Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for persistent/recurrent and metastatic differentiated thyroid cancer 2018 (English version)

Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for persistent/recurrent and metastatic differentiated thyroid cancer working group

doi: 10.21147/j.issn.1000-9604.2019.01.06

View this article at: https://doi.org/10.21147/j.issn.1000-9604.2019.01.06

Contents

1. Diagnosis and dynamic assessment of persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC)
 1.1 Basic principles of diagnosis
 1.2 Diagnostic methods
 1.3 Ongoing assessment of response to therapy

2. Multidisciplinary treatment of prmDTC
 2.1 Basic principles of treatment
 2.2 Surgical management
 2.2.1 Preoperative clinical assessment
 2.2.2 Principles of surgical treatment for prmDTC
 2.3 ¹³¹I therapy
 2.3.1 Clinical assessment before ¹³¹I therapy
 2.3.2 Management of ¹³¹I therapy for prmDTC
 2.4 TSH suppression therapy
 2.4.1 Strategy for TSH suppression therapy
 2.4.2 Management of adverse effects of TSH suppression therapy
 2.5 External beam radiation therapy
 2.6 Systemic therapy

1. Diagnosis and dynamic assessment of persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC)

Differentiated thyroid cancer (DTC), including papillary, follicular and Hürthle cell types, accounts for nearly 95% of all thyroid carcinomas. The concept of DTC recurrence or persistence after surgery is still difficult to define due to its indolent nature. The recurrent or persistent tumors in this guideline refer to new lesions or residual tumors found during the follow-up after initial treatments.

1.1 Basic principles of diagnosis

The role of multidisciplinary team (MDT) should be emphasized during the diagnosis of prmDTC. A task force of specialists with complementary expertise (endocrinology, surgery, nuclear medicine, radiology, pathology, oncology, molecular diagnostics, and epidemiology) should be included in the MDT management of prmDTC. The diagnosis or further managements of prmDTC which may include surgical managment, radiiodine-131 (¹³¹I) therapy, thyroid stimulating hormone (TSH) suppressive therapy, as well as molecular targeted therapy (or being enrolled in certain clinical trial) or radiation therapy, etc., should be tailored according to comprehensive consideration of MDT.

1.2 Diagnostic methods

Laboratory tests, imaging studies and pathological examinations are recommended in the diagnosis of prmDTC (Table 1).

1.3 Ongoing assessment of response to therapy (Table 2)

As the risk of recurrence and cancer-related death in prmDTC may change over time, life long follow-up and periodical surveillance including laboratory and imaging evaluation are needed. Ongoing assessment of response to therapy should be used to guide the long-term surveillance and therapeutic management decision. In this guideline, we adopted the system of response to therapy which was put forward by 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer.

Multiple factors including clinical, biochemical, imaging (structural and functional) and cytopathology findings were taken into comprehensive consideration in this response system to assess the individual response to therapy during follow-up. It has been verified as an objective ongoing evaluation system to reflect the clinical outcomes from...
Table 1 Diagnostic methods of prmDTC

Methods	Level I recommendation	Level II recommendation
Laboratory diagnosis	Serum Tg\(^a\) and TgAb\(^b\) (2A)	Tg washout determination (2A)
Imaging diagnosis	Various image detections are as follows:	
Suspected local lesions	Neck ultrasound\(^c\)−\(^e\) (2A), contrast CT or contrast MRI\(^f\) (2A)	Ultrasound-guided fine needle aspiration cytology (2A), \(^{131}\)I-WBS + SPECT/CT\(^g\) (2A), \(^{18}\)F-FDG PET/CT (2A)
Suspected distant metastasis	CT\(^h\) (2A), \(^{131}\)I-WBS + SPECT/CT (2A), MRI\(^i\) (suspected nervous system involvement) (2A), bone scan\(^j\) (suspected bone involvement) (2A)	MRI (when organs other than the nervous system are involved) (2A), \(^{18}\)F-FDG PET/CT\(^k\) (2A)
Pathological diagnosis	Previous pathology results	Review previous tissue specimens
	Confirmation of previous primary lesions	Immunohistochemistry\(^n\), molecular pathology\(^o\) (2A)
	General inspection\(^l\), microscopic examination\(^m\) of biopsy specimens	

\(^a\) Thyroglobulin (Tg) monitoring facilitates postoperative assessment and risk stratification. Low serum Tg level has a high negative predictive value in the absence of thyroglobulin antibody (TgAb) interference after initial treatment (1). Thyroglobulinemia out of proportion to what is seen on \(^{131}\)I-whole body scan (WBS) indicates the presence of distant metastasis (1-3). Tg also holds value in predicting the response or resistance to \(^{131}\)I therapy (4,5).

\(^b\) Simultaneous monitoring of Tg and TgAb levels is needed. The presence of TgAb will falsely lower serum Tg determinations in immunoassays, and in this clinical setting, the serial monitoring of TgAb level may serve as a surrogate prognostic marker (6,7).

\(^c\) Ultrasound (US) is considered the first-line imaging study for assessing locoregional lesions of persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC), and experienced radiologists may enhance the diagnostic credibility in the management of such patients (1,8-11).

\(^d\) The assessment of cervical ultrasonography includes cervical lymph nodes, thyroid beds, soft tissue, blood vessels, trachea and esophagus. Sonographic features of prmDTC are as follows (Figure 1).

\(^e\) Frequently, it is not easy to distinguish thyroid bed recurrence from benign nodules. Interpretation of neck US should take into account clinical and biological data.

\(^f\) Cross-sectional imaging studies, computed tomography (CT) or magnetic resonance imaging (MRI) with intravenous (IV) contrast, are recommended for suspicious prmDTC (12,13).

\(^g\) \(^{131}\)I-WBS and single photon emission computed tomography (SPECT)/CT can be used to locate the iodine-avid foci, which is helpful in tailoring the subsequent \(^{131}\)I therapy (14,15).

\(^h\) CT is routinely recommended for assessing patients with pulmonary metastases, \(^{131}\)I-WBS may play a complementary role in some patients with micrometastatic lesions which may be missed by chest CT (16,17).

\(^i\) MRI is routinely recommended for assessing cerebral metastases (1).

\(^j\) Bone scan is recommended for assessing suspicious bone metastases (18).

\(^k\) \(^{18}\)-fluorodeoxyglucose (\(^{18}\)FDG) PET/CT is recommended in patients with elevated Tg (generally >10 ng/mL) or TgAb, especially in patients with non-radiiodine-avid foci (1,19-22). It may also be considered as a part of initial staging in poorly or invasive DTC and serve as a prognostic tool in prmDTC, especially in predicting those who are unlikely to benefit from \(^{131}\)I therapy (1).

\(^l\) The gross examination should include the following: specimen type, tumor location, tumor size, gross morphology, relationship between the tumor and adjacent tissue structures, number of lymph nodes detected, size, and group.

\(^m\) Microscopic examination should include the following: morphological variants, tumor size, dissemination, invasion range, resection margin, vascular invasion, nerve invasion, lymph node metastasis and total number, and TNM staging. For cases with morphological PTC, if possible, the possible histologic subtypes that may indicate poor prognosis, such as tall cell variant, columnar cell variant, diffuse sclerosing variant and hobnail variant, should be further reported (23).

\(^n\) Commonly used immunohistochemical markers for determining the origin include CK, Tg, TTF-1, TTF-2, PAX-8, Syn, CgA, Calcitonin and CEA (24). Commonly used immunohistochemical markers for distinguishing malignancy from benign lesion include galectin-3, HBME-1, CK19, CD56, E-cadherin, p27, cyclinD1, p53, Ki-67 index, etc. (24).

\(^o\) Common molecular markers used to indicate malignancy or benign lesion include BRAF\(^V600E\), NRAS 61 codon, HRAS 61 codon and KRAS 12/13 codon mutations, RET/PTC and PAX8/PPAR\(_y\) rearrangements, etc. (25).

both the risk of recurrence and mortality (1). Four categories including excellent response (ER), indeterminate response (IDR), biochemical incomplete response (BIR) and structural incomplete response (SIR) are used to describe clinical outcomes at any time after initial treatment (1).
Figure 1 Sonographic features of persistent/recurrent and metastatic differentiated thyroid cancers (prmDTCs). (A, B) Local recurrence of thyroid bed (among cursors and arrows); (C–E) Suspicious metastatic lymph nodes; (F, G) Recurrence in soft tissue (among cursors); (H) Venous tumor thrombus; (I) Tracheal invasion (arrow point). M, mass; IJV, internal jugular vein; CCA, common carotid artery.

References

1. Haugen, BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133.

2. Lin Y, Li T, Liang J, et al. Predictive value of preablation stimulated thyroglobulin and thyroglobulin/thyroid-stimulating hormone ratio in differentiated thyroid cancer. Clin Nucl Med 2011;36:1102-5.

3. Chinese Society of Nuclear Medicine.131I Guidelines for the Treatment of Differentiated Thyroid Carcinoma (2014 Edition). Chin J Nucl Med Mol Imaging 2014;34:264-78.

4. Yang X, Liang J, Li T, et al. Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer. J Clin Endocrinol Metab 2016;101:1307-13.

5. Wang C, Zhang X, Li H, et al. Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLoS One 2017;12:e0179664.

6. Bachelot A, Leboulleux S, Baudin E, et al. Neck recurrence from thyroid carcinoma: serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment. Clin Endocrinol (Oxf) 2005;62:376-9.

7. Cong H, Liang J, Li F, et al. Changes in thyroglobulin antibodies after treatment of differentiated thyroid cancer and its influence factors. Zhongguo Yi Xue Ke Xue Yuan Xue Bao (in Chinese) 2015;37:61-5.

8. Leenhardt L, Erdogan MF, Hegedus L, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2:147-59.

9. Kim SH, Park CS, Jung SL, et al. Observer variability and the performance between faculties and residents: US criteria for benign and malignant thyroid nodules. Korean J Radiol 2010;11:149-55.

10. Carty SE, Cooper DS, Doherty GM, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid 2009;19:1153-8.
Table 2 Stratification of ongoing assessment of response to therapy

Stratification	Definition (serology and imaging meet simultaneously)	Level I recommendation
Excellent response^a (ER)	Suppressive Tg <0.2 ng/mL or stimulated Tg <1 ng/mL	Decrease of the intensity and frequency of follow-up and the degree of TSH suppression (1A)
Indeterminate response^b (IDR)	Non-stimulated Tg detectable, but less than 1 ng/mL. Stimulated Tg detectable, but less than 10 ng/mL. Or Tg antibodies stable or declining in the absence of structural or functional disease	Continuing observation with appropriate serial imaging of the non-specific lesions and serum Tg monitoring. Nonspecific findings that become suspicious over time can be further evaluated with additional imaging or biopsy (1A)
Biochemical incomplete response^c (BIR)	Suppressed Tg >1 ng/mL. Stimulated Tg >10 ng/mL. Or rising TgAb levels	Those with stable or decreasing serum Tg levels may continue TSH suppression therapy and follow-up; patients with elevated serum Tg or TgAb should prompt additional investigations and potentially additional therapies (1A)
Structural incomplete response^d (SIR)	Serum Tg or TgAb at any level	Additional treatments or ongoing observation depending on multiple clinicopathologic factors including the size, location, rate of growth, RAI avidity, 18F-FDG avidity, and specific pathology of the structural lesions (1A)

Tg, thyroglobulin; TgAb, thyroglobulin antibody; TSH, thyroid stimulating hormone; FDG, fluorodeoxyglucose.

^a The risk of recurrence ranged from 1% to 4% over 5–10 years among ER patients.

^b 15%–20% of IDR patients are reclassified as persistent/recurrent disease over approximately 10 years.

^c 8%–17% of BIR patients developing structurally identifiable disease over 5–10 years.

^d Death from disease was seen in 11% of patients with a loco-SIR and in 57% of patients with distant SIR.

11. Gao L, Jiang Y, Liang Z, et al. Cervical soft tissue recurrence of differentiated thyroid carcinoma after thyroidectomy indicates a poor prognosis. Int J Surg 2017;48:234-9.

12. AlNoury MK, Almuhayawi SM, Alghamdi KB, et al. Preoperative imaging modalities to predict the risk of regional nodal recurrence in well-differentiated thyroid cancers. Int Arch Otorhinolaryngol 2015;19:116-20.

13. Hoang JK, Branstetter BF 4th, Gafton AR, et al. Imaging of thyroid carcinoma with CT and MRI: approaches to common scenarios. Cancer Imaging 2013;13:128-39.

14. Sheikh A, Polack B, Rodriguez Y, et al. Nuclear molecular and theranostic imaging for differentiated thyroid cancer. Mol Imaging Radionucl Ther 2017;26(Suppl 1):50-65.

15. Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med 2008;49:1952-7.

16. Long B, Yang M, Yang Z, et al. Assessment of radiiodine therapy efficacy for treatment of differentiated thyroid cancer patients with pulmonary metastasis undetected by chest computed tomography. Oncol Lett 2016;11:965-8.

17. Song HJ, Qiu ZL, Shen CT, et al. Pulmonary metastases in differentiated thyroid cancer: efficacy of radiiodine therapy and prognostic factors. Eur J Endocrinol 2015;173:399-408.

18. Qiu ZL, Xue YL, Song HJ, et al. Comparison of the diagnostic and prognostic values of 99mTc-MDP-planar bone scintigraphy, 131I-SPECT/CT and 18F-FDG-PET/CT for the detection of bone metastases from differentiated thyroid cancer. Nucl Med Commun 2012;33:1232-42.

19. Giraudet AL, Taïeb D. PET imaging for thyroid cancers: Current status and future directions. Ann Endocrinol (Paris) 2017;78:38-42.

20. Hempel JM, Kloeckner R, Krick S, et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 2016;16:37.

21. Haslerud T, Brauckhoff K, Reiseter L, et al. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol 2016;57:1193-200.

22. Qiu ZL, Wei WJ, Shen CT, et al. Diagnostic Performance of 18F-FDG PET/CT in Papillary Thyroid Carcinoma with Negative 131I-WBS at first Postablation, Negative Tg and Progressively Increased TgAb Level. Sci Rep 2017;7:2849.

23. Ambrosi F, Righi A, Ricci C, et al. Hobnail Variant of Papillary Thyroid Carcinoma: a Literature Review. Endocr Pathol 2017;28:293-301.

24. Professional Committee of Thyroid Cancer, Chinese Society of
Clinical Oncology. Consensus on diagnosis and treatment of recurrent and metastatic differentiated thyroid cancer. China Oncology 2015;25:481-96.

25. Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 2011;96:3390-7.

2. Multidisciplinary treatment of prmDTC

2.1 Basic principles of treatment

Treatment options for prmDTCs usually include surgical resection, 131I therapy of lesions that can uptake 131I, external beam radiation therapy, active follow-up under L-T4 suppression therapy and other options (e.g., targeted medicines, radiofrequency or ethanol ablation). Among them, surgery should be the first choice for resectable lesions with surgical indications.

2.2 Surgical management

PrmDTCs are commonly seen in clinical practice, approximately 95% of which occur in the neck (1). Since the difficulty and risk of reoperation increase significantly, the risks and benefits of surgery must always be balanced when selecting reoperation. Surgery should be performed by experienced specialists, and frequently even under multidisciplinary collaboration.

2.2.1 Preoperative clinical assessment

Preoperative clinical assessment includes the review of previous treatments, current status of the disease and vital organ function, which are the basis for the decision regarding intervention and extent of revision surgery. Structural lesions are required as a target for a surgical revision approach, therefore, imaging evaluation is of the utmost importance to surgeons to identify and localize the structural lesions (Table 3).

2.2.2 Principles of surgical treatment for prmDTC

The timing and extent of surgery are the most important issues which should be considered when the surgical management of prmDTC is decided. In general, the goal of revision surgery should be to try to cure or control the disease, improve survival, and preserve the function of the vital organs as far as possible (Table 4).

References

1. Scharpf J, Tuttle M, Wong R, et al. Comprehensive management of recurrent thyroid cancer: An American Head

Table 3 Recommendations of preoperative clinical assessment
Evaluation content
Clinical data
Preoperative and pathological record review
Complications of previous surgery, such as hematoma, infection, etc.
Physical exam, esp. special signs for recurrent metastases.
Laboratory tests
Serum Tg, TgAb, see 1.2 Diagnostic methods (2A)
Parathyroid function evaluation: serum calcium and PTH levels
Routine examination
Neck ultrasound (2A)
Contrast neck CT or MRI, chest CT, etc. See 1.2 Diagnostic methods (2A)
Assessment of vocal cords movement and recurrent laryngeal nerve function assessment
Laryngoscopy, when trachea involvement is suspected.
Esophagoscopy, when esophagus involvement is suspected.

PTH, parathyroid hormone; CT, computed tomography; MRI, magnetic resonance imaging; WBS, whole body scan; SPECT, single photon emission computed tomography; FDG, fluorodeoxyglucose.

Thyroglobulin (Tg), Tg antibody (TgAb) and imaging examinations can be used to evaluate the current state of disease. Neck ultrasonography is the most important technique to detect structural lesions (2,3).
Table 4 Recommendations of surgical treatment principles

Lesions	Level I recommendation	Level II recommendation	Level III recommendation
Cervical lesions without invasion to surrounding vital structures^a	Preservation in situ or autotransplantation of parathyroid glands^b (2A)	Active follow-up: lesion <8 mm in the smallest dimension (2A) Consider reoperation: lesion ≥8 mm in the smallest dimension (2A) Preoperative FNA (2A) Completion of thyroidectomy and standardized central compartment neck dissection (2A) Intraoperative Neuromonitoring (IONM) of the recurrent laryngeal nerve^c (2A) Active follow-up: lesion <10 mm in the smallest dimension (2A) Consider reoperation: lesion ≥10 mm in the smallest dimension (2A) Preoperative FNA (2A) Therapeutic modified radical neck dissection and preservation of vital structures for previously undissected compartments (2A) Limited neck dissection (generally includes levels II, III, IV, or 1-2 levels of them) for previously managed compartments, due to extensive scar and unclear anatomy (2A)	Ipsilateral central neck dissection in patient without bilateral central compartment involvement (2B)
Central compartment	—	—	—
Lateral compartment	—	—	—
Cervical lesions with invasion to surrounding vital structures^c	Shave the tumor off as much as possible and preserve the nerve in patient without vocal cord paralysis (2A) Remove lesions and the affected nerve in patient with preoperative vocal cord paralysis or intraoperative finding of complete tumor encapsulation of the nerve (2A)	Nerve reinnervation simultaneously at surgery after resection or injury of the nerve, if feasible (2A) Second-look operation with nerve repair for postoperative identification of recurrent laryngeal nerve injury (2A)	—
Recurrent laryngeal nerve involvement^d	—	—	—
Airway/digestive tract (larynx trachea/ esophagus) involvement^e	—	—	—

Table 4 (continued)
remove metastatic lesions, but also relieve life-threatening intracranial complications (36). Intracranial metastases may be preferred for surgical treatment, which can not only control local recurrence of tumor and prolong the survival of patients (24).

Cervical vascular involvement (f)

Lesions	Level I recommendation	Level II recommendation	Level III recommendation
Cervical vascular involvement f	—	Sacrifice of the unilateral internal jugular vein without reconstruction if it is significantly involved (2A)	—
		Reconstruction of at least one side with autologous vein graft after resection of the bilateral involved internal jugular veins (2A)	—
		Reconstruction of the common carotid artery after resection for its local involvement (2A)	—

Distant metastatic lesions g

Lesions	Level I recommendation	Level II recommendation	Level III recommendation
Lung metastases	—	Consider surgery for solitary lesion (2A)	—
Bone metastases	—	Consider surgery (2A)	—
Brain metastases	—	Surgery (2A)	—
Other rare site metastases	—		Consider surgery for solitary lesion (2B)
(liver, pancreas, etc.)	—		

a, The most important and difficult decision for these patients is the timing of the operation. At present, it is commonly accepted that the patient can be closely followed up when the lesion is less than 8 mm in the central compartment and <10 mm in the lateral compartment, otherwise, reoperation should be considered (1-10). Preoperative fine needle aspiration (FNA) diagnosis is an important step in preoperative evaluation to avoid unnecessary reoperations. The threshold of 8 mm (central) and 10 mm (lateral) in the smallest dimension signifies disease sufficiently macroscopic to be potentially dangerous if it were to grow, and amenable to FNA as well as surgical localization if it were to be targeted for excision (1-4,9,10). In the decision-making of surgery, the following factors should also be considered (1,2,8,9): location of the lesion (whether it is adjacent to the important structures), doubling time of Tg (11), whether a positive result is shown on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging, the extent of previous operation, complications, and whether the primary lesion is a highly malignant subtype. For revision surgery, it may be a standardized lymph node dissection (1-5,9,10) or a limited operation (2,12,13).

b, The incidence of temporary and permanent recurrent laryngeal nerve injury during reoperation is 1.5%–22.2% and 0.3%–6.4%, respectively (14-16), and the incidence of temporary and permanent hypoparathyroidism during reoperation is 6.5%–46.3% and 9.5%, respectively (15-17). The recurrent laryngeal nerve monitoring in such operations plays an important role in reducing nerve injury and improving the safety of the operation (18-21). The time of nerve repair may be different between patients (21-23). Parathyroid glands should be carefully identified, rescued and preserved in situ or auto-transplanted into other locations, such as the sternocleidomastoid (1-5).

c, The extent of surgical resection for such lesions has been controversial, but the removal of visible tumors is very important to control local recurrence of tumor and prolong the survival of patients (24).

d, 33%–61% of thyroid cancers that invade the surrounding vital structures have recurrent laryngeal nerve invasion (24-27). Studies have shown that recurrent laryngeal nerve involvement is not an independent risk factor for survival (25), residual trace lesions do not increase the local recurrence rate and reduce the survival rate (26,27). Therefore, the nerve should be preserved as far as possible (1,4,28), and if not, the affected nerve should be removed and reconstructed (1,4,28,29). Of course, when determining the surgical approach, the contralateral recurrent laryngeal nerve function and distant metastases status should also be considered in order to balance the risks and benefits of surgery.

e, Airway/digestive tract (laryngeal trachea/esophageal) involvement is more serious situation, and over half of disease-specific deaths are related to airway obstruction and bleeding (28). For such patients, there are different options in surgery (1,2,28,30), when partial esophageal/tracheal/laryngectomy can be carried out, it can not only ensure adequate resection margins, but also avoid serious complications caused by more extensive resection, however, postoperative adjuvant therapies such as RAI treatment and radiotherapy are generally needed (1,28).

f, Reconstruction may be required in the treatment of cervical vascular involvement (28), although severe invasions to the major blood vessels of the neck by differentiated thyroid cancers (DTCs) are rare (31). The involvement of internal jugular veins by metastatic lesions is the most common (32). Obstruction of bilateral internal jugular veins can cause at least 2% of patients to die (33).

g, Common distant metastatic sites of DTC include lung, bone, and brain. In general, surgery is feasible for solitary lesion and lesions that cause complications (34,35). Intracranial metastases may be preferred for surgical treatment, which can not only remove metastatic lesions, but also relieve life-threatening intracranial complications (36).
3. Leenhardt L, Erdogan MF, Hegedus L, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2:147-59.

4. Tufano RP, Clayman G, Heller KS, et al. Management of recurrent/persistent nodal disease in patients with differentiated thyroid cancer: a critical review of the risks and benefits of surgical intervention versus active surveillance. Thyroid 2015;25:15-27.

5. Urken ML, Milas M, Randolph GW, et al. Management of recurrent and persistent metastatic lymph nodes in well-differentiated thyroid cancer: a multifactorial decision-making guide for the Thyroid Cancer Care Collaborative. Head Neck 2015;37:605-14.

6. Rondeau G, Fish S, Hann LE, et al. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid 2011;21:845-53.

7. Clayman GL, Agarwal G, Edeiken BS, et al. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid 2011;21:1309-16.

8. Tufano RP, Bishop J, Wu G. Reoperative central compartment dissection for patients with recurrent/persistent papillary thyroid cancer: efficacy, safety, and the association of the BRAF mutation. Laryngoscope 2012;122:1634-40.

9. Merdad M, Eskander A, Kroeker T, et al. Predictors of level II and Vb neck disease in metastatic papillary thyroid cancer. Arch Otolaryngol Head Neck Surg 2012;138:1030-3.

10. Eskander A, Merdad M, Freeman JL, et al. Pattern of spread to the lateral neck in metastatic well differentiated thyroid cancer: a systematic review and meta-analysis. Thyroid 2013;23:583-92.

11. Miyachi A, Kudo T, Miya A, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid 2011;21:707-16.

12. Tumino D, Frasca F, Newbold K. Updates on the Management of Advanced, Metastatic, and Radioiodine Refractory Differentiated Thyroid Cancer. Front Endocrinol (Lausanne) 2017;8:312.

13. Mitchell AL, Gandhi A, Scott-Coombes D, et al. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 2016;130:S150-S160.

14. Jiang XQ, Jiang M, Zhong Y, et al. Prevention of the complications in reoperation for thyroid disease. Zhonghua Nei Fen Mi Za Zhi (in Chinese) 2009;3:393-5.

15. Roh JL, Kim JM, Park CI. Central compartment reoperation for recurrent/persistent differentiated thyroid cancer: patterns of recurrence, morbidity, and prediction of postoperative hypocalcemia. Ann Surg Oncol 2011;18:1312-8.

16. Ondik MP, Dezfouli S, Lipinski L, et al. Secondary central compartment surgery for thyroid cancer. Laryngoscope 2009;119:1947-50.

17. Erbil Y, Sari S, Ağaçoğlu O, et al. Radio-guided excision of metastatic lymph nodes in thyroid carcinoma: a safe technique for previously operated neck compartments. World J Surg 2010;34:2581-8.

18. Randolph GW, Kamani D. Intraoperative neural monitoring in thyroid cancer surgery. Langenbecks Arch Surg 2014;399:199-207.

19. Chandrasekhar SS, Randolph GW, Seidman MD, et al. Clinical practice guideline: improving voice outcomes after thyroid surgery. Otalaryngol Head Neck Surg 2013;148:S1-37.

20. Randolph GW, Drale H, International Intraoperative Neural Monitoring Study Group, et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope 2011;121 Suppl 1:S1-16.

21. Committee of thyroid surgeons of the Chinese medical doctor association surgeons branch. Clinical guidelines for neuroelectrophysiological monitoring in thyroid and parathyroid surgery (Chinese version). Zhongguo Shi Yong Wai Ke Za Zhi (in Chinese) 2013;33:470-4.

22. Wang W, Chen D, Chen S, et al. Laryngeal reinnervation using ansa cervicalis for thyroid surgery-related unilateral vocal fold paralysis: a long-term outcome analysis of 237 cases. PLoS One 2011;6:e19128.

23. Zheng H, Zhou S, Chen S, et al. Laryngeal reinnervation for unilateral recurrent laryngeal nerve injuries caused by thyroid surgery. Zhonghua Yi Xue Za Zhi (in Chinese) 2002;82:1042-5.

24. Wang LY, Nixon JJ, Patel SG, et al. Operative management of locally advanced, differentiated thyroid cancer. Surgery 2016;160:738-46.

25. McCaffrey TV, Bergstrahl EJ, Hay ID. Locally invasive papillary thyroid carcinoma: 1940-1990. Head Neck 1994;16:165-72.

26. Nishida T, Nakao K, Hamaji M, et al. Preservation of recurrent laryngeal nerve invaded by differentiated thyroid cancer. Ann Surg 1997;226:85-91.

27. Falk SA, McCaffrey TV. Management of the recurrent laryngeal nerve in suspected and proven thyroid cancer. Otolaryngol Head Neck Surg 1995;113:42-8.

28. Shindo ML, Caruana SM, Kandil E, et al. Management of invasive well-differentiated thyroid cancer: an American Head and Neck Society consensus statement. AHNS consensus statement. Head Neck 2014;36:1379-90.

29. Yumoto E, Sanuki T, Kumai Y. Immediate recurrent laryngeal nerve injuries caused by thyroid surgery. Zhonghua Yi Xue Za Zhi (in Chinese) 2002;82:1042-5.

30. Mitchell AL, Gandhi A, Scott-Coombes D, et al. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 2016;130:S150-S160.

31. Mitchell AL, Gandhi A, Scott-Coombes D, et al. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 2016;130:S150-S160.

32. Lee YS, Chung YW, Chang HS, et al. Treatment of locally advanced thyroid cancer invading the great vessels using a Y-shaped graft bypass. Interact Cardiovasc Thorac Surg
2.3 131I therapy

131I therapy is one of the important adjuvant postoperative treatment modalities for prmDTC patients. It can reduce the risks of tumor recurrence, metastasis and death in high risk population (1,2), and significantly improve the 5- and 10-year survival for high-risk DTC patients with iodine-avid lesions (3-9).

131I therapy is recommended in patients with iodine-avid prmDTC lesions, and should be repeated at an interval of 6−12 months as long as the lesions continue to concentrate radioiodine and respond clinically. In addition, cumulative radioiodine activities, balance between benefits and risks, and patient preferences, are relevant to 131I therapy decision-making. Patients with TSH stimulation and iodine preparation, whose lesions no longer concentrate 131I or respond to 131I therapy, are identified as radioactive iodine refractory DTC (RAIR-DTC) in four basic ways: 1) the malignant metastatic lesion does not ever concentrate RAI (no uptake outside the thyroid bed at the first therapeutic WBS); 2) the tumor tissue loses the ability to concentrate RAI after previous evidence of RAI-avid disease (in the absence of stable iodine contamination); 3) RAI is concentrated in some lesions but not in others; and 4) disease progresses despite significant concentration of RAI (10).

2.3.1 Clinical assessment before 131I therapy

Clinical information, as well as the status exactly before 131I therapy should be considered for tailoring the management of prmDTC (Table 5). Further surgical consultation should be advised if a patient has lesions which might be amenable to surgery. While in terms of the clinical information, evaluation of the response to previous therapeutics is critical for subsequent 131I therapy of prmDTC, for instance, a previous 131I unresponsive patient would be unlikely to benefit from another repeated 131I therapy.

Evaluation content	Level I recommendation	Level II recommendation	Level III recommendation				
Clinical information	Evaluate the response and adverse events to previous therapeutics, including surgery, 131I therapy, and TSH suppression, etc."	Serum/Urinary iodine measurement	—				
	Physical examination						
Laboratory tests	Thyroid hormones, TSH (2A)	Cardiac ultrasound or dynamic ECG	—				
	Tg, TgAb (2A)						
	Complete blood count, hepatic and renal function test						
Routine examination	Electrocardiogram (ECG)						
Imaging examination	Diagnostic 131I WBS	(2A)	Bone scan (2A)	MRI (2A)	18F-FDG PET/CT (2A)		
Pathological examination	—	BRAFV600E mutation detection"	—				

prmDTC, persistent/recurrent and metastatic differentiated thyroid cancer; WBS, whole body scan; CT, computed tomography; MRI, magnetic resonance imaging; FDG, fluorodeoxyglucose; PET, positron emission tomography.

a, Serum TSH should be >30 mIU/L through L-T4 withdrawl before 131I therapy (11,12). Currently, thyrogen is not approved by CFDA.

b, Diagnostic WBS (Dx-WBS) can be used for identifying radioiodine-avid lesions, tailoring dosage of 131I, and predicting the efficacy of 131I therapy (1).

c, BRAFV600E mutation is the most common oncogenic mutation and related to aggressive disease, recurrence and mortality. BRAFV600E mutation in isolation or in combination with TERT mutation appears to be associated with more aggressive tumor behavior, and more likely to be refractory to 131I therapy (1,13,14).
References

1. Mazzaferri EL, Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447-63.

2. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-28.

3. Benbassat CA, Mechlis-Frish S, Hirsch D. Clinicopathological characteristics and long-term outcome in patients with distant metastases from differentiated thyroid cancer. World J Surg 2006;30:1088-95.

4. Schlumberger M, Tubiana M, De Vathaire F, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986;63:960-7.

5. Ruegemer JJ, Hay ID, Bergstralh EJ, et al. Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab 1988;63:960-7.

6. Wood WJ Jr, Singletary SE, Hickey RC. Current results of treatment for distant metastatic well-differentiated thyroid carcinoma. Arch Surg 1989;124:1374-7.

7. Pacini F, Cetani F, Miccoli P, et al. Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg 1994;18:600-4.

8. Lin JD, Huang MJ, Juang JH, et al. Factors related to the survival of papillary and follicular thyroid carcinoma patients with distant metastases. Thyroid 1999;9:1227-35.

9. Shoup M, Stojadinovic A, Nissan A, et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg 2003;197:191-7.

10. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133.

11. Chinese Society of Nuclear Medicine. Clinical guidelines for 131I therapy of differentiated thyroid cancer. Zhonghua He Yi Xue Yu Fen Zi Ying Xiang Za Zhi (in Chinese) 2014;34:264-78.

12. Professional Committee of Thyroid Cancer, Chinese Society of Clinical Oncology. Consensus on diagnosis and treatment of recurrent and metastatic differentiated thyroid cancer. Zhongguo Ai Zheng Za Zhi (in Chinese) 2015;25:481-96.

13. Yang K, Wang H, Liang Z, et al. BRAFV600E mutation associated with non-radioiodine-avid status in distant metastatic papillary thyroid carcinoma. Clin Nucl Med 2014;39:675-9.

14. Yang X, Li J, Li X, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med 2017;58:258-65.

2.3.2 Management of 131I therapy for prmDTC

Indications and dose determination of 131I therapy for prmDTC are addressed in terms of the sites of metastases (Table 6).

Table 6 Recommendations for 131I administration in prmDTC patients

Items	Recommendation		
Indications of 131I therapy for prmDTC			
Local lesions	—	131I therapy (iodine-avid lesions)	—
Lung metastases	131I therapy (iodine-avid lesions)	—	—
Bone metastases	—	131I therapy (iodine-avid lesions)	—
Brain metastases	—	—	131I therapy (iodine-avid lesions)
Tg(+),131I(−)	—	—	Empirical 131I therapy
Preparation for 131I therapy			
TSH >30 mIU/L	Levothyroxine (L-T4) withdrawal for at least 2–4 weeks	Liothyronine (L-T3) may be substituted for L-T4 for at least 4 weeks, and then should be withdrawn for at least 2 weeks	—
Low iodine diet	Low iodine diet for at least 2 weeks	rhTSH	—

Table 6 (continued)

© Chinese Journal of Cancer Research. All rights reserved. www.cjcr.cn Chin J Cancer Res 2019;31(1):99-116
Management of prmDTC after 131I therapy

Items	Level I	Level II	Level III
Dose for 131I therapy			
Local lesions	100–150 mCi 131I (1A)	-	-
Cervical lymph node metastases	100–200 mCi 131I (1A)	-	-
Lung metastases	150–200 mCi 131I (1A)	-	-
Bone metastases	150–200 mCi 131I (1A)	-	-
Brain metastases	-	NA (2A)	-
$\text{Tg}(+)^{131}$I(−)	-	100–200 mCi 131I (2B)	-

Management of 131I therapy

- **Post-therapy** 131I-WBS
 - Perform post-therapy 131I-WBS 2–10 days after 131I therapy

- **TSH suppression therapy**
 - Continue TSH suppression therapy within 3 days after 131I administration

- **131I therapy after lymphadenectomy for DTC**
 - 131I therapy on iodine-avid local recurrent or metastatic tumor is of value (1,2), and 131I adjuvant therapy after lymphadenectomy for DTC relapse is associated with better progression-free survival (PFS) in patients with Tg-on ≥1 ng/mL (3).
 - 131I therapy may be repeated if benefits of structural or serum Tg/TgAb reduction have been observed, whereas complete remission is uncommon and the survival remains poor (2). It’s unclear whether the benefits of 131I therapy could be gained in patients with non-iodine-avid pulmonary metastases (9,10).

- Although 131I therapy is rarely curative, it can be recommended for patients with radioiodine-avid bone metastases, as some benefits may be obtained, such as stable disease, tumor reduction, and survival improvement (1,2,6,11). Other local therapies also should be considered for those unresectable bone metastases, including external beam radiotherapy, endovascular embolization, bisphosphonate therapy, and vertebroplasty.

- Surgical resection and external beam radiotherapy are the main therapeutic methods for brain metastases. For the radioiodine-avid brain metastases, 131I therapy can be considered. And if 131I therapy is employed, concomitant glucocorticoid therapy would be recommended to minimize the radioiodine-induced inflammatory response.

- $\text{Tg}(+)^{131}$I(−) refers to the status in the absence of imaging evidence of structural lesions [anatomic imaging and 131I-whole body scan (WBS)], with significantly elevated serum Tg levels or rapidly rising serum Tg (2). So far, no survival advantages had been documented under the empiric 131I therapy in such cases.

- There are insufficient data to support the utilization of recombinant human thyroid stimulating hormone (rhTSH) in prmDTC patients. It may be considered as an alternative to thyroid hormone withdrawal in elder patients who could not withstand hypothyroidism, or mount an adequate endogenous TSH response (1,2,12).

- Avoiding iodine exposure, a low-iodine diet (<50 μg/d) before 131I administration is recommended (1,2,12).

- There are three approaches to determining the therapeutic doses of 131I: empiric fixed dosage, dosage determined by the upper limit of blood and body dosimetry, and quantitative lesional dosimetry. Currently, empiric dosimetric method is the most commonly used method (1,2,12,13).

- Empiric dosimetric methods are often reserved for patients with unusual situations, such as children, the elderly or renal insufficiency (1,2,12,13). Empirically administered 131I activities exceeding 150 mCi should be avoided in patients over age 70 years. 131I is a relatively safe treatment method. Currently, there is no recommendation for the upper limit of single or cumulative 131I doses based on prospective clinical studies. However, according to previous studies, the risk of radiation-related adverse events may be associated with the increasing cumulative 131I dose and the treatment times (13).

- There are few data to support the efficacy of 131I therapy for brain metastases, so no appropriate dosage could be recommended (1,2,14).

- Empiric (100–200 mCi) 131I therapy may be considered in patients with significantly elevated serum Tg levels (≥10 ng/mL), and undetectable structural disease which is unrevealed by anatomic imaging, 131I-WBS and/or 18FDG-PET/CT. Besides, the 131I therapy should be stopped when there is no benefit showed after the empiric therapy (2).

- For individualized TSH suppression, please refer to 2.4.
2.4 TSH suppression therapy

2.4.1 Strategy for TSH suppression therapy

For prmdTC that expresses TSH receptor, TSH suppression therapy is important in postoperative management of differentiated thyroid cancer. It has been realized the optimal degree of TSH suppression varies. An individually tailored approach to deciding TSH targets in prmdTC patients considering risk of side effects has been raised (Table 7).

References

1. Biondi B, Filetti S, Schlumberger M. Thyroid hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab 2005;1:32-40.
2. Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev 2014;35:433-512.
3. Chinese Society of Endocrinology, Chinese Society of General Surgery Endocrinology Group, China Anti-Cancer Association Head and Neck Tumor Professional Committee, et al. Guidelines on the Diagnosis and Treatment of Thyroid Nodules and Differentiated Thyroid Carcinomas. Zhonghua Nei Fen Mi Dai Xie Za Zhi (in Chinese) 2012;28:779-97.
4. Haugen, BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133.
5. Diehl S, Holzberger B, Mäder U, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2012;76:586-92.
6. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid 2010;20:135-46.
7. Carhill AA, Litofsky DR, Ross DS, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987-2012. J Clin Endocrinol Metab 2015;100:3270-9.
8. Momesso DP, Tuttle RM. Update on differentiated thyroid cancer staging. Endocrinol Metab Clin North Am 2014;43:401-21.

2.4.2 Management of adverse effects of TSH suppression therapy

When TSH has to be suppressed below the normal range (i.e. subclinical thyrotoxicosis) for a long period, especially below 0.1 mU/L, it may cause adverse effects (AEs) (Table 8).

References

1. Biondi B, Filetti S, Schlumberger M. Thyroid hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab 2005;1:32-40.
2. Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev 2014;35:433-512.
3. Chinese Society of Endocrinology, Chinese Society of General Surgery Endocrinology Group, China Anti-Cancer Association Head and Neck Tumor Professional Committee, et al. Guidelines on the Diagnosis and Treatment of Thyroid Nodules and Differentiated Thyroid Carcinomas. Zhonghua Nei Fen Mi Dai Xie Za Zhi (in Chinese) 2012;28:779-97.
4. Haugen, BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133.
5. Diehl S, Holzberger B, Mäder U, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2012;76:586-92.
Table 7 Strategy for TSH suppression therapy

Treatment period	Level I recommendation	Level II recommendation
Whole-course^a	Applicable patients: prmDTC expresses TSH receptor (category 1A)	
	First-line medication: oral L-T4 agents (category 1A)	Extend intervals of TSH monitor to 3–6 months once TSH reaches the goal (category 2A)
	Starting L-T4 dose: based on patient’s age and co-existing diseases	
	Final L-T4 dose: titrated according to patient’s TSH goal and results of monitoring (category 1A)	
	Check TSH every 4–6 weeks during the L-T4 dose adjustment (category 1A)	
Initial period^b	TSH target based on risks of TSH suppression therapy (category 1A)	
	Low risk: <0.1 mU/L (category 2A)	
	High risk: If tolerated, <0.1 mU/L to lower normal limit (category 2A)	
Long-term follow-up period^c	TSH target based on dynamic assessments (category 2A)	
	-ER: lower normal limit to 2.0 mU/L (category 2A)	
	-IDR: around the lower normal limit of TSH (category 2A)	
	-BIR: 0.1 mU/L to lower normal limit; If risk of side effects of TSH suppression is low, <0.1 mU/L (category 2A)	Extend intervals of TSH monitor to 3–6 months once TSH reaches the goal (category 2A)
	-SIR: If tolerated, <0.1 mU/L (category 2A)	

ER, excellent response; IDR, indeterminate response; BIR, biochemical incomplete response; SIR, structural incomplete response.

^a If the tumor is poorly differentiated and no longer expresses thyroid stimulating hormone (TSH) receptor, only thyroid hormone replacement is needed (1,2).

^b The initial treatment period refers to within one year after the persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC) being treated with surgery and/or radioactive iodine (3,4).

^c The long-term follow-up period refers to one year after the prmDTC being treated with surgery and/or radioactive iodine (3,4). TSH suppression goals may not be uniform and should be adjusted according to results of surveillance (5-8).

Table 8 Management of adverse effects of TSH suppression therapy

Adverse events (AE)	Level I recommendation	Level II recommendation
All AE^a	Set individualized TSH targets, monitor AEs and adjust L-T4 doses in a timely manner (1A)	
Cardiovascular AE^b	Baseline cardiovascular assessment (2A), β blockers (2A)	
Skeletal system AE^c	Baseline skeletal assessment (2A), primary prevention of osteoporosis (OP); anti-OP treatment (2A)	

^a When thyroid stimulating hormone (TSH) has to be suppressed below the normal range (i.e. subclinical thyrotoxicosis) for a long period, especially below 0.1 mU/L, it may cause AE, mainly involving cardiovascular system, as well as skeletal system in postmenopausal women (1-5).

^b Patients with underlying heart diseases or high risk of cardiovascular events should be given appropriate treatments by specialists, and their TSH targets should be adjusted accordingly (6-9).

^c Particular attention is warranted for female patients after menopause (10).

References

1. Cooper DS, Biondi B. Subclinical thyroid disease. Lancet 2012;379:1142-54.
2. Klein Hesselink EN, Klein Hesselink MS, de Bock GH, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol 2013;31:4046-53.
3. Flynn RW, Bonelie SR, Jung RT, et al. Serum thyroid-stimulating hormone concentration and morbidity from...
cardiovascular disease and fractures in patients on long-term thyroid hormone therapy. J Clin Endocrinol Metab 2010;95:186-93.

4. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-113.

5. Rieben C, Segna D, da Costa BR, et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J Clin Endocrinol Metab 2016;101:4945-54.

6. Caric A, Andersen SL, Boelaert K, et al. Management of endocrine disease: Subclinical thyrotoxicosis: prevalence, causes and choice of therapy. Eur J Endocrinol 2017;176:325-37.

7. Jabbar A, Pingitore A, Pearce SH, et al. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 2017;14:39-55.

8. Ross DS, Burch HB, Cooper DS, et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016;26:1343-42.

9. Chinese Society of Endocrinology, Chinese Society of General Surgery Endocrinology Group, China Anti-Cancer Association Head and Neck Tumor Professional Committee, et al. Guidelines on the Diagnosis and Treatment of Thyroid Nodules and Differentiated Thyroid Carcinomas. Zhonghua Nei Fen Guan Li Za Zhi (in Chinese) 2012;28:779-97.

10. Chinese Society of Bone and Mineral Research. Diagnosis and treatment guidelines for primary osteoporosis (2017). Zhonghua Gu Zhi Shu Song He Gu Kuang Yan Ji Bing Za Zhi (in Chinese) 2017;10:413-43.

2.5 External beam radiation therapy

External beam radiation therapy (EBRT) is an effective and safe local therapy with benefit to local control and palliative care for prmDTC. EBRT, stereotactic radiation therapy (SBRT) and other local therapies can be used for symptomatic, weight-bearing, key site metastasis, and oligo-metastasis (Table 9).

References

1. Hamilton SN, Tran E, Berthelet E, et al. The role of external beam radiation therapy in well-differentiated thyroid cancer. Expert Rev Anticancer Ther 2017;17:905-10.

2. Mikalsen LTG, Arnesen MR, Bogsrud TV, et al. Combining radioiodine and external beam radiation therapy: the potential of integrated treatment planning for differentiated thyroid cancer. Acta Oncol 2017;56:894-7.

3. Vulpe H, Kwan JYY, McNiven A, et al. Patterns of failure in anaplastic and differentiated thyroid carcinoma treated with intensity-modulated radiotherapy. Curr Oncol 2017;24:e226-32.

4. Kim TH, Chung KW, Lee YJ, et al. The effect of external beam radiotherapy volume on locoregional control in patients with locoregionally advanced or recurrent nonanaplastic thyroid cancer. Radiat Oncol 2010;5:69.

5. Mangoni M, Gobitti C, Autorino R, et al. External beam radiotherapy in thyroid carcinoma: clinical review and recommendations of the AIRO “Radioterapia Metabolica” Group. Tumori 2017;103:114-23.

6. Lee EK, Lee YJ, Jung YS, et al. Postoperative simultaneous integrated boost-intensity modulated radiation therapy for patients with locoregionally advanced papillary thyroid carcinoma: preliminary results of a phase II trial and propensity score analysis. J Clin Endocrinol Metab 2015;100:1009-17.

7. Tam S, Amit M, Boonsripitayanon M, et al. Adjuvant external beam radiotherapy in locally advanced differentiated thyroid cancer. JAMA Otolaryngol Head Neck Surg 2017;143:1244-51.

8. Rieber J, Streblow J, Uhlmann L, et al. Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases-A pooled analysis of the German working group “stereotactic radiotherapy”. Lung Cancer 2016;97:51-8.

9. Lo SS, Lutz ST, Chang EL, et al. ACR Appropriateness Criteria (R) Spinal Bone Metastases. J Palliat Med 2013;16:9-19.

10. Lutz ST, Lo SS, Chang EL, et al. ACR Appropriateness Criteria(R) non-spine bone metastases. J Palliat Med 2012;15(5):521-6.

11. Linskey ME, Andrews DW, Asher AL, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2010;96:45-68.

12. Henriques de Figueiredo B, Godbert Y, Soubeyran I, et al. Brain metastases from thyroid carcinoma: a retrospective study of 21 patients. Thyroid 2014;24:270-6.

13. Lutz S, Balboni T, Jones J, et al. Palliative radiation therapy for bone metastases: Update of an ASTRO Evidence-Based Guideline. Pract Radiat Oncol 2017;7:4-12.

2.6 Systemic therapy

Close follow-up is recommended in patients identified as RAIR-DTC. The degree of disease progression should be factored into treatment decisions. Systemic therapy, including chemotherapy and molecular targeted therapy, should be considered in RAIR-DTC patients with rapidly progressive and/or symptomatic disease. Potential benefits and risks of systemic therapy should be thoroughly balanced in the candidates (Table 10, 11).

References

1. Sabra MM, Dominguez JM, Grewal RK, et al. Clinical outcomes
and molecular profile of differentiated thyroid cancers with radiiodine-avid distant metastases. J Clin Endocrinol Metab 2013;98:E829-36.
2. Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2:356-8.
3. Haugen, BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133.
4. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Thyroid Carcinoma Version 2. 2017.
5. Chinese Society of Endocrinology, Chinese Society of General Surgery Endocrinology Group, China Anti-Cancer Association Head and Neck Tumor Professional Committee, et al. Guidelines on the Diagnosis and Treatment of Thyroid Nodules and Differentiated Thyroid Carcinomas. Zhonghua Nei Fen Mi Dai Xie Za Zhi (in Chinese) 2012;28:779-97.
6. Perros P, Boelaert K, Colley S, et al. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014;81 Suppl 1:1-122.
7. Pacini F, Castagna MG, Brilli L, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012 Suppl 7:23:110-9.
8. Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomized, double-blind, phase 3 trial. Lancet 2014;384:319-28.
9. Chen L, Shen Y, Luo Q, et al. Response to sorafenib at a low dose in patients with radioiodine-refractory pulmonary metastases from papillary thyroid carcinoma. Thyroid 2011; 21:119-24.
10. Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008; 26:4714-9.
11. Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 2009; 27:1675-84.
12. Hoftijzer H, Heemstra KA, Morreau H, et al. Beneficial effects

Table 9 Recommendation of external beam radiation therapy for prmDTC

Lesions	Level I recommendation	Level II recommendation	Level III recommendation
Local recurrent lesions	—	EBRT (unresectable local recurrent lesions) (2A)	—
Metastatic lesions	—	EBRT/SBRT (single or oligo-metastasis) (2A)	EBRT/SBRT (selective for multiple metastases) (2B)
Lung metastases	—	EBRT/SBRT (symptomatic or weight bearing bones) (2A)	—
Bone metastases	EBRT/SBRT (single or oligo-metastasis) (2A)	EBRT/SBRT (multiple metastases) (2B)	—
Brain metastases	EBRT/SBRT (non-iodine-avid disease, palliative relief of local symptoms) (2B)	—	—

a, External beam radiation therapy (EBRT) and stereotactic radiation therapy (SBRT) can be considered for persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC), such as local recurrence and distant metastases, especially for non-iodine-avid disease or RAI-refractory thyroid cancer (1,2).
b, The optimal target volume and dose for EBRT are still controversial (3,4). Conventional fractionation radiotherapy dose is: 1) Gross target volume (GTV, mainly including recurrent or residual tumor regions, metastasis): 60−70 Gy; and 2) Clinical target volume (CTV, mainly including subclinical area): 50−60 Gy (5). Precise radiotherapy technologies, such as intensity-modulated radiotherapy (IMRT) and image guided radiotherapy (IGRT), are safe, effective, and less morbid (6,7).
c, In the case of DTC lung metastases, EBRT or SBRT mainly applies to: 1) Single or oligo-metastasis (the definition of oligo-metastasis is not uniformly standardized, and it is generally considered that the number of metastases is ≤3–4); and 2) Lung metastases that do not intake iodine (8).
d, EBRT or SBRT can be mainly considered for symptomatic skeletal metastases or those that are asymptomatic in weight-bearing sites. The main role is to relieve the pain symptoms, reduce the risk of pathological bone events, and improve the quality of life (9,10).
e, EBRT or SBRT is one of the main treatments for brain metastases regardless of the number and size of lesions, or the iodine intake status. Once brain metastases are diagnosed, disease-specific mortality is very high (67%), with median survival of 12.4 months. Survival can be significantly improved by neurosurgical resection. With the development of radiotherapy techniques, SBRT can achieve similar results to neurosurgery (11-13).
Table 10 Stratified recommendations for potential systemic therapy in RAI-refractory prmDTC patients

Stratificationa	Level I recommendation	Level II recommendation	Level III recommendation
Asymptomatic, stable or slow progression	Regular follow-up (2A)	Participation in clinical trialsb (2A)	—
Symptomatic or rapid progression	Sorafenibbc (1)	Adriamycin* (2A); Participation in clinical trials (2A)	—
Termination of targeted therapy	Tumor response evaluated to be progressive disease (PD) according to RECIST (1A) Serious drug-related adverse reactions that cannot be tolerated for continued treatmentf (1A)	Tg continues to rise or fail to decrease without disease remission according to RECIST (2A)	—

a, Patients with very indolent disease who are asymptomatic may not be appropriate for systemic therapy, and the follow-up strategy of every 3–6 months is recommended. Whereas patients with more rapidly progressive disease may benefit from systemic therapy (1,2).

b, The following points should be taken into consideration when patients are tentatively regarded as candidates for molecular targeted therapy (3-7): 1) The benefit of molecular targeted therapy may primarily yield the prolongation of progression-free survival (PFS) rather than overall survival (OS); 2) Molecular targeted drugs may induce adverse effects and result in low quality of life (QoL); and 3) Despite radioactive iodine refractory (RAIR), the disease may remain stable for several months to several years.

c, Sorafenib is the first targeted drug applied in a completed randomized, double-blind, phase 3 trial for the treatment of locally advanced or metastatic RAIR-DTC (8). It was approved by China Food and Drug Administration (CFDA) in March 2017 for the treatment of progressive RAIR-DTC (9). Considering the balance of efficacy and side effects, 400 mg b.i.d. has been commonly utilized in most clinical trials (10-13); but the applications of low-dose sorafenib (200 mg b.i.d.) for treatment of RAIR-DTC could also achieve well efficacy with slight side effects, which may improve the compliance of patients and reduce medical costs (9,14).

d, The indications of clinical trials in this entity may include: 1) Locally advanced or metastatic RAIR-DTC patients with disease progression determined by Response Evaluation Criteria In Solid Tumors (RECIST); and 2) Patients with BRAF, PPARγ or other tumor-related gene mutations which could be targeted by molecular drugs.

e, Chemotherapy is only a palliative or experimental method for persistent/recurrent and metastatic differentiated thyroid cancer (prmDTC) with no response to other treatment. Adriamycin is the only chemotherapeutic drug approved by the US FDA (15,16).

f, Molecular targeted therapy-induced adverse effects are common, and may lead to dose reduction and drug discontinuation. Common adverse effects reported include skin toxicity, hypertension, gastrointestinal toxicity, proteinuria, fatigue, thyroid-stimulating hormone inhibitory disorders, and impaired thyroid function. Before treatment, comprehensive assessment of certain risk factors that may increase the risk of adverse effects and necessary intervention to control concomitant diseases are recommended. For adverse effects during treatment, multidisciplinary consultation should be considered to protect important organs, improve the quality of life, and maximize the effects of targeted drugs. If the degree of adverse reactions is low and the function of important organs is well, the sustained targeted therapy is recommended to obtain the maximum curative effect and survival benefit from targeted drugs; if grade 3–4 adverse effects or the damage of important organs occur, the dose reduction or drug discontinuation should be promptly adopted until the weakening or disappearance of adverse effects, and then the therapy should restart from a lower dose.

13. Cabanillas ME, Waguespack SG, Bronstein Y, et al. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab 2010;95:2588-95.

14. Shen Y, Ruan M, Luo Q, et al. Brain metastasis from follicular thyroid carcinoma: treatment with sorafenib. Thyroid 2012; 22:856-60.

15. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372:621-30.

16. Lin Y, Wang C, Gao W, et al. Overwhelming rapid metabolic and structural response to atapinitib in radioiodine refractory differentiated thyroid cancer. Oncotarget 2017;8:42252-61.

17. Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 1985;56:2155-60.

18. Droz JP, Schlumberger M, Rouger P, et al. Chemotherapy in metastatic nonanaplastic thyroid cancer: experience at the Institut Gustave-Roussy. Tumori 1990;76:480-3.
Table 11: Efficacy of molecular targeted drugs for thyroid cancer therapeutics

Medicines	Pathological type	Experimental design	Number of cases	ORR	Median PFS (month)	References
Sorafenib	RAIR-DTC	Phase III RCT vs. PLC	207 SOR, 210 PLC	12.2% vs. 0.5%	10.8 vs. 5.8	Lancet 2014; 384:319-28.
Lenvatinib*	RAIR-DTC	Phase III RCT vs. PLC	261 LEN, 131 PLC	64.8% vs. 1.5%	18.3 vs. 3.6	New England journal of medicine 2015;372: 621-30.
Apatinibb	RAIR-DTC	Phase II	10	90%	NR	Oncotarget 2017;8:42252-61.
Pazopanib	RAIR-DTC	Phase II	37	49%	11.7	The Lancet Oncology 2010;11:962-72.
Sunitinib	RAIR-DTC	Phase II	23	26%	8	European Journal of Endocrinology 2016;174:373-80.
	RAIR-DTC/MTC	Phase II	27 RAIR-DTC, 7 MTC	31%	NE	Clinical cancer research 2010;16:5260-8.
Axitinib	RAIR-DTC/MTC	Phase II	45 RAIR-DTC, 11 MTC	30%	16.1	Cancer 2014;120:2694-703.
	RAIR-DTC/MTC	Phase II	45 RAIR-DTC, 6 MTC	35%	15	Cancer Chemotherapy and Pharmacology 2014;74:1261-70.
Vandetanib	RAIR-DTC	Phase I RCT vs. PLC	72 VAN, 73 PLC	8% vs. 5%	11.1 vs. 5.9	The Lancet Oncology 2012;13:897-905.
Cabozantinib	RAIR-DTC	Phase I	15	53%	NE	Thyroid 2014;24:1508-14.

ORR, objective response rate; PFS, progression-free survival; RAIR-DTC, radioactive iodine refractory differentiated thyroid cancer; MTC, medullary thyroid carcinoma; RCT, randomized controlled clinical trial; PLC, placebo; SOR, sorafenib; LEN, lenvatinib; VAN, Vandetanib; NR, not reported; NE, not evaluated.

* The SELEC study showed that lenvatinib significantly prolonged PFS in RAIR-DTC compared with placebo (17). Lenvatinib mesylate has been approved by the European Commission for the treatment of invasive, locally advanced or metastatic DTCs.

b A single-arm prospective clinical trial had been conducted to evaluate the efficacy and safety of apatinib in the treatment of advanced RAIR-DTC, suggesting well tolerance with rapid-onset efficacy and high-rate of objective response in the first 8-week therapy (18).

Working group members

Chair: Yansong Lin
Associate chair: Huiqiang Huang, Ye Guo, Libo Chen

Task force member (listed alphabetically by last name)

Rui Huang West China Hospital, Sichuan University
Tao Huang Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
Xiaorong Hou Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
Xiayun He Cancer Hospital, Fudan University
Mei Li Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
Shaohua Li Nanjing First Hospital
Xiaoyi Li Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
Xuena Li The First Hospital of China Medical University
Yujun Li Affiliated Hospital of Qingdao University, Qingdao University
Zhiyong Liang Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
Yukun Luo Chinese People’s Liberation Army General Hospital
Yansong Lin* Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(1):99-116
Cite this article as: Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for persistent/recurrent and metastatic differentiated thyroid cancer working group. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for persistent/recurrent and metastatic differentiated thyroid cancer 2018 (English version). Chin J Cancer Res 2019;31(1):99-116. doi: 10.21147/j.issn.1000-9604.2019.01.06