Recommended configuration for personal health records by standardized data item sets for diabetes mellitus and associated chronic diseases: A report from Collaborative Initiative by six Japanese Associations

著者（英）	Naoki Nakashima, Mitsuhiko Noda, Kohjiro Ueki, Tatsuhiko Koga, Michio Hayashi, Katsuya Yamazaki, Tomoko Nakagami, Makoto OHARA, Akira Gochi, Yasushi Matsumura, Michio Kimura, Kazuhiko Ohe, Dongchon Kang, Yoshiyuki Toya, Kunihiro YAMAGATA, Koutaro Yokote, Shunya Ikeda, Naohiro Mitsutake, Ryuichi Yamamoto, Yukio Tanizawa			
言語	英			
巻	10			
号	3			
頁番	868-875			
年	2019-05			
版本	国際糖尿病学会（JDS）	亞洲糖尿病研究會（AASD）	劉易林 & 威利集團（Australia），Ltd	這個文章是在創意共亨署名-非商業-維護原樣本許可條約下發布的，允許使用和分發於任何媒介，只要原件工作正確地被引用，使用非商業用途，並且不做修改或變更。
URL	http://hdl.handle.net/2241/00157219			
doi	10.1111/jdi.13043			
Creative Commons :	http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja			
Recommended configuration for personal health records by standardized data item sets for diabetes mellitus and associated chronic diseases: A report from Collaborative Initiative by six Japanese Associations

Naoki Nakashima1*, Mitsuhiko Noda2, Kohjiro Ueki3, Tatsuhiko Koga4, Michio Hayashi5, Katsuya Yamazaki5, Tomoko Nakagami7, Makoto Ohara8, Akira Gochi9, Yasushi Matsumura10, Michio Kimura11, Kazuhiro Ohe12, Dongchon Kang1, Yoshiyuki Toya13, Kunihiro Yamagata8, Koutaro Yokote14, Shunya Ikeda15, Naohiro Mitsutake16, Ryuichi Yamamoto17, Yukio Tanizawa18

1Kyushu University Hospital, Fukuoka, 2Satama Medical University, Satama, 3National Center for Global Health and Medicine, Tokyo, 4Hara Doi Hospital, Fukuoka, 5NTT Medical Center Tokyo, Tokyo, 6Tsukuba Diabetic Center Kawai Clinic, Ibaraki, 7Tokyo Women’s Medical University, Tokyo, 8University of Tsukuba, Ibaraki, 9Ibaraki City Hospital, Okayama, 10Osaka University, Osaka, 11Hamamatsu University School of Medicine, Shizuoka, 12University of Tokyo, Tokyo, 13Yokohama City University, Kanagawa, 14Chiba University, 15International University of Health and Welfare, Chiba, 16Institute for Health Economics and Policy, 17Medical Information System Development Center, Tokyo, and 18Yamaguchi University, Yamaguchi, Japan

Keywords
Core item sets, Lifestyle related diseases, Personal health record

*Correspondence
Naoki Nakashima
Tel.: +81-92-642-5881
Fax: +81-92-642-5889
E-mail address: nnaoki@info.med.kyushu-u.ac.jp

J Diabetes Investig 2019; 10: 868–875
doi: 10.1111/jdi.13043

ABSTRACT
It is expected that a large amount of data related to diabetes and other chronic diseases will be generated. However, databases constructed without standardized data item sets can be limited in their usefulness. To address this, the Collaborative Committee of Clinical Informatization in Diabetes Mellitus was established in 2011 by the Japan Diabetes Society and Japan Association for Medical Informatics. The committee has developed core item sets and self-management item sets for diabetes mellitus, hypertension, dyslipidemia, and chronic kidney disease in collaboration with the Japanese Society of Hypertension, Japan Atherosclerosis Society, Japanese Society of Nephrology, and Japanese Society of Laboratory Medicine, as well as a mapping table that aligns the self-management item sets with the Japanese standardized codes for laboratory testing. The committee also determined detailed specifications for implementing the four self-management item sets in personal health record (PHR) applications to facilitate risk stratification, the generation of alerts using information and communications technology systems, the avoidance of data input errors, and the generation of reminders to input the self-management item set data. The approach developed by the committee may be useful for combining databases for various purposes (such as for clinical studies, patient education, and electronic medical record systems) and for facilitating collaboration between PHR administrators.

The following authors are members of Japan Association for Medical Informatics: Naoki Nakashima, Makoto Ohara, Akira Gochi, Yasushi Matsumura, Michio Kimura, Kazuhiro Ohe. The following authors are members of Japan Diabetes Society: Mitsuhiko Noda, Kohjiro Ueki, Tatsuhiko Koga, Michio Hayashi, Katsuya Yamazaki, Tomoko Nakagami, Yukio Tanizawa.
The following authors are members of Japanese Society of Laboratory Medicine: Dongchon Kang.
The following authors are members of Japanese Society of Hypertension: Yoshiyuki Toya.
The following authors are members of Japanese Society of Nephrology: Kunihiro Yamagata.
The following authors are members of Japan Atherosclerosis Society: Koutaro Yokote.
The article is a report from the Collaborative Committee of Clinical Informatization in Diabetes Mellitus (by the Japan Diabetes Society and the Japan Association for Medical Informatics) with the Collaborative Initiative by additional four Japanese clinical associations (the Japanese Society of Laboratory Medicine, the Japanese Society of Hypertension, the Japanese Society of Nephrology and the Japan Atherosclerosis Society). The article has been jointly published in Journal of Diabetes Investigation (the official journal of the Asian Association for the Study of Diabetes) and Diabetology International (the official English journal of the Japan Diabetes Society: https://doi.org/10.1007/s13340-019-00389-7) by the Japan Diabetes Society.
Received 24 February 2019; accepted 13 March 2019
BACKGROUND AND AIMS

Many databases have been developed to store and generate information about diabetes mellitus and other chronic diseases1,2, but their subsequent use can be limited by inconsistent data standards, such as the precise sets of data items used, and they may therefore have limited utility beyond their initially defined roles. Recently, there has been a rapid expansion of digitization in clinical practice and research. When appropriate information standards are defined before a new database is created, it may then be possible to reuse the database for other purposes. For example, a database developed for tracking information about patient self-monitoring of diabetes might then be used for clinical research, establishing evidence-based quality indicators, or facilitating regional medical cooperation.

In 2010, the Japan Diabetes Society (JDS) and the Japan Association for Medical Informatics (JAMI) established the Collaborative Committee for Clinical Informatization in Diabetes Mellitus (CCCIDM) to review the digitalization of clinical data about diabetes mellitus. The present article is a report of the work of the committee in collaboration with six Japanese academic associations: the JDS and JAMI, as well as the Japanese Society of Hypertension (JSH), the Japan Atherosclerosis Society (JAS), the Japanese Society of Nephrology (JSN), and the Japanese Society of Laboratory Medicine (JSLM, which participated from 2015). The report introduces the sets of data items established by the committee in 2015 for diabetes mellitus and the associated chronic diseases hypertension, dyslipidemia, and chronic kidney disease (CKD), as well as the committee’s recommended data configurations, established in August 2018, for personal health record (PHR) applications, which was the first use of the data sets.

MATERIALS AND METHODS

By the end of 2011, CCCIDM developed a core data item set (CIS) that listed the minimum set of data items necessary for diabetes-related databases. However, the CIS alone could not be used in databases without additional data items. CCCIDM therefore proposed a self-management item set (SMIS), which may be useful for disease management by diabetic patients themselves based on the CIS developed by a working group sponsored by the Japanese Cabinet Secretariat and chaired by Professor Emeritus Naoko Tajima of Jikei University School of Medicine, who was also the first chairperson of the CCCIDM. Two other members of the CCCIDM also participated in the working group. The SMIS for diabetes was approved by the working group in 2012 and was subsequently approved by CCCIDM.

Because patients with diabetes often have other chronic diseases, it can be useful to combine data about diabetes mellitus with data about other chronic diseases. Therefore, in addition to diabetes mellitus, CCCIDM selected hypertension, dyslipidemia, and CKD for consideration because (i) they are associated with high rates of morbidity, (ii) they are associated with considerable personal and socioeconomic burdens, (iii) they are preventable through patient self-management, and (iv) they can be evaluated and monitored using clear clinical parameters, such as blood testing and lifestyle monitoring. After selecting these diseases, CCCIDM invited the Japanese academic associations for each disease (JSH, JAS, and JSN) to form a collaborative extended committee (CEC) to establish consistent overlapping data item sets for all four diseases with the support of the Japanese Cabinet Secretariat. The SMISs for hypertension, dyslipidemia, and CKD were established in combination with the CISs in 2014 and were subsequently published on JAMI’s website3. The CIS and SMIS for each disease were standardized in terms of data item name, granularity, and expression or unit used.

In 2015, the JSLM was included in the CEC. Since 2016, the CEC has collaborated with a PHR project entitled ‘Research on standardization and establishment of a business model for preventing the aggravation of lifestyle-related diseases, in cooperation with medical insurers, disease management companies, and medical institutions,’ administered by the Medical Information System Development Center (MEDIS-DC) and sponsored by the Japan Agency for Medical Research and Development (AMED). The aim of that project was to develop SMISs for implementation in PHR applications by mapping them to version 10 of the Japanese Laboratory Analysis Codes (JLAC)4. These codes are the Japanese standard for laboratory testing and can be mapped to logical observation identifier names and codes, which are international common terms (a set of identifiers, names, and codes) for identifying health measurements, observations, and documents5. The CEC subsequently determined the boundary values and thresholds for risk stratification, as well as values that could be used to provide smartphone alerts to various users, including patients, family members, and medical staff, based on standard clinical guidelines for the chronic diseases. The CEC also identified parameters that could be used to avoid data input errors and to prompt users to input data into the PHR within the appropriate time interval for each item.

RESULTS

Between 2011 and 2014, the CEC established CISs and SMISs that included the CISs for each of the four chronic diseases and revised them in 2018 (Figures 1 and 2). The CISs comprised 14 items for diabetes mellitus, 13 for hypertension, 13 for dyslipidemia, and 12 for CKD. By eliminating overlapping items, the overall number of CIS items was reduced from 52 to 23 (Figure 2). The SMISs comprised 22 items for diabetes mellitus, 18 for hypertension, 15 for dyslipidemia, and 23 for CKD. After eliminating overlapping items, the total number of SMIS items was reduced from 78 to 41 (Figure 2).

The four CISs and four SMISs were approved by the administrative boards of all six associations in 2015 (the first edition) and in 2018 (the second edition). During 2016 and in August 2018, the CEC developed detailed specifications (Tables S1 to S6) for implementing the four SMISs in PHR applications, described as ‘recommended configurations for the PHRs of..."
Because the standard clinical guidelines ask stricter indicators for patients with chronic diseases than for healthy people, the CEC determined a basic configuration for healthy people (Table S1) and associated configurations for diabetes mellitus (Table S2), hypertension (Table S3), dyslipidemia (Table S4), CKD (Table S5), and coronary heart disease (Table S6), which were added during a discussion by the CEC for risk assessment of the four chronic diseases. The tables show the various strict values for reminders, alerts, or thresholds for risk stratifications. PHR applications should use the basic configuration (Table S1) to detect possibility of pre-diseases (yellow) or the onset of diseases (orange and red) when the user does not have any previously diagnosed disease. And the additional configuration for the appropriate chronic disease to know the risk of serious complications of the diseases (green; minimum risk, yellow; light risk, orange; moderate risk, red; high risk) when the patient experiences the onset of the disease (Table S2 to S6). If the PHR has various configurations because the patient suffers from more than one of the chronic diseases, the strictest configuration should be used.

The CEC defined fasting and non-fasting conditions for the configuration of PHRs for chronic diseases. The fasting condition follows fasting for 10 h (although the consumption of water and non-calorie tea are acceptable). The values for alerts and risk stratification in the configuration of the PHR refer to fasting condition results for the tests for blood glucose (SMIS-ID 10 in Figure 2), triglycerides (SMIS-ID 18), urine glucose (SMIS-ID 28), and self-monitored blood glucose (no ID). The CEC recommends that PHR applications include a function to identify whether these four items have been measured under the fasting condition.

The SMIS and recommended PHR configuration have several lipid-related indicators, including levels of low-density lipoprotein (LDL) cholesterol (by direct assay), total cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. Additional indicators, such as LDL cholesterol by the Friedewald formula and non-HDL cholesterol, can be calculated from data in the SMIS. However, serum triglyceride levels are affected by eating, and some indicators are unstable in blood samples with high triglyceride levels. Thus, the JAS Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017 has specified the following according to triglyceride levels: when

Item	Unit, expression	CIS of diabetes mellitus	CIS of hypertension	CIS of Dyslipidemia	CIS of CKD
Height	cm				
Weight	kg				
Systolic Blood Pressure	mmHg				
Diastolic Blood Pressure	mmHg				
LDL Cholesterol	mg/dL				
HDL Cholesterol	mg/dL				
Smoking	Yes, No, Yes in the past				
Serum Creatinine	mg/dL				
Urine Protein	–, +, 2 +, 3 + or over				
Blood Glucose	mg/dL				
Age diagnosed as Diabetes Mellitus	under 10y.o, 10’s, 20’s, 30’s, 60y.o. or over, Not yet, Unknown				
HbA1c	%				
ALT	U/L				
Diabetic Retinopathy	Yes, No, Unknown				
Age diagnosed as Hypertension	under 10y.o, 10’s, 20’s, 30’s, 60y.o. or over, Not yet, Unknown				
Serum Potassium	mg/dL				
Abnormality on ECG	Yes, No, Unknown				
Triglyceride	mg/dL				
Age diagnosed as Dyslipidemia	under 10y.o, 10’s, 20’s, 30’s, 60y.o. or over, Not yet, Unknown				
Past History of Coronary Diseases	Yes (by contrast study), Yes (by another study), No, Unknown				
Age diagnosed as CKD	under 10y.o, 10’s, 20’s, 30’s, 60y.o. or over, Not yet, Unknown				
Serum Albumin	g/dL				
Hematuria	–, +, 2 +, 3 + or over (Micro hematuria, Macro hematuria)				
the triglyceride level is <400 mg/dL, LDL cholesterol by the Friedewald formula (only in the fasting condition) or direct assay, or non-HDL-cholesterol, should be used for the evaluation; when the triglyceride level is in the range 400–600 mg/dL, LDL cholesterol (by direct assay but not by the Friedewald formula) or non-HDL-cholesterol should be used for the evaluation; for triglyceride levels in the range 600–1,000 mg/dL, LDL cholesterol by direct assay, but not by the Friedewald formula, should be used for the evaluation; and when triglycerides ≥1,000 mg/dL, triglyceride should be improved before the evaluation of lipid-related indicators.

The JSLM subsequently mapped the SMISs to the JLAC10 (Table 1), and this map was approved by the CEC in 2018. Mapping the SMISs to JLAC10 is complicated because it depends on factors, such as the assay methods and reagents used. Therefore, when PHR providers install actual JLAC10 codes in the system, they should be careful and ensure they use the correct codes.

Figure 2 The self-management item sets.3
Notes: (*) Regular visits to a dental clinic (at least once per year). (*2) A family history of renal failure, including hemodialysis, renal transplantation, or renal failure in a family member of ≤2 degrees of separation

DISCUSSION

‘Big data’ has evolved to incorporate clinical information, and it is expected that a vast amount of diabetes-related data will be generated. It is therefore important to develop and implement standardized data item sets for diabetes-related databases. Linking those databases to databases for other chronic diseases should help generate useful, high-quality data. However, attempts to standardize data item sets have often failed because of an excessive number of items. In our approach, we defined the CIS for each disease and then developed SMISs based on those CISs to minimize the number of items.

Our SMISs have been used in databases for three large disease registry studies (Table 2). For example, the Japan Diabetes Comprehensive Database Project Based on an Advanced Electronic Medical Record System (J-DREAMS), administered by the National Center for Global Health and Medicine and the JDS, used all of our SMIS items for diabetes mellitus.7,8
Table 1 | Mapping similarities between the self-management item set and the Japan Laboratory Analysis Code version 10 (JLAC10)

Number	Item name	Expression/unit	JLAC10 code	Supplement
1	Height	cm	9N00100000000001	
2	Weight	kg	9N00600000000001	
3	Systolic blood pressure	mmHg	9A75100000000001	
4	Diastolic blood pressure	mmHg	9A76100000000001	
5	LDL-cholesterol	mg/dL	3F07700000232710	
6	HDL cholesterol	mg/dL	3F07000000232710	Friedewald
7	Smoking	Yes, No, Yes in the past	9N73600000000001	
8	Serum creatinin	mg/dL	3C01500000232710	
9	Urine protein	–, ±+, 2+, 3+or over	1A990000000190153	Urinary test strip method
10	Blood glucose	mg/dL	3D01000000192720	NaF, Plasma
11	Age diagnosed as diabetes mellitus	Less than 10y.o, 10s, 20s, 70s, 80 y.o or over, Unknown	9N04100000000001	
12	HbA1c (NGSP)	%	3D04600000192040	
13	ALT	IU/L	3B04500000232720	
14	Diabetic retinopathy	Yes, No, Unknown	9N04200000000001	
15	Age diagnosed as hypertension	Less than 10y.o, 10s, 20s, 70s, 80 y.o or over, Unknown	9N04300000000001	
16	Serum potacium	mEq/L	3H01500000232610	
17	Abnormality on ECG	Yes, No, Unknown	9A11016070000001	
18	Trigliceride	mg/dL	3F01500000232710	
19	Age diagnosed as dyslipidemia	Less than 10y.o, 10s, 20s, 70s, 80 y.o or over, Unknown	9N04400000000001	
20	Past history of coronary diseases	Yes (by contrast study), Yes (by another study), No, Unknown	9N72100000000001	
21	Age diagnosed as CKD	Less than 10y.o, 10s, 20s, 70s, 80 y.o or over, Unknown	9N04500000000001	
22	Serum albumin	g/dL	3A01500000232710	
23	Hematuria	–, ±+, 2+, 3+or over (Micro hematuria, Macrohematuria)	1A990000000190159	Urinary test strip method
24	Total cholesterol	mg/dL	3F05000000232710	
25	Non-HDL-cholesterol	mg/dL	3F06900000239190	
26	Urine albumin/Creatinin	mg/gCr	3A015000000106128	
27	AST	IU/L	3B03500000232720	
28	Waist	cm	9N01616010000001	
29	Urine glucose	–, ±+, 2+or over	1A990000000190154	Urinary test strip method

SPECIAL REPORT
Nakashima et al.

http://wileyonlinelibrary.com/journal/jdi
addition, J-CDK-DB\(^9\), administered by the JSN, used some of the CKD SMIS items, which can be automatically output from the SS-MIX2 system\(^10\), and the Japan Medical Association Diabetes Database of Clinical Medicine (J-DOME), administered by the Japan Medical Association to collect clinical information about diabetes, used all of our SMIS items for all four chronic diseases\(^11\).

We implemented all the SMIS items for the four chronic diseases with detailed specifications for their inclusion in a PHR application that is being developed as part of the MEDIS-DC

Table 1 (Continued)

Number	Item name	Expression/unit	JLAC10 code	Supplement
29	\(\gamma \)-GTP	IU/L	3B0900000002327101	**** [1,288: before breakfast, 1,289: after breakfast, 1,290: before lunch, 1,291: after lunch, 1,292: before supper, 1,293: after supper, 1,299: casual, 1,300: fasting]
30	Diabetic neuropathy	Yes, No, Unknown	9N046000000000011	
31	Regular visit at dental clinic	Yes, No, Unknown	9N531000000000011	
32	Uric acid	mg/dL	3C020000002327101	
33	Systolic blood pressure at home	mmHg	9A751000000000050	
34	Diastolic blood pressure at home	mmHg	9A761000000000050	
35	Family history of renal failure	Yes, No, Unknown	9N047000000000011	
36	Urine protein/Creatinin	g/gCr	1A015000000127102	
37	Urine protein/Day	g/day	1A015000000427102	
38	Serum total protein	g/dL	3A010000002327101	
39	BUN	mg/dL	3C025000002327201	
40	Hemoglobin	g/dL	2A9900000001930953	Specific health check-up code
41	Cystatin C	mg/L	3C016000000306201	
Extra Items	Weight at home	kg	9N006000000009401	
Extra Items	Self-monitoring blood glucose	mg/dL	3D010000001899101	

Table 2 | Outline timetable of implementation using the self-management item set (SMIS) and the recommended configuration for personal health records (PHRs)

Case Registration cohort	Startup	Diabetes SMIS	Hypertension SMIS	Dyslipidemia SMIS	CKD SMIS	Specification for PHR
J-DREAMS	2015~	@	–	–	–	–
J-CKD-DB	2015~	–	–	–	O	–
J-DOME	2016~	@	@	@	@	–
PHR project						
PHR (by MEDIS-DC)	2016~	@	@	@	@	@
PHR (DialBetics)	2018~	O (planned)	–	–	O (planned)	O (planned)

@: full implementation, O: partial implementation.

Copyright © 2018, The Collaborative Extended Committee by Six Japanese Academic Associations for Chronic Diseases, All Rights Reserved.
In conclusion, CCCIDM and the CEC established standardized CIs and SMIs for the four chronic diseases. They also developed specifications for implementing these items in PHR applications, such as identifying values for risk stratification, generating alerts using information and communication technology systems, avoiding data input errors, and generating reminders to input the SIMS data. In addition, a table was developed to map the item sets to the JLAC10 codes.

ACKNOWLEDGMENTS

We thank the former members of the CCCIDM, including Professor Emeritus Naoko Tajima, Dr. Shinji Kagimoto, Prof. Shin-suke Fujita, Prof. Syunji Wakamiya, and Prof. Masaki Miyamoto for their contributions to establishing the CIs and SMIs. We also thank the six participating associations (JDS, JAMI, JSH, JAS, JSN, and JSLM) and observers from the associations, the offices of the JDS and JAMI for supporting the CCCIDM and CEC activities. We appreciate the consistent support by the Japanese Cabinet Secretariat in developing SMISs through the CEC meeting. Furthermore, we thank the MEDIS-DC for supporting the CEC meeting as part of the Research project on standardization and establishment of a business model for preventing aggravation of lifestyle-related diseases in cooperation with the medical insurers, disease management companies, and medical institutions, which is funded by AMED.

DISCLOSURE

Naoki Nakashima has received research grants from Fujitsu Ltd. Kohjiro Ueki has received honoraria for lectures from Astellas Pharma Inc., AstraZeneca Co., Ltd., Daiichi Sankyo Co. Ltd., Eli Lilly Japan Co. Ltd., Kyowa Hakko Kirin Co. Ltd., Mitsubishi Tanabe Pharma Co. Ltd, MSD Co. Ltd., Novartis Pharma Co. Ltd., Nippon Boehringer Ingelheim Co. Ltd., Sumitomo Dainippon Co. Ltd, Taisho Toyama Pharmaceutical Co. Ltd., and Takeda Pharmaceutical Co Ltd., and research grants from Astellas Pharma Inc. He has also received scholarship grants from Astellas Pharma Inc, Daiichi Sankyo Co. Ltd., Eli Lilly Japan Co. Ltd., Kowa Co. Ltd., Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co. Ltd., Shionogi & Co. Ltd., Taisho Toyama Pharmaceutical Co. Ltd., Takeda Pharmaceutical Co Ltd., Mitsubishi Tanabe Co. Ltd., Sumitomo Dainippon Co. Ltd., Eli Lilly Japan Co. Ltd., Nippon Boehringer Ingelheim Co. Ltd., Novartis Pharma Co. Ltd., Novo Nordisk Pharma Ltd., Pfizer Japan Inc., and Mochida Pharmaceutical Co. Ltd., and a course endowed by MSD Co. Ltd. Mitsuhiko Noda, Tatsuhiko Koga, Michio Hayashi, Katsuya Yamazaki, Tomoko Nakagami, Makoto Ohara, Akira Gochi, Yasushi Matsumura, Michio Kimura, Kazuhiko Ohe, Dongchon Kang, Yoshiyuki Toya, Kunihiro Yamagata, Shunya Ikeda, Naohiro Mitsutake, Ryuichi Yamazaki, Tomoko Nakagami, Makoto Ohara, Akira Gochi, Yasushi Matsumura, Michio Kimura, Kazuhiko Ohe, Dongchon Kang, Yoshiyuki Toya, Kunihiro Yamagata, Shunya Ikeda, Naohiro Mitsutake, Ryuichi Yamazaki, Yukio Tanizawa have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

There are no ethical issues associated with this report.

REFERENCES

1. Kobayashi M, Yamazaki K, Hirao K, et al. The status of diabetes control and antidiabetic drug therapy in Japan—a cross-sectional survey of 17,000 patients with diabetes mellitus (JDDM 1). Diabetes Res Clin Pract 2006; 73:198–204.
2. Hayashino Y, Izumi K, Okamura S, et al. Duration of diabetes and types of diabetes therapy in Japanese patients with type 2 diabetes: the Japan Diabetes Complication and its Prevention prospective study 3 (JDCP study 3). J Diabetes Investig 2017; 8: 243–249.
3. Japan Association for Medical Informatics. Minimum Sets of Data Elements for Four Lifestyle-related Diseases and Recommended Configuration for Personal Health Records 2018. Available from http://jami.jp/medicalFields/2018Oct23.php. Accessed February 24, 2019. (Japanese only).
4. Kimura M, Kanno T, Tani S, et al. Standardizations of clinical laboratory examinations in Japan. Int J Med Inform 1998; 48: 239–246.
5. Forey AW, McDonald CJ, DeMoor G, et al. Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin Chem 1996; 42: 81–90.
6. Kinoshita M, Yokote K, Arai H, et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic
Cardiovascular Diseases 2017. J Atheroscler Thromb 2018; 25: 846–984.

7. Sugiyama T, Miyo K, Tsujimoto T, et al. J-DREAMS. Diabetol Int 2017; 8: 375–382.
8. J-DREAMS database (in Japanese). Available from: http://jdreams.jp/ Accessed February 24, 2018.
9. J-CKD-DB database. Available from: http://j-ckd-db.sakura.ne.jp/english/index.html Accessed August 23, 2018.
10. Kimura M, Nakayasu K, Ohshima Y, et al. A ministry project to promote standardized healthcare information exchange. Methods Inf Med 2011; 50: 131–139.
11. J-DOME database (in Japanese). Available from: http://jdome.jmarined.or.jp/ Accessed August 23, 2018.
12. Waki K, Fujita H, Uchimura Y, et al. DialBetics: a novel smartphone-based self-management support system for type 2 diabetes patients. J Diabetes Sci Technol 2014; 8: 209–215.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Recommended configuration for personal health records based on the self-management item set for healthy people (the basic configuration).
Table S2 | Recommended configuration for personal health records based on the self-management item set for patients with diabetes mellitus (the diabetic configuration).
Table S3 | Recommended configuration for personal health records based on the self-management item set for patients with hypertension (the hypertension configuration).
Table S4 | Recommended configuration for personal health records based on the self-management item set for patients with dyslipidemia (the dyslipidemia configuration).
Table S5 | Recommended configuration for personal health records based on the self-management item set for patients with chronic kidney disease (the CKD configuration).
Table S6 | Recommended configuration for personal health records based on the self-management item set for patients with coronary heart disease (the coronary heart disease configuration).