Introduction

All living things are exposed to various stresses throughout their life span, including sunlight, radiation, natural and chemical compounds, viruses, and other stimuli that cause damage to cellular DNA. Protection of chromosomes from various damages is critical for organisms, because aging is thought to be caused by accumulation of damage at the chromosomes [1].

It has been shown that telomere shortening accelerates cellular senescence, and that protection of telomeres from DNA replication process and/or DNA damage is necessary to keep chromosomal integrity [2,3]. Therefore, induction of telomere-maintenance mechanisms should be applied for anti-aging therapy. One such target for anti-aging therapy might be LMNA, in which a loss of function mutation is known to cause Hutchison-Gilford progeria syndrome (HGPS) [4]. The LMNA gene encodes lamin A protein, an essential structural component of the nuclear membrane [5]. Telomeres are thought to be heterochromatinic and associate with nuclear matrix membrane via heterochromatin protein 1 (HP1) [6]. Therefore, HGPS could be partly explained by the disruption of telomere maintenance.

Another aspect of aging is that life span of organisms is regulated by the reactive oxygen species (ROS) and energy stresses that are associated with mitochondrial functions [7,8]. Recently, it was shown that telomere dysfunction affects mitochondria, where ROS are mainly generated, via p53-mediated suppression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) [9]. It should also be noted that the tumor suppressor protein p53 regulates mitochondrial functions including respiration and glycolysis [10,11].

Recent studies have shown that the sirtuin (SIRT) protein family, comprising of SIRT1-SIRT7, plays important roles in controlling metabolism and health span [12]. Among these, SIRT1, an NAD+ dependent deacetylating enzyme, has been widely known to act on glucose metabolism by modulating functions of various targets including PGC-1α, FOXO1, p53, HIF1α, UCP2, and other proteins [12]. Growth hormone (GH) resistance and deficiency of GH increase longevity of mice [13], suggesting that the signals induced by the action of GH on IGF-1, which belongs to the insulin signaling system, affect aging of organisms [14]. Moreover, GH does not only regulate IGF-1, but also stimulates secretion of insulin [14]. Genetic studies in C. elegans, Drosophila and mice showed that the insulin signaling system plays important roles in determining life span of the organisms [15]. Considering that mTOR and AMPK are key proteins in the insulin signaling pathways, these lines of evidences strongly suggest that these gene products could be attractive targets for anti-aging therapies [16].

Taken together, the biological factors involved in determination of life span may be categorized into several groups, telomere metabolism, ROS and mitochondrial functions, and insulin signaling system.

Analytical Methods

Our previous studies demonstrated that caloric restriction (CR) mimetic compounds, such as 2-deoxy-D-glucose (2DG) and trans-resveratrol (Rsv) moderately enhance telomerase activity along with induction of WRN gene expression in HeLa S3 cells [17,18]. Luciferase-reporter transfection experiments showed that these CR mimetic compounds up-regulate relative promoter activities of the 5’-upstream regions of human telomere-associated proteins and shelterin-encoding genes when compared with that of the PIF1 gene [19]. The PIF1 encodes a protein containing homology with a Rec D type DNA helicase that negatively regulate telomere length [20,21]. Furthermore, by using these relative values, we observed that β-thujaplicin (hinokitiol) has similar effects on promoter activities of these genes [22]. We also found that not only Rsv, but also pine cone lignin carbohydrate complex (LLC)
and β-thujaplicin up-regulate human SIRT1 promoter activity, these have already been reported to have favorable effects on mammalian cells [22-25]. Thus, we propose that the anti-aging effects of natural and synthetic compounds could be easily screened by the promoter activity ratios of the SIRT1 and telomere-maintenance factor encoding genes normalized with that of the PIF1.

Based on these observations, the formula that indicates telomere-maintenance associated anti-aging effect (TME) of a specific compound A will be given as follows:

\[
TMEA = \frac{1}{k_1 k_2 k_3 \ldots k_N} \sum_{x_1}^{x_N} \frac{\text{gene expression level of gene } x_i}{\text{gene expression level of gene } x_i \text{ in reference}}
\]

Table 1: TME value in HeLa S3 cells.

Compound	Relative TMAE	Reference
Rsv (10 µM)	1.399	[19]
2DG (4 mM)	4.115	[19]
2DG (8 mM)	2.804	[19]
β-thujaplicin (10 µM)	2.078	[22]
Rapamycin (1 µM)	1.256	unpublished

Relative TME = \(\frac{TMEA_{\text{compound}}}{TMEA_{\text{reference}}}\)

Here, each constant was set as \(k_1 k_2 k_3 \ldots k_N = 1\).

Results

At present, constant to \(k_1\) to \(k_N\) is unknown. Therefore, tentatively all constants were set equally at 1. Then TME values of Rsv (10 µM), 2-DG (4 mM and 8 mM), and β-thujaplicin (10 µM) were estimated from the previous results [19,22]. Table 1 shows the TME values of these CR mimetic compounds are over 1.00 in HeLa S3 cells. The result suggests that this estimation could be useful to predict the efficacy of anti-aging drugs, when applied to the analysis of promoter activities for telomere maintenance factor encoding genes. It is widely known that p53-mediated cellular responses are generated from its cellular levels and phosphorylation, which are mainly post-transcriptionally regulated. However, we propose here that evaluation of the TME value in HeLa S3 cells.

Discussion

Rapamycin and metformin, which are known to inhibit mTOR and activate AMPK, respectively, could be lead compounds that might retard aging [26]. Although these two drugs are regarded as CR mimetics, the molecular mechanism, through which they extend life span, is thought to be different from that of Rsv, 2DG and LLC.

other mechanisms that determine senescence and aging in a telomere/telomerase-independent manner.

References

1. Vig J (2007) Genome instability and accelerated aging. In: Aging of the Genome: The Dual Role of DNA in Life and Death, Oxford University Press, NY: 151-180.
2. Blackburn E (2006) Chapter 1: A history of telomere biology. In: Telomeres (2nd edn), Cold Spring Harbor Laboratory Press, NY: 1-19.
3. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11: 171-181.
4. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423: 293-298.
5. Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in aging. Nat Rev Mol Cell Biol 8: 692-702.
6. Sharma GG, Hwang KK, Pandita RK, Gupta A, Dhar S, et al. (2003) Human heterochromatin protein 1 isoforms HP1a(Hsa1p) and HP1b(Hsbeta) interfere with histone-teleomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 23: 8363-8376.
7. Benz CC, You C (2008) Ageing, oxidative stress and cancer: paradigms in parallel. Nat Rev Cancer 8: 875-879.
8. Robb EL, Page MM, Stuart JA (2009) Mitochondria, cellular stress resistance, somatic cell deletion and lifespan. Curr Aging Sci 2: 12-27.
9. Salehi E, Colia S, Lisaia M, Moslehi J, Muller PL, et al. (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470: 359-365.
10. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, et al. (2006) p53 regulates mitochondrial respiration. Science 312: 1650-1653.
11. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, et al. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107-120.
12. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13: 225-238.
13. Russel SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8: 681-691.
14. Bartke A (2011) Growth hormone, insulin and aging: The benefits of endocrine defects. Exp Gerontol 46: 108-111.
15. Kenyon CJ (2010) The genetics of aging. Nature 464: 504-512.
16. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and aging. Nat Rev Mol Cell Biol 12: 21–35.
17. Zhou B, Ikejima T, Watanabe T, Ikawoshi K, Idei Y, et al. (2009) The effect of 2-deoxy-D-glucose on Werner syndrome RecQ helicase gene. FEBS Lett 583: 1331-1336.
18. Uchiumi F, Watanabe T, Hasegawa S, Hoshio T, Higami Y, et al. (2011) The effect of resveratrol on the Werner syndrome RecQ helicase gene and telomerase activity. Curr Aging Sci 4: 1-7.
19. Uchiumi F, Oyama T, Ozaki K, Tanuma S (2011) Chapter 29: Characterization of 5-flanking regions of various human telomere maintenance factor-encoding genes. In: DNA Repair (Kruman I, Ed.), InTech-Open Access Publisher, Inc, Rijeka, Croatia: 585-596.
20. Zhang DH, Zhou B, Huang Y, Xu LX, Zhou JQ (2006) The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res 34: 1393-1404.
21. Chang M, Luke B, Kraft C, Li Z, Peter M, et al. (2009) Telomerase is essential to telomere and telomerase in human cells [28]. To present, there is no report that shows the effect of metformin on telomeres. These observations imply that extension of life span is not defined solely by telomere and telomerase regulation. Although we are proposing that the balance between telomere elongation/maintenance and its shortening-inducing signals will be useful to find anti-aging compounds, there should be...
24. Harada H, Sakagami H, Konno K, Sato T, Osawa N, et al. (1988) Induction of antimicrobial activity by antitumor substances from pine cone extract of *Pinus parviflora* Sieb. et Zucc. Anticancer Res 8: 581-587.

25. Sakagami H, Kawazoe Y, Oh-hara T, Kitajima K, Inoue Y, et al. (1991) Stimulation of human peripheral blood polymorphonuclear cell iodination by lignin-related substances. J Leukoc Biol 49: 277-282.

26. Mouchiroud L, Molin L, Dallière N, Solari F (2010) Life span extension by resveratrol, rapamycin, and metformin: The promise of dietary restriction mimetics for an healthy aging. Biofactors 36: 377-382.

27. Ungar L, Harari Y, Toren A, Kupiec M (2011) Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 21: 2115-2120.

28. Chebel A, Rouault JP, Urbanowicz I, Baseggio L, Chien WW, et al. (2009) Transcriptional activation of *hTERT*, the human telomerase reverse transcriptase, by nuclear factor of activated T cells. J Biol Chem 284: 35725-35734.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:

- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:

- 200 Open Access Journals
- 15,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review, and publication processing
- Indexing at PubMed (portant), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: www.omicsonline.org/submission