Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

Kevin Stemmler, Rebecca Massimi, Andrea E Kirkwood

Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera *Chlorella* and *Dictyochloris*. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of *Chlorella* and *Scenedesmus* each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.
Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

Submitted by:

Kevin Stemmler, Rebecca Massimi, and Andrea E. Kirkwood

Faculty of Science

University of Ontario Institute of Technology

2000 Simcoe Street North

Oshawa, Ontario

Canada

L1H 7K4

1Corresponding Author:
e-mail: andrea.kirkwood@uoit.ca
tel: 905.721.8668
fax: 905.721.3304
Abstract

Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (2 activated sludge and 1 aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera *Chlorella* and *Dictyochloris*. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of *Chlorella* and *Scenedesmus* each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.
Introduction

World energy consumption of petroleum is currently estimated to be 4.4 billion tonnes per year to fuel electricity, automobiles, and industrial processes (Roddy, 2013). To meet the growing global energy demand, nations worldwide have considered renewable sources of fuel to offset the dependence on non-renewable sources like fossil fuels. Algal biofuels are a promising source of renewable energy since production is non-seasonal, and yields are not limited to one or two harvests per year (da Silva et al., 2009). When compared to other biofuel feedstocks like corn or switchgrass, algal biofuel crops possess 6-12 times greater yearly energy production (Sandefur, Matlock & Costello, 2011). An additional benefit of algal feedstock relates to the variety of possible conversion processes such as direct combustion, pyrolysis, or chemical conversion. Algal biomass can be converted to fuels like hydrogen, oil, or even raw electricity (Brennan & Owende, 2010; Tsukahara & Sawayama, 2005).

Research in algal biofuels has been primarily directed towards improving algal biomass yield or increasing lipid content. Researchers have determined optimal temperatures, light conditions, and nutrients to obtain high growth rates for many strains (Chinnasamy et al., 2010; Price, Yin & Harrison, 1998). These parameters are not the same for each strain of microalgae, and as a result, they need to be optimized individually. One challenging aspect of growing microalgae compared to terrestrial plant crops is the sizeable amount of water required to sustain yields. To grow algal biofuel-feedstock at large-scale cultivation would require approximately 1.5 million liters of water per hectare (Cho et al., 2007). If grown in open ponds, the evaporation loss would be 7-11 million liters of water per hectare per year (Cho et al., 2007). This requirement is juxtaposed against the prediction that 66% of the world’s population will be residing in regions without access to drinking water by 2025 (Mehanna et al., 2010).
Additionally, Sandstrom (1995) showed that a 15% reduction in precipitation due to climate change may result in a 40-50% reduction in aquifer water recharge. As such, a major stumbling block for the economic and environmental feasibility of algal-based biofuel production is the potentially unsustainable requirement for freshwater.

In recent years, research has started to focus on exploiting wastewater rather than freshwater as a growth medium for algal feedstock production. Wastewater, particularly municipal and agricultural, typically contain elevated levels of essential nutrients such as nitrogen and phosphorous. For example, nitrogen and phosphorus concentrations in municipal wastewaters can range from 10-100 mg·L\(^{-1}\) and >1000 mg·L\(^{-1}\) in agricultural wastewater (de la Noue, Laliberte & Proulx, 1992). Not only does wastewater serve as a good growth medium for microalgae, but conversely, algal growth in wastewater can serve as a tertiary treatment option (de la Noue et al., 1992; Lau et al. 1995; Woertz et al. 2009). Sandefur et al. (2011) have shown that algal strains grown in treated wastewater were able to significantly decrease both phosphorus and nitrogen concentrations. When microalgae are grown in piggery wastewater, An et al. (2003) showed that the green alga *Botryococcus braunii* could remove 80% of the nitrate content. Another significant component of municipal wastewater is the organic load (Rogers 1996, Fadini et al., 2004). Sewage sourced from human populations is replete with biodegradable compounds such as sugars, amino acids and other breakdown products of digestion (Painter and Viney 1959; Garcia et al. 1991). Although readily mineralized by bacteria during secondary treatment, these organic compounds can also be utilized by mixotrophic algae.

Even though wastewater has great potential as a growth medium for algal-feedstock production, a major caveat is the broad variation in wastewater quality and levels of toxic constituents. Most studies assessing algal growth in wastewater use isolates from lakes, rivers, or...
other naturally occurring water bodies (Park et al., 2012; Zhou et al., 2011). Zhou et al. (2011) reported that only a few strains from the genera Chlorella and Scenedesmus have been analyzed for their ability to grow in municipal wastewater. Some work (Liu et al., 2011) has been done to isolate and culture microalgae from wastewater treatment systems, but assessment of their potential use as a biofuel feedstock remains largely unknown. Also, most studies characterizing microalgae for biofuel production typically use axenic strains and sterile media (Price, Yin & Harrison, 1998; Liu et al., 2011; Zhou et al., 2011), which eliminates the potential role of bacteria in influencing algal growth and lipid production.

In order to move forward the prospects of large-scale cultivation of microalgae in wastewater, we set out to assess the potential of microalgae isolated from municipal wastewater treatment systems to serve as candidates for biofuel-feedstock production. The rationale being that microalgae isolated from municipal wastewater would have inherently higher tolerance to wastewater compared to lab strains or isolates from natural systems, as well as an increased capacity to grow mixotrophically to exploit organic compounds in wastewater. The first phase of our assessment is presented in this paper, which focuses on: 1) Isolating algal strains from municipal waste-treatment systems; 2) Characterizing the metabolic growth characteristics of wastewater isolates (i.e., photoautotrophy, mixotrophy, and heterotrophy), including their fatty acid composition; and 3) Assessing the effects of commensal bacteria on algal growth and lipid production compared to axenic strains.

Materials and Methods

Strain Collection and Isolation
Wastewater samples were collected from three municipal wastewater treatment plants in southern Ontario, Canada including the towns of Port Perry and Whitby, and the city of Hamilton. All municipal wastewater treatment facilities were activated sludge, with the exception of Port Perry, which is a lagoon system of aerated stabilization basins. Wastewater from secondary (i.e., biological) treated effluent was collected in six sterile 1-L Nalgene™ bottles at mid- and final treatment stages. Wastewater samples were placed into a cooler and stored at 4 °C until enrichment cultures were initiated within 24-hours of collection. Effluent (100-mL) was placed into sterile Erlenmeyer flasks in triplicate. Flasks were then placed on a cool-fluorescent light bank (12:12 dark/light cycle) to encourage algal growth in whole-effluent. Once growth was confirmed either by naked eye or microscopic examination, 5-mL of the sample was transferred to a 250 mL Erlenmeyer flask containing either autoclaved BG11 (Rippka et al., 1979) or CHU10 (Stein, 1973) media. Two types of media were chosen in an attempt to isolate a broader diversity of isolates. After growth was established in media, 5-mL of culture was added to new medium and grown for two weeks. This process was repeated two successive times to ensure the compatibility of the algal culture under lab conditions (Anderson, 2005). Isolation from the algal consortium was undertaken by serial dilutions and transferring 100-µL of diluted culture to 1.5% agar for spread plating. Once single colonies were formed they were transferred with the use of a flame sterilized loop to a well in a 24-microwell plate containing 1-mL of either medium. When growth was present and unialgal cultures were confirmed microscopically, the cultures that were unialgal were transferred to fresh media. Morphologically unique strains were selected and maintained for further experimentation. Although several strains of the same genus and sampling location were isolated (Table 1), morphological variations witnessed under the microscope were used to discriminate between
unique strains. Future 18S rRNA sequencing of strains will help to further delineate strain identification. However, past work (Kirkwood et al., 2008) has clearly shown that phylogenetic similarity does not necessarily reflect physiological similarity.

Before experimentation, each culture was re-evaluated microscopically to confirm unialgal status. Reference strains *Scenedesmus acutus* (CPCC 10) and *Chlorella kessleri* (CPCC 266) were obtained from the Canadian Phycological Culture Collection (CPCC), Waterloo, Ontario, Canada to compare their growth characteristics to wastewater strains. A comparison between CHU10 and BG11 media revealed that after 5-10 days of growth, algal strains grown in CHU10 started to yellow while BG11 strains retained a healthy green colour. As such, all subsequent cultures and growth experiments were conducted with BG11. The nitrogen concentration in BG11 was reduced by a factor of ten to bring it down to a level more closely aligned with wastewater concentrations.

Experimental Growth Conditions

All algal growth experiments were conducted in an Algaetron™ environmental growth chamber (Algaetron Photon System Instruments, Czech Republic) with a built in shaker table. Growth parameters were set to 200 rpm and 150 μmol photons m$^{-2}$ s$^{-1}$. A temperature of 22 °C was used to match the ambient temperature in the lab to minimize any variations encountered when sampling. To assess the effect of growth condition (photoautotrophy, mixotrophy, heterotrophy) on growth rate and fatty acid accumulation, all three growth conditions were tested concurrently for each strain. For the photoautotrophic conditions, all organics were removed from the BG11 media (citric acid, ferric ammonium citrate, and sodium EDTA) and the iron was replaced with ferric chloride similar to the method described by Kirkwood, Fulthorpe & Nalewajko (2003). The mixotrophic conditions utilized the organic-free medium from the
photoautotrophic trials with the addition of either glucose (14mM) or acetate (3mM), similar to Park et al (2012) and Kirkwood, Fulthorpe & Nalewajko (2003). The heterotrophic growth trials utilized the same medium as the mixotrophic trials with the exception of being placed in a cardboard box to exclude illumination. Cultures for experimentation were grown in 50-mL Erlenmeyer flasks in triplicate for seven days. To standardize inocula among experiments and strains, mid-exponential phase inocula with similar cell densities were used. Standard curves of cell density for each algal strain were based on cell counts using a haemocytometer and optical density measured with a Genesys 10S UV-Vis Spectrophotometer (ThermoScientific, Waltham, Massachusetts). Growth rates for each algal strain were calculated from the slope of log-transformed 7-day growth curves (d\(^{-1}\)).

Antibiotic Treatment of Algal Isolates

In order to measure fatty acids derived only from the algal isolates, all strains were subjected to a series of antibiotic treatments to remove commensal bacteria. This was accomplished through the application of streptomycin and penicillin following the methods outlined by Droop (1967). To verify axenic status after 24 hours of incubation in the antibiotic media, a 1-mL aliquot of each dilution was transferred to 1.5% agar containing peptone via pour plate method. The plates were then placed on the light table and monitored over the course of 48 hours for bacterial growth. If no growth was visible on the plates, microscopic examination was performed to verify axenic status. If a sampled failed to achieve axenic status the procedure was repeated. Strains were classified as non-axenic if either the antibiotics proved ineffective at eliminating the bacteria, or the antibiotics prevented algal growth. Parent, non-axenic cultures of all axenic strains were maintained for experiments comparing fatty acid profiles and neutral lipid concentrations.
Due to the extremely low biomass yields for all algal strains grown under heterotrophic conditions, only photoautotrophic and mixotrophic cultures were analysed for fatty acid methyl esters (FAME). Both axenic and non-axenic forms of the same strain were included in FAME analysis. The lipid extraction procedure was based on the FAME synthesis described in O’Fallon et al. (2007). In brief, 7-mL subsamples of microalgae with a cellular density \(\geq 10^5 \) cells·mL\(^{-1}\) was collected at day seven of the experiment. These samples were centrifuged at 1690 g force for 5 minutes. The supernatant was discarded and the samples were stored in \(-20 \) °C until freeze dried. Once freeze dried (typically 24-48 hours) samples could be processed. The fatty acids derived via the lipid extraction method was determined by capillary Agilent J&W GC column (30 m·0.25 mm·0.25 µm) installed in a Varian 450 gas chromatograph. The initial oven temperature was 135 °C held for 4 min, followed by an increase to 250 °C at a rate of 4 °C·min\(^{-1}\), followed by a hold at this temperature for 10 min. The front injector was 250 °C and held for 20 min, the middle was 110 °C for 1 min, and the rear injector was held at 180 °C for 20 min. A mixture of Helium and Nitrogen was used as the carrier gas with a split ratio of 10:1 at a flow rate of 1-mL·min\(^{-1}\) for 3.5 min then shut off. The retention times of each sample were analyzed using an electron impact ion trap mass spectrometer. The standards used for analysis were carbon chain 8 to carbon chain 24 (C8-C24) along with a Bacterial Acid Methyl Ester (BAME) fatty acid mix. The BAME standard was used to filter out non-algal fatty acids. Fatty acids were identified through the use of MS workstation by comparing their retention times to known fatty acid methyl standards. Each chromatograph was then analyzed manually and any peaks that were above the background noise threshold were library searched to determine if the peak was an associated fatty acid. All standards were purchased from Sigma Aldrich (Canada).
Quantification of Neutral Lipids

Similar to the FAME analyses, only photoautotrophic and mixotrophic cultures were analysed for neutral lipids. Both axenic and non-axenic forms of select strains were included in neutral lipids analysis. Neutral lipids in algal cells were determined using the standard Nile Red assay. A calibration curve for neutral lipids was based on the fluorescence response of varying triolein concentrations. Subsamples (1.5-mL) of algal culture from the growth experiments were stored at -20 °C prior to analysis. Due to the limited filter set available, we decided to use an excitation of 590 and emission of 640 nanometers based on the strong fluorescent response of the Nile Red dye at these wavelengths. Nile Red was dissolved in HPLC grade acetone at a concentration of 500 µg·mL⁻¹, and was stored in complete darkness in a vial covered in aluminium foil to prevent photodegradation. In a black-opaque 96 microwell plate, 150-µL of algal sample was aliquoted into the wells in triplicate along with triplicate blanks. Following the addition of the algal samples to the wells, 90-µL of Nile Red was added to the treatment wells to dye the algal cells. The microwell plate was covered and incubated in darkness at room temperature for 10 minutes to allow dye penetration into the cells. After incubation, the plate was immediately analyzed with a Synergy HT multimode plate reader (BioTEK, Winooski, Vermont).

Data Analysis

To determine statistically significant differences between growth condition treatments and strains, Sigma Plot 12 was used to run Analysis of Variance (ANOVA) on exponential growth rates and neutral lipid concentrations. A Shapiro-Wilk test was performed to determine if the data were normally distributed and an All Pairwise Multiple Comparison (Holm-Sidak method) was performed to detect significant differences between individual strains. The
Paleontological Statistics (PAST) software package (v3) (Hammer, Harper & Ryan, 2001) was used for cluster analysis and Principal Component Analysis (PCA). Cluster analysis was based on the average growth rate of each of 19 strains under each of 5 growth conditions (photoautotrophy, mixotrophy-glucose, mixotrophy-acetate, heterotrophy-glucose, heterotrophy-acetate). PCA was based on the percent abundance of fatty acids identified in the FAME analysis, and least-squares linear regression was used to regress PCA axis scores against individual fatty acids.

Results

Microalgae were successfully isolated from all wastewater treatment plants. Table 1 provides a list of strains, media used to isolate each strain, and the original sampling location. Most of the 19 wastewater strains isolated were chlorophyte microalgae, dominated by *Scenedesmus* and *Chlorella* species. The only non-chlorophyte taxon isolated was the cyanobacterium *Microcystis*. With respect to the diversity of taxa isolated, Port Perry wastewater treatment plant provided strains from all isolated genera, followed by Hamilton and Whitby wastewater treatment plants. The application of antibiotic treatment rendered nine of the wastewater isolates axenic (Table 1).

Average growth rates (n=3) for each strain grown under photoautotrophic, mixotrophic and heterotrophic conditions are presented in Figure 1. When comparing the CPCC strains to their taxonomically-similar counterparts from wastewater systems, most *Chlorella* wastewater isolates (with the exception of C3N) grew significantly faster (ANOVA and Holm-Sidak, p<0.05) than the CPCC reference strain C1U, particularly under mixotrophic growth conditions. In contrast, there were only a few *Scenedesmus* wastewater strains that grew significantly
ANOVA, p<0.05) faster under mixotrophic conditions with glucose, compared to the CPCC reference strain S1B. In general, the *Scenedesmus* strains grew significantly slower (ANOVA, p<0.05) than the *Chlorella* strains. The fastest growth rates for any strain were under mixotrophic conditions. One other comparably fast growing strain was D1N, which grew well heterotrophically on acetate. Although several strains could grow fairly well on glucose under heterotrophic conditions, including D1N and most of the *Chlorella* strains, most could not grow very well on either glucose or acetate under heterotrophic conditions.

To assess the trophic similarities of strains based on photoautotrophic, mixotrophic, and heterotrophic growth, cluster analysis was performed (Figure 2). Although the cophenetic correlation coefficient (0.73) indicates that the hierarchical structure in the dendrogram represents the actual similarity moderately well, most dendrogram nodes had weak to moderate agreement based on bootstrap values (1000 replicates). The dendrogram reveals some taxonomic clustering, but mostly a diversity of functional growth-types. The most physiologically similar strains belong to different taxonomic genera, such as *Chlorella* C3N and *Botrydiopsis* B1N. A few strains were less than 80% similar to all the other strains, including *Scenedesmus* S7H and *Chlorella* C4C.

Fatty acid profiles via FAME analysis were determined for each strain under photoautotrophic and mixotrophic conditions with glucose or acetate (Figure 3A-C). To improve clarity, strains were removed from the analysis if they had less than 1% fatty acids detected. Under photoautotrophic conditions (Figure 3A), most non-axenic strains remained in the analysis with detectable fatty acids. Remaining axenic strains tended to cluster to the left of the y-axis, indicating their profiles were different than many non-axenic strains. Although some clustering of strains occurred, most strains were fairly unique in their fatty acid profiles, either being
dominated by C 17 or C 23 fatty acids. When strains were grown under mixotrophic conditions with acetate (Figure 3B), the number of fatty acids detected were somewhat comparable to photoautotrophic conditions (Figure 3A), but with a few fatty acid substitutions including the addition of arachidic acid and the absence of 12-methyltetradecanoic acid and 13-methyltetradecanoic acid. More strains had detectable fatty acids under mixotrophy with acetate, particularly non-axenic strains. Growth with acetate clearly changed the fatty acid composition of strains compared to photoautotrophic growth. When the strains were grown with glucose, a comparatively larger array of fatty acids were detected, but in low concentrations (Figure 3C). More strains had detectable fatty acids than the photoautotrophy treatment, and more strains clustered together indicating a high degree of similarity. The strains S4N and C5C were found to have very distinct fatty acid profiles based on their location on the biplot. Table 2 provides a summary of the most important fatty acids driving fatty acid profiles under the different growth conditions. As visualized in the biplots, linoleic, oleic, and palmitic acids were dominant fatty acids under all growth conditions (Table 2). Under mixotrophic growth with glucose, the number of important fatty acids explaining the variation in fatty acid profiles doubles in comparison to photoautotrophic growth and mixotrophic growth with acetate.

The total neutral lipids for matched axenic and non-axenic algal strains grown under photoautotrophic and mixotrophic conditions are presented in Table 3. Overall, it is apparent that photoautotrophy favours the production of total neutral lipids, although strain B1N was the exception where mixotrophy on glucose produced significantly more neutral lipids. Notable differences between axenic and non-axenic strains were found for all growth conditions. Axenic strains C3N* and S7H* had approximately an order of magnitude higher total neutral lipids than...
other algal strains. Strain C3N in particular was a high neutral-lipid producer compared to all of the strains, regardless of axenic status.

Discussion

The chlorophyte genera isolated from municipal wastewater treatment plants in this study: *Chlorella, Botrydiopsis, Dictyochloris, Ellipsoidon* and *Scenedesmus* reflect a variety of algal strains that are viable in wastewater, but also easy to grow under laboratory conditions. Although found to be among the fastest growing strains, the cyanobacterium *Microcystis* was not a notable producer of fatty acids in this study. *Chlorella* strains were prevalent across the three wastewater treatment systems. This may be due in part to *Chlorella*’s high tolerance of low oxygen conditions, such as in wastewater treatment systems (Shanthala, Hosmani & Hosetti, 2009). Park et al. (2012) commented that both *Scenedesmus* and *Chlorella* are among the most commonly isolated species from wastewater treatment effluent, which explains their high prevalence in all sampling locations in this study.

Mixotrophic growth, with either glucose or acetate, resulted in higher growth rates compared to photoautotrophic growth for the large majority of strains. This was not unexpected as others have demonstrated higher growth yields for algae under mixotrophic growth conditions (Kirkwood, Fulthorpe & Nalewajko, 2003; Das, Aziz & Obbard, 2011; Yan et al., 2012). Yan et al. (2012) also demonstrated that the addition of either glucose or acetate actually increased the energy conversion efficiencies over photoautotrophic growth. In most cases under heterotrophic growth, the initial algal inoculation either resulted in cell death or showed minimal to no growth. Price, Yin & Harrison (1998) found that many microalgal taxa derived from naturally occurring water bodies have generally adapted their cellular processes to daily light fluctuations and
therefore are unable to grow strictly heterotrophically. As such, mixotrophy rather than
photoautotrophy or heterotrophy appears to be the ideal strategy for maximizing growth rate and
biomass yield. Since municipal wastewater and some industrial wastewaters (e.g. pulp and paper
effluent) are replete with organic compounds, including sugars, amino acids, and other
degradation products, it would be an ideal medium for supplementing algal growth.

Similar to other studies (e.g., Nascimento et al., 2013), the fastest growing strains were
not necessarily the best lipid producers (compare Figure 1 and Table 3). Also, the relative
amount of fatty acids produced in each strain varied by axenic status and growth condition and in
general, the highest amount of biofuel-targeted fatty acids, such as oleic and linoleic FAMEs,
were produced by non-axenic algal strains, particularly slower growing Scenedesmus isolates
grown mixotrophically with glucose (Figure 5). Under photoautotrophic conditions, any bacterial
effect on fatty acid profiles of non-axenic microalgal strains were not discernable. However, the
effect became evident under mixotrophic growth, particularly with glucose. A possible
explanation is that the bacteria consumed not only the organic compounds in the microalgal
cultures, but inorganic nutrients as well. This would create nutrient-deprived conditions for the
host microalgal strain, which in turn could induce lipid accumulation as a stress response.

Increased lipid production in algae is a common response to stressful or rapidly changing
conditions (Saha et al., 2013). Since the relative amount and type of fatty acids increased most
notably in non-axenic strains of microalgae in our study, this may be the result of a nutrient-
stress response via competition with bacteria. Liu et al. (2012) discovered that when glucose was
added to growth media, it stimulated bacterial growth in algal cultures, which in turn reduced the
availability of inorganic nutrients to the algae. A similar result was found when Scenedesmus
obliquus was grown with a natural bacterial community, where both phosphorus and nitrogen
became limited at the plateau of the alga’s growth cycle (Daufresne et al., 2008). When grown in co-culture, bacteria can also produce allelopathic exudates that either inhibit algal growth or lyse cells (Mayali & Azam, 2004). However, it is unclear if bacterial allelopathy can also induce hyperaccumulation of lipids in algae.

Although for the majority of strains, the total amount of neutral lipids was comparable between axenic and non-axenic strains, there were two striking exceptions (Table 3). Strains C3N and S7H accumulated more neutral lipids particularly under axenic and photoautotrophic conditions. If hyperaccumulation of lipids tends to occur under stressful growth conditions, the results for these two strains may indicate that photoautotrophic growth without bacteria is a stressful growth condition. Of course, this is a preliminary finding, but does highlight the unique differences that can exist among algal taxa isolated from the same environment. Regardless of mechanism, these findings also highlight that, depending on the strain you are working with, the presence of bacteria can have significant impacts on not only the type of fatty acids being produced, but the total amount.

Comparing the microalgal strains under the three different growth conditions showed that axenic strains had a small but detectable difference in fatty acid composition compared to their non-axenic counterparts. A similar result was noted with *C. vulgaris* and *C. sorokiniana* when grown with the bacterium *A. brasilene*, which caused the variation in fatty acids to change from five to eight different fatty acids with increasing amounts of unsaturation (de Bashan et al., 2002). Adding glucose to media can change the lipid composition in photoautotrophically grown microalgae by significantly increasing oleic acid concentration (Sunja et al., 2011). This was also found in our experiments, where an increased number of strains produced oleic acid under mixotrophic growth with glucose compared to photoautotrophic growth. Additionally, Cherisilp
and Torpee (2012) have confirmed that microalgae grown under mixotrophic conditions using glucose showed an overall increase in lipid content over photoautotrophic growth and heterotrophic growth, which we also found.

Overall, our assessment of wastewater microalgae has not only shown that mixotrophy can significantly increase growth rate, but that most wastewater *Chlorella* and *Scenedesmus* strains exceed the mixotrophic growth-rates of representative culture collection strains. This infers that wastewater strains may be ideal candidates for growth in organic-substrate rich wastewater for biomass and/or biofuel feedstock production. Most of the *Chlorella* wastewater strains were the fastest growers, particularly under mixotrophic and heterotrophic growth conditions. This may increase their potential as biofuel feedstock due to their growth-condition versatility. Additionally, the *Chlorella* wastewater isolates from this study produced total-lipid concentrations on par with wastewater-grown strains (as total lipid in culture-medium) in a study by Woertz et al (2009).

Although fast growth is an ideal characteristic for any algal strain used in biofuel feedstock production, it must be coupled with comparatively high lipid yields. As previously discussed, the fastest growing microalgal strains were typically not the highest lipid producers. Thus acceptable trade-offs in growth rate vs. lipid yield must be established. To date, the majority of research in algal biofuels involves the maintenance of axenic or low bacterial contamination in microalgal cultures. Yet, our study has demonstrated that the fatty acid amount and composition can change with bacterial presence. Additionally, the even blend of saturated and unsaturated fatty acids tended to be found in non-axenic microalgal cultures. These findings bode well for growing microalgae in bacteria-laden wastewater. However, it remains to be determined if microalgal growth in wastewater with bacteria results in higher lipid yields and
desirable fatty acid composition. As such, the next phase of our research is focusing on the efficacy of growing microalgal wastewater-isolates in municipal wastewater, and assessing the conditions under which growth and lipid production are optimized.

Acknowledgements

The authors wish to thank Heloise Breton and Jenna Comstock for assistance with the FAME protocol and GC-MS calibration and set-up.
References

An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga *Botryococcus braunii*. J Appl Phycol 15:185-191.

Anderson RA (2005) Algal culturing techniques. Elsevier Science and Technology Books, Academic Press, London, UK

Brennan L, Owende P (2010) Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557-577.

Cherisilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation, Bioresour Technol 110:510-516.

Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751-6760.

Cho SH, Ji SC, Hur SB, Bae J, Park IS, Song YC (2007) Optimum temperature and salinity conditions for growth of green algae *Chlorella ellipsoidea* and *Nannochloris oculata*. Fish Sci 73:1050-1056.

Das P, Aziz SS, Obbard JP (2011) Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy 36:2524-2528.

da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568-578.
Daufresne T, Lacroix G, Benhaim D, Loreau M (2008) Coexistence of algae and bacteria: a test of the carbon hypothesis. Aquat Microb Ecol 53:323-332.

de Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasiliense. Can J Microbiol 48:514-521.

de la Noue J, Laliberte G, Proulx D (1992) Algae and waste water. J Appl Phycol. 4:247-254.

Droop MR (1967) A procedure for routine purification of algal cultures with antibiotics. Br Phycol Bull 3:295-297.

Fadini PS, Jardim WF, Guimarães JR (2004) Evaluation of organic load measurement techniques in a sewage and waste stabilisation pond. J Brazil Chem Soc 15:131-135

García C, Hernández T, Costa F (1991) Study on water extract of sewage sludge composts. Soil Sci Plant Nut 37:399-408.

Hammer Ø., Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Paleontol Electron 4:9.

Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microb Ecol 55:453-465.

Kirkwood AE, Nalewajko C, Fulthorpe RR (2003) Physiological characteristics of cyanobacteria in pulp and paper waste-treatment systems. J Appl Phycol 15:325-335.

Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59-66.
Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresour Technol 102:106-110.

Liu H, Zhou Y, Xiao W, Ji L, Cao X, Song C (2012) Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: Evidence from alkaline phosphatase assay. Microbiol Res 167:292-298.

Mayali X, Azam F (2004) Algicidal Bacteria in the Sea and their Impact on Algal Blooms. J Eukaryot Microbiol 51:139-144.

Mehanna M, Saito T, Yan J, Hickner M, Cao X, Huang X, Logan BE (2010) Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3:1114-1120.

Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acid profiles as selective criteria. BioEnerg Res 6 1-13.

O’fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Animal Sci 85:1511-1521.

Painter, H.A. and Viney, M., 1959. Composition of a domestic sewage. Journal of Biochemical and Microbiological Technology and Engineering, 1(2), pp.143-162.

Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14
microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339-348.

Price LL, Yin K, Harrison PJ (1998) Influence of continuous light and L:D cycles on the growth and chemical composition of Prymnesiophyceae including coccolithophores. J Exp Mar Biol Ecol 223:223-234.

Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1-61.

Roddy DJ (2013) Biomass in a petrochemical world. Interface Focus 3:1-8.

Rogers HR (1996) Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185:3-26.

Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P (2013) Effect of various stress-regulatory factors on biomass and lipid production in microalga *Haematococcus pluvialis*. Bioresour Technol 128 118-124.

Sandefur HN, Matlock MD, Costello TA (2011) Seasonal productivity of periphytic algal community for biofuel feedstock generation and nutrient treatment. Ecol Eng 37:1476-1480.

Sandstrom K (1995) Modeling the effects of rainfall variability on groundwater recharge in semi-arid Tanzania. Nord Hydrol 26:313-330.

Shanthala M, Hosmani SP, Hosetti BB (2009) Diversity of phytoplankton in waste stabilization pond at Shimoga Town, Karnataka State, India. Environ Monit Assess 151:437-443.

Stein J (1973) Handbook of Phycological methods. Culture methods and growth measurements, Cambridge University Press, Cambridge, UK
Sunja C, Lee D, Luong TT, Park S, Oh YK, Lee T (2011) Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga *Chlorella* sp. 227. J Microbiol Biotechnol 21:1073-1080.

Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48:251-259.

Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115-1122.

Yan R, Zhu D, Zhang Z, Zeng Q, Chu J (2012) Carbon metabolism and energy conversion of *Synechococcus* sp. PCC 7942 under mixotrophic conditions: comparison with photoautrophic condition. J Appl Phycol 24:657-668.

Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909-6919.
List of microalgal strains assessed in this study including nineteen municipal wastewater treatment plant (WWTP) isolates and two Canadian Phycological Culture Collection (CPCC) reference strains.
Table 1: List of microalgal strains assessed in this study including nineteen municipal wastewater treatment plant (WWTP) isolates and two Canadian Phycological Culture Collection (CPCC) reference strains.

Taxonomic ID	Strain ID	Isolating Medium	Treatment stage	Site of Origin
Botrydiopsis	B1N	CHU10	Mid-stage secondary treatment	Port Perry, Ontario WWTP
Botrydiopsis	B2H	BG11	Final stage of secondary treatment	Hamilton, Ontario WWTP
Chlorella kesslirii	C1U	Unknown	CPCC Reference strain (CPCC 266)	Unknown (USA)
Chlorella	C3N	CHU10	Mid-stage secondary treatment	Port Perry, Ontario WWTP
Chlorella	C4C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Chlorella	C5C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Chlorella	C6C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Dictyochloris	D1N	CHU10	Final stage of secondary treatment	Port Perry, Ontario WWTP
Ellipsoidon	E1H	BG11	Final stage of secondary treatment	Hamilton, Ontario WWTP
Ellipsoidon	E2C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Ellipsoidon	E3N	CHU10	Final stage of secondary treatment	Port Perry, Ontario WWTP
Microcystis	M1H	BG11	Mid-stage secondary treatment	Hamilton, Ontario WWTP
Scenedesmus acutus	S1B	Unknown	CPCC Reference strain CPCC 10	Boucher Lake, ON
Scenedesmus	S2N	CHU10	Final stage of secondary treatment	Port Perry, Ontario WWTP
Scenedesmus	S3N	CHU10	Final stage of secondary treatment	Port Perry, Ontario WWTP
Scenedesmus	S4N	CHU10	Mid-stage secondary treatment	Port Perry, Ontario WWTP
Scenedesmus	S5N	CHU10	Final stage of secondary treatment	Port Perry, Ontario WWTP
Scenedesmus	S6H	BG11	Mid-stage secondary treatment	Hamilton, Ontario WWTP
Scenedesmus	S7H	BG11	Mid-stage secondary treatment	Hamilton, Ontario WWTP
Scenedesmus	S8C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Scenedesmus	S9C	CHU10	Mid-stage secondary treatment	Whitby, Ontario WWTP
Table 2 (on next page)

Regressions using PCA scores

Regression coefficients (R2) from least-squares linear regression of principle component axis scores and fatty acid proportions for photoautotrophic and mixotrophic conditions. Only statistically significant coefficients are reported (p≤0.05).
1 Table 2: Regression coefficients (R^2) from least-squares linear regression of principle component axis scores and fatty acid proportions for photoautotrophic and mixotrophic conditions. Only statistically significant coefficients are reported ($p \leq 0.05$).

Fatty Acids	PC Axis 1 (R^2)	PC Axis 2 (R^2)
Photoautotrophy		
linoleic acid methyl ester	0.8	
oleic acid methyl ester (cis)	0.7	
palmitic acid methyl ester	0.92	
12-methyltetradecanoic acid methyl ester		0.72
erucic acid methyl ester		0.86
Mixotrophy-Acetate		
linoleic acid methyl ester	0.76	
oleic acid methyl ester (cis)	0.87	
palmitic acid methyl ester	0.81	
arachidic acid methyl ester		0.76
14-methylpentadecanoic acid methyl ester		0.74
Mixotrophy-Glucose		
arachidic acid methyl ester	0.94	
linoleic acid methyl ester	0.88	
myristic acid methyl ester	0.96	
oleic acid methyl ester (cis)	0.95	
palmitic acid methyl ester	0.98	
palmitoleic acid methyl ester	0.94	
stearic acid methyl ester	0.96	
13-methyltetradecanoic acid methyl ester		0.94
14-methylpentadecanoic acid methyl ester		0.93
15-methylhexadecanoic acid methyl ester		0.94
9,10-methylene-hexadecanoic acid ME		0.94
margaric acid methyl ester		0.94
pentadecanoic acid methyl ester		0.94
Table 3 (on next page)

Neutral lipids in isolates under different trophic conditions.

Comparison of mean (n=3) total neutral lipids among select axenic and non-axenic strains (axenic strains denoted by * beside the strain name). Standard deviations are in brackets. All treatments for each strain were compared using ANOVA (α = 0.05) and the Holm-Sidak method. Statistically significant differences are denoted by: A = photoautotrophic is significantly different from mixotrophic (glucose); B = photoautotrophic is significantly different from mixotrophic (acetate); C = mixotrophic (glucose) is significantly different from mixotrophic (acetate); Z = all treatments are significantly different from each other.
Table 3. Comparison of mean (n=3) total neutral lipids among select axenic and non-axenic strains (axenic strains denoted by * beside the strain name). Standard deviations are in brackets. All treatments for each strain were compared using ANOVA (α = 0.05) and the Holm-Sidak method. Statistically significant differences are denoted by: A= photoautotrophic is significantly different from mixotrophic (glucose); B = photoautotrophic is significantly different from mixotrophic (acetate); C = mixotrophic (glucose) is significantly different from mixotrophic (acetate); Z = all treatments are significantly different from each other.

Strain ID	Photoautotrophic	Mixotrophic (Glucose)	Mixotrophic (Acetate)	Statistical Differences
B1N*	22.1 (0.56)	45.9 (0.256)	14.9 (0.186)	Z
B1N	7.49 (0.334)	62.6 (0.359)	5.06 (0.012)	Z
C3N*	776 (24.9)	565 (15.88)	714 (16.1)	Z
C3N	318 (18.2)	262 (4.238)	172 (2.18)	Z
D1N*	25.6 (0.396)	5.22 (0.046)	4.84 (0.07)	AB
D1N	34.2 (2.09)	5.75 (0.060)	5.59 (0.181)	AB
S2N*	59.6 (2.16)	30.5 (0.293)	26.4 (0.451)	AB
S2N	45.6 (2.35)	44.4 (0.269)	34.5 (0.913)	BC
S3N*	49.1 (0.41)	36.4 (1.315)	12.6 (0.154)	Z
S3N	70.5 (3.19)	43.8 (0.724)	18.9 (0.491)	Z
S5N*	64.5 (3.22)	40.8 (0.647)	15.8 (0.233)	Z
S5N	36.5 (2.31)	34.6 (0.856)	14.9 (0.439)	BC
S7H*	629 (364)	154 (2.196)	76.3 (1.67)	Z
S7H	66.2 (2.72)	53.3 (0.501)	51.3 (0.790)	AB
Comparison of mean exponential phase specific-growth rates between microalgal strains grown under photoautotrophic, mixotrophic, and heterotrophic conditions. Error bars reflect standard error of the mean.

Comparison of mean (n=3) exponential phase specific-growth rates between microalgal strains grown under photoautotrophic, mixotrophic, and heterotrophic conditions. Error bars reflect standard error of the mean.
Comparison of trophic profiles among strains using cluster analysis based on unweighted pair-group average (UPGMA) using the Bray-Curtis Similarity Index showing Bootstrap analysis values (N=1000) at each node.

Comparison of trophic profiles (photoautotrophic, mixotrophic, and heterotrophic) among strains using cluster analysis based on unweighted pair-group average (UPGMA) using the Bray-Curtis Similarity Index showing Bootstrap analysis values (N=1000) at each node.

Cophsenetic Correlation = 0.73
Figure 3 (on next page)

PCA biplots A, B and C.

Principal component analysis (PCA) biplots of fatty acid methyl esters from microalgal strains grown under photoautotrophic (A) mixotrophic (acetate) (B) and mixotrophic (glucose) (C) conditions. Fatty acids are represented by green labels and algal strains are indicated in blue by their strain identification. Strains with an asterisk (*) denote axenic status.
Component 1 (49% variation)

Component 2 (27.4% variation)
