Analysis of Charge Order in the Kagome Metal AV₃Sb₅ (A = K, Rb, Cs)

M. Michael Denner,¹ Ronny Thomale,¹,²,³ and Titus Neupert¹

¹Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
²Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
³Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) group, Indian Institute of Technology Madras, Chennai 600036, India

Motivated by the recent discovery of unconventional charge order, we develop a theory of electronically mediated charge density wave formation in the family of kagome metals AV₃Sb₅ (A = K, Rb, Cs). The intertwining of Hove filling and sublattice interference suggests a three-fold charge density wave instability at T_{CDW}. From there, the charge order forming below T_{CDW} can unfold into a variety of phases capable of exhibiting orbital currents and nematicity. We develop a Ginzburg Landau formalism to stake out the parameter space of kagome charge order. We find a nematic chiral charge order to be energetically preferred, which shows tentative agreement with experimental evidence.

Introduction. Density wave instabilities describe the onset of translation symmetry breaking of the charge or spin distribution in a Fermi liquid. While spin density waves usually unambiguously derive from electronic interactions, it is often subtle to tell whether electronic charge order is cause or consequence.¹,² For the latter, structural transitions of any kind can accordingly manifest themselves in the rearranged electronic charge profile. For the former, the electron fluid minimizes its energy by translation symmetry breaking, which is mediated by electronic interactions. With regard to the charger order in the kagome metal AV₃Sb₅ (A = K, Rb, Cs), a central observation to begin with is that it coincides with a Fermiology close to van Hove filling, hinting at a significant enhancement of electronic correlation effects. While it will still be essential to further analyze the phonon profile of the material⁵,⁸, we take these observations to motivate our assumption that the supposed charge order observed in AV₃Sb₅ is electronically mediated, and that we will constrain ourselves to the electronic degrees of freedom in the following.

The kagome Hubbard model at van Hove filling has been predicted to yield a charge density wave (CDW) instability with finite angular momentum.¹³,¹⁴ Generally, a charge density wave interpreted as a condensate of particle-hole singlets should tend to have zero angular momentum, in order for the particle hole pair to minimize its energy with respect to the screened Coulomb interactions. Instead, the van Hove-filling kagome Fermi surface yields three nesting vectors, all of which give rise to individual charge order components. Individually, the particle-hole pair wave function attains angular momentum ℓ = 1, reminiscent of the generalization of the Peierls instability to two spatial dimensions also named charge bond order (CBO). The reason this instability is preferred over other instabilities roots in the sublattice interference,¹⁵ which effectively increases the relevance of nearest neighbor on-site Coulomb repulsion within the nesting channels.

In this Letter, we develop a theory of charge order for AV₃Sb₅. In order to do so, we obtain an effective two-dimensional tight binding model which manages to keep the most salient features of the AV₃Sb₅ band structure. We find that, assuming an electronically mediated charge order, the Fermi pocket at van Hove filling should dominate. On a mean-field level, we compare CBO with ℓ = 1 against charge density order (CDO) with ℓ = 0 angular momentum, both for the same ordering wave vectors.⁹,¹³,¹⁴
tated by the Fermiology. We confirm that the three-fold CBO instability previously found for the kagome Hubbard model at van Hove filling13,14 dominates in a large part of parameter space. Beyond the instability level, the three CBO parameters can in principle form condensates which vary in amplitude and relative phase. We discuss the possibility using a Ginzburg Landau analysis and find that the CBO instability preferably breaks time-reversal symmetry. All three order parameters appear simultaneously at the instability level, and yet there is a tendency to nematicity through differing phases below T_{CDW}. These results appear to be in line with the measurements from scanning tunneling microscopy.

Multi-orbital effective model. Layered kagome metals as the AV$_3$Sb$_5$ family are an exciting platform, hosting electronic features like flat bands and nodal lines4,16. The compounds can be treated as effectively two-dimensional17, since the electronic features are dominated by the vanadium orbitals crystallizing in a kagome lattice structure. We now discuss the symmetry properties of bands arising from d orbitals in the kagome lattice, neglecting spin-orbit coupling. Located in the wallpaper group $\text{p}\text{6}\text{mm}$ (No. 17), the kagome structure consists of three sublattices that arise from placing atoms on Wyckoff position 3g with site-symmetry group D_{2h}. The symmetry representations of Bloch states depend on the irreducible representation of the orbitals placed on these Wyckoff positions, as described by the topological quantum chemistry framework18. Two sets of orbitals contribute: First, a linear combination of the $d_{xy}, d_{x^2-y^2}, d_{z^2}$ orbitals forms a Wannier state in the A_g irreducible representation of D_{2h}. We focus on the d_{xy} orbitals as their representative (see Fig. 1a). They induce the well-known kagome band structure with a p-type van Hove singularity19 at the M point (blue bands in Fig. 1b). Second, the $d_{xz/yz}$ orbitals in the $B_{2g,3g}$ irreducible representations of D_{2h}, indicated as two red tones in Fig. 1a, form a set of bands with opposite mirror eigenvalues along the Γ-M line. These bands give rise to a mirror-symmetry-protected Dirac cone on the Γ-M line and additional p-as well as m-type van Hove singularities (red bands in Fig. 1b). Crossings between the d_{xy} and the $d_{xz/yz}$ bands are also protected by mirror symmetry.

P-type bands discussed above are subject to the sublattice interference15: at each M point, the Bloch states at van Hove filling have support on only one of the three sublattices (see Fig. 1c). This effect is not an artifact of a simplified effective model, but is also seen in the first principles calculation to very high accuracy (corrected only by a small admixture from p orbitals of the other sublattices). It has a crucial influence on the character of Fermi instabilities13,15,20.

In order to unravel the origin of the observed Fermi surface instability, we focus on nesting effects which are most apparent in the d_{xy} bands (see the nesting wave vectors $Q_j, j=1,2,3$, indicated in Fig. 1c). We therefore focus on the d_{xy} orbitals exclusively in the following, while keeping in mind that $d_{xz/yz}$ bands share their important features – van Hove singularity and sublattice interference – and can thus be expected to support the ordering tendencies arising from the d_{xy} bands (see Sec.I in Ref. 21).

The tight-binding description of the d_{xy} orbital band structure is $H_0 = \sum_{k,\alpha,\beta} c_{k,\alpha}^{\dagger} \mathcal{H}_{k,\alpha,\beta} c_{k,\beta}$, where $c_{k,\alpha}^{\dagger}$ creates a Bloch electron with momentum k and support on sublattice $\alpha = 1, 2, 3$. The Bloch Hamiltonian matrix reads

$$\mathcal{H}_k = -2t \begin{pmatrix} \mu & \cos (ka_3) & \cos (ka_2) \\ \cos (ka_3) & \mu & \cos (ka_1) \\ \cos (ka_2) & \cos (ka_1) & \mu \end{pmatrix},$$

where we use the lattice vectors connecting sublattices as $a_{1,3} = (1/4, \mp \sqrt{3}/4)^T$, $a_2 = (1/2, 0)^T$, $t = 0.3$ eV as the overall hopping strength and μ as the chemical potential. The corresponding bandstructure presented in Fig. 1b shows an enhancement of the density of states around the three M-points at the van Hove filling $n = 5/12$.

Charge density wave instability. The emergence of the charge density wave in AV$_3$Sb$_5$ has been experimentally observed to break the translational symmetry of the kagome lattice to a 2×2 unit cell4,6,8–12, thereby necessitating an instability with $Q \neq 0$, specifically $Q_{1,3} = (\pi, \mp \sqrt{3}\pi)^T$, $Q_2 = (2\pi, 0)^T$ (see Fig. 1c). Experimental evidence in AV$_3$Sb$_5$ is indicative of an electronically driven charge order5,23. This is why we consider a mean-field treatment of the kagome Hubbard model,
realized by the Hamiltonian
\[
H = H_0 + H_{\text{int}} = \mu \sum_{r,\sigma} c_{r,\sigma}^\dagger c_{r,\sigma} - t \sum_{\langle r, r' \rangle, \sigma} (c_{r,\sigma}^\dagger c_{r',\sigma} + \text{h.c.}) + U \sum_r n_{r,\uparrow} n_{r,\downarrow} + V \sum_{\langle r, r' \rangle, \sigma, \sigma'} n_{r,\sigma} n_{r',\sigma'},
\]
where \(c_{r,\sigma}^\dagger \) creates an electron on site \(r \) in the kagome lattice with spin \(\sigma = \uparrow, \downarrow \) and \(n_{r,\sigma} = c_{r,\sigma}^\dagger c_{r,\sigma} \). The on-site Hubbard interaction is parametrized by \(U \), while the nearest-neighbor interaction strength is denoted by \(V \). Crucially, the hopping always acts between densities on sites belonging to different sublattices.

In the following, we only consider charge orders, i.e., all fermionic bilinear forms are implicitly summed over their spin degree of freedom. Note that a spin bond order with likewise finite relative angular momentum could in principle be a close competitor\(^{13} \), which could evade conventional static measurements of local magnetic moments\(^{24} \) and hence would not contradict e.g. the absence of a local magnetic moment in \(\mu \text{SR}^{25} \). The current related to the anomalous Hall signal\(^{26} \), however, manifestly is a charge current and not a spin current. Additionally, recent optical spectroscopy experiments support the bulk nature of the CDW state\(^9 \), and as such hint at an electronically mediated charge order as its origin.

The relative strength of on-site \(U \) and nearest-neighbor \(V \) Hubbard interactions allow for different charge orders to emerge. Inspired by the majority of charge instabilities, a charge density order (CDO) is an obvious possibility, described by the order parameter
\[
\mathcal{O}_{\text{CDO}}(k) = \sum_{\alpha} \Delta_\alpha \langle c^\dagger_{R,\alpha} c_{k+Q,\alpha} \rangle, \tag{3}
\]
where \(\alpha \) labels the three sublattices. It corresponds to a real space pattern of the form
\[
\mathcal{O}_{\text{CDO}}(r) = \sum_{\alpha} \Delta_\alpha \cos(Q_{\alpha} R) \langle c^\dagger_{R,\alpha} c_{R,\alpha} \rangle, \tag{4}
\]
where \(c_{R,\alpha}^\dagger \) creates an electron in sublattice \(\alpha \) of unit cell \(R \), while \(r = R + r_\alpha \) is the actual position of the site \((r_1 = 0, r_2 = a_3, r_3 = a_2)\). Such an arrangement is visualized in the right inset of Fig. 2.

Owing to the unique sublattice structure, however, the inhomogeneous distribution of Fermi level density of states reduces nesting effects for a local Hubbard interaction. Consequently, the nearest-neighbor interaction \(V \) is promoted, leading to a charge bond order, which modulates the kinetic hopping strengths instead of on-site densities. Correspondingly, the order parameter in reciprocal space can be written as\(^{13} \)
\[
\mathcal{O}_{\text{CBO}}(k) = \sum_{\alpha,j,\beta} \Delta_j \sin \left(\frac{Q_j k}{4\pi} \right) \left(\langle c^\dagger_{k,\alpha} c_{k+Q_j,\beta} \rangle \langle c_{k,\beta} c_{k-Q_j,\alpha} \rangle - \langle c_{R,\alpha}^\dagger c_{R,\beta} \rangle - \langle c_{R,\beta}^\dagger c_{R,\alpha} \rangle \right), \tag{5}
\]
where \(\epsilon_{\alpha j \beta} \) is the Levi-Civita tensor and \(\alpha, \beta \) run over the three sublattices. The \(k \)-dependence of the order parameter creates a non-trivial relative momentum structure, leading to the formation of an unconventional CDW order. Note that the relative angular momentum \(l = 1 \) of the individual particle hole pairs does not directly carry over to the macroscopic charge order ground state formed by the coherent superposition of these particle hole pairs. Rather, the \(l = 1 \) substructure of the particle hole pair wave function unfolds in the nature of particle-hole excitations above the ground state. In real space, the emerging order corresponds to an alternating modulation of the hopping strengths connecting the three sublattices, giving rise to the enlarged \(2 \times 2 \) unit cell
\[
\mathcal{O}_{\text{CBO}}(r) = \sum_{\alpha,j,\beta} \Delta_j \cos(Q_{j} R) \langle c_{R,\alpha}^\dagger c_{R,\beta} \rangle, \tag{6}
\]
whose visualization is given in the left inset of Fig. 2.

We compare the transition temperature of the two orders defined in Eqs. (3) and (5) on the mean-field level. The results are visualized in Fig. 2. Clearly, a CBO is favored for a wide range of interaction strengths, owing to the unique sublattice structure of the kagome lattice\(^{27} \). This allows nearest-neighbor interactions \(V \) to take the role of mediating the unconventional charge order. By contrast, the CDO is found in the limit of large on-site interaction \(U \). Experimentally, a transition temperature \(T_{\text{CDW}} \approx 78 - 103 \) K has been observed\(^8 \). Gauging our scales from this input, it yields \(U/2 = V \approx 250 \) meV in our setting. Naturally, for sufficiently large on-site interactions \(U \), the charge density order becomes dominant again, as seen on the right side of Fig. 2. Exerting hydrostatic pressure has been found to lead to a suppression of the charge order\(^{10,22} \), related to both Fermi surface renormalizations and changes in the nearest-neighbor interaction \(V \) (see Sec.II in Ref. 21).

Ginzburg Landau formalism. To study the interplay of the triplet of order parameters in the CBO phase, we derive the symmetry-constrained expansion of the Ginzburg Landau free energy for \(\Delta_1, \Delta_2, \Delta_3 \) as defined in Eq. (6). The relevant generating symmetries are translation by \(2a_1, (\Delta_1, \Delta_2, \Delta_3) \rightarrow (\Delta_1, -\Delta_2, -\Delta_3) \), translation by \(2a_2, (\Delta_1, \Delta_2, \Delta_3) \rightarrow (\Delta_1, \Delta_2, -\Delta_3) \) six-fold rotation, \((\Delta_1, \Delta_2, \Delta_3) \rightarrow (\Delta_2^*, \Delta_1^*, \Delta_3^*)\), mirror with \(a_2 \) normal to the mirror plane, \((\Delta_1, \Delta_2, \Delta_3) \rightarrow (\Delta_1^*, \Delta_2^*, \Delta_3^*)\), and time-reversal acting as complex conjugation. For a more compact notation, we decompose the complex order parameter into phase \(\phi_j \) and absolute value \(\psi_j > 0 \) as \(\Delta_j = \psi_j e^{i\phi_j} \), for \(j = 1, 2, 3 \). Up to third order in \(\Delta_j \), and neglecting gradient terms, the free energy expansion
reads28,29
\begin{equation}
F = \alpha_1 \sum_j \tilde{\psi}_j^2 + 2\alpha_2 \sum_j \tilde{\psi}_j^2 \cos(2\phi_j) + 2\gamma_1 \psi_1 \psi_2 \psi_3 \cos(\phi_1 + \phi_2 + \phi_3) + \gamma_2 \psi_1 \psi_2 \psi_3 \left(8 \cos(\phi_1) \cos(\phi_2) \cos(\phi_3) - 2 \cos(\phi_1 + \phi_2 + \phi_3)\right),
\end{equation}
with the coefficients $\alpha_{1,2}$ and $\gamma_{1,2}$ being temperature-dependent real numbers. We discuss the effect of the second- and third-order terms separately, with the vanishing $\alpha_1 \pm 2\alpha_2$ at T_{CDW} indicating the phase transition to the charge bond ordered state (see Fig. 3a).

The second order terms are minimized by $\phi_j \mod \pi = 0$ for $\alpha_2 < 0$, and $\phi_j \mod \pi = \pi/2$ for $\alpha_2 > 0$, where the latter case breaks time-reversal symmetry spontaneously and induces orbital currents30,31. Our microscopic calculation indeed yields $\alpha_2 > 0$, as seen in Fig. 3a. The resulting bond correlation $\langle |\psi_{\text{GS}}|^2 c_{r}^\dagger c_{r'} |\psi_{\text{GS}}\rangle$, with r, r' being nearest-neighbor sites and ψ_{GS} the single Slater determinant groundstate wavefunction, replicates the expected star of David pattern imprintted by the modulated hopping elements. Additionally, orbital currents emerge due to the time-reversal symmetry breaking and, even though we have a bond order, the on-site densities $\langle |\psi_{\text{GS}}|^2 c_{r}^\dagger c_{r} |\psi_{\text{GS}}\rangle$ are also modulated (see Fig. 3b).

The third order terms in Eq. (7) mediate interactions between the three order parameters. They demonstrate that the simultaneous nucleation of all three order parameters is energetically favorable. Our microscopic calculation yields $\gamma_1 < 0$ and $\gamma_2 = 0$. Minimization of the third order terms alone then implies $\phi_1 + \phi_2 + \phi_3 \mod 2\pi = 0$, which forces the ϕ_j to deviate from $\pm \pi/2$, while maintaining the time-reversal symmetry breaking. This competition between second and third order terms, together with the fourth order, leads to a transition from an isotropic to an anisotropic charge order upon lowering temperature. Specifically, a difference between the phase factors $\phi_1 \neq \phi_2,3 \neq \pi/2$ emerges within the charge order phase, while maintaining a complex order parameter with $\psi_1 = \psi_2 = \psi_3$. This results in a nematic chiral charge order, where the bond correlations spontaneously break the C_6-rotational symmetry (see Sec.III in Ref. 21). Such a scenario has been observed in numerous experiments3,32–34.

We conclude from this Ginzburg Landau analysis three points that are in accordance with the experimental findings, in particular in AV$_3$Sb$_5$: (i) the CBO breaks time-reversal symmetry spontaneously, (ii) all three order parameter components nucleate together, and (iii) their competition can result in a nematic CBO.

In Fig. 3c the band structure of the time-reversal symmetry breaking CBO mean-field state is shown. We observe that the order parameter does not open a full gap, but significantly reduces the density of states at the Fermi level inducing two peaks above and below, in accordance with experimental findings3,33,35–39.

Conclusion and outlook. We have developed a minimal tight-binding model capturing the central features relevant for the discussion of charge density wave order in the kagome metals AV$_3$Sb$_5$. Motivated by recent experimental verification, we have investigated the motif of electronically driven charge order through a mean-field treatment of the kagome Hubbard model. Owing to the unique sublattice structure of the Fermi surface instability, a charge bond order with particle hole pairs of non-zero angular momentum emerges. From a Ginzburg Landau expansion of the free energy, we go beyond the instability level and find that the charge order in AV$_3$Sb$_5$ tends to yield orbital currents as a manifestation of time-reversal symmetry breaking, and is naturally prone to the onset of nematicity. The recently observed $2 \times 2 \times 2$ CDW in (Rb,Cs)V$_3$Sb$_5$5,40 can likely be explained by extending the CBO order parameter in (5) and (6) to three dimensions41. Intertwining these novel charge orders with the
topological features of AV$_3$Sb$_5$ opens a plethora of exciting phenomena, in particular with respect to possibly highly exotic descendant superconducting pairing.

Acknowledgments. RT thanks S. A. Kivelson for discussions. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 25849086 - SFB 1170 and through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter - ct.qmat Project-ID 390858490 - EXC 2147. Additionally, this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programm (ERC-StG-Neupert-757867-PARATOP).

Note added. Upon completion of this work, we became aware of Ref. 42 which investigates a slightly different charge bond order for AV$_3$Sb$_5$. Repeating our mean-field analysis for this order parameter yields a lower $k_B T_{CDW}$ \approx 423 meV (for $V = U = 1$ eV), rendering this order energetically less favorable.

1. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
2. L. P. Gor’kov and G. Grünner, Charge Density Waves in Solids (Elsevier, 1000 AE Amsterdam, 1989).
3. B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, Phys. Rev. Materials 3, 094407 (2019).
4. Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Muter, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Nature Materials 20, 1353 (2021).
5. H. Li, T. T. Zhang, T. Yilmaz, Y. Y. Pai, C. E. Marvinney, A. Said, Q. W. Yin, C. S. Gong, Z. J. Tu, E. Vesovo, C. S. Nelson, R. G. Moore, S. Murakami, H. C. Lei, H. N. Lee, B. J. Lawrie, and H. Miao, Phys. Rev. X 11, 031050 (2021).
6. H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian, Z. Huang, G. Li, Y. Ye, S. Ma, S. Ni, H. Zhang, Q. Yin, C. Gong, Z. Tu, H. Lei, H. Tan, S. Zhou, C. Shen, X. Dong, B. Yan, Z. Wang, and H.-J. Gao, Nature 599, 222 (2021).
7. H. Zhao, H. Li, B. R. Ortiz, S. M. L. Teicher, T. Park, M. Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic, Nature 599, 216 (2021).
8. H. Tan, Y. Liu, Z. Wang, and B. Yan, Phys. Rev. Lett. 127, 046401 (2021).
9. E. Uykur, B. R. Ortiz, S. D. Wilson, M. Dressel, and A. A. Tsirlin, arXiv e-prints (2021), arXiv:103.07912 [cond-mat.str-el].
10. F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Phys. Rev. B 103, L220504 (2021).
11. F. H. Yu, T. Wu, Z. Y. Wang, B. Lei, W. Z. Zhuo, J. J. Ying, and X. H. Chen, Phys. Rev. B 104, L041103 (2021).
12. Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Chinese Physics Letters 38, 037403 (2021).
13. M. L. Kiesel, C. Platt, and R. Thomale, Phys. Rev. Lett. 110, 126405 (2013).
14. W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, Phys. Rev. B 87, 115135 (2013).
15. M. L. Kiesel and R. Thomale, Phys. Rev. B 86, 121105 (2012).
16. B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Physical Review Materials 5, 034801 (2021).
17. B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, Phys. Rev. Lett. 125, 247002 (2020).
18. B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature 547, 298 (2017).
19. X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G. Sangiovanni, D. Di Sante, Y. Iqbal, W. Hauke, A. P. Schnyder, M. M. Denner, M. H. Fischer, T. Neupert, and R. Thomale, Phys. Rev. Lett. 127, 177001 (2021).
20. Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 100, 085136 (2019).
21. See Supplemental Material for a discussion of m-type van-Hove singularities, pressure dependence of the results as well as details about the nematicity of the order parameter.
22. A. A. Tsirlin, P. Fertey, B. R. Ortiz, B. Klis, V. Merkl, M. Dressel, S. D. Wilson, and E. Uykur, arXiv e-prints (2021), arXiv:2105.01397 [cond-mat.supr-con].
23. X. Zhou, Y. Li, X. Fan, J. Hao, Y. Dai, Z. Wang, Y. Yao, and H.-H. Wen, Phys. Rev. B 104, L041101 (2021).
24. C. Nayak, Phys. Rev. B 62, 4880 (2000).
25. E. M. Kenney, B. R. Ortiz, C. Wang, S. D. Wilson, and M. Graf, Journal of Physics: Condensed Matter (2021).
26. S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Smajekal, Y. Chen, S. S. P. Parkin, S. D. Wilson, E. S. Toberer, T. McQueen, and M. N. Ali, Science Advances 6 (2020), 10.1126/sciadv.abb6003.
27. Another CBO is discussed in Ref. 43, yielding the same critical temperature as obtained here.
28. W. L. McMillan, Phys. Rev. B 12, 1187 (1975).
29. J. van Wezel, EPL (Europhysics Letters) 96, 67011 (2011).
30. Q. Liu, H. Yao, and T. Ma, Phys. Rev. B 82, 045102 (2010).
31. W. Zhu, S.-S. Gong, T.-S. Zeng, L. Fu, and D. N. Sheng, Phys. Rev. Lett. 117, 096402 (2016).
32. H. Li, H. Zhao, B. R. Ortiz, T. Park, M. Ye, L. Balents, Z. Wang, S. D. Wilson, and I. Zeljkovic, arXiv e-prints (2021), arXiv:2104.08209 [cond-mat.supr-con].
33. N. Ratcliff, L. Hallett, B. R. Ortiz, S. D. Wilson, and J. W. Harter, Phys. Rev. Materials 5, L111801 (2021).
34. Z. X. Wang, Q. Wu, Q. W. Yin, C. S. Gong, Z. J. Tu, T. Lin, Q. M. Liu, L. Y. Shi, S. J. Zhang, D. Wu, H. C. Lei, T. Dong, and N. L. Wang, Phys. Rev. B 104, 165110 (2021).
35. S. Cho, H. Ma, W. Xia, Y. Yang, Z. Liu, Z. Huang, Z. Jiang, X. Lu, J. Liu, Z. Liu, J. Li, J. Wang, Y. Liu, J. Jia, Y. Guo, J. Liu, and D. Shen, Phys. Rev. Lett. 127,
236401 (2021).

36 R. Lou, A. Fedorov, Q. Yin, A. Kuibarov, Z. Tu, C. Gong, E. F. Schwier, B. Büchner, H. Lei, and S. Borisenko, arXiv e-prints (2021), arXiv:2106.06497 [cond-mat.supr-con].

37 Y. Hu, S. M. L. Teicher, B. R. Ortiz, Y. Luo, S. Peng, L. Huai, J. Z. Ma, N. C. Plumb, S. D. Wilson, J. F. He, and M. Shi, arXiv e-prints (2021), arXiv:2104.12725 [cond-mat.supr-con].

38 K. Nakayama, Y. Li, T. Kato, M. Liu, Z. Wang, T. Takahashi, Y. Yao, and T. Sato, Phys. Rev. B 104, L161112 (2021).

39 Z. Wang, S. Ma, Y. Zhang, H. Yang, Z. Zhao, Y. Ou, Y. Zhu, S. Ni, Z. Lu, H. Chen, K. Jiang, L. Yu, Y. Zhang, X. Dong, J. Hu, H.-J. Gao, and Z. Zhao, arXiv e-prints (2021), arXiv:2104.05556 [cond-mat.supr-con].

40 Z. Liang, X. Hou, F. Zhang, W. Ma, P. Wu, Z. Zhang, F. Yu, J.-J. Ying, K. Jiang, L. Shan, Z. Wang, and X.-H. Chen, Phys. Rev. X 11, 031026 (2021).

41 J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda, and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010).

42 X. Feng, K. Jiang, Z. Wang, and J. Hu, Science Bulletin 66, 1384 (2021).

43 Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 104, 045122 (2021).
Supplementary Material for
“Analysis of Charge Order in the Kagome Metal AV₃Sb₅ (A =K,Rb,Cs)”

M. Michael Denner,¹ Ronny Thomale,²,³ and Titus Neupert¹

¹Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
²Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
³Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) group, Indian Institute of Technology Madras, Chennai 600036, India

CONTENTS

I. Nesting instabilities from m-type van Hove singularities 1
II. Pressure dependence of the charge order 1
III. Nematicity of the order parameter 2
References 3

I. NESTING INSTABILITIES FROM M-TYPE VAN HOVE SINGULARITIES

The single-orbital kagome system of Eq.(1) in the main text possesses two van Hove singularities that provide the necessary density of states for electronic instabilities. However, they differ considerably in their sublattice support around the Fermi surface³: The upper van Hove singularity is of p-type, as the eigenstates in the vicinity of the three M points are localized on mutually different sublattices. As such it experiences the sublattice interference mechanism, essential for the formation of the charge bond order. On the other hand, the lower van Hove singularity is of m-type, with the eigenstates equally distributed over mutually different sets of two sublattices for each M point. We investigate the implications of the type of van Hove singularity for the nature of the order parameter by tuning the Fermi level to the m-type van Hove point in our model. When using the experimentally gauged value of $U/2 = V \approx 250$ meV, the resulting second order coefficients α_1 and α_2 in Fig. 1 result in a T_{CDW} that is a factor of two lower compared with the T_{CDW} at the filling corresponding to the p-type van Hove singularity. However, α_2 still remains positive, favoring a complex order parameter as before. Consequently, while the absence of the sublattice interference mechanism at m-type Fermi surfaces impacts the critical temperature considerably, it does not alter the time-reversal symmetry breaking nature of the order parameter.

The multi-band nature of AV_3Sb_5 (see Fig.1 of the main text) contains several van Hove singularities, three close to the Fermi level. Two of them are in direct vicinity of the Fermi surface and of p-type, such that the discussion presented in the main text is directly applicable. The slight energetic difference between the two might affect nesting effects slightly, without modifying the nature of the order. The third van Hove singularity sits higher in energy and is of m-type. Therefore, in light of our analysis of isolated m-type van Hove points, we expect the charge ordering not to be affected qualitatively by its presence.

II. PRESSURE DEPENDENCE OF THE CHARGE ORDER

The transition to the charge ordered state induces a distortion of the underlying kagome lattice. In the three-dimensional compound AV_3Sb_5, this results in an evasive movement of the encapsulating antimony structure². The application of external pressure hinders this evasive movement, leading to a reduction of the critical temperature T_{CDW}³. Viewed from the perspective of the electronic band structure, hydrostatic pressure results in moving the important van Hove singularity further away from the Fermi level³. As a result the nesting is reduced, thereby suppressing the on-set of the charge ordered state. In our theoretical setting, we mimic this by...
changing the term μ in the Hamiltonian

$$H = H_0 + H_{\text{int}}$$
$$= \mu \sum_{r,\sigma} c^+_{r,\sigma} c_{r,\sigma} - t \sum_{(r,r')\sigma} (c^+_{r,\sigma} c_{r',\sigma} + h.c.) + U \sum_r n_{r,\uparrow} n_{r,\downarrow} + V \sum_{(r,r')\sigma,\sigma'} n_{r,\sigma} n_{r',\sigma'},$$

shifting the energetic position of the van Hove singularity (see Fig. 2). Using experimentally obtained values from Ref. 2, we observe a reduction of both the density order driven by the on-site interaction U, as well as the bond order driven by the nearest-neighbor terms V. The shift of the van Hove singularity therefore serves as an explanation for the expected reduction in T_{CDW}. Nevertheless the phase transition point ($V = 1$ eV, $U = 2.1$ eV) shifts slightly, too, such that a reduction of V could lead to a suppression of the unconventional charge order discussed here. However, the suppression of bond orders opens the possibility of other charge density waves emerging, as indicated by some recent experiments4 as well as theoretical calculations5.

III. NEMATICITY OF THE ORDER PARAMETER

The expansion of the Ginzburg Landau free energy allows not only to investigate the critical temperature, but also the precise form of the order parameter. As explained in the main text, the second order term determines the on-set temperature as well as the tendency to break time-reversal symmetry. The third order terms in Eq. (7) of the main text mediate interactions between the three order parameters. The resulting competition between second and third order terms is settled by the fourth order, determining stable solutions. The extension of the expansion from the main text to fourth order reads

$$F = \alpha_1 \sum_j \psi_j^2 + 2\alpha_2 \sum_j \psi_j^2 \cos(2\phi_j)$$
$$+ 2\gamma_1 \psi_1 \psi_2 \psi_3 \cos(\phi_1 + \phi_2 + \phi_3)$$
$$+ \gamma_2 \psi_1 \psi_2 \psi_3 \left[8 \cos(\phi_1) \cos(\phi_2) \cos(\phi_3) - 2 \cos(\phi_1 + \phi_2 + \phi_3)\right]$$
$$+ \delta_1 \sum_j \psi_j^4 + 2\delta_2 \sum_j \psi_j^2 \cos(4\phi_j)$$
$$+ \delta_3 \sum_{i,j > i} \psi_i^2 \psi_j^2 + 2\delta_4 \sum_j \psi_j^4 \cos(2\phi_j)$$
$$+ 2\delta_5 \sum_{i,j > i} \psi_i^2 \psi_j^2 \cos(2(\phi_i + \phi_j))$$
$$+ 2\delta_6 \sum_{i,j > i} \psi_i^2 \psi_j^2 \cos(2(\phi_i - \phi_j))$$
$$+ 2\delta_7 \sum_{i,j \neq i} \psi_i^2 \psi_j^2 \cos(2\phi_j).$$

Numerical optimization of the prefactors $\alpha_i, \gamma_j, \delta_k$ reveals a complex order parameter ($\phi_j = \pi/2$) right below the critical temperature, which is isotropic, carrying the same phase and magnitude for each component (see Fig. 3a and b). Upon lowering the temperature further, a tendency to nematicity evolves below $k_B T = 0.86$ eV, i.e., the order parameters differ in their phase ($\phi_1 \neq \phi_{2,3}$) (see Fig. 3a and b) while maintaining the same magnitude. As illustrated in Fig. 3c, this leads to an anisotropy of both on-site densities and bond correlation ($\langle |\langle \psi_{GS} | c^+_{r,\sigma} c_{r,\sigma} | \psi_{GS} \rangle |^2 \rangle$), breaking the inherent C_k-rotational symmetry spontaneously. Consequently, we observe a transition between an isotropic to an anisotropic CO upon cooling, while retaining the time-reversal symmetry breaking nature. Such a scenario can be even enriched when considering the three dimensionality of the material, introducing additional complexity along the c–axis. These results are in accordance with experimental observations in AV_3Sb_5, showing a strong anisotropy6–9.

FIG. 2. Pressure tuneability of van Hove singularity and critical temperature. The position E_{VHS} of the p-type van Hove singularity in AV_3Sb_5 (inset) can be tuned by the application of hydrostatic pressure p. Increasing p pushes the van Hove point further away from the Fermi level. This alters the Fermi surface and nesting condition, lowering the critical temperature of the CQDs compared to the ambient pressure case with $E_{\text{VHS}} \approx -35$ meV ($V = 1$ eV, $U = 2.1$ eV).
FIG. 3. Nematicity of the order parameter. (a) The solution $\Delta_j = |\psi_j| e^{i\phi_j}$ minimizing the free energy (2) shows a non-zero order parameter below the critical temperature $k_B T_{\text{CDW}} \approx 0.011$ eV ($V = 1$ eV, $\mu = -35$ meV). (b) Due to the positive coefficient α_2, the order parameter carries a non-trivial phase ϕ_j, which differs between the components $\phi_1 \neq \phi_{2,3}$ below the transition point. (c) The resulting bond correlation and on-site density within the CO phase shows an anisotropy between different directions, explaining the experimentally observed breaking of C_6 rotational symmetry ($k_B T_{\text{CDW}} \approx 0.6$ eV, $|\psi_1| = 6.2$, $\phi_1 = 2.4$, $\phi_{2,3} = 0.7$). The current pattern is not displayed for simplicity.

1 X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G. Sangiovanni, D. Di Sante, Y. Iqbal, W. Hanke, A. P. Schnyder, M. M. Denner, M. H. Fischer, T. Neupert, and R. Thomale, Phys. Rev. Lett. 127, 177001 (2021).
2 A. A. Tsirlin, P. Fertey, B. R. Ortiz, B. Klis, V. Merkl, M. Dressel, S. D. Wilson, and E. Uykur, SciPost Phys. 12, 049 (2022).
3 F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Phys. Rev. B 103, L220504 (2021).
4 K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu, and J.-G. Cheng, Phys. Rev. Lett. 126, 247001 (2021).
5 J.-F. Zhang, K. Liu, and Z.-Y. Lu, Phys. Rev. B 104, 195130 (2021).
6 Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Muter, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Nature Materials 20, 1353 (2021).
7 H. Li, H. Zhao, B. R. Ortiz, T. Park, M. Ye, L. Balents, Z. Wang, S. D. Wilson, and I. Zeljkovic, Nature Physics 18, 265 (2022).
8 N. Ratcliff, L. Hallett, B. R. Ortiz, S. D. Wilson, and J. W. Harter, Phys. Rev. Materials 5, L111801 (2021).
9 Z. X. Wang, Q. Wu, Q. W. Yin, C. S. Gong, Z. J. Tu, T. Lin, Q. M. Liu, L. Y. Shi, S. J. Zhang, D. Wu, H. C. Lei, T. Dong, and N. L. Wang, Phys. Rev. B 104, 165110 (2021).