BALL CONVEX BODIES IN MINKOWSKI SPACES

THOMAS JAHN, HORST MARTINI, AND CHRISTIAN RICHTER

To our teachers, colleagues and friends Prof. Dr. Johannes Böhm, on the occasion of his 90th birthday, and Prof. Dr. Eike Hertel, on the occasion of his 75th birthday.

Abstract. The notion of ball convexity, considered in finite dimensional real Banach spaces, is a natural and useful extension of usual convexity; one replaces intersections of half-spaces by suitable intersections of balls. A subset S of a normed space is called ball convex if it coincides with its ball hull, which is obtained as intersection of all balls (of fixed radius) containing S. Ball convex sets are closely related to notions like ball polytopes, complete sets, bodies of constant width, and spindle convexity. We will study geometric properties of ball convex bodies in normed spaces, for example deriving separation theorems, characterizations of strictly convex norms, and an application to complete sets. Our main results refer to minimal representations of ball convex bodies in terms of their ball exposed faces, to representations of ball hulls of sets via unions of ball hulls of finite subsets, and to ball convexity of increasing unions of ball convex bodies.

1. Introduction

It is well known that generalized convexity notions are helpful for solving various (metrical) problems from non-Euclidean geometries in an elegant way. For example, Menger’s notion of d-segments, yielding that of d-convex sets (see Chapter II of [16]), is a useful tool for solving location problems in finite dimensional real Banach spaces (cf. [36]). Another example, also referring to normed spaces, is the notion of ball convexity: usual convexity is extended by considering suitably defined intersections of balls instead of intersections of half-spaces. The ball hull of a given point set S is the intersection of all balls (of fixed radius) which contain S, and S is called ball convex if it coincides with its ball hull. Ball convex sets are strongly related to notions from several recent research topics, such as ball polytopes, applications of spindle convexity, bodies of constant width, and diametrically maximal (or complete) sets. In the present article we study geometric properties and (minimal) representations of ball convex bodies in normed spaces. In terms of ball convexity and related notions, we derive separation properties of ball convex bodies, various characterizations of strictly convex norms, and an application for diametrically maximal sets, which answers a question from [31]. Introducing suitable notions describing the boundary structure of ball convex bodies, our main results refer to minimal representations of ball convex bodies, particularly in terms of their ball
exposed faces. More precisely, we extend the formula $K = \text{cl}(\text{conv}(\exp(K)))$ from classical convexity (where K is a convex body in \mathbb{R}^n) to the concept of ball convexity in normed spaces. On the other hand, we derive theorems on the representation of ball convex bodies “from inside”. That is, we show that unions of increasing sequences of ball convex bodies are, essentially, ball convex, and we present ball hulls of sets by unions of ball hulls of finite subsets. In that context we solve a problem from [27]. We finish with some open questions inspired by the notions of ball hull and ball convexity; they refer to spindle convex sets and generalized Minkowski spaces (whose unit balls need not be centered at the origin).

We will give now a brief survey on what has been done regarding ball convexity and related notions. Intersections of finitely many congruent Euclidean balls were studied in [13] and [14], in three dimensions by [22] [23] [50] [21], see also [24]. The notions of ball hull and ball convexity have been considered by various authors, defining them via intersections of balls of some fixed radius $R > 0$ and calling this concept also R-convexity; see, e.g., [9] [11] [25] [27]. In view of this concept bodies of constant width (see [39]), Minkowski sums, Hausdorff limits, and approximation properties of R-convex sets (cf. [45] [46] [48]) are investigated. Also analogues of the Krein–Milman theorem and of Carathéodory’s theorem (see [44] [47]) are considered, but only for the Euclidean norm. Not much has been done for normed spaces; however, for related results we refer to [3] for Hilbert spaces and to [5] [4] [33] for normed spaces. A recent contribution is [27], referring, e.g., to the Banach–Mazur distance and Hadwiger illumination numbers of sets being ball convex in the sense described here.

Closely related is the concept of ball polytopes. It was investigated in [10] [25] [44] (but see also [43], [6], Chapter 6, and [8], Chapter 5). The boundary structure of ball polytopes is interesting (digonal facets can occur, and hence their edge-graphs are different from usual polyhedral edge-graphs), their properties are also useful for constructing bodies of constant width, and analogues of classical theorems like those of Carathéodory and Steinitz on linear convex hulls are proved in these papers.

The study of the related notion of spindle convexity (also called hyperconvexity or K-convexity) was initiated by Mayer [37]; see also [38] and, for Minkowski spaces, [51, p. 99]. The definition is given in §8 below. For a discussion of this notion we refer to the survey [17, p. 160] and, for further results and references in the spirit of abstract convexity and combinatorial geometry, to the papers [10] [27] [44] [7] [19] and [8] Chapters 5 and 6). In [12] this notion was extended to analogues of starshaped sets.

To avoid confusion, we shortly mention another concept which is also called ball convexity. Namely, in [28] a set is called ball convex if, with any finite number of points, it contains the intersection of all balls (of arbitrary radii) containing the points. The ball convex hull of a set S is again defined as the intersection of all ball convex sets containing S. In [28] [29] this notion was investigated for normed spaces, and in [30] the relations of these notions to metric or d-convexity are investigated. The ball hull mapping studied for Banach spaces in [12] [13] is also related.

2. Definitions and notations

Let $K^n = \{ S \subseteq \mathbb{R}^n : S$ is compact, convex, and non-empty $\}$ be the set of all convex bodies in \mathbb{R}^n (thus, in our terminology, a convex body need not have interior points). Let $B \in K^n$ be centered at the origin o of \mathbb{R}^n and have non-empty
interior. We denote by $(\mathbb{R}^n, \| \cdot \|)$ the n-dimensional normed or Minkowski space with unit ball B, i.e., the n-dimensional real Banach space whose norm is given by $\| x \| = \min \{ \lambda \geq 0 : x \in \lambda B \}$. Any homothetic copy $B(x, r)$, $x \in \mathbb{R}^n$ and $r \geq 0$, of B is a closed ball of $(\mathbb{R}^n, \| \cdot \|)$ with center x and radius r; therefore we replace B by writing from now on $B(o, 1)$ for the unit ball of $(\mathbb{R}^n, \| \cdot \|)$. The boundary of the ball $B(x, r)$ is the sphere $S(x, r)$, and therefore $S(o, 1)$ denotes the unit sphere of our Minkowski space. Note that we will use the symbol S for an arbitrarily given point set in \mathbb{R}^n. For a compact S, we write $\text{dist}(x, S) = \min \{ \| x - y \| : y \in S \}$ for the distance of x and S, and we denote by $\text{rad}(S)$ the circumball or minimal enclosing ball of S, whose existence is assured by the boundedness of S. The diameter of S is given by $\text{diam}(S) = \max \{ \| x - y \| : x, y \in S \}$. The triangle inequality yields the left-hand side of

$$
\frac{1}{2} \text{diam}(S) \leq \text{rad}(S) \leq \frac{n}{n + 1} \text{diam}(S),
$$

and we refer to [15, Theorem 6] for the right-hand side.

As usual, we use the abbreviations $\text{int}(S)$, $\text{cl}(S)$, $\text{bd}(S)$, $\text{conv}(S)$, and $\text{aff}(S)$ for interior, closure, boundary, convex hull, and affine hull of S, respectively. We write $[x_1, x_2]$ for the closed segment with endpoints $x_1, x_2 \in \mathbb{R}^n$, and $(a, b), (a, [b], [a, b]$ are analogously used for the open, half-open or closed interval with $a, b \in \mathbb{R}$, respectively. We use $\| \cdot \|$ for the cardinality of a set.

A convex body is called strictly convex if its boundary does not contain proper segments; analogously, $\| \cdot \|$ is called a strictly convex norm if the respective unit ball is strictly convex.

Since we want to derive results for generalized convexity notions, the following definitions yield direct analogues of notions from classical convexity; see [49]. The first of them is an analogue of the (closed) convex hull. Namely, the ball hull of a set S is defined by

$$
\text{bh}_1(S) = \bigcap_{S \subseteq B(x, 1)} B(x, 1).
$$

A formally clearer expression would be $\text{bh}_1(S) = \bigcap_{x \in \mathbb{R}^n : S \subseteq B(x, 1)} B(x, 1)$, but we assume that the above shorter notation, as well as similar ones in the sequel, will not cause confusion. (We underline once more that here and below we use balls of radius 1.) A ball convex (b-convex) set S is characterized by $S = \text{bh}_1(S)$ or, equivalently, by the property that S is an intersection of closed balls of radius 1 (then S is necessarily closed and convex). A b-convex body K is a bounded non-empty b-convex set (the analogue of a convex body in classical convexity): \emptyset and \mathbb{R}^n are the only b-convex sets that are not b-convex bodies. (Note that \mathbb{R}^n is b-convex, since we want to understand the intersection of an empty family of sets as \mathbb{R}^n.) A supporting sphere $S(x, 1)$ of K is characterized by $K \subseteq B(x, 1)$ and $K \cap S(x, 1) \neq \emptyset$; the corresponding exposed b-face (or b-support set) is $K \cap S(x, 1)$ (note that non-empty facets from [25, Definition 5.3] are a special case).

If an exposed b-face is a singleton $\{x_0\}$, then x_0 is called a b-exposed point of K, and $\text{b-exp}(K)$ denotes the set of all b-exposed points. We note that several such concepts, referring to the analogous notions for ball polytopes, their boundary structure, separation properties with respect to spheres etc., can be found in the papers [7, 25], but are defined there only for the subcase of the Euclidean norm.

Finally, a set S is called b-bounded if $\text{rad}(S) < 1$. This means that S is inside a
ball of radius 1 and separated from its bounding sphere, which plays the role of a hyperplane in classical convexity.

We close this section by summarizing several basic facts about ball hulls and circumradii, and we give a lemma on intersections of compact sets with the boundaries of their circumballs.

Lemma 1. Let \((\mathbb{R}^n, \| \cdot \|)\) be a Minkowski space. The following are satisfied for all \(S, T \subseteq \mathbb{R}^n\) and \(x \in \mathbb{R}^n\):

(a) \(S \subseteq \text{cl}(S) \subseteq \text{cl}(\text{conv}(S)) \subseteq \text{bh}_1(S) = \text{bh}_1(\text{conv}(S)) = \text{bh}_1(\text{cl}(S))\).

(b) If \(S \subseteq T\), then \(\text{bh}_1(S) \subseteq \text{bh}_1(T)\).

(c) \(B(x, r)\) is a b-convex body for every \(r \in [0, 1]\).

(d) If \(\text{rad}(S) \leq 1\), then \(\text{rad}(\text{bh}_1(S)) = \text{rad}(S)\). In particular, \(\text{bh}_1(S)\) is b-bounded if \(S\) is b-bounded.

(e) If \(S\) is closed and \(S \subseteq \text{int}(B(x, r))\) for some \(r > 0\), then \(S \subseteq B(x, r')\) for some \(r' \in (0, r)\) and \(\text{rad}(S) < r\). In particular, a closed subset of \(\mathbb{R}^n\) is b-bounded if and only if it is covered by an open ball of radius 1.

Proof. Parts (a) and (b) are obvious; see [32, Lemma 1] for a collection of related statements.

For (c) the triangle inequality gives the following representation of \(B(x, r)\) as an intersection of balls of radius 1: \(B(x, r) = \bigcap_{\|y-x\| \leq 1-r} B(y, 1)\).

To see (d) first note that \(\text{rad}(S) \leq \text{rad}(\text{bh}_1(S))\) by (a). If \(B(x, \text{rad}(S))\) is a circumball of \(S\), then \(\text{bh}_1(S) \subseteq \text{bh}_1(B(x, \text{rad}(S))) = B(x, \text{rad}(S))\) by (b) and (c). Hence \(\text{rad}(\text{bh}_1(S)) \leq \text{rad}(B(x, \text{rad}(S))) = \text{rad}(S)\).

For (e) suppose that \(S\) contains at least two points. Consider the continuous function \(f : S \to \mathbb{R}, f(y) = \text{dist}(y, S(x, r)) = \text{dist}(y, \mathbb{R}^n \setminus B(x, r))\). Since \(S\) is compact, \(f\) attains its minimum: \(f(y) \geq f(y_0) \in (0, r)\) for all \(y \in S\). This shows that \(\text{dist}(y, \mathbb{R}^n \setminus B(x, r)) \geq f(y_0)\) for all \(y \in S\); i.e., \(S \subseteq B(x, r')\), where \(r' = r - f(y_0) \in (0, r)\).

\[\square\]

Lemma 2. Let \(B(x_0, \text{rad}(S))\) be a circumball of a non-empty compact subset \(S\) of a Minkowski space \((\mathbb{R}^n, \| \cdot \|)\). Then \(\text{rad}(S \cap S(x_0, \text{rad}(S))) = \text{rad}(S)\). In particular, there exist \(x, x' \in S \cap S(x_0, \text{rad}(S))\) such that \(\|x - x'\| \geq \frac{2\text{rad}(S)}{n}\).

Proof. Without loss of generality, we set \(B(x_0, \text{rad}(S)) = B(o, 1)\). Assume that, contrary to our claim, \(\text{rad}(S \cap S(o, 1)) < 1\). Then there exists \(x_1 \in \mathbb{R}^n\) such that

\[S \cap S(o, 1) \subseteq \text{int}(B(x_1, 1)).\]

Since \(\text{rad}(S) = 1\), Lemma [32] gives points

\[y_i \in S \setminus \text{int} \left(B \left(\frac{1}{i} x_1, 1 \right) \right), \quad i = 1, 2, \ldots\]

Note that \((y_i)_{i=1}^\infty \subseteq S \setminus \text{int}(B(x_1, 1))\).
For proving (a), note that the assumption yields the existence of a sequence \((y_i)\) such that \(\|y_i\| \leq 1\), \(\|y_i - \frac{1}{i}x_1\| \geq 1\), and in turn

\[
\|y_i - x_1\| = \left\| i \left(y_i - \frac{1}{i}x_1\right) - (i - 1)y_1 \right\|
\geq i \left\| y_i - \frac{1}{i}x_1 \right\| - (i - 1)\|y_i\|
\geq i - (i - 1)
= 1.
\]

Since \(S \setminus \text{int}(B(x_1, 1))\) is compact, \((y_i)\) has an accumulation point \(y_0 \in S \setminus \text{int}(B(x_1, 1))\). We know that \(\|y_0\| \leq 1\) from \(S \subseteq B(0, 1)\), whereas (3) gives \(\|y_i - \frac{1}{i}x_1\| \geq 1\) and, by \(i \to \infty\), \(\|y_0\| \geq 1\). This way we see that

\(y_0 \in S \cap S(0, 1) \setminus \text{int}(B(x_1, 1))\),

which contradicts (2) and completes the proof of \(\text{rad}(S \cap S(x_0, \text{rad}(S))) = \text{rad}(S)\).

For (b), we have

\[
\frac{1}{1} \leq \|y_i\| \leq 1, \quad \|y_i - x_1\| \geq 1, \quad \text{and} \quad \|x_i - x_1\| = 1.
\]

Now the additionally claimed existence of \(x, x' \in S \cap S(x_0, \text{rad}(S))\) such that \(\|x - x'\| = \frac{1}{1} \cdot \text{rad}(S)\) is a consequence of the right-hand estimate in (1) and the compactness of \(S\).

\[\square\]

3. Separation properties

The following results on the separation of b-convex bodies and points by spheres are analogues of theorems on the separation by hyperplanes in classical convexity.

Proposition 1. Let \(K\) be a b-convex body in a Minkowski space \((\mathbb{R}^n, \|\cdot\|)\).

(a) For every \(x_0 \in \text{bd}(K)\), there exists a supporting sphere \(S(y_0, 1)\) of \(K\) such that \(x_0 \in S(y_0, 1)\).

(b) For every \(x_0 \in \mathbb{R}^n \setminus K\), there exists a supporting sphere \(S(y_0, 1)\) such that \(x_0 \notin B(y_0, 1)\).

(c) If \(K\) is b-bounded then, for every \(x_0 \in \mathbb{R}^n \setminus K\), there exists a sphere of unit radius \(S(y_0, 1)\) such that \(K \subseteq \text{int}(B(y_0, 1))\) and \(x_0 \notin B(y_0, 1)\). In particular, \(K \subseteq B(y_0, r)\) for some \(r \in (0, 1)\).

Proof. For proving (a) note that the assumption

\[
x_0 \in \text{bd}(K) = \text{bd}(\text{bh}_1(K)) = \text{bd}\left(\bigcap_{K \subseteq B(y_i, 1)} B(y_i, 1)\right)
\]

yields the existence of a sequence \((y_i)\) such that \(K \subseteq B(y_i, 1)\) for all \(i\) and

\[
0 = \lim_{i \to \infty} \text{dist}(x_0, \mathbb{R}^n \setminus B(y_i, 1)) = \lim_{i \to \infty} (1 - \|x_0 - y_i\|).
\]

By compactness, \((y_i)\) has a convergent subsequence, and we can assume that \(\lim_{i \to \infty} y_i = y_0\) without loss of generality. Then the above observations imply \(K \subseteq B(y_0, 1)\) and \(\|x_0 - y_0\| = 1\), i.e., \(x_0 \in S(y_0, 1)\). This is our claim.

For (b) we have \(x_0 \notin K = \bigcap_{K \subseteq B(y_1, 1)} B(y_1, 1)\). Hence there is \(y_1 \in \mathbb{R}^n\) such that \(K \subseteq B(y_1, 1)\) and \(x_0 \notin B(y_1, 1)\). We consider the translated balls \(B_\lambda := B(y_1 + \lambda(y_1 - x_0), 1)\), \(\lambda \geq 0\). We know that \(K \subseteq B_0\). Let \(\lambda_0 \geq 0\) be maximal such that

\[
K \subseteq B_\lambda \quad \text{for} \quad 0 \leq \lambda \leq \lambda_0.
\]
By the maximality of λ_0, $bd(B_{\lambda_0}) = S(y_1 + \lambda_0(1 - x_0)) = S(y_1, 1)$ is a supporting sphere of K. Moreover, $x_0 \notin B(y_0, 1)$, because $x_0 \notin B(y_1, 1)$ gives

$$||x_0 - y_0|| = ||x_0 - (y_1 + \lambda_0(1 - x_0))|| = (1 + \lambda_0)||x_0 - y_1|| > 1 + \lambda_0 \geq 1.$$ This proves (b).

For the proof of (c), the b-boundedness of K gives $y_1 \in \mathbb{R}^n$ such that $K \subseteq int(B(y_1, 1))$. By (b) there is $y_2 \in \mathbb{R}^n$ with $K \subseteq B(y_2, 1)$ and $x_0 \notin B(y_2, 1)$. We can pick $\varepsilon \in (0, 1)$ small enough such that

$$x_0 \notin B(y_0, 1), \text{ where } y_0 := y_2 + \varepsilon(1 - y_2).$$

Then we obtain

$$K \subseteq int(B(y_0, 1)), \tag{4}$$

because, for arbitrary $x \in K$, the inclusions $K \subseteq int(B(y_1, 1))$ and $K \subseteq B(y_2, 1)$ imply $||x - y_1|| < 1$, $||x - y_2|| \leq 1$, and in turn

$$||x - y_0|| = ||x - (y_2 + \varepsilon(1 - y_2))|| = ||\varepsilon(x - y_1) + (1 - \varepsilon)(x - y_2)|| \leq \varepsilon||x - y_1|| + (1 - \varepsilon)||x - y_2|| < \varepsilon + (1 - \varepsilon) = 1.$$

Finally, (4) yields $K \subseteq B(y_0, r)$ for suitable $r \in (0, 1)$ by Lemma 2(e). □

Corollary 1. Every b-convex body in a Minkowski space $(\mathbb{R}^n, || \cdot ||)$ satisfies

$$bd(K) = \bigcup \{F : F \text{ is an exposed b-face of } K\}.$$

Proof. Proposition 1(a) gives “$$\subseteq$$”. The converse inclusion is implied by the definition of exposed b-faces. □

Proposition 1 gives rise to alternative representations of ball hulls.

Corollary 2. Every b-bounded subset S of a Minkowski space $(\mathbb{R}^n, || \cdot ||)$ satisfies

$$bh_1(S) = \bigcap_{S \subseteq int(B(x, 1))} B(x, 1) = \bigcap_{S \subseteq B(x, r), r < 1} B(x, 1) = \bigcap_{S \subseteq B(x, r), r < 1} B(x, r).$$

Proof. We assume that $S \neq \emptyset$ and put $A := bh_1(S) = \bigcap_{S \subseteq B(x, 1)} B(x, 1)$, $B := \bigcap_{S \subseteq int(B(x, 1))} B(x, 1)$, $C := \bigcap_{S \subseteq B(x, r), r < 1} B(x, 1)$ and $D := \bigcap_{S \subseteq B(x, r), r < 1} B(x, r)$. The inclusions $A \subseteq B \subseteq C$ and $D \subseteq C$ are trivial. It suffices to prove that $C \subseteq A$ and $A \subseteq D$.

For proving $C \subseteq A$, we consider an arbitrary $x_0 \in \mathbb{R}^n \setminus A$ and have to show that $x_0 \notin C$. Application of Proposition 1(c) to A, which is b-bounded by Lemma 1(d) and x_0 gives $y_0 \in \mathbb{R}^n$ and $r \in (0, 1)$ such that $S \subseteq A \subseteq B(y_0, r)$ and $x_0 \notin B(y_0, 1)$. This yields $x_0 \notin C$.

For $A \subseteq D$, note that

$$S \subseteq B(x, r) \iff A \subseteq B(x, r).$$

Indeed, if $S \subseteq B(x, r)$, then, by Lemma 1(b) and (c), $A = bh_1(S) \subseteq bh_1(B(x, r)) = B(x, r)$. Conversely, if $A \subseteq B(x, r)$, then $S \subseteq bh_1(S) = A \subseteq B(x, r)$ by Lemma 1(a).
Indeed, if S then R by Corollary 2, intersections represent B ample, if S.

\[\text{Every } b\text{-bounded closed subset } S \text{ of a Minkowski space } (\mathbb{R}^n, \| \cdot \|) \text{ satisfies} \]

\[bh_1(S) = \bigcap_{S \subseteq \text{int}(B(x,1))} \text{int}(B(x,1)). \]

\[\text{Proof.} \] By Corollary 2.

\[bh_1(S) = \bigcap_{S \subseteq \text{int}(B(x,1))} B(x, 1) \supseteq \bigcap_{S \subseteq \text{int}(B(x,1))} \text{int}(B(x,1)). \]

For the converse inclusion, note that

\[S \subseteq \text{int}(B(x,1)) \implies bh_1(S) \subseteq \text{int}(B(x,1)). \]

Indeed, if $S \subseteq \text{int}(B(x,1))$, then $S \subseteq B(x, r)$ for some $r \in (0, 1)$ by Lemma 1(e) and, by Lemma 1(b) and 1(c) $bh_1(S) \subseteq bh_1(B(x,r)) = B(x, r) \subseteq \text{int}(B(x,1))$.

The above implication yields

\[\bigcap_{S \subseteq \text{int}(B(x,1))} \text{int}(B(x,1)) \supseteq \bigcap_{bh_1(S) \subseteq \text{int}(B(x,1))} \text{int}(B(x,1)) \supseteq bh_1(S). \]

\[\square \]

The assumption of b-boundedness is essential in Corollaries 2 and 3. For example, if S is a closed ball of radius 1, then $bh_1(S) = S$, whereas the four other intersections represent \mathbb{R}^n, since they are intersections over empty index sets.

To see that the assumption of closedness in Corollary 3 cannot be dropped, consider the example $S = \text{int}(B(x_0, r_0))$ with $x_0 \in \mathbb{R}^n$ and $r_0 \in (0, 1)$. Then

\[bh_1(\text{int}(B(x_0, r_0))) = bh_1(B(x_0, r_0)) = B(x_0, r_0) \]

by Lemma 1(a) and 1(b). In contrast to that,

\[\bigcap_{\text{int}(B(x_0, r_0)) \subseteq \text{int}(B(x,1))} \text{int}(B(x,1)) = \bigcap_{\|x-x_0\| \leq 1-r_0} \text{int}(B(x,1)) = \text{int}(B(x_0, r_0)), \]

as can be checked by the triangle inequality.

In classical convexity two disjoint convex sets can be separated by a hyperplane. The analogous claim for ball convexity would say that, given two disjoint b-convex bodies $K_1, K_2 \subseteq \mathbb{R}^n$, there exists a separating sphere $S(x_0, 1)$ for K_1 and K_2; i.e., $K_1 \subseteq B(x_0, 1)$ and $K_2 \cap B(x_0, 1) = \emptyset$. In fact, one knows even more if the underlying Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ is a Euclidean space (see [10] Lemma 3.1 and Corollary 3.4), if its unit ball is a cube (see [27] Corollary 3.15), or if it is two-dimensional (see [27] Theorem 4). Then, for every b-convex body K and every supporting hyperplane H of K, there exists a sphere $S(x_0, 1)$ such that $K \subseteq B(x_0, 1)$ and $\text{int}(B(x_0, 1)) \cap H = \emptyset$. However, the last statement fails in general (see [27] Example 3.9) for an example in a generalized Minkowski space whose unit ball is not centrally symmetric. Here we show that even the (formally weaker) separation of two b-convex bodies by a unit sphere may fail in a (symmetric) Minkowski space.
Example 1. Let l^3_n be the three-dimensional Minkowski space with unit ball $B(o, 1) = \text{conv}\{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}$, let $0 < \varepsilon < \frac{1}{2}$, and consider the segments $K_1 = \left[\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(-\frac{1}{2}, \frac{1}{2}, 0\right)\right]$ and $K_2 = \left[\left(\frac{1}{2}, -\frac{1}{2}, 0\right), \left(-\frac{1}{2}, -\frac{1}{2}, 0\right)\right]$. Then K_1 and K_2 are disjoint b-bounded b-convex bodies in l^3_1, and there is no unit sphere $S(x_0, 1)$ such that $K_1 \subseteq B(x_0, 1)$ and $K_2 \cap \text{int}(B(x_0, 1)) = \emptyset$.

Proof. K_1 is b-convex, because $K_1 = B\left(-\left(\frac{1}{2}, \frac{1}{2}, 0\right), 1\right) \cap B\left(\left(\frac{1}{2}, -\frac{1}{2}, 0\right), 1\right)$, and b-bounded, since rad(K_1) = $\frac{1}{2}$. Similarly, K_2 is b-bounded and b-convex.

If $K_1 \subseteq B(x_0, 1)$, then $B(x_0, 1)$ contains at least one of the points of the segment $\left[\left(\frac{1}{2}, -\frac{1}{2}, 0\right), \left(-\frac{1}{2}, -\frac{1}{2}, 0\right)\right]$, and we obtain $K_2 \cap \text{int}(B(x_0, 1)) \neq \emptyset$, since $0 < \varepsilon < \frac{1}{2}$. □

4. Characterizations of strict convexity

Some of our results will require strict convexity of the norm $\| \cdot \|$. On the other hand, strict convexity can be reflected by numerous properties related to concepts introduced in Section 2. This fourth section here is devoted to characterizations of strict convexity. We start with characterizations by properties of balls, circumballs and circumradii; for (iv) and (v) in the following lemma we also refer to [2, 35].

Lemma 3. Let $(\mathbb{R}^n, \| \cdot \|)$ be a Minkowski space. The following are equivalent:

(i) $\| \cdot \|$ is strictly convex.

(ii) Each supporting hyperplane of a closed ball meets that ball in exactly one point.

(iii) The circumradius of the intersection of any two distinct balls of the same radius $r > 0$ is smaller than r.

(iv) Every bounded non-empty subset of \mathbb{R}^n has a unique circumball.

(v) For any two distinct points $x_1, x_2 \in \mathbb{R}^n$, (x_1, x_2) has a unique circumball.

Proof. (i)\Rightarrow(ii) If (ii) fails, then some ball meets one of its supporting hyperplanes in at least two distinct points x_1, x_2. Then the segment $[x_1, x_2]$ is contained in the boundary of that ball, contradicting (i).

(ii)\Rightarrow(i) If (ii) fails, then the boundary of $B(o, 1)$ contains a line segment L of positive length. The disjoint convex sets $\text{int}(B(o, 1))$ and L can be separated by a hyperplane H. Then H is a supporting hyperplane of $B(o, 1)$ and contains L, contradicting (ii).

(i)\Rightarrow(iii) If $x_1, x_2 \in \mathbb{R}^n$ are distinct points and if $r > 0$, then

$$(5) \quad B(x_1, r) \cap B(x_2, r) \subseteq \text{int}\left(B\left(\frac{x_1 + x_2}{2}, r\right)\right),$$

which implies our claim rad($B(x_1, r) \cap B(x_2, r)$) < r by Lemma [35]. To verify (iii), assume the contrary; i.e., $\|x - \frac{x_1 + x_2}{2}\| \geq r$ for some $x \in B(x_1, r) \cap B(x_2, r)$. Then

$$r \leq \left\|x - \frac{x_1 + x_2}{2}\right\| \leq \frac{1}{2}\left(\|x - x_1\| + \|x - x_2\|\right) \leq \frac{1}{2}(r + r) = r,$$

hence all terms in the above estimate agree and we obtain $\|x - x_1\| = \|x - x_2\| = \|x - \frac{x_1 + x_2}{2}\| = r$. This shows that $[x_1, x_2]$ is a segment in $S(x, r)$, contradicting (i) and proving (iii).

(iii)\Rightarrow(iv) If (iv) fails, then there is a bounded set S with circumradius rad(S) > 0 that has two circumballs $B(x_1, \text{rad}(S))$ and $B(x_2, \text{rad}(S))$, $x_1 \neq x_2$. This implies $B(x_1, \text{rad}(S)) \cap B(x_2, \text{rad}(S)) \supseteq S$ and rad($B(x_1, \text{rad}(S)) \cap B(x_2, \text{rad}(S))$) $\geq \text{rad}(S)$, contradicting (iii).
Proposition 2. Let \((\mathbb{R}^n, \| \cdot \|)\) be a Minkowski space. The following are equivalent:

(i) The norm \(\| \cdot \|\) is strictly convex.

(ii) Every b-convex body that is not b-bounded is a closed ball of radius 1.

(iii) Every \(b\)-convex body that is not \(b\)-bounded has only one supporting sphere.

(iv) For every boundary point \(x\) of a \(b\)-convex body \(K\) that is not \(b\)-bounded, there exists only one supporting sphere of \(K\) that contains \(x\).

(v) Every \(b\)-convex body that is not \(b\)-bounded is a closed ball of radius 1.

Proof. The implications \(\text{(vi)} \Rightarrow \text{(vii)} \Rightarrow \text{(viii)} = (\text{xvi}) = (\text{xvii}) = (\text{xii}) = (\text{xiii}) = (\text{xiv})\) are obvious.

\(\text{(i)} \Rightarrow \text{(vi)}\) Every \(b\)-convex body \(K\) is a non-empty intersection of a non-empty family of closed balls of radius 1. If the family consisted of more than one ball, then its intersection \(K\) would be \(b\)-bounded by Lemma 3.(ii). Hence the only \(b\)-convex bodies that are not \(b\)-bounded are closed balls of radius 1.

\(\text{(vii)} \Rightarrow \text{(i)}\) Suppose that (i) fails. Then condition (iii) from Lemma 3 fails as well, and there are two points \(x_1 \neq x_2\) such that \(\text{rad}(b(B(x_1, 1) \cap B(x_2, 1))) = 1\). The body \(K = B(x_1, 1) \cap B(x_2, 1)\) shows that (viii) fails, too, because every \(x \in \text{bd}(B(x_1, 1) \cap B(x_2, 1))\) belongs to \(\text{bd}(K)\) and has the two supporting spheres \(S(x_1, 1)\) and \(S(x_2, 1)\).

\(\text{(i)} \Rightarrow \text{(ix)}\) and \(\text{(i)} \Rightarrow \text{(xi)}\). We use the fact that if two balls \(B(y, s)\) and \(B(y', s')\) of positive radius in a strictly convex Minkowski space are on the same side of a common supporting hyperplane \(H\) with respective touching points \(y_0\) and \(y_0'\), then the dilatation \(\varphi\) that is uniquely determined by \(\varphi(y_0) = y_0'\) and the dilatation factor \(\frac{s'}{s}\) maps \(B(y, s)\) onto \(B(y', s')\). To see this, consider the homotheties \(\delta\) and \(\delta'\) that map \(B(y, s)\) and \(B(y', s')\) onto \(B(o, 1)\), respectively. Then \(\delta(H) = \delta'(H)\), because \(B(o, 1)\) has only one supporting hyperplane with the same outer normal vector as \(H\), and \(\delta(y_0) = \delta'(y_0)\), since \(\delta(H) = \delta'(H)\) has only one touching point with \(B(o, 1)\) (see Lemma 3). Now \(\varphi = (\delta')^{-1} \circ \delta\), and the fact is verified.

Coming back to the proof of \(\text{(i)} \Rightarrow \text{(ix)}\) and \(\text{(i)} \Rightarrow \text{(xi)}\), we consider an arbitrary supporting sphere \(S(y, 1)\) of \(B(x, r)\) and suppose that \(x_0\) belongs to the \(b\)-support set \(B(x, r) \cap S(y, 1)\). The supporting hyperplane of \(B(y, 1)\) at \(x_0\) supports \(B(x, r)\).
as well. Now the above fact says that $B(y, 1)$ is the image of $B(x, r)$ under the dilatation φ with fixed point x_0 and factor $\frac{1}{r}$. This shows in particular that the supporting sphere $S(y, 1)$ is uniquely determined by the touching point x_0, which proves [ix] (because there exists at least one supporting sphere at x_0 according to Proposition 1(a)). To show [xi] we have to prove that every point $x_1 \in B(x, r) \cap S(y, 1)$ coincides with x_0. By the same argument as above, $B(y, 1)$ is the image of $B(x, r)$ under the dilatation ψ with fixed point x_1 and factor $\frac{1}{r}$. We obtain

$$y = \varphi(x) = x_0 + \frac{1}{r}(x - x_0) \quad \text{and} \quad y = \psi(x) = x_1 + \frac{1}{r}(x - x_1),$$

which gives $x_0 = x_1$ and completes the proof of [xi].

[xi]→[i] Suppose that [i] fails. Then, for every $x \in \mathbb{R}^n$ and every $r \in (0, 1)$, $S(x, r)$ contains a line segment $[x_0, x_1] \subseteq S(x, r)$, $x_0 \neq x_1$. If φ_0 and φ_1 are dilatations with factor $\frac{1}{r}$ and fixed points x_0 and x_1, respectively, then $\varphi_0(S(x, r))$ and $\varphi_1(S(x, r))$ are distinct supporting spheres of $B(x, r)$. Clearly, we have

$$x_0 = \varphi_0(x_0) \in \varphi_0([x_0, x_1]) \subseteq \varphi_0(S(x, r)).$$

Moreover,

$$x_0 = \varphi_1(r_x0 + (1 - r)x_1) \in \varphi_1([x_0, x_1]) \subseteq \varphi_1(S(x, r)).$$

Hence $\varphi_0(S(x, r))$ and $\varphi_1(S(x, r))$ both are supporting spheres of $B(x, r)$ at $x_0 \in bd(B(x, r))$, and [x] is disproved.

[xii]=[(xiii)] and [xii]=[(xiv)] follow from Proposition 1(a).

[(xv)] If [i] fails, then every ball $B(x, r)$, $x \in \mathbb{R}^n$, $r \in (0, 1)$, contains a segment $[x_1, x_2]$, $x_1 \neq x_2$, in its boundary $S(x, r)$. We shall show that $\frac{x_1 + x_2}{2} \notin b-exp(B(x, r))$, this way disproving [xiv]. Indeed, if $S(y, 1)$ is a supporting sphere of $B(x, r)$ with touching point $\frac{x_1 + x_2}{2} \in S(y, 1)$, then $[x_1, x_2] \subseteq B(x, r) \subseteq B(y, 1)$, and the point $\frac{x_1 + x_2}{2}$ (from the relative interior) of $[x_1, x_2]$ is in $S(y, 1) = bd(B(y, 1))$. Hence $[x_1, x_2] \subseteq S(y, 1)$. This shows that the exposed b-face $B(x, r) \cap S(y, 1)$ that contains $\frac{x_1 + x_2}{2}$ must necessarily cover the whole segment $[x_1, x_2]$. Thus $\frac{x_1 + x_2}{2} \notin b-exp(B(x, r))$.

(i)→[(xv)] Assume that [ixv] fails; i.e., there are a b-convex body K and two points $x_1 \neq x_2$ such that $[x_1, x_2] \subseteq bd(K)$. By Proposition 1(a) there is a supporting sphere $S(y, 1)$ of K such that $\frac{x_1 + x_2}{2} \in S(y, 1)$. As above, we have $[x_1, x_2] \subseteq K \subseteq B(y, 1)$ and $\frac{x_1 + x_2}{2} \in S(y, 1) = bd(B(y, 1))$, which yields $[x_1, x_2] \subseteq S(y, 1)$ and contradicts [i].

[(xvi)]=[(xvii)] and [(xvi)]=[(xviii)] If a convex body K contains two distinct points x_1 and x_2 and has empty interior, then K is not strictly convex, because $[x_1, x_2] \subseteq K = bd(K)$. This yields the two implications.

[(xviii)]→[(i)] If [i] fails, then there are $x_1 \neq x_2$ such that $[x_1, x_2] \subseteq S(o, 1)$. Hence

$$[\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}] = (\{x_1, x_2\} - \frac{x_1 + x_2}{2}) \cap (-\{x_2, x_1\} + \frac{x_1 + x_2}{2}) \subseteq (S(o, 1) - \frac{x_1 + x_2}{2}) \cap (S(o, 1) + \frac{x_1 + x_2}{2}) = S(-\frac{x_1 + x_2}{2}, 1) \cap S(\frac{x_1 + x_2}{2}, 1) = B(-\frac{x_1 + x_2}{2}, 1) \cap B(\frac{x_1 + x_2}{2}, 1).$$
The last equation is a consequence of \(\| \frac{x_1 + x_2}{2} - \left(-\frac{x_1 + x_2}{2} \right) \| = 2 \| \frac{x_1 + x_2}{2} \| = 2 \). We obtain
\[
\text{int} \left(\text{bh}_1 \left(\left\{ \frac{x_1 - x_2}{2}, \frac{x_2 - x_1}{2} \right\} \right) \right) \subseteq \text{int} \left(\text{bh}_1 \left(B \left(\frac{x_1 + x_2}{2}, 1 \right) \right) \right)
= \text{int} \left(B \left(\frac{x_1 + x_2}{2}, 1 \right) \right)
= \text{int} \left(S \left(\frac{x_1 + x_2}{2}, 1 \right) \right)
= \emptyset,
\]
which contradicts \([xviii]\). \(\square \)

5. Representation of Ball Hulls “from Inside”

In this section we deal with \(b\)-convexity of unions of increasing sequences of \(b\)-convex bodies and with the representation of ball hulls of sets by unions of ball hulls of finite subsets. We start with an auxiliary statement.

Lemma 4. Let \(K \in \mathcal{K}^n\), let \(H \subseteq \mathbb{R}^n\) be a hyperplane, and let \((y_i)_{i=1}^\infty \subseteq \mathbb{R}^n\) such that \(y_i \xrightarrow{i \to \infty} y_0 \in \mathbb{R}^n\) and \(H \cap (K + y_i) \neq \emptyset\) for all \(i = 1, 2, \ldots\) Then \(H \cap (K + y_i) \xrightarrow{i \to \infty} H \cap (K + y_0)\) in the Hausdorff distance.

Proof. First note that \(H \cap (K + y_0) \neq \emptyset\), and in turn \(H \cap (K + y_0) \in \mathcal{K}^n\). Indeed, for every \(i \geq 1\), we can pick \(z_i \in H \cap (K + y_i)\), i.e., \(z_i = x_i + y_i\) with \(x_i \in K\). By the compactness of \(K\) we see that, w.l.o.g., \(x_i \xrightarrow{i \to \infty} x_0 \in K\). We get \(z_0 := x_0 + y_0 = \lim_{i \to \infty} z_i \in H \cap (K + y_0)\), because \(H\) is closed.

By [49] Theorem 1.8.7, our claim \(H \cap (K + y_i) \xrightarrow{i \to \infty} H \cap (K + y_0)\) is now equivalent to the following conditions taken together:

- (a) for every \(t_0 \in H \cap (K + y_0)\), there exist \(t_i \in H \cap (K + y_i)\), \(i = 1, 2, \ldots\), such that \(t_i \xrightarrow{i \to \infty} t_0\);
- (b) if \((t_{i_j})_{j=1}^\infty\) is a sequence with \(i_1 < i_2 < \ldots\), \(t_{i_j} \in H \cap (K + y_{i_j})\), and \(t_{i_j} \xrightarrow{j \to \infty} t_0 \in \mathbb{R}^n\), then \(t_0 \in H \cap (K + y_0)\).

Proof of (a). Suppose that \(H = \{ x \in \mathbb{R}^n : \langle u, x \rangle = c \}\), \(\langle \cdot, \cdot \rangle\) denoting the usual scalar product. Then fix \(t_0 \in H \cap (K + y_0)\), i.e., \(t_0 = x_0 + y_0\) with \(x_0 \in K\) and \(u, t_0 \rangle = c\), i.e., \(\langle u, x_0 \rangle = c - \langle u, y_0 \rangle\).

Pick \(x^*, x^{**} \in K\) such that
\[
\langle u, x^*\rangle = \min\{\langle u, x \rangle : x \in K\}, \quad \langle u, x^{**}\rangle = \max\{\langle u, x \rangle : x \in K\}.
\]
For every \(i = 1, 2, \ldots\), \(H \cap (K + y_i) \neq \emptyset\) gives \(\tilde{x}_i \in K\) such that
\[
\langle u, \tilde{x}_i + y_i \rangle = c.
\]
We choose \(t_i = x_i + y_i \in H \cap (K + y_i)\) as follows: We know from \(\tilde{x}_i \in K\) that \(\langle u, \tilde{x}_i \rangle \in ([u, x^*], \langle u, x^{**}\rangle]\).

Case 1: \(\langle u, \tilde{x}_i \rangle = \langle u, x_0 \rangle\). In that case we put
\[
x_i := x_0.
\]
Then \(t_i = x_0 + y_i \in K + y_i\) and \(t_i \in H\), because \(\langle u, t_i \rangle = \langle u, x_0 + y_i \rangle = \langle u, \tilde{x}_i + y_i \rangle = c\).

Case 2: \(\langle u, \tilde{x}_i \rangle \in ([u, x^*], \langle u, x_0 \rangle)\). Then
\[
x_i := \frac{\langle u, \tilde{x}_i \rangle - \langle u, x^*\rangle}{\langle u, x_0 \rangle - \langle u, x^*\rangle} x_0 + \frac{\langle u, x_0 \rangle - \langle u, \tilde{x}_i \rangle}{\langle u, x_0 \rangle - \langle u, x^*\rangle} x^*.
\]
satisfies $x_i \in [x_0, x^*] \subseteq K$, hence $t_i = x_i + y_i \in K + y_i$, and

$$
\langle u, x_i \rangle = \langle u, x_i \rangle - \langle u, x^* \rangle \langle u, x_0 \rangle + \langle u, x_i \rangle - \langle u, x^* \rangle \langle u, x_0 \rangle \langle u, x^* \rangle = \langle u, x_i \rangle .
$$

This gives $t_i \in H$, because $\langle u, t_i \rangle = \langle u, x_i + y_i \rangle = \langle u, x_i + y_i \rangle$.

Case 3: $\langle u, x_i \rangle \in \langle (u, x_0), (u, x^*) \rangle$. Then

$$
(10) \quad x_i := \frac{\langle u, x^* \rangle - \langle u, x_i \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} x_0 + \frac{\langle u, x_i \rangle - \langle u, x_0 \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} x^*
$$

satisfies $x_i \in [x_0, x^*] \subseteq K$, hence $t_i = x_i + y_i \in K + y_i$, and

$$
\langle u, x_i \rangle = \frac{\langle u, x^* \rangle - \langle u, x_i \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} \langle u, x_0 \rangle + \frac{\langle u, x_i \rangle - \langle u, x_0 \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} \langle u, x^* \rangle = \langle u, x_i \rangle .
$$

This yields $t_i \in H$, because $\langle u, t_i \rangle = \langle u, x_i + y_i \rangle = \langle u, x_i + y_i \rangle$.

Finally, for proving $t_i \xrightarrow{i \to \infty} t_0$, we use the following arguments. We get $x_i \xrightarrow{i \to \infty} x_0$ by partitioning the sequence $(x_i)_{i=1}^\infty$ into three subsequences corresponding to the above Cases 1–3, where each of the subsequences (if it is infinite) converges to x_0. In Case 1 this is trivial, and in the other two cases it follows from

$$
\langle u, x_i \rangle = \frac{\langle u, x^* \rangle - \langle u, x_i \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} \langle u, x_0 \rangle + \frac{\langle u, x_i \rangle - \langle u, x_0 \rangle}{\langle u, x^* \rangle - \langle u, x_0 \rangle} \langle u, x^* \rangle = \langle u, x_i \rangle .
$$

and from the definitions (10) and (10). This yields $t_i = x_i + y_i \xrightarrow{i \to \infty} x_0 + y_0 = t_0$.

Proof of (b). The inclusion $t_{ij} \in H \cap (K + y_{ij})$ gives $x_{ij} := t_{ij} - y_{ij} \subseteq K$. Hence $x_{ij} = x_{ij} - y_{ij} \xrightarrow{j \to \infty} t_0 - y_0 \in K$, because K is closed. Thus $t_0 \in K + y_0$. Moreover, $t_{ij} \in H$ yields $t_{ij} \xrightarrow{i \to \infty} t_0 \in H$, because H is closed. Hence $t_0 \in H \cap (K + y_0)$. □

Remark 1. Note that H cannot be replaced by an affine subspace L of arbitrary dimension in Lemma 4. See the following example, where

$$
K := \left\{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : \|\xi\| \leq 1 - \sqrt{\xi_1^2 + \xi_2^2} \right\} .
$$

(Thus $K = \text{conv}(\{(\cos \varphi, \sin \varphi, 0) : 0 \leq \varphi < 2\pi\} \cup \{(0, 0, \pm 1)\})$ is a compact double cone.) Consider the affine subspace $L := \text{aff}(\{(1, 0, 0), (0, 0, 1)\})$ of \mathbb{R}^3, and let $y_i := (1, 0, 0) - (\cos \varphi, \sin \varphi, 0) \xrightarrow{t \to \infty} y_0 = (0, 0, 0)$. Then $L \cap (K + y_i) = \{(1, 0, 0)\}$ for any i, and $L \cap (K + y_0) = L \cap K = [(0, 0, 0), (0, 0, 1)]$. Hence $L \cap (K + y_i)$ does not converge to $L \cap (K + y_0)$ in the described way.

Theorem 1. Let $C_1 \subseteq C_2 \subseteq \ldots$ be an increasing sequence of b-convex bodies in a Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ such that

$$
(11) \quad \dim \left(\text{aff} \left(\bigcup_{i=1}^\infty C_i \right) \right) \in \{0, 1, n - 1, n\} .
$$

Then

$$
(12) \quad \text{cl} \left(\bigcup_{i=1}^\infty C_i \right) = \text{bh} \left(\bigcup_{i=1}^\infty C_i \right) .
$$

In particular, $\text{cl} \left(\bigcup_{i=1}^\infty C_i \right)$ is a b-convex body.
Proof. Since “\subseteq” in (12) is obvious, we prove now “\supseteq”.

Case 1: For $\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = 0$, $\bigcup_{i=1}^{\infty} C_i = \{x_0\}$ is a singleton. Thus $C_i = \{x_0\}$ for all $i = 1, 2, \ldots$, and (12) is trivial.

Case 2: For $\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = 1$, $\text{bh}_1(\bigcup_{i=1}^{\infty} C_i)$ is a line segment. Since every closed line segment of the same direction and having smaller length is also b-convex, each C_i is a closed segment of that kind (perhaps of length 0), $\bigcup_{i=1}^{\infty} C_i$ is a segment of that direction (not necessarily closed), and

$$\text{bh}_1\left(\bigcup_{i=1}^{\infty} C_i\right) = \text{cl}\left(\bigcup_{i=1}^{\infty} C_i\right).$$

Case 3: $\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) \geq n - 1 > 0$.

Assume that we have “\supseteq” in (12). Then there exists $x_0 \in \text{bh}_1(\bigcup_{i=1}^{\infty} C_i) \setminus \text{cl}(\bigcup_{i=1}^{\infty} C_i)$, and we find $\epsilon_0 > 0$ such that $B(x_0, \epsilon_0) \cap \bigcup_{i=1}^{\infty} C_i = \emptyset$. Consequently, there exists $x_1 \in \text{relint}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i)) \setminus (\bigcup_{i=1}^{\infty} C_i)$, i.e.,

$$x_1 \in \text{relint}\left(\text{bh}_1\left(\bigcup_{i=1}^{\infty} C_i\right)\right)$$

and

$$x_i \notin C_i \text{ for } i = 1, 2, \ldots$$

Property (14) and Proposition (1b) give $y_i \in \mathbb{R}^n$ such that

$$x_1 \notin B(y_i, 1) \text{ and } C_i \subseteq B(y_i, 1) \text{ for } i = 1, 2, \ldots$$

There exists a convergent subsequence $y_i \xrightarrow{j \to \infty} y_0 \in \mathbb{R}^n$, and, by continuity of the norm and the inclusions $C_1 \subseteq C_2 \subseteq \ldots$, we have

$$x_1 \notin \text{int}(B(y_0, 1)) \text{ and } \bigcup_{i=1}^{\infty} C_i \subseteq B(y_0, 1).$$

Subcase 3.1: $\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = n$.

With (15) we have $\text{bh}_1(\bigcup_{i=1}^{\infty} C_i) \subseteq B(y_0, 1)$ and

$$x_1 \notin \text{int}\left(\text{bh}_1\left(\bigcup_{i=1}^{\infty} C_i\right)\right) \text{ (Subcase 3.1)} \Rightarrow \text{relint}\left(\text{bh}_1\left(\bigcup_{i=1}^{\infty} C_i\right)\right),$$

a contradiction to (14).

Subcase 3.2: $\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = n - 1$.

Let $H := \text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))$. From $y_i \xrightarrow{j \to \infty} y_0$ we get $B(y_i, 1) \xrightarrow{j \to \infty} B(y_0, 1)$ in the Hausdorff metric, and with Lemma 4 we get $B(y_i, 1) \cap H \xrightarrow{j \to \infty} B(y_0, 1) \cap H$ as well. Then, by $x_1 \notin B(y_i, 1)$, we obtain $x_1 \notin \text{int}_{H}(B(y_0, 1) \cap H)$ (where $\text{int}_{H}(\cdot)$ is the interior in the natural topology of H), whereas $\text{bh}_1(\bigcup_{i=1}^{\infty} C_i) \subseteq B(y_0, 1) \cap H$ by (15) and the choice of H. With this and the choice of H we obtain $x_1 \notin \text{int}_{H}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i)) = \text{relint}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))$, a contradiction to (13). The proof of “\supseteq” in (12) is complete.

To show that $\text{cl}(\bigcup_{i=1}^{\infty} C_i) = \text{bh}_1(\bigcup_{i=1}^{\infty} C_i)$ is a b-convex body, it is enough to verify that $\text{bh}_1(\bigcup_{i=1}^{\infty} C_i) \neq \mathbb{R}^n$, i.e., that $\bigcup_{i=1}^{\infty} C_i$ is contained in some ball of radius 1. This is obvious by the second part of (13) (which can be shown analogously in Cases 1 and 2).
Remark 2. Note that the technical assumption (11) is satisfied in each of the following situations:

(i) \(n \leq 3 \),
(ii) \((\mathbb{R}^n, \| \cdot \|)\) is strictly convex,
(iii) \(\dim(\text{aff}(\bigcup_{i=1}^{\infty} C_i)) \geq n - 1 \) or, equivalently, \(\dim(\text{aff}(C_{i_0})) \geq n - 1 \) for some \(i_0 \).

Proof. Situation (i) is trivial. In situation (ii), Proposition 2 ((i) ⇔ (xvii)) shows that \(\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = n \) as soon as \(\bigcup_{i=1}^{\infty} C_i \) is not a singleton. Condition (iii) implies (11), because \(\bigcup_{i=1}^{\infty} C_i \subseteq \text{bh}_1(\bigcup_{i=1}^{\infty} C_i) \). \(\square \)

In Example 2 we shall see that assumption (11) cannot be dropped in Theorem 1.

Theorem 2. Let \(S \neq \emptyset \) be a subset of a Minkowski space \((\mathbb{R}^n, \| \cdot \|)\) such that

\begin{equation}
\dim(\text{aff}(\text{bh}_1(S))) \in \{0, 1, n - 1, n\}. \tag{16}
\end{equation}

Then

\begin{equation}
\text{bh}_1(S) = \text{cl} \left(\bigcup_{F \subseteq S \text{ finite}} \text{bh}_1(F) \right). \tag{17}
\end{equation}

Proof. The inclusion “\(\supseteq \)" is evident. For “\(\subseteq \)”, let \(x_1, x_2, \ldots \in S \) be such that \(S = \text{cl}(\{x_1, x_2, \ldots\}) \). Putting \(C_i = \text{bh}_1(\{x_1, \ldots, x_i\}) \) for \(i = 1, 2, \ldots \), we obtain \(C_1 \subseteq C_2 \subseteq \ldots \). If \(C_{i_0} \) is not a b-convex body for some \(i_0 \), then \(\text{bh}_1(\{x_1, \ldots, x_{i_0}\}) = C_{i_0} = \mathbb{R}^n \), and (17) is obvious (both sides are \(\mathbb{R}^n \)). Hence we can assume that all \(C_i \) are b-convex bodies. Moreover,

\begin{equation}
\text{bh}_1 \left(\bigcup_{i=1}^{\infty} C_i \right) = \text{bh}_1 \left(\bigcup_{i=1}^{\infty} \text{bh}_1(\{x_1, \ldots, x_i\}) \right) = \text{bh}_1 \left(\bigcup_{i=1}^{\infty} \{x_1, \ldots, x_i\} \right) = \text{bh}_1(\{x_1, x_2, \ldots\}) = \text{bh}_1(\text{cl}(\{x_1, x_2, \ldots\})) = \text{bh}_1(S), \tag{18}
\end{equation}

which gives

\[\dim(\text{aff}(\text{bh}_1(\bigcup_{i=1}^{\infty} C_i))) = \dim(\text{aff}(\text{bh}_1(S))) \in \{0, 1, n - 1, n\}. \]

Now we can apply Theorem 1 and obtain

\[\text{bh}_1(S) \subseteq \text{cl} \left(\bigcup_{F \subseteq S \text{ finite}} \text{bh}_1(F) \right). \]

Remark 3. As in Remark 2 we see that (16) holds in each of the following situations:

(i) \(n \leq 3 \),
(ii) \((\mathbb{R}^n, \| \cdot \|)\) is strictly convex,
(iii) \(\dim(\text{aff}(S)) \geq n - 1 \).
The claim of Theorem \([2]\) is shown in \([27]\) Theorem 1 under the stronger assumption that \(\dim(\text{aff}(bh_1(S))) = n\). The authors ask in \([27]\) Problem 2.6 if the assumption can be dropped. Our generalization to the additional cases \(\dim(\text{aff}(bh_1(S))) \in \{0, 1, n - 1\}\) shows that the assumption from \([27]\) can be weakened. However, the next example illustrates that the restrictions (11) in Theorem 1 and (16) in Theorem 2 are essential, which shows that the answer to Problem 2.6 from \([27]\) is negative.

Example 2. We denote the Euclidean norm by \(\| \cdot \|_2\) and consider convex bodies

\[
K = \{ (\kappa_1, \kappa_2, \kappa_3, 0) : \| (\kappa_1, \kappa_2) \|_2 \leq 1, \| (\kappa_2, \kappa_3) \|_2 \leq 1 \},
\]

\[
L = \{ (\lambda_1, 0, \lambda_3, \lambda_4) : \| (\lambda_1, \lambda_4) \|_2 \leq 1, |\lambda_3| \leq 1 \}
\]
in \(\mathbb{R}^4\). We define the unit ball \(B(\alpha, 1) = B\) of a Minkowski space \((\mathbb{R}^4, \| \cdot \|)\) by

\[
B = \text{conv}(K \cup L)
\]

\[
= \{ (\kappa_1 + \lambda_1, \kappa_2, \kappa_3 + \lambda_3, \xi_4) : \max\{\| (\kappa_1, \kappa_2) \|_2, \| (\kappa_2, \kappa_3) \|_2 \} + \max\{\| (\lambda_1, \lambda_4) \|_2, |\lambda_3| \} \leq 1 \}.
\]

For that space we shall see that

\[
(20) \quad bh_1(\{(\alpha, 0, 0, 0), (-\alpha, 0, 0, 0)\}) = [(\alpha, 0, 0, 0), (-\alpha, 0, 0, 0)] \quad \text{for} \quad \alpha \in (0, 1)
\]

and

\[
(21) \quad bh_1(\{(1, 0, 0, 0), (-1, 0, 0, 0)\}) = \{ (\xi_1, 0, 0, \xi_4) : \| (\xi_1, \xi_4) \|_2 \leq 1 \}.
\]

Consequently, the segments \(C_i = [(1 - \frac{i}{n}, 0, 0, 0), (-1 + \frac{i}{n}, 0, 0, 0)]\), \(i = 1, 2, \ldots\), form an increasing sequence of \(b\)-convex bodies, and we obtain

\[
\text{cl} \left(\bigcup_{i=1}^{\infty} C_i \right) = [(1, 0, 0, 0), (-1, 0, 0, 0)],
\]

\[
bh_1 \left(\bigcup_{i=1}^{\infty} C_i \right) = \{ (\xi_1, 0, 0, \xi_4) : \| (\xi_1, \xi_4) \|_2 \leq 1 \}.
\]

Hence (12) fails and \(\text{cl}(\bigcup_{i=1}^{\infty} C_i)\) is not \(b\)-convex.

Similarly, the relatively open segment \(S = ((1, 0, 0, 0), (-1, 0, 0, 0))\) satisfies

\[
bh_1(S) = \{ (\xi_1, 0, 0, \xi_4) : \| (\xi_1, \xi_4) \|_2 \leq 1 \},
\]

\[
\text{cl} \left(\bigcup_{F \subseteq S \text{ finite}} bh_1(F) \right) = [(1, 0, 0, 0), (-1, 0, 0, 0)],
\]

and (17) fails.

Proof of (20) and (21). Step 1. Verification of (20). Let \(\alpha \in (0, 1)\) be fixed. We use the linear functional

\[
f(\xi_1, \xi_2, \xi_3, \xi_4) = \sqrt{1 - \alpha^2} \xi_2 + \alpha \xi_3 = \left(\sqrt{1 - \alpha^2}, \alpha \right), (\xi_2, \xi_3)\]

of Euclidean norm \(\| f \|_2 = \| (\sqrt{1 - \alpha^2}, \alpha) \|_2 = 1\), and we define related level and sublevel sets \(f = \mu, f < \mu, f > \mu\) by

\[
f_{=} \leq / \geq \mu = \{ x \in \mathbb{R}^4 : f(x) = / \leq / \geq \mu \}.
\]

We obtain, partially based on the Cauchy–Schwarz inequality,

\[
K \subseteq f_{\geq 1} \cap f_{\leq 1}, \quad L \subseteq f_{\geq - \alpha} \cap f_{\leq \alpha}, \quad L \cap f_{=} = \emptyset.
\]
These yield
\[
B \subseteq f_{2-1} \cap f_{\leq 1}
\] and
\[
B \cap f_{=1} = K \cap f_{=1} = \left[(\alpha, \sqrt{1-\alpha^2}, \alpha, 0), (-\alpha, \sqrt{1-\alpha^2}, \alpha, 0) \right].
\]

Next note that \((\pm \alpha, \pm \sqrt{1-\alpha^2}, \pm \alpha, 0) \in K \subseteq B\) for arbitrary choice of signs. This implies \((\pm \alpha, 0, 0, 0) \in B + (0, \pm \sqrt{1-\alpha^2}, \pm \alpha, 0)\), in particular
\[
\{(\alpha, 0, 0, 0), (-\alpha, 0, 0, 0)\}
\]
and in turn
\[
\text{bh}_1(\{(\alpha, 0, 0, 0), (-\alpha, 0, 0, 0)\})
\]
\[
\subseteq B \left((0, \sqrt{1-\alpha^2}, \alpha, 0), 1 \right) \cap B \left((0, -\sqrt{1-\alpha^2}, -\alpha, 0), 1 \right)
\]
\[
\overset{(22)}{=}
\left(B \cap f_{2-1} \right) + \left(0, \sqrt{1-\alpha^2}, \alpha, 0 \right) \cap \left(B \cap f_{\leq 1} \right) + \left(0, -\sqrt{1-\alpha^2}, -\alpha, 0 \right)
\]
\[
= \left(B + (0, \sqrt{1-\alpha^2}, \alpha, 0) \right) \cap f_{\geq 0} \cap \left(B + (0, -\sqrt{1-\alpha^2}, -\alpha, 0) \right) \cap f_{\leq 0}
\]
\[
\subseteq \left(B + (0, -\sqrt{1-\alpha^2}, -\alpha, 0) \right) \cap f_{=0}
\]
\[
= \left(B \cap f_{-1} \right) + (0, -\sqrt{1-\alpha^2}, -\alpha, 0)
\]
\[
\overset{(26)}{=}
\{(\alpha, 0, 0, 0), (-\alpha, 0, 0, 0)\}.
\]
This gives the inclusion “\(\subseteq\)” in (20). The reverse inclusion is obvious, since the ball hull is closed and convex.

Step 2. Verification of the equivalence of
\[
\{(1, 0, 0, 0), (-1, 0, 0, 0)\} \subseteq B(t, 1) = B + t
\]
with
\[
t = (0, 0, \tau_3, 0) \quad \text{with} \quad \tau_3 \in [-1, 1].
\]

Suppose that \(t = (\tau_1, \tau_2, \tau_3, \tau_4)\) satisfies (24). The inclusion \(B = \text{conv}(K \cup L) \subseteq \text{conv}([-1, 1]^4) = [-1, 1]^4\) together with (24) gives
\[
\tau_1 = 0 \quad \text{and} \quad \tau_3 \in [-1, 1].
\]
Now the assumption \((-1, 0, 0, 0) \in B + t\) amounts to \((-1, -\tau_2, -\tau_3, -\tau_4) \in B\) and, by symmetry, to \((1, \tau_2, \tau_3, \tau_4) \in B\). By (19), this says that there are \(\kappa_1, \lambda_1, \kappa_3, \lambda_3 \in \mathbb{R}\) such that \(\kappa_1 + \lambda_1 = 1, \kappa_3 + \lambda_3 = \tau_3\) and
\[
\max\{\|\kappa_1, \tau_2\|_2, \|\tau_2, \kappa_3\|_2\} + \max\{\|\lambda_1, \tau_4\|_2, |\lambda_3|\} \leq 1.
\]
From \(\kappa_1 + \lambda_1 = 1\) we obtain
\[
1 \leq |\kappa_1| + |\lambda_1| \leq \|\kappa_1, \tau_2\|_2 + \|\lambda_1, \tau_4\|_2 \overset{(24)}{\leq} 1.
\]
Hence all inequalities in the last formula are identities and
\[
\tau_2 = \tau_4 = 0.
\]
By (26), the implication “\(24 \Rightarrow 25\)” is proved.
The converse “23 \Rightarrow 24” amounts to \((\pm 1, 0, -\tau_3, 0) \in B\) for all \(\tau_3 \in [-1, 1]\). This is an obvious consequence of \((\pm 1, 0, -\tau_3, 0) \in L \subseteq B\). Note that the equivalence “24 \Leftrightarrow 25” implies

\[(28) \quad \text{bh}_1(\{(1, 0, 0, 0), (-1, 0, 0, 0)\}) = \bigcap_{\tau_3 \in [-1, 1]} (B + (0, 0, \tau_3, 0)).\]

Step 3. Verification of “⊆” from 21. Here the functional

\[g(\xi_1, \xi_2, \xi_3, \xi_4) = \xi_3\]

satisfies \(K \cup L \subseteq g_{\geq 1} \cap g_{\leq 1}\). Hence

\[(29) \quad B \subseteq g_{\geq 1} \cap g_{\leq 1}\]

and

\[B \cap g_{=1} = \text{conv}(L \cap g_{=1}) = \text{conv}(\{(\xi_1, 0, 1, 0) : |\xi_1| \leq 1\}) \cup \{(\xi_1, 0, 1, \xi_2) : \|\xi_1, \xi_2\|_2 \leq 1\})\]

\[(30) \quad = \{(\xi_1, 0, 1, \xi_2) : \|\xi_1, \xi_2\|_2 \leq 1\}).\]

Now we obtain the claim “⊆” from 21 by

\[\text{bh}_1(\{(1, 0, 0, 0), (-1, 0, 0, 0)\}) \subseteq (B + (0, 0, 1, 0)) \cap (B + (0, 0, -1, 0)) \Rightarrow (B \cap g_{\geq 1}) + (0, 0, 1, 0) \cap (B \cap g_{\leq 1}) + (0, 0, 1, 0) \\
= (B + (0, 0, 1, 0)) \cap g_{\geq 1} \cap (B + (0, 0, -1, 0)) \cap g_{\leq 1} \\
\subseteq (B + (0, 0, -1, 0)) \cap g_{=1} \\
= (B \cap g_{=1}) + (0, 0, -1, 0) \Rightarrow \{(\xi_1, 0, 0, 1) : \|\xi_1, 1\|_2 \leq 1\}.\]

Step 4. Verification of “⊇” from 21. Let \(\xi_1, \xi_4, \xi_3 \in \mathbb{R}\) be such that \(||(\xi_1, \xi_4)||_2 \leq 1\) and \(|\tau_3| \leq 1\). Then \((\xi_1, 0, -\tau_3, 4) \in L \subseteq B\). Thus

\[(\xi_1, 0, 0, \xi_4) \in B + (0, 0, \tau_3, 0) \quad \text{if} \quad ||(\xi_1, \xi_4)||_2 \leq 1, |\tau_3| \leq 1.\]

By 25, this implies “⊇” from 21. \[\square\]

6. Minimal representation of ball convex bodies as ball hulls

In this section we will present, as announced, minimal representations of ball convex bodies in terms of their ball exposed faces.

Theorem 3. Let \(K\) be a b-bounded b-convex body in a Minkowski space \((\mathbb{R}^n, \| \cdot \|)\) and let \(S \subseteq K\). Then \(\text{bh}_1(S) = K\) if and only if every exposed b-face of \(K\) meets \(\text{cl}(S)\).

Proof. For the proof of “⇒”, suppose that there is an exposed b-face \(F\) of \(K\) such that \(F \cap \text{cl}(S) = \emptyset\). We have to show that \(\text{bh}_1(S) \neq K\). The b-face \(F\) has a representation \(F = K \cap S(y, 1)\), where \(S(y, 1)\) is a supporting sphere of \(K\). By \(F \cap \text{cl}(S) = \emptyset\), we obtain \(\text{cl}(S) \subseteq \text{int}(B(y, 1))\) and, by Lemma 1(e), \(\text{cl}(S) \subseteq B(y, r)\) for some \(r < 1\). We fix \(x_0 \in F\). Then \(\|x_0 - y\| = 1\), because \(F \subseteq S(y, 1)\), and...
$x_0 \notin B(y - (1 - r)(x_0 - y), 1)$, since $\|x_0 - (y - (1 - r)(x_0 - y))\| = (2 - r)\|x_0 - y\| > 1$.

But $S \subseteq B(y, r) \subseteq B(y - (1 - r)(x_0 - y), 1)$ by the triangle inequality. Thus

$$x_0 \notin B(y - (1 - r)(x_0 - y), 1) \supseteq bh_1(S) \quad \text{and} \quad x_0 \in F \subseteq K,$$

showing that $bh_1(S) \neq K$.

For the converse implication "\Rightarrow", we suppose that $bh_1(S) \neq K$ and will show that $cl(S)$ misses at least one exposed b-face F_0 of K. Since $bh_1(S) \neq K$ and $bh_1(S) \subseteq K$ by Lemma [1] there is $x_0 \in K \setminus bh_1(S)$. By Proposition [1(b)] we can separate x_0 from the b-convex body $bh_1(S) \subseteq K$ by a sphere $S(y_0, 1)$,

$$cl(S) \subseteq bh_1(S) \subseteq B(y_0, 1) \quad \text{and} \quad x_0 \notin B(y_0, 1).$$

The b-boundedness of K gives $y_1 \in \mathbb{R}^n$ such that

$$cl(S) \subseteq K \subseteq int(B(y_1, 1)).$$

We consider the balls $B_\lambda := B(y_0 + \lambda(y_1 - y_0), 1)$ for $\lambda \in [0, 1]$. Then $K \not\subseteq B_0$ by [31] and $K \subseteq B_1$ by [32]. Consequently, there exists

$$\lambda_0 = \min\{\lambda \in [0, 1] : K \subseteq B_\lambda\} \in (0, 1].$$

(It is a consequence of the continuity of $|| \cdot ||$ that λ_0 is really attained as a minimum.) By the definition of λ_0 and a compactness argument, the set $F_0 = K \cap bd(B_{\lambda_0})$ is non-empty, so that $S_{\lambda_0} := bd(B_{\lambda_0})$ is a supporting sphere of K and F_0 is an exposed b-face.

Now it remains to show that $F_0 \cap cl(S) = \emptyset$. Suppose that this is not the case; i.e., there exists $z_0 \in F_0 \cap cl(S)$. The inclusions [31] and [32] yield $\|z_0 - y_0\| \leq 1$ and $\|z_0 - y_1\| < 1$. Finally, the inclusion $z_0 \in F_0 \subseteq S_{\lambda_0} = S(y_0 + \lambda_0(y_1 - y_0), 1)$ gives

$$1 = \|z_0 - (y_0 + \lambda_0(y_1 - y_0))\|$$

$$= \|\lambda_0(z_0 - y_1) + (1 - \lambda_0)(z_0 - y_0)\|$$

$$\leq \lambda_0\|z_0 - y_1\| + (1 - \lambda_0)\|z_0 - y_0\|$$

$$< \lambda_0 + (1 - \lambda_0)$$

$$= 1.$$

This contradiction completes the proof. \qed

Note that the proof of "\Rightarrow" did not require b-boundedness of K. However, b-boundedness is essential for "\Leftarrow". To see this, consider a closed ball $K = B(y, 1)$ of radius 1. (Proposition [2.4] says that these are the only b-convex bodies that are not b-bounded, provided that the norm $\| \cdot \|$ is strictly convex.) Then the only supporting sphere of K is $S(y, 1)$, and the only exposed b-face is $F = K \cap S(y, 1) = S(y, 1)$. Then every singleton $S = \{x_0\} \subseteq S(y, 1)$ satisfies the condition from Theorem [2.5] but $bh_1(S) = \{x_0\}$ is not K.

Example 3. Consider the space $l_\infty^2 = (\mathbb{R}^2, \| \cdot \|_\infty)$ with unit ball $[-1, 1]^2$. Then all b-convex bodies are of the form $[\alpha_1, \beta_1] \times [\alpha_2, \beta_2]$ with $0 \leq \beta_i - \alpha_i \leq 2$, $i = 1, 2$. We restrict our consideration to b-bounded b-convex bodies K with non-empty interior. These are rectangles $K = [\alpha_1, \beta_1] \times [\alpha_2, \beta_2]$ with $0 < \beta_i - \alpha_i < 2$, $i = 1, 2$. The exposed b-faces of K are the edges $F_1 = [\alpha_1, \beta_1] \times \{\beta_2\}, F_2 = \{\alpha_1\} \times [\alpha_2, \beta_2], F_3 = [\alpha_1, \beta_1] \times \{\alpha_2\}, F_2 = \{\beta_1\} \times [\alpha_2, \beta_2]$.

and the unions $F_1 \cup F_2$, $F_2 \cup F_3$, $F_3 \cup F_4$, $F_4 \cup F_1$. Theorem 3 says that a set $S \subseteq K$ satisfies $bh_1(S) = K$ if and only if $cl(S) \cap F_j \neq \emptyset$ for $j = 1, 2, 3, 4$. Consequently, when searching for minimal sets S (under inclusion) with $bh_1(S) = K$, we need to find a minimal set S containing at least one point from each of F_1, F_2, F_3, F_4. Such S may consist of 2 (if S is composed of two vertices symmetric with respect to the center of K), 3 or 4 points (if S contains exactly one point from the relative interior of each F_i).

This example can be generalized for boxes in l_∞^n, $n \geq 1$. Corresponding minimal sets must contain a point in every (classical) facet of a box and may consist of 2, ..., 2n elements.

Corollary 4. If a subset S of a b-bounded b-convex body K in a Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ satisfies $bh_1(S) = K$, then $b-exp(K) \subseteq cl(S)$.

Proof. If $x \in b-exp(K)$, then $\{x\}$ is an exposed b-face of K. Now Theorem 3 yields $\{x\} \cap cl(S) \neq \emptyset$; i.e., $x \in cl(S)$. □

Theorem 4. A subset S of a b-bounded b-convex body K in a strictly convex Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ satisfies $bh_1(S) = K$ if and only if $b-exp(K) \subseteq cl(S)$. In particular,

$$K = bh_1(b-exp(K)),$$

and $cl(b-exp(K))$ is the unique minimal (under inclusion) closed subset of \mathbb{R}^n whose ball hull is K.

Proof. The implication “\Rightarrow” of “$bh_1(S) = K \iff b-exp(K) \subseteq cl(S)$” is given by Corollary 4. To see “\Leftarrow”, it is enough to show that

$$K \subseteq bh_1(b-exp(K)).$$

Indeed, if $b-exp(K) \subseteq cl(S)$ and if (33) is verified, then Lemma 1 (b) and 1 (a) give

$$K \subseteq bh_1(b-exp(K)) \subseteq bh_1(cl(S)) = bh_1(S) \subseteq bh_1(K) = K,$$

and “\Leftarrow” is proved.

Now, for showing (33), let us assume that there exists $x_0 \in K \setminus bh_1(b-exp(K))$. The b-boundedness of K implies b-boundedness of the subset $\hat{K} := bh_1(b-exp(K)) \subseteq bh_1(K) = K$. Separation of x_0 from \hat{K} by Proposition 1 (c) and the b-boundedness of K yield the existence of $y_0, y_1 \in \mathbb{R}^n$ and $r \in (0, 1)$ such that

$$\hat{K} \subseteq B(y_0, r) \quad \text{and} \quad x_0 \notin B(y_0, 1),$$

$$\hat{K} \subseteq K \subseteq int(B(y_1, r)).$$

Similarly as in the proof of Theorem 3, we define $B_\lambda^r := B(y_0 + \lambda(y_1 - y_0), r)$ for $\lambda \in [0, 1]$ and, exploiting $K \not\subseteq B_0^r$ from 34 and $K \subseteq B_1^r$ from 35, find

$$\lambda_0 = \min\{\lambda \in [0, 1] : K \subseteq B_\lambda^r\} \in (0, 1].$$

Then there exists $x_1 \in K \cap S_{\lambda_0}^r$, where $S_{\lambda_0}^r := bd\{B_{\lambda_0}^r\}$.

Next we show that

$$x_1 \notin \hat{K},$$
Indeed, if x_1 belonged to \tilde{K}, we had $\|x_1 - y_0\| \leq r$ and $\|x_1 - y_1\| < r$. The inclusion $x_1 \in S_{\lambda_0}^r = S(y_0 + \lambda_0(y_1 - y_0), r)$ gave
\[
\|x_1 - (y_0 + \lambda_0(y_1 - y_0))\| = \|\lambda_0(x_1 - y_1) + (1 - \lambda_0)(x_1 - y_0)\| \\
\leq \lambda_0\|x_1 - y_1\| + (1 - \lambda_0)\|x_1 - y_0\| < \lambda_0r + (1 - \lambda_0)r = r.
\]
This contradiction proves (37).

Since $B_{\lambda_0}^r$ is a b-convex body by Lemma 1(c) and since $x_1 \in S_{\lambda_0}^r = \text{bd}(B_{\lambda_0}^r)$, Proposition 2(a) gives $y_2 \in \mathbb{R}^n$ such that
\[
B_{\lambda_0}^r \subseteq B(y_2, 1) \quad \text{and} \quad x_1 \in B_{\lambda_0}^r \cap S(y_2, 1).
\]
Proposition 2(i) tells us that
\[
B_{\lambda_0}^r \cap S(y_2, 1) = \{x_1\},
\]
because $\|\cdot\|$ is strictly convex. Using the known inclusions $x_1 \in K$ and $K \subseteq B_{\lambda_0}^r$, we get $K \subseteq B(y_2, 1)$ and $K \cap S(y_2, 1) = \{x_1\}$. Hence $x_1 \in \text{b-exp}(K)$. But (37) says that $x_1 \notin \text{bh}_1(\text{b-exp}(K))$. This final contradiction establishes (38) and completes the proof. \qed

Theorem 3 says in particular that every b-bounded b-convex body in a strictly convex Minkowski space gives rise to a unique minimal closed subset whose ball hull is that body. We have seen in Example 3 that this is not necessarily the case if the norm fails to be strictly convex.

Example 4. The set $\text{b-exp}(K)$ of all b-exposed points of a b-bounded b-convex body is not necessarily closed. An example of that kind in the Euclidean plane is the convex disc K bounded by the arcs
\[
\Gamma_1 = \left\{ \left(\cos(\varphi), -\frac{\sqrt{2}}{2} + \sin(\varphi) \right) : \frac{\pi}{8} \leq \varphi \leq \frac{2\pi}{7} \right\}, \\
\Gamma_2 = \left\{ \left(\cos(\varphi), \frac{\sqrt{2}}{2} + \sin(\varphi) \right) : \frac{2\pi}{7} \leq \varphi \leq \frac{5\pi}{7} \right\}, \\
\Gamma_3 = \left\{ \left(\frac{1}{8} + \frac{1}{2} \cos(\varphi), \frac{1}{4} \sin(\varphi) \right) : -\frac{\pi}{4} < \varphi < \frac{\pi}{4} \right\}, \\
\Gamma_4 = \left\{ \left(-\frac{1}{8} + \frac{1}{2} \cos(\varphi), \frac{1}{4} \sin(\varphi) \right) : \frac{3\pi}{4} < \varphi < \frac{5\pi}{4} \right\}.
\]
Thus, K is a b-bounded b-convex body with $\text{b-exp}(K) = \Gamma_3 \cup \Gamma_4$. Exposed b-faces that are no singletons are Γ_1 and Γ_2.

Corollary 5. If K is a b-bounded b-convex body in a strictly convex Minkowski space ($\mathbb{R}^n, \|\cdot\|$), then every exposed b-face of K meets the closure of $\text{b-exp}(K)$.

Proof. This is a consequence of Theorems 3 and 4. \qed

Corollary 6. If S is a non-empty b-bounded subset of a strictly convex Minkowski space ($\mathbb{R}^n, \|\cdot\|$), then $\text{b-exp}(\text{bh}_1(S)) \subseteq \text{cl}(S)$.

Proof. By Lemma 1(c) and 3(a), $K := \text{bh}_1(S)$ is a b-bounded b-convex body and S is a subset of K. Now Theorem 4 says that $\text{cl}(S) \supseteq \text{b-exp}(K) = \text{b-exp}(\text{bh}_1(S))$. \qed
Example 3 gives b-bounded b-convex bodies not having any b-exposed points. This shows that Theorem 4 and Corollary 5 fail in general if the underlying norm is not strictly convex.

A similar reason justifies the assumption of b-boundedness in Theorem 4 and Corollary 5:

Proposition 3. If a b-convex body K in a Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ is not b-bounded, then $\text{b-exp}(K) = \emptyset$.

Proof. We have $\text{rad}(K) = 1$, because K is not b-bounded. Hence every supporting sphere $S(x, 1)$ of K is the boundary of a circumball $B(x, 1)$. By Lemma 2, $|K \cap S(x, 1)| \geq 2$. Hence none of the exposed b-faces of K is a singleton and K has no b-exposed points. □

7. **An application to diametrically maximal sets**

A bounded non-empty set $C \subseteq \mathbb{R}^n$ is called complete (or diametrically maximal) if $\text{diam}(C \cup \{x\}) > \text{diam}(C)$ for every $x \in \mathbb{R}^n \setminus C$; see [38, 24, 18, 20]. Complete sets are necessarily convex bodies, and in the Euclidean case or for $n = 2$ any complete set is of constant width. A complete set C is called a completion of a bounded non-empty set S if $S \subseteq C$ and $\text{diam}(C) = \text{diam}(S)$. Zorn’s lemma shows that every bounded non-empty subset of \mathbb{R}^n has at least one completion. In n-dimensional Minkowski spaces ($n \geq 3$), the family of complete bodies can form a much richer class than that of bodies of constant width; see [40, 41] for recent contributions.

The following problem was posed in [31, Section 4]: Given a complete set $C \subseteq \mathbb{R}^n$, find all convex bodies $K_0 \subseteq C$ such that C is the unique completion of K_0 and, moreover, there is no convex body $K \subseteq K_0$, $K \neq K_0$, such that C is the unique completion of K.

Without loss of generality, we can assume that $\text{diam}(C) = 1$. The following lemma summarizes particular relevant statements from the literature (for (a) and (b) see [18] Section 1(E); for (c) and (d) see [20] Theorem 5) and the short proof given there).

Lemma 5. The following are satisfied in every Minkowski space $(\mathbb{R}^n, \| \cdot \|)$:

(a) A set $C \subseteq \mathbb{R}^n$ of diameter 1 is complete if and only if, for every $x_1 \in \text{bd}(C)$, there exists $x_2 \in \text{bd}(C)$ such that $\|x_1 - x_2\| = 1$.

(b) A set $C \subseteq \mathbb{R}^n$ of diameter 1 is complete if and only if $C = \bigcap_{x \in C} B(x, 1)$.

(c) A set $S \subseteq \mathbb{R}^n$ of diameter 1 has a unique completion if and only if $\text{bh}_1(S)$ is complete.

(d) If a set $S \subseteq \mathbb{R}^n$ of diameter 1 has a unique completion C, then $C = \text{bh}_1(S)$.

Proposition 4. Let C be a complete set of diameter 1 in a Minkowski space $(\mathbb{R}^n, \| \cdot \|)$, and let $K \subseteq C$ be a convex body. The following three conditions are equivalent:

(I) C is the unique completion of K.

(II) $\text{bh}_1(K) = C$.

(III) K meets every exposed b-face of C.

If, in addition, $\| \cdot \|$ is strictly convex, then (I), (II), and (III) are equivalent to

(IV) $\text{cl}(\text{conv}(\text{b-exp}(C))) \subseteq K$.

Proof. First note that C is b-bounded by (I), because $\text{diam}(C) = 1$, and Lemma 3(b) shows that C is a b-bounded b-convex body.

Now Lemma 4(c) gives $\text{(I)} \Rightarrow \text{(II)}$ since C is a completion of K, we obtain $\text{diam}(K) = \text{diam}(C) = 1$.

Now Lemma 3(d) gives $\text{(I)} \Rightarrow \text{(II)}$ and $\text{(II)} \Rightarrow \text{(III)}$ follow from Theorems 3 and 4 respectively.

By (II) there exists $x_1 \in K \cap \text{bd}(C)$. Lemma 3(a) gives $x_2^* \in \text{bd}(C) \cap \{x_1\}$ such that $x_2^* \in S(x_1, 1)$. Then $S(x_1, 1)$ is a supporting sphere of C and $F = C \cap S(x_1, 1)$ is an exposed b-face of C. By condition (III) there exists $x_2 \in K \cap F \subseteq K \cap S(x_1, 1)$. We obtain $\text{diam}(K) = 1$, because

$$1 = \|x_1 - x_2\| \leq \text{diam}(K) \leq \text{diam}(C) = 1.$$

Now Lemma 3(c) and (d) gives $\text{(II)} \Rightarrow \text{(I)}$ and we are done. \hfill \square

Criteria (III) and (IV) from Proposition 4 help to characterize minimal convex bodies K_0 in a complete set C such that C is the unique completion of K_0.

Example 5. We consider the space l^n_∞ as in Example 3. The only complete sets in that space are closed balls (see [18], Corollary 2), so that a complete set C of diameter 1 is necessarily a box (i.e., a square if $n = 2$) with edges of length 1 parallel to the coordinate axes. The equivalence of (I) and (III) in Proposition 4 says that C is the unique completion of a convex body $K \subseteq C$ if and only if K meets each of the $2n$ facets of C. It is easy to find minimal convex bodies K_0 with that property: Such K_0 is the convex hull of a minimal set S consisting of at least one point from each facet of C. If $n = 2$, then such K_0 can be a line segment (a diagonal of C), a triangle or a quadrangle. For arbitrary $n \geq 2$, the number of vertices of such K_0 can be 2 (if K_0 is a diagonal of C passing through the center of C), 3, \ldots, $2n$ (e.g., if K_0 is the cross polytope generated by the centers of the $2n$ facets of C).

If the underlying Minkowski space is strictly convex, then Proposition 4 shows that the problem mentioned above has a unique solution.

Corollary 7. Let C be a complete set of diameter 1 in a strictly convex Minkowski space $(\mathbb{R}^n, \| \cdot \|)$. Then $K_0 = \text{cl}\left(\text{conv}(\text{b-exp}(C))\right)$ is the unique minimal (under inclusion) convex body whose unique completion is C.

8. Open questions

8.1. Spindle convexity in Minkowski spaces. In [27] $\text{bh}_1(\{x_1, x_2\})$ is called the spindle of $x_1, x_2 \in \mathbb{R}^n$, which generalizes the corresponding notion from Euclidean space (see, e.g., [11] and the references given there). A set $S \subseteq \mathbb{R}^n$ is called spindle convex if, for all $x_1, x_2 \in S$, S covers the whole spindle of x_1 and x_2. This gives rise to the concept of the spindle convex hull of a subset of \mathbb{R}^n. Note that spindle convex sets are not necessarily closed, in contrast to b-convex sets. Closed sets turn out to be spindle convex if and only if they are b-convex, provided the underlying Minkowski space is Euclidean or two-dimensional or its unit ball is an affine image of a cube (see [11], Corollary 3.4, [27], Corollaries 3.13 and 3.15). An example in (an affine image of) the space l^n_∞ from Example 4 shows that closed spindle convex sets need not be b-convex in general (see [27], Example 3.1).

We define a related hierarchy of notions of convexity by calling a set $S \subseteq \mathbb{R}^n$ k-spindle convex, $k \in \{2, 3, \ldots\}$, if $\text{bh}_1(\{x_1, \ldots, x_k\}) \subseteq S$ for all $x_1, \ldots, x_k \in S$. We call S $*$-spindle convex if $\text{bh}_1(F) \subseteq S$ for every finite $F \subseteq S$ (i.e., if S is k-spindle convex for all $k = 2, 3, \ldots$).
Are the k-spindle convex hulls and the $*$-spindle convex hull of a closed set closed? Clearly, every b-convex set is $*$-spindle convex. Is every closed $*$-spindle convex set b-convex? Theorem 2 says that in many situations $bh_1(S)$ is the closure of the $*$-spindle convex hull of S. On the other hand, the relatively open segment S from Example 2 is $*$-spindle convex, but $cl(S)$ is not even 2-spindle convex. Given an arbitrary Minkowski space $(\mathbb{R}^n, \| \cdot \|)$, does there exist $k \in \{2, 3, \ldots \}$ such that $*$-spindle convexity coincides with k-spindle convexity? Given $k \in \{2, 3, \ldots \}$, does there exist a Minkowski space $(\mathbb{R}^n, \| \cdot \|)$ such that k-spindle convexity differs from $(k+1)$-spindle convexity? These and related questions might be studied to continue naturally our investigations here.

8.2. Generalized Minkowski spaces. Our results are shown in the framework of a Minkowski space. What remains true if the norm is replaced by a gauge, i.e., if the unit ball is no longer necessarily centered at o?

8.3. Möbius geometry. One might check whether there are interesting connections (e.g., regarding the used methods and tools) to Möbius geometry where spheres also play somehow the role of hyperplanes; see, e.g., [52] [26].

References

[1] A. R. Alimov: Monotone path-connectedness of R-weakly convex sets in spaces with linear ball embedding, Eurasian Math. J. 3 (2012), no. 2, 21-30.
[2] D. Amir, Z. Ziegler: Relative Chebyshev centers in normed linear spaces, Part I, J. Approx. Theory 29 (1980), no. 3, 235-252.
[3] M. V. Balashov: An analogue of the Krein-Milman theorem for a strongly convex hull in a Hilbert space, Math. Notes 71 (2002), no. 1-2, 34-38.
[4] M. V. Balashov, G. E. Ivanov: On the farthest points of sets, Math. Notes 80 (2006), no. 1-2, 159-166.
[5] M. V. Balashov, E. S. Polovinkin: M-strongly convex subsets and their generating sets, Sb. Math. 191 (2000), no. 1-2, 25-60.
[6] K. Bezdek: Classical Topics in Discrete Geometry, CMS Books in Math., Springer, Berlin, 2012.
[7] K. Bezdek: Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width, Discrete Comput. Geom. 47 (2012), 275-287.
[8] K. Bezdek: Lectures on Sphere Arrangements - the Discrete Side, Fields Institute Monographs, 32, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013.
[9] K. Bezdek, R. Connell, B. Csikós: On the perimeter of the intersection of congruent disks, Beitr. Algebra Geom. 47 (2006), 53-62.
[10] K. Bezdek, Z. Lángi, M. Naszódi, P. Pápež: Ball-polyhedra, Discrete Comput. Geom. 38 (2007), 201-230.
[11] K. Bezdek, K. Naszódi: Rigidity of Ball-polyhedra in 3-space, Eur. J. Combin. 27 (2006), 255-268.
[12] K. Bezdek, M. Naszódi: Spindle starshaped sets, Aequationes Math. 89 (2015), 803-819.
[13] L. Bieberbach: Zur euklidischen Geometrie der Kreisbogendreiecke, Math. Ann. 130 (1955), 46-48.
[14] L. Bieberbach: Zwei Kongruenzsätze für Kreisbogendreiecke in der euklidischen Ebene, Math. Ann. 190 (1970/71), 97-118.
[15] F. Bohnenblust: Convex regions and projections in Minkowski spaces, Ann. of Math. (2) 39 (1938), 301-308.
[16] V. Boltýanski, H. Martini, P. S. Soltan: Excursions into Combinatorial Geometry, Springer, Berlin, Heidelberg, New York, 1997.
[17] L. Danzer, B. Grünbaum, V. Klee: Helly’s theorem and its relatives, In: Convexity, Proc. Symp. Pure Math., Vol. VII, Ed. V. Klee, Amer. Math. Soc., Providence, 1963, pp. 101-180.
H. G. Eggleston: Sets of constant width in finite dimensional Banach spaces, Israel J. Math. 3 (1965), 163-172.

F. Fodor, V. Vigh: Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged) 78 (2012), 331-350.

H. Groemer: On complete convex bodies, Geom. Dedicata 20 (1986), 319-334.

B. Grünbaum: A proof of Vászonyi’s conjecture, Bull. Res. Counc. Isr. A 6 (1956), 77-78.

A. Heppes: Beweis einer Vermutung von A. Vászonyi, Acta Math. Acad. Sci. Hungar. 7 (1956), 463-466.

A. Heppes, P. Révész: A splitting problem of Borsuk, Math. Lapok 7 (1956), 108-111.

B. Jessen: Über konvexe Punktmengen konstanter Breite (German), Math. Z. 29 (1929), 378-380.

Y.S. Kupitz, H. Martini, M.A. Perles: Ball polytopes and the Vázsonyi problem, Acta Math. Hungar. 126 (2010), 99-163.

R. Langevin, E. Teufel: Conformal width in Möbius geometry, Beitr. Algebra Geom. 50 (2009), 369-387.

Zs. Lángi, M. Naszódi, I. Talata: Ball and spindle convexity with respect to a convex body, Aequationes Math. 85 (2013), 41-67.

M. Lassak: On metric B-convexity for which diameters of any set and its hull are equal, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 969-975.

M. Lassak: Some properties of B-convexity in Minkowski-Banach spaces, Bull. Acad. Polon. Sci. Math. 27 (1979), 97-106.

M. Lassak: Some connections between B-convexity and d-convexity, Demonstratio Math. 15 (1982), 261-270.

H. Martini, P.L. Papini, M. Spirova: Complete sets and completion of sets in Banach spaces, Monatsh. Math. 174 (2014), 587-597.

H. Martini, C. Richter, M. Spirova: Intersections of balls and sets of constant width in finite-dimensional normed spaces, Mathematika 59 (2013), 477-492.

H. Martini, M. Spirova: On the circular hull property in normed planes, Acta Math. Hungar. 125 (2009), 275-285.

H. Martini, K. J. Swanepoel: The geometry of Minkowski spaces - a survey, Part II, Expositiones Math. 22 (2004), 94-144.

H. Martini, K. J. Swanepoel, G. Weiss: The geometry of Minkowski spaces - a survey, Part I, Expositiones Math. 19 (2001), 97-142.

H. Martini, K. J. Swanepoel, G. Weiss: The Fermat-Torricelli problem in normed planes and spaces, J. Optim. Theory Appl. 115 (2002), 283-314.

A. E. Mayer: Eine Überkonvexität. Math. Z. 39 (1935), 511-531.

E. Meissner: Über Punktmengen konstanter Breite, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 56 (1911), 42-50.

L. Montejano: A characterization of the Euclidean ball in terms of concurrent sections of constant width, Geom. Dedicata 37 (1991), 307-316.

J. P. Moreno, R. Schneider: Diametrically complete sets in Minkowski spaces, Israel J. Math. 191 (2012), 701-720.

J. P. Moreno, R. Schneider: Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48 (2012), 467-486.

J. P. Moreno, R. Schneider: Intersection properties of polyhedral norms, Adv. Geom. 7 (2007), 391-402.

J. P. Moreno, R. Schneider: Continuity properties of the ball hull mapping, Nonlinear Anal. 66 (2007), 914-925.

P. D. Papez: Ball-polyhedra, spindle-convexity and their properties, Thesis (Ph.D.), University of Calgary (Canada), 2010, 69 pp.

E. S. Polovinkin: Strongly convex analysis, Sb. Math. 187 (1996), no. 2, 259-286.

E. S. Polovinkin: On convex and strongly convex approximations of sets (Russian), Dokl. Akad. Nauk 350 (1996), no. 3, 308-311.

E. S. Polovinkin: Generalization of Carathéodory and Krein-Milman theorems for strongly convex sets (Russian), Dokl. Akad. Nauk 355 (1997), no. 2, 164-166.

E. S. Polovinkin, M. V. Balashov: Elements of Convex and Strongly Convex Analysis (Russian), Second edition, Fizmatlit, Moscow, 2007.
[49] R. Schneider: *Convex Bodies: the Brunn-Minkowski Theory*, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.

[50] S. Straszewicz: Sur un problème géométrique de P. Erdős, *Bull. Acad. Polon. Sci. C. III* 5 (1957), 39-40.

[51] F. A. Valentine: *Convex Sets*, McGraw-Hill Ser. in Higher Math., McGraw-Hill Book Co., New York, 1964.

[52] V. Volenec: Axiomatic foundation of the n-dimensional Möbius geometry, *Publ. Math. Debrecen* 23 (1976), 89-102.