Abstract

Risk Management is part of the operational element in an organization to manage their directives towards risks surrounding them. It assists the organization to identify, evaluate and prioritize the risks through risk analysis. The main objective of this work is to identify risk from hazards involved in the work place, so that control measures can be put in place to avoid or minimise the harm it can cause. The risks include hazards from radiation, chemical, biological, physical as well as ergonomic factors. Hazard identification was carried out at two radiation facilities in Malaysian Nuclear Agency that involved radiation safety. ALURTRON and MINTec-Sinagama provide radiation services to commercial industries as well as for R&D purposes. In this paper, every section in risk analysis and hazard identification are discussed.

1. Introduction

Every organization has its own risks that need to be identified at the very beginning of operation. Risks can be identified and managed accordingly prior to the probable occurrence of real incidents. It is good practice to identify the risks including hazards that might affect the operation of any organization. All levels of leadership are strongly encouraged to be involved during this period [1]. Subsequently, by evaluating and analysing the identified risks, organization can plan appropriate control or treatment to decrease the impact of the risks. At the end of the evaluating and analysing process, the organization will either accept any residual risks or continue the process of totally eliminating the risks.

1.1 Risk management

Risks need to be managed effectively for an organization in order for it to operate at its optimum level. When risk identification is correctly carried out, then the risk treatment can be put in place [2]. The process should be continuously handled and maintained at every department and level. It keeps the environment and goal-driven activities in the organization running smoothly. In turn, these activities can bring success to the organization whilst ensuring that the risks are being taken care all the time [3]. Negative and positive impacts from the identified risks will drive the organization along the right path to realise their mission and vision [4].
Therefore, for this purpose, this study carried out risk and hazard identification at two radiation facilities in Malaysian Nuclear Agency namely ALURTRON and MINTec-Sinagama. The main objective of this work is to identify risks from hazards involved in these workplaces. Subsequently, appropriate control measures can be applied to avoid or minimise the harm they can cause.

1.2 Radiation facility: ALURTRON [5]
ALURTRON is one of the radiation processing plants owned by Malaysian Nuclear Agency, located in Bangi, Selangor. It provides electron beam radiation services to industry, especially for wire, cable and tube (tubular product) as well as semiconductor. The purpose of this radiation process is to crosslink the polymer material of the products which can increase the application quality of the products. The most common application of these products is in the automotive industry. These are needed in the engine compartment especially for the brake line. As for treating wafer semiconductor, electron beam radiation can enhance its electrical conductivity.

For the irradiation process, ALURTRON has one electron beam machine, EPS-3000, which works with other supporting equipment and product handling system.

Figure 1. Process in Risk Management.
Figure 2. Left: Capstan drum for tubular product irradiation with scanner horn located in the bunker. Middle: Pay-off equipment for wire under beam handling system (WUBHS) which is integrated to the EPS-3000 machine. Right: Trolley for flat product irradiation.

1.3 Radiation facility: MINTec-Sinagama [6]
Located within the same compound as ALURTRON, Malaysian Nuclear Agency also has a gamma radiation processing plant, known as MINTec-Sinagama. Set-up in 1989, MINTec-Sinagama has since serve the country by treating a diversity of products: from medical devices, raw material of pharmaceuticals products, to food and non-medical products. Depending on the products, the objectives of the gamma irradiation treatment that need to be fulfilled are sterilization, decontamination, shelf-life extension and quarantine.

MINTec-Sinagama has a high radioactive Co-60 activity of approximately 0.3 MCi (1.1 x 10^{13} Bq) (as per September 2019). For product handling equipment, MINTec-Sinagama uses JS 10000 IR 219 tote irradiator system. In addition, irradiation process at MINTec-Sinagama is supported by various mechanical equipment such as compressor, cooling water system and pumps and motors.

Figure 3. Schematic diagram of gamma radiation processing plant in MINTec-Sinagama (courtesy from manufacturer: Nordion (Canada) Inc.)
2. Risk analysis process
Risk analysis comprises identification, description and estimation of risks. During risk identification, ALURTRON and MINTec-Sinagama identified their main risk category with a few fitting into more than one category. Some of the risk category are strategic, compliance, financial, operational and environmental [1]. Based on the recommendation from Institute of Risk Management [2], subsequently the risk description was tabulated as shown in Table 1.

Table 1. Structured format of risk description.

Item	Description
1. Name of risk	Qualitative description of the events, their size, type, number and dependencies
2. Scope of risk	Eg. strategic, operational, financial, knowledge or compliance
3. Nature of risk	Stakeholders and their expectations
4. Stakeholders	Significance and probability
5. Quantification of risk	Loss potential and financial impact of risk
6. Risk tolerance/ appetite	Value at risk
7. Risk treatment & control mechanisms	Probability and size of potential losses/gains
	Objective(s) for control of the risk and desired level of performance
8. Potential action for improvement	Recommendations to reduce risk
9. Strategy and policy developments	Identification of function responsible for developing strategy and policy

In order to do the analysis, estimation on risk is needed. The possible impact (consequence) and likelihood (occurrence) are measured depending solely on the past operational experience of the organization [2]. A mixed quantitative, semi-quantitative or qualitative approach was taken. Table 2, 3 and 4 show the table of risk estimation on likelihood and impact as well as matrix of both factors as decided by ALURTRON and MINTec-Sinagama during workshop on risk management. Subsequently, the risk is evaluated.

Table 2. Likelihood or probability of occurrence on threats.

Level	Descriptor	Description
5	Almost certain	Expected to occur in most circumstances
4	Likely	Will probably occur in most circumstances
3	Possible	Might occur in some time
2	Unlikely	Could occur at some time
1	Rare	May occur only in exceptional circumstances
Table 3. Impact Table - risk estimation on impact of risk.

Level	Description	Description
5	Very critical	Machine down/closure of facility
4	Critical	Plant closure for 1 to 3 days, high health risk
3	Moderate	Risk can cause damage, delay, customer complaint
2	Fair	Risk is real but can be averted fast
1	Risk accepted	Impact is very low

Table 4. Matrix likelihood x impact table. Different colors scheme was used for easier visual inspection.

LIKELIHOOD	IMPACT				
5	1	2	3	4	5
LOW	5	10	15	20	25
MEDIUM	8	12	16	20	20
MEDIUM	6	9	12	16	16
VERY LOW	2	4	6	8	10
VERY LOW	1	2	3	4	5

3. Findings and results
Possible risks involved in the work activities of ALURTRON and MINTec-SINAGAMA were explored. A few techniques were utilized – such as SWOT (Strengths, Weaknesses, Opportunities, Threat) analysis and PESTLE (Political, Economic, Social, Technical, Legal, and Environmental) analysis. Brainstorming was also applied at two workshops and in a few discussions among staffs together with the Director of both facilities. Risk analysis and findings from the above activities are tabulated in Table 5 and 6.
| CATEGORIES | ISSUES | RISKS IDENTIFICATION | RISKS ANALYSIS & VERIFICATION | RISKS TREATMENT PLAN | PIC |
|----------------------------------|---------------------------------------|---------------------------------------|-------------------------------|---|-------------------|
| PRODUCT RECEIVED & INSPECTION | Quantity of product not tally | Disruption during payment process | Thorough Inspection | Length counter (to purchase) | Admin/ OP |
| | | Interrupted operating schedule | Thorough Inspection | NA | QC inspector/ |
| | | | | | executive OP |
| DOCUMENTATION & HANDLING PROCESS | Handling of document tagging/revision | Record not updated | Review of document | Document check once a year | Executive QA |
| IRRADIATION PROCESS | CCTV damage | Product stuck in irradiation room/ | Old CCTV | Black and white CCTV procurement | SV OP |
| EQUIPMENT CALIBRATION & MAINTENANCE| Chemical hazard to worker health | Testing equipment performance not | Service record | Provide checklist for maintenance by | Executive QA |
| | (fumehood) | being checked | | BKJ | |
| QA TEST - Gel Content | Employee health affected due to waste | Delayed test | Report to WASTECC for disposal| Disposal programme | SV QA / next |
| | storage overload | | | | disposal circle |
| QA TEST - Dosimetry | CTA dosimeter low in stock | Disturb & delay in work process | Procurement when left 2 | NA | Lab Assistant |
| | | | batch | | |
| PRODUCT RELEASE | Delivery | Delay release product | Target 5 days delivery (QC | NA | Executive OP |
| | | | objective) | | |
| CUSTOMER SERVICE | Delivery | Delay & loss of customer | Target 5 day delivery | Customer service - Follow up | Admin |
| PUBLIC ACCEPTANCE (IP-community) | Public complaint | Termination of operation | Awareness programme (Open day)| NA | UKK |
| PAYMENT TO SERVICE/ PRODUCT | Delay payment | Blacklisted | Purchasing procedure | Follow up with BKT | PIC procurement |
| PROVIDER (IP-supplier) | | | | | |
| TRAINING AND EXPERT SERVICES | Access to information | Complaint | UKK management | UKK program & PR admin | |
| (IP-NGOs) | | | | | |
| COLLABORATION & CONSULTATION | Access to information | Access to information | Website & PR tool | Programme by PR admin | Director |
| (IP-investor, NGOs) | | | | | |
| STAFF WELFARE (IP-worker) | Safety & health at work | Accident | Training & awareness program | Monitoring & continual training | BKS |
| IMPLEMENTATION OF ACT/ISO/ | Not having enough understanding | License/ certificate revoke | Training & awareness program | Monitoring & continual training | BPA & ALURTRON |
| LEGISLATION/ GUIDELINE (IP-standard Body) | | | | | |

Table 5. Risk analysis for ALURTRON.
CATEGORIES/ PROCESS	ISSUES	RISKS IDENTIFICATION	CURRENT CONTROL	LIKELIHOOD	IMPACT	RISKS TOTAL = LIKELIHOOD X IMPACT	RISKS TREATMENT PLAN	RECOMMENDATION ACTION / ADDITIONAL CONTROL	PIC
PRODUCT ARRIVAL AND RECEIVING INSPECTION	Product Damage	Product handler attitude	Use trained product handler	3	3	9	MEDIUM	Reminder procedure of product figure/condition to send to MINTec-Sinagama	QA
	Integrity of product	Dangerous goods, corrosive, dirty	Memo to customer	3	3	9	MEDIUM		QA
	Customer submit false information	False identification of product in RSP1	Any false declaration under customer responsibility	2	5	10	MEDIUM	Discussion with customers / regulators	QA
PRE-IRRADIATION PROCESS	Documentation	Negligence due to the workload	Get more staff	3	2	6	LOW	Train the new part-time operator	Manager
DOSIMETER PLACEMENT	Error in dosimeter location	Negligence due to the workload	NA	2	5	10	MEDIUM	Get more staff	Manager
	Dosimeter broken during placement	Incident, more dosimeter needed	NA	3	5	15	MEDIUM	Design dosimeter hold	QA
PRODUCT LOADING	PLP configuration is wrongly managed	Irradiation is not valid	Provide updated summary PLP at loading platform	1	4	4	LOW	Recognized product that registered PLP	QA
	Negligence of operator on handling the operating system	Disturb and delay in work process	NA	3	4	12	MEDIUM	NA	Operation
	Tote and conveyor system	Conveyor not working properly	NA	4	3	12	MEDIUM	NA	Operation
	Barcode detection	Scanner not working properly	NA	4	3	12	MEDIUM	NA	Operation
	Lack of permanent staff	Disturb and delay in work process, no replacement	Workload divided among staffs and part-time	4	4	16	HIGH	Get temporary staffs when needed	Manager
PRODUCT UNLOADING	Dosimeter broken during collection	Incident, cannot provide irradiation data reading	Put extra dosimeters and locations	3	3	9	MEDIUM	NA	QA
DOSIMETER ANALYSIS	Reduction in dosimeters stock	Disturb and delay in work process	Request to SSDL when two batches are left in stock	4	4	16	HIGH	Explore new dosimetry system	QA
	Mistake discovered in Certificate of Irradiation (CoI)	Customer complaint	Double checked by superior	4	3	12	MEDIUM	NA	QA
FINAL INSPECTION	Product Storage	Warehouse condition	Pest control monitoring and fortnightly housekeeping	3	4	12	Medium		Operation
PRODUCT RELEASE	Mistake discovered in RSP 15	Customer complaint	Double checked by superior	3	4	12	LOW		QA

Table 6 Risk Analysis for MINTec-Sinagama.
4. Conclusion and recommendations
As a conclusion, managing risks is an important aspect at the workplace and needs to be done continuously [7]. Every factor that contributes to the risks is identified according to the activities involved in the work flow of the irradiation process. Only then can the risks be reduced to as low as possible (ALAP) even though the risk factor is low. The risk treatment is towards ALAP instead of ALARP (as low as reasonably practicable) practices.

Therefore, as a way forward, work on Risk Treatment Plan will be continued. Reviews and actions taken on recommendations in Risk Treatment Plan will ensure its continual improvement. It will be important to explore more actions as well as assessing any new risks in future analysis.

5. References
[1] Jaroslava K, Michaela D 2002 Risk management in industrial companies (SAMI 2012) doi:10.1109.
[2] Institute of Risk Management. A risk management standard (IRM) http://www.theirm.org/publications/documents/ARMS_2002_IRM.pdf
[3] Institute of Risk Management. A risk practitioners guide to ISO 31000 2018. https://www.theirm.org/media/3513119/IRM-Report-ISO-31000-2018-v3.pdf
[4] Remzi A, Besarta V 2017 Analysis of international risk management standards (advantages and disadvantages) European J. of Res. and Reflection in Management Sci. 5(3).
[5] Nuclear Malaysia 2019 ALURTRON, ISO 9001:2015 Quality Management System Manual.
[6] MINTec-Sinagama 2019 ISO 9001:2015 and ISO 13485:2016 Quality Management System Manual.
[7] Alok P, Meghraj S, Amit S, Rane D M, Sonawane A U 2016 Risk assessment and management of radiation safety in industrial applications of ionizing radiation: an overview Non-Destructive Eval. p332-340