Empirical formulae for calculating γ-ray detectors effective solid angle ratio

Ahmed M El Khatib¹, Mohamed S Badawi¹,²*, Mohamed A Elzaher³, Mona M Gouda¹, Abouzeid A Thabet⁴, Mahmoud I Abbas¹ and Kholud S Almugren⁵

¹Physics Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
²Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
³Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
⁴Department of Medical Equipment Technology, Faculty of Allied Medical Sciences, Pharos University in Alexandria, Alexandria, Egypt
⁵Physics Department, Faculty of Science, Princess Nourah Bint Abdullahan University, 11544-55532 Riyadh, Saudi Arabia

*Address for Correspondence: Mohamed S Badawi, Physics Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt, Tel: +201005154976; Email: ms241178@hotmail.com

Submitted: 19 December 2016
Approved: 25 January 2017
Published: 27 January 2017

Copyright: © 2017 El Khatib AM, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords: NaI(Tl) detector; Effective solid angle ratio; Full-energy peak efficiency

INTRODUCTION

The scintillation counters are used to measure the radiation in different applications such as, radiation survey meters, medical imaging, nuclear plant safety, measuring radon levels, oil well logging and monitoring for radioactive contamination. In the gamma-ray spectroscopy, one usually needs to know the full-energy peak efficiency for any specific source-to-detector configuration of concern. Traditionally, measurements are performed in gamma-ray spectrometry by the relative method, according to which the measured sample is first prepared, that should match the used standard source in all the important characteristics, such as its size, chemical composition and density [1]. This method is tedious and time consuming process. In order to overcome the problems of the experimental method, several non-experimental methods [2-6] have been proposed and applied, depending on the photon energy, source-to-detector geometry and volume. One of the most common approaches is called the efficiency transfer method. In this technique, the detector efficiency of using various source dimensions is derived from the known efficiency for the reference source-to-detector geometry. The efficiency transfer method is particularly useful due to, its insensitivity to the...
inaccuracy of the input data, such as the uncertainty of the detector characterization [7,8].

Badawi, et al. [9-11] were introduced an approach to calculate the full-energy peak efficiency for NaI(Tl) and HPGe detectors, with respect to different volumetric sources. This approach stated that, the detector efficiency using a certain cylindrical radioactive source, $\epsilon(E, \text{Cyl})$, equal the reference efficiency of using reference radioactive point source, $\epsilon(E, \text{P})$, with the same detector multiplied by the effective solid angle ratio, R, between the two geometries and expressed by the following equation

$$\epsilon(E, \text{Cyl}) = \epsilon(E, \text{P}) \cdot R$$

Calculations of the effective solid angle are based on the direct mathematical method which reported by Selim and Abbas [12-16] and used successfully before to calibrate different detectors with different sources. The present work will introduce empirical equations to calculate the effective solid angle ratios of two NaI(Tl) detectors with different geometries. The effective solid angle ratio can be used as a conversion factor from using the radioactive point source case to the case in which the cylindrical radioactive sources were used. Consequently, the corresponding full-energy peak efficiency can be calculated simply.

EXPERIMENTAL SETUP

The full-energy peak efficiency (FEPE) values were determined for two NaI (Tl) detectors with resolutions 8.5% and 7.5% at the 662 keV peaks of ^{137}Cs labeled as D1 and D2 respectively. The manufacturer parameters and the setup values are shown in table 1. The experimental measurements were carried out by using point and cylindrical radioactive sources.

The radioactive standard point sources (^{241}Am, ^{133}Ba, ^{152}Eu, ^{137}Cs, and ^{60}Co) are used for the calibration of gamma spectrometers. The radioactive substance is a very thin, compact grained layer applied to a circular area about 5 mm in diameter, in the middle of the source between two polyethylene foils and each having a mass per unit area of (21.3 ± 1.8) mg.cm$^{-2}$. By heating under pressure, the two foils are welded together over the whole area so that they are leak-proofed. To facilitate handling, the foil 26 mm in diameter is mounted in a circular aluminum ring (outer diameter: 30 mm, height: 3 mm) from which it can easily be removed if and when required. These point sources were purchased from the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig and Berlin, which is the national institute for science and technology and the highest technical authority of the Federal Republic of Germany in the field of metrology and certain sectors of safety engineering. The sources activities and their uncertainties, half-lives, photon energies, and photon emission probabilities per decay for all of PTB sources are listed in table 2.

The homemade Plexiglas holder was used to measure these standard point sources, each at seven different axial distances starting from 20 cm up to 50 cm from the surface of the detector (with a 5 cm as a step). The measurements started from a source-to-detector distance equals 20 cm to minimize the effect of the coincidence summing effect. Spectra were recorded as, P4D1, where P refers to the source type (point) measured at the detector (D1) at position number (4), which equal 20 cm.

The cylindrical radioactive sources were in polypropylene plastic vials form with radius greater than the radius of the detectors, and volumes of 200 ml, 300 ml and 400 ml filled with an aqueous solution containing ^{152}Eu radionuclide, which used for the calibration process. The ^{152}Eu source emits γ-ray in the energy range from 121.78 keV up to 1408.01 keV. Table 3 shows the source dimensions. In order to minimize the dead
Table 1: The manufacturer parameters and the setup values.

Items	Detector (D1)	Detector (D2)
Manufacturer	Canberra	Canberra
Serial Number	09L 654	09L 652
Detector Model	802	802
Type	Cylindrical	Cylindrical
Mounting	Vertical	Vertical
Resolution (FWHM) at 661 keV	7.5%	8.5%
Cathode to Anode voltage	+900 V dc	+800 V dc
Dynode to Dynode	+80 V dc	+80 V dc
Cathode to Dynode	+150 V dc	+150 V dc
Tube Base	Model 2007	Model 2007
Shaping Mode	Gaussian	Gaussian
Detector Type	NaI(Tl)	NaI(Tl)
Crystal Diameter (mm)	50.8	76.2
Crystal Length (mm)	50.8	76.2
Top cover Thickness (mm)	Al (0.5)	Al (0.5)
Side cover Thickness (mm)	Al (0.5)	Al (0.5)
Reflector – Oxide (mm)	2.5	2.5
Weight (Kg)	0.77	1.8
Outer Diameter (mm)	57.2	80.9
Outer Length (mm)	53.9	79.4
Crystal Volume in (cm³)	103.004	347.639

Table 2: Point sources activities and their uncertainties, half lives, photon energies and photon emission probabilities per decay for the all radionuclides used in this work.

PTB Nuclide	Energy (keV)	Emission Probability %	Half Life (Days)	Activity (kBq) At 1.June 2009 00:00 Hr	Uncertainty (kBq)
241Am	59.52	35.9	157861.05	259.0 ±2.6	
133Ba	80.99	34.1	3847.91	275.3 ±2.8	
152Eu	121.78	28.4	4943.29	290.0 ±4.0	
137Cs	661.66	85.21	11004.98	385.0 ±4.0	
60Co					

Table 3: Parameters of the radioactive cylindrical volumetric sources.

Items	Source Volume (ml)		
	V1=200	V2=300	V3=400
Inner diameter (mm)	111.50		
Height (mm)	21.45	31.59	41.83
Wall and Bottom thickness (mm)	2.03		
Activity (Bq)	At 1.Jan 2010 00:00 Hr	5048 ±49.98	

time, the activity of the sources is prepared to be a few kilo Becquerel (5048±49.98 Bq).

The radioactive volumetric cylindrical sources were measured on a 0.36 cm thickness Plexiglas cover and placed directly on the detector end-cap. These measurements were done using two cylindrical detectors with numbers (D1 & D2). Figure 1 shows a diagram.
of a cylindrical detector with a cylindrical source. Spectra were recorded as V_1D_2, where V_1 is the volume (V_1) measured at the detector (D_2). The angular correlation effects can be neglected for the low source-to-detector distance [17,18].

All the measurements are carried out to obtain statistically significant main peaks in the spectra that are recorded and processed by winTMCA32 software made by ICx Technologies. Measured spectrum, which saved as spectrum ORTEC files can be opened by the Genie 2000 data acquisition and analysis software made by Canberra. The acquisition time is high enough to get at least the number of counts 20,000, which make the statistical uncertainties less than 0.1%. The spectra are analyzed with the program using its automatic peak search and peak area calculations, along with changes in the peak fit using the interactive peak fit interface when necessary to reduce the residuals and error in the peak area values. The peak areas, the live time, the run time and the start time for each spectrum were entered in the spreadsheets that are used to perform the calculations necessary to generate the efficiency curves.

RESULTS AND DISCUSSIONS

The efficiency transfer theoretical method (ETTM) has been used to convert the (FEPE) curve for using radioactive point source at positions start from P4 up to P10 to the (FEPE) for using radioactive cylindrical sources, which represented in V_1, V_2, and V_3. These calculations extended for two cylindrical NaI(Tl) detectors (D_1 & D_2). By using equation (1) and the experimental efficiency values for using point and cylindrical radioactive sources, that published before in 2012 [19], the one can calculate the effective solid angle ratio, R, values for both detectors experimentally as tabulated in table 4.

The analytical expressions presented in [19] were used to calculate the effective solid angle ratio as presented in table 5, these values were tested before to obtain the detector FEPE and it was accepted by comparison with the experimental values. The percentage deviations between the effective solid angle ratio values obtained by the two methods are shown in figure 2. A remarkable agreement between them was achieved with discrepancies less than 10%.

By plotting a three-dimensional relation between the Log values of the point source position, P (cm), the effective solid angle ratio, R, and the photon energy, E (keV) for the two detectors (D_1 & D_2) was done as shown in figure 3. The plotted data for each
Table 4: The values of the effective solid angle ratio, R, for both detectors, which were obtained experimentally.

Nuclide	Energy	Ω_{V1}/Ω_{p4}	Ω_{V1}/Ω_{p5}	Ω_{V1}/Ω_{p6}	Ω_{V1}/Ω_{p7}	Ω_{V1}/Ω_{p8}	Ω_{V1}/Ω_{p9}	Ω_{V1}/Ω_{p10}	Ω_{V2}/Ω_{p4}	Ω_{V2}/Ω_{p5}	Ω_{V2}/Ω_{p6}	Ω_{V2}/Ω_{p7}	Ω_{V2}/Ω_{p8}	Ω_{V2}/Ω_{p9}	Ω_{V2}/Ω_{p10}
Eu-152	121.78	15.722	23.735	32.957	44.330	58.034	72.859	89.042	11.984	17.753	25.185	33.687	44.037	54.425	65.609
Eu-152	244.69	15.795	23.603	32.359	44.087	57.531	72.710	87.406	12.380	18.381	25.950	34.453	45.196	55.989	68.073
Eu-152	344.28	15.850	23.578	32.370	44.110	57.503	73.168	87.516	12.572	18.519	26.253	34.492	45.250	56.562	68.579
Eu-152	778.9	16.165	24.068	34.135	45.149	58.498	74.488	89.140	12.935	19.337	26.901	35.421	45.992	57.317	70.413
Eu-152	964.13	16.298	24.132	34.285	45.482	58.722	74.473	89.618	13.070	19.444	27.349	35.753	46.408	57.349	70.154
Eu-152	1408.01	16.465	24.458	34.532	45.831	59.643	74.802	89.715	13.182	19.596	27.499	36.195	46.989	58.306	71.399

Table 5: The values of the effective solid angle ratio, R, for both detectors, which are obtained analytically [19].

Nuclide	Energy	Ω_{V1}/Ω_{p4}	Ω_{V1}/Ω_{p5}	Ω_{V1}/Ω_{p6}	Ω_{V1}/Ω_{p7}	Ω_{V1}/Ω_{p8}	Ω_{V1}/Ω_{p9}	Ω_{V1}/Ω_{p10}	Ω_{V2}/Ω_{p4}	Ω_{V2}/Ω_{p5}	Ω_{V2}/Ω_{p6}	Ω_{V2}/Ω_{p7}	Ω_{V2}/Ω_{p8}	Ω_{V2}/Ω_{p9}	Ω_{V2}/Ω_{p10}
Eu-152	121.78	13.216	19.951	27.703	38.726	49.872	61.244	73.847	10.313	15.278	21.674	28.790	37.897	46.837	57.322
Eu-152	244.69	13.222	19.758	27.841	38.905	49.159	60.864	73.166	10.572	15.697	22.161	29.423	38.598	47.815	58.134
Eu-152	344.28	13.372	19.892	28.153	37.214	48.514	61.730	73.835	10.679	15.731	22.300	29.298	38.437	48.045	58.253
Eu-152	778.9	13.755	20.480	29.046	38.418	47.777	63.383	75.851	11.215	16.767	23.326	30.713	40.978	49.699	61.054
Eu-152	964.13	13.911	20.597	29.263	38.820	50.121	63.565	76.491	11.303	16.814	23.650	30.918	40.132	49.593	60.666
Eu-152	1408.01	14.095	20.938	29.749	39.234	51.058	64.035	76.802	11.435	16.999	23.855	31.398	40.761	50.579	61.937

Published: January 27, 2017
Empirical Formulae for Calculating γ-ray Detectors Effective Solid Angle Ratio

Cs-137 661.66 14.232 21.265 30.072 39.682 52.268 66.145 79.076 11.467 17.039 23.962 31.787 41.800 52.153 63.828
Eu-152 778.9 14.378 21.484 30.360 40.094 52.153 66.145 79.076 11.467 17.039 23.962 31.787 41.800 52.153 63.828
Co-60 1173.23 14.232 21.265 30.072 39.682 52.268 66.145 79.076 11.467 17.039 23.962 31.787 41.800 52.153 63.828
Eu-152 964.13 14.631 21.761 31.048 41.077 54.131 68.680 81.587 11.742 17.452 24.524 32.551 42.779 53.529 65.606
Co-60 1332.5 14.831 22.161 31.252 41.369 54.522 69.212 82.114 11.966 17.788 25.084 33.173 43.576 54.649 67.054
Eu-152 1408.01 14.877 22.229 31.342 41.497 54.693 69.445 82.346 12.003 17.844 25.058 33.277 43.709 54.837 67.297
Am-241 59.53 10.175 15.197 21.932 28.251 37.121 46.117 57.962 8.322 12.336 17.486 23.073 30.536 36.942 44.682
Ba-133 80.99 10.459 15.622 22.384 29.092 38.240 47.763 59.062 8.425 12.498 17.675 23.353 30.850 37.661 45.652
Eu-152 121.78 10.785 16.112 22.987 30.029 39.488 49.503 60.592 8.632 12.811 18.089 23.923 31.564 38.770 47.095
Eu-152 244.69 11.400 17.032 24.202 31.763 41.798 52.620 63.724 9.110 13.527 19.066 25.249 33.264 41.145 50.142
Eu-152 344.28 11.733 17.529 24.865 32.699 43.043 54.288 65.440 9.375 13.925 19.611 25.986 34.212 42.449 51.807
Cs-137 661.66 12.354 18.458 26.103 34.444 45.369 57.414 68.638 9.874 14.673 20.635 27.373 35.996 44.911 54.964
Eu-152 778.9 12.505 18.684 26.404 34.870 45.936 58.177 69.417 9.996 14.855 20.884 27.711 36.430 45.512 54.734
Eu-152 964.13 12.697 18.972 26.787 35.410 46.565 59.146 70.406 10.150 15.087 21.201 28.140 36.982 46.276 56.716
Co-60 1173.23 12.868 19.227 27.127 35.890 47.296 60.008 71.285 10.289 15.294 21.484 28.524 37.475 46.958 57.592
Co-60 1332.5 13.024 19.461 27.438 36.329 47.881 60.795 72.089 10.414 15.482 21.741 28.872 37.923 47.578 58.388

Figure 2a: The deviation between the calculated effective solid angle ratio, R, that obtained analytically and the experimental one for D1.

Figure 2b: The deviation between the calculated effective solid angle ratio, R, that obtained analytically and the experimental one for D2.
source volume (ml) with the two detectors have shown semi plane shape and the empirical formulae that represent these shapes are described below to calculate the effective solid angle ratios, R, for both detectors.

The empirical formula for the detector (D1) is given by:

\[
\log(E) - 26.77 \log(R) + 49.18 \log(P) - 0.0176 V - 30.62 = 0
\]
(2)

while, the empirical formula for the detector (D2) is given by:

\[
\log(E) - 26.77 \log(R) + 49.18 \log(P) - 0.0166 V - 33.63 = 0
\]
(3)

By knowing the photon energy and the reference position, the effective solid angle ratio, R, for both detectors was calculated using equations (2) and (3). The obtained values were tabulated in table 6. Therefore, these equations provide a simple method to calculate the full-energy peak efficiency (FEPE) of two different cylindrical NaI(Tl) scintillation detectors. These two formulae are valid through a wide energy range and different radioactive volumetric source geometries. The percentage deviations between the calculated effective solid angle ratio, that obtained experimentally and that obtained from equations (2) and (3) were shown in figure 4. A remarkable agreement between them was achieved with discrepancies less than 7%.

The main advantage of this process is the simplicity of obtaining the effective solid angle ratios, R, especially in between any two measured positions, without using analytical or experimental calculations. These ratios are considered to be the efficiency conversion factor between any two different geometrical conditions, and used to save the time in absent the standard calibration sources.

CONCLUSIONS

The present work leads to a simplified method to calculate the effective solid angle ratio empirical, which can be used to calculate the conversion factors of the detector efficiency, in the case of using point and cylindrical radioactive sources. The efficiencies can be determined at any calibration position or any energy situated in the domain of the study based on these conversion factors. These formulas are valid through a wide energy range and different source-to-detector geometries. Therefore the corresponding full-energy peak efficiency can be calculated simply, and the activity of unknown samples measured in the same conditions can be determined easily.
Table 6: The values of the effective solid angle ratio, R, for both detectors, which are obtained from empirical equations.

Nuclide	Energy	Detector (D1) Effective solid angle ratio	Detector (D2) Effective solid angle ratio						
Cs-137	661.66	\(\Omega_{\text{v}_4}/\Omega_{\text{p}_4} \)	\(\Omega_{\text{v}_5}/\Omega_{\text{p}_5} \)						
		\(\Omega_{\text{v}_6}/\Omega_{\text{p}_6} \)	\(\Omega_{\text{v}_7}/\Omega_{\text{p}_7} \)						
		\(\Omega_{\text{v}_8}/\Omega_{\text{p}_8} \)	\(\Omega_{\text{v}_9}/\Omega_{\text{p}_9} \)						
		\(\Omega_{\text{v}_{10}}/\Omega_{\text{p}_{10}} \)	\(\Omega_{\text{v}_1}/\Omega_{\text{p}_1} \)						
		\(\Omega_{\text{v}_2}/\Omega_{\text{p}_2} \)	\(\Omega_{\text{v}_3}/\Omega_{\text{p}_3} \)						
		\(\Omega_{\text{v}_4}/\Omega_{\text{p}_4} \)	\(\Omega_{\text{v}_5}/\Omega_{\text{p}_5} \)						
		\(\Omega_{\text{v}_6}/\Omega_{\text{p}_6} \)	\(\Omega_{\text{v}_7}/\Omega_{\text{p}_7} \)						
		\(\Omega_{\text{v}_8}/\Omega_{\text{p}_8} \)	\(\Omega_{\text{v}_9}/\Omega_{\text{p}_9} \)						
		\(\Omega_{\text{v}_{10}}/\Omega_{\text{p}_{10}} \)	\(\Omega_{\text{v}_1}/\Omega_{\text{p}_1} \)						
Co-60	1217.8	13.69	20.68	24.18	28.68	32.26	36.88	41.49	46.10
	1378.2	17.01	25.63	30.23	34.84	39.45	45.06	50.67	56.28
	1408.1	17.50	26.08	30.68	35.29	39.90	44.51	49.12	54.73
Eu-152	448.18	13.89	20.39	25.90	31.41	36.92	42.43	47.94	53.45
	596.88	14.32	20.82	26.34	31.85	37.36	42.87	48.38	53.89
	745.59	14.75	21.25	26.77	32.28	37.79	43.30	48.81	54.32
	894.30	15.18	21.68	27.20	32.71	38.22	43.72	49.24	54.75
	1043.0	15.61	22.11	27.63	33.12	38.63	44.14	49.65	55.16
	1191.7	16.04	22.54	28.06	33.53	39.04	44.55	50.06	55.57
	1340.4	16.47	22.97	28.49	33.94	39.45	44.96	50.37	55.98

Published: January 27, 2017
Empirical Formulae for Calculating γ-ray Detectors Effective Solid Angle Ratio

Figure 4a: The deviation between the calculated effective solid angle ratio, R, that obtained empirically and the experimental one for D1.

Figure 4b: The deviation between the calculated effective solid angle ratio, R, that obtained empirically and the experimental one for D2.

REFERENCES

1. Debertin K, Helmer RG. Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland. 1988; New York. Ref.: https://goo.gl/fHfUb8

2. Lippert J. Detector-efficiency calculation based on point-source measurement. Int J Appl Radiat Isot. 1983; 34: 1097-1103. Ref.: https://goo.gl/wQQveD

3. Moens L, Hoste J. Calculation of the peak efficiency of high-purity germanium detectors. Int J Appl Radiat Isot. 1983; 34: 1085-1095. Ref.: https://goo.gl/j3IxZv

4. Haase G, Tait D, Wiechon A. Application of new monte carl method for determination of summation and self-attenuation corrections in gamma spectrometry. Nucl Instrum Methods. 1993; A336: 206-214. Ref.: https://goo.gl/x4tnng

5. Wang TK, Mar WY, Ying TH, Liao CH, Tseng CL, et al. HPGe detector absolute-peak-efficiency calibration by using the ESOLAN program. Appl Radiat Isot. 1995; 46: 933-944. Ref.: https://goo.gl/Lgl3lc

6. Wang TK, Mar WY, Ying TH, Tseng CH, Liao CH, et al. HPGe Detector efficiency calibration for extended cylinder and Marinelli- beaker sources using the ESOLAN program. Appl Radiat Isot. 1997; 48: 83-95. Ref.: https://goo.gl/dQNx77
7. Lépy MC, Altzitzoglou T, Arnold D, Bronson F, Capote Noye R, et al. Intercomparison of efficiency transfer software for gamma-ray spectrometry. Appl Radiat Isot. 2001; 55: 493-503. Ref.: https://goo.gl/WfSS3v

8. Vidmar T, Aubineau Laniece I, Anagnostakis MJ, et al. An intercomparison of monte carlo codes used in gamma-ray spectrometry. Appl Radiat Isot. 2008; 66: 764-768. Ref.: https://goo.gl/e35Sd8

9. Badawi MS, El-Khatib AM, Krar ME. New numerical simulation approach to calibrate the NaI(Tl) detectors array using non-axial extended spherical sources. Journal of Instrumentation. 2013; 8: 11. Ref.: https://goo.gl/ut1p4i

10. Badawi MS, Krar ME, El-Khatib AM, Jovanovic SI, Diabac AD, et al. A new mathematical model for determining the full energy peak efficiency (FEPE) for an array of two γ-detectors counting rectangular parallelepiped source. Nuclear Technology & Radiation Protection Journal. 2013; 28: 370-380. Ref.: https://goo.gl/LYmnac

11. Badawi MS, Elzaher MA, Thabet AA, El-khatib AM. An empirical formula to calculate the full energy peak efficiency of scintillation detectors. Appl Radiat Isot. 2013; 74: 46-49. Ref.: https://goo.gl/V5PDsr

12. Abbas MI. A direct mathematical method to calculate the efficiencies of a parallelepiped detector for an arbitrarily positioned point source. Radiat Phys Chem. 2001a; 60: 3-9. Ref.: https://goo.gl/JypVh5

13. Abbas MI. Analytical formulae for well-type NaI(Tl) and HPGe detectors efficiency computation. Appl Radiat Isot. 2001b; 55: 245-252. Ref.: https://goo.gl/hLQSKd

14. Abbas MI, SelimYS. Calculation of relative full-energy peak efficiencies of well-type detectors. Nucl Instrum Methods A. 2002; 480: 651-657. Ref.: https://goo.gl/9AMrXx

15. Abbas MI. HPGe detector absolute full-energy peak efficiency calibration including coincidence correction for circular disc sources. J Phys D Appl Phys. 2006; 39: 3952-3958. Ref.: https://goo.gl/89DOYb

16. Abbas MI, Nafee SS, Selim YS. Calibration of cylindrical detectors using a simplified theoretical approach. Appl Radiat Isot. 2006; 64: 1057-1064. Ref.: https://goo.gl/M4DM6l

17. Debertin K, Schotzig U. Coincidence summing corrections in Ge(Li)-spectrometry at low source-to-detector distances. Nucl Instrum Meth A. 1979; 158: 471-477. Ref.: https://goo.gl/CJ5NGn

18. El-Khatib AM, Thabet AA, Elzaher MA, Badawi MS, Salem BA. Study on the effect of the, self-attenuation coefficient on γ-ray detector efficiency calculated at low and high energy regions. Journal of Nuclear Engineering and Technology. 2014; 46: 217-224. Ref.: https://goo.gl/wpoBxI

19. El-Khatib AM, Badawi MS, Elzaher MA, Thabet AA. Calculation of the peak efficiency for NaI(Tl) gamma ray detector using the effective solid angle method. Journal of Advanced Research in Physics. 2012; 3: 021204. Ref.: https://goo.gl/bqKYOW