Metallothionein crypt-restricted immunopositivity indices (MTCRII) correlate with aberrant crypt foci (ACF) in mouse colon

ET Donnelly1, H Bardwell2, GA Thomas2,6, ED Williams2, M Hoper1, P Crowe1, WG McCluggage3, M Stevenson4, DH Phillips2, A Hewer2, MR Osborne3 and FC Campbell*,1

1Departments of Surgery, Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Clinical Sciences Building, Grosvenor Road, Belfast BT1 2BB, Northern Ireland, UK; 2Strangeways Research Laboratories, Worts Causeway, Cambridge CB1 8RN, UK; 3Department of Pathology, Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT1 2BB, Northern Ireland, UK; 4Department of Epidemiology, Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT1 2BB, Northern Ireland, UK; 5Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Catswold Road, Sutton, Surrey SM2 5NG, UK

Keywords: stem cell; mutation; mixture

Humans are exposed to mixtures of genotoxic and nongenotoxic environmental chemicals that may be linked to cancer (Burkart and Jung, 1998; Minamoto et al, 1999). Robust biomarkers of somatic stem cell mutation and mutant clonal expansion may provide cancer surrogates that are useful for risk assessment. Acquired mutation of a selectable endogenous reporter gene like glucose-6-phosphate dehydrogenase (G6PD) within a colonic crypt stem cell; mutation; mixture

MATERIALS AND METHODS

Chemicals, reagents, animals and treatment regimens were as described previously (Donnelly et al, 2004). Anti-MT primary antibody (mouse anti-horse monoclonal E9, isotype: IgG1) and peroxidase-conjugated rabbit anti-mouse immunoglobulins
were obtained from DAKO Ltd, Ely, Cambridgeshire, UK (Dako M0639 and P0161 respectively), as described previously (Jasani et al, 1998; Cook et al, 2000). Methylene blue was obtained from BDH Chemicals Ltd, Poole, Dorset, UK (BDH 34048).

Animals and treatment regimes
Female adult Balb/c mice, aged 6–8 weeks, were obtained from Harlan UK Ltd, Bicester, Oxon, UK, divided into groups of five or 10, ear-punched and placed in coded stainless-steel wire cages, maintained and fed as outlined previously (Donnelly et al, 2004). Individual animal weights and group fluid and AIN-76 diet consumption were assessed daily, during weekdays.

Treatment groups
In all, 90 female adult Balb/c mice aged 6–8 weeks were divided into 11 groups of five or 10 that received no MNU, MNU (62.5 mg kg−1 dissolved in dimethylsulphoxide (DMSO)) alone or in combination with 1 or 4% 3CgN as follows:

- **Group 1 (n = 5)**: Drinking water only for 20 weeks (water only control).
- **Group 2 (n = 5)**: Single intraperitoneal (i.p.) injection of MNU (DMSO), then drinking water for 20 weeks (vehicle control).
- **Group 3 (n = 5)**: Continuous 1% 3CgN only for 20 weeks.
- **Group 4 (n = 5)**: Continuous 4% 3CgN only for 20 weeks.
- **Group 5 (n = 10)**: MNU 62.5 mg kg−1 i.p., then drinking water only for 20 weeks.
- **Group 6 (n = 10)**: MNU 62.5 mg kg−1 i.p. and 1% 3CgN for 7 days during week 1, then drinking water until 20 weeks.
- **Group 7 (n = 10)**: MNU 62.5 mg kg−1 i.p. and 4% 3CgN for 7 days during week 1, then drinking water until 20 weeks.
- **Group 8 (n = 10)**: MNU 62.5 mg kg−1 i.p. and three 7-day treatments of 1% 3CgN during weeks 1, 4 and 7. Drinking water was given between and after 3CgN treatments until 20 weeks.
- **Group 9 (n = 10)**: MNU 62.5 mg kg−1 i.p. and three 7-day treatments of 4% 3CgN during weeks 1, 4 and 7. Drinking water was given between and after 3CgN treatments until 20 weeks.
- **Group 10 (n = 10)**: MNU 62.5 mg kg−1 i.p. and continuous 1% 3CgN treatment until 20 weeks.
- **Group 11 (n = 10)**: MNU 62.5 mg kg−1 i.p. and continuous 4% 3CgN treatment until 20 weeks.

In combined regimens, MNU was administered after the first 5 days of 3CgN treatment.

Welfare considerations and weight index
Animal welfare considerations were strictly in accordance with OECD guidelines (OECD, 2002). Animals were weighed daily and weight index was calculated as the ratio at study completion relative to weight at study start. Values for mean weight index were compared between treatment groups, at study completion.

Assay of ACF
All assays of ACF were blinded to treatment and carried out after colonic retrieval at 20 weeks after the initiation of treatment. Colons were carefully pinned flat on a cork mat, painted with 0.1% methylene blue and left at room temperature for 10 min. Assay of ACF was performed using a dissecting microscope at ×40 magnification and the following parameters were recorded:

- (i) ACF number: Assessed as the total number of ACF per colon or per 104 colonic crypts.
- (ii) ACF size (crypt multiplicity): Crypt multiplicity was determined as the number of aberrant crypts per ACF.

Colons were then ‘Swiss-rolled’ on the cork mat, with the ileoecal junction at the centre of the roll, fixed in neutral formal saline for 48 h, and embedded in paraffin wax blocks.

Assay of MTCRII
All assays of MTCRII were blinded to treatment and carried out 20 weeks after the initiation of treatment. MTCRII were assayed as described previously (Donnelly et al, 2004). Briefly, paraffin-embedded sections (4 μm thickness) were cut at 10 levels (L1–L10), 100 μm apart through the ‘Swiss-rolled’ colon. One section from each level was stained using a standard indirect immunoperoxidase technique for MT, while endogenous peroxidase activity was blocked using 3% hydrogen peroxide in methanol. Slides were incubated with an anti-MT primary antibody (E9, isotype: IgG1; 100 μl per slide) (DAKO Ltd, Ely, Cambridgeshire, UK). The secondary antibody used was horseradish peroxidase-conjugated rabbit anti-mouse immunoglobulin (Dako catalogue no. P0161). Negative control sections were incubated either in the absence of antibody, in normal mouse serum (1:1000), or with an irrelevant antibody of the same IgG subclass (1:1000) (IgG1; Dako catalogue product code X0931). These were consistently negative. Positive control sections included mouse colon previously treated with N-ethyl-N-nitrosourea (ENU; 250 mg kg−1), which induces MT-immunopositive crypts (Cook et al, 2000). Sections were washed and 100 μl of the chromogen 3,3′-diaminobenzidine tetrahydrochloride was added before counter-staining with Harris haematoxylin. The frequency and size of MT-immunopositive foci as well as total number of MT-immunopositive crypts were assessed as follows:

- (i) MT-immunopositive single crypts or patches of ≥2 contiguous MT-immunopositive crypts were recognised by their dark brown stain against a haematoxylin background and were assessed in transverse or longitudinal section through the crypt lumen. Each single or contiguous patch of ≥2 MT-immunopositive crypts was considered to represent a single mutant focus.
- (ii) The size of each MT-immunopositive patch was assessed by the number of contiguous MT-immunopositive crypts within the patch. Patches were recorded as doubles, triples or greater (n = 2, 3, etc., MT-immunopositive crypts).
- (iii) The total number of MT-immunopositive crypts per mouse colon was determined by the sum of single immunopositive and all immunopositives within patches.

Endpoints of the (i) frequency of MT-immunopositive foci (ii) number of MT-immunopositive patches and (iii) the total number of MT-immunopositive crypts were expressed as the number per 104 total crypts, in mouse colon.

Data analysis
Serial weight data were available in individual mice. The weight index was calculated as the weight at study completion relative to weight at study start, expressed as a percentage. Between-group differences of weight index were assessed by one-way ANOVA. Descriptive statistics applied to weight index were expressed as mean ± standard deviation (mean ± s.d.). Group data were available for consumption of food and fluid, which were assessed in grams or ml per kg body weight, respectively. Descriptive statistics
were expressed as mean±s.d. To achieve a normal distribution, MTCRII and ACF data from each treatment group were log-transformed to ensure a normal distribution and assessed by a probability plot of residuals. Transformed data were analysed by univariate ANOVA. Duncan post hoc tests were applied to assess differences between specific treatment regimens. Differences of MT-immunopositive patch formation between MNU alone and all combinations of λCgN/MNU were assessed by Student’s t-test. Correlations between MTCRII and ACF data were investigated by Pearson’s product moment coefficient. SPSS for Windows (version 11) was used for statistical analysis (SPSS Inc., Chicago, Il, USA).

RESULTS

Food, fluid intake and body weight

In all, 11 treatment groups of mice (n = 90 total) received water- or vehicle-only controls, high- or low-dose λCgN alone or in combination with MNU (62.5 mg kg⁻¹ i.p.). λCgN was given in single or recurrent short- or long-term patterns of exposure. Group values for fluid, food intake and weight index are shown in Table 1. No significant between-group differences of weight index were observed at study completion (Table 1).

Treatment regimes	Mice (n)	Group fluid intake (mL g⁻¹ body weight)	Group food intake (g g⁻¹ body weight)	Weight index
1. Control (water) only	5	0.165	0.184	132.72±2.2
2. DMSO vehicle only	5	0.163	0.192	133.71±2.5
3. Continuous 1% λCgN	5	0.172	0.174	126.51±3.4
4. Continuous 4% λCgN	5	0.113	0.184	132.09±4.7
5. MNU (62.5 mg kg⁻¹)	10	0.152	0.161	126.58±6.5
6. MNU+1 x 7 day 1% λCgN	10	0.151	0.170	130.49±6.9
7. MNU+1 x 7 day 4% λCgN	10	0.149	0.165	126.43±5.4
8. MNU+3 x 7 day 1% λCgN	10	0.149	0.167	133.29±6.9
9. MNU+3 x 7 day 4% λCgN	10	0.122	0.165	129.95±3.9
10. MNU+continuous 1% λCgN	10	0.137	0.164	130.22±4.6
11. MNU+continuous 4% λCgN	10	0.114	0.165	125.41±6.2

DMSO = dimethylsulphoxide; λCgN = lambda carrageenan; MNU = N-methyl-N-nitrosourea.

Table 1 Effects of 20-week treatments on group fluid and food consumption and weight index

Table 2 Treatment effects upon MTCRII

Treatment	Mice (n)	Total MT-immunopositive crypt number	Patches ≥ 2 MT-immunopositive crypts	Frequency of MT-immunopositive foci	
1. Water only	5	36.43±2.053	1.13±0.04	0.10±0.06	1.13±0.33
2. DMSO only	5	33.29±2.888	0.97±0.29	0	0.97±0.29
3. Continuous 1% λCgN	5	37.02±2.091	0.88±0.32	0	0.88±0.32
4. Continuous 4% λCgN	5	38.67±1.149	1.3±0.32	1	1.3±0.32
5. MNU only (62.5 mg kg⁻¹)	10	29.75±1.925	37.66±2.93	5.54±0.91	31.73±2.66
6. MNU+1 x 7-day cycle 1% λCgN	10	27.71±1.715	46.54±5.53	6.76±1.10	38.60±5.18
7. MNU+1 x 7-day cycle 4% λCgN	10	32.53±1.543	52.31±1.482	9.61±0.78	39.39±4.72
8. MNU+3 x 7-day cycles 1% λCgN	10	30.65±1.201	59.85±6.91	8.27±1.56	51.46±6.81
9. MNU+3 x 7-day cycles 4% λCgN	10	30.64±1.316	52.47±7.80	9.62±0.67	43.79±5.89
10. MNU+continuous 1% λCgN	10	31.37±1.832	47.86±5.96	8.00±1.14	38.14±5.11
11. MNU+continuous 4% λCgN	10	23.45±1.007	56.23±5.41	5.82±0.69	49.98±5.09

MTCRII = metallothionein crypt-restricted immunopositivity indices; MT = metallothionein; DMSO = dimethylsulphoxide; λCgN = lambda carrageenan; MNU = N-methyl-N-nitrosourea.

Treatment effects upon MTCRII

Group values for MTCRII, including total number of MT-immunopositive crypts, MT-immunopositive patch formation and frequency of MT-immunopositive foci, are shown in Table 2. The total number of MT-immunopositive crypts was increased by >25-fold in excess of that of vehicle alone, by MNU (62.5 mg kg⁻¹) treatment, but was unaffected by λCgN treatment alone. Data analysis by one-way between-group ANOVA with the Duncan post hoc test allowed division of results into statistically different subsets. Combined λCgN/MNU regimens induced significantly greater total number of MT-immunopositive crypts compared to MNU alone or treatments lacking MNU (P<0.01; Table 2). Significant incremental differences were observed between treatment subsets (A–C), where A represents treatment groups 1–4, B represents groups 5 and 6 and C represents groups 8 and 11. Treatment groups 7, 9 and 10 overlapped subsets B and C (Figure 1A).

Significant between-group differences in the frequency of patches of ≥2 contiguous MT-immunopositive crypts were also observed (P<0.05; ANOVA). Significant incremental differences were observed between three treatment subsets (A–C), where A represents treatment groups 1–4, B represents group 5 and C represents groups 7 and 9. Treatment groups 6, 8, 10 and 11 overlapped subsets B and C (Figure 1B). Over 95% of mutant patches involved only two contiguous mutant crypts. The frequency of large MT-immunopositive patches (≥3 contiguous immunopositive crypts) was 0.38±0.05 per 10⁴ total crypts for MNU alone (group 5) vs 1.12±0.13 per 10⁴ total crypts for all λCgN/MNU treatment groups (P=0.002). All patches of ≥4 MT-immunopositive crypts were observed in combined λCgN/MNU treatment groups.

Effect of treatment regimes on ACF frequency

The administration of MNU led to a significant increase in ACF numbers by about 10-fold in excess of that of DMSO vehicle alone. ACF data were expressed either as a number per 10⁴ total colonic crypts (Figure 2A) or per mouse colon (Table 3). λCgN treatment alone led to a small significant increase in ACF size, in terms of crypt multiplicity but had no significant effect on ACF number. Combined λCgN/MNU regimens significantly increased ACF number and size (P<0.001; ANOVA). Post hoc analysis demonstrated significant incremental differences in ACF number between five homogeneous treatment subsets (A–E), where A represents treatment groups 1–4, B represents treatment group 5, C represents groups 6 and 7, D represents group 8 and E represents groups 9 and 11. Group 10 overlapped subsets C and D (Figure 2A; Table 3). Significant effects of treatment on ACF size were also observed (P<0.01; Figure 2B) with incremental differences in...
Correlations between MTCRII and ACF

Assessments of MTCRII and ACF were conducted in all treatment groups (1–11). Linear correlations were observed between total MT-immunopositive crypt number per 10^4 crypts and ACF number per 10^4 crypts ($r = 0.732; P < 0.01$) (Figure 3A) and ACF size, in terms of the number of aberrant crypts per focus ($r = 0.84; P < 0.01$) (Figure 3B).

DISCUSSION

Colonic tumorigenesis involves acquisition of mutations or heritable epigenetic events, affecting growth control or differentiation genes within crypt stem cells, progression to premalignant stages including ACF (Bird and Good, 2000) and ultimate invasive
carcinoma. Since these events are stochastic, a higher stem cell mutation rate may accelerate distinct stages of this process (Herrero-Jimenez et al, 1998). Robust biomarkers of stem cell mutation may thus provide useful surrogates of tumorigenesis. Metallothionein crypt-restricted immunopositivity indices provide a stem cell mutation marker that is initiated by mutagen exposures, yet mimics sporadic tumorigenesis because it occurs in widely scattered single crypts or foci throughout the otherwise normal colon (Cook et al, 2000).

Since the relationship of MT crypt-restricted immunopositivity to tumorigenesis was unclear, we assessed the relationship between MTCRII and ACF frequency, in mice treated by λCgN and MNU.

The present study uses a similar combinatorial design, involving a single MNU treatment (62.5 mg kg⁻¹) together with single, repeated or continuous exposures to low- (1%) or high- (4%) dose λCgN, to that of our previous study (Donnelly et al, 2004). In the present study however, follow-up and continuous λCgN treatment were continued for longer term (20 weeks). The present study supports our earlier work and shows that λCgN alone does not significantly affect MTCRII, but enhances MNU effects upon this end point (Donnelly et al, 2004). However, sequential or prolonged λCgN exposure to 20 weeks was associated with the development of larger MT-immunopositive (mutant) patches than observed at 10 weeks, in our previous study.

Hence, prolonged λCgN exposure may have cumulative effects upon mutant patch size. These effects could be related to λCgN-induced tissue injury in mouse colon (Donnelly et al, 2004), fission of immunopositive crypts and formation or enlargement of immunopositive patches, during continual or repeated regenerative healing.

While biomarkers of rate-limiting steps of tumorigenesis are informative, validation against tumour-associated end points is important. Aberrant crypt foci comprise a contiguous collection of crypts that have thickened epithelia, altered luminal openings and are clearly circumscribed from adjacent normal crypts (Bird, 1987). Gene mutations that are commonly observed in colon cancers including K-ras and APC are also observed in a proportion of ACF (Pretlow et al, 1993; Smith et al, 1994). Aberrant crypt foci are thus considered to represent early-stage colorectal tumorigenesis (Bird, 1987; Tudek et al, 1989; Takayama et al, 1998; Bird and Good, 2000), although large or persistent ACF may have greater cancer risk (Papanikolaou et al, 2000). The present study has shown that MTCRII may reflect combined effects of chemicals within a mixture, are induced in sufficient numbers to provide statistical power from relatively small animal samples and correlate with ACF formation at 20 weeks after the initiation of treatment. MTCRII may thus provide the basis for an intermediate risk assessment model for diet- or lifestyle-related genotoxic/nongenotoxic chemical combinations, relevant to colonic health.

ACKNOWLEDGEMENTS

This study was funded by Research Contract T01018 from the Food Standards Agency, which is gratefully acknowledged.
REFERENCES

Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 37: 147 – 151

Bird RP, Good CK (2000) The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett 112 – 113: 395 – 402

Burkart W, Jung T (1998) Health risks from combined exposures: mechanistic considerations on deviations from additivity. Mutat Res 411: 119 – 128

Cook HA, Williams D, Thomas GA (2000) Crypt-restricted metallothionein immunopositivity in murine colon: validation of a model for studies of somatic stem cell mutation. J Pathol 191: 306 – 312

Donnelly ET, Bardwell H, Thomas GA, Williams ED, Hoper M, Crowe P, McCluggage WG, Stevenson M, Phillips DH, Hewer A, Osborne MR, Campbell FC (2004) Modulation of N-methyl-N-nitrosourea-induced crypt restricted metallothionein immunopositivity in mouse colon by a non-genotoxic diet-related chemical. Carcinogenesis 25: 847 – 855

Griffiths DF, Davies SJ, Williams D, Williams GT, Williams ED (1988) Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 333: 461 – 463

Herrero-Jimenez P, Thilly G, Southam PJ, Tomita-Mitchell A, Morgenthaler S, Furth EE, Thilly WG (1998) Mutation, cell kinetics, and subpopulations at risk for colon cancer in the United States. Mutat Res 400: 553 – 578

Jasani B, Campbell F, Navabi H, Schmid KW, Williams GT (1998) Clonal overexpression of metallothionein is induced by somatic mutation in morphologically normal colonic mucosa. J Pathol 184: 144 – 147

Kuraguchi M, Thomas GA, Williams ED (1997) Somatic mutation of the glucose-6-phosphate dehydrogenase (g6pd) gene in colonic stem cells and crypt restricted loss of G6PD activity. Mutat Res 379: 69 – 75

McLellan EA, Medline A, Bird RP (1991) Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res 51: 5270 – 5274

Minamoto T, Mei M, Ronai Z (1999) Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 20: 519 – 527

OECD (2002) Guidance Notes for Analysis and Evaluation of Chronic Toxicity and Carcinogenicity Studies. Paris: Organisation for Economic Cooperation and Development, Environmental Directorate

Papanikolaou A, Wang QS, Papanikolaou D, Whiteley HE, Rosenberg DW (2000) Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21: 1567 – 1572

Park HS, Goodlad RA, Wright NA (1995) Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 147: 1416 – 1427

Pretlow TP, Brasitus TA, Fulton NC, Cheyer C, Kaplan EL (1993) K-ras mutations in putative preneoplastic lesions in human colon. J Natl Cancer Inst 85: 2004 – 2007

Shpitz B, Hay K, Medline A, Bruce WR, Bull SB, Gallinger S, Stern H (1996) Natural history of aberrant crypt foci: a surgical approach. Dis Colon Rectum 39: 763 – 767

Smith AJ, Stern HS, Penner M, Hay K, Mitri A, Bapat BV, Gallinger S (1994) Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 54: 5527 – 5530

Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H, Niiita Y (1998) Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 339: 1277 – 1284

Tudek B, Bird RP, Bruce WR (1989) Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods. Cancer Res 49: 1236 – 1240

© 2005 Cancer Research UK
British Journal of Cancer (2005) 92(12), 2160 – 2165