Proteomic Response Revealed Signaling Pathways Involving in the Mechanism of Polymyxin B-Induced Melanogenesis

Chuhan Zhang,a,b,c Xiaofen Liu,a,b,c Hailan Wu,a,b,c Yu Wang,a,b,c Yaxin Fan,a,b,c Beining Guo,a,b,c Xin Li,a,b,c Jing Zhang,a,b,c,d

ABSTRACT
Polymyxin B is a last-line antibiotic for extensively resistant Gram-negative bacterial infection. Skin hyperpigmentation is a serious side effect induced by polymyxin B that severely compromises the psychological health and compliance of patients. The literature lacks mechanistic studies that explain how hyperpigmentation occurs, and this substantially hinders the development of intervention strategies and improved compliance. SK-MEL-2 cells were used for the polymyxin B-induced hyperpigmentation mechanism study. Melanin content and tyrosinase activity were measured after polymyxin B treatment. Tandem mass tag (TMT)-labeling quantitative proteomics was employed to investigate the response of SK-MEL-2 cells to polymyxin B treatment. Real-time quantitative PCR and Western blot were applied to validate the mRNA and protein levels of related genes and proteins. The melanin content and tyrosinase activity were significantly upregulated after polymyxin B treatment in SK-MEL-2 cells at 48 h and 72 h. Quantitative proteomics showed that 237 proteins were upregulated and 153 proteins were downregulated in the 48 h group, and 49 proteins were upregulated and 49 proteins were downregulated in the 72 h group. The differentially expressed proteins were involved in pathways such as lysosome, PI3K/Akt signaling pathway, and calcium signaling pathway. The upregulation of melanogenic enzymes and microphthalmia-associated transcription factor (MITF) was validated by qPCR and Western blot. Meanwhile, phosphorylation of PI3K, β-catenin, and cyclic-AMP response binding protein (CREB) in response to polymyxin B treatment was observed. The present study reveals the proteomic response of polymyxin B-induced melanogenesis in SK-MEL-2 cells for the first time. Signaling pathways, including melanin biosynthesis, PI3K/Akt, and calcium signaling pathways may be involved in the mechanism of melanogenesis.

IMPORTANCE Polymyxin B-induced skin hyperpigmentation seriously affects the psychological health and compliance of patients. This study provides a proteomic clue to the mechanism at the cellular level for understanding polymyxin B-induced hyperpigmentation, contributing to a follow-up investigation of the corresponding PI3K/Akt signaling transduction pathway and calcium signaling pathway. The elucidation of its underlying mechanism is of great significance for patients’ compliance improvement, intervention strategy, and new drug development.

KEYWORDS hyperpigmentation, melanogenesis, polymyxin B, signaling pathway

Polymyxin B (PMB), a polypeptide antibiotic, is considered a last-line effective antibiotic for the treatment of infections caused by extensively resistant Gram-negative bacteria (1). Skin hyperpigmentation was reported related to polymyxin B treatment as it applied in clinics (2–6). Two cohort studies have shown that the incidence of polymyxin B-induced skin hyperpigmentation (PMB-iSH) was 8 to 15% (7, 8). During the
outbreak of the coronavirus disease 2019 (COVID-19) in 2020, two frontline doctors in
Wuhan, China, had been diagnosed with COVID-19 and suffered from secondary infec-
tions caused by multidrug-resistant bacteria. Polymyxin B was applied to treat infec-
tions. However, hyperpigmentation on the head and neck and the prognosis, as well
as pathogenesis, has raised public awareness (9). Patients who suffered from hyperpig-
mentation, showed a diffused darkening after intravenous polymyxin B treatment, par-
ticularly on the head and neck. Despite the hyperpigmentation associated with no
pain or pruritus (4), it seriously affected patients’ compliance and psychological health.
So far, no effective precaution or intervention strategy has been found in clinics.

To date, the mechanism of PMB-iSH is not well understood. Skin darkening usually
occurs on the 3rd to 7th day after commencing intravenous polymyxin B treatment,
with no significant difference in light exposure and sites of infections among patients
(7). Excessive cumulation of polymyxin B may be an important factor for aberrant pig-
mentation because neonates and infants with immature kidney function were more
likely to suffer (6). Skin histopathology showed an abundant melanocyte dendritic net-
work, Langerhans cells’ hyperplasia, and dermal interleukin-6 (IL-6) overexpression,
suggesting that PMB-iSH may be associated with an inflammatory process and subse-
quent melanocyte activation (8). It has been speculated that polymyxin B stimulates
the release of histamine by mast cells (10) and then the released histamine recognizes
H2 receptors on melanocytes and induces melanogenesis through the protein kinase A
pathway (11). However, this particular hypothesis may be controversial. First, hista-
mine-induced hyperpigmentation is generally localized rather than diffused across the
head and neck (12, 13). Second, polymyxin E (also known as colistin, the active compo-
nent of colistimethate), which is the other polypeptide antibiotic with structure and
antimicrobial activity similar to polymyxin B, can also release histamine equivalent to
polymyxin B (10). However, skin hyperpigmentation induced by polymyxin E has not
yet been reported. Therefore, it is necessary to further investigate the mechanism of
polymyxin B-induced melanogenesis.

SK-MEL-2 cell line belongs to a series of melanoma cell lines established from
patient-derived tumor samples, which is usually applied in melanin-related mechanism
studies (14–16). TMT-labeling quantitative proteomics, which is the state-of-art LC-MS/
MS technique for large-scale protein quantitation, has been widely applied in different
fields to reveal the underlying mechanisms (17–20). In the present study, TMT-labeling
quantitative proteomics has been applied to reveal the overall response of proteins
involved in the polymyxin B-induced melanogenesis in SK-MEL-2 cells. The signaling
pathways were investigated to uncover the mechanism of PMB-iSH.

RESULTS

Effects of polymyxin B on tyrosinase activity and melanin synthesis. A higher
concentration of polymyxin B (10 mg/liter) showed cellular toxicity to SK-MEL-2 cells
by CCK-8 testing (Fig. S1), thus 1 to 5 mg/liter were served as experimental concentra-
tions. Both melanin content and tyrosinase activity revealed increased levels in the
5 mg/liter polymyxin B-treated group compared with the control (PBS treatment)
group at 48 and 72 h significantly (P < 0.01) and the ratios were increasing as treat-
ment duration increased from 24 to 72 h, indicating a time-dependent manner (Fig. 1A
and B). The melanin content and tyrosinase activity were upregulated as concentra-
tions of polymyxin B increased from 1 to 5 mg/liter (P < 0.01 for 2 and 5 mg/liter pol-
ymyxin B treatment) in a concentration-dependent manner (Fig. 1C and D) in SK-MEL-2
cells. Noticed that 5 mg/liter of polymyxin B treatment showed a more significant
increase in melanogenic level with improved cell activity, we use 5 mg/liter as an effec-
tive concentration of polymyxin B in the subsequent experiments.

Additionally, the mRNA and protein levels of tyrosinase (TYR) were validated upregu-
lated in the polymyxin B treatment group compared to the control group (Fig. 1E and
F) at 48 h. Furthermore, the mRNA and protein levels of the upstream regulator gene
of MITF were dramatically upregulated upon polymyxin B treatment (Fig. 1E and F).
Polymyxin B-induced proteome perturbations in SK-MEL-2 cells. A total of 451,178 spectrums were acquired and 166,684 spectrums were matched, with an identification rate of 36.9%. The matched spectrums were identified as 89,158 peptides and 8,072 proteins, of which 7,271 proteins were quantifiable. Both principal component analysis (PCA) and clustering analysis (Fig. S2) showed good reproducibility among

FIG 1 Effects of polymyxin B on the melanogenesis in SK-MEL-2 cells. Melanin content (A) and tyrosinase activity (B) measured in SK-MEL-2 cells after 5 mg/liter polymyxin B treatment were compared with control for various durations (24 to 72 h). Melanin content (C) and tyrosinase activity (D) determined in SK-MEL-2 cells exposed to the indicated concentrations (0 to 5 mg/liter) of polymyxin B were compared with control at 48 h. Data were normalized as a percentage of the control group. The mRNA (E) and protein (F) levels of MITF and TYR expressed for 5 mg/liter polymyxin B-treated cells were compared with control at 48 h. Data were expressed as fold changes of treatment to the control group. *, P < 0.05; **, P < 0.01; ***, P < 0.001, compared to the control. Three replicates were repeated for all experiments. MITF, microphthalmia-associated transcription factor; TYR, tyrosinase.

Polymyxin B-induced proteome perturbations in SK-MEL-2 cells. A total of 451,178 spectrums were acquired and 166,684 spectrums were matched, with an identification rate of 36.9%. The matched spectrums were identified as 89,158 peptides and 8,072 proteins, of which 7,271 proteins were quantifiable. Both principal component analysis (PCA) and clustering analysis (Fig. S2) showed good reproducibility among
triplicates in different groups. Compared with untreated controls, 237 proteins were upregulated and 153 proteins were downregulated in the 48 h group, and 49 proteins were upregulated and 49 proteins were downregulated in the 72 h group (Fig. S3A). The volcano plot of the differentially expressed proteins is shown in Fig. S3B. The differentially expressed proteins are listed in Table S1.

Although larger numbers of proteins were differentially expressed in the 48 h group than in the 72 h group, gene ontology (GO) analysis classifications (Fig. 2A) showed these proteins were only in slightly different patterns from the aspect of biological process in both treatment groups. The differentially expressed proteins in the 48 h group were mainly involved in cellular processes, biological regulation, metabolic process, cellular component organization, or biogenesis. However, unlike the 48 h group, the differentially expressed proteins in the 72 h group were mostly identified involved in the cellular process, biological regulation, response to stimulus, and multicellular organism process in the aspect of biological process. The differentially expressed proteins in both treatment groups showed similar patterns in cellular component and molecular function, and they were mostly involved in the organelle, membrane, and membrane-enclosed lumen from the aspect of cellular component, and binding, catalytic activity from the aspect of molecular function. Clusters of orthologous groups of proteins (COG) analysis (Fig. 2B) showed proteins identified in transcription, signal transduction mechanism and posttranslational modification, protein turnover, and chaperones were top three functional groups in the differentially expressed proteins in 48 h group while transcription, cytoskeleton, and chromatin structure and dynamics were top three functional groups in the differentially expressed proteins in 72 h group. Both GO and COG analyses showed that the majority of differentially expressed proteins were in similar functional groups for both treatment groups.

KEGG pathway analysis of the differentially expressed proteins in both treatment groups showed pathways in response to polymyxin B treatment (Fig. 3). Several pathways were changed in both treatment groups, such as complement and coagulation cascades pathway, PI3K/Akt signaling pathway, mTOR signaling pathway, indicating these pathways were actively responding to polymyxin B during 48 h to 72 h. Certain pathways were changed only in the 48 h group, such as lysosome, oxidative phosphorylation, and calcium signaling pathway, while pathways such as AMPK pathway and microRNAs in cancer were only changed in the 72 h group. These unique pathways in the 48 h group or 72 h group indicated the time-dependent response of SK-MEL-2 cells to polymyxin B. The protein-protein interaction analysis showed complex interaction maps and the pathway enrichment also showed PI3K/Akt signaling pathway, lysosome, oxidative phosphorylation, and ribosome were the most interacted proteins in 48 h group, while PI3K/Akt signaling pathway, complement, and coagulation cascades and melanoma pathways were in 72 h group.

Polymyxin B induces melanogenesis by activating signaling pathways. Melanogenic protein L-dopachrome tautomerase (DCT), which is a key protein in melanogenesis, was upregulated in both the 48 h and 72 h group in the proteomic analysis (Fig. 4A). Both mRNA and protein levels of DCT validated significant upregulation in polymyxin B treatment in 48 h (Fig. 4B).

To validate the signaling pathways of polymyxin B-induced melanogenesis, we measured the mRNA levels of genes in the PI3K/Akt signaling pathway, which was shown to be differentially regulated in proteomic pathway analysis. Several well-studied melanogenesis-related pathways of MAPK family (including p38, ERK, and JNK signaling pathway) and GSK-3β/β-catenin pathway and an important regulated protein CREB were investigated. Cells treated with 5 mg/liter polymyxin B at 48 h showed a remarkable increase in mRNA levels of PI3K, Akt, GSK-3β, CREB, and p38. In contrast, the ERK-2 mRNA level was significantly decreased (Fig. 4C). Western blot analysis showed the ratios of phosphorylated protein to total protein levels of PI3K, β-catenin and CREB were all significantly upregulated in polymyxin B-treated cells relative to untreated cells, while the total protein levels remained unchanged except PI3K. No significant
FIG 2 GO and COG analysis for the differentially expressed proteins. (A) The distributions of differentially expressed proteins in GO secondary annotations are divided into 3 categories: biological process, cellular component, and molecular function. (B) COG functional classification statistics for differentially expressed proteins are performed through database comparison and analysis.
FIG 3 Cluster analysis heat map based on KEGG pathway and protein interaction network. For KEGG pathway analysis, areas in red represent differentially upregulated pathways, areas in green represent differentially downregulated pathways (above). The interaction relationship of the differential proteins at 48 h group (left, below) and 72 h group (right, below).
Differential expression of DCT in both 48 h and 72 h groups (proteomic analysis results, [A]) were validated in SK-MEL-2 cells for polymyxin B treatment (B). Potential signaling pathways involved in PMB-induced melanogenesis in SK-MEL-2 cells were explored via the mRNA (C) and protein (D) levels of PI3K, AKT, GSK-3β, CREB, β-catenin, p38, ERK-2, and JNK-2 for 5 mg/liter polymyxin B treated cells compared with control. Data were expressed as fold changes over the control group. *, P < 0.05; **, P < 0.01; ***, P < 0.001, compared to control. Three replicates were repeated for all experiments. PI3K, phosphatidylinositol 3-kinase; AKT, RAC-alpha serine/threonine-protein kinase; GSK-3β, glycogen synthase kinase-3β; CREB, cyclic AMP-responsive element-binding protein; ERK-2, extracellular regulated protein kinase 2; JNK-2, c-Jun N-terminal kinase 2.
change in GSK-3β or phosphorylated GSK-3β level following the polymyxin B treatment was observed (Fig. 4D). These results indicated that hyperpigmentation induced by polymyxin B was associated with upregulation in signaling pathways involved in phosphorylation of PI3K, β-catenin, and CREB (Fig. 5).

DISCUSSION

Generally, skin pigmentation, attributed to melanin produced by melanocytes, is regarded as protection of the skin against UV from sunlight (21). However, skin hyperpigmentation induced by polymyxin B, affecting the appearance of children, adults, or generic patients, seriously took a toll on the psychological health and the life quality of patients (3–6). The lack of ideal interventions and the uncertainty of whether skin color will reverse to the baseline naturally, let alone any inconvenience caused during the long recovery period, can bring on severe mental stress and treatment refusal. The pathological mechanism is not yet clearly elucidated, and further investigation is required, which benefits the intervention strategy, new drug development, and improving compliance.

Skin biopsy specimens taken from hyperpigmented skin of patients treated by intravenous polymyxin B showed hyper-melanosis in the basal layer (8, 22), and histology and immunohistochemistry revealed abundant melanocyte-pigmented dendritic network (8, 21). This aberrant increase in skin melanin biosynthesis could be the culprit. The pigment is synthesized in melanocytes, which involves several oxidation steps, and tyrosinase (TYR) is a rate-limiting enzyme participating in the initial step of L-tyrosine oxidation and the last step of eumelanin synthesis in melanogenesis (23). Thus, the activity and amount of TYR directly reflect the level of melanin synthesis. The upregulation of both melanin content and TYR activity in response to polymyxin B in
SK-MEL-2 cells showed a time and concentration-dependent manner. The mRNA expression and protein levels of TYR were significantly upregulated, indicating the stimulation of melanin synthesis due to polymyxin B.

Besides TYR, the regulation of skin pigmentation involves two other key structurally related enzymes that catalyze the synthesis of melanin within the melanocytes: tyrosinase-related protein-1 (TYP-1) and tyrosinase-related protein-2 (TYP-2/DCT) (24). Quantitative proteomics showed the upregulation of DCT in both 48 h and 72 h groups in polymyxin B treated SK-MEL-2 cells, confirmed by the upregulated levels of mRNA and protein in real-time quantitative PCR and Western blot. The melanogenic genes (TYR, TYP-1, and DCT) are transcriptionally regulated by MITF, which is a central regulator in melanogenesis, regulating the expression of tyrosinase, melanosome structural proteins, and proteins involved in melanosome trafficking (25, 26). CREB is a transcriptional regulator of the MITF gene, capable of binding to specific DNA sequences located in the MITF promoter region (27). The upregulation of phosphorylated CREB and MITF indicates polymyxin B could induce melanogenesis in SK-MEL-2 melanoma cells by activating CREB followed by MITF and its downstream melanogenic genes.

The expression levels of MITF and CREB are regulated by a series of transcriptional factors associated with signaling pathways in various cellular processes and signal transduction pathways (28), including the cyclic AMP/protein kinase A (cAMP/PKA) (29), WNT/β-catenin (30), extracellular signal-regulated kinase (ERK/MAPK) (31, 32) and PI3K/Akt (33) signaling pathways. Quantitative proteomics revealed the differentially expressed proteins involved in both processes of melanin biosynthesis and signaling pathways. The PI3K/Akt pathway, calcium signaling pathway, mTOR signaling pathway, etc. were differentially regulated in the polymyxin B treated SK-MEL-2 cells. Among these pathways, PI3K/Akt signaling pathway extensively exists in a variety of physiological processes and is a critical pathway in melanogenesis, especially active in melanoma cells (34). In this pathway, Akt binds to and activates PI3K on the plasma membrane by phosphorylation, triggering the phosphorylation of various downstream proteins such as mTOR, GSK-3β (25). Phosphorylation levels of proteins such as PI3K, CREB, and β-catenin in the PI3K/Akt pathway showed increased expressions after polymyxin B treatment, indicating the possible signaling transduction role in polymyxin B-induced melanogenesis. Besides PI3K/Akt pathway, other signaling pathways may also involve in the polymyxin B-induced melanogenesis because the mRNA levels of GSK-3β, p38 showed significant upregulation while the mRNA level of ERK-2 was significantly down-regulated (Fig. 5). It is implied that the mechanism of polymyxin B-induced melanogenesis could be a complex and multipathway regulated process.

Melanosomes, where melanin pigment is synthesized and stored before they are distributed to surrounding keratinocytes, are subcellular lysosome-like organelles (35–37). The process of melanin biosynthesis involves a series of oxidative and phosphorylation processes. Proteomic results from this study also showed the oxidation phosphorylation status was differentially affected in SK-MEL-2 cells (38). Protein-protein interaction analysis showed lysosome pathway and oxidative phosphorylation pathways were upregulated in the 48 h group, suggesting the activation of melanin synthesis.

In the present study, proteomic analysis and biological analysis were conducted in melanoma cells. However, hyperpigmentation is a complicated process that involves many cell types. Melanin is synthesized in melanocytes in the epidermis and then translocated to neighboring keratinocytes. Close interactions between melanocytes and keratinocytes are served as intrinsic key players that regulate skin pigmentation (39–41). Follow-up studies should place importance on its interactions with other epidermal cells. Furthermore, clinical cohort studies of risk factors, biomarkers, and intervention strategies for PMB-iSH are also in severe need of implementation.

Polymyxin B could directly upregulate melanogenesis in SK-MEL-2 cells through increased tyrosinase activity and melanin content. TMT-labeled quantitative proteomics revealed several signaling pathways such as PI3K/Akt pathway, calcium pathway, lysosome involved in the polymyxin B-induced hyperpigmentation. This study provides
a new viewpoint of the mechanism at the cellular level for understanding the hyperpigmentation of polymyxin B in clinics. Further investigations are needed to comprehensively understand the underlying mechanism.

MATERIALS AND METHODS

Materials. Polymyxin B was obtained from USP Reference Standards (lot no. R046V0). Dulbecco’s modified eagle medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin solution, and 0.25% trypsin were purchased from GibCO Invitrogen (CA, USA). All chemicals and reagents were purchased from MedChemExpress (NJ, USA) at analytical grade. Gene-specific primers were obtained from Sangon Biotech (Shanghai, China). MITF (ab20663), TYR (ab18075), DCT (ab221144), PI3K (ab154598), p-PI3K (ab182651), GSK3β (ab32391), β-catenin (ab316051), p-β-catenin (ab75777), p-CREB (ab32096), CREB (ab32515) and β-actin (ab8227) primary antibodies and goat anti-rabbit IgG secondary antibodies (ab205718) were purchased from Abcam (Cambridge, MA, USA).

Cell culture and treatment. Human melanoma cells, SK-MEL-2, were purchased from iCell Bioscience Inc. (ATCC catalog number HTB-68, RRID:CVCL_0069). The cells were seeded at the density of 2 × 10^5 cells per well and cultured in 6-well flat-bottomed plates in DMEM and incubated at 37°C and 5% CO₂ for 24 h. Polymyxin B or PBS (control) was treated to the cells and collected at 24, 48, and 72 h following the commencement of treatments. The collected cells were washed twice by cold PBS and stored in the fridge at −80°C until analysis.

Melanin content and cellular tyrosinase activity assay. Melanin content was measured by the hot alkali lysis method modified slightly (42). SK-MEL-2 cells were treated with polymyxin B at different concentrations (1, 2, 5, and 10 mg/liter) for different durations (24, 48, and 72 h). Cell pellets were dissolved by 100 μl of 1 M sodium hydroxide (NaOH) containing 10% DMSO at 80°C for 2 h and then centrifuged for 10 min at 12,000 g. The supernatants were transferred into a 96-well microplate, and the absorbance was measured at 405 nm. The mean ratios of melanin to cell numbers in the control group were normalized to 100% and were compared by the treatment groups.

Cellular tyrosinase activity was measured using the dopa-quinone oxidation method with minor modification (42). Cell pellets were lysed in RIPA lysis and extraction buffer (Thermofisher, Rockford, IL, USA) for 15 min on ice. Afterward, the cell lysate was centrifuged for 10 min at 12,000 × g, and the supernatant was transferred into Eppendorf tubes for total protein concentration measurement by BCA protein assay kit (Thermo Scientific). Gene-specific antibodies for MITF (ab20663), GSK3β (ab32391), β-catenin (ab316051), p-β-catenin (ab75777), p-CREB (ab32096), CREB (ab32515) and β-actin (ab8227) were purchased from Abcam (Cambridge, MA, USA). Western blot. In brief, cells pellets were lysed in RIPA buffer containing protease inhibitor and phosphatase inhibitor cocktail and centrifuged at 4°C for supernatants. An aliquot of 50 μg of total proteins from each sample was loaded on a 10% SDS-PAGE gel and transferred onto polyvinylidene difluoride (PVDF) membrane (Millipore, USA). After blocking nonspecific sites with protein-free rapid blocking buffer, the PVDF membrane was incubated with primary antibodies against MITF (ab20663, 1:1000), TYR (ab180753, 1:500), DCT (ab221144, 1:1000), PI3K (ab154598, 1:500), p-PI3K (ab182651, 1:500), GSK3β (ab32391, 1:1000), p-GSK3β (ab75814, 1:500), β-catenin (ab16051, 1:2000), p-β-catenin (ab75777, 1:500), p-CREB (ab32096, 1:500), CREB (ab32515, 1:1000) and β-actin (ab8227, 1:1000) overnight at 4°C. The membrane was further incubated with HRP-conjugated secondary antibodies (ab205718) at a 1:5000 dilution for 1 h and was detected by the enhanced chemiluminescence (ECL) reagent (Millipore, USA) and scanned by a chemiluminescence imaging system (Tanon 5200, China). The protein levels were quantified by the band intensities (Image J analysis software, NIH), and normalized against β-actin.

TMT-labeling proteomics analysis. (i) Protein extraction and trypsin digestion. Cells were harvested at 0 h (before polymyxin B dosing) for the control group and at 48, 72 h for the polymyxin B treatment group after dosing. All the samples were sonicated on ice in lysis buffer containing 8 M urea and 1% protease inhibitor cocktail. The supernatant was collected by centrifugation at 12,000 g at 4°C for 10 min, and the total protein concentration was determined using a BCA protein quantification kit (Yeasen, China). The proteins in the supernatant were precipitated by adding 20% trichloracetic acid slowly at 4°C for 2 h and washed with precooled acetone three times. The precipitation was dried and reconstituted in 200 mM triethylammonium bicarbonate (TEAB) for digestion. After being reduced by dithiothreitol (DTT) at a final concentration of 5 mM for 30 min at 56°C and alkylated with iodoacetamide (IAA) at a final concentration of 11 mM for 15 min at room temperature in darkness, trypsin was added at a ratio of 1:50 (protease: protein, wt/wt) for digestion overnight at 37°C.

(ii) TMT labeling and HPLC fractionation. The digested peptides were desalted with Strata X C18 (Phenomenex) and labeled with TMT reagents according to the manufacturer’s protocol for the TMT kit. Briefly, the reagent was reconstituted in acetonitrile and then mixed with the peptide and incubated at

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.02730-21
room temperature for 2 h for labeling. The labeled peptide was desalted for HPLC fractionation, performed by high pH reversed-phase HPLC using an Agilent 300Extend C18 column (5 μm in size, 4.6 mm in diameter, 250 mm in length) with gradient elution of 8% to 32% acetonitrile (pH 9). In total, 60 fractions were collected in 60 min, and then were combined into 14 fractions and freeze-dried in a vacuum for LC-MS/MS analysis.

(iii) Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. Standard TMT-labeling quantitative proteomics techniques were performed on a Q Exactive HF-X mass spectrometry platform (Thermo Fisher Scientific, Bremen, Germany). The mass spectrometer was interfaced to a nano-electrospray ion source coupled to an EASY-NLC 1200 UPLC-system. The peptides fractions were injected and separated by gradient elution. Mobile phase A was 2% acetonitrile in water (containing 0.1% formic acid) and mobile phase B was 90% acetonitrile in water (containing 0.1% formic acid). The resolution of MS1 and MS2 scans was 120,000 and 30,000, respectively. Each MS1 was followed by 20 MS2 of the top 20 most intense ions, and dynamic exclusion was set as 30 s.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRoteomics IDEntification Database (PRIDE) (43) partner repository with the data set identifier PXD030206.

(iv) Database search. MS² data were searched against a database containing HOMO_SAPIENS_9606 (20366 sequences) with reverse decoy database, and the common contamination database using MaxQuant 1.6.15.0. Trypsin/P was specified as cleavage enzyme, and the number of missed cleavages was set as 2. The mass tolerance for precursor ions and fragment ions was set as 20 ppm. Cysteine alkylation Carbamidomethyl (C) was set as fixed modification, and the variable modification was set to ('Acetyl [Protein N-term]', 'Oxidation [M]', 'Deamidation [NQ]'). The quantitative method was set as TMT-11PLEX, and the FDR for protein identification and PSM identification was adjusted to 1%.

(v) Bioinformatic analysis. The differentially expressed proteins were defined by t test P-value (P < 0.05) and fold change >1.3 or <0.77. MetaboAnalyst 5.0 was employed for the PCA and cluster analysis (44). GO and COG analysis was conducted for the differentially expressed proteins (45–47). Pathway analysis and protein-protein interaction were performed by searching against KEGG and STRING database (47, 48).

Statistical analysis. All the treatment groups were conducted in triplicates. One-way ANOVA analysis was performed for the statistical analysis. A probability P value was used as the criterion for statistical significance.

Availability of data. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD030206.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, PDF file, 1.7 MB.

ACKNOWLEDGMENTS

This research was supported by the Shanghai Municipal Science and Technology Commission (grant number 19411964900), Shanghai Leading Talents Award (Shanghai Municipal Human Resources and Social Security Bureau).

We declare no conflict of interest.

REFERENCES

1. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, Viscoli C, Giamarelou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS. 2019. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases
19. Tan W, Wang Y, Wang K, Wang S, Liu J, Qin X, Dai Y, Wang X, Gao X. 2020.
18. Tang W, Dong M, Teng F, Cui J, Zhu X, Wang W, Wuniqiemu T, Qin J, Yi L,
17. Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. 2018. Analysis of the
11. Yoshida M, Takahashi Y, Inoue S. 2000. Histamine induces melanogenesis
10. Bushby SR, Green AF. 1955. The release or histamine by polymyxin B and
5. Lahiry S, Choudhury S, Mukherjee A, Bhunya PK, Bala M. 2017. Polymyxin
25. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, Bertolotto
20. Giovanna S, Balabinaga BD, Iribarren RP, Aguirre GR, Ballesta S, Bosca L,
14. Kung MC, Luh M, Happy B, Quarto C, Kuo ST, Lin S, Lin CL, Lin S. 2017.
9. Lu C, Hou N. 2020. Skin hyperpigmentation in coronavirus disease 2019
6. Gothwal S, Meena K, Sharma SD. 2016. Polymyxin B induced generalized
3. Chae JK, Subedi L, Jeong M, Park YU, Kim CY, Kim H, Kim SY. 2017. Gomi-
52. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
51. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
49. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
48. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
47. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
46. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
45. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
44. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
43. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
42. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
41. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
40. Tanaka M, Kudo R, Akiyoshi Y, Uehara H, Hirose H, Masuda Y, Honda S,
39. Yuan XH, Jin ZH. 2018. Paracrine regulation of melanogenesis. Br J Der-
38. Luzio JP, Pryor PR, Bright NA. 2007. Lysosomes: fusion and function. Nat
37. Lupica R, D’Amico M, D’Alfonso G, Xie X, Chardonnet AM, Chayvialle JA,
36. Raposo G, Marks MS. 2007. Melanosomes-dark organelles enlighten
35. Orlow SJ. 1995. Melanosomes are specialized members of the lysosomal
34. Newton RA, Leonard JW, Sturm RA. 2007. Human melanocytes expressing
33. Chae JK, Subedi L, Jeong M, Park YU, Kim CY, Kim H, Kim SY. 2017. Gomi-
32. Peng HY, Lin CC, Wang HY, Shih Y, Chou ST. 2014. The melanogenesis
31. Hwang YS, Kim YJ, Kim MO, Kang M, Oh SW, Nho YH, Park SH, Lee J. 2017.
30. Hwang YS, Kim YJ, Kim MO, Kang M, Oh SW, Nho YH, Park SH, Lee J. 2017.
29. Newton RA, Roberts DW, Leonard JW, Sturm RA. 2007. Human melano-
28. https://doi.org/10.1016/j.prp.2018.11.020
27. Steingrímsson E, Copeland NG, Jenkins NA. 2004. Melanocytes and the
26. Rzepka Z, Buszman E, Beberok A, Wrezinoski J, Kowalski M, Reif P. 2011.
25. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, Bertolotto
24. Rzepka Z, Buszman E, Beberok A, Wrzešcik W, Wilk K, Czyzow-Dobrowolska
23. Maranduca MA, Branisteanu D, Serban DN, Branisteanu DC, Stoleriu G,
22. Wen X, Luo C, Lyu W. 2020. Polymyxin B induced skin hyperpigmentation.
21. Mohania D, Chandel S, Kumar P, Verma V, Dignijay K, Tripathi D, Choudhury K,
20. Dhillon SK, Rizvi S, Begum G, Naseem N, Sultana S, Ahmad H. 2016.
19. Tan W, Wang Y, Wang K, Wang S, Liu J, Qin X, Dai Y, Wang X, Gao X. 2020.
18. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
17. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
16. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
15. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
14. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
13. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
12. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
11. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
10. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
9. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
8. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
7. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
6. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
5. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
4. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
3. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
2. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
1. Knueppler RC, Rahimian J. 2007. Diffuse cutaneous hyperpigmentation due to tigecycline or polymyxin B. Clin Infect Dis 45:136–138. https://doi.
43. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Twery S, Cox J, Audain E, Walzer M, Jamuzczak AF, Ternet T, Brazma A, Vizcaíno JA. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106.

44. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PÈ, Li S, Xia J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382.

45. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556.

46. Gene Ontology Consortium. 2021. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113.

47. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33.

48. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131.