Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Asthma exacerbations remain a major reason for health care utilization and a significant financial burden to patients and society. Patients with asthma exacerbations have significantly higher total health care costs, $9223 versus $5011 (2007 dollars) per person per year, and asthma-specific costs, $1740 versus $847 per person per year, compared with matched patients without exacerbations. In 2007, total expenditures for asthma were estimated to be $56 billion per year with productivity losses due to morbidity and mortality of $3.8 and $2.1 billion, respectively. Moreover, patients requiring an emergency department (ED) visit or hospitalization for asthma are at significantly increased risk for future exacerbations independent of demographic and clinical factors, asthma severity, and asthma control, collectively reflecting an ongoing need to develop better strategies to prevent and treat these events.

**PATHOGENESIS**

**Viral respiratory infections**

The most common triggers for an exacerbation are viral respiratory infections with human rhinovirus (RV), particularly subtypes A and C, most frequent. In school-age children, hospital admission rates for asthma exacerbations correlate with the seasonal increase of RV infections in September through December and again in the spring. Similar asthma hospitalization peaks are observed in adults.

Other respiratory viruses also may cause exacerbations. During the 2009 H1N1 influenza A pandemic, mortality and admissions to the intensive care unit with H1N1 infections were frequently associated with asthma. Respiratory syncytial virus, a frequent cause of wheezing in infants and young children, may also trigger acute asthma in adults, particularly, patients older than 65 years. Coronavirus, human metapneumoviruses, parainfluenza viruses, adenoviruses, and bocaviruses have all been detected in asthma exacerbations, but in low frequencies.

**Patient risk factors**

There are a number of susceptibility, or risk, factors that help to determine whether a viral respiratory infection causes an exacerbation (Figure 1).
Allergy and defective anti-viral immunity

Allergic sensitization is a risk factor for wheezing with RV infection, particularly in children. Whether allergic inflammation often found with sensitization increases the susceptibility for viral infections or enhances their ability to provoke further inflammation is not entirely clear.\(^{16}\) Type 1 interferons are important innate antiviral responses to respiratory viruses.\(^{14,17}\) There is evidence that virus-induced interferon generation from peripheral blood mononuclear cells, plasmacytoid dendritic cells,\(^{21}\) and bronchial epithelial cells\(^{22,23}\) is reduced in some patients with allergic asthma (Figure 2). It has been shown that IgE occupancy of their membrane receptors inhibits antiviral generation of IFN-α from plasmacytoid dendritic cells and may increase susceptibility to RV-induced wheezing and asthma exacerbations (Figure 3). Deficient immune responses to viral infections may be present in type 2 inflammatory conditions with interferon production being inversely correlated with increasing airway eosinophilia, IL-4 levels, and total serum IgE.\(^{23}\) Finally, the use of inhaled IFN-β at the time of an upper respiratory infection reduces the airway viral load and improves clinical symptoms in patients with asthma.\(^{24}\)

Bacterial infections

Bacterial infections may impair mucociliary clearance and increase mucus production in the lung and may cause chronic lower airway inflammation. Evidence linking bacterial infections to acute asthma exacerbations has been limited.\(^{25,26}\) However, respiratory viruses may impair the antibacterial defenses by human alveolar macrophages and thereby facilitate emergence of bacterial infections or change in the microbiome.\(^{27}\) How these interrelationships contribute to exacerbations is not established, but they may be of potential therapeutic importance\(^{28}\) to prevent acute asthma.

Allergen exposure

Environmental allergens can provoke asthma.\(^{29}\) Furthermore, more than 80% of children with asthma are sensitized to environmental allergens, with indoor allergens being especially important to underlying asthma.\(^{30,31}\) Mast cell activation by allergens releases histamine, prostaglandin D2, and cysteinyl leukotriene generation to cause airway smooth muscle constriction, increased microvascular permeability, mucus secretion, and enhanced inflammation. Allergic sensitization is also associated with diminished innate immune responses and may be a susceptibility factor to viral-induced wheezing. This allergic associated inflammation also increases airway responsiveness to RV\(^{34}\) to further enhance a loss of asthma control. Mold sensitization and their seasonal increase parallel greater asthma severity and seasonal exacerbations. Patients sensitized to Alternaria alternata were approximately 5 times more likely to have asthma\(^{35}\) and increased airway responsiveness, wheeze, and bronchodilator use.\(^{36}\) Emergency visits for asthma exacerbations correlate with high airborne concentrations of mold.\(^{37}\) Finally, Alternaria sensitization was found to be associated with an approximate 200-fold increase in the risk of respiratory arrest in children and adults.\(^{28,38}\)

Other contributing causes

Pollutants such as tobacco smoke, ozone, and particulate matter, along with occupational exposures, provoke asthma exacerbations. Tobacco smoke has also been implicated in the development of persistent wheezing and greater asthma severity.\(^{39}\) Hospitalizations and ED visits for asthma occur more frequently among cigarette smokers.\(^{41}\) Particulate matter, ozone, nitrogen dioxide, sulfur dioxide, and diesel exhaust can increase airway inflammation and airway responsiveness.\(^{32,33,42}\) Airway pollutants, together with a viral infection, may act synergistically to cause asthma exacerbations. The severity of lower respiratory tract symptoms increased and peak expiratory flow measurements fell with rising exposure to nitrogen dioxide in the week before a respiratory infection.\(^{33}\)

Prevention of exacerbations

Four essential components of asthma management include patient education, monitoring of symptoms and lung function, control of triggering factors and comorbid conditions, and pharmacologic therapy. Patient education on asthma decreases exacerbations and improves control.\(^{43,44}\) However, because asthma severity varies and differs among individuals and age groups, it is essential to regularly monitor the effectiveness of asthma control to guide necessary treatment adjustments.

The Expert Panel Report 3 and Global Initiative for Asthma describe a stepwise treatment approach and strategy to reduce impairments and prevent future risks like asthma exacerbations.\(^{45,46}\)

TREATMENTS

Inhaled corticosteroids

ICS improve disease control and reduce asthma exacerbations.\(^{37-49}\) In new onset, untreated persistent, asthma, low-dose inhaled budesonide reduces asthma exacerbations by almost 50%.\(^{50,51}\) In asthmatic patients already taking moderate doses of

---

**Abbreviations used**

- ED - Emergency department
- FEV₁ - Forced expiratory volume in 1 second
- ICS - Inhaled corticosteroids
- LABA - Long-acting β-agonist
- RV - Rhinovirus
- SABA - Short-acting β₂-agonist

**FIGURE 1.** The interplay of the environment and host susceptibility factors in the pathogenesis of asthma exacerbations. Risk factors from Bateman et al.\(^{15}\) ACO, Asthma Control Questionnaire; BMI, body mass index; FEV₁, forced expiratory volume in 1 second; GINA, Global Initiative for Asthma; SABA, short-acting β₂-agonist.

**FIGURE 2.** Allergen exposure. Asthma and defective anti-viral immunity.

**FIGURE 3.** Bacterial infections.
ICS but under poor control,\textsuperscript{50} Pauwels et al showed that high-dose budesonide further reduced severe asthma exacerbations, that is, need for systemic corticosteroids, by nearly 50\% compared with treatment with low-dose ICS in adults.\textsuperscript{50} However, as found by O’Byrne et al,\textsuperscript{51} a doubling of the budesonide dose in patients poorly controlled on low-dose ICS also reduced exacerbation rates by 30\%, but the degree of protection was less than those patients who recently started ICS. These findings indicate that dose-response benefits with ICS are relatively flat.\textsuperscript{52} Overall, compared with placebo or a short-acting $\beta_2$-agonist, ICS reduce clinically relevant exacerbations by nearly 55\%.\textsuperscript{53} ICS also reduce exacerbations in children\textsuperscript{54} and are superior to a leukotriene antagonist, montelukast.\textsuperscript{55}

For patients with diminishing asthma control, quadrupling the recommended dose of ICS decreases the likelihood of an asthma exacerbation.\textsuperscript{56} This protection does not occur with a doubling of the ICS maintenance.\textsuperscript{57,58} However, the benefit of using an increase in ICS is time dependent to increased symptoms and need to be started early in the course of a cold. If higher doses of ICS are used pre-emptively at the onset of a respiratory tract infection and continued for 10 days, the need for oral corticosteroids is reduced.\textsuperscript{59}

The mechanisms by which ICS prevent virus-induced exacerbations, beyond anti-inflammatory activity, are poorly understood. ICS can reduce the number of airway eosinophils that presumably reflect enhanced inflammation with a respiratory infection.\textsuperscript{60,61} As approximately 50\% of asthma exacerbations are associated with an increase in airway eosinophils, these cells are a reasonable target.\textsuperscript{62} This concept is substantiated by studies showing that a reduction in airway eosinophils significantly diminishes exacerbations (Figure 4),\textsuperscript{63,64} but this approach does not eliminate all exacerbations, particularly for patients with more severe asthma.\textsuperscript{65,66} Furthermore, as airway neutrophils increase early in asthma exacerbations,\textsuperscript{67} ICS treatment has no effect on these cells and alternative approaches will be needed.\textsuperscript{68}

**Inhaled corticosteroids and long-acting $\beta$-agonists**

In patients with poorly controlled asthma and a history of prior asthma exacerbations, the combination of budesonide and formoterol significantly reduces asthma exacerbations compared with ICS alone.\textsuperscript{50} ICS/LABA have consistently been shown to prevent exacerbations.\textsuperscript{69-71} The benefit of ICS/LABA to prevent exacerbations versus ICS alone is primarily seen in patients requiring higher doses of ICS, thus suggesting that combination therapy to prevent exacerbations should be reserved for patients with more severe disease.

Asthma control can vary even in the face of ongoing ICS/LABA treatment. Consequently, the use of ICS/LABA combinations both for maintenance and symptom relief has been investigated and shown to reduce exacerbations.\textsuperscript{72-74} These
benefits are also seen in children with a prior history of severe asthma exacerbations and poorly controlled moderate-to-severe persistent asthma despite the use of moderate doses of ICS. The use of ICS/LABA as maintenance and reliever treatment should be restricted to formoterol because of its quick onset of action, safety profile, and dose-response effect.78

How the addition of LABA to ICS reduces asthma exacerbations remains unclear as LABA do not affect inflammation. ICS/LABA, however, attenuate allergen-induced airway eosinophilia and lung function changes to a greater extent than ICS alone. Edwards et al demonstrated that combination treatment synergistically suppressed induction of rhinovirus-generated chemokines in bronchial epithelial cells. Thus, the synergistic benefits of both ICS and LABA on airway eosinophilic inflammation might explain a greater reduction in exacerbations. Alternatively, an early use of ICS/LABA for relief of symptoms might simply deliver additional ICS to the airway early in the course of an emerging exacerbation.

Leukotriene antagonists
Antileukotrienes reduce asthma exacerbations in children and adults. Montelukast reduced asthma exacerbations to RV infections that occurred on return to school in September. In a systematic review and meta-analysis, compared with placebo, leukotriene modifiers/receptor antagonists lowered exacerbation rates by 41% but were inferior to ICS.

Adding montelukast to inhaled budesonide was as effective as doubling the dose of inhaled budesonide, with no difference in exacerbation rates and asthma free days.

Tiotropium
The anticholinergic tiotropium reduces the frequency of asthma exacerbations and is FDA-approved for long-term, maintenance treatment for patients 6 years of age and older with persistent asthma, that is uncontrolled with ICS plus one or more controllers. In 2 replicate trials with a total of 912 adult patients with severe asthma and using ICS/LABA, adding tiotropium, 5 mcg, increased the time to first exacerbation by 56 days over placebo, and reduced exacerbations by 21% (Figure 5). In a systematic review of 13 randomized placebo-controlled trials, tiotropium decreased rates of exacerbations and improved asthma control in patients with moderate symptomatic asthma already receiving medium-to-high doses of ICS or ICS/LABA. Studies in children aged 6 to 11 years demonstrate improvements in forced expiratory volume in 1 second (FEV1) but not reductions in exacerbations, likely due to the short duration of the study. However, given that decreases in the FEV1/forced vital capacity ratio are associated with an increased risk of exacerbations, improvements in FEV1 with tiotropium may be associated with reduced exacerbations in children.

Environmental control
The benefit from environmental control measures to prevent exacerbations is limited. Perhaps, this is because environmental interventions usually focus on a single allergen, such as dust mites, or environmental tobacco smoke, and with this limited approach, no effect was seen on asthma morbidity. However, an Inner-City Asthma Study evaluated the effectiveness of a multifaceted, home-based, environmental intervention that used remediation of exposure to dust mites, passive smoking, cockroaches, pets, rodents, and mold and was tailored to each child’s skin-test sensitization profile and environmental exposures. The intervention group reported significantly fewer symptoms of asthma during both the intervention year and, interestingly, the follow-up year as well (Figure 6), with significantly fewer unscheduled asthma-related visits to the ED or clinic for the intervention group (P = .04). The correlation between the reduction in levels of cockroach allergen on the bedroom floor and asthma-related morbidity was particularly strong during the active intervention. Although it is difficult to generalize these results to all children with asthma, a reduction in continuous exposure to environmental allergens and irritants, like those present in the homes of inner-city patients with
asthma, may indicate the need for a more comprehensive intervention.

TARGETED BIOLOGIC THERAPY
Anti-IgE (omalizumab)

Omalizumab is approved for use in patients 6 years of age and older with allergies and uncontrolled, persistent asthma despite moderate-to-high dose ICS. Omalizumab is a humanized monoclonal antibody directed against IgE and reduces the risk for asthma exacerbations in allergic asthmatic patients. 

Omalizumab reduces asthma exacerbations when given with ICS, and shortens the duration of exacerbations in adults and children.

Some patients with asthma and allergy have a diminished interferon response to an in vitro challenge with respiratory viruses, and this reduction is related to IgE. In a study of inner-city children, omalizumab reduced seasonal exacerbations in the fall and spring, without altering the rates of infections with respiratory viruses, suggesting that omalizumab may not prevent viral infections, but rather modify the consequences of the infection. Teach et al showed that omalizumab improved antiviral defenses by increasing release of IFN-α from peripheral blood mononuclear cells to RV stimulation; in those subjects with a greater restoration of IFN responses, fewer exacerbations occurred (Figure 7). Thus, in addition to anti-inflammatory effects of omalizumab, a restoration of antiviral activity may prevent exacerbations.

Selecting patients most likely to benefit from omalizumab has been difficult. In a post hoc analysis, patients with elevated levels of fractional exhaled nitric oxide, blood eosinophils, and serum periostin, likely reflecting greater T2 inflammation, had a greater likelihood of benefitting from omalizumab.

Anti-IL-5

Two anti-IL-5 monoclonal antibodies, mepolizumab and reslizumab, are approved as maintenance therapy for patients with uncontrolled, persistent eosinophilic asthma with an exacerbation phenotype despite high-dose ICS. IL-5 contributes to airway eosinophilic inflammation. Approximately 40% to 50% of patients with difficult-to-control asthma have persistent airway eosinophilia despite treatment with high-dose ICS. Although elevated sputum eosinophil counts predict the risk for asthma exacerbations, the use of sputum for routine measurements is impractical in clinical practice. Price et al found a relationship between the intensity of peripheral blood eosinophilia and asthma-related outcomes; patients with asthma with blood eosinophil counts greater than 400 cells/µL experience more frequent severe exacerbations, and serves as a convenient biomarker for anti-IL-5 therapy.

Mepolizumab, given subcutaneously, reduces exacerbations by approximately 50% in patients with severe asthma who have blood eosinophil counts 150 cells/µL or greater (Figure 8). It has been FDA-approved for add-on maintenance treatment of severe asthma in patients 12 years of age or older. Although clinical trial data suggest that efficacy requires an absolute eosinophil count of at least 150 cells/µL, the National Institute for Health and Care Excellence recommends a threshold of 300 cells/µL. Reslizumab is also FDA-approved for add-on maintenance therapy of severe asthma in patients 18 years or older who have an eosinophil count of 400 cells/µL or higher. In clinical trials, intravenous reslizumab reduced asthma exacerbations by approximately 50%. These relationships provide a probable explanation for why anti-IL-5 mAb treatment reduces asthma exacerbations.

Other biologics to prevent asthma exacerbations are under study.

TREATING EXACERBATIONS

Despite optimal maintenance therapy and asthma control, exacerbations occur. Therefore, early recognition and intervention are important to successfully stabilize asthma. A limited
number of treatments are currently available to alleviate asthma exacerbations, and the evidence supporting their use has limits.

**Short-acting β2-agonists**

Inhaled or nebulized short-acting β2-agonists (SABAs), such as albuterol or levalbuterol, resolve acute symptoms of asthma and can initially be used every 15 to 20 minutes for the first hour during acute asthma.\(^ {107}\) Levalbuterol, the R-enantiomer of albuterol, and albuterol are equivalent.\(^ {111-113}\) Data are conflicting whether continuous nebulization with a SABA is superior to intermittent nebulization.\(^ {114,115}\) In very severe asthma exacerbations, continuous nebulization should be considered based on evidence of reduced admissions and improved pulmonary function.\(^ {114,116-118}\) SABAs provide symptomatic relief but have no effect on airway inflammation or sustained benefit.

**Ipratropium bromide**

Adding ipratropium bromide to an inhaled SABA in severe exacerbations decreases rates of hospitalizations and shortens ED stays for patients with severe or moderate-to-severe asthma exacerbations.\(^ {119-121}\) The benefit of ipratropium bromide to SABA therapy is seen primarily in more severe asthma exacerbations.\(^ {120,122}\)

**Corticosteroids**

An underlying component of exacerbations is an increase in airway inflammation.\(^ {113}\) Numerous studies evaluated ICS and oral corticosteroids (OCS) in asthma exacerbations, but the evidence for their efficacy remains limited. Moreover, because ICS often do not prevent exacerbations, it is unlikely that an increase in inflammation with an exacerbation will be fully responsive to corticosteroids. Nonetheless, their use is a reasonable and expected first step.

**Inhaled corticosteroids.** The administration of high-dose ICS for asthma exacerbations should be reserved for patients with mild or intermittent asthma and those unable to tolerate OCS because of side effects such as diabetes or psychiatric effects. A systematic review analyzed 8 studies comparing the efficacy of ICS with placebo in acute asthma exacerbations and found that ICS appeared superior to placebo, especially when given at high doses, that is, >1 mg of budesonide or fluticasone.\(^ {123}\) However, patients in these studies were heterogeneous in severity, ICS dose and administration frequency, and outcomes measured. The role of ICS for asthma exacerbations remains to be established.

Comparisons between ICS and systemic corticosteroids have also been conflicting. OCS were superior to ICS in reducing hospital admission rates in some studies\(^ {124-126}\) and others showed superiority of ICS.\(^ {127}\) A systematic review of 12 trials concluded that there was no benefit to the addition of ICS to systemic corticosteroids in reducing the relapse rate of acute asthma.\(^ {128}\) At present, insufficient evidence exists to support using ICS rather than OCS for exacerbations.

**Systemic corticosteroids.** Early administration of systemic corticosteroids for the treatment of acute exacerbations is standard guideline management with beneficial effects of systemic corticosteroids usually delayed for approximately 4 hours.\(^ {129}\) Systemic glucocorticoids accelerate the rate of improvement when persistent

---

**FIGURE 8.** Reduction in the cumulative number of asthma exacerbations with mepolizumab versus placebo. Reproduced with permission from Pavord et al.\(^ {105}\)
airflow obstruction exists despite bronchodilator treatment. However, an evidence-based evaluation reported neither an improvement in airflow obstruction nor reduction in hospitalization rates with systemic corticosteroids. In contrast, a systematic review by Rowe et al. concluded that the use of systemic corticosteroids in adults and children reduces the rate of hospital admission in ED treatment settings, especially in patients with severe asthma and those not currently receiving corticosteroids.

The optimal dose for systemic corticosteroids in asthma exacerbations also remains to be convincingly established. Doses above 2 mg/kg, or 60-80 mg/day, do not add benefit to improving pulmonary function, rates of hospital admission, or length of hospital stay. Furthermore, no differences are found between oral and intravenous administration of comparable doses.

Prescribing a short course of oral corticosteroids after ED treatment of acute asthma exacerbations reduces the rate of relapse. Although the duration of therapy is not fully established, courses longer than 5 days did not provide additional benefit. There is also no benefit from using a dose taper over a fixed-dose regimen and stopping. Difficulties, however, arise in assessing approaches to treating exacerbations in patients already taking systemic corticosteroids. Optimal exacerbation treatment strategies for this patient population remain undefined and reflect the need for more targeted therapy.

A single dose of benralizumab, an anti-IL-5 receptor monoclonal antibody, reduces the rate and severity of subsequent exacerbations when given at the time of an initial exacerbation. Thus, biologic therapy may also be beneficial in the acute treatment of asthma exacerbations to prevent subsequent events.

CONCLUSIONS
Asthma exacerbations can be prevented with ICS, ICS/LABA, and biologics in some patients. Exacerbations are more frequent in patients with severe disease and preventative strategies with biologics, such as anti-IgE and anti-IL-5, are seen. When exacerbations occur, systemic corticosteroids remain the primary intervention when bronchodilator therapy is not effective, but the evidence for their benefit has limitations. Prevention of exacerbations remains a major unmet need in asthma management. An improved understanding of the pathogenesis of asthma exacerbations will likely lead to new strategies to prevent and treat asthma exacerbations.

REFERENCES
1. Bai TR, Vonk JM, Postma DS, Boezen HM. Severe exacerbations predict excess lung function decline in asthma. Eur Respir J 2007;30:452-6.
2. O’Byrne PM, Pedersen S, Lamm CJ, Tan WC, Busse WW. Severe exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med 2009;179:19-24.
3. Ivanova JL, Bergman R, Birnbaum HG, Colice GL, Silverman RA, McLaren K. Effect of asthma exacerbations on health care costs among asthmatic patients with moderate and severe persistent asthma. J Allergy Clin Immunol 2012;129:1229-35.
4. Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002-2007. J Allergy Clin Immunol 2011;127:145-52.
5. Miller MK, Lee JH, Miller DP, Wenzel SE, Group TS. Recent asthma exacerbations: a key predictor of future exacerbations. Respir Med 2007;101:481-9.
6. Johnston SL, Pattmore PK, Sanderson G, Smith S, Lamp G, Josephs L, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ 1995;310:1225-9.
7. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ 1993;307:982-6.
8. Johnston SL, Pattmore PK, Sanderson G, Smith S, Campbell MJ, Josephs LK, et al. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med 1996;154:1546-60.
9. Johnson NW, Johnston SL, Norman GR, Dui J, Sears MR. The September epidemic of asthma hospitalization: school children as disease vectors. J Allergy Clin Immunol 2006;117:557-62.
10. O’Riordan S, Barton M, Yau Y, Read SE, Allen U, Tran D. Risk factors and outcomes among children admitted to hospital with pandemic H1N1 influenza. CMJ 2010;182:39-44.
11. Pessa E, Diakakis P, Gardelis J, Thirios A, Koletsi P, Falagas ME. Clinical features, risk factors, and complications among pediatric patients with pandemic influenza A (H1N1). Clin Pediatr (Phila) 2010;49:777-81.
12. Libster R, Bugna J, Coviello S, Hijojo DR, Dunaweisky M, Reynoso N, et al. Pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1) in Argentina. N Engl J Med 2010;362:45-55.
13. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 2005;352:1749-59.
14. Yoo JK, Kim TS, Huford MM, Braciale TJ. Viral infection of the lung: host response and sequelae. J Allergy Clin Immunol 2013;132:1263-76. quiz 77.
15. Bateman ED, Buhl R, O’Byrne PM, Humbert M, Reddel HK, Sears MR, et al. Development and validation of a novel risk score for asthma exacerbations: The risk score for exacerbations. J Allergy Clin Immunol 2015;135:1457-1464.e4.
16. Soto-Quiros M, Avila L, Platts-Mills TA, Hunt JF, Erdman DD, Carper H, et al. High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus. J Allergy Clin Immunol 2012;129:1499-1505.e5.
17. MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 2012;12:367-82.
18. Papadopoulos NG, Stanciu LA, Papi A, Holgate ST, Johnston SL. Rhinovirus-induced alterations on peripheral blood mononuclear cell phenotype and cosimulatory molecule expression in normal and atopic asthmatic subjects. Clin Exp Allergy 2002;32:537-42.
19. Gehlhar B, Biltewicsi C, Reinitz-Rademacher K, Rohde G, Bufe A. Impaired virus-induced interferon-alpha2 release in adult asthmatic patients. Clin Exp Allergy 2006;36:331-7.
20. Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 2015:136:1476-85.
21. Gill MA, Bajwa G, George TA, Dong CC, Dougherty B, Jiang N, et al. Cigarette smoking reduces the uptake of the Feprsin1/H pathway in human epithelial cells. J Immunol 2010;184:5999-6006.
22. Wark PA, Johnston SL, Bucchieri F, Powell R, Paddicome S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-47.
23. Baraldo S, Contoli M, Bazzan E, Turato G, Padovan V, Marco B, et al. Deficient antiviral immune responses in childhood distinct roles of atopy and asthma. J Allergy Clin Immunol 2012;130:1307-14.
24. Djukanovic R, Harrison T, Johnston SL, Gabby F, Wark P, Thomson NC, et al. The effect of inhaled IFN-beta on worsening of asthma symptoms caused by viral infections. A randomized trial. Am J Respir Crit Care Med 2014;190:145-54.
25. Von HL. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur Resp J 2002;19:546-56.
26. Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH. A link between chronic asthma and chronic infection. J Allergy Clin Immunol 2001;107:595-601.
27. Oliver BG, Lim S, Wark P, Laza-Stanca V, King N, Black JL, et al. Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages. Thorax 2008;63:519-23.
28. Zuriekk C, Neukirch C, Leynaert B, Liand R, Bouquet J, Neukirch F. Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. BMJ 2002;325:411-4.
29. Sporkin R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N Engl J Med 1990;323:302-7.
30. Permal M, Hoffman E, Fu C, Sheehan W, Baxi S, Gaffen J, et al. Allergens in urban schools and homes of children with asthma. Pediatr Allergy Immunol 2012;23:543-9.
31. Olivieri M, Zock JP, Accordini S, Heinrich J, Jarvis D, Kunzli N, et al. Risk factors for new-onset cat sensitization among adults: a population-based international cohort study. J Allergy Clin Immunol 2012;129:420-5.
32. Samol E, Nastos PT, Palaios AG, Katsouyanni K, Pritfis KN. Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification. Environ Res 2011;111:418-24.
33. Trasande L, Thurston GD. The role of air pollution in asthma and other pediatric allergic diseases. J Allergy Clin Immunol 2005;115:689-99.
34. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Natl Acad Sci USA 2008;105:13562-7.
35. Gergen PJ, Turkeltaub P. The association of individual allergen reactivity with respiratory disease in a national sample: data from the second National Health and Nutrition Examination Survey, 1976-80 (NHANES II). J Allergy Clin Immunol 1992;90:579-88.
36. Downs SH, Mitakakis TZ, Marks GB, Car NG, Belousova EG, Leuppi JD, et al. Clinical importance of Alternaria exposure in children. Am J Respir Crit Care Med 2001;164:455-9.
37. Rosas I, McCartney HA, Payne RW, Calderon C, Lacey J, Chapela R, et al. Analysis of the relationships between environmental factors (aerollergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Allergy 1998;53:394-401.
38. O’Hollaren MT, Yunginger JW, Offord KP, Somers MJ, O’Connell EJ, Ballard DJ, et al. Exposure to an aerollergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 1991;324:359-63.
39. Copenhaver CC, Gern JE, Li Z, Shult PA, Rosenthal LA, Mikus LD, et al. Cytokine response patterns, exposure to viruses, and respiratory infections in the first year of life. Am J Respir Crit Care Med 2004;170:175-80.
40. Eisner MD, Klein J, Hammond SK, Koren G, Lactao G, Iribarren C. Directly measured second hand smoke exposure and asthma health outcomes. Thorax 2005;60:814-21.
41. Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J 2004;24:822-33.
42. Hansel NN, Brensy PN, McCormack MC, Matsu EC, Curtin-Brosnan J, Williams DL, et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect 2008;116:1428-32.
43. Castro M, Zimmermann NA, Crocker S, Bradley J, Leven C, Schechtman KB. Asthma intervention program prevents readmissions in high healthcare users. Am J Respir Crit Care Med 2003;168:1095-9.
44. Janson SL, McGrath KW, Covington JK, Cheng SC, Boushey HA. Individualized asthma self-management improves medication adherence and markers of asthma control. J Allergy Clin Immunol 2009;123:840-6.
45. Clark JM, Abraham WM, Fishman CE, Fortezza R, Ahmed A, Cortes A, et al. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med 1995;152:2076-83.
46. Cockcroft DW, Killian DN, Mollen JJ, Hargrave FE. Bronchial reactivity to inhaled histamine: a method and clinical study. Clin Allergy 1977;7:235-43.
47. Juniper EF, Kline PA, Vanzielegeh MA, Ramsdale EH, O’Byrne PM, Hargrave FE. Effect of long-term treatment with an inhaled corticosteroid (budesonide) on airway hyperresponsiveness and clinical asthma in nonsteroid-dependent asthmatics. Am Rev Respir Dis 1990;142:832-6.
48. Juniper EF, Kline PA, Vanzielegeh MA, Ramsdale EH, O’Byrne PM, Hargrave FE. Long-term effects of budesonide on airway responsiveness and clinical asthma severity in inhaled steroid-dependent asthmatics. Eur Respir J 1990;3:1122-7.
49. Byrnes SW, Chervinsky P, Condej J, Lunney WR, Petty TL, Rennard S, et al. Budesonide delivered by Turbuhaler is effective in a dose-dependent fashion when used in the treatment of adult patients with chronic asthma. J Allergy Clin Immunol 1998;101:457-63.
50. Sin DD, Man J, Sham JH, Gan WQ, Man SF. Pharmacological management to reduce exacerbations in adults with asthma: a systematic review and meta-analysis. JAMA 2004;292:367-76.
51. Bisgaard H. Use of inhaled corticosteroids in pediatric asthma. Pediatr Pulmonol 1997;15:27-33.
52. Covar RA, Szefler SJ, Zeiger RS, Sorkness CA, Moss M, Maugher DT, et al. Factors associated with asthma exacerbations during a long-term clinical trial of controller medications in children. J Allergy Clin Immunol 2008;122:741-7.
53. O’Toole J, Mortimer K, Hubbard RB, Tattersfield AE, Harrison TW. Quadrupling the dose of inhaled corticosteroid to prevent asthma exacerbations: a randomized, double-blind, placebo-controlled, parallel-group clinical trial. Am J Respir Crit Care Med 2009;180:598-602.
54. Fitzgerald JM, Becker A, Sears MR, Mink S, Chung K, Lee J. Doubling the dose of budesonide versus maintenance treatment in asthma exacerbations. Thorax 2004;59:550-6.
55. Harrison TW, O’Toole J, Newton S, Tattersfield AE. Doubling the dose of inhaled corticosteroid to prevent asthma exacerbations: randomised controlled trial. Lancet 2004;363:271-5.
56. Ducharme FM, Lemie C, Noya FJ, Davis GM, Alos N, Leblond H, et al. Preemptive use of high-dose fluticasone for virus-induced wheezing in young children. N Engl J Med 2009;360:339-53.
57. Gibson PG, Salts N, Borjas A. Airway mast cells and eosinophils correlate with clinical severity and airway hyperresponsiveness in corticosteroid-treated asthma. J Allergy Clin Immunol 2000;105:752-9.
58. Brightling CE, Green RH, Pavord ID. Biomarkers predicting response to corticosteroid therapy in asthma. Treat Respir Med 2005;4:309-16.
59. Turner MO, Hussack P, Sears MR, Dolovich J, Hargrave FE. Exacerbations of asthma without sputum eosinophilia. Thorax 1995;50:1057-61.
60. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002:360:1715-21.
61. Jayaram L, Pizzichini MM, Cook RJ, Boulot LP, Lemiere C, Pizzichini E, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J 2006;27:483-94.
62. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009;360:973-84.
63. Nair P, Pizzichini MM, Kjaergaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009;360:985-93.
64. Faby J, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 1995;95:843-52.
65. Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol 1995;154:4719-25.
66. Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control Study. Am J Respir Crit Care Med 2004;170:836-44.
67. Stanford RH, Fuhbridge A, Riedel A, Rey GJ, Stempel DA. An observational study of fixed dose combination fluticasone propionate/salmeterol or flutica-
68. O’Byrne PM, Bisgaard H, Godard PP, Pistolesi M, Palvigust M, Zhu Y, et al. Budesonide/formoterol combination therapy as both maintenance and reliever medication in asthma. Am J Respir Crit Care Med 2005;171:129-36.
69. Rabe KF, Atienza T, Magyar P, Larsson P, Jorup C, Laloug U. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomised controlled, double-blind study. Lancet 2006;368:744-53.
70. Bousquet J, Boulot LP, Peters MJ, Magnussen H, Quiratle J, Martinez-Aguilar NE, et al. Budesonide/formoterol for maintenance and relief in uncontrolled asthma vs. high-dose salmeterol/fluticasone. Respir Med 2007;101:2437-46.
71. Bisgaard H, Le Roux P, Bjermer D, Dymek A, Vermeulen H, Hultquist C. Budesonide/formoterol maintenance plus reliever therapy: a new strategy in pediatric asthma. Chest 2006;130:173-83.
72. Palmqvist M, Ibsen T, Mellen A, Lotvall J. Comparison of the relative efficacy of formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency. Eur Respir J 1997;10:2484-9.
73. Balanag VM, Yusuf F, Yang PC, Jorup C. Efficacy and safety of budesonide/formoterol compared with salbutamol in the treatment of acute asthma. Pulm Pharmacol Ther 2006;19:139-47.
74. Palmqvist M, Ibsen T, Mellen A, Lotvall J. Comparison of the relative efficacy of formoterol and salmeterol in asthmatic patients. Am J Respir Crit Care Med 1999;160:244-9.
75. Kelly MM, O’Connor TM, Leigh R, Otis J, Gwozd C, Gauvreau GM, et al. Effects of budesonide and formoterol on allergen-induced airway responses,
inflammation, and airway remodeling in asthma. J Allergy Clin Immunol 2010; 125:349-356.e13.

80. Edwards MR, Johnson MW, Johnston SL. Combination therapy: synergistic suppression of vasoactive and proinflammatory chemokines in airway epithelial cells. Am J Respir Cell Mol Biol 2006;34:616-24.

81. Johnston NW, Mandhane PJ, Dui J, Duncan JM, Greene JM, Lambert K, et al. Attenuation of the September epidemic of asthma exacerbations in children: a randomized, controlled trial of montelukast added to usual therapy. Pediatrics 2007;120:e702-12.

82. Reiss TF, Chervinsky P, Dockhorn BJ, Shingo S, Seidenberg B, Edwards TB. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 1998; 158:1213-20.

83. Bjermer L, Bisgaard H, Bou squid E, Føhn LM, Haastert T, et al. Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbations in adults: one year, double-blind, randomised, comparative trial. BMJ 2003;327:891.

84. Weiss KB, Gern JE, Johnston NW, Sears MR, Jones CA, Jia G, et al. The Back to School asthma study: the effect of montelukast on asthma burden when initiated prophylactically at the start of the school year. Ann Allergy Asthma Immunol 2010;105:174-81.

85. Price DB, Hernandez D, Magyar P, Fitterman J, Bech KM, James IG, et al. Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax 2003;58:211-6.

86. Kerstjens HA, Engel MJ, Sze G, Kikkeri S, Aalbers H, et al. Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med 2012;367:1198-207.

87. Rodrigo GJ, Castro-Rodriguez JA. What is the role of tiotropium in asthma?: A systematic review with meta-analysis. Chest 2015;147:388-96.

88. Sze C, Sun X, Aitken NJ, AI ME, Rowland J, et al. Predictors of asthma exacerbation among patients with poorly controlled asthma despite inhaled corticosteroid treatment. Ann Allergy Asthma Immunol 2016;116:122.

89. Carter MC, Perzanowski MS, Raymond A, Platts-Mills TA. Home intervention in the treatment of asthma among inner-city children. J Allergy Clin Immunol 2001;108:732-8.

90. Irvine L, Crombie IK, Clark RA, Slane PW, Naureckas ET, Gibson P, et al. Advising parents of asthmatic children on passive smoking: randomised controlled trial. BMJ 1999;318:1456-9.

91. Morgan WJ, Crain EF, Gruchalla RS, O’Connor GT, Kattan M, Evans R, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med 2004;351:1068-80.

92. Busse W, Corren J, Lanier BQ, McAmary L, Fowler-Taylor A, Ciepka GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 2001;108:184-90.

93. Busse WW, Massanari M, Kianifard F, Gnehm GP. Effect of omalizumab on the need for rescue systemic corticosteroid treatment in patients with moderate-to-severe persistent IgE-mediated allergic asthma: a pooled analysis. Curr Med Res Opin 2007;23:2379-86.

94. Ohata K, Miyamoto T, Yamamoto T, Yamamoto M. Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent asthma. Respiriology 2009;14:1156-65.

95. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes Rivera I, Zhu J, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 2011;154:573-82.

96. Walker S, Montele M, Phelan K, Laserson TJ, Walters EH. Anti-IgE for chronic asthma in adults and children. Cochrane Database Syst Rev 2006;19:Cd003559.

97. Rees PJ. Review: omalizumab reduces exacerbation and steroid use in chronic asthma. Arch Dis Child Educ Pract Ed 2007;92:ep127.

98. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 2011;364:1005-15.

99. Lanier B, Bridges T, Kulus M, Taylor AF, Berthane I, Vidaurre CF. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol 2009;124:1210-6.
125. Lee-Wong M, Dayrit FM, Kohli AR, Acquah S, Mayo PH. Comparison of high-dose inhaled flunisolide to systemic corticosteroids in severe adult asthma. Chest 2002;122:1208-13.
126. Levy ML, Stevenson C, Maslen T. Comparison of short courses of oral prednisolone and fluticasone propionate in the treatment of adults with acute exacerbations of asthma in primary care. Thorax 1996;51:1087-92.
127. Rodrigo GJ. Comparison of inhaled fluticasone with intravenous hydrocortisone in the treatment of adult acute asthma. Am J Respir Crit Care Med 2005;171:1251-6.
128. Edmonds ML, Milan SJ, Brenner BE, Camargo CA Jr, Rowe BH. Inhaled steroids for acute asthma following emergency department discharge. Cochrane Database Syst Rev 2012;12:CD002316.
129. Rowe BH, Edmonds ML, Spooner CH, Diner B, Camargo CA Jr. Corticosteroid therapy for acute asthma. Respir Med 2004;98:275-84.
130. Fanta CH, Rossing TH, McFadden ER Jr. Glucocorticoids in acute asthma. A critical controlled trial. Am J Med 1983;74:845-51.
131. Manser R, Reid D, Abramson M. Corticosteroids for acute severe asthma in hospitalised patients. Cochrane Database Syst Rev 2001;(1):CD001740.
132. Marquette CH, Stach B, Cardot E, Bervar JF, Saulnier F, Lalitte JJ, et al. High-dose and low-dose systemic corticosteroids are equally efficient in acute severe asthma. Eur Respir J 1995;8:22-7.
133. Becker JM, Arora A, Scarfone RJ, Spector ND, Fontana-Penn ME, Gracely E, et al. Oral versus intravenous corticosteroids in children hospitalized with asthma. J Allergy Clin Immunol 1999;103:586-90.
134. Ratto D, Alfaro C, Sipsey J, Glovsky MM, Sharma OP. Are intravenous corticosteroids required in status asthmaticus? JAMA 1988;260:527-9.
135. Jones AM, Munavvar M, Vail A, Aldridge RE, Hopkinson L, Rayner C, et al. Prospective, placebo-controlled trial of 5 vs 10 days of oral prednisolone in acute adult asthma. Respir Med 2002;96:950-4.
136. Altmimi S, Robertson G, Jastanakah W, Davey A, Dehghani N, Chen R, et al. Single-dose oral dexamethasone in the emergency management of children with exacerbations of mild to moderate asthma. Pediatr Emerg Care 2006;22:786-93.
137. Nowak RM, Parker JM, Silverman RA, Rowe BH, Smithline H, Khan F, et al. A randomized trial of benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, after acute asthma. Am J Emerg Med 2015;33:14-20.