1. Introduction

Let \(i : X \hookrightarrow \mathbb{P} = \mathbb{P}(V) \) be a smooth connected projective variety embedded into a projective space (we are working over a fixed ground field \(k \)). Set \(\mathcal{O}_X(1) = i^* \mathcal{O}_\mathbb{P}(1) \) and consider the coordinate algebra

\[
A = \bigoplus_{n=0}^{\infty} H^0(X, \mathcal{O}_X(n)).
\]

By construction \(A \) is identified with a quotient algebra \(A = S/I \) where \(S = \text{Sym}(V^*) = k[x_0, \ldots, x_{n-1}] \). The Koszul homology algebra is defined as

\[
H(A) = \bigoplus_{p=0}^{n} \text{Tor}^S_p(A, k).
\]

This is a (bi)graded commutative \(k \)-algebra, finite dimensional as a \(k \)-vector space.

In an inspiring paper \([GKR]\) Gorodentsev, Khoroshkin and Rudakov prove (among others) the following elegant result. Denote by \(K_X \) the canonical class of \(X \).

1.1. Theorem (see \([GKR]\), Sect. 2)). Suppose that

(a) there exists a natural \(N \) such that \(K_X = \mathcal{O}_X(-N) \);
(b) \(H^i(X, \mathcal{O}_X(n)) = 0 \) for all \(n \in \mathbb{Z} \) and \(0 < i < d := \text{dim} X \).

Then \(H(A) \) is Frobenius.
Here *Frobenius* means that there exists a nondegenerate bilinear pairing
\[\langle \cdot, \cdot \rangle : H(A) \times H(A) \longrightarrow k, \] suitably compatible with the gradings, such that
\[\langle ab, c \rangle = \langle a, bc \rangle. \]

The proof in *op. cit.* is very nice; it uses the "sphericity" of certain spectral sequence.

In this note we would like to look at this result from a slightly different perspective. Our point of departure is a fundamental result by Avramov and Golod, [AG]:

1.2. **Theorem.** \(H(A) \) is Frobenius if and only if \(A \) is Gorenstein.

In fact, Avramov and Golod work in the local situation; the passage to our graded context presents no difficulties. Indeed, according to *op. cit.*, \(H(A) \) is Frobenius iff the localisation of \(A \) at 0 is Gorenstein; however, \(A \) is smooth outside this ideal, so this is equivalent to \(A \) being Gorenstein.

So our question reduces to the Gorenstein property of \(A \).

Let us say, following [GKR], that \(X \subset \mathbb{P} \) is subcanonical if the condition (a) of Theorem 1.1 is satisfied. In the present note we prove the following

1.3. **Theorem.** Assume \(\text{char}(k) = 0 \). If \(X \subset \mathbb{P} \) is subcanonical then \(A \) is Gorenstein and has rational singularities.

We establish this using certain Key Lemma from [H] (see Proposition 2.1) giving a sufficient condition for a singularity being Gorenstein and rational. The proof of this lemma uses Grauert-Riemenschneider theorem, and hence the characteristic zero assumption. (On the contrary, although Gorodentsev et al. assume \(k = \mathbb{C} \), their proof of [L] works over an arbitrary field).

1.4. **Corollary.** If \(X \subset \mathbb{P} \) is subcanonical then \(H(A) \) is Frobenius.

So, the condition (b) of Theorem 1.1 is superfluous if \(\text{char} k = 0 \).

The main objects of study in *op cit.* are highest weight orbits of a semisimple algebraic group \(G \). For such \(X \) the authors of [GKR] prove that (b) follows from (a).

In this case we prove that subcanonicity is equivalent to the Gorenstein property of \(A \):

1.5. **Theorem.** Let \(X \subset \mathbb{P}(V) \) be the projectivisation of the highest weight orbit in an irreducible finite dimensional representation \(V \) of a semisimple group \(G \). This embedding is subcanonical if and only if the corresponding coordinate ring \(A \) is Gorenstein (so, iff \(H(A) \) is Frobenius).

1.6. **Acknowledgement.** This note was written during a visit of the first author to the *Institut de Mathématiques de Toulouse*. He thanks this Institute for the hospitality.
2. Proof of Theorem 1.3

We keep the notation of the Introduction. The affine variety \(Z := \text{Spec}(A) \) is the cone over \(X \); therefore it is nonsingular outside 0. It has a very nice desingularization \(Y \) which is the total space of the vector bundle \(E = \mathcal{O}_X(-1) \). Let
\[
(1) \quad p : Y = \text{Spec}(\text{Sym}_{\mathcal{O}_X}(E^*)) \longrightarrow X
\]
be the projection.

The embedding \(\mathcal{O}_{\mathbb{P}(V)}(1) \longrightarrow V \) defines an embedding \(Y \longrightarrow X \times V \); the projection to the second factor has image \(Z \subset \text{Spec}(\text{Sym} V^*) = V \) and the map
\[
(2) \quad \pi : Y \longrightarrow Z
\]
is a desingularization.

Recall the following

2.1. Proposition (see [H]). Let \(\pi : Y \longrightarrow Z \) be a proper birational map with \(Y \) smooth and \(Z \) normal. Let \(\omega_Y \) be the sheaf of higher differentials on \(Y \). Assume there exists a morphism \(\phi : \mathcal{O}_Y \rightarrow \omega_Y \) such that \(\pi_*\phi : \pi_*\mathcal{O}_Y \rightarrow \pi_*\omega_Y \) is an isomorphism. Then \(Z \) is Gorenstein and has rational singularities.

We wish to apply this to our desingularization \(\pi : Y \rightarrow Z \). Note that \(Z = \text{Spec}(A) \) is normal.

The short exact sequence of vector bundles on \(Y \)
\[
(3) \quad 0 \longrightarrow p^*E \longrightarrow T_Y \longrightarrow p^*T_X \longrightarrow 0
\]
yields an isomorphism
\[
(4) \quad \omega_Y = p^*(\omega_X \otimes E^*).
\]
We wish to calculate the global sections of \(\omega_Y \). First of all, we have
\[
(5) \quad p_*\omega_Y = p_*p^*(\omega_X \otimes E^*) = \omega_X \otimes E^* \otimes \text{Sym}_{\mathcal{O}_X}E^* = \bigoplus_{n \geq 1} \omega_X \otimes \mathcal{O}_X(n)
\]
since \(p \) is an affine morphism.

2.2. Proof of Theorem 1.3 Let \(\omega_X = \mathcal{O}_X(-N) \). One has an obvious map
\[
\mathcal{O}_X = \omega_X \otimes \mathcal{O}_X(N) \overset{\cong}{\longrightarrow} \bigoplus_{n \geq 1} \omega_X \otimes \mathcal{O}_X(n) = p_*\omega_Y
\]
which gives by adjunction a map \(\phi : \mathcal{O}_Y \longrightarrow \omega_Y \).

We will check now that \(\phi \) induces an isomorphism of the global sections. Applying to \(\phi \) the direct image functor \(p_* \) we get a morphism
\[
(6) \quad p_*(\phi) : \bigoplus_{n \geq 0} \mathcal{O}_X(n) \longrightarrow \bigoplus_{n \geq 1} \omega_X \otimes \mathcal{O}_X(n)
\]
which is obviously a map of $p_*(\mathcal{O}_Y)$-modules. By definition it carries $1 \in p_*(\mathcal{O}_Y)$ to a generator of $\omega_X(N) = \mathcal{O}_X$, so the map $p_*(\phi)$ carries isomorphically the summand $\mathcal{O}_X(n)$ of the left-hand side to the summand $\omega_X \otimes \mathcal{O}_X(N + n)$ of the right-hand side. For $n < N$ one has on the right-hand side

$$\Gamma(X, \omega_X \otimes \mathcal{O}_X(n)) = \Gamma(X, \mathcal{O}_X(n - N)) = 0,$$

so $p_*(\phi)$ induces an isomorphism of the global sections.

3. Homogeneous case

Let now G be a semisimple Lie group, V a simple finite dimensional highest weight G-module, $v \in V$ be a highest weight vector. Let P be the stabilizer of Cv in $P(V)$. This is a parabolic subgroup of G. A G-equivariant embedding $i : X := G/P \rightarrow \mathbb{P}(V)$ is induced.

The closure Z of Gv is a cone in V. We have $Z = \text{Spec}(A)$ where A is the homogeneous coordinate ring of $X = G/P$ with respect to i.

In this case the converse of the theorem 1.3 is valid. One has

3.1. Theorem. The space Z is Gorenstein iff $\omega_X = \mathcal{O}_X(-N)$ for some N.

Note that the conclusion of the Theorem is not true for an arbitrary (nonhomogeneous) X (for example it follows easily from the results of Mukai [M] that a generic curve of genus 7 embedded canonically in \mathbb{P}^6 has a Gorenstein coordinate ring).

Proof. The dualizing complex of Z can be calculated as

$$\omega_Z = R\text{Hom}_{SV^*}(A, SV^*)[\dim V - \dim Z]$$

(the shift is chosen so that ω_Z is concentrated in degree 0 when A is Cohen-Macaulay).

Its cohomology keeps the grading of SV^* and A; therefore, if A is Gorenstein so that ω_Z is an invertible A-module, it has to be isomorphic to A.

Choose an isomorphism $\theta : A \rightarrow \omega_Z$.

We now apply the Duality isomorphism, see [H1], VII.3.4, to the proper morphism $\pi : Y \rightarrow Z$. It gives, in particular, an isomorphism

$$\text{Hom}_{D(Y)}(F, \pi^!G) \sim \text{Hom}_{D(Z)}(R\pi_*F, G)$$

for any $F \in D^-(Y)$, $G \in D^+(Z)$.

We apply this to $F = \mathcal{O}_Y$ and $G = \omega_Z$. By a general result of Kempf [K] Z has rational singularities, so $R\Gamma(Y, \mathcal{O}_Y) = \Gamma(Y, \mathcal{O}_Y) = A$. Moreover, $\pi^!(\omega_Z) = \omega_Y$. Thus, Duality isomorphism gives us

$$\text{Hom}_{D(Y)}(\mathcal{O}_Y, \omega_Y) \sim \text{Hom}_{D(Z)}(\mathcal{O}_Z, \omega_Z).$$
We see that the map $\theta : A \to \omega_Z$ is adjoint to a map $\theta_Y : \mathcal{O}_Y \to \omega_Y$ which in turn can be rewritten as a morphism

$$\theta_X : \mathcal{O}_X \to p_*(\omega_Y) = \bigoplus_{n \geq 1} \omega_X(n).$$

We intend to prove now that each direct component $\theta_{X,n} : \mathcal{O}_X \to \omega_X(n)$ is either isomorphism or vanishes. This will immediately imply the theorem.

Note that the formula (7) shows that the group G naturally acts on ω_Z. We claim that $\theta : A \to \omega_Z$ is necessarily G-equivariant.

In fact, the G-action on A-module ω_Z is compatible with G-action on A:

$$g(ax) = g(a)g(x), \quad g \in G, \quad a \in A, \quad x \in \omega_Z.$$

Another G-module structure on ω_Z compatible with the G-action on A is given by θ. These two actions define two group homomorphisms

$$\rho_1, \rho_2 : G \to \text{Aut}_\mathbb{C}(\omega_Z).$$

The “difference” between the two defined by the formula

$$\rho_{12} : g \mapsto \rho_1(g^{-1}) \circ \rho_2(g)$$

gives rise to a crossed homomorphism $\rho_{12} : G \to \text{Aut}_A(\omega_Z) = \mathbb{C}^*$. Since the action of G on \mathbb{C}^* is trivial and G is semisimple, ρ_{12} is trivial, which means that θ is G-equivariant.

Let us show that the maps θ_Y and θ_X obtained from θ via Duality isomorphism, are also G-equivariant.

Choose $g \in G$ and let $g_X : X \to X$, $g_Y : Y \to Y$, $g_Z : Z \to Z$ denote the corresponding automorphisms of the varieties.

An action of $g \in G$ on \mathcal{O}_Z and ω_Z are expressed as isomorphisms $g_Z^*(\mathcal{O}_Z) \to \mathcal{O}_Z$ and $g_Z^*(\omega_Z) \to \omega_Z$. Since θ is equivariant, it gives rise to a commutative diagram

$$
\begin{array}{ccc}
g_X^*(\mathcal{O}_Z) & \xrightarrow{g_Z^*} & g_X^*(\mathcal{O}_Z) \\
\downarrow \quad & & \downarrow \\
\mathcal{O}_Z & \xrightarrow{\theta} & \omega_Z
\end{array}
$$

The map θ_Y can be described as the composition

$$\mathcal{O}_Y \xrightarrow{\pi^! R\pi_*(\mathcal{O}_Y)} \pi^! \mathcal{O}_Z \xrightarrow{\pi^! \omega_Z}.$$
so that it suffices to check that the first morphism is G-equivariant. The latter can be expressed as the commutativity of the diagram

$$
g_Y^*(\mathcal{O}_Y) \longrightarrow g_Y^*(\pi^! R\pi_*(\mathcal{O}_Y))$

(12)

$$\mathcal{O}_Y \longrightarrow \pi^! R\pi_*(\mathcal{O}_Y)$$

for each $g \in G$, and this follows from the relations

$$g_Y^* \pi^! = \pi^! g_Y^*, \quad g_Y^* R\pi_* = R\pi_* g_Y^*.$$

All this proves that θ_Y is G-equivariant; the similar fact for θ_X is even more transparent.

We have already understood that the components $\theta_{X,n}$ of the map $\theta_X : \mathcal{O}_X \longrightarrow \bigoplus \omega_X(n)$ are G-equivariant. This implies that the map of fibers at $1P \in G/P$ is P-equivariant. The fibers are one-dimensional representations of P; any P-morphism is either zero or an isomorphism. This proves the theorem. □

References

[AG] L. Avramov, E. Golod, The homology algebra the Koszul complex of a local Gorenstein ring, Mat. Zametki 9 (1971), 53–58.

[GKR] A. Gorodentsev, A. Khoroshkin, A. Rudakov, On syzygies of highest weight orbits, Amer. Math. Soc. Transl., Ser. 2, 221, Providence RI, 2007, pp. 79–120.

[Ha] R. Hartshorne, Residues and Duality, Lecture Notes in Math., 20, 1966.

[H] V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), 297–308.

[K] G. Kempf, On the collapsing of homogeneous bundles, Inv. Math. 37 (1976), 229–239.

[M] S. Mukai, Curves and symmetric spaces. I, Amer. J. Math. 117 (1995), 1627–1644.