Prevalence of Genes Encoding Resistance to Aminoglycosides and Virulence Factors Among Intestinal Vancomycin-Resistant Entero cocci

Preslava Mihaylova Hristova 1,*, Vladislav Milkov Nankov 2, Ivan Stoikov 3, Ivan Ivanov 3, Vessela Vaskova Ouzounova-Raykova 4 and Hristina Yotova Hitkova 5

1Department of Microbiology and Virology, Medical University-Pleven, Pleven, Bulgaria
2Scientific Molecular Laboratory, Medical University-Pleven, Pleven, Bulgaria
3National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, National Center of Infectious and Parasitic Diseases-Sofia, Sofia, Bulgaria
4Department of Medical Microbiology, Medical University-Pleven, Pleven, Bulgaria
5Corresponding author: Department of Microbiology and Virology, Medical University-Pleven, Pleven, Bulgaria. Email: preslava.hristova_9@abv.bg

Received 2022 May 20; Revised 2022 October 07; Accepted 2022 October 25.

Abstract

Background: Vancomycin-resistant enterococci (VRE) are recognized as nosocomial pathogens with increased importance in recent years. These bacteria are frequently isolated from patients admitted to intensive care units (ICUs). Enterococcal pathogenicity is enhanced by different antibiotic resistance and virulence determinants.

Objectives: The present study aimed to assess the prevalence of genes encoding resistance to antibiotics and virulence factors in intestinal VRE isolates from ICU patients.

Methods: In this study, 23 VREs were investigated. Minimum inhibitory concentrations (MICs) to nine antimicrobial agents were examined using E-test. Genes encoding vancomycin resistance (vanABCDMN), aminoglycoside-modifying enzymes (aac(6′)-le-aph(2′)-la, aph(2′)-lb, aph(2′)-ld, aph(3′)-IIa), ant(3′)-la, ant(4′)-la, ant(6′)-la), together with genes for various virulence factor (ace/acm, asa1, cyta, efaA, esp, gelE and hyl), were detected using multiplex PCR.

Results: The species distribution of the tested VRE was as follows: Nine Enterococcus casseliflavus, seven E. gallinarum, and seven E. faecium. The vanA gene was found in all E. faecium, in six of which the classical VanA phenotype was observed. The vancomycin (vanC) phenotype was associated with the presence of vanC1 gene in E. gallinarum and the vanC2 gene in E. casseliflavus isolates. The aac(6′)-le-aph(2′)-la gene was encoding high-level gentamicin resistance (HLGR) in the studied VRE. All E. faecium were positive for acm and esp, while acm in combination with esp or hyl was detected in 2 vanC enterococci.

Conclusions: According to the findings, there was a correlation between the phenotype and the genotype of glycopeptide resistance in the tested VRE. HLGR was more prevalent in E. faecium because of the presence of aac(6′)-le-aph(2′)-la. The higher prevalence of virulence determinants was confirmed in vanA isolates compared to the studied vanC-carrying enterococci.

Keywords: Vancomycin-Resistant Enterococci (VRE), Prevalence, Virulence Factors, Intensive Care Unit (ICU)

1. Background

The distinctive characteristic of enterococci is intrinsic resistance to β-lactams, aminoglycosides, and several other classes of antibiotics. Moreover, these microorganisms can acquire resistance to quinolones, tetracyclines, oxazolidinones, aminoglycosides, and glycopeptides (e.g., vancomycin) via transposons or plasmids (1-3). High-level aminoglycoside resistance (HLAR) is mediated by modifying either aminoglycoside aminoglycoside-modifying enzymes (AMES) or ribosomal attachment sites. Because of AMEs encoded by mobile genetic elements, HLAR enterococci are becoming more prevalent (4). The most commonly spread AME is the bifunctional enzyme AAC (6′)-APH (2′″), which confers resistance to a broad spectrum of aminoglycosides. This enzyme is encoded by the aac(6′)-le-aph(2′″)-la gene (5, 6). Other AMEs, including 2′-O-phosphotransferase, 6′-O-adenylyltransferase, 3′-O-phosphotransferase, 4-O-adenylyltransferase, and 3′-O-adenylyltransferase are also encoded by genes located on mobile genetic elements. Furthermore, enterococci produce many virulence factors, including gelatinase, hyaluronidase, aggregation substance, endocarditis antigen, enterococcal surface protein, collagen-binding protein, and cytolysin (7-9).
The cumulative effect of different genes encoding virulence determinants and antibiotic resistance contributes to the pathogenesis of enterococcal infections and intestinal colonization with multidrug-resistant enterococci. Over recent years, vancomycin-resistant enterococci (VRE) have been identified as significant pathogens in hospitals, which can hinder efficient anti-infective therapy. Moreover, the prevalence of VRE colonization in critically-ill patients is significantly high, especially in those hospitalized in intensive care units (ICUs) (10, 11). It is well documented that the colonized patients are major reservoirs for transmitting VRE to other patients. Accordingly, VREs with vanA and vanB genotypes are of paramount importance for clinical practice (12). According to the data presented in several scientific papers, those two genes are most commonly expressed by Enterococcus faecium and E. faecalis (12-16). Over the last few years, evidence has suggested that other enterococcal species can acquire vanA, vanB, or both (17, 18).

2. Objectives

This study aimed to assess the correlation between the phenotype of glycopeptide resistance and the associated genotype to determine the prevalence of genes encoding aminoglycoside resistance and virulence factors among intestinal VR strains isolated from patients admitted to ICUs.

3. Methods

3.1. Bacterial Isolates

The present study was performed on 23 VREs isolated from 91 patients admitted to ICUs at Pleven University Hospital, Bulgaria, who were screened for intestinal colonization with VRE from December 2018 to May 2019. The protocol for isolating intestinal VRE is previously described (19). VITEK 2 Compact system (bioMérieux, France) was used to detect the enterococcal isolates. Additional tests, such as motility and pigment production, were also performed. Species identification was confirmed by the detection of species-specific ddl genes (20).

3.2. Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) to ampicillin, gentamicin, vancomycin, teicoplanin, ciprofloxacin, tigecycline, linezolid quinupristin/dalfopristin, and daptomycin were examined using the E-test (Liofilchem, Italy). The results were interpreted according to the EUCAST, version 11.0, 2021 (eucast.org/clinical_breakpoints). The clinical and laboratory standards institute (CLSI) guidelines, 2021 (clsi.org/standards/), were used to interpret MICs for daptomycin.

3.3. Amplification of Species Identification, Antibiotic Resistance, and Virulence Genes

Template DNA was extracted by incubating bacterial suspensions at 95°C in Chelex 100 (Bio-Rad, Canada), followed by centrifugation at 14 000 rpm for 10 min. Supernatants served as the template for PCR. The genes for the species-specific identification (ddlE_faecium, ddlE_faecalis, ddlE_gallinarum, ddlE_casseliflavus/flavescens, ddlE_durans, ddlE_hirae, ddlE_raffinosus, ddlE_ovatum), as well as genes for vancomycin resistance (vanA, vanB, vanC, vanD, vanM, vanN), AMEs (aac(6’)-Ie-aph(2”)-Ia, aph(2”)-Ib, aph(2”)-Ic, aph(2”)-Id, aph(3”)-IIda, ant(3”)-Ia, ant(4”)-Ia, ant(6’)-Id) and virulence factors (ace/acm, aei, cya, efaA, esp, gelE and hyl) were detected by multiplex PCR using primers sequences (6, 20, 21) and the PCR protocols, as previously described (6, 20).

Briefly, a modified PCR mix (20 µL) for the detection of the investigated genes was applied, which contained 10 ng DNA template, 0.4 µM forward and reverse primers, 200 µM dNTPs (Canvax, Spain), iX reaction buffer (Canvax), 2.5 mM MgCl₂ (Canvax), and 1 U of Taq (Canvax). The PCR protocol for the detection of genes encoding AMEs was as follows: Initial denaturation at 94°C for 4 min; 35 cycles at 94°C for 40 s; 55°C for 40 s; 72°C for 45 s, and final extension at 72°C for 5 min. The PCR thermal conditions for the detection of genes for virulence factors were as follows: Initial denaturation at 94°C for 4 min; 34 cycles at 96°C for 20 s; 53°C for 25 s; 72°C for 30 s and final extension at 72°C for 3 min. The PCR amplification protocol to detect van genes and ddl genes was as follows: Initial denaturation at 94°C for 4 min; 30 cycles at 94°C for 40 s; 55°C for 40 s; 72°C for 45 s, and final extension at 72°C for 5 min. The PCR thermal conditions for the detection of genes encoding AMEs were as follows: Initial denaturation at 94°C for 4 min; 34 cycles at 96°C for 20 s; 53°C for 25 s; 72°C for 30 s and final extension at 72°C for 3 min. The PCR amplification protocol to detect van genes and ddl genes was as follows: Initial denaturation at 94°C for 4 min; 30 cycles at 94°C for 40 s; 55°C for 40 s; 72°C for 45 s, and final extension at 68°C for 7 min. Capillary electrophoresis was used to analyze the amplified PCR products. The following control strains were used to confirm the PCR results for the genes encoding species-specific identification, vancomycin, and aminoglycoside resistance: ATCC® 700221™ E. faecium (vanA), ATCC® 51299™ E. faecalis (vanB, aac(6’)-Ie-aph(2”)-Ia), ATCC® 49608™ E. gallinarum (vanC), ATCC® 700668™ E. casseliflavus (vanC2/3). Sanger sequencing was used to confirm the correct sequence of the PCR fragments of acm, esp, hyl virulence genes.

4. Results

Among the 23 isolated VREs, there were nine cases of E. casseliflavus, seven cases of E. gallinarum, and seven cases of E. faecium. Eighteen VREs were successfully identified using the Vitek 2 compact system, whereas discrepant results were obtained in five cases intrinsically resistant to the low levels of vancomycin (vanC) enterococci, which required further testing with motility and pigment tests. The
identification of all enterococcal isolates was confirmed using multiplex PCR. Table 1 shows antimicrobial susceptibility profiles and van genes in *E. faecium*. All isolates were highly resistant to ampicillin (MIC ≥ 256 µg/mL) and ciprofloxacin (MIC ≥ 32 µg/mL) and susceptible to linezolid, tigecycline, quinupristin/dalfopristin, and daptomycin. High-level vancomycin resistance (HLGR) with MICs ≥ 1024 µg/mL was detected in six of these cases; however, one isolate demonstrated MIC = 12 µg/mL. The MICs of glycopeptides revealed HLGR (MIC ≥ 256 µg/mL) and various teicoplanin MICs (6 to 256 µg/mL). The studied *E. faecium* were divided into three phenotypic subgroups regarding teicoplanin MICs: Three isolates with HLGR (MICs: 128 - 256 µg/mL), three isolates with moderate resistance (MICs: 24 - 48 µg/mL), and one isolate with a low MIC level (6 µg/mL). Regardless of the differences in teicoplanin MICs, the PCR analysis determined the vanA gene in all *E. faecium* isolates.

Table 2 presents MIC ranges and vanC subtypes in vanC enterococci, among which 14 cases (8 *E. casseliflavus* and 6 *E. gallinarum*) expressed a similar antibiotic resistance pattern: Low-level vancomycin resistance (MICs: 2 - 6 µg/mL) and susceptibility to all tested agents, including teicoplanin (MICs: 0.5 - 1 µg/mL). Only two strains demonstrated different patterns: One *E. gallinarum* had high resistance to ampicillin (MIC ≥ 256 µg/mL), ciprofloxacin (MIC ≥ 32 µg/mL), and gentamicin (MIC ≥ 1024 µg/mL), and one *E. casseliflavus* was highly resistant to ciprofloxacin (MIC ≥ 32 µg/mL) and moderately resistant to gentamicin (MIC = 64 µg/mL). The vanC1 gene was identified in all *E. gallinarum*, whereas all *E. casseliflavus* carried the vanC2 gene. Nine VREs with gentamicin MICs: 12 - ≥ 1024 µg/mL were positive for the following AME genes: *aac(6’)-Ie-aph(2’)-Ia, aph(3’)-IIa, and ant(3’)-la* (Table 3). However, the other tested genes were not identified. The *aac(6’)-Ie-aph(2’)-Ia* was the most frequently detected gene in all VREs with HLGR (*E. faecium* and 1 *E. gallinarum*) and also in one *E. faecium* with the gentamicin MIC of 12 µg/mL. One *E. casseliflavus* was positive for the *ant(3’)-la* gene.

The presence of genes for virulence factors was observed in nine VREs, including seven *E. faecium* and two *E. gallinarum*. Figure 1 demonstrates the PCR results. The most frequently detected genes were *acm* (9/9), followed by *esp* (8/9) and *hyl* (2/9). In all *E. faecium acm* and *esp* genes were confirmed, one of which had additional *hyl*. In all *E. gallinarum* isolates, the following combinations of virulence genes were identified: *acm* and *esp; acm* and *hyl*. All studied enterococci were negative for *gelE*, *asat*, *efaA*, *ace*, and *cylA*.

5. Discussion

The present study presents data on intestinal VRE isolated from ICU patients, their antimicrobial susceptibility, and the prevalence of genes encoding antimicrobial resistance and virulence factors. It is well recognized that the glycopeptide resistance in enterococci is associated with nine different phenotypes, among which eight cases (VanA, VanB, VanD, VanE, VanG, VanL, VanM, VanN) are the results of acquired resistance. However, VanC is a naturally resistant type. The last one is characterized by low-level vancomycin resistance (MICs 2 - 32 µg/mL) and susceptibility to teicoplanin (MICs 0.5 - 1.0 µg/mL) and is encoded by the *vanC* gene. Among the phenotypes with acquired glycopeptide resistance, the most commonly spread one of which is VanAone, which demonstrated HLGR (MICs 64 - 1000 µg/mL) and teicoplanin (MICs 16 - 512 µg/mL), encoded by the *vanA* gene and VanB displaying variable resistance to vancomycin (MICs 8 - 512 µg/mL) and susceptibility to teicoplanin (MICs 0.5 - 1.0 µg/mL), carried by the *vanB* gene.

Our data for glycopeptide resistance in *E. faecium* revealed HLGR and widely varied teicoplanin MICs. In the six isolates, the glycopeptide MIC values completely corresponded to the VanA phenotype, whereas one strain (64 IU/19) expressed a VanD-like phenotype. However, *vanA* gene was confirmed in all *E. faecium*. The VanD phenotype is defined by moderate to high-level vancomycin resistance (MICs 64 - 128 µg/mL) and susceptibility or resistance to teicoplanin (MICs 4 - 64 µg/mL) and is encoded by the *vanD* gene. Song et al. (23) investigated 20 VR VanD-VanA. *E. faecium*, isolated in the intestinal screening of the ICU patients, and estimated that these isolates were heterogeneous and unstable bacterial populations. Following their exposure to glycopeptides, they can acquire the VanA phenotype; hence, teicoplanin would not be effective for treating infections induced by VanD-VanA enterococci.

The studied vanC enterococci demonstrated intrinsic resistance to vancomycin (MICs 2 - 6 µg/mL) and most of them remained susceptible to all tested antibiotics. Only one *E. casseliflavus* and one *E. gallinarum* showed resistance to penicillins, aminoglycosides, and fluoroquinolones. In all vanC enterococci, there was a correlation between the phenotype of glycopeptide resistance, determined by the MIC values, and the involved genotype. Batistao et al. (24) considered the VanC phenotype in *E. gallinarum* and *E. casseliflavus* isolates on the base of the estimated low-level vancomycin resistance (MICs 2 - 32 µg/mL). In another study, the antimicrobial susceptibility profiles of vanC enterococci were used as an indicator of the vanC genotype (25).

There are three known classes of AMEs:
Table 1. Antimicrobial Susceptibility Profiles and van Genes in Enterococcus faecium Isolates

| Isolate No | van Genes | MICs (µg/mL) | AMP | GEN | VAN | TEC | CIP | Q/D | LZD | TGC | DAP |
|------------|-----------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 3 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 256 ≥ 32 ≥ 0.50 2 0.032 0.38 |
| 4 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 128 ≥ 32 ≥ 2 3 0.064 0.75 |
| 5 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 48 ≥ 32 ≥ 0.50 3 0.125 0.50 |
| 6 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 24 ≥ 32 0.75 2 0.094 1 |
| 10 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 24 ≥ 32 0.50 2 0.125 1 |
| 26 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 12 ≥ 32 0.75 2 0.094 0.75 |
| 64 ICU/19 | vanA | ≥ 256 ≥ 2024 ≥ 256 ≥ 6 ≥ 32 0.25 2 0.094 1 |

Abbreviations: AMP, ampicillin; GEN, gentamicin; CIP, ciprofloxacin; VAN, vancomycin; TEC, teicoplanin; LZD, linezolid; TGC, tigecycline; Q-D, quinupristin/dalfopristin; DAP, daptomycin.

Table 2. Antimicrobial Susceptibility Profiles and vanC Subtypes in vanC Enterococci

Species	No of Isolates	van Genes	MIC Ranges or MICs (µg/mL)	AMP	GEN	VAN	TEC	CIP	Q/D	LZD	TGC	DAP
Enterococcus casseliflavus	8	vanC2	0.75 - 2 2 - 4 2 - 6 0.5 - 1 1 - 2 1 - 2	0.032 - 0.094 0.38 - 1								
E. casseliflavus	1	vanC2	0.38 64 2 0.75 ≥ 32 2 0.125 0.75									
E. gallinarum	6	vanC1	0.75 - 2 1 - 6 2 - 6 0.5 - 1 1 - 2 1 - 2	0.032 - 0.125 0.038 - 1								
E. gallinarum	1	vanC1	≥ 256 ≥ 1024 ≥ 2 1 ≥ 32 2 1 0.064 1									

Abbreviations: AMP, ampicillin; GEN, gentamicin; CIP, ciprofloxacin; VAN, vancomycin; TEC, teicoplanin; LZD, linezolid; TGC, tigecycline; Q/D, quinupristin/dalfopristin; DAP, daptomycin.

Table 3. Prevalence of AME Genes Among Vancomycin-Resistant Enterococci

Species	No of Isolates	GEN MICs (µg/mL)	AME Genes	aac(6′)-Ie-aph(2″)-Ia	aph(3′)-IIa	ant(3′)-Ia
Enterococcus faecium	5	≥ 1024	+	-	-	-
E. faecium	1	≥ 1024	+	+	-	-
E. hirae	1	12	-	-	-	-
E. gallinarum	1	≥ 1024	-	-	-	-
E. casseliflavus	1	64	-	-	+	

Abbreviations: GEN, gentamicin; AME genes, aminoglycoside-modifying enzyme genes.

Aminoglycoside-N-acetyltransferases (AACs), catalyzing the acetylation of the amino group; aminoglycoside-O-phosphotransferases (APHs), catalyzing the phosphorylation of the hydroxyl group; aminoglycoside-nucleotidyltransferases (ANTs), and the catalyst nucleotidation of hydroxyl groups. The APHs are of particular importance for clinical practice and lead to higher levels of aminoglycoside resistance compared to the other two groups of enzymes. The AAC(6′)-APH(2″) enzyme, produced by enterococci, is associated with high-level resistance to gentamycin (MIC ≥ 500 µg/mL) and streptomycin (MIC ≥ 2000 µg/mL). This enzyme is a product of the aac(6′)-le-aph(2″)-Ia gene, i.e., the most commonly detected in E. faecium, E. faecalis; however, it also exists in E. avium, E. durans, E. gallinarum, E. hirae, and E. casseliflavus (26-28).

We detected the aac(6′)-le-aph(2″)-Ia in all VRE revealing HLGR (MIC ≥ 1024 µg/mL) and also in one E. faecium exhibiting gentamicin MIC = 12 µg/mL. In 2021, for the first time, Chen et al. (29) described 15 E. faecium and two E. faecalis strains with non-HLGR phenotype, in which aac(6′)-le-aph(2″)-Ia was detected. These findings demonstrated the ability of E. faecium to acquire the HLGR phenotype. We found one E. casseliflavus isolate with a moderate level of gentamicin resistance, which was probably conferred by intrinsic mechanisms. Moreover, the ant(3′)-Ia gene, me-
Figure 1. Detection of acm, esp, and hyl genes in seven *E. faecium* and two *E. gallinarum* isolates using multiplex PCR. Lane 1 - No 4 ICU; Lane 2 - No 5 ICU; Lane 3 - No 6 ICU; Lane 4 - No 10 ICU; Lane 5 - No 26 ICU; Lane 6 - No 64 ICU; Lane 7 - No 3 ICU; Lane 8 - No 66 ICU (*E. gallinarum*); Lane 9 - No 79 ICU (*E. gallinarum*); Lane 10 - GeneRuler 50 bp DNA Ladder (TermoFisher Scientific, USA).

diagnosing high-level streptomycin resistance (30), was confirmed in that strain.

The enterococcal pathogenicity is enhanced by the presence of different virulence factors associated with them. We found at least two virulence determinants in the present study in nine intestinal VREs. The *acm* and *esp* genes were identified in all *E. faecium* isolates. Our data correspond with a Korean study (23), in which the *esp* gene was confirmed in all 40 investigated VR *E. faecium*. Similarly, Cakirlar et al. (31) described the prevalence of the *esp* gene in 87 out of 100 VR *E. faecium* isolates. Strateva et al. (32) confirmed the *acm* gene in 72.8% of the tested *E. faecium*, whereas only 4.3% of the isolates were positive for *esp*.

In contrast, Shokoohizadeh et al. (33) reported that the *asat* and *gelE* genes were most commonly detected among *E. faecium*. We observed the low prevalence of virulence determinants in the studied vanC enterococci. Only two *E. gallinarum* were harboring virulence genes and none of the tested genes was present in the *E. casseliflavus* isolates. Our findings were consistent with those reported by Dworniczek et al. (34, 35), who revealed the lack of virulence factors in *E. gallinarum* and *E. casseliflavus* isolated from urinary catheters and other clinical specimens. To the best of our knowledge, there is limited evidence on the prevalence of genes encoding aminoglycoside resistance and virulence factors in intestinal isolates of *E. casseliflavus* and *E. gallinarum*.
5.1. Conclusions

In summary, a correlation exists between the estimated phenotype of glycopeptide resistance and the involved genotype in almost all VREs. Moreover, the aac(6’)-Ie-aph(2’)-Ia was responsible for HLGR in the enterococcal isolates. The prevalence of genes encoding virulence factors was higher in E. faecium isolates compared to vanC enterococci, and the most frequent genes were acm and esp. The presence of multiple virulence determinants among VREs would significantly increase their colonization ability and potentially contribute to the development of infections in ICU patients.

Acknowledgments

The authors thank Elena Ivanova for her technical assistance.

Footnotes

Authors’ Contribution: P. H. and H. H. contributed to the study conception and design. Material preparation and data collection and analysis were performed by P. H., V. N., I. S., I. I. and V. O.R. The first draft of the manuscript was written by P. H., and all authors commented on previous versions of the manuscript. The final review was performed by P. H. and H. H. All authors also read and approved the final manuscript.

Conflict of Interests: Funding or research support: This study was carried out with the financial support of the Medical University of Pleven via the University Grants Commission (Project No 1/2019); employment: Medical University - Pleven, National Center of Infectious and Parasitic Diseases, Sofia, Medical University of Sofia; personal financial interests: Authors do not have such interests; stocks or shares in companies: No; consultation fees: No; patents: No; personal or professional relations with organizations and individuals (parents and children, wife and husband, family relationships, etc.): No; unpaid membership in a government or non-governmental organization: No; are you one of the editorial board members or a reviewer of this journal? No.

Data Reproducibility: The data presented in this study will be available on request from the corresponding author by this journal representative at any time during submission or after publication.

Ethical Approval: This study was approved by the Ethics Committee of the Medical University of Pleven (Code: 512/ 2018) (Link: mu-pleven.bg/index.php/bg/structure/scientific-research-institute/464-2020-06-15-15-41-15).
13. Ryan L, O'Mahony E, Wrenn C, FitzGerald S, Fox U, Boyle B, et al. Epidemiology and molecular typing of VRE bloodstream isolates in an Irish tertiary care hospital. J Antimicrob Chemother. 2015;70(10):2718-24. [PubMed: 26442479]. https://doi.org/10.1093/jac/dkx385.

14. Yang JX, Li T, Ning ZY, Shao DH, Liu J, Wang SQ, et al. Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China. Infect Genet Evol. 2015;31:253-60. [PubMed: 25976180]. https://doi.org/10.1016/j.meegid.2015.05.002.

15. Gozalan A, Coskun-Ari F, Ozdem B, Uналdı O, Celikelik N, Kirca F, et al. Molecular characterization of vancomycin-resistant Enterococcus faecium strains isolated from clinical and case samples in a tertiary hospital, Turkey. J Med Microbiol. 2015;64(7):759-66. [PubMed: 25978005]. https://doi.org/10.1099/jmm.0.000888.

16. Coombs GW, Pearson JC, Daley DA, Le T, Robinson OJ, Gottlieb T, et al. First report of VanA Enterococcus gallinarum discharged from a Chinese tertiary care hospital. J Antimicrob Chemother. 2014;69(3):897-905. [PubMed: 24391201]. [PubMed Central: PMC4395796]. https://doi.org/10.1093/jac/dkt531.

17. Eshaghi A, Shahinas D, Li A, Kariyawasam R, Banh P, Desjardins L, et al. Molecular epidemiology of enterococcal bacteremia in Australia. J Clin Microbiol. 2014;52(3):897-905. [PubMed: 24391201]. [PubMed Central: PMC4395796]. https://doi.org/10.1128/JCM.03286-13.

18. Corso A, Faccone D, Gagetti P, Togneri A, Lopardo H, Melano R, et al. First report of VanA Enterococcus gallinarum dissemination within an intensive care unit in Argentina. Int J Antimicrob Agents. 2010;25(3):355-6. [PubMed: 19562082]. https://doi.org/10.1016/j.ijantimicag.2009.04.014.

19. Hrkova HY, Hristova PM. Enterococcus and enterococcus-like organisms recovered in faecal screening for vancomycin-resistance. J of IMAB. 2019;25(3):2649-54. https://doi.org/10.5272/jimab.2019.25.3.2649.

20. Nomura T, Hashimoto Y, Kurushima J, Hirakawa H, Tanimoto J, et al. Molecular epidemiology of enterococcal bacteremia in Australia. J Infect Genet Evol. 2015;31:253-60. [PubMed: 25976180]. https://doi.org/10.1016/j.meegid.2015.05.002.

21. Camargo IL, Gilmore MS, Darini AL. Multilocus sequence typing of virulence factors in vancomycin-resistant and vancomycin-susceptible Enterococcus faecalis isolates from Brazil. Clin Microbiol Infect. 2006;12(11):2122-30. [PubMed: 17002613].

22. Teixeira LM, Carvalho MDGS, Facklam RR, Shewmaker PL. Enterococcus II: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, et al., editors. Manual of clinical microbiology. 8th ed. Washington, DC: ASM Press; 2015. p. 403-21. https://doi.org/10.1089/9781555816413.ch22.

23. Song JY, Cheong HJ, Seo YB, Kim IS, Heo JY, Noh JY, et al. Clinical and microbiological characteristics of vancomycin-resistant enterococci with the VanA phenotype and vanA genotype. Jpn J Infect Dis. 2013;66(1):1-5. [PubMed: 23490706].

24. Batistao DW, Gontijo-Filho PP, Conceicao N, Oliveira AG, Ribas RM. Risk factors for vancomycin-resistant enterococci colonization in critically ill patients. Mem Inst Oswaldo Cruz. 2012;107(1):57-63. [PubMed: 22301356]. https://doi.org/10.1590/S0074-027620120050000008.

25. Britt NS, Potter EM. Clinical epidemiology of vancomycin-resistant Enterococcus gallinarum and Enterococcus caseliflavus bloodstream infections. J Glob Antimicrob Resist. 2016;3:57-61. [PubMed: 27274980]. [PubMed Central: PMC488910]. https://doi.org/10.1016/j.jgar.2015.12.002.

26. Niu H, Yu H, Hu T, Tian G, Zhang L, Guo X, et al. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol. 2016;47(5):691-6. [PubMed: 2726815]. [PubMed Central: PMC4927675]. https://doi.org/10.1016/j.bjm.2016.04.003.

27. Padmasini E, Padmaraj R, Ramesh SS. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. Scientific World Journal. 2014;2014:329915. [PubMed: 24762306]. [PubMed Central: PMC4122257]. https://doi.org/10.1155/2014/329915.

28. Diab M, Salem D, El-Shenawy A, El-Far A, Abdelghany A, Awad AR, et al. Detection of high level aminoglycoside resistance genes among clinical isolates of Enterococcus species. Egyptian Journal of Medical Human Genetics. 2019;20(1):128. https://doi.org/10.1186/s40442-019-0032-3.

29. Chen YH, Lin SY, Lin YT, Tseng SP, Chang CC, Yu SY, et al. Emergence of aac(6′)-leu(aph-2)-la-positive enterococci with non-high-level gentamicin resistance mediated by IS261V: Adaptation to decreased aminoglycoside usage in Taiwan. J Antimicrob Chemother. 2021;76(7):15689-97. [PubMed: 33820626]. https://doi.org/10.1093/jac/dka807.

30. Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervas MJ, Lerner SA, Chow JW. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother. 2003;47(4):1423-6. [PubMed: 12654683]. [PubMed Central: PMC152526]. https://doi.org/10.1128/AAC.47.4.1423-1426.2003.

31. Cakirlar F, Samasti M, Baris I, Kavakli H, Karakullukcu A, Sirekbasan S, et al. The epidemiological and molecular characterization of vancomycin-resistant enterococci isolated from rectal swab samples of hospitalized patients in Turkey. Clin Lab. 2014;60(11):1807-12. https://doi.org/10.1017/S7754/Clin.Lab.2014.139104.

32. Strateva T, Atanassova D, Savov E, Petrova G, Mitov I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium faecalis isolates collected in Bulgaria. Braz J Infect Dis. 2016;20(3):232-37. [PubMed: 26848963]. [PubMed Central: PMC512526]. https://doi.org/10.1016/j.bjid.2015.11.001.

33. Shokoohizadeh I, Ekrami A, Labibzadeh M, Ali L, Alavi SM. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC Res Notes. 2018;11(1):1. [PubMed: 2929749]. [PubMed Central: PMC5749016]. https://doi.org/10.1186/s13104-017-3088-5.

34. Dworniczek E, Kuzko K, Mroz E, Wojcieszek I, Adamski R, Sobieszczanska B, et al. Virulence factors and in vitro adherence of Enterococcus strains to urinary catheters. Folia Microbiol (Prague). 2003;48(5):671-8. [PubMed: 14976677]. https://doi.org/10.1007/BF0299347.

35. Dworniczek E, Wojcieszek L, Sobieszczanska B, Seniuk A. Virulence of Enterococcus isolates collected in Lower Silesia (Poland). Scand J Infect Dis. 2005;37(9):630-6. [PubMed: 16126561]. https://doi.org/10.1080/0036554050003421.