REVIEW

Are we underutilizing bone marrow and cord blood? Review of their role and potential in the era of cellular therapies [version 1; peer review: 2 approved]

Elisabetta Xue1,2, Filippo Milano1

1Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
2Hematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute IRCCS, Milan, Italy

Abstract
Since the first hematopoietic stem cell transplant, over a million transplants have been performed worldwide. In the last decade, the transplant field has witnessed a progressive decline in bone marrow and cord blood utilization and a parallel increase in peripheral blood as a source of stem cells. Herein, we review the use of bone marrow and cord blood in the hematopoietic stem cell transplant setting, and we describe the recent advances made in different medical fields using cells derived from cord blood and bone marrow.

Keywords
Cord Blood, Bone Marrow, Hematopoietic Stem Cell Transplant, Immunotherapy, Regenerative Medicine
Introduction
The role of bone marrow (BM) as a source of hematopoietic stem cells (HSCs) has been well established since 1868, when Neumann and Bizzozero used BM to reconstitute the hematopoietic system of rabbits. However, it took almost a century (1957) to perform the first allogeneic BM transplant in humans.3 A few decades later, two other sources of HSCs were successfully used in the transplant setting: in 1981, mobilized peripheral blood (PB) was adopted for an autologous transplant in a patient with chronic myelogenous leukemia,2 and in 1988, cord blood (CB) cells were transplanted in a patient with Fanconi’s anemia.4 Since the first BM transplant, over a million HSC transplants (HSCTs) have been performed. The widening of clinical indications, the gradual extension of eligibility criteria, and the inclusion of older patients have led to a constant increase in the numbers of HSCTs performed. However, in the last decade, PB has gradually become the most used source for HSCT because of (1) its ease of collection, (2) donors are spared from general anesthesia, and (3) the faster and higher engraftment rate associated with its use (Figure 1), making it the first choice in more than 70% of adult allogeneic HSCTs and almost all cases of autologous HSCTs.5–7

Despite being gradually confined to alternative hematopoietic graft sources, both CB and BM still retain unique biological and immunological properties and represent invaluable resources for the treatment of many medical conditions. In this review, we begin by addressing the pros and cons of CB and BM in the transplant setting. Next, we review their use in other fields such as immunotherapy and regenerative medicine.

Cord blood
Allogeneic transplantation
In recent decades, CB has emerged as a feasible alternative source of HSCs for pediatric and adult patients with hematological malignancies in need of an allogeneic transplant lacking a related or an unrelated donor (URD).8 CB is a very attractive alternative source because of the increased level of HLA disparity that can be tolerated. This feature is of particular importance for patients from racial and ethnic minorities, for whom it can be difficult to find a URD.9 Indeed, in a recent National Marrow Donor Program study, an 8/8 HLA-matched URD was likely to be identified in 75% of white European patients, whereas a donor was identified in the URD registry in only around 20% and 35% of patients of African and Hispanic ancestry origin, respectively.9 Nowadays, CB has been used to transplant over 35,000 recipients and more than 730,000 CB units are stored and available worldwide in public banks10.

Over the years, a number of retrospective studies have shown that CB transplantation (CBT) can yield disease-free survival (DFS) comparable to that of adult donor transplants in patients with hematologic malignancies.11, 12 In addition, many studies have confirmed low rates of malignant relapse after CBT compared with URD transplants, indicating that CB could be the preferred source for patients at high risk of relapse.13 CBT, when compared with the PB HSCT, also has the advantage of lower rates of chronic graft-versus-host disease (GvHD), which translates into lower long-term morbidity and mortality.12 The increased availability of CB units with a high cellular content, the use of double CB grafts, the direct intra-bone infusion of CB grafts to

Figure 1. Transplants by cell source from 1992 to 2018, unrelated donor transplants. In the last decades, the number of hematopoietic stem cell transplants has progressively increased along with an expansion of peripheral blood as a source of stem cells. Data are reused from the National Marrow Donor Program (NMDP)/Be The Match with permission.
enhance the homing process, and numerous \textit{ex vivo} expansion methods (major clinical trials using expanded CB units in HSCT are listed in Table 1) have further increased the potential application of this graft source\cite{4,15}. Recently, Cohen \textit{et al.} reported on outcomes of 22 patients with high- and very high-risk hematological malignancies who received a single CB unit expanded by using the UM171 technology\cite{16}. No graft failure was observed, and 1-year incidences of overall survival (OS), chronic GvHD-free DFS, and transplant-related mortality (TRM) were 90\%, 74\%, and 5\%, respectively\cite{16}. Given that the high rate of early post-transplant morbidity and the requirement for intensive early post-transplant management have markedly slowed down the adoption of CBT, the low rate of TRM reported in the latter study is of high clinical interest. Targeted care strategies and development of feasible and safe CB expansion platforms can potentially increase the utilization of CBT.

Immunotherapy

Unlike for HSCT, the use of CB cells for the development of adoptive therapies to treat post-transplant viral infections and malignant relapses has increased over the years. Virus-specific T (VST) cells are an appealing approach to prevent and treat viral reactivation in HSCT recipients, for whom long-duration antiviral prophylaxis or treatment often cause unacceptable organ toxicity and virus resistance\cite{17}. Although CB T cells are virus-naïve\cite{18,19}, Abraham \textit{et al.} have recently reported on the successful generation and infusion of CB-derived VST cells directed against Epstein–Barr virus, adenovirus, and cytomegalovirus in CB recipients as part of their antiviral prophylaxis or treatment or both\cite{20,21}. The CB cells were obtained by separating an aliquot (20\%) from the original CB graft, a process that did not delay or negatively impact neutrophil engraftment. Although the process was more time-consuming compared with VST cells generated from other sources, this approach was safe and feasible and showed efficacy in both preventing and treating end-organ viral infections\cite{22}.

Among strategies to manage post-transplant malignant relapse, the infusion of donor-derived lymphocytes is often performed to boost the graft-versus-tumor effect, but for CBT recipients this option is not routinely available. Case reports of re-infusion of lymphocytes collected directly from the CBT recipients after immune reconstitution, with 23 or without 24 \textit{ex vivo} expansion, have been described, as has infusion of T cells previously collected from the original CB grafts and subsequently expanded \textit{ex vivo}\cite{23}. However, given the cost-effectiveness of these approaches, long-term safety and efficacy must be carefully evaluated before they can enter the clinical routine.

Cellular immunotherapy, and more specifically autologous T cells genetically modified to express chimeric antigen receptor T (CAR-T) cells, has recently become the new frontier for the treatment for relapsed/refractory hematologic malignancies because of the ability to exert antitumoral cytolysis in an HLA-independent manner\cite{24}. The use of CAR-T cells has been explored mainly in the autologous setting, and very few studies have focused on the generation of allogeneic CAR-T cells. Given the naïve phenotype of CB-derived T cells as well as the large availability of CB units for the generation of cellular products along with the high \textit{in vitro} proliferative capacity, CB represents a good and safe source of lymphocytes for the generation of allogeneic CAR-T cells. Indeed, several preclinical studies have...
investigated the use of CB for the generation of CB-derived T-cell lines possessing antileukemic activity by expressing CAR anti-CD19. Of note is the recent generation of CB-derived chimeric antigen receptor natural killer (CAR-NK) cells: unlike CAR-T cells, CAR-NK cells can also recognize target cells in a CAR-independent way, thus maintaining an antitumor effect in case of CAR-specific antigen downregulation on tumor cells.

To overcome the intrinsic short life span of CAR-NK cells, the incorporation of cytokine-encoding genes (for example, interleukin-15) has been successfully applied to this technology, allowing NK proliferation and survival. Third-party CAR-NK cells could be selected on the basis of killer-cell immunoglobulin-like receptor (KIR) mismatch between donor and recipient and used as an off-the-shelf product without risk of GvHD reaction; the goals would be to speed up the production and increase its feasibility. Clinical trials to determine the efficacy of CB-derived NK cells are ongoing.

Lastly, the use of CB-derived regulatory T (T-reg) cells is under investigation as part of prevention of GvHD. Brunstein et al. reported rates of acute and chronic GvHD of 9% and 0%, respectively, in 11 CBT recipients who received third-party CB T-reg cells on day +1 after transplant. In another study, five patients received an infusion of third-party CB-derived T-reg cells one day prior to PB SCT (n = 3) or double CBT (n = 2); the treatment was well tolerated, and four patients were off immune-suppression at the last follow-up evaluation. Further studies are needed to confirm these preliminary results.

Regenerative medicine

The core of regenerative medicine is based on the identification of cells with repopulating and/or growth factor-secreting potential placed on biomimetic scaffolds forming a matrix for tissue regeneration. For this scope, CB cells are promising because of their (1) proliferative potential compared with adult-derived cells, (2) low immunogenicity, (3) low risk of transmitting infections of latent viruses, and (4) ease of collection.

With this in mind, different types of CB-derived cells have been examined for their “regenerative” capability. Particular attention has been given to the use of CB-derived mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs). CB-derived MSCs are pluripotent cells that display immune-modulatory properties and have the potential to differentiate into multiple lineages of mesodermal origin (mainly to produce osteoblasts, chondroblasts, and adipocytes) but also non-traditional lineages (for example, cardiomyocytes and hepatocytes). In addition, MSCs are known for the ability to accelerate healing processes in brain injury, in both in vitro and in vivo models, by inducing a neuroprotective anti-inflammatory microenvironment and promoting neurogenesis and revascularization. In animal models of dilated cardiomyopathy and myocardial ischemia, CB-derived MSCs have been used to improve the cardiac function by decreasing and preventing cardiac fibrosis, ventricle changes, and cellular apoptosis. The use of CB-derived EPCs, like that of MSCs, has been extensively investigated in recent years; more specifically, endothelial colony-forming cells have shown the ability of homing into ischemic tissues, improving angiogenesis in preclinical models of ischemia.

In the clinical setting, CB-based regenerative medicine has witnessed the greater innovations in the neurologic field, driven by the paucity of available treatments for progressive, non-reversible neurologic conditions. Sun et al. recently reported the results of a randomized placebo-controlled trial conducted in children affected by post-natal cerebral palsy; the authors reported an improvement in motor skill and white matter connectivity in patients who received a higher dose of autologous CB-derived total nucleated cells (TNCs) compared with patients who received either lower TNC dose or placebo. Similarly, Huang et al. reported a significant clinical improvement in 54 patients with cerebral palsy treated with allogeneic CB-derived MSCs. Encouraging results have also been achieved in autism spectrum disorders: repeated infusion of CB-derived MSCs were recently reported to be safe by Riordan et al. in a phase I trial, and behavioral improvement was reported in eight out of 15 evaluable patients. Furthermore, given the promising results in studies conducted on preclinical models, the safety and therapeutic potential of CB-derived cells are under investigation in patients with neurodegenerative disorders, such as Parkinson’s disease or Alzheimer’s disease.

Ongoing phase I/II studies are exploring the role of CB-derived MSCs for the treatment of cardiac diseases. Of particular clinical interest is the observation that, in a randomized phase I/II clinical study, patients with heart failure who received an intravenous infusion of CB-derived MSCs had better post-ischemic myocardial remodeling and higher ventricular ejection fraction compared with the control group.

The safety and feasibility of CB-derived cells have been reported in several case series, but owing to the heterogeneity of these studies along with the lack of major comparative trials, their clinical efficacy still needs to be proven. Indeed, to date, none of these applications has been formally approved for clinical use.

Bone marrow

Allogeneic transplantation

For decades, BM has been the preferred source for HSCT. In the early 90s, several studies demonstrated a direct correlation between higher number of HSCs infused and a reduction of early transplant-related mortality. This led to an increased use of granulocyte colony-stimulating factor (G-CSF)-primed PB, which in the last 15 years has gradually become the preferred graft source of HSCs. To date, aplastic anemia is the only disease for which the use of BM is mandatory because of the unacceptably high rate of chronic GvHD observed after PB HSCT. BM also remains the preferred source of HSCs for pediatric patients (Figure 2), for whom low cellularity is usually enough to ensure engraftment.

Many studies have compared BM and PB. In the first randomized clinical trial ever conducted in patients undergoing an HSCT with matched related donors, Bensinger et al. found a higher and faster rate of engraftment after PB, as compared with patients receiving BM, whereas no differences were observed for incidence of acute and chronic GvHD. The study suggested a better DFS in patients with advanced malignancies receiving PB. When focusing on long-term outcomes, Friedrichs et al.
Figure 2. Transplants by cell source for pediatric patients from 1992 to 2017, unrelated donor transplants. In the pediatric population, defined as younger than 18 years, the most frequently used source is bone marrow. Data are reused from the National Marrow Donor Program (NMDP)/Be The Match with permission.

showed a higher incidence of chronic GvHD and longer need for immunosuppression therapy after HSCT using PB as source of HSCs. No differences were seen for OS and quality of life (for example, performance status and return to work) between PB and BM recipients. In 2012, the two graft sources were finally prospectively compared in the setting of URDs. The study showed a higher risk of graft failure but a lower rate of chronic GvHD among patients receiving BM; no significant differences were seen in OS between the two groups. The main finding of lower chronic GvHD led the authors to recommend the use of BM as the preferred source for HSCT, a recommendation that, however, has not been translated into clinical practice.

More recently, the use of BM has re-emerged in the setting of haploidentical transplants (that is, from half-matched related donors) that have been increasingly performed in the last decade. The original platform, described by Luznik et al., using T cells-replete, haploidentical HSCT with post-transplant cyclophosphamide, included BM as the preferred HSC source; however, owing to the difficulty of obtaining BM, the same group explored the use of PB in the same setting, obtaining similar clinical results. As in URD transplants, these observations led to switching to PB as the preferred HSC source in the haploidentical setting as well.

Although the use of BM is undoubtedly associated with a lower risk of chronic GvHD when compared with PB, the cumbersome process to obtain it and the slower time to engraftment have severely limited its application in the field of HSCT. To address the issue of slow engraftment and to reduce the rate of graft failure, some groups have investigated the use of a short course of G-CSF to stimulate BM before the harvest, documenting both an increase of progenitors and phenotypic changes in the lymphocyte component of the graft. These observations led to the hypothesis that BM priming would have further lowered the rate of GvHD while improving engraftment. However, neither retrospective nor prospective studies comparing G-CSF–primed BM versus either unmanipulated BM or PB showed any differences in OS. Moreover, given that this procedure would expose the donors both to a drug administration and to a BM harvest, the enthusiasm for this approach has quickly faded.

Immunotherapy

The use of BM-derived MSCs has been widely investigated in the setting of severe, steroid-refractory GvHD. MSCs are capable of migrating into inflamed tissues affected by acute GvHD and actively inhibit T-cell proliferation, inducing a shift in the T cells toward a regulatory phenotype. Since the first report of successful use of MSCs in a case of refractory acute GvHD, several phase I/II studies have shown the safety and applicability of this approach. Although the heterogeneity of the studies using BM-derived MSCs has represented a major limitation for any definitive conclusions, the use of Remestemcel-L, an off-the-shelf BM-derived MSC product, has been approved for first-line treatment of acute GvHD and for the treatment of steroid-refractory acute GvHD. As first-line treatment, Remestemcel-L in combination with steroids led to 94% of overall responses, and 77% of those were complete. In the steroid-refractory GvHD setting, Remestemcel-L infusion, as single agent, led to a very promising 61% of overall response
and significant improvement of survival. These results led to an open-label phase III trial that enrolled 55 children with steroid-refractory acute GvHD in 32 sites across the US, and 89% of patients had the most severe form (ClinicalTrials.gov Identifier: NCT02336230). The trial met the primary endpoint of day-28 overall response rate (69% versus 45% historical control rate). Based on these results, the use Remestemcel-L is under evaluation by the US Food and Drug Administration as the first approved treatment of steroid-refractory acute GvHD.

Regenerative medicine

BM cells are as valuable as CB cells as a source for the regenerative medicine field. Indeed, autologous and allogeneic BM aspirates, BM concentrates, and BM-derived cells have been extensively investigated to treat musculoskeletal conditions, especially for bone and cartilage damage such as osteoarthritis, bone fractures, or congenital skeletal malformations. Besides musculoskeletal conditions, BM-derived cells, such as EPCs, MSCs, and mononuclear cells, have been used to treat cardiac, endocrine (with a special focus on diabetes mellitus), and neurologic disorders. Whereas early phase I and II clinical trials have shown promising outcomes in patients receiving intracardiac injection of BM-derived cells after myocardial infarction, randomized placebo-controlled phase III studies have shown contradictory results in terms of overall clinical impact.

BM-derived MSCs have been adopted for treating diabetes, showing the potential to improve the glycemic curve in preclinical models by differentiating in vitro into insulin-producing cells and by exerting a protective role against immune-mediated destruction of pancreatic beta cells in type 1 diabetes. Within a cohort of 30 patients with type 2 diabetes requiring multiple oral anti-hyperglycemic drugs plus high-dose insulin, Bhanasali et al. showed a significant reduction in insulin requirement after the infusion of BM-derived MSCs compared with patients receiving placebo.

More recently, several early phase clinical trials have investigated the role of BM-derived MSCs and mononuclear cells for the treatment of neurological conditions, including refractory multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, and cerebrovascular attacks. In all cases, the treatment has been shown to be safe and feasible, although the clinical efficacy remains controversial.

Lastly, increasing interest has been raised around BM-derived MSC-secreted exosomes, extracellular nucleic acid-containing (for example, microRNA) and protein-containing vesicles that play a significant role in immune response and signal transduction. In preclinical studies, the administration of cell-free MSC-derived exosomes has been shown to improve cellular protection and regeneration in animal models of osteoporosis, bone fracture, optic nerve injury, traumatic brain injury, necrotizing enterocolitis, and other morbid conditions.

Conclusions

Much has been learned since the first HSCT performed in the late '50s. The use of HSCT for patients with hematological disease continues to increase because of a constant decrease in transplant-related morbidity and mortality and a consequent improvement of clinical outcomes. Owing to the growing enthusiasm for PB as a source of stem cells, the use of CB and BM has decreased in recent years: according to the National Marrow Donor Program, CB and BM are being adopted in only 16% and 19% of all HSCTs, respectively. Although BM and CB transplantations are established practices for the treatment of hematological malignancies in adult and pediatric patients, the high transplant-related mortality due to delayed hematopoietic recovery (CB) and the difficulty of its acquisition (BM) have helped slow down the widespread adoption of both. There are several ongoing challenges to expand the use of CB. Although a number of methods to increase engraftment speed have been successfully investigated, the cost of CB grafts and the lack of substantial improvement in early post-transplant supportive care represent major unmet issues. For BM, the main limitation remains related to the difficulty and the invasiveness of its collection. Despite the undeniable advantage of a lower risk of chronic GvHD and consequently of a better quality of life, its use has not increased.

In recent years, we have learned more about the properties of CB and BM as well as their application to regenerative medicine and immunotherapy. Although there have not been major safety concerns regarding the use of CB-derived and BM-derived products, most of the clinical trials have been conducted on very small or heterogeneous cohorts (or both), using different cell populations, cell doses, and routes of administration. Randomized placebo-controlled studies are needed to better determine the efficacy of these approaches before translating them into standard clinical practice. With the development of new technologies allowing better characterization, selection, and expansion of different cell populations from CB and BM, we could envision a progressively higher utilization of these cell sources, not only in the transplant field but also in many other fields of medicine.

Abbreviations

BM, bone marrow; CAR-NK cells, chimeric antigen receptor natural killer cells; CAR-T cells, chimeric antigen receptor T cells; CB, cord blood; CBT cord blood transplant; DFS, disease-free survival; EPC, endothelial progenitor cell; G-CSF, granulocyte colony-stimulating factor; GvHD, graft-versus-host disease; HSC, hematopoietic stem cell; HSCT, hematopoietic stem cell transplant; MSC, mesenchymal stromal cell; NK cells, natural killer cells; OS, overall survival; PB, peripheral blood; TNC, total nucleated cell; T-reg, regulatory T cell; TRM, transplant-related mortality; URD, unrelated donor; VST, virus-specific T cell.
Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Mol Ther Methods Clin Dev. 2017; 5: 13–21.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Abraham AA, John TD, Keller MD, et al.: Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Adv. 2019; 3(14): 2057–66.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Muto T, Ohwada C, Yamazaki A, et al.: Long-term complete remission by infusion of ex vivo-expanded donor-derived CD4+ lymphocytes for treating an early relapse of Hodgkin lymphoma after cord blood transplantation. Leuk Lymphoma. 2016; 57(1): 230–232.

PubMed Abstract | Publisher Full Text

Lamura S, Delage J, Vincent L, et al.: Infusion of in vivo expanded cord blood lymphocytes: A new strategy to control residual disease? Curr R termination. 2018; 66(3): 91–93.

PubMed Abstract | Publisher Full Text

Berglund S, Gertov-J, Uhlin M, et al.: Expanded umbilical cord blood T cells used as donor lymphocyte infusions after umbilical cord blood transplantation. Cytotherapy. 2014; 16(11): 1528–1536.

PubMed Abstract | Publisher Full Text

June CH, Sadelain M: Chimeric Antigen Receptor Therapy. N Engl J Med. 2018; 379(1): 64–73.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Shapill EJ, Quinones R, Giller R, et al.: Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002; 8(7): 368–376.

PubMed Abstract | Publisher Full Text

de Lima M, McMannis J, Gee A, et al.: Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylpenetamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008; 41(9): 771–778.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Delaney C, Heimfeld S, Brashem-Stein C, et al.: Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010; 16(2): 233–236.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

de Lima M, McNeice I, Robinson SN, et al.: Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012; 367(24): 2306–2315.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Horwitz ME, Chao HJ, Rizzieri DA, et al.: Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014; 124(7): 3121–3128.

PubMed Abstract | Publisher Full Text | Free Full Text

Wagner JG Jr, Brunstein CG, Boitano AE, et al.: Phase III Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell Stem Cell. 2016; 18(1): 144–155.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Farag SS, Siwastava S, Moccia-Graham S, et al.: In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 2013; 22(7): 1007–1015.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Brunstein CG, McKenna DH, DeFor TE, et al.: Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol Blood Marrow Transplant. 2013; 19(10): 1474–1479.

PubMed Abstract | Publisher Full Text | Free Full Text

Cutter C, Multani P, Robbins D, et al.: Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Biol. 2013; 122(17): 3074–3081.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Papat U, Mehta RS, Rezvani K, et al.: Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Biol 2015; 125(19): 2885–2892.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Serrano LM, Pfeffer T, Olivares S, et al.: Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Biol. 2006; 107(7): 2643–2652.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Huang X, Guo H, Kang J, et al.: Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther. 2008; 16(3): 580–589.

PubMed Abstract | Publisher Full Text | Free Full Text

Pegram HJ, Purdon TJ, van Leeuwen DG, et al.: IL-12-secreting CD19- targeted cord-blood derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015; 29(2): 415–422.

PubMed Abstract | Publisher Full Text | Free Full Text

Dolnikov A, Shen S, Klamer G, et al.: Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia. Exp Hematol. 2015; 43(12): 1001–1008.

PubMed Abstract | Publisher Full Text
Compared with Filgrastim-Mobilized Peripheral Blood in Myeloablative Sibling Allografting for Patients with Hematologic Malignancies: A Randomized Canadian Blood and Marrow Transplant Group Study. Biol Blood Marrow Transplant 2016; 22(8): 1410–1415. Published Abstract | Publisher Full Text

78. F Le Blanc K, Rasmussen I, Sundberg B, et al.: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363(9419): 1439–1441. Published Abstract | Publisher Full Text | F1000 Recommendation

79. Kebraii P, Isola I, Bahcesi E, et al.: Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009; 15(7): 804–811. Published Abstract | Publisher Full Text

80. Kurtzberg J, Prokop S, Teira P, et al.: Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014; 20(5): 229–235. Published Abstract | Publisher Full Text

81. Simmons P: A PIPELINE OF INNOVATIVE CELLULAR MEDICINES FOR CURRENTLY INTRACTABLE, ADVANCED-STAGE DISEASES. International Society for Stem Cell Research Annual Meeting, 2016. 2018.

82. Polymeri A, Giannobile WV, Kaigler D: Bone Marrow Stromal Stem Cells in Tissue Engineering and Regenerative Medicine. Horm Metab Res. 2016; 48(11): 700–713. PubMed Abstract | Publisher Full Text

83. Steiert AF, Rackwitz L, Gilbert F, et al.: Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 2012; 1(3): 237–247. Published Abstract | Publisher Full Text | Free Full Text

84. Veronesi F, Giavarese G, Tschon M, et al.: Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 2013; 22(2): 181–192. Published Abstract | Publisher Full Text

85. Nasser MH, Madani H, Ahmad Tali SH, et al.: COMPARING CPA/NRM Trial: Intramyocardial Transplantation of Autologous Bone Marrow-Derived CD133+ Cells and MNCs during CABG in Patients with Recent MI: A Phase III, Multicenter, Placebo-Controlled, Randomized, Double-Blind Clinical Trial. Cell J. 2018; 20(3): 449. Published Abstract | Publisher Full Text | Free Full Text

86. F Nasseri BA, Ebel W, Dandell M, et al.: Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischemic myocardium: the Cardio133 trial. Eur Heart J. 2014; 36(19): 1263–1274. Published Abstract | Publisher Full Text | F1000 Recommendation

87. Steinhofer G, Nesteruk J, Wolfen M, et al.: Cardiac Function Improvement and Bone Marrow Response = Outcome Analysis of the Randomized PERFECT Phase III Clinical Trial of Intramyocardial CD133 Application After Myocardial Infarction. EBioMedicine. 2017; 22: 208–224. Published Abstract | Publisher Full Text | Free Full Text

88. F Zang L, Hao H, Liu J, et al.: Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetes Metab Syndr. 2017; 11: 36. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

89. F Gabr MM, Zakaria MM, Refaat AF, et al.: Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study. Cell Transplant. 2018; 27(6): 937–947. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

90. F Bhanasi S, Dutta P, Kumar V, et al.: Efficacy of Autologous Bone Marrow-Derived Mesenchymal Stem Cell and Mononuclear Cell Transplantation in Type 2 Diabetes Mellitus: A Randomized, Placebo-Controlled Comparative Study. Stem Cells Dev. 2017; 26(7): 471–481. Published Abstract | Publisher Full Text | F1000 Recommendation

91. F Dahbour S, Jamal F, Alhattab D, et al.: Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci Ther. 2017; 23(11): 866–874. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

92. F On KW, Moon C, Kim HY, et al.: Phase I trial of repeated intracatheral autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med. 2015; 4(6): 590–597. Published Abstract | Publisher Full Text | Free Full Text

93. Nafissi S, Kazemi H, Tairah T, et al.: Intraspinal delivery of bone marrow stromal cell-derived neural stem cells in patients with amyotrophic lateral sclerosis: A safety and feasibility study. J Neurol Sci. 2016; 362: 174–181. Published Abstract | Publisher Full Text

94. F Cox CS Jr, Hetz RA, Liao GP, et al.: Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells. Stem Cells. 2017; 35(4): 1065–1079. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

95. F Hess DC, Wechter LR, Clark WM, et al.: Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017; 16(5): 360–368. Published Abstract | Publisher Full Text | F1000 Recommendation

96. F Furuta T, Miyaki S, Ishiishi H, et al.: Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med. 2016; 5(12): 1620–1630. Published Abstract | Publisher Full Text | Free Full Text

97. F Qi X, Zhang J, Yuan H, et al.: miRNA-Dependent Mechanisms. F1000Research 2020, 9(F1000 Faculty Rev):26 Last updated: 17 JAN 2020

98. F Rager TM, Olson JK, Zhou Y, et al.: Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells. Stem Cells. 2017; 35(4): 1065–1079. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

99. F Mead B, Tomarev S: Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med. 2017; 6(4): 1273–1285. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

100. F Rager TM, Olson JK, Zhou Y, et al.: Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg. 2016; 51(6): 942–947. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

101. F Zhang Y, Chopp M, Zhang ZG, et al.: Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neuroschem Int. 2017; 111: 69–81. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Michael Uhlin
 Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
 Competing Interests: No competing interests were disclosed.

2. David S. Allan
 Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
 Competing Interests: David S. Allan is the Medical Director of Stem Cells at Canadian Blood Services.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com