Search for the lepton number violating decay $\Sigma^- \to pe^-e^-$ and the rare inclusive decay $\Sigma^- \to \Sigma^X$
(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200433, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23a INFN Laboratori Nazionali di Frascati, INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
23b INFN Laboratori Nazionali di Frascati, INFN Sezione di Perugia, I-06100, Perugia, Italy
23c INFN Laboratori Nazionali di Frascati, University of Perugia, I-06100, Perugia, Italy
24a INFN Sezione di Ferrara, INFN Sezione di Ferrara, I-44122, Ferrara, Italy
24b INFN Sezione di Ferrara, University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 John University, Chanchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universität Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Taisin 300071, People’s Republic of China
37 North China Electric Power University, Beijing 102206, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 South China Normal University, Guangzhou 510006, People’s Republic of China
48 Southeast University, Nanjing 211100, People’s Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Heifei 230026, People’s Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People’s Republic of China
53a Turkish Accelerator Center Particle Factory Group, Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
53b Turkish Accelerator Center Particle Factory Group, Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People’s Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
Using a data sample of \((1310.6 \pm 7.0) \times 10^6\) \(J/\psi\) events taken with the BESIII detector at the center-of-mass energy of 3.097 GeV, we search for the first time for the lepton number violating decay \(\Sigma^- \rightarrow p e^- e^-\) and the rare inclusive decay \(\Sigma^- \rightarrow \Sigma^+ X\), where \(X\) denotes any possible particle combination. The \(\Sigma^-\) candidates are tagged in \(J/\psi \rightarrow \Sigma(1385)^+ \Sigma^-\) decays. No signal candidates are found, and the upper limits on the branching fractions at the 90\% confidence level are determined to be \(B(\Sigma^- \rightarrow p e^- e^-) < 6.7 \times 10^{-5}\) and \(B(\Sigma^- \rightarrow \Sigma^+ X) < 1.2 \times 10^{-4}\).

PACS numbers: 11.30.Fs, 13.30.-a, 14.20.Jn

I. INTRODUCTION

In the Standard Model (SM) [1–3] of particle physics, lepton number conservation is associated with a global \(U(1)_L\) symmetry. In addition, under the postulate of massless neutrinos, \(U(1)_e \times U(1)_\mu \times U(1)_\tau\) is an automatic global symmetry, which means that individual lepton-flavor numbers — \(e\)-number, \(\mu\)-number, and \(\tau\)-number — are expected to be conserved. However, the discoveries of neutrino oscillations [4–7], the matter anti-matter asymmetry of the universe [8–11] and the existence of dark matter [12–14] require new physics theories beyond the SM. New physics models of non-zero neutrino masses predict neutrinos to be Dirac or Majorana fermions [15–18]. If neutrinos are Dirac fermions, \(U(1)_L\) may remain as an exact global symmetry. However, if neutrinos are Majorana fermions, \(U(1)_L\) is not a good global symmetry. Currently, we cannot distinguish whether neutrinos are Dirac fermions or Majorana fermions. Hence, it is important to investigate the validity of lepton-number conservation directly. Observation of lepton number violating (LNV) processes would explicitly point out the direction of new physics, while experimental upper limits (ULs) could translate into stringent conditions for theoretical models.

A number of experiments have searched for LNV in meson decays [19], while only a few experiments have reported searches in hyperon decays [20, 21]. The LNV decay of \(B^+_1 \rightarrow B^+_J l^- l^-\) (\(B = \text{baryon}; l = e, \mu\)) is a unique process, in which two down-type (\(d\) or \(s\)) quarks convert into two up-quarks changing the charge of the hyperons according to the \(\Delta Q = \Delta L = 2\) rule, where \(\Delta Q\) and \(\Delta L\) are the changes of charge number and lepton number, respectively. The transition of the quarks...
is assumed to occur at the same space-time location, as shown in Fig. 1, and is determined by local four-quark operators \([22–24]\). The underlying mechanism is similar to that of neutrinoless double beta \((0\nu\beta\beta)\) nuclear decay \((A/Z) \rightarrow (A, Z+2)e^-e^-\), which is a sensitive probe in the search for the effects of very light Majorana neutrinos \([25, 26]\). In Refs. \([22, 23]\), based on a model where the dominant contributions are given by a loop of a virtual baryon and a Majorana neutrino, as shown in Fig. 2, the predicted branching fractions of \(\Sigma^- \rightarrow pe^-e^-\) and \(\Sigma^+ \rightarrow \Sigma^+e^-e^-\), can reach \(10^{-31}\) and \(10^{-35}\), respectively. While in Ref. \([24]\), based on the Massachusetts Institute of Technology (MIT) bag model \([27, 28]\), the branching fractions are increased by several orders of magnitude, and, for example, the branching fraction of \(\Sigma^+ \rightarrow pe^-e^-\) can reach \(10^{-23}\).

II. BESIII Detector and Monte Carlo Simulation

The BESIII detector is a magnetic spectrometer \([32]\) located at the Beijing Electron Positron Collider (BEPCII) \([33]\). The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T (0.9 T in 2012) magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over 4\(\pi\) solid angle. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the \(dE/dx\) resolution is 6% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap part is 110 ps.

Simulated samples produced with the geant4-based \([34]\) Monte Carlo (MC) software, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam energy spread and initial state radiation (ISR) in the \(e^+e^-\) annihilations modeled with the generator kkmc \([35, 36]\).

The inclusive MC sample consists of the production of the \(J/\psi\) resonance, and the continuum processes \((e^+e^- \rightarrow q\bar{q})\) incorporated in kkmc \([35, 36]\). The known decay modes of \(J/\psi\) are modeled with evtdgen \([37, 38]\) using branching fractions taken from the Particle Data Group \([19]\), and the remaining unknown decays from the charmonium states with lundcharm \([39, 40]\). The final state radiation (FSR) from charged final state particles are incorporated with the photos \([41]\) package.

III. Event Selection

In this paper, the \(\Sigma^-\) data sample is obtained through the process \(J/\psi \rightarrow \Sigma(1385)^+\Sigma^-\). A double-tag method, which was developed by the MARK-III experiment \([42]\), is employed to determine the absolute branching fraction and reduce the systematic uncertainties. First, we reconstruct \(\Sigma(1385)^+\) via the decay \(\Sigma(1385)^+ \rightarrow \Lambda\pi^+\) and then determine the number of \(\Sigma^-\) events in the recoil mass spectrum of the \(\Sigma(1385)^+\), which is defined in Eq.(2). These events are referred to as ‘single tag’ (ST) events. Next, we search for signal candidates in the selected \(\Sigma^-\) sample by looking directly for their decay products. Events with signal candidates are called ‘double tag’ (DT) events. The absolute branching fraction is

Fig. 1. Typical Feynman diagram for \(B^- \rightarrow B^+_d l^-l^-\) \((l = e, \mu)\), in which two down type quarks convert into two up type quarks and two leptons.

Fig. 2. Feynman diagram for \(B^- \rightarrow B^+_d l^-l^-\) \((l = e, \mu)\), where a loop of a virtual baryon, \(B_0\), and a Majorana neutrino, \(\nu\), is introduced.
calculated by
\[
E_{\text{sig}} = \frac{N_{\text{obs}}^\text{DT}}{N_{\text{obs}}^\text{ST} \epsilon_{\text{DT}} / \epsilon_{\text{ST}}},
\]
where \(N_{\text{obs}}^\text{ST}\) is the ST yield, \(N_{\text{obs}}^\text{DT}\) is the DT yield, \(\epsilon_{\text{ST}}\) and \(\epsilon_{\text{DT}}\) are the ST and the DT efficiencies.

A. ST event selection

In the selection of ST events, \(\Sigma(1385)^+\) is reconstructed via \(\Sigma(1385)^+ \rightarrow \Lambda \pi^+\) decay. All charged tracks are required to have a polar angle within \(|\cos \theta| < 0.93\). The \(\Lambda\) is reconstructed via \(\Lambda \rightarrow \bar{p} \pi^+\) decay. Each track used to reconstruct \(\Lambda\) is required to have a distance of closest approach to the interaction point (IP) along the beam direction less than 20 cm, while the bachelor pion candidates are required to have a distance of closest approach to the IP less than 1 cm in the plane perpendicular to the beam and less than 10 cm along the beam direction. The values of 20 cm, 1 cm and 10 cm are based on track performance study.

We perform particle identification (PID) on the charged tracks with the information of \(dE/dx\) measured in the MDC and the time of flight measured by the TOF. The confidence levels (CLs) for the pion, kaon, and proton hypotheses \((CL_\pi, CL_K, CL_p)\) are calculated. The anti-proton candidates are required to satisfy \(CL_p > 0.001\), \(CL_K > CL_\pi\), and \(CL_p > CL_K\). The bachelor pion candidates are required to satisfy \(CL_\pi > 0.001\) and \(CL_K > CL_p\), while there is no PID requirement for the pion from \(\Lambda\) decay.

The two charged tracks used to reconstruct \(\Lambda\) are constrained to originate from a common decay vertex by fitting the momentum of the candidate points back to the IP. The \(\chi^2\) of the secondary vertex fit is required to be less than 100. A secondary vertex fit is also performed on the same daughter tracks of \(\Lambda\) candidates, imposing the additional constraint that the momentum of the candidate points back to the IP. The \(\chi^2\) of the secondary vertex fit is required to be less than 100. The two values of \(\chi^2\) requirements result in high quality vertex fits. To further suppress non-\(\Lambda\) background, the decay length of \(\Lambda\), which is the distance between the IP and the secondary vertex, is required to be larger than 2 standard deviations of the decay length. The fitted four-momentum of the \(\bar{p} \pi^+\) combination is used in further analysis, and the invariant mass of the \(\bar{p} \pi^+\) combination is required to be within \((1.112, 1.120)\) GeV/c^2.

The recoil mass of \(\Sigma(1385)^+\) is defined as
\[
M_{\text{recoil}} = \sqrt{(E_{J/\psi} - E_{\bar{p} \Lambda} - E_{\pi^+})^2 - (\vec{p}_{J/\psi} - \vec{p}_{\bar{p} \Lambda} - \vec{p}_{\pi^+})^2},
\]
where, \(E_{J/\psi}(\vec{p}_{J/\psi})\), \(E_{\bar{p} \Lambda}(\vec{p}_{\bar{p} \Lambda})\) and \(E_{\pi^+}(\vec{p}_{\pi^+})\) are the energies (momenta) of \(J/\psi\), \(\bar{p} \Lambda\) and \(\pi^+\) in the \(J/\psi\)’s center-of-mass frame. To suppress backgrounds, such as \(J/\psi \rightarrow \Sigma(1385)^+ \Sigma(1385)^-\), the sum of \(E_{\bar{p} \Lambda}\) and \(E_{\pi^+}\) is required to be within \((1.59, 1.70)\) GeV.

B. DT event selection

In the recoil side of the selected ST events, we search for the LNV process \(\Sigma^- \rightarrow p e^- e^-\) and the rare inclusive decay \(\Sigma^- \rightarrow \Sigma^+ X\), using the charged tracks and electromagnetic showers not used previously. Each charged track is also required to have a polar angle within \(|\cos \theta| < 0.93\) and a distance of closest approach to the interaction IP along the beam direction less than 20 cm. The momentum of the \(\Sigma^-\) is small and the phase space in \(\Sigma^- \rightarrow \Sigma^+ X\) is extremely small like that in \(\Sigma^- \rightarrow \Sigma^+ e^- e^-\) due to the small difference in the \(\Sigma^\pm\) masses. Therefore the momenta of particles in the \(\Sigma^- \rightarrow \Sigma^+ X\) decay, except for \(\Sigma^+\) reconstructed via \(\Sigma^+ \rightarrow p n^0\), are too small to reach the MDC and other detectors. So only three charged tracks are required for \(\Sigma^- \rightarrow p e^- e^-\) and one charged track for \(\Sigma^- \rightarrow \Sigma^+ X\).

Proton PID is performed as above. Electron PID is performed using the \(dE/dx\), TOF, and EMC informa-
tion, with which the CLs for electron, pion and kaon hypotheses \(CL_e, CL_\pi \) and \(CL_K \) are calculated. Electron candidates are required to satisfy \(CL_e > 0.001 \) and \(CL_e/(CL_e + CL_\pi + CL_K) > 0.8 \).

Electromagnetic showers are reconstructed from clusters of energy deposited in the EMC. The photon candidate showers must have a minimum energy of 25 MeV in the barrel region \((|cos \theta| < 0.80) \) or 50 MeV in the end cap regions \((0.86 < |cos \theta| < 0.92) \). To suppress electronic noise and energy deposits unrelated to the event, timing information from the EMC for the photon candidates must be in coincidence with collision events, with a requirement of \(0 \leq t \leq 700 \) ns. The \(\pi^0 \) candidates are reconstructed from pairs of photon candidates. Due to the worse resolution in the end cap regions of the EMC, \(\pi^0 \) candidates reconstructed with both photons in the end caps of the EMC are rejected. The invariant mass of two photons is required to be within \((0.115, 0.150) \) GeV/c\(^2\) for \(\pi^0 \) candidates. To improve the overall kinematic resolution, a mass-constraint kinematic fit is performed by constraining the photon invariant mass to the nominal \(\pi^0 \) mass [19]. When multiple \(\pi^0 \) candidates are reconstructed, we retain the one with the smallest \(\chi^2 \) of the mass-constraint kinematic fit.

Furthermore, we require the \(pe^-e^- \) invariant mass to be within \((1.169, 1.209) \) GeV/c\(^2\) and the \(p\pi^0 \) invariant mass to be within \((1.167, 1.201) \) GeV/c\(^2\). For the \(\Sigma^- \rightarrow \Sigma^+X \) channel, to further suppress background, one additional kinematic variable is defined as

\[
\vec{p}_{miss} = \vec{p}_{J/\psi} - \vec{p}_X - \vec{p}_{\Sigma^+} - \vec{p}_{\Sigma^-}
\]

where \(\vec{p} \) are the corresponding momenta in the \(J/\psi \)’s center-of-mass system, and \(|\vec{p}_{miss}| \) is required to be less than 0.1 GeV/c.

Since the \(X \) particles are not detected, the DT efficiency of \(\Sigma^- \rightarrow \Sigma^+X \) is only affected by the reconstruction of the \(p \) and \(\pi^0 \) from the \(\Sigma^- \) decays. Simulation studies show that due to the limited phase space and small \(\Sigma^- \) momentum, the momenta and the angular distributions of \(p \) and \(\pi^0 \) are almost the same when \(X \) represents different final states. Therefore, we use the MC samples of \(\Sigma^- \rightarrow \Sigma^+e^-e^- \) to estimate the efficiency of \(\Sigma^- \rightarrow \Sigma^+X \).

To determine the DT yield, we search for candidates in the \(M_{\text{recoil}} \) distributions for \(\Sigma^- \rightarrow pe^-e^- \) and \(\Sigma^- \rightarrow \Sigma^+X \) in data, shown in Fig. 4. The signal region is defined as \([1.165, 1.220]\) GeV/c\(^2\), which covers more than \(99.7\)% of all signal events. The DT efficiencies obtained from MC simulation are \(9.02\)% and \(11.08\)% respectively. No event is observed in the signal region for either channel.

C. Background Study

Potential background candidates come from the continuum process and from other \(J/\psi \) decays. To estimate the first kind, we study the continuum process with data samples collected at \(\sqrt{s} = 3.08, 3.65, 3.773 \) GeV, where the integrated luminosity values are about \(150 \) pb\(^{-1}\), \(50 \) pb\(^{-1}\) and \(2.93 \) fb\(^{-1}\), respectively. There is no ST peaking background, and no event passes the DT selection.

We use the inclusive MC sample to estimate backgrounds from \(J/\psi \) decays. The ST peaking background component is from \(J/\psi \rightarrow \Sigma(1385)^0\Lambda+c.c. \), and the number of events scaled to data accounts for about \(0.07\)% of the total ST yield, so it is ignored. The smooth background components can be described by a second order Chebychev polynomial. Figure 5 shows the different components from the inclusive MC sample. For the DT selection, only 4 and 3 background events survive in the signal regions of the \(\Sigma^- \rightarrow pe^-e^- \) and \(\Sigma^- \rightarrow \Sigma^+X \) channels, respectively, corresponding to normalized numbers of \(0.3\) and \(0.6\) background events.

IV. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the measurements, summarized in Table I, mainly originate from differences between data and simulation in the tracking and PID efficiency, the tag bias, the MC model and the cited branching fractions.

The systematic uncertainty due to the proton tracking efficiency is determined to be \(1.0\)% for each track by
studying the two control samples of \(J/\psi \to pK^-\bar{\Lambda} + \text{c.c.} \) and \(J/\psi \to \Lambda\bar{\Lambda} \) [43]. The uncertainty arising from the proton PID efficiency is determined with the control sample \(J/\psi \to p\pi^+\pi^-e^- \). We bin events in the sample in \(\cos \theta \) (i) and \(|\vec{p}| \) (j) of the proton [44] and add differences between data and MC samples together with the following formula

\[
\Delta e^{PID} = \sum_{i,j} (\Delta e^{PID}_{ij} \times \omega_{ij}^{PID}),
\]

where \(\Delta e^{PID}_{ij} \) is the difference of PID efficiency and \(\omega_{ij}^{PID} \) is the weight factor. The weight factor is defined as the ratio of the number of events in the \(ij \) bin to the total number of events of the sample. We use the total differences as the uncertainties in \(\Sigma^- \to pe^-e^- \) and \(\Sigma^- \to \Sigma^+X \), which are 0.4% and 0.3%, respectively.

The uncertainties due to the tracking and PID efficiencies of the electron are studied with the control sample \(e^+e^- \to \gamma e^+e^- \) (at \(\sqrt{s} = 3.097 \text{ GeV} \)). Similar as above, we bin events in the sample by \(\cos \theta \) and \(|\vec{p}| \) for tracking (PID). The uncertainties of the tracking efficiency for the high-momentum and low-momentum electrons are 0.5% and 3.1%, respectively, and the uncertainties of the PID efficiency are 0.6% and 2.2%, respectively. The total differences for tracking and PID for \(\Sigma^- \to pe^-e^- \) are 3.6% and 2.8%, respectively. The uncertainties associated with photon detection and \(\pi^0 \) reconstruction are obtained from the control sample \(J/\psi \to \pi^+\pi^-\pi^0 \) [45]. The differences between data and MC samples are 1.0% per photon and 1.0% per \(\pi^0 \), respectively.

The systematic uncertainty due to the \(\Sigma^+(p\pi^0) \) mass window is determined to be 0.6% using a control sample of \(J/\psi \to \Sigma^-\Sigma^- \) decays [46]. Since we do not have a sample of \(\Sigma^- \to pe^-e^- \), we change the limits to those obtained from the mass distribution of \(\Sigma^- \) whose decay is determined by a phase space model. The relative change of the DT efficiency, 0.5%, is taken as the uncertainty of \(\Sigma^- \to pe^-e^- \) mass window.

The main uncertainties in the ST selection, including the total number of \(J/\psi \) events, the reconstruction of \(\bar{\Lambda} \) and the bachelor \(\pi^+ \), cancel in the double tag method.

The tag bias is related with the MC sample used to obtain the ST efficiency. We change the sample with the decay chain \(J/\psi \to \Sigma(1385)^+\Sigma^- (\Sigma^- \to X) \) to the sample with the decay chain \(J/\psi \to \Sigma(1385)^+\Sigma^- (\Sigma^- \to pe^-e^-) \) and \(J/\psi \to \Sigma(1385)^+\Sigma^- (\Sigma^- \to \Sigma^+e^-e^-) \). The average relative change of the ST efficiency is taken as the associated uncertainty, which is 1.3%. The statistical uncertainty of the tag yields is 0.38%, and it is taken into account together with the statistical uncertainties of efficiencies when calculating the ULs.

To estimate the uncertainty of the MC model for the signal, we change the values of parameters in the model that describes the \(q^2 \)-dependent differential decay width of \(B_\ell^- \to B_\ell^+\ell^-\ell^- \) [24]. We take the relative changes of the DT efficiencies as the associated uncertainties for \(\Sigma^- \to pe^-e^- \) and \(\Sigma^- \to \Sigma^+X \), which are 1.0% and 0.9%, respectively.

Since the limit for \(|p_{\text{miss}}| \) (0.1 GeV/c) is much larger than the kinematic limit, the uncertainty of the requirement on \(|p_{\text{miss}}| \) is negligible. The relative uncertainties for branching fractions of \(\pi^0 \to \gamma \gamma \) and \(\Sigma^+ \to p\pi^0 \) are taken from the PDG [19], and are 0.034% and 0.6%, respectively. The uncertainty for the \(\pi^0 \) is so small that it can be ignored. The total systematic uncertainties are obtained by adding all uncertainties above in quadrature.

Table I. The relative systematic uncertainties (in %) on the branching fraction measurements.

Source	\(\Sigma^- \to pe^-e^- \)	\(\Sigma^- \to \Sigma^+X \)
Tracking of proton	1.0	1.0
PID of proton	0.4	0.3
Tracking of electron	3.6	...
PID of electron	2.8	...
Photon detection	...	2.0
\(\pi^0 \) reconstruction	...	1.0
\(\Sigma^- \) mass window	0.5	...
\(\Sigma^+ \) mass window	...	0.6
Tag bias	1.3	1.3
MC model	1.0	0.9
Quoted branching ratios	...	0.6
Total	5.0	3.1
UL for the branching fraction is determined by

$$B_{\text{sig}}^{90} < \frac{s_{\text{obs}}^{90}}{N_{\text{tag}}^{\text{DT}}/\epsilon_{\text{ST}}}$$

where s_{obs}^{90} is the upper limit on the number of signal events determined at the 90% CL. The ULs for branching fractions are

$$B \left(\Sigma^- \rightarrow pe^-e^- \right) < 6.7 \times 10^{-5},$$
$$B \left(\Sigma^- \rightarrow \Sigma^+ X \right) < 1.2 \times 10^{-4}.$$

VI. SUMMARY

To summarize, with the data sample of $(1310.6 \pm 7.0) \times 10^6 J/\psi$ events collected by BESIII detector, a search for the LNV decay $\Sigma^- \rightarrow pe^-e^-$ and the rare inclusive decay $\Sigma^- \rightarrow \Sigma^+ X$ is performed for the first time. No signal event is observed, and the upper limits on the branching fractions of $\Sigma^- \rightarrow pe^-e^-$ and $\Sigma^- \rightarrow \Sigma^+ X$ at the 90% CL are 6.7×10^{-5} and 1.2×10^{-4}, respectively. Our results are well above the prediction in references [22–24].

ACKNOWLEDGEMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Natural Science Foundation of China (NSFC) under Contracts Nos. 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 1196114010, 12035009; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1532257, U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INFAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council: U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.
[31] H. B. Li, Front. Phys. (Beijing) 12, 121301 (2017)
Erratum: [Front. Phys. (Beijing) 14, 64001 (2019)].
[32] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum.
Meth. A 614, 345 (2010).
[33] C. Yu et al., Proceedings of IPAC2016, Busan, Korea, 2016.
[34] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.
Instrum. Meth. A 506, 250 (2003).
[35] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys.
Commun. 130, 260 (2000).
[36] S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63,
113009 (2001).
[37] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[38] R. G. Ping, Chin. Phys. C 32, 599 (2008).
[39] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and
Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).
[40] R. L. Yang, R. G. Ping and H. Chen, Chin. Phys. Lett.
31, 061301 (2014).
[41] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[42] R. M. Baltrusaitis et al. (MARK-III Collaboration),
Phys. Rev. Lett. 56, 2140 (1986).
[43] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D
86, 032008 (2012).
[44] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D
99, 072006 (2019).
[45] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D
81, 052005 (2010).
[46] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D
87, no.1, 012003 (2013)
[47] W. A. Rolke, A. M. Lopez and J. Conrad, Nucl. Instrum.
Meth. A 551, 493 (2005).