Title	Effects of a high-sodium diet on renal tubule Ca2+ transporter and claudin expression in Wistar-Kyoto rats
Author(s)	Yatabe, Midori Sasaki; Yatabe, Junichi; Takano, Kozue; Murakami, Yuta; Sakuta, Rina; Abe, Sadahiko; Sanada, Hironobu; Kimura, Junko; Watanabe, Tsuyoshi
Citation	BMC nephrology. 13: 160
Issue Date	2012-12-02
URL	http://ir.fmu.ac.jp/dspace/handle/123456789/354
Rights	© 2012 Yatabe et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI	10.1186/1471-2369-13-160
Effects of a high-sodium diet on renal tubule Ca\(^{2+}\) transporter and claudin expression in Wistar-Kyoto rats

Midori Sasaki Yatabe\(^1,2\)*, Junichi Yatabe\(^1,2\), Kozue Takano\(^1\), Yuta Murakami\(^1\), Rina Sakuta\(^1\), Sadahiko Abe\(^1\), Hironobu Sanada\(^3\), Junko Kimura\(^1\) and Tsuyoshi Watanabe\(^2\)

Abstract

Background: Urinary Ca\(^{2+}\) excretion increases with dietary NaCl. NaCl-induced calciuria may be associated with hypertension, urinary stone formation and osteoporosis, but its mechanism and long-term effects are not fully understood. This study examined alterations in the expressions of renal Ca\(^{2+}\) transporters, channels and claudins upon salt loading to better understand the mechanism of salt-induced urinary Ca\(^{2+}\) loss.

Methods: Eight-week old Wistar-Kyoto rats were fed either 0.3% or 8% NaCl diet for 8 weeks. Renal cortical expressions of Na\(^{+}/\)Ca\(^{2+}\) exchanger 1 (NCX1), Ca\(^{2+}\) pump (PCMA1b), Ca\(^{2+}\) channel (TRPV5), calbindin-D28k and claudins (CLDN-2, -7, -8, -16 and -19) were analyzed by quantitative PCR, western blot and/or immunohistochemistry.

Results: Fractional excretion of Ca\(^{2+}\) increased 6.0 fold with high-salt diet. Renal cortical claudin-2 protein decreased by approximately 20% with decreased immunological staining on tissue sections. Claudin-16 and -19 expressions were not altered. Renal cortical TRPV5, calbindin-D28k and NCX1 expressions increased 1.6, 1.5 and 1.2 fold, respectively.

Conclusions: Chronic high-salt diet decreased claudin-2 protein and increased renal TRPV5, calbindin-D28k, and NCX1. Salt loading is known to reduce the proximal tubular reabsorption of both Na\(^{+}\) and Ca\(^{2+}\). The reduction in claudin-2 protein expression may be partly responsible for the reduced Ca\(^{2+}\) reabsorption in this segment. The concerted upregulation of more distal Ca\(^{2+}\)-transporting molecules may be a physiological response to curtail the loss of Ca\(^{2+}\), although the magnitude of compensation does not seem adequate to bring the urinary Ca\(^{2+}\) excretion down to that of the normal-diet group.

Keywords: Calcium, Sodium chloride, Distal tubule, Na\(^{+}/\)Ca\(^{2+}\) exchanger, Ca\(^{2+}\) channel, Claudins
Biochemical analysis
Biochemical analyses were performed by SRL Inc. (Tokyo, Japan) using creatinase-sarcosine-oxidase-POD method for creatinine, electrode method for Na, K and Cl, arsenazo III method for Ca, direct molybdate assay for inorganic phosphate (P) and xylidyl blue method for Mg. Serum concentrations of 1,25-dihydroxyvitamin D₃ were measured by radioimmunoassay using the two antibody method.

Quantitative Real-Time RT-PCR
Total RNA was prepared from renal cortex using RNeasy plus mini kit (Qiagen). Subsequently, 0.25 µg of total RNA was reverse-transcribed into cDNA using iScript cDNA Synthesis Kit (Bio Rad) in a 20 µl reaction volume. One µl of reverse-transcription sample was used for real-time quantitative PCR using the iQ5 Real-Time PCR Detection System and iQ SYBR Green Supermix (Bio Rad). The primers used were as follows: NCX1 forward CAGTT GTGTATTGTGCTCTTG and reverse GTTGCCG CATGTTAGATGG, with annealing temperature (Ta) 57°C; GAPDH forward GCAAGTTCACAAGCAGCAT CAAG and reverse ACATACGCACAACACAGCAC ACC with Ta 56°C, TRPV5 forward CTTACGGGT TGAACACCAACA and reverse TTGCAGAACACACAG AGGCTCTA with Ta 56°C; PMCA1b forward CGCCAT TTCTGCACAATT and reverse CAGCAATGTTC TATTGAAAAATTC with Ta 56°C, calbindin-D₂₈ forward GGAGCTGCAGAACTTGATCC and reverse GC AGCAGGAAAATTCTCTTTCG with Ta 57°C, Claudin 2 forward TCTGGATGGAGTGGTGCGAC and reverse AGT GCCAAGAGGCTGGGC with Ta 63°C, Claudin 7 forward GACTCGGTGCTTTGCCCCTGCC and reverse GGAGCG GGGTGCACGGTATG with Ta 59°C, Claudin 8 forward GTGCTGGTCCGTCTCTTGC and reverse CCAAGCT CGCGCTTTGCGGC with Ta 59°C. NCX1 and GAPDH primers were designed using Beacon Designer software (PREMIER Biosoft International, Palo Alto, California, USA), Claudin 7 and 8 primers were designed using PrimerBlast (NCBI), and TRPV5, PMCA1b and Claudin 2, 16 and 19 primers were adopted from elsewhere [14-16]. PCR reactions were performed in triplicate, and mRNA was quantified based on the Ct value, normalized to GAPDH, and expressed as relative amounts.

Immunoblotting
Immunoblotting of renal cortical proteins was performed similarly as previously reported [17]. The antibodies used were monoclonal anti-rat NCX1 antibody (Abcam), polyclonal anti-claudin 2 antibody (Life Technologies, Carlsbad, CA), and polyclonal anti-TRPV5, anti-NHE3, and anti-GAPDH antibodies (Santa Cruz Biotechnology). The bands were visualized by ECL or ECL plus reagents (Amersham) and quantified by densitometry using ImageJ software.

Immunohistochemistry
Sections of rat kidney paraffin blocks were made with 2-µm thickness. Kidney sections of normal- and high-salt diet fed rats were placed on a single slide glass for comparison. After deparaffinization and blocking, the slices were treated with anti-claudin 2 antibody (Life Technologies, Carlsbad, CA), anti-rabbit secondary antibody and DAB.
using VECTASTAIN-ABC kit (Vector laboratories, Burlingame, CA). The slides were counterstained with haematoxylin and eosin.

Data analysis
All values are expressed as means ± SE. Statistical comparisons were performed by Student’s t-test or ANOVA where appropriate. P values <0.05 were considered statistically significant.

Results
Serum electrolytes were similar between the normal- and high-salt fed rats
Food intake was similar between the groups (normal-salt vs high-salt groups, 18.8±0.9 vs 17.8±0.5 g/day, n.s., n=15 /group), although the high-salt group weighed slightly less than the normal-salt group at the end of the study (369±5 vs 354±4 g, P <0.05). This may partly be due to the reduced caloric intake of the high-salt fed rats because 8% (by weight) of the chow was sodium chloride. As expected, the high-salt group drank and urinated significantly more than the normal-salt group, 2.7 times and 4.8 times the control rats, respectively (Figure 1). However, the serum electrolyte concentrations measured did not differ between the normal-salt and high-salt groups (Table 1). Creatinine clearance, which is used as an approximate of glomerular filtration rate, was also not significantly different between the groups (2.51±0.12 vs 2.63±0.14 ml/min, n=12-15 /group). Systolic blood pressures also did not differ significantly between the groups (133±2.8 vs 141±3.0 mmHg, n=15/group).

Renal claudin-2 protein decreased, but claudin-7, -8, -16 or -19 mRNA was not altered with chronic salt loading
Claudin-2 forms paracellular cation pore in the proximal tubule. Rats fed 8% NaCl for 8 weeks showed increased renal cortical claudin-2 mRNA (Figure 4A), but salt loading significantly decreased the protein expression of claudin-2 by about 20% (Figure 4B). There may be post-transcriptional regulation of claudin-2. Immunohistochemical staining of kidney cortex was performed for claudin-2 to further examine the change in expression. Although by subjective observation, the staining of renal cortical claudin-2 also suggested a decrease by salt loading (Figure 4C and 4D). In the proximal tubule, NHE3 expressed primarily in the apical membrane is shown to be necessary for calcium reabsorption by providing the driving force for paracellular calcium transport [18]. Unexpectedly, this study found that renal cortical NHE3 protein level of salt-loaded rats was significantly increased compared to that of rats on normal diet (100 ±20 vs 292±38%, n=9-11, P<0.01, figure not shown).

Claudin-16 and -19 are expressed primarily in the thick ascending limb [19], and mutations of claudin-16 [20] and -19 [21] result in renal Mg²⁺ and Ca²⁺ wasting. In this study, no significant change in renal claudin-16 or -19 was observed by salt loading (Figure 5A and 5B).

Claudin-7 and -8 are found from distal convoluted Tu-bule to the inner medullary collecting duct [22]. Claudin-8 is believed to act as a paracellular cation barrier [23], inhibiting the backflow of Ca²⁺ that has been

| Table 1 Blood pressure and biochemistry data at the end of the study |
|-----------------|-----------------|-----------------|-----------------|
| 0.3% NaCl | 8% NaCl | n.s. |
| Systolic Blood Pressure (mmHg) | 133 ± 2.8 | 141 ± 3 | n.s. |
| Serum creatinine (mg/dL) | 0.29 ± 0.01 | 0.33 ± 0.02 | n.s. |
| Serum Na (mmol/L) | 143 ± 0.5 | 142 ± 0.3 | n.s. |
| Serum K (mmol/L) | 4.33 ± 0.07 | 4.36 ± 0.11 | n.s. |
| Serum Cl (mmol/L) | 104 ± 0.69 | 103 ± 0.64 | n.s. |
| Serum Ca (mmol/L) | 9.26 ± 0.07 | 9.22 ± 0.09 | n.s. |
| Serum Mg (mmol/L) | 2.29 ± 0.03 | 2.23 ± 0.04 | n.s. |
| Serum P (mmol/L) | 7.05 ± 0.17 | 7.06 ± 0.23 | n.s. |

Abbreviations: n.s.: not significant.

Urinary calcium excretion was markedly increased in the high-salt rats
At the end of the study, urinary calcium concentration (Figure 2A) and daily urinary calcium excretion (Figure 2B) of rats on high-salt diet were higher than those of the normal-salt group, and fractional Ca excretion of the salt-loaded rats was 6 times that of the control rats (Figure 3). Fractional Mg excretion also increased with salt loading, although the increase was smaller than that of the fractional Ca excretion (Figure 3).

![Figure 1 Intake and output data at the end of the study in Wistar-Kyoto rats fed 0.3% or 8% NaCl diet for 8 weeks.](image-url)

![Table 1 Blood pressure and biochemistry data at the end of the study](table-url)
reabsorbed through transcellular mechanisms. Claudin-7 is generally assumed to be an anion barrier. No significant change was observed in the mRNA expression of claudin-7 or claudin-8 (Figure 5C and 5D).

High-salt diet increased distal, transcellular Ca\(^{2+}\) transporting molecules, TRPV5, calbindin-D\(_{28k}\) and NCX1.

TRPV5 Ca\(^{2+}\) expression in the renal cortex increased with high-salt diet both in terms of mRNA (Figure 6A) and protein levels (Figure 6B). TRPV5 is the apical Ca\(^{2+}\) entry mechanism and the gatekeeper of the distal tubular Ca\(^{2+}\) transport [24]. In addition, the renal cortical mRNA of calbindin-D\(_{28k}\), an intracellular Ca\(^{2+}\) transport molecule [11], also increased by about 48% (Figure 6C). NCX1 and PMCA1b are the basolateral Ca\(^{2+}\) extrusion mechanisms in this segment [25]. Renal cortical NCX1 mRNA and protein levels increased in the high-salt group by about 20% and 26%, respectively (Figure 6D and E). In contrast, renal cortical expression of PMCA1b was not altered by high-salt diet (Figure 6F).

Modeling of NCX1 function

The functions of NCX1 with different electrolyte settings were modeled to interpret the effects of high-salt diet because the transport of NCX1 is bidirectional. Even under normal conditions, estimates of NCX1 contribution to distal tubular, basolateral Ca\(^{2+}\) transport vary from 15% [26] to 70% [27]. Figure 7 shows the relationship among intracellular Na\(^{+}\) concentration ([Na\(^{+}\)]\(_i\)), intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_i\)), and equilibrium potential for NCX (E\(_{NCX}\)), calculated using the equation, E\(_{NCX}\) = 3E\(_{Na}\) - 2E\(_{Ca}\) [28], where E\(_{Na}\) and E\(_{Ca}\) are respective equilibrium potentials for Na\(^{+}\) and Ca\(^{2+}\) given by the Nernst equation.

Basolateral extracellular Na\(^{+}\) concentration is set at 140 mM and basolateral extracellular Ca\(^{2+}\) concentration at 1 mM. In the literature, the basolateral membrane potential of the distal convoluted tubule and connecting tubule cells is reported to be -70 mV [29], while [Na\(^{+}\)]\(_i\) in those cells is reported to be 17.5 mM [26,30]. Under these conditions, the model in Figure 7 gives [Ca\(^{2+}\)]\(_i\) of 142 nM (shown as a dotted circle). This [Ca\(^{2+}\)]\(_i\) is below the estimated [Ca\(^{2+}\)]\(_i\) of 200 nM [29], indicating that NCX1 likely extrudes Ca\(^{2+}\) under normal conditions. However, the effects of high-salt diet on Na\(^{+}\) and Ca\(^{2+}\) gradients and membrane potential have not been determined. As dietary NaCl reduces plasma aldosterone and increases endogenous Na\(^+\)/K\(^+\) pump inhibitors such as ouabain [31] and marinobufagenin [32,33], [Na\(^{+}\)]\(_i\) is likely to be elevated. If [Na\(^{+}\)]\(_i\) rises to 22 mM at -70mV, the equilibrium [Ca\(^{2+}\)]\(_i\) will be 282 nM (shown as a solid circle on Figure 7). Then, NCX1 may extrude less Ca\(^{2+}\) from the cell, or may even reverse to Ca\(^{2+}\) entry mode on high-salt diet. As TRPV5 is inhibited by a rise in [Ca\(^{2+}\)]\(_i\) [34], the elevation of intracellular [Ca\(^{2+}\)]\(_i\) along with [Na\(^{+}\)]\(_i\) may reduce the rate of Ca\(^{2+}\) entry via TRPV5.

Chronic salt loading decreased serum 1,25-dihydroxyvitamin D\(_{3}\) concentration

To investigate the mechanism of upregulation of TRPV5, calbindin-D\(_{28k}\) and NCX1 with salt loading,
serum concentrations of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D] were measured. 1,25(OH)₂D is known to upregulate renal TRPV5, calbindin-D 28k and NCX1 [35]. However, rats fed 8% NaCl diet for 8 weeks showed significantly reduced serum concentration of 1,25(OH)₂D (176±19 vs 129±7 pg/ml, P <0.05, n=9-11), suggesting the presence of mechanisms other than 1,25(OH)₂D for the salt-induced upregulation of these molecules.

Discussion

This study, for the first time, examined the effects of long-term dietary sodium chloride on renal Ca²⁺-transporting molecule and claudin expressions. Chronic salt loading decreased the protein expression of claudin 2, a component of proximal, paracellular Ca²⁺ transport pathway. Concomitantly, dietary NaCl increased the expression of more distal, transcellular Ca²⁺ reabsorption machinery, TRPV5, calbindin-D₂₈k and NCX1.

Salt loading acutely increases urinary excretion of Ca²⁺ along with Na⁺ [3,6]. In this study, the fractional Ca²⁺ excretion of salt-loaded rats increased approximately 6.0 fold. Generally, the cause for this phenomenon is attributed to an extracellular fluid volume expansion and/or to the reduced reabsorption of both Na⁺ and Ca²⁺ in the proximal tubule [36]. Although renal blood flow is reported to be unchanged or sometimes even reduced
when salt loading is chronic such as over 8 weeks [37],
from this study, the contribution of volume expansion
and/or hyperfiltration cannot be ruled out as creatinine
clearance tended to increase in the salt-loaded rats, al-
though not significant. As creatinine determination in
rodents can vary depending on the method used [38],
the use of inulin clearance may be favorable. Pressure
natriuresis is another possible factor of salt-induced cal-
ciuria, as blood pressure of salt-loaded rats tended to in-
crease, although the difference was not statistically

![Graph](image_url)

Figure 6 Distal, transcellular calcium-transporting molecule expressions in the kidney cortex of rats fed 0.3% or 8% NaCl for 8 weeks.
Protein and mRNA of the target molecules were normalized against GAPDH expression and expressed as relative amounts. Salt loading increased
the expression levels of TRPV5 (6A: mRNA, 6B: protein), calbindin-D28k (6C), and NCX1 (6D: mRNA, 6E: protein), but did not alter PMCA1b (6F)
expression. * P<0.05 and ** P<0.01, vs. 0.3% NaCl group, n=14-16.

![Graph](image_url)

Figure 7 Simulated ENCX, [Na⁺], and [Ca²⁺], assuming [Na⁺]₀ = 140 mM and [Ca²⁺]₀ = 1 mM. Abbreviations; ENCX: equilibrium potential of
NCX1, [Na⁺]: intracellular Na⁺ concentration, [Ca²⁺]: intracellular Ca²⁺ concentration, [Na⁺]₀: extracellular (basolateral) Na⁺ concentration and [Ca²⁺]₀:
extracellular (basolateral) Ca²⁺ concentration. Dotted circle indicates the simulated physiological [Ca²⁺], with [Na⁺], at 17.5 mM and ENCX at −70 mV.
Solid circle indicates the simulated [Ca²⁺], with salt loading, with [Na⁺], assumed at 22 mM and ENCX at −70 mV.
significant. Renal artery servo-control experiments would be useful to delineate these in the future.

Approximately 65% of calcium in the pro-urine is reabsorbed in the proximal tubule. In the proximal tubule, claudin-2 is postulated to form tight junction cation pores [9]. Muto et al. have reported that fractional excretion of Ca\(^{2+}\) in claudin-2 knockout mice is 3 times that of wild-type mice, further supporting a role of claudin-2 in proximal tubular paracellular Ca\(^{2+}\) reabsorption [39]. In this study, we found that chronic salt loading decreased renal cortical claudin-2 protein expression. Although there is not enough functional studies of rat claudin-2, sequence similarity to mouse claudin-2 suggests a similar role in Na\(^+\) and Ca\(^{2+}\) transport. Therefore, the decreased expression of claudin-2 with high-salt diet may, to some degree, account for the decrease in Ca\(^{2+}\) reabsorption, while limiting Na\(^+\) and water reabsorption, as Na\(^+\) [9] and water [40] in addition to Ca\(^{2+}\) may pass through the pores formed by claudin-2. It has been reported that hyperosmolarity stress decreased claudin-2 expression in Madin-Darby canine kidney cells [41], and hyperosmolarity due to NaCl load may be a possible mechanism of claudin-2 downregulation in this study. As claudin-2 facilitates Ca\(^{2+}\) movement from the luminal to interstitial fluid in the proximal tubule, reduction in claudin-2 may underlie the increased urinary Ca\(^{2+}\) excretion observed under high-salt diet.

In the proximal tubule, NHE3 is shown to be important as a part of driving force for Ca\(^{2+}\) reabsorption, mediating apical Na\(^+\) entry and consequently water reabsorption to produce osmotic gradient [18]. In our study, renal NHE3 protein significantly increased with salt loading. However, this finding is not in accordance with some previous studies, such as that of Frindt and Palmer who found no change in luminal NHE3 with 5% NaCl diet for 1 week in rats using in situ biotinylation [42]. As regulation of NHE3 occurs on multiple levels, including trafficking, interacting proteins and oligomerization [43], protein level may not be directly related to apical NHE3 activity. If NHE3 activity is indeed increased in the high salt-fed rats, this may increase the pressure for Ca\(^{2+}\) reabsorption in the proximal tubule. However, competition between Na\(^+\) and Ca\(^{2+}\) for paracellular transport binding site may occur in the proximal tubule. It has been reported that Ca\(^{2+}\) inhibits paracellular Na\(^+\) conductance by competitive binding on claudin-2 [44]. If Na\(^+\) and Ca\(^{2+}\) share a binding site, inversely, high Na\(^+\) may inhibit claudin-2 Ca\(^{2+}\) conductance. This competition between Na\(^+\) and Ca\(^{2+}\) may play a large role in the dietary NaCl-induced hypercalcuria.

Thick ascending limb of the loop of Henle is responsible for approximately 20% of Ca\(^{2+}\) reabsorption. Claudin-16 and −19 are shown to be important for paracellular Mg\(^{2+}\) and Ca\(^{2+}\) in this segment. In our study, there was an increase in the fractional excretion of Mg, albeit smaller than that of Ca. However, there was no significant difference in renal claudin-16 or −19 mRNA in rats on high-salt diet. Extracellular volume expansion decreases transepithelial voltage and Mg\(^{2+}\) reabsorption in the TAL [45]. Although not directly detectable in our experimental setting, there may have been some volume expansion in the high-salt fed rats which may have contributed to the increase in Mg\(^{2+}\) fractional excretion.

Distal nephron is the final and most-regulated site of urinary Ca\(^{2+}\) reabsorption [46,47]. A concerted increase in the expression levels of TRPV5, calbindin-D\(_{28k}\), and NCX1, was observed with salt loading in this study. Claudin-8, the distal tubular paracellular cation barrier, was not altered by salt loading. It may be that with salt loading, the proximal, paracellular Ca\(^{2+}\) reabsorption is reduced, and more distal, transcellular Ca\(^{2+}\) transport molecules are upregulated to facilitate Ca\(^{2+}\) reabsorption as a compensatory mechanism. However, salt loading may reduce the Ca\(^{2+}\) reabsorption via NCX1, as illustrated in Figure 7. Therefore, the upregulation of distal Ca\(^{2+}\) transport machinery with chronic salt-loading may partially compensate for the urinary Ca\(^{2+}\) loss, although with a limited effect.

As for the mechanism of TRPV5, calbindin-D\(_{28k}\), and NCX1 upregulations by dietary NaCl, one possibility is the endocrine factors that regulate Ca\(^{2+}\)-related molecules, such as parathyroid hormone [48] and vitamin D [49]. For example, 1,25(OH)\(_2\)D has been shown to increase the expressions of TRPV5, calbindinD\(_{28k}\), and NCX1 [35]. However, in this study, serum concentration of 1,25(OH)\(_2\)D was significantly lower in the high-salt group than the control group. Unless there is a significant difference between serum and intrarenal 1,25(OH)\(_2\)D levels, it is likely that salt-induced transcellular Ca\(^{2+}\) transporter upregulation is mediated by pathway(s) other than 1,25(OH)\(_2\)D.

The weakness of the study includes a lack of regional expression data, as excised renal cortex was used in the study. Higher-resolution immunohistological staining experiments and qRT-PCR/Western blotting from micro-dissected tissue specimens are necessary in the future. However, this study aimed to lay the foundation for a more detailed mechanistic examination of the effects of chronically high dietary sodium on the expression of renal Ca transporters and on urinary calcium excretion.

Conclusions

Our findings suggest that the decrease in renal claudin-2 protein by salt loading may increase the Ca\(^{2+}\) in tubular fluid reaching the distal tubule, while the concerted upregulation of more distal Ca\(^{2+}\)-handling molecules...
may curtail some of the Ca\(^{2+}\) loss in the urine. Findings of our study may have implications on further research on the pathophysiology of osteoporosis, urinary stone formation and hypertension associated with excessive salt intake.

Abbreviations

NCX1: Na\(^+\)/Ca\(^{2+}\) exchanger 1; 1,25(OH)\(_2\)D: 1,25-dihydroxyvitamin D\(_3\).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MSY conceived the experiments in part with JY. KT, YM, RS and SA performed the experiments. HS, JK and TW gave advice on the study. All authors read and approved the final manuscript.

Acknowledgments

We thank Hiroko Ohashi, Atsuko Hashimoto and Kaori Aso for their technical assistance. Junichi Taniguchi at Jichi Medical University provided us with insightful comments on the manuscript. We are also grateful for the support of Tomoyuki Ono and Sanae Sato in completing this study. MSY was supported by KAKENHI 23790950 Grant-in-Aid for Young Scientists (B), NISHINOMIYA Basic Research Fund (Japan), and a program grant project from Fukushima Medical University.

Author details

1Department of Pharmacology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan. 2Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan. 3Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan.

Received: 13 June 2012 Accepted: 27 November 2012

Published: 2 December 2012

References

1. Massey LK, Whiting SJ: Dietary salt, urinary calcium, and kidney stone risk. *Nut Rev* 1995, 53(3):131–139.
2. Gouding A, Campbell D: Dietary NaCl loads promote calcium and bone loss in adult oophorectomized rats consuming a low calcium diet. *J Nutr* 1983, 113(7):1409–1414.
3. Heaney RP: Role of dietary sodium in osteoporosis. *J Am Coll Nutr* 2006, 25(3 Suppl):2715–2765.
4. Quereda C, Orte L, Sabater J, Navarro-Antolin J, Villafuerta JI, Ottuno J: Urinary calcium excretion in treated and untreated essential hypertension. *J Am Soc Nephrol* 1996, 7(1):1058–1065.
5. McCarron DA, Rankin LJ, Bennett WM, Krutzik S, McClung MR, Luft FC: Urinary calcium excretion at extremes of sodium intake in normal man. *Am J Nephrol* 1981, 1(2):84–90.
6. Waisler M: Calcium clearance as a function of sodium clearance in the dog. *Am J Physiol* 1961, 200:1099–1104.
7. Angelow S, Ahlstrom R, Yu AS: Biology of claudins. *Am J Physiol Renal Physiol* 2008, 295(4):F867–F876.
8. Enck AH, Berger UV, Yu AS: Claudin-2 is selectively expressed in proximal nephron in mouse kidney. *Am J Physiol Renal Physiol* 2001, 281(3):F966–F974.
9. Amathe S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schudde JD, Fromm M: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. *J Cell Sci* 2002, 115(24):4969–4976.
10. Hoenderop JG, Willems PH, Bindels RJ: Calcium absorption across epithelia. *Physiol Rev* 2005, 85(1):373–422.
11. Hermingsen C: Regulation of renal calbindin-D28K. *Pharmacol Toxicol* 2000, 87(Suppl 3):35–39.
12. Hoenderop JG, Willems PH, Bindels RJ: Toward a comprehensive molecular model of active calcium reabsorption. *Am J Physiol Renal Physiol* 2000, 278(3):F352–F360.
13. Boras S, Bindels RJ, Hoenderop JG: Active Ca\(^{2+}\) reabsorption in the connecting tubule. *Pflugers Arch* 2009, 458(1):99–109.
14. Teerapornpuntakit J, Dorkam N, Wongdee K, Krishnamra N, Charoenphandhu N: Endurance swimming stimulates trans epithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. *Am J Physiol Endocrinol Metab* 2009, 296(6):E775–E786.
15. Lee CT, Lien YH, Lai LW, Chen JB, Lin CR, Chen HC: Increased renal calcium and magnesium transporter abundance in streptozotocin-induced diabetes mellitus. *Kidney Int* 2006, 69(10):1786–1791.
16. Wongdee K, Pandaranandaka J, Teerapornpuntakit J, Tudpor K, Thongbunchoo J, Thongon G, Jantarat W, Krishnamra N, Charoenphandhu N: Osteoblasts express Claudins and tight junction-associated proteins. *Histochem Cell Biol* 2008, 130(1):79–90.
17. Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Toyoda M, Felder RA, Jose PA, Watanabe T: Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. *Am J Physiol Renal Physiol* 2009, 296(5):F1052–F1060.
18. Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT: The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium reabsorption. *Am J Physiol Renal Physiol* 2012, 302(8):F943–F956.
19. Angelow S, El-Husseini R, Karzawa SA, Yu AS: Renal localization and function of the tight junction protein, claudin-19. *Am J Physiol Renal Physiol* 2007, 293(11):F166–F177.
20. Simon DR, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Prapo M, Casali G, Ferrini A, Colussi G, Rodriguez-Soriano J, et al: Paracellin-1, a renal tight junction protein required for paracellular Mg\(^{2+}\) resorption. *Science* 1999, 285(5426):103–106.
21. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, et al: Mutations in the tight-junction gene Claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. *Am J Hum Genet* 2006, 79(5):949–957.
22. Li WY, Huey CL, Yu AS: Expression of claudin-7 and –8 along the mouse nephron. *Am J Physiol Renal Physiol* 2004, 286(6):F1063–F1071.
23. Yu AS, Enck AH, Lencer WI, Schneeberger EE: Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. *J Biol Chem* 2003, 278(19):17350–17359.
24. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ: Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. *J Biol Chem* 1999, 274(13):8375–8378.
25. Lamberts TT, Bindels RJ, Hoenderop JG: Coordinated control of renal Ca2+ handling. *Kidney Int* 2006, 69(5):650–654.
26. Magyar CE, White KE, Rojas R, Apodaca G, Friedman PA: Plasma membrane Ca2+-ATPase and NCX1 + Na+/Ca2+ exchanger expression in distal convoluted tubule cells. *Am J Physiol Renal Physiol* 2002, 283(1):F29–F40.
27. Bindels RJ, Ramakers PL, Dempster JA, Hartog A, van Os CH: Role of Na+/Ca2+ exchange in transcellular Ca2+ transport across primary cultures of rabbit kidney collecting system. *Pfuiigers Arch* 1992, 420(5–6):566–572.
28. Hinata M, Yamamura H, Li L, Watanabe Y, Watano T, Imaizumi Y, Kimura J: Stoichiometry of Na+/Ca2+ exchange is 3:1 in guinea-pig venular myometrium. *J Physiol* 2002, 545(Pt 2):653–661.
29. Brenner BM, Brenner & Rector's the Kidney. 8th edition. Philadelphia, PA: Saunders Elsevier; 2008:187.
30. Yoshitomi K, Fronter E: How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? *Pfuiigers Arch* 1985, 405(Suppl 1):S121–S126.
31. Manunta P, Ferrandi M, Bianchi G, Hamlyn JM: Endogenous ouabain in cardiovascular function and disease. *J Hypertens* 2009, 27(1):9–18.
32. Bagrov AY, Fedorova OV, Dmitrieva RI, French AW, Anderson DE: Plasma marinobufagenin-like and ouabain-like immunoreactivity during saline volume expansion in anesthetized dogs. *Cardiovasc Res* 1996, 31(2):96–103.
33. Schoner W, Scheiner-Bobis G: Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. *Am J Physiol Cell Physiol* 2007, 293(2):C509–C536.
34. Nilus B, Preen J, Hoenderop JG, Vennekens R, Hoefs S, Weidema AF, Droogmans G, Bindels RJ: Fast and slow inactivation kinetics of the Ca2+ channels EcaC1 and EcaC2 (TRPV5 and TRPV6). Role of the intracellular
loop located between transmembrane segments 2 and 3. J Biol Chem 2002, 277(34):30852–30858.

35. Lytton J, Lee SL, Lee WS, van Baal J, Bindels RJ, Klav R, Naveh-Many T, Silver J: The kidney sodium-calcium exchanger. Ann N Y Acad Sci 1996, 779:58–72.

36. Duarte CG, Watson JF: Calcium reabsorption in proximal tubule of the dog nephron. Am J Physiol 1967, 212(6):1353–1360.

37. Simchon S, Manger WM, Brown TW: Dual hemodynamic mechanisms for salt-induced hypertension in Dahl salt-sensitive rats. Hypertension 1991, 17(6 Pt 2):1063–1071.

38. Keppler A, Gretz N, Schmidt R, Kloetzer HM, Groene HJ, Lelongt B, Meyer M, Sadick M, Pill J: Plasma creatinine determination in mice and rats: an enzymatic method compares favorably with a high-performance liquid chromatography assay. Kidney Int 2007, 71(1):74–78.

39. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, et al: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 2010, 107(17):8011–8016.

40. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulze JD, Arnasheh S, Gunzel D, Fromm M: Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 2010, 123(Pt 11):1913–1921.

41. Ikari A, Takiguchi A, Atomi K, Sato T, Sugatani J: Decrease in claudin-2 expression enhances cell migration in renal epithelial Madin-Darby canine kidney cells. J Cell Physiol 2011, 226(6):1471–1478.

42. Fritzd G, Palmer LG: Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am J Physiol Renal Physiol 2009, 297(5):F1249–F1255.

43. Bobulescu IA, Moe OW: Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009, 458(1):5–21.

44. Yu AS, Cheng MH, Coash RO: Calcium inhibits paracellular sodium conductance through claudin-2 by competitive binding. J Biol Chem 2010, 285(47):37060–37069.

45. Poujeol P, Chabardes D, Roinel N, De Rouffignac C: Influence of extracellular fluid volume expansion on magnesium, calcium and phosphate handling along the rat nephron. Pflugers Arch 1976, 365(2–3):203–211.

46. Friedman PA, Gosek FA: Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev 1995, 75(3):429–471.

47. Windhager EE, Fritzd G, Milovanovic S: The role of Na-Ca exchange in renal epithelia. An overview. Ann N Y Acad Sci 1991, 639:577–591.

48. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ: Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. Kidney Int 2005, 68(4):1708–1721.

49. Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St-Arnaud R, Bindels RJ: Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-Talpha-hydroxylase knockout mice. Faseb J 2002, 16(11):1398–1406.