The postpartum uterine ultrasonographic scale in assessment of uterine involution after cesarean section in treated thrombophilia pregnant patients at term

Catalina Filip1 | Roxana Covali2 | Demetra Socolov3 | Alexandru Carauleanu3 | Ingrid Andrada Tanasa3 | Ioana Sadyie Scripcariu3 | Madalina Ciuhodaru4 | Tudor Butureanu4 | Ioana Pavaleanu4 | Mona Akad4 | Lucian Vasile Boiculese5 | Razvan Socolov4

Abstract

Background: Pregnancy is a prothrombotic condition which can be abnormally exaggerated in women with thrombophilia.

Methods: In a prospective study, patients who delivered at term, by cesarean section, between 1 October 2017 and 1 December 2021, who already had a diagnosis of thrombophilia before coming to our hospital, were included in the study group (n = 80). A similar number of nonthrombophilia patients (n = 80) without any history of thrombotic events, age- and para-matched with the study group, were included in the control group. The postpartum uterine ultrasonographic scale (PUUS) values, in the first 24–48 h, were correlated with the patients’ data.

Results: The P-LCR (platelet large cell ratio), was significantly higher in the treated thrombophilia group (p = 0.042). There was no correlation between PUUS and complete blood count values, coagulation factors, maternal characteristics, or fetal outcomes, except for postpartum neutrophils (p = 0.047) and postpartum platelet count (p = 0.046).

Conclusions: Postpartum uterine involution was not significantly different, after cesarean section, between treated thrombophilia patients and nonthrombophilia patients. Involution correlated only with postpartum neutrophils and postpartum platelet count.

KEYWORDS cesarean section, coagulation factors, complete blood count, fetal outcomes, maternal characteristics, postpartum uterine ultrasonographic scale, thrombophilia, uterine involution
INTRODUCTION

The pregnancy-induced shift in coagulation, as an adaptation to prevent postpartum bleeding, can be abnormally exaggerated in women with thrombophilia, especially after cesarean section, which doubles the risk of thrombotic events compared with vaginal deliveries. Thrombophilia is a group of genetic disorders that cause the blood to clot abnormally and is linked to adverse pregnancy outcomes. Therefore, antithrombotic treatment in pregnant patients with previous adverse fetal outcomes, and especially thrombophilia, is recommended.

Recurrence pregnancy loss is generated mainly by acquired thrombophilia (antiphospholipid antibody syndrome), according to Alessandru, while, according to Gandone, inherited thrombophilia (factor V Leiden) is mostly involved.

The risk of venous thromboembolism is five times higher in pregnant patients, than in nonpregnant ones, up to 20 times higher immediately after labor, and even higher in thrombophilia pregnant patients, and persists until nearly 12 weeks postpartum. Still, Lafalla could not correlate patient thrombophilia with placenta-mediated pregnancy complications; moreover, in patients undergoing low-molecular-weight heparin treatment and/or acid acetylsalicylic fetal outcomes improved, acting both as protective factors. The low-molecular-weight heparin may be effective in patients who had pre-eclampsia, or other pathologic vascular processes. On the contrary, according to Intzes, in patients having thrombophilia, the benefit of low-molecular-weight heparin for a live birth does not exist.

Assuming that uterine involution could be similar in treated thrombophilia patients and healthy patients, but different in non-treated thrombophilia patients, this work aimed to study whether there is any difference in the postpartum uterine involution, assessed in a numerical fashion, after cesarean section, between treated thrombophilia patients at term and nontreated thrombophilia patients, as well as to elucidate the relationship of this involution with maternal and fetal characteristics. The aim of the work is focused on the instrumental aspect (the ultrasonographic assessment), not on the laboratory values.

MATERIALS AND METHODS

Patients admitted in the Elena Doamna Obstetrics and Gynecology University Hospital in Iasi for delivery at term by cesarean section between 1 October 2017 and 1 December 2021 were prospectively studied. We included in the study group patients who delivered at term and who already had a diagnosis of thrombophilia before coming to our hospital. We included only thrombophilic patients identified on laboratory tests outside our hospital. We had no other symptomatic patients during the study period. The laboratory in our hospital cannot perform screening for thrombophilia patients, therefore we only included patients who already came with thrombophilia diagnosis established by specialized laboratories.

We compared them with a similar number of healthy patients who delivered by cesarean section, in our hospital, in the same period of time, who were age- and para-matched with the study group, without any history of thrombotic events or symptoms suggesting thrombotic events, and we sent their blood samples to the same external laboratory to determine any thrombophilia mutations; there were none. Thrombophilia patients who delivered vaginally were excluded from this study. Patients with thrombocytopenia, deep vein thrombosis, or cerebral thrombosis peripartum were also excluded from the study. There were 160 patients studied, with 80 patients in each group. Since all of the thrombophilia patients were already diagnosed before delivering in our hospital, they were also already receiving anticoagulant treatment. None of the thrombophilia patients had any vascular symptoms during the current hospitalization; all of them previously had recurrent pregnancy losses, which raised the suspicion of thrombophilia, and their blood samples were sent to specialized laboratories for thrombophilia screening.

All patients were examined postpartum by ultrasonography, in the first 24–48h postpartum, and the PUUS scale was used. The PUUS scale (Postpartum Uterine Ultrasonographic Scale) has previously been described, but briefly, and it is a visual scale that evaluates the number of quarters of the endometrial length occupied by blood or debris, ranging from 0 to 4, as follows:

- Grade 0: No blood or debris in the uterine cavity.
- Grade 1: Less than a quarter of the endometrial length occupied by blood or debris.
- Grade 2: Less than half of the endometrial length occupied by blood or debris.
- Grade 3: Less than three quarters of the endometrial length occupied by blood or debris.
- Grade 4: Over three quarters of the endometrial length occupied by blood or debris.

The PUUS scale was used because it is faster than laboratory findings, and evaluates exactly, in a numerical fashion, the uterine involution.

The values and characteristics of the patients’ blood following analysis were extracted from the hospital's medical records. For this work, the complete blood count values—the last ones antepartum and the first ones postpartum—were considered. The coagulation factors were harvested only antepartum. Hospital policy required that blood analysis was performed in both the 24h before and the 24h after labor.

The MAN-HEMATO Laboratory Equipment was used for the complete blood count, and the RAYTO RT-2201C Coagulation Analyzer for the coagulation factors.

This study was approved by the Ethics Committee of Elena Doamna Obstetrics and Gynecology University Hospital (approval number 9; 17 September 2017). Informed written consent was obtained from each patient.

Data were analyzed using SPSS version 18 (PASW Statistics for Windows, Chicago: SPSS Inc., Chicago, IL, USA). Descriptive measures were point-estimated for both categorical and numerical variables. The absolute and relative frequencies, averages, standard
deviations, median and quartiles were computed. Due to the fact that a lot of the distributions of the variables did not follow a normal curve, we applied comparisons using the nonparametric Mann–Whitney U-test and for correlation the Spearman formula. We have also applied the Student’s t-test when data follows a normal distribution. The standard significance level was 0.05 as a cutoff for statistical hypothesis decisions.

3 | RESULTS

The mutations of thrombophilia identified in the study group are described in Table 1. The antiphospholipid syndrome includes one or more of the following three factors: antihumanplasmin antibody of IgG and/or IgM isotype in serum or plasma, lupus anticoagulant present in plasma, and anti-b2 glycoprotein-I antibody of IgG and/or IgM isotype in serum or plasma.13,14 We only had one patient in the study group with lupus anticoagulant.

There were no thrombophilia mutations identified in the control group (Table 2).

These results were in accordance with Gulino,15 who found MTHFR gene mutation in most infertile patients selected for thrombophilia screening. The number of mutations for each patient is not detailed, since, according to Patounakis,16 outcomes cannot be predicted by the cumulative number of thrombophilic mutations present in the patient.

In the study group, there were 6 Rh incompatibility cases (7.5%), 2 of them (33.33%) tested negative for anti-Rh positive antibodies, the other 4 were not tested, and all 6 of them (100%) were administered anti-D immunoglobulin.

There was no significant difference (p = 0.366) between the PUUS grade in the two groups. There was no significant difference in blood values between the two groups, except for postpartum P-LCR, which was significantly higher in group 1 (treated thrombophilia group) (p = 0.042). There was no correlation between PUUS and the complete blood count values, except for postpartum neutrophils (p = 0.047) and postpartum platelet count (p = 0.046), whose mean values were not significantly different between the two groups.

Table 1

Thrombophilia mutations identified in the study group	Number	Percent
Gene MTHFR	43	53.75%
Factor V Leiden	17	21.25%
Plasminogen activator inhibitor	11	13.75%
Protein C	4	5.00%
Prothrombin G20210A	3	3.75%
Lupus anticoagulants	1	1.25%
Antithrombin	1	1.25%
Total	80	100%

Abbreviation: MTHFR, methylene tetrahydrofolate reductase.

Table 2

Thrombophilia mutations identified in the control group	Number	Percent
Gene MTHFR	0	0%
Factor V Leiden	0	0%
Plasminogen activator inhibitor	0	0%
Protein C	0	0%
Prothrombin G20210A	0	0%
Lupus anticoagulants	0	0%
Antithrombin	0	0%
Prothrombin	0	0%
Factor XIII V34L	0	0%
Anticardiolipin antibodies	0	0%
Antithrombin	0	0%
Anti-2-glycoprotein 1 antibodies	0	0%
Antithromboplatin antibodies	0	0%
Total	0	0%

Abbreviation: MTHFR, methylene tetrahydrofolate reductase.

3.1 | Patients’ characteristics

Though patients in the control group were selected to be age- and para-matched to the study group, gestation number was significantly higher in the thrombophilia group as a consequence of previous miscarriages generated by thrombophilia (Table 3). Gestational age was 38.13 weeks in the thrombophilia group and 38.50 weeks in the non-thrombophilia group (p = 0.912), and they were all at term pregnancies.

3.2 | PUUS values

There was no significant difference (p = 0.366) between the PUUS grade in the two groups (Table 4). Uterine involution was not significantly different.

There was no PUUS 4 value in these groups; therefore, value 4 for PUUS was removed in the next tables, and only values 0–3 were written.

3.3 | Complete blood count and coagulation factors

There was no significant difference in these values between the two groups, except for postpartum P-LCR, which was significantly higher in group 1 (treated thrombophilia group) (p = 0.042).

3.4 | Correlation between PUUS and complete blood count and coagulation factors

There was no correlation between PUUS and complete blood count values, except for postpartum neutrophils (p = 0.047) and...
postpartum platelet count ($p = 0.046$), whose mean values were not significantly different between the two groups (Table 5).

3.5 | PUUS and maternal blood group

There was no significant difference between the maternal blood groups ($p = 0.413$) in the two groups. The PUUS distribution is shown in Table 6.

Due to the lack of consistency, a Chi-square test could not be used to determine associations between PUUS and the blood groups.

3.6 | PUUS and the Rh factor

There was no significant difference between the Rh factor distribution ($p = 0.79$) in the two groups. The PUUS distribution is shown in Table 7.

Due to the lack of consistency, a Chi-square test could not be used to determine correlations between PUUS and the Rh factor.

3.7 | PUUS and fetal outcomes

There were no significant differences between the fetal outcomes in the two groups: weight ($p = 0.571$) or Apgar score ($p = 0.303$). There was no correlation between PUUS and fetal outcomes (Table 8).

3.8 | PUUS and fetal gender

Fetal gender was not significantly different between the two groups ($p = 0.627$). The PUUS distribution is shown in Table 9.

4 | DISCUSSION

Though there was a worldwide agreement about the benefits of low molecular weight heparin in patients having low risk thrombophilia, there was no agreement about dosage in patients at high risk.\(^\text{17}\) Despite this lack of consensus, the above results showed that treated thrombophilia pregnant patients had similar characteristics and outcomes to nonthrombophilia pregnant patients.

For Stamou,\(^\text{18}\) the use of low-molecular-weight heparin and/or acid acetylsalicylic was not related to live birth rates or late obstetric complications, nor was the etiology of thrombophilia; the only factor inversely related to live birth rates was age above the cutoff value of 35.5 years ($p = 0.049$). This was true for our patients, since we considered the thrombophilia patients altogether, and the results were similar to those of the nonthrombophilia patients; we only had 15 patients aged over 35, but their results did not differ to the results of the other patients.

There was also no difference in the chromosomal aberration rate between the factors for recurrent pregnancy loss, with or without thrombophilia, and antithrombotic therapy; only advancing maternal age was significantly correlated with increased embryo chromosomal aberration rates.\(^\text{19}\) On the contrary, according to Kurodawa,\(^\text{20}\) the live birth rate in thrombophilia patients treated with low-dose aspirin increased in all patients, except for those older than 40 years old. Our patients were treated with low-molecular-weight heparin, not aspirin, but there was no difference regarding age.

Heparin-derived compounds significantly contribute to the prevention and treatment of thrombotic events in pregnancy, respiratory inflammation, renal diseases, sepsis, and pancreatitis, among others.\(^\text{21}\) Low-molecular-weight heparin also has a positive effect on thrombophilia IVF patients,\(^\text{22}\) because it decreases coagulation in

Patients	Thrombophilia patients ($n = 80$)	Nonthrombophilia patients ($n = 80$)	Significance, p
Age (years)	30 (± 5) 30 ($27-34$)	30 (± 5) 30 ($27-34$)	0.944
Gestation (number)	3 (± 1) 3 ($2-3$)	2 (± 1) 2 ($1-2$)	<0.001
Parity (number)	2 (± 1) 2 ($1-2$)	2 (± 1) 2 ($1-2$)	0.213

Note: The nonparametric Mann-Whitney test was used for comparisons.
small blood vessels and increases trophoblast development.\(^{23}\) This is in accordance with what we found, that treated thrombophilia patients had the same outcomes as normal patients.

Ultrasoundography is the mainstay in the initial imaging evaluation of a postpartum patient, with occasional progression to computed body tomography, magnetic resonance imaging, or angiography.\(^{24}\) Vyas\(^{27}\) is in accordance with what we found, that treated thrombophilia patients had the same outcomes as normal patients.

Layer to positive maternal outcomes. However, all of these methods are time-consuming. The PUUS method is easier and can be adapted to a patient’s body size.

TABLE 5 Patients’ characteristics correlated with PUUS: mean values (and standard deviations)

Characteristics	Thrombophilia patients (n = 80)	Nonthrombophilia patients (n = 80)	Significance, p
P NEUT	7.59 (±3.03)	8.01 (±3.64)	0.891
P PLT	223.01 (±64.57)	242.33 (±63.49)	0.089

Abbreviations: P NEUT, postpartum neutrophils; P PLT, postpartum platelet count.

TABLE 6 PUUS values as regards maternal blood group in the two groups

Blood group	PUUS grade	Thrombophilia patients (n = 80)	Nonthrombophilia patients (n = 80)
O	0	20 (87.0%)	20 (90.9%)
	1	1 (4.3%)	2 (9.1%)
	2	1 (4.3%)	0 (0.0%)
	3	1 (4.3%)	0 (0.0%)
A	0	28 (80%)	33 (82.5%)
	1	4 (11.4%)	4 (10%)
	2	2 (5.6%)	3 (7.5%)
	3	1 (2.9%)	0 (0.0%)
B	0	13 (72.2%)	10 (90.9%)
	1	2 (11.1%)	0 (0.0%)
	2	2 (11.1%)	1 (9.1%)
	3	1 (5.6%)	0 (0.0%)
AB	0	4 (100%)	6 (85.7%)
	1	0 (0.0%)	0 (0.0%)
	2	0 (0.0%)	0 (0.0%)
	3	0 (0.0%)	1 (14.3%)

TABLE 7 PUUS values as regards the Rh factor in the two groups

PUUS value	Thrombophilia patients (n = 80)	Nonthrombophilia patients (n = 80)
	Rh+	Rh-
	Rh+	Rh-
0	57 (80.28%)	8 (88.88%)
	61 (84.72%)	8 (100%)
1	6 (8.45%)	1 (11.11%)
	6 (8.33%)	0 (0%)
2	5 (7.04%)	0 (0%)
	4 (5.55%)	0 (0%)
3	3 (4.22%)	0 (0%)
	1 (1.38%)	0 (0%)
4	0 (0%)	0 (0%)
	0 (0%)	0 (0%)
Total	71 (100%)	9 (100%)

Fibrinogen was also considered part of a logistic regression model to estimate the risk of thrombophilia in pregnant women, together with activated partial thromboplastin time, among others.\(^{35}\) Gris\(^{34}\) tried to establish two quantitative scores as references for coagulation assays performed for thrombophilia screening, prescribed according to guidelines, after a first venous thromboembolic event. We found no correlation between the PUUS scale and coagulation factors in the treated thrombophilia patients.

In patients receiving heparin, coagulation function is assessed by determining APTT or, less frequently, anti-activated factor X,\(^ {35}\) with similar sensibility.\(^{36}\) Low-dose unfractionated heparin prophylaxis decreases the incidence of venous thromboembolism in hospitalized patients, but increases the risk of bleeding events; therefore, patients who develop a prolonged activated partial thromboplastin time while on low-dose unfractionated heparin may be at higher risk of bleeding complications.\(^{37}\) We reported no patient with prolonged activated partial thromboplastin time while treated with low-dose unfractionated heparin.

We reported significantly higher postpartum P LCR in treated thrombophilia patients than in normal patients. Generally, the platelet-large cell ratio (P-LCR) increased with age,\(^ {38}\) but in the case of postpartum patients, a higher value of P LCR can be interpreted...
as the presence of a high percentage of new platelets characterized by a greater size,39 since young platelets are larger and more active than mature cells,40 and contain greater amounts of thromboxane A1 and beta-thromboglobulin.41,42 This means that labor triggered the release of more numerous young platelets and an increase in P-LCR, but only in thrombophilia patients.

The PUUS scale demonstrated that postpartum uterine involution in treated thrombophilia patients was the same as in healthy patients, therefore the PUUS scale can be an easy method to assess, in a numerical fashion, the uterine involution immediately postpartum in treated thrombophilia patients. Further studies to assess the uterine involution during the follow up of thrombophilia patients, with or without treatment, would be interesting5.

This study has several weaknesses. First, a larger study would be necessary to confirm these results. Second, a correlation between PUUS grade and the dose of low-molecular-weight heparin, requiring more patients, should follow this study. Third, it only included treated thrombophilia pregnant patients at term, while patients who were untreated, with miscarriages or preterm birth, were not studied. Though the assessment of PUUS may seem to have no clinical value in treated thrombophilia patients, the results might be totally different in patients who have not been treated yet. Fourth, a larger study to compare the different types of thrombophilia and the uterine involution evaluated by the PUUS scale might show some significant differences. Fifth, a larger study would be useful to evaluate the diffusion of the single mutation of MTHFR Factor in general population, as a reason for an increasing risk of thrombophilia.

5 | CONCLUSIONS

Postpartum uterine involution was not significantly different between treated thrombophilia patients and nontrombophilia patients. Involution correlated only with postpartum neutrophils and postpartum platelet count.

AUTHOR CONTRIBUTIONS
Conceptualization, Catalina Filip and Roxana Covali; data curation, Mona Akad; formal analysis, Lucian Boiculese; funding acquisition, Catalina Filip; Investigation, Alexandru Carauleanu and Madalina Irina Ciuhodaru; Methodology, Ioana Pavaleanu and Demetra Socolov; Project administration, Răzvan Socolov; Resources, Mona Akad; Software, Lucian Boiculese; Supervision, Răzvan Socolov; Validation, Demetra Socolov and Sadyie Scripcariu; Visualization, Demetra Socolov; Writing—original draft, Roxana Covali and Tudor Butureanu; Writing—review and editing, Alexandru Carauleanu, Sadyie Scripcariu and Ingrid Andrada Tanasa. All authors read and agreed to the published version of the article.

ACKNOWLEDGMENTS
None.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data can be obtained from the corresponding author upon reasonable request.
INSTITUTIONAL REVIEW BOARD STATEMENT
This study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of Elena Doamna Obstetrics and Gynecology University Hospital (Approval number 9; 17 September 2017).

INFORMED CONSENT STATEMENT
Informed consent was obtained from all subjects involved in the study.

ORCID
Roxana Covali https://orcid.org/0000-0002-7386-0859

REFERENCES
1. Han AR, Han JW, Lee SK. Inherited thrombophilia and anticoagulant therapy for women with reproductive failure. Am J Reprod Immunol. 2021 Apr;85(4):e13378. doi:10.1111/aji.13378
2. Larsson C, Matsson A, Moeo T, Söderström L, Tunön K, Nordin P. Cardiovacular complications following cesarean section and vaginal delivery: a national-population based study. J Matern Fetal Neonatal Med. 2021 Jul 18;1-8. doi:10.1080/14767058.2021.1941851. Online ahead of print.
3. Voicu DI, Munteanu O, Ghergheceanu F, et al. Maternal inherited thrombophilia and pregnancy outcomes. Exp Ther Med. 2020 Sep;20(3):2411-2414. doi:10.3829/etm.2020.8747
4. Dugalic S, Petronijevic M, Stefanovic A, et al. Perinatal complications related to inherited thrombophilia: review of evidence in different regions of the world. J Matern Fetal Neonatal Med. 2021 Aug;34(15):2567-2576. doi:10.1080/14767058.2019.1669017
5. Bohilte RE, Cirstea MM, Turcan N, et al. Inherited thrombophilia is significantly associated with severe preeclampsia. Exp Ther Med. 2021 Mar;21(3):261. doi:10.3829/etm.20219691
6. Grandone E, Tiscia G, Mastroianno M, et al. Findings from a amulticentre, observational study on reproductive outcomes in women with unexplained recurrent pregnancy loss: the OTTTLIA registry. Hum Reprod. 2021 Jul 19;36(8):2083-2090. doi:10.1093/humrep/deab153
7. Aleksandru D, Klimezak A, Garcia Velasco J, Pirtea P, Fransiski J. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil Steril. 2021 Mar;115(3):561-566. doi:10.1016/j.fertnstert.2021.01.017
8. Grandone E, Piazza G. Thrombophilia, inflammation and recurrent pregnancy loss: a case-base review. Semin Reprod Med. 2021 Mar;39(1-2):62-68. doi:10.1055/s-0041-1731827
9. Umerah C, Momodu I. Anticoagulation. In: StatPears [Internet]. StatPears Publishing; 2022 Jan. 2021 Dec 27.
10. Lafalla O, Esteban LM, Lou AC, et al. Clinical utility of thrombophilia, anticoagulant treatment and maternal variables as predictors of placenta-mediated pregnancy complications: an extensive analysis. J Matern Fetal Neonatal Med. 2021 Feb;34(4):588-598. doi:10.1080/14767058.2019.1611764
11. Simcox L, Ormehser L, Tower C, Greer I. Thrombophilia and pregnancy complications. Int J Mol Sci. 2015 Nov 30;16(12):28418-28428. doi:10.3390/ijms161226104
12. Intzes S, Symenidou M, Zagaridis K, Stamou M, Spanoudaki A, Spanoudakis E. Hold your needles in women with recurrent pregnancy losses with or without hereditary thrombophilia: meta-analysis and review of the literature. J Gynecol Obstet Hum Reprod. 2021 Apr;50(4):101935. doi:10.1016/j.jogoh.2020.101935
13. Devreese KMJ, de Groot PG, de Laat B, et al. Guidance from the scientific and standardization committee for lupus anticoagulant/antiphospholipid antibodies of the international society on thrombosis and Haemostasis. J Throm Haemost. 2020:18:2828-2839. doi:10.1111/jth.15047
14. Gomez-Puerta J, Cervera R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014;48:49-20.25. doi:10.1016/j.jaut.2014.01.006
15. Gulino FA, Caproglione S, Faustia M, et al. Which are the most common thrombophilic genetic nucleotide polymorphisms in infertile women undergoing an IVF cycle? Gynecol Endocrinol. 2016 Nov;32(11):896-899. doi:10.1080/09513590.2016.1188378
16. Patounakis G, Bergh E, Forman E, et al. Multiple thrombophilic single nucleotide polymorphisms lack a significant effect on outcomes in fresh IVF cycles: an analysis of 1717 patients. J Assist Reprod Genet. 2016 Jan;33(1):67-73. doi:10.1007/s10815-015-0606-z
17. Cohen A, Boggio L, Billett H, et al. North American physician practice patterns in the management of anticoagulation in pregnancy. J Womens Health (Larchmt). 2021 Jun;30(6):829-836. doi:10.1089/jwh.2020.8385
18. Stamou M, Intzes S, Symenidou M, et al. Reproductive failure and thrombophilia: not enough evidence for a tight bond. Acta Hematol. 2022;145(2):170-175. doi:10.1159/0005020439. Epub 2021 Dec 8.
19. Ouchi N, Takeshita T, Kasano S, et al. Effects of thrombophilia and antithrombotic therapy on embryonic chromosomal aberration rates in patients with recurrent pregnancy loss. J Nippon Med Sch. 2022;89(1):40-46. doi:10.1272/jnms.JNMS2022_89-103. Epub 2021 Apr 19.
20. Kuroda K, Ikemoto Y, Horikawa T, et al. Novel approaches to the management of recurrent pregnancy loss: the OPTIMUM (OPTimization of thyroid function, thrombophilia, immunity, and uterine milieu) treatment strategy. Reprod Med Biol. 2021 Sep 14;20(4):524-536. doi:10.1002/rmb.212412. eCollection 2021 Oct.
21. Chen D. Heparin beyond anti-coagulation. Curr Res Transl Med. 2021 Oct;69(4):103300. doi:10.1016/j.retram.2021.103300
22. Potdar N, Gelbaya T, Konje J, Nardo L. Adjunct low-molecular weight heparin to improve live birth rate after recurrent implantation failure: a systematic review and meta-analysis. Hum Reprod Update. 2013 Nov-Dec;19(6):674-684. doi:10.1093/humupd/dmt032
23. Dentali F, Grandone E, Rezoagli E, Ageno W. Efficacy of low molecular weight heparin to improve live birth rate after recurrent implantation failure: a systematic review and meta-analysis. Hum Reprod Update. 2021 Nov;37(3):857-862. doi:10.10140/021-019270-0
24. Ucci MA, Di Mascio D, Bellussi F, Berghella V. Ultrasound evaluation of the uterus in the uncomplicated postpartum period: a systematic review. Am J Obstet Gynecol MFM. 2021 May;3(3):100318. doi:10.1016/j.ajomgf.2021.100318
25. Levinson-Tavor O, Zilberman Sharon N, Feldman N, et al. Managing patients with suspected postpartum retained products of conception using a novel sonographic classification. J Thromb Haemost. 2021 Dec 9;12:2503-2506. doi:10.1111/jth.1538-7836.2011.04535.x
26. Kostrubiai DK, DeHay P, Akselrod D, D’Agostino R, Tam J. Emergent postpartum pelvic sonography. Emerg Radiol. 2021 Aug;28(4):857-862. doi:10.1007/s10140-021-01927-0
27. Vyas S, Choi H, Whetstone S, Jha P, Poder L, Shum D. Ultrasound features help identify patients who can undergo noninvasive management for suspected retained products of conception: a single institutional experience. Abdom Radiol (NY). 2021 Jun;46(6):2729-2739. doi:10.1007/s00261-020-02948-y
28. Spooner M, Lenis Y, Watson R, Jaimes D, Patterson A. The role of stem cells in uterine involution. Reproduction. 2021 Mar;161(3):R61-R77. doi:10.1530/REP-20-0425.e
29. Tal R, Kisa J, Abuwala N, et al. Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells. 2021 Nov;39(11):1489-1505. doi:10.1002/stem.3431
30. Gil-Sanchis C, Cervelló I, Khurana S, Faus A, Verfaillie C, Simón C. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model. *Fertil Steril*. 2015 Jun;103(6):1596-605e1. doi:10.1016/j.fertnstert.2015.02.030

31. Chapman J, Zhang Y. Histology, hematopoiesis. In: StatPearls [Internet]. StatPearls Publishing; 2022 Jan. 2021 May 10.

32. Alhousseini A, Romero R, Benshalom-Tirosh N, et al. Nonovert disseminated intravascular coagulation (DIC) in pregnancy: a new scoring system for the identification of patients at risk for obstetrical hemorrhage requiring blood product transfusion. *J Matern Fetal Neonatal Med*. 2022 Jan;35(2):242-257. doi:10.1080/14767058.2020.1716330

33. Wang T, Kang X, He L, Liu Z, Xu H, Zhao A. Prediction of thrombophilia in patients with unexplained recurrent pregnancy loss using a statistical model. *Int J Gynaecol Obstet*. 2017 Sep;138(3):283-287. doi:10.1002/ijgo.12213

34. Gris J-C, Cochery-Nouvellon E, Bourguignon C, et al. Reference values of coagulation assays performed for thrombophilia screening after a first venous thrombosis and their intra-patient associations. *Thromb Res*. 2022 Jan 12;210:94-103. doi:10.1002/throm.2020.01.005. Online ahead of print.

35. Toulon P, Smahi M, De Pooter N. APTT therapeutic range for monitoring unfractionated heparin therapy. Significant impact of the anti-Xa reagent used for correlation. *J Thromb Haemost*. 2021 Aug;19(8):2002-2006. doi:10.1111/jth.15264

36. Swayngim R, Preslaski C, Burliew CC, Beyer J. Comparison of clinical outcomes using activated partial thromboplastin time versus antifactory Xa for monitoring therapeutic unfractionated heparin: a systematic review and meta-analysis. *Thromb Res*. 2021 Dec;208:18-25. doi:10.1016/j.thromres.2021.10.010

37. Feinbloom D, Freed J, Carbo A, Jung Y, Adra M, Herzog S. Incidence and risk factors for PTT prolongation in patients receiving low-dose unfractionated heparin thromboprophylaxis. *J Thromb Thrombolysis*. 2021 Jul;52(1):331-337. doi:10.1007/s11239-020-02294-2

38. Vásquez-Santiago M, Ziyatdinov A, Pujol-Moix N, et al. Age and gender effects on 15 platelet phenotypes in a Spanish population. *Comput Biol Med*. 2016 Feb;69:226-233. doi:10.1016/j.compbiomed.2015.12.023

39. Marcinkowska A, Cisiecki S, Rozalski M. Platelet and thrombophilia-related risk factors of retinal vein occlusion. *J Clin Med*. 2021 Jul 12;10(14):3080. doi:10.3390/jcm10143080

40. Ntaios G, Papadopoulos A, Chatzinikolaou A, et al. Increased values of mean platelet volume and platelet size deviation width may provide a safe positive diagnosis of idiopathic thrombocytopenic purpura. *Acta Haematol*. 2008;119(3):173-177. doi:10.1159/000135658

41. Martin J, Kristensen S, Mathur A, Grove E, Choudry F. The causal role of megakaryocyte-platelet hyperactivity in acute coronary syndromes. *Nat Rev Cardiol*. 2012 Nov;9(11):658-670. doi:10.1038/nrcardio.2012.131

42. Chen Q, Chen Y, Zhang Y, et al. Prognostic impact of platelet-large cell ratio in myelodysplastic syndromes. *Front Oncol*. 2022 Apr 1;12:846044. doi:10.3389/fonc.2022.846044 eCollection 2022.

How to cite this article: Filip C, Covali R, Socolov D, et al. The postpartum uterine ultrasonographic scale in assessment of uterine involution after cesarean section in treated thrombophilia pregnant patients at term. *J Clin Lab Anal*. 2022;36:e24645. doi: 10.1002/jcla.24645