Leaf Litter Vermi Composting: Converting Waste to Resource

Anamika Sharma¹*, Ashita Sharma², Satveer Singh¹, Adarsh Pal Vig¹ and Avinash Kaur Nagpal¹#

¹Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India. 143005.
²Civil Engineering Department, Chandigarh University
Emails: *anamikasharma46063@gmail.com; #avnagpal@yahoo.co.in

Abstract: Waste is not waste unless someone wastes it. Solid waste collection and its management is one of the burning issues of environment today in most nations worldwide. Although many methods have been proposed and implemented for proper solid waste disposal but some of these treatment and disposal strategies can cause severe environmental issues. The present manuscript intends to give an overview of studies on use of garden leaf litter waste around us as a substrate for vermicompost formation. Vermicomposting is aerobic process in which detritivorous earthworms play an important role in decomposition of organic waste converting it to nutrient rich medium for plant growth known as vermicompost. They do so by interacting with wide range of microorganisms and variety of other fauna acting as decomposers and this interaction results in stabilization of organic matter leading to alteration of its physical and biochemical properties. In recent years, vermicomposting technique has advanced considerably because it is eco-friendly, economically feasible and socially acceptable approach for waste management. In simple words, it is a way of converting waste to wealth. Furthermore, the end product of vermicomposting (Vermicast) - the nutrient rich compost is an efficient soil conditioner.

1. INTRODUCTION

Population status and dynamics suggests India to be amongst the developing economies countries of the world, whose population is exponentially growing. The increasing population is a direct reason responsible for enhanced production of municipal solid waste (MSW). Amount of solid waste generated in the cities of India has increased to 48 million tons in 1997 from 6 million tons in 1947 with an annual growth rate of 4.25%, and it is likely to reach 300 million tons by 2047 [1–3]. Wastes can be classified into inorganic and organic, depending on their treatability. Inorganic wastes like certain types of plastics are non-biodegradable. Organic waste contains all such
carbonaceous wastes like agricultural wastes, food scraps, garden wastes that are biodegradable. Fallen dry leaves from trees (also called as leaf litter) [4–7], covers the major part of the garden waste Huge quantity of waste generated in gardens, not only creates the storage problem but is also responsible for eutrophication of surface water bodies through nutrient leaching. In many cases, the leaf litter waste is mostly collected and piled up in heaps and is set on fire which results in the loss of organic nutrients and many important nutrients from forest floor. Besides this, accumulation of dead forest litter is also responsible for the incidence of surface forest fires. These uncontrolled surface forest fires cause danger to the forest and neighboring human habitations. Leaf litter waste in urban areas is often piled in open where it degrades naturally, thus occupying land resource. But these practices sometimes create problems such as blockage of urban water drainage and sewers The burning of leaf litter also leads to release of pollutants in air causing air pollution. The rural populations in India make use of leaf litter as fuel that causes indoor air pollution [8]. But this leaf litter waste can be a good source of nutrients for the soil if proper waste management process is adopted. Leaf litter can maintain soil fertility as it is a good supplier of organic matter. For sustainable environmental management, recycling of waste is required. Converting the negative waste into beneficial product is an important aspect of resource recycling [9–11].

Composting is the wonderful approach to manage any type of biowaste. It is an aerobic or anaerobic process involving several microfloras like bacteria, fungi and actinomycetes that help in breakdown of organic matter to nutrients like humus. Vermicomposting is an upgraded form of composting and differs from composting in several ways and is also faster than composting The word ‘vermi’ is derived from the Latin word vermis which means a worm. Thus, vermicomposting is a process in which decomposition is done by worms and the decomposed material is used as compost. Any species of earthworms viz. epigeic, anecic or endogeic can be used. If it has natural ability to colonize and decompose organic waste for nutrient recovery. Vermicomposting is a bio-oxidative process in which detrivorous earthworms act along with microorganisms and other fauna to decompose and stabilize organic waste, thus modifying its physical and biochemical properties [12–15]

Traditionally vermicompost has been prepared by using animal manure (especially of the rumens) as the substrate and has been known to be a fertilizer cum soil conditioner. In recent years, leaf litter has also been used as substrate for vermicomposting and its end product as biofertilizer on various crops [16–19]. Mostly mature fallen (Senescent) leaves are used for vermicomposting. Senescence in leaves is a natural phenomenon occurring as a result of numerous molecular events at the time of ageing Several researchers have made great contributions in establishing protocols for vermicomposting of leaf litter of different species of plants like Mango (Gajalakshmi et al., 2004); Neem (Gajalakshmi and Abbasi, 2004); Acacia (Ganesh et al., 2009); Coconut (Gopal et al., 2009); *Polyalthia longifolia* Palash also known as Bastard teak tree ,Banana ,in order to assess the
variation in the nutrient quality of compost and vermicompost, carried out both composting and vermicomposting of leaf litter of different plant species like *Pinus roxburghii*, *Eucalyptus* hybrid, *Populus deltoids* and leaves of *Parthenium hysterophorus*, *Shorea robusta* in combination with municipal solid waste, using earthworm *Eisenia foetida* and concluded vermicomposting as a better technology than composting.

The literature survey revealed that for vermicompost preparation, 8-10 species of earthworms have been considered suitable out of 3000 species present in soil. Among these, *Eisenia foetida* and *Eudrilus eugeniae* are the two earthworm species best utilized for vermicomposting process. These species are epigenic and live on the upper surface of soil feeding on different kinds of organic material including vegetable waste and produce better vermicompost when compared to species that feed on plain soil. Furthermore, these species are very active and cause rapid decomposition of organic wastes producing vermicompost in a short span of time as compared to other species. Other species of earthworms which have been used for vermicomposting include *Eisenia andreii*, *Lumbricus rubellus*, *Perionyx excavatus*, *Perionyx sansibaricus*. Organic waste is broken down within gizzard, a thick-walled muscular organ presents in the eighth or ninth segment of earthworm body. The partially decomposed matter is further exposed to different enzymes including chitinase, cellulase, protease etc. that cause further digestion of biomolecules into simple forms. Approximately 80 – 90% of the ingested material is excreted as vermicast while only 5-10% is absorbed by earthworms for their growth and maintenance.

Precomposting is often done as a pretreatment before Vermicomposting to produce high agronomic value and pathogen free vermicast. All the pathogens, volatile gases produced by the organic waste in the substrate are toxic to earthworm and thus are eliminated by this pretreatment (Nair et al., 2006; Prez- Godinez et al., 2017; Zhang et al., 2021). According to Chaudhari (2019) vermicomposting can be considered as powerful tool to bring second green revolution in India as vermicompost is a rich source of numerous nutrients, phenolics, plant growth regulators and also humus. Vermicompost improves physical structure of the soil and enhance the uptake of nutrients by plants. Growth promoting effects of vermicompost have been widely recognized across the globe.

Vermicompost has been shown to possess higher concentrations of all major as well as micro nutrients as compared to simple compost. Pathogen reduction and enhancement in beneficial microbes in final vermicompost through earthworms have also been reported earlier (Nair et al., 2006). Adequate quantity of vermicompost addition in degraded soil not only enhances the nutrient quality but also different enzymatic activities of the soil and better turnover of the nutrients. Higher proportion of microorganisms like nitrifying, phosphate-solubilizing and potassium-solubilizing bacteria has been observed in soils amended with vermicompost. Hence regular and adequate use of
vermicompost in soil improves the soil quality, maintains nutrient recovery and microbial count which are necessary for plant growth.

Some studies related to use of leaf litter of some plant species mixed with or without cattle dung or pressed mud or any other material for producing vermicompost are summarized in Table 1.
Table 1. Summary of literature on the use of leaf litter of different plant species as vermicompost substrate

S.N.o.	Botanical name of Plant species (Common name)	Name of Earthworm species	Reaction mixture	Vermireactor	Time duration	Result
1.	*Acacia auriculiformis* *(Acacia)*	*Lamprothoe mauritii*	Acacia leaf litter + Cow dung (7:5:1)	4 series of rectangular reactors of same volume with identical width and different length and height: 50 x 10 x 2 cm 25 x 10 x 4 cm 12.5 x 10 x 8 cm 6.25 x 10 x 16 cm	45-60 days	Greater the surface area:volume ratio of the reactor, higher was the vermicast output. High content of polyphenols and lignin in Acacia leaf litter was responsible for high rate of mortality and weight loss in earthworms feeding on them.
2.	*Azadirachta indica* *(Neem)*	*Eudrilus eugeniae*	Neem leaf litter + Cow dung (2:1)	2 types of wooden boxes used: One with 62.5 worms l⁻¹ and other with 75 worms l⁻¹ of the reactor volume	5 weeks	A slight increase in vermicast output (17g l⁻¹ d⁻¹) was observed in the reactor containing 75 worms l⁻¹ as compared to 16.4g l⁻¹ d⁻¹ in the reactor containing 62.5 worms l⁻¹. Application of vermicompost resulted in an increase in vegetative and reproductive growth of brinjal plants.
		Eisenia fetida	Only neem leaves	Rectangular wooden boxes (48 x 36 cm, height 20 cm). Reactors operated in 2 modes: 1.) PDCOP 2.) Batch	16 months	Pseudo discretized continuous reactor operator (PDCOP) was more efficient and resulted in 3-4 times more production of vermicast as compared to conventional method (Batch reactors). All three species of earthworms showed persistent increase in body mass, good reproduction rate and
	Bambusa polymorpha (Bamboo)	**Pontosc olex corethra rus**	**Drawida assamen sis**	**vermicast production.**		
---	---------------------------------	------------------------------	------------------------	--------------------------		
3.	4 types of reaction mixture:	4 types of reaction mixture:	Earthen pots (2.5L)	Highest rate of growth		
	Control soil (CS)	Control soil (CS)	containing 1600 g of	and cocoon production		
	Soil (S)+Cow manure (C),	Soil (S)+Cow manure (C),	substrate of different	was recorded in SL diets		
	30:2 w/w (SC)	30:2 w/w (SC)	reaction mixtures	for both the species of		
	Soil (S) + Bamboo leaf	Soil (S) + Bamboo leaf		earthworm.		
	litter (L), 30:2 w/w (SL)	litter (L) + Cow manure (C)				
	Soil (S) + Bamboo leaf litter	Soil (S) + Bamboo leaf litter				
	+Cow manure (C), 30:1:1 w/w	+Cow manure (C), 30:1:1 w/w				
	(SCL)	(SCL)				
	Earthen pots (2.5L)	Earthen pots (2.5L)	150 days			
	containing 1600 g of substrate	containing 1600 g of				
	of different reaction	substrate of different				
	mixtures	reaction mixtures				
4.	4 types of reaction mixture:	4 types of reaction mixture:	Mud pot of 2.5 L	High rate of mineralization		
	T₁ - BL^b +	T₁ - BL^b +	capacity	was observed in the		
	CD^c (1:1)	CD^c (1:1)		vermibed with SOL than		
	T₂ - BL^b +	T₂ - BL^b +		in BL		
	CD^c (2:1)	CD^c (2:1)		vermibed.		
	T₃ - SOL^e +	T₃ - SOL^e +	Vermicompost produced			
	CD^c (1:1)	CD^c (1:1)	was rich in soil			
	T₄ - SOL^e +	T₄ - SOL^e +	nutrients and			
	CD^c (2:1)	CD^c (2:1)	microbial population,			
	T₅ - CD^c	T₅ - CD^c	thus can be used for			
	(100%)	(100%)	land restoration.			
5.	Only Leaf litter,	Eudrilus eugeniae	Plastic bins	Addition of cattle dung		
	Leaf litter +	*Eisenia foetida*	15 days	to leaf litter in the		
	Cattle dung (1:1),		PC^a	ratio of 1:1 resulted		
	Only Cattle dung		+ 13 weeks VC^d	in an increase in the		
				production of		
				vermicompost and		
				decomposition of the		
				leaf litter.		
	Plant Combinations	Reaction Mixtures	Vermicomposting Conditions	Vericompost Properties		
---	---	---	---	---		
6.	*Butea monosperma* (Palash) *Santalum album* (Chandan) *Syzygium cumini* (Jamun) *Eucalyptus globulus* (Eucalyptus)	Mixture of leaf litter + Cattle dung (1:1) *Eudrilus eugeniae* *Eisenia fetida*	Plastic containers 15 days	Odour less, dark brown in colour and granular in appearance and consisted of many plant nutrients.		
7.	*Casuarina sp.* *Tectona grandis* (Teak)	4 types of reaction mixtures: **Set A**: *T. grandis* leaf litter + cow dung (1:1) + *E. fetida* **Set B**: *T. grandis* leaf litter + cow dung (1:1) + *E. eugenia* **Set C**: Casuarina leaf litter + cow dung (1:1) + *E. fetida* **Set D**: Casuarina leaf litter + cow dung (1:1) + *E. Eugenia*	Vermireactor s of size 20 cm X 30 cm 6 weeks	Good quality vermicompost produced when leaf litter and cow dung were mixed in equal proportion. *E. eugenia* showed better rate of vermicomposting then *E. fetida*		
8.	*Cocos nucifera* (Coconut)	2 types of reaction mixture: **CLV**: Coconut leaves + Cow Manure (10:1)	Cement tanks of dimensions 7.5 x 2.0 x 1.0 m (length x width x depth, respectively). 20 days PC* + 60 days VC**	In the vermicompost produced from the CLV mixture, there was an increased number of Plant beneficial microorganisms.		
	Species	Ecosystems	Reaction mixture	Duration	Vermicompost produced	
---	--	-----------------------------	-----------------------------------	------------------------------	--	
9.	*Diospyros melanoxylon* (Tendu)	*Eudrilus eugeniae*	Leaf litter + Cattle dung	30 days PC + 60 days VC	Vermicompost produced was used as a biofertilizer that enriched soil and resulted in increased production of crop - Onion (*Allium cepa*).	
10.	*Eucalyptus globulus* (Eucalyptus)	*Eudrilus eugeniae* *Eisenia fetida*	Cattle dung + Leaf litter (100%) + Cattle dung (1:1)	15 days PC + 14 weeks VC	Increased rate of vermicomposting in a reaction mixture containing Leaf litter and cattle dung in 1:1.	
11.	*Hevea brasiliensis* (Rubber plant)	*Eisenia fetida*	Rubber leaf litter + Cow dung (1:1)	-	Vermicompost produced when applied to the *Ananas comosus* (Pineapple) plantations showed increase in yield and restoration of degraded acidic soil	
12.	*Mangifera indica* (Mango)	*Eudrilus eugeniae*	Leaf litter + Saw dust + River sand + Soil	2 types of circular plastic containers: One with 62.5 animals l⁻¹ and the other with 75 animals l⁻¹ of the reactor volume	Earthworms grew well in both types of reactors, increasing their zoomass by ~103% and producing ~157 offsprings. A slight increase in vermicast output (~14.9 g l⁻¹ d⁻¹) was observed in the reactor containing 75 worms l⁻¹ as compared to ~13.6 g l⁻¹ d⁻¹ in the reactor containing 62.5 worms l⁻¹.	
13.	*Musa paradisiaca* (Banana)	*Eisenia fetida*	6 types of reaction mixtures: Rectangular plastic containers	9 month s	Vermicast produced had earthy odour and blackish in colour.	
14.	*Polyalthia longifolia*	*Perionyx ceylanensis*	VR₁: 1000 g CD			
VR₂: 800 g CD + 200 g BL						
VR₃: 600 g CD + 400 g BL						
VR₄: 400 g CD + 600 g BL						
VR₅: 200 g CD + 800 g BL						
VR₆: 1000 g BL	Having 28 cm x 20 cm x 14 cm dimensions and 10 L capacity.	Reaction mixture containing 20-40% (VR₂ and VR₃) of the leaf litter showed best results in terms of mineralization rate and earthworm growth.				
15.	*Populus nigra* L. (Poplar)	*Eisenia fetida*	2 types of reaction mixture:			
Leaf litter: Peat (1:8)						
Horse manure: Peat (1:8)	Plastic containers of 250 millilitre capacity	-	Polwar leaf vermicompost showed higher calcium ion concentration and pH values than the horse manure vermicompost. Application of polwar leaf vermicompost extract to the wheat seeds and potato shoots showed increased root weight compared to the seeds and shoots grown on tap water.			
16.	*Santalum album* (Sandalwood)	*Eisenia fetida*				
Eudrilus eugenia	2 types of reaction mixture:					
100% leaf litter						
Leaf litter: Cattle dung (1:1)	Plastic bins of 30 x 15 cm size	Both the earthworm species were successful decomposers of Sandalwood leaf litter. Vermicompost produced was odour less, black and granular in appearance.				
17.	Syzygium cumini (Jamun)	Eudrilus eugenia, Eisenia foetida	100% leaf litter + Cattle dung (1:1)	Plastic containers of 15 litre capacity	15 days PCa + 14 weeks VCd	Both the earthworm species were observed to be the efficient degrader of Jamun leaf litter. Better vermicomposting was achieved only in a reaction mixture containing leaf litter and cattle dung in 1:1 proportion.
2 types of reaction mixture:	Green Jamun leaf litter + Cattle dung (1:1), Senescence Jamun leaf litter + Cattle dung (1:1)	Plastic bins	10 days PCa + 13 weeks VCd	Vermicompost formed from both the reaction mixtures showed similar trend in pH and temperature variation.		

PCa = Precomposting; VCd = Vermicomposting; BLb = Bamboo leaf litter; CDc = Cow dung; SOLe = Silver oak leaf litter; LPLf = Polyalthia longifolia; SCTg = Sugarcane trash; PMh = Pressmud
Figure 1: Species of Earthworm

Figure 1 shows number of studies carried out on different species of earthworms for vermicomposting of leaf litter.

Das = Drawida assamensis; Eeu = Eudrilus eugeniae; Efo = Eisenia fetida; Lma = Lampito mauriti; Pco = Pontos colexcorethrurus; Pex = Perionyx excavates

Figure 2 shows number of plant species whose leaf litter was used for vermicomposting by different species of earthworms.
Figure 2: Number of Plants Species

Fig. 2. No. of plant species whose leaf litter has been used for vermicomposing by different species of earthworms.

Das = *Drawida assamensis*; Eeu= *Eudrilus eugeniae*; Efo= *Eisenia fetida*; Lma = *Lampito mauritii*; Pco= *Pontos colexcorethrurus*; Pex= *Perionyx excavates*

References

[1] Maikhuri R K, Rawat L S, Negi V S, Purohit V K, Rao K S and Saxena K G 2011 Managing natural resources through simple and appropriate technological interventions for sustainable mountain development *Curr. Sci.* 100 992–7

[2] Liégui G S, Cognet S, Djumyom G V W, Atabong P A, Noutadié J P F, Chamedjeu R R, Temegne C N and Kengne I M N 2021 An effective organic waste recycling through vermicomposting technology for sustainable agriculture in tropics *Int. J. Recycl. Org. Waste Agric.* 10 203–14

[3] Pandit L, Sethi D, Pattanayak S K and Nayak Y 2020 Bioconversion of lignocellulosic organic wastes into nutrient rich vermicompost by *Eudrilus eugeniae* *Bioresour. Technol. Reports* 12

[4] Ameen F and Al-Homaidan A A 2022 Improving the efficiency of vermicomposting of polluted organic food wastes by adding biochar and mangrove fungi *Chemosphere* 286

[5] Gómez-Brandón M, Martínez-Cordeiro H and Domínguez J 2021 Changes in the nutrient dynamics and microbiological properties of grape marc in a continuous-feeding vermicomposting system *Waste Manag.* 135 1–10

[6] Varjani S, Shah A V, Vyas S and Srivastava V K 2021 Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review *Chemosphere* 282

[7] Jacques R G, Allison G, Shaw P, Griffith G W and Scullion J 2021 Earthworm-Collembola interactions affecting water-soluble nutrients, fauna and physiochemistry in a mesocosm manure-straw composting experiment *Waste Manag.* 134 57–66

[8] Wu M, Hu J, Shen F, Huang M, Zhao L, Tian D, Zhang Y, Liu Y, Zeng Y and Deng S 2021
Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management *J. Clean. Prod.* **306**

[9] Singh A, Tiwari R, Chandrahas and Dutt T 2021 Augmentation of farmers’ income in India through sustainable waste management techniques *Waste Manag. Res.* **39** 849–59

[10] Alkobaisy J S, Abdel Ghani E T, Mutlag N A and Lafi A S A 2021 Effect of Vermicompost and Vermicompost tea on the Growth and Yield of Broccoli and Some Soil Properties *IOP Conference Series: Earth and Environmental Science* vol 761 (IOP Publishing Ltd)

[11] Zulhipri, Erdawati and Purwanto A 2021 Development of technology vermicompost production for the coffee plant Industry *Journal of Physics: Conference Series* vol 1876 (IOP Publishing Ltd)

[12] Iresha F M, Kasam, Maristiyanto, Nurtanto M, Ramadhani W S and Rahmat A 2021 Macronutrient content of compost produced by earthworm in the utilization of livestock waste using vermicomposting method *IOP Conference Series: Earth and Environmental Science* vol 739, ed R A Y H M A Afriani L. Rudy (IOP Publishing Ltd)

[13] Zhong H, Yang S, Zhu L, Liu C, Zhang Y and Zhang Y 2021 Effect of microplastics in sludge impacts on the vermicomposting *Bioresour. Technol.* **326**

[14] Mago M, Yadav A, Gupta R and Garg V K 2021 Management of banana crop waste biomass using vermicomposting technology *Bioresour. Technol.* **326**

[15] Li W, Li J, Ahmad Bhat S, Wei Y, Deng Z and Li F 2021 Elimination of antibiotic resistance genes from excess activated sludge added for effective treatment of fruit and vegetable waste in a novel vermireactor *Bioresour. Technol.* **325**

[16] Chaudhary R, Jindal A, Aujla G S, Kumar N, Das A K and Saxena N 2018 LSCSH: Lattice-Based Secure Cryptosystem for Smart Healthcare in Smart Cities Environment *IEEE Commun. Mag.* **56** 24–32

[17] Kumar R, Chohan J S, Goyal R and Chauhan P 2020 Impact of process parameters of resistance spot welding on mechanical properties and micro hardness of stainless steel 304 weldments *Int. J. Struct. Integr.* *ahead-of-p*

[18] Mittal M, Verma A, Kaur I, Kaur B, Sharma M, Goyal L M, Roy S and Kim T-H 2019 An efficient edge detection approach to provide better edge connectivity for image analysis *IEEE Access* **7** 33240–55

[19] Singh U, Salgotra R and Rattan M 2016 A Novel Binary Spider Monkey Optimization
Algorithm for Thinning of Concentric Circular Antenna Arrays *IETE J. Res.* **62** 736–44
References: