Vitamin D3-induced hypercalcemia increases carbon tetrachloride-induced hepatotoxicity through elevated oxidative stress in mice

Hiroki Yoshioka1,2*, Haruki Usuda3, Nobuhiko Miura4, Nobuyuki Fukuishi1, Tsunemasa Nonogaki1, Satomi Onosaka2

1 College of Pharmacy, Kinjo Gakuin University, Omori, Moriyamaku, Nagoya, Aichi, Japan, 2 Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, Japan, 3 Department of Pharmacology, Shimane University Faculty of Medicine, Enya-cho, Izumo, Shimane, Japan, 4 Division of Health Effects Research, Japan National Institute of Occupational Safety and Health, Nagao, Tamaku, Kawasaki, Kanagawa, Japan

* h-yoshioka@kinjo-u.ac.jp

Abstract

The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4)-induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress.

Introduction

Carbon tetrachloride (CCl4) is widely used in experimental animal models of liver failure that mimic human hepatic toxicity. The mechanism of CCl4 hepatotoxicity has been thoroughly studied since 1967, including the use of in vivo models of acute and chronic CCl4 poisoning, ex vivo perfusion of livers, and the use of isolated or cultured hepatocytes [1, 2]. CCl4-induced toxicity is a multifactorial process involving the generation of CCl4-derived free radicals [2–5]. The first step is metabolic activation of CCl4 by CYP2E1, whereby CCl4 is converted to free...
radicals (trichloromethyl and trichloromethyl peroxy radicals). The second step is binding of these radicals to antioxidant enzymes, including the sulphydryl (protein thiol) groups of glutathione (GSH). In the third step, these overproduced free radicals increase membrane lipid peroxidation, bind covalently to macromolecules, deplete ATP, and interfere with calcium homeostasis [6–8]. Since sulphydryl groups are essential elements of the molecular arrangements responsible for the Ca$^{2+}$ transport across cellular membranes, loss of function of these proteins is expected to impair the capacity of microsomes and mitochondria to regulate cellular calcium levels.

Recently, we found that cadmium (Cd) -induced cell cytotoxicity is attenuated by calcium-free medium in vitro (unpublished data). These data suggest that calcium is directly involved in Cd-induced toxicity. Because Cd-related toxicity is mediated by GSH depletion, lipid peroxidation, and mitochondrial dysfunction [9–11] (that is, by processes similar to those of CCl$_4$-induced toxicity), we hypothesized that calcium might also exacerbate CCl$_4$ toxicity.

It is well known that some drugs (e.g., thiazide diuretics) cause hypercalcemia [12, 13]. Treatment with vitamin D commonly has been used to investigate hypercalcemia in animal models [14–16]. In calcium homeostasis, vitamin D3 (V.D3) is a potent serum calcium-raising agent that regulates both calcitonin (CT) and parathyroid hormone (PTH) gene expression [17–19]. Serum calcium is the major secretagogue for CT, a hormone product whose biosynthesis is the main biological activity of thyroid C-cells. Taking advantage of this regulatory mechanism, vitamin D3-induced hypercalcemia has been extensively used.

Therefore, in the current study, we investigated whether hypercalcemic mice exhibited increased CCl$_4$-induced toxicity. To examine the effect of calcium on acute CCl$_4$ toxicity, we pre-treated animals with V.D3, before determining plasma biochemical markers, hepatic lipid peroxidation, and hepatic calcium levels.

Material and methods

Animal treatment

Male ddY mice were purchased from Japan SLC (Hamamatsu, Japan) and were maintained under standard conditions of controlled temperature (24 ± 1˚C), humidity (55 ± 5%), and light (12:12 h light/dark cycles) with free access to water and food. Experimental treatments were performed using eight-week-old animals. Following the experiment, any surviving mice were sacrificed using pentobarbital. All experiments were approved by the Institutional Animal Care and Experiment Committee of Kinjo Gakuin University (No. 110).

Evaluation of the effect of vitamin D3 on CCl$_4$ toxicity

Mice were divided into two groups (olive oil + CCl$_4$ and V.D3 + CCl$_4$) of twelve mice each. On Days -4 to -1 (i.e., each of the four days prior to CCl$_4$ injection), animals were administered once daily (at 24-h intervals) by oral gavage (per os; p.o.) with cholecalciferol (vitamin D3; V.D3; Tokyo Chemical Industry, Tokyo, Japan; formulated in olive oil (Nacalai Tesque, Kyoto, Japan)) at 5 mg/kg, or with an equivalent volume of olive oil vehicle alone. On the nominal Day 0 (i.e., twenty-four hours after the final gavage), each mouse was injected intraperitoneally (i.p.) with CCl$_4$ (Wako Chemical, Osaka, Japan) at 2 g/kg (5 mL/kg). Before the CCl$_4$ injection, we collected pre-dose blood samples from each mouse; these specimens were used to confirm the effects of V.D3 on plasma Ca concentrations. At 24 h after the CCl$_4$ injection, three randomly selected mice from each group were euthanized; livers were harvested from each of these animals and flash frozen for storage at -80˚C. The remaining mice (nine per group) were maintained on study through Day 7. Once daily following CCl$_4$ injection, animals were checked for mortality and body weight was recorded. Additionally, on Days 1, 3, and 7, remaining animals...
were subjected to blood sampling for determination of blood functional markers. Following the Day-7 procedures, any surviving mice were sacrificed using pentobarbital. Experimental procedure is described in Fig 1.

Evaluation of role of calcium in CCl₄ toxicity

Mice were divided into three groups (Ca + olive oil, saline + CCl₄, and Ca + CCl₄) of six mice each. Animals were administered i.p. with calcium chloride (CaCl₂; Wako Chemical; formulated in physiological saline) at 150 mg/kg or with an equivalent volume of saline vehicle. Ten minutes later, animals were administered i.p. with CCl₄ at 2 g/kg or with an equivalent volume of olive oil. Whole blood was collected at 10 and 30 min and at 1, 3, 6, 12, and 24 h (the last by terminal bleed) after CaCl₂ injection. At each time point, whole blood specimens were centrifuged (3000 × g, 10 min), and the plasma supernatants were frozen and stored at -80˚C pending use for determination of plasma calcium concentrations (all time points) or hepatic injury markers (terminal samples). Following the terminal bleeds (at 24 h after i.p. injections), mice of each group were euthanized and livers were harvested. Liver specimens were flash-frozen and stored at -80˚C pending use for determination of hepatic calcium levels.

Plasma biochemical analysis

Plasma calcium levels were measured using the calcium-E test (Wako Chemical) according to the manufacturer’s instructions. Plasma sample (2.5 μL) was mixed with substrate buffer (100 μL) and coloring reagent (50 μL). The absorbance of the reaction mixture was measured at 610 nm.

Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured using the Transaminase CII Test Wako (Wako Chemical) according to the manufacturer’s instructions and as previously described [20, 21]. Concentrations of plasma creatinine and blood urea nitrogen (BUN) were measured using Creatinine Liquid Reagents Assay (DIAZYME, Poway, CA) and BUN Wako Test (Wako Chemical), respectively, according to the manufacturer’s instructions and as previously described [22, 23]. For relative quantification, calibration curves were prepared using standard solutions.

Isolation of total RNA and qRT-PCR assay

Total RNA was extracted from 0.1 g liver sections using the ISOGEN II kit (Nippon Gene, Tokyo, Japan). qRT-PCR was performed with One Step SYBR PrimeScript PLUS RT-PCR kit.
(Perfect Real Time) (Takara Bio, Shiga, Japan) using an Applied Biosystems 7300 system (Applied Biosystems, Foster City, CA). PCR conditions were as previously described [24]. Primer pairs are shown in Table 1. Relative expression of each mRNA was determined using the standard curve method. The amount of each target mRNA quantified was normalized against that of GAPDH-encoding mRNA.

Histopathological findings

For histological analysis, a portion of the left liver lobe from each animal were perfused with 15% phosphate-buffered neutral formalin (pH 7.2), dehydrated, and embedded in paraffin. Embedded tissues were sectioned at 4 μm and stained with hematoxylin and eosin (H&E), Masson trichrome (MT), or von Kossa. MT stain kit and von Kossa stain were purchased from ScyTek Laboratories, Inc. (Logan, UT, USA) and conducted accordance with manufacturer’s instructions. Histopathological features were observed using a light microscope.

Measurement of malondialdehyde levels in the liver

The total malondialdehyde (MDA) levels and total antioxidant power in the liver were examined by colorimetric microplate assay (Oxford Biochemical Research, Oxford, MI) according to the manufacturer’s protocol and as previously described [22, 23].

Determination of glutathione (GSH) levels in the liver

Hepatic GSH levels were measured using GSSG/GSH quantification kit (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s instructions and as previously described [25].

Measurement of ATP and NADPH levels in the liver

Hepatic ATP and NADPH levels were measured using ATP Colorimetric / Fluorometric Assay kit (BioVision, Inc., Mountain View, CA, USA) and NADH/NADPH Assay kit (BioAssay Systems, Hayward, CA, USA), respectively. These tests were conducted accordance with manufacture’s instructions.

Determination of liver calcium concentrations

Individual liver specimens (0.2–0.3 g each) were digested in 0.5 mL of concentrated nitric acid in glass test tubes. The temperature was held at 80˚C for 1 h, then gradually increased (at 10˚C per h) to 130˚C. When the acid-digested specimens became transparent, volumes of the digests

Table 1. Oligonucleotide primer sequences and PCR conditions for real-time RT-PCR.

Gene (Accession No.)	Primer sequences	PCR Product length (bp)
CYP2E1 (NM_021282)	Forward CAT TCC TGT GTT CCA GGA GTA CAA G	91
	Reverse GAT ACT TAG GGA AAA CCT CGG CAC	
GCLC (NM_010295)	Forward TAC CAC GCA GTC GCT GAC C	132
	Reverse AGT CTC AAG AAG ATC GCC TCC	
GCLM (NM_008129)	Forward CGG GAA CCT CTA CTA TGC G	117
	Reverse TCG GGG CTG ATT TGG GAA CTC	
GAPDH (NM_008084)	Forward TGG TGA AGG TCG TGA TGA AC	98
	Reverse GTC GGT GAT GCC AAC AAT CTC C	

https://doi.org/10.1371/journal.pone.0176524.t001
were raised to 5 mL with distilled water, and calcium concentrations were determined by atomic absorption using a Z-2300 (Hitachi, Tokyo, Japan).

Statistical analysis

All data from the control and treatment groups were obtained from the same numbers of replicated experiments. All experiments were performed independently at least two times. Two-group comparisons were made using Student’s *t*-test or Welch’s *t*-test; multiple comparisons were analyzed using One-Way ANOVA with post-hoc Tukey-Kramer’s test. Tests were two-tailed. The results of the survival tests were analyzed by means of χ^2 analysis. All statistical analyses were performed using SPSS 19.0J software (Chicago, IL). Values of $P < 0.05$ were considered statistically significant.

Results

Effect of pre-treatment with V.D3 on CCl$_4$ acute toxicity, as assessed by body weight and mortality

To determine the effects of V.D3 pre-treatment, we performed analysis of plasma biochemical markers. Four-time, once-daily pre-treatment with V.D3 significantly increased plasma Ca concentrations to 13.0 mg/dL compared to the control value of 7.7 mg/dL (Table 2); these elevated levels would be classified as severe hypercalcemia. In contrast, plasma levels of ALT and AST (markers of hepatic injury; Fig 2) and of creatinine and BUN (markers of kidney injury; Fig 3) were comparable between V.D3- and olive oil-treated groups.

These pre-treated animals were administered i.p. with CCl$_4$ at 2 g/kg. Animals pre-treated with olive oil (instead of V.D3) and then injected with CCl$_4$ exhibited a transient loss of approximately 10% body weight on the first day and subsequent recovery from Day 2 (Fig 4A).
In contrast, weight loss in the hypercalcemic mice (pre-treated with V.D3) continued in the days following CCl$_4$ injection, achieving approximately 30% loss of weight by Day 7 (compared to baseline), a change that was significant compared to that in the control group. In addition, mortality was significantly elevated in the V.D3 + CCl$_4$ treatment group compared to the control animals (Fig 4B). Notably, none of the mice died following CCl$_4$ injection, while 55.6% (5 of 9; 4 on Day 2 and 1 on Day 7) of the hypercalcemic mice were found dead in the week following CCl$_4$ injection.

Changes in hepatic and renal injury markers in CCl$_4$-exposed mice pre-treated with V.D3

To reveal the target organ of CCl$_4$-induced toxicity under hypercalcemic conditions, we next examined hepatic injury markers in the CCl$_4$-treated mice. As shown in Fig 2, pre-treatment with V.D3 significantly potentiated the increase in plasma ALT and AST levels seen following CCl$_4$ injection; these parameters recovered by the 7th day after CCl$_4$ injection.

In parallel with the measurement of ALT and AST, we evaluated plasma creatinine and BUN levels, which are markers of renal injury. As shown in Fig 3A, CCl$_4$ exposure yielded significant increases (in both groups) in creatinine levels at Days 1 and 3 (compared to respective baseline values), but these effects did not differ significantly between groups (i.e., for animals pre-treated with V.D3 rather than olive oil). On the other hand, although CCl$_4$ exposure yielded an increase (compared to baseline) in Day-1 BUN in animals pre-treated with V.D3, this effect was not significant (at any of the time points) compared to the values obtained with animals pre-treated with olive oil (Fig 3B).

Fig 3. Effect of pre-treatment with V.D3 on CCl$_4$ toxicity, as assessed by creatinine and BUN levels. Mice were treated as described in legend for Fig 2. Plasma creatinine (A) and BUN (B) levels were determined at 0, 1, 3, and 7 days after CCl$_4$ injection. Data are presented as mean ± S.D. of 4–9 mice.

https://doi.org/10.1371/journal.pone.0176524.g003

Fig 4. Effect of pre-treatment with V.D3 on CCl$_4$ toxicity, as assessed by body weight change and mortality. Mice were treated as described in legend for Fig 2. Body weights (normalized to baseline) (A) and mortality (B) were recorded every 24 h through the 7th day after CCl$_4$ injection. Data are presented as mean ± S.D. of 4–9 mice. ** P < 0.01 versus CCl$_4$ group on the respective day.

https://doi.org/10.1371/journal.pone.0176524.g004
Effect of pre-treatment with V.D3 on CCl₄ acute toxicity, as assessed by hepatic CYP2E1 levels

In addition to plasma injury markers, we measured hepatic CYP2E1 mRNA levels since CYP2E1 is a major CYP contribution to CCl₄ activation [26]. As shown in Fig 5, CCl₄ exposure indicated significant decreases (in both groups) at Days 1 and 3. On the other hand, although CCl₄ treated group at Day 7 was recovered in CYP2E1, V.D3 + CCl₄ group was maintained at low level. Moreover, control and V.D3 group at all days were no significant change in CYP2E1 levels.

Effect of pre-treatment with V.D3 on CCl₄ acute toxicity, as assessed by MT stain

Next, we conducted Masson Trichrome stain since CCl₄ is well known to induce liver fibrosis [27, 28]. However, hepatic fibrosis was not observed in all groups (Fig 6), suggests generation of hepatic fibrosis need to inject multiple times.

Changes in morphology, MDA, total antioxidant levels, ATP, and NADPH levels in CCl₄-exposed mice pre-treated with V.D3

To further investigate V.D3-induced exacerbation of liver damage, we randomly selected mice from each group, harvested livers from these animals at 24 h after CCl₄ treatment, and conducted histopathological studies. H&E-stained liver sections from the control and V.D3 groups showed a normal cell morphology and well-preserved cytoplasm, in addition to a clear, plump nucleus (Fig 7A and 7B). In contrast, we observed necrosis in the mice treated with CCl₄ (Fig 7C). In addition, Pretreatment with V.D3 become exacerbated some, but not all, liver cell necrosis (Fig 7D).

In parallel with histopathological studies, we measured liver MDA levels as a marker of lipid peroxidation. CCl₄ treatment significantly increased hepatic MDA levels, both in animals pre-treated with olive oil and in those pre-treated with V.D3 (Fig 8A). Pre-treatment with V. D3 further potentiated the CCl₄-induced increase in MDA levels (CCl₄ vs. V.D3 + CCl₄).
Many studies have suggested that total antioxidant power, ATP, and NADPH can be used as an indicator of oxidative stress. As shown in Fig 8B, CCl₄-treatment markedly decreased the total antioxidant power, and pre-treatment with V.D₃ potentiated the CCl₄-induced decrease in antioxidant power. Notably, for both hepatic MDA and total oxidant power, values did not differ significantly between animals pre-treated with vehicle and with V.D₃. This observation demonstrated that hypercalcemia itself does not induce either of these parameters. In addition, hepatic ATP and NAPDH levels were consistent with total antioxidant power (Fig 8C and 8D).

Moreover, we determined hepatic GSH levels, that is well known to deplete on CCl₄ administration [29–32]. As shown in Fig 9A, CCl₄ treatment significantly decreased hepatic GSH levels, both in animals pre-treated with olive oil and in those pre-treated with V.D₃. Pre-treatment with V.D₃ further potentiated the CCl₄-induced decrease in GSH levels (CCl₄ vs. V.D₃ + CCl₄). Moreover, we determined glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modifier subunit (GCLM) by qRT-PCR assay (Fig 9B and 9C). Although GCLC was same tendency compared with GSH, GCLM was no significant change in all groups in the present study.
Influence of V.D3 on CCl\(_4\) acute toxicity as assessed by hepatic calcium levels and calcium stain

As we showed above, pre-treatment with V.D3 yielded increased plasma Ca levels. We next examined whether V.D3 pre-treatment, with or without CCl\(_4\) exposure, also altered hepatic calcium levels at 24 h post CCl\(_4\) injection, which we assessed by atomic absorption spectrometry (Fig 10A). In animals pre-treated with olive oil, CCl\(_4\) injection yielded a significant, 60-fold
increase in liver Ca levels. Injection of CCl₄ in mice pre-treated with V.D3 yielded a further >3-fold elevation in hepatic Ca levels. Notably, pre-treatment with V.D3 yielded a small (1.8-fold) and non-significant increase in hepatic Ca levels compared to pre-treatment with olive oil (in the absence of CCl₄ injection). This observation demonstrated that V.D3 alone does not induce appreciable hypercalcemia of the liver. In further to investigate Ca involvement, we stained hepatic Ca by von Kossa method. In control and V.D3 groups, Ca deposition was not observed (Fig 10B and 10C). In contrast, Injection of CCl₄ in mice was slightly confirmed von Kossa positive staining in the area necrosis is not observed (Fig 10D). Moreover, maximum von Kossa staining was confirmed in V.D3 + CCl₄ group (Fig 10E).

Direct assessment of Ca effect on CCl₄ acute toxicity

In order to confirm the involvement of calcium in CCl₄ toxicity, we induced hypercalcemia by direct injection of CaCl₂ and monitored plasma calcium levels for the subsequent 24 h, both with and without concomitant CCl₄ exposure. As shown in Fig 11B, i.p. injection of CaCl₂ induced transient (within 3 h) hypercalcemia. When mice with this evanescent hypercalcemia were injected with CCl₄ (Ca + CCl₄), the animals exhibited significantly elevated plasma ALT and AST levels and hepatic calcium levels compared to normal-calcemic mice (CCl₄) (Table 3).

Discussion

The present study demonstrated that pre-treatment with V.D3 potentiated CCl₄-induced hepatotoxicity and enhanced mouse mortality, without increasing renal toxicity and generation of liver fibrosis. Our previous investigation demonstrated that single i.p. injection of mice with a fatal dose of CCl₄ (4 g/kg) induced severe hepatotoxicity and moderate renal toxicity [20, 22, 24]; however, the critical target organ that led to mouse death following CCl₄ injection was not defined. In the current study, V.D3 potentiation of toxicity was observed only in the liver, as indicated by plasma levels of ALT and AST, biochemical markers of hepatic damage. Although pre-treatment with V.D3 significantly increased renal calcium levels compared to
those in animals pre-treated with olive oil, renal calcium content did not differ significantly between mice treated with olive oil + CCl$_4$ and those treated with V.D3 + CCl$_4$ (data not shown). Together, these data suggest that the liver is the primary target organ of acute CCl$_4$ toxicity.

CCl$_4$ is metabolized and activated by multiple CYPs, including CYP2E1, CYP2B1, and CYP2B2 [2]. In particular, CYP2E1 is a major CYP contribution to CCl$_4$ activation [26]. Several literatures reported pre-treatment with phenobarbital, acarbose, or natural products (such as Salvia officinalis) have been shown to potentiate the CYP2E1-mediated hepatotoxicity of CCl$_4$ [33–36]. Although vitamin D is known to induce the expression of CYP3A and CYP2B6 via activation of the vitamin D receptor (VDR), the pregnane X receptor (PXR), and/or the

![Fig 11. Effect of intraperitoneal injection with CaCl$_2$ on plasma calcium levels.](https://doi.org/10.1371/journal.pone.0176524.g011)

Fig 11. Effect of intraperitoneal injection with CaCl$_2$ on plasma calcium levels. Mice were injected i.p. with CaCl$_2$ at 150 mg/kg. Plasma calcium levels were determined after 10 and 30 min and at 1, 3, 6, 12, and 24 h after CaCl$_2$ injection. (A) and (B) show the schematic experimental design of CaCl$_2$ injection and the results, respectively. Data are presented as mean ± S.D. of 6 mice.

Those in animals pre-treated with olive oil, renal calcium content did not differ significantly between mice treated with olive oil + CCl$_4$ and those treated with V.D3 + CCl$_4$ (data not shown). Together, these data suggest that the liver is the primary target organ of acute CCl$_4$ toxicity.

Table 3. Effect of pre-treatment with calcium on various parameters associated with CCl$_4$-induced acute hepatotoxicity.

	ALT (IU/L)	AST (IU/L)	Hepatic Ca (μg/g liver)
Ca	8.69 ± 0.97	46.25 ±19.78	16.49 ± 4.06
CCl$_4$	2115 ± 416**	2565 ± 534**	532 ±125**
Ca + CCl$_4$	4153 ± 1252##	4650 ± 767#	781 ± 54.0##

Mice were injected i.p. with CaCl$_2$ (at 150 mg/kg) 10 min before i.p. injection with CCl$_4$ (at 2 g/kg). Post 24 h after CCl$_4$ injection, plasma ALT, AST and hepatic Ca was measured. Data indicate mean ± S.D. of four or six mice.

** and ##, significantly different from Ca + olive oil group (**P < 0.01) and

and #, significantly different from saline + CCl$_4$ group (##P < 0.01).

https://doi.org/10.1371/journal.pone.0176524.t003
constitutive androstan receptor (CAR) [37–39], we are not aware of any reports of V.
D3-induced expression of CYP2E1, 2B1, or 2B2. In fact, hepatic CYP2E1 expression level was
not changed by pretreatment with V.D3. Taken together, these observations indicate that
CYPs are not primary mediators of the V.D3 potentiation of CCl₄ toxicity.

Several studies suggest that a possible molecular mechanism involved in CCl₄ hepatotoxic-
ity is the disruption of the delicate oxidant/antioxidant balance, which can lead to liver injury
via oxidative damage [2, 40]. Our results suggest that V.D3 (or a V.D3-induced factor) triggers
an enhancement of CCl₄-induced toxicity. Since V.D3 has no ability to change every parame-
ters such as antioxidant power, MDA levels, ATP levels, NADPH levels, GSH levels, and GCL
subunit levels, V.D3 itself is not an oxidant. We hypothesize that calcium is likely the aggregat-
ing factor, given that pre-treatment with CaCl₂ yielded potentiation of CCl₄ toxicity similar to
that seen with pre-treatment with V.D3, a compound known to induce hypercalcemia. In
addition, the extracellular plasma calcium concentration is tightly controlled by a complex
homeostatic mechanism involving fluxes of calcium between the extracellular fluid and the
kidneys, bones, and hormones. It has been reported that CCl₄ disrupts hepatic calcium homeo-
stasis [41, 42]. In the current study, CCl₄-induced hepatic calcium levels were increased by
pre-treatment with V.D3, indicating that calcium is a candidate aggravating factor of CCl₄ tox-
icity. Moreover, multiple researchers have reported that CCl₄ significantly decreases the total
content of reduced GSH, and that CCl₄-derived radicals can react with sulfhydryl groups of
GSH and other protein thiols [29–32]. Our data also supports these reports since GSH was
depleted by CCl₄ and these depletion levels got worse by pretreatment with V.D3. In addition,
GSH is sequentially synthesize catalytic subunit d from glutamate, cysteine, and glycine, which
is mainly controlled by GCL. GCL is composed of two subunits, the GCLC and the modifier
subunit GCLM. Our study indicated that GCLC was same tendency compared with GSH. In
contrast, GCLM was no significant change in all groups in the present study. These data sug-
gests that single injection of CCl₄ might attack GCLC rather than GCLM since multiple injec-
tion of CCl₄ reduces both parameters [43].

Since some protein thiols are essential components of the molecular rearrangements that
are required for Ca²⁺ transport across cell membranes, loss of such thiols may affect the cal-
cium sequestration activity of subcellular compartments; mitochondria and microsomes
employ this sequestration to regulate cytosolic calcium levels. Hence, pre-treatment with V.D3
might induce the collapse of these cellular functions by disrupting calcium homeostasis in the
cell.

We demonstrated that both V.D3-induced hypercalcemia and direct injection of calcium
itself potentiate CCl₄-induced toxicity; these results suggest that calcium potentiates hepato-
toxicity. In addition, we speculate that calcium augments the CCl₄-induced toxicity within sev-
eral hours after CCl₄-injection, given that transient hypercalcemia was observed at the earliest
time points following CaCl₂ injection [44]. It has been reported that CCl₄-induced hepatotoxic-
ity occurs within 3 h of exposure [45], consistent with our speculation.

In conclusion, we demonstrated that V.D3-induced hypercalcemia or pre-treatment with
CaCl₂ enhances CCl₄-induced hepatotoxicity, presumably via disruption of calcium homeosta-
sis. To our knowledge, this is the first evidence that calcium enhances CCl₄-induced hepato-
toxicity in the early stage in mice. These findings may have relevance to the mechanism of
toxicity of other hepatotoxic compounds.

Acknowledgments

The authors thank Dr. Kenichi Saeki (Kinjo Gakuin University, Japan) for his kind
suggestions.
Author Contributions

Conceptualization: HY HU SO.
Data curation: HY TN.
Formal analysis: HY TN.
Funding acquisition: NM NF.
Investigation: HY TN.
Methodology: HY.
Project administration: HY SO.
Resources: HY.
Software: HY HU TS SO.
Supervision: HY.
Validation: HY.
Visualization: HY.
Writing – original draft: HY.
Writing – review & editing: HY HU.

References

1. Recknagel RO. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967; 19(2):145–208. Epub 1967/06/01. PMID: 4859860
2. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003; 33(2):105–36. Epub 2003/04/24. https://doi.org/10.1080/713611034 PMID: 12708612
3. Recknagel RO, Glende EA Jr., Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther. 1989; 43(1):139–54. Epub 1989/01/01. PMID: 2675128
4. Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol. 1998; 153(1):109–18. Epub 1999/01/06. https://doi.org/10.1006/taap.1998.8547 PMID: 9875305
5. Manibusan MK, Odin M, Eastmond DA. Postulated carbon tetrachloride mode of action: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007; 25(3):185–209. Epub 2007/09/01. https://doi.org/10.1080/10590500701569398 PMID: 17763046
6. Tyson CA, Stoy DL, Stephens RJ. Ultrastructural changes in isolated rat hepatocytes exposed to different CCl4 concentrations. Biochem Biophys Res Commun. 1983; 114(2):511–7. Epub 1983/07/29. PMID: 6882440
7. Brattin WJ, Pencil SD, Waller RL, Glende EA Jr., Recknagel RO. Assessment of the role of calcium ion in halocarbon hepatotoxicity. Environ Health Perspect. 1984; 57:321–3. Epub 1984/08/01. PubMed Central PMCID: PMC1568267. PMID: 6499814
8. Berger ML, Reynolds RC, Combes B. Carbon tetrachloride-induced morphologic alterations in isolated rat hepatocytes. Exp Mol Pathol. 1987; 46(3):245–57. Epub 1987/06/01. PMID: 3595801
9. Brady JF, Xiao F, Wang MH, Li Y, Ning SM, Gapac JM, et al. Effects of disulfiram on hepatic P450IIIE1, other microsomal enzymes, and hepatotoxicity in rats. Toxicol Appl Pharmacol. 1991; 108(2):366–73. Epub 1991/04/01. PMID: 1850173
10. El-Demerash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol. 2004; 42(10):1563–71. Epub 2004/08/12. https://doi.org/10.1016/j.fct.2004.05.001 PMID: 15304303
Vitamin D3-induced hypercalcaemia increases carbon tetrachloride-induced hepatotoxicity through elevated oxidative stress in mice

11. Sarkar S, Yadav P, Trivedi R, Bansal AK, Bhatnagar D. Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues. J Trace Elem Med Biol. 1995; 9(3):144–9. Epub 1995/10/01. https://doi.org/10.1016/S0946-672X(11)80038-6 PMID: 8605602

12. Parfitt AM. Chlorothiazide-induced hypercalcaemia in juvenile osteoporosis and hyperparathyroidism. N Engl J Med. 1969; 281(2):55–9. Epub 1969/07/10. https://doi.org/10.1056/NEJM196907102810201 PMID: 5305802

13. Desai HV, Gandhi K, Sharma M, Jennine M, Singh P, Brogan M. Thiazide-induced severe hypercalcaemia: a case report and review of literature. Am J Ther. 2010; 17(6):e234–6. Epub 2010/01/14. https://doi.org/10.1097/MJT.0b013e3181c6c21b PMID: 20068444

14. Zhou JY, Norman AW, Chen DL, Sun GW, Uskokovic M, Koeffler HP. 1,25-Dihydroxy-16-ene-23-yne-vitamin D3 prolongs survival time of leukemic mice. Proc Natl Acad Sci U S A. 1990; 87(10):3929–32. Epub 1990/05/01. PubMed Central PMCID: PMC54017. PMID: 2339131

15. Tsuruoka S, Sugimoto K, Fujimura A. Contribution of diet to the dosing time-dependent change of vitamin D3-induced hypercalcaemia in rats. Life Sci. 2000; 68(5):579–89. Epub 2001/02/24. PMID: 11197755

16. Nishiki K, Tsuruoka S, Wakaumi M, Yamamoto H, Koyama A, Fujimura A. Dosing time-dependent variation in the hypocalcemic effect of calcitonin in rat. Eur J Pharmacol. 2000; 460(2–3):171–5. Epub 2000/02/01. PMID: 12559378

17. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006; 92(1):4–8. Epub 2006/03/28. https://doi.org/10.1016/j.pbiomolbio.2006.02.016 PMID: 16563471

18. Godoy P, Hewitt NJ, Allbrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013; 87(8):1315–530. Epub 2013/08/27. PubMed Central PMCID: PMC3753504. https://doi.org/10.1007/s00204-013-1078-5 PMID: 23974980

19. Han YP, Kong M, Zheng S, Ren Y, Zhu L, Shi H, et al. Vitamin D in liver diseases: from mechanisms to clinical trials. J Gastroenterol Hepatol. 2013; 28 Suppl 1:49–55. Epub 2013/07/24. https://doi.org/10.1016/j.jgh.2013.03.004 PMID: 23974980

20. Yoshioka H, Usuda H, Nonogaki T, Onosaka S. Carbon tetrachloride-induced lethality in mouse is prevented by multiple pretreatment with zinc sulfate. J Toxicol Sci. 2016; 41(1):55–63. Epub 2016/01/15. https://doi.org/10.2131/jts.41.55 PMID: 26763393

21. Yoshioka H, Tanaka M, Fuji H, Nonogaki T. Sasa vechii extract suppresses carbon tetrachloride-induced hepatocyte and nephrotoxicity in mice. Environ Health Prev Med. 2016; 21(6):554–62. Epub 2016/06/03. https://doi.org/10.1007/s12199-016-0581-8 PMID: 27738877

22. Yoshioka H, Usuda H, Fukuishi N, Nonogaki T, Onosaka S. Carbon Tetrachloride-Induced Nephrotoxicity in Mice is Prevented by Pretreatment with Zinc Sulfate. Biol Pharm Bull. 2016; 39(6):1042–6. Epub 2016/06/09. https://doi.org/10.1248/bpb.b16-00078 PMID: 27251508

23. Yoshioka H, Fukaya S, Fukuishi N, Nagatsu A, Nonogaki T, Onosaka S. Bromobenzene-induced lethal toxicity in mouse is prevented by pretreatment with zinc sulfate. Chem Biol Interact. 2016; 254:117–23. Epub 2016/06/09. https://doi.org/10.1016/j.cbi.2016.06.002 PMID: 27270452

24. Yoshioka H, Onosaka S. Zinc sulfate pretreatment prevents carbon tetrachloride-induced lethal toxicity through metallothionein-mediated suppression of lipid peroxidation in mice. Fundam Toxicol Sci. 2016; 3(4):151–6.

25. Miura N, Ashimori A, Takeuchi A, Ohtani K, Takada N, Yanagiba Y, et al. Mechanisms of cadmium-induced chronic toxicity in mice. J Toxicol Sci. 2013; 38(6):947–57. Epub 2013/11/29. PMID: 24284284

26. Yoshioka H, Nonogaki T, Fukuishi N, Onosaka S. Calcium-deficient diet attenuates carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation and inflammatory response. Heliyon. 2016; 2(6):e00126. Epub 2016/07/22. PubMed Central PMCID: PMC4946292. https://doi.org/10.1016/j.heliyon.2016.e00126 PMID: 27441297

27. Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-beta1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 2016; 93:129–37. Epub 2016/05/04. https://doi.org/10.1016/j.fct.2016.04.024 PMID: 27137983

28. Cui X, Dang S, Wang Y, Chen Y, Zhou J, Shen C, et al. Retinol dehydrogenase 13 deficiency diminishes carbon tetrachloride-induced liver fibrosis in mice. Toxicol Lett. 2017; 265:17–22. Epub 2016/11/21. https://doi.org/10.1016/j.toxlet.2016.11.010 PMID: 27968548

29. Sheweita SA, Abd El-Gabar M, Bastawy M. Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants. Toxicology. 2001; 165 (2–3):217–24. Epub 2001/08/28. PMID: 11522390
30. Khan MR, Rizi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride-induced nephrotoxicity in rats: protective role of Digera muricata. J Ethnopharmacol. 2009; 122(1):91–9. Epub 2009/01/03. https://doi.org/10.1016/j.jep.2008.12.006 PMID: 19118616

31. Khan RA, Khan MR, Sahreen S, Bokhari J. Prevention of CCl4-induced nephrotoxicity with Sonchus asper in rat. Food Chem Toxicol. 2010; 48(8–9):2469–76. Epub 2010/06/17. https://doi.org/10.1016/j.fct.2010.06.016 PMID: 20559052

32. Rivera H, Shibayama M, Tsutsumi V, Perez-Alvarez V, Muriel P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J Appl Toxicol. 2008; 28(2):147–55. Epub 2007/06/02. https://doi.org/10.1002/jat.1260 PMID: 17541932

33. Wang PY, Kaneko T, Wang Y, Sato A. Acarbose alone or in combination with ethanol potentiates the hepatotoxicity of carbon tetrachloride in rats. Hepatology. 1999; 29(1):161–5. Epub 1998/12/24. https://doi.org/10.1002/hep.510290109 PMID: 9862862

34. Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Drinking of Salvia officinalis tea increases CCl(4)-induced hepatotoxicity in mice. Food Chem Toxicol. 2007; 45(3):456–64. Epub 2006/11/07. https://doi.org/10.1016/j.fct.2006.09.009 PMID: 17084954

35. Head B, Moody DE, Woo CH, Smuckler EA. Alterations of specific forms of cytochrome P-450 in rat liver during acute carbon tetrachloride intoxication. Toxicol Appl Pharmacol. 1981; 61(2):286–95. Epub 1981/11/01. PMID: 7324070

36. Klingensmith JS, Mendendale HM. Potentiation of CCl4 lethality by chlordecone. Toxicol Lett. 1982; 11(1–2):149–54. Epub 1982/04/01. PMID: 6178186

37. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem. 2002; 277(28):25125–32. Epub 2002/05/07. https://doi.org/10.1074/jbc.M201323200 PMID: 11991950

38. Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013; 136:54–8. Epub 2012/09/19. PubMed Central PMCID: PMC3549031. https://doi.org/10.1016/j.jsbmb.2012.09.012 PMID: 22985909

39. Larriba MJ, Gonzalez-Sancho JM, Bonilla F, Munoz A. Interaction of vitamin D with membrane-based signaling pathways. Front Physiol. 2014; 5:60. Epub 2014/03/07. PubMed Central PMCID: PMC3927071. https://doi.org/10.3389/fphys.2014.00060 PMID: 24600406

40. Hsouna AB, Saoudi M, Trigui M, Jamoussi K, Boudawara T, Jaoua S, et al. Characterization of bioactive compounds and ameliorative effects of Ceratonia siliqua leaf extract against CCl4-induced hepatic oxidative damage and renal failure in rats. Food Chem Toxicol. 2011; 49(12):3183–91. Epub 2011/10/15. https://doi.org/10.1016/j.fct.2011.09.034 PMID: 21996303

41. Lowrey K, Glende EA Jr., Recknagel RO. Destruction of liver microsomal calcium pump activity by carbon tetrachloride and bromotrichloromethane. Biochem Pharmacol. 1981; 30(2):135–40. Epub 1981/01/15. PMID: 7236302

42. Recknagel RO, Lowrey K, Waller RL, Glende EA Jr. Destruction of microsomal calcium pump activity: a possible secondary mechanism in BrCCl3 and CCl4 liver cell injury. Adv Exp Med Biol. 1981; 136 Pt A:619–31. Epub 1981/01/01.

43. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol Pharmacol. 2008; 73(2):399–409. Epub 2007/11/17. https://doi.org/10.1124/mol.107.039818 PMID: 18006644

44. Fudge NJ, Kovacs CS. Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calctonin release in vivo. BMC Physiol. 2004; 4:5. Epub 2004/04/22. PubMed Central PMCID: PMC419359. https://doi.org/10.1186/1472-6793-4-5 PMID: 15099400

45. Knockaert L, Berson A, Ribault C, Prost PE, Fautrel A, Pajaud J, et al. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Lab Invest. 2012; 92(3):396–410. Epub 2011/12/14. https://doi.org/10.1038/labinvest.2011.193 PMID: 22157718