catena-Poly[[tetrakis(3,5-dimethyl-1H-pyrazole-κN²)copper(II)]-μ₂-sulfato-κ²O:O′]: crystal structure and Hirshfeld surface analysis of a Cu^{II} coordination polymer

Oleksandr S. Vynohradov, Artur Dovzhik, Vadim A. Pavlenko, Dina D. Naumova, Irina A. Golenya and Sergiu Shova

*Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and **Poni Petru** Institute of Macromolecular Chemistry, Allea Gr. Ghica, Voda 41A, 700487 Iasi, Romania.

*Correspondence e-mail: igolenya@ua.fm

The title coordination polymer, [Cu(SO₄)(C₅H₈N₂)₄]ₙ, was synthesized using a one-pot reaction of copper powder, anhydrous copper(II) sulfate and 3,5-dimethyl-1H-pyrazole (Hdmpz) in acetonitrile under ambient conditions. The asymmetric unit can be described as a chain consisting of four [Cu(SO₄)(Hdmpz)₄] formula units that are connected to each other by a μ₂-sulfato-bridged ligand. The octahedral coordination geometry (O₂N₄) of all copper atoms is realized by coordination of four pyrazole ligands and two sulfate ligands. Four pyridine-like N atoms of the pyrazole ligands occupy the equatorial positions, while two oxygen atoms of two sulfate ligands are in axial positions. As a result of the sulfate ligand rotation, there is a pairwise alternation of terminal O atoms (which are not involved in coordination to the copper atom) of the SO₄ tetrahedra. The Cu···Cu distances within one asymmetric unit are in the range 7.0842 (12)–7.1554 (12) Å. The crystal structure is built up from polymeric chains packed in a parallel manner along the b-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H···H (74.7%), H···O/O···H (14.8%) and H···C/C···H (8.2%) interactions.

1. Chemical context

The synthesis, structure and properties of metal complexes, including coordination polymers, is an important area of chemical research. The nature of the anion, which is part of a coordination compound, is one of several factors that has a great influence on the final structural topology of the complexes (Mondal et al., 2009; Mahmoudi et al., 2007; Kwak et al., 2008; Balic´ et al., 2018). A large number of coordination compounds have been synthesized and studied due to the development of supramolecular chemistry and the study of self-assembly of metal complexes with organic molecules, such as pyrazoles. These molecules have long been recognized as useful ligands for studying transition-metal coordination chemistry (Mihailov et al., 1974; Nicholls et al., 1971; Reedijk, 1971, 1970a,b; Reedijk & Smit, 1971; Reedijk et al., 1971; Singh et al., 1973; ten Hoedt et al., 1982). Pyrazole-based ligands are used to construct supramolecular architectures due to the presence of a pyrrole NH group in the pyrazole ring, which is not necessarily coordinated by a metal atom, but may act as a donor of hydrogen bonds. In addition, substituents on the
pyrazole ring can also be involved in hydrogen-bond interactions. These facts are very important because there is a noticeable influence of hydrogen bonding on coordination compound assembly (Di Nicola et al., 2007; Brewer et al., 2020; Burrows et al., 2011). The crystal packing of coordination polymers also depends on the different solvents employed, although not necessarily incorporating the solvents as crystallization molecules (Di Nicola et al., 2014). Reaction of a metal salt with an organic ligand is a popular way for the synthesis of coordination compounds, including metal coordination polymers (Gogoi et al., 2019; Shen et al., 2004), but there are many types of coordination compounds and the methods of synthesis are varied (House et al., 2016). In this article we report the preparation of the coordination polymer \(\text{catena-poly[\text{tetrakis}(3,5\text{-dimethyl-1H-pyrazole-}C_2\text{N_2})\text{copper(II)}]·\mu_2\text{-sulfato-}_C^\text{C}_2\text{O}_2\text{O}^\prime} \) using the direct synthesis method, which is based on oxidative dissolution of a powdered metal in the presence of an organic ligand (Kokozay et al., 2018; Li et al., 2021).

2. Structural commentary

The title coordination polymer crystallizes in the orthorhombic \(\text{Pna}_2_1 \) space group. The asymmetric unit is a chain consisting of four \([\text{Cu(Hdmpz)}_4\text{SO}_4]\) formula units (Fig. 1) that are connected to each other by a \(\mu_2\)-sulfato-bridged ligand along the \(b \)-axis direction (Fig. 2). Each mononuclear unit \([\text{Cu(Hdmpz)}_4\text{SO}_4]\) consists of four 3,5-dimethyl-1H-pyrazole molecules, which are coordinated in a monodentate way, and one sulfate ligand that is connected by one oxygen atom to the copper ion. The octahedral coordination environment of each copper atom consists of four pyridine-like nitrogen atoms of Hdmpz ligands, which occupy the equatorial positions, and two oxygen atoms of two SO₄ ligands, which are in axial positions. The difference in lengths of the axial Cu—O and equatorial Cu—N bonds is at least 0.235 Å. Bond lengths between the central atom and the nitrogen atoms in the equatorial position are approximately the same [in the range 2.028 (6) to 2.054 (6) Å]. The N1, N3, N5 and N7 nitrogen atoms slightly deviate from of the equatorial plane [by —0.088 (3) Å for N1, 0.069 (3) Å for N3, 0.067 (3) Å for N5 and —0.086 (3) Å for N7]. The Cu1 atom is out of the equatorial plane, formed by four nitrogen atoms, by 0.038 (3) Å. The N—Cu—N angles are practically right angles, in the range of 88.0 (2)—91.2 (2)°. The intermetallic Cu···Cu distances between two neighboring \([\text{Cu(Hdmpz)}_4\text{SO}_4]\) fragments within one asymmetric unit are in the range 7.0842 (12)–7.1554 (12) Å while the interchalogenic S···S distances are in the range 7.166 (2)–7.223 (2) Å. Bridging oxygen atoms of sulfate ligands, which bind \([\text{Cu(Hdmpz)}_4\text{SO}_4]\) formula units, are arranged in a spiral along the \(b \) axis (Fig. 3).

The molecular structure of the complex is stabilized by weak intramolecular hydrogen bonds in which hydrogen donors are carbon atoms (—CH₃ groups at the 3 and 5 positions of the pyrazole ring) and pyrrole-like nitrogen atoms of NH groups, while hydrogen acceptors are pyridine-like nitrogen atoms of the neighboring pyrazole ligands and O and S atoms of the sulfate ligands. Significant contributions to the hydrogen-bond network are made by N—H···O hydrogen bonds with lengths in the range of 2.022 (5) to 2.437 (4) Å.

Figure 1
Representation of four \([\text{Cu(SO}_4]\text{2(Hdmpz)}_4]\) formula units in the structure of the title coordination polymer, with displacement ellipsoids at the 50% probability level.

Figure 2
The asymmetric unit of the title compound. Selected pyrazole ring atoms are represented as wireframes. H atoms and hydrogen bonds are omitted for clarity.
Selected intramolecular geometric parameters of hydrogen bonds are given in Table 1. The hydrogen-bond network in the asymmetric unit of the title compound is shown in Fig. 4. The torsion angle Cu1—Cu2—Cu3—Cu4 is 80.2 (2) and S1—S2—S3—S4 is 97.8 (2) and O1—O2—O5—O6, O5—O6—O9—O10 and O9—O10—O13—O14 are 36 (4), 25 (7) and 51 (3), respectively.

All pyrazole rings are oriented unsymmetrically in the mononuclear fragment. Thus, the planes of pyrazole rings N1/N2/C1/C3/C4 (pyrazole ligand near the Cu1 atom) and N9/N10/C21/C23/C24 (pyrazole ligand near the Cu2 atom) are oriented almost parallel to each other with a small deviation [plane normal to plane normal angle = 12.8 (3)]. The plane-to-plane twist angle is 4.2 (4), the plane-to-plane fold angle is 13.4 (4) and the plane-to-plane shift = 4.879 (18) Å. Within one [Cu(Hdmpz)₂SO₄] unit, pairs of pyrazole ring planes, for example N1/N2/C1/C3/C4, N7/N8/C16/C18/C19 and N3/N4/C6/C8/C9, N5/N6/C11/C13/C14, are placed in a non-parallel manner. The torsion angles N2—N1—N7—N8 and N4—N3—N5—N6 are 109.0 (6) and 111.3 (6), respectively.

Table 1

D—H · · · A	D—H	H · · · A	D···A	D—H · · · A
N2—H2···O4	0.86	2.08	2.792 (7)	139
N6—H6···O3	0.86	2.04	2.889 (7)	168
N10—H10···O3	0.86	2.11	2.869 (7)	146
N12—H12···O4	0.86	2.12	2.951 (8)	163
N14—H14···O8	0.86	2.10	2.835 (7)	143
N16—H16···O5	0.86	2.44	2.889 (7)	114
N16—H16···O7	0.86	2.04	2.894 (8)	173
N18—H18···O6	0.86	2.39	2.866 (8)	116
N18—H18···O8	0.86	2.14	2.988 (7)	169
N20—H20···O9	0.86	2.41	2.885 (9)	115
N20—H20···O11	0.86	2.08	2.933 (7)	171
N22—H22···O7	0.86	2.05	2.828 (7)	150
N24—H24···O12	0.86	2.16	2.840 (8)	135
N26—H26···O16	0.86	2.02	2.875 (7)	171
N28—H28···O15	0.86	2.07	2.803 (7)	143
N30—H30···O10	0.86	2.31	2.817 (8)	118
N30—H30···O12	0.86	2.24	3.083 (6)	165
N32—H32···O11	0.86	2.12	2.857 (7)	144
C30—H30C···O5	0.96	2.39	3.213 (11)	144
C50—H50A···O6	0.96	2.23	3.132 (9)	155
C65—H65B···O10	0.96	2.27	3.192 (11)	160
C70—H70B···O10	0.96	2.35	3.116 (10)	137

3. Supramolecular features

The crystal structure (Fig. 5) is built up from polymeric chains packed parallel along the b-axis direction. The unit-cell example N1/N2/C1/C3/C4, N7/N8/C16/C18/C19 and N3/N4/C6/C8/C9, N5/N6/C11/C13/C14, are placed in a non-parallel manner. The torsion angles N2—N1—N7—N8 and N4—N3—N5—N6 are 109.0 (6) and 111.3 (6), respectively.
dimensions can be explained because of the presence of four complex moieties in the asymmetric unit \((Z' = 4, Z = 16)\). As a result of the sulfate ligand rotation, there is a pairwise alternation of the terminal oxygen atoms (which are not involved in coordinating the copper atom) of the \(\text{SO}_4\) tetrahedra. Within one chain the intermetallic distance between two copper atoms, which are located at the edges of two neighboring asymmetric units, is 7.1625 (12) Å, while the interchalcogenic distance between the nearest sulfur atoms is 7.227 (2) Å. Polymeric chains, which are formed with the participation of bridging sulfate ligands, are stabilized by an extensive hydrogen-bond network. Neighboring chains are connected to each other by weak \(\text{C—H}/\text{C1/C1/C1} \text{N}\) and \(\text{C—H}/\text{C1/C1/C1} \text{O}\) hydrogen bonds. Geometric parameters for intermolecular hydrogen bonds are given in Table 2.

Table 2

Geometric parameters of intermolecular hydrogen bonds (Å, °)
C2—H2A···N16
0.96
C2—H2A···O7
0.96
C33—H33···N8
0.93
C32—H32···N32
0.96
C32—H32···N31
0.96
C32—H32···N28
0.96

Symmetry codes: (i) \(x + \frac{1}{2}, y + \frac{1}{2}, z\); (ii) \(-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}\); (iii) \(-x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}\).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots generated using Crystal Explorer 17.5 software (Spackman et al., 2021), with a standard resolution of the three-dimensional \(d_{\text{norm}}\) surfaces plotted over a fixed color scale of −0.5511 (red) to 1.8416 (blue) a.u. The red spots in Fig. 6 represent short contacts and negative \(d_{\text{norm}}\) values on the surface corresponding to the interactions described above. The Hirshfeld surfaces mapped over \(d_{\text{norm}}\) are shown for the \(\text{H}···\text{H}, \text{H}···\text{O}/\text{O}···\text{H}, \text{H}···\text{C}/\text{C}···\text{H}, \text{Cu}···\text{O}/\text{O}···\text{Cu}\) and \(\text{H}···\text{N}/\text{N}···\text{H}\) contacts, the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 7. For the title coordination polymer, the most significant contributions to the overall crystal packing are from \(\text{H}···\text{H}\) (74.7%), \(\text{H}···\text{O}/\text{O}···\text{H}\) (14.8%) and \(\text{H}···\text{N}/\text{N}···\text{H}\) (8.2%) contacts. Small contributions of weak \(\text{Cu}···\text{O}/\text{O}···\text{Cu}\) (0.9%) and \(\text{N}/\text{N}···\text{O}/\text{O}···\text{N}\) (0.2%) contacts have a negligible effect on the packing. The total contribution of contacts involving hydrogen atoms is 85.9%, for O atoms is 8.4%, C atoms 4.4%, N atoms 0.7% and Cu atoms 0.5%. These values were calculated using the Crystal Explorer 17.5 software (Spackman et al., 2021). A special filter ‘by elements’ was chosen during the calculation of the contributions of selected individual interactions to the total Hirshfeld surface. Quantitative physical properties of Hirshfeld surface for the title compound were also obtained, such as the molecular volume (650.80 Å³), surface area (512.94 Å²), globularity (0.708), as well as sphericity (0.034). These properties provide significant information on the shape of the molecules and may serve in the future to identify and establish correlations with other properties.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, update February 2021; Groom et al., 2016) for the \(\text{Cu}_2(\text{µ}_2-\text{SO}_4)(\text{Hpz})_4\) moiety [two \(\text{Cu(Hpz)}_2\) fragments connected through a bidentate-bridged \(\text{SO}_4\) ligand] revealed two hits: QITCAZ, a coordination compound based on

![Figure 6](image-url) Two projections of Hirshfeld surfaces mapped over \(d_{\text{norm}}\) showing the intermolecular interactions.

![Figure 7](image-url) The overall two-dimensional fingerprint plot and those delineated into specified interactions. Hirshfeld surface representations with the function \(d_{\text{norm}}\) plotted onto the surface for the different interactions.
4-iodo-1H-pyrazole (Song et al., 2013) and XACTUR, a 1H-pyrazole-containing complex (Shen et al., 2004). These structures are similar to the title compound. Moreover there are 23 hits for the Cu(CN)₂SO₄ moiety, where CuN₂ is the backbone of the pyrazole ring. Most similar to the title complex are two catena-[(μ₂-sulfato)bis(3,5-dimethyl-1H-pyrazole)aquacopper(II)dihydrate] complexes: EHOMEU (Wang et al., 2010) and EHOMEU01 (Gogoi et al., 2019); FITCUI, a complex based on 2-thienyl-1H-pyrazole (Pettinari et al., 2014); ZZZALD01 a tetrakis(pyrazole)sulfato-copper(II) monohydrate (Shen et al., 2004); two monohydrated tetra-pyrazole sulfato copper(II) complexes: LUNDAB (Kumar et al., 2014) and LUNDAB01 (Zerguini et al., 2019).

6. Synthesis and crystallization

The synthesis of [Cu(SO₄)(Hdmmpz)]₄ was conducted at room temperature by the oxidative dissolution method as a result of the addition of a copper powder (1.56 mmol, 0.1 g) and anhydrous copper(II) sulfate (3.1 mmol, 0.5 g) mixture to an acetonitrile (9 ml) solution of 3,5-dimethyl-1H-pyrazole (4.68 mmol, 0.45g). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a gray–blue precipitate of the product was obtained (the precipitate weight was 0.86 g). The precipitate was filtered off and the obtained green–blue solution was analyzed. Clear, intense blue crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature in an open vessel. The relative yield of the single-crystal portion of the product with respect to the ligand was approximately 7%. The obtained blue crystals were studied by elemental analysis (calculated for C₉H₃₂CuN₇O₄S: C 44.1%, H 5.9%, N 20.6%, found: C 44.5%, H 6.3%, N 21%). The elemental analysis data of the obtained grey–blue precipitate was: found C 36.8%, H 5.5%, N 17.2%. IR spectra of the starting 3,5-dimethyl-1H-pyrazole, grey–blue precipitate and clear, intense blue crystals of the title coordination polymer are given in the supporting information for this article.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Refinement of the N─H bond lengths was attempted, but this provided unrealistic values. Thus, hydrogens were placed at calculated positions and refined as riding with U(eq) = 1.2U(eq) (N, C) or 1.5U(eq) (C-methyl). The crystal studied was refined as a two-component inversion twin.

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (grant No. 22BF037-09 at Taras Shevchenko National University of Kyiv).

References

Balić, T., Popović, Z. & Marković, B. (2018). Inorg. Chim. Acta. 478, 32–43.
Brewer, G., Butcher, R. J. & Zavalić, P. (2020). Materials. 13, 1595.
Burrows, A. D., Kelly, D. J., Haja Mohideen, M. I., Mahon, M. F., Pop, V. M. & Richardson, C. (2011). CrystEngComm. 13, 1676–1682.
Di Nicola, C., Garau, F., Lanza, A., Monari, M., Pandolfo, L., Pettinari, C. & Zorzi, A. (2014). Inorg. Chim. Acta. 416, 186–194.
Di Nicola, C., Karbach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pomeario, A. J. L. (2007). Inorg. Chem. 46, 221–230.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschnigg, H. (2009). J. Appl. Cryst. 42, 339–341.
Gogoi, A., Nashre-ul-Islam, S. M., Frontera, A. & Bhattacharyya, M. K. (2019). Inorg. Chim. Acta. 484, 133–141.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hoedt, R. W. M. ten, Hulsbergen, F. B., Verschoor, G. C. & Reedijk, J. (1982). Inorg. Chem. 21, 2369–2373.
House, J. E. & House, K. A. (2016). Synthesis and Reactions of Coordination Compounds. Descriptive Inorganic Chemistry, ch. 21, pp. 347–370. Amsterdam: Elsevier.
Kokozay, V. N., Vasilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by I. B. Kharisov, pp. 183–237. Amsterdam: Elsevier.
Kumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Raman, A. (2014). J. Chem. Sci. 126, 1433–1442.
Kwak, H., Lee, S. H., Kim, S. H., Lee, Y. M., Lee, E. Y., Park, B. K., Kim, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2008). Eur. J. Inorg. Chem. pp. 408–415.
Li, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506–4530.
Mahmoudi, G. & Morsali, A. (2007). CrystEngComm. 9, 1062–1072.
Mihailov, M. H., Mihailova, V. T. & Khalkin, V. A. (1974). *J. Inorg. Nucl. Chem.* **36**, 141–144.

Mondal, R., Basu, T., Sadhukhan, D., Chattopadhyay, T. & Bhunia, M. K. (2009). *Cryst. Growth Des.* **9**, 1095–1105.

Nicholls, D. & Warburton, B. A. (1971). *J. Inorg. Nucl. Chem.* **33**, 1041–1045.

Pettinari, C., Marchetti, F., Orbisaglia, S., Palmucci, J., Pettinari, R., Di Nicola, C., Skelton, W. B. & White, A. H. (2014). *Eur. J. Inorg. Chem.* pp. 546–558.

Reedijk, J. (1971). *Recl Trav. Chim. Pays Bas*, **90**, 117–136.

Reedijk, J. (1970a). *Recl Trav. Chim. Pays Bas*, **89**, 605–618.

Reedijk, J. (1970b). *Recl Trav. Chim. Pays Bas*, **89**, 993–1016.

Reedijk, J. & Smit, J. A. (1971). *Recl Trav. Chim. Pays Bas*, **90**, 1135–1140.

Reedijk, J., Windhorst, J. C. A., van Ham, N. H. M. & Groeneveld, W. L. (1971). *Recl Trav. Chim. Pays Bas*, **90**, 234–251.

Rigaku OD (2021). *CrysAlis PRO* Rigaku Oxford Diffraction, Yarnton, England.

Sheldrick, G. M. (2015a). *Acta Cryst.* **A71**, 3–8.

Sheldrick, G. M. (2015b). *Acta Cryst.* **C71**, 3–8.

Shen, W.-Z., Yi, L., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H. (2004). *Inorg. Chem. Commun.* **7**, 819–822.

Singh, C. B., Satpathy, S. & Sahoo, B. (1973). *J. Inorg. Nucl. Chem.* **35**, 3947–3950.

Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Zh. & Xing, Y.-H. (2013). *Wuji Huaxue Xuebao*, **29**, 2150.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* **54**, 1006–1011.

Wang, S.-Q. & Jian, F.-F. (2010). *Z. Kristallogr. New Cryst. Struct.* **225**, 683–684.

Zerguini, A. L., Cherouana, A., Duparc, V. H. & Schaper, F. (2019). *Inorg. Chem. Commun.* **99**, 36–39.
catena-Poly[[tetrakis(3,5-dimethyl-1H-pyrazole-κN^{2})copper(II)]-μ_2-sulfato-κ^{2}O:O′]: crystal structure and Hirshfeld surface analysis of a Cu^{II} coordination polymer

Oleksandr S. Vynohradov, Artur Dovzhik, Vadim A. Pavlenko, Dina D. Naumova, Irina A. Golenya and Sergiu Shova

Computing details
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[tetrakis(3,5-dimethyl-1H-pyrazole-κN^{2})copper(II)]-μ_2-sulfato-κ^{2}O:O′]

Crystal data
[Cu(SO_4)(C_5H_8N_2)_4] \(D_\lambda = 1.359 \text{ Mg m}^{-3} \)
Orthorhombic, \(Pna2_1 \)
\(a = 19.3656 \) (6) Å
\(b = 28.4032 \) (6) Å
\(c = 19.3456 \) (5) Å
\(V = 10641.0 \) (5) Å³
\(Z = 16 \)
\(F(000) = 4560 \)

Data collection
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm⁻¹
\(\omega \) scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
\(T_{\text{min}} = 0.907, T_{\text{max}} = 1.000 \)
119732 measured reflections
22862 independent reflections
14389 reflections with \(I > 2\sigma(I) \)
\(R_{\text{int}} = 0.062 \)
\(\theta_{\text{max}} = 29.4^\circ, \theta_{\text{min}} = 1.7^\circ \)
\(h = -26 \rightarrow 26 \)
\(k = -39 \rightarrow 36 \)
\(l = -22 \rightarrow 26 \)

Refinement
Refinement on \(F^2 \)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.054 \)
\(wR(F^2) = 0.133 \)
\(S = 1.03 \)
22862 reflections
1234 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: mixed
H-atom parameters constrained
\[w = \frac{1}{[\sigma^2(F_o^2) + (0.0546P)^2 + 4.6894P]} \]

where \(P = (F_o^2 + 2F_c^2)/3 \)

\[(\Delta/\sigma)_{\text{max}} = 0.001\]

\[\Delta \rho_{\text{max}} = 1.19 \text{ e Å}^{-3}\]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	\(x \)	\(y \)	\(z \)	\(U_{eq} \)
Cu1	0.32732 (4)	0.08172 (3)	0.47991 (5)	0.0381 (2)
Cu2	0.35680 (4)	0.33019 (3)	0.49183 (4)	0.0366 (2)
Cu3	0.34772 (4)	0.57922 (3)	0.51712 (5)	0.0386 (2)
Cu4	0.31888 (4)	0.83027 (3)	0.50659 (4)	0.0383 (2)
S1	0.38041 (9)	0.20005 (5)	0.50836 (11)	0.0453 (4)
S2	0.33477 (9)	0.45147 (5)	0.54082 (11)	0.0425 (5)
S3	0.29310 (9)	0.69962 (5)	0.48845 (12)	0.0482 (5)
S4	0.34086 (9)	0.94986 (5)	0.45316 (11)	0.0415 (4)
O1	0.3364 (2)	0.16205 (14)	0.4818 (3)	0.0518 (14)
O2	0.3552 (2)	0.24597 (13)	0.4860 (3)	0.0507 (13)
O3	0.3800 (3)	0.19749 (17)	0.5846 (3)	0.0574 (15)
O4	0.4509 (2)	0.19497 (15)	0.4824 (3)	0.0612 (15)
O5	0.3613 (2)	0.41241 (13)	0.4991 (3)	0.0495 (14)
O6	0.3581 (2)	0.49625 (14)	0.5126 (3)	0.0526 (14)
O7	0.2586 (2)	0.44992 (15)	0.5392 (3)	0.0572 (14)
O8	0.3598 (3)	0.44762 (16)	0.6120 (3)	0.0603 (16)
O9	0.3357 (2)	0.66123 (14)	0.5160 (4)	0.0570 (15)
O10	0.3188 (3)	0.74469 (14)	0.5145 (3)	0.0603 (15)
O11	0.2977 (3)	0.69918 (17)	0.4129 (3)	0.0629 (16)
O12	0.2213 (3)	0.69417 (17)	0.5107 (4)	0.0710 (16)
O13	0.3157 (2)	0.91247 (13)	0.4997 (3)	0.0486 (14)
O14	0.3186 (2)	0.99611 (14)	0.4783 (3)	0.0516 (14)
O15	0.3144 (3)	0.94324 (18)	0.3832 (3)	0.0599 (16)
O16	0.4168 (2)	0.94793 (16)	0.4532 (3)	0.0537 (14)
N1	0.4125 (3)	0.07577 (18)	0.5413 (3)	0.0406 (14)
N2	0.4699 (3)	0.10224 (17)	0.5263 (3)	0.0421 (13)
H2	0.471469	0.123444	0.494624	0.050*
N3	0.3918 (3)	0.07707 (17)	0.3958 (3)	0.0371 (13)
N4	0.4314 (3)	0.03765 (18)	0.3906 (3)	0.0406 (14)
H4	0.431493	0.015166	0.420404	0.049*
N5	0.2660 (3)	0.08838 (18)	0.5646 (3)	0.0402 (14)
N6	0.2834 (3)	0.12205 (18)	0.6108 (3)	0.0492 (15)
H6	0.316691	0.141689	0.604779	0.059*
N7	0.2437 (3)	0.07873 (18)	0.4170 (3)	0.0404 (15)

Absolute structure: Refined as an inversion twin

Absolute structure parameter: 0.479 (15)
The table contains the Cartesian coordinates and displacement parameters for atoms N1 to N32, C1 to C8, and H8 to H32 in the crystal structure. The coordinates are given in angstroms (Å) and the displacement parameters in ångstroms squared (Å²).
Atom	X (Å)	Y (Å)	Z (Å)	Temperature (Å²)																																													
H5B	0.355543	-0.001530	0.590356	0.100*																																													
H5C	0.411053	-0.011900	0.647336	0.100*																																													
C6	0.4698 (4)	0.0382 (2)	0.3339 (4)	0.0493 (19)																																													
C7	0.5150 (4)	-0.0028 (3)	0.3150 (5)	0.074 (3)																																													
H7A	0.541754	-0.012111	0.354541	0.110*																																													
H7B	0.486784	-0.028761	0.300331	0.110*																																													
H7C	0.545514	0.006079	0.278111	0.110*																																													
C8	0.4558 (4)	0.0797 (2)	0.3010 (4)	0.057 (2)																																													
H8A	0.475469	0.090205	0.259971	0.069*																																													
C9	0.4068 (4)	0.1032 (2)	0.3403 (4)	0.0433 (17)																																													
C10	0.3741 (5)	0.1494 (2)	0.3269 (4)	0.064 (2)																																													
H10A	0.370788	0.154240	0.277892	0.095*																																													
H10B	0.328688	0.150070	0.346832	0.095*																																													
H10C	0.401648	0.173990	0.346972	0.095*																																													
C11	0.2429 (5)	0.1213 (3)	0.6671 (5)	0.064 (2)																																													
C12	0.2525 (5)	0.1557 (3)	0.7255 (5)	0.091 (3)																																													
H12A	0.228809	0.144454	0.765843	0.137*																																													
H12B	0.300869	0.158834	0.735583	0.137*																																													
H12C	0.234159	0.185804	0.712433	0.137*																																													
C13	0.1985 (5)	0.0846 (3)	0.6565 (5)	0.065 (2)																																													
C14	0.2144 (4)	0.074778	0.686407	0.078*																																													
C15	0.1806 (4)	0.0235 (2)	0.5586 (5)	0.065 (2)																																													
H15A	0.164851	0.032739	0.513512	0.098*																																													
H15B	0.213211	-0.001791	0.554232	0.098*																																													
H15C	0.141941	0.013189	0.585722	0.098*																																													
C16	0.1745 (4)	0.0393 (2)	0.3441 (4)	0.0472 (18)																																													
C17	0.1537 (4)	-0.0010 (3)	0.2990 (6)	0.069 (3)																																													
H17A	0.183502	-0.002395	0.259473	0.104*																																													
H17B	0.106820	0.003300	0.284058	0.104*																																													
H17C	0.157235	-0.029876	0.324644	0.104*																																													
C18	0.1448 (4)	0.0824 (3)	0.3581 (5)	0.058 (2)																																													
H18A	0.103391	0.093839	0.340651	0.069*																																													
C19	0.1889 (4)	0.1050 (2)	0.4032 (4)	0.0492 (19)																																													
C20	0.1813 (4)	0.1533 (2)	0.4351 (5)	0.074 (3)																																													
H20A	0.150287	0.151529	0.473782	0.111*																																													
H20B	0.225577	0.164219	0.450522	0.111*																																													
H20C	0.163077	0.174749	0.401402	0.111*																																													
C21	0.5111 (4)	0.2829 (2)	0.6214 (4)	0.0485 (18)																																													
C22	0.5304 (5)	0.2404 (3)	0.6634 (4)	0.069 (2)																																													
H22A	0.559190	0.249827	0.701352	0.104*																																													
H22B	0.554996	0.218450	0.634818	0.104*																																													
H22C	0.489284	0.225722	0.680924	0.104*																																													
C23	0.5467 (4)	0.3217 (3)	0.6007 (4)	0.0514 (19)																																													
H23	0.591877	0.329426	0.612165	0.062*																																													
C24	0.5018 (4)	0.3476 (2)	0.5585 (4)	0.0426 (16)																																													
C25	0.5174 (4)	0.3928 (2)	0.5231 (5)	0.060 (2)																																													
H25A	0.566328	0.398168	0.523457	0.090*																																													
Atom	x	y	z	U(eq)																																													
------	--------	--------	--------	--------																																													
H25B	0.494508	0.418130	0.546674	0.090*																																													
H25C	0.501375	0.391373	0.476133	0.090*																																													
C26	0.5061 (4)	0.2867 (3)	0.3537 (4)	0.056 (2)																																													
C27	0.5556 (6)	0.2466 (3)	0.3427 (6)	0.104 (4)																																													
H27A	0.588553	0.254903	0.307665	0.156*																																													
H27B	0.579403	0.239943	0.385145	0.156*																																													
H27C	0.530273	0.219273	0.328355	0.156*																																													
C28	0.4935 (5)	0.3277 (3)	0.3192 (4)	0.064 (2)																																													
H28A	0.515504	0.338284	0.279364	0.077*																																													
C29	0.4408 (4)	0.3507 (2)	0.3557 (4)	0.0505 (19)																																													
C30	0.4076 (5)	0.3971 (3)	0.3412 (4)	0.071 (3)																																													
H30A	0.362296	0.392072	0.322493	0.107*																																													
H30B	0.435085	0.414249	0.308444	0.107*																																													
H30C	0.404123	0.414809	0.383313	0.107*																																													
C31	0.2715 (4)	0.3463 (2)	0.6863 (4)	0.0489 (18)																																													
C32	0.2785 (5)	0.3752 (3)	0.7511 (4)	0.071 (2)																																													
H32A	0.260913	0.406319	0.742753	0.106*																																													
H32B	0.252743	0.360759	0.787763	0.106*																																													
H32C	0.326293	0.377149	0.763903	0.106*																																													
C33	0.2287 (4)	0.3101 (3)	0.6676 (4)	0.059 (2)																																													
H33	0.195432	0.295838	0.695224	0.070*																																													
C34	0.2444 (4)	0.2987 (2)	0.5991 (4)	0.0462 (19)																																													
C35	0.2102 (4)	0.2627 (3)	0.5545 (5)	0.067 (2)																																													
H35A	0.227412	0.232031	0.566120	0.101*																																													
H35B	0.161182	0.263641	0.562070	0.101*																																													
H35C	0.219822	0.269301	0.506840	0.101*																																													
C36	0.1892 (4)	0.3819 (3)	0.3860 (5)	0.062 (2)																																													
C37	0.1406 (5)	0.4231 (3)	0.3818 (6)	0.099 (4)																																													
H37A	0.093811	0.411965	0.382856	0.148*																																													
H37B	0.148371	0.443765	0.420305	0.148*																																													
H37C	0.148481	0.439946	0.339455	0.148*																																													
C38	0.1967 (5)	0.3428 (3)	0.3447 (5)	0.065 (2)																																													
H38	0.170690	0.335538	0.305757	0.078*																																													
C39	0.2504 (4)	0.3164 (2)	0.3720 (4)	0.0490 (19)																																													
C40	0.2795 (5)	0.2713 (3)	0.3473 (5)	0.073 (3)																																													
H40A	0.256185	0.261897	0.305781	0.110*																																													
H40B	0.327845	0.275217	0.338011	0.110*																																													
H40C	0.273345	0.247627	0.382141	0.110*																																													
C41	0.4994 (4)	0.5381 (3)	0.6556 (4)	0.0498 (19)																																													
C42	0.5231 (4)	0.4972 (3)	0.6985 (5)	0.077 (3)																																													
H42A	0.516980	0.504359	0.746621	0.116*																																													
H42B	0.571074	0.491173	0.689528	0.116*																																													
H42C	0.496494	0.469786	0.686875	0.116*																																													
C43	0.5285 (4)	0.5809 (3)	0.6422 (4)	0.056 (2)																																													
H43	0.569799	0.592359	0.659665	0.067*																																													
C44	0.4843 (4)	0.6040 (2)	0.5965 (4)	0.0471 (18)																																													
C45	0.4919 (4)	0.6522 (2)	0.5650 (5)	0.070 (2)																																													
H45A	0.539299	0.661929	0.568093	0.104*																																													
	x	y	z																																														
---	-----	-----	-----	------																																													
H45B	0.478179	0.651109	0.517373	0.104*																																													
H45C	0.463279	0.674139	0.589483	0.104*																																													
C46	0.4464 (4)	0.6273 (3)	0.3424 (4)	0.0526 (19)																																													
C47	0.4456 (5)	0.6662 (3)	0.2898 (4)	0.078 (3)																																													
H47A	0.452922	0.653232	0.244593	0.117*																																													
H47B	0.401622	0.681892	0.291063	0.117*																																													
H47C	0.481512	0.688432	0.300053	0.117*																																													
C48	0.4908 (4)	0.5902 (3)	0.3515 (4)	0.056 (2)																																													
H48	0.528511	0.582495	0.324045	0.068*																																													
C49	0.4680 (4)	0.5665 (2)	0.4099 (4)	0.0431 (18)																																													
C50	0.4983 (4)	0.5240 (2)	0.4440 (5)	0.066 (2)																																													
H50A	0.462492	0.506713	0.466947	0.098*																																													
H50B	0.532356	0.53715	0.477141	0.098*																																													
H50C	0.519666	0.504384	0.409681	0.098*																																													
C51	0.2114 (4)	0.5354 (2)	0.6688 (4)	0.0495 (19)																																													
C52	0.1679 (4)	0.4945 (3)	0.6911 (6)	0.072 (3)																																													
H52A	0.183295	0.466551	0.667829	0.108*																																													
H52B	0.172145	0.490291	0.740129	0.108*																																													
H52C	0.120465	0.500471	0.679529	0.108*																																													
C53	0.2305 (4)	0.5758 (3)	0.7027 (4)	0.0517 (19)																																													
H53	0.216045	0.585499	0.746269	0.062*																																													
C54	0.2752 (4)	0.5990 (2)	0.6595 (4)	0.0454 (17)																																													
C55	0.3139 (5)	0.6447 (3)	0.6737 (5)	0.072 (3)																																													
H55A	0.293584	0.669771	0.647370	0.109*																																													
H55B	0.361446	0.641088	0.660726	0.109*																																													
H55C	0.311095	0.652069	0.722096	0.109*																																													
C56	0.1634 (4)	0.5951 (3)	0.4085 (5)	0.069 (3)																																													
C57	0.0974 (5)	0.6235 (3)	0.4060 (6)	0.105 (4)																																													
H57A	0.060225	0.605184	0.424750	0.157*																																													
H57B	0.103045	0.651724	0.432740	0.157*																																													
H57C	0.087055	0.631684	0.358930	0.157*																																													
C58	0.1910 (5)	0.5612 (3)	0.3649 (5)	0.078 (3)																																													
H58	0.170809	0.548858	0.325256	0.094*																																													
C59	0.2541 (4)	0.5495 (3)	0.3921 (5)	0.053 (2)																																													
C60	0.3040 (5)	0.5152 (3)	0.3616 (5)	0.076 (3)																																													
H60A	0.292885	0.510294	0.313798	0.114*																																													
H60B	0.350055	0.527494	0.365318	0.114*																																													
H60C	0.301045	0.485884	0.386008	0.114*																																													
C61	0.4981 (4)	0.8783 (3)	0.5986 (4)	0.059 (2)																																													
C62	0.5536 (5)	0.9155 (3)	0.5916 (6)	0.096 (4)																																													
H62A	0.549922	0.937439	0.629168	0.143*																																													
H62B	0.547886	0.931859	0.548573	0.143*																																													
H62C	0.598204	0.900764	0.592679	0.143*																																													
C63	0.4896 (4)	0.8416 (3)	0.6425 (5)	0.062 (2)																																													
H63	0.518563	0.833641	0.679017	0.075*																																													
C64	0.4295 (4)	0.8180 (2)	0.6230 (4)	0.050 (2)																																													
C65	0.3958 (5)	0.7755 (3)	0.6532 (5)	0.077 (3)																																													
H65A	0.366272	0.784778	0.690652	0.115*																																													
Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃																																											
-------	------	------	------	------	------	------																																											
Cu1	0.0354 (4)	0.0381 (4)	0.0408 (6)	-0.0023 (3)	-0.0030 (4)	-0.0003 (4)																																											
Cu2	0.0354 (4)	0.0365 (4)	0.0380 (5)	-0.0001 (3)	0.0027 (4)	0.0004 (4)																																											
Cu3	0.0340 (4)	0.0375 (4)	0.0443 (6)	-0.0002 (3)	0.0000 (4)	0.0033 (4)																																											
Cu4	0.0361 (4)	0.0427 (4)	0.0363 (5)	-0.0003 (3)	-0.0013 (4)	0.0022 (4)																																											
S1	0.0503 (10)	0.0279 (7)	0.0578 (13)	-0.0068 (7)	0.0034 (10)	-0.0005 (8)																																											
S2	0.0462 (10)	0.0256 (8)	0.0556 (13)	-0.0035 (7)	-0.0002 (9)	-0.0013 (8)																																											
	S3	S4	O1	O2	O3	O4	O5	O6	O7	O8	O9	O10	O11	O12	O13	O14	O15	O16	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16	N17	N18	N19	N20	N21	N22	N23	N24	N25	N26	N27	N28	N29	N30	
----	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
	0.0541 (11)	0.0306 (8)	0.0598 (14)	0.0086 (7)	0.0045 (10)	-0.0009 (9)																																											
------	-------	-------	-------	-------	-------	-------	-------	-------																																									
N31	0.031	0.037	0.041	0.000	0.002	−0.005																																											
N32	0.039	0.036	0.054	0.000	−0.002	−0.003																																											
C1	0.040	0.064	0.061	0.005	−0.012	−0.017																																											
C2	0.048	0.103	0.076	−0.012	−0.011	−0.011																																											
C3	0.063	0.063	0.067	0.008	−0.021	0.002																																											
C4	0.055	0.037	0.050	−0.004	−0.005	0.001																																											
C5	0.081	0.062	0.057	−0.009	−0.019	0.009																																											
C6	0.041	0.051	0.056	−0.007	0.002	−0.005																																											
C7	0.064	0.063	0.093	0.004	0.014	−0.016																																											
C8	0.070	0.056	0.047	−0.008	0.012	0.008																																											
C9	0.049	0.043	0.038	−0.014	−0.009	0.001																																											
C10	0.087	0.043	0.061	−0.007	−0.005	0.016																																											
C11	0.083	0.055	0.055	−0.011	0.017	−0.010																																											
C12	0.114	0.092	0.068	−0.018	0.024	−0.033																																											
C13	0.072	0.062	0.061	−0.011	0.024	−0.005																																											
C14	0.051	0.039	0.060	−0.003	0.008	−0.002																																											
C15	0.050	0.057	0.089	−0.022	0.009	−0.013																																											
C16	0.040	0.054	0.048	−0.007	−0.006	−0.003																																											
C17	0.059	0.082	0.066	−0.014	−0.012	−0.018																																											
C18	0.039	0.066	0.069	0.011	−0.009	0.008																																											
C19	0.042	0.037	0.069	0.004	0.006	0.007																																											
C20	0.055	0.041	0.126	0.011	0.002	−0.005																																											
C21	0.057	0.047	0.042	0.003	−0.012	−0.004																																											
C22	0.088	0.062	0.057	0.004	−0.025	0.014																																											
C23	0.042	0.061	0.051	0.000	−0.009	−0.002																																											
C24	0.041	0.039	0.048	0.000	0.002	−0.005																																											
C25	0.046	0.059	0.076	−0.018	−0.002	0.016																																											
C26	0.054	0.063	0.052	−0.005	0.015	−0.016																																											
C27	0.109	0.095	0.107	0.024	0.043	−0.019																																											
C28	0.078	0.071	0.044	−0.014	0.027	−0.009																																											
C29	0.066	0.045	0.041	−0.018	0.000	−0.004																																											
C30	0.114	0.050	0.049	−0.005	0.004	0.010																																											
C31	0.059	0.045	0.043	0.006	0.013	0.004																																											
C32	0.094	0.073	0.044	−0.006	0.013	−0.007																																											
C33	0.057	0.060	0.059	−0.003	0.028	0.008																																											
C34	0.041	0.038	0.059	−0.008	0.005	−0.003																																											
C35	0.057	0.062	0.083	−0.020	0.020	−0.013																																											
C36	0.056	0.052	0.077	0.000	−0.016	0.017																																											
C37	0.088	0.077	0.131	0.029	−0.039	0.015																																											
C38	0.078	0.065	0.052	−0.013	−0.027	0.007																																											
C39	0.061	0.043	0.042	−0.009	−0.007	0.007																																											
C40	0.111	0.050	0.060	−0.010	−0.014	−0.010																																											
C41	0.049	0.060	0.040	0.008	−0.005	0.004																																											
C42	0.070	0.090	0.073	0.012	−0.006	0.030																																											
C43	0.040	0.072	0.055	−0.001	−0.007	0.001																																											
C44	0.038	0.047	0.056	−0.005	0.001	−0.001																																											
C45	0.058	0.051	0.100	−0.012	−0.010	0.004																																											
C46	0.055	0.054	0.049	−0.009	−0.001	0.007																																											
C47	0.098 (7)	0.086 (6)	0.050 (5)	−0.002 (5)	0.001 (5)	0.026 (5)																																											
C48	0.044 (4)	0.063 (5)	0.062 (6)	−0.004 (4)	0.017 (4)	−0.002 (4)																																											
C49	0.038 (4)	0.032 (3)	0.060 (5)	−0.004 (3)	0.004 (4)	−0.002 (3)																																											
C50	0.043 (4)	0.050 (4)	0.104 (7)	0.006 (4)	0.017 (5)	0.004 (4)																																											
C51	0.040 (4)	0.043 (4)	0.065 (6)	0.003 (3)	0.010 (4)	0.009 (4)																																											
C52	0.059 (6)	0.073 (6)	0.084 (8)	−0.013 (4)	0.016 (5)	0.019 (5)																																											
C53	0.046 (4)	0.061 (5)	0.048 (5)	0.005 (4)	0.005 (4)	0.000 (4)																																											
C54	0.049 (4)	0.037 (4)	0.050 (5)	0.003 (3)	0.001 (4)	−0.004 (3)																																											
C55	0.102 (7)	0.047 (5)	0.068 (7)	−0.017 (4)	0.009 (5)	−0.014 (4)																																											
C56	0.047 (5)	0.061 (5)	0.099 (8)	−0.009 (4)	−0.026 (5)	0.032 (5)																																											
C57	0.065 (6)	0.100 (7)	0.149 (11)	0.012 (6)	−0.035 (7)	0.023 (7)																																											
C58	0.085 (7)	0.069 (6)	0.081 (7)	−0.019 (5)	−0.038 (6)	0.001 (5)																																											
C59	0.058 (5)	0.046 (4)	0.055 (5)	−0.006 (4)	−0.017 (4)	0.003 (4)																																											
C60	0.082 (6)	0.074 (6)	0.072 (7)	−0.002 (5)	−0.010 (5)	−0.016 (5)																																											
C61	0.057 (5)	0.058 (5)	0.060 (5)	−0.001 (4)	−0.016 (4)	−0.013 (4)																																											
C62	0.081 (7)	0.097 (7)	0.109 (9)	−0.038 (6)	−0.028 (6)	−0.012 (6)																																											
C63	0.066 (5)	0.055 (5)	0.065 (6)	0.013 (4)	−0.037 (5)	−0.008 (4)																																											
C64	0.066 (5)	0.042 (4)	0.042 (5)	0.012 (4)	−0.011 (4)	0.001 (3)																																											
C65	0.122 (8)	0.053 (5)	0.055 (6)	0.002 (5)	−0.022 (6)	0.016 (4)																																											
C66	0.055 (5)	0.041 (4)	0.046 (5)	−0.007 (3)	0.004 (4)	−0.011 (3)																																											
C67	0.080 (6)	0.076 (5)	0.047 (5)	−0.006 (4)	0.003 (4)	0.004 (4)																																											
C68	0.044 (4)	0.064 (5)	0.056 (5)	0.000 (4)	0.011 (4)	−0.014 (4)																																											
C69	0.041 (4)	0.036 (4)	0.050 (5)	0.001 (3)	0.001 (4)	−0.005 (3)																																											
C70	0.057 (5)	0.057 (5)	0.086 (7)	0.021 (4)	0.001 (5)	0.005 (4)																																											
C71	0.063 (5)	0.046 (4)	0.040 (5)	0.010 (4)	0.004 (4)	0.002 (3)																																											
C72	0.119 (8)	0.054 (5)	0.066 (6)	−0.005 (5)	0.012 (6)	−0.009 (5)																																											
C73	0.078 (6)	0.069 (5)	0.043 (5)	0.010 (4)	0.017 (5)	0.003 (4)																																											
C74	0.057 (5)	0.056 (5)	0.061 (6)	0.007 (4)	0.016 (4)	0.011 (4)																																											
C75	0.078 (7)	0.084 (6)	0.096 (8)	−0.021 (5)	0.030 (6)	0.017 (5)																																											
C76	0.050 (5)	0.048 (4)	0.059 (5)	−0.012 (4)	−0.007 (4)	−0.004 (4)																																											
C77	0.073 (7)	0.072 (6)	0.126 (9)	−0.020 (5)	−0.015 (6)	−0.033 (6)																																											
C78	0.040 (4)	0.059 (5)	0.065 (6)	0.002 (4)	−0.012 (4)	0.003 (4)																																											
C79	0.038 (4)	0.041 (4)	0.055 (5)	0.005 (3)	0.002 (4)	0.005 (3)																																											
C80	0.051 (5)	0.058 (4)	0.095 (7)	0.018 (3)	0.003 (5)	−0.012 (5)																																											

Geometric parameters (Å, °)

Cu1—O1	2.289 (4)	C17—H17B	0.9600
Cu1—O14′	2.438 (4)	C17—H17C	0.9600
Cu1—N1	2.039 (6)	C18—H18A	0.9300
Cu1—N3	2.054 (6)	C18—C19	1.379 (11)
Cu1—N5	2.033 (6)	C19—C20	1.510 (10)
Cu1—N7	2.028 (6)	C20—H20A	0.9600
Cu2—O2	2.395 (4)	C20—H20B	0.9602
Cu2—O5	2.341 (4)	C20—H20C	0.9599
Cu2—N9	2.033 (6)	C21—C22	1.504 (10)
Cu2—N11	2.042 (6)	C21—C23	1.358 (10)
Cu2—N13	2.031 (6)	C22—H22A	0.9600
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)
Cu2—N15	2.028 (6)	C22—H22B	0.9600	
Cu3—O6	2.367 (4)	C22—H22C	0.9600	
Cu3—O9	2.341 (4)	C23—H23	0.9300	
Cu3—N17	2.041 (6)	C23—C24	1.401 (10)	
Cu3—N19	2.044 (6)	C24—C25	1.487 (9)	
Cu3—N21	2.040 (6)	C25—H25A	0.9600	
Cu3—N23	2.058 (6)	C25—H25B	0.9600	
Cu4—O10	2.435 (4)	C25—H25C	0.9600	
Cu4—O13	2.339 (4)	C26—C27	1.504 (11)	
Cu4—N25	2.014 (6)	C26—C28	1.364 (11)	
Cu4—N27	2.045 (6)	C27—H27A	0.9602	
Cu4—N29	2.031 (6)	C27—H27B	0.9598	
Cu4—N31	2.030 (6)	C27—H27C	0.9597	
S1—O1	1.468 (5)	C28—H28A	0.9300	
S1—O2	1.465 (4)	C28—C29	1.403 (11)	
S1—O3	1.477 (6)	C29—C30	1.493 (10)	
S1—O4	1.462 (5)	C30—H30A	0.9600	
S2—O5	1.465 (5)	C30—H30B	0.9600	
S2—O6	1.456 (5)	C30—H30C	0.9600	
S2—O7	1.475 (5)	C31—C32	1.504 (10)	
S2—O8	1.463 (6)	C31—C33	1.369 (10)	
S3—O9	1.468 (5)	C32—H32A	0.9599	
S3—O10	1.463 (5)	C32—H32B	0.9602	
S3—O11	1.465 (6)	C32—H32C	0.9600	
S3—O12	1.465 (5)	C33—H33	0.9300	
S4—O13	1.475 (5)	C33—C34	1.398 (11)	
S4—O14	1.466 (5)	C34—C35	1.492 (10)	
S4—O15	1.459 (6)	C35—H35A	0.9600	
S4—O16	1.473 (5)	C35—H35B	0.9600	
N1—N2	1.373 (7)	C35—H35C	0.9599	
N1—C4	1.339 (9)	C36—C37	1.506 (10)	
N2—H2	0.8600	C36—C38	1.374 (11)	
N2—C1	1.338 (9)	C37—H37A	0.9596	
N3—N4	1.361 (7)	C37—H37B	0.9601	
N3—C9	1.338 (9)	C37—H37C	0.9604	
N4—H4	0.8600	C38—H38	0.9300	
N4—C6	1.325 (9)	C38—C39	1.387 (11)	
N5—N6	1.351 (8)	C39—C40	1.477 (11)	
N5—C14	1.325 (9)	C40—H40A	0.9601	
N6—H6	0.8600	C40—H40B	0.9599	
N6—C11	1.343 (10)	C40—H40C	0.9598	
N7—N8	1.365 (7)	C41—C42	1.500 (10)	
N7—C19	1.325 (9)	C41—C43	1.364 (10)	
N8—H8	0.8600	C42—H42A	0.9600	
N8—C16	1.341 (9)	C42—H42B	0.9600	
N9—N10	1.358 (7)	C42—H42C	0.9600	
N9—C24	1.337 (8)	C43—H43	0.9300	
N10—H10	0.8600	C43—C44	1.395 (10)	
Bond	Distance (Å)	Bond	Distance (Å)	
------------------	--------------	------------------	--------------	
N10—C21	1.326 (9)	C44—C45	1.505 (10)	
N11—N12	1.347 (7)	C45—H45A	0.9601	
N11—C29	1.335 (9)	C45—H45B	0.9600	
N12—H12	0.8600	C45—H45C	0.9601	
N12—C26	1.352 (9)	C46—C47	1.503 (10)	
N13—N14	1.347 (7)	C46—C48	1.371 (10)	
N13—C34	1.345 (8)	C47—H47A	0.9598	
N14—H14	0.8600	C47—H47B	0.9607	
N14—C31	1.322 (9)	C47—H47C	0.9599	
N15—N16	1.362 (7)	C48—H48	0.9300	
N15—C39	1.333 (9)	C48—C49	1.387 (11)	
N16—H16	0.8600	C49—C50	1.495 (10)	
N16—C36	1.326 (9)	C50—H50A	0.9600	
N17—N18	1.341 (7)	C50—H50B	0.9600	
N17—C44	1.341 (8)	C50—H50C	0.9600	
N18—H18	0.8600	C51—C52	1.499 (10)	
N18—C41	1.327 (9)	C51—C53	1.372 (10)	
N19—N20	1.355 (7)	C52—H52A	0.9600	
N19—C49	1.315 (9)	C52—H52B	0.9599	
N20—H20	0.8600	C52—H52C	0.9609	
N20—C46	1.318 (9)	C53—H53	0.9300	
N21—N22	1.355 (7)	C53—C54	1.371 (10)	
N21—C54	1.342 (9)	C54—C55	1.524 (10)	
N22—H22	0.8600	C55—H55A	0.9600	
N22—C51	1.316 (9)	C55—H55B	0.9600	
N23—N24	1.346 (7)	C55—H55C	0.9600	
N23—C59	1.324 (10)	C56—C57	1.512 (11)	
N24—H24	0.8600	C56—C58	1.387 (13)	
N24—C56	1.341 (10)	C57—H57A	0.9605	
N25—N26	1.344 (7)	C57—H57B	0.9602	
N25—C64	1.355 (9)	C57—H57C	0.9599	
N26—H26	0.8600	C58—H58	0.9300	
N26—C61	1.340 (9)	C58—C59	1.371 (11)	
N27—N28	1.373 (7)	C59—C60	1.494 (11)	
N27—C69	1.331 (8)	C60—H60A	0.9599	
N28—H28	0.8600	C60—H60B	0.9604	
N28—C66	1.327 (9)	C60—H60C	0.9597	
N29—N30	1.363 (7)	C61—C62	1.512 (11)	
N29—C71	1.319 (9)	C61—C63	1.355 (11)	
N30—H30	0.8600	C62—H62A	0.9600	
N30—C74	1.332 (10)	C62—H62B	0.9600	
N31—N32	1.350 (7)	C62—H62C	0.9600	
N31—C79	1.354 (8)	C63—H63	0.9300	
N32—H32	0.8600	C63—C64	1.396 (10)	
N32—C76	1.341 (9)	C64—C65	1.490 (11)	
C1—C2	1.490 (10)	C65—H65A	0.9599	
C1—C3	1.364 (11)	C65—H65B	0.9603	
C2—H2A	0.9605	C65—H65C	0.9604	
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)
--------------	-------------	--------------	-------------	-------------
C2—H2B	0.9601	C66—C67	1.453 (10)	
C2—H2C	0.9600	C66—C68	1.382 (10)	
C3—H3	0.9300	C67—H67A	0.9600	
C3—C4	1.400 (11)	C67—H67B	0.9599	
C4—C5	1.482 (10)	C67—H67C	0.9605	
C5—H5A	0.9599	C68—H68	0.9300	
C5—H5B	0.9605	C68—C69	1.369 (11)	
C5—H5C	0.9609	C69—C70	1.492 (10)	
C6—C7	1.504 (10)	C70—H70A	0.9603	
C6—C8	1.366 (10)	C70—H70B	0.9599	
C7—H7A	0.9604	C70—H70C	0.9599	
C7—H7B	0.9602	C71—C72	1.516 (11)	
C7—H7C	0.9599	C71—C73	1.385 (10)	
C8—H8A	0.9300	C72—H72A	0.9603	
C8—C9	1.386 (10)	C72—H72B	0.9601	
C9—C10	1.482 (10)	C72—H72C	0.9600	
C10—H10A	0.9600	C73—H73	0.9300	
C10—H10B	0.9600	C73—C74	1.369 (11)	
C10—H10C	0.9600	C74—C75	1.501 (11)	
C11—C12	1.505 (11)	C75—H75A	0.9600	
C11—C13	1.368 (11)	C75—H75B	0.9596	
C12—H12A	0.9596	C75—H75C	0.9600	
C12—H12B	0.9600	C76—C77	1.505 (11)	
C12—H12C	0.9604	C76—C78	1.365 (10)	
C13—H13	0.9300	C77—H77A	0.9602	
C13—C14	1.381 (11)	C77—H77B	0.9601	
C14—C15	1.502 (10)	C77—H77C	0.9598	
C15—H15A	0.9599	C78—H78	0.9300	
C15—H15B	0.9606	C78—C79	1.393 (10)	
C15—H15C	0.9597	C79—C80	1.490 (9)	
C16—C17	1.495 (11)	C80—H80A	0.9599	
C16—C18	1.378 (10)	C80—H80B	0.9599	
C17—H17A	0.9600	C80—H80C	0.9600	
O1—Cu1—O14'	179.5 (2)	C16—C18—C19	106.3 (6)	
N1—Cu1—O1	90.64 (19)	C19—C18—H18A 126.8		
N1—Cu1—O14'	88.90 (19)	N7—C19—C18 111.0 (6)		
N1—Cu1—N3	88.0 (2)	N7—C19—C20 120.5 (7)		
N3—Cu1—O1	91.7 (2)	C18—C19—C20 128.5 (7)		
N3—Cu1—O14'	88.2 (2)	C19—C20—H20A 109.4		
N5—Cu1—O1	86.5 (2)	C19—C20—H20B 109.5		
N5—Cu1—O14'	93.6 (2)	C19—C20—H20C 109.5		
N5—Cu1—N1	90.6 (2)	H20A—C20—H20B 109.5		
N5—Cu1—N3	177.7 (2)	H20A—C20—H20C 109.5		
N7—Cu1—O1	96.5 (2)	H20B—C20—H20C 109.5		
N7—Cu1—O14'	83.98 (19)	N10—C21—C22 120.4 (7)		
N7—Cu1—N1	172.8 (2)	N10—C21—C23 106.4 (6)		
N7—Cu1—N3	90.4 (2)	C23—C21—C22 133.2 (7)		
N7—Cu1—N5 91.2 (2) C21—C22—H22A 109.5				
O5—Cu2—O2 178.8 (2) C21—C22—H22B 109.5				
N9—Cu2—O2 89.05 (19) C21—C22—H22C 109.5				
N9—Cu2—O5 89.76 (19) H22A—C22—H22B 109.5				
N9—Cu2—N11 87.6 (2) H22A—C22—H22C 109.5				
N11—Cu2—O2 84.0 (2) H22B—C22—H22C 109.5				
N11—Cu2—O5 96.0 (2) C21—C23—H23 126.8				
N13—Cu2—O2 89.1 (2) C21—C23—C24 106.4 (6)				
N13—Cu2—O5 90.9 (2) C24—C23—H23 126.8				
N15—Cu2—N9 172.4 (2) C21—C23—C24 106.4 (6)				
N15—Cu2—N11 94.08 (19) C24—C23—C25 126.6 (7)				
N15—Cu2—O5 87.11 (19) C24—C25—H25A 109.5				
N17—Cu3—O6 85.2 (2) C24—C25—H25B 109.5				
N17—Cu3—O9 97.2 (2) C24—C25—H25C 109.5				
N17—Cu3—N19 85.2 (2) H25A—C25—H25B 109.5				
N21—Cu3—O6 91.2 (2) H25A—C25—H25C 109.5				
N21—Cu3—O9 92.4 (2) N12—C26—C27 119.2 (8)				
N21—Cu3—N23 173.2 (2) N12—C26—C28 107.0 (7)				
N21—Cu3—O6 92.5 (2) C28—C26—C27 133.8 (8)				
N21—Cu3—O9 86.0 (2) C28—C26—C27 133.8 (8)				
N21—Cu3—N23 90.1 (2) C26—C27—H27A 109.7				
N21—Cu3—N19 91.7 (2) C26—C27—H27B 109.6				
N21—Cu3—O6 89.9 (2) C26—C27—H27C 109.5				
N21—Cu3—O9 89.4 (2) C26—C27—H27C 109.5				
N21—Cu3—N17 175.7 (2) H27A—C27—H27B 109.5				
N21—Cu3—N19 91.3 (2) H27A—C27—H27C 109.5				
N21—Cu3—O6 88.1 (2) C29—C28—C29 106.3 (7)				
N21—Cu3—O9 89.6 (2) C29—C28—C29 106.3 (7)				
O13—Cu4—O10 178.39 (17) C28—C29—C30 122.0 (7)				
N25—Cu4—O10 96.2 (2) C28—C29—C30 129.0 (7)				
N25—Cu4—O13 84.87 (19) C29—C30—H30A 109.5				
N25—Cu4—N27 89.7 (2) C29—C30—H30B 109.5				
N25—Cu4—N29 91.8 (2) C29—C30—H30C 109.5				
N25—Cu4—N31 175.6 (2) C30A—C30—H30B 109.5				
N27—Cu4—O10 88.1 (2) H30A—C30—H30C 109.5				
N27—Cu4—O13 93.1 (2) H30B—C30—H30C 109.5				
N29—Cu4—O10 83.4 (2) N14—C31—C32 121.3 (7)				
N29—Cu4—O13 95.3 (2) N14—C31—C33 105.4 (7)				
N29—Cu4—N27 171.5 (2) C33—C31—C32 133.2 (7)				
N31—Cu4—O10 88.2 (2) C31—C32—H32A 109.3				
N31—Cu4—O13 90.79 (19) C31—C32—H32B 109.6				
N31—Cu4—N27 89.9 (2) C31—C32—H32C 109.5				
N31—Cu4—N29 89.2 (2) H32A—C32—H32B 109.5				
O1—S1—O3 108.0 (3) H32A—C32—H32C 109.5				
O2—S1—O1 110.5 (3) H32B—C32—H32C 109.5				
O2—S1—O3 109.7 (4) C31—C33—H33 126.5				
O4—S1—O1 110.5 (3) C31—C33—C34 107.0 (7)				
O4—S1—O2 108.0 (3) C34—C33—H33 126.5				
O4—S1—O3 110.1 (4) N13—C34—C33 109.0 (6)				
O5—S2—O7 108.4 (3) N13—C34—C35 123.4 (7)				
O6—S2—O5 110.2 (3) C33—C34—C35 127.6 (7)				
O6—S2—O7 109.1 (3) C34—C35—H35A 109.4				
O6—S2—O8 108.4 (3) C34—C35—H35B 109.4				
O8—S2—O5 110.2 (3) C34—C35—H35C 109.6				
O8—S2—O7 110.4 (4) H35A—C35—H35B 109.5				
O10—S3—O9 109.5 (3) H35A—C35—H35C 109.5				
O10—S3—O11 109.3 (4) H35B—C35—H35C 109.5				
O10—S3—O12 108.3 (3) N16—C36—C37 122.1 (8)				
O11—S3—O9 108.7 (4) N16—C36—C38 106.4 (7)				
O11—S3—O12 110.5 (4) C38—C36—C37 131.5 (9)				
O12—S3—O9 110.4 (3) C36—C37—H37A 109.4				
O14—S4—O13 110.2 (3) C36—C37—H37B 109.6				
O14—S4—O16 109.1 (3) C36—C37—H37C 109.5				
O15—S4—O13 110.9 (3) H37A—C37—H37B 109.5				
O15—S4—O14 108.6 (3) H37A—C37—H37C 109.5				
O15—S4—O16 110.3 (4) H37B—C37—H37C 109.4				
O16—S4—O13 107.7 (3) C36—C38—H38 126.4				
S1—O1—Cu1 141.5 (3) C36—C38—C39 107.2 (7)				
S1—O2—Cu2 150.2 (3) C39—C38—C39 126.4				
S2—O5—Cu2 140.8 (3) C39—C38—C40 108.7 (7)				
S2—O6—Cu3 146.0 (3) N15—C39—C38 122.1 (7)				
S3—O9—Cu3 143.0 (3) N15—C39—C40 129.2 (8)				
S3—O10—Cu4 148.4 (4) C39—C40—H40A 109.4				
S4—O13—Cu4 138.1 (3) C39—C40—H40B 109.5				
Cu1ii—O14—Cu1i 175.78 (12) C39—C40—H40C 109.5				
S4—O14—Cu1i 26.2 (2) H40A—C40—H40B 109.5				
S4—O14—Cu1ii 151.4 (3) H40A—C40—H40C 109.5				
N2—N1—Cu1 119.1 (4) H40B—C40—H40C 109.5				
C4—N1—Cu1 135.0 (5) N18—C41—C42 122.1 (7)				
C4—N1—N2 105.4 (6) N18—C41—C43 105.9 (6)				
N1—N2—H2 124.3 C43—C41—C42 132.0 (8)				
C1—N2—N1 111.5 (6) C41—C42—H42A 109.5				
C1—N2—H2 124.3 C41—C42—H42B 109.5				
C4—N4—Cu1 117.0 (4) C41—C42—H42C 109.5				
C9—N3—Cu1 137.1 (5) H42A—C42—H42B 109.5				
C9—N3—N4 105.9 (6) H42A—C42—H42C 109.5				
N3—N4—H4 124.2 H42B—C42—H42C 109.5				
C6—N4—N3 111.6 (6) C41—C43—H43 126.7				
C6—N4—H4 124.2 C41—C43—C44 106.7 (7)				
N6—N5—Cu1 116.9 (4) C44—C43—H43 126.7				
C14—N5—Cu1 137.0 (5) N17—C44—C43 109.1 (6)				
C14—N5—N6 105.7 (6) N17—C44—C45 122.3 (7)				
N5—N6—H6 123.9 C43—C44—C45 128.6 (7)				
Bond	Value (°)	Bond	Value (°)	Bond
-----------------------	-----------	-----------------------	-----------	-----------------------
C11—N6—N5	112.3 (6)	C44—C45—H45A	109.4	
C11—N6—H6	123.9	C44—C45—H45B	109.5	
N8—N7—Cu1	117.5 (4)	C44—C45—H45C	109.5	
C19—N7—Cu1	137.5 (5)	H45A—C45—H45B	109.5	
C19—N7—N8	104.8 (6)	H45A—C45—H45C	109.5	
N7—N8—H8	124.0	H45B—C45—H45C	109.5	
C16—N8—N7	112.0 (6)	N20—C46—C47	122.3 (7)	
C16—N8—H8	124.0	N20—C46—C48	106.4 (7)	
N10—N9—Cu2	118.5 (4)	C48—C46—C47	131.2 (8)	
C24—N9—Cu2	135.4 (5)	C46—C47—H47A	109.5	
C24—N9—N10	104.5 (5)	C46—C47—H47B	109.4	
N9—N10—H10	123.6	C46—C47—H47C	109.6	
C21—N10—N9	112.9 (6)	H47A—C47—H47B	109.4	
C21—N10—H10	123.6	H47A—C47—H47C	109.5	
N12—N11—Cu2	116.3 (4)	H47B—C47—H47C	109.4	
C29—N11—Cu2	136.8 (5)	C46—C48—H48	126.9	
C29—N11—N12	106.9 (6)	C46—C48—C49	106.2 (7)	
N11—N12—H12	124.6	C49—C48—H48	126.9	
N11—N12—C26	110.8 (6)	N19—C49—C48	109.7 (6)	
C26—N12—H12	124.6	N19—C49—C50	121.5 (7)	
N14—N13—Cu2	118.9 (4)	C48—C49—C50	128.8 (7)	
C34—N13—Cu2	135.7 (5)	C49—C50—H50A	109.5	
C34—N13—N14	104.7 (6)	C49—C50—H50B	109.5	
N13—N14—H14	123.1	C49—C50—H50C	109.5	
C31—N14—N13	113.9 (6)	H50A—C50—H50B	109.5	
C31—N14—H14	123.1	H50A—C50—H50C	109.5	
N16—N15—Cu2	117.2 (5)	H50B—C50—H50C	109.5	
C39—N15—Cu2	136.0 (5)	N22—C51—C52	122.4 (7)	
C39—N15—N16	106.5 (6)	N22—C51—C53	106.0 (6)	
N15—N16—H16	124.4	C53—C51—C52	131.5 (8)	
C36—N16—N15	111.3 (6)	C51—C52—H52A	109.4	
C36—N16—H16	124.4	C51—C52—H52B	109.5	
N18—N17—Cu3	119.4 (4)	C51—C52—H52C	109.5	
C44—N17—Cu3	135.2 (5)	H52A—C52—H52B	109.5	
C44—N17—N18	105.1 (6)	H52A—C52—H52C	109.5	
N17—N18—H18	123.4	H52B—C52—H52C	109.5	
C41—N18—N17	113.1 (6)	C51—C53—H53	126.9	
C41—N18—H18	123.4	C51—C53—C54	106.3 (7)	
N20—N19—Cu3	116.8 (4)	C54—C53—C55	126.9	
C49—N19—Cu3	137.3 (5)	N21—C54—C53	110.6 (6)	
C49—N19—N20	105.9 (6)	N21—C54—C55	121.8 (7)	
N19—N20—H20	124.1	C53—C54—C55	127.6 (7)	
C46—N20—N19	111.8 (6)	C54—C55—H55A	109.5	
C46—N20—H20	124.1	C54—C55—H55B	109.5	
N22—N21—Cu3	119.5 (4)	C54—C55—H55C	109.5	
C54—N21—Cu3	135.7 (5)	H55A—C55—H55B	109.5	
C54—N21—N22	103.7 (6)	H55A—C55—H55C	109.5	
N21—N22—H22	123.4	H55B—C55—H55C	109.5	
Bond	Distance (Å)	Torsion Angle (°)	Bond	Distance (Å)
-----------------------	--------------	-------------------	-----------------------	--------------
C51—N22—N21	113.2 (6)		N24—C56—C57	121.8 (10)
C51—N22—H22	123.4		N24—C56—C58	105.5 (7)
N24—N23—Cu3	119.3 (5)		C58—C56—C57	132.6 (9)
C59—N23—Cu3	135.0 (5)		C56—C57—H57A	109.4
C59—N23—N24	105.7 (6)		C56—C57—H57B	109.4
N23—N24—H24	124.0		C56—C57—H57C	109.7
C56—N24—N23	111.9 (7)		H57A—C57—H57B	109.5
C56—N24—H24	124.0		H57A—C57—H57C	109.4
N26—N25—Cu4	119.4 (4)		H57B—C57—H57C	109.5
N26—N25—C64	105.1 (6)		C56—C58—H58	126.9
C64—N25—Cu4	135.5 (5)		C59—C58—C56	106.2 (8)
N25—N26—H26	123.6		C59—C58—H58	126.9
C61—N26—N25	112.8 (6)		N23—C59—C58	110.7 (8)
C61—N26—H26	123.6		N23—C59—C60	123.7 (7)
C68—N27—Cu4	118.3 (4)		C58—C59—C60	125.6 (8)
C69—N27—Cu4	135.8 (5)		C59—C60—H60A	109.4
C69—N27—N28	105.9 (6)		C59—C60—H60B	109.5
N27—N28—H28	123.9		C59—C60—H60C	109.5
C66—N28—N27	112.2 (6)		H60A—C60—H60B	109.5
C66—N28—H28	123.9		H60A—C60—H60C	109.5
C66—N29—Cu4	117.1 (4)		H60B—C60—H60C	109.5
C71—N29—Cu4	138.3 (5)		N26—C61—C62	121.3 (8)
C71—N29—N30	104.5 (6)		N26—C61—C63	105.9 (7)
N29—N30—H30	124.0		C63—C61—C62	132.8 (8)
C74—N30—N29	112.0 (6)		C61—C62—H62A	109.5
C74—N30—H30	124.0		C61—C62—H62B	109.5
N32—N31—Cu4	119.4 (4)		C61—C62—H62C	109.5
N32—N31—C79	105.4 (5)		H62A—C62—H62B	109.5
C79—N31—Cu4	134.2 (5)		H62A—C62—H62C	109.5
N31—N32—H32	123.9		H62B—C62—H62C	109.5
C76—N32—N31	112.3 (6)		C61—C63—H63	126.2
C76—N32—H32	123.9		C61—C63—C64	107.6 (7)
N2—C1—C2	119.3 (8)		C64—C63—H63	126.2
N2—C1—C3	106.9 (7)		N25—C64—C63	108.6 (7)
C3—C1—C2	133.8 (8)		N25—C64—C65	121.0 (7)
C1—C2—H2A	109.3		C63—C64—C65	130.4 (7)
C1—C2—H2B	109.4		C64—C65—H65A	109.6
C1—C2—H2C	109.6		C64—C65—H65B	109.5
C1—C2—H2C	109.5		C64—C65—H65C	109.4
C1—C3—H3	126.6		H65A—C65—H65B	109.5
C1—C3—C4	106.8 (7)		N28—C66—C67	123.4 (7)
C4—C3—H3	126.6		N28—C66—C68	104.4 (7)
N1—C4—C3	109.5 (7)		C68—C66—C67	132.1 (8)
N1—C4—C5	123.2 (7)		C66—C67—H67A	109.7
C3—C4—C5	127.3 (8)		C66—C67—H67B	109.4
C4—C5—H5A	109.4		C66—C67—H67C	109.4
C4—C5—H5B	109.6	H67A—C67—H67B	109.5	
------------------	-------	----------------------	-------	
C4—C5—H5C	109.6	H67A—C67—H67C	109.5	
H5A—C5—H5B	109.5	H67B—C67—H67C	109.5	
H5A—C5—H5C	109.5	C66—C68—H68	125.5	
H5B—C5—H5C	109.3	C69—C68—C66	109.1 (7)	
N4—C6—C7	121.2 (7)	C69—C68—H68	125.5	
N4—C6—C8	106.6 (7)	N27—C69—C68	108.4 (7)	
C8—C6—C7	132.1 (8)	N27—C69—C70	121.9 (7)	
C6—C7—H7A	109.4	C68—C69—C70	129.7 (7)	
C6—C7—H7B	109.6	C69—C70—H70A	109.4	
C6—C7—H7C	109.5	C69—C70—H70B	109.4	
H7A—C7—H7B	109.4	C69—C70—H70C	109.6	
H7A—C7—H7C	109.5	H70A—C70—H70B	109.5	
H7B—C7—H7C	109.5	H70A—C70—H70C	109.5	
C6—C8—H8A	126.4	H70B—C70—H70C	109.5	
C6—C8—C9	107.2 (7)	N29—C71—C72	120.3 (7)	
C9—C8—H8A	126.4	N29—C71—C73	111.4 (7)	
N3—C9—C8	108.8 (6)	C73—C71—C72	128.3 (7)	
N3—C9—C10	122.6 (7)	C71—C72—H72A	109.5	
C8—C9—C10	128.6 (7)	C71—C72—H72B	109.5	
C9—C10—H10A	109.1	C71—C72—H72C	109.5	
C9—C10—H10B	109.8	H72A—C72—H72B	109.4	
C9—C10—H10C	109.6	H72A—C72—H72C	109.5	
H10A—C10—H10B	109.5	H72B—C72—H72C	109.5	
H10A—C10—H10C	109.5	C71—C73—H73	127.2	
H10B—C10—H10C	109.5	C74—C73—C71	105.6 (7)	
N6—C11—C12	121.8 (7)	C74—C73—H73	127.2	
N6—C11—C13	104.9 (7)	N30—C74—C73	106.6 (7)	
C13—C11—C12	133.3 (8)	N30—C74—C75	121.0 (8)	
C11—C12—H12A	109.6	C73—C74—C75	132.4 (8)	
C11—C12—H12B	109.4	C74—C75—H75A	109.4	
C11—C12—H12C	109.5	C74—C75—H75B	109.7	
H12A—C12—H12B	109.5	C74—C75—H75C	109.3	
H12A—C12—H12C	109.5	H75A—C75—H75B	109.5	
H12B—C12—H12C	109.4	H75A—C75—H75C	109.5	
C11—C13—H13	126.2	H75B—C75—H75C	109.5	
C11—C13—C14	107.7 (7)	N32—C76—C77	121.2 (7)	
C14—C13—H13	126.2	N32—C76—C78	106.2 (6)	
N5—C14—C13	109.4 (7)	C78—C76—C77	132.6 (8)	
N5—C14—C15	122.5 (7)	C76—C77—H77A	109.4	
C13—C14—C15	128.1 (7)	C76—C77—H77B	109.5	
C14—C15—H15A	109.3	C76—C77—H77C	109.6	
C14—C15—H15B	109.6	H77A—C77—H77B	109.4	
C14—C15—H15C	109.5	H77A—C77—H77C	109.5	
H15A—C15—H15B	109.5	H77B—C77—H77C	109.5	
H15A—C15—H15C	109.5	C76—C78—H78	126.4	
H15B—C15—H15C	109.4	C76—C78—C79	107.1 (7)	
N8—C16—C17	121.2 (7)	C79—C78—H78	126.4	
N8—C16—C18 105.8 (6) N31—C79—C78 108.9 (6)
C18—C16—C17 133.0 (7) N31—C79—C80 122.6 (6)
C16—C17—H17A 109.5 C78—C79—C80 128.5 (7)
C16—C17—H17B 109.5 N31—C79—C80A 109.5
C16—C17—H17C 109.5 C79—C80—H80B 109.5
H17A—C17—H17B 109.5 C79—C80—H80C 109.5
H17A—C17—H17C 109.5 H80A—C80—H80B 109.5
H17B—C17—H17C 109.5 H80A—C80—H80C 109.5
C16—C18—H18A 126.8 H80B—C80—H80C 109.5

Cu1—N1—N2—C1 −174.0 (5) N15—N16—C36—C37 −178.2 (8)
Cu1—N1—C4—C3 172.4 (6) N15—N16—C36—C38 1.6 (9)
Cu1—N1—C4—C5 −9.5 (12) N16—N15—C39—C38 1.3 (8)
Cu1—N3—N4—C6 178.9 (5) N16—N15—C39—C40 −179.1 (7)
Cu1—N3—C9—C8 −179.3 (5) N16—C36—C38—C39 −0.7 (9)
Cu1—N3—C9—C10 0.8 (11) N17—N18—C41—C42 −178.0 (7)
Cu1—N5—N6—C11 −175.4 (5) N17—N18—C41—C43 0.4 (9)
Cu1—N5—C14—C13 173.2 (6) N18—N17—C44—C43 −0.1 (8)
Cu1—N5—C14—C15 −7.5 (12) N18—N17—C44—C45 −180.0 (7)
Cu1—N7—N8—C16 175.9 (5) N18—C46—C48—C49 0.0 (9)
Cu1—N7—C19—C18 −174.7 (6) N20—N19—C49—C50 1.9 (8)
Cu1—N7—C19—C20 5.7 (12) N20—N19—C49—C50 179.4 (7)
Cu2—N9—N10—C21 −164.1 (5) N20—C46—C48—C49 0.0 (9)
Cu2—N9—C24—C23 16.4 (11) N21—N22—C51—C52 −175.8 (7)
Cu2—N11—N12—C26 −176.7 (5) N21—N22—C51—C52 2.0 (8)
Cu2—N11—C29—C28 176.4 (6) N22—N21—C54—C55 −0.7 (8)
Cu2—N11—C29—C30 −2.8 (12) N22—N21—C54—C55 178.3 (7)
Cu2—N13—N14—C31 −173.2 (5) N22—C51—C53—C54 −2.3 (8)
Cu2—N13—C34—C33 170.5 (5) N23—N24—C56—C57 −177.0 (7)
Cu2—N13—C34—C35 −11.9 (11) N23—N24—C56—C57 1.5 (9)
Cu2—N15—N16—C36 173.1 (5) N24—N23—C59—C58 0.4 (9)
Cu2—N15—C39—C38 −172.1 (6) N24—N23—C59—C58 179.1 (7)
Cu2—N15—C39—C40 7.4 (12) N24—N23—C59—C60 179.1 (7)
Cu3—N17—N18—C41 174.2 (5) N24—C56—C58—C59 −1.2 (10)
Cu3—N17—C44—C43 −173.2 (5) N25—N26—C61—C62 178.9 (7)
Cu3—N17—C44—C45 6.9 (12) N25—N26—C61—C62 0.8 (9)
Cu3—N19—N20—C46 −179.8 (5) N26—N25—C64—C63 1.0 (8)
Cu3—N19—C49—C48 179.1 (5) N26—N25—C64—C63 −179.7 (7)
Cu3—N19—C49—C50 −3.5 (12) N26—C61—C63—C64 −0.1 (9)
Cu3—N21—N22—C51 169.4 (5) N27—N28—C66—C67 −175.1 (7)
Cu3—N21—C54—C53 −168.5 (5) N27—N28—C66—C67 1.9 (8)
Cu3—N21—C54—C55 10.6 (11) N28—N27—C69—C68 0.3 (8)
Cu3—N23—N24—C56 176.5 (5) N28—N27—C69—C70 179.0 (6)
Cu3—N23—C59—C58 −176.8 (6) N28—C66—C68—C69 −1.6 (8)
Cu3—N23—C59—C60 1.9 (12) N29—N30—C74—C73 1.0 (9)
Cu4—N25—N26—C61 −178.7 (5) N29—N30—C74—C75 179.5 (7)
Cu4—N25—C64—C63 178.0 (5) N29—C71—C73—C74 0.9 (9)
Cu4—N25—C64—C65 −2.7 (12) N30—N29—C71—C72 179.5 (7)
Cu4—N27—N28—C66 178.2 (4) N30—N29—C71—C73 −0.3 (8)
Cu4—N27—C69—C68 −179.2 (5) N31—N32—C76—C77 178.7 (8)
Cu4—N27—C69—C70 −0.5 (11) N31—N32—C76—C78 0.2 (9)
Cu4—N29—N30—C74 −177.8 (5) N32—N31—C79—C78 0.8 (8)
Cu4—N29—C71—C72 −4.0 (12) N32—N31—C79—C80 −178.5 (7)
Cu4—N29—C71—C73 176.2 (6) N32—C76—C78—C79 0.4 (9)
Cu4—N31—N32—C76 169.6 (5) C1—C3—C4—C5 −0.8 (9)
Cu4—N31—C79—C80 −167.3 (5) C1—C3—C4—N1 178.7 (9)
O1—S1—O2—Cu2 170.6 (6) C4—N1—N2—C1 178.7 (9)
O2—S1—O1—Cu1 177.8 (5) C6—C8—C9—N3 −0.3 (8)
O3—S1—O2—Cu2 51.6 (8) C6—C8—C9—C10 −179.6 (7)
O4—S1—O1—Cu1 58.3 (7) C7—C6—C8—C9 176.2 (8)
O4—S1—O2—Cu2 −68.4 (8) C9—N3—N4—C6 178.7 (9)
O5—S2—O6—Cu3 170.8 (5) C9—N3—N4—C6 178.7 (9)
O6—S2—O5—Cu2 −177.9 (4) C12—C11—C13—C14 −178.9 (10)
O7—S2—O5—Cu2 −58.5 (6) C14—N5—N6—C11 1.9 (8)
O7—S2—O6—Cu3 51.8 (7) C16—C18—C19—C20 179.9 (8)
O8—S2—O5—Cu2 62.5 (5) C16—C18—C19—C20 179.9 (8)
O8—S2—O6—Cu3 −68.5 (7) C17—C16—C18—C19 −179.0 (9)
O9—S3—O10—Cu4 166.2 (6) C19—N7—N8—C16 0.2 (8)
O10—S3—O9—Cu3 177.9 (5) C21—C23—C24—C25 176.1 (8)
O11—S3—O9—Cu3 −62.7 (7) C21—C23—C24—C25 176.1 (8)
O11—S3—O10—Cu4 47.1 (7) C22—C21—C23—C24 −179.6 (7)
O12—S3—O9—Cu3 58.7 (7) C22—C21—C23—C24 −179.6 (7)
O12—S3—O10—Cu4 −73.3 (8) C24—N9—N10—C26 1.7 (8)
O13—S4—O14—Cu1ii 163.1 (6) C26—C28—C29—N11 0.1 (9)
O13—S4—O14—Cu1i −9.3 (4) C26—C28—C29—N11 0.1 (9)
O14—S4—O13—Cu4 178.2 (4) C27—C26—C28—C29 −179.5 (10)
O15—S4—O13—Cu4 57.9 (5) C29—N11—N12—C26 1.2 (8)
O15—S4—O14—Cu1ii −75.2 (8) C31—C33—C34—C35 −177.6 (7)
O15—S4—O14—Cu1i 112.4 (6) C32—C31—C33—C34 177.3 (8)
O16—S4—O13—Cu4 −62.9 (5) C34—N13—N14—C31 −1.5 (8)
O16—S4—O14—Cu1i −127.3 (6) C36—C38—C39—N15 −0.4 (10)
O16—S4—O14—Cu1ii 45.1 (8) C36—C38—C39—C40 −179.9 (8)
N1—N2—C1—C2 −178.3 (7) C37—C36—C38—C39 179.1 (9)
N1—N2—C1—C3 0.5 (8) C39—N15—N16—C36 −1.8 (8)
N2—N1—C4—C3 1.0 (8) C41—C43—C44—N17 0.3 (9)
N2—N1—C4—C5 179.1 (7) C41—C43—C44—C45 −179.8 (8)
N2—C1—C3—C4 0.1 (9) C42—C41—C43—C44 177.7 (9)
N3—N4—C6—C7 −176.6 (6) C44—N17—N18—C41 −0.2 (8)
N3—N4—C6—C8 0.8 (8) C46—C48—C49—N19 −1.3 (9)
N4—N3—C9—C8 0.0 (8) C46—C48—C49—C50 −178.5 (8)
N4—N3—C9—C10 −179.9 (6) C47—C46—C48—C49 177.9 (8)
N4—C6—C8—C9 −0.8 (9) C49—N19—N20—C46 −2.0 (8)
N5—N6—C11—C12 −179.9 (8) C51—C53—C54—N21 1.9 (9)
N5—N6—C11—C13 1.3 (9) C51—C53—C54—C55 −177.0 (7)
N6—N5—C14—C13 1.7 (8) C52—C51—C53—C54 175.2 (8)
N6—N5—C14—C15 −179.1 (7) C54—N21—N22—C51 −0.8 (8)
N6—C11—C13—C14 −0.2 (10) C56—C58—C59—N23 0.5 (10)
N7—N8—C16—C17 178.9 (7) C56—C58—C59—C60 −178.2 (8)
N7—N8—C16—C18 0.1 (8) C57—C56—C58—C59 177.0 (9)
N8—N7—C19—C18 −0.5 (8) C59—N23—N24—C56 −1.2 (8)
N8—N7—C19—C20 180.0 (7) C61—C63—C64—C56 −1.2 (8)
N8—C16—C18—C19 −0.4 (9) C61—C63—C64—N25 0.6 (9)
N8—C16—C18—C19 −0.4 (9) C61—C63—C64—N25 −179.8 (9)
N9—N10—C21—C22 −176.0 (6) C62—C61—C63—C64 −177.9 (9)
N9—N10—C21—C22 −176.0 (6) C62—C61—C63—N25 0.6 (9)
N10—N9—C24—C23 −179.1 (7) C64—N25—N26—C61 −1.2 (8)
N10—N9—C24—C23 −179.1 (7) C64—N25—N26—C61 −1.2 (8)
N10—C21—C23—C24 2.3 (9) C66—C68—C69—N27 0.9 (9)
N10—C21—C23—C24 2.3 (9) C66—C68—C69—N27 −17.7 (7)
N11—N12—C26—C27 −179.0 (8) C69—N27—N28—C66 −1.4 (7)
N11—N12—C26—C27 −179.0 (8) C69—N27—N28—C66 −1.4 (7)
N11—N12—C26—C28 −1.1 (9) C71—N29—N30—C74 −0.4 (8)
N12—N11—C29—C28 0.7 (8) C71—N29—N30—C74 −0.4 (8)
N12—N11—C29—C28 0.7 (8) C71—N29—N30—C74 −0.4 (8)
N12—N11—C29—C30 180.0 (7) C71—N29—N30—C74 1.1 (9)
N12—H12···O4 0.86 2.12 2.951 (8) 163
N12—H12···O4 0.86 2.12 2.951 (8) 163
N14—N13—C31—C32 0.9 (8) C77—C76—C78—C79 −177.9 (9)
N14—N13—C31—C32 0.9 (8) C77—C76—C78—C79 −177.9 (9)
N14—N13—C31—C33 178.5 (7) C79—N31—N32—C76 −0.6 (8)
N14—N13—C31—C33 178.5 (7) C79—N31—N32—C76 −0.6 (8)
N14—N13—C31—C34 −0.8 (9)
N14—C31—C33—C34 −0.8 (9)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2···O4	0.86	2.08	2.792 (7)	139
N6—H6···O3	0.86	2.04	2.889 (7)	168
N10—H10···O3	0.86	2.11	2.869 (7)	146
N12—H12···O4	0.86	2.12	2.951 (8)	163
N14—H14···O8	0.86	2.10	2.835 (7)	143
N16—H16···O5	0.86	2.44	2.889 (7)	114
N16—H16···O7	0.86	2.04	2.894 (8)	173
N18—H18···O6	0.86	2.39	2.866 (8)	116
N18—H18···O8	0.86	2.14	2.988 (7)	169
N20—H20···S3	0.86	2.76	3.504 (6)	146
N20—H20···O9	0.86	2.41	2.885 (9)	115
N20—H20···O11	0.86	2.08	2.933 (7)	171
N22—H22···O7	0.86	2.05	2.828 (7)	150
N24—H24···O12	0.86	2.16	2.840 (8)	135
N26—H26···O16	0.86	2.02	2.875 (7)	171
N28—H28···O15	0.86	2.07	2.803 (7)	143
N30—H30···O10	0.86	2.31	2.817 (8)	118
N30—H30···O12	0.86	2.24	3.083 (8)	165
-------	--------	--------	--------	--------
N32—H32···O11	0.86	2.12	2.857 (7)	144
C30—H30···O5	0.96	2.39	3.213 (11)	144
C50—H50···O6	0.96	2.23	3.124 (9)	155
C65—H65B···O10	0.96	2.27	3.192 (11)	160
C70—H70B···O10	0.96	2.35	3.116 (10)	137
C2—H2A···N16iii	0.96	3.01	3.722 (10)	132
C2—H2A···O7iii	0.96	28	3.806 (9)	146
C53—H53···N8iv	0.93	3.07	3.66 (1)	123
C32—H32B···N32v	0.96	3.00	3.792 (10)	140
C32—H32B···N31v	0.96	3.17	3.984 (10)	143
C32—H32B···N28v	0.96	2.87	3.735 (11)	150

Symmetry codes: (iii) x+1/2, -y+1/2, z; (iv) -x+1/2, y+1/2, z+1/2; (v) -x+1/2, y-1/2, z+1/2.