Prediction of Gas Dissolved in Power Transformer Oil by Non-equidistant Multivariable Grey Model

Sun Na¹, Liang Ling Tao²

¹School of Electrical and Electronic Engineering, North China Electric Power Univ., 071003, Baoding, China
²HEIBEI ZHONGXING Automotive Manufactory CO.,LTD, 071003, Baoding, China

Abstract. Power transformer is an essential component in the power systems. The concentration of fault characteristic gases dissolved transformer oil is essential to the insulation fault diagnosis. The concentration prediction of the gases is an important supplement for periodical testing. A NMGM(1, 5) model using Non-equidistance Multivariable grey theory for the five characteristic gases dissolved in transformer oil, i.e. hydrogen, methane, ethane, ethylene, acetylene, was constructed. In the built model, the interaction among these gases was comprehensively considered and the disadvantage that only one index extracted from the signal or each index that was dealt with separately was made up, meanwhile, the scope of application is enlarged. Two actual prediction cases were analyzed and the results were compared with those obtained by Non-equidistant GM(1, 1) model. The comparison result indicates the validity and efficiency of the proposed model.

1 Introduction

As test data processing, some information is known and some is unknown, test data processing system is a grey system. Making use of grey system, we can forecast data to unknown information in future. Grey system theory is established in poor information (few sample), which build differential equation model with alone feature by data transform process to fully dig up apparent and latent information in relying on few data and discover knowing orderliness from un-orderliness data and reason the rule in future. Fault mechanism of transformer is complex, the relationship between the insulation latent faults and fault feature, some is known, some is unknown, has uncertainty. The insulation fault diagnosis of power transformer is grey system, in recent years, grey model has been predicted the concentration of the gas dissolved in power transformer oil. The Ref.[5] predicts the gas dissolved in power transformer oil by grey GM(1,1) model, the Ref.[6] predicts the gas dissolved in power transformer oil by improved grey GM(1,1) model, the Ref.[7] predicts the gas dissolved in power transformer oil by Multivariable Grey Model (GMG(1,n)) which is extended from GM(1,1) in n variables condition but is not simple combination and is also differ from GM(1,n) which only builds one differential equation with multi-variable one order. But the period of transformer fault detection is non-equidistant, so the GM(1,1) and MGM(1,n) model is not work. The Ref.[8] introduced non-equidistant multi-variable grey model GM(1,M) which has high fitting precision and high forecasting precision. In this study, we predict concentration of gas dissolved in power transformer oil by non-equidistance multivariable grey model which based on the Ref.[8]. This proposed model not only has high forecasting precision, but also provides the guidance basis to forecasting gas dissolved in power transformer oil, this model and method possesses the vast application foreground in the data processing of domain at other engineering.

2 Non-equidistance Multivariable Grey Model (NMGM (1, n))

This section describes the main structures and operations of the Non-equidistant Multivariable Grey Model (NMGM(1,n)).

Definition 1 Let sequence
\[X_i^{(0)} = \{x_i^{(0)}(t_1), x_i^{(0)}(t_2), \cdots, x_i^{(0)}(t_n)\} \]
and
\[\Delta t_k = t(k) - t(k - 1), \quad k = 2, \cdots, M \]
if \(\Delta t_k \neq \text{const} \), \(X_i^{(0)} \) is called non-equidistant sequence.

Definition 2 Let sequence
\[X_i^{(1)} = \{X_i^{(1)}(t_1), X_i^{(1)}(t_2), \cdots, X_i^{(1)}(t_M)\}, \]
if
\[X_i^{(1)}(t_k + 1) = X_i^{(1)}(t_k) + X_i^{(0)}(t_k + 1)\Delta t_k + 1 \]

\[k = 1, 2 \cdots m - 1 \quad (1) \]

and \(X_i^{(1)}(t_i) = X_i^{(0)}(t_i) \) we call \(X_i^{(1)} \) is corresponding 1-accumulated generation operator

(1-AGO) sequence \(X_i^{(0)} \).

NMGM(1,n) model with n-variable 1-order differential equations is as follows:

\[
\begin{align*}
\frac{dx_1^{(1)}}{dt} &= ax_1 + x_2 + \cdots + x_n + b_1 \\
\frac{dx_2^{(1)}}{dt} &= ax_1 + x_2 + \cdots + x_n + b_2 \\
&\vdots \\
\frac{dx_n^{(1)}}{dt} &= ax_1 + x_2 + \cdots + x_n + b_n
\end{align*}
\]

(2)

Notes

\(X^{(0)}(t) = (X_1^{(0)}(t), X_2^{(0)}(t), \cdots, X_n^{(0)}(t))' \),

\(X^{(1)}(t) = (X_1^{(1)}(t), X_2^{(1)}(t), \cdots, X_n^{(1)}(t))' \)

\[A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \]

Then, the formula (2) can be expressed as:

\[\frac{dX^{(1)}}{dt} = AX^{(1)} + B \quad (3) \]

the continuous time response function of the formula (3) is

\[x^{(1)}(t) = e^{At}x^{(0)}(0) + A^{-1}B \quad (4) \]

The prediction accuracy of grey model depends on the background value, the general background value is as follows:

\[z_i^{(1)}(k + 1) = \frac{1}{2} \left(x_i^{(1)}(t_k + 1) + x_i^{(1)}(t_k) \right) \quad (5) \]

The actual background value is as follows:

\[z_i^{(1)}(k + 1) = \int_{t_k}^{t_{k+1}} x_i^{(1)}(t)dt \quad (i = 1, 2, \cdots, n) \quad (6) \]

Using exponential function vector fit \(x_i^{(1)}(t) \) the formula (6) can be expressed as follows:

\[z_i^{(1)}(k + 1) = \frac{x_i^{(1)}(t_{k + 1}) - x_i^{(1)}(t_k)}{\ln x_i^{(1)}(t_{k + 1}) - \ln x_i^{(1)}(t_k)} \Delta t_k + 1 \quad (7) \]

Notes \(a_i = \left[a_{i1} \ a_{i2} \ \cdots \ a_{in} \ b_i \right]' \) by least square method, the estimated value \(\hat{a}_i \) of parameter \(a_i \) is as follows:

\[\hat{a}_i = \left(L_i^T L_i \right)^{-1} L_i^T \gamma_i \quad (i = 1, 2, \cdots, n) \quad (8) \]

Where

\[L_i = \begin{bmatrix} -z_i^{(1)}(2) & -z_i^{(1)}(3) & \cdots & -z_i^{(1)}(m) \\ -z_i^{(1)}(3) & -z_i^{(1)}(3) & \cdots & -z_i^{(1)}(m) \\ \vdots & \vdots & \ddots & \vdots \\ -z_i^{(1)}(m) & -z_i^{(1)}(m) & \cdots & -z_i^{(1)}(m) \end{bmatrix} \]

\[\gamma_i = \begin{bmatrix} x_i^{(0)}(2) \\ x_i^{(0)}(3) \\ \vdots \\ x_i^{(0)}(m) \end{bmatrix} \]

By distinguishing, we obtain the distinguishing values \(\hat{A} \) and \(\hat{B} \) of parameters A and B are as follows:

\[\hat{A} = \begin{bmatrix} \hat{a}_{11} & \hat{a}_{12} & \cdots & \hat{a}_{1n} \\ \hat{a}_{21} & \hat{a}_{22} & \cdots & \hat{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{n1} & \hat{a}_{n2} & \cdots & \hat{a}_{nn} \end{bmatrix} \]

\[\hat{B} = \begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \\ \vdots \\ \hat{b}_n \end{bmatrix} \]

The calculating value of NMGM(1,n) is formula(9).

\[\hat{x}^{(1)}(t) = e^{\hat{A}(t-t_i)} (\hat{x}^{(1)}(t_i) + \hat{A}^{-1}\hat{B}) - \hat{A}^{-1}\hat{B} \]

\[k = 1, 2, \cdots, m \quad (9) \]

By the inverse accumulated generating operation, the fitting data or forecast of the original data is as follows:

\[\hat{x}^{(0)}(1) = x_i^{(0)}(1) \]

\[\hat{x}^{(0)}(k) = (\hat{x}^{(1)}(k) - \hat{x}^{(1)}(k - 1)) \frac{1}{\Delta t_k} \]

\[i = 1, 2, \cdots, n; k = 1, 2, \cdots m, m + 1, \cdots \]

Where, when \(k \leq m \), \(\hat{x}_i^{(1)}(t_k) \) is fitting value and when \(k > m \), \(\hat{x}_i^{(1)}(t_k) \) is forecasting value.

Define absolute error of the I variable is

\[e_i(k) = \frac{\hat{x}^{(0)}(k) - x_i^{(0)}(k)}{x_i^{(0)}(k)} \times 100\% \quad (11) \]

The mean value of relative error of the I variable is

\[\varepsilon_i(avg) = \frac{1}{m} \sum_{k=1}^{m} | e_i(k) | \quad (12) \]

The mean value of relative error of all data is

\[\varepsilon(avg) = \frac{1}{mn} \sum_{i=1}^{n} \sum_{k=1}^{m} | e_i(k) | \quad (13) \]

the ref. [9] introduced the accuracy detecting method, the grades of mean relative error accuracy is as tab.1

accuracy grades	relative error
first	0.01
second	0.05
The model is noted as $\text{NMGM}(1, n)$ that can be modeled and can be used to forecast or fitting data. Based on the number of variables in actual case, we may obtain $\text{NMGM}(1, 1)$ model, $\text{NMGM}(1, 2)$ model, $\text{NMGM}(1, 3)$ model, $\text{NMGM}(1, 4)$ model, $\text{NMGM}(1, 5)$ model and so on.

3 Concentration prediction of fault gases in power transformer oil by NMGM (1, 5)

A NMGM(1, 5) model using Non-equidistance Multivariable grey theory for the five characteristic gases dissolved in transformer oil, i.e., hydrogen, methane, ethane, ethylene, acetylene, was constructed. The interaction among these gases was comprehensively considered.

3.1 Case I

The DGA data is come from Ref.[6], as table. 2. The data of table. 2 are non-equidistant sequence, so the GM(1, 1) model and MGM(1, n) model are not fit. In this case, we fit the gases using NMGM(1,5) model and non-equidistance GM(1,1) model respectively. The mean value of relative error of all data is of the NMGM(1,5) model is $1 - \frac{1}{5} \sum_{i=1}^{5} \epsilon_i(\text{avg}) = 2.423$, The mean value of relative error of all data is of the NGM(1,5) model is $1 - \frac{1}{5} \sum_{i=1}^{5} \epsilon_i(\text{avg}) = 5.7895$.

From the results, it is obvious that NMGM(1,5) model can better reflect the relation between hydrogen and methane, ethane, ethylene and acetylene. the proposed model has high fitting precision and high forecasting precision.

3.2 Case II

From August 17th 1984 to March 5th 1985, the 5th transformer of Liu Jia-Xia had collected seven sets of DGA data. As Tab.3, “Gas ratios” of DGA prediction on march 5th 1985 by non-equidistant multivariable grey model is $C_2H_6 / C_2H_4 L = 0.0746$, $CH_4 / H_2 = 1.0224$, $C_2H_4 / C_2H_6 = 1.875$, nodes for “gas ratios” should be 022 . Thus can predict the transformer faults is hyperthermia and superheating fault which is confirmed by the operation department. From the results, it is obvious that NMGM(1,5) model has higher forecasting precision than Non-equidistant GM(1,1) model.

Table 2. Prediction of gas dissolved in power transformer oil uL / L

Gas/time	93-08-15	93-09-23	93-10-06	93-10-27	93-11-09	93-11-27	93-12-20	$\epsilon_i(\text{avg})$
H_2	35.8	59.7	89.5	116	187	220	292	0.079
NGM(1,1)	35.80	56.27	86.04	124.71	185.46	248.45	280.75	5.5517
Relative error	0.0	-5.74	-3.86	7.51	0.082	12.93	-3.19	2.4433
NMGM(1,5)	35.80	61.1986	87.0367	115.040	199.769	223.393	291.4245	6.418
Relative error	0.0	2.51	2.75	-0.83	6.83	1.54	-0.2	3.31
CH_4	61.6	74.1	129	183	250	294	325	3.11
NGM(1,1)	61.60	64.17	132.49	195.80	236.16	270.41	318.98	4.570
Relative error	0.0	-13.4	2.71	6.99	-5.54	-8.02	1.85	1.542
NMGM(1,5)	61.60	79.082	128.1611	183.91	261.129	299.670	321.989	4.1541
Relative error	0.0	6.72	-0.65	3.78	4.45	3.33	0.93	2.153
C_2H_6	27.5	30.4	51.8	69.7	104	166	196	3.11
NGM(1,1)	27.50	29.0549	50.3851	70.4767	108.874	170.337	195.94	2.5988
Relative error	0.0	4.42	-2.73	1.11	4.69	2.61	0.0327	0.53
NMGM(1,5)	27.50	30.6382	53.2135	68.7704	104.138	165.692	197.0469	0.125
Relative error	0.0	2.382	2.73	-1.33	0.13	-0.19	0.53	0.125
C_2H_4	95.5	100	191	307	467	514	598	4.1541
NGM(1,1)	95.50	99.7308	207.047	319.152	488.333	509.940	566.80	2.1253
Relative error	0.0	-2.692	8.4	3.96	4.57	0.079	-5.2135	0.53
Model	Relative Error	C_2H_2	C_2H_6	C_3H_4	C_4H_2	$\varepsilon (avg)$		
-------------	----------------	---------	---------	---------	---------	------------------		
NMGM(1,5)	0.1389	3.54	0.046	2.61	0.037	-0.017	1.2315	
C_2H_2	0	0	0	1.47	3.61	2.15	3.78	
NGM(1,1)	0	0	0	1.47	2.6704	1.9319	2.8281	
NMGM(1,5)	0	0	0	1.47	2.9642	2.1864	3.9278	
Relative	-0.0034	0.80	-3.56	-1.89	2.58	1.7667		

Table 3. Prediction of gas dissolved in power transformer oil uL / L

4 CONCLUSIONS

Dissolved gas analysis (DGA) is the essence to evaluate the state of transformer insulation and analyze transformer insulation faults. With non-equidistance multi-variable grey model the interaction among these gases was comprehensively considered and the disadvantage that only one index extracted from the signal or each index was dealt with separately was made up. Meanwhile, the proposed model overcome the deficiency that the MGM(1,n) model doesn’t fit the non-equidistant, The method can be used for model establishing on equal interval, as well as on non-interval. Moreover, non-equidistance multi-variable grey model’s fitting precision and prediction is advanced and the scope of application is enlarged.

References

1. Y.X. LUO, Journal of Machine Design, 10, 38-41 (1993)
2. YX LUO, L.T ZHANG, M. LI, Changsha: National University of Defence Technology Press, (2001)
3. H. J. XIONG, D. J. CHEN, M. Y. CHEN, Advances in Systems Science and Applications, 3, 309-313 (2003)
4. SF. LIU, T.B. GUO, Y.G. DANG, et al, Grey systems and Applications (third edition), (2004)
5. Songbin,Yuping, Luoyunbai, et al. Electric Power Automation Equipment, 23, 64-66 (2003)
6. Wang Jing ,Liu Jian-xin , Journal of North China Electric Power University, 34, 10-14(2007)
7. Xiaoyancai, Chenxiuhai, High voltage engineering, 33, 98-101(2007)
8. Wangfengxiao, Systems Engineering and Electronics, 29, 388-390 (2007)
9. Suncaixin, Chenweigen, Lijian, et al. The on-line monitoring and diagnosis technology of gas dissolved in power equipment oil (2003).
10. Chenjinqiang , High Voltage Apparatus, 51,39-43(2015).
11. Liujun, Zhaojilin, Huangliang, et al. Engineering Journal of Wuhan University, 50,754-759(2017).