In the intestine, IgA antibody-secreting B cells (IgA-ASCs) and helper T cells coordinate to maintain local homeostasis while their dysregulation could lead to development of intestinal inflammatory diseases. However, mechanisms underlying the coordinated localization and function of the B and T cells into the intestine, particularly the colon, are poorly understood. We herein report the first evidence that the gut-homing chemokine receptor CCR10+ IgA-ASCs form conjugates with helper T cells, preferentially regulatory T cells, at their differentiation sites of gut-associated lymphoid organs for their coordinated co-localization into the colon to promote local homeostasis. In CCR10-knockout mice, defective migration of IgA-ASCs also resulted in defective T-cell migration and homeostasis, and development of inflammatory symptoms in the colon. Antigen-specific interaction of CCR10+ IgA-ASCs and T cells is crucial for their homeostatic establishment in the colon. On the other hand, in IgA-ASCs, preferential expansion of CCR10+ IgG1-ASCs with regulatory functions compensated for CCR10+ IgA-ASCs to help maintain colonic homeostasis. The preferential expansion of specific subclasses of CCR10+ IgG-ASCs with regulatory functions was also found in asymptomatic IgA-deficient patients. These findings suggest coordinated cell migration as a novel mechanism underlying localization and function of B and T cells in colonic homeostatic regulation.
homologous molecule reportedly involved in migration of T cells to the colon under inflammatory conditions.18 Mechanisms regulating coordinated migration of B and T cells into the colon remain poorly understood.

In this report, we provide the first evidence that gut-homing CCR10+ IgA-ASCs form conjugates with T cells to help their migration into the colon for homeostatic regulation. Furthermore, in IgA-deficient conditions, specific subclasses of CCR10+ IgA-ASCs with regulatory functions preferentially expand to substitute for CCR10+ IgA-ASCs to help maintain colonic homeostasis. These findings shed insight into mechanisms coordinating migration and function of IgA-ASCs and T cells in the colon.

RESULTS

Dysregulated T-cell homeostasis associated with increased inflammatory symptoms in colons of CCR10−/− mice

We previously generated a strain of CCR10-KO/EGFP-KI mice in which the CCR10 coding sequence was replaced with a DNA fragment coding for EGFP that could be used to report the CCR10 expression.15,19 Compared with wild-type or heterozygous CCR10-KO/EGFP-KI (CCR10+/EGFP or CCR10+/- for simplicity) littermates, homozygous CCR10-KO/EGFP-KI (CCR10EGFP/EGFP or CCR10-/-) mice had significantly shortened colons at 2–3 months of age, which became more evident at 9–12 months of age (Fig. 1a, Supplementary Fig. 1A). CCR10−/− mice also had elevated levels of transcripts of IL-17A and IL-1\(\alpha\) compared with CCR10+/- mice (Fig. 1b). Associated with this, CD4+ T cells isolated from the colonic LP of CCR10−/− mice expressed higher levels of IL-17A and IFN\(\gamma\) but lower levels of IL-10 compared with CCR10+/- controls (Fig. 1c). While no obvious lesions were observed in colon of untreated CCR10−/− mice (Supplementary Fig. 1B), significantly higher percentages of CCR10−/− mice had fecal occult bleeding and died after feeding with dextran sulfate sodium (DSS) compared with CCR10+/- mice (Fig. 1d). DSS-fed CCR10−/− mice also had higher expression of TNFa, IL-17A, and IL-22 in the colon than same-treated CCR10+/- mice (Fig. 1f). These results reveal that colons of CCR10−/− mice have dysregulated T-cell homeostasis with an increased inflammatory status and are prone to over-active inflammation after tissue damage.

A high frequency of T cells, particularly Treg cells, form conjugates with CCR10+ IgA-ASCs in colon.

Since IgA-ASCs were reportedly the only type of colonic immune cells that express CCR10+ impaired localization and function of IgA-ASCs in the colon were likely the cause of the colonic T-cell dysregulation and increased inflammatory status in CCR10−/− mice. Surprisingly, however, a sizable fraction of colonic LP (but not intraepithelial) T cells were EGFP(CCR10+) in CCR10-/- reporter mice (Fig. 2a, Supplementary Fig. 2A). The colonic LP EGFP(CCR10+) T cells were predominantly composed of CD4+ IgA-ASCs (Supplementary Fig. 2A). Among them, FOXP3+ CD4+ Treg cells contained relatively higher percentages of EGFP(CCR10+) cells than FOXP3− CD4+ cells (Fig. 2b, c, Supplementary Fig. 2A). Compared with CCR10+/- mice, CCR10−/− mice had the preferentially higher reduction of colonic EGFP+ T cells, particularly Treg cells (Fig. 2b and d). EGFP+ cells in CCR10−/− mice are “CCR10-wannabe cells” that are supposed to express CCR10 but could not because both of their CCR10 coding sequences are replaced by the knocked-in EGFP coding sequences.19 These results indicate that CCR10-knockout leads to impaired presence of EGFP(CCR10+) T cells, particularly Treg cells, in colons.

We then analyzed EGFP(CCR10+) colonic T cells in more detail to gain potential clues underlying their impairment in the colon of CCR10−/− mice. All EGFP(CCR10+) colonic T cells were of the large size (Supplementary Fig. 2B-C) and did not express CD62L or CCR7 (Supplementary Fig. 2D), suggesting that they were activated T cells. The EGFP(CCR10+) colonic T cells stained positive for IgA (Fig. 2e), suggesting that they might be conjugates of activated T cells and CCR10+ IgA-ASCs. Imaging flow cytometric analysis confirmed that “EGFP(CCR10+)+” colonic T cells were indeed conjugates of EGFP(CCR10+)+ T cells and EGFP(CCR10+)+ IgA-ASCs and that colonic T cells themselves did not express CCR10(EGFP-). (Fig. 2f).

To more precisely assess the frequency of interaction of IgA-ASCs and T cells within the colon in situ, we further performed immunofluorescent microscopic imaging analysis of colonic sections co-stained for IgA-ASCs and T cells. Markedly, within the colonic LP, about 20% of FOXP3+ T cells and 40% of FOXP3+ Treg cells conjugated with IgA-ASCs (Fig. 2g). These results reveal a high frequency of interaction of T cells, particularly Treg cells, with IgA-ASCs in the colonic LP.

CCR10-knockout impaired co-migration of IgA-ASCs and their conjugated T cells into colon

IgA-ASCs express MHCII and co-stimulatory/inhibitory molecules such as CD80 and PD-L1 for their interaction with CD4+ T cells.20 They also uniquely express CD28.21 These molecules were expressed similarly on colonic EGFP+ IgA-ASCs of CCR10−/− and CCR10+/- mice (Supplementary Fig. 3A), suggesting that CCR10-knockout would not affect their interaction with T cells. Considering that CCR10+ IgA-ASCs and T cells likely start to form conjugates during their differentiation stages in the GALT,22 we tested whether impaired migration of CCR10−/− IgA-ASCs from the GALT into the colon resulted in impaired migration of their conjugated T cells. Indeed, even higher percentages of EGFP(CCR10+) IgA-ASCs conjugated with T cells in the PP, CP, and mesenteric lymph node (mLN) compared with the colonic LP (Fig. 3a). As in the colon, Treg cells preferentially interacted with CCR10+ IgA-ASCs in the PP and CP compared with CD4+ or CD8+ effector T cells (Fig. 3b). In addition, treatment of mice with FTY720, a drug that sequestered IgA-ASCs in lymphoid organs of the PP, CP, and mLN,23 resulted in the increased accumulation of EGFP(CCR10+) IgA-ASCs in the PP and CP but their reduction in the mLN and colonic LP (Supplementary Fig. 3B), supporting the notion that CCR10+ IgA-ASCs were generated in the PP and CP and migrated through the mLN to reach the colonic LP. Therefore, in absence of CCR10, there would be impaired migration of IgA-ASCs and their conjugated T cells.

We then searched for evidence of impaired migration of T cells conjugated with IgA-ASCs in CCR10−/− mice. Since IgA-ASCs enter the mLN and colonic LP through blood, we tested whether we could find conjugates of IgA-ASCs and T cells in the blood. Indeed, a significant percentage of EGFP(CCR10+) IgA- cells of the blood conjugated with T cells, with relative enrichment of Treg cells, in CCR10−/− mice (Fig. 3c). In addition, compared with CCR10+/- mice, CCR10−/− mice had increased percentages of EGFP(CCR10+) IgA- cells and their conjugates with T cells in blood (Fig. 3c), consistent with the notion that the impaired migration of CCR10−/− IgA-ASCs and their T cell conjugates to the colon (and other mucosal sites) resulted in their increased accumulation in blood. To directly demonstrate that impaired migration of CCR10−/− IgA-ASCs resulted in the impaired migration of their conjugated T cells, we co-transferred similar numbers of naive splenic B cells of CCR10−/− (CD45.1/2) and CCR10+/- (CD45.2/2) mice into B-cell-deficient μMT mice. In this transfer scheme, only donor-derived cells could express EGFP, which was used to identify IgA- cells of all donor origins while CD45.1 was used to distinguish EGFP(CCR10+) IgA- cells of CCR10−/− (CD45.1-) versus CCR10−/− (CD45.1+) donor origins (Fig. 3d). Two weeks after transfer, we analyzed generation of EGFP(CCR10+) IgA-ASCs of the donor B cells and their formation of conjugates with T cells of the host origin in the GALT and their localization into the colon. EGFP(CCR10+) IgA-ASCs were generated equally from CCR10−/− and CCR10−/− donor B-cell origins in the PP and they also equally formed conjugates with T cells of recipients (Fig. 3d, e, f).
CCR10−/− mice developed colonic inflammation associated with dysregulated T cells. a Lengths of colons of CCR10−/− and CCR10+/− mice at different ages. One dot represents one mouse. b Ratios of expression levels of different cytokine transcripts (determined by qRT-PCR) in colons of CCR10−/− over those of CCR10+/− mice at 9–12 months of age (1 indicating no difference). N = 8 mice of each genotype. c Analysis of IL-17A, IFNγ, and IL-10 expression in gated CD45−/−CD3−/− T cells of the colonic LP of CCR10−/− and CCR10+/− mice. N ≥ 9 mice of each genotype for IL-17A, N = 4 mice of each genotype for IFNγ and N = 15 of each genotype for IL-10 analyses. d Percentages of CCR10−/− and CCR10+/− mice with detectable fecal occult bleeding 3 days after starting the DSS treatment. 11 CCR10−/− and 13 CCR10+/− mice were analyzed. e Survival rates of CCR10−/− and CCR10+/− mice after starting the DSS treatment. 10 CCR10−/− and 9 CCR10+/− mice were analyzed. f Ratios of expression levels of indicated cytokine transcripts in colons of CCR10−/− over those of CCR10+/− mice 7 days after starting DSS treatment. Five mice of each genotype were analyzed. *p < 0.05, **p < 0.01, ***p < 0.001, ns: no significant difference (applied to all figures).

Supplementary Fig. 3c). However, there were drastically reduced percentages of EGFP(CCR10)+ IgA-ASCs of CCR10−/− donor B-cell origin and their conjugated T cells in the colon compared with corresponding populations of CCR10+/− donor B-cell origin (Fig. 3d, e). Reciprocally, there was increased accumulation of EGFP(CCR10)+ IgA-ASCs of CCR10+/− donor B-cell origin and their conjugated T cells in the mLN compared with corresponding populations of CCR10−/− donor B-cell origin (Fig. 3d, e). Together, these results suggest that CCR10+ IgA-ASCs form conjugates with T cells in the PP during their differentiation phases and help migration of the conjugated T cells into the colon. CCR10+/− IgA-ASCs and their conjugated T cells could not efficiently migrate into the colon due to loss of CCR10-mediated migration to chemoattraction of colon-expressed ligands.

We performed an in vitro co-migration assay in which a mixture of similar numbers of intestinal EGFP(CCR10)+ ASC/T cell conjugates of CCR10+/− and CCR10−/− mice were assessed for their migration toward CCL28 in a transwell. The expression of CD45.2 and CD45.1 distinguished the cells of CCR10+/− and CCR10−/− origins, respectively (Fig. 3f). Markedly, of all EGFP (CCR10)+ ASC/T cell conjugates that migrated toward CCL28, more than 90% were of CCR10+/− origin (CD45.2+) and the rest were mostly of CCR10−/− (CD45.1+) origin (Fig. 3f). There were almost no CD45.2+CD45.1+ EGFP(CCR10)+ ASC/T cell conjugates in the post-migration cell population, suggesting no formation of new ASC/T cell conjugates during the migration process (Fig. 3f). These results indicate that the intestinal T cells conjugated with CCR10-expressing IgA-ASCs migrated toward CCL28 while T cells conjugated with CCR10-knockout IgA-ASCs did not, demonstrating that CCR10 could mediate co-migration of CCR10+ IgA-ASC and their T cell conjugates to chemoattraction of its colon-derived ligand.

MHCI-dependent antigen-specific interaction of IgA-ASCs and T cells is crucial for their homeostatic establishment in the colon. Coordinated co-migration of CCR10+ IgA-ASCs and T cells into the colon suggests that the process is important for their proper establishment in the colon. Since MHCI is involved in antigen-specific interaction between IgA-ASCs and CD4+ T cells, we tested whether MHCI was involved in formation of conjugates of IgA-
ASCs and T cells and/or their establishment in the colon. To test this, we co-transferred similar numbers of MHCI+/−CCR10+/− (CD45.1/2) and MHCI−/−CCR10+/− (CD45.2/2) B cells into μMT mice. Two weeks after transfer, we analyzed IgA-ASCs of the donor B cells and their formation of conjugates with T cells in the PP and localization into the colon. All donor B cells carried a CCR10-KO/EGFP-KI (CCR10−/−) allele for purpose of identifying donor-derived CCR10+ IgA-ASCs with EGFP. CD45.1 was used to distinguish EGFP(CCR10)+ IgA+ cells of MHCI+/−CCR10+/− (CD45.1+) versus MHCI−/−CCR10+/− (CD45.1−) donor origins (Fig. 4a). There were similar percentages of CCR10(EGFP)+ IgA-ASCs of MHCI+/−CCR10+/− and MHCI−/−CCR10+/− donor B cells in the PP, suggesting that B cells could differentiate into gut-homing IgA-ASCs in a T-cell antigen-independent fashion (Fig. 4a, b). There was also no difference in the percentage of T cells conjugating with CCR10(EGFP)+ IgA-ASCs of MHCI+/−CCR10+/− and MHCI−/−CCR10+/− donor B cells in the PP and mLN (Fig. 4a, b). Strikingly, however, there were drastically reduced percentages of CCR10(EGFP)+ IgA-ASCs of MHCI−/−CCR10+/− donor B cells and their T cell conjugates in the colon compared with corresponding populations of the MHCI+/−CCR10+/− donor B cells (Fig. 4a, b), suggesting that antigen-specific interaction is crucial for establishment of co-migrated IgA-ASCs and T cells in the colon.

CCR10+ IgA1-ASCs are the major isotype of ASCs substituting for CCR10− IgA-ASCs in the colons of IgA−/− mice. While CCR10 was almost exclusively expressed on all IgA-ASCs in the colon, IgA-knockout (IgA−/−) mice, unlike CCR10− mice, did not spontaneously develop colonic inflammation.24,25 Similarly, most IgA-deficient humans did not have overt intestinal inflammation.26-28 IgM antibodies have been suggested to compensate for loss of functions of IgA in IgA-deficient conditions since IgM is the only antibody isotype besides IgA that could be transported through intestinal epithelia for release into intestinal lumen. We therefore assessed what isotypes of antibody-producing cells substituted for CCR10+ IgA-ASCs in the colons of IgA−/− mice. IgA−/− mice carried a CCR10− KO/EGFP-KI (CCR10−) allele for purpose of reporting the CCR10 expression with EGFP. Compared with IgA−/− mice, IgA−/− mice had only mildly reduced percentages of CCR10(EGFP)+ cells in the colon (Fig. 5a), consistent with the notion that other isotypes of antibody-producing cells increased to compensate for loss of IgA-ASCs. Colonic EGFP(CCR10)+ cells of IgA−/− mice expressed same surface markers of MHCI, PD-L1 and CD28 as colonic EGFP(CCR10)+ IgA-ASCs of IgA+/− mice (Supplementary Fig. 4A), and also formed conjugates with T cells, preferentially Treg cells (Fig. 5b). Surprisingly, intracellular staining analysis for isotypes of
antibodies found that only 20% of colonic EGFP(CCR10)+ cells of IgA−/− CCR10+/− mice stained positive for IgM while most of them (~70%) stained positive for IgG1 (Fig. 5c, Supplementary Fig. 4B). As a result, there was a highly increased number of EGFP (CCR10)+ IgG1+ cells in the colon of IgA−/− CCR10+/− mice compared with IgA+/− CCR10+/− mice (Fig. 5d). The EGFP (CCR10)+ IgG1-ASCs also expressed the membrane form of IgG1 (Fig. 5e). Consistent with predominance of CCR10(EGFP)+ IgG1-ASCs in the colon, increased percentages of colonic EGFP (CCR10)+ immune cells, including macrophages, of IgA−/− CCR10+/− mice stained positive for IgG1 (Fig. 5f, g, Supplementary Fig. 4C), likely because increased amounts of secreted IgG1 antibodies bound to phagocytes that express Fc receptors for IgG1. Together, these results suggest that CCR10+ IgG1-ASCs predominantly substitute for CCR10+ IgA-ASCs in the colons of IgA−/− mice to regulate local homeostasis.
IgG1-ASCs and IgG2-ASCs are the major isotypes of plasma cells substituting for IgA-ASCs in the colons of IgA-deficient human patients. Preferential expansion of CCR10+ IgG1-ASCs in the colons of IgA-/− mice prompted us to assess isotypes of antibody-producing cells that substituted for IgA-ASCs in the colons of asymptomatic IgA-deficient human individuals. In colonic sections of most IgA-deficient individuals (12/14), there were significantly more IgG2+ plasma cells than IgG4+ plasma cells (Fig. 6a, b). Further analysis revealed that there were equal numbers of IgG1+ and IgG2+ plasma cells but few IgG3+ or IgG4+ plasma cells in colonic sections of IgA-deficient individuals (Fig. 6c, d). Colonic plasma cells of IgA-deficient individuals stained positive for CCR10 (Fig. 6e). These results suggest that CCR10+ IgG1/IgG2-ASCs predominantly substitute for CCR10+ IgA-ASCs in the colons of most asymptomatic IgA-deficient individuals.

DISCUSSION

In the intestine, IgA-ASCs and T cells, particularly Treg cells, could form a loop to support each other for homeostatic maintenance.29–32 FOXP3+ Treg cells could help differentiation of IgA-ASCs in the PP,33 and promote survival and antibody production of IgA-ASCs in the intestinal LP.34 IgA-ASCs are suggested to help Treg cell differentiation by secreting TGF-β, which transduces regulatory signals.38,39 Therefore, while IgG1 could not substitute for IgA in the colons of IgA-deficient conditions since IgM is the only isotype of antibody besides IgA that could be transported through intestinal epithelium and released into intestinal lumen.3 However, we found that CCR10+ IgG1-ASCs, but not IgM-ASCs, are the dominant isotype of substituting ASCs in the colons of IgA-knockout mice. Compared with the other IgG isotypes, IgG1 preferentially binds to FcyRIIB, an inhibitory Fc receptor that transduces regulatory signals.32,38 Therefore, while IgG1 could not be secreted into intestinal lumen, it could opsonize invading bacteria for destruction by phagocytes within the tissue without inducing detrimental inflammation. Similarly, IgG1- and IgG2-ASCs are major isotypes of substituting ASCs in the colons of asymptomatic IgA-deficient human individuals. Since these individuals do not have intestinal inflammatory symptoms, the IgG1- and IgG2-ASCs likely help maintain intestinal homeostasis in absence of IgA. Like IgG1 in mice, IgG2 of humans is primarily involved in immune regulation, since it has the lowest activating-to-inhibitory ratio among all IgG subclasses.40 In contrast to the predominance of IgG1- and IgG2-ASCs in asymptomatic IgA-deficient individuals, IgM-ASCs were reported to dominate in the gut of symptomatic IgA-deficient individuals.41–43 This suggests that...
suggest that IgA-deficient individuals with properly compensatory isotypes of ASCs (i.e., IgG1/IgG2-ASCs) would have better maintenance of intestinal homeostasis. Consistent with this notion, individuals with simultaneous deficiency of IgA and IgG2 have higher incidences of intestinal diseases than those with combinatorial deficiency of IgA and other antibody isotypes. Further studies are needed to establish how differential expansion of specific isotypes of ASCs affects the intestinal homeostasis versus inflammation in IgA-deficient conditions.

MATERIALS AND METHODS

Mice

CCR10-knockout/EGFP-knockin (CCR10-KO/EGFP-KI) mice on C57BL/6 background (CD45.2/2) were described. A CCR10-knockout, MHCII knock-out, and FOPX3-EGFP reporter mice were purchased from Jackson lab. IgA-knockout mice were obtained from the Mutant Mouse Regional Resource Centers (MMRRC). A CCR10-KO/EGFP-KI allele (CCR10−/−) was introduced to MHCII-knockout and IgA-knockout mice for purpose of reporting the CCR10 expression with EGFP. Further studies are needed to establish how differential expansion of specific isotypes of ASCs affects the intestinal homeostasis versus inflammation in IgA-deficient conditions.

Human samples

Archives at Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine were searched for colon biopsy specimens from patients with selective IgA deficiency using Clinical Looking Glass. Selective IgA deficiency was defined as serum IgA level <7 mg/dL with normal or increased levels of serum IgG (≥844 mg/dL) and IgM (≥50 mg/dL) in individuals older than 4 years of age. A total of 14 colon biopsy specimens from 11 patients were identified. The clinical information of the patients was summarized in Supplementary Table 1. Five colon biopsy specimens from age- and gender-matched IgA-sufficient patients were used as control. This retrospective study was approved by the Institutional Review Board of Albert Einstein College of Medicine.

Antibodies and chemicals

Antibodies and chemical reagents are listed in Supplementary Tables 2 and 3.

Cell isolation

Isolation of lymphocytes were performed similarly as we previously described. Briefly, for isolation of lymphocytes from colonic LP, colon segment cuts were then incubated for 15 min at 37 °C with shaking at 200 rpm in HBSS containing 15 mM HEPES, 5 mM EDTA, and 10% FBS (Equitech-Bio, Kerrville, TX), followed by intense vortex to remove the epithelium and intraepithelial lymphocytes. This step was repeated 3–4 times until no more epithelium shedding occurred. The remaining pieces were washed with RPMI medium (Mediatech, Manassas, VA) containing 10% FBS, minced, and then digested for 60 min at 37 °C with shaking at 200 rpm in RPMI medium containing 5% FBS, 1.5 mg/mL collagenase...
To isolate lymphocytes from Peyer’s patches and cecal patches, the patches were dissected out and then minced and digested in RPMI medium containing 0.5 mg/mL collagenase for 30 min at 37 °C with shaking at 200 rpm. Dissociated cells from the digestion were washed once with PBS, resuspended in 3 mL of 80% Percoll (GE Healthcare), underlaid with 4 mL of 40% Percoll, and centrifuged for 20 min at 850 × g at room temperature. Lymphocytes were recovered from the interphase of the Percoll gradient, washed twice, and resuspended in FACS buffer (PBS containing 3% FBS and 0.05% sodium azide) or RPMI medium. Spleen and mesenteric lymph node cells were prepared by pressing the tissues through cell strainers using the end of a sterile plunger of a 5-ml syringe. Peripheral blood lymphocytes were isolated by gradient centrifugation using Lympholyte-Mammal (CEDARLANE Laboratories, Burlington, NC).

Fig. 5 CCR10+ IgG1-ASCs are the major isotype of ASCs that substitute for CCR10+ IgA-ASCs in the colons of IgA-knockout mice. All mice carried a CCR10-KO/EGFP-KI allele (CCR10+/−) for reporting the CCR10 expression with EGFP. a Flow cytometric analysis of gated colonic CD45+ immune cells for EGFP(CCR10)+ plasma cells and their interacting CD4+ T cells in IgA+/+CCR10+/− and IgA−/−CCR10+/− mice. The bar graph on the right shows average percentages of EGFP(CCR10)+ cells of total CD45+ immune cells in the colon of IgA+/+CCR10+/− and IgA−/−CCR10+/− mice. b Average percentages of different subsets of colonic T cells that form conjugates with EGFP (CCR10)+ plasma cells in IgA−/−CCR10+/− mice. Six mice were analyzed. c Average percentages of EGFP(CCR10)+ colonic plasma cells that express indicated antibody isotypes in IgA−/−CCR10+/− mice. One dot represents one mouse. d Comparison of the number of EGFP (CCR10)+IgG1+ cells in the colon of IgA−/−CCR10+/− and IgA−/−CCR10−/− mice. Five mice of each genotype were analyzed. e Flow cytometric analysis of gated CD45+EGFP(CCR10)+ colonic plasma cells for their surface expression of IgG1 in IgA−/−CCR10+/− mice. Repeated twice. f Flow cytometric analysis of gated colonic CD45+ immune cells for intracellular IgG1 in EGFP+ and EGFP− cells in IgA−/−CCR10+/− and IgA+/+CCR10−/− mice. The bar graph on the right shows percentages of EGFP(CCR10)+ IgG1+ cells of total EGFP(CCR10)+ immune cells in the colon of IgA−/−CCR10+/− and IgA−/−CCR10−/− mice. Five mice of each genotype were analyzed. g Flow cytometric analysis of gated CD45+F4/80+ cells of IgA−/−CCR10+/− mice for intracellular IgG1. Representative of three independent experiments.

(Worthington, Lakewood, NJ). To isolate lymphocytes from Peyer’s patches and cecal patches, the patches were dissected out and then miniced and digested in RPMI medium containing 0.5 mg/mL collagenase for 30 min at 37 °C with shaking at 200 rpm. Dissociated cells from the digestion were washed once with PBS, resuspended in 3 mL of 80% Percoll (GE Healthcare), underlaid with 4 mL of 40% Percoll, and centrifuged for 20 min at 850 × g at room temperature. Lymphocytes were recovered from the interphase of the Percoll gradient, washed twice, and resuspended in FACS buffer (PBS containing 3% FBS and 0.05% sodium azide) or RPMI medium. Spleen and mesenteric lymph node cells were prepared by pressing the tissues through cell strainers using the end of a sterile plunger of a 5-ml syringe. Peripheral blood lymphocytes were isolated by gradient centrifugation using Lympholyte-Mammal (CEDARLANE Laboratories, Burlington, NC).
Cell staining and flow cytometric analysis
For antibody staining of surface markers, cells were incubated with fluorescently labeled antibodies for 30 min at 4°C. For antibody staining of intracellular Foxp3, IgA, and other different isotypes of antibodies, cells were first stained for cell surface markers, then fixed with 4% paraformaldehyde (PFA), permeabilized with the Foxp3/Transcription Factor Staining Buffer Set (eBioscience), and stained with antibodies against the intracellular molecules. For the intracellular staining of cytokines, cells were first stimulated for 2–4 h in culture with PMA (phorbol 12-
myristate 13-acetate) and ionomycin in the presence of brefeldin A and then were stained as for the intracellular staining of the other intracellular molecules. Cells stained with a single antibody were used for the calibration experiments. Flow cytometric analyses were performed on FC500 (Beckman Coulter) or BD Fortessa LSRII (BD Biosciences, San Jose, CA). Imaging flow cytometric analysis was performed on Amnis FlowSight (Luminex). Data were analyzed with FlowJo software (BD Biosciences).

DSS-induced colitis
Mice were treated for 7 days with 3% DSS in drinking water. Fecal occult bleeding was detected with Coloscreen (Helena Laboratories, Beaumont, Texas) at day 3 after starting the DSS treatment. Treated mice were monitored for bodyweight change. A drop of bodyweight more than 30% was counted as death. Colon sections were collected at day 7 after starting the DSS treatment and used for the H&E staining and qRT-PCR analyses.

FTY720 treatment
Mice were provided drinking water containing FTY720 (10 μg/mL) for 14–21 days.

B-cell transfer into μMT mice
Naïve B cells were purified from spleens using B cell isolation kit (Miltenyi Biotec). Twenty million B cells of CD45.1+/2−CCR10−/− and CD45.2/2−CCR10+/− or CD45.2/2−MHCIId−/−CCR10+/− mixtures at the 1:1 ratio were intravenously injected into μMT mice. Two weeks after transfer, mice were euthanized for analysis of donor-derived EGFP(CCR10)+ IgA− cells and their formation of T cell conjugates in the PP, mLN, and colonic LP.

In vitro migration assay
The experiment was performed similarly as we previously described. Briefly, colonic LP EGFP+CD3+ conjugates of CCR10+/−(CD45.2−)/CCR10−/−(CD45.1−) mice were mixed with the 1:1 ratio, suspended in RPMI-1640/10% FBS, immediately placed into the upper chamber of a Transwell with 5-µm pore filters (Costar, Corning, NY), and incubated with CCL28 in the bottom chamber for 4 h. Cells migrating into the bottom chamber were collected and analyzed by flow cytometry for EGFP+ CD3+ conjugates of CCR10+/− and CCR10−/− origins. The ratio of EGFP+ CD3+ conjugates of CCR10+/− and CCR10−/− origins migrating into the bottom chamber was quantified based on their different expression of CD45.2 and CD45.1, compared with the ratio of the mixture before migration. In this study, average 19% (19% ± 3%) of CCR10−/−EGFP+ CD3+ cells migrated into the bottom chamber in the presence of CCL28.

Real-time quantitative RT-PCR
The experiment was performed as we described. Sequences of primers used are listed in Supplementary Table 4.

H&E staining and pathological scoring of colonic sections
The paraffin embedding, sectioning and H&E staining of colons were performed by the Animal Diagnostic Laboratory of Pennsylvania State University. Colitic lesions were scored in four categories (inflammation, degeneration of epithelium, edema, and thickening of epithelium) based on following criteria: 0 = within normal limits, 1 = minimal, 2 = mild, 3 = moderate, and 4 = extensive. Sums of scores in the four categories are pathological scores.

Immunofluorescent staining and microscopic analysis of colonic sections for detection of interaction of IgA-ASCs and Treg cells
Colons of FOXP3-EGFP reporter mice were fixed in 4% paraformaldehyde, frozen in O.C.T. medium, cut at the 3-µm thickness on a cryostat, and placed on glass slides. The sections were stained with Alexa Fluor 568-conjugated anti-mouse CD3e (17A2) and APC-conjugated anti-mouse IgA (11–44–2), and counter-stained with DAPI. Stained sections were imaged with an Olympus Fluoview 10i microscope. Images were analyzed with the Fiji software.

Immunohistochemical staining of human colonic sections
The antigen retrieval and immunohistochemical staining of human colonic sections were performed as previously described.27

Statistical analyses
Statistical significance was determined by unpaired student T tests (dot plots or bar graphs) or paired student T tests (in the figures where lines linked the data of paired samples). The data is presented as means ± standard errors (SEM). Time to death post DSS treatment was estimated using Kaplan–Meier estimates. Survival curves between groups were compared using log-rank tests. P < 0.05 is considered significant.

ACKNOWLEDGEMENTS
Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers AR064831 and Pennsylvania State University institutional support (to N.X.) and Montefiore Medical Center Pathology Research Funding (to S.H.). The content is solely the responsibility of the authors and does not necessarily represent official views of the funding agencies. We thank the Clinical Immunology lab of Montefiore Medical Center for excellent technical support for IHC staining.

AUTHOR CONTRIBUTIONS
L.Z., S.H., MLD, J.Y., and Y.D.L. performed the mouse experiments. S.H., J.M.A., Y.L., Y.W., and Q.L. performed staining and analysis of human colonic sections. M.J.K. scored the H&E stained sections of colons. N.X., L.Z., and S.H. designed the study. N.X., L.Z., and S.H. wrote the paper. All authors approved the paper.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ADDITIONAL INFORMATION
The online version of this article (https://doi.org/10.1038/s41385-020-0333-3) contains supplementary material, which is available to authorized users.

Competing interests: The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES
1. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).
2. Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).
3. Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol. 33, 160–167 (2012).
4. Xiong, N. & Hu, S. Regulation of intestinal IgA responses. Cell Mol. Life Sci. 72, 2645–2655 (2015).
5. Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 4, 222 (2013).
6. Fritz, J. H. et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 481, 199–203 (2011).
7. Kim, M. S. & Kim, T. S. IgA+ plasma cells in murine intestinal lamina propria as a positive regulator of Treg differentiation. J. Leukoc. Biol. 95, 461–469 (2014).
8. Gomerman, J. L., Rojas, O. L. & Fritz, J. H. Re-thinking the functions of IgA+ plasma cells. Gut Microbes 5, 652–662 (2014).
9. Shale, M., Schiering, C. & Pownie, F. CD45(+) T-cell subsets in intestinal inflammation. Immunol. Rev. 252, 164–182 (2013).
10. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cell mechanisms: differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).
11. Kunkel, E. J. et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest. 111, 1001–1010 (2003).
12. Lazarus, N. H. et al. A common mucosal chemokine (mucosa-associated epidermal chemokine/CCL28) selectively attracts IgA plasmablasts. J. Immunol. 170, 3799–3805 (2003).
13. Pan, J. et al. A novel chemokine ligand for CCR10 and CCR3 expressed by epidermal cells in mucosal tissues. J. Immunol. 165, 2943–2949 (2000).
14. Wang, W. et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J. Biol. Chem. 275, 22313–22323 (2000).
15. Hu, S., Yang, K., Yang, J., Li, M. & Xiong, N. Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc. Natl Acad. Sci. USA 108, E1035–E1044 (2011).
16. Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).
17. Nguyen, L. P. et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat. Immunol. 16, 207–213 (2015).
18. Wang, C., Kang, S. G., Lee, J., Sun, Z. & Kim, C. H. The roles of CCR6 in migration of TH17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2, 173–183 (2009).
19. Jin, Y., Xia, M., Sun, A., Saylor, C. M. & Xiong, N. CCR10 is important for the establishment of epidermal gammadeltaT cells by regulating their thymic egress and location. J. Cell Sci 122, 5723–5731 (2010).
20. Doi, T. et al. IgA plasma cells express the negative regulatory costimulatory molecule programmed cell death 1 ligand and have a potential tolerogenic role in the intestine. Biochem. Biophys. Res. Commun. 425, 918–923 (2012).
21. Rozanski, C. H. et al. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J. Exp. Med. 208, 1435–1446 (2011).
22. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 322, 1488–1492 (2009).
23. Gohda, M. et al. Sphingosine 1-phosphate regulates the egress of IgA plasmablasts from Peyer’s patches for intestinal IgA responses. J. Immunol. 180, 5335–5343 (2008).
24. Harriman, G. R. et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol. 162, 2521–2529 (1999).
25. Macpherson, A. J. & McCoy, K. D. Independence Day for IgA. Immunity 43, 416–418 (2015).
26. Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).
27. Khounlotham, M. et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. J. Immunol. 183, 185–186 (2009).
28. Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521, 90–93 (2015).
29. Feng, T., Elson, C. O. & Cong, Y. Treg cell/IgA axis in maintenance of host immune homeostasis with microbiota. Int. Immunopharmacol. 11, 589–592 (2011).
30. Wang, L. et al. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol. 8, 1297–1312 (2015).
31. Kawamoto, S. et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).
32. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).
33. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).
34. Shellow, A. & Mayor, R. Supracellular migration–beyond collective cell migration. J. Cell Sci 132 (2019).
35. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).
36. Szczepanek, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).
37. Yazdani, R., Azizi, G., Abolhassani, H. & Aghamohammadi, A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand. J. Immunol. 85, 3–12 (2017).
38. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).
39. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).
40. Brunsch, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649 (2012).
41. Crabbe, P. A. & Heremans, J. F. Lack of gamma A-immunoglobulin in serum of patients with steatorrhoea. Gut 7, 119–127 (1966).
42. Savilah, E. IgA deficiency in children. Immunoglobulin-containing cells in the intestinal mucosa, immunoglobulins in secretions and serum IgA levels. Clin. Exp. Immunol. 13, 395–406 (1973).
43. Brandztæg, P. et al. The human secretory immune system shows striking heterogeneity with regard to involvement of J chain-positive IgD immunocytes. J. Immunol. 122, 503–510 (1979).
44. Ozelius, V. A. et al. IgG subclasses in selective IgA deficiency: importance of IgG2-IgA deficiency. N. Engl. J. Med. 304, 1476–1477 (1981).
45. Mbawuike, I. N. et al. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol. 162, 2530–2537 (1999).
46. Hu, S. & Xiong, N. Programmed downregulation of CCR6 is important for establishment of epidermal gamma/deltaT cells by regulating their thymic egress and epidermal location. J. Immunol. 190, 3267–3275 (2013).
47. Wolgast, L. R. et al. Spectrum isoforms: differential expression in normal hematopoiesis and alterations in neoplastic bone marrow disorders. Am. J. Clin. Pathol. 136, 200–208 (2011).