The Effect of Natural Light on Changes in Antioxidant Content and Color Parameters of Vine-ripened Tomato (Solanum lycopersicum L.) Fruits

Zoltán Pék¹, Péter Szuvandszky, András Nemenyi, and Lajos Helyes
Institute of Horticulture and Technology, Szent István University, Páter K. ut 1., H-2103 Gödöllő, Hungary

Andrea Lugasi
National Institute for Food and Nutrition Science, Gyál ut 3/a, H-1097 Budapest, Hungary

Additional index words. tomato, antioxidants, color parameters, vine-ripened fruits

Abstract. During the vine ripening of tomato fruits (Solanum lycopersicum L.), the change in antioxidant content and color was studied under two different solar exposures. An experiment was carried out in 2008 and 2009 to determine how color evolution, surface temperature, and antioxidant content of tomato fruits were influenced by fruit position and exposure on trellised tomato plants. Trellised rows were oriented so that non-shaded fruits were subjected to full solar irradiation from 0900 HR to 1600 HR, whereas shaded fruits were completely shaded during the same time period. A significant difference (P < 0.001) between fruit surface temperatures of shaded or non-shaded fruits was observed. The more direct solar irradiation the fruits were exposed to, the higher the fruit surface temperatures increased. At 1400 HR, only the average temperature of non-shaded fruits was significantly higher (7.0 and 9.3 °C in 2008 and 2009, respectively) than the air temperature. At the end of the ripening process, color change of non-shaded fruits showed significantly higher CIELab hue compared with shaded fruits. A close negative correlation (R² = 0.51) was detected between the hue color parameters and the cumulative fruit surface–air temperature difference of non-shaded fruits, but in the case of shaded fruits, there was only a weak (R² = 0.29) correlation. Solar exposure had a great effect on the antioxidant content of tomato fruits. A higher fruit surface temperature resulted in significantly less lycopene and more polyphenols and ascorbic acid content in tomato fruits.

Tomato (Solanum lycopersicum L.) is one of the most important vegetable food crops of the world (FAOSTAT, 2008). Year-round availability, a high rate of consumption, and significant levels of antioxidants such as ascorbic acid, β-carotene, γ-carotene, lutein, lycopene, phytoene, phytofluene, phenolic compounds, and vitamin E increase its health benefits (Abushita et al., 2006; Dumas et al., 2003). Ecological conditions have a substantial effect on fruit components and yield of tomato (Helyes et al., 2008). The ripening process of tomato fruits is well characterized by the color evolution of the fruit surface (Hertog et al., 2007). During the ripening process, chlorophyll breaks down and carotenoids, mostly lycopene, accumulate (Brandt et al., 2006).

Lycopene, which is one of the most important antioxidant fruit components of tomato, has been widely investigated around the world (Dumas et al., 2003). The synthesis of lycopene can easily be detected by the non-destructive method of color measurement of the fruit surface, which is affected by ecological and varietal factors (Pék et al., 2010). Direct solar irradiance causes exposed fruits to overheat and reach temperatures +10 °C higher than the shaded fruits, which in turn results in the degradation of lycopene (Helyes et al., 2007). The hue parameter, the most usable color index of the CIELab color system, is closely correlated to the lycopene content of tomato fruits (Hertog et al., 2007). Above +30 °C air temperature, the synthesis of lycopene is greatly retarded. Riga et al. (2008) found significant correlations between parameters of tomato quality (antioxidant properties) and daily cumulative temperature and cumulative photosynthetically active radiation (PAR) for a period of 45 d before harvest in greenhouse experiments.

Combined seasonal and varietal effect on dry weight and “Brix was concluded by Anza et al. (2006), whereas when they studied greenhouse plants, they did not measure foliage or fruit surface temperature. Air temperature had a strong positive effect on leaf surface temperature. Deficit-irrigated tomato plants could not transpire sufficient water to cool leaves below air temperature and it causes stress, although regularly irrigated plants did not heat over air temperature owing to enough soil water content (Böcs et al., 2009). In the tomato fruit, exposure to light promotes ascorbic acid accumulation. Lower ascorbic acid levels were found in greenhouse-grown tomatoes than in those grown outdoors (Lopez-Andreu et al., 1986). Despite this, the concentration of total ascorbate increased significantly by higher temperature in greenhouse conditions (Rosales et al., 2006).

Tomatoes grown under high light exposure also had greater soluble phenolic content than under low light conditions (Wilkins et al., 1996). Toor and Savage (2005) detected significantly higher levels of total phenolics (both lipophilic and hydrophilic) in the skin tissues of tomato fruits. The aim of the present study was to examine the effect of different solar exposure on the evolution of color and the determination of tomato fruit components during the ripening process.

Materials and Methods

A round, indeterminate growth-type tomato cultivar, Lemanca F1 (with an average fruit weight of 110 to 130 g), was grown for the present study on a supporting trellis system in the open field in years 2008 and 2009, respectively.

In both years, plants were planted out in the field on the 10 May supported by a high wire system. Plants were planted in twin rows oriented northwest to southeast with a plant density of 3.6 plants/m². Individual plants were properly pruned to one stem and irrigated with a standard nutrient solution by means of a drip irrigation system. A highly absorptive black polyethylene mulch cover was placed on the soil surface. The experimental design was a randomized block with four replications with four fruits in each replication. The plants were exposed to direct solar irradiation and either the fruits were non-shaded, receiving full irradiation (FI), or were shaded by the foliage (S) during the course of the day. Each selected FI fruit had no shading from at least 0900 HR to 1600 HR, whereas shaded fruits (S) were totally shaded by the foliage.

Sample fruits nearest to the peduncle in the third cluster from 16 plants in west (non-shaded in the afternoon) and east (control, shaded by foliage) sides of twin rows were harvested from each plant for the investigation of fruit components and color evolution.

Color measurements were performed by a Sheen Micromatch Plus tristimulus colorimeter (Sheen Instruments Ltd., Kingston-Upon-Thames, U.K.) at three points in the equatorial region of the tomatoes applying the CIELab color system. The L*, a*, b* values, received directly, were used to calculate the hue:

\[\text{Hue}(^\circ) = \tan^{-1}(b^*/a^*) \], if a* > 0

\[\text{Hue}(^\circ) = 180 + \tan^{-1}(b^*/a^*) \], if a* < 0.

The fruit surface temperature was measured by a Raytek MX TD4 type IR remote thermometer (Raytek Corporation, Santa Cruz, CA).

Fruit components were determined from four fruits in four replicates. The “Brix value was measured using a refractometer (AST 1230, Tokyo, Japan). The organic acid content

Received for publication 6 Dec. 2010. Accepted for publication 18 Jan. 2011.
This study was partially funded by TECH-09-A3-2009-0230, USOK2009 project.
1To whom reprint requests should be addressed; e-mail helyes.lajos@mkk.szie.hu.
Results and Discussion

There was a significant difference ($P = 0.001$) between non-shaded (FI) and shaded (S) tomato fruit surface temperatures. The more direct solar irradiation the fruits were exposed to, the higher their surface temperatures increased. Only the average temperature of non-shaded fruits was significantly higher (7.0 and 9.3 $^\circ$C in 2008 and 2009, respectively) than the air temperature at 1400 HR (data not shown).

CIELab hue parameter is the most commonly used parameter to indicate the development of red coloration during the ripening of tomato fruits. Figure 1 shows the evolution of the hue value of tomato fruits during the ripening process. The hue value of tomato fruits exposed to direct solar irradiation (FI) was significantly higher (less red color) than fruits shaded by the canopy. However, the evolution of the red color in tomato fruits was more rapid under exposure to full solar irradiance. Color change of tomato fruits shaded by the canopy was different, because lycopene, the main source of the red color of tomato fruits, is not synthesized above +30 $^\circ$C (Brandt et al., 2006). Temperature during the ripening process greatly influences the ripening of tomato fruits. Hertog et al. (2007) reported similar temperature effects while studying color changes of detached tomato fruits at different constant temperatures.

When solar forcing cannot be effectively described by air temperature, we have measured directly the heating effect on fruits of direct sunlight only and not the PAR on the canopy. The results of lycopene content agreed with the findings of previous studies on tomato fruits, in which 32% –0.53 tomato fruits. This agrees with the results of Helyes et al. (2007), who found that tomato fruit surface temperature has a major role in the lycopene biosynthesis of ripening tomato fruits.

The mechanism of the on-vine tomato fruit ripening process seems to be different in relation to canopy shading of fruits. Tomato fruit surface temperature behavior, particularly during the diurnal phase, when the thermal effect of solar forcing cannot be effectively described by air temperature. We have measured indirectly the heating effect on fruits of direct sunlight only and not the PAR on the canopy as described by Anza et al. (2006) and Riga et al. (2008). They measured the ambient air temperature and incident PAR and concluded similarly that fruit quality is more dependent on temperature than PAR.

The 2 different years resulted strong seasonal effect on $^\circ$Brix as Anza et al. (2006) concluded. We also did not establish a significant difference between FI and S fruits in $^\circ$Brix, only between years; meanwhile, cumulative yield or average fruit weight was not significantly different at all.

Results of lycopene content agreed with the findings of previous studies on tomato fruits, in which 32 $^\circ$C and higher temperatures induced the degradation of lycopene (Dumas et al., 2003; Rosales et al., 2006). Lycopene in the mesocarpic and endocarpic fractions were far lower than those present in the exocarp in fresh fruit tomatoes (Toor and Savage, 2005), so overheating of fruit surface temperature by intense solar radiation could cause inhibition of lycopene synthesis and discoloration.
known as sunscald (Adegoroye and Joliffe, 1983).

Ascorbic acid and phenolic compounds show opposite results; FI fruits consisted of higher amounts of these compounds, agreeing with Rosales et al. (2006), and improbable distribution is consistent.

Our experiment proved that direct solar irradiation has a major effect on the main tomato fruit components, especially on antioxidants. Meanwhile, separating of overheating and radiation effect of direct sunlight require further experiment.

Literature Cited

Abushita, A.A., H.G. Daood, and P.A. Biacs. 2000. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agr. Food Chem. 6:2075–2081.

Adegoroye, A.S. and P.A. Joliffe. 1983. Initiation and control of sunscald injury of tomato fruit. J. Amer. Soc. Hort. Sci. 108:23–28.

Anza, M., P. Riga, and C. Garbisu. 2006. Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. J. Food Qual. 29:16–37.

AOAC. 1990. AOAC official protocol 952.03, Official Method of Analysis. 15th Ed. Association of Official Analytical Chemists, Arlington, VA.

Bócs, A., Z. Pék, L. Helyes, A. Nemenyi, and L. Komjáthy. 2009. Effect of water supply on canopy temperature and yield of processing tomato. Cer. Res. Comm. 37(suppl 1):113–116.

Brandt, S., Z. Pék, E. Barna, A. Lugasi, and L. Helyes. 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agr. 86:568–572.

Commission Directive. 1979. Community methods of analysis for testing certain sugars intended for human consumption. 79/796/EEC Official Journal L, 239. p. 24–52.

Dong, M.W. and J.L. Pace. 1996. A rapid HPLC method for multivitamin analysis. LC GC 14: 794–803.

Dumas, Y., M. Dadomo, G. Di Lucca, and P. Grolier. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agr. 83:369–382.

FAOSTAT. 2008. Production crops. FAOSTAT Agricultural production database. 1 Dec. 2010. <http://faostat.fao.org>.

Helyes, L., A. Lugasi, and Z. Pék. 2007. Effect of natural light on surface temperature and lycopene content of vine ripened tomato fruit. Can. J. Plant Sci. 87:927–929.

Helyes, L., Z. Pék, and A. Lugasi. 2008. Function of the variety technological traits and growing conditions on fruit components of tomato [Lycopersicon lycopersicum (L) Karsten]. Acta Aliment. 37:427–436.

Hertog, M.L.A.T.M., J. Lammertyn, N. Scheerlinck, and B.M. Nicolai. 2007. The impact of biological variation on postharvest behaviour: The case of dynamic temperature conditions. Post-harvest Biol. Technol. 43:183–192.

Lopez-Andreu, F.J., A. Lamela, R.M. Esteban, and J.G. Collado. 1986. Evolution of quality parameters in the maturation stage of tomato fruit. Acta Hort. 191:387–394.

Merck & Co. 1989. Merck index. 11th Ed. Merck & Co., Inc., Rahway, NJ.

Pék, Z., L. Helyes, and A. Lugasi. 2010. Color changes and antioxidant content of vine and post-harvest ripened tomato fruits. HortScience 45:466–468.

Riga, P., M. Anza, and C. Garbisu. 2008. Tomato quality is more dependent on temperature than on photosynthetically active radiation. J. Sci. Food Agr. 88:1545–1551.

Rosales, M.A., J.M. Ruiz, J. Hernández, T. Soriano, N. Castilla, and L. Romero. 2006. Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J. Sci. Food Agr. 86:1545–1551.

Sadler, G., J. Davies, and D. Dezman. 1990. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 55:1460–1461.

Toor, R.K. and G.P. Savage. 2005. Antioxidant activity in different fractions of tomatoes. Food Res. Intl. 38:487–494.

Wilkens, R.T., J.M. Spoerke, and N.E. Stamp. 1996. Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77:247–258.