PARTITIONS OF HIGHLY CONNECTED TOURNAMENTS

JAEOHON KIM, DANIELA KÜHN, AND DERYK OSTHUS

Abstract. We prove a tournament analogue of a long-standing conjecture of Thomassen on graph partitions: suppose that T is a strongly 10^7k^6m-connected tournament. Then for every set M of m vertices in T, there is a partition V_1,V_2 of $V(T)$ such that (i) $M \subseteq V_1$, (ii) for $i = 1,2$ the subtournament $T[V_i]$ is strongly k-connected, and (iii) every vertex in V_1 has at least k out-neighbours and at least k in-neighbours in V_2.

1. Introduction

The famous Lovász path removal conjecture states that for every $k \in \mathbb{N}$ there exists $g(k) \in \mathbb{N}$ such that for every pair x,y of vertices in a $g(k)$-connected graph G we can find an induced path P joining x and y in G for which $G \setminus V(P)$ is k-connected. It is not hard to show that $g(1) = 3$. Chen, Gould and Yu [1] as well as Kriesell [4] independently showed that $g(2) = 5$. More generally, one can also ask for the existence of a non-separating subdivision of a graph H with prescribed branch vertices such that the paths joining the branch vertices are induced (the path removal conjecture then corresponds to the special case when H consists of a single edge).

Motivated by this and other partition results, Thomassen [11] posed the following partition conjecture.

Conjecture 1.1. For every $k \in \mathbb{N}$ there exists $f(k) \in \mathbb{N}$ such that if G is a $f(k)$-connected graph and $M \subseteq V(G)$ consists of k vertices then there exists a partition V_1, V_2 of $V(G)$ such that $M \subseteq V_1$, both $G[V_1]$ and $G[V_2]$ are k-connected, and each vertex in V_1 has at least k neighbours in V_2.

The case $|M| = 2$ would already imply the path removal conjecture. The case $M = \emptyset$ was proved in [3]. It implies the existence of non-separating subdivisions (without prescribed branch vertices) in highly connected graphs.

We prove the following tournament version of Conjecture 1.1

Theorem 1.2. Let T be a tournament and $k,m \in \mathbb{N}$. If T is strongly 10^7k^6m-connected then for any set $M \subseteq V(T)$ with $|M| = m$, there exists a partition V_1, V_2 of $V(T)$ such that $M \subseteq V_1$, $T[V_1]$ and $T[V_2]$ are both strongly k-connected, and every vertex in V_1 has at least k out-neighbours and at least k in-neighbours in V_2.

We have made no attempt to optimize the bound on the connectivity in Theorem 1.2. (It would be straightforward to obtain minor improvements at the expense of more careful calculations.) On the other hand, it would be interesting to obtain the correct order of magnitude (in terms of m and k) for the connectivity bound.

Date: December 4, 2014.

The research leading to these results was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreements no. and 306349 (J. Kim and D. Osthus) as well as 258345 (D. Kühn).
Kühn, Osthus and Townsend [7] earlier proved the weaker result that every strongly $10^8 k^6 \log(4k)$-connected tournament T has a vertex partition V_1, V_2 such that $T[V_1]$ and $T[V_2]$ are both strongly k-connected (with some control over the sizes of V_1 and V_2). This proved a conjecture of Thomassen. [7] raised the question whether this can be extended to digraphs. A graph version of this was already proved much earlier by Hajnal [2] and Thomassen [10].

As described later, our proof of Theorem 1.2 develops ideas in [7]. These in turn are based on the concept of robust linkage structures which were introduced in [5] to prove a conjecture of Thomassen on edge-disjoint Hamilton cycles in highly connected tournaments. Further (asymptotically optimal) results leading on from these approaches were obtained by Pokrovskiy [8, 9].

Thomassen [12] proved a version of the Lovász path removal conjecture for tournaments: for each $k \in \mathbb{N}$, every strongly $(k + 4)$-connected tournament T has the property that for any pair x, y of vertices the removal of a shortest path P from x to y results in a strongly k-connected tournament. Theorem 1.2 easily implies a generalization of this to non-separating subdivisions of arbitrary digraphs H. The natural tournament analogue of an induced path is a backwards transitive path: here a directed path $P = x_1 \ldots x_t$ in a tournament T is backwards-transitive if x_ix_j is an edge of T whenever $i \geq j + 2$.

Theorem 1.3. Let $k, m \in \mathbb{N}$. Suppose that T is a strongly $10^{23} k^6 m^{13}$-connected tournament, that M is a set of m vertices in T, that H is a digraph on m vertices and that ϕ is a bijection from $V(H)$ to M. Then T contains a subdivision H^* of H such that

(i) for each $h \in V(H)$ the branch vertex of H^* corresponding to h is $\phi(h)$,
(ii) $T \setminus V(H^*)$ is strongly k-connected,
(iii) for every edge e of H, the path P_e of H^* corresponding to e is backwards-transitive.

This paper is organized as follows: In the next section, we first collect some tools. In Section 3 we first deduce Theorem 1.3 from Theorem 1.2. The main part of the section is then devoted to the proof of Theorem 1.2.

2. Notation and tools

Given $k \in \mathbb{N}$, we let $[k] := \{1, \ldots, k\}$ and $\log k := \log_2 k$. We write $V(G)$ and $E(G)$ for the set of vertices and the set of edges in a digraph G. We let $|G| := |V(G)|$. If $u, v \in V(G)$ we write uv for the directed edge from u to v. We write $d_G^+(v)$ and $d_G^-(v)$ for the in-degree and the out-degree of a vertex v in G. We write $\delta^{-}(G)$ and $\delta^{+}(G)$ for the minimum in-degree and the minimum out-degree of G and let $\delta^0(G) := \min\{\delta^{-}(G), \delta^{+}(G)\}$. A set $A \subseteq V(G)$ in-dominates a set $B \subseteq V(G)$ if for every vertex $b \in B$ there exists a vertex $a \in A$ such that $ab \in E(G)$. Similarly, we say that A out-dominates B if for every vertex $b \in B$ there exists a vertex $a \in A$ such that $ba \in E(G)$. We say that a tournament T is transitive if we may enumerate its vertices v_1, \ldots, v_m such that $v_i v_j \in E(T)$ if and only if $i < j$. In this case we call v_1 the source of T and v_m the sink of T. When referring to subpaths of tournaments, we always mean that these paths are directed (i.e. consistently oriented). The length of a path is the number of its edges. We say that two paths are disjoint if they are vertex-disjoint. A tournament T is strongly k-connected if $|T| > k$ and for every set $F \subseteq V(T)$ with $|F| < k$ and every ordered pair x, y of vertices in $V(T) \setminus F$ there exists a path from x to y in $T - F$. A tournament T is called k-linked if $|T| \geq 2k$ and whenever $x_1, \ldots, x_k, y_1, \ldots, y_k$ are $2k$ distinct vertices of T there exist disjoint paths P_1, \ldots, P_k such that P_i is a directed path from x_i to y_i for each $i \in [k].$

We now collect the tools which we need in our proof of Theorem 1.2. We will use the following well known fact.
Proposition 2.1. Let $k \in \mathbb{N}$ and let T be a tournament. Then T contains less than $2k$ vertices of out-degree less than k, and T contains less than $2k$ vertices of in-degree less than k.

The following proposition is a straightforward consequence of the definition of linkedness.

Proposition 2.2. Let $k \in \mathbb{N}$. Then a tournament T is k-linked if and only if $|T| \geq 2k$ and whenever $(x_1, y_1), \ldots, (x_k, y_k)$ are ordered pairs of (not necessarily distinct) vertices of T, there exist distinct internally disjoint paths P_1, \ldots, P_k such that for all $i \in [k]$ we have that P_i is a directed path from x_i to y_i and that $\{x_1, \ldots, x_k, y_1, \ldots, y_k\} \cap V(P_i) = \{x_i, y_i\}$.

We will also use the following bound from [8] on the strong connectivity which forces a tournament to be highly linked.

Theorem 2.3. For each $k \in \mathbb{N}$ every strongly $452k$-connected tournament is k-linked.

The following two lemmas from [4] guarantee that every tournament contains almost out-dominating and almost in-dominating sets which are not too large.

Lemma 2.4. Let T be a tournament, let $v \in V(T)$ and $c \in \mathbb{N}$. Then there exist disjoint sets $A, E \subseteq V(T)$ such that the following properties hold:

(i) $1 \leq |A| \leq c$ and $T[A]$ is a transitive tournament with sink v,

(ii) A out-dominates $V(T) \setminus (A \cup E)$,

(iii) $|E| \leq (1/2)^{c-1} d^{-}(v)$.

The next lemma follows immediately from Lemma 2.4 by reversing the orientations of all edges.

Lemma 2.5. Let T be a tournament, let $v \in V(T)$ and $c \in \mathbb{N}$. Then there exist disjoint sets $B, E \subseteq V(T)$ such that the following properties hold:

(i) $1 \leq |B| \leq c$ and $T[B]$ is a transitive tournament with source v,

(ii) B in-dominates $V(T) \setminus (B \cup E)$,

(iii) $|E| \leq (1/2)^{c-1} d^{+}(v)$.

We will also need the following observation, which guarantees a small set Z of vertices in a tournament such that every vertex outside Z has many out- and in-neighbours in Z.

Proposition 2.6. Let $k, n \in \mathbb{N}$ and let T be a tournament on $n \geq 16$ vertices. Then there is a set $Z \subseteq V(T)$ of size $|Z| \leq 3k \log n$ such that each vertex in $V(T) \setminus Z$ has at least k out-neighbours and at least k in-neighbours in Z.

Proof. We may assume that $n \geq 3k \log n$. Let $c := \lceil \log n \rceil + 1 \leq (3 \log n)/2$. Note that Lemma 2.5 implies that T contains an in-dominating set V_1 of size at most c. Apply Lemma 2.5 again to $T \setminus V_1$ to find an in-dominating set V_2 of $T \setminus V_1$ with size at most c. Continue in this way to obtain disjoint sets V_1, \ldots, V_k. Now apply Lemma 2.4 repeatedly to obtain disjoint sets U_1, \ldots, U_k, each of size at most c such that each U_i is an out-dominating set in $T \setminus (U_1 \cup \cdots \cup U_{i-1})$. We can take $Z := V_1 \cup \cdots \cup V_k \cup U_1 \cdots \cup U_k$.

Recall that a subpath $Q = q_1 \ldots q_{|Q|}$ of a tournament T is backwards-transitive if $q_iq_j \in E(T)$ whenever $i \geq j + 2$. The following lemma is a slight strengthening of Lemma 2.7 in [7]. The proof is identical to that in [7], so we omit it here.
Lemma 2.7. Let \(k, \ell \in \mathbb{N} \), let \(T \) be a tournament and let \(Q_1, \ldots, Q_\ell \) be disjoint backwards-transitive paths in \(T \) such that \(|Q_j| \geq k + 1 \) for all \(j \in [\ell] \) and \(V(T) = V(Q_1 \cup \cdots \cup Q_\ell) \). Let \(U' \) be the set consisting of the first \(k + 1 \) vertices in \(Q_j \) for all \(j \in [\ell] \) and let \(W' \) be the set consisting of the last \(k + 1 \) vertices in \(Q_j \) for all \(j \in [\ell] \). Then there exist sets \(U, W \) satisfying the following properties:

- \(U \subseteq U' \subseteq V(T) \) and \(W \subseteq W' \subseteq V(T) \),
- \(|U|, |W| \leq 2k(k + 1) \),
- for any set \(F \subseteq V(T) \) of size at most \(k - 1 \), and for every vertex \(v \) in \(V(T) \setminus F \), there exists a directed path (possibly of length 0) in \(T[\{(U' \cup \{v\}) \setminus F \}] \) from \(v \) to a vertex in \(U \) and a directed path in \(T[(W' \cup \{v\}) \setminus F] \) from a vertex in \(W \) to \(v \).

Note that \(U' \) and \(W' \) may not be disjoint, and \(|U'| = |W'| = \ell(k + 1) \).

3. Proof of Theorem 1.2

Before we prove Theorem 1.2, we will show how it can be used to derive Theorem 1.3.

Proof of Theorem 1.3. Apply Theorem 1.2 to obtain a partition \(V_1, V_2 \) of \(V(T) \) such that \(M \subseteq V_1 \), \(T[V_1] \) and \(T[V_2] \) are both strongly 452\(km^2 \)-connected, and every vertex in \(V_1 \) has at least \(k \) out-neighbours and at least \(k \) in-neighbours in \(V_2 \). Theorem 2.3 now implies that \(T[V_1] \) is \(m^2 \)-linked. Together with Proposition 2.2 this in turn implies that \(T[V_1] \) contains a subdivision \(H^* \) of \(H \) such that for each \(h \in V(H) \) the branch vertex of \(H^* \) corresponding to \(h \) is \(\phi(h) \).

By shortening the paths between the branch vertices if necessary, we may assume that they are backwards-transitive. Since every vertex in \(V_1 \) has at least \(k \) out-neighbours and at least \(k \) in-neighbours in \(V_2 \) it follows that \(T[V_2 \cup (V_1 \setminus V(H^*))] \) is strongly \(k \)-connected, as desired. \(\square \)

We now give a brief idea of the argument in the proof of Theorem 1.2 under the much stronger assumptions that \(k \gg \log n \) and \(|M| = 1 \). In this case we can find \(2k \) disjoint sets \(A_1, \ldots, A_{2k} \subseteq V(T) \) of size \(o(k) \) which are out-dominating. We can also find \(2k \) sets \(B_1, \ldots, B_{2k} \subseteq V(T) \) of size \(o(k) \) which are in-dominating such that all the \(B_i \) are disjoint from each other and from \(A_1, \ldots, A_{2k} \). Moreover, we can choose these sets in such a way that each \(A_i \) and each \(B_i \) induces a transitive subtournament of \(T \). We now use the fact that \(T \) is \((10^7 k^6/452)\)-linked to find, for each \(i \in [2k] \), a path \(P_i \) from the sink of \(B_i \) to the source of \(A_i \) such that all the \(P_i \) are pairwise disjoint. We now assign \(A_i \cup B_i \cup V(P_i) \) to \(V_1 \) for all \(i \leq k \) and to \(V_2 \) for all \(i > k \). We assign the remaining vertices arbitrarily. By relabeling \(V_1 \) and \(V_2 \) if necessary, we may assume that \(M \subseteq V_1 \).

It is easy to see that both \(T[V_1] \) and \(T[V_2] \) are strongly \(k \)-connected. Indeed, consider some \(F \subseteq V_1 \) with \(|F| < k \). So there exists \(i \in [k] \) such that \(F \) avoids \(A_i \cup B_i \cup V(P_i) \). Consider any \(x, y \in V_1 \setminus F \). Since \(B_i \) is in-dominating, there is an edge from \(x \) to some \(x' \in B_i \). Similarly, since \(A_i \) is out-dominating, there is an edge from some \(y' \in A_i \) to \(y \). Then \(P_i, xx', y'y \) together with the edge from \(x' \) to the sink of \(B_i \) and the edge from the source of \(A_i \) to \(y' \) form a path in \(T[V_1 \setminus F] \) from \(x \) to \(y \), as required. A similar argument shows that \(T[V_2] \) is \(k \)-connected too. Moreover, each \(x \in V_1 \) has \(k \) in-neighbours and \(k \) out-neighbours in \(V_2 \) since \(x \) receives an edge from \(A_i \) and sends an edge to \(B_i \) for all \(i > k \).

In general, the problem with this approach is that we cannot guarantee such (small) dominating sets when \(k \) is bounded. However, we can still find small sets which dominate a large proportion of \(V(T) \). With some new ideas one can use these to ensure strong \(k \)-connectivity of both \(T[V_1] \) and \(T[V_2] \) as well as high in- and outdegree of the vertices in \(V_1 \) from and to \(V_2 \). Significant additional difficulties arise when \(|M| > 1 \).
Proof of Theorem 1.2. Let $X := \{x_1, x_2, \ldots, x_{20k}\} \subseteq V(T) \setminus M$ consist of $20k$ vertices whose in-degree in T is as small as possible, and let $Y := \{y_1, y_2, \ldots, y_{20k}\}$ be a set of $20k$ vertices in $V(T) \setminus (M \cup X)$ whose out-degree in T is as small as possible. Define

$$\delta^{-}(T) := \min_{v \in V(T) \setminus (M \cup X)} d^{-}_T(v) \quad \text{and} \quad \delta^{+}(T) := \min_{v \in V(T) \setminus (M \cup Y)} d^{+}_T(v).$$

Let $c := \lceil \log (80k) \rceil + 1 \leq 9k$. Apply Lemmas 2.4 and 2.5 with parameter c repeatedly (removing M and the dominating sets each time) to obtain disjoint sets of vertices $A_1, \ldots, A_{20k}, B_1, \ldots, B_{20k}$ and sets of vertices $E_{A_1}, \ldots, E_{A_{20k}}, E_{B_1}, \ldots, E_{B_{20k}}$ satisfying the following properties for all $i \in [20k]$, where we write $D := \bigcup_{i=1}^{20k} (A_i \cup B_i)$, $D_1 := \bigcup_{i=1}^{19k} (A_i \cup B_i)$ and $D_2 := \bigcup_{i=19k+1}^{20k} (A_i \cup B_i)$:

- (D1) $1 \leq |A_i| \leq c$ and $T[A_i]$ is a transitive tournament with sink x_i,
- (D2) $1 \leq |B_i| \leq c$ and $T[B_i]$ is a transitive tournament with source y_i,
- (D3) A_i out-dominates $V(T) \setminus (M \cup D \cup E_{A_i})$ in T,
- (D4) B_i in-dominates $V(T) \setminus (M \cup D \cup E_{B_i})$ in T,
- (D5) $|E_{A_i}| \leq \left(\frac{1}{2}\right)^{c-1} \delta^{-}(T)$,
- (D6) $|E_{B_i}| \leq \left(\frac{1}{2}\right)^{c-1} \delta^{+}(T)$.

Let $E_A := E_{A_1} \cup \cdots \cup E_{A_{20k}}, E_B := E_{B_1} \cup \cdots \cup E_{B_{20k}}, E_A' := E_{A_{19k+1}} \cup \cdots \cup E_{A_{20k}}, E_B' := E_{B_{19k+1}} \cup \cdots \cup E_{B_{20k}}$. We start with no vertices of $M \cup X$. Our aim is to colour the vertices in such a way that we can take $V_1 := V_\alpha$ and $V_2 := V_\beta$. We start with no vertices of T coloured, and we then colour the vertices in $M \cup D_1 = M \cup \bigcup_{i=1}^{19k} (A_i \cup B_i)$ by α and the vertices in $D_2 = \bigcup_{i=19k+1}^{20k} (A_i \cup B_i)$ by β.

At each step and for each $\gamma \in \{\alpha, \beta\}$, we call a vertex $v \in V_\gamma$ forwards-safe if for any set $F \neq \emptyset$ of at most $k - 1$ vertices, there is a directed path (possibly of length 0) in $T[V_\gamma \setminus F]$ from v to $V_\gamma \setminus (M \cup D \cup E_B \cup F)$. Similarly, we say that $v \in V_\gamma$ is backwards-safe if for any set $F \neq \emptyset$ of at most $k - 1$ vertices, there is a directed path (possibly of length 0) in $T[V_\gamma \setminus F]$ from $V_\gamma \setminus (M \cup D \cup E_A \cup F)$ to v. We will call a vertex $v \in V_\gamma$ partition-safe if either $v \notin M \cup D \cup E$ or $\gamma = \beta$ or v has at least k out-neighbours and k in-neighbours of colour β. Finally, we call a vertex safe if it is forwards-safe, backwards-safe and partition-safe. Note that the following properties are satisfied at every step (for each $\gamma \in \{\alpha, \beta\}$):

- (S1) all coloured vertices in $V(T) \setminus (M \cup D \cup E)$ are safe,
- (S2) all coloured vertices in $V(T) \setminus (M \cup D \cup E_B)$ are forwards-safe and all coloured vertices in $V(T) \setminus (M \cup D \cup E_A)$ are backwards-safe,
- (S3) if $v \in V_\gamma$ has at least k forwards-safe out-neighbours of colour γ then v itself is forwards-safe; the analogue holds if v has at least k backwards-safe in-neighbours of colour γ.
Suppose that we have coloured all vertices of T of at most k to some vertex x. Then the sets avoid x.

Similarly, since T is backwards-safe there exists a path P from x to the source of A_s. The paths Q_1, \ldots, Q_k and $P_{19k+1}, \ldots, P_{20k}$ are disjoint from each other and meet $D \cup M$ only in their endvertices.

Claim 1: Suppose that there are distinct indices $i_1, \ldots, i_k \in [19k]$, distinct indices $i'_1, \ldots, i'_k \in [19k]$ and subpaths Q_1, \ldots, Q_k and $P_{19k+1}, \ldots, P_{20k}$ of T satisfying the following properties:

- for each $s \in [k]$ the path Q_s joins the sink of $B_{i'_s}$ to the source of A_{i_s},
- for each $19k < s \leq 20k$ the path P_s joins the sink of B_s to the source of A_s,
- the paths Q_1, \ldots, Q_k and $P_{19k+1}, \ldots, P_{20k}$ are disjoint from each other and meet $D \cup M$ only in their endvertices.

Suppose that we have coloured all vertices of T such that

- every vertex in $M \cup D_1 \cup V(Q_1) \cup \cdots \cup V(Q_k)$ is coloured α,
- every vertex in $D_2 \cup V(P_{19k+1}) \cup \cdots \cup V(P_{20k})$ is coloured β,
- every vertex is safe.

Then the sets $V_1 := V_\alpha$ and $V_2 := V_\beta$ form a partition of $V(T)$ as required in Theorem 1.2.

To prove Claim 1, we first show that $T[V_\alpha]$ is strongly k-connected. So consider any set F of at most $k-1$ vertices and any two vertices $x, y \in V_\alpha \setminus F$. We need to check that $T[V_\alpha \setminus F]$ contains a path from x to y. Since x is forwards-safe there exists a path P_x in $T[V_\alpha \setminus F]$ from x to some vertex $x' \in V_\alpha \setminus (M \cup D \cup E_B \cup F)$. Similarly, since y is backwards-safe there exists a path P_y in $T[V_\alpha \setminus F]$ from some vertex $y' \in V_\alpha \setminus (M \cup D \cup E_A \cup F)$ to y. Let $s \in [k]$ be such that F avoids $A_{i_s} \cup V(Q_s) \cup B_{i'_s}$. Since $x' \notin M \cup D \cup E_B$, (D4) implies that x' sends an edge to $B_{i'_s}$. Similarly, since $y' \notin M \cup D \cup E_A$, (D3) implies that y' receives an edge from A_{i_s}.

A similar argument shows that V_β is strongly k-connected too. It remains to show that any vertex $x \in V_\alpha$ has k in-neighbours and k out-neighbours in V_β. Since x is partition-safe this is clear if $x \in M \cup D \cup E$. If $x \notin M \cup D \cup E$ then (D3) and (D4) together imply that, for every $19k < s \leq 20k$, x sends an edge to $B_s \subseteq V_\beta$ and receives an edge from $A_s \subseteq V_\beta$. This completes the proof of Claim 1.

Claim 2: Consider a partial colouring of $V(T)$ and let C denote the set of previously coloured vertices. (So $M \cup D \subseteq C$.) Let $Z \subseteq V(T) \setminus (M \cup X \cup Y)$ and $N \subseteq V(T) \setminus Z$ and suppose that $9k^2|Z| + |C \cup N| \leq 5 \cdot 10^6 k^6 m$. Then for every colouring of the vertices in $Z \setminus C$ there is a set $Z' \subseteq V(T) \setminus (Z \cup N \cup C)$ and a colouring of the vertices in Z' such that every vertex in $Z \cup Z'$ is safe and $|Z \cup Z'| \leq 9k^2|Z|$.

To prove Claim 2, note that the strong $10^7 k^6 m$-connectivity of T implies that $\delta^0(T) \geq 10^7 k^6 m$.

Hence

$$\hat{\delta}^{-}(T) - |E_A| \geq \frac{\hat{\delta}^{-}(T)}{2} \geq \frac{\delta^0(T)}{2} \geq 5 \cdot 10^6 k^6 m,$$
Let $Z \notin N(S1)–(S4)$ it is easy to check that every vertex in Z.

Claim 2.

For each vertex outside C of $\delta^+(T) - |E|$.

Consider any colouring of $Z \setminus C$. Let Z_α be the vertices in Z coloured with α and define Z_β similarly. For each vertex $z \in Z_\beta$ in turn we greedily choose k uncoloured in-neighbours outside $N \cup E_A$, and colour them β. Then for each vertex $z \in Z_\alpha$ in turn we greedily choose $2k$ uncoloured in-neighbours outside $N \cup E_A$, and colour k of them α and k of them β. (We do not modify C in this process.) To see that we can choose all these vertices to be distinct from each other, note that the total number of vertices we wish to choose is $2k|Z_\alpha| + k|Z_\beta| \leq 2k|Z|$ and

$$|C \cup N \cup Z| + 2k|Z| \leq 5 \cdot 10^6 k^6 m \leq \delta^-(T) - |E_A|.$$

For each vertex outside $C \setminus Z$ of colour β in turn we greedily choose k uncoloured out-neighbours outside $N \cup E$, and colour them by β. Now for each vertex outside $C \setminus Z$ of colour α in turn we greedily choose $2k$ uncoloured out-neighbours not in $N \cup E$ and colour k of them by α and k of them by β. To see that we can choose such vertices to be distinct from each other, note that the total number of vertices we wish to choose is at most $2k(1 + 2k)|Z|$ and

$$|C \cup N \cup Z| + 2k|Z| + 2k(1 + 2k)|Z| \leq |C \cup N| + 9k^2|Z| \leq 5 \cdot 10^6 k^6 m \leq \delta^-(T) - |E|.$$

Let Z' be the set of vertices outside $C \cup Z$ that we coloured. Then $Z' \cap N = \emptyset$. Moreover, using (S1)–(S4) it is easy to check that every vertex in $Z \cup Z'$ is safe. This completes the proof of Claim 2.

Figure 1: The vertices chosen in the case when $k = 1$ in order to make one vertex in Z_α safe (left) and one vertex in Z_β safe (right).

Recall that we have already coloured all the vertices in $M \cup D_1$ by α and all the vertices in D_2 by β. Step by step, we will now colour further vertices of T. Our final aim is to arrive at a colouring of $V(T)$ which is as described in Claim 1. The first step is to colour some more vertices in order to achieve that all the coloured vertices are safe. In what follows, when saying that we colour some additional vertices we always mean that these vertices are uncoloured so far.

Claim 3: We can colour some additional vertices of T in such a way that every coloured vertex is safe and the set C_1 consisting of all vertices coloured so far satisfies $|C_1| \leq 5000k^4m$.

To prove Claim 3, for every $v \in \{x_1, \ldots, x_{19k}, y_1, \ldots, y_{19k}\} \cup M$ in turn we greedily choose $2k$ uncoloured in-neighbours and $2k$ uncoloured out-neighbours, all distinct from each other,
and colour k out-neighbours and k in-neighbours by α and the other k out- and in-neighbours by β. Similarly, for every $v \in \{x_{19k+1}, \ldots, x_{20k}, y_{19k+1}, \ldots, y_{20k}\}$ in turn we greedily choose k uncoloured in-neighbours and k uncolored out-neighbours, all distinct from each other and colour them β. Let Z^* denote the set of $4k(38k + m) + 4k^2 \leq 160k^2m$ new vertices we just coloured and let $Z := Z^* \cup \{D \setminus (X \cup Y)\}$. Then $|Z| \leq |Z^*| + |D| \leq 160k^2m + c \cdot 40k \leq 520k^2m$.

Apply Claim 2 with $N := \emptyset$ to find a set Z' of uncoloured vertices and a colouring of these vertices such that all the vertices in $Z \cup Z'$ are safe and $|Z \cup Z'| \leq 9k^2 \cdot |Z| \leq 5000k^4m$. Our choice of Z^* and (S3) together now imply that the vertices in $X \cup Y \cup M$ are safe as well. This completes the proof of Claim 3.

Claim 4: There are distinct indices $i_1, \ldots, i_k \in [19k]$, distinct indices $i'_1, \ldots, i'_k \in [19k]$ and subpaths Q_1, \ldots, Q_k and $P_{19k+1}, \ldots, P_{20k}$ of T satisfying the following properties:

(i) for each $s \in [k]$ the path Q_s joins the sink of B_{i_s} to the source of A_{i_s};
(ii) for each $19k < s \leq 20k$ the path P_s joins the sink of B_{i_s} to the source of A_{i_s},
(iii) the paths Q_1, \ldots, Q_k and $P_{19k+1}, \ldots, P_{20k}$ are disjoint from each other and meet $C_1 \supseteq D \cup M$ only in their endvertices,
(iv) we can colour the internal vertices of Q_1, \ldots, Q_k by α, the internal vertices of $P_{19k+1}, \ldots, P_{20k}$ by β and can colour some additional vertices such that the set C_4 of all coloured vertices satisfies the following properties:

(a) all vertices in C_4 are safe,
(b) there is a set $C_\alpha \subseteq C_4$ such that every vertex in C_α is coloured α and the number of vertices of colour α outside C_α is at most $10^6 k^6 m$,
(c) every vertex outside C_4 which has an in-neighbour in C_α has at least k in-neighbours coloured β, and every vertex outside C_4 which has an out-neighbour in C_α has at least k out-neighbours coloured β.

We will prove Claim 4 via a sequence of subclaims. For $i \in [20k]$ we define an i-path to be a directed path from the sink of B_i to the source of A_i whose interior vertices lie outside C_1. Ideally, we would like to find disjoint i-paths P_i (one for each $i \in [20k]$) such that the following properties hold:

(a) for $19k < i \leq 20k$ all interior vertices of P_i can be coloured β,
(b) there are at least k indices i with $i \in [19k]$ such that all interior vertices of P_i can be coloured α,
(c) by colouring some additional vertices we can achieve that all coloured vertices are safe.

However, we are not able to satisfy (b) (and (c)) directly. So instead, for each of the paths Q_s in Claim 4, there will be three paths P_{i_1}, P_{i_2} and P_{i_3} with $i_1, i_2, i_3 \in [19k]$ such that each P_{i_j} is an i_j-path and Q_s consists of an initial segment of P_{i_1}, a middle segment of P_{i_2}, a final segment of P_{i_3} as well as two edges joining these three segments.

More precisely, our strategy is to proceed as follows. For each $i \in [20k]$ we will first try to find a short i-path P_i such that all these i-paths are disjoint. We will then colour the vertices on these short i-paths as well as some additional vertices such that (a)–(c) are satisfied for the set I_{short} of all indices i for which we have been able to choose a short i-path (see Claim 4.1). This provides some of the paths required in Claim 4. To find the remaining paths, for all $i \notin I_{\text{short}}$ we will choose $1000 k^4$ i-paths $Q_{i,1}, \ldots, Q_{i,1000k^4}$ such that all these paths are internally disjoint from each other. We will then show that for each $i \notin I_{\text{short}}$ with $i > 19k$ we can take the P_i required in Claim 4 to be some $Q_{i,j}$, whereas each remaining path Q_s still required in Claim 4 will consist of one segment from each of three different paths Q_{i_1,j_1}, Q_{i_2,j_2}, Q_{i_3,j_3} with $i_1, i_2, i_3 \in [19k] \setminus I_{\text{short}}$, as
described before. The reason why we start with 19 \(k \) indices to choose the \(k \) paths \(Q_s \) in Claim 4 and why we choose many \(i \)-paths for each \(i \notin I_{short} \) is that we need some extra flexibility in order to be able to satisfy part (vi) of Claim 4.

We will now choose the short \(i \)-paths. So let \(P_{short} \) be a collection of paths consisting of at most one \(i \)-path for each \(i \in [20k] \) such that all these paths are disjoint from each other, each path has length at most 6\(k \) + 10 and, subject to this, \(|P_{short}| \) is as large as possible. Let \(I_{short} \) be the set of all indices \(i \in [20k] \) for which \(P_{short} \) contains an \(i \)-path, let \(I_{short,\alpha} := I_{short} \cap [19k] \) and \(I_{short,\beta} := I_{short} \setminus I_{short,\alpha} \). Moreover, set \(I_{long} := [20k] \setminus I_{short} \), \(I_{long,\alpha} := I_{long} \cap [19k] \) and \(I_{long,\beta} := I_{long} \setminus I_{long,\alpha} \). For each \(i \in I_{short} \) let \(P_i \) denote the \(i \)-path contained in \(P_{short} \). We will call all these \(i \)-paths short. Let \(V_{short} \) be the set of all internal vertices of \(P_i \) for all \(i \in I_{short} \). Recall that the definition of an \(i \)-path implies that all the vertices in \(V_{short} \) are uncoloured so far (i.e. \(V_{short} \cap C_1 = \emptyset \)).

Claim 4.1: We may colour all vertices in \(V_{short} \) as well as some additional vertices of \(T \) such that the following properties hold:

(i) for each \(i \in I_{short,\alpha} \) all the vertices on \(P_i \) are coloured \(\alpha \),
(ii) for each \(i \in I_{short,\beta} \) all the vertices on \(P_i \) are coloured \(\beta \),
(iii) the set \(C_2 \) consisting of all vertices coloured so far has size \(|C_2| \leq 8000k^4m \) and all vertices in \(C_2 \) are safe.

Note that \(|V_{short}| \leq 20k(6k + 9) \leq 300k^2 \). Together with Claim 2 (applied with \(N := \emptyset \) and \(Z := V_{short} \)) and Claim 3 this implies Claim 4.1.

Claim 4.2: We may assume that \(|I_{short,\alpha}| < k \), and hence \(|I_{long,\alpha}| > 18k \).

To prove Claim 4.2, suppose that \(|I_{short,\alpha}| \geq k \). Colour all uncoloured vertices by \(\beta \). Then \(|V_\alpha| \leq 8000k^4m \) by Claim 4.1(iii). Since \(T \) is strongly \(10^7k^6m \)-connected and \(10^7k^6m - |V_\alpha| \geq 10^7k^6m - 8000k^4m > k \), it follows that \(T[V_\beta] \) is strongly \(k \)-connected and that every vertex in \(V_\alpha \) has at least \(k \) in-neighbours and \(k \) out-neighbours in \(V_\beta \). Using the facts that \(T[V_\alpha] \) contains \(D_1 \) as well as disjoint \(i \)-paths for all \(i \in I_{short,\alpha} \) and that all the vertices in \(V_\alpha \) are safe, a similar argument as in the proof of Claim 1 shows that \(T[V_\alpha] \) is strongly \(k \)-connected too. So the partition \(V_\alpha, V_\beta \) is as desired in Theorem 1.2. This completes the proof of Claim 4.2.

Recall from Claim 4.1(iii) that the set \(C_2 \) of coloured vertices has size at most \(8000k^4m \). So all uncoloured vertices together with the sinks of the \(B_i \) and the sources of the \(A_i \) for all \(i \in I_{long} \) induce a strongly \((904 \cdot 10^4k^5)\)-connected subtournament \(T' \) of \(T \) (with some room to spare). Theorem 2.3 implies that \(T' \) is \(2 \cdot 10^4k^5 \)-linked. Together with Proposition 2.2 this implies that for each \(i \in I_{long} \) we can find \(1000k^4 \) \(i \)-paths in \(T' \) such that all these \(1000k^4|I_{long}| \) \(i \)-paths are internally disjoint and the internal vertices on all these paths lie outside \(C_2 \). We choose such a collection of paths which minimizes the size of the set \(V_{long} \) consisting of all the internal vertices on these paths. Let \(Q_{i,j} \) denote the \(j \)th \(i \)-path we chose (for all \(i \in I_{long} \) and all \(j \in [1000k^4] \)). Note that each \(Q_{i,j} \) must have length at least \(6k + 11 \) since \(i \in I_{long} \). Write \(Q_{i,j} = q_{i,j}^0 q_{i,j}^1 \ldots q_{i,j}^{|Q_{i,j}|} \). So \(q_{i,j}^0 \) is the the sink of \(B_i \) and \(q_{i,j}^{|Q_{i,j}|} \) is the source of \(A_i \). Observe that the minimality of \(|V_{long}| \) implies the following:

(Q1) each \(Q_{i,j} \) induces a backwards-transitive path,
(Q2) if \(v \in V(T) \setminus (C_2 \cup V_{long}) \) is an out-neighbour of \(q_{i,j}^{|Q_{i,j}|} \), then \(v \) is also an out-neighbour of \(q_{i,j}^{s'} \) for all \(s' \geq s + 3 \),

Partitions of Highly Connected Tournaments 9
(Q3) if \(v \in V(T) \setminus (C_2 \cup V_{\text{long}}) \) is an in-neighbour of \(q^s_{i,j} \), then \(v \) is also an in-neighbour of \(q^s' \) for all \(s' \leq s - 3 \).

For all \(i \in I_{\text{long}} \) and all \(j \in [1000k^4] \) we let \(\text{int}(Q_{i,j}) := q_{i,j}^1 \ldots q_{i,j}^{|Q_{i,j}|} \) denote the interior of \(Q_{i,j} \). Let \(Q^1_{i,j}, \ldots, Q^7_{i,j} \) be disjoint segments of \(\text{int}(Q_{i,j}) \) such that \(\text{int}(Q_{i,j}) = Q^1_{i,j} \ldots Q^7_{i,j} \), \(|Q^1_{i,j}| = |Q^7_{i,j}| = k + 1 \), \(|Q^2_{i,j}| = |Q^6_{i,j}| = k \) and \(|Q^3_{i,j}| = |Q^5_{i,j}| = k + 2 \). So \(q^{3k+3}_{i,j} \) is the final vertex of \(Q^3_{i,j} \) and \(q^{1-3k-3}_{i,j} \) is the initial vertex of \(Q^5_{i,j} \). We let

\[
Q^0_{i,j} := Q^1_{i,j} \cup Q^2_{i,j} \cup Q^3_{i,j} \cup Q^5_{i,j} \cup Q^6_{i,j} \cup Q^7_{i,j}
\]

and write \(V_{\text{long}}^0 \) for the set of all those vertices which lie in \(Q^0_{i,j} \) for some \(i \in I_{\text{long}} \) and some \(j \in [1000k^4] \). Thus \(V_{\text{long}}^0 \subseteq V_{\text{long}} \) and

\[
|V_{\text{long}}^0| \leq (3k + 3) \cdot 40k \cdot 1000k^4 \leq 3 \cdot 10^5 k^6.
\]

Claim 4.3: There exists an index set \(I_R \subseteq I_{\text{long},\alpha} \times [1000k^4] \) such that, writing

\[
R := \bigcup_{(i,j) \in I_R} V(Q^0_{i,j}) \quad \text{and} \quad I_S := (I_{\text{long},\alpha} \times [1000k^4]) \setminus I_R,
\]

for every \((i, j) \in I_S\) every vertex in \(Q^0_{i,j} \) has at least \(k \) in-neighbours and at least \(k \) out-neighbours in \(R \), and such that \(|I_R| \leq 700k^3 \).

To prove Claim 4.3, for each \(\ell \in [3k + 3] \) we consider \(U^\ell := \{ q^\ell_{i,j} : i \in I_{\text{long},\alpha}, j \in [1000k^4] \} \) and \(V^\ell := \{ q^{|Q_{i,j}|-\ell}_{i,j} : i \in I_{\text{long},\alpha}, j \in [1000k^4] \} \). By Proposition 2.6 applied to \(T[U^\ell] \), there exists a set \(Z^\ell_U \subseteq U^\ell \) with \(|Z^\ell_U| \leq 3k \log |U^\ell| \) and such that every vertex in \(U^\ell \setminus Z^\ell_U \) has at least \(k \) out-neighbours and \(k \) in-neighbours in \(Z^\ell_U \). Similarly, there exists a set \(Z^\ell_V \subseteq V^\ell \) with \(|Z^\ell_V| \leq 3k \log |V^\ell| \) and such that every vertex in \(V^\ell \setminus Z^\ell_V \) has at least \(k \) out-neighbours and \(k \) in-neighbours in \(Z^\ell_V \). We let \(Z := \bigcup_{\ell \in [3k+3]} (Z^\ell_U \cup Z^\ell_V) \) and write \(I_R \) for the set of all those indices \((i, j)\) for which \(Z \) contains some vertex in \(Q^0_{i,j} \). Let \(R \) and \(I_S \) be as defined in the statement of Claim 4.3. Then \(Z \subseteq R \) and for every \((i, j) \in I_S\) every vertex in \(Q^0_{i,j} \) has at least \(k \) in-neighbours and at least \(k \) out-neighbours in \(Z \subseteq R \). Moreover,

\[
|I_R| \leq |Z| \leq (6k + 6) \cdot 3k \log(2 \cdot 10^4 k^5) \leq 700k^3,
\]

as required in Claim 4.3.

Let

\[
S := \bigcup_{(i,j) \in I_S} V(Q^0_{i,j}) \quad \text{and} \quad B := \bigcup_{(i,j) \in I_{\text{long},\beta} \times [1000k^4]} V(Q^0_{i,j}).
\]

Moreover, let

\[
S^{1,7} := \bigcup_{(i,j) \in I_S} V(Q^1_{i,j} \cup Q^7_{i,j}) \quad \text{and} \quad R^{1,7} := \bigcup_{(i,j) \in I_R} V(Q^1_{i,j} \cup Q^7_{i,j})
\]

and define \(B^{1,7} \) similarly. Note that by Claim 4.3 every vertex in \(S \) has least \(k \) in-neighbours and at least \(k \) out-neighbours in \(R \).

Claim 4.4: We may colour all vertices in \(S^{1,7} \cup R \cup B \) as well as some additional vertices lying outside \(V_{\text{long}}^0 \) such that

(i) all vertices in \(S^{1,7} \) are coloured \(\alpha \) and all vertices in \(R \cup B \) are coloured \(\beta \),

(ii) all coloured vertices are safe,
(iii) the set C_3 consisting of all vertices coloured so far has size $|C_3| \leq 5 \cdot 10^5 k^6 m$ and $|C_3 \setminus (C_2 \cup S^{1,7} \cup R \cup B)| \leq 220k^4$.

To prove Claim 4.4, we first colour all vertices in $S^{1,7}$ with α and all vertices in $R \cup B$ with β. Recall from (Q1) that $\{\text{int}(Q_{i,j}) : (i,j) \in I_R\}$ is a collection of backwards-transitive paths with $|\text{int}(Q_{i,j})| \geq k + 1$. So we may apply the Lemma 2.7 to obtain sets U_R and W_R such that

(a) $U_R, W_R \subseteq R^{1,7}$,
(b) $|U_R|, |W_R| \leq 2k(k + 1),$
(c) for any set $F \subseteq V(T)$ of size at most $k - 1$, and for every vertex $v \in V(T) \setminus F$ which lies on some path in $\{\text{int}(Q_{i,j}) : (i,j) \in I_R\}$ there exists a directed path (possibly of length 0) in $T[R^{1,7} \cup \{v\}] \setminus F$ from v to a vertex in U_R and a directed path in $T[R^{1,7} \cup \{v\}] \setminus F$ from a vertex in W_R to v.

We next apply Lemma 2.7 to the collection of backwards-transitive paths $\{\text{int}(Q_{i,j}) : (i,j) \in I_S\}$ to obtain sets $U_S, W_S \subseteq S^{1,7}$. Finally, we apply Lemma 2.7 to $\{Q_{i,j} : (i,j) \in \text{long} \times [1000k^4]\}$ to obtain sets $U_B, W_B \subseteq B^{1,7}$. Let $U := U_R \cup U_S \cup U_B$ and define W similarly. Apply Claim 2 with $C_2, U \cup W, V^{0}_{\text{long}}$ playing the roles of C, Z, N to obtain a set $Z' \subseteq V(T) \setminus (V^{0}_{\text{long}} \cup C_2)$ and a colouring of the vertices in Z' such that every vertex in $U \cup W \cup Z'$ is safe and

$$|U \cup W \cup Z'| \leq 9k^2 |U \cup W| \leq 9k^2 \cdot 12(k + 1) \leq 220k^4.$$

So the set C_3 consisting of all vertices coloured so far satisfies $|C_3 \setminus (C_2 \cup S^{1,7} \cup R \cup B)| \leq 220k^4$ and $|C_3| \leq 220k^4 + |V^{0}_{\text{long}}| + |C_2| \leq 220k^4 + 3 \cdot 10^5 k^6 + 8000k^4 m \leq 5 \cdot 10^5 k^6 m$. Using (c) (and its analogue for U_S, W_S and U_B, W_B) it is now straightforward to check that (ii) holds. (To check that the vertices in $S^{1,7}$ are partition-safe we use that every vertex in S has least k in-neighbours and at least k out-neighbours in R and that all vertices in R are coloured β.) This completes the proof of Claim 4.4.

Claim 4.5: For each $s \in [k]$ there are indices $(i_s^{(1)}, i_s^{(2)}, i_s^{(3)}, j_s^{(1)}, j_s^{(2)}, j_s^{(3)}) \in I_S$ such that

(i) the set $\bigcup_{s \in [k]} \{i_s^{(1)}, i_s^{(2)}, i_s^{(3)}\}$ has size 3k (i.e. all these indices are different from each other),
(ii) for each $s \in [k]$ and each $2 \leq a \leq 6$ no vertex in $V(Q_{i_s^{(a)}, j_s^{(a)}} \cup Q_{i_s^{(a)}, j_s^{(a)}}) \cup Q_{i_s^{(a)}, j_s^{(a)}}$ is coloured,
(iii) for each $s \in [k]$ there is a directed edge e_1^s from the initial vertex of $Q_{i_s^{(1)}, j_s^{(1)}}^3$ to the initial vertex of $Q_{i_s^{(2)}, j_s^{(2)}}^3$, and a directed edge e_2^s from the final vertex of $Q_{i_s^{(2)}, j_s^{(2)}}^5$ to the final vertex of $Q_{i_s^{(3)}, j_s^{(3)}}^5$.

Note that Claim 4.3 implies that for each $s \in I_{\text{long}, a}$ there are at least 1000$k^4 - |I_R| \geq 300k^4$ indices $j \in [1000k^4]$ for which $(s, j) \in I_S$. Since $|C_3 \setminus (C_2 \cup S^{1,7} \cup R \cup B)| \leq 220k^4$ by Claim 4.4(iii) and $C_2 \cap V^{0}_{\text{long}} = \emptyset$, we can pick an index $j = j(s)$ with $(s, j(s)) \in I_S$ and such that the coloured vertices on $\text{int}(Q_{s,j(s)})$ are precisely those in $Q_{s,j(s)}^1 \cup Q_{s,j(s)}^7$. Let $u(s)$ denote the initial vertex of $Q_{s,j(s)}^3$ (so $u(s) = q_{s,j(s)}^{2k+2}$) and let $v(s)$ denote the final vertex of $Q_{s,j(s)}^5$ (so $v(s) = q_{s,j(s)}^{-2k-2}$).

Now consider the subtournament T_1 of T which is induced by all the vertices $v(s)$ for all $s \in I_{\text{long}, a}$. Thus $|T_1| = |I_{\text{long}, a}| \geq 18k$ by Claim 4.2. Together with Proposition 2.4 this implies that there is a set $I_1 \subseteq I_{\text{long}, a}$ such that $|I_1| \geq 12k$ and such that for every $s \in I_1$ the vertex $v(s)$ has at least $3k$ out-neighbours in T_1. We now consider the subtournament T_2 of T which is induced by all the vertices $u(s)$ for all $s \in I_1$. By Proposition 2.1 applied to T_2 there is a set $I_2 \subseteq I_1$ such that $|I_2| \geq 6k$ and such that for every $s \in I_2$ the vertex $u(s)$ has at least $3k$ in-neighbours in T_2.
Now let i_1^m, \ldots, i_k^m be k distinct indices in I_2. For each $s \in [k]$ choose an index $i_s^e \in I_1$ such that $u(i_s^e)$ is an in-neighbour of $u(i_m^s)$ and such that the $2k$ indices $i_1^m, \ldots, i_k^m, i_1^e, \ldots, i_k^e$ are distinct. Finally, for each $s \in [k]$ choose an index $i_s^e \in \text{long},\alpha$ such that $v(i_s^e)$ is an out-neighbour of $v(i_m^s)$ and such that the indices i_1^e, \ldots, i_k^e are distinct from each other and from $i_1^m, \ldots, i_k^m, i_1^e, \ldots, i_k^e$. This completes the proof of Claim 4.5.

We are now ready to prove Claim 4. For each $s \in [k]$ let Q_s denote the path formed by

$$Q_s^1 \cup Q_s^2 \cup Q_s^3 \cup Q_s^4 \cup Q_s^5 \cup Q_s^6 \cup Q_s^7,$$

the initial vertices of both Q_s^1 and Q_s^7, the final vertices of both Q_s^3 and Q_s^5, as well as the edges e_s^1 and e_s^2 guaranteed by Claim 4.5(iii). Let $i_s^r := i_s^e$ and $i_s := i_s^e$. Then Q_s joins the sink of B_s to the source of A_s, i.e. Claim 4(i) holds.

Recall that all the vertices in $Q_s^1 \cup Q_s^7$, as well as the two endvertices of Q_s are coloured α, and all other vertices of Q_s are uncoloured (i.e. lie outside C_3). Colour all the (so far uncoloured) vertices of Q_s with α (for all $s \in [k]$) and then all other vertices in V_{long} which are still uncoloured with β. Let C_4 be the set of coloured vertices obtained in this way.

![Figure 2: Colour patterns of the paths $\text{int}(Q_{i,j})$ with $(i,j) \in I_S$ in the case when $k = 1$. The thick arrows indicate $\text{int}(Q_s)$.](image)

Since $|C_3 \setminus (C_2 \cup S^{1,7} \cup R \cup B)| \leq 220k^4$ by Claim 4.4(iii) and $C_2 \cap V_{\text{long}} = \emptyset$, for each $s \in I_{\text{long},\beta}$ there is at least one index $j' = j'(s)$ such that $V(\text{int}(Q_{s,j'(s)}) \cap C_3 = V(Q_{s,j'(s)}^0)$. Moreover, since $V(Q_{s,j'(s)}^0) \subseteq B$, all the vertices in $V(Q_{s,j'(s)}^0)$ are coloured β by Claim 4.4(i). Altogether this shows that all vertices on $Q_{s,j'(s)}$ are coloured β. For each $s \in I_{\text{long},\beta}$ let $P_s := Q_{s,j'(s)}$. Together with the short paths P_s for all $s \in I_{\text{short,}\beta}$ this gives k paths satisfying Claim 4(ii). Our choice of the paths Q_s and P_s implies that Claim 4(iii) holds too.

Let us now check that all vertices in $C_4 \setminus C_3$ are safe. First consider any $v \in C_4 \setminus C_3$ which is coloured α. Then one of the following holds:

(a) $v \in S \setminus S^{1,7}$,
(b) $v \in V(Q_{s,j'}^m)$ for some $s \in [k]$.

Suppose first that (a) holds. So there exists $(i,j) \in I_S$ such that $v \in Q_{i,j}^2 \cup Q_{i,j}^3 \cup Q_{i,j}^5 \cup Q_{i,j}^6$. Since $Q_{i,j}$ is a backwards-transitive path by (Q1), it follows that every vertex in $Q_{i,j}^1$ (except possibly its final vertex) is an out-neighbour of v and every vertex in $Q_{i,j}^7$ (except possibly its initial vertex) is an in-neighbour of v. Since all vertices in $S^{1,7} \supseteq Q_{i,j}^1 \cup Q_{i,j}^7$ are coloured α and
are safe, it follows that \(v \) has at least \(k \) safe in-neighbours and at least \(k \) safe out-neighbours of colour \(\alpha \). So by (S3) \(v \) is forwards- and backwards-safe. Since by Claim 4.3 \(v \) has at least \(k \) in-neighbours and \(k \) out-neighbours in \(R \) (and all vertices in \(R \) are coloured \(\beta \)) it follows that \(v \) is partition-safe. So \(v \) is safe.

Now suppose that (b) holds. As in (a) one can show that \(v \) is forwards- and backwards-safe. Moreover, by (Q1) every vertex in \(Q^2_{i,j} \) is an out-neighbour of \(v \) and every vertex in \(Q^6_{i,j} \) is an in-neighbour of \(v \). But all the vertices in \(Q^2_{i,j} \cup Q^6_{i,j} \) are coloured \(\beta \), so \(v \) is partition-safe and thus safe.

Now consider any \(v \in C_4 \setminus C_3 \) which is coloured \(\beta \). Then one of the following holds:

(c) \(v \in S \setminus S^{1,7} \),

(d) \(v \in V(Q^4_{i,j}) \) for some \(i \in I_{long} \) and \(j \in [1000k^4] \) such that \((i, j) \notin \{(i^m_s, j^m_s) : s \in [k]\} \).

If (c) holds then \(v \) has at least \(k \) in-neighbours and \(k \) out-neighbours in \(R \). Since all vertices in \(R \) are coloured \(\beta \) and are safe, this implies that \(v \) is safe. Moreover, together with Claim 4.4(ii) and the safety of the vertices in \(C_4 \setminus C_3 \) which are coloured \(\alpha \), this implies that all vertices in \(V^0_{long} \) are safe.

Now suppose that (d) holds. Since \((i, j) \notin \{(i^m_s, j^m_s) : s \in [k]\} \) all vertices in \(Q^3_{i,j} \) (except possibly its initial vertex) and all vertices in \(Q^3_{i,j} \) (except possibly its final vertex) are coloured \(\beta \). Moreover, all these vertices are safe since they lie in \(V^0_{long} \). By (Q1) every vertex in \(int(Q^3_{i,j}) \) is an out-neighbour of \(v \) and every vertex in \(int(Q^5_{i,j}) \) is an in-neighbour of \(v \). So \(v \) is safe. This completes the proof that all vertices in \(C_4 \setminus C_3 \) (and thus also all coloured vertices) are safe, i.e. Claim 4(iv)(\(\alpha \)) holds.

Let \(C_\alpha \) be the union of \(V(Q^4_{i,j}) \) over all \(s \in [k] \). Thus the number of vertices of colour \(\alpha \) outside \(C_\alpha \) is at most \(|C_3| + |V^0_{long}| \leq 10^6k^6m \), i.e. Claim 4(iv)(\(\beta \)) holds. Moreover, if \(v \in V(T) \setminus C_4 \) and \(v \) has an in-neighbour in some \(V(Q^4_{i,j}) \) then by (Q3) all vertices in \(Q^6_{i,j} \) are also in-neighbours of \(v \). But all vertices in \(Q^6_{i,j} \) are coloured \(\beta \). So \(v \) has at least \(k \) in-neighbours of colour \(\beta \). Similarly, if \(v \) has an out-neighbour in \(V(Q^4_{i,j}) \) then by (Q2) all vertices in \(Q^2_{i,j} \) are also out-neighbours of \(v \). But all vertices in \(Q^2_{i,j} \) are coloured \(\beta \). So \(v \) has at least \(k \) out-neighbours of colour \(\beta \). This shows that Claim 4(iv)(\(\gamma \)) holds and thus completes the proof of Claim 4.

The next claim shows that by colouring every uncoloured vertex with \(\beta \), all vertices will become safe. Together with Claim 1 this then implies that the partition consisting of the colour classes \(V_\alpha, V_\beta \) is as required in Theorem 1.2.

Claim 5: We can colour all uncoloured vertices with \(\beta \). Then every vertex is safe.

Colour all uncoloured vertices (i.e. all vertices in \(V(T) \setminus C_4 \) with \(\beta \). Consider any vertex \(v \in V(T) \setminus C_4 \). If \(v \notin E' \) then by (D3) and (D4) \(v \) has an in-neighbour in \(A_s \) and an out-neighbour in \(B_s \) for every \(19k < s \leq 20k \). Since the vertices in all these sets \(A_s \) and \(B_s \) are coloured \(\beta \) and are safe, this implies that \(v \) is safe.

Suppose next that \(v \in E'_B \setminus E'_A \). As above it follows that \(v \) has \(k \) safe in-neighbours of colour \(\beta \). If \(v \) has \(k \) out-neighbours of colour \(\beta \) which are lying outside \(E' \), then these out-neighbours are safe and so \(v \) is safe. So suppose that \(v \) has less than \(k \) out-neighbours of colour \(\beta \) which are lying outside \(E' \). Recall from Claim 4(iv)(\(\beta \)) that at most \(10^6k^6m \) vertices of colour \(\alpha \) lie outside the set \(C_\alpha \). Together with the fact that \(\delta^+(T) - |E'| \geq 5 \cdot 10^6k^6m \geq k + 10^6k^6m \) by (3.4), this implies...
that \(v \) has an out-neighbour in \(C_\alpha \). But now Claim 4(iv)(\(\gamma \)) implies that \(v \) has \(k \) out-neighbours of colour \(\beta \) in \(C_4 \). Since all the vertices in \(C_4 \) are safe, this shows that \(v \) is safe.

Finally, suppose that \(v \in E'_A \). As in the previous case one can show that \(v \) has \(k \) safe out-neighbours of colour \(\beta \). If \(v \) has \(k \) in-neighbours of colour \(\beta \) which are lying outside \(E'_A \), then these in-neighbours are safe and so \(v \) is safe. So suppose that \(v \) has less than \(k \) in-neighbours of colour \(\beta \) which are lying outside \(E'_A \). Together with the fact that \(\hat{\delta}^-(T) - |E'_A| \geq 5 \cdot 10^6 k^6 m \geq k^2 + |E'_A| \) by (3.3), this implies that \(v \) has an in-neighbour in \(C_\alpha \). Thus Claim 4(iv)(\(\gamma \)) implies that \(v \) has \(k \) in-neighbours of colour \(\beta \) in \(C_4 \). Since all the vertices in \(C_4 \) are safe, this shows that \(v \) is safe. This completes the proof of Claim 5 and thus of Theorem 1.2.

4. Acknowledgment

We are grateful to Jørgen Bang-Jensen for drawing our attention to [12].

REFERENCES

[1] G. Chen, R. Gould and X. Yu, Graph connectivity after path removal, *Combinatorica* 23 (2003) 185–203.
[2] P. Hajnal, Partition of graphs with condition on the connectivity and minimum degree, *Combinatorica* 3 (1983), 95–99.
[3] K. Kawarabayashi, O. Lee, B. Reed, P. Wollan, A weaker version of Lovász path removal conjecture. *J. Combinatorial Theory B* 98 (2008), 972–979.
[4] M. Kriesell, Induced paths in 5-connected graphs, *J. Graph Theory* 36 (2001), 52–58.
[5] D. Kühn, J. Lapinskas, D. Osthus and V. Patel, Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments, *Proc. London Math. Soc.*, to appear.
[6] D. Kühn and D. Osthus, Partitions of graphs with high minimum degree or connectivity, *J. Combinatorial Theory B* 88 (2003), 29–43.
[7] D. Kühn, D. Osthus and T. Townsend, Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths, *Combinatorica*, to appear.
[8] A. Pokrovskiy, Highly linked tournaments, preprint, [arXiv:1406.7552](http://arxiv.org/abs/1406.7552).
[9] A. Pokrovskiy, Edge disjoint Hamiltonian cycles in highly connected tournaments, preprint, [arXiv:1406.7556](http://arxiv.org/abs/1406.7556).
[10] C. Thomassen, Graph decomposition with constraints on the connectivity and minimum degree, *J. Graph Theory* 7 (1983), 165–167.
[11] C. Thomassen, Graph decomposition with applications to subdivisions and path systems modulo \(k \), *J. Graph Theory* 7 (1983), 261–271.
[12] C. Thomassen, Connectivity in tournaments, *Graph theory and combinatorics (Cambridge, 1983)*, Academic Press, London (1984), 305–313.

Jaehoon Kim, Daniela Kühn, Deryk Osthus
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK

E-mail addresses: {kimJS, d.kuhn, d.osthus}@bham.ac.uk