Molecular and Immunological Investigation of Canine Distemper Virus (CDV) and Its Co-infection with Canine Parainfluenza Virus Type 2

Afsaneh Tavakoli Zaniani¹, Azam Mokhtari¹²* Atefeh Esmailnejad³

1. Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
2. Research Institute of Zoonotic Diseases, Shahrekord University, Shahrekord, Iran
3. Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

10.30699/ijmm.15.2.212

ABSTRACT

Background and Aim: Canine distemper (CD) is a highly transmissible serious disease of carnivores. Distemper virus has immunosuppression effects, which, in turn, could lead to opportunistic infections. The present study was performed to detect CDV by the genomic and immunological methods and investigate its co-infection with canine parainfluenza virus type 2 (CPiV-2).

Materials and Methods: In this study, which was conducted from Spring 2018 to Winter 2019, samples of blood, eye, respiratory, and digestive system were collected from 50 dogs suspected to CDV (group 1: symptomatic dogs) as well as 50 seemingly healthy dogs (group 2: asymptomatic dogs). Rapid distemper immunochromatography kit was applied for the primary detection of CDV. RT-PCR test was also performed using special primers for molecular investigation.

Results: Results of immunochromatography showed twenty nine and one positive cases among dogs suspected to CDV and seemingly healthy dogs, respectively. After RT-PCR assay, in the first group, 37 samples were reported as CDV positive and 11, CPiV-2 positive. Furthermore, three CDV- and one CPiV-2-positive cases were found in the second group. Besides, the frequency of CDV and CPiV-2 co-infection was 4%.

Conclusion: In the present study, using statistical tests, we observed no association between distemper and CPiV-2.

Keywords: distemper parainfluenza virus genome search, immunological diagnosis dogs

Introduction

Canine distemper virus (CDV) is a member of the family Paramyxoviridae, which can infect certain epithelial cell lines of the respiratory, gastrointestinal, or nervous systems (1). The virus is endemic in many areas, such as India, Denmark, Finland, Brazil, and North America (2). A high prevalence (55.6%) of CDV has been reported among the rural dogs in the north of Iran (3). Avizeh et al. (2007) in another study revealed a prevalence of 17.52% for CDV (4). In sensitive species, CDV inhibits immunity and its receptor is the signaling lymphocyte activation molecule 4 (SLAM 4) (5). Such condition often gives other microorganisms a chance of occurrence and infection. Although the distemper vaccine has significantly reduced the disease, it is still endemic in many parts of the world (6-12).
There are studies on the co-infection of CDV and some other viruses, including canine parvovirus type 2 (CPV-2), canine alphaherpesvirus 1 (CHV-1), and canine adenovirus types 1 and 2 (CAV-1 and -2). Recently, new reports have shown that CDV infection can facilitate the development of diseases caused by emerging viruses (13-17).

Morbilliviruses, such as CDV are transmitted by aerosols and cause clinical signs, including respiratory and gastrointestinal symptoms, which are often complicated by other pathogens. Another feature of Morbillivirus infection is the temporary severe suppression of the host immune system (7).

During the first 24 h after CDV infection, the virus accumulates in macrophages, as well as B and T cells. Afterwards, the virions go towards the lymphoid tissues and multiply in the reticuloendothelial organs within 4-6 days after the infection (18, 19). The initial virus proliferation in the lymphoid tissues leads to severe suppression of the immune system (20, 21, 22).

Following viraemia, CDV spreads to a number of epithelial tissues and the central nervous system (19). Infectious lymphocytes penetrate the epithelial tissue and may locally increase the number of viruses in the epithelial cells, followed by respiratory, intestinal, and urinary tract infections. Penetration of T lymphocytes and dendritic cells can, in turn, cause cutaneous disease manifestations (23). Moreover, lymphopenia could occur due to a reduction in the population of CD4+ and CD8+ T cells, in addition to CD21+ B cells (21, 22). Unlike CD8+ cells, which are resistant, CD4+ lymphocytes, as apoptotic cells, are likely to die (23, 24, 25).

The decline in circulating immune system cells may result from the diminished number of cells in the lymphatic organs and the apoptosis of white blood cells. Furthermore, programmed cell death can happen in non-infected cells indicating an additional non-viral mechanism of apoptosis. Therefore, the overactivation and death of lymphocytes because of the Fas protein should be considered in the CDV infection (26, 27). On the other hand, canine parainfluenza virus type 2 (CPiV-2) is an ssRNA virus belonging to the Paramyxoviridae family. This virus is quite similar to the simian virus 5, which was first reported as Simian-5 virus by Binn et al. in 1967 in dogs with respiratory disease symptoms.

The CPiV-2 is a highly contagious virus, an important symptom of which is a dry cough. Mild fever, lack of energy, and loss of appetite are other symptoms of the disease. Collecting and keeping dogs in shelters and breeding centers or contact with sick dogs can cause further spread of the disease.

Vaccine administration in puppies can protect dogs from the virus. Puppies are more vulnerable to pneumonia than adult dogs. Infection usually leads to short-term coughs along with a number of general symptoms. Despite vaccination, the virus is still one of the most common respiratory pathogens of dogs (28). With this background in mind, the present study aimed to perform the molecular and immunological investigation of CDV and coinfection of this virus with CPiV-2.

Materials and Methods

Sampling

Samples were taken from dogs in the clinics of Isfahan (2018-2019). The age of the dogs was determined based on the statements of their owners and the examination of the animal’s teeth. For sampling, the animals were first physically restrained and examined for clinical signs. Following physical restraint and sometimes using ketamine (Alfasan, Netherlands) and acepromazine (Hoogstraten, Belgium), respiratory and gastrointestinal tract swabs were taken from 50 symptomatic and 50 asymptomatic dogs. The specimens were examined by a rapid immunochromatography detection kit of distemper and were placed in sterile phosphate buffer saline.

Rapid Distemper Immunochromatography

A rapid immunochromatography kit of distemper (VetALL SensPERT Canine Distemper Virus Test Kit, CDV Ag) was applied for the detection of CDV in the eye and respiratory swabs. The samples were first diluted in the kit buffer. Next, 100 µL of the reagent was poured into the sample well and time was recorded. Next, the sample was dripped on a pad and after the adsorption of dripped samples by the pad, two red bands showing the positive result appeared on the C (control) and T (test) positions.

Acid Nucleic Extraction and Reverse Transcriptase Reaction

QIAamp Viral RNA Mini Kit (QIAGEN, Germany, Cat No: 52904) was used for RNA extraction from buffy coat. To determine the quality of the extracted RNA samples, the optical density of the specimens was measured at 260/280 nm by a spectrophotometer. Moreover, cDNA synthesis was carried out utilizing TaqMan reverse transcriptase (RT) kit (Invitrogen, USA, Cat No: N8080234). The RT reaction entailed 1 μL of 10X RT buffer, 2.2 µL of 25 mM MgCl₂, 2 µL of 10 mM dNTPs, 0.5 µL of random hexamers, 0.2 µL of RNase inhibitors, 0.25 µL of M-MLV RT (50 U/µL), RNA template (400–500 ng/µL), and deionized sterile water up to 10 µL. Moreover, the thermal cycling program encompassed 25°C for 10 min, 48°C for 30 min, and 95°C for 5 min.
RT-Polymerase Chain Reaction and Statistical Analysis

Polymerase chain reaction (PCR) was conducted using primers designed by Beacon Designer software for the detection of CDV and CPiV-2. The sequences of primers were as follows: CadF: AAGCCTCACACTGTTCAAG -3', CadR: GATTAGGACTATAATGACATGC -3', and Capi2F: ACAATCCCACCTACAACAC -3', Capi2R: 5' - AATCCGTAGGCAGAATAG -3'.

For detecting CPiV-2, the PCR thermal cycle programs consisted of 5 min at 94ºC, 30 cycles of 45 s at 94ºC, 45 s at 59ºC, 45 s at 72ºC, and 5 min at 72ºC. For CDV, the PCR cycles and temperature were the same as CPiV2. The only difference was that the annealing temperature was 57ºC. In each test, the negative and positive controls prepared from Tehran University were also applied.

The PCR products were electrophoresed in 1.5% agarose with 0.01% Green viewer (Parstous, Iran, Cat No.: B111151) along with 50 base-pair ladders (Fermentas, USA, Cat No.: SM1133). Afterwards, two positive PCR products were sent for sequencing to Bioneer, Korea. Finally, the data were analyzed using the Chi-square test by the SPSS 16 (IBM, Ill., USA) version 16.

Results

There were 29 and one positive cases among symptomatic and asymptomatic dogs based on the results of rapid distemper immunochromatography kits, respectively. The CDV-positive samples and positive control had a band size of 100 bp, while CPiV-positive specimens and positive controls had bands of 102 bp in size (Figures 1 and 2). Moreover, the sequencing of RT-PCR products showed that the degree of the identity of the sequences with the sequences registered in the GenBank for CDV and CPiV-2 was high. This was a good indicator of PCR efficiency (Figures 3 and 4).

In general, we detected 37 and three CDV-positive cases using RT-PCR among 50 symptomatic and 50 asymptomatic dogs, respectively. In addition, the frequency of CPiV-2 cases in the first and second groups was 11 and one cases, respectively. The rate of CDV and CPiV-2 coinfection was 4% only among dogs with distemper clinical signs.

All the 30 positive samples detected by rapid distemper immunochromatography test were also positive by RT-PCR test. Furthermore, there was a statistically significant relationship between the results of these two tests \((P<0.05)\). However, we noticed no statistically significant correlation between the two studied diseases and gender \((P>0.05)\). However, the relationships of CPiV RT-PCR results and CDV signs with age were statistically significant \((P<0.05)\). The relationships of CDV RT-PCR results and CDV signs with age were statistically significant \((P<0.05)\).
Figure 3. Alignment of CDV RT-PCR product sequence with the sequences registered in the gene bank.

Figure 4. Alignment of CpIV-2 RT-PCR product sequence with the sequences registered in the gene bank.
Discussion

Almost all dogs with distemper experience immune suppression. As a result, other infections can be added to the disease and make these dogs sicker. The mechanism of immune suppression in distemper disease is not fully understood. This mechanism depends on several factors. If some white blood cells become infected, long-term immune disorders might continue even after the peripheral blood is cleared of the virus during the recovery period (5).

Therefore, immune-suppressing mechanisms may affect the cells that are not directly involved in viral infection. Although the exact mechanism of immunosuppression due to CDV infection is not yet well understood, the immune system weakness due to this virus is accepted by all scientists.

Symptoms of the early stage of distemper in dogs usually appear as eye and nose discharge, fever, loss of appetite during which other canine respiratory infections may occur. Consequently, it is impossible to distinguish the infections exclusively based on the symptoms. Therefore, considering the possibility of concomitant infections due to immunosuppression resulting from CDV, the current study was conducted to investigate coinfection with distemper and canine parainfluenza type 2. We found coinfection with these two viruses in 4% of the cases with no statistically significant relationship between distemper and canine parainfluenza virus-2.

In the present study, unfortunately, limited access to dogs with distemper clinical symptoms did not allow us to have a large sample size and achieve a significant relationship between the two studied viruses. A rapid distemper diagnostic kit is the best option for diagnosing the virus in veterinary clinics. The specificity and sensitivity of this kit for conjunctival specimens, similar to Nested PCR, is 100%. (29). There is not any interference between vaccination and this diagnostic method. Therefore, this assay can be easily used in areas without diagnostic facilities (18, 28). All the above-mentioned reasons led us to choose this technique for the initial diagnosis of CDV.

Previously, some research groups worked on CDV coinfection with other pathogens. In Iran, we could not find any reports of infections simultaneous with distemper. There were only some reports of CDV infection from some cities. For instance, Avizeh et al. in 2007 carried out a serologic detection of CDV in unvaccinated dogs from Ahvaz, Iran. Furthermore, Namroudi et al. (2015) detected the Arctic and European clusters of CDV in the north and center of Iran (3, 4).

Moreover, we found some related works in other countries. For example, in Japan, Mochizuki et al. (2008) investigated the pathogens involved in upper respiratory tract infections in domestic dogs. In the present study, CPiV (4.7%), canine coronavirus 1 (4.4%), CAdV-2 (2.9%), canine coronavirus 2 (1.5%), and CDV (1.5%) were detected and two cases of coinfections were observed (14).

In a research performed by Damián et al. (2005), CDV, CAV, and CPiV were detected in 77%, 57%, and 51% of the studied population, respectively. The most common coinfection was found to be CDV-CpiV in 14% of the cases (20). Headley et al. (2018) reported CDV-associated infections as Neospora caninum (100%), CPV-2 (100%), CAdV-1 (100%), and CAdV-2 (100%) (11).

Aguiar et al. (2012) assessed the coinfection of CDV and Toxoplasma gondii in dogs with neurological signs. Using RT-PCR, 80.9%, 38.1%, and 41.1% of dogs were positive for CDV, anti- T. gondii antibodies, and both factors, respectively (3). Furthermore, Headley et al. in 2015 detected the coinfection of CDV with CHV-1, CAdV, and CPV in domestic dogs in southern Brazil (11).

The mentioned research indicated a high rate of CDV coinfection with other pathogenic viruses in dogs. This rate confirms the hypothesis that susceptibility to other pathogens due to the weakness of the animal immune system elevates after CDV infection. However, performing further similar studies on other virus hosts can give us more comprehensive information about this issue.

Perspective

The high prevalence of distemper, the possibility of concurrent infections with CDV in Iran and other endemic areas, and the reports of distemper from other hosts suggest that distemper and simultaneous infections in wildlife, rodents, and other species associated with CDV infections need to be investigated.

Conclusion

In the present research, out of the samples taken from symptomatic dogs, a total of four cases were detected to be co-infected with CDV and CPiV-2. Furthermore, no statistically significant correlation was observed between distemper and CPIV. For future research, we recommend similar studies with an appropriate sample size to obtain more accurate results.
Acknowledgment
This work was supported by grants from Shahrekord University (Grant number: 98GRD30M1801).

Conflict of Interest
The authors report no conflict of interest.
شناسایی زنومی و ایمونولوژیک ویروس دیستمبر و بررسی عفونت همزمان آن با پارانفلانزای سگ تیپ دو

افسانه توکل زبانی 1، اعظم مختاری2,3

1. کروه پاتوبولوژی، دانشگاه شهید چمران، ایران
2. کروه پاتوبولوژی، دانشگاه شهید چمران، ایران
3. کروه پاتوبولوژی، دانشگاه شهید چمران، ایران

چکیده
زمینه و هدف‌های: ویروس دیستمبر سگ (CDV) ویروسی بسیار مرگ‌زا و امکان برداشته کننده در گوشتخواران سگ در سراسر جهان است و بر اثر ارتباط بیشتر این اورگان با سایر عفونت‌های آن، به‌归 نیاز ایمنی‌های انتقالی و آنتی‌ژنی می‌شود. هدف مطالعه‌ها حائز سنجش ویروس دیستمبر و باعث دانستن این اورگان را باعث آن‌ها و ایمنی‌های جراحی و واکنش‌های به دریافت آنتی‌ژن و ایمونولوژیکی در سگ RT-PCR، Mokhtari DVM@yahoo.com

اطلاعات مقاله

نوبنده مسئول: اعظم مختاری، کروه پاتوبولوژی، دانشگاه شهید چمران، ایران
ایمیل: mokhtari_dvm@yahoo.com

دریافت: ۲۲/۱۰/۱۳۹۹
پذیرش: ۲۵/۱۱/۱۳۹۹
انتشار آنلاین: ۲۲/۱۰/۱۴۰۰
موضوع: بیماری‌های مشترک انسان–دام

کلیدواژه‌های: میکروب‌شناسی پزشکی، ایران، آناتومی برداری، تحقیق‌های آزمایشگاهی، واکنش‌های ایمنی، تحقیق‌های ایمونولوژیکی، CDV

مقدمه

ویروس دیستمبر سگ (CDV) ویروسی بسیار مرگ‌زا است که در سراسر جهان باعث بیماری کشنده در گوشتخواران می‌شود. علی‌رغم مطالعات افزایش‌شده در این زمینه، هنوز هیچ کشوری به‌归 نیاز ایمنی‌های انتقالی و آنتی‌ژنی می‌شود. این اورگان می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، می‌تواند به عنوان جهش‌گری اول رده‌سالی‌های Paramyxoviridae و Morbillivirus و ترجمه‌ای از این واژگان، Mokhtari DVM@yahoo.com
با توجه به فی rápida دیسمبر، نفوذ عمومی مركزي CNS (کنس) نفوذ کرده و ممکن است به صورت موضوعی بی وسیل سایر زیاد ورود ورود به سلول‌های اپیتلیال و به دلیل آن اپیتیسیونی روده‌ای و ادراری شود. نفوذ لنفوسیت‌های ت‌لیتیک (DC) و سلول‌های لنفوسپتیک (CD8 + T سلول‌های مادری‌ترین دهنده‌ی 1).

در طی فاز پانورمویس، لنفوسیت‌های با کاهش مقدم سلول‌های CD21 + B و CD8 + T و سلول‌های CD4 + T به‌طور کامل می‌پردازند. لنفوسیت‌های CD4 و CD8 + T در حال حاضر در طی فولونیsat، حتی و آپوسسیونی ناشی از تخریب سلول‌های است پرداخته شده است (21). لنفوسیت‌های CD4 و CD8 + T به‌طور مداوم فعال می‌شوند و این نکته از مهم‌ترین عامل‌ها در پیش‌بینی سلول‌های سلول‌های تجویز و مولکول‌های عامل فعالیت‌های معینی سلول‌های مادری‌ترین دهنده‌ی 1 در سلول‌های و بافته‌ای لنفوسیت‌های شور و سلول‌های آپوسسیونی ناشی از تخریب سلول‌های نشان می‌دهد. 

ویروس ویروس لنفوسیت‌های طور همیانه به همراه ویروس‌های متداول دیگری نظیر پایویروس بی‌پوسته (CPV-2) و ویروس تپه 1 و آدنوویروس‌های تپه 1 و 2 (CAV-1 و 2) در جهان بومی است (6). ویروس ویروس لنفوسیت‌های طور همیانه به همراه ویروس‌های متداول دیگری نظیر پایویروس بی‌پوسته (CPV-2) و ویروس تپه 1 و آدنوویروس‌های تپه 1 و 2 (CAV-1 و 2) در جهان بومی است (6).

فقط جمعیت سگ‌های کاهش یافته‌است، اما این بیماری در بسیاری نقاط موبایل‌های ویروس ویروس لنفوسیت‌های طور آتروسیو داشته و در بیشتر نقاط این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیونی ناشی از تخریب سلول‌های کاهش یافته‌است. این بیماری در بیمارستان‌های بینی، سرطان و ویروس‌های خاصی نظیر ناشی از ویروس‌های مارکووازی و ویروس‌های پنوموویروس، لوله‌های ذره‌ای و آپوسسیو
يمين کوتامورگرافی سریع دیستمپر

برای تشخیص اولیه ویروس دیستمپر از کیت این‌و‌ایمیانگی‌ورک‌کوین‌نت‌آین‌د، که نوعی از سریع‌سنجی استفاده شده. برای تشخیص سریع با کیت‌های متوان از ترکیباتی از درمان‌هایی برای درمان و کنترل میکروب‌ها و امپیانولوژیک، ویروس دیستمپر و بررسی عفونت‌های ویروسی که به این واکنش‌ها دارد، استفاده می‌گردد. 

CPiV-2 بررسی ویروس ترین عارضه عفونت‌های ویروسی است. از مهم‌ترین عارضه‌های این ویروس، تهوع ناهنجاری، ناهنجاری‌های پوستی، یکی‌تا دچاری و اندام‌هایی مانند پوست و پوسته‌های پوستی. این عارضه‌ها به‌صورت اولیه در زمان عفونت ویروس دیستمپر احساس می‌شود. 

Rosenberg و همکاران (1970)، Mc Candish و همکاران (1978) و سایری دیگر محققان این ویروس را گزارش کرده‌اند. ویروس‌های سایری و W2 همراه با پاراهپی‌باپی‌وریز و ایمیتولوژیک ویروس دیستمپر، می‌تواند به عارضه‌های کم‌تری از ویروس‌های دیستمپر منجر شود. ویروس‌های دیستمپر در تاکسید و تروپیک‌آسیا، تروپیک‌آسیای شرقی و آفریقای جنوبی حضور دارند.

مانند و روی‌ها

مواد و روش‌ها

نمونه‌گیری در قالب بار می‌باشد. هر 98 میلی‌لیتر از سگ‌های ارجاعی به کلینیک‌های شهر اصفهان آن‌ها، بر اساس اظهارات مالک حیوان و بررسی مدنی‌ها، حیوان انجام گرفته. بر اساس آزمایش‌های اشکال‌دهنده با ویروس‌های این ویروس، تحقیقات مورد نظر انجام شده، ذهن برای انتخاب واکنش‌های بین‌لایی مورد نظر قرار گرفته‌است. در صورت وجود عارضه‌های امراضی، مطالعات حساسیت و واگر ویرایش سایر عارضه‌ها انجام می‌شود.

و باعث به‌دلیل تأثیر ویروس دیستمپر بر کارایی سیستم ایمنی می‌گردد. در نتیجه افزایش احتمال ابتلا به سایر عوارض بیماری‌ها، مطالعات حساسیت با هدف بررسی عفونت‌های ویروس دیستمپر و پاپئال‌آتاسی، سگ به سگ‌جستجو زندی و سرولوژیک انجام شد.

و...
درجه تشخیص بالاتر است که شایع می‌باشد. در زنده‌ی مورد مطالعه با توالی‌های یافته در بالاتر رنگ برای PCR ویروس و RT-PCR distemper، با خویش نشان دهنده کفایت بود (شکل‌های ۱ و ۴).

در مجموع از ۵۰ نمونه اخذ شده از سگ‌های واحد عالیم مشکوک به دیستمپر با استفاده از آزمایش RT-PCR ۳۷ نمونه مثبت از نظر حضور اسید نوکلئزی دیستمپر تشخیص داد و از ۵۰ نمونه گرفته شده از سگ‌های بستر سالم ۳ نمونه مثبت از نظر حضور اسید نوکلئزی دیستمپر تشخیص داده شد. با استفاده از مخصوص تشخیص پارانوئولازای سگ از تعداد کل ۵۰ نمونه اخذ شده از سگ‌های مشکوک به داشتن علائم بالینی دیستمپر ۱۱ نمونه از نظر حضور اسید نوکلئزی ویروس پارانوئولازای سگ مثبت بودند و از بین ۵۰ نمونه از سگ‌های بستر سالم ۱ نمونه از نظر وجود اسید نوکلئزی این ویروس مثبت تشخیص داده شد. در نتیجه، «ارائهی مواد غذایی» در نمونه‌های اخذ شده در سگ‌های واحد عالیم مشکوک به دیستمپر بود.

بررسی آماری

پس از وارد کردن اطلاعات در نرم‌افزار SPSS نسخه ۱۶ و نرم‌افزار جدول دو طرفه توافقی ارتباط بین متغیرها با استفاده از آزمون کاوی و بررسی شد و در سطح معنی‌داری ۰/۰۵ یک شاخص آماری معنی‌داری بین دو مهمی، نتایج آزمون کاوی و آماری معنی‌داری بین دو بیماری در CDV RT-PCR جنسیت و نتایج تحقیق و جنسیت عضویت بیمار در CDV RT-PCR (جدول ۱) با یک وجود رابطه بین نتایج ویروس‌های ۲ و CpiV با علائم دیستمپر و گروه‌های سنی از نظر آماری معنی‌دار بود (۵/۰، ۰/۵) (جدول ۳).

RT-PCR

تشخیص با استفاده از آغازگرهای طراحی شده برای PCR تشخیص CDV و CVP-2 انجام شد. توالی آغازگرهای به شرح زیر

CpiV: AAGCCTCACACTGTCCAAG -3'، CadR: GATTAGCCTAAATGACATGC -3' and Capi2F: ACAATCCCCCTAACAAC -3'، CadR2: 5'-

برای تشخیص ۲، ۳، ۴ و ۵ نمونه گرفته شده از سگ‌های بستر سالم ۱ نمونه مثبت تشخیص داده شد. نتایج در جدول ۱ خلاصه شده است.

RT-PCR

بناده احتمالی مشکوک به دیستمپر با استفاده از آغازگرهای مثبت دیستمپر در همان اداس محصولات کنترل مثبت بودند (شکل ۱ و ۲).
Figure 2. Electrophoresis gel of CpiV-2 RT-PCR product.
1,3: CpiV-2 (102 bp) positive PCR product, 2: Negative control, 4: Positive control, 6: Ladder (50 bp)

Figure 3. Alignment of CDV RT-PCR product sequence with the sequences registered in the gene bank.
بحث

تقییم تمام سگ‌های مبتلا به دیستمپر لکسوس و ضعف در سیستم ایمنی بدن را در نظر بگیرید. می‌کنند و در نتیجه دیگر عفونت‌ها می‌توانند به بیماری اضافه شده و آنها را بیمارتر کنند. مکانیزم سرکوب سیستم ایمنی در بیماری دیستمپر بطور کامل شناخته نشده است و احتمالاً باعثه فاکتورهای متعددی است. ابتدا به‌خاطر از سلول‌های دانه شده و سپس اختلالات ایمنی طولانی مدت، حس لایه‌ای خون مخاطی از این ویروس در دوه‌وقت آماده پیدا می‌کنند (5). بازاری احتمالاً مکانیسم‌های تضعیف کننده سیستم ایمنی در سلول‌هایی که به بطور مستقیم با عفونت ویروس درگیر نشده‌اند، قبلاً داشته بوده و با وجود که ساز و کار دقیق سرکوب ایمنی ناشی از عفونت با ویروس دیستمپر به خوبی نشان می‌دهد است اما تضعیف سیستم ایمنی در اثر این ویروس مورد قبول همه دانشمندان است. تلاع‌های فاز اندی‌ای ابتلا به ویروس دیستمپر در سگ معمولی را مربوط به ترشحات جسم ناب از دست دادن اشکه و آب‌بریز بینی می‌شود و در این زمان، بازار عفونت‌های نشیمنی سگ ممکن است روز بیشتر که و تکنیک علایم هر عفونت امکان پذیر نباشد. به همین منظور و با توجه به احتمال پرواز عفونت‌های بیشتر در اثر تضعیف ایمنی منجی از این ویروس دیستمپر، مطالعه خاصی باربری کرده و کنترل واکسن‌های نیز در نتیجه این آزمایش خلیق وارد

واکسن‌های نیز در نتیجه این آزمایش خلیق وارد

نیز کنند. بازاری ام‌تان به راحتی آن‌ها روش در مناطقی

با کمک امکانات تشخیصی به‌تص کرده (28,18).

ویروس دیستمپر، مطالعه خاصی به‌منظور شناسایی عفونت توامان

ویروس دیستمپر و با راه‌های مختلف سگ به‌عنوان یکی دریگ از عوامل

بیماری‌های نشیمنی سگ‌ها انجام شد و علی رغم شناسایی عفونت

به‌عنوان این دو ویروس در چهار درصد مواد، ارتباط معنی‌دار

آمایی بین ابتلا به دیستمپر و پا را انظاریز سگ به دست نیامد. احتمالاً محدودیت مطالعه خارج در دسترسی به علت باثر از

سگ‌های واجد علایم بالینی دیستمپر و در نتیجه حجم نمونه

پایین می‌تواند یکی از دلایل به‌دست‌نیامدن رابطه معنی‌دار آماری

بین ابتلا به دو ویروس باشد.

استفاده از گیت تشخیصی دیستمپر به‌ترین گونه برای

تشخیص ویروس در بیمارستان‌های دامپزشکی است. به‌طوری که

ویژگی و حساسیت آن در نمونه‌های به‌دست‌آمده از منطه‌های

مشابه روش Nested PCR در فاز حاد، به‌سرعت گذید اشکه و ترشحات معنی‌دار آن‌ها و ترکیب (29).

ویروس دیستمپر در فاز میانی ممکن است روی گرد و تکنیک

علایم هر عفونت امکان پذیر نباشد. به همین منظور و با توجه به

احتمال پرواز عفونت‌های بیشتر در اثر تضعیف ایمنی منجی از

Figure 4. Alignment of CpiV-2 RT-PCR product sequence with the sequences registered in the gene bank
متfects of canine distemper virus on the central nervous system

چشم اندماش

شیوع بایلی ویروس دیستمپیر و احتمال ابتلا به‌عفونت هیومزان با CDV در ایران و سایر مناطق ایران، و نیز گزارشات مربوط به‌عین بیماری از سایر مناطق ایران، این سمت به‌این باید عفونت‌های پیروک و هیومزان در حیات وحشی، جونگدان و سایر گونه‌های مرتبط به‌عفونت CDV برسی شود.

نتیجه‌گیری

در مطالعه حاضر در مجموع از 1000 نمونه اخذ شده از سگ‌های واقع علائم مشکوک به‌ویروس سل زرد و عفونت توم در نمونه‌های اخذ شده در سگ‌های واقع علائم مشکوک به‌دیستمپیر گزارش شد. این به‌ویژه در ابتلا به‌دیستمپیر و پارای‌فلوانزا سگ به‌عنوان غیر مثبت می‌باشد. بنابراین می‌تواند به‌عنوان نشانه‌‌بندی‌های بسیاری از این دست با حجم نمونه‌بیشتر نتایج revolt مثاب‌ت تری به‌دست می‌دهد.

سپاسگزاری

نادر.

تعارض در منابع

نویسنده‌گان هیچ‌گونه تعارض به‌در منابع گزارش نکرده‌اند.

منابع مالی

نادر.

Referance

1. Isfahani MS, Rostami A, Bahonar A, Barin A, Memarian I. Serologic survey for canine distemper virus in free-ranging wild canids in the northeast of Iran. Revue De Medecine Veterinaire. 2017;168(10-12):247-51.

2. Namrouri S, Rostami A, Barin A, Ardebili KM. Antibody monitoring to canine distemper virus in unvaccinated rural dogs in the southern coastal region of Caspian sea. Journal of Veterinary Research. 2013;68(3):209-15.
3. Aguiar D, Amude A, Santos LGF, Ribeiro M, Ueno TEH, Megid J, et al. Canine distemper virus and Toxoplasma gondii co-infection in dogs with neurological signs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2012; 64(1): 221-224. [DOI:10.1590/S0102-09352012000100032]

4. Avizeh R, Shapouri MR, Akhlaghi N. Antibody titers against canine distemper virus in unvaccinated rural dogs from Ahvaz, Shazad, Iran. Pak J Biol Sci. 2007 Nov 1;10(21):3970-2. doi: 10.3923/pjbs.2007.3970.3972. PMID: 19090267. [DOI:10.3923/pjbs.2007.3970.3972] [PMID]

5. Headley SA, Alfieri AA, Frizen JT, Garcia JL, Weissenböck H, da Silva AP, Bodnar L, Okano W, Alfieri AF. Concomitant canine distemper, infectious canine hepatitis, canine parvoviral enteritis, canine infectious tracheobronchitis, and toxoplasmosis in a puppy. Journal of Veterinary Diagnostic Investigation, 2013; 25: 129-135. [DOI:10.1177/1040638712471344] [PMID]

6. Headley SA, Graça DL, Costa MM, Vargas AC. Canine distemper virus infection with secondary Bordetella bronchiseptica in dogs with acute respiratory tract infection. Veterinary Pathology, 2009; 46, 2009; -1080. [DOI:10.1093/vpt/46-1-151] [PMID]

7. Headley SA, Shirota K, Baba T, Ikeda T, Sukura A. Diagnostic exercise: Tyzzer's disease, distemper, and coccidiosis in a pup. Ciência Rural, 2003; 33: 1075-1080. [DOI:10.1590/S0103-84782003000600023]

8. Headley SA, Alfieri AF, Gomes LA, Okano W, Alfieri AA. Canine Distemper Virus with Concomitant Infections Due to Canine Herpesvirus-1, Canine Parvovirus, and Canine Adenovirus in Puppies from Southern Brazil. Jacobs Journal of Microbiology and Pathology, 2015; 1(2): 015. [DOI:10.1016/j.jcpa.2013.11.106] [PMCID]

9. Headley SA, Oliveira TES, Pereira AHT, Moreira JR, Michelazzo MMZ, Pires BG, et al. Canine morbillivirus (canine distemper virus) with concomitant canine adeno virus, canine parvovirus-2, and Neospora caninum in puppies: a retrospective immunohistochemical study. Scientific Reports, 2018; 8(1):13477. [DOI:10.1038/s41598-018-31540-0] [PMID] [PMCID]

12. Teixeira Ribeiro AI, da Cruz Burema M, de Souza Borges AP, de Melo Bruno VC, Brandini Nespoli PE, Colodel EM, Furlan Gouvêa FH, Dutra V, Nakazato L, Ribeiro MG, de Aguiar DM. Pyogranulomatous pleuropneumonia caused by Nocardia asiatica in a dog coinfected with canine morbillivirus (canine distemper virus). Veterinary medicine and science. 2020 Feb;6(1):25-31.

13. Lavan R & Knesl O. Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters. Journal of Small Animal Practice, 2015; 56: 572-576. [DOI:10.1111/jsap.12389] [PMID] [PMCID]

14. Mochizuki M, Yachi A, Ohshima T, Ohuchi A, Ishida T. Etiologic study of upper respiratory infections of household dogs. Journal of Veterinary Medical Science, 2008; 70(6): 563-569. [DOI:10.1292/jvms.70.563] [PMID]

15. Vandevelde M & Zurbriggen A. Demyelination in canine distemper virus infection: a review. Acta Neuropathologica, 2005; 109(1): 56-68. [DOI:10.1007/s00404-004-0958-4] [PMID]

16. Siering O, Sawatsky B, Pfaller CK. C Protein is Essential for Canine Distemper Virus Virulence and Pathogenicity in Ferrets. Journal of Virology. 2020. [DOI:10.1128/JVI.01840-20] [PMID]

17. Buragohain M, Goswani S, Kalita D. Clinicopathological findings of canine distemper virus infection in dogs. J Entomol Zool Studies. 2017;5:1817-9.

18. Headley S, Pretto-Giordano L, Lima S, Suhett W, Pereira A, Freitas L, et al. Pneumonia due to Talaromyces marneffei in a dog from Southern Brazil with concomitant canine distemper virus infection. Journal of comparative pathology. 2017;157(1):61-6. [DOI:10.1016/j.jcpa.2017.06.001] [PMID]

19. Petrova VN, Sawatsky B, Han AX, Laksono BM, Walz L, Parker E, et al. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science immunology. 2019;4(41). [DOI:10.1126/sciimmunol.aay6125] [PMID]

20. Damiani M, Morales E, Salas G, Trigo FJ. Immunohistochemical detection of antigens of distemper, adenovirus and parainfluenza viruses in domestic dogs with pneumonia. Journal of Comparative Pathology, 2005;133(4): 289-293. [DOI:10.1016/j.jcpa.2005.05.005] [PMID]

21. Feng H, Dong J, Chen Y, Shi L, Shen B, Sun X, et al. Nanoparticles of Conformation-stabilized Canine Distemper Virus Hemagglutinin are Highly Immunogenic and Induce Robust Immunity. 2020. [DOI:10.21203/rs.3.rs-74893/v1]
22. Wünschmann A, Kremmer E, Baumgärtner W. Phenotypical characterization of T and B cell areas in lymphoid tissues of dogs with spontaneous distemper. Veterinary Immunology and Immunopathology, 2000; 73(1): 83-98. [DOI:10.1016/S0165-2427(99)00156-7]

23. Kumagai K, Yamaguchi R, Uchida K, Tateyama S. Lymphoid apoptosis in acute canine distemper. Journal of Veterinary Medical Science, 2004; 66(2): 175-181. [DOI:10.1292/jvms.66.175] [PMID]

24. Moro L, de Sousa Martins A, de Moraes Alves C, de Araújo Santos FG, dos Santos Nunes JE, Carneiro RA, et al. Apoptosis in canine distemper. Archives of Virology, 2003;148(1): 153-164. [DOI:10.1007/s00705-002-0903-6] [PMID]

25. Tipold A, Vandevelde M, Wittek R, Moore P, Summerfield A, Zurbriggen A. Partial protection and intrathecal invasion of CD8+ T cells in acute canine distemper virus infection. Veterinary Microbiology, 2001; 83(3): 189-203. [DOI:10.1016/S0378-1135(01)00422-9]

26. Moro L, Martins AS, Alves CM, Santos FG, Del Puerto HL, Vasconcelos AC. Apoptosis in the cerebellum of dogs with distemper. Journal of Veterinary Medicine, 2003; 50(5): 221-225. [DOI:10.1046/j.1439-0450.2003.00657.x] [PMID]

27. Schobesberger M, Summerfield A, Doherr MG, Zurbriggen A, Griot C. Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis. Veterinary Immunology and Immunopathology, 2005; 104(1-2): 33-44. [DOI:10.1016/j.vetimm.2004.09.032] [PMID] [PMCID]

28. Mosallanejad B, Avizeh R, Seyfiabad Shapouri MR, et al. Antigenic detection of Canine Parainfluenza virus in urban dogs with respiratory disease in Ahvaz area, southwestern Iran. Archives of Razi Institute, 2009; 2: 115-122.

29. An DJ, Kim TY, Song DS, Kang BK, Park BK. An immunochromatography assay for rapid antemortem diagnosis of dogs suspected to have canine distemper. Journal of Virological Methods. 2008;147(2):244-9. [DOI:10.1016/j.jviromet.2007.09.006] [PMID] [PMCID].