CARDIOMETABOLIC COMORBIDITIES IN CANCER SURVIVORS

Leah L. Zullig, PhD, MPH,a,b Anthony D. Sung, MD,c Michel G. Khouri, MD,c Shelley Jazowski, MPH,a Nishant P. Shah, MD,c Andrea Slinger, MD,c Dan V. Blalock, PhD,b,d Colette Whitney, MS,a,e Robin Kikuchi, PhD,f Hayden B. Bosworth, PhD,a,b,c,d Matthew J. Crowley, MD,b,c Karen M. Goldstein, MD, MSPH,b,c Igor Klem, MD,c Kevin C. Oefinger, MD,c,* Susan Dent, MDc,*

ABSTRACT

There are nearly 17 million cancer survivors in the United States, including those who are currently receiving cancer therapy with curative intent and expected to be long-term survivors, as well as those with chronic cancers such as metastatic disease or chronic lymphocytic leukemia, who will receive cancer therapy for many years. Current clinical practice guidelines focus on lifestyle interventions, such as exercise and healthy eating habits, but generally do not address management strategies for clinicians or strategies to increase adherence to medications. We discuss 3 cardiometabolic comorbidities among cancer survivors and present the prevalence of comorbidities prior to a cancer diagnosis, treatment of comorbidities during cancer therapy, and management considerations of comorbidities in long-term cancer survivors or those on chronic cancer therapy. Approaches to support medication adherence and potential methods to enhance a team approach to optimize care of the individual with cancer across the continuum of disease are discussed. (J Am Coll Cardiol CardioOnc 2022;4:149–165) Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

THERE ARE NEARLY 17 MILLION INDIVIDUALS IN THE UNITED STATES WHO ARE CANCER SURVIVORS INCLUDING THOSE WHO ARE CURRENTLY RECEIVING THERAPY WITH CURATIVE INTENT, THOSE WITH CHRONIC CANCER SUCH AS CHRONIC LYMPHOCYTIC CANCER (CLL) OR METASTATIC DISEASE WHO WILL RECEIVE CANCER THERAPY FOR MANY YEARS, AND LONG-TERM SURVIVORS. THE NATIONAL CANCER INSTITUTE DEFINES A CANCER SURVIVOR FROM THE TIME OF CANCER DIAGNOSIS THROUGH THE CONTINUUM OF LIFE, ENCOMPASSING EACH OF THESE DISTINCTLY DIFFERENT SUBGROUPS. HEREFORE, WE USE THE TERM CANCER SURVIVOR TO REPRESENT INDIVIDUALS ACROSS THIS CONTINUUM.

At the time of diagnosis, many cancer survivors have pre-existing comorbidities, such as hypertension, dyslipidemia, and diabetes, that increase their risk of both cancer and non-cancer-related morbidity.

From the aDepartment of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA; bCenter of Innovation to Accelerate Discovery and Practice Transformation, Durham Veterans Affairs Health Care System, Durham, North Carolina, USA; cDepartment of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; dDepartment of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA; eCascades East Oregon Health and Science University, Klamath Falls, Oregon, USA; and the fKeck School of Medicine, University of California-Los Angeles, Los Angeles, California, USA. *Drs Oeffinger and Dent contributed equally to this work as co-senior authors.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.

Manuscript received September 19, 2021; revised manuscript received March 16, 2022, accepted March 18, 2022.

ISSN 2666-0873

https://doi.org/10.1016/j.jaccao.2022.03.005
and mortality (Central Illustration). This is due in part to aging, and the fact that the development of many cancers have shared risk factors (eg, obesity and sedentary lifestyles) with cardiovascular disease (CVD). Many individuals will survive their cancer only to have a preventable cardiac death. Management of cardiometabolic comorbidities associated with CVD is essential during and after cancer therapy.

This point is best illustrated in women with breast cancer. With advances in screening, early detection, and cancer therapy, the 5-year survival rate for breast cancer now exceeds 90%, with the survival rate for localized disease nearly 99%. Population-based data suggest that breast cancer survivors are at a greater risk for CVD mortality compared with women without breast cancer, and the increase in risk manifests approximately 7 years after cancer diagnosis. While research has focused on the risk of heart failure due to the administration of anthracyclines and anti-HER2 therapy, or coronary artery disease due to left-sided breast irradiation, the majority of CVD is due to aging, obesity, and sedentary lifestyles. With a median age of 63 years at the time of breast cancer diagnosis, most women will have at least 1 cardiometabolic comorbidity, such as hypertension, diabetes, or dyslipidemia. Appropriate pharmacotherapy for these comorbidities is often overlooked. Among women with early-stage breast cancer who were prescribed a statin prior to their breast cancer diagnosis, adherence significantly decreased from 1-year pre-diagnosis (67%) to 2 years post-diagnosis (35%). Compared with the pre-cancer rate, by 3 years post-diagnosis the adherence rate (50%) was still substantially lower, even for women who were treated with surgery and radiation without adjuvant or neoadjuvant systemic therapy. This decrease in adherence was not confined to statin therapy; a similar trend was seen with antihypertensive and oral diabetes medications.

Not surprisingly, women who are nonadherent with their noncancer medications are also more likely to be nonadherent with their adjuvant endocrine therapy. Nonadherence, combined with the weight gain and diminishing cardiorespiratory reserve, creates a perfect storm. While this pattern of lifestyle changes and suboptimal adherence to noncancer medications has been best elucidated among women with breast cancer, there is a growing recognition that this cycle is common among both genders and other cancer populations. Compared with individuals without a cancer history, individuals with cancer have disproportionately higher burdens of CVD comorbidities.

Cancer survivors are at increased risk for several chronic conditions, including hypertension, dyslipidemia, and diabetes. Determining optimal management of comorbidities for patients with cancer is critical. A multidisciplinary care approach is recommended throughout the continuum of active cancer treatment and survivorship. Survivorship research should focus on medication adherence and coordination of care.

HIGHLIGHTS

- Cancer survivors are at increased risk for several chronic conditions, including hypertension, dyslipidemia, and diabetes.
- Determining optimal management of comorbidities for patients with cancer is critical.
- A multidisciplinary care approach is recommended throughout the continuum of active cancer treatment and survivorship.
- Survivorship research should focus on medication adherence and coordination of care.
recently been reviewed by Leerink et al,48 our paper focuses solely on individuals diagnosed with cancer in adulthood.

A few caveats are important to understand with respect to this paper. First, some cancer therapy-induced comorbidities are short term and resolve upon cessation of the therapy (eg, steroid induced hypertension), and thus may not warrant long-term treatment. However, it must be remembered that most of the CVD risk arises not from these less common sequelae, but rather from the relative inattention given to management of “garden variety” hypertension, dyslipidemia, or diabetes after the cancer diagnosis. Providers should also avoid overtreatment of these comorbidities among patients with advanced disease with shortened life expectancies. Last, there is a paucity of evidence-based guidelines for the management of these 3 comorbidities among cancer survivors. We have extrapolated from existing guidelines intended for noncancer populations, recognizing that cancer survivors should have the same long-term benefits.

HYPERTENSION

Approximately 32% of U.S. adults 40 to 59 years of age have hypertension,49 with a prevalence that increases with age.50 Among older individuals, 70% of U.S. adults have hypertension.49 Given that two-thirds of cancers are diagnosed among individuals 65 years of age and older, most patients have pre-existing hypertension at the time of their cancer diagnosis. However, for others, such as adolescents or young adults with cancer, it is rather uncommon to have pre-existing hypertension. Given that two-thirds of cancers are diagnosed among individuals 65 years of age and older, most patients have pre-existing hypertension at the time of their cancer diagnosis. However, for others, such as adolescents or young adults with cancer, it is rather uncommon to have pre-existing hypertension. The obesity epidemic in the United States may increase the number of younger cancer patients with pre-existing hypertension. This was illustrated by a recent retrospective cohort study by Chao et al51 in which 11.8% of adolescent or young adult cancer survivors, 15 to 39 years of age at time of diagnosis, had pre-existing hypertension compared with 7.4% of a matched comparison group without cancer. In a large data linkage study from Kaiser Permanente Northern California, the investigators observed that breast cancer survivors had a higher...
TABLE 1 Drug Class and Management Considerations for Anticancer Therapy Associated With Hypertension

Drug Class	Cancer Therapy	Frequency of Hypertension	Example Malignancies Treated	Management Strategies	Notes and Considerations
Alkylating agents	Cisplatin	Very common	Bladder, breast, esophageal, head and neck, lung, testicular		
Antiandrogens	Bicalutamide	Common	Prostate	Spironolactone for abiraterone No specific first-line recommendation for lupon and degarelix	Spironolactone may decrease the therapeutic effect of abiraterone
	Flutamide	Uncommon	Prostate		
	Nilutamide	Uncommon	Prostate		
Aromatase inhibitors	Anastrozole	Very common	Breast	No specific considerations among first-line agents	85% hepatic elimination via N-dealkylation, hydroxylation, glucuronidation
	Exemestane	Common	Breast		
	Letrozole	Common	Breast		
BRAF inhibitors	Vemurafenib	Very common	Melanoma		
Chimeric antigen receptor T cell therapy	Tisagenlecleucel	Very common	Leukemia, lymphoma		
MEX inhibitors	Trametinib	Very common	Melanoma		
Monoclonal antibodies	Ramucirumab	Very common	Colorectal, gastric, lung		
	Rituximab	Common	Leukemia, lymphoma		
	Ofatumumab	Uncommon	Leukemia, lymphoma		
	Alemtuzumab	Rare	Leukemia, lymphoma		
mTOR inhibitors	Everolimus	Very common	Breast, pancreas, renal	Dihydropyridine CCBs ACE inhibitor	Temsrolimus may enhance adverse/toxic effects of ACE inhibitor
	Temsirolimus	Common	Renal		
Proteasome inhibitors	Bortezomib	Common	Multiple myeloma, lymphoma	No specific considerations among first-line agents	P530 344 inducers and inhibitors may alter serum concentration of bortezomib
	Carfilzomib	Very common	Multiple myeloma		
Tyrosine kinase inhibitors	Axitinib	Very common	Renal, thyroid	Nifedipine shown to be effective first-line agent in a clinical trial	ACE inhibitor/ARBs less effective than nifedipine
	Cavelanistinib	Very common	Renal, thyroid		ACE inhibitor may be effective against risk of proteinuria; though data are limited
	Ibrutinib	Very common	Leukemia/lymphoma		Non-dihydropyridines contraindicated
	Ponatinib	Very common	Leukemia		
	Pazopanib	Very common	Renal, sarcoma, thyroid		
	Regorafenib	Very common	Colorrectal, GIST, HCC		
	Sorafenib	Very common	HCC, renal, thyroid		
	Sunitinib	Very common	GIST, PNET, renal, sarcoma, thyroid		
	Vandetanib	Very common	Thyroid		
VEGF inhibitors	Bevacizumab	Very common	Breast, cerebral, colorectal, endometrial, Mietoblastoma, ovarian, renal, sarcoma, colorectal	ACE inhibitor/ARB Dihydropyridine CCBs Beta-blocker Thiazide diuretic	Renal clearance Beta-blocker may have beneficial effect via interaction with endothelial NO pathway Thiazides may cause electrolyte imbalance ACE inhibitor may be effective against risk of proteinuria; though data are limited
	Ziv-afibercept	Very common	Thyroid		

The frequency of hypertension was graded as: very common >10%; common 5% to 10%; uncommon 1% to 5%; rare <1%. High normal: SBP 130 to 139 mm Hg and/or DBP 85 to 89 mm Hg. Grade 1: SBP 140 to 159 mm Hg and/or DBP 90 to 99 mm Hg. Grade 2: SBP 160 to 179 mm Hg and/or DBP 100 to 109 mm Hg. Grade 3: SBP 180 mm Hg and/or DBP 110 mm Hg. Isolated systolic hypertension: SBP 140 mm Hg and DBP <90 mm Hg.

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; CCB = calcium-channel blocker; DBP = diastolic blood pressure; GIST = gastrointestinal stromal tumor; PNET = primitive neuroectodermal tumor; SBP = systolic blood pressure; VEGF = vascular endothelial growth factor.

Cumulative incidence of hypertension after 2 years compared with matched control subjects (10.9% vs 8.9%). Hypertension risk was higher for cases receiving left-sided radiation or endocrine therapy. In an analysis of data from the National Health Interview Survey, 2002 to 2018, Jiang et al noted that the prevalence of hypertension among individuals with a history of cancer increased from 35.9% in 2002 to 40.6% in 2018.

Several guideline committees have created algorithms for the management of hypertension in noncancer patients. The management of hypertension in patients with cancer prior to diagnosis should be consistent with current standard guidelines. A recent review by Cohen et al provides a comprehensive review of hypertension during and after cancer therapy, with a special emphasis on therapy...
induced hypertension. The authors provided an excellent discussion on the prevalence of, and potential mechanisms for, therapy-induced hypertension, including therapy with vascular endothelial growth factor (VEGF) inhibitors (ie, bevacizumab), tyrosine kinase inhibitors (ie, ibrutinib), and proteasome inhibitors (ie, bortezomib, carfilzomib, and ixazomib) (Table 1). Relevant to this discussion, however, are preliminary results from a retrospective review of our institution’s experience with ibrutinib among 219 consecutive patients with CLL (K. C. Oeffinger, personal communication, January 15, 2021). Prior to initiation of ibrutinib, 59.4% of CLL patients had pre-existing hypertension, of which most (78.5%) were considered controlled. Following initiation of ibrutinib, 74.5% of these patients with pre-existing hypertension were subsequently uncontrolled (eg, systolic blood pressure [BP] ≥140/90 mm Hg). Of the 89 patients who did not have pre-existing hypertension, almost half (47.2%) developed new onset hypertension following initiation of ibrutinib. In total, following initiation of ibrutinib, 64.8% of the 219 patients developed either uncontrolled or new onset HTN. These findings highlight the need for a team-based approach for the management of both cancer and noncancer conditions.

Antiandrogen agents (ie, abiraterone, enzalutamide, and apalutamide) have revolutionized the treatment of castrate-resistant prostate cancer. These agents have been associated with an increased incidence of hypertension. In a meta-analysis of abiraterone administered with prednisone the incidence of all grade and grade 3 to 4 hypertension was 21.9% (95% CI: 13.6%-33.2%) and 10.2% (95% CI: 6.9%-11.6%), respectively. Abiraterone was associated with significantly increased hypertension risk of all grades with a relative risk of 1.8 (95% CI: 1.5%-2.2%; P < 0.001) and high grade with a relative risk of 2.1 (95% CI: 1.7%-2.7%; P < 0.001) in comparison with control subjects. While it would appear logical to use spironolactone to reverse some of these cardiovascular side effects associated with excess mineralocorticoid, there have been reports to reverse this may cause progression of prostate cancer due to a potential selective antiandrogen effect. Gonadotropin-releasing hormone analogs, such as Lupron, have reported a <5% risk of hypertension. Gonadotropin-releasing hormone receptor antagonists, such as degarelix, have a 6% to 7% reported occurrence of hypertension.

Estrogens have a protective effect on the cardiovascular system and regulate lipid homeostasis, coagulation system, and the production of vasoactive molecules such as nitrous oxide and prostaglandins, and thus increase vasodilation. Aromatase inhibitors, which reduce breast cancer-related mortality in post-menopausal women with estrogen-positive breast cancer by inhibiting estrogen production have been implicated in increasing the risk of hypertension and CVD-related mortality; however, this association is controversial. The incidence of hypertension with anastrozole is between 5% and 13%, and the incidence with anastrozole was higher compared with placebo (risk ratio: 1.6; 95% CI: 1.2-2.3) in the IBIS-II (International Breast Cancer Intervention Study II) trial.

Hypertension in Long-Term Cancer Survivors.

Most therapy-induced BP elevations are short term, resolving upon cessation of therapy. Few therapies used to treat cancer in adults directly result in new, long-term hypertension. An exception to this generalization is allogeneic hematopoietic cell transplant (HCT) survivors. Several studies have demonstrated increased prevalence of hypertension in HCT survivors. In a study of 1,089 HCT recipients (both allogeneic and autologous) at least 2 years post-treatment not currently taking immunosuppressants, patients were 2.1 times (95% CI: 1.4-3.0) more likely to develop hypertension than their siblings. In a case-matched comparison study of 44 HCT patients and their donor siblings, rates of hypertension in survivors were increased as compared with siblings (50% vs 73%). Additionally, allogeneic HCT survivors have an increased relative risk of hypertension (5.2) as compared with autologous HCT survivors. The mechanism(s) by which this increased risk of hypertension occurs is not well understood.

Another group of interest are those patients receiving long-term or intermittent cancer therapies that are known to cause hypertension. As noted previously, this includes patients with CLL, men receiving androgen deprivation therapy, and possibly women on an aromatase inhibitor. Because each of these groups can do well on cancer therapy, it is essential to monitor their BP and treat appropriately.

Last, there is an extended period of nonadherence to noncancer medications, even among patients treated only with cancer surgery. This problem was highlighted by Calip et al in a cohort of 4,216 women of which, approximately 2 years after a diagnosis of early-stage breast cancer diagnosis, 37% were nonadherent to their antihypertensive medications. Thus, even among long-term survivors who were treated with curative intent, there are frequently patients who may have inadequately controlled hypertension several years after their cancer diagnosis. This, again, is in part due to the fragmentation of the
health care of survivors and the lack of coordination between oncology and PCPs.

BP MANAGEMENT DURING AND AFTER CANCER THERAPY. Cohen et al\(^7\) provide an excellent set of algorithms for measuring and managing elevated BP among cancer survivors during and following cancer therapy.

We fully agree that it is essential to monitor the BP of patients throughout cancer management and align BP goals with current Joint National Committee guidelines.\(^7\) For patients receiving cancer therapy, other than endocrine therapy, we recommend following the standard hypertension target of \(<140/90\) mm Hg. Notably, many patients may have problems with eating, nausea, etc., and so we do not advocate aggressive management of the BP. Agents commonly used for BP management include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and beta-blockers, recognizing that all 3 of these classes of agents are preferred options for patients receiving cardiotoxic therapies such as an anthracycline-based regimen. Because of the frequent electrolyte abnormalities among patients receiving chemotherapy, we tend to avoid or be very cautious with the use of thiazide-type diuretics.

For patients who have completed chemotherapy, we advocate a stratified approach to hypertension management. For those patients who have not received a potentially cardiotoxic cancer therapy, a goal \(<140/90\) mm Hg, consistent with current position statements\(^7\) and societal cardio-oncology guidelines is recommended.\(^7\) In this scenario, the major pharmacologic agents for hypertension management are the same as those for the general population, including the thiazide-type diuretics, ACE inhibitors, beta-blockers, or dihydropyridine calcium-channel blockers. However, for patients treated with a potentially cardiotoxic cancer therapy, we recommend the goal set by the American College of Cardiology/American Heart Association (ACC/AHA) of \(<130/80\) mm Hg.\(^5\) Similarly, these antihypertensive agents are also used in the prevention and treatment of left ventricular dysfunction (eg, ACE inhibitors, ARBs, and/or beta-blockers).

Noncancer patient guidelines recommend that patients with hypertension undergo routine monitoring for other CVD risk factors and target organ damage, which can be minimized with optimal BP control.\(^5\) Concomitant use of excessive alcohol, steroids, or nonsteroidal anti-inflammatory drugs may cause additional BP-increasing effects, and pain alleviation and stress management are important treatment goals. Lifestyle recommendations remain applicable and include weight loss or weight control, physical activity, alcohol moderation, and a Dietary Approaches to Stop Hypertension eating plan, which includes sodium reduction.\(^5\)

There are a few caveats to BP management with specific chemotherapeutic exposures (Table 1). Prior to initiation of therapy with VEGF inhibitors (eg, bevacizumab), screening for high BP and other cardiovascular risk factors should be performed. Hypertension diagnosed prior to cancer therapy should be treated with appropriate pharmacotherapy.\(^5\) However, some specific modifications of hypertension management are important to consider during bevacizumab therapy. The occurrence of hypertension on anti-VEGF therapy has been associated with better oncologic response to therapy\(^5,7\); therefore, hypertension should be managed appropriately and interruption in cancer therapy avoided unless severe, uncontrolled hypertension occurs. Second, VEGF inhibitors can cause renal thrombotic microangiopathy and glomerular injury,\(^7\) and therefore renal function, proteinuria, and blood counts should be monitored. Some guidelines recommend dihydropyridine calcium-channel blockers, ACE inhibitors, or ARBs as first-line therapies for management of bevacizumab-induced hypertension.\(^7\) There are no significant interactions reported between bevacizumab and antihypertensive drugs. However, diuretics may exacerbate already volatile electrolyte homeostasis during cancer treatment and result in hypokalemia, hyponatremia, hyperuricemia, or magnesium depletion. The selective beta-blocker, nebivolol, has vaso-dilatory effects by serving as a B3 receptor agonist and releasing endothelial nitrous oxide thereby targeting BP in 2 ways: a nitric oxide (NO) pathway and beta agonist pathway. Nitrates, which work mainly by the NO release pathway, could be considered for BP management, however there is a theoretical risk that concurrent use with VEGF inhibitors could counteract the antitumor effect, given that they work solely on the NO pathway.\(^7\)

For reducing hypertension induced by cediranib, a hypertension management protocol with nifedipine as a first-line agent, has been shown to be effective, and early treatment resulted in fewer cases of severe hypertension, although this did not translate into reduction in cancer treatment dose interruptions or discontinuations.\(^7\) In preclinical studies, nifedipine did not affect antitumor activity of cediranib.\(^8\) Other treatment options include ACE inhibitors, ARBs, or beta-blockers, and like treatment of bevacizumab-associated hypertension, there may be potential concerns with the use of nitrates and diuretics.
We are currently piloting an approach to integrate continuous BP monitoring by leveraging a blue tooth enabled BP monitor in an on-going study in cancer patients at our institution (NCT03919214). Cancer survivors on active cancer therapy, being treated with curative intent, monitor their BP at home and send values directly into the electronic health record using SMART on FHIR (Fast Healthcare Interoperability Resources). An automated electronic health system messaging algorithm then sends alerts for abnormal weekly average pressures to the cancer survivors’ primary care team, with copies to the patient and the oncologist. The goal of the study is to determine the proportion of PCPs who received and acted on the automated message, as well as the proportion of patients with cancer who completed 3 weekly BP measurements.

For long-term cancer survivors, there are no evidence-based recommendations for specific agents. However, we and others favor the use of ACE inhibitors or ARBs among patients treated with anthracyclines or at risk for heart failure or renal dysfunction. Lifestyle modifications including exercise and dietary changes should be tailored to meet an individual patient’s needs.

HYPERTENSION HIGHLIGHTS.

- Most patients have pre-existing hypertension at the time of their cancer diagnosis.
- The management of hypertension in patients with cancer prior to diagnosis should be consistent with current standard guidelines.
- Many therapy-induced BP elevations can be short term, resolving upon cessation of therapy.

DYSLIPIDEMIA

Elevated total cholesterol and low-density lipoprotein cholesterol (LDL-C) are present in 11.9% and 30.3% of the general population, respectively, and low high-density lipoprotein cholesterol is present in 11.9% and 28% of the general population.82 Among patients with active or remitted cancer, dyslipidemia prevalence ranges from 28% to 58%.82,83 Dyslipidemia in the general population is associated with CVD and mortality.84-87 In populations with active cancer, dyslipidemia is associated with increased tumor growth and increased cancer-related mortality.88-90

In contrast with cancer therapy-induced hypertension, there are few cancer therapies that cause dyslipidemia. Survivors who have undergone hormone therapy for prostate and breast cancer often develop dyslipidemia.91 This outcome is likely multifactorial and may be related to changes in body composition and relative increases in fat mass concurrent with decreases in lean muscle mass.

MANAGEMENT OF DYSLIPIDEMIA IN PATIENTS RECEIVING ACTIVE CANCER THERAPY. Regarding tumor progression in patients with active cancer, it is well established that cholesterol is concentrated in cancerous tissue, and increased dietary cholesterol is associated with increased cancer progression.92 Higher dietary cholesterol intake is associated with increased tumor progression across many cancers; similarly, cholesterol-lowering diets are associated with a decreased cancer risk.93-95 As noted in the recommendations by the ACC/AHA Task Force, lifestyle modification through diet and exercise are the first-line recommendations to avoid or manage dyslipidemia.96

The use of statins for patients on active cancer therapy remains less clear. Some early observational studies demonstrated an association between lower or declining cholesterol levels and an increased risk of cancer-specific mortality.97-99 This literature base even began to call into question treatment guidelines for cholesterol in the 1990s.100 Studies have long demonstrated that cholesterol-lowering diets, a key recommended lifestyle modification strategy for dyslipidemia management, do not increase cancer risk or cancer-specific mortality.101 More recently, evidence on the impact of statins on cancer-specific mortality continues to offer mixed conclusions. While most of the meta-analytic evidence suggests statins have no effect on cancer-specific mortality,102,103 large studies suggest small effects of statins reducing cancer-specific mortality in various populations.104,105 In contrast to studies in the general population, in which overall and CVD-specific mortality are the primary outcomes, among cancer populations, CVD-specific mortality is rarely examined. Statin therapy has several benefits for patients on active cancer therapy. Statins may impact cancer-specific mortality; however, the primary goal for prescribing statins among cancer survivors is the reduction of CVD mortality. Prevailing evidence suggests that statin use is not associated with decreased cancer-specific mortality. In a meta-analysis of 26 separate randomized controlled trials comprising almost 87,000 patients, 6,662 incidences of cancer, and 2,407 cancer-related deaths, statin use was unrelated to cancer-specific mortality, with point estimate odds ratios very close to 1 on both accounts.102 In a more recent meta-analysis, 27 separate trials comprising 175,000 patients, 10,431 incidences of cancer, and 3,651 cancer-related deaths, both the presence and intensity of statin use was again unrelated to cancer incidence or cancer-specific mortality.
mortality. These meta-analyses alleviate some concerns of the PROSPER (PROspective Study of Pravastatin in the Elderly at Risk) and CARE (Cholesterol and Recurrent Events) statin trials, which found increased incidence of gastrointestinal cancer and breast cancer among statin users, respectively. Any evidence suggesting an association between statin use and cancer incidence or cancer-specific mortality should be interpreted cautiously. Nevertheless, this unclear and sometimes conflicting evidence on statins and their association with cancer-related outcomes has caused confusion among patients and their providers regarding statin adherence. The role of statins in reducing CVD-mortality is clear. Thus, among cancer survivors treated with curative intent, the reduction of CVD risk is essential.

Recognizing that many patients treated for a solid tumor will experience weight gain, an increase in fat mass, a decrease in lean muscle mass during therapy due to a decrease in physical activity, frequent use of corticosteroids in antinausea regimens, and changes in diet, we advocate for continued monitoring of the lipid profile as per ACC/AHA guidelines. For patients with pre-existing dyslipidemia, statin, or other pharmacologic therapy should be continued, with the caveat of being aware of potential drug interactions by other agents metabolized by cytochrome P450. Pravastatin, with an alternate route of clearance compared with most cancer drugs, may have a lower risk of drug interactions. For patients with new onset dyslipidemia, diet and lifestyle modifications should be offered as initial treatment.

MANAGEMENT OF DYSLIPIDEMIA IN LONG-TERM SURVIVORS. Poor dyslipidemia management can persist among patients with cancer. Consistent with other severe comorbidities, reasons for poor management include focusing self-management, health care, and other sources of support on the more severe comorbidity (ie, cancer) at the expense of other underlying chronic conditions (ie, dyslipidemia) and the asymptomatic nature of dyslipidemia. The lack of adherence to statin therapy among 4,221 women with early-stage breast cancer who were on statin therapy at least 1 year prior to cancer diagnosis was well illustrated by Calip et al. At 3 years post-diagnosis, the adherence rate was only 50%, even for women who were treated with surgery and radiation without adjuvant or neoadjuvant therapy. Adherence to noncancer medications has also been observed in other studies.

Specific cholesterol management goals for long-term cancer survivors and those on chronic cancer therapy should be the same as for the general population, driven largely by their 10-year atherosclerotic CVD risk and cardiovascular comorbidities, including hypertension and diabetes mellitus. Meta-analytic results support these cholesterol management goals as adequate in cancer populations as well. Of the 10 primary recommendations by the ACC/AHA Task Force, 2 are consistent irrespective of patient status: 1) emphasize a heart-healthy lifestyle across the life course; and 2) assess adherence and response to LDL-C-lowering medications and lifestyle changes. These 2 recommendations underscore the need to manage cholesterol specifically through patient self-management. It is well documented that additional comorbidities can impair patients’ abilities to self-manage their chronic conditions, and dyslipidemia in populations with active or remitted cancer is no different.

Management of dyslipidemia through statins and lifestyle modification are recommended in most cancer survivors. While various forms of cancer do not have specific statin recommendations, dyslipidemia management benefits cancer survivors’ overall chronic disease risk, quality of life, and cancer recurrence outcomes. Statin therapy is associated with decreased recurrence across breast, prostate, lung, colorectal, liver, and other cancers. Additionally, exercise in cancer survivors is strongly recommended due to its multiple benefits from reduced fatigue to decreased cardiovascular risk. Specifically, exercise increases high-density lipoprotein cholesterol with beneficial effects on the cardiovascular profile or prognosis. The combination of increased risk for other chronic conditions, poorer prognosis with those conditions, and additional cancer-related benefits that dyslipidemia management portends strongly supports the need to maintain a focus on these dyslipidemia management behaviors (ie, medication adherence, diet, and exercise) in cancer survivors.

DYSLIPIDEMIA HIGHLIGHTS.

- Dyslipidemia is common among patients with cancer.
- In populations with active cancer, dyslipidemia is associated with increased tumor growth and increased cancer-related mortality.
- There are few cancer therapies that cause dyslipidemia.
- Management of dyslipidemia through statins and lifestyle modification are recommended in most cancer survivors.

DIABETES

In the United States, 13% of adults, and 27% of those 65 years of age and older, have diabetes mellitus. Diabetes is more common in cancer survivors than
the general population and likely contributes to the observed excess risk of CVD morbidity and mortality in survivorship. Among 1,582 survivors of breast, prostate, colorectal, and gynecological cancer, diabetes was more prevalent (21%) than among age-matched control subjects ($P < 0.0001$). In a pooled analysis of 13 cohort studies, cancer survivors were 1.4 times as likely to have diabetes than noncancer individuals (95% CI: 1.3-1.5). Recently, Ose et al observed an increase in the prevalence of diabetes among 5,865 adults from 12% at the time of cancer diagnosis to 25% at 1 year post-diagnosis. In a large administrative data linkage study from Ontario, the investigators observed that cancer survivors with diabetes were less likely to receive recommended cardiovascular risk-reducing therapies compared with people with diabetes without cancer of similar age, sex, and diabetes duration.

In cancer patients, several factors are likely to contribute to the association of diabetes with increased cardiovascular morbidity and all-cause mortality. First, diabetes may inherently limit access to life-saving cancer therapies; for instance, registry data from 194 Hodgkin’s lymphoma patients found that those with diabetes received less chemotherapy. Second, diabetes may potentiate treatment-related cardiovascular risks, such as left ventricular dysfunction in patients treated with anthracyclines or trastuzumab.

CANCER THERAPY-INDUCED HYPERGLYCEMIA. Several conventional and novel oncologic treatments can potentiate the development of diabetes. For instance, PEG-L-asparaginase, a cytotoxic chemotherapeutic agent, can induce hyperglycemia through direct (inhibition of insulin production and release) and indirect toxicity (pancreatitis) mechanisms. Corticosteroid-containing regimens commonly induce hyperglycemia. As examples, 39% of patients hospitalized with hematologic malignancies and 59% of patients with central nervous system tumors or hematologic malignancy developed hyperglycemia. Traditional diabetes risk factors (eg, body mass index, personal or family history) were not predictive. Targeted therapies can affect molecular pathways important to glucose homeostasis; hyperglycemia is an increasingly recognized side effect, particularly with agents that inhibit insulin growth factor receptor 1 and mTOR. Immune checkpoint inhibitors, such as programmed cell death-1 inhibitors, can trigger immune-related adverse events, including development of type 1 diabetes, which, although rare (<1%), requires prompt recognition and management. Beyond direct treatment effects, “indirect” lifestyle perturbations (eg, weight gain, physical inactivity) during cancer can synergistically increase long-term risk for diabetes and impair cardiovascular reserve.

MANAGEMENT OF HYPERGLYCEMIA AND DIABETES IN PATIENTS RECEIVING ACTIVE CANCER THERAPY. The current diagnostic paradigm for diabetes has limitations during active oncologic treatment. The American Diabetes Association criteria for the diagnosis of diabetes includes: 1) hemoglobin A1c (HbA1c) ≥6.5%; 2) fasting plasma glucose of ≥126 mg/dL; or 3) 2-hour plasma glucose ≥200 mg/dL during an oral glucose tolerance test. Glycemic monitoring during active oncologic treatment can be challenging. Dependence on blood product transfusions for some patients may undermine HbA1c measurement reliability, and oral glucose tolerance testing is not routinely available in the oncology clinic setting. Diabetic patients often need frequent regimen modifications in the setting of weight loss or poor oral intake.

Diabetes has the potential to complicate active oncologic treatment with important consequences for morbidity and mortality in cancer patients throughout the cancer continuum of active treatment and survivorship. For example, a common adverse effect of alpelisib, a PIK3CA inhibitor approved for treatment of hormone receptor positive metastatic breast cancer, is grade 3 to 4 hyperglycemia, which in severe cases can lead to cessation of treatment. Accordingly, awareness and prompt diagnosis of diabetes is necessary to inform oncologic treatment decisions. Because diabetes is also an integral driver of CVD, facilitation of early cardiovascular interventions that reduce the risk of downstream morbidity and mortality is necessary. Partnerships among oncologists and diabetic care providers familiar with cancer treatments can facilitate risk-based, exposure-driven approaches to overcome these diagnostic challenges and have previously demonstrated success in cancer survivors.

MANAGEMENT OF DIABETES IN LONG-TERM SURVIVORS. The optimal treatment of diabetes in long-term survivors is necessary to minimize the potential for cardiovascular morbidity and mortality in the setting of gains in cancer survival. Guidance on diabetes management in long-term survivors should be extrapolated from American Diabetes Association guidelines. This guideline recommends comprehensive lifestyle modifications followed by metformin as first-line therapy for patients with type 2 diabetes, with additional therapies considered based on clinical context. For type 1 diabetes, insulin...
remains the first-line therapy based on insufficient endogenous insulin. In general, HbA1c goals are <7% (class A), with stringency of goals based on patient-specific factors, such as life expectancy or hypoglycemia risk (classes C and B, respectively).130 Data from the United Kingdom Prospective Diabetes Study revealed that, over a 10-year study period in patients with newly diagnosed type 2 diabetes, intensive glycemic control with either sulfonylurea or insulin significantly reduced diabetic microvascular complications, such as renal failure or retinal disease, but not macrovascular complications, such as myocardial infarction or stroke.134 However, there was a statistically significant increase in hypoglycemia in the intensive control arm,134 and similar adverse outcomes with intense glycemic lowering were seen in later clinical trials.135-137 Accordingly, current evidence suggests that less intense glycemic targets may be advantageous but should be balanced carefully against the well-established, graded relationship between glycemic control and cardiovascular complications.138 Novel sodium-glucose cotransporter 2 inhibitor and glucagon-like peptide 1 receptor agonist agents have revolutionized secondary and tertiary prevention of CVD and may emerge alongside metformin in the primary prevention of diabetes.139 Sodium-glucose cotransporter 2 inhibitors have additional promise in heart failure treatment, and future studies may consider whether these benefits extend to cancer therapy-related cardiac dysfunction and heart failure management in certain populations with active cancer.

A multidisciplinary care approach is advised throughout the continuum of active oncologic treatment and cancer survivorship with regard to identification and management of cancer therapy-related diabetes.

DIABETES HIGHLIGHTS.

- Diabetes is more common in cancer survivors than the general population.
- Blood glucose monitoring and control during active oncologic treatment can be challenging.
- Less intense glycemic targets may be advantageous but should be balanced carefully with a well-established, graded relationship between glycemic control and cardiovascular complications.138

PROMOTING ADHERENCE TO LIFESTYLE INTERVENTIONS, ORAL CANCER THERAPIES, AND MEDICATIONS FOR CVD COMORBIDITIES

A multimodality approach is needed to offset the impact of cancer therapies on cardiovascular morbidity and mortality particularly in the setting of pre-existing CVD or risk factors. In a recent AHA Scientific Statement, Gilchrist et al140 highlighted the need for cardio-oncology rehabilitation to mitigate the CVD consequences of cancer therapy. The provision of comprehensive long-term services involving medical evaluation, prescriptive exercise, cardiac risk factor modification, and education, counseling, and behavioral interventions to facilitate cardiovascular risk reduction would hopefully lead to improve psychosocial well-being and reduce recurrent hospitalizations and the associated CVD morbidity and mortality. There currently is no reimbursement strategy in the United States to provide access to a multimodality cardiac rehabilitation program for patients with cancer.

Cancer survivors may be prescribed oral medications to treat their cancer, manage side effects, and reduce the likelihood of cancer recurrence. Although medication adherence is critical for achieving optimal clinical outcomes, many adults struggle with taking long-term medications, and only 50% of prescribed chronic cancer medications are taken as indicated.141,142 Medication adherence is multifaceted and composed of 3 distinct phases: 1) initiation, which is when a patient takes the first dose of a prescribed medication; 2) implementation, the extent to which a patient’s actual dosing corresponds with the prescribed regimen from initiation until the last dose; and 3) persistence, which is the time period between initiation and when a patient stops taking a prescribed medication (discontinuation).143-147 Each of these phases warrants specific attention and support to ensure optimal benefit from the prescribed medication (Table 2).

For individuals with pre-existing chronic conditions, a cancer diagnosis often results in challenges with coordination of care across multiple providers and management of numerous medications for the treatment of comorbid conditions and cancer.4 In such cases, treatment may transition from strategies focused on chronic disease management to strategies focused on reducing the burden of or delaying the progression of cancer.1 For example, a cancer diagnosis has been associated with significant declines in adherence to evidence-based treatments for diabetes, hypertension, and lipid disorders.4,38,148,149 Specifically, in a retrospective study, adherence to orally administered hypoglycemic agents, renin-angiotensin-aldosterone system inhibitors, and statins decreased 3.7%, 5.3%, and 3.2%, respectively, following an incident cancer diagnosis.38 Changes in medication adherence following a cancer diagnosis vary by cancer type, patient
demographic, and clinical characteristics. Research has demonstrated that significant decreases in adherence to orally administered antidiabetic medications and statins occurred in patients with a lung or colorectal cancer diagnosis; however, declines in medication adherence for pre-existing diabetes, dyslipidemia, and hypertension were similar between breast and prostate cancer patients and matched noncancer cohorts. In addition, large declines in medication adherence were observed in older adults, multiracial patients, and those diagnosed with advanced cancer. One study found that patients with stage IV cancer experienced a 10.7% decline in adherence to glucose-lowering medications (compared with a 3.2% and 5.8% decrease in patients with stage II and III cancer, respectively); another study only observed significant decreases in statin adherence among non-Hispanic Whites and multiracial patients.

Despite the increased risk of CVD associated with potentially cardiotoxic chemotherapies and the reduced risk of CVD events and cancer recurrence associated with some long-term medications (eg, statins), declines in medication adherence for comorbid chronic conditions persist during, and following, a patient’s active cancer treatment. For example, in the year prior to a breast cancer diagnosis, adherence to statins and orally administered antidiabetic medications was 78% and 86%, respectively; however, during cancer treatment, adherence to statins and antidiabetic medications significantly decreased to 68% and 49%, respectively. Moreover, declines in medication adherence for lipid disorders and diabetes continued in the years following breast cancer treatment (eg, in the second year following cancer therapy, statin adherence was 63% and antidiabetic medication adherence was 48%).

TABLE 2 Phases of Adherence and Adherence-Promoting Strategies
Phase of Adherence

Definition
Strategies to support adherence

TEAM-BASED APPROACH

To move beyond “curing” cancer to promoting a long, productive life for cancer survivors and those living with a chronic cancer, requires a team-based approach (Figure 1). Too often patient care is siloed, and efficient and timely communication is lacking. As noted previously, depending on the level of complexity of the comorbidities and the cancer therapy, different providers may be needed, including oncology, primary care, cardiology, and endocrinology providers, with the patient at the center of the picture. Importantly, the team should consider factors that likely impact access to care and medication adherence, including sociodemographics and factors associated with inequity.

Current ACC/AHA hypertension guidelines for noncancer patients stress the importance of involving each member of the interdisciplinary care team to enhance the adoption of positive lifestyle behaviors and promote medication adherence. The efficacy of such an approach has also been indicated across different types of medication adherence barriers, especially to reconcile medication lists for patients during transitions of care, such as initiation or completion of cancer therapy. Incorporation of current technologies that improve information sharing, such as electronic health record systems and other medical record sharing applications, have also been highlighted to improve communication and information sharing among patients and health care team members. Despite a general call to action for such an approach, concrete literature on the efficacy of a team-based approach is lacking. We are currently conducting a National Cancer Institute-supported randomized controlled trial aimed at promoting a “one-team” approach aimed at improving CVD comorbidity management and adherence to...
medications for hypertension, diabetes, or dyslipidemia among patients with newly diagnosed solid tumors being treated with curative intent (NCT04258813). It is our goal to engage PCPs in the management of pre-existing cardiometabolic comorbidities for their patients during cancer therapy. Enhancing PCP engagement early in the trajectory will provide the oncology team more time to focus on their area of expertise—an achievable cure for the patient. It will also familiarize the PCP with the patient’s cancer journey and hopefully improve the subsequent transition to survivorship health care. Cardiologists, endocrinologists, exercise physiologists, pharmacists, nurses, and other allied health care providers are also integral with such a plan, particularly for the patient with complex health care needs.

Finally, many of the studies we described focused on prevalent users of medications for comorbid chronic conditions; however, future research should assess if and how active cancer treatment delays the initiation of medication for CVD or other chronic conditions. Indeed, most studies have used a cancer-centric approach whereby the assessment starts at the time of cancer diagnosis. For example, in reporting adverse events using the National Cancer Institute Common Terminology Criteria for Adverse Events for patients on active cancer therapy, one simply denotes whether a patient has hypertension and then grades the hypertension based on specific cutpoints. However, this approach results only in a prevalence estimate and does not provide a perspective of changes from the pre-cancer status. We instead advocate using a more person-centric model (Central Illustration) that incorporates pre-cancer data to better understand how cancer and cancer therapy impact long-term outcomes, such as CVD.

CONCLUSION

Cancer survivorship is often marked by intensive and prolonged surveillance for cancer recurrence. However, cancer survivors are also at increased risk for a number of other chronic conditions, including dyslipidemia, hypertension, and diabetes. With prolonged oncologic survival, determining optimal management for cancer patients with comorbidities is becoming critical. The management of chronic, but less salient, comorbid conditions in patients with active and remitted cancer is understandably difficult. A focus on screening could identify at-risk patients at cancer diagnosis, lending to a multidisciplinary care approach, which is advised throughout the continuum of active oncologic treatment and cancer survivorship.

The historical solution to continued care was to provide a survivorship care plan at the end of cancer treatment that includes what to expect, side effects, and which clinicians to see at what interval; however, lack of communication, combined with the timing of the plan, has rendered these plans inadequate at best. Thus, increased collaboration and communication between the oncology and cardiology care team, PCPs, and allied health care providers is required to adequately manage comorbid risk factors in cancer survivors. Coordination of care and treatment of comorbidities should remain a priority of treatment from the time of diagnosis.

Additionally, to improve medication adherence for comorbid chronic conditions, we recommend that future research be targeted toward all 3 phases of
medication adherence (initiation, implementation, and persistence) and consider adherence as a patient-reported outcome, particularly at critical time points across the cancer care continuum (eg, diagnosis, treatment initiation) that might impact medication adherence or chronic disease management. As the number of cancer survivors increases, addressing cardiovascular comorbidities and CVD among cancer survivors is paramount.

ACKNOWLEDGMENT
The authors thank Karen Staman for her editorial support.

FUNDING SUPPORT AND AUTHOR DISCLOSURES
This work was supported by a grant from the National Cancer Institute (CA249568; MPI Drs Oeffinger and Zullig). Dr Zullig has received research funding from Proteus Digital Health and the PhRMA Foundation; and consulting fees from Novartis and Pfizer. Dr Sung has received research grants from Merck and Novartis; and research supplies from DSM and Glaxo. Dr Blalock has served as a consultant for the Eating Recovery Center. Dr Bosworth has received research grants from the PhRMA Foundation, Proteus Digital Health, Otsuka, Novo Nordisk, Sanofi, and Improved Patient Outcomes; and consulting fees from Sanofi, Novartis, Otsuka, Abbott, Preventive Diagnostics, and the Medicines Company. Dr Oeffinger has served as a consultant for GRAIL. Dr Dent has received honoraria and grant funding from Novartis. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

ADDRESS FOR CORRESPONDENCE: Dr Leah Zullig, Duke University, 411 West Chapel Hill Street, Suite 600, Durham, North Carolina 27701, USA. E-mail: leah.zullig@duke.edu. Twitter: @LeahZullig.

REFERENCES
1. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship care during the pandemic: A preliminary report on 2020. CA Cancer J Clin. 2021;71(3):225-244.
2. Denlinger CS, Carlson RW, Are M, et al. Survivorship: introduction and definition. Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2014;12(1):34-45.
3. Baker KS, Ness VK, Steinberger J, et al. Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood. 2007;109(4):1765-1772.
4. Banegas JP, Emerson MA, Adams AS, et al. Patterns of medication adherence in a multi-ethnic cohort of prevalent statin users diagnosed with breast, prostate, or colorectal cancer. J Cancer Surviv. 2018;12(6):794-802.
5. Baylinis EA, Reifler LM, Zeng C, McQuillan DB, Ellis JL, Steiner JF. Competing risks of cancer mortality and cardiovascular events in individuals with multimorbidity. J Comorb. 2014;4:29-36.
6. Bradshaw PT, Stevens J, Khankari N, Teitelbaum SL, Neugut AI, Gammon MD. Cardiovascular Disease Mortality Among Breast Cancer Survivors. Epidemiology. 2016;27(1):6-13.
7. Salz T, Zabor EC, de Nully Brown P, et al. Pre-existing Cardiovascular Risk And Subsequent Heart Failure Among Non-Hodgkin Lymphoma Survivors. J Clin Oncol. 2017;35(34):3837-3843.
8. Gernaert S, Ho P, Rijnberg N, et al. Risk of death from cardiovascular disease following breast cancer: a systematic review. Breast Cancer Res Treat. 2017;164(3):537-555.
9. Gernaert SA, Boer JM, van den Bongard DH, Koelwyn GJ, Khouri M, Mackey JR, Douglas PS, Hendriksen J, van den Bogaert D, Gallicchio LL, et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotheraphy for breast cancer. Br J Cancer. 2018;19(4):408-418.
10. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998.
11. Feldman RS, Chen J, Long JB, Hurria A, Owusu C, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25(25):3808-3815.
12. Chen J, Long JB, Hurria A, Owusu C, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25(25):3808-3815.
13. Zhang X, Nabholtz JM, Santoro N, et al. Trastuzumab-related cardiotoxicity among patients with HER2-positive early and advanced breast cancer treated with trastuzumab-based therapy: an analysis from the Health Outcomes and Economics of HER2-positive Advanced Breast Cancer (HOE205) study. J Clin Oncol. 2021;39(13):1489-1499.
14. Vaghefi M, Khorasani R, Khoshnoodi A, et al. A population-based study of cardiovascular disease among breast cancer survivors. Breast Cancer Res Treat. 2017;161(1):161-172.
15. Koelwyn GJ, Khouri M, Mackey JR, Douglas PS, Jones LW. Running on empty: cardiovascular reserve capacity and late effects of therapy in cancer survivors. J Clin Oncol. 2012;30(36):4458-4461.
16. Mutschler NS, Scholz C, Friedl TW, et al. Prognostic impact of weight change during adjuvant chemotherapy in patients with high-risk early breast cancer: results from the ADEBAR study. Clin Breast Cancer. 2018;18(2):175-183.
17. Zhang FF, Liu S, John EM, Must A, Demark-Wahnefried W. Diet quality of cancer survivors and noncancer individuals: Results from a national survey. Cancer. 2015;121(23):4212-4223.
18. Vaghefi M, Khorasani R, Khoshnoodi A, et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 2012;30(20):2530-2537.
19. Weaver KE, Foraker RE, Alfano CM, et al. Cardiovascular risk factors among long-term survivors of breast, prostate, colorectal, and gynecologic cancers: a gap in survivorship care? J Cancer Surviv. 2013;7(2):253-261.
20. Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “Silver Tsunami”: Prevalence Trajectories And Comorbidity Burden Among Older Cancer Survivors In The United States. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1029-1036.
21. Ogle KS, Swanson GM, Woods N, Azzouz F. Cancer and comorbidity: redefining chronic diseases. Cancer. 2000;88(3):653-663.
22. Calip GS, Boudreau DM, Loggers ET. Changes in adherence to statins and subsequent lipid profiles during and following breast cancer treatment. Breast Cancer Res Treat. 2013;138(1):225-233.
23. Calip GS, Elmore JG, Boudreau DM. Characteristic associated with nonadherence to medications for hypertension, diabetes, and dyslipidemia among breast cancer survivors. Breast Cancer Res Treat. 2017;161(1):161-172.
24. Singh P, Sung HJ, Bhatia S, Atkinson A. Non-adherence to statins and the risk of diabetes mellitus among cancer survivors: an analysis of the National Health Interview Survey. J Cancer Epidemiol. 2015;2015:28.
25. Jones LW, Running on empty: cardiovascular reserve capacity and late effects of therapy in cancer survivors. J Clin Oncol. 2012;30(36):4458-4461.
26. Mutschler NS, Scholz C, Friedl TW, et al. Prognostic impact of weight change during adjuvant chemotherapy in patients with high-risk early breast cancer: results from the ADEBAR study. Clin Breast Cancer. 2018;18(2):175-183.
27. Zhang FF, Liu S, John EM, Must A, Demark-Wahnefried W. Diet quality of cancer survivors and noncancer individuals: Results from a national survey. Cancer. 2015;121(23):4212-4223.
28. Vaghefi M, Khorasani R, Khoshnoodi A, et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 2012;30(20):2530-2537.
in adult breast cancer survivors—A population-based study. Cancer Med. 2018;7(12):6331–6339.

30. Alibhai SM, Duong-Hua M, Sutradhar R, et al. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol. 2009;27(21):3452–3458.

31. Armenian SH, Sun C-L, Francisco L, et al. Late congestive heart failure after hematopoietic cell transplantation. J Clin Oncol. 2008;26(34):5537–5543.

32. Armenian SH, Yang D, Teh JB, et al. Prediction of cardiovascular disease among hematopoietic cell transplantation survivors. Blood Adv. 2018;2(14):1756–1764.

33. Bowles EJ, Yu O, Ziebell R, et al. Cardiovascular medication use and risks of colon cancer recurrences and additional cancer events: a cohort study. BMC Cancer. 2019;19(1):270.

34. Feliciano EMC, Kroenke CH, Meyerhardt JA, et al. Metabolic dysfunction, obesity, and survival among patients with early-stage colorectal cancer. J Clin Oncol. 2016;34(30):3664–3671.

35. Felix AS, Lehman A, Foraker RE, et al. Risk of cardiovascular disease among women with endometrial cancer compared to cancer-free women in the Women’s Health Initiative. Cancer Epidemiol. 2017;51:62–67.

36. Keating NL, O’Malley AJ, Freedland SJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst. 2010;102(1):39–46.

37. Nguyen PL, Je Y, Schutz FA, et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA. 2011;306(21):2359–2366.

38. Stuart BC, Davidoff AJ, Erten MZ. Changes in medication management after a diagnosis of cancer among Medicare beneficiaries with diabetes. J Oncol Pract. 2015;11(6):429–434.

39. Yang J, Neugut AI, Wright JD, Accordino M, Stuart BC, Davidoff AJ, Erten MZ. Changes in medication management after a diagnosis of cancer compared to cancer-free women in the Kaiser Permanente Southern California population. J Cancer. 2012;3:1135–1142.

40. Edwards BK, Noone AM, Mariotto AB, et al. Metabolic dysfunction, obesity, and survival among patients with early-stage colorectal cancer. J Clin Oncol. 2013;31(14):1626–1633.

41. Khosrow-Khavar F, Filion KB, Bouganim N, Sussa S, Azoulai L. Aromatase inhibitors and the risk of cardiovascular outcomes in women with breast cancer: a population-based cohort study. Circulation. 2020;141(17):549–559.

42. Blazes A, Beckwith H, Flores N, et al. Vascular function in breast cancer survivors on aromatase inhibitors: a pilot study. Breast Cancer Res Treat. 2017;166(2):541–547.

43. Haque R, Shi J, Schotttinger JE, et al. Cardiotoxicity of aromatase inhibitors in breast cancer patients. Clin Breast Cancer. 2017;17(1):11–17.

44. Ng T, Lobbab A, Siemens R, et al. A phase II, randomized, multicenter study comparing 10 months versus 4 months of degarelix therapy in prolonging the off treatment interval in men with localized prostate cancer receiving intermittent androgen deprivation therapy for biochemical recurrence following radical local therapy. J Urol. 2018;200(2):335–343.

45. Klabunde CN, Amba A, Keating NL, et al. The role of primary care physicians in cancer care. J Gen Intern Med. 2009;24(19):1029–1036.

46. Klabunde CN, Han PK, Earle CC, et al. Physician roles in the cancer-related follow-up care of cancer survivors. Fam Med. 2013;45(7):463–474.

47. Easley J, Miedema B, O’Brien MA, et al. The role of family physicians in cancer care: perspectives of primary and specialty care providers. Curr Oncol. 2017;24(2):75–80.

48. Leekink JM, de Baat EC, Feijen EA, et al. Cardiovascular disease in childhood cancer survivors: risk prediction, prevention, and surveillance: JACC Cardio-Oncology State-of-the-Art Review. J Am Coll Cardiol Cardio Onc. 2020;2(3):363–378.

49. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322.

50. Buford TW. Hypertension and aging. Ageing Res Rev. 2016;26:96–111.

51. Chao C, Xu L, Bhata D, et al. Cardiovascular disease risk profiles in survivors of adolescents and young adult (AYA) cancer: the Kaiser Permanente AYA Cancer Survivors Study. J Clin Oncol. 2016;34(14):1626–1633.

52. Kwan ML, Cheng RK, Inbarren C, et al. Risk of cardiometabolic risk factors in women with and without a history of breast cancer: the Pathways Heart Study. J Clin Oncol. 2012;30(15):1635–1646.

53. Jiang C, Deng L, Karr MA, et al. Chronic comorbid conditions among adult cancer survivors in the United States: results from the National Health Interview Survey, 2002–2018. Cancer. 2022;128(4):828–838.

54. James PA, Opali S, Carter BL, et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–520.

55. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127–e248.

56. Qaseem A, Wilt TJ, Rich R, et al. Phamacologic treatment of hypertension in adults aged 60 years or older to higher versus lower blood pressure targets: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2017;166(6):430–437.

57. Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334–1357.

58. Cohen JB, Geary AS, Hogan JJ, Townsend RR. Hypertension in cancer patients and survivors: epidemiology, diagnosis, and management. J Am Coll Cardiol Cardio Onc. 2019;12(2):238–251.

59. Zhu X, Wu S. Risk of hypertension in cancer patients treated with abiraterone: a meta-analysis. Clin Hypertens. 2019;25(1):5.

60. Sundar S, Dickinson PD. Unexpected outcome (positive or negative) including adverse drug reactions: Spironolactone, a possible selective androgen receptor modulator, should be used with caution in patients with metastatic carcinoma of the prostate. BMJ Case Rep. 2012;2012; bcr1120115238.

61. Attard G, Reid AH, de Bono JS. Abiraterone acetate is well tolerated without concomitant use of corticosteroids. J Clin Oncol. 2010;28(29):e560–e561.

62. Leuprolide (Lupron) [package insert]. 2014. Accessed May 18, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020175s036_0971204118b.pdf

63. Klotz L, Loblaw A, Siemens R, et al. A phase II, randomized, multicenter study comparing 10 months versus 4 months of degarelix therapy in prolonging the off treatment interval in men with localized prostate cancer receiving intermittent androgen deprivation therapy for biochemical recurrence following radical local therapy. J Urol. 2018;200(2):335–343.

64. Foglietta J, Inno A, de Juliss F, et al. Cardiotoxicity of aromatase inhibitors in breast cancer patients. Clin Breast Cancer. 2017;17(1):11–17.

65. Khosrow-Khavar F, Filion KB, Bouganim N, Sussa S, Azoulai L. Aromatase inhibitors and the risk of cardiovascular outcomes in women with breast cancer: a population-based cohort study. Circulation. 2020;141(17):549–559.

66. Blazes A, Beckwith H, Flores N, et al. Vascular function in breast cancer survivors on aromatase inhibitors: a pilot study. Breast Cancer Res Treat. 2017;166(2):541–547.

67. Arora R, Shi J, Schotttinger JE, et al. Cardiotoxicity of aromatase inhibitors in breast cancer patients. JAMA Oncol. 2016;2(12):1590–1597.

68. Cuzick J, Sentak I, Forbes JF, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-Il)–an international, double-blind, randomised placebo-controlled trial. Lancet. 2014;383(9922):1041–1048.

69. Rovó A, Dalleriet T, Halter J, et al. Late altered organ function in very long-term survivors after allogeneic hematopoietic stem cell transplantation: a paired comparison with their HLA-identical sibling donor. Haematologica. 2009;94(1):150–155.

70. Armenian SH, Sun C-L, Vase T, et al. Cardiovascular risk factors in hematopoietic cell transplantation survivors: role in development of subsequent cardiovascular disease. Blood. 2012;120(23):4505–4512.

71. Mouhayer E, Salahudeen A. Hypertension in cancer patients. Texas Heart Inst J. 2011;38(3):263–265.

72. Armstrong C. JNC8 guidelines for the management of hypertension in adults. Am Fam Phys. 2014;90(7):503–504.

73. Maitland ML, Bahri G, Black HR, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular...
endothelial growth factor signaling pathway inhibitors. *J Natl Cancer Inst.* 2010;102(9):596-604.

74. Zamorano J, Lancellotti P, Rodriguez Muñoz D, et al. ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). *Eur Heart J.* 2016;37(36):2768-2801.

75. Copur MS, Obermiller A. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition. *Clin Colorectal Cancer.* 2011;10(3):151-156.

76. Rixe O, Billmeyer B, Izdeline H. Hypertension as a predictive factor of Sunlitin activity. *Ann Oncol.* 2007;18(6):1117.

77. Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. *N Engl J Med.* 2008;358(11):11291-11296.

78. Hurwit H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *J Natl Cancer Inst.* 2004;96(23):2335-2342.

79. Langenberg MH, van Herpen CM, De Bono J, et al. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of Cediranib in patients with advanced solid tumors. *J Clin Oncol.* 2009;27(36):6192-6199.

80. Curwen JQ, Mugrove HL, Kendrick J, Richmond GH, Ogilvie DJ, Wedge SR. Inhibition of vascular endothelial growth factor receptor-1 signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant anti-hypertensive therapy. *Clin Cancer Res.* 2008;14(10):3124-3131.

81. Benjamin EJ, Blaha MJ, Chiove SE, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. *Circulation.* 2017;135(10):e146-e603.

82. Shin S, Wook Shin D, Young Cho I, Jeong SM, Jung H. Status of dyslipidemia management and statin underutilization in Korean cancer survivors: a Korean National Health and Nutrition Examination Survey study. *Eur J Prev Cardiol.* 2021;28(8):864-872.

83. Armenian SH, Xu L, Ky B, et al. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. *J Clin Oncol.* 2016;34(10):112-130.

84. Silverman MG, Ference BA, Im K, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. *JAMA.* 2016;316(12):1289-1297.

85. Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobb SE. Long-term follow-up of the West of Scotland Coronary Prevention Study. *N Engl J Med.* 2007;357(15):1477-1486.

86. Ford I, Murray H, McCowan C, Packard CJ. Long-term safety and efficacy of lowering low-density lipoprotein cholesterol with statin therapy: 20-year follow-up of West of Scotland Coronary Prevention Study. *Circulation.* 2016;133(11):1073-1080.

87. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men with average cholesterol levels: results of AFCAPS/TexCAPS. *Air Force/Texas Coronary Atherosclerosis Prevention Study.* JAMA. 1998;279(20):1615-1622.

88. Gallagher EJ, Zelenko Z, Neel BA, et al. Elevated tumor LDR expression accelerates LDL-cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. *Oncogene.* 2017;36(46):6462-6471.

89. Muotola TJ, Syväla H, Pennanen P, et al. The importance of LDL and cholesterol metabolism for prostate epithelial cell growth. *PLOS One.* 2012;7(6):e39445.

90. Lofred T, Mortensen ES, Nalvoga H, et al. Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. *BMJ Cancer.* 2018;18(1):654.

91. Redig AJ, Munshi HG. Care of the cancer survivor: metabolic syndrome after hormone-modifying therapy. *Am J Med.* 2010;123(1):87, e1-e6.

92. Muri T. Cholesterol lowering: role in cancer prevention and treatment. *Biochim Biophys Acta.* 2015;396(1-1):1-11.

93. Ding X, Zhang W, Li S, Yang H. The role of cholesterol metabolism in cancer. *Am J Cancer Res.* 2019;9(2):219-227.

94. Pelton K, Freeman MR, Solomon KR. Cholesterol and prostate cancer. *Curr Opin Pharmacol.* 2012;12(6):751-759.

95. Llaverias G, Danilo C, Mercier I, et al. Role of cholesterol lowering: role in cancer therapy. *Lancet.* 2010;376(9736):6462-6471.

96. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPNC/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol.* 2019;73(24):e285-e350.

97. Williams RR, Sorlie PD, Feinleib M, McNamara PM, Dawber TR. Cancer among men on cholesterol-lowering diets: experience from five clinical trials. *Lancet.* 1971;2(7717):203-206.

98. Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-analysis. *JAMA.* 2006;295(1):74-80.

99. Emberson JR, Kearney PM, Blackwell L, et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. *PLOS One.* 2012;7(10):e42849.

100. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. *N Engl J Med.* 2012;367(19):1792-1802.

101. Huang WY, Li CH, Lin CL, Liang JA. Long-term statin use in patients with lung cancer and dyslipidemia reduces the risk of death. *OncoTarget.* 2016;7(27):42208-42215.

102. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. *Lancet.* 2002;360(9346):1623-1630.

103. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. *Cholesterol and Recurrent Events Trial Investigators.* *N Engl J Med.* 1996;335(14):1001-1009.

104. Santorelli ML, Steinberg BM, Hirshfeld KM, et al. Effects of breast cancer on chronic disease medication adherence among older women. *Pharmacoeconomics Drug Saf.* 2016;25(8):898-907.

105. Sun H, Yuan Y, Wang P, et al. Intensified low-density lipoprotein-cholesterol target of statin therapy and cancer risk: a meta-analysis. *Lipids Health Dis.* 2015;14:140.

106. Steinagl RM, Yadv V, Manrique C, Carver JR, Liu J. Cancer survivorship: cardiotoxic therapy in the adult cancer patient; cardiac outcomes with recommendations for patient management. *Semin Oncol.* 2013;40(6):690-708.

107. Brown JC, Huedo-Medina TB, Pescatello LS, Pescatello SM, Ferrer RA, Johnson BT. Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: a meta-analysis. *Cancer Epidemiol Biomarkers Prev.* 2011;20(1):123-133.

108. Beckwitt CH, Bruskay A, Oltvai ZN, Wells A. Statin drugs to reduce breast cancer recurrence and mortality. *Breast Cancer Res.* 2018;20(1):144.

109. Schmitz KH, Courneya KS, Matthews C, et al. Exercise interventions in modulating cancer-related fatigue among adult cancer survivors: an overview of research. *Med Sci Sports Exerc.* 2010;42(7):1409-1426.

110. Courneya KS. Exercise in cancer survivors: an overview of research. *Med Sci Sports Exerc.* 2003;35(11):1846-1852.

111. Turner RR, Steed L, Quirk H, et al. Interventions for promoting habitual exercise in people living with and beyond cancer. *Cochrane Database Syst Rev.* 2018;8(9):CD010192.

112. Centers for Disease Control and Prevention. *National Diabetes Statistics Report.* 2020, U.S. Department of Health and Human Services; 2020.
Comorbidities in Cancer Survivors

117. Xiao Y, Wang H, Tang Y, et al. Increased risk of diabetes in cancer survivors: a pooled analysis of 13 population-based cohort studies. ESMO Open. 2021;6(4):100318.

118. Osei DJ, Viscoochi R, Holowatjy AN, et al. Understanding the prevalence of prediabetes and diabetes in patients with cancer in clinical practice: a real-world cohort study. J Natl Compr Cancer Netw. 2021;19(6):709-718.

119. Liang X, Etches J, Pinzaru B, Tu K, Jaakkimainen L, Lipscombe L. The quality of diabetes care among cancer survivors: a retrospective cohort study. Diabet Med. 2021;38(6):e14538.

120. Arreskov AB, Olsen M, Pouplier SS, et al. The impact of cancer on diabetes outcomes. BMC Endor Disord. 2019;19(1):60.

121. Barone BB, Yeh HC, Snyder CF, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA. 2008;300(23):2754-2764.

122. Ranc K, Jørgensen ME, Friis S, Carstensen B. Diabetes mellitus: effect of diabetes duration and treatment. Diabetologia. 2014;57(5):927-934.

123. van Spronsen DJ, Janssen-Heijnen ML, Breed WP, Coebergh JW. Prevalence of morbidity and its relationship to treatment among unselected patients with Hodgkin’s disease and non-Hodgkin’s lymphoma, 1993-1996. Ann Hematol. 1999;78(7):315-319.

124. Hwangbo Y, Lee EK. Acute hyperglycemia associated with anti-cancer medication. Endocr Metab (Seoul). 2017;32(1):23-39.

125. Healy SJ, Nagaraja HN, Alwan D, Dungan KM. Understanding the prevalence of prediabetes and metabolic syndrome in survivors of hematologic malignancies. Endocrinol. 2017;56(1):90-97.

126. Harris D, Barts A, Comorns J, et al. Glucocorticoid-induced hyperglycemia is prevalent and unpredictable for patients undergoing cancer therapy: an observational cohort study. Curr Oncol. 2013;20(6):e532-e538.

127. Goldman JW, Mendenhall MA, Rettinger SR. Hyperglycemia associated with targeted oncologic treatment: mechanisms and management. Oncologist. 2016;21(11):1326-1336.

128. Barroso-Sousa R, Barry WT, Garrido Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):173-182.

129. Clotman K, Janssens K, Specenier P, Weets I, De Block CEM. Programmed cell death-1 inhibitor-induced type 1 diabetes mellitus. Clin Endocrinol Metab. 2018;103(9):3144-3154.

130. American Diabetes A. Standards of Medical Care in Diabetes-2019 Abridged for Primary Care Providers. Clin Diabetes. 2019;37(1):11-34.

131. Rugo H, André F, Yamashita T, et al. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Ann Oncol. 2020;31(8):1001-1010.

132. Friedman DN, Tonorezos ES, Cohen P. Diabetes and metabolic syndrome in survivors of childhood cancer. Horm Res Paediatr. 2019;91(2):118-127.

133. Snyder CF, Frick KD, Herbert RJ, et al. Comorbid condition care quality in cancer survivors: role of primary care and specialty providers and care coordination. J Cancer Surviv. 2015;9(4):641-649.

134. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-853.

135. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;359(24):2545-2559.

136. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-139.

137. Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572.

138. Selvin E, Marinosopulos S, Berkenbilt G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421-431.

139. Patorno E, Hitto PT, Glynn RJ, et al. Sodium-glucose cotransporter-2 inhibitors versus glucagon-like peptide-1 receptor agonists and the risk for cardiovascular outcomes in routine care patients with diabetes across categories of cardiovascular disease. Ann Intern Med. 2021;174(1):1528-1541.

140. Giltch SC, Barac A, Ades PA, et al. Cardiovascular rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation. 2019;139(21):e197-e1012.

141. Neiman AB, Ruppar T, Ho M, et al. CDC roundtable: improving medication adherence for chronic disease management—innovations and opportunities. MMWR Morb Mortal Wkly Rep. 2017;66(45):1248-1251.

142. Zullig LL, Smith VA, Lindquist JH, et al. Carcinoma patients. JAMA Oncol. 2017;4(2):173-182.

143. Granata N, Traversoni S, Kardas P, et al. Methodological features of quantitative studies on medication adherence in older patients with chronic morbidity: A systematic review. Patient Educ Counsel. 2020;103(10):2132-2141.

144. Vrijens B, De Geest S, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73(5):691-705.

145. Haag M, Lehmann A, Hersberger KE, et al. The ABC taxonomy for medication adherence translated into French and German. Br J Clin Pharmacol. 2020;86(4):734-744.

146. Helmy R, Zullig LL, Dunbar-Jacob J, et al. ESPACOMP Medication Adherence Reporting Guidelines (EMERGE): a reactive-Delpity study protocol. BMJ Open. 2017;7(2):e013496.

147. Vrijens B, Dima AL, Van Gasse E, et al. What we mean when we talk about adherence in respiratory medicine. J Allergy Clin Immunol Pract. 2016;4(5):802-812.

148. Letinié L, Mansiaux Y, Patièrre A, Fourrier-Reglat A. Impact of cancer diagnosis on persistence of oral antidiabetic drugs. Diabetes Res Clin Pract. 2018;139:323-330.

149. Zanders MM, Haak HR, van Herk-Sukel MP, van de Poll-Franse LV, Johnson JA. Impact of cancer on adherence to glucose-lowering drug treatment in individuals with diabetes. Diabetologia. 2015;58(5):951-960.

150. Lund JL, Gupta P, Amin KB, et al. Changes in chronic medication adherence in older adults with cancer versus matched cancer-free cohorts. J Geriatr Oncol. 2021;12(1):72-79.

151. Chae YK, Valsecchi ME, Kim J, et al. Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. Cancer Invest. 2011;29(9):585-593.

152. Bosworth HB, Granger BB, Mendsy P, et al. Medication adherence: a call for action. Am Heart J. 2011;162(3):412-424.

153. Poulter N, Williams B, Schutte AE, Unger T. Response to the editorial: “the international society of hypertension guidelines 2020 - a new drug treatment recommendation in the wrong direction?”. Blood Press. 2020;29(6):339-340.

154. Zullig LL, Shahsahabi M, Neely B, et al. Low-touch, team-based care for co-morbidity management in cancer patients: the ONE TEAM randomized controlled trial. BMC Fam Pract. 2021;22(1):234.

155. NCI Common Terminology Criteria for Adverse Events. Accessed January 4, 2021. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm

156. Edgington A, Morgan MA. Looking beyond recurrence: comorbidities in cancer survivors. Clin J Oncol Nurs. 2011;15(3):E3-E12.

157. Cameron AC, Touyz RM, Lang NN. Vascular complications of cancer chemotherapy. Can J Cardiol. 2016;32(7):852-862.

158. Foglietta J, Inno A, de Iuliis F, et al. Cardiotoxicity of Aromatase Inhibitors in Breast Cancer Patients. Clin Breast Cancer. 2017;17(1):11-17.

159. Willmot M, Gibson C, Gray L, Murphy S, Bath P. Nitric oxide synthase inhibitors in experimental ischemic stroke and their effects on infarct size and cerebral blood flow: a systematic review. Free Radic Biol Med. 2005;39(3):412-425.

160. Minou RI, Mahabadi AA, Michel L, et al. Cardiacvascular adverse events associated with BRAFT and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e198890.
161. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–114.

162. Arnold D, Fuchs CS, Tabernero J, et al. Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramucirumab. Ann Oncol. 2017;28(12):2932–2942.

163. National Committee for Quality Assurance (NCQA) Controlling Blood Pressure. Accessed May 18, 2022. https://www.ncqa.org/hedis/measures/controlling-high-blood-pressure/

164. National Committee for Quality Assurance (NCQA) Statin Therapy for Patients With Cardiovascular Disease and Diabetes. Accessed May 18, 2022. https://www.ncqa.org/hedis/measures/statin-therapy-for-patients-with-cardiovascular-disease-and-diabetes/

165. Yao JC, Pavel M, Lombard-Bohas C, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J Clin Oncol. 2016;34(32):3906–3913.

166. TORISEL Kit (temsirolimus) [package insert]. Wyeth Pharmaceuticals Inc; 2014.

167. INLYTA® (axitinib) [package insert]. Pfizer Labs; 2012.

168. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.

169. Pazopanib (Votrient). GlaxoSmithKline; 2009 [package insert].

170. Sudasena D, Balanescu DV, Donisan T, et al. Fulminant vascular and cardiac toxicity associated with tyrosine kinase inhibitor sorafenib. Cardiovasc Toxicol. 2019;19(4):382–387.

171. Sunitinib (Sutent). Pfizer Labs; 2011 [package insert].

172. Santoni M, Guerra F, Conti A, et al. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev. 2017;59:123–131.

KEY WORDS cancer survivorship, cardiovascular comorbidities, coordination of care, medication adherence, multidisciplinary care