Rational Design of WO₃ Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance

Yang Liu · Yang Jiao · Haiyue Zhou · Xiang Yu · Fengyu Qu · Xiang Wu

Received: 6 June 2014 / Revised: 18 July 2014 / Accepted: 12 August 2014 / Published online: 14 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract A facile, one-step hydrothermal method was employed to synthesize two kinds of WO₃ nanostructures. By using different kinds of sylvine, tungsten trioxide (WO₃) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 mAh g⁻¹ after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 mAh g⁻¹, the discharge capacities of WO₃ microflowers and nanowires are as high as 433 and 557 mAh g⁻¹ after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO₃ products can exert great influence on the electrochemical performances.

Keywords WO₃ nanostructures · Anode materials · Li-ion batteries

1 Introduction

In the past few years, owing to the development of new type energy materials, more and more researchers devote their efforts to investigate high-performance power sources with higher power and energy densities for long time operation, i.e., lithium-ion batteries (LIBs) and supercapacitors (SCs) [1–9]. Especially, the LIBs are obviously superior to the supercapacitors in aspect of energy storage due to the higher energy density [10–12]. Moreover, as one of the most important low-cost, light-weight, highly efficient, and environmentally friendly rechargeable power sources for consumer electronic products, LIBs have attracted worldwide attentions because of the increasing concerns about energy and environmental problems. Therefore, more and more efforts are devoted to develop high performance and miniaturization LIBs [13–15].

It is well known that the electrode materials correlate to the performance of lithium-ion batteries, which is strongly influenced by the sort and the structure of a material [16–18]. Hence, to rational design and synthesize semiconductor nanostructures with desired structures and shapes are a very important task. As an important n-type semiconductor, tungsten trioxide (WO₃) has received a lot of attentions in recent years due to its attractive physicochemical properties and extensive potential applications [19–24].

In this paper, we developed a simple hydrothermal strategy to design and fabricate WO₃ nanostructures with two different morphologies and investigated their electrochemical performance as anode materials for LIBs. The rate capability of the WO₃ nanowires was found to be superior to that of the microflowers. However, the cycle performance of the microflowers is better than that of the nanoribbons, revealing the morphology and structure of the as-obtained product might exert great influence on their electrochemical performances.
2 Experimental

All chemicals used are analytical grade without further purification. In a typical procedure to prepare WO$_3$ microflowers, 12.5 mmol Na$_2$WO$_4$·2H$_2$O was added to 100 mL deionized water. After being stirred for 20 min at room temperature, 3 M HCl was added dropwise to the solution until the pH reached 12, and a yellow transparent solution was formed. Subsequently, 35 mL H$_2$C$_2$O$_4$ was added in the above solution with continuous stirring, and then the solution was diluted to 250 mL.

After that 1.0 g of KCl was added into above 20 mL solution with stirring, followed by transferred into a 40 mL Teflon-lined stainless steel autoclave, and the autoclave was sealed and maintained at 180 °C for 16 h. After the solution was cooled down to room temperature naturally, the as-prepared yellow precipitation was rinsed extensively with deionized water and ethanol, and finally dried in air at room temperature for further characterization. WO$_3$ nanowires were synthesized through the same method except 1.0 g of K$_2$SO$_4$ was added instead of KCl.

3 Results and Discussion

The morphology and size of the as-product were first characterized by field-emission scanning electron microscope (SEM). A survey view at low magnification (Fig. 1a) reveals that the sample is composed of uniform flower-like microspheres with diameters of ~5 μm. A high-magnification SEM image of a microflower (Fig. 1b) clearly presents that the flower-like nanostructures are assembled from many nanowires with average length of hundreds of nanometers.

When using K$_2$SO$_4$ to replace KCl with other parameters constant, some nanowires were formed. From Fig. 1c, it can be observed that these nanowires possess a certain orientation, and their average lengths are more than 10 μm. Further observation (Fig. 1d) found that each nanowire has a smooth and uniform surface.

The phase and purity of the products were determined by X-ray diffraction (XRD). Figure 2a illustrates the typical diffraction pattern of the microflowers assembled from many nanowires, and all the peaks can be well indexed to the hexagonal WO$_3$ structure (JCPDS card NO. 33–1387). No characteristic peaks for other impurities are observed, revealing the high purity of the prepared WO$_3$ microflowers. At the same time, each WO$_3$ contains 0.33 water of crystallization, which should come from hydrothermal process and could be removed by calcination. Figure 2b shows XRD pattern of the nanowires. All diffraction peaks match well with the standard JCPDS card (no. 85–2460). XRD measurements show that there are no secondary phases or residuals of tungsten. The sharp and strong peaks indicate that WO$_3$ nanowires have good crystal quality.
The lattice parameters are calculated \((a = 7.334 \text{ Å}, c = 7.658 \text{ Å})\) and are consistent with the standard values.

To investigate the practical applications of the as-synthesized two WO\(_3\) nanostructures as the anode materials for the LIBs, a series of electrochemical measurements were conducted. The cycling performance of two structures at a current density of 200 mA g\(^{-1}\) with a voltage range of 0.01–3.00 V over 180 cycles is presented in Fig. 3. The first specific discharge capacities of WO\(_3\) microflowers and nanowires reach 718.8 and 664.3 mAh g\(^{-1}\), respectively. It can be identified that both WO\(_3\) microflowers and nanowires electrodes show a relatively high initial irreversible capacity loss of about 72 and 85 %, respectively, which can probably be attributed to the reduction of WO\(_3\) to W and some side reactions such as formation of the solid-electrolyte interface [25]. It is worth noting that neither microflowers nor nanowires electrodes have large loss of capacity from the second loop. It is apparent that both two samples demonstrate comparably good capacity retention upon extended cycling up to 180 charge/discharge cycles, and the discharge capacity of WO\(_3\) microflowers electrode is 549.8 mAh g\(^{-1}\), while the discharge capacity for the nanowires electrode is about 503.9 mAh g\(^{-1}\) after 180 cycles, and the values shown by the as-prepared WO\(_3\) nanostructure electrodes are higher than that of graphite (372 mAh g\(^{-1}\)) [26, 27]. This result indicates that WO\(_3\) nanostructures are promising as anode materials for Li-ion batteries. Besides, the results also demonstrate that the reversible capacity of the microflowers is higher than that of nanowires. Furthermore, the cycle stability of the microflowers is higher than nanowires since 110th cycle, demonstrating that the morphology and the particle size of the as-prepared product have great influence on the electrode performance.

To compare the capacitive performance of the as-synthesized WO\(_3\) microflowers and nanowires with the previous work [28], a comparison is made, as shown in Table 1. Obviously, WO\(_3\) microflowers and nanowires electrodes exhibit the outstanding capacitive properties than that of SnO\(_2\) nanoparticles.

Table 1 A comparison of cycle performances of WO\(_3\) microflowers, nanowires with SnO\(_2\) microflowers

Electrode types	WO\(_3\) microflowers	WO\(_3\) nanowires	SnO\(_2\) nanoparticles
Initial discharge capacities	718.8 mAh g\(^{-1}\)	664.3 mAh g\(^{-1}\)	664.3 mAh g\(^{-1}\)
Final discharge capacities	549.8 mAh g\(^{-1}\)	503.9 mAh g\(^{-1}\)	664.3 mAh g\(^{-1}\)
Capacity retention	76.4 %	75.8 %	28.8 %
WO3 nanostructures: a fast Li⁺ insertion between WO₃ layers and a subsequent slow diffusion and residence of Li⁺ in the interlayer spacing. Li⁺ insertion process occurs in a disorder way and leads to decreased interlayer distance. The slower process causes two dimensional relaxation of the structure within WO₃ layers. During lithium insertion, tungsten was reduced from high valence to lower oxidation state, resulting in an increase in its coordination number and changes in cell parameters. Significant alteration in crystal structure may be induced if large amount of lithium ions are inserted. The reaction mechanism for WO₃/Li cell can be described as follows:

\[
\text{WO}_3 + 6\text{Li}^+ + 6e^- \rightarrow W + 3\text{Li}_2\text{O} \quad (1)
\]
\[
W + 3\text{Li}_2\text{O} \rightarrow \text{WO}_3 + 6\text{Li}^+ + 6e^- \quad (2)
\]

Such good rate capability and reversibility of WO₃ microflowers and nanowires can be attributed to the superior uniform structures and small size of the products that reduce lithium ion diffusion distance and facilitate rapid lithium ion diffusion. Nanoscale particles are able to diffuse much more easily and have better accommodation of structural strain for the electrochemical reaction of lithium, resulting in improving the electrochemical performance. Similar case has also been encountered in the SnO₂/α-MoO₃ core–shell nanobelts and hierarchical WO₃ flowers [29, 30]. Moreover, it has been demonstrated that small size effect of WO₃ nanostructures, arising from an increased total number of surface atoms, can greatly increase the electrochemical reactivity and make the conversion between Li⁺ and Li₂O reversible [31, 32].

4 Conclusion

In conclusion, WO₃ microflowers and nanowires have been successfully synthesized through a facile hydrothermal process. Potassium salt plays an important role in adjusting the morphology of the products. The as-prepared two WO₃ structures show significantly improved cycle lives and rate performance due to their unique structures.

Acknowledgments This work was supported by the Scientific Research Fund of Heilongjiang Provincial Education Department (12531179) and Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang (No. 2011TD010).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, X. Wu, Hierarchical SnO₂ nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
2. G.H. Yu, L.B. Hu, N. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.N. Bao, Enhancing the supercapacitor performance of graphene/MnO₂ nanocoated electrodes by conductive wrapping. Nano Lett. 11(10), 4438–4442 (2011). doi:10.1021/nl2026635
3. Y.T. Han, X. Wu, Y.L. Ma, L.H. Gong, F.Y. Qu, H.J. Fan, Porous SnO₂ nanowire bundles for photocatalyst and Li ion battery applications. Cryst EngComm. 13(11), 3506–3510 (2011). doi:10.1039/c1ee05171g
4. Y. Liu, Y. Jiao, S.W. Zhang, B.S. Yin, F.Y. Qu, X. Wu, SnO₂ core-shell microspheres as the superior anode materials for Li-ion
10. B. Frenzel, P. Kurzweil, H. Ro¨nnebeck, Electromobility concept
11. X.J. Hou, X.F. Wang, B. Liu, Q.F. Wang, Z.R. Wang, D. Chen, G.Z. Shen, Si@SiO2 nanowires/car-
12. D.S. Tan, B. Liu, D. Chen, G.Z. Shen, High performance energy storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013). doi: 10.1039/c3ta10831g
13. B. Wang, J.S. Chen, H.B. Wu, Z.Y. Wang, X.W. Lou, Quasi-emulsion templated formation of α-
14. B. Liu, X.F. Wang, Q.F. Wang, D.S. Tan, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High performance lithium-ion batteries. J. Power Sources 223 (18), 2076–2081 (2012). doi:10.1016/j.jpowsour.201100058
15. J.S. Luo, X.H. Xia, Y.S. Luo, C. Guan, J.L. Liu, X.Y. Qi, C.F. Chen, G.Z. Shen, Advanced rechargeable lithium-ion batteries. RSC Adv. 18, 13891–13896 (2014). doi: 10.1039/c4ra01363h
16. B. Liu, X.F. Wang, H.T. Chen, Z.R. Wang, D. Chen, Y.B. Cheng, C.W. Zhou, G.Z. Shen, Silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Reports 3, 1622 (2013). doi:10.1038/srep01622
17. B. Liu, X.F. Wang, Q.F. Wang, D.S. Tan, W.F. Song, X.J. Hou, D. Chen, G.Z. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-rutile-on-carbon-fibers electrodes. Nano Res. 6(7), 525–534 (2013). doi:10.1007/s12274-013-0329-3
18. L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). doi:10.1021/ja207475c
19. L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High performance energy storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013). doi: 10.1039/c3ta10831g
20. L.N. Gao, F.Y. Qu, X. Wu, Hierarchical WO3@SnO2 core/shell nanowire arrays on carbon cloth: a new class of anode for high performance lithium-ion batteries. J. Mater. Chem. A 2, 7367–7372 (2014). doi:10.1039/c4ta00206g
21. X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/c2jm16709c
22. J.Z. Su, L.J. Guo, N.Z. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
23. K. Huang, Q.T. Pan, F. Yang, S.B. Ni, X.C. Wei, D.Y. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 41(15), 155417–155422 (2008). doi: 10.1088/0022-3727/41/15/155417
24. X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission Applications. J. Mater. Chem. 18(5), 509–522 (2008). doi:10.1039/b71284f
25. J.S. Chen, L.A. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem. A 1(27), 9912–9924 (2011). doi:10.1039/c0jm04163g
26. L.A. Courtney, J.R. Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 144(9), 294–2943 (1997). doi:10.1149/1.1837941
27. N. Li, C.R. Martin, B. Scrosati, Nanomaterial-based Li-ion battery electrodes. J. Power Sources 97–98, 240–243 (2001). doi:10.1016/S0378-7753(01)00760-1
28. S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polysol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochem. Commun. 9(5), 915–919 (2007). doi:10.1016/j.elecom.2006.12.007
29. X.Y. Xue, Z.H. Chen, L.L. Xing, S. Yuan, Y.J. Chen, SnO2/α-MoO3 core-shell nanostructures and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun. 47(18), 5205–5207 (2011). doi:10.1039/c1cc00076d
30. Y.C. Qiu, G.L. Xu, Q. Kuang, S.G. Sun, S.H. Yang, Hierarchical WO3 flowers comprising porous single-crystalline nanopolates show enhanced lithium storage and photocatalysis. Nano Res. 5(11), 826–832 (2012). doi:10.1007/s12274-012-0266-6
31. P. Poizot, S. Laruelle, S. Grugel, L. Dupont, J.M. Tarascon, Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 480(7378) (2012). doi:10.1038/nature105045
32. L.A. Riley, S.H. Lee, L. Gedvila, A.C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195(2), 588–592 (2010). doi:10.1016/j.jpowsour.2009.08.013