Synthesis of potent antagonists of receptors for growth hormone-releasing hormone with antitumor and anti-inflammatory activity

Renzhi Cai a,b, Xianyang Zhang a,c, Haibo Wang a,c, Tengjiao Cui a,b,d, Gabor Halmos e, Wei Sha a,b, Jinlin He a,b, Petra Popovics f, Irving Vidaurre a,b, Chongxu Zhang g, Mehdi Mirsaeidi h,i,j, Andrew V. Schally a,b,d,e,f,h,i,∗

a Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States
b South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
c Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
d Department of Medicine, Division of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
e Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
f Section of Pulmonary Veterans Affairs Medical Center Miami, FL 33125, United States
g Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
h Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
i South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
j Corresponding author: Research Service (151), Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, 1201 NW 16th St., Miami, FL 33125, United States.

E-mail address: Andrew.Schally@va.gov (A.V. Schally).

ARTICLE INFO

Keywords:
GHRH antagonists
GHRH-R
GH
Antitumor
Anti-inflammation

ABSTRACT

The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2.4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 g/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastomas. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.

1. Introduction

Cancer continues to be a major health problem throughout the world [1]. There is a critical medical need for new drugs, that target malignant tumor cells, with few or no side effects. Growth hormone-releasing hormone (GHRH) is a hypothalamic peptide neuro-hormone that regulates the release of growth hormone (GH) from the pituitary gland [2,3]. Although GHRH was initially identified in tumor tissues [2-5], few investigators attempted to explore the possible role of GHRH in carcinogenesis by the late 1990’s. At that time, our group, in view of our interest...
in the field, had decided to become involved in the synthesis and evaluation of GHRH antagonists for possible uses in therapy of cancer [6–8].

In the past decades, many antagonists of human GHRH have been synthesized and tested by other investigators [9–13], as well as by us [6–8,14–18]. Our laboratory has developed several classes of GHRH antagonists which show potent inhibitory effects on growth of various tumors [6–8,14–18]. Strategies to improve the bioavailability, short half-life in vivo, rapid renal clearance of GHRH antagonists and in vivo stability were developed [6,13]. In initial studies performed in our laboratory, early types of GHRH antagonists inhibited the growth of human osteosarcomas (SK-ES-1 and MNNG/HOS) [19] and small cell-and non-small cell lung carcinomas [20] xenografted into nude mice. Subsequent studies demonstrated that antagonists of GHRH also inhibit growth of various other tumors [18].

We and others incorporated pentafluoro-Phc at different positions into several GHRH analogs [14,21]. Acylation of GHRH antagonists with octanoic acid or 12-aminododecanoic acid improved the anti-proliferative effects of these antagonists [8,14]. Our work between 1994 and 2017 resulted in several series of potent GHRH antagonists intended for cancer therapy [6–8,14–18]. Antagonists of MIA series, after subcutaneous administration in microgram doses suppressed tumor growth of diverse human cancer lines xenografted into nude mice [14]. Antagonists MIA-602 and MIA-690 were among the most potent anti-tumor analogs and also displayed anti-inflammatory activities [22–24]. Thus, GHRH analogs of the Miami series powerfully hinder tumor growth and inflammatory activities, but have only a weak endocrine GH inhibitory activity [14]. GHRH antagonists of Miami class, inhibited tumor growth in vivo in nude mice of some 16 types of solid human cancers represented by nearly 50 human cancer lines. In this work we describe the design and syntheses of new class of GHRH antagonists [25] with greater tumor inhibitory potency and augmented suppressive activity on the release of GH.

2. Material and methods

2.1. peptide synthesis and purification

AVR GHRH antagonists were prepared by solid-phase methodology using Fmoc synthesis strategy [26]. The antagonists with C-terminal amide such as Har-NH2 or Ada-NH2 were synthesized using Rink amide MBHA resin; and the antagonists with C-terminal Har-NHCH3 or Ada-NHCH2 were synthesized on Methyl Indole AM resin.

For the synthesis, the Fmoc group was eluted from the Rink amino MBHA resin with 20% piperidine in dimethylformamide for 20 min. The side chains of Fmoc-amino acids were protected with acid labile groups such as β-tet-butyl ester for Asp; tert-butyl (But) for Ser, Thr and Tyr; Nα-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for Arg and δ-Arg; Nβ-tet-butoxycarbonyl (Boc) for Orn; Nγ-trityl for Asn and Nδ-trityl for Gln. Dat was unprotected. The coupling of Fmoc amino acid with 3 equivalents of Fmoc amino acid, HBTU [2-(1H-benzotriazole-1-Yl)-1,1,3,3-tetramethyluronium hexa-fluorophosphate] and HOBT [1-Hydroxybenzotriazole] dissolved in DMF, followed by addition of 6 equivalents of N,N-disopropylethylamine (DPEA) and stirred for 5 min to go into a complete solution. The mixture was immediately added to Fmoc-deblocked resin and shaken for 2 h. After finishing the peptide synthesis, the final de-protection and cleavage of the peptides from the resin were performed by treatment with a mixed reagent and scavengers containing TFA/thioanisole /1,2-ethanediol / phenol / H2O (95 : 1.5 : 1 : 1 : 1.5 by volume) at room temperature for 3 h. All amino acid derivatives, rinses, and reagents were obtained from Chem-Impex Int’l INC (Wooddale IL), Sigma-Aldrich, (Billerica, MA), or Novabiochem (Burlington MA). The scale of synthesis was around 0.5 mmol for most of our AVR compounds. The scale for purification was 200 mg for crude products; the average yield was around 30 % with >95 % purity.

Purification of the crude peptides was performed on a Beckman Gold HPLC system (Beckman Coulter, Inc., Brea, CA) equipped with a 127 P solvent Module, model 166 P UV–vis Detector, using an XBridgeTM BEH C18 OBD Column (10 × 150 mm, 30 Å pore size, 5 µm particle size, Waters Co., Milford, MA). The peptides were eluted with a solvent system consisting of solvent A (0.1 % aqueous TFA) and solvent B (0.1 % TFA in 70 % aqueous acetonitrile [MeCN]) in a linear gradient mode of 30–70 % solvent B for 150 min at a flow rate of 5 ml/min. The eluents were monitored at 220 nm and the fractions were examined by analytical HPLC and pooled to give maximum purity.

The HPLC analyses of crude and purified peptides were carried out on an Agilent 1290 Infinity High Performance Liquid Chromatography unit (Agilent, Santa Clara, CA) equipped with Discovery HS C18 column (2.1 × 50 mm, 120 Å pore size, 3 µm particle size, Supelco Bellefonte, PA). An isocratic and/or gradient elution was used from 40 to 80 % B in 10 min with a solvent system consisting of solvents A and B, described above, with a flow rate of 0.5 ml/min. The peaks were monitored at 220 and 280 nm. The peptides were judged to be substantially (>95 %) pure by analytical HPLC.

Molecular masses were determined by an Agilent 6210 time-of-flight Mass Spectrometer in conjunction with 1200 CapLC (Agilent, Santa Clara, CA). Peptides were eluted on an Agilent Zorbax C18 column (0.5 × 150 mm, 300 Å pore size, 5 µm particle size) with a solvent system consisting of solvent A (0.1 % formic acid) and solvent B (0.1 % formic acid in 90 % aqueous acetonitrile) in a linear gradient mode of 35–85 % solvent A: solvent B, at a flow rate of 15 µl/min in 30 min. TOF settings were as follows: capillary voltage: 4000 V, drying gas flow: 7 l/ min, drying gas temperature: 300°C, nebulizer gas: 30 psi, fragmentor voltage: 350 V.

2.2. Animals

Male rats (Wistar, obtained from Charles River Laboratory) weighing ~200 g were used for the in vivo and in vitro endocrine tests; Athythic (Ncr nu/nu) nude mice, 5 to 6-week-old, obtained from Envigo Labs (Tampa, FL) were used in oncologic studies; 6- week-old C57BL/6 male mice (Jackson Laboratory, Bar Harbor, ME) were used in lung granulomatous study. All animals were housed in Laminar airflow cabinets under pathogen-free conditions [27]. The experiments were conducted in accordance with the principles and procedures of the NIH Guide for the Care and Use of Laboratory Animals. The protocol of the animal experiments was reviewed and approved by the Institutional Animal Care and Use Committee of the Miami VA Medical Center.

2.3. Cell lines

Various human cancer cell lines including HCC827 human lung cancer NSCLC-ADC, H460 human lung cancer LC1, CFPA-1 and PANC-1 human pancreatic cancer, NCI-N87 human stomach cancer, HT-29 colon cancer, MX-1 breast cancer OVCAR-3 and SK-OV-3 ovarian, U87 glioblastoma and PC-3 prostate cancer cell lines were obtained from the American Type Culture Collection (Manassas, VA) and maintained in culture in as instructed by the manufacturer.

2.4. Evaluation of receptor binding affinities in vitro

Preparation of human pituitary membrane fractions and receptor binding assay were performed as previously described [26]. Human pituitaries were purchased from the National Hormone and Peptide Program. In the competitive binding analyses, 125I-labeled [His1, Nle2,γ2hGHRH(1–32)-NH2] or unlabeled [His1, Nle2,γ2hGHRH(1–32)-NH2] (0.2 nM) was displaced by GHRH antagonists at 10−8–10−12M. The final binding affinities were expressed as IC50 value and were calculated using the LIGAND PC computerized curve-fitting program of Munson and Rodbard [28] as modified by McPherson [29].
2.5. Cell proliferation assay

Human cancer cells were seeded into 96-well plates and exposed to 1 μM, 2 μM, and 5 μM of a selected AVR class of GHRH antagonists in quintuplicate wells, each for 70–72 h. The GHRH antagonist MIA-602 was used for comparison of activity. At the end of treatment, cell proliferation was measured using CellTiter 96 aqueous one solution kit (Promega, Madison WI), as described previously [27]. Relative inhibitory potency of AVR-class of GHRH antagonists in comparison to MIA-602 was calculated based on the inhibition of cell viability after cancer cells were treated with the antagonists at a concentration of 5 μM for 72 h.

2.6. Oncologic study in vivo

As previously described [27], athymic (Ncr nu/nu) nude mice were xenografted subcutaneously (s.c) with approximately 3 mm³ pieces of tumor tissue derived from donor animals. When tumors reached a mean volume of ~40–50 mm³, the animals were randomly assigned into groups (6–10 mice per group) and treated s.c. with GHRH antagonists: MIA-602, and selected AVR antagonists at doses of 5 μg/day (prepared in a vehicle solution, 10 % propylene glycol containing 0.1 % DMSO) or otherwise indicated. Controls were treated with vehicle solution. Tumor size was measured once a week with a micro-caliper. Tumor volume was calculated as previously described [30]. At the end of the experiment, (after 4–7 weeks of treatment) mice were anesthetized and sacrificed. Tumor growth rate “Vn/V0”, tumor volume at the termination of treatment / tumor volume at beginning of the treatment, was calculated.

2.7. In vivo assessment of the antagonistic activity of GHRH analogs on GH release

The potency and duration of inhibitory effects of GHRH antagonists were tested in male rats using 8 rats per group [14]. Twenty min after anesthesia, GHRH antagonists MIA-602, AVR-352 and AVR-353, at dose of 5 μg/kg were injected into the jugular vein of the rats, followed by an iv injection of 3 μg/kg GHRH (1-29)NH₂ 5 min later. Controls received vehicle solution (10 % propylene glycol containing 0.1 % DMSO) before GHRH stimulus. Serum GH levels before the administration of the antagonists and 5, 15 and 30 min following the injection of GHRH (1-29)NH₂ were measured by ELISA assay kit (ALPCO Diagnostics, Mill Valley, CA).

2.8. In vitro assessment of the antagonistic activity of GHRH analogs on GH release

Rats were decapitated and pituitaries were collected in prewarmed HBSS (Hanks’ Balanced Salt Solution). Tissue was cut into small pieces and digested in HBSS medium containing 3 % BSA, 50 μg/mL gentamicin and 0.5 % collagenase) and seeded onto poly-α-lysine-coated 24-well plates using 7 pituitaries/plate. Cells were allowed to recover for 4 days. Growth medium was then replaced with serum-free DMEM for 4 h and 20 nM of selected GHRH analogs were added in DMEM containing 0.1 % BSA for 30 min. Cells were then incubated in medium containing 20 nM concentration of the analog and 1 nM GHRH(1-29)NH₂ for 30 min. The medium from this step was collected and centrifuged at 800 g for 3 min. GH concentration was determined by using Spin Bio Growth hormone (rat) EIA KIT (Cayman chemical, Ann Arbor, MI).

2.9. Mouse model with granulomatous lung reaction

Granulomatous reaction in the mouse lung was developed as previously described [31]. Briefly, 6-week-old C57Bl/6 male mice were challenged intratracheally for 4 times (at day 0, 3, 6, and 9) with microparticles developed from mycobacterium abscess cell wall [31]. Mice were randomly divided in four groups (5 mice per each group) and treated with PBS, MIA-602 (5 μg/day), AVR-352 (5 μg/day) or Methyl prednisolone (138 μg/day) on day 0 through three weeks, respectively. The mice were sacrificed on day 21 days after challenges and the lungs were harvested for protein analyses.

2.10. Protein isolation and Western blot analyses

Lung tissues retrieved from mice with granulomatous lung reaction, or tumors from mice carrying xenografted human lung cancer HCC827 after treatment with antagonists were lysed in lysis buffer (Cell Signaling Technology, Beverly, MA) with protease inhibitor cocktail (Cell Signaling Technology, Beverly, MA). Samples were sonicated and centrifuged at 10,000 g for 5 min 3 times. The supernatant was collected, and protein concentration was determined by BCA protein assay using a kit (Cell Signaling Technology).

Thirty micrograms of total protein were mixed in a reducing sample buffer, and then electrophoresed on a 10–15 % Tris gel as described [27]. Quantification of density of signals was performed using chemiluminescence (ECL Plus, General Electric Healthcare, Milwaukee, WI). The primary antibodies to IL-2 (26156-1-AP), 2′-5′-Oligoadenylate Synthetase 1 (OAS1, 14955-1-AP), interferon-stimulated gene 15 (ISG15, 15981-1-AP), and actin (20536-1-AP) were from ProteinTech Group, Inc. (Rosemont, IL), to GHRH-R (TA311715) from OriGene (Rockville, MD) to cyclin D1 (#2922S), cyclin D2 (#3741S) and the secondary antibody, horseradish peroxidase-conjugated goat anti-rabbit antibody (7074P2) were from Cell Signaling Technology (Danvers, US). Anti-β-actin (A2282) was from Sigma-Aldrich (St. Louis MO) and secondary antibody HRP conjugated anti mouse-IgG (W042B) was from Promega (Madison WI).

2.11. Statistical analysis

Statistical analyses of the results of oncological studies were performed by t-test or one-way ANOVA, followed by Tukey’s test, using the computer software Sigma Stat (Jandel, San Rafael, CA). Differences were considered significant when p < 0.05. GH data was analyzed similarly.

3. Results

3.1. Design and synthesis of new hGHRH antagonists

We have synthesized 115 GHRH antagonists of AVR series using Fmoc-chemistry method instead of Boc chemistry used for GHRH antagonists of MIA series [26]. This AVR series of antagonists contains modification at positions 0, 6, 8, 9, 10, 11, 12, 20, 21, 29 and 30 of the nineteen AVR and two MIA GHRH antagonists MIA-602 and MIA-620. Table 1 shows the key amino acid replacements in nineteen AVR antagonists which were selected for testing of antitumor activities in comparison to MIA-620. These AVR compounds have SFP-HAC-Ada at N-terminal; SFPHe or Cpa at position 6, Asn or Ala at position 8, Arg or Har at position 9, Try (Me) or SFpHe at position 10, Arg or His in position 11 and 20, Lys or Orn at position 12 and 21 and Har-HNH₂ or Har-NHCH₃ at position 29; or modified C-terminal NH₂ with Aoc-NHCH₃ or Ada-NH₂, Ada-NHCH₃ as an additional extension at position 30. These AVR antagonists were tested for their receptor binding affinities, inhibitory effects in cell viability assays in various human cancer cell lines including lung (HCC827, NSCLC-ADC and H460, NSCLC-LCLC), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. The compounds which displayed high inhibitory potencies in vitro, were further tested in vivo in nude mice xenografted with various human tumors.

3.2. Binding affinities of new hGHRH antagonists

The nineteen AVR and two MIA GHRH antagonists MIA-602 and...
Table 1

Structures of AVR antagonists tested in vivo. 1

Peptides	Position of residues
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
MIA-602	PhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh 5FPhe Thr Ala Har Tyr(Me) His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
MIA-690	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Har 5FPhe His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
JV-1-38	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Asn Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
AVR-104	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Arg Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
AVR-107	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Arg Tyr Arg Lys Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
AVR-116	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Arg 5FPhe Arg Lys Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
AVR-120	D-Phe-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Arg Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NH2
AVR-201	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Ala Arg Amp Arg Lys Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har-NHCH3
AVR-234	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Asn Arg Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har-NHCH3
AVR-235	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har-NHCH3
AVR-321	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Asn Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoc-NHCH3
AVR-322	5FPhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Asn Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoc-NHCH3
AVR-332	PhAC-Ada Tyr D-Arg Asp Ala Ile Cpa Thr Asn Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-333	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-352	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-353	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har Tyr(Me) Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-354	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-355	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-356	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-357	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe Arg Lys Val Leu Abu Gln Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-542	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-543	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-552	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2
AVR-553	5FPhAC-Ada Tyr D-Arg Asp Ala Ile 5FPh Thr Ala Har 5FPhe His Orn Val Leu Abu Gln Leu Ser Ala His Orn Leu Leu Gln Asp Ile Nle D-Arg Har Aoa-NH2

1. The original Table 1 is too large for publication. The rest of the data in Table 1 is listed in Table 1S.

2. Non-coded amino acids and acyl groups used in the peptides are abbreviated as follows: 5FPh, pentafluoro-Phe; 5FPhe, pentafluoro-phenylacetyl; Abu, α-aminobutanoyl; Ada, 12-aminododecanoyl; Amp, para-amidinophenylalanine; Aoc, 8-aminooctanoic acid; Cpa, 4-chloro-Phe; Har, homoarginine; Nle, Norleucine; Orn, Ornithine; PhAc, phenylacetyl; Tyr(Me), O-methyl-Tyr.
3.3. Inhibition of cell proliferation in vitro

The inhibitory activities of several new GHRH antagonists AVR-235, AVR-333, AVR-352, AVR-353, AVR-354, AVR-540, AVR-543 and AVR-553, were tested on the proliferation of various human cancer lines including lung (HCC827 and H460); pancreatic (CFPAC-1 and PANC-1), stomach (NCI-N87), colon (HT-29) and breast (MX-1) were evaluated in vitro at concentrations of 1 μM, 2 μM and 5 μM, and compared to those of MIA-602. The antagonists suppressed the viability of cancer cells in a concentration-dependent manner in most tests (Fig. 1). Treatment of HCC827 cells with AVR-352, AVR-353, AVR-354 and AVR-553 at concentration of 5 μM decreased cell growth by 67.4 %, 58.4 %, 73.7 % and 73.5 % respectively in comparison to 31.7 % exerted by MIA-602 (Fig. 1A). Treatment of N87 cells with 5 μM AVR-235, AVR-352 and AVR-353 reduced cell growth by 52.6 %, 56.0 % and 76.6 % in comparison to 20.5 % shown by MIA-602 (Fig. 1B). Incubation of CFPAC-1 cells with 5 μM AVR-333 or AVR-353 decreased cell growth by 64.5 % and 72.2 % in comparison to 18.8 % inhibition induced by MIA-602 (Fig. 1C p < 0.01). In HT29 colon cells (Fig. 1D), treatment with 5 μM AVR-352 produced a greater inhibition of tumors than 5 μM MIA-602. In MX-1 cells (Fig. 1E), treatment with AVR-352, AVR-353 and AVR-354 also significantly reduced cell growth by 77.6 %, 68.7 % and 60.6 % respectively, in comparison to 37.4 % inhibition induced by MIA-602. Table 2 summarizes the inhibitory potency of AVR-compounds relative to MIA-602 in different cell lines, based on the inhibitory effects on cell viability exposed to 5μM of antagonists. Antagonists AVR-235, AVR-333, AVR-352, AVR-353 and AVR-354 showed greater inhibitory effects on the cancer cell lines tested than MIA-602.

3.4. Oncological studies in vivo

The compounds which displayed high inhibitory potencies in vitro, were further tested in vivo for their suppressive effects on the growth of human cancers xenografted into nude mice. Based on the results in Tables 2 and 3, we selected the AVR analogs with higher binding affinity to GHRH receptors on human anterior pituitary cells for further testing for anti-tumor and anti-inflammatory activity in vivo.

Table 4 shows a comparison of inhibition of the growth of tumors after therapy with GHRH antagonist MIA-602 and new GHRH antagonists of AVR class. Various human cancers were tested including lung (HCC827 and H460); pancreatic (PANC-1 and CFPAC-1), gastric (NCI-N87), colorectal (HT-29), breast (MX-1), ovarian (SK-OV-3 and OVCAR-3), prostatic (PC-3) cancers and glioblastoma (U87).

As shown in Table 4, AVR-353 at the dose of 5 μg /day inhibited tumor growth of HCC827 by 71.0 %, PANC-1 by 52.9 %, CFPAC-1 by 46.2 %, NCI-N87 by 65.0 % and HT-29 by 36.3 %; which is better than MIA-602 at the same doses (49.5 %, 41.1 %, 39.5 %, 52.1 % and 15.5 %, respectively). AVR-353 also showed superior inhibitory effects to MIA-602 in H460 cancers. Antagonist AVR-352 at 5 μg/day displayed better inhibitory effects in HCC827 and CFPAC-1 cancers than MIA-602, while antagonist AVR-354 was more potent on HT-29 and MX-1. In stomach cancer N87, AVR-235 at the dose of 2 μg /day, AVR-543 and AVR-553 at dose of 5 μg /day also showed greater inhibition than MIA-602 at 5 μg /day (64.9 %, 64.9 %, and 68.3 % vs 52.1 % respectively). In addition, we have obtained dose response inhibition of growth of HCC827, PANC-1, CFPAC-1 and N87 cancers with antagonist AVR-353 between 2.5 μg, 5 μg and 10 μg (Table 4 and Fig. 2A-D). These results support the merit of further investigation of GHRH antagonists of AVR class in models of human cancers, particularly in pancreatic and lung cancers. In studies with ovarian cancer (SK-OV-3), AVR-352 at the dose of 2.5 μg or 5 μg /day showed better inhibition (45.0 % and 67.7 % respectively) than MIA-602 at 5 μg /day (38.0 %), while AVR-353 had a weaker antitumor effect. In ovarian cancer OVCAR-3, AVR-352 at dose of 5 μg /day induced better inhibition (58.4 %) than MIA-602 (44.4 %). In prostatic cancer (PC3), AVR-352 and AVR-354 at the dose of 5 μg /day also induced better inhibition (50.0 % and 58.4 % respectively) than MIA-602 (45.5 %). Interestingly, AVR-333 and AVR-352 at 5 μg/day displayed higher antitumor activity in human glioblastomas U87 than MIA-602 (56.7 % and 66.1 % vs 48.3 % respectively) while AVR-353, AVR-354 showed similar effects to MIA-602 (Table 4).

3.5. Inhibition of GH release in vitro and in vivo after administration of GHRH antagonists of AVR class

The GHRH antagonists which displayed high inhibitory potency in oncologic experiments, were further tested for their effects on GH release in vitro using primary cultures of rat pituitaries. Fig. 3A shows that GH release induced by 1 nM GHRH was partially inhibited by 20 nM MIA-602 by 22 %, AVR-235 by 40 %, AVR-352 by 28 % and AVR-353 by 35 % respectively. The results demonstrated that these AVR GHRH antagonists exhibit inherent inhibitory activity on GH release from the pituitary. Fig. 3B shows that intravenous administration of 5 μg/kg of AVR-352 or AVR-353 into rats caused a significant reduction (28.0 %, 32.0 % respectively) in the serum concentration of GH compared to the GH levels in the animals given vehicle control. The inhibition of GH release induced by AVR compounds was greater than that by MIA-602 (22.7 %) at the same doses.

3.6. The mechanism mediating the enhanced anticancer effects of GHRH antagonists

Our previous studies have revealed that antagonist MIA-602 inhibited tumor progression of lung cancer HCC827 by modulating the
expression of GHRH receptors, effector proteins in cell cycle G1/S transition check point, and in PAK1-STAT3 and cAMP/CREB signaling pathways [27]. The proteins were extracted from the tumor tissues retrieved from mice xenografted with lung cancer HCC827 treated with MIA-602 or AVR-353 at dose of 5 μg (Table 2 and Fig. 2A) and analyzed by Western blot analysis. As shown in Fig. 4, treatment with AVR-353 significantly down-regulated the expression of GHRH-R, SV1, PAK1, pCREB/CREB, cyclin D1, cyclin D2, cyclin-dependent kinases (CDKs; CDK4, and CDK6); and upregulated the expression of p27kip1 (the conditional inhibitor for CDK4/6). GHRH antagonist AVR-353 displayed similar but greater effects in comparison to MIA-602.

3.7. Anti-inflammatory effects of AVR class

GHRH antagonists exhibit inhibitory effects on several inflammatory cytokines in the cancer microenvironment [32]. We aimed to test these effects in an in-mouse lung inflammatory model. To achieve this goal, we developed granulomas in the lungs of mice. Mice were randomly grouped and treated with vehicle solution, MIA-602 (5 μg/day), AVR-352 (5 μg/day) or methyl prednisolone (138 μg/day) for three weeks. Fig. 5 shows the expression of IL2, OAS1 (2′-5′-Oligoadenylate Synthetase 1) and ISG15 (Interferon-stimulated gene 15) in the lung tissues retrieved from the animals, analyzed by Western blots. The levels of all three proteins were decreased in comparison with untreated tissues, however only treatment with AVR-352 resulted in significant reductions (55.8 %, 68.7 % and 63.8 % for IL-2, OAS1 and ISG15 respectively, p < 0.05). The results confirmed that AVR-352 has greater anti-inflammatory activity in comparison with MIA-602 or methyl prednisolone.

3.8. Structures of best GHRH antagonists of AVR class

The structures of analogs, which displayed highest receptor binding affinities, are listed in Table 4. Analogs AVR-352 and 353 appeared to be the most potent GHRH antagonists based on their inhibitory effects on tumor growth in the in vitro and in vivo tests and had higher antitumor activity than MIA-602.

Table 3

GHRH Antagonists	HCC827	H460	CFPAC-1	PANC-1	NCI-N87	HT-29	MX-1
MIA-602	1	1	1	1	1	1	1
AVR-235	1.08	1.041	1.497*	1.061	1.671*	0.968	–
AVR-333	1.177	1.12	2.388**	1.061	1.400	–	–
AVR-352	2.010**	1.272	1.576*	0.988	1.809**	1.197	2.793**
AVR-353	1.641*	2.94**	2.922**	1.19	3.404***	1.222*	2.001*
AVR-354	2.595**	1.608*	1.670*	–	–	1.403*	1.594*
AVR-540	1.121	0.537	–	–	0.908	0.999	–
AVR-543	0.961	0.561	–	–	1.260	–	–
AVR-553	2.582**	0.749	–	–	1.158	–	–

The data were calculated based on the inhibition of cell proliferation in cancer cell lines treated with antagonists at concentration of 5 μM for 72H. -, not performed, *p < 0.05, **p < 0.01, ***p < 0.001.
Cancer cell lines	Analog	Dose (μg/ Day)	Tumor Growth Rate (Vn/V0)	% Inhibition
HCC 827				
NSCLC-ADC	Control	(5 μg/day) 7 w	13.12 ± 1.61	–
	MIA-602	(5 μg/day) 7 w	6.62 ± 0.88	49.5*
	AVR-353	(5 μg/day) 7 w	7.71 ± 1.78	41.2
	AVR-353	(5 μg/day) 7 w	4.07 ± 0.60	69.0**
	AVR-543	(5 μg/day) 7 w	3.71 ± 1.02	71.7**
	AVR-553	(5 μg/day) 7 w	3.8 ± 0.86	71.0**
	Control	(5 μg/day) 7 w	8.41 ± 1.00	–
	MIA-602	(5 μg/day) 7 w	5.23 ± 1.43	37.8*
	AVR-353	(2.5 μg/day) 4 w	5.48 ± 0.75	35.1*
	AVR-353	(5 μg/day) 7 w	4.21 ± 0.55	50.0**
	AVR-353	(10 μg/day) 7 w	3.59 ± 0.73	57.3**
	Control	(5 μg/day) 7 w	33.82 ± 2.36	–
	MIA-602	(5 μg/day) 7 w	16.03 ± 1.64	52.6***
	AVR-352	(5 μg/day) 4 w	17.38 ± 3.07	48.6***
	AVR-353	(5 μg/day) 4 w	13.35 ± 2.52	60.5***
	Control	(5 μg/day) 7 w	26.71 ± 6.24	–
	MIA-602	(5 μg/day) 7 w	15.73 ± 3.92	41.1
	AVR-353	(5 μg/day) 7 w	13.84 ± 1.69	48.2
	AVR-353	(2.5 μg/day) 7 w	20.73 ± 4.20	22.4
	AVR-353	(5 μg/day) 7 w	14.57 ± 2.18	45.4
	Control	(5 μg/day) 7 w	19.71 ± 3.13	–
	MIA-602	(5 μg/day) 7 w	15.88 ± 3.74	19.5
	AVR-353	(5 μg/day) 7 w	16.17 ± 1.66	18.0
	AVR-352	(5 μg/day) 7 w	14.48 ± 1.93	26.5
	AVR-353	(5 μg/day) 7 w	12.94 ± 2.69	34.3
	AVR-353	(5 μg/day) 7 w	10.78 ± 1.61	46.2*
	Control	(5 μg/day) 7 w	8.92 ± 1.93	–
	MIA-602	(5 μg/day) 4 w	4.27 ± 0.72	52.1*
	AVR-353	(2 μg/day) 4 w	3.12 ± 0.41	64.9**
	AVR-353	(2 μg/day) 4 w	4.33 ± 0.32	51.4*
	AVR-353	(5 μg/day) 4 w	3.12 ± 0.50	65.0**
	AVR-353	(2 μg/day) 4 w	4.61 ± 1.00	48.3
	AVR-353	(2 μg/day) 4 w	3.13 ± 0.40	64.9**
	Control	(5 μg/day) 9 w	13.4 ± 0.79	–
	MIA-602	(5 μg/day) 8 w	7.57 ± 0.42	45.5**
	AVR-353	(5 μg/day) 8 w	7.41 ± 0.38	50.0**
	AVR-353	(5 μg/day) 8 w	7.57 ± 0.50	39.9**
	Control	(5 μg/day) 7 w	31.78 ± 7.65	–
	MIA-602	(5 μg/day) 7 w	16.42 ± 3.49	48.3
	AVR-352	(5 μg/day) 4 w	13.76 ± 2.93	56.7*
	AVR-352	(2 μg/day) 4 w	16.94 ± 3.19	46.7
	AVR-352	(2 μg/day) 4 w	10.77 ± 1.67	66.1*
	Control	(5 μg/day) 7 w	31.62 ± 1.53	–
	MIA-602	(5 μg/day) 7 w	8.18 ± 0.68	38.0*
	AVR-352	(2.5 μg/day) 7 w	6.23 ± 1.36	45.0**
	AVR-353	(5 μg/day) 7 w	4.59 ± 0.59	67.7**
	Control	(5 μg/day) 7 w	9.36 ± 1.04	19.1
	MIA-602	(5 μg/day) 7 w	8.07 ± 1.35	30.9
	OVCAR-3	(5 μg/day) 9 w	7.35 ± 0.44	–
	MIA-602	(5 μg/day) 9 w	4.86 ± 0.27	44.4**
	OVCAR-3	(5 μg/day) 9 w	4.73 ± 0.44	35.9*
	Control	(5 μg/day) 7 w	4.87 ± 0.21	46.9**
	MIA-602	(5 μg/day) 7 w	7.57 ± 0.42	45.5**
	PC-3	(5 μg/day) 8 w	7.41 ± 0.38	50.0**

Table 4 (continued)
Growth hormone-releasing hormone (GHRH) is a hypothalamic peptide neuro-hormone that regulates the release of growth hormone (GH) from the pituitary gland [2,3]. Acting as an autocrine/paracrine growth factor, GHRH also exerts direct effects on various extra-pituitary cells or tissues, mediated by GHRH receptors (GHRH-Rs) [18]. In the past decades, many analogs of GHRH have been synthesized [6–20]. Our laboratory has developed several classes of GHRH antagonists which show potent inhibitory effects on the growth of various tumors [6–8,14–20]. In our previous publications we reported the design and syntheses of a group of GHRH antagonists of MIA series with greatly increased biological and anticancer activity [14]. Among these antagonists, MIA-602 and MIA-690 showed powerful antitumor activity in human cancers xenografted in nude mice [14]. Antagonist MIA-602 has been tested in a variety of human cancer models including androgen-dependent and castration-resistant prostate cancer [33] glioblastoma [34], experimental ovarian cancers [35], triple negative breast cancers [32], small cell- and non-small cell lung cancers [27], gastric cancer [36], esophagus cancers [37], mesothelioma [38], thyroid cancer [39], melanoma [40] and leukemia [41]. These new AVR GHRH antagonists might complete the armamentarium for therapy of prostate cancer, since they could be used in castration resistant prostate cancer, which no longer responds to androgen deprivation therapy with agonists of LHRH [42]. These AVR GHRH antagonists can obviously be also used for therapy of many types of other cancers such as, lung, bladder, pancreatic and colorectal cancers. Interestingly, MIA-690 exhibited beneficial effects on inhibition of amyloid aggregation and proteotoxicity in a transgenic mouse model of Alzheimer’s disease [43]. This effect may be in part due to the anti-inflammatory activity of this class of analogs [44].

The paper describes the syntheses of a new AVR class of GHRH antagonists, in which further modifications of the structures of MIA-602 and MIA-690 were introduced. Our strategy to induce higher activity included the design and synthesis of three groups of modified AVR compounds as follows: Firstly, we synthesized compounds based on the structure of MIA-602 containing Arg\(^{11,20}\) and Lys\(^{12,21}\) to replace His\(^{11,20}\)Orn\(^{12,21}\); because His\(^{11,20}\)Orn\(^{12,21}\) were in the sequence in our previous antagonist JV-1-38 which showed higher inhibitory effects on GH release, but weaker antitumor activity in comparison to MIA-602 or MIA-690 [51]. The analogs with replacements such as AVR-107, AVR-104, AVR-120 displayed weaker antitumor activity in comparison with MIA-602. In the second AVR group we introduced NHCH\(_3\) at the C-terminus (analog AVR-201, AVR-234 and AVR-235); interestingly analog AVR-235 containing additional modification with 5FPhAc at the N-terminus and 5FPhe\(^6\) showed higher affinity in the receptor binding assay and promising antitumor activity in stomach cancer (Tables 3 and 4) [45]. In the third group of AVR compounds, we further modified NHCH\(_3\) with fatty amino acid Ada at C-terminus, which resulted in a series of analogs (AVR-352, AVR-353 and AVR-354) with both greater antitumor activity on various cancer cells and higher affinities to the pituitary GHRH receptors, as well as inhibitory effects on GH release (Tables 2–4 and Fig. 3). The molecular masses, of analogs as determined by mass spectrometry, matched very well with their molecular weight as calculated from their structures (Table S1, Figs. S1 and S2).

As shown in Table 2, eleven of nineteen tested GHRH antagonists of AVR class, with different combination of modification in the structures, presented a higher binding affinity to GHRH receptor than MIA-602, and nearly all of the AVR compounds had higher binding affinity than MIA-690, which is a potent GHRH antagonist with important antitumor activity.

Fig. 2. Inhibition of tumor growth in vivo by the treatment of GHRH antagonists AVR compounds or MIA-602. Tumor growth rate (Vn/V0) in nude mice xenografted lung (A), pancreatic (B and C) and stomach (D) cancer cells is presented. The percentage of inhibition of tumor growth at the termination of each experiment was summarized in Table 3. *p < 0.05, **p < 0.01.
results were observed with AVR-235 in lung cancer HCC827 and stomata tested tumor models including lung HCC827 and H460, pancreatic potentia varies in different human cancer models with other tested AVR-compounds than of MIA-602. However, the relative inhibitory agonists plays a major role in the inhibition of tumor growth, [18, 27, 30, cectors or their blockade by GHRH antagonists, as well as by GHRH lated in support of the concept that the downregulation of GHRH re receptors or their blockade by GHRH antagonists, as well as by GHRH agonists plays a major role in the inhibition of tumor growth, [18, 27, 30, 36]. This downregulation appears to be similar to that exerted by LHRH agonists or antagonists on the pituitary gonadal axis [42,47] and which has been used clinically for the past 30 years for therapy of sex hormone dependent tumors. Studies on different classes of GHRH-R antagonists on cancers have demonstrated their abilities to modulate multiple intracellular pathways involved in cellular proliferation, survival, metastasis, apoptosis and inflammation [16-18,24,27,34-39,48]. The mechanisms of GHRH-R antagonists identified include the modulation of the expression of effector proteins in the cell cycle to inhibit cell proliferation by blocking the G1 to S transition in the cell cycle, enhancing the expression of E-cadherin and β-catenin leading to less invasive cancers [27]. Other signaling pathways such as Raf/MEk/ERK1/2, PI3K/AKT, EGF/HER, PKC [49-51] pathways, and cAMP-CREB pathway [27] were also found to be associated with the inhibitory effects of GHRH antagonists on human cancer cells. These studies extended our knowledge of the possible cross talk between the binding of GHRH antagonists to its receptor and other, not yet explored cell signaling pathways in different cancers. Furthermore, GHRH-R antagonist MIA-602 has been described to modulate multiple inflammation-associated molecules in gastric and lung cancers. In the STAT3/NF-κB signaling pathway, treatment with GHRH antagonist MIA-602 results in downregulation of PAK1, a member of the p21-activated kinase family, and STAT3, a potential effector for G-protein-coupled receptors in regulation of cell progression [36,52]. A recent study [37] also revealed that SV1, splice variant of GHRH-R, is a hypoxia-driven promoter of tumor progression in esophageal squamous cell carcinoma (ESCC). The hypoxia-elevated SV1 activates key glycolytic enzyme, muscle-type phosphofructokinase (PFKM) through nuclear factor-xB (NF-xB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by SV1-NF-xB-PFKM pathway could be reversed by MIA-602 [37]. Interesting, the study by Liang et al. [53] revealed that NF-xB subunit p65 transcriptionally activates GHRH-R expression in human ciliary
epithelial cells, indicating a functional role of GHRH-R/JAK2/STAT3 signaling axis in acute anterior uveitis and GHRH antagonist MIA-602 attenuated expression of proinflammatory factors. In recent studies with Covid-19 pandemics, a very important finding made by D. Kotton’s group [54], revealed that soon after air sacs in lung are infected with SARS-Cov-2, NF-κB signaling pathway triggers high levels of inflammation. The discovery of NF-kB’s role in this deadly cascade makes promising a new therapy based on GHRH antagonists like MIA-602.

The results shown in Fig. 4 reveal that in correlation with the stronger inhibitory activity on tumor growth, AVR-353 displays greater effects in modulating the expression of effector proteins involved in the signaling pathways described in lung cancer HCC827 after treatment with MIA-602 [27]. The fact that GHRH antagonists of AVR class exert higher binding affinity to its receptor and greater inhibition of GH release and tumor growth suggests that these compounds will also display greater activities in modulating the expression of effector proteins involved in multiple signaling pathways in other cancer lines. Peptide analogs can promote and regulate distinct conformational changes in receptors [14,55], GHRH antagonists of AVR class may affect the conformation of GHRH-Rs. Multiple receptor conformations possessing distinct signaling and regulatory properties have been reported in the activation of G-protein-coupled receptor (GPCR, 56). GHRH-R is one of the members of GPCR receptor superfamily [16,17], thus it is important to reveal the possible effects of GHRH antagonists of AVR class on the conformation of GHRH receptors. It is important to study the possible changes in the mechanism of action of AVR-352 and AVR 353 in comparison with MIA-602 in individual human tumor models.

In addition, immunohistochemistry analyses in specimens of tumor samples from animal models and humans revealed the increased levels of GHRH receptors compared to the surrounding normal tissues [36]. Studies on analysis of multiple cohorts of patients with gastric cancer and ESCC [36,37], demonstrated the association between the expression of GHRH receptors in tumors, malignant properties, and poor survival, and suggested that overexpression of GHRH-receptors as an independent predictive factor for patient prognosis. The finding underscores GHRH-R as promising biomarker and therapeutic target for management of human cancers [36,37].

GHRH and its agonistic analogs have been tested in human subjects and showed little or no toxicity and do not cause any significant side

![Fig. 4. Expression of GHRH receptor, effector proteins in in PAK1-STAT3 and cAMP/CREB signaling pathways and in cell cycle G1/S transition check point in lung (HCC827) tumor tissues after treatment with MIA-602 and AVR-353, including (A) GHRH-receptors: pituitary-GHRH receptor (GHRHR) and SV1, pSTAT3/STAT3 and PAK1; (B) pCREB/CREB, (C) Cyclin D1, Cyclin D2, CDK4, CDK6 and p27kip1. The relative expression of proteins (right panels) is average from tumors retrieved from mice injected with vehicle solution (n = 10); mice treated with 5 μg MIA-602 (n = 12); mice treated with 5 μg AVR-353 (n = 8). Representative images of WB analyses are presented (left panels). *p < 0.05, **p < 0.01.](image-url)
Khorram et al., described that subcutaneous administration of a synthetic GHRH analog [Norleucine27] GHRH (1-29)-NH2 to elderly subjects for 16 weeks resulted in activation of both immune cells [58] and somatotropic axis [59]; the only adverse side-effect was transient hyperlipidemia, which resolved at end of the study. A long-acting analog of GHRH (1-29)-NH2, CJC-1295, activates the GH/IGF axis while administrated in normal subjects [60]. Tesamorelin, the synthetic analog of GHRH (1-44)-NH2, improves cognitive function in adults with mild cognitive impairment and in healthy older adults [61,62]. In preclinical studies administration of Tesamorelin effectively reduced visceral fat and liver fat and improved liver function in HIV-infected patients [63,64]. Agonist MR-409 synthesized in our laboratory [26] showed feasible and safe in Yorkshire swine model of subacute ischemic cardiomyopathy and significantly reduced infarct size and improved diastolic function [65]. In a recent study the agonist MR-409 ameliorated chronic kidney disease-induced heart failure with preserved ejection fraction in a swine model of chronic kidney disease-induced heart failure [66]. No formal toxicity studies have been performed on AVR antagonists, the investigations have been carried out mainly on antitumor activity of MIA class and AVR class of GHRH antagonists, in those tests, no adverse effects in these antagonists have been recorded in rodents [6,14,18,27,67]. The toxicity tests must be done before any clinical studies. However after our extensive studies of GHRH analogs [6–8,14,18,27,30,57,67], the side effect/toxicity profile of GHRH analogs is considered as favorable in contrast to chemotherapeutic agents. We expect that the antagonist of AVR class, like MIA-602, would have little or no toxicity [18,67]. We believe that the impressive antitumor and anti-inflammatory activities of GHRH antagonists of AVR class strongly supports their potential use for clinical therapy of human cancer and other diseases. We believe that the impressive antitumor and anti-inflammatory activities of GHRH antagonists of AVR class strongly supports their potential use for clinical therapy of human cancer and other diseases.

Author contributions

R.C, A.V.S designed new antagonists; R.C, X.Z, A.V.S, MM designed research, X.Z, H.W, T.C, G.H, W.S, J.H, I.V, C.Z performed research. R.C, X.Z, G.H, M.M, A.V.S analyzed data. X.Z, M.M, A.V.S wrote the paper.

Declaration of Competing Interest

R.C, X.Z, A.V.S, H.W, W.S are co-inventors on the patent for an AVR growth hormone-releasing hormone antagonists; R.C, C.Z, M.M, A.V.S are co-inventors for therapeutic role of AVR in sarcoidosis assigned to the University of Miami, Miami, FL, and the Veterans Affairs System. The other authors declare no conflict of interest.

Table 5

Analogs	0	6	8	10	11	12	20	21	29	30
MIA-602	PhAC-Ada	SFPhe	Ala	Try(Me)	His	Orn	His	Orn	Har-NH2	
MIA-690	–	Cpa	–	SFPhe	–	–	–	–	–	
AVR-235	SFPhe-Ada	SFPhe	Ala	Try(Me)	Arg	Lys	Arg	Lys	Har-NH2	
AVR-333	–	Cpa	Asn	–	–	–	–	–	–	
AVR-352	–	SFPhe	Ala	–	–	–	–	–	–	
AVR-353	–	Cpa	–	–	–	–	–	–	–	
AVR-354	–	–	–	–	–	–	–	–	–	

Indicates the same amino acid as shown on the upper line.

Fig. 5. Expression of IL2, OAS1 and ISG15 in the lung tissues retrieved from the animals. (A) Representative images of Western blot analysis of ISG15 (Interferon-stimulated gene 15), IL2 and OAS1 (2′-5′-Oligoadenylate Synthetase 1), and the relative expression of ISG15 (B), IL2 (C) and OAS1(D). Mean ± SEM were average from 5 animals. Lung tissues from normal (control), treated with PBS (microparticle), AVR-352, (AVR), MIA-602 and prednisolone were analyzed. * p < 0.05.
Acknowledgements

These studies were supported by the Medical Research Service of the Department of Veterans Affairs (A.V.S) and the Division of Endocrinology, Diabetes and Metabolism, and Medical Oncology, Department of Medicine, Department of pathology and the Sylvester Comprehensive Cancer at the University of Miami Miller School of Medicine (A.V.S.). Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine. H.W. was supported by the Li KA Shing Foundation. The views expressed in this paper are those of authors and do not necessarily represent the views of the US Department of Veterans Affairs or the US Government.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doihttps://dx.doi.org/10.1016/j.peptides.2021.170716.

References

[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2021, CA Cancer J. Clin. 71 (2021) 7–33.
[2] R. Guillemín, P. Brazeau, P. Bohlman, F. Esch, N. Ling, W.B. Wehrenberg, Growth hormone-releasing hormone as a human pancreatic tumor that caused acromegaly, Science 218 (1982) 585–587.
[3] J. Rivier, J. Spiess, M. Thormer, W. Vale, Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour, Nature 300 (1982) 275–278.
[4] L.A. Frohman, M. Szabo, Ectopic production of growth hormone-releasing factor by carcinoma and pancreatic islet tumors associated with acromegaly, Proc. Biol. Chem. Res. 74 (1981) 259–271.
[5] M.O. Thormer, The discovery of growth hormone-releasing hormone, J. Clin. Endocrinol. Metab. 89 (1999) 4671–4676.
[6] M. Zarandi, J.E. Horvath, G. Halmos, J. Kageyama, T.C. Chiang, H.Y. Hu, M.H. Dong, et al., Synthesis and biological activities of highly potent antagonists of growth hormone-releasing hormone, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 1298–1302.
[7] M. Zarandi, M. Kovacs, J.E. Horvath, K. Toth, G. Halmos, K. Groot, et al., Synthesis and in vitro evaluation of new potent antagonists of growth hormone-releasing hormone (GH-RH), Peptides 18 (1997) 423–430.
[8] M. Zarandi, J.L. Varga, A.V. Schally, J.E. Horvath, G.L. Toller, M. Kovacs, et al., Lipopeptide antagonists of growth hormone-releasing hormone with improved antimutator activities, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 4610–4615.
[9] D.O. Hoy, S.J. Hocart, W.A. Murphy, Human growth hormone-releasing hormone analogues with much improved in vitro growth hormone-releasing potencies in rat pituitary cells, Eur. J. Pharmacol. 204 (1991) 179–185.
[10] P. Robberecht, D.H. Coy, M. Waebroeck, M.L. Heiman, P. de Neef, J.C. Camus, et al., Experimental small-cell lung cancer by novel antagonists of growth hormone-releasing hormone receptor modulates lung inflammation and fibrosis due to bleomycin, Lung 197 (2019) 541–549.
[11] J.L. Varga, A.V. Schally, V.J. Csernus, M. Zarandi, G. Halmos, K. Groot, et al., Antagonists of growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin, Lung 197 (2019) 541–549.
[12] P. Popovic, R. Cai, W. Sha, G.C. Rick, A.V. Schally, Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis, Prostate 78 (2018) 970–980.
[13] A.V. Schally, R. Cai, X. Zhang, H. Wang, and W. Sha inventors; Growth hormone-releasing hormone antagonists and uses thereof, US PATENT, Application #62803170, Date of Filing, 2019 Feb 8.
[14] R. Cai, A.V. Schally, T. Cai, L. Szalontay, G. Halmos, W. Sha, et al., Synthesis of new potent agonistic analogs of growth hormone-releasing hormone (GHRH) and evaluation of their endocrine and cardiac effects, Peptides 52 (2014) 104–112.
[15] H. Wang, X. Zhang, I. Vidaurre, R. Cai, W. Sha, A.V. Schally, Inhibition of experimental small-cell and non-small-cell lung cancers by novel antagonists of growth hormone-releasing hormone, Int. J. Cancer 142 (2018) 2394–2404.
[16] P.J. Muston, D. Rodbard, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem. 107 (1980) 220–239.
[17] G.A. McPherson, Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC, J. Pharmacol. Methods 14 (1985) 213–228.
[18] A.V. Schally, H. Wang, R. Cai, K. Groot, W. Sha, P. Popovic, A.V. Schally, Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin, Lung 197 (2019) 541–549.
[19] C. Zhang, H. Aizt, G.E. Holt, A.J. Griswold, M. Camps, P. Bejarano, et al., Mucycobacterium abscessus-bronchial epithelial cell cross-talk through type 1 interferon signaling, Front. Immunol. 10 (2019) 2888.
[20] R. Perez, A.V. Schally, I. Vidaurre, R. Rincon, N.L. Block, F.G. Rick, Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers, Oncotarget 3 (2012) 988–997.
[21] C.D. Fahrenholz, F.G. Rick, M.I. Garcia, M. Zarandi, R.Z. Cai, N.L. Block, et al., Preclinical efficacy of growth hormone-releasing hormone antagonists for androgen-dependent and -independent metastatic prostate cancer, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 1084–1089.
[22] M. Jaszerenyi, A.V. Schally, N.L. Block, M. Zarandi, R.Z. Cai, I. Vidaurre, et al., Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro, Target. Oncol. 8 (2013) 281–290.
[23] A. Klukovits, A.V. Schally, L. Szalontay, I. Vidaurre, A. Papadia, M. Zarandi, et al., Novel antagonists of growth hormone-releasing hormone inhibit growth and vascularization of human experimental ovarian cancers, Cancer 118 (2012) 670–680.
[24] J. Gan, X. Ke, J. Jiang, H. Dong, Z. Yao, Y. Lin, et al., Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through down-regulation of PAK1-STAT3/NF-kappaB signaling, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 14745–14750.
[25] X. Xiong, X. Ke, L. Wang, Z. Yao, Y. Guo, X. Zhang, et al., Splice variant of growth hormone-releasing hormone receptor conferring a therapeutic target, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 6726–6732.
[26] T. Villanova, I. Gesmundo, V. Audrito, N. Vitale, F. Silvagno, C. Musuraca, et al., Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 2226–2231.
[27] H. Populo, B. Nunes, C. Sampaio, R. Batista, M.T. Pinto, T.B. Gaspar, et al., Inhibitory effects of antagonists of growth hormone-releasing hormone (GHRH) in thyroid cancer, Horm. Cancer 8 (2017) 314–324.
[28] L. Szalontay, A.V. Schally, P. Popovic, I. Vidaurre, A. Krishan, M. Zarandi, et al., Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function, Cell Cycle 13 (2014) 2570–2579.
[29] J.J. Jimenez, G.M. DelCanto, P. Popovic, A. Perez, A. Vila Granda, I. Vidaurre, et al., A new approach to the treatment of acute myeloid leukaemia targeting the receptor for growth hormone-releasing hormone, Br. J. Haematol. 181 (2018) 476–485.
[30] A.V. Schally, N.L. Block, F.G. Rick, Discovery of LHRH and development of LHRH analogs for prostate cancer treatment, Prostate 77 (2017) 1036–1054.
[31] M. Jaszereny, F.G. Rick, L. Szalontay, N.L. Block, M. Zarandi, R.Z. Cai, et al., Beneficial effects of novel antagonists of GHRH in different models of Alzheimer’s disease, Aging 4 (2012) 755–767.
[32] N. Barabitsu, M.S. Akhter, M.A. Uddin, K.T. Kubra, A.V. Schally, GHRH antagonists protect against hydroxyl radicals–induced breakdown of brain microvascular endothelial integrity, J. Immunol. Metab. Res. 52 (2020) 336–348.
[33] B.K. Park, N.R. Kitteringham, P.M. O’Neill, Metabolism of fluorine-containing drugs, Annu. Rev. Pharmacol. Toxicol. 41 (2001) 443–470.
[34] M.F. Bachmann, A. Osenius, Interleukin 2 from immunoregulation to immunomodulation and back again, EMBO Rep. 8 (2007) 1142–1148.
A.V. Schally, A.M. Comaru-Schally, Hypothalamic and other peptide hormones, in: J.F. Holland, E. Frei III, R.C. Barr Jr, D.E. Kufe, D.L. Morton, R.R. Weichselbaum (Eds.), Cancer Medicine, 4th ed, Williams and Wilkins Publishers, Baltimore, 1997, pp. 1067–1086.

N. Barabatuis, A.V. Schally, A. Siejka, PS3, GHRH, inflammation and cancer, ElifeMedicine 37 (2018) 557–562.

F.G. Rick, A.V. Schally, I. Stalounty, N.L. Block, K. Szepeshazi, M. Nadji, et al., Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 1655–1660.

C.A. Kanashiro, A.V. Schally, M. Zarrandi, B.D. Hammann, J.L. Varga, Alterations of EGFR/HER, angiogenesis and apoptosis pathways after therapy with antagonists of growth hormone releasing hormone and bombesin in non-small cell lung cancer, Int. J. Oncol. 30 (2007) 1019–1028.

A. Siejka, H. Lawnicka, G. Melen-Mucha, E. Motylewska, J. Komorowski, H. Stepień, Antineoplastic action of growth hormone-releasing hormone (GHRH) antagonists, Recent Pat. Anticancer Drug Discov. 7 (2012) 56–63.

P.T. Ram, R. Iyengar, G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation, Oncogene 20 (2001) 1601–1606.

W.C. Liang, J.L. Ren, Q.X. Yu, J. Li, T.K. Ng, W.K. Chu, et al., Signaling mechanisms of growth hormone-releasing hormone receptor in LPS-induced acute ocular inflammation, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 6067–6074.

J. Huang, A.J. Hume, K.M. Abo, R.B. Werder, C. Villacorta-Martin, K. D. Alysandratos, et al., SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response, Cell Stem Cell 27 (2020) 962–973, e7.

S.J. Perry, S. Junger, T.A. Kohout, S.R. Hoare, R.S. Struthers, D.E. Grigoriadis, et al., Distinct conformations of the corticotropin releasing factor type 1 receptor adopted following agonist and antagonist binding are differentially regulated, J. Biol. Chem. 280 (2005) 11560–11568.

A.K. Shukla, G. Singh, E. Ghosh, Emerging structural insights into biased GPCR signaling, Trends Biochem. Sci. 39 (2014) 594–602.

A.V. Schally, X. Zhang, R. Cai, J.M. Hare, B. Granata, M. Bartoli, Actions and potential therapeutic applications of growth hormone-releasing hormone agonists, Endocrinology 160 (2019) 1600–1612.

O. Khorram, M. Yeung, L. Vu, S.S. Yen, Effects of [norleucine27]growth hormone-releasing hormone (GHRH) (1-29)-NH2 administration on the immune system of aging men and women, J. Clin. Endocrinol. Metab. 82 (1997) 3590–3596.

O. Khorram, G.A. Laughlin, S.S. Yen, Endocrine and metabolic effects of long-term administration of [Ne27]growth hormone-releasing hormone-(1-29)-NH2 in age-advanced men and women, J. Clin. Endocrinol. Metab. 82 (1997) 1472–1479.

L. Sackmann-Sala, J. Ding, I.A. Frohman, J.J. Kopchick, Activation of the GH/IGF-1 axis by CJC-1295, a long-acting GHRH analog, results in serum protein profile changes in normal adult subjects, Growth Horm. IGF Res. 19 (2009) 471–477.

S.D. Friedman, L.D. Baker, S. Borson, J.E. Jenzen, S.M. Barsuuses, S. Craft, et al., Growth hormone-releasing hormone effects on brain gamma-aminobutyric acid levels in mild cognitive impairment and healthy aging, JAMA Neurol. 70 (2013) 883–890.

L.D. Baker, S.M. Barsness, S. Borson, G.R. Merriam, S.D. Friedman, S. Craft, et al., Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial, Arch. Neurol. 69 (2012) 1420–1429.

T.I. Stanley, M.N. Feldpausch, J. Oh, K.L. Branch, H. Lee, M. Torriani, et al., Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial, Jama 312 (2014) 380–389.

L.T. Fourman, N. Czerwonka, M.N. Feldpausch, J. Weiss, J.C. Mampufo, J. Falutz, et al., Visceral fat reduction with tesamorelin is associated with improved liver enzymes in HIV, Aids 31 (2017) 2253–2259.

L.L. Bagno, R.M. Kanashiro-Takeuchi, V.V. Suncion, S. Golpanian, V. Karantalis, A. Wolf, et al., Growth hormone-releasing hormone agonists reduce myocardial infarct scar in swine with subacute ischemic cardiomyopathy, J. Am. Heart Assoc. (2015) 4.

A.C. Rieger, L.L. Bagno, A. Salerno, V. Florea, J. Rodriguez, M. Rosado, et al., Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction, Proc. Natl. Acad. Sci. U.S.A. (2021) 118.

A.V. Schally, N.L. Block, F.G. Rick, New therapies for relapsed castration-resistant prostate cancer based on peptide analogs of hypothalamic hormones, Asian J. Androl. 17 (2015) 925–928.