Ovicidal and larvicidal activities of some plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say (Diptera: Culicidae)

Rajiv Gandhi Munusamy¹,², Daniel Reegan Appadurai³,², Sivasankaran Kuppusamy³, Gabriel Paulraj Michael³, Ignacimuthu Savarimuthu³

¹Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600 034, India
²National Vector Borne Disease Control Programme, ROHFW, Government of India, Chennai 600 090, India

Abstract

Objective: To evaluate the ovicidal and larvicidal activities of hexane, chloroform and methanol extracts of Gymnema sylvestre, Scilla peruvina, Rubia cordifolia (R. cordifolia) and Elytraria acaulis roots against the eggs and larvae of Aedes aegypti L. (Ae. aegypti) and Culex quinquefasciatus Say (Cx. quinquefasciatus) at different concentrations of 62.5, 125, 250 and 500 mg/L.

Methods: The plant materials were shade dried in the laboratory for one week and then coarsely powdered. The root powder of each plant (500 g) was sequentially soaked in hexane, chloroform and methanol for 96 h with intermittent shaking. After 96 h, the solution was filtered and the filtrate was concentrated under reduced pressure by using rotary vacuum evaporator. All the crude extracts thus obtained were stored in air tight glass vials and Petri dishes.

Results: The ovicidal activity results showed that the methanol extract of R. cordifolia root was the most potent compared to other with 82.40% and 70.40% activity against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively, at 500 mg/L concentration similarly, methanol extract of R. cordifolia root also recorded the highest larvicidal activity with LC50 and LC90 values of 95.69, 347.96 mg/L against Cx. quinquefasciatus and 102.23, 350.20 mg/L against Ae. aegypti larvae, respectively.

Conclusions: Hence, methanol extract of R. cordifolia root can be probed further for effective biological control of mosquitoes.

1. Introduction

Mosquitoes are well established in tropical regions and serve as vectors responsible for transmission of several pathogens to human. Some pathogens are transmitted by the day-biting mosquitoes and some are transmitted by the night-biting mosquitoes. Particularly, in recent years thousands of dengue and chikungunya positive cases have been reported from several countries(1-4). Aedes aegypti (Ae. aegypti), a day-biting mosquito is the primary vector of dengue and chikungunya. Similarly, several thousands of people suffer from filariasis(5,6). Culex quinquefasciatus (Cx. quinquefasciatus) is a night-biting mosquito involved in the transmission of filarial nematode. Targeting the immature stages is the key factor in controlling these two species of mosquitoes(7,8). For this, chemical larvicides such as organophosphates have been used; but several disadvantages have been reported due to harmful effects to human and other associated organisms(9-14). Further, many factors involved in the increase of mosquito population(15), particularly development of resistance to synthetic insecticides lead to greater increase of vector mosquitoes.

Plant extracts are good alternatives to chemical insecticides to control mosquito population(16). Many earlier reports have confirmed the bioactivity of several plant extracts. In the present study, the roots of four plants viz., Gymnema sylvestre (G. sylvestre), Scilla peruvina (S. peruvina), Rubia cordifolia (R. cordifolia) and Elytraria acaulis (E. acaulis) were used for solvent extraction. G. sylvestre is used in the treatment of diabetes, besides being used for arthritis, diuretic, anemia, osteoporosis, hypercholesterolemia(17). Species under the genus Scilla reported to possess antioxidant effect, blood circulatory activation, cough control and abscess reduction(18). R. cordifolia decoction from roots is prescribed to cure jaundice, paralytic affections and urinary troubles(19). Roots of R. cordifolia have also been used as astringent, thermogenic, febrifuge, antisyphilitic, anthelmintic, galactopurifier, ophthamalic and rejuvenant(20). The extracts of E. acaulis are reported to possess decreasing effect on blood glucose level, reduction in the liver glycogen level and reduction in glycated hemoglobin levels(21). The leaves decoction of E. acaulis is prescribed to treat fever, venereal diseases and its root is used in traditional medicine against tumor,
pneumonia, asthma, migraine, leucorrhoea, snake bite and diarrhea. Leaves are also used as antiabdi[c][22,23]. In this paper, in order to evaluate the ovicidal and larvicidal activities of hexane, chloroform and methanol extracts of four plants, the crude extracts of the roots of the above mentioned plants were tested against the eggs and larvae of *Ae. aegypti* and *Cx. quinquefasciatus* under laboratory conditions.

2. Materials and methods

2.1. Sample collection and preparation of solvent extracts

Root of *R. cordifolia* was purchased from local market, Parrys. Roots of other three plants were collected naturally from the field in Thiruvallur District, India. The plant materials were shade dried in the laboratory for one week and then coarsely powdered. The root powder of each plant (500 g) was sequentially soaked in hexane, chloroform and methanol for 96 h with intermittent shaking. After 96 h, the solution was filtered and the filtrate was concentrated under reduced pressure using rotary vacuum evaporator. All the crude extracts thus obtained were stored in air tight glass vials and Petri dishes.

2.2. Preparation of various concentrations and test mosquitoes

From the crude extract, different concentrations (62.5, 125, 250 and 500 mg/L) were prepared by using acetone. The mosquitoes were reared at (27 ± 2) °C, 75%–85% relative humidity under a photoperiod of 14:10 h as previously reported in our laboratory[24].

2.3. Ovicidal assay

Ovicidal activity was studied following the method of Reegan et al.[25]. Twenty five freshly laid eggs of *Ae. aegypti* and *Cx. quinquefasciatus* were separately exposed to four different concentrations viz., 62.5, 125, 250 and 500 mg/L prepared using acetone. Each concentration was replicated five times. A zadirachtin was used as positive control with the concentration of 10.0 mg/ml for comparison. Control was maintained separately with five replicates and egg mortality was assessed after 120 h post treatment using the following formula:

\[
\text{Percent ovicidal activity} = \frac{\text{Number of unhatched eggs}}{\text{Total number of eggs introduced}} \times 100
\]

2.4. Larvicidal activity

The larvicidal activities of the crude extracts were assessed following the protocol of World Health Organization[26]. The early third instar larvae of *Ae. aegypti* and *Cx. quinquefasciatus* were exposed to the concentrations of 62.5, 125, 250 and 500 mg/L. Five replicates were maintained for every concentration of each extract. Control was maintained separately with five replicates. Larval mortality was recorded after 24 h. Larvae were considered dead when they did not move to the surface of the solution. A zadirachtin was used as positive control with the concentrations of 2.5, 5.0, 7.5 and 10.0 mg/L for comparison.

2.5. Statistical analysis

The mean values and SD were calculated from five replications. The calculated percent ovicidal means were separated by Tukey’s test of multiple comparisons, One-way ANOVA. The larvicidal mortality was corrected by Abbott’s formula[27] and the lethal concentration values of LC50 and LC90 were calculated by using EPA probit analysis program (version 1.5).

3. Results

3.1. Ovicidal activity

The ovicidal activity varied among the different extracts of the plants. The methanol extract of *R. cordifolia* root recorded the highest ovicidal activities of 82.40% and 70.40% against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively, at 500 mg/L concentration (Tables 1 and 2). It was followed by hexane extract of *S. peruvina* root which recorded ovicidal activities of 44.80% and 43.20% against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively, at 500 mg/L concentration. Further, the hexane extract of *R. cordifolia* root recorded moderate ovicidal activities of 26.40% and 25.60% against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively, at 500 mg/L concentration. All the other plant extracts showed low ovicidal activities. The positive control, azadirachtin recorded ovicidal activities of 95.20% and 92.80% against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively, at 10.0 mg/L concentration (Tables 1 and 2).

Table 1

Plant species	Treatment	Concentration (mg/L)	LC50	LC90
G. sylvestre	Hexane	0.00		
	Chloroform	0.80 ± 1.78	9.60 ± 1.78	18.40 ± 2.19
	Methanol	3.20 ± 1.78	22.40 ± 2.19	44.80 ± 1.78
S. peruvina	Hexane	0.00		
	Chloroform	6.40 ± 1.78	16.80 ± 2.19	39.20 ± 1.78
	Methanol	10.40 ± 2.19	23.20 ± 2.19	48.80 ± 1.78
R. cordifolia	Hexane	7.20 ± 2.19	10.40 ± 2.19	20.80 ± 2.19
	Chloroform	14.40 ± 2.19	26.60 ± 2.19	51.60 ± 2.19
	Methanol	25.60 ± 4.56	45.60 ± 4.56	83.40 ± 4.56
E. acaulis	Hexane	3.20 ± 2.19	12.00 ± 2.19	20.00 ± 2.19
	Chloroform	6.40 ± 3.34	26.00 ± 3.34	48.00 ± 3.34
	Methanol	10.40 ± 3.34	44.00 ± 3.34	78.00 ± 3.34
Control		0.00		

Data were shown as mean ± SD; Means were separated by Tukey’s test of multiple comparisons, One-way ANOVA. Data with same letters in the column are not significantly different.

Table 2

Plant species	Treatment	Concentration (mg/L)	LC50	LC90
G. sylvestre	Hexane	0.00		
	Chloroform	0.80 ± 1.78	9.60 ± 1.78	18.40 ± 2.19
	Methanol	3.20 ± 1.78	22.40 ± 2.19	44.80 ± 1.78
S. peruvina	Hexane	0.00		
	Chloroform	6.40 ± 1.78	16.80 ± 2.19	39.20 ± 1.78
	Methanol	10.40 ± 2.19	23.20 ± 2.19	48.80 ± 1.78
R. cordifolia	Hexane	7.20 ± 2.19	10.40 ± 2.19	20.80 ± 2.19
	Chloroform	14.40 ± 2.19	26.60 ± 2.19	51.60 ± 2.19
	Methanol	25.60 ± 4.56	45.60 ± 4.56	83.40 ± 4.56
E. acaulis	Hexane	3.20 ± 2.19	12.00 ± 2.19	20.00 ± 2.19
	Chloroform	6.40 ± 3.34	26.00 ± 3.34	48.00 ± 3.34
	Methanol	10.40 ± 3.34	44.00 ± 3.34	78.00 ± 3.34
Control		0.00		

Azadirachtin (100 mg/L) 95.20 ± 1.78

Data were shown as mean ± SD; Means were separated by Tukey’s test of multiple comparisons, One-way ANOVA. Data with same letters in the column are not significantly different.
which recorded LC50 and LC90 values of 106.81, 289.80 mg/L against Cx. quinquefasciatus and 114.13, 434.62 mg/L against Ae. aegypti larvae, respectively. All the other extracts showed only moderate or least larvicidal activities (Tables 3 and 4). Further, it was noted that Cx. quinquefasciatus larvae were more susceptible than Ae. aegypti. The results were compared with positive control azadirachtin, which showed LC50 and LC90 values of 3.00, 6.64 mg/L against Cx. quinquefasciatus and 3.17, 9.67 mg/L against Ae. aegypti larvae, respectively.

4. Discussion

Mosquitoes are nuisance and most dangerous insects, since they transmit pathogens. Vector mosquitoes are well established in tropical and subtropical regions and they also have developed resistance to chemical insecticides. Hence biological control method would be a good approach in mosquito control program.

In the present study, the methanol extract of R. cordifolia recorded the highest ovicidal activities of 82.40% and 70.40% against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively, at 500 mg/L concentration. Our result is comparable to the report of Elango et al.[28], who had reported that Cocculus hirsutus methanol extract caused 86% ovicidal activity at 500 mg/L concentration against the eggs of Anopheles subpictus. In another study, Marimuthu et al.[29], have reported 100% ovicidal activity at 300 mg/L concentration with methanol extract of Delonix elata against the eggs of Anopheles stephensi (An. stephensi) and Ae. aegypti.

Further, the same methanol extract of R. cordifolia showed good larvicidal activity with LC50 and LC90 values of 95.69, 347.96 mg/L against Cx. quinquefasciatus and 102.23, 350.20 mg/L against Ae. aegypti larvae, respectively. Our results corroborate with the results of Aivazi and Vijayan[30], who had reported LC50 and LC90 values of 116.92, 144.77 mg/L with ethyl acetate extract of Quercus infectoria Gall against the fourth instar larvae of Ae. stephensi. The LC50 values of 177.14 and 513.387 mg/L were reported with methanol extracts of Exophoria irisicalli latex and stem bark, respectively, against the larvae of Cx. quinquefasciatus[31].

Further, our results revealed that Cx. quinquefasciatus larvae were more susceptible than Ae. aegypti. Similar to our results, many investigators have reported varied results among different mosquito species[32] and evaluated the methanolic extracts from fruits and seeds of Solanum xanthocarpum against the larvae of Anopheles culicifacies, An. stephensi, Ae. aegypti and Cx. quinquefasciatus. The LC50 values varied for fruits and seeds with 51.6, 52.2, 118.3, 133.7 mg/L against Cx. quinquefasciatus, 51.6, 52.2, 118.3, 133.7 mg/L against An. stephensi, 51.6, 52.2, 118.3, 133.7 mg/L against Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, Patil et al.[33] recorded the highest larval mortality with methanol extracts of Plumbago zeylanica root with LC50 value of 167.8 mg/L against Aedes aegypti larvae than An. stephensi, which showed LC50 value of 222.34 mg/L.

Phytochemicals like anthraquinones, alkaloides, glycosides, flavanoids, tannins, saponins, phenols and triterpenoides have been reported earlier from leaves and roots of R. cordifolia[34-36].

In conclusion, the methanol extract of R. cordifolia was the
most potent against the eggs and larvae of Ae. aegypti and Cx. quinquefasciatus. These results suggest that methanol extract of Rubia cordifolia can be probed further for effective mosquito control.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

The authors are thankful to Entomology Research Institute for financial assistance (Grant No. F.58).

References

[1] Pialoux G, Guázère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirus. Lancet Infect Dis 2007; 7: 319-27.

[2] Simmons CP, Farrar JJ, Nguyen VV, Wills B. Dengue. N Engl J Med 2012; 366: 1423-32.

[3] Yang CF, Hou JN, Chen TH, Chen WJ. Discriminable roles of Pialoux G, Guázère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirus. Lancet Infect Dis 2007; 7: 319-27. N Engl J Med 2012; 366: 1423-32.

[4] Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting. Lancet Infect Dis 2014; 14: 616-7.

[5] World Health Organization. Global programme to eliminate lymphatic filariasis. Geneva: World Health Organization; 2005. [Online] Available from: http://www.who.int/lymphatic_filariasis/disease/en/ [Accessed on 6th January, 2015]

[6] Reegan AD, Kinsalin A V, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal, and repellent activities of marine sponge Ciona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). ISRN Entomol 2013; 2013: 315389.

[7] Zahran HE, Abdelgalel SA. Insecticidal and development inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J Asia-Pac Entomol 2011; 14(1): 46-51.

[8] Muthu C, Reegan AD, Kingsley S, Ignacimuthu S. Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 2012; 111: 1059-65.

[9] Suththanont N, Choochote W, Tuetan B, Junktum A, Jitpakdi A, Chalthong U, et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae). J Vector Ecol 2010; 35: 106-15.

[10] Bayen S. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ Int 2012; 48: 84-101.

[11] Mulyatno KC, Yamanaka A, Ngadino, Konishi E. Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. J Trop Med Public Health 2012; 43: 29-33.

[12] Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Nyirahabimana D. Larvicidal activity of Quercus infectoria (Fagaceae) gall extracts against Culex quinquefasciatus Say and Aedes aegypti Linn. (Diptera: Culicidae). Trop Biomed 2013; 30: 220-30.

[13] Chavshin AR, Dabiri F, Vatandoost H, Bavani M M, Razmara M. Resistance of Anopheles maculipennis to different classes of insecticides in West A zarbajian province, Northwestern Iran. Asian Pac J Trop Biomed 2015; 5(5): 403-6.

[14] Eida OM, Eida A M. Limited genetic diversity among Plasmodium falciparum isolates using nested PCR in jazan area, Saudi A rabiya. Asian Pac J Trop Biomed 2015; 12(5): 407-11.

[15] Ruiz-Guerrero R, Rodríguez-Pérez M A, Norzagaray-Campos M. Toxicity of Mexican native plant extracts against larvae of Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Biomed 2015; 5(4): 287-91.

[16] Tiwari P, Misha BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 2014; 2014: 830285.

[17] Lee HB, Lee SM. Antimicrobial activity of eucosterol oligosaccharides isolated from bulb of squill (Scilla sibiricae). Pharmacol Pharm 2013; 4: 110-14.

[18] Devi Priya M, Siril EA. Traditional and modern use of Indian madder (Rubia cordifolia L.); an overview. Int J Pharm Sci Res 2014; 25(1): 154-64.

[19] Siravaran VV, Balachandran I. Ayurvedic drugs and their plant sources. New Delhi: Oxford and International Book Publishing Company; 1994. p. 496.

[20] Praveen Kumar R, Sukanyahadevi E, Shrutihavanysa V, Vaidhali C, Gopinatha Nivetha L, Chozhavendhan D, et al. Evaluation of anti-septic and anti-inflammatory activity of Elytraria acualis. Int J ChemTech Res 2014; 6(9): 4166-71.

[21] Kothy R, Raj K, Aparna B, Azhmathulla M. A cute and sub acute toxicity of ethanol extract of Elytraria acualis Lindau. In rats. Pharmacologyonline 2011; 3: 229-42.

[22] Kiruthika N, Dhiyva D, Kalaiselvi K, Kanimozhi P, Panneerselvam K. Phytochemical studies on Elytraria acualis. Int J Pharm Bio Sci 2012; 3(3): 1054-62.

[23] M aheswaran R, Ignacimuthu S. A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 2012; 110: 1801-3.

[24] Reegan AD, Gandhi MR, Paulraj MG, Balakrishna K, Ignacimuthu S. Effect of niloticon, a proto limonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop 2014; 139: 67-76.

[25] World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005. [Online] Available from: http: //apps.who.int/iris/bitstream/10665/69101/1/WHO_CDS_WHOPES_GCDPP_2005.13.pdf [Accessed on 12th January, 2015]

[26] Abbott WS. A method of computing the effectiveness of an insecticide. 1925. J Am Mosq Control Assoc 1987; 3: 302-3.

[27] Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir A A, Venkatesan C. Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitol Res 2009; 104: 1381-8.

[28] M arimuthu G, Rajamohan S, Mohan R, Krishnamoorthy Y. Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (Familly: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes. Parasitol Res 2012; 111: 65-77.

[29] Avi za A A, Vijayan VA. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston. Parasitol Res 2009; 104: 1289-93.

[30] Yadav R, Srivastava VK, Chandra R, Singh A. Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 2002; 34(4): 264-9.

[31] Bansal Singh, K V, Kumar S. Larvicidal activity of the extracts from different parts of the plant Solanum xanthocarpum against important mosquito vectors in the arid region. J Environ Biol 2009; 30(2): 221-6.

[32] Patil SV, Patil CD, Salunkhe RB, Salunke BK. Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Trop Biomed 2010; 27(3): 360-5.

[33] Prajapati SN, Paramar K K. A n-nonal viral and in-vitro free radical scavenging activity of leaves of Rubia cordifolia. Int J Phytomed 2011; 3: 98-107.

[34] Siddiqui A, Tajuddin, Amin M K, Zuberi RH, Jalam A. Standardization of M ajith (Rubia cordifolia Linn.). Indian J Tradit Know 2011; 10(2): 330-3.

[35] Devi Priya M, Siril EA. Pharmacognostic studies on Indian madder (Rubia cordifolia L.). J Pharmacogn Phytochem 2013; 1(5): 112-9.