Electronic excitation by short x-ray pulses: from quantum beats to wave packet revivals

P Rivière¹, S Iqbal² and J M Rost³

¹ Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
² School of Natural Sciences, National University of Sciences and Technology (NUST), NUST Sector H-12, Islamabad, Pakistan
³ Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany

E-mail: paula.riviere@uam.es

Received 9 January 2014, revised 24 April 2014
Accepted for publication 24 April 2014
Published 10 June 2014

Abstract

We propose a simple way to determine the periodicities of wave packets (WPs) in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number n, especially when n is low. The latter type of WP motion occurs upon excitation of highly charged ions with short XUV or x-ray pulses. Moreover, we formulate the WP dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function, a phenomenon most prominent in the low n WP dynamics.

Keywords: wave packets in quantum systems, short x-ray pulses, autocorrelation function

(Some figures may appear in colour only in the online journal)

1. Introduction

A wave packet (WP) comprising many energy eigenstates of a system spreads during its time evolution, only to reverse the spreading and reshape after a certain time called the revival time. Originally formulated in the context of highly excited electrons in atoms [1, 2] followed by the first observation of WP collapse and revival [3], the phenomenon has been identified in a large variety of physical systems, such as in Gaussian WPs in quantum boxes [4], the evolution of rovibrational nuclear WPs [5–7] (for a review see [8]), even at an attosecond time scale [9], revivals in coherent photon fields [10] or photon lattices (see e.g. [11]), or recently, the propagation of WPs in graphene under magnetic fields [12, 13] and the use of WPs to detect extremely long coherence times [14].

Quantum revivals have also been widely studied over the years in a more mathematical context, with emphasis on obtaining accurate analytical expressions [15–17], for a review see [18].

The multiple interferences of the WP components lead also to the so-called fractional revivals at divisors of the revival time, which have been predicted [19, 20] and observed in Rydberg WPs [21] or photon bouncing balls [22]. Fractional revivals can retrieve information about the system even if it decays before the first revival [23]. They can be used for mapping the quantum phase of a molecular nuclear WP in two-dimensional spectroscopy [24], or even to factorize prime numbers [25]. It has also been shown that information entropy in position and momentum spaces can reveal the existence of fractional revivals [26].

The study of quantum revivals in atoms has traditionally focused on the excitation of Rydberg WPs. The latter contain typically of the order of ten highly excited states when they are centred on a principal quantum number $30 < n < 85$ and excited by laser pulses with a duration of a few picoseconds [1]. Under these circumstances the relative difference between the energies of the states is small, and the standard approach of representing the energies of the contributing states by Taylor expansion about the central energy E_n provides good results.

However, new FEL or high harmonic-based light sources are able to deliver short pulses of 100 atomic units (2.4 fs) duration and less in the VUV to x-ray regime [27]. In particular the x-ray pulses will typically lead to a multi-electron WP of the valence shell of an atom by inner shell ionization. In order for the photo electron to form a bound WP while...
simultaneously the core electrons remain in their ground state, such WPs must be generated in highly charged ions, as produced, e.g., in state-of-the-art electron–cyclotron ion sources (ECR) [28] or EBITs [29]. The high ionic charge implies large electronic energy spacings so that only a few levels contribute to the WP, despite the large energy width due to the short pulse duration. Hence, the dynamics lays in between quantum beats of a few well defined energy levels [30] and the traditional regime of Rydberg WPs as discussed before.

A good estimate of the dynamical range of a system, which goes from quantum beats to WP revivals, is the number of states in the WP, \(k \). One can estimate this number by relating the energy spread of the laser pulse to the energy spread in the excited atom, which for a WP centred in state \(\pi \) is \(\Delta E \approx k \Delta E_n / |\langle \pi | \pi \rangle| \) provided that \(\pi \) is sufficiently large. An electric field of Gaussian shape \(f(t) = f_0 \exp(-2(\ln 2) t^2 / T^2) \), where \(T \) is the FWHM of the pulse and \(f_0 \) its amplitude, will populate a WP with amplitude (atomic units are used here and throughout the paper unless otherwise stated)

\[
F_0 = f_0 \exp\left(-\frac{(E_n - E_\pi)^2}{(8\ln 2)}\right)
\]

for each energy level \(E_n \). Including all those states with probability \(\gg c \) implies an energy spread of \(\Delta E \approx C/T \), where \(C = 4(\ln 2 \ln c)^2 \). For a hydrogenic ion of charge \(Z \) and spectrum \(E_n = -Z^2/(2n^2) \), equalising both values of \(\Delta E \) gives

\[
k = Cn^3 / (Z^2 T).
\]

A few quantitative examples of the number of states \(k \) as a function of \(\pi \) and \(T \) for different ionic charges is shown in table 1. Two cases of low and high \(\pi \) are shown in figure 1. The other examples will be discussed later in the context of the figures listed in table 1.

Our goal is to treat the low \(\pi \) regime of electron excitation from the perspective of WP revivals. However, due to the large energy spacing the standard description of the WPs with a harmonic approximation about \(E_\pi \) becomes rather inaccurate. In the following we will show that one can replace the derivatives of the energies by exact differences of energy levels to obtain a description which is valid in the new regime of short, high frequency pulses. This approach is conceptually very simple and it is universally valid, also in the traditional Rydberg regime. We can derive accurate values for the revival times in all situations. Moreover, the origin of the shift in the position of the maxima around the revival time, previously noticed [3, 19] but not well described, emerges naturally.

The structure of the paper is as follows: in section 2, a form of the autocorrelation function is derived which allows one to explicitly read off the relevant periods. We also derive and explain why for the low excitation regime finite energy differences should be used to define these periods instead of energy derivatives. The periods, classical, revival and fractional revival times, as well as a feature which is important for low excitation WPs, namely the time where the extrema flip their sign, are explained in section 3 with examples from the high and intermediate excitation domain. Section 4 points out the characteristic features of low excitation WPs ending with a hydrogenic ion excited by a 100 as x-ray (1.92 keV) pulse. Finally, for multi-electron atoms, the effect of the quantum defect is discussed in section 5, and conclusions are drawn in section 6.

2. Autocorrelation function

Without loss of generality but to be somewhat specific we consider a system which absorbs one photon from a laser pulse of length \(T \) in a transition from an initial state \(|\alpha\rangle \) to a final state \(|\beta\rangle \) which, for simplicity, we assume to be an eigenstate of the system. Due to the finite length of the pulse, this process

\[
\rho(t) = \int_0^T |\psi(t, E)|^2 |\phi(E)|^2 dE.
\]

Figure 1. Field intensities in the frequency regime, \(|F(\omega)|^2\), and energy levels for two regimes: (a) high \(\pi \), long pulses, for the particular case of \(Z = 1, \pi = 45, \) FWHM = 2 ps, (b) low \(\pi \), short pulses, for the case of \(Z = 8, \pi = 14, \) FWHM = 2 fs. The red vertical lines correspond to \(\pi \) in each case. For the number of energy levels participating in the wave packet with an amplitude of more than 10^{-4}, see table 1.

\(k \)	\(Z \)	\(\pi \)	\(T \) (fs)	Figures
13	1	85	8000	1
8	1	45	2000	4, 5
4	8	14	2	4, 5
4	12	7	0.1	6
5	8	9	0.4	8

% \[\text{Table 1. Overview of the parameters used in the figures (as indicated) to follow. The number of states } k = k(Z, \pi, T) \text{ is given, which contribute to a wave packet with up to an amplitude weight of } c = 10^{-2} \text{ when excited to a central state } \pi \text{ by a pulse of duration } T \text{ (FWHM). We assume a hydrogenic ion with energy spectrum } E_n = -Z^2/(2n^2).\]

-jp Phys. B: At. Mol. Opt. Phys. 47 (2014) 124039 P Rivière et al.
creates a WP which can be expressed in first order perturbation theory after the pulse as [31]

$$\langle \psi_B(t) \rangle = \sum_n |n \rangle \exp \{ -iE_n t \} M_{nn} F_n,$$

(3)

where F_n are the amplitudes defined in equation (1). The dipole matrix elements $M_{nn} = \langle n | \alpha \rangle \langle \alpha | n \rangle$ give the strength of photon coupling to the different eigenmodes.

The modulus square of the autocorrelation function

$$A(t) = \left| \langle \psi_B(0) | \psi_B(t) \rangle \right|^2 = \sum_{n,m} |c_n|^2 |c_m|^2 \exp \{ -i(E_n - E_m) t \}$$

(4)

with coefficients $|c_n|^2 = |M_{nn}|^2$ is formally equivalent to $P_{\text{corr}}(t)$, the probability of going from a state $|\alpha\rangle$ to a state $|\beta\rangle$ in a pump–probe experiment involving two identical pulses with a time delay t. Therefore, equation (4) can be measured [1].

One of the salient features of equation (4) is that this time-dependent function shows revivals and partial revivals of the initial WP. Clearly not all of the infinitely many terms in equation (4) do contribute equally, since the pulse excitation covers only a finite energy interval of the spectrum E_n, see equation (1). Hence, our goal is to rewrite the double sum such that a systematic truncation to the most important terms is facilitated, yet retaining in the most accurate manner the different periods which give rise to the revival phenomena.

To reorder the contributions in the sum, we will make use of an expansion of the eigenenergies E_n around the mean excitation E_π, which is well justified as long as the pulse excites a region of high density of states, so that the relative level spacing $\Delta E/d|\alpha\rangle /E_\pi \ll 1$.

In a second step we will acknowledge the fact that for high frequency pulses the spectrum of highly charged ions is excited in a region of much lower density of states than in the traditional Rydberg regime.

2.1. Regrouping the sum

First we perform a Taylor expansion of the energy around the mean excitation energy E_π, and split the expansion into two terms δ^\pm with even/odd powers of n, so that the energy differences become (see section A.1 in the appendix)

$$E_{\pi+n} - E_\pi \equiv \delta_n = \delta_n^+ + \delta_n^-$$

(5a)

where

$$\delta_n^+ = \frac{2\pi}{T_f} \sum_{j=1}^{\infty} n^{2j}, \quad \delta_n^- = \frac{2\pi}{T_f} \sum_{j=1}^{\infty} n^{2j-1}$$

(5b)

and

$$\frac{1}{T_f} = \frac{1}{2\pi} \frac{dE_\pi}{dn} |_{n=0}.$$

(5c)

For the regrouping we assume that the dipole matrix elements $M_{\alpha\nu}$ do not vary much in the relevant terms of equation (4) and are therefore irrelevant for the summation. Moreover, the diagonal parts $m = n$ will only contribute a non-oscillating background, so that the time-dependent part of equation (4) simplifies to

$$a(t) = \sum_{n=m} W_{nn} \exp \{ -i(\delta_m - \delta_n) t \},$$

(6)

with weights

$$W_{mn} = \exp \left[-\left(\delta_m^+ + \delta_n^+ \right) / \sigma^2 \right]$$

(7)

decreasing rapidly with increasing distance δ_{mn} from the central energy. Here $\sigma = \sqrt{4\ln 2 / T}$ is the pulse width in frequency domain, see equation (1). The idea is now to arrange the double sum equation (6) into groups of terms which have similar Gaussian weight W_{mn}, where we order the weight according to $\delta_{mn} \propto |m|$. From a basic element W_{mn} a quadruple of elements is generated by the two symmetry operations and their concatenation: exchange of the indices $(n, m) \rightarrow (m, n)$ (which amounts to complex conjugation), and point inversion $(n, m) \rightarrow (-n, -m)$. Note that m, n can be negative due to the shift of the indices by the value π. Hence we may rewrite equation (6) as

$$\frac{a(t)}{2} = \sum_{0 \leq |m| < |n|} W_{mn} \cos \{ (\delta_m - \delta_n) t \}

+ W_{-m-n} \cos \{ (\delta_m - \delta_n) t \},$$

(8)

Making use of the symmetry properties of the δ_n from equation (5a), we get (see section A.2 in the appendix)

$$\frac{a(t)}{4} = \sum_{0 \leq |m| < |n|} e^{-\pi a n} \left[C_{mn} \cos \{ (\delta_m^+ + \delta_n^-) t \} \cos \{ (\delta_m^- + \delta_n^+) t \} + S_{mn} \sin \{ (\delta_m^+ + \delta_n^-) t \} \sin \{ (\delta_m^- + \delta_n^+) t \} \right],$$

(9)

where

$$w_{m,n} = (\delta_m^+)^2 + (\delta_n^-)^2 + (\delta_m^-)^2 + (\delta_n^+)^2$$

(10a)

accounts for the even and odd exponents of the neighbouring levels, and

$$C_{mn} = \sum_{j=0}^{\infty} \frac{(\delta_m^+\delta_n^- + \delta_m^-\delta_n^+)^{2j}}{(2j)! \sigma^{4j}} 2^{2j},$$

$$S_{mn} = \sum_{j=0}^{\infty} \frac{(\delta_m^+\delta_n^- + \delta_m^-\delta_n^+)^{2j+1}}{(2j+1)! \sigma^{4j+2}} 2^{2j+1}$$

(10b)

are the coefficients of the cosine and sine terms in equation (9), respectively.

2.2. Expansion to lowest order around the mean energy

The final form of the autocorrelation function equation (9) is still an exact version of equation (6). While of little practical use, it reveals the structure quite well, which contains products of two trigonometric functions. Their meaning becomes obvious if we truncate the Taylor expansion equation (5a) around E_π to lowest order,

$$\delta_m^{(1)} \sim \frac{2\pi m^2}{T_1}, \quad \delta_n^{(1)} \sim \frac{2\pi m}{T_1}.$$

(11)

Keeping only products of derivatives to second order, i.e., in times T_1^{-1}, T_2^{-1} and T_1^{-2}, reduces equation (9) to (see section A.3 in the appendix)

$$\frac{a_2(t)}{4} \simeq \sum_{0 \leq |m| < |n|} e^{-\pi a n} \cos \left[2\pi (m-n) \frac{T}{T_f} \right] \cos \left[2\pi (m-n) \frac{T}{T_f} \right].$$

(12)
From this representation one can easily read off the standard essential periodicities in the autocorrelation function: the classical and revival periods. One can also directly see how periodic maxima of $a(t)$ turn into minima for certain time intervals, as we will show in the next section. However, as we will also see, a further simplification using the two energy values $E_{n \pm 1}$ next to the mean energy E_π can be made to construct the autocorrelation function $a_2(t)$. Notice that defining the periods as a function of the energy differences between the states is not an additional approximation: the phase in the cosine in equation (8), which is exact, is $(\delta_m - \delta_0)t = (E_{n+1} - E_{n-1})t$, so the discrete energy differences are the ones which determine the periodicity of the system.

2.3. Expansion to lowest order using finite differences in the energy eigenstates

The autocorrelation function in equation (9) contains energy derivatives (see equation (5c)). While they are usually taken as continuous derivatives, we will consider finite differences instead of continuous derivatives.

$$E_n^\prime = \frac{E_{n+1} - E_{n-1}}{2} = \frac{(\delta_1 - \delta_1)}{2},$$

$$E_n^{\prime\prime} = \frac{E_{n+2} + E_{n-2} - 2E_{n}}{2} = \frac{(\delta_1 + \delta_1)}{2}. \quad (13)$$

The motivation for this comes from the fact that for the x-ray excitation regime, the few states which contribute to the periodic maxima of a (see figure 1) are not necessarily narrowly spaced in energy, and most importantly, the energy difference between the energy levels located at both sides of the central energy of the WP and the ℓth level may be very different. For this reason, any truncation of the infinite Taylor expansion in a finite series may not be accurate enough. A way of overcoming this is the use of discrete energy differences instead of continuous derivatives.

On the other hand, using finite differences implies that one includes the most important terms in the autocorrelation function with exact phases. The most important pair is $(m, n) = (1, 0)$, since it gives rise to the terms with highest weights in the autocorrelation function, see equation (7). For this pair of indices, the phases in equation (12) become $tE_n^{\prime\prime}/2$ and tE_n^\prime (equation (13)). Therefore, these indices contribute to the autocorrelation function with the phases

$$2\cos\left[\frac{(\delta_1 - \delta_1)t}{2}\right]\cos\left[\frac{(\delta_1 + \delta_1)t}{2}\right] = \cos[(\delta_1 - \delta_0)t] + \cos[(\delta_1 - \delta_0)t], \quad (14)$$

which are the phases of the two lowest order terms in equation (8) (note that $\delta_0 = 0$). The amplitude is slightly off due to truncating C_{mn} in equation (9) to the $j = 0$ contribution, see section A.3 in the appendix. However, this does not affect the periodicities of $a(t)$, which we will discuss next.

We also emphasize that the use of discrete derivatives for calculating periodicities can be applied to any quantum system with a discrete spectrum in the range of excitation, not just a hydrogenic atom as discussed here.

2.4. Difference of periodicities defined by continuous derivatives and finite differences

A natural question is how much the periods \tilde{T}_i defined by the continuous derivatives in equation (5c) differ from the periods T_i, defined by finite differences. This can be best illustrated with an example (see figure 2), for which we take a hydrogenic Rydberg electron with spectrum $E_n = -Z^2/(2n^2)$ excited to E_π. The standard definition for the classical period, understood as the orbiting period of a classical electron, is simply given by the time it takes the electron classically to execute a full period of motion at the energy E_π. Using WKB quantization, T_i can be linked to the derivative of the energy with respect to the quantum number, E_n, to give

$$\tilde{T}_i \equiv \tilde{T}_1 = \frac{2\pi}{E_\pi} = \frac{2\pi Z^3}{n^2}. \quad (15)$$

On the other hand, from finite differences we obtain

$$T_i \equiv T_1 = \frac{-4\pi}{E_{n+1} - E_{n-1}} = \frac{2\pi(n^2 - 1)^2}{nZ^2}. \quad (16)$$

The relative difference between both expressions is

$$\frac{T_i - \tilde{T}_i}{T_i} = \frac{2}{n^2} - \frac{1}{n^2}, \quad (17)$$

which is noticeable for lower values of n: it is around 1% for $n = 14$ (with a relative level spacing $(E_{n+1} - E_{n-1})/(2E_n) \approx 2/n \approx 0.1$), but less than 0.1% for $n = 45$ (with $2/n \approx 0.04$). Similarly the revival times are

$$\tilde{T}_r \equiv \tilde{T}_2 = \frac{4\pi n^4}{3Z^2}, \quad T_r \equiv T_2 = \frac{4\pi n^2(n^2 - 1)^2}{Z^2(3n^2 - 1)}. \quad (18)$$

Note that we define the classical revival time with equation (5c) to be $\tilde{T}_r \equiv \tilde{T}_2 = (2n/3)\tilde{T}_1$ as in [18] but in contrast to many other authors who use half this value. The time scale T_i controls the spreading of the WP in analogy to the dispersion of a free wave where the presence of linear and quadratic dependence on the momentum k in the phase $\exp[i(kx + k^2t/2)]$ lead to dispersion of the expansion of the free particle wave when expanded in terms of plane waves $|k\rangle$. To call T_i quantum...
revival time is justified by the fact that for times \(t \sim T_c \), the phase terms \(\exp[2\pi i (n-\bar{n})^2 t/T_c] \) approach unity such that to a good approximation the WP returns to its original form from \(t = 0 \), for details see the appendix B of [18]. At the shorter time \(T_c/2 \) the WP revives regarding its shape but with opposite phase, such that maxima in the original WP amplitude reappear as minima, as we will see in section 3. This is especially relevant for low quantum numbers with \(T_c/\bar{T}_c \) small. The relative difference between the periods defined in equation (18) is
\[
\frac{\bar{T}_e - T_e}{T_c} = \frac{5/3}{\bar{n}^2} - \frac{4/3}{n^2}(3\bar{n}^2 - 1).
\] (19)
This amounts to \(\sim 0.85\% \) difference for \(\bar{n} = 14 \), and only 0.08\% for \(\bar{n} = 45 \). Hence, both expressions merge for high quantum numbers, while for low quantum numbers with a larger spacing between energy levels a first order Taylor expansion about one energy level gives a poor representation of the energy interval between the levels. Here, the true energy difference between the levels delivers a better approximation since it appears directly in the full expression for the correlation function as demonstrated.

For this reason, we will use in the following the \(T_i \) derived from finite energy differences instead of the \(T_c \).

3. Four essential periodicities of the autocorrelation function

3.1. Classical period and revival time

The autocorrelation function equation (9) or its truncation equation (12) reveal directly the revival time \(T_2 \) and the classical period \(T_c \equiv T_1 \), for whose multiples the first and the second cosine factor in each term become maximal, respectively. These are the two fundamental time scales emerging from the first and second order energy differences of energy levels next to the centrally excited one, as shown above.

A representative autocorrelation function for a radial Rydberg WP which exhibits these well known features is shown in figure 3, for the high- and low-\(\bar{n} \) regimes. The classical and revival times are indicated. Note that results for periods \(T_i \) and \(\bar{T}_c \) coincide to the accuracy of the figure in the high-\(\bar{n} \) case (figure 3(a)), while a discrepancy is visible in the low-\(\bar{n} \) case of figure 3(b).

3.2. The time \(T_s \) of sign change

At first glance, the WP in figure 3(a) shows a revival at \(T_c/2 \), but a closer inspection reveals that this is not an exact copy of the WP, since its maxima are shifted by half a period \(T_c \) (in between the vertical dashed lines). The revival at \(T_c \) is complete, with maxima close to full periods of \(T_c \). Although noticed before [3, 19], there has been no formulation of the autocorrelation function which would reveal the shift directly. This is achieved in equation (6), but better to recognize in equation (9) with the products of two trigonometric functions where the cosine product dominates. The first cosine function with its slow period \(T_c \) can be interpreted as an envelope to the rapidly oscillating second one with period \(T_c \). This cosine envelope has zeros at \(T_c(n) = (2n+1)T_c/4 \) at which the sign of the envelope changes, turning the maxima of the second cosine function into minima. This is the origin of the apparent shift in the position of the maxima.

3.3. Partial revivals

As it is well known, in addition to the revivals, there appear fractional revivals at times
\[
t = \frac{\rho T_c}{2(m^2 - n^2)}, \tag{20}
\]
where the phase of the first cosine in equation (12) is \(\rho \) multiple of \(\pi \). However, as the values of \(n, m \) increase, the corresponding Gaussian weights decrease. Therefore, the higher the order of the fractional revival, the lower its intensity. An example is shown in figure 4. Following the philosophy of keeping only the largest contribution, one can directly see from equation (12) how the partial revivals emerge by truncating the sum according to the dominant contributions of the Gaussian weights.

From table 2 we expect that the largest contributions will arise from the fundamental pair \((n, m) = (1, 0) \), which leads to the fractional revival at \(T_c/2 \). The second largest contribution...
comes from the \((n, m) = (2, 0)\) term, which has an exponent of \(n^2 + m^2 = 4\). According to equation (20) this contribution (with \(p = 1\)) should give rise to a fractional revival at \(T_r/8\). If the third largest term, the pair \((n, m) = (2, 1)\) with an exponent of 5 is included, a new partial revival will appear as expected at \(T_r/6\), although with a very small weight. This evolution can be seen in figure 5 for \(Z = 1, \bar{n} = 85\) and FWHM = 8 ps. In figure 5(a), the autocorrelation function emerges as more

terms are added. The exact analytical value is shown in the top (thick black line). The periodicities due to the different terms of the sum are shown in figure 5(b).

Overall, as can be seen from equation (12), two factors determine the maximum order of fractional revivals resolved in the autocorrelation function: the width of the pulse \(\sigma_T\) and the energy difference between the states adjacent to \(\bar{n}\), as well as the inverse (discrete) classical revival time \(T_c\) in the combination \(\sigma_T/T_c\). The shorter the pulse (small \(\sigma_T\)) and the smaller the energy differences (large \(T_c\)) the higher are these weights, and therefore more fractional revivals will appear in these cases.

Higher values of \(\bar{n}\) with many states involved create high orders of fractional revivals, as seen in figure 4 for a Rydberg WP with roughly 13 participating states (see table 1) with \(Z = 1, \bar{n} = 85\) and FWHM = 8 ps.

4. Wavepacket dynamics in the low excitation domain

We will now explicitly discuss the new regime of low quantum number WP dynamics. In the case of a highly charged ion, e.g., with an effective ionic charge \(Z = 8\) (figure 1(b)), when the \(\bar{n} = 14\) level is hit with a pulse of width FWHM = 2 fs, only \(k \sim 4\) levels are excited and the relative energy difference between the levels is large. Hence, one would expect periodicities obtained from a Taylor expansion to be less accurate.

The corresponding autocorrelation function (equation (4)) is shown in figure 3(b), both against \(T_c\) (full lines), and against \(\bar{T}_c\) (dashed lines). The discrepancy is clear and becomes already seizable around the first revival, for which \(\bar{T}_c\) describes very poorly the periodicity and \(T_c\) remains almost exact. Also prominently visible are the maxima located at half-integer multiples of \(T_c\) around \(T_c/2\) and at integer multiples of \(T_c\) close to the revival time \(T_r\), as explained in section 3.2.

Figure 4. Autocorrelation function equation (6) for a Rydberg wave packet with \(\bar{n} = 85\) and a pulse of 8 ps. The different fractional revivals are shown with vertical lines.

Figure 5. (a) Different truncations of the sum in equation (12), for \(Z = 1, \bar{n} = 85\) and FWHM = 8 ps, including up to \((n, m) = (1, 0)\) (black), \((2, 0)\) (red), \((2, 1)\) (green), \((3, 0)\) (blue) and \((3, 1)\) (orange). The exact analytical value \(A(t)\) (equation (4)) is shown for comparison at the top of the upper figure (thick black). The expected position of the fractional revivals is shown with vertical lines (see text). In (b), the different components are shown separately (without summation) for the same cases plus for the pair \((3, 2)\) (in dark green).
The extreme case of a very low quantum number in the final state is shown in detail in figure 6. Here we consider a hydrogenic atom with an effective $Z = 12$ excited to $n = 7$, with an ultrashort pulse of 0.1 fs with only four states participating, a situation which one may also consider as a multi-quantum beat phenomenon. The x-ray photon energy required for a $1s \rightarrow 7p$ transition in this system is $\omega = 1.92$ keV (we neglect the quantum defect). While the sign change of the extrema at $T_{r}/4$ is very clearly visible, revivals can no longer be identified. Also, the classical time \bar{T}_{c} from a continuous energy derivative completely fails to predict the time scale (and therefore the position of the extrema) correctly after about 2 fs.

In figure 6(b) we see that the particular value of the dipole elements M_{in} has a small influence on the autocorrelation spectrum in this regime. In this figure, the same autocorrelation function as in (a) is shown (black line) with all dipole elements $M_{in} = 1$, together with the realistic calculation for $M_{in} = (2/n)^{3/2}$ (green line) [32]. The details of the autocorrelation function vary, but the position of the peaks remains overall the same.

5. Non-resonant excitations and quantum defects

In a general excitation process, the photon energy may not be resonant with any particular electronic transition. In this case

$$E_{1} + \Omega \rightarrow E_{n} + \epsilon.$$ (21)

We can identify this with an effective energy $E_{\pi+\Delta n}$, where $0 < \Delta n < 1$. As Δn grows, the central energy goes from E_{n} to $E_{\pi+1}$, and the classical period evolves approximately with the third power of $\pi + \Delta n$ (see equation (16)). Notice that what really happens is that while the pairs of eigenvalues involved in the different beatings remain the same, the relative weights in equation (1) are changing, and so is T_{c}. This is illustrated again for $Z = 12$ and FWHM = 0.1 fs in figure 7, for four...
different photon energies: 1.919 keV (1s → 7p transition), 1.922 keV (7p → 7s), 1.925 keV (7s → 7p), and 1.929 keV (7s → 7s). The autocorrelation function and the Fourier transform are shown for the four cases in (a) and (b), respectively. The autocorrelation function and the Fourier transform are shown for the four cases in (a) and (b), respectively. In the latter case, only two terms in equation (12) are used for simplicity, and abscissas are shown as a function of time. Vertical lines indicate the different periods, for \(n = 7 \) and 8 show only two relevant contributions, more terms appear in the spectrum at non-integer values of \(n \). This result indicates that the finite difference description should be extended beyond two terms for non-integer \(n \).

We have explored so far the hydrogenic case in which only one electron is bound to a nucleus of charge \(Z \). However, if the system contains more than one electron, we might consider a nucleus of charge \(Z + p \) and \(p \) core electrons. The WP is then subject to an effective potential with a Coulombic tail of charge \(Z \), whose eigenenergies are given by

\[
E_n^\alpha = \frac{Z^2}{2n_\alpha^2},
\]

where \(n_\alpha = n - \alpha \). The quantum defect \(\alpha \) depends on the angular momentum, but is almost independent on the quantum number \(n \) for \(n \gg 1 \). The shift in the energies affects the periodicities of the system [33, 34]: With the period for the hydrogenic case (\(\alpha = 0 \)) and the multi-electron case (\(\alpha \neq 0 \)) denoted by \(T_\alpha \), and \(T_\alpha^\nu \), respectively, the relative shift due to the quantum defect \(\alpha \) is given by

\[
s_\nu(\alpha) = \frac{T_\nu^\alpha - T_\nu}{T_\nu} = \frac{(\overline{\alpha}_n^2 - 1)\overline{\nu}_n}{(\overline{\nu}_n^\alpha - 1)\overline{\alpha}_n} - 1 = \alpha \left[1 + \frac{n_\nu\overline{\nu}(2 - \alpha^2 + 3\alpha\overline{\nu} - 3\overline{\nu}^2)}{n_\nu(\overline{\nu}^2 - 1)^2} \right].
\]

This shift accumulates in time and should assume the value

\[
\frac{T_\alpha}{T_\nu} s_\nu(\alpha) = \frac{2\pi^3}{3\overline{\nu}^4 - 1} s_\nu(\alpha) \sim -2\alpha
\]

around \(T_\nu \). This prediction is valid even in the low \(\overline{\nu} \) regime, as is shown in figure 8 for \(Z = 8, \overline{\nu} = 9 \) and a pulse length of 0.4 fs, using both, \(\alpha = 0 \) and 0.3.

6. Conclusions

We have explored the dynamics of electron wave packets in the new regime of low atomic excitation which can be realized by short and intense laser pulses of high photon energy, e.g., from XFEL light sources. We have shown that the standard analysis of wave packet dynamics with characteristic periodicities carries over to the low excitation regime, but only when the periods are calculated from differences of the two energy levels bracketing the main excitation level \(\overline{\nu} \) instead of using continuous derivatives. Moreover, we have formulated the autocorrelation function in such a way that a new time scale appears as an important structural element, namely that after a quarter of the revival time \(T_\nu = T_\nu/4 \), where the extrema in the autocorrelation function flip sign. This is a prominent feature in low excitation wave packets and explains the ‘shift’ in the maxima noticed previously in the high \(\overline{\nu} \) domain. Hence, the analytical and numerical tools are now available to analyse experiments on wave packet dynamics with intense short light pulses of high frequency.

Acknowledgments

JMR acknowledges support in part by the National Science Foundation under Grant No. NSF PHY05-51164 during a visit of KITP at the University of Santa Barbara. PR acknowledges support in part from a Juan de la Cierva contract grant from MICINN, and the Advanced Grant of the European Research Council XCHEM 290853. SI thanks the Higher Education Commission Pakistan for funding through grant 041203721E-026. This work was partially supported by the XLIC COST action CM1204.

Appendix. Regrouping the sum in the autocorrelation function

A.1. Terms in the Taylor expansion

The spectrum can be expanded around \(E_\nu \):

\[
E_{\nu+n} - E_\nu \equiv \delta_n = \delta_n^\nu + \delta_n^\nu.
\]

The Taylor expansion is

\[
E_m - E_{n_0} \approx \sum_{j=1}^{\infty} \frac{1}{j!} \frac{d^j E_m}{ dm^j} \bigg|_{m=n_0} (m-n_0)^j
\]

\[
= \sum_{j=1}^{\infty} \frac{1}{(2j-1)!} \frac{d^{2j-1} E_m}{ dm^{2j-1}} (m-n_0)^{2j-1}
\]

\[
+ \sum_{j=1}^{\infty} \frac{1}{(2j)!} \frac{d^{2j} E_m}{ dm^{2j}} (m-n_0)^{2j}.
\]

At \(m = n + n_0 \) it is

\[
E_{\nu+n} - E_{n_0} \approx \sum_{j=1}^{\infty} \frac{1}{(2j-1)!} \frac{d^{2j-1} E_{\nu+n_0}}{ dm^{2j-1}} (n^2)^{j-1}
\]

\[
+ \sum_{j=1}^{\infty} \frac{1}{(2j)!} \frac{d^{2j} E_{\nu+n_0}}{ dm^{2j}} (n^2)^j,
\]

so if we define

\[
\frac{1}{T_j} = \frac{1}{2 \pi j} \frac{d^j (E_{\nu+n_0})}{ dm^j} \bigg|_{m=n_0},
\]

Figure 8. Effect of the quantum defect on the autocorrelation function equation (4) with flat dipole matrix elements \((c_\nu = E_n) \) for \(Z = 8, \overline{\nu} = 9 \) and FWHM = 0.4 fs, using \(\alpha = 0 \) (black) and \(\alpha = 0.3 \) (green). Time is plotted in units of \(T_\nu \).
then

\[E_{n+m} - E_n \sim 2\pi \sum_{j=1}^{\infty} \frac{n^{2j}}{T_{2j}} + 2\pi \sum_{j=1}^{\infty} \frac{n^{2j}}{T_{2j}}. \]

\[\equiv \delta^+_n + \delta^-_n. \] (A.5)

A.2. Final expression for \(a(t)\)

An expansion of the cosines in equation (8) brings

\[a(t)/2 = \sum_{0 \leq |m| < m} W_{mn} \cos[(\delta_m^+ - \delta_m^-) t] \cos[(\delta_n^+ - \delta_n^-) t] \]

\[- \sin[(\delta_m^+ - \delta_m^-) t] \sin[(\delta_n^+ - \delta_n^-) t] \]

\[+ W_{m-n} \cos[(\delta_m^+ - \delta_m^-) t] \cos[(\delta_m^- - \delta_n^-) t] \]

\[- \sin[(\delta_m^+ - \delta_n^-) t] \sin[(\delta_m^- - \delta_n^-) t]. \] (A.6)

Due to the symmetric properties of the energy differences, it is \(\delta^+_n = \delta^+_m\) and \(\delta^-_n = -\delta^-_m\), so

\[\delta^+_m - \delta^-_m = \delta^+_m - \delta^+_n, \] (A.7)

\[\delta^-_m - \delta^-_n = - (\delta^-_m - \delta^-_n). \] (A.8)

The coefficients are

\[W_{mn} = e^{-\left[(\delta^+_m + \delta^+_n)/2\right]/\sigma^2} = e^{-w_{nm}/\sigma^2} e^{-w_{mn}/\sigma^2}, \] (A.9)

where \(w_{nm}\) is defined in equation (10a), and

\[v_{mn} \equiv \frac{\delta^+_m \delta^+_n + \delta^+_m \delta^-_n}{2}. \] (A.10)

Again due to symmetry reasons, \(w_{m-n} = w_{mn}\) and \(w_{m-n} = -w_{mn}\), and thus

\[W_{m-n} = e^{-w_{mn}/\sigma^2} e^{2w_{mn}/\sigma^2}. \] (A.11)

With this, equation (A.6) becomes

\[a(t)/2 = \sum_{0 \leq |m| < m} W_{mn} \cos[(\delta_m^+ - \delta_m^-) t] \cos[(\delta_n^+ - \delta_n^-) t] \]

\[- \sin[(\delta_m^+ - \delta_m^-) t] \sin[(\delta_n^+ - \delta_n^-) t] \]

\[+ W_{m-n} \cos[(\delta_m^+ - \delta_m^-) t] \cos[(\delta_m^- - \delta_n^-) t] \]

\[+ \sin[(\delta_m^+ - \delta_n^-) t] \sin[(\delta_m^- - \delta_n^-) t]. \] (A.12)

The terms with cosines that gather in a term with a coefficient

\[W_{mn} + W_{m-n} = e^{-w_{mn}/\sigma^2} \left(e^{-2w_{mn}/\sigma^2} + e^{2w_{mn}/\sigma^2}\right) \]

\[= 2 e^{-w_{mn}/\sigma^2} \cos \left[\frac{2\sigma^2}{w_{mn}} \right]. \] (A.13)

while the terms with sines gather with a coefficient

\[-W_{mn} + W_{m-n} = e^{-w_{mn}/\sigma^2} \left(-e^{-2w_{mn}/\sigma^2} + e^{2w_{mn}/\sigma^2}\right) \]

\[= 2 e^{-w_{mn}/\sigma^2} \sinh \left[\frac{2\sigma^2}{w_{mn}} \right]. \] (A.14)

Therefore,

\[(W_{mn} + W_{m-n}) e^{w_{mn}/\sigma^2} = 2 \sum_{j=0}^{\infty} \frac{(2\sigma^2)^j}{(2j)!} \sigma^{2j}. \] (A.15)

and

\[(-W_{mn} + W_{m-n}) e^{w_{mn}/\sigma^2} = 2 \sum_{j=0}^{\infty} \frac{(2\sigma^2)^j}{(2j+1)!} \sigma^{2j+1}. \] (A.16)

which are respectively \(2C_{mn}\) and \(2S_{mn}\), as defined in equation (10a). This way we obtain equation (9):

\[a(t)/4 = \sum_{0 \leq |m| < m} e^{-w_{mn}/2} [C_{mn} \cos[(\delta_m^+ - \delta_m^-) t] \cos[(\delta_m^- - \delta_n^-) t] \]

\[+ S_{mn} \sin[(\delta_m^+ - \delta_m^-) t] \sin[(\delta_m^- - \delta_n^-) t]]. \] (A.17)

A.3. Lowest order of the expansion

If we take the lowest order \((j = 1)\) in the definition of \(\delta_m^+\) and \(\delta_m^-\) at equation (11), then

\[\delta_m^+ - \delta_m^- = \frac{2\pi}{T_2} (m^2 - n^2), \]

\[\delta_m^- - \delta_n^- = \frac{2\pi}{T_1} (m - n). \] (A.18)

and

\[u_{mn} = (\delta_m^+)^2 + (\delta_m^-)^2 + (\delta_n^+)^2 + (\delta_n^-)^2 \]

\[= 4\pi^2 \left(\frac{m^2}{T_2^2} + \frac{m^2}{T_1^2} + \frac{n^2}{T_2^2} + \frac{n^2}{T_1^2} \right). \] (A.19)

which at second order in the derivatives is

\[u_{mn} \sim 4\pi^2 \left(\frac{m^2}{T_2^2} + \frac{n^2}{T_2^2} \right). \] (A.20)

The lowest order of the sums in \(C_{mn}\) and \(S_{mn}\) is \(j = 0\), so

\[\frac{C_{mn}}{\sigma^2} = 1, \]

\[\frac{S_{mn}}{\sigma^2} = \frac{2w_{mn}}{\sigma^2}. \] (A.21)

Since \(S_{mn} = 0\) at second order in the derivatives, and using \(\sigma_T = 1/\sigma\), we obtain equation (12),

\[a_2(t)/4 \sim \sum_{0 \leq |m| < m} e^{-w_{mn}/2} \cos \left[\frac{2\pi (m^2 - n^2) t}{T_2} \right] \]

\[\times \cos \left[\frac{2\pi (m - n) t}{T_1} \right]. \] (A.22)

References

[1] Alber G, Ritsch H and Zoller P 1986 Phys. Rev. A 34 1058
[2] Parker J and Stroud C R Jr 1986 Phys. Rev. Lett. 56 716
[3] Yeazell J A, Mallalieu M and Stroud C R Jr 1990 Phys. Rev. Lett. 64 2007
[4] Grossmann F, Rost J M and Schleich W P 1997 J. Phys. A: Math. Gen. 30 L277
[5] Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R and Ullrich J 2006 Phys. Rev. Lett. 97 193001
[6] De S, Bocharova I A, Magrakvelidze M, Ray D, Cao W, Bergues B, Thumm U, Kling M F, Litvinyuk I V and Cocke C L 2010 Phys. Rev. A 82 013408
[7] Magrakvelidze M and Thumm U 2013 Phys. Rev. A 88 013413
[8] Calvert C R, Bryan W A, Newell W R and Williams J D 2010 Phys. Rep. 491 1
[9] Katsuki H, Chiba H, Meier C, Girard B and Ohmori K 2010 Phys. Chem. Chem. Phys. 12 5189
[10] Keeling J and Guriari V 2008 Phys. Rev. Lett. 101 033001
[11] Garanovitch I L, Longhi S, Sukhorukov A A and Kivshar Y S 2012 Phys. Rep. 518 1–79
[12] Krueckl V and Kramer T 2009 New J. Phys. 11 093010
[13] García T, Rodriguez-Bolivar S, Cordero N A and Romera E 2013 J. Phys.: Condens. Matter 25 235301
[14] Reinhold C O, Yoshida S, Burgdörfer J, Wyker B, Mestayer J J and Dunning F B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 091003
[15] Gaeta Z D and Stroud C R Jr 1990 Phys. Rev. A 42 6308
[16] Leichtle C, Averbukh I S and Schleich W P 1996 Phys. Rev. A 54 5299
[17] Aronstein D L and Stroud C R Jr 2005 Laser Phys. 15 1496
[18] Robinett R W 2004 Phys. Rep. 392 1–119
[19] Averbukh I S and Perelman N F 1989 Phys. Lett. A 139 449
[20] Veilande R and Bersons I 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2111
[21] Yeazell J A and Stroud C R Jr 1991 Phys. Rev. A 43 5153
[22] Valle G D, Savoini M, Ornigotti M, Laporta P, Foglietti V, Finazzi M, Duò L and Longhi S 2009 Phys. Rev. Lett. 102 180402
[23] Ghosh S and Banerji J 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3545
[24] Schubert A, Renziehausen K and Engel V 2010 Phys. Rev. A 82 013419
[25] Merkel W, Averbukh S I, Girard B, Paulus G G and Schleich W P 2006 Fortschr. Phys. 54 856
[26] Romera E and de los Santos F 2007 Phys. Rev. Lett. 99 263601
[27] Ayvazyan V et al 2005 Eur. J. Phys. D 37 297
[28] Knoop S, Keim M, Ludde H J, Kirchner T, Morgenstern R and Hoekstra R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3163
[29] Fischer D, Feuerstein B, DuBois R D, Moshammer R, López-Urrutia J R C, Draganic I, Lorch H, Perumal A N and Ullrich J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1369
[30] Averbukh V, Saalmann U and Rost J M 2010 Phys. Rev. Lett. 104 233002
[31] Rivière P, Uhden O, Saalmann U and Rost J M 2009 New J. Phys. 11 053011
[32] Delone N B, Goreslavsky S P and Krainov V P 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4403
[33] Bluem R and Kostelecký V A 1994 Phys. Rev. A 50 R4445
[34] Wals J, Fielding H H and van Linden van der Heuvel H B 1995 Phys. Scr. T 58 62