A gut microbial factor modulates locomotor behaviour in *Drosophila*

Catherine E. Schretter1*, Jost Vielmetter2, Imre Bartos3, Zsuzsa Marka3, Szabolcs Marka3, Sulabha Argade4 & Sarkis K. Mazmanian1*

1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. 2Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA. 3Department of Physics, Columbia University, New York, NY, USA. 4GlycoAnalytics Core, University of California, San Diego, CA, USA. *e-mail: cschrett@caltech.edu; sarkis@caltech.edu
Sample Size and Statistics

Figure 1b – i
Analysis – (1b, 1i): Average speed calculated over the 10 min. testing period. (1d): Average bout length calculated over the 10 min. testing period. (1e): Average pause length calculated over the 10 min. testing period. (1f): Number of bouts over 10 min. testing period. (1g): Daily crossings sampled every min. per day. (1h): Stance linearity index, see ref. 64 for calculations
All are biological replicates assessed with a two-tailed test and data are representative of at least 3 independent trials for each experiment.

Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
1b	Conv	1	36	Kruskal-Wallis test	1 v 2	0.0070
	Ax	2	36	(P < 0.0001)	1 v 3	0.0024
	L.p	3	35		1 v 4	0.9999
	L.b	4	36		2 v 3	0.9999
					2 v 4	0.0112
					3 v 4	0.9999
1d	Conv	1	32	Kruskal-Wallis test	1 v 2	0.0014
	Ax	2	36	(P = 0.0026)	1 v 3	0.2111
	L.p	3	22		1 v 4	0.9999
	L.b	4	20		2 v 3	0.9999
					2 v 4	0.2814
					3 v 4	0.9999
1e	Conv	1	32	Kruskal-Wallis test	1 v 2	< 0.0001
	Ax	2	36	(P < 0.0001)	1 v 3	0.0034
	L.p	3	22		1 v 4	0.9999
	L.b	4	20		2 v 3	0.9999
					2 v 4	0.0335
					3 v 4	0.3321
1f	Conv	1	32	Kruskal-Wallis test	1 v 2	< 0.0001
	Ax	2	36	(P = 0.6685)	1 v 3	0.1980
	L.p	3	22		1 v 4	0.9999
	L.b	4	20		2 v 3	0.9999
					2 v 4	0.0335
					3 v 4	0.4716
1g	Conv	1	8	Kruskal-Wallis test	1 v 2	0.0100
	Ax	2	8	(P = 0.0042)	1 v 3	0.1980
	L.p	3	8		1 v 4	0.9999
	L.b	4	8		2 v 3	0.9999
					2 v 4	0.0335
					3 v 4	0.4716
1h	Conv	1	6	Kruskal-Wallis test	1 v 2	0.0063
	Ax	2	7	(P = 0.0057)	1 v 3	0.8248
	L.p	3	5		1 v 4	0.9999
	L.b	4	5		2 v 3	0.6907
					2 v 4	0.0508
					3 v 4	0.9999
Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
--------	-----------	----	-------------	----------------------	------------	---------
1i	Conv	1	25	Kruskal-Wallis test	1 v 2	0.2846
	Ax	2	29	(P = 0.0016)	1 v 3	0.0470
1i	L.p	3	24		1 v 4	0.9999
1i	L.b	4	35		2 v 3	0.9999
					2 v 4	0.0453
					3 v 4	0.0047

Figure 2a – f

Analysis – (2a – d, 2f): Average speed. (2e): Carbohydrate analysis of whole fly homogenates measured using HPAEC-PAD. Each sample contains 5 flies.

All are biological replicates assessed with a two-tailed test and data are representative of at least 2 independent trials for each experiment, except for Figure 2e in which one trial was performed.

Figure	Condition	Measurement	#	Sample Size	Statistical Test	Comparison	P-value
2a	Ax		1	57	Kruskal-Wallis test	1 v 2	0.0004
2a	L.b		2	42	test	1 v 3	0.0294
2a	L.b CFS	3	36	(P = 0.0004)		1 v 4	0.9999
2a	L.b HK	4	24			2 v 3	0.9999
						2 v 4	0.1188
						3 v 4	0.8799
2b	Conv		1	17	Kruskal-Wallis test	1 v 2	< 0.0001
2b	Ax		2	45	test	1 v 3	0.9999
2b	Xi*	3	29	(P < 0.0001)		2 v 3	< 0.0001
2c	Ax		1	31	Kruskal-Wallis test	1 v 2	0.0253
2c	L.b CFS	2	12	test		1 v 3	0.0048
2c	Xi*	3	28	(P = 0.0014)		1 v 4	0.9999
2c	Ai*	4	13			2 v 3	0.9999
						2 v 4	0.2720
						3 v 4	0.2177
2d	Ax		1	28	Kruskal-Wallis test	1 v 2	0.0002
2d	L.b		2	29	test	1 v 3	0.9056
2d	L.b\(\Delta y/A\)	3	18	(P = 0.0003)		2 v 3	0.0424
2e	Ax	Total	5		Mann-Whitney test		0.0079
2e	Xi*		5		test		0.5000
2e	Ax	Gluc	5		Mann-Whitney test		0.2222
2e	Xi*		5		test		0.0079
2e	Ax	Fruc	5		Mann-Whitney test		0.0079
2e	Xi*		5		test		0.0079
2e	Ax	Ribo	5		Mann-Whitney test		0.0079
2e	Xi*		5		test		0.0079
2e	Ax	Treh	5		Mann-Whitney test		0.0079
2e	Xi*		5		test		0.0079
Table 1: Statistical Analysis of Average Speed

Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
2f	Ax	1	16	Kruskal-Wallis test	1 v 2	0.0465
	Xi*	2	18	(P = 0.0057)	1 v 3	0.8352
	Ax+Treh	3	16		1 v 4	0.9999
	Xi*+Treh	4	17		2 v 3	0.9999
					2 v 4	0.0090
					3 v 4	0.3024

Figure 3a – g

Analysis – (3a): Difference in average speed between flies calculated for each GAL4 line crossed with UAS-dTRPA1 tested at 27°C. Each point represents an independent trial, containing between 10 - 15 flies per group. Tdc2/Ddc/Th/ChAT, n = 5; Tβh, n = 6; Gad1, n = 3. For further details and graphs of each GAL4 line, see Extended Data Fig. 8. (3b – g): Average speed. For 3b and c, statistical significance was found for both variables (microbial status x genotype) calculated by Two-way ANOVA. In 3c, there is a significant interaction between microbial status and genotype (P = 0.0437). When examined separately, the Kruskal-Wallis test on only Conv flies across genotypes was significant (P = 0.0030) and the Kruskal-Wallis test on only ABX flies was not significant (P = 0.8426). All are biological replicates assessed with a two-tailed test and data are representative of at least 2 independent trials for each experiment.

Figure	Condition	Genotype	Sample Size	Statistical Test	P-value
3b	ABX	UAS-TrpA1	15	Mann-Whitney test	0.0139
			12		
	ABX	Tdc2-GAL4	23	Mann-Whitney test	0.0177
			23		
	ABX	GAL4>UAS	(27°C)	Mann-Whitney test	0.6308
			14		
	ABX	GAL4>UAS	(20°C)	Mann-Whitney test	0.0238
			15		
3c	Conv	UAS-TrpA1	45	Mann-Whitney test	0.0033
			30		
	Conv	Tdc2-GAL4	48	Mann-Whitney test	0.0263
			39		
	Conv	GAL4>UAS	(27°C)	Mann-Whitney test	0.4929
			49		
	Conv	GAL4>UAS	(20°C)	Mann-Whitney test	0.0143
			31		
Extended Data Figure 1a – h					
Analysis – (1a): Colony forming units. (1b – e, h): Average speed. (1f): Average speed calculated only within walking bouts. (1g): Tripod index: see ref. 64 for calculations. All are biological replicates assessed with a two-tailed test.					
Figure	Condition	#	Sample Size	Statistical Test	Comparison
--------	-----------	---	-------------	------------------	------------
1c	Ax	1	58	Kruskal-Wallis	1 v 2
	L.b EW	2	57	test	1 v 3
	L.b Bb14	3	57	(P < 0.0001)	2 v 3
1d	Ax	1	45	Kruskal-Wallis	1 v 2
	L.b EW	2	28	test	1 v 3
	L.b P-2	3	42	(P < 0.0001)	2 v 3
1e	Diet 1 Ax	1	20	Mann-Whitney	1 v 2
	Diet 1 L.b	2	21	test	
	Diet 2 Ax	3	18	Mann-Whitney	3 v 4
	Diet 2 L.b	2	16	test	
	Diet 3 Ax	5	6	Mann-Whitney	5 v 6
	Diet 3 L.b	6	6	test	
1f	Conv	1	23	Kruskal-Wallis	1 v 4
	Ax	2	35	test	
	L.p	3	22	(P = 0.1731)	
	L.b	4	22		
1g	Conv	1	6	Kruskal-Wallis	1 v 4
	Ax	2	7	test	
	L.p	3	5	(P = 0.1358)	
	L.b	4	5		
1h	Ax	1	18	Kruskal-Wallis	1 v 2
	L.p	2	24	test	1 v 3
	L.b	3	24	(P < 0.0001)	1 v 4
	L.p+L.b	4	24		2 v 3
					2 v 4
					4 v 5

Extended Data Figure 2b – 1

Analysis – (2b, e – g, i): Average speed. (2c, j): Average bout length. (2d, k): Average speed within walking bouts. (2l): Daily crossings.

All are biological replicates assessed with a two-tailed test.
Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
2e	Conv	1	11	Kruskal-Wallis test	1 v 2	0.0127
	Ax	2	53		1 v 3	0.9999
	L.b 0d	3	53	(P = 0.0004)	1 v 4	0.9999
	L.b 3-5d	4	52		2 v 3	0.0065
					2 v 4	0.0056
					3 v 4	0.9999
2f	Conv	1	32	Kruskal-Wallis test	1 v 2	0.0122
	Ax	2	36		1 v 3	0.0091
	ABX	3	36	(P = 0.0038)	2 v 3	0.9999
2g	Conv (OR)	1	20	Mann-Whitney test	1 v 2	0.0265
	ABX (OR)	2	22			
	Conv (CS)	3	12	Mann-Whitney test	3 v 4	0.0093
	ABX (CS)	4	17			
2i	ABX	1	29	Kruskal-Wallis test	1 v 2	0.9999
	L.p	2	24		1 v 3	0.0203
	L.b	3	35	(P = 0.0011)	2 v 3	0.0019
2j	ABX	1	36	Kruskal-Wallis test	1 v 2	0.9999
	L.p	2	30		1 v 3	0.0698
	L.b	3	35	(P = 0.0203)	2 v 3	0.0350
2k	ABX	1	42	Kruskal-Wallis test	1 v 2	0.9999
	L.p	2	30		1 v 3	0.0607
	L.b	3	35	(P = 0.0079)	2 v 3	0.0094
2l	ABX	1	6	Kruskal-Wallis test	1 v 2	0.8385
	L.p	2	6		1 v 3	0.0148
	L.b	3	6	(P = 0.0109)	2 v 3	0.2507

Extended Data Figure 3a–f

Analysis – (3a, b, f): Average speed. (3c): Average bout length. (3d): Average speed within walking bouts. (3e): Daily crossings.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
3a	Ax	1	45	Kruskal-Wallis test	1 v 2	0.9999
	L.p	2	17	test	1 v 3	0.3301
	L.b	3	42	(P = 0.01)	1 v 4	0.9999
	L.p CFS	4	17		1 v 5	0.0445
	L.b CFS	5	16		3 v 5	0.9999
					4 v 5	0.0906
3b	Ax	1	23	Kruskal-Wallis test	1 v 2	0.1287
	L.p CFS	2	20	test	1 v 3	< 0.0001
	L.b CFS	3	20	(P < 0.0001)	2 v 3	0.0025
Extended Data Figure 4a – e

Analysis – (4a, b): Average speed. (4c): Expression of gene transcripts, samples from whole body homogenates. (4d): Amount ingested. (4e): Gut content.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	Measurement	#	Sample Size	Statistical Test	Comparison	P-value
4a	Wt Conv		1	16	Mann-Whitney test	1 v 2	0.0032
	Wt ABX		2	17	Mann-Whitney test		
	IMD Conv		3	24	Mann-Whitney test	3 v 4	0.0168
	IMD ABX		4	25	Mann-Whitney test		
4b	Wt Conv		1	15	Mann-Whitney test	1 v 2	0.0299
	Wt ABX		2	17	Mann-Whitney test	3 v 4	< 0.0001
	Ti Conv		3	10	Mann-Whitney test	1 v 2	0.0004
	Ti ABX		4	11	Mann-Whitney test	1 v 4	0.4509
4c	Ax	Dpt	1	8	One-way		
	L.p CFS		2	10	ANOVA test		
	L.b CFS		3	10	ANOVA test		
	Ax	Drs	4	10	One-way		
	L.p CFS		5	10	ANOVA test		
	L.b CFS		6	10	ANOVA test		
	Ax	Cec	7	8	One-way		
	L.p CFS		8	10	ANOVA test		
	L.b CFS		9	10	ANOVA test		
	Ax	AttA	10	5	One-way		
	L.p CFS		11	5	ANOVA test		
	L.b CFS		12	5	ANOVA test		
	Ax	Duox	13	3	One-way		
	L.p CFS		14	5	ANOVA test		
	L.b CFS		15	5	ANOVA test		
Extended Data Figure 5a – j

Analysis – (5a – f, h): Average speed. (5g): Daily crossings. (5i): Percent survival. Each sample consists of 15 – 25 flies. (5j): Percentage of apoptotic cells.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
5a	Ax	1	18	Kruskal-Wallis	1 v 2	0.0566
	L.b CFS	2	18	test	1 v 3	0.9999
	+ Typ	3	17	(P = 0.0008)	1 v 4	0.0021
	- Typ	4	17		3 v 4	0.0181
5b	Ax	1	23	Kruskal-Wallis	1 v 2	0.0081
	L.b CFS	2	18	test	1 v 3	0.5168
	+PK	3	23	(P = 0.0037)	1 v 4	0.0139
	- PK	4	23		3 v 4	0.9999
5c	Ax	1	18	Kruskal-Wallis	1 v 2	0.0081
	L.b CFS	2	18	test	1 v 3	0.1867
	+100°C	3	18	(P = 0.0102)	2 v 3	0.7709
5d	Ax	1	30	Kruskal-Wallis	1 v 2	0.0170
	Am	2	17	test	1 v 3	0.0036
	-amy	3	30	(P = 0.0016)	2 v 3	0.9999
5e	Ax	1	30	Kruskal-Wallis	1 v 2	< 0.0001
	L.b	2	30	test	1 v 3	0.2185
	L.p	3	29	(P < 0.0001)	1 v 4	0.9140
	A.p	4	30		1 v 5	< 0.0001
	E.c	5	18		2 v 3	0.0074
5f	Ax	1	65	Kruskal-Wallis	1 v 2	0.0183
	E.c	2	52	test	1 v 3	0.0003
	ΔtyrA	3	18	(P < 0.0001)	1 v 4	0.0300
	ΔtrpC	4	17		1 v 5	< 0.0001
	ΔmanX	5	45		1 v 6	< 0.0001
	ΔtreA	6	46		1 v 7	0.9999
	ΔxylA	7	20			
Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
--------	-----------	---	-------------	------------------	------------	---------
5g	Conv	1	16	Kruskal-Wallis	1 v 2	0.0432
	Ax	2	24	test	2 v 3	0.0640
	L.b CFS	3	19	(P = 0.0027)	2 v 4	0.9999
	ΔxyA CFS	4	20	Kruskal-Wallis	2 v 5	0.0134
	Xi	5	8			
5h	Ax	1	16	Kruskal-Wallis	1 v 2	0.0274
	L.b CFS	2	11	test	1 v 3	0.9999
	10 Xi	3	12	(P = 0.0167)	1 v 4	0.0263
	100 Xi	4	14			
5i	Ax	1	4	Kruskal-Wallis		
	L.p CFS	2	5	test		
	L.b CFS	3	5	(P = 0.4117)		
	Xi	4	4			
5j	Conv	1	7	Kruskal-Wallis	1 v 2	0.9999
	Ax	2	5	test	2 v 3	0.9999
	L.p CFS	3	4	(P = 0.0383)	2 v 4	0.0343
	L.b CFS	4	6		2 v 5	0.9999
	Xi	5	6			

Extended Data Figure 6a – b

Analysis – (6a, b): Sleep analysis.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value
6a	Conv	1	8	Kruskal-Wallis	1 v 2	0.0193
	Light	Ax	2	test	2 v 3	0.9999
	Phase	L.p	3	(P = 0.0036)	2 v 4	0.0193
		L.b	4			
6a	Conv	1	8	Kruskal-Wallis		
	Dark	Ax	2	test		
	Phase	L.p	3	(P = 0.0585)		
		L.b	4			
6b	Conv	1	17	Kruskal-Wallis	1 v 2	0.0911
	Light	Ax	2	test	2 v 3	0.4850
	Phase	L.p	3	(P = 0.0314)	2 v 4	0.9999
		L.b	4		2 v 5	0.0932
	Xi	5	8			
6b	Conv	1	17	Kruskal-Wallis		
	Dark	Ax	2	test		
	Phase	L.p	3	(P = 0.1477)		
		L.b	4			
	Xi	5	8			
Extended Data Figure 7a–k

Analysis – (7a–c, h–k): Average speed. (7d–e): Carbohydrate analysis measured using HPAEC-PAD. (7f–g): Trehalose levels in whole fly homogenate measured using a Megazyme Kit.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	Measurement	#	Sample Size	Statistical Test	Comparison	P-value
7a	Ax		1	16	Kruskal-	1 v 2	0.0021
	Xi		2	13	Wallis test	1 v 3	0.1866
	+Fruc		3	13	(P = 0.0041)	1 v 4	0.1992
	+Gluc		4	15			
7b	Ax		1	26	Kruskal-	1 v 2	0.0026
	Xi		2	21	Wallis test	1 v 3	0.3686
	+Xylose		3	22	(P = 0.0048)	1 v 4	0.1780
	+Xylulose		4	18			
7c	Ax		1	21	Kruskal-	1 v 2	0.0003
	Xi		2	16	Wallis test	1 v 3	0.2565
	Xi+EDTA		3	18	(P = 0.0005)	2 v 3	0.0959
7d	Ax	Gluc	1	3	Mann-	1 v 2	0.1000
	Xi		2	3	Whitney test		
	Ax	Fruc	3	3	Mann-	3 v 4	0.4000
	Xi		4	3	Whitney test		
	Ax	Mann	5	3	Mann-	5 v 6	0.7000
	Xi		6	3	Whitney test		
	Ax	Xylu	7	3	Mann-	7 v 8	0.4000
	Xi		8	3	Whitney test		
	Ax	Treh	9	3	Mann-	9 v 10	0.1000
	Xi		10	3	Whitney test		
7e	Ax	Ribo	1	5	Kruskal-	1 v 2	0.0908
	Xi		2	5	Wallis test	1 v 3	0.0047
	Xi+EDTA		3	5	(P = 0.0004)	2 v 3	0.9601
	Ax	Treh	4	5	Kruskal-	4 v 5	0.0027
	Xi		5	5	Wallis test	4 v 6	0.1431
	Xi+EDTA		6	5	(P = 0.0001)	5 v 6	0.5373
7f	Conv	Treh	1	9	Kruskal-	1 v 2	0.0161
	Ax		2	6	Wallis test	1 v 3	0.9999
	Xi		3	3	(P = 0.0083)		
7g	Ax	Treh	1	15	Mann-	1 v 2	0.0059
	L.b		2	15	Whitney test		
7h	Ax		1	40	Kruskal-	1 v 2	0.0284
	Xi		2	40	Wallis test	1 v 3	0.9999
	Xi+Treh		3	39	(P = 0.0004)	1 v 4	0.0825
	Xi+Ara		4	18		2 v 3	0.0028
						3 v 4	0.0160
Figure	Condition	#	Sample Size	Statistical Test	Comparison	P-value	
--------	-----------	---	-------------	------------------	------------	---------	
7i	Ax	1	29	Kruskal-Wallis test	1 v 2	0.0350	
	Xi	2	25		1 v 3	0.9999	
	+Ribo	3	12	(P = 0.0286)			
7j	Conv	1	15	Kruskal-Wallis test	1 v 2	0.0022	
	Ax	2	22		1 v 3	0.0914	
	Conv+Treh	3	18	(P = 0.0045)	3 v 4	0.9999	
	Ax+Treh	4	15				
7k	Ax	1	27	Kruskal-Wallis test	1 v 2	0.0361	
	Xi	2	19		1 v 3	0.8516	
	Xi+EDTA	3	24	(P = 0.0499)	1 v 4	0.9999	
	Xi+Treh	4	19		1 v 5	0.9999	

Extended Data Figure 8b–h

Analysis – (8b–h): Average speed.
All are biological replicates assessed with a two-tailed test.

Figure	Condition	Genotype	Sample Size	Statistical Test	P-value
8b	ABX	UAS-TrpA1	15	Mann-Whitney test	0.0027
	L.b CFS		14		
	ABX	pBDPG4U-GAL4	24	Mann-Whitney test	0.0127
	L.b CFS		20		
	ABX	GAL4>UAS (27°C)	14	Mann-Whitney test	0.0456
	L.b CFS		9		
	ABX	GAL4>UAS (20°C)	16	Mann-Whitney test	0.0390
	L.b CFS		11		
8c	ABX	UAS-TrpA1	24	Mann-Whitney test	0.0008
	L.b CFS		24		
	ABX	Tdc2-GAL4	24	Mann-Whitney test	0.0252
	L.b CFS		23		
	ABX	GAL4>UAS (27°C)	25	Mann-Whitney test	0.4265
	L.b CFS		26		
	ABX	GAL4>UAS (20°C)	19	Mann-Whitney test	0.0233
	L.b CFS		19		
8d	ABX	UAS-TrpA1	26	Mann-Whitney test	0.0012
	L.b CFS		18		
	ABX	Tβh-GAL4	36	Mann-Whitney test	0.0003
	L.b CFS		24		
	ABX	GAL4>UAS (27°C)	53	Mann-Whitney test	0.5668
	L.b CFS		23		
	ABX	GAL4>UAS (20°C)	21	Mann-Whitney test	0.0006
	L.b CFS		7		
Figure	Condition	Genotype	Sample Size	Statistical Test	P-value
--------	-----------	------------------	-------------	------------------	---------
8e	ABX	UAS-TrpA1	34	Mann-Whitney	0.0089
	L.b CFS		26		
	ABX	Ddc-GAL4	34	Mann-Whitney	0.0157
	L.b CFS		28		
	ABX	GAL4>UAS	10	Mann-	< 0.0001
	L.b CFS	(27°C)	17	Whitney test	
	ABX	GAL4>UAS	17	Mann-	0.0004
	L.b CFS	(20°C)	13	Whitney test	
8f	ABX	UAS-TrpA1	36	Mann-	0.0016
	L.b CFS		30	Whitney test	
	ABX	Th-GAL4	40	Mann-	0.0041
	L.b CFS		31	Whitney test	
	ABX	GAL4>UAS	19	Mann-	< 0.0001
	L.b CFS	(27°C)	17	Whitney test	
	ABX	GAL4>UAS	14	Mann-	0.0103
	L.b CFS	(20°C)	8	Whitney test	
8g	ABX	UAS-TrpA1	21	Mann-	0.0330
	L.b CFS		12	Whitney test	
	ABX	Gad1-GAL4	28	Mann-	0.0120
	L.b CFS		24	Whitney test	
	ABX	GAL4>UAS	24	Mann-	0.0001
	L.b CFS	(27°C)	20	Whitney test	
	ABX	GAL4>UAS	16	Mann-	0.0135
	L.b CFS	(20°C)	15	Whitney test	
8h	ABX	UAS-TrpA1	31	Mann-	0.0153
	L.b CFS		20	Whitney test	
	ABX	ChAT-GAL4	31	Mann-	0.0179
	L.b CFS		29	Whitney test	
	ABX	GAL4>UAS	16	Mann-	0.0207
	L.b CFS	(27°C)	17	Whitney test	
	ABX	GAL4>UAS	18	Mann-	< 0.0001
Extended Data Figure 9

Analysis – Average speed.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	Genotype	Sample Size	Statistical Test	P-value
9	ABX	UAS-TrpA1	15	Mann-Whitney test	0.3314
	L.b CFS	Tβh^{M18}	14	Mann-Whitney test	
	ABX	Tβh-GAL4	28	Mann-Whitney test	0.2235
	L.b CFS	Tβh^{M18}	20	Mann-Whitney test	
	ABX	GAL4>UAS	11	Mann-Whitney test	0.2284
	L.b CFS	Tβh^{M18} (27°C)	13	Mann-Whitney test	
	ABX	L.b CFS	9	Mann-Whitney test	0.0745

Extended Data Figure 10a – k

Analysis – (10a, d, e, f, h – k): Average speed. (10b – c): Expression of gene transcripts, samples from head homogenates.

All are biological replicates assessed with a two-tailed test.

Figure	Condition	Measurement	#	Sample Size	Statistical Test	Comparison	P-value
10a	Ax	Tdc	1	26	Kruskal-Wallis test	1 v 2	0.9999
	Ax+OA		2	27	Unpaired t-test	1 v 3	0.9999
	Ax+L-dopa		3	6	(P = 0.0004)	1 v 4	0.0012
	L.b CFS		4	35	Unpaired t-test	1 v 5	0.9965
	L.b CFS+OA		5	26	Unpaired t-test	1 v 6	0.0405
	L.b CFS+L-dopa		6	6			
10b	Ax	Tdc	1	5	Unpaired t-test	1 v 2	0.0754
	L.b CFS		2	5	Unpaired t-test	1 v 3	0.0426
	Ax	Tβh	3	5	Unpaired t-test	3 v 4	0.6179
	L.b CFS		4	5	Unpaired t-test	5 v 6	0.8425
	Ax	Ddc	5	3	Unpaired t-test	7 v 8	0.0030
	L.b CFS		6	5	Unpaired t-test	2 v 4	0.0019
10c	Ax	Tdc	1	5	Unpaired t-test	1 v 2	0.0122
	Xi		2	6	Unpaired t-test	1 v 3	0.0036
	Ax	Tβh	3	5	Unpaired t-test	3 v 4	0.8425
	Xi		4	6	Unpaired t-test	4 v 4	0.0296
10d	Ax	Tdc	1	21	Kruskal-Wallis test	1 v 2	0.9999
	Ax+TA		2	10	Unpaired t-test	1 v 3	0.0030
	L.b CFS		3	10	(P < 0.0001)	1 v 4	0.0019
	L.b CFS+TA		4	9		2 v 4	0.0296
Figure	Condition	Genotype	#	Sample Size	Statistical Test	Comparison	P-value
--------	-----------	----------	---	-------------	------------------	------------	---------
10e	Ax	Tdc2-GAL4; Tsh-GAL80	1	25	Mann-Whitney test	1 v 2	0.0216
	Xi		2	18			
		UAS-DTI	3	26	Mann-Whitney test	3 v 4	0.0151
	Ax		4	21	Whitney test		
	Xi	GAL4;GAL80 > UAS	5	39	Mann-Whitney test	5 v 6	0.3173
10f	Ax	UAS-TβhRNAi	1	9	Mann-Whitney test	1 v 2	0.0106
	L.b CFS		2	9	Whitney test		
	Ax	Elav-GAL4	3	24	Mann-Whitney test	3 v 4	0.0040
	L.b CFS		4	19	Whitney test		
	Ax	GAL4>UAS	5	24	Mann-Whitney test	5 v 6	0.1703
	L.b CFS		6	21	Whitney test		
10h	Ax		1	14	Kruskal-Wallis test	1 v 2	0.0007
	Xi		2	15	Wallis test	1 v 3	0.5040
	Xi+Mianserin		3	15	(P = 0.0010)	2 v 3	0.0593
10i	Conv		1	13	Kruskal-Wallis test	1 v 2	0.0010
	Ax		2	28	Wallis test	1 v 3	0.9999
	Xi		3	24	(P = 0.0015)	2 v 3	0.0234
	Conv+Mian		4	27		4 v 5	0.9999
	Ax+Mian		5	22		4 v 6	0.9999
	Xi+Mian		6	22		5 v 6	0.9999
10j	Conv	Wt (w+)	1	13	Mann-Whitney test	1 v 2	0.0093
	ABX		2	21			
	Conv	Tdc^{R023}	3	28	Mann-Whitney test	3 v 4	0.6889
	ABX		4	34			
10k	Conv	Wt (CS)	1	38	Mann-Whitney test	1 v 2	0.0100
	ABX		2	42			
	Conv	Tβh^{M18}	3	25	Mann-Whitney test	3 v 4	0.7435
	ABX		4	33			