A new short-term aging model for asphalt binders based on rheological activation energy

Derun Zhang · Bjorn Birgisson · Xue Luo · Ibrahim Onifade

Received: 11 March 2019 / Accepted: 29 May 2019 / Published online: 24 June 2019
© The Author(s) 2020, corrected publication 2020

Abstract Short-term aging of asphalt binders is an inevitable phenomenon during mix production and laydown that significantly affects the rheological properties of asphalt binders and further contributes to the deterioration of pavement performance. This paper presents a new short-term aging model for asphalt binders. The new model focuses on the binder viscosity as the target property and incorporates the rheological activation energy for the model development. It consists of four model coefficients and two essential binder specific inputs (i.e. viscosity and rheological activation energy of the unaged asphalt binder). The rheological activation energy is calculated from the conventional properties of unaged asphalt binders like penetration, kinematic viscosity, and absolute viscosity measured at various temperatures or from the known Viscosity Temperature Susceptibility parameters (i.e. “A-VTS” values) of unaged asphalt binders. The global model coefficients are determined using data extracted from the long-term pavement performance database. The short-term aging is verified to increase the rheological activation energy of the asphalt binder to a certain amount which is linearly proportional to that of the unaged binder. It is also found that the new model delivers more accurate viscosity prediction capabilities over the existing binder aging model. The new model is then validated through data collected from multiple independent data sources. The validation results indicate that the new model provides fairly accurate predictions in both laboratory and field short-term aging. Thus, it can be concluded that the new model is a good candidate for the short-term aging prediction.

Keywords Short-term aging · Viscosity · Rheological activation energy · Asphalt binder

1 Introduction

Aging is a phenomenon that affects the physical properties, rheological properties as well as the
chemical composition of asphalt binder when exposed to aging agents over time. Rheological testing of asphalt binder can be used to account for the effect of aging on rheological properties such as binder viscosity while the effect of aging binder chemical composition has been studied by numerous researchers using the Fourier-transform infrared spectroscopy (FTIR) method e.g., [1–5]. As shown in Fig. 1, the aging of asphalt binder usually takes place in two consecutive stages, namely the short-term aging that occurs during mixing, transporting, and paving operations, and the long-term aging that an asphalt mixture suffers from over the entire service life of the pavement. In general, as the binder ages, its chemical composition is altered, which further results in the change of its rheological properties. For instance, with the increase of the binder to aging, ketones of asphalt binder are formed, leading to the formation of binder components that contribute to the production of asphaltenes. Accordingly, asphalt viscosity progressively increases, which makes the binder become harder and more brittle [6–8].

A wide range of studies have shown that the aging of the asphalt binder contributes to the rapid deterioration of flexible pavements [9–15]. It adversely increases the susceptibility of asphalt pavements to cracking, raveling and moisture damage, leading the pavement to be more prone to the premature failure, which further reduces the pavement serviceability and lifetime. Thus, accurate characterization of the effects of the short-term and the long-term aging on asphalt binders is necessary for the accurate prediction of binder and mixture long-term properties (such as stiffness), evaluation of their effect on long-term performance of flexible pavements and also for the development of binder specifications. Within the scope of this study, we will only focus on the short-term aging predictions for asphalt binders. The investigation and documentation of long-term aging will be detailed in future work.

As stated previously, the short-term aging occurs primarily during mix production, in which the asphalt binder is mixed thoroughly with aggregates with hot air introduced at elevated temperatures. This production process, on one hand, facilities the oxidation between oxygen and asphalt binder due to thin asphalt binder films, on the other hand, it enables the heating to volatilize the lighter fractions (i.e. aromatic and resin) from the binder and increase the larger and stiffer fraction (i.e. asphaltene) [16, 17]. Thus, the short-term aging can be described as a combined result of rapid volatilization and oxidation. The effect of short-term aging on asphalt binder can be evaluated through laboratory testing or predicted using suitable aging model. For the laboratory testing, the Thin Film Oven (TFO) and the Rolling Thin Film Oven (RTFO) test have been identified as the routine short-term aging tests incorporated into AASHTO standard due to their capabilities of capturing the aging mechanism [18, 19]. In these two tests, the binder with a thin film is exposed to continuous heat and air flow at 163 °C for 5 h and 85 min, respectively, which expect to produce the aging effects equivalent to the average site conditions. With regard to the model predictions, the effect of short-term aging on the asphalt binder is generally quantified using a Global Aging System (GAS) [20]. The model makes use of a statistical equation to establish an empirical relationship between the unaged and the short-term aged viscosity in log–log scale, which has been implemented into the current AASHTOWare Pavement ME Design for the level-3 pavement design [21]. However, this model lacks of physical significance because it is developed based on a regression analysis. Also, implementation of this model involves the selection of a code value, which was intended to increase the model accuracy. Unfortunately, there is no explicit guidance to quantify this code value. Instead, local experience with individual asphalt types is suggested as the best solution. This significantly affects the applicability of the model for practical applications and also affects the reliability of the prediction result.
2 Motivation and objectives

It is well known that the short-term aging during mix production and laydown directly determines the starting point of the long-term field aging. Incorrect predictions of the effects of short-term aging may lead to the erroneous prediction of both the short and long-term aged binder properties and further affect the prediction of the long-term asphalt mixture properties and pavement performance [22–24]. This paper presents a new short-term asphalt aging predictive model for asphalt binders. The model accounts for the effect of aging on the binder rheology through the introduction and use of a parameter termed the “rheological activation energy” into the predictive equation. The binder viscosity (also called absolute viscosity) will be selected as the target property for the model development due to the following two reasons. First, the aging effect can be easily quantified through the binder viscosity. Second, the viscosity is one of the most representative viscoelastic properties for asphalt binder and has a direct relationship with key mixture properties, including modulus and other viscoelastic properties. Data collected from multiple sources will be used for the model development as well as the model validation.

This paper is organized as follows: First, the concept of rheological activation energy is briefly reviewed. Then, the development of the new short-term aging model is detailed, including data collection, determination of model coefficients, verification of model and comparison with existing binder aging predictive model. Subsequently, the model validation is presented using data extracted from multiple sources, but independent of those used for the model development. Finally, the last section summarizes the major contributions of this study.

3 Concept of rheological activation energy

The viscosity of a fluid intrinsically reflects its viscous flow characteristics. From the perspective of thermodynamics, this viscous flow can be characterized as a thermally activated rate process. A concept of rheological activation energy was put forward by Henry Eyring in 1936 to model the viscous flow at a molecular level [25]. When a viscous fluid, like an asphalt binder, starts to flow, two adjacent molecular layers will slide over each other and the intermolecular forces will cause resistance to flow. The resistance will further result in an activation energy barrier that the molecules must overcome to move to an adjacent vacant site so as to initiate the relative flow. This energy required to overcome the intermolecular resisting force is termed the rheological activation energy [25]. As the temperature increases, the intermolecular forces of the interacting molecules decreases, thus reducing the activation energy required to initiate the viscous flow. As a result, the viscosity or the resistance to flow decreases. The relationship between viscosity of the asphalt binder and temperature can be identified using the rheological activation energy [26, 27], as shown in Eq. (1):

$$\eta = A_r e^{-\frac{E_{ar}}{RT_R}}$$

(1)

The more general form of this equation is given as:

$$\ln \eta = \ln A_r + \frac{E_{ar}}{RT_R}$$

(2)

where η is the binder viscosity; A_r, E_{ar} are the rheological kinetics, which are binder rheological pre-exponential factor and activation energy, respectively; R is the universal gas constant, 8.3145 J/K mol; T_R is the test temperature at which the viscosity is measured.

In previous studies [28, 29], the rheological activation energy of asphalt binders subjected to field aging conditions has been determined from laboratory testing of asphalt field cores and back-calculated modulus data of the Falling Weight Deflectometer (FWD). It was found that the rheological activation energy increases with increasing field aging time. Other researchers also selected the rheological activation energy as an index to characterize the temperature susceptibility of asphalt binder as well as to assess the performance of modified asphalt binder. Salomon and Zhai [26, 30] measured the rheological activation energy using the rotational viscometry test for various types of asphalt binders based on Eq. (2) and identified this activation energy had a range of 55–90 kJ/mol. They also found that the rheological
activation energy can be utilized to effectively quantify the effect of film thickness, asphalt type, aging condition, polymer content and type on the temperature susceptibility of asphalt binders. Haider et al. [31] reported the rheological activation energy measured from the conventional tests and the dynamic shear rheometer tests for twenty two neat and modified asphalt binders ranged from 100 to 150 kJ/mol. The measured rheological activation energy was also found to correlate reasonably well with the binder rheological properties (e.g., $G'/\sin \delta$ and $G' \sin \delta$). An aged asphalt binder was also observed to have a higher activation energy that the original binder. Jamshidi et al. [27] utilized the rheological activation energy to interpret the physical phase of different types of recovered binder blend as a function of the temperature and found more activation energy was needed by the recovered asphalt binder than the virgin binder to cause the viscous flow. Hasan et al. [32] used the rheological activation energy to evaluate the effects of foaming agents on the viscosity of the foamed asphalt binder and found that the addition of foaming agents to an asphalt binder lowers the activation energy of the foamed asphalt binder and thus increases its workability. The above studies indicate that the rheological activation energy is a reliable parameter that can be used to characterize the change in the asphalt binder viscosity due to the varying conditions that affects the binder properties such as binder modification and aging.

For an asphalt binder subjected to short-term aging, the volatilization and oxidation increase the concentration of the polar molecules and therefore strengthen the intermolecular forces. These stronger interactions within the asphalt binder will further lead to a higher resistance to flow and thus a higher rheological activation energy. Several studied have shown that after short-term aging, the asphalt binder has a rheological activation energy at least 5 kJ/mol higher than the original binder [26, 27, 31]. All these results imply that the increase in viscosity due to the short-term aging might be characterized through the change of rheological activation energy. The concept of the rheological activation energy will be used for the development of the short-term aging model in this paper.

4 Development of short-term aging model based on rheological activation energy

4.1 Formulation of short-term aging model

As mentioned previously, short-term aging of asphalt binders refers to the age hardening that occurs during mix production, transportation and paving. This age hardening is a combined result of volatilization and chemical composition change of the asphalt binder due to exposure to high temperature and oxidation. The chemical composition of the asphalt binder as well as the temperature are two major factors contributing to the short-term aging of asphalt binders [15, 20, 33, 34]. Since the mechanism of the short-term aging is relatively unique compared to that of the long-term aging, the short-term aged viscosity can be represented as a sum of unaged viscosity and a hardening increment in the natural logarithm form [35–37]:

$$\ln \eta_{t=0} = \ln \eta_i + \Delta \ln \eta_s$$ \hspace{1cm} (3)

where $\eta_{t=0}$ is the short-term aged binder viscosity; η_i is the unaged binder viscosity; $\Delta \ln \eta_s$ is the hardening increment due to short-term aging; subscript “s” stands for short-term aging.

This hardening increment is in principle due to increase intermolecular forces at the molecular scale which consequently results in an increased activation energy barrier. This implies that the hardening increment in Eq. (3) can be represented as a function of increasing binder rheological activation energy. The hardening increment can be therefore expressed as:

$$\Delta \ln \eta_s = \ln(\Delta A_{rs}) + \frac{\Delta E_{ars}}{RT_R}$$ \hspace{1cm} (4)

where $\Delta A_{rs}, \Delta E_{ars}$ are the rheological pre-exponential factor and activation energy of hardening increment, respectively.

To further establish the relationship between unaged and short-term aged viscosity, it is assumed that the rheological activation energy of the hardening increment has a linear relationship with that of the unaged binder, as given by:

$$\Delta E_{ars} = k_s E_{ars(i)} + t_s$$ \hspace{1cm} (5)

where k_s, t_s are constants; $E_{ars(i)}$ is the rheological activation energy of unaged asphalt binder.
For an unaged asphalt binder, the results of its rheological kinetics indicate that the unaged rheological pre-exponential factor (\(\ln A_{ri(i)}\)) is linearly related to unaged rheological activation energy (\(E_{ar}(i)\)). This linear relationship is demonstrated by Fig. 3 of this paper, in which the \(R^2\) value of the linear fit is as high as 0.9927. Thus, it can be inferred that \(\ln(\Delta A_{rs})\) and \(\Delta E_{ars}\) also have the following linear relationship due to an analogous mathematical nature:

\[
\ln(\Delta A_{rs}) = m_s(\Delta E_{ars}) + n_s
\]

(6)

where \(m_s, n_s\) are constants; \(\ln A_{ri(i)}\) is the rheological pre-exponential factor of unaged asphalt binder.

By inserting Eq. (5) into Eq. (6), one can obtain:

\[
\ln(\Delta A_{rs}) = m_s k_s E_{ar(i)} + m_s t_s + n_s = a_s E_{ar(i)} + b_s
\]

(7)

in which \(a_s = m_s k_s\); \(b_s = m_s t_s + n_s\).

Where \(a_s, b_s\) are constants.

Substituting Eqs. (4), (5) and (7) into Eq. (3) yields:

\[
\ln \eta_{t=0} = \ln \eta_i + a_s E_{ar(i)} + b_s + \frac{k_s E_{ar(i)} + t_s}{RT_R}
\]

(8)

Equation (8) is the final expression for the short-term aging model presented and evaluated in this paper. It can be observed that for the sake of predicting the short-term aged viscosity, this model requires two inputs, i.e. viscosity and rheological activation energy of the unaged asphalt binder. Four global model coefficients (i.e. \(a_s, b_s, k_s, t_s\)) also need to be determined, which will be detailed in the following sections.

4.2 Data collected from the long-term pavement performance (LTPP) database

In this study, data used for the global model coefficient determination were collected from the long-term pavement performance (LTPP) database. This database contains creditable laboratory-measured data sources covering penetration at 25 °C, kinematic viscosity at 135 °C, and absolute viscosity at 60 °C for various types of binder from different manufacturers in both unaged and laboratory short-term (RTFO or TFO) aged conditions. Among them, the penetration and the kinematic viscosity can be converted to the absolute viscosity at the corresponding temperature. The conversion will be described in the next section. All the measured and converted absolute viscosities will facilitate the rheological activation energy calculation as well as the global model coefficients determination. Depending on data availability, a total number of 208 pavement sections from the United States and Canada were selected. Considering each section may have multiple pavement layers, 446 qualifying viscosity data records were finally collected from the LTPP database for the model development. More detailed information about data collection is presented in “Appendix”.

4.3 Calculation of rheological activation energy

It should be mentioned that prior to the determination of the four global model coefficients, the rheological activation energy of each unaged asphalt binder \(E_{ar(i)}\) has to be calculated. A straightforward way to determine this parameter is linearly plotting \(\ln \eta_i\) versus \(1/RT_R\) based on Eq. (2) and then \(E_{ar(i)}\) can be obtained from the slope of the fitting line. Constructing such a fitting line requires the viscosity values at least three different temperatures for the unaged asphalt binder, which can be obtained through either of the following two approaches depending on the availability of the known binder conventional properties:

- **Approach 1** The conventional properties of the unaged asphalt binder, including for example penetration, kinematic viscosity at 135 °C, and absolute viscosity at 60 °C, as well as viscosity at other temperatures, as available. For instance, Eqs. (9)–(10) are used to separately convert the penetration value and the kinematic viscosity to the absolute viscosity at the corresponding temperature. It is to be noted that the softening point can also be converted to the dynamic viscosity through Eq. (11) [20]. However, this kind of conversion has a relatively high variation, which has been identified in the previous statistical analysis [20].

- **Approach 2** The conventional properties are unavailable but the Viscosity Temperature Susceptibility parameters (i.e. “A-VTS” values) are known for the unaged asphalt binder. For this case,
the unaged viscosity at different temperatures can be computed using Eq. (12) [38]:

\[\log \eta_{TR} = 1050.12 - 226.02 \log \left[\text{PEN}_{TR} \right] + 0.389 \left\{ \log \left[\text{PEN}_{TR} \right] \right\}^2 \]

(9)

\[\eta_{TR} = v * \rho_{TR} \]

(10)

\[\eta_{RTFO} = 1300000 \]

(11)

\[\log - \log \eta = A + \text{VTS} \log T_R \]

(12)

where \(\eta_{TR} \), \(\eta_{RTFO} \), and \(\eta_{135} \) are the viscosity at 25 °C, softening point, and 135 °C, respectively, in centipoise; \(\text{PEN}_{TR} \) is the penetration number at 25 °C, in tenths of a millimeter; \(\rho_{TR} \) is the density of asphalt binder at 135 °C, in g/cm³; \(v \) is the kinematic viscosity, in cSt; \(m \) is the kinematic viscosity, in cSt; \(q_{TR} \) is the density of asphalt binder at 135 °C, in g/cm³; \(A \), VTS are the \(A \) and VTS values of asphalt binder, respectively.

Based on the viscosities determined at different temperatures, a linear plot of \(\ln \eta_i \) against \(1/RT \) can be generated, from which the rheological kinetics of the asphalt binder (i.e. \(A_i, E_{ai} \)) can be easily obtained. Figure 2 presents two examples of such a plot of rheological kinetics for two representative LTPP sections used in this study. Once the rheological kinetics of all the sections are obtained, they are plotted against each other in Fig. 3. It is obvious that \(\ln A_{ai} \) is linearly related to \(E_{ai} \) with \(R^2 \) higher than 0.98. It can also be observed from Fig. 3 that for most of the selected pavement sections, the rheological activation energy of the unaged asphalt binder ranges from 80 to 200 kJ/mol, which is in good agreement with that reported in literature [27, 31].

4.4 Determination of global model coefficients

With the completion of data collection and rheological activation energy calculation, the next step is to determine the global model coefficients, which consists of the two major steps:

- **Step 1** For both unaged and RTFO (or TFO) aged asphalt binders, convert the penetration at 25 °C and the kinematic viscosity at 135 °C to the absolute viscosity using Eqs. (9) and (10), respectively, then obtain the measured viscosities at three different temperatures (i.e. 25 °C, 60 °C, and 135 °C) for all the pavement sections used.

- **Step 2** Substitute the measured unaged viscosity along with the calculated unaged rheological activation energy into Eq. (8), and then adopt the least-squares regression method to best-fit the measured RTFO (or TFO) aged viscosities to determine the four global model parameters. With the determined model parameters, the short-term
aged viscosity for each section can be then predicted.

The determined global model coefficients are listed in Table 1, while the model fitting results are summarized in Fig. 4. To gain a better visual comparison, Fig. 4 also presents the fitting results for the three different groups of data points which correspond to different temperatures (i.e. 25 °C, 60 °C, and 135 °C). In order to evaluate the goodness of model fit, a statistical analysis was performed to calculate the coefficient of determination (R^2) and the standard error of predicted values divided by the standard deviation of measured values (S_e/S_y). They are defined by Eqs. (13) and (14), respectively. Statistically, a larger value of R^2 and a smaller value of S_e/S_y indicate a higher accuracy of the predictive model.

$$R^2 = 1 - \frac{\sum (x - y)^2}{\sum (x - \bar{x})^2}$$ \hspace{1cm} (13)

$$\frac{S_e}{S_y} = \sqrt{\frac{(n-1) \sum_{i=1}^{n} (y - \bar{y})^2}{(n-p) \sum_{i=1}^{n} (x - \bar{x})^2}}$$ \hspace{1cm} (14)

where x is the measured short-term aged viscosity, which is obtained from Step 1; y is the predicted short-term aged viscosity, which is determined from Step 2; \bar{x} is the mean value of measured short-term aged viscosity; n is the size of the sample; p is the number of regression.

It can be observed from Fig. 4 that the results from the new short-term aging model show a relatively high degree of precision and accuracy without a notable bias. The R^2 value of this model reaches up to 0.9479, while the S_e/S_y value is as low as 0.2283.

4.5 Model verification and comparison with existing model

In order to evaluate the predictive capabilities of the new model, viscosity predictions obtained using the proposed model is compared with those obtained using the GAS model. The same dataset used for the proposed model development was applied to the GAS model for the prediction of short-term aged viscosity. The core equation in the GAS model is given as [20]:

$$\log \eta_{\text{Predicted}} = \log \eta_{\text{Measured}} + a_0 + a_1 \log \eta_i$$ \hspace{1cm} (15)

in which $a_0 = 0.054405 + 0.004082 \times \text{code}$; and $a_1 = 0.972035 + 0.010886 \times \text{code}$.

Where a_0, a_1 are model parameters; code is the hardening resistance value.

The predicted versus measured viscosities from the GAS model at three temperatures (i.e. 25 °C, 60 °C, and 135 °C) are plotted alongside with the predicted viscosity using the proposed model, as shown in Online Resource 1. Values of R^2 and S_e/S_y of the GAS model are then calculated using Eqs. (13)–(14), which are also compared with those obtained from the proposed model. The comparison results are summarized in Table 2. Visually, data points of the proposed model lie on or around the equality line for all the three data sets. However, significant deviations can be observed from the GAS model. Based on the data point distribution patterns exhibited in Online Resource 1, it can be inferred that in most cases, the GAS model under predicts the short-term aged viscosity at

Table 1	Global model coefficients of the new short-term aging model			
Model coefficient	a_s	b_s	k_s	t_s
Value	0.011327	-2.974272	-0.035330	11.009737

Fig. 4 Fitting results of the new short-term aging model
The statistical analysis results listed in Table 2 also show that the new model delivers more accurate viscosity prediction capabilities evident in the resulting higher values of R^2 as well as lower values of S_e/S_y.

5 Model validation

The validation of the proposed short-term aging model involves examining the model applicability in two aspects: (1) predicting the viscosity of laboratory short-term aged binder using the data collected from multiple data sources; and (2) predicting the viscosity of field short-term aged binder extracted from the instance of pavement laydown.

First, a number of 36 viscosity data records containing conventional binder properties at various temperatures for both the unaged and laboratory short-term (RTFO or TFO) aged asphalt binder (16 different types of asphalt binder) were collected from four independent literature sources, as summarized in Table 3. The short-term aged viscosity for each data record is then predicted through the proposed short-term aging model and plotted against the corresponding measured viscosity, as shown in Fig. 5. It can be observed that the predicted viscosity is in a relatively good agreement with the measured one and the R^2 value of the model fitting is 0.8475, while the S_e/S_y is 0.3906. Considering that the experimental errors inherently exist in the measurements of the various conventional binder properties, these fitting results are reasonably acceptable. Thus, it can be concluded that the new model suffices to provide the satisfactory accuracy for the laboratory short-term aging prediction.

To further validate the applicability of the new model, a new set of data was collected from the SHRP-A-314 Report [43]. The advantage of this report is that it contains high quality conventional binder properties information for binders that are extracted at the time of pavement mix/laydown. A total of 164 viscosity data records from 65 different pavement sections were collected from this report for the model validation. Figure 6 shows the result of the model validation for field short-term aged binders. It can be seen from Fig. 6 that the model delivers acceptable results with

Table 2
Comparison of statistical analysis results between the two models

Parameter	Model	Data points at 25 °C	Data points at 60 °C	Data points at 135 °C
R^2	New model	0.8548	0.8867	0.9113
	GAS model	0.6045	0.6514	0.5971
Variation		41.39%	36.12%	52.62%
S_e/S_y	New model	0.3812	0.3367	0.2978
	GAS model	0.6290	0.5906	0.6349
Variation		−39.40%	−42.99%	−53.10%

Table 3
Collected data information from multiple literature sources

References	Aging condition	Number of binder type	Binder conventional property
Meleod [39]	Unaged/TFO aged	9	Kinematic viscosity at 135 °C; penetration at 25 °C
Srivastava and Rooijen [40]	Unaged/RTFO aged	3	Absolute viscosity at 60 °C; kinematic viscosity at 135 °C; penetration at 25 °C
Kumbargeri and Biligiri [41]	Unaged/RTFO aged	2	Kinematic viscosity at 150, 160, and 170 °C
Sirin et al. [42]	Unaged/RTFO aged	2	Kinematic viscosity at 135 and 165 °C
all the data points located around the equality line without any significant bias in predictions. The R^2 values of the predictions at three different temperatures are greater than 0.80, while S_e/S_y values are relatively small (the largest one is only 0.4228). The result shows that the new model gives a fairly good prediction of the short-term aged viscosity subjected to the field mix/laydown condition.

6 Conclusions

This paper presents a new short-term aging model for asphalt binders. The rheological activation energy is incorporated into the new model to capture the physical mechanism of the short-term aging from the
perspective of intermolecular interactions. It is found that when an asphalt binder is subjected to the short-term aging, its rheological activation energy increases to a certain amount which is linearly proportional to that of the unaged asphalt binder. The new short-term aging model contains four model coefficients and two essential binder specific inputs (i.e. viscosity and rheological activation energy of the unaged asphalt binder). The rheological activation energy can be calculated from the conventional properties of asphalt binders like penetration, kinematic viscosity, and absolute viscosity measured at various temperatures or from the known Viscosity Temperature Susceptibility parameters (i.e. “A-VTS” values) of unaged asphalt binders. A large data set is collected from the long-term pavement performance (LTPP) database to determine the four global model coefficients, which includes 446 viscosity data records collected from the 208 pavement sections over the United State and Canada. Compared to the existing short-term aging predictive model (i.e. GAS model), the new aging model delivers more accurate viscosity prediction capabilities with higher values of R^2 as well as lower values of S_e/C_14. Viscosity data records collected from multiple independent data sources also validate that this new model has capability to provide fairly accurate predictions in both laboratory and field short-term aging.

The model developed in this study is based on the viscosity data collected at intermediate (25 °C) and high (60 °C and 135 °C) temperatures, which lack of the low temperature viscosity data. Considering that aging increases the brittleness and stiffness of asphalt binders, it would further result in an increased probability of the occurrence of low temperature cracking of asphalt mixtures. Thus, in a continued study, more viscosity data (especially the low temperature viscosity data) will be collected to further validate the proposed model at the full range of temperature.

Compliance with ethical standards

Conflict of interest The authors declare that they no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtainpermission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Data collection from long-term pavement performance (LTPP) database

Data used in this study for the model development were collected from the long-term pavement performance (LTPP) online database, which included the following conventional properties for both the unaged and RTFO (or TFO) aged asphalt binders:

- Penetration at 25 °C;
- Absolute viscosity at 60 °C; and
- Kinematic viscosity at 135 °C.

A number of 208 pavement sections from the United States and Canada including 446 qualifying viscosity data records were finally collected, which covered various types of asphalt binder that were used for different asphalt layers, such as AC-20/120-150/AR-1000 graded virgin asphalt binders, and modified asphalt binders using natural latex, reclaimed rubber, block copolymer, etc. as modifiers. According to the climate criterion, the collected pavement sections are classified into four different climate zones, namely the Wet No-Freeze (WNF), Wet-Freeze (WF), Dry No-Freeze (DNF), and Dry-Freeze (DF) zone. An overview of distribution of all the pavement sections selected in different climate zones is given in Fig. 7. The number of pavement sections in each climate zone is summarized in Table 4, while the raw data that are used for the model development are listed in Table 5.
Table 4 Number of pavement sections in different climate zones

Country	Number of pavement sections in each climate zone	Total pavement sections			
	WNF	WF	DNF	DF	
United States	86	52	26	31	195
Canada	0	3	0	10	13
Total Pavement Sections	86	55	26	41	208

Fig. 7 Distribution of the selected pavement sections from LTPP database [11]
Table 5 Data collected for the new short-term aging model development

Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Layer no.	Climate zone	Aging type	Unaged binder viscosity \(\eta_i \) (cP)	Short-term aged binder viscosity \(\eta_{i=0} \) (cP)		
U.S.	1	Alabama	1001	4	WNF	TFO				183,710,474.4	204,300	386.25	–
U.S.	1	Alabama	1001	5	WNF	TFO				168,415,033.7	199,300	380.07	–
U.S.	1	Alabama	1001	6	WNF	TFO				183,710,474.4	188,100	364.62	–
U.S.	1	Alabama	1019	3	WNF	TFO				189,256,460.5	199,700	412	–
U.S.	1	Alabama	4073	5	WNF	TFO				132,185,206.2	213,600	371.83	–
U.S.	1	Alabama	4126	3	WNF	TFO				201,099,029.7	222,700	436.72	–
U.S.	1	Alabama	4127	3	WNF	TFO				139,186,635.2	189,100	424.36	–
U.S.	1	Alabama	4129	4	WNF	TFO				122,602,622.3	178,100	424.36	–
U.S.	1	Alabama	4129	5	WNF	TFO				106,231,191.4	162,200	348.14	–
U.S.	1	Alabama	5008	3	WNF	RTFO				201,099,029.7	211,800	470.71	–
U.S.	1	Alabama	6012	7	WNF	TFO				97,019,844.97	109,800	325.48	–
U.S.	1	Alabama	6019	7	WNF	TFO				135,620,607.7	196,500	423.33	–
U.S.	1	Arizona	1007	3	DNF	TFO				101,474,531.4	103,000	177.16	–
U.S.	1	Arizona	1007	3	DNF	TFO				214,043,798.1	203,300	432.6	–
U.S.	2	Alaska	1001	3	DNF	TFO				33,149,087.4	43,600	177.16	–
U.S.	2	Alaska	1002	4	DNF	TFO				16,089,951.6	28,800	144.2	–
U.S.	2	Alaska	1004	4	DNF	TFO				33,609,799.9	46,200	191.58	–
U.S.	2	Alaska	1004	5	DNF	TFO				42,439,329.83	40,400	151.41	–
U.S.	2	Alaska	1004	5	DNF	RTFO				43,098,718.64	58,700	229.69	125,681,878.3
U.S.	2	Alaska	1008	4	DNF	TFO				43,098,718.64	44,500	185.4	–
U.S.	2	Alaska	6010	5	DNF	TFO				11,149,735.1	27,000	140.08	–
U.S.	2	California	9035	5	DNF	TFO				50,592,567.79	52,700	189.52	–
U.S.	4	Arizona	1001	2	DNF	RTFO				350,542,342.2	194,000	–	–
U.S.	4	Arizona	1002	2	DNF	RTFO				101,474,531.4	103,000	–	–
U.S.	4	Arizona	1007	3	DNF	RTFO				214,043,798.1	169,500	–	–
U.S.	4	Arizona	1015	3	DNF	RTFO				195,047,844.9	135,000	–	–
U.S.	4	Arizona	1022	4	DNF	RTFO				119,631,285.9	98,500	–	279,965,676.7
U.S.	4	Arizona	1024	3	DNF	RTFO				92,842,532.15	94,400	–	–
U.S.	4	Arizona	1025	4	DNF	RTFO				734,962,828.3	101,000	–	–
U.S.	4	Arizona	6060	4	DNF	RTFO				1,119,510,608	299,000	–	–

\[T = 25 \, ^\circ C \quad T = 60 \, ^\circ C \quad T = 135 \, ^\circ C \]
Table 5 continued

Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{t=0}$ (cP)				
							$T = 25 \degree C$	$T = 60 \degree C$	$T = 135 \degree C$	$T = 25 \degree C$	$T = 60 \degree C$	$T = 135 \degree C$
U.S. 4	Arizona	7079	2	DNF	RTFO	567,487,049.5	217,000	–	–	426,000	–	
U.S. 5	Arkansas	3011	3	WNF	TFO	379,829,384.5	250,900	498.52	–	481,200	–	
U.S. 6	California	0504	6	DNF	RTFO	450,052,409.4	197,700	288.4	1,119,510,608	442,800	419.21	
U.S. 6	California	7455	5	DNF	RTFO	430,839,585.6	218,800	342.99	1,377,924,484	500,000	462.47	
U.S. 6	California	8535	9	DNF	RTFO	515,729,584.2	220,400	–	1,377,924,484	448,800	441.87	
U.S. 8	Colorado	0501	3	DF	TFO	99,211,039.49	103,400	292.52	–	264,100	–	
U.S. 8	Colorado	7780	3	DF	TFO	81,763,632.43	98,000	268.83	–	231,300	–	
U.S. 8	Colorado	7781	6	DF	TFO	290,210,299.2	175,800	–	279,965,676.7	400,000	–	
U.S. 8	Colorado	A310	5	DF	TFO	125,681,878.3	89,800	–	–	228,200	–	
U.S. 8	Colorado	B310	6	DF	TFO	279,965,676.7	162,900	–	–	408,200	–	
U.S. 9	Connecticut	1803	3	WF	TFO	228,228,924.5	205,200	–	395,814,304.5	446,200	–	
U.S. 9	Connecticut	1803	5	WF	TFO	128,874,240.3	200,300	437.75	364,761,260.6	572,800	725.326	
U.S. 9	Connecticut	5001	4	WF	TFO	154,894,911.5	189,300	431.57	450,052,409.4	458,000	–	
U.S. 11	District of Columbia	1400	5	WF	TFO	116,762,973.6	217,500	–	430,839,585.6	505,400	–	
U.S. 11	District of Columbia	1400	6	WF	TFO	207,425,476.1	203,900	420.24	660,354,765.4	422,400	–	
U.S. 11	District of Columbia	1400	7	WF	TFO	116,762,973.6	176,400	392.43	395,814,304.5	505,400	–	
U.S. 12	Florida	3995	4	WNF	TFO	163,724,975.4	189,300	–	–	379,300	–	
U.S. 12	Florida	3995	5	WNF	TFO	150,736,328.1	180,200	431.57	–	374,000	–	
U.S. 12	Florida	3997	4	WNF	TFO	128,874,240.3	169,000	–	–	431,700	–	
U.S. 12	Florida	4096	5	WNF	TFO	243,814,614.8	300,000	–	596,219,535.4	725,000	–	
U.S. 12	Florida	4097	6	WNF	TFO	189,256,460.5	211,500	451.14	–	565,400	–	
U.S. 12	Florida	4097	7	WNF	TFO	201,099,029.7	214,600	450.11	–	545,600	–	
U.S. 12	Florida	4101	7	WNF	TFO	312,391,958.6	300,000	334.75	–	600,000	–	
U.S. 12	Florida	4105	4	WNF	TFO	150,736,328.1	191,000	458.35	–	461,300	–	
U.S. 12	Florida	4106	4	WNF	TFO	301,005,919.3	296,400	525.3	–	765,700	–	
U.S. 12	Florida	4106	5	WNF	TFO	279,965,676.7	249,100	473.8	–	548,000	–	
U.S. 12	Florida	4107	3	WNF	TFO	142,889,864.1	214,600	466.59	–	572,000	–	
U.S. 12	Florida	4107	4	WNF	TFO	142,889,864.1	169,100	424.36	–	433,800	–	
Country	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP) $T = 25^\circ C$	$T = 60^\circ C$	$T = 135^\circ C$	Short-term aged binder viscosity $\eta_{T=0}$ (cP) $T = 25^\circ C$	$T = 60^\circ C$	$T = 135^\circ C$	
---------	-------	---------	-----------	--------------	------------	---------------------------------	-----------------	-----------------	---	-----------------	-----------------	
U.S. 12	Florida	4108	3	WNF	TFO	228,228,924.5	202,200	415.09	–	498,500	–	
U.S. 12	Florida	4108	4	WNF	TFO	220,971,866.6	185,400	380.07	–	459,800	–	
U.S. 12	Florida	4108	5	WNF	TFO	195,047,844.9	187,400	401.7	–	416,300	–	
U.S. 13	Georgia	1031	4	WNF	TFO	103,813,473.8	228,600	435.69	–	597,700	–	
U.S. 16	Idaho	1007	5	DF	RTFO	78,494,414.06	93,500	277.79	279,965,676.7	231,400	–	
U.S. 16	Idaho	1007	6	DF	RTFO	80,104,908.26	93,200	270.89	364,761,260.6	240,800	–	
U.S. 16	Idaho	3017	3	DF	TFO	83,472,493.99	101,000	249.26	–	299,900	–	
U.S. 16	Idaho	6027	5	DF	TFO	44,462,708.36	52,500	–	189,256,460.5	124,300	–	
U.S. 16	Idaho	9032	4	DF	TFO	72,499,598.43	107,000	225.57	81,763,632.43	276,000	255.44	
U.S. 16	Idaho	9034	3	DF	TFO	92,842,532.15	101,500	267.8	–	268,800	–	
U.S. 17	Illinois	A310	7	WF	TFO	235,835,713.3	186,100	402.73	252,189,807.6	525,700	586.07	
U.S. 17	Illinois	A350	6	WF	TFO	201,099,029.7	189,900	412	–	420,800	–	
U.S. 17	Illinois	B310	4	WF	TFO	207,425,476.1	194,400	426.42	201,099,029.7	406,300	580.92	
U.S. 18	Indiana	5022	5	WF	TFO	125,681,878.3	142,200	358.44	–	287,800	–	
U.S. 18	Indiana	5022	6	WF	TFO	183,710,474.4	195,300	494.4	–	386,800	–	
U.S. 18	Indiana	5518	4	WF	TFO	379,829,384.5	210,700	388.31	–	397,100	–	
U.S. 19	Iowa	6049	5	WF	TFO	154,894,911.5	138,000	448.05	412,790,384.4	467,000	–	
U.S. 19	Iowa	6049	6	WF	TFO	173,301,880	187,000	457.32	350,542,342.2	501,000	–	
U.S. 19	Iowa	9116	4	WF	TFO	220,971,866.6	218,800	–	201,099,029.7	470,800	–	
U.S. 19	Iowa	9126	5	WF	TFO	207,425,476.1	222,900	–	660,354,765.4	586,400	–	
U.S. 19	Iowa	A310	7	WF	TFO	111,317,178.3	115,200	446.9685	290,210,299.2	249,600	593.8568	
U.S. 19	Iowa	0107	7	WF	TFO	139,186,635.2	111,400	350.2	312,391,958.6	234,600	–	
U.S. 20	Kansas	4067	5	DF	TFO	135,620,607.7	107,200	339.9	135,620,607.7	256,600	–	
U.S. 20	Kansas	4067	6	DF	TFO	111,317,178.3	102,400	338.87	–	236,200	–	
U.S. 20	Kansas	7085	4	DF	TFO	108,731,192	109,700	306.7958	–	301,300	–	
U.S. 20	Kansas	B310	5	DF	TFO	88,920,422.43	91,900	408.91	–	197,100	–	
U.S. 21	Kentucky	B310	5	WF	TFO	201,099,029.7	197,000	406.85	430,839,585.6	433,400	569.59	
U.S. 23	Maine	0501	4	WF	TFO	72,499,598.43	98,000	318.27	–	284,000	–	
U.S. 23	Maine	0501	5	WF	TFO	71,104,588.46	118,000	354.32	–	342,000	–	
U.S. 23	Maine	0501	6	WF	TFO	83,472,493.99	115,000	351.23	324,411,383.5	335,000	–	
U.S. 23	Maine	0501	7	WF	TFO	132,185,206.2	184,000	439.81	430,839,585.6	548,000	–	
Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{T=0}$ (cP)				
---------	------------	-------	---------	-----------	--------------	------------	-----------------	-------------------------------				
							$T = 25^\circ C$	$T = 60^\circ C$	$T = 135^\circ C$	$T = 25^\circ C$	$T = 60^\circ C$	$T = 135^\circ C$
U.S. 23	Maine	0504	8	WF	TFO	60,128,190.25	94,800	–	–	251,000	–	–
U.S. 23	Maine	0504	9	WF	TFO	59,062,725.7	97,000	314.15	–	267,000	–	–
U.S. 23	Maine	0559	8	WF	TFO	60,128,190.25	94,800	314.15	–	251,000	–	–
U.S. 23	Maine	1001	6	WF	TFO	61,221,679.74	101,000	331.66	–	257,000	–	–
U.S. 23	Maine	1001	7	WF	TFO	60,128,190.25	94,800	331.66	–	251,000	–	–
U.S. 23	Maine	1009	6	WF	TFO	195,047,844.9	204,600	443.93	–	478,400	–	–
U.S. 23	Maine	1009	7	WF	TFO	235,835,713.3	204,500	460.41	–	544,800	–	–
U.S. 23	Maine	1012	4	WF	TFO	150,736,328.1	229,600	459.895	412,790,384.5	530,000	627.27	–
U.S. 23	Maine	1026	3	WF	TFO	71,104,588.46	113,000	313.12	189,256,460.5	224,000	–	–
U.S. 23	Maine	1028	3	WF	TFO	65,895,979.07	112,500	320.33	195,047,844.9	242,000	–	–
U.S. 23	Maine	1028	5	WF	TFO	195,047,844.9	207,800	479.98	–	482,000	479.98	–
U.S. 23	Maine	7023	5	WF	TFO	163,724,975.4	221,300	441.87	379,829,384.5	539,900	609.76	–
U.S. 23	Maine	7023	6	WF	TFO	168,815,033.7	203,700	431.9099	379,829,384.5	487,900	609.76	–
U.S. 24	Maryland	0504	8	WF	TFO	220,971,866.6	213,800	439.81	567,487,049.5	530,800	608.73	–
U.S. 24	Maryland	1632	7	WF	TFO	189,256,460.5	199,500	413.03	–	526,100	–	–
U.S. 24	Maryland	1632	6	WF	TFO	195,047,844.9	196,400	417.15	–	482,200	–	–
U.S. 24	Maryland	2401	5	WF	TFO	207,425,476.1	208,600	462.47	220,971,866.6	485,600	384.19	–
U.S. 24	Maryland	2401	6	WF	TFO	139,186,635.2	207,400	452.17	173,301,880	470,000	–	–
U.S. 24	Maryland	2805	7	WF	TFO	113,993,061.2	196,000	427.45	113,993,061.2	418,600	–	–
U.S. 24	Maryland	A311	5	WF	TFO	220,971,866.6	201,300	438.78	–	432,300	–	–
U.S. 25	Massachusetts	1002	4	WF	TFO	173,301,880	198,200	448.05	–	420,800	–	–
U.S. 25	Massachusetts	1002	5	WF	TFO	214,043,798.1	194,100	428.48	–	408,600	–	–
U.S. 25	Massachusetts	1003	3	WF	TFO	201,099,029.7	206,400	413.03	–	404,200	–	–
U.S. 25	Massachusetts	1003	4	WF	TFO	154,894,911.5	177,200	388.31	–	397,600	–	–
U.S. 25	Massachusetts	1004	3	WF	TFO	168,415,033.7	187,300	404.79	–	380,800	–	–
U.S. 25	Massachusetts	1004	4	WF	TFO	159,221,464.6	181,000	398.61	–	423,000	–	–
U.S. 27	Minnesota	1003	4	WF	TFO	55,063,028.25	84,600	279.13	214,043,798.1	188,000	452.17	–
U.S. 27	Minnesota	1016	3	WF	TFO	56,025,345.92	70,900	260.59	220,971,866.6	178,600	–	–
U.S. 27	Minnesota	1016	4	WF	TFO	122,602,622.3	147,000	366.68	412,790,384.4	376,100	–	–
U.S. 27	Minnesota	1018	3	WF	TFO	53,208,809.44	71,900	258.53	183,710,474.4	189,200	–	–
U.S. 27	Minnesota	1018	4	WF	TFO	62,344,166.6	52,000	199.82	235,835,713.3	173,100	–	–
Country	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{t=0}$ (cP)					
---------	-------	---------	-----------	--------------	------------	--------------------------------------	--					
U.S.	27	Minnesota	1019	3	WF	TFO	60,128,190.195	85,000	290.46	270,235,831.9	305,900	324.45
U.S.	27	Minnesota	1023	4	WF	TFO	60,128,190.195	63,200	266	60,128,190.195	151,000	295.61
U.S.	27	Minnesota	1085	2	WF	TFO	50,592,567.79	90,000	285.31	214,043,798.1	243,000	433.63
U.S.	27	Minnesota	1087	2	WF	TFO	53,208,809.44	85,100	291.49	51,443,563.11	302,700	494.4
U.S.	27	Minnesota	1087	3	WF	TFO	119,631,285.9	143,600	362.56	–	454,000	587.1
U.S.	27	Minnesota	6064	9	WF	TFO	67,145,053.6	89,300	278.1	–	203,600	386.25
U.S.	27	Minnesota	6064	10	WF	TFO	128,874,240.3	137,100	341.96	395,814,304.5	322,500	501.61
U.S.	27	Minnesota	6064	11	WF	TFO	150,736,328.1	103,400	267.8	540,714,139.1	249,800	409.94
U.S.	27	Minnesota	D310	6	WF	TFO	139,186,635.2	150,500	–	395,814,304.5	353,800	555.17
U.S.	29	Missouri	4069	4	WF	RTFO	270,235,831.9	194,600	410.97	696,216,302.7	454,800	578.86
U.S.	29	Missouri	4069	5	WF	TFO	260,987,441.5	193,500	442.38	627,103,536	445,300	568.56
U.S.	29	Missouri	5393	4	WF	TFO	178,396,458.2	151,600	367.6379	696,216,302.7	466,500	556.2
U.S.	29	Missouri	5393	5	WF	TFO	189,256,460.5	156,200	358.543	627,103,536	437,600	570.62
U.S.	29	Missouri	5473	4	WF	TFO	260,987,441.5	197,500	409.94	696,216,302.7	457,300	588.13
U.S.	29	Missouri	5483	4	WF	TFO	279,965,676.7	198,700	412	696,216,302.7	452,600	587.86
U.S.	29	Missouri	5483	5	WF	TFO	260,987,441.5	195,000	409.94	696,216,302.7	442,800	570.105
U.S.	29	Missouri	7054	7	WF	TFO	270,235,831.9	199,500	420.24	627,103,536	410,100	544.87
U.S.	29	Missouri	A310	6	WF	TFO	235,835,713.3	191,100	418.18	734,962,828.3	444,200	606.67
U.S.	31	Nebraska	7040	7	DF	TFO	90,850,875.9	94,100	273.98	–	218,000	–
U.S.	32	Nevada	1020	3	DF	RTFO	515,729,584.2	333,700	439.192	1,119,510,608	672,900	627.167
U.S.	32	Nevada	1020	5	DF	RTFO	80,104,908.26	29,400	815.76	189,256,460.5	56,600	1016.61
U.S.	32	Nevada	1030	7	DF	RTFO	55,063,082.25	200,600	609.76	163,724,975.4	446,200	896.1
U.S.	32	Nevada	2027	4	DF	TFO	52,315,419.83	57,600	213.828	46,628,650.18	125,300	–
U.S.	32	Nevada	A352	4	DF	RTFO	596,219,535.4	203,900	–	1,377,924,484	350,600	338.664
U.S.	33	New Hampshire	1001	4	WF	TFO	178,396,458.2	193,400	450.11	–	470,400	–
U.S.	33	New Hampshire	1001	5	WF	TFO	87,048,735	111,600	350.2	–	245,300	–
U.S.	37	North Carolina	1006	7	WNF	TFO	128,874,240.3	201,400	460.204	–	507,300	–
U.S.	37	North Carolina	1024	3	WNF	TFO	201,099,029.7	178,800	426.42	–	398,200	–
U.S.	37	North Carolina	1802	3	WNF	TFO	106,231,189.4	205,100	703.902	–	553,500	–
U.S.	37	North Carolina	2824	4	WNF	TFO	173,301,880	183,800	664.453	–	441,700	–
U.S.	37	North Carolina	3011	2	WNF	TFO	214,043,798.1	195,300	450.728	–	417,700	–
Table 5 continued

Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{t=0}$ (cP)				
							$T = 25 \degree C$	$T = 60 \degree C$	$T = 135 \degree C$	$T = 25 \degree C$	$T = 60 \degree C$	$T = 135 \degree C$
U.S. 38	North Dakota	5002	3	DF	TFO	108,731,192	91,500	252.35	337,111,090.4	178,300	335.78	
U.S. 39	Ohio	3013	4	WF	TFO	195,047,844.9	198,800	447.02	515,729,584.2	431,700	607.7	
U.S. 40	Oklahoma	0603	4	WNF	RTFO	220,971,866.6	191,600	412	–	404,900	–	
U.S. 40	Oklahoma	1015	2	WNF	TFO	125,681,878.3	120,000	360.5	379,829,384.5	260,000	489.25	
U.S. 40	Oklahoma	1017	2	WNF	TFO	116,762,973.6	100,000	360.5	260,987,441.5	198,100	463.5	
U.S. 40	Oklahoma	3018	3	WNF	TFO	125,681,878.3	116,000	350.2	279,965,676.7	250,000	484.1	
U.S. 40	Oklahoma	4086	2	WNF	TFO	125,681,878.3	172,200	484.203	290,210,299.2	379,500	660.436	
U.S. 40	Oklahoma	4087	5	WNF	RTFO	260,987,441.5	182,800	413.03	–	436,300	–	
U.S. 40	Oklahoma	4088	3	WNF	TFO	106,231,191.4	102,900	291.49	279,965,676.7	186,700	394.49	
U.S. 40	Oklahoma	4154	3	WNF	RTFO	173,301,880	192,500	475.86	–	464,500	–	
U.S. 40	Oklahoma	4157	2	WNF	RTFO	195,047,844.9	187,500	454.23	–	443,300	–	
U.S. 40	Oklahoma	4160	3	WNF	TFO	122,602,622.3	99,300	321.772	122,602,622.3	206,000	438.059	
U.S. 40	Oklahoma	4161	2	WNF	RTFO	228,228,924.5	199,000	461.44	–	510,000	–	
U.S. 40	Oklahoma	4164	3	WNF	TFO	113,993,061.2	170,300	426.42	270,235,831.9	455,500	613.88	
U.S. 40	Oklahoma	4164	5	WNF	RTFO	228,228,924.5	179,500	393.46	–	380,100	–	
U.S. 40	Oklahoma	5021	2	WNF	RTFO	270,235,831.9	214,800	414.06	–	542,200	–	
U.S. 40	Oklahoma	7024	3	WNF	TFO	116,762,973.6	178,300	473.8	279,965,676.7	400,000	643.75	
U.S. 40	Oklahoma	B310	4	WNF	RTFO	220,971,866.6	183,800	431.57	–	397,400	–	
U.S. 41	Oregon	6011	8	DF	RTFO	228,000	320.33	–	540,000	493.37		
U.S. 41	Oregon	7018	5	DF	RTFO	871,845,297.4	261,000	462.882	–	688,100	723.163	
U.S. 45	South Carolina	1011	4	WNF	TFO	150,736,328.1	213,400	487.19	–	546,600	–	
U.S. 45	South Carolina	1025	3	WNF	TFO	228,228,924.5	210,300	392.224	–	595,300	–	
U.S. 46	South Dakota	9187	4	DF	TFO	41,794,434.21	56,600	221.965	–	134,200	–	
U.S. 46	South Dakota	9187	5	DF	TFO	108,731,192	113,900	319.609	–	282,600	–	
U.S. 47	Tennessee	1028	3	WNF	TFO	220,971,866.6	198,700	433.63	–	534,300	–	
U.S. 48	Texas	1039	4	WNF	TFO	312,391,958.6	171,900	329.6	1,119,510,608	405,200	–	
U.S. 48	Texas	1048	2	DNF	TFO	46,628,650.18	56,400	195.7	–	219,300	–	
U.S. 48	Texas	1049	6	WNF	TFO	183,710,473.4	205,700	463.5	492,380,273.5	478,600	–	
Table 5 continued

Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{i=0}$ (cP)				
							T = 25 °C	T = 60 °C	T = 135 °C			
U.S. 48	Texas	1050	5	WNF	TFO	301,005,919.3	198,000	370.8	1,048,880,814	435,000		
U.S. 48	Texas	1060	4	WNF	TFO	142,889,864.1	205,000	401.7	450,052,409.4	406,000		
U.S. 48	Texas	1069	4	WNF	TFO	189,256,460.5	174,600	401.7	–	372,600		
U.S. 48	Texas	1070	4	WNF	TFO	189,256,460.5	184,900	453.2	–	429,100		
U.S. 48	Texas	1076	3	DNF	TFO	81,763,632.43	98,800	257.5	515,729,584.2	251,600		
U.S. 48	Texas	1077	4	WNF	TFO	68,428,663.7	101,600	607.7	146,737,283.6	159,000		
U.S. 48	Texas	1087	3	WNF	TFO	195,047,844.9	173,200	525.3	–	406,100		
U.S. 48	Texas	1092	5	WNF	TFO	154,894,911.5	202,400	412	492,380,275.3	429,500		
U.S. 48	Texas	1093	6	WNF	TFO	116,762,973.6	83,400	262.65	–	256,400		
U.S. 48	Texas	1094	4	WNF	TFO	125,681,878.3	109,400	267.8	–	202,100		
U.S. 48	Texas	1096	5	WNF	TFO	116,762,973.6	111,800	278.1	–	213,700		
U.S. 48	Texas	1111	3	DNF	TFO	116,762,973.6	88,900	262.65	–	200,000		
U.S. 48	Texas	1113	4	WNF	TFO	178,396,458.2	191,400	432.6	470,528,977.5	453,000		
U.S. 48	Texas	1116	4	WNF	TFO	189,256,460.5	218,100	463.5	567,487,049.5	461,000		
U.S. 48	Texas	1119	3	WNF	TFO	189,256,460.5	187,500	406.85	–	466,300		
U.S. 48	Texas	1122	4	WNF	TFO	97,019,844.97	99,300	257.5	–	221,700		
U.S. 48	Texas	1123	3	WNF	TFO	90,850,875.59	94,700	283.25	–	166,900		
U.S. 48	Texas	1130	4	WNF	TFO	103,813,473.8	100,800	257.5	–	175,900		
U.S. 48	Texas	1169	4	WNF	TFO	207,425,476.1	187,000	478.95	–	465,600		
U.S. 48	Texas	1174	3	WNF	TFO	80,104,908.26	99,500	262.65	–	151,800		
U.S. 48	Texas	1181	5	WNF	TFO	106,231,191.4	92,700	288.4	515,729,584.2	284,600		
U.S. 48	Texas	1183	3	WNF	TFO	116,762,973.6	88,400	247.2	–	212,400		
U.S. 48	Texas	1183	4	WNF	TFO	116,762,973.6	91,600	247.2	–	213,700		
U.S. 48	Texas	2172	5	WNF	TFO	119,631,285.9	87,200	255.44	450,052,409.4	222,900		
U.S. 48	Texas	3003	3	WNF	TFO	207,425,476.1	187,600	456.599	–	418,600		
U.S. 48	Texas	3609	3	WNF	TFO	128,874,240.3	89,300	226.6	–	222,900		
U.S. 48	Texas	3669	4	WNF	TFO	189,256,460.5	202,100	401.7	470,528,977.5	402,100		
U.S. 48	Texas	3669	5	WNF	TFO	173,301,880	211,100	422.3	228,228,924.5	411,100		
U.S. 48	Texas	3679	3	WNF	TFO	168,415,033.7	200,900	576.8	350,542,342.2	378,000		
U.S. 48	Texas	3689	6	WNF	TFO	189,256,460.5	196,700	412	492,380,275.3	354,300		
U.S. 48	Texas	3729	4	WNF	TFO	207,425,476.1	201,300	391.4	596,219,535.4	397,000		
Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_u (cP)	Short-term aged binder viscosity $\eta_{t=0}$ (cP)				
---------	------------	-------	---------	-----------	--------------	------------	-------------------------------------	---				
							$T = 25 \, ^\circ C$	$T = 60 \, ^\circ C$	$T = 135 \, ^\circ C$	$T = 25 \, ^\circ C$	$T = 60 \, ^\circ C$	$T = 135 \, ^\circ C$
U.S. 48	Texas	3749	4	WNF	TFO	78,494,414.06	84,500	278.1	290,210,299.2	232,200	232,200	
U.S. 48	Texas	3769	3	DNF	TFO	290,210,299.2	200,200	355.35	–	512,200	–	
U.S. 48	Texas	3855	5	WNF	TFO	379,829,384.5	141,900	412	734,962,828.3	361,800	–	
U.S. 48	Texas	4142	3	WNF	TFO	62,344,166.6	90,900	309	–	203,800	–	
U.S. 48	Texas	5035	3	WNF	TFO	364,761,260.6	177,900	350.2	984,515,593.9	412,500	–	
U.S. 48	Texas	5283	3	WNF	TFO	178,396,488.2	219,600	504.7	364,761,260.6	449,900	–	
U.S. 48	Texas	5287	3	WNF	TFO	235,835,713.3	171,000	329.6	–	362,900	–	
U.S. 48	Texas	5301	3	WNF	TFO	260,987,441.5	205,400	442.9	776,905,637.5	470,800	–	
U.S. 48	Texas	5317	3	WNF	TFO	132,185,206.2	92,600	–	450,052,409.4	203,000	–	
U.S. 48	Texas	5328	3	WNF	TFO	132,185,206.2	198,600	484.1	–	532,400	–	
U.S. 48	Texas	6079	6	DNF	TFO	111,317,178.3	93,900	252.35	–	216,200	–	
U.S. 48	Texas	6086	8	WNF	TFO	44,462,708.36	89,700	298.7	159,221,464.6	215,200	–	
U.S. 48	Texas	6160	6	DNF	TFO	228,228,924.5	201,600	–	470,528,977.5	405,800	–	
U.S. 48	Texas	6179	6	DNF	TFO	135,620,607.7	188,000	710.7	–	380,500	–	
U.S. 48	Texas	6179	7	DNF	TFO	–	199,700	751.9	–	413,600	–	
U.S. 48	Texas	9005	4	WNF	TFO	63,496,665.24	110,700	288.4	142,889,864.1	210,600	–	
U.S. 48	Texas	L310	3	DNF	TFO	290,210,299.2	200,200	355.35	–	512,200	–	
U.S. 48	Utah	1001	3	DF	TFO	111,317,178.3	108,200	289.43	–	225,800	–	
U.S. 49	Utah	1006	4	DF	RTFO	85,233,494.46	82,500	247.2	–	203,500	–	
U.S. 49	Utah	1007	4	DF	RTFO	364,761,260.6	176,000	366.68	–	448,300	–	
U.S. 49	Utah	1007	5	DF	RTFO	73,934,541.07	193,500	154.5	–	359,500	–	
U.S. 49	Utah	1008	5	DF	RTFO	243,814,614.8	174,300	376.98	–	461,800	–	
U.S. 49	Utah	C361	5	DF	RTFO	243,814,614.8	174,500	376.98	–	461,800	–	
U.S. 51	Virginia	1419	4	WF	TFO	243,814,614.8	195,800	397.58	776,905,637.5	570,000	–	
U.S. 51	Virginia	1423	6	WF	TFO	243,814,614.8	190,300	397.58	734,962,828.3	453,000	–	
U.S. 53	Washington	1005	7	DF	RTFO	150,736,328.1	266,100	603.58	567,487,049.5	710,300	916.7	
U.S. 53	Washington	6020	6	DF	RTFO	28,632,724.92	88,300	337.84	125,681,878.3	306,700	578.86	
U.S. 53	Washington	7322	6	DF	RTFO	113,993,061.2	20,300	461.44	395,814,304.5	58,100	683.92	
U.S. 54	West Virginia	4004	5	WF	TFO	301,005,919.3	239,000	515	–	466,600	–	
U.S. 54	West Virginia	4004	6	WF	TFO	214,043,798.1	239,000	515	–	466,600	–	
U.S. 56	Wyoming	2037	3	DF	RTFO	324,411,383.5	182,800	352.87	–	445,600	–	
Country	State code	State	SHRP ID	Layer no.	Climate zone	Aging type	Unaged binder viscosity η_i (cP)	Short-term aged binder viscosity $\eta_{i=0}$ (cP)				
----------	------------	----------	---------	-----------	--------------	------------	--------------------------------------	---				
							$T = 25 \, ^\circ C$	$T = 60 \, ^\circ C$	$T = 135 \, ^\circ C$	$T = 25 \, ^\circ C$	$T = 60 \, ^\circ C$	$T = 135 \, ^\circ C$
Canada 81	Alberta	0501	4	DF	TFO	11,437,910.03	44,300	–	54,124,435.96	121,400	–	
Canada 81	Alberta	1803	3	DF	TFO	30,165,794.15	85,800	285.516	108,731,192	196,300	–	
Canada 81	Alberta	1804	4	DF	TFO	29,771,593.98	75,600	262.238	142,889,864.1	203,700	–	
Canada 81	Alberta	1804	6	DF	TFO	29,005,237.79	83,300	278.1	101,474,531.4	199000	–	
Canada 81	Alberta	1805	4	DF	TFO	32,254,668.44	70,000	220.42	108,731,192	160,100	–	
Canada 81	Alberta	2812	3	DF	TFO	16,921,338.42	55,500	221.038	60,128,190.25	111,300	–	
Canada 81	Alberta	8529	4	WF	TFO	11,244,614.45	36,200	–	41,163,617.76	72,100	–	
Canada 82	British Columbia	9017	5	DF	TFO	111,317,178.3	80,400	226.6	324,411,383.5	137,900	288.4	
Canada 82	British Columbia	9017	6	DF	TFO	92,842,532.15	75,800	216.3	324,411,383.5	137,900	278.821	
Canada 82	British Columbia	1005	4	DF	TFO	150,736,328.1	74,500	219.802	430,839,585.6	147,300	283.25	
Canada 83	Manitoba	3802	5	WF	TFO	51,443,563.11	97,700	297.67	51,443,563.11	218,500	–	
Canada 83	Manitoba	A310	6	WF	TFO	34,079,832.42	83,500	291.1295	111,317,178.3	215,600	437.235	
Canada 83	Manitoba	A01	4	DF	RTFO	31,394,742.55	82,100	283.456	106,231,191.4	204,100	–	
Canada 90	Saskatchewan	6405	5	DF	RTFO	36,578,778.59	77,400	274.083	132,185,206.2	192,100	404.1205	
Canada 90	Saskatchewan	6420	5	DF	RTFO	31,820,503.93	68,600	362.3334	108,731,192	154,900	353.084	
References

1. Petersen JC (1984) Chemical composition of asphalt as related to asphalt durability: state of the art. Transp Res Rec 999:13–30
2. Lu X, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Constr Build Mater 16:15–22
3. Das PK, Kringos N, Birgisson B (2014) Microscale investigation of thin film surface ageing of bitumen. J Microsc 254(2):95–107
4. Hofko B, Alavi MZ, Grothe H, Jones D, Harvey J (2017) Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater Struct 50:187. https://doi.org/10.1617/s11527-017-1059-x
5. Hofko B, Porot L, Falchetto AC et al (2018) FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct 51:45. https://doi.org/10.1617/s11527-018-1170-7
6. Petersen JC (1993) Asphalt oxidation—an overview including a new model for oxidation proposing that physicochemical factors dominate the oxidation kinetics. Fuel Sci Technol Int 11(1):57–87
7. Petersen JC, Glaser R (2011) Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater Pavement Des 12(4):795–819
8. Sirin O, Paul DK, Kassen E (2018) State of the art study on aging of asphalt mixtures and use of antioxidant additives. Adv Civ Eng 2018:1–18
9. Woo WJ, Chowdhury A, Glover CJ (2008) Field aging of unmodified asphalt binder in three Texas long-term performance pavements. J Transp Res Rec 2051:15–22
10. Glover CJ, Liu GL, Rose AA et al (2014) Evaluation of binder aging and its influence in aging of hot mix asphalt concrete: technical report. Research Report No. FHWA/ TX-14/0-6613-1, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, USA
11. Luo X, Gu F, Ling M et al (2018) Review of mechanistic-empirical modeling of top-down cracking in asphalt pavements. Constr Build Mater 191:1053–1070
12. Hofko B, Handle F, Eberhardsteiner L et al (2015) Alternative approach toward the aging of asphalt binder. J Transp Res Board 2505:24–31. https://doi.org/10.3141/2505-04
13. Frigio F, Raschia S, Steiner D, Hofko B, Canestrari F (2016) Aging effects on recycled WMA porous asphalt mixtures. Constr Build Mater 123:712–718
14. Zhang J, Simate GS, Hu X et al (2017) Impact of recycled asphalt materials on binder properties and rutting and cracking performance of plant-produced mixtures. Constr Build Mater 155:654–663
15. Hofko B, Falchetto AC, Grenfell J et al (2017) Effect of short-term ageing temperature on bitumen properties. Road Mater Pavement Des 18(82):108–117. https://doi.org/10.1080/14680629.2017.1304268
16. Lolly R (2013) Evaluation of short term aging effect of hot mix asphalt due to elevated temperature and extended aging time. Thesis, Arizona State University, Tempe, Arizona, USA
17. Miró R, Martínez AH, Navarro FM et al (2015) Effect of ageing and temperature on the fatigue behavior of bitumens. Mater Des 86:129–137
18. AASHTO (2009) Effect of heat and air on asphalt materials (thin-film oven test). AASHTO T 179-05, Washington
19. AASHTO (2013) Effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test). AASHTO T 240-13, Washington
20. Mirza MW, Witzczak MW (1996) Development of a global aging system for short and long term aging of asphalt cements. J Assoc Asphalt Paving Technol 64:393–430
21. ARA Inc. (2004) Guide for mechanistic-empirical design of new and rehabilitated pavement structure, part 2: design Inputs, Chapter 2. Material Characterization, Draft Final Report 1-37A, National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C
22. Dinegdae YH, Onifade I, Jelagin D et al (2015) Mechanics-based top-down fatigue cracking initiation prediction framework for asphalt pavements. Road Mater Pavement Des 16(4):907–927
23. Onifade I, Dinegdae YH, Birgisson B (2017) Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements. Front Struct Civ Eng 11(3):257–269
24. Dinegdae YH, Birgisson B (2018) Effects of truck traffic on top-down fatigue cracking performance of flexible pavements using a new mechanics-based analysis framework. Road Mater Pavement Des 19(1):182–200
25. Eyering H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4:283–291
26. Salomon D, Zhai H (2002) Ranking asphalt binders by activation energy for flow. J Appl Asphalt Binder Technol 2(2):1–9
27. Jamshidi A, Hamzah MO, Shahadan Z et al (2014) Evaluation of the rheological properties and activation energy of virgin and recovered asphalt binder blends. J Mater Civ Eng 27(3):04014135. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001024
28. Luo X, Gu F, Lytton RL (2015) Prediction of field aging gradient in asphalt pavements. J Transp Res Board 2507:19–28
29. Luo X, Gu F, Lytton RL (2017) Kinetics-based aging prediction of asphalt mixtures using field deflection data. Int J Pavement Eng. https://doi.org/10.1080/10298436.2017.1293262
30. Salomon D, Zhai H (2004) Asphalt binder flow activation energy and its significance for compaction effort. In: Proceeding of 3rd euroasphalt and eurobitume congress, Book II, Paper 116, pp 1754–1762
31. Haider SW, Mirze MW, Thottempudi AK et al (2011) Characterization temperature susceptibility of asphalt binders using activation energy for flow. In: Proceeding of the 3rd euroasphalt and eurobitume congress, Book II, Paper 116, pp 493–503
32. Hasan MRM, You Z, Yang X et al (2017) Quantification of physicochemical properties, activation energy, and temperature susceptibility of foamed asphalt binders. Constr Build Mater 153:557–568
33. Lund JW, Wilson JE (1984) Evaluation of asphalt aging in hot mix plants. J Assoc Asphalt Paving Technol 53:1–18
34. Gómez WDF, Rondón QH, Reyes LF (2013) A review of asphalt and asphalt mixture aging. Ingeniería e Investigacion 33(1):5–12
35. Glover CJ, Davison RR, Domke CH et al (2005) Development of a new method for assessing asphalt binder durability
with field validation. Research Report No. FHWA/TX-05/1872-2, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, USA

36. Glover CJ, Martin AE, Chowdhury A et al (2009) Evaluation of binder aging and its influence in aging of hot mix asphalt concrete: literature review and experimental design. Research Report No. FHWA/TX-08/0-6009-1, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, USA

37. Glover CJ, Han R, Jin X et al (2014) Evaluation of binder aging and its influence in aging of hot mix asphalt concrete: technical report. Research Report No. FHWA/TX-14/0-6009-2, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, USA

38. ASTM (2012) Standard practice for viscosity-temperature chart for asphalt binders. ASTM D2493, West Conshohocken

39. McLeod NW (1996) Relationship of paving asphalt temperature susceptibility as measured by PVN to paving asphalt specifications, paving asphalt mixture design and asphalt pavement performance. J Assoc Asphalt Paving Technol 58:410–489

40. Srivastava A, Rooijen RV (2000) Bitumen performance in hot and arid climates. In: Paper prepared for pavement seminar for the Middle East and North Africa region: innovative road rehabilitation and recycling technologies, new policies and practices in pavement design and execution, Amman, Jordan, October 24–26

41. Kumbargeri YS, Biligiri KP (2016) Understanding aging behavior of conventional asphalt binders used in India. Transp Res Procedia 17:282–290

42. Sirin O, Paul DK, Kassem E et al (2017) Effect of ageing on asphalt binders in the State of Qatar: a case study. Road Mater Pavement Des 18:165–184

43. Finn FN, Yapp MT, Coplantz JS et al (1990) Asphalt properties and relationship to pavement performance: literature review. Research Report No. TM-UCB-A-003A-90-3, ARE Inc, Scotts Valley, California, USA

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.