A novel locus from the wild allotetraploid rice species *Oryza latifolia* Desv. confers bacterial blight (*Xanthomonas oryzae* pv. *oryzae*) resistance in rice (*O. sativa*)

Rosalyn B. Angeles-Shim*, Junghyun Shim**, Ricky B. Vinarao, Ruby S. Lapis, Joshua J. Singleton*

Plant Breeding Division, International Rice Research Institute, Manila, Philippines

*These authors contributed equally to this work.
**Current address: Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, Texas, United States of America
*rosalyn.shim@ttu.edu

Abstract

Bacterial blight caused by *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild *Oryza* species, *Oryza latifolia*, conferring a race-specific resistance to Philippine *Xoo* race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from *O. latifolia* monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F₂ (χ²[3:1] = 0.22 at p>0.05) and F₃ (χ²[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F₂, 1130 F₃ and 288 F₄ plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, *O. latifolia* conferring race-specific resistance to bacterial blight.

Introduction

Bacterial blight of rice (*Oryza sativa* L.) caused by *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) is one of the most destructive diseases that negatively impacts the major rice growing regions worldwide. Depending on the onset of the bacterial infection, the degree of susceptibility of the
planted cultivar, the virulence of the pathogen and the environmental conditions, the disease can cause significant yield losses of up to 20–81% [1–3].

Traditionally, application of copper compounds or antibiotics has been sufficient in providing rice plants with a degree of protection against the causal pathogen [4, 5]. The intensification of rice monocultures however, have spurred the emergence of new, more virulent races of Xoo, rendering most chemical means of disease management largely ineffective. A more efficient, economical and ecologically friendly alternative to control the disease is to provide plants with innate resistance mechanisms that can overcome pathogenic infection. Critical to the success of this approach is the screening of various germplasm to identify sources of novel genetic loci regulating host plant resistance, as well as the development of an efficient strategy to transfer target loci across genomes.

To date, more than 40 genes/loci conferring resistance to bacterial blight have been identified in rice [6], although only eleven (Xa1, Xa3/Xa26, Xa4, xa5, Xa10, xa13, Xa21, Xa23, xa25, Xa27 and xa41) have been cloned and functionally characterized [1, 7, 8]. In most cases, the introduction of a single resistance gene/locus into the genetic background of a susceptible cultivar significantly improved rice production and minimized yield losses in regions heavily infected with the pathogen [9–12]. Unfortunately, the extended deployment of rice cultivars with improved bacterial blight resistance over wide areas of cultivation also encouraged the co-evolution of the pathogen, resulting in the eventual breakdown of host plant resistance [12–14]. This re-directed breeding programs towards pyramiding two or more resistance genes/loci in a single genetic background, a strategy that has been proven effective in broadening the spectrum of host plant resistance and enhancing its durability [12, 15–17]. To ensure an upper hand in the continuous evolutionary arms race between plant and pathogen, it is of paramount importance that novel sources of bacterial blight resistance are identified and incorporated into rice breeding programs aimed at improving this valuable target trait.

The wild relatives of rice have long been recognized as a rich reservoir of novel genes underlying important agronomic traits, including tolerance to abiotic challenges, as well as resistance to a wide range of pests and diseases [18–21]. Among the more than 40 bacterial blight resistance genes/loci that have been identified from various germplasm, ten were from wild rice species including Xa21 from O. longistaminata [22, 23]; Xa23 from O. rufipogon [24]; Xa27 and Xa35 from O. minuta [25, 26]; Xa29 from O. officinalis [27]; Xa30, Xa33 and Xa38 from O. nivara [28, 29]; Xa32 from O. australiana [30]; and Xa41(t) from O. barthii and O. glaberrima [31]. Of these genes/loci, Xa21 which encodes a receptor-like kinase protein and confers a broad-spectrum resistance to Xoo races from South and Southeast Asia, has been the most utilized in breeding programs. Improved cultivars with Xa21, alone or in combination with other Xa genes, have been released and widely cultivated in the Philippines, India, China and Thailand [17, 32, 33].

O. latifolia is a wild allotetraploid (CCDD) relative of rice that is native to South and Central America [34]. Aside from its high biomass production and lodging resistance, O. latifolia has also been reported to be an important source of resistance to brown planthopper (Nilaparvata lugens), white-backed planthopper (Sogatella furcifera), blast (Magnaporthe grisea), as well as bacterial blight [20, 21].

In a previous study, we identified two introgression lines i.e. WH12-2255 and WH12-2256 that were derived from monosomic alien addition lines (MAALs) of O. latifolia with resistance to Philippine Xoo races 5 (PXO112), 7 (PXO145), 8 (PXO280) and 9A (PXO339). The resistance of both introgression lines to PXO112, PXO145 and PXO280 was attributed to the genetic contribution of the recurrent parent used to develop the MAALs whereas, resistance to PXO339 was associated with a putative locus within the 13,960 kb alien introgression in chromosome 12 [20]. In this study, we report the identification of a new locus from O. latifolia
regulating the race-specific resistance of WH12-2255 and WH12-2256 to Philippine Xoo race 9A. Candidate genes possibly regulating the trait are proposed based on data mining and comparative sequence analysis. To the best of our knowledge, this is the first report of a bacterial blight resistance locus identified from the allotetraploid wild rice, *O. latifolia*.

Materials and methods

Plant materials and development of mapping populations

Two introgression lines i.e. WH12-2255 and WH12-2256 that segregated from *O. latifolia* (IRGC 100914) MAALs in the background of the elite rice breeding line IR31917-42-3 were used in the study. Both lines possess similar *O. latifolia* introgressions in chromosomes 1, 2, 6, 8, 9, 10, and 12, with WH12-2256 having an additional alien introgression in chromosome 4 (Fig 1A, Fig 1B). Screening of the MAAL-derived introgression lines (MDILs) against fourteen Xoo races from the Philippines showed that WH12-2255 and WH12-2256 are resistant to PXO112, PXO145, PXO280 and PXO339. Marker-trait associations established the presence of a putative locus within the 13,960 kb of the *O. latifolia* introgression in chromosome 12 of WH12-2255 and WH12-2256 that confers resistance to PXO339 [20]. To identify the locus regulating the resistance of the two MDILs to PXO339, mapping populations were generated from F1 plants developed using either WH12-2255 or WH12-2256 as the female parent and the susceptible IR31917-42-3 as the male parent. The true hybridity of the F1s was confirmed by genotyping using two SSR and two CCDD genome-specific indel markers with targets in chromosome 1, 4, 6 and 12 (S1 Table).

Screening of MDILs and segregating populations for resistance to Xoo race PXO339

The reaction of all the experimental materials to PXO339 was determined following the leaf clipping method by Kauffman et al. [35]. Briefly, 21-day-old seedlings were transplanted and maintained in concrete beds inside a screenhouse at the International Rice Research Institute in Los Baños, Laguna, Philippines. At the maximum tillering stage (approximately 45 days after seeding), the tips of 6–10 fully expanded leaves of each plant were cut with scissors dipped in PXO339 suspension (10^9 cells/ml). Lesion length was measured from three infected leaves per plant after 14 and 21 days of bacterial inoculation, although the reaction of all experimental materials to the pathogen was scored based only on lesion length 21 days after infection. Disease reaction of each plant based on lesion length was scored as follows: <3 cm = resistant, 3.1–5 cm = moderately resistance and >3 cm = susceptible [15]. The rice cultivar IR24 was used as the susceptible control, whereas IRBB21 was used as the resistant control throughout the course of diseases resistance evaluation.

Linkage analysis of PXO339 resistance locus from *O. latifolia*

Two-hundred sixteen F2 plants, as well as 1,130 F3 and 288 F4 plants derived from F2 and F3 lines with informative recombination points, respectively, were genotyped using rice SSR markers, as well as CCDD genome-specific indel markers designed based on the available genome sequence of *O. alta* (IRGC 105143) (Table 1). All the markers used were selected or designed to amplify targets within the 13,960 kb *O. latifolia* introgression in chromosome 12 of both MDILs. Genomic DNA was extracted from the leaf tissue of all the experimental materials using the TPS method. Briefly, 2 cm leaf tissues were homogenized in TPS buffer (100 mM Tris-HCl (pH 8.0), 1 M KCl, 10 mM EDTA) using the 2010 Geno/Grinder® (NJ, USA). After centrifugation, the supernatant was recovered, mixed with an equal volume of isopropyl...
Fig 1. Experimental materials and linkage mapping of PXO339 resistance. (A) Gross morphology and graphical genotype of the experimental materials used in the study. (B) Detailed view of the *O. latifolia* introgression in chromosome 12 of the MDILs.
alcohol and centrifuged to precipitate the genomic DNA. The DNA pellets were then washed with 70% ethanol, dried and re-suspended in TE buffer (10mM Tris-HCl (pH 8.0); 1mM EDTA) with RNase A (10mg/ml). SSR and indel targets were amplified from the extracted DNA samples following standard PCR protocol [36]. Amplicons were resolved in 3% agarose gel in 1X Tris-Borate-EDTA buffer.

The genetic inheritance of POX339 resistance was determined based on phenotypic segregation ratio in the F$_2$ and F$_3$ populations, and was validated using the chi-square (χ^2) test.

The genetic inheritance of POX339 resistance was determined based on phenotypic segregation ratio in the F$_2$ and F$_3$ populations, and was validated using the chi-square (χ^2) test.

Putative gene prediction and comparative sequence analysis

Details of the annotated genes within the defined candidate region including gene IDs, description/function and ontology were retrieved from the Rice Annotation Project Database [37]. Possible candidates regulating PXO339 resistance were identified based on the reported

No.	Primer Name	Marker type	Forward primer	Reverse primer	Map position (kb)
1	Lat 12002	indel	TCCATCATCGGTATCGATTG	GTGGAGATCACAAATTCAATTTG	5101
2	Lat 12003	Indel	TCTCCCCAGCCTCAATTGAC	GTCTGACAGGATTTGAGCA	7485
3	Lat 12035	indel	CTCGAAACCGGTATCGAAC	CCAACAAAGGAGGATCGAC	9570
4	RM27902	SSR	TATCGTCTGATGCTCTGATCCC	GTTGAGTGTTGACATTGAGG	9595
5	RM27920	SSR	AAAGGGACAAATCCGGGATG	TCTCCCTCAAAATCCGTCGAG	10139
6	RM27929	SSR	TGGCCAAATCCTGAGTCTCTCTG	ACCCTGCTCAAAATCCGGG	10319
7	RM27933	SSR	GGGAGGACAGGGACATTGAGG	ATCCACCGAGGAGCATATTG	10425
8	RM27953	SSR	CACCTGCTCCCTCCTCAAGTACC	TGGCAATGCTCTTGAGGACG	11225
9	RM27954	SSR	CATACCCCGTATTCTGAGCTG	ATAGCCAAATGAGGAGTTCG	11262
10	Lat 12040	indel	ATGTTAGATCAGGTG	ATTCAGATACACACACACAC	11352
11	Lat 12041	indel	GATGTTGCTAAGGAGCTG	GCAACCATATATACACAGG	11376
12	RM27959	SSR	GGGAGTATGGGTCGATGAC	ATCTGGAACGAGCATATTG	11902
13	RM27962	SSR	GGGAGTGTGGTAGTCTGAGG	ATCCACCGAGGAGCATATTG	12080
14	RM27966	SSR	TCTCGACCAACAGTAAAGTGTCG	TGGACATGCTCTTGAGGACG	12120
15	Lat 12042	indel	TGAGCTATCGATCACAGG	TCTGGAAGCTCTGCTGTCG	12242
16	Lat 12043	indel	ACCATCAATCTCAAGGACCAC	ATATGAGGAGCTTCTGATG	12243
17	RM27973	SSR	CCCACACCTCCAGGATTACG	CTGTTTCCAATCCTACCATCG	12266
18	Lat 12044	indel	TTTGAGAGGAGGAGGACAC	CAAAGCAGGAGCGAAGCAC	12326
19	Lat 12045	indel	GGTGGACATGATATGATGCT	GGTGAGTCTGTTGAACTGAC	12430
20	Lat 12046	indel	CTACGAACTGCTGGTACTT	CGGAGATGTTGAGGACTTG	12689
21	RM27989	SSR	GAGGCTTCCTCGCACAACACAC	CGTGGCCGCTGATCATG	12842
22	RM28038	SSR	ATGAAACGATGAGGGTCGATTG	ATCTGCTGCTGCTGATGCTG	13738
23	RM28048	SSR	TCCAGGCACTTCTCAGTACCC	CCTGAGTGGCGGAGGATTTTG	14106
24	RM28075	SSR	GGAGACTGAGGAGGCTCTTAGG	TCAGTGCTGTTGAGGATTAG	15007
25	RM28254	SSR	ACCCTGCTATGCTGCTGCTG	CCTGAGTGGTGGAGGATCTT	19062
26	RM28277	SSR	TGGCACCACCATTTCTCAATCACC	CTCCTCTCAAGGAGAATGTGACGAC	19426

Table 1. SSR and indel markers used to genotype mapping populations derived from O. latifolia MDILs. All markers target the 13.96 Mb O. latifolia introgression in chromosome 12 of the MDILs.
functions of each gene within the region of interest. Comparative sequence analysis of the identified putative genes in IR31917-42-3, WH12-2255, WH12-2256 and Minghui 63 was carried out to identify causal mutations resulting in the phenotypic response of the experimental materials to PXO339 infection. Minghui 63 is an elite fertility restorer line that has been identified to have xa25, a recessive gene conferring a similar race-specific resistance to PXO339 [38, 39]. Comparative sequence analysis of xa25 was carried out among the test materials to determine whether the locus regulating the resistance of the MDILs to PXO339 was conferred by xa25 or by a novel resistance locus.

Whole genome sequencing using the NovaSeq 6000 platform was outsourced to Macrogen Inc., South Korea using genomic DNA from young leaves that was extracted following a modified CTAB method [40]. Assembly of the whole genome sequence data for each line was guided by the rice cv. Nipponbare reference genome [37] using ABySS, a de novo sequence assembler intended for short paired-end reads and large genomes [41]. Comparative genome sequence analysis of the 1,817 kb candidate region in chromosome 12 was carried out using the BioEdit Sequence Alignment Editor [42].

Results and discussion

Reaction of experimental materials to PXO339

The elite breeding line IR31917-42-3 exhibited leaf lesions averaging 10.50 cm, whereas O. latifolia, WH12-2255 and WH12-2256 had average lesion lengths of >3 cm after 21 days of inoculation with the Philippine Xoo race 9A (Fig 2). These results are in agreement with the previously reported reactions of the same experimental materials to the pathogen. The racespecific resistance of WH12-2255 and WH12-2256 has been associated with a putative locus within the O. latifolia introgression in both MDILs that extends from 5,710 to 19,670 kb in chromosome 12 and that includes the centromeric region [20].

The F1 plants developed from crosses between either of the MDILs and IR31917-42-3 were all susceptible to PXO339, with leaf lesions measuring more than 15 cm on the average after 21 days of pathogen inoculation (Fig 2). The reaction of the F1s suggest a recessive mode of

![Fig 2. Resistance reaction of the experimental materials to PXO339. Lesion length in O. latifolia (I), IR31917-42-3 (II), WH12-2255 (III), WH12-2256 (IV), WH12-2255 x IR31917-42-3 F1 (V) and WH12-2256 x IR31917-42-3 F1 (VI) leaves 21 days after PXO339 inoculation, with I, III and IV exhibiting lesions shorter than 3 cm. bar = 5cm.](https://doi.org/10.1371/journal.pone.0229155.g002)
Inheritance of PXO339 resistance in both MDILs. All F₁ plants used for resistance screening were confirmed as true hybrids by genotyping using select SSR and indel markers.

Inheritance of PXO339 resistance in the mapping populations

The distribution of lesion length in response to PXO339 inoculation was bimodal in both the F₂ and F₃ populations, with a clear gap at 4–6 cm in the F₂ and at 5–6 cm in the F₃ population (Fig 3). Based on lesion length, the F₂ plants segregated into 56 resistant to 160 susceptible, whereas the F₃ plants segregated into 279 resistant to 851 susceptible. Both ratios fit the phenotypic segregation pattern for a recessively inherited trait. Chi-square analysis of the observed versus the expected Mendelian ratio for susceptible and resistant phenotypes for both the F₂ ($\chi^2_{[3:1]} = 0.22$ at $p > 0.05$) and F₃ populations ($\chi^2_{[3:1]} = 0.36$ at $p > 0.05$), combined with the observed reaction of the F₁ hybrids to PXO339, established the monogenic and recessive inheritance of the trait.

Linkage analysis of MDIL resistance to PXO339 and candidate gene prediction

Genotyping 216 F₂ plants using a total of 26 SSR and indel markers targeting the wild introgression in chromosome 12 of both MDILs identified the co-segregation of the indel marker, Lat 12043 with PXO339 resistance. Lat 12043 maps close to the centromere at 12,243 kb in the short arm of chromosome 12. Fine mapping using the F₂ population narrowed the candidate gene region to a 2,671 kb locus bound by the SSR markers RM27902 at 9,595 kb and RM27973 at 12,266 kb. Genotyping of an additional 1130 F₃ and 288 F₄ plants further narrowed the candidate gene region to a 1,817 kb locus that is flanked by RM27933 at 10,425 kb and RM27973 at 12,266 kb (Fig 1C, Table 1). Database mining identified 86 genes with open reading frames within the region of interest, with 17 of the genes having alternative transcripts or splice isoforms (S2 Table). Of the 86 gene annotations, 45 translates into known or specific proteins, whereas the rest code for hypothetical proteins and non-protein coding transcripts. Of these, 20 genes have been identified to have molecular and/or biological functions and/or to code for cellular components, whereas the remaining 25 genes have unknown functional representation based on gene ontology analysis. Among the 45 genes with known protein products, only nine

Fig 3. Phenotype distribution in segregating populations. Lesion length in the leaves of F₂ (A) and F₃ (B) plants 21 days after PXO339 inoculation showing a bimodal distribution. Broken lines highlight the separated distribution of resistant and susceptible phenotypes in both populations. Horizontal lines indicate the range of lesion length observed in the parental lines. n = the number of individual plants in each population.

https://doi.org/10.1371/journal.pone.0229155.g003
have been reported to be involved in various defense response networks in various crops. These include Os12t0278800 (similar to CCCH domain containing zinc finger), Os12t0280050 (similar to thioredoxin family protein), Os12t0281300 (Pi-ta protein; nucleotide-binding site (NBS)-leucine-rich repeat (LRR)), Os12t0281600 (NB-ARC domain containing protein), Os12t0283400 (pectinesterase inhibitor domain-containing protein), Os12t0286300 (cytochrome P450 domain containing protein), Os12t0290100 (similar to protein kinase), Os12t0299650 (Myb/SANT-like domain containing protein) and Os12t0405700 (similar to wound-induced basic protein). Previous reports show that orthologous protein products of Os12t0278800, Os12t0280050, Os12t0281300, Os12t0283400, Os12t0286300, Os12t0290100, Os12t0299650 and Os12t0290100 elicit quantitative resistance against fungal and bacterial pathogens in cotton [43–45, 46], barley [47], potato [48], soybean [49], wheat [50, 51], grapes [52] and Arabidopsis [53]. Quantitative resistance is usually non-race-specific and is controlled by quantitative trait loci (QTL) or multiple genes. These QTLs have small effects that confer partial but durable resistance to most races of the same pathogen [54, 55]. Although quantitative resistance may be mediated by similar genes involved in a qualitative defense response, the predominant mechanisms of quantitative resistance extends beyond pathogen recognition and may include specific defense-related outputs such as strengthening of the cell wall and biosynthesis of defense compounds.

In contrast, qualitative host resistance is often defined by race-specificity and monogenic inheritance of a dominant or recessive resistance (R) gene [56]. The R genes encode proteins that can directly or indirectly recognize avirulence (Avr) effectors that are delivered by pathogens into the plant cells. Pairwise associations between the R proteins and the Avr effectors usually trigger a defense response that is characterized by rapid cell death in areas surrounding an infection. This kind of hypersensitive response effectively restricts the spread of the disease in other parts of the plant [57]. Of the nine genes identified in this study to have defense response function, only Os12t0281300, Os12t0281600 and Os12t0405700 encode proteins that have been reported to confer qualitative resistance to pathogen attacks [58–61].

In the present study, the discrete segregation of phenotypes in the F2 and F3 mapping populations clearly established PXO339 resistance of the O. latifolia MDILs as a qualitative trait, making Os12t0281300, Os12t0281600 and Os12t0405700 the most probable candidates for the resistance locus. Os12t0281300 which encodes Pi-ta has only been associated with resistance to rice blast [46] but not to bacterial blight. Comparative sequence analysis of Pi-ta in WH12-2255 and WH12-2256 relative to the susceptible IR31917-42-3 showed mutations in the promoter and coding regions, as well as in the 3’ and 5’UTR of the gene (S1A Fig). None of the mutations however, induced changes in the translated protein product, eliminating the possibility of this gene regulating PXO339 resistance in the MDILs. Similarly, genetic variations in the form of SNPs and/or single base insertion were also identified in the promoter and coding region of Os12t0281600 sequence from WH12-2255 and WH12-2256 relative to IR31917-42-3 (S1B Fig). Again, none of the mutations resulted in changes in the translated protein products, excluding the possibility of this gene controlling PXO339 resistance. In contrast, a 9-base insertion and three other SNP variations in the promoter region, as well as a single SNP variation in the 3’UTR was observed in the wound-induced basic protein gene of both MDILs but not in IR31917-43-2. The 9-base insertion generated an additional E-box motif upstream of the putative core promoter (S1C Fig, i and ii). Pathogen-inducible plant promoters contain multiple cis-acting elements that regulate gene expression. The additional E-box motif in the promoter region of Os12t0405700 could possibly enhance the expression of the gene during pathogen attack, thereby conferring PXO339 resistance in both MDILs. At this point, the proposed effects of the additional E-box on the expression of the wound-induced basic protein is purely speculative and would require validation through further studies.
PXO339 resistance of *O. latifolia* MDILs is not due to *xa25*

The recessive *xa25* (*LOC_Os1229220/Os12g0476200*) which encodes a nodulin MtN3 family protein is a race-specific R gene that was identified from Minghui 63 to confer resistance to PXO339 [38, 39]. The gene maps at 17,302 kb near the centromere of chromosome 12. Although the alien introgression in WH12-2255 and WH12-2256 originally covers the physical position of *xa25* in chromosome 12, mapping of the candidate locus regulating PXO339 resistance in both MDILs was narrowed down to a 1,817 kb region flanked by the markers RM 27933 at 10,425 kb and RM 27973 at 12,266 kb. This physical interval is well outside the location of *xa25* locus, indicating a novel gene/locus regulating PXO339 resistance in the MDILs. Comparative sequence analysis showed a 6-bp deletion (851_856delCCGCCG) in the coding region of *xa25* locus in WH12-2255 and WH12-2256, and a 3-bp deletion (739_741delCGC) in exon 6 of the same gene in IR31917-43-2 relative to Minghui 63, further suggesting the presence of a different locus regulating PXO339 resistance in WH12-2255 and WH12-2256. Analysis of the promoter region for variations in the sequence of the effector binding elements (EBE) [62] in the experimental materials showed a T>A mutation at -225 bp from the transcription start site of IR31917-43-2, WH12-2255 and WH12-2256 relative to Minghui 63. At -248 bp from the transcription start site, a G>A mutation in WH12-2255 and WH12-2256, and a G>C in IR31917 relative to Minghui 63 were also identified (S2 Fig). EBEs serve as recognition sites for transcription activator-like effectors (TALEs) that are delivered by *Xoo* into host plants. In Minghui 63, nucleotide polymorphism in the EBE of the recessive *xa25* compared to that of the dominant allele prevents the nucleotide-specific binding of TALEs and results in a race-specific *Xoo* resistance of the plant [38, 62, 63]. The observed nucleotide variations in the EBEs of both MDILs and IR31917-42-3 relative to Minghui 63 further support the results of the study, indicating that a novel locus, different from *xa25*, from *O. latifolia* is regulating the resistance of WH12-2255 and WH12-2256 to PXO339.

Conclusion

Bacterial blight is a destructive disease that can cause extensive yield losses in rice. To date, identification and introgression of genes conferring resistance to bacterial blight remain the most effective and economical means of controlling the disease. Given the impermanence of bacterial blight resistance in cultivars bred to have them and the continuous emergence of new and more virulent races of the pathogen, identification of new sources of resistance that can be integrated into breeding programs will be crucial in our efforts to gain the upper hand in the arms race between plant and pathogen.

In this study, we identified a novel locus from two introgression lines derived from *O. latifolia* MAALs that confers resistance to bacterial blight race PXO339. The locus was delimited to an 1,817 kb introgression from chromosome 12 of *O. latifolia* and is inherited in a recessive, Mendelian fashion. Putative genes that were determined to possibly regulate PXO339 resistance in the MDILs provide targets for further studies on the identification and cloning of the causal gene responsible for the trait.

By and large, the results of this study highlights the importance of wild rice relatives, as well as exotic germplasm generated from wild rices as sources of novel genetic variation to improve trait performance in the crop. The natural genetic variation found in wild *Oryza* species is a product of strong selective pressures that allowed the evolution of adaptive mechanisms against a multitude of biotic and abiotic stresses. More often than not, these mechanisms are exclusive only to the wild rices and cannot be found in their cultivated counterparts, as in the case of PXO339 resistance from *O. latifolia*. To the best of our knowledge, this is the first report of a bacterial blight resistance locus identified from the wild rice species, *O. latifolia*.
Supporting information

S1 Fig. Structure of Os12t0281300, Os12t0281600 and Os12t0405700. (A) Gene model for Os12t0281300 in WH12-2255 and WH12-2256 showing SNP mutations in the promoter, 3’ and 5’UTR, and exons. (B) Gene model for Os12t0281600 in WH12-2255 and WH12-2256 showing SNP mutations and a base insertion in the promoter region and SNP mutations in the exon. (C) Gene model for Os12t0405700 in WH12-2255 and WH12-2256 showing mutations in the promoter region as well as in the 3’untranslated region. (i) A 9-bp insertion (black text) in the promoter region of the gene resulting in an additional E-box motif (underlined black text). Text highlighted in green indicate the putative transcription start site.

(SIF)

S2 Fig. Nucleotide polymorphism in the reported effector binding elements (EBE) of xa25/Xa25 of WH12-2255, WH-1256, IR31917 and Minghui 63. Yellow boxes highlight sequence variations in the EBE. Scale indicates position of bases from the transcriptional start site.

(TIF)

S1 Table. SSR and CCDD genome-specific markers used to confirm the hybridity of the F1s.

(XLSX)

S2 Table. Annotations of genes within the 1817 kb candidate region in chromosome 12.

(XLS)

Acknowledgments

The authors thank N. T. Quilloy and A. Aragon for providing excellent technical assistance with the bacterial blight screening of the experimental materials.

Author Contributions

Conceptualization: Rosalyn B. Angeles-Shim.

Data curation: Junghyun Shim, Ricky B. Vinarao.

Formal analysis: Rosalyn B. Angeles-Shim, Junghyun Shim, Ricky B. Vinarao.

Investigation: Rosalyn B. Angeles-Shim, Junghyun Shim, Ricky B. Vinarao, Ruby S. Lapis, Joshua J. Singleton.

Writing – original draft: Rosalyn B. Angeles-Shim.

Writing – review & editing: Rosalyn B. Angeles-Shim, Junghyun Shim.

References

1. Dilla-Ermita CJ, Tandayu E, Juanillas VM, Detras J, Lozada DN, Dwiyanti MS, et al. Genome-wide association analysis tracks bacterial leaf blight resistance loci in rice diverse germplasm. Rice. 2017; 10(8).

2. Kumar PN, Sujatha K, Laha GS, Rao KS, Viraktamath BC, Hari Y, et al. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathol. 2012; 102(2):222–228.

3. Ullah I, Jamil S, Iqbal MZ, Shaheen HL, Hasni, Jabeen S, et al. Detection of bacterial blight resistance genes in Basmati rice landraces Genet Mol Res. 2012; 11:1960–196. https://doi.org/10.4238/2012.July.20.1 PMID: 22869552

4. McDowell JM, Woffenden BJ. Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnol. 2003; 21(4):178–183.
5. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S. An overview of bacterial blight disease of rice and strategies for its management. Curr Sci. 1999; 77(11):1435–1444.

6. http://www.shigen.nig.ac.jp/rice/oryzaBASE/local/change?lang=en. Accessed September 23, 2019.

7. Kim SM. Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor Appl Genet. 2018; 131(12):2733–2743. https://doi.org/10.1007/s00122-018-3187-2 PMID: 30225642

8. Ji Z, Wang C, Zhao K. Rice routes of countering Xanthomonas oryzae. Int J Mol Sci. 2018; 19(10):3008.

9. Balachiranjeevi CH, Bhaskar NS, Abhilash KV, Harika G, Mahadev SHK, Hajira SK, et al. Marker-assisted pyramiding of two major, broad-spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice. DRR17B. PLoS ONE. 2018; 13(10): e0201271. https://doi.org/10.1371/journal.pone.0201271 PMID: 30359375

10. Shanti ML, Shenoy VV, Devi GL, Kumar VM, Premalatha P, Kumar GN, et al. Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parent lines of hybrid rice. J Plant Pathol. 2010; 92:495–501.

11. Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy LG, Rani NS, et al. Marker-assisted introgression of bacterial blight resistance in Sambha Mahsuri, an elite indica rice variety. Euphytica. 2008; 160:411–422.

12. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang N, et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet. 1997; 95:313–320.

13. Mew TW, Vera Cruz CM, Medalla ES. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to the planting of rice cultivars in the Philippines. Plant Dis. 1992; 76:1029–1032.

14. Khush GS, Mackill DJ, Sidhu GS. Breeding rice for resistance to bacterial blight. In: Bacterial Blight of Rice. Manila, Philippines: IRRI; 1989. p. 207–217.

15. Dokku P, Das KM, Rao GJN. Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica. 2013; 192:87–96.

16. Suh J, Jeung J, Noh T, Cho T, Park S, Shin MS, et al. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice. 2013; 6:5. https://doi.org/10.1186/1939-8433-6-5 PMID: 24280417

17. Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet. 2001; 102:1011–1015.

18. Brar DS, Khush GS. Alien introgression in rice. Nucleus. 2017; 60:251–261.

19. Ramos JM, Furuta T, Uehara K, Chihiro N, Angeles-Shim RB, Shim J, et al. Development of chromosome segment substitution lines (CSSLs) of Oryza longistaminata A. Chev. & Rôhr in the background of the elite japonica rice cultivar, Taichung 65 and their evaluation for yield traits. Euphytica 2016; 210(2):151–163.

20. Angeles-Shim RB, Vinarao RB, Marathi B, Jena KK. Molecular analysis of Oryza latifolia Desv. (CCDD genome)-derived introgression lines and identification of value-added traits for rice (O. sativa L.) improvement. J Heredity. 2014; 105(5):676–689.

21. Multani DS, Khush GS, de los Reyes BG, Brar DS. Alien gene introgression and development of monosomic alien addition lines from Oryza latifolia. Theor Appl Genet. 2003; 107:395–405. https://doi.org/10.1007/s00122-003-1214-3 PMID: 12764581

22. Song WY, Wang GL, Chen L, Zhai W, Kim HS, Pl LY, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995; 270(5243):1804–1806. https://doi.org/10.1126/science.270.5243.1804 PMID: 8525370

23. Ronald PC, Albano B, Tabien R, Abenes L, Wu K, McCouch S, et al. Genetic and physical analysis of the bacterial blight disease resistance locus, Xa21. Mol Gen Genet. 1992; 236:113–120. https://doi.org/10.1007/bf0279649 PMID: 1362973

24. Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, et al. Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genet Newsli. 1998; 15:138–142.

25. Guo S, Zhang D, Lin X. Identification and mapping of a novel bacterial blight resistance gene xax35(t) originated from Oryza minuta. Scientia Agricultura Sinica. 2010; 43(13):2611–2616.

26. Gu K, Tian D, Yang F, Wu L, Sreekala C, Wang D, et al. High-resolution genetic mapping of Xa27(t) a new bacterial blight resistance gene in rice O. sativa L. Theor Appl Genet. 2004; 108:800–807. https://doi.org/10.1007/s00122-003-1491-x PMID: 15118822
Sanchez PL, Wing RA, Brar DS. The wild relatives of rice: genomes and genomics. In: Zhang Q, Wing 32.

Cheema K, Grewal N, Vikal Y, Sharma R, Das A, et al. A novel bacteria l blight resistance gene 28.

Tan GX, Ren X, Weng YM, Shi ZY, Zhu LL, He GC. Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. Yi Chuan Xue Bao 2004; 31:724–729. PMID: 15473325

Natarajkum ar P, Sujatha K, Laha GS, Viraktamath BC, Reddy CS, Mishra B, et al. Identification of a dominant bacterial blight resistance gene from Oryza nivara and its molecular mapping. Rice Genet Newslet. 2010; 25:54–56.

Cheema K, Grewal N, Vikal Y, Sharma R, Lore JS, Das A, et al. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4 L and transferred to Oryza sativa L. Genet Res. 2008; 90:397–307.

Zheng CK, Wang CL, Yu YJ, Liu YT, Zhao KJ. Identification of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonas oryzae pv. oryzae) in rice. Acta Agriculturae Sinica. 2009; 35:1173–1180.

Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015; 84:694–703. https://doi.org/10.1111/tpj.13042 PMID: 26426417

Sanchez PL, Wing RA, Brar DS. The wild relatives of rice: genomes and genomics. In: Zhang Q, Wing RA, editors. Genetics and genomics of rice, plant genetics and genomics: crops and models 5. New York:Springer, 2013. p 9–25.

Verdier V, Cruz CV, Leach JE. Controlling rice bacterial blight in Africa: Needs and prospects. J Biotech-
nol. 2011; 159(4):320–328. https://doi.org/10.1016/j.jbiotec.2011.09.020 PMID: 21963588

Ying B, Song GE. Identification of Oryza species with the CD genome using RFLP analysis on nuclear, ribosomal ITS sequences. Acta Bot Sin. 2003; 45:762–765.

Kauffman HE, Reddy APK, Hsieh SPY, Merca SD. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae pv. oryzae. Plant Dis Rep. 1973; 57:537–541.

Shim J, Torollo G, Angeles-Sh im RB, Cabunaga n RC, Choi IR, Yeo US, et al. Rice tungro spherical virus resistance into photoperiod-insensitive japonica rice by marker-assisted selection. Breed Sci. 2015; 65(4):345–351. https://doi.org/10.1270/jsbbs.65.345 PMID: 26366118

https://rapd.dna.affrc.go.jp/tools/dump/run. Accessed October 12, 2019.

Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. A paralog of the MtN3/sali va family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell and Environ. 2011; 34:1958–1969.

Chen H, Wang S, Zhang Q. New gene for bacterial blight resistance in rice located on chromosom e 12 identified from Minghui 63, an elite restorer line. Phytopathol. 2002; 92(7):750–4.

Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980; 8(19):43214325.

Simpson JT, Kim W, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009; 19(6):1117–1123. https://doi.org/10.1101/gr.089532.108 PMID: 19251739

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. 1999; 41:95–98.

Deng H, Liu H, Li X, Xiao J, Wang S. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol. 2012; 158:867–889.

Mata-Perez C, Spoel SH. Thioredox in-mediated redox signalli ng in plant immunity. Plant Sci. 2019; 279:27–33. https://doi.org/10.1016/j.plantsci.2018.05.001 PMID: 30709489

Li Y, Han L, Wang H, Zhang J, Sun S, Feng DQ, et al. The thioreredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton. Plant Physiol. 2016; 170(4):2392–2406. https://doi.org/10.1104/pp.15.01930 PMID: 26869704

Sun L, Zhu Y, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Comm. 2014; 5:5372.

Marzin S, Hanemann A, Sharma S, Hensel G, Kumleh n J, Schweiz er G, et al. Are pectin esterase inhib-
itor genes involved in mediating resistance to Rhynchosporium com mune in barley? PLoS ONE. 2016; 11(3):e0150485. https://doi.org/10.1371/journal.pone.0150485 PMID: 26937960

Sundaresha S, Sharma S, Shandil RK, Sharma S, Thakur V, Bhardwaj V, et al. An insight into the downstream analysis of RB gene in F1 RB potato lines imparting field resistance to late blight. Functional Plant Biol. 2018; 45:1026–1037.

Yan Q, Cui X, Lin S, Gan S, Xing H, Dou D. GmCYP82A3, a soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses. PLoS ONE. 2016; 11(9):e0162253. https://doi.org/10.1371/journal.pone.0162253 PMID: 27588421
50. Gunupuru LR, Arunachalam C, Malla KB, Kahala A, Perouchon A, Jia J, et al. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS ONE. 2018; 13(10): e0204992. https://doi.org/10.1371/journal.pone.0204992 PMID: 30312356

51. Zhang Z, Chen J, Su Y, Liu H, Chen Y, Luo P, et al. TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat. PLoS ONE. 2015; 10(5): e0127723. https://doi.org/10.1371/journal.pone.0127723 PMID: 26010918

52. Cheng DW, Lin H, Takahashi Y, Walker MA, Civerlo EL, Stenger DC. Transcriptional regulation of the grape cytochrome P450 monoxygenase gene CYP736B expression in response to Xylella fastidiosa infection. BMC Plant Biol. 2010; 10:135. https://doi.org/10.1186/1471-2229-10-135 PMID: 20591199

53. Chezem WR, Memon A, Li FS, Weng JK, Clay NK. SG2-type R2R3-MYB transcription factor Myb15 controls defense-induced lignification and basal immunity in Arabidopsis. Plant Cell. 2017; 29:1907–1926. https://doi.org/10.1105/tpc.16.00954 PMID: 28733420

54. Kou Y, Wang S. Toward an understanding of the molecular basis of quantitative disease resistance in rice, J Biotechnol. 2012; 159: 283–290. https://doi.org/10.1016/j.jbiotec.2011.07.002 PMID: 21801764

55. Angeles-Shim RB, Reyes VP, Del Valle MM, Sunohara H, Shim J, Lapis RS, et al. Marker-assisted introgression of the quantitative resistance gene pi21 confers broad-spectrum resistance of rice to blast. Rice Sci. 2020; 27:2.

56. Xia Y. Proteases in pathogenesis and plant defence. Cell Microbiol. 2004; 6(10):905–913. https://doi.org/10.1111/j.1462-5822.2004.00438.x PMID: 15339266

57. Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujiita Y. Effects of pyramiding quantitative resistance genes pi21, Pi34 and Pi35 on rice leaf blast disease. Plant Dis. 2015; 99: 904–909. https://doi.org/10.1094/PDIS-02-14-0214-RE PMID: 30690973

58. Bryan GT, Wu KS, Farral L, Jia Y, Hershey HP, McAdams SA, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000; 12:2033–2045. https://doi.org/10.1105/tpc.12.11.2033 PMID: 11090207

59. Raidan GJ, Moffet P. Distinct domains in the arc region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 2006; 18:2082–2093. https://doi.org/10.1105/tpc.106.042747 PMID: 16844906

60. Yen SK, Chung MC, Chen PC, Yen HE. Environmental and developmental regulation of the wound-induced cell wall protein wi12 in the halophyte ice plant. Plant Physiol. 2001; 127:517–528. PMID: 11598226

61. Takabatake R, Seo S, Ito N, Gotoh Y, Mitsuhara I. Involvement of wound-induced receptor-like protein kinase in wound signal transduction in tobacco plants. Plant J. 2006; 47(2):249–257. https://doi.org/10.1111/j.1365-313X.2006.02781.x PMID: 16790031

62. Xu Z, Xu X, Gong Q, Li Z, Wang S, Yang Y, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant. 2019; 12(11):1434–1446. https://doi.org/10.1016/j.molp.2019.08.006 PMID: 31493565

63. Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 2019; 37:1344–1350. https://doi.org/10.1038/s41587-019-0267-z PMID: 31659337