariates. The latter enables us to use the data driven norm proposed in (2.7). Denote $R^{(n)}$ the set of Borel probability measures on X^n. Define the following set of conditional distributions:

$$P_{(n)}(X^{(n)}) := \left\{ P_{Y^{(n)}|X^{(n)}}^{(n)} : \exists P_{X}^{(n)} \in R^{(n)}, \text{ s.t. } P_{Y^{(n)}|X^{(n)}}^{(n)} \times P_{X}^{(n)} \in \mathcal{P}_{\theta_{(n)}} \right\}.$$

Theorem 4. For all $\theta \in \Theta$, all $\alpha \in (0, 1)$ and all $n \in \mathbb{N}$ such that $\mathcal{P}_{\theta^{(n)}}$ is non empty, confidence region CR_n defined in (2.7) has correct coverage probability,

$$\inf_{P_{Y^{(n)}|X^{(n)}}^{(n)} \in \mathcal{P}_{\theta^{(n)}}(X^{(n)})} P_{Y^{(n)}|X^{(n)}}^{(n)} \left(T_n(\theta) \leq c_{n,1-\alpha}(\theta) \mid X^{(n)} \right) \geq 1 - \alpha, \quad \text{(C.1)}$$

with equality if the cumulative distribution function of $T_n(\theta)$ conditional on $X^{(n)}$ is continuous and increasing in a neighborhood of $c_{n,1-\alpha}(\theta)$.

Proof of Theorem 4. Let $X^{(n)}$ be the sample of observed covariates. We fix an arbitrary θ such that $\mathcal{P}_{\theta^{(n)}}$ is non empty and an arbitrary $\alpha \in (0, 1)$. Take an arbitrary distribution $P_{Y^{(n)}|X^{(n)}}^{(n)}$ in $\mathcal{P}_{\theta^{(n)}}(X^{(n)})$, and let $Y^{(n)}$ be a random vector distributed according to $P_{Y^{(n)}|X^{(n)}}^{(n)}$. Let $T_n(\theta)$ be the test statistic constructed from $(Y^{(n)}, X^{(n)})$. The proof then proceeds as in Theorem 2. \qed
Appendix D. Alternative algorithm

We propose an alternative algorithm to solve the following minimax optimal transport problem:

\[\mathcal{V} := \min_{\pi \in \Pi} \left[\max_{\forall j, w_j \in \Delta_j} \sum_{i,j} \pi_{ij} (w'_j c_{ij}) \right] \]

where

- \(\Pi := \{ \pi \in \mathbb{R}^{n \times m}_+ : \forall j, \sum_i \pi_{ij} = \frac{1}{m}, \forall i, \sum_j \pi_{ij} = \frac{1}{n} \}; \)

- for each \(j = 1, \ldots, m, \Delta_j := \{ t \in \mathbb{R}^{d_j}_+ : \sum_{i=1}^{d_j} t_i = 1 \}; \)

- for each \(j = 1, \ldots, m, c_{ij} \in \mathbb{R}^{d_j}. \)

If \(d_j = 1 \) for each \(j = 1, \ldots, m, \) then solving for \(\mathcal{V} \) is equivalent to solving a discrete optimal transport problem. If \(d_j > 1 \) for some \(j, \) then solving \(\mathcal{V} \) is much more complicated. Instead, we propose to approximate the value of \(\mathcal{V} \) by

\[\mathcal{V}(\epsilon; \mu) := \min_{\pi \in \Pi} \left[\max_{\forall j, w_j \in \Delta_j} \sum_{i,j} \pi_{ij} (w'_j c_{ij}) + \frac{\epsilon}{\mu} \sum_{i,j} \pi_{ij}^\mu \right], \]

for any \(\epsilon > 0 \) and any \(\mu > 1. \) We can show that

\[\mathcal{V} \in \left[\mathcal{V}(\epsilon; \mu) - \frac{\epsilon}{\mu (mn)^{\mu-1}}, \mathcal{V}(\epsilon; \mu) \right]. \] \hspace{1cm} \text{(D.1)}

Thus, we can choose \(\epsilon \) to meet any pre-specified tolerance for the approximation of \(\mathcal{V} \) by \(\mathcal{V}(\epsilon, \mu). \) The bound in (D.1) also suggests that the approximation error shrinks as \(mn \to \infty. \)

Optimization problem \(\mathcal{V}(\epsilon; \mu) \) has the very convenient dual representation:

\[\max_{w \in \Delta, \alpha \in \mathbb{R}^n, \beta \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^n \alpha_i + \frac{1}{m} \sum_{j=1}^m \beta_j - \frac{\mu - 1}{\mu} \left(\frac{1}{\epsilon} \right)^{\frac{1}{\mu-1}} \sum_{i,j} (\alpha_i + \beta_j - w'_j c_{ij})^\mu \] \hspace{1cm} \text{(D.2)}

where \((\alpha_i + \beta_j - w'_j c_{ij})^+ := \max(0, \alpha_i + \beta_j - w'_j c_{ij}), \) and \(\Delta = \Delta_1 \times \cdots \times \Delta_m. \) Note that the objective function in (D.2) is a concave function. When \(\mu \in (1, 2), \) this function is twice continuously differentiable with Lipschitz continuous Hessian matrix. When \(\mu \in (1, 2), \) (D.2) can be solved by any numerical optimizer for convex programming with
twice differentiable objective functions. The total dimension of the variables is $n + m + \sum_{j=1}^{m}d_j - \sum_{j=1}^{m}1\{d_j = 1\}$ which increases linearly in the dimension of the cost matrix. When $\mu = 2$, the objective function in (D.2) is no longer twice differentiable. This lack of smoothness leads to a slower convergence rate.

References

C. Aliprantis and K. Border. *Infinite Dimensional Analysis*. Springer, second edition, 1999.

T. Anderson and H. Rubin. Estimation of the parameters of a single equation in a complete system of stochastic equations. *Annals of Mathematical Statistics*, 20:46–63, 1949.

D. Andrews and X. Shi. Inference based on conditional moment inequalities. *Econometrica*, 81:609–666, 2013.

G. Barnard. Comment on ‘the spectral analysis of point processes’ by M.S. Bartlett. *Journal of the Royal Statistical Society, Series B*, 25:294, 1963.

L. Barseghyan, M. Coughlin, F. Molinari, and J. C. Teitelbaum. Heterogeneous choice sets and preferences. forthcoming in *Econometrica*, 2021.

A. Beresteanu, I. Molchanov, and F. Molinari. Sharp identification regions in models with convex predictions. *Econometrica*, 79:1785–1821, 2011.

D. Bertsekas. The auction algorithm: a distributed relaxation method for the assignment problem. *Annals of Operations Research*, 14:105–123, 1988.

D. Bertsekas and S. Shreve. *Stochastic Optimal Control: The Discrete Time Case*. Athena Scientific: Belmont, Massachusetts, 1996.

I. Canay and A. Shaikh. Practical and theoretical advances for inference in partially identified models. In B. Honoré, A. Pakes, M. Piazzesi, and L. Samuelson, editors, *Advances in Economics and Econometrics*, volume 2 of *Econometric Society Monographs*, pages 271–306. Cambridge University Press, 2018.

S. Chen and H. Kaido. Robust tests of model incompleteness in the presence of nuisance parameters. unpublished manuscript, 2022.

X. Chen, T. M. Christensen, and E. Tamer. Monte Carlo confidence sets for identified sets. *Econometrica*, 86:1965–2018, 2018.
V. Chernozhukov, S. Lee, and A. Rosen. Inference on intersection bounds. *Econometrica*, 81:667–737, 2013.

V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge-Kantorovich depth, quantiles, ranks and signs. *Annals of Statistics*, 45:223–256, 2017.

V. Chernozhukov, D. Chetverikov, and K. Kato. Inference on causal and structural parameters using many moment inequalities. *Review of Economic Studies*, 86:1867–1900, 2019.

A. Chesher and A. Rosen. Generalized instrumental variable models. *Econometrica*, 85:959–989, 2017.

A. Chesher and A. Rosen. Generalized instrumental variable models, methods and applications. In S. N. Durlauf, L. P. Hansen, J. J. Heckman, and R. L. Matzkin, editors, *Handbook of Econometrics*, volume 7A, pages 1–110. Elsevier, 2020.

A. Chesher, A. Rosen, and K. Smolinski. An instrumental variable model of multiple discrete choice. *Quantitative Economics*, 4:157–196, 2013.

F. Ciliberto, C. Murry, and E. Tamer. Market structure and competition in airline markets. *Journal of Political Economy*, 129:2995–3038, 2021.

G. Cox and X. Shi. Simple adaptive size-exact testing for full-vector and subvector inference in moment inequality models. *Review of Economic Studies*, 2022.

A. de Paula, S. Richards-Shubik, and E. Tamer. Identifying preferences in networks with bounded degree. *Econometrica*, 86:263–288, 2018.

S. Dhouib, I. Redko, T. Kerdoncuff, R. Emonet, and M. Sebban. A swiss army knife for minimax optimal transport. In *Proceedings of the 37th International Conference on Machine Learning*, pages 7613–7622, 2020.

J.-M. Dufour. Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics. *Journal of Econometrics*, 133:443–477, 2006.

J.-M. Dufour and L. Khalaf. Monte Carlo test methods in econometrics. In B. Baltagi, editor, *A Companion to Econometric Theory*, pages 494–519. Blackwell, 2001.

M. Dwass. Modified randomization tests for nonparametric hypotheses. *Annals of Mathematical Statistics*, 28:181–187, 1957.

I. Ekeland, A. Galichon, and M. Henry. Optimal transportation and the falsifiability of incompletely specified economic models. *Economic Theory*, 42:355–374, 2010.
L. Epstein, H. Kaido, and K. Seo. Robust confidence regions for incomplete models. *Econometrica*, 84:1799–1838, 2016.

A. Galichon and M. Henry. Inference in incomplete models. unpublished manuscript, 2006.

A. Galichon and M. Henry. Set identification in models with multiple equilibria. *Review of Economic Studies*, 78:1264–1298, 2011.

R. Giacomini and T. Kitagawa. Robust Bayesian inference for set-identified models. *Econometrica*, 89:1519–1556, 2021.

R. Giacomini, T. Kitagawa, and M. Reid. Robust Bayesian inference in proxy SVARs. *Journal of Econometrics*, 2021.

J. Gu, T. M. Russell, and T. Stringham. Counterfactual identification and latent space enumeration in discrete outcome models. unpublished manuscript, 2022.

P. Haile and E. Tamer. Inference in an incomplete model of English auctions. *Journal of Political Economy*, 111:1–51, 2003.

B. Jovanovic. Observable implications of models with multiple equilibria. *Econometrica*, 57:1431–1437, 1989.

H. Kaido and F. Molinari. Information based inference in models with set-valued predictions and misspecification. arXiv:2401.11046, 2024.

H. Kaido and Y. Zhang. Robust likelihood ratio tests for incomplete economic models. unpublished manuscript, 2019.

L. Li, D. Kédagni, and I. Mourifié. Discordant relaxations of misspecified models. Quantitative Economics, forthcoming, 2020.

Y. Luo and H. Wang. Core determining class and inequality selection. *American Economic Review, Papers & Proceedings*, 107:274–277, 2017.

R. McCann. Existence and uniqueness of monotone measure-preserving maps. *Duke Mathematical Journal*, 80:309–323, 1995.

I. Molchanov and F. Molinari. *Random Sets in Econometrics*. Cambridge University Press, 2018.

F. Molinari. Microeconometrics with partial identification. In S. N. Durlauf, L. P. Hansen, J. J. Heckman, and R. L. Matzkin, editors, *Handbook of Econometrics*, volume 7A, pages 355–486. Elsevier, 2020.
C. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and Complexity. Dover, second edition edition, 1998.

G. Peyré and M. Cuturi. Computational Optimal Transport with Applications to Data Science. NOW: Boston, 2019.

K. Ponomarev. Selecting inequalities for sharp identification in models with set-valued predictions. Unpublished manuscript, 2022.

M. Roberts. The unreasonable effectiveness of quasi-random sequences. http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/, 2018.

D. Schuhmacher, B. Bähre, C. Gottschlich, V. Hartmann, F. Heinemann, and B. Schmitzer. Computation of Optimal Transport Plans and Wasserstein Distances, R package version 0.12-2 edition, 2020.

E. Tamer. Incomplete simultaneous discrete response model with multiple equilibria. Review of Economic Studies, 70:147–165, 2003.

C. Villani. Topics in Optimal Transportation. Providence: American Mathematical Society, 2003.

C. Villani. Optimal Transport: Old and New. Springer, 2009.