Depression, periodontitis, caries and missing teeth in the USA, NHANES 2009–2014

Muath Aldosari 1,2, Mohammad Helmi,1 Erinne N Kennedy,2,3 Riddhi Badamia,2 Satomi Odani,4,5 Israel Agaku,2 Constantine Vardavas2,4

ABSTRACT

Purpose This study aimed to investigate the association between self-reported depressive symptoms and oral diseases in US adults, including periodontitis, caries, missing teeth and untreated dental caries.

Design This study was designed as a secondary data analysis of a cross-sectional survey. We conducted descriptive, multivariable logistic and Poisson regression analyses on weighted data.

Setting US National Health and Nutrition Examination Survey 2009–2014 data.

Participants Individuals aged ≥30 years who completed a periodontal examination and depression screening (n=9799).

Results 21.6% (28.9 million) of adults aged ≥30 years reported depressive symptoms, with a higher prevalence among females, current smokers and participants with lower income and education status. More than half of the adults with moderate depressive symptoms had periodontal diseases, and more than one-third had teeth with untreated dental caries. After adjusting for sociodemographics, behavioural factors, having diabetes and psychotherapeutic medication use, depressive symptoms were associated with poorer oral health. Severe depressive symptoms were associated with higher odds of mild periodontitis (2.20; 99% CI 1.03 to 4.66). For those with mild depressive symptoms, the mean number of missing teeth was 1.20 (99% CI 1.06 to 1.37) times the average of non-symptomatic individuals; and 1.38 times (99% CI 1.15 to 1.66) among individuals with moderate depressive symptoms.

Conclusions Depressive symptoms were associated with mild periodontitis and a greater number of missing teeth, while having teeth with untreated dental caries was attributed to sociodemographic factors. Awareness of oral health status among patients with depressive symptoms can inform both dental and mental health providers to develop tailored treatment and help patients achieve overall wellness.

INTRODUCTION

Depression is a diagnosable and treatable health condition distinct from experiences that occur normally from time to time such as feelings of fear, sadness or stress. Based on certain symptoms, depressive disorders are categorised into major depressive disorders, persistent depressive disorders and specified or unspecified depressive disorders.1 Symptoms of depression can include increased risk for social isolation, feelings of hopelessness, restlessness, difficulty performing any activity, aches or pains and substance abuse.2–5 In severe cases, depression is associated with increased risk of suicidal ideation, suicide attempts and death.6 As depressive symptoms are heterogeneous, not everyone who is depressed exhibits the same symptoms; hence, depression might manifest in different symptoms depending on an individual’s age, ethnicity, lifestyle and other sociodemographic conditions.

WHO reported that, globally, more than 300 million people (4.4% of the world population) were living with depression in 2015, an increase of almost 18% from 2005.7 According to the National Institute of Health, depression is the most common mental health disorder in the USA.8 Using the Patient Health Questionnaire-9 (PHQ-9) to diagnose depression, the National Health and Nutrition Examination Survey (NHANES) cycle in 2018 showed 8.1% of adults aged 20 or older had depression in USA.9 Depression was most prevalent among non-Hispanic whites (9.2%) and almost twice as prevalent among women (10.4%) than men (5.5%).10

Key point

► Question: Is there an association between self-reported depressive symptoms and oral disease among US adults?
► Finding: Our research found that US adults with depressive symptoms tend to have poorer oral health.
► Meaning: Individuals with depressive symptoms may unnecessarily suffer from oral health-related outcomes that decrease their quality of life if not addressed. Both dental and mental health providers can work together to develop a tailored treatment plan and help patients achieve overall wellness.
Several studies have reported depressive symptoms to be associated with poorer health and physical illness such as coronary heart disease, obesity and sleep deprivation.9–11 The association of depressive disorders with poor oral health has also been reported in the dental literature. Similar to the impact of oral disease, the consequences of depression affect the overall well-being of the individual, not just their mental health.12 Nationally, data show a relationship between poor oral health and depressive symptoms, independent of inflammatory pathways associated with increased C reactive protein and/or obesity.13 A positive association has been demonstrated between poor oral health (ie, untreated tooth decay and tooth loss) and depressive disorders. However, the studies used in this 2016 systematic review used small sample sizes and often presented self-reported oral diseases.14 In 2018, a systematic review and meta-analysis consistently reported tooth decay, tooth loss and edentulism associated with depression.15

Our study addresses the gaps presented in the currently available literature by including objective, clinical dental examination data instead of solely self-reported oral diseases. Using the most recent NHANES data, we evaluate the associations among different severities of depressive symptoms with clinically assessed oral diseases and missing teeth in non-institutionalised US adults.

MATERIALS AND METHODS

Study design and population

We used pooled NHANES data from 2009 to 2014. NHANES is a cross-sectional, nationally representative survey of the non-institutionalised US population that collects data via self-reported questionnaires, laboratory assessments and clinical exams.16 Participants in the analytical sample were at least 30 years old and had completed an NHANES oral examination and a nine-item screening and diagnostic tool for depression called the PHQ-9.16 The PHQ-9 is designed to measure depressive symptoms within a 2 week period before the survey that align with the American Psychiatric Association’s diagnostic criteria for depressive disorders.17–19 While a diagnosis of depression typically does not rely solely on a single questionnaire, cut-off scores for the diagnosis of severe depression have been developed and validated using the PHQ-9.20

The total sample size included 9799 participants in the three pooled cycles with periodontal examination data from 2009 to 2014 as well as 7011 participants in the two pooled cycles with clinical data recording dental caries and missing teeth from 2011 to 2014. The unweighted response rate of the examined sample was 77% from 2009 to 2010, 69.5% from 2011 to 2012, and 68.5% from 2013 to 2014. Written informed consent was obtained from all participants.

Clinical assessment of oral diseases

Calibrated dental examiners performed all clinical examinations of periodontal and dental status for NHANES participants. Using the definitions from the Centers for Disease Control and Prevention and the American Academy of Periodontics, periodontal status was categorised into three groups: severe, moderate and mild. Periodontitis was deemed severe if there were two or more interproximal sites with ≥6 mm of loss of attachment (not on the same tooth) and one or more interproximal sites with probing depths of ≥5 mm. Moderate periodontitis was defined as two or more interproximal sites with ≥4 mm of loss of attachment (not on the same tooth) or two or more interproximal sites with probing depths of ≥5 mm (not on the same tooth). Mild periodontitis was defined as either two or more interproximal sites with ≥3 mm of loss of attachment and two or more interproximal sites with ≥4 mm of probing depths (not on the same tooth) or one or more interproximal sites with probing depths of ≥5 mm.

The presence of any periodontitis at all was also recorded as an aggregate measure.21 Additionally, we assessed the prevalence of participants with untreated dental caries, the number of teeth with untreated dental caries and the number of missing teeth.

Definition of depression and confounding factors

The severity of depressive symptoms was measured using the PHQ-9, a nine-item screening instrument that measures the frequency of self-reported depression-related symptoms over the 2 weeks preceding the questionnaire. Based on the frequency of the symptoms, participants responded to each question by ranking symptom frequency: 0 for ‘not at all,’ 1 for ‘several days,’ 2 for ‘more than half the days’ and 3 for ‘nearly every day.’ The PHQ-9 classifies the severity of depressive symptoms based on the total score. A total score in the range of 0–4 classifies depressive symptoms as minimal; 5–9 classifies depressive symptoms as mild; 10–14, moderate and 15–27, severe.17,18

Other independent variables we included in the analysis were: age (30–34, 35–49, 50–64, 65+), sex (male or female), family income ratio to the federal poverty level (<100%, 100%–199%, 200%–499%, 500%+), education level (less than high school, completed high school/GED and education beyond high school), race/ethnicity (non-Hispanic white, non-Hispanic black, non-Hispanic other and Hispanic), smoking status (never, former or current smoker), current heavy alcohol consumption (≥2.5 drinks/day for men, ≥1.5 drinks/day for women), use of psychotherapeutic medications (taking antidepressant and/or antipsychotic medication, not taking psychotherapeutic medications) and report of diagnosed diabetes mellitus (diabetic, non-diabetic).

Statistical analysis

We obtained descriptive statistics to examine the prevalence of depressive symptoms for each independent
factor; then, we estimated the overall prevalence and severity of oral diseases among the four levels of depressive symptoms. With the corresponding 99% CI, we reported the prevalence of periodontitis, the presence of untreated dental caries, the average number of teeth with untreated dental caries, and the number of missing teeth. Weighted percentages were used to report nationally representative results. We also performed analyses on pooled data across cycles of NHANES and recalibrated the weights by dividing them by the number of cycles; then, we used these recalibrated weights to accurately extrapolate the population counts. For SE estimations, we used Taylor linearisation methods in the survey procedures with the provided masked variance pseudostratum and masked variance pseudopopulation sampling units.

We used logistic regression models for binary oral disease regarding mild to moderate to severe periodontitis and the presence of untreated dental caries. Poisson regression models were used for the mean numbers of missing teeth and teeth with untreated dental caries to estimate crude and adjusted measures of association between depressive symptoms and study endpoints. To determine OR, we applied simple and multivariable logistic regressions to estimate the crude and adjusted OR of periodontal diseases and untreated dental caries, comparing the levels of the severity of depressive symptoms to individuals with no reported depressive symptoms. Additionally, we used Poisson regressions to estimate the mean ratio of missing teeth and teeth with untreated dental caries to the severity level of reported depressive symptoms, using individuals without depressive symptoms as a reference.

We controlled for the independent confounding factors in all multivariable regression models for the adjusted estimates, the directed acyclic graph (online supplemental figure 1) provides a visual model for our assumptions. The results were deemed statistically significant at p<0.01, and all statistical analyses were performed using Stata/MP V.16.1 (StataCorp).

RESULTS
Among non-institutionalised US adults aged ≥30 years, 21.6% of them reported having at least mild depressive symptoms within the last 2 weeks on the PHQ-9 (table 1). The highest prevalence of depressive symptoms was among females, current smokers and heavy alcohol drinkers. Additionally, the data showed that the prevalence of depressive symptoms was higher among individuals with lower education level, lower income, those taking antipsychotherapeutic medications and patients with diabetes.

Among US adults aged ≥30 years, the prevalence of mild, moderate or severe periodontitis was 42.1% (99% CI 38.3% to 46.0%), and the prevalence of having at least one tooth with untreated dental caries was 21.5% (99% CI 18.5% to 24.5%) (table 2). The average number per participant of teeth with an untreated carious lesion was 0.6 (99% CI 0.5 to 0.8) and of missing teeth was 4.9 (99% CI 4.2 to 5.6). Table 2 also shows that participants with moderate depressive symptoms had the highest prevalence of periodontal disease—nearly half (52.4%; 99% CI 44.9% to 60.0%)—as well as the highest prevalence of teeth with untreated dental caries (36.3%; 99% CI 26.1% to 46.5%). This group averaged 1.1 teeth with untreated dental caries (99% CI 0.7 to 1.5) and 8.1 (99% CI 6.2 to 10.1) missing teeth.

Table 3 shows that periodontitis was more prevalent in participants reporting moderate and severe depressive symptoms than in participants reporting no depressive symptoms. After adjusting for potential confounding factors, the association between depressive symptoms and periodontitis disappeared, except among individuals with severe depressive symptoms who had 2.20 times the odds of mild periodontitis (99% CI 1.03 to 4.66) than individuals without depressive symptoms.

The mean number of teeth with untreated dental caries was higher in individuals who reported moderate (crude mean ratio=1.87; 99% CI 1.25 to 2.80) and severe (crude mean ratio=1.65; 99% CI 1.10 to 2.48) depressive symptoms than in individuals who reported no depressive symptoms; however, this association disappeared after adjusting for confounding factors (table 4). The crude mean ratio of missing teeth was higher among symptomatic individuals than among individuals with no depressive symptoms. Participants with mild depressive symptoms had a greater mean number of missing teeth than individuals with no depressive symptoms (adjusted mean ratio=1.20; 99% CI 1.06 to 1.37), and individuals with moderate depressive symptoms had even a higher mean number of missing teeth (adjusted mean ratio=1.38; 99% CI 1.15 to 1.66).

DISCUSSION
Our study has addressed current gaps in the literature by using a secondary analysis of nationally representative NHANES data to explore the associations between self-reported depressive symptoms and an objective report of clinical oral diseases. While depressive symptoms are usually collapsed into just two categories of respondents—those who reported moderate depressive symptoms and those who did not—our paper increases the granularity of the data by evaluating four separate levels of depression symptoms. Among non-institutionalised US adults aged ≥30 years, about one-fifth reported having at least mild depressive symptoms within the last 2 weeks on the PHQ-9. For clinical oral diseases, participants received complete clinical periodontal and dental examinations (in 2009–2014 cycles and in 2011–2014 cycles, respectively) which included more objective clinical data that help achieve more accurate diagnoses. Generally, depressive symptoms were associated with poor oral health, and participants with mild and moderate depressive symptoms were missing more teeth than individuals with no depressive symptoms.
Table 1 Demographics and prevalence of depression among adults who have completed a periodontal examination and the PHQ-9 depression screening questionnaire in the National Health and Nutrition and Examination Survey, 2009–2014

	No symptoms	Mild depressive symptoms	Moderate depressive symptoms	Severe depressive symptoms
Overall	9799 (100.0)	78.4 105225000	14.2 19095000	4.5 6021000
		Weighted US population (%)	Weighted US population (%)	Weighted US population (%)
Age				
30–34	1174 (12.1)	77.8 12628000	14.8 2407000	5.1 825000
35–49	3352 (36.8)	77.2 38102000	14.8 7311000	4.7 2297000
50–64	3133 (33.3)	77.7 34699000	14.3 6363000	4.9 2205000
65+	2140 (17.8)	82.8 19795000	12.6 3014000	2.9 693000
Gender				
Male	4912 (49.8)	82.9 55338000	11.9 7955000	3.3 2177000
Female	4887 (50.2)	74.0 49887000	16.5 1114000	5.7 3843000
Race/ethnicity				
Non-Hispanic White	4314 (70.0)	79.6 74302000	14.0 13039000	4.0 3730000
Non-Hispanic Black	2016 (10.4)	74.0 10274000	16.1 2234000	5.8 804000
Hispanic	2377 (13.3)	75.0 13340000	15.2 2694000	5.9 1055000
Other	1092 (6.8)	80.1 7310000	12.4 1128000	4.7 432000
Education				
Less than high school	2205 (14.7)	70.3 13812000	16.2 3180000	7.7 1508000
High school	2118 (20.9)	75.8 21244000	16.3 4575000	4.6 1299000
More than high school	5466 (64.4)	81.1 7010000	13.1 11327000	3.7 3214000
Poverty				
<100% FPL	1672 (11.4)	61.9 8857000	19.7 2822000	10.3 1467000
100%–199% FPL	2292 (18.8)	70.9 16752000	17.3 4079000	7.6 1803000
200%–499% FPL	2401 (29.0)	78.8 28756000	15.3 5576000	3.6 1320000
>500% FPL	2668 (40.9)	86.3 44446000	10.3 5295000	2.2 1129000
Smoking status				
Never	5447 (56.1)	82.3 61865000	12.5 9423000	3.1 2346000
Former	2501 (26.7)	79.2 28380000	14.0 5030000	4.2 1506000
Current	1847 (17.2)	64.7 14950000	20.1 4642000	9.4 2169000
Current alcohol consumption				
Non-heavy drinker	8135 (93.4)	79.7 89872000	13.8 15589000	4.1 4583000
Heavy drinker	529 (6.6)	72.0 5775000	18.4 1473000	5.5 443000

Continued
Table 1 Continued

Overall no (%)*	No symptoms (%)	Weighted US population (%)	Mild depressive symptoms (%)	Weighted US population (%)	Moderate depressive symptoms (%)	Weighted US population (%)	Severe depressive symptoms (%)	Weighted US population (%)	
Taking psychotherapeutic medications									
No	8681 (86.3)	82.2	94 713 000	12.6	14 556 000	3.3	3 746 000	2.0	2 253 000
Yes	1075 (13.7)	55.1	10 122 000	24.3	4 454 000	12.3	2 250 000	8.4	1 540 000
Diabetes status									
Non-diabetic	8547 (90.2)	79.5	96 113 000	13.7	16 518 000	4.2	5 092 000	2.7	3 254 000
Diabetic	1247 (9.8)	69.1	90 850 000	19.6	2 574 000	7.1	928 000	4.3	5 650 000

*The sample counts were unweighted while percentages are weighted to account for complex survey design. The weighted population counts are rounded to the nearest 100. FPL, federal poverty level.

Table 2 Prevalence of types of periodontitis, presence of untreated caries, mean number of teeth with untreated caries and missing teeth by depressive symptoms among adults aged ≥30 years who completed a periodontal examination and the PHQ-9 depression screening questionnaire in the National Health and Nutrition and Examination Survey

Severity of depressive symptoms	Periodontitis (2009–2014) (n=9799)	Dental caries and missing teeth (2011–2014) (n=7011)					
Any periodontitis %* (99% CI)	Mild periodontitis %* (99% CI)	Moderate periodontitis %* (99% CI)	Severe periodontitis %* (99% CI)	Presence of untreated dental caries %* (99% CI)	Mean number of teeth with untreated dental caries N† (99% CI)	Mean number of missing teeth N† (99% CI)	
Overall population	42.1 (38.3 to 46.0)	4.4 (3.4 to 5.3)	30.0 (26.8 to 33.1)	7.8 (6.4 to 9.2)	21.5 (18.5 to 24.5)	0.6 (0.5 to 0.8)	4.9 (4.2 to 5.6)
No depressive symptoms	41.2 (37.3 to 45.1)	4.2 (3.3 to 5.2)	29.4 (26.3 to 32.6)	7.6 (6.2 to 9.0)	19.4 (16.2 to 22.6)	0.6 (0.4 to 0.7)	4.3 (3.6 to 5.0)
Mild depressive symptoms	43.9 (37.1 to 50.1)	4.1 (2.5 to 5.7)	31.0 (25.2 to 36.7)	8.8 (6.0 to 11.6)	25.7 (21.2 to 30.1)	0.7 (0.5 to 0.8)	6.4 (5.1 to 7.6)
Moderate depressive symptoms	52.4 (44.9 to 60.0)	6.7 (2.6 to 10.9)	36.4 (30.1 to 42.7)	9.3 (4.1 to 14.6)	36.3 (26.1 to 46.5)	1.1 (0.7 to 1.5)	8.1 (6.2 to 10.1)
Severe depressive symptoms	42.5 (30.7 to 54.4)	6.5 (2.0 to 10.9)	30.0 (20.1 to 39.8)	6.1 (3.0 to 9.2)	31.6 (24.6 to 38.5)	1.0 (0.6 to 1.3)	8.0 (5.6 to 10.3)

*Weighted percentages.
†Weighted mean.
PHQ-9, Patient Health Questionnaire-9.
Table 3 Logistic regression models of associations between depressive symptoms and periodontitis as well as presence of untreated dental caries among adults aged ≥30 years who completed a periodontal examination and the PHQ-9 depression screening questionnaire in the National Health and Nutrition Examination Survey; 2009–2014 for periodontitis, 2011–2014 for dental caries

Severity of depressive symptoms	Any periodontal disease	Mild periodontal disease	Moderate periodontal disease	Severe periodontal disease	Presence of untreated dental caries
	Crude OR (99% CI)	Adjusted OR (99% CI)	Crude OR (99% CI)	Adjusted OR (99% CI)	Crude OR (99% CI)
	(n=9799)	(n=7946)	(n=9799)	(n=7946)	(n=7011)
No symptoms	Ref	Ref	Ref	Ref	Ref
	(1.07)	(1.00)	(1.40)	(1.33)	(1.18)
	(0.66 to 1.66)	(0.66 to 1.66)	(0.66 to 1.66)	(0.66 to 1.66)	(0.66 to 1.66)
Mild depressive symptoms	1.11	0.98	0.97	1.05	1.07
	(0.89 to 1.39)	(0.72 to 1.32)	(0.66 to 1.44)	(0.66 to 1.66)	(0.66 to 1.33)
Moderate depressive symptoms	1.57*	1.08	1.64	1.59	1.37*
	(1.13 to 2.18)	(0.70 to 1.66)	(0.85 to 3.17)	(0.74 to 3.40)	(1.01 to 1.87)
Severe depressive symptoms	1.05	0.71	1.57	2.20*	1.03
	(0.66 to 1.70)	(0.41 to 1.24)	(0.73 to 3.38)	(1.03 to 4.66)	(0.66 to 1.60)

Adjusted for age, sex, race/ethnicity, education, income, cigarette smoking, heavy alcohol consumption, psychotherapeutic medications and diabetes. *P<0.01

PHQ-9, Patient Health Questionnaire-9; Ref, reference group.

Limitations to this study include participation and reporting bias, as well as potential confounding factors. We controlled for potential confounders in the statistical models. However, problems with participation and reporting bias could present limitations on the data. For instance, populations with the most severe depressive symptoms may disproportionately choose not to participate in the survey. Additionally, while the PHQ-9 asks participants to rate their symptoms over time, it is not able to identify participants who receive treatment for depression. This is a crucial limitation to consider when interpreting the results.
of missing teeth among patients reporting depressive symptoms.

Our findings suggest the severity of depressive symptoms is associated with a higher average of missing teeth than in non-depressive individuals, which coincides with the findings from several studies in the literature.\[14\]\[15\]\[14\]\[15\]\[14\]\[15\] We believe the influence of missing teeth among individuals reporting mild or moderate depressive symptoms could also explain our results regarding depression and dental caries. Although other studies have indicated an association between dental caries and depression, our research showed the association between the severity of depressive symptoms and dental caries to be eliminated after controlling for the confounding factors.\[14\]\[15\] Again, the extraction of affected dentition would explain the higher number of missing teeth, and the influence these missing teeth have on dissolving the association between dental caries and depressive symptoms. Differences between our findings and the findings from the literature might also be attributed to different methods of depression assessment, differences in the population studied, or differences in oral examination protocols and diagnosis.

The current NHANES data indicate that nearly one out of five US adults aged 30 or above report depressive symptoms.\[3\] Research indicates an overall association between depressive symptoms and adverse oral diseases. Although some studies investigate the effects of depressive disorders or mental illnesses generally while others focus on one specific type of depression, the most-reported adverse oral diseases have tended to be tooth decay, tooth loss, edentulism, dryness of the mouth and a decreased overall oral health-related quality of life. In general, individuals with depressive disorders can find activities of daily living, such as oral hygiene, challenging and may consume a cariogenic diet which in turn can lead to periodontal diseases and development of dental caries.\[26\]

The National Center for Health Statistics reports 12.7% of the population has taken an antidepressant medication in the last month.\[32\] Our analysis adjusted for individuals taking antidepressant and/or antipsychotic medications, the rationale being that psychotherapeutic medications has been associated with a significantly greater risk for symptoms of xerostomia (dry mouth).\[28\] Xerostomia is reported as the most common side effect of both antidepressants and antipsychotics and has been associated with a decreased salivary flow rate.\[28\] A decreased flow rate, in turn, results in a lower salivary pH and reduced buffering capacity.\[30\] As a result, patients with depressive symptoms taking antidepressants often suffer from medication-induced xerostomia or MiX disease. A cross-sectional study evaluated the differences between three groups of medically compromised patients: one group taking chronic medications not associated with xerostomia, one group taking a single drug associated with xerostomia, and one group taking multiple medications associated with xerostomia. The study showed statistically and clinically significant differences in unstimulated salivary flow, reporting of symptoms associated with xerostomia, and decreased quality of life with patients who take one or more xerostomic medications.\[31\] Another recently published case report supplements these findings, connecting the oral environmental changes caused by MiX disease to resultant severe oral disease.\[32\]

As oral health professionals, we are tasked with treating the whole person. In the case of patients with depressive symptoms, this involves offensive preventive dental treatment that includes addressing symptoms associated with depression medications, early diagnosis and treatment of oral disease, and helping patients with an oral hygiene routine that supports their oral health and ability to perform the activities of daily living.\[32\] Moving forward, we recommend research exploring the temporal relationship between depression diagnosis, symptom severity and oral diseases.

CONCLUSIONS
Severe depressive symptoms were associated with a higher prevalence of mild periodontitis. In addition, mild and moderate depressive symptoms were associated with a
higher number of missing teeth. In our analysis, depressive symptoms were not associated with greater odds of having teeth with untreated dental caries, mean number of carious lesions or moderate to severe periodontitis. Awareness of oral health status among patients with depression can encourage both dental and mental health providers to recognize oral diseases in a timely fashion, provide offensive preventive dentistry and encourage patients to continue to access regular and comprehensive oral health care.

Acknowledgements The authors thank the Centers for Disease Control and Prevention for the use of their publicly available data set. We would also like to thank Dr Mary Angela Tavares for her support in this manuscript.

Collaborators Mary Angela Tavares; Centers for Disease Control and Prevention.

Contributors MA, IA and CV contributed to the conception and design of study. S0 prepared the dataset for analysis and MA carried out the analysis and data interpretation. MH, ENK and BR drafted the manuscript. All authors revised, discussed and approved the final manuscript. IA and CV supervised this project.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The Harvard Medical School’s IRB deemed this research exempted (IRB protocol #19-1611). The Harvard Medical School’s IRB deemed this research exempted (IRB protocol #19-1611).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in public, open access repository. Data are available in public, open access repository at the link here: https://www.cdc.gov/nchs/nhanes/index.htm.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any errors and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Muath Aldosari http://orcid.org/0000-0002-2200-2408

REFERENCES

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. *BMC Med* 2013;17:139–7.
2. Halbert BT, Davis RB, Wee CC. Disproportionate long-term opioid use among U.S. adults with mood disorders. *Pain* 2016;157:2452–7.
3. Ge L, Yap CW, Ong R, et al. Social isolation, loneliness and their relationships with depressive symptoms: a population-based study. *PloS One* 2017;12:e0182145.
4. Ruggles KV, Fang Y, Tate J, et al. What are the patterns between depression, smoking, unhealthy alcohol use, and other substance use among individuals receiving medical care? A longitudinal study of 5479 participants. *AIDS Behav* 2017;21:2014–22.
5. Brody DJ, Pratt LA, Hughes JP. Prevalence of depression among adults aged 20 and over: United States, 2013–2016. *NCHS Data Brief* 2018;303:1–8.
6. Ribeiro JD, Huang X, Fox KR, et al. Depression and hopelessness as risk factors for suicide ideation, attempts and death: meta-analysis of longitudinal studies. *Br J Psychiatry* 2018;212:279–86.
7. World Health Organization. Depression and other common mental disorders: Global health estimates: World Health organization, 2017.
8. The National Institute of Mental Health. Depression. secondary depression, 2018. Available: https://www.nimh.nih.gov/health/topics/depression/index.shtml
9. Luppino FS, de Wit LM, Bouny PF, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. *Arch Gen Psychiatry* 2010;67:220–9.
10. O’Neil A, Fisher AJ, Kibbe KY, et al. Depression is a risk factor for incident coronary heart disease in women: an 18-year longitudinal study. *J Affect Disord* 2016;196:117–24.
11. Roberts RE, Duong HT. The prospective association between sleep deprivation and depression among adolescents. *Sleep* 2014;37:239–44.
12. Wells KB, Stewart A, Hays RD, et al. The functioning and well-being of depressed patients. results from the medical outcomes study. *JAMA* 1998;279:95–100.
13. O’Neil A, Berk M, Venugopal K, et al. The association between poor dental health and depression: findings from a large-scale, population-based study (the NHANES study). *Gen Hosp Psychiatry* 2014;36:266–70.
14. Kissely S, Sawyer E, Siskind D, et al. The oral health of people with anxiety and depressive disorders - a systematic review and meta-analysis. *J Affect Disord* 2016;200:119–32.
15. Cademartori MG, Gastal MT, Nascimento GG, et al. Is depression associated with oral health outcomes in adults and elders? A systematic review and meta-analysis. *Clin Oral Investig* 2018;22:2685–702.
16. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National health and nutrition examination survey data, 2020.
17. Kroenke K, Spitzer RL, Burns JB, et al. The PHQ-9: validity of a brief depression severity measure. *J Gen Intern Med* 2001;16:606–13.
18. Kroenke K, Spitzer RL. The PHQ-9: a new diagnostic and severity measure. *Psychiatr Ann* 2002;32:509–15.
19. American Psychiatric Association. Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders : DSM-IV. 4th ed. Washington, DC: American Psychiatric Association, 1994.
20. Manea L, Gilbody S, McMillan D. Optimal cut-off score for diagnosing depression with the patient health questionnaire (PHQ-9): a meta-analysis. *CMAJ* 2012;184:E191–6.
21. Eke PI, Page RC, Wei L, et al. Update of the case definitions for population-based surveillance of periodontitis. *J Periodontal* 2012;83:1449–54.
22. Hsu C-C, Hsu Y-C, Chen H-J, et al. Association of periodontitis and subsequent depression: a nationwide population-based study. *Medicine* 2015;94:e293.
23. Friedlander AH, Mahler ME. Major depressive disorder. *Psychopathology, medical management and dental implications. J Am Dent Assoc* 2001;132:629–38.
24. Okoń CA, Strine TW, Eke PI, et al. The association between depression and anxiety and use of oral health services and tooth loss. *Community Dent Oral Epidemiol* 2012;40:134–44.
25. Uca AU, Uğuz F, Kozak HH, et al. Antidepressant-Induced sleep bruxism: prevalence, incidence, and related factors. *Clin Neuropsychopharmacol* 2015;38:227–30.
26. Skoikiewicz-Malinowska K, Malicka B, Zykiet M, et al. Oral health condition and occurrence of depression in the elderly. *Medicine* 2018;97:e12490.
27. Pratt LA, Brody DJ, Gu Q. Antidepressant Use Among Persons Aged 12 and Over:United States, 2011–2014. *NCHS Data Brief* 2017;283:1–8.
28. Cappetta K, Beyer C, Johnson JA, et al. Meta-Analysis: risk of dry mouth with second generation antidepressants. *Prog Neuropsychopharmacol Biol Psychiatry* 2018;84:282–93.
29. Cockburn N, Pradhan A, Taing MW, et al. Oral health impacts of medications used to treat mental illness. *J Affect Disord* 2017;223:184–93.
30. Bardow A, Nyabadza N, Nauntofte B. Relationships between medication intake, complaints of dry mouth, salivary flow rate and composition, and the rate of tooth demineralization in situ. *Arch Oral Biol* 2001;46:413–23.
31. Shetty SR, Bhovmick S, Castelino R, et al. Drug induced xerostomia in elderly individuals: an institutional study. *Contemp Clin Dent* 2012;3:173.
32. Covy B, Kennedy E, Donahoe J, et al. Minimizing aerosols with non-surgical approaches to caries management. *J Mich Dent Assoc* 2020;48–56.