Epidemiological data on systemic lupus erythematosus in native sub-Saharan Africans

Mickael Essouma a, b, *, Jan René Nkeck a, Francky Teddy Endomba c, Jean Joel Bigna d, e, Madeleine Singwe-Ngandeu a, f, Eric Hachulla g

a Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
b Division of Microbiology and Immunology, Doctoral School of Health Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
c Psychiatry Internship Program, University of Bourgogne, 21000, Dijon, France
d Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, Cameroon
e School of Public Health, Faculty of Medicine, University of Paris Sud XI, Le Kremlin-Bicêtre, France
f Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
g Department of Internal Medicine and Clinical Immunology, CHU Lille, University of Lille, 59037, Lille, France

Article history:
Received 29 October 2019
Received in revised form 7 November 2019
Accepted 7 November 2019
Available online 27 November 2019

Keywords:
Systemic lupus erythematosus
Autoantibodies
Treatments
Outcomes
Native sub-Saharan Africans

Abstract
Multiethnic studies conducted outside sub-Saharan Africa identify African Black people as the highest-risk group for morbidity and mortality among the 5,000,000 people who are affected by lupus globally. In the meantime, there have bee few attempts to summarize lupus data from sub-Saharan Africa. We therefore conducted a systematic review and meta-analysis addressing systemic lupus erythematosus in Native sub-Saharan Africans. This paper both serves as repository for and describes the data obtained by qualitative and quantitative synthesis, notably the pooled prevalence of autoantibodies, the pooled frequency of cumulative drug use, the prevalence of comorbidities/complications and the mortality rate in Native sub-Saharan Africans with systemic lupus erythematosus. These data are interpreted in the research article titled “Systemic lupus erythematosus in Native sub-Saharan African Black people as the highest-risk group for morbidity and mortality among the 5,000,000 people who are affected by lupus globally.”

DOI of original article: https://doi.org/10.1016/j.jaut.2019.102348.
* Corresponding author. Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
E-mail address: essmic@rocketmail.com (M. Essouma).
1. Data description

We herein report the pooled prevalence rates of autoantibodies (Fig. 1), the pooled frequencies of cumulative drug use (Fig. 2), the prevalence of comorbidities/complications (Table 1) and the pooled mortality rate (Fig. 3). The main search strategy used (in PUBMED) to obtain these data is displayed in Table 2 and Fig. 4 describes the study selection process. Table 3 summarizes the characteristics of the overall 15 included studies [2–16] whereas Table 4 summarizes only the studies included in the mortality analysis [4,6–9,14,16].

2. Experimental design, materials, and methods

• Searched databases and search strategy
A comprehensive search of PubMed, Excerpta Medica database (EMBASE), Web of Science, African Journals Online, and Global Index Medicus was conducted to identify all relevant articles published from January 1, 2008 to October 7, 2018, without any language restriction. We considered recent studies to have the current and updated clinical overview of systemic lupus erythematosus in the region. We conceived and applied a search strategy based on the combination of relevant terms. The main search strategy in PubMed was adapted for the search in the other databases. A manual search that consists of scanning reference lists of eligible studies and relevant reviews was performed to identify any studies missed during the review process or by the search strategy.

The titles and abstracts of the retrieved papers were independently screened by two investigators (ME and JRN) and the full-texts of papers deemed potentially eligible were further assessed for final inclusion. All discrepancies for study selection were resolved through discussion or with the arbitrage of a third investigator.

- Criteria for considering studies for the review
 - Types of studies
 - Observational studies including cross-sectional, case-control and cohort studies, as well as case series. We did not consider case reports, commentaries, review articles and letters to the editor.
 - Types of participants
 - We considered studies involving African Black people (or multiethnic groups with possibility to extract information for the African Black people) living in sub-Saharan Africa regardless of the age and gender. Studies were excluded if: (1) they included multiethnic groups with no possibility to extract informations regarding only the African Black people (2) they only included a specific group of lupus patients i.e. lupus nephritis, neuropsychiatric lupus, cutaneous lupus, lupus pericarditis, lupus myocarditis, lupus in pregnant women (3) they included patients with overlapping syndromes.
 - Condition
 - The classification for systemic lupus erythematosus was based on the 1982 American College of Rheumatology and/or revised 1997 American College of Rheumatology criteria [17,18].
 - Outcomes of interest
 - The following outcomes were analyzed: systemic lupus erythematosus prevalence; demographic, clinical and immunological characteristics of systemic lupus erythematosus; frequencies of cumulative drug use for the treatment of systemic lupus erythematosus and its complications; outcome measures of systemic lupus erythematosus.

- Data extraction and management

The data were extracted by two investigators (ME and JJB) using a preconceived, piloted and standardized data abstraction form. The following data were extracted and cross-checked to ensure that there was no missing information: name of the first author, year of publication, study design, period of recruitment of the study population, setting (country, unique/multiple site[s]), locality (urban/rural), sampling method, systemic lupus erythematosus diagnostic criteria and the outcomes of interest.
Fig. 1. Prevalence of autoantibodies in Native sub-Saharan Africans with systemic lupus erythematosus. Grey boxes represent the effect estimates (prevalence), and the horizontal bars represent the 95% confidence intervals (CI). The size of the boxes is proportional to the inverse variance. The diamonds are for the pooled effect estimates and 95% CI, and the dotted vertical line has been added to assist visual interpretation. ANA antinuclear antibodies; anti-DNA anti-deoxyribonucleic acid; anti-RNP anti-ribonucleoprotein; anti-Sm anti-Smith; anti-SSA anti-Sjogren syndrome antigen A; anti-SSB anti-Sjogren syndrome antigen B; aPL anti-phospholipid antibodies; RF rheumatoid factor.

Table: Prevalence of Autoantibodies

Author, Year	Cases	Sample	Prevalence, % [95% C.I.]
ANA			
Adelowo, 2009	64	65	98.5 [91.7; 100.0]
Adelowo, 2012	91	95	98.8 [96.6; 98.8]
Budhoo, 2016	135	137	98.5 [94.8; 99.8]
Diallo, 2009	18	21	85.7 [63.7; 97.0]
Doualla, 2014	31	36	86.1 [70.5; 95.3]
Dzifa, 2017	41	51	80.4 [66.9; 90.2]
Ekwom, 2013	10	13	76.9 [46.2; 95.0]
Gbané-Koné, 2015	32	34	94.1 [80.3; 99.3]
Iba-Ba, 2009	23	23	100.0 [85.2; 100.0]
Kombate, 2008	12	13	92.3 [56.0; 99.3]
Malemba, 2008	19	23	82.6 [61.2; 95.0]
Ngaide, 2016	9	43	20.9 [10.0; 36.0]
Zavier, 2014	18	19	94.7 [74.0; 99.9]
Subgroup prevalence	715		89.7 [79.9; 96.5]

Heterogeneity: $I^2 = 92.2\%$ [88.7%; 94.7%], $\tau^2 = 0.0613$, $p < 0.0001$

Anti-chromatine

Author, Year	Cases	Sample	Prevalence, % [95% C.I.]
Adelowo, 2012	10	15	66.7 [38.4; 88.2]
Subgroup prevalence	15		66.7 [41.7; 87.4]

Heterogeneity: not applicable

Anti-DNA

Author, Year	Cases	Sample	Prevalence, % [95% C.I.]
Adelowo, 2009	14	26	53.8 [33.4; 73.4]
Adelowo, 2012	37	68	54.4 [41.9; 66.5]
Budhoo, 2016	73	137	53.3 [44.6; 61.9]
Diallo, 2014	15	24	62.5 [40.6; 81.2]
Doualla, 2014	25	34	73.5 [55.6; 87.1]
Dzifa, 2017	27	51	52.9 [38.5; 67.1]
Ekwom, 2013	5	13	38.5 [13.9; 68.4]
Gbané-Koné, 2015	25	34	73.5 [55.6; 87.1]
Iba-Ba, 2009	17	23	73.9 [51.6; 89.8]
Kombate, 2008	10	13	76.9 [46.2; 95.0]
Malemba, 2008	2	23	8.7 [1.1; 28.0]
Ndiaye, 2010	67	142	47.2 [38.8; 55.7]
Ngaide, 2016	11	43	25.6 [13.5; 41.2]
Zavier, 2014	15	19	78.9 [54.4; 93.9]
Subgroup prevalence	650		54.6 [45.2; 63.9]

Heterogeneity: $I^2 = 81.1\%$ [69.3%; 84.4%], $\tau^2 = 0.0245$, $p < 0.0001$

Anti-Jo1

Author, Year	Cases	Sample	Prevalence, % [95% C.I.]
Gbané-Koné, 2015	2	16	12.5 [1.6; 38.3]
Subgroup prevalence	16		12.5 [1.3; 32.5]

Heterogeneity: not applicable

Anti-RNP

Author, Year	Cases	Sample	Prevalence, % [95% C.I.]
Adelowo, 2009	1	12	8.3 [0.2; 38.5]
Adelowo, 2012	27	33	81.8 [64.5; 93.0]
Budhoo, 2016	90	137	65.7 [57.1; 73.6]
Diallo, 2014	22	32	68.8 [50.0; 83.9]
Gbané-Koné, 2015	16	16	100.0 [79.4; 100.0]
Iba-Ba, 2009	4	23	17.4 [5.0; 38.8]
Ndiaye, 2010	111	142	78.2 [70.5; 84.7]
Ngaide, 2016	8	43	18.6 [8.4; 33.4]
Subgroup prevalence	438		57.9 [36.4; 77.9]

Heterogeneity: $I^2 = 94.5\%$ [91.4%; 96.6%], $\tau^2 = 0.0897$, $p < 0.0001$
Test for subgroup differences:

\[\chi^2 = 90.40, \text{df} = 11 \quad (p < 0.0001) \]

Anti–Scl 70

Subgroup prevalence	16	12.5 [1.3; 32.5]

Heterogeneity: not applicable

Anti–Sm

Subgroup prevalence	473	53.5 [40.4; 66.2]

Heterogeneity: \(I^2 = 85.6\% [75.3\% ; 91.6\%] \), \(\tau^2 = 0.0352, \quad p < 0.0001 \)

Anti–SSA

Subgroup prevalence	324	45.6 [19.2; 73.4]

Heterogeneity: \(I^2 = 95.8\% [90.5\% ; 97.2\%] \), \(\tau^2 = 0.1620, \quad p < 0.0001 \)

Anti–SSB

Subgroup prevalence	82	33.7 [13.6; 57.6]

Heterogeneity: \(I^2 = 78.9\% [32.4\% ; 93.4\%] \), \(\tau^2 = 0.0357, \quad p = 0.0088 \)

Anticardiolipin

Subgroup prevalence	69	26.0 [3.8; 58.8]

Heterogeneity: \(I^2 = 85.5\% [57.3\% ; 95.7\%] \), \(\tau^2 = 0.0744, \quad p = 0.0010 \)

Any aPL

Subgroup prevalence	85	28.5 [9.4; 52.8]

Heterogeneity: \(I^2 = 79.7\% [46.9\% ; 92.3\%] \), \(\tau^2 = 0.0506, \quad p = 0.0020 \)

RF

Subgroup prevalence	38	21.0 [9.7; 35.1]

Heterogeneity: \(I^2 = 0\% \), \(\tau^2 = 0, \quad p = 0.6404 \)

Test for subgroup differences: \(\chi^2 = 90.40, \text{df} = 11 \quad (p < 0.0001) \)

Fig. 1. (continued).
Antimalarials

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Adelowo, 2009	10	66	15.2 [7.5; 26.1]
Doualla, 2014	27	39	69.2 [52.4; 83.0]
Ekwom, 2013	12	13	92.3 [64.0; 99.8]
Iba–Ba, 2009	14	23	60.9 [38.5; 80.3]
Kombate, 2008	4	16	25.0 [7.3; 52.4]
Ndiaye, 2010	142	142	100.0 [97.4; 100.0]
Zavier, 2014	15	33	45.5 [28.1; 63.6]
Subgroup frequency	**332**		**62.8 [23.3; 94.1]**

Heterogeneity: $I^2 = 98\%$ [97.1%; 98.6%], $\tau^2 = 0.2980$, $p < 0.0001$

Azathioprine

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Doualla, 2014	12	39	30.8 [17.0; 47.6]
Ekwom, 2013	5	13	38.5 [13.9; 68.4]
Iba–Ba, 2009	1	23	4.3 [0.1; 21.9]
Kombate, 2008	2	16	12.5 [1.6; 38.3]
Subgroup frequency	**91**		**19.3 [6.0; 37.7]**

Heterogeneity: $I^2 = 73.2\%$ [24.6%; 90.5%], $\tau^2 = 0.0321$, $p = 0.0107$

Corticosteroids

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Adelowo, 2009	66	66	100.0 [94.6; 100.0]
Dzifa, 2017	45	51	88.2 [76.1; 95.6]
Ekwom, 2013	13	13	100.0 [75.3; 100.0]
Iba–Ba, 2009	23	23	100.0 [85.2; 100.0]
Kombate, 2008	16	16	100.0 [79.4; 100.0]
Ndiaye, 2010	142	142	100.0 [97.4; 100.0]
Zavier, 2014	30	33	90.9 [75.7; 93.1]
Subgroup frequency	**344**		**99.0 [94.9; 100.0]**

Heterogeneity: $I^2 = 78.8\%$ [56.3%; 89.7%], $\tau^2 = 0.0215$, $p < 0.0001$

Cyclophosphamide

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Doualla, 2014	12	39	30.8 [17.0; 47.6]
Ekwom, 2013	6	13	46.2 [19.2; 74.9]
Iba–Ba, 2009	1	23	4.3 [0.1; 21.9]
Kombate, 2008	1	16	6.2 [0.2; 30.2]
Subgroup frequency	**91**		**18.7 [4.1; 40.4]**

Heterogeneity: $I^2 = 80.4\%$ [48.5%; 92.6%], $\tau^2 = 0.0483$, $p = 0.0016$

Low dose Aspirin

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Adelowo, 2009	11	66	16.7 [8.6; 27.9]
Subgroup frequency	**66**		**16.7 [8.7; 26.5]**

Heterogeneity: not applicable

Methotrexate

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Doualla, 2014	4	39	10.3 [2.9; 24.2]
Ekwom, 2013	2	13	15.4 [1.9; 45.4]
Zavier, 2014	4	33	12.1 [3.4; 28.2]
Subgroup frequency	**85**		**11.7 [5.8; 19.4]**

Heterogeneity: $I^2 = 0\%$ [0%; 13.4%], $\tau^2 = 0$, $p = 0.8868$

NSAIDS

Author, Year	Cases	Sample	Frequency, % [95% C.I.]
Adelowo, 2009	20	66	30.3 [19.6; 42.9]
Ekwom, 2013	10	13	76.9 [46.2; 95.0]
Subgroup frequency	**79**		**52.5 [10.8; 92.1]**

Heterogeneity: $I^2 = 90.3\%$, $\tau^2 = 0.1070$, $p = 0.0013$

Test for subgroup differences: $\chi^2 = 212.39$, df = 6 ($p < 0.0001$)
Assessment of the methodological quality of studies

We used an adapted version of the tool developed by Hoy and colleagues [19] to assess the methodological quality of included studies. Three investigators (JJB, ME and FTAE) independently ran the assessment. Discrepancies were discussed and resolved by these investigators. Cohen’s κ statistics were used for inter-rater agreements between investigators regarding study inclusion and for the assessment of the methodological quality of the included studies.

Data synthesis and analysis

The quantitative synthesis was done using the ‘meta’ packages of the R statistical software (version 3.5.1, The R Foundation for statistical computing, Vienna, Austria). We used the reference method for prevalence synthesis suggested by Barendregt and colleagues [20]. The prevalence of systemic lupus erythematosus and systemic lupus erythematosus autoantibodies, the frequencies of cumulative drug use and the mortality rate were recalculated based on crude numerators and denominators provided.

Table 1

Complications/comorbidities	Prevalence, range %
Infections [5,6,8,9,11,12]	4.3–68.7
Cardiovascular diseases and risk factors	
- Heart failure [8]	33.3
- Stroke [6,10,12]	5.1–6.8
- Peripheral vein thrombosis [8,11]	2–4.3
- Diabetes mellitus [6,12]	5.1–18.7
- Hypertension [2,6,9]	10.3–19.6
Chronic kidney disease [6,10,12,16]	6.2–9.4
Any aseptic osteonecrosis [6,10]	2.6–6.2

Mortality rate

Author, Year	Cases	Sample	Mortality rate, % [95% C.I.]
Budhoo, 2016	16	137	11.7 [6.8; 18.3]
Doualla, 2014	2	39	5.1 [0.6; 17.3]
Dubula, 2014	8	56	14.3 [6.4; 26.2]
Dzifa, 2017	22	51	43.1 [29.3; 57.8]
Ekwom, 2013	0	13	0.0 [0.0; 24.7]
Ndiaye, 2010	4	142	2.8 [0.8; 7.1]
Zavier, 2014	4	33	12.1 [3.4; 28.2]

Prevalence

Prevalence	Sample
471	

Prediction interval

Heterogeneity: $\chi^2 = 88.8\%$ [79.3%; 93.9%]. $\tau^2 = 0.0320, p < 0.0001$}

Fig. 3. Mortality rate in Native sub-Saharan Africans with systemic lupus erythematosus. Grey boxes represent the effect estimates (prevalence), and the horizontal bars represent the 95% confidence intervals (CI). The size of the boxes is proportional to the inverse variance. The diamonds are for the pooled effect estimates and 95% CI, and the dotted vertical line has been added to assist visual interpretation.

Assessment of the methodological quality of studies

We used an adapted version of the tool developed by Hoy and colleagues [19] to assess the methodological quality of included studies. Three investigators (JJB, ME and FTAE) independently ran the assessment. Discrepancies were discussed and resolved by these investigators. Cohen’s κ statistics were used for inter-rater agreements between investigators regarding study inclusion and for the assessment of the methodological quality of the included studies.

Data synthesis and analysis

The quantitative synthesis was done using the ‘meta’ packages of the R statistical software (version 3.5.1, The R Foundation for statistical computing, Vienna, Austria). We used the reference method for prevalence synthesis suggested by Barendregt and colleagues [20]. The prevalence of systemic lupus erythematosus and systemic lupus erythematosus autoantibodies, the frequencies of cumulative drug use and the mortality rate were recalculated based on crude numerators and denominators provided.

Fig. 2. Frequency of cumulative drug use among Native sub-Saharan Africans with systemic lupus erythematosus. Grey boxes represent the effect estimates (frequency), and the horizontal bars represent the 95% confidence intervals (CI). The size of the boxes is proportional to the inverse variance. The diamonds are for the pooled effect estimates and 95% CI, and the dotted vertical line has been added to assist visual interpretation.
Search	Search terms
#1	“systemic lupus erythematosus” OR “disseminated lupus erythematosus” OR SLE OR DLE OR “lupus nephritis” OR “renal SLE” OR “cutaneous lupus” OR “cutaneous DLE” OR “Lupus Erythematosus Disseminatus” OR “Libman-Sacks Disease” OR “Lupus vasculitis”
#2	Africa OR Algeria OR Angola OR Benin OR Botswana OR “Burkina Faso” OR Burundi OR Cameroon OR “Canary Islands” OR “Cape Verde” OR “Central African Republic” OR Chad OR Comoros OR Congo OR “Democratic Republic of Congo” OR Djibouti OR Egypt OR “Equatorial Guinea” OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR Guinea OR “Guinea Bissau” OR “Ivy Coast” OR “Cote Ivoire” OR Jamahiriya OR Kenya OR Lesotho OR Liberia OR Libya OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Mayotte OR Morocco OR Mozambique OR Namibia OR Niger OR Nigeria OR Principe OR Reunion OR Rwanda OR “Sao Tome” OR Senegal OR Seychelles OR “Sierra Leone” OR Somalia OR “South Africa” OR “St Helena” OR Sudan OR Swaziland OR Tanzania OR Togo OR Tunisia OR Uganda OR “Western Sahara” OR Zaire OR Zambia OR Zimbabwe OR “Central Africa” OR “Central African” OR “West Africa” OR “Western Africa” OR “Western African” OR “East Africa” OR “East African” OR “Eastern Africa” OR “Eastern African” OR “North Africa” OR “North African” OR “Northern Africa” OR “Northern African” OR “South African” OR “Southern Africa” OR “Southern African” OR “sub Saharaan Africa” OR “sub Saharan African” OR “subSaharan African” OR “subSaharan African”
#3	#1 AND #2

Fig. 4. PRISMA flow chart of study selection. SLE systemic lupus erythematosus.
Study	Design	Country	Setting	Locality	Period of recruitment	Number of participants	Number of participants with SLE	Number of participants with SLE	Classification criteria for SLE	Females, n (%)	Mean age at diagnosis of SLE, y	Age range, y	Study quality
Adelowo. 2009 [9]	Cross-sectional	Nigeria	Hospital based	Urban	2001–2006	1250	66	1982 ACR	63 (95.5)	33	16–60	Moderate	
Adelowo. 2012 [10]	Cross-sectional	Nigeria	Hospital based	Urban	2001–2010	95	95	1982 ACR	91 (95.7)	33.4	17–55	Low	
Budhoo. 2016 [11]	Cross-sectional	South Africa	Hospital based	Urban	2003–2012	137	137	1997 ACR	125 (91.2)	32.2	NR	Low	
Diallo. 2014 [12]	Cross-sectional	Senegal	Hospital based	Urban	2010–2012	35	35	1997 ACR	33 (94.3)	32.8	18–50	Low	
Doualla. 2014 [13]	Cross-sectional	Cameroon	Hospital based	Urban	1999–2009	6485	39	1997 ACR	36 (92.3)	39.2	19–59	Moderate	
Dubulla. 2014 [14]	Cross-sectional	South Africa	Hospital based	Urban	2003–2009	56	56	1982 ACR and 1997 ACR	51 (91.2)	30.3	NR	Low	
Dzifa. 2017 [15]	Cohort	Ghana	Hospital based	Urban	2007–2009	51	51	1982 ACR	45 (86.5)	30.4	14–68	Moderate	
Ekwom. 2013 [16]	Cross-sectional	Kenya	Hospital based	Urban	2010–2011	394	13	1982 ACR and 1997 ACR	13 (100)	34	12–52	High	
Gbané-Koné. 2015 [17]	Cross-sectional	Ivory Coast	Hospital based	Urban	1987–2014	18,076	117	1982 ACR	115 (98.3)	35.8	12–73	Moderate	
Iba-Ba. 2009 [18]	Cross-sectional	Gabon	Hospital based	Urban	2004–2008	23	23	1982 ACR and 1997 ACR	22 (95.6)	32.8	18–68	Moderate	
Kombate. 2008 [19]	Cross-sectional	Togo	Hospital based	Urban	1991–2003	16	16	1997 ACR	16 (100)	31.9	15–46	Low	
Malemba. 2008 [20]	Cross-sectional	Congo, RD	Hospital based	Urban	1988–2002	2370	23	1982 ACR	21 (91.3)	31.8	NR	Low	
Ndiaye. 2008 [21]	Cross-sectional	Senegal	Hospital based	Urban	1997–2006	142	142	1982 ACR and 1997 ACR	125 (88)	34	6–72	Low	
Ngaidé. 2016 [22]	Cross-sectional	Senegal	Hospital based	Urban	2011–2012	50	50	1997 ACR	46 (92)	36.2	14–60	Moderate	
Zavier. 2014 [23]	Cross-sectional	Benin	Hospital based	Urban	2000–2013	33	33	1997 ACR	32 (97)	28.8	16–51	Low	

SLE systemic lupus erythematosus; ACR American College of Rheumatology; n number; y years; NR not reported; Congo RD Democratic Republic of the Congo.
by individual studies. To minimize the effect of studies with extremely small or extremely large prevalence estimates on the overall estimate, the variance of study-specific prevalence was stabilized with the Freeman-Tukey double arcsine transformation before pooling the data with the random effects meta-analysis model [20]. Heterogeneity was assessed by the chi-square test on Cochrane's Q statistic, and quantified by I² values. Low, moderate and high heterogeneity were considered for I² values of 25%, 50% and 75% respectively. The quality of the included studies is described in Table 3. The Egger's test was used to assess the presence of publication bias, and a statistically significant publication bias was considered for p-values < 0.1. We decided a priori that if we find publication bias, we will do no adjustment in regard, since we believed that the prevalence estimates of interest would likely be published even if they are substantially different from the previously reported estimates.

Acknowledgments

None.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M. Essouma, J.R. Nkeck, F.T. Endomba, J.J. Bigna, M. Singwe-Ngandeu, E. Hachulla, Systemic lupus erythematosus in Native sub-Saharan Africans: a systematic review and meta-analysis. J. Autoimmun. (2019), https://doi.org/10.1016/j.jaut.2019.102348.
[2] O.O. Adelowo, S.A. Oguntona, Pattern of systemic lupus erythematosus among Nigerians, Clin. Rheumatol. 28 (2009) 699–703.
[3] O.O. Adelowo, O. Ojo, I. Oduenyi, Auto antibodies in Nigerian lupus patients, Afr. J. Med. Med. Sci. 41 (2012) 177–181.
[4] A. Budhoo, G.M. Mody, T. Dubula, N. Patel, P.G. Mody, Comparison of ethnicity, gender, age of onset and outcome in South Africans with systemic lupus erythematosus, Lupus 26 (2017) 438–446.
[5] M.S. Diallo, B. Mbengue, A. Seck, A.C. Ndao, M.S. Niang, Y.C. Issoko, et al., Evolution of autoantibodies profile in systemic lupus erythematosus according to age and clinical manifestations, Ann. Biol. Clin. 72 (2014) 351–358.
[6] M.B. Doualla, H. Luma Namme, G. Ashuntantang, H. Epee, F. Kwedi, L.F. Kemta, et al., Clinical presentation, treatment and outcome of patients with systemic lupus erythematosus seen at a rheumatology clinic in Douala, Cameroon, Health Sci Dis 15 (2014) 1–5.
[7] T. Dubula, G.M. Mody, Spectrum of infections and outcome among hospitalized South Africans with systemic lupus erythematosus, Clin. Rheumatol. 34 (2015) 479–488.
[8] D. Dzifa, V. Boima, E. Yorke, A. Yawson, V. Ganu, C. Mate-Kole, Predictors and outcome of systemic lupus erythematosus (SLE) admission rates in a large teaching hospital in sub-Saharan Africa, Lupon 0 (2017) 1–7.
[9] P.E. Ekwom, Systemic lupus erythematosus (SLE) at the Kenyatta national hospital, Clin. Rheumatol. 32 (2013) 1215–1217.
[10] M. Gnane-Koné, B. Ouattara, K.J.M. Djaha, E. Megne, N.A. Ngandeu, K.A. Coulibaly, et al., Autoantibodies in systemic lupus erythematosus, on black African subject, in: Abidjan (Ed.), Open J. Rheumatol. Autoimmune Dis. 5 (2015) 28–35.

Table 4
Summary of studies reporting a mortality rate in Native sub-Saharan Africans with systemic lupus erythematosus.

Study	Design	Country	Duration of SLE	Duration of follow up	Mortality rate	Study quality
Dzifa. 2017 [8]	Cohort	Ghana	Mean 25.2 ± 31.5 months (1–143)	Mean 26.1 ± 26.6 days (1–140)	43.1	Moderate
Dubula. 2014 [7]	Cross-sectional	South Africa	Median 8 months (IQR, 1–61)	3–106 days	14.3	Low
Budhoo. 2016 [4]	Cross-sectional	South Africa	Median 42 months (IQR, 22–88.3)	Median 36 months (IQR, 12.5–68)	11.7	Low
Zavier. 2014 [16]	Cross-sectional	Benin	NR	NR	12.1	Low
Doualla. 2014 [6]	Cross-sectional	Cameroon	NR	NR	5.1	Moderate
Ndiaye. 2010 [14]	Cross-sectional	Senegal	NR	10 days–117 months	2.8	Low
Ekwom. 2013 [9]	Cross-sectional	Kenya	1–12 months	1–12 months	0.0	High

SLE systemic lupus erythematosus; IQR interquartile range; NR not reported.
[11] J. Iba-Ba, B. Biteghe, L. Missounga, B.R. Ibouili, J.B. Mipinda, S. Coniquet, et al., Elevated C reactive protein rate in 23 black African patients with systemic lupus erythematosus and without opportunistic infectious disease, Sante (Montrouge, France) 19 (2009) 67–71.
[12] K. Kombate, B. Saka, O.I. Oniankitan, P. Sodonougbo, A. Mouhari-Toure, K. Tchangai-Walla, et al., Systemic lupus erythematosus in Lomé, Togo. Med. Trop. 68 (2008) 283–286.
[13] J.J. Malemba, M.J.M. buyi-Muamba, Clinical and epidemiological features of rheumatic diseases in patients attending the university hospital in Kinshasa, Clin. Rheumatol. 27 (2008) 47–54.
[14] F.S. Ndiaye, S. Ndongo, S. Fall, A. Dioum, A. Pouye, T. Moreira-Diop, et al., Frequency of hematological and immunological manifestations of lupus in Dakar, Dakar Med. 53 (2008) 192–197.
[15] A.A. Ngaïde, F. Ly, K. Ly, M. Diao, A.A.K. Mbaye, F.M.L. Aw, et al., Cardiovascular manifestations in systemic lupus erythematosus in Dakar: descriptive study about 50 cases, Bull. Soc. Pathol. Exot. 109 (2016) 345–352.
[16] Z. Zavier, A. Michee, A. Anthelme, A. Felix, G. Marcelle, A. Martin, Pattern of systemic lupus erythematosus in Benin and west African patients, Tunis. Med. 92 (2014) 707–710.
[17] E.M. Tan, A.S. Cohen, J.F. Fries, A.T. Masi, D.J. McShane, N.F. Rothfield, et al., The 1982 revised criteria for the classification of systemic lupus erythematosus, Arthritis Rheum. 25 (11) (1982) 1271–1277.
[18] M.C. Hochberg, Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus, Arthritis Rheum. 40 (9) (1997) 1725–1734.
[19] D. Hoy, P. Brooks, A. Woolf, F. Blyth, L. March, C. Bain, et al., Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement, J. Clin. Epidemiol. 65 (2012) 934–939.
[20] J.J. Barendregt, S.A. Doi, Y.Y. Lee, R.E. Norman, T. Vos, Meta-analysis of prevalence, J. Epidemiol. Community Health 67 (2013) 974–978.