Evaluation of three scales of dyspnea in chronic obstructive pulmonary disease

S. K. Chhabra, A. K. Gupta, M. Z. Khuma

Abstract:
BACKGROUND: The Modified Medical Research Council (MMRC) scale, baseline dyspnea index (BDI) and the oxygen cost diagram (OCD) are widely used tools for evaluation of limitation of activities due to dyspnea in patients with chronic obstructive pulmonary disease (COPD). There is, however, limited information on how these relate with each other and with multiple parameters of physiological impairment.

OBJECTIVES: To study the interrelationships between MMRC, BDI and OCD scales of dyspnea and their correlation with multiple measures of physiological impairment.

MATERIALS AND METHODS: A retrospective analysis of pooled data of 88 male patients with COPD (GOLD stages II, III and IV) was carried out. Dyspnea was evaluated using the MMRC, BDI and OCD scales. Physiological impairment was assessed by spirometry (FVC % predicted and FEV1 % predicted), arterial blood gas (ABG) analysis and measurement of the 6-min walk distance (6MWD).

RESULTS: The interrelationships between MMRC, BDI and OCD scales were moderately strong. The BDI and OCD scores had strong correlations with ABG abnormalities, weak correlations with spirometric parameters but none with 6MWD. MMRC grades were significantly associated with BDI and OCD scores but did not show clear associations with spirometric parameters, ABG abnormalities and 6MWD.

CONCLUSIONS: The MMRC grades of dyspnea and the BDI and OCD scales are moderately interrelated. While the BDI and OCD scales have significant associations with parameters of physiological impairment, the MMRC scale does not.

Key words: Baseline dyspnoea index, chronic obstructive pulmonary disease, Modified Medical Research Council scale, oxygen cost diagram
multiple parameters of physiological impairment.

Materials and Methods

We carried out a retrospective analysis of pooled data of two recent studies on COPD[16,17] done in our Institute. These had common outcomes, including dyspnea, spirometry, arterial blood gases and 6MWD measured with standardized methodology. The studies were approved by the Institutional Ethics Committee. Informed consent was taken.

Eighty-eight ambulatory stable male patients that were all former or current smokers with at least 10 pack-years of smoking and diagnosed with moderate or severe COPD (stages II, III and IV) on the basis of GOLD recommendations were investigated. Only males were included as smoking-induced COPD is uncommon in the female population in India due to their substantially lower habit of smoking. The number of female patients reporting to our practice is therefore limited. Patients were excluded if there was a history suggestive of asthma, an acute exacerbation of COPD in the previous 4 weeks, and evidence of any other concurrent respiratory disorder or any systemic disease such as ischemic heart disease, musculoskeletal disorders, peripheral vascular diseases or other disabling conditions that would interfere with the tests.

Study design

The study was carried out in the outpatient setting between 10 a.m. and 12 noon. Bronchodilators were withdrawn 12 hours before the investigation. Inhaled corticosteroids were however allowed unchanged. After a detailed history and examination, the patients had an evaluation of dyspnea using the three instruments in a random order, followed by an arterial blood gas analysis and the 6-min walk test. After the patient had rested for some time, spirometry before and after administration of bronchodilator was carried out.

Methods

Dyspnea assessment was carried out using the MMRC, BDI and the OCD scales. The MMRC is an ordinal five-point scale (grades I to V) based on degrees of various physical activities that precipitate dyspnea. Grade V represents the most severe category. The BDI has a scale of five grades, scored 0 to 4, for each of the following categories: Functional impairment, magnitude of task and magnitude of effort. Only males were included as smoking-induced COPD is uncommon in the female population in India due to their substantially lower habit of smoking. The number of female patients reporting to our practice is therefore limited. Patients were excluded if there was a history suggestive of asthma, an acute exacerbation of COPD in the previous 4 weeks, and evidence of any other concurrent respiratory disorder or any systemic disease such as ischemic heart disease, musculoskeletal disorders, peripheral vascular diseases or other disabling conditions that would interfere with the tests.

The 6-min walk test was carried out as recommended by the American Thoracic Society.[18] The patients were instructed to walk in a corridor on level at their own pace attempting to cover as much ground as possible in 6 minutes. They were constantly encouraged using standard phrases to put in their maximal effort but were permitted to slow down or stop and restart during the test. The distance traveled within 6 minutes (6MWD) was noted. Supplemental oxygen was not used during the test. The test was carried out only if oxygen saturation on pulse oximetry was greater than 88%. Only 1 patient was excluded by this criterion.

Spirometry was performed on the dry, rolling-seal spirometer of the Benchmark model lung function machine (P.K. Morgan, Kent, UK) as per the recommendations of the ATS.[19] Three acceptable and at least two reproducible maximal expiratory flow volume curves were obtained. The highest values of FEV1, (forced expiratory volume in 1 s) and FVC (forced vital capacity) obtained were recorded. Post-bronchodilator values were obtained by repeating the spirometry 20 minutes after inhalation of 200 µg salbutamol from a metered-dose inhaler. Reference equations for north Indian adults were used to calculate the predicted values in terms of percentage.[20] Arterial blood gas (ABG) analysis was carried out on radial artery blood sample measured in instrumentation laboratory machine (model 1312). The ABG analysis was obtained after a 15-minute rest in supine position breathing room air.

Statistical analysis

Statistical analysis was carried out with the help of SPSS 14.0 software for Windows and GraphPad Prism 4.02 for Windows. Multiple group comparisons of quantitative variables were made using analysis of variance (ANOVA), and inter-group comparisons were carried out using the Bonferroni’s test to identify the significantly different groups. Coefficients of correlation for bivariate relationships were obtained using the Spearman rank correlation test. The relationship between the MMRC grade and BDI/OCD scores was evaluated by computing the polychoric correlation. This was done as the MMRC is an ordinal variable and Spearman’s or Pearson’s correlation analysis is not an appropriate test to evaluate relationships between ordinal and continuous variables like BDI or OCD scores. Polychoric correlation was computed using Lisrel 8.80 student edition software. Proportions of patients with different MMRC grades across GOLD stages were analyzed by chi-square test. A P value of <0.05 was considered statistically significant.

Results

Table 1 shows the demographic and clinical characteristics according to GOLD stages. Table 2 shows the inter-correlations (spearman’s rho) among spirometric, blood gas parameters, 6MWD, BDI and OCD. The OCD and BDI were moderately strongly correlated [Figure 1]. The correlations of these measures of dyspnea with FEV1, %predicted were weak although statistically significant, while there was no correlation with 6MWD. The correlations of BDI and OCD scores with arterial blood gas parameters were moderately strong. Polychoric correlation coefficients computed between MMRC grades and BDI and OCD were −0.56 (P <0.05) and −0.54 (.05 > P <1), respectively.

As the MMRC scale is an ordinal variable, we compared the different study variables across its different grades [Table 3]. The PaO2, PaCO2 post-bronchodilator FEV1, % predicted, OCD and BDI scores were significantly different between these categories, while the 6MWD and post-bronchodilator FVC % predicted were not. The PaO2, PaCO2 and post-bronchodilator FEV1, % predicted
were significantly different between patients with MMRC grade 2 and 4, while grade 3 patients did not differ significantly for these variables with grade 2 and grade 4 patients. However, the OCD and BDI scores were significantly different for all the pairs of between-group comparisons, with scores indicating progressively increasing dyspnea with increasing MMRC grades.

Discussion

The present study shows that the OCD and BDI scales of dyspnea measurement have a moderately strong correlation with each other in patients with COPD. Each of these scales had weak and moderately strong relationships with FEV1 % predicted and arterial blood gas abnormalities, respectively. The MMRC grade of dyspnea had a moderately strong correlation with BDI scores and somewhat weaker correlation with OCD scores. The BDI and OCD scores were significantly different between patients grouped according to MMRC grades. However, the categories of MMRC were not sufficiently discriminatory for spirometric and arterial blood gas abnormalities. None of the three measures of dyspnea was found to have a significant relationship with the 6MWD.

Previous studies have shown that the BDI and the OCD scores have significant although modest correlations with FEV1.[11] We observed weak correlations between these scales and FEV1 % predicted and none between these scales and FVC%predicted. In addition, these scales were also observed to have a moderately strong correlation with arterial blood gas abnormalities. This contrasts with the MMRC scale, which did not show any association with any of the measures of physiological impairment used in the present study. Bestall et al.[21] have also shown that FEV1 is not associated with grades of MMRC. The lack of relationship of MMRC grade with physiological parameters has also been shown in other studies, where it was however shown to be correlated more strongly with health-related quality of life and with indices of anxiety and depression than with spirometric values.[22,23] Hajiro et al.[24] have shown that these three scales have similarly strong correlations with several indices of health-related quality of life. Thus, the BDI and the OCD scales appear to have a better construct validity. In a recent comparison of different scales by Eakin et al.[25] the BDI was found to have the highest levels of reliability and validity. Our results support this observation.

Table 1: Demographic and clinical characteristics according to GOLD stages

	GOLD II (n = 33)	GOLD III (n = 37)	GOLD IV (n = 18)
Age (years)	58.5 (10.4)	58.6 (10.4)	57.0 (8.5)
Pack-years of smoking	32.4 (19.4)	41.1 (31.9)	45.8 (26.4)
Duration of disease	5.8 (4.4)	7.0 (6.0)	10.5.2 (8.9)
PaO2 (mm Hg)	81.4 (7.0)	76.4 (9.8)	64.3 (9.3)
PaCO2 (mm Hg)	40.2 (2.3)	43.7 (5.7)	47.0 (5.1)
6-min walk distance (m)	374.3 (128.6)	300.5 (120.5)	235.9 (81.5)
MMRC grade	**Grade II**	**Grade III**	**Grade IV**
	16 (69.6)	14 (33.3)	3 (13)
	18 (42.9)	11 (28.9)	5 (21.7)
OCD score	55.5 (16.6)	41.9 (15.6)	44.0 (16.6)
BDI score	6.9 (2.7)	4.5 (2.5)	5.3 (2.2)
Post-BD FVC% pred	95.8 (13.1)	79.6 (12.0)	67.8 (14.6)
Post-BD FEV1% pred	59.7 (7.2)	39.4 (5.4)	26.3
All data represent mean (SD) except the MMRC grades that show frequency (row percentages). ANOVA results (column 1): *: P < .001, **: P < .01, ns = not significant, P > .05; Post-hoc Bonferroni’s test: vs column 2: +++: P < .001, ++: P < .01; vs column 3: @@: P < .001, @: P < .01.**			

Table 2: Correlation matrix of clinical severity variables

	PaO2 (mm Hg)	PaCO2 (mm Hg)	6-min walk distance (m)	OCD score	BDI score	Post-BD FVC% pred	Post-BD FEV1% pred
PaO2 (mm Hg)	1						
PaCO2 (mm Hg)	-0.68**	1					
6-min walk distance (m)	0.29*	-0.27*	1				
OCD score	0.50**	-0.52**	0.20	1			
BDI score	0.50**	-0.52**	-0.02	0.67**	1		
Post-BD FVC% pred	0.33*	-0.34*	0.34**	0.5	0.08	1	
Post-BD FEV1% pred	0.48**	-0.46**	0.41**	0.23*	0.22*	0.7**	1

Spearman’s rho*: P < .05; **: P < .01

Figure 1: Correlation between BDI and OCD scores (r = 0.67, P < .01)
Methods were used, inter-observer differences may have influenced results. Second, only male patients were included for reasons explained earlier. This limits generality of results to female subjects. Gender differences in perception of dyspnea may modify the results.

Conclusion

The inter-relationships among commonly used scales to measure dyspnea — the MMRC grading, BDI and OCD — are moderately strong in patients with COPD. However, the BDI and OCD scales are significantly associated with some of the measures of physiological impairment, while the MMRC grade is not.

Acknowledgment

The technical assistance provided by Mr. HK Vatsa, Mr. GC Chandrashekhara, Mr. Rajesh Mehta and Mr. Ramveer Singh is acknowledged with thanks.

References

1. Dyspnea. mechanisms, assessment, and management: A consensus statement. American Thoracic Society. Am J Respir Crit Care Med 1999;159:321-34.

2. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop: Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease. 2006 update. Available from: http://www.goldcopd.com. accessed on 26th Dec 2008.

3. Yusen RD. What outcomes should be measured in patients with COPD? Chest 2001;119:327-8.

4. Chhabra SK. Assessment of response to treatment in COPD. Chest (India) 2004;5:309-11.

5. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest 2002;121:1434-40.

6. Celi BR, Cote CG, Marin JM, Casanova C, de Oca MM, Mendez RA, et al. The body mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350:1005-12.

7. Ong KC, Earnest A, Lu SJ. A multidimensional grading system (BODE index) as predictor of hospitalization for COPD. Chest 2005;128:3810-6.

8. Bausewein C, Farquhar M, Booth S, Gysels M, Hogginson JJ. Measurement of breathlessness in advanced disease: A systematic review. Respir Med 2007;101: 399-410.

9. Schilling RSF, Hughes IPW, Dingwall-Fordyce I. Disagreement between observers in an epidemiological study of respiratory disease. Br Med J 1955;1:65-8.

10. Ferris BG. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis 1978;118:1-120.

11. Mahler DA, Weinberg DH, Wells CK, Feinstein AR. The measurement of dyspnea: Contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest 1984;85:751-8.

12. McGavin CR, Arvinti NL, Naeo H, McHardy GJ. Dyspnea, disability, and distance walked: Comparison of estimates of exercise performance in respiratory disease. Br Med J 1978;2:241-3.

13. Mahler DA, Wells CK. Evaluation of clinical methods for rating dyspnoea. Chest 1988;93:580-6.

14. Wegner RE, Jirres RA, Kirsten DK, Magnussen H. Factor analysis of exercise capacity, dyspnoea ratings and lung function in patients with severe COPD. Eur Respir J 1994;7:725-29.
15. Hajiro T, Nishimura K, Tsukino M, Ikeda A, Koyama H, Izumi T. Analysis of clinical methods used to evaluate dyspnea in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158:1185-9.

16. Gupta A. Assessment of health-related quality of life in chronic obstructive pulmonary disease and its relationship with dyspnoea, exercise performance, lung function and arterial blood gas abnormalities. MD (Pulmonary Medicine) Thesis, University of Delhi, 2002.

17. Khuma MZ. Assessment of outcome measures for treatment in chronic obstructive pulmonary disease. MD (Pulmonary Medicine) Thesis, University of Delhi, 2006.

18. American Thoracic Society. ATS Statement: Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med 2002;166: 111-7.

19. American Thoracic Society. 1994 Update. Standardization of spirometry. Am J Respir Crit Care Med 1995;152:1107-36.

20. Jain SK, Gupta CK. Age, height and body weight as determinants of ventilatory norms in healthy men above forty years age. Ind J Med Res 1967;55:599-606.

21. Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999;54:581-6.

22. Schlecht NF, Schwartzman K, Bourbeau J. Dyspnea as clinical indicator in patients with chronic obstructive pulmonary disease. Chr Respir Dis 2005;2:183-91.

23. Hajiro T, Nishimura K, Tsukino M, Ikeda A, Oga T, Izumi T. A comparison of the level of dyspnea vs disease severity in indicating the health-related quality of life of patients with COPD. Chest 1999;116:1632-7.

24. Hajiro T, Nishimura K, Tsukino M, Ikeda A, Koyama H, Izumi T. Comparison of discriminative properties among disease-specific questionnaires for measuring health-related quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:785-90.

25. Eakin EG, Sassi-Dambron DE, R ies AL, Kaplan RM. Reliability and validity of dyspnoea measures in patients with obstructive lung disease. Int JBehav Med 1995;2:118-34.

Source of Support: Nil, Conflict of Interest: None declared.