Zhang, Hua-Chen; Wu, Ying-Hai; Xiang, Tao; Tu, Hong-Hao
Chiral conformal field theory for topological states and the anyon eigenbasis on the torus.

Nucl. Phys., B 976, Article ID 115712, 45 p. (2022).

Summary: Model wave functions constructed from (1+1)D conformal field theory (CFT) have played a vital role in studying chiral topologically ordered systems. There usually exist multiple degenerate ground states when such states are placed on the torus. The common practice for dealing with this degeneracy within the CFT framework is to take a full correlator on the torus, which includes both holomorphic and antiholomorphic sectors, and decompose it into several conformal blocks. In this paper, we propose a pure chiral approach for the torus wave function construction. By utilizing the operator formalism, the wave functions are written as chiral correlators of holomorphic fields restricted to each individual topological sector. This method is not only conceptually much simpler, but also automatically provides us the anyon eigenbasis of the degenerate ground states (also known as the “minimally entangled states”). As concrete examples, we construct the full set of degenerate ground states for $SO(n)_1$ and $SU(n)_1$; chiral spin liquids on the torus, the former of which provide a complete wave function realization of Kitaev’s sixteenfold way of anyon theories. We further characterize their topological orders by analytically computing the associated modular S and T matrices.

MSC:

81T45 Topological field theories in quantum mechanics
81P16 Quantum state spaces, operational and probabilistic concepts
03C64 Model theory of ordered structures; o-minimality
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
47A10 Spectrum, resolvent
14D06 Fibrations, degenerations in algebraic geometry
62H20 Measures of association (correlation, canonical correlation, etc.)
30G12 Finely holomorphic functions and topological function theory
81V27 Anyons
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

Full Text: DOI arXiv

References:

[1] Laughlin, R. B., Phys. Rev. Lett., 50, 1395 (1983)
[2] Tsui, D. C.; Stormer, H. L.; Gossard, A. C., Phys. Rev. Lett., 48, 1559 (1982)
[3] HaklŠn, F. D.M., Phys. Rev. Lett., 51, 605 (1983)
[4] Wen, X. G., Phys. Rev. B, 40, 7387 (1989)
[5] Wen, X. G., Int. J. Mod. Phys. B, 04, 239 (1990)
[6] Atiyah, M. F., Publ. Math. IHES, 68, 175 (1988)
[7] Witten, E., Commun. Math. Phys., 121, 351 (1989)
[8] Keski-Vakkuri, E.; Wen, X.-G., Int. J. Mod. Phys. B, 07, 4227 (1993)
[9] Kitaev, A., Ann. Phys., 321, 2 (2006)
[10] Zhang, Y.; Grover, T.; Turner, A.; Oshikawa, M.; Vishwanath, A., Phys. Rev. B, 85, Article 235151 pp. (2012)
[11] Moore, G.; Read, N., Nucl. Phys. B, 360, 362 (1991)
[12] Hansson, T. H.; Hermanss, M.; Simon, S. H.; Viegers, S. F., Rev. Mod. Phys., 89, Article 025005 pp. (2017)
[13] Nielsen, A. E.B.; Cirac, J. I.; Sierra, G., Phys. Rev. Lett., 108, Article 257206 pp. (2012)
[14] Tu, H.-H., Phys. Rev. B, 87 (2013), 041103(R)
[15] Tu, H.-H.; Nielsen, A. E.B.; Cirac, J. I.; Sierra, G., New J. Phys., 16, Article 033025 pp. (2014)
[16] Tu, H.-H.; Nielsen, A. E.B.; Sierra, G., Nucl. Phys. B, 886, 328 (2014)
[17] Bondesan, R.; Quella, T., Nucl. Phys. B, 886, 483 (2014)
