$V - A$ Constraint on a Product of R-parity Violating Couplings

Kingman Cheung and Ren-Jie Zhang

Department of Physics, University of California at Davis, Davis, CA 95616

(December, 1997)

Abstract

We study in the framework of R-parity violating supersymmetric theories the effect of R-parity violation due to the operator $L_i L_j E_k$ on the $(V - A)$ structure of the muon decay. The precisely measured muon decay parameters can constrain a product of R-parity violating couplings: $|\lambda_{232}\lambda_{131}| < 0.022$ at the 90% CL, which is complementary to the previous limits obtained by the $e-\mu$ universality in τ decay.
PACS numbers: 13.35.Bv, 11.30.Fs, 12.60.Jv, 12.60.-i
I. INTRODUCTION

R-parity violation is introduced into the minimal supersymmetric standard model through additional terms in the superpotential:

$$W_{R} = \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \lambda''_{ijk} U_i D_j D_k + \mu_i L_i H_u,$$ \hspace{1cm} (1)

where L, E, Q, U, D, H_u are the superfields, i, j, k are family indices, and λ, λ' and λ'' are the R-parity violating (RPV) couplings. The last term $\mu_i L_i H_u$ can be rotated away by a redefinition of the lepton field. (We neglect the effects of a possible soft-breaking bilinear term.) The operators LLE and LQD violate lepton number while UDD violates baryon number. A prominent constraint coming from proton decay requires either λ' or λ'' to be zero. Moreover, these RPV couplings would violate a number of existing data. The present limits on these RPV couplings are listed in recent reviews [1], where the limits are obtained by assuming only one nonzero coupling at a time. Constraints on products of RPV couplings have also been calculated for proton stability, lepton-family-number violating processes, and flavor-changing neutral current (FCNC) processes [2].

In this note, we are primarily interested in the λLLE term. We point out that the precise measurement on the $(V-A)$ structure in μ decay puts an additional constraint on a product of λs, namely $\lambda_{131}\lambda_{232}$. As will be shown later, using the $e-\mu$ universality in τ decay to put limits on λ_{33k} might run into the danger if several couplings coexist; in particular, when $|\lambda_{13k}|$ and $|\lambda_{23k}|$ are approximately equal their contributions to R_τ cancel. Thus, in this case the $e-\mu$ universality cannot effectively constrain the λs; however, the constraint on the product of the two λs, $\lambda_{131}\lambda_{232}$, from the $(V-A)$ structure in μ decay remains useful. Note that all previous constraints on products of RPV couplings come from FCNC processes or lepton-family-number violating processes; here the $(V-A)$ structure in μ decay does not involve any of these.

The $(V-A)$ structure has been tested in a number of processes, e.g., π decay, τ decay, μ decay, of which the μ decay was measured to a very high precision. In the following, we will
use the µ decay parameters to constrain the product $|\lambda_{131}\lambda_{232}|$. We find that our new limit is complementary to the previous limit obtained using the e-µ universality in the τ decay: $\tau^- \rightarrow e^-\bar{\nu}_e\nu_\tau$, $\tau^- \rightarrow \mu^-\bar{\nu}_\mu\nu_\tau$. We shall first describe the general structure of the µ decay. Next, we shall derive the effect of the RPV couplings and obtain the upper limit on the λs. Finally, we comment on the constraint coming from the high energy process $e^+e^- \rightarrow \mu^+\mu^-$ and conclude.

II. MUON DECAY PARAMETERS

The muon decay and the inverse muon decay at low energy can be conveniently parameterized in terms of amplitudes $g^\gamma_{e\mu}$ and the Fermi Constant G_F, using the matrix element

$$\frac{4G_F}{\sqrt{2}} \sum_{\gamma=V,S,T} \sum_{\epsilon,\mu=L,R} g^\gamma_{e\mu} \langle \bar{e}_\epsilon | \Gamma^\gamma | (\nu_e)_n \rangle \langle (\nu_\mu)_m | \Gamma | \mu_\mu \rangle ,$$

where $\gamma = V, S, T$ denotes a vector, scalar, or tensor interaction, ϵ, μ denote the chirality of the electron and muon, respectively, and the chiralities n and m of ν_e and ν_μ are determined by γ, ϵ, μ. In the standard model, the $(V - A)$ requires $g^V_{LL} = 1$ and others equal zero. The rate, energy and angular distributions, and polarization can be affected by these $g^\gamma_{e\mu}$. In the rest frame of the muon, the energy and angular distribution is given by the Michel spectrum:

$$\frac{d^2\Gamma}{dx d\cos \theta} \sim \left\{ 3(1 - x) + \frac{2\rho}{3} (4x - 3) \mp \xi \cos \theta \left[1 - x + \frac{2\delta}{x} (4x - 3) \right] \right\} x^2 ,$$

where ρ, ξ, δ are functions of $g^\gamma_{e\mu}$. The measurements of ρ, ξ, δ can constrain various combinations of $g^\gamma_{e\mu}$. In order to determine the amplitudes $g^\gamma_{e\mu}$ uniquely, Fetscher et al. introduced four probabilities $Q_{e\mu}(\epsilon, \mu = L, R)$ for the decay of a µ-handed muon into a ϵ-handed electron:

$$Q_{e\mu} = \frac{1}{4} \left| g^S_{e\mu} \right|^2 + \left| g^V_{e\mu} \right|^2 + 3(1 - \delta_{e\mu}) \left| g^T_{e\mu} \right|^2 .$$
The Q_{LL} is constrained to be very close to unity, while others very close to zero. The current limits on $g_{\gamma \epsilon,\mu}$ are summarized in the Particle Data Book [4]. The ones that are relevant to our analysis are

$$|g^{S}_{RR}| < 0.066, \quad |g^{V}_{LL}| > 0.96$$

at the 90% CL.

III. EFFECT OF R PARITY VIOLATION

With the term $\frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k$ in the superpotential the Lagrangian is given by

$$\mathcal{L} = \lambda_{ijk} \left\{ \overline{e}^c_k \overline{E}_k \right\} \nu_i L + \overline{e}^c_k \nu_i L_j \overline{\nu}_j L - \overline{e}^c_k \nu_i L_{i} \overline{\nu}_j L_j \right\} + h.c.$$ (6)

There are two possible diagrams contributing to the muon decay. The first one is via an exchange of $\overline{\tau}_L$ and the amplitude is given by

$$\mathcal{L}_1 = -\frac{\lambda_{131} \lambda^*_{232}}{m_{\tau_L}^2} \left(\overline{\nu}_{\epsilon L} \right) \left(\nu_{\mu L} \mu_R \right).$$ (7)

This amplitude contributes to g^{S}_{RR} as follows

$$\delta \left(g^{S}_{RR} \right) = -\frac{\sqrt{2}}{4G_F} \frac{\lambda_{131} \lambda^*_{232}}{m_{\tau_L}^2}.$$

Note that this contribution has a different helicity structure as the SM $(V - A)$ amplitude and, therefore, the experimental limit on the $(V - A)$ structure can effectively constrain the product $|\lambda_{131} \lambda_{232}|$. Using Eqs. (6) and (7) we obtain at the 90% CL, for $m_{\tau_L} = 100$ GeV,

$$|\lambda_{131} \lambda_{232}| < 0.022.$$ (9)

The second one is via an exchange of $\overline{e}_R, \overline{\mu}_R$, or $\overline{\tau}_R$. The amplitude is given by

$$\mathcal{L}_2 = -\sum_{k=1}^{3} \frac{\left| \lambda_{12k} \right|^2}{2m_{\ell_k}^2} \left(\overline{e}_L \gamma^\mu \nu_{\epsilon L} \right) \left(\overline{\nu}_{\mu L} \gamma_\mu \mu_L \right).$$ (10)

This amplitude contributes to g^{V}_{LL}.
\[\delta \left(g_{LL}^V \right) = - \frac{\sqrt{2}}{4G_F} \sum_{k=1}^{3} \frac{|\lambda_{12k}|^2}{2m_{\tilde{\ell}_k R}^2}. \]

(11)

This \(\mathcal{L}_2 \) has the same helicity structure as the SM \((V - A)\) amplitude and, therefore, the \((V - A)\) structure cannot constrain \(|\lambda_{12k}|^2\), but the total rate should be able to do so (similar to the analysis in [3].) However, it was shown [8] that the \(e - \mu - \tau\) universality is also able to constrain \(|\lambda_{12k}|^2\) to a very small value.

Recall that the previous constraints on \(\lambda_{13k}\) and \(\lambda_{23k}\) came from the \(e - \mu\) universality in \(\tau\) decay:

\[R_{\tau} \equiv \frac{\Gamma(\tau \to e\bar{\nu})}{\Gamma(\tau \to \mu\bar{\nu})} = R_{\tau}^{SM} \left[1 + \frac{1}{2\sqrt{2}G_F} \sum_{k=1}^{3} \left(\frac{|\lambda_{13k}|^2}{m_{\tilde{\ell}_k R}^2} - \frac{|\lambda_{23k}|^2}{m_{\tilde{\ell}_k R}^2} \right) \right]. \]

(12)

The constraint on each \(\lambda_{3k}\) was obtained from the experimental value of \(R_{\tau} = 1.0006 \pm 0.0103\) assuming only one \(\lambda\) nonzero at a time. The limit was \(|\lambda_{3k}| < 0.076\) at 90\% CL for \(m_{\tilde{\ell}_k R} = 100\) GeV and \(i = 1, 2\) and \(k = 1, 2, 3\). The danger of this limit can be seen from Eq. (12). When \(|\lambda_{13k}| \approx |\lambda_{23k}|\) their contributions to \(R_{\tau}\) cancel and, therefore, the limits on \(|\lambda_{3k}|\) are no longer valid. Physically, if the partial widths of the tau into muon and electron increased with the same amount, the \(e - \mu\) universality in the tau decay could not constrain the \(\lambda_s\).

The importance of our result in Eq. (9) can be appreciated immediately. Even in the scenario where \(|\lambda_{131}| \approx |\lambda_{232}|\) (the \(e - \mu\) universality in tau decay is not useful anymore) our result in Eq. (9) can constrain them effectively to be \(|\lambda_{131}| = |\lambda_{232}| < 0.15\) at 90\% CL. Of course, when \(\lambda_{131}\) is very different from \(\lambda_{232}\) the limit from \(e - \mu\) universality is more restrictive.

Actually, we can combine our result in Eq. (9), the limit from \(e - \mu\) universality in \(\tau\) decay, and the limit from \(e - \mu - \tau\) universality in \(\Gamma(\tau \to \mu\bar{\nu})/\Gamma(\mu \to e\bar{\nu})\) (which

\[\text{In the reviews [1] only the 1\sigma results are given. In order for a direct comparison with our result we convert their limits to 1.65\sigma level, i.e., 90\% CL. In the PDB only 90\% CL upper bounds on } g_{1\mu}^{\gamma*} \text{ are listed.} \]
constrains $\sum[|\lambda_{12k}|^2 - |\lambda_{23k}|^2])$, as well as other constraints coming from the lepton-family-number violating processes and FCNC processes [2], e.g., $\tau \rightarrow 3e$ constrains $|\lambda_{121}\lambda_{123}|, |\lambda_{131}\lambda_{133}|, |\lambda_{231}\lambda_{121}|$, $\mu \rightarrow 3e$ constrains $|\lambda_{121}\lambda_{122}|, |\lambda_{131}\lambda_{132}|, |\lambda_{231}\lambda_{131}|$, etc. These constraints on products of two different λs are complementary to the constraints obtained by the $e-\mu-\tau$ universality. In principle, we can perform a combined statistical analysis using all these constraints to find a global set of constraints on all these RPV couplings with correlations.

IV. DISCUSSIONS

There will be future experiments on measuring the muon decay parameters with better sensitivity. A planned experiment TRIUMF-E614 [8] is scheduled to run and will have a sensitivity of ρ, δ, ξ down to 10^{-4}. Such sensitivity on ρ, δ, ξ will be able to pin $|g_{RR}^S|$ down to 10^{-2}, which would then give the limit on $|\lambda_{131}| = |\lambda_{232}|$:

$$|\lambda_{131}| = |\lambda_{232}| \lesssim 0.06 .$$

(13)

The product $|\lambda_{131}\lambda_{232}|$ can also be constrained by high energy experiments at e^+e^- and $\mu^+\mu^-$ colliders [9–11]. The Lagrangian of Eq. (6) also contributes to the process $e^+e^- \rightarrow \mu^+\mu^-$ via s-channel exchanges of $\tilde{\nu}_{\tau L}$ and $\tilde{\nu}_{\tau L}^*$ (depending on the coupling, there could also be t-channel diagrams). The inclusion of scalar tau-sneutrino exchanges will affect both the cross section and the forward-backward asymmetry in muon-pair production. The change in cross section due to s-channel resonance production is given by

$$\delta\sigma = \frac{|\lambda_{131}\lambda_{232}|^2}{32\pi} \frac{s}{(s - m_{\tilde{\nu}_{\tau L}}^2)^2 + \Gamma_{\tilde{\nu}_{\tau L}}^2 m_{\tilde{\nu}_{\tau L}}^2} .$$

(14)

If the product of λs is of an appreciable size and the mass of the scalar tau-sneutrino is below the energy of the machine, the LEP2 and the future NLC experiments should be able to see a prominent peak by scanning over the center-of-mass energy (LEP2 has effectively done that due to the initial state radiation); otherwise, the null result should be able to constrain
the product of λs. If the mass of the scalar tau-sneutrino is above the center-of-mass energy of the machine, only the effect from the tail of the scalar tau-sneutrino can be seen and, therefore, the limit on λs is much weaker. The L3 collaboration has recently published the 90% CL upper limit on $|\lambda_{131}| = |\lambda_{232}| \lesssim 0.04$ for $m_{\tilde{\nu}_L} = 110 - 170$ GeV by measuring the cross section and the forward-backward asymmetry in muon-pair production \cite{10}. The future experiment at the NLC can probe heavier scalar tau-sneutrino with $|\lambda_{131}\lambda_{232}|$ down to 10^{-4} level, assuming $\Gamma_{\tilde{\nu}_L}/m_{\tilde{\nu}_L} \sim 1\%$ and an integrated luminosity of ~ 50 fb$^{-1}$.

To conclude we have obtained a limit on $|\lambda_{131}\lambda_{232}| < 0.022$ (or $|\lambda_{131}| = |\lambda_{232}| < 0.15$) at the 90% CL from the $(V - A)$ measurement in the muon decay. Although this limit is not as good as the previous limits $|\lambda_{13k}|, |\lambda_{23k}| < 0.076$ for $m_{\tilde{\nu}_{kR}} = 100$ GeV at 90% CL obtained by the $e-\mu$ universality in τ decay, our limit is, however, very useful for the case when $|\lambda_{131}| \approx |\lambda_{232}|$, in which case the $e-\mu$ universality is satisfied no matter how large the λs are. It should be noted that the scenario of several coexisting R-parity violating couplings is more complicated than the case previously examined in the literature, and one should extract as much information as possible from the existing experiments.

This research was supported in part by the U.S. Department of Energy under Grant No. DE-FG03-91ER40674.
REFERENCES

[1] H. Dreiner, hep-ph/9707435; G. Bhattacharyya, hep-ph/9709395.

[2] See, for example, G. Bhattacharyya and A. Raychaudhuri, hep-ph/9712245, and references therein.

[3] W. Fetscher, H.-J. Gerber and K.F. Johnson, Phys. Lett. B173, 102 (1986).

[4] Particle Data Group, Phys. Rev. D54, 1 (1996).

[5] K. Hagiwara and S. Matsumoto, hep-ph/9712260.

[6] V. Barger, G.F. Giudice and T. Han, Phys. Rev. D40, 2987 (1989).

[7] D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C70, 561 (1996).

[8] TRIUMF-E614 Experiment: Precision Measurements of the Michel Parameters in Muon Decay; see http://www.phys.ualberta.ca/~rodning/E614 for more information.

[9] J. Kalinowski, R. Ruckl, H. Spiesberger and P.M. Zerwas, Phys. Lett. B406, 314 (1997).

[10] M. Acciarri et al. (L3 Collaboration), CERN-PPE/97-99 (July 1997).

[11] J.L. Feng, J.F. Gunion and T. Han, hep-ph/9711414.