Fully Localized Two-dimensional Embedded Solitons

Jianke Yang

Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA

We report the first prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide, and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations. These results show that multidimensional embedded solitons may find applications just like non-embedded (regular) solitons.

PACS numbers: 42.65.Tg, 05.45.Yv

Embedded solitons are nonlinear solitary waves whose frequencies (or propagation constants) reside inside the continuous spectrum of the underlying wave system. The existence of embedded solitons is quite counter-intuitive, since inside the continuous spectrum, only non-local waves with nonvanishing oscillating tails are commonly expected. However, under certain conditions, these oscillating tails are absent, hence truly localized embedded solitons appear inside the continuous spectrum. Since embedded solitons exist inside the continuous spectrum and are thus resonant with linear radiation modes, they exhibit some interesting dynamical properties. For instance, isolated embedded solitons are often found to be semi-stable, i.e., they would persist under energy-enhancing perturbations but perish under energy-reducing perturbations. Non-isolated embedded solitons, on the other hand, can be semi-stable or fully stable, depending on the underlying wave system. Embedded solitons are linked to other physical objects as well. For instance, moving discrete solitary waves in lattices (if they exist) are also embedded solitons. So far, all embedded solitons reported in the literature are one-dimensional (1D) to the author’s knowledge. The soliton trains reported in [10] exist inside the continuous spectrum and are two-dimensional (2D), but these soliton trains are localized only along one spatial direction and nonlocal along the orthogonal direction. It has remained a challenge to find 2D (and higher-dimensional) embedded solitons which are localized in all spatial directions. The reason is that in multi-dimensions, more stringent conditions need to be satisfied in order for fully localized embedded solitons to exist, thus such solitons are more difficult to find.

From a broader perspective, embedded solitons are intimately related to linear bound states (i.e., localized eigenmodes) inside the continuous spectrum of a wave system. These linear bound states in the continuum were first predicted by von Neumann and Wigner in 1929 [11], who showed that the 3D linear Schrödinger equation with certain localized potentials could possess bound states above the potential well (see also [12]). These predicted bound states were later observed experimentally for electrons in semiconductor heterostructures [13]. In optics, linear bound states inside the continuum have also been predicted in various settings, such as a semi-infinite 1D lattice [14], two parallel dielectric gratings [15], two arrays of thin parallel dielectric cylinders [16], and open 2D quantum dots or optical waveguides [16, 17]. Recently, linear 2D bound states in the continuum were demonstrated both theoretically and experimentally for light beams in a quasi-1D waveguide array with two additional waveguides above and below it [18]. The key idea in the construction of linear continuum bound states in [16 18] is to seek bound states of certain parity which are embedded inside the continuum bands of opposite parity. This idea inspired us to construct fully localized 2D embedded solitons in this paper. The above theoretical and experimental investigations on the counter-intuitive nonlinear embedded solitons and linear continuum bound states deepened our fundamental understanding of linear and nonlinear wave phenomena, and they could lead to unexpected applications in diverse physical fields.

In this paper, we construct fully localized 2D embedded solitons for the first time. These solitons are obtained in a quasi-1D waveguide array which is periodic along the horizontal direction and localized along the vertical direction. Under self-defocusing nonlinearity, we find 2D solitons which are symmetric along the vertical direction, and they are embedded in the continuum bands of odd symmetry in the vertical direction. These 2D embedded solitons exist as continuous families, with their propagation constants (or equivalently their powers) as a free parameter. We further show that these embedded solitons are fully stable against perturbations even though they exist inside the continuum bands. In addition, we show how 2D embedded solitons of odd symmetry along the vertical direction can be derived under self-focusing nonlinearity. This construction method for 2D embedded solitons is general, thus these embedded solitons are not rare objects, but can appear easily in diverse physical situations.

The theoretical model we use is the following 2D NLS equation with a potential,

\[iU_z + U_{xx} + U_{yy} + n(x, y)U + \sigma |U|^2 U = 0. \]

(1)

In spatial optics, this equation models paraxial light transmission in a waveguide under cubic nonlinearity.
In this context, U is the complex envelope function of the light’s electric field, z is the transmission distance, (x, y) are the transverse coordinates, $n(x, y)$ is the refractive index variation of the waveguide, and $\sigma = \pm 1$ represent self-focusing and self-defocusing nonlinearity respectively (self-focusing nonlinearity is common in most optical materials, and self-defocusing nonlinearity can be realized in certain special materials such as photorefractive crystals [20]). In Bose-Einstein condensates, Eq. (1) models the collective behavior of condensate atoms in a magnetic or optical trap under nonlinear atom-atom interaction (it is called the Gross-Pitaevskii equation in the literature) [21]. Static solitary waves in Eq. (1) are sought in the form

$$U(x, y, z) = u(x, y)e^{-i\mu z},$$

where μ is the propagation constant, and $u(x, y)$ is a real-valued localized function which satisfies the equation

$$u_{xx} + u_{yy} + n(x, y)u + \sigma u^3 = -\mu u.$$ \tag{3}

To construct a concrete example of 2D embedded solitons, we take a quasi-1D waveguide array

$$n(x, y) = 6 \cos^2 x e^{-y^2/4},$$ \tag{4}

which is periodic along the x-direction and localized along the y-direction. This waveguide is shown in Fig. 1(left panel). We also take $\sigma = -1$ (for self-defocusing nonlinearity). In order to find embedded solitons, we first need to determine the linear continuous spectrum of Eq. (3). For this purpose, we drop the nonlinear term in (3). Since $n(x, y)$ is periodic in x with π period, according to the Bloch theorem, linear eigenmodes of (3) are of the form

$$u(x, y) = e^{ikx}q(x, y),$$ \tag{5}

where k is the wavenumber in the first Brillouin zone $-1 \leq k \leq 1$, and $q(x, y)$ is an x-periodic function with period π. The continuous spectrum of Eq. (3) consists of the positive axis $\mu \in [0, +\infty)$, where $u(x, y)$ is nonlocalized in the y direction, and Bloch bands with $\mu < 0$, where $u(x, y)$ is localized in the y direction. To determine the Bloch bands with $\mu < 0$, we expand $q(x, y)$ into Fourier series in both x and y, then insert (5) into the linear part of Eq. (3) and turn it into a matrix eigenvalue problem, with μ being the eigenvalue and the Fourier coefficients of $q(x, y)$ being the eigenvector [10]. This matrix eigenvalue problem is then solved by conventional algorithms. The resulting diffraction relation $\mu = \mu(k)$ for these Bloch bands is shown in Fig. 1(right panel). We see that three Bloch bands are obtained. At the edges of the lowest two bands, the corresponding Bloch modes $u(x, y)$ are displayed in Fig. 2. It is important to notice that the Bloch modes in the lowest band $\mu \in [-2.9711, -2.7226]$ are symmetric in y, while the Bloch modes in the second band $\mu \in [-1.3030, -0.9260]$ are anti-symmetric in y.

The existence of different Bloch bands with opposite y-parity is important for our construction of 2D embedded solitons.

When nonlinearity is present, locally-confined solitons will bifurcate out from infinitesimal (linear) Bloch modes of band edges [19, 22]. Under self-defocusing nonlinearity, these solitons will bifurcate from the upper band edges upward into band gaps. Here we consider the solitons bifurcating from the upper edge of the lowest Bloch band (i.e., point ‘b’ in Fig. 1). Near edge ‘b’, the soliton is a low-amplitude broad packet which decays slowly along the x-direction (see Fig. 3(A)). This soliton is a regular gap soliton since it exists in a band gap. As μ moves further away from the edge ‘b’, the soliton becomes more narrow, and its amplitude as well as power becomes higher (see Fig. 3). Here the power P is defined as the integral of u^2 over the (x, y) plane. The most interesting phenomenon about this family of solitons is that, when μ enters into the second Bloch band $[-1.3030, -0.9260]$, the soliton still persists, and it remains fully localized in both x and y directions. To demonstrate, this soliton at $\mu = -1.1$ in the middle of the second Bloch band is displayed in Fig. 3(B). Since this soliton exists inside the continuous spectrum (Bloch bands), it is a fully-localized
2D embedded soliton! Likewise, its nearby solitons with \(\mu \) still inside the second Bloch band are all 2D embedded solitons as well. In other words, this is a continuous family of 2D embedded solitons with its propagation constant \(\mu \) or power \(P \) as a free parameter. This is the first report of 2D embedded solitons to our best knowledge.

Why do these 2D embedded solitons exist? Notice that these solitons bifurcate out from edge ‘b’ of the first Bloch band, thus they are symmetric in \(y \) (see Fig. 3). Notice also that the second Bloch band consists of Bloch modes which are all anti-symmetric in \(y \) (see Fig. 2). Thus when this \(y \)-symmetric soliton branch enters the second Bloch band of \(y \)-antisymmetric Bloch modes, even though \(\mu \) lies in the Bloch band, the soliton does not excite those Bloch modes of opposite \(y \)-parity, thus it remains fully localized. However, if this soliton moves into the third band \(\mu \in [-0.2488, 0] \) (see Fig. 3), since the Bloch modes in this third band are also symmetric in \(y \), this soliton will excite these \(y \)-symmetric Bloch modes and become delocalized (evidence of this can be seen in Fig. 3(C), where the soliton becomes broad again near the third Bloch band). Thus one can not find \(y \)-symmetric 2D embedded solitons in the third band.

Stability of these 2D embedded solitons in Fig. 3 is an important issue. In previous studies of 1D embedded solitons, since the embedded soliton is in resonance with the continuous spectrum, it could excite the continuum radiation and perish under certain perturbations [1]. Those 1D embedded solitons could also be linearly unstable, leading to their destruction under any generic perturbation [2]. For the 2D embedded solitons in Fig. 3, we have found that they are all linearly stable, i.e., their linear-stability spectra do not contain any eigenvalues with positive real parts. This linear stability for the embedded soliton in Fig. 3(B) is demonstrated in Fig. 4(i). Regarding the question of nonlinear stability, we note that these 2D embedded solitons lie inside the second Bloch band whose Bloch modes are antisymmetric in \(y \). Thus if the perturbation is \(y \)-symmetric as the embedded soliton itself, then since the waveguide \(u(x, y) \) is also \(y \)-symmetric, the solution of Eq. (4) will remain \(y \)-symmetric for all distances \(z \). Hence the perturbed soliton would not excite \(y \)-antisymmetric second-band modes, i.e., the soliton would be stable under \(y \)-symmetric perturbations. A less trivial question is what would happen if the perturbation is asymmetric in \(y \). In this case, the perturbed soliton would excite \(y \)-antisymmetric second-band modes since it is resonant with those modes. Then could these \(y \)-antisymmetric radiation break up the embedded soliton? Intuitively, we can expect that when the \(y \)-antisymmetric component of the perturbation is weak, then these weak antisymmetric components would disperse away through resonance with the second-band modes, and the other dominant \(y \)-symmetric component of the solution would adjust its shape into a nearby (\(y \)-symmetric) embedded soliton. If so, then these 2D embedded solitons would be nonlinearly fully stable. However, this expectation is under the assumption that energy in the \(y \)-symmetric component would not transfer to the \(y \)-antisymmetric component during evolution. Since Eq. (1) is nonlinear, this assumption may not hold, because the symmetric and antisymmetric components could couple each other and transfer energy between them. Thus in principle, it is possible for the perturbed soliton to lose a significant amount of radiation to the resonant second-band modes and break up. To clarify this question, we have performed numerical simulations of these embedded solitons under various asymmetric perturbations, and found that they are always nonlinearly fully stable. Two typical simulation results are shown in Fig. 4(ii-iv). In these simulations, the embedded soliton \(u(x, y) \) is the one in Fig. 3(B), and the perturbed initial state is

\[
U(x, y, 0) = u(x, y) + \epsilon(1 + \sin y)e^{-(x^2+y^2)/4},
\]

where \(\epsilon \) is the strength of perturbations. Notice that this perturbation contains both symmetric and antisymmetric components in \(y \). For \(\epsilon = 0.2 \), this perturbed initial state is shown in Fig. 4(ii). At propagation distance \(z = 50 \), the solution is shown in Fig. 4(iii). It is seen that this embedded soliton is stable under this perturbation. This stability can be seen more clearly in Fig. 4(iv), where the peak amplitude \(|U|_{\text{max}} \) of the solution versus the propagation distance \(z \) is displayed. We can see that the peak amplitude approaches a constant value close to the amplitude of the unperturbed soliton at large distances. If we take a different perturbation with \(\epsilon = -0.2 \), the result is similar, i.e., the peak amplitude of the solution also approaches a constant value close to the amplitude of the unperturbed soliton at large distances.
amplitude evolutions of the perturbed embedded soliton (6) with \(\epsilon \), (ii) an initially perturbed embedded soliton is linearly stable; (ii) an initially perturbed embedded soliton with \(\epsilon = 0.2 \); (iii) evolution of the perturbed soliton in (ii) at \(z = 50 \); plotted in (ii, iii) are \(|U| \) fields; (iv) peak-amplitude evolutions of the perturbed embedded soliton for \(\epsilon = 0.2 \) and \(-0.2\).

This significantly broadened the scope of embedded solitons. It could also stimulate the construction of related objects such as multidimensional moving discrete solitons. From the viewpoint of physical applications, regular (non-embedded) solitons have found applications in numerous situations. Now with the demonstration of families of stable multidimensional embedded solitons in this paper, these embedded solitons may find applications analogous to regular solitons in situations where regular solitons do not exist.

In summary, we have predicted fully localized 2D embedded solitons for the first time. These embedded solitons were obtained in a quasi-1D waveguide array, and they exist inside the Bloch bands whose Bloch modes have opposite parity from the solitons themselves. These embedded solitons form solution families with continuous ranges of power values. In addition, they are fully stable under perturbations. The method of construction in this paper is general, and it can be used to obtain multi-dimensional embedded solitons in diverse physical systems.

This work was supported in part by AFOSR grant USAF 9550-09-1-0228 and NSF grant DMS-0908167.

\[[1] \text{J. Yang, B.A. Malomed, and D.J. Kaup, "Embedded solitons in second-harmonic-generating systems." Phys. Rev. Lett. 83, 1958 (1999).} \]
[2] J.P. Boyd, *Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics* (Kluwer, Boston, 1998).

[3] A.R. Champneys, B.A. Malomed, J. Yang and D.J. Kaup, “Embedded solitons: solitary waves in resonance with the linear spectrum”. Physica D 152, 340 (2001).

[4] Y. Tan, J. Yang and D.E. Pelinovsky, “Semi-stability of embedded solitons in the general fifth-order KdV equation.” Wave Motion 36, 241 (2002).

[5] J. Yang and T.R. Akylas, “Continuous families of embedded solitons in the third-order nonlinear Schrödinger equation.” Stud. Appl. Math. 111, 359-375 (2003).

[6] J. Yang, “Stable embedded solitons.” Phys. Rev. Lett. 91, 143903 (2003).

[7] D.E. Pelinovsky and V.M. Rothos, “Bifurcations of travelling breathers in the discrete NLS equations”, Physica D 202, 16-36 (2005).

[8] B.A. Malomed, J. Fujioka, A. Espinosa-Cerón, R. F. Rodriguez, and S. González, “Moving embedded lattice solitons”, Chaos 16, 013112 (2006).

[9] T.R.O. Melvin, A.R. Champneys, P.G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices”, Phys. Rev. Lett. 97, 124101 (2006).

[10] X. Wang, Z. Chen, J. Wang and J. Yang, “Observation of in-band lattice solitons”, Phys. Rev. Lett. 99, 243901 (2007).

[11] J. von Neumann and E. Wigner, “Über Merkwürdige Diskrete Eigenwerte”, Phys. Z. 30, 465-467 (1929).

[12] F.H. Stillinger and D.R. Herrick, “Bound states in the continuum”, Phys. Rev. A. 11, 446-454 (1975).

[13] F. Capasso, C. Sirtori, J. Faist, D.L. Sivco, S.N.G. Chu and A.Y. Cho, “Observation of an electronic bound state above a potential well”, Nature 358, 565 (1992)

[14] S. Longhi, “Bound states in the continuum in a single-level Fano-Anderson model”, Eur. Phys. J. B 57, 45 (2007).

[15] D.C. Marinica, A.G. Borisov, and S.V. Shabanov, “Bound States in the Continuum in Photonics”, Phys. Rev. Lett. 100, 183902 (2008).

[16] A.F. Sadreev, E.N. Bulgakov, and I. Rotter, “Bound states in the continuum in open quantum billiards with a variable shape”, Phys. Rev. B 73, 235342 (2006).

[17] N. Moiseyev, “Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: a lower bound for the number of bound states in the continuum”, Phys. Rev. Lett. 102, 167404 (2009).

[18] Y. Plotnik, O. Peleg, A. Szameit, N. Moiseyev, and M. Segev, “Symmetry-Breaking of Bound States in the Continuum”, in Conference on Lasers and Electro-Optics (CLEO) (2010) QMG6.

[19] M. Skorobogatiy and J. Yang, *Fundamentals of Photonic Crystal Guiding* (Cambridge University Press, 2009).

[20] J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices”, Nature 422, 147-150 (2003).

[21] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 463 (1999).

[22] D.E. Pelinovsky, A.A. Sukhorukov, and Y.S. Kivshar, “Bifurcations and stability of gap solitons in periodic potentials”, Phys. Rev. E 70, 036618 (2004).