Littlewood–Paley decompositions and Besov spaces on Lie groups of polynomial growth

Giulia Furioli, Camillo Melzi and Alessandro Veneruso

Abstract

We introduce a Littlewood–Paley decomposition related to any sub-Laplacian on a Lie group G of polynomial volume growth; this allows us to prove a Littlewood–Paley theorem in this general setting and to provide a dyadic characterization of Besov spaces $B^{s,q}_p(G)$, $s \in \mathbb{R}$, equivalent to the classical definition through the heat kernel.

1 Introduction

Littlewood–Paley decompositions are a powerful tool in investigating deep properties of function spaces of distributions. Let us recall briefly the classical construction in \mathbb{R}^n. Let $\varphi \in C^\infty(\mathbb{R})$ be an even function such that $0 \leq \varphi \leq 1$, $\varphi = 1$ in $[0, \frac{1}{4}]$ and $\varphi = 0$ in $[1, \infty)$. Let $\psi(\lambda) = \varphi(\frac{\lambda}{4}) - \varphi(\lambda)$, so that supp $\psi \subset \{\frac{1}{4} \leq |\lambda| \leq 4\}$. We have the following partition of unity on the frequency space of the Fourier transform:

$$1 = \varphi(|\xi|^2) + \sum_{j=0}^{\infty} \psi(2^{-2j}|\xi|^2), \quad \xi \in \mathbb{R}^n.$$

This gives the identity in $\mathcal{S}'(\mathbb{R}^n)$:

$$\hat{u} = \varphi(|\cdot|^2)\hat{u} + \sum_{j=0}^{\infty} \psi(2^{-2j}|\cdot|^2)\hat{u}, \quad u \in \mathcal{S}'(\mathbb{R}^n)$$

and, denoting by S_0u e $\Delta_j u$ respectively

$$\hat{S_0u} = \varphi(|\cdot|^2)\hat{u}, \quad \hat{\Delta_j u} = \psi(2^{-2j}|\cdot|^2)\hat{u},$$

we obtain the Littlewood–Paley decomposition in $\mathcal{S}'(\mathbb{R}^n)$:

$$(1) \quad u = S_0u + \sum_{j=0}^{\infty} \Delta_j u, \quad u \in \mathcal{S}'(\mathbb{R}^n).$$

The following fundamental theorem holds (see e.g. [St]):

The authors were partially supported by GNAMPA - Progetto “Calcolo funzionale per generatori di semigruppi ed analisi armonica su gruppi”, 2003.
Theorem 1 (Littlewood–Paley)
Let $1 < p < \infty$ and $u \in S'(\mathbb{R}^n)$. Then $u \in L^p(\mathbb{R}^n)$ if and only if $S_0 u \in L^p(\mathbb{R}^n)$ and
\[
\left(\sum_{j=0}^{\infty} |\Delta_j u|^2 \right)^{\frac{1}{2}} \in L^p(\mathbb{R}^n).
\]
Moreover there exists a constant $C_p > 1$, which depends only on p, such that
\[
C_p^{-1} \|u\|_{L^p(\mathbb{R}^n)} \leq \|S_0 u\|_{L^p(\mathbb{R}^n)} + \left\| \left(\sum_{j=0}^{\infty} |\Delta_j u|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)} \leq C_p \|u\|_{L^p(\mathbb{R}^n)}, \quad u \in L^p(\mathbb{R}^n).
\]

The proof of this theorem is based on the classical Hörmander–Mihlin L^p-multiplier theorem ([H]) and on the uniform estimates for the norms of the convolution operators Δ_j on $L^p(\mathbb{R}^n)$. The main purpose of this paper is to prove a Littlewood–Paley theorem on Lie groups of polynomial volume growth, with respect to any sub-Laplacian.

In view of extending the previous construction to a general Lie group of polynomial growth it is more convenient to see the decomposition (1) in terms of multipliers of the Laplacian $\Delta = -\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$. Starting from the spectral decomposition of the Laplacian
\[
\Delta = \int_0^\infty \lambda dE_\lambda
\]
and from the functions $\varphi, \psi \in L^\infty(\mathbb{R}^n)$ previously introduced, we consider the multiplier operators
\[
\varphi(\Delta) = \int_0^\infty \varphi(\lambda) dE_\lambda,
\]
\[
\psi(2^{-2j} \Delta) = \int_0^\infty \psi(2^{-2j} \lambda) dE_\lambda.
\]
So we have the identifications between operators
\[
\varphi(\Delta) f = S_0 f, \quad \psi(2^{-2j} \Delta) f = \Delta_j f, \quad f \in L^2(\mathbb{R}^n).
\]
If we denote by Ψ_j the convolution kernel of the operator $\psi(2^{-2j} \Delta)$, due to the dilation structure of \mathbb{R}^n we have the scaling formula
\[
(2) \quad \Psi_j(x) = 2^{nj} \Psi_0(2^j x), \quad x \in \mathbb{R}^n, j \in \mathbb{N}
\]
that allows us to easily obtain the estimates for the norms of the operators Δ_j only from the operator Δ_0. If we now consider a stratified Lie group G, endowed with its natural dilation structure, and if Δ is a sub-Laplacian on G invariant with respect to the family of dilations, the scaling formula (2) still holds, where n is the homogeneous dimension of G. In this case the way to prove a Littlewood–Paley theorem through a Hörmander–Mihlin multiplier theorem is based on classical techniques ([FS], [DM], [MM]). In the particular case of the Heisenberg group \mathbb{H}_n, we can deduce a Littlewood–Paley theorem also for the full Laplacian from the results by Müller, Ricci and Stein [MRS1], [MRS2]; but their techniques, based on the Fourier transform on \mathbb{H}_n, do not fit to the case of Lie groups of polynomial growth. Alexopoulos
in [A2] proved a Hörmander–Mihlin multiplier theorem for any sub-Laplacian in the general setting of Lie groups of polynomial growth; nevertheless, such result does not provide directly the uniform estimates for the norms of the operators Δ_j we need to deduce a Littlewood–Paley theorem.

The main result of this paper is Proposition 6 which allows us to deduce the uniform estimates for the norms of the operators Δ_j and to prove a Littlewood–Paley decomposition in $S'(G)$ (Proposition 8) and a Littlewood–Paley theorem (Theorem 10). As an application of such decomposition, we finally provide a dyadic characterization of Besov spaces $B_{p,q}^s(G)$, $s \in \mathbb{R}$, equivalent to the classical definition through the heat kernel (Proposition 12).

We would like to thank Stefano Meda for several helpful discussions.

2 Notation and preliminaries

In this paper \mathbb{N} denotes the set of nonnegative integers, \mathbb{Z}_+ the set of positive integers and \mathbb{R}_+ the set of positive real numbers. For $p \in [1, \infty]$ we denote by p' the conjugate index of p, such that $\frac{1}{p} + \frac{1}{p'} = 1$.

In this section we recall some basic facts about Lie groups of polynomial growth. For the proofs and further information, see e.g. [VSC] and the references given therein.

Let G be a connected Lie group, and let us fix a left-invariant Haar measure dx on G. We will denote by $|A|$ the measure of a measurable subset A of G and by χ_A its characteristic function.

We assume that G has polynomial volume growth, i.e., if U is a compact neighbourhood of the identity element e of G, then there is a constant $C > 0$ such that $|U^n| \leq Cn^C$, $n \in \mathbb{Z}_+$. Then G is unimodular. Furthermore, there exists $D \in \mathbb{N}$, which does not depend on U, such that

$$|U^n| \sim n^D \quad \text{for} \ n \to \infty. \quad (3)$$

For instance, every connected nilpotent Lie group has polynomial volume growth.

The convolution of two functions f and g on G is defined by

$$f \ast g(x) = \int_G f(y)g(y^{-1}x) \, dy, \quad x \in G$$

and satisfies the Young’s inequality (where $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$)

$$\|f \ast g\|_{L^r(G)} \leq \|f\|_{L^p(G)}\|g\|_{L^q(G)}. \quad (4)$$

The space $\mathcal{D}(G)$ of test functions and the space $\mathcal{D}'(G)$ of distributions are defined in the usual way (see [E]). The convolution of $\varphi \in \mathcal{D}(G)$ and $u \in \mathcal{D}'(G)$ is defined as usual:

$$\langle \varphi \ast u, \psi \rangle = \langle u, \check{\varphi} \ast \psi \rangle, \quad \psi \in \mathcal{D}(G)$$

where

$$\check{\varphi}(x) = \varphi(x^{-1}), \quad x \in G.$$
Let X_1, \ldots, X_k be left-invariant vector fields on G which satisfy the Hörmander’s condition, i.e., they generate, together with their successive Lie brackets $[X_{i_1}, \ldots, X_{i_n}] \cdots$, the Lie algebra of G. For $I = (i_1, \ldots, i_\beta) \in \{1, \ldots, k\}^{\beta} (\beta \in \mathbb{N})$ we put $|I| = \beta$ and $X^I = X_{i_1} \cdots X_{i_\beta}$, with the convention that $X^I = \text{id}$ if $\beta = 0$.

To X_1, \ldots, X_k is associated, in a canonical way, the control distance ρ, which is left-invariant and compatible with the topology on G. For any $x \in G$ we put $|x| = \rho(e, x)$. The properties of ρ imply that $|xy| \leq |x| + |y|$ for any $x, y \in G$. Furthermore, for any $r > 0$ we put $V(r) = |B(e, r)|$ where $B(e, r) = \{x \in G : |x| < r\}$. By (3) we have

$$V(r) \sim r^D \quad \text{for } r \to \infty.$$

On the other hand, there exists $d \in \mathbb{N}$ such that

$$V(r) \sim r^d \quad \text{for } r \to 0.$$

These estimates imply the “doubling property”: there exists $K > 0$ such that

$$V(2r) \leq KV(r), \quad r > 0.$$

We consider the sub-Laplacian

$$\mathcal{L} = -\sum_{j=1}^k X_j^2$$

which is a positive self-adjoint operator, having as domain of definition the space of all functions $f \in L^2(G)$ such that $\mathcal{L}f \in L^2(G)$. So, by the spectral theorem, for any bounded Borel function m on $[0, \infty)$ we can define the operator $m(\mathcal{L})$ which is bounded on $L^2(G)$. Since the point 0 may be neglected in the spectral resolution of \mathcal{L} (see [C], [A2]), we consider that the function m is defined on \mathbb{R}_+. Furthermore, the operator $m(\mathcal{L})$ admits a kernel $M \in \mathcal{D}'(G)$ which satisfies $m(\mathcal{L})f = f \ast M$ for any $f \in \mathcal{D}(G)$. We recall the following well-known results:

Theorem 2 ([A2])

Put $N = 1 + \max\{[\frac{d}{2}], [\frac{D}{2}]\}$. If $m \in C^N(\mathbb{R}_+)$ and \(\sup_{\lambda > 0} \lambda^r |m(\lambda)| < \infty\) for any $r \in \{0, \ldots, N\}$, then $m(\mathcal{L})$ extends to a bounded operator on $L^p(G)$, $1 < p < \infty$.

Proposition 3

Let $\{m_n\}_{n \in \mathbb{N}}$ be a sequence of bounded Borel functions on \mathbb{R}_+ which converges at every point to a bounded Borel function m. Suppose also that the sequence $\{|m_n|_{L^\infty(\mathbb{R}_+)}\}_{n \in \mathbb{N}}$ is bounded. Then the sequence $\{M_n\}_{n \in \mathbb{N}}$, where M_n is the kernel of the operator $m_n(\mathcal{L})$, converges in $\mathcal{D}'(G)$ to the kernel M of the operator $m(\mathcal{L})$.

Proof: By the spectral theorem $m_n(\mathcal{L})f \to m(\mathcal{L})f$ in $L^2(G)$ for $n \to \infty$ for every $f \in L^2(G)$. In particular, $f \ast M_n \to f \ast M$ in $\mathcal{D}'(G)$ for $n \to \infty$ for every $f \in \mathcal{D}(G)$. Fix $\varphi \in \mathcal{D}(G)$. By [DiM] Théorème 3.1 the function φ can be written as a finite sum $\varphi = \sum_{j=1}^r \psi_j \ast \chi_j$ with ψ_j, χ_j in $\mathcal{D}(G)$. So by (1)

$$\langle M_n, \varphi \rangle = \sum_{j=1}^r \langle \psi_j \ast M_n, \chi_j \rangle \overset{n \to \infty}{\longrightarrow} \sum_{j=1}^r \langle \psi_j \ast M, \chi_j \rangle = \langle M, \varphi \rangle.$$
We introduce the Schwartz space $S(G)$ and its dual space $S'(G)$ as in [S1], [S2]. The definition does not depend on X_1, \ldots, X_k. However, a useful characterization of $S(G)$ is the following: a function $f \in C^\infty(G)$ is in $S(G)$ if and only if all the seminorms

$$p_{\alpha,I}(f) = \sup_{x \in G} (1 + |x|)^\alpha |X_I f(x)|$$

$(\alpha \in \mathbb{N}, I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta)$ are finite. The space $S(G)$ endowed with this family of seminorms is a Fréchet space. It is easy to show that $S(G) \subset S'(G) \subset L^p(G)$ for $1 \leq p \leq \infty$.

The heat kernel p_t, i.e. the kernel of the operator e^{-tL} $(t > 0)$, is a positive C^∞ function which satisfies $\int_G p_t(x) \, dx = 1$. Moreover, for any $I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta$ there exists $C > 0$ such that the following estimates hold:

$$p_t(x) \leq CV(\sqrt{t})^{-1} e^{-\frac{|x|^2}{Ct}}, \quad x \in G, \ t > 0; \quad (6)$$

$$|X_I p_t(x)| \leq Ct^{-\frac{d + |I|}{2}} e^{-\frac{|x|^2}{Ct}}, \quad x \in G, \ 0 < t \leq 1. \quad (7)$$

In particular, estimate (7) implies that $p_t \in S(G)$ for $t \in (0, 1]$. Since $p_{t_1 + t_2} = p_{t_1} * p_{t_2}$ for any $t_1, t_2 > 0$, it follows that $p_t \in S(G)$ for any $t > 0$. Furthermore, estimates (6) and (7) yield the following

Proposition 4

For any $\alpha \in \mathbb{N}, I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta$ and $p \in [1, \infty]$ there exists $C > 0$ such that the following estimates hold:

$$\| (1 + | \cdot |)^\alpha p_t(\cdot) \|_{L^p(G)} \leq C(1 + \sqrt{t})^\alpha V(\sqrt{t})^{-\frac{1}{p}}, \quad t > 0; \quad (8)$$

$$\| (1 + | \cdot |)^\alpha X_I p_t(\cdot) \|_{L^p(G)} \leq Ct^{-\frac{d + |I|}{2} + \frac{|I|^2}{4p}}, \quad 0 < t \leq 1. \quad (9)$$

Proof: In this proof we will denote by C a positive constant which will not be necessarily the same at each occurrence, with the convention that C can depend only on G and on α, I, p.

Fix $t > 0$. First we note that

$$\sup_{\rho \geq 0} (1 + \rho)^\alpha e^{-\frac{x^2}{Ct}} \leq C(1 + \sqrt{t})^\alpha \quad (10)$$

as is easy to verify by calculating the maximum of the function $\rho \mapsto (1 + \rho)^\alpha e^{-\frac{x^2}{Ct}}$ in $[0, \infty)$. For $p = \infty$ estimates (8) and (9) follow directly by (10) and by (6) and (7), respectively. For $1 \leq p < \infty$ we use the fact that

$$\int_G e^{-\frac{|x|^2}{Ct}} \, dx \leq CV(\sqrt{t}) \quad (11)$$
Fix $\delta > 0$, $n \in \mathbb{Z}_+$ and $h \in C^n(\mathbb{R})$ with compact support. Then there is an even function $g \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R}) \cap C(\mathbb{R})$ such that $\text{supp} \hat{g} \subset [-\delta, \delta]$ and
\[
\sup_{\lambda \in \mathbb{R}} |h(\lambda) - h * g(\lambda)| \leq C\delta^{-n} \sup_{\sigma \in \mathbb{R}} |h^{(n)}(\sigma)|
\]
where C is a positive constant which depends only on n but not on δ, h, g.

Throughout this section we will use the following notation: for any $n \in \mathbb{N}$ and for any $m \in C^n(\mathbb{R}_+)$ we put
\[
\|m\|_{(n)} = \sup_{0 \leq r \leq n, \lambda > 0} (1 + \lambda)^n |m^{(r)}(\lambda)|.
\]
Moreover, the constants d and K are the same which have been introduced in Section 2.

Proposition 6

Fix $\alpha \in \mathbb{N}$, $I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta$ and $p \in [1, \infty]$. There exist $C > 0$ and $n \in \mathbb{Z}_+$ such that for any $m \in C^n(\mathbb{R}_+)$ with $\|m\|_{(n)} < \infty$ the kernel M_t of the operator $m(t\mathcal{L})$, $t > 0$, satisfies the following estimates:
\[
\begin{align*}
&\|(1 + |\cdot|)^\alpha M_t(\cdot)\|_{L^p(G)} \leq C(1 + \sqrt{t})^{\alpha} V(\sqrt{t})^{-\frac{\beta}{p}} \|m\|_{(n)}, \quad t > 0; \\
&\|(1 + |\cdot|)^\alpha X^I M_t(\cdot)\|_{L^p(G)} \leq C t^{-\left(\frac{\beta}{2p} + \frac{\alpha - \beta}{2}
ight)} \|m\|_{(n)}, \quad 0 < t \leq 1.
\end{align*}
\]
Remark: The case where $\alpha = |I| = 0$ and $p = 1$ is particularly interesting: it simply reads
$$\|M_t\|_{L^1(G)} \leq C\|m\|_n, \quad t > 0.$$

Proof: In this proof we will denote by C a positive constant which will not be necessarily the same at each occurrence, with the convention that C can depend only on G and on α, I, p.

The proof consists of some steps.

Step 1. We prove (12) for $p = 1$, with the additional assumption that $m = 0$ in $[2, \infty)$.

Fix $t > 0$ and fix $n \in \mathbb{Z}_+$ which will be chosen later. We consider the function h_t on \mathbb{R} defined by
$$h_t(\sigma) = e^{t\sigma^2} m(t\sigma^2), \quad \sigma \in \mathbb{R}.$$

By the assumptions on m we have
$$\|h_t\|_{L^\infty(\mathbb{R})} \leq e^{2\|m\|_0}.$$

Moreover
$$m(t\lambda) = e^{-t\lambda} h_t(\sqrt{\lambda}), \quad \lambda > 0.$$

So by the spectral theorem
$$M_t = h_t(\sqrt{\mathcal{L}}) p_t \in L^2(G)$$

and
$$\|M_t\|_{L^2(G)} \leq \|h_t\|_{L^\infty(\mathbb{R})} \|p_t\|_{L^2(G)} \leq CV(\sqrt{t})^{-\frac{1}{2}} \|m\|_0$$

by (8) and (14). Then
$$\int_{|x| < \sqrt{t}} (1 + |x|)^{\alpha} |M_t(x)| \, dx \leq \left(\int_{|x| < \sqrt{t}} (1 + |x|)^{2\alpha} \, dx \right)^{\frac{1}{2}} \left(\int_{|x| < \sqrt{t}} |M_t(x)|^2 \, dx \right)^{\frac{1}{2}} \leq V(\sqrt{t})^{\frac{1}{2}} (1 + \sqrt{t})^\alpha \|M_t\|_{L^2(G)} \leq C(1 + \sqrt{t})^\alpha \|m\|_0.$$

On the other hand it follows from (15) that
$$\int_{|x| \geq \sqrt{t}} (1 + |x|)^{\alpha} |M_t(x)| \, dx = \sum_{j=0}^\infty \left(\int_{A_{t,j}} (1 + |x|)^{\alpha} |M_t^{(1)}(x)| \, dx + \int_{A_{t,j}} (1 + |x|)^{\alpha} |M_t^{(2)}(x)| \, dx \right)$$

where:
$$A_{t,j} = \{ x \in G : 2^j \sqrt{t} \leq |x| < 2^{j+1} \sqrt{t} \};$$
$$M_t^{(1)} = h_t(\sqrt{\mathcal{L}}) (p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t} \}});$$
$$M_t^{(2)} = h_t(\sqrt{\mathcal{L}}) (p_t \chi_{\{y \in G : |y| \geq 2^{j-1} \sqrt{t} \}}).$$
For every $j \in \mathbb{N}$ and for $i = 1, 2$ we have

$$\int_{A_{t,j}} (1 + |x|)^\alpha |M_{t,j}^{(i)}(x)| \, dx \leq \left(\int_{A_{t,j}} (1 + |x|)^{2\alpha} \, dx \right)^{\frac{1}{2}} \left(\int_{A_{t,j}} |M_{t,j}^{(i)}(x)|^2 \, dx \right)^{\frac{1}{2}} \leq V (2^{j+1} \sqrt{t})^{\frac{1}{2}} (1 + 2^{j+1} \sqrt{t})^\alpha \|M_{t,j}^{(i)}\|_{L^2(A_{t,j})}.$$

The fact that $(1 + 2^{j+1} \sqrt{t})^\alpha \leq C 2^{j\alpha}(1 + \sqrt{t})^\alpha$ and the doubling property [5] imply

$$\int_{A_{t,j}} (1 + |x|)^\alpha |M_{t,j}^{(i)}(x)| \, dx \leq C K^\frac{1}{2} V (\sqrt{t})^\frac{1}{2} 2^{j\alpha}(1 + \sqrt{t})^\alpha \|M_{t,j}^{(i)}\|_{L^2(A_{t,j})}. \tag{18}$$

In order to estimate $\|M_{t,j}^{(i)}\|_{L^2(A_{t,j})}$, first of all we suppose $n \geq 2$ and we note that

$$h_t(\sqrt{\lambda}) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{h}_t(s) \cos(s\sqrt{\lambda}) \, ds, \quad \lambda > 0$$

since h_t is an even function in $L^1(\mathbb{R})$ whose Fourier transform is in $L^1(\mathbb{R})$. Then for a.e. $x \in A_{t,j}$

$$M_{t,j}^{(i)}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{h}_t(s) \left(\cos(s\sqrt{\lambda}) (p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t}\}}) \right)(x) \, ds. \tag{19}$$

Now we use the fact that the kernel G_s of the operator $\cos(s\sqrt{\lambda})$, $s \in \mathbb{R}$, satisfies the following property (see [Me]):

$$\text{supp} \, G_s \subset \{y \in G : |y| \leq |s|\}.$$

So, for $x \in A_{t,j}$ and $|s| \leq 2^{j-1} \sqrt{t}$ we have

$$\left(\cos(s\sqrt{\lambda})(p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t}\}}) \right)(x) = 0. \tag{20}$$

By Lemma 5 we can take an even function $\hat{g}_{t,j} \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R}) \cap C(\mathbb{R})$ such that $\text{supp} \, \hat{g}_{t,j} \subset [-2^{j-1} \sqrt{t}, 2^{j-1} \sqrt{t}]$ and

$$\sup_{\lambda \in \mathbb{R}} |h_t(\lambda) - h_t \ast g_{t,j}(\lambda)| \leq C 2^{-jn} t^{-\frac{n}{2}} \sup_{s \in \mathbb{R}} |h_t^{(n)}(s)|. \tag{21}$$

The support property of $\hat{g}_{t,j}$ and property (20) imply that for a.e. $x \in A_{t,j}$

$$\int_{\mathbb{R}} \hat{h}_t(s) \hat{g}_{t,j}(s) \left(\cos(s\sqrt{\lambda})(p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t}\}}) \right)(x) \, ds = 0.$$

So formula (19) can be rewritten in the following way: for a.e. $x \in A_{t,j}$

$$M_{t,j}^{(1)}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \left(h_t(s) - \hat{h}_t(s) \hat{g}_{t,j}(s) \right) \left(\cos(s\sqrt{\lambda})(p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t}\}}) \right)(x) \, ds = \left((h_t - h_t \ast g_{t,j})(\sqrt{\lambda})(p_t \chi_{\{y \in G : |y| < 2^{j-1} \sqrt{t}\}}) \right)(x)$$

8
since \(h_t - h_t * g_{t,j} \) is an even function in \(L^1(\mathbb{R}) \cap L^\infty(\mathbb{R}) \cap C(\mathbb{R}) \) whose Fourier transform is in \(L^1(\mathbb{R}) \). Then
\[
\| M^{(1)}_{t,j} \|_{L^2(A_{t,j})} \leq \left\| (h_t - h_t * g_{t,j})(\sqrt{t}) (pt \chi_{\{y \leq 2^{j-1} \sqrt{t} \}}) \right\|_{L^2(G)} \\
\leq \| h_t - h_t * g_{t,j} \|_{L^\infty(\mathbb{R})} \| pt \chi_{\{y \leq 2^{j-1} \sqrt{t} \}} \|_{L^2(G)}.
\]
We apply estimate (24) to the first factor and we estimate the second factor simply by (4) and (5), so that
\[
\| pt \chi_{\{y \leq 2^{j-1} \sqrt{t} \}} \|_{L^2(G)} \leq CV(\sqrt{t})^{-1} V(2^{j-1} \sqrt{t})^{\frac{1}{2}} \\
\leq CK^{\frac{1}{2}} V(\sqrt{t})^{-\frac{1}{2}}
\]
and then
\[
(22) \quad \| M^{(1)}_{t,j} \|_{L^2(A_{t,j})} \leq C 2^{-jn} t^{-\frac{1}{2}} K^{\frac{1}{2}} V(\sqrt{t})^{-\frac{1}{2}} \| h_t^{(n)} \|_{L^\infty(\mathbb{R})}.
\]
We still have to estimate \(h_t^{(n)} \|_{L^\infty(\mathbb{R})} \). Note that
\[
h_t^{(n)}(\sigma) = t^{\frac{n}{2}} h_1^{(n)}(t^{\frac{1}{2}} \sigma), \quad \sigma \in \mathbb{R}
\]
and
\[
h_1^{(n)}(\lambda) = \sum_{r=0}^{\infty} \left(\begin{array}{c} n \\ r \end{array} \right) \left(\frac{d^{n-r}}{d\lambda^{n-r}} \right) (e^{-\lambda^2}) \left(\frac{d}{d\lambda} \right) (m(\lambda^2)), \quad \lambda \in \mathbb{R}.
\]
So
\[
(23) \quad \| h_t^{(n)} \|_{L^\infty(\mathbb{R})} = t^{\frac{n}{2}} \| h_1^{(n)} \|_{L^\infty(\mathbb{R})} \leq Ct^{\frac{n}{2}} \| m \|_{(n)}.
\]
Inequalities (22) and (23) give
\[
(24) \quad \| M^{(1)}_{t,j} \|_{L^2(A_{t,j})} \leq C 2^{-jn} K^{\frac{1}{2}} V(\sqrt{t})^{-\frac{1}{2}} \| m \|_{(n)}.
\]
Now we choose \(n > \alpha + \log_2 K \). Then estimates (18) and (24) yield
\[
(25) \quad \sum_{j=0}^{\infty} \left(\int_{A_{t,j}} (1 + |x|)^\alpha |M_t^{(1)}(x)| \, dx \right) \leq C (1 + \sqrt{t})^\alpha \| m \|_{(n)}.
\]
In order to estimate \(\| M^{(2)}_{t,j} \|_{L^2(A_{t,j})} \), first of all we use the properties of \(p_t \) to prove that
\[
\int_{|y| \geq 2^{j-1} \sqrt{t}} (p_t(y))^2 \, dy \leq \left(\sup_{|y| \geq 2^{j-1} \sqrt{t}} p_t(y) \right) \int_{G} p_t(y) \, dy \\
\leq CV(\sqrt{t})^{-1} e^{-\frac{2^j}{C}}
\]
and then
\[
\| M^{(2)}_{t,j} \|_{L^2(A_{t,j})} \leq \| M^{(2)}_{t,j} \|_{L^2(G)} \\
\leq C \| p_t \chi_{\{|y| \geq 2^{j-1} \sqrt{t} \}} \|_{L^2(G)} \| m \|_{(0)} \\
\leq CV(\sqrt{t})^{-\frac{1}{2}} e^{-\frac{2^j}{C}} \| m \|_{(0)}.
\]

This estimate and estimate (18) yield

\[
\sum_{j=0}^{\infty} \left(\int_{A_{t,j}} (1 + |x|)^{\alpha}|M_{t,j}(x)| \, dx \right) \leq C(1 + \sqrt{t})^{\alpha}\|m\|_{(0)}.
\]

So both terms of the right-hand side of (17) can be estimated by (25) and (26), respectively. Thus, taking into account also (16), we obtain

\[
\int_{G} (1 + |x|)^{\alpha}|M_{t}(x)| \, dx \leq C(1 + \sqrt{t})^{\alpha}\|m\|_{(0)}.
\]

Step 2. We prove (12) and (13) for any \(p \in [1, \infty] \), with the additional assumption that \(m = 0 \) in \([2, \infty)\). Fix \(t > 0 \). We consider the function \(f \) on \(\mathbb{R}_{+} \) defined by

\[
f(\lambda) = e^{\lambda}m(\lambda), \quad \lambda > 0.
\]

Then \(\|f\|_{(n)} \leq C\|m\|_{(n)} \). Moreover \(M_{t} = F_{t} \ast p_{t} \), where \(F_{t} \) the kernel of the operator \(f(t\mathcal{L}) \). So \(M_{t} \in C^{\infty}(G) \) and \(X^{I}M_{t} = F_{t} \ast X^{I}p_{t} \). Moreover, for every \(x \in G \) we have

\[
(1 + |x|)^{\alpha}|X^{I}M_{t}(x)| \leq C \left(\int_{G} (1 + |y|)^{\alpha}|F_{t}(y)||X^{I}p_{t}(y^{-1}x)| \, dy + \int_{G} |F_{t}(y)|(1 + |y^{-1}x|)^{\alpha}|X^{I}p_{t}(y^{-1}x)| \, dy \right).
\]

Then

\[
\| (1 + | \cdot |)^{\alpha}X^{I}M_{t}(\cdot)\|_{L^{p}(G)} \leq C \left(\| (1 + | \cdot |)^{\alpha}F_{t}(\cdot)\|_{L^{1}(G)}\|X^{I}p_{t}\|_{L^{p}(G)} + \|F_{t}\|_{L^{1}(G)}\|(1 + | \cdot |)^{\alpha}X^{I}p_{t}(\cdot)\|_{L^{p}(G)} \right).
\]

If \(|I| = 0\) we apply (8) and (27) to both terms of (28) and we obtain (12). If \(0 < t \leq 1 \) we apply (9) and (27) and we obtain (13).

Step 3. We prove (12) dropping the additional assumption on \(m \). Fix \(t > 0 \) and a non-increasing function \(\varphi \in C^{\infty}(\mathbb{R}_{+}) \) such that \(\varphi = 1 \) in \((0, \frac{1}{2})\) and \(\varphi = 0 \) in \([1, \infty)\). Set

\[
\psi(\lambda) = \varphi\left(\frac{\lambda}{2}\right) - \varphi(\lambda), \quad \lambda > 0.
\]

So \(0 \leq \psi \leq 1 \) and \(\text{supp} \psi \subset \left[\frac{1}{2}, 2\right] \). Moreover we observe that

\[
\varphi(\lambda) + \sum_{j=0}^{\infty} \psi(2^{-j}\lambda) = 1, \quad \lambda > 0.
\]

So

\[
m(\lambda) = \tilde{m}(\lambda) + \sum_{j=0}^{\infty} m_{j}(\lambda), \quad \lambda > 0
\]

where

\[
\tilde{m}(\lambda) = m(\lambda)\varphi(\lambda), \quad \lambda > 0
\]
and
\[m_j(\lambda) = m(\lambda)\psi(2^{-j}\lambda), \quad \lambda > 0. \]
By (29) we have \(\sum_{j=0}^{\infty} |m_j| \leq |m| \). So, if we denote by \(\tilde{M}_t \) the kernel of \(\tilde{m}(t\mathcal{L}) \) and by \(M_{j,t} \) the kernel of \(m_j(t\mathcal{L}) \), by Proposition 3 we have
\[(30) \quad M_t = \tilde{M}_t + \sum_{j=0}^{\infty} M_{j,t} \quad \text{in } \mathcal{D}'(G).\]
We observe that
\[m_j(t\lambda) = h_j(2^{-j}t\lambda), \quad j \in \mathbb{N}, \; \lambda > 0 \]
where
\[(31) \quad h_j(\sigma) = m(2^j\sigma)\psi(\sigma), \quad j \in \mathbb{N}, \; \sigma > 0.\]
Since \(h_j = 0 \) in \([2, \infty)\), by the previous steps
\[(32) \quad \|(1 + |\cdot|)^{\alpha} M_{j,t}(\cdot)\|_{L^p(G)} \leq C(1 + 2^{-\frac{j}{3}}\sqrt{t})^{\alpha} V(2^{-\frac{j}{3}}\sqrt{t})^{-\frac{1}{p'}} \|h_j\|_{(n)}.\]
We observe that the doubling property (5) implies
\[(33) \quad V(2^{-\frac{j}{3}}\sqrt{t})^{-\frac{1}{p'}} \leq K \frac{1}{2^j} V(\sqrt{t})^{-\frac{1}{p'}}.\]
Moreover we estimate \(\|h_j\|_{(n)} \) by means of (31): for \(r \in \{0, \ldots, n\} \) we have
\[(34) \quad h_j^{(r)}(\sigma) = \sum_{l=0}^{r} \binom{r}{l} 2^l m(l)(2^j\sigma)\psi^{(r-l)}(\sigma), \quad j \in \mathbb{N}, \; \sigma > 0.\]
Fix an integer \(n' > n + \frac{\log_2 K}{2p} \). By (34), if \(m \in C^{n'}(\mathbb{R}_+) \) with \(\|m\|_{(n')} < \infty \) then
\[(35) \quad \|h_j\|_{(n)} \leq C2^{j(n-n')} \|m\|_{(n')}\]
It follows from (32), (34) and (35) that
\[(36) \quad \|(1 + |\cdot|)^{\alpha} M_{j,t}(\cdot)\|_{L^p(G)} \leq C(1 + \sqrt{t})^{\alpha} V(\sqrt{t})^{-\frac{1}{p'}} 2^{j(n-n'+\frac{\log_2 K}{2p})} \|m\|_{(n')}\]
On the other hand
\[(37) \quad \|(1 + |\cdot|)^{\alpha} \tilde{M}_t(\cdot)\|_{L^p(G)} \leq C(1 + \sqrt{t})^{\alpha} V(\sqrt{t})^{-\frac{1}{p'}} \|m\|_{(n)}\]
since \(\|\tilde{m}\|_{(n)} \leq C \|m\|_{(n)} \). By (30), (36) and (37) and by the assumption made on \(n' \) we obtain
\[\|(1 + |\cdot|)^{\alpha} M_t(\cdot)\|_{L^p(G)} \leq C(1 + \sqrt{t})^{\alpha} V(\sqrt{t})^{-\frac{1}{p'}} \|m\|_{(n')}\]

Step 4. The proof of (13) without the additional assumption on \(m \) is analogous to Step 3: we observe that equality (30) implies
\[X^I M_t = X^I \tilde{M}_t + \sum_{j=0}^{\infty} X^I M_{j,t} \quad \text{in } \mathcal{D}'(G).\]
and then we follow the proof of Step 3: we obtain
\[
\|(1 + | \cdot |)^\alpha X^I M_t(\cdot)\|_{L^p(G)} \leq C t^{-\left(\frac{d}{2p'} + \frac{|I|}{2}\right)} \|m\|_{(n'')}, \quad 0 < t \leq 1
\]
where \(n'' > n + \frac{d}{2p'} + \frac{|I|}{2}\).

An immediate consequence of Proposition 6 is the following result, which also generalizes the analogous result for stratified groups (see [Hu], [M]):

Corollary 7

Let \(m\) be the restriction on \(\mathbb{R}_+\) of a function in \(S(\mathbb{R})\). Then the kernel \(M\) of the operator \(m(L)\) is in \(S(G)\).

4 Littlewood–Paley decomposition

Fix a non-increasing function \(\varphi \in C^\infty(\mathbb{R}_+)\) such that \(\varphi = 1\) in \((0, \frac{1}{4})\) and \(\varphi = 0\) in \([1, \infty)\). Set
\[
\psi(\lambda) = \varphi\left(\frac{\lambda}{4}\right) - \varphi(\lambda), \quad \lambda > 0.
\]
So \(0 \leq \psi \leq 1\) and \(\text{supp} \, \psi \subset \left[\frac{1}{4}, 4\right]\). Moreover we observe that
\[
\varphi(\lambda) + \sum_{j=0}^N \psi(2^{-2j} \lambda) = \varphi(2^{-2(N+1)} \lambda), \quad N \in \mathbb{N}, \ \lambda > 0
\]
and so
\[
\varphi(\lambda) + \sum_{j=0}^\infty \psi(2^{-2j} \lambda) = 1, \quad \lambda > 0.
\]
By Corollary 7 for any \(j \in \mathbb{N}\) the kernels of the operators \(S_j = \varphi(2^{-2j}L)\) and \(\Delta_j = \psi(2^{-2j}L)\) are in \(S(G)\), so the operators \(S_j\) and \(\Delta_j\) can be viewed as continuous operators on \(S'(G)\). By the spectral theorem, any \(f \in L^2(G)\) can be decomposed as \(f = S_0 f + \sum_{j=0}^\infty \Delta_j f\) in \(L^2(G)\). The following proposition shows that such decomposition holds also in \(S(G)\) and in \(S'(G)\).

Proposition 8

For any \(f \in S(G)\) and \(u \in S'(G)\) we have:

\[
f = S_0 f + \sum_{j=0}^\infty \Delta_j f \quad \text{in } S(G);
\]
\[
u = S_0 u + \sum_{j=0}^\infty \Delta_j u \quad \text{in } S'(G).
\]

Proof: We only have to prove (39), since (40) follows by duality. By (38) we have to prove that \(S_j f \to f\) in \(S(G)\) for \(j \to \infty\). So we fix \(\alpha \in \mathbb{N}\) and \(I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta\) and we want to
prove that \(p_{\alpha,j}(f - S_j f) \to 0 \) for \(j \to \infty \). Put \(N = \max\{n, 1 + \frac{|I|}{2}\} \), where \(n \) is the integer which appears in Proposition \(13 \) in the case \(p = 1 \). Then
\[
(41) \quad f - S_j f = 2^{-2jN} m(2^{-2j} \mathcal{L}) \mathcal{L}^N f, \quad j \in \mathbb{N}
\]
where
\[
(42) \quad m(\lambda) = \frac{1 - \varphi(\lambda)}{\lambda^N}, \quad \lambda > 0.
\]
Let \(M_j \) be the kernel of the operator \(m(2^{-2j} \mathcal{L}) \). Since by \(12 \) \(m \in C^\infty(\mathbb{R}_+) \) and \(\|m\|_{(N)} < \infty \), Proposition \(6 \) gives
\[
(43) \quad \| (1 + |\cdot|)^\alpha X^I M_j(\cdot) \|_{L^1(G)} \leq C 2^{|I|}, \quad j \in \mathbb{N}
\]
where \(C \) does not depend on \(j \). Then, by \(11 \) and \(13 \) and since \(f \in \mathcal{S}(G) \), for every \(x \in G \) we have
\[
(1 + |x|^\alpha|X^I(f - S_j f)(x)|
= 2^{-2jN} (1 + |x|^\alpha|\mathcal{L}^N f \ast X^I M_j(x)|)
\leq 2^{-2jN} \left(\int_G (1 + |y|^\alpha |\mathcal{L}^N f(y)| |X^I M_j(y^{-1} x)| dy + \int_G |\mathcal{L}^N f(y)|(1 + |y^{-1} x|^\alpha |X^I M_j(y^{-1} x)|) dy \right)
\leq C' 2^{|I|-2N}
\]
where \(C' \) does not depend on \(j \) or \(x \). Since \(2N > |I| \), we have that \(p_{\alpha,j}(f - S_j f) \to 0 \) for \(j \to \infty \).

Remark: For \(1 \leq p < \infty \), since \(\mathcal{S}(G) \) is dense in \(L^p(G) \) and the operators \(\Delta_j \) are uniformly bounded on \(L^p(G) \) by Proposition \(13 \), it follows from \(39 \) that any \(f \in L^p(G) \) can be decomposed as \(f = S_0 f + \sum_{j=0}^{\infty} \Delta_j f \) in \(L^p(G) \).

One gets from Proposition \(13 \) an extension of the classical Bernstein’s inequalities for the dyadic blocks (see e.g. \(12, 11 \); see also \(11 \) Proposition 3.2). In what follows, \(d \) is the local dimension of the group introduced in Section \(2 \).

Proposition 9

For \(I \in \bigcup_{\beta \in \mathbb{N}} \{1, \ldots, k\}^\beta \), \(1 \leq p \leq q \leq \infty \), \(j \in \mathbb{N} \) and \(u \in \mathcal{S}'(G) \) we have:
\[
\| X^I(\sqrt{\mathcal{L}})^\sigma S_j u \|_{L^q(G)} \leq C 2^{j(|I|+\sigma+d(\frac{1}{p}-\frac{1}{2}))} \| S_j u \|_{L^p(G)}, \quad \sigma \geq 0,
\]
\[
\| X^I(\sqrt{\mathcal{L}})^\sigma \Delta_j u \|_{L^q(G)} \leq C 2^{j(|I|+\sigma+d(\frac{1}{p}-\frac{1}{2}))} \| \Delta_j u \|_{L^p(G)}, \quad \sigma \in \mathbb{R},
\]
where \(C \) is a positive constant which depends only on \(I, p, q, \sigma \) but not on \(j \) or \(u \).

Proof: We can consider the functions \(\tilde{\varphi}(\lambda) = \varphi(\frac{\lambda}{4}) \) and \(\tilde{\psi}(\lambda) = \varphi(\frac{\lambda}{16}) - \varphi(4\lambda) \), so that \(\tilde{\varphi}(\lambda) \varphi(\lambda) = \varphi(\lambda) \) and \(\tilde{\psi}(\lambda) \psi(\lambda) = \psi(\lambda) \) for all \(\lambda > 0 \). The proof of the proposition follows therefore from Young’s inequality, Proposition \(13 \) and the identities:
\[
S_j u = \tilde{\varphi}(2^{-2j} \mathcal{L}) S_j u;
\]
\[
\Delta_j u = \tilde{\psi}(2^{-2j} \mathcal{L}) \Delta_j u.
\]
We are now in position to set out the Littlewood–Paley theorem related to the decomposition (40):

Theorem 10

Let \(1 < p < \infty \) and \(u \in S'(G) \). Then \(u \in L^p(G) \) if and only if \(S_0 u \in L^p(G) \) and
\[
\left(\sum_{j=0}^{\infty} |\Delta_j u|^2 \right)^{\frac{1}{2}} \in L^p(G).
\]
Moreover there exists a constant \(C_p > 1 \), which depends only on \(p \), such that
\[
C_p^{-1} \| u \|_{L^p(G)} \leq \| S_0 u \|_{L^p(G)} + \left(\sum_{j=0}^{\infty} (2^{js} \| \Delta_j u \|_{L^p(G)})^q \right)^{\frac{1}{q}} \leq C_p \| u \|_{L^p(G)}, \quad u \in L^p(G).
\]

Proof: Once we have Theorem 2 and equality (40), the proof of the Littlewood–Paley theorem in \(\mathbb{R}^n \) given for instance in [St] works also in our case.

5 Besov spaces

Besov spaces \(B^s_{p,q}(G) \) for sub-Laplacians in Lie groups were studied by many authors. The usual definition ([F], [S]) has been given by means of the heat kernel associated to the sub-Laplacian. Though in [S], in the case of stratified groups, such spaces are defined with \(s \in \mathbb{R} \), most applications (see e.g. [CS], [Sa], [MV]) have concerned essentially the case \(s > 0 \) where \(B^s_{p,q}(G) \subset L^p(G) \). In the Euclidean case there are many equivalent characterizations of Besov spaces: a useful reference is given by the books by Triebel [T1], [T2]. In particular, the characterizations by the atomic decomposition in the space variable ([FJ]) and by the dyadic decomposition of the frequency space of the Fourier transform ([P]) are often used in the applications. In the case of unimodular Lie groups, Skrzypczak in [S2] has given an atomic characterization of Besov spaces with \(s \in \mathbb{R} \). In a more abstract setting, Galé in [G] has determined a sufficient condition for a positive self-adjoint operator on a Hilbert space which allows to characterize the corresponding Besov spaces with \(s > 0 \) by a dyadic decomposition on the spectrum of the operator. In our setting, Galé’s condition is equivalent to the uniform boundedness of the norms of the operators \(\Delta_j : L^p(G) \rightarrow L^p(G) \), which amounts to the uniform estimate of the norm in \(L^1(G) \) of the convolution kernel of \(\Delta_j \). This is precisely what was pointed out in the remark after Proposition 6.

In this section, we define on a Lie group of polynomial growth Besov spaces with \(s \in \mathbb{R} \) associated to any sub-Laplacian by means of the Littlewood–Paley decomposition obtained in Section 4.

Definition 11

Let \(s \in \mathbb{R} \), \(1 \leq p, q \leq \infty \). We define
\[
B^s_{p,q}(G) = \{ u \in S'(G) : \| u \|_{B^s_{p,q}(G)} = \| S_0 u \|_{L^p(G)} + \left(\sum_{j=0}^{\infty} (2^{js} \| \Delta_j u \|_{L^p(G)})^q \right)^{\frac{1}{q}} < \infty \}
\]
with obvious modifications in the case \(q = \infty \).

This definition is equivalent to the classical one through the heat kernel. In fact, once we have Proposition 6 and the decomposition (40), we can repeat the proof given for instance in [L, Theorem 5.3] in the Euclidean setting and we obtain the following

Proposition 12

For \(s \in \mathbb{R}, 1 \leq p, q \leq \infty, m \geq 0 \) such that \(m > s \) and \(u \in S'(G) \), the following assertions are equivalent:

i) \(u \in B^{s,0}_p(G) \);

ii) for all \(t > 0 \), \(e^{-tL}u \in L^p(G) \) and \(\int_0^1 (t^{-s/2}) \| (tL)^{m/2} e^{-tL}u \|_{L^p(G)}^{q \frac{dt}{t}} < \infty \).

Moreover, the norms \(\| e^{-L}u \|_{L^p(G)} + (\int_0^1 (t^{-s/2}) \| (tL)^{m/2} e^{-tL}u \|_{L^p(G)}^{q \frac{dt}{t}})^{1/q} \) and \(\| u \|_{B^{s,0}_p(G)} \) are equivalent.

Remark: If \(s > 0 \), one can replace the condition \(e^{-tL}u \in L^p(G) \) by the equivalent \(u \in L^p(G) \); in fact \(B^{s,0}_p(G) \subset B^{0,1}_p(G) \subset L^p(G) \). Furthermore, if \(s > 0 \) one can replace the condition \(\int_0^1 (t^{-s/2}) \| (tL)^{m/2} e^{-tL}u \|_{L^p(G)}^{q \frac{dt}{t}} < \infty \) by the equivalent \(\int_0^\infty (t^{-s/2}) \| (tL)^{m/2} e^{-tL}u \|_{L^p(G)}^{q \frac{dt}{t}} < \infty \), due to the convergence of the integral at infinity.

References

[A1] Alexopoulos, G., Oscillating multipliers on Lie groups and Riemannian manifolds, Tôhoku Math. J. 46 (1994), 457–468.

[A2] Alexopoulos, G., Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc. 120 (1994), 973–979.

[C] Christ, M., \(L^p \) bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73–81.

[CS] Coulhon, T. and Saloff-Coste, L., Semi-groupes d’opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory 65 (1991), 176–199.

[DM] De Michele, L. and Mauceri, G., \(H^p \) multipliers on stratified groups, Ann. Mat. Pura Appl. 148 (1987), 353–366.

[DiM] Dixmier, J. and Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 305–330.

[E] Ehrenpreis, L., Some properties of distributions on Lie groups, Pacific J. Math. 6 (1956), 591–605.

[F] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.
Folland, G. B. and Stein, E. M., *Hardy spaces on homogeneous groups*, Math. Notes 28, Princeton Univ. Press, Princeton, 1982.

Frazier, M. and Jawerth, B., Decomposition of Besov spaces, *Indiana Univ. Math. J.* 34 (1985), 777–799.

Galé, J. E., Sobre espacios de Besov definidos por medias de Riesz, in Margarita Mathematica en memoria de José Javier (Chicho) Guadalupe Hernández, pp. 235–246, Univ. La Rioja, Logroño, 2001.

Hörmander, L., Estimates for translation invariant operators in L^p spaces, *Acta Math.* 104 (1960), 93–140.

Hulanicki, A., A functional calculus for Rockland operators on nilpotent Lie groups, *Studia Math.* 78 (1984), 253–266.

Lemarié-Rieusset, P. G., *Recent developments in the Navier–Stokes problem*, Chapman & Hall /CRC Research Notes in Math. 431, Chapman & Hall /CRC, Boca Raton, 2002.

Mauceri, G., Maximal operators and Riesz means on stratified groups, in *Sympos. Math.* 29, pp. 47–62, Academic Press, New York, 1987.

Mauceri, G. and Meda, S., Vector-valued multipliers on stratified groups, *Rev. Mat. Iberoamericana* 6 (1990), 141–154.

Melrose, R., Propagation for the wave group of a positive subelliptic second-order differential operator, in *Hyperbolic equations and related topics (Katata/Kyoto 1984)*, pp. 181–192, Academic Press, Boston, 1986.

Müller, D., Ricci, F. and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I, *Invent. Math.* 119 (1995), 199–233.

Müller, D., Ricci, F. and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, II, *Math. Z.* 221 (1996), 267–291.

Mustapha, S. and Varopoulos, N. Th., Comparaison Hölderienne des distances sous-elliptiques et calcul $S(m,g)$, *Potential Anal.* 4 (1995), 415–428.

Peetre, J., *New thoughts on Besov spaces*, Duke Univ. Math. Series 1, Duke University, Durham, 1976.

Saka, K., Besov spaces and Sobolev spaces on a nilpotent Lie group, *Tôhoku Math. J.* 31 (1979), 383–437.

Saloff-Coste, L., Analyse sur les groupes de Lie à croissance polynômiale, *Ark. Mat.* 28 (1990), 315–331.
[S1] Skrzypczak, L., Atomic decompositions on manifolds with bounded geometry, Forum Math. 10 (1998), 19–38.

[S2] Skrzypczak, L., Besov spaces and Hausdorff dimension for some Carnot–Carathéodory metric spaces, Canad. J. Math. 54 (2002), 1280–1304.

[St] Stein, E. M., Harmonic analysis, Princeton Math. Series 43, Princeton Univ. Press, Princeton, 1993.

[T1] Triebel, H., Theory of function spaces, Monogr. in Math. 78, Birkhäuser Verlag, Basel, 1983.

[T2] Triebel, H., Theory of function spaces II, Monogr. in Math. 84, Birkhäuser Verlag, Basel, 1992.

[VSC] Varopoulos, N. Th., Saloff-Coste, L. and Coulhon, Th., Analysis and geometry on groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, Cambridge, 1992.

Dipartimento di Ingegneria Gestionale e dell’Informazione, Università di Bergamo, Viale Marconi 5, I–24044 Dalmine (BG), Italy
E-mail: gfurioli@unibg.it

Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell’Insubria, Via Valleggio 11, I–22100 Como, Italy
E-mail: melzi@uninsubria.it

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I–16146 Genova, Italy
E-mail: veneruso@dima.unige.it