Stereoselective gold(I)-catalyzed approach to the synthesis of complex α-glycosyl phosphosaccharides

Xiaojuan Zhang1, Yutong Yang1, Jiahao Ding1, Yun Zhao1, Hongbin Zhang1 & Yugen Zhu1✉

Glycosyl phosphosaccharides represent a large and important family of complex glycans. Due to the distinct nature of these complex molecules, efficient approaches to access glycosyl phosphosaccharides are still in great demand. Here, we disclose a highly efficient and stereoselective approach to the synthesis of biologically important and complex α-glycosyl phosphosaccharides, employing direct gold(I)-catalyzed glycosylation of the weakly nucleophilic phosphoric acid acceptors. In this work, the broad substrate scope is demonstrated with more than 45 examples, including glucose, xylose, glucuronate, galactose, mannose, rhamnose, fucose, 2-N3-2-deoxymannose, 2-N3-2-deoxyglucose, 2-N3-2-deoxygalactose and unnatural carbohydrates. Here, we show the glycosyl phosphotriester prepared herein was successfully applied to the one-pot synthesis of a phosphosaccharide from Leishmania donovani, and an effective preparation of a trisaccharide diphosphate of phosphosaccharide fragments from Hansenula capsulate via iterative elongation strategy is realized.
glycosyl phosphosaccharides (GPSs) represent a large and important family of complex glycans, which are ubiquitously distributed in bacteria, yeasts, protozoan parasites and animals, and exhibit numerous bio-functions including bacterial infections, cell adhesive, immunoresponce, and antimicrobial (Fig. 1b)1-3. The GPSs consist of anomeric glycosyl phosphates in which the anomeric position of one constituent glycan was linked to another one mainly by α-type phosphodiester linkage (Fig. 1a). In the process of carbohydrate metabolism, the constituent glycosyl phosphates (GPSs) are significant intermediates5. Synthetically, protected GPSs have been utilized as transformation (Fig. 2C). This glycosylation strategy to access orthophoric acid as acceptor under the action of strong acid24, and chloroacetimidate as donor and the weak nucleophile of phosphoric acid in the glycosylation approach to the synthesis of carbohydrates, which feature less stereocontrol of forming GPSs and GPSs are still in great demand. Accordingly, efficient methods of constructing homogeneous GPSs and GPSs are still in great demand.

In addition to intrinsically labile character, the anomeric stereoecontrol of forming α-GPSs, most of which assume 1,2-cis configuration, is regarded as a challenging task8-17. The synthetic method of H-phosphonate chemistry has found extensive applications in the synthesis of α-GPSs, while two-step transformations of nuleophlic displacement and oxidation are inevitable (Fig. 2A)2,18,19. Nevertheless, the resulted phosphate anions render product incompatible with follow-up or late-stage chemical modifications to increase molecular complexity and diversity20. The alternative approach employing phosphoramidite displays great success in installation of phosphoester, yet is rarely applied to synthesis of anomeric GPS probably due to issues of diastero-selectivity and undesired oxidative cleavage reaction (Fig. 2B)2,21-23.

One-step and direct glycosylation of phosphate acceptors with glycosyl donors represents a convergent and concise method for the synthesis of α-GPSs, which does not require oxidation transformation (Fig. 2C). This glycosylation strategy to access α-GPSs was previously realized by utilizing glycosyl trichloroacetimide as donor and the weak nucleophile of phosphoric acid as acceptor under the action of strong acid24, and later, by a panel of donors with different leaving groups (e.g., SPh, 3-methoxypyridin-2-yl, pentenloyloxy)25-31. The efficiency of these glycosylation reactions with phosphates as acceptors remains unmet: (1) the yield was deteriorated when strong acid was used to realize α-stereoselectivity24, (2) stoichiometric base was applied to preserve the entity of GPSs, but leading to poor 1,2-cis stereoselectivity28, (3) only a handful of complex disaccharide GPSs were accessed by using the direct glycosylation strategy with phosphate anion as acceptor35.

Catalytic glycosylation methods have emerged as an appealing approach to the synthesis of carbohydrates, which feature less promoter and waste, and high efficiency32. Among those, alkynylphilic gold(I) catalysis has been extensively applied in the synthesis of numerous complex glycans and glycoconjugates33, along with other natural products34, by exploiting the compatibility with oxygen-containing functionalities35. Especially, glycosyl donor with ortho-alkynylbenzoate as leaving group first introduced by Yu and coworkers can glycosylate a variety of acceptors36,37. Nevertheless, the glycosylation of exceedingly poor nucleophile of phosphoric acid remains elusive, which entails mild conditions free from competitive nucleophilic species.

In this work, we disclose a stereoselective and general approach to the synthesis of α-GPSs and α-GPSs via a gold(I)-catalyzed glycosylation method with glycosyl ortho-alkynylbenzoate as donor and weakly nucleophile phosphoric acid as acceptor. While the alkynylphilicity of gold(I) catalysis has been widely investigated and applied, the Lewis acid property when oxygen-containing functionalities is activated by gold(I) remains much less explored. Herein, both the alkynylphilicity and weak acidity of gold(I) catalyst are capitalized on to initiate the glycosylation reaction and promote epimerization to α-anomer, respectively (Fig. 2D). Moreover, the anomeric effect, which is conferred by the weak nucleophile of phosphoric acid in the glycosylation reaction, is also exploited to direct the α-selectivity under the present weakly acidic condition38,39. The present gold(I)-catalyzed glycosylation method facilitates the efficient synthesis of more than 45 complex glycosyl phosphates, one-pot synthesis of GPS from Leishmania donovani, and iterative elongation of a trisaccharide diphosphate of GPS fragments from Hansenula capsulate. Mechanistic studies are investigated to indicate the dual

Fig. 1 Introduction of glycosyl phosphate and glycosyl phosphosaccharide.

a Nomencaltures for glycosyl phosphate and phosphosaccharide.

b Representative bioactive phosphosaccharides.
role of Ph₃PAuNTf₂ in the glycosylation-epimerization process, in which Ph₃PAuNTf₂ not only triggers the glycosylation reaction, but also subsequently promotes the epimerization of the α/β products to enrich the α one.

Results

Reaction optimization. To test the validity of this proposal, tetrabenzyl glucoside 1a was examined with a structurally simple acceptor of phosphoric acid dibenzyl ester 2a (Table 1). Initial experiment gave promising results with a good yield of α/β mixture (88%) and α-selectivity (α/β = 2.8/1, entry 1). Thus, detailed optimizations were subsequently conducted by tuning reaction temperature, solvent and additive. As depicted in Table 1, lowering temperature was not effective (83%, α/β = 2/1, entry 2); replacing the anion of Ph₃PAuNTf₂ with −OTf diminished α-selectivity (entry 3). The ether solvent and additive of Ph₃P = O, which direct α-selectivity when alcohols are used as acceptors, did not lead to satisfactory results in the present reaction (entries 4-6)[11]. Gratifyingly, the diastereoselective ratio was raised to 10/1 by an added HOTf (0.1 equiv.), which is supposed to thermodynamically equilibrated β-anomer to the α-one, but compromise the overall yield (62%, entry 7). The strong and heterogeneous acidic H⁺ resin did not result in an improvement in diastereoselectivity as that of HOTf (entry 8). Then, the homogeneous and weak Lewis acid of gold(I) catalysis under an elevated temperature was anticipated to trigger the epimerization to enrich α-anomer and maintain a high yield. Indeed, after complete glycosylation of 2a at 0 °C for 0.5 h, keeping the mixture at 60 °C for 2 h in non-coordinating CH₂Cl₂/CHCl₃ (DCE) for anomerization produced the α-anomer in good selectivity (α/β = 9/1) without deteriorating yield (87%, entry 9). Further elevation of temperature (75 °C and 95 °C) resulted in a drop of yield or decomposition of product (entry 10, 11). Fortunately, increasing the equivalence of donor 1a to 1.5 relative to acceptor 2a (1.0 equiv.) reached an exceptional ratio of 16/1 in 62% yield which was calculated based on donor (entry 12). Interestingly, decreasing the equivalence of donor to 1.0 relative to acceptor (1.0 equiv.) significantly lowered the yield and α-selectivity (entry 13). While prolonging the reaction time for epimerization from 2 h to 3 h gave higher α-selectivity of 20/1, the yield dropped to 57% (entry 14). Notably, the yields of α/β mixtures were herein reported owing to that the α/β mixture was not separable by utilizing flash silica gel column chromatography, and the yields were calculated based on the donor which was used in excess (1.5 equiv.).

Reaction scope of donors. Next, we wondered whether this gold(I)-catalyzed glycosylation strategy was amenable to various glycosyl donors outfitted with different protecting groups or configurations (Fig. 3). First, xylosyl donor 1b, of which the BnOCH₂ group is omitted compared to 1a, delivered the expected xylosyl phosphate 3b in a good diastereoselectivity (11/1) and 55% yield of α/β mixture calculated based on the donor (1.5 equiv.) by utilizing the aforementioned protocol. The electron-withdrawing groups such as AcOCH₂ of 6-Ac product (3c) could be reached in a diastereoselective ratio of 12/1 merely at room temperature, of which α-selectivity is presumably dominated by anomeric effect[36,39]. For the other one equipped with COOME of glucuronic acid methyl ester donor 1d may greatly reduce the reactivity of donor, thereby causing difficulty in epimerization. Luckily, the 6-O-Ac product (3c) can be epimerized to enrich α-anomer (9/7/1) under a higher temperature of 100 °C with a yield of 58%.

Consequently, this strategy was extended to a variety of donors including Gal, Man, ManN₃, Rha, Fuc, GlcN₃, GalN₃ and unnatural carbohydrates (Fig. 3). For the production of those with highly anomeric effect and dominated by steric hindrance, such as galactosyl phosphate (3e and 3e'), mannosyl phosphate...
Among those, 2-2a, which was preactivated with 4-n-butylphenyl tris(tetramethylsilylethyl)phosphonium fluoride (TMSOTf) (0.1 equiv.) at 0 °C. Moreover, trichloroacetimidate was used as donor in the presence of 5 Å MS, 2 h. Reaction condition: 1a (0.05 mmol), Ph₃PAuNTf₂ (10 mol%), DCE (1 mL), 0 °C, 30 min, then 60 °C, 2 h. Yields of α/β mixture (α/β mixture not separable), and ratios determined by HPLC.

In detail, by using the protocol of glycosylation and deprotection of 3f, 1a was converted into 3g in 88% yield. The use of 3g as donor in the presence of Ph₃PAuNTf₂ (10 mol%), DCE (1 mL), 0 °C, 30 min, then 60 °C, 2 h, resulted in 75% yield and 9/1 α:β ratio.

However, the diastereoselectivity can be reversed by adding extra base of iPr₂NEt (0.2 equiv.) to form phosphate anion as acceptor. However, switching to phenyl tetrabenzyl-1-thio-mannoside as acceptor gave only byproduct derived from intramolecular cyclization between 2-O Bn and anomeric position (please see SI). Among those, 3g demonstrates the utility of this strategy for directly glycosylating weakly nucleophilic phosphoric acid. In comparison, only 7% yield was obtained when galactosyl trichloroacetimidate was used as donor in the presence of 5 Å MS, 57% yield (3f and 3f), disarmed 2-N₃-2-deoxymannosyl phosphate (3g), rhamnosyl phosphate (3h) and fucosyl phosphate (3i), an operationally simple procedure at room temperature was effective to access desired products in highly diastereoselective manners. However, switching to phenyl tetrabenzyl-1-thio-mannoside which was preactivatized with p-TolSCI and AgOTf, followed by addition of 2a, gave only byproduct derived from intramolecular cyclization between 2-O Bn and anomeric position (please see SI). Among those, 3g demonstrates the utility of this strategy for directly glycosylating weakly nucleophilic phosphoric acid. In comparison, only 7% yield was obtained when galactosyl trichloroacetimidate was used as donor in the presence of 5 Å MS, 57% yield (3f and 3f), disarmed 2-N₃-2-deoxymannosyl phosphate (3g), rhamnosyl phosphate (3h) and fucosyl phosphate (3i), an operationally simple procedure at room temperature was effective to access desired products in highly diastereoselective manners.

Table 1 Optimizations of the reaction conditions.

Entry	Temperature	Solvent	Additive	Yield, α/β a b
1	20 °C	CH₂Cl₂	—	88%, 2.8/1
2	−78 to 0 °C	CH₂Cl₂	—	83%, 2/1
3c	20 °C	CH₂Cl₂	—	86%, 1.5/1
4	20 °C	Et₂O	—	88%, 3.2/1
5	20 °C	1,4-dioxane/toluene	—	60%, 12/1
6	20 °C	CH₂Cl₂	Ph₃P = O	80%, 1/1
7	20 °C	Et₂O	HOTf	62%, 10/1
8	20 °C	Et₂O	H⁺ resin	78%, 2.9/1
9	0 °C	CIC₂H₂CH₂Cl	—	87%, 9/1
10	0 °C then 60 °C	CH₂Cl₂	—	75%, 9/1
11	0 °C then 95 °C	CH₂Cl₂	—	0
12d	0 °C	CIC₂H₂CH₂Cl	—	62%, 16/1
13d	0 °C	CIC₂H₂CH₂Cl	—	85%, 9.7/1
14d f	0 °C	CIC₂H₂CH₂Cl	—	57%, 20/1

α: Reaction condition: 1a (0.05 mmol), 2a (0.075 mmol), solvent (1.0 mL), Ph₃PAuNTf₂ (10 mol%), 5 Å MS, 2 h. Yields of α/β mixture (α/β mixture not separable), and ratios determined by HPLC.

β: Optimized condition: 1a (0.075 mmol), Ph₃PAuNTf₂ (10 mol%), 2a (0.05 mmol), DCE (1 mL), 0 °C, 30 min, then 60 °C, 2 h. iPr₂NEt (0.2 equiv.) was used instead. Reaction time was prolonged from 2 h to 3 h. Tf: trifluoromethanesulfonyl.

Because of the distinct nature of N₃ substituent in comparison with OBT, formation of 1,2-α-D-glycosamine glycosidic bond remains elusive in the case of alcohols as acceptors. Although the azido substituted glycosyl phosphates are resistant to epimerization at high temperature, donors of tribenzyl GlcN₃ and GalN₃ underwent smoothly coupling reactions with good diastereoselective ratios of 8.6/1 (3j) and 7.3/1 (3k) which might find utility in the syntheses of Lipid A or other phosphosaccharides.

Derivatization and mimicking of natural glycosyl phosphates emerge as attractive tools to elucidate molecular mechanism of glycosyltransferases and discover novel therapeutic reagents. Herein, a panel of fluorine-substituted α-GPs (3l-3o) were readily assembled via gold(I)-catalyzed glycosylation approach. Notably, the highly α-selective outcomes are in stark contrast to the reported results of fluorine-directed glycosylation with alcohol acceptors.

Reaction scope of acceptors. After determining the generality of various glycosyl donors which glycosylated with phosphoric acid 2a, we explored the possibility of extension to more complex phosphate nucleophiles. Thus, a set of structurally diverse acceptors of phosphoric acid glycosyl esters were readily prepared through a straightforward route of phosphorylation of alcohol and subsequent debenzylation (see SI), including 6-O-benzoyloxyphosphoryl glucoside 2b and 2c, sterically hindered 4-O-benzoyloxyphosphoryl glucoside 2d and galactoside 2e, and 3-O-benzoyloxyphosphoryl glucoside 2f outfitted with labile groups of TBS and benzylidene, and serinyl phosphate 2g (Fig. 4). The carbohydrates widely distributed in natural GPSs were selected as glycosyl donors (glucose (Glc, 1a), galactose (Gal, 1e), mannose (Man, 1f), rhamnose (Rha, 1h), 2-N₃-2-deoxyglucose (GlcN₃, 1j), 2-N₃-2-deoxygalactose (GalN₃, 1k)), which led to twenty-seven bis-glycosyl benzylphosphonates. For convenience of characterization, the phosphorus chirality was eliminated by hydrogenolysis of benzyl phosphates (4a-4za), which simultaneously resulted in reduction of N₃ (4t-4z, 4za, 4e, 4j, 4o). In detail, by using the protocol of glycosylation and...
subsequent anomerization, condensation of Glc donor (1a) and all five acceptors (2b-2f) delivered the corresponding GPSs (4a-4e) in highly diastereoselective manners. The donors of Gal (1e), Man (1f) and Rha (1h) with highly anomeric effect produced GPSs (4f-4s) in invariably high α-selectivities. Although azido substituted substrates of GlcN3 and GalN3 are resistant to epimerization and display weaker α-configured bias, good results were attained with consistent stereoselectivities (3j-3l), and ratios were determined by crude 31P NMR. In red are the formed glycosidic bonds. In blue are the acceptors of phosphoric acids and the phosphate moieties in the products.

Reaction scope of large donors. The successful glycosylation-epimerization process with mono glucosyl donor encouraged us to evaluate large glucosyl donors (one disaccharide donor and one trisaccharide donor) with a non-participating group at 2-O position (Fig. 5). As shown in Fig. 5, while the glycosyl phosphoesters (4zc, 4zd) with less hindered environment around the motif of glucosyl phosphate possessed good selectivity, higher steric hindrance had a detrimental effect on the α/β selectivity (4ze (2.8/1), 4zf (4.6/1), 4zg (1.1/1)).

Global deprotection reactions. Although the prepared glycosyl phosphotriesters are rather labile toward acid, the corresponding anions readily prepared through hydrogenolysis exhibit remarkable inertness toward acid. Thus, the deprotection sequence for these glycosyl phosphotriesters could be carried out through a two-step protocol: removal of benzyl group of benzyl phosphate and global deprotection of other protecting groups (Fig. 6). The phosphotriester 3a and 3e were hydrogenated in the presence of Et3N to 2-O position (Fig. 5). As shown in Fig. 5, while the glycosyl phosphoesters (4zc, 4zd) with less hindered environment around the motif of glucosyl phosphate possessed good selectivity, higher steric hindrance had a detrimental effect on the α/β selectivity (4ze (2.8/1), 4zf (4.6/1), 4zg (1.1/1)).

Global deprotection reactions. Although the prepared glycosyl phosphotriesters are rather labile toward acid, the corresponding anions readily prepared through hydrogenolysis exhibit remarkable inertness toward acid. Thus, the deprotection sequence for these glycosyl phosphotriesters could be carried out through a two-step protocol: removal of benzyl group of benzyl phosphate and global deprotection of other protecting groups (Fig. 6). The phosphotriester 3a and 3e were hydrogenated in the presence of Et3N to
produce quantitatively intermediate compounds of glycosyl phosphonoester, which were then subjected to global deprotection of all other benzyl groups even in the presence of acidic HCOOH to afford cleanly the product 5 and 6. Similarly, the glycosyl phosphodiester 4c were directly deprotected under the acidic hydrogenation condition to furnish 7 in excellent yield (90%). For the benzoyl protected 4d, one additional step of deacetylation by using hydrazine after hydrogenation reaction was required to release the bis-glycosyl phosphoester 8 in high yield (89%).

One-pot glycosylation. While one-pot glycosylation protocol emerges as versatile strategy to synthesize complex oligo/poly-saccharides of which the units are tethered by acetal linkages, Fig. 4 The reaction scope of various acceptors of phosphoric acids.

- **4a** (59%, > 20/1)
- **4b** (57%, 12/1) (45%, > 20/1)
- **4c** (56%, 13/1) (41%, 18/1)
- **4d** (59%, 13/1) (39%, > 20/1)
- **4e** (53%, 18/1)
- **4k** (60%, > 20/1)
- **4l** (65%, > 20/1)
- **4m** (60%, > 20/1)
- **4n** (62%, > 20/1)
- **4o** (64%, > 20/1)
- **4r** (58%, > 20/1)
- **4s** (54%, > 20/1)
- **4v** (65%, 8.6/1)
- **4w** (66%, 3.7/1)
- **4za** (66%, 8.1/1) (40%, α/β > 20/1)
- **5a** (66%, α/β > 20/1) (40%, α/β > 20/1)
this strategy is not applicable to the assembly of conventionally synthesized bis-glycosyl phosphodiester which incorporate reactive functionality of phosphate anion. Gratifyingly, bis-glycosyl benzyl phosphotriesters readily prepared in our system could serve as attractive substrates for one-pot glycosylation, and described in Fig. 7 is an example, in which linker-tethered 9 was assembled in one pot via gold(I)-catalyzed glycosylation reaction and a follow-up orthogonal coupling reaction promoted by NIS and TMSOTf. The chirality of phosphorus atom can be eliminated by converting OBn to O^-, generating a single stereomer (10, 97%) derived from phosphosaccharide of *Leishmania donovani*.

Iterative elongation. Finally, the utility of this gold(I)-catalyzed one-step approach to synthesis of GPSs was further illustrated by iterative elongation of phosphomannosyl fragments from *Hansenula capsulata* (Fig. 8). First, condensation of donor 1q and

Fig. 5 The epimerization-glycosylation reactions with large glycosyl donors. \(^a\)Yields of α/β mixtures (α/β mixtures were not separable), and α/β ratios were determined by \(^{31}\text{P} \) NMR. Bn: benzyl. Bz: benzoyl. In red are the formed glycosidic bonds. In blue are the acceptors of phosphoric acids and the phosphate moieties in the products.

Fig. 6 Global deprotection of armed glycosyl phosphoesters. \(^a\)Yields of isolated products. Bn: benzyl. Bz: benzoyl.

Fig. 7 One-pot synthesis of GPS 9. NIS: N-iodosuccinimide. Tol: tolyl. Lev: levulinoyl. Bn: benzyl. Bz: benzoyl. TMSOTf: trimethylsilyl trifluoromethanesulfonate. In red are the formed glycosidic bonds. In blue is the phosphate moiety in product.
acceptor 2i furnished the desired phosphotriester 4zh. Because 4zh was resistant to preactivation by using p-TolSCl/AgOTf or BSP/Tf2O which led to only 30% yield and armed donor with benzyl groups was prone to give cyclized byproduct (e.g., 3p), SPh was converted to ortho-alkynylbenzoate as leaving group via two steps. Next, condensation of 11 and 2i generated a trisaccharide 12 consisting of two phosphotriester functionalities in 47% yield based on donor 11 (1.5 equiv.), which was subsequently converted to trisaccharide donor 13 in a procedure similar to that for 11. As a late-stage chemical modification on this trisaccharide, a third glycosylation reaction between donor 13 and 3-azidopropanol was performed to install a linker with the
two present phosphotriesters intact. Finally, the resulting trisaccharide was globally deprotected under mild conditions to afford an amino-linker tethered trisaccharide diphasphate 14.

Mechanistic studies. To probe the role of Ph$_3$PAuNTf$_2$ in the epimerization reaction, the epimerization process to enrich the α-β ratio was monitored at elevated temperature (60 °C) by HPLC. As depicted in Fig. 9, the ratio of α/β increased along with the time under the catalysis of Ph$_3$PAuNTf$_2$ to give the α/β ratio of 12/1 in approximately 3 h (Fig. 9a). Further prolonging the epimerization time can improve the α/β ratio to 18/1 (entry 2, Fig. 9b). Interestingly, in the presence of sterically hindered base (2,6-di-tert-butyl-4-methylpyridine) which is supposed to not coordinate the catalyst probably acted as an acid reservoir which can slowly generate acid through possible disproportionation reaction to generate the real specie to trigger the epimerization process, and the gold(I) cation itself, or the H$_2$O in the reaction system could promote the epimerization process.

In conclusion, we have developed a highly efficient and stereoselective approach to the synthesis of GPSs by employing gold(I)-catalyzed glycosylation of phosphoric acid acceptors. The efficiency of this protocol was demonstrated by its universal application in preparing more than 45 complex GPSs, one-pot synthesis of linker-tethered GPS from Leishmania donovani, and an effective preparation of trisaccharide diphasphates from Hansena capsule via iterative glycosylation. Because of its exceptionally broad substrate scope, high α-selectivity and inertness of phosphotriester toward chemical manipulations in comparison to phosphodiester, this strategy will offer new opportunities to create complex phosphosaccharides and install diverse phosphosaccharides on bioactive molecules.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary information file, including experimental details, characterization data, and NMR spectra of new compounds.

Received: 30 June 2021; Accepted: 10 December 2021; Published online: 20 January 2022

References

1. Oka, N., Sato, K. & Wada, T. Recent progress in the synthesis of glycosyl phosphate derivatives. Trends Glycosci. Glyc. 24, 152–168 (2012).
2. Nikolaev, A. V., Botvinko, I. V. & Ross, A. J. Natural phosphoglycans containing glycosyl phosphate units: structural diversity and chemical synthesis. Carbohydr. Res. 342, 297–344 (2007).
3. Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modification data, and NMR spectra of new compounds. NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28025-0 ARTICLE

4. Ostash, B. & Walker, S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat. Prod. Rep. 27, 1594–1617 (2010).
5. Jennings, J. H., Rosell, K. G. & Carlo, D. J. Structural determination of the capsular polysaccharide of Streptococcus pneumoniae type 19 (W19). Can. J. Chem. 58, 1069–1074 (1980).
6. Thibodeaux, C. J., Melanço, C. E. III & Liu, H.-W. Natural-product sugar biosynthesis and enzymatic glycodevelopment. Angew. Chem. Int. Ed. 47, 9814–9859 (2008).
7. Plante, O. J., Palmaci, E. R., Andrade, R. B. & Seeberger, P. H. Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents. J. Am. Chem. Soc. 123, 9545–9554 (2001).
8. Levi, S. M., Li, Q., Rötheli, A. R. & Jacobsen, E. N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl. Acad. Sci. USA 116, 35–39 (2019).
9. Lu, S.-R., Lai, Y.-H., Chen, J.-H., Liu, C.-Y. & Mong, K.-K. T. Dimethylformamide: an unusual glycosylation modulator. Angew. Chem. Int. Ed. 50, 7315–7320 (2011).
10. Fang, T., Mo, K.-F. & Boons, G.-J. Stereoselective assembly of complex oligosaccharides using ansaallumonium ions as glycosyl donors. J. Am. Chem. Soc. 134, 7545–7552 (2012).
11. Wang, L., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. Reagent controlled stereoselective synthesis of α-Glucans. J. Am. Chem. Soc. 140, 4632–4638 (2018).
12. Yasomane, J. P. & Demchenko, A. V. Effect of remote picolinyl and picolyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 134, 20097–20102 (2012).
13. Le Mai Hoang, K. & Liu, X.-W. The intriguing dual-directing effect of 2-cyanoenyl ether for a highly stereoselective glycosylation reaction. Nat. Commun. 5, 5051 (2014).
14. Benakli, K., Zha, C. & Kerns, R. J. Oxaazolindinone protected 2-amino-2-deoxy-D-glucose derivatives as versatile intermediates in stereoselective oligosaccharide synthesis and the formation of α-linked glycosides. J. Am. Chem. Soc. 123, 9461–9462 (2001).
15. Mensah, E. A. & Nguyen, H. M. Nickel-catalyzed stereoselective formation of α-2-deoxy-2-amino glycosides. J. Am. Chem. Soc. 131, 8778–8780 (2009).
16. Thibodeaux, C. J., Melanço, E. R. & Liu, H.-W. Natural-product sugar biosynthesis and enzymatic glycodevelopment. Angew. Chem. Int. Ed. 47, 9814–9859 (2008).
17. Ohira, S., Yamaguchi, Y., Takahashi, T. & Tanaka, H. The chemoenzymatic O-glycosylation of alcohols in the presence of a phosphate diester and its application to the synthesis of oligomannosylated phosphatidyl inositols. Tetrahedron 71, 6602–6611 (2015).
18. Carreño, P. J., Regberg, T., Swainski, J. & Strömberg, R. Nucleoside hydrogenophenophosphates in oligonucleotide synthesis. Chem. Sci. 5, 25–62 (2016).
19. Westerduijn, P., Veene, G. H., van der Marel, G. A. & van Boom, J. H. Synthesis of the fragment GlcNAcα-(1→P−6)-GlcNAc of the cell wall polymer of Staphylococcus lactis having repeating N-acetyl-D-glucosamine phosphate units. Tetrahedron Lett. 27, 6271–6274 (1986).
20. Westerduijn, P., Veene, G. H., Marugg, J. E., van der Marel, G. A. & van Boom, J. H. An approach to the synthesis of α-L-fucopyranosyl phosphonic mono- and diesters via phosphate intermediates. Tetrahedron Lett. 27, 1211–1214 (1986).
21. Schmidt, R. R., Stump, M. & Michel, J. α- and β-D-glycopyranosyl phosphates from α-D-glucopyranosyltrichloroacetimidates. Tetrahedron Lett. 23, 405–408 (1982).
22. Crich, D. & Picard, S. Highly stereoselective synthesis of α-D-mannopyranosyl phosphoglycals. J. Org. Chem. 74, 9576–9579 (2009).
23. Hanessian, S., Lu, P.-P. & Ishida, H. One-step, stereocontrolled synthesis of glycosyl 1-phosphates, uridine-5′-diphosphogalactose, and uridine-5′-diphosphoglucose from unprotected glycosyl donors. J. Am. Chem. Soc. 120, 13296–13300 (1998).
24. Pale, P. & Whitesides, G. M. Synthesis of glycosyl phosphates using the Fraser-Reid activation. J. Org. Chem. 56, 4547–4549 (1991).
25. Garcia, B. A. & Gid, D. Y. Synthesis of glycosyl-1-phosphates via dehydrative glycosylation. Org. Lett. 2, 2135–2138 (2000).
26. Edgar, L. J., Dasgupta, S. & Mitra, M. Protecting-group-free synthesis of glycosyl 1-phosphates. Org. Lett. 14, 4226–4229 (2012).
27. Plante, O. J., Andrade, R. B. & Seeberger, P. H. Synthesis and use of glycosyl phosphates as glycosyl donors. Org. Lett. 1, 211–214 (1999).
28. Ravid, A., Liu, X., Kovacs, L. & Seeberger, P. H. Synthesis of glycosyl phosphates from 1,2-orthoesters and application to in situ glycosylation reactions. Org. Lett. 8, 1815–1818 (2006).
29. Nielsen, M. M. & Pedersen, C. M. Catalytic glycosylations in oligosaccharide Synthesis. Chem. Rev. 118, 8285–8358 (2018).
30. Li, W. & Yu, B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev. 47, 7954–7984 (2018).
31. Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkenes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).
Fürstner, A. & Davies, P. W. Catalytic carbophilic activation: catalysis by platinum and gold α acids. Angew. Chem. Int. Ed. 46, 3410–3449 (2007).

Li, Y., Yang, Y. & Yu, B. An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph₃P/AutoTi. Tetrahedron Lett. 49, 3604–3608 (2008).

Yu, B. Gold(I)-catalyzed glycosylation with glycosyl α-alkynylbenzoates as donors. Acc. Chem. Res. 51, 507–516 (2018).

Tvarožek, L. & Behta, T. In Adv. Carbohydr. Chem. Biochem. Vol. 47 (eds R. Stuart Tipson & Derek Horton) 45-123 (Academic Press, 1989).

Schumann, B. et al. Nucleophilic-directed stereocontrol over glycosylations using geminal-difluorinated nucleophiles. Angew. Chem. Int. Ed. 55, 14431–14434 (2016).

Huang, X., Huang, L., Wang, H. & Ye, X.-S. Iterative one-pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 43, 5221–5224 (2004).

Slättégård, R. et al. Synthesis of structures corresponding to the capsular polysaccharide of Neisseria meningitidis group A. Org. Biomol. Chem. 3, 3782–3787 (2005).

Zhu, Y. & Yu, B. Characterization of the isochromen-4-yl-gold(I) intermediate in the gold(I)-catalyzed glycosidation of glycosyl ortho-alkynylbenzoates and enhancement of the catalytic efficiency thereof. Angew. Chem. Int. Ed. 50, 8329–8332 (2011).

Matthijs, G. et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13 in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat. Genet. 16, 88–92 (1997).

Hollaus, R. et al. Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential. Chem. Eur. J. 21, 4102–4114 (2015).

Schengrund, C.-L. & Kováč, M. & Moravcová, J. Synthesis of 2-fluoro and 4-fluoro galactopyranosylphosphonate analogues of UDP-Gal. Carbohydr. Res. 360, 31–39 (2012).

Jambal, L., Kefurt, K., Hlaváčková, M. & Moravcová, J. Synthesis of 2-fluoro and 4-fluoro galactopyranosylphosphonate analogues of UDP-Gal. Carbohydr. Res. 360, 31–39 (2012).

Bucher, C. & Gilmour, R. Fluorine-directed glycosylation. Angew. Chem. Int. Ed. 49, 8724–8728 (2010).

Majumdar, D., Elyazed, G. A., Buskas, T. & Boons, G.-J. Synthesis of proteophosphoglycans of Leishmania major and Leishmania mexicana. J. Org. Chem. 70, 1691–1697 (2005).

Zhang, Z. et al. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–738 (1999).

Wu, Y., Xiong, D.-C., Chen, C.-C., Wang, Y.-S. & Ye, X.-S. Total synthesis of Mycobacterial Arabino-oligoligosaccharide containing 92 monosaccharide units. Nat. Commun. 8, 14851 (2017).

Zhang, Y. et al. Modular synthesis of nona-decasaccharide motif from Psidium guajava polysaccharides: orthogonal one-pot glycosylation strategy. Angew. Chem. Int. Ed. 59, 7576–7584 (2020).

Nikolaev, A. V., Ivanova, I. A. & Shihaye, V. N. The stepwise synthesis of oligo (glycosyl phosphates) via glycosyl hydrogenphosphonates. The chemical synthesis of oligomeric fragments from Hansenula capsulata Y-1842 exophosphomannan and from Escherichia coli K51 capsular antigen. Carbohydr. Res. 242, 91–107 (1993).

Crich, D. & Smith, M. F-Benzensulfonyl pipidendine/trifluoroethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc. 123, 9015–9020 (2001).

Kumar, M., Jasinski, J., Hammond, G. B. & Xu, B. Alkyne/alkene/allene-induced disproportionation of cationic gold(I) catalyst. Chem. Eur. J. 20, 3113–3119 (2014).