Probing the local magnetization dynamics in large systems with spatial inhomogeneity

To cite this article: J Li et al 2010 J. Phys.: Conf. Ser. 200 042013

View the article online for updates and enhancements.
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

J Li, M-S Lee, E Amaladass, W He and T Eimüller

1. Introduction to the experimental setup

Magnetic hetero- and nanostructures have been attracting a lot of attention from researchers and magneto-electronic industry due to their potential in future storage and switching devices. For applications the precise control of the switching behaviour on large lateral length scales is a pre-requisite. This, in turn, demands an instrument which can resolve the local static and dynamic magnetic properties at a high spatio-temporal resolution and scan over large positional and temporal ranges. We demonstrate that our newly developed femtosecond laser scanning Kerr microscope, equipped with a temporal and spatial resolution of < 230 fs and 210 nm, respectively, and with large scanning ranges of 8 ns and 320 μm satisfies these requirements. Especially, we show how multi-parameter scans enable a comprehensive study of complex dynamic systems.

A Ti:sapphire oscillator generates laser pulses with a central wavelength of 780 nm, an output energy of ca. 80 nJ, a duration of ca. 55 fs and at a repetition rate of 11 MHz. A pump-probe technique is applied for magneto-optic Kerr effect (MOKE) experiments using the 780 nm pulses as the pump and frequency-doubled 390 nm pulses as the probe. A high precision linear stage enables a delay between the pump and probe pulses of up to 8 ns. Both beams are collinearly focused onto the magnetic sample, in the present work, by a microscope objective with a numerical aperture of 0.5. For imaging and fine focus adjustment we use a three-axis piezoelectric scanning stage with a travel range of 320 μm and a positioning resolution of 1 nm.
in all three axes. The temporal resolution is optimized by selecting optical components for minimal group delay dispersion (GDD) and adding negative GDD via prisms (pump beam) and chirped mirrors (pump beam). For a significant enhancement of the signal-to-noise ratio a double lock-in technique is used [1], where the pump and probe beams are modulated by an optical chopper at a frequency of 80 Hz and a photo-elastic modulator at 50 kHz, respectively. This detection scheme allows measuring the transient reflectivity ΔR, the Kerr rotation θ_K and ellipticity ϵ_K, and the pump-induced changes in $\Delta \theta_K$ and $\Delta \epsilon_K$. All experiments were made in the polar MOKE geometry which detects the magnetization component perpendicular to the sample plane M_z. A self-made control software enables us to perform multi-parameter scans along the three spatial axes, the delay time axis and the external magnetic field axis. Further details of the setup can be found in Ref. [2].

To demonstrate the capabilities of the instrument to study spatial variations in the static and dynamic magnetic properties we fabricated a wedge-shaped Fe/Gd multilayer system, where the bilayer composition for the thickest part was designed to be Fe(0.36nm)/Gd(0.36nm) to obtain a strong perpendicular magnetic anisotropy (PMA) there. The film thickness decreases to zero over a distance of about 100 µm; see Fig. 1 (a). Along this wedge the saturation magnetization M_S and the magnetic anisotropy are expected to change as they are very sensitive even to small variations in the Fe/Gd bilayer thickness, the interface structure and the temperature [3]. Consequently, the magnetization reorients from out-of-plane to in-plane, thus giving a perfect playground to study the complex static and dynamic changes around the spin-reorientation transition (SRT) [4].

2. Results and discussion

We first demonstrate the spatio-temporal mode of operation. The Fe/Gd wedge is scanned along its thickness gradient; see Fig. 1 (a). Combining this positional scan with the delay time Δt scan, the results shown in Fig. 1 (b) have been obtained. Extracting the measurement points along the Δt axis in Fig. 1 (b) for a fixed position on the wedge the pump-induced magneto-optic response $\Delta \theta_K$ can be plotted against Δt; see Fig. 1 (d). The oscillations shown in these curves are caused by an opto-thermally induced transient SRT from an in-plane to an out-of-plane magnetization [4]. The absorption of the pump pulse leads to an elevation of the temperature which reduces the magnitude of magnetization vector $|\vec{M}|$ and, therefore, weakens the demagnetizing field H_{dem}. The heat also reduces the intrinsic PMA of the Fe/Gd multilayer. However, if the effect of the heat-induced reduction of $|\vec{M}|$ is stronger, the transient SRT rotates the direction of the effective magnetic field H_{eff} out of plane. This exerts a torque on the magnetization vector \vec{M}, which leads to a precession of \vec{M} around H_{eff}. As the heat diffuses H_{eff} relaxes slowly back into its original direction and \vec{M} follows H_{eff} with a damped precession. The SRT has been shown to be very sensitive to the film thickness [3]. As the thickness decreases along the wedge, the effect of H_{dem} will gradually increase, making in-plane magnetization more favourable. Therefore, the rotation of \vec{M} resulting from the heat-induced SRT will also become larger with decreasing thickness. This is reflected in the black, orange and blue curves in Fig. 1 (c) which show that the pump-induced magneto-optic response $\Delta \theta_K$ increases substantially with decreasing thickness. However, going further towards the thinner part, the oscillation amplitude of $\Delta \theta_K$ decreases drastically. This could be due to the reduction of the total magnetic moment within the probed region resulting from the volume reduction and/or due to the reduction of M_S caused by the intermixing between Fe and Gd atoms.

The second mode of operation combines Δt and external magnetic field H_{ex} scans; see Fig. 1 (c). Note that H_{ex} is applied perpendicularly to the sample plane. In Fig. 1 (e) the time-resolved $\Delta \theta_K$ signals obtained for different strengths of H_{ex} are extracted from Fig. 1 (c). Using this data set one can study the field dependence of the precession frequency or the damping, which,
Figure 1. (Color online) (a) A schematic drawing of the Fe/Gd wedge, (b) the pump-induced changes in Kerr rotation $\Delta \theta_K$ measured at different delay times Δt and different locations along the thickness gradient, (c) $\Delta \theta_K$ measured at different Δt and different external fields H_{ex}, (d) $\Delta \theta_K$ plotted against Δt at fixed positions marked in (a) and (b), (e) $\Delta \theta_K$ plotted against Δt at fixed field values marked in (c), (f) $\Delta \theta_K$ plotted against H_{ex} at fixed delay times marked in (c).

For instance, can be used to extract information about the anisotropy field. The second way of data evaluation is to plot $\Delta \theta_K$ against H_{ex} for different values of Δt, which gives hysteresis loops of the pump-induced dynamic MOKE responses. In Fig. 1 (f) a remarkable change in the shape and size of the hysteresis with increasing Δt is observable. The large response of $\Delta \theta_K$ in the loop measured at $\Delta t = 1349$ ps can be easily understood by considering the fact that at $\Delta t = 1349$ ps the maximum of the SRT induced oscillation appears for $H_{ex} = 0$. The reduction of $|\Delta \theta_K|$ with increasing H_{ex} can be explained by the fact that a strong H_{ex} aligns \vec{M} perpendicularly to the sample plane, leaving no room for a SRT. With increasing Δt the system returns to the equilibrium state leading to a decay of $|\Delta \theta_K|$, thus the hysteresis loop becomes smaller.

In the third mode of operation H_{ex} and sample position scans are combined; see Figs. 2 (a) and (b). This mode is used to record local static and dynamic hysteresis loops at different locations; see Figs. 2 (c) and (d). Fig. 2 (d) shows a drastic reduction of the magnetic contrast over a distance of 25 μm confirming that the magnetic moment becomes reduced with decreasing layer thickness. Although not explicitly shown here, looking at hysteresis loops measured for thinner
Figure 2. (Color online) (a) $\Delta \theta_K$ and (b) θ_K measured at different locations along the thickness gradient and different fields H_{ex} (at a fixed $\Delta t = 1242$ ps), (c) hysteresis loops of $\Delta \theta_K$ and (d) of θ_K at the locations marked in (a) and (b).

Parts we could observe strong changes in their shape (from squared to skewed) confirming that in-plane magnetization is preferred for thinner parts. Fig. 2 (c) show a large increase of $\Delta \theta_K$ between the sample positions, 5 μm and 18.5 μm, indicating a transition from perpendicular to in-plane magnetization. In addition, the skewed shape and the reduced size of the loop measured for the sample position 30 μm suggest that H_{dem} is already too strong here to enable a SRT.

3. Summary

Studying the opto-thermally induced transient SRT in a Fe/Gd multilayer wedge, we have demonstrated different modes of operation of our femtosecond laser scanning Kerr microscope. Equipped with high spatio-temporal resolutions, large scanning ranges and the capability of performing multi-parameter scan, this microscope is a powerful tool for investigating the local magnetization dynamics in spatially inhomogeneous samples.

Acknowledgments

We thank B. Redeker and B. Ludescher for technical support and gratefully acknowledge the financial support by the DFG provided in the framework of the SFB 491 (project N1).

References

[1] Koopmans B, van Kampen M, Kohlhepp J T and de Jonge W J M 2000 J. Appl. Phys. 87 5070
[2] Li J, Lee M -S , He W, Redeker B, Remhof A, Amaladass E, Hassel C and Eimüller T 2009 Rev. Sci. Instr. 80 073703
[3] Stavrou E, Rohrmann H and Röll K 1998 IEEE Trans. Mag. 34 1988
[4] Eimüller T, Scholl A, Ludescher B, Schütz G and Thiele J -U 2007 Appl. Phys. Lett. 91, 042508

4