Interactions of Non-Nutritive Artificial Sweeteners with the Microbiome in Metabolic Syndrome

Valerie Harrington†, Lilian Lau†, Alexander Crits-Christoph†, Jotham Suez*

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA

Abstract

Replacing sugar with non-nutritive artificial sweeteners (NAS) is a popular dietary choice for the prevention and management of metabolic syndrome and its comorbidities. However, evidence in human trials is conflicted regarding the efficacy of this strategy and whether NAS may counterintuitively promote, rather than prevent, metabolic derangements. The heterogeneity in outcomes may stem in part from microbiome variation between human participants and across research animal vivaria, leading to differential interactions of NAS with gut bacteria. An increasing body of evidence indicates that NAS can alter the mammalian gut microbiome composition, function, and metabolome, which can, in turn, influence host metabolic health. While there is evidence for microbiome-mediated metabolic shifts in response to NAS, the mechanisms by which NAS affect the gut microbiome, and how the microbiome subsequently affects host metabolic processes, remain unclear. In this viewpoint, we discuss data from human and animal trials and provide an overview of the current evidence for NAS-mediated microbial and metabolomic changes. We also review potential mechanisms through which NAS may influence the microbiome and delineate the next steps required to inform public health policies.

Keywords

microbiome; non-nutritive artificial sweeteners (NAS); metabolic syndrome; obesity; diabetes; metagenomics; metabolomics

NON-NUTRITIVE ARTIFICIAL SWEETENERS AND METABOLIC SYNDROME RISK

Non-nutritive artificial sweeteners (NAS), including saccharin, sucralose, aspartame, neotame, cyclamate, and acesulfame potassium (AceK), are an increasingly popular dietary choice among children [1,2] and adults [1,3], as they maintain the sweet taste of foods and beverages but, unlike sugar, they do not contain calories nor do they elicit a post-prandial
increase in blood glucose levels. For this reason, health authorities often recommend substituting caloric sweeteners with NAS for the management and prevent metabolic syndrome and associated morbidities, including diabetes, stroke, and cardiovascular disease [4]. Nonetheless, the prevalence of obesity and diabetes continues to increase globally [5], fueling concerns that NAS may, in fact, contribute to the metabolic syndrome pandemic [6]. Both retrospective cross-sectional studies and prospective cohort trials indicate an association between NAS intake and elevated risk of metabolic syndrome [6,7] and its associated morbidity [6,8–10]; however, these studies do not provide causal evidence and may be misinterpreted due to reverse causality. Interestingly, some NAS (saccharin, sucralose, and AceK) can be detected in amniotic fluid, cord blood, and breast milk [11,12], and several [13–16], but not all [17] studies associate maternal NAS intake during pregnancy or breastfeeding and elevated BMI and adiposity of the offspring, even when controlling for maternal BMI or diet quality. Evidence from this type of exposure may be more compelling as it is less prone to reverse causality [18], although additional factors, such as maternal genetic predisposition to obesity, may underlie these associations.

While intervention and specifically randomized-controlled trials (RCTs) could provide more rigorous evidence for either a protective or detrimental effect of NAS on metabolic health, their results thus far have been inconclusive. Several intervention trials suggest a causal link between NAS consumption (predominantly sucralose and saccharin) and worsened glucose tolerance [19–23], whereas others report neither a detrimental nor beneficial effect [24,25]. The effect of NAS on body weight is also conflicted, with some reporting facilitated weight loss [26–30] and others sweetener-dependent (saccharin) weight gain [31]. Consequently, meta-analyses of RCTs are inconclusive and may not support the desired beneficial effects of NAS on metabolic health [6,32–34].

Notably, there is considerable heterogeneity between trials in the studied cohorts (adults vs children and adolescents, individuals with or without metabolic syndrome, obesity, or diabetes) and methodology (type and dose of NAS, duration of exposure, NAS administered with carbohydrates or in pure form, comparison to consumption of caloric sweetener or no supplement). Coupling the supplemented NAS with carbohydrates such as glucose or maltodextrin, which are present in commercial NAS sachets as fillers, may contribute to a negative effect associated with NAS in some studies [20–22] but not others, which used purified forms of NAS [24,25,35,36]. Nonetheless, longer exposure to NAS is associated with a negative effect on metabolic health even in the absence of carbohydrates [19,23,31].

Some of the factors that contribute to heterogeneity in human nutrition trials [37], including habitual diet (and whether it already contains NAS, sometimes unknowingly [1]), effective blinding, compliance, and defining appropriate control groups, may be circumvented by NAS feeding trials in animal models. Multiple such studies, mostly in rodents, causally link between NAS supplementation and impaired metabolic health [20,38–53], although some variation still exists, even in model systems [35,54–57].
INTERACTIONS BETWEEN NAS AND THE INTESTINAL MICROBIOME IN METABOLIC SYNDROME

An emerging factor that likely underlies some of the heterogeneity between trials and could potentially be used to resolve conflicting reports is the intestinal microbiome. This dense community of microorganisms that naturally reside in the gastrointestinal tract plays key roles in mammalian metabolic health and disease [58] and in mediating the effects of nutrients [59] and dietary supplements on metabolic health [60]. Notably, the microbiome configuration displays considerable person-to-person heterogeneity and differs between mice obtained from different suppliers or housed in different research vivaria. This variability is associated with personalized responses to diets [61–65] and therapeutics [66–70], as well as opposing phenotypes in animal studies [71–73]. Furthermore, presence of sucralose [46,52,74], saccharin [35,75], and AceK [46,52] has been demonstrated in stool samples from NAS-supplemented animals and human subjects. Thus, it is plausible that NAS interact with the intestinal microbiome, which can translate to an effect on the mammalian host. Consequently, variation in microbiome configurations between human cohorts and animal vivaria may result in differential NAS-microbiome interactions and downstream health outcomes.

The majority of evidence for NAS effects on the intestinal microbiome stems from feeding trials in animal models. To provide an overview, we searched PubMed for original research (excluding reviews and meta-analyses) in mammals (excluding humans discussed separately), focusing exclusively on NAS (saccharin, sucralose, aspartame, AceK, neotame, cyclamate) in combination with the keyword “microbiome” or “microbiota”. This resulted in 28 trials showing an effect of NAS on the mammalian microbiome across 49 different experimental conditions (sex, dose, NAS formulation, diet, age) [20,35,38–40,46,48,52,76–96], and only four trials (six arms) that report no such effect [35,52,82,96] (Table 1). Even when considering the difficulty in reliably validating null results (and publishing them), these studies provide strong evidence that different types of NAS can alter the mammalian microbiome in a range of doses, background diets, administration modes, and duration of exposure (Table 1). Notably, modulation of the microbiome does not necessarily indicate an effect on host health; however, many of these studies associate an effect of NAS on the microbiome with a negative impact on the host’s metabolic health (Table 1). Two of these studies further provide a causal link between NAS-induced microbiome alterations and worsened metabolic health by demonstrating glucose intolerance manifesting in germ-free (GF) mice receiving microbiome from saccharin-exposed mice [20] or glucose intolerance coupled with weight gain and adiposity in GF mice receiving microbiome from rat offspring of aspartame-drinking dams [78].

The aforementioned works demonstrate that NAS can profoundly impact the mammalian microbiome, with numerous bacterial taxa reportedly increasing while others decrease following exposure to NAS. This observation refutes the notion that NAS are inert and raises several important questions: first, what are the mechanisms through which NAS reshape the microbiome? How does the interaction between NAS and the microbiome disrupt the host’s metabolic health? And are similar effects observed in humans?

Immunometabolism. Author manuscript; available in PMC 2022 May 06.
One approach for addressing these mechanistic questions is to identify reproducible NAS-associated microbial signatures. To that aim, we analyzed compositional and functional changes in studies that reported an effect of NAS on the microbiome (Table 1) and plotted the direction of the effect for features (taxa, functional pathways, metabolites) that were significantly altered in at least three independent studies (Figure 1). Despite considerable methodological heterogeneity, several patterns emerge. The abundance of the Enterobacteriaceae family (or specifically, E. coli) was increased in all studies that reported a significant effect (four studies, six experimental arms). However, while no study reported a significant decrease in Enterobacteriaceae, seven studies found no significant change in the abundance of this family. Potentially related to an increase in Enterobacteriaceae, the abundance of genes involved in lipopolysaccharide (LPS) biosynthesis was increased in all studies that reported an effect (six studies, nine experimental arms), with only one experimental arm showing no significant effect and no studies reporting a decrease. Despite some variation, a general trend for underrepresentation of Clostridiales associated with butyrate production (Lachnospiraceae, Ruminococcaceae, Clostridium cluster XIVa, Dorea, Oscillospira) was observed across studies with different NAS, possibly related to the reduction in butyrate observed in three studies. In contrast, abundance of the short-chain fatty acids (SCFA) acetate and propionate was significantly increased in four and five studies, respectively, and no study reported a significant decrease of these two SCFA. Finally, the total number of bacteria (quantified by culture or qPCR) was significantly reduced by diverse NAS in five studies, significantly increased in one, and three studies reported no significant change. These interesting patterns notwithstanding, the key finding of this analysis is the high level of heterogeneity among NAS effects on the microbiome, as even per a given NAS, it was not possible to identify a microbiome feature that was significantly altered in the same direction in all trials. While much of this variation can be attributed to methodological differences, it is reasonable to assume that the interactions of NAS with the microbiome are complex, and an effect on the host may be exerted through more than one mechanism, especially when considering chemically-distinct NAS. Thus, at this stage, an unbiased approach for profiling the microbiome and metabolome of NAS-treated animals would likely be more insightful than focusing on a limited list of microbial features of interest.

Compared to the magnitude of evidence in mammalian models (Table 1, Figure 1), there is a paucity of studies examining interactions between NAS and the microbiome in humans. Two cross-sectional studies found an association between NAS intake and a microbiome signature in individuals consuming aspartame and/or AceK \((N = 31)\) [97] or high-consumers of any NAS \((N = 381)\) [20], the latter also associated with impaired metabolic health. Maternal consumption of NAS was associated with changes in the infant’s microbiome and a higher BMI \((N = 100\) infants) [98]. In contrast, three interventional studies (with sucralose, \(N = 34\); sucralose and aspartame, \(N = 17\); or saccharin, \(N = 24\)) did not find an effect of the above NAS on the microbiome \([24, 25, 35]\). Interestingly, results from a small-scale \((N = 7)\) saccharin supplementation trial suggest that the effects of this NAS on the microbiome are personalized, as microbiome alterations were more pronounced in a subset of individuals who developed glucose intolerance following saccharin supplementation \([20]\). As the other intervention trials did not address personalized effects on the microbiome...
post-NAS supplementation, it is currently unknown whether this preliminary observation is generalizable to other cohorts and other NAS. Clearly, more large-scale RCTs assessing the effect of NAS on both metabolic health and the microbiome are needed. As all of the aforementioned studies profiled the microbiome using 16S rRNA sequencing, the effect of NAS on the human microbiome beyond the genus level, as well as on the microbiome function, remain currently completely unknown.

PUTATIVE MECHANISMS FOR MICROBIOME MODULATION BY NAS

Alterations in microbiome configuration following exposure to NAS can result from either direct interactions or indirect downstream effects of NAS interactions with the host, such as immune system activation \[40,85,86,91\]. However, in vitro studies of microbial monocultures or complex microbial communities demonstrate profound effects of NAS on bacterial (and fungal \[99\]) growth, physiology, metabolism, gene expression, and communication, as well as community-wide effects (Figure 2). Data pertaining to the metabolic fate (pharmacokinetics) of NAS can help shed light on potential direct/indirect mechanisms through which each compound potentially affects the microbiome and the host’s health. Oral administration studies in humans \[74\], dogs \[100\], mice \[101\], and rats \[102\] indicate that the majority of ingested sucralose reaches the large intestine, and a minority is absorbed. Subsequently, the majority (but not all) of sucralose is excreted in feces unchanged, although inter-subject variability was reported \[74,100,102,103\]. The metabolic fate of the remaining fraction is currently unknown, although sucralose-associated metabolites of unknown function have been identified in urine \[74,101,102,104\], feces \[104\], and adipose tissue \[104\]. These observations suggest that the intestinal microbiome can directly interact with sucralose, and potential metabolism of sucralose by the host and/or microbiome. Unlike sucralose, the majority of orally-administered saccharin is slowly absorbed from the gut lumen to the plasma (and consequently excreted in urine) \[75,105–108\]. Saccharin’s slow absorption, combined with the 5–15% percent that is not absorbed and excreted in feces (and up to 40% in a report in rats \[109\]), indicate that a non-negligible amount of saccharin may interact with intestinal bacteria. As approximately 99% of ingested saccharin is excreted unchanged, its effects on the microbiome may be mediated through changes in environmental pH or perturbations to carbohydrate metabolism, further discussed below. Somewhat similar to saccharin, the majority of orally-administered AceK administered to rats, dogs, swine, and humans (70–99%) is absorbed and excreted in urine, although inter-subject variability was reported \[74,99–102\]. Notably, in all dissected animals, the large intestine was a major source of AceK (compared to extra-intestinal sites) post-supplementation \[110\], rendering interactions with the microbiome plausible. Orally administered cyclamate is excreted in both urine and feces \[111\], and metabolism of cyclamate to cyclohexylamine and downstream metabolites occurs in a subject-dependent manner and has been associated with the activity of gut bacteria \[112,113\]. In contrast to the aforementioned NAS, aspartame is broken down to its constituents (methanol, phenylalanine, and aspartate) in the stomach and small intestine. The levels of these metabolites are comparable to those derived from natural ingredients in the human diet \[114\]. Thus, it is less likely that the effects on the microbiome observed in aspartame-supplemented animals are due to direct interactions of colonic bacteria with aspartame or its derivatives, and the underlying mechanism for microbiome
modulation requires further study. One currently untested possibility is that pre-degraded aspartame interacts with bacteria in the most proximal regions of the gastrointestinal tract, namely, the oral cavity, stomach and duodenum, resulting in downstream effects on the colonic microbiome. Alternatively, the effects of aspartame on the microbiome may be host-mediated, for example through interactions with sweet-taste receptors in the gut [115,116]. Oral supplementation with analogs of aspartame, neotame and advantame [117], results in the majority of the ingested dose excreted in feces as metabolites. Whether these metabolites directly interact with the microbiome is currently unknown.

Several members of the microbiome bloom in the presence of NAS (Figure 1), suggesting a capacity for utilization of NAS as growth substrates, which would confer a competitive advantage in the dense ecological niche of the gut (Figure 2). Enrichment consortia of aerobic environmental bacteria have shown a potential for bacterial saccharin and cyclamate degradation [118]. Aerobic utilization of saccharin as a sole carbon source was observed in a sewage isolate of Sphingomonas xenophaga [119]. Lactobacillus delbrueckii isolated from commercial yogurt could utilize aspartame as a carbon source [120], and several oral auxotrophic bacteria demonstrated an ability to utilize aspartame as a source for phenylalanine in vitro, suggesting catabolic capacity [121]. Uptake of NAS may depend upon external factors; for example, Streptococcus mutans saccharin uptake in culture is contingent upon the co-occurrence of glycolysis and an acidic extracellular pH [122]. These studies indicate that some bacteria possess the enzymatic machinery required to degrade man-made NAS. However, the abundance of these metabolic pathways in the gut and whether such uptake and utilization occur in vivo remain to be determined.

In contrast to a growth-promoting effect, and in line with the observation that NAS are associated with a reduction in bacterial load in vivo (Figure 1) [38,78,79,93,94], multiple in vitro studies demonstrate that NAS can directly inhibit bacterial growth (Figure 2) [79,88,123–129]. Some of these effects may stem from NAS impacts on bacterial carbohydrate metabolism (Figure 2). Saccharin may interfere with microbial glucose transport, metabolism, and fermentation [126,129–131] and was shown to modify expression of glucose transport and metabolism genes in Lactobacillus [84]. A bacteriostatic effect of sucralose was associated with its ability to decrease sucrose uptake and competitively inhibit enzymatic sucrose degradation [125]. Notably, multiple studies have demonstrated an impact of NAS on abundance of genes related to carbohydrate metabolism (Figure 1) [20,39,77,80,92] and transport [20,84,125,131] in vivo. The degree of growth inhibition may vary between bacterial species [79,128,130], and species-specific impacts of inhibition could therefore alter microbiome composition and contribute to dysbiosis in vivo [79]. Thus, the bloom of gut bacteria may be a result of expansion into a niche previously occupied by NAS-inhibited bacteria (Figure 2) rather than a direct growth-promoting effect.

NAS may impact other microbial functions beyond metabolism. Aspartame, sucralose, and saccharin can inhibit gut bacterial quorum sensing, possibly through interfering with ligand binding of the LasR receptor [132]. Reduced levels of quorum sensing autoinducers have also been observed in fecal metabolomes of mice consuming sucralose [40]. NAS have also been found to increase cell envelope permeability and stimulate expression of DNA translocation machinery, with the potential to promote increased rates of horizontal gene transfer.
transfer [133,134]. In Enterococcus faecalis and E. coli, the aforementioned three NAS could increase bacterial biofilm formation and capacity to adhere to and kill human gut epithelium in vitro [135]. Intriguingly, this effect was blocked in vitro by the pan-sweet taste inhibitor zinc sulphate. Aspartame has also been shown to increase prophage induction in E. faecalis [136], while sucralose increases the mutation rate of E. coli in vitro [137]: both likely indicate activation of microbial stress response to NAS. Consistent with evidence for bacterial stress response, reactive oxygen species (ROS) and SOS-related stress genes are upregulated in response to AceK [134], and NAS-mediated induction of cellular stress was demonstrated in E. coli [129]. Thus, NAS appear to have several indirect effects on bacterial social behavior that may further alter gut microbiome dynamics through impacts on microbe-microbe interactions (Figure 2). Collectively, NAS may affect multiple bacterial targets, resulting in direct community modulation (Figure 2). While host-mediated indirect effects of NAS on the microbiome cannot be ruled out, direct alteration of a complex fecal microbiome community by saccharin in vitro was demonstrated to be sufficient for promoting glucose intolerance in recipient GF mice [20]. Identifying bacteria directly impacted by NAS could potentially serve as a useful marker for predicting metabolic responsiveness of humans to NAS and can facilitate understanding of microbial functions that negatively impact metabolic health of the host.

Putative Mechanisms for Modulation of Host Metabolic Health by NAS-Associated Microbiome

To date, a causal link between NAS-associated microbiomes and a negative impact on metabolic health has been established in GF mouse recipients of the following fecal microbiomes: saccharin-treated mice (pure or in combination with glucose) [20]; human responders to saccharin [20]; treated in vitro with saccharin [20]; and pups of aspartame-drinking dams [78]. The underlying mechanisms, however, are currently poorly understood. Of the various effects of NAS on the microbiome function or its associated metabolome, two patterns appear more consistent than others (Figure 1) and are worth discussing: an increase in the abundance of LPS biosynthesis genes [20,40,77,91] and an increase in the abundance of the SCFA acetate and propionate [20,48,91,94]. Notably, while no study has reported a significant opposite trend, some studies found no significant effect of NAS on LPS or SCFA. Thus, even if they do mediate an effect of the NAS-associated microbiome on metabolic health, they are likely only part of a more complex interaction.

Overrepresentation of LPS biosynthesis genes could potentially contribute to impaired metabolic health through a process termed “metabolic endotoxemia”, which has been linked with obesity and insulin resistance in mice and humans [138–140]. In this process, disrupted intestinal barrier function (resulting from modulation of the microbiome by diet, or LPS itself) leads to chronically elevated plasma levels of microbial-associated molecular patterns, predominantly LPS. The result is a TLR4- and CD14-dependent systemic and tissue-specific low-grade inflammation, including the adipose, liver, and skeletal muscle tissues. In addition to increased abundance of LPS biosynthetic genes, several studies in animal models have associated saccharin or sucralose supplementation with an increase in inflammatory markers [40,76,85–87,90,91,94] and modulation of intestinal barrier permeability [85,90,91,94], and one study specifically assessed the effect of sucralose on components of metabolic
endotoxemia [91]. More conclusive evidence is needed to decipher the contribution of this mechanism to NAS-associated metabolic derangements, for example in TLR4-deficient animals.

SCFA are key modulators of host-microbiome interactions and serve as signaling molecules, either by inhibiting histone deacetylases (HDACs) or by acting as ligands for several G protein-coupled receptors (GPR41, GPR43, GPR109A) and peroxisome proliferator-activated receptor-\(\gamma\) (PPAR\(\gamma\)) [141,142]. In the context of metabolic health, higher cecal levels of acetate and butyrate were reported in obese mice [143], and fecal propionate was elevated in humans [144] with obesity. Consumption of a diet rich in saturated fat was associated with increased fecal levels of acetate, propionate, and butyrate in individuals with metabolic syndrome [145], and weight loss was associated with reduced plasma propionate in humans [146]. Dietary supplementation of propionate to mice and humans was shown to disrupt glucose tolerance [146], and high-fat diet feeding to rats resulted in increased microbial production of acetate, which led to overproduction of insulin and the hunger-associated hormone ghrelin, resulting in hyperphagia and obesity [147]. Conflictingly, multiple other studies [142] have reported improvement of metabolic health associated with supplementation of acetate [148,149], propionate [53,150–152], or butyrate [53,152,153], suggesting the need for a more refined understanding of tissue specificity and the distinction between endogenous production and supplementation. Whether acetate, propionate, and butyrate mediate a negative impact of NAS on metabolic health, or rather are an unrelated outcome of microbiome modulation, remains to be determined.

PERSPECTIVE: THE IMPORTANCE OF PRECISION

The major challenge pertaining to the study of NAS remains a public health one, i.e., determining the extent to which NAS might negatively affect metabolic health. While the literature remains inconclusive, several health authorities and organizations recommend a cautious approach; Canada [154] and Israel [155] recommend overall reduction of sweeteners, caloric or not; the European Union restricts NAS in infant food [156] and in baked goods marketed towards individuals with diabetes [157], and the American Heart Association has advised against NAS consumption amongst children due to the unknown long-term effects [4]. Identifying correlates of responsiveness to NAS could help distinguish between scenarios in which NAS pose a health risk versus those in which they may be consumed safely, an important consideration, particularly for individuals with diabetes.

The major extrinsic factor to consider is the type of NAS and whether some pose a greater risk than others. This level of precision is not feasible in observational studies, in which participants who consume NAS-containing products are exposed to multiple different types of NAS in their habitual diet, sometimes unknowingly. Distinguishing between effects of specific NAS could be achieved with NAS supplementation to NAS-abstainers. Currently, there is insufficient evidence in humans that would allow meta-analyses of RCTs to stratify metabolic outcomes per a given NAS. Additional RCTs, especially those that perform head-to-head comparisons of different NAS, are critically required.
In addition to the intervention itself, a precision approach to health and nutrition necessitates consideration of individual-specific factors, including age, sex, medical history, habitual diet, and the intestinal microbiome [70]. An important factor in precision nutrition [61,65,70], preliminary evidence indicates that the microbiome may predict and modulate human metabolic responses to NAS [20]. Three other interventional studies that examined the effects of NAS on the microbiome did not address personalized post-exposure differences, and therefore it is currently unknown whether this finding is generalizable and applies to all NAS. Nonetheless, the magnitude of evidence for an effect of NAS on the microbiome in animal models should encourage further pursuit of similar impacts in humans.

Exploration of the mechanisms through which NAS interact with the microbiome in modulation of the host’s metabolic health is still in its early stages. Multiple potential mechanisms through which each NAS can affect microbial physiology have been described predominantly in vitro (Figure 2) and remain to be validated in vivo and in humans. Moving beyond associations, studies that causally link microbiome modulation by NAS with an effect on host metabolism [20,78] can serve as a powerful tool for deciphering the underlying mechanisms. While some mechanistic links are more common than others (namely, SCFA production and metabolic endotoxemia, Figure 1), the lack of a consistent signature even within a single NAS suggest that these may be an outcome, rather than the driver, of the metabolic phenotype, which could also explain how the same pathways manifest after supplementation with chemically-distinct NAS. Indeed, hyperglycemia may promote impaired barrier function [158], and elevated SCFA levels have been suggested to be a marker, rather than a driver, of metabolic syndrome [142]. Thus, in addition to establishing causality (e.g., using transplantation to GF animals), future research would benefit from a longitudinal approach that would enable investigators to decipher the sequence of events.

Heterogeneity in the microbiome of NAS-exposed individuals could conduce to differential metabolic outcomes if the abundances of microbes amenable to modulation by NAS displays person-to-person variation. Such heterogeneity may also underlie inter-subject differences in excretion and absorption reported for some NAS [74,75,100–117,159] and thus conduce differential effects on the host by controlling the levels of NAS and, for some, their potential metabolites. Beyond providing critical evidence of causality, understanding the mechanisms involved could provide quantifiable bio-markers of responsiveness to NAS, which could be used in precision nutrition and clinical decision-making.

ACKNOWLEDGEMENTS

We thank the members of the Suez lab for fruitful discussions. JS is the inaugural Feinstone Assistant Professor in the W. Harry Feinstone Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. Research in the Suez lab is supported by the National Institutes of Health, Office of the Director, under Award Number DP5OD029603. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The figures in this manuscript were created with Biorender.com.
REFERENCES

1. Sylvetsky AC, Walter PJ, Martin Garraffo H, Robien K, Rother KI. Widespread sucralose exposure in a randomized clinical trial in healthy young adults. Am J Clin Nutr. 2017;105(4):820–3. [PubMed: 28228424]

2. Katzmarzyk P, Broyles S, Champagne C, Chaput J-P, Fogelholm M, Hu G, et al. Relationship between Soft Drink Consumption and Obesity in 9–11 Years Old Children in a Multi-National Study. Nutrients. 2016;8(12):770.

3. Dunford EK, Miles DR, Ng SW, Popkin B. Types and Amounts of Nonnutritive Sweeteners Purchased by US Households: A Comparison of 2002 and 2018 Nielsen Homescan Purchases. J Acad Nutr Diet. 2020;120(10):1662–71.e10. [PubMed: 32739278]

4. Johnson RK, Lichtenstein AH, Anderson CAM, Carson JA, Després JP, Hu FB, et al. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation. 2018;138(9):e126–40. doi: 10.1161/CIR.000000000000569 [PubMed: 30354445]

5. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017 Dec 16;390(10113):2627–42. [PubMed: 29029897]

6. Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab. 2013 Sep;24(9):431–41. doi:10.1016/j.tem.2013.05.005 [PubMed: 23850261]

7. Fowler SPG. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav. 2016;164(Pt B):517–23. [PubMed: 27129676]

8. Fagherazzi G, Gusto G, Affret A, Mancini FR, Dow C, Balkau B, et al. Chronic Consumption of Artificial Sweetener in Packets or Tablets and Type 2 Diabetes Risk: Evidence from the E3N-European Prospective Investigation into Cancer and Nutrition Study. Ann Nutr Metab. 2017;70(1):51–8.

9. Mossavar-Rahmani Y, Kamensky V, Manson JE, Silver B, Rapp SR, Haring B, et al. Artificially Sweetened Beverages and Stroke, Coronary Heart Disease, and All-Cause Mortality in the Women’s Health Initiative. Stroke. 2019;50(3):555–62. doi: 10.1161/STROKEAHA.118.023100 [PubMed: 30802187]

10. Mathur K, Agrawal RK, Nagpure S, Deshpande D. Effect of artificial sweeteners on insulin resistance among type-2 diabetes mellitus patients. Journal of family medicine and primary care. 2020;9(1):69–71. doi: 10.4103/jfmpc.jfmpc_329_19

11. Sylvetsky AC, Gardner AL, Bauman V, Blau JE, Garraffo HM, Walter PJ, et al. Nonnutritive Sweeteners in Breast Milk. J Toxicol Environ Health A. 2015;78(16):1029–32. doi: 10.1080/15287394.2015.1053646 [PubMed: 26267522]

12. Halasa BC, Sylvetsky AC, Conway EM, Shouppe EL, Walter MF, Walter PJ, et al. Non-Nutritive Sweeteners in Human Amniotic Fluid and Cord Blood: Evidence of Transplacental Fetal Exposure. Am J Perinatol. 2021. doi: 10.1055/s-0041-1735555

13. Azad MB, Sharma AK, de Souza RJ, Dolinsky VW, Becker AB, Mandhane PJ, et al. Association Between Artificially Sweetened Beverage Consumption During Pregnancy and Infant Body Mass Index. JAMA Pediatr. 2016 Jul 1;170(7):662–70. doi: 10.1001/jamapediatrics.2016.0301 [PubMed: 27159792]

14. Azad MB, Archibald A, Tomczyk MM, Head A, Cheung KG, de Souza RJ, et al. Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. Int J Obes. 2020 Oct;44(10):2137–48. doi: 10.1038/s41366-020-0575-x

15. Zhu Y, Olsen SF, Mendola P, Halldorsson TI, Rawal S, Hinkle SN, et al. Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: a prospective cohort study. Int J Epidemiol. 2017;46(5):1499–508. doi: 10.1093/ije/dyx095 [PubMed: 28586472]
16. Cai C, Sivak A, Davenport MH. Effects of prenatal artificial sweeteners consumption on birth outcomes: a systematic review and meta-analysis. Public Health Nutr. 2021 Oct;24(15):5024–33. doi: 10.1017/S1368980021000173 [PubMed: 33441213]

17. Gillman MW, Rifas-Shiman SL, Fernandez-Barres S, Kleinman K, Taveras EM, Oken E. Beverage Intake During Pregnancy and Childhood Adiposity. Pediatrics. 2017 Aug;140(2):e20170031. doi: 10.1542/peds.2017-0031 [PubMed: 28689188]

18. Archibald AJ, Dolinsky VW, Azad MB. Early-Life Exposure to Non-Nutritive Sweeteners and the Developmental Origins of Childhood Obesity. Nutrients. 2018;10(2):194. doi: 10.3390/nu10020194

19. Bueno-Hernández N, Esquivel-Velázquez M, Alcántara-Suárez R, Gómez-Arauz AY, Espinosa-Flores AJ, de León-Barrera KL, et al. Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: a randomized, double blind, controlled trial. Nutr J. 2020;19(1):32. doi: 10.1186/s12937-020-00549-5 [PubMed: 32284053]

20. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6. doi: 10.1038/nature13793 [PubMed: 25231862]

21. Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX, Gómez-Díaz RA, Almeda-Valdes P. Sucralose decreases insulin sensitivity in healthy subjects: a randomized controlled trial. Am J Clin Nutr. 2018;108(3):485–91. [PubMed: 30535090]

22. Dalenberg JR, Patel BP, Denis R, Veldhuizen MG, Nakamura Y, Vinke PC, et al. Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metab. 2020;31(3):493–502.e7. [PubMed: 32130881]

23. Lertrit A, Srimachai S, Saetung S, Chanprasertyothin S, Chailurkit L-O, Areevut C, et al. Effects of sucralose on insulin and glucagon-like-1 secretion in healthy subjects: a randomized, double-blind, placebo-controlled trial. Nutrition. 2018;55–56:125–30.

24. Thomson P, Santibanez R, Aguirre C, Galgani JE, Garrido D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br J Nutr. 2019;122(8):856–62. doi: 10.1017/S0007114519001570 [PubMed: 31258108]

25. Ahmad SY, Friel J, Mackay D. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients. 2020;12(11):6402. doi: 10.3390/nu12113408

26. Ebbeling CB, Feldman HA, Steltz SK, Quinn NL, Robinson LM, Ludwig DS. Effects of Sugar-Sweetened, Artificially Sweetened, and Unsweetened Beverages on Cardiometabolic Risk Factors, Body Composition, and Sweet Taste Preference: A Randomized Controlled Trial. J Am Heart Assoc. 2020;9(15):e015668. [PubMed: 32696704]

27. Blackburn GL, Kanders BS, Lavin PT, Keller SD, Whatley J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am J Clin Nutr. 1997;65(2):409–18. doi: 10.1093/ajcn/65.2.409 [PubMed: 9022524]

28. Katan MB, de Ruyter JC, Kuijper LD, Chow CC, Hall KD, Olothof MR. Impact of Masked Replacement of Sugar-Sweetened with Sugar-Free Beverages on Body Weight Increases with Initial BMI: Secondary Analysis of Data from an 18 Month Double-Blind Trial in Children. PLoS One. 2016;11(7):e0159771. doi: 10.1371/journal.pone.0159771 [PubMed: 27447721]

29. Masic U, Harrold JA, Christiansen P, Cuthbertson DJ, Hardman CA, Robinson E, et al. EffectS of non-nutritive sWeetened beverages on appetITe during aCtive weigHt loss (SWITCH): Protocol for a randomized, controlled trial assessing the effects of non-nutritive sweetened beverages compared to water during a 12-week weight loss period and a follow up weight maintenance period. Contemp Clin Trials. 2017;53:80–8. doi: 10.1016/j.cct.2016.12.012 [PubMed: 27979755]

30. Tate DF, Turner-McGrievy G, Lyons E, Stevens J, Erickson K, Polzien K, et al. Replacing caloric beverages with water or diet beverages for weight loss in adults: main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am J Clin Nutr. 2012;95(3):681–96. doi: 10.3945/ajcn.111.026278

31. Higgins KA, Mattes RD. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr. 2019;109(5):1288–301. [PubMed: 30997499]
32. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 2017;189(28):E929–39. [PubMed: 28716847]

33. Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014;100(3):765–77. [PubMed: 24944060]

34. Toews I, Lohner S, de Gaudry DK, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364:l156. doi: 10.1136/bmj.k4718 [PubMed: 30647061]

35. Serrano J, Smith KR, Crouch AL, Sharma V, Yi F, Vargova V, et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome. 2021;9(1):11. [PubMed: 33431052]

36. Kim Y, Keogh JB, Clifton PM. Consumption of a Beverage Containing Aspartame and Acesulfame K for Two Weeks Does Not Adversely Influence Glucose Metabolism in Adult Males and Females: A Randomized Crossover Study. Int J Environ Res Public Health. 2020;17(23):9049. doi: 10.3390/ijerph171239049

37. Weaver CM, Miller JW. Challenges in conducting clinical nutrition research. Nutr Rev. 2017;75(7):491–99. [PubMed: 28605476]

38. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A. 2008;71(21):1415–29. [PubMed: 18800291]

39. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One. 2017;12(6):e0178426. [PubMed: 28594855]

40. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Front Physiol. 2017;8:487. [PubMed: 28790923]

41. Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, et al. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab. 2012;9(1):58.

42. Feijó F de M, Ballard CR, Foleto KC, Batista BAM, Neves AM, Ribeiro MFM, et al. Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats at similar total caloric intake levels. Appetite. 2013;60(1):203–7. [PubMed: 23088901]

43. Gul SS, Hamilton ARL, Munoz AR, Phupitakphol T, Liu W, Hyoju SK, et al. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl Physiol Nutr Metab. 2017;42(1):77–83. [PubMed: 27997218]

44. Leibowitz A, Bier A, Gilboa M, Peleg E, Barshack I, Grossman E. Saccharin Increases Fasting Blood Glucose but Not Liver Insulin Resistance in Comparison to a High Fructose-Fed Rat Model. Nutrients. 2018;10(3):341. doi: 10.3390/nu10030341

45. Mitsutomi K, Masaki T, Shimasaki T, Gotoh K, Chiba S, Kakuma T, et al. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity. Metabolism. 2014;63(1):69–78. [PubMed: 24140095]

46. Olivier-Van Stichelen S, Rother KI, Hanover JA. Maternal Exposure to Nonnutritive Sweeteners Impacts Progeny’s Metabolism and Microbiome. Front Microbiol. 2019;10:1360. [PubMed: 31281295]

47. Otero-Losada M, Cao G, Me Loughlin S, Rodriguez-Granillo G, Ottaviano G, Milei J. Rate of atherosclerosis progression in ApoE−/− mice long after discontinuation of cola beverage drinking. PLoS One. 2014;9(3):e89838. doi: 10.1371/journal.pone.0089838 [PubMed: 24670925]

48. Palmnäs MSA, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841. [PubMed: 25313461]
49. von Poser Toigo E, Huffell AP, Mota CS, Bertolini D, Pettenazzo LF, Dalmaz C. Metabobc and feeding behavior alterations provoked by prenatal exposure to aspartame. Appetite. 2015;87:168–74. [PubMed: 25543075]

50. Shi Q, Cai L, Jia H, Zhu X, Chen L, Deng S. Low intake of digestible carbohydrates ameliorates duodenal absorption of carbohydrates in mice with glucose metabolism disorders induced by artificial sweeteners. J Sci Food Agric. 2019;99(11):4952–62. [PubMed: 30953347]

51. Swithers SE, Davidson TL. A role for sweet taste: calorie predictive relations in energy regulation by rats. Behav Neurosci. 2008;122(1):161–73. [PubMed: 18298259]

52. Uebanso T, Ohnishi A, Kitayama R, Yoshimoto A, Nakahashi M, Shimohata T, et al. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients. 2017;9(6):560. doi: 10.3390/nu9060560

53. Lin CH, Li HY, Wang SH, Chen YH, Chen YC, Wu HT. Consumption of Non-Nutritive Sweetener, Acesulfame Potassium Exacerbates Atherosclerosis through Dysregulation of Lipid Metabolism in ApoE−/− Mice. Nutrients. 2021;13(11):3984. doi: 10.3390/nu13113984 [PubMed: 34836239]

54. Bailey CJ, Day C, Knapper JM, Turner SL, Platt PR. Antihyperglycaemic effect of saccharin in diabetic ob/ob mice. Br J Pharmacol. 1997;120(1):74–8. [PubMed: 9117102]

55. Parlee SD, Simon BR, Scheller EL, Alejandro EU, Learman BS, Krishnan V, et al. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females. Endocrinology. 2014 Apr;155(4):1313–26. doi: 10.1210/en.2013-1995 [PubMed: 24456165]

56. Risdon S, Meyer G, Marziou A, Riva C, Roustit M, Walther G. Artificial sweeteners impair endothelial vascular reactivity: Preliminary results in rodents. Nutr Metab Cardiovasc Dis. 2020 May 7;30(5):843–6. doi: 10.1016/j.numecd.2020.01.014 [PubMed: 32278610]

57. Tovar AP, Navalta JW, Kruskall LJ, Young JC. The effect of moderate consumption of non-nutritive sweeteners on glucose tolerance and body composition in rats. Appl Physiol Nutr Metab. 2017 Nov;42(11):1225–7. doi: 10.1139/apnm-2017-0120 [PubMed: 28692807]

58. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. [PubMed: 32887946]

59. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. [PubMed: 23563705]

60. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6. [PubMed: 25731162]

61. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med. 2020;26(6):964–73. [PubMed: 32528151]

62. Karem T, Zeevi D, Zmora N, Weisblrood O, Bar N, Lotan-Pompan M, et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017;26(5):1243–53.e5. [PubMed: 28591632]

63. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadde F, Arora T, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Ceh Metab. 2015;22(6):971–82.

64. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–86. [PubMed: 21129376]

65. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163(5):1079–94. [PubMed: 26590418]

66. Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, et al. Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe. 2017;21(5):603–10.e3. [PubMed: 28494241]

67. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. [PubMed: 29097493]
68. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8. [PubMed: 29302014]

69. Routy B, Le Chatelier E, Derose L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. [PubMed: 29097494]

70. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashirades S, et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell. 2018;174(6):1388–405.e21. [PubMed: 30193112]

71. Walker A, Pfitzer B, Neschen S, Kahle M, Harir M, Lucia M, et al. Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 2014;8(12):2380–96. [PubMed: 24906017]

72. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582(7810):89–94. [PubMed: 32483373]

73. Ericsson AC, Hart ML, Kwan J, Lanoue L, Bower LR, Araiza R, et al. Supplier-origin mouse microbiomes significantly influence locomotor and anxiety-related behavior, body morphology, and metabolism. Commun Biol. 2021;4(1):716. [PubMed: 34112927]

74. Roberts A, Renwick AG, Sims J, Snodin DJ. Sucralose metabolism and pharmacokinetics in man. Food Chem Toxicol. 2000;38(Suppl 2):S31–41. [PubMed: 10882816]

75. Matthews HB, Fields M, Fishbein L. Saccharin: distribution and excretion of a limited dose in the rat. J Agric Food Chem. 1973;21(5):916–9. [PubMed: 4784499]

76. Bian X, Tu P, Chi L, Gao B, Ru H, Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol. 2017;107(Pt B):530–9. [PubMed: 28472674]

77. Chi L, Bian X, Gao B, Tu P, Lai Y, Ru H, et al. Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules. 2018;23(2):367. doi: 10.3390/molecules23020367

78. Nettleton JE, Cho NA, Klancic T, Nicolucci AC, Shearer J, Borgland SL, et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut. 2020;69(10):1807–17. [PubMed: 31996393]

79. Sünderhauf A, Pagel R, Künstner A, Wagner AE, Rupp J, Ibrahim SM, et al. Saccharin Supplementation Inhibits Bacterial Growth and Reduces Experimental Colitis in Mice. Nutrients. 2020;12(4):1122. doi: 10.3390/nu12041122

80. Cheng X, Guo X, Huang F, Lei H, Zhou Q, Song C. Effect of different sweeteners on the oral microbiota and immune system of Sprague Dawley rats. AMB Express. 2021;11(1):8. [PubMed: 33409714]

81. Anderson RL, Kirkland JJ. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet Toxicol. 1980;18(6):353–5. [PubMed: 7007181]

82. Falcon T, Foletto KC, Siebert M, Pinto DE, Andrades M, Bertoluci MC. Metabarcoding reveals that a non-nutritive sweetener and sucrose yield similar gut microbiota patterns in Wistar rats. Genet Mol Biol. 2020;43(1):e20190028. [PubMed: 32191789]

83. Lyte M, Fodor AA, Chapman CD, Martin GG, Perez-Chanona E, Jobin C, et al. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships. Psychosom Med. 2016;78(5):610–9. [PubMed: 27035357]

84. Daly K, Darby AC, Hall N, Wilkinson MC, Pongchaikul P, Bravo D, et al. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus. Environ Microbiol. 2016;18(7):2159–71. [PubMed: 26058469]

85. Guo M, Liu X, Tan Y, Kang F, Zhu X, Fan X, et al. Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct. 2021;12(19):9380–90. [PubMed: 34606537]

86. Rodríguez-Palacios A, Harding A, Menghini P, Himmelman C, Retuerto M, Nickerson KP, et al. The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase

Immunometabolism. Author manuscript; available in PMC 2022 May 06.
Reactivity in Crohn’s Disease-Like Ileitis. Inflamm Bowel Dis. 2018;24(5):1005–20. [PubMed: 29554272]

87. Martínez-Carrillo BE, Rosales-Gómez CA, Ramírez-Durán N, Reséndiz-Albor AA, Escoto-Herrera JA, Mondragón-Velázquez T, et al. Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. Int J Food Sci. 2019;2019:9619020. [PubMed: 31531343]

88. Wang Q-P, Browman D, Herzog H, Neely GG. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One. 2018;13(7):e0199080. [PubMed: 29975731]

89. Li J, Zhu S, Lv Z, Dai H, Wang Z, Wei Q, et al. Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig. Animals. 2021;11(7):1875. doi: 10.3390/ani11071875 [PubMed: 34201842]

90. Dai X, Guo Z, Chen D, Li L, Song X, Liu T, et al. Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes. 2020;11(4):1043–63. [PubMed: 32228300]

91. Sánchez-Tapia M, Miller AW, Granados-Portillo O, Tovar AR, Torres N. The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes. 2020;12(1):1801301. [PubMed: 32804018]

92. Zhang M, Chen J, Yang M, Qian C, Liu Y, Qi Y, et al. Low Doses of Sucralose Alter Fecal Microbiota in High-Fat Diet-Induced Obese Rats. Front Nutr. 2021;8:1151.

93. Hanawa Y, Higashiyama M, Kurihara C, Tanemoto R, Ito S, Mizoguchi A, et al. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J Gastroenterol Hepatol. 2021;36(11):3140–8. [PubMed: 34368996]

94. Li X, Liu Y, Wang Y, Li X, Liu X, Guo M, et al. Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along With Changes in Microbiota. Front Oncol. 2020;10:710. [PubMed: 34821899]

95. Dai X, Wang C, Guo Z, Li Y, Liu T, Jin G, et al. Maternal sucralose exposure induces Paneth cell defects and exacerbates gut dysbiosis of progeny mice. Food Funct. 2021;12(24):12634–46. [PubMed: 34821899]

96. Wang W, Nettleton JE, Günzel MG, Reimer RA. A metagenomics investigation of intergenerational effects of non-nutritive sweeteners on gut microbiome. Front Nutr. 2021;8:795848. [PubMed: 35096940]

97. Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann Epidemiol. 2015;25(10):736–42.e4. doi: 10.1016/j.annepidem.2015.06.083 [PubMed: 26272781]

98. Laforest-Lapointe I, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, et al. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes. 2021;13(1):1–15.

99. Weerasekera MM, Jayarathna TA, Wijesinghe GK, Gunasekara CP, Fernando N, Kotegoda N, et al. The Effect of Nutritive and Non-Nutritive Sweeteners on the Growth, Adhesion, and Biofilm Formation of Candida albicans and Candida tropicalis. Med Princ Pract. 2017;26(6):554–60. [PubMed: 29131083]

100. Wood SG, John BA, Hawkins DR. The pharmacokinetics and metabolism of sucralose in the dog. Food Chem Toxicol. 2000;38(Suppl 2):S99–106. [PubMed: 10882821]

101. John BA, Wood SG, Hawkins DR. The pharmacokinetics and metabolism of sucralose in the mouse. Food Chem Toxicol. 2000;38(Suppl 2):S107–10.

102. Sims J, Roberts A, Daniel JW, Renwick AG. The metabolic fate of sucralose in rats. Food Chem Toxicol. 2000;38(Suppl 2):S115–21. [PubMed: 10882824]

103. Sylvestsky AC, Bauman V, Blau JE, Garraffo HM, Walter PJ, Rother KL. Plasma concentrations of sucralose in children and adults. Toxicol Environ Chem. 2017;99(3):535–42. [PubMed: 28775393]
104. Bornemann V, Werness SC, Buslinger L, Schiffman SS. Intestinal Metabolism and Bioaccumulation of Sucralose In Adipose Tissue In The Rat. J Toxicol Environ Health A. 2018;81(18):913–923. [PubMed: 30130461]

105. Renwick AG. The metabolism of intense sweeteners. Xenobiotica. 1986;16(10-11):1057–71. [PubMed: 3541395]

106. Bekersky I, Poynor WJ, Colburn WA. Pharmacokinetics of saccharin in the rat. Renal clearance in vivo and in the isolated perfused kidney. Drug Metab Dispos. 1980;8(2):64–7. [PubMed: 6103789]

107. Byard JL, McChesney EW, Golberg L, Coulston F. Excretion and metabolism of saccharin in man. II. Studies with 14C-labelled and unlabelled saccharin. Food Cosmet Toxicol. 1974;12(2):175–84. [PubMed: 4459232]

108. McChesney EW, Golberg L. The excretion and metabolism of saccharin in man. I. Methods of investigation and preliminary results. Food Cosmet Toxicol. 1973;11(3):403–14. [PubMed: 4728230]

109. Lethco EJ, Wallace WC. The metabolism of saccharin in animals. Toxicology. 1975;3(3):287–300. [PubMed: 1092032]

110. Aceulfame-k Mayer D.. Boca Raton (US): CRC Press; 1991.

111. Collings AJ. Metabolism of cyclamate and its conversion to cyclohexylamine. Diabetes Care. 1989;12(1):50–5; discussion 81-2. [PubMed: 2714172]

112. Drasar BS, Renwick AG, Williams RT. The role of the gut flora in the metabolism of cyclamate. Biochem J. 1972;129(4):881–90. [PubMed: 4655823]

113. Tesoriero AA, Roxon JJ. [35S]Cyclamate metabolism: incorporation of 35S into proteins of intestinal bacteria in vitro and production of volatile 35S-containing compounds. Xenobiotica. 1975;5(1):25–31. [PubMed: 1154796]

114. Ranney RE, Oppermann JA, Muldoon E, McMahon FG. Comparative metabolism of aspartame in experimental animals and humans. J Toxicol Environ Health. 1976;2(2):441–51. [PubMed: 827618]

115. Shil A, Ohsanya O, Ghufoor Z, Forson B, Marks J, Chichger H. Artificial Sweeteners Disrupt Tight Junctions and Barrier Function in the Intestinal Epithelium through Activation of the Sweet Taste Receptor, T1R3. Nutrients. 2020;12(6):1862. doi: 10.3390/nu12061862

116. Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. Int J Environ Res Public Health. 2020;17(11):4094. doi: 10.3390/ijerph17114094

117. Ubukata K, Nakayama A, Mihara R. Pharmacokinetics and metabolism of N-[N-[3-(3-hydroxy-4-methoxyphenyl) propyl]-a-aspartyl]-L-phenylalanine 1-methyl ester, monohydrate (advantame) in the rat, dog, and man. Food Chem Toxicol. 2011;49(Suppl 1):S8–29. [PubMed: 22036030]

118. Deng Y, Wang Y, Xia Y, Zhang AN, Zhao Y, Zhang T. Genomic resolution of bacterial populations in saccharin and cyclamate degradation. Sci Total Environ. 2019;658:357–66. [PubMed: 30579193]

119. Schleheck D, Cook AM. Saccharin as a sole source of carbon and energy for Sphingomonas xenophaga SKN. Arch Microbiol. 2003;179(3):191–6. [PubMed: 12610724]

120. Manca de Nadra MC, Anduni GJ, Farías ME. Influence of artificial sweeteners on the kinetic and metabolic behavior of Lactobacillus delbrueckii subsp. bulgaricus. J Food Prot. 2007;70(10):2413–6. [PubMed: 17969628]

121. Wyss C Aspartame as a source of essential phenylalanine for the growth of oral anaerobes. FEMS Microbiol Lett. 1993;108(3):255–8. doi: 10.1111/j.1574-6968.1993.tb06111.x [PubMed: 8514113]

122. Ziesenitz SC, Siebert G. Uptake of saccharin and related intense sweeteners by Streptococcus mutans NCTC 10449. Z Ernahrungswiss. 1988;27(3):155–69. [PubMed: 2467446]

123. Mahmud R, Shehreen S, Shahriar S, Rahman MS, Akhteruzzaman S, Sajib AA. Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe Escherichia coli. J Mol Microbiol Biotechnol. 2019;29(1-6):43–56. [PubMed: 31851990]
124. Prashant GM, Patil RB, Nagaraj T, Patel VB. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract. 2012;13(6):749–52. [PubMed: 23403996]

125. Omran A, Ahearn G, Bowers D, Swenson J, Coughlin C. Metabolic Effects of Sucralose on Environmental Bacteria. J Toxicol. 2013;2013:372986. doi: 10.1155/2013/372986 [PubMed: 24368913]

126. Linke HA, Chang CA. Physiological effects of sucrose substitutes and artificial sweeteners on growth pattern and acid production of glucose-grown Streptococcus mutans strains in vitro. Z Naturforsch C. 1976;31(5-6):245–51. [PubMed: 8890]

127. Young DA, Bowen WH. The influence of sucralose on bacterial metabolism. J Dent Res. 1990;69(8):1480–4. [PubMed: 2143512]

128. Rettig S, Tenewitz J, Ahearn G, Coughlin C. Sucralose causes a concentration dependent metabolic inhibition of the gut flora Bacteroides, B. fragilis and B. uniformis not observed in the Firmicutes, E. faecalis and C. sordellii (1118.1). FASEB J. 2014;28(1):1118.1. doi: 10.1096/fasebj.28.1_supplement.1118.1

129. Harpaz D, Yeo LP, Cecchini F, Koon THP, Kushmaro A, Tok AY, et al. Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel. Molecules. 2018;23(10):2454. doi: 10.3390/molecules23102454

130. Naim M, Zechman JM, Brand JG, Kare MR, Sandovsky V. Effects of sodium saccharin on the activity of trypsin, chymotrypsin, and amylase and upon bacteria in small intestinal contents of rats. Proc Soc Exp Biol Med. 1985;178(3):392–401. [PubMed: 2579403]

131. Pfeffer M, Ziesenitz SC, Siebert G. Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Z Ernahrungswiss. 1985;24(4):231–5. [PubMed: 2420077]

132. Markus V, Share O, Shagan M, Halpern B, Bar T, Kramarsky-Winter E, et al. Inhibitory Effects of Artificial Sweeteners on Bacterial Quorum Sensing. Int J Mol Sci. 2021;22(18):9863. doi: 10.3390/ijms22189863 [PubMed: 34576027]

133. Yu Z, Wang Y, Lu J, Bond PL, Guo J. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME J. 2021;15(7):2117–30. [PubMed: 33589766]

134. Li Z, Gao J, Guo Y, Cui Y, Wang Y, Duan W, et al. Enhancement of antibiotic resistance dissemination by artificial sweetener acesulfame potassium: Insights from cell membrane, enzyme, energy supply and transcriptomics. J Hazard Mater. 2022;422:126942. [PubMed: 34449343]

135. Shil A, Chichger H. Artificial Sweeteners Negatively Regulate Pathogenic Characteristics of Two Model Gut Bacteria, E. coli and E. faecalis. Int J Mol Sci. 2021;22(10):5228. doi: 10.3390/ijms22105228 [PubMed: 34063332]

136. Boling L, Cuevas DA, Grasis JA, Kang HS, Knowles B, Levi K, et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes. 2020;11(4):721–34. [PubMed: 31931655]

137. Qu Y, Li R, Jiang M, Wang X. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants. Curr Microbiol. 2017;74(7):885–8. [PubMed: 28424940]

138. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelaer D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetologia. 2007;50(7):1761–72. [PubMed: 17456850]

139. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. [PubMed: 18305141]

140. Régnier M, Van Hul M, Knauf C, Cani PD. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J Endocrinol. 2021;248(2):R67–82. [PubMed: 33295880]

141. Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevailos SA, Lokken KL, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570–5. [PubMed: 28798125]
142. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–45. [PubMed: 27259147]

143. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi: 10.1038/nature05414 [PubMed: 17183312]

144. Schwierz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010 Jan;18(1):190–5. doi: 10.1038/oby.2009.167 [PubMed: 19498350]

145. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int J Obes. 2013 Feb;37(2):216–23. doi: 10.1038/ijo.2012.33

146. Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE, Eguchi K, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med. 2019;11(489):eaav0120. doi: 10.1126/scitranslmed.aav0120 [PubMed: 31019023]

147. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7. [PubMed: 27279214]

148. Yamashita H, Fujisawa K, Ito E, Idei S, Kawaguchi N, Kimoto M, et al. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Fong-Evans Tokushima Fatty (OLETF) rats. Biosci Biotechnol Biochem. 2007;71(5):1236–43. [PubMed: 17485860]

149. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. [PubMed: 24781306]

150. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54. [PubMed: 25500202]

151. Venter CS, Vorster HH, Cummings JH. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol. 1990;85(5):549–53. [PubMed: 2159696]

152. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84–96. [PubMed: 24412651]

153. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17. [PubMed: 19366864]

154. Health Canada. Canada’s Dietary Guidelines. Available from: https://food-guide.canada.ca/en/guidelines/section-2-foods-and-beverages-undermine-healthy-eating/. Accessed 2022 Jan 6.

155. The Israeli Ministry of Health. Dietary Guidelines. 2019. Available from: https://www.health.gov.il/PublicationsFiles/dietary%20guidelines%20EN.pdf. Accessed 2022 Apr 14.

156. Incentives and disincentives for reducing sugar in manufactured foods (2017). 2018. Available from: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/publications/2017/incentives-and-disincentives-for-reducing-sugar-in-manufactured-foods-2017. Accessed 2021 Oct 23.

157. EU. Commission Regulation (EU) 2018/97 of 22 January 2018 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of sweeteners in fine bakery wares (Text with EEA relevance). Available from: https://eur-lex.europa.eu/eli/reg/2018/97/oj. Accessed 2021 Oct 22.

158. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–83. [PubMed: 29519916]

Immunometabolism. Author manuscript; available in PMC 2022 May 06.
159. Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. J Toxicol Environ Health B Crit Rev. 2013;16(7):399–451. doi: 10.1080/10937404.2013.842523 [PubMed: 24219506]
Figure 1. Effects of NAS on the microbiome composition and function.
Studies investigating the association of NAS and mammalian microbiomes were retrieved using the search terms (Microbiome OR Microbiota) AND (Saccharin OR Sucralose OR Aspartame OR Acesulfame Potassium OR Neotame) on https://pubmed.ncbi.nlm.nih.gov/. Only research articles were selected. Studies in which the effect of NAS could not be isolated from that of an unrelated additive were excluded from analysis. Microbial features (taxa, functions, metabolites) included in this figure were significantly altered in at least three independent works, regardless of direction of the effect. An indicated feature was labeled as not significantly changed if it was clearly labeled as such in a study, or it was not included in a list reported by the authors as encompassing all significantly altered features. In experiments with dams consuming NAS, pups were exposed prenatally and through lactation, but were not directly supplemented with NAS. AceK, Acesulfame Potassium; ASP, Aspartame; NEO, Neotame; SAC, Saccharin; SCL, Sucralose; NC, Normal.
Chow; HFD, High Fat Diet; HFSD, High Fat/Sucrose Diet; DSS, Dextran Sulfate Sodium; AOM, Azoxymethane; FMT, Fecal Microbiota Transplant; MG, Metagenomics; GF, Germ-Free; F/M, Female/Male; ND, No Data/Not Determined. 1, FMT from offspring of dams consuming ASP; 2, FMT from mice consuming SAC + glucose; 3, FMT from mice consuming pure SAC and HFD; 4, FMT with fecal microbiome cultured with SAC.
Figure 2. Putative mechanisms for microbiome modulation by NAS. Gut bacteria can directly interact with NAS through several mechanisms, which may lead to growth promotion, inhibition, or community-wide effects.
Studies examining NAS-microbiome interactions in mammalian model systems.

Studies investigating the association of NAS and mammalian microbiomes were retrieved using the search terms (Microbiome OR Microbiota) AND (Saccharin OR Sucralose OR Aspartame OR Acesulfame Potassium OR Neotame) on https://pubmed.ncbi.nlm.nih.gov/. Only research articles were selected. Studies in which the effect of NAS could not be isolated from that of an unrelated additive were excluded from analysis. Studies were analyzed for sweetener used, model system, diet, length of diet and NAS administration, NAS dose, experimental controls, profiling method, effects on the host microbiome, and effects on the host metabolic phenotype.

Study	NAS	Model	Diet	NAS Dose/Concentration	Control	Profiling Method	Microbiome	Metabolic Phenotype
Bian 2017	AceK	M Mice	4 weeks NC, NAS by gavage	37.5 mg/kg/day	Water	16S, PICRUSt	Yes	Yes
Bian 2017	AceK	F Mice	4 weeks NC, NAS by gavage	37.5 mg/kg/day	Water	16S, PICRUSt	Yes	Yes
Hanawa 2021	AceK	M Mice	8 weeks NC, NAS in water	150 mg/kg/day	Water	16S (cecum)	Yes	ND
Uebanso 2017	AceK	M Mice	8 weeks NC, NAS in water	15 mg/kg/day	Water	16S (cecum)	No	No
Wang 2021	Aspartame	F Rats	10 weeks HFSD, 6 weeks NAS in water	40 mg/kg/day	Water	16S (cecum)	No	No
Wang 2021	Aspartame	F/M Rat offspring to ASP-consuming obese dams	3 weeks MM, 15 weeks NC	40 mg/kg/day (dams only)	Offspring to water dams	MG, 16S (cecum)	Yes	Yes
Palmnas 2014	Aspartame	M Rats	8 weeks NC, NAS in water	5–7 mg/kg/day	Water	16S	Yes	Yes
Palmnas 2014	Aspartame	M Rats	8 weeks HFD, NAS in water	5–7 mg/kg/day	Water	16S	Yes	Yes
Nettleton 2020	Aspartame	F Rats	16 weeks HFSD, 6 weeks NAS in water	7 mg/kg	Water	qPCR (cecum)	Yes	Yes
Nettleton 2020	Aspartame	M Rat offspring to ASP-consuming dams	3 weeks MM, 15 weeks NC	7 mg/kg (dams only)	Offspring to water dams	qPCR (cecum)	Yes	Yes
Nettleton 2020	Aspartame	F Rat offspring to ASP-consuming dams	3 weeks MM, 15 weeks NC	7 mg/kg (dams only)	Offspring to water dams	qPCR (cecum)	Yes	Yes
Nettleton 2020	Aspartame	M GF recipient Mice (FMT from M Rat offspring to ASP-consuming dams)	NC 15 days post-FMT	7 mg/kg (donors' dams)	FMT from offspring to water dams	qPCR (cecum)	Yes	Yes
Chi 2018	Neotame	Mice	4 weeks NC, NAS by gavage	0.75 mg/kg/day	Water	16S	Yes	ND
Study	NAS	Model	Diet	NAS Dose/Concentration	Control	Profiling Method	Microbiome	Metabolic Phenotype
------------------------	--------------------	------------------	-------------------------------	------------------------	--	------------------	------------	---------------------
Bian 2017 [76]	Saccharin	M Mice	6 months NC, NAS in water	0.3 mg/mL	Water	16S	Yes	ND
Suez 2014 [20]	Saccharin + glucose	M Mice	11 weeks NC, NAS in water	5 mg/mL with 95 mg/mL glucose	Glucose/Sucrose/ Water	16S, MG	Yes	Yes
Suez 2014 [20]	Saccharin	M Mice	5 weeks HFD, NAS in water	0.1 mg/mL	Water	16S, MG	Yes	Yes
Suez 2014 [20]	Saccharin + glucose	M GF recipient Mice (FMT from saccharin-consuming mice)	NC 6 days post-FMT	5 mg/mL with 95 mg/mL glucose (donor)	FMT from glucose-drinking mice	16S	Yes	Yes
Suez 2014 [20]	Saccharin	M GF recipient Mice (FMT from HFD saccharin-consuming mice)	NC 6 days post-FMT	0.1 mg/mL (donor)	FMT from HFD water-drinking mice	16S	Yes	Yes
Suez 2014 [20]	Saccharin	M GF recipient Mice (FMT from microbiome cultured w/ SAC)	NC 6 days post-FMT	5 mg/mL (donor culture SAC concentration)	FMT from microbiome cultured with PBS	16S, MG	Yes	Yes
Sündershauf 2020 [91]	Saccharin	Mice	5 weeks NC, NAS in water	0.1 mg/mL	Water	qPCR, 16S	Yes	ND
Serrano 2021 [35]	Saccharin	Mice	10 weeks NC, NAS in water	250 mg/kg/day	Water	16S	No	No
Serrano 2021 [35]	Saccharin	TLR2-KO Mice	10 weeks NC, NAS in water	250 mg/kg/day	Water	16S	No	No
Cheng 2021 [80]	Saccharin	F Rats	8 weeks NC, NAS in water	0.83 mg/mL	Water/0.83 mg/mL sucrose	16S (oral), PICRUSt	Yes	ND
Anderson 1980 [81]	Saccharin	M Rats	10 days NC, NAS in diet	7.5% w/w	7.5% w/w cellulose	Culture	Yes	ND
Falcon 2020 [82]	Saccharin	Mice	17 weeks, NAS in yogurt	0.3% w/w	20% sucrose yogurt	16S	No	ND
Lyte 2016 [83]	Saccharin	Selectively bred high saccharin intake Rats	3 days NC, 1 day NAS in water	0.1% w/v	Selectively bred low saccharin intake Rats	16S	Yes	Yes
Li 2021 [89]	Saccharin	F Guinea Pigs	4 weeks NC, NAS in water	1.5 mM	Water	16S, Tax4Fun	Yes	Yes
Daly 2016 [84]	Saccharin + NHDC	Piglets	2 weeks, NAS in diet	0.015% w/w SUCRAM	NC	16S	Yes	ND
Bian 2017 [40]	Sucralose	M Mice	6 months NC, NAS in water	0.1 mg/ml	Water	16S, Tax4Fun	Yes	Yes
Study	NAS	Model	Diet	NAS Dose/Concentration	Control	Profiling Method	Microbiome	Metabolic Phenotype
------------------------------	----------	---------------	-------------------------------	-------------------------	--------------------------	------------------------	-------------	---------------------
Guo 2021 [85]	Sucralose	M Mice	6 weeks NC, NAS in water	1.5 mg/mL	Water	qPCR	Yes	ND
Guo 2021 [85]	Sucralose	M Mice w/DSS-induced colitis	6 weeks NC, NAS in water	1.5 mg/mL	Water w/DSS-induced colitis	qPCR	Yes	ND
Uebanso 2017 [52]	Sucralose	M Mice	8 weeks NC, NAS in water	1.5 mg/kg/day	Water	qPCR (cecum & feces)	No	No
Uebanso 2017 [52]	Sucralose	M Mice	8 weeks NC, NAS in water	15 mg/kg/day	Water	qPCR (cecum & feces)	Yes	Yes
Rodriguez-Palacios 2018 [86]	Sucralose	F/M SAMP Mice	6 weeks NC, NAS in water	3.5 mg/mL	Water	16S	Yes	Yes
Rodriguez-Palacios 2018 [86]	Sucralose	F/M AKR Mice	6 weeks NC, NAS in water	3.5 mg/mL	Water	16S	Yes	No
Li 2020 [94]	Sucralose	Mice	11 weeks NC, NAS in water	1.5 mg/mL	Water	16S	Yes	ND
Li 2020 [94]	Sucralose	Mice w/AOM/DSS	11 weeks NC, NAS in water	1.5 mg/mL	Water w/AOM/DSS	16S	Yes	ND
Martinez-Carillo 2019 [87]	Sucralose+glucose	Mice	6 weeks NC, NAS in water	4.1 mg/mL Splenda® for 5 h/day	41.66 mg/mL sucrose, water	16S (small intestine)	Yes	Yes
Martinez-Carillo 2019 [87]	Sucralose+glucose	Mice	12 weeks NC, NAS in water	4.1 mg/mL Splenda® for 5 h/day	41.66 mg/mL sucrose, water	16S (small intestine)	Yes	Yes
Wang 2018 [88]	Sucralose	Mice	8 weeks HFD, NAS in water	2.5% w/v	Water	16S	Yes	No
Wang 2018 [88]	Sucralose	Mice	8 weeks NC, NAS in water	2.5% w/v	Water	16S	Yes	No
Dai 2020 [90]	Sucralose	Mice offspring to SCR-consuming dams	3 weeks MM	0.1 mg/mL (dams only)	Offspring to water dams	16S	Yes	Yes
Dai 2020 [90]	Sucralose	Mice offspring to SCR-consuming dams	3 weeks MM, 5 weeks NC, 4 weeks HFD	0.1 mg/mL (dams only)	Offspring to water dams	16S	Yes	Yes
Dai 2021 [95]	Sucralose	Mice offspring to SCR-consuming dams	3 weeks MM	0.1 mg/mL (dams only)	Offspring to water dams	16S	Yes	Yes
Dai 2021 [95]	Sucralose	Mice offspring to SCR-consuming dams	3 weeks MM, 5 weeks NC	0.1 mg/mL (dams only)	Offspring to water dams	16S	Yes	ND
Sanchez-Tapia 2020 [91]	Sucralose	M Rats	4 months HFD, NAS in water	1.5% in water	Water	16S, MG	Yes	Yes
Sanchez-Tapia 2020 [91]	Sucralose	M Rats	4 months NC, NAS in water	1.5% in water	Water	16S, MG	Yes	Yes
Abou-Domia 2008 [38]	Sucralose+glucose	M Rats	12 weeks NC, NAS by gavage	100 mg/kg/day Splenda®	Water	Culture + plate counts	Yes	Yes
Study	NAS	Model	Diet	NAS Dose/Concentration	Control	Profiling Method	Microbiome	Metabolic Phenotype
---------------------	----------------------	----------------	-----------------------------------	------------------------	--------------------------------	------------------	------------	--------------------
Abou-Donia 2008 [38]	Sucralose + glucose	M Rats	12 weeks NC, NAS by gavage	300 mg/kg/day Splenda®	Water	Culture + plate counts	Yes	No
Abou-Donia 2008 [38]	Sucralose + glucose	M Rats	12 weeks NC, NAS by gavage	500 mg/kg/day Splenda®	Water	Culture + plate counts	Yes	Yes
Abou-Donia 2008 [38]	Sucralose + glucose	M Rats	12 weeks NC, NAS by gavage	1000 mg/kg/day Splenda®	Water	Culture + plate counts	Yes	No
Zhang 2021 [92]	Sucralose	M Rats	12 weeks HFD, 4 weeks NAS by gavage	0.54 mM in water	Water, 324 mM sucrose	16S, PICRUSt	Yes	ND
Zhang 2021 [92]	Sucralose	M Rats	12 weeks HFD, 4 weeks NAS by gavage	0.78 mM in water	Water, 324 mM sucrose	16S, PICRUSt	Yes	ND
Olivier-Van Stichelen 2019 [46]	Sucralose & AceK	Mice offspring to SCR + AceK-consuming dams	19 days MM	0.1 mg SCR + 0.25 mg AceK (dams only)	Offspring to water dams	16S	Yes	Yes
Olivier-Van Stichelen 2019 [46]	Sucralose & AceK	Mice offspring to SCR + AceK-consuming dams	19 days MM	0.2 mg SCR + 0.5 mg AceK (dams only)	Offspring to water dams	16S	Yes	Yes

AceK, Acesulfame Potassium; NC, Normal Chow; HFD, High Fat Diet; MM, Maternal Milk; HFSD, High Fat/Sucrose Diet; DSS, Dextran Sulfate Sodium; AOM, Azoxymethane; NHDC, neohesperidin dihydrochalcone; FMT, Fecal Microbiota Transplant; MG, Metagenomics; GF, Germ-Free; F/M, Female/Male; ND, No Data/Not Determined.