Exponential mixing for stochastic model of two-dimensional second grade fluids

Ran Wang1,* Jianliang Zhai1,† Tusheng Zhang2,1,‡

1 School of Mathematical Sciences,
University of Science and Technology of China,
Hefei, 230026, China

2 School of Mathematics, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

Abstract: In this paper, we establish the exponential mixing property of stochastic models for the incompressible second grade fluid. The general criterion established by Cyril Odasso \cite{15} plays an important role.

AMS Subject Classification: Primary 60H15 Secondary 35R60, 37L55.

Key Words: Exponential mixing; Stochastic models for the incompressible second grade fluid; Invariant measure; Markov process

1 Introduction

In this paper, we are concerned with the exponential mixing property of stochastic models for the incompressible second grade fluid which is a particular class of Non-Newtonian fluid. Let \mathcal{O} be a connected, bounded open subset of \mathbb{R}^2 with boundary $\partial \mathcal{O}$ of class C^3. We consider equation

$$
\begin{aligned}
&d(u - \alpha \Delta u) + \left(-\nu \Delta u + \text{curl}(u - \alpha \Delta u) \times u + \nabla \mathcal{P}\right)dt \\
= \phi(u)dW, \quad \text{in } \mathcal{O} \times (0, \infty),
\end{aligned}
$$

under the following condition

$$
\begin{aligned}
\text{div } u = 0 \text{ in } \mathcal{O} \times (0, \infty);
\quad u = 0 \text{ in } \partial \mathcal{O} \times [0, \infty);
\quad u(0) = u_0 \text{ in } \mathcal{O},
\end{aligned}
$$

where $u = (u_1, u_2)$ and \mathcal{P} represent the random velocity and modified pressure, respectively. W is a cylindrical Wiener process on a Hilbert space U defined on a complete probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$, and $\phi(u)dW$ represents the external random force.
The interest in the investigation of the second grade fluids arises from the fact that it is an admissible model of slow flow fluids, which contains a large class of Non-Newtonian fluids such as industrial fluids, slurries, polymer melts, etc. Furthermore, the second grade fluid has general and pleasant properties such as boundedness, stability, and exponential decay (see [7]). It also has interesting connections with many other fluid models, see [13, 2, 8, 19, 20, 11, 12] and references therein. For example, it can be taken as a generalization of the Navier-Stokes Equation. Indeed equation (1.1) reduces to Navier-Stokes equation when $\alpha = 0$. Furthermore, it was shown in [13] that the second grade fluids models are good approximations of the Navier-Stokes equation. Finally we refer to [14, 7, 8, 9] for a comprehensive theory of the second grade fluids.

The stochastic model of two-dimensional second grade fluids (1.1) has been recently studied in [18], [16] and [17], where the authors obtained the existence and uniqueness of solutions and investigated the behavior of the solution as $\alpha \to 0$. We mention that the martingale solution of the system (1.1) driven by Lévy noise are studied in [10].

In this paper, we establish the exponential mixing property of stochastic models for the incompressible second grade fluid driven by multiplicative, but possibly degenerate noise. The exponential mixing characterizes the long time behaviour of the solutions of the stochastic partial differential equations. More precisely, under reasonable conditions, we showed the equation (1.1) has a unique invariant measure, and the law of the solution converges to the invariant measure exponentially fast. We will apply the criterion established in [15] by Cyril Odasso. To this end, we need to prove the exponential integrability of certain energy functionals of the solutions, which is non-trivial.

This article is divided into four sections. In Section 2, we present some preliminaries. Section 3 is devoted to the formulation of the main result. The proof of our main result is given in Section 4.

2 Preliminaries

In this section, we will introduce some functional spaces and preliminary facts which will be used later.

Let $1 \leq p < \infty$, and let k be a nonnegative integer. We denote by $L^p(\mathcal{O})$ and $W^{k,p}(\mathcal{O})$ the usual L^p and Sobolev spaces, and write $W^{k,2}(\mathcal{O}) = H^k(\mathcal{O})$. Let $W^{k,p}_0(\mathcal{O})$ be the closure in $W^{k,p}(\mathcal{O})$ of $C_\infty(\mathcal{O})$ the space of infinitely differentiable functions with compact support in \mathcal{O}. We denote $W^{k,2}_0(\mathcal{O})$ by $H^k_0(\mathcal{O})$. We endow the Hilbert space $H^1_0(\mathcal{O})$ with the scalar product

$$\langle (u, v) \rangle = \int_{\mathcal{O}} \nabla u \cdot \nabla v \, dx = \sum_{i=1}^2 \int_{\mathcal{O}} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \, dx,$$

where ∇ is the gradient operator. The norm $\| \cdot \|$ generated by this scalar product is equivalent to the usual norm of $W^{1,2}(\mathcal{O})$ in $H^1_0(\mathcal{O})$.

In what follows, we denote by \mathbb{X} the space of \mathbb{R}^2-valued functions such that each component belongs to X. We introduce the spaces

$$\mathcal{C} = \left\{ u \in [C_\infty^k(\mathcal{O})]^2 \text{ such that } \text{div } u = 0 \right\},$$

$$\mathcal{V} = \text{closure of } \mathcal{C} \text{ in } \mathbb{H}^1(\mathcal{O}),$$

(2.4)
\[\mathbb{H} = \text{closure of } C \text{ in } L^2(\mathcal{O}). \]

We denote by \((\cdot, \cdot)\) and \(|\cdot|\) the inner product and the norm induced by the inner product and the norm in \(L^2(\mathcal{O})\) on \(\mathbb{H}\), respectively. The inner product and the norm of \(H^1_0(\mathcal{O})\) are denoted respectively by \((\cdot, \cdot)\) and \(|\cdot|\). We endow the space \(V\) with the norm generated by the following scalar product

\[(u, v)_V = (u, v) + \alpha((u, v)), \text{ for any } v \in V; \]

which is equivalent to \(|\cdot|\), more precisely, we have

\[(P^2 + \alpha)^{-1}\|v\|_V^2 \leq \|v\|^2 \leq \alpha^{-1}\|v\|_V^2, \text{ for any } v \in V, \]

where \(P\) is the constant from Poincaré’s inequality.

We also introduce the following space

\[\tilde{\mathbb{W}} = \{ u \in V \text{ such that } \text{curl}(u - \alpha \Delta u) \in L^2(\mathcal{O}) \}, \]

and endow it with the norm generated by the scalar product

\[(u, v)_{\tilde{\mathbb{W}}} = (u, v)_V + \left(\text{curl}(u - \alpha \Delta u), \text{curl}(v - \alpha \Delta v)\right). \]

The following result states that the norm induced by \((\cdot, \cdot)_{\tilde{\mathbb{W}}}\) is equivalent to the usual \(H^3(\mathcal{O})\)-norm on \(\tilde{\mathbb{W}}\). This result can be found in [3], [4] and Lemma 2.1 in [10].

Lemma 2.1 Set \(\tilde{\mathbb{W}} = \{ v \in H^3(\mathcal{O}) \text{ such that div} v = 0 \text{ and } v|_{\partial \mathcal{O}} = 0 \}\). Then the following (algebraic and topological) identity holds:

\[\mathbb{W} = \tilde{\mathbb{W}}. \]

Moreover, there is a positive constant \(C\) such that

\[\|v\|_{H^3(\mathcal{O})}^2 \leq C \left(\|v\|_V^2 + |\text{curl}(v - \alpha \Delta v)|^2\right), \]

for any \(v \in \tilde{\mathbb{W}}\).

From now on, we identify the space \(V\) with its dual space \(V^*\) via the Riesz representation, and we have the Gelfand triple

\[\mathbb{W} \subset V \subset \mathbb{W}^*. \]

We denote by \(\langle f, v \rangle\) the action of any element \(f\) of \(\mathbb{W}^*\) on an element \(v \in \mathbb{W}\). It is easy to see

\[(v, w)_V = \langle v, w \rangle, \text{ for any } v, w \in V. \]

Note that the injection of \(\mathbb{W}\) into \(V\) is compact. Thus, there exists a sequence \(\{e_i : i = 1, 2, 3, \ldots\}\) of elements of \(\mathbb{W}\) which forms an orthonormal basis in \(\mathbb{W}\). The elements of this sequence are the solutions of the eigenvalue problem

\[(v, e_i)_{\mathbb{W}} = \lambda_i(v, e_i)_V, \text{ for any } v \in \mathbb{W}. \]

Here \(\{\lambda_i : i = 1, 2, 3, \ldots\}\) is an increasing sequence of positive eigenvalues. We have the following important result from [4] about the regularity of the functions \(e_i, \ i = 1, 2, 3, \ldots\)
Lemma 2.2 Let \mathcal{O} be a bounded, simply-connected open subset of \mathbb{R}^2 with a boundary of class C^3, then the eigenfunctions of (2.10) belong to $H^4(\mathcal{O})$.

Consider the following “generalized Stokes equations”:

\[
\begin{align*}
v - \alpha \Delta v &= f \text{ in } \mathcal{O}, \\
\text{div } v &= 0 \text{ in } \mathcal{O}, \\
v &= 0 \text{ on } \partial \mathcal{O}.
\end{align*}
\]

(2.11)

The following result can be found in [21], [22], Theorem 2.5 of [18] and Theorem 2.2 of [16].

Lemma 2.3 Let \mathcal{O} be a connected, bounded open subset of \mathbb{R}^2 with boundary $\partial \mathcal{O}$ of class C_l and let f be a function in H^l, $l \geq 1$. Then the system (2.11) admits a solution $v \in H^{l+2} \cap V$. Moreover if f is an element of H^l, then v is unique and the following relations hold

\[
(v, g)_V = (f, g), \text{ for any } g \in V,
\]

(2.12)

and

\[
\|v\|_W \leq K\|f\|_V.
\]

(2.13)

Define the Stokes operator by

\[
Au = -\mathbb{P}\Delta u, \forall u \in D(A) = H^2(\mathcal{O}) \cap V,
\]

(2.14)

here we denote by $\mathbb{P}: L^2(\mathcal{O}) \rightarrow H$ the usual Helmholtz-Leray projector. It follows from Lemma 2.3 that the operator $(I + \alpha A)^{-1}$ defines an isomorphism from $H^l(\mathcal{O}) \cap V$ into $H^{l+2}(\mathcal{O}) \cap V$ provided that \mathcal{O} is of class C^l, $l \geq 1$. Moreover, the following properties hold

\[
((I + \alpha A)^{-1}f, g)_V = (f, g),
\]

\[
\|(I + \alpha A)^{-1}f\|_W \leq K\|f\|_V,
\]

for any $f \in H^l(\mathcal{O}) \cap V$ and any $g \in V$. From these facts, $\widehat{A} = (I + \alpha A)^{-1}A$ defines a continuous linear operator from $H^l(\mathcal{O}) \cap V$ onto itself for $l \geq 2$, and satisfies

\[
(\widehat{A}u, g)_V = (Au, g) = ((u, g)),
\]

for any $u \in W$ and $g \in V$. Hence, for any $u \in W$

\[
(\widehat{A}u, u)_V = \|u\|.
\]

Let

\[
b(u, v, w) = \sum_{i,j=1}^{2} \int_{\mathcal{O}} u_i \frac{\partial v_j}{\partial x_i} w_j dx,
\]

for any $u, v, w \in C$. Then the following identity holds (see for instance [6] [11]):

\[
((\text{curl } \Phi) \times v, w) = b(v, \Phi, w) - b(w, \Phi, v),
\]

(2.15)

for any smooth function Φ, v and w. Now we recall the following two lemmas which can be found in [16] (Lemma 2.3 and Lemma 2.4), and also in [6] [11].
Lemma 2.4 For any \(u, v, w \in \mathbb{W}\), we have
\[
|(\text{curl}(u - \alpha \Delta u) \times v, w)| \leq \tilde{K} \|u\|_{H^3} \|v\|_V \|w\|_W, \tag{2.16}
\]
and
\[
|(\text{curl}(u - \alpha \Delta u) \times u, w)| \leq \Theta \|u\|^2 \|w\|_W. \tag{2.17}
\]

Set
\[
B(u, v) = \text{curl}(u - \alpha \Delta u) \times v, \quad \forall u, v \in \mathbb{W}.
\]

3 Formulation of the main result

In this section, we will state the precise assumptions on the coefficients and collect some preliminary results from [18] and [16], which will be used in the following sections.

Assume that \(\{W(s), \ s \in [0, \infty)\}\) is a \(U\)-cylindrical Wiener process admitting the following representation:
\[
W = \sum_n \beta_n \bar{e}_n,
\]
where \((\bar{e}_n)\) is a complete orthonormal system of \(U\) and \((\beta_n)\) is a sequence of independent Brownian motions.

Given Hilbert spaces \(Q_1, Q_2\), we denote by \(\mathcal{L}_2(Q_1, Q_2)\) the space of all Hilbert-Schmidt operators from \(Q_1\) into \(Q_2\). And \(\mathcal{L}(Q_1, Q_2)\) denotes the space of bounded linear operators from \(Q_1\) into \(Q_2\). Let \(\phi: \mathbb{V} \to \mathcal{L}_2(U, \mathbb{V})\) be a given measurable mapping. We denote by \(P_N\) the orthogonal projection from \(\mathbb{V}\) into the space \(\text{Span}(e_1, \cdots, e_N)\). Now we introduce the following conditions:

(H0) The mapping \(\phi: \mathbb{V} \to \mathcal{L}_2(U, \mathbb{V})\) is bounded and Lipschitz, i.e., there exist constants \(R\) and \(L_{\phi}\) such that
\[
R = \sup_{v \in \mathbb{V}} \|\phi(v)\|^{2}_{\mathcal{L}_2(U, \mathbb{V})},
\]
and
\[
\|\phi(v_1) - \phi(v_2)\|_{\mathcal{L}_2(U, \mathbb{V})} \leq L_{\phi} \|v_1 - v_2\|_V, \quad \forall v_1, v_2 \in \mathbb{V}.
\]

(H1) Recall the constant \(K\) in Lemma 2.3, and \(\Theta\) in (2.17). There exists \(N \in \mathbb{N}\) and a bounded measurable mapping \(g: \mathbb{V} \to \mathcal{L}(\mathbb{V}, U)\) such that for any \(v \in \mathbb{V}\)
\[
\phi(v)g(v) = P_N, \tag{3.18}
\]
and the viscosity constant \(\nu\) satisfies
\[
\frac{1}{2 \Theta^2 \mathcal{P}^2 + \alpha} \left(\frac{2 \nu}{\mathcal{P}^2 + \alpha} - 1 - \frac{K^2 \lambda_1}{\lambda_1^2} \right) \geq \left(1 + \frac{2}{\lambda_1} + \frac{2(\mathcal{P}^2 + \alpha)}{\lambda_1 \alpha^2} \right) K^2 R. \tag{3.19}
\]

Remark 1 (3.18) can be seen as a non degeneracy condition on the low modes, and (3.19) is a technique condition.

Now we recall the concept of solution of the problem (1.1) in [16].
Definition 3.1 A stochastic process u is called a solution of the system (1.1), if

1. $u(0) = u_0$,
2. $u \in L^p(\Omega, \mathcal{F}, P; L^\infty([0, \infty), \mathbb{W}))$, $2 \leq p < \infty$,
3. For all $t \geq 0$, $u(t)$ is \mathcal{F}_t-measurable,
4. For any $t \in (0, \infty)$ and $v \in \mathbb{W}$, the following identity holds almost surely

$$
(u(t) - u(0), v) + \int_0^t [\nu((u(s), v)) + (\text{curl}(u(s) - \alpha \Delta u(s)) \times u(s), v)] ds = \int_0^t (\phi(u(s)) dW(s), v).
$$

Using Galerkin approximation scheme for the system (1.1), Razafimandimby and Sango [16] obtained the following theorem (see Theorem 3.4 and Theorem 4.1 in [16]).

Theorem 3.2 Let $u_0 \in \mathbb{W}$. Assume (H0) holds. Then

(1) the system (1.1) has a unique solution,

(2) the solution u admits a version which is continuous in \mathbb{V} with respect to the strong topology and continuous in \mathbb{W} with respect to the weak topology.

Moreover, from the proof of Theorem 4.1 in [16], we have

Theorem 3.3 Assume that $u_1, u_2 \in \mathbb{W}$ are \mathcal{F}_t-measurable, and let \{X_1(t + s), s \geq 0\} and \{X_2(t + s), s \geq 0\} be two solutions of the system (1.1) with initial condition $X_1(t) = u_1$ and $X_2(t) = u_2$, respectively. Then, for any $O \in \mathcal{F}_t$

$$
E\left(\sigma(t + s, t)\|X_1(t + s) - X_2(t + s)\|^2_{L^1}\right) \\
\leq E\left(\|u_1 - u_2\|^2_{L^2}\right) + C \int_t^{t+s} E\left(\sigma(l, t)\|X_1(l) - X_2(l)\|^2_{L^1}\right) dl,
$$

here $\sigma(l, t) = \exp\left(-\int_l^t \|X_2(s)\|^2_{L^2} ds\right)$.

Remark 2 By (3.20), if $u_1 = u_2$ on $O \in \mathcal{F}_t$, then $X_1(t + \cdot) = X_2(t + \cdot)$ on O P-a.s..

For a \mathbb{W}-valued, \mathcal{F}_0-measurable random variable Y, let $u(t_0 + \cdot, t_0, Y)$ be the unique solution of (1.1) on the time interval $[0, \infty)$ with initial condition $u(t_0, t_0, Y) = Y$. Denote

$$
X^x(t) = X(t, W, x) = \begin{cases} u(t, 0, x), & x \in \mathbb{W}; \\
x, & x \in \mathbb{V}/\mathbb{W}.
\end{cases}
$$

Then we define the operators $\mathcal{P}_t : B_b(\mathbb{V}) \rightarrow B_b(\mathbb{V})$ as

$$
(\mathcal{P}_t \varphi)(x) = E[\varphi(X^x(t))],
$$

where $B_b(\mathbb{V})$ is the space of bounded measurable functions on \mathbb{V}. Let $C_b(\mathbb{V})$ be the space of bounded continuous functions.

Lemma 3.1 $\{X^x, x \in \mathbb{V}\}$ defines a Markov process in the sense that, for every $x \in \mathbb{V}$, $\varphi \in C_b(\mathbb{V})$, $t, s > 0$

$$
E[\varphi(X^x(t + s)) | \mathcal{F}_t] = (\mathcal{P}_s \varphi)(X^x(t)), \ P$-a.s..
$$
Proof: Noticing that (3.22) holds when \(x \in V/W \). Now given \(x \in W \), we have \(X^x(t) = u(t, 0, x) \). To prove (3.22), it is sufficient to prove that
\[
E[\varphi(u(t+s, 0, x))Z] = E(\mathcal{P}_s \varphi)(u(t, 0, x))Z
\]
for every bounded \(\mathcal{F}_t \)-measurable r.v. \(Z \).

Since, by Theorem 3.2,
\[
u(t + s, t, x) = \nu(t, 0, x)
\]
and \(E(\|u(t, 0, x)\|^2_{W}) < \infty \), it is sufficient to prove that
\[
E[\varphi(u(t+s, t, \eta))Z] = E(\mathcal{P}_s \varphi)(\eta)Z
\]
for every \(W \)-valued \(\mathcal{F}_t \)-measurable r.v. \(\eta \).

By (3.23), for any given \(\xi_n, \xi \in W \), the strong convergence of \(\xi_n \) to \(\xi \) in \(V \) implies that \((\mathcal{P}_s \varphi)(\xi_n) \) converges to \((\mathcal{P}_s \varphi)(\xi) \). Hence, to prove (3.23), it is sufficient to prove it for every r.v. \(\eta \) of the form \(\eta = \sum_{i=1}^k \eta_i 1_{A_i} \) with \(\eta_i \in W \) and \(A_i \in \mathcal{F}_t \). By Remark 2, we just need to prove (3.23) for every deterministic \(\eta \in W \).

Now the r.v. \(u(t+s, t, \eta) \) depends only on the increments of the Brownian motion between \(t \) and \(t + s \), hence it is independent of \(\mathcal{F}_t \). Therefore
\[
E[\varphi(u(t+s, t, \eta))Z] = E[\varphi(u(t+s, t, \eta))]EZ.
\]
Since \(u(t+s, t, \eta) \) has the same law of \(u(s, 0, \eta) \)(by uniqueness), we have \(E[\varphi(u(t+s, t, \eta))] = E[\varphi(u(s, 0, \eta))] \) and thus
\[
E[\varphi(u(t+s, t, \eta))Z] = E[\varphi(u(s, 0, \eta))]EZ = E[\varphi(u(s, 0, \eta))Z].
\]
The proof is complete.

The space of probability measures on \(V \) is denoted by \(\mathcal{P}(V) \). The aim of this paper is to prove the following result.

Theorem 3.4 Assume that \((H0) \) holds, and \((H1) \) holds with some \(N \in \mathbb{N} \). Then there exits an unique invariant probability measure \(\mu \) of \((\mathcal{P}_t)_{t \in \mathbb{R}^+} \) on \(V \) satisfying
\[
\int_V \|u\|^2_{W} \mu(du) < \infty,
\]
and there exist \(C, \gamma' > 0 \) such that for any \(\lambda \in \mathcal{P}(V) \)
\[
\|\mathcal{P}_t \lambda - \mu\|_{\ast} \leq Ce^{-\gamma't}(1 + \int_V \|u\|^2_{W} \lambda(du))
\]

4 Proof of the main result

This section is devoted to the proof of the main result. We first recall the general criterion established in [15].

Given a Polish space \(E \), \(Lip_b(E) \) will denote the space of all bounded, Lipschitz continuous functions on \(E \). Set
\[
\|\varphi\|_L = |\varphi|_{\infty} + L_{\varphi}, \quad \varphi \in Lip_b(E),
\]
Here $| \cdot |_{\infty}$ is the sup norm and L_{φ} is the Lipschitz constant of φ. The space of probability measures on E is denoted by $\mathcal{P}(E)$. It is endowed with the Wasserstein norm

$$
\| \mu \|_* = \sup_{\varphi \in Lip_0(E), \| \varphi \|_\infty \leq 1} \int_E \varphi(u) \mu(du), \quad \mu \in \mathcal{P}(E).
$$

Let $(U, | \cdot |_U)$ and $(V, \| \cdot \|_V)$ be the two Hilbert spaces introduced before. We consider a Markov process Υ living in V and depending measurably on a cylindrical Wiener process W on U. Υ can be written as

$$
\Upsilon(t) = \Upsilon(t, W, x_0),
$$

where x_0 is the initial value $\Upsilon(0, W, x_0) = x_0$. We denote the distribution of $\Upsilon(\cdot, W, x_0)$ by $\mathcal{D}(\Upsilon(\cdot, W, x_0))$, and assume that $\mathcal{D}(\Upsilon(\cdot, W, x_0))$ is measurable with respect to x_0. Let $(P_t)_{t \geq 0}$ be the Markov transition semigroup associated with the Markov family $(\Upsilon(\cdot, W, x_0))_{x_0 \in V}$.

The basis idea behind the criterion in [15] is to construct an auxiliary process $\tilde{\Upsilon}(t, W, x, \tilde{x}_0)$, which is “close” to $\Upsilon(t, W, x_0)$ and has a law absolutely continuous with respect to $\mathcal{D}(\Upsilon(\cdot, W, \tilde{x}_0))$. More precisely, suppose that there exists a function

$$
\tilde{\Upsilon} : [0, \infty) \times C([0, \infty); \mathbb{R})^N \times V \times V \to V,
$$

satisfying the following conditions.

(A) For every $x_0, \tilde{x}_0 \in V$, $\tilde{\Upsilon}(\cdot, W, x_0, \tilde{x}_0)$ is non-anticipative and measurable with respect to W. Moreover,

$$
(\Upsilon(t), \tilde{\Upsilon}(t)) = (\Upsilon(t, W, x_0), \tilde{\Upsilon}(t, W, x_0, \tilde{x}_0))
$$

defines an homogenous Markov process and its law $\mathcal{D}(\Upsilon, \tilde{\Upsilon})$ is measurable with respect to (x_0, \tilde{x}_0).

(B) There exists a positive measurable function $\mathcal{H} : V \to \mathbb{R}^+$ and a positive constant γ such that for any $x_0 \in V$, $t \geq 0$, $\beta > 0$ and any stopping time $\tau \geq 0$, there exists $C_1, C_\beta' > 0$ satisfying

$$
\begin{align*}
E\left(\mathcal{H}(\Upsilon(t, W, x_0))\right) &\leq e^{-\gamma t} \mathcal{H}(x_0) + C_1; \\
E\left(e^{-\beta \tau} \mathcal{H}(\Upsilon(\tau, W, x_0)) 1_{\tau < \infty}\right) &\leq \mathcal{H}(x_0) + C_\beta'.
\end{align*}
$$

(C) There exists a function $h : V \times V \to U$ such that for any $(t, x_0^1, x_0^2) \in [0, \infty) \times V \times V$ and cylindrical Wiener process W on U, we have almost surely

$$
\tilde{\Upsilon}(t, W, x_0^1, x_0^2) = \Upsilon(t, W + \int_0^t h(\Upsilon(s, W, x_0^1), \tilde{\Upsilon}(s, W, x_0^1, x_0^2)) ds, x_0^3); \quad x_0^3 \geq \beta
$$

(D) For any $x_0^1, x_0^2 \in V$ satisfying

$$
\mathcal{H}(x_0^1) + \mathcal{H}(x_0^2) \leq 2C_1, \quad (4.24)
$$

and for any cylindrical Wiener processes W_1, W_2 on U, set

$$
h(t) = h(\Upsilon(t, W_1, x_0^1), \tilde{\Upsilon}(t, W_1, x_0^1, x_0^2)),
$$

there exists $\gamma_0 > 0$ such that
(D1) there exists $C > 0$ such that
\[
\mathbb{P}\left(|\mathbb{Y}(t, W_2, x_0^2) - \mathbb{Y}(t, W_1, x_0^1)| \geq Ce^{-\alpha t}, \mathbb{Y}(\cdot, W_1, x_0^1) = \mathbb{Y}(\cdot, W_2, x_0^2) \text{ on } [0, t] \right) \\
\leq Ce^{-\alpha t}, \quad \forall t \geq 0;
\]

(D2) for any $t_0 \geq 0$ and any stopping time $\tau \geq t_0$, we have
\[
\mathbb{P}\left(\int_{t_0}^{\tau} |h(t)|^2 dt \geq Ce^{-\alpha t_0} \text{ and } \mathbb{Y}(\cdot, W_1, x_0^1) = \mathbb{Y}(\cdot, W_2, x_0^2) \text{ on } [0, \tau] \right) \\
\leq Ce^{-\alpha t_0};
\]

(D3) there exists $p_1 > 0$ such that
\[
\mathbb{P}\left(\int_{0}^{+\infty} |h(t)|^2 dt \leq C \right) \geq p_1.
\]

Here is the criteria obtained [15].

Theorem 4.1 Under the assumptions (A)–(D), there exists a unique stationary probability measure μ of $(\mathcal{P}_t)_{t \in \mathbb{R}^+}$ on \mathcal{V}, satisfying
\[
\int_{\mathcal{V}} \mathcal{H}(u) d\mu(u) < \infty,
\]
and there exist $C, \gamma' > 0$ such that for any $\lambda \in \mathcal{P}(\mathcal{V})$
\[
\|\mathcal{P}_t^* \lambda - \mu\|_* \leq Ce^{-\gamma't} \left(1 + \int_{\mathcal{V}} \mathcal{H}(u) d\lambda(u) \right).
\]

4.1 The proof

As a part of the proof, we will prepare a number of estimates for the solutions of the equation (1.1).

From now on, we denote by C any generic constant which may change from one line to another.

Set $\mathcal{W}_M = \text{Span}(e_1, \cdots, e_M)$. Let $u^M \in \mathcal{W}_M$ be the Galerkin approximations of (1.1) satisfying
\[
d(u^M, e_i) = \nu((u^M, e_i)) dt + b(u^M, u^M, e_i) dt - \alpha b(u^M, \Delta u^M, e_i) dt + \alpha b(e_i, \Delta u^M, u^M) dt \\
= (\phi(u^M), e_i) dW(t), \quad i \in \{1, 2, \cdots, M\},
\]
where the notation $(\phi(u), e_i)$ stands for the operator in $\mathcal{L}(U, \mathbb{R})$ defined by
\[
(\phi(u), e_i) h = (\phi(u) h, e_i), \quad \forall h \in U.
\]

Then
\[
\|(\phi(u), e_i)\|_{\mathcal{L}^2(U, \mathbb{R})}^2 = \sum_{j=1}^{\infty} \|(\phi(u) e_j, e_i)\|^2 \leq \|e_i\|_H^2 \sum_{j=1}^{\infty} \|\phi(u) e_j\|_H^2 \\
\leq C \|e_i\|_H^2 \sum_{j=1}^{\infty} \|\phi(u) e_j\|_V^2 \leq C \|\phi(u)\|_{L^2(U, V)}^2.
\]

We have the following result for u^M.

9
Lemma 4.1 Assume (H0) holds. There exist C_1 and C^1_β only depending on ν, α, R and \mathcal{O} such that, for any $t \geq 0$, any $\beta > 0$ and any stopping time τ,

$$E(\|u^M(t)\|^2_W) \leq e^{-\frac{\beta t}{2\nu}}\|u^M_0\|^2_W + C_1$$

(4.26)

and

$$E(e^{-\beta \tau}\|u^M(\tau)\|^2_W I_{\tau<\infty}) \leq \|u^M_0\|^2_W + C^1_\beta.$$

(4.27)

Proof: Applying Itô’s formula, we have

$$d(u^M, e_i)^2 = 2(u^M, e_i)_V \left[\nu((u^M, e_i)) + b(u^M, u^M, e_i) - \alpha b(u^M, \Delta u^M, e_i) + \alpha b(e_i, \Delta u^M, u^M) \right] dt \quad = \quad 2(u^M, e_i)_V (\phi(u^M), e_i) dW(t) + |(\phi(u^M), e_i)|^2_{L^2(U, R)} dt.$$

(4.28)

Notice that $\|u^M\|^2_V = \sum_{i=1}^M \lambda_i (u^M, e_i)^2_V$. Multiplying by λ_i and taking summation over i, we get

$$d\|u^M\|^2_V + 2\nu\|u^M\|^2 dt = 2(\phi(u^M), u^M) dW(t) + \sum_{i=1}^M \lambda_i |(\phi(u^M), e_i)|^2_{L^2(U, R)} dt.$$

(4.29)

here we used the fact that $b(u^M, u^M, u^M) = 0$.

Let $\tilde{G}(u^M(t))$ be the operator in $L^2(U, \mathbb{W})$ defined as follows. For any $h \in U$, $\tilde{G}(u^M(t)) \times h \in \mathbb{W}$ is the unique solution of the following equation.

$$\tilde{G}(u^M(t)) \times h - \alpha \Delta \left(\tilde{G}(u^M(t)) \times h \right) = \phi(u^M(t)) \times h \text{ in } \mathcal{O},$$

$$\tilde{G}(u^M(t)) \times h = 0 \text{ on } \partial \mathcal{O}.$$

By Lemma 2.23 such a solution uniquely exits. Moreover,

$$(\tilde{G}(u^M(t)) \times h, e_i)_V = (\phi(u^M(t)) \times h, e_i), \quad \forall i \in \{1, 2, \cdots, M\},$$

(4.30)

and there exists a positive constant K such that

$$\|\tilde{G}(u^M(t)) \times h\|_V \leq K\|\phi(u^M(t)) \times h\|_V,$$

which implies that

$$\|\tilde{G}(u^M(t))\|^2_{L^2(U, \mathbb{W})} \leq K^2\|\phi(u^M(t))\|^2_{L^2(U, V)}.$$

Hence by (2.10),

$$\sum_{i=1}^M \lambda_i |(\phi(u^M(t)), e_i)|^2_{L^2(U, R)}$$

$$= \sum_{i=1}^M \lambda_i |(\tilde{G}(u^M(t)), e_i)|^2_{L^2(U, R)}$$

$$= \sum_{i=1}^M \frac{1}{\lambda_i} |(\tilde{G}(u^M(t)), e_i)|^2_{L^2(U, R)}$$
\[
\leq \frac{1}{\lambda_1} \| \tilde{G}(u^M(t)) \|_{\mathcal{L}_2(U,V)}^2 \\
\leq \frac{K^2}{\lambda_1} \| \phi(u^M(t)) \|_{\mathcal{L}_2(U,V)}^2 \\
\leq \frac{K^2}{\lambda_1} R.
\] (4.31)

Combining this with (4.29), we obtain
\[
d\| u^M \|_V^2 + 2\nu \| u^M \|_V^2 \, dt \leq 2(\phi(u^M), u^M) dW(t) + \frac{K^2}{\lambda_1} R dt.
\] (4.32)

Denote \(\| v \|_* = | \text{curl}(v - \alpha \Delta v) | \) for any \(v \in \mathbb{W} \). Next we estimate \(\| u^M \|_* \).

Setting \(\Psi(u^M) = -\nu \Delta u^M + \text{curl}(u^M - \alpha \Delta u^M) \times u^M \),
we have
\[
d(u^M, e_i)_V + (\Psi(u^M), e_i) dt = (\phi(u^M), e_i) dW(t).
\]
Noting \(\Psi(u^M) \in \mathbb{H}^1(\mathcal{O}) \). By Lemma 2.3, there exists unique solution \(v^M \in \mathbb{W} \) satisfying
\[
\begin{cases}
 v^M - \alpha \Delta v^M = \Psi(u^M) \text{ in } \mathcal{O}; \\
 v^M = 0 \text{ on } \partial \mathcal{O}.
\end{cases}
\]
Moreover,
\[
(v^M, e_i)_V = (\Psi(u^M), e_i), \quad \forall i \in \{1, 2, \ldots, M\}.
\]
Thus
\[
d(u^M, e_i)_V + (v^M, e_i)_V dt = (\phi(u^M), e_i) dW(t).
\] (4.33)

By (1.30) and (2.10), we have
\[
\lambda_i(\phi(u^M), e_i) = (\tilde{G}(u^M), e_i)_W.
\]
Multiplying \(\lambda_i \) to (4.33), it follows that
\[
d(u^M, e_i)_W + (v^M, e_i)_W dt = (\tilde{G}(u^M), e_i)_W dW(t).
\]
Applying Itô’s formula, we have
\[
\begin{align*}
d(u^M, e_i)_W^2 + 2(v^M, e_i)_W & (u^M, e_i)_W dt \\
& = 2(u^M, e_i)_W (\tilde{G}(u^M), e_i)_W dW(t) + \| (\tilde{G}(u^M), e_i)_W \|_{\mathcal{L}_2(U,R)}^2 dt,
\end{align*}
\]
and hence
\[
\begin{align*}
d\| u^M \|_W^2 + 2(v^M, u^M)_W dt \\
& = 2(\tilde{G}(u^M), u^M)_W dW(t) + \sum_{i=1}^M |(\tilde{G}(u^M), e_i)_W|^2_{\mathcal{L}_2(U,R)} dt.
\end{align*}
\]
By (2.6) we rewrite the above equation as follows
\[
d\| u^M \|_V^2 + \| u^M \|_*^2 + 2 \left((v^M, u^M)_V + \left(\text{curl}(u^M - \alpha \Delta u^M, \text{curl}(v^M - \alpha \Delta v^M) \right) \right) dt
\]
\[
\begin{aligned}
\quad & = 2(\tilde{G}(u^M), u^M) \gamma dW(t) + \sum_{i=1}^{M} \| (\tilde{G}(u^M), e_i) \|_{L^2(U,\mathbb{R})}^2 dt \\
& + 2 \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\tilde{G}(u^M) - \alpha \Delta \tilde{G}(u^M)) \right) dW(t).
\end{aligned}
\]

Using the definition of \(v^M \) and \(\tilde{G} \) (see (4.30)), we obtain
\[
\begin{aligned}
d\|[u^M]_t^2 + \|u^M\|_{\tilde{v}}^2 & + 2 \left[(\Psi(u^M), u^M) + \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\Psi(u^M)) \right) \right] dt \\
& = 2(\phi(u^M), u^M) dW(t) + \sum_{i=1}^{M} \lambda_i^2 \| (\phi(u^M), e_i) \|_{L^2(U,\mathbb{R})}^2 dt \\
& + 2 \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\phi(u^M)) \right) dW(t),
\end{aligned}
\]

Subtracting (4.29) from the above equation, we obtain
\[
\begin{aligned}
d\|u^M\|_{\tilde{v}}^2 + 2 \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\Psi(u^M)) \right) dt &= \sum_{i=1}^{M} (\lambda_i^2 - \lambda_i) \| (\phi(u^M), e_i) \|_{L^2(U,\mathbb{R})}^2 dt \\
& + 2 \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\phi(u^M)) \right) dW(t),
\end{aligned}
\]

here we used the fact \(2(\Psi(u^M), u^M) = 2\nu\|u^M\|^2 \).

Since
\[
\text{curl}(\text{curl}(u^M - \alpha \Delta u^M) \times u^M) = (u^M \cdot \nabla)(\text{curl}(u^M - \alpha \Delta u^M)),
\]
we have \((\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\text{curl}(u^M - \alpha \Delta u^M) \times u^M)) = 0. \)

Hence
\[
\begin{aligned}
\left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\Psi(u^M)) \right) &= \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\phi(u^M)) \right) \\
& = \lambda \|u^M\|_{\tilde{v}}^2 - \mu \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl} u^M \right).
\end{aligned}
\]

It follows from (4.34) that
\[
\begin{aligned}
d\|u^M\|_{\tilde{v}}^2 + \frac{2\nu}{\alpha}\|u^M\|_{\tilde{v}}^2 dt &= \sum_{i=1}^{M} (\lambda_i^2 - \lambda_i) \| (\phi(u^M), e_i) \|_{L^2(U,\mathbb{R})}^2 dt \\
& + 2 \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\phi(u^M)) \right) dW(t).
\end{aligned}
\]

Using the fact that
\[
|\text{curl}(u)|^2 \leq \frac{2}{\alpha}\|u\|_{\tilde{v}}^2 \quad \text{for any } u \in \mathbb{W},
\]
we have
\[
\begin{aligned}
\left| \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl} u^M \right) \right| &
\end{aligned}
\]
\[
\leq \sqrt{\frac{2}{\alpha} \|u^M(s)\|_V \|u^M(s)\|_*},
\]
\[
\leq \frac{1}{2} \|u^M(s)\|^2 ds + \frac{2}{\alpha} \|u^M(s)\|_*^2. \tag{4.37}
\]

Using similar arguments as that for (4.31), we have
\[
\sum_{i=1}^M (\lambda_i^2 + \lambda_i) |(\phi(u^M(s)), e_i)|^2_{L^2(U^c,R)} \leq (1 + \frac{1}{\Lambda_1}) K^2 R. \tag{4.38}
\]

Combining (4.35), (4.37) and (4.38), we arrive at
\[
d\|u^M\|_*^2 + \frac{\nu}{\alpha} \|u^M\|_*^2 dt \leq \frac{4\nu}{\alpha^2} \|u^M\|_V^2 dt + (1 + \frac{1}{\Lambda_1}) K^2 R dt
\]
\[
+ 2 \left(\text{curl}(u^M - \alpha \nabla u^M), \text{curl}(\phi(u^M)) \right) dW(t). \tag{4.39}
\]

By (2.5), (4.32) and (4.39), we obtain
\[
d\|u^M\|_W^2 + l \|u^M\|_W^2 dt \leq l_0 R dt + (2 + 4(\frac{P^2 + \alpha}{\alpha^2})_0 R dt)
\]
\[
+ 2 \left(\text{curl}(u^M - \alpha \nabla u^M), \text{curl}(\phi(u^M)) \right) dW(t), \tag{4.40}
\]

here \(l = \frac{P^2 + \alpha}{\alpha^2}, \ l_0 = (1 + \frac{2}{\Lambda_1} + \frac{2(2P^2 + \alpha)}{\alpha^2}) K^2 \).

Applying chain rule to \(e^l \|u^M\|_W^2 \) and taking the expectation, we obtain
\[
E \|u^M(t)\|_W^2 \leq e^{-lt} \|u^M(0)\|_W^2 + \frac{l_0 R}{l},
\]

which is the desired inequality (4.26).

Let \(\beta > 0 \) and \(\tau \) be a stopping time. Applying Itô’s formula to \(e^{-\beta t} \|u^M(t)\|_W^2 \), we have
\[
d(e^{-\beta t} \|u^M\|_W^2) + e^{-\beta t} (\beta + l) \|u^M\|_W^2 dt
\]
\[
\leq e^{-\beta t} l_0 R dt + (2 + 4(\frac{P^2 + \alpha}{\alpha^2})_0 R dt)
\]
\[
+ 2e^{-\beta t} \left(\text{curl}(u^M - \alpha \nabla u^M), \text{curl}(\phi(u^M)) \right) dW(t). \tag{4.41}
\]

This implies that, for any \(n \in \mathbb{N} \),
\[
E \left(e^{-\beta (\tau \wedge n)} \|u^M(\tau \wedge n)\|_W \right) \leq \|u^M(0)\|_W^2 + \frac{l_0 R}{\beta}. \tag{4.42}
\]

Letting \(n \to \infty \), we obtain (4.27).

The proof is complete. \(\blacksquare \)

Denote by \(u(\cdot, W, u_0) \) the unique solution of (1.1) with initial value \(u_0 \). By similar arguments as in the proof of Theorem 4.2 in [16], we have the following lemma which will be used later.
Lemma 4.2 The sequence of Galerkin approximations \((u^M)_{M \geq 1}\) satisfies
\[
\lim_{M \to \infty} E(\|u^M(t) - u(t)\|_V^2) = 0, \quad t > 0,
\]
\[
\lim_{M \to \infty} E(\int_0^T \|u^M(t) - u(t)\|_V^2 dt) = 0.
\]

By Lemma 4.1, we deduce that \(u^M(t) \to u(t, W, u_0)\) weakly in \(L^2(\Omega, \mathcal{F}, P; W)\).

Furthermore, the following result holds.

Proposition 4.2 Assume (H0) holds. There exists constant \(C_1\) only depending on \(\nu, \alpha, R\) and \(O\) such that, for any \(t \geq 0\),
\[
E(\|u(t, W, u_0)\|_W^2) \leq e^{-\nu t} P^2 + \alpha \|u_0\|_W^2 + C_1. \tag{4.43}
\]

Moreover, for any \(\beta > 0\), there exists a constant \(C_1^\beta\) such that for any stopping time \(\tau\),
\[
E(e^{-\beta \tau} \|u(\tau, W, u_0)\|_W^2 1_{\tau < \infty}) \leq \|u_0\|_W^2 + C_1^\beta. \tag{4.44}
\]

Recall \(l = \frac{\nu}{P^2 + \alpha}\) and \(l_0 = (1 + \frac{2}{\lambda_1} + \frac{2(P^2 + \alpha)}{\lambda_1 n^2}) K^2\). Define the energy functional
\[
E_f(t) = \|f(t)\|_W^2 + \frac{l}{2} \int_0^t \|f(s)\|_W^2 ds.
\]

Lemma 4.3 Assume (H0) holds. There exists \(\kappa > 0\) such that for any \(\kappa_0 \leq \kappa/2\)
\[
E\left[\exp \left(\kappa_0 \sup_{t \geq 0} (E_{w^M(\cdot, W, u^M_0)}(t) - l_0 R t) \right) \right] \leq 2 \exp(\kappa_0 \|u_0^M(0)\|_W^2). \tag{4.45}
\]

Proof: Set
\[
\mathcal{A}(t) = \int_0^t (2 + 4(P^2 + \alpha)/\alpha^2)(\phi(u^M), u^M)dW(s) + 2 \int_0^t \left(\text{curl}(u^M - \alpha \Delta u^M), \text{curl}(\phi(u^M)) \right)dW(s).
\]

It is easy to see that
\[
d\langle \mathcal{A} \rangle(t) \leq cR\|u^M\|_W^2 dt.
\]

Let \(\kappa = \frac{l}{cR}\) and
\[
\mathcal{A}_\kappa(t) = \mathcal{A}(t) - \frac{\kappa}{2} \langle \mathcal{A} \rangle(t).
\]

By (4.40), we have
\[
E_{w^M}(t) \leq \|u^M(0)\|_W^2 + l_0 R t + \mathcal{A}_\kappa(t). \tag{4.46}
\]
Since \(e^{\kappa A_n} \) is a positive supermartingale whose value is 1 at \(t = 0 \), we have
\[
P\left(\sup_{t \geq 0} \mathcal{A}_n(t) \geq \rho \right) \leq P\left(\sup_{t \geq 0} \exp(\kappa A_n(t)) \geq \exp(\kappa \rho) \right) \leq \exp(-\kappa \rho), \tag{4.47}
\]
which implies, letting \(\kappa_0 \leq \kappa/2 \),
\[
E\left(e^{\kappa_0 \sup \mathcal{A}_n} \right) = 1 + \kappa_0 \int_0^\infty e^{\kappa_0 y} P\left(\sup_{t \geq 0} \mathcal{A}_n(t) \geq y \right) dy \leq 2. \tag{4.48}
\]
Combining (4.48) and (4.46), we deduce (4.45).

Setting \(\rho > 0 \). Let \(\tilde{u}^M \in \mathbb{W}_M \) be the solution of the following SPDE
\[
d(\tilde{u}^M, e_i)_V + \nu((\tilde{u}^M, e_i))dt + b(\tilde{u}^M, \tilde{u}^M, e_i)dt - \alpha b(\tilde{u}^M, \tilde{\Delta} \tilde{u}^M, e_i)dt + \alpha(b(e_i, \tilde{\Delta} \tilde{u}^M, \tilde{u}^M) dt = \langle \rho P_N(\tilde{u}^M - u^M(t, W, u_0)), e_i \rangle_V dt + \langle \phi(\tilde{u}^M), e_i \rangle_V dt \tag{4.49}
\]
for any \(i \in \{1, 2, \cdots, M\} \), with initial value \(\tilde{u}^M(0) = P_M \tilde{u}_0, \tilde{u}_0 \in W \).

Lemma 4.4 Assume that \((\text{H0})\) and \((\text{H1})\) hold. There exist \(\omega > 0 \) and \(\kappa_0 \geq 0 \) such that
\[
\sup_{t \geq 0} E\left(\left(e^t \|r_M(t)\|_V^2 + \int_0^t e^s \|r_M(s)\|_V^2 ds \right)^\omega \right) \leq 2 \|r_M(0)\|_V^{2\omega} \exp(\kappa_0 \|u^M(0)\|_W^2) \tag{4.50}
\]
where \(r_M = \tilde{u}^M - u^M \).

Proof: Note that
\[
d(r_M, e_i)_V + \nu((r_M, e_i))dt + (\delta B, e_i)dt + \rho(P_Nr_M, e_i)_V dt = (\delta \phi, e_i)dt, \tag{4.47}
\]
here \(\delta B = B(\tilde{u}^M, \tilde{u}^M) - B(u^M, u^M) \) and \(\delta \phi = \phi(\tilde{u}^M) - \phi(u^M) \).
Applying Itô’s formula to \((r_M, e_i)_V\), and remembering that \(\|r_M\|_V^2 = \sum_{i=1}^M \lambda_i \|r_M, e_i\|_2^2 \), we have
\[
d\|r_M\|_V^2 + 2\nu\|r_M\|_V^2 dt + 2(\delta B, r_M)dt + 2(\rho P_Nr_M, r_M)_V dt
\]
\[
= 2(\delta \phi, r_M)dt + \sum_{i=1}^M \lambda_i (\delta \phi, e_i)^2 \|Z_{2(U,R)}(\tilde{\Delta})\|^2 dt.
\]
By \((2.17)\),
\[
|2(\delta B, r_M)| = |2(B(r_M, r_M, u^M)| \leq 2\Theta\|r_M\|_V^2\|u^M\|_W \leq \|r_M\|_V^2 + \Theta^2\|r_M\|_V^2\|u^M\|_W^2.
\]
By the similar arguments as that for the proof of \((4.31)\),
\[
\sum_{i=1}^M \lambda_i (\delta \phi, e_i)^2 \|Z_{2(U,R)}(\tilde{\Delta})\|^2 \leq \frac{K^2}{\lambda_1} |\delta \phi|^2 \|Z_{2(U,V)}\|^2 \leq \frac{K^2 L^2_{\theta}}{\lambda_1} \|r_M\|_V^2.
\]
Set \(l_1 = \frac{2\nu}{\lambda_2^2} - 1 - \frac{K^2 L^2_{\theta}}{\lambda_1^2} > 0 \) and setting \(\Lambda_1 = \Theta^2 \), we have
\[
d\|r_M\|_V^2 + \left(l_1 - \Lambda_1\|u^M\|_W^2\right)\|r_M\|_V^2 dt \leq 2(\delta \phi, r_M)dt.
\]
Set $G_1(t) = e^{-lt + \Lambda_1 \int_0^t \|u^M(s)\|_W^2 ds}$. By the chain rule, we have
\[
d(e^t G_1^{-1}(t)\|r_M\|_V^2) + e^t G_1^{-1}(t)\|r_M\|_V^2 dt \leq 2e^t G_1^{-1}(t)(\delta \phi, r_M)dW(t).
\]
Integrating the above inequality and taking expectation, it follows that
\[
E\left(e^t G_1^{-1}(t)\|r_M(t)\|_V^2 + \int_0^t e^s G_1^{-1}(s)\|r_M(s)\|_V^2 ds \right) \leq \|r_M(0)\|_V^2. \tag{4.51}
\]

By Hölder inequality,
\[
E\left(\left(e^t \|r_M(t)\|_V^2 + \int_0^t e^s \|r_M(s)\|_V^2 ds \right)^\alpha \right) \\
\leq \sqrt{E(\sup_{t \geq 0} G_1^{2\alpha}(t)) \left(E\left(e^t G_1^{-1}(t)\|r_M(t)\|_V^2 + \int_0^t e^s G_1^{-1}(s)\|r_M(s)\|_V^2 ds \right) \right)^\alpha}. \tag{4.52}
\]
Choosing $\omega > 0$ sufficiently small, it follows from Lemma 4.3 and condition (H1) that
\[
E(\sup_{t \geq 0} G_1^{2\alpha}(t)) = E(\sup_{t \geq 0} e^{-2\omega t + 2\Lambda_1 \omega \int_0^t \|u^M(s)\|_W^2 ds}) \\
\leq E(\sup_{t \geq 0} e^{-\frac{4\omega \Lambda_1}{l}(E_{u^M}(t) - \frac{l_1}{2\Lambda_1}t)}) \\
\leq E \left(\exp \left(\sup_{t \geq 0} \frac{4\omega \Lambda_1}{l}(E_{u^M}(t) - \frac{l_1}{2\Lambda_1}t) \right) \right). \tag{4.53}
\]

(4.51), (4.52) and (4.53) imply (4.50). The proof is complete. \[\square\]

Recall X^α defined by (3.21). By Theorem 3.4 and Theorem 4.1 in [10], there exits a unique solution $\ddot{u} = \ddot{u}(\cdot, W, u_0, \ddot{u}_0)$ satisfying
\[
\begin{align*}
d(\ddot{u} - \alpha \triangle \ddot{u}) + \left(-\nu \triangle \ddot{u} + \text{curl}(\ddot{u} - \alpha \triangle \ddot{u}) \times \ddot{u} \right) dt + \rho P_N((\ddot{u} - X^{u_0}) - \alpha \triangle (\ddot{u} - X^{u_0})) dt \\
= \phi(\ddot{u})dW,
\end{align*}
\]
with initial value $\ddot{u}(0) = \ddot{u}_0 \in W$.

By Lemma 4.2 and using similar arguments as Theorem 4.2 in [10], we have

Lemma 4.5 The sequence of approximations $(\ddot{u}^M)_{M \geq 1}$ satisfies
\[
\lim_{M \to \infty} E(\|\ddot{u}^M(t) - \ddot{u}(t)\|_V^2) = 0,
\]
\[
\lim_{M \to \infty} E(\int_0^T \|\ddot{u}^M(t) - \ddot{u}(t)\|_V^2 dt) = 0.
\]

Combining Lemma 4.2, Lemma 4.5 and Lemma 4.4 and applying Fatou’s lemma, we have

Proposition 4.3 Assume that (H0) and (H1) hold. There exist $\omega > 0$ and $\kappa_0 > 0$ such that
\[
E\left(\left(e^t \|r(t)\|_V^2 + \int_0^t e^s \|r(s)\|_V^2 ds \right)^\omega \right) \\
\leq 2\|r(0)\|_W^{2\omega} \exp(\kappa_0\|u_0\|_W^2) \tag{4.55}
\]
where $r(t) = \ddot{u}(t) - u(t)$.
4.2 Completion of the proof

Now we verify the assumptions (A)-(D) of Theorem 4.1. Denote the solution of (4.54) by \(\tilde{u}(t, W, u_0, \tilde{u}_0) \). Set

\[
\tilde{X}(t, W, x_0, \tilde{x}_0) = \begin{cases}
\tilde{u}(t, W, x_0, \tilde{x}_0), & \tilde{x}_0 \in W; \\
\tilde{x}_0, & \tilde{x}_0 \in V/W,
\end{cases}
\] (4.56)

and recall (3.21). We set \((Y(t), \tilde{Y}(t)) = (X(t, W, x_0), \tilde{X}(t, W, x_0, \tilde{x}_0))\). Then (A) is a consequence of the well-posedness of the equations.

We set \(H = \|\cdot\|_V^2\). By Proposition 4.2, we have (B). Let \(h(u_0, u_1) = -g(u_1)\rho P_N(u_1 - u_0)\) and recall (H1), then (C) holds.

By (H1), we have

1. \[P\left(\|Y(t, W_2, x_0^2) - Y(t, W_1, x_1^1)\|_V \geq Ce^{-\gamma_0 t}, \tilde{Y}(\cdot, W_1, x_1^1, x_0^2) = Y(\cdot, W_2, x_0^2) \text{ on } [0, t]\right)\]
 \[= P\left(\|r(t)\|_V \geq Ce^{-\gamma_0 t}\right);\]

2. for any \(t_0 \geq 0\) and any stopping time \(\tau \geq t_0\),
 \[P\left(\int_{t_0}^{\tau} |h(t)|_V^2 dt \geq Ce^{-\gamma_0 t_0} \text{ and } \tilde{Y}(\cdot, W_1, x_1^1, x_0^2) = Y(\cdot, W_2, x_0^2) \text{ on } [0, \tau]\right)\]
 \[\leq P\left(\int_{t_0}^{\tau} \|r(t)\|_V^2 dt \geq Ce^{-\gamma_0 t_0}\right);\]

3. \[P\left(\int_0^{+\infty} |h(t)|_V^2 dt \leq C\right) \geq P\left(\int_0^{+\infty} \|r(t)\|_V^2 dt \leq C\right).

By Chebyshev inequality, we deduce (D) directly from Proposition 4.3.

Thus, we can apply Theorem 4.1 to obtain our main result Theorem 3.4.

Acknowledgements This work was supported by National Natural Science Foundation of China (NSFC) (No. 11431014, No. 11301498, No. 11401557), and the Fundamental Research Funds for the Central Universities (No. WK 0010000033).

References

[1] J.M. Bernard, Weak and classical solutions of equations of motion for second grade fluids, Comm. Appl. Nonlinear Anal. 5(4) (1998)1-32

[2] A. V. Busuioc, On second grade fluids with vanishing viscosity, Comptes Rendus de l’Academie des Sciences. Serie I, vol. 328, no. 12, 1241-1246, 1999.

[3] A. V. Busuioc, T.S. Ratiu, The second grade fluid and averaged Euler equations with Navier-slip boundary conditions, Nonlinearity, vol. 16, no. 3, 1119-1149, 2003.
[4] D. Cioranescu, V. Girault, *Weak and classical solutions of a family of second grade fluids*, International Journal of Non-Linear Mechanics, vol. 32, no.2, pp. 317-335, 1997.

[5] D. Cioranescu, O. El Hancene, *Existence and uniqueness for fluids of second grade*, in Nonlinear Partial Differential Equations and Their Applications. College de France seminar, vol. 109, pp. 178-197, Pitman, Boston, Mass, USA, 1984.

[6] D. Cioranescu, E.H. Ouazar, *Existence and uniqueness for fluids of second grade*, in: Nonlinear Partial Differential Equations, in: College de france Seminar, Pitman, vol. 109, 1984, pp. 178-197.

[7] J.E. Dunn, R.L. Fosdick, *Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade*, Arch. Ration. Mech. Anal. 56(3), 191-252, 1974.

[8] J.E. Dunn, K.R. Rajagopal, *Fluids of differential type: critical review and thermodynamic analysis*, Internat. J. Engrg. Sci. 33(5), 668-729, 1995.

[9] R.L. Fosdick, K.R. Rajagopal, *Anomalous features in the model of second grade fluids*, Arch. Ration. Mech. Anal. 70, 145-152, 1978.

[10] E. Hausenblas, P.A. Razafimandimby, M. Sango, *Martingale solution to equations for differential type fluids of grade two driven by random force of Levy type*, potential Anal., 38, no. 4, 1291-1331, 2013.

[11] D.D. Holm, J.E. Marsden, T.S. Ratiu, *Euler–Poincaré models of ideal fluids with nonlinear dispersion*, Physical Review Letters, vol. 80, no.19, 4173-4176, 1998.

[12] D.D. Holm, J.E. Marsden, T.S. Ratiu, *The Euler–Poincaré equations and semidirect products with applications to continuum theories*, Advances in Mathematics, vol. 137, no. 1, 1-81,1998.

[13] D. Iftimie, *Remarques sur la limite α → 0 pour les fluides de grade 2*, Comptes Rendus Mathématique Académie des Sciences. Paris. Series I, vol. 334, no. 1, 83-86, 2002.

[14] W. Noll, C. Truesdell, *The Nonlinear Field Theory of Mechanics*, in: Handbuch der Physik, vol. III, Springer-Verlag, Berlin, 1975.

[15] C. Odasso, *Exponential mixing for stochastic PDEs: the non-additive case*, Probab. Theory Relat. Fields, 140, 41-82, 2008.

[16] P.A. Razafimandimby, M. Sango, *Strong solution for a stochastic model of two-dimensional second grade fluids: Existence, uniqueness and asymptotic behavior*, Nonlinear Analysis 75 (2012)4251-4270.

[17] P.A. Razafimandimby, M. Sango, *Asymptotic behaviour of solutions of stochastic evolution equations for second grade fluids*, C.R. Acad. Sci. Paris. Ser. I 348(13-14), 787-790.

[18] P.A. Razafimandimby, M. Sango, *Weak solution of a stochastic model of two-dimensional second grade fluids*, Bound. Value Probl. (2010) 47.

[19] S. Shkoller, *Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations*, Applied Mathematics Letters, vol. 14, no. 5, 539-543, 2001.
[20] S. Shkoller, *Geometry and curvature of diffeomorphism groups with H^1 metric and mean hydrodynamics*, Journal of Functional Analysis, vol. 160, no. 1, 337-365, 1998.

[21] V.A. Solonnikov, *On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. I*, Amer. Math. Soc. Transl. 56(1966)193-232.

[22] V.A. Solonnikov, *On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. II*, Pro. Steklov Inst. Math. 92(1968)269-339.