Graph_sampler: a simple tool for fully Bayesian analyses of DAG-models

Sagnik Datta¹ · Ghislaine Gayraud² · Eric Leclerc³ · Frederic Y. Bois⁴

Received: 22 October 2015 / Accepted: 27 February 2017 / Published online: 9 March 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Bayesian networks (BNs) are widely used graphical models usable to draw statistical inference about directed acyclic graphs. We presented here Graph_sampler, a fast free C language software for structural inference on BNs. Graph_sampler uses a fully Bayesian approach in which the marginal likelihood of the data and prior information about the network structure are considered. This new software can handle both the continuous as well as discrete data and based on the data type two different models are formulated. The software also provides a wide variety of structure prior which can depict either the global or local properties of the graph structure. Now based on the type of structure prior selected, we considered a wide range of possible values for the prior making it either informative or uninformative. We proposed a new and much faster jumping kernel strategy in the Metropolis–Hastings algorithm. The source C code distributed is very compact, fast, uses low memory and disk storage. We

¹ BMBI, Sorbonne Universités, Université de Technologie de Compiègne, Bât. G.I., CS 60 319, 60 203 Compiègne cedex, France
² LMAC, Sorbonne Universités, Université de Technologie de Compiègne, Bât. G.I., CS 60 319, 60 203 Compiègne cedex, France
³ LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
⁴ INERIS DRC/VIVA/METO Parc ALATA, BP2, 60550 Verneuil en Halatte, France
performed out several analyses based on different simulated data sets and synthetic as well as real networks to discuss the performance of \textit{Graph_sampler}.

\textbf{Keywords} Bayesian networks \cdot Structure learning \cdot Posterior distribution \cdot MCMC \cdot Metropolis–Hastings algorithm

1 Introduction

Representing knowledge with uncertainty and automatic reasoning is often carried out using graphical models (Pearl 1988; Lauritzen 1996; Neapolitan 1990). Judea Pearl and Richard E. Neapolitan were the first to summarize the properties of directed acyclic graphs (DAGs) and established them as a new field of study. In the recent years, formal statistical inference on systems of multiple interacting components is often done using DAGs (Heckerman et al. 1995) or Markov networks (Edwards 2000). A Bayesian network (BN) or a belief network is a probabilistic model denoted by a graph $G = (\mathcal{V}, \mathcal{E})$ in which each node or vertex $v \in \mathcal{V}$ represents one of the random variables in set $X = (X_1, X_2, \ldots, X_N)$, where N is the number of nodes and each edge $e \in \mathcal{E}$ express the dependence among the variables in X. A BN is always directed and acyclic and is therefore a DAG. Besides static BNs, there are also dynamic BNs (Husmeier 2003; Friedman et al. 1998), which are actually generalizations of hidden Markov models. In that paradigm, all the random variables of the network are considered to be potentially related to each other over adjacent time points.

DAGs have been used for more than two decades in biomedicine and health-care for handling uncertainty in disease diagnosis, selecting the optimal treatment and predicting treatment outcome (Andreassen et al. 1999). Other applications are found in social network analyses, high dimensional data analyses etc. In computational biology and bioinformatics, BNs have been proposed to model DAGs, for example, for modeling gene regulatory networks, protein structure and gene expression. Many of the available software (Korb and Nicholson 2010) programs which do BN parameter estimation or structural inference run on commercial platforms. The others which are readily available and free are generally not well maintained and not updated regularly. However there are some widely used packages scripted in R that are free and properly maintained.

In this article we present an efficient C language software \textit{Graph_sampler} for Bayesian inference on the structure of BNs; this latter is based on the well-known Metropolis–Hastings (MH) algorithm that allows to sample DAGs from the posterior distribution. Unlike the existing BN learning software \textit{Graph_sampler} propose a new jumping kernel in the MH algorithm making it more time efficient. The software is easy to use and works well with both discrete and continuous data. For each of these data types we formulated two different models. One of the key feature of this software is that it handles large network structure efficiently. A number of different priors are included in this software to reflect the prior knowledge on the graph structure. This software is quite flexible for using different combination of prior knowledge. We made several performance test on our software with intensive simulation studies regarding all possible choices of models and priors to venture the robustness of \textit{Graph_sampler}.
Alongside we considered *structmcmc*, a versatile and easy to use R package (Mukherjee and Speed 2008) for detailed discussion on the performance of *Graph_sampler*. Like *Graph_sampler*, this software also aims to learn structure on DAGs via a fully Bayesian approach.

The remainder of the paper is organized as follows: Sect. 2 briefly discusses the statistical inference for BNs with *Graph_sampler*; Sect. 3 is about the new jumping kernel; Sect. 4 discusses about some of the widely used software and their approach. This section also describes the methodology to check the efficiency of *Graph_sampler* for discrete as well as continuous data set along with the difficulties in the flipping technique. In Sect. 5 we present our results along with their significance. In Sect. 6 we summarize all our results in the form of a discussion. A step by step procedure for installing and running the software is provided in the Appendix.

2 Statistical inference for BNs

Recent work on BNs by Mukherjee and Speed (2008), used Markov chain Monte Carlo (MCMC) simulations to infer on network structure from node values. They also considered priors encoding information relative to existence of edges, degree distribution and sparsity structure of the graph. Bois and Gayraud (2015) recently extended informative priors to account for motifs frequencies in order to generate realistic gene regulating graphs (Bois and Gayraud 2015). For baseline information they proposed to use Bernoulli distributions to model prior knowledge on individual edges. We will be focusing on full Bayesian approach in our work and in the following sections we will describe the prior on the structure and data likelihood available in *Graph_sampler*.

2.1 Priors on graph structure

It is quite a challenging problem to make inference on graphical model structure even with moderate number of nodes, partly because of the huge number of possible graphs. For *N* nodes, the number of possible DAGs can be computed recursively as (Robinson 1973):

\[
a_N = \sum_{k=1}^{N} (-1)^{k-1} \binom{N}{k} 2^{k(N-k)} a_{N-k},
\]

where *a*0 = 1 by convention. So for 2, 3, 4 and 5 nodes network there are 3, 25, 543 and 29,281 possible DAGs respectively.

All of those possible graphs are usually not equally plausible a priori and thus certain features may be incorporated as more likely than the others, a priori. To make inference on graph structure, Bois and Gayraud (2015) considered three different priors. In the most general case, a set of independent Bernoulli priors (*P_B*) is used to model the prior knowledge on individual edges. Thus *P_B* happen to be a local prior on the graph structure. If *p_i,j* is the probability of existence of a directed edge *e_i,j* from node *i* to...
node \(j \), i.e., \(e_{i,j} \sim B(p_{i,j}) \) for all \((i,j) \in \{1,\ldots,N\} \times \{1,\ldots,N\} \), then the global Bernoulli prior \(P_B \) on the graph \(G \) is

\[
P_B(G) = \prod_{i \neq j=1}^{N} (p_{i,j})^{e_{i,j}}(1-p_{i,j})^{1-e_{i,j}}.
\]

The choice of the value for each hyperparameter \(p_{i,j} \) depends on the prior evidence we have on the existence of the given edge from the scientific literature.

The degree \(\text{deg}(v) \) of a vertex \(v \) is defined as the number of edges involving \(v \). We can also define the degree distribution \(P_D \) for \(G \) as a function \(P_d = \text{card}\{v \in V : \text{deg}(v) = d\} \) for all the vertices having degree \(d \). The prior on degree can be expressed as a power law given by

\[
P_d \propto d^{-\gamma}, \quad \text{with} \quad \gamma > 0.
\]

Thus we can define the prior degree distribution for the graph \(G \) as

\[
P_D(G) \propto \prod_{i=1}^{N} \left(\sum_{j=1}^{N} e_{i,j} \right)^{-\gamma}, \quad \text{with} \quad \sum_{j=1}^{N} e_{i,j} > 0.
\]

In addition to \(P_B \) and \(P_D \), if we consider a Beta-Binomial prior \((P_M) \) as it is done in Bois and Gayraud (2015) on the occurrence of three-nodes motifs then the total prior on the graph \(G \) can be expressed in a product form as:

\[
P_T(G) \propto P_B(G) \times P_D(G) \times P_M(G).
\]

Alternative to the Bernoulli prior for the presence of edges is the so called concordance prior \((P_C) \) (see Mukherjee and Speed 2008). The latter required the specification of a prior matrix \(E \) with elements \(E_{i,j} = 1 \) representing a desired edge and \(-1\) representing a non-desired edge. At each iteration the prior is calculated by counting the number of disagreements with the adjacency matrix \(A \) with elements \(A_{i,j} = 1 \) or \(0 \) representing the presence or absence of a directed edge starting from node \(i \) and ending in node \(j \) of the graph \(G \). The form of the concordance prior is then

\[
P_C(G) \propto \exp \left(-\rho \left(\sum_{i,j=1}^{N} |A_{i,j} - E_{i,j}| \right) \right),
\]

where \(\rho \) is a positive valued hyperparameter. If \(P_C \) is used, then the total prior is:

\[
P_T(G) \propto P_C(G) \times P_D(G) \times P_M(G),
\]

or, equivalently, if \(P_B \) is a flat prior i.e. an uninformative prior (with \(p_{i,j} = 0.5 \) for \(i \neq j \)) to avoid any conflict or double accounting with \(P_C \), the total prior is:
Graph_sampler: a simple tool for fully Bayesian analyses... 695

\[P_T(G) \propto P_B(G) \times P_C(G) \times P_D(G) \times P_M(G). \]

Unlike the \(P_B \) prior the other mentioned priors happen to be global priors on the network structure.

2.2 Data likelihood and prior predictive distribution

Our main interest is to uncover the underlying structure of BNs. In any Bayesian network, a parent node has always an influence on its child nodes. Let us denote by \(x = (x_1, \ldots, x_N) \) the data we have on \(N \) nodes, where \(x_i \) is a \(n \)-dimensional vector; where \(n \) is the number of data points per node. The nice property of the BNs is its factorizing definition that express the likelihood as follows:

\[f(x|G) = \prod_{i=1}^{N} f(x_i|P_a(x_i)), \]

where \(P_a(x_i) \) is the set of parent values of \(x_i \) in graph \(G \) (Heckerman et al. 1995). This definition allows to model each piece separately. The modeling of each piece involves additional parameters that we consider as nuisance parameters so that \(f(x_i|P_a(x_i)) \) in Equation (2) corresponds to the prior predictive distribution of \(x_i \) given its parenthood. For a global parent \(P_a(x_i) = \emptyset \) and thus \(f(x_i|P_a(x_i)) \) reduces to \(f(x_i) \). In the following two sections we will explain how we modeled each piece separately.

2.2.1 Continuous data

Gaussian regression model with a Normal-Gamma prior

The general expression for the linear Gaussian regression for a given node \(x_i \) is:

\[x_i = M(x_i)\beta + u, \]

where \(x_i = (x_{1,i}, x_{2,i}, \cdots, x_{n,i}) \) is a vector of \(n \) observations of the dependent variable \(x = ((x_i,j)_{1 \leq i \leq n, 1 \leq j \leq k}) \), \(k \) is the cardinality of \(P_a(x_i) \), \(M(x_i) \) is the so-called design matrix of order \((n \times (k+1)) \) with the first column as 1’s and other columns as \(P_a(x_i) \), \(\beta \) is a real valued vector of regression parameters of length \((k+1) \), and \(u \) follows a Gaussian distribution \(\mathcal{N}(0, \lambda^{-1} I_n) \) with \(\lambda \) being a positive real valued precision and \(I_n \) is the identity matrix of size \(n \). The likelihood for this regression model is therefore:

\[L(\lambda, \beta|x_i, P_a(x_i)) = \left(\frac{\lambda}{2\pi} \right)^{n/2} \exp \left(-\frac{\lambda}{2} (x_i - M(x_i)\beta)^t (x_i - M(x_i)\beta) \right), \]

where \(C^t \) denotes the transpose of the matrix \(C \).

It is classical to choose conjugate form for the priors on the parameters (i.e. \(\beta \) and \(\lambda \)) involved in the regression model:
\[P(\beta, \lambda) = N_{k+1}(\beta \mid \beta_0, (n_0\lambda)^{-1}) G(\lambda \mid \alpha, \omega) \]
\[= \frac{(\omega)^\alpha |n_0|^{1/2}}{(2\pi)^{(k+1)/2} \Gamma(\alpha)} (L_2^{k+1} \alpha^{-1}) \exp \left(-\frac{\lambda}{2} (\beta - \beta_0)^t n_0 (\beta - \beta_0) - \omega \lambda \right), \]

where \(\beta_0 \), a \((k+1)\) real valued vector and \(n_0 \), a matrix of dimension \((k+1) \times (k+1)\), are hyper-parameters related to \(\beta \) whereas \(\alpha, \omega \) both being real valued positive numbers, are hyper-parameters related to the a priori of \(\lambda \). In the above equation \(\Gamma(\cdot) \) represents the Gamma function and \(|n_0|\) denotes the determinant of \(n_0 \).

In that case, the prior predictive distribution is \(t_{\nu}(\mu, \Sigma) \), the \(n \)-dimensional multivariate t-distribution with parameters \(\mu, \Sigma \) and \(\nu \), whose density function is:
\[f(x_i \mid Pa(x_i)) = \frac{\Gamma(\nu + n)/2}{\Gamma(\nu/2)(\nu\pi)^{n/2}} |\Sigma|^{-1/2} \left[1 + \frac{1}{\nu} (x_i - \mu)^t \Sigma^{-1} (x_i - \mu) \right]^{-(\nu + n)/2}, \] (4)

where, \(\mu = [\mu_1, \ldots, \mu_n]^t \) is the location parameter, \(\Sigma \) is the scalar matrix of dimension \((n \times n)\) and \(\nu \) is the degrees of freedom such that
\[\mu = M(x_i) \beta_0, \]
\[\Sigma^{-1} = h(M(x_i))\alpha\omega^{-1}, \]
\[h(M(x_i)) = I_n - M(x_i) \left[M(x_i)^t M(x_i) + n_0 \right]^{-1} M(x_i)^t, \]
\[\nu = 2\alpha. \]

Gaussian regression model with a Zellner g-prior

With \texttt{Graph_sampler} we can also use the Zellner g-prior (Mukherjee and Speed 2008; Nott and Green 2004) for the parameters \(\beta \) and \((\lambda)^{-1}\):
\[P(\beta \mid \lambda^{-1}) = N_{k+1} \left(0, g \lambda^{-1} [M(x_i)^t M(x_i)]^{-1} \right), \]
\[P(\lambda^{-1}) \propto \lambda, \]

where \(g \) is a user defined positive scale factor. The prior predictive distribution of the data is given by:
\[f(x_i \mid Pa(x_i)) \propto (1 + g)^{-(k+1)/2} s^{-n/2}, \] (5)

where \(k \) is the cardinality of \(Pa(x_i) \) and
\[s = x_i^t x_i - \frac{g}{1 + g} x_i^t M(x_i) \left[M(x_i)^t M(x_i) \right]^{-1} M(x_i)^t x_i, \]

provided the term \(M(x_i)^t M(x_i) \) is invertible. A necessary condition for \(M(x_i)^t M(x_i) \) to be invertible is that \(k < n \), that is, the number of parents should be less than the number of data points for per node. Thus Zellner g-prior fails to work when number of parents is greater than the number of data points per node.
2.2.2 Discrete data

For discrete data, *Graph_sampler* offers the possibility to use a Multinomial model with a Dirichlet prior on its parameters (see Heckerman et al. 1995). For such a prior on the parameters we have a closed form of the prior predictive:

\[
 f(x|G) = \prod_{i=1}^{N} \prod_{j=1}^{s_i} \frac{\Gamma(D'_{ij})}{\Gamma(D'_{ij} + D_{ij})} \cdot \prod_{k=1}^{m_i} \frac{\Gamma(D'_{ijk})}{\Gamma(D_{ijk})}, \tag{6}
\]

where \(D_{ijk} \) is the number of components of \(x_i \) that takes the value \(k \) given that \(P_a(x_i) \) has configuration \(j \), \(D'_{ijk} \) are the Dirichlet hyperparameters, \(s_i \) represents the possible number of configurations of the parents of \(x_i \), \(m_i \) stands for the number of possible values of components of \(x_i \) and \(D'_{ij} \) and \(D_{ij} \) are given by:

\[
 D'_{ij} = \sum_{k=1}^{m_i} D'_{ijk} \quad \text{and} \quad D_{ij} = \sum_{k=1}^{m_i} D_{ijk}.
\]

3 *Graph_sampler*: Algorithm

In our work we will concentrate on structure learning of DAGs in the Bayesian context and thus we considered BN as model for DAGs. In the Bayesian approach, we will be working with the posterior distribution of the graph structure given the data. We use an adjacency matrix representation for the graph and store only the eventual difference between adjacency matrix since it is a fast and efficient storage method. A Metropolis–Hasting sampler (Robert and Casella 2004) is used to sample random graphs according to the prescribed posterior probability distribution. The algorithm of the simplified jumping kernel is as follows for the \(t \)-th iteration:

We denote the current graph by \(G \) and its adjacency matrix by \(A^G \). The proposal graph is denoted by \(G' \) and its adjacency matrix by \(A^G' \) in our algorithm.

Algorithm

Step 1: Select \(A^G_{i,j} \) while scanning \(A^G' \).

Step 2:

(a): Sample \(z_{i,j} \sim Bernoulli(p_{i,j}) \) where \(p_{i,j} \) is the Bernoulli prior for edge \(e_{i,j} \).

(b): (i): Adding an edge

\[
 \text{if } z_{i,j} = 1, \text{ then } A^G_{i,j} = \begin{cases}
 A^G'_{i,j} & \text{if } A^G'_{i,j} = 1, \\
 1 & \text{o.w. and provided } G' \text{ is still a DAG,} \\
 \text{o.w. go back to Step 1.}
 \end{cases}
\]

\[Springer \]
(ii): Deleting an edge

\[A'_{i,j} = \begin{cases} A_{i,j}^G & \text{if } A_{i,j}^G = 0 \\ 0 & \text{if } A_{i,j}^G = 1. \end{cases} \]

Step 3: Calculate the acceptance ratio.

\[\delta = \min \left(1, \frac{f(x, G') P_T(G') P(A_{i,j}^G|A_{i,j}^G)}{f(x, G') P_T(G') P(A_{i,j}^G|A_{i,j}^G)} \right). \]

Note that due to Step 2, the acceptance ratio can be rewritten as follows:

\[\delta = \min \left(1, \frac{f(x|G') P_T(G') P_B(G')}{f(x|G') P_T(G') P_B(G')} \right), \]

where \(f(x|G) = \prod_{i=1}^{N} f(x_i|P_a(x_i)) \) is the prior predictive with \(f(x_i|P_a(x_i)) \) given by Eq. (4, 5 or 6) and \(P_T \) is the total prior on the graph structure. Clearly this simplifies since \(P_B \) is a part of \(P_T \) (see Eq. 1).

Step 4: Choose \(G^{t+1} \) as follows: \(G^{t+1} = \begin{cases} G' & \text{with probability } \delta, \\ G^t & \text{with probability } 1 - \delta. \end{cases} \)

Note that deleting an edge from a DAG always returns a DAG. The procedure is repeated until convergence in probability is attained. Gelman and Rubin’s (GR) \(\hat{R} \) criterion (Gelman and Rubin 1992) is used on each element of the graph’s adjacency matrix to check the convergence of several simulation chains. The advantage of using the GR criterion for the convergence is that, we do not have to save the whole chains from the start. We can check the convergence using the final posterior edge probability matrix obtained after the specified number of iterations neglecting the burning runs. For this criterion, we consider the three edge probability matrices and calculate the within-chain and the between-chain variance. Then the estimated variance of the parameter is calculated as a weighted sum of the within-chain and between-chain variance. Based on the potential scale reduction factor we infer on the convergence of the three chains. For BNs we need to ensure that the proposed graphs are DAGs. This is done with a fast topological sorting algorithm (similar to that of Pearce and Kelly 2006) operating on a list index of the nodes.

4 Efficiency analyses of Graph_sampler

In order to evaluate the efficiency and accuracy of Graph_sampler, we performed several experimental runs based on different network structure, size and data type. We even varied the underlying model based on the data type to have a clear idea about the efficiency of the software. There are other very well known packages in R like the deal and bnlearn. The package deal (Boettcher and Dethlefsen 2003) is scripted in R language and uses BNs to analyse the data which can be discrete and/or continuous.
Graph_sampler: a simple tool for fully Bayesian analyses...

types; for the network parameters, suitable priors can be constructed and parameter estimation is possible using successive updating. This package is useful for structure learning of the network and uses the heuristic greedy search algorithm. The scoring function is based on maximising the Bayes factor. At each step of the greedy search algorithm, we either add, delete or reverse an edge and calculate the Bayes factor for all the possible graphs. The proposal graph with the maximum Bayes factor is selected to update the current graph. The package bnlearn (Scutari 2010) is also scripted in R to do structural inference on BNs. This package is efficient to work with both discrete as well as continuous data. For the BN structure learning, various constraint-based algorithms like the Grow-shrink, Incremental association and Max-min parents and children algorithms are implemented. Hill-Climbing greedy search algorithm is the only score-based algorithm implemented in this package. The sampling algorithm consists of first recovering the skeleton of the desired graph and then evaluating the directionality of the edges. Both of these packages sample the best graph that maximizes the Bayes factor or the posterior odds from amongst all possible proposal graphs. This is quite different from the sampling scheme that we proposed. Our interest is to sample graphs based on the specified posterior distribution. Another efficient Matlab package for BN analysis is bnt (Murphy 2007). This tool does inference on parameters as well as on network structure. This software is suitable for both decision networks and dynamic Bayesian networks. However this tool lacks the GUI. Inference is carried out using various algorithms like the Junction tree, variable elimination and Pearl’s polytree. bnt has various options for parameter learning as well as for structure learning. It is very clearly documented, free and is very object-oriented. Besides these well known packages, we also have structmcmc (Mukherjee and Speed 2008) which is an efficient software coded in R for BN structure learning. We selected structmcmc because it involves structure learning in a fully Bayesian approach adopting the same type of BN on DAGs and the Metropolis–Hastings algorithm. The main difference between the software lies in the set of possible structure priors and in the jumping kernel of the MCMC methods. On the other hand both the software propose to sample graphs based on the posterior distribution. Thus we selected structmcmc as a baseline software to discuss in details the advantages and limitations of Graph_sampler. structmcmc proposes a Zellner g-prior for continuous datasets and a Multivariate Dirichlet prior for discrete datasets. The Normal Gamma model is not available to structmcmc users.

We performed several runs with a large set of initial adjacency matrices (corresponding to DAG structure) ranging from the true matrix (the adjacency matrix used to generate data), a random adjacency matrix and finally a null matrix. We observed that all the results obtained proved to be robust with respect to the choice of the initial adjacency matrix. Thus for our subsequent studies with large network structures, we used the null matrix as the initial adjacency matrix for structure learning. For the structure prior, we used the Bernoulli prior on edges; to check the efficiency of our software we ran experiments with several Bernoulli priors ranging from uninformative prior \(p_{ij} = 0.5 \) to informative prior \(p_{ij} = 0.9 \) for present edges and 0.1 for absent edges). As an alternative to \(P_B \), we also used the concordance prior \(P_C \) with \(\rho = 1 \) since structmcmc does not provide a Bernoulli prior. The prior on the loop motifs \(P_M \) was not used and therefore set to 1. We also used the degree prior \(P_D \) to check.
the increase in efficiency of Graph_sampler. We followed the simulation procedure described in (Mukherjee and Speed 2008) to generate discrete datasets. For the continuous case, we generate $x_i|Pa(x_i)$ as described in Eq. (3) and for global parents we generated data from $U(0, 10)$.

To start with we considered a real life biological network specifically the EGFR system (see Fig. 2). For this actual network we simulated a discrete dataset. This real life network consisted of only 14 nodes. In order to check efficiency of Graph_sampler for larger networks, we simulated networks of 5–120 nodes, with 100 data points for each node. While using Zellner g-prior we considered 150 data points for a network of size 120 nodes in order to respect the constraint that number of parents should be less than the number of data points. Figure 1 represents the network with 120 nodes. It is clearly a descending tree network. We used three different seeds to run three chains for each software program. We saved the three chains separately and calculated Gelman’s \hat{R} convergence diagnostic at each iteration. The first iteration for which \hat{R} attained at most 1.05 for all edges of the graph was considered as the minimum number of iterations required for convergence. Graph_sampler was compiled with gcc version 4.2.1 (Apple Inc. build 5666) while structmcmc was run with R 3.0.2 (R Core Team 2013). We performed a time and convergence comparison between both the software. In order to check the performance and efficiency of both the software, we use R language script to plot the heat map and the accuracy curve. The heat map is used to summarize for all edges the edge posterior distribution through its means. We used the R language package lattice to plot the heat maps. The accuracy curve is given by $\text{accuracy} = (\text{true positive edges} + \text{true negative edges})/\text{total number of possible edges}$ and is a function of the posterior probability threshold above which an edge is declared present. We used SDMTools, to plot the accuracy curves.

5 Results

5.1 Dealing with discrete data

An actual biological network

To study the practical efficiency of Graph_sampler for a true biological network, we considered the same network as studied by Mukherjee and Speed (2008). In their work they considered a biological network known as the epidermal growth factor receptor (EGFR) system. Figure 2 gives a pictorial representation of the EGFR system. This biological network involves 14 proteins each of which is a ligand, a receptor or a cytosolic protein. Data for this study was synthesized based on the network and following the model as used by Mukherjee and Speed (2008). Each of the 14 proteins are considered to be a random variable with binary values $\{0, 1\}$. Depending on the parents, the conditional distributions are defined as Bernoulli with success parameter p. The global parents are sampled with $p = 0.5$. For the child nodes, we take $p = 0.8$ if one of its parents take the value 1 and $p = 0.2$ otherwise. For each node we simulate 200 data points.
Fig. 1 Hierarchical representation of the 120 nodes network used to generate our simulated data. All the other smaller networks were subsets from this network

To make our experimental runs coherent with structmcmc, we defined the prior matrix on the graph structure based on the concordance prior proposed in Mukherjee and Speed (2008). As the model proposed was Multinomial model, we defined a
Dirichlet prior for the parameters involved. In case of $Graph_sampler$ we strengthen the prior on the structure of the network by considering a degree prior with $\gamma = 3$.

Figure 3 represent our comparative study in the form of heat maps and accuracy curve. We observe that for a small network like the EGFR system there is no significant difference in accuracy between $Graph_sampler$ and $structmcmc$ for low threshold values but for higher threshold values, $structmcmc$ has an advantage. Observing the heat maps we find that even though $Graph_sampler$ produces lower edge probability matrix but does not give rise to false negative edges. On the other hand $structmcmc$ retrieves edges with high posterior edge probabilities. However the number of false negative edges (edges not present in the network structure) is more compared to $Graph_sampler$. Moreover we infer that $structmcmc$ failed to respect the directionality of the edges. Thus Fig. 3c depicted the presence of edges in the upper triangular matrix i.e. we obtained edges with opposite direction. From the adjoining accuracy curve we also observe that for small threshold values <0.4, our software has an upper hand while for higher threshold values $structmcmc$ have higher accuracy than $Graph_sampler$. Thus we can take this as a trade off where we have to be careful while working with both of these software and decide accordingly. If we focus on time efficiency of the two software, we observe that $Graph_sampler$ is almost 200 times faster than $structmcmc$.

Fig. 2 Graph of the EGFR system
Graph_sampler: a simple tool for fully Bayesian analyses...

Thus taking both the criteria together, we observe that Graph_sampler has its own advantages and limitations like structmcmc.

An alternative other than the Dirichlet prior on the parameter could be the Zellner g-prior with $g = 1$. Even though the Zellner g-prior should be used for continuous data, we did use it for the discrete data to check its efficiency. For a binary data set as described above, we can easily fit a linear regression model and thus fall back to the continuous scenario making the use of Zellner prior valid. We still used the priors P_C and P_D. Figure 4 represents the heat map and the accuracy curve for the two software. Comparing the heat map of Figs. 3b and 4a, we observe that there is an improvement in the posterior edge probability matrix obtained from Graph_sampler. There is also a reduction in the number of false negative edges and this is true even for structmcmc. As far as accuracy is concerned, both the software are quite efficient and there was no significant difference in accuracy between the two. However considering the time scale, Graph_sampler is again 100 times after than structmcmc and thus have a slight advantage.
Simulated networks

We studied the performance of Graph_sampler for discrete datasets, using the Multinomial model. In order to perform structure learning of the simulated networks, we defined an uninformative P_B prior along with P_C and P_D priors on the graph structure for Graph_sampler and only a P_C prior in case of structmcmc. Figure 5 gives a graphical summary of our timing results. Because of memory problems we could not achieve convergence with structmcmc for networks of more than 60 nodes. Similarly for 120 nodes, Graph_sampler did not converge with a billion iterations. One of the reason behind this could be that with larger network size we have to increase the dataset. Graph_sampler was about 100 times faster than the structmcmc for the same number of iterations. Graph_sampler running time was also less influenced by the network size (i.e. it increased by a factor 4.06 when going from 5 to 60 nodes with Graph_sampler and that factor being 16.5 for structmcmc). With 30 nodes, Graph_sampler took about 2×10^7 iterations (275 s) to converge while for structmcmc it was 10^6 iterations (3848 s). Thus structmcmc required 10–100 times less iterations to
reach convergence but was about 14 times slower than \textit{Graph_sampler}. We observed that \textit{Graph_sampler} was more time efficient compared to \textit{structmcmc}. This can be explained by two reasons. One possible reason might be the R platform in which \textit{structmcmc} is developed while \textit{Graph_sampler} is developed in C language. The other reason could be the sampling technique involved in \textit{structmcmc} that allows adding, deleting or flipping of edges based on the neighbourhood search at each iteration step. This notion of neighbourhood search and checking for acyclicity proves pricey with respect to time. On the other hand, with neighbourhood search, \textit{structmcmc} reaches convergence faster compared to \textit{Graph_sampler} as it allows better exploration of the sampling space and does not get stuck in local maxima. This feature along with the limitation concerning our algorithm will be discussed later on in Sect. 5.4. These two reasons also contribute to the fact that with \textit{structmcmc} it is not possible to learn network structures involving more than 60 nodes. We compared the edge probability matrices from both the software by the accuracy curve to check whether they converge to the true graph.

Figure 6 panels (a–c) represent the posterior edge probabilities in the form of heat maps. Figure 6 panel (d) shows the accuracy of the software in retrieving actual edges as a function of the probability threshold above which an edge is declared present. It was observed that with small threshold values \textit{structmcmc} had higher accuracy than \textit{Graph_sampler}. We observe that with the single use of concordance prior the accuracy of \textit{Graph_sampler} in retrieving edges correctly is low for small threshold values. However with a threshold value above 0.5, both the software had almost the
Fig. 6 Heat map of the true network with 30 nodes (a), edge posterior heat maps of Graph_sampler with P_B and P_C prior (b) structmcmc with P_C prior (c) with discrete data. The x-axis represents the parent nodes and the y-axis the corresponding children. Accuracy curve of the two software (d)

same accuracy. Altogether, Graph_sampler reaches convergence faster in time and has equal accuracy as structmcmc for threshold values above 0.5.

The accuracy of Graph_sampler can be improved with the introduction of the degree prior (P_D) with $\gamma = 2$. As our network is a descending tree network, the inclusion of the degree prior is very beneficial. Figure 7a represents the posterior probabilities of the edges and resembles more like the true graph. It was observed that with the prior P_D, the accuracy of Graph_sampler improved significantly (Fig. 7b) and even with very low threshold values, the accuracy was almost equal to 0.9.

5.2 Dealing with continuous data

For continuous data, structmcmc uses a Zellner g-prior on regression parameters. With Graph_sampler either a normal-gamma prior or a Zellner g-prior can be used. As in our previous studies we defined uninformative P_B prior along with P_C and P_D priors
on the graph structure for \textit{Graph sampler} and only \(P_C \) prior in case of \textit{structmcmc}. The two models are compared here.

\textbf{Normal-gamma model}

Figure 8 represents our study in a graphical way for network size varying from 5 to 120 nodes. We clearly observed that for networks with more than 60 nodes, \textit{structmcmc} failed to converge even with a billion iteration and in a reasonable time. For networks with <60 nodes, we inferred from the figure that \textit{Graph sampler} required 10 times less iterations to converge and each iteration was executed 10 times faster than that by \textit{structmcmc}, making our software about 100 times faster than \textit{structmcmc}. The reasons behind the difference in time efficiency between the two software are the same as for the discrete case. With respect to convergence efficiency, the difference between the two is exactly opposite to the one observed in the discrete case and this could be explained by the fact that the use of normal-gamma prior is not incorporated in \textit{structmcmc} and hence the prior predictive of the model differs between \textit{structmcmc} and \textit{Graph sampler}. The very narrow band width (A) reveals that for \textit{Graph sampler} the increase in network size does not have much influence on time.

We also studied the posterior edge probabilities obtained from each of the software to draw inference on their efficiency to retrieve the true graph structure. We plotted the posterior edge probabilities in the form of heat maps to understand sampling scheme prescribed in \textit{Graph sampler}. Figure 9 represents the three heat maps for a network with 30 nodes. We observe that \textit{Graph sampler} performs well in retrieving edges present higher up in a tree network. However as we go down the tree structure, the efficiency of \textit{Graph sampler} decreases. As our model used simulated data, so there is an underlying correlation in the dataset. For this reason as we go down the network...
structure Graph_sampler samples many new edges. Interestingly the directionality of the network structure is maintained. On the other hand structmcmc is efficient as we move down the network structure. However structmcmc fumble with the directionality of the edges. We plotted the accuracy curve for the two software. Figure 9d represents that the accuracy of structmcmc is slightly higher than that of Graph_sampler for smaller threshold values. However this difference is not much and for higher threshold values, both the software have almost equal accuracy.

Strengthening the prior model by considering the hierarchy of the structure and defining a degree prior

The degree prior \(P_D \) with \(\gamma = 2 \) was introduced to check the improvement in the accuracy of Graph_sampler. Figure 10a represents the posterior probabilities of the edges and resembles more like the graph in Fig. 9b. It was observed that with the prior \(P_D \), there was no significant improvement in the accuracy of Graph_sampler (Fig. 10b).

An alternative: Zellner g-prior model

For continuous datasets, we can also use the Zellner g-prior as used in structmcmc. We run both the software for various values of g. We started with \(g = 1 \) for all the networks considered in our study. We checked the time required and the convergence.
Graph_sampler: a simple tool for fully Bayesian analyses...

Later we performed similar runs for different values of g like 5, 10, 50 and 100. In each case we observed the convergence rate and the posterior edge probabilities.

With a g value of 1 or 5, convergence was achieved for all the networks. As we increased the value of g to 10, runs with networks having 5 and 10 nodes converged with the maximum value of \hat{R} being 1.12. This was not the case for networks with 20, 30, 40 and 60 nodes as they converged ($\hat{R} = 1.05$ approx). However increasing the value of g to 50 and 100, convergence was not achieved for any of the networks. Thus in such a situation, Graph_sampler and structmcmc differs. For smaller network sizes, Graph_sampler performed well with g value equal to 1 or 5. With bigger networks sizes having 100 data points for each nodes, the g value can range from 1 to 40. Graph_sampler failed to converge when the g value was equal to the number of data points. On the other hand, structmcmc performed well with higher g values and was most efficient when the g value was equal to the number of data points.

Fig. 9 Heat map of the true network with 30 nodes (a), edge posterior heat maps of Graph_sampler with P_B and P_C priors (b) structmcmc with P_C prior (c) with continuous data, the x-axis represents the parents and y-axis the corresponding children. Accuracy curve for the two software (d)

point. Later we performed similar runs for different values of g like 5, 10, 50 and 100. In each case we observed the convergence rate and the posterior edge probabilities.

With a g value of 1 or 5, convergence was achieved for all the networks. As we increased the value of g to 10, runs with networks having 5 and 10 nodes converged with the maximum value of \hat{R} being 1.12. This was not the case for networks with 20, 30, 40 and 60 nodes as they converged ($\hat{R} = 1.05$ approx). However increasing the value of g to 50 and 100, convergence was not achieved for any of the networks. Thus in such a situation, Graph_sampler and structmcmc differs. For smaller network sizes, Graph_sampler performed well with g value equal to 1 or 5. With bigger networks sizes having 100 data points for each nodes, the g value can range from 1 to 40. Graph_sampler failed to converge when the g value was equal to the number of data points. On the other hand, structmcmc performed well with higher g values and was most efficient when the g value was equal to the number of data points.
In order to understand the reason behind such a difference in convergence rate between the two software, we discuss the flipping technique used in Graph_sampler along with its advantages and disadvantages.

5.3 Problem with flips

The primary advantage of the reduced jump kernel (only adding or deleting one edge at a time) used in Graph_sampler is that it is faster than the jump kernel allowing flips. Since the choice of pairs of nodes is systematic, there is no need to check the neighbourhood cardinality (Husmeier 2003) as done in structmcmc.

This jump kernel has some drawbacks also. Consider a network with 5 nodes where node 4 is a parent of node 5. In the MCMC simulations, at a particular step, we propose to add an edge from node 5 to node 4. As the log posterior for the proposed network is quite high (if 4 conditions 5, the two are correlated and 5 conditioning 4 has high probability), we accept such a proposal. According to our flipping technique, in order to retrieve the true edge (from 4 to 5), we need to first delete the edge from 5 to 4, leaving them independent. However a network with 4 and 5 independent has low log posterior probability and we rarely accept such a move.

Figure 11 is a dot plot where the blue dots and the red circles appearing in pairs represents the difference in log probability for a network when passing from an edge (4 to 5) to an edge (5 to 4) respectively using the jump kernel specified in Graph_sampler. For a pair A, a move from the red dot (log probability -675) to a blue dot (log probability -676), the log probability has to pass through -720 (4 and 5 independent) making such a move impossible. So in the most likely regions of G the flip is very unlikely. For the pair B, a move from the red dot (log probability of -698) to a state of independence (log probability of -685) is easy, but the next move to a blue dot (log probability of -700) is not easy. This is also an unlikely region where some flips are possible. The flip for the pair C is unlikely to occur as the log probability has to
pass by -687 while going from −678 to −681. Flips would occur easily when they are close to the diagonal.

The difficulty with the jump kernel can be due to the large data set for which the posterior mass favours fewer graphs. Under such a situation, the standard MCMC scheme faces difficulty in moving between graphs, or finding the high-scoring graphs. In such a case parallel tempering is a proficient option to speed up the MCMC-based convergence of network inference. This tempering approach is generally referred to as Model Composition by Metropolis-Coupled Markov Chain Monte Carlo (MC4) (Barker et al. 2010). The parallel tempering involved in this MC4 (beyond the scope of this paper) approach allows proper mixing of the Markov chain and helps to escape the local maxima.

5.4 Sensitivity problem with respect to the structure prior

To check the sensitivity of the normal-gamma model with respect to informative and non-informative priors, we considered a network with 40 nodes having 100 data points for each node and defined only the P_B priors on the edges. We first considered an informative prior on edges with each desired edge having a prior probability of 0.9 and 0.1 for others except for autoloops for which probability was 0. We define a less informative structure prior with 0.8 and 0.2 and carry out our experimental run. We...
repeated the process and finally defined a flat non informative prior of 0.5 for all the edges.

Convergence was achieved by Graph_sampler for each run utilizing various strengths of structure prior and the corresponding posterior edge probabilities retrieved were presented in form of heat map to analyse the sensitivity of Graph_sampler in selecting the desired graph amongst all equivalent graphs.

With a strong informative prior of 0.9 and 0.1, Graph_sampler converged and was able to retrieve all the desired edges with a high probability. The posterior probabilities of some undesired edges were also high. This is mainly observed as we move down the network due to the presence of partial correlation between the nodes higher up in the network and those at the bottom. As we use less informative priors, this behaviour becomes more prominent and the efficiency of Graph_sampler decreases (Fig. 12).

With a flat prior of 0.5 for all the edges, the efficiency of Graph_sampler is the least. Figure 1 and the heat map of Fig. 12a show that the true network is a descending tree (the upper triangular matrix of the heat map has zero edge probability). For the informative prior, we observe that the normal-gamma model works well for the upper part of the tree network. However as we descend down the tree, the sensitivity of the model decreases as more children are involved. One way to increase the performance of the model can be by increasing the number of data points for each node present in the lower part of the network. We plotted the accuracy curve to depict the efficiency of Graph_sampler for the various informative priors.

Figure 12d represents the accuracy curve of Graph_sampler. We observed that Graph_sampler was very versatile with the type of prior information provided. With very strong prior the accuracy was almost equal to 0.9 for threshold values above 0.2. This stated that Graph_sampler was efficient enough to retrieve the true edges with higher posterior probabilities and assign low probability (less than the threshold) to false edges. For noninformative priors Graph_sampler had an accuracy of 0.65 for threshold below 0.3. The accuracy increased to 0.8 and above with the increase in threshold from 0.5 to 1.0.

We checked the sensitivity of Graph_sampler for degree prior (P_D) with a noninformative Bernoulli prior on edges. We observed that there was not much improvement in the accuracy of Graph_sampler in this case (Fig. 13).

6 Discussion

We observed that like other widely used software (bnlearn, deal), Graph_sampler works well with both discrete as well as continuous data. For continuous data, we considered a regression model and we fitted a multinomial model for the discrete data. These two model representations are commonly used when dealing with BNs. For continuous data, Graph_sampler allows the user to use either the Normal-gamma prior or the Zellner g-prior for the parameters involved in the regression model. Our results showed that Graph_sampler performs better with the Normal-gamma prior than the Zellner g-prior. One other limitation of Zellner g-prior is that the number of parents should be less than the number of data points per node which happens be unrealistic while dealing with real observations. For the multinomial model we
Graph_sampler: a simple tool for fully Bayesian analyses...

Fig. 12 Heat map of the true (desired) network with 40 nodes (a), heat map of posterior edge probabilities obtained from Graph_sampler with an informative Bernoulli prior of 0.9 for desired edges (b) and with a noninformative Bernoulli prior of 0.5 (c) with a Normal gamma likelihood; the x-axis represents the parents and y-axis the corresponding children. Accuracy curve for the various informative priors (d)

defined a Dirichlet prior for the parameters. This software provides several alternative mutually independent priors distributions on the structure of the graph that can be used in varied combination to improve the results. In particular we considered the concordance prior (P_C), the Bernoulli prior (P_B), the degree prior (P_D) and the motif prior (P_M). One can efficiently use the motif prior (not used in our work) for structure learning of the network. Full Bayesian analyses are possible and graphs can be sampled from the specified posterior distribution by specifying the structure prior along with the data. We observed that while dealing with large networks the choice of priors and their combination is quite essential for retrieving the true edges because of the huge number of possible DAGs. It means that larger networks generally require strong informative priors on the structure of the network. Hence for specific network structures (like tree structure), if we have an extra prior knowledge on the structure of the graph, probably we may have to think of building a prior that takes into account this extra information. For a large tree structure we observed that the efficiency of Graph_sampler in retrieving
the true edges decreases as we move down the tree. An alternative way to solve this problem could be to use larger data sets for nodes present way down in the tree structure.

We find that for both continuous as well as discrete data, Graph sampler is very time efficient compared to structmcmc mainly due to three reasons: the fast and simple jumping kernel, the systematic scanning of the adjacency matrix and the C platform in which Graph sampler has been developed. Graph sampler is performant in retrieving the network structure when proper set of data along which suitable structure priors are defined during the process of structure learning. Thus we observe that Graph sampler is flexible because it can combine several sets of priors and able to handle all type of data. However as explained in Sect. 5, this jumping kernel has some limitations with respect to large data sets for which the posterior mass favours fewer graphs. The standard MCMC scheme utilized in this kernel faces problem with the local maxima and thus fails to search for the high-scoring graphs. A proficient option would be to use parallel tempering (beyond the scope of this paper) to speed up the MCMC based convergence.

We conclude that Graph sampler could be a good software to perform Bayesian analyses of DAGs models. Besides structmcmc, bnlearn and deal which are scripted in R, there are several other efficient BN software available that perform parameter estimation and/or network structure learning in the Bayesian context. Korb and Nicholson (2010) reviewed some of the software available at the time that do inference on network structure.

Acknowledgements S. Datta is funded by a Ph.D. studentship for the French Ministry of Research. The research leading to these results has received funding from the Innovative Medicines Initiative Joint Undertaking, under Grant Agreement No. 115439 (StemBANCC), resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. This publication reflects only the author’s views and neither the IMI JU nor
Graph_sampler: a simple tool for fully Bayesian analyses...

EFPIA nor the European Commission are liable for any use that may be made of the information contained therein.

Appendix: Graph_sampler installation

Graph_sampler is an easily available free software that can be redistributed or modified under the terms of the GNU General Public License as published by the Free Software Foundation. It is an inference as well as simulation tool for DAGs and can simulate random graphs for general directed graphs as well as for DAGs. In the case of BNs, we infer about their probable structure through the joint use of priors and data about node values.

Graph_sampler is written in ANSI-standard C language and can be compiled in any system having a ANSI C compliant compiler. The GNU gcc compiler (freeware) is highly recommended and the automated compilation script (called Makefile) can be successfully used if the standard 'make' command is available. In order to modify the input file parser, the 'lex' and 'yacc' are highly recommended. The full software along with the manual can be downloaded from:

https://sites.google.com/site/utcchairmmbstpt/software

Once downloaded, the software should be decompressed using 'gunzip' and 'tar' commands. Other archiving tools can also be used. Graph_sampler can be compiled using the 'make' command. On successful compilation of Graph_sampler, it is ready for running. In order to run Graph_sampler, an input file specifying the simulation parameters should be provided. In Unix the command-line syntax to run that executable is:

"graph_sampler [input-file [output-prefix]]"

where the brackets indicate optional arguments. If no input file and/or output prefix are not specified, the program uses the defaults. The default input file is script.txt and the output files created depends on the parameters specified in the input file. Default output file names are best_graph.out, graph_samples.out, degree_count.out, motifs_count.out, edge_p.out and results_mcmc.bin.

A Graph_sampler input file is a text (ASCII) file that obeys relatively simple syntax (see the manual). Values of all the predefined variables in the input file should be properly defined. Description and range of each variable is illustrated in the manual. In case of improper assignment of values, Graph_sampler post error messages during runtime.

References

Andreassen S, Riekehr C, Kristensen B, Schonheyder H, Leibovici L (1999) Using probabilistic and decision-theoretic methods in treatment and prognosis modeling. Artif Intell Med 15:121–134
Barker D, Hill S, Mukherjee S (2010) Mc4: a tempering algorithm for large-sample network inference. Pattern Recognit Bioinform 6282:431–442
Boettcher S, Dethlefsen C (2003) deal: a package for learning bayesian networks. J Stat Softw 8:1–40
Bois F, Gayraud G (2015) Probabilistic generation of random networks taking into account information on motifs occurrence. J Comput Biol 22(1):25–36
Edwards D (2000) Introduction to graphical modelling, 2nd edn. Springer, New york
Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the fourth conference on uncertainty in artificial intelligence (UAI). Morgan Kaufmann Publishers Inc., San Francisco, pp 139–147

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197–243

Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics 19(17):2271–2282

Korb K, Nicholson A (2010) Bayesian artificial intelligence. CRC Press, Boca Raton

Lauritzen S (1996) Graphical models. Oxford University Press, Oxford

Mukherjee S, Speed P (2008) Network inference using informative priors. Proc Natl Acad Sci USA 105(38):14,313–14,318

Murphy K (2007) Software for graphical models: a review. ISBA (Intl Soc for Bayesian Analysis). Bulletin 14(4):13–15

Neapolitan R (1990) Probabilistic reasoning in expert systems: theory and algorithms. John Wiley and Sons, Inc., New York

Nott D, Green P (2004) Bayesian variable selection and the swendsen–wang algorithm. J Comput Graph Stat 13:141–157

Pearce D, Kelly P (2006) A dynamic topological sort algorithm for directed acyclic graphs. ACM J Exp Algorithmics 11:1–7

Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, Burlington

R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/

Robert C, Casella G (2004) Monte Carlo statistical methods. Springer Texts in Statistics, Berlin

Robinson R (1973) Counting labeled acyclic digraphs. In: New directions in the theory of graphs. New York Academic Press, pp 239–273

Scutari M (2010) Learning bayesian networks with the bnlearn package. J Stat Softw 35:1–22