The global prevalence of fusidic acid resistance in clinical isolates of *Staphylococcus aureus*: a systematic review and meta-analysis

Bahareh Hajikhani1, Mehdi Goudarzi†1, Sareh Kakavandi1, Sana Amini1, Samira Zamani1, Alex van Belkum2, Hossein Goudarzi1 and Masoud Dadashi3,4*

Abstract

Background and aim: *Staphylococcus aureus* (*S. aureus*) is one of the most common pathogens causing nosocomial and community-acquired infections with high morbidity and mortality rates. Fusidic acid has been increasingly used for the treatment of infections due to methicillin-susceptible *S. aureus* (MSSA) and methicillin-resistant *S. aureus* (MRSA). The present study aimed to determine the precise prevalence of fusidic acid resistant MRSA (FRMRSA), fusidic acid resistant MSSA (FRMSSA), and total fusidic acid resistant *S. aureus* (FRSA) on a global scale.

Methods: Several international databases including Medline, Embase, and the Web of Sciences were searched (2000–2020) to discern studies addressing the prevalence of FRSA, FRMRSA, and FRMSSA. STATA (version 14) software was used to interpret the data.

Results: Of the 1446 records identified from the databases, 215 studies fulfilled the eligibility criteria for the detection of FRSA (208 studies), FRMRSA (143 studies), and FRMSSA (71 studies). The analyses manifested that the global prevalence of FRSA, FRMRSA, and FRMSSA was 0.5%, 2.6% and 6.7%, respectively.

Conclusion: This meta-analysis describes an increasing incidence of FRSA, FRMSSA, and FRMRSA. These results indicate the need for prudent prescription of fusidic acid to stop or diminish the incidence of fusidic acid resistance as well as the development of strategies for monitoring the efficacy of fusidic acid use.

Keywords: Fusidic acid, *Staphylococcus aureus*, MRSA, Meta-analysis
assessment of its resistance rate to help improve treatment strategies, particularly in the case of staphylococcal infections. FA, derived from the fungus Fusidium coccineum (in 1960), shows moderate activity against most Gram-positive bacteria including staphylococci and also covering methicillin-resistant S. aureus (MRSA), and some anaerobic Gram-negative organisms [7]. It is generally used topically for the treatment of S. aureus skin infections. Different creams and ointments containing FA are commercially available. Intravenous and oral preparations of this antibiotic are also used as anti-staphylococcal agents to treat persistent skin infections as well as chronic bone and joint infections [7, 8]. In addition, FA is an important and valuable alternative to vancomycin to combat resistant organisms [4]. FA primarily has bacteriostatic effects, although it may be bactericidal in high concentrations [9]. FA is a specific inhibitor of the elongation factor G (EF-G) which is essential in the peptide translocation step during protein synthesis. FA inhibits the GTPase function of EF-G after binding to its target and then prevents further elongation of the polypeptide chain [10]. Plasmid-mediated resistance resulted from decreased bacterial cell wall or membrane permeability. Chromosomal mutations expressed in EF-G and its associated proteins (fusB, fusC, and fusD) as well as a mutation in fusA, and fusE genes have been described as relevant factors in FA resistance [11, 13]. The lack of cross-resistance with other important classes of antibiotics (beta-lactams, macrolides and, aminoglycosides) is an important feature of this antibiotic which may be due to the widely different chemical structures of these agents [10]. Nonetheless, increased antibiotic usage, combined with increased therapy duration, has been linked to an increased rate of FA resistance among S. aureus isolates [12]. FA resistance rates were evaluated in 13 European countries. The results of this survey showed that the overall prevalence of resistance to FA was 10.7% among S. aureus isolates. The highest rate of resistance (62.4%) was observed among isolates from Greece [14]. Although several studies have examined the resistance FA among S. aureus strains, a comprehensive study reporting global data is not available. So, the current study aims to evaluate the dissemination and prevalence of all FA-resistant S. aureus (FRSA), and also FA-resistant MRSA (FRMRSA), and FA-resistant MSSA (FRMSSA), among clinical isolates in a meta-analysis and systematic review.

Methods

Literature search
A systematic search was conducted to evaluate the prevalence of FRSA among clinical strains based on selected keywords (Staphylococcus aureus, Staphylococcus, S. aureus, fusidic acid, sodium fusidate, and fucidin) using three main electronic databases including Medline (via PubMed), Embase, and Web of Science (2000–2020). Original articles published in English that provided the prevalence or incidence of FRSA, FRMRSA, and FRMSSA were selected for further analysis. We also searched the bibliographies for additional relevant articles.

Inclusion and exclusion criteria
All original papers presenting cross-sectional studies on the prevalence of FRSA, FRMRSA, and FRMSSA were included. All selected studies were screened based on titles, abstracts, and full texts consecutively. Studies were included in our analysis based on the following criteria: (1) original articles that provided sufficient data on FRSA; (2) used standard methods; (A) disk diffusion method; (B) agar dilution, microdilution, and macrodilution methods or E-test; and (C) molecular methods to detect FRSA, FRMRSA and FRMSSA according to the CLSI (2020) guidelines [15]. The exclusion criteria were: (1) articles studying non-human samples; (2) studies considering; (A) FA-resistant bacteria except S. aureus; (B) other types of antibiotic resistance except FA; (3) review articles; (4) abstracts reported in conferences; and (5) duplicate article.

Data extraction and definitions
The author’s last name, date(s) of the investigation, year of publication, country/continent, total number of S. aureus, MRSA, MSSA, FRSA, FRMRSA, and FRMSSA as well as a detection method and the source of isolates were extracted from the enrolled studies. The prevalence of FRSA, FRMRSA, and FRMSSA isolates was evaluated as well. Two independent researchers recorded the data to avoid bias.

Quality assessment
All evaluated studies were subjected to a quality assessment (designed by the Joanna Briggs Institute), and only high-quality ones were selected for our final analysis [16].

Meta-analysis
STATA (version 14.0) software was used to analyze the extracted data. The data were pooled using the fixed-effects model (FEM) [17] and the random-effects model (REM) [18]. Statistical heterogeneity was assessed using the Cochran Q and I2 statistical methods [19].

Results

Characteristics of included studies
After removing duplicates, we identified a total of 1446 articles in the databases. Based on the title and abstract evaluation in secondary screening, 471 of the chosen
ones were excluded (see Fig. 1 which also includes the reasons for rejection). In the next step, upon full text research, 208, 143, 71 articles were included for FRSA, FRMRSA, and FRMSSA, respectively [11, 20–233]. The characteristics of the included articles are shown in Additional file 1: Tables S1, S2, and S3.

The prevalence of FRSA, FRMRSA and FRMSSA among clinical isolates
The pooled and averaged prevalence of FRSA, FRMRSA and FRMSSA were 0.5 [(95% CI) 4.6–5.4] among 157,220 S. aureus isolates, 2.6 [(95% CI) 2.3–2.9] among 94,238 S. aureus isolates, 6.7 [(95% CI) 5.4–7.9] among 11,992 S. aureus isolates, respectively. Also, the pooled prevalence of FRMRSA among 50,078 MRSA isolates and FRMSSA among 70,438 MSSA isolates was 5.8 [(95% CI) 5.0–6.6] and 3.0 [(95% CI) 2.6–3.5], respectively (Tables 1, 2).

The prevalence of FRSA, FRMRSA and FRMSSA in different study periods
To determine the longitudinal changes in the prevalence of FRSA, FRMRSA, and FRMSSA across recent years, we designed subgroups across three periods (before 2000, 2000–2009, and 2010–2020) (Tables 1, 2). As shown in Tables 1 and 2, the incidence rate of FRSA and FRMRSA strains gradually increased from 4.0% (95% CI 3.4–4.5) of 3478/90,563 S. aureus isolates and 1.4% (95% CI 1.1–1.8) of 547/39,499 MRSA isolates before 2000 to 5.6% (95% CI 4.9–6.2) of 2834/46,134 isolates and 2.9% (95% CI 2.3–3.4) of 1094/41,157 isolates in 2000–2009, reaching 5.2% (95% CI 4.4–6.1) of 1250/20,523 S. aureus isolates

Fig. 1 Flow chart of study selection for inclusion in the systematic review and meta-analysis
Table 1 Prevalence of FRSA, FRMRSA and FRSSA based on study periods and continents

Category	Subcategory	No. studies	No. strains	Prevalence (%) (95% CI)
FRSA				
Overall	FRSA/S. aureus	120	7562/157,220	0.5 (4.6–5.4)
Study period	Before 2000	26	3478/90,563	4.0 (3.4–4.5)
	2000–2009	55	2834/46,134	5.6 (4.9–6.2)
	2010–2020	39	1250/20,523	5.2 (4.4–6.1)
Continent	Asia	32	768/11,239	5.6 (4.6–6.6)
	Europe	69	5519/122,267	4.7 (4.3–5.2)
	America	9	408/7010	5.5 (3.4–7.5)
	Africa	3	58/723	5.5 (0.6–10.4)
	Oceania	7	809/15,981	5.0 (3.7–6.3)
FRMRSA				
Overall	FRMRSA/S. aureus	79	2193/94,238	2.6 (2.3–2.9)
Study period	Before 2000	14	547/39,499	1.4 (1.1–1.8)
	2000–2009	35	1094/41,157	2.9 (2.3–3.4)
	2010–2020	30	552/13,582	3.2 (2.3–4.1)
Continent	Asia	27	296/7330	3.0 (2.1–4.0)
	Europe	36	1449/77,695	1.9 (1.5–2.2)
	America	7	302/4798	4.3 (1.5–7.2)
	Africa	6	111/1334	6.8 (3.6–9.9)
	Oceania	3	35/3081	1.1 (0.8–1.5)
Overall	FRMRSA/MRSA	72	3211/50,078	5.8 (5.0–6.6)
Study period	Before 2000	19	1410/20,768	5.9 (4.2–7.5)
	2000–2009	31	1127/20,601	5.0 (4.0–6.1)
	2010–2020	22	674/8709	6.8 (5.3–8.3)
Continent	Asia	26	1155/11,414	6.4 (4.4–8.3)
	Europe	33	1637/32,906	1.9 (1.5–2.2)
	America	7	295/4130	5.3 (3.2–7.4)
	Africa	2	5/138	3.6 (0.5–6.7)
	Oceania	4	119/1490	1.1 (0.8–1.5)
FRMSSA				
Overall	FRMSSA/S. aureus	9	939/11,992	6.7 (5.4–7.9)
Study period	Before 2000	2	432/5425	8.0 (7.2–8.7)
	2000–2009	4	489/6153	7.1 (5.3–8.9)
	2010–2020	3	18/414	8.0 (7.2–8.7)
Continent	Asia	2	9/227	4.0 (1.1–7.0)
	Europe	6	923/11,550	7.8 (6.8–8.7)
	America	NR	NR	NR
	Africa	NR	NR	NR
	Oceania	1	7/215	3.3 (0.9–5.6)
Overall	FRMSSA/MSSA	42	2437/70,438	3.0 (2.6–3.5)
Study period	Before 2000	24	1825/57,798	2.9 (2.5–3.4)
	2000–2009	10	497/8051	3.8 (1.6–6.1)
	2010–2020	8	115/4589	2.8 (1.8–3.7)
Continent	Asia	8	57/2845	1.7 (1.2–2.1)
	Europe	26	2234/62,854	3.1 (2.5–3.7)
	America	2	62/2178	2.8 (2.1–3.4)
	Africa	3	13/647	1.9 (0.3–3.5)
	Oceania	3	71/1914	3.6 (2.7–4.4)
Table 2: Prevalence of FRSA, FRMRSA and FRSSA based on different countries

Category	Subcategory	No. studies	No. strains	Prevalence (%) (95% CI)	
FRSA	Overall	120	7562/157,220	0.5 (4.6–5.4)	
Country	FRSA/S. aureus	Australia	6	796/15,781	4.8 (3.4–6.2)
Country	FRSA/S. aureus	Belgium	2	25/663	3.6 (2.2–5.0)
Country	FRSA/S. aureus	Canada	5	376/6257	6.3 (3.2–9.3)
Country	FRSA/S. aureus	China	4	206/2156	5.3 (0.6–10.0)
Country	FRSA/S. aureus	France	7	132/3120	5.0 (3.2–6.8)
Country	FRSA/S. aureus	Germany	6	94/2424	4.7 (2.8–6.6)
Country	FRSA/S. aureus	India	2	6/173	3.5 (0.7–6.2)
Country	FRSA/S. aureus	Iran	3	13/353	3.4 (1.5–5.3)
Country	FRSA/S. aureus	Israel	2	8/220	3.6 (1.1–6.0)
Country	FRSA/S. aureus	Kuwait	3	93/1370	6.8 (5.4–8.1)
Country	FRSA/S. aureus	Malaysia	5	102/1956	5.3 (3.6–6.9)
Country	FRSA/S. aureus	Malta	2	374/25	6.5 (4.0–9.1)
Country	FRSA/S. aureus	Netherland	2	63/1193	5.2 (4.0–6.5)
Country	FRSA/S. aureus	Netherlands	2	12/136	8.3 (3.7–12.9)
Country	FRSA/S. aureus	Norway	2	10/291	3.4 (1.3–5.5)
Country	FRSA/S. aureus	Poland	2	5/113	4.2 (0.5–8.0)
Country	FRSA/S. aureus	Spain	2	38/616	5.4 (3.6–7.2)
Country	FRSA/S. aureus	Sweden	2	18/317	5.6 (3.1–8.2)
Country	FRSA/S. aureus	Switzerland	2	75/1134	5.9 (1.9–9.9)
Country	FRSA/S. aureus	Taiwan	4	223/3319	5.8 (3.7–7.9)
Country	FRSA/S. aureus	Turkey	9	4715/105,038	4.8 (4.1–5.5)
Country	FRSA/S. aureus	UK	22	26/653	3.7 (2.3–5.2)
Country	FRMRSA/S. aureus	Australia	2	33/2881	1.1 (0.8–1.5)
Country	FRMRSA/S. aureus	Canada	4	276/4145	4.5 (0.2–8.9)
Country	FRMRSA/S. aureus	China	4	5/295	1.3 (0.0–2.5)
Country	FRMRSA/S. aureus	France	3	33/2141	1.4 (0.3–2.5)
Country	FRMRSA/S. aureus	Germany	2	11/656	2.0 (0.0–4.5)
Country	FRMRSA/S. aureus	Greece	2	5/142	2.1 (0.3–3.9)
Country	FRMRSA/S. aureus	Iran	4	14/844	1.2 (0.4–1.9)
Country	FRMRSA/S. aureus	Korea	2	19/653	2.1 (0.0–5.0)
Country	FRMRSA/S. aureus	Kuwait	2	91/1427	4.5 (0.1–9.1)
Country	FRMRSA/S. aureus	Malaysia	4	84/1877	4.5 (1.9–7.2)
Country	FRMRSA/S. aureus	Pakistan	2	47/691	4.9 (0.2–12.7)
Country	FRMRSA/S. aureus	Poland	2	8/338	2.0 (0.5–3.5)
Country	FRMRSA/S. aureus	Taiwan	2	2/124	0.9 (0.0–2.1)
Country	FRMRSA/S. aureus	Turkey	7	77/1324	5.3 (2.7–7.9)
Country	FRMRSA/S. aureus	UK	10	1167/67,758	1.4 (1.0–1.9)
Country	FRMRSA/S. aureus	USA	3	26/653	3.7 (2.3–5.2)
FRMRSA	Overall	79	2193/94,238	2.6 (2.3–2.9)	
Country	FRMRSA/MRSA	Australia	2	33/2881	1.1 (0.8–1.5)
Country	FRMRSA/MRSA	Canada	4	276/4145	4.5 (0.2–8.9)
Country	FRMRSA/MRSA	China	4	5/295	1.3 (0.0–2.5)
Country	FRMRSA/MRSA	France	3	33/2141	1.4 (0.3–2.5)
Country	FRMRSA/MRSA	Germany	2	11/656	2.0 (0.0–4.5)
Country	FRMRSA/MRSA	Greece	2	5/142	2.1 (0.3–3.9)
Country	FRMRSA/MRSA	Iran	4	14/844	1.2 (0.4–1.9)
Country	FRMRSA/MRSA	Korea	2	19/653	2.1 (0.0–5.0)
Country	FRMRSA/MRSA	Kuwait	2	91/1427	4.5 (0.1–9.1)
Country	FRMRSA/MRSA	Malaysia	4	84/1877	4.5 (1.9–7.2)
Country	FRMRSA/MRSA	Pakistan	2	47/691	4.9 (0.2–12.7)
Country	FRMRSA/MRSA	Poland	2	8/338	2.0 (0.5–3.5)
Country	FRMRSA/MRSA	Taiwan	2	2/124	0.9 (0.0–2.1)
Country	FRMRSA/MRSA	Turkey	7	77/1324	5.3 (2.7–7.9)
Country	FRMRSA/MRSA	UK	10	1167/67,758	1.4 (1.0–1.9)
Country	FRMRSA/MRSA	USA	3	26/653	3.7 (2.3–5.2)
FRMSSA	Overall	72	3211/50,078	5.8 (5.0–6.6)	
and 3.2% (95% CI 2.3–4.1) of 552/13,582 MRSA isolates in 2010–2020, respectively. The changes in FRSA, and FRMRSA prevalence and also the changes in FRMSSA prevalence in all three periods are shown in Tables 1 and 2.

The prevalence of FRSA, FRMRSA and FRMSSA in different regions of the world

Prevalence of FRSA, FRMRSA, and FRMSSA based on geographic area in the subgroup analysis are shown in Tables 1 and 2. As can be seen, the frequency of FRSA in Asia [5.6% (95% CI 4.6–6.6)] is 1.20 and 1.12-fold higher than in Europe [4.7% (95% CI 4.3–5.2)] or Oceania [5.0% (95% CI 3.7–6.3)], respectively. The prevalence of FRSA is almost the same in Asia, America, and Africa. Also, the frequency of FRMRSA in Asia [3.0% (95% CI 2.1–4.10)] is 1.57 and 2.72-fold higher than in Europe [1.9% (95% CI 1.5–2.2)] and Oceania [1.1% (95% CI 0.8–1.5)], respectively. It is noteworthy that the prevalence of FRMSSA in Africa [6.8% (95% CI 3.6–9.9)] and America [4.3% (95% CI 1.5–7.2)] is higher than for other continents.

Discussion

The emergence of resistance to FA among *S. aureus* isolates has become a matter of concern in many different countries which makes it a threat to public health [153]. According to the evidence, the prevalence rate of FRSA strains differs in various geographic regions and/or patients population. In this systematic review, we noted a low prevalence of resistance to FA in 0.5% [(95% CI 4.6–5.4)] of *S. aureus* isolates reflecting improved infection control precautions and effectiveness of continued surveillance of *S. aureus* infections [14, 153, 234]. The present systematic review illustrated a higher prevalence of FRSA in Asia (5.6%) as compared to other continents. This is of serious concern reflecting inappropriate unrestricted policies and use of FA would similarly be higher in Asian countries [235, 236]. This phenomenon is related...
to easy access to antibiotics without prescription, paucity of suitable alternatives to FA for topical administration and cheap antibiotics, in these areas [153, 235]. Although it is difficult to recommend completely outlawing use of FA, restricted use of this antibiotic in both community and health care settings and in combination with other antibiotics is highly recommended [234, 237]. It is worth noting that the incidence rate of FRSA strains gradually increased from 4.0% before 2000 to 5.2% in 2010–2020. It seems that this increasing rate is directly linked to the increase in S. aureus infections and a shift in antibiotic pressures [14]. The present analyses exhibited a higher prevalence of FRMRSA (5.8%) compared to FRMSSA (3.0%). It is well documented that MRSA isolates exhibited a high prevalence of multi-resistance towards antibiotics of different classes compared to MSSA strains which could limit the choices available for the control of MRSA infections. However, the use of FA outside the hospital is still not justified [236–238]. Furthermore, clinician’ and patient’ education is an important aspect promoting the appropriate use and prescription of FA together with close monitoring of antibiotic susceptibility patterns and use of this antibiotic in combination with other drugs to prevent further emergence of these strains. However, our analysis suggests that both MRSA and MSSA strains must be evaluated routinely in terms of resistance to FA. The current systematic review illustrated a high prevalence of FRMRSA in Africa (6.8%) and America (4.3%) compared to other continents. Although there is wide diversity among MRSA molecular types colonizing and infecting the population in different parts of the world, the higher relative prevalence of FRMRSA highlight the need for clinician’s awareness in administration and use of FA in community and hospital setting in Africa and America. It is well known that too many prescription guidelines are according to the outdated data gained from observational studies of a small size. Also, it must be borne in mind that there is limited understanding of FA resistance at the epidemiological, clinical, and genetic level [239–241]. Moreover, infection control efforts as a main framework and strategy are crucial to decline the emergence and prevalence of FRMRSA strains [14, 237, 240]. One potential explanation for the higher prevalence of FRMRSA in America (4.3%) could be related to phenotypic methods used and breakpoint values applied for the screening and detection of FRMRSA. There were some drawbacks in the current review. Only published scientific studies were considered for the present meta-analysis and potential publication bias had to be considered. Secondly, we aimed to investigate the prevalence of FRSA, FRMRSA, and FRMSSA in all countries. Since many countries had no record of the prevalence of these strains, we were not able to reach this goal. The prevalence of rampant bacteria in patients with S. aureus infection disease is not well established in many countries. So, the prevalence of these FRSA, FRMRSA, and FRMSSA in patients with S. aureus infection should be investigated in every country to gather comprehensive information.

Conclusion

This meta-analysis depicted trends towards an increasing incidence of FRSA, FRMSSA, and FRMRSA. The findings highlight the need for the implementation of (ongoing) surveillance, antibiotic stewardship measures to mitigate the emergence and spread of FRSA, gathering epidemiological data to understand the peculiarities of the epidemiology, medical burden and risk factors related to FRSA, harmonized guidelines for infection control, education of clinicians on the proper prescribing of FA, and development of strategies for monitoring the effects of FA use.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13756-021-00943-6.

Additional file 1: Tables S1–S3. Characteristics of included studies.
References

1. Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(5):5350–9.

2. Armin S, Fareghi F, Fallah F, Dadashi M, Nikmanesh B, Ghalavand Z. Prevalence of hlg and pv genes in methicillin resistant Staphylococcus aureus (MRSA) isolated from health care staff in Mofid Children Hospital, Tehran. Iran J Pure Appl Microbiol. 2015;9(2):1001–5.

3. Razavi S, Dadashi M, Pormohammad A, Khoramrooz SS, Mirzaii M, Ghulipour A, et al. Methicillin-resistant staphylococcus epidermidis in Iran: a systematic review and meta-analysis. Arch Clin Infect Dis. 2018;13(4):e58410.

4. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017;41(3):430–49.

5. Dadashi M, Hajikhani B, Darbani-Sarokhalli D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2020;20:238–47.

6. Hessani A, Pormohammad A, Rezaee MA, Hasani A, Dadashi M. Integration-mediated multidrug and quinolone resistance in extended-spectrum βlactamase-producing Escherichia coli and Klebsiella pneumoniae. 2017;5:e36616.

7. Wu P-P, He H, Hong WD, Wu T-R, Huang G-Y, Zhong Y-Y, et al. The molecular fingerprinting of fusidic acid- and rifampicin-resistant strains. Mikrobiyoloji Bulteni. 2001;35(1):73–8.

8. Tumidje J. Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents. 1999;12(Suppl 2):S23-34.

9. Wilkinson JD. Fusidic acid in dermatology. Br J Dermatol. 1998;139(Suppl 53):S37–40.

10. Curbette MM, Salgado HR. A critical review of the properties of fusidic acid and its hydrogenation derivative as antimicrobial and anti-inflammatory agents. Infect Drug Resist. 2018;11:1945s.

11. Timmise M, Kitzis MD, Gutmann L. In vitro bactericidal activities of linezolid and rifampicin against fusidic acid-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45(5):1173–8.

12. O'Neill AJ, McLaws L, Kahlmeter G, Henriksen AS, Chopra I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother. 2001;45(5):1173–8.

13. Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother. 2010;65(7):1353–8.

14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne P. Clinical and Laboratory Standards Institute. 2020.

15. Institute TJB. Joanna Briggs Institute Reviewers’ Manual. 2014th ed. Adelaide: Joanna Briggs Institute, 2014.

16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

17. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

18. Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

19. Rohani MY, Raudzah A, Lau MG, Zaidatul AAR, Sallabah MN, Keah KC, et al. Susceptibility pattern of Staphylococcus aureus isolated in Malaysian hospitals. Int J Antimicrob Agents. 2000;13(3):209–13.

20. Wiśniewska K, Piechowicz L, Galinski J. Predominance of multidrug resistant strains with reduced susceptibility to fusidic acid among methicillin-resistant Staphylococcus aureus strains (MRSA) isolated in the Gdansk region. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2000;53(3):746–50. (in Polish)

21. Atmaca S, Özkan C, Özdemir N. Fusidic acid susceptibility of methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. Mikrobiyoloji Bulteni. 2001;35(1):25–8. (in Turkish)

22. Belabbes H, Elmdaghri N, Hachimi K, Marh I, Zouali K, Benbachir M. Antibiotic resistance of Staphylococcus aureus isolated from community and nosocomial infections in Casablanca. Med Maladies Infect. 2001;31(1):25–8.

23. Gossell IB, Mercer JL, Neville SA, Chant KG, Munro R. Community-acquired, non-multiresistant oxacillin-resistant Staphylococcus aureus (NORS) in South Western Sydney. Pathology. 2001;33(2):206–10.

24. Quentin C, Grobost F, Fischer I, Duttilh B, Brochet JP, Jullif J, et al. Antibiotic resistance of Staphylococcus aureus in extra-hospital practice: a six-month period study in aquitaine. Pathol Biol (Paris). 2001;49(1):33–40. (in French)

25. Schaefer F, Bruttin O, Zografos L, Guex-Crosier Y. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol. 2001;85(7):842–7.

26. Tunger Q, Arisoy A, Kurutepe S, Akcali S, Ozbakakaloglu B. In vitro susceptibility of Staphylococcus aureus and coagulase-negative Staphylococcus strains to fusidic acid. Int J Antimicrob Agents. 2001;18(5):445–55.

27. Arkwright PD, Daniel TO, Sanyal D, David TJ, Patel L. Age-related prevalence and antibiotic resistance of pathogenic staphylococci and streptococci in children with infected atopic dermatitis at a single–specialty center. Arch Dermatol. 2002;138(7):939–41.

28. Brown EM, Thomas P. Fusidic acid resistance in Staphylococcus aureus isolates. Lancet (London, England). 2002;359(9308):803.

29. Hwang JH, Chi CK, Liu TC. Changes in bacteriology of discharging ears. J Laryngol Otol. 2002;116(9):689–9.

30. Hwang JH, Tsai HY, Liu TC. Community-acquired methicillin-resistant Staphylococcus aureus infections in discharging ears. Acta Otolaryngol. 2002;122(8):827–30.

31. Livermore D, James D, Duckworth G, Stephens P. Fusidic acid-use and resistance. Lancet (London, England). 2002;360(9335):806.

32. Nemistiou KO, Bayar B, Kurt O, Çoçoğlu F. In-vitro susceptibility of methicillin resistant Staphylococcus aureus to fusidic acid and trimethoprim—Sulfamethoxazole. Mikrobiyoloji Bulteni. 2002;36(2):141–5. (in Turkish)

33. Nishijima S, Kurokawa I. Antimicrobial resistance of Staphylococcus aureus isolated from skin infections. Int J Antimicrob Agents. 2002;19(3):241–3.

34. Norazah A, Lim VKE, Koh YT, Rohani MY, Zuraidah H, Spencer K, et al. Molecular fingerprinting of fusidic acid- and rifampicin-resistant strains of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysian hospitals. J Med Microbiol. 2002;51(12):1113–6. (in English)

35. Osterlund A, Eden T, Olsson-Liljequist B, Haeggmman S, Kahlerm G, Swedish Study Grp Fusid A-R. Clonal spread among Swedish children of Staphylococcus aureus strain resistant to fusidic acid. Scand J Infect Dis. 2002;34(10):729–34.

36. Sule C, Brown N, Brown TJ, Burrows N. Fusidic acid cream for impe- tigo—Judicious use is advisable. BMJ. 2002;324(7350):1394–5.

37. Wróeńska K, Dajnowska-Stanczewa A, Galinski J, Garbacz K. Methi- cillin-resistant Staphylococcus aureus (MRSA) with high resistance to mupirocin in hospitals of the Gdask region. Medycyna doświadczalna i mikrobiologia. 2002;54(4):285–92. (in Polish)

38. Grohs P, Krizis MD, Guttman L. In vivo bactericidal activities of linezolid in combination with vancomycin, gentamicin, ciprofloxacin, fusidic acid, and rifampin against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(1):418–20.

39. Keskah C, Ben Redjeb S, Oudibergui TQ, Boyce CS, Dossou M, Ndinya Achola JO, et al. Prevalence of methicillin-resistant Staphylococcus aureus in eight African hospitals and Malta. Clin Microbiol Infect. 2003;9(2):153–6.

40. Lorette G, Beaulieu P, Bismuth R, Duru G, Guhward W, Lemaître M, et al. Community-acquired cutaneous infections: causal role of some bacte- ria and sensitivity to antibiotics. Ann Dermatol Venereol. 2003;130(8–9):723–8. (in French)
42. Norazah A, Lim VK, Munirah SN, Kamel AG. *Staphylococcus aureus* carriage in selected communities and their antibiotic susceptibility patterns. Med J Malays. 2003;38(2):255–61.

43. Rørtveit S, Rørtveit G. An epidemic of bullous impetigo in an island community in Norway in the year 2002. Tidsskr Nor Laegefor. 2003;123(18):2577–60 (in Norwegian).

44. Shah M, Mohanraj M. High levels of fusidic acid-resistant *Staphylococcus aureus* in dermatology patients. Br J Dermatol. 2003;148(5):1018–20.

45. Tveten Y, Jenss KN, Allum AG, Kristiansen BE, Norwegian MSG. Heterogeneity of methicillin-resistant *Staphylococcus aureus* isolated in Norway. Clin Microbiol Infect. 2003;9B:886–92.

46. Akpabie A, Naga H, Graud K, Al Rahiss R, Nadal S. Resistance to linezolid in *Staphylococcus aureus* before its release. Parodontol. 2004;52(8):493–6.

47. Cartolano GL, Cheron M, Benabid D, Leneveu M, Boisvion A, Marchal MF, et al. Methicillin-resistant *Staphylococcus aureus* (MRSA) with reduced susceptibility to glycopeptides (GISA) in 63 French general hospitals. Clin Microbiol Infect. 2004;10(3):448–51 (in English).

48. El-Zimaity D, Kearns AM, Dawson SJ, Price S, Harrison GAJ. Survey, characterization and susceptibility to fusidic acid of *Staphylococcus aureus* in the Carmarthen area. J Antimicrob Chemother. 2004;54(2):441–6 (in English).

49. Erdenizmenli M, Yapar N, Sengonul A, Yuce A, Cakir N, Yulug N. In-vitro activity of fusidic acid against methicillin-resistant *Staphylococcus aureus*. Journal of chemotherapy (Florence, Italy). 2004;16(3):310–1.

50. Hoeger PH. Antimicrobial susceptibility of skin-colonizing *S. aureus* strains in children with atopic dermatitis. Pediatr Allergy Immunol. 2004;15(5):474–7.

51. Lescat M, Dupeyron C, Faubert E, Mangeney N. Pulse-field gel electrophoresis typing of methicillin-resistant *Staphylococcus aureus* strains susceptible to aminoglycosides isolated from 1993 to 2002. J Hosp Infect. 2004;57(3):253–7.

52. Lindberg E, Adlerberth I, Wold AE. Antibiotic resistance in *Staphylococcus aureus* colonizing the intestines of Swedish infants. Clin Microbiol Infect. 2004;10(10):890–4.

53. Morrissey J, Burnett R, Viljoen L, Robbins M. Surveillance of the susceptibility of ocular bacterial pathogens to the fluoroquinolone gatifloxacin and other antimicrobials in Europe during 2001/2002. J Infect. 2004;49(2):109–14.

54. Seyed M, Sow AI, Soumaré M, Diallo HM, Hatim B, Tine R, et al. *Staphylococcus aureus* bacteremia in the Dakar Fann university hospital. Med Maladies Infect. 2004;34(5):210–5 (in French).

55. Zinn CS, Westh H, Rosdahl VT. Community-acquired methicillin-resistant *Staphylococcus aureus* in a paediatric population in Greece. Commun Dis Intell Q Rep. 2006;30(4):462–6.

56. Udo EE, Al-Sweih N, Mohanakrishnan S, West PW. Antibacterial resistance and molecular typing of methicillin-resistant *Staphylococcus aureus* in a Kuwaiti general hospital. Med Princ Pract Int J Kuwait Univ Health Sci Centre. 2006;15(1):39–45.

57. Abdallah M, Dekadda E, Johny M, Dhar R, Gomaa HH, et al. Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994–2004. BMC Infect Dis. 2006;6:168.

58. Perwaiz S, Barakzi Q, Farooqi BJ, Khursheed N, Sabir N. Antimicrobial susceptibility pattern of clinical isolates of methicillin resistant *Staphylococcus aureus*. J Pak Med Assoc. 2007;57(7):12–4.

59. Randrianirina F, Soares JL, Ratsima E, Carod JF, Combe P, Grosjean P, et al. In vitro activities of 18 antimicrobial agents against *Staphylococcus aureus* isolates from the Institut Pasteur of Madagascar. Ann Clin Microbiol Antimicrob. 2007;6:5.

60. Bernard P, Jarlier V, Santerre-Henriksen A. Antibiotic susceptibility of *Staphylococcus aureus* strains responsible for cutaneous infections in the community. Ann Dermatol Venereol. 2008;135(1):13–9 (in French).

61. Cercenado E, Cuevas O, Marin M, Bouza E, Trincado P, Roquete T, et al. Community-acquired methicillin-resistant *Staphylococcus aureus* in Madrid, Spain: transplantion importation and polyclonal emergence of *Panton-Valentine leukocidin*-positive isolates. Diagn Microbiol Infect Dis. 2008;61(2):143–9.

62. Denton M, O’Connell B, Bernard P, Jarlier V, Williams Z, Henriksen AS. The EPISA study: antimicrobial susceptibility of *Staphylococcus aureus* causing primary or secondary skin and soft tissue infections in the community in France, the UK and Ireland. J Antimicrob Chemother. 2008;61(3):586–8.

63. Gubbab JB, Goshell IB, Barbagiannakos T, Vickery AM, Mercer JL, Watson M. Clinical features, epidemiology, antimicrobial resistance, and toxin genes (including that of *Panton-Valentine leukocidin*) of gentamicin-susceptible methicillin-resistant *Staphylococcus aureus* (GS-MRSA) isolated at a paediatric teaching hospital in New South Wales, Australia. Pathology. 2008;40(1):64–71.

64. Jappe U, Heuck D, Strommenger B, Wendt C, Werner G, Altmann D, et al. *Staphylococcus aureus* in dermatology outpatient with special emphasis on community-associated methicillin-resistant strains. J Invest Dermatol. 2008;128(1):2655–64.

65. Kedzierska A, Kapinska-Mrowiecka M, Czubak-Macaguowski W, Wojcik K, Kedzierska J. Susceptibility testing and resistance phenotype detection in *Staphylococcus aureus* strains isolated from patients with atopic dermatitis, with apparent and recurrent skin colonization. Br J Dermatol. 2008;158(6):1290–9.

66. Larsen AR, Bocher S, Stegger A, Georing R, Palleon LV, Skov R. Epidemiology of European community-associated methicillin-resistant
81. Niebuhr M, Mai U, Kapp A, Werfel T. Antibiotic treatment of cutaneous infections with *Staphylococcus aureus* in patients with atopic dermatitis: current antimicrobial resistances and susceptibilities. Exp Dermatol. 2008;17(1):953–7.

82. Udo EE, Al-Sweih N, Dhar R, Dimitrov TS, Mokaddas EM, Johnny M, et al. Surveillance of antibacterial resistance in *Staphylococcus aureus* isolated in Kuwaiti hospitals. Med Practin Princt Int J Kuwait Univ Health Sci Centre. 2008;17(1):7–15.

83. Udo EE, Panigrahi D, Jamshere AE. Molecular typing of methicillin-resistant *Staphylococcus aureus* isolated in a Bahrain hospital. Med Practin Princt Int J Kuwait Univ Health Sci Centre. 2008;17(4):308–14.

84. Woodford N, Afzal-Shah M, Warner M, Livermore DM. In vitro activity of retapamulin against *Staphylococcus aureus* isolates resistant to fusidic acid and mupirocin. J Antimicrob Chemother. 2008;62(4):766–8.

85. Bauer CC, Apfalter P, Daxboeck F, Bachhofner N, Stadler M, Blacky A, et al. Prevalence of panopt-valentine leukocidin genes in methicillin-resistant *staphylococcus aureus* isolates phenotypically consistent with community-acquired MRSA, 1999–2007, vienna general hospital. Eur J Clin Microbiol Infect Dis. 2009;28(8):909–12 (in English).

86. Brosnikoff C, Rennie R, Kidson P, Yamamura D, Bechard C, Kelly M, et al. Surveillance of staphylococcus aureus susceptibility to fusidic acid in five Canadian laboratories. J Antimicrob Agents. 2009;34:543 (in English).

87. Claesson C, Nilsson LE, Kronvall G, Walder M, Sorberg M. Antimicrobial resistance rates and prevalence of resistance mechanisms among *Staphylococcus* spp. isolated in North America and Australia, 2007–2008. Antimicrob Agents Chemother. 2010;54(9):3614–7.

88. Chen HJ, Hung WC, Tseng SP, Tsai JC, Hsieuh PR, Teng LJ. Fusidic acid resistance determinants in *Staphylococcus aureus* clinical isolates. Anti-microb Agents Chemother. 2010;54(12):4985–91.

89. Cirkovic J, Svabic Vlahovic M, Stepanovic S. Molecular characterization of Panton-Valentine leukocidin positive methicillin-resistant *Staphylococcus aureus* isolates in Serbia. Clin Microbiol Infect. 2010;16:5278 (in English).

90. Elzahni M, Zerouali K, Ders N, Saile R, Trimouni M, Hassar M. Variability of fusidic acid-resistant methicillin-sensitive *Staphylococcus aureus* isolates in Casablanca. Morocco Clin Microbiol Infect. 2010;16:5281 (in English).

91. Jones RN, Castanheira M, Rhomberg PR, Wooley LN, Pfaffer MA. Performance of fusidic acid (CEM-102) susceptibility testing reagents: Broth microdilution, disk diffusion, and Etest methods as applied to *Staphylococcus aureus*. J Clin Microbiol. 2010;48(3):972–6 (in English).

92. Pfaffer MA, Castanheira M, Sader HS, Jones RN. Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. Int J Antimicrob Agents. 2010;35(3):282–7 (in English).

93. Rijnders M, Nys S, Driessen C, Hoebe CJ, Hopstaken RM, Oudhuis GI, et al. *Staphylococcus aureus* carriage among GPs in The Netherlands. Br J Gen Practin Princt J R Coll Gen Pract. 2010;60(581):1902–6 (in English).

94. Udo E, Sarkhoo E. The expansion of ST80-SCCmec-IV clone of community-acquired fusidic acid-resistant *Staphylococcus aureus* in Kuwaiti hospitals. Int J Infect Dis. 2010;14:e345–6 (in English).

95. Udo EE, Sarkhoo E. The dissemination of ST80-SCCmec-IV community-associated methicillin resistant *Staphylococcus aureus* clone in Kuwait hospitals. Ann Clin Microbiol Antimicrob. 2010;9:1–7 (in English).

96. Yeung CK, Chow WC, Chan HHL, Ho PL. Carriage of antibiotic-resistant *Staphylococcus aureus* in atopic dermatitis children attending paediatric outpatient clinics, Hong Kong. J Dermatol Venereol. 2010;18(3):125–31 (in English).

97. Alreshidi MA, Mariana NS. Increasing rate of detection of fusidic acid resistance in methicillin-resistant *Staphylococcus aureus* isolated from clinical samples in Malaysia. Med J Malaysia. 2011;66(3):276.

98. Anastasiou E, Farmaki EE, Pertsa E, Ekap E, Koteli A. In vitro activity of fusidic acid against *Staphylococcus aureus* strains. Int J Infect Dis. 2011;15:518 (in English).

99. Champion EA, Popowitch E, Miller M, Saaman L, Muheleuba M. MRSA: epidemiology, molecular typing and antimicrobial susceptibilities: multicenter STAB-CF study. Am J Respir Crit Care Med. 2011;183(1):A6120 (in English).

100. Chang CH, Lin TC, Chang CH, Hong SJ, Tsai YC. Methicillin-resistant *Staphylococcus aureus* in skin and soft tissue infections and minocyclin treatment experience in the dermatological setting of eastern Taiwan. Dermatol Sin. 2011;29(3):86–90 (in English).

101. Chen CM, Huang M, Chen HF, Ye SC, Li CR, Wang JT, et al. Fusidic acid resistance among clinical isolates of methicillin-resistant *Staphylococcus aureus* in a Taiwanese hospital. BMC Microbiol. 2011;11:98.

102. Jones RN, Mendes RE, Sader HS, Castanheira M. In vitro antimicrobial findings for fusidic acid tested against contemporary Gram-positive organisms collected in the United States. Clin Infect Dis. 2011;52(Suppl 7):S477–88 (in English).

103. LeMAIRE S, PILARD D, VAN BAMBEGE F, TULKENS P. Intracellular activity of fusidic acid against clinical isolates of *Staphylococcus aureus* of increasing MIC. Clin Microbiol Infect. 2011;17:S182–3 (in English).

104. RAVERT S, SKUTLAGE DH, LANGELAND N, RORTEVI G. Impeignto in a population over 8.5 years: incidence, fusidic acid resistance and molecular characteristics. J Antimicrob Chemother. 2011;66(6):1360–4 (in English).

105. TITOV L, ERMAKOVA T, GORBUNOV V, LEBEDEV F, KAZAKOV I, GLAZKOVA S. *Methicillin-resistant staphylococci* in the Republic of Belarus: results of the EEFIC (in English). 2011;15:S18 (in English).

106. Udo E, Sarkhoo E. The molecular epidemiology of MRSA in Malta and the description of a molecular characteristics. J Antimicrob Chemother. 2011;66(6):1360–4 (in English).

107. Valkic M, Slijer M, Kralj S, Kaletar M, Ciglar M, Kusnirovc S. Methicillin-resistant *Staphylococcus aureus* in an intensive care unit. Mykologia. 2011;63(2):192–7.

108. Vétier S, Skutlager DH, Langeland N, Rørtveit G. Impeignto in a population over 8.5 years: incidence, fusidic acid resistance and molecular characteristics. J Antimicrob Chemother. 2011;66(6):1360–4 (in English).

109. Vitzthum B, Gorbunov V, Lebedev F, Kozlovskaya N, Lebedev F, Kazakov I. Methicillin-resistant *Staphylococcus aureus* in the Republic of Belarus: results of the EEFIC (in English). 2011;15:S18 (in English).

110. Jones RN, Mendes RE, Sader HS, Castanheira M. In vitro antimicrobial findings for fusidic acid tested against contemporary Gram-positive organisms collected in the United States. Clin Infect Dis. 2011;52(Suppl 7):S477–88 (in English).

111. LeMAIRE S, PILARD D, VAN BAMBEGE F, TULKENS P. Intracellular activity of fusidic acid against clinical isolates of *Staphylococcus aureus* of increasing MIC. Clin Microbiol Infect. 2011;17:S182–3 (in English).

112. RAVERT S, SKUTLAGE DH, LANGELAND N, RORTEVI G. Impeignto in a population over 8.5 years: incidence, fusidic acid resistance and molecular characteristics. J Antimicrob Chemother. 2011;66(6):1360–4 (in English).

113. TITOV L, ERMAKOVA T, GORBUNOV V, LEBEDEV F, KAZAKOV I, GLAZKOVA S. *Methicillin-resistant staphylococci* in the Republic of Belarus: results of the National Surveillance System (2008–2010). Clin Microbiol Infect. 2011;17:S186–9 (in English).

114. BAER KS, ZHANG H, MAGNUSON R, TOLLAKSON J, DUNN R, HUANG L, et al. Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. Int J Antimicrob Agents. 2011;35(3):282–7 (in English).

115. Vitzthum B, Gorbunov V, Lebedev F, Kozlovskaya N, Lebedev F, Kazakov I. Methicillin-resistant *Staphylococcus aureus* in the Republic of Belarus: results of the EEFIC (in English). 2011;15:S18 (in English).

116. Vitzthum B, Gorbunov V, Lebedev F, Kozlovskaya N, Lebedev F, Kazakov I. Methicillin-resistant *Staphylococcus aureus* in the Republic of Belarus: results of the EEFIC (in English). 2011;15:S18 (in English).
methicillin-resistant *Staphylococcus aureus* in Western Austria. Wien Klin Wochenschr. 2012;124(19–20):709–15.

120. Chen X, Yang HH, Huangfu YC, Wang WK, Liu Y, Ni YX, et al. Molecular epidemiologic analysis of *Staphylococcus aureus* isolated from four burn centers. Burns. 2012;38(3):788–42 (in English).

121. Demir T, Coplu N, Bayrak H, Turan M, Buyukgucu T, Aksu N, et al. Panton-Valentine leucocidin gene carriage among *Staphylococcus aureus* strains recovered from skin and soft tissue infections in Turkey. J Antimicrob Chemother. 2012;67(4):837–40.

122. Groome MJ, Albrich WC, Wadula J, Khoosal M, Madhi SA. Community-onset *Staphylococcus aureus* bacteraemia in hospitalised African children: high incidence in HIV-infected children and high prevalence of multidrug resistance. Paediatr Int Child Health. 2012;32(3):140–6.

123. Horner C, Kearns A, Heritage J, Wilcox M. The epidemiology of methicillin-resistant *Staphylococcus aureus* in elderly residents of 65 care homes in a single primary care trust of northern England. Clin Microbiol Infect. 2012;18:341 (in English).

124. Ibrahim N, Siti-Fairuz MH, Nurul-Iwani MAA. A survey on community-acquired-methicillin resistant *Staphylococcus aureus* burden among university students. Int J Infect Dis. 2012;16:e222 (in English).

125. Kunsang Bhutia O, Singh TSK. Occurrence and antimicrobial susceptibility pattern of community and hospital associated methicillin resistant *Staphylococcus aureus* strains in Sikkim. J Int Med Sci Acad. 2012;25(4):235–7 (in English).

126. Nagarajan A, Arunkumar K, Saravanan M, Sivakumar G, Krishnan P. Detection of fusidic acid resistance determinants among *Staphylococcus aureus* isolates causing skin and soft tissue infections from a tertiary care centre in Chennai, South India. BMC Infect Dis. 2012;12:1 (in English).

127. Nergiz Ş, Atmaca S, Özekinci T, Tekin A. Fusidic acid resistance in *Staphylococcus aureus*. Wochenschr. 2012;124(19–20):709–15.

128. Pichon B, Hill RLR, Blackburn R, Ganner M, Harwin L, Cookson B, et al. Antimicrobial susceptibility pattern of community and hospital associated methicillin resistant *Staphylococcus aureus* strains isolated in 2003 and 2008 with an emergence of multidrug resistant ST22: SCCmec IV clone in a tertiary hospital, Malaysia. J Microbiol Immunol Infect. 2013;46(3):224–33.

129. Rashid Z, Sattar A, Qureshi MIM, Farzana K, Rashid F, Murtaza G. Nasal carriage and antimicrobial resistance of *Staphylococcus aureus*. J Infect Public Health. 2013;6(1):56–62 (in English).

130. Sasirekha B, Usha MS, Amruta AJ, Ankit S, Brinda N, Divya R. Evaluation of multidrug resistance. Paediatr Int Child Health. 2012;32(3):140–6.

131. Shore AC, Brennan OM, Deasy EC, Rossney AS, Kinnevey PM, Ehricht R, et al. Antimicrobial susceptibility of *Staphylococcus aureus* isolates from surgical wound infections in a Nigerian hospital and their antimicrobial resistance. Int J Infect Dis. 2012;16:e222 (in English).

132. Somily AM, Peaper DR, Paintsil E, Murray TS. Comparison of disk diffusion and Etest methods to determine the susceptibility of *Staphylococcus aureus* of amino acid variations mediating increased resistance of *Staphylococcus aureus* to fusidic acid. Int J Antimicrob Agents. 2013;42:514 (in English).

133. Udo EE, Al-Sweih N. Emergence of methicillin-resistant *Staphylococcus aureus* in the Maternity Hospital, Kuwait. Med Princip Pract Int J Kuwait Univ Health Sci Centre. 2013;22:535–9.

134. Udo EE, Al-Sweih N. Emergence of methicillin-resistant *Staphylococcus aureus* colonization in burns unit of a tertiary care hospital in Peshawar, Pakistan. Trop J Pharm Res. 2014;13(12):2091–9 (in English).

135. Akinkumari EO, Adesunkanmi AR, Lamikanra A. Pattern of pathogens from surgical wound infections in a Nigerian hospital and their antimicrobial susceptibility profiles. Afr Health Sci. 2014;14(4):802–9.

136. Ben Jejer CD, van Bijnen EM, Paget WJ, Stobberingh EE. Fusidic acid resistance in *Staphylococcus aureus* nasal carriage strains in nine European countries. Future Microbiol. 2014;9(6):377–45.

137. Gordon NC, Price JR, Cole K, Ewertt R, Morgan M, Finney J, et al. Prediction of *Staphylococcus aureus* antimicrobial resistance by whole-genome sequencing. J Clin Microbiol. 2014;52(4):1182–91.

138. Akgün MH, Bayhan F, Akbulut D, Canpolat A, Akgün M, Savramuk J, et al. Detection of fusidic acid resistance determinants among *Staphylococcus aureus* isolates from the Middle East: a heterogeneous expanding clonal lineage. PLoS ONE. 2014;9(7):e103715.
children with community-associated pneumonia. Chin J Infect Chemother. 2014;14(1):32–7 (in Chinese).

157. Rortveit S, Skutfaberg DH, Langeland N, Rortveit G. The decline of the impetigo epidemic caused by the epidemic European fusidic acid-resistant impetigo clone: an 11.5-year population-based incidence study from a community in Western Norway. Scand J Infect Dis. 2014;46(12):832–7.

158. Sândulescu O, Grigoară A, Streinu-Cercel A, Berciu I, Neguț AC, Streinu-Cercel A. Resistance profile of Staphylococcus aureus strains isolated from patients treated in a tertiary care hospital in Romania. BMC Infect Dis. 2014;14(2):160–3.

159. Steir M, Obeid Y, Eid C, Salby M, Farra A, Farhat H, et al. Prevalence of Staphylococcus aureus methicillin-susceptible and methicillin-resistant nasal and pharyngeal colonization in outpatients in Lebanon. Am J Infect Control. 2014;42(2):160–3.

160. Udo EE, Al-Lawati BAH, Al-Muharmi Z, Thukral SS. Genotyping of methicillin-resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman reveals the dominance of Panton-Valentine leucocidin-negative ST6-IV/1304 clone. New Microbes New Infect. 2014;2(4):100–5 (in English).

161. Vindel A, Trincado P, Cuevas O, Ballesteros C, Bouza E, Cercenado E. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in Spain. 2004–2012. J Antimicrob Chemother. 2014;69(11):2913–9 (in English).

162. Wasserman E, Orth H, Senekal M, Harvey K. High prevalence of methicillin-resistant Staphylococcus aureus strains isolated from patients in private health care, Western Cape. Southern Afr J Epidemiol Infect. 2014;29(4):126–32 (in English).

163. Wasserman E, Orth H, Senekal M, Harvey K. High prevalence of methicillin resistance associated with resistance to other antimicrobial agents in Staphylococcus aureus isolated from patients in private health care, Western Cape. Southern Afr J Epidemiol Infect. 2014;29(4):126–32 (in English).

164. Yildiz T, Çeban AV, Şener AG, Coğkunser SA, Bayramoğlu G, Gudiçuoğlu H, et al. Antimicrobial susceptibility and resistance mechanisms of methicillin resistant Staphylococcus aureus isolated from 12 Hospitals in Turkey. Ann Clin Microbiol Antimicrob. 2014;13(1):1–6 (in English).

165. Al-Talib H, Al-Khateeb A, Hassan H. Antimicrobial resistance of Staphylococcus aureus isolates in Malaysian tertiary hospital. Int Med J. 2015;22(2):73–9 (in English).

166. Aqel AA, Alzoubi HM, Vickers A, Pichon B, Kearns AM. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in the United States. Ann Dermatol Venereol. 2014;141(11):791–8 (in French).

167. Bari F, Wazir R, Haroon M, Ali S, Imtiaz RH, et al. Frequency and antibiotic resistance profile of Staphylococcus aureus from private health centers in Korea. Int J Dermatol. 2015;55(4):e191–7.

168. Bhattacharya S, Pal K, Jain S, Chatterjee SS, Konar J. Surgical site infection (SSI) by methicillin resistant Staphylococcus aureus (MRSA) on decline. J Clin Diagn Res. 2016;10(9):DC32–6.

169. Bierowiec K, Płonczeka-Janeczko K, Ryputa K. Is the colonisation of Staphylococcus aureus in pets associated with their close contact with owners? PLoS ONE. 2016;11(10):e0156052.

170. Boswihi SS, Udo EE, Al-Sweih N. Shifts in the clonal distribution of methicillin-resistant Staphylococcus aureus in Kuwait hospitals: 1992–2010. PLoS ONE. 2016;11(9):e0162744 (in English).

171. Budimir A, Tićić B, Rukavina T, Farkaš M, Kalenić S. First report on PVL-positive methicillin-resistant Staphylococcus aureus of SCCmec type V, spa type T441 in Croatia. Coll Antropol. 2016;40(2):133–7 (in English).

172. Cabrera A, Goldberg G, Campbell J, Pelude L, Bryce E, Frenette C, et al. Characterization of clinical methicillin-resistant staphylococcus aureus (MRSA) isolates from Canadian hospitals, 2010–2015. Open Forum Infect Dis. 2016;3:1746 (in English).

173. Farrell DJ, Mendes RE, Castanheira M, Jones RN. Activity of fusidic acid tested against staphylococci isolated from patients in U.S. Medical Centers in 2014. Antimicrob Agents Chemother. 2016;60(6):3827–31.

174. Flamm RK, Rhomberg PR, Farrell DJ, Jones RN. In vitro spectrum of pexiganan activity: bactericidal action and resistance selection tested against pathogens with elevated MIC values to topical agents. Diagn Microbiol Infect Dis. 2016;86(1):66–9.

175. Harkins CP, McAleer MA, Fleury OM, Bennett D, Foster TJ, McLean WHI, et al. Staphylococcus aureus associated with atopic eczema flares: case-control study. Br J Dermatol. 2016;174(5):e43 (in English).

176. Klein S, Nursjadi O, Eigenbrod T, Bode KA. Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospitals in Germany: is there a role for fusidic acid? Int J Antimicrob Agents. 2016;47(2):155–7.

177. Liu Y, Xu Z, Yang Z, Sun J, Ma L. Characterization of community-associated Staphylococcus aureus from skin and soft-tissue infections: a multicenter study in China. Emerg Microbes Infect. 2016;5(12):e127.

178. Mehdi SZ, Akber JUD, Nizam M, Dawood K, Buksh AR. Frequency and antimicrobial susceptibility pattern of microorganisms isolated from hospitalized infantile burn cases in a tertiary care hospital. Pak Paediatr J. 2016;40(3):135–42 (in English).

179. Nawaz A, Razaq A, Ijaz S, Nawaz A, Ali A, Kaleem A. Characterization of antibiotic resistant gene in Staphylococcus aureus isolated from surgical wounds. Adv Life Sci. 2016;26:83–8.

180. Park JM, Jo JH, Jin H, Ko HC, Kim MB, Kim JM, et al. Change in antimicrobial susceptibility of skin-colonizing Staphylococcus aureus in Korean patients with atopic dermatitis during ten-year period. Ann Dermatol. 2016;28(4):470–8.

181. Rahimi F, Shokouhizadeh L. Characterization of methicillin resistant Staphylococcus aureus strains among inpatients and outpatients in a referral hospital in Tehran, Iran. Microb Pathog. 2016;97:89–93 (in English).

182. Sarkar A, Raji A, Garawee G, Soge O, Rey-Ladino J, Al-Kattan W, et al. Antimicrobial resistance and virulence markers in methicillin sensitive Staphylococcus aureus isolates associated with nasal colonization. Microb Pathog. 2016;93:8–12.

183. Shahmohammadi MR, Nahangi MR, Abkarzadeh A, Milani C. Clinical test to detect mecA and antibiotic resistance in Staphylococcus aureus, based on novel biotechnological methods. Artif Cells Nanomed Biotechnol. 2016;44(6):1464–8.

184. Souli M, Karaiskos I, Galani L, Maraki S, Perivolioti E, Argyropoulou A, et al. Nationwide surveillance of resistance rates of Staphylococcus aureus clinical isolates from Greek hospitals, 2012–2013. Infect Dis. 2016;48(4):287–92 (in English).

185. Abouelfetouh A, Kassem M, Naguib M, El-Nakeeb M. Investigation and antimicrobial susceptibility profile of methicillin-resistant Staphylococcus aureus test to detect mecA and antibiotic resistance in Staphylococcus aureus, based on novel biotechnological methods. Artif Cells Nanomed Biotechnol. 2016;44(6):1464–8.
Staphylococcus aureus from the isolated wound culture in the north-west region, Kingdom of Saudi Arabia. Asian J Pharm Res Health Care. 2017;9(1):1–6 (in English).

196. Blazewicz J, Jaskiewicz M, Bauer M, Piechowicz L, Nowicki RJ, Kamysz W, et al. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: a reason for increasing resistance to antibiotics? Postepy Dermatol Alergol. 2017;34(6):553–60 (in English).

197. Doudoulakakis A, Spiliopoulos I, Spyrinis N, Giormeizis N, Kopsidas J, Milliotopoulou M, et al. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing main skin infections. J Clin Microbiol. 2017;55(8):2529–37.

198. Gostev V, Kruglov A, Kalinogorskaya O, Dmitrenko O, Khokhlova O, Yamamoto T, et al. Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infect Genet Evol J Mol Evolut Genet Infect Dis. 2017;53:189–94.

199. Khemiri M, Abourabia A, Abbassi MS, El Ghaieb H, Santos Costa S, Belas A, et al. Clonal spread of methicillin-resistant Staphylococcus aureus-t6065-CCS-SCcmeV-agrII in a Libyan hospital. J Glob Antimicrob Resist. 2017;10:101–5 (in English).

200. Liu X, Deng S, Huang J, Huang Y, Zhang Y, Yan Q, et al. Dissemination of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus clinical isolates. Oncotarget. 2017;8(35):58086–97 (in English).

201. Saleem F, Fasih N, Zafar A. Susceptibility pattern of methicillin resistant Staphylococcus aureus to vancomycin and other alternate agents: report from a private sector hospital laboratory. J Pak Med Assoc. 2017;67(11):1743–6 (in English).

202. Udo EE, Al-Sweih N. Dominance of community-associated methicillin-resistant Staphylococcus aureus clones in a maternity hospital. PLoS ONE. 2017;12(6):e0179563 (in English).

203. Udo EE, Boswiti SS. Antibiotic resistance trends in methicillin-resistant Staphylococcus aureus isolated in Kuwait hospitals. 2011–2015. Med Princ Pract Int J Kuwait Univ Health Sci Centre. 2017;26(5):485–90.

204. Wang JT, Huang IW, Chang SC, Tan MC, Lai JF, Chen PY, et al. Increasing resistance to fusidic acid among clinical isolates of MRSA. J Antimicrob Chemother. 2017;72(2):616–8.

205. Yilmaz ES, Aslantas O. Occurrence of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus strains isolated in Kuwait hospitals: 2011–2015. Pak J Pharm Sci. 2019;32(3):602–9 (in English).

206. Sohail M, Latif Z. Molecular analysis, biofilm formation, and susceptibility pattern of methicillin resistant Staphylococcus aureus from nasal contamination among healthcare workers using DNA microarray. J Infect Dev Ctries. 2018;12(5):321–5 (in English).

207. Skyler TV, Lavrentieva KV, Gavrilyuk VG, Kurahina NV, Vereshchaha MO, Lykholtat OA. Monitoring of multiresistant community-associated MRSA strains from patients with pathological processes of different localization. Regul Mech Biosyst. 2018;9(2):281–6.

208. Sah Holl M, Latif Z. Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community-and health care-associated infections in central venous catheters. Rev Soc Bras Med Trop. 2018;51(5):603–9 (in English).

209. Khokhlova O, Dmitrenko O, Khokhlova O, Yamamoto T, et al. Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infect Genet Evol J Mol Evolut Genet Infect Dis. 2017;53:189–94.

210. Aldasouqi R, Abu-Qatouseh L, Badran E, Alhaj Mahmoud S, Darwish M. Genetic determinants of resistance to fusidic acid among Staphylococcus aureus isolates in Jordan. Jundishapur J Microbiol. 2019;12(3):e68120 (in English).

211. Afouzan W, Udo EE, Modhaffer A, Alousaimi A. Molecular characterization of methicillin-resistant Staphylococcus aureus in a Tertiary Care Hospital in Kuwait. Sci Rep. 2019;9(1):118527 (in English).

212. Frickmann H, Hahn A, Berlec S, Ulrich J, Jansson M, Schwarz NG, et al. On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections—a hypothesis-forming, retrospective assessment. Eur J Microbiol Immunol. 2019;9(4):124–30 (in English).

213. Ghaith DM, Elnagdy SM, Tharwat NA. Saad M. Expression of FusC gene among methicillin resistant Staph aureus clinical isolates resistant to fusidic acid. Cairo Egypt Infect Dis. 2019;5(11–12):878–9.

214. Hanif E, Hassan SA. Evaluation of antibiotic resistance pattern in clinical isolates of Staphylococcus aureus. Pak J Pharm Sci. 2019;32(3):513–9 (Supplementary);1219–23.

215. Goudarzi M, Tayebi Z, Dadashi M, Miri M, Amirpour A, Fazeli M. Characteristics of community-acquired methicillin-resistant Staphylococcus aureus associated with wound infections in Tehran, Iran. Gene Rep. 2019;16:100411 (in English).

216. Razeghi M, Saifarian P, Goudarzi M, Inckghan-Mohammadi F, Kazemnia A, Beheshtipour J, et al. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus nasal carriage in the West of Iran: a population-based cross-sectional study. BMC Infect Dis. 2019;19(1):899.
232. Senok A, Somly A, Nassar R, Garaveen G, Sing GK, Müller E, et al. Emergence of novel methicillin resistant \textit{Staphylococcus aureus} strains in a tertiary care facility in Riyadh, Saudi Arabia. J Infect Public Health. 2020;13(2):322 \textit{(in English)}.

233. Udo E, AlFouzan W, Boloki H, Musaileem WA, Verghese T. Investigation of fusidic acid resistance determinants in methicillin-resistant \textit{Staphylococcus aureus} obtained in Kuwait hospitals. J Infect Public Health. 2020;13(2):324 \textit{(in English)}.

234. Yu F, Liu Y, Lu C, Lv J, Qi X, Ding Y, et al. Dissemination of fusidic acid resistance among \textit{Staphylococcus aureus} clinical isolates. BMC Microbiol. 2015;15:210.

235. Alreshidi MA, Mariana N. Increasing rate of detection of fusidic acid resistance in methicillin-resistant \textit{Staphylococcus aureus} isolated from clinical samples in Malaysia. Med J Malays. 2011;66:276.

236. Chen C-M, Huang M, Chen H-F, Ke S-C, Li C-R, Wang J-H, et al. Fusidic acid resistance among clinical isolates of methicillin-resistant \textit{Staphylococcus aureus} in a Taiwanese hospital. BMC Microbiol. 2011;11:1–8. https://doi.org/10.1186/1471-2180-11-98.

237. O’Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. Characterization of the epidemic European fusidic acid-resistant impetigo clone of \textit{Staphylococcus aureus}. J Clin Microbiol. 2007;45(5):1505–10.

238. Liu Y, Geng W, Yang Y, Wang C, Zheng Y, Shang Y, et al. Susceptibility to and resistance determinants of fusidic acid in \textit{Staphylococcus aureus} isolated from Chinese children with skin and soft tissue infections. FEMS Immunol Med Microbiol. 2012;64(2):212–8.

239. Brown E, Brown TP. Fusidic acid resistance in \textit{Staphylococcus aureus} isolates. Lancet. 2002;359:803.

240. Dobie D, Gray J. Fusidic acid resistance in \textit{Staphylococcus aureus}. Arch Dis Child. 2004;89(1):74–7.

241. Farrell DJ, Castanheira M, Chopra I. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect. 2011;52(Suppl 7):S487–92.

\textbf{Publisher’s Note}

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.