Title
A Brief History of Human-Predator Conflicts and Potent Lessons

Permalink
https://escholarship.org/uc/item/7bf813vq

Journal
Proceedings of the Vertebrate Pest Conference, 27(27)

ISSN
0507-6773

Author
Geist, Valerius

Publication Date
2016

DOI
10.5070/V427110421
Keynote Address

A Brief History of Human-Predator Conflicts and Potent Lessons

Valerius Geist
Professor Emeritus of Environmental Science, The University of Calgary, Calgary, Alberta, Canada

ABSTRACT: From the outset, humans evolved with severe conflict with wildlife, but which they mastered with great ingenuity. We are the only primate that can exist on the ground with large predators, day and night, and are not dependent on climbing trees or cliffs for security. Consequently, we regressed in climbing adaptations and body strength. Without that mastery over predators, there would have been no human evolution. This mastery led to a transfer of resources from predators and competitors to our self, followed very early by dispersal out of Africa into Europe and Asia. The archaeological record keeps hinting at predator-free conditions. At the end of the last glaciation, mega-faunal extinctions generated new challenges for humans, as the virtual absence of mega-herbivores profoundly changed the ecosystems, as fires replaced herbivores in consuming vegetation. Also, wolves escaped extinction, but not their enemies and competitors. Consequently, since the natural limitations on their numbers had been diminished, wolves had to be controlled, and native people rose to the task. Only in societies with disarmed citizens were wolves a menace, and legislation that frees wolves from human control eventually recreates that very menace. North America’s Pleistocene native wildlife survived under extremes in predation, such as was not experienced in Eurasia or Africa. Consequently, our native wildlife species, being quick and accurate learners, readily habituate and are very good at taking advantage of us. Problem wildlife may be created by humans’ irrational wishes which conflict with the biology of a species! This is well illustrated by current efforts at wolf conservation here and in Europe, where the unintended consequence is the assured destruction of the wolf as a species.

KEY WORDS: anthropology, Canis lupus, conservation, human evolution, human safety, North America, predation, predator control, wolves

PREDATION AND HUMAN ORIGINS

Humans, from the outset, had a profound relationship with predators. We evolved the ability to survive, day and night, on the ground in the absence of trees, despite being surrounded by large predators (Geist 1978). We are the only primate to do so. How does a day-active ape, with a weak musculature (Bozek et al. 2014) and regressed climbing abilities (Oxnard 1975), with poor to mediocre night vision, incapable of hard biting (Zink and Lieberman 2016), disarmed and harmless, a fat and historically tasty morsel for predators (Hart and Sussman 2009), survive on the ground with many night-active predators? And survive night after night for decades, despite menstruation, births, the crying of babies, snoring, or the scent of wounds acquired accidentally in the course of daily activity? And predators do zero in on wounds! How did we evolve long hours of deep sleep? And what does one do when meeting predators during daylight where there are no trees to climb? What did we do to survive and thrive, that hundreds of primate species failed to achieve in millions of years, in so gigantic a continent as Africa? Moreover, there were more than twice as many large predator species in African then as there are today (Trevor and Palmqvist 2007). Finding ways to reliably escape large predators on the ground, night and day, was thus the crucial first step in human evolution.

Some two million years later, we still pay close attention to predators and we do so for a good reason: because during our pre-human history we evolved as prey (Kortland 1980, Geist 1989, 2008). As a field biologist, I have always taken for granted that humans were potential prey (Geist 1978). Recently, it appears that anthropologists have now also focused on humans as prey (Hart and Sussman 2009). However, their emphasis on our tree-bound relatives is not terribly relevant, as humans did not evolve like primates, but like large terrestrial herbivores.

It was our ancient fate to be killed and eaten and our primary goal to escape such. It still is, and our brain still allows fear to take control in threatening situations, diminishing rational decisions (Johnson 2003). And predation is terrifying, and not only to humans (Patterson 2004, Zanette et al. 2011). Evolutionary psychologists have made a good case that we are pretty well hard-wired to identify and interpret predators, beginning at an age at which we have barely learned to speak. John Vaillant, in his excellent book The Tiger (Vaillant 2010) – in which he attempts to come to grips with our relationship to large predators – reviews the work of Richard Coss and Clark Barrett with children and their recognition of predators (see Penkunas and Coss 2013, Barrett 2015). At a very early age we develop remarkable abilities to distinguish between friend and foe, based on seeing but a fraction of either. Joshua New and colleagues discovered that our visual monitoring system is markedly biased towards noticing animals, as opposed to cars or wheelbarrows (New et al. 2007). Spotting danger early was at a premium in our ability to avoid predators systematically, day-in and day-out. Millions of years as prey can leave such an innate residue or atavism, which includes among others a justified fear of darkness (Packer et al. 2011).

However, we did more than merely survive. Right after our appearance, we dispersed beyond Africa deep into Europe (Couilhard et al. 2013, Lordkipanidze et al. 2013) and Asia (Hazarika 2007), predators notwithstanding. We conquered two continents virtually simultaneously. And we began to alter the biota around us. The
giant tortoises of Africa now disappeared (Schüle 1990). As Lars Werdelin showed (Tollefson 2012, Werdelin 2013, Werdelin and Lewis 2013), the medium-sized omnivorous/piscivorous carnivores disappeared with the appearance of *Homo erectus*. That is, we quite likely wiped out the midsection of the African predator guild, leaving only the small and the large predators. Soon to follow were our competitors, the giant baboons of which find butchered remains (Shipman et al. 1981), and the robust *Australopithecus*. African biodiversity declines from then on (McKee 2001). *Homo erectus* is notoriously associated with proboscideans [the taxonomic order of trunked mammals; i.e. extinct and extant elephants] (Ben-Dor et al. 2011). And of the many species of such, only two survived. In the process of becoming human, we did much more than turn the table on carnivores: A fundamentally new life-form had appeared.

The process of becoming human entailed changing adaptations from those of the treed savanna to those of the treeless steppe. This had consequences. The new foraging concept was to search for hidden foods: Geophytes (tubers, corms, roots), bone marrow, brain, burrowing and hidden animals etc. Foraging for plant foods during the long dry-season required means of getting at roots and tubers buried in hard steppe soils. One needs a digging tool, most likely a stout, tough digging stick. Wooden digging sticks, unfortunately, do not fossilize, but long bone splinters used to dig through termite nests do (d’Errico et al. 2013). And if hominids could shape one, they could shape the other! They certainly had the skills and the tools for that, including hand axes (Lepre et al. 2011). Digging for geophytes allowed *Homo* to maintain a significant amount of food from C3 photosynthesis plants, where as our large-bodied hominid competitor *Paranthropus* fed largely on above-ground C4 grasses and sedges (de Menocal 2016). Since brain size and tool complexity are related (Stout 2016), it suggests that the large-brained *Homo* was more involved in tool making than the small-brained *Paranthropus*.

A stout, hard digging stick is a virtual miracle tool, good for more than digging, and available to almost all sexes and ages. It can be used to dig for roots or burrowing animals; knock down fruits and bird nests; kill prey disabled by wildfires; brain new-born antelope and predator cubs quickly and silently, and strike a threatening predator over the head. A group of *Homo erectus* surrounding a predator had the enormous advantage of distracting the predator while a well-positioned member struck its head with precision. Moreover, the sharpened digging stick could be also be used to spear some prey hiding in a tree-hollow, or pin down a big catfish in the shallows. It can be used to strike someone hostile over the head, or to merely discipline him. Increase the size of the digging stick and one has a club, a deadly weapon, requiring a non-trivial social adjustment for daily use. Lengthen it and you have a spear to impale prey, enemies, or competitors. Throw it and it becomes a javelin, a potentially lethal long-distance weapon. The new way of hunting, by hitting naive prey with a long digging stick over the head, was thus likely to be not only productive, but safe. Unlike carnivores, we did not need to make body-to-body contact with the prey. We could hit it over the head at a safe distance. No prey species was prepared for that. This was a totally new hunting method – safe and productive, as the prey was naive and completely vulnerable. In the face of this novelty, the African and also Eurasian biota were helpless. They had not evolved defenses against the novelty of club-wielding, observant, intelligent, and cooperating hominids. Killing neonates silently by striking them over the head prevents attracting both defending adults and alert predators. It is supported by the exceptional ability of humans at silent stalking (Geist 1978, Merker 1984), as well as by our keen vision and our “periscope body structure” (Geist 1978) that allows spotting both predators and killing opportunities at a maximum distance. Species that cashed their young would be primary victims of this hunting for neonates, leaving behind large-bodied species whose young are always in adult company, such as the highly social modern elephants, hippos, buffaloes, or the calf-protecting rhinos.

Clearly, Pleistocene extinctions originated already with *Homo erectus* (Edmeades 2013 and personal communication). The uniqueness of the digging stick, a tool, as an instantly stunning or killing weapon, also required a novel control over weapons, one outside of Darwinian evolution – namely, societal control. Killing or stunning prevented retaliation by the victim. That is uniquely human and not found in animal combat. Retaliation by the victim controls the evolution of animal combat (Geist 1966, Geist 1978, Geist 1977). Consequently, *Homo erectus*, merely to survive, required some morality and a social conscience.

The real prize from our ability to defy large predators on the ground, day and night, was not access to the open treeless steppe, but access to water edges away from trees. With trees present along water edges, our competitors, the robust *Australopithecus* and the giant baboons, could displace us, as they could find security from predation at night in the trees. Access to the edges of shallow waters such as ponds, lakes, creeks, and rivers opened up an abundant food supply – even more so if we removed competitors. The large collection of butchered remains of aquatic and water-edge species, such as the “bear otter” (*Enhydriodon dikikae*); the severe reduction in the biodiversity of medium-sized generalized carnivores at the time of our appearance (Tollefson 2012, Werdelin 2013); the accumulation of hand-axes along old shorelines; the high association of humans and sedges (Dominy 2013); plus, the many human attributes linked earlier to the “aquatic ape” hypothesis (Moore 2012), support this view. We were so attached to abundant water, that it precluded the accumulation of hand-axes along old shorelines; the high association of humans and sedges (Dominy 2013); plus, the many human attributes linked earlier to the “aquatic ape” hypothesis (Moore 2012), support this view. We were so attached to abundant water, that it precluded the evolution of water conservation.

Granted the foregoing, it should not surprise that in the next million years one finds archaeological sites that show only the marks of human butchering and no marks of predators, such as the mid-Pleistocene Schoeningen site in Germany that included 19 intact horse skulls (Thieme 1997). Beginning with the time we turned human and turned the table on predators, we began to shape and impoverish the biota around us. No harmony here between Man and Nature.
MEGAFAUNA AND HUMANS IN NORTH AMERICA

However, North American gigantic Pleistocene predators may have stilled humans from colonizing the interior of the continent (Geist 1989, Frison 2004, Peacock 2013, Turner et al. 2013). After all, we colonized North America very late. Here the giant predatory short-faced bear (*Arctodus simus*), has been singled out for special attention (Peacock 2013, Neiburger 2014). There is now evidence for humans of the first post-Toban “out of Africa” migration (Melanesian) reaching the interior of South America (Skoglund et al. 2015); they thus failed to colonize North America’s interior. However, the second post-Toban wave did enter the interior of North America, but only after a hiatus of about 1,600 years. That’s the time span between the migrants reaching Mexico (Battaglia 2013) about 14,800 Calendar Years ago (Goebel et al. 2008, Dillehay et al. 2015) and the Clovis radiation northward into North America’s interior from 13,200-12,900 Calendar Years (Waters et al. 2007). The earliest humans had a hard time making a living, as reflected in the hyper masculine skeletons of men showing much combat injury and the small skeletons of woman showing malnutrition and domestic abuse (Hodges 2015). It suggests food scarcity (Walker 2001). Hunting would have been all but impossible, for a kill would quickly attract severely stressed large predators (Van Valkenburg and Hertel 1993, Binder and Van Valkenburg 2009, Van Valkenburg 2009, Van Valkenburg et al. 2015). As expected, direct evidence for humans hunting of megafauna is very scarce (as it is in Australia in a similar scenario; Johnson et al. 2016), and what there is, appears to be very selective: only six from 36 genera show sign of human utilization (Waters et al. 2015). No “Blitzkrieg” that! The way for people to merely survive in the presence of mega-carnivores was to torch the landscape, making the burnt enclaves unattractive for carnivores. They acted much as California natives did in order to keep away grizzly bears, and traded poor food for security (Vande Pol 2016). Consequently, from 14,800-13,700 there is in the interior of the continent a massive increase in soil charcoal attributed to human activity (Robinson et al. 2005), and a concomitant decline in mega- herbivores as revealed by decline in the dung bacteria *Sporomiella* (Robinson et al. 2005, Robinson and Burney 2008, Gill et al. 2009). That’s long before the advent of the successful Clovis hunting culture around 13,000 years ago and the mega-faunal collapse at the beginning of the Younger Dryas Cold Spell (12,800 - 11,200 Calendar Years; Haynes 2008). An increase in soil charcoal attributed to humans occurred already at 14,800 CY, at the beginning of the Bolling-Allerod Interstadial, long before the blossoming of the short-lived Clovis hunting culture. And what happened in North America probably happened some 30,000 years earlier in Australia (Miller et al. 1999, 2005, Johnson et al. 2016). Humans had to worry about the huge (seven-meters plus) cursorial land-crocodile *Quinkana*, with its *T. rex* jaws and slicing teeth; the equally armed huge monitor lizard *Varanus priscus*, an ambush predator; or the small-brained marsupial lion *Thylacoleo*. People must have set fire liberally to create secure enclaves. It appears that on both continents humans did not hunt, but torched the mega-fauna into extinction.

For a relatively short time Clovis hunters shared the landscape with remnants of the native American megafauna. Then the Younger Dryas Cold Spell (12,800-11,200 before present) exterminated both the Clovis Culture and the last of the North American megafauna. Into the ecological vacuum moved Siberian species besides humans, such as elk, moose, grizzly bear, and grey wolves. However, the long super-predation left a mark on North American survivors such as deer, pronghorns, black bear, cougar, coyote, and raccoon. They are all highly capable of learning and thoroughly taking advantage of humans. Wildlife, native or not, flocks into cities to avoid predation as well as to exploit rich food sources. As our settlements become refuges from predation, they also attract hungry predators. Note the long-standing studies on coyotes fitting themselves into urban ecosystems (Timm et al. 2004, Timm and Baker 2007).

Today, the totality of the North American landscape is “unnatural,” and has been ever since humans destroyed most of the native American Pleistocene mega-fauna. Our landscapes are now largely forested, which was unnatural in the presence of five species of tree-crunching ground-sloths, two species of mastodons, mammoths, two species of horses, plus scrub-clearing shrub-oxen, forest musk-oxen, bison, deer, camels, two species of llamas, four species of pronghorns, tapirs, pampatheres, and glyptodonts. As the mega-fauna declined leaving less and less evidence of their presence in the soil via faecal bacteria (Robinson et al. 2005, Gill et al. 2009), plants proliferated due to the reduced grazing and browsing. The under-used plant communities became fuel for severe wildfires, as recorded via charcoal deposits in the soil (Robinson et al 2005). That almost certainly forced humans to adopt sophisticated fire practices, followed by landscape-level horticulture (Warren 2016) and the “civilizing” of the continent. This served strictly *human* needs. Here large mammals played an insignificant part, as native people were primarily keystone predators who removed much of the large mammal fauna for food and security (Kay et al. 1995, Kay 2007). There may have been, however, some deliberate husbanding of mountain sheep (Matheny et al. 2007). At least, that’s how I interpret the petroglyphs based on my research on mountain sheep (Geist 1971). However, with the massive die off of North American native people beginning in the 16th century (Mann 2006, Llamas et al. 2016), wildlife numbers, freed from human predation, exploded in numbers and spread geographically (Roe 1972), giving the false impression that North America was always a “wilderness” full of wildlife. That is, “wilderness” is an artefact of Europeans colonizing North America.

PLEISTOCENE EXTINCTIONS FREE THE WOLF FROM ITS NATURAL ENEMIES

Neanderthal people did kill wolves (Klein 1973), but wolves in central and northern Eurasia did not decline dramatically until the arrival of modern humans there some 40,000 years ago (Zhenxin Fan et al. 2016). It appears that the conflict with grey wolves began right there, and has continued ever since, with humans
generally, but not always, getting the upper hand (Freuchen 1935, Graves 2007, Moriceau 2014). That the modern newcomers were interested in wolves is revealed by archaeological findings suggesting early domestication of wolves (Germunpré et al. 2009, Ovodov 2011, Bocherens et al. 2013, Shipman 2014). This is theoretically possible because the Upper Palaeolithic reindeer economy was a luxury economy as reflected in human physical development, brain size, health (Geist 1978, Ruff et al. 1997, Formicola and Giannechini 1999) and population growth (Klein 1969, Klein 1973; Mellars and French 2011). A luxury economy is expected to produce a lot of waste that would have attracted wolves, setting the stage for domestication as proposed by Coppinger and Coppinger (2001).

In general, it was not in the interest of native people living off the land from wildlife to exterminate wolves entirely. Large, uncontrolled populations of wolves inflicted intolerable, life-threatening damage (Graves 2007, Granlund 2015, Granlund 2016) especially to people that made a living hunting big game. However, a few wolves could be quite beneficial. They kept down the mesopredators (Ripple et al. 2013) – the little fellows, the mink, ermine, otter, skunk, foxes, or raccoons, which, if not controlled, rapidly increased in numbers and wiped out easy-to-get fish and waterfowl resources. So, Native American people developed a tolerance and mythology about wolves.

Pleistocene extinctions killed many large predators, but wolves survived. They were now freed from predation by the largest of cats and predacious bears, and thus free to multiply and disperse. Humans and wolves have had a very long joint history in Eurasia. We learn from history that without controls, humans and wolves cannot co-exist. Our evolutionary history already suggests that we usually dominated and controlled predators. In case of the wolf, it was done most likely by limited killing of pups at denning sites, as is done on Baffin Island in Canada’s Arctic until today. To this, one might add the skilful snaring of whole packs. Wolves are a problem primarily where, historically, humans were disarmed and the wolves were free to multiply.

One cannot uphold the view that wolves are harmless in the face of centuries of recorded experience to the contrary. In pre-revolutionary France, Moriceau (2007) identified over 3,000 deaths by wolves. During the 18th century in a county in northern Italy, there were some 90 cases of human mortality from wolf attacks (Oriani and Comincini 2002). In Eastern Europe numerous cases of wolves killing humans have been collected (Pavlov 1982, Pavlov 2007, Stubbe 2008). Most of them occurred in Belarus in the 19th century, and in the Western Urals from 1945-1949. However, contemporary wolf attacks and killings of people also have occurred. There is the ignored killing of 5-year-old Marc Leblond on Sept. 24, 1963 north of Baie-Comeau, Quebec, Canada (McNebel 1963). Kenton Carnegie was killed on November 8, 2005 in Saskatchewan, Canada (Geist 2008). Candace Berner, a 32-year-old teacher, was killed by a pack of wolves at dusk on March 8, 2010 on the Alaska Peninsula within a mile of the village of Chignik Lake (Butler et al. 2011). Lethal wolf attacks are recorded from Russia (Pavlov 1982, Graves 2007, Stubbe 2008), Finland (Teperi 1977, Lappalainen 2005), Sweden (Connolly 2000), Germany (Flemming 1749, Brehm 1952, Müller-Using et al. 1975), Iran (Baltzard and Ghodssi 1954), Afghanistan (Stewart 2004, Anon. 2005), India (Jahala and Sharma 1997, Jahala 2003, Rajpurohit 1999), Korea (Neff 2007), Uzbekistan (Blua 2005), Japan (Walker 2005), Greenland (Freuchen 1935), and other countries (Linnell et al. 2002). Peter Freuchen, an explorer of Greenland, reports in Arctic Adventure (1935) that he lost a companion to wolves (pp. 23, 329, 332); he had harrowing experiences with wolves trying to break into his cabin (pp. 16-19); he shot a wolf stalking his children (pp. 347-348), and his outpost could not be provisioned by dogsled as every attempt was halted by wolf attacks. He reported an observation made by a long-time resident and hunter in Greenland: where there are wolves, there are no people and vice versa! And while details in Hazaribaghi, Northern India, may be different (Rajpurohit 1999), the causes of wolf predation on humans are much the same: scarcity of prey or opportunity to kill livestock, and de facto protection of wolves that allowed wolves a systematic targeting of peoples, mainly children, as prey. Not to be forgotten is the wolf as one of the Beasts of Battle in old Nordic, Germanic, and English literature, and its massive depredation of the dead and wounded on battlefields, even in the 20th century (Kabel 1915, Anon. 1917). Ironically, while there are good publications in North America about bears being dangerous to humans (Herrero 2002, Stringham 2002, Stringham 2007, Stringham 2009), such detailed analyses for wolves are missing. Among modern nations Japan is unique in having had a history in which wolves were supported and venerated by disarmed peasants as a means of warding off deer and wild boar that destroyed agricultural crops. However, faced with the horror of rabid wolves, Japan exterminated wolves by 1905 (Walker 2005).

SETTLED LANDSCAPES DESTROY WOLVES AS A SPECIES VIA HYBRIDIZATION

Dogs and wolves have lived side-by-side for at least 12,000 years (Coppinger and Coppinger 2001) with hybridization being limited, as normal wolf packs destroy dogs and dog-wolf hybrids, as well as competing canids. Settled landscapes, however, attract smaller canids such as coyotes and jackals, which thrive on agriculture, and dogs abound. Simultaneously, lone colonizing wolves, or lone wolves from a dismembered pack in search of company, accept dogs or other canids as mates. Consequently, wolves in settled landscapes, via hybridization, slowly but surely turn into nondescript mixtures. This is not a hypothesis, but a fact. Currently, Eastern wolves hybridizing with coyotes and dogs are turning into “coywolves” (Adams et al. 2003, Monzón et al. 2014, von Holdt et al. 2016). Based on the analysis of 437 coy-wolves, their DNA was found to contain about 66% wolf, 25% coyote, and 10% dog (Monzon et al. 2014). This hybrid is not a Darwinian species like the wolf or the coyote, but an indirect artifact of human activity. Some introgression of dog genes into wolves in North America is quite ancient (Anderson et al. 2009). While the reintroduced Mexican wolves currently show no trace of
hybridization, older specimen do show evidence of hybridization with coyotes (Hailer and Leonard 2008). And more recently a Mexican wolf female and her hybrid pups were destroyed by the USFWS after the female failed to abandon dog company (Cart 2011). A similar case occurred in Oregon. Nor is the hybridization of wolves and dogs confined to North America; it also is found in Eurasia (Godinho et al. 2011, Kopaliani et al. 2014, Moura et al. 2014, Zhenxin Fan et al. 2016) and Africa (Gotelli et al. 1994).

Wolves and dogs, their closeness genetically notwithstanding, are not the same animal. The statement that they are the same species is erroneous, as species are defined not by phylogeny, but by their adaptations. Thus their embarrassing closeness in genetics notwithstanding, chimpanzees and humans are very different species. Similar genes can produce vastly different species, nowhere better illustrated than by the closeness genetically of hippo-pigs and whales (Thewissen et al. 2007). One does nothing for whale conservation by protecting pigs, any more than one conserves wolves by conserving dogs or wolf/dog hybrids. Wolf-dog hybrids lack the large brain of the wolf; they give birth at all the wrong times of the year; their jaws lack the bite-force of wolves; they lack the keen ability of observation-learning typical of wolves; they waste time and energy on useless chases after prey; and they are no match at problem solving compared to wolves (Urddel 2015). The whole attack sequence of wolves has been disassociated in dogs, to serve human needs. Wolf mothers feed pups by regurgitating food, which dogs do not. Hybrids lack the specialized paws of wolves that allow, for example, the grey wolf to kill and consume prey while swimming; to scramble onto ice flows or cross raging rivers; or to travel securely on steep sun-crusted snow in the mountains. Moreover, wolves and dogs deviated not only profoundly in adaptation, when dogs specialized as commensals of humans (Copping and Copping 2001, 2016); but also differ genetically by the "Belyaev effect," once such dogs became human companions (Bodio 2016, Copping and Copping 2016); as well as by the idiosyncratic breed modifications of subsequent domestication. There are profound differences in social adaptations between wolves and dogs (Frank and Frank 1987). Also, feral dogs do not revert to ancestral type as do feral domestic pigeons or pigs, though some dogs differ genetically from wolves more than jaguars differ from leopards (Bodio 2016). And had hybridization of grey wolves and coyotes been a success when the species met some 14,000 years ago, then there would be no coyotes alive today! Protecting hybrids, as well as exposing wolves to hybridization with dogs in settled landscapes, does nothing to preserve wolves. On the contrary, it is a certain way to destroy the wolf as a natural species.

It begs the question: Is the destruction of both the "big wolf" and the "little wolf" our goal for wolf conservation? In Europe, so-called "wolves" with paws diagnostic of golden jackals are turning up in Italy, Switzerland, France, and even Germany. Unfortunately, current legislation to protect wolves in the U.S. and European Union are not only good examples of ignoring both history and science, but destine the wolf to extinction by fervent environmentalism. The grey wolf can only be conserved as a species where it can live in packs, while free from contact with humans and dogs. This suggests a vital wildlife conservation function for military and atomic reserves.

SOME PREDICTIONS FROM HISTORY

Allow me to assemble what history tells us about wolves entering a populated, productive countryside. This includes also my personal observation of misbehaving wolf packs on Vancouver Island. In a nutshell: If wolves are allowed full legal protection to expand within settled landscapes, they will first deplete wildlife severely, then turn to livestock, then increasingly enter human habitation in search of food, and finally they will begin targeting humans as prey (Geist 2007) in exactly the same fashion as coyotes target children in parks (Carbyn 1989) and people in suburban southern California (Timm et al. 2004). Children are all-around vulnerable (Penteriana et al. 2016). Moreover, these wolves will bring with them diseases, such as the dreaded hydatid disease, via the dog tapeworm *Echinococcus granulosus* (Foreyt et al. 2009).

Wolves, like coyotes but not like dogs, are observation learners (Copping and Copping 2001) that take their time investigating and exploring a new prey visually before making contact and finally attacking. It may not come that far, however, if wolves attack sufficient numbers of leashed dogs and thereby raise the urban public's fears. Big, well-fed wolves are not the problem; small starvation wolves are. Note that the laws of the Province of Saskatchewan completely protected wolves that had brazenly habituated to camp garbage, as only licensed trappers were allowed to kill wolves. These wolves attacked people and killed a brilliant young scientist, Kenton Carnegie. He was an environmentalist and a vegetarian, who apparently believed that the "harmless wolf myth" was based on science (Geist 2008, Geist 2009, Teague 2008). It is not! He did not appreciate an attack by two wolves on two camp inmates and ignored the warning of residents. When he went out alone from camp, he was killed by three wolves. Kenton Carnegie is likely not the only victim of the "harmless wolf hypothesis." So was 24-year-old wildlife biologist Trisha Wyman, who was killed on April 18, 1996 by a captive wolf pack in Ontario. In a long phone conversation with Professor Erich Klinkhammer of Wolf Park (Battle Ground, IN, USA), he related that he had been called in as an expert witness to the Wyman case. He discovered that there was great surprise at her death, as wolves are not supposed to attack people. Here, as in similar tragic cases, the classical work on how to behave around wild and socialized wolves as carried out in Wolf Park (Frank 1987), had been ignored. And that is what probably killed a 30-year-old woman, a keeper in the wolf pen of Kolmards Djurpark (The Kolmarden Zoo) outside the city of Norrkoping, Sweden. The pack, which she had raised, turned on her. There had been a previous a similar incident: a captive pack of nine wolf hybrids, kept as pets, killed its owner, Sandra L. Piovesan, of Salem Township, Pennsylvania, on July 17, 2006. It was reported that Ms. Piovesan treated her wolves like children, and said as much when neighbors asked about them: "they [the wolf-
hybrids] give me unqualified love” (Fuoco and Harlan 2006).

THE MYTH OF THE HARMLESS WOLF

One can trace the origin of the American myth about the “harmless wolf” to a respected Canadian biologist, Dr. C. H. ‘Doug’ Clarke (Clarke 1971). He investigated the killing of people by wolves in Europe, and concluded that while such attacks were real, rabid wolves essentially caused them all (Mech 1960, Rutter and Pimlott 1968). However, in exonerating healthy wolves, Clarke did not use evidence from Europe, but rather he fell back on his personal experience with the Canadian continental wilderness wolves, which, as is widely acknowledged and which I can vouch for personally, are notoriously shy of humans. In short, if healthy Canadian wolves did not attack people, then such attacks by wolves in Europe must be by rabid wolves. Bites by rabid wolves before the days of modern medicine were always lethal (Graves 2007, Moriceau 2007). However, Clarke failed to notice that in the early days, survivors of wolf attacks could not have been bitten by rabid wolves. Moreover, the famous man-killing wolves Clark described in his essay were not rabid. It is puzzling why Clark did not see the distinction between attacks by rabid as opposed to healthy wolves, whereas others who examined much the same material, such as scientists, historians, and even laypersons, clearly did differentiate such (Oriani and Cominici 2002, Moriceau 2007). Friedrich von Flemming (1749) in his encyclopedia differentiated such (Oriani and Cominici 2002, Moriceau 2007). However, Clarke failed to notice that in the early days, survivors of wolf attacks could not have been bitten by rabid wolves. Moreover, the famous man-killing wolves Clark described in his essay were not rabid. It is puzzling why Clark did not see the distinction between attacks by rabid as opposed to healthy wolves, whereas others who examined much the same material, such as scientists, historians, and even laypersons, clearly did differentiate such (Oriani and Cominici 2002, Moriceau 2007).

According to the German philosopher Georg Wilhelm Friedrich Hegel, as well as Mahatma Gandhi: “We learn from history that we do not learn from history.” If so, then we face an irony: the gray wolf is now destined for assured destruction through misguided conservation efforts that are ignorant of history.

LITERATURE CITED

Adams J., J. Leonard, and L. Waits. 2003. Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern U.S. coyotes. Molecular Ecol. 12:541-546. PMID:12535104.

Anderson, T. M., B. M. vonHoldt, S. I. Candille, M. Musiani, C. Greco, D. R. Stahler, D. W. Smith, B. Padhukasaharasm, E. Randi, J. A. Leonard, C. D. Bustamante, E. A. Ostrandler, H. Tang, R. K. Wayne, and G. S. Barsh. 2009. Molecular and evolutionary history of melanism in North American gray wolves. Science 323(5919):1339-1343. doi: 10.1126/science.1165448

Anon. 1917. Russian wolves. P. 61 in: New York Times, July 29, 1917. http://query.nytimes.com/mem/archive-free/pdf?res=9E0DE3DD103BE03ABC4151DFB16683C609EDE

Anon. 2005. Report of 4 persons killed by wolves in Paktia Province during the past two weeks. 18 Feb 2005. Bakhter News Agency. Retrieved on http://newkerala.com from news stories in Kabul.

Baltzard M., and M. Ghodssi. 1954. Prevention of human rabies. Treatment of persons bitten by rabid wolves in Iran. Bull. World Health Org. 10(5):797-803.

Banfield, A. W. F. 1964. Review of F. Mowat’s Never Cry Wolf. Can. Field-Nat. 78:52-54;

Barrett, H. C. 2015. Adaptations to predators and prey. Part I. Survival. Pp. 246-263 in: D. M. Buss (Ed.), Handbook of Evolutionary Psychology. John Wiley & Sons Inc., Hoboken, NJ. doi:10.1002/9781119125563.evpsych109

Battaglia, V., V. Grunji, U. A. Perego, N. Angerhofer, J. E. Gomez-Palmieri, S. R. Woodward, A. Achilli, N. Myres, A. Torroni, and O. Semino. 2013. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS ONE. doi: 10.1371/journal.pone.0071390

Ben-Dor, M., A. Gopher, I. Herschkovitz, and R. Barkai. 2011. Man the fat hunter: the demise of Homo erectus and the emergence of a new hominin lineage in the Middle Pleistocene (ca. 400 kyr) Levant. PLoS ONE 6(12):1-12. doi.org/10.1371/journal.pone.0028689

Binder, W. J., and B. Van Valkenburgh. 2010. A comparison of tooth wear and breakage in Rancho La Brea sabertooth cats and dire wolves across time. J. Verterbr. Paleontol. 30(1): 255-261.

Blua, A. 2005. Central Asia: cohabitation of wolves, humans proves difficult. News article, Radio Free Europe. March 15, 2005. http://www.rferl.org/content/article/1057987.html
