Existence of Mild Solutions for Impulsive Fractional Stochastic Differential Inclusions with State-Dependent Delay

Toufik Guendouzi and Ouahiba Benzatout

Laboratory of Stochastic Models, Statistic and Applications, Tahar Moulay University, P.O. Box 138 En-Nasr, 20000 Saida, Algeria

Correspondence should be addressed to Toufik Guendouzi; tf.guendouzi@gmail.com

Received 10 December 2013; Accepted 2 January 2014; Published 17 February 2014

Academic Editors: Z. Guo and J. Zhu

Copyright © 2014 T. Guendouzi and O. Benzatout. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the existence of mild solutions for a class of impulsive fractional stochastic differential inclusions with state-dependent delay. Sufficient conditions for the existence of solutions are derived by using the nonlinear alternative of Leray-Schauder type for multivalued maps due to O’Regan. An example is given to illustrate the theory.

1. Introduction

During the past two decades, fractional differential equations have gained considerable importance due to their application in various sciences, such as physics, mechanics, and engineering [1–3]. There has been a great deal of interest in the solutions of fractional differential equations in analytical and numerical senses. One can see the monographs of Kilbas et al. [2], Miller and Ross [4], Podlubny [5], and Lakshmikantham et al. [6] and the survey of Agarwal et al. [7, 8].

To study the theory of abstract differential equations with fractional derivatives in infinite dimensional spaces, the first step is how to introduce new concepts of mild solutions. A pioneering work has been reported by El-Borai [9, 10]. Very recently, Hernández et al. [11] showed that some recent papers of fractional differential equations in Banach spaces were incorrect and used another approach to treat abstract equations with fractional derivatives based on the well-developed theory of resolvent operators for integral equations. Moreover, Wang and Zhou [12], Zhou and Jiao [13] also introduced a suitable definition of mild solutions based on Laplace transform and probability density functions.

On the other hand, the theory of impulsive differential equations or inclusions has become an active area of investigation due to its applications in fields such as mechanics, electrical engineering, medicine, biology, and ecology. One can refer to [14, 15] and the references therein. Recently, the problems of existence of solutions and controllability of impulsive differential equations and differential inclusions have been extensively studied [16, 17]. Benedetti in [18] proved an existence result for impulsive functional differential inclusions in Banach spaces. Obukhovskii and Yao [19] considered local and global existence results for semilinear functional differential inclusions with infinite delay and impulse characteristics in a Banach space. Some existence results were obtained for certain classes of functional differential equations and inclusions in Banach spaces under assumption that the linear part generates an compact semi-group (see, e.g., [20–22]). The existence results of impulsive differential equations and inclusions have been generalized to stochastic differential equations with impulsive conditions [23, 24] and for stochastic impulsive differential inclusions [25–27].

We would like to mention that the impulsive effects also widely exist in fractional stochastic differential systems [28–30], and it is important and necessary to discuss the qualitative properties for stochastic fractional equations with impulsive perturbations with state-dependent delay. However, to the authors’ knowledge, no result has been reported on the existence problem of impulsive fractional stochastic differential inclusions with state-dependent delay and the aim of this paper is to fill this gap.

Motivated by this consideration, in this paper we will discuss the existence of mild solutions for a class of impulsive fractional stochastic differential inclusions with state-dependent delay in Hilbert spaces. Specifically, sufficient
2. Preliminaries and Basic Properties

In this section, we provide definitions, lemmas, and notations necessary to establish our main results. Throughout this paper, we use the following notations. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a complete probability space equipped with a normal filtration \(\mathcal{F}_t, t \in [0, b]\) satisfying the usual conditions (i.e., right continuous and \(\mathcal{F}_0\) containing all \(\mathbb{P}\)-null sets). We consider two real separable Hilbert spaces \(\mathcal{H}, \mathcal{K}\) with inner product \((\cdot, \cdot)_{\mathcal{H}}, (\cdot, \cdot)_{\mathcal{K}}\) and norm \(\|\cdot\|_{\mathcal{H}}, \|\cdot\|_{\mathcal{K}}\). Let \(\mathcal{F}_t = \mathcal{F}_t^\omega\) be a Q-Wiener process defined on \((\Omega, \mathcal{F}_t, \mathbb{P})\) with the linear bounded covariance operator \(Q\) such that \(\text{Tr}(Q) < \infty\). Assume that there exists a complete orthonormal system \(\{\psi_k\}_{k \geq 1}\) in \(\mathcal{H}\), a bounded sequence of nonnegative real numbers \(\{\lambda_k\}\) such that \(Q\psi_k = \lambda_k \psi_k, k = 1, 2, \ldots\), and a sequence \(\{\beta_k\}_{k \geq 1}\) of independent Brownian motions such that

\[
(\omega(t), e)_{\mathcal{F}_t} = \sum_{k=1}^{\infty} \lambda_k^{-\frac{1}{2}} \beta_k(t), \quad e \in \mathcal{H}, \ t \in [0, b]
\]

and \(\mathcal{F}_t = \mathcal{F}_t^\omega\), where \(\mathcal{F}_t^\omega\) is the sigma algebra generated by \(\{\omega(s), 0 \leq s \leq t\}\). Let \(L(\mathcal{H}, \mathcal{K})\) denote the space of all bounded linear operators from \(\mathcal{H}\) to \(\mathcal{K}\) equipped with the usual operator norm \(\|\cdot\|_{L(\mathcal{H}, \mathcal{K})}\). For \(\psi \in L(\mathcal{H}, \mathcal{K})\) we define

\[
\|\psi\|_Q^2 = \text{Tr}(\psi Q \psi^*) = \sum_{k=1}^{\infty} \lambda_k^{-1} \|\psi \beta_k\|^2.
\]

If \(\|\psi\|_Q^2 < \infty\), then \(\psi\) is called a Q-Hilbert-Schmidt operator. Let \(L_Q(\mathcal{H}, \mathcal{K})\) denote the space of all Q-Hilbert-Schmidt operators \(\psi\). The completion \(L_Q(\mathcal{H}, \mathcal{K})\) of \(L(\mathcal{H}, \mathcal{K})\) with respect to the topology induced by the norm \(\|\cdot\|_Q\) where \(\|\psi\|_Q^2 = (\psi, \psi)\) is a Hilbert space with the above norm topology. Let \(L_2(\Omega, \mathcal{K})\) be a Banach space of all strongly measurable, square integrable, \(\mathcal{K}\)-valued random variables equipped with the norm \(\|x(\cdot)\|_{L_2} = (E|\|x(\cdot, \omega)\|^2)^{1/2}\), where \(E(\cdot)\) denote the expectation with respect to the measure \(\mathbb{P}\). Let \(\mathcal{C}(\mathcal{F}_t, L_2(\Omega, \mathcal{K}))\) be the Banach space of all continuous maps from \(\mathcal{F}_t\) to \(L_2(\Omega, \mathcal{K})\) satisfying the condition \(\sup_{t \in \mathbb{R}} \|x(t)\|_2^2 < \infty\). Let \(L_0^2(\Omega, \mathcal{K})\) denote the family of all \(\mathcal{F}_0\)-measurable, \(\mathcal{K}\)-valued random variables \(X(0)\).

The purpose of this paper is to investigate the existence of mild solutions for a class of impulsive fractional stochastic differential inclusions with state-dependent delay of the form

\[
D^\alpha_x(t, x(t), x(t_\rho(t, x(t)))) + \sum \left(t, x(t_\rho(t, x(t)))\right) dt,
\]

\[
t \in J := [0, b], \ t \neq t_k, k = 1, \ldots, m,
\]

\[
\Delta x(t_k) = I_k(x(t_k)), \quad k = 1, \ldots, m,
\]

\[
x_0 = \phi \in \mathcal{B},
\]

where \(D^\alpha_x\) is the Caputo fractional derivative of order \(\alpha, 0 < \alpha < 1\); \(X(\cdot)\) takes the value in the separable Hilbert space \(\mathcal{H}\); and \(A : \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}\) is the generator of an \(\alpha\)-resolvent operator family \(S_\alpha(t), t \geq 0\). The history \(x_\theta : (-\infty, 0] \rightarrow \mathcal{H}, x_\theta(t) = x(t + \theta), \theta \leq 0,\) belongs to an abstract phase space \(\mathcal{B}\) defined axiomatically; \(f, \Sigma, \rho, \) and \(I_k, k = 1, \ldots, m,\) are given functions to be specified later. Here \(0 = t_0 < t_1 < \cdots < t_m < t_{m+1} = b, A_x(t_k) = x(t_k^+) - x(t_k^-), x(t_k^+), x(t_k^-) = \lim_{h \rightarrow 0} x(t_k + h)\) and \(x(t_k^+), x(t_k^-) = \lim_{h \rightarrow 0} x(t_k - h)\) represent the right and left limits of \(x(t)\) at \(t = t_k\), respectively. The initial data \(\phi = \{\phi(t), t \in (-\infty, 0]\}\) is an \(\mathcal{F}_0\)-measurable, \(\mathcal{B}\)-valued random variable independent of \(w\) with finite second moments.

Recall the following known definitions. For more details see [2].

Definition 1. The fractional integral of order \(\alpha\) with the lower limit 0 for a function \(f\) is defined as

\[
^I D^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(s)}{(t-s)^{1-\alpha}} ds, \quad t > 0, \alpha > 0
\]

provided the right-hand side is pointwise defined on \([0, \infty)\), where \(\Gamma(\cdot)\) is the gamma function.

Definition 2. Riemann-Liouville derivative of order \(\alpha\) with lower limit zero for a function \(f : [0, \infty) \rightarrow \mathbb{R}\) can be written as

\[
^\lambda D^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f(s)}{(t-s)^{n-1-\alpha}} ds, \quad t > 0, \ n-1 < \alpha < n.
\]

Definition 3. The Caputo derivative of order \(\alpha\) for a function \(f : [0, \infty) \rightarrow \mathbb{R}\) can be written as

\[
^\lambda D^\alpha f(t) = ^I D^\alpha \left(f(t) - \sum_{k=0}^{n-1} f^{(k)}(0)\right),
\]

\[
t > 0, \ n-1 < \alpha < n.
\]

If \(f(t) \in C^n[0, \infty)\), then

\[
^\lambda D^\alpha f(t) = \frac{1}{(n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} f^n(s) ds = t^{n-\alpha} f^n(s),
\]

\[
t > 0, \ n-1 < \alpha < n.
\]

(7)

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the Caputo derivative of order \(\alpha > 0\) is given as

\[
L\{^\lambda D^\alpha f(t); s\} = s^\alpha f(s) - \sum_{k=0}^{n-1} s^{k-\alpha} f^{(k)}(0);
\]

\[
n-1 \leq \alpha < n.
\]
Definition 4 (see [31]). A closed and linear operator A is said to be sectorial if there are constants $\omega \in \mathbb{R}$, $\theta \in [\pi/2, \pi]$, $M > 0$, such that the following two conditions are satisfied:

(i) $\rho(A) \subset \Psi_{\theta,\omega} = \{ \lambda \in C : \lambda \neq \omega, \mid \arg(\lambda - \omega) \mid < \theta\}$,

(ii) $\|R(\lambda, A)\| = \| (\lambda - A)^{-1} \| \leq M/|\lambda - \omega|$, $\lambda \in \Psi_{\theta,\omega}$.

Definition 5 (see [30]). Let A be a closed and linear operator with the domain $D(A)$ defined in a Banach space X. Let $\rho(A)$ be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist $\omega \geq 0$ and a strongly continuous function $S_{\alpha} : \mathbb{R}_{+} \rightarrow L(X)$, where $L(X)$ is a Banach space of all bounded linear operators from X to X and the corresponding norm is denoted by $\| \cdot \|$, such that $\{\lambda^\alpha : \Re \lambda > \omega \} \subset \rho(A)$ and

$$\left(\lambda^\alpha I - A\right)^{-1}x = \int_{0}^{\infty} e^{\lambda t}S_{\alpha}(t)x \, dt, \quad \Re \lambda > \omega, \ x \in X,$$

(9)

where $S_{\alpha}(t)$ is called the α-resolvent family generated by A.

Definition 6. Let S_{α} be an α-resolvent operator family on Banach space X with generator A. Then, the following assertions hold:

(i) $S_{\alpha}(t) \subset \mathcal{D}(A)$ and $AS_{\alpha}(t)x = S_{\alpha}(t)Ax$ for all $x \in \mathcal{D}(A)$ and $t \geq 0$,

(ii) for all $x \in X$, $I_{t}S_{\alpha}(t)x \in \mathcal{D}(A)$ and $S_{\alpha}(t)x = x + AT_{t}S_{\alpha}(t)x, t \geq 0$,

(iii) $x \in \mathcal{D}(A)$ and $Ax = x$ if and only if $S_{\alpha}(t)x = x + I_{t}^{\alpha}AS_{\alpha}(t)x, t \geq 0$,

(iv) A is closed, densely defined.

Definition 7 (see [30]). Let A be a closed and linear operator with the domain $D(A)$ defined in a Banach space X and $\alpha > 0$. We say that A is the generator of a solution operator if there exist $\omega \geq 0$ and a strongly continuous function $S_{\alpha} : \mathbb{R}_{+} \rightarrow L(X)$ such that $\{\lambda^\alpha : \Re \lambda > \omega \} \subset \rho(A)$ and

$$\left(\lambda^\alpha I - A\right)^{-1}x = \int_{0}^{\infty} e^{\lambda t}S_{\alpha}(t)x \, dt, \quad \Re \lambda > \omega, \ x \in X,$$

(10)

where $S_{\alpha}(t)$ is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent family. For more details on α-resolvent family and solution operators, we refer the reader to [2].

Definition 8. We say that a function $x : [a, b] \rightarrow \mathcal{H}$ is a normalized piecewise continuous function on $[a, b]$ if x is piecewise continuous and left continuous on $(a, b]$.

We denote by $\mathcal{PC}([a, b], \mathcal{H})$ the space formed by normalized piecewise continuous, \mathcal{F}_{t}-adapted measurable processes from $[a, b]$ into \mathcal{H}. In particular, we introduce the space \mathcal{PC} formed by \mathcal{F}_{t}-adapted measurable, \mathcal{H}-valued stochastic processes $\{x(t) : t \in [0, b]\}$ such that x is continuous at $t \neq t_{k}$, $x(t_{k}) = x(t_{k})$ and $x(t_{k}^{+})$ exists for $k = 1, \ldots, m$.

In this paper, we assume that \mathcal{PC} is endowed with the norm $\|x\|_{\mathcal{PC}} = \left(\sup_{0 \leq t \leq b} \|x(t)\|^{2}\right)^{1/2}$. Then $(\mathcal{PC}, \| \cdot \|_{\mathcal{PC}})$ is a Banach space [32].

We denote by $\tilde{x}_{k} \in \mathcal{C}([t_{k}, t_{k+1}], L_{2}(\Omega, \mathcal{F}))$, $k = 0, \ldots, m$, the function given by

$$\tilde{x}_{k}(t) := \begin{cases} x(t) & \text{for } t \in (t_{k}, t_{k+1}], \\ x(t_{k}^{+}) & \text{for } t = t_{k}. \end{cases}$$

(11)

Moreover, for $B \subset \mathcal{PC}$, we denote by $\tilde{B}_{k}, k = 0, \ldots, m$, the set $\tilde{B}_{k} = \{\tilde{x}_{k} : x \in B\}$. It is proved in [32] that $B \subset \mathcal{PC}$ is relatively compact in \mathcal{PC} if, and only if, the set \tilde{B}_{k} is relatively compact in $\mathcal{C}([t_{k}, t_{k+1}], L_{2}(\Omega, \mathcal{F}))$, for every $k = 0, \ldots, m$. The notation $B(x, \mathcal{H})$ stands for the closed ball with center at x and radius $r > 0$ in \mathcal{H}.

Throughout this paper, we assume that the phase space $(\mathcal{B}, \| \cdot \|_{\mathcal{B}})$ is a seminormed linear space of \mathcal{F}_{α}-measurable functions mapping $(-\infty, 0]$ into \mathcal{H} and satisfying the following fundamental axioms [33].

(i) If $x : (-\infty, \tau + b) \rightarrow \mathcal{H}, b > 0, \tau \in \mathbb{R}$, is continuous on $[\tau, \tau + b]$ and $x_{\tau} \in \mathcal{B}$, then for every $t \in [\tau, \tau + b]$ the following conditions hold:

(a) $x_{t\tau}$ is in \mathcal{B};

(b) $\|x(t)\| \leq H\|x_{\tau}\|_{\mathcal{B}}$;

(c) $\|x_{t\tau}\|_{\mathcal{B}} \leq K(t - \tau) \sup_{\tau \leq s \leq t} \|x(s)\| + N(t - \tau)\|x_{\tau}\|_{\mathcal{B}}$, where $H > 0$ is a constant; $K, N : [0, \infty) \rightarrow [1, \infty)$, K is continuous, N is locally bounded, and H, K, N are independent of $x(\cdot)$.

(ii) For the function $x(\cdot)$ in (i), the function $t \rightarrow x_{t\tau}$ is continuous from $[\tau, \tau + b]$ into \mathcal{B}.

(iii) The space \mathcal{B} is complete.

The next result is a consequence of the phase space axioms. The reader can refer to [34] for the proof.

Lemma 9. Let $x : (-\infty, b] \rightarrow \mathcal{H}$ be an \mathcal{F}_{t}-adapted measurable process such that the \mathcal{F}_{0}-adapted process $x_{0} = \phi(t) \in L_{2}^{0}(\Omega, \mathcal{F})$ and $x_{1} \in \mathcal{PC}(I, \mathcal{F})$. Then

$$\|x_{s}\|_{\mathcal{B}} \leq N_{b}E\|x_{b}\| + K_{b} \sup_{0 \leq s \leq b} E\|x(s)\|,$$

(12)

where $K_{b} = \sup\{K(t) : 0 \leq t \leq b\}$ and $N_{b} = \{N(t) : 0 \leq t \leq b\}$.

In what follows, we use the notations $\mathcal{P}(\mathcal{H})$ for the family of all nonempty subsets of \mathcal{H} and denote

$$\mathcal{P}_{c} (\mathcal{H}) = \{ Y \in \mathcal{P}(\mathcal{H}) : Y \text{ is closed} \},$$

$$\mathcal{P}_{bd} (\mathcal{H}) = \{ Y \in \mathcal{P}(\mathcal{H}) : Y \text{ is bounded} \},$$

$$\mathcal{P}_{cv} (\mathcal{H}) = \{ Y \in \mathcal{P}(\mathcal{H}) : Y \text{ is convex} \},$$
\[P_{cp}(H) = \{ Y \in P(H) : Y \text{ is compact} \}, \]
\[P_{cd}(H) = \{ Y \in P(H) : Y \text{ is compact-acyclic} \}. \]

(13)

Now, we briefly introduce some facts on multivalued analysis. For details, one can see [35].

A multivalued map \(G : \mathcal{H} \rightarrow P(\mathcal{H}) \) is convex (closed) valued, if \(G(x) \) is convex (closed) for all \(x \in \mathcal{H} \). \(G \) is bounded on bounded sets if \(G(B) = \bigcup_{x \in B} G(x) \) is bounded in \(\mathcal{H} \), for any bounded set \(B \) of \(\mathcal{H} \), that is, \(\sup_{x \in B} \sup \| y \| \in G(x) < \infty \).

For \(x \in \mathcal{H} \) and \(Y, Z \in P_{bdcl}(\mathcal{H}) \), we denote by \(d(x, Y) = \inf \{ \| x - y \| : y \in Y \} \) and \(\kappa(Y, Z) = \sup_{a \in Y} d(a, Z) \), and the Hausdorff metric \(H_d : P_{bdcl}(\mathcal{H}) \times P_{bdcl}(\mathcal{H}) \rightarrow \mathbb{R} \) by \(H_d(A, B) = \max(\kappa(A, B), \kappa(B, A)) \).

A multivalued map \(G \) is called upper semicontinuous (u.s.c. for short) on \(\mathcal{H} \) if, for each \(x_0 \in \mathcal{H} \), the set \(G(x_0) \) is a nonempty, closed subset of \(\mathcal{H} \) and if, for each open set \(B \) of \(\mathcal{H} \) containing \(G(x_0) \), there exists an open neighborhood \(N \) of \(x_0 \) such that \(G(N) \subseteq B \).

Let \(\delta_{x, \psi} = \{ \sigma \in L^2(\mathcal{H}, \mathcal{H}) : \sigma(t) \in \Sigma(t, \psi) \text{ for a.e. } t \in J \} \) be the set of selections of \(\Sigma \) for each \(\psi \in \mathcal{B} \), \(x(t_k^+) = x(t_k^+) + I_k(x_k) \).

Definition 12. An \(F_t \)-adapted stochastic process \(x : (-\infty, b) \rightarrow \mathcal{H} \) is a mild solution of the system (3) if \(x_0 = \phi \), \(x_{p(\Sigma, \psi)} \in \mathcal{B} \) for every \(t \in J \), \(\Delta_x(t_k) = I_k(x_k) \).

3. The Mild Solution and Existence

Before stating and proving the main result, we present the definition of the mild solution to the system (3)–(3) based on the paper [30, 31].
If \(\bar{M}_T = \sup_{0 \leq t \leq b} \| T_\alpha(t) \| \), and \(\bar{M}_S = \sup_{0 \leq t \leq b} C e^{\omega t}(1 + t^{1-\alpha}) \), we have
\[
\| T_\alpha(t) \| \leq \bar{M}_T, \quad \| S_\alpha(t) \| \leq t^{\alpha-1} \bar{M}_S
\]
(18)
(for more details, see [31]).

(H2) The function \(t \rightarrow \phi_t \) is continuous from \(\mathcal{L}(\rho^-) = \{ \rho(s, \psi) \leq 0, (s, \psi) \in J \times B \} \) to \(B \) and there exists a continuous and bounded function \(\mathcal{W}_\phi : \mathcal{L}(\rho^-) \rightarrow (0, \infty) \) such that \(\| \phi_t \|_\mathcal{B} \leq \mathcal{W}_\phi(t) \| \phi \|_\mathcal{B} \) for each \(t \in \mathcal{L}(\rho^-) \).

(H3) The multivalued map \(F : J \times B \rightarrow \mathcal{P}_{bd,cl,cv}(L(H, \mathcal{H})) \) is Carathéodory; that is,

(i) \(t \mapsto F(t, \psi) \) is measurable for each \(\psi \in B \);

(ii) \(\psi \mapsto F(t, \psi) \) is upper semicontinuous (u.s.c.) for almost all \(t \in J \),

and for each fixed \(\psi \in B \), the set \(\mathcal{S}_{\Sigma, \psi} \) of selections of \(\Sigma \) is nonempty.

(H4) There exists a positive integrable function \(v \in L^1([0, b], \mathbb{R}^+) \) such that
\[
\lim_{\| \psi \|_\mathcal{B} \to \infty} \frac{\| \Sigma(t, \psi) \|^2}{\| \psi \|^2} = \Lambda
\]
(19)
uniformly in \(t \in J \) for a nonnegative constant \(\Lambda \), where
\[
\| \Sigma(t, \psi) \|^2 = \sup \{ E[\sigma]^2 : \sigma \in \Sigma(t, \psi) \}.
\]
(20)

(H5) The function \(f : J \times B \rightarrow \mathcal{H} \) is continuous and there exists \(M_f > 0 \) such that
\[
E\| f(t, \psi_1) - f(t, \psi_2) \|^2 \leq M_f \| \psi_1 - \psi_2 \|_\mathcal{B}^2, \quad t \in J, \psi_1, \psi_2 \in B,
\]
(21)
\[
E\| f(t, \psi) \|^2 \leq M_f \left(1 + \| \psi \|_\mathcal{B}^2 \right), \quad t \in J, \psi \in B.
\]

(H6) The functions \(I_k : B \rightarrow \mathcal{H} \) are completely continuous and there exist constants \(\epsilon_k \) such that
\[
\lim_{\| \psi \|_\mathcal{B} \to \infty} \frac{\| I_k(\psi) \|_\mathcal{B}^2}{\| \psi \|_\mathcal{B}^2} = \epsilon_k
\]
(22)
for every \(\psi \in B, k = 1, 2, \ldots, m \).

Remark 14. The condition (H2) is frequently verified by continuous and bounded functions. For more details, see, for instance, [34] (Proposition 7.1.1).

The following lemma is required for the main result. The reader can refer to [37, 38] for the lemma and to [32] for more details about the proof.

Lemma 15. Let \(x : (-\infty, b] \rightarrow \mathcal{H} \) such that \(x_0 = \phi \) and \(x(t) \in \mathcal{P}_C(J, \mathcal{H}) \). If (H2) holds, then
\[
\| x(t) \|_\mathcal{B} \leq \left(N_k + \mathcal{W}_\phi(t) \right) \| \phi \|_\mathcal{B} + K_k \sup \{ \| x(\theta) \| : \theta \in [0, \max\{0, s\}] \}, \quad s \in \mathcal{L}(\rho^-) \cup J,
\]
(23)
where \(\mathcal{W}_\phi = \sup_{t \in \mathcal{L}(\rho^-)} \mathcal{W}_\phi(t) \).

Lemma 16 (see [39]). Let \(J \) be a compact interval and \(\mathcal{H} \) a Hilbert space. Let \(\Sigma \) be a multivalued map satisfying (H3) and \(\Gamma \) a continuous map from \(\mathcal{L}(\rho^-) \) to \(\mathcal{C}(J, \mathcal{H}) \). Then the operator \(\Gamma \circ \mathcal{S}_{\Sigma} : \mathcal{C}(J, \mathcal{H}) \rightarrow \mathcal{P}_{bd,cv}(\mathcal{C}(J, \mathcal{H})) \) is a closed graph in \(\mathcal{C}(J, \mathcal{H}) \times \mathcal{C}(J, \mathcal{H}) \).

Theorem 17. Assume that (H1)–(H6) hold and \(x_0 \in L^2(\Omega, \mathcal{H}), \) with \(\rho(t, \psi) \leq t \) for every \((t, \psi) \in J \times B \). Then the problem (3) has a mild solution on \(J \) provided that
\[
\max_{1 \leq k \leq m} \left\{ 6M^2_\Sigma \left(1 + 2K^2_\epsilon \epsilon_k \right) \right\} < 1.
\]
(24)
Proof. Consider the space \(\mathcal{BPC} = \{ x : (-\infty, b) \rightarrow \mathcal{H} ; x_0 = \phi, x(t) \in \mathcal{P}_C(J, \mathcal{H}) \} \) endowed with the uniform convergence topology and define the multivalued map \(\Phi : \mathcal{BPC} \rightarrow \mathcal{BPC} \) by \(\Phi x = \{ z \in \mathcal{BPC} \} \) such that
\[
\begin{align*}
\Phi x(t) &= 0, & t \in (-\infty, 0], \\
T_\alpha(t) \phi(0) + & \int_0^t S_\alpha(t-s) f(s, \bar{z}(\Sigma)) \, ds, & t \in [0, t_1], \\
T_\alpha(t-t_1) \left[S_\alpha(t-t_1) \phi(t_1) + I_1(\bar{z}(t_1)) \right] + & \int_{t_1}^{t} S_\alpha(t-s) \sigma(s) \, dw(s), & t \in (t_1, t_2], \\
& \vdots, & \\
T_\alpha(t-t_m) \left[S_\alpha(t-t_m) \phi(t_m) + I_m(\bar{z}(t_m)) \right] + & \int_{t_m}^{t} S_\alpha(t-s) \sigma(s) \, dw(s), & t \in (t_m, b], \\
& \vdots,
\end{align*}
\]
(25)
where \(\sigma \in \mathcal{S}_{\Sigma} = \{ \sigma \in L^2(L(H, \mathcal{H})) : \sigma(t) \in \Sigma(t, \bar{z}(\Sigma)) \} \) for a.e. \(t \in J \) and \(\bar{z} : (-\infty, 0) \rightarrow \mathcal{H} \) such that \(\bar{z}_0 = \phi \) and \(\bar{z} = x \) on \(J \).

We shall show that \(\Phi \) has a fixed point, which is then a mild solution for the problem (3). To this end we show that
Φ satisfies all the conditions of Lemma 11. For the sake of convenience, we divide the proof into several steps.

Step I. We show that there exists an open set $V \subseteq \mathcal{B} \mathcal{R} \mathcal{C}$ with $x \in \lambda \Phi x$ for $\lambda \in (0,1)$ and $x \notin \partial V$. Let $\lambda \in (0,1)$ and $x \in \lambda \Phi x$, then there exists an $\sigma \in \mathcal{C}$ such that

$$
\begin{align*}
\lambda T_\alpha (t) &\left(\phi (0) + \lambda \int_0^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds \right) \\
&+ \lambda \int_0^t S_\alpha (t-s) \sigma (s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds, \quad \text{if} \ t \in [0, t_1], \\
\lambda T_\alpha (t-t_1) &\left[\mathcal{Z} (t_1) + I_1 (\varepsilon_1) \right] \\
&+ \lambda \int_{t_1}^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds, \quad \text{if} \ t \in (t_1, t_2], \\
&\vdots \\
\lambda T_\alpha (t-t_{m-1}) &\left[\mathcal{Z} (t_{m-1}) + I_m (\varepsilon_m) \right] \\
&+ \lambda \int_{t_{m-1}}^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds, \quad \text{if} \ t \in (t_{m-1}, t_m], \\
\lambda T_\alpha (t-t_m) &\left[\mathcal{Z} (t_m) + I_m (\varepsilon_m) \right] \\
&+ \lambda \int_{t_m}^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds, \quad \text{if} \ t \in (t_m, b].
\end{align*}
$$

(26)

From assumption (H4), it follows that there exist two non-negative real numbers c_1 and c_2 such that for any $\psi \in \mathcal{B}$ and $t \in f$,

$$
\| \mathcal{E} (t, \psi) \|_\alpha^2 \leq c_1 \psi (t) + c_2 \psi (t) \| \psi \|_\alpha^2.
$$

(27)

From assumption (H6), we conclude that there exist positive constants $\alpha_k (k = 1, \ldots, m)$, c_3 such that, for $\| \psi \|_\alpha > c_3$,

$$
\begin{align*}
\mathbb{E} \| I_k (\psi) \|_\alpha^2 &\leq (\epsilon_k + \alpha_k) \| \psi \|_\alpha^2, \\
\max_{1 \leq k \leq m} \left\{ 6M_2^2 \left[1 + 2K_2 \epsilon_k + \alpha_k \right] \right\} &< 1.
\end{align*}
$$

(28)

Let

$$
C_1 = \left\{ \psi : \| \psi \|_\alpha \leq c_3 \right\}, \quad C_2 = \left\{ \psi : \| \psi \|_\alpha > c_3 \right\}, \\
C_3 = \max \{ \mathbb{E} \| I_k (\psi) \|_\alpha^2, \psi \in C_1 \}.
$$

(29)

We have

$$
\begin{align*}
\mathbb{E} \| I_k (\psi) \|_\alpha^2 &\leq C_3 + (\epsilon_k + \alpha_k) \| \psi \|_\alpha^2. \\
\end{align*}
$$

(30)

By assumption (H5), (27) and (30), we have for $t \in [0, t_1]$

$$
\begin{align*}
\mathbb{E} \| x (t) \|_\alpha^2 &\leq 3 \mathbb{E} \| T_\alpha (t) \|_\alpha^2 + 3 \mathbb{E} \left\| \int_0^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds \right\|_\alpha^2 \\
&+ 3 \mathbb{E} \left\| \int_0^t S_\alpha (t-s) \sigma (s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds \right\|_\alpha^2.
\end{align*}
$$

Similarly, for any $t \in (t_k, t_{k+1}]$, $k = 1, \ldots, m$, we have

$$
\begin{align*}
\mathbb{E} \| x (t) \|_\alpha^2 &\leq 3 \mathbb{E} \| T_\alpha (t-t_k) \|_\alpha^2 \left[\mathcal{Z} (t_k) + I_k (\varepsilon_k) \right] \leq \mathcal{C}_3 + (\epsilon_k + \alpha_k) \| \mathcal{Z} \|_\alpha^2, \\
&+ 3 \mathbb{E} \left\| \int_{t_k}^t S_\alpha (t-s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds \right\|_\alpha^2 \\
&+ 3 \mathbb{E} \left\| \int_{t_k}^t S_\alpha (t-s) \sigma (s) d\phi \left(s, \mathcal{P}_{P(x)} \right) ds \right\|_\alpha^2.
\end{align*}
$$

(31)

Finally, for all $t \in [0, b]$, we have

$$
\begin{align*}
\mathbb{E} \| x (t) \|_\alpha^2 &\leq M^* + 6M_2^2 \left[\mathbb{E} \| \mathcal{Z} (t) \|_\alpha^2 + (\epsilon_k + \alpha_k) \| \mathcal{Z} \|_\alpha^2 \right] \\
&+ 3M_2^2 M_2 \left[1 + \mathbb{E} \| \mathcal{P} \|_\alpha^2 \right] \mathcal{C}_3 + (\epsilon_k + \alpha_k) \| \mathcal{Z} \|_\alpha^2 \\
&+ 3M_2^2 \mathbb{E} \left\| \int_{t_k}^t (t-s)^{-n-1} \| \mathcal{P} \|_\alpha^2 ds \right\|_\alpha^2 \\
&+ 3M_2^2 \mathbb{E} \left\| \int_{t_k}^t (t-s)^{-n-1} \| \mathcal{P} \|_\alpha^2 ds \right\|_\alpha^2.
\end{align*}
$$

(32)
where
\[M^* = \max \left\{ 3\bar{M}_T^2 H^2 \mathbb{E} \| \phi \|^2 + 3\bar{M}_S^2 \text{Tr}(Q) c_1 \right\} \]
\[\times \int_{0}^{l} (b-s)^{2(\alpha-1)} \nu(s) \, ds, \quad 6\bar{M}_T^4 C_3 \]
\[+ 3\bar{M}_S^2 \text{Tr}(Q) c_1 \int_{0}^{l} (t-s)^{2(\alpha-1)} \nu(s) \, ds \right\} . \]

By Lemmas 9 and 15, it follows that \(\rho(s, Z, t) \leq s, \, s \in [0, t], \, t \in [0, b],\) and
\[\| \mathcal{F}_{p(s, x)} \|_{\mathcal{H}}^2 \leq 2 \left((N_b + \mathcal{W}_b^\phi) \mathbb{E} \| \phi \|_{\mathcal{H}} \right)^2 \]
\[+ 2K_b^2 \sup_{0 \leq s \leq b} \mathbb{E} \| x(s) \|^2. \]

For each \(t \in [0, b], \) we have
\[\mathbb{E} \| x(t) \|^2 \leq M_* + \left[6\bar{M}_T^2 \left(1 + 2K_b^2 \epsilon_k + a_k \right) \right] \]
\[\times \sup_{0 \leq t \leq b} \mathbb{E} \| x(t) \|^2 + 6\bar{M}_T^2 M_j K_b^2 \frac{b^{3\alpha}}{2\alpha} \]
\[\times \int_{0}^{l} (t-s)^{3\alpha-1} \sup_{0 \leq s \leq b} \mathbb{E} \| x(s) \|^2 \, ds \]
\[+ 6\bar{M}_S^2 K_b^2 \text{Tr}(Q) c_1 \int_{0}^{l} (t-s)^{2(\alpha-1)} \nu(s) \, ds, \]
\[\times \sup_{0 \leq t \leq b} \mathbb{E} \| x(t) \|^2 \, ds, \]
\[\text{where} \quad M_* = M^* + 6\bar{M}_T^2 \left[C_3 + (\epsilon_k + a_k) C_4 \right] \]
\[+ 3\bar{M}_S^2 M_j K_b^2 \frac{b^{3\alpha}}{3\alpha} + 3\bar{M}_S^2 C_4 \text{Tr}(Q) c_1 \]
\[\times \int_{0}^{l} (b-s)^{2(\alpha-1)} \nu(s) \, ds, \]
\[C_4 = 2 \left[(N_b + \mathcal{W}_b^\phi) \mathbb{E} \| \phi \|_{\mathcal{H}} \right]^2. \]

Since \(l = \max_{1 \leq k \leq l} \left\{ 6\bar{M}_T^2 (1 + 2K_b^2 \epsilon_k + a_k) \right\} < 1, \) we have
\[\sup_{0 \leq t \leq b} \mathbb{E} \| x(t) \|^2 \]
\[\leq \frac{M_*}{1-l} + \frac{6\bar{M}_T^2 M_j K_b^2 b^{3\alpha}}{ \left(1 - l \right) 2\alpha} \]
\[\times \int_{0}^{l} (b-s)^{3\alpha-1} \sup_{0 \leq s \leq b} \mathbb{E} \| x(s) \|^2 \, ds \]
\[+ 6\bar{M}_S^2 K_b^2 \text{Tr}(Q) c_1 \]
\[\times \int_{0}^{l} (b-s)^{2(\alpha-1)} \nu(s) \sup_{0 \leq t \leq b} \mathbb{E} \| x(t) \|^2 \, ds. \]

Applying Gronwall's inequality, we get
\[\sup_{0 \leq t \leq b} \mathbb{E} \| x(t) \|^2 \leq \frac{M_*}{1-l} \exp \left\{ \frac{6\bar{M}_T^2 K_b^2}{(1-l) 3\alpha} \left(M_j b^{3\alpha} + 3\alpha \text{Tr}(Q) c_1 \right) \right\} \]
\[\times \int_{0}^{b} (b-s)^{2(\alpha-1)} \nu(s) \, ds \right\} . \]

Therefore,
\[\| x \|_{\mathcal{P}^\theta}^2 \]
\[\leq \frac{M_*}{1-l} \exp \left\{ \frac{6\bar{M}_T^2 K_b^2}{(1-l) 3\alpha} \left(M_j b^{3\alpha} + 3\alpha \text{Tr}(Q) c_1 \right) \right\} \]
\[\times \int_{0}^{b} (b-s)^{2(\alpha-1)} \nu(s) \, ds \right\} < \infty. \]

Then, there exists \(r^* \) such that \(\| x \|_{\mathcal{P}^\theta} \neq r^* \). Set \(V = \left\{ x \in \mathcal{B} \mathcal{P}^\theta : \| x \|_{\mathcal{P}^\theta} < r^* \right\} \). Thus, from the choice of \(V \), there is no \(x \in \partial V \) such that \(x \in \lambda \mathcal{P}^\theta \) for \(\lambda \in (0, 1) \).

Step 2. \(\Phi \) has a closed graph.

Let \(x^{(n)} \rightarrow x^* \), \(z_n \in \Phi x^{(n)} \), \(x^{(n)} \in V \), and \(z_n \rightarrow z_* \). It is easy to see that \((z_n^{(0)})_c \rightarrow z_0^* \) uniformly for \(s \in (-\infty, b) \) as \(n \rightarrow \infty \). We need to show that \(z_* \in \Phi x^* \).

Now \(z_n \in \Phi x^{(n)} \) means that there exists \(\sigma_n \in \mathcal{E} \) such that, for each \(t \in [0, t_1], \)
\[z_n(t) = T_\alpha \phi(0) + \int_{0}^{t} S_n(t-s) \left(f(s, z^{(n)}) + \int_{r}^{s} \sigma_n(s, w) \, dw(s) \right) \, ds \]
(41)
We must show that there exists \(\sigma_* \in \mathcal{E} \) such that, for each \(t \in [0, t_1], \)
\[z_*(t) = T_\alpha \phi(0) + \int_{0}^{t} S_n(t-s) \left(f(s, z^*) + \int_{r}^{s} \sigma(s, w) \, dw(s) \right) \, ds \]
(42)

Set \(\Theta_n(t) = z_n(t) - T_\alpha \phi(0) - \int_{0}^{t} S_n(t-s) f(s, z^{(n)}) \, dw(s), \) and \(\Theta_*(t) = z_*(t) - T_\alpha \phi(0) - \int_{0}^{t} S_n(t-s) f(s, z^*) \, dw(s). \)
We have, for every \(t \in [0, t_1], \)
\[\| \Theta_n(t) - \Theta_*(t) \|_{\mathcal{P}^\theta} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

Consider the linear continuous operator \(\Gamma : L^2([0, t_1], \mathcal{H}) \rightarrow \mathcal{E}([0, t_1], \mathcal{H}) \) defined by
\[\Gamma \phi(t) = \int_{0}^{t} S_n(t-s) \sigma(s, w) \, dw(s). \]
From Lemma 16 and the definition of Γ, it follows that $\Gamma \circ \delta_X$ is a closed graph operator, and, for every $t \in [0, t_1]$, $\Theta_n(t) \in \Gamma(\delta_{\Sigma \Sigma^\rho})$.

Since $(\overline{z^{(n)}}) \to \overline{z^*}$ and $\Gamma \circ \delta_X$ is a closed graph operator, then there exists $\sigma^*_n \in \delta_{\Sigma \Sigma^\rho}$ such that, for every $t \in [0, t_1]$,

$$z_n(t) - T_n \phi(0) - \int_{t_0}^t S_n(t - s) f \left(s, \left(\overline{z^{(n)}} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$= \int_{t_0}^t S_n(t - s) \sigma_n(s) dw(s).$$

Similarly, for any $t \in (t_k, t_{k+1})$, $k = 1, \ldots, m$, we have

$$z_n(t) = T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right]$$

$$+ \int_{t_k}^t S_n (t - s) f \left(s, \left(\overline{z^*} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$+ \int_{t_k}^t S_n (t - s) \sigma_n(s) dw(s).$$

We must show that there exists $\sigma_n^* \in \delta_{\Sigma \Sigma^\rho}$ such that, for every $t \in (t_k, t_{k+1})$,

$$z_n (t) = T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right]$$

$$+ \int_{t_k}^t S_n (t - s) f \left(s, \left(\overline{z^*} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$+ \int_{t_k}^t S_n (t - s) \sigma_n(s) dw(s).$$

For every $t \in (t_k, t_{k+1})$, $k = 1, \ldots, m$, we have

$$\| \Theta_n(t) - \Theta_n^*(t) \|_{\mathcal{P}(\mathcal{B}^\rho)} \to 0$$

as $n \to \infty$,

$$\Theta_n^*(t) = z_n(t) - T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right]$$

$$- \int_{t_k}^t S_n (t - s) f \left(s, \left(\overline{z^*} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$- \int_{t_k}^t S_n (t - s) \sigma_n(s) dw(s),$$

$$\Theta_n^*(t) = z_n(t) - T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right]$$

$$- \int_{t_k}^t S_n (t - s) f \left(s, \left(\overline{z^*} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$- \int_{t_k}^t S_n (t - s) \sigma_n(s) dw(s).$$

Now, for every $t \in (t_k, t_{k+1})$, $k = 1, \ldots, m$, we consider the linear continuous operator $\Gamma : L^2((t_k, t_{k+1}), \mathcal{H}) \to \mathcal{B}((t_k, t_{k+1}), \mathcal{H})$,

$$\Gamma(\sigma) (t) = \int_{t_k}^t S_n (t - s) \sigma(s) dw(s).$$

From Lemma 16, it follows that $\Gamma \circ \delta_X$ is a closed graph operator, and for every $t \in (t_k, t_{k+1})$, $\Theta_n(t) \in \Gamma(\delta_{\Sigma \Sigma^\rho})$.

Since $(\overline{z^{(n)}}) \to \overline{z^*}$ and $\Gamma \circ \delta_X$ is a closed graph operator, then there exists $\sigma^*_n \in \delta_{\Sigma \Sigma^\rho}$ such that, for every $t \in (t_k, t_{k+1})$

$$z_n (t) - T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right]$$

$$- \int_{t_k}^t S_n (t - s) f \left(s, \left(\overline{z^*} \right)_{p(\Sigma \Sigma^\rho)} \right) ds$$

$$= \int_{t_k}^t S_n (t - s) \sigma_n(s) dw(s).$$

Hence, Φ has a closed graph.

Step 3. We show that the operator Φ is condensing. Let $\Phi_1 : \mathcal{V} \to \mathcal{B}(\mathcal{B}^\rho)$ and $\Phi_2 : \mathcal{V} \to \mathcal{B}(\mathcal{B}^\rho)$ be defined by $\Phi_1 x = \{ z_1 \in \mathcal{B}^\rho \}$ and $\Phi_2 x = \{ z_2 \in \mathcal{B}^\rho \}$ such that

$$z_1(t) = \left\{ \begin{array}{ll}
0, & t \in [0, t_1],
T_n (t - t_k) \left[\overline{z^*} (t_k) + I_k \left(\overline{z^*} \right) \right], & t \in (t_k, t_{k+1}),
\vdots &
T_n (t - t_m) \left[\overline{z^*} (t_m) + I_m \left(\overline{z^*} \right) \right], & t \in (t_m, b],
\end{array} \right.$$

$$z_2(t) = \left\{ \begin{array}{ll}
0, & t \in [0, t_1],
+ \int_{t_k}^t S_n (t - s) \sigma(s) dw(s), & t \in [0, t_1],
+ \int_{t_k}^t S_n (t - s) \sigma(s) dw(s), & t \in (t_k, t_{k+1}),
\vdots &
+ \int_{t_m}^t S_n (t - s) \sigma(s) dw(s), & t \in (t_m, b].
\end{array} \right.$$

We first show that Φ_1 is a contraction while Φ_2 is a completely continuous operator.

Claim 1. Φ_1 is a contraction on \mathcal{B}^ρ. Let $u, v \in \mathcal{B}^\rho$. From (H6), Lemmas 9 and 15, we have for every $t \in (t_k, t_{k+1})$, $k = 1, \ldots, m$,

$$\| (\Phi_1 u)(t) - (\Phi_1 v)(t) \|_{\mathcal{B}^\rho}^2 \leq 2 \| T_n (t - t_k) \|_{\mathcal{B}^\rho}^2 \left[\| u(t_k) - v(t_k) \|_{\mathcal{B}^\rho}^2 + \| I_k \left(\overline{u}_k \right) - I_k \left(\overline{v}_k \right) \|_{\mathcal{B}^\rho}^2 \right]$$

$$\leq 2 \| T_n (t - t_k) \|_{\mathcal{B}^\rho}^2 \left[\sup_{0 \leq s \leq b} \| u(s) - v(s) \|_{\mathcal{B}^\rho}^2 + (\varepsilon_k + a_k) \| \overline{u}_k - \overline{v}_k \|_{\mathcal{B}^\rho}^2 \right]$$
\[\begin{align*}
&\leq 2\overline{M}_F^2 \left[\sup_{0 \leq t \leq b} \| \overline{u}(t) - \overline{v}(t) \|^2 + 2 (\varepsilon_k + a_k) K_b^2 \\
&\quad \times \sup_{0 \leq t \leq b} \left\{ \sup_{0 \leq \tau \leq t} \| E \| u(\tau) - V(\tau) \|^2 \right\} \right] \\
&\leq 2\overline{M}_F^2 \left[\sup_{0 \leq t \leq b} \| u(t) - v(t) \|^2 + 2 (\varepsilon_k + a_k) K_b^2 \\
&\quad \times \sup_{0 \leq s \leq b} \| u(s) - v(s) \|^2 \right] \\
&= 2\overline{M}_F^2 \left[1 + 2 (\varepsilon_k + a_k) K_b^2 \right] \| u - v \|_{\mathcal{B} \mathcal{P} \mathcal{E}}^2.
\end{align*} \]

Thus, for all \(t \in [0, b] \), we have
\[\| (\Phi_1 u)(t) - (\Phi_2 v)(t) \|_{\mathcal{B} \mathcal{P} \mathcal{E}}^2 \leq l_0 \| u - v \|_{\mathcal{B} \mathcal{P} \mathcal{E}}^2, \quad (54) \]
where \(l_0 = \max_{1 \leq k \leq m} \{ 2\overline{M}_F^2 \left[1 + 2 K_b^2 (\varepsilon_k + a_k) \right] \} < 1 \). Hence \(\Phi_1 \) is a contraction on \(\mathcal{B} \mathcal{P} \mathcal{E} \).

Claim 2. \(\Phi_2 \) is convex for each \(x \in \overline{V} \). Indeed, if \(z_1^2, z_2^2 \) belong to \(\Phi_2 x \), then there exist \(\sigma_1, \sigma_2 \in \delta_{\Sigma, \tilde{\sigma}} \), such that
\[z_2^2(t) = T_\alpha \left(\tilde{\sigma} \right) \phi(0) + \int_0^t S_\alpha (t - s) f \left(s, \tilde{\sigma}, \overline{z}_1 \right) ds \]
\[+ \int_0^t S_\alpha (t - s) \sigma_1(s) \omega(s), \quad t \in [0, t_1], \quad i = 1, 2. \quad (55) \]

Let \(0 \leq \lambda \leq 1 \). For each \(t \in [0, t_1] \), we have
\[\left(\lambda z_1^2 + (1 - \lambda) z_2^2 \right)(t) \]
\[= T_\alpha \left(\tilde{\sigma} \right) \phi(0) + \int_0^t S_\alpha (t - s) f \left(s, \tilde{\sigma}, \overline{z}_1 \right) ds \]
\[+ \int_0^t S_\alpha (t - s) \left[\lambda \sigma_1(s) + (1 - \lambda) \sigma_2(s) \right] \omega(s). \quad (56) \]

Similarly, for \(0 \leq \lambda \leq 1 \) and any \(t \in (t_k, t_{k+1}] \), \(k = 1, \ldots, m \), we have
\[\left(\lambda z_1^2 + (1 - \lambda) z_2^2 \right)(t) \]
\[= \int_0^t S_\alpha (t - s) \left[\lambda \sigma_1(s) + (1 - \lambda) \sigma_2(s) \right] \omega(s), \quad (57) \]
where
\[z_2^i(t) = \int_0^t S_\alpha (t - s) f \left(s, \bar{z}_1 \right) ds \]
\[+ \int_0^t S_\alpha (t - s) \sigma_1(s) \omega(s), \quad i = 1, 2. \]

Since \(\delta_{\Sigma, \tilde{\sigma}} \) is convex (because \(\Sigma \) has convex values), we have \((\lambda z_1^2 + (1 - \lambda) z_2^2) \in \Phi_2 x \).

Claim 3. \(\Phi_2(\overline{V}) \) is completely continuous. First, we need to show that \(\Phi_2(\overline{V}) \) is equicontinuous. Let \(x \in \overline{V} \). Then, from Lemmas 9 and 15, it follows that
\[\| \bar{z}_1 \|_{\mathcal{B} \mathcal{P} \mathcal{E}}^2 \leq 2 \left[(N_b + \mathcal{W}^d) E \| \phi \|_{\mathcal{B} \mathcal{P} \mathcal{E}} \right]^2 \]
\[+ 2K_b^2 r^* := r'. \quad (59) \]
Let \(0 < \tau_1 < \tau_2 \leq t_1 \). For each \(x \in \overline{V} \), there exists \(\sigma \in \delta_{\Sigma, \tilde{\sigma}} \), such that
\[z_2^i(t) = T_\alpha \left(\tilde{\sigma} \right) \phi(0) + \int_0^t S_\alpha (t - s) f \left(s, \tilde{\sigma}, \overline{z}_1 \right) ds \]
\[+ \int_0^t S_\alpha (t - s) \sigma(s) \omega(s). \quad (60) \]

Then
\[\mathbb{E} \| z_2^i(t_2) - z_2^i(t_1) \|^2 \]
\[\leq 7 \mathbb{E} \| (T_\alpha(t_2) - T_\alpha(t_1)) \phi(0) \|^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) f \left(s, \tilde{\sigma}, \overline{z}_1 \right) ds \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} S_\alpha (s, t_2 - s) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} S_\alpha (s, t_2 - s) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} S_\alpha (s, t_2 - s) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} S_\alpha (s, t_2 - s) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} (S_\alpha (s, t_2 - s) - S_\alpha (s, t_1 - s)) \sigma(s) \omega(s) \right]^2 \]
\[+ 7 \mathbb{E} \left[\int_{t_1}^{t_2} S_\alpha (s, t_2 - s) \sigma(s) \omega(s) \right]^2 \]
\[\leq 7\bar{M}^2_S M_{J} b^\alpha (1 + r') b^{1-\alpha} \]
\[\times \int_{0}^{r_1-\varepsilon} \|S_{\alpha}(r_2 - s) - S_{\alpha}(r_1 - s)\| (r_1 - e - s)^{\alpha-1} ds \]
\[+ 7\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{r_1-\varepsilon}^{r_1} (r_2 - e - s)^{\alpha-1} ds \]
\[+ 7\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{r_1-\varepsilon}^{r_1} (r_1 - e - s)^{\alpha-1} ds \]
\[+ 7\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{r_1}^{r_2} (r_2 - e - s)^{\alpha-1} ds \]
\[+ 7\bar{M}^2_S (c_1 + c_2 r') b^{2(1-\alpha)} \text{Tr}(Q) \]
\[\times \int_{0}^{r_1-\varepsilon} \|S_{\alpha-1}(r_2 - s) - S_{\alpha}(r_1 - s)\|^2 \]
\[\times (r_1 - e - s)^{2(\alpha-1)} v(s) ds \]
\[+ 7\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{r_1-\varepsilon}^{r_1} (r_2 - e - s)^{3(\alpha-1)} v(s) ds \]
\[+ 7\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{r_1-\varepsilon}^{r_1} (r_1 - e - s)^{3(\alpha-1)} v(s) ds \]
\[+ 7\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{r_1}^{r_2} (r_2 - e - s)^{3(\alpha-1)} v(s) ds. \]

Similarly, for any \(r_1, r_2 \in (t_k, t_{k+1}], r_1 < r_2, k = 1, \ldots, m, \) we have
\[z_2(t) = \int_{0}^{t} S_{\alpha}(t - s) f(s, \mathbb{Z}_{p(t, s)}) ds + \int_{0}^{t} S_{\alpha}(t - s) \sigma(s) dw(s). \]

Then
\[\mathbb{E}\|z_2(r_2) - z_2(r_1)\|^2 \]
\[\leq 6\bar{M}^2_S M_{J} b^\alpha (1 + r') b^{1-\alpha} \]
\[\times \int_{(r_1-\varepsilon)}^{r_1} \|S_{\alpha}(r_2 - s) - S_{\alpha}(r_1 - s)\| (r_1 - e - s)^{\alpha-1} ds \]
\[+ 6\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{(r_1-\varepsilon)}^{r_1} (r_2 - e - s)^{\alpha-1} ds \]
\[+ 6\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{(r_1-\varepsilon)}^{r_1} (r_1 - e - s)^{\alpha-1} ds \]
\[+ 6\bar{M}^2_S M_{J} b^\alpha (1 + r') \int_{r_1}^{r_2} (r_2 - e - s)^{\alpha-1} ds \]
\[+ 6\bar{M}^2_S (c_1 + c_2 r') b^{2(1-\alpha)} \text{Tr}(Q) \]
\[\times \int_{(r_1-\varepsilon)}^{r_1} \|S_{\alpha-1}(r_2 - s) - S_{\alpha}(r_1 - s)\|^2 \]
\[\times (r_1 - e - s)^{2(\alpha-1)} v(s) ds \]
\[+ 6\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{(r_1-\varepsilon)}^{r_1} (r_2 - e - s)^{3(\alpha-1)} v(s) ds \]
\[+ 6\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{(r_1-\varepsilon)}^{r_1} (r_1 - e - s)^{3(\alpha-1)} v(s) ds \]
\[+ 6\bar{M}^2_S (c_1 + c_2 r') \text{Tr}(Q) \int_{r_1}^{r_2} (r_2 - e - s)^{3(\alpha-1)} v(s) ds. \]

Therefore, from the above inequalities, for \(e \) sufficiently small, the right-hand side of \(\mathbb{E}\|z_2(r_2) - z_2(r_1)\|^2 \) tends to zero as \(r_2 - r_1 \to 0, \) since \(I_{k}, k = 1, \ldots, m, \) are completely continuous in \(\mathcal{S} \) and the compactness of \(S_{\alpha}(t) \) for \(t > 0 \) (\(S_{\alpha} \) is generated by the dense operator \(A \)) implies the continuity in the uniform operator topology. Thus the set \(\{\Phi_{2}x : x \in \mathcal{V}\} \) is equicontinuous.

Second, we show that \(\varphi_{2}(\mathcal{V}) \) is relatively compact for every \(t \in [0, b] \).

Let \(0 < t \leq t_1 \) be fixed, and let \(e \) be a real number satisfying \(0 < e < t \). For \(x \in \mathcal{V} \), we define
\[z_{2,e}(t) = T_{\alpha}(t) \Phi(0) + \int_{0}^{t-e} S_{\alpha}(t - s) f(s, \mathbb{Z}_{p(t, s)}) ds \]
\[+ \int_{0}^{t} S_{\alpha}(t - s) \sigma(s) dw(s), \]
where \(\sigma \in \mathcal{S}^{\mathcal{F}} \). Using the compactness of \(T_{\alpha}(t) \) and \(S_{\alpha}(t) \) for \(t > 0 \), we deduce that the set \(U_{e}(t) = \{z_{2,e}(t) : x \in \mathcal{V}\} \) is relatively compact in \(\mathcal{S} \) for every \(e, 0 < e < t \). Moreover, for every \(x \in \mathcal{V} \), we have
\[\mathbb{E}\|z_{2}(t) - z_{2,e}(t)\|^2 \]
\[\leq 2\bar{M}^2_S \int_{t-e}^{t} S_{\alpha}(t - s) f(s, \mathbb{Z}_{p(t, s)}) ds \]
\[+ 2\bar{M}^2_S \int_{t-e}^{t} S_{\alpha}(t - s) \sigma(s) dw(s). \]
\[
\begin{align*}
&
\leq 2M_2^2 \frac{2\alpha}{\alpha^2} M_f \left(1 + r' \right) + 2M_3^2 \left(c_1 + c_2 r' \right) \text{Tr}(Q) \\
&
\times \int_{t-\epsilon}^t (t-s)^{2(\alpha-1)} \gamma(s) \, ds.
\end{align*}
\]

(65)

Similarly, for any \(t \in (t_k, t_{k+1}], \) \(k = 1, \ldots, m, \) let \(t_k < t \leq s \leq t_{k+1} \) be fixed, and let \(\epsilon \) be a real number satisfying \(0 < \epsilon < t. \)
For \(x \in \overline{V}, \) we define
\[
\begin{align*}
\Delta u(t_k, x) &= T_{\alpha} (t) \phi(0) + \int_{t_k}^{t-\epsilon} S_{\alpha} (t-s) f \left(s, \mathbb{F} p(s) \right) \, ds \\
&
+ \int_{t_k}^{t-\epsilon} S_{\alpha} (t-s) \sigma(s) \, dw(s),
\end{align*}
\]

where \(\sigma \in S_{\alpha, \overline{V}}. \) From the compactness of \(T_{\alpha}(t) \) and \(S_{\alpha}(t) \) for \(t > 0, \) we deduce that the set \(U(t_k) = \{ \Delta u(t_k) : x \in \overline{V} \} \) is relatively compact in \(\mathcal{H} \) for every \(\epsilon, 0 < \epsilon < t. \) Moreover, for every \(x \in \overline{V}, \) we have
\[
\begin{align*}
E \| \Delta u(t) - \Delta u(t_k) \|^2 &
\leq 2E \left| \int_{t_k}^{t-\epsilon} \left(S_{\alpha} (t-s) f \left(s, \mathbb{F} p(s) \right) \right) \sigma(s) \, dw(s) \right|^2 \\
&
\leq 2E \left| \int_{t_k}^{t-\epsilon} S_{\alpha} (t-s) \sigma(s) \, dw(s) \right|^2 \\
&
\leq 2M_2^2 \frac{2\alpha}{\alpha^2} M_f \left(1 + r' \right) + 2M_3^2 \left(c_1 + c_2 r' \right) \text{Tr}(Q) \\
&
\times \int_{t-\epsilon}^t (t-s)^{2(\alpha-1)} \gamma(s) \, ds.
\end{align*}
\]

The right-hand side of the above inequality tends to zero as \(\epsilon \to 0. \) This implies that there are relatively compact sets arbitrarily close to the set \(U(t) = \{ \Delta u(t) : x \in \overline{V} \}. \) Hence \(U(t) \) is relatively compact in \(\mathcal{H}. \) By Arzelà-Ascoli theorem, we conclude that the operator \(\Phi_{\alpha}(\overline{V}) \) is completely continuous.

As a consequence of the above Claims 1–3, we conclude that \(\Phi \) is a condensing map. All of the conditions of Lemma 11 are satisfied; we deduce that \(\Phi \) has a fixed point \(x \in \mathcal{B}\mathcal{P}\mathcal{E} \) which is a mild solution of the problem (3). \(\square \)

4. An Example

To apply our abstract results, we consider the following impulsive fractional stochastic partial differential inclusions with state-dependent delay of the form
\[
\begin{align*}
D^\alpha_t u(t, x) &= \frac{\partial^2}{\partial x^2} u(t, x) \\
&
\in \int_{t-\epsilon}^t \mu_1(t, x, s-t) u(s) \, ds + \int_{t-\epsilon}^t \mu_2(t, x, s-t) u(s) \, ds.
\end{align*}
\]

where \(\beta(t) \) is a standard cylindrical Wiener process in \(\mathcal{H} \) defined on a stochastic space \(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{P}; D^\alpha_t \) is the Caputo fractional derivative of order \(0 < \alpha < 1; \) \(\phi \) is continuous; and \(0 < \epsilon_1 < \epsilon_2 < \cdots < \epsilon_m < b \) are prefixed numbers.

Let \(\mathcal{H} = L^2([0, \pi]) \) with the norm \(\| \cdot \|. \) Define \(A : \mathcal{D}(A) \subset \mathcal{H} \to \mathcal{H} \) by \(Ay = y'' \) with the domain
\[
\mathcal{D}(A) = \{ y \in \mathcal{H}; y, y'' \text{ are absolutely continuous,} \}
\]

Then, \(Ay = \sum_{n=1}^{\infty} h^2 (y_n y_n) y_n, y \in \mathcal{D}(A), \) where \(y_n(x) = \sqrt{\frac{1}{\pi \sigma}} \sin(n x), n = 1, 2, \ldots, \) is the orthogonal set of eigenvectors of \(A. \) It is well known that \(A \) is the infinitesimal generator of an analytic semigroup \((T(t))_{t \geq 0} \) in \(\mathcal{H} \) by given
\[
T(t) y = \sum_{n=1}^{\infty} e^{-\pi^2 t} (y_n y_n) y_n, \quad \forall y \in \mathcal{H}, \quad t > 0.
\]

It follows from the above expressions that \((T(t))_{t \geq 0} \) is a uniformly bounded compact semigroup, so that \(R(\lambda, A) = (\lambda - A)^{-1} \) is a compact operator for all \(\lambda \) in the resolvent set of \(A. \)

\[
r \geq 0, \quad p \geq 1 \quad \text{and let} \quad z : (-\infty, r) \to \mathbb{R} \quad \text{be a nonnegative measurable function which satisfies the conditions (H-5) and (H-6) in the terminology of Hino et al. [34]. Briefly, this means that} \quad \text{is locally integrable and there is a non-negative, locally bounded function} \quad h \quad \text{on} (-\infty, 0] \quad \text{such that} \quad z(\xi + r) \leq h(\xi) z(r) \quad \text{for all} \quad \xi \leq 0 \quad \text{and} \quad \theta \in (-\infty, -r) \setminus N_k, \quad \text{where} \quad N_k \subset (-\infty, -r) \quad \text{is a set whose Lebesgue's measure is zero. Let} \quad \mathcal{B} = \mathcal{P} \mathcal{E} \times L^2(z, \mathcal{H}) \quad \text{be the set consisting of all classes of functions} \quad \phi : (-\infty, 0] \to \mathcal{H} \quad \text{such that} \quad \phi_{[-r, 0]} \in \mathcal{P} \mathcal{E}([-r, 0], \mathcal{H}), \phi(\cdot) \quad \text{is Lebesgue measurable on} (-\infty, -r), \text{and} \quad \| \phi \|^p \quad \text{is Lebesgue integrable on} (-\infty, -r). \quad \text{The seminorm is given by} \quad \| \phi \|_{\mathcal{B}} = \sup_{-r \leq z \leq 0} \| \phi(r) \| + \left(\int_{-\infty}^{r} z(\tau) \| \phi \|^p \, d\tau \right)^{1/p}. \]

(71)

\(\mathcal{B} = \mathcal{P} \mathcal{E} \times L^2(z, \mathcal{H}) \) satisfies the fundamental axioms given in Section 2. When \(r = 0 \) and \(p = 2, \) we can take \(H = 1, \quad N(t) = h(-t)^{1/2}, \) and \(k(t) = 1 + \left(\int_{-\infty}^{t} z(\tau) \, d\tau \right)^{1/2}, \) for \(t \geq 0 \) (see [34]).
Here, we assume that

(i) the functions $\rho_i : [0, \infty) \to [0, \infty), i = 1, 2,$ are continuous;

(ii) the functions $\mu_i : \mathbb{R}^3 \to \mathbb{R}, i = 1, 2,$ are continuous with $l_i = \left(\int_{-\infty}^{0} ((\mu_i(s))^2/z(s)) ds \right)^{1/2} < \infty$;

(iii) the functions $v_k : \mathbb{R} \to \mathbb{R}, k = 1, 2, \ldots, m,$ are continuous with $L_k = \left(\int_{-\infty}^{0} ((\mu_i(s))^2/z(s)) ds \right)^{1/2} < \infty$ for every $k = 1, 2, \ldots, m$, and \mathcal{B} will be the phase space $\mathcal{P}C_0 \times L^2(\mathcal{Z}, \mathcal{Q})$. Set $\phi(\theta)(x) = \phi(\theta, x) \in \mathcal{B}$. Define $f : [0, b] \times \mathcal{B} \to \mathcal{B}$, $\Sigma : [0, b] \times \mathcal{B} \to \mathcal{P}(\mathcal{Q})$ by

$$f(t, \varphi)(x) = \int_{-\infty}^{0} \mu_1(t, \theta, x) \phi(\theta)(x) d\theta,$$

$$\Sigma(t, \varphi)(x) = \int_{-\infty}^{0} \mu_2(t, \theta, x) \phi(\theta)(x) d\theta,$$

$$\rho(t, \varphi) = \rho_1(t) \rho_2(\|\phi(0)\|).$$

Thus, f, Σ are bounded operators on \mathcal{B} with $\|f\| \leq l_1, \|\Sigma\| \leq l_2$ and $\|l_1\| \leq L_k, k = 1, 2, \ldots, m$. Therefore, the problem (4) can be written in the abstract form of (3). All conditions of Theorem 17 are now fulfilled, so we deduce that the system (4) has a mild solution on $[0, b]$.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] R. Hilfer, *Applications of Fractional Calculus in Physics*, World Scientific, River Edge, NJ, USA, 2000.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.

[3] V. E. Tarasov, *Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media*, Springer, Heidelberg, Germany, 2010.

[4] K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, New York, NY, USA, 1993.

[5] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, Calif, USA, 1999.

[6] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, *Theory of Fractional Dynamic Systems*, Cambridge Academic, Cambridge, UK, 2009.

[7] R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” *Acta Applicandae Mathematicae*, vol. 109, no. 3, pp. 973–1033, 2010.

[8] R. P. Agarwal, M. Belmekki, and M. Benchohra, “A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative,” *Advances in Difference Equations*, vol. 2009, Article ID 918728, 47 pages, 2009.

[9] M. M. El-Borai, “The fundamental solutions for fractional evolution equations of parabolic type,” *Journal of Applied Mathematics and Stochastic Analysis*, vol. 3, Article ID 979211, 2004.

[10] M. M. El-Borai, “Some probability densities and fundamental solutions of fractional evolution equations,” *Chaos, Solitons and Fractals*, vol. 14, no. 3, pp. 433–440, 2002.

[11] E. Hernández, D. O’Regan, and K. Balachandran, “On recent developments in the theory of abstract differential equations with fractional derivatives,” *Nonlinear Analysis: Theory, Methods and Applications*, vol. 73, no. 10, pp. 3462–3471, 2010.

[12] J. R. Wang and Y. Zhou, “A class of fractional evolution equations and optimal controls,” *Nonlinear Analysis: Real World Applications*, vol. 12, pp. 262–272, 2011.

[13] Y. Zhou and F. Jiao, “Existence of mild solutions for fractional neutral evolution equations,” *Computers and Mathematics with Applications*, vol. 59, no. 3, pp. 1063–1077, 2010.

[14] Y.-K. Chang, A. Anguraj, and M. Mallika Arjunan, “Existence results for impulsive neutral functional differential equations with infinite delay,” *Nonlinear Analysis: Hybrid Systems*, vol. 2, no. 1, pp. 209–218, 2008.

[15] S. K. Ntouyas, “Existence results for impulsive partial neutral functional differential inclusions,” *Electronic Journal of Differential Equations*, vol. 30, pp. 1–11, 2005.

[16] N. Abada, M. Benchohra, and H. Hammouche, “Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions,” *Journal of Differential Equations*, vol. 246, no. 10, pp. 3834–3863, 2009.

[17] Y.-K. Chang and W.-T. Li, “Existence results for second order impulsive functional differential inclusions,” *Journal of Mathematical Analysis and Applications*, vol. 301, no. 2, pp. 477–490, 2005.

[18] I. Benedetti, “An existence result for impulsive functional differential inclusions in Banach spaces,” *Discussiones Mathematicae Differential Inclusions, Control and Optimization*, vol. 24, pp. 13–30, 2004.

[19] V. Obukhovskii and J.-C. Yao, “On impulsive functional differential inclusions with Hille-Yosida operators in Banach spaces,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 73, no. 6, pp. 1715–1728, 2010.

[20] N. Abada, R. P. Agarwal, M. Benchohra, and H. Hammouche, “Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay,” *Asian-European Journal of Mathematics*, vol. 1, no. 4, pp. 449–468, 2008.

[21] N. Abada, M. Benchohra, and H. Hammouche, “Existence and controllability results for impulsive partial functional differential inclusions,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 69, pp. 2892–2909, 2008.

[22] N. Abada, M. Benchohra, and H. Hammouche, “Nonlinear impulsive partial functional differential inclusions with state-dependent delay and multivalued jumps,” *Nonlinear Analysis: Hybrid Systems*, vol. 4, no. 4, pp. 791–803, 2010.

[23] A. Anguraj and A. Vinodkumar, “Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential equations with infinite delays,” *Electronic Journal of Qualitative Theory of Differential Equations*, vol. 67, pp. 1–13, 2009.

[24] L. Hu and Y. Ren, “Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays,” *Acta Applicandae Mathematicae*, vol. 113, no. 3, pp. 303–317, 2010.
[25] P. Balasubramaniam and D. Vinayagam, “Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space,” Stochastic Analysis and Applications, vol. 23, no. 1, pp. 137–151, 2005.

[26] A. Lin and L. Hu, “Existence results for impulsive neutral stochastic functional integro-differential inclusions with nonlocal initial conditions,” Computers and Mathematics with Applications, vol. 59, no. 1, pp. 64–73, 2010.

[27] Y. Ren, L. Hu, and R. Sakthivel, “Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2603–2614, 2011.

[28] T. Guendouzi, “Existence and controllability of fractional-order impulsive stochastic system with infinite delay,” Discussiones Mathematicae Differential Inclusions, Control and Optimization, vol. 33, no. 1, 2013.

[29] T. Guendouzi and K. Mehdi, “Existence of mild solutions for impulsive fractional stochastic equations with infinite delay,” Malaya Journal of Matematik, vol. 4, no. 1, pp. 30–43, 2013.

[30] R. Sakthivel, P. Revathi, and Y. Ren, “Existence of solutions for nonlinear fractional stochastic differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 81, pp. 70–86, 2013.

[31] X.-B. Shu, Y. Lai, and Y. Chen, “The existence of mild solutions for impulsive fractional partial differential equations,” Nonlinear Analysis: Theory, Methods and Applications, vol. 74, no. 5, pp. 2003–2011, 2011.

[32] Z. Yan and H. Zhang, “Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay,” Electronic Journal of Differential Equations, vol. 81, pp. 1–21, 2013.

[33] J. K. Hale and J. Kato, “Phase spaces for retarded equations with infinite delay,” Funkcialaj Ekvacioj, vol. 21, pp. 11–41, 1978.

[34] Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, vol. 1473 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1991.

[35] K. Deimling, Multivalued Differential Equations, De Gruyter, New York, NY, USA, 1992.

[36] D. O’Regan, “Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces,” Proceedings of the American Mathematical Society, vol. 127, no. 12, pp. 3557–3564, 1999.

[37] R. P. Agarwal, B. De Andrade, and G. Siracusa, “On fractional integro-differential equations with state-dependent delay,” Computers and Mathematics with Applications, vol. 62, no. 3, pp. 1143–1149, 2011.

[38] M. Benchohra, S. Litimein, and G. M. N’Guérékata, “On fractional integro-differential inclusions with state-dependent delay in Banach spaces,” Applicable Analysis, vol. 92, no. 2, pp. 335–350, 2013.

[39] A. Lasota and Z. Opial, “An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations,” Bulletin de l’Academie Polonaise des Sciences, vol. 13, pp. 781–786, 1965.
