SINGULAR KÄHLER-EINSTEIN METRICS ON Q-FANO
COMPACTIFICATIONS OF LIE GROUPS

YAN LI*, GANG TIAN† AND XIAOHUA ZHU‡

Abstract. In this paper, we prove an existence result for Kähler-Einstein
metrics on Q-Fano compactifications of Lie groups. As an application, we
classify Q-Fano compactifications of $SO_4(\mathbb{C})$ which admit a Kähler-Einstein
metric with the same volume as that of a smooth Fano compactification of
$SO_4(\mathbb{C})$.

Contents

1. Introduction 2
2. Preliminary on Q-Fano varieties 4
 2.1. The space $\mathcal{E}^1(M, -K_M)$ and the Ding functional 5
3. Moment polytope and $K \times K$-invariant metrics 5
 3.1. $K \times K$-invariant metrics 9
 3.2. Fine polytope P 8
4. The space $\mathcal{E}^1_{K \times K}(2P)$ 10
 4.1. Weighted Monge-Ampère measure 10
 4.2. Comparison principles 11
 4.3. Proof of Theorem 4.2 13
5. Computation of Ricci potential 15
6. Reduced Ding functional and existence criterion 21
 6.1. A criterion for the properness of $D(\cdot)$ 22
 6.2. Semi-continuity 23
 6.3. Proof of Theorem 1.2 25
7. Q-Fano compactification of $SO_4(\mathbb{C})$ 27
 7.1. Gorenstein Fano $SO_4(\mathbb{C})$-compactifications 28
 7.2. Q-Fano $SO_4(\mathbb{C})$-compactifications 30
 7.3. Proof of Theorem 1.3 31
7.4. Appendix: Non-smooth Q-Fano $SO_4(\mathbb{C})$-compactifications with $p_0 \leq 2$ 34
References 37

2000 Mathematics Subject Classification. Primary: 53C25; Secondary: 32Q20, 58D25, 14L10.
Key words and phrases. Kähler-Einstein metrics, Q-Fano compactifications of Lie groups, mo-
ment polytopes, reduced Ding functional.

*Partially supported by China Post-Doctoral Grant BX20180010.
†Partially supported by NSFC grants 11331001 and 11890661.
‡Partially supported by NSFC Grants 11771019 and BJSF Grants Z180004.
1. Introduction

Let \(G \) be an \(n \)-dimensional connected, complex reductive Lie group which is the complexification of a compact Lie group \(K \). Let \(T^C \) be a maximal Cartan torus of \(G \) whose dimension is \(r \). Denote by \(\Phi_+ \) a positive roots system associated to \(T^C \). Put

\[
\rho = \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha.
\]

It can be regarded as a character in \(a^* \), where \(a^* \) is the dual space of real part \(a \) of Lie algebra of \(T^C \). Let \(\pi \) be a function on \(a^* \) defined by

\[
\pi(y) = \prod_{\alpha \in \Phi_+} (\alpha, y)^2, \quad y \in a^*,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the Cartan-Killing inner product on \(a^* \).

Let \(M \) be a \(\mathbb{Q} \)-Fano compactification of \(G \). Since \(M \) contains a closure \(Z \) of \(T^C \)-orbit, there is an associated moment polytope \(P \) of \(Z \) induced by \((M, -K_M) \) \([3, 4]\). Let \(P_+ \) be the positive part of \(P \) defined by

\[
P_+ = \{ y \in P | \langle \alpha, y \rangle > 0, \forall \alpha \in \Phi_+ \}.
\]

Denote by \(2P_+ \) a dilation of \(P_+ \) at rate 2. We define the barycenter of \(2P_+ \) with respect to the weighted measure \(\pi(y)dy \) by

\[
\text{bar}(2P_+) = \frac{\int_{2P_+} y\pi(y) \, dy}{\int_{2P_+} \pi(y) \, dy}.
\]

In \([17]\), Delcroix proved the following theorem for Kähler-Einstein metrics on smooth Fano compactifications of \(G \).

Theorem 1.1. Let \(M \) be a smooth Fano \(G \)-compactification. Then \(M \) admits a Kähler-Einstein metric if and only if

\[
\text{bar}(2P_+) \in 4\rho + \Xi,
\]

where \(\Xi \) is the relative interior of the cone generated by \(\Phi_+ \).

Another proof of Theorem 1.1 was given by Li, Zhou and Zhu \([31]\). They also showed that (1.2) is actually equivalent to the \(K \)-stability condition in terms of \([37]\) and \([21]\) by constructing \(\mathbb{C}^* \)-action through piecewisely rationally linear function which is invariant under the Weyl group action. In particular, it implies that \(M \) is \(K \)-unstable if \(\text{bar}(2P_+) \notin 4\rho + \Xi \). A more general construction of \(\mathbb{C}^* \)-action was also discussed in \([18]\).

In the present paper, we extend the above theorem to \(\mathbb{Q} \)-Fano compactifications of \(G \) which may be singular. It is well known that any \(\mathbb{Q} \)-Fano compactification of \(G \) has klt-singularities \([5]\). For a \(\mathbb{Q} \)-Fano variety \(M \) with klt-singularities, there is naturally a class of admissible Kähler metrics induced by the Fubini-Study metric (cf. \([20]\)). In \([10]\), Berman, Boucksom, Eyssidieux, Guedj and Zeriahi introduce a class of Kähler potentials associated to admissible Kähler metrics and refer it as the \(\mathcal{E}^1(M, -K_M) \) space. Then they define the singular Kähler-Einstein metric on \(M \) with the Kähler potential in \(\mathcal{E}^1(M, -K_M) \) via the complex Monge-Ampère equation, which is the usual Kähler-Einstein metric on the smooth part of \(M \). It is

\(^1\)Without of confusion, we also write \(\langle \alpha, y \rangle \) as \(\alpha(y) \) for simplicity.
an natural problem to establish an extension of the Yau-Tian-Donaldson conjecture we have solved for smooth Fano manifolds \([37, 38]\), that is, an equivalence relation between the existence of such singular Kähler-Einstein metrics and the K-stability on a \(\mathbb{Q}\)-Fano variety with klt-singularities. There are many recent works on this fundamental problem. We refer the readers to \([9, 13, 29, 30, 28]\), etc..

In this paper, we will assume that the moment polytope \(P\) of \(Z\) is fine in sense of \([22]\), namely, each vertex of \(P\) is the intersection of precisely \(r\) facets. We will prove

Theorem 1.2. Let \(M\) be a \(\mathbb{Q}\)-Fano compactification of \(G\) such that the moment polytope \(P\) of \(Z\) is fine. Then \(M\) admits a singular Kähler-Einstein metric if and only if (1.2) holds.

By a result of Abreu \([1]\), the polytope \(P\) of \(Z\) being fine is equivalent to that the metric induced by the Guillemin function can be extended to a Kähler orbifold metric on \(Z\). It follows from the fineness assumption of \(P\) in Theorem 1.2 that the Guillemin function of \(2P\) induces a \(K \times K\)-invariant singular metric \(\omega_{2P}\) in \(E^1(M, -K_M)\) (cf. Lemma 3.4). Moreover, we can prove that the Ricci potential of \(\omega_{2P}\) on \(M\) is uniformly bounded above. We note that \(P\) is always fine when \(\text{rank}(G) = 2\) \([23, \text{Chapter 3}]\). Thus for a \(\mathbb{Q}\)-Fano compactification of \(G\) with \(\text{rank}(G) = 2\), \(M\) admits a singular Kähler-Einstein metric if and only if (1.2) holds. As an application of Theorem 1.2, we show that there is only one example of non-smooth Gorenstein Fano \(SO_4(\mathbb{C})\)-compactifications which admits a singular Kähler-Einstein metric (cf. Section 7.1).

On the other hand, it has been shown in \([17]\) and \([33]\) that there are only three smooth Fano compactifications of \(SO_4(\mathbb{C})\), i.e., Case-1.1.2, Case-1.2.1 and Case-2 in Section 7.1. The first two manifolds do not admit any Kähler-Einstein metric. By Theorem 1.2, we further prove

Theorem 1.3. There is no \(\mathbb{Q}\)-Fano compactification of \(SO_4(\mathbb{C})\) which admits a singular Kähler-Einstein metric with the same volume as Case-1.1.2 or Case-1.2.1 in Section 7.1.

Theorem 1.3 gives a partial answer to a question proposed in \([33]\) about limit of Kähler-Ricci flow on either Case-1.1.2 or Case-1.2.1. It has been proved there that the flow has type II singularities on each of Case-1.1.2 and Case-1.2.1 whenever the initial metric is \(K \times K\)-invariant. By the Hamilton-Tian conjecture \([37, 7, 14]\), the limit should be a \(\mathbb{Q}\)-Fano variety with a singular Kähler-Ricci soliton of the same volume as that of initial metric. However, by Theorem 1.3 the limit cannot be a \(\mathbb{Q}\)-Fano compactification of \(SO_4(\mathbb{C})\) with a singular Kähler-Einstein metric. This implies that the limiting soliton will has less homogeneity than the initial one, which is totally different from the situation of smooth convergence of \(K \times K\)-metrics on a smooth compactification of Lie group \([33]\).

As in \([10]\), we use the variation method to prove Theorem 1.2 more precisely, we will prove that a modified version of the Ding functional \(D(\cdot)\) is proper under the condition (1.2). This functional is defined for a class of convex functions \(E_{K \times K}^1(2P)\) associated to \(K \times K\)-invariant metrics on the orbit of \(G\) (cf. Section 4, 6). The key point is that the Ricci potential \(h_0\) of the Guillemin metric \(\omega_{2P}\) is bounded from above when \(P\) is fine (cf. Proposition 5.1). This enables us to control the

2It can not be guaranteed that the \(G\)-compactification is smooth even if \(Z\) is smooth \([5]\).
nonlinear part $\mathcal{F}(\cdot)$ of $\mathcal{D}(\cdot)$ by modifying $\mathcal{D}(\cdot)$ as done in [21, 32] (cf. Section 6.1). We shall note that it is in general impossible to get a lower bound of h_0 if the compactification is a singular variety (cf. Remark 5.2). On the other hand, we expect that the “fine” condition in Theorem 1.2 can be dropped.

The minimizer of $\mathcal{D}(\cdot)$ corresponds to a singular Kähler-Einstein metric. We will prove the semi-continuity of $\mathcal{D}(\cdot)$ and derive the Kähler-Einstein equation for the minimizer (cf. Proposition 6.6). Our proof is similar to what Berman and Berndtsson studied on toric varieties in [9].

The proof of the necessity part of Theorem 1.2 is same as one in Theorem 1.1. In fact, a Q-Fano compactification of G is K-unstable if $\bar{\text{b}} \mathcal{P}(2P_+) \not\in 4\rho + \Xi$ [31]. This will be a contradiction to the semi-stability of Q-Fano variety with a singular Kähler-Einstein metric (cf. [29]). We will omit this part.

The organization of paper is as follows. In Section 2, we recall some notations in [10] for singular Kähler-Einstein metrics on Q-Fano varieties. In Section 3, we introduce a subspace $\mathcal{E}_{K \times K}(M, -K_M)$ of $\mathcal{E}_1(M, -K_M)$ and prove that the Guillemin function lies in this space (cf. Lemma 3.4). In Section 4, we prove that $\mathcal{E}_{K \times K}(M, -K_M)$ is equivalent to a dual space $\mathcal{E}_{K \times K}(2P)$ of Legendre functions (cf. Theorem 4.2). In Section 5, we compute the Ricci potential h_0 of ω_2 and show that it is bounded from above (cf. Proposition 5.1). The sufficient part of Theorem 1.2 will be proved in Section 6. In Section 7, we construct many Q-Fano compactifications of $SO_4(\mathbb{C})$ and in particular, we will prove Theorem 1.3.
The MA-measure ω^n_φ with a full MA-mass has no mass on the pluripolar set of φ in M. Thus we need to consider the measure on M_{reg}. Moreover, $e^{-\varphi}$ is L^p-integrable for any $p > 0$ associated to ω^0_φ.

Definition 2.1. We call ω^n_φ a (singular) Kähler-Einstein metric on M with full MA-mass if φ satisfies the following complex Monge-Ampère equation,

$$\omega^n_\varphi = e^{h_0 - \varphi} \omega_0^n.$$ (2.1)

It has been shown in [10] that φ is C^∞ on M_{reg} if it is a solution of (2.1). Thus ω^n_φ satisfies the Kähler-Einstein equation on M_{reg},

$$\text{Ric}(\omega^n_\varphi) = \omega^n_\varphi.$$

2.1. The space $\mathcal{E}^1(M, -K_M)$ and the Ding functional. On a smooth Fano manifold, there is a well-known Euler-Langrange functional for Kähler potentials associated to (2.1), often referred as the Ding functional or F-functional, defined by (cf. [19, 36])

$$F(\phi) = -\frac{1}{(n+1)\mathcal{V}} \sum_{k=0}^{n} \int_M \phi \omega^k_\phi \wedge \omega_0^{n-k} - \log \left(\frac{1}{\mathcal{V}} \int_M e^{h_0 - \phi} \omega_0^n \right).$$ (2.2)

In case of Q-Fano manifold with klt-singularities, Berman, Boucksom, Eyssidieux, Guedj and Zeriahi [10] extended $F(\cdot)$ to the space $\mathcal{E}^1(M, -K_M)$ defined by

$$\mathcal{E}^1(M, -K_M) = \{ \phi \mid \phi \text{ has a full MA mass and}$$

$$\sup_{M} \phi = 0, \quad I(\phi) = \int_M -\phi \omega_0^n < \infty \}.$$

They showed that $\mathcal{E}^1(M, -K_M)$ is compact in certain weak topology. By a result of Davas [20], $\mathcal{E}^1(M, -K_M)$ is in fact compact in the topology of L^1-distance. It provides a variational approach to study (2.1).

Definition 2.2. [37, 10] The functional $F(\cdot)$ is called proper if there is a continuous function $p(t)$ on \mathbb{R} with the property $\lim_{t \to +\infty} p(t) = +\infty$, such that

$$F(\phi) \geq p(I(\phi)), \quad \forall \phi \in \mathcal{E}^1(M, -K_M).$$ (2.3)

In [10], Berman, Boucksom, Eyssidieux, Guedj and Zeriahi proved the existence of solutions for (2.1) under the properness assumption (2.3) of $F(\cdot)$. However, this assumption does not hold in the case of existence of non-zero holomorphic vector fields such as in our case of Q-Fano G-compactifications. So we need to consider the reduced Ding functional instead to overcome this new difficulty as done on toric varieties [9, 32].

3. Moment polytope and $K \times K$-invariant metrics

Let M be a Q-Fano compactification of G with Z being the closure of a maximal complex torus T^C-orbit. We first characterize the moment polytope P of Z associated to (M, K_M^{-1}). Let $\{F_A\}_{A=1, \ldots, d_0}$ be the facets of P and $\{F_A\}_{A=1, \ldots, d_+}$ be those whose interior intersects \mathfrak{a}_+^*. Suppose that

$$P = \cap_{A=1}^{d_0} \{ F_A : = \lambda_A - u_A(y) \geq 0 \}$$ (3.1)

for some prime vector $u_A \in \mathfrak{g}$ and the facet

$$F_A \subseteq \{ l_0^A = 0 \}, \quad A = 1, \ldots, d_0.$$
Let \(W \) be the Weyl group of \((G, T^\mathbb{C})\). By the \(W \)-invariance, for each \(A \in \{1, \ldots, d_0\} \), there is some \(w_A \in W \) such that \(w_A(F_A) \in \{F_B\}_{B=1, \ldots, d_+} \). Denote by \(\rho_A = w_A^{-1}(\rho) \), where \(\rho \in \mathfrak{a}_+^* \) is given by \([1, 1]\). Then \(\rho_A(u_A) \) is independent of the choice of \(w_A \in W \) and hence it is well-defined.

The following is due to \([12]\).

Lemma 3.1. Let \(M \) be a \(\mathbb{Q} \)-Fano compactification of \(G \) with \(P \) being the associated moment polytope. Then for each \(A = 1, \ldots, d_0 \), it holds

\[
(3.2) \quad \lambda_A = 1 + 2\rho_A(u_A).
\]

Proof. Suppose that \(-mK_M \) is a Cartier divisor for some \(m \in \mathbb{N} \). Then by \([12\text{ Section 3}],\)

\[
-mK_M|_Z = \sum_{A} m(1 + 2\rho_A(u_A))D_A,
\]

where \(D_A \) is the toric divisor of \(Z \) associated to \(u_A \). Thus the associated polytope of \((Z, -mK_M|_Z)\) is given by

\[
P(Z, -mK_M|_Z) = \cap_{A=1}^{d_0} \{m(1 + 2\rho_A(u_A)) - u_A(y) \geq 0\},
\]

which is precisely \(mP \). Thus \((3.2)\) is true. \(\square \)

3.1. \(K \times K \)-invariant metrics.

On a \(\mathbb{Q} \)-Fano compactification of \(G \), we may regard the \(G \times G \) action as a subgroup of \(PGL_{N+1}(\mathbb{C}) \) which acts holomorphically on the hyperplane bundle \(L = \mathcal{O}_{\mathbb{C}P^N}(-1) \). Then any admissible \(K \times K \)-invariant Kähler metric \(\omega_\phi \in \mathbb{Z}_c t_1(L) \) can be regarded as a restriction of \(K \times K \)-invariant Kähler metric of \(\mathbb{C}P^N \). Thus the moment polytope \(P \) associated to \((Z, L|_Z)\) is a \(W \)-invariant rational polytope in \(\mathfrak{a}^* \). By the \(K \times K \)-invariance, the restriction of \(\omega_\phi \) on \(T^\mathbb{C} \) is an open toric Kähler metric. Hence, it induces a strictly convex, \(W \)-invariant function \(\psi_\phi \) on \(\mathfrak{a} \) \([6]\) (also see Lemma 3.3 below) such that

\[
(3.3) \quad \omega_\phi = -\frac{i}{2} \partial \overline{\partial} \psi_\phi, \text{ on } T^\mathbb{C}.
\]

By the \(KAK \)-decomposition \([27\text{ Theorem 7.39}],\) for any \(g \in G \), there are \(k_1, k_2 \in K \) and \(x \in \mathfrak{a} \) such that \(g = k_1 x k_2 \). Here \(x \) is uniquely determined up to a \(W \)-action. This means that \(x \) is unique in \(\mathfrak{a}_+^* \). Thus there is a bijection between \(K \times K \)-invariant functions \(\Psi \) on \(G \) and \(W \)-invariant functions \(\psi \) on \(\mathfrak{a} \) which is given by

\[
\Psi(\exp(\cdot)) = \psi(\cdot) : \mathfrak{a} \to \mathbb{R}.
\]

Clearly, when a \(W \)-invariant \(\psi \) is given, \(\Psi \) is well-defined. Without of confusion, we will not distinguish \(\psi \) and \(\Psi \), and call \(\Psi \) convex on \(G \) if \(\psi \) is convex on \(\mathfrak{a} \).

The following \(KAK \)-integral formula can be found in \([27\text{ Proposition 5.28}]\).

Proposition 3.2. Let \(dV_G \) be a Haar measure on \(G \) and \(dx \) the Lebesgue measure on \(\mathfrak{a} \). Then there exists a constant \(C_H > 0 \) such that for any \(K \times K \)-invariant, \(dV_G \)-integrable function \(\psi \) on \(G \),

\[
\int_G \psi(g) \ dV_G = C_H \int_{\mathfrak{a}_+} \psi(x) J(x) \ dx,
\]

where

\[
J(x) = \prod_{\alpha \in \Phi_+} \sinh^2 \alpha(x).
\]
Without loss of generality, we may normalize $C_H = 1$ for simplicity.

Next we recall a local holomorphic coordinate system on G used in [17]. By the standard Cartan decomposition, we can decompose g as

$$g = (t \oplus a) \oplus (\oplus_{\alpha \in \Phi} V_\alpha),$$

where t is the Lie algebra of T and Φ is the set of positive roots and α_Φ is the Cartan involution of g.

Next we recall a local holomorphic coordinate system on G [17, Theorem 1.2]. For a $\alpha \in G$ such that $X_{-\alpha} = -t(X_\alpha)$ and $[X_\alpha, X_{-\alpha}] = \alpha^\vee$, where t is the Cartan involution and α^\vee is the dual of α by the Killing form. Let $E_\alpha = X_\alpha - X_{-\alpha}$ and $E_{-\alpha} = J(X_\alpha + X_{-\alpha})$. Denoted by \mathfrak{t}_α, $\mathfrak{t}_{-\alpha}$ the real line spanned by E_α, $E_{-\alpha}$, respectively. Then we get the Cartan decomposition of Lie algebra \mathfrak{t} of K as follows,

$$\mathfrak{t} = \mathfrak{t} \oplus (\oplus_{\alpha \in \Phi_+} (\mathfrak{t}_\alpha \oplus \mathfrak{t}_{-\alpha})).$$

Choose a real basis $\{E_1^0, ..., E^n_0\}$ of \mathfrak{t}, where r is the dimension of T. Then $\{E_1^0, ..., E^n_r\}$ together with $\{E_\alpha, E_{-\alpha}\}_{\alpha \in \Phi_+}$ forms a real basis of \mathfrak{t}, which is indexed by $\{E_1, ..., E_n\}$. We can also regard $\{E_1, ..., E_n\}$ as a complex basis of g. For any $g \in G$, we define local coordinates $\{z^i(g)\}_{i=1,...,n}$ on a neighborhood of g by

$$(z^i(g)) \rightarrow \exp(z^i(g)E_i)g.$$

It is easy to see that $\theta^i|_g = dz^i(g)|_g$, where the dual θ^i of E_i is a right-invariant holomorphic 1-form. Thus $\wedge_{i=1}^n (dz^1(g) \wedge dz^n(g))|_g$ is also a right-invariant (n, n)-form, which defines a Haar measure dV_g.

For a $K \times K$-invariant function ϕ, Delcroix computed the Hessian of ϕ in the above local coordinates as follows [17 Theorem 1.2].

Lemma 3.3. Let ϕ be a $K \times K$-invariant function on G. Then for any $x \in a_+^*$, the complex Hessian matrix of ϕ in the above coordinates is diagonal by blocks, and equals to

$$\text{Hess}_C(\phi)(\exp(x)) = \begin{pmatrix}
\frac{1}{2}Hess_R(\phi)(x) & 0 & 0 \\
0 & M_{\alpha(i)}(x) & 0 \\
0 & 0 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 0 \\
0 & 0 & & & M_{\alpha(i)\frac{n-2}{2}}(x)
\end{pmatrix},$$

where $\Phi_+ = \{\alpha(1), ..., \alpha(n-2)\}$ is the set of positive roots and

$$M_{\alpha(i)}(x) = \frac{1}{2} \alpha(i)(\partial^2 \psi(x)) \begin{pmatrix}
\coth \alpha(i)(x) & \sqrt{-1} \\
\sqrt{-1} & \coth \alpha(i)(x)
\end{pmatrix}.$$

By (3.4) in Lemma 3.3 we see that ψ_ϕ induced by an admissible $K \times K$-invariant Kähler form ω_ϕ is convex on a^*. The complex Monge-Ampère measure is given by

$$\omega^n = (\sqrt{-1} \partial \bar{\partial} \psi_\phi)^n = MA_C(\psi_\phi) dV_G,$$

where

$$\text{MA}_C(\psi_\phi)(\exp(x)) = \frac{1}{2^{r+n}} \text{MA}_R(\psi_\phi)(x) \frac{1}{J(x)} \prod_{\alpha \in \Phi_+} \alpha^2(\partial \psi_\phi(x)).$$
In particular, by Proposition 3.2,
\[
\text{Vol}(M) = \int_M \omega_\psi^n = \int_{2P^+} \pi \, dy = V.
\]
Clearly, (3.5) also holds for any Kähler potential in \(\mathcal{E}^1(M, -K_M) \), which is smooth and \(K \times K \)-invariant on \(G \). For the completeness, we introduce a subspace of \(\mathcal{E}^1(M, -K_M) \) by
\[
\mathcal{E}^1_{K \times K}(M, -K_M) = \{ \phi \in \mathcal{E}^1(M, -K_M) \mid \phi \text{ is } K \times K \text{-invariant and convex on } G \}.
\]
(3.7)
\[\mathcal{E}^1_{K \times K}(M, -K_M) \text{ is locally precompact in terms of convex functions on } G. \]
The subspace of \(\mathcal{E}^1_{K \times K}(M, -K_M) \) will also prove its completeness by using the Legendre dual in subsequent Sections 4, 6.

3.2. Fine polytope \(P \). In this subsection, we show that the Legendre dual of Guillemin function \(u_{2P} \) on \(2P \) lies in \(\mathcal{E}^1_{K \times K}(M, -K_M) \) when \(P \) is fine.

Recall (3.1). For convenience, we set
\[
l_A(y) = 2\lambda_A - u_A(y).
\]
Then
\[
2P = \cap_{A=1}^{d_0} \{ l_A(y) \geq 0 \}.
\]
Thus, \(u_{2P} \) is given by (cf. [1])
\[
u_{2P} = \frac{1}{2} \sum_{A=1}^{d_0} l_A(y) \log l_A(y).
\]
Clearly, it is \(W \)-invariant, so its Legendre function \(\psi_{2P} \) is also \(W \)-invariant, where
\[
\psi_{2P}(x) = \sup_{y \in 2P} (\langle x, y \rangle - u_{2P}(y)), \quad \forall \ x \in a.
\]
(3.8)
Hence, by [1, Theorem 2] and [6] (also see Lemma 3.3),
we can extend
\[
\omega_{2P} = \sqrt{-1} \partial \bar{\partial} \psi_{2P}, \quad \text{on } a,
\]
to a \(K \times K \)-invariant metric on \(G \).

Lemma 3.4. Let \(\psi_0 \) be a Kähler potential of admissible \(K \times K \)-invariant metric \(\omega_0 \) as in (3.3). Assume that \(P \) is fine. Then the Kähler potential \((\psi_{2P} - \psi_0) \) of \(\omega_{2P} \) lies in \(\varphi \in L^\infty(M) \cap C^\infty(M_{\text{reg}}) \). In particular, \((\psi_{2P} - \psi_0) \in \mathcal{E}^1_{K \times K}(M, -K_M) \).

Proof. Fix an \(m_0 \in \mathbb{Z}_+ \) such that \(-m_0K_X\) is very ample. We consider the projective embedding
\[
\iota : M \to \mathbb{C}P^N
\]
given by \(| -m_0K_M| \), where \(N = h^0(M, -m_0K_M) - 1 \). By [34, Section 2.3], the pull back of the Fubini-Study metric on \(\mathbb{C}P^N \) gives a \(K \times K \)-invariant, Hermitian metric \(h \) on \(L = O_{\mathbb{C}P^N}(-1)|_M \) (also see [35]). Moreover, we have
\[
h|_{T^C}(x) = \left(\sum_{\lambda \in mP+\mathbb{R}} \bar{n}(\lambda)e^{2\lambda(x)} \right),
\]
where \(\bar{n}(\lambda) \in \mathbb{Z}_+ \). Thus we have a Kähler potential on \(T^C \) by
\[
\psi_{FS} = \frac{1}{m} \log h|_{T^C}.
\]
\[\psi_{FS} \text{ is given by } \frac{1}{2} \nabla \psi_{2P}, \quad \text{whose image is } P.\]
Since P is fine, one can show directly that
\[\psi_{FS} \in \mathcal{V}(2P) = \{ \psi \in C^0(\mathfrak{a}) \mid \psi \text{ is convex, } W\text{-invariant} \}
\quad \text{and } \max \limits_{\mathfrak{a}} |v_{2P} - \psi| < \infty, \]
where $v_{2P}(\cdot)$ is the support function on \mathfrak{a} defined by
\[v_{2P}(x) = \sup \limits_{y \in 2P} \langle x, y \rangle. \tag{3.10} \]
Recall that the Legendre function u_ψ of ψ is defined as in (3.8) by
\[u_\psi(y) = \sup \limits_{x \in a} (\langle x, y \rangle - \psi(x)), \quad y \in 2P. \tag{3.11} \]
It is known that $\psi(x) \in \mathcal{V}(2P)$ if and only if u_ψ is uniformly bounded on $2P$ since the Legendre function of v_{2P} is zero (cf. [34]). Thus the Legendre function u_h of $h|_{T^c}(x)$ is uniformly bounded on $2P$. It follows that
\[|u_h - u_{2P}| \leq C. \]
Hence, we get
\[\max \limits_{\mathfrak{a}} |\psi_{FS} - \psi_{2P}| < +\infty. \]
Consequently,
\[\max \limits_{\mathfrak{a}} |\psi_{2P} - \psi_0| < +\infty. \]
By [3.6], $(\psi_{2P} - \psi_0)$ has full MA-mass, so we have completed the proof. \qed

4. The space $\mathcal{E}^1_{K \times K}(2P)$

In this section, we describe the space $\mathcal{E}^1_{K \times K}(M, -K_M)$ in (3.7) via Legendre functions as in [15] for Q-Fano toric varieties. Let ψ_0 be a Kähler potential of admissible $K \times K$-invariant metric ω_0 as in (3.3). Then we can normalize ψ_0 by (cf. [33]),
\[\inf \limits_{\mathfrak{a}} \psi_0 = \psi_0(O) = 0, \tag{4.1} \]
where O is the origin in \mathfrak{a}. Thus for any $\phi \in \mathcal{E}^1_{K \times K}(M, -K_M)$, $\psi_\phi = \psi_0 + \phi$ can be also normalized as in (4.1).

The following lemma is elementary.

Lemma 4.1. For any $K \times K$-invariant potential ϕ normalized as in (4.1), it holds
\[\partial(\psi_\phi) \subseteq 2P, \quad \text{and } \psi_\phi \leq v_{2P}, \]
where $\partial(\psi_\phi)(\cdot)$ is the normal mapping of ψ_ϕ.

Proof. We choose a sequence of decreasing and uniformly bounded $K \times K$-invariant potential ϕ_i normalized as in (4.1) such that
\[\omega_0 + \sqrt{-1} \partial \bar{\partial} \phi_i > 0, \quad \text{in } M_{reg} \]
and
\[\phi_i \to \phi, \quad \text{as } i \to +\infty. \]
Then
\[\sqrt{-1} \partial \bar{\partial} \psi_{\phi_i} > 0 \quad \text{in } G. \]
It follows that
\[\partial \psi_{\phi_i} \subseteq 2P. \]
This implies that $\partial \psi_\phi \subseteq 2P$. By the convexity, we also get $\psi_\phi \leq v_{2P}$.

It is easy to see that the Legendre function u_ϕ of ψ_ϕ with $\phi \in \mathcal{E}_{K \times K}^1(M, -K_M)$ satisfies
\begin{equation}
\inf_{2P} u_\phi = u_\phi(O) = 0.
\end{equation}
We set a class of W-invariant convex functions on $2P$ by
$$\mathcal{E}_{K \times K}^1(2P) = \{ u | u \text{ is convex, } W\text{-invariant on } 2P \text{ which satisfies } (4.2) \text{ and } \int_{2P} u \pi dy < +\infty \}.$$

The main goal in this section is to prove

Theorem 4.2. A Kähler potential $\phi \in \mathcal{E}_{K \times K}^1(M, -K_M)$ with normalized ψ_ϕ satisfying (4.1) if and only if the Legendre function u_ϕ of ψ_ϕ lies in $\mathcal{E}_{K \times K}^1(2P)$. As a consequence, u_ϕ is locally bounded in $\text{Int}(2P)$ if $\phi \in \mathcal{E}_{K \times K}^1(M, -K_M)$.

As in [15], we need to establish a comparison principle for the complex Monge-Ampère measure in $\mathcal{E}_{K \times K}^1(M, -K_M)$. For our purpose, we will introduce a weighted Monge-Ampère measure in the following.

4.1. Weighted Monge-Ampère measure.

Definition 4.3. Let $\Omega \subseteq a$ be a W-invariant domain and ψ any W-invariant convex function on Ω. Define a weighted Monge-Ampère measure on Ω by
$$\int_{\Omega'} \text{MA}_{R, \pi}(\psi) dx = \int_{\partial \psi(\Omega')} \pi dy, \ \forall \ W\text{-invariant } \Omega' \subseteq \Omega,$$
where $\partial \psi(\cdot)$ is the normal mapping of ψ.

Remark 4.4. Let ψ_k be a sequence of convex functions which converge locally uniformly to ψ on Ω, then $\text{MA}_{R, \pi}(\psi_k)$ converge to $\text{MA}_{R, \pi}(\psi)$ (cf. [2, Section 15]). This follows from the fact:
$$\liminf_{k \to +\infty} \partial \psi_k(U) \supseteq \partial \psi(U), \ \forall \ W\text{-invariant open subset } U \subseteq \Omega.$$

Lemma 4.5. Let $\omega_\phi = \sqrt{-1} \partial \bar{\partial} \psi_\phi$ with $\phi \in \mathcal{E}_{K \times K}^1(M, -K_M)$. Then for any $K \times K$-invariant continuous uniformly bounded function f on G, it holds
\begin{equation}
\int_M f \omega_\phi^n = \int_{a_+} f \text{MA}_{R, \pi}(\psi_\phi) dx.
\end{equation}

Proof. First we assume that f is a $K \times K$-invariant continuous function with compact support on a. We take a sequence of smooth W-invariant convex functions $\psi_k \searrow \psi$ and let $\omega_k = \sqrt{-1} \partial \bar{\partial} \psi_k$. Then for any W-invariant $\Omega' \subseteq a$, it holds
$$\int_{\Omega'} \text{MA}_{R, \pi}(\psi_k) dx := \int_{\Omega'} \det(\nabla^2 \psi_k) \pi(\nabla \psi_k) dy.$$
By the standard KAK-integration formula, it follows that
$$\int_M f \omega_k^n = \int_{a_+} f \det(\nabla^2 \psi_k) \pi(\nabla \psi_k) dx = \int_{a_+} f \text{MA}_{R, \pi}(\psi_k) dx.$$
Since
$$\int_M f \omega_k^n \to \int_M f \omega^n,$$
it follows from Remark 4.4 that (4.3) is true.

Next we choose a sequence of exhausting W-invariant convex domains Ω_k in a and a sequence of W-invariant convex functions with the support on Ω_{k+1} such that $f_k = f|_{\Omega_k}$. Since ω^n has full MA-mass, we get

$$\int_M f_k \omega^n = \lim_k \int_M f_k \omega^n = \lim_k \int_{a_+} f_k \text{MA}_{R;\pi}(\psi) dx = \lim_k \int_{a_+} f \text{MA}_{R;\pi}(\psi) dx.$$

□

4.2. Comparison principles. We establish the following comparison principle for the weighted Monge-Ampère measure $\text{MA}_{R;\pi}(\psi)$.

Proposition 4.6. Let $\Omega \subseteq a$ be a W-invariant domain and φ, ψ be two convex functions on Ω such that

$$\varphi \geq \psi \text{ and } (\varphi - \psi)|_{\partial \Omega} = 0. \tag{4.4}$$

Then

$$\int_\Omega \text{MA}_{R;\pi}(\varphi) dx \leq \int_\Omega \text{MA}_{R;\pi}(\psi) dx. \tag{4.5}$$

Proof. It is sufficient to prove (4.5) when φ and ψ are smooth, since we can approximate general φ and ψ by smooth W-invariant convex functions by Lemma 4.5. Let

$$\varphi_t = t\varphi + (1-t)\psi.$$

Then

$$\text{MA}_{R;\pi}(\varphi_t) = \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t)$$

and

$$\frac{d}{dt} \int_\Omega \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx$$

$$= \int_\Omega (\nabla^2 \varphi_t)^{-1\cdot ij} \nabla^2 \varphi_{t,ij} \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx$$

$$+ \int_\Omega \left(\sum_{\alpha \in \Phi_+} \frac{2\alpha(\nabla \varphi_t)}{\alpha(\nabla \varphi_t)} \right) \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx. \tag{4.6}$$

Using the fact that

$$(\det(\nabla^2 \varphi_t)(\nabla^2 \varphi_t)^{-1\cdot ij})_j = 0$$
and integration by parts, we have
\[
\int_\Omega \left(\nabla^2 \varphi_t \right)^{-1,ij} \nabla^2 \dot{\varphi}_t,_{ij} \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx
\]
\[
= \int_{\partial \Omega} \left(\nabla^2 \varphi_t \right)^{-1,ij} \nabla^2 \dot{\varphi}_t,_{ij} \nu_j \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) d\sigma
\]
\[
- \int_{\partial \Omega} \left[\left(\nabla^2 \varphi_t \right)^{-1,ij} \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) \right] \dot{\varphi}_t,_{ij} \nu_i d\sigma
\]
(4.7)
\[
+ \int_\Omega \left(\nabla^2 \varphi_t \right)^{-1,ij} \dot{\varphi}_t \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) \dot{\varphi}_t dx.
\]

Also
\[
\int_\Omega \left(\sum_{\alpha \in \Phi_+} \frac{2\alpha(\nabla \varphi_t)}{\alpha(\nabla \varphi_t)} \right) \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx
\]
\[
= 2 \int_{\partial \Omega} \sum_{\alpha \in \Phi_+} \frac{\alpha \nu_i}{\alpha(\nabla \varphi_t)} \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) \dot{\varphi}_t d\sigma
\]
(4.8)
\[
= -2 \int_\Omega \left(\det(\nabla^2 \varphi) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi) \sum_{\alpha \in \Phi_+} \frac{\alpha i}{\alpha(\nabla \varphi)} \dot{\varphi}_t \right) dx.
\]

Note that
\[
\left(\prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) \right)^{ij}_{,ij} = -2 \sum_{\alpha \in \Phi_+} \frac{\alpha^k \alpha^l \varphi_t,_{ik} \varphi_t,_{jl}}{\alpha^2(\nabla \varphi_t)} + 2 \sum_{\alpha \in \Phi_+} \frac{\alpha^k \varphi_t,_{ijk}}{\alpha(\nabla \varphi_t)} + 4 \sum_{\alpha, \beta \in \Phi_+} \frac{\alpha^k \beta^l \varphi_t,_{i \beta j} \varphi_t,_{l j}}{\alpha(\nabla \varphi_t) \beta(\nabla \varphi_t)}
\]
(4.9)
\[
= 2 \left(\det(\nabla^2 \varphi) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) \sum_{\alpha \in \Phi_+} \frac{\alpha i}{\alpha(\nabla \varphi)} \right) .
\]

Plugging (4.7)-(4.9) into (4.6) and using the boundary condition (4.4), we have
\[
\frac{d}{dt} \int_\Omega \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) dx
\]
\[
= \int_{\partial \Omega} \sum_{\alpha \in \Phi_+} \nabla \varphi_t,_{ij} \nu_j \det(\nabla^2 \varphi_t) \prod_{\alpha \in \Phi_+} \alpha^2(\nabla \varphi_t) d\sigma
\]
\[
\leq 0.
\]
Hence we get (4.5). \qed

By the above proposition, we get the following analogue of [15, Lemma 2.3].

Lemma 4.7. Let φ, ψ be two W-invariant convex functions on a so that $\varphi \geq \psi$.
and
\[
\lim_{|x| \to +\infty} \varphi(x) = +\infty.
\]

Then
\[
\int_{\mathfrak{a}_+} MA_{\mathbb{R};\pi}(\varphi)dx \geq \int_{\mathfrak{a}_+} MA_{\mathbb{R};\pi}(\psi)dx.
\]

Combining Lemma 4.7 and the argument of [15, Lemma 2.7], we prove

Lemma 4.8. Let \(\psi \) be a \(W \)-invariant convex function on \(\mathfrak{a} \) and \(u \) its Legendre function. Suppose that for some constant \(C \),
\[
\psi \leq v_{2P} + C,
\]
where \(v_{2P} \) is the support function of \(2P \). Then
\[
\int_{\mathfrak{a}_+} MA_{\mathbb{R};\pi}(\psi)dx = \int_{2P} \pi dy,
\]
if \(u < +\infty \) everywhere in the interior of \(2P \).

The inverse of Lemma 4.8 is also true as an analogue of [15, Theorem 3.6]. In fact, we have

Proposition 4.9. Let \(\phi \) be a \(K \times K \)-invariant potential. Then \(\psi_{\phi} \) satisfies (4.11) if and only if \(u_{\phi} \) is finite everywhere in \(\text{Int}(2P) \).

By Proposition 4.9 we will follow the arguments in [15, Proposition 3.9] to prove Theorem 4.2.

4.3. Proof of Theorem 4.2

It is easy to see that (4.1) is equivalent to (4.2). Thus, to prove Theorem 4.2 we only need to show that
\[
\phi \in \mathcal{E}_{K \times K}(M, -K_M) \iff \int_{2P} |u_{\phi}| \pi dy < +\infty.
\]

The following lemma can be found in [9, Lemma 2.7] (proved in [9, Appendix]).

Lemma 4.10. Let \(\psi \) be a convex function on \(\mathfrak{a} \) and \(u_{\psi} \) its Legendre dual on \(P \).

1. \(u_{\psi} \) is differentiable at \(p \) if and only if \(u_{\psi} \) is attained at a unique point \(x_p \in \mathfrak{a} \) and \(x_p = \nabla u_{\psi}(p) \);
2. Suppose that \((\psi - \psi_0) \in \mathcal{E}_{K \times K}^1(M, -K_M) \). Let \(p \in P \) at which \(u_{\psi} \) is differentiable. Then for any continuous uniformly bounded function \(v \) on \(\mathfrak{a} \), it holds
\[
\frac{d}{dt} \bigg|_{t=0} u_{\psi+tv}(p) = -v(\nabla u_{\psi}(p)),
\]
where \(u_{\psi+tv} \) is the Legendre function of \(\psi + tv \) as in [3.11] which is well-defined since \(v \) is continuous and uniformly bounded on \(\mathfrak{a} \).

Remark 4.11. By Lemma 4.3 and Part (1) in Lemma 4.10 we can prove the following: Let \(\phi \in \mathcal{E}_{K \times K}^1(M, -K_M) \), then for any \(K \times K \)-invariant continuous uniformly bounded function \(f \) on \(G \), it holds
\[
\int_M f \omega_{\phi}^n = \int_{2P} f(\partial u_{\phi}) \pi dy.
\]
Proof of Theorem 4.2. Necessary part. First we show that ϕ has full MA-mass by Proposition 4.9. In fact, by a result in [31, Lemma 4.5], we see that for any W-invariant convex polytope $2P' \subseteq 2P$, there is a constant $C = C(P')$ such that for any W-invariant convex $u_{\phi} \geq 0$,

$$\int_{2P'} u_{\phi} dy \leq C \int_{2P} u_{\phi} \pi dy < +\infty.$$

This implies that u_{ϕ} is finite everywhere in $\text{Int}(2P)$ by the convexity of u_{ϕ}. Thus we get what we want from Proposition 4.9.

Next we prove that ϕ is L^1-integrate associated to the MA-measure ω_n^ϕ. Let $\psi_1 = \psi_0 + \phi$ (ϕ may be different to a constant). We define a distance between ψ_0 and ψ_1 for $p \geq 1$,

$$d_p(\psi_0, \psi_1) = \inf_{\phi_t} \int_0^1 \left(\int_M |\dot{u}_t|^p \omega_n^{\phi_t} \right)^{\frac{1}{p}} dt,$$

where $\phi_t \in E^1(M, -K_M)$ ($t \in [0, 1]$) runs over all curves joining 0 and ϕ with $\omega_{\phi_t} \geq 0$. Choose a special path ϕ_t such that the corresponding Legendre functions of $\psi_t = \psi_0 + \phi_t$ are given by

$$u_t = tu_1 + (1-t)u_0,$$

(4.14)

where u_1 and u_0 are the Legendre functions of ψ_1 and ψ_0, respectively. Note that by Lemma 4.10

$$\dot{\psi}_t = -\dot{u}_t = u_0 - u_1,$$

almost everywhere.

Then by Lemma 4.5 (or Remark 4.11), we get

$$d_p(\psi_0, \psi_1) \leq \int_0^1 \left(\int_{2P} |\dot{u}_t|^p \pi dy \right)^{\frac{1}{p}} dt,$$

(4.15)

$$\leq C(p) \left(\int_{2P} |u_1|^p \pi dy \right)^{\frac{1}{p}} + C'(p, \psi_0).$$

On the other hand, by a result of Darvas [16], there are uniform constant C_0 and C_1 such that for any Kähler potential ϕ with full MA-measure it holds,

$$-\int_M \phi \omega_n^\phi \leq C_0 d_1(\psi_0, \psi_1) + C_1.$$

Thus we obtain

$$-\int_M \phi \omega_n^\phi \leq C.$$

Hence, $\phi \in E^1_{K \times K}(M, -K_M)$.

Sufficient part. Assume that $\phi \in E^1_{K \times K}(M, -K_M)$. We first deal with the case of $\phi \in L^\infty(M) \cap C^\infty(G)$. Then

$$v_{2P} - C \leq \psi_\phi \leq v_{2P} \leq \psi_0 + C,$$

and

$$\nabla \psi_\phi : \mathbf{a} \to 2P$$

is a bijection. Thus

$$-\phi = (\psi_0 - \psi_\phi)(\nabla u_\phi)$$

$$\geq v_{2P}(\nabla u_\phi) - \psi_\phi(\nabla u_\phi) - C_2 \geq -C_2.$$
Moreover,
\[
(\psi_0 - \psi_\phi)(\nabla u_\phi) \
\geq v_{2P}(\nabla u_\phi) - \psi_\phi(\nabla u_\phi) - C \
= \sup_{y' \in 2P} \langle \nabla u_\phi, y' \rangle - \psi(\nabla u_\phi) - C \
\geq \langle \nabla u_\phi, y \rangle - \psi(\nabla u_\phi) - C \
= u_\phi(y) - C.
\]

Hence,
\[
\int_{2P^+} u_\phi \pi \, dy \leq \int_{2P^+} (\psi_0 - \psi_\phi)(\nabla u_\phi) \pi \, dy + C
\]
\[
= \int_M |\phi| \omega^n_\phi + C < +\infty.
\]

For an arbitrary \(\phi \in E^1_{K \times K}(M, -K_M) \), we choose a sequence of smooth \(K \times K \)-invariant functions \(\{ \phi_j \} \) decreasing to \(\phi \) such that \(\phi_j \in C^\infty(G) \) and
\[
\sqrt{-1} \partial \bar{\partial}(\psi_0 + \phi_j) > 0, \text{ in } G.
\]
Then as in (4.17), we have
\[
\int_{2P^+} u_j \pi \, dy \leq \int_{2P^+} (\psi_0 - \psi_j)(\nabla u_j) \pi \, dy
\]
\[
= \int_M |\phi_j| \omega^n_j + C;
\]
where \(u_j \) is the Legendre functions of \(\psi_j = \psi_0 + \phi_j \). Note that
\[
\int_M |\phi_j| \omega^n_j \to \int_M |\phi| \omega^n_\phi
\]
and \(u_j \nearrow u_\phi \). Thus by taking the above limit as \(j \to +\infty \), we get (4.17) for \(\phi \). In particular,
\[
\int_{2P^+} u_\phi \pi \, dy < +\infty.
\]

5. Computation of Ricci potential

In this section, we assume that the moment polytope \(P \) of \(Z \) is fine. Then by Lemma 3.4 \((\psi_{2P} - \psi_0) \in E^1_{K \times K}(M, -K_M) \) is a smooth \(K \times K \)-invariant Kähler potential on \(G \). It follows that
\[
- \log \det(\partial \bar{\partial} \psi_{2P}) - \psi_{2P} = h_0
\]
gives a Ricci potential \(h_0 \) of \(\omega_{2P} \), which is smooth and \(K \times K \)-invariant on \(G \).

The following proposition gives an upper bound on \(h_0 \).

Proposition 5.1. The Ricci potential \(h_0 \) of \(\omega_{2P} \) is uniformly bounded from above on \(G \). In particular, \(e^{h_0} \) is uniformly bounded on \(G \).
Proof. As in [31, Sections 3.2 and 4.3], the proof is based on a direct computation of asymptotic behavior of h_0 near every point of $\partial (2P_+)$. Recall that

$$J(x) = \prod_{\alpha \in \Phi_+} \sinh^2 \alpha(x) \text{ and } \pi(y) = \prod_{\alpha \in \Phi_+} \alpha^2(y).$$

Since the Ricci potential of h_0 is also $K \times K$-invariant, by (5.1) and (3.5),

$$h_0 = - \log \det (\psi_{2P,ij}) - \psi_{2P} + \log J(x) - \log \prod_{\alpha \in \Phi_+} \alpha^2 (\nabla \psi_{2P})$$

(5.2)

$$= \log \det (u_{2P,ij}) - y_i u_{2P,i} + u_{2P} + \log J(\nabla u_{2P}) - \log \pi(y).$$

Note that

$$u_{2P,i} = \frac{1}{2} \sum_{A=1}^{d_0} (-u_A^i) (1 + \log l_A),$$

$$u_{2P,ij} = \frac{1}{2} \sum_{A=1}^{d_0} \frac{u_{2P,i}^A u_{2P}^j}{l_A}$$

and

$$\log J(t) = 2 \sum_{\alpha \in \Phi_+} \log \sinh(t).$$

Thus we have

$$h_0 = - \sum_{A=1}^{d_0} \log l_A + \frac{1}{2} \sum_{A=1}^{d_0} (u_A^i y_i) \log l_A$$

(5.3)

$$+ 2 \sum_{\alpha \in \Phi_+} \log \sinh(- \frac{1}{2} \sum_{A=1}^{d_0} \alpha(u_A) \log l_A) - 2 \sum_{\alpha \in \Phi_+} \log \alpha(y) + O(1).$$

By (5.3), h_0 is locally bounded in the interior of $2P_+$. Thus we need to prove that h_0 is bounded from above near each $y_0 \in \partial (2P_+)$. There will be three cases as follows.

Case-1. $y_0 \in \partial (2P_+)$ and is away from any Weyl wall. Note that

$$\log \sinh(t) = \begin{cases} t + O(1), & t \to +\infty, \\ \log t + O(1), & t \to 0^+. \end{cases}$$

(5.4)
Then we get as $y \to y_0$,

$$
\sum_{\alpha \in \Phi_+} \log \sinh(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha(u_A) \log l_A) = - \sum_{A} \rho(u_A) \log l_A + O(1).
$$

By (5.3), it follows that

$$
h_0 = - \sum_{\{A|l_A(y_0)=0\}} \left(1 - \frac{1}{2} y_i u_{A,i} + 2 \rho_i u_{A,i}\right) \log l_A(y) + O(1).
$$

However, by Lemma 5.4 we have

$$
h_0 = \frac{1}{2} \sum_{\{A|l_A(y_0)=0\}} l_A(y) \log l_A(y) + O(1).
$$

Hence h_0 is bounded near y_0.

Case-2. y_0 lies on some Weyl walls but away from any facet of $2P$. In this case it is direct to see that h_0 is bounded near y_0 since

$$
\log \det(u_{2P,i}), \ y_i u_{2P,i}, \ \frac{J(u_{2P})}{\pi(y)}
$$

are all bounded.

Case-3. y_0 lie on the intersection of $\partial(2P)$ with some Weyl walls. In this case, by (3.1), we rewrite (5.3) as

$$
h_0 = 2 \sum_{A=1}^{d_0} \rho_A(u_A) \log l_A + 2 \sum_{\alpha \in \Phi_+} \log \sinh(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha(u_A) \log l_A)
$$

$$
- 2 \sum_{\alpha \in \Phi_+} \log \alpha(y) + O(1)
$$

$$
= \sum_{\alpha \in \Phi_+} \left[\sum_{A=1}^{d_0} \alpha(u_A) \log l_A + 2 \log \sinh(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha(u_A) \log l_A)
$$

$$
- 2 \log \alpha(y) \right] + O(1), \ y \to y_0.
$$

Here we used a fact that

$$
2 \rho_A(u_A) = \sum_{\alpha \in \Phi_+} |\alpha(u_A)|.
$$
Set

\[I_\alpha(y) = \sum_{A=1}^{d_0} |\alpha(u_A)| \log l_A + 2 \log \sinh(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha(u_A) \log l_A) - 2 \log \alpha(y) \]

for each \(\alpha \in \Phi_+ \). Then

\[h_0(y) = \sum_{\alpha \in \Phi_+} I_\alpha(y) + O(1), \quad y \to y_0. \]

(5.5)

Note that each \(I_\alpha(y) \) involves only one root \(\alpha \). Thus, without loss of generality, we may assume that \(y_0 \) lies on only one Weyl wall.

Assume that \(y_0 \in \partial(2P) \cap W_{\alpha_0} \) for some simple Weyl wall \(W_{\alpha_0} \), \(\alpha_0 \in \Phi_+ \) and it is away from other Weyl walls. Now we estimate each \(I_\alpha(y) \) in (5.5). When \(\beta \neq \alpha_0 \), it is easy to see that

\[\beta(y) \to c_\beta > 0, \quad \text{as} \quad y \to y_0. \]

Then, by (5.4), we have

\[\log \sinh\left(-\frac{1}{2} \sum_{A=1}^{d_0} |\beta(u_A)| \log l_A\right) = -\frac{1}{2} \sum_{\{A|l_A(y_0) = 0\}} \beta(u_A) \log l_A + O(1), \quad \forall \beta \neq \alpha_0. \]

Note that \(y_0 \in \{ \beta(y) > 0 \} \). Thus any facet \(F_A \) passing through \(y_0 \) lies in \(\{ \beta(y) > 0 \} \) or is orthogonal to \(W_\beta \). Since \(2P \) is convex and \(s_\beta \)-invariant, where \(s_\beta \) is the reflection with respect to \(W_\beta \), these facets must satisfy

\[\beta(u_A) \geq 0. \]

Hence, for any \(\beta \neq \alpha_0 \), we get

\[I_\beta(y) = \sum_{A=1}^{d_0} |\alpha(u_A)| \log l_A - 2 \sum_{A=1}^{d_0} |\beta(u_A)| \log l_A - 2 \log \beta(y) \]

= \(O(1) \), as \(y \to y_0 \).

(5.6)

It remains to estimate the second term in \(I_{\alpha_0}(y) \),

(5.7)

\[\log \sinh\left(-\frac{1}{2} \sum_{A} \alpha_0(u_A) \log l_A\right). \]

We first consider a simple case that \(y_0 \) lies on the intersection of \(W_{\alpha_0} \) with at most two facets of \(2P \). Then there will be two subcases: \(y_0 \in W_{\alpha_0} \cap F_1 \) where \(F_1 \) is orthogonal to \(W_{\alpha_0} \), or \(y_0 \in W_{\alpha_0} \cap F_1 \cap F_2 \), where \(F_1, F_2 \) are two facets of \(P \).

Case-3.1. \(y_0 \in W_{\alpha_0} \cap F_1 \) is away from other facet of \(2P \). Then \(F_1 \) is orthogonal to \(W_{\alpha_0} \). It follows that \(l_A(y_0) \neq 0 \) for any \(A \neq 1 \). Thus

(5.8)

\[\langle \alpha_0, y \rangle = o(l_A(y)), \quad y \to y_0, A \neq 1. \]

Let \(\{F_1, ..., F_{d_1}\} \) be all facets of \(P \) such that \(\alpha_0(u_A) \geq 0, A = 1, ..., d_1 \). Let \(s_{\alpha_0} \) be the reflection with respect to \(W_{\alpha_0} \). Then by \(s_{\alpha_0} \)-invariance of \(P \), for each \(A' \notin \{1, ..., d_1\} \) there is some \(A \in \{1, ..., d_1\} \) such that

\[l_{A'} = l_A + 2\frac{\alpha_0(u_A)(\alpha_0, y)}{|\alpha_0|^2}. \]
SINGULAR KÄHLER-EINSTEIN METRICS ON Q-FANO COMPACTIFICATIONS OF LIE GROUPS

It follows that

\[\alpha_0(\nabla u_{2P}) = -\frac{1}{2} \sum_{A=1}^{d_0} \alpha_0(u_A) \log l_A \]

\[= \frac{1}{2} \sum_{A=1}^{d_1} \alpha_0(u_A) \log \left(1 + 2 \frac{\alpha_0(u_A) \langle \alpha_0, y \rangle}{|\alpha_0|^2 l_A(y)} \right). \]

Thus, by (5.8) and the fact that \(\alpha_0(u_1) = 0 \), we obtain

\[\log \sinh \left(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha_0(u_A) \log l_A \right) \]

\[= \log \sinh \sum_{A=2}^{d_1} \alpha_0(u_A) \log \left(1 + 2 \frac{\alpha_0(u_A) \langle \alpha_0, y \rangle}{|\alpha_0|^2 l_A(y)} \right) \]

\[= \log \langle \alpha_0, y \rangle + O(1). \]

Hence

\[I_{\alpha_0}(y) = O(1), \text{ as } y \to y_0. \]

Together with (5.6), we see that \(h_0 \) is bounded near \(y_0 \).

Case-3.2. \(y_0 \in W_{\alpha_0} \cap F_1 \cap F_2 \) and is away from other facets of \(2P \). By the

\[l_1 = l_2 + \frac{2\alpha_0(u_2) \langle \alpha_0, y \rangle}{|\alpha_0|^2}. \]
As \(y \to y_0 \) we have
\[
\alpha_0(y), l_1(y), l_2(y) \to 0,
\]
\[
l_A(y) \not\to 0, \ \forall A \neq 1, 2.
\]
It follows that
\[
\sum_{A=1}^{d_0} |\alpha_0(u_A)| \log l_A = \alpha_0(u_2)(\log l_1 + \log l_2) + O(1).
\]
(5.9)

Then the second term in \(I_{\alpha_0}(y) \) becomes
\[
\log \sinh \left(-\frac{1}{2} \sum_{A=1}^{d_0} \alpha_0(u_A) \log l_A \right) \\
= \log \sinh \frac{1}{2} \left[\alpha_0(u_2) \log \left(1 + 2 \frac{\alpha_0(u_2)(\alpha_0, y)}{\alpha_0^2 l_2(y)} \right) \\
+ \sum_{A \neq 2, \alpha_0(u_A) > 0} d_1 \alpha_0(u_A) \log \left(1 + 2 \frac{\alpha_0(u_A)(\alpha_0, y)}{\alpha_0^2 l_A(y)} \right) \right].
\]

We will settle it down according to the different rate of \(\frac{\alpha_0(y)}{l_2(y)} \) below.

Case-3.2.1. \(\frac{\alpha_0(y)}{l_2(y)} = o(l_2(y)) \). Then
\[
\log \sinh \alpha_0(\nabla u_2 P) = \log \alpha_0(y) - \log l_2(y).
\]
(5.10)

Note that \(s_{\alpha_0}(u_1) = u_2 \in \overline{a}^+, \) we have
\[
\sum_{A=1,2} |\alpha_0(u_A)| \log l_A = \alpha_0(u_2)(\log l_1 + \log l_2).
\]

Using the above relation, (5.9) and (5.10), we get
\[
I_{\alpha_0}(y) = \alpha_0(u_2) \log l_1 + (\alpha_0(u_2) - 2) \log l_2 + O(1)
\]
(5.11)
\[
= 2(\alpha_0(u_2) - 1) \log l_2 + O(1).
\]

Here we used \(l_1 = l_2(1 + o(1)) \) in the last equality.

Note that by our assumption \(\alpha_0(u_2) > 0 \). Then
\[
\alpha_0(u_2) \geq 1,
\]
since \(\alpha_0(u_2) \in \mathbb{Z} \). Hence, as \(l_1(y), l_2(y) \to 0^+ \), by (5.5), (5.6) and (5.11), we see that \(h_0 \) is bounded from above in this case.

Case-3.2.2. \(c \leq \frac{\alpha_0(y)}{l_2(y)} \leq C \) for some constants \(C, c > 0 \). Then
\[
\log \alpha_0(y) = \log l_2 + O(1), \ \log \sinh \alpha_0(\nabla u_2 P) = O(1)
\]
and the right hand side of (5.5) becomes
\[
\alpha_0(u_2)(\log l_1 + \log l_2) - 2 \log \alpha_0(y) + O(1)
\]
(5.12)
\[
= 2(\alpha_0(u_2) - 1) \log l_2 + O(1).
\]

Again \(h_0 \) is also bounded from above.
Thus Guillemin function E to S and Case-3.1. Furthermore, if rank Case-3 uniformly bounded if and only if the following relation holds,

$$h_0(y) = o_0(y)(1 + o(1))$$

and the right hand side of (5.5) becomes

$$\alpha_0(u_2)(\log l_1 + \log l_2) + \alpha_0(u_2)(\log o_0(y) - \log l_2(y))$$

$$= \alpha_0(u_2) \log l_1 + [\alpha_0(u_2) - 2\log o_0(y) + O(1)$$

(5.13)

$$= 2(\alpha_0(u_2) - 1) \log o_0(y) + O(1).$$

Hence h_0 is bounded from above as in Case-3.2.1.

Next we consider the case that there are facets $F_1, ..., F_s$ ($s \geq 3$) such that

$$y_0 \in W_{o_0} \cap F_1 \cap ... \cap F_s$$

and it is away from any other facet of $2P$. We only need to control the term (5.7) as above. If $F_1, ..., F_s$ are all orthogonal to W_{o_0} as in Case-3.1, we see that $h_0(y)$ is uniformly bounded. Otherwise, for any y near y_0 there is a facet $F = F_i'$ for some $i' \in \{1, ..., s\}$ such that

$$l_{i'}(y) = \min\{l_i(y) \mid i = 1, ..., s \text{ such that } \alpha_0(u_i) \neq 0\}.$$

As $y \to y_0$, up to passing to a subsequence, we can fix this i'. Clearly, $y_0 \in W_{o_0} \cap F_1 \cap F_2$ as in Case-3.2, where $F_2 = F \subseteq \mathbb{R}$ and $F_1 = s_{o_0}(F)$ for the reflection s_{o_0}. Hence by following the argument in Case-3.2, we can also prove that $h_0(y)$ is uniformly bounded from above. Therefore, the proposition is true in Case-3. The proof of our proposition is completed. □

Remark 5.2. We note that h_0 is always uniformly bounded in Case-1, Case-2 and Case-3.1. Furthermore, if rank$(G) = 2$, there are at most two facets F_1, F_2 intersecting at a same point y_0 of W_{o_0} as in Cases-3.2.1-3.2.3, thus, by the asymptotic expressions of h_0 in (5.11), (5.12) and (5.13), respectively, we see that h_0 is uniformly bounded if and only if the following relation holds,

$$\alpha_0(u_2) = 1.$$

In the other words, in Cases-3.2.1-3.2.3,

$$\lim_{y \to y_0} h_0 = -\infty,$$

if (5.14) does not hold.

6. Reduced Ding functional and existence criterion

By Lemma 4.8 and Theorem 4.2 we see that for any $u \in \mathcal{E}^1_{K \times K}(2P)$, its Legendre function

$$\psi_u(x) = \sup_{y \in 2P} \{\langle x, y \rangle - u(y)\} \leq v_{2P}(x)$$

corresponds to a $K \times K$-invariant weak Kähler potential $\phi_u = \psi_u - \psi_0$ which belongs to $\mathcal{E}^1_{K \times K}(M, -K_M)$. Here we can choose ψ_0 to be the Legendre function v_{2P} of Guillemin function u_{2P} as in (4.8). As we know, $e^{-\phi_u} \in L^p(\omega_0)$ for any $p > 0$. Thus $\int_a e^{-\psi_u(x)}J(x)dx$ is well-defined.
We introduce the following functional on $E_{K \times K}(2P)$ by
\[D(u) = L(u) + F(u), \]
where
\[L(u) = \frac{1}{V} \int_{2P_+} u \pi dy - u(4\rho) \]
and
\[F(u) = -\log \left(\int_{a_+} e^{-\psi u} J(x) dx \right) + u(4\rho). \]
It is easy to see that on a smooth Fano compactification of G,
\[L(u \phi) + u \phi(4\rho) = -\frac{1}{(n+1)V} \sum_{k=0}^{n} \int_M \phi \omega_{\phi}^k \wedge \omega_0^{n-k} \]
and $D(u \phi)$ is just the Ding functional $F(\phi)$. We note that a similar functional on such Fano manifolds has been studied for Mabuchi solitons in [32, Section 4]). Hence, for convenience, we call $D(\cdot)$ the reduced Ding functional on a Q-Fano compactifications of G.

In this section, we will use the variation method to prove Theorem 1.2 by verifying the properness of $D(\cdot)$. We assume that the moment polytope P is fine so that the Ricci potential h_0 is uniformly bounded above by Proposition 5.1.

6.1. A criterion for the properness of $D(\cdot)$. In this subsection, we establish a properness criterion for $D(u \phi)$, namely,

Proposition 6.1. Let M be a Q-Fano compactification of G. Suppose that the moment polytope P is fine and it satisfies (1.2). Then there are constants δ and C_δ such that
\[D(u) \geq \delta \int_{2P_+} u \pi dy + C_\delta, \quad u \in E_{K \times K}(2P). \]

The proof goes almost the same as in [32]. We sketch the arguments here for completeness. First we note that $u \phi$ satisfies the normalized condition $u \geq u(O) = 0$. Then we have the following estimate for the linear term $L(\cdot)$ as in [32 Proposition 4.5].

Lemma 6.2. Under the assumption (1.2), there exists a constant $\lambda > 0$ such that
\[L(u) \geq \lambda \int_{2P_+} u \pi dy, \quad \forall u \in E_{K \times K}(2P). \]

For the non-linear term $F(\cdot)$, we can also get an analogy of [32 Lemma 4.8] as follows.

Lemma 6.3. For any $\phi \in E_{K \times K}(M, -K_M)$, let
\[\tilde{\psi}_\phi := \psi_\phi - 4\rho x^i, \quad x \in a_+. \]
Then
\[F(u \phi) = -\log \left(\int_\Phi e^{-(\tilde{\psi}_\phi - \inf_{x^i} \tilde{\psi}_\phi)} \prod_{\alpha \in \Phi_+} \left(\frac{1 - e^{-2\alpha_\alpha x^i}}{2} \right)^2 dx \right). \]

(6.3)
Consequently, for any $c > 0$,
\begin{equation}
\mathcal{F}(u_\varphi) \geq \mathcal{F} \left(\frac{u_\varphi}{1 + c} \right) - n \cdot \log(1 + c).
\end{equation}

Let $\phi_0, \phi_1 \in \mathcal{E}_1^{K \times K}(-K_M)$ and u_0, u_1 be two Legendre functions of $\psi_0 + \phi_0$ and $\psi_0 + \phi_1$, respectively. Let $u_t (t \in [0, 1])$ be a linear path connecting u_0 to u_1 as in (4.14). Then by Theorem 4.2, the corresponding Legendre functions u_t give a path in $\mathcal{E}_1^{K \times K}(-K_M, -K_M)$. The following lemma shows that $\mathcal{F}(\psi_t)$ is convex in t.

Lemma 6.4. Let
\[\hat{\mathcal{F}}(t) = -\log \int_{a_+} e^{-\psi_t} J(x) dx, \; t \in [0, 1]. \]

Then $\hat{\mathcal{F}}(t)$ is convex in t and so is $\mathcal{F}(\psi_t)$.

Proof. By definition, we have
\[
\psi_t(tx_1 + (1 - t)x_0) = \sup_y \{ \langle y, tx_1 + (1 - t)x_0 \rangle - (tu_1(y) + (1 - t)u_0(y)) \}
\leq t \sup_y \{ \langle y, x_1 \rangle - u_1(y) \}
+ (1 - t) \sup_y \{ \langle y, x_0 \rangle - u_0(y) \}
\leq t \psi_1(x_1) + (1 - t) \psi_0(x_0), \; \forall \; x_0, x_1 \in a.
\]

On the other hand,
\[
\log \mathcal{J}(tx_1 + (1 - t)x_0) \geq t \log \mathcal{J}(x_1) + (1 - t) \log \mathcal{J}(x_0), \; \forall x_0, x_1 \in a_+.
\]
Combining these two inequalities, we get
\[
(e^{-\psi_t} \mathcal{J})(tx_1 + (1 - t)x_0) \geq (e^{-\psi_t} \mathcal{J})(x_1)(e^{-\psi_0} \mathcal{J})^{1-t}(x_0), \; \forall x_0, x_1 \in a_+.
\]
Hence, by applying the Prekopa-Leindler inequality to three functions $e^{-\psi_t} \mathcal{J}, e^{-\psi_t} \mathcal{J}$ and $e^{-\psi_0} \mathcal{J}$ (cf. [39]), we prove
\[
-\log \int_{a_+} e^{-\psi_t} \mathcal{J}(x) dx \leq -t \log \int_{a_+} e^{-\psi_1} \mathcal{J}(x) dx - (1 - t) \log \int_{a_+} e^{-\psi_0} \mathcal{J}(x) dx.
\]
This means that $\hat{\mathcal{F}}(t)$ is convex. \qed

Proof of Proposition 6.1. By Proposition 5.1
\[
A(y) = \frac{V}{\int_{a_+} e^{-\psi_0} \mathcal{J}(x) dx} e^{b_0(\nabla \psi_0(y))}
\]
is bounded, where $y(x) = \nabla \psi_0(x)$. Then the functional
\[
\mathcal{D}_A(u) = \mathcal{L}^0_A(u) + \mathcal{F}(u),
\]
is well-defined on $\mathcal{E}_1^{K \times K}(2P)$, where
\[
\mathcal{L}^0_A(u) = \frac{1}{V} \int_{2P_+} uA(y)\pi(y) dy - u(4\rho).
\]
It is easy to see that that \(u_0 \) is a critical point of \(D_A(\cdot) \). On the other hand, by Lemma 6.4, \(F(\cdot) \) is convex along any path in \(E_{K \times K}(M, -K_M) \) determined by their Legendre functions as in (4.14). Note that \(L_A^0(\cdot) \) is convex in \(E_{K \times K}(2P) \). Hence
\[
D_A(u) \geq D_A(u_0), \quad \forall u \in E_{K \times K}(2P).
\]
Now together with Lemma 6.2 and Lemma 6.3, we can apply arguments in the proof of [32 Proposition 4.9] to proving that there is a constant \(C > 0 \) such that for any \(u \in \mathcal{E}_K \times K(2P) \),
\[
D(u) \geq \frac{C\lambda}{1+C} \int_{2P_+} u \pi dy + D_A(u_0) - n \log(1 + C).
\]
Therefore, we get (6.1).

\[\square\]

6.2. Semi-contiuity. Write \(\mathcal{E}_{K \times K}^1(2P) \) as
\[
\mathcal{E}_{K \times K}^1(2P) = \bigcup_{\kappa \geq 0} \mathcal{E}_{K \times K}^1(2P; \kappa),
\]
where
\[
\mathcal{E}_{K \times K}^1(2P; \kappa) = \{ u \in \mathcal{E}_{K \times K}^1(2P) \mid \int_{2P_+} u \pi dy \leq \kappa \}.
\]
By [31 Lemma 6.1] and Fatou’s lemma, it is easy to see that any sequence \(\{u_n\} \subseteq \mathcal{E}_{K \times K}^1(2P; \kappa) \) has a subsequence which converges locally uniformly to some \(u_\infty \) in it. Thus each \(\mathcal{E}_{K \times K}^1(2P; \kappa) \), and so \(\mathcal{E}_{K \times K}^1(2P) \) is complete. Moreover, we have

Proposition 6.5. The reduced Ding functional \(D(\cdot) \) is lower semi-continuous on the space \(\mathcal{E}_{K \times K}^1(2P) \). Namely, for any sequence \(\{u_n\} \subseteq \mathcal{E}_{K \times K}^1(2P) \), which converges locally uniformly to some \(u_\infty \), we have \(u_\infty \in \mathcal{E}_{K \times K}^1(2P) \) and it holds
\[
D(u_\infty) \leq \liminf_{n \to \infty} D(u_n).
\]

Proof. By Fatou’s lemma, we have
\[
\int_{2P_+} u_\infty \pi dy \leq \liminf_{n \to +\infty} \int_{2P_+} u_n \pi dy < +\infty.
\]
Then \(u_\infty \in \mathcal{E}_{K \times K}^1(2P) \) and
\[
L(u_\infty) \leq \liminf_{n \to +\infty} L(u_n).
\]
It remains to estimate \(F(u_\infty) \). Note that \(u_\infty \) is finite everywhere in \(\text{Int}(2P) \) by the locally uniformly convergence and its Legendre function \(\psi_\infty \leq v_{2P} \). Thus, for any \(\epsilon_0 \in (0, 1) \) there is a constant \(M_{\epsilon_0} > 0 \) such that (cf. [33 Lemma 2.3]),
\[
\psi_\infty(x) \geq (1 - \epsilon_0)v_{2P}(x) - M_{\epsilon_0}, \quad \forall x \in a.
\]
On the other hand, the Legendre function \(\psi_n \) of \(u_n \) also converges locally uniformly to \(\psi_\infty \). Then
\[
\partial \psi_n \rightarrow \partial \psi_\infty
\]
almost everywhere. Since
\[
\psi_n(O) = \psi_\infty(O) = 0, \quad \forall n \in \mathbb{N},
\]
we have
\[
(6.9) \quad \psi_n(x) \geq (1 - \epsilon_0)v_{2P}(x) - M_{\epsilon_0}, \quad \forall x \in a
\]
as long as \(n \gg 1 \). Note that
\[
0 \leq J(x) \leq e^{4\rho(x)}, \forall x \in a_+.
\]
By choosing an \(\epsilon_0 \) such that \(4\rho \in (1 - \epsilon_0)\text{Int}(2P) \), we get
\[
\int_{a_+} e^{M_{x_0} - (1 - \epsilon_0)\nu_{2P}(x)} J(x) dx < +\infty.
\]
Hence, combining this with (6.8) and (6.9) and using Fatou’s lemma, we derive
\[
-\log \left(\int_{a_+} e^{-\psi} J(x) dx \right) \leq \liminf_{n \to +\infty} \left[-\log \left(\int_{a_+} e^{-\psi_n} J(x) dx \right) \right].
\]
Therefore, we have proved (6.6) by (6.7).

6.3. Proof of Theorem 1.2

Now we prove the sufficient part of Theorem 1.2. Suppose that (1.2) holds. Then by Theorem 6.1 and Proposition 6.5, there is a minimizing sequence \(\{u_n\} \) of \(D(\cdot) \) on \(E_{K	imes K}^1(2P) \), which converges locally uniformly to some \(u_\star \in E_{K	imes K}^1(2P) \) such that
\[
D(u_\star) \leq \lim_{u \in E_{K	imes K}^1(2P)} D(u).
\]
Let \(\psi_\star \) be the Legendre function of \(u_\star \). Then by Theorem 1.2, we have
\[
-\log \left(\int_{a_+} e^{-\psi} J(x) dx \right) \leq -\log \left(\int_{a_+} e^{-\psi_\star} J(x) dx \right).
\]
We need to show that \(\phi_\star \) satisfies the Kähler-Einstein equation (2.1).

Proposition 6.6. \(\phi_\star \) satisfies the Kähler-Einstein equation (2.1).

Proof. Let \(\{u_t\}_{t \in [0, 1]} \subseteq E_{K	imes K}^1(2P) \) be a family convex functions with \(u_0 = u_\star \) and \(\psi_t \) the corresponding Legendre functions of \(u_t \). Then by Part (2) in Lemma 4.10,
\[
\dot{\psi}_0 = -\dot{u}_0, \text{ almost everywhere}.
\]
Note that
\[
\int_{a_+} e^{-\psi} J(x) dx = V,
\]
Thus by (4.11) in Lemma 4.8, we get
\[
\frac{d}{dt} \bigg|_{t=0} D(u_t) = \frac{1}{V} \int_{2P_+} \dot{u}_0 \pi dy + \int_{a_+} \dot{\psi}_0 e^{-\psi} J(x) dx
\]
\[
= V \int_{a_+} \dot{\psi}_0 [e^{-\psi} J(x) - M_{\mathbb{R};\pi}(\psi_\star)] dx.
\]
For any continuous, compactly supported \(W \)-invariant function \(\eta \in C_0(a) \), we consider a family of functions \(u_\star + t\eta \). In general, it may not be convex for \(t \neq 0 \) since \(u_\star \) is just weakly convex. In the following, we use a trick to modify the function \(D(u_t) \) as in [9, Section 2.6]. Define a family of \(W \)-invariant functions by
\[
\psi_t = \sup_{\phi \in E_{K	imes K}^1(M, -K_M)} \{ \psi_\phi | \psi_\phi \leq \psi_\star + t\eta \}.
\]
Then it is easy to see that the Legendre function \(\dot{\psi}_t \) of \(\dot{\psi}_t \) satisfies
\[
|\dot{u}_t - u_0| \leq C, \forall |t| \ll 1.
\]
By Theorem 4.2 we see that $(\hat{\psi}_t - \psi_0) \in \mathcal{E}^E_{K \times K}(M, -K_M)$. Without loss of generality, we may assume that $\hat{\psi}_0$ satisfies (4.1).

Let
\[\hat{D}(t) = \mathcal{L}(\hat{u}_t) + \mathcal{F}(\hat{u}_t). \]

Then
\[\hat{D}(0) = \mathcal{D}(u_\star) \]
and
\[\hat{D}(t) \geq \mathcal{D}(u_\star). \]

Claim 6.7. $\mathcal{L}(\hat{u}_t) + \hat{u}_t(4\rho)$ is differentiable for t. Moreover,
\[\left. \frac{d}{dt} \right|_{t=0} (\mathcal{L}(\hat{u}_t) + \hat{u}_t(4\rho)) = -\frac{1}{V} \int_M \eta \omega^n_{\hat{\phi}_t}, \]

To prove this claim, we let a convex function $g(t) = \hat{u}_t(p)$ for each fixed $y \in 2P$. Then it has left and right derivatives $g'_-(t; p), g'_+(t; p)$, respectively. Moreover, they are monotone and $g'_-(t; p) \leq g'_+(t; p)$. Thus, $g'_-, g'_+ \in L^\infty_{loc}$. It follows that
\[\left. \frac{d}{dt} \right|_{t=\tau \pm} \int_{2P_\pm} \hat{u}_t \pi dy = \int_{2P_\pm} g'_\pm(\tau; p) \pi dy. \]

Recall that $g'_-(t; p) = g'_+(t; p)$ holds almost everywhere. Thus we see that
\[\mathcal{L}(\hat{u}_t) + u(4\rho) = \frac{1}{V} \int_{2P_\pm} \hat{u}_t \pi dy \]
is differentiable.

Note that
\[u_{\psi_t} = u_{\psi_\star + t\eta}, \]
where $u_{\psi_\star + t\eta}$ is the Legendre function of $\psi_\star + t\eta$. It follows from Part (2) in Lemma 4.10 that
\[\dot{\psi}_0 = -\dot{u}_0 = \eta, \] almost everywhere.

Hence by Lemma 4.5 (or Remark 4.11), we get
\[\left. \frac{d}{dt} \right|_{t=0} (\mathcal{L}(\hat{u}_t) + \hat{u}_t(4\rho)) = \frac{1}{V} \int_{2P_\pm} \hat{u}_0 \pi dy \]
\[= -\frac{1}{V} \int_{2P} \eta \pi dy = -\frac{1}{V} \int_{a_\star} \eta \Lambda_{\hat{\phi}_t}(\psi_0) dx \]
\[= -\frac{1}{V} \int_{M} \eta \omega^n_{\hat{\phi}_t}, \]
where $\phi_\star = \psi_\star - \psi_0$. The claim is proved.

Similar to Claim 6.7, we have
\[\left. \frac{d}{dt} \right|_{t=0} (\mathcal{F}(\hat{u}_t) - \hat{u}_t(4\rho)) = \frac{1}{V} \int_{a_\star} \eta e^{-\psi_\star} J(x) dx \]
\[= \int_G \eta e^{-\phi_\star + h_0} \omega^n_{\psi_0}. \]
Thus, by (6.12)-(6.15), we derive

\[
0 = \frac{d}{dt} \bigg|_{t=0} \tilde{D}(t) = \frac{1}{V} \int_G \eta \left[e^{-\phi + h_0 \omega_0^n - \omega_{\phi^0_n}} \right] dx.
\]

As a consequence,

\[
\omega_{\phi^0_n} = e^{-\psi + h_0 \omega_0^n}, \text{ in } G.
\]

Therefore, by Lemma 4.5 and KAK-integration formula, we prove that \(\phi^* \) satisfies (2.1) on \(G \).

Next we show that \(\omega_{\phi^*} \) can be extended as a singular Kähler-Einstein metric on \(M \). Choose an \(\epsilon_0 > 0 \) such that \(4 \rho \in \text{Int}(2(1-\epsilon_0)P) \). Since \(u^* \in \mathcal{E}_{K \times K}(2P) \), by Lemma 4.8 there is a constant \(C_* > 0 \) such that

\[
\psi^* \geq (1 - \epsilon_0) \nu_{2P} - C_*.
\]

Thus

\[
e^{-\psi^*(x)} J(x)
\]

is bounded on \(\mathfrak{a}_+ \). Also \(\pi(\partial \psi^*) \) is bounded. Therefore, by (4.11), for any \(\epsilon > 0 \), we can find a neighborhood \(U_\epsilon \) of \(M \setminus G \) such that

\[
\left| \int_{U_\epsilon} \left(\omega_{\phi^*} - e^{\psi - \psi^*} \omega_0^n \right) \right| < \epsilon.
\]

This implies that \(\phi^* \) can be extended to be a global solution of (2.1) on \(M \). The proposition is proved.

\[\square\]

7. \(\mathbb{Q}-\)Fano compactification of \(SO_4(\mathbb{C}) \)

In this section, we will construct \(\mathbb{Q} \)-Fano compactifications of \(SO_4(\mathbb{C}) \) as examples and in particular, we will prove Theorem 1.3. Note that in this case \(\text{rank}(G) = 2 \). Thus we can use Theorem 1.2 to verify whether there exists a Kähler-Einstein metric on a \(\mathbb{Q} \)-Fano \(SO_4(\mathbb{C}) \)-compactification by computing the barycenter of their moment polytopes \(P_+ \). For convenience, we will work with \(P_+ \) instead of \(2P_+ \) throughout this section. Then it is easy to see that the existence criterion 1.2 is equivalent to

\[
\text{bar}(P_+) \in 2\rho + \Xi.
\]

Denote

\[
R(t) = \begin{pmatrix}
\cos t & -\sin t \\
\sin t & \cos t
\end{pmatrix}.
\]

Consider the canonical embedding of \(SO_4(\mathbb{C}) \) into \(GL_4(\mathbb{C}) \) and choose the maximal torus

\[
T^\mathbb{C} = \left\{ \begin{pmatrix} R(z^1) & O \\
O & R(z^2) \end{pmatrix} \mid z^1, z^2 \in \mathbb{C} \right\}.
\]

Choose the basis of \(\mathfrak{m} \) as \(E_1, E_2 \), which generates the \(R(z^1) \) and \(R(z^2) \)-action. Then we have two positive roots in \(\mathfrak{m} \),

\[
\alpha_1 = (1, -1), \alpha_2 = (1, 1).
\]

Also we have

\[
\mathfrak{a}_+^* = \{ (x, y) \mid -x \leq y \leq x \}, \ 2\rho = (2, 0)
\]
and

\[(7.2) \quad 2\rho + \Xi = \{(x, y) \mid -x + 2 \leq y \leq x - 2\}.
\]

7.1. Gorenstein Fano $SO_4(\mathbb{C})$-compactifications. In this subsection, we use Lemma 3.1 to exhaust all polytopes associated to Gorenstein Fano compactifications. Here by Gorenstein, we mean that $K_{M, reg}$ can be extended as a holomorphic vector line bundle on M. In this case, the whole polytope P is a lattice polytope. Also, since $2\rho = (2, 0)$, each outer edge E of P_+ must lies on some line

\[(7.3) \quad l_{p,q}(x, y) = (1 + 2p) - (px + qy) = 0
\]

for some coprime pair (p, q). Assume that $l_{p,q} \geq 0$ on P. By convexity and W-invariance of P, (p, q) must satisfy

\[p \geq |q| \geq 0.
\]

Let us start at the outer edge F_1 of P, which intersects the Weyl wall $W_1 = \{x - y = 0\}$.

There are two cases: Case-1. F_1 is orthogonal to W_1; Case-2. F_1 is not orthogonal to W_1.

Case-1. F_1 is orthogonal to W_1. Then F_1 lies on

\[\{(x, y) \mid l_{1,1}(x, y) = 3 - x - y = 0\}.
\]

Consider the vertex $A_1 = (x_1, 3 - x_1)$ of P_+ on this edge and suppose that the other edge F_2 at this point lies on

\[\{(x, y) \mid l_{p_2,q_2}(x, y) = 0\}.
\]

Thus

\[(7.4) \quad 2p_2 + 1 = x_1p_2 + (3 - x_1)q_2,
\]

and by convexity of P,

\[p_2 > q_2 \geq 0.
\]

We will have two subcases according to the possible choices $A_1 = (2, 1)$ or $(3, 0)$.

Case-1.1. $A_1 = (2, 1)$. Then by (7.4),

\[2p_2 + 1 = 2p_2 + q_2.
\]

Thus $q_2 = 1$ and $p_2 \geq 2$.

On the other hand, l_{p_2,q_2} must pass another lattice point $A_2 = (x_2, y_2)$ as the other endpoint of F_2. It is direct to see that there are only two possible choices $p_2 = 2, 4$ and three choices of $A_2 = (5, -5)$, $(3, -1)$ and $(3, -3)$.

Case-1.1.1. If $A_2 = (5, -5)$ which lies on the other Weyl wall $W_2 = \{x + y = 0\}$. There can not be any other outer edges of P_+, and P_+ is given by Figure (7-1-1). By Theorem 1.1 (or equivalently (7.1)), this compactification admits no Kähler-Einstein metric.

Case-1.1.2. $A_2 = (3, -1)$. Then we exhaust the third edge F_3 which lies on

\[l_{p_3,q_3} = 2p_3 + 1 - p_3x - q_3y,
\]

\footnote{An edge of P_+ is called an outer one if it does not lie in any Weyl wall, cf. [31].}
so that

\[2p_3 + 1 = 3p_3 - q_3, \]

\[p_3 > 2q_3 \geq 0. \]

Hence the only possible choice is \(p_3 = 1, q_3 = 0 \) and the other endpoint of \(F_3 \) is \(A_3 = (0, -3) \). Then \(P_3 \) is given by Figure (7-1-2). Again, this compactification admits no Kähler-Einstein metric.

Case-1.1.3. If \(A_2 = (3, -3) \) which lies on the other Weyl wall \(W_2 = \{x + y = 0\} \). There can not be any other outer edges of \(P_+ \), and \(P_+ \) is given by Figure (7-1-3). By Theorem 1.2 this compactification admits no Kähler-Einstein metric.

Case-1.2. \(A_1 = (3, 0) \). By the same exhausting progress as in **Case-1.1**. There are two possible polytopes \(P_+ \), **Case-1.2.1** and **Case-1.2.2** (see Figure (7-1-4) and Figure (7-1-5)).
No.	Edges, except Weyl walls	Volume	KE?	Smoothness
(7-1-1)	3-x-y=0; 5-2x-y=0	$\frac{4}{7}$	No	Singular
(7-1-2)	3-x-y=0; 5-2x-y=0; 3-x=0	$\frac{41}{70}$	No	Smooth
(7-1-3)	3-x-y=0; 9-4x-y=0	$\frac{103}{72}$	No	Singular
(7-1-4)	3-x-y=0; 3-x=0	$\frac{70}{20}$	No	Smooth
(7-1-5)	3-x-y=0; 3-x+y=0	$\frac{17}{2}$	Yes	Singular
(7-1-6)	3-x=0	$\frac{648}{5}$	Yes	Smooth

Table 1. Gorenstein Fano $SO_4(\mathbb{C})$-compactifications.

Case 1.2.1. This compactification admits no Kähler-Einstein metric.

Case 1.2.2. This compactification admits a Kähler-Einstein metric.

Case 2. F_1 is not orthogonal to W_1. Then its intersection $A_1 = (x_1, x_1)$ with W_1 is a vertex of P. We see that F_1 lies on l_{p_1,q_1} and

$$2p_1 = (p_1 + q_1)x_1,$$

$$p_1 > q_1 \geq 0,$$

$$x_1 = 2 + \frac{1 - 2q_1}{p_1 + q_1} \in \mathbb{N}_+.$$

So the only choice is

$$p_1 = 1, q_1 = 0$$

and $A_1 = (3, 1)$. The only new polytope P_+ is given by Figure (7-1-6), which admits

Kähler-Einstein metric.

It is known that Case 1.1.2, Case 1.2.1 and Case 2 are the only smooth $SO_4(\mathbb{C})$-compactifications as shown in [33]. We summarize results of this subsection in Table 1.

7.2. Q-Fano $SO_4(\mathbb{C})$-compactifications. In general, for a fixed integer $m > 0$, it may be hard to give a classification of all Q-Fano compactifications such that $-mK_X$ is Cartier. This is because when m is sufficiently divisible, there will be
too many repeated polytopes directly using Lemma 3.1. To avoid this problem, we give a way to exhaust all \mathbb{Q}-Fano polytopes according to the intersection point of ∂P_+ with x-axis.

We will adopt the notations from the previous subsection. We consider the intersection of P_+ with the positive part of the x-axis, namely $(x_0, 0)$. Then

$$x_0 = 2 + \frac{1}{p_0}$$

for some $p_0 \in \mathbb{N}_+$, and there is an edge which lies on some $\{l_{p_0,q_0} = 0\}$. Without loss of generality, we may also assume that $\{l_{p_0,q_0} = 0\} \cap \{y > 0\} \neq \emptyset$. Thus by symmetry, it suffices to consider the case

$$p_0 \geq q_0 \geq 0.$$

Indeed, by the prime condition, $q_0 \neq 0, \pm p_0$ if $p_0 \neq 1$. Hence, we may assume

$$(7.5) \quad p_0 > q_0 > 0, p_0 \geq 2.$$

We associate this number p_0 to each \mathbb{Q}-Fano polytope P (and hence \mathbb{Q}-Fano compactifications of $SO_4(\mathbb{C})$). By the convexity, other edges determined by $l_{p,q}$ must satisfy (see the figure below)

$$p \leq p_0,$$

since we assume that

$$(7.6) \quad P_+ \subseteq (\{l_{p_0,q_0} \geq 0\} \cap a_+).$$

Thus, once p_0 is fixed, there are only finitely possible \mathbb{Q}-Fano compactifications of $SO_4(\mathbb{C})$ associated to it. In the following table, we list all possible \mathbb{Q}-Fano compactifications with $p_0 \leq 2$. We also test the existence of Kähler-Einstein metrics on these compactifications. In the appendix we list the nine non-smooth examples above labeled as in Table-2.

7.3. Proof of Theorem 1.3

Proof. We introduce some notations for convenience: For any domain $\Omega \subset \overline{a^+_\mathbb{R}}$, define

$$\text{Vol}(\Omega) := \int_{\Omega} \pi dx \wedge dy,$$

$$\bar{x}(\Omega) := \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} x \pi dx \wedge dy,$$

$$\bar{y}(\Omega) := \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} y \pi dx \wedge dy,$$
Table 2. Q-Fano $SO_4(\mathbb{C})$-compactifications of cases $p_0 \leq 2$.

No.	p_0	(p, q) of edges, except Weyl walls	Volume	KE?	Smoothness/Multiple
(1)	1	$(1, 0)$	$\frac{127}{2}$	Yes	Smooth
(2)		$(1, 0), (1, 1)$	$\frac{1097}{20}$	No	Smooth
(3)		$(1, -1), (1, 1)$	$\frac{37}{4}$	Yes	Multiple=1
(4)	2	$(2, 1)$	$\frac{2680}{21}$	No	Multiple=3
(5)		$(2, 1), (1, 1)$	$\frac{411}{2}$	No	Multiple=1
(6)		$(1, 0), (2, 1)$	$\frac{2217}{12}$	No	Multiple=3
(7)		$(2, 1), (1, -1)$	$\frac{497}{36}$	No	Multiple=3
(8)		$(2, -1), (2, 1)$	$\frac{10732}{27}$	No	Multiple=6
(9)		$(2, 1), (1, 0), (1, 1)$	$\frac{10731}{10}$	No	Smooth
(10)		$(2, 1), (1, -1), (1, 1)$	$\frac{133}{21}$	No	Multiple=1
(11)		$(2, 1), (2, -1), (1, 1)$	$\frac{120309}{20}$	No	Multiple=6
(12)		$(2, 1), (2, -1), (1, 1), (1, -1)$	$\frac{6299}{728}$	No	Multiple=6

and

$$\bar{c}(\Omega) := \bar{x} + \bar{y}.$$

By Theorem 1.2 and (7.2), we have $\bar{c}(P_+) \geq 2$ whenever the Q-Fano compactification of $SO_4(\mathbb{C})$ admits a Kähler-Einstein metric.

Recall the number p_0, q_0 introduced in Section 7.2. By (7.5), it is direct to see that for any $t \geq 0$ such that $P_+\cap \{y = x - 2t\}$ intersects with $\{y = x - 2t, y \geq -x\}$,

$$(7.7) \quad \bar{c}(P_+) \leq \bar{c}(P_+ \cap \{y \geq x - 2t\}) \leq \bar{c}(\{l_{p_0,q_0} \geq 0, 0 \leq x - y \leq 2t, y \geq -x\}).$$

By a direct computation, we have

$$\bar{c}(\{l_{p_0,q_0} \geq 0, 0 \leq x - y \leq 2t, y \geq -x\}) = \frac{3}{35} \left(15kt + 16b + \frac{3b(10b^2 + 10bkt + 3k^2t^2)}{20b^3 + 45b^2kt + 36bk^2t^2 + 10k^3t^3}\right),$$

where $k = \frac{q_0 - p_0}{p_0 + q_0}$ and $b = \frac{2p_0 + 1}{p_0 + q_0}$. Under the condition (7.5), by using software Wolfram Mathematica 8, we get

$$(7.8) \quad \bar{c}(\{l_{p_0,q_0} \geq 0, 0 \leq x - y \leq 2t, y \geq -x\}) \leq \frac{3}{2} = \frac{6p_0 + 3}{2p_0 + 2q_0}. $$
On the other hand, a polytope with Kähler-Einstein metrics must satisfy
\[\bar{c}(P_+) > 2. \]

Thus by (7.7) and (7.8), we derive
\[q_0 < \frac{1}{2} p_0 + \frac{3}{4}. \]

By (7.9), we have
\[\text{Vol}(P_) \leq \text{Vol}(\{l_{p_0, q_0} \geq 0, x \geq y \geq -x\}) \]
\[= \frac{8(1 + 2p_0)^6}{45(p_0^2 - q_0^2)^3} \]
\[\leq \frac{8(1 + 2p_0)^6}{45(p_0^2 - ((1/2)p_0 + (3/4))^2)^3}. \]

It turns that for \(p_0 \geq 9, \)
\[\text{Vol}(P_+) \leq \frac{224755712}{4100625}. \]

However,
\[\text{Vol}(P_+^{(2)}) = \frac{1701}{20} > \text{Vol}(P_+^{(3)}) = \frac{10751}{180} > \frac{224755712}{4100625}, \]
where Vol\((P_+^{(2)})\) and Vol\((P_+^{(3)})\) are volumes of polytopes in Case-1.1.2 and Case-1.2.1, respectively. Thus there is no desired Kähler-Einstein polytope with its volume equal to Vol\((P_+^{(2)})\) or Vol\((P_+^{(3)})\) when \(p_0 \geq 9. \)

Since \(q_0 \in \mathbb{N}, \) we can improve (7.10) to
\[\text{Vol}(P_+) \leq \frac{8(1 + 2p_0)^6}{45(p_0^2 - (1/2)p_0 + (3/4)^2)^3}. \]

Here \([x] = \max_{n \in \mathbb{Z}} \{n \leq x\}. \) By the above estimation, when \(p_0 = 4, 6, 7, 8, \) we have
\[\text{Vol}(P_+^{(2)}) > \text{Vol}(P_+^{(3)}) > \text{Vol}(P_+). \]

Hence, it remains to deal with the cases when \(p_0 = 3, 5. \) In these two cases, we shall rule out polytopes that may not satisfy (7.11).

When \(p_0 = 5, \) there are three possible choices of \(q_0, i.e. q_0 = 1, 2, 3 \) by (7.9). It is easy to see that (7.11) still holds for the first two cases by the second relation in (7.10). Thus we only need to consider all possible polytopes when \(q_0 = 3. \) In this case, \(\{l_{5,3} = 0\} \) is an edge of \(P_+. \)

Case-7.3.1. \(P_+ \) has only one outer face which lies on \(\{l_{5,3} = 0\}. \) Then
\[\text{Vol}(P_+) = \frac{1771561}{23040}. \]

Case-7.3.2. \(P_+ \) has two outer edges. Assume that the second one lies on \(\{l_{p_1, q_1} = 0\}. \) Then
\[|q_1| \leq p_1 \leq 4 \text{ or } p_1 = 5, q_1 = -3. \]

By a direct computation, we see that (7.11) holds except the following two subcases:

Case-7.3.2.1. \(p_1 = 4, q_1 = 3, \)
\[\text{Vol}(P_+) = \frac{383478671}{5009940}. \]

Case-7.3.2.2. \(p_1 = 2, q_1 = 1, \)
\[\text{Vol}(P_+) = \frac{567779}{7680}. \]
Case-7.3.3. P_+ has three outer edges. Then P_+ is obtained by cutting one of polytopes in Case-7.3.2 with adding new edge $\{l_{p_2,q_2} = 0\}$. In fact we only need to consider P_+ obtained by cutting Case-7.3.2.1 and Case-7.3.2.2 above, since it obviously satisfies (7.11) in the other cases. By our construction, we can assume that $|q_2| \leq p_2 \leq p_1$. The only possible P which does not satisfy (7.11) is the case that $p_1 = 4, q_1 = 3$ and $p_2 = 2, q_2 = 1$. However,

$$\text{Vol}(P_+) = \frac{92167583}{1250235}.$$

Case-7.3.4. P_+ has four outer edges. We only need to consider P_+ which is obtained by cutting Case-7.3.3 with adding new edge $\{l_{p_3,q_3} = 0\}$ with $|q_3| \leq p_3 \leq 2$. One can show that all of these possible P_+ satisfy (7.11). Thus we do not need to consider more polytopes with more than four outer edges in case of $p_0 = 5$. Hence we conclude that for all polytopes P with $p_0 = 5,$

$$\text{Vol}(P_+) \neq \text{Vol}(P_+^{(2)}) \text{ or } \text{Vol}(P_+^{(3)}).$$

Theorem 1.3 is true when $p_0 = 5$.

The case $p_0 = 3$ can be ruled out in a same way. We only list the exceptional polytopes such that the volumes of P_+ do not satisfy (7.11):

Case-7.3.1’. P_+ has only one outer face $\{l_{3,2} = 0\}$. Then

$$\text{Vol}(P_+) = \frac{941192}{5625}.$$

Case-7.3.2’. P_+ has two outer face $\{l_{3,2} = 0\}$ and $\{l_{2,1} = 0\}$. Then

$$\text{Vol}(P_+) = \frac{177064}{1875}.$$

In summary, when $p_0 \geq 3$, the volume of P_+ is not equal to either $\text{Vol}(P_+^{(2)})$ or $\text{Vol}(P_+^{(3)})$. Finally by exhausting all possible compactifications for $p_0 = 1, 2$ (see Table-2), we finish the proof of Theorem 1.3.

\[\square\]

Remark 7.1. If P_+ is further symmetric under the reflection with respect to the x-axis, it is easy to see its barycenter is $(\bar{x}(P_+), 0)$ and

$$\bar{x}(P_+) \leq \bar{x}(\{-x \leq y \leq x, 0 \leq x \leq 2 + \frac{1}{p_0}\}) = \frac{6}{7}(2 + \frac{1}{p_0}).$$

Thus a Kähler-Einstein polytope of this type must satisfy

$$p_0 \leq 3.$$

7.4. Appendix: Non-smooth \mathbb{Q}-Fano $SO_4(\mathbb{C})$-compactifications with $p_0 \leq 2$. In this appendix we list all polytopes P_+ of non-smooth \mathbb{Q}-Fano $SO_4(\mathbb{C})$-compactifications with $p_0 \leq 2$, namely, (3)-(7) and (10)-(12) labeled as in Table-2.
$2\rho(10)$

$2\rho(11)$

$2\rho(12)$
References

[1] M. Abrue, Kähler metrics on toric orbifolds, Jour. Diff. Geom., 58 (2001), 151-187.
[2] A. D. Aleksandrov, Additivnye funcii mnoestva v abstraktnyh prostranstvah, Matematicheskij Sbornik, 8 (1940), 307-348; 9 (1941), 563-628; 13 (1943), 169-238.
[3] V. A. Alexeev and M. Brion, Stable reductive varieties I: Affine varieties, Invent. Math., 157 (2004), 227-274.
[4] V. A. Alexeev, and M. Brion, Stable reductive varieties II: Projective case, Adv. Math., 184 (2004), 382-408.
[5] V. A. Alexeev and L. V. Katzarkov, On K-stability of reductive varieties, Geom. Funct. Anal., 15 (2005), 297-310.
[6] H. Azad and J. Loeb, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math. (N.S.), 3 (1992), 365-375.
[7] R. Bamler, Convergence of Ricci flows with bounded scalar curvature, Ann. Math., 188 (2018), 753-831.
[8] B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200 (2015), 149-200.
[9] R. Berman and B. Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse Math., 22 (2013), 649-711.
[10] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, arXiv:1111.7158v3, to appear in J. Reine Angew. Math.
[11] R. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, arXiv:1509.04561.
[12] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke. Math. J., 58 (1989), 397-424.
[13] R. Berman, S. Boucksom, and M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, arXiv:1509.04561v2.
[14] X. Chen, X. and B. Wang, Space of Ricci flows (II), arXiv:1405.6797.
[15] D. Coman, V. Guedj, S. Sahin and A. Zeriahi, Toric pluripotential theory, arXiv:1804.03387.
[16] T. Darvas and Y. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30 (2017), 347-387.
[17] T. Delcroix, Kähler-Einstein metrics on group compactifications, Geom. Funct. Anal., 27 (2017), 78-129.
[18] T. Delcroix, K-Stability of Fano spherical varieties, arXiv:1608.01852.
[19] W. Ding, Remarks on the existence problem of positive Kähler–Einstein metrics, Math. Ann., 282 (1988), 463-471.
[20] W. Ding and G. Tian, Kähler–Einstein metrics and the generalized Futaki invariants, Invent. Math., 110 (1992), 315-335.
[21] S. Donaldson, Scalar curvature and stability of toric varieties, Jour. Diff. Geom., 62 (2002), 289-348.
[22] S. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math., 56 (2005), 103-142.
[23] W. Fulton, Introduction to toric varieties, Princeton University Press, 1993.
[24] S. Helgason, Differential Geometry, Lie Groups, and symmetric spaces, Academic Press, Inc., New York-London, 1978.
[25] T. Hisamoto, Mabuchi’s soliton metric and relative D-stability, arXiv:1905.05948.
[26] A. Knapp, Representation theory of semisimple groups, Princeton Univ. Press, Princeton, NJ, 1986.
[27] A. Knapp, Lie Groups beyond an introduction, Birkhäuser Boston, Inc., Boston, 2002.
[28] C. Li, On equivariant uniform stability of Fano varieties and Yau-Tian-Donaldson conjecture, preprint, 2019.
[29] C. Li, G. Tian and F. Wang, On Yau-Tian-Donaldson conjecture for singular Fano varieties, arXiv:1711.09539.
[30] C. Li, G. Tian and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, arXiv:1903.01215.
[31] Y. Li, B. Zhou and X. Zhu, K-energy on polarized compactifications of Lie groups, J. Func. Analysis., 275 (2018), 1023-1072.
[32] Y. Li and B. Zhou, *Mabuchi metrics and properness of modified Ding functional*, Pacific J. Math., **302** (2019), 659-692.

[33] Y. Li, G. Tian and X. Zhu, *Singular limits of Kähler-Ricci flow on Fano G-manifolds*, arXiv:1807.09167.

[34] Y. Shi and X. Zhu, *Kähler-Ricci solitons on toric Fano orbifolds*, Math. Zeit., **271** (2012), 1241-1251.

[35] Y. Li and X. Zhu, *Tian's α^{K}_{m,k}-invariants on group compactifications*, arXiv:1811.12021.

[36] G. Tian, *On Kähler-Einstein metrics on certain Kähler manifolds with C^1(M) > 0*, Invent. Math., **89** (1987), 225-246.

[37] G. Tian, *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math., **130** (1997), 1-37.

[38] G. Tian, *K-stability and Kähler-Einstein metrics*, Comm. Pure Appl. Math., **68** (2015), 1085-1156.

[39] Timergaliiev B. S. *Неравенство типа Брунна-Минковского в форме Хадвигера для степенных моментов*, Ученые записки Казанского Университета, сер. физ.-мат., **158** (2016), 90-105.

BICMR and SMS, Peking University, Beijing 100871, China.

E-mail address: liyanmath@pku.edu.cn, tian@math.pku.edu.cn, xhzhu@math.pku.edu.cn