INTRODUCTION

Repeated treatment with psychostimulants induces sensitization of the dopaminergic system in the brain. Dopaminergic sensitization has been proposed as a mechanism of psychosis. Although antipsychotics block the expression of sensitized behavior, they are ineffective for reversing the sensitized state. We investigated the effect of clozapine, haloperidol, and fluoxetine on the reversal of cocaine-induced behavioral sensitization.

METHODS

Animals

Thirty-nine male ICR mice (Orient, Seoul, Korea) weighing...
approximately 20 g were used. The mice were maintained under a 12/12-h dark/light cycle, and food and water were available ad libitum. All animal procedures were conducted in accordance with NIH Guidelines for the Use of Laboratory Animals. In order to reduce the number of animals, we did not use a separate control group for cocaine-induced sensitization. The mice were given 20 mg/kg cocaine-HCl dissolved in 0.9% NaCl intraperitoneally (Belgopia, Louvain-La-Neuve, Belgium) for 5 consecutive days. Locomotor activity was measured after the first (day 1) and last (day 5) treatments. Injections on days 2, 3, and 4 were administered in their home cages. One week after the last treatment, another dose of cocaine was given, and locomotor activity was measured to confirm that the sensitized state was maintained (day 13). The animals were then split into four groups based on locomotor activity on that day, in a manner in which the mean activity for each group was similar. Allocation of a specific drug to each group was determined randomly. Drug treatments began 3 days later, and the animals were given clozapine (5 mg/kg), fluoxetine (10 mg/kg), haloperidol (2 mg/kg), or vehicle (0.3% tartaric acid, pH adjusted to 5.0) for 5 consecutive days. After a 3-day washout period, the animals were finally challenged with the same dose of cocaine, and their locomotor activities were measured (day 23) (Figure 1).

Measurement of locomotor activity
Locomotor activity was measured in a sound-attenuated test room, using a home-cage video tracking apparatus (Activity Monitor Ver. 5.0, MED-Associates, St. Albans, VT, USA). Mice were placed on the test room 3 h before the test to acclimate the animals to the testing environment. Each animal was placed in a transparent acrylic box (23×21×21 cm), and its distance traveled was measured for 30 min in 5-min time block (pre-cocaine). Then, the animal was injected with cocaine (20 mg/kg) and distance traveled was measured for another 60 min in the same way (post-cocaine). Locomotor activity was measured during the light phase of the day (12:00–20:00 h).

Statistical analysis
Data were analyzed using analysis of variance (ANOVA) with post-hoc Duncan’s test, or the paired t-test (two-tailed). P<0.05 was statistically significant. The software was SPSS ver 19 (IBM, Armonk, NY, USA).

RESULTS

Sensitization
Repeated cocaine treatment for 5 days significantly increased locomotor activity after the cocaine challenge (day 1 vs. day 5, t=-5.177, df=38, p=0.000, paired t-test). When locomotor activity was measured 1 week later (day 13), this sensitized state was maintained (day 1 vs. day 13, t=-4.293, df=38, p=0.000). However, no significant change in locomotor activity was observed during the 30 min before the cocaine challenge (Figure 2).

Group differences in post-cocaine locomotor activities
We divided the animals into four groups to maintain similar post-cocaine locomotor activity mean values on day 13. No group differences in locomotor activity on days 1 (F=0.224, df=38, p=0.564), 5 (F=0.690, df=38, p=0.564), or 13 (F=0.119, df=38, p=0.948) were observed. However, we found a significant group difference in post-cocaine locomotor activity on day 23 (F=2.883, df=38, p=0.049). The post-hoc test
Reversal of Cocaine Sensitization

discriminated the clozapine group from the vehicle group, while the haloperidol and fluoxetine groups were not discriminated from the vehicle group (Figure 3A).

We also examined changes in post-cocaine locomotor activity on day 23 from day 5 (sensitized) in each group using a paired t-test. The change was significant in the clozapine group (t=3.259, df=9, p=0.010), but not in the fluoxetine (t=-0.722, df=9, p=0.489), haloperidol (t=-1.535, df=9, p=0.159) or vehicle (t=0.956, df=8, p=0.367) groups. This shows that the sensitized state was altered by clozapine (Figure 4A).

Group difference in pre-cocaine locomotor activities

We also examined the pre-cocaine locomotor activities and found no group differences on days 1, 5, and 13. However, on day 23, the pre-cocaine activities differed between groups (F=3.450, df=38, p=0.027, ANOVA) (Figure 3B). Post-hoc test discriminated the clozapine and fluoxetine groups from the vehicle group. Further analysis comparing day 23 pre-cocaine activity to day 5 pre-cocaine activity revealed that the activity is not changed in the clozapine (t=0.038, df=9, p=0.971) and fluoxetine (t=1.019, df=9, p=0.335) groups but increased in the haloperidol (t=-3.162, df=9, p=0.038) and vehicle groups (t=-2.431, df=8, p=0.041). Thus the group difference emanated from the increased activity in the haloperidol and vehicle groups (Figure 4B). However the significance disappeared when corrected for the multiple testing.

DISCUSSION

Although the treatment period of 5-days for both cocaine and therapeutic agents is insufficient from a clinical point of view, our previous results definitely indicated the feasibility of this experimental paradigm, and we used a similar one in the present study. Haloperidol- or vehicle-treated groups showed a trend of increase in the pre-cocaine locomotor activity on day 23, compared to day 5. We could not find this effect in our previous experiment. If we assume that the locomotor activity before cocaine challenge reflects the intrinsic dopamine activity, this difference may be due to the difference in the experimental protocol. In the previous experiment, all cocaine injections were performed in the locomotor chambers, while in the present experiment the 2nd to 4th injections were measured on day 23 and the total distance for 30 or 60 min was plotted for each treatment group. A: Post-cocaine: Statistical analysis indicated a significant group difference (F=2.883, p=0.049, ANOVA). Post-hoc analysis distinguished the clozapine group from the vehicle group. B: Pre-cocaine: Statistical analysis indicated a significant group difference (F=3.450, p=0.027, ANOVA). Post-hoc analysis distinguished the clozapine and fluoxetine groups from the vehicle group. *significant difference compared to the vehicle group at p=0.05.

Figure 3. Effects of drugs on sensitized locomotor activity, comparison between drugs (day 23). Locomotor activities, pre- and post-cocaine administration, were measured on day 23 and the total distance for 30 or 60 min was plotted for each treatment group. A: Post-cocaine: Statistical analysis indicated a significant group difference (F=3.450, p=0.027, ANOVA). Post-hoc analysis distinguished the clozapine group from the vehicle group. B: Pre-cocaine: Statistical analysis indicated a significant group difference (F=3.450, p=0.027, ANOVA). Post-hoc analysis distinguished the clozapine and fluoxetine groups from the vehicle group. *significant difference compared to the vehicle group at p=0.05.

Figure 4. Effects of drugs on sensitized locomotor activity, comparison between pre- and post-treatment. A: Post-cocaine: day 23 stimulated locomotor activity was significantly reduced by clozapine treatment (t=3.259, df=9, p=0.010). B: Pre-cocaine: day 23 baseline locomotor activity was significantly increased by haloperidol (t=-3.162, df=9, p=0.038) and vehicle (t=-2.431, df=8, p=0.041) treatments. *significant difference compared to day 5 in each drug at p=0.05 (not corrected for multiple testing).
were performed in the home cages. Thus on day 23 in the present study, the locomotor chambers might still be a "novel" environment or a kind of stress for the animals, and the endogenous dopaminergic activity would be increased. This increased pre-cocaine activity would make the group difference discernable when the sensitization was further advanced by the challenges on days 5 and 13. Dopaminergic drug haloperidol treatment neither ameliorated nor aggravated the sensitized state in our condition. Fluoxetine, a drug with serotonergic activity, prevented the increase in pre-cocaine locomotor activity. This may be related to the stress-reducing effect of antidepressant or the serotonergic mechanism discussed below.

Although D₂ blocking agents can induce depression, a low-dose SDA is indicated in some cases of depression. Ritalanserin, a 5-HT₂ antagonist, is effective for treating depressive symptoms. In animal models, 5-HT₂ blockade has a serotonin-augmenting effect, which has been suggested as the mechanism of the antidepressant effect of SDAs. Thus the SDA and fluoxetine may have common effect in augmenting the serotonergic system and this action without dopaminergic blockade may be related to the partial effect of fluoxetine. Ritalanserin partially reversed metamphetamine-induced sensitization.

The present results basically replicated our previous findings regarding clozapine. We also confirmed that the recovery from the sensitized state was not achieved by the typical antipsychotics haloperidol. The dose of haloperidol used in our study is in a somewhat high range, 2 mg/kg. Many studies use animal select dose in range of 0.2–2 mg/kg. But the locomotor activity of haloperidol applied group was not low high in our study (Figure 3). The sedative effect of high dose haloperidol could be therefore excluded. Moreover, our protocol had a sufficient time for wash-out period in order to exclude an acute drug effect. Although antipsychotics inhibit the induction of sensitization and block expression of sensitization when co-administered with the stimulants, typical antipsychotics per se can induce dopaminergic sensitization when given repeatedly. Thus the high-dose haloperidol could reinforce cocaine-induced dopaminergic hypersensitivity. In some groups, tardive dyskinesia (TD) is believed to be a consequence of dopaminergic hypersensitivity induced by long-term D₂ blockade. However, its effects were only comparable to the vehicle in the present study. Sensitization is reversed by the combination of serotonergic 5-HT₁A blockade and dopaminergic agonist or stimulant. Clozapine has much higher affinity for 5-HT₁ receptors than for D₂ receptors. We used low-dose clozapine (5 mg/kg), which would have sufficient action on 5-HT₁ receptors with little effect on D₂ receptors. This may be related to the present result as well as to its effects on TD. However, 5-HT₁ blockade alone is insufficient to completely reverse the sensitized state and an unknown mechanism may work for clozapine in this regard. The second-generation antipsychotics other than clozapine, with high affinities for both 5-HT₁ and D₂ receptors (serotonin-dopamine antagonists, SDAs), are ineffective for treating TD or even induce TD 20 and this suggests that even under the 5-HT₁A blockade, D₂ blockade would not result in the amelioration of sensitized state.

We found that clozapine and fluoxetine had reversal ability of sensitized state, but the underlying mechanism is unclear. Moreover the relationship between biochemical and behavioral changes are unclear, too. Thus, more studies are necessary in view of biochemical perspectives.

Acknowledgments

This work was supported by a research grant from KT&G, Republic of Korea.

REFERENCES

1. Post RM, Rose H. Increasing effects of repetitive cocaine administration in the rat. Nature 1976;260:731-732.
2. Pierce RC, Kalivas PW. Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J Neurosci 1997;17:1254-1261.
3. Ujike H, Sato M. Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Ann NY Acad Sci 2004;1025:279-287.
4. Lieberman JA, Sheitman BB, Kimon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 1997;17:205-229.
5. Seeman P, Schwarz J, Chen JJ, Szechtman H, Perreault M, McKnight GS, et al. Psychosis pathways converge via D₂ high dopamine receptors. Synapse 2006;60:319-346.
6. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009;35:549-562.
7. Kuribara H, Uchihashi Y. Effects of dopamine antagonism on methamphetamine sensitization: evaluation by ambulatory activity in mice. Pharmacol Biochem Behav 1994;47:101-106.
8. Meng ZH, Feldpaushe DL, Merchant KM. Clozapine and haloperidol block the induction of behavioral sensitization to amphetamine and associated genomic responses in rats. Brain Res Mol Brain Res 1998;61:39-50.
9. Shuto T, Nishi A. Treatment of the Psychostimulant-Sensitized Animal Model of Schizophrenia. CNS Neurosci Ther 2011;17:133-139.
10. Park HJ, Cai FL, Hwang JY, Kang UG. Effects of clozapine on behavioral sensitization induced by cocaine. Psychiatry Res 2010;175:165-170.
11. Klinzova AJ, Uranova NA, Hazhelorst UI, Schenk H. Synaptic plasticity in rat medial prefrontal cortex under chronic haloperidol treatment produced behavioral sensitization. J Hirnforsch 1990;31:175-179.
12. Claustre Y, Rivy JP, Dennis T, Scatton B. Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J Pharmacol Exp Ther 1986;238:693-700.
13. Hook MS, Jones GH, Smith AD, Neill DB, Justice JB Jr. Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse 1991;1:121-128.
14. Bersani G, Pozzi F, Marini S, Grispini A, Pasini A, Ciani N. 5-HT₂ receptor antagonism in dysthyemic disorder: a double-blind placebo-controlled study with ritanserin. Acta Psychiatr Scand 1991;83:244-248.
15. Strauss WH, Klauser E. Psychotropic effects of ritanserin, a selective 5-HT₂ antagonist: an open study. Eur Neuropsychopharmacol 1991;1:101-105.

www.psychiatryinvestigation.org 457
Reversal of Cocaine Sensitization

16. Blier P, Blondeau C. Neurobiological bases and clinical aspects of the use of aripiprazole in treatment-resistant major depressive disorder. J Affect Disord 2011;128(Suppl 1):S3-S10.
17. Ago Y, Nakamura S, Kajita N, Uda M, Hashimoto H, Baba A, et al. Ritalanserin reverses repeated methamphetamine-induced behavioral and neurochemical sensitization in mice. Synapse 2007;61:757-763.
18. Andreassen OA, Jorgensen HA. The rat model of tardive dyskinesia: relationship between vacuous chewing movements and gross motor activity during acute and long-term haloperidol treatment. Life Sci 1995;57:2263-2272.
19. Casey DE. Tardive dyskinesia: pathophysiology and animal models. J Clin Psychiatry 2000;61(Suppl 4):5-9.
20. Correll CU, Schenk EM. Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry 2008;21:151-156.