Ultra-chaos: an insurmountable objective obstacle of reproducibility and replicability

Shijun LIAO (sjliao@sjtu.edu.cn)
Shanghai Jiao Tong University https://orcid.org/0000-0002-2372-9502

Shijie Qin
SHanghai Jiaotong University

Research Article

Keywords: ultra-chaos, statistical non-reproducibility, replicability

Posted Date: September 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-890639/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Ultra-chaos: an insurmountable objective obstacle of reproducibility and replicability

Shijun Liao1,2,*, Shijie Qin1

1Center of Advanced Computing, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China

2School of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China

It is crucial for scientific progress to be able to replicate scientific findings1–4, because scientific claims should gain credence due to the reproducibility and replicability of their main supporting evidences. However, according to Nature’s survey of 1,576 researchers, more than 70\% of the surveyed failed to reproduce another scientist’s experiments, and more than half agreed that there exists a significant “crisis of reproducibility”2. Here we reveal a new classification of chaos: normal-chaos and ultra-chaos. Unlike a normal-chaos, statistics of an ultra-chaos are sensitive to small disturbances. Some illustrative examples of ultra-chaos are given here. It is found that statistical non-reproducibility is indeed an inherent property of an ultra-chaos that is at a higher-level of disorder than a normal-chaos. So, it is impossible in practice to replicate experimental/numerical results of an ultra-chaos even in statistical meanings, since random environmental noises always exist and are out of control. Thus, ultra-chaos is indeed an insurmountable objective obstacle of reproducibility and replicability. Similar to Gödel’s incompleteness theorem, such kind of “incompleteness of re-

*sjliao@sjtu.edu.cn
producibility” reveals a limitation of scientific researches. It opens a new door and possibility to study reproducibility crisis, statistical significance, computational fluid dynamics (CFD), chaos theory, turbulence theory, and so on.

According to Nature’s survey of 1,576 researchers in physics & engineering, chemistry, earth & environment, biology, medicine and so on, more than half have failed to reproduce their own experiments and more than half of these surveyed agree that there indeed exists a significant “crisis of reproducibility”². In addition, in a current investigation on evaluating replicability of laboratory experiments in economics, the replication ratio is only 66% on average³. The so-called “crisis of reproducibility” widely rises in numerous fields of science and engineering. Currently, computational science has led to exciting advances in many fields, such as the Computational Fluid Dynamics (CFD). The reproducibility and replicability in the CFD serve as a minimum standard to judge scientific claims and discoveries⁵. However, as reported by Mesnard and Barba⁶, “completing a full replication study of previously published findings on bluff-body aerodynamics is harder than it looks, even when using good reproducible-research practices and sharing code and data openly”. In a survey about the reproducible researches⁵, the replication ratio in computational science is only about 25%. There might be lots of reasons that could lead to irreproducible researches, such as poor experimental design, low statistical power, poor analysis, insufficient oversight/mentoring, selective reporting, raw data not available from original lab, code & computational mesh unavailable, insufficient peer review, fraud, and so on²,⁶.

Note that all of the above-mentioned reasons are “artificial”, more or less. Why is the repli-
cation ratio so low in so many fields? Can we completely avoid non-reproducibility if all of the above-mentioned artificial obstacles could be overcome? Is there an insurmountable “objective” obstacle of reproducibility and replicability?

It is well-known that, due to the famous butterfly-effect, trajectories of a chaotic system are rather sensitive to small disturbances so that it is practically impossible to have the reproducibility and replicability of chaotic trajectory. Fortunately, many chaotic systems have reliable statistical properties that are reproducible and replicable. So, statistical reproducibility is more important than trajectory ones. Nowadays, most of scientific claims are supported by statistical results and methods such as the statistical significance, p-values, and so on. Unfortunately, they are based on such a hypothesis that statistical results should be stable, i.e. insensitive to small disturbances. Here we reveal a new classification of chaos: normal-chaos and ultra-chaos. Unlike a normal-chaos, statistics of an ultra-chaos are sensitive to small disturbances. We illustrate below that such kind of ultra-chaos indeed exist and thus is really an insurmountable objective obstacle of reproducibility and replicability.

Some illustrative ultra-chaos

The chaos theory7–16 is widely regarded as the third greatest scientific revolution in physics in 20th century, comparable to Einstein’s theory of relativity and the quantum mechanics. A chaotic system has at least one positive Lyapunov exponent so that any a small disturbance is enlarged exponentially: this is the mathematical reason of the famous butterfly-effect8. So, it is extremely
difficult to gain a reproducible/replicable trajectory of a chaos in a long enough interval of time. A new numerical strategy, namely the “Clean Numerical Simulation” (CNS)17–23, was proposed to overcome this obstacle. Unlike other algorithms, the CNS can greatly reduce the global numerical noises, i.e. not only the truncation error but also the round-off error, to such a required tiny level that reproducible/replicable computer-generated chaotic simulations can be obtained in a long enough interval of time. This kind of simulations with trajectory reproducibility/replicability in such a long interval of time provide us reliable results, which can be used as benchmark solution to study the influences of artificial/objective small disturbances to statistics of chaotic system.

For example, let us consider here the continuum limit of a chain of pendulums coupled through elastic restoring force and damped friction, governed by the damped driven sine-Gordon equations24–26 (2)-(5) with a Gaussian white noise $\epsilon(x, t)$ in case of the standard deviation of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$, respectively. Using the reproducible/reliable result in case of $\sigma_n = 0$ as the benchmark solution, we can accurately investigate the influence of the tiny environmental noises in cases of $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$, respectively. It is found that the tiny environmental noises are equivalent to the numerical noises in essence. Besides, the small disturbances indeed lead to huge and distinct deviations of chaotic trajectories and many physical quantities from the benchmark solution (in case of $\sigma_n = 0$) when $t > 360$. For example, the total spectrum energy $E_s(t)$ in case of $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$ have huge deviations from that of the benchmark solution in case of $\sigma_n = 0$, with the maximum relative error 10880%, as shown in Extended Data Fig. 1. It indicates that, due to the existence of the tiny environmental noises, the ultra-chaotic system under consideration might contain much larger energy than that without any
Fig. 1: Influence of small disturbances to the spatial statistics of an ultra-chaos. (a) the spatial mean $\mu(t)$, (b) the spatial Root-Mean-Square (RMS) $u_{rms}(t)$. The curves are based on the CNS results in $t \in [0, 3600]$ of an ultra-chaos governed by the damped driven sine-Gordon equations (2)-(5) in case of $\sigma_n = 0$ (red), $\sigma_n = 10^{-18}$ (black) and $\sigma_n = 10^{-20}$ (blue), with the maximum absolute error 67.21 for $\mu(t)$ and the maximum relative error 675% for $u_{rms}(t)$, respectively, where σ_n denotes the standard deviation of Gaussian white noise.

environmental noises.

How about their statistic properties? Fig. 1 shows the influence of small disturbances to the spatial statistics, i.e. the spatial mean $\mu(t)$ and the spatial root-mean-square (RMS) $u_{rms}(t)$, in case of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$, respectively, with the maximum absolute error 67.21 for $\mu(t)$ and the maximum relative error 675% for $u_{rms}(t)$. Note that, when there exist no environmental noises ($\sigma_n = 0$), the spatial mean $\mu(t)$ is always zero and $u_{rms}(t)$ is always less than 20. However, the tiny environmental noise leads to a gradually increasing deviation of $\mu(t)$
Fig. 2: Influence of small disturbances to the temporal statistics of an ultra-chaos. (a) the temporal mean $\mu(x)$, (b) the temporal Root-Mean-Square (RMS) $u_{\text{rms}}(x)$. The curves are based on the CNS results in $t \in [0, 3600]$ of an ultra-chaos governed by the damped driven sine-Gordon equations (2)-(5) in case of $\sigma_n = 0$ (red), $\sigma_n = 10^{-18}$ (black) and $\sigma_n = 10^{-20}$ (blue), with the maximum absolute error 33.98 for $\mu(x)$ and the maximum relative error 187% for $u_{\text{rms}}(x)$, respectively, where σ_n denotes the standard deviation of Gaussian white noise.

from zero and results in $u_{\text{rms}}(t) > 20$ in $t \in [2200, 3600]$. Fig. 2 shows the influence of the small disturbances to the temporal statistics, i.e. the temporal mean $\mu(x)$ and the temporal root-mean-square (RMS) $u_{\text{rms}}(x)$, in case of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$, respectively, with the maximum absolute error 33.98 for $\mu(x)$ and the maximum relative error 187% for $u_{\text{rms}}(x)$. Note that, when there exist no environmental noises ($\sigma_n = 0$), we always have $|\mu(x)| < 10$ and $u_{\text{rms}}(x) < 15$. However, due to the tiny environmental noise, it mostly holds $|\mu(x)| > 10$ and $u_{\text{rms}}(x) > 15$. Note that, when there exist no environmental noises ($\sigma_n = 0$), the global mean μ is always zero, but the tiny environmental noise leads to the huge deviations of the global mean
Fig. 3: Influence of small disturbances to the probability density functions (PDFs) of an ultra-chaos. The PDFs of $u(x, t)$ are based on the CNS results in $t \in [0, 3600]$ of an ultra-chaos governed by the damped driven sine-Gordon equations (2)-(5) in case of $\sigma_n = 0$ (red), $\sigma_n = 10^{-18}$ (black) and $\sigma_n = 10^{-20}$ (blue), respectively, where the relative error between the PDFs of $u = 0$ given by $\sigma_n = 0$ and $\sigma_n = 10^{-20}$ reaches 62%, and σ_n denotes the standard deviation of Gaussian white noise.

$\mu = 14.12$ in the case of $\sigma_n = 10^{-18}$ and $\mu = -17.64$ in the case of $\sigma_n = 10^{-20}$, respectively.

Fig. 3 shows the influence of small disturbances to the probability density functions (PDFs) of the chaotic simulation $u(x, t)$ in case of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$, respectively, where the relative error of the PDFs at $u = 0$ in case of $\sigma_n = 0$ and $\sigma_n = 10^{-20}$ reaches 62%. Note that, when there exist no environmental noises ($\sigma_n = 0$), the PDF has a kind of symmetry about $u = 0$. However, such kind of symmetry is lost due to appearance of the environmental noises. In other words, the environmental noises result in the symmetry breaking of the PDFs of $u(x, t)$.
Besides, tiny difference between the environmental noises (such as $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$) leads to huge deviation of their PDFs of $u(x,t)$, as shown in Fig. 3.

Extended Data Fig. 2(a) shows the influence of small disturbances to the autocorrelation functions (ACFs) of the time series $u(0,t)$ in case of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$. Obviously, the ACF of $u(0,t)$ has sensitivity dependence on the environmental noises (SDEN). Especially, the ACF of $u(0,t)$ in case of $\sigma_n = 10^{-18}$ has huge deviations from those in case of $\sigma_n = 10^{-20}$ and $\sigma_n = 0$. Expand $u(x,t)$ in Fourier series

$$u(x,t) = \sum_{k=0}^{+\infty} a_k(t) \exp(k\lambda x i),$$

where $a_k(t)$ denotes the amplitude and $i = \sqrt{-1}$. It is found that the autocorrelation functions (ACFs) of the amplitude $a_k(t)$ of the Fourier series of $u(x,t)$ also have sensitivity dependence on the environmental noises, too, as shown in Extended Data Fig. 2(b) for the comparison of the ACFs of the real part of $a_1(t)$ in case of $\sigma_n = 0$, $\sigma_n = 10^{-18}$ and $\sigma_n = 10^{-20}$.

Therefore, the objective small disturbances indeed lead to the great deviations of chaotic simulations of the damped driven sine-Gordon equation not only in trajectories but also in statistics. We designate here such kind of chaotic systems as “ultra-chaos”. In other words, statistical results of an ultra-chaos are sensitive to small disturbances. In a similar way, we also investigated the influence of the tiny environmental noise to the spatiotemporal chaos governed by one-dimension complex Ginzburg-Landau equation (CGLE)22, and gained the qualitatively same conclusions as mentioned above, i.e. the statistical results of the chaos governed by the CGLE have the sensitivity dependence on environmental noises (SDEN). So, it is also an ultra-chaos, too. Therefore, the
so-called ultra-chaos indeed widely exist and thus has general meanings.

This is a surprising result, since it has been widely believed (or assumed) that statistics of a chaos should be “stable” even if its trajectory is sensitive to small disturbances. Mostly, this is indeed true, such as the chaos governed by Lorenz equation17,20 with one positive Lyapunov exponent, as shown in Extended Data Fig. 3, and the chaos governed by the four-dimensional Rössler equation with two positive Lyapunov exponents27, as shown in Extended Data Fig. 4, respectively. We designate here such kind of chaos as “normal-chaos”. Note that the four-dimensional Rössler equation27 with two positive Lyapunov exponents belongs to the so-called hyper-chaos10,27–30, i.e. a chaos with at least two positive Lyapunov exponents. This reveals that the ultra-chaos is essentially different from the previously reported types of chaos and thus is indeed a new concept.

Note that the environmental noises considered in this article are at a quite tiny level, i.e. 10^{-18} and 10^{-20}, which is at least two and four orders of magnitude smaller than the round-off error of traditional algorithms in single/double precision. If traditional algorithms in single/double precision are used, the tiny objective environmental noises are submerged by the man-made numerical noises so that we can not investigate the influence of these tiny objective noises at all. For example, the round-off error (and also the truncation error) of the CNS algorithm used here for the sine-Gordon equations (2)-(5) is at the level of 10^{-230}, which is at least 210 orders of magnitude smaller than the tiny environmental noises! So, it is the CNS which provides us a powerful tool to accurately investigate the influence of such tiny environmental noises to an ultra-chaos.

In summary, the above-mentioned examples illustrate that small disturbances can indeed
lead to the huge deviations of an ultra-chaos, not only in trajectory but also in statistics. In other words, statistical properties of an ultra-chaotic system have sensitivity dependance on small disturbances. Therefore, even in statistical meanings, small disturbances could result in the loss of the reproducibility and replicability of an ultra-chaos, no matter what and how we do. Obviously, an ultra-chaos is at the higher-level of disorder than a normal-chaos. It should be emphasized that small disturbances always exist in practice, and are out of control. Thus, theoretically speaking, the reproducibility and replicability for an ultra-chaos are essentially impossible in practice, forever. Therefore, ultra-chaos is indeed an insurmountable objective obstacle of reproducibility and replicability.

Concluding remarks and discussions

Here we revealed a new classification of chaos. There exist two kinds of chaos. One is the normal-chaos, whose statistics are insensitive to small disturbances. The other is the ultra-chaos, whose statistics are sensitive to small disturbances. Some illustrative examples of ultra-chaos are given here. It is found that, for an ultra-chaotic system, objective tiny environmental noises are essentially equivalent to artificial numerical noises and lead to huge derivations in statistics, and thus should not be neglected carelessly. Therefore, ultra-chaos is an insurmountable objective obstacle of reproducibility and replicability, since tiny environmental noises always exist in the real world and are out of control. Similar to Gödel’s incompleteness theorem, such kind of “incompleteness of reproducibility and replicability” reveals a limitation of scientific researches. It opens a new door and possibility to study the reproducibility crisis, the statistical significance, computational fluid
dynamics (CFD), chaos theory, turbulence theory, and so on.

First, given a chaotic system, we must judge whether it is an ultra-chaos or not. For a normal-chaos, it is even *unnecessary* to use a very fine grid to gain its numerical simulations, since its statistics are *not* sensitive to numerical noises. Besides, it is also *unnecessary* to consider the influence of small environmental noises to a normal-chaos, since environmental noises are essentially equivalent to numerical noises in mathematics. However, for an ultra-chaos, its statistics are sensitive to tiny environmental noises, as illustrated here. Note that every dynamical system has environmental noises, which are random, unavoidable, and out of control. Therefore, from practical viewpoint, it is *impossible* to replicate an ultra-chaotic system even in the statistical meanings. Theoretically speaking, it is impossible to make any reliable/replicable predictions about such kind of ultra-chaos, *forever*. Thus, without doubt, it is much more difficult to solve an ultra-chaos than a normal-chaos in mathematics.

Secondly, since turbulence has a close relationship with spatiotemporal chaos31, it is important to know whether a turbulent flow belongs to ultra-chaos or not. If a turbulent flow is a kind of normal-chaos, which we designate as “normal-turbulence”, it is *unnecessary* to use a very fine grid of discretization for numerical simulations, since its statistics are not sensitive to numerical noises. In this case, numerical noise itself is not a trouble at all. However, If a turbulent flow is a kind of ultra-chaos, which we designate as “ultra-turbulence”, it should be *impossible* in practice to gain reproducible/replicable results even in statistics, no matter how fine grid of discretization for numerical simulation or how advanced apparatus with very high precision for experimental measures
are used. This also illustrates the importance of ultra-chaos as a new concept, since turbulence is a very important field in science and engineering.

Thirdly, the ultra-chaos as a new concept should be of benefit to deepen our understanding about the so-called “crisis of reproducibility”. The non-reproducibility of scientific researches has leaded to growing worry about the reliability of claims of new discoveries that are based on “statistically significant” findings\(^3^2\). As reported by many researchers\(^3^3,^3^4\), the statistical significance can easily be obtained even from pure noise. Besides, many researchers suggest that \(p\)-value is insufficient and that statistical significance should be abandoned\(^3^5\). For an ultra-chaos, the derivations caused by either the artificial disturbances or objective environmental noises are macroscopic, and more importantly, the corresponding statistics are sensitive to these disturbances/noises. Note that the statistical significance and \(p\)-values are based on reliable/replicable results of statistics. Naturally, for an ultra-chaotic system whose statistics are sensitive to small disturbances, it should be impossible in practice to replicate new discoveries based on “statistically significant” findings. Without doubt, an ultra-chaos is indeed an insurmountable obstacle to reproducibility and replicability, and is really an objective cause to “crisis of reproducibility”.

Unlike the so-called hyper-chaos\(^1^0,^2^7–^3^0\), i.e. a chaotic system with at least two positive Lyapunov exponents, an ultra-chaos focuses on the sensitivity dependence of statistics on small disturbance. Note that the hyper-chaos governed by the four-dimensional Rössler equation\(^2^7\) is just a normal-chaos. This reveals that ultra-chaos is essentially different from the previously reported types of chaos and thus is indeed a totally new concept. Note that ultra-chaos is only one possible
reason of non-reproducibility. What we would like to emphasize here is that, even if all man-made disturbances are smoothed out, the reproducibility and replicability might be still essentially impossible even in statistical meanings for some dynamic systems such as an ultra-chaos.

Finally, we emphasize that scientific claims should gain credence due to the reproducibility and replicability of their main supporting evidences. Unfortunately, we can not gain such kind of credence for an ultra-chaos! Would the ultra-chaos lead to a crisis of confidence in scientific researches? How should we understand and interpret numerical/experimental results of such kind of ultra-chaotic systems? Should we regard random environmental noises as an inherent part of solution of an ultra-chaos? How should we define the “truth” of an ultra-chaos? What kind of “truth” could an ultra-chaos tell us? Do there exist some ultra-turbulence in practice? Certainly, there are still lots of works to do in future.

1. Camerer, F. C. & et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. *Nature Human Behaviour* 2, 637 – 644 (2018).
2. Baker, M. & Penny, D. Is there a reproducibility crisis? *Nature* 533 (May 26th, 2016).
3. Camerer, F. C. & et al. Evaluating replicability of laboratory experiments in economics. *Science* 351, 1433 (25th March 2016).
4. Aarts, A. A. & et al. Estimating the reproducibility of psychological science. *Science* 349, 943 (28th August 2015).
5. Peng, R. D. Reproducible research in computational science. *Science* **334**, 1226 (2nd Dec. 2011).

6. Mesnard, O. & Barba, L. A. Reproducible and replicable computational fluid dynamics: It is harder than you think. *Computing in Science & Engineering* **19**, 44 – 55 (2017).

7. Poincaré, J. H. Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de m. Lindstedt. *Acta Math.* **13**, 1–270 (1890).

8. Lorenz, E. N. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences* **20**, 130–141 (1963).

9. Li, T. Y. & Yorke, J. A. Period three implies chaos. *American Mathematical Monthly* **82**, 985–992 (1975).

10. Rössler, O. E. An equation for hyperchaos. *Physics Letters A* **71**, 155 – 157 (1979).

11. Eckmann, J. P. Ergodic theory of chaos and strange attractors. *Reviews of Modern Physics* **57**, 617 – 656 (1985).

12. Lorenz, E. N. *The Essence of Chaos* (University of Washington Press, 1993).

13. Smith, P. *Explaining Chaos* (Cambridge University Press, 1998).

14. Sprott, J. C. *Chaos and Time-Series Analysis* (Oxford University Press, 2003).

15. Sprott, J. C. *Elegant Chaos: Algebraically Simple Chaotic Flows* (World Scientific, Singapore, 2010).
16. Letellier, C., Olsen, L. F. & Mangiarotti, S. Chaos: from theory to applications for the 80th birthday of Otto E. Rössler. *Chaos* **31**, 060402 (2021).

17. Liao, S. On the reliability of computed chaotic solutions of nonlinear differential equations. *Tellus A* **61**, 550–564 (2009).

18. Liao, S. On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems. *Chaos, Solitons & Fractals* **47**, 1–12 (2013).

19. Liao, S. Physical limit of prediction for chaotic motion of three-body problem. *Communications in Nonlinear Science and Numerical Simulation* **19**, 601–616 (2014).

20. Liao, S. & Wang, P. On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0, 10000]. *Science China Physics, Mechanics & Astronomy* **57**, 330–335 (2014).

21. Lin, Z., Wang, L. & Liao, S. On the origin of intrinsic randomness of Rayleigh-Bénard turbulence. *Science China Physics, Mechanics & Astronomy* **60**, 014712 (2017).

22. Hu, T. & Liao, S. On the risks of using double precision in numerical simulations of spatiotemporal chaos. *Journal of Computational Physics* **418**, 109629 (2020).

23. Xu, T. & Liao, S. Accurate predictions of chaotic motion of a free fall disk. *Phys. Fluids* **33**, 037111 (2021).
24. Chacón, R., Bellorín, A., Guerrero, L. & González, J. Spatiotemporal chaos in sine-Gordon systems subjected to wave fields: Onset and suppression. *Physical Review E* **77**, 046212 (2008).

25. Keller, J. B., Mclaughlin, D. W. & Papanicolaou, G. C. *Surveys in Applied Mathematics* (Plenum Press, 1995).

26. Ferré, M. A., Clerc, M. G., Coulibally, S., Rojas, R. G. & Tlidi, M. Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model. *The European Physical Journal D* **71**, 172 (2017).

27. Stankevich, N., Kazakov, A. & Gonchenko, S. Scenarios of hyperchaos occurrence in 4D Rössler system. *Chaos* **30**, 123129 (2020).

28. Eiswirth, M., Kruel, T. M., Ertl, G. & Schneider, F. W. Hyperchaos in a chemical reaction. *Chemical Physics Letters* **193**, 305 (1992).

29. Kapitaniak, T., Thylwe, K. E., Cohen, I. & Wjewoda, J. Chaos - hyperchaos transition. *Chaos, Solitons & Fractals* **5**, 2003 – 2011 (1995).

30. Baier, G. & Sahle, S. Design of hyperchaotic flows. *Physical Review E* **51**, 2712 – 2714 (1995).

31. Henriksen, R. N. Compressible turbulence or spatiotemporal chaos? *Astrophysics and Space Science* **221**, 25 – 39 (1994).
32. Benjamin, D. J. & *et al.* Redefine statistical significance. *Nature Human Behaviour* **2**, 6 – 10 (Jan. 2018).

33. Carney, D. R., Cuddy, A. J. & Yap, A. J. Power posing: brief nonverbal displays affect neuroendocrine levels and risk tolerance. *Psychological Science* **21**, 1363 – 1368 (2010).

34. Bem, D. J. Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. *Journal of Personality and Social Psychology* **100**, 407 – 425 (2011).

35. McShane, B. B., Gal, D., Gelman, A., Robert, C. & Tackett, J. L. Abandon statistical significance. *The American Statistician* **73**, 235 – 245 (2019).

36. Lorenz, E. N. Computational periodicity as observed in a simple system. *Tellus Series A-Dynamic Meteorology & Oceanography* **58**, 549–557 (2006).

37. Teixeira, J., Reynolds, C. A. & Judd, K. Time step sensitivity of nonlinear atmospheric models: Numerical convergence, truncation error growth, and ensemble design. *Journal of the Atmospheric Sciences* **64**, 175 (2007).

38. Oyanarte, P. MP-a multiple precision package. *Computer Physics Communications* **59**, 345–358 (1990).

39. Qin, S. & Liao, S. Influence of numerical noises on computer-generated simulation of spatiotemporal chaos. *Chaos, Solitons and Fractals* **136**, 109790 (2020).

40. Li, X. & Liao, S. More than six hundred new families of newtonian periodic planar collisionless three-body orbits. *Science China Physics, Mechanics & Astronomy* **60**, 129511 (2017).
41. Li, X., Jing, Y. & Liao, S. Over a thousand new periodic orbits of a planar three-body system with unequal masses. *Publications of the Astronomical Society of Japan* **70**, 64 (1–7) (2018).

42. Li, X. & Liao, S. Collisionless periodic orbits in the free-fall three-body problem. *New Astronomy* **70**, 22–26 (2019).

43. Crane, L. Infamous three-body problem has over a thousand new solutions. *New Scientist* (2017). (https://www.newscientist.com/article/2148074-infamous-three-body-problem-has-over-a-thousand-new-solutions/).

44. Whyte, C. Watch the weird new solutions to the baffling three-body problem. *New Scientist* (2018). (https://www.newscientist.com/article/2170161-watch-the-weird-new-solutions-to-the-baffling-three-body-problem/).

Methods

The chaos theory \(^7\text{–}^8\) is widely regarded as the third greatest scientific revolution in physics in 20th century, comparable to Einstein’s theory of relativity and the quantum mechanics. It is Poincaré\(^7\) who first discovered “the sensitivity dependence on initial conditions” (SDIC) of chaotic systems, which was rediscovered by Lorenz\(^8\) with a more popular name “butterfly-effect”: the exact time of formation and the exact path of a tornado might be influenced by tiny disturbances such as a distant butterfly that flapped its wings several weeks earlier. In addition, Lorenz further discovered “the sensitivity dependence on numerical algorithms” (SDNA) of chaotic systems: computer-generated chaotic numerical simulations given by different algorithms in single/double precision quickly
depart from each other with distinct deviations36. Naturally, such kind of non-replicability of chaotic trajectory leaded to some heated debates on the credence of numerical simulations of chaos, and brought a crisis of confidence: some even made a rather pessimistic conclusion that “for chaotic systems, numerical convergence cannot be guaranteed forever”37.

In order to gain a reproducible/reliable numerical simulations of chaotic trajectory, Liao17 suggested a numerical strategy, namely the “Clean Numerical Simulation” (CNS). In the frame of the CNS17–19, the temporal/spatial truncation errors are reduced to a required tiny level by means of a high enough order of Taylor expansion in time and a fine enough spatial discretization with spatial Fourier expansion, respectively. Besides, the round-off error is reduced to a required tiny level by means of reserving a large enough number of significant digits for all physical/numerical variables and parameters in multiple precision38. Furthermore, an additional simulation with even smaller numerical noises is needed to determine the so-called “critical predictable time” T_c by comparing these two simulations, so that the numerical noise is negligible and thus the computer-generated result is reproducible/reliable within the whole spatial domain in the time interval $t \in [0, T_c]$.

The CNS has been successfully applied to gain reproducible/reliable simulations of many chaotic systems, such as Lorenz equation20, Rayleigh-Bénard turbulent flows21, and some spatiotemporal chaotic systems related to the complex Ginzburg-Landau equation22, the damped driven sine-Gordon equation39 and the chaotic motion of a free fall desk23. Especially, more than 2000 new periodic orbits of three-body system have been found by means of the CNS40–42, which were reported twice by the popular magazine New Scientist43,44, because only three families of peri-
Periodic orbits of the three-body problem have been reported in three hundred years since Newton mentioned it in 1687. All of these illustrate the validity of the CNS for chaos.

It should be emphasized that such a reproducible/reliable result given by the CNS provides us a “true” solution, and more importantly, a kind of *reproducibility* and *replicability* of chaotic trajectory. Such kind of trajectory reproducibility and replicability can remain in a long enough interval of time $t \in [0, T_c]$ as long as the numerical noises could be globally reduced to a rather tiny level22,23,39. This kind of strict reproducibility and replicability of chaotic trajectory provides us a confidence of credence/reliability and especially a *benchmark* solution. For example, by means of an algorithm based on the CNS, Liao and Wang20 gained a computer-generated chaotic simulation of Lorenz equation, which is reproducible/reliable in a quite long interval of time $0 \leq t \leq 10000$ (Lyapunov unit) and thus provides us a *true* result and a *benchmark* solution of the Lorenz equation in $t \in [0, 10000]$, while numerical simulations given by other algorithms in single/double precision are reproducible/reliable only in a quite smaller interval $0 \leq t \leq 40$ (Lyapunov unit) and has a distinct deviation from the benchmark solution for $t > 40$. Having the benchmark solution of the Lorenz equation in such a long *enough* interval of time $t \in [0, 10000]$, it is possible to investigate the influence of numerical noise to *statistics* of computer-generated chaotic simulations given by other algorithms in single/double precision.

Thus, by means of the CNS, the *artificial* numerical noises can be globally reduced to a required tiny level much smaller than the *objective* environmental noises so that we can accurately study the influence of the environmental noises to the *statistical* reproducibility and replicability of
some spatiotemporal ultra-chaos. For example, we consider here the continuum limit of a chain of pendulums coupled through elastic restoring force and damped friction, governed by the damped driven sine-Gordon equation24–26 but with a Gaussian white noise $\epsilon(x, t)$:

$$u_{tt} = u_{xx} - \sin(u) - \alpha u_t + \Gamma \sin(\omega t - \lambda x) + \epsilon(x, t)$$

subject to a periodic boundary condition

$$u(x + l, t) = u(x, t),$$

where the subscript denotes the derivative, x and t are the spatial and temporal variables, $u(x, t)$ denotes the angle of pendulum, α is a constant related to the damped friction, Γ is a constant related to the elastic restoring force, ω is the temporal frequency, $\lambda = 2\pi/l$ is the spatial frequency with l being the total length of the system, respectively. Here, $\epsilon(x, t)$ corresponds to the tiny environmental noises. Without loss of generality, we follow Chacón et al.24 to choose the following values of these physical parameters

$$\omega = \frac{3}{5}, \quad \alpha = \frac{1}{10}, \quad \Gamma = \frac{461}{500}, \quad l = 500, \quad \lambda = \frac{2\pi}{l} = \frac{\pi}{250},$$

subject to the zero initial condition

$$u(x, 0) = 0, \quad u_t(x, 0) = 0.$$

As reported by Qin & Liao39, when there are no environmental noises, i.e. $\epsilon(x, t) = 0$, the above model corresponds to a spatiotemporal chaos whose statistics are sensitive to numerical noises, and thus is an \textit{ultra-chaos}. Let σ denote its standard deviation of Gaussian white noise $\epsilon(x, t)$. We use the same CNS algorithm39 to gain reproducible/reliable numerical simulations in the three cases
\(\sigma_n = 0, \sigma_n = 10^{-18} \) and \(\sigma_n = 10^{-20} \), respectively, where \(\sigma_n = 0 \) corresponds to the benchmark solution given by the CNS without any objective environmental noise, the others correspond to the reproducible/reliable simulations with the influence of the corresponding tiny environmental noises. Unlike Qin & Liao\(^{39}\) who used a CNS algorithm with \(N = 16384 \) and \(N_s = 60 \) to gain reliable simulations in \(t \in [0, 900] \), we discretized the spatial domain here much better by \(N = 2^{16} = 65536 \) equidistant points, used the multiple precision with \(N_s = 230 \) significant digits for all variables and parameters, and applied the variable stepsize scheme in the temporal dimension with a given allowed tolerance \(tol = 10^{-230} \) of the governing equations. According to Qin & Liao\(^{39}\), it holds

\[
T_c \approx \min \{0.0558N + 10.7, 16.5N_s - 87.8\}.
\]

Thus, we can gain the reproducible/reliable chaotic simulations within the whole spatial domain in a much larger temporal interval \(t \in [0, 3600] \) in the above-mentioned three cases, which is long enough for statistical analysis.

Code availability

Code used for this work is available from the corresponding author upon reasonable request.

Data availability

All data reported in this work are available from the corresponding author on request.

Acknowledgement This work is partly supported by the National Natural Science Foundation of
Author contributions S.L. is the principal investigator of the project and proposed the new classification of chaos. S.Q. performed the calculations and analyzed the results. All authors contributed to interpretation of results and preparation of manuscript.

Competing interests The authors declare no competing interests.

Extended Data Fig. 1: Influence of small disturbances to the total spectrum energy $E_s(t)$ of an ultra-chaos. The curves are based on the CNS results in $t \in [0, 3600]$ of an ultra-chaos governed by the damped driven sine-Gordon equations (2)-(5) in case of $\sigma_n = 0$ (red), $\sigma_n = 10^{-18}$ (black) and $\sigma_n = 10^{-20}$ (blue), respectively, with the maximum relative error 10880%, where σ_n denotes the standard deviation of Gaussian white noise.
Extended Data Fig. 2: Influence of small disturbances to the autocorrelation functions (ACFs) of an ultra-chaos. (a) ACF of $u(0, t)$, (b) ACF of $Re(a_1(t))$. The curves are based on the CNS results $u(x, t)$ in $t \in [0, 3600]$ of an ultra-chaos governed by the damped driven sine-Gordon equations (2)-(5) in case of $\sigma_n = 0$ (red), $\sigma_n = 10^{-18}$ (black) and $\sigma_n = 10^{-20}$ (blue), respectively, where $Re(a_1)$ is the real part of the coefficient $a_1(t)$ of Fourier series (1) and σ_n denotes the standard deviation of Gaussian white noise.
Extended Data Fig. 3: Influence of tiny noises to the statistics of a normal-chaos. (a) the probability density function (PDF) of \(x(t) \), (b) the autocorrelation functions (ACF) of \(x(t) \). The statistic results are based on the chaotic simulations \(x(t) \) in \(0 \leq t \leq 10000 \) governed by Lorenz equation (with one positive Lyapunov exponents), given by the CNS (red line) and the Runge-Kutta algorithms (symbols) with double-precision (RKwD) or single-precision (RKwS) using different time-step \(\Delta t \).
Extended Data Fig. 4: Influence of tiny noises to the statistics of a hyper-chaos. (a) the probability density function (PDF) of $x(t)$, (b) the autocorrelation functions (ACF) of $x(t)$. The statistic results are based on the simulations $x(t)$ in $0 \leq t \leq 10000$ governed by the four-dimensional Rössler equation (with two positive Lyapunov exponents), given by the CNS (red line) and the Runge-Kutta algorithms (symbols) with double-precision (RKwD) or single-precision (RKwS) using different time-step Δt.