Abstract and References

In the late 1990s, a new wireless technology called Bluetooth was introduced. One of its features is the ability to develop mesh networks. Bluetooth networking is evaluated in terms of Quality of Service through analyses of flooding performance for a wireless sensor network.

Several simulation scenarios have been presented to analyze the flooding performance for a mesh network and to evaluate the proportion of packet delivery ratio (PDR). These scenarios have been performed over an area of 200 by 200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes.

The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks has been shown through the simulation scenarios presented.

Bluetooth mesh networks provide an alternative for developing mesh networks using Bluetooth devices, which can be implemented in a variety of situations, including sensor networks, where the nodes are distributed randomly.

Keywords: Bluetooth, mesh flooding, packet delivery ratio, wireless sensor networks, network simulation, node position allocator (NPA), Monte Carlo algorithm.

References

1. Bluetooth®. Available at: https://www.bluetooth.com/
2. Ghaboosi, K., Xiao, Y., Latva-Aho, M., Khalaj, B. H. (2008). Overview of IEEE 802.15.2: Coexistence of Wireless Personal Area Networks with Other Unlicensed Frequency Bands Operating Wireless Devices. Emerging Wireless LANs, Wireless PANs, and Wireless MANs, 135–150. doi: https://doi.org/10.1002/9780470403686.ch6
3. Bamahdi, O. A., Zummo, S. A. (2006). An Adaptive Frequency Hopping Technique With Application to Bluetooth-WLAN Coexistence.
4. Wu, Y., Todd, T. D., Shirani, S. (2003). SCO link sharing in Bluetooth voice access networks. Journal of Parallel and Distributed Computing, 63 (1), 45–57. doi: https://doi.org/10.1016/s0743-7315(02)00035-7
5. Culler, D. E. et al. (2012). EMOuse: Emotional gaming mouse Supervisors. Conf. Proc. IEEE Engineering in Medicine and Biology Society.
6. Li, X., Li, M.-T., Gao, Z.-G., Sun, L.-N. (2008). Bluetooth ACL Packet Selection Via Maximizing the Expected Throughput Efficiency of ARQ Protocol. Lecture Notes in Computer Science, 539–568. doi: https://doi.org/10.1007/978-3-540-69384-0_61
7. Etxaniz, J., Aranguren, G. (2017). Low Power Multi-Hop Networking Analysis in Intelligent Environments. Sensors, 17 (5), 1135. doi: https://doi.org/10.3390/s17051153
8. Gessner, D., Alvarez, I., Ballesteros, A., Barranco, M., Proenza, J. (2014). Towards an experimental assessment of the slave elementary cycle synchronization in the Flexible Time-Triggered Replicated Star for Ethernet. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETF A). doi: https://doi.org/10.1109/eta.2014.7005321
9. Bellavista, P., Stefanelli, C., Tortonesi, M. (2004). Middleware-level QoS differentiation in the wireless Internet: the ubiqos solution for audio streaming over Bluetooth. First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. doi: https://doi.org/10.1109/qsnet.2004.31
10. What Is Bluetooth? Available at: https://www.mathworks.com/help/comm/ug/what-is-bluetooth.html
11. Das, B., Sarkar, T. S., Mukherjee, S., Sinha, B., Mazumdar, S. (2020). Development of full duplex Laser based data and voice communication system bridging two IoT networks. Proceedings of the 21st International Conference on Distributed Computing and Networking: https://doi.org/10.1109/2459740.3572763
12. Hwang, S.-H., Ahn, B. (2013). A TDMA protocol design to relay voice communications. 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). doi: https://doi.org/10.1109/pacrim.2013.6625482
13. Enswhor, J. F., Hoang, A. T., Phu, T. Q., Reynolds, M. S. (2017). Full-duplex Bluetooth Low Energy (BLE) compatible Backscatter communication system for mobile devices. 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). doi: https://doi.org/10.1109/wisnet.2017.7878752
14. Roenschl, J., Reynolds, M. S. (2019). A 1.0-Mb/s 198-pj/bit Bluetooth Low-Energy Compatible Single Sideband Backscatter Uplink for the NeuroDisc Brain–Computer Interface. IEEE Transactions on Microwave Theory and Techniques, 67 (10), 4015–4022. doi: https://doi.org/10.1109/tmtt.2019.2938162
15. Roenschl, J., Reynolds, M. S. (2020). A Dual-Band Shared-Hardware 900 MHz 6.25 Mbps DQPSK and 2.4 GHz 1.0 Mbps Bluetooth Low Energy (BLE) Backscatter Uplink for Wireless Brain-Computer Interfaces. 2020 IEEE International Conference on RFID (RFID). doi: https://doi.org/10.1109/rfid49298.2020.9244882
As an effective simple wireless equivalent created in the telecommunications (telephone) industry, Wireless Asynchronous Transfer Mode (WATM) is utilized to stream unified traffics like video, data, and voice data. In the asynchronous data transfer mode, voice data transfer a packet with the same medium, and data share the networks and burst data. Effective WATM data transmission requires an extensive array of designs, techniques used for control, and simulation methodologies. The congestion of the network is among the key challenges that lower the entire WATM performance during this procedure, in addition to the delay in cell and the overload of traffic. The congestions cause cell loss, and it requires expensive switches compared to the LAN. Consequently, in this current study, the application of an effective switching model together with a control mechanism that possesses multiple accesses is employed. The multiple access process and switching model are utilized to establish an effective data sharing process with minimum complexity. The switching model uses the asynchronous inputs and output ports with buffering to ensure the data sharing process. The traffic in the network is decreased, and the loss of packets in the cells is efficiently kept to a minimum by the proposed technique. The system being discussed is employed through the utilization of software employed using OPNET 10.5 simulation, with the valuation of the WATM along with the investigational outcomes accordingly. The system's efficiency is assessed by throughput, latency, cell loss probability value (CLP), overhead network, and packet loss. Thus, the system ensures the minimum packet loss (0.1%) and high data transmission rate (96.6%).

Keywords: Asynchronous mode, delay, overload traffics, switching model and data transmission rate.

References

1. Robertazzi, T. (2011). Asynchronous Transfer Mode (ATM). Basics of Computer Networking, 45–51. doi: https://doi.org/10.1007/978-1-4614-2104-7_5
2. Guide to ATM Technology for the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM Switch Routers. Customer Order Number: DOC-786275. Cisco Systems. Available at: http://www.cisco.com/c/en/us/about/downloads/pdf/networking,2012,1–9. doi: https://doi.org/10.5402/2012/705910
3. Section «Operation of an ATM Switch». Guide to ATM Technology Cisco Systems. Available at: https://indigothemes.com/wikipedia-contribution/techgd.pdf
4. 4. ATM Cell Structure. Available at: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc976978(v=technet.10)?redirectedfrom=MSDN
5. He, C., Xie, Z., Tian, C. (2019). Distributed Quality-Aware Resource Allocation for Video Transmission in Wireless Networks. Network and Parallel Computing, 56–65. doi: https://doi.org/10.1007/978-3-030-30709-7_5
6. Chapin, A. L. (1983). Connections and connectionless data transmission. Proceedings of the IEEE, 71 (12), 1365–1371. doi: https://doi.org/10.1109/proc.1983.12779
7. Weik, M. H. (2000). Switched virtual circuit. Computer Science and Communications Dictionary, 1699–1699. doi: https://doi.org/10.1007/1-4020-0613-6_18688
8. Garcia, M., Oberli, C. (2009). Intercarrier Interference in OFDM: A General Model for Transmissions in Mobile Environments with Imperfect Synchronization. EURASIP Journal on Wireless Communications and Networking, 2009 (1). doi: https://doi.org/10.1155/2009/786040
9. Opnet network simulator. Available at: https://opnetprojects.com/ opnet-network-simulator/
10. Weik, M. H. (2000). Asynchronous transfer mode. Computer Science and Communications Dictionary, 71–71. doi: https://doi.org/10.1007/1-4020-0613-6_944
11. Baraković Husić, J., Bajrić, H., Baraković, S. (2012). Evolution of Signaling Information Transmission. ISRN Communications and Networking, 2012, 1–9. doi: https://doi.org/10.5402/2012/705910
12. Erturk, I. (2005). A new method for transferring CAN messages using wireless ATM. Journal of Network and Computer Applications, 28 (1), 45–56. doi: https://doi.org/10.1016/j.jnca.2004.04.001
13. Aswathy, K., Asok, P., Nandini, T., Nair, L. S. (2018). Handover Latency Improvement and Packet Loss Reduction in Wireless Networks Using Scanning Algorithm. Recent Findings in Intelligent Computing Techniques, 43–51. doi: https://doi.org/10.1007/978-981-10-8636-6_5
14. Wang, E., Yang, Y.-J., Wu, J., Liu, W.-B. (2016). A Buffer Scheduling Method Based on Message Priority in Delay Tolerant Networks. Journal of Computer Science and Technology, 31 (6), 1228–1245. doi: https://doi.org/10.1007/s11390-016-1694-7

15. Ya, H., Perla, M., Liu, F. (2021). A Multiple Access Protocol for Multimedia Transmission over 5G Wireless Asynchronous Transfer Mode Network. 2021 IEEE World AI IoT Congress (AIoT). doi: https://doi.org/10.1109/aiot.2021.9454218

16. Sembiyev, O., Kemelbekova, Z., Umarova, Z. (2020). Load Distribution and Determination of Loss Probability in Asynchronous Network. Iranian Journal of Science and Technology, Transactions A: Science, 44 (3), 707–715. doi: https://doi.org/10.1007/s40995-020-00847-x

17. Afab, A. (2002). Data Communication Principles. For Fixed and Wireless Networks. Springer, 276. doi: https://doi.org/10.1007/b101863

18. Duque-Antón, M., Günther, R., Karabek, R., Meuser, T., Wasel, J. (1998). Open switching for ATM networks. Services and Visualization Towards User-Friendly Design, 265–277. doi: https://doi.org/10.1007/bf0053511

19. Wang, J., Letaief, K. B., Handi, M. (2000). “Super-Fast” Estimation of Cell Loss Rate and Cell Delay Probability of ATM Switches. Broadband Communications, 667–675. doi: https://doi.org/10.1007/978-0-387-35579-5_56

20. Rayes, A., Salam, S. (2018). The Internet in IoT. Internet of Things From Hype to Reality, 37–65. doi: https://doi.org/10.1007/978-3-319-99516-8_2

21. Kim, B., Lee, B., Cho, J. (2017). ASRQ: Automatic Segment Repeat Request for IEEE 802.15.4-Based WBAN. IEEE Sensors Journal, 17 (9), 2925–2935. doi: https://doi.org/10.1109/jsen.2017.2676163

22. Choi, H.-H., Lee, J.-R. (2017). Multi-phase Carrier Sense Multiple Access with Collision Resolution. Quality, Reliability, Security and Robustness in Heterogeneous Networks, 223–232. doi: https://doi.org/10.1007/978-3-319-60717-7_22

23. Rachini, A. S., Jaber, M. M. (2019). Performance of FBMC in 5G Mobile Communications Over Different Modulation Techniques. 2019 International Symposium on Networks, Computers and Communications (ISNCC). doi: https://doi.org/10.1109/isncc.2019.8909111

24. Jaber, M. M., Abd, S. K., Shakeel, P. M., Burhanuddin, M. A., Mohammed, M. A., Yusoff, S. (2020). A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms. Measurement, 162, 107883. doi: https://doi.org/10.1016/j.measurement.2020.107883

25. Naseem, M. T. et al. (2017). Preprocessing and signal processing techniques on genomic data sequences. Biomedical Research, 28(22), 10203–10209. Available at: https://www.alliedacademies.org/articles/preprocessing-and-signal-processing-techniques-on-genomic-data-sequences.pdf

26. Abd Ghani, M. K., Mohamed, M. A., Mostafa, S. A., Mustapha, A., Aman, H., Jaber, M. M. (2018). The design of flexible telemedicine framework for healthcare big data. International Journal of Engineering & Technology, 7 (3.20), 246–253. Available at: https://www.sciencepubco.com/index.php/ijet/article/view/19096

27. Mohammed, M. A., Kasim, M. H., Fuad, A., Jaber, M. M. (2014). Follow up system for directorate of scholarship and cultural relations in Iraq. 2014 International Conference on Computer, Communications, and Control Technology (HCT). doi: https://doi.org/10.1109/ijct.2014.6914171

DOI: 10.15587/1729-4061.2021.246556

A FUZZY APPROACH FOR DETERMINING THE COGNITIVE SPATIAL LOCATION OF AN OBJECT IN GEOGRAPHICAL INFORMATION SYSTEM (p. 24–31)

Svitlana Kuznichenko
Odessa State Environmental University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0001-7982-1298

Iryna Buchynska
Odessa State Environmental University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0002-0393-2781

The work is devoted to the problem of interpretation of fuzzy semantics of cognitive descriptions of spatial relations in natural language and their visualization in a geographic information system (GIS). The solution to the problem of determining the fuzzy spatial location of an object based on vague descriptions of the observer in natural language is considered. The task is relevant in critical situations when there is no way to report the exact coordinates of the observed object, except by describing its location relative to the observer itself. Such a situation may be the result of a crime, terrorist act or natural disaster. An observer who finds itself at the scene transmits a text message, which is a description of the location of the object or place (for example, the crime scene, the location of dangerous objects, the crash site). The semantics of the spatial location of the object can be further extracted from the text message.

The proposed fuzzy approach is based on the formalization of the observer’s phrases, with which it can describe spatial relations, in the form of a set of linguistic variables that determine the direction and distance to the object. Examples of membership functions for linguistic variables are given.

The spatial knowledge base is built on the basis of the phrases of observers and their corresponding fuzzy regions. Algorithms for constructing cognitive regions in GIS have been developed. Methods of their superposition to obtain the final fuzzy location of the object are proposed. An example of the implementation of a fuzzy model for identifying cognitive regions based on vague descriptions of several observers, performed using developed Python scripts integrated into ArcGIS 10.5, is considered.

Keywords: cognitive description of spatial relationships, spatial modeling, fuzzy logic, geographic information system.

Reference

1. Goodchild, M., Egenhofer, M. J., Fegues, R., Kottman, C. (Eds.) (1999). Interoperating Geographic Information Systems. Springer, 509. doi: https://doi.org/10.1007/978-1-4615-5189-8

2. Zhang, J., Goodchild, M. F. (2002). Uncertainty in Geographical Information. CRC Press, 288. doi: https://doi.org/10.1201/b12624

3. Fisher, P., Cheng, T., Wood, J. (2007). Higher Order Vagueness in Geographical Information: Empirical Geographical Population of Type n Fuzzy Sets. Geoinformatica, 11 (3), 311–330. doi: https://doi.org/10.1007/s10707-006-0009-5

4. Xiang, J. (2021). An intelligent computing and control model of topological relation between spatial objects based on fuzzy theory. Journal of Physics: Conference Series, 1948 (1), 012012. doi: https://doi.org/10.1088/1742-6596/1948/1/012012

5. Liu, Y., Yuan, Y., Gao, S. (2019). Modeling the Vagueness of ArcGIS Geographic Objects: A Categorization System. ISPRS Interna-
6. Kuznichenko, S., Buchynska, I., Kovalenko, L., Gunchenko, Y. (2019). Suitable Site Selection Using Two-Stage GIS-Based Fuzzy Multi-criteria Decision Analysis. Advances in Intelligent Systems and Computing, 214–230. doi: https://doi.org/10.1007/978-3-330-33605-9_16

7. Kuznichenko, S., Kovalenko, L., Buchynska, I., Gunchenko, Y. (2018). Development of a multicriteria model for making decisions on the location of solid waste landfills. Eastern-European Journal of Enterprise Technologies, 2 (3 (92)), 21–30. doi: https://doi.org/10.15587/1729-4061.2018.129287

8. Towards Platial Joins and Buffers in Place-Based GIS (2013). Proceedings of The First ACM SIGSPATIAL International Workshop on Computational Models of Place - COMP'13. doi: https://doi.org/10.1145/2534848.2534856

9. Blaschke, T., Merschdorf, H., Cabrera-Barona, P., Gao, S., Papadakis, E., Kovač-Györi, A. (2018). Place versus Space: From Points, Lines and Polygons in GIS to Place-Based Representations Reflecting Language and Culture. ISPRS International Journal of Geo-Information, 7 (11), 452. doi: https://doi.org/10.3390/jgi7110452

10. Scheider, S., Hahn, J., Weiser, P., Kuhn, W. (2018). Computing with cognitive spatial frames of reference in GIS. Transactions in GIS, 22 (5), 1083–1104. doi: https://doi.org/10.1111/tgis.12318

11. Talmy, L. (1983). How Language Structures Space. Spatial Orientation, 225–282. doi: https://doi.org/10.1007/978-1-4615-6465-4_11

12. Li, T. J.-J., Sen, S., Hecht, B. (2014). Leveraging Advances in Natural Language Processing to Better Understand Tobler’s First Law of Geography. Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 513–516. doi: https://doi.org/10.1145/2666310.2666493

13. VoPham, T., Hart, J. E., Ladan, F., Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health, 17 (1). doi: https://doi.org/10.1186/s12940-018-0386-x

14. Lipinski, J., Schneegans, S., Sandamirskaya, Y., Spencer, J. P., Schöner, G. (2012). A neurobehavioral model of flexible spatial language behaviors. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38 (6), 1490–1511. doi: https://doi.org/10.1037/a0022643

15. Hahn, J., Fogliaroni, P., Frank, A. U., Navratil, G. (2016). A Computational Model for Context and Spatial Concepts. Lecture Notes in Geoinformation and Cartography, 3–19. doi: https://doi.org/10.1007/978-3-319-33783-8_1

16. Shi, W., Liu, K. (2004). Modeling Fuzzy Topological Relations Between Uncertain Objects in a GIS. Photogrammetric Engineering & Remote Sensing, 70 (8), 921–929. doi: https://doi.org/10.14358/peer.70.8.921

17. Liu, K., Shi, W. (2009). Quantitative fuzzy topological relations of spatial objects by induced fuzzy topology. International Journal of Applied Earth Observation and Geoinformation, 11 (1), 38–45. doi: https://doi.org/10.1016/j.jag.2008.06.001

18. Yan, Y., Feng, C.-C., Wang, Y.-C. (2016). Utilizing fuzzy set theory to assure the quality of volunteered geographic information. GeoJournal, 82 (3), 317–332. doi: https://doi.org/10.1007/s10708-016-9699-x

19. Du, S., Qin, Q., Wang, Q., Li, B. (2005). Fuzzy Description of Topological Relations I: A Unified Fuzzy 9-Intersection Model. Advances in Natural Computation, 1261–1273. doi: https://doi.org/10.1007/11539902_161

20. Sozer, A., Yazici, A., Ogurtzun, H. (2015). Indexing Fuzzy Spatio-temporal Data for Efficient Querying: A Meteorological Application. IEEE Transactions on Fuzzy Systems, 23 (5), 1399–1413. doi: https://doi.org/10.1109/TFUZZ.2014.2362121

21. Cheng, H. (2016). Modeling and querying fuzzy spatiotemporal objects. Journal of Intelligent & Fuzzy Systems, 31 (6), 2851–2858. doi: https://doi.org/10.3233/JIFS-161616

22. Guo, J., Shao, X. (2017). A fine fuzzy spatial partitioning model for line objects based on computing with words and application in natural language spatial query. Journal of Intelligent & Fuzzy Systems, 32 (3), 2017–2032. doi: https://doi.org/10.3233/JIFS-161616

23. Wang, X., Du, S., Feng, C.-C., Zhang, X., Zhang, X. (2018). Interpreting the Fuzzy Semantics of Natural-Language Spatial Relation Terms with the Fuzzy Random Forest Algorithm. ISPRS International Journal of Geo-Information, 7 (2), 58. doi: https://doi.org/10.3390/jgi7020058

24. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning – II. Information Sciences, 8 (4), 301–357. doi: https://doi.org/10.1016/0020-0255(75)90046-8

25. Xu, J., Pan, X. (2020). A Fuzzy Spatial Region Extraction Model for Object’s Vague Location Description from Observer Perspective. ISPRS International Journal of Geo-Information, 9 (12), 703. doi: https://doi.org/10.3390/jgi9120703

26. Karpinski, M., Kuznichenko, S., Kazakova, N., Fraze-Frazenko, O., Jancarczyk, D. (2020). Geospatial Assessment of the Territorial Road Network by Fractal Method. Future Internet, 12 (11), 201. doi: https://doi.org/10.3390/fi12110201

27. Malczewski, J. (2000). On the Use of Weighted Linear Combina-
tion Method in GIS: Common and Best Practice Approaches. Transactions in GIS, 4 (1), 5–22. doi: https://doi.org/10.1111/1467-9671.00035

DOI: 10.15587/1729-4061.2021.248624
DEVISING A METHOD FOR MEASURING THE MOTION PARAMETERS OF INDUSTRIAL EQUIPMENT IN THE QUARRY USING ADAPTIVE PARAMETERS OF A VIDEO SEQUENCE (p. 32–46)

Yurii Podchashynskyi
Zhytomyr Polytechnic State University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0002-8344-6061

Oksana Lubovykh
Zhytomyr Polytechnic State University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0001-6138-8991

Vitalyi Tysyporenko
Zhytomyr Polytechnic State University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0001-8559-066X

Valentyn Tysyporenko
Zhytomyr Polytechnic State University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0002-6843-8060

The method and structural scheme of an information-measuring system for determining the parameters of objects’ movements (technological equipment in the quarry for extracting block natural stone) have been proposed. A distinctive feature of time video sequences containing images of measured objects is their adaptation and adjustment in accordance with the intensity of movement and accuracy...
requirements for measurement results. Structural and software-algorithmic methods were also applied for improving the accuracy of measurements of motion parameters, namely: complexation of two measuring channels and exponential smoothing of digital references. One of the measuring channels is based on a digital video camera, the second is based on an accelerometer mounted on an object and two integrators. Exponential smoothing makes it possible to take into consideration the previous count-downs of movement parameters with weight coefficients. That ensures accounting for the existing patterns of movement of the object and reducing the errors when measuring the parameters of movement by (1.4...1.6) times.

The resulting solutions have been implemented in the form of an information and measurement system. The technological process of extracting blocks of natural stone in the quarry was experimentally investigated using a diamond-tape installation. Based on the contactless measurement of motion parameters, it is possible to ensure control over this process and improve the quality of blocks made of natural stone.

Based on the experimental study of measurement errors, recommendations were given for the selection of adaptive parameters of a video sequence, namely the size of images and the value of the interframe interval. In addition, methods for the software-algorithmic processing of measuring information were selected, specifically exponential smoothing and averaging the coordinates of the contour of an object, measured in 30 adjacent lines of the image.

Keywords: motion parameters, software-algorithmic processing of measuring video information, exponential smoothing, complication.

References

1. Levecskyi, V., Sobolevskyi, R., Korobiichuk, V. (2018). The optimization of technological mining parameters in a quarry for dimension stone blocks quality improvement based on photogrammetric techniques of measurement. Rudarsko Geolosko Naftni Zbornik, 33 (2), 83–89. doi: https://doi.org/10.17794/rgn.2018.2.8
2. Korobiichuk, I., Shamray, V., Korobiichuk, V., Kryvoruchko, A., Iskov, S. (2021). Dose Measurement of Flocculants in Water Treatment of Stone Processing Plants. Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques, 387–394. doi: https://doi.org/10.1007/978-3-030-74893-7_34
3. Korobiichuk, I., Davydova, I., Korobiichuk, V., Shlapak, V., Pasniuk, A. (2021). Measurement of Qualitative Characteristics of Different Types of Wood Waste in the Forestries Zhytomyr Polissya. Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques, 297–308. doi: https://doi.org/10.1007/978-3-030-74893-7_28
4. Sobolevskyi, R., Korobiichuk, V., Levecskyi, V., Palivyotskyi, V., Kamyskyh, O., Kovalyvych, L. (2020). Optimization of the process of efficiency management of the primary kaolin excavation on the curved face of the conditioned area. Rudarsko Geolosko Naftni Zbornik, 35 (1), 123–137. doi: https://doi.org/10.17794/rgn.2020.1.10
5. Korobiichuk, I., Podchashinsky, Y. (2021). Correlation mathematical model of video images with measuring information about geometrical parameters. 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR) doi: https://doi.org/10.1016/j.measurement.2019.04.009
6. Korobiichuk, I., Podchashinsky, Y., Luhoiykh, O., Levkivskyi, V., Rzepinska-Rybak, K. (2020). Theoretical Estimates of the Accuracy of Determination of Geometric Parameters of Objects on Digital Images. Automation 2020: Towards Industry of the Future, 289–299. doi: https://doi.org/10.1007/978-3-030-40971-5_27
7. Korobiichuk, I., Podchashinsky, Y., Luhoiykh, O., Nowicki, M., Kachniarz, M. (2017). Algorithmic compensation of video image dynamic errors with measurement data about geometric and object motion parameters. Measurement, 105, 66–71. doi: https://doi.org/10.1016/j.measurement.2017.04.009
8. Korobiichuk, I., Podchashinsky, Y., Shapovalova, O., Shadura, V., Nowicki, M., Szewczyk, R. (2015). Precision increase in automated digital image measurement systems of geometric values. Advances in Intelligent Systems and Computing, 335–340. doi: https://doi.org/10.1007/978-3-319-23923-1_51
9. Kvasnikov, V., Oramatskyi, D., Graf, M., Sh elesha, O. (2021). Designing a computerized information processing system to build a movement trajectory of an unmanned aircraft. Eastern-European Journal of Enterprise Technologies, 1 (9 (100)), 33–42. doi: https://doi.org/10.15587/1729-4061.2021.225501
10. Korobiichuk, V. V., Kosenko, V. V., Kalachy, S. V., Sobolevskyi, R. V., Kisel, O. O. (2011). Obhadannia dla vidobuvannia blochnoho ryndovoho kameniu. Zhytomyr: Vydavnytstvo Zhytomysrskoho derzhavnoho tekhnolohichnoho universytetu, 348
11. Jambe, A. B., Juri, A. A. (2014). Low-energy motion estimation architecture using quadran-based multi-octagon (QBMO) algorithm. Journal of Real-Time Image Processing, 12 (3), 623–632. doi: https://doi.org/10.1007/s11554-014-0426-x
12. Sheikh, H. R., Sabir, M. F., Bovik, A. C. (2006). A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Transactions on Image Process, 15 (11), 3440–3451. doi: https://doi.org/10.1109/tip.2006.881939
13. Korobiichuk, I., Lysenko, V., Opyrhsko, O., Komarchy, D., Pasichnyk, N., Juš, A. (2018). Crop Monitoring for Nitrogen Nutrition Level by Digital Camera. Automation 2018, 595–603. doi: https://doi.org/10.1007/978-3-319-77179-3_56
14. Rudý, A. V. (2017). Analysis of the errors of MEMS accelerometers by the Allan variation method. The Journal of Zhytomyr State Technological University Series: Engineering, 1 (79), 100–109. doi: https://doi.org/10.26642/tz-2017-1(79)-100-109
15. Dudnik, A. (2018). Investigation of laser rangefinders with sensor network interface. Technology Audit and Production Reserves, 4 (2 (42)), 35–40. doi: https://doi.org/10.15587/2312-8572.2018.141190
16. Cherepanska, I., Bezvesilna, O., Szovon, A., November, S., Podrychenko, O. (2018). Development of artificial neural network for determining the components of errors when measuring angles using a goniometric software-hardware complex. Eastern-European Journal of Enterprise Technologies, 5 (9 (55)), 43–51. doi: https://doi.org/10.15587/1729-4061.2018.141290
17. Kuzmin, S. Z. (1986). Osnovy proektirovaniya sistem tsifrovoy ob- rabotki radiolokatsionnyx informatsii. Moscow: Radio i svyaz'. 636
18. Balvans, N. S., Zhildikov, N. P., Kobel’kov, G. M. (2008). Chislenny metody. Moscow: Binom, 636
19. Forsyth, D. A., Ponce, J. (2012). Computer Vision: A Modern Approach. Pearson Education, Inc, 761. Available at: https://eclass.teicrete.gr/modules/document/file/PM152/Books/Comput er%20Vision%20-%20Modern%20Approach%20-%20D%20 Forsyth%20-%20Ponce.pdf
20. Lebedev, A. N. (1986). Veroyatnostnye metody v ychislitel’nym tekhnike. Moscow: Vysshaya shkola, 312.
This paper reports a study into the errors of process forecasting under the conditions of uncertainty in the dynamics and observation noise using a self-adjusting Brown’s zero-order model. The dynamics test models have been built for predicted processes and observation noises, which make it possible to investigate forecasting errors for self-adjusting and adaptive models. The test process dynamics were determined in the form of a rectangular video pulse with a fixed unit amplitude, a radio pulse of the harmonic process with an amplitude attenuated exponentially, as well as a video pulse with amplitude increasing exponentially. As a model of observation noise, an additive discrete Gaussian process with zero mean and variable value of the mean square deviation was considered. It was established that for small values of the mean square deviation of observation noise, a self-adjusting model under the conditions of dynamics uncertainty produces a smaller error in the process forecast. For the test jump-like dynamics of the process, the variance of the forecast error was less than 1%. At the same time, for the adaptive model, with an adaptation parameter from the classical and beyond-the-limit sets, the variance of the error was about 20% and 5%, respectively. With significant observation noises, the variance of the error in the forecast of the test process dynamics for the self-adjusting and adaptive models with a parameter from the classical set was in the range from 1% to 20%. However, for the adaptive model, with a parameter from the beyond-the-limit set, the variance of the prediction error was close to 100% for all test models. It was established that with an increase in the mean square deviation of observation noise, there is greater masking of the predicted test process dynamics, leading to an increase in the variance of the forecast error when using a self-adjusting model. This is the price for predicting processes with uncertain dynamics and observation noises.

Keywords: forecasting errors, self-adjusting Brown’s zero-order model, process dynamics uncertainty.

References

1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2020). Pat. No. 140691 UA. Prystriy dlia vymiriuvannia parametriv rukhuv obiektiv. No. u201908229; declared: 15.07.2019; published: 10.03.2020, Bul. No. 5. Available at: http://eztuir.ztu.edu.ua/jspui/bitstream/123456789/7687/1/140691.pdf

2. Podchashynskyi, Yu. O., Luhovykh, O. O. (2020). Pat. No. 140691 UA. Prystriy dlia vymiriuvannia parametriv rukhuv obiektiv. No. u201908229; declared: 15.07.2019; published: 10.03.2020, Bul. No. 5. Available at: http://eztuir.ztu.edu.ua/jspui/bitstream/123456789/7687/1/140691.pdf

3. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). About amplitude attenuated exponentially, as well as a video pulse with variable unit amplitude, a radio pulse of the harmonic process with an amplitude attenuated exponentially, as well as a video pulse with amplitude increasing exponentially. As a model of observation noise, an additive discrete Gaussian process with zero mean and variable value of the mean square deviation was considered. It was established that for small values of the mean square deviation of observation noise, a self-adjusting model under the conditions of dynamics uncertainty produces a smaller error in the process forecast. For the test jump-like dynamics of the process, the variance of the forecast error was less than 1%. At the same time, for the adaptive model, with an adaptation parameter from the classical and beyond-the-limit sets, the variance of the error was about 20% and 5%, respectively. With significant observation noises, the variance of the error in the forecast of the test process dynamics for the self-adjusting and adaptive models with a parameter from the classical set was in the range from 1% to 20%. However, for the adaptive model, with a parameter from the beyond-the-limit set, the variance of the prediction error was close to 100% for all test models. It was established that with an increase in the mean square deviation of observation noise, there is greater masking of the predicted test process dynamics, leading to an increase in the variance of the forecast error when using a self-adjusting model. This is the price for predicting processes with uncertain dynamics and observation noises.

4. Vambol, S., Vambol, V., Suchikova, Y., Rashkevich, N. (2020). Pat. No. 140691 UA. Prystriy dlia vymiriuvannia parametriv rukhuv obiektiv. No. u201908229; declared: 15.07.2019; published: 10.03.2020, Bul. No. 5. Available at: http://eztuir.ztu.edu.ua/jspui/bitstream/123456789/7687/1/140691.pdf

5. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2020). Pat. No. 140691 UA. Prystriy dlia vymiriuvannia parametriv rukhuv obiektiv. No. u201908229; declared: 15.07.2019; published: 10.03.2020, Bul. No. 5. Available at: http://eztuir.ztu.edu.ua/jspui/bitstream/123456789/7687/1/140691.pdf
Accurate and objective object analysis requires multi-parameter estimation with significant computational costs. A methodological approach to improve the accuracy of assessing the state of the monitored object is proposed. This methodological approach is based on a combination of fuzzy cognitive models, advanced genetic algorithm and evolving artificial neural networks. The methodological approach has the following sequence of actions: building a fuzzy cognitive model; correcting the fuzzy cognitive model and training knowledge bases. The distinctive features of the methodological approach are that the type of data uncertainty and noise is taken into account while constructing the state of the monitored object using fuzzy cognitive models. The novelties while correcting fuzzy cognitive models using a genetic algorithm are taking into account the type of data uncertainty, taking into account the adaptability of individuals to iteration, duration of the existence of individuals and topology of the fuzzy cognitive model. The advanced genetic algorithm increases the efficiency of correcting factors and the relationships between them in the fuzzy cognitive model. This is achieved by finding solutions in different directions by several individuals in the population. The training procedure consists in learning the synaptic weights of the artificial neural network, the type and parameters of the membership function and the architecture of individual elements and the architecture of the artificial neural network as a whole. The use of the method allows increasing the efficiency of data processing at the level of 16–24 % using additional advanced procedures. The proposed methodological approach should be used to solve the problems of assessing complex and dynamic processes characterized by a high degree of complexity.

Keywords: decision support system, artificial neural networks, genetic algorithm, population.

References

1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok interovanych system zviazku ta peredachi dannykho diia potreb. Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7

2. Dudnyk, V., Smenko, Y., Matsyk, M., Demchenko, Y., Zhyvotosvskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 57–74. doi: https://doi.org/10.15587/1729-4061.2020.203301

3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940

4. Pivtsov, H., Turinskyi, O., Zhyvotosvskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353

5. Zuev, P., Zhyvotosvskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
A method of measuring cattle parameters using neural network methods of image processing was proposed. To this end, several neural network models were used: a convolutional artificial neural network and a multilayer perceptron. The first is used to recognize a cow in a photograph and identify its breed followed by determining its body dimensions using the stereopsis method. The perceptron was used to estimate the cow’s weight based on its breed and size information. Mask RCNN (Mask Regions with CNNs) convolutional network was chosen as an artificial neural network.

To clarify information on the physical parameters of animals, a 3D camera (Intel RealSense D435i) was used. Images of cows taken from different angles were used to determine the parameters of their bodies using the photogrammetric method.

The cow body dimensions were determined by analyzing animal images taken with synchronized cameras from different angles. First, a cow was identified in the photograph and its breed was determined using the Mask RCNN convolutional neural network. Next, the animal parameters were determined using the stereopsis method. The resulting breed and size data were fed to a predictive model to determine the estimated weight of the animal.

When modeling, Ayrshire, Holstein, Jersey, Krasnaya Stepnaya breeds were considered as cow breeds to be recognized. The use of a pre-trained network with its subsequent training applying the SGD algorithm and Nvidia GeForce 2080 video card has made it possible to significantly speed up the learning process compared to training the pre-trained network with its subsequent training applying the SGD algorithm and Nvidia GeForce 2080 video card has made it possible to significantly speed up the learning process compared to training.

The results obtained confirm the effectiveness of the proposed method in solving practical problems.

Keywords: image processing, convolutional network, multilayer perceptron, stereopsis, predictive model.

References

1. Tasdemir, S., Urkmez, A., Inal, S. (2011). Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Computers and Electronics in Agriculture, 76 (2), 189–197. doi: https://doi.org/10.1016/j.compag.2011.02.001

2. Celik, S., Eyduran, E., Karadas, K., Tariq, M. M. (2017). Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan. Revista Brasileira de Zootecnia, 46 (11), 863–872. doi: https://doi.org/10.1590/s1806-92902017001100005

3. McNitt, J. I. (1983). Livestock Husbandry Techniques. London: Granada publishing company limited, 288.

4. Adamczyk, K., Molenda, K., Szarek, J., Skrzyński, G. (2005). Prediction of Bull’s slaughter value from growth data using artificial neural network. Journal of Central European Agriculture, 6 (2), 133–142. Available at: https://www.wac.edu.edu/2213262/Prediction_of_BullsSlaughter_Value_From_Growth_Data_Using_Artificial_Neural_Network_Prewidyanie_Warto%C5%9Bci_Bawiec_3%5BANE]_133%5D5

5. Alkol, S., Akilli, A., Cemal, I. (2017). Comparison of Artificial Neural Network and Multiple Linear Regression for Prediction of Live Weight in Hair Goats. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27 (1), 21–29. doi: https://doi.org/10.29133/yuytdb.263968

6. Khorsheid-Jalali, M., Mohammadhadi, M. R., Esmailizadeh, A., Barazandeh, A., Babenko, O. I. (2019). Comparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Rani Cashmere Goat. Iranian Journal of Applied Animal Science, 9 (3), 453–461. Available at: http://ijas.iaurasht.ac.ir/article_66754_3_10896761eaa9b9a6983386780108efdf.pdf

7. Nicolas, F. F. C., Saludes, R. B., Relativo, P. L. P., Saludes, T. A. (2018). Estimating live weight of philippines dairy buffaloes (bubalus bubalis) using digital image analysis. Philipp J Vet Anim Sci, 44 (2), 129–138. Available at: https://www.pjvas.org/index.php/pjvas/article/view/207/183

8. Shahinfar, S., Mehrabani-Yeganeh, H., Lucas, C., Kallhor, A., Kazemian, M., Weigel, K. A. (2012). Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems Computational and Mathematical Methods in Medicine, 2012, 1–9. doi: https://doi.org/10.1155/2012/127130

9. Ali, M., Eyduran, E., Tariq, M. M., Tirink, C., Abbas, F., Bajwa, M. A. et. al. (2015). Comparison of artificial neural network and decision tree algorithms used for predicting live weight at post weaning period from some biometrical characteristics in Haranai sheep. Pakistan J. Zool., 47 (6), 1579–1585. Available at: http://esp.com.pk/pdf/1579-1585%20(10)%20QJPZ-0146-2015%204-15%20REVISED%20FINAL.pdf

10. Mortensen, A. K., Lisowski, P., Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. doi: https://doi.org/10.1016/j.compag.2016.03.011

11. Raja, T. V., Ruhl, A. P., Gandhi, R. S. (2011). Comparison of connectionist and multiple regression approaches for prediction of body weight of goats. Neural Computing and Applications, 21 (1), 119–124. doi: https://doi.org/10.1007/s00521-011-0637-z

12. Salawu, E. O., Abdulraheem, M., Shovombo, A., Adepeju, A., Davies, S., Akinsola, O., Nwagu, B. (2014). Using Artificial Neural Network to Predict Body Weights of Rabbits. Open Journal of Animal Sciences, 04 (04), 182–186. doi: https://doi.org/10.4236/ojas.2014.44023

13. Szynlender-Nędza, M., Eckert, R., Blicharski, T., Tyra, M., Prokowksi, K. A. (2016). Prediction of Carcass Meat Percentage in Young Pigs Using Linear Regression Models and Artificial Neural Networks. Annals of Animal Science, 16 (1), 275–286. doi: https://doi.org/10.1515/aaos-2015-0057

14. Wang, Y., Yang, W., Winter, P., Walker, L. (2008). Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100 (1), 117–125. doi: https://doi.org/10.1016/jbiosystemseng.2007.08.008
15. Wu, J., Tillet, R., McFarlane, N., Ju, X., Siebert, J. P., Schofield, P. (2004). Extracting the three-dimensional shape of live pigs using stereo photogrammetry. Computers and Electronics in Agriculture, 44(3), 203–222. doi: https://doi.org/10.1016/j.compag.2004.05.003

16. Wongsrivoraphon, A., Arnonkijpanich, B., Pathumnakul, S. (2015). An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Computers and Electronics in Agriculture, 115, 26–33. doi: https://doi.org/10.1016/j.compag.2015.05.004

17. Yilmaz, H. M., Yakar, M., Yildiz, F. (2008). Digital Photogrammetry in Obtaining of 3D Model Data of Irregular Small Objects. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, 125–130. Available at: https://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/23.pdf

18. Radwan, H., Qalibuty, H., Eliaf, E. (2020). Classification and prediction of milk yield level for Holstein Friesian cattle using parametric and non-parametric statistical classification models. Journal of Advanced Veterinary and Animal Research, 7 (3), 429. doi: https://doi.org/10.5455/javar.2020.g458

19. Tasdemir, S., Ozkan, I. A. (2019). Ann approach for estimation of cow weight depending on photogrammetric body dimensions. International Journal of Engineering and Geosciences. doi: https://doi.org/10.26833/ijeg.427531

20. Cooper, M. A. R., Robson, S. (1996). Theory of Close Range Photogrammetry Close Range Photogrammetry and Machine Vision, 9–51.

21. Yilmaz, H. M. (2010). Close range photogrammetry in volume computing. Experimental Techniques, 34 (1), 48–54. doi: https://doi.org/10.1111/j.1747-1567.2009.00476.x

22. Yakar, M., Yilmaz, H. (2008). Using in volume computing of digital close range photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, 119–124. Available at: https://www.isprs.org/proceedings/xxxvii/congress/3b_pdf/22.pdf

23. Hartley, R., Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511811685

24. Bradski, G., Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, 580.

25. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1 (4), 541–551. doi: https://doi.org/10.1162/neco.1989.1.4.541

26. LeCun, Y., Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 255–258.

27. Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). doi: https://doi.org/10.1109/iccv.2015.169

28. Wang, J., Ye, Z. (2018). An improved faster R-CNN approach for robust hand detection and classification in sign language. Tenth International Conference on Digital Image Processing (ICDIP 2018). doi: https://doi.org/10.1117/12.2503080

29. He, K., Girshick, R., Dollar, P., Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). doi: https://doi.org/10.1109/iccv.2017.322

30. Nair, V., Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning.

31. Zhang, Z. (2016). Derivation of Backpropagation in Convolutional Neural Network (CNN). Available at: https://zzutk.github.io/docs/2016.10%20-%20Derivation%20of%20Backpropagation%20in%20Convolutional%20Neural%20Network%20(CNN).pdf

32. Raimi, B. K. (2015). 10 Gradient Descent Optimisation Algorithms + Cheat Sheet. Available at: https://www.kdnuggets.com/2019/06/gradient-descent-algorithms-cheat-sheet.html

33. Rudenko, O., Bezonov, O., Olinykh, K. (2020). First-Order Optimization (Training) Algorithms in Deep Learning. Proceedings of the 4th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2020). Volume I: Main Conference. Lviv, 921–935. Available at: http://ceur-ws.org/Vol-2604/paper61.pdf

34. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. Available at: https://github.com/matterport/Mask_RCNN

35. Image augmentation for machine learning experiments. Available at: https://github.com/aleju/imgaug
ТОЧНИСТЬ КОГНІТИВНОГО ПРОСТОРОВОГО РОЗТАШУВАННЯ ОБ'ЄКТА В ГЕОГРАФІЧНОЙ ІНФОРМАЦІЙНОЙ СИСТЕМІ (с. 24—31)

С. Д. Кузніченко, І. В. Бучинська

Робота присвячена проблемі інтерпретації нечіткої семантики когнітивних описів просторових відносин на природній мові, і їх візуалізації в географічній інформаційній системі (ГІС). Розглянуто вирішення задачі визначення нечіткого просторового розташування об'єкта на основі розпливчастих описів спостерігача на природній мові. Завдання актуальне в критичних ситуаціях, коли немає можливості повідомити точні координати об'єкта спостереження, окрім як, описаний його розташування відносно самого спостерігача. Подібна ситуація може бути наслідком скосного злочину, терористичного акту чи стихійного лиха. Спостерігач, який
опинився на місці подій, надсилає текстове повідомлення, що представляє собою опис розташування об'єкта або місця (наприклад, місця скоєння злочину, місця розташування небезпечних об'єктів, місце катастрофи). З текстового повідомлення надалі може бути вилучена семантика просторового розташування об'єкта.

Запропонований нечіткий підхід ґрунтується на формалізації фраз спостерігача, якими він може описувати просторові відносини, у вигляді набору лінгвістичних змінних, що визначають напрямок і відстань до об'єкта. Наведені приклади функцій належності для лінгвістичних змінних.

Просторова база знань будована на основі фраз спостерігачів і відповідних їм нечітких регіонів. Розроблено алгоритми побудови когнітивних регіонів в ГІС. Запропоновано методи насладження когнітивних регіонів для отримання підсумкового нечіткого регіону розташування об'єкта. Розглянуто приклад реалізації нечітких моделей визначення когнітивних регіонів на основі розглянутих прикладів відеоінформації, виконаної за допомогою розроблених скриптів Python, інтегрованих в ArcGIS 10.5.

Ключові слова: когнітивний опис просторових відносин, просторове моделювання, нечітка логіка, географічна інформаційна система.

DOI: 10.15587/1729-4061.2021.248624

РОЗРОБКА МЕТОДУ ВИМІРЮВАННЯ ПАРАМЕТРІВ РУХУ ТЕХНОЛОГІЧНОГО ОБЛАДНАННЯ НА КАР'ЕРІ З АДАПТИВНИМИ ПАРАМЕТРАМИ ВІДЕОПОСЛІДОВНОСТІ (с. 32—46)

Ю. О. Подлавченський, О. О. Лугових, В. В. Ципоренко, В. Г. Ципоренко

Запропоновано метод та структурну схему інформаційно-вимірювальної системи для визначення параметрів руху об'єктів (технологічного обладнання на кар'єрі з видобування блочного природного каменю). Відмінною особливістю часових відеоспостережень, що містять зображення об'єктів вимірювань, є їх адріатика та видалення відповідно до інтенсивності руху та точниці вимог до результатів вимірювань. Також застосовано структурні та програмно-алгоритмічні методи підвищення точності вимірювань параметрів руху, а саме: комплексування двох відеоінформаційних каналів та експоненційне згладжування цифрових відліків. Один з відеоінформаційних каналів побудовано на основі цифрової відеокамери, другий – на основі акселерометра, закріпленого на об'єкти, та двох інтеграторів. Експоненційне згладжування дозволяє врахувати попередні відліки параметрів руху з ваговими коекфіцієнтами. Це забезпечує врахування наявних закономірностей руху об'єкта та зменшення похибок при вимірюванні параметрів руху у (1,4…1,6) разів.

Отримані результати реалізовані у вигляді інформаційно-вимірювальної системи. Експериментально досліджено технологічний процес отримання блоків природного каменю на кар'єрі з використанням алюмап-канатної установки. На основі безконтактного вимірювання параметрів руху можна забезпечити контроль за цим процесом та підвищення якості блоків з природного каменю.

На основі експериментального дослідження похибок вимірювань надано рекомендації з вибору адаптивних параметрів відеоспостереження, а саме розміру зображення та величини міжкадрового інтервалу. Також здійснено вибір методів програмно-алгоритмічної обробки відеоінформації, а саме експоненційне згладжування та усереднення координат контуру об'єкта, та двох інтеграторів. Експоненційне згладжування дозволяє врахувати відліки параметрів руху з ваговими коекфіцієнтами. Це забезпечує врахування наявних закономірностей руху об'єкта та зменшення похибок при вимірюванні параметрів руху у (1,4…1,6) разів.

Ключові слова: параметри руху, програмно-алгоритмічна обробка відеоінформації, експоненційне згладжування, комплексування.

DOI: 10.15587/1729-4061.2021.248623

ДОСЛІДЖЕННЯ ПОМИЛОК ПРОГНОЗУВАННЯ ПРОЦЕСІВ З НЕВИЗНАЧЕНОЮ ДИНАМІКОЮ І ШУМАМИ СПОСТЕРЕЖЕННЯ САМОНАСТРОЮВАЮЧОЮ МОДЕЛЮ БРАУНА НУЛЬового ПОРЯДКУ (с. 47—53)

Б. Б. Поспелов, Є. О. Рибка, М. А. Самойлов, О. М. Крайнюков, Ю. Л. Кульбачко, Ю. О. Подчашинський, О. О. Лугових, В. В. Ципоренко, В. Г. Ципоренко

Виконано дослідження помилок прогнозування процесів в умовах невизначеності динаміки і шумів спостереження самонастроювальною моделлю Брауна нульового порядку. Визначено тестові моделі динаміки для прогнозованих процесів і шумів спостереження, що дозволять досліджувати помилки прогнозування для самонастроювальної і адаптивної моделей. Тестова динаміка процесів визначалася у вигляді відеоінформації примокутої форми з фіксованою одиничною амплітудою, радіоімпульсу гармонійного процесу з затухаючою по експоненті амплітудою, а також відеоімпульсу з відповідною середньоквадратичним відхиленням. Встановлено, що для маленьких значень середньоквадратичного відхилення шумів спостереження самоналаджувальна модель у умовах невизначеності динаміки забезпечує меншу помилку прогнозу процесу. Для тестових стрибкоподібної динаміки процесу дисперсія помилки прогнозу сягає 1 %. При цьому для адаптивної моделі при параметрі адаптації з класичної і позамежної множини дисперсія помилки прогнозу сягає близько 20 % і 5 % відповідно. При значних шумах спостереження дисперсія помилки прогнозу тестової динаміки процесів для самонастроювальної і адаптивної моделей при параметрі з класичної множини лежать в межах від 1 % до 20 %. Однак для адаптивної моделі при параметрі з позамежної множини дисперсія помилки прогнозу сягає близько 100 % для всіх тестових моделей. Встановлено, що зі збільшенням середнього квадратичного відхилення шумів спостереження відбувається значне маскування прогнозованої тестової динаміки процесів, що призводить до збільшення дисперсії помилки прогнозу самонастроювальною моделлю. Це є платою за прогнозування процесів з невизначеною динамікою і шумами спостереження.

Ключові слова: самоналаджувальна модель Брауна нульового порядку, помилки прогнозування, невизначеність динаміки, шуми спостереження.
ТОЧНИЙ ТА ОБ’ЄКТИВНИЙ АНАЛІЗ ОБ’ЄКТУ ВИРИШЕННЯ РІШЕНЬ

Ю. В. Журавський, О. Я. Сова, С. О. Коробченко, В. А. Багінський, Ю. В. Цімура, Л. В. Колодійчук, П. В. Хоменко, Н. П. Гаращук, О. О. Оробінська, А. В. Шишацький

Точний та об’єктивний аналіз об’єкту вимагає багатопараметричної оцінки зі значними обчислювальними витратами. Запропоновано методичний підхід для підвищення точності оцінювання стану об’єкту моніторингу. Зазначений методичний підхід заснований на поєднанні нечітких когнітивних моделей, удосконаленого генетичного алгоритму та штучних нейронних мереж, що еволюціонують. Методичний підхід має наступну послідовність дій: побудова нечіткої когнітивної моделі; корегування нечіткої когнітивної моделі та навчання баз знань. Відмінні риси методичного підходу полягають в тому, що при побудові стану об’єкту моніторингу за допомогою нечітких когнітивних моделей враховується тип невизначеності та запущеності даних. При корегуванні нечітких когнітивних моделей за допомогою генетичного алгоритму новизною є: врахування типу невизначеності даних; врахування пристосованості особин на ітерації; тривалість існування особин та топології нечіткої когнітивної моделі. Удосконаленний генетичний алгоритм підвищує оперативність корегування факторів та зв’язків між ними в нечіткій когнітивній моделі. Зазначений методичний підхід доцільно використовувати для вирішення задач оцінки складних та динамічних процесів, що характеризуються високим ступенем складності.

Ключові слова: система підтримки прийняття рішень, штучні нейронні мережі, генетичний алгоритм, популяція.

Запропонований спосіб вимірювання параметрів великої рогатої худоби з використанням нейромережевих методів обробки зображень. Для цього застосовуються декілька нейромережевих моделей: згорткова штучна нейронна мережа, а також багатошаровий персептрон. Перша використовується для розпізнавання корови на фотографії і ідентифікації її породи з подальшим визначенням розмірів її тіла за допомогою методу стереопсіса. Персептрон застосовується для оцінювання маси корови на основі інформації про її породу і розміри. В якості штучної нейронної мережі обрано згорткову мережу Mask R-CNN (Mask Regions With CNNs). Для уточнення інформації про фізичні параметри тварин додатково використовується 3D камера (Intel RealSense D435i). Зосередження корів, знятих під різними кутами, застосовувалися для визначення параметрів їх тіл за допомогою фотограмметричного методу.

Розміри тіла корови визначаються з аналізу зображень тварин, зроблених синхронізованою камерами з різних сторін. Записи на зображення визначаються корова і визначається її порода за допомогою згорткової нейронної мережі mask-rcnn. Потім параметри тварини визначаються за допомогою методу стереопсіса. Отримані дані про породу і розміри подаються на прогнозуючий модуль, яка визначає передбачувану масу тварини.

Запропонований метод використовується для розпізнавання корів за зображениями коров на цифрових пристроях із допомогою алгоритму SGD і використанням відеокарт Nvidia GeForce 2080 (США) для швидкого навчання моделей.

Отримані результати підтверджують ефективність застосування запропонованого методу для вирішення практичних завдань.

Ключові слова: обробка зображень, згорткова мережа, багатошаровий персептрон, стереопсіс, прогнозуючий модуль, навчання.