Determining the ability of astaxanthin from *Haematococcus pluvialis* on the protection of skin in the mouse model

Quan Minh To¹⁴, Nhan Dinh Tran¹, Truc Thi Thanh Vo², Thao Thu Huynh², Dieu Quang Tran¹, Trinh Nguyen Ai Ta¹, Bien Dinh Lai², Dung Hoang Nguyen³⁴, Long Thanh Le³⁴

¹Faculty of Biology and Biotechnology, University of Science, Vietnam National University of Ho Chi Minh City, Hochiminh City, Vietnam
²Ho Chi Minh City of Food Industry, Hochiminh City, Vietnam
³Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
⁴Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam

ABSTRACT

This study focuses on determining astaxanthin (AST)’s ability to prevent adverse effects of H₂O₂ and ultraviolet (UV) irradiation on cells and skin. A *Haematococcus pluvialis* strain, obtained from Vietnam, was used for AST extraction. It consists of free (4.4% ± 0.7%) and esterified form and accounts for 2.9% ± 0.5% dry weight. 3T3 cells were pre-treated with AST (1, 2.5, 5, 10 µg/ml) or commercial astaxanthin (10 µg/ml) for 24 hours prior to H₂O₂ treatment (200 µM, 90 minutes). The results showed that the AST protected 3T3 cells: reduction of mortality rate (16.08%–21.52%), senescence-associated β-galactosidase—positive cells (28.9%–40.8%), and maintenance of cell proliferation, morphology. AST 5 µg/ml is the optimal concentration in this experiment.

Mus musculus var. *Albino* was treated with a daily dose of topical AST (20 or 200 μg/ml) and UV irradiation for 6 weeks. The results showed that AST reduced wrinkles and retained mouse skin’s physiology that closed to the control group. AST 20 μg/ml was the best effective concentration in this experiment. In conclusion, AST has been shown to have the ability to protect fibroblasts, skin from the adverse effects of H₂O₂, UV irradiation.

1. INTRODUCTION

Astaxanthin (AST) (3,3-dihydroxy-β,β-carotene-4,4-dione), a red xanthophyll carotenoid, has been acknowledged as one of the most effective antioxidants. AST consists of the two β-ionone-type rings at both ends and one polyene chain in the structure; hence AST easily attaches to the cell or organelle membrane (Fig. 1) [1,2]. Hence, AST can protect cells by neutralizing or quenching free radicals produced inside or outside the cells [3,4]. *Haematococcus pluvialis*, unicellular microalga, is the best natural, commercial source of AST [3]. AST is commonly absorbed through the oral route to ameliorate Parkinson’s disease, stroke, high cholesterol, liver diseases, aging [1,3,5]. In the cosmetic field, AST was used as an anti-aging agent to protect skin from adverse effects of ultraviolet (UV) irradiation and reactive oxygen species (ROS) [6,7]. UV irradiation and ROS can break down DNA in skin cells, the extracellular matrix (ECM), such as collagen, elastin, and up-regulate enzymes that degrade skin ECM, such as matrix metalloproteinase-1 (MMP-1), neutral endopeptidase (NEP). These modifications lead to cell death, senescence, and aging skin [8–11]. AST was proved to prevent DNA damage, reduce the expression, and activity of MMP-1 and NEP in UV-induced fibroblast *in vitro* [12,13]. However, the protective ability of AST against ROS on fibroblast is limited. Currently, AST was applied frequently as an oral nutritional supplement; yet studies in topical application of AST in the cosmetic field have been neglected [6,7]. In this study, we...
2. MATERIALS AND METHODS

2.1. Astaxanthin Extraction

The green algae Haematococcus pluvialis was cultivated in 750-ml sterilized glass columns containing 450 ml of modified BG-11 medium. The flasks were illuminated at 40 µmol.m−2.s−1 of white light (Philips, TLD 18W) with a dark: light cycle of 12 ours:12 hours, 22°C and continuously aerated by the bubbling air. Cell number was counted by a hemacytometer cell counting chamber. For astaxanthin (AST) induction, logarithmic cells were incubated in BG-11 with nitrogen deficiency at high light intensity (170 µmol.m−2.s−1) with a light: dark cycle of 24:0 for 2–3 weeks [14]. Astaxanthin was extracted according to Sarada [15] with some modifications. Freeze-dried algae were treated by HCl 2 M for 2 minutes, ground, and extracted in acetone. AST concentration was evaluated by High-performance liquid chromatography (HPLC) [16].

2.2. ABTS Assay

The ABTS radical solution was prepared by oxidation of ABTS (7 mM) by K3S2O8 (2.45 mM). This solution was incubated for 14–16 hours in dark and then diluted in ethanol to obtain a working solution that has an absorbance of 0.7 ± 0.02 at the wavelength of 734 nm. Next, 80 µl of AST solution in different concentrations was mixed with ABTS working solutions and the OD values at 734 nm were record after 60 minutes. Trolox was used as a positive control. The inhibition percentage was calculated as the following formulation: Percentage (%) = [(ODinitial) − (ODsample-A)]/ODblank-B × 100%, where ODinitial and ODsample-A are the absorbances at 734 nm at the beginning and final step [17,18].

2.3. Tyrosine Inhibition Test

Astaxanthin in different concentrations was added to wells of 96-well plates (50 µl/well), followed by adding 50 µl tyrosinase (25 U/well). The mixture was stored at room temperature for 15 minutes, and then supplemented with L-DOPA (100 µl) and SA-gal expression. Cell culture medium containing 0.5% DMSO was used as a control. Next, all cells (AST, trAST, and H2O2 control groups) were challenged by 200 mM H2O2 dissolved in DMEM/F12 5% FBS for 90 minutes. Then, the medium was replaced. Viable cells were examined by Hemocytometer and seeded on a 4-well plate with a concentration of 3 x 103 viable cells/well. Four days later, WST-1 assay, DAPI/ phallolidin staining, and senescence-associated b-galactosidase (SA-gal) staining were performed to test cell viability, cell nucleus area, and SA-gal expression. Cell culture medium containing 0.5% DMSO (non-treated H2O2) was used as a blank control group (Table 1).

2.4. In Vitro Cytotoxicity Assay

3T3 cells were cultured in cell culture medium containing 90% DMEM/F12, 10% fetal bovine serum (FBS), 1% antibiotics in 37°C, 5% CO2. The cells were seeded into a 96-wells plate at a density of 4 x 103 cells/well. After 24 hours, the cells were treated with AST in the range of 1–10 µg/ml (5 wells/group), the final DMSO concentration, which was used to dissolve AST, was 0.5%. Cell culture medium containing 0.5% DMSO was used as a control. After 1 day, cytotoxicity was evaluated by WST-1 assay according to the manufacturer’s instruction [19]. OD values were recorded at wavelength of 440 nm.

2.5. In Vitro Evaluation of the Protective Ability of AST against H2O2-Induced Oxidative Stress

3T3 cells were pre-treated with various AST concentrations (1, 2.5, 5, or 10 µg/ml) for 12 hours before the H2O2 treatment. H2O2-induced oxidative stress in fibroblast was performed according to Yokozawa et al. [20] with some modifications. First, 3T3 cells were seeded on a 96-wells plate at a density of 10 x 103 cells/well. One day later, cells were pre-treated with AST 1, 2.5, 5, and 10 µg/ml or commercial AST (trAST) (10 µg/ml) for 12 hours, cell culture medium containing 0.5% DMSO was used as a control. Next, all cells (AST, trAST, and H2O2 control groups) were challenged by 200 µM H2O2 dissolved in DMEM/F12 5% FBS for 90 minutes. Then, the medium was replaced. Viable cells were examined by Hemocytometer and seeded on a 4-well plate with a concentration of 3 x 103 viable cells/well. Four days later, WST-1 assay, DAPI/ phallolidin staining, and senescence-associated b-galactosidase (SA-gal) staining were performed to test cell viability, cell nucleus area, and SA-gal expression. Cell culture medium containing 0.5% DMSO (non-treated H2O2) was used as a blank control group (Table 1).

2.6. In Vivo Evaluation of the Protective Ability of AST gainst UV-Induced Skin Lesion

AST was dissolved in commercial Sacha Inchi oil to achieve the concentrations of 20 or 200 µg/ml. Mus musculus var. Albino mice (age of 5–6 weeks, 30–35 g) were purchased from Pasteur Institute of Hochiminh city 1 week before the experiments. The mice were housed at 25°C with a dark: light cycle of 12 ours:12 hours. The study was approved by the Animal Care and Use Committee (ACUCUS) of University of Science, Vietnam National University of Hochiminh city (approval number 1170B/ KHTN-ACUCUS). The experiment was divided into five groups that belong to Table 1. UV radiation was performed using a UV lamp (Exo Terra, UVB 150, 25W), which gives the full solar spectrum with high UVB output. The dorsal skin of the mice was shaved and irradiated by UV light. UVB intensity was 100 mJ/cm2 per time for weeks 1–2 (three3 times/week), 200 mJ/cm2 per time for weeks 3–4 (three3 times/week), and 300 mJ/cm2 per time for weeks 5–6 (three3 times/week) [21]. After 6 weeks, wrinkle formation was evaluated based on the grading scale of Rumjhum Agrawal, and skin was stained by Trichrome staining [22]. In AST groups, dorsal skin was topically treated daily with AST (20 or 200 µg/ml) 8 hours before UV irradiation as the above method.

Table 1: Groups of experiment of AST ability against H2O2 treatment.
AST concentration in culture medium containing 0.5% DMSO (µg/ml)
H2O2 treatment

None
2.7. Statistical Analysis
Statistical analysis was performed using one-way analysis of variance with SigmaPlot software where \(p < 0.05 \) was considered to be statistically significant.

3. RESULTS

3.1. Astaxanthin Extraction
Under low light intensity condition (40 \(\mu \text{mol.m}^{-2}.\text{s}^{-1} \)), \textit{H. pluvialis} cells predominantly existed in green motile zoospore stage with 20–30 \(\mu \text{m} \) in diameter and 2 flagella. The cell concentration rapidly reached a peak of \(9.5 \times 10^5 \) cells/ml after 14–18 days of culture with inoculation of \(1 \times 10^5 \) cells/ml. Under unfavorable conditions: high light intensity (170 \(\mu \text{mol.m}^{-2}.\text{s}^{-1} \)) and nitrogen deficiency, the algal cells rapidly changed to the encystment stage. They begin to lose flagella, expand cell volume, and thicken the cell wall (pamella stage). After 7–10 days of induction, AST occurred in the center of the cell and rapidly occupied the entire cytoplasm. Most of the cells developed into aplanospores after 28–35 days of induction. HPLC results showed that AST concentration is 2.9\% ± 0.5\% of dry weight and free AST accounted for 4.4\% ± 0.7\% total AST (Fig. 2).

3.2. ABTS Assay
ABTS assay was used for determining the activity of antioxidants which reduce radical ABTS and decolorize its color. After 60 minutes of incubation, ABTS working solution changed to colorless (incubated with Trolox) or light orange (incubated with AST). The inhibition percentage of Trolox and AST was shown in Figure 3. \(IC_{50} \) value of Trolox was 604.8 ± 9.5 \(\mu \text{M} \). The results showed that AST had ABTS scavenging activity in the range of 12.5–160 \(\mu \text{g/ml} \) with an \(IC_{50} \) value of 148.02 \(\mu \text{g/ml} \) and TEAC value was 0.126 mmol Trolox/g extract (Fig. 3).

3.3. Tyrosinase Inhibition Test
Tyrosinase catalyzes tyrosine to dopaquinone which polymerized to dark pigment having the maximum absorbance at a wavelength of 492 nm [23]. The results showed that the AST could inhibit tyrosinase activity with \(IC_{50} \) of 120.4 \(\mu \text{g/ml} \) extraction and the \(IC_{50} \)

\[\text{Figure 2: Astaxanthin from } \textit{H. pluvialis}. (A) Motile macrozooids (×200), (B) Pamella (×100), (C) Aplanospores (×100) and (D) HPLC of AST extraction. \]
The value of kojic acid (the control) was 25.6 µg/ml (180.9 µM). The results showed AST could inhibit tyrosinase and less potent than kojic acid.

3.4. Cytotoxicity Test In Vitro

3T3 cells were exposed to the medium supplemented with AST (0, 1, 5, or 10 µg/ml) \((n=5) \). OD values of WST-1 assay were shown in Table 2. OD values of all groups were not statistically different \((p>0.05) \) (Table 2). Moreover, after 1 day, morphological alterations and cell detachment were not observed, 3T3 cells retained fibroblast-like shape with elongate morphology (Fig. 4). It was concluded that AST in the range of 1–10 µg/ml was not cytotoxic to fibroblast cells.

3.5. In Vitro Evaluation of Protection Activity of AST

The experiment was performed in Table 1. In the control group, soon after the stress, the mortality rate increased significantly from 2.5% ± 0.4% (blank group) to 25.4% ± 3.5% of cells \((p<0.05) \) (Fig. 5A). Next 4 days, the OD values did not increase, it was comparable to day 1 \((p>0.05) \). The morphological alterations were observed on day 4th: the enlargement of cell nuclear size \((430.6 ± 81.8 \mu m^2) \) and cell size (data not shown) (Fig. 6B). Moreover, the percentage of SA-gal-expressed cells (a biomarker of cell senescence) in this group was 61.9 ± 7.5 which significantly

Table 2: Groups in experiment of AST ability against UV irradiation.

Control	UV	Oil	AST 20	AST 200	
Topical treatment	None	None	Saccha Inchi oil	AST 20	AST 200
UV irradiation	None	Yes	Yes	Yes	Yes

Figure 3: The results of ABTS assay. (A) Trolox and (B) AST.

Figure 4: 3T3 cells after 1 day treatment with AST. (A) Control (×100), (B–D) AST 10, 25, and 50 µg/ml (×100).

Figure 5: Graphs show protective ability of AST on fibroblast. (A) cell mortality, (B) WST-1 assay, and (C) SA-b Gal expression. (*bcd: significant difference).
higher than the blank and AST groups \((p < 0.05)\) (Fig. 7). These results showed that \(\text{H}_2\text{O}_2\) caused cell death accompanied by cell senescence, including the inhibition of cell proliferation, the increase of nuclear area, cell size, and \text{SA} \text{b-Gal} expression. In the AST group, the cells were sequentially treated with AST (1, 2.5, 5, and 10 \(\mu\)g/ml) and \(\text{H}_2\text{O}_2\). The death rate in all AST groups was lower than the control group \((p < 0.05)\). The WST-1 assay showed that OD values in group AST 1, 2.5 rose slightly on day 4th compared to day 1st \((p > 0.05)\) while OD values in group AST 5, 10 on day 4th was higher than day 1st \((p < 0.05)\). The results of DAPI/phalloidin staining showed cells in all AST groups retained their initial shape: spindle-like morphology with a smaller nuclear area than control \((p < 0.05)\). The ratio of \text{SA-gal}-positive cells was lower than the control group \((p < 0.05)\) (Figs. 5C and 7). Based on these results, we concluded that AST prevented the adverse effects of \(\text{H}_2\text{O}_2\)-induced oxidative stress in a dose-dependent manner.

Table 3: OD value of WST-1 assay in cytotoxicity test.

AST concentration	0 \(\mu\)g/ml (control)	1 \(\mu\)g/ml (AST)	5 \(\mu\)g/ml (AST)	10 \(\mu\)g/ml (AST)
OD value	0.43 ± 0.11\(^a\)	0.42 ± 0.07\(^b\)	0.41 ± 0.15\(^c\)	0.43 ± 0.09\(^c\)

\(^a\) Not significant difference.

Between the various concentrations, AST 5–10 gives the best effect in protecting the fibroblast cells in this experiment.

3.6. In Vivo Evaluation of the Protective Ability of AST against UV-Induced Skin Lesion

To determine the capacity to protect skin from UV damage, AST is topically applied on dorsal skin before UV irradiation. The visible appearance of the dorsal skin changed after 6 weeks of UV irradiation. The skin of all mice lost its color, became dry and rough. Moreover, some deep wrinkles perpendicular to the spine had appeared since week 4 (Fig. 8 and Table 4). In AST groups, skin remained smooth and reddish color, fine striation appeared (Fig. 8 and Table 4) (score was 4.3 ± 0.5). There is no significant difference between the wrinkle score of mice in AST 20 and 200 \(\mu\)g/ml (2.3 ± 0.5, 2.5 ± 0.5). Trichrome staining was carried out to verify the histological structure of the skin. After 6 weeks, there is a considerable increase in epithelium thickness in the UV group compared to the control group (42.2 ± 8.9 \(\mu\)m, 20.5 ± 4.5 \(\mu\)m). In AST groups (20 or 200 \(\mu\)g/ml), the thickness of these groups was smaller than the UV group and higher than the control group (28.9
There is no significant difference between the epithelial layer of mice in AST 20 and 200 μg/ml ($p > 0.05$). These results showed that AST ameliorated UV-induced lesions on mouse skin.

4. DISCUSSION AND CONCLUSION

AST is a powerful antioxidant and adheres easily to the membranes of cells, mitochondrial, nucleus [2,4]. Therefore, AST could prevent the harmful effects of free radicals produced in the intracellular and extracellular environment. *Haematococcus pluvialis* is one of the best natural sources of AST that contains the maximum AST concentration of 5% dry weight [6,24]. In Vietnam, Dang Thi Diem Hong is the first to isolate and culture *H. pluvialis*. This strain, obtained from the North of Vietnam, can reach the concentration of 0.95×10^6 cells/ml in a modified RM medium after 15 days of inoculation [25]. In this study, we aimed to investigate its ability to protect skin against the harmful effects of $	ext{H}_2\text{O}_2$ and UV irradiation. The results showed that AST occupied 2.9% dry weight and existed in two different forms: free (4.4%) and esterified, in which ester form is the predominant part (data not shown). The ABTS assay shows that AST is a potent antioxidant and its TEAC value was 0.126 mmol Trolox/g extract closed to Zuluaga’s et al. [18]. Moreover, AST could reduce tyrosinase activity, which less effective than kojic acid. This result is similar to Chintong et al. [19]. Therefore, AST could be used as a skin-lightening agent.

UV irradiation and ROS are the most harmful factors to the skin. UV, composed of predominant UVA and UVB, can break down DNA double helix and create abnormal covalent bonds or produce ROS [26,27]. ROS is generated in normal metabolic processes or cellular reactions. Its level depends on age and is accelerated by UV induction [28,29]. Many kinds of research prove the protective effect of AST on fibroblast against UV irradiation on fibroblasts *in vitro* [12,13,30]. However, little research checks on its ability to prevent oxidative stress into fibroblast. $	ext{H}_2\text{O}_2$, a powerful oxidizing agent, is usually used in senescent experiments [20,31]. The results showed that $	ext{H}_2\text{O}_2$ triggered cell death (approximate 25% of cells), inhibited proliferation, and induced cell senescence. Moreover, over half of the cells expressed SA b-gal, a gold marker for cell senescence [31,32]. These results showed that $	ext{H}_2\text{O}_2$ induced oxidative stress damage on fibroblasts [31,33]. In experiment groups, cells were pre-treated with AST (1–10 μg/ml) before $	ext{H}_2\text{O}_2$ treatment. The results showed that AST reduced cell death rate, maintained cell proliferation, and suppressed SA b-gal expression. It was concluded that AST (1–10 μg/ml) could defend fibroblast against $	ext{H}_2\text{O}_2$-induced oxidative stress, in which the 5 μg/ml was the best effective concentration.

Skin lesions on *Mus musculus* var. *Albino* was caused by UV irradiation, according to Kim et al. [21] with some modifications. We used the Extro UVB 150 lamp, which gives a high output UVB similar to the solar spectrum in deserts. The amount of UV irradiation was calculated based on the UVB intensity of this lamp measured by a UVB meter. After 6 weeks of treatment, some skin aging signs appeared, and the skin surface changed to be rough, sagging, and had many deep and shallow wrinkles. In this study, we want to examine AST as a topical skincare product that can be used one time a day (before sleeping). Hence, AST (20 or 200 μg/ml) was applied on the dorsal skin 8 hours before UV irradiation. The results showed the mouse skin retained initial characteristics, including smooth, reddish, and had many shallow wrinkles. So,
AST (20 or 200 μg/ml) ameliorated UV-induced skin lesions. We concluded that AST 20 μg/ml was the best effective concentration in this experiment.

5. CONCLUSION
AST was successfully extracted from *H. pluvialis* isolated in Vietnam. AST is a potent antioxidant that can prevent dangerous impacts from H₂O₂ and UV irradiation on the skin.

6. FINANCIAL SUPPORT
The study was supported by The Youth Incubator for Science and Technology Program, managed by Youth Development Science and Technology Center - Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “32/2019/HD-KHQC-VU”.

AUTHOR CONTRIBUTIONS
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.

CONFLICTS OF INTEREST
The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS
This study does not involve experiments on animals or human subjects.

PUBLISHER’S NOTE
This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES
1. Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and antiinflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2020;47(1):37–48.
2. Lim KC, Yusoff FM, Shariff M, Kamarudin MS. Astaxanthin as feed supplement in aquatic animals. Rev Aquac 2018;10(3):738–73.
3. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 2014;12(1):128–52.
4. Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 2011;17(4):355–64.
5. Brotosudarmo THP, Limantara L, Setiyono E, Heryanto. Structures of astaxanthin and their consequences for therapeutic application. Int J Food Sci 2020;2020:1–12.
6. Davinelli S, Nielsen M, Scapagnini G. Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients 2018;10(4):522.
7. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 2006;46(2):185–96.
8. Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Kurfurst R, Bonte F, Schnebert S, Le Varlet B, Nicolas JF. Photaging shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br J Dermatol 2003;149(4):826–35.
9. Kim M, Park HJ. Molecular mechanisms of skin aging and rejuvenation, in molecular mechanisms of the aging process and rejuvenation. 2016, IntechOpen, United Kingdom.
10. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauer DN. Photaging: mechanisms and repair. J Am Acad Dermatol 2006;55(1):1–19.
11. Tominaka K, Hongo N, Fujishita M, Takahashi Y, Adachi Y. Protective effect of astaxanthin on skin deterioration. J Clin Biochem Nutr 2017;61(1):33–9.
12. Lyons NM, OM’brien. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J Dermatol Sci 2002;30(1):73–84.
13. Camera E, Mastrofrancesco A, Fabbri C, Daurbrawa F, Picardo M, Sies H, et al. Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp Dermatol 2009;18(3):222–31.
14. Wong YK. Effects of light intensity, illumination cycles on microalgae *Haematococcus Pluvialis* for production of astaxanthin. J Mar Biol Aquaculture 2016;2(2):1–6.
15. Sarada R. An efficient method for extraction of astaxanthin from green alga *Haematococcus pluvialis*. J Agric Food Chem 2006;54:7585–8.
16. Su F, Xu H, Yang N, Liu W, Liu J. Hydrolytic efficiency and isomerization during de-esterification of natural astaxanthin esters by saponification and enzymolysis. Electron J Biotechnol 2018;34:37–42.
17. Chintong S, Phatvej W, Rerk-Am U, Waiprib Y, Klaypradit W. In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants (Basel) 2019;8(5):128.
18. Zuluaga M, Barzegari A, Letourneur D, Gueguen V, Pavon-Djavid G. Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: chemical, biological, and molecular antioxidant activity evaluation. Oxid Med Cell Longev 2017;2017:8073798.
19. Chintong S, Phatvej W, Rerk-Am U, Waiprib Y, Klaypradit W. In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants (Basel) 2019;8(5):1–11.
20. Yokozawa T, Satoh A, Kim YJ. Modulation of oxidative stress by proanthocyanidin in H2O2-exposed human diploid fibroblast cells. Biosci Biotechnol Biochem 2013;77(10):2056–60.
21. Kim HN, Gil CH, Kim YR, Shin HK, Choi BT. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice. Sci Rep 2016;6(1):1–10.
22. Agrawal R, Kaur J. Inhibitory effect of encapsulated curcumin on ultraviolet-induced photoaging in mice. Rejuvenation Res 2010;13:397–410.
23. Ramsden CA, Riley PA. Tyrosinase: the four oxidation states of the enzyme and their consequences for therapeutic application. Int J Food Sci 2020;2020:1–12.
24. Shah MM, Liang Y, Cheng JG, Daroch M. Astaxanthin-producing green microalga *Haematococcus pluvialis*: from single cell to high value commercial products. Front Plant Sci 2016;7:1–28.
25. Hong DD. Combined effects of nitrate concentration and illumination conditions on the growth of microalgae *Haematococcus pluvialis*. Tappi Chi Sinh Hoa 2012;34(4):493–9.
26. De Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet light induced generation of reactive oxygen species. Adv Exp Med Biol 2017;996:15–23.
27. Rastogi RP, Singh SP. Inhooesakdi A, Hader DP, Sinha RP. Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium *Rivularia* sp. HKAR-4. S Afr J Bot 2014;90:163–9.
28. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 2012;132(7):1901–7.
29. Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015;5(2):545–89.

30. Chou HY, Lee C, Pan JL, Wen ZH, Huang SH, Lan CW, et al. Enriched astaxanthin extract from *Haematococcus pluvialis* augments growth factor secretions to increase cell proliferation and induces MMP1 degradation to enhance collagen production in human dermal fibroblasts. Int J Mol Sci 2016; 17(6):955.

31. Kiyoshima T, Enoki N, Kobayashi I, Sakai T, Nagata K, Wada H, et al. Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts. Int J Mol Med 2012;30(5):1007–12.

32. Morgunova GV, Kolesnikov AV, Klebanov AA, Khokhlov AN. Senescence-associated β-galactosidase—a biomarker of aging, DNA damage, or cell proliferation restriction? Moscow Univ Biol Sci Bull 2015;70(4):165–7.

33. Park WH. H(2)O(2) inhibits the growth of human pulmonary fibroblast cells by inducing cell death, GSH depletion and G1 phase arrest. Mol Med Rep 2013;7(4):1235–40.