Switching between different vortex states in 2-dimensional easy-plane magnets due to an ac magnetic field

Yuri Gaididei
Institute for Theoretical Physics, 252143 Kiev, Ukraine

Till Kamppeter and Franz G. Mertens
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

A. R. Bishop
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, MS B262, Los Alamos, New Mexico 87545

Using a discrete model of 2-dimensional easy-plane classical ferromagnets, we propose that a rotating magnetic field in the easy plane can switch a vortex from one polarization to the opposite one if the amplitude exceeds a threshold value, but the backward process does not occur. Such switches are indeed observed in computer simulations.

There is a growing interest in non-equilibrium dynamics of quasi-two-dimensional magnetic materials [1–4]. Many magnetic properties of these materials are well-described by the classical two-dimensional Heisenberg model with easy-plane symmetry. In this model vortices play a very important role. They cause a topological phase transition [5,6], and they contribute to the so-called "image"-vortex. In the case of fixed boundary conditions an out-of-plane vortex is created. It exhibits a localized structure of the z-component of the spins around the vortex center. In the case of a circular system of the radius L with free boundary conditions the azimuthal angles $\Phi_\vec{n}$ for both types of vortices are approximately given by

$$\Phi_\vec{n} = q \arctan \left(\frac{n_y - Y}{n_x - X} \right) - q \arctan \left(\frac{n_y - Y}{n_x - X} \right) - q \arctan \left(\frac{n_y - Y}{n_x - X} \right).$$

where a constant phase has been omitted. X and Y are the coordinates of the vortex center, and $X = XL^2/R^2$, $Y = YL^2/R^2$ ($R^2 = X^2 + Y^2$) are the coordinates of the "image"-vortex. In the case of fixed boundary conditions the sign in front of the second term in Eq. (2) is reversed.

We are interested here in the vortex dynamics under the influence of a spatially uniform in-plane ac magnetic field $\vec{h}(t) = h(\cos \omega t, \sin \omega t, 0)$.

The interaction of the field with the spin system has the form

$$V(t) = -h \sum_{\vec{n}} \sqrt{1 - M_{\vec{n}}^2} \cos(\Phi_{\vec{n}} - \omega t).$$

The spin dynamics is described by the Landau-Lifshitz equation

$$\dot{\Phi}_{\vec{n}} = \frac{\partial}{\partial M_{\vec{n}}}(H + V(t)) - \gamma \left(1 - M_{\vec{n}}^2 \right) \frac{\partial H}{\partial \Phi_{\vec{n}}},$$

$$M_{\vec{n}} = -\frac{\partial}{\partial \Phi_{\vec{n}}}(H + V(t)) - \gamma \left(1 - M_{\vec{n}}^2 \right) \frac{\partial H}{\partial M_{\vec{n}}}. \quad (4)$$

1
The last terms in Eqs (1) represent damping (2).

To clarify the behavior of out-of-plane vortices in the presence of the ac field, we have numerically integrated the Landau-Lifshitz equation (3) for a large square lattice in which we cut out a circle with radius $L = 24$ using both free and fixed boundary conditions with $\delta = 0.1, \gamma = 0.002$. We used relatively weak ac fields so as not to change the ground state significantly. The integration time was 12,000 time units with time step 0.01. First we used an out-of-plane vortex with polarization $p=1$ as the initial condition and a clockwise rotating magnetic field with the frequency $\omega = -0.1$: This is close to the frequency of the lowest radially symmetric eigenmode in the presence of a vortex (1,3,4). We observed that for all $h \leq h_{cr} = 0.0025$ the vortex with $p=1$ remains the stable configuration but for $h > h_{cr}$ a flip to the state with the opposite polarization ($p = -1$) occurs (Fig 1). Using the same initial condition but changing the direction of rotation of the magnetic field ($\omega = 0.1$) we observed the switching only when $h > 0.02$. But in contrast to the previous case when the vortex after switching had a well-defined core structure, now the out-of-plane structure is almost completely destroyed by spin waves.

Another set of simulations was performed using a static out-of-plane vortex state with the same h but polarization $p = -1$ as initial condition. We found that the flip occurs only for a counter-clockwise rotating magnetic field $\omega > 0$. The results of extensive simulations may be summarized as follows for both types of boundary conditions:

- Flips between oppositely polarized states take place under the action of the ac magnetic field when $h > h_{cr}$ (Fig. 2).

- The threshold value h_{cr} depends on the product ωp and not on the vorticity. The threshold value in the case when the polarization vector is anti-parallel to the angular velocity vector $\vec{\omega} = (0, 0, \omega)$ is much smaller than when these vectors are parallel.

- Flips are uni-directional. When $\omega p < 0$, the final state is characterized by a well-defined core structure, while for $\omega p > 0$ the core structure is destroyed.

The basic reason for the switching can be easily understood by using the frame of reference which rotates together with the magnetic field. In this frame there exists an inertial force equivalent to a magnetic field aligned along the angular velocity $\vec{\omega}$. Then the vortex states with different polarization are nonequivalent and switching processes become energetically favored. This cannot explain, however, why the threshold of the switching is a non-monotonic function of the frequency ω (Fig. 2). To gain deeper insight we need in a reduced form of the Hamiltonian (1) which takes into account both types of vortices: in-plane and out-of-plane. As a topological charge, p, is conserved in the continuum limit only. Thus the switching between states with different polarization is due to lattice discreteness.

We consider the near-critical case $|\delta - \delta_c|/(1 - \delta_c) \ll 1$ when the out-of-plane spin deviations M_\parallel are small, and assume also smooth dependence of the deviations $\phi_\parallel = \Phi_\parallel - \Phi_\parallel^0$ from the static vortex structure on the spatial variable \vec{n}. In this case, applying the transformation

$$M_R = \sum_\nu \mathcal{L}_{\vec{n},\nu} m_\nu, \quad \phi_\parallel = \sum_\nu \mathcal{K}_{\vec{n},\nu} \psi_\nu$$

(5)

where the coefficients $\mathcal{L}_{\vec{n},\nu}, \mathcal{K}_{\vec{n},\nu}$ satisfy the set of equations

$$\mathcal{L}_{\vec{n},\nu} = 2 \sum_\delta (\mathcal{K}_{\vec{n},\nu} - \mathcal{K}_{\vec{n},-\nu,\delta}) \cos(\Phi_\parallel^0 - \Phi_\parallel^0), \quad \mu_\nu \mathcal{K}_{\vec{n},\nu} = 2 \sum_\delta (-1 - \delta) \mathcal{L}_{\vec{n},-\nu,\delta} + \mathcal{L}_{\vec{n},\nu} \cos(\Phi_\parallel^0 - \Phi_\parallel^0)$$

(4)

we transform the harmonic part of the Hamiltonian (1) obtained in the vicinity of the static in-plane vortex, $H_0 = \frac{1}{2} \sum_{\vec{n},\delta} (\phi_\parallel - \phi_\parallel^0 - \phi_\parallel^0) + \lambda M_\parallel M_{\parallel - \delta} - M_{\parallel}^2 \cos(\Phi_\parallel^0 - \Phi_{\parallel - \delta}^0)$

(6)

to the principal axis coordinates $H_0 = \frac{1}{2} \sum (\psi_1^2 + \mu_\nu m_\nu^2)$.

In Refs (3,4,5) the linear eigenmodes of the easy-plane ferromagnet with Hamiltonian (1) in the presence of a vortex were investigated. The lowest radially symmetric mode, which is localized near the vortex center and describes the in-phase motion of the core spins, becomes soft when δ approaches δ_c. In other words, this mode is responsible for the in-plane vortex instability.

The corresponding eigenvalue, say μ_1, becomes negative when $\delta < \delta_c$: $\mu_1 = B (\delta - \delta_c)$ with B a numerical coefficient. Inserting the transformation (3) into the Hamiltonian $H_1 = H - H_0$ and keeping only the soft eigenmode $\nu = 1$, we obtain an effective soft-mode Hamiltonian

$$H_s = \frac{1}{2} (\psi_1^2 + \mu_1 m_1^2) + \frac{A}{4} m_1^4$$

(7)

where terms $m_1^2 \psi_1^2$ and ψ_1^4 which are unimportant in the near-critical case and all higher order terms have been omitted. $A = \frac{1}{2} \sum_{\vec{n},\delta} (\mathcal{L}_{\vec{n},1}^2 - \mathcal{L}_{\vec{n},-1,\delta}) \cos(\Phi_\parallel^0 - \Phi_{\parallel - \delta}^0)$ is a positive constant.

We see from Eqs (4) and (5) that a spatially uniform in-plane magnetic field cannot excite the radially symmetric soft mode when the vortex is situated at the center of the system. Switching can occur only as a result of nonlinear mixing between the radially symmetric mode and non-symmetric vortex modes which do interact with the spatially uniform alternating external field. This may take place in large systems where the motion of the vortex is frozen (3). However, in a relatively small, finite system
with free boundary conditions the vortex is attracted by its image and moves along an unwinding spiral trajectory (see e.g. [3]) towards the boundary. Our numerical experiments do show that switching events in general occur only when vortex is at a finite distance from the center. The vortex center motion is very slow (with a frequency \(\sim 1/L^2 \)). So we can consider the switching process with fixed vortex position, say \(X = R \cos \chi, Y = R \sin \chi \). Inserting Eqs (5) and (2) into Eq. (3) and assuming that the effective interaction of the in-plane ac magnetic field with the soft mode:

\[
V_s(t) = h \left(a_1 \psi_1 \sin(\omega t) - h \frac{1}{2} (a_2 \psi_1^2 + b m_1^2) \cos(\omega t) \right)
\]

(8)

where \(a_l = \sum \frac{R \sqrt{n_l^2 + n_l^2}}{2 L^2} (K_{r,l})^l \), (l = 1, 2), and \(b = \sum \frac{R \sqrt{n_l^2 + n_l^2}}{2 L^2} (L_{r,l})^l \). An effective interaction of the same form can be obtained by taking into account the fact that the vortex structure is velocity dependent [10] and symmetric about the direction of the vortex motion. The constant phase shift \(q\chi \) plays no essential role and was omitted.

From Eqs (7) and (8) we find that in the soft mode approach the dynamics is governed by

\[
\begin{align*}
\dot{m}_1 &= -\psi_1 - h (a_1 \sin \omega t - a_2 \psi_1 \cos \omega t) \\
\psi_1 &= \mu_1 m_1 + A m_1^3 \\
\dot{\psi}_1 &= \mu_1 m_1 + A m_1^3 - \gamma \psi_1 - h b m_1 \cos \omega t.
\end{align*}
\]

(9)

Here the nonlinear terms \(m_1^3, (n > 3) \) and \(m_1^2 \psi_1 \) have been neglected. An example of the core dynamics based on Eqs (8) is presented in Fig. 3. These results are in good agreement with those from the numerical integration of the full Landau-Lifshitz equations (4).

To clarify the physical meaning it is convenient to write the set of equations (8) as a single equation for \(m_1 \). Near the threshold \(|\mu_1| \ll 1 \), in the limit of small damping \(\gamma \ll 1 \), and for a not too strong amplitude of the external magnetic field \(a_2 h \leq 1 \) we obtain from Eqs (8) an effective equation for \(m_1 \):

\[
\dot{m}_1 + \gamma \dot{m}_1 + \mu_1 m_1 + A m_1^3 + h (a_1 \omega - b m_1) \cos \omega t = 0.
\]

Thus the vortex core dynamics is analogous to the dynamics of a particle in a double-well potential under the action of direct and parametric forces. In order to estimate \(h_{cr} \) we use a heuristic approach proposed by Moon [3]. Here the switching occurs when the particle reaches the maximum velocity on the homoclinic orbit. Considering the particle motion in the potential well centered at \(m_1 = p \sqrt{\mu_1} \) and using multiple-scale analysis for small \(\gamma, h \) and \(|\omega^2 - \omega_0^2| \ll 1 \), where \(\omega_0 = \sqrt{2|\mu_1|} \) is the frequency of harmonic oscillations near the bottom of the well, we find \(m_1 \approx \sqrt{|\mu_1|} (p + M(\omega) \cos(\omega t)) \), with

\[
M^2 \left(\omega_0^2 - \omega^2 - \frac{3}{2} \omega_0^2 M^2 \right)^2 + \gamma^2 \omega^2 = 2 A \frac{h^2}{\omega_0^2} (a_1 \omega - b \sqrt{|\mu_1|} p)^2.
\]

(10)

The maximum velocity on the homoclinic orbit is \(\frac{\omega_0}{\sqrt{a_1 h}} \). The switching occurs when \(\omega M(\omega) = \alpha \frac{\omega_0}{\sqrt{a_1 h}} \), where \(\alpha \approx 1 \) is an empirical parameter. From Eq. (10) we find \(h_{cr}(\omega) \) in the form

\[
\frac{a\omega_0^2}{\sqrt{2A}} \frac{1}{|\Omega (a_1 \sqrt{2\Omega - b p})|} \sqrt{\left(1 - \Omega^2 - 3 \frac{\alpha^2}{8 \Omega^2} \right)^2 + \frac{\gamma^2}{\omega_0^2} \Omega^2}
\]

(11)

where \(\Omega = \omega/\omega_0 \). The condition (11) is in agreement with the results of numerical simulations: the function \(h_{cr}(\omega) \) has minima near the frequency of the soft mode \(\omega \approx \pm \omega_0 \). It is highly asymmetric (Fig. 4). For small amplitudes of the counter-clockwise rotating magnetic field \(\omega > 0 \), the switching condition \(h > h_{cr} \) can be fulfilled only for the vortex with initial polarization \(p = -1 \), while for a clockwise rotating field the condition can be fulfilled for the vortex with opposite polarization \(p = 1 \). Qualitatively the same results may be obtained by using the Melnikov function approach [10].

In conclusion, we have shown that the polarization of out-of-plane vortices in easy-plane ferromagnets can be changed by applying an ac magnetic field. Flips occur more easily when the polarization of the vortex is anti-parallel to the angular velocity \(\dot{\omega} \). It can take place only in discrete systems, and they are uni-directional events.

I. ACKNOWLEDGEMENTS

Yu. Gaididei is grateful for the hospitality of the University of Bayreuth and the Los Alamos National Laboratory where this work was performed. Work at Los Alamos is performed under auspices of the U.S.D.o.E. Discussions with Darryl Holm and Gary Wysin are acknowledged.

[1] L. J. de Jongh, in Magnetic Properties of Layered Transition Metal Compounds, ed. by L. J. de Jongh (Kluwer Academic Press, Dordrecht, 1990).
[2] P. Gaveau, J. P. Boucher, L. P. Regnault, J. Y. Henry, J. Appl. Phys. 69, 6228 (1991).
[3] M. Pomerantz, Surf. Sci. 142, 556 (1984).
[4] D. I. Head, B. H. Blott, and D. Melville, J. Phys. (Paris) Colloq. 49, C8-164 (1988).
[5] V. Berezenskii, Sov. Phys. JETP 32, 493 (1970); J. M. Kosterliz, and D. J. Thouless, J. Phys. C6,1181 (1973).
[6] L. P. Regnault and J. Rossat-Mignod, in Magnetic Properties of Layered Transition Metal Compounds, ed. by L. J. de Jongh (Kluwer Academic Press, Dortrecht, 1990).
[7] H.-J. Mikeska and M. Steiner, Adv. Phys. 40, 191 (1991).
[8] D. G. Wiesler, H. Zabel, and S. M. Shapiro, Z. Phys. B 93, 277 (1994)
[9] F. G. Mertens, A. R. Bishop, G. M. Wysin, and C. Kawanabata, Phys. Rev. Lett. 59, 117 (1987); Phys. Rev. B 39, 591 (1989)
[10] M. E. Gouvea, G. M. Wysin, A. R. Bishop, and F. G. Mertens, Phys. Rev. B 39, 11840 (1989).
[11] G. M. Wysin, Phys. Rev. B 49, 8780 (1994)
[12] G. M. Wysin, A. R. Vökel, Phys. Rev. B 52, 7412 (1995).
[13] B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, Phys. Rev. Lett. 76, 511 (1996).
[14] A. V. Nikiforov and E. B. Sonin, Sov. Phys. JETP 58, 373 (1983).
[15] B. A. Ivanov, A. K. Kolezhuk, and G. M. Wysin, Phys. Rev. B 52, 7412 (1995).
[16] A. R. Vökel, G. M. Wysin, F. G. Mertens, A. R. Bishop, and H. J. Schnitzer, Phys. Rev. B 50, 12711 (1994).
[17] F. G. Mertens, A. R. Vökel, Phys. Rev. B 50, 12711 (1994).
[18] F. C. Moon, Chaotic Vibrations (Wiley, New York, 1987).
[19] V. K. Melnikov, Trans. Moskow Math. Soc. 12, 1 (1963).

Figures

Figure 1: Switching from the state with positive polarization to the state with negative polarization of the out-of-plane vortex due to a clockwise rotating magnetic field with the frequency $\omega = -0.1$. The damping constant $\gamma = 0.002$. The lower curve shows the time evolution of the magnetization of the inner shell when the field amplitude $h = 3 \times 10^{-3}$ is above the threshold value, the straight line corresponds to $h = 10^{-3}$ (the amplitude of oscillations in this case is very small ≈ 0.005 and therefore they are not seen in the figure).

Figure 2: Threshold value of the field amplitude h_{cr} versus ω obtained from the numerical integration of the full Landau-Lifshitz equations.

Figure 3: Time evolution of the vortex core magnetization in the presence of the clockwise (upper curve) and counter-clockwise (lower curve) rotating magnetic field based on Eqs. The parameters are $A = a_1 = a_2 = b = 1, \mu_1 = -0.1, \omega = \pm 0.1, h = 0.04, \gamma = 0.01$. Initial polarization $p = +1$.

Figure 4: Threshold value of the field amplitude h_{cr} versus ω, as given by Eq. The parameters used are $a_1 = b, A'/\alpha = 0.01, \omega_0 = 0.08, \gamma = 0.002$.