Development of systemic therapy for hepatocellular carcinoma at 2013: Updates and insights

Stephen L Chan, Winnie Yeo

A growing number of multi-targeted tyrosine kinase inhibitor (TKI) has undergone testing for hepatocellular carcinoma (HCC). Unfortunately, this enthusiasm has recently been discouraged by a number of negative phase III studies on several anti-angiogenic TKIs in HCC. Several postulations have been made to account for this phenomenon, namely the plateau effects of anti-angiogenesis approach, the heterogeneity of HCC in terms of background hepatitis/cirrhosis and tumor biology, as well as the way how clinical trials are designed. Regardless of the underlying reasons, these results suggested that alternative strategies are necessary to further develop systemic therapy for HCC. Several new strategies are currently evaluated: for examples, molecular agents with activities against targets other than vascular endothelial growth factor receptor are being evaluated in on-going clinical trials. In addition, different approaches of targeted agents in combination with various treatment modalities, such as concurrently with another molecular agent, cytotoxic chemotherapy or transarterial chemoembolization, are being developed. This review aims to give a summary on the results of recently released clinical trials on TKIs, followed by discussion on some of the potential novel agents and combinational approaches. Future directions for testing innovative systemic agents for HCC will also be discussed.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Liver neoplasms; Systemic treatment; Biology; Staging; Clinical trial

INTRODUCTION

Following the approval of sorafenib for treatment of unresectable hepatocellular carcinoma (HCC), there has been a surge of interests in the clinical development of targeted agents for HCC. Despite intensive efforts being put on drug testing over the past 5 years, the outcomes of patients with advanced HCC remain poor. Recently, a number of novel multi-targeted tyrosine kinase inhibitors (TKIs) have completed phase III testing but all of the results have turned out to be negative[1-3]. In addition, these large scale clinical trials persistently reported a median overall survival (OS) of 9 to 10 mo, indicating that the benefit of existing panel of TKIs has reached a plateau. Although these negative results appear discouraging to some, experience from these trials have shed insights to...
growth factor receptor) and PDGF. The key results of completed phase III clinical trials on these agents are summarized in Table 1.

Sunitinib is the first anti-angiogenic TKI to compare with sorafenib in phase III trial. The targets of sunitinib include VEGF, PDGF, c-kit and FLT-3. Despite multiple targets of sunitinib, clinical experiences with the drug suggest that anti-angiogenesis is probably the major anti-neoplastic mechanism. Initial phase II studies reported potential activities of sunitinib in advanced HCC, with disease control rate ranging from 38% to 52%, and overall survival ranging from 8.0 to 9.8 mo[6-7]. To validate the results of these studies, a multi-centered phase III clinical trial (SUN1170) was launched in 2008 to compare sunitinib to sorafenib as the first-line treatment for advanced HCC. The original design was aimed to recruit 1200 patients with randomization in 1:1 ratio into two arms, namely sunitinib 37.5 mg daily or sorafenib 400 mg twice daily. However, after accruing 1074 patients, the study was prematurely stopped when a preplanned safety analysis revealed a higher incidence of serious adverse events in the sunitinib arm[1]. The primary endpoint, OS, of the sorafenib arm was 7.9 mo, which was significantly worse than the 10.2 mo in the sunitinib arm (P = 0.0014), while the time-to-progression (TTP) was similar between the two arms (sunitinib 4.1 vs sorafenib: 3.8 mo; P = 0.8312)[1]. In terms of toxicity profile, sunitinib was associated with more grade 3 or above complications, including bleeding events (11.4%), thrombocytopenia (29.7%) and neutropenia (25.7%). The toxicity and inferior outcomes of patients treated with sunitinib have stopped further development of the agent in HCC.

Brivanib is a dual VEGF and FGFR inhibitor[8]. In preclinical models, the drug has been shown to have more potent anti-angiogenic effects than sorafenib, and the additional activity against FGFR is postulated to counteract the resistance mechanism to angiogenic agents targeting VEGF alone. In phase II clinical trials, brivanib has demonstrated reasonable activity in both first- and second-line settings with TTP of 2.8 and 1.4 mo, respectively[9,10]. Two randomized phase III clinical trials were conducted to assess the agent in the first-line (BRISK-FL) and second-line (BRISK-PS) settings. BRISK-FL is a head-to-head randomized phase III clinical trial comparing brivanib to sorafenib as the first-line therapy in patients with unresectable HCC. The study enrolled 1155 patients who had not received any prior systemic treatment, and participants were randomized in 1:1 ratio to receive brivanib at 800 mg daily or sorafenib at 400 mg twice daily, with OS as the primary endpoint[11]. The clinical trial has adopted a non-inferiority study design. According to the latest publication, the primary endpoint, OS non-inferiority between brivanib and sorafenib, was not met [brivanib: 9.5 mo; sorafenib: 9.9 mo; HR = 1.06; P = non-significant (NS)]3. There were also no difference in TTP between brivanib and sorafenib (brivanib: 4.2 mo; sorafenib: 4.1 mo; P = NS)[3]. In addition, brivanib appeared to be less well tolerated than sorafenib, as evidenced by higher rates of adverse events resulting in

Table 1 Results of completed phase III clinical trial on systemic agents for hepatocellular carcinoma

Clinical trial	Drug	Population	TTP (mo)	OS (mo)
1st line				
SHARP[4]	Sorafenib	19% HBV;	5.5	10.7
	Placebo	29% HCV;	2.8	7.9
Asian SHARP[4]	Sorafenib	27% HCV;	(P < 0.001)	(P < 0.001)
	Placebo	2%	6.5	
SUN1170[5]	Sunitinib	55% HBV;	4.0	8.1
	Sorafenib	71% HCV;	2.8	6.5
	Placebo	11% HCV;	1.4	4.2
		4.0% HCV;	(P = 0.014)	
2nd line				
SEARCH[6]	Sorafenib +	NA	4.0	9.8 (P = NS)
	Erlotinib			
Sunitinib	40%	8.5 (P = 0.2)		
Chemotherapy[7]	Doxorubicin	80% HBV;	NA	6.8
	8% HCV			
	PIAF	82% HBV;	8.7	
	4% HCV		(P = 0.83)	

HBV: Hepatitis B virus; HCV: Hepatitis C virus; NA: Not available; OS: Overall survival; TTP: Time to progression; NS: Non-significant; HCC: Hepatocellular carcinoma.

the design of new approaches in drug testing. In the current paper, we aim to give an update on the recent data on clinical trials using molecular targeted agents and discuss some of novel approaches for developing systemic agents for HCC.

UPDATE OF RESULTS OF CLINICAL TRIALS AT 2013

Phase III studies on anti-angiogenic TKIs

Sorafenib is a small molecule TKI which targets at multiple receptor kinases and signaling molecules, namely the vascular endothelial growth factor receptor (VEGFR), platelet derived growth factor receptor (PDGFR), B-Raf, Fms-related tyrosine kinase (FLT) and c-kit at nanomolar concentration[3-5]. Sorafenib is generally considered an anti-angiogenic agent though its exact mechanism remains unclear. Following the positive results of clinical trials using sorafenib, a number of multi-targeted angiogenic TKIs have undergone clinical testing for the treatment of advanced HCC. These TKIs are characterized by their abilities to inhibit a wide spectrum of membranous receptors, mainly including VEGF, FGFR (fibroblast...
EMERGING MOLECULAR TARGETS

In addition to the anti-angiogenic multi-targeted TKIs, there is a growing number of biologics that target at different molecular pathways. Some of these treatments act along molecules of intracellular signaling pathways while others are agents relying on the inhibition of non-signaling dependent mechanism (highlighted in Table 2). A number of agents have shown promising preliminary data for HCC, and these have been selected for more detailed discussion below.

c-mesenchymal-epithelial transition factor-1 inhibitor

c-MET is a membrane receptor that is essential for hepatocyte and tissue remodeling of liver after hepatic injury. The activation of c-MET is implicated in the proliferation, invasion and metastases of cancer cells. The expression of c-MET receptor protein occurs in 20% to 48% of human HCC samples, and has been shown to be a poor prognostic factor in patients with HCC. In addition, the inactivation of c-MET could lead to regression of tumors in xenograft model and growth inhibition in HCC cell lines. Therefore, therapeutics aiming at the c-MET receptor is a rational approach for HCC. Two agents, namely tivantinib and cabozantinib, have undergone more advanced development. Tivantinib is an oral tyrosine kinase inhibitor of c-MET. A randomized phase II trial comparing the use of tivantinib vs placebo as the second-line treatment, showed that the TTP was slightly improved in the tivantinib arm (Tivantinib: 1.6 mo; placebo: 1.4 mo; \(P = 0.04 \)). In particular, a more obvious improvement of TTP was noted in patients with tumors overexpressing c-MET. These promising results have led to an international multi-centered phase III trial comparing linifanib to sorafenib. In this trial, a total of 1035 patients were randomized to linifanib at 17.5 mg daily or sorafenib at 400 mg twice daily. According to the preliminary results released at American Society Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium in 2013, linifanib failed to demonstrate superiority or non-inferiority in terms of OS when compared with sorafenib (linifanib: 9.1 mo; sorafenib: 9.8 mo; \(P = NS \)).

Following the results of these studies, both brivanib and linifanib were generally considered not to be valid options for patients with advanced HCC.

treatment discontinuation (brivanib: 43\% vs sorafenib: 33\%)\([8]\). In the second-line setting, BRISK-P5 compared brivanib to placebo in patients who were refractory or intolerant to first-line treatment of sorafenib. The trial has randomized 395 patients in 2:1 ratio to receive brivanib 800 mg daily or placebo along with best supportive care, with OS as the primary endpoint. Disappointingly, although TTP was significantly longer in the brivanib arm than placebo (4.2 mo vs 2.7 mo; \(P = 0.0001 \)), providing a signal of potential activity of brivanib, the study failed to reach its primary endpoint of achieving benefit in OS (brivanib: 9.4 mo vs placebo: 8.2 mo; \(P = 0.33 \))\([8]\).

Linifanib is an oral TKI with selective activity against VEGFR and PDGFR. Preclinical studies have reported potent activity of the agent on HCC xenografts. In a single-arm phase II study, linifanib was associated with a radiologic response rate of 9.1\% and median TTP of 3.1 mo\([11]\). These promising results have led to an international multi-centered phase III trial comparing linifanib to sorafenib. In this trial, a total of 1035 patients were randomized to linifanib at 17.5 mg daily or sorafenib at 400 mg twice daily. According to the preliminary results released at American Society Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium in 2013, linifanib failed to demonstrate superiority or non-inferiority in terms of OS when compared with sorafenib (linifanib: 9.1 mo; sorafenib: 9.8 mo; \(P = NS \)).

Table 2 List of selected ongoing clinical trials on novel targeted therapy for hepatocellular carcinoma

Drug	Design	Phase	Status	NCT number
Single-agent TKI				
Dovitinib (TKI258)	Dovitinib vs sorafenib (1* line)	Randomized phase II	Completed	NCT01232296
Carbozantinib	Carbozantinib vs placebo (2* line)	Phase II	Ongoing	NCT01908426
c-MET inhibitor				
Tivantinib	Tivantinib vs placebo (2* line)	Phase II	Ongoing	NCT01755767
INC280	INC280 (1* line in c-MET expressing HCC)	Phase I/II	Ongoing	NCT01737827
Oncolytic poxvirus				
JX594	JX594 vs placebo (2* line)	Randomized phase II	Ongoing	NCT01387555
Glypican-3	GC33 vs placebo (2* line)	Phase II	Completed	NCT01507168
mTOR inhibitor				
Everolimus	Everolimus vs placebo (2* line)	Phase II	Press release	NCT01035229
Tensirolimus	Tensirolimus (1* or 2* line)	Phase II	Abstract	NCT01251458
CC-223	CC-223 in solid tumors including HCC	Phase I/II	Ongoing	NCT01177397
Arginine deprivation therapy				
ADIPEC 20	ADIPEC 20 vs placebo (2* line)	Phase II	Ongoing	NCT01287585
Combination				
Sorafenib	Sorafenib + doxorubicin vs sorafenib	Phase II	Accrual	NCT01015833
Sorafenib	TACE + sorafenib vs TACE (ECOG 1208)	Phase II	Accrual	NCT01004978
Everolimus	TACE + everolimus vs TACE	Phase II	Accrual	NCT01379521
Axitinib	Axitinib + bevacizumab + erlotinib vs sorafenib	Phase II	Randomized	NCT01352728

TACE: Transarterial chemoembolization; TKI: Tyrosine kinase inhibitor; HCC: Hepatocellular carcinoma; c-MET: c-mesenchymal-epithelial transition factor-1.
activity against both c-MET and VEGFR-2. In a phase II randomized discontinuation clinical trial, patients were treated with cabozantinib and reassessed at 12 wk. Those patients with evidence of response would continue with cabozantinib while patients with stable disease were randomly assigned to cabozantinib or placebo. According to the results reported in the 2012 ASCO meeting, an impressive efficacy has been observed; the progression-free survival (PFS) was 4.4 mo while the median OS was 15.1 mo in the cabozantinib arm[24]. This encouraging data has led to a planning of a phase III clinical trial testing the efficacy of cabozantinib in the second-line setting (NCT01908426). This phase III study is also planning to collect the tumor tissues to determine whether c-MET is a predictorative, an aspect that has not been studied in the previous phase II study.

mTOR inhibitor

The phosphoinositide 3-kinase (PI3K)/Akt/mTOR axis is involved in multiple cellular processes including survival and proliferation[28]. This signaling is initiated when membrane receptors are activated by binding of growth factors, which in turn recruit and activate the PI3K. The activation of PI3K will lead to a cascade of activation of downstream effectors leading to activation of mTOR. Comprehensive genomic analyses have shown that components of the PI3K/Akt/mTOR pathway are frequently deregulated in up to 50% of HCC[25,26,27]. Therefore, targeting the components of this pathway, especially the downstream molecule mTOR, has been a research focus for development of therapeutics for HCC.

mTOR inhibitors, especially everolimus and temsirolimus, are being investigated in patients with HCC. In a phase I study of everolimus in 28 patients with advanced HCC, of whom over 70% were treated with more than one prior regimen, the maximum tolerated dose was 10 mg daily. At this dose, treatment with everolimus yielded a disease control rate of 44% and an overall survival of 8.4 mo[28]. The drug was generally well tolerated with most common toxicities being fatigue and hyperglycemia[28]. A phase III study comparing everolimus with placebo (EVOLVE-1) in patients who have failed or become intolerant to sorafenib has recently been completed (NCT01035229). At the time of writing, there has been a press release indicated that the EVOLVE-1 study failed to reach its primary endpoint of extending OS with everolimus[29]. Further detailed results are expected in the near future. For temsirolimus, a phase I/II study in a heavily pretreated population of unresectable HCC has reported the maximum tolerated dose (MTD) of temsirolimus to be 25 mg every week; amongst the 36 patients recruited in the phase II portion, the disease control rate was 38.9\%[30,31]. A number of clinical trials have been designed to evaluate the combination of mTOR inhibitor with sorafenib (see section below: combinational treatment approach). Another mTOR inhibitor, CC-223, which possesses dual activity against mTORC1 and 2, is also undergoing phase I/II development in solid tumors including HCC (NCT 01177397).

Histone deacetylase inhibitor

The expression of tumor suppressor genes is influenced by coiling and uncoiling of DNA around histone, which is mainly mediated by histone acetylation. Acetylation of histone results in less condensed chromatin leading to expression of gene expression while histone deacetylases (HDACs) remove the acetyl groups from histones leading to condensed and transcriptionally silenced chromatin[32]. Such histone modification is one of the major epigenetic mechanisms on gene regulation, and the HDACs are amenable to inhibition by HDAC inhibitors. This class of agents was initially investigated for hematological malignancies, and vorinostat and romidepsin have been approved for the treatment of peripheral T-cell lymphoma[33,34]. For HCC, preclinical studies showed that treatment with HDAC inhibitor could induce apoptosis in HCC cell lines[35-37]. A phase I/II clinical trial assessed HDAC inhibitor, belinostat, for treatment of advanced HCC. Amongst the 42 patients treated in the phase II portion, reasonable efficacy was demonstrated in a heavily pretreated population, with disease stabilization rate of 47.6% and PFS of 2.64 mo[38]. Belinostat was well tolerated with lower than 10% grade 3 or above toxicities[38]. More interesting findings come from the exploratory analysis on the role of HR23B to predict the clinical response. HR23B is a protein which is responsible for shuttling ubiquitinated cargos for proteosomal degradation. It has been suggested that the expression of HR23B is a potential predictive marker for response to HDAC inhibitor in hematological malignancies[39,40]. In the aforementioned phase II trial on HCC, it was shown that tumors with high HR23B histoscores is associated with a higher rate of disease stabilization ($P = 0.036$[38]). Further studies are required to study the clinical role of HR23B as predictive biomarker in HCC.

Arginine deprivation therapy

In human cells, arginine is a non-essential amino acid, and arginine is synthesized from citrulline through a series of enzymatic reactions[41]. However, HCC cells are known to be defective of a number of these enzymes including argininosuccinate synthetase (ASS) or ornithine transcarboxylase (OTC); as a result, there is impairment in the cellular ability to replenish the arginine once it is depleted, which subsequently leads to cell death[42,43]. This mechanism of arginine deprivation is attractive because it could provide selective cytotoxic effect on tumor but not non-tumor tissues.

At present, two classes of arginine degrading enzymes have undergone clinical testing, namely the ADI-PEG 20 and the PEG-BCT-100. ADI-PEG 20 is an arginine deaminase which depletes arginine level by converting it to citrulline and ammonia. Two phase II studies have been completed in HCC[44,45]. The reported disease-control rate (DCR) and the mean OS were in the range of 30%-60% and 7-16 mo, respectively. This has led to the conduct of an international multi-centered study to compare the efficacy of ADI-PEG 20 vs placebo in the second-line set-
ting, following failure to sorafenib (NCT01287585).

PEG BCT-100 is a recombinant human arginase which degrades arginine by converting it to ornithine and urea. Compared to ADI-PEG 20, the agent has a theoretical advantage of having broader activity on HCC cells which express ASS but not OTC. Clinical trials in phase II setting are being planned.

Immunotherapy
HCC is an inflammation-associated cancer; analysis of the tumor microenvironment has suggested that local immune responses may be prognosticator of the disease. Specific anti-tumor T-cell responses can be detected in patients with HCC. Immune responses are regulated by molecules that provide co-stimulatory and inhibitory signals to T cells. Down regulation of T-cell activity upon binding to ligands on antigen-presenting cells and tumor cells affects peripheral tolerance and protection from autoimmune damage. The recent approval of ipilimumab for patients with melanoma and Sipuleucel-T for patients with prostate cancer, has highlighted the possibility of adopting immunotherapy in other malignancies including HCC.

COMBINATIONAL TREATMENT

APPROACH
The concept of combination of different agents or treatment modalities is attractive for the following reasons: (1) taking into consideration most of the single-agent therapies are associated with low radiologic response rate and the high HCC tumor heterogeneity, the concurrent use of compounds with synergistic activity may potentially improve the clinical outcome; and (2) the survival time of patients with advanced HCC is relatively short compared with other solid tumors, thus limiting the possibility of sequential treatments using individual agents. Obviously, one of the biggest obstacles for combinational treatment is the concomitant compromised hepatic reserve present in most HCC patients with most of them suffering from cirrhosis. Therefore, carefully planned and dedicated early clinical trials are warranted to investigate the toxicity and efficacy of novel combinations in patients before proceeding to phase III development. Over the past few years, different ways of combinational treatment has been explored by various groups, and these are discussed below.

Combination of targeted agents
Most of developments have been based on combination of a novel class of targeted agent with sorafenib. At present, there are more than 20 clinical trials with such design. According to the recently available results, it appears that the difficulty of combining sorafenib with other targeted agent may be greater than expected. For example, in a phase I/II study testing the combination of temsirolimus and sorafenib, the MTD of the combinational regimen was sorafenib at 200 mg twice daily and temsirolimus at 10 mg weekly, which was lower than that found in melanoma patients with hepatic dysfunction.

In another phase I study on sorafenib and everolimus, the MTD of everolimus was only 2.5 mg daily, which was a significantly lower dosage than that required to achieve a biologically effective dose in human body. Similar problem is also experienced in the phase III SEARCH study comparing sorafenib-erlotinib vs sorafenib-placebo. In this trial, not only did the sorafenib-erlotinib not improve clinical outcomes, the combination was associated with shorter duration of treatment and higher withdrawal rate indicating poor tolerance.

There have been fewer studies on the combination with a non-sorafenib agent. At present, the most well studied regimen is the combination of erlotinib and bevacizumab. In a phase II single-arm study of 40 Caucasian HCC patients, Thomas et al. reported a response rate of 25%, and a median PFS and OS of 9.0 mo and 15.7 mo respectively in an initial report. The results were subsequently updated in a final analysis, which demonstrated a median PFS and OS of 7.2 mo and 13.7 mo. However, another phase II study with the same combination failed to reproduce the survival data; the response rate was only 3.7% and the overall survival was 9.5 mo. A randomized phase II study comparing bevacizumab-erlotinib to sorafenib is currently underway to validate the efficacy of this combinational regimen (NCT01180959).

Chemotherapy plus targeted agent
Although chemotherapy has not been directly compared to placebo or sorafenib in randomized studies, chemotherapy has persistently been associated with a high radiologic response and a large magnitude in decrease of serum alpha-fetoprotein level. The recently published phase III data on EACH study comparing FOLFOX4 to doxorubicin chemotherapy has also suggested that FOLFOX chemotherapy is a potential option of systemic treatment for patients with advanced HCC, with radiologic response of over 8%. Theoretically, the addition of chemotherapy could overcome the weakness of cytostatic property of molecular targeted agents. To test this hypothesis, a randomized phase II clinical trial has been conducted to compare sorafenib (400 mg twice daily)-doxorubicin (60 mg/m² every 3 wk) combination vs doxorubicin (60 mg/m² every 3 wk). According to the trial results, there was an improvement of both OS (13.7 vs 6.5 mo; P = 0.006) and radiologic response rate (62% vs 29%) favoring the combination arm. However, this benefit was at a cost of increased toxicities in the combinational arm especially with increased rate of left ventricular systolic dysfunction (all grade 19% vs 2%). It remains unclear whether the cardiac toxicity is due to drug interaction or due to the synergistic toxicity conferred by VEGF inhibition with sorafenib. A phase III clinical trial is currently undertaken to study the efficacy and safety of the sorafenib-doxorubicin combination vs single-agent sorafenib in the first-line setting (NCT01015833).

Transarterial chemoembolization plus targeted agent
HCC is a highly vascular tumor and transarterial chemoembolization (TACE) could induce tumor hypoxia, there-
by provoke a post-treatment surge of angiogenic factors including VEGF that may occur as early as a few hours post TACE. The event may contribute to the revascularization of tumors and reduction of the efficacy of TACE. In addition, the peripheral rim of HCC tumors frequently escapes the cytotoxic effects of TACE because of tumor repopulation, and microscopic tumor progression is frequent during the interval between each treatment cycle of TACE. Combining anti-angiogenic drugs with TACE may potentially improve treatment outcomes.[60]

The concept of combining sorafenib and TACE was initially tested in a single arm phase II study in which sorafenib was started at 1 wk after TACE with drug-eluding beads. This reported a DCR of 95% and objective response rate of 58% according to European Association for the Study of the Liver criteria.[69]. However, the global SPACE study, designed to test the continuous administration of sorafenib during TACE, failed to demonstrate significant benefit favoring the combinational approach. In the clinical trial, patients were randomized into two arms: one arm undergoing continuous administration of sorafenib 400 mg twice daily together with TACE at specified intervals and another arm receiving placebo and TACE. The primary endpoint was time to radiologic progression (TTRP). According to the results released in the 2012 ASCO Gastrointestinal Cancers Symposium, the study has met its primary endpoint on the improvement of TTRP in the sorafenib arm as compared to placebo arm [median TTRP of sorafenib = 169 d vs placebo = 166 d; HR = 0.797, P = 0.072 (pre-specified P value for the one-sided Log-rank test was set at 0.15)][70]. However, there was no statistically significant difference in OS and response rate between the two arms. In view of the small difference in the TTRP and the lack of difference in OS, most of the clinicians do not consider the results of this trial to be encouraging.

The less impressive results of SPACE clinical trial have casted shadow on whether the combination of TACE and sorafenib is an effective approach. Other groups attempt to address the issue with different studies. For example, a multi-centered phase III ECOG 1208 study is underway, testing the continuous use of sorafenib with TACE vs placebo (NCT01004978). This phase III clinical trial has very similar design to the SPACE trial. The clinical trial may help further determine whether the approach of concurrent administration of sorafenib together with TACE is effective for treatment of HCC. On the other hand, we are conducting a phase II clinical trial testing the use of axitinib in combination with TACE (NCT01352728). Axitinib is a more potent TKI of all the other VEGFRs1-3, and its use could potentially inhibit the surge of VEGF levels after TACE at a greater extent than sorafenib. The clinical trial is expected to complete accrual in early 2014.

FUTURE DIRECTIONS

Design of clinical trial

One interesting point observed from the SUN1170 study came from subgroup analyses: both geographical difference and hepatitis status have had significant effects on treatment outcomes.[71]. Patients with hepatitis C virus infection or patients of non-Asian ethnicity tend to derive more benefits from sorafenib than patients with hepatitis B virus or the Asian origins. This type of finding was also similarly observed in the subgroup analysis of the Asian SHARP trial.[71]. Different explanations including genetic background, molecular pathogenesis, aggressive approach using surgery/locoablative treatment between West and East, have been postulated. Regardless of the underlying postulations, the geographical location and the hepatitis status should be taken into consideration during the design of clinical trials in HCC. Preferably, a dedicated phase I / II clinical trial should be designed to evaluate new agents in hepatitis B and hepatitis C-related HCC subpopulations, in addition, the design of international multi-centered trial should consider stratification by geographical regions, in terms of East vs Non-East, in the randomization process.

Selection of suitable patients

It is evident that unresectable HCC population consists of a highly heterogeneous group of patients with a wide spectrum of survival ranging from a few months only to longer than 2 years.[72-74]. As a result, it is difficult to precisely estimate the survival of patients during the design of clinical trials that encompass a heterogeneous population. Different staging systems have been developed to define suitable patients for the administration and testing of systemic agents. At this juncture, the Barcelona Cancer Liver Clinic (BCLC) classification is the most frequently used staging system for clinical trials. It has to be noted that BCLC was initially designed for allocation of treatment rather than for prognostication of HCC. As a result, the staging system is suboptimal in identifying homogeneous group of patients in terms of prognosis and disease behavior. For examples, patients classified as BCLC stage C disease (i.e., advanced disease defined as patients with Child’s A or B liver function, having a performance status of 1 or above, and the presence of vascular invasion or extra-hepatic disease) has been assigned the target group for testing systemic agents. However, there have been studies suggesting that the BCLC system is inadequate in predicting the short-term outcome of patients or identifying a homogenous group of patients with advanced disease.[75,76]. Also, the treatment allocation as recommended by BCLC is considered too conservative by most Asian clinicians. For examples, most of the hepatobiliary cancer surgeons in Asia will not regard invasion of branch of portal vein as a definitive contraindication to surgical resection[77,78]. In view of these limitations, a more precise staging system is necessary to identify a homogenous group of patients for testing systemic agents.

On the other hand, in Asia, because of the limited choice and the low efficacy of available systemic agents, patients with unresectable HCC confined to liver are often treated with multiple cycles of TACE before consid-
Personalized treatment

Experiences from the lung and breast cancer fields have shown that success in clinical trials using targeted agents can only be improved if we are able to apply to appropriately selected patients whose tumors are “addicted” to a known driver gene or pathway. An ideal approach would be targeting individual agents in patients whose HCC tumors have the corresponding genetic mutations. With recent genomic sequencing showing that a genetic driver mutation, if present, occurs at a rate of lower than 5% in HCC, the chance of picking up a responder of a novel agent in an unselected population is much lower than 5%. This clinical challenge is evidenced by the persistently low response rate observed in multiple clinical trials on molecular targeted agents in unselected HCC populations, all of which have resulted in an overall survival that leveled off in the range of 9 to 10 mo (Table 1). Given the reported data on the role of c-MET expression and the potential use of HR23B to predict response and the potential use of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol 2009; 10: 794-800 [PMID: 19586800 DOI: 10.1016/S1470-2045(09)70171-8]

REFERENCES

1. Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, Chung HC, Song X, Xu J, Poggii G, Omata M, Pitman Lowenthal S, Lanzalone S, Yang L, Lechuga MJ, Raymond E. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013; 31: 4067-4075 [PMID: 24081957 DOI: 10.1200/JCO.2012.45.8372]

2. Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, Hsu CH, Hu TH, Heo J, Xu J, Lu L, Chao Y, Boucher E, Han KH, Paik SW, Robles-Aviña J, Kudo M, Yan L, Sobhonslidiuk A, Komov D, Decaens T, Tak WY, Jeng LB, Liu D, Ezzeddine R, Walters I, Cheng AL. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRIKS-FL study. J Clin Oncol 2015; 33: 3517-3524 [PMID: 2609084 DOI: 10.1200/JCO.2012.48.4410]

3. Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, Kang YK, Assenat E, Lim HY, Boige V, Mathurin P, Tartous L, Lin DY, Bruix J, Poon RT, Sherman M, Blanc JF, Finn RS, Tak WY, Chao Y, Ezzeddine R, Liu D, Walters I, Park JW. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRIKS-PS study. J Clin Oncol 2013; 31: 3509-3516 [PMID: 23980090 DOI: 10.1200/JCO.2012.47.3009]

4. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Long H, Chen C, Zhang X, Vincent P, McGuff M, Cao Y, Shujat J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. BAY 43-9006 exhibits broad spectral oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099-7109 [PMID: 15466206]

5. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichtovkin M, Chen C, McNabola A, Wilkie D, Carter CA, Taylor IC, Lynch M, Wilkinson S. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59: 561-574 [PMID: 17160391]

6. Faivre S, Raymond E, Boucher E, Douillard J, Lim HY, Kim JS, Zappa M, Lanzalone S, Lin X, Deprimo S, Harmon C, Ruiz-Garcia A, Lechuga MJ, Cheng AL. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol 2009; 10: 794-800 [PMID: 19586800 DOI: 10.1016/S1470-2045(09)70171-8]

7. Zhu AX, Sahani DV, Duda DG, di Tomaso E, Ancukiewicz M, Catalano OA, Sindhvani V, Blaszkowsky LS, Yoon SS, Lahdenranta J, Bhargava P, Meyerhardt J, Clark JW, Kwak EL, Hezel AF, Miskad R, Abrams TA, Enzinger PC, Fuchs CS, Ryan DP, Jain RK. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 2009; 27: 3027-3035 [PMID: 19470923 DOI: 10.1200/JCO.2008.20.9008]

8. Cai ZW, Zhang Y, Borzilleri RM, Qian L, Barbosa S, Wei D, Zheng X, Wu L, Fan J, Shi Z, Wautlet BS, Mortillo S, Jayaseelan R, Kukral DW, Kamath A, Marathe P, D’Arienzo C, Derbin G, Barrish JC, Roll JA, Hunt JT, Lombardo LJ, Fargnoli J, Bhide RS. Discovery of brivanib alaninate ([S]-[R]-1-(4-(4-fluoro-2- methyl-1H-indol-5-yl)-5-methylpyrrolo-[2,1,4]triazin-6-yl)oxy)-2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chem 2008; 51: 1976-1980 [PMID: 18288793]

9. Raoul JL, Finn RS, Kang YK, Park JW, Harris R, Coric V, Donica M, Walters I. An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol 2009; 27: 15. Available from: URL: http://meetinglibrary.asco.org/content/33909-65

10. Park JW, Finn RS, Kim JS, Karwal M, Li RK, Ismail F, Thomason M, Harris R, Baudelet C, Walters I, Raoul JL. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2011; 17: 1973-1983 [PMID: 21349999 DOI: 10.1158/1078-0432.CCR-10-1101]

11. Toh HC, Chen PJ, Carr BL, Knox JJ, Gill S, Ansell P, McKeehan EM, Dowell B, Pedersen M, Qin Q, Jin Q, Scappaticci FA, Ricker JL, Carlson DM, Yong WP. Phase 2 trial of linifanib (ABT-869) in patients with unresectable or metastatic hepatocellular carcinoma. Cancer 2013; 119: 380-387 [PMID: 22833179 DOI: 10.1002/cncr.27758]

12. Cai ZW, Qin S, Huang WT, a, b, c, d, e, f, G Se, d f. Phase III trial of linifanib vs sorafenib in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2012; 30 (suppl 34): abstr 249. Available from: URL: http://meetinglibrary.asco.org/content/105448-133

13. Peddadukalas P, Lopez-Talavera JC, Petersen B, Monga SP, Michalopoulos GK. The processing and utilization of hepatocyte growth factor/scatter factor following partial heptacto-
my in the rat. *Hepatology* 2001; 34: 688-693 [PMID: 11584364]

14 Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgerisson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. *Proc Natl Acad Sci USA* 2004; 101: 4477-4482 [PMID: 15070743]

15 Micheli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, Comoglio PM. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. *Cell 2004; 6: 61-73 [PMID: 15261142]*

16 Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. *J Clin Invest 2002; 109: 857-862 [PMID: 11927611]*

17 Kiss A, Wang NJ, Xie JP, Thorgerisson SS. Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth factor/c-met/TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. *Clin Cancer Res 1997; 3: 1059-1066 [PMID: 9815784]*

18 Osada S, Kanematsu M, Imai H, Goshima S. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. *Hepatogastroenterology* 2008; 55: 544-549 [PMID: 18613405]

19 Ljubimova JY, Petrovic LM, Wilson SE, Geller SA, Mcleod HL. Expression of c-Met in primary and metastatic human hepatocellular carcinomas. *J Histochem Cytochem* 1997; 45: 79-87 [PMID: 9010472]

20 Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. *Liver 1999; 19: 151-159 [PMID: 10220746]*

21 You H, Ding W, Deng H, Jiang Y, Rountree CB. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. *Hepatology* 2011; 54: 879-889 [PMID: 21618573 DOI: 10.1002/hep.24450]

22 Adjei AA, Schwartz B, Garney E. Early Clinical Development of ARQ 197, a Selective, Non-ATP-Competitive Inhibitor Targeting MET Tyrosine Kinase for the Treatment of Advanced Cancers. *Oncologist* 2011; 16: 788-799 [DOI: 10.1634/theoncologist.2010-0380]

23 Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, Van Vlierberghe H, Trojan J, Kolligs FT, Weiss NS. Expression of HGF, its receptor c-met, c-myc, and albumin in cirrhotic and neoplastic human liver tissue. *J Histochim Cytochem* 1997; 45: 79-87 [PMID: 9010472]

24 Verslype C, Cohn A, Kelley R, Yang T, Su WC, Ramies DA, Lee Y, Shen X, van Cutsen E. Activity of cobalintinib (XL184) in hepatocellular carcinoma: Results from a phase II randomized discontinuation trial (RTDI). *J Clin Oncol 2012; 30 Suppl: abstr 4007*

25 Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. *Nat Rev Cancer* 2002; 2: 489-501 [PMID: 12094235 DOI: 10.1038/nrc839]

26 Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayae S, Minguez B, Chen Y, Porta C. Tivantinib for treatment of first-line advanced hepatocellular carcinoma. *Clin Cancer Res 2013; 19: 5104-5112 [PMID: 23703321 DOI: 10.1158/1078-0432.CCR-13-2626]*

27 Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, Muzikansky A, Clark JW, Kwak EL, Schrag D, Jors KR, Fuchs CS, Iafraite AJ, Borger DR, Ryan DP. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. *Cancer 2011; 117: 5094-5102 [PMID: 21538343 DOI: 10.1002/cncr.26165]*

28 Noivatis study of Afinitor® in advanced liver cancer does not meet primary endpoint of overall survival. Available from: URL: http://www.wwnovartis.com/newsroom/media-releases/en/2013/1721562sh.html

29 Chan SL, Mo F, Hui EP, Koh J, Chu CM, Hui J, Li L, Loong H, Ho WM, Ma B, To KF, Yu S, Chan AT, Yeo W. A phase I study of temsirolimus as novel therapeutic drug for patients with unresectable hepatocellular carcinoma (HCC). *J Clin Oncol 2013; 31 Suppl: abstr e15048. Available from: URL: http://meetinglibrary.asco.org/content/113480-132*

30 Yeo W, SL, C, Mo F, Hui EP, Koh J, Li L, Hui J, Chu CM, Loong H, Yu S. A phase I/II study of mTOR inhibitor temsirolimus in patients with unresectable hepatocellular carcinoma (HCC). *Ann Oncol 2013; 24 Suppl 4: 32*

31 Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. *Nat Med 2011; 17: 330-339 [PMID: 21386836]*

32 Piekacz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, Zain J, Prince HM, Leonard JP, Geskis LJ, Reeder C, Joske D, Figg WD, Gardner ER, Steinberg SM, Jaffe ES, Stetler-Stevenson M, Lade S, Fojo AT, Bates SE. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. *J Clin Oncol 2009; 27: 5410-5417 [PMID: 19862128 DOI: 10.1200/JCO.2008.21.6150]*

33 Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, Harapanhalli RS, Dagher R, Farrell A, Justice R, Pazdur R. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. *Clin Cancer Res 2007; 13: 2188-2232 [PMID: 17438089 DOI: 10.1158/1078-0432.CCR-06-2672]*

34 Ma BB, Sung F, Tao Q, Poon F, Lui VW, Yeo W, Chan SL, Chan AT. The preclinical activity of the histone deacetylase inhibitor PDX101 (belinostat) in hepatocellular carcinoma cell lines. *Invest New Drugs 2010; 28: 107-114 [PMID: 19172229]*

35 Carlisi D, Lauricella M, D’Anneo A, Emanuele S, Angileri L, Di Fazio P, Santulli A, Vento R, Tesoriere G. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. *Eur J Cancer 2009; 45: 2425-2438 [PMID: 19643600]*

36 Carlisi D, Vassallo B, Lauricella M, Emanuele S, D’Anneo A, Di Leonardo E, Di Fazio P, Vento R, Tesoriere G. Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects. *Int J Oncol 2008; 32: 177-184 [PMID: 18097557]*

37 Yeo W, Chung HC, Chan SL, Wang LZ, Lim R, Picus J, Boyer M, Mo FK, Koh J, Rha SY, Hui EP, Jeung HC, Roh JK, Yu SC, To KF, Tao Q, Ma BB, Chan AW, Tong JH, Erlichman C, Chan AT, Ghoc BC. Epigenetic therapy using romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. *J Clin Oncol 2012; 30: 3361-3367 [PMID: 22915658 DOI: 10.1200/JCO.2011.41.2935]*

38 New M, Olszcha H, Liu G, Khan O, Stimson L, McGourian J, Kerr D, Coutts A, Kessler B, Middleton M, La Thangue NB. A regulatory circuit that involves HR23B and HDAC6 governs the biological response to HDAC inhibitors. *Cell Death Differ 2013; 20: 1506-1516 [PMID: 23703321 DOI: 10.1038/cdd.2013.47]*

Khan O, Fotheringham S, Wood V, Stimson L, Zhang C, Pezzella F, Duvic M, Kerr DJ, La Thangue NB. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. *Proc Natl Acad Sci USA* 2010; **107**: 6532-6537 [PMID: 20358564 DOI: 10.1073/pnas.0913912107]

Tapiero H, Mathé G, Courvreur P, Tew KD. I. Arginine. *Biomed Pharmacother* 2002; **56**: 439-445 [PMID: 12481980]

Dillon BJ, Prieto VG, Curley SA, Esmore CM, Holtsberg FV, Bomanlaski JS, Clark MA. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. *Cancer* 2004; **100**: 826-833 [PMID: 14770441 DOI: 10.1002/cncr.20057]

Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. *Int J Cancer* 2010; **126**: 2762-2772 [PMID: 20104527 DOI: 10.1002/ijc.25202]

Yang TS, Lu SN, Chao Y, Sheen IS, Lin CC, Wang TE, Chen SC, Wang JH, Liao LY, Thomson JA, Wang-Peng J, Chen PJ, Chen LT. A randomised phase II study of pegylated arginine deiminase (ADIM-P) in Asian advanced hepatocellular carcinoma patients. *Br J Cancer* 2010; **103**: 954-960 [PMID: 20880309 DOI: 10.1038/sj.bjc.6605856]

Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petritello A, Ascierto PA, Curley SA, Izzo F. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. *J Clin Oncol* 2010; **28**: 2220-2226 [PMID: 20351325 DOI: 10.1200/JCO.2009.26.7765]

Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vivo and in vitro proliferation of human hepatocellular carcinoma through arginine depletion. *Cancer Res* 2007; **67**: 309-317 [PMID: 17210712 DOI: 10.1158/0008-5472.CAN-06-1944]

Lam TL, Wong GK, Chow HY, Chow HC, Chow TL, Kwok SY, Cheng PN, Wheatley DN, Lo WH, Leung YC. Recombinant human arginase inhibits the in vivo and in vitro proliferation of human melanoma by inducing cell cycle arrest and apoptosis. *Pigment Cell Melanoma Res* 2011; **24**: 366-376 [PMID: 21029397 DOI: 10.1111/j.1755-148X.2010.00798.x]

Tsui SM, Lam WM, TL, Cheng HC, So PK, Kwok SY, Arnold S, Cheng PN, Wheatley DN, Lo WH, Leung YC. Pegylated derivatives of recombinant human arginase (rhArgl) for sustained in vivo activity in cancer therapy: preparation, characterization and analysis of their pharmacodynamics in vivo and in vitro and action upon hepatocellular carcinoma cell (HCC). *Cancer Cell Int* 2009; **9**: 9 [PMID: 19374748 DOI: 10.1186/1475-2867-9-9]

Lam TL, Wong GK, Cheng HC, Cheng PN, Choi SC, Chow TL, Kwok SY, Poon RT, Wheatley DN, Lo WH, Leung YC. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. *Cancer Lett* 2009; **277**: 91-100 [PMID: 19138817 DOI: 10.1016/j.clet.2008.11.031]

Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. *Clin Cancer Res* 2013; **19**: 6678-6685 [PMID: 24307020 DOI: 10.1158/1078-0432.CCR-13-1721]

Keir ME, Liang SC, Galeria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH. Tissue expression of PD-L1 mediates peripheral T cell tolerance. *J Exp Med* 2006; **203**: 883-895 [PMID: 16606670 DOI: 10.1084/jem.20051776]

Ott PA, Hodis FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. *Clin Cancer Res* 2013; **19**: 5308-5309 [PMID: 24089445 DOI: 10.1158/1078-0432.CCR-13-0143]
65 Li X, Feng GS, Zheng CS, Zhuo CK, Lii X. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. J Gastroenterol 2004; 10: 2875-2882 [PMID: 15334691]

66 Wang B, Xu H, Gao QZ, Ning HF, Sun YQ, Cao GW. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol 2008; 49: 523-529 [PMID: 18568538 DOI: 10.1080/02841850801958980]

67 Sergio A, Cristofori C, Cardin R, Pivetta G, Ragazzi R, Baldan A, Gizrani L, Cillo U, Burra P, Giacomini A, Farnanti F. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol 2008; 103: 914-921 [PMID: 18177453]

68 Jiang H, Meng Q, Tan H, Pan S, Sun B, Xu R, Sun X. Antiangiogenic therapy enhances the efficacy of transcatheter arterial embolization for hepatocellular carcinomas. Int J Cancer 2007; 121: 416-424 [PMID: 17330237]

69 Pawlik TM, Reyes DK, Cosgrove D, Kamel IR, Bhagat N, Geschwind JF. Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma. J Clin Oncol 2011; 29: 3960-3967 [PMID: 21911714 DOI: 10.1200/JCO.2011.37.1021]

70 Lencioni R, Llovet R, Han G, Tak WY, Yang J, Leberre M, Niu W, Nicholson K, Meinhardt G, Bruijx J. Sorafenib or placebo in combination with transarterial chemoembolization (TACE) with doxorubicin-eluting beads (DEBDOX) for intermediate-stage hepatocellular carcinoma (HCC): Phase II, randomized, double-blind SPACE trial. J Clin Oncol 2012; 30 suppl 4: abstr LBA154. Available from: URL: http://meetinglibrary.asco.org/content/87707-115

71 Cheng AL, Guan Z, Chen Z, Tsao CJ, Qin S, Kim JS, Yang TS, Tak WY, Pan H, Yu S, Xu J, Fang F, Zou J, Lentini G, Voliotis D, Kang YK. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma according to baseline status: subset analyses of the phase III Sorafenib Asia-Pacific trial. Eur J Cancer 2012; 48: 1452-1465 [PMID: 22240282 DOI: 10.1016/j.ejca.2011.12.006]

72 Chan SL, Mok T, Ma BB. Management of hepatocellular carcinoma: beyond sorafenib. Curr Oncol Rep 2012; 14: 257-266 [PMID: 22434314 DOI: 10.1007/s11991-011-0253-11910]

73 Llovet JM, Bruijx J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 2008; 49 Suppl 1: S20-27 [PMID: 18504676]

74 Chan SL, Mo FK, Wong CS, Chan CM, Leung JK, Hui EP, Ma BB, Chan AT, Mok TS, Yeo W. A study of circulating interleukin 10 in prognostication of unresectable hepatocellular carcinoma. Cancer 2012; 118: 3984-3992 [PMID: 22180222 DOI: 10.1002/cncr.26726]

75 Chan SL, Mo FK, Johnson PJ, Liem GS, Chan TC, Poon MC, Ma BB, Leung TW, Lai PB, Chan AT, Mok TS, Yeo W. Prospective validation of the Chinese University Prognostic Index and comparison with other staging systems for hepatocellular carcinoma in an Asian population. J Gastroenterol Hepatol 2011; 26: 340-347 [PMID: 21261725 DOI: 10.1111/j.1440-1746.2010.06329.x]

76 Huitzil-Melendez FD, Capusan M, O'Reilly EM, Duffy A, Gansukh B, Saltz LL, Abou-Alfa GK. Advanced hepatocellular carcinoma: which staging systems best predict prognosis? J Clin Oncol 2010; 28: 2889-2895 [PMID: 20458042 DOI: 10.1200/JCO.2009.25.9895]

77 Torzilli G, Donadon M, Marconi M, Palmisano A, Del Fabbro D, Spinelli A, Botea F, Montorsi M. Hepatomecy for stage B and stage C hepatocellular carcinoma in the Barcelona Clinic Liver Cancer classification: results of a prospective analysis. Arch Surg 2008; 143: 1082-1090 [PMID: 19015467 DOI: 10.1001/archsurg.143.11.1082]

78 Chang WT, Kao WY, Chau CY, Su CW, Lei HJ, Wu JC, Hsia CY, Lui WY, King KL, Lee SD. Hepatic resection can provide long-term survival of patients with non-early-stage hepatocellular carcinoma: extending the indication for resection? Surgery 2012; 152: 809-820 [PMID: 22766361 DOI: 10.1016/j.surg.2012.03.024]

79 Chan SL, Yeow W. Selecting the right patients for testing novel agents in hepatocellular carcinoma: who, when and how? Asia Pac J Clin Oncol 2013; 9: 2-5 [PMID: 23418846 DOI: 10.1111/ajco.12061]

80 Sieghart W, Huckle F, Pinter M, Graziadei I, Vogel W, Müller C, Heinzel T, Tranmer M, Peck-Radosavljevic M. The ART of decision making: retreatment with transarterial chemoembolization in patients with hepatocellular carcinoma. Hepatology 2013; 57: 2261-2273 [PMID: 23316013 DOI: 10.1002/hep.26256]

81 Totoki Y, Tatsuano K, Yamamoto S, Ariy H, Hosoda F, Ishikawa S, Tsutsui S, Sonoda K, Totsuka H, Shirakihara T, Sakamoto H, Wang L, Ojima H, Shimada K, Kusug T, Okusaka T, Kato K, Kusuda J, Yoshida T, Aburatai H, Shibata T. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 2011; 43: 464-469 [PMID: 21499249 DOI: 10.1038/ng.804]

82 Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Ariy H, Takahashi Y, Shirakihara T, Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Tanaka H, Nakamura H, Kusuda J, Oshima H, Shimada K, Okusaka T, Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotok T, Ishikawa O, Arizumi S, Yamamoto M, Yamada T, Chayama K, Kusug T, Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, Nakagawa H. Whole-genome sequencing of liver cancers identifies etiological variations in mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2014; 46: 760-764 [PMID: 22634756 DOI: 10.1038/ng.2291]

83 Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF, Fei QL, Chen H, Cai B, Zhou B, Xiao HS, Qin LX, Han ZG. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012; 44: 1117-1121 [PMID: 22922871 DOI: 10.1038/ng.2931]

84 Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier B, Madb A, Caldero J, Bioulac-Sage P, Letexier M, Degos F, Clément B, Balbaud C, Chevet E, Laurent A, Couchy G, Letouzé E, Calvo F, Zucman-Rossi J. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2014; 46: 694-698 [PMID: 23651517 DOI: 10.1038/ng.2256]

85 Tao Y, Ruan J, Yeh SH, Lu X, Wang Y, Zhao W, Cai J, Ling S, Gong Q, Chong Z, Qu Z, Li Q, Liu J, Yang J, Zheng C, Zeng C, Wang HY, Zhang J, Wang SH, Hao L, Dong L, Li W, Sun M, Zhou W, Yu C, Li C, Liu G, Jiang L, Xu J, Huang H, Li C, Mi S, Zhang B, Chen B, Zhao W, Hu S, Zhanq SM, Shen Y, Shi S, Brown C, White KP, Chen DS, Chen PJ, Wu CI. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci USA 2011; 108: 12042-12047 [PMID: 21730188 DOI: 10.1073/pnas.1107151108]

86 Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O'baughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA, Velculescu VE. Detection of chromosomal somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Proc Natl Acad Sci USA 2011; 108: 5747-5752 [PMID: 21447097 DOI: 10.1073/pnas.1009487108]
Chan SL et al. Targeted treatment for liver cancer

[PMID: 24191000 DOI: 10.1073/pnas.1313995110]

88 **Chan KC**, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, Siu SS, Chan WC, Chan SL, Chan AT, Lai PB, Chiu RW, Lo YM. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. *Clin Chem* 2013; 59: 211-224 [PMID: 23065472 DOI: 10.1373/clinchem.2012.196014]

89 **Llovet JM**, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J. Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med* 2008; 359: 378-390 [PMID: 18650514]

90 **Cheng AL**, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burck K, Zou J, Voliotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol* 2009; 10: 25-34 [PMID: 19095497 DOI: 10.1016/S1470-2045(08)70285-7]

P- Reviewers: Kanda T, Maeda S, Morise Z, Ohkohchi N, Peck-Radosavljevic M **S- Editor:** Ma YJ **L- Editor:** A **E- Editor:** Wu HL
Published by Baishideng Publishing Group Co., Limited
Flat C, 23/F., Lucky Plaza,
315-321 Lockhart Road, Wan Chai, Hong Kong, China
Fax: +852-65557188
Telephone: +852-31779906
E-mail: bpgoffice@wjgnet.com
http://www.wjgnet.com