On One-Dimensional Quaternion Fourier Transform

Mawardi Bahria,1, Syamsuddin Toahab, Amran Rahimc, Moh. Ivan Azisd

a,b,c Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia
E-mail: "mawardibahri@gmail.com, "syamsuddint@yahoo.com, "amranrahim90@gmail.com, "mohivanazis@yahoo.co.id

Abstract. There have been several efforts in the literature to extend the traditional Fourier transformation by using the quaternion algebra. This paper presents the one-dimensional quaternion Fourier transform. We derive its properties which are the extensions of corresponding properties of the one-dimensional Fourier transformation. Finally, the convolution theorem related to the one-dimensional quaternion Fourier transform is discussed.

1. Introduction

As we know, the traditional Fourier transformation has been widely used in engineering, mathematics, statistics and computer sciences (see, e.g. [1, 2, 3, 4]). This fact motivates researchers to generalize the traditional Fourier transformation in various directions of transformations. For instance, in [5, 6, 7] the authors proposed the linear canonical transform, which is generalizations of the traditional Fourier transformation in the linear canonical domain. In [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], the authors introduced two-dimensional quaternion Fourier transform, which can be regarded as the extension of the two-dimensional Fourier transformation using the quaternions. Therefore, it is important to study the one-dimensional quaternion Fourier transform, which is generalizations of the traditional Fourier transformation in the framework of Hamiltonian quaternion algebra.

In this article, we introduce one-dimensional quaternion Fourier transform. We investigate its properties which are the extensions of the one-dimensional Fourier transformation. We finally develop the general convolution theorem related the one-dimensional quaternion Fourier transform.

2. Notation

We begin to state some basic facts on quaternions. The quaternion algebra over real number \mathbb{R} is expressed as

$$\mathbb{H} = \{h = h_0 + ih_1 + jh_2 + kh_3 \mid h_0, h_1, h_2, h_3 \in \mathbb{R}\},$$

(1)

which is an associative four-dimensional algebra and satisfies:

$$ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j, \quad i^2 = j^2 = k^2 = ijk = -1.$$ \hspace{1cm} (2)

1 Corresponding Author.
From (2) we see that quaternions can be considered as a noncommutative extension of complex numbers. The conjugate of a quaternion h is given by

$$\bar{h} = h_0 - ih_1 - jh_2 - kh_3, \quad h_0, h_1, h_2, h_3 \in \mathbb{R}. \quad (3)$$

It satisfies the property as complex number property, i.e.,

$$hp = \bar{p}\bar{h}. \quad (4)$$

In view of (3), we get the norm of h as

$$|h| = \sqrt{\bar{h}h} = \sqrt{h_0^2 + h_1^2 + h_2^2 + h_3^2}. \quad (5)$$

For every quaternion p, h, it holds

$$|hp| = |h||p| \quad (6)$$

The inverse of nonzero quaternion h is given by

$$h^{-1} = \frac{\bar{h}}{|h|^2}. \quad (7)$$

3. 1-D QFT and its properties

Let us present the definition of the one-dimensional quaternion Fourier transform (compare to [19]). We then explore several its properties.

Definition 3.1. The one-dimensional quaternion Fourier transform (qFT) of $g \in L^1(\mathbb{R}; \mathbb{H})$ is given by

$$\mathcal{F}_1\{g\}(\omega) = \int_{\mathbb{R}} g(y) e^{-j2\pi\omega y} dy = \int_{\mathbb{R}} (g_0(y) + ig_1(y) + jg_2(y) + kg_3(y)) e^{-j2\pi\omega y} dy = F_1\{g_0\}(\omega) + ig_1(\omega) + jg_2(\omega) + kg_3(\omega). \quad (8)$$

From equation (8) above we will find that if $g(y)$ is a real-valued function, then we may interchange the position of the kernel $e^{-j2\pi\omega y}$ as

$$\mathcal{F}_1\{g\}(\omega) = \int_{\mathbb{R}} g(y) e^{-j2\pi\omega y} dy = \int_{\mathbb{R}} e^{-j2\pi\omega y} g(y) dy. \quad (9)$$

Definition 3.2. The inverse can be expressed in the form

$$g(y) = \mathcal{F}_1^{-1}\{\mathcal{F}_1\{g\}\}(y) = \int_{\mathbb{R}} \mathcal{F}_1\{g\}(\omega) e^{j2\pi\omega y} d\omega. \quad (10)$$

Lemma 3.1. Suppose that $g(y)$ is a continuous differential function. If $g(y)$ belongs $L^1(\mathbb{R}; \mathbb{H})$, then

$$\mathcal{F}_1\left\{\frac{d^n g}{dx^n}\right\}(\omega) = \mathcal{F}_1\{g\}(\omega)(j2\pi\omega)^n, \quad n \in \mathbb{N}. \quad (11)$$
Proof. In fact, we have for \(n=1 \),
\[
\mathcal{F}_1 \left\{ \frac{dg}{dx} \right\}(\omega) = \mathcal{F}_1 \left\{ \frac{dg_0}{dx} \right\}(\omega) + i \mathcal{F}_1 \left\{ \frac{dg_1}{dx} \right\} + j \mathcal{F}_2 \left\{ \frac{dg_2}{dx} \right\} + k \mathcal{F}_3 \left\{ \frac{dg_3}{dx} \right\}
\]
\[
= \mathcal{F}_1 \{g_0\}(\omega) j2\pi\omega + i \mathcal{F}_1 \{g_1\}(\omega) j2\pi\omega + j \mathcal{F}_2 \{g_2\}(\omega) j2\pi\omega + k \mathcal{F}_3 \{g_3\}(\omega) j2\pi\omega
\]
\[
= (\mathcal{F}_1 \{g_0\}(\omega) + i \mathcal{F}_1 \{g_1\}(\omega) + j \mathcal{F}_2 \{g_2\}(\omega) + k \mathcal{F}_3 \{g_3\}(\omega)) j2\pi\omega
\]
\[
= \mathcal{F}_1 \{g\}(\omega) j2\pi\omega.
\]
(12)

For general derivatives the theorem follows from mathematical induction. The proof is complete.

Theorem 3.2. For any \(g, h \in L^1(\mathbb{R};\mathbb{C}) \), then one can get
\[
\int_{\mathbb{R}} \mathcal{F}_1 \{g\}(\omega) \overline{\mathcal{F}_1 \{h\}(\omega)} \, d\omega = \int_{\mathbb{R}} g(y) \overline{h(y)} \, dy.
\]
(13)

Proof. By using the definition qFT, we obtain
\[
\int_{\mathbb{R}} \mathcal{F}_1 \{g\}(\omega) \overline{\mathcal{F}_1 \{h\}(\omega)} \, d\omega = \int_{\mathbb{R}} \mathcal{F}_1 \{g\} \int_{\mathbb{R}} h(y) e^{-j2\pi\omega y} \, dy \, d\omega
\]
\[
= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathcal{F}_1 \{g\} e^{j2\pi\omega y} \, dy \right) \overline{h(y)} \, dy
\]
\[
= \int_{\mathbb{R}} g(y) \overline{h(y)} \, dy.
\]
(14)

The assertion is proved.

Likewise, we may obtain the following property.

Theorem 3.3. Under the assumptions of Theorem 3.2, one has
\[
\int_{\mathbb{R}} g(\xi) \mathcal{F}_1 \{h\}(\xi) \, d\xi
\]
\[
= \int_{\mathbb{R}} \mathcal{F}_1 \{g\}(y) (h_0(y) + jh_2(y)) \, dy + \int_{\mathbb{R}} \mathcal{F}_1 \{g\}(-y) (ih_1(y) + kh_3(y)) \, dy.
\]
(15)

Proof. A first straightforward calculation shows that
\[
\int_{\mathbb{R}} g(\xi) \mathcal{F}_1 \{h\}(\xi) \, d\xi
\]
\[
= \int_{\mathbb{R}} g(\xi) \int_{\mathbb{R}} h(y) e^{-j2\pi\omega y} \, dy \, d\xi
\]
\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) (h_0(y) + ih_1(y) + jh_2(y) + kh_3(y)) e^{-j2\pi\omega y} \, dy \, d\xi
\]
\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) (h_0(y) + jh_2(y)) e^{-j2\pi\omega y} \, dy \, d\xi + \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) (ih_1(y) + kh_3(y)) e^{-j2\pi\omega y} \, dy \, d\xi
\]
\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} [g(\xi) e^{-j2\pi\omega y} \, d\xi] (h_0(y) + jh_2(y)) \, dy + \int_{\mathbb{R}} \int_{\mathbb{R}} [g(\xi) e^{j2\pi\omega y} \, d\xi] (ih_1(y) + kh_3(y)) \, dy
\]
\[
= \int_{\mathbb{R}} \mathcal{F}_1 \{g\}(y) (h_0(y) + jh_2(y)) \, dy + \int_{\mathbb{R}} \mathcal{F}_1 \{g\}(-y) (ih_1(y) + kh_3(y)) \, dy.
\]
(16)

This is the desired result.
Due to the noncommutativity of quaternions we can derive the other form of equation (15) as follows.

\[
\int_{\mathbb{R}} g(\xi) \mathcal{F}_I\{h\}(\xi) \, d\xi = \int_{\mathbb{R}} g(\xi) \int_{\mathbb{R}} h(y) e^{-j2\pi\omega y} \, dy \, d\xi \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) (h_0(y) + ih_1(y) + jh_2(y) + kh_3(y)) e^{-j2\pi\omega y} \, dy \, d\xi \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) h_0(y) e^{-j2\pi\omega y} \, dy \, d\xi + \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) h_1(y) e^{j2\pi\omega y} \, dy \, d\xi i \\
+ \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) h_2(y) e^{-j2\pi\omega y} \, dy \, d\xi j + \int_{\mathbb{R}} \int_{\mathbb{R}} g(\xi) h_3(y) e^{j2\pi\omega y} \, dy \, d\xi k \\
= \int_{\mathbb{R}} \mathcal{F}_I\{g\}(h_0(y)) \, dy + \int_{\mathbb{R}} \mathcal{F}_I\{g\}(-h_1(y)) \, dy i \\
+ \int_{\mathbb{R}} \mathcal{F}_I\{g\}(h_2(y)) \, dy j + \int_{\mathbb{R}} \mathcal{F}_I\{g\}(-h_3(y)) \, dy k. \quad (17)
\]

4. Convolution Theorem in qFT Domain
In what follows, we present convolution theorem associated with the qFT. Since the multiplication of quaternion is not commutative we obtain two types of the convolution theorems. Let us introduce the convolution definition in the qFT domain.

Definition 4.1. Given two quaternion functions \(g, h \in L^2(\mathbb{R}; \mathbb{H}) \), the convolution of \(g \) and \(h \) is defined by

\[
(g \ast h)(y) = \int_{\mathbb{R}} g(t)h(y - t) \, dt. \quad (18)
\]

Now we consider the qFT of convolution, which describes how the convolution of two quaternion functions interacts with its qFT.

Theorem 4.1. For \(g, h \) belong to \(L^2(\mathbb{R}; \mathbb{H}) \). Then, the qFT of the convolution of \(g \) and \(h \) are given by

\[
\mathcal{F}_I\{g \ast h\}(\omega) = \mathcal{F}_I\{g\}(\omega)(\mathcal{F}_I\{h_0 + jh_2\}(\omega)) + \mathcal{F}_I\{g\}(-\omega)(\mathcal{F}_I\{ih_1 + kh_3\}(\omega)).
\]

Proof. In view of (18), we see that

\[
\mathcal{F}_I\{g \ast h\}(\omega) = \int_{\mathbb{R}} (g \ast h)(y) e^{-j2\pi\omega y} \, dy \\
= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(t)h(x - t) e^{-j2\pi\omega y} \, dy \right] dt.
\]
Setting $y = x - t$ yields
\[
\mathcal{F}_1\{g * h\}(\omega) = \mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_0\}(\omega) + i\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_1\}(\omega) + j\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_2\}(\omega) + k\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_3\}(\omega).
\]

Proof. Proceed equation (20) we obtain
\[
\begin{align*}
\mathcal{F}_1\{g * h\}(\omega) &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(t)h(y)e^{-j2\pi\omega(t+y)} \, dy \right] \, dt \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(t)(h(y) + ih_1(y) + jh_2(y) + k\mathcal{F}_1\{h\}(\omega))e^{-j2\pi\omega(t+y)} \, dy \right] \, dt \\
&= \int_{\mathbb{R}} \int_{\mathbb{R}} g(t)(h_0(y) + jh_2(y))e^{-j2\pi\omega(t+y)} \, dy \, dt + \int_{\mathbb{R}} \int_{\mathbb{R}} g(t)(ih_1(y) + k\mathcal{F}_1\{h\}(\omega))e^{-j2\pi\omega(t+y)} \, dy \, dt \\
&= \int_{\mathbb{R}} g(t)e^{-j2\pi\omega t} \int_{\mathbb{R}} (h_0(y) + jh_2(y))e^{-j2\pi\omega y} \, dy \\
&\quad + \int_{\mathbb{R}} g(t)e^{j2\pi\omega t} \int_{\mathbb{R}} (ih_1(y) + k\mathcal{F}_1\{h\}(\omega))e^{-j2\pi\omega y} \, dy \\
&= \mathcal{F}_1\{g\}(\omega)\mathcal{F}_1\{h_0 + jh_2\}(\omega) + \mathcal{F}_1\{g\}(-\omega)(\mathcal{F}_1\{ih_1 + k\mathcal{F}_1\{h\}(\omega)\}.
\end{align*}
\]

(19)

This proves the proof of the theorem.

The other form of the convolution theorem for the qFT may be written in following statement.

Theorem 4.2. Under the same conditions as in Theorem 4.2, one can get
\[
\begin{align*}
\mathcal{F}_1\{g * h\}(\omega) &= \mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_0\}(\omega) + i\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_1\}(\omega) + j\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_2\}(\omega) + k\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_3\}(\omega).
\end{align*}
\]

Proof. Proceed equation (20) we obtain
\[
\begin{align*}
\mathcal{F}_1\{g * h\}(\omega) &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(t)h(y)e^{-j2\pi\omega(t+y)} \, dy \right] \, dt \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(t)(h(y) + ih_1(y) + jh_2(y) + k\mathcal{F}_1\{h\}(\omega))e^{-j2\pi\omega(t+y)} \, dy \right] \, dt \\
&= \int_{\mathbb{R}} \int_{\mathbb{R}} g(t)(h(y) + jh_2(y))e^{-j2\pi\omega(t+y)} \, dy \, dt + \int_{\mathbb{R}} \int_{\mathbb{R}} g(t)(ih_1(y) + k\mathcal{F}_1\{h\}(\omega))e^{-j2\pi\omega(t+y)} \, dy \, dt \\
&= \int_{\mathbb{R}} g(t)e^{-j2\pi\omega t} \int_{\mathbb{R}} (h(y) - jh_2(y)) \, dy \, dt + \int_{\mathbb{R}} \left[\int_{\mathbb{R}} i\mathcal{F}_1\{h\}(\omega)e^{-j2\pi\omega y} \, dy \right] \, dt \\
&\quad + \int_{\mathbb{R}} \left[\int_{\mathbb{R}} k\mathcal{F}_1\{h\}(\omega)e^{-j2\pi\omega y} \, dy \right] \, dt \\
&= \int_{\mathbb{R}} g(t)e^{-j2\pi\omega t} \int_{\mathbb{R}} (h(y) + jh_2(y)) \, dy \, dt + \int_{\mathbb{R}} \left[\int_{\mathbb{R}} i\mathcal{F}_1\{h\}(\omega)e^{-j2\pi\omega y} \, dy \right] \, dt \\
&\quad + \int_{\mathbb{R}} \left[\int_{\mathbb{R}} k\mathcal{F}_1\{h\}(\omega)e^{-j2\pi\omega y} \, dy \right] \, dt.
\end{align*}
\]

(20)

In consequence,
\[
\mathcal{F}_1\{g * h\}(\omega) = \mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_0\}(\omega) + i\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_1\}(\omega) + j\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_2\}(\omega) + k\mathcal{F}_1\{h\}(\omega)\mathcal{F}_1\{g_3\}(\omega).
\]

(21)

The assertion is proved.

5. Conclusion

We have presented one-dimensional quaternion Fourier transform. We have established its properties which are generalizations of the Fourier transform. We finally demonstrated convolution theorem related one-dimensional quaternion Fourier transform.
References

[1] Debnath L and Shah F A 2010 Wavelet Transforms and Their Applications Birkhäuser USA

[2] Gröchenig E 2001 Foundation of Time-Frequency Analysis Birkhäuser Boston

[3] Sangwine S J 1996 Fourier transforms of colour images using quaternion, or hypercomplex, numbers Electronics Letters 32 (21) 1979-1980

[4] Mallat S 1998 A Wavelet Tour of Signal Processing Academic Press New York

[5] Li Y G, Li B Z, and Sun H F 2014 Uncertainty principle for Wigner-Ville distribution associated with the linear canonical transform Abstract and Applied Analysis 2014 Article ID 470459 9 pages

[6] Guo Y and Li B Z 2018 The linear canonical wavelet transform on some function spaces International Journal of Wavelets, Multiresolution and Information Processing 16(1) 16 pages

[7] Wei D, Ren Q and Li Y 2012 A convolution and correlation theorem for the linear canonical transform and its application Circuits, Systems and Signal Processing 31 (1) 301-312

[8] Ell T A and Sangwine S J 2007 Hypercomplex Fourier transform of color images Electronics Letters 32 (21) 1979-80

[9] Bayro-Corrochano E 2006 The theory and use of the quaternion wavelet transform Journal of Mathematical Imaging and Vision 26 (1) 5–18

[10] Bahri M and Ashino R 2017 A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transform Abstract and Applied Analysis 2017 Article ID 3795120 11 pages

[11] Bahri M 2016 A modified uncertainty principle for two-sided quaternion Fourier transform Advances in Applied Clifford Algebras 26 (2) 513–527

[12] De Bie H, De Schepper N, Ell T A, Rubrecht K, and Sangwine S J 2015 Connecting spatial and frequency domains for the quaternion Fourier transforms Applied Mathematics and Computation 271 581–593

[13] Hitzer E 2007 Quaternion Fourier transform on quaternion fields and generalizations Advances in Applied Clifford Algebras 17 (3) 497–517

[14] Hitzer E 2017 General two-sided quaternion Fourier transform, convolution and Mustard convolution Advances in Applied Clifford Algebras 27 (1) 381–395

[15] Hitzer E 2017 Quaternionic Wiener-Khinchine theorems and spectral representation of convolution with steerable two-sided quaternion Fourier transform Advances in Applied Clifford Algebras 27(2) 1313–1328

[16] Bahri M, Amir A K, Resnawati, and Lande C 2018 The quaternion domain Fourier transform and its application in mathematical statistics IAENG International Journal of Applied Mathematics 48 (2) 184-190

[17] Bahri M, Ashino R, and Vaillancourt R 2012 Two-dimensional quaternion Fourier transform of type II and quaternion wavelet transform Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition Xian China 359–364

[18] Bahri M and Ashino R 2018 Duality property of two-sided quaternion Fourier transform Proceedings of the 2018 International Conference on Wavelet Analysis and Pattern Recognition Chengdu China 1–6

[19] Bihan L and Sangwine S J 2013 Quaternionic spectral analysis of non-stationary improper complex signals In: E. Hitzer, S. J. Sangwine (eds.) Quaternion and Clifford Fourier transforms and wavelets Trends in Mathematics Birkhäuser 41-56