Superpotential method for $F(R)$ cosmological models

S.Yu. Vernova, V.R. Ivanovb,† E.O. Pozdeevaa,‡

a Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia

b Physics Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991, Moscow, Russia

Abstract

We construct the $F(R)$ gravity models with exact particular solutions using the conformal transformation and the superpotential method for the corresponding models in the Einstein frame. The functions $F(R)$ are obtained explicitly. We consider exact solutions for the obtained R^2 gravity model with the cosmological constant in detail.

1 Introduction

The $F(R)$ gravity is one of the most popular generalizations of the general relativity [1,2,3]. The $F(R)$ gravity models are actively used to describe different epochs of the Universe evolution. For example, the Starobinsky R^2 inflationary model [4] (see also [5]) leads to the predictions that do not contradict to the observation data [6]. Dark energy $F(R)$ models are actively investigated and analyzed, for example, in papers [7,8,9,10,11,12,13,14,15]. Moreover, there are $F(R)$ gravity models that can describe both inflation and the late time cosmic acceleration [16,17,18].

Exact solutions play an important role in cosmology and the search of integrable $F(R)$ models as well as models with exact particular solutions is an interesting problem [19,20]. A $F(R)$ gravity model can be transformed into a model with a minimally coupled scalar field with a canonical kinetic term by the metric and scalar field transformations [21]. There are a few methods to construct models with minimally coupled scalar fields with exact cosmological solutions. One of the popular methods is the superpotential one [22,23] (also known as the Hamilton–Jacobi method or the first-order formalism). In this paper, we generalize this method on $F(R)$ gravity models to get such models with exact solutions. We show a few examples of such models with an explicit dependence of $F(R)$.

*E-mail: svernov@theory.sinp.msu.ru

†E-mail: vsvd.ivanov@gmail.com

‡E-mail: pozdeeva@www-hep.sinp.msu.ru
2 The corresponding Einstein frame models

Let us consider an $F(R)$ gravity model:

$$S_R = \int d^4 \tilde{x} \sqrt{-\tilde{g}} F(R),$$

where $F(R)$ is a double differentiable function of the Ricci scalar R. Introducing a new scalar field σ without the kinetic term, we rewrite S_R as follows [21, 24]:

$$\tilde{S}_J = \int d^4 \tilde{x} \sqrt{-\tilde{g}} \left[\partial F(\sigma) \frac{\partial}{\partial \sigma} (R - \sigma) + F(\sigma) \right].$$

By the conformal transformation of the metric $g_{\mu\nu} = \frac{2}{f(\sigma)} \tilde{g}_{\mu\nu}$, where $f \equiv \frac{df(\sigma)}{d\sigma}$, one gets the following action in the Einstein frame [25]:

$$S_E = \int d^4 x \sqrt{-g} \left[\frac{M^2_{Pl}}{2} R_E - \frac{h(\sigma)}{2} g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma - V_E \right],$$

where

$$h(\sigma) = \frac{3M^2_{Pl}}{2f^2} \left(\frac{df}{d\sigma} \right)^2, \quad V_E = \frac{M^4_{Pl}}{4f^2} f \sigma - F.$$

Introducing the scalar field

$$\psi = \sqrt{\frac{3}{2}} M_{Pl} \ln \left(\frac{2}{M^2_{Pl}} f(\sigma) \right),$$

we obtain the action S_E as follows:

$$S_E = \int d^4 x \sqrt{-g} \left[\frac{M^2_{Pl}}{2} R_E - \frac{1}{2} \partial_\mu \psi \partial_\mu \psi - V_E(\psi) \right].$$

So, we get the Einstein frame model with a standard scalar field. To obtain inverse transformation we present the potential and its derivative in the following form:

$$V_E(\psi) = \frac{M^2_{Pl}}{2} Re^{-\frac{3\sqrt{6}}{2M_{Pl}}} - Fe^{-\frac{2\psi}{M_{Pl}}}, \quad \frac{dV_E(\psi)}{d\psi} = -\frac{M_{Pl}}{\sqrt{6}} Re^{-\frac{3\sqrt{6}}{2M_{Pl}}} + \frac{4}{\sqrt{6}M_{Pl}} Fe^{-\frac{2\psi}{M_{Pl}}}.$$

So, we get the function $F(R)$ in a parametric form [26, 27, 28]:

$$R = \left[\frac{\sqrt{6}}{M_{Pl}} \frac{dV_E}{d\psi} + \frac{4V_E}{M^2_{Pl}} \right] e^{\frac{\psi}{3M_{Pl}}},$$

$$F = \frac{M^2_{Pl}}{2} \left[\frac{\sqrt{6}}{M_{Pl}} \frac{dV_E}{d\psi} + \frac{2V_E}{M^2_{Pl}} \right] e^{\frac{\psi}{3M_{Pl}}}.$$

So, if model with one minimally coupled scalar field has exact solutions, then the corresponding $F(R)$ gravity model has them as well. The goal of this paper is to find such potentials V_E that the Einstein frame model has exact solutions and the function $F(R)$ can be found in the analytic form.
3 Construction of $F(R)$ gravity models

If Eq. (6) has the solution

$$R = C_1 + C_k e^{k \psi_{M_P}} ,$$

where C_1 and $C_k \neq 0$ are arbitrary constants, then the function $F(R)$ can be obtained in the analytic form. From Eqs. (6) and (8), we get the following linear first order differential equation for the potential V_E:

$$\left[\sqrt{6} \frac{dV_E}{M_{Pl}} + 4 \frac{V_E}{M_{Pl}^2} \right] e^{\frac{k}{3} \psi_{M_P}} = C_1 + C_k e^{k \psi_{M_P}} .$$

Equation (9) has the general solution:

$$V_E(\psi) = \frac{M_{Pl}^2}{2} \left(C_2 e^{-\frac{2}{3} \psi_{M_P}} + C_1 e^{-\frac{\psi_{M_P}}{3}} + C_\omega e^{\frac{\psi_{M_P}}{3}} \right) ,$$

where C_2 is an integration constant, $\omega = \sqrt{6k}/2 - 1$, and $C_\omega = \frac{\sqrt{6k}}{\sqrt{6+3k}} = \frac{C_k}{\omega+2}$.

Substituting the potential (10) into (6) and (7), we obtain the following expressions:

$$R = C_\omega (\omega + 2) e^{(\omega + 1) \frac{\psi_{M_P}}{3}} + C_1 , \quad F = \frac{M_{Pl}^2}{2} \left(C_\omega (\omega + 1) e^{(\omega + 2) \frac{\psi_{M_P}}{3}} - C_2 \right) .$$

Finally, we get

$$F(R) = \frac{M_{Pl}^2}{2} \left(C_\omega (\omega + 1) \left(\frac{R - C_1}{C_\omega (\omega + 2)} \right)^{\frac{\alpha}{\omega+2}} - C_2 \right) , \quad \text{where } \alpha = \frac{\omega + 2}{\omega + 1} .$$

It is easy to see that $\alpha \neq 1$ for any ω, also $\alpha = 2$ corresponds to $\omega = 0$.

4 The search of exact solutions

Let us consider the potential (10) in the case of $C_1 = C_2 = 0$. If $\omega \neq 0$, then we get an exponential potential and an integrable cosmological model [22, 29, 30, 31]. The general solutions of this model can be found explicitly in a parametric time [30]. The general solutions of the corresponding R^α models with an arbitrary α, but $\alpha \neq 2$ and $\alpha \neq 1$, can be obtained from the general solution of the model with an exponential potential by the conformal transformation of the metric. In the case of $\omega = 0$, we get the model with the cosmological constant that is integrable (the general solution is presented in [32, 33]) and corresponds to a pure R^2 gravity model.

To prove the integrability of the cosmological model with an exponential potential the superpotential method has been used in the paper [22]. This method is actively used to get cosmological models with exact particular solutions both with one scalar field [22, 23, 34, 35, 36, 37, 38] and with a few scalar fields [22, 39, 40, 41], as well as to construct inflationary models [42, 43, 44, 45]. We use this method to get models with exact solutions in the cases of $C_1^2 + C_2^2 \neq 0$.

For the spatially flat Friedmann–Lemaître–Robertson–Walker metric with

$$ds^2 = -dt^2 + a_E^2(t) \left(dx_1^2 + dx_2^2 + dx_3^2 \right) ,$$

(13)
the Einstein equations can be written in the following form:

\[\dot{\psi} = -2M_{Pl}^2 W', \]

\[V_E = 3M_{Pl}^2 W^2 - 2M_{Pl}^4 W'^2, \]

where the Hubble parameter \(H_E \equiv \dot{a}/a = W(\psi) \) and \(W' = \frac{dW}{d\psi} \).

Choosing the superpotential

\[W(\psi) = W_a e^{\frac{\sqrt{2}\psi}{2M_{Pl}} + W_b e^{\frac{\sqrt{2}\psi}{2M_{Pl}}}}, \]

where \(a, b, W_a \) and \(W_b \) are constants, we get the following potential:

\[V_E = 6 \left(W_a^2 (1 - a^2) e^{\frac{\sqrt{2}\psi}{2M_{Pl}}} + 2W_a W_b (1 - ab) e^{\frac{\sqrt{2}\psi}{2M_{Pl}}} + W_b^2 (1 - b^2) e^{\frac{\sqrt{2}\psi}{2M_{Pl}}} \right). \]

For some values of parameters \(a \) and \(b \), we get potentials in the form \(\Box \) and the corresponding \(F(R) \) gravity models with exact solutions (see Table \(\Box \)). We can assume that \(a < b \) without loss of generality. In the cases \(a = -1/3, b = 1 \) and \(a = -1, b = 1/3 \) the resulting \(F(R) \) models are coincide. In the general case the particular solution \(\psi(t) \) can be obtained in quadratures by integrating Eq. \(\Box \).

\(a, b \)	\(\omega \)	\(\alpha \)	\(C_2 \)	\(C_1 \)	\(C_\omega \)	\(2F(R)/M_{Pl}^2 \)	
\(a = -\frac{2}{3}, b = 0 \)	0	2	10/3 \(W_a^2 \)	12 \(W_a W_b \)	6 \(W_b^2 \)	\(\frac{1}{24W_b^2} R^2 - \frac{W_a}{W_b} R + \frac{8W_a^2}{3} \)	
\(a = -\frac{2}{3}, b = 1 \)	1/2	5/3	10/3 \(W_a^2 \)	0	20 \(W_a W_b \)	30 \(W_a W_b \)	\(\sqrt{\frac{R}{50W_a W_b}} \) \(5/3 \) - \(10W_b^2/3 \)
\(a = -1, b = \frac{1}{3} \)	1	3/2	0	16 \(W_a W_b \)	6 \(W_a^2 \)	\(\frac{32}{3} W_b^2 \)	\(\frac{1}{16W_b^2} R - \frac{W_a}{W_b} \) \(3/2 \)
\(a = -\frac{1}{3}, b = 1 \)	1	3/2	0	\(\frac{16}{3} W_a^2 \)	16 \(W_a W_b \)	32 \(W_a W_b \)	\(\frac{1}{8W_a W_b} R - \frac{W_a}{W_b} \) \(3/2 \)
\(a = -3, b = -\frac{1}{3} \)	-9	7/8	0	\(\frac{16}{3} W_b^2 \)	-48 \(W_a^2 \)	384 \(W_a^2 \)	\(\frac{1}{336W_a} R - \frac{W_a}{W_b} \) \(7/8 \)
\(a = -\frac{7}{3}, b = 1 \)	-7	5/6	40 \(W_a W_b \)	0	-\(\frac{80}{3} W_a^2 \)	160 \(W_a^2 \)	\(\frac{3R}{400W_a^2} \) \(5/6 \) - 40 \(W_a W_b \)
\(a = -\frac{5}{3}, b = 1 \)	-5	3/4	0	32 \(W_a W_b \)	-\(\frac{32}{3} W_a^2 \)	\(\frac{128}{3} W_a^2 \)	\(\frac{R}{32W_a^2} - \frac{W_a}{W_b} \) \(3/4 \)
\(a = -\frac{3}{2}, b = -\frac{2}{3} \)	-9/2	5/7	\(\frac{10}{3} W_b^2 \)	0	-\(\frac{15}{2} W_a^2 \)	\(\frac{105}{4} W_a^2 \)	\(\frac{4R}{75W_a^2} \) \(5/4 \) - \(10W_a^2/3 \)
\(a = -1, b = -\frac{2}{3} \)	-5/2	1/3	\(\frac{10}{3} W_b^2 \)	0	4 \(W_a W_b \)	6 \(W_a W_b \)	\(\frac{1}{2W_a W_b} R \) \(3/4 \) - \(10W_a^2/3 \)
\(a = -\frac{2}{3}, b = -\frac{1}{3} \)	-3/2	-1	\(\frac{10}{3} W_a^2 \)	\(\frac{16}{3} W_b^2 \)	\(\frac{28}{3} W_a W_b \)	\(\frac{196W_a^2 W_b^2}{3(3R - 16W_b)} \) - \(10W_b^2/3 \)	

5. The case of the \(R^2 \) gravity

Let us consider in detail the case of the \(R^2 \) gravity model with

\[F(R) = \frac{M_{Pl}^2}{2} \left(\frac{1}{24W_b^2} R^2 - \frac{W_a}{W_b} R + \frac{8W_a^2}{3} \right), \]
that corresponds to $W(\psi) = W_a \exp\left(-\frac{\sqrt{6} \psi}{3M_{Pl}}\right) + W_b$.

Equation (14) leads to

$$\frac{d\psi}{dt} = \frac{2\sqrt{6}}{3} M_{Pl} W_a e^{-\frac{\sqrt{6} \psi}{3M_{Pl}}}, \quad \Rightarrow \quad \psi = \frac{\sqrt{6}}{2} M_{Pl} \ln\left(\frac{4W_a}{3} (t - t_0)\right),$$

(19)

where t_0 is an integration constant.

Substituting $\psi(t)$ into $W(\psi)$, we get the Hubble parameter for the model with the scalar field:

$$H_E = \frac{3}{4(t - t_0)} + W_b.$$

(20)

In the initial $F(R)$ model, we get the Friedmann–Lemaître–Robertson–Walker metric

$$ds^2 = -\frac{M_{Pl}^2}{2f(R)} dt^2 + \tilde{a}^2 (dx_1^2 + dx_2^2 + dx_3^2), \quad \text{where} \quad \tilde{a}^2 = \frac{M_{Pl}^2}{2f(R)} a_E^2.$$

(21)

Using Eq. (11), we get

$$f(R) = \frac{M_{Pl}^2}{2} \exp\left(\frac{\sqrt{6}}{3} \frac{\psi}{M_{Pl}}\right) = \frac{2}{3} M_{Pl} W_a (t - t_0).$$

The cosmic time in this frame is

$$\tilde{t} = \sqrt{\frac{M_{Pl}^2}{2f(\sigma)}} dt = \sqrt{\frac{3(t - t_0)}{W_a}} + \tilde{t}_0.$$

(22)

The corresponding Hubble parameter can be presented in the form:

$$\tilde{H} = \tilde{a}^{-1} \frac{d\tilde{a}}{dt} = \sqrt{\frac{2f(R)}{M_{Pl}^2}} \left[H_E - \frac{1}{2} \frac{d\ln(f)}{dt} \right] = \frac{1}{2(t - t_0)} + \frac{2}{3} W_b W_a (\tilde{t} - \tilde{t}_0).$$

(23)

The first term of this expression corresponds to the radiation dominated universe, whereas the second term is the Ruzmaikina–Rusmaikin solution [46].

6 Conclusions

In this paper, we have found a few $F(R)$ gravity models with exact solutions and shown that the superpotential method is a useful tool for this propose. The existence of a fundamental scalar field (the Higgs boson) gives good motivation to consider modified gravity models with an additional scalar field. The $F(R, \chi)$ gravity models with the scalar field χ [47] are very popular [24, 48, 49, 50, 51, 52] as models of inflation, in particular, the mixed Higgs–R^2 model [49, 50, 51]. We plan to generalize the investigation on the $F(R, \chi)$ models and to use the superpotential method developed for the search of exact solutions of the chiral cosmological models [41], or some other methods [53] to construct physically interesting $F(R, \chi)$ models with exact solutions.

E.O.P. and S.Yu.V. are supported in part by RFBR, project 18-52-45016.
References

[1] T.P. Sotiriou and V. Faraoni, f(R) Theories of Gravity, Rev. Mod. Phys. 82 (2010) 451, arXiv:0805.1726

[2] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3, arXiv:1002.4928

[3] T. Faulkner, M. Tegmark, E.F. Bunn and Y. Mao, Constraining f(R) Gravity as a Scalar Tensor Theory, Phys. Rev. D 76 (2007) 063505, arXiv:astro-ph/0612569

[4] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99;
 A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175.

[5] M.B. Mijic, M.S. Morris and W.M. Suen, The R**2 Cosmology: Inflation Without a Phase Transition, Phys. Rev. D 34 (1986) 2934;
 K. Maeda, Inflation as a Transient Attractor in R**2 Cosmology, Phys. Rev. D 37 (1988) 858

[6] Y. Akrami et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211

[7] S. Capozziello, V. F. Cardone, S. Carloni and A. Troisi, Curvature quintessence matched with observational data, Int. J. Mod. Phys. D 12 (2003) 1969, arXiv:astro-ph/0307018

[8] A.D. Dolgov and M. Kawasaki, Can modified gravity explain accelerated cosmic expansion?, Phys. Lett. B 573 (2003) 1, arXiv:astro-ph/0307285

[9] W. Hu and I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D 76 (2007) 064004, arXiv:0705.1158;
 K. Bamba, C. Q. Geng, S. Nojiri and S. D. Odintsov, Crossing of the phantom divide in modified gravity, Phys. Rev. D 79 (2009) 083014, arXiv:0810.4296

[10] A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity, JETP Lett. 86 (2007) 157, arXiv:0706.2041

[11] S. Tsujikawa, Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D 77 (2008) 023507, arXiv:0709.1391

[12] K. Bamba, C.Q. Geng, S. Nojiri and S.D. Odintsov, Crossing of the phantom divide in modified gravity, Phys. Rev. D 79 (2009) 083014, arXiv:0810.4296

[13] A. Ali, R. Gannouji, M. Sami and A. A. Sen, Background cosmological dynamics in f(R) gravity and observational constraints, Phys. Rev. D 81 (2010) 104029, arXiv:1001.5384

[14] S. Capozziello, S. Nojiri and S. D. Odintsov, The role of energy conditions in f(R) cosmology, Phys. Lett. B 781 (2018) 99, arXiv:1803.08815
[15] E. Arbuzova, Instabilities in modified theories of gravity, arXiv:1911.02892.

[16] S. Nojiri and S. D. Odintsov, Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration, Phys. Rev. D 68 (2003) 123512, arXiv:hep-th/0307288.
G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani and S. Zerbini, A Class of viable modified $f(R)$ gravities describing inflation and the onset of accelerated expansion, Phys. Rev. D 77 (2008) 046009, arXiv:0712.4017.

[17] H. Motohashi, A.A. Starobinsky and J. Yokoyama, Phantom boundary crossing and anomalous growth index of fluctuations in viable $f(R)$ models of cosmic acceleration, Prog. Theor. Phys. 123 (2010) 887, arXiv:1002.1141.

[18] S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59, arXiv:1011.0544.
S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692 (2017) 1, arXiv:1705.11098.

[19] A. Paliathanasis, Analytic Solution of the Starobinsky Model for Inflation, Eur. Phys. J. C 77 (2017) 438, arXiv:1706.06400.
G. Papagiannopoulos, S. Basilakos, J. D. Barrow and A. Paliathanasis, New integrable models and analytical solutions in $f(R)$ cosmology with an ideal gas, Phys. Rev. D 97 (2018) 024026, arXiv:1801.01274.

[20] D. Muller, A. Ricciardone, A. A. Starobinsky and A. Toporensky, Anisotropic cosmological solutions in $R + R^2$ gravity, Eur. Phys. J. C 78 (2018) 311, arXiv:1710.08753.

[21] K.i. Maeda, Towards the Einstein-Hilbert Action via Conformal Transformation, Phys. Rev. D 39 (1989) 3159.

[22] D.S. Salopek and J.R. Bond, Nonlinear evolution of long-wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936.

[23] A.G. Muslimov, On the Scalar Field Dynamics in a Spatially Flat Friedman Universe, Class. Quant. Grav. 7 (1990) 231.

[24] S. Kaneda and S.V. Ketov, Starobinsky-like two-field inflation, Eur. Phys. J. C 76 (2016) no.1, 26, arXiv:1510.03524.

[25] D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753.

[26] S.V. Ketov and N. Watanabe, The $f(R)$ gravity function of Linde quintessence, Phys. Lett. B 741 (2015) 242, arXiv:1410.3557.

[27] H. Motohashi and A.A. Starobinsky, $f(R)$ constant-roll inflation, Eur. Phys. J. C 77, no. 8 (2017) 538, arXiv:1704.08188.

[28] S.V. Ketov, On the equivalence between Starobinsky and Higgs inflationary models in gravity and supergravity, arXiv:1911.01008.
[29] V. Müller, H.J. Schmidt and A.A. Starobinsky, Power law inflation as an attractor solution for inhomogeneous cosmological models, Class. Quant. Grav. 7 (1990) 1163; E. Elizalde, S. Nojiri and S.D. Odintsov, Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up, Phys. Rev. D 70 (2004) 043539; arXiv:hep-th/0405034.
A.A. Andrianov, F. Cannata and A.Y. Kamenshchik, General solution of scalar field cosmology with a (piecewise) exponential potential, J. Cosmol. Astropart. Phys. 1110 (2011) 004, arXiv:1105.4515

[30] P. Fré, A. Sagnotti, A.S. Sorin, Integrable Scalar Cosmologies I. Foundations and links with String Theory, Nucl. Phys. B 877 (2013) 1028, arXiv:1307.1910

[31] A.Y. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi, S.Yu. Vernov, Integrable cosmological models with non-minimally coupled scalar fields, Class. Quant. Grav. 31 (2014) 105003, arXiv:1307.1910

[32] I.Ya. Aref’eva, L.V. Joukovskaya, S.Yu. Vernov, Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric, J. Phys. A 41 (2008) 304003, arXiv:0711.1364

[33] A.Yu. Kamenshchik, E.O. Pozdeeva, S.Yu. Vernov, A. Tronconi and G. Venturi, Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities, Phys. Rev. D 94 (2016) 063510, arXiv:1602.07192.
A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi and S.Yu. Vernov, General solutions of integrable cosmological models with non-minimal coupling, Phys. Part. Nucl. Lett. 14, no. 2 (2017) 382, arXiv:1604.01959.
A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi and S.Yu. Vernov, Integrable cosmological models in the Einstein and in the Jordan frames and Bianchi-I cosmology, Phys. Part. Nucl. 49, no. 1 (2018) 1, arXiv:1606.04260

[34] K. Skenderis and P.K. Townsend, Hamilton-Jacobi method for Domain Walls and Cosmologies, Phys. Rev. D 74 (2006) 125008, arXiv:hep-th/0609056.
P.K. Townsend, Hamilton-Jacobi Mechanics from Pseudo-Supersymmetry, Class. Quant. Grav. 25 (2008) 045017, arXiv:0710.5178

[35] I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Exactly Solvable SFT Inspired Phantom Model, Theor. Math. Phys. 148 (2006) 895, arXiv:astro-ph/0412619

[36] D. Bazeia, C.B. Gomes, L. Losano, and R. Menezes, First-order formalism and dark energy, Phys. Lett. B 633 (2006) 415, arXiv:astro-ph/0512197.
D. Bazeia, L. Losano, R. Rosenfeld, First-order formalism for dust, Eur. Phys. J. C 55 (2008) 113, arXiv:astro-ph/0611770

[37] S.V. Chervon, I.V. Fomin and A. Beesham, The method of generating functions in exact scalar field cosmology, Eur. Phys. J. C 78 (2018) 301, arXiv:1704.08712.
T. Harko, F.S.N. Lobo, and M.K. Mak, Arbitrary scalar field and quintessence cosmological models, Eur. Phys. J. C 74 (2014) 2784, arXiv:1310.7167

[38] A.Yu. Kamenshchik, A. Tronconi, G. Venturi, and S.Yu. Vernov, Reconstruction of Scalar Potentials in Modified Gravity Models, Phys. Rev. D 87 (2013) 063503, arXiv:1211.6272
I.Ya. Aref'eva, A.S. Koshelev, and S.Yu Vernov, Crossing the $w = -1$ barrier in the D3-brane dark energy model, Phys. Rev. D 72 (2005) 064017, arXiv:astro-ph/0507067
S.Yu Vernov, Construction of Exact Solutions in Two-Field Models, Theor. Math. Phys. 155 (2008) 544, arXiv:astro-ph/0612487.
I.Ya. Aref'eva, N.V. Bulatov and S.Yu. Vernov, Stable Exact Solutions in Cosmological Models with Two Scalar Fields, Theor. Math. Phys. 163 (2010) 788, arXiv:0911.5105

A.A. Andrianov, F. Cannata, A.Yu. Kamenshchik, and D. Regoli, Reconstruction of scalar potentials in two-field cosmological models, J. Cosmol. Astropart. Phys. 0802 (2008) 015, arXiv:0711.4300.
M.R. Setare, J. Sadeghi, First-order formalism for the quintom model of dark energy, Int. J. Theor. Phys. 47 (2008) 3219, arXiv:0805.1117

S.V. Chervon, I.V. Fomin, E.O. Pozdeeva, M. Sami and S.Yu. Vernov, Superpotential method for chiral cosmological models connected with modified gravity, Phys. Rev. D 100 (2019) 063522, arXiv:1904.11264

J.E. Lidsey, A.R. Liddle, E.W. Kolb, E.J. Copeland, T. Barreiro and M. Abney, Reconstructing the inflation potential: An overview, Rev. Mod. Phys. 69 (1997) 373, arXiv:astro-ph/9508078

S.V. Chervon and I.V. Fomin, On calculation of the cosmological parameters in exact models of inflation, Grav. Cosmol. 14 (2008) 163, arXiv:1704.05378.
A.V. Yurov, V.A. Yurov, S.V. Chervon and M. Sami, Potential of total energy as superpotential in integrable cosmological models, Theor. Math. Phys. 166 (2011) 259.

V. Vennin, Horizon-Flow off-track for Inflation, Phys. Rev. D 89 (2014) 083526, arXiv:1401.2926

P. Binetruy, E. Kiritsis, J. Mabillard, M. Pieroni and C. Rosset, Universality classes for models of inflation, J. Cosmol. Astropart. Phys. 1504 (2015) 033, arXiv:1407.0820.
P. Binetruy, J. Mabillard and M. Pieroni, Universality in generalized models of inflation, J. Cosmol. Astropart. Phys. 1703 (2017) no.03, 060, arXiv:1611.07019

T.V. Ruzmaikina, A.A. Ruzmaikin, Quadratic Corrections to the Lagrangian Density of the Gravitational Field and the Singularity, Sov. Phys. JETP 30 (1970) 372

S. Gottlober, J.P. Mucket and A.A. Starobinsky, Confrontation of a double inflationary cosmological model with observations, Astrophys. J. 434 (1994) 417, arXiv:astro-ph/9309049

A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov and D. Saez-Gomez, Spotting deviations from R^2 inflation, J. Cosmol. Astropart. Phys. 1605 (2016) no.05, 060, arXiv:1603.05537

Y.C. Wang and T. Wang, Primordial perturbations generated by Higgs field and R^2 operator, Phys. Rev. D 96 (2017) 123506, arXiv:1701.06630.
Y. Ema, Higgs Scalaron Mixed Inflation, Phys. Lett. B 770 (2017) 403, arXiv:1701.07665.
Y. Ema, Dynamical Emergence of Scalaron in Higgs Inflation, J. Cosmol. Astropart. Phys. 1909 (2019) no.09, 027, arXiv:1907.00993
[50] M. He, A.A. Starobinsky and J. Yokoyama, Inflation in the mixed Higgs-R^2 model, J. Cosmol. Astropart. Phys. 1805 (2018) no.05, 064, arXiv:1804.00409

[51] D. Gorbunov and A. Tokareva, Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, Phys. Lett. B 788 (2019) 37; arXiv:1807.02392; F. Bezrukov, D. Gorbunov, C. Shepherd and A. Tokareva, Some like it hot: R^2 heals Higgs inflation, but does not cool it, Phys. Lett. B 795 (2019) 657, arXiv:1904.04737

[52] A. Karam, T. Pappas and K. Tamvakis, Nonminimal Coleman-Weinberg Inflation with an R^2 term, J. Cosmol. Astropart. Phys. 1902 (2019) 006, arXiv:1810.12884

[53] A. Paliathanasis, G. Leon and S. Pan, Exact Solutions in Chiral Cosmology, Gen. Rel. Grav. 51, no.9 (2019) 106, arXiv:1811.10038; N. Dimakis, A. Paliathanasis, P.A. Terzis and T. Christodoulakis, Cosmological Solutions in Multiscalar Field Theory, Eur. Phys. J. C 79, no.7 (2019) 618, arXiv:1904.09713; M. Zubair, F. Kousar and S. Waheed, Dynamics of scalar potentials in theory of gravity, Can. J. Phys. 97 (2019) no.8, 880.