Nahm Equations and Boundary Conditions

Dimitrios Tsimpis

Yale University
Department of Physics, Sloan Physics Laboratory
PO Box 208120, New Haven, CT 06520-8120, USA

Abstract

We derive certain boundary conditions in Nahm’s equations by considering a system of N parallel D1-branes perpendicular to a D3-brane in type IIB string theory.

\footnote{e-mail: tsimpis@yale.edu}
1 Introduction

Nahm’s equations for $SU(N)$ monopoles [1] were derived using D-brane techniques (for a review see eg. [2]) for the first time in [3]. Nahm’s data however are incomplete without specifying the boundary conditions (bc) [4] and a D-brane derivation of those was lacking. Steps in this direction have been made in [5,6].

In this paper we show how Nahm’s bc arise naturally in the context of D-brane physics by considering (following [3]) a system in type IIB string theory of N infinite parallel D1-branes perpendicular to a D3-brane. The present analysis is relevant only to the case of discontinuous but finite Nahm’s data.

In order to derive the advertised result we consider a certain reduction / truncation of the low-energy effective action on the world-volume of the D1-branes. Nahm’s equations and bc then follow from the requirement of a supersymmetric vacuum.

The discontinuities in Nahm’s data are encoded in the vacuum expectation values of the hypermultiplets, coming from the 1-3 sector, which appear as source terms localized on the intersection of the D1/D3 branes. This is the main result of this paper and is contained in Eq. (8) below. Similar results have recently been obtained by Kapustin and Sethi [7].

2 Analysis

Consider the configuration, shown in fig.1, of a D3-brane extended in $x^{0,1,2,3}$ intersecting a system of N infinite parallel D1-branes extended in $x^{9,9}$, at the point $x^9 = 0$ of the D1-branes’ world volume. Let $Q_{L,R}$ be the supercharges associated to left, right-moving degrees of freedom of the IIB world-sheet theory. A D3-brane is invariant under supersymmetry transformations $\epsilon_L Q_L + \epsilon_R Q_R$ such that

$$\epsilon_L = \Gamma^{0123} \epsilon_R ,$$

(1)

where $\epsilon_{L,R} \sim 16_+$ of Spin(1,9). Similarly the D1-brane imposes the condition

$$\epsilon_L = \Gamma^{09} \epsilon_R .$$

(2)

The above two conditions imply

$$\epsilon_L = \Gamma^{1239} \epsilon_L .$$

(3)
Hence the supersymmetry parameter ϵ^A_L must be in the $(2^+, 4^+)$ of $\text{Spin}(4)_{1239} \otimes \text{Spin}(1,5)_{04-8}$ where $A(\alpha)$ is a $\text{Spin}(4)(\text{Spin}(1,5))$ index. In addition ϵ^A_L must satisfy the “$SU(2)$ Majorana condition”

$$\epsilon^{AB} C^\alpha_{\beta \gamma} \epsilon^\gamma_L = (\epsilon^\alpha_L)^* ,$$

where ϵ^{AB} is the rank-2 antisymmetric tensor and C is the charge conjugation matrix in $\mathbb{R}^{1,5}_{04-8}$ (this comes from the Majorana condition in 10d). Therefore the configuration of fig.1 leaves 8 real supercharges unbroken. Note that the original ten-dimensional $\text{Spin}(1,9)$ invariance is broken down to $\text{Spin}(3)_{123} \otimes \text{Spin}(5)_{4-8}$.

It will be convenient to parametrize the unbroken supersymmetry by a pair of chiral $\text{Spin}(4)_{1239}$ spinors $\eta_i, i = 1, 2$, transforming as a doublet of $SU(2) R$-symmetry. $SU(2)_R$ can be thought of as $\text{Spin}(3)_{678}$ (see below).

The low-energy fields on the D1-branes’ world-volume can be found by quantizing the different string-theory sectors [2,8]: The 1-1 strings give bosonic fields $X^M_m, M = 0,...,9$, transforming as a vector of $SO(1,9)$ and a Majorana-Weyl fermion ψ_{mn} in 10d. These fields are in the adjoint of $SU(N): m, n = 1,...,N$. The 1-3 sector gives a spinor of $\text{Spin}(4)_{1239}$ and a spinor of $\text{Spin}(1,5)_{04-8}$, both in the fundamental of $SU(N)$. (A GSO projection matching bosonic and fermionic degrees of freedom should be imposed). There are also fields coming from the 3-3 sector but these are external and will not be taken into account here.

We will consider the situation where the branes do not fluctuate along $x^{6,7,8}$ and we will set $X^{6,7,8} = 0$. We also gauge away the longitudinal component X^0 of the gauge field of the D1-branes’ world-volume. Moreover, anticipating Nahm’s equations, we will require that the fields be time-independent and that they depend only on x^9, which we denote by s. The original 10-dimensional spacetime symmetry is thus further broken down to a global $\text{Spin}(3)_{123} \otimes \text{Spin}(2)_{45} \otimes \text{Spin}(3)_{678}$.

The fields $X^4, X^5, X^\mu, \mu = 1, 2, 3, 9$, constitute the bosonic part of the Yang-Mills multiplet of the Euclideanized version of “$N = 2$ matter” theory in 4d [9] reduced to one spatial dimension, namely x^9. Of course upon dimensional reduction only the $\text{Spin}(3)_{123}$ subgroup of the $\text{Spin}(4)_{1239}$ symmetry of the 4d theory survives as a (global) symmetry of the low-energy effective action. The full field content is organized as follows:

Yang-Mills multiplet: X^9 the world-volume “gauge field”; $X^a_{mn} a = 1, 2, 3$, a vector of $SO(3)_{123}$; X^4_{mn}, X^5_{mn} an $SO(2)_{45}$ doublet of real bosons;
\(\lambda_{imn} \), \(i = 1, 2 \), an \(SU(2)_R \) doublet of \(Spin(3)_{123} \) spinors. All the fields in the Yang-Mills multiplet are in the adjoint of \(SU(N) \): \(m, n = 1, \ldots N \).

Hypermultiplets: An \(SU(2)_R \) doublet of complex bosons \(h_{im} i = 1, 2; \) a spinor \(\chi_m \) of \(Spin(4)_{1239} \) (which should really be thought of as a pair of \(Spin(3)_{123} \) spinors). All the matter fields are in the fundamental of \(SU(N) \): \(m = 1, \ldots N \).

The hypermultiplets live on the intersection of the D1/D3-branes and are thus localized at the points \(s=0 \) on the D1-branes’ world-volume.

For an off-shell realization we have to include the auxiliary bosonic fields \(D_{ijmn} = D_{jimn} = (D_{ij'}mn)^* \varepsilon_{ii'} \varepsilon_{jj'} \) (a triplet of \(SU(2)_R \) in the adjoint of \(SU(N) \)) and \(F_{im} \) (an \(SU(2)_R \) doublet in the fundamental of \(SU(N) \)).

The low-energy effective Langrangian reads (after setting \(g_{YM} = 1 \)):

\[
L = L_{\text{kinetic}}(X^9, X^a, X^4, X^5, \lambda_i) + L_0 + \delta(s) \{ L_{\text{kinetic}}(h_{im}, \chi_m) + L_{\text{interaction}} \}
\]

(5)

where

\[
L_0 = \frac{1}{2} Tr \{ (D^2 - ([X^4, X^5])^2) \} + \text{fermions}
\]

(6)

and

\[
L_{\text{interaction}} = |F_{im}|^2 + h_{im}^*[(X^4)^2 + (X^5)^2]_{mn} h_{in} + D_{ijmn} h_{im}^* h_{jn} + \text{fermions}
\]

(7)

The Langrangian is invariant under SUSY transformations parametrized by \(\eta_i \). For a supersymmetric vacuum we must require the vanishing of the SUSY variation of the gaugino. Setting \(X^9, X^4, X^5 = 0 \) and taking into account the equations-of-motion for \(D \), this condition reduces to

\[
\frac{dX^a}{ds} + \varepsilon^{abc}[X^b, X^c] = -i \delta(s) \sigma^a h_i^* \otimes h_j \ , \ a, b, c = 1, 2, 3
\]

(8)

where \(\sigma^a \) are the Pauli matrices. Equation (8) is easily seen to reproduce Nahm’s bc (Nahm’s equations are just: left-hand-side of (8)=0) in the case of discontinuous but finite \(X^a(s) \). The discontinuities in the mathematical literature are given in terms of a rank-one \(N \times N \) complex matrix which is parametrized by two complex \(N \)-vectors, the \(u_0, u_1 \) of [4]. These are essentially the \(h_{1m}, h_{2m} \) of Eq.(8).

\footnote{In fact the \(\delta(0)^2 \) term in the on-shell SUSY variation of \(L \) is ambiguous. The \(\delta \) function should be thought of as receiving some kind of stringy regularization. We thank Greg Moore for pointing this out and for discussions on this issue.}
3 Conclusion and Discussion

The discontinuity conditions in Nahm’s data were derived from D-brane considerations.

It should be noted that the D^2 term in the Langrangian apparently gives rise (on-shell) to an infinite-energy contribution. This is due to the singular nature of the configuration depicted in fig.1. However this picture is expected to get smoothed-out by the 1-3 sector strings in a similar to [10] manner. Another way of seeing this would be to “lift” the system to M theory [11].

In Ref.[5] it was suggested that stringy contributions will give rise to a δ function regularization of the form

$$\delta(s) \to \frac{1}{l_s} e^{-\frac{s^2}{l_s^2}}$$

It would be interesting to see how can such stringy effects be taken into account in a systematic expansion in the string scale l_s. This problem will hopefully be investigated in some future work.

Note: While this paper was in the final stage of preparation an overlapping publication [7] appeared.

Acknowledgements

I would like to thank Greg Moore for suggesting this problem to me, for numerous discussions and for a critical reading of the manuscript. I would also like to thank Ruben Minasian for discussions.

This work was supported by DOE grant DE-FG02-92ER40704.
References

1. W. Nahm, *The Construction of All Self-Dual Multimonopoles by the ADHM Method* in “Monopoles in: Quantum Field Theory”, eds. Craige et al. (World Scientific, Singapore, 1982); *A Simple Formalism for the BPS Monopole*, Phys. Lett. **B90** (1980) 413; E. Corrigan, P. Goddard, *Construction of Instanton and Monopole Solutions and Reciprocity*, Ann. Phys. **154** (1984) 253.

2. J. Polchinski, *TASI Lectures on D-branes*, [hep-th/9611050](https://arxiv.org/abs/hep-th/9611050).

3. D.-E. Diaconescu, *D-branes, Monopoles and Nahm Equations*, hep-th/9608163, Nucl. Phys. **B503** (1997) 220.

4. J. Hurtubise, M.K. Murray, *On the Construction of Monopoles for the Classical Groups*, Commun. Math. Phys. **122** (1989) 35.

5. A. Gerasimov, G. Moore, S. Shatashvilli, unpublished notes.

6. A. Giveon, D. Kutasov, *Brane Dynamics and Gauge Theory*, [hep-th/9802067](https://arxiv.org/abs/hep-th/9802067).

7. A. Kapustin, S. Sethi, *The Higgs Branch of Impurity Theories*, [hep-th/9804027](https://arxiv.org/abs/hep-th/9804027).

8. M.R. Douglas, *Gauge fields and D-branes*, [hep-th/9604198](https://arxiv.org/abs/hep-th/9604198).

9. P. West, *Introduction to Supersymmetry and Supergravity*, 2nd edition (World Scientific, Singapore, 1990).

10. C. Callan, J. Maldacena, *Brane Dynamics from the Born-Infeld Action*, [hep-th/9708147](https://arxiv.org/abs/hep-th/9708147), Nucl. Phys. **B513** (1998) 198.

11. E. Witten, *Solutions of Four Dimensional Field Theories via M Theory*, [hep-th/9703160](https://arxiv.org/abs/hep-th/9703160), Nucl. Phys. **B500** (1997) 3.
Figure 1. A D3-brane extended in $x^{0,1,2,3}$ intersecting a system of N parallel D1-branes. The intersection is at the point $x^9 = 0$ on the D1-branes’ world-volume.