Abstract

In this paper we consider the problem of maximum throughput for tandem queueing system. We modeled this system as a Quasi-Birth-Death process. In order to do this we named level the number of customers waiting in the first buffer (including the customer in service) and we called phase the state of the remaining servers. Using this model we studied the problem of maximum throughput of the system: the maximum arrival rate that a given system could support before becoming saturated, or unstable. We considered different particular cases of such systems, which were obtained by modifying the capacity of the intermediary buffers, the arrival rate and the service rates.

The results of the simulations are presented in our paper and can be summed up in the following conclusions:

1. The analytic formula for the maximum throughput of the system tends to become rather complicated when the number of servers increase
2. The maximum throughput of the system converges as the number of servers increases
3. The homogeneous case reveals an interesting characteristic: if we reverse the order of the servers, maximum throughput of the system remains unchanged

The QBD process used for the case of Poisson arrivals can be extended to model more general arrival processes.

Key words: tandem queues, production line, maximum throughput, QBD process

INTRODUCTION

In this paper we analyze the problem of maximum throughput of a tandem queueing system. We consider a system with Poisson arrivals and independent exponential service times. This kind of system is appropriate for representing the production lines — the basis of flexible manufacturing systems. Basically a production line consists of a one–way serial configuration of machines and buffers. To model this as a tandem queues system we will assimilate the machines to servers and the buffers to queues placed between these servers. The tandem queues system obtained is presented in figure 1. This system consists of $K+1$ servers (notated S_i, where $i=0,1,...,K$) and the same number of buffers (the buffers capacity is notated B_i, where $i=0,1,...,K$).

![Figure 1 – Tandem queueing system’s structure](image)

In order to analyze the problem of maximum throughput for this system we made the following assumptions:

- The first buffer (B_0) has as infinite capacity and the intermediary buffers are finite and have the same capacity (we noted this B)
- Customers’ arrivals into the system (first buffer) are Poisson arrivals
- The service order for each server is first-in-first-out and with independent exponential service times (notated $\mu_0,...,\mu_k$, where $i=0,1,...,K$ — index of servers S_i which are included in the system) and the time required to service a customer at a particular station is independent of the time required to service that customer at any other station
- Each customer arriving into the system requires service by each server, sequentially
- When server S_i, $i<K$ completes service, if server S_{i+1} is occupied and the buffer before it B_{i+1} is full, then server S_i is idled until space becomes available at server S_{i+1} that is, server S_i becomes blocked.

The goal of this paper is to study the maximum arrival rate (λ_{max}) that the system can support before becoming saturated or unstable, the so-called maximum throughput. In order to do this we model as a quasi-birth-and-dead (QBD) process. We simulated the behavior of the QBD process in order to obtain the formula and values for the maximum throughput.
for different configurations. We present the results of these simulations in the paper.

GENERATING THE QBD MODEL

In order to model the given tandem queueing system as a QBD process we proceeded as follows. We named *level* the number of customers in the buffer before server S_0 (including the customer in service) and we called *phase* the state of the remaining servers. Considering these notations, the only events that can change the state of the system are the arrival of the new customer or a service completion by one of the servers. Since the probability of two of these events occurring simultaneously is zero and the level can increase or decrease by at most one on the occurrence of a single event, this means we have infinite, continuous-time QBD process.

To specify the phase we need only to consider the case in which server S_i is occupied, so we encode the phase as an ordered K-tuple $(m_1,...,m_k)$, where $0 \leq m_i \leq B_i + 2$, this means that there are m_i customers in the buffer before server S_i, including the one being served. When $m_i = B_i + 2$, this means that there are $B_i + 1$ customers at the server S_i and server S_i is blocking server S_{i-1}. It is obvious that a phase with $m_i = 0$ and $m_{i+1} = B_i + 2$ is not a valid one, since it is not possible for the server S_i to be both empty and blocked simultaneously. This allows us to determine the number of valid phases M as:

$$M = \left[\left(B + 3 \right)^{k+1} - \left(B + 1 \right)^{k+1} \right] / 2^{k+1}$$

(1)

where B represents the capacity of the intermediary buffers.

We used this model to study the maximum throughput of the considered system.

MAXIMUM THROUGHPUT PROBLEM

In order to study the maximum throughput problem, we should generate the infinitesimal generator matrix Q of the defined QBD process. The Q matrix is a tri-diagonal block matrix having the structure presented below:

$$Q = \begin{bmatrix}
B_1 & A_0 & 0 & 0 & \cdots \\
A_4 & A_1 & A_0 & 0 & \cdots \\
0 & A_2 & A_1 & A_0 & \cdots \\
0 & 0 & A_2 & A_1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{bmatrix}$$

(2)

where block A_1 accounts for those transitions where the level remains unchanged, A_0 accounts for those transitions where the level increases, and A_2 accounts for those transitions where the level decreases. Block B_1 corresponds to the transitions from level 1 to level 0 (there are no customers in the input buffer B_0) and it is of no interest for our purposes.

Having the Q matrix, the next step is to determine the condition of stability of the system. Let $A - A_0 + A_1 + A_2$ and let π be the M-dimensional row vector satisfying:

$$\pi A = 0, \quad \pi e = 1$$

(3)

where e is a column vector of ones.

Then the system is stable if and only if:

$$\pi A_i e > \pi A_0 e$$

(4)

In computing $A_i, i = 0,1,2$ it is enough to consider the case where the level is greater than 0. Then any arrival will cause the level to increase, but the phase will remain the same. In consequence $A_0 = \lambda I$.

Therefore, when we compute A we will always have an arrival added to the diagonal of A from A_0 but by the same token we will always have an arrival subtracted from the diagonal of A because of the $-\lambda$ on the diagonal of A_i that we need to make the sum of the rows of Q equal to 0. That is, in computing the A matrix, arrivals make no difference and can be ignored.

To get the maximum value of λ (maximum throughput) we need to solve:

$$\pi A_2 e = \pi A_0 e$$

(5)

Since $A_0 = \lambda I$, equation (5) can be simplified to:

$$\lambda = \pi A_2 e$$

(6)

and the problem is reduced to solving the systems:

$$\pi A = 0,$$

(7)

Since any equation in the first system is redundant, we simply replace one of them with $\pi e = 1$. In order to obtain the maximum throughput (λ_{max}) for the steady state of the QBD process we only need to solve the resulting system. The only remaining problem is to determine the structure of the blocks for matrix Q. The A_0 block (corresponding to the transitions to the next level) is easy to obtain. As we already saw, the level can only increase with the arrival of a new customer into the system. This doesn’t change the phase, so A_0 will be an M-diagonal matrix of λ. Yet the process of generating the other two blocks A_1 and A_2 is not so
straightforward. In order to generate A_1 and A_2 we should analyze each phase and decide which are the possible transitions and determine the resulting phase and level. We made the observation that the level decreases only at the moment when server S_0 completes the service of a customer and may pass it to server S_1. There are two possible situations: if server S_0 was no the server that completed the service, then the only way the level can decrease is if the server S_1 is blocking S_1. The complexity of the model made this analysis possible only by using numerical methods, so we develop an algorithm to do that. We use this algorithm to simulate different configurations of the system. The following sections describe the simulation algorithm and the results we obtained.

SIMULATION ALGORITHM

The algorithm’s steps are:
1. Initialize the process; read the number of servers into the tandem queueing system, their rates and the capacities of the intermediary buffers.
2. Determine the number of valid phases and which are these valid phases.
3. Analyze each valid phase in order to find the events that can occur next and generate the blocks of the Q matrix, according to the following rules:
 - for the arrival of a customer, the level increase and the phase remain unchanged; in consequence the block A_0 is a diagonal matrix of λ.
 - for a server S_i ending the serving process of a customer (only servers that are not blocked can do this), if the level is not decreasing enter μ_i into the corresponding position of block A_1; otherwise enter μ_i in the corresponding position of block A_2; the diagonal elements of the block A_1 are determined by the equalizing with zero the sum of the rows of the Q matrix.
4. Determine the maximum throughput of the system.

We will illustrate this process for a particular configuration, consisting of two servers ($K=1$) and an intermediary buffer with capacity $B=2$. This particular structure is presented in figure 2.

The associate QBD model for the above tandem queueing is presented in figure 3.

![Figure 3 – The associated QBD model of the tandem queueing system](image)

The corresponding blocks A_0, A_1 and A_2 for the above QBD model are:

$$A_0 = \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix}$$

$$A_1 = \begin{bmatrix} -\Delta_{11} & 0 & 0 & 0 & 0 \\ \mu_i & -\Delta_{22} & 0 & 0 & 0 \\ 0 & \mu_i & -\Delta_{33} & 0 & 0 \\ 0 & 0 & \mu_i & -\Delta_{44} & \mu_0 \\ 0 & 0 & 0 & 0 & -\Delta_{55} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & \mu_0 & 0 & 0 & 0 \\ 0 & 0 & \mu_0 & 0 & 0 \\ 0 & 0 & 0 & \mu_0 & 0 \\ 0 & 0 & 0 & 0 & \mu_i \end{bmatrix}$$

where:

$$\Delta_{11} = \mu_0 + \lambda$$

$$\Delta_{22} = \Delta_{33} = \Delta_{44} = \mu_0 + \mu_i + \lambda$$

$$\Delta_{55} = \mu_i + \lambda$$

and the formula of the maximum throughput obtained for this particular configuration is:

$$\lambda_{\text{max}} = \frac{\mu_0 \mu_i (\lambda^2 + \mu_0^2 \mu_i + \mu_0 \mu_i^2 + \mu_i^3)}{\mu_0^2 + \mu_0 \mu_i + \mu_0 \mu_i^2 + \mu_i^3}$$

EXPERIMENTAL RESULTS

We use this simulation algorithm for different configurations of the tandem queueing system having a different number of servers, with different service
rates, with or without intermediary buffers. Table 1 summarizes some of the results of the simulation for configuration without intermediary buffers. We change only the service rate of the first server \(S_0 \) and use the same service rate \(\mu_i = 1 \) for the others.

Number of servers	Value of \(\mu \)		
	0.8	1.0	1.25
3	0.519989942	0.564102564	0.598437788
4	0.485029352	0.514775489	0.535049700
5	0.463993704	0.485798122	0.499168087
6	0.449869861	0.466713263	0.476185018

In figure 4 we present a graphic representation of the maximum throughput of the system.

The graphic representation of the evolution of maximum throughput for a tandem queueing system with intermediary buffers is shown in figure 5.

In figure 4 we present a graphic representation of the maximum throughput of the system.

The results for the same configurations of the tandem queueing system, using intermediary buffers with capacity \(B=1 \) are presented in table 2.

Number of servers	Value of \(\mu \)		
	0.8	1.0	1.25
3	0.615528799	0.670466159	0.707254387
4	0.592393780	0.631152086	0.652598317
5	0.578207816	0.607583286	0.621585610
6	0.568521082	0.591825779	0.601677388

The results obtained allow us to formulate some interesting conclusions. First we should notice that the complexity of the system significantly increases when the number of servers and the capacity of the analytic formula of the system’s maximum throughput tends to become rather complicated.

Another observation is that the homogeneous structure (all the intermediary buffers having the same capacity) reveals an interesting characteristic, that if the order of the servers is reversed, the maximum throughput of the system remains unchanged. In further research our efforts will focus on extending the application of the QBD process for more general arrival processes.

CONCLUSIONS

The results obtained allow us to formulate some interesting conclusions. First we should notice that the complexity of the system significantly increases when the number of servers and the capacity of the analytic formula of the system’s maximum throughput tends to become rather complicated.

Another observation is that the homogeneous structure (all the intermediary buffers having the same capacity) reveals an interesting characteristic, that if the order of the servers is reversed, the maximum throughput of the system remains unchanged. In further research our efforts will focus on extending the application of the QBD process for more general arrival processes.

Our immediate plans are to adapt the method presented in the paper in studying the maximum throughput problem for a tandem queueing system with \(MMPP_n \) arrivals and to find a way to improve the simulation algorithm and to reduce its complexity.

REFERENCES

Anantharam, V. Tsoucas, P. – Stochastic Concavity of Throughput in Series of Queues with Finite Buffers, Advances in Applied Probability 22, 1990, pp. 761-763.

Avi-Itzhak, B. – A Sequence of Service Stations with Arbitrary Input and Regular Service Times, Management Science 11, No. 5, 1965, pp. 565-571.

Hillier, F. S., Boling, R. W. – Finite Queues in Series with Exponential or Erlang Service times – A Numerical Approach, Operations Research 15, 1967, pp. 286-303.

Hiller, F. S., So, K. C. – On the Optimal Design of Tandem Queueing Systems with no Buffers, Queueing Systems 21 (1985) 245-266.

Meester, L. E., Shanthikumar, J. G. – Concavity of the Throughput of Tandem Queueing Systems with Finite Buffer Storage Space, Advances in Applied Probability 22, 1990, pp. 764-767.

Yamakazi, G., Sakasegawa H. – Properties of Duality in Tandem Queueing Systems, Annals of Institute of Statistical Mathematics (Tokyo) 27, 1975, pp. 201-212.