S eptic arthritis is common in horses of all ages and can result in career ending and life-threatening lameness. Infection occurs when bacteria enter the joint, commonly through hematogenous spread or through a penetrating wound, or less commonly through administration of intra-articular therapies or surgery. Bacterial invasion of joints instigates a rapid and robust inflammatory response and results in significant, acute pain for the animal. The presence of inflammatory cells and cytokines within the joint can also lead to the breakdown of normal joint architecture, development of osteoarthritis, and chronic pain. Obtaining a rapid diagnosis in these cases is important to institute timely and appropriate treatment as increasing the time between onset of disease, diagnosis, and treatment increases the risk of permanent joint dysfunction. Diagnosis of septic arthritis is not straightforward and is based on clinical signs coupled with cytologic analysis of synovial fluid. The period from initial insult to presentation of clinical signs can vary with the quantity and virulence of pathogens introduced and with

Beta defensins as biomarkers: detectable in LPS-stimulated equine peripheral blood mononuclear cells and normal, aseptic, and probable septic equine synovial fluid

Brooke L. Boger, BS1; Jane M. Manfredi, DVM, PhD, DACVS, DACVSMR; Chelsey Yob, B.S.1; Patty Sue D. Weber, PhD2; Carrie C. Jacobs, DVM, DACVS3

1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
2Department of, Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
3Equine Surgery, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

*Corresponding author: Ms. Boger (bogerbro@msu.edu)

https://doi.org/10.2460/ajvr.21.12.0204 © 2022 THE AUTHORS. Published by the American Veterinary Medical Association

OBJECTIVES

Diagnosis of equine septic arthritis is not straightforward, and increasing time between onset, diagnosis, and treatment can have serious consequences for quality of life. Defensins are used in diagnosis of human joint infection. The presence of beta defensins (BDs) in equine synovial fluid and their utility as a biomarker of sepsis has not been investigated; therefore, our objectives were to (1) compare in vitro gene expression of lipopolysaccharide (LPS)-stimulated equine neutrophils to unstimulated neutrophils and (2) compare BD protein expression from normal, aseptically inflamed, and septic equine joints.

ANIMALS

5 horses for isolated neutrophil BD expression and 21 synovial fluid samples from 14 horses.

PROCEDURES

RT-qPCR analysis was performed for BD gene expression of stimulated and unstimulated equine peripheral neutrophils. BD protein expression was evaluated from equine joints with no disease, aseptic inflammation, and septic inflammation using a commercial ELISA designed for horses and analyzed with a Kruskal-Wallis test (significant at $P < .05$).

RESULTS

A significant increase was noted in expression of BD-3 in LPS stimulated as compared to unstimulated neutrophils. There were no significant differences in BD expression noted between joints with no disease, aseptic inflammation, and septic inflammation. Low case numbers and different types of cases in the aseptic inflammation group were main limitations. BD expression patterns in samples from stimulated equine peripheral neutrophils and synovial fluid were identified.

CLINICAL RELEVANCE

BDs are detectable in equine synovial fluid and can be stimulated from peripheral neutrophils. Further examination is needed to define their role as biomarkers of joint disease.
medications, particularly corticosteroids, adminis-
tered into the affected joint. Synovial fluid analysis
can also be ambiguous, particularly when values for
total white blood cell count and total protein fall into
an “intermediate range” between normal and abnor-
mal. A positive bacterial culture of synovial fluid is
required for definitive diagnosis; however, positive
culture results only occur in approximately 50% to
60% of clinical cases. Preliminary culture results
can take 48 to 72 hours to be acquired, and nega-
tive results do not preclude sepsis. Due to the limita-
tions of current diagnostics and poor outcomes with
disease if not treated in a timely manner, there is a
critical need to identify biomarkers that can provide
a more accurate diagnosis of septic arthritis and ini-
tiation of appropriate treatment.

Human periprosthetic joint infection presents
similarly to septic arthritis in horses. Clinical signs
and diagnostic testing can be suggestive but not
definitive for infection; however, diagnostic inves-
tigation often yields equivocal results. Defensins
are cysteine-rich proteins of the innate immune
system, have antimicrobial properties, and have
been found in humans to be highly sensitive and
specific for identification of periprosthetic joint
infection. Beta defensin-3 expression has been
detected from human bone and synovial tissue with
periprosthetic joint infection. Levels within these tis-
sues were found to be different between tissues of
periprosthetic joint infection and those with inflam-
mation due to aseptic implant loosening.

Human beta defensins (BDs) and equine BDs are
homologous, which allows comparison between species. In horses, BD-1 expression has been examined
and recognized in a variety of tissues including
the liver, heart, spleen, kidney, gastrointestinal tract, and reproductive tissues. The presence of
BD has not been examined in equine blood, neu-
rophils, synovial fluid, or synovial tissue but has
been found in both bovine neutrophils and human
blood filtrate. Neutrophils are the predominant cell
type in septic synovial fluid and have been used as
an in vitro model of the innate immune response in
the horse, by stimulating them with LPS to activate
the immune response set and a 17-G/3.75-cm needle. Blood (200 mL) was collected into a sterile bottle containing heparin anticoagulant.

Neutrophil isolation and RT-qPCR
Immediately following collection, blood was used
for isolation of nonstimulated neutrophils or was
stimulated with Escherichia coli LPS (2.5 mg) (Sigma
Aldrich), incubated for 90 minutes, and then under-
went neutrophil isolation. Neutrophils were isolated
on a discontinuous density gradient formed from
2 solutions (Percoll; Sigma Aldrich). Cells isolated
were counted using a cell counting chamber (Bright-
line hemocytometer, Fischer Scientific; Waltham,
MA) according to the manufacturer’s directions. Fol-
lowing isolation, RNA was extracted and equine beta
defensin-3 gene expression was identified and quan-
tified via RT-qPCR. Briefly, RNA was isolated using
(RNeasy Kit; Qiagen), and its integrity was checked
(Agilent Bioanalyzer; Agilent Genomics). cDNA
was made (High Capacity CDNA Reverse Transcrip-
tion Kit; Applied Biosystems) and used to perform
RT-qPCR analysis for the presence of beta defen-
sin-1, -2, and -3 (TaqMan BD1, Ec03468234_m1 and
-3 (TaqMan BD1, Ec03468234_m1 and
2 custom-made assays for beta defensin-2 and -3). The efficiency of each Taqman assay was performed
to ensure the assays were within the proper range (98
to 110%). Reference genes (HPRT1, B2M, and GUSB)
were evaluated for their appropriateness with neutro-
phils and were used as controls to normalize mRNA
levels between samples to allow for comparison of
relative BD-3 gene expression between stimulated and unstimulated neutrophils. Equine liver (from
archived samples) was used as a positive control as
it is known to express beta defensin-1. Gene raw
cycle threshold (Ct) and mean fold change (2
were reported. Fold change results were expressed
relative to the nonstimulated blood and statistically
analyzed (Biogazelle qBase Plus, Zwijnaarde).

Methods
All experiments were approved by Michigan
State University’s Institutional Animal Care and Use
Committee. Informed owner consent was obtained
where appropriate.

Experiment 1
Overview
Equine whole blood was collected from 5 healthy
adult research horses. RT-qPCRs were then used to
identify gene and protein expression of equine BDs in
nonstimulated and LPS-stimulated blood neutrophils.

Horses
Whole blood was collected from the jugular vein
of 5 healthy research horses and a complete blood
count was performed to ensure adequate neutrophil
number (> 2,000 cells/μL).

Sample collection
Prior to blood collection, the area over the jugu-
lar vein was rinsed with 70% ethanol. Blood collect-
ion was accomplished using a sterile blood collect-
ion set and a 17-G/3.75-cm needle. Blood (200 mL)
was collected into a sterile bottle containing heparin
anticoagulant.

Neutrophil isolation and RT-qPCR
Immediately following collection, blood was used
for isolation of nonstimulated neutrophils or was
stimulated with Escherichia coli LPS (2.5 mg) (Sigma
Aldrich), incubated for 90 minutes, and then under-
went neutrophil isolation. Neutrophils were isolated
on a discontinuous density gradient formed from
2 solutions (Percoll; Sigma Aldrich). Cells isolated
were counted using a cell counting chamber (Bright-
line hemocytometer, Fischer Scientific; Waltham,
MA) according to the manufacturer’s directions. Fol-
lowing isolation, RNA was extracted and equine beta
defensin-3 gene expression was identified and quan-
tified via RT-qPCR. Briefly, RNA was isolated using
(RNeasy Kit; Qiagen), and its integrity was checked
(Agilent Bioanalyzer; Agilent Genomics). cDNA
was made (High Capacity CDNA Reverse Transcrip-
tion Kit; Applied Biosystems) and used to perform
RT-qPCR analysis for the presence of beta defen-
sin-1, -2, and -3 (TaqMan BD1, Ec03468234_m1 and
2 custom-made assays for beta defensin-2 and -3). The efficiency of each Taqman assay was performed
to ensure the assays were within the proper range (98
to 110%). Reference genes (HPRT1, B2M, and GUSB)
were evaluated for their appropriateness with neutro-
phils and were used as controls to normalize mRNA
levels between samples to allow for comparison of
relative BD-3 gene expression between stimulated and unstimulated neutrophils. Equine liver (from
archived samples) was used as a positive control as
it is known to express beta defensin-1. Gene raw
cycle threshold (Ct) and mean fold change (2
were reported. Fold change results were expressed
relative to the nonstimulated blood and statistically
analyzed (Biogazelle qBase Plus, Zwijnaarde).
Statistics

Five horses were determined to be a large enough sample size to see differences (alpha 0.05; power 80%; means 0.075 and 0.3; and standard deviation 0.15). Statistical analysis was carried out on a dedicated statistical program (Prism 8.4.3; Graph Pad). Differences between expression of beta defensins between stimulated and nonstimulated neutrophils was evaluated with a Student’s t test, with significance set at $P < .05$.

Experiment 2

Overview

Synovial fluid was collected from normal, aseptic, and septic joints from equine clinical cases as determined by the combination of clinical signs and diagnostics indicated below. This synovial fluid was analyzed using commercial ELISAs designed for detecting equine BD-1, -2, and -3 expression (Genorise Scientific).

Horses

Fourteen horses that either presented to one large animal referral hospital or were part of other approved research studies were used as subjects in this experiment. Clinical samples were acquired with owner permission. History, including time from when clinical signs were noted by the owner until presentation at the referral hospital, treatment before or at the hospital, and all diagnostic tests and procedures performed were recorded.

Sample collection

Synovial fluid was collected using sterile technique from joints of horses with no known lameness or radiographic signs of joint disease, from horses with aseptic inflammation (lameness and radiographic evidence of osteoarthritis, cellulitis, or known joint trauma), and from horses with lameness (grade 4 of 5 lameness on the American Association of Equine Practitioners lameness grading scale) and evidence of sepsis. Synovial fluid was aliquoted into an EDTA coated vacutainer tube, a serum blood vacutainer tube, an Eppendorf tube, or a blood culture bottle as appropriate for the analysis to be performed. Samples in the Eppendorf tube were placed into a −80°C freezer. Cells were counted by a commercial machine (Abaxis VetScan HM5 analyzer; Allied Analytic) as well as confirmed by a board-certified pathologist via hemocytometer. Joints were considered to have septic inflammation if they had a positive bacterial culture and/or bacteria seen intracellularly, or based on having a combination of 2 of the 3 following criteria:2,23,24 marked neutrophilic inflammation (neutrophils > 90%), nucleated cell count > 20 X 10^3 cells/μL, or total protein > 4 g/dL in submitted synovial fluid samples. All samples were collected within 6 hours of the horse presenting to the hospital.

Beta defensin 1, 2, and 3 ELISAs

Equine BD-1, -2, and -3 protein expression was identified using commercially available sandwich ELISAs (Genorise Scientific) specifically made for the horse. The synovial fluid was diluted to between 2- and 4-part assay buffer to 1-part sample to fall within the standard optical density at 450 nm (OD450) curve. The ELISAs were validated for equine use in our laboratory using a spike and recovery assessment and evaluation of dilutions of individual equine samples (neat, 1:2, 1:4).

Statistics

Normality was assessed with a Shapiro-Wilk test and expression of BDs between groups was analyzed via a Kruskal-Wallis test, significant at $P < .05$. Statistical analysis was carried out on a dedicated statistical program (Prism 8.4.3; Graph Pad).

Table 1—Raw Ct means (avg) and standard deviation (SD) of the housekeeping genes HPRT1, B2M, GUSB, and BD-3 gene expression, as well as mean (avg) fold change ($2^{-ΔΔCt}$) of BD-3 gene expression in control (nonstimulated) and LPS stimulated neutrophils from 5 adult horses.

Horse ID and group	Reference genes	HPRT1 Avg Ct ± SD	B2M Avg Ct ± SD	GUSB Avg Ct ± SD	BD-3 gene expression Avg Ct ± SD	BD-3 gene $2^{-ΔΔCt}$ Avg
Nonstimulated						
Horse 1		27.57 ± 0.13	17.84 ± 0.12	27.40 ± 0.22	37.76 ± 0.00	1.02
Horse 2		24.93 ± 0.07	14.70 ± 0.12	24.69 ± 0.04	33.56 ± 0.71	2.98
Horse 3		26.16 ± 0.47	15.56 ± 0.09	26.03 ± 0.11	35.13 ± 0.30	2.00
Horse 4		23.32 ± 0.12	14.32 ± 0.14	23.48 ± 0.18	36.38 ± 0.52	0.18
Horse 5		25.07 ± 0.17	15.04 ± 0.10	25.62 ± 0.06	35.14 ± 0.95	1.22
Mean		25.41	15.5	25.44	35.55	1.48
SD		0.19	0.11	0.12	0.5	1.06
Stimulated						
Horse 1		24.48 ± 0.07	15.60 ± 0.12	25.31 ± 0.08	35.06 ± 0.20	1.31
Horse 2		23.58 ± 0.07	14.53 ± 0.11	23.79 ± 0.04	30.42 ± 0.07	13.34
Horse 3		24.55 ± 0.15	15.05 ± 0.08	24.62 ± 0.06	31.17 ± 0.26	14.13
Horse 4		25.60 ± 0.08	14.42 ± 0.10	23.76 ± 0.04	33.71 ± 0.38	1.54
Horse 5		25.37 ± 0.24	15.13 ± 0.10	26.15 ± 0.16	32.53 ± 0.26	9.17
Mean		24.72	14.95	24.73	32.58	7.90*
SD		0.12	0.1	0.08	0.23	6.20

Ct = Cycle threshold.

*Stimulated significantly increased as compared to unstimulated ($P = .05$).
Table 2—Break down of the joints included in the study, age of horses, cell count and total protein, historical and treatment information, case outcome, form of disease, relevant history and criteria for inclusion as septic if applicable, and beta defensin (BD)-1, -2, and -3 concentrations (pg/mL) rounded to the nearest integer (n = 14 horses).

Joint	Joint cell count (CC) (cells/μl)	Total protein (TP) (g/dL)	Time until presentation	Treatment	Case outcome	Form (N, A, S)	Relevant history and criteria for septic diagnosis	BD-1, -2, -3 (pg/mL)
Tarsocrural	7 y	<2.5	2 wk	PRE: none POST: steroid injection after fluid obtained	D/C	N	N/A	0, 0, 0
Tarsocrural	9 y	<2.5	2 wk	PRE: none POST: axb, RLP	D/C	A	Cellulitis	1,221, 766, 305
Tarsocrural	16 y	3.7	2 wk	PRE: none POST: IV pain medication	D/C	A	Chronic osteoarthritis	0, 0, 0
Tarsocrural	12 y	3,333	<12 h	PRE: plasma POST: IA and systemic abx, needle lavage	D/C	S	Positive culture > 90% neutrophils, CC	0, 0, 0
Tarsocrural	15 y	14,7500	6 d	PRE: none POST: E	E	S	Intracellular bacteria, CC, TP	0, 0, 0
Tarsocrural	1 mo	17,5000	4 d	PRE: systemic abx POST: IV, IA, PO abx	D/C	S	Septic systemically CT of her joint abscess seen and osteomyelitis present CC, TP	3, 0, 3
Tarsocrural	19 y	257,125	5.7	<12 h	D/C	S	History of nail to that foot, laceration communicating with joint, >90% neutrophils, CC, TP	339, 285, 92
Distal interphalangeal	7 y	42,740	2.5 wk	PRE: IV abx, POST: E	E	S	Steroid injections 2 days prior, CC, TP	42, 3, 11
Tarsocrural	8 y	135,900	5	2 d	D/C, returned for arthroscopy S	S	Steroid injections	0, 0, 0
Front metacarpophalangeal	4 d	65,640	3.3	<48 h	D/C	S	Septic systemically, positive culture, CC	0, 0, 0
Hind metacarpophalangeal	4 d	65,040	2.7	<12 h	D/C	S	Septic systemically, positive culture, CC	0, 0, 0
Tarsocrural	6 d	21,020	2.6	<12 h	D/C	S	Septic systemically, positive culture, CC	0, 0, 0
Tarsocrural	2 y	6,278	5.5	11 d	E	S	Positive culture	0, 0, 0

A = Aseptic. abx = Antibiotics. CC = Cell count. D/C = Discharged. E = Euthanized. IA = Intra-articular. N = normal. POST = Treatment in the hospital after synoviocentesis. PRE = Treatment before the synoviocentesis performed by the referring veterinarian. RLP = Regional limb perfusion. S = Septic. TP = Total protein.
Table 3—Mean ± standard deviation (SD) and ranges (pg/ml) of beta defensins (BD)-1, -2, and -3 in normal, aseptic, and septic equine joints (n = 14 horses).

	Normal	Aseptic	Septic						
Mean ± SD	2.65 ± 1.06	520.79 ± 618.97	38.73 ± 14.47						
Range (pg/ml)	0-3	0-1221.13	0-339.72	0-3	0-766.28	0-285.22	0-3	0-306.00	0-92.40

Results

Experiment 1

BD-3 gene expression of neutrophils isolated from whole blood from 5 healthy horses was compared using RT-qPCR. A significant difference (P = .05) in relative BD-3 expression was found when comparing LPS-stimulated to nonstimulated neutrophils after normalization to the reference genes (Table 1). Efficiencies for BD-1 and -2 showed no signal and subsequently were not included in further RT-qPCR analyses.

Experiment 2

Horses and joints sampled

Of the 14 horses in the study, synovial fluid was collected from 21 joints. There were 7 normal joints, 4 aseptic, and 10 septic. Mean total nucleated cell count values for normal, aseptic, and septic joints were 246 ± 202 cells/μL, 1,005 ± 1,349 cells/μL, and 68,453 ± 77,581.31 cells/μL, respectively. Mean total protein values for normal, aseptic, and septic joints were 2.6 ± 0.3 g/dL, 3.3 ± 0.5 g/dL, and 4.4 ± 1.3 g/dL, respectively. The joints sampled included the following: 12 tarsi, 4 carpi, 2 distal interphalangeal (DIPJ), 1 metacarpo- and 1 metatarsophalangeal (fetlock), and 1 coxofemoral. Horse ages ranged from 4 days to 25 years and included 5 mares, 6 geldings, 1 colt, and 2 fillies. Distribution of the joints is shown in Table 2. Time until presentation for horses with septic joints ranged from 4 hours to 2.5 weeks. Of the 5 horses which had BD concentrations of > 15 pg/mL, 2 horses with aseptic inflammation, that had the highest concentrations of BDs, had chronic histories of either cellulitis or osteoarthritis (12 years, mare, osteoarthritis; 12 years, gelding, cellulitis), but both presented within 12 hours of an acute worsening of lameness of their chronic issue. The horse with the septic joint that demonstrated the highest BD concentrations (19 years, mare) also presented within 12 hours of injury.

BD-1, -2, and -3 ELISAs

There were no significantly different concentrations of BDs between groups when examining BD-1 (P = .16) or BD-2 (P = .5). For BD-3 the overall P value was .05, with a normal vs. aseptic adjusted P value of .06, a normal versus septic adjusted P value of .842, and an aseptic versus septic adjusted P value of .236. Specific means, standard deviations, and ranges for all BDs are given in Table 3.

Discussion

Expression of BD-3 was identified in both non-stimulated and LPS-stimulated equine neutrophils, which is the first report of BD expression by equine neutrophils. We found greater levels of BD-3, but not BD-1 or BD-2, expression in LPS-stimulated neutrophils, which partially supports the first hypothesis that LPS stimulation would increase BD expression from equine neutrophils. Our second hypothesis was not supported as in clinical cases we did not find an increase in BDs in septic joints compared to normal or aseptic joints.

Neutrophil expression of BDs has not been studied extensively in horses, and it was previously unknown if equine neutrophils express BDs. Systemic stimulation with LPS has been used in other equine studies to mimic septicemia and endotoxemia and LPS has also been used to stimulate equine neutrophils in-vitro. In humans, LPS stimulation has been shown to induce production of BD-1, -2, and -3 from a variety of cell types. In this study, we expected that LPS stimulation would increase all BD expression; however, it only increased BD-3 expression from equine neutrophils in a majority of our samples. This was different from a study which examined alpha and beta defensin expression in unstimulated and stimulated whole blood from human patients. In that study, LPS stimulation produced detectable expression of BD-1 in 88.2% of samples, BD-2 in 39.2% of samples, and no expression of BD-3. Differences that could account for these results include species variability, and differential expression of BDs in whole blood versus isolated neutrophils. The sample from our study that did not show a large increase in BDs had a prolonged period between centrifugations steps during the neutrophil isolation procedure due to centrifuge capacity limitations, and this may have impacted accuracy of this sample. Knowledge of BD expression in equine neutrophils is helpful for further understanding of the innate immune response.

In this study BD-1 protein concentration was not significantly different between normal, aseptically inflamed, and septic joints. Current literature suggests that BD-1 is constitutively produced in all healthy synovial membranes and has roles in immune defenses against bacteria, fungi and viruses. BD-1, -2, and -3 have been found in other tissues of the gastrointestinal tract, respiratory tract, eye, and skin. In our study, BD-1 was either not present or not present in high amounts in synovial
fluid of normal horses. This may be an artificially low concentration as synovial membrane samples may have yielded more accurate concentrations; however, it is invasive to obtain clinically from normal horses.

In aseptic forms of inflammation, such as osteoarthritis, a human study found that greater BD concentrations are present due to joint inflammation and the bony remodeling that occurs after cartilage damage. In that study, BD-3 appeared to upregulate the expression of metalloproteinases (MMPs) responsible for cleaving type II cartilage while downregulating MMP endogenous inhibitors. A more recent study found BDs to be involved in catabolic pathways of articular cartilage, thus contributing to ECM degradation. These findings could explain the presence of BD-3 in osteoarthritic joints even without infection present. BDs were traditionally viewed as exclusively antimicrobial molecules, as their induction in response to diverse bacterial, viral, parasitic, and fungal infections was extensively reported; however, it is now clear that the antimicrobial and immunomodulatory functions of beta defensin peptides are not mutually exclusive and that their function is multifactorial and evolving.

Multiple forms of aseptic inflammation (osteoarthritis, cellulitis, acute trauma) were grouped together in this study, which may be oversimplifying different pathologies and immune responses. A human study looking at the expression of BD-2 in normal patients compared to patients with cellulitis found a greater expression of BD-2 in both the infected skin and the distal skin that appeared normal. This could explain why the horse with cellulitis in the aseptic group had such high levels of BD expression (BD-1, 1221.13 pg/ml; BD-2, 766.28 pg/ml; and BD-3, 306.00 pg/ml) as compared to the other aseptic samples. In the future, cases of cellulitis might merit their own category, and BDs may serve as useful biomarkers for disease progression and response to treatment.

The lack of BDs in septic synovial samples was not expected. Both tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) have been shown to be strong inducers of BD-3. While both osteoarthritic and septic joints are subject to inflammatory responses where TNF-α and IL-1 play a factor, we expected septic joints to be undergoing a greater degree of inflammation and therefore predicted higher concentrations of BDs; however, this was not the case. Paulsen et al. found BD-3 expression in all of the samples from joints with pyogenic inflammation and osteoarthritis but unfortunately did not state concentrations or relative level of expression. Another study measuring cytokine and peptide expression in human patients undergoing total joint replacement found that BD-3 was increased in cases of periprosthetic joint infection both in serum and synovial fluid. Interestingly, that study found BD-2 to be significantly increased only in serum in cases of periprosthetic joint infection. Studies that evaluated concentrations of BDs over time postinfection and the half-life of BDs are unfortunately not present in the literature. In fact, most of the human studies have only evaluated BD expression in periprosthetic joint infection at one time point. It is interesting that our highest concentrations were seen in joints from animals with that presented less than 12 hours from the onset or acute worsening of their clinical signs. Future exploration of BD expression should focus on sampling at this earlier stage of disease development. The reasons for the differences seen between our results, and the studies mentioned above are numerous and include variation among species in BD function, inherent variation among clinical cases, different time frame for sample collection, and this study measuring BDs in synovial fluid alone versus synovium, bone, or cartilage. Based on the studies mentioned above, it would have been interesting to measure serum levels of BD and compare those to local expression.

Limitations of this study included low case numbers and different types of aseptic cases. Synovial fluid was only collected from clinical cases over the course of a year, and we were limited by the types of cases that presented to this referral hospital. The different pathophysiologies contributing to aseptic inflammation (ie, osteoarthritis versus a cellulitis case) may have recruited different immune proteins. Additionally, concentrations of BDs in synovial fluid were measured in this study versus in synovium, bone, or cartilage as the latter 3 are invasive to obtain in clinical cases and our interest was if beta defensins could serve as biomarkers of sepsis prior to surgery. Overall, we were able to identify BD expression in samples from stimulated equine peripheral neutrophils and synovial fluid. While BD expression in normal joints was minimal to absent, further studies are warranted to elucidate the role of BDs in aseptic and septic joint inflammation.

Acknowledgments

This study was funded by the Michigan State University College of Veterinary Medicine Freeman Funds. The authors declare that there were no conflicts of interest.

References

1. Meijer MC, van Weeren PR, Rijkenhuizen AB. Clinical experiences of treating septic arthritis in the equine by repeated joint lavage: a series of 39 cases. J Vet Med A Physiol Pathol Clin Med. 2000;47(6):351–365.
2. Richardson DW, Stewart S. Synovial and osseous infection. In: Auer JA, Stick JA, Kummerle JM, Prange T, ed. Equine Surgery. 5th ed. Elsevier; 2010:1458–1470.
3. Gielissee CC, Adams SB, Moore GE. Methods and variables associated with the risk of septic arthritis following intraarticular injections in horses: a survey of veterinarians. Vet Surg. 2016;45(8):1071–1076.
4. Van Weeren PR. Septic arthritis. In: McIlwraith CW, Frisbie DD, Kawcak CE, van Weeren PR, ed. Joint Disease in the Horse. 2nd ed. Elsevier; 2016:91–104.
5. Gustafson SB, McIlwraith CW, Jones RL. Comparison of the effect of polysulfated glycosaminoglycan, corticosteroids, and sodium hyaluronate in the potentiation of a subinfective dose of Staphylococcus aureus in the midcarpal joint of horses. Am J Vet Res. 1989;50(12):2014–2017.
6. Tulamo RM, Bramlage LR, Gabel AA. The influence of corticosteroids on sequential clinical and synovial fluid parameters in joints with acute infectious arthritis in the horse. *Equine Vet J.* 1989;21(5):332–337.

7. Schneider RK, Bramlage LR, Moore RM, Mecklenburg LM, Kohn CW, Gabel AA. A retrospective study of 192 horses affected with septic arthritis/tenosynovitis. *Equine Vet J.* 1992;24(6):436–442.

8. Madison JB, Sommer M, Spencer PA. Relations among synovial membrane histopathologic findings, synovial fluid cytologic findings, and bacterial culture results in horses with suspected infectious arthritis: 64 cases (1979–1987). *J Am Vet Med Assoc.* 1991;198(9):1655–1661. [2061187]

9. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parviz J. Diagnosing periarticular joint infection: has the era of the biomarker arrived? *Clin Orthop Relat Res.* 2014;472(11):3254–3262.

10. Hazlett L, Wu M. Defensins in innate immunity. *Cell Tissue Res.* 2011;343(1):175–188.

11. Davis EG, Yang Y, Biecha F. Equine beta-defensin-1: full-length cDNA sequence and tissue expression. *Vet Immunol Immunopathol.* 2004;99(1–2):127–132.

12. Liu GD, Yu HJ, Ou S, et al. Human beta-defensin-3 for the differentiation of a novel–defensin gene cluster in the equine reproductive tract. *Reprod Fertil Dev.* In press.

13. Viswanathan VK, Nayak P. The role of newer synovial biomarkers in the diagnosis of periarticular infections. *Bone Implant Powder* 2015;1(2):685–694.

14. Bicho D, Ajami S, Liu C, Reis RL, Oliveira JM. Peptide-functionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. *J Mater Chem B.* 2019;7(7):1027–1044.

15. Meade KG, O’Farrelly C. β-defensins: farming the microbial peptide HBD-2 and the Toll-like receptor (TLR) signaling pathways to enhance lymphatic invasion of oral squamous cell carcinoma. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 2014;112(5):616–625.

16. Fang XM, Shu Q, Chen QX, et al. Differential expression of alpha- and beta-defensins in human peripheral blood. *Eur J Clin Invest.* 2003;33(1):82–87.

17. Paulsen F, Pufe T, Conradi L, et al. Antimicrobial peptides and proinflammatory cytokines in periarticular joint infection. *J Bone Joint Surg Am.* 2015;97(5):644–651.

18. Varoga D, Klostermeier E, Paulsen F, et al. The antimicrobial peptide HBD-2 and the Toll-like receptor (TLR) signaling pathways to enhance lymphatic invasion of oral squamous cell carcinoma. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 2014;112(5):616–625.

19. Holcombe SJ, Jacobs CC, Cook VL, Gandy JC, Hauptman JG, Sordillo LM. Duration of in vivo endotoxin tolerance in horses. *Vet Immunol Immunopathol.* 2016;173:10–16.

20. Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of beta-defensin in the apocrine glands of the equine scrotum. *Arch Dermatol Res.* 2007;299(8):393–397.

21. Newman JM, George J, Klika AK, Barsoum WK, Higuera CA. The role of synovial cytokines in the diagnosis of periarticular joint infections: current concepts. *Am J Orthop (Belle Mead NJ).* 2017;46(5):E308–E313.

22. Benbarka H, Deby-Dupont G, Caudron I, et al. Interactions between lipopolysaccharides and blood factors on the stimulation of equine polymorphonuclear neutrophils. *Vet Immunol Immunopathol.* 1998;64(4):313–322.

23. Pycock JP, Allen WE, Morris TH. Rapid, single-step isolation of equine neutrophils on a discontinuous Percoll density gradient. *Res Vet Sci.* 1987;42(3):411–412.

24. Walmsley EA, Anderson GA, Muirlink MA, Whitten RC. Retrospective investigation of prognostic indicators for adult horses with infection of a synovial structure. *Aust Vet J.* 2011;89(6):226–231.

25. Milner PI, Bardell DA, Warner L, et al. Factors associated with survival to hospital discharge following endoscopic treatment for synovial sepsis in 214 horses. *Equine Vet J.* 2014;46(6):701–705.

26. Weiss DJ, Evanson OA. Evaluation of lipopolysaccharide-induced activation of equine neutrophils. *Am J Vet Res.* 2002;63(6):811–815.

27. Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. *Immunology.* 2002;106(4):517–525.

28. Harder J, Meyer-Hoffert U, Teran LM, et al. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. *Am J Respir Cell Mol Biol.* 2002;22(6):714–721.

29. Shyu Y, Feng W, Jing T, et al. Human beta-defensin-3 (HBD-3) upregulated by LPS via epidermal growth factor receptor (EGFR) signaling pathways to enhance lymphatic invasion of oral squamous cell carcinoma. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 2011;112(5):369–377.

30. Corrales-Garcia LL, Possani LD, Corzo G. Expression systems of human β-defensins: vectors, purification and biological activities. *Amino Acids.* 2011;40(1):5–13.

31. Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases. *Clin Exp Allergy.* 2016;46(12):1522–1530.

32. Varoga D, Pufe T, Harder J, et al. Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. *Arthritis Rheum.* 2005;52(6):1736–1745.

33. Bicho D, Ajami S, Liu C, Reis RL, Oliveira JM. Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. *J Mater Chem B.* 2019;7(7):1027–1044.

34. Meade KG, O’Farrelly C. β-defensins: farming the microbial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in horses with suspected infectious arthritis: 64 cases (1979–1987). *J Am Vet Med Assoc.* 1991;198(9):1655–1661. [2061187]

35. Nibbering PH. Expression of beta-defensin 1 and 2 mRNA in horses with suspected infectious arthritis: 64 cases (1979–1987). *J Am Vet Med Assoc.* 1991;198(9):1655–1661. [2061187]

36. Holcombe SJ, Jacobs CC, Cook VL, Gandy JC, Hauptman JG, Sordillo LM. Duration of in vivo endotoxin tolerance in horses. *Vet Immunol Immunopathol.* 2016;173:10–16.

37. Weiss DJ, Evanson OA. Evaluation of lipopolysaccharide-induced activation of equine neutrophils. *Am J Vet Res.* 2002;63(6):811–815.

38. Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. *Immunology.* 2002;106(4):517–525.

39. Harder J, Meyer-Hoffert U, Teran LM, et al. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. *Am J Respir Cell Mol Biol.* 2002;22(6):714–721.