We present results related to determination of the Unitarity Triangle angle ϕ_3.

1 Introduction

Determinations of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements provide important checks on the consistency of the Standard Model and ways to search for new physics. Various methods using CP violation in $B \rightarrow DK$ decays have been proposed to measure the Unitarity Triangle angle ϕ_3. These methods are based on two key observations: neutral D^0 and \bar{D}^0 mesons can decay to a common final state, and the decay $B^+ \rightarrow D^{(*)}K^+$ can produce neutral D mesons of both flavors via $\bar{b} \rightarrow \bar{c}u\bar{s}$ (Fig. 1a) and $\bar{b} \rightarrow \bar{u}c\bar{s}$ (Fig. 1b) transitions, with a relative phase θ_+ between the two interfering amplitudes that is the sum, $\delta + \phi_3$, of strong and weak interaction phases. For the charge conjugate mode, the relative phase is $\theta_- = \delta - \phi_3$.

The results are based on a data sample containing 275 million BB pairs, collected with the Belle detector at the KEKB asymmetric energy e^+e^- collider operating at the $\Upsilon(4S)$ resonance.

![Feynman diagrams](image)

Figure 1: Feynman diagrams of (a) dominant $B^+ \rightarrow D^0K^+$ and (b) suppressed $B^+ \rightarrow D^0K^+$ decays
Recent theoretical studies on B meson dynamics have demonstrated a method to access ϕ_3 using the process $B^- \to D^{(*)0}K^{(*)-}$. When a D^0 is reconstructed as a CP eigenstate, the $b \to c$ and $b \to u$ processes interfere. This interference leads to direct CP violation. To extract ϕ_3 and assuming no $D^0 - \bar{D}^0$ mixing, some necessary observables sensitive to CP violation are:

$$\mathcal{A}_{1,2} \equiv \frac{\mathcal{B}(B^- \to D_{1,2}K^-) - \mathcal{B}(B^+ \to D_{1,2}K^+)}{\mathcal{B}(B^- \to D_{1,2}K^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)} = \frac{2r \sin \delta' \sin \phi_3}{1 + r^2 + 2r \cos \delta' \cos \phi_3}$$

$$\mathcal{R}_{1,2} \equiv \frac{R^{D_{1,2}}}{R^{D^0}} = 1 + r^2 + 2r \cos \delta' \cos \phi_3, \quad \delta' = \begin{cases} \delta & \text{for } D_1 \\ \delta + \pi & \text{for } D_2 \end{cases}$$

where the ratios $R^{D_{1,2}}$ and R^{D^0} are defined as

$$R^{D_{1,2}} = \frac{\mathcal{B}(B^- \to D_{1,2}K^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)}{\mathcal{B}(B^- \to D_{1,2}\pi^-) + \mathcal{B}(B^+ \to D_{1,2}\pi^+)}$$

$$R^{D^0} = \frac{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to D^0K^+)}{\mathcal{B}(B^- \to D^0\pi^-) + \mathcal{B}(B^+ \to D^0\pi^+)}$$

where D_1 and D_2 are CP-even and CP-odd eigenstates respectively. The asymmetries \mathcal{A}_1 and \mathcal{A}_2 have opposite signs. The ratio r is defined as $r = |\mathcal{A}(B^+ \to D^0K^+)/\mathcal{A}(B^- \to D^0K^-)|$ and is the ratio of the two tree diagrams shown in Fig. 1 where δ is their strong-phase difference. The size of the ratio r governs the magnitude of the maximum possible CP asymmetry; this ratio is suppressed by both CKM (~ 0.45) and color (~ 0.40) factors. The asymmetries and double ratios can be calculated for D^* in a similar manner. The analysis is described in detail elsewhere.

Fig. 2 shows the ΔE distributions for $B^\pm \to DK^\pm$ events. Table 1 summarizes the yields from ΔE fit and the corresponding asymmetries with statistical errors. In the control samples, no large deviation from 0 is seen. The modes of interest are $D_{1}K$ and $D_{2}K$ where the B^+ and B^- events are used to calculate asymmetries and double ratios.

The final asymmetries for \mathcal{A}_1 and \mathcal{A}_2 are found do be

$$\mathcal{A}_1 = 0.07 \pm 0.14 \text{ (stat)} \pm 0.06 \text{ (sys)}$$

$$\mathcal{A}_2 = -0.11 \pm 0.14 \text{ (stat)} \pm 0.05 \text{ (sys)}$$

agreeing with theoretical expectations where they should have opposite signs. The double ratios:

$$R_1 = 0.98 \pm 0.18 \text{ (stat)} \pm 0.10 \text{ (sys)}$$

$$R_2 = 1.29 \pm 0.16 \text{ (stat)} \pm 0.08 \text{ (sys)}$$

Fig. 3 shows the ΔE distributions for $B^\pm \to D^*K^\pm$ events. Table 2 contains the yields of the distributions with statistical errors and asymmetries. The statistical significance of D_{1}^*K and D_{2}^*K signals are 5.6 and 4.5 respectively.

Asymmetries were found to be:

Table 1: Yields and asymmetries obtained for Dh modes.

$\sum B$	B^+	B^-	A	
$D_f\pi$	19283 ± 150	9690 ± 104	9521 ± 103	-0.01 ± 0.01
$D_1\pi$	2183 ± 55	1051 ± 36	1132 ± 37	0.04 ± 0.02
$D_2\pi$	2413 ± 93	1178 ± 43	1226 ± 43	0.02 ± 0.03
D_fK	1031 ± 39	484 ± 27	549 ± 28	0.06 ± 0.04
D_1K	114 ± 21	49 ± 15	63 ± 14	0.07 ± 0.14
D_2K	167 ± 21	94 ± 17	75 ± 16	-0.11 ± 0.14
Figure 2: ΔE distributions for (top left) $B^+ \rightarrow D_1 K^+$, (top right) $B^- \rightarrow D_1 K^-$, (bottom left) $B^+ \rightarrow D_2 K^+$, (bottom right) $B^- \rightarrow D_2 K^-$.

Figure 3: ΔE distributions for (left) $B^\pm \rightarrow D_1^* K^\pm$, (right) $B^\pm \rightarrow D_2^* K^\pm$.

Table 2: Yields and asymmetries obtained for $D^* h$ modes.

	$\sum B$	B^+	B^-	A
$D^*\pi$	5762 ± 101	2681 ± 74	2594 ± 74	-0.02 ± 0.02
$D_1^*\pi$	795 ± 41	399 ± 24	397 ± 23	0.00 ± 0.04
$D_2^*\pi$	715 ± 37	415 ± 35	301 ± 33	-0.16 ± 0.07
$D^* K$	284 ± 23	158 ± 16	127 ± 16	-0.11 ± 0.08
$D_1^* K$	56 ± 11	33 ± 8	19 ± 8	-0.27 ± 0.25
$D_2^* K$	33 ± 10	13 ± 6	22 ± 7	0.26 ± 0.26
\[A_1 = -0.27 \pm 0.25 \text{ (stat)} \pm 0.04 \text{ (sys)} \]
\[A_2 = 0.26 \pm 0.26 \text{ (stat)} \pm 0.03 \text{ (sys)} \]

where the systematic errors were calculated in a similar way to the Dh case. Double ratios found are:
\[R_1 = 1.43 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (sys)} \]
\[R_2 = 0.94 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (sys)} \]

In summary, the partial rate asymmetries $A_{1,2}$ are measured for the decays $B^\pm \rightarrow D^{(*)}_{CP} K^\pm$ and are consistent with zero. A first observation is seen for $D_1^0 K$ and $D_2^0 K$.

3 Measurement of ϕ_3 with Dalitz Plot Analysis of $B^\pm \rightarrow D^{(*)} K^\pm$ Decay

Recently, three body final states common to D^0 and \bar{D}^0, such as $K_S \pi^+ \pi^- \pi^0$, were suggested as promising modes for the extraction of ϕ_3. This method is based on two key observations: neutral D^0 and \bar{D}^0 mesons can decay to a common final state such as $K_S \pi^+ \pi^-$, and the decay $B^+ \rightarrow D^{(*)} K^+$ can produce neutral D mesons of both flavors via $\bar{b} \rightarrow \bar{c}u \bar{s}$ and $\bar{b} \rightarrow \bar{c}u \bar{s}$ transitions, where the relative phase θ_+ between the two interfering amplitudes is the sum, $\delta + \phi_3$, of strong and weak interaction phases. In the charge conjugate mode, the relative phase $\theta_- = \delta - \phi_3$, so both phases can be extracted from the measurements of such B decays and their charge conjugate modes. The phase measurement is based on the analysis of Dalitz distribution of the three body final state of the D^0 meson. The analysis is described in detail elsewhere.

The Dalitz plots of D decaying to $K_S \pi^+ \pi^-$, which contain information about CP violation in B decays, are fitted for B^- and B^+ data sets. A combined unbinned maximum likelihood fit to the B^+ and B^- samples with r, ϕ_3 and δ as free parameters yields the following values: $r = 0.25 \pm 0.07$, $\phi_3 = 64^\circ \pm 15^\circ$, $\delta = 157^\circ \pm 16^\circ$ for the $B^+ \rightarrow \bar{D} K^+$ sample and $r = 0.25 \pm 0.12$, $\phi_3 = 75^\circ \pm 25^\circ$, $\delta = 321^\circ \pm 25^\circ$ for the $B^+ \rightarrow D^* K^+$ sample. The errors quoted here are obtained from the likelihood fit. These errors are a good representation of the statistical uncertainties for a Gaussian likelihood distribution, however in our case the distributions are highly non-Gaussian. In addition, the errors for the strong and weak phases depend on the values of the amplitude ratio r (e.g. for $r = 0$ there is no sensitivity to the phases). A more reliable estimate of the statistical uncertainties is obtained using a large number of MC pseudo-experiments as discussed below.

We use a frequentist technique to evaluate the statistical significance of the measurements. To obtain the probability density function (PDF) of the fitted parameters as a function of the true parameters, which is needed for this method, we employ a “toy” MC technique that uses a simplified MC simulation of the experiment which incorporates the same efficiencies, resolution and backgrounds as used in the data fit. This MC is used to generate several hundred experiments for a given set of r, θ_+ and θ_- values. For each simulated experiment, Dalitz plot distributions are generated with equal numbers of events as in the data, 137 and 139 events for B^- and B^+ decays, correspondingly, for $B^+ \rightarrow \bar{D} K^+$ mode and 34 and 35 events for B^- and B^+ for $B^\pm \rightarrow D^* K^\pm$ mode. The simulated Dalitz plot distributions are subjected to the same fitting procedure that is applied to the data. This is repeated for different values of r, producing distributions of the fitted parameters that are used to produce a functional form of the PDFs of the reconstructed values for any set of input parameters.

The confidence regions for the pairs of parameters (ϕ_3, δ) and (ϕ_3, r) are shown in Fig. 4 ($B^\pm \rightarrow \bar{D} K^\pm$ mode) and Fig. 5 ($B^\pm \rightarrow D^* K^\pm$ mode). They are the projections of the corresponding confidence regions in the three-dimensional parameter space. We show the 20%, 74% and 97% confidence level regions, which correspond to one, two, and three standard deviations for a three-dimensional Gaussian distribution.

For the final results, we use the central values that are obtained by maximizing the PDF and the statistical errors corresponding to the 20% confidence region (one standard deviation). Of
the two possible solutions \((\phi_3, \delta \text{ and } \phi_3 + 180^\circ, \delta + 180^\circ)\) we choose the one with \(0 < \phi_3 < 180^\circ\). The final results are

\[
\begin{align*}
 r &= 0.21 \pm 0.08 \pm 0.03 \pm 0.04, \quad \phi_3 = 64^\circ \pm 19^\circ \pm 13^\circ \pm 11^\circ, \quad \delta = 157^\circ \pm 19^\circ \pm 11^\circ \pm 21^\circ \\
 \text{(1)}
\end{align*}
\]

for the \(B^\pm \to \bar{D}K^\pm\) mode and

\[
\begin{align*}
 r &= 0.12^{+0.16}_{-0.11} \pm 0.02 \pm 0.04, \quad \phi_3 = 75^\circ \pm 57^\circ \pm 11^\circ \pm 11^\circ, \quad \delta = 321^\circ \pm 57^\circ \pm 11^\circ \pm 21^\circ \\
 \text{(2)}
\end{align*}
\]

for the \(B^\pm \to \bar{D}^*K^\pm\) mode. The first, second, and third errors are statistical, systematic, and model dependent errors.

The significance of \(CP\) violation is 94\% for the \(B^\pm \to \bar{D}K^\pm\) sample and 38\% for \(B^\pm \to \bar{D}^*K^\pm\).

The two events samples, \(B^\pm \to DK^\pm\) and \(B^\pm \to D^*K^\pm\), are combined in order to obtain a more accurate measurement of \(\phi_3\). The \(\phi_3\) result from the combined analysis is

\[
\phi_3 = 68^\circ \pm 14^\circ \pm 13^\circ \pm 11^\circ, \quad \text{(3)}
\]

where the first error is statistical, the second is experimental systematics, and the third is model uncertainty. The two standard deviation interval including the systematic and model
Table 3: Summary of the results. For the $B^{-} \rightarrow D^{\text{sup}} K^{-}$ signal yield, the peaking background contribution has been subtracted. The first two errors on the measured production branching fractions are statistical and systematic, respectively, and the third is due to the uncertainty in the $B^{-} \rightarrow D_{\text{fav}}^{+} h^{-}$ product branching fraction used for normalization.

Mode	Signal Yield	Statistical significance	Measured product branching fraction (90%C.L.)	Upper limit (90% C.L.)
$B^{-} \rightarrow D^{\text{sup}} K^{-}$	$8.5^{+0.6}_{-0.3}$	2.3σ	$(3.2^{+2.4}_{-2.0} \pm 0.2 \pm 0.5) \times 10^{-7}$	6.3×10^{-7}
$B^{-} \rightarrow D^{\text{sup}} \pi^{-}$	$28.5^{+8.1}_{-7.4}$	6.4σ	$(6.6^{+1.9}_{-1.7} \pm 0.4 \pm 0.3) \times 10^{-7}$	$-$
$B^{-} \rightarrow D_{\text{fav}} K^{-}$	$376.0^{+21.8}_{-21.1}$	$-$	$-$	$-$
$B^{-} \rightarrow D_{\text{fav}} \pi^{-}$	$8181.9^{+94.0}_{-93.3}$	$-$	$-$	$-$

Figure 6: ΔE fit results for (a) $B^{-} \rightarrow D^{\text{sup}} K^{-}$, (b) $B^{-} \rightarrow D^{\text{sup}} \pi^{-}$, (c) $B^{-} \rightarrow D_{\text{fav}} K^{-}$, and (d) $B^{-} \rightarrow D_{\text{fav}} \pi^{-}$. Charge conjugate modes are included in these plots.

The statistical significance of CP violation for the combined measurement is 98%.

4 Study of the Suppressed Decays $B^{-} \rightarrow [K^{+}\pi^{-}]_{D} K^{-}$ and $B^{-} \rightarrow [K^{+}\pi^{-}]_{D} \pi^{-}$

As noted by Atwood, Dunietz and Soni (ADS)5, CP violation effects are enhanced if the final state is chosen so that the interfering amplitudes have comparable magnitudes; the archetype uses $B^{-} \rightarrow [K^{+}\pi^{-}]_{D} K^{-}$, where $[K^{+}\pi^{-}]_{D}$ indicates that the $K^{+}\pi^{-}$ pair originates from a neutral D meson. The analysis is described in detail elsewhere10.

The ratio of branching fractions is defined as

$$R_{Dh} \equiv \frac{B(B^{-} \rightarrow D^{\text{sup}} h^{-})}{B(B^{-} \rightarrow D_{\text{fav}} h^{-})} = \frac{N_{D^{\text{sup}} h^{-}}/\epsilon_{D^{\text{sup}} h^{-}}}{N_{D_{\text{fav}} h^{-}}/\epsilon_{D_{\text{fav}} h^{-}}}$$

where $N_{D^{\text{sup}} h^{-}}$ ($N_{D_{\text{fav}} h^{-}}$) and $\epsilon_{D^{\text{sup}} h^{-}}$ ($\epsilon_{D_{\text{fav}} h^{-}}$) are the number of signal events and the reconstruction efficiency for the decay $B^{-} \rightarrow D^{\text{sup}} h^{-}$ ($B^{-} \rightarrow D_{\text{fav}} h^{-}$), and are given in Table 3.

The ratios R_{Dh} are calculated to be

$$R_{DK} = (2.3^{+1.6}_{-1.4}(\text{stat}) \pm 0.1(\text{syst})) \times 10^{-2},$$
$$R_{D\pi} = (3.5^{+1.0}_{-0.9}(\text{stat}) \pm 0.2(\text{syst})) \times 10^{-3}.$$
Figure 7: ΔE fit results for (a) $B^- \rightarrow D_{sup}K^-$, (b) $B^+ \rightarrow D_{sup}K^+$, (c) $B^- \rightarrow D_{sup}\pi^-$, and (d) $B^+ \rightarrow D_{sup}\pi^+$.

Table 4: Signal yields and partial rate asymmetries.

Mode	$N(B^-)$	$N(B^+)$	A_{Dh}
$B \rightarrow D_{sup}K$	$8.2^{+6.4}_{-4.3}$	$0.5^{+5.3}_{-2.8}$	$0.88^{+0.54}_{-0.62} \pm 0.06$
$B \rightarrow D_{sup}\pi$	$18.8^{+6.3}_{-5.5}$	$10.1^{+5.5}_{-4.8}$	$0.30^{+0.29}_{-0.25} \pm 0.06$

Since the signal for $B^- \rightarrow D_{sup}K^-$ is not significant, we set an upper limit at the 90% confidence level (C.L.) of $R_{DK} < 4.4 \times 10^{-2}$.

The product branching fractions for $B^- \rightarrow D_{sup}h^-$ are determined as

$$B(B^- \rightarrow D_{sup}h^-) = B(B^- \rightarrow D_{fav}h^-) \times R_{Dh},$$

and are given in Table 3. A third uncertainty arises due to the error in the branching fraction of $B^- \rightarrow D_{fav}h^-$, which is taken from\(^1\). The uncertainties are statistics-dominated. For the $B^- \rightarrow D_{sup}K^-$ branching fraction, we set an upper limit at the 90% C.L. of $B(B^- \rightarrow D_{sup}K^-) < 6.3 \times 10^{-7}$. For $B^- \rightarrow D_{sup}\pi^-$, our measured branching fraction is consistent with expectation neglecting the contribution from $B^- \rightarrow \bar{D}^0\pi^-$. The ratio R_{DK} is related to ϕ_3 by

$$R_{DK} = r_B^2 + r_D^2 + 2r_B r_D \cos \phi_3 \cos \delta,$$

where\(^1\)

$$r_B = \left| \frac{A(B^- \rightarrow \bar{D}^0K^-)}{A(B^- \rightarrow D^0K^-)} \right|, \quad \delta = \delta_B + \delta_D,$$

$$r_D = \left| \frac{A(D^0 \rightarrow K^+\pi^-)}{A(D^0 \rightarrow K^-\pi^+)} \right| = 0.060 \pm 0.003,$$

and δ_B and δ_D are the strong phase differences between the two B and D decay amplitudes, respectively. Using the above result, we obtain a limit on r_B. The least restrictive limit is obtained allowing $\pm 1\sigma$ variation on r_D and assuming maximal interference ($\phi_3 = 0^\circ, \delta = 180^\circ$ or $\phi_3 = 180^\circ, \delta = 0^\circ$) and is found to be $r_B < 0.27$.
We search for partial rate asymmetries A_{Dh} in $B^\pm \rightarrow D_{sup}h^\mp$ decay, fitting the B^- and B^+ yields separately for each mode, where A_{Dh} is determined as

$$A_{Dh} \equiv \frac{B(B^- \rightarrow D_{sup}h^-) - B(B^+ \rightarrow D_{sup}h^+)}{B(B^- \rightarrow D_{sup}h^-) + B(B^+ \rightarrow D_{sup}h^+)}.$$ \hspace{1cm} (6)

The peaking background for $B^\mp \rightarrow D_{sup}K^\mp$ is subtracted assuming no CP asymmetry. The fit results are shown in Fig. 7 and Table 4. We find

$$A_{DK} = 0.88^{+0.77}_{-0.62}(\text{stat}) \pm 0.06(\text{syst}),$$

$$A_{D\pi} = 0.30^{+0.29}_{-0.25}(\text{stat}) \pm 0.06(\text{syst}).$$

In summary, we observe $B^- \rightarrow D_{sup}\pi^-$ for the first time, with a significance of 6.4σ. The size of the signal is consistent with expectation based on measured branching fractions. The significance for $B^- \rightarrow D_{sup}K^-$ is 2.3σ and we set an upper limit on the ratio of B decay amplitudes $r_B < 0.27$ at 90% confidence level.

Acknowledgments

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MHEST (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

References

1. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
2. M. Gronau and D. London, Phys. Lett. B253, 483 (1991); M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
3. I. Dunietz, Phys. Lett. B270, 75 (1991).
4. D. Atwood, G. Eilam, M. Gronau and A. Soni, Phys. Lett. B341, 372 (1995).
5. D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D 63, 036005 (2001).
6. A. Giri, Yu. Grossman, A. Soffer, J. Zupan, Phys. Rev. D 68, 054018 (2003). This technique was proposed independently in the Belle Collaboration, and the analysis of experimental data was under way before the A. Giri et al. publication appeared (Proceedings of BINP Special Analysis Meeting on Dalitz Analysis, 24-26 Sep. 2002, unpublished).
7. Belle Collaboration, A. Abashian et al., Nucl. Inst. and Meth. A 479, 117 (2002).
8. Belle Collaboration, K. Abe et al., Belle-Conf 0443, contribution to the ICHEP 04.
9. Belle Collaboration, A. Poluektov et al., Phys. Rev. D 70, 072003 (2004).
10. Belle Collaboration, M. Saigo et al., Phys. Rev. Lett. 94, 091601 (2005).
11. S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004).