Healing promoting potentials of roots of *Ficus benghalensis* L. in albino rats

Krishna Murti¹, Upendra Kumar², Mayank Panchal³

¹Singhania University, Jhunjhunu, Rajasthan, India
²College of Pharmacy, Azamgarh, Uttar Pradesh, India
³Vidyabharti Trust College of Pharmacy, Umraolk, Gujarat, India

**ARTICLE INFO**

**Objective:** To screen the wound healing activity of aqueous and ethanolic extract of roots of *Ficus benghalensis*. **Methods:** Both the extracts were evaluated for wound healing by three models i.e. incision, excision and dead space wound. In incision and dead space the extracts were applied daily topically till the 10th post wounding days while in excision model it was till the complete epithelialization process. Standard group were administered Povidone iodine ointment topically daily. The breaking strength, percentage of wound contraction, period of epithelialization, dry granulation weight and hydroxyproline content were observed. **Results:** The result of the present study showed that both extracts were able to increase the breaking strength (incision model), decrease period of epithelialization, increase percentage wound contraction (excision model), increase hydroxyproline content (Dead space wound model) significantly compared with control group (*P*<0.05). **Conclusions:** Based on result we conclude that aqueous extract is more effective than ethanolic extract. However, it is needed more research to be carried out especially on toxicity studies of ethanolic extract.

1. Introduction

A wound may be defined as a break in the epithelial integrity of the skin or may also be defined as a loss or breaking of cellular and anatomical or functional continuity of living tissue[1]. Wound healing studies are mainly aimed to detect various means and factor influencing healing process, so they could be either used or avoid in clinical practice to favorably alter the healing process[2]. Wound healing process involves several steps such as coagulation, inflammation, formation of granulation tissue, matrix formation, remodeling of connective tissue, collagenization and aquisition of wound strength. During the formation of new tissue, endothelial cells proliferate and form new blood vessels. There are several reports stating that the extracts of several plants are used for wound healing properties[3–5]. Some of plants possessing prohealing activity have been scientifically analyzed. The wound healing potential of *Tridex procumbens*, *Trigonella foenumgraecum*, *Leucas lavandulafolia* and *Aloe vera* have shown promising healing activity[6].

*Ficus benghalensis* Linn (Family–Moraceae) is commonly known as Banyan tree or vata or vada tree in Ayurveda. *Ficus benghalensis* is a remarkable tree from India that sends down its branches and great number of shoots, which take root and become new trunks. This tree is considered to be sacred in many places in India[7]. Traditionally all parts of the plant are astringent, acrid, sweet, refrigerant, anodyne, vulnerary, depurative, anti-inflammatory, ophthalmic, styptic, antiarthritic, diaphoretic, anti diarrhoeal, antiemetic and tonic[8]. It is used in Ayurveda for the treatment of diarrhea, dysentry and piles, teeth disorders, rheumatism, skin disorders like sores and to boost immune system, as a hypoglycemic[9]. Bark contains tannins, wax, esters and glucoside, 20–tetratriaconthene–2–one, 6–heptatriacontene–10–one, pentatriacontan–5–one, beta sitostirol-alpha-D-glucose and meso-inositol. Two flavonoid compounds, viz. 5, 7–dimethylether of leucopelargonidin 3–0–alpha-L–rhamnoside and 5,3–dimethyl ether of leucocyanidin 3–0–alpha–D galactosyl cellbioside were present in the bark of *Ficus benghalensis*[9,10]. Pharmacological evaluation has shown the various extract of *Ficus benghalensis* has shown anthalmintic[9], analgesic[10], anti–inflammatoty[10],
antioxidants[11], antidiabetic[12], Immunomodulatory[13] and antimicrobial[14] activity in experimental animals. The ethnomedicinal use of the roots of *Ficus benghalensis* in wound healing has not been systematically investigated so far. Therefore the present study was designed to determine the healing activity of roots in the wound model in rats.

2. Materials & methods

2.1. Materials

Roots of *Ficus benghalensis* L. growing in natural habitant in Modasa, Gujarat, India, was collected in October, 2010 and identified by Associate Professor Dr. MS Jangid, Department of Botany, Modasa, Hemchandra Gujarat University by carrying out macroscopic and microscopic evaluation and has been submitted in the institute for future reference purpose.

2.2. Preparation of the root extract

Dried and coarsely 500 g powdered roots of *Ficus benghalensis* was extracted with 90% (v/v) ethanol in soxhlet apparatus for 36 h and aqueous extract was prepared by using maceration technique of extraction. After filtration, the filtrate was concentrated on water bath using petridish. The temperature was maintained at 55 °C. The powdered extract was dried and weighed.

2.3. The preliminary phytochemical analysis

The preliminary phytochemical studies were performed for testing different chemical groups present in ethanolic & aqueous extract[15-18].

2.4. High performance Thin Layer Chromatography (HPTLC) profile

Chromatography was performed on 3 cm × 10 cm HPTLC plates coated with 0.25 mm layer of silica gel 60 F254 (Merck, Germany). Before using, the plates were washed with methanol and activated at 110 °C for 5 min. Samples were applied as 4 mm wide bands and 6 mm apart by using a Camag (Muttenz, Switzerland) Linomat IV sample applicator equipped with 100 μL syringe. A constant application rate of 5 μL/s was used.

2.5. Animals

Wistar albino rats of either sex weighing between 180 and 200 g were obtained from Jai Foundation Research, Vapi (Gujarat). The study was approved by the Institutional Ethics Committee for animal experimentation Vidyabharti Trust College of Pharmacy, Umberk, Gujrat (VBT/IAEC/10/12/30) and all the procedures on animals were carried out as per CPCSEA guidelines, India. These animals were used for the wound healing activity studies. The animals were stabilized for 1 week. They were maintained in standard conditions at room temperature, (60±5)% relative humidity and 12 h light dark cycle. They had been given standard pellet diet and water *ad libitum* throughout the course of the study.

The ethanolic & aqueous extract of *Ficus benghalensis* was administered orally (p.o.) to all group of animals.

2.6. Incision wound model

The rats were anesthetized by administering ketamine (0.5 mL/kg bw, i.p.). Incision wounds of about 6 cm in length and 2 mm in depth were made with sterile scalpel on the shaved back of the rats 30 min later the administration of ketamine injection. The parted skin was kept together and stitched with black silk at 0.5 cm intervals. Surgical thread (No, 000) and a curved needle (No. 9) were used for stitching. The continuous thread on both wound edges were tightened for good closure of the wounds. The wounds of animals in the different groups were treated with drug by oral administration as described above, for the period of 10 days. The wounding day was considered as day 0. When wounds were cured thoroughly, the sutures were removed on the 8th post-wounding day and the tensile strength of the skin that is the weight in grams required to break open the wound/skin was measured by tensiometer on the 10th day reported[19-20].

2.7. Excision wound model

A circular piece of full thickness [approximately 500 (mm. sup.2)] was removed from a predetermined dorsal area[21]. The wound were traced on 1-(mm.sup.2) graph paper on the day of wounding and subsequently on alternate days until healing was complete. Changes in the wound area were calculated, giving an indication of the rate of wound contraction. The number of days required for falling of the eschar without any residual raw wound was determined as the period of epithelization.

2.8. Dead space wound model

The dead space wounds were created by making a small transverse incision in the lumber region on either side of vertebral column in each animal. Two polypropylene tubes (2.5 cm × 0.5 cm) were inserted subcutaneously one on either side of vertebral column and pushed cephal head for 3–4 cm for the final implantation to harvest the granulation tissue. The animals were treated with the extracts from 0 day to 9th post-wounding day considering wounding day as zero. Granulation tissue formed on the implanted tubes was carefully dissected out on the 10th post-wounding day and the tensile strength was measured by continuous constant water flow technique[20]. Mean value gives the breaking strength for a given group. The tissue was dried in oven at 60 °C for 24 hours and the dry weight was noted. The acid hydrolysate of the dry tissue was used for the estimation of the hydroxyproline content in the tissue[22].

2.9. Hydroxyproline estimation

Hydroxyproline is an uncommon amino acid present in the collagen fibres of granulation tissues. Its estimation helps clinically to understand progress rate at which the healing process is going on in the connective tissue of the wound. For the determination of hydroxyproline content, the wound tissues were excised and dried in a hot air oven at 60–70 °C.
FOR constant weight and were hydrolysed in 6NHCl at 130 °C for 4 hour in sealed glass tubes. The hydrolysate was neutralized to pH 7.0 and was subjected to Chloramine–T oxidation for 20 min. The reaction was terminated by addition of 0.4 M perchloric acid and colour was developed with the help of Ehrlich reagent at 60 °C. The absorbance was measured at 557 nm using a spectrophotometer (Shimadzu 1700, Japan). The amount of hydroxyproline in the samples was calculated using a standard curve prepared with pure l-hydroxyproline[23].

2.10. Statistical Analysis

The mean value±SEM was calculated for each parameter. Results were statistically analyzed by one-way-analysis of variance (ANOVA) followed by posthoc Dunnet’s test. P<0.05 was considered as significant.

3. Results

3.1. Phytochemical Analysis

Result of preliminary phytochemical screening showed that the roots of Ficus benghalensis L. contained saponins, tannins, alkaloids and flavanoids while other constituents like amino acids, carbohydrate were absent. Further the presence of these chemical constituents was confirmed by HPTLC analysis.

3.2. Incision wound model

The breaking strength of the incision wounds was increased in extract treated groups significantly, from 305.20 ±15.15 in control to 502.30±2.26 in Ficus benghalensis aqueous extract and 455.80±2.82 in Ficus benghalensis ethanol extract (P<0.05). The results were also comparable to standard drug povidone iodine (429.70±3.21).

3.3. Excision wound model

Table 1 showed that the wound contracting ability of two extract ointments were significantly greater than that of the control (P<0.05). The aqueous extract ointment treated group showed significant wound healing from the fourth day onwards, which was comparable to that of the standard drug, povidone iodine ointment. The wound closure time was lesser, as well as the percentage of wound contraction was much higher in the aqueous extract ointment treated group (13.33 days for 100% contraction which was almost better than that of the povidone iodine treated group). Ethanolic extract ointment treated group showed significant wound contraction from the fourth day onwards and achieved 100% with the wound closure time of 14.17 days.

3.4. Dead space wound model

In the dead space wound study, there was a significant increase in granuloma breaking strength in both extract treated groups when compared to control (Table 2). There was significant increase in hydroxyproline content in both extract treated groups of Ficus benghalensis. Standard drug povidone iodine also showed significant increase as compared to control(P<0.05).

4. Discussion

Wound healing process consists of different phases such as granulation, collagenization, collagen maturation and scar maturation which are concurrent but independent to each other. Therefore, in this study three different models were used to establish the healing potentials of aqueous and Ethanolic extracts of Ficus benghalensis in various phases.

From the result, it is evident that Ficus benghalensis possesses a definite potential healing action. The breaking strength of the incision wounds was increased in aqueous & ethanolic extract treated groups. Deposition of newly synthesized collagens at the wound site increases the collagen concentration per unit area and hence the tissue tensile strength[24].

In excision wound healing model the aqueous & ethanolic extract of the root of the plant Ficus benghalensis showed significant increase in percentage closure by enhanced

---

**Table 1**

| Groups | Percentage of wound contraction (%) | Period of epithelialization (Days) |
|--------|------------------------------------|-----------------------------------|
|        | Day 2 | Day 4 | Day 8 | Day 12 | Day 16 |
| Control | 3.50±0.87 | 13.33±0.24 | 44.50±0.23 | 71.60±0.54 | 79.66±0.32 | 19.67±0.61 |
| Povidone iodine | 10.50±1.23 | 43.83±1.54 | 73.80±1.67 | 84.50±1.23 | 92.80±0.23 | 16.90±0.26* |
| Ficus benghalensis aqueous extract | 14.60±0.12 | 66.50±0.21 | 85.33±0.65 | 98.15±0.13 | 100.00±0.00 | 13.33±0.42* |
| Ficus benghalensis ethanol extract | 13.66±0.12 | 54.50±2.21 | 74.16±1.26 | 90.10±2.32 | 94.83±1.32 | 14.17±0.48* |

*: P<0.05 compared with control group.

**Table 2**

| Groups | Granulation breaking strength (g/cm²) | Dry granulation weight (mg/g) | Hydroxyproline content (mg/mL) |
|--------|-------------------------------------|------------------------------|--------------------------------|
| Control | 261.20±3.23 | 56.33±4.43 | 33.00±1.12 |
| Standard Povidone iodine | 351.80±2.54* | 80.67±1.50* | 40.80±0.25* |
| Ficus benghalensis aqueous extract | 515.80±5.04* | 97.33±0.56* | 56.49±0.57* |
| Ficus benghalensis ethanol extract | 479.00±2.98* | 86.83±1.35* | 45.08±0.45* |

*: P<0.05 compared with control group.
epithelialization. This enhanced epithelialization may be due to the effect of Ficus benghalensis extracts on enhanced collagen synthesis. Similarly, in dead space model there was a significant increase in granuloma tissue breaking strength in both the extract treated groups. The higher breaking strength indicates better healing of wounds. Higher hydroxyproline content was seen in extract treatment group. The increased amount of hydroxyproline in test groups underlines increased collagen content, since hydroxyproline is the direct estimate of collagen synthesis[25]. Thus it supports the wound healing activity of Ficus benghalensis.

Recent studies with other plant extracts have shown that phytochemical constituents like flavanoids[26], alkaloids[27], saponins[28] and tannins[29] are known to promote the wound-healing process. The study reveals that both aqueous & ethanolic extracts treated groups possesses good wound healing properties which may be attributed to the individual or combined action of phytoconstituents like, flavanoids, alkaloids, saponins and tannins present in it.

According to experimental results, crude aqueous extract of Ficus benghalensis L. has better activity on the wound healing compared to the ethanolic extracts and even compared with standard povidone iodine ointment. This might be due to the synergistic effect of the constituents present in the ethanolic extract. Furthermore, there is a need to study more about the toxicity profile and detail study for ethanolic extract which will help establish the accurate formulation of this plant in management of wound for mankind.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are thankful to the managing trustee and Vidyabharti Trust College of pharmacy, Surat, India for providing financial support and facility to carry out this research.

References

[1] Ramji SC, Vinay K, Stanley R. Pathologic basis of diseases. Philadelphia: WB Saunders Company; 1994, p. 86–90.
[2] Stuart E, Patricia P. Pathophysiology of healing. 1st ed. 2004, p. 234.
[3] Mukherjee PK, Shuresh B. The evaluation of wound healing potential of Hypericum hookerianum leaf and stem extracts. J Altern Complement Med 2000; 6: 61–69.
[4] Park EH, Chun MJ. Wound healing activity of Opuntia ficus–indica. Fitoerapia 2001; 72: 165–167.
[5] Nagappa AN, Cheriyan B. Wound healing activity of the aqueous extract of Thespesia populnea fruit. Fitoerapia 2001; 72: 503–506.
[6] Murti K, Lambole V, Gajera V, Panchal M. Exploration of healing promoting potentials of roots of Ficus religiosa. Pharmacologia 2011; 2(12): 374–378.
[7] Patil V. A comparative evaluation of anti-inflammatory activity of the bark of Ficus benghalensis in plants of different age. J Basic Clin Pharm 2010; 1(2): 107–113.
[8] Saha AV. Indian medicinal plants: A compendium of 500 species. Vol.–II. Madras: Orient Longman Ltd; 1997, p. 20–26.
[9] Aswar M, Aswar U, Watkar B, Vyas M, Wegg A, Gujer KN. Antihelmintic activity of Ficus benghalensis. Int J Green Pharm 2008; 1: 170–172.
[10] Thakare VN, Suralkar AA, Deshpande AD, Naik SR. Stem bark extraction of Ficus benghalensis Linn for anti- inflammatory and analgesic activity in animal models. Indian J Exp Biol 2010; 48: 39–45.
[11] Shukla R, Gupta S, Gambhir JK, Prabhu KM, Murthy PS. Antioxidant effect of aqueous extract of the bark of Ficus benghalensis in hypercholesterolaemic rabbits. J Ethnopharmacol 2004; 92: 47–51.
[12] Sharma S, Chaturvedi M, Edwin E, Shukla S, Sragawat H. Evaluation of the phytochemicals and antidiabetic activity of Ficus benghalensis. Int J Dev Ctries 2007; 27(2): 56–59.
[13] Gabhe SY, Tatke PA, Khan TA. Evaluation of the immunomodulatory activity of the methanol extract of Ficus benghalensis roots in rats. Indian J Pharmacol 2006; 38(4): 271–275.
[14] Ganathri M, Kannabiran K. Antimicrobial activity of Hemidesmus indicus, Ficus benghalensis and Pterocarpus marsupium Roxb. Indian J Pharm Sci 2009; 1: 578–581.
[15] Harbone JB. Phytochemical method. Chapman Hall; 1988, p. 117–119.
[16] Mohamed A. Text book of pharmacognosy. CBS Publishers and Distributors; 1994, p. 81, 116, 372 & 447.
[17] Agrawal OP. Advanced practical organic chemistry. Goel Publishing House; 2000, p. 43–59.
[18] Divakar MC. Plant drug evaluation. CD Remedies Publication; 2002, p. 49–52 & 84–89.
[19] Kiran K, Asad M. Wound healing activity of Sesamum indicum L. seed and oil in rats. Indian J Exp Biol 2008; 46(11): 777–782.
[20] Lee KH. Studies on the mechanism of action of salicylates II. Effects of vitamin A on wound healing retardation action of aspirin. J Pharm Sci 1968; 57: 1238.
[21] Morton JJP, Malone MH. Evaluation of vulnerary activity by an open wound procedure in rats. Arch Int Pharmacodyne 1997; 196: 117–126.
[22] Neuman RE, Logan MA. The determination of collagen and elastin in tissues. J Biol Chem 1950; 186: 549.
[23] Woessner JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch Biochem Biophys 1961: 93: 440–447.
[24] Udupa D, Kulkarni R, Udupa SL. Effect of Tridax procumbens extracts on wound healing. Int J Pharmacol 1995; 33: 37–40.
[25] Madden JW, Peacock Jr EE. Studies on the biology of collagen during wound healing: rate of collagen synthesis and deposition in cutaneous wounds of the rat. Surgery 1968; 64: 288–294.
[26] Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 1996; 50: 27–34.
[27] Ansel S. Pharmaceutical dosage form and drug delivery system. Lippincott 2005; 8: 278–281.
[28] Mukherjee PK. Quality control of herbal drugs. New Delhi: Business Horizons; 2002, p. 546–549.
[29] Madhura RM, Shusma MA. Comparative effect of oral administration and topical application of alcoholic extract ofTerminalia arjuna bark on incision and excision wounds in rats. Fitoerapia 2003; 74: 553–558.