Continuous Controlled K-Frame for Hilbert C^*-Modules

Hamid Faraj, Samir Kabbaj, Hatim Labrigui, Abdeslam Touri and Mohamed Rossafi

ABSTRACT. In this paper, we introduce and we study the concept of Continuous Controlled K-Frame for Hilbert C^*-Modules which are generalizations of discrete Controlled K-Frames.

1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [9] in 1952 to study some deep problems in nonharmonic Fourier series. After the fundamental paper [7] by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly in the more specialized context of wavelet frames and Gabor frames [11]. Frames have been used in signal processing, image processing, data compression and sampling theory. The concept of a generalization of frames to a family indexed by some locally compact space endowed with a Radon measure was proposed by G. Kaiser [14] and independently by Ali, Antoine and Gazeau [5]. These frames are known as continuous frames. Gabardo and Han in [10] called these frames associated with measurable spaces, Askari-Hemmat, Delghani and Radjabalipour in [3] called them generalized frames and in mathematical physics they are referred to as coherent states [5]. In 2012, L. Gavruta [12] introduced the notion of K-frames in Hilbert space to study the atomic systems with respect to a bounded linear operator K. Controlled frames in Hilbert spaces have been introduced by P. Balazs [4] to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Rahimi [17] defined the concept of controlled K-frames in Hilbert spaces and showed that controlled K-frames are equivalent to K-frames due to which the controlled operator C can be used as preconditions in applications. Controlled frames in C^*-modules were introduced by Rashidi and Rahimi [15], and the authors showed that they share many useful properties with their corresponding notions in a Hilbert space. We extended the results of frames in Hilbert spaces to Hilbert C^*-modules (see [13], [19], [21], [22], [23], [24], [25], [26], [27], [28], [29])

Motivated by the above literature, we introduce the notion of a continuous controlled K-frame in Hilbert C^*-modules.

Date:
*Corresponding author.
2010 Mathematics Subject Classification. Primary 41A58; Secondary 42C15.
Key words and phrases. Controlled Frame, Controlled K-frame, Continuous Controlled K-frame, C^*-algebra, Hilbert A-modules.
In the following we briefly recall the definitions and basic properties of \(C^* \)-algebra, Hilbert \(A \)-modules. Our references for \(C^* \)-algebras as \([6, 8]\). For a \(C^* \)-algebra \(A \) if \(a \in A \) is positive we write \(a \geq 0 \) and \(A^+ \) denotes the set of positive elements of \(A \).

Definition 1.1. \([18]\) Let \(A \) be a unital \(C^* \)-algebra and \(H \) be a left \(A \)-module, such that the linear structures of \(A \) and \(H \) are compatible. \(H \) is a pre-Hilbert \(A \)-module if \(H \) is equipped with an \(A \)-valued inner product \(\langle \cdot, \cdot \rangle_A : H \times H \to A \), such that is sesquilinear, positive definite and respects the module action. In the other words,

(i) \(\langle x, x \rangle_A \geq 0 \) for all \(x \in H \) and \(\langle x, x \rangle_A = 0 \) if and only if \(x = 0 \).
(ii) \(\langle ax + y, z \rangle_A = a \langle x, z \rangle_A + \langle y, z \rangle_A \) for all \(a \in A \) and \(x, y, z \in H \).
(iii) \(\langle y, y \rangle_A = \langle y, y \rangle_A^* \) for all \(x, y \in H \).

For \(x \in H \), we define \(||x|| = ||\langle x, x \rangle_A||^{\frac{1}{2}} \). If \(H \) is complete with \(||.|| \), it is called a Hilbert \(A \)-module or a Hilbert \(C^* \)-module over \(A \). For every \(a \) in \(C^* \)-algebra \(A \), we have \(|a| = (a^*a)^{\frac{1}{2}} \) and the \(A \)-valued norm on \(H \) is defined by \(|x| = \langle x, x \rangle_A^{\frac{1}{2}} \) for \(x \in H \).

Let \(H \) and \(K \) be two Hilbert \(A \)-modules, A map \(T : H \to K \) is said to be adjointable if there exists a map \(T^* : K \to H \) such that \(\langle Tx, y \rangle_A = \langle x, T^*y \rangle_A \) for all \(x \in H \) and \(y \in K \).

We reserve the notation \(\text{End}_A^*(H, K) \) for the set of all adjointable operators from \(H \) to \(K \) and \(\text{End}_A^*(H, H) \) is abbreviated to \(\text{End}_A^*(H) \).

Lemma 1.2. \([3]\) Let \(H \) and \(K \) two Hilbert \(A \)-modules and \(T \in \text{End}_A^*(H) \). Then the following statements are equivalent:

(i) \(T \) is surjective.
(ii) \(T^* \) is bounded below with respect to norm, i.e, there is \(m > 0 \) such that \(\|T^*x\| \geq m\|x\| \), \(x \in K \).
(iii) \(T^* \) is bounded below with respect to the inner product, i.e, there is \(m' > 0 \) such that, \(\langle T^*x, T^*x \rangle_A \geq m'\langle x, x \rangle_A \), \(x \in K \).

Lemma 1.3. \([18]\) Let \(H \) and \(K \) two Hilbert \(A \)-modules and \(T \in \text{End}_A^*(H) \). Then the following statements are equivalent,

(i) The operator \(T \) is bounded and \(A \)-linear.
(ii) There exist \(0 \leq k \) such that \(\langle Tx, Tx \rangle_A \leq k\langle x, x \rangle_A \), \(x \in H \).

For the following theorem, \(R(T) \) denote the range of the operator \(T \).

Theorem 1.4. \([30]\) Let \(H \) be a Hilbert \(A \)-module over a \(C^* \)-algebra \(A \) and let \(T, S \) two operators for \(\text{End}_A^*(H) \). If \(R(S) \) is closed, then the following statements are equivalent:

(i) \(R(T) \subset R(S) \).
(ii) \(TT^* \leq \lambda^2 SS^* \) for some \(\lambda \geq 0 \).
(iii) There exists \(Q \in \text{End}_A^*(H) \) such that \(T = SQ \).
2. Continuous Controlled K-Frame for Hilbert C^*-Modules

Let X be a Banach space, (Ω, μ) a measure space, and $f : \Omega \to X$ a measurable function. Integral of the Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions. Since every C^*-algebra and Hilbert C^*-module is a Banach space thus we can use this integral and its properties.

Let \mathcal{H} and \mathcal{K} be two Hilbert C^*-modules, $\{\mathcal{K}_w : w \in \Omega\}$ is a family of subspaces of \mathcal{K}, and $End^*_A(\mathcal{H}, \mathcal{K}_w)$ is the collection of all adjointable \mathcal{A}-linear maps from \mathcal{H} into \mathcal{K}_w. We define

$$\bigoplus_{w \in \Omega} \mathcal{K}_w = \{x = \{x_w\} \in \mathcal{K} : x_w \in \mathcal{K}_w, \int_{\Omega} \|x_w\|^2 d\mu(w) < \infty\}.$$

For any $x = \{x_w : w \in \Omega\}$ and $y = \{y_w : w \in \Omega\}$, if the \mathcal{A}-valued inner product is defined by $\langle x, y \rangle_A = \int_{\Omega} \langle x_w, y_w \rangle_A d\mu(w)$, the norm is defined by $\|x\| = \|\langle x, x \rangle_A\|^{\frac{1}{2}}$. Therefore, $\bigoplus_{w \in \Omega} \mathcal{K}_w$ is a Hilbert C^*-module (see [14]).

Let \mathcal{A} be a C^*-algebra, $l^2(\mathcal{A})$ is defined by,

$$l^2(\mathcal{A}) = \{\{a_w\} \subseteq \mathcal{A} : \int_{\Omega} \|a_w a^*_w d\mu(w)\|^2 < \infty\}.$$

$l^2(\mathcal{A})$ is a Hilbert C^*-module (Hilbert \mathcal{A}-module) with pointwise operations and the inner product defined as,

$$\langle \{a_w\}, \{b_w\} \rangle_A = \int_{\Omega} a_w b^*_w d\mu(w), \{a_w\}, \{b_w\} \subseteq l^2(\mathcal{A}),$$

and

$$\|\{a_w\}\| = \left(\int_{\Omega} \|a_w a^*_w d\mu(w)\|\right)^{\frac{1}{2}}.$$

Definition 2.1. Let \mathcal{H} be a Hilbert \mathcal{A}-module over a unital C^*-algebra, and $K \in End^*_A(\mathcal{H})$. A mapping $F : \Omega \to \mathcal{H}$ is called a continuous K-Frame for \mathcal{H} if:

- F is weakly-measurable, ie, for any $f \in \mathcal{H}$, the map $w \to \langle f, F(w) \rangle_A$ is measurable on Ω.

- There exist two strictly positive constants A and B such that

$$A \langle K^* f, K^* f \rangle_A \leq \int_{\Omega} \langle f, F(w) \rangle_A \langle F(w), f \rangle_A d\mu(w) \leq B \langle f, f \rangle_A, f \in \mathcal{H}.$$

The elements A and B are called continuous K-frame bounds.

If $A = B$ we call this Continuous K-Frame a continuous tight K-Frame, and if $A = B = 1$ it is called a continuous Parseval K-Frame. If only the right-hand inequality of (2.1) is satisfied, we call F a continuous bessel mapping with Bessel bound B.

Let F be a continuous bessel mapping for Hilbert C^*-module \mathcal{H} over \mathcal{A}. The operator $T : \mathcal{H} \to l^2(\mathcal{A})$ defined by,

$$Tf = \{\langle f, F(\omega) \rangle_A\}_{\omega \in \Omega},$$
is called the analysis operator.
There adjoint operator \(T^* : l^2(\mathcal{A}) \to \mathcal{H} \) given by,

\[
T^*(\{a_\omega\}_{\omega \in \Omega}) = \int_\Omega a_\omega F(\omega) d\mu(\omega),
\]

is called the synthesis operator.
By composing \(T \) and \(T^* \), we obtain the continuous K-frame operator, \(S : \mathcal{H} \to \mathcal{H} \) defined by

\[
Sf = \int_\Omega \langle f, F(\omega) \rangle_{\mathcal{A}} F(\omega) d\mu(\omega).
\]

It’s clear to see that \(S \) is positive, bounded and selfadjoint (see [5]).

For the following definition we need to introduce, \(GL^+ (\mathcal{H}) \) be the set of all positive bounded linear invertible operators on \(\mathcal{H} \) with bounded inverse.

Definition 2.2. Let \(\mathcal{H} \) be a Hilbert \(\mathcal{A} \)-module over a unital \(C^* \)-algebra and \(K \in \text{End}_\mathcal{A}^*(\mathcal{H}) \), \(C \in GL^+(\mathcal{H}) \). A mapping \(F : \Omega \to \mathcal{H} \) is called a continuous \(C \)-controlled K-Frame in \(\mathcal{H} \) if:

- \(F \) is weakly-measurable, ie, for any \(f \in \mathcal{H} \), the map \(w \to \langle f, F(w) \rangle_{\mathcal{A}} \) is measurable on \(\Omega \).

- There exists two strictly positive constants \(A \) and \(B \) such that

\[
A \langle C^{1/2} K^* f, C^{1/2} K^* f \rangle_{\mathcal{A}} \leq \int_\Omega \langle f, F(w) \rangle_{\mathcal{A}} (CF(w), f)_{\mathcal{A}} d\mu(w) \leq B \langle f, f \rangle_{\mathcal{A}}, f \in \mathcal{H}.
\]

The elements \(A \) and \(B \) are called continuous C-controlled K-frame bounds.

If \(A = B \) we call this continuous C-controlled K-Frame a continuous tight C-Controlled K-Frame, and if \(A = B = 1 \) it is called a continuous Parseval C-Controlled K-Frame. If only the right-hand inequality of (2.2) is satisfied, we call \(F \) a continuous C-controlled bessel mapping with Bessel bound \(B \).

Example 2.3.

\[
H = \mathcal{A} = l^2(\mathbb{C})
\]

\[
= \left\{ \{a_n\}_{n=1}^{\infty} \subset \mathbb{C} / \sum_{n=1}^{\infty} |a_n|^2 < +\infty \right\}.
\]

\(\mathcal{A} \) is recognized as a Hilbert \(\mathcal{A} \)-Module with the \(\mathcal{A} \)-inner product

\[
< \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}>_{\mathcal{A}} = \{a_n \overline{b_n}\}_{n=1}^{\infty}.
\]

Consider now the borned linear operator

\[
C : \{a_n\}_{n=1}^{\infty} \to \{\alpha a_n\}_{n=1}^{\infty},
\]

where \(\alpha \in \mathbb{R}_+^* \). Then \(C \) is positive invertible and

\[
C^{-1}(\{a_n\}_{n=1}^{\infty}) = \{\alpha^{-1} a_n\}_{n=1}^{\infty}.
\]
Let (Ω, μ) the measure space where $\Omega = [0, 1]$ and μ is the Lebesgue measure and let

$$F : \Omega \rightarrow H \quad w \mapsto F_w = \{\frac{w_n}{n}\}_{n=1}^\infty.$$

In the author hand, consider the projection

$$K : H \rightarrow H \quad \{a_n\}_{n=1}^\infty \mapsto (a_1, \ldots, a_r, 0, \ldots)$$

where r is an integer ($r \geq 2$).

It's clear that $K^* = K$ and for each $f = \{a_n\}_{n=1}^\infty \in H = l^2(\mathbb{C})$, one has

$$\int_{\Omega} < f, F_w >_A < CF_w, f >_A d\mu(w) = \int_{[0,1]} \left\{ \frac{w^2}{n^2} |a_n|^2 \right\}_{n=1}^\infty . \left\{ \frac{w}{n} a_n \right\}_{n=1}^\infty d\mu(w)$$

$$= \alpha \left\{ \frac{|a_n|^2}{n^2} \right\}_{n=1}^\infty .$$

Hence

$$\int_{\Omega} < f, F_w >_A < CF_w, f >_A d\mu(w) \leq \frac{\alpha \pi^2}{18} < \{a_n\}_{n=1}^\infty , \{a_n\}_{n=1}^\infty >_A .$$

Furthermore,

$$< CK^* f, K^* f >_A = < (\alpha a_1, \ldots, \alpha a_r, 0, \ldots), (a_1, \ldots, a_r, 0, \ldots) >_A$$

$$= (\alpha |a_1|^2, \ldots, \alpha |a_r|^2, 0, \ldots).$$

Then for $A = \frac{1}{3r^2}$, one obtain

$$\frac{\alpha}{3r^2} (|a_1|^2, \ldots, |a_r|^2, 0, \ldots) \leq \left\{ \frac{\alpha |a_n|^2}{3 \frac{n^2}{n^2}} \right\}_{n=1}^\infty .$$

The conclusion is

$$\frac{1}{3r^2} < C^{1/2} K^* f, C^{1/2} K^* f >_A \leq \int_{\Omega} < f, F_w >_A < CF_w, f >_A d\mu(w) \leq \frac{\alpha \pi^2}{18} < f, f >_A$$

Let F be a continuous C-controlled Bessel mapping for Hilbert C^*-module \mathcal{H} over \mathcal{A}.

We define the operator frame

$$S_C : \mathcal{H} \rightarrow \mathcal{H} \quad \text{by},$$

$$S_C f = \int_{\Omega} < f, F(\omega) >_A CF(\omega) d\mu(\omega).$$
Remark 2.4. From definition of S and S_C, we have, $S_C = CS$. Using [16], S_C is \mathcal{A}-linear and bounded. Thus, it is adjointable. Since $\langle S_Cx, x \rangle_\mathcal{A} \geq 0$, for any $x \in \mathcal{H}$, it result, again from [16], that S_C is positive and selfadjoint.

Theorem 2.5. Let \mathcal{H} be a Hilbert \mathcal{A}-module, $K \in \text{End}^*_\mathcal{A}(\mathcal{H})$, and $C \in \text{GL}^+(\mathcal{H})$. Let $F : \Omega \rightarrow \mathcal{H}$ a map. Suppose that $C K = K C$, $R(C^{\frac{1}{2}}) \subset R(K^*C^{\frac{1}{2}})$ with $R(K^*C^{\frac{1}{2}})$ is closed. Then F is a continuous C-controlled K-frame for \mathcal{H} if and only if there exist two constants $0 < A, B < \infty$ such that :

$$A\|C^{\frac{1}{2}}K^*f\|^2 \leq \int_\Omega \langle f, F(w) \rangle_\mathcal{A} \langle CF(w), f \rangle_\mathcal{A} d\mu(w) \leq B\|f\|^2, f \in \mathcal{H}.$$ (2.3)

Proof. (\Rightarrow) obvious.

For the converse, we suppose that $0 < A, B < \infty$ such that :

$$A\|C^{\frac{1}{2}}K^*f\|^2 \leq \int_\Omega \langle f, F(w) \rangle_\mathcal{A} \langle CF(w), f \rangle_\mathcal{A} d\mu(w) \leq B\|f\|^2, f \in \mathcal{H}.$$ We have,

$$\| \int_\Omega \langle f, F(w) \rangle_\mathcal{A} \langle CF(w), f \rangle_\mathcal{A} d\mu(w) \| = \| \langle S_C f, f \rangle_\mathcal{A} \|
= \| \langle CS f, f \rangle_\mathcal{A} \|
= \| \langle (CS)^{\frac{1}{2}} f, (CS)^{\frac{1}{2}} f \rangle_\mathcal{A} \|
= \| (CS)^{\frac{1}{2}} f \|^2.$$ Since, $R(C^{\frac{1}{2}}) \subset R(K^*C^{\frac{1}{2}})$ with $R(K^*C^{\frac{1}{2}})$ is closed, then by theorem [1.4], there exists $0 \leq m$ such that,

$$(C^{\frac{1}{2}})(C^{\frac{1}{2}})^* \leq m(K^*C^{\frac{1}{2}})(K^*C^{\frac{1}{2}})^*.$$ Thus,

$$\langle (C^{\frac{1}{2}})(C^{\frac{1}{2}})^* f, f \rangle_\mathcal{A} \leq m \langle (K^*C^{\frac{1}{2}})(K^*C^{\frac{1}{2}})^* f, f \rangle_\mathcal{A}.$$ Consequently,

$$\|C^{\frac{1}{2}} f\|^2 \leq m\|K^*C^{\frac{1}{2}} f\|^2.$$ Then,

$$A\|C^{\frac{1}{2}} f\|^2 \leq A m\|K^*C^{\frac{1}{2}} f\|^2 \leq m\|(CS)^{\frac{1}{2}} f\|^2.$$ Hence,

$$\frac{A}{m}\|C^{\frac{1}{2}} f\|^2 \leq \|(CS)^{\frac{1}{2}} f\|^2.$$ So,

$$\sqrt{\frac{A}{m}}\|C^{\frac{1}{2}} f\| \leq \|(CS)^{\frac{1}{2}} f\|.$$ (2.4)

From lemma[1.2] we have,

$$\sqrt{\frac{A}{m}}\langle C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_\mathcal{A} \leq \langle C^{\frac{1}{2}} S^{\frac{1}{2}} f, C^{\frac{1}{2}} S^{\frac{1}{2}} f \rangle_\mathcal{A}.$$
Then,
\[\langle C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_A \leq \sqrt{\frac{m}{A}} \langle CS f, f \rangle_A. \]
So,
\[\langle C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_A \leq \sqrt{\frac{m}{A}} \langle S_C f, f \rangle_A. \]
One the deduce
\[\langle C^{\frac{1}{2}} K^* f, C^{\frac{1}{2}} K^* f \rangle_A \leq \| K^* \|^2 \langle C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_A \leq \| K^* \|^2 \sqrt{\frac{m}{A}} \langle S_C f, f \rangle_A. \]
Hence,
\[\frac{1}{\| K^* \|^2} \sqrt{\frac{A}{m}} \langle C^{\frac{1}{2}} K^* f, C^{\frac{1}{2}} K^* f \rangle_A \leq \langle S_C f, f \rangle_A. \]
Since \(S_C \) is positive, selfadjoint and bounded \(A \)-linear map, we can write
\[\langle S_C^{\frac{1}{2}} f, S_C^{\frac{1}{2}} f \rangle_A = \langle S_C f, f \rangle_A = \int_\Omega \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A d\mu(w). \]
From lemma 1.3 there exists \(D > 0 \) such that,
\[\langle S_C^{\frac{1}{2}} f, S_C^{\frac{1}{2}} f \rangle_A \leq D \langle f, f \rangle_A, \]
then by (2.5) and (2.6), we conclude that \(F \) is a continuous \(C \)-controlled \(K \)-frame in Hilbert \(C^* \)-module \(H \) with frame bounds \(\frac{1}{\| K^* \|^2} \sqrt{\frac{A}{m}} \) and \(D \).

\[\boxed{\text{Lemma 2.6. Let } C \in GL^+(H). \text{ Suppose } CS_C = S_C C \text{ and } R(S_C^{\frac{1}{2}}) \subset R((CS_C)^{\frac{1}{2}}) \text{ with } R((CS_C)^{\frac{1}{2}}) \text{ is closed. Then } \| S_C^{\frac{1}{2}} f \|^2 \leq \lambda \| (CS_C)^{\frac{1}{2}} f \|^2 \text{ for some } \lambda \geq 0.} \]

\[\text{Proof. By theorem 1.4, there exists some } \lambda > 0 \text{ such that,} \]
\[(S_C^{\frac{1}{2}})(S_C^{\frac{1}{2}})^* \leq \lambda (CS_C^{\frac{1}{2}})(CS_C^{\frac{1}{2}})^*. \]
Hence,
\[\langle (S_C^{\frac{1}{2}})(S_C^{\frac{1}{2}})^* f, f \rangle_A \leq \lambda \langle (CS_C^{\frac{1}{2}})(CS_C^{\frac{1}{2}})^* f, f \rangle_A. \]
So,
\[\| S_C^{\frac{1}{2}} f \|^2 \leq \lambda \| (CS_C^{\frac{1}{2}}) f \|^2, f \in H. \]

\[\boxed{\text{Theorem 2.7. Let } F : \Omega \to H \text{ a map and } C \in GL^+(H). \text{ Suppose } CS_C = S_C C \text{ and } R(S_C^{\frac{1}{2}}) \subset R((CS_C)^{\frac{1}{2}}) \text{ with } R((CS_C)^{\frac{1}{2}}) \text{ is closed. Then } F \text{ is a continuous } C \text{-controlled Bessel mapping with bound } B \text{ if and only if } U : l^2(A) \to H \text{ defined by } U(\{a_w\}_{w \in \Omega}) = \int_\Omega a_w CF(w)d\mu(w) \text{ is well defined bounded with } \| U \| \leq \sqrt{B} \| C^{\frac{1}{2}} \|.} \]
Proof. Assume that F is a continuous C-controlled Bessel with bound B. Hence,
\[
\left\| \int_{\Omega} \langle f, F(w) \rangle_A (CF(w), f) \, d\mu(w) \right\| \leq B \| f \|^2, \quad f \in \mathcal{H}.
\]
So,
\[
\left\| \langle S_C f, f \rangle_A \right\| \leq B \| f \|^2.
\]
In the beginning, we show that U is well defined. For each $\{a_w\}_{\omega \in \Omega} \in l^2(\mathcal{A})$,
\[
\|U(\{a_w\}_{\omega \in \Omega})\|^2 = \sup_{f \in \mathcal{H}, \|f\|=1} \| \langle U(\{a_w\}_{\omega \in \Omega}), f \rangle_A \|^2
\]
\[
= \sup_{f \in \mathcal{H}, \|f\|=1} \left\| \int_{\Omega} a_w CF(w) \, d\mu(w), f \right\|^2_A
\]
\[
= \sup_{f \in \mathcal{H}, \|f\|=1} \left\| \int_{\Omega} a_w (CF(w), f) \, d\mu(w) \right\|^2
\]
\[
\leq \sup_{f \in \mathcal{H}, \|f\|=1} \left\| \int_{\Omega} \langle f, CF(w) \rangle_A (CF(w), f) \, d\mu(w) \right\| \cdot \int_{\Omega} a_w a_w^* \, d\mu(w)
\]
\[
= \sup_{f \in \mathcal{H}, \|f\|=1} \left\| \langle CS_C f, f \rangle_A \right\| \cdot \int_{\Omega} a_w a_w^* \, d\mu(w)
\]
\[
= \sup_{f \in \mathcal{H}, \|f\|=1} \left\| (CS_C)^{\frac{1}{2}} f, (CS_C)^{\frac{1}{2}} f \right\|_A \cdot \| \{a_w\}_{\omega \in \Omega} \|^2
\]
\[
\leq \sup_{f \in \mathcal{H}, \|f\|=1} \left\| (C)^{\frac{1}{2}} \right\|^2 \| (S_C f)^{\frac{1}{2}} \|^2 \| \{a_w\}_{\omega \in \Omega} \|^2
\]
\[
\leq B \| (C)^{\frac{1}{2}} \|^2 \| \{a_w\}_{\omega \in \Omega} \|^2.
\]
Then,
\[
\|U\| \leq \sqrt{B} \| (C)^{\frac{1}{2}} \|.
\]
Hence U is well defined and bounded. Now, suppose that U is well defined, and
\[
\|U\| \leq \sqrt{B} \| (C)^{\frac{1}{2}} \|.
\]
For any $f \in \mathcal{H}$ and $\{a_w\}_{\omega \in \Omega} \in l^2(\mathcal{A})$, we have,
\[
\langle f, U(\{a_w\}_{\omega \in \Omega}) \rangle_A = \langle f, \int_{\Omega} a_w CF(w) \, d\mu(w) \rangle_A
\]
\[
= \int_{\Omega} \langle a_w^* f, F(w) \rangle_A \, d\mu(w)
\]
\[
= \int_{\Omega} \langle C f, F(w) \rangle_A a_w^* \, d\mu(w)
\]
\[
= \langle \{C f, F(w)\}_A \rangle_{\omega \in \Omega}, \{a_w\}_{\omega \in \Omega} \rangle_A.
\]
Then, U has an adjoint, and
\[
U^* f = \{C f, F(w)\}_A \rangle_{\omega \in \Omega}.
\]
Also,
\[
\|U\|^2 = \sup_{\{(a_w)_{w \in \Omega}\} = 1} \|U(\{a_w\}_{w \in \Omega})\|^2 = \sup_{\{(a_w)_{w \in \Omega}\} = 1, \|f\| = 1} \|\langle U(\{a_w\}_{w \in \Omega}), f \rangle_A\|^2 = \sup_{\|(a_w)_{w \in \Omega}\| = 1, \|f\| = 1} \|\{a_w\}_{w \in \Omega}, U^*f\rangle_A\|^2 = \sup_{\|f\| = 1} \|U^*f\|^2 = \|U^*\|^2.
\]

So,
\[
\|U^*f\|^2 = \|\langle U^*f, U^*f \rangle_A\| = \|\langle UU^*f, f \rangle_A\| = \|\langle CS_Cf, f \rangle_A\|.
\]

Then,
\[
(2.7) \quad \|U^*f\|^2 = \|\langle CS_C \rangle \frac{1}{2}f\|^2 \leq B\|\langle C \rangle \frac{1}{2}f\|^2.
\]

From lemma 2.6 we have,
\[
\|\langle S_C \rangle \frac{1}{2}f\|^2 \leq \lambda\|\langle CS_C \rangle \frac{1}{2}f\|^2,
\]
for some \(\lambda > 0\).

Using (2.7) we get,
\[
\|\langle S_C \rangle \frac{1}{2}f\|^2 \leq \lambda\|\langle CS_C \rangle \frac{1}{2}f\|^2 \leq \lambda B\|\langle C \rangle \frac{1}{2}f\|^2.
\]

Hence \(F\) is a continuous C-controlled Bessel mapping with Bessel bound \(\lambda B\|\langle C \rangle \frac{1}{2}f\|^2\).

\[\Box\]

Proposition 2.8. Let \(F\) be a continuous C-controlled K-frame for \(\mathcal{H}\) with bounds \(A\) and \(B\). Then:
\[ACKK^* I \leq SC \leq BI.\]

Proof. Suppose \(F\) is a continuous C-controlled K-frame with bounds \(A\) and \(B\). Then,
\[
A\langle C^\frac{1}{2}K^*f, C^\frac{1}{2}K^*f \rangle_A \leq \int_{\Omega} \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A d\mu(w) \leq B\langle f, f \rangle_A.
\]

Hence,
\[
A\langle CKK^*f, f \rangle_A \leq \langle SCf, f \rangle_A \leq B\langle f, f \rangle_A.
\]

So,
\[ACKK^* I \leq SC \leq BI.\]

\[\Box\]

Proposition 2.9. Let \(F\) be a continuous C-controlled Bessel mapping for \(\mathcal{H}\), and \(C \in GL^+(\mathcal{H})\). Then \(F\) is a continuous C-controlled K-frame for \(\mathcal{H}\) if and only if there exists \(A > 0\) such that:
\[ACKK^* \leq CS.\]
HAMID FARAJ1*, SAMIR KABBAJ1, HATIM LABRIGUI1, ABDESLAM TOURI1 AND MOHAMED ROSSAFI2

Proof. \((\Rightarrow)\) obvious.
\((\Leftarrow)\) Assume that there exists \(A > 0\) such that: \(ACKK^* \leq CS\), then,
\[A \langle CKK^* f, f \rangle_A \leq \langle S f, f \rangle_A .\]
Hence,
\[A \langle C^{1/2} K^* f, C^{1/2} K^* f \rangle_A \leq \langle S f, f \rangle_A .\]
Therefore,
\[A \langle C^{1/2} K^* f, C^{1/2} K^* f \rangle_A \leq \int_\Omega \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A d\mu(w) .\]
Hence \(F\) is a continuous \(C\)-controlled \(K\)-frame.

Proposition 2.10. Let \(C \in GL^+(\mathcal{H})\), \(K \in End_A^*(\mathcal{H})\) and \(F\) be a continuous \(C\)-controlled \(K\)-frame for \(\mathcal{H}\) with lower and upper frames bounds \(A\) and \(B\) respectively. Suppose \(KC = CK\) and \(R(C^{1/2}) \subset R(K^*C^{1/2})\) with \(R(K^*C^{1/2})\) is closed. Then \(F\) is a continuous \(K\)-frame for \(\mathcal{H}\) with lower and upper frames bounds \(A\|C^{-1/2}\|^{-2} \|C\|_2^{-2}\|f\|^2\) and \(B\|C^{1/2}\|^2\) respectively.

Proof. Assume that \(F\) is a continuous \(C\)-controlled \(K\)-frame with lower and upper frames bounds \(A\) and \(B\). From theorem \([2.5]\) we have:
\[A \|C^{1/2} K^* f\|^2 \leq \| f \|^2, f \in \mathcal{H} .\]
Then,
\[A \|K^* f\|^2 = A \|C^{-1/2} C^{1/2} K^* f\|^2 \leq A \|C^{-1/2}\|^2 \|C^{1/2} K^* f\|^2 \leq \|C^{-1/2}\|^2 \int_\Omega \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A d\mu(w) .\]
So,
\[(2.8)\]
\[A \|K^* f\|^2 \leq \|C^{1/2}\|^2 \|S f, f \|_A .\]
Moreover,
\[\langle S f, f \rangle_A = \langle CS f, f \rangle_A \]
\[= \langle (CS)^{1/2} f, (CS)^{1/2} f \rangle_A \]
\[= \| (CS)^{1/2} f \|^2 \leq \| (C)^{1/2} \|^2 \| (S)^{1/2} f \|^2 \]
\[= \| (C)^{1/2} \|^2 \langle (S)^{1/2} f, (S)^{1/2} f \rangle_A \]
\[= \| (C)^{1/2} \|^2 \langle S f, f \rangle_A ,\]
then,
\[(2.9)\]
\[\langle S f, f \rangle_A \leq \| (C)^{1/2} \|^2 \langle S f, f \rangle_A .\]
From (2.8) and (2.9), we have,
\[A\|K^*f\|^2 \leq \|C^{-\frac{1}{2}}\|(C)^{\frac{1}{2}}\|Sf, f\|_A \]
\[= \|C^{-\frac{1}{2}}\|(C)^{\frac{1}{2}}\|\int \langle f, F(w)\rangle_A\langle F(w), f\rangle_A d\mu(w). \]
Hence,
\[\|C^{-\frac{1}{2}}\|^{-2}\|(C)^{\frac{1}{2}}\|^{-2}A\|K^*f\|^2 \leq \int \langle f, F(w)\rangle_A\langle F(w), f\rangle_A d\mu(w).\]
Moreover,
\[\| \int \langle f, F(w)\rangle_A\langle F(w), f\rangle_A d\mu(w) \| = \|\langle Sf, f\rangle_A \| \]
\[= \|\langle (C^{-1}CS) f, f\rangle_A \| \]
\[= \|\langle (C^{-1}CS)^{\frac{1}{2}} f, (C^{-1}CS)^{\frac{1}{2}} f\rangle_A \| \]
\[= \|\langle (C^{-1}CS)^{\frac{1}{2}} f \|^{2} \]
\[\leq \|C^{-\frac{1}{2}}\|^2\|(C^2)^{\frac{1}{2}} f \|^{2} \]
\[= \|C^{-\frac{1}{2}}\|^2 \|(CS)^{\frac{1}{2}} f, (CS)^{\frac{1}{2}} f\rangle_A \]
\[= \|C^{-\frac{1}{2}}\|^2 \|(CSf, f\rangle_A \]
\[\leq \|C^{-\frac{1}{2}}\|^2 B \|f\|^2. \]

Then F is a continuous K-frame for H with lower and upper frames bounds
\[A\|C^{-\frac{1}{2}}\|^{-2}\|(C)^{\frac{1}{2}}\|^{-2} \text{ and } B\|C^{-\frac{1}{2}}\|^2. \]

Proposition 2.11. Let \(C \in GL^+(H) \) and \(K \in End_A(H) \). We Suppose that \(KC = CK \), \(R(C^{\frac{1}{2}}) \subset R(K^*C^{\frac{1}{2}}) \) with \(R(K^*C^{\frac{1}{2}}) \) is closed and F is a continuous K-frame for H with lower and upper frames bounds A and B respectively.
Then F is continuous C-controlled K-frame for H with lower and upper frames bounds A and \(||C|| S|| \).

Proof. Assume that F is a continuous K-frame for H with lower and upper frames bounds A and B. Then we have:
\[A\langle K^*f, K^*f\rangle_A \leq \int \langle f, F(w)\rangle_A\langle F(w), f\rangle_A d\mu(w) \leq B\langle f, f\rangle_A, \]
Since \(\langle K^*f, K^*f\rangle_A > 0 \) and \(\langle f, f\rangle_A > 0 \) then,
\[A\|K^*f\|^2 \leq \| \int \langle f, F(w)\rangle_A\langle F(w), f\rangle_A d\mu(w) \| \leq B\|f\|^2. \]
Then for every \(f \in H, \)
\[A\|C^{\frac{1}{2}}K^*f\|^2 = A\|K^*C^{\frac{1}{2}} f\|^2 \]
\[\leq \| \int \langle C^{\frac{1}{2}} f, F(w)\rangle_A\langle F(w), C^{\frac{1}{2}} f\rangle_A d\mu(w) \|. \]
\[A\|C^\frac{1}{2}K^*f\|^2 \leq \|\langle SCf, f\rangle_A\| \leq \|S\|\|C\|\|f\|^2. \]

By (2.11) and theorem 2.5, we conclude that F is continuous C-controlled K-frame for \(\mathcal{H} \) with lower and upper frames bounds \(A \) and \(\|C\|\|S\| \).

Theorem 2.12. Let \(C \in GL^+(\mathcal{H}) \), and F be a continuous C-controlled K-frame for \(\mathcal{H} \) with bounds A and B. Let \(M, K \in \text{End}_A(\mathcal{H}) \) such that \(R(M) \subseteq R(K) \), \(R(K) \) is closed and C commutes with \(M^* \) and \(K^* \). Then F is continuous C-controlled M-frame for \(\mathcal{H} \).

Proof. Assume that F be a continuous C-controlled K-frame for \(\mathcal{H} \) with bounds A and B, then,

(2.12) \[A\|C^\frac{1}{2}K^*f\|^2 \leq \|\langle SCf, f\rangle_A\| \leq \|S\|\|C\|\|f\|^2. \]

Since \(R(M) \subseteq R(K) \), by theorem 1.4, there exists some \(0 \leq \lambda \) such that \(MM^* \leq \lambda KK^* \).

Hence,

\[\langle MM^*C^\frac{1}{2}f, C^\frac{1}{2}f\rangle_A \leq \lambda \langle KK^*C^\frac{1}{2}f, C^\frac{1}{2}f\rangle_A, \]

then,

\[\frac{A}{\lambda} \langle MM^*C^\frac{1}{2}f, C^\frac{1}{2}f\rangle_A \leq A\langle KK^*C^\frac{1}{2}f, C^\frac{1}{2}f\rangle_A. \]

By (2.12), we have,

\[\frac{A}{\lambda} \langle M^*C^\frac{1}{2}f, M^*C^\frac{1}{2}f\rangle_A \leq \int_{\Omega} \langle f, F(w)\rangle_A \langle CF(w), f\rangle_A d\mu(w) \leq B\langle f, f\rangle_A. \]

Then F is continuous C-controlled M-frame for \(\mathcal{H} \) with bounds \(\frac{A}{\lambda} \) and B. \(\square \)

The following results gives the invariance of a continuous C-controlled Bessel mapping by a adjointable operator.

Proposition 2.13. Let \(T \in \text{End}_A(\mathcal{H}) \) such that \(TC = CT \) and F be a continuous C-controlled Bessel mapping with bound D. Then TF is also a continuous C-controlled Bessel mapping with bound \(D\|T^*\| \).
Proof. Assume that F is a continuous C-controlled Bessel mapping with bound D. Hence we have,
\[\int_{\Omega} \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A d\mu(w) \leq D \langle f, f \rangle_A, f \in H. \]
We have,
\[\int_{\Omega} \langle f, TF(w) \rangle_A \langle CTF(w), f \rangle_A d\mu(w) = \int_{\Omega} \langle T^* f, F(w) \rangle_A \langle TCF(w), f \rangle_A d\mu(w) \]
\[= \int_{\Omega} \langle T^* f, F(w) \rangle_A \langle CF(w), T^* f \rangle_A d\mu(w) \]
\[\leq D \langle T^* f, T^* f \rangle_A \]
\[\leq D \|T^*\|^2 \langle f, f \rangle_A. \]

The result holds. \hfill \square

Now, we study the invariance of a continuous C-controlled K-frame mapping by adjointable operator.

Theorem 2.14. Let $C \in GL^+(H)$, and F be a continuous C-controlled K-frame for H with bounds A and B. If $T \in \text{End}^*_A(H)$ with closed range such that $R(K^* T^*)$ is closed and C, K, T commute with each other. Then TF is a continuous C-controlled K-frame for $R(T)$.

Proof. Assume that F is a continuous C-controlled K-frame with bounds A and B. Then,
\[A \langle C^\frac{1}{2} K^* f, C^\frac{1}{2} K^* f \rangle_A \leq \int_{\Omega} \langle f, F(w) \rangle_A \langle CF(w), f \rangle_A \leq B \langle f, f \rangle_A, f \in H. \]
Since T has a closed range, then T has Moore-Penrose inverse T^\dagger such that $TT^\dagger T = T$ and $T^\dagger TT^\dagger = T^\dagger$, so $TT^\dagger_{/R(T)} = I_{R(T)}$ and $(TT^\dagger)^* = I^* = I = TT^\dagger$.

We have,
\[\langle K^* C^\frac{1}{2} f, K^* C^\frac{1}{2} f \rangle_A = \langle (TT^\dagger)^* K^* C^\frac{1}{2} f, (TT^\dagger)^* K^* C^\frac{1}{2} f \rangle_A \]
\[= \langle (T^\dagger)^* T^* K^* C^\frac{1}{2} f, (T^\dagger)^* T^* K^* C^\frac{1}{2} f \rangle_A. \]

So,
\[\langle K^* C^\frac{1}{2} f, K^* C^\frac{1}{2} f \rangle_A \leq \| (T^\dagger)^* \|^2 \langle T^* K^* C^\frac{1}{2} f, T^* K^* C^\frac{1}{2} f \rangle_A. \]

Therefore,
\[\| (T^\dagger)^* \|^{-2} \langle K^* C^\frac{1}{2} f, K^* C^\frac{1}{2} f \rangle_A \leq \langle T^* K^* C^\frac{1}{2} f, T^* K^* C^\frac{1}{2} f \rangle_A. \]

Consequently, from theorem [1.4] and $R(T^* K^*) \subset R(K^* T^*)$, there exists some $\lambda \geq 0$ such that,
\[\langle T^* K^* C^\frac{1}{2} f, T^* K^* C^\frac{1}{2} f \rangle_A \leq \lambda \langle K^* T^* C^\frac{1}{2} f, K^* T^* C^\frac{1}{2} f \rangle_A. \]
Hence, using (2.14) and (2.15) we have,
\[\int_{\Omega} \langle f, TF(w) \rangle_\mathcal{A} \langle CTF(w), f \rangle_\mathcal{A} d\mu(w) = \int_{\Omega} \langle T^* f, F(w) \rangle_\mathcal{A} \langle CTF(w), f \rangle_\mathcal{A} d\mu(w) \]
\[= \int_{\Omega} \langle T^* f, F(w) \rangle_\mathcal{A} \langle CF(w), T^* f \rangle_\mathcal{A} d\mu(w) \]
\[\geq A \langle C^{\frac{1}{2}} K^* T^* f, C^{\frac{1}{2}} K^* T^* f \rangle_\mathcal{A} \]
\[\geq \frac{A}{\lambda} \langle T^* C^{\frac{1}{2}} K^* f, T^* C^{\frac{1}{2}} K^* f \rangle_\mathcal{A}, \]
then,
\[(2.16) \int_{\Omega} \langle f, TF(w) \rangle_\mathcal{A} \langle CTF(w), f \rangle_\mathcal{A} d\mu(w) \geq \frac{A}{\lambda} \| (T^*)^* \|^{-2} \langle C^{\frac{1}{2}} K^* f, C^{\frac{1}{2}} K^* f \rangle_\mathcal{A} \]

Using (2.16) and proposition 2.13, the result holds.

\[\square \]

Theorem 2.15. Let \(C \in GL^1(\mathcal{H}) \) and \(F \) be a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \) with bounds \(A \) and \(B \).
If \(T \in \text{End}^*_A(\mathcal{H}) \) is an isometry such that \(R(T^* K^*) \subset R(K^* T^*) \) with \(R(K^* T^*) \) is closed and \(C, K, T \) commute with each other, then \(TF \) is a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \).

Proof. Using theorem 1.4, there exists some \(\lambda \geq 0 \) such that,
\[\| T^* K^* C^{\frac{1}{2}} f \|^2 \leq \lambda \| K^* T^* C^{\frac{1}{2}} f \|^2. \]
Assume \(A \) the lower bound for the continuous \(C \)-controlled \(K \)-frame \(F \) and \(T \) is an isometry then,
\[\frac{A}{\lambda} \| C^{\frac{1}{2}} K^* f \|^2 = \frac{A}{\lambda} \| T^* C^{\frac{1}{2}} K^* f \|^2 \]
\[\leq A \| K^* T^* C^{\frac{1}{2}} f \|^2 \]
\[= A \| C^{\frac{1}{2}} K^* T^* f \|^2 \]
\[\leq \int_{\Omega} \langle T^* f, F(w) \rangle_\mathcal{A} \langle CF(w), T^* f \rangle_\mathcal{A} d\mu(w) \]
\[= \int_{\Omega} \langle f, TF(w) \rangle_\mathcal{A} \langle TCF(w), f \rangle_\mathcal{A} d\mu(w), \]
then,
\[(2.17) \frac{A}{\lambda} \| C^{\frac{1}{2}} K^* f \|^2 \leq \int_{\Omega} \langle f, TF(w) \rangle_\mathcal{A} \langle CTF(w), f \rangle_\mathcal{A} d\mu(w). \]

Hence, from proposition 2.13 and inequality (2.17), we conclude that \(TF \) is a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \) with bounds \(\frac{A}{\lambda} \) and \(B \| T^* \|^2 \).

\[\square \]
References

1. S. T. Ali, J. P. Antoine, J. P. Gazeau, Continuous frames in Hilbert spaces, Annals of Physics 222 (1993), 1-37.
2. L. Arambašić, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007) 469-478.
3. A. Askari-Hemmat, M. A. Dehghan, M. Radjabalipour, Generalized frames and their redundancy, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1143-1147.
4. P. Balazs, J-P. Antoine and A. Grybos, Weighted and Controlled Frames. Int. J. Wavelets Multi. Inf. Process., 8(1) (2010) 109-132.
5. O. Christensen, An Introduction to Frames and Riesz bases, Birkhäuser,(2016).
6. J.B.Conway, A Course In Operator Theory,AMS,V.21,2000.
7. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
8. F. R. Davidson, C*-algebra by example,Fields Ins. Monog. 1996.
9. R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
10. J. P. Gabardo and D. Han, Frames associated with measurable space, Adv. Comp. Math. 18 (2003), no. 3, 127-147.
11. D. Gabor, Theory of communications, J. Elec. Eng. 93 (1946), 429-457.
12. L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012) 139-144.
13. S. Kabbaj, M. Rossafi, *-operator Frame for End⁎(ℋ), Wavelet Linear Algebra, 5, (2) (2018), 1-13.
14. G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, Boston, 1994.
15. M. R. Kouchi and A. Rahimi, On controlled frames in Hilbert C*-modules, Int. J. Wavelets Multi. Inf. Process. 15(4) (2017): 1750038.
16. E. C. Lance, Hilbert C*-Modules: A Toolkit for Operator Algebraist, 144 pages, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, (1995).
17. M. Nouri, A. Rahimi and Sh. Najafzadeh, Controlled K-frames in Hilbert Spaces, J. of Ramanujan Society of Math. and Math. Sc., 4(2) (2015) 39-50.
18. W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., (182)(1973), 443-468.
19. M. Rossafi, S. Kabbaj, *-K-operator Frame for End⁎(ℋ), Asian-Eur. J. Math. 13 (2020), 2050060.
20. M. Rossafi, A. Bourouhiya , H. Labrigui and A. Touri, The duals of *-operator Frame for End⁎(ℋ), Asia Math. 4 (2020), 45-52.
21. M. Rossafi, A. Touri, H. Labrigui and A. Akhlidi, Continuous *-K-G-Frame in Hilbert C*-Modules, Journal of Function Spaces, (2019), Article ID 2426978.
22. M. Rossafi, S. Kabbaj, Operator Frame for End⁎(ℋ), J. Linear Topol. Algebra, 8 (2019), 85-95.
23. S. Kabbaj, M. Rossafi, *-operator Frame for End⁎(ℋ), Wavelet Linear Algebra, 5, (2) (2018), 1-13.
24. M. Rossafi, S. Kabbaj, \(\ast \)-K-g-frames in Hilbert \(\mathcal{A} \)-modules, J. Linear Topol. Algebra, 7 (2018), 63-71.
25. M. Rossafi, S. Kabbaj, \(\ast \)-g-frames in tensor products of Hilbert \(C^\ast \)-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17-25.
26. M. Rossafi, S. Kabbaj, K-operator Frame for \(\text{End}_{\mathcal{A}}^\ast (\mathcal{H}) \), Asia Math. 2 (2018), 52-60.
27. M. Rossafi, S. Kabbaj, Frames and Operator Frames for \(B(\mathcal{H}) \), Asia Math. 2 (2018), 19-23.
28. M. Rossafi, A. Akhlidj, Perturbation and Stability of Operator Frame for \(\text{End}_{\mathcal{A}}^\ast (\mathcal{H}) \), Math-Recherche Appl. Vol. 16 (2017-2018), 65-81.
29. M. Rossafi, S. Kabbaj, Generalized Frames for \(B(\mathcal{H}, \mathcal{K}) \), Iran. J. Math. Sci. Inf. accepted.
30. L. C. Zhang, The factor decomposition theorem of bounded generalized inverse modules and their topological continuity, J. Acta Math. Sin., 23 (2007), 1413-1418.

1Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco

Email address: farajham19@gmail.com
Email address: samkabbaj@yahoo.fr
Email address: hlabrigui75@gmail.com
Email address: touri.abdo68@gmail.com

3LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco

Email address: rossafimohamed@gmail.com; mohamed.rossafi@usmba.ac.ma