PAMELA’s measurements of geomagnetically trapped and albedo protons

A. Bruno¹, O. Adriani², G. C. Barbarino⁴, G. A. Bazilevskaya⁶, R. Bellotti¹,⁷, M. Boezio⁸, E. A. Bogomolov⁹, M. Bongi²,³, V. Bonvicini⁸, S. Bottai³, U. Bravar¹⁰, F. Cafagna⁷, D. Campana⁵, R. Carbone⁸, P. Carlson¹¹, M. Casolino¹²,¹³, G. Castellini¹⁴, E. C. Christian¹⁵, C. De Donato¹²,¹⁷, G. A. de Nolfo¹⁵, C. De Santis¹²,¹⁷, N. De Simone¹², V. Di Felice¹²,¹⁸, V. Formato⁸,¹⁹, A. M. Galper¹⁶, A. V. Karelin¹⁶, S. V. Koldashov¹⁶, S. Koldobskiy¹⁶, S. Y. Krutkov⁹, A. N. Kvashnin⁶, M. Lee¹⁰, A. Leonov¹⁶, V. Malakhov¹⁶, L. Marcelli¹²,¹⁷, M. Martucci¹⁷,²⁰, A. G. Mayorov¹⁶, W. Menn²¹, M. Merget¹²,¹⁷, V. V. Mikhailov¹⁶, E. Mocchiutti⁸, A. Monaco¹,⁷, N. Mori²,³, R. Munini⁸,¹⁹, G. Osteria⁵, F. Palma¹²,¹⁷, B. Panico⁵, P. Papini³, M. Pearce¹¹, P. Picozza¹²,¹⁷, M. Ricci²⁰, S. B. Ricciarini³,¹⁴, J. M. Ryan¹⁰, R. Sarkar²²,²³, V. Scotti⁴,⁵, M. Simon²¹, R. Sparvoli¹²,¹⁷, P. Spillantini²,³, S. Stochaj²⁴, Y. I. Stozhkov⁶, A. Vacchi⁸, E. Vannuccini³, G. I. Vasilyev⁹, S. A. Voronov¹⁶, Y. T. Yurkin¹⁶, G. Zampa⁸, N. Zampa⁸, and V. G. Zverev¹⁶.

¹ Department of Physics, University of Bari “Aldo Moro”, I-70126 Bari, Italy.
² Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence, Italy.
³ INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence, Italy.
⁴ Department of Physics, University of Naples “Federico II”, I-80126 Naples, Italy.
⁵ INFN, Sezione di Naples, I-80126 Naples, Italy.
⁶ Lebedev Physical Institute, RU-119991 Moscow, Russia.
⁷ INFN, Sezione di Bari, I-70126 Bari, Italy.
⁸ INFN, Sezione di Trieste, I-34149 Trieste, Italy.
⁹ Ioffe Physical Technical Institute, RU-194021 St. Petersburg, Russia.
¹⁰ Space Science Center, University of New Hampshire, Durham, NH, USA.
¹¹ KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm, Sweden.
12 INFN, Sezione di Rome “Tor Vergata”, I-00133 Rome, Italy.
13 RIKEN, Advanced Science Institute, Wako-shi, Saitama, Japan.
14 IFAC, I-50019 Sesto Fiorentino, Florence, Italy.
15 Heliophysics Division, NASA Goddard Space Flight Ctr, Greenbelt, MD, USA.
16 National Research Nuclear University MEPhI, RU-115409 Moscow, Russia.
17 Department of Physics, University of Rome “Tor Vergata”, I-00133 Rome, Italy.
18 Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Rome, Italy.
19 Department of Physics, University of Trieste, I-34147 Trieste, Italy.
20 INFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy.
21 Department of Physics, Universität Siegen, D-57068 Siegen, Germany.
22 Indian Centre for Space Physics, 43 Chalantika, Kolkata 700084, West Bengal, India.
23 Previously at INFN, Sezione di Trieste, I-34149 Trieste, Italy.
24 Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA.

Received __________________; accepted __________________

*Corresponding author. E-mail address: alessandro.bruno@ba.infn.it.
ABSTRACT

Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classified into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populations in near Earth orbits.

1. Introduction

The radiation environment in Earth’s vicinity constitutes a well-known hazard for the space missions. Major sources include large solar particle events and the Van Allen belts, consisting of intense fluxes of energetic charged particles experiencing long-term magnetic trapping. Specifically, the inner belt is mainly populated by protons, mostly originated by the decay of albedo neutrons according to the CRAND mechanism (Walt 1994). A standard description of such an environment is provided by the AP8 empirical model (Sawyer & Vette 1976), based on data from satellite experiments in the 1960s and early
1970s. Recently, significant improvements (Meffert & Gussenhoven 1994; Huston & Pfitzer 1998; Heynderickx et al. 1999; Xapsos et al. 2002) have been made thanks to the data from new spacecrafts (Gussenhoven et al. 1993, 1995; Looper et al. 1996, 1998; Huston et al. 1996). Nevertheless, the modeling of the trapped environment is still incomplete, with largest uncertainties affecting the high energy fluxes in the inner zone and the South Atlantic Anomaly (SAA), where the inner belt makes its closest approach to the Earth.¹

In addition, the magnetospheric radiation includes populations of albedo protons, originated by the collisions of Cosmic-Rays (CRs) from interplanetary space on the atmosphere (Treiman 1953). A quasi-trapped component concentrates in the equatorial region and presents features similar to those of radiation belt protons, but with limited lifetimes and much less intense fluxes (Moritz 1972; Hovestadt et al. 1972; Fiandrini et al. 2004). An un-trapped component spreads over all latitudes (Alcaraz et al. 2000; Bidoli et al. 2003) including the “penumbra” region around the geomagnetic cutoff, where particles of both cosmic and atmospheric origin are present (Cooke et al. 1991).

New accurate measurements of the CR radiation at low Earth orbits have been performed by the PAMELA experiment (Adriani et al. 2014). This paper reports the observations of the geomagnetically trapped and re-entrant albedo protons.

2. Data analysis

PAMELA is a space-based experiment designed for a precise measurement of charged CRs in the energy range from some tens of MeV up to several hundreds of GeV. The

¹The SAA is a consequence of the tilt (~10 deg) between the magnetic dipole axis of the Earth and its rotational axis, and of the offset (~500 km) between the dipole and the Earth centers.
Resurs-DK1 satellite, which hosts the apparatus, has a semi-polar (70 deg inclination) and elliptical (350÷610 km altitude) orbit. The spacecraft is 3-axis stabilized; its orientation is calculated by an onboard processor with an accuracy better than 1 deg. Particle directions are measured with a high angular resolution (< 2 deg). Details about apparatus performance, proton selection, detector efficiencies and experimental uncertainties can be found elsewhere (see e.g. Adriani et al. (2013)). The data set analyzed in this work includes protons collected by PAMELA between 2006 July and 2009 September.

2.1. Particle classification

Trajectories of all detected down-going protons were reconstructed in the Earth’s magnetosphere using a tracing program based on numerical integration methods (Smart & Shea 2000, 2005), and implementing the IGRF11 (Finlay et al. 2010) and the TS05 (Tsyganenko & Sitnov 2005) as internal and external geomagnetic models. Trajectories were propagated back and forth from the measurement location, and traced until: they reached the model magnetosphere boundaries (galactic protons); or they intersected the absorbing atmosphere limit, which was assumed at an altitude\(^2\) of 40 km (re-entrant albedo protons); or they performed more than \(10^6/R^2\) steps\(^3\), where \(R\) is the particle rigidity in GV, for both propagation directions (geomagnetically trapped protons). Trapped trajectories were verified to fulfil the adiabatic conditions (Adriani et al. 2015a),

\(^2\)Such a value approximately corresponds to the mean production altitude for albedo protons.

\(^3\)Since the program uses a dynamic variable step length, which is of the order of 1% of a particle gyro-distance in the magnetic field, such a criterion ensures that at least 4 drift cycles around the Earth were performed.
in particular the hierarchy of temporal scales: \(\omega_{\text{gyro}} \gg \omega_{\text{bounce}} \gg \omega_{\text{drift}} \), where \(\omega_{\text{gyro}}, \omega_{\text{bounce}} \) and \(\omega_{\text{drift}} \) are the frequencies associated with gyration, bouncing and drift motions.

Albedo protons were classified into quasi-trapped and un-trapped. The former have trajectories similar to those of stably-trapped, but are originated and re-absorbed by the atmosphere during a time larger than a bounce period (up to several tens of s). The latter include both a short-lived component of protons precipitating into the atmosphere within a bounce period (\(\lesssim 1\)s), and a long-lived (pseudo-trapped) component with rigidities near the geomagnetic cutoff (penumbra region), characterized by a chaotic motion (non-adiabatic trajectories). Further details, including distributions of lifetimes and production/absorption points on the atmosphere, can be found in Adriani et al. (2015b).

2.2. Flux calculation

Proton fluxes were derived by assuming an isotropic flux distribution in all the explored regions except the SAA. In this case, fluxes are significantly anisotropic due to the interaction with the Earth’s atmosphere, and thus the gathering power of the apparatus \(\text{(Sullivan 1971)} \) depends on the spacecraft orientation with respect to the geomagnetic field. Consequently, a PAMELA effective area \(\text{(cm}^2 \text{)} \) was evaluated as a function of particle energy \(E \), local pitch angle \(\alpha \) and satellite orientation \(\Psi \):

\[
H(E, \alpha, \Psi) = \frac{\sin\alpha}{2\pi} \int_{0}^{2\pi} d\beta \left[A(E, \theta, \phi) \cdot \cos\theta \right],
\]

where \(\beta \) is the gyro-phase angle, \(\theta = \theta(\alpha, \beta, \Psi) \) and \(\phi = \phi(\alpha, \beta, \Psi) \) are respectively the zenith and the azimuth angle describing particle direction in the PAMELA frame\(^4\), and \(A(E, \theta, \phi) \) is the apparatus response function. The effective area was evaluated with accurate Monte

\(^4\)The PAMELA frame has the origin in the center of the spectrometer cavity; the Z axis is directed along the main axis of the apparatus, toward incoming particles; the Y axis is
Fig. 1.— Proton integral fluxes ($m^{-2}s^{-1}sr^{-1}$) as a function of equatorial pitch angle α_{eq} and McIlwain’s L-shell, for different kinetic energy bins (see the labels). Results for the various components are reported (from left to right): stably-trapped, quasi-trapped, un-trapped and the total sample. See the text for details.

Carlo simulations based on integration methods (Sullivan 1971). Finally, in order to account for effects due to the large particle gyro-radius (up to several hundreds of km), trapped fluxes were evaluated by shifting measured protons (L, B, B_{eq}) to corresponding guiding center positions. Further details can be found in Adriani et al. (2015a).

directed opposite to the main direction of the magnetic field inside the spectrometer; the X axis completes a right-handed system.
3. Results

Figure 1 shows the fluxes of under-cutoff protons as a function of equatorial pitch angle α_{eq} and McIlwain’s L-shell, integrated over different kinetic energy bins. The first column reports the results for stably-trapped protons, concentrating in the SAA at PAMELA altitudes. Constrained by the spacecraft orbit, the covered phase-space region varies with the magnetic latitude. In particular, PAMELA can observe equatorial mirroring protons only for L-shell values up to ~ 1.18 R_E, and measured distributions are strips of limited width parallel to the “drift loss cone”, which delimits the α_{eq} range for which stable magnetic trapping does not occur. Fluxes exhibit strong angular and radial dependencies. PAMELA is able to measure trapped spectra up to their highest energies (about 4 GeV) (Adriani et al. 2015a). For a comparison, Figure 1 also reports the fluxes for quasi- and un-trapped components. In this case, measured maps result from the superposition of distributions corresponding to regions characterized by a different local (or bounce) loss cone value. Fluxes are quite isotropic except in the SAA, where distributions are similar to those of stably-trapped protons (Adriani et al. 2015b).

Figure 2 compares PAMELA geomagnetically trapped results with the predictions from two empirical models available in the same energy and altitude ranges: the AP8 (Sawyer & Vette 1976) unidirectional (or UP8 (Daly & Evans 1996)) model for solar minimum conditions, and the SAMPEX/PET PSB97 model (Heynderickx et al. 1999). Data were derived by using the SPENVIS web-tool (Heynderickx et al. 2002). In general, the UP8 model significantly overestimates PAMELA observations, while a better agreement can be observed with the PSB97 model. However, PAMELA fluxes do not show the spectral structures present in the PSB97 predictions.

\footnote{Note that the un-trapped flux suppression at highest energy and L bins is due to the geomagnetic cut ($R < 10/L^3$) used for selecting adiabatic trajectories.}
Fig. 2.— PAMELA trapped proton energy spectrum for sample α_{eq} and L-shell values, compared with the predictions from the UP8-min (Sawyer & Vette 1976; Daly & Evans 1996) and the PSB97 (Heynderickx et al. 1999) models (from SPENVIS (Heynderickx et al. 2002)).

Albedo fluxes were mapped using the Altitude Adjusted Corrected Geomagnetic (AACGM) coordinates (Heres & Bonito 2007), developed to provide a more realistic description of high latitude regions, by accounting for the multipolar geomagnetic field. Figure 3 shows the spectra of the various albedo components outside the SAA ($B>0.23$ G) measured at different latitudes, along with the galactic component. Fluxes were averaged over longitudes. Quasi-trapped protons are limited to low latitudes and to energies below ~ 8 GeV; their fluxes smoothly decrease with increasing latitude and energy. Conversely, the precipitating component spreads to higher latitudes, with spectra extending up to ~ 10 GeV. Finally, pseudo-trapped protons concentrate at highest latitudes and energies (up to ~ 20 GeV), with a peak in the penumbra originated by large gyro-radius ($10^2 \div 10^3$ km) effects.

Features of the penumbra region are investigated in Figure 4 where the fraction of galactic over total (galactic + albedo) protons is displayed as a function of particle rigidity and AACGM latitude (left panels); for a comparison, distributions as a function
Fig. 3.— Differential energy spectra ($\text{GeV}^{-1} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$) outside the SAA for different AACGM latitude $|\Lambda|$ bins. Results for the several proton populations are shown: quasi-trapped (violet), precipitating (green), pseudo-trapped (red) and galactic (blue). Lines are to guide the eye.

of McIlwain’s L-shell are also shown (right panels). The penumbra was identified as the region where both albedo and galactic proton trajectories were reconstructed. The black curves denote a fit of points with an equal percentage of the two components, while the
Fig. 4.— Fraction of galactic protons in the penumbra region, as a function of particle rigidity and AACGM latitude $|\Lambda|$ (left) and McIlwain’s L-shell (right). See the text for details.

red line refers to the Störmer vertical cutoff for the PAMELA epoch. Bottom panels report corresponding rigidity profiles.

4. Summary and Conclusions

PAMELA measurements of energetic (>70 MeV) under-cutoff proton fluxes at low Earth orbits (350÷610 km) have been presented. The detected proton sample was classified into geomagnetically trapped and re-entrant albedo on the basis of accurate particle tracing techniques.

Stably-trapped protons, confined in the SAA at PAMELA altitudes, were investigated in the framework of the adiabatic theory. PAMELA data extend the observational range for the trapped radiation down to lower L-shells ($\sim 1.1 R_E$) and up to highest kinetic
energies ($\lesssim 4$ GeV), significantly improving the description of the low altitude radiation environment, where current models suffer from the largest uncertainties.

Albedo protons were classified into *quasi-trapped* and *un-trapped*: the former consist of relatively long-lived protons populating the equatorial region, with trajectories similar to those of stably-trapped; the latter include a short-lived (*precipitating*) component spreading over all explored latitudes, along with a long-lived (*pseudo-trapped*) component concentrating near the geomagnetic cutoff and characterized by a chaotic motion (non-adiabatic trajectories).

PAMELA results significantly enhance the characterization of high energy proton populations in a wide geomagnetic region, enabling a more precise and complete view of atmospheric and magnetospheric effects on the CR transport near the Earth.
REFERENCES

O. Adriani, et al., 2013, ApJ 765:91.05205.

O. Adriani, et al., 2014, Physics Reports, Vol. 544, 4, pp. 323–370,
doi:10.1016/j.physrep.2014.06.003

O. Adriani, et al., 2015a, ApJ 799 L4, doi:10.1088/2041-8205/799/1/L4.

O. Adriani, et al., 2015b, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021019.

J. Alcaraz, et al., 2000, Phys. Lett. B 472:215–226, doi:10.1016/S0370-2693(99)01427-6.

V. Bidoli, et al., 2003, J. Geophys. Res., 108, A5, 1211, doi:10.1029/2002JA009684.

D. J. Cooke, Humble, J. E., Smart, M. A., et al., 1991, Il Nuovo Cimento, 14C, 213.

E. J. Daly & H. D. R. Evans, 1996, Rad. Meas., vol. 26, no. 3, pp. 363-368.

E. Fiandrini, et al., 2004, J. Geophys. Res., 109, 10214, doi:10.1029/2004JA010394.

C. C. Finlay, et al., 2010, Geophysical Journal International, 183: 1216–1230.

M. S. Gussenhoven, et al., 1993, IEEE Trans. Nucl. Sci., 40, 1450.

M. S. Gussenhoven, et al., 1995, IEEE Trans. Nucl. Sci., 42, 2035.

W. Heres & N. A. Bonito, 2007, Scientific Report AFRL–RV–HA–TR–2007–1190.

D. Heynderickx, et al., 2002, SAE Technical Paper 2000-01-2415.

D. Heynderickx, et al., 1999, IEEE Trans. Nucl. Sci., 46, 1475.

D. Hovestadt, et al., 1972, Phys. Rev. Lett. 28, 1340.

S. L. Huston, G. A. Kuck and K. A. Pfitzer, 1996, Geophys. Monogr. Ser., Vol. 97, pp. 119–122.
S. L. Huston & K. A. Pfitzer, 1998, NASA Contract. Rep. NASA/CR-1998-208593.

M. D. Looper, et al., 1996, Radiat. Meas., 26(6):967-78.

M. D. Looper, J. B. Blake and R. A. Mewaldt, 1998, Adv. Space Res., 21(12):1679-82.

J. D. Meffert & M. S. Gussenhoven, 1994, PL-TR-94-2218, Environ. Res. Pap. 1158, Air Force Res. Lab., Wright-Patterson Air Force Base, Ohio.

J. Moritz, 1972, Z. Geophys. 38, 701.

D. M. Sawyer & J. I. Vette, 1976, NSSDC/WDC-A-R&S 76-06.

D. F. Smart & M. A. Shea, 2000, Final Report, Grant NAG5–8009, Center for Space Plasmas and Aeronomic Research, The University of Alabama in Huntsville.

D. F. Smart & M. A. Shea, 2005, Adv. Space Res., 36, 2012–2020.

J. D. Sullivan, 1971, Nucl. Instr. and Meth. 95, 5.

S. B. Treiman, 1953, The Cosmic-Ray Albedo, Phys. Rev. 53, 957, doi:http://dx.doi.org/10.1103/PhysRev.91.957

N. A. Tsyganenko & M. I. Sitnov, 2005, J. Geophys. Res., Vol. 110, A03208.

M. A. Xapsos, et al., 2002, IEEE Trans. Nucl. Sci., 49, 2776.

M. Walt, 1994, Introduction to Geomagnetically Trapped Radiation, Cambridge Univ. Press. (New York).

This manuscript was prepared with the AAS \LaTeX\ macros v5.2.