Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites

Khalil Ahmed a,*, Muhammad Nasir b,*, Nasreen Fatima b, Khalid M. Khan c, Durey N. Zahra c

a Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories Complex, Karachi 75280, Pakistan
b Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
c H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

ABSTRACT

This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities.

Introduction

Plant fiber as reinforcing agent in the preparation of composite material, is getting more attention of the researcher due to its eco-environmental advantages over petroleum based fibers [1]. Natural fibers such as coir [2], bamboo [3], flax [4], kenaf [5], sisal [6] and jute [7] have extensively been used as reinforcing agents with comparable mechanical properties. These fibers were used in different forms such as continuous, random,
and oriented fibers. Literature shows that the main focus of the researchers’ world over is to improve and relate the mechanical properties of the composite to surface modification [8], orientation [9] and content of fibers [10]. Textile yarn/fabric of different natural fibers has also been used as reinforcing agent in composites [11,12]. More recently a study was carried out to propose a model to describe the effect of yarn twist on the tensile strength of unidirectional plant fiber yarn composites [13].

Various studies are available on properties of aligned plant fiber composites focusing mechanical properties with fiber direction and volume fraction [14–21]. Presented in this paper are preliminary results of a larger study set out to investigate the mass irregularities and unevenness of spun yarn/chemically treated spun yarn and their effect on compatibility, physical properties and mechanical behavior of yarn composites. This research shows the combined effect fiber volume and mass irregularities, the variation in mass per unit length of yarn, on the mechanical properties of UPR matrix composites reinforced with spun yarn processed by filament winding method.

The main and unavoidable type of mass irregularities in yarns is due to random, short and immature natural fibers [22]. This type of mass irregularities in yarn can be minimized by removing short and immature fibers during combing process in textile industry.

The mass irregularities in yarn structure were measured by uster evenness testing system, and its effect on physical structure of fibers in fiber bundle of yarn was analyzed by scanning electron microscopy. The results showed that mass irregularities in the structure of yarn affect the alignment of fibers at microlevel in the fiber bundle as a result average diameter varies. The average diameter of the yarn and composite was measured through SEM images to investigate and compare the mechanical properties such as ultimate stress and stiffness.

Experimental

Materials

This work is concerned with the comparative study of unsaturated polyester resin matrix composite materials reinforced with aligned yarn having different mass irregularities. The unsaturated polyester resin (UPR) used in this study was a commercial product of Al-Khair Industries, Karachi-Pakistan. Resin comprises 40% by weight styrene, with an average of 5.88 vinylene groups per unsaturated polyester molecules. The average molecular weight of the unsaturated polyester resin is 2750 g/mol and the equivalent molecular weight/ (mol C—C) is 468 g/mol. The molar ratio of styrene/unsaturated polyester resin is 2.7. The unsaturated polyester resin was employed as received without removing the inhibitor.

Samples of yarn with same count (i.e., 20NE/1, 100% cotton) and different mass irregularities were taken from Fazal Textile Mills, Karachi, Pakistan.

Methods

Conditioning

Prior any testing spun yarns were conditioned under standard conditions of 20 °C ± 2 °C and 65 ± 3% relative humidity (RH) for 24 h.

Yarn mass irregularity

Yarn mass irregularity was quantitatively measured as unevenness%, CV%, thin, thick, neps and hairiness present in yarn. Uster Technologies 4-SX evenness tester (Switzerland) was used to measure its evenness according to ASTM D1425.

Composite formation

The yarn was aligned by filament-winding machine on to a metal frame producing yarn assemblies with a high degree of alignment and controlled thickness shown in Fig. 1. Composite laminates were prepared with onefold of yarn with varying amount of resin to get the desired volume fraction of yarn. The mechanical properties of composites were determined in axial direction of yarn. The metal plate was fitted in the middle of a special type of die cast. Specific amount of resin, initiator and our recently developed promoter system [23] were transferred using RTM method. The laminate composites were then left for 2 h at room temperature for complete dryness.

The fabricated composite laminates were 300 × 500 mm² with a variable thickness of 2.0–2.9 mm. Samples of composites were produced with volume fractions (Vf) of 0.305 and 0.408 of yarn with varying quantity of mass irregularities.

SEM analysis

Mass irregularity and micro-alignment of fibers in yarn and its composite were analyzed by scanning electron microscope (SEM) model # 6380A JEOL (Japan). The samples were first coated with autocoater Model No. JFC-1500 JEOL (Japan).

Tensile properties of yarn

Tensile properties of spun yarn were measured according to ASTM D2256. Standard Test Method for Tensile Properties of Yarns by the single-strand method was used to measure single yarn breaking strength by Uster Technologies Tensorapid III. The testing speed was adjusted 500 mm/min, and the gauge length was 500 mm. The sample size was 5 and each sample was tested ten times. The yarns were picked automatically with programmed software and results were collected as print file.
Tensile properties of composites

The axial tensile properties were investigated using universal testing machine (Instron 4301) according to ASTM D 638. The capacity of machine was 5 kN. The tensile strength was measured at a crosshead speed of 1.0 mm/min. Gauge length was 50 mm. The sample was 5 numbers and tests were performed after 24 h of composite mold at room temperature.

Results and discussion

Mass irregularities in plant fibers/yarns are one of the factors that also influences the mechanical properties of these fiber reinforced polymeric composites. Their impact on mechanical properties of materials is due to the formation of kinks and thin with spillage of fibers which reduced the microalignment of fibers within the yarn. The presence of kinks, thin and thick in the fiber structure discontinues the penetration of resin in the fiber bundles of yarn and form irregular surface which can be seen in Fig. 2. Therefore, nonuniform diffusion of thick resin influences the stress bearing properties of fibers and their composite materials and show relatively less strength. Two samples namely sample-1 and sample-2 were used in the characterization of mass irregularities and their impact on mechanical properties of yarn and composites. Yarn with less mass irregularities was denoted as sample-1 and sample-2 with more mass irregularities.

Characterization of yarn mass irregularity

Quantitative mass irregularities in yarn structure were measured using the parameters such as unevenness%, thick, thin, CV%, hairiness. These parameters are normally used in textile for the detection of faults in yarns but in our case we are measuring their effect on mechanical properties of the composites. Table 1 shows the characteristics, units and description of the parameters of mass irregularity in the yarn structure.

Tables 2a and 2b show the result from measuring the mass irregularity parameters. It is clear from the tables that sample-1 has zero thin, a very few thick and neps with in the yarn. Similarly, if we see other parameters such as hairiness, different modes of CV of both yarns, it can be stated that fibers of sample-1 have more microalignment than sample-2.

Spectrogram

Spectrogram expressed the periodical mass irregularity in the yarn. Higher mass irregularity (CV) in yarn appears as higher peaks in spectrogram. It is evident from Fig. 3a that sample-1 yarn has short-term irregularity on wavelengths \(\lambda = (28–30) \)

Characteristics	Unit	Description
U %	Linear irregularity	
CV m %	Coefficient of variation of the yarn mass	
CV m (L) %	Coefficient of variation of the yarn mass at cut length 1, 3, 10 and inert	
Imperfections	Number of thin places, thick places and neps selected sensitivity setting. Thin places: –50%, Thick places: +50%, Neps: + 200%	
H	The hairiness H corresponds to the total length of protruding fibers divided by the length of the sensor of 1 cm. The hairiness is, therefore, a figure without a unit	

Table 2a	Mass irregularity parameters of Sample-1.									
S. no.	U %	CV m	CV 1 m	CV 3 m	CV 10 m	CV inert	Thin –50%	Thick +50%	Neps + 200%	H
---------	-----	------	--------	--------	---------	----------	----------	-----------	-------------	---
1	8.23	10.38	3.26	2.6	1.67	1.3	0	7.5	5	
2	8.43	10.59	3.42	2.74	1.85	1.5	0	0	5	6.03
3	8.49	10.7	3.79	3.06	2.36	1.88	0	5	7.5	5.82
4	8.23	10.48	3.38	2.56	1.85	1.53	0	15	15	6.02
5	8.35	10.53	3.33	2.36	1.72	1.4	0	2.5	7.5	5.85
6	8.47	10.65	3.38	2.37	1.72	1.37	0	0	5	5.99
7	8.49	10.72	3.32	2.56	1.3	0.88	0	5	5	5.64
8	8.52	10.76	3.78	3.05	2.21	1.85	0	5	2.5	6.15
9	8.2	10.31	3	2.48	1.8	1.62	0	5	5	6.27
10	8.57	10.82	3.61	2.87	2.02	1.66	0	7.5	12.5	5.77
Mean	8.4	10.6	3.43	2.66	1.85	1.5	0	5.3	7	5.93
Max	8.57	10.82	3.79	3.06	2.36	1.88	0	15	15	6.27
Min	8.2	10.31	3	2.36	1.3	0.88	0	2.5	5.64	
cm with 2.0% CV, the shape of spectrogram embodies no other faults, whereas the spectrogram of sample-2 yarn Fig. 3b has short-term irregularity on wavelengths \(\lambda = (22–30) \) cm with 2.4% CV, along with an increased in amplitude on wavelength \(\lambda = 8–9 \) m with 1.8% CV.

Scanning electron microscopy (SEM) studies of mass irregularity and microalignment of fibers in the fiber bundles of yarn Fig. 4a and 4b show the non-aligned fibers become thick, thin, neps and hairiness in yarn.

Mass irregularities in structure that also affect the microalignment of fibers can be seen in SEM images of sample-1 and sample-2 of yarn. Figs. 4a and 4b show the non-aligned fibers become thick, thin, neps and hairiness in yarn.

Characterization of yarn tensile properties

After characterization of mass irregularity in yarn structural, we measured tensile properties of both sample-1 and sample-2. Table 3 shows the characteristics, units and description of the parameters that we measured in order to compare the yarn tensile properties in relevance to structural mass irregularities.

S. no.	U %	CV m	CV 1 m	CV 3 m	CV 10 m	CV inert	Thin – 50%	Thick + 50%	Neps + 200%	H
1	10.86	13.86	4.79	3.69	2.62	2.02	0	122.5	102.5	6.41
2	10.47	13.29	3.99	3.02	1.94	1.46	0	77.5	82.5	6.68
3	10.63	13.51	4.17	3.14	1.96	1.25	0	95	115	6.88
4	10.45	13.27	3.99	3.02	1.89	1.63	0	87.5	90	6.45
5	10.66	13.53	4.64	3.65	2.71	2.39	0	70	125	6.43
6	10.34	13.12	3.92	3.05	1.83	1.21	0	72.5	75	6.37
7	10.62	13.38	4.25	2.94	1.93	1.52	0	62.5	110	6.41
8	10.28	13.07	3.98	3.18	2.3	1.47	0	65	92.5	6.72
9	10.16	12.94	3.8	2.82	1.96	1.44	2.5	82.5	110	6.49
10	10.99	13.92	5.1	3.99	2.97	2.46	0	100	132.5	6.3
Mean	10.55	13.39	4.27	3.25	2.21	1.69	0.3	83.5	103.5	6.52
Max	10.99	13.92	5.1	3.99	2.97	2.46	2.5	122.5	132.5	6.88
Min	10.16	12.94	3.8	2.82	1.83	1.21	0	62.5	75	6.3
in the structure of yarn which has positive impact in micro-alignment of fiber in fiber bundles in yarn.

Conflict of Interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

[1] Joshib SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites. Composites Part A 2004;35(3):371–6.
[2] Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S. Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Composites Part A 2011;42(2):173–9.
[3] Porras A, Maranon A. Development and characterization of a laminate composite material from polyacrylic acid (PLA) and woven bamboo fabric. Composites Part B 2012;43(7):2782–8.
[4] Ren B, Mizue T, Geda K, Noda A. Effects of fluctuation of fibre orientation on tensile properties of flax sliver-reinforced green composites. J Compos Struct 2012;94(12):3457–64.
[5] Asuman OML, Reid RG, Paskaramoorthy R. The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A 2012;43(9):1431–40.
[6] Da-Silva LJ, Panzera TH, Velloso VR, Christofofo AL, Scarp F. Hybrid polymeric composites reinforced with sisal fibres and silica microparticles. Composites Part B 2012;43(8):3436–44.
[7] Defoirdt N, Biswas, de-Vriese L, Tran LQN, Acker JA, Gorbatikh L, et al. Assessment of the tensile properties of coir, bamboo and jute fibre. Composites Part A 2010;41(5):588–95.
[8] Pedad G, Said G, Llano-Ponte R, Mondragon I. Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy composites. Polym Compos 2005;26(2):121–7.
[9] Chand N, Dwivedi UK. Influence of fiber orientation on high stress wear behavior of sisal fiber-reinforced epoxy composites. Polym Compos 2007;28(4):437–41.
[10] Kaewkuk S, Sutapun W, Jarukumjorn K. Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Composites Part B 2013;45(1):544–9.
[11] Shitij C, Anil N. Green composites Part 2: characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J Mater Sci 2005;40(23):6275–82.
[12] Pothan LA, Mai YW, Thomas S, Li RKY. Tensile and flexural behavior of sisal fabric/polyester textile composites prepared by resin transfer molding technique. J Rein Plast Compos 2008;27(16–17):1847–66.
[13] Ushah D, Peter JS, Clifford MJ. Modelling the effect of yarn twist on the tensile strength of unidirectional plant fiber yarn composites. J Compos Mater 2012. http://dx.doi.org/10.1177/0021998312440737, 0021998312440737.
[14] Pal SK, Mukhopadhyay D, Sanyal SK, Mukherjea RN. Studies on process variables for natural fiber composites effect of polyester amide polyol as interfacial agent. J Appl Polym Sci 1998;35(2):973–85.
[15] Kalaprasad GK, Joseph S, Thomas S, Pavithran C. Theoretical modeling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 1997;32(10): 4261–7.

[16] Sanadi AR, Prasad SV, Rohatgi PK. Sunhemp fibre-reinforced polyester. Part I. Analysis of tensile and impact properties. J Mater Sci 1986;21(11):4299–304.

[17] White NM, Ansell MP. Straw-reinforced polyester composites. J Mater Sci 1983;18:1549–556.

[18] Hepworth DG, Bruce DM, Vincent JFB, Jeronimidis G. The manufacture and mechanical testing of thermosetting natural fibre composites. J Mater Sci 2000;35(2):293–8.

[19] Hepworth DG, Hobson RN, Bruce DM, Farrent JW. The use of unretted hemp fibre in composite manufacture. Composites Part A 2000;31(6):1279–83.

[20] Roe PJ, Ansell MP. Jute-reinforced polyester composites. J Mater Sci 1985;20(11):4015–20.

[21] Bos HL, Vanden-Oever MJA, Peters JJ. The influence of fibre structure and deformation on the fracture behaviour of flax fibre reinforced composites. In: 4th International conference on deformation and fracture of composites; 1997. p. 429–504.

[22] Addisu F, Abdul Hameed PM. Investigation into the periodicity of mass variation of yarn and its effect on fabric appearance. AUTEX Res J 2007;7(2):89–94.

[23] Fatima N, Nasir M, Zahra DN. New promoter system for oxidative curing/drying of unsaturated polyester resin based on ascorbic acid metal complexes of cobalt and copper. Arab J Sci Eng 2012;37(5):1247–54.