Background. Antibiotic resistance is increasing worldwide, driven by excessive antibiotic use. Antibiotic stewardship (AS) interventions have traditionally focused on acute care, long-term care, and ambulatory settings. However, as patients transition from one care setting to another, AS interventions should address antibiotic orders (agent, dose, duration) between the hospital and the home. The purpose of this study is to determine the appropriateness of a total course of antibiotics, including inpatient and outpatient prescriptions, to aid in prioritizing AS interventions.

Methods. A single-center, retrospective study was performed to evaluate antibiotic duration for adult patients discharged from a large quaternary-care academic hospital. All antibiotic prescribing data, including pre-admission, during admission, and after hospital discharge, as well as information on indication, was collected from the electronic medical record. Descriptive statistics were used to summarize the data collected.

Results. 196 patients were included in the study. There were 100 instances of discharge on antibiotic indication between the discharge summary and reviewer. However, 70% of patients were discharged on an appropriate antibiotic. The majority of patients (73%) were prescribed excess antibiotic days beyond guideline recommended total duration, and 68% of patients had appropriate indications of antibiotic use. Understanding the total duration of antibiotic prescription, including post-discharge and pre-admission durations, is key in assessing risk from antibiotics and targeting AS interventions.

Disclosures. Kate Dzintars, PharmD. Nothing to disclose

162. Duration of Antibiotics Through Care Transitions: A Quality Improvement Initiative

Caitlin Soto, PharmD1; Kate Dzintars, PharmD2; Kate Dzintars, PharmD2; Sara C. Keller, MD, MPH, MSPH1;1 The Johns Hopkins Hospital, Baltimore, Maryland; 2 The Johns Hopkins Hospital, Baltimore, Maryland; 3 Johns Hopkins University School of Medicine, Baltimore, MD

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Multiple studies have shown that antibiotic utilization increased during the COVID-19 pandemic. However, the impact of this increased utilization has not been well established. The aim of this study is to describe the trends in minimum inhibitory concentrations for various antibiotics against common gram-negative pathogens observed since the start of the COVID-19 pandemic as compared to previous years.

Methods. This retrospective study was conducted at the Memphis VA. All respiratory, urinary, and blood culture MicroScan run results from October 2017-March 2021 were evaluated. The results of this study showed that patients were often prescribed excess antibiotic days at discharge, and the total duration of antibiotics from pre-admission to post-discharge were greater than 10 days beyond guideline recommended total duration. Understanding the total duration of antibiotic prescription, including post-discharge and pre-admission durations, is key in assessing risk from antibiotics and targeting AS interventions.

Disclosures. Kate Dzintars, PharmD. Nothing to disclose

163. MIC Shifts in Response to Increased Antibiotic Utilization During COVID-19 Pandemic

Jonathan Byrd, MD1; Neena Thomas-Gosain, MD2; Jane V. Eason, MD3; Jessica Bennett, PharmD1; Jarred Bowden, Pharm.D., BCIDP, AAHIVP1; UTHSC, Memphis, Tennessee; 2 University of Tennessee Health Science Center, Memphis, Tennessee; 3 Memphis VA Medical Center; UTHSC, Memphis, Tennessee; 4 VAMC, Germantown, Tennessee; 5 VA Medical Center, Memphis, Tennessee

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Multiple studies have shown that antibiotic utilization increased during the COVID-19 pandemic. As compared to previous years, Pseudomonas aeruginosa was noted to have the most sustained increase in MIC90 across various antibiotics. In the last 3 quarters of the study time frame, piperacillin-tazobactam mean MIC90 increased from 32 to 64, cefepime from 8 to > 16, and meropenem from 4 to > 8. Escherichia coli had a sustained increase in withstand MIC90 from < 1 to > 8 in the final quarter of 2020 and beginning of 2021. Klebsiella pneumoniae was also found to have a sustained increase in ceftime MIC90 from < 1 to > 16 during the year of 2020, with return to previous MIC90 the following quarters.

Conclusion. Previous studies have clearly demonstrated a widespread increase in antibiotic dosing weights during the COVID era. Our study demonstrates how even short-term increases in antibiotic use can lead to shifts in MIC, if not outright resistance. This was demonstrated across multiple common gram-negative pathogens and to various broad-spectrum antibiotics which were commonly used more frequently during COVID-19. Further analysis will be needed to determine whether these trends...