Neutrophil-to-lymphocyte Ratio as a Predictor of Mortality in ICU Patients: An Analysis of MIMIC-III Database

Xie Wu
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Zhanhao Su
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Qipeng Luo
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Yinan Li
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Hongbai Wang
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Qiao Liu
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Fuxia Yan (yanfuxia@sina.com)
Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital
https://orcid.org/0000-0001-5054-0775

Research

Keywords: neutrophil-to-lymphocyte ratio, intensive care unit, predictor, mortality

DOI: https://doi.org/10.21203/rs.3.rs-88295/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Identifying high-risk patients in intensive care unit (ICU) is very important because of the high mortality rate. Existing scoring systems are numerous but lack effective inflammatory markers. Our objective was to identify and evaluate a low-cost, easily accessible and effective inflammatory marker that can predict mortality in ICU patients.

Methods: We conducted a retrospective study using data from the Medical Information Mart for Intensive Care Ill database. We first divided the patients into the survival group and the death group based on in-hospital mortality. Receiver operating characteristic analyses were performed to find the best inflammatory marker (i.e. neutrophil-to-lymphocyte ratio, NLR). We then re-divided the patients into three groups based on NLR levels. Univariate and multivariate logistic regression were performed to evaluate the association between NLR and mortality. The area under the curve (AUC), Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI) were used to assess whether the incorporate of NLR can improve the predictive power of existing predictive model.

Results: A total of 21,822 patients were included in this study, with an in-hospital mortality rate of 14.43%. Among all inflammatory marker in routine blood test results, NLR had the best predictive ability, with a median (interquartile range) NLR of 5.40 (2.95, 10.46) in the survival group and 8.32 (4.25, 14.75) in the death group. We then re-divided the patients into low (≤1), medium (1-6) and high (≥6) groups based on NLR levels. Compared with the median NLR group, the in-hospital mortality rates were significantly higher in the low (odds ratio [OR] = 2.09; 95% confidence interval [CI], 1.64 to 2.66) and high (OR=1.64; 95%CI, 1.50-1.80) NLR groups. The addition of NLR to Simplified Acute Physiology Score II (SAPS II) improved the AUC from 0.789 to 0.798 (P<0.001), with NRI of 16.64% (P<0.001) and IDI of 0.27% (P<0.001).

Conclusion: NLR is a good predictor of mortality in ICU patients, both low and high levels of NLR are associated with elevated mortality rate. The inclusion of NLR might improve the predictive power of SAPS II.

Introduction

Patients admitted to intensive care unit (ICU) are usually severely ill with high mortality rates and high hospital costs[1]. Therefore, it is very important to identify patients with high risk of mortality. There are many existing scoring systems to predict the risk of mortality in the ICU, such as Simplified Acute Physiology Score (SAPS) and Acute Physiology and Chronic Health Evaluation[2], but effective inflammatory markers were not included. C-reactive protein and procalcitonin are widely recognized as indicators of inflammation [3–5], however, routine testing are not always available for every ICU patients due to cost-effective considerations, especially for those patients without infectious complications. Thus, identifying low-cost, easily accessible and effective inflammatory indicators might help predict mortality in ICU patients.
Blood examination is a routine inspection for every patients who admitted to the ICU. In addition to total white blood cell (WBC) and differential counts, combined markers such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have also attracted extensive attention in recent years. A lot of research has focused on the prognostic value of the inflammatory markers in routine blood test[6–13], but which one is the most sensitive indicator, and how exactly does this indicator predict the mortality of all ICU patients are still not clear. Therefore, we performed this study to find the best inflammatory predictor of mortality in ICU patients, and to further assess its prognostic value.

Material And Methods

Data Sources

Data for this study were obtained from Medical Information Mart for Intensive Care III (MIMIC-III) database version 1.4, which is a large, publicly available database comprising information of over forty thousand patients who admitted to critical care units of the Beth Israel Deaconess Medical Center between June 2001 to October 2012. For more details see Johnson et al.[14]. To gain access, one of our researchers completed the required training courses and signed the data use agreement.

Participants

This study included all patients over 16 years old who admitted to ICU. In patients who had multiple ICU admissions, only the first admission was included. And the patients with missing values or abnormal values for key variables within 24 h after ICU entry were excluded. Abnormal values referred to WBC > 400*10^9/L, NLR > 100 or PLR > 8000, etc. Based on the inclusion and exclusion criteria, 21,822 patients were finally enrolled for data analysis.

Data Extraction

Data from the MIMIC-III database were extracted using Structured Query Language (SQL) with PostgreSQL version 11.2. Demographic data, laboratory parameters, patient's clinical outcomes and survival data were collected from all participants, including age, gender, ethnicity, ICU type, WBC count, lymphocyte count, neutrophil count, platelet count, severity at admission as measured by Simplified Acute Physiology Score II (SAPS II), ICU and hospital length of stay, mortality at hospital, day 90 and 1 year, and so on. The laboratory parameters were assessed during the first 24 hours post admission. NLR and PLR were calculated by dividing neutrophil or platelet count by lymphocyte count. SAPS II was calculated automatically in the database according to the published scoring criteria[15]. The extracted data were presented in comma separated value files, linked by identifiers and integrated into a whole table through Stata version 15.0.

Statistical Analysis
Statistical analyses were performed with Stata (version 15.0) and MedCalc (version 19.0.7). Continuous variables were presented as median with interquartile range and compared using the Wilcoxon rank sum test or Kruskal–Wallis test, whereas categorical variables were shown as frequency with percentage and compared using the Fisher’s test or binomial probability test. Receiver operating characteristics (ROC) curves were plotted to calculate the area under the curve (AUC) and were compared using DeLong’s test. Optimal cut-off values of each inflammatory markers were established with the aid of the MedCalc software. Univariate and multivariate analyses were performed with logistic regression to evaluate the prognostic value of NLR for mortality. In multivariate analyses, we adjusted for age, gender, ethnicity, ICU type and SAPS II. In addition to the classical AUC, Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were also calculated to assess the improvements in the predictive power after adding NLR. Subgroup analyses were performed to evaluate whether ICU type could influence the conclusions. All P-values of less than 0.05 were regarded as statistically significant.

Results

Study Population

Between June 2001 and October 2012, a total of 38,597 distinct adult patients (aged 16 years or above) were admitted to ICUs. After the selection criteria, 21822 patients were included in the final analysis. The mean age of the included patients was 64.89 ± 17.80 years, and 46.47% were female. The in-hospital mortality rate was 14.43%, while the 90-day and 1-year mortality rate were 20.78% and 28.57%, respectively. The median lengths of ICU and hospital stay were 2.08 (1.21, 4.13) and 6.63 (3.79, 11.79) days.

Comparison of survival and death group

Based on in-hospital mortality data, patients were divided into survival and death groups. The baseline characteristics and clinical data were shown in Table 1. The death group was older and had more females than the survival group. Compared with overall in-hospital mortality, the mortality rate in MICU was significantly higher (16.31%). Blood examinations showed significant differences between the survival and death group: WBC, neutrophil count, NLR and PLR were much higher in the death group, whereas lymphocyte and platelet counts were much lower.
Table 1
Baseline characteristics according to survivors and death

	Overall (n = 21,822)	Survival group (n = 18,673)	Death group (n = 3,149)	P value
Age, years	66.68 (52.76, 79.55)	65.37 (51.65, 78.41)	75.05 (61.16, 83.58)	< 0.001
Gender, n (%)				0.004
Female	10,140 (46.47)	8,602 (46.07)	1,538 (48.84)	
Male	11,682 (53.53)	10,071 (53.93)	1,611 (51.16)	
Ethnicity, n (%)				< 0.001
White	15,875 (72.75)	13,619 (72.93)	2,256 (71.64)	
Black	2,080 (9.53)	1,857 (9.94)	223 (7.08)	
Other	3,867 (17.72)	3,197 (17.12)	670 (21.28)	
ICU type				< 0.001
CCU	3,331 (15.26)	2,864 (15.34)	467 (14.83)	
CSRU	2,443 (11.20)	2,279 (12.20)	164 (5.21)	
MICU	10,411 (47.71)	8,713 (46.66)	1,698 (53.92)	
SICU	3,775 (17.30)	3,201 (17.14)	574 (18.23)	
TSICU	1,862 (8.53)	1,616 (8.65)	246 (7.81)	
SAPS II	34 (25, 43)	32 (24, 40)	48 (37.5, 60)	< 0.001
Periphery blood index				
WBC (10⁹/L)	9.9 (7.1, 13.9)	9.7 (7.1, 13.6)	11.4 (7.6, 16.6)	< 0.001
Lymphocyte (10⁹/L)	1.30 (0.83, 1.91)	1.34 (0.87, 1.94)	1.06 (0.67, 1.62)	< 0.001
Neutrophil (10⁹/L)	7.56 (4.88, 11.45)	7.34 (4.82, 11.07)	9.16 (5.49, 13.60)	< 0.001
Platelet (10⁹/L)	208 (150, 275)	210 (155, 275)	192 (119, 277)	< 0.001
NLR	5.75 (3.09, 11.13)	5.40 (2.95, 10.46)	8.32 (4.25, 14.75)	< 0.001

Data are presented as median and interquartile range or number and percentage.

ICU, intensive care unit; CCU, coronary care unit; CSRU, cardiac surgery recovery units; MICU, medical ICU; SICU, surgical ICU; TSICU trauma surgical ICU; SAPS, Simplified Acute Physiology Score; WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
Overall (n = 21,822)	Survival group (n = 18,673)	Death group (n = 3,149)	P value
PLR			
177.9 (115.4, 287.4)	175.1 (115.1, 280.0)	199.1 (117.8, 334.9)	< 0.001

Data are presented as median and interquartile range or number and percentage.

ICU, intensive care unit; CCU, coronary care unit; CSRU, cardiac surgery recovery units; MICU, medical ICU; SICU, surgical ICU; TSICU, trauma surgical ICU; SAPS, Simplified Acute Physiology Score; WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.

Determination of the best inflammatory marker and its cut-off value

The optimal cut-off values of the inflammatory markers were shown in Table 2. The NLR showed the highest ability to predict in-hospital mortality (AUC = 0.609, p < 0.001). The percentages of in-hospital mortality in different NLR stages was shown as a bar diagram (Fig. 1). We found both high NLR level (> 6) and low NLR level (< 1) were associated with increased mortality rate. Therefore, we selected NLR as our best inflammatory marker, with cut-off points of 1 and 6.

Table 2
The optimal cut-off values based on in-hospital mortality

Peripheral blood index	Cut-off value	AUC	P value
WBC (10^9/L)	12	0.575	< 0.001
Lymphocyte (10^9/L)	1.17	0.593	< 0.001
Neutrophil (10^9/L)	9.57	0.576	< 0.001
Platelet (10^9/L)	128	0.554	< 0.001
NLR	6	0.609	< 0.001
PLR	267	0.536	< 0.001

WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.

Outcomes of patients with different NLR level

We re-divided patients into three groups based on their NLR levels: low NLR group (NLR ≤ 1, n = 580), medium NLR group (1 < NLR < 6, n = 10691), and high NLR group (NLR ≥ 6, n = 10551) and compared the
clinical outcomes of the three groups (Table 3). Compared with the medium NLR group, low and high levels of NLR were both significantly associated with poor prognosis. Their in-hospital, 90-day and 1-year mortality rates were significantly increased, and the hospital stay and ICU stay were also significantly longer.

Clinical outcomes	Overall (n = 21822)	NLR ≤ 1 (n = 580)	NLR 1–6 (n = 10691)	NLR ≥ 6 (n = 10,551)	P value
Hospital mortality, n (%)	3149 (14.43)	122 (21.03)	1,009 (9.44)	2,018 (19.13)	< 0.001
90-Day mortality, n (%)	4534 (20.78)	155 (26.72)	1,511 (14.13)	2,868 (27.18)	< 0.001
1-Year mortality, n (%)	6234 (28.57)	211 (36.38)	2,311 (21.62)	3,712 (35.18)	< 0.001
ICU length of stay (d)	2.08 (1.21, 4.13)	2.04 (1.08, 4.38)	1.96 (1.13, 3.46)	2.38 (1.33, 5.04)	< 0.001
Hospital length of stay (d)	6.63 (3.79, 11.79)	7.35 (3.34, 15.86)	6.08 (3.63, 10.79)	7.00 (3.96, 12.67)	< 0.001

Data are presented as median and interquartile range or number and percentage.
Prognostic value of NLR for mortality

The added predictive value of NLR were evaluated by calculating AUC, NRI and IDI. As shown in Fig. 2, the addition of NLR to the SAPS II significantly improved the AUC from 0.789 (95% CI, 0.785–0.796) to 0.798 (95% CI, 0.793–0.804; \(p < 0.001 \), DeLong’s test). The NRI and IDI for NLR in relation to the SAPS II were 16.64% (\(p < 0.001 \)) and 0.27% (\(p < 0.001 \)), respectively.

Subgroup analysis

We also performed a subgroup analysis based on different ICU patients (Table 5). The prognostic value of NLR in the subgroups were almost similar to the total, except for the patients in TSICU with low NLR level.

Table 4
Association between NLR and mortality

Exposure	Non-adjusted	Adjusted		
	OR (95% CI)	P value	OR (95% CI)	P value
In-hospital mortality				
≤ 1	2.56 (2.07, 3.15)	< 0.001	1.61 (1.26, 2.05)	< 0.001
1–6	1	1		
≥ 6	2.27 (2.09, 2.46)	< 0.001	1.59 (1.46, 1.74)	< 0.001
90-Day mortality				
≤ 1	1.96 (1.65, 2.33)	< 0.001	1.48 (1.18, 1.85)	< 0.001
1–6	1	1		
≥ 6	2.08 (1.95, 2.22)	< 0.001	1.60 (1.48, 1.43)	< 0.001
1-Year mortality				
≤ 1	2.07 (1.74, 2.47)	< 0.001	1.51 (1.23, 1.86)	< 0.001
1–6	1	1		
≥ 6	1.97 (1.85, 2.09)	< 0.001	1.38 (1.29, 1.48)	< 0.001

Adjusted confounders: age, sex, ethnicity, ICU type and SAPS II.

Prognostic value of NLR for mortality

The added predictive value of NLR were evaluated by calculating AUC, NRI and IDI. As shown in Fig. 2, the addition of NLR to the SAPS II significantly improved the AUC from 0.789 (95% CI, 0.785–0.796) to 0.798 (95% CI, 0.793–0.804; \(p < 0.001 \), DeLong’s test). The NRI and IDI for NLR in relation to the SAPS II were 16.64% (\(p < 0.001 \)) and 0.27% (\(p < 0.001 \)), respectively.

Subgroup analysis

We also performed a subgroup analysis based on different ICU patients (Table 5). The prognostic value of NLR in the subgroups were almost similar to the total, except for the patients in TSICU with low NLR level.
Table 5
Subgroup analyses of the association between in-hospital mortality and NLR levels.

Subgroups	NLR	\(\leq 1 \)	1–6	\(\geq 6 \)
CCU	n (%)	74 (2.22)	1,712 (51.4)	1,545 (46.38)
	OR (95%CI)	2.43 (1.21, 4.86)	1	1.82 (1.44, 2.31)
	P value	0.012	< 0.001	
CSRU	n (%)	46 (1.88)	1,812 (74.17)	585 (23.95)
	OR (95%CI)	3.72 (1.45, 9.54)	1	3.25 (2.29, 4.61)
	P value	0.006	< 0.001	
MICU	n (%)	350 (3.36)	4,635 (44.52)	5,426 (52.12)
	OR (95%CI)	1.77 (1.30, 2.41)	1	1.44 (1.27, 1.63)
	P value	< 0.001	< 0.001	
SICU	n (%)	73 (1.93)	1,767 (46.81)	1,935 (51.26)
	OR (95%CI)	2.43 (1.24, 4.78)	1	1.71 (1.39, 2.10)
	P value	< 0.001	< 0.001	
TSICU	n (%)	37 (1.99)	765 (41.08)	1,060 (56.93)
	OR (95%CI)	1.99 (0.79, 5.00)	1	1.55 (1.13, 2.12)
	P value	0.144	0.007	

Confounders adjustment were performed as before (Table 4).

ICU, intensive care unit; CCU, coronary care unit; CSRU, cardiac surgery recovery units; MICU, medical ICU; SICU, surgical ICU; TSICU trauma surgical ICU.

Discussion

The primary objective of this study was to find a low-cost, easily accessible and effective inflammatory marker that can predict ICU mortality, and to further evaluate its predictive power. To achieve this goal, we first divided the patients into the survival and death group to investigate the correlation between inflammatory markers of blood routine examination and in-hospital mortality in ICU patients, and it turned out that NLR had the best predictive ability. Then we determined the cutoff value of NLR and re-grouped the patients by NLR levels. We found that patients with lower or higher NLR levels were more likely to have higher mortality rate and longer ICU and hospital stay. Next, we incorporated NLR into the SAPS II and found that the addition of NLR can significantly improve the predictive power of SAPS II. Finally, we
conducted a subgroup analysis based on ICU type, and the results were basically consistent with the overall population.

The predictive value of NLR has been widely studied, particularly in cardiovascular disease[11, 16], infectious disease[12, 17–19] and cancer[7–10, 20, 21]. Most previous studies suggested that the higher the NLR level, the worse the prognosis[7–11, 13, 16–18, 20, 21]; however, other studies suggest that low NLR level also impart poor prognosis[12, 19]. If we equally divided the patients into 3–5 groups based on NLR level, we can draw the conclusions that high NLR level indicate poor prognosis (Additional le 1: Table S1). But before analysis, we noted that patients with lower NLR level also seem to have poor prognosis. Thus we took a different grouping scheme and confirmed our conjecture by further analysis. This finding was in line with clinical experience and therefore easy to explain. Indeed, the prognosis is generally good when the clinical indicators are within the normal range, too high or too low are more likely associated with poor prognosis. The possible reason of elevated NLR leading to poor prognosis has been mentioned in many literatures, which mainly reflects enhanced systemic inflammation and stress response[7, 13, 22, 23]. However, the reason why low NLR levels are associated with poor prognosis remains unclear, and we speculated the following reasons for this. Decreased NLR is mainly due to decreased neutrophils. Neutrophils play a key role in the innate immune response, including directly killing pathogens by phagocytosis, releasing a variety of cytokines, activating T cells and so on[12, 24]. Therefore, a reduction in the circulating neutrophil count could lower the body’s response to microbial invasion. In addition, the reduced circulating neutrophil count could be ascribed to increased neutrophil adhesion to the vascular endothelium[25], which could also cause endothelial damage, leading to leukocyte aggregation and microvascular thrombosis[26]. Thus, the compromise of innate immunity and the increase in endothelial damage could collectively impair the prognosis of the patients[27].

Many previous studies have overlooked that low NLR levels can also lead to poor prognosis, this may be caused by the following reasons. 1) The number of patients with low NLR levels was small. There are only 580 patients with NLR ≤ 1, which was 2.66% of the total population. Together with the overall trend that higher NLR level is associated with worse prognosis, the small number of patients with low NLR and poor prognosis may have been neglected; 2) The main outcome indicators may have a certain influence on the conclusion. Previous studies have mostly focused on late-death (≥ 5 days)[8, 10, 13, 20, 22] and found that high NLR level could predict poor prognosis. But Riché et al. reported that low NLR level was associated with early death (< 5 days), while high NLR level was associated with late death[12]. Duggal et al have also suggested that increased NLR was a biomarker for increased length of stay in ICU patients[23]. Therefore, it is reasonable to draw conclusions that high NLR indicate high mortality from previous studies focusing on late death. However, in our study, around half of the in-hospital deaths (1512/3149, 48.02%) occurred within 5 days, so low NLR level may also lead to increased mortality could be noted in our study; 3) The study population may also have an impact on the conclusion. Multiple previous studies were conducted in patients with specific diseases, while our study focused on the universality of all ICU patients, so we included all ICU patients with no case selection. For patients in MICU, many diseases can present with lymphocytosis and neutropenia, including hematological malignancies such as acute lymphocytic leukemia and myelodysplastic syndrome[27–30]; hematopoietic system diseases like
aplastic anemia[31]; rheumatic diseases like systemic lupus erythematosus[32]; and infectious etiology such as HIV, HBV and Epstein-Barr virus, etc. These patients are at elevated risk of bacterial and fungal infections, which accordingly have poor prognosis[33, 34]. This may be the reason for over-representation of the MICU patients with NLR ≤ 1 (3.36%). For postoperative patients in SICU, TSICU and CSRU, surgery will normally lead to elevated levels of NLR[35, 36]. On the one hand, tissue damage caused by trauma or surgery induced an acute inflammatory reaction, which leads to the accumulation of neutrophils[36, 37]; on the other hand, surgery and anesthesia exposed the body to a state of stress, which induces catecholamine and adrenocorticotropic hormone release, inducing the bone marrow, liver and spleen to produce neutrophils constantly and resulting in a massive recruitment of immature neutrophils into circulation[38]. In addition, cortisol inhibited the synthesis of lymphocyte nucleic acids, which leads to lymphopenia[39]. Therefore, postoperative patients should have a higher NLR. If the NLR is still at abnormally low levels for the postoperative patients, then the predominantly neutrophilic inflammatory response are probably not activated, but only lead to a transient type of lymphocytosis[40] and therefore cause poor prognosis. This is also consistent with previous reports that the mortality rate is significantly higher among trauma patients with lymphocytosis[41].

In this study, SAPS II was chosen as a tool for predicting the mortality. Although SAPS III had a better predictive ability, there were too many missing values due to the need for data within 1 hour after admission[42], so we chose to use SAPS II. Some studies had suggested that PLR also had the ability to predict mortality[10, 43, 44], therefore, we evaluated the predictive power of the PLR, and found that it does have prediction ability but not as good as NLR. When we continued to add PLR to the new SAPS II scoring model with NLR, the AUC value did not increase significantly, so we did not incorporate PLR into this model.

The major strengths of our study were the large sample size and including all ICU patients without selection bias. Furthermore, we also noticed that the mortality rate was elevated in patients with low NLR levels. Of course, there were some limitations of this study. First, this was a retrospective study, and therefore some important data might be missing. Some patients were excluded because of missing data on neutrophil or lymphocyte, and it was hard to explore the reasons for the missing data based on currently available information. Second, the conclusion of this study was qualitative, but not quantitative. We can only conclude that the addition of NLR can improve the performance of the SAPS II, but the NLR scores can’t be directly included into SAPS II and construct a new scoring model. However, we believed the results of the current study would be an important prompt to later scoring systems. Finally, although we conducted subgroup analysis in different types of ICU, in depth analyses were not undertaken because it’s not the aim of our study.

Conclusion

Among all inflammatory indicators in routine blood tests, NLR has the best predictive ability. Abnormally elevated or decreased NLR are both associated with higher mortality. Adding NLR to SAPS II can improve the predictive power for ICU mortality.
Abbreviations

AUC: area under the curve; CI: confidence interval; ICU: intensive care unit; IDI: Integrated Discrimination Improvement; MIMIC: Medical Information Mart for Intensive Care; NLR: neutrophil-to-lymphocyte ratio; NRI: Net Reclassification Improvement; OR: odds ratio; PLR: platelet-to-lymphocyte ratio; ROC: Receiver operating characteristics; SAPS: Simplified Acute Physiology Score; WBC: white blood cell.

Declarations

Ethics approval and consent to participate

The study was an analysis of a third party anonymized publicly available database, which was approved by the Massachusetts Institute of Technology (Cambridge, MA) and Beth Israel Deaconess Medical Center (Boston, MA). Therefore we were not required to take the Institution Review Board permission.

Consent for publication

Not applicable.

Availability of data and materials

The datasets presented in the current study are available in the MIMIC III database (https://physionet.org/works/MICIIIClinicalDatabase/files/).

Competing interests

The authors declare that they have no competing interests.

Funding

None.

Authors' contributions

As principal investigator, XW is fully responsible for all stages of the study, including design, data extraction, statistical analysis, and manuscript writing. FXY was involved in the design of the original protocol. QPL and YNL participated in data curation and analyses. HBW and QL contributed to the discussion and interpretation of data. ZHS helped to draft the final manuscript. All authors read approved the final manuscript.

Acknowledgements

The authors would like to thank the MIMIC III database for providing open access.

References
1. Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD: Critical care and the global burden of critical illness in adults. LANCET 2010, 376(9749):1339-1346.

2. Kalichsztein M, Nobre G, Kezen J, Braga F, Kurtz P, Penna G, Araujo P, Drumond L: Using outcome prediction tools in the ICU: performance of APACHE II and SAPS 2 scores in clinical patients. CRIT CARE 2006, 10(1): P407.

3. Stocker M, van Herk W, El Helou S, Dutta S, Schuerman FABA, van den Tooren-de Groot RK, Wieringa JW, Janota J, van der Meer-Kappelle LH, Moonen R et al: C-Reactive Protein, Procalcitonin, and White Blood Count to Rule Out Neonatal Early-onset Sepsis Within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study. CLIN INFECT DIS 2020.

4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME et al: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. CRIT CARE MED 2017, 45(3):486-552.

5. Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent J: Biomarkers of sepsis: time for a reappraisal. CRIT CARE 2020, 24(1).

6. Ocana A, Nieto-Jiménez C, Pandiella A, Templeton AJ: Neutrophils in cancer: prognostic role and therapeutic strategies. MOL CANCER 2017, 16(1).

7. Gemenetzis G, Bagante F, Griffin JF, Rezaee N, Javed AA, Manos LL, Lennon AM, Wood LD, Hruban RH, Zheng L et al: Neutrophil-to-lymphocyte Ratio is a Predictive Marker for Invasive Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. ANN SURG 2017, 266(2):339-345.

8. Malietzis G, Giacometti M, Askari A, Nachiappan S, Kennedy RH, Faiz OD, Aziz O, Jenkins JT: A Preoperative Neutrophil to Lymphocyte Ratio of 3 Predicts Disease-Free Survival After Curative Elective Colorectal Cancer Surgery. ANN SURG 2014, 260(2):287-292.

9. Wang SC, Chou JF, Strong VE, Brennan MF, Capanu M, Coit DG: Pretreatment Neutrophil to Lymphocyte Ratio Independently Predicts Disease-specific Survival in Resectable Gastroesophageal Junction and Gastric Adenocarcinoma. ANN SURG 2016, 263(2):292-297.

10. Shi M, Zhao W, Zhou F, Chen H, Tang L, Su B, Zhang J: Neutrophil or platelet-to-lymphocyte ratios in blood are associated with poor prognosis of pulmonary large cell neuroendocrine carcinoma. Translational Lung Cancer Research 2020, 9(1):45-54.

11. Kim S, Eliot M, Koestler DC, Wu WC, Kelsey KT: Association of Neutrophil-to-Lymphocyte Ratio With Mortality and Cardiovascular Disease in the Jackson Heart Study and Modification by the Duffy Antigen Variant. JAMA CARDIOL 2018, 3(6):455-462.

12. Riché F, Gayat E, Barthélémý R, Le Dorze M, Matéo J, Payen D: Reversal of neutrophil-to-lymphocyte count ratio in early versus late death from septic shock. CRIT CARE 2015, 19(1).

13. Salciccioli JD, Marshall DC, Pimentel M, Santos MD, Pollard T, Celi L, Shalhoub J: The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: an observational cohort study. CRIT CARE 2015, 19(1):13.

14. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG: MIMIC-III, a freely accessible critical care database. SCI DATA 2016, 3(1).
15. Le Gall JR: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA: The Journal of the American Medical Association 1993, 270(24):2957-2963.

16. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, Renlund DG, Muhlestein JB: Which White Blood Cell Subtypes Predict Increased Cardiovascular Risk? J AM COLL CARDIOL 2005, 45(10):1638-1643.

17. Ye W, Chen X, Huang Y, Li Y, Xu Y, Liang Z, Wu D, Liu X, Li Y: The association between neutrophil-to-lymphocyte count ratio and mortality in septic patients: a retrospective analysis of the MIMIC-III database. J THORAC DIS 2020, 12(5):1843-1855.

18. Russell CD, Parajuli A, Gale HJ, Bulteel NS, Schuetz P, de Jager CPC, Loonen AJM, Merekoulias GI, Baillie JK: The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. J INFECTION 2019, 78(5):339-348.

19. Hwang SY, Shin TG, Jo JJ, Jeon K, Suh GY, Lee TR, Yoon H, Cha WC, Sim MS: Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. The American Journal of Emergency Medicine 2017, 35(2):234-239.

20. Kao SCH, Pavlakis N, Harvie R, Vardy JL, Boyer MJ, van Zandwijk N, Clarke SJ: High Blood Neutrophil-to-Lymphocyte Ratio Is an Indicator of Poor Prognosis in Malignant Mesothelioma Patients Undergoing Systemic Therapy. CLIN CANCER RES 2010, 16(23):5805-5813.

21. Valero C, Zanoni DK, McGill MR, Ganly I, Morris LGT, Quer M, Shah JP, Wong RJ, León X, Patel SG: Pretreatment peripheral blood leukocytes are independent predictors of survival in oral cavity cancer. CANCER-AM CANCER SOC 2019, 126(5):994-1003.

22. Ye W, Chen X, Huang Y, Li Y, Xu Y, Liang Z, Wu D, Liu X, Li Y: The association between neutrophil-to-lymphocyte count ratio and mortality in septic patients: a retrospective analysis of the MIMIC-III database. J THORAC DIS 2020, 12(5):1843-1855.

23. Duggal NA, Snelson C, Shaheen U, Pearce V, Lord JM: Innate and adaptive immune dysregulation in critically ill ICU patients. SCI REP-UK 2018, 8(1).

24. Aged neutrophils contribute to the first line of defense in the acute inflammatory response.

25. Fox ED, Heffernan DS, Cioffi WG, Reichner JS: Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Critical care (London, England) 2013, 17(5): R226.

26. Bermejo-Martín JF, Tamayo E, Ruiz G, Andaluz-Ojeda D, Herrán-Monge R, Muriel-Bombín A, Fe Muñoz M, Heredia-Rodríguez M, Citores R, Gómez-Herreras J et al: Circulating neutrophil counts and mortality in septic shock. Critical care (London, England) 2014, 18(1):407.

27. Furmanchuk D: Outcome of septic shock in patients with malignancies and neutropenia. CRIT CARE 2005, 9(1):P223.

28. Labiad Y, Farnault L, Loriod B, Costello R, Nguyen C: Sepsis and neutropenia in hematological malignancies. CRIT CARE 2014, 18(2):P47.

29. Inaba H, Pei D, Wolf J, Howard SC, Hayden RT, Go M, Varechtchouk O, Hahn T, Buaboonnam J, Metzger ML et al: Infection-related complications during treatment for childhood acute lymphoblastic
leukemia. ANN ONCOL 2017, 28(2):386-392.

30. Wells RA, Buckstein R, Rezmovitz J: Myelodysplastic syndrome. CAN MED ASSOC J 2016, 188(10):751.

31. Brodsky RA, Jones RJ: Aplastic anaemia. The Lancet 2005, 365(9471):1647-1656.

32. Kaplan MJ: Neutrophils in the pathogenesis and manifestations of SLE. Nature reviews. Rheumatology 2011, 7(12):691-699.

33. Carvalho AS, Lagana D, Catford J, Shaw D, Bak N: Bloodstream infections in neutropenic patients with haematological malignancies. Infection, Disease & Health 2020, 25(1):22-29.

34. Azoulay É, Darmon M: Acute respiratory distress syndrome during neutropenia recovery. Critical care (London, England) 2010, 14(1):114.

35. Aldemir M, Baki ED, Adali F, Carsanba G, Tecer E, Tas HU: Comparison of neutrophil:lymphocyte ratios following coronary artery bypass surgery with or without cardiopulmonary bypass. CARDIOVASC J AFR 2015, 26(4):159-164.

36. Tan TP, Arekapudi A, Metha J, Prasad A, Venkatraghavan L: Neutrophil-lymphocyte ratio as predictor of mortality and morbidity in cardiovascular surgery: a systematic review. ANZ J SURG 2015, 85(6):414-419.

37. Silberman S, Abu-Yunis U, Tauber R, Shavit L, Grenader T, Fink D, Bitran D, Merin O: Neutrophil-Lymphocyte Ratio: Prognostic Impact in Heart Surgery. Early Outcomes and Late Survival. The Annals of Thoracic Surgery 2018, 105(2):581-586.

38. Hwang SY, Shin TG, Jo IJ, Jeon K, Suh GY, Lee TR, Yoon H, Cha WC, Sim MS: Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. AM J EMERG MED 2017, 35(2):234-239.

39. Tsai S, Wu M, Chen C: Low serum C3 level, high neutrophil-lymphocyte-ratio, and high platelet-lymphocyte-ratio all predicted poor long-term renal survivals in biopsy-confirmed idiopathic membranous nephropathy. SCI REP-UK 2019, 9(1).

40. Tekin YK: Are Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Associated with Mortality in Pediatric Trauma Patients: A Retrospective Study. Rambam Maimonides Med J 2019, 10(4).

41. Pinkerton PH, McLellan BA, Quantz MC, Robinson JB: Acute lymphocytosis after trauma–early recognition of the high-risk patient? J Trauma 1989, 29(6):749-751.

42. Polzik P, Grøndal O, Tavenier J, Madsen MB, Andersen O, Hedetoft M, Hyldegaard O: SuPAR correlates with mortality and clinical severity in patients with necrotizing soft-tissue infections: results from a prospective, observational cohort study. SCI REP-UK 2019, 9(1).

43. Shen Y, Huang X, Zhang W: Platelet-to-lymphocyte ratio as a prognostic predictor of mortality for sepsis: interaction effect with disease severity - a retrospective study. BMJ OPEN 2019, 9(1):e22896.

44. Mandaliya H, Jones M, Oldmeadow C, Nordman IIC: Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR),
platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Translational Lung Cancer Research 2019, 8(6):886-894.

Figures

Figure 1

Association of in-hospital mortality rates and different NLR levels.
Figure 2

Receiver operating characteristic curves for SAPS II and SAPS II+NLR. SAPS, Simplified Acute Physiology Score; NLR, Neutrophil-to-Lymphocyte Ratio; AUC, area under the receiver-operating characteristic curve; IDI, integrated discrimination improvement; NRI, net reclassification improvement.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile.docx