THE GIANT FLARE OF 2004 DECEMBER 27 FROM SGR 1806–20

STEVEN E. BOGGS, A. ZOGLAUER, E. BELLM, K. HURLEY, AND R. P. LIN
Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450; boggs@berkeley.edu

D. M. SMITH
Department of Physics, University of California, Santa Cruz, CA 95064

AND

C. WIGGIER AND W. HAJDA
Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Received 2006 November 9; accepted 2007 February 21

ABSTRACT

The giant flare of 2004 December 27 from SGR 1806–20 represents one of the most extraordinary events captured in over three decades of monitoring the γ-ray sky. One measure of the intensity of the main peak is its effect on X- and γ-ray instruments. RHESSI, an instrument designed to study the brightest solar flares, was completely saturated for ∼0.5 s following the start of the main peak. A fortuitous alignment of SGR 1806–20 near the Sun at the time of the giant flare, however, allowed RHESSI a unique view of the giant flare event, including the precursor, the main-peak decay, and the pulsed tail. Since RHESSI was saturated during the main peak, we augment these observations with Wind and RHESSI particle detector data in order to reconstruct the main peak as well. Here we present detailed spectral analysis and evolution of the giant flare. We report the identification of a relatively soft fast peak just milliseconds before the main peak, whose timescale and size scale indicate a magnetospheric origin. We present the novel detection of emission extending up to 17 MeV immediately following the main peak, perhaps revealing a highly extended corona driven by the hyper-Eddington luminosities. The spectral evolution and pulse evolution during the tail are presented, demonstrating significant magnetospheric twist during this phase, but no apparent magnetospheric evolution. Blackbody radii are derived for every stage of the flare, which show remarkable agreement despite the range of luminosities and temperatures covered. Finally, we confirm the existence of a hard afterglow emission extending up to 2.5 MeV in the hundreds of seconds following the giant flare.

Subject headings: gamma rays: observations — pulsars: individual (SGR 1806–20) — stars: neutron

1. INTRODUCTION

The soft gamma repeater SGR 1806–20 was discovered in 1979 (Laros et al. 1986), and has been studied intensively over the intervening two decades at X-ray, γ-ray, infrared, and radio wavelengths. It has emitted over 450 soft γ-ray bursts, mostly of short duration, during sporadic active periods, and has been found to be a quiescent, variable X-ray source as well, emitting up to ∼150 keV (Mereghetti et al. 2005a; Molkov et al. 2005). Indeed, X-ray observations of its periodic, quiescent component have provided some of the best evidence for a magnetar-strength magnetic field (Kouveliotou et al. 1998), as first proposed by Duncan & Thompson (1992) and Paczyński (1992). The infrared counterpart to SGR 1806–20 is a faint, highly obscured source, in keeping with its location toward the Galactic center (Kosugi et al. 2005; Israel et al. 2005). Presumably, it is a lone neutron star, whose infrared intensity varies roughly in concert with bursting activity and its quiescent X-ray flux. There have been numerous attempts to determine the distance to SGR 1806–20 by various methods, leading to estimates from 6.4–9.8 kpc (Cameron et al. 2005) to 15.1 kpc (McClure-Griffiths & Gaensler 2005; Eikenberry et al. 2004; Corbel & Eikenberry 2004; Corbel et al. 1997). In this paper we will quote all energies and luminosities in terms of $d_{10} = (d/10 \text{ kpc})$. Like SGR 0525–66 and SGR 1900+14, SGR 1806–20 has emitted a long-duration, high-energy giant flare, whose flux at Earth greatly exceeded that of any other known cosmic X-ray source (Hurley et al. 2005; Mazets et al. 2005; Mereghetti et al. 2005b; Palmer et al. 2005). SGRs are not detectable quiescent radio emitters (Lorimer & Xilouris 2000), but giant flares create transient radio nebulae that are observable for weeks (Frail et al. 1999; Gaensler et al. 2005).

In the magnetar model, magnetic dissipation, rather than rotation, provides the main energy source (Thompson & Duncan 1995, 1996), Steady dissipation heats the neutron star surface and powers the quiescent X-ray emission. Localized crustal cracking causes short-duration, soft-spectrum, and relatively weak bursts during active periods. Major crustal reconstructions are thought to be responsible for the rarer long-duration, hard-spectrum, intense giant flares.

In 2004, SGR 1806–20 underwent a period of intense activity. The rate of small bursts peaked around midyear, in conjunction with the quiescent X-ray flux (Woods et al. 2007). The spin-down rate, as evidenced by the frequency derivative, decreased. This activity culminated in the giant flare of 2004 December 27 (Götz et al. 2006). Unlike the case of the giant flare from SGR 1900+14, however, there was no sudden change to the spin frequency. X-ray observations carried out several months later, however, revealed a slower spin-down rate, a smaller pulsed fraction for the quiescent emission, a different pulse profile, a softer spectrum, and a decreased flux (Tiengo et al. 2005; Rea et al. 2005). In the magnetar model, these changes are attributed to a major reconfiguration of the neutron star’s magnetic field.

In this paper we present a detailed analysis of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data on the giant flare, concentrating on the time-resolved energy spectra of its various phases from 3 keV to 17 MeV. By virtue of the high time

1 Department of Physics, University of California, Berkeley.
and energy resolution and broad spectral coverage of the measurements, we believe that these data present the most complete spectral picture of this, or any other giant flare.

2. RHESSI SPECTROMETER

RHESSI is an array of nine coaxial germanium detectors, designed to perform detailed spectroscopic imaging of X-ray and \(\gamma \)-ray emission (3 keV–17 MeV) from solar flares (Lin et al. 2002). Spectral resolution ranges from \(\sim 1 \) keV FWHM in the hard X-ray range, up to several keV in the MeV range. RHESSI imaging is performed by two arrays of opaque one-dimensional grids, separated by 1.55 m, and co-aligned with the nine detectors (Zehnder et al. 2003). As the RHESSI spacecraft rotates (4.07 s period, axis aligned with the Sun) these grids modulate the count rate in the detectors, allowing imaging through rotational modulation collimator techniques (Hurford et al. 2002). Thus, RHESSI has high angular resolution (2.3\(^\circ\)) in the 1\(^\circ\) field of view of its optics. However, the detectors themselves are unshielded, and are able to view transient sources from the whole sky. In addition, RHESSI sends down the energy and timing information for each photon, allowing detailed timing measurements.

RHESSI observed both the precursor to and the giant flare from SGR 1806–20 in their entirety, starting at 21:28:03.44 UT and 21:30:26.64 UT 2004 December 27 at the spacecraft, respectively. At the time of this event, SGR 1806–20 was located 5\(^\circ\) from the Sun, just outside the primary imaging field of view of the RHESSI instrument. At this angle from the solar direction, the shadow pattern of one front grid falls on the aligned bottom grid of a neighboring detector once per rotation, a fortuitous alignment that allows us to get a \(\frac{1}{2} \) second “snapshot” of the direct spectrum, down to 3 keV, twice per RHESSI rotation period (4.07 s). During the main peak of the flare the RHESSI spectroscopy detectors were saturated for \(\sim 0.5 \) s after the initial rise of the main peak, but observed the decay of the main peak and the 400 s long pulsed tail.

Figure 1 shows the 20–100 keV light curve of the SGR 1806–20 giant flare, from just before the precursor to after the end of the pulsed tail. In this plot and throughout this paper, we are quoting times \(t_{26} \) in seconds relative to 21:30:26 UT 2004 December 27. (So the main peak starts at \(t_{26} = 0.65 \) s.) Since SGR 1806–20 was located just outside of the main RHESSI field of view, this light curve is dominated by photons that have scattered into the detectors from other parts of the spacecraft or have been Compton-reflected from Earth’s atmosphere. Therefore, we do not attempt to use these events for spectral analysis below \(\sim 0.2 \) MeV. All of our hard X-ray spectra are derived using the snapshot data (with the exception of the fast peak), where RHESSI has a direct view of the flare. At higher energies, the RHESSI grids are more transparent and Earth reflection is negligible, allowing all photon events to be used for spectral analysis.

For the snapshot spectra we have used the on-axis RHESSI response matrices (Smith et al. 2002), which produce acceptable spectral fits to the snapshot data. For the RHESSI snapshot spectra analyzed in this paper we assume an absorption of \(N_H = 6.69 \times 10^{22} \) cm\(^{-2}\), which was measured for this source prior and subsequent to the giant flare (Murakami et al. 1994; Mereghetti et al. 2005c; Rea et al. 2005).

3. RHESSI AND WIND CHARGED PARTICLE DETECTORS

During the intense main peak all X- and \(\gamma \)-ray instruments experienced some degree of saturation, making reliable reconstruction of the time history and energy spectrum difficult or impossible. Many particle detectors, however, are small, thin silicon detectors with very low effective areas for X- and \(\gamma \)-ray interactions. Most of these detectors are usually impervious to \(\gamma \)-ray photons; however, due to the brightness of the main peak a number of particle instruments registered strong signals without saturating, allowing detailed reconstruction of the main peak (Hurley et al. 2005; Terasawa et al. 2005; Schwartz et al. 2005).

The RHESSI particle detector (PD), which is used for detecting SAA passages, is a small silicon detector of area 0.25 cm\(^2\), 960 \(\mu \)m thick (Smith et al. 2002). The RHESSI PD is instrumented to measure simple counting rates for all interactions above two threshold levels, \(\sim 50 \) and \(\sim 620 \) keV, with 0.125 s time resolution. The PD, which normally does not register even the brightest solar flares, measured a strong burst of counts from the main peak (Fig. 2), but still well below saturation levels. Therefore, the PD gives us a very good measure of the incident count rates above these two thresholds. However, the limited PD data do not allow us to strongly constrain the shape of the \(\gamma \)-ray spectrum.

Therefore, we also analyzed the observations from the Wind 3D Plasma & Energetic Particle Experiment (Lin et al. 1995). Wind has six double-ended solid state telescopes (SSTs), five
with two back-to-back 1.5 cm², 300 μm thick silicon detectors (called O and F, with 9 and 7 PHA channels, respectively), and one SST with a third, 1.5 cm², 500 μm thick detector (T) in between. The multichannel analyzers covered the 20 keV–11 MeV range with various time resolutions between 12 and 96 s. All of the Wind detectors see a strong signal from the main peak, and they were all used in our analysis. The Wind SST data is saturated, but in a fairly benign way. The detectors and shaping electronics have a fast response (0.5 μs shapers), and are well below saturation level. However, the analog-to-digital converters (ADCs) for the telescopes are shared, and exceeded their maximum throughput during the main peak. When the ADC is busy processing an event, incoming events are thrown away, but without pileup (D. Curtis 2005, private communication). Therefore, the Wind SSTs accurately sampled the spectral shape of the main peak, but not the overall normalization.

Between the Wind SSTs and the RHESSI PD we are able to reconstruct the input spectrum and the overall normalization, respectively. While our work focuses on the spectral analysis, other particle detector observations have been able to reconstruct the main-peak light curve with much higher time resolution (Terasawa et al. 2005; Schwartz et al. 2005). The summary of these spectral results was presented in Hurley et al. (2005). Here we present more details of the analysis method.

4. STAGES OF THE GIANT FLARE

For the purpose of our analysis, the giant flare from SGR 1806–20 can be divided into six separate stages, illustrated in Figure 1. There is a precursor flare (1) 142 s prior to the main peak, followed by a quiescent preflare period (2). Immediately prior to the main peak, a fast peak (3) occurs, which lasts merely 2.5 ms. The main peak itself (4) lasts ~0.5 s. Subsequent to the main peak, there is a brief ~60 s decay period dominated by strong nonthermal emission (5), followed by the characteristic pulsed tail (6) lasting 400 s. Finally, there is the postflare period with previously reported afterglow emission (7). While RHESSI was saturated ~0.5 s during the main peak, it had an excellent view of SGR 1806–20 during the rest of these stages. Here we present a detailed analysis of each stage of this spectacular event.

4.1. Precursor

RHESSI observed a precursor burst occurring from 21:28:03.44 to 21:28:04.49 UT, 142 s before the main peak of the giant flare, with a peak count rate in the spectroscopy detectors of ~30,000 counts s⁻¹. The relatively long duration (1 s) and nearly flat light curve of this burst (Fig. 3) distinguish it from more common SGR bursts with typical durations of ~0.1 s. We see a rise time for the precursor of 27 ms, and a fall time of 110 ms. RHESSI caught this precursor during one of its serendipitous spectral snapshots (Fig. 3), allowing us to get a good spectrum of it. The 3–250 keV spectrum (Fig. 4) is well fit by a single blackbody component, assuming $N_{\text{He}} = 6.69 \times 10^{-22}$ cm⁻², with $kT = 10.4 \pm 0.3$ keV ($\chi^2 = 1.06, 75$ degrees of freedom [dof]). By comparison, both a simple power-law model ($\chi^2 = 4.02, 75$ dof) and a thermal bremsstrahlung model ($\chi^2 = 2.03, 75$ dof) give unacceptable fits to the precursor. The spectrum shows no evidence for nonthermal emission in addition to the simple blackbody. Using this spectral snapshot, we can estimate the time-integrated blackbody fluence of this precursor to be $(3.2 \pm 0.5) \times 10^{-5}$ ergs cm⁻², implying an energy of $3.8 \times 10^{41} d_{10}^2$ ergs. Note, this spectral fit and fluence differ significantly from the results reported in Hurley et al. (2005) due to an error in our preliminary analysis of this precursor. (This error did not affect the rest of our preliminary analysis.) This current analysis resolves most of the apparent discrepancy between our previous precursor fluence and that reported from INTEGRAL ACS (Mereghetti et al. 2005b).

4.2. Preflare

Following the precursor, SGR 1806–20 appears relatively quiescent for 142 s until the main peak of the giant flare. While there is no obvious evidence in the light curve for emission during this period (Fig. 1), RHESSI snapshot spectra allow us to search for emission with better sensitivity than the light curves alone. We see no evidence of emission from SGR 1806–20 during this quiescent period. The 3 σ upper limit on the 3–250 keV flux is 1.4×10^{-7} ergs cm⁻² s⁻¹, corresponding to a source flux below $1.7 \times 10^{39} d_{10}^2$ ergs s⁻¹.

4.3. Fast Peak

There was somewhat less than 1 ms between the time that the first signs of the main peak became detectable above background by RHESSI and the time the instrument went into saturation. Figure 5 shows the raw count rate at the start of the rise. We fit the early data where the instrument live time was >90% with an exponential growth curve, shown as well in Fig. 5. Normally, rear segment response at low energies on RHESSI is dominated by Compton reflection from Earth’s atmosphere, but during the fast rise these photons would not have had a chance to reach the instrument, and therefore all segments are included in the light curve of Figure 5. The best-fit e-folding time constant is...
0.38 ± 0.04 ms. This rise time is comparable to the ∼0.3 ms rise time reported for Swift BAT before saturation (Palmer et al. 2005), but an order of magnitude faster than the 4.9 ms rise time reported by particle detector observations that did not saturate (Schwartz et al. 2005). However, we can also see in Figure 5 that RHESSI partly recovers during the $t_{50} = 638–639$ ms period, suggesting that the onset of the main peak was not smooth, but had a significant drop in the incident rate ∼2.5 ms after the start of the rise. This drop is also evident in the Swift BAT light curve at this same time (Palmer et al. 2005). One explanation of the apparent discrepancy between the rise time measurements is that RHESSI and Swift BAT are characterizing the rise time of this initial fast peak, while the particle detectors are characterizing the main peak itself, following this initial fast peak.

The fast rise time and short duration of this fast peak suggest that it represents a separate physical mechanism from the main peak itself. This idea is also supported by the spectrum of the fast peak. Figure 6 shows the RHESSI count spectrum during the $t_{50} = 636.2–636.7$ ms period. RHESSI did not get a direct snapshot spectrum during this period, so only a rough spectral analysis is possible. We can compare this count spectrum with the measured precursor spectrum with $kT = 10.4$ keV (Fig. 6, solid line). Here we plot the precursor count spectrum after the snapshot period (Fig. 4) for a direct comparison between the two count spectra outside snapshot periods. This fast peak spectrum appears harder than the precursor. However, this spectrum is much softer than the $kT = 175$ keV blackbody (Fig. 6, dashed line) that we measure for the main peak itself (next section). A $kT ∼ 20$ keV blackbody convolved through the rotation-averaged instrumental response gives a reasonable match to the measured count spectrum (Fig. 6, dash-dotted line). If we assume this component is a 20 keV blackbody, we can derive a rough fluence for this 0.5 ms period during the fast rise of 6.6×10^{-7} ergs cm$^{-2}$.

4.4. Main Peak

The Wind SST F and O count spectra of the main peak are shown in Figure 7. As discussed in §3, the Wind SST detectors measured the main-peak spectral shape, but not the overall normalization. We concentrated our efforts on the F and O spectra during this analysis—the combined spectra of six detectors each. We exclude the so-called FT and OT coincident spectra due to the poorer statistics in this data mode, and uncertainties in the coincidence trigger criteria. In addition, the lowest bin in the F spectrum had to be excluded due to uncertainties concerning trigger threshold effects. In order to determine the best-fit spectral model, we developed a simulation mass model of the Wind three-dimensional experiment, including a detailed detector and housing model, and a rough spacecraft model. Special care has been taken to correctly model the passive material on all direct paths from the magnetar to the active detector materials and the immediate surrounds of the detectors to correctly account for absorptions and scatters. The mass model itself was developed in MEGAlib (Zoglauer et al. 2006) to allow both GEANT3 and GEANT4 Monte Carlo simulations in order to cross check results. Of specific concern was also the correct handling of electron tracks from Compton and pair interactions given the thin F and O detectors. However, since no calibration exists for this detection mode, some
uncertainties remain. Given that most photons above roughly 50 keV interacting in one of the SST detectors will Compton scatter out of the instrument, the photon response matrix is strongly nondiagonal. As consequence, we did not attempt to create and invert a photon response matrix and produce model-independent spectra, but rather compared measured and simulated count spectra directly to determine the best match to the overall measured spectral shapes.

We attempted to reproduce the observed count rate distributions with power-law, thermal bremsstrahlung, and blackbody spectral models. We varied the input spectral parameter for each model (photon index, temperature) over a range of values, adjusting the overall normalization to best match the observed count spectrum. We verified that the range of spectral values bracketed the best-fit value for each spectral model. The best-fit power law and bremsstrahlung spectra were strongly rejected by the toy model (photon index, temperature) over a range of values, and the blackbody model was also modeled in GEANT3, assuming the best-fit temperature of the Moon. They simulated the response of scattering off the Moon, then folded this response with their detector response matrix. Their best-fit model for this spectral analysis is also a power-law function (Γ = 0.7) with exponential cutoff (E0 = 800 keV). However, from our own spectral analysis of the Wind SST data, we can rule out both the SOPA and Coronas-F spectral fits with very high confidence (χ2 > 10, 11 dof). Therefore, given the quality of the Wind SST data, the consistency with the limited RHESSI PD data, and the consistent results with the IREM data, we can deduce that the kT ~ 200 keV cooling blackbody spectrum of the main peak.

4.5. Peak Decay

When they came out of saturation within 1 s after the start of the main peak, the RHESSI spectroscopy detectors were measuring a peak count rate of ~280,000 counts s−1. During the first few seconds, RHESSI recorded a dynamic and complex spectrum. What stands out most in the light curve (Fig. 8) is the pulsed tail, composed of both thermal blackbody emission and a nonthermal power-law emission. Both of these spectral components are present immediately when RHESSI comes out of saturation, with the earliest snapshot at t26 = 2.0 s. These two components, and their evolution throughout the pulsed tail, are discussed below.

An additional component present as RHESSI emerged from saturation consists of strong emission extending up to 17 MeV, the upper limit of RHESSI’s energy band. To our knowledge, this is the highest energy to which this or any other SGR flare has been observed. Figure 9 shows the 0.4–10 MeV light curve for the first 300 s after the giant peak, including our fit to the background rate before and after the giant peak. RHESSI observes excess emission in the MeV range for ~60 s after the giant peak, which is better modeled as a power-law decay than an exponential decay. Fitting the background-subtracted light curve with
a function of the form $\propto t^{-a}$ yields a best-fit index $a = 0.68 \pm 0.04$ ($\chi^2 = 1.63, 39$ dof). An MeV component was previously reported in the pulse-averaged spectra from Konus-Wind observations to ~ 10 MeV (Mazets et al. 2005; Frederiks et al. 2007), although we do not see any significant MeV emission after $t_{26} \sim 100$ s.

We verified that the high-energy component is not created by low-energy photons from the SGR arriving simultaneously with high-energy background photons and creating an artificial “pileup” component at high energies. During the period of high-energy emission in the peak decay, the detector live time averaged around 96% in the RHESSI rear segments. Using pileup-modeling software based on RHESSI ground calibrations and solar flare observations, we find that the high-energy contribution of pileup should be about a factor of 10 lower than the high-energy component observed.

For the $t_{26} = 1.71 - 22.06$ s period, the 0.4–15 MeV spectrum (Fig. 10) can be fit by a power law $[dN/dE] \propto E^{-\Gamma}$ of photon index $\Gamma = 1.43 \pm 0.06$, with an integrated fluence of $(9.8 \pm 0.1) \times 10^{-2}$ ergs cm$^{-2}$. For this fit, we excluded the band around the 0.511 MeV background line, which is difficult to model and subtract properly for this transient event. The power-law model for this MeV component, shown in Figure 10, is a good fit above 0.4 MeV ($\chi^2 = 0.86$, 30 dof). There is no sign of a turnover in this spectrum up to 17 MeV. Adding an exponential cutoff to the models marginally worsens the spectral fit, and results in a cutoff energy >50 MeV, well above the RHESSI energy range.

Below 0.4 MeV, Figure 10 shows a strong excess above our simple power-law model. This excess is partly due to photons from SGR 1806–20 that scattered in the earth’s atmosphere before reaching the spectroscopy detectors, and due in smaller part to a softer power-law index at lower energies as revealed in the snapshot spectra (§ 4.6). While the snapshot spectra themselves show no sign of a change in the spectral index (~ 2.5) below 250 keV, the higher energy data in Figure 10 show that the spectral index steepens (~ 1.5) at higher energies. The exact energy of this spectral break is only weakly constrained by the RHESSI data to be 0.5 ± 0.2 MeV.

4.6. Pulsed Tail

After the main peak of the giant flare, RHESSI recorded a series of 51 pulsations with a period of 7.56 s (Fig. 1), similar to the INTEGRAL, Konus, and Swift BAT observations (Mereghetti et al. 2005b; Mazets et al. 2005; Palmer et al. 2005). The pulse profile shows evidence for both spectral variations throughout the pulse, and evolution of the pulse shapes throughout the decay. The 20–100 keV pulse profiles show 3–4 peaks in their structure.

In Table 1 we present the phase-integrated spectral evolution of the pulsed tail as seen through the snapshot spectra. Data were combined over the time periods presented, and fit in the 3–250 keV band (assuming $N_{\text{H}} = 6.69 \times 10^{22}$ cm$^{-2}$) to determine the best spectral model. For these pulse-integrated spectra, the best-fit model is a two-component blackbody plus power law (photon index Γ). Thermal bremsstrahlung and power-law models give unacceptable fits, both alone and combined as a two-component model. A blackbody model alone gives marginal fits, improved significantly with the addition of the nonthermal power-law component. We do not see any significant sign of an exponential cutoff in this power-law component below 250 keV, the upper end of our snapshot data. After $t_{26} \sim 246$ s, the power-law photon index is not strongly constrained in the individual 40 s spectra although the component is still significant; therefore, we have fixed the index at its best-fit value for this time period, $\Gamma = 2.1$. An example spectral fit is shown in Figure 11, the first snapshot spectrum after RHESSI emerged from saturation.

TABLE 1

t_{26} (s)	kT_{BB} (keV)	Blackbody Fluencea $(10^{-4}$ ergs cm$^{-2}$)	Γ	Power-Law Fluenceb $(10^{-4}$ ergs cm$^{-2}$)	χ^2_r (dof)
2–6	11.0 ± 0.2	3.1 ± 0.4	1.71	0.6 ± 0.2	1.11 (73)
6–46	9.7 ± 0.3	5.0 ± 0.9	2.34	6.3 ± 2.0	1.23 (73)
46–86	9.6 ± 0.4	3.2 ± 0.7	2.58	5.4 ± 2.2	1.29 (73)
86–126	9.1 ± 0.3	3.5 ± 0.7	2.49	3.8 ± 2.0	0.98 (73)
126–166	9.4 ± 0.3	3.4 ± 0.7	2.64	4.4 ± 2.4	1.01 (73)
166–206	8.4 ± 0.4	2.4 ± 0.7	2.70	5.0 ± 2.5	1.20 (73)
206–246	7.7 ± 0.5	1.5 ± 0.6	2.50	2.3 ± 1.7	1.06 (73)
246–286	5.9 ± 0.2	1.3 ± 0.3	2.1(fixed)	0.7 ± 0.1	1.53 (74)
286–326	5.5 ± 0.2	1.1 ± 0.2	2.1(fixed)	0.6 ± 0.1	1.16 (74)
326–366	4.4 ± 0.2	0.9 ± 0.2	2.1(fixed)	0.4 ± 0.1	0.98 (74)
366–406	3.5 ± 0.4	0.3 ± 0.1	2.1(fixed)	0.06 ± 0.07	0.86 (74)

a Blackbody fluence integrated over all energies.

b Fluence = 3–100 keV.
In our preliminary analysis we could not conclusively distinguish between the thermal bremsstrahlung and blackbody models, which both gave marginal fits (Hurley et al. 2005). The addition of the absorption column and the power-law component improved the blackbody fits to the point of strongly distinguishing the models.

The blackbody component appears to be present in the tail emission immediately after RHESSI comes out of saturation, with an initial temperature $kT = 11.5$ keV, which drops steadily during the evolution of the pulsed tail (Table 1). The total integrated fluence of the blackbody component of the pulsed tail is $(2.6 \pm 0.2) \times 10^{-3}$ ergs cm$^{-2}$.

The power-law component is also present immediately after RHESSI comes out of saturation, and lasts throughout the pulsed tail phase. The photon index, initially $\Gamma = 1.71$, appears to soften to $\Gamma = 2.7$, then harden to $\Gamma = 2.1$ over the evolution of the tail, but it is not clear that this evolution is strongly significant. The total integrated fluence of the nonthermal component for the pulse tail phase, in the $3\rightarrow100$ keV band, is $(2.9 \pm 0.5) \times 10^{-3}$ ergs cm$^{-2}$.

Combining these two components, the total fluence measured from the pulsed tail is $(5.5 \pm 0.6) \times 10^{-3}$ ergs cm$^{-2}$, implying an energy release of $6.7 \times 10^{38} d_{10}^2$ ergs, roughly equally divided between thermal and nonthermal emission.

Figure 12 shows the average 7.56 s pulse shape, 20–100 keV, integrated over the pulsed tail. The pulse profile is dominated by 3–4 separate peaks, with an overall large pulse fraction. Figure 12 also shows the phase-resolved best-fit blackbody temperature, which varies throughout the pulse. During the phase-resolved profile, the ratio of 3–100 keV power-law flux to the total blackbody flux stays flat, with the energy emission nearly equally divided between the two components.

4.7. Afterglow

INTEGRAL ACS observations of the SGR 1806–20 giant flare showed excess counts in the period following the pulsing phase, $t_{26} \sim 400–4000$ s, peaking around $t_{26} \sim 600–800$ s. This excess was interpreted as afterglow hard X-ray emission from the SGR (Mereghetti et al. 2005b). The ACS observations suggest that the integrated fluence in this afterglow emission is comparable to the integrated emission in the pulsing tail itself. Confirmation of this emission was recently reported from the Konus-Wind gamma-ray spectrometer (Frederiks et al. 2007), which reported emission up to 1 MeV, with a spectral index $\Gamma \sim 1.6$, and 80–750 keV fluence of $\sim 2 \times 10^{-4}$ ergs cm$^{-2}$ (during the period 5000–12,000 s).

RHESSI had a direct view of SGR 1806–20 for 600 s following the pulsing tail before the satellite moved behind Earth’s shadow. We have searched the RHESSI snapshot spectra during this period for evidence of afterglow emission. For $t_{26} \sim 400–1000$ s, we can set a 3 σ upper limit on the 3–200 keV fluence from SGR 1806–20 of 1.4×10^{-4} ergs cm$^{-2}$. By itself, this limit is not inconsistent with the reported ACS observations if the afterglow consists of a hard power law with spectral index $\Gamma < 1.5$.

Therefore, we decided to look at the RHESSI data at the time that SGR 1806–20 moved behind the Earth’s shadow to search for any significant step in the higher energy count rates. Figure 13 shows the total RHESSI count rate per five rotation periods, 80–2600 keV, following the giant flare. We fit this curve to a function consisting of the light curve of the afterglow reported for ACS (Mereghetti et al. 2005b), plus a third-order polynomial to model the RHESSI background variation. For the ACS light curve, we allowed the normalization to be a free parameter, and assumed that the source light curve drops to zero at the time that the source is occulted by the Earth’s limb. The solid curve in Figure 13 shows this source plus background fit, while the dashed curve shows the background polynomial fit by itself. The vertical dashed-dotted line shows the time of sunset, and SGR 1806–20 would have set roughly 50 s earlier. We do measure a significant drop in the RHESSI count rates near the time of the sunset (20,600± 4100 counts). This drop is not present in the RHESSI data during comparable orbits the day before (2900 ± 5900 counts) or the day after (900 ± 5100 counts) the giant flare. Unfortunately, given the proximity of SGR 1806–20 to the solar position at the time
earlier. There is a significant drop in the count excess originates from SGR 1806–20 during the afterglow period. The dash-dotted line shows the time when the Sun went behind the Earth’s limb, SGR 1806–20 would have been eclipsed ~50 s earlier. There is a significant drop in the RHESSI count rates during this time, but it is not clear whether this is from the Sun or SGR 1806–20. See text for a description of the fit curves.

of this event, we cannot conclusively tell from this data whether the count excess originates from SGR 1806–20 or is solar in origin. The drop in Figure 13 appears more consistent with the time of sunset. However, given the uncertainties in the counts rates at the time of this shadowing, this is not conclusive. Certainly the likelihood of such hard, high-energy solar activity—never previously observed—at the time of the giant flare is small.

We have performed a rough spectral fit to this potential afterglow emission. Figure 14 shows a background-subtracted spectrum for the RHESSI rear detectors, which is well fit with a thermal bremsstrahlung model with \(kT = 1.9 \pm 0.7 \) MeV (\(\chi^2_r = 0.34 \), 5 dof), with emission extending up to 2.5 MeV. Our estimated 20 keV–15 MeV fluence for this component during the \(t_{20} \sim 400–900 \) s period is \((1.85 \pm 0.25) \times 10^{-8}\) ergs cm\(^{-2}\). The spectrum is comparably fit with a power law plus exponential cutoff model (\(\chi^2_p = 0.40, 4 \) dof), which yields a hard, but loosely constrained, spectral index of \(\Gamma = 0.7 + 0.8/ -1.4 \), and an exponential cutoff energy \(E_c = 1.5 + 2.9/ -0.8 \) MeV, both consistent with the thermal bremsstrahlung model. The RHESSI count rates above 80 keV from this occultation analysis appear consistent with the ACS rates when roughly scaled for the relative effective areas. Despite the similarity in fluence, our measurements of the afterglow do not overlap the time period of the Konus-Wind spectrometer.

We have searched the RHESSI rates for pulsations during this afterglow period and see no significant sign of the 7.56 s rotation period.

5. DISCUSSION

The precursor may hold some tantalizing clues to the origin of this giant flare. The unusual nature of this burst, and its occurrence soon before the main peak, suggest a direct connection between the two events. Indeed, a precursor was also present for the giant flare from SGR 1900+14 (Hurley et al. 1999). The average luminosity during the precursor was \(4 \times 10^{37} d_{10}^2 \) ergs s\(^{-1}\), corresponding to \(\sim 2000 L_{\text{Edd}} \) which is typical for SGR bursts. In Figure 15 we show the phase of this precursor relative to the subsequent pulsed tail—the precursor occurs during one of the lowest phases of the pulse profile. Our measured rise time of this precursor, 27 ms, is much longer than the ~0.03 ms timescale expected for magnetospheric realignment, but consistent with the expected 10 ms timescale for crustal slipping after cracking (Thompson & Duncan 2001). This timescale is strong evidence that the precursor originated from a fracture propagating in the crust of the neutron star, just as in the main peak itself (Schwartz et al. 2005). The total energy of this precursor, \(3.8 \times 10^{44} d_{10}^2 \) ergs, is comparable to the maximum elastic potential energy the magnetar can store in its crust before cracking, \(\sim 10^{46} \) ergs (Thompson & Duncan 2001), which might suggest that the precursor corresponds to a global cracking and realignment of the crust. However, the relatively long 1 s duration of the precursor (5 times the main peak of the giant flare itself) and the multipeaked light curve suggests instead that the precursor is being powered by repeated injections of energy by realignment of the magnetic field in the core, with a typical timescale on the order of 200 ms (Thompson & Duncan 2001), similar to the main peak itself (Schwartz et al. 2005). Given the energetics, this scenario suggests that the precursor corresponds to an energetically small crustal fracture, followed by repeated energy injections from a relatively small realignment of the core. This scenario is supported by two more pieces of evidence. First, our precursor spectrum is purely blackbody. If there were significant twisting of the magnetosphere, we would have expected a nonthermal tail (Thompson et al. 2002). Second, the drop in flux by over a factor of 200 after the precursor (during the preflare period) also suggests that the magnetosphere was not significantly twisted by the precursor event itself.

We measured the peak flux in the first 0.125 s of the main peak to be \(1 \times 10^{47} d_{10}^2 \) ergs s\(^{-1}\), an astounding \(10^8 L_{\text{Edd}} \). In our previous paper we showed that this luminosity and the measured temperature of \(kT \sim 200 \) keV are consistent for blackbody emission from a spherical surface of radius \(R \sim 10 \) km (see below). We have measured the isotropic energy release in the main peak of \(1.6 \times 10^{46} d_{10}^2 \) ergs. This is an awesome amount of energy for this source. For comparison, given the 7.56 s period the rotational kinetic energy of SGR 1806–20 (the power supply for radio pulsars) is on the order of \(E_{\text{spin}} = \frac{1}{2} I \Omega^2 = 3 \times 10^{44} \) ergs. Given that the energy release in the main peak is 2 orders of magnitude greater than this rotational energy of the star, it is even more amazing that there was no measurable jump in the spin frequency after the giant flare (Woods et al. 2007).

The energy release of the main peak is comparable to the maximum energy that could be stored in a twisted magnetosphere, thus energetically this giant flare would be consistent with global magnetospheric untwisting (Hurley et al. 2005). However, in
Each frame shows the pulse profile integrated over 10 successive pulses, from the >250 keV, is likely easily explained by electron cyclotron scattering the pulsed tail, with spectral indices main peak (Thompson et al. 2002). The nonthermal emission during the peak decay and throughout the pulsed tail, which indicates large magnetospheric twisting during the evolution of the tail. However, we do not see obvious evidence of the individual peaks changing phase, which could be expected if there were continuing magnetospheric realignment during the course of the pulsed tail such as was studied by Feroci et al. (2001) in the pulse profile of SGR 1900+14 following a giant flare. Our data is more suggestive of different lobes of the trapped fireball decaying at different rates.

This scenario one would expect a growing spin-down rate before the giant flare, whereas it was actually decreasing in the months prior, and a significant drop in the spin-down rate after the giant flare, likely larger than the observed decreased which appears consistent with the trend before the giant flare (Woods et al. 2007). Thus we are left with the conclusion that this giant flare represents a large-scale crustal instability in the star, driven by the unwinding of the toroidal field inside the core (Thompson & Duncan 2001). The main peak taps only a fraction of the 10^{49} ergs of magnetic energy stored in the core of the SGR.

This conclusion appears consistent with the strong nonthermal emission during the peak decay and throughout the pulsed tail, which indicates large magnetospheric twisting during the main peak (Thompson et al. 2002). The nonthermal emission during the pulsed tail, with spectral indices $\sim 2.1 - 2.7$ and extending >250 keV, is likely easily explained by electron cyclotron scattering within an extended corona, which can reach photon energies ≥ 100 keV (Thompson et al. 2002). However, the second nonthermal component during the peak decay, with a spectral index of 1.43 and extending >17 MeV with no sign of a spectral cutoff, is more difficult to explain. It clearly must derive from a separate mechanism than the electron cyclotron scattering. Ion cyclotron scattering is only expected to extend into the tens of keV range (Thompson et al. 2002). We speculate that this component perhaps arises from a highly extended corona, driven by the hyper-Eddington luminosities, where synchrotron emission is no longer efficient at cooling the electrons (Feroci et al. 2001). This scenario seems consistent with the lack of a clear afterglow from the SGR for over a full rotation period, nearly 10 s, following the main peak.

It is not clear whether or not the measured afterglow emission is connected to this hard component during the peak decay. The hard-spectrum, high-energy emission, and lack of pulsations could suggest a common origin, likely in an extended corona. However, there is clearly a spectral roll off in the afterglow emission above 1 MeV, which we do not measure in the hard peak decay component. Furthermore, the afterglow luminosity is an order of magnitude lower in average luminosity, and appears to arise on a significantly later timescale. These differences in spectral shape, luminosity, and timescales would suggest a different origin for the afterglow.

Figure 15 shows that there is significant evolution of the pulse profile over the course of the pulsed tail. Each panel shows the average pulse profile integrated over 10 consecutive pulses. Especially significant is the increase of the peak at phase ~ 0.65 through the evolution of the tail. However, we do not see obvious evidence of the individual peaks changing phase, which could be expected if there were continuing magnetospheric realignment during the course of the pulsed tail such as was studied by Feroci et al. (2001) in the pulse profile of SGR 1900+14 following a giant flare. Our data is more suggestive of different lobes of the trapped fireball decaying at different rates.

The phase-averaged luminosity during the 400 s pulsed tail corresponds to $(300 - 2000) L_{\text{Edd}}$. In our previous paper we showed that the pulse-averaged 20–100 keV flux light curve of the pulsed tail is well modeled by the trapped fireball model of Thompson & Duncan (2001) where flux $\propto \left[1 - \left(1/t_{\text{evap}}\right)^{a(1-a)}\right]$, with an evaporation time $t_{\text{evap}} = 382 \pm 3$ s, and index $a = 0.606 \pm 0.003$ (Hurley et al. 2005). This index is physically significant, being close to the expected value $a = \frac{3}{4}$ for a homogeneous, spherical trapped fireball (Thompson & Duncan 2001). Within this trapped fireball model, we can derive a rough bound on the magnetic field by requiring the magnetic field to be strong enough to confine energy radiated by the trapped fireball, $B_{\text{dipole}} > 1.7 \times 10^{15}(\Delta R/10\text{ km})^{-3/2}(1 + (\Delta R/R)/2)^{3/2}d_{10}$ G (Thompson & Duncan 1995).

We observed blackbody components, of different temperatures and luminosities, from the precursor, main peak, peak decay, and pulsating tail. For a source distance d and surface gravitational redshift z, we can convert measured luminosities and temperatures into effective blackbody radii of the emission regions, $R = (L/\sigma T^4)^{1/2}[d(1 + z)]$. In Figure 16 we present our derived blackbody radii for the various stages of the giant flare, assuming $d = 10$ kpc, and $z = 0.30$ for a neutron star ($M/R \sim 1.4M_{\odot}/10$ km). The first remarkable feature about these radii is that they all roughly agree throughout the stages of this giant flare, from the precursor (14 km) and the main peak (18 km), through the main-peak decay (17 km) and the average throughout the pulsing tail (11 km). These agree remarkably well given the variation in temperature and luminosity throughout. In addition, we can turn this

![Fig. 15.—Evolution of the 20–100 keV pulse profile during the pulsed tail. Each frame shows the pulse profile integrated over 10 successive pulses, from the start of the pulsed tail (top) to the end (bottom). In the top panel, we also show the phase of the precursor relative to the pulsed tail.](image-url)
around to point out that, in terms of the uncertain distance to SGR 1806–20, \(d < 10 \text{ kpc}\) would be more consistent with a canonical neutron star radius of \(R \sim 10 \text{ km}\) than \(d = 15 \text{ kpc}\) if the thermal emission is originating from the stellar surface as opposed to an extended corona.

The fast peak just prior to the main peak remains a bit of a puzzle. The average luminosity during the 0.5 ms before RHESSI saturates was \(1.6 \times 10^{43} d_{20}^2 \text{ ergs s}^{-1}\), corresponding to \(\sim 10^2 L_{\text{Edd}}\). The peak in the light curve and the relatively soft spectrum clearly distinguish this as separate from the main peak itself. However, the rise time (0.4 ms) and duration (2.5 ms) of this fast peak are too fast for global crustal slippage or realignment of the core field (Thompson & Duncan 2001). These times could imply a very localized crack in the crust (>0.4 km), but this fast peak is much shorter than typical SGR flares (and the precursor), which are attributed to the same physical mechanism. Furthermore, if we assume the spectrum really corresponds to a blackbody of \(kT \sim 20 \text{ keV}\), then we can also derive a blackbody radius of roughly 21 km for this stage of the flare, i.e., a global event, presumably consistent with a localized crustal crack. If we divide this radius by the rise time we can derive a lower limit on the thermal diffusion speed, corresponding to \(\sim 0.2 \text{ c}\). This fast peak appears to only be consistent in timescale and size scale with a realignment of the magnetosphere immediately before the main peak itself. While the energy of this fast peak is small compared to the main peak, its fast timescale and its occurrence milliseconds prior to the main peak suggest it plays some critical role in the giant flare.

The giant flare of SGR 1806–20 represents one of the most outstanding events in X-ray and \(\gamma\)-ray astronomy over the past three decades, even when compared to the giant flares of SGR 0525–66 and SGR 1900+14. Even though this giant flare presents an extreme energy output from the SGR, the basic energetics and timescales involved are well understood in terms of the magnetar model. Indeed, given the spin energy of the star and the extraordinary super-Eddington luminosities of the giant flare, SGR 1806–20 has once more presented very strong evidence in favor of the magnetar model.

The authors are grateful to G. Hurford, H. Hudson, and S. Krucker for useful discussions, and to the referee for making several useful suggestions. K. H. is grateful for support under the NASA Long Term Space Astrophysics program grant NAG5-13080. Special thanks to S. Mereghetti for motivating the re-analysis of the afterglow emission.

REFERENCES

Cameron, P., et al. 2005, Nature, 434, 1112
Corbel, S., & Eikenberry, S. 2004, A&A, 419, 191
Corbel, S., et al. 1997, ApJ, 478, 624
Duncan, R., & Thompson, C. 1992, ApJ, 392, L9
Eikenberry, S., et al. 2004, ApJ, 616, 506
Foroci, M., et al. 2001, ApJ, 549, 1021
Frail, D., Kulkarni, S., & Bloom, J. 1999, Nature, 398, 127
Frederiks, D. D., et al. 2007, Astron. Lett., 33, 1
Gaensler, B. M., et al. 2005, Nature, 434, 1104
Götz, D., et al. 2006, A&A, 445, 313
Hajdas, W., et al. 2005, in AIP Conf. Proc. 801, Astrophysical Sources of High Energy Particles and Radiation, ed. T. Bulik et al. (Melville: AIP), 304
Hurford, G. J., et al. 2002, Sol. Phys., 210, 61
Hurley, K., et al. 1999, Nature, 397, 41
Hurley, K., et al. 2005, Nature, 434, 1098
Israel, G., et al. 2005, A&A, 438, L1
Kosugi, G., Ogawara, R., & Terada, H. 2005, ApJ, 623, L125
Kouveliotou, C., et al. 1998, Nature, 393, 235
Laros, J., et al. 1986, Nature, 322, 152
Lin, R. P., et al. 1995, Space Sci. Rev., 71, 125
———. 2002, Sol. Phys., 210, 3
Lorimer, D., & Xilouris, K. 2000, ApJ, 545, 385
Mazets, E. P., et al. 2005, preprint (astro-ph/0502541)
McCuller-Griffiths, N., & Gaensler, B. 2005, ApJ, 630, L61
Mereghetti, S., Gotz, D., & Mirabel, I. 2005a, A&A, 433, L9
Mereghetti, S., et al. 2005b, ApJ, 624, L105
———. 2005c, ApJ, 628, L13
Molkov, S., et al. 2005, A&A, 433, L13
Mukama, T., et al. 1994, Nature, 368, 127
Paczynski, B. 1992, Acta Astron., 42, 145
Palmer, D. M., et al. 2005, Nature, 434, 1107
Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574, 332
Tiengo, A., et al. 2005, A&A, 440, L63
Woods, P. M., et al. 2007, ApJ, 654, 470
Zehnder, A., et al. 2003, Proc. SPIE, 4853, 41
Zoglauer, A., et al. 2006, NewA Rev., 50, 629