INTRODUCTION

Fungal infection of the skin is nowadays one of the common dermatological problems. The physicians have a wide choice for treatment from solid dosage to semisolid dosage form and to liquid dosage formulation. Among the topical formulation, clear transparent gels have widely accepted in both cosmetics and pharmaceuticals [1]. Topical treatment of dermatological disease as well as skin care, a wide variety of vehicle ranging from solids to semisolids and liquids preparations is available to clinicians and patients. Within the major group of semisolid preparations, the use of transparent gels has expanded both in cosmetics and in pharmaceutical preparation [2]. For many decades treatment of an acute disease or a chronic illness has been mostly accomplished by delivery of drugs to patients using various pharmaceutical dosage forms, including tablets, capsules, pills, suppositories, cream, gel, ointments, liquids, aerosols and injectable, as drug carriers. Delivery of drugs to the skin is an effective and targeted therapy for local dermatological disorders. This route of drug delivery has gained popularity because it avoids first-pass effects, gastrointestinal irritation, and metabolic degradation associated with oral administration. Due to the first pass effect, only 25-45% of the orally administered dose reaches the blood circulation. In order to bypass these disadvantages, the gel formulations have been proposed as a topical application. Gels are defined as “semisolid system in which a liquid phase is constrained within a polymeric matrix in which a high degree of physical and chemical cross-linking introduced”.

Itraconazole, syntho antifungal agent of the imidazole class; it works by slowing the growth of fungi that cause infection. It is used to treat fungal infection. Triazole drug targets the fungal-specific synthesis of membrane lipids. Itraconazole inserts preferentially into fungal membranes and disrupts their function. 5-fluorocytosine targets fungal-specific DNA replication [3]. Hydroxypropyl methylcellulose (HPMC), Carbopol 934p, has been used as hydrophilic polymers topically in gel drug delivery system [4].

MATERIALS AND METHODS [5, 6]

Material

Itraconazole, HPMC, carbopol934, trimethanolamine, glycerine, Methylparaben, propylparaben, water.

Method

Polymer (like Carbopol 934p or HPMC) and purified water were taken in a beaker and allowed to soak for 24 h. To this required amount of drug (2 gm) was dispersed in water and then Carbopol 934p or HPMC was then neutralized with sufficient quantity of Triethanolamine. Glycerine as a moistening agent, methylparaben and Propylparaben as preservatives were added slowly with continuous gently stirring until the homogenous gel was formed.

Table 1: Optimized formulae of Itraconazole gel

Formulation code	Ingredients	Drug	Carbopol	HPMC	Water	Alcohol	Methyl	Propyl	Glycerine	Triethanolol
F1		2	1	-	60	4	0.1	0.05	10	4
F2		2	1	-	60	4	0.1	0.05	10	4
F3		2	0.5	0.75	60	4	0.1	0.05	10	4
F4		2	0.5	0.5	60	4	0.1	0.05	10	4
F5		2	0.75	0.5	60	4	0.1	0.05	10	4
Evaluation of itraconazole gel [7-24]

Percentage Yield

The empty container was weighed in which the gel formulation was stored then again the container was weighed with gel formulation. Then subtracted the empty container weighed with the container with gel formulation then it gives the practical yield. Then the percentage yield was calculated by the formula.

\[
\text{Percentage yield} = \left(\frac{\text{Practical yield}}{\text{Theoretical yield}}\right) \times 100
\]

Drug content

Weighed 10 gm of each gel formulation were transferred in 250 ml of the volumetric flask containing 20 ml of alcohol and stirred for 30 min. The volume was made up to 100 ml and filtered. 1 ml of the above solution was further diluted to 10 ml with alcohol and again 1 ml of the above solution was further diluted to 10 ml with alcohol. The absorbance of the solution was measured spectrophotometrically at 260 nm. Drug content was calculated by the following formula

\[
\text{Drug content} = \frac{\text{Absorbance}}{\text{Slope}} \times \text{Dilution factor} \times 1000
\]

Determination of pH

Weighed 50 gm of each gel formulation were transferred in 10 ml of the beaker and measured it by using the digital pH meter. pH of the topical gel formulation should be between 3 – 9 to treat the skin infections.

Spreadability

The spreadability of the gel formulation was determined, by measuring the diameter of 1 gm gel between horizontal plates (20×20 cm²) after 1 minute. The standardized weight tied on the upper plate was 125 gm.

RESULTS AND DISCUSSION

Table 2: Percent yield of gel formulations
Formulation
F1
F2
F3
F4
F5

Table 3: Drug content of gel formulations
Formulation code
F1
F2
F3
F4
F5

Table 4: pH of gel formulations
Formulation
F1
F2
F3
F4
F5
Table 5: Viscosity of gel formulations

Formulation	Viscosity (cp)
F1	8476
F2	4259
F3	4450
F4	4544
F5	6.79

Table 6: Spreadability of gel formulations

Formulation	Spreadability	
	R1	R2
F1	1.3	1.9
F2	2.1	2.9
F3	4.9	2.8
F4	1.7	2.3
F5	1.5	2.1

Table 7: Extrudability of gel formulations

Formulation	Extrudability
F1	+
F2	+++
F3	+++
F4	++
F5	++

Excellent (+++), Good (++), Average (+), Poor (-)

Table 8: In vitro diffusion chart

Time	% CDR F1	% CDR F2	% CDR F3	% CDR F4	% CDR F5
0	0	0	0	0	0
30	12.95	16.87	14.88	14.03	13.67
60	39.51	44.39	41.39	40.76	40.05
90	47	48.49	47.95	47.02	46.91
120	56.59	56.01	57.18	56.24	55.74
150	62.84	61.28	63.59	62.31	61.89
180	71.84	72.69	73.26	72.13	71.84
210	80.17	79.37	82.15	81.68	80.86
240	87.27	86.16	89.07	88.19	87.98
270	95.98	94.09	97.03	96.83	96.03

Fig. In vitro diffusion for F3 formulation

CONCLUSION

Various formulation (F1, F2, F3, F4, F5) were developed by using a suitable polymer (carbopol 934p and HPMC). Developed formulations of Itraconazole were evaluated for the physiochemical parameters such as percentage yield, drug content, pH, viscosity, spreadability, extrudability, in vitro drug diffusion. Viscosity studies of various formulations revealed that formulation F3 was better to compare to others. From among all the developed formulation, F3 shows better drug diffusion, did good Rheological properties. pH of the F3 formulation is sufficient enough to treat the skin infections. Results indicated that the concentration of carbopol-934 and HPMC K4M significantly affects drug release and rheological properties of the gels. The viscosity of carbopol-934 gels was very high as compared to HPMC K4M gels but both gels showed a decrease in drug release with an increase in polymer concentration. Thus, gels can be successfully prepared using carbopol-934 and Hydroxypropyl methylcellulose as gelling agents in the ratio 1:3(carbopol-934 and Hydroxypropyl methylcellulose) suitable for topical application. Hence formulation F3 should be further developed for scale-up to industrial production.

AUTHORS CONTRIBUTIONS

All the author have contributed equally

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Provost C. A review on transparent oil-water gels. Int J Cosmet Sci 1986;8:233-47.
2. Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P. Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invention Today 2010;2:250-3.

3. Gerry Fink and the Fink lab. How antifungal drug kill fungi and cure disease; 2005. Available from: URL: http://www.medscape.com/viewprogram/2963-3-pn. [Last accessed on 09 Feb 2005].

4. Golinkin HS. Process for fracturing well formulation using aqueous gels. US Patent, US 4137182; 1979.

5. Singh MP, Nagori BP, Shaw NR. Formulation development and evaluation of topical gel formulations using different gelling agents and its comparison with marketed gel formulation. Int J Pharm Erud 2013;3:1-10.

6. B Niyaz Basha, Kalyani P, Divakar G. Formulation and evaluation of gel containing fluconazole-antifungal. Int J Drug Dev Res 2011;3:109-12.

7. Doaa AH, Dalia AE, Sally AA, Mohamed AE. Formulation and evaluation of fluconazole topical gel. Int J Pharm Pharm Sci 2012;4:176-83.

8. Sudipta DA, Arnab SA, Ananya BO. Design, development and evaluation of fluconazole topical gel. Asian J Pharm Clin Res 2015;8:132-13.

9. Ashni VE, Sukhdev SI, Rupinder KA, Upendra KJ. A review: topical gels as drug delivery systems. Int J Pharm Sci Rev Res 2013;23:374-82.

10. Prateek CH, Rajesh ST, Umesh RA. A review on the topical gel. Int J Pharm Bio Agric 2013;4:606–13.

11. Loveleen PR, Tarun KG. Topical gel: a recent approach for novel drug delivery. Asian J Biomed Pharm Sci 2013;3:1-5.

12. Debjit B, Harish G, B Pragati, S Duraivel, KP Sampath Kumar. Recent advances in novel topical drug delivery system. Pharma Innovation 2012;1:12-31.

13. Roychowdhury S, Singh DH, Gupta R, Masih D. A review on the pharmaceutical gel. Int J Pharm Res Bio Sci 2012;1:21-36.

14. Loveleenpreet K, Prabhjot K. Formulation and evaluation of topical gel of meloxicam. Int J Res Pharm Chem 2014;4:619-23.

15. PK Lakshmi, Marka KK, Aishwarya S, Shyamala B. Formulation and evaluation of ibuprofen topical gel: a novel approach for penetration enhancement. Int J Appl Pharma 2011;3:25-30.

16. Joshi B, Gurpreet AC, Saini S, Singla V, Emulgel A. Comprehensive review on the recent advances in topical drug delivery. Int J Pharm 2011;2:66-70.

17. Aran RR, Elwin J, Jyoti H, Sreerekha S. Formulation and evaluation of Ketoprofen solid dispersion incorporated topical gels. Eur J Biomed Pharm Sci 2016;3:156-64.

18. Swetha GH, Selappan VP, Narayana RG, Nagarjuna R. Formulation and evaluation of clarithromycin topical gel. Int J Drug Dev Res 2013;5:194-202.

19. Ganesh M, Gouri D, Vijay G. Formulation and evaluation of herbal gels. Int J Nat Prod Res 2012;3:501-5.

20. Marwa HS, Ghada FM. Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin-resistant staphylococcus aureus. Trop J Pharm Res 2013;12:877-84.

21. Aejaz A, Azmail K, Sanaullah S, Mohsin AA. Formulation and in vitro evaluation of aceclofenac solid dispersion incorporated gels. Int J Appl Pharm 2010;2:7-12.

22. Barhate SD, Potdar MB, Nerker P. Development of meloxicam sodium transdermal gel. Int J Pharm Res Dev 2010;2:1-7.

23. Bazigha AK, Eman AF, Sahar FA, Heyam SS, Saeed KA. Development and evaluation of Ibuprofen transdermal gel formulations. Trop J Pharm Res 2010;9:355-63.

24. Jain S, Padsalg BD, Patel AK, Mokale V. Formulation, development and evaluation of flunoxazole gel in various polymer bases. Asian J Pharm 2007;1:3-8.