Lacunary Fourier and Walsh–Fourier series near L^1

Francesco Di Plinio

Received: 14 April 2013 / Accepted: 31 July 2013 / Published online: 15 August 2013
© Universitat de Barcelona 2013

Abstract We prove the following theorem: given a lacunary sequence of integers $\{n_j\}$, the subsequences $F_{n_j}f$ and $W_{n_j}f$ of respectively the Fourier and the Walsh–Fourier series of $f : \mathbb{T} \to \mathbb{C}$ converge almost everywhere to f whenever

$$\int_{\mathbb{T}} |f(x)| \log \log(\varepsilon + |f(x)|) \log \log \log \log(\varepsilon + |f(x)|) \, dx < \infty \quad (1).$$

Our integrability condition (1) is less stringent than the homologous assumption in the almost everywhere convergence theorems of Lie [14] (Fourier case) and Do and Lacey [6] (Walsh–Fourier case), where a triple-log term appears in place of the quadruple-log term of (1). Our proof of the Walsh–Fourier case is self-contained and, in antithesis to [6], avoids the use of Antonov’s lemma [1,19], relying instead on the novel weak-L^p bound for the lacunary Walsh–Carleson operator

$$\left\| \sup_{n_j} |W_{n_j}f| \right\|_{p,\infty} \leq K \log(e + p') \|f\|_p \quad \forall 1 < p \leq 2.$$

Keywords Carleson theorem · Pointwise convergence · Endpoint bounds · Extrapolation theory

Mathematics Subject Classification (2000) 42B20

__

The author is an INdAM—Cofund Marie Curie Fellow and is partially supported by the National Science Foundation under the grant NSF-DMS-1206438, and by the Research Fund of Indiana University.

F. Di Plinio (✉)
Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”,
Via della Ricerca Scientifica, 00133 Roma, Italy
e-mail: diplinio@mat.uniroma2.it

F. Di Plinio
The Institute for Scientific Computing and Applied Mathematics, Indiana University,
831 East Third Street, Bloomington, IN 47405, USA
1 Introduction and main results

Let \(T: \mathbb{R} \setminus \mathbb{Z} \) be the one-dimensional torus, identified with the interval \([0, 1)\), and write

\[
\langle f, g \rangle = \int_T f(x)g(x) \, dx.
\]

For each \(f \in L^1(T) \), one can construct the Fourier series of \(f \)

\[
F_n f(x) = \sum_{k=-n}^{n} \langle f, E_k \rangle E_k(x), \quad x \in T, \; n \in \mathbb{N}
\]

where \(E_k(x) = e^{2\pi ikx} \), as well as the Walsh–Fourier series of \(f \)

\[
W_n f(x) = \sum_{k=0}^{n} \langle f, W_k \rangle W_k(x), \quad x \in T, \; n \in \mathbb{N}
\]

where \(\{W_n : n \in \mathbb{N}\} \) is the orthonormal basis of \(L^2(T) \) defined as

\[
W_n(x) = \prod_{k \in \mathbb{N}} \left(\text{sign} \sin(2^k 2\pi x) \right)^{\varepsilon_k(n)}, \quad \varepsilon_k(n) := \lfloor 2^{-k} n \rfloor \mod 2.
\]

We are interested in almost-everywhere convergence of \(F_n f, W_n f \) along lacunary subsequences of integers \(\{n_j : j \in \mathbb{N}\} \), that is, sequences of integers for which

\[
\inf_{j \in \mathbb{N}} \frac{n_{j+1}}{n_j} = \theta > 1;
\]

the constant \(\theta \) is termed the lacunarity constant of the sequence \(\{n_j\} \).

The first main result of this note is Theorem 1.1 below. In the statement, as well as in the remainder of the paper, we adopt the notations

\[
\log_k(t) = \log \left(\cdots \left(\log (e_k + t) \right) \cdots \right), \quad e_0 = 1, \; e_k := e^{e_{k-1}}, \; k = 0, 1, 2, \ldots
\]

The precise definition of the Orlicz spaces \(L^{\log_b L} \) appearing in the statement of the theorem and in the subsequent discussion is postponed to the end of the Sect. 1.

Theorem 1.1 Let \(n = \{n_j : j \in \mathbb{N}\} \) be a \(\theta \)-lacunary sequence of integers. The lacunary Carleson (resp. Walsh–Carleson) maximal operators

\[
F_n^* f(x) := \sup_{n \in \mathbb{n}} |F_n f(x)|, \quad W_n^* f(x) := \sup_{n \in \mathbb{n}} |W_n f(x)|
\]

map \(L^{\log_2 L} L^{\log_4 L}(\mathbb{T}) \) into \(L^{1,\infty}(\mathbb{T}) \), with operator norms depending only on \(\theta \). As a consequence, almost everywhere convergence of the lacunary partial sums

\[
F_{n_j} f(x) \to f(x), \quad W_{n_j} f(x) \to f(x), \quad a.e. \; x \in \mathbb{T}
\]

holds for all \(f \in L^{\log_2 L} L^{\log_4 L}(\mathbb{T}) \).

\(\square \) Springer
Lacunary Fourier and Walsh–Fourier series near L^1

We send the interested reader to the survey article [12] and references therein for additional context and perspective on problems related to the almost-everywhere convergence of Walsh and of Fourier series (in particular, along lacunary subsequences). Here, we mention that Theorem 1.1 without the \log_4 term, which is the object of a conjecture by Konyagin [12], would be sharp in the following sense: for any nondecreasing $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ and

$$\phi(t) = o(t \log_2(t)), \quad t \to \infty,$$

and any lacunary sequence $\{n_j\}$ there exists a function f in $\phi(L)$ with lacunary Fourier series divergent everywhere, i.e.

$$\int_\mathbb{T} \phi(|f(x)|) \, dx < \infty \quad \text{and} \quad \sup_j |F_{n_j} f(x)| = \infty \quad \forall x \in \mathbb{T}.$$

This is due to Konyagin [11] as well; a perusal of the proof extends the construction to the Walsh–Fourier case.

The recent articles [6] and [14] have made significant progress towards a positive solution of Konyagin’s conjecture, respectively in the Walsh and in the Fourier setting. Their respective main results can be summarized as follows: given any lacunary sequence of integers $\{n_j\}$, the subsequence $W_{n_j} f$ (resp. $F_{n_j} f$) converges almost everywhere to f for all $f \in L \log_2 L \log_3 L(T)$.

The bulk of [6] is devoted to the proof of the following restricted weak-type estimate for the lacunary Walsh–Carleson maximal operator: for all θ-lacunary sequences n,

$$\|W_n^* f\|_{1, \infty} \leq K \|f\|_{1} \log_2 \left(\frac{1}{|F|} \right), \quad \forall |f| \leq 1_F, F \subset \mathbb{T},$$

(1.1)

where K is a positive constant depending only on the lacunarity constant θ of n. A subsequent application of Antonov’s lemma [1] improves (1.1) into the (modified) weak-type estimate

$$\|W_n^* f\|_{1, \infty} \leq K \|f\|_{1} \log_2 \left(\frac{\|f\|_{\infty}}{\|f\|_{1}} \right),$$

(1.2)

for all bounded functions $f : \mathbb{T} \to \mathbb{C}$. In the later article [14], a direct (that is, without first proving a restricted weak-type estimate and then achieving weak-type via Antonov’s lemma) proof of the Fourier analogue of (1.2), namely

$$\|F_n^* f\|_{1, \infty} \leq K \|f\|_{1} \log_2 \left(\frac{\|f\|_{\infty}}{\|f\|_{1}} \right),$$

(1.3)

is given. Once estimates (1.2) and (1.3) are in place, the bounds

$$W_n^*, F_n^* : \mathcal{W} \to L^{1, \infty}(\mathbb{T}),$$

(1.4)

the space \mathcal{W} being the quasi-Banach rearrangement invariant space with quasinorm

$$\|f\|_{\mathcal{W}} := \inf \left\{ \sum_{k \in \mathbb{N}} \log_1(k) \|f_k\|_{1} \log_2 \left(\frac{\|f_k\|_{\infty}}{\|f_k\|_{1}} \right) : \sum_{k \in \mathbb{N}} |f_k| < \infty \text{ a.e.} \right\},$$

(1.5)

follow, as described in [14], from an exploitation of Kalton’s log-convexity of $L^{1, \infty}(\mathbb{T})$ [9]. A standard density argument then implies almost everywhere convergence of $W_n^* f, F_n^* f$ for functions $f \in \mathcal{W}$. The space \mathcal{W} is akin to the QA space of [18], and the embedding

$$L \log_2 L \log_3 L(\mathbb{T}) \hookrightarrow \mathcal{W}$$

(1.6)
follows along the lines of the theory developed in [18] for QA. In view of the above discussion, coupling the embedding (1.6) with (1.4) immediately leads to the main results of respectively [6] and [14]. Our observation is that, in fact, the strengthening of (1.6)

\[L \log_2 L \log_4 L(\mathbb{T}) \hookrightarrow \mathfrak{M} \]

also holds; hence, assuming (1.4) again (e.g. in the Walsh case)

\[\|W_n^*f\|_{1,\infty} \leq K \|f\|_{L \log_2 L \log_4 L(\mathbb{T})}, \]

which in turn implies the almost everywhere convergence part of Theorem 1.1. The elementary proof of (1.7) is given in Sect. 2. We claim no originality for the methods; similar arguments have appeared, for instance, in [2,7,18,19].

The second main goal of this article is to give a novel, self-contained proof of the inequality (1.2), and hence of the Walsh–Fourier case of the bound (1.4). Our proof is both simpler, and richer, than the one of [6]: in particular, in antithesis to [6], we bypass the intermediate step (1.1), thus avoiding the need for Antonov’s lemma. Instead, we recover (1.2) as an immediate consequence of the weak-type bound of Theorem 1.2 below, which is of independent interest.

Theorem 1.2 Let \(n = \{n_j\} \) be a \(\theta \)-lacunary sequence. There is a positive constant \(K \), depending only on the lacunarity constant \(\theta \) of \(n \), such that, for all \(1 < p \leq 2 \)

\[\|W_n^*f\|_{p,\infty} \leq K \log_1(p') \|f\|_p. \]

Note that weak and strong \(L^p \) bounds for \(W_n^* \) with polynomial dependence on \(p' \) of the operator norms follow by standard (discrete) Littlewood–Paley theory; however, logarithmic dependence on \(p' \) as in Theorem 1.2 was previously unknown. With this sharper estimate in hand, (1.2) is easily obtained via the chain of inequalities

\[\|W_n^*f\|_{1,\infty} \leq \inf_{p>1} \|W_n^*f\|_{p,\infty} \leq \|W_n^*f\|_{\tilde{p},\infty} \]

\[\leq K \log_1(\tilde{p}') \|f\|_{\tilde{p}} \leq K \log_1(\tilde{p}') \|f\|_1 \left(\frac{\|f\|_\infty}{\|f\|_1} \right)^\frac{1}{\tilde{p}}, \]

finally taking \(\tilde{p}' = \max \left\{ 2, \log \left(\frac{\|f\|_\infty}{\|f\|_1} \right) \right\} \).

A more detailed comparison of our approach to the proof in [6], and a discussion on sharpness of Theorem 1.2, are given in the remarks Sect. 5. Here, we just mention that one of the main tools of our proof (appearing, albeit in a different form, in [6] as well) is a lacunary multifrequency Calderón–Zygmund decomposition argument (here, Lemma 4.1), along the lines of [16, Theorem 1.1]. The structural obstruction to this scheme of proof when dealing with the Fourier case is that the mean zero (with respect to multiple frequencies) part arising from the multifrequency CZ decomposition, informally known as “the bad part”, brings nontrivial contribution, unlike the Walsh case. Despite the additional cancellation, we are unable to estimate this contribution efficiently as of now: overcoming these difficulties will be the object of future work.

1 The authors of [6] employ a differently defined quasi-Banach space, denoted \(Q_D \), and derive \(Q_D \rightarrow L^{1,\infty}(\mathbb{T}) \) boundedness of \(W_n^* \) from (1.2), as well as the embedding \(L \log_2 L \log_3 L(\mathbb{T}) \hookrightarrow Q_D \), by appealing to the results of [3], which generalize Arias de Reyna’s work [18]. However, it can be inferred from the discussion in [3, Sect. 1] that the spaces \(Q_D \) and \(\mathfrak{M} \) coincide in this particular case.

2 That is, modulo the usual technicalities due to the spatial tails of the Fourier wave packets.
A few words about notation. We will indicate by \(\mathcal{D} \) the standard dyadic grid on \(\mathbb{R}_+ = [0, \infty) \) and by \(\mathcal{D}_I = \{ J \in \mathcal{D} : J \subseteq I \} \). Throughout, given a Young’s function \(\varphi \), we make use of the local Orlicz norms

\[
\|f\|_{L^\varphi(I)} := \inf \left\{ \lambda > 0 : \int_I \varphi\left(\frac{|f(x)|}{\lambda}\right) \frac{dx}{|I|} \leq 1 \right\}, \quad I \in \mathcal{D}.
\]

When \(\varphi(t) = t^p, 1 \leq p \leq \infty \), we simply write \(L^p(I) \). With this notation, the usual \(L^p \) Hardy–Littlewood dyadic maximal function is defined by

\[
M_p f(x) = \sup_{\mathcal{D} \ni J \ni x} \|f\|_{L^p(I)}.
\]

With the notation \(L \log_2 L \log_b L(\mathbb{T}), b = 3, 4 \) we indicate the Orlicz (Banach) space defined by any Young’s function \(\varphi_b \) with \(t \log_2(t) \log_b(t) = \varphi_b(t) \) for \(t > e_b \). We observe for future use that \(L \log_2 L \log_b L(\mathbb{T}) \) is a Banach space with unit ball

\[
B_b = \left\{ f : \mathbb{T} \to \mathbb{C}, |f|_{L \log_2 L \log_b L} := \int_{\mathbb{T}} \varphi_b(|f(x)|) \, dx \leq 1 \right\}.
\]

Finally, the positive constants implied by the almost inequality signs appearing in the remainder of the paper are meant to be absolute unless otherwise specified: in that case, we will adopt the notation \(\lesssim_a \) to indicate dependence of the implied constant on the parameter \(a \). When we write \(A \sim B \), we mean that \(A \lesssim B \) and \(B \lesssim A \) (and analogously for \(\sim_a \)).

The article is organized as follows. In the forthcoming Sect. 2, we prove (1.7), which in turn implies Theorem 1.1, via estimates (1.2), (1.3). In Sect. 3, we review the discretization of the operator \(\mathcal{W}_n^2 \) into the model sum \(C^n \) and prove an auxiliary exponential estimate. This exponential estimate, together with a multi-frequency projection argument exploiting the lacunary structure of the frequencies (Lemma 4.1), are the cornerstones of the proof of Theorem 1.2, given in Sect. 4. Section 5 contains additional remarks and open problems.

2 Proof of the embedding (1.7)

To prove (1.7), in view of the Definition (1.5) of the quasinorm on \(\mathfrak{W} \), it suffices to show that for any \(f \) in the unit ball \(B_4 \) of \(L \log_2 L \log_4 L(\mathbb{T}) \) there exists a sequence \(\{ f_k : k \in \mathbb{N} \} \) with

\[
f = \sum_{k \in \mathbb{N}} f_k, \quad \sum_{k \in \mathbb{N}} |f_k| < \infty \text{ a.e., } \sum_{k \in \mathbb{N}} \log_1(k) \|f_k\|_1 \log_2 \left(\frac{\|f_k\|_\infty}{\|f_k\|_1} \right) \lesssim 1. \tag{2.1}
\]

Given such an \(f \in B_4 \), we define \(\{ f_k : k \in \mathbb{N} \} \) by

\[
f_k := f 1_{F_k}, \quad F_0 = \{ |f| \leq e^k \}, \quad F_k = \left\{ e^{e^k} < |f| \leq e^{e^{k+1}} \right\}, \quad k \geq 1.
\]

The absolute convergence almost everywhere of the series is immediate, since each \(f_k \) is bounded and the supports of the \(|f_k| \) are pairwise disjoint. We use the elementary fact that \(x \in F_k \implies \log_2(|f(x)|) \log_4(|f(x)|) \sim e^k \log_1(k) \).

Consequently, adopting the shorthand \(A_k := |f_k|_{\mathcal{L} \log_2 \mathcal{L} \log_4 \mathcal{L}} \)

\[
\|f_k\|_1 \sim \frac{A_k}{e^k \log_1(k)}, \quad \|f_k\|_\infty \|f_k\|_1 \lesssim \frac{e^{e^{k+1}}}{A_k} \log_1(k).
\]
whence
\[
\|f_k\|_1 \log_2 \left(\frac{\|f_k\|_\infty}{\|f_k\|_1} \right) \lesssim \frac{A_k}{e^k \log_1(k)} \log_2 \left(\frac{e^{e^k+1}}{A_k} \right). \tag{2.2}
\]

We separate two regimes. In the regime
\[
R_1 = \left\{ k : \frac{A_k}{e^k \log_1(k)} \geq \frac{1}{e^{e^k+1}} \right\},
\]
the above inequality turns into
\[
\|f_k\|_1 \log_2 \left(\frac{\|f_k\|_\infty}{\|f_k\|_1} \right) \lesssim \frac{A_k}{e^k \log_1(k)} \log_2 \left(\frac{(e^{e^k+1})^2}{A_k} \right) \lesssim \frac{A_k}{\log_1(k)}. \tag{2.3}
\]

In the complementary regime \(R_2\), using the trivial inequalities
\[
\frac{4 \log_2(ab)}{\log_2(a) \log_2(b)} \leq 2 \log_2(a) \log_2(b), \quad \forall a, b > 0
\]
and \(a \log \frac{1}{a} \leq \sqrt{a} \) for \(|a| \leq 1\), (2.2) becomes
\[
\|f_k\|_1 \log_2 \left(\frac{\|f_k\|_\infty}{\|f_k\|_1} \right) \lesssim \left(\frac{A_k}{e^k \log_1(k)} \right)^{\frac{1}{2}} e^k \leq e^{-\frac{k}{2}} \leq e^{-k}. \tag{2.4}
\]

With (2.3) and (2.4) in hand, we easily get the last part of (2.1) as follows:
\[
\sum_{k \in \mathbb{N}} \log_1(k) \|f_k\|_1 \log_2 \left(\frac{\|f_k\|_\infty}{\|f_k\|_1} \right) \lesssim \sum_{k \in R_1} A_k + \sum_{k \in R_2} e^{-k} \log_1(k) \lesssim |f| \log_2 \log_4 \mathcal{L} + 1 \lesssim 1.
\]

The proof of the embedding (1.7) is thus completed.

3 Discretization and an exponential estimate

A bitile \(s = I_s \times \omega_s \in \mathcal{D}_T \times \mathcal{D}\) is a dyadic rectangle with \(|\omega_s| = 2|I_s|^{-1}\). We think of \(s\) as the union of the two tiles (dyadic rectangles in \(\mathcal{D}_T \times \mathcal{D}\) of area 1)

\[
s_1 = I_s \times \omega_s, \quad s_2 = I_s \times \omega_s^2
\]

where \(\omega_s^1, \omega_s^2\) refer respectively to the left and right dyadic children of \(\omega_s\). The set of all bitiles will be denoted by \(\mathcal{S}_T\). For each tile \(t = I_t \times \omega_t\), the corresponding Walsh wave packet is defined by

\[
w_t(x) = D_l^2 \left| I_t \right|^{-1/2} W_{n_t}(x) = \left| I_t \right|^{-1/2} W_{n_t} \left(\frac{x - \inf I_t}{\left| I_t \right|} \right), \quad n_t := \left| I_t \right| \inf \omega_t.
\]

Let \(N : \mathbb{T} \to \mathbb{R}_+\) be a measurable choice function and consider the model sum

\[
C_{\mathcal{S}_T} f(x) = \sum_{s \in \mathcal{S}_T} \langle f, w_{s_1} \rangle w_{s_1}(x) \mathbf{1}_{\omega_{s_2}}(N(x));
\]
we do not indicate the dependence on the choice function in our notation. This model sum is the discretization of the unrestricted maximal operator $W^* f := \sup_{n \in \mathbb{N}} |W_n f|$. To obtain a faithful model sum for the maximal partial sum $W^*_n f$ restricted to the (lacunary) sequence $n = \{n_j\}$, we restrict the range of the choice function N to values in n; this restricts the sum over the bitiles $S_T^n := \{s \in S_T : \omega_{s_2} \cap n \neq \emptyset\}$, whence the equivalence \[W^*_n f \sim C_{S_T^n} f. \]

In the remainder of the article, we use the simpler notation C_n in place of $C_{S_T^n}$ and further denote by

$$C_S f(x) = \sum_{s \in S} (f, w_{s_j}) w_{s_j}(x) 1_{\omega_{s_2}}(N(x))$$

the model sum corresponding to an arbitrary finite subcollection $S \subset S_T^n$.

The remainder of this section is devoted to the following proposition, upon whose proof Theorem 1.2 relies.

Proposition 3.1 Let $n = \{n_j\}$ be a θ-lacunary sequence. Then

$$\left| \{x \in T : |C^n f(x)| \gtrsim \lambda \} \right| \lesssim \theta \exp \left(-\frac{\lambda}{\|f\|_{\infty}} \right), \quad \lambda > 0,$$

that is, $C^n : L^\infty(T) \to \exp(L^1(T))$.

The proof of Proposition 3.1 is given in Sect. 3.2; in the forthcoming Sect. 3.1, we recall the necessary tools of time-frequency analysis.

3.1 Analysis and combinatorics in the Walsh phase plane

The material of this subsection is essentially lifted from earlier work [5] (see also [20]), with the exception of Lemma 3.4, which exploits the lacunary structure of the frequencies.

We begin by recalling the well-known Fefferman order relation on either tiles or bitiles $s \ll s' \iff I_s \subset I_{s'}$ and $\omega_s \supset \omega_{s'}$. (3.1)

A collection $S \subset S_T$ is called *convex* if

$$s, s'' \in S, s' \in S_T, s \ll s' \ll s'' \implies s' \in S. \quad (3.2)$$

We will use below that the collection of convex subsets is closed under finite intersection.

Given a set of bitiles S, let Π_S denote the orthogonal projection on the subspace of $L^2(T)$ spanned by $\{w_{s_j} : s \in S, j = 1, 2\}$. We set, for $f \in L^2(T)$,

$$\text{size}_f(S) = \sup_{s \in S} \frac{||\Pi_{\{s\}} f||^2}{|I_s|}.$$

Note that

$$\text{size}_f(S) \sim \sup_{s \in S} \sup_{j=1,2} \frac{|(f, w_{s_j})|}{\sqrt{|I_s|}}.$$

so that

$$\text{size}_f(S) \leq \sup_{s \in S} \inf_{x \in I_s} M_1 f(x). \quad (3.3)$$

A collection of bitiles $T \subset S$ is called a *tree* with top bitile s_T if $s \ll s_T$ for all $s \in T$. We use the notation $I_T := I_{s_T}, \omega_T = \omega_{s_T}$. To characterize the contribution region of a tree, it is useful to introduce the notion of the *crown* of a tree:
We have the following exponential-type estimate for the model sum restricted to a tree of definite size. Note that $C_T f$ is supported on I_T.

Lemma 3.2 Let T be a convex tree and $\sigma = \text{size}_f(T)$. Then

$$\left| \{ x \in I_T : |C_T f(x)| \gtrsim \lambda \sigma \} \right| \lesssim e^{-\lambda |I_T|}, \quad \forall \lambda > 0.$$

Proof It is obvious that $C_T f = C_T \Pi_T f$, hence the lemma follows from the bound

$$\|C_T(\Pi_T f)\|_{BMO(T)} \lesssim \|\Pi_T f\|_{\infty} \leq \text{size}_f(T)$$

and the John–Nirenberg inequality. For details on the second inequality see (for instance) [5].

A finite convex collection of bitiles S is called a forest if S can be partitioned into (pairwise disjoint) convex trees $\{ T : T \in \mathcal{F} \}$. It may be that a given S may admit many such partitions \mathcal{F}. The counting function and the crown function of the forest S with respect to the partition \mathcal{F} are respectively defined as

$$N_{\mathcal{F}}(x) = \sum_{T \in \mathcal{F}} 1_{I_T}(x), \quad W_{\mathcal{F}}(x) = \sum_{T \in \mathcal{F}} 1_{I_T}(x)1_{\operatorname{cr}(T)}(N(x))$$

For a tree T, $\operatorname{supp} C_T f \subset I_T \cap N^{-1}(\operatorname{cr}(T))$, and as a consequence, for a forest S with partition \mathcal{F}, one has the pointwise inequality

$$|C_S f(x)| \leq W_{\mathcal{F}}(x) \max_{T \in \mathcal{F}} |C_T f(x)|.$$

(3.4)

The lemma below can be used to decompose any convex collection of bitiles into forests of definite size, keeping the the L^1 norm of the counting functions under control. See [5] for a proof.

Lemma 3.3 Let S be a finite convex collection of bitiles with $\text{size}_f(S) \leq A$. We can decompose $S = \bigcup S_\sigma : \sigma \in 2^{-N}$, with each S_σ a forest such that

$$\text{size}_f(S_\sigma) \leq A \sigma,$$

(3.5)

$$\|N_{\mathcal{F}_\sigma}\|_{1} \lesssim \sigma^{-2} A^{-2} \|f\|_{2}^{2},$$

(3.6)

for some partition \mathcal{F}_σ.

Our last lemma is specific of the lacunary case: in view of the fact that each bitile contains elements from the lacunary sequence n, we have a bound on the crown function of a generic forest which only depends on the lacunarity constant θ.

Lemma 3.4 For any forest $S \subset S_n^\infty$ with partition \mathcal{F}, there is a partition \mathcal{F}^* with

$$\|W_{\mathcal{F}^*}\|_{\infty} \lesssim_{\theta} 1, \quad \|N_{\mathcal{F}^*}\|_{1} \lesssim_{\theta} \|N_{\mathcal{F}}\|_{1}.$$

Proof It suffices to show that S can be split into \sim_{θ} 1 forests S^j with partitions \mathcal{F}^j, such that

$$\|N_{\mathcal{F}^j}\|_{1} \lesssim_{\theta} \|N_{\mathcal{F}}\|_{1}, \quad \{ I_T \times \operatorname{cr}(T) : T \in \mathcal{F}^j \} \text{ pairwise disjoint}.$$

We define $S^0 := \{ s \in S : n_1 \in \omega_\beta \}$. It is clear that S^0 can be partitioned into convex trees $T \in \mathcal{F}^0$ with pairwise disjoint I_T (take the \prec-maximal bitiles in S^0 as tops). For each of these
trees there exists a unique tree $T' \in \mathcal{F}$ such that the top bitile $s_T \in T'$, whence $|I_T| \leq |I_{T'}|$; it then follows that $||\mathcal{N}_{\mathcal{F}_0}\|_1 \leq ||\mathcal{N}_{\mathcal{F}}\|_1$. Let now $\tilde{S} = S/S^0$ and S^* be the \ll-maximal bitiles of \tilde{S}. It should be apparent that $\sum_{s \in \tilde{S}} |I_s| \leq ||\mathcal{N}_{\mathcal{F}}\|_1$. By the Fefferman trick (see for example Sect. 5 of [4]), the initial claim will follow if we show that for each $s \in \tilde{S}$

$$M := \max \# \{T(s) := \{s' \in \tilde{S}^*: I_s \subset I_{s'}, \omega_{s'} \subset \omega_{s}\}\} \lesssim \theta 1$$

Take $s \in \tilde{S}$ which attains the maximum M. The collection $T(s)$ is made of pairwise disjoint bitiles with $I_s \subset I_{s'}$, thus the intervals $\{\omega_s : s \in T(s)\}$ must be pairwise disjoint, and each contains a different $n_j \in n$. It follows that ω_{s_2} contains at least M different frequencies. Let n_j and n_k be the minimum and the maximum of these frequencies respectively. It must be $k \geq j + M$, whence $|\omega_{s_2}| \geq n_k - n_j \geq (\theta^M - 1)n_j$. If $M \geq \log \frac{2}{\log \theta}$, we would have $|\omega_{s_1}| \geq n_j$, $\inf \omega_{s_1} \leq n_j$, which in turn would imply $n_1 \in \omega_k$, and s would have been selected for S^0. Thus $M \leq \log \frac{2}{\log \theta} \lesssim \theta 1$ as claimed.

3.2 Proof of Proposition 3.1

It suffices to argue for $\lambda > \|f\|\infty$ (the statement is otherwise trivial). Furthermore, by a limiting argument, we may argue for C_S in place of C^n, with S and arbitrary finite convex subcollection of S^*_2, ensuring that the implied constants do not depend on S.

A consequence of (3.3) is that $\text{size}_f(S) \leq \|f\|\infty$, and we can apply the size decomposition Lemma 3.3, with $\Lambda = \|f\|\infty$. We further apply Lemma 3.4 to the resulting forests $\{S_\sigma\}_{\sigma \in 2^{-N}}$ with $\text{size}_f(S_\sigma) \leq \sigma \|f\|\infty$, yielding partitions \mathcal{F}_σ with

$$||\mathcal{N}_{\mathcal{F}_\sigma}\|_1 \lesssim \sigma^{-2} \|f\|^{-2} ||f\|_2^2, \quad ||\mathcal{W}_{\mathcal{F}_\sigma}\|_\infty \lesssim 1.$$ (3.7)

We will show that

$$\{|C_S f| \gtrsim \lambda \} \subset E := \bigcup_{\sigma \in 2^{-N}} \bigcup_{T \in \mathcal{F}_\sigma} E_T,$$ (3.8)

where

$$E_T := \{x \in I_T : |C_T f| \gtrsim \lambda \sigma \log \left(\frac{1}{\sigma^2}\right)\}.$$ Note that, applying Lemma 3.2,

$$|E_T| = |\{x \in I_T : |C_T f| \gtrsim \frac{\lambda}{\|f\|\infty} \log \left(\frac{1}{\sigma^2}\right) \text{size}_f(T)\}| \lesssim \exp \left(-\frac{\lambda}{\|f\|\infty}\right) \sigma^4 |I_T|,$$

whence, in view of (3.7),

$$|E| \lesssim \exp \left(-\frac{\lambda}{\|f\|\infty}\right) \sum_{\sigma \in 2^{-N}} \sigma^4 ||\mathcal{N}_{\mathcal{F}_\sigma}\|_1 \lesssim \exp \left(-\frac{\lambda}{\|f\|\infty}\right) \|f\|^{-2} ||f\|_2^2.$$ Therefore, assuming for a moment the inclusion (3.8), we have arrived at

$$\{|C_S f| \gtrsim \lambda \} \lesssim \exp \left(-\frac{\lambda}{\|f\|\infty}\right) \|f\|^{-2} ||f\|_2^2;$$ (3.9)

Proposition 3.1 simply follows from the obvious $\|f\|^{-1} ||f\|_2 \leq 1$. The above mentioned inclusion is proved by observing that

$$\sup_{x \in E} \sup_{T \in \mathcal{F}_\sigma} |C_T f(x)| \leq \lambda \sigma \log \left(\frac{1}{\sigma}\right).$$
and therefore, making use of the triangle inequality, (3.4), and (3.7),

$$|C_Sf(x)| \leq \sum_{\sigma \in 2^{-N}} |C_{S_{\sigma}}f(x)| \leq \sum_{\sigma \in 2^{-N}} \|W_{\mathcal{F}_{\theta}}\|_{\infty} \sup_{T \in \mathcal{F}_{\theta}} |CTf(x)| \lesssim_{\theta} \lambda \sum_{\sigma \in 2^{-N}} \sigma \log \left(\frac{1}{\sigma}\right) \lesssim_{\theta} \lambda$$

for $x \in E^c$, which means that $E^c \subset \{C_Sf \lesssim \lambda\}$. The proof of Proposition 3.1 is thus completed.

Remark 3.5 Perusing the proof of Proposition 3.1, we realize that we have proved the following estimate: for a finite convex $S \subset S^d$, and any $A \geq \text{size}_f(S)$,

$$\left|\{x \in \mathbb{T} : |C_Sf(x)| \gtrsim \lambda\} \right| \lesssim_{\theta} \exp\left(-\frac{\lambda}{A}\right) \frac{\|f\|_p}{A^2}, \quad \lambda > 0. \quad (3.10)$$

This estimate will be used in the proof of Theorem 1.2.

4 **Proof of Theorem 1.2**

By the usual limiting argument, replacing S^d_k with an arbitrary finite convex subcollection S, Theorem 1.2 is equivalent to the estimate

$$\left|\{x \in \mathbb{T} : |C_Sf(x)| \gtrsim \log_1(p')\lambda\} \right| \lesssim_{\theta} \frac{\|f\|_p}{\lambda^p}, \quad \forall \lambda > 0. \quad (4.1)$$

Furthermore, by scaling f, it suffices to work with $\lambda = 1$.

First of all, note that the left-hand side of (4.1) is less than or equal to

$$\left|\{x \in \mathbb{T} : M_pf(x) > 1\}\right| + \left|\{x \in \mathbb{T} : |C_Sf(x)| \gtrsim \log_1(p'), M_pf(x) \leq 1\}\right| \quad (4.2)$$

and the first summand complies with the bound on the right-hand side of (4.1) by the maximal theorem. Thus it suffices to estimate the second summand of (4.2); note that

$$M_pf(x) \leq 1 \implies C_Sf(x) = C_{S^1}f(x), \quad S^1 = \left\{s \in S : \inf_{I_s} M_1f \leq 1\right\},$$

and thus it suffices to estimate

$$\left|\{x \in \mathbb{T} : |C_{S^1}f(x)| \gtrsim \log_1(p')\}\right| \leq \left|\{x \in \mathbb{T} : |C_{S^1}f_1(x)| \gtrsim \log_1(p')\}\right| + \left|\{x \in \mathbb{T} : |C_{S^1}f_2(x)| \gtrsim \log_1(p')\}\right|, \quad (4.3)$$

where $f_1 := f|_{[M_pf \leq 1]}$, $f_2 := f - f_1$. Our reduction has resulted into

$$\text{size}_{f_i}(S^1) \leq 1, \quad i = 1, 2, \quad \|f_i\|_{L^p}^2 \leq \|f_i\|_{L^p}^2 \leq \|f\|_{L^p}^2, \quad (4.4)$$

so that the first summand in (4.3) is bounded by invoking estimate (3.10) with $A = 1$:

$$\left|\{|C_{S^1}f_1| \gtrsim \log_1(p')\}\right| \leq \left|\{|C_{S^1}f_1| \gtrsim 1\}\right| \lesssim \|f_i\|_{L^p}^2 \leq \|f\|_{L^p}^2$$

We are only left with estimating the second summand in (4.3). To do this, our plan is to apply (3.10) again, once we have at hand the following multi-frequency projection lemma, which relies on the structure imposed on S^d_k by the lacunary sequence n. The first multi-frequency decomposition lemma of this sort appeared in [16] for the Fourier case, and modified Walsh
versions of it have been successfully used in getting uniform estimates [17] and endpoint bounds [5] for the quartile operator. An argument along the same lines, but in the case of multiple lacunary frequencies, appears in [6]; our lemma is an L^p, $1 < p < 2$ reformulation of that argument.

Lemma 4.1 There is a function $g : \mathbb{T} \to \mathbb{C}$ with

$$
\langle f_2, w_{s_1} \rangle = \langle g, w_{s_1} \rangle \quad \forall s \in S^1, \\
\|g\|_2^2 \lesssim (p')^2 |\{M_p f > 1\}|.
$$

In view of (4.5) of Lemma 4.1, we have that

$$C_{S^1} f_2 = C_{S^1} g, \quad \text{size}_g(S^1) = \text{size}_{f_2}(S^1) \leq 1.$$

Therefore, a further application of (3.10) with $A = 1$, followed by (4.6), yields

$$\left|\{C_{S^1} f_2 \gtrsim \log_1(p')\}\right| = \left|\{C_{S^1} g \gtrsim \log_1(p')\}\right| \\
\lesssim e^{-2 \log_1(p')}\|g\|_2^2 \lesssim |\{M_p f > 1\}|,$$

which once again has the correct measure by the maximal theorem. We have completed the proof of Theorem 1.2, up to showing Lemma 4.1.

Proof of Lemma 4.1 Let $I \in I$ be the maximal dyadic intervals of $\{M_p f_1 > 1\}$; for each $I \in I$, let $t \in T_I$ be the collection of all tiles having $I_t = I$ and which are comparable under \ll to some tile in $\{s_1 : s \in S^1\}$. These are obviously pairwise disjoint. The definition of S^1 ensures that whenever $I_s \cap I$ for some $s \in S^1$ and $I \in I$, it must be that $I \subseteq I_s$. It follows that if $t \in T_I, s_1 \in \{s_1 : s \in S^1\}$ are related, then $t \ll s_1, s_2$. In particular, each $t \in T_I$ must contain some lacunary frequency $n_j \in n$; furthermore, by standard properties of Walsh wave packets, w_{s_1} (and w_{s_2} as well, but we will not need this) is a scalar multiple of w_t on I, and, in particular, $w_{s_1}1_I$ belongs to H_I, the subspace of $L^2(I)$ spanned by $\{w_t : t \in T_I\}$.

For functions $v \in H_I$, one has the estimate

$$\|v\|_2 L^q(I) \lesssim q \|v\|_{\text{BMO}(I)} \lesssim q \|v\|_{L^2(I)}, \quad 2 < q < \infty;$$

the first bound is simply John–Nirenberg’s inequality (and BMO(I) is the dyadic version), while the second is proved in [10]. Since $\|f_2\|_{L^p(I)} = \|f\|_{L^p(I)} \leq 2$ by maximality of I in $\{M_p f > 1\}$, it then follows that

$$\langle f_2, v \rangle_{L^2(I)} \lesssim \|f_2\|_{L^p(I)} \|v\|_{L^{p'}(I)} \lesssim \theta \|v\|_{L^2(I)} \quad \forall v \in H_I.$$

Therefore g_I, the projection of f_21_I on H_I, satisfies $\|g_I\|_{L^2(I)} \lesssim p'$; defining $g := \sum_{I \in I} g_I$, we see that

$$\|g\|_2^2 = \sum_{I \in I} |I| \|g_I\|_{L^2(I)}^2 \lesssim \theta (p')^2 \sum_{I \in I} |I| = (p')^2 |\{M_p f > 1\}|,$$

that is, (4.6) holds. Finally, in view of the above discussion, if $s_1 \in \{s_1 : s \in S^1\}$

$$\langle f_2, w_{s_1} \rangle = \sum_{I \in I} \langle f_2, w_{s_1} 1_I \rangle = \sum_{I \in I} \langle f_2 1_I, c w_{t(s_1)} \rangle = \sum_{I \in I} \langle g_I, w_{s_1} \rangle = \langle g, w_{s_1} \rangle$$

where $t(s_1)$ is the unique (if any) element t of T_I with $t \ll s_1$. This shows (4.5) and finishes the proof of the lemma.
5 Remarks and complements

5.1 A comparison with the argument in [6]

Therein, estimate (1.2) follows by upgrading the restricted weak-type version (1.1), via Antonov’s lemma [1,19] (which uses the structure of the Walsh–Carleson kernel). In turn, (1.1) is a consequence of the restricted weak-type estimate

\[
\langle C^n f, g \rangle \lesssim |F| \log_2 \left(\frac{|G|}{|F|} \right)
\]

for all sets \(F, G \subset \mathbb{T} \), and all functions \(|f| \leq 1_F, |g| \leq 1_{G'} \), with \(G' \) being a suitably chosen major subset of \(G \). The proof of (5.1) follows the usual Lacey–Thiele argument for boundedness of the unrestricted Carleson operator [13]; in particular, the dual quantity (density)

\[
\text{dense}(S) = \sup_{s \in S} \frac{|I_s \cap N^{-1}(\omega_s) \cap G|}{|I_s|}
\]

comes into play. For the unrestricted Carleson operator, the analogue of (5.1) holds with a single logarithm; the improvement to double logarithm is possible thanks to a multifrequency projection argument based on the same tools as Lemma 4.1 (in particular, an improvement over Hausdorff–Young inequality in the vein of (4.7)).

Our proof of Theorem 1.1 yields (1.2) directly from the weak \(L^p \) estimate

\[
B_n(p) := \|C^n f\|_{L^p(\mathbb{T})} \to L^p, \infty (\mathbb{T}) \lesssim_\theta \log_1 (p'), \quad \forall 1 < p < 2
\]

of Theorem 1.2, avoiding the need for extrapolation techniques. Moreover, our arguments do not employ density (which is also the key quantity in the proof of the Fourier case [14]), relying instead on the property that any collection of bitiles \(S \subset S^n_\mathbb{T} \) can be arranged into a forest \(\mathcal{F} \) of trees with

\[
|C_S f(x)| \lesssim_\theta \sup_{T \in \mathcal{F}} |C_T f(x)|,
\]

which exploits the lacunary structure, see Lemma 3.4. This property reflects the fact that the lacunary Carleson operator is essentially a supremum of (lacunarily) modulated Hilbert transforms acting on (essentially) pairwise disjoint regions of the time-frequency plane.

5.2 Sharpness of Theorem 1.2

We conjecture that Theorem 1.2, summarized into (5.2), is sharp in the following sense: for a generic lacunary sequence,

\[
\limsup_{p \to 1^+} \frac{B_n(p)}{\varphi(p')} = \infty \quad \forall \varphi(t) = o(\log_1(t)), \ t \to \infty.
\]

We cannot quite prove this result; however, the weaker statement

\[
\limsup_{p \to 1^+} \frac{B_n(p)}{\varphi(p')} = \infty \quad \forall \varphi(t) = o\left(\frac{\log_1(t)}{\log_3(t)}\right), \ t \to \infty.
\]

must hold. If it were not so, an argument along the lines of the proof of Theorem 1.1 would contradict Konyagin’s counterexample from [11], that we have mentioned at the beginning of
the paper. Similarly, proving that $B_n(p) \sim O(\log_1 (p') / \log_3 (p'))$ would allow the removal of the quadruple-log term in Theorem 1.1, thus yielding the sharp result. Our conjecture stems from deeming the term $\log_3 (p')$ as inconsequential, and expresses the belief that knowing the sharp weak L^p constant would not suffice to prove the sharp analogue of Theorem 1.1.

5.3 Strong L^1 bounds

A further unresolved question concerns the largest Orlicz space X of functions $\mathbb{T} \to \mathbb{C}$ for which the bound

$$\|W_n^* f\|_{L^1(\mathbb{T})} \lesssim_\theta \|f\|_X$$

holds. Since W_n^* is greater than each (discrete) n_j-modulated Hilbert transform, it follows that no Orlicz space $L^\varphi(\mathbb{T})$ with

$$\limsup_{t \to \infty} \frac{\varphi(t)}{t \log_1(t)} = 0$$

embeds into X. The (sharp, in terms of Orlicz norms) inclusion $L \log L(\mathbb{T}) \subset X$ is still unknown: the current best result [6, (1.6) of Theorem 1.4] is that $L \log_1 L \log_2 L(\mathbb{T}) \subset X$. We can easily recover this result from Theorem 1.2: applying Marcienkiewicz interpolation, one turns the weak-type bound of Theorem 1.2 into the strong bound

$$\|W_n^*\|_{p \to p} \lesssim_\theta p' \log_1 (p'),$$

which in turn implies $W_n^*: L \log_1 L \log_2 L(\mathbb{T}) \to L^1(\mathbb{T})$, repeating the proof of the classical Yano extrapolation theorem.

In relation to this, it is known that all sublinear translation invariant operators of restricted weak type (1,1) map $L \log_1 L(\mathbb{T})$ into $L^1(\mathbb{T})$ (see for example [8]). However, a result of Moon [15] implies that an operator of the form $Tf = \sup_n |f \ast g_n|$ with each $g_n \in L^1(\mathbb{T})$, is of restricted weak type (1,1) if and only if it is of weak type (1,1). Since W_n^* is of this form, and it is not weak type (1,1), it cannot be restricted weak type (1,1) either. This suggests the need for direct methods in the search for a proof that W_n^* is strong-type $L \log_1 L(\mathbb{T}) \to L^1(\mathbb{T})$, possibly relying on (5.3).

Acknowledgments The author wants to express his gratitude to his Ph.D. thesis advisors Ciprian Demeter and Roger Temam for their hospitality during his April 2013 visit to the Institute of Scientific Computing and Applied Mathematics at Indiana University, where this article was finalized. The author also thanks Victor Lie and Elena Prestini for fruitful discussions on the subject of this paper and its presentation.

References

1. Antonov, N.Y.: Convergence of Fourier series. In: Proceedings of the XX workshop on function theory (Moscow, 1995), vol. 2, pp. 187–196 (1996)
2. Carro, M.J., Grafakos, L., Martell, J.M., Soria, F.: Multilinear extrapolation and applications to the bilinear Hilbert transform. J. Math. Anal. Appl. 357(2), 479–497 (2009). doi: 10.1016/j.jmaa.2009.04.021
3. Carro, M.J., Martín, J.: Endpoint estimates from restricted rearrangement inequalities. Rev. Mat. Iberoamericana 20(1), 131–150 (2004). doi:10.4171/RMI/383
4. Demeter, C.: A guide to Carleson’s theorem, arXiv http://arxiv.org/abs/1210.0886
5. Demeter, C., Di Plinio, F.: Endpoint bounds for the quartile operator. J. Fourier Anal. Appl., arXiv (to appear) http://arxiv.org/abs/1203.6624
6. Do, Y.Q., Lacey, M.T.: On the convergence of lacunary Walsh–Fourier series. Bull. Lond. Math. Soc. 44(2), 241–254 (2012). doi:10.1112/blms/bdr088
7. Grafakos, L., Martell, J.M., Soria, F.: Weighted norm inequalities for maximally modulated singular integral operators. Math. Ann. 331(2), 359–394 (2005). doi:10.1007/s00208-004-0586-2
8. Hagelstein, P.A.: Problems in interpolation theory related to the almost everywhere convergence of Fourier series. In: Topics in Harmonic Analysis and Ergodic Theory, Contemporary Mathematics, vol. 444, pp. 175–183. American Mathematical Society, Providence, RI (2007). doi: 10.1090/conm/444/08580
9. Kalton, N.J.: Convexity, type and the three space problem. Studia Math. 69(3), 247–287 (1980/81)
10. Kochneff, E., Sagher, Y., Zhou, K.C.: BMO estimates for lacunary series. Ark. Mat. 28(2), 301–310 (1990). doi:10.1007/BF02387383
11. Konyagin, S.V.: Divergence everywhere of subsequences of partial sums of trigonometric Fourier series. In: Proceeding of the Steklov Institute of Mathematics (function theory, suppl. 2), pp. S167–S175 (2005)
12. Konyagin, S.V.: Almost everywhere convergence and divergence of Fourier series. In: International congress of mathematicians, vol. II, pp. 1393–1403. European Mathematical Society, Zürich (2006)
13. Lacey, M., Thiele, C.: A proof of boundedness of the Carleson operator. Math. Res. Lett. 7(4), 361–370 (2000)
14. Lie, V.: On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences. J. Funct. Anal. 263(11), 3391–3411 (2012). doi:10.1016/j.jfa.2012.08.013
15. Moon, K.H.: On restricted weak type (1, 1). Proc. Am. Math. Soc. 42, 148–152 (1974)
16. Nazarov, F., Oberlin, R., Thiele, C.: A Calderón–Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain. Math. Res. Lett. 17(3), 529–545 (2010)
17. Oberlin, R., Thiele, C.: New uniform bounds for a Walsh model of the bilinear Hilbert transform. Indiana Univ. Math. J. 60(5), 1693–1712 (2011). doi:10.1512/iumj.2011.60.4445
18. Reyna, A.J.: Pointwise convergence of Fourier series. J. Lond. Math. Soc. (2) 65(1), 139–153 (2002). doi:10.1112/S0024610701002824
19. Sjölin, P., Soria, F.: Remarks on a theorem by N. Yu. Antonov. Studia Math. 158(1), 79–97 (2003). doi:10.4064/sm158-1-7
20. Thiele, C.: Wave packet analysis, CBMS Regional Conference Series in Mathematics, vol. 105. Published for the Conference Board of the Mathematical Sciences, Washington (2006)