Learner Performance-based Behavior Optimization Algorithm: A Functional Case Study

Shahad Ahmed
Da Vinci Studio School

Tarik A. Rashid (✉ tarik.ahmed@ukh.edu.krd)
University of Kurdistan Hewler

Method Article

Keywords: Metaheuristic, Learner Performance-based Behavior, Optimization Algorithm

Posted Date: June 15th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1688246/v4

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Learner Performance-based Behavior Optimization
Algorithm: A Functional Case Study

Shahad A. Salih1,2, Tarik A. Rashid3
1 Computer Science Dept., University of Duhok, Duhok, KRG, Iraq
2 Da Vinci Studio School, Duhok, KRG, Iraq
3 Computer Science and Engineering Dept., University of Kurdistan Hewler, Erbil, KRG, Iraq

Abstract. A novel algorithm called learner performance-based behavior algorithm (LPB) was proposed for single and multi-objective by Chnoor M. Rahman and Tarik A. Rashid in 2021. LPB proved its ability to deal with complex optimization problems compared to the dragonfly algorithm (DA), genetic algorithm (GA), and particle swarm optimization (PSO). This paper presents and explains the implementation of the LPB algorithm, and it applies it as a model in a case study to maximize a fitness function. As a result, the LPB algorithm is successfully improved the initial population and achieved the optimal solution.

Keywords: Metaheuristic, Learner Performance-based Behavior, Optimization Algorithm.

1 Introduction

Metaheuristic refers to higher-level heuristics, which have been developed for solving a variety of optimization problems. Various metaheuristic algorithms have recently been successful in tackling intractable situations. The advantage of employing these algorithms to solve complicated problems is that they produce the approximate solutions in a short amount of time, even for very complex problems [1]. Optimization is used in almost all areas of our lives, such as engineering, medicine, business planning, control, energy, etc. These algorithms intelligently select the best solutions from a wide range of choices [2]. Some widely used optimization algorithms are extracted from natural systems, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) [3].

Recently, a learner performance-based behavior algorithm (LPB) has been proposed by Chnoor M. Rahman and Tarik A. Rashid in 2021 [4], [5] to mainly tackle single and multi-objective problems. The main contribution of the paper is to apply LPB to a case study to maximize and obtain optimal solutions. A simple step-by-step guide is demonstrated for this purpose. The paper also serves as a guide for researchers to develop, enhance or hybridize the algorithm.
The rest of the paper is organized into sections, where section two explains LPB in brief. In section three, a case study has been designed to evaluate LPB. Finally, in section four, the main points are concluded.

2 Learner Performance-based Behavior Algorithm

LPB algorithm is inspired by the idea of accepting graduates from high school to university. Through the steps that are applied during the admission of Learners, which are the methods used to divide learners and group them according to their cumulative rate. Also, these methods are used to improve the behavior and level of performance of the individuals after admission to the departments. Learners need to use new study habits because the methods they used to study in junior high do not work properly in college [6, 7, 8]. In this algorithm as a first step, a group of individuals is selected from the population. These individuals are then divided into sub-groups, and the best individuals are then selected from the subgroups depending on their fitness. Their behavior and performance are then improved by having them work as groups. Where teamwork will provide information sharing among themselves when they study (crossover), this method will affect their behavior randomly (mutation). LPB uses crossover and mutation techniques of the genetic algorithm. LPB algorithm works as shown in Figure 1.

Fig. 1 LPB Pseudocode
Figure 2 shows the flowchart of LPB.

Fig. 2 LPB algorithm flowchart

Figure 3 shows how to divide M population flowchart.
Fig. 3 Divide M population flowchart

Fig. 4 Apply Crossover & Mutation
3 A Case Study

For a maximization type of optimization as opposed to a minimization type; consider the following function: \(f(x) \), where \(f(x) = x_1^2 + x_2^2 \); for integer \(x_1 \), \(0 \leq x_1 \leq 5000 \) and \(0 \leq x_2 \leq 5000 \).

Step 1: let \(M \) consists of 16 individuals. Then evaluate the fitness of all \(M \) individuals by the fitness equation. Calculate the summation, average and find maximum fitness form \(M \) as shown in Table 1:

Table 1. Randomly create an \(M \) population and evaluate the fitness of all individuals.

\(Mi\)	\(X_1\)	\(X_2\)	\(X_1^2\)	\(X_2^2\)	Fitness (\(Mi\)) = \(X_1^2 + X_2^2\)
M1	3770	3362	14,212,900	11,303,044	25,515,944
M2	703	1264	494,209	1,597,696	2,091,905
M3	3235	2191	10,465,225	4,800,481	15,265,706
M4	3989	3940	15,912,121	15,523,600	31,435,721
M5	1716	1065	2,944,656	1,134,225	4,078,881
M6	2394	4020	5,731,236	16,160,400	21,891,636
M7	1600	2559	2,560,000	6,548,481	9,108,481
M8	3639	2013	13,242,321	4,052,169	17,294,490
M9	3500	3275	12,250,000	10,725,625	22,975,625
M10	1890	1105	3,572,100	1,221,025	4,793,125
M11	4044	4038	16,353,936	16,305,444	32,659,380
M12	4065	1122	16,524,225	1,258,884	17,783,109
M13	2673	3580	7,144,929	12,816,400	19,961,329
M14	3829	1473	14,661,241	2,169,729	16,830,970
M15	245	2484	60,025	6,170,256	6,230,281
M16	2212	3382	4,892,944	11,437,924	16,330,868

Sum fit. (\(Mi\))= 264,247,451
Average fit. (\(Mi\))= 16,515,466
Max fit. (\(Mi\))= 32,659,380

Step 2: Randomly create a subpopulation; let \(O \) consists of 8 individuals. Then Sort \(O \) descending order. Divide \(O \) into two groups; Good and Bad. Select that individual with the highest fitness from good and bad as shown in Table 2.
Table 2. O population, finding the highest fitness from Good and Bad groups.

Mi	Oi	Fitness (Oi)	Groups
M11	O1	32,659,380	Good
M9	O2	22,975,625	
M8	O3	17,294,490	
M14	O4	16,830,970	
M16	O5	16,330,868	Bad
M7	O6	9,108,481	
M10	O7	4,793,125	
M5	O8	4,078,881	

Good High Fitness is O1 = 32,659,380
Bad High Fitness is O5 = 16,330,868

Step 3: Compare M individuals with O Good and Bad highest fitness to divide M.

Table 3. Comparing M individuals with O Good and Bad highest fitness to divide M, Fitness (Fit.).

Mi	Fitness (Mi)	Fit. (Mi) $<=$ Fit. (O5)	Fit. (Mi) $<=$ Fit. (O1)	Perfect Group
M1	25,515,944	Good		
M2	2,019,905	Bad		
M3	15,265,706	Bad		
M4	31,435,721	Good		
M5	4,078,881	Bad		
M6	21,891,636	Good		
M7	9,108,481	Bad		
M8	17,294,490	Good		
M9	22,975,625	Good		
M10	4,793,125	Bad		
M11	32,659,380	Good		
M12	17,783,109	Good		
M13	19,961,329	Good		
M14	16,830,970	Good		
M15	6,230,281	Bad		
M16	16,330,868	Bad		
Step 4: Check if the Perfect population is not empty, select individuals from PF. If the PF is empty select individuals from the Good population (GP) when it’s not empty, if the GP is empty, then select individuals from the Bad population (BP). The selected individuals will be used in the crossover operator. Note that the number of selected individuals equals the number of required individuals N, which we specify in the first step.

Table 4. Selected individuals.

Selected Individuals to Crossover with O: Good Individua’s:	
M1 25,515,944 Good	M4 31,435,721 Good
M6 21,891,636 Good	M12 17,783,109 Good

Step 5: Apply crossover between selected individuals from Table 4 and good individuals from Table 2.

Table 5. Apply Crossover.

P, Ch	Ind.	X_1	X_2	X_1 (Binary)	X_2 (Binary)
P1	M1	3770	3362	1110 1011 1010	1101 0010 0010
P2	O1	4044	4038	1111 1100 1100	1111 1100 0110
Ch1	New	3724	3334	1110 1000 1100	1111 1111 0100
Ch2	New	4090	4066	1111 1111 1010	1111 1110 0010
P3	M4	3989	3940	1111 1001 0101	1111 0110 0100
P4	O2	3500	3275	1101 1010 1100	1100 1100 1101
Ch3	New	4012	3915	1111 1010 1100	1111 0100 1011
Ch4	New	3477	3300	1101 1001 0101	1100 1110 0100
P5	M6	2394	4020	1001 0101 1010	1111 1011 0100
P6	O3	3639	2013	1110 0011 1111	0111 1111 1101
Ch5	New	2423	3997	1001 0111 0111	1111 1001 1101
Ch6	New	3610	2036	1110 0001 1010	0111 1111 0100
P7	M12	4065	1122	1111 1110 0001	0100 0110 0010
P8	O4	3829	1473	1110 1111 0101	0101 1110 0001
Ch7	New	4085	1089	1111 1111 0101	0100 0100 0001
Ch8	New	3809	1506	1110 1110 0001	0101 1110 0010

Step 6: Apply mutation on new individuals (Child), to maximize the function (randomly convert 0 --> 1) 1 bit for each individual.
Table 6. Apply mutation.

Child	X1	X2	X1 Binary	X2 Binary
Ch1	3724	3334	1110 1000 1100	1101 0000 0110
Ch2	4090	4066	1111 1111 1010	1111 1110 0010
Ch3	4012	3915	1111 1010 1100	1111 0100 1011
Ch4	3477	3300	1101 1001 0101	1100 1110 0100
Ch5	2423	3997	1001 0111 0111	1111 1001 1101
Ch6	3610	2036	1110 0001 1010	0111 1111 0100
Ch7	4085	1089	1111 1111 1010	1000 0100 0001
Ch8	3809	1506	1110 1110 0001	0101 1110 0010

New individuals are shown in Table 7:

Table 7. New individuals after mutation.

X1 new (Binary)	X2 new (Binary)	X1	X2
1110 1000 1100	1111 0000 0110	3788	3846
1111 1111 1011	1111 1111 0010	4091	4082
1111 1110 1100	1111 1000 1011	4076	4043
1101 1001 0111	1110 1110 0100	3479	3812
1001 1111 0111	1111 1001 1111	2551	3999
1110 0101 1010	1111 1111 0100	3674	4084
1111 1111 1101	0100 1100 0001	4093	1217
1111 1110 0001	0101 1111 0010	4065	1522

Step 7: Calculate the fitness of new individuals as shown in Table 8.

Table 8. Calculate Fitness for New Individuals.

Child	X1	X2	X1^2	X2^2	Fitness (Chi) = X1^2 + X2^2
Ch1	3788	3846	14,348,944	14,791,716	29,140,660
Ch2	4091	4082	16,736,281	16,662,724	33,399,005
Ch3	4076	4043	16,613,776	16,345,849	32,969,625
Ch4	3479	3812	12,103,441	14,531,344	26,634,785
Ch5	2551	3999	6,507,601	15,992,001	22,499,602
Ch6	3674	4084	13,498,276	16,679,056	30,177,332
Ch7	4093	1217	16,752,649	1,481,089	18,233,738
Ch8	4065	1522	16,524,225	2,316,484	18,840,709
Step 8: Find the sum, average, and max between new individuals from Table 8 and the parents (Pi) from Table 5.

Table 9. Find Sum, Average, and Max.

Ind.	X₁	X₂	X¹²	X²²	Fitness (Ind.) = X¹² + X²²
M1	3770	3362	14,212,900	11,303,044	25,515,944
O1	4044	4038	16,353,936	16,305,444	32,659,380
M4	3989	3940	15,912,121	15,523,600	31,435,721
O2	3500	3275	12,250,000	10,725,625	22,975,625
M6	2394	4020	5,731,236	16,160,400	21,891,636
O3	3639	2013	13,242,321	4,052,169	17,294,490
M12	4065	1122	16,524,225	1,258,884	17,783,109
O4	3829	1473	14,661,241	2,169,729	16,830,970
Ch1	3788	3846	14,348,944	14,791,716	29,140,660
Ch2	4091	4082	16,736,281	16,662,724	33,399,005
Ch3	4076	4043	16,613,776	16,345,849	32,959,625
Ch4	3479	3812	12,103,441	14,531,344	26,634,785
Ch5	2551	3999	6,507,601	15,992,001	22,499,602
Ch6	3674	4084	13,498,276	16,679,056	30,177,332
Ch7	4093	1217	16,752,649	1,481,089	18,233,738
Ch8	4065	1522	16,524,225	2,316,484	18,840,709

Sum fitness = 398,272,331
Average fitness = 24,892,021
Max fitness = 33,399,005

The new population is shown in table 9. Table 10 just rename the (Ind.) column to (Mi) to show that it’s the New M Population. That should generate O subpopulation from it.

Table 10. The new M population.

Mi	X₁	X₂	X¹²	X²²	Fitness (Ind.) = X¹² + X²²
M1	3770	3362	14,212,900	11,303,044	25,515,944
M2	4044	4038	16,353,936	16,305,444	32,659,380
M3	3989	3940	15,912,121	15,523,600	31,435,721
M4	3500	3275	12,250,000	10,725,625	22,975,625
M5	2394	4020	5,731,236	16,160,400	21,891,636
M6	3639	2013	13,242,321	4,052,169	17,294,490
The previous steps (2 to 8) will be repeated till the required number of iterations or the stop condition is met, then the optimal solution is returned.

Repeat steps 2 to 8, to do the second iteration.

Step 2: Create a new O sub-population from new M population table 10.

Table 11. Randomly create O population and select the highest fitness from Good and Bad.

Mi	Oi	Fitness (O_i)	Groups
M11	O1	32,959,625	Good
M3	O2	31,435,721	
M9	O3	29,140,660	
M12	O4	26,634,785	
M1	O5	25,515,944	
M16	O6	18,840,709	Bad
M15	O7	18,233,738	
M7	O8	17,783,109	

Good High Fitness is $O_1 = 32,959,625$

Bad High Fitness is $O_5 = 25,515,944$

Step 3: Compare the new M individuals table 10 with O Good and Bad highest fitness.
Table 12. Comparing M individuals with O Good and Bad highest fitness.

Mi	Fitness (Mi)	Fit. (Mi) =< Fit. (O5)	Fit. (Mi) =< Fit. (O1)	Perfect Group
M1	25,515,944	Bad		
M2	32,659,380		Good	
M3	31,435,721		Good	
M4	22,975,625	Bad		
M5	21,891,636	Bad		
M6	17,294,490	Bad		
M7	17,783,109	Bad		
M8	16,830,970	Bad		
M9	29,140,660		Good	
M10	33,399,005		Perfect	
M11	32,959,625	Good		
M12	26,634,785	Good		
M13	22,499,602	Bad		
M14	30,177,332	Good		
M15	18,233,738	Bad		
M16	18,840,709	Bad		

Step 4: Check if the Perfect population is not empty select individuals from PF, if the PF is empty, select individuals from the good population when it’s not empty, if the GP is empty, select individuals from the BP. The selected individuals will be used in the crossover operator.

Note: The number of selected individuals will equal the number of required individuals \(N \), which we specify in the first step.

Table 13. Selected individuals.

Selected Individuals to Crossover with O Good Individual’s:
M10
M2
M14
M4

Step 5: Apply crossover between selected individuals from Table 13 and good individuals from Table 11.
Table 14. Apply Crossover.

P, Ch	Ind.	X₁	X₂	X₁ (Binary)	X₂ (Binary)
P1	M10	4091	4082	1111 1111 1011	1111 1111 0010
P2	O1	4076	4043	1111 1110 1100	1111 1100 1011
Ch1	New	4076	4043	1111 1110 1100	1111 1100 1011
Ch2	New	4091	4082	1111 1111 1011	1111 1111 0010
P3	M2	4044	4038	1111 1100 1100	1111 1100 0110
P4	O2	3989	3940	1111 1001 0101	1111 0110 0100
Ch3	New	4053	4068	1111 1101 0101	1111 1110 0100
Ch4	New	3980	3910	1111 1000 1100	1111 0100 0110
P5	M14	3674	4084	1110 0101 1010	1111 1111 0100
P6	O3	3788	3846	1110 1100 1100	1111 0000 0110
Ch5	New	3660	4038	1110 0100 1100	1111 1100 0110
Ch6	New	3802	3910	1110 1101 1010	1111 0011 0100
P7	M4	3500	3275	1101 1010 1100	1100 1100 1011
P8	O4	3479	3812	1101 1001 0111	1110 1100 0100

Step 6: Apply mutation on new individuals (Child) to maximize the function (randomly convert 0 bit to 1 bit) 1 bit for each individual.

Table 15. Apply mutation process on the new child.

Child	X₁	X₂	X₁ Binary	X₂ Binary
Ch1	4076	4043	1111 1110 1100	1111 1100 1011
Ch2	4091	4082	1111 1111 0111	1111 1111 0010
Ch3	4053	4068	1111 1101 0101	1111 1110 0100
Ch4	3980	3910	1111 1000 1100	1111 0100 0110
Ch5	3660	4038	1110 0100 1100	1111 1100 0110
Ch6	3802	3892	1110 1101 0111	1110 1100 0100
Ch7	3479	3300	1101 1001 0111	1100 1110 0100
Ch8	3500	3787	1101 1010 1100	1110 1100 1011

New individuals are shown in Table 16.
Step 7: Calculate the fitness of new individuals by fitness equation, as shown in Table 17.

Child	X_1	X_2	X_1^2	X_2^2	Fitness (Chi) = $X_1^2 + X_2^2$
Ch1	4092	4047	16,744,464	16,378,209	33,122,673
Ch2	4095	4090	16,769,025	16,728,100	33,497,125
Ch3	4061	4069	16,491,721	16,556,761	33,048,482
Ch4	4044	3942	16,353,936	15,539,364	31,893,300
Ch5	3662	4054	13,410,244	16,434,916	29,845,160
Ch6	4058	3956	16,467,364	15,649,936	32,117,300
Ch7	3991	3316	15,928,081	10,995,856	26,923,937
Ch8	3564	3819	12,702,096	14,584,761	27,286,857

Step 8: Find the sum, average, and max between new individuals from Table 17 and the parents (Pi) from Table 14.

Ind.	X_1	X_2	X_1^2	X_2^2	Fitness (Ind.) = $X_1^2 + X_2^2$
M10	4091	4082	16,736,281	16,662,724	33,399,005
O1	4076	4043	16,613,776	16,345,849	32,959,625
M14	4084	4084	15,912,121	15,523,600	31,435,721
M1	3770	3362	14,212,900	11,303,044	25,515,944
Thus, it can be noted from the results that the population has been improved and the efficiency of individuals is increased. Table 19 shows a comparison between the summation and the average and the optimal value for each iteration.

Table 19. Comparison between the results of 3 iterations.

Iteration	Sum	Average	Max
Iteration 0	264,247,451	16,515,466	32,659,380
Iteration 1	398,272,331	24,892,021	33,399,005
Iteration 2	489,657,286	30,603,580	33,497,125

4 Conclusion

This study presents Learner based Performance algorithm. A case study is designed to describe the crossover and mutation processes that may confuse readers of this algorithm. In the experimental results, LBP proved its potential in improving and developing qualities and likewise finding the optimal solution. LPB improves and obtains better solutions iteratively. The authors recommend that this algorithm can be enhanced to reduce the processing time. In addition, changing the GA’s crossover and mutation operations with other operations or mathematical equations from other competitive optimization algorithms might lead to a better performance of LBP.
References

1. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T. and Cosar, A., 2019. A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, p.106040.
2. Hussain, K., Mohd Salleh, M.N., Cheng, S. and Shi, Y., 2019. Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4), pp.2191-2233.
3. Wong, W.K. and Ming, C.I., 2019, June. A review on metaheuristic algorithms: recent trends, benchmarking and applications. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE.
4. Rahman, C.M. and Rashid, T.A., 2021. A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal, 22(2), pp.213-223.
5. Rahman, C.M., Rashid, T.A., Ahmed, A.M., Seyedali Mirjalili, 2022. Multi-objective learner performance-based behavior algorithm with five multi-objective real-world engineering problems. Neural Comput & Applic. https://doi.org/10.1007/s00521-021-06811-z
6. Qayyum, A., 2018. Student help-seeking attitudes and behaviors in a digital era. International Journal of Educational Technology in Higher Education, 15(1), pp.1-16.
7. Chew, S.L., 2010. Improving classroom performance by challenging student misconceptions about learning. Association for Psychological Science - APS. Available at: https://www.psychologicalscience.org/observer/improving-classroom-performance-by-challenging-student-misconceptions-about-learning [Accessed February 10, 2022].
8. Cao, L. & Nietfeld, J.L., 2006. College students' metacognitive awareness of difficulties in learning the class content does not automatically lead to adjustment of study strategies. Australian Journal of Educational & Developmental Psychology. Available at: https://eric.ed.gov/?id=EJ815620 [Accessed February 10, 2022].