Growing Teratoma Syndrome Secondary to Ovarian Giant Immature Teratoma in an Adolescent Girl

A Case Report and Literature Review

Song Li, Zhenzhen Liu, Chengyong Dong, Fei Long, Qinlong Liu, Deguang Sun, Zhenming Gao, and Liming Wang

Abstract: Growing teratoma syndrome (GTS) is a rare clinical entity first described by Logothetis et al in 1982. Although it is unusual for GTS to be located in the ovary, this report is of a case of an adolescent girl who underwent a complete surgical resection of the mass. Histopathology confirmed only an immature teratoma had originated from the ovary and so she refused adjuvant chemotherapy with bleomycin, etopside, and cisplatin over 4 cycles. Results from an abdominal enhanced CT (computed tomography) 9 years later revealed a giant mass had compressed adjacent tissues and organs. Laparotomy was performed and a postoperative histopathology showed the presence of a mature teratoma, and so the diagnosis of ovarian GTS was made. One hundred one cases of ovarian GTS from English literature published between 1977 and 2015 were collected and respectively analyzed in large samples for the first time.

The median age of diagnosis with primary immature teratoma was 22 years (range 4–48 years, n = 56). GTS originating from the right ovary accounted for 57% (27/47, n = 47) whereas the left contained 43% (20/47, n = 47). Median primary tumor size was 18.7 cm (range 6–45 cm, n = 28) and median subsequent tumor size was 8.6 cm (range 1–25 cm, n = 25). From the primary treatment to the diagnosis of ovarian GTS, median tumor growth speed was 0.94 cm/month (range 0.3–4.3 cm/month, n = 21). Median time interval was 26.6 months (range 1–264 months, n = 41). According to these findings, 5 patients did have a pregnancy during the time interval between primary disease and GTS, making our patient the first case of having a pregnancy following the diagnosis of ovarian GTS. Because of its high recurrence and insensitivity to chemotherapy, complete surgical resection is the preferred treatment and fertility-sparing surgery should be considered for women of child-bearing age.

Anyhow GTS of the ovary has an excellent prognosis. Patients with GTS had no evidence of recurrence or were found to be disease free during a 40.3-month (range 1–216 months, n = 48) median follow-up. Moreover, regular follow-ups with imaging and serum tumor markers are important and must not be neglected.

(Medicine 95(7):e2647)

Abbreviations: AFP = alpha fetoprotein, BEP = bleomycin etopside and cisplatin, CA = carbohydrate antigen, CT = computed tomography, GP = gliomatosis peritonei, GTS = growing teratoma syndrome, HCG = human chorionic gonadotropin, HE = hematoxylin-eosin, NSGCT = nonseminomatous germ cell of the testis.

INTRODUCTION

The growing teratoma syndrome (GTS) was originally defined by Logothetis et al in 1982 as the phenomenon of subsequent growth of a benign tumor, following the removal of a primary malignant tumor during or after chemotherapy.1 Growing teratoma syndrome (GTS) is a rare entity related to both testicular and ovarian carcinoma. The incidence of GTS in a nonseminomatous germ cell of the testis is 1.9% to 7.6%, while it has been reported to occur in 12% of ovarian germ cell tumors.2,3 Generally speaking, ovarian GTS typically occurs in young adults and adolescents.4 Some researchers have recommended 3 criteria according to the Logothetis definition: The criteria of GTS includes (1) normalization of serum tumor markers, alpha fetoprotein (AFP), and human chorionic gonadotropin; (2) enlarging or new masses despite appropriate chemotherapy for nonseminomatous germ cell tumors; (3) the exclusive presence of mature teratoma in the resected specimen.5 Herein, we report a rare case of an adolescent girl with ovarian GTS, and 101 cases of ovarian GTS from English literature published between 1977 and 2015 were collected and respectively analyzed in large samples for the first time. This contributed to the understanding of the clinical features of this disease.

CASE REPORT

A 16-year-old girl was presented in August 2005 with intermittent abdominal pain and distention for half a year. Ultrasonography revealed a right ovarian tumor that occupied the whole right upper abdominal cavity. She received the right oophorectomy and the giant tumor was completely resected, showing about a 40 cm × 25 cm × 15 cm mass with intact capsule. Histopathology revealed skin, cartilage, and a malignant immature teratoma. After surgery, she was treated with 4 cycles of bleomycin, etopside, and cisplatin (BEP) chemotherapy...
but refused any further treatment and missed her follow-up. In the following years, she had not felt any discomfort until August 2014. A mass in the whole right abdomen could be touched about 30 cm × 20 cm, without a clear boundary between surrounding tissues. Abdominal-enhanced CT revealed a giant mass in the retroperitoneum that compressed the postcava, the right hepatic vein, liver, pancreas, and the right kidney. Because of the compression, the portal vein, right renal artery, superior mesenteric artery, and celiac trunk had shifted to the left (Figure 1). Tumor markers, AFP, and human chorionic gonadotropin were normal while the carbohydrate antigen 125 level was 412.30 u/mL (normal, 0–35.00 u/mL), and carbohydrate antigen 199 level was over 7000 u/mL (normal, 0–37.00 u/mL). The rest of the laboratory tests were found to be negative. After a discussion by the departments of general surgery, obstetrics gynecology and urology, the patient underwent a resection of abdominal and pelvic lesions, around the liver and spleen. The giant tumor was completely resected and gross examination revealed a giant mass (29 cm × 24 cm × 12 cm) containing lipid, hair, gelatinous material, and a few nodules (Figure 2). Histopathology revealed only a mature teratoma (Figure 3). Hence, a final diagnosis of “growing teratoma syndrome (GTS)” was made. During the 14-month follow-up, no evidence of recurrence or metastasis was observed and she became pregnant 2 months after her last follow-up.

DISCUSSION

This is an unusual case in which there were increasing masses 9 years after chemotherapy for an ovarian immature teratoma, but all the masses subsequently resected were shown to contain only mature teratoma. In 1977, DiSaia firstly reported 3 cases of “chemotherapeutic retroconversion” in which benign distant metastasis appeared following adjuvant chemotherapy for immature teratoma of the ovary. However, the term GTS was originally defined by Logothetis in 1982, when he described 6 patients with nonseminomatous germ cell tumors who subsequently developed growing metastatic masses despite appropriate systemic chemotherapy and normal range of serum tumor markers. The histopathology revealed benign mature teratoma without viable germ cell elements.

GTS is characterized by an increase in metastatic mass after complete eradication of a primary malignant ovarian germ cell tumor and by normalization of serum tumor markers, either during or after chemotherapy. Some researchers considered that these 2 characters are in fact the same entity. There are 2 major inferences of GTS formation. The first hypothesis is that chemotherapy transforms malignant cells into “benign” teratoma elements. The second hypothesis is that chemotherapy can only destroy malignant cells leaving chemoresistant teratoma behind. It remains, that there is much uncertainty around GTS due to the limited number of cases, and that either of the inference is in fact possible or that both can play an important roles in the development of GTS.

To the best of our knowledge, ovarian GTS is only 101 cases in published English literatures (Table 1). Most of the patients had abdominal symptoms, such as abdominal pain and distension when they first sought medical advice. In our study, the median age of the diagnosis of primary immature teratoma was 22 years (range 4–48 years, n = 56) (Table 1). While Bentivegna et al reported the median age at diagnosis was 26 years (range 8–41 years, n = 38). Because of the existence of 10 gliomatosis peritonei cases in 38, this data would not be
suitable for pure GTS. GTS originating from the right ovary accounted for 57% (27/47, n = 47) and the left contained 43% (20/47, n = 47) (Table 1). Median primary tumor size was 18.7 cm (range 6–45 cm, n = 28) and median subsequent tumor size was 8.6 cm (range 1–25 cm, n = 25) (Table 1). Growing teratomas have a rapid expansion rate, with a median linear growth of 0.5 to 0.7 cm/month and volume increase of 9.2 to 12.9 cm³/month.11,12 While from the results of our study, the tumor growth was 0.94 cm/month (range 0.3–4.3 cm/month, n = 21) (Table 1). The discrepancy could be explained by different sample sizes.

This behavior is unpredictable because of aggressive local spread as well as GTS having the potential for malignant degeneration.11,13,14 The GTS nodules can appear at any stage during or after chemotherapy, and in some cases can be delayed anything up to 8 years, with an average interval of 8 months.7,13 In our study, median time interval was 26.6 months (range 1–264 months, n = 41) (Table 1) and our patient was delayed up to 9 years. Therefore regular follow-ups contributed to early detection, diagnosis, and treatment. It is reported that the retroperitoneum is the most common site for GTS, followed closely by the lung, cervical lymph nodes, and mediastinum.7,13 To date, there is no reliable indicator for GTS. Close attention should always be paid to an enlarged tumor and/or normalization of serum tumor markers during chemotherapy.16–18

The preferred treatment is complete surgical resection, because of GTS having a high recurrence rate of 72% to 83% in patients with partial resection, against 0% to 4% in those who undergo complete resections, as teratomas are resistant to chemotherapy and radiation therapy.11 Early detection and reasonable complete resection of the primary lesion and implantation or metastasis are essential. Adjuvant chemotherapy with blemycin, etopside, and cisplatin was recommended for patients when diagnosed with immature teratoma following primary surgery. Palbociclib (PD0332991) is reported that it can stabilize the vascularization of the tumor in pediatric patients with an intracranial teratoma.19 But further investigation of the use of Palbociclib in patients with growing teratoma syndrome should be carried out.19 From these literatures, tumor markers AFP usually returned to within the normal range, with the exception of 2 cases reported by Pendlebury et al and Lorusso et al.18,20

So far, no standardized management protocol has been established to diagnose and treat GTS.25 However it has shown, GTS has an overall good prognosis with a 5-year overall survival rate of 89% in patients who undergo surgery.3,7 This study has shown, patients with GTS had little or no evidence of recurrence or indeed were disease free for 40.3 months (range 1–216 months, n = 48) median follow-up (Table 1). According to our study, 5 patients had a pregnancy during the time interval between primary disease and GTS, with our patient being the first case of having a pregnancy following the diagnosis of ovarian GTS. Therefore fertility-sparing surgery is recommended for women of child-bearing age if conditions allow. Until now, the mechanism of GTS is still unclear and the diagnosis of it has proven difficult. Consequently, the accumulation of additional data from more cases would be necessary to further elucidate this type of tumor and standardize optimal therapy.

FIGURE 2. The whole abdominal lesion reached 29 cm × 24 cm × 12 cm in size (A, the ruler is 20 cm long), 5.015 kg in weight (C). A part of pelvic lesions, lesions in the hepatic envelop, and around the spleen (B).

FIGURE 3. Histopathology of mature teratoma of the abdomen cavity at the age of 24. The carcinoids are distributed in various mature tissues derived from 3 germ cell layers (HE × 100). (A) sebaceous gland (red arrow); (B) muscular tissue (red arrow); (C) bronchus tissue (red arrow). HE = hematoxylin-eosin.
Author	Year	No. cases	Age	Presentation	Right or Left ovary	Primary main tumor size, cm	Primary tumor markers before first treatment	Primary tumor markers after primary treatment	Time interval, mo	Subsequent main tumor size, cm	Subsequent tumor markers after primary treatment	Postoperative course	Follow-up after the diagnosis of GTS, mo	Successful pregnancy	
Bentivegna et al	2015	28	N/A	Abdominal distention	Right	N/A	Elevated AFP and CA-125	Elevated AFP and CA-125	N/A	Elevated AFP and CA-125	Laparoscopic surgery	Fertility-preserving surgery, adjuvant surgery, chemotherapy for 27 patients except 1	12	N/A	Yes
Shigeta et al	2015	1	20	Abdominal distention	Left	17	Elevated AFP and CA-125	Elevated AFP and CA-125	17	Elevated AFP and CA-125	LSO, 3 cycles of BEP	5	No evidence of recurrence	12	N/A
Pendlebury et al	2015	21	21	Abdominal and pelvic pain	Left	12 × 9.5 × 8	Elevated AFP and CA-125	Elevated AFP	2	Elevated AFP	Laparotomy, EP	2	No evidence of recurrence	36	N/A
Merard et al	2015	2	27	Abdominal and back pain	Left	19.4 × 10.3 × 1.53	Elevated CA-125	Elevated CA-125	N/A	Elevated CA-125	LSO, 3 cycles of BEP	N/A	N/A	8	Yes
Dieter et al	2015	1	4	Vomiting, increasing abdominal girth	Right	20 × 12 × 9.2	Elevated AFP and CA-125	Elevated AFP and CA-125	5	Elevated AFP and CA-125	RSO, 4 cycles of BEP	5	Reaction of the subcapsular liver lesion, 2 cycles of BEP	108	N/A
Panda et al	2014	1	29	Abdominal distension	Right	6 × 5.5 × 4	Elevated AFP and HCG	Elevated AFP and HCG	12	Elevated AFP and HCG	RSO, 3 cycles of BEP	N/A	N/A	N/A	N/A
Han et al	2014	5	13	Abdominal distension	Right	N/A	Elevated AFP and HCG	Elevated AFP and HCG	5	Elevated AFP and HCG	RSO, BEP	5	Second operation	N/A	N/A
					Right	N/A	Elevated AFP and HCG	Elevated AFP and HCG	16	Elevated AFP and HCG	LSO, BEP	16	Second operation	N/A	N/A
					Right	N/A	Elevated AFP and HCG	Elevated AFP and HCG	8	Elevated AFP and HCG	LSO, BEP	8	Second operation	N/A	6.4
					Right	N/A	Elevated AFP and HCG	Elevated AFP and HCG	2	Elevated AFP and HCG	LSO, BEP	2	Second operation	3	5.5
					Right	N/A	Elevated AFP and HCG	Elevated AFP and HCG	21	Elevated AFP and HCG	LSO, BEP	21	Second operation	2	N/A
De Cuyper et al	2014	1	19	Abdominal and pelvic discomfort	Left	20	Elevated AFP and LHI	Elevated AFP and LHI	13	Elevated AFP and LHI	Laparoscopic surgery, 4 cycles of BEP	N/A	N/A	48	N/A
					Left	15	Elevated AFP and CA-125	Elevated AFP and CA-125	60	Elevated AFP and CA-125	LSO, 6 cycles of BEP	60	Laparotomy	11	N/A
Shibata et al	2013	1	14	Abdominal fullness	Left	15	Elevated AFP and CA-125	Elevated AFP and CA-125	N/A	Elevated AFP and CA-125	LSO, 6 cycles of BEP	N/A	N/A	11	N/A
Kato et al	2013	2	30	Abdominal symptoms	Right	N/A	Elevated AFP and CA-125	Elevated AFP and CA-125	Negative	Elevated AFP and CA-125	Surgical resection, chemotherapy with PEP	96	Laparoscopic surgery	5	Yes
					Right	N/A	Elevated AFP and CA-125	Elevated AFP and CA-125	Negative	Elevated AFP and CA-125	Surgical resection, chemotherapy with PEP	264	Surgical resection	8	Yes

Note: LSO = Laparoscopic surgery, BEP = Bevacizumab, Etoposide, cisplatin.
Author	Year	No. cases	Age	Presentation	Right or Left ovary	Primary main tumor size, cm	Primary markers before first treatment	Tumor markers after primary treatment	Time interval, mo	Subsequent main treatment	Subsequent main tumor size, cm	Postoperative course	Follow-up after the diagnosis of GTS, mo	Successful pregnancy	
Byrd et al	2013	5	48		N/A	N/A	N/A	TAH, BSO, BEP	N/A	1 Suboptimal debulking	N/A	N/A	18	N/A	
					Left	N/A	N/A	LSO, suboptimal debulking, BEP	N/A	6 IEP, hepatectomy, cholecystectomy, optimal debulking, suboptimal debulking	N/A	N/A	84	N/A	
					Left	N/A	N/A	LSO, suboptimal debulking	N/A	1 Suboptimal debulking	N/A	N/A	15	N/A	
					Left	N/A	N/A	LSO, BEP, RSO, BEP	N/A	12 Optimal debulking Lape	N/A	N/A	12	N/A	
					Left	N/A	N/A	Elevated CA-125	12	1 IEP, hepatic resection, cholecystectomy, optimal debulking	N/A	N/A	18	N/A	
Kampan et al	2012	1	17	Noticable pelvic mass	Right	N/A	N/A	Elevated CA-125	12	6 courses of CP, staging laparotomy	N/A	N/A	12	N/A	
Al-Jumaily et al	2012	1	12	Abdominal pain and distension	Right	22 × 18	Elevated AFP	Negative	6	Laparotomy	N/A	N/A	32	N/A	
Meubri et al	2011	1	18	Abdominal pain	Right	11.4 × 9.9 × 9.6	Elevated AFP	Negative	6	Laparotomy with an optimal cytoreduction	N/A	N/A	60	N/A	
Lommao et al	2011	2	33	Abdominal volume and pelvic pain	Right	11.4 × 9.9 × 9.6	Elevated AFP	Negative	N/A	Surgical excision of liver masses	N/A	N/A	5	N/A	
					Left	N/A	N/A	Fertility-sparing surgery, 4 courses of BEP	N/A	Surgical excision of liver masses	N/A	N/A	5	N/A	
Kikawa et al	2011	1	36	Lower abdominal pain	Left	12 × 7	Elevated AFP, CA-125	Negative	6	3 cycles to BEP, laparotomy	N/A	N/A	6	N/A	
Sanogu et al	2010	1	26	Abdominal pain	Right	Elevated AFP, CA-125, and CA-199	Elevated AFP	Negative	6	3 courses of BEP, laparotomy	N/A	N/A	6	N/A	
Radhime et al	2010	1	19	Abdominal distension	Left	25 × 20	Elevated AFP, CA-125, and CA-199	LSO, chemotherapy	N/A	Laparotomy	N/A	N/A	20	N/A	
Matsuboto et al	2010	1	30	Increasing abdominal girth	Right	15	Elevated AFP, CA-125	Fertility-sparing surgery, 4 courses of BEP	Negative	97 Laparoscopic surgery 5.3	N/A	N/A	6	Yes	
Tavrantzis et al	2009	1	20	Abdominal pain	Right	7 × 5	Elevated AFP	Lape, surgery with fertility preservation	Negative	24 Second operation	N/A	N/A	72	Yes	
Heish et al	2009	1	29	Abdominal discomfort, abdominal mass	Left	21 × 21 × 13	Elevated AFP, CA-125	Lape, surgery with fertility preservation	Negative	8 Laparotomy	N/A	N/A	6	N/A	
Harip and et al	2008	3	18		Right	N/A	RSO	4 cycles of BEP	N/A	Laparotomy	N/A	N/A	36	N/A	
					Left	15.3 × 14.3	TAH, 4 cycles of BEP	Negative	N/A	Laparotomy	N/A	N/A	60	N/A	
Author	Year	No. cases	Age	Presentation	Right or Left ovary	Primary main tumor size, cm	Tumor markers before first treatment	Primary main treatment	Tumor markers after primary treatment	Time interval, mo	Subsequent main treatment	Subsequent main tumor size, cm	Postoperative course	Follow-up after the diagnosis of GTS, mo	Successful pregnancy
-----------------	------	-----------	-----	------------------------------------	---------------------	----------------------------	-------------------------------------	--	-------------------------------	-----------------	--	---------------------------	---------------------	-------------------------------	---------------------
Djordjevic et al	2007	1	38	Abdominal pain and weight loss	Right	8.8 × 8	N/A	Elevated AFP	Negative	45	RISO, debulking surgery, doxorubicin	Negative	N/A	9	N/A
Zagame et al	2006	12	Median 15.5, range 9–29	N/A	N/A	Elevated AFP	N/A	Laparotomy, doxorubicin	Negative	Laparotomy	N/A	Median 9, range 4–55	N/A	N/A	
Tangjitgamol et al	2006	1	5	Abdominal pain	N/A	11	N/A	Surgical resection	Negative	25	N/A	N/A	16	16	N/A
Dewdney et al	2006	1	19	Abdominal pain, distention	Right	30	N/A	Laparotomy, 3 cycles of BEP	N/A	8	Laparotomy	N/A	18	18	N/A
Umeda et al	2005	1	34	Abdominal mass	Right	30	Elevated AFP and CA-125	Laparotomy, 5 cycles of BEP	Negative	6	Laparotomy	N/A	36	36	N/A
Rikha et al	2005	1	26	Acute abdominal pain	Left	N/A	Elevated AFP and CA-125	Laparotomy, 3 cycles of BEP	Negative	12	Laparotomy	N/A	144	144	N/A
Nimkin et al	2004	1	12	Abdominal girth	Right	25 × 25 × 20	Elevated AFP and CA-125	Laparotomy, doxorubicin	Negative	12	Laparotomy	N/A	3	3	N/A
Amsalem et al	2004	1	12	Abdominal pain and swelling	Left	30	Elevated AFP and CA-125	Laparotomy, 3 cycles of BEP	Negative	7	Complete infracolic omentectomy and para-aortic lymph node dissection	Surgical resection	N/A	24	N/A
Inokusa et al	2003	1	5	Abdominal bloating	Right	30	Elevated AFP and CA-125	Laparotomy, doxorubicin	Negative	6	Surgical resection	N/A	36	36	N/A
Irmie et al	2002	1	24	Abdominal distention	Right	16	Elevated AFP and CA-125	Laparotomy, 3 cycles of PEP	Negative	15	Cytoreductive surgery	11 × 6	17	17	N/A
David et al	2002	1	24	Abdominal mass	Right	19 × 16 × 9.5	Elevated AFP and CA-125	Laparotomy, 4 cycles of BEP	Negative	8	Debulking surgery	4	12	12	N/A
Andre et al	2000	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	65	65	N/A
Geider et al	1994	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	43	N/A
Kates et al	1993	1	38	Abdominal tenderness	Right	20	Elevated AFP	Laparotomy, left omentectomy, doxorubicin	Negative	20	RISO, debulking surgery, doxorubicin	Negative	N/A	28	N/A
Janecu et al	1992	1	30	N/A	N/A	17	N/A	Laparotomy, doxorubicin	Negative	17	Laparotomy, chemotherapy	N/A	N/A	12	N/A
Moskovic et al	1991	4	33	N/A	Right	N/A	TAH, BSO, doxorubicin	Laparotomy, chemotherapy	N/A	6	Laparotomy, chemotherapy	N/A	84	84	N/A
			34	N/A	Left	N/A	LSO	Laparotomy	14	Laparotomy	N/A	5	5	N/A	
			N/A	N/A	Right	N/A	RISO	Laparotomy	N/A	8	N/A	N/A	12	12	N/A

The patient remained disease-free 9 months after her last surgery.

The patient remained well with a new mass not resected.

The patient was alive for 18 months after the last operation.

The patient was disease-free at 3-year follow-up.

The patient presented no evidence of disease for 17 months after the last surgery.

The patient remained no evidence of recurrence 12 months after the last surgery.

The patient died 65 months after diagnosis.

The patient died at 12 months after surgery.
Follow-up after the diagnosis of GTS,
Successful Subsequent pregnancy
Subsequent Time Tumor markers after primary treatment

DiSaia PJ, Saltz A, Kagan AR, et al. Chemotherapeutic retroconversion of immature teratoma of the ovary. Obstet Gynecol. 1977;49:346–350.

Daher P, Nadjari M, Prus D, et al. Growing teratoma syndrome: first case report in a 4-year-old girl. J Pediatr Adolesc Gynecol. 2015;28:e5–e7.

Amsalem H, Nadjari M, Prus D, et al. Growing teratoma syndrome vs chemotherapeutic retroconversion: case report and review of the literature. Gynecol Oncol. 2004;92:357–360.

Byrd K, Stany MP, Herbold NC, et al. Growing teratoma syndrome: brief communication and algorithm for management. Aust N Z J Obstet Gynaecol. 2013;53:318–321.

Panda A, Kandasamy D, Sh C, et al. Growing teratoma syndrome of ovary: avoiding a misdiagnosis of tumour recurrence. J Clin Diagnos Res. 2014;8:197–198.

Spiess PE, Kassouf W, Brown GA, et al. Surgical management of growing teratoma syndrome: the M. D. Anderson cancer center experience. J Urol. 2007;177:1330–1334 discussion 1334.

Lee DJ, Djaladat H, Tadros NN, et al. Growing teratoma syndrome: clinical and radiographic characteristics. Int J Urol. 2014;21:905–908.

Scavuzzo A, Santana Rios ZA, Noveron NR, et al. Growing teratoma syndrome. Case Rep Urol. 2014;2014:139425.

Djordjevic B, Euscher ED, Malpica A. Growing teratoma syndrome of the ovary: review of literature and first report of a carcinoid tumor arising in a growing teratoma of the ovary. Am J Surg Pathol. 2007;31:1913–1918.

Denaro L, Pluchinotta F, Faggin R, et al. What’s growing on? The growing teratoma syndrome: analysis of 38 cases. Ann Surg Oncol. 2015;22 (suppl 3):964–970.

DiSaia PJ, Saltz A, Kagan AR, et al. Chemotherapeutic retroconversion of immature teratoma of the ovary. Obstet Gynecol. 1977;49:346–350.

Daher P, Riachy E, Khoury A, et al. Growing teratoma syndrome: first case report in a 4-year-old girl. J Pediatr Adolesc Gynecol. 2015;28:e5–e7.

Amsalem H, Nadjari M, Prus D, et al. Growing teratoma syndrome vs chemotherapeutic retroconversion: case report and review of the literature. Gynecol Oncol. 2004;92:357–360.

Byrd K, Stany MP, Herbold NC, et al. Growing teratoma syndrome: brief communication and algorithm for management. Aust N Z J Obstet Gynaecol. 2013;53:318–321.

Panda A, Kandasamy D, Sh C, et al. Growing teratoma syndrome of ovary: avoiding a misdiagnosis of tumour recurrence. J Clin Diagnos Res. 2014;8:197–198.

Spiess PE, Kassouf W, Brown GA, et al. Surgical management of growing teratoma syndrome: the M. D. Anderson cancer center experience. J Urol. 2007;177:1330–1334 discussion 1334.

Lee DJ, Djaladat H, Tadros NN, et al. Growing teratoma syndrome: clinical and radiographic characteristics. Int J Urol. 2014;21:905–908.

Scavuzzo A, Santana Rios ZA, Noveron NR, et al. Growing teratoma syndrome. Case Rep Urol. 2014;2014:139425.

Djordjevic B, Euscher ED, Malpica A. Growing teratoma syndrome of the ovary: review of literature and first report of a carcinoid tumor arising in a growing teratoma of the ovary. Am J Surg Pathol. 2007;31:1913–1918.

Denaro L, Pluchinotta F, Faggin R, et al. What’s growing on? The growing teratoma syndrome. Acta neurochirurgica. 2010;152:1943–1946.

André F, Fizazi K, Culiner S, et al. The growing teratoma syndrome: results of therapy and long-term follow-up of 33 patients. Eur J Cancer. 2000;36:1389–1394.

Kampan N, Irianta T, Djuana A, et al. Growing teratoma syndrome: a rare case report and review of the literature. Case Rep Obstet Gynecol. 2012;2012:134032.

Pendlebury A, Boarder B, Ireland-Jenkins R, et al. Ovarian growing teratoma syndrome with spuriously elevated alpha-fetoprotein. J Clin Oncol. 2015;33:e99–e100.

Schultz KA, Petronio J, Bendel A, et al. PD0332991 (Palbociclib) for treatment of pediatric intracranial growing teratoma syndrome. Pediatr Blood Cancer. 2015;62:1072–1074.

Russo D, Malaguti P, Trivellizzi IN, et al. Unusual liver locations of growing teratoma syndrome in ovarian malignant germ cell tumors. Gynecol Oncol Case Rep. 2011;1:24–25.

PATIENT CONSENT
Patient consent was obtained for this study.

REFERENCES
1. Logothetis CJ, Samuels ML, Trindade A, et al. The growing teratoma syndrome. Cancer. 1982;50:1629–1635.
2. Zagame L, Pautier P, Duvaldier P, et al. Growing teratoma syndrome after ovarian germ cell tumors. Obstet Gynecol. 2006;108:509–514.
3. Gorbaty V, Spiess PE, Pisters LL. The growing teratoma syndrome: current review of the literature. Indian J Urol. 2009;25:186–189.
4. Lai CH, Chang TC, Hseuh S, et al. Outcome and prognostic factors in ovarian germ cell malignancies. Gynecol Oncol. 2005;96:784–791.
5. Bentivegna E, Azais H, Uzan C, et al. Surgical outcomes after debulking surgery for intraabdominal ovarian growing teratoma syndrome: analysis of 38 cases. Ann Surg Oncol. 2015;22 (suppl 3):964–970.
21. Shigeta N, Kobayashi E, Sawada K, et al. Laparoscopic excisional surgery for growing teratoma syndrome of the ovary: case report and literature review. J Minim Invasive Gynecol. 2015;22:668–674.

22. Merard R, Ganesan, Hirschowitz L. Growing teratoma syndrome: a report of 2 cases and review of the literature. Int J Gynecol Pathol. 2015;34:465–472.

23. Han NY, Sung DJ, Park BJ, et al. Imaging features of growing teratoma syndrome following a malignant ovarian germ cell tumor. J Comput Assist Tomogr. 2014;38:551–557.

24. De Cuypere M, Martinez A, Kridelka F, et al. Disseminated ovarian growing teratoma syndrome: a case-report highlighting surgical safety issues. Facts Views Vis Obgyn. 2014:250–253.

25. Shibata K, Kajiyama H, Kikkawa F. Growing teratoma syndrome of the ovary showing three patterns of metastasis: a case report. Case Rep Oncol. 2013;6:544–549.

26. Kato N, Uchigasaki S, Fukase M. How does secondary neoplasm arise from mature teratomas in growing teratoma syndrome of the ovary? A report of two cases. Pathol Int. 2013;63:607–610.

27. Al-Jumaily U, Al-Hussaini M, Ajlouni F, et al. Ovarian germ cell tumors with rhabdomyosarcomatous components and later development of growing teratoma syndrome: a case report. J Med Case Rep. 2012;6:13.

28. Mrabti H, El Ghissassi I, Shitti Y, et al. Growing teratoma syndrome and peritoneal gliomatosis. Case Rep Med. 2011;2011:123327.

29. Kikawa S, Todo Y, Minobe S, et al. Growing teratoma syndrome of the ovary: a case report with FDG-PET findings. J Obstet Gynaecol Res. 2011;37:929–932.

30. Sengar AR, Kulkarni JN. Growing teratoma syndrome in a post laparoscopic excision of ovarian immature teratoma. J Gynecol Oncol. 2010;21:129–132.

31. Rashmi, Radhakrishnan G, Radhika AG, et al. Growing teratoma syndrome: a rare complication of germ cell tumors. Indian J Cancer. 2010;47:486–487.

32. Matushita H, Araiz K, Fukase M, et al. Growing teratoma syndrome of the ovary after fertility-sparing surgery and successful pregnancy. Gynecol Obstet Invest. 2010;69:221–223.

33. Tzortzatos G, Sioutas A, Schedvins K. Successful pregnancy after treatment for ovarian malignant teratoma with growing teratoma syndrome. Fertil Steril. 2009;91:936e1–e3.

34. Hsieh TY, Cheng YM, Chang FM, et al. Growing teratoma syndrome: an Asian woman with immature teratoma of left ovary after chemotherapy. Taiwan J Obstet Gynaecol. 2009;48:186–189.

35. Hariprasad R, Kumar L, Janga D, et al. Growing teratoma syndrome of ovary. Int J Clin Oncol. 2008;13:83–87.

36. Tangjitgamol S, Manusirivithaya S, Leelahakorn S, et al. The growing teratoma syndrome: a case report and a review of the literature. Int J Gynecol Cancer. 2006;16:384–390.

37. Dewdney S, Sokoloff M, Yamada SD. Conservative management of chylous ascites after removal of a symptomatic growing retroperitoneal teratoma. Gynecol Oncol. 2006;100:608–611.

38. Umekawa T, Tabata T, Tanida K, et al. Growing teratoma syndrome as an unusual cause of gliomatosis peritonei: a case report. Gynecol Oncol. 2005;99:761–763.

39. Rekha W, Anmita M, Sudeep G, et al. Growing teratoma syndrome in germ cell tumour of the ovary: a case report. Aust N Z J Obstet Gynaecol. 2005;45:170–171.

40. Nimkin K, Gupta P, McCauley R, et al. The growing teratoma syndrome. Pediatr Radiol. 2004;34:259–262.

41. Inaoka T, Takahashi K, Yamada T. The growing teratoma syndrome secondary to immature teratoma of the ovary. Eur Radiol. 2003;13:2115–2118.

42. Itani Y, Kawa M, Toyoda S, et al. Growing teratoma syndrome after chemotherapy for a mixed germ cell tumor of the ovary. J Obstet Gynaecol Res. 2002;28:166–171.

43. David YB, Weiss A, Shechtman L, et al. Tumor chemocconversion following surgery, chemotherapy, and normalization of serum tumor markers in a woman with a mixed type germ cell ovarian tumor. Gynecol Oncol. 2002;84:464–467.

44. Geisler JP, Goulet R, Foster RS, et al. Growing teratoma syndrome after chemotherapy for germ cell tumors of the ovary. Obset Gynecol. 1994;84:719–721.

45. Kattan J, Droz JP, Culine S, et al. The growing teratoma syndrome: a woman with nonseminomatous germ cell tumor of the ovary. Gynecol Oncol. 1993;49:395–399.

46. Junean HG, Komorowski R, Mahvi D, et al. Immature teratoma of the ovary—an unusual case. Gynecol Oncol. 1992;46:111–114.

47. Moskovic E, Jobling T, Fisher C, et al. Retroconversion of immature teratoma of the ovary: CT appearances. Clin Radiol. 1991;43:402–408.

48. Aronowitz J, Estrada R, Lynch R, et al. Retroconversion of malignant immature teratomas of the ovary after chemotherapy. Gynecol Oncol. 1983;16:414–421.