Introduction.—One hundred years after the discovery of cosmic rays by Victor Hess in 1912 [1], the sources of the cosmic radiation are still not conclusively established. Theoretical arguments developed to explain extensive observations of cosmic rays and Galactic radiations favor the hypothesis that cosmic-ray acceleration takes place at supernova remnant (SNR) shocks [2]. A crucial prediction that follows from this hypothesis is that cosmic-ray sources will glow in the light of γ rays made by the decay of neutral pions created as secondaries in collisions between cosmic-ray protons and ions with ambient matter. The $p + p \rightarrow \pi^0 \rightarrow 2\gamma$ spectrum formed by isotropic cosmic rays interacting with particles at rest is hard and symmetric about $\gamma = m_{\pi^0}/2 = 67.5$ MeV in a log-log representation of photon number spectrum vs. energy [3].

The AGILE and Fermi γ-ray telescopes have recently provided preliminary evidence for a $\pi^0 \rightarrow 2\gamma$ feature in the spectra of the W44, W51C, and IC 443 SNRs [4]. Whether this solves the cosmic-ray origin problem depends on disentangling leptonic and hadronic emission signatures, including multi-zone effects [5], and finding out if the nonthermal particles found in middle-aged SNRs as inferred from their spectral maps have the properties expected from the sources of the cosmic rays.

Supporting evidence that cosmic rays are accelerated at shocks comes from the diffuse Galactic γ-ray emission. High-latitude Galactic gas separate from γ-ray point sources, dust and molecular gas provides a “clean” target for γ-ray production from cosmic-ray interactions. Because the cosmic-ray electron and positron fluxes are $\gtrsim 20$ times smaller than the cosmic-ray proton flux at GeV energies [6], the π^0-decay γ-ray flux strongly dominates the electron bremsstrahlung and Compton fluxes. The diffuse Galactic γ-ray spectrum can be deconvolved to give the cosmic-ray proton spectrum, given accurate nuclear γ-ray production physics. Data from the Fermi Large Area Telescope (LAT) offer an opportunity to derive the interstellar cosmic-ray spectra unaffected by Solar modulation [3, 8].

This problem is revisited in order to address a recent claim [5] that fits to the diffuse Galactic γ-ray emission of Gould belt clouds imply a break at $T_{k,br} \approx 9^{+2}_{-3}$ GeV in the cosmic-ray proton spectrum that represents a new energy scale. Note that a break in the kinetic-energy representation of the proton spectrum has been reported before [8]. In this Letter we show that when uncertainties in nuclear production models are taken into account, a power-law momentum spectrum favored by cosmic-ray acceleration theory provides an acceptable fit to Fermi-LAT γ-ray data of diffuse Galactic gas, and produces a break in a kinetic energy representation at a few GeV from elementary kinematics. Comparison of theoretical γ-ray spectra with data supports a nonrelativistic shock origin of the cosmic radiation, consistent with the SNR hypothesis.

Production spectrum of γ-rays from cosmic-ray collisions.—The γ-ray production spectrum divided by the hydrogen density n_H is given, in units of (s-GeV)$^{-1}$, by

$$ F_{pH}(\gamma) / n_H = 4\pi k \int_{\gamma_{p,\text{min}}}^{\gamma_{\text{max}}} d\gamma_p j_p(T_p) \frac{d\sigma_{pp\rightarrow\gamma\rightarrow2\gamma}(T_p, \gamma_p)}{d\gamma_p}. $$

(1)

Here and below, $j_p(T_p)$ is the cosmic-ray proton intensity in units of cosmic-ray protons (cm2-s-sr-GeV)$^{-1}$, and k, the nuclear enhancement factor, corrects for the composition of nuclei heavier than hydrogen in the cosmic rays and target gas [10]. The term $d\sigma_{pp\rightarrow\gamma\rightarrow2\gamma}(T_p, \gamma_p)/d\gamma_p$ is the differential cross section for the production of a photon with energy γ_p by a proton with kinetic energy T_p, in GeV, and momentum p in GeV/c.

The much studied and favored model for cosmic-ray acceleration is the first-order Fermi mechanism, which was proposed in the late 1970s [11]. Test particles gain energies by diffusing back and forth across a shock front while convecting downstream. The downstream steady-state distribution function is given by $f(p) \propto p^{-3r/(r-1)}$, where p is the momentum and r is the compression ratio. Consequently, the particle momentum spectrum $p^2 f(p) \propto p^{-A}$, where $A = (2 + r)/(r - 1)$ is the well-known test-particle spectral index that approaches 2 (equal energy per decade) in the limit of a strong nonrelativistic shock with $r \rightarrow 4$ [12]. After injection into the interstellar medium with $A \approx 2.1 - 2.2$, characteristic of SNR shocks, cosmic-ray protons and ions are transported from the galactic disk into the halo by rigidity-
dependent escape [13], which softens their spectrum by \(\delta \approx 0.5 - 0.6 \) units, leaving a steady-state cosmic-ray spectrum \(dN/dp \propto p^{-\delta} \), where \(\delta = \Lambda + \delta \approx 2.7 - 2.8 \). Thus we consider a cosmic-ray flux

\[
j_{sh}(T_p) = \beta(T_p) \left(\frac{dN}{dT_p} \right) \propto \beta(T_p) \left| \frac{d}{dT_p} \left(\frac{dN}{dp} \right) \propto p(T_p)^{-s} \right. \tag{2}\]

Gamma-ray production from cosmic-ray/matter interactions.—Secondary nuclear production in proton-proton collisions is described by isobar formation at energies near threshold \(T_p = 0.28 \text{ GeV} \) [2], and scaling models at high-energies \(T_p \gg m_p \). Uncertainties remain in the production spectra at \(T_p \approx \text{few GeV} \), where most of the secondary \(\gamma \)-ray energy is made in cosmic-ray collisions.

Fig. 1 compares two models for \(\gamma \)-ray production from p-p collisions using an empirical fit to the demodulated cosmic-ray proton spectrum given by eq. (3).

\[
j_{dem}(T_p) = 2.2(T_p + m_p)^{-2.75} \tag{3}\]

[15] The model of Dermer [15] describes low-energy resonance production in terms of the \(\Delta(1232) \) resonance through Stecker’s model [3] and high-energy production by the scaling model of Stephens and Badhwar [16], with the two regimes linearly connected between 3 and 7 GeV. The model of Kamae et al. [17] is a parametric representation of simulation programs, and includes contributions from the \(\Delta(1232) \) isobar and \(N(1600) \) resonance cluster, non-scaling effects, scaling violations, and diffractive processes. This model is represented by functional forms that are convenient for astrophysical calculations.

Fig. 1 shows that the two models agree within 20% at \(\gamma_e > 100 \text{ MeV} \), but display larger differences at \(\gamma_e \lesssim 10 \text{ MeV} \) where the \(\gamma \)-ray production is energetically insignificant. Both models are in general agreement in the high-energy asymptotic regime, with the Kamae et al. model giving fluxes larger by \(\approx 13\% \) due to the inclusion of diffractive processes. The spectral peak in a \(\nu F_{\nu} \) representation occurs at \(500 \text{ MeV} - 1 \text{ GeV} \) for this proton spectrum. The most significant discrepancy in the two models is by \(\approx 30\% \) at the pion production peak near \(67.5 \text{ MeV} \) [18]. Because of the different approaches of the models, and little improvement in nuclear data bases from laboratory studies between model development, this comparison indicates that our knowledge of the \(\gamma \)-ray production spectrum in p-p collisions is uncertain, at worst, by 30% near the pion-production peak, and is better than 15% at \(\gamma_e \gtrsim 200 \text{ MeV} \).

 Fits to Fermi-LAT \(\gamma \)-ray data—The Fermi-LAT data [7] of the diffuse galactic \(\gamma \) radiation are fit using a shock spectrum given by Eq. (3). Guided by the high-energy asymptote of Eq. (3), we let

\[
j_{CR}(T_p) = 2.2 p^{-s}, \tag{4}\]

with \(s = 2.75 \). The data shown in Fig. 2 are from regions in the third quadrant, with Galactic longitude from \(200^\circ \) to \(260^\circ \), and galactic latitudes \(|b| \) ranging from \(22^\circ \) to...
60°. There are no molecular clouds in these regions, the ionized hydrogen column density is small with respect to the column density of neutral hydrogen, and γ-ray emission from point sources is removed. The linear increase of the emissivity as traced by 21 cm line observations allows residual galactic and extragalactic γ radiation to be subtracted, leaving only the γ-ray emission resulting collisions of cosmic rays with neutral gas, allowing for an absolute normalization to be derived for the emissivity. As can be seen, the shock-acceleration spectrum gives an acceptable fit to the data, and restricts the value of k to be ≳ 1.8. Given that there must be some residual cosmic-ray electron-bremsstrahlung and Compton radiations at these energies, the restriction on k could be larger.

The spectrum in Fig. 3 from the analysis of Fermi-LAT data, as cited in Ref. [20] report systematic errors for different experiments. The shock-acceleration spectrum is given by Eq. (4), with s = 2.75 and s = 2.85, a power-law kinetic energy flux $j \propto T^{−2.85}$, and a flux $j \propto \beta T^{−2.85}$ are shown, in addition to the demodulated cosmic-ray proton spectrum, eq. (5), and the best fit spectrum of Ref. [5]. Solar modulation accounts for the difference between the measured and theoretical cosmic-ray proton fluxes at $T ≲ 10$ GeV/nuc. Papers cited in [20] report systematic errors for different experiments.

This cosmic-ray proton flux is compared in Fig. 4 with a shocked spectrum given by Eq. (4) with $s = 2.85$ with two power-law kinetic energy spectra (one multiplied by β), and the spectrum, eq. (5), assumed to represent the demodulated local cosmic-ray proton spectrum. The best fit of the functional form used by Neronov et al. (2012) is also plotted, and is in accord with the shock spectrum, Eq. (4), when allowance is made for the large uncertainties in derived parameters. Indeed, the allowed spectrum would be further limited by the Fermi-LAT data of Fig. 2 unless $k ≳ 1.2$. The reduced χ^2 to determine goodness of fit should take into account uncertainties in nuclear production, and firm conclusions about a break depend on improved cross sections.

Summary.—Fig. 4 compares theoretical and empirical local interstellar spectrum of cosmic-ray protons with recent measurements of the fluxes of cosmic-ray protons, He, C, Fe and electrons. The small fluxes of the heavier cosmic rays and electrons imply that γ-ray emission from these channels make a minor, but non-negligible contri-
bution to the γ-ray flux.

The favored model for the origin of cosmic rays is non-relativistic shock acceleration by SNRs in the Galaxy. The simplest possible shock-acceleration model with proton flux $\propto p^{-2}$ gives an adequate fit to Fermi-LAT data of high Galactic latitude gas and clouds, and is in accord with expectations of a SNR origin for the cosmic rays. The use of a shock-spectrum for the cosmic-ray flux allows a range of calculations to be made that depend on knowing the low-energy cosmic-ray spectrum p^{+2}. The combination of a power-law momentum injection spectrum and the observationally similar local interstellar spectrum potentially puts constraints on propagation models that have a large effect on the primary spectra, such as those involving strong reacceleration p^{+2}. If cosmic rays are indeed accelerated by SNR shocks, then the $\pi^0 \rightarrow 2\gamma$ feature from shock-accelerated cosmic rays should be observed in the spectra of individual SNRs. Indications for such a feature are found in a few middle-aged SNRs [4], but final confirmation of cosmic-ray sources will require detailed spectral calculations involving both shock-accelerated protons and leptons [22], including radiative losses and escape, and comparison with improving Fermi-LAT data resulting from increasing exposure and development of better analysis tools.

I thank A. Atoyan, J. D. Finke, J. Hewitt, R. J. Murphy, and S. Razzaque for discussions, and Professor T. Kamae for supplying his secondary nuclear production code. I would also like to thank A. Strong for many interesting and useful comments, and I. Moskalenko and T. Porter for pertinent remarks. This work is supported by the Office of Naval Research and NASA through the Fermi Guest Investigator program.

[1] For a historical review of the discovery of cosmic rays, see P. Carlson and A. de Angelis, European Physical Journal H, 35, 309 (2011).
[2] V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (New York: Macmillan, 1964). S. Hayakawa, Cosmic Ray Physics (New York: Wiley-Interscience, 1969) (New York: Wiley-Interscience, 1969). V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, and V. S. Ptuskin, Astrophysics of Cosmic Rays (Amsterdam: North-Holland, 1990), edited by V.L. Ginzburg.
[3] F. W. Stecker, Cosmic Gamma Rays (Baltimore, MD: Mono Book Co., 1971).
[4] AGILE results for W44 are reported by A. Giuliani et al., Astrophys. J. Lett. 742, L30 (2011), and Fermi LAT results for W44, W51C, and IC 443 are given in the papers by A. A. Abdo, et al., Science, 327, 1103 (2010), A. A. Abdo et al., Astrophys. J. Lett. 706, L1 (2009), and A. A. Abdo et al., Astrophys. J. 712, 459 (2010), respectively.
[5] For the physical requirement of multi-zone models in SNR spectral fitting, and the resultant ambiguity to discriminate leptonic and hadronic models, see A. Atoyan and C. D. Dermer, Astrophys. J. Lett. 749, L26 (2012).
[6] I. V. Moskalenko and A. W. Strong, Astrophys. J. 493, 694 (1998); see also A. W. Strong, I. V. Moskalenko and O. Reimer, Astrophys. J. 613, 962 (2004).
[7] A. A. Abdo et al., Astrophys. J. 703, 1249 (2009).
[8] A. Neronov, D. V. Semikoz, and A. M. Taylor, Phys. Rev. Lett., 108, 051105 (2012).
[9] A. W. Strong, I. V. Moskalenko, and O. Reimer, Astrophys. J., 537, 763 (2000), and GALPROP models since then. The break in the kinetic energy spectrum was also found by T. Delahaye, A. Fiasson, M. Pohl, and P. Salati, Astron. Astrophys., 531, A37 (2011).
[10] As discussed in p^{+2}, this factor ranges from 1.45 – 2.0, with a value of 1.84 favored in the work of M. Mori, Astrophys. J., 478, 225 (1997).
[11] A. R. Bell, Monthly Not. Roy. Astron. Soc., 182, 147 (1978); A. R. Bell, Monthly Not. Roy. Astron. Soc., 182, 443 (1978); R. D. Blandford, and J. P. Ostriker, Astrophys. J. Lett. 221, L29 (1978); G. F. Krymskii, Akademiia Nauk SSSR Doklady, 234, 1306 (1977).
[12] For reviews of nonrelativistic shock acceleration, see R. Blandford and D. Eichler, Phys. Rept., 154, 1 (1987), L. O. Drury, Rpts. Prog. Physics 46, 973 (1983), and J. G. Kirk, 1994, Saas-Fee Advanced Course: Plasma Astrophysics, 24, 225 (New York: Springer, 1994). Applications to γ-ray studies of SNRs are reviewed by S. P. Reynolds, Ann. Rev. Astron. Astrophys. 46, 89 (2008) and D. Caprioli, J. Cosmology Astropar. Phys. 5, 26 (2011).
[13] Cosmic-ray convective and diffusive escape from the Galaxy in terms of rigidity (momentum per unit charge) to explain the ratio of isotopes in the cosmic-rays was considered, e.g., by F. C. Jones, Astrophys. J. 229, 747 (1979).
[14] J. A. Simpson, Ann. Rev. Nucl. Particle Sci. 33, 323 (1983).
[15] C. D. Dermer, Astron. Astrophys. 157, 223 (1986). This model is developed more fully in the papers by R. J. Murphy, C. D. Dermer, and R. Ramaty, Astrophys. J. Suppl., 63, 721 (1987) and R. C. Berrington and C. D. Dermer, Astrophys. J. 594, 709 (2003). See also C. Pfrommer and T. A. Enßlin, Astron. Astrophys. 413, 17 (2004; erratum: C. Pfrommer and T. A. Enßlin, Astron. Astrophys. 426, 777 (2004).
[16] S. A. Stephens and G. D. Badhwar, Astrophys. Space Sci., 76, 213 (1981).
[17] The parametrization of the model of Kamae et al. is given by T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006; erratum in T. Kamae et al., Astrophys. J. 662, 779, 2007), and is based on the treatment of diffractive effects and scaling violations in the paper by T. Kamae, T. Abe, and T. Koi, Astrophys. J. 620, 244 (2005). See also N. Karlsson and T. Kamae, Astrophys. J., 674, 278 (2008).
[18] For other secondary production models, see I. Cholis, C. Tavakoli, C. Evoli, L. Maccione, and P. Ullio, J. Cosmology Astropar. Phys., 5, 4 (2012) arXiv:1106.5073, using Pythia, C.-Y. Huang, S.-E. Park, M. Pohl, and
C. D. Daniels, Astropar. Physics, 27, 429 (2007), who use the Kamae et al. model at low energies, and H. Sato, T. Shibata, and R. Yamazaki, arXiv:1205.2145 (2012), who compare with LHC data.

[19] A. A. Abdo et al., Phys. Rev. Lett. 104, 101101 (2010).

[20] Ab09: A. A. Abdo, et al., Phys. Rev. Lett., 102, 181101 (2009); Ac10: M. Ackermann, et al., Phys. Rev. D, 82, 092004 (2010); Ad11: O. Adriani, et al., Phys. Rev. Lett., 106, 201101 (2011); Ar11: O. Adriani, et al., Science, 332, 69 (2011); Pa06: A. D. Panov, et al., arXiv:astro-ph/0612377 (2006); Ah08: F. Aharonian, et al., Phys. Rev. Lett., 101, 261104 (2008); Ah09: F. Aharonian, et al., Astron. Astophys., 508, 561 (2009). See http://www.mpe.mpg.de/~aws/propagate.html for cosmic-ray data and resources.

[21] For positron production in SNRs, see Y. Ohira, K. Kohri, and N. Kawanaka, Monthly Not. Roy. Astron. Soc. 421, L102 (2012). For ionization of gas by low-energy cosmic rays, see B. B. Nath, N. Gupta, and P. L. Biermann, 2012, arXiv:1204.4239 who also note that a momentum spectrum is theoretically preferred. See R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter, Astrophys. J. Suppl. 40, 487 (1979), for the Galactic γ-ray line spectrum induced by low-energy cosmic-ray interactions.

[22] J. Fang and L. Zhang, Monthly Not. Roy. Astron. Soc. 384, 1119 (2008); Y. Ohira, K. Murase, and R. Yamazaki, Monthly Not. Roy. Astron. Soc. 410, 1577 (2011).

Note added in proof: A recent paper by Blasi, Amato, and Serpico [Phys. Rev. Lett. 109, 061101 (2012)] explains a supposed low-energy break in a power-law injection momentum spectrum as a result of advective effects on cosmic-ray propagation (compare Ref. [13]). M. Kachelriess and S. Ostapchenko [arXiv:1206.4705] claim to find deviations from a cosmic-ray power-law momentum spectrum at low energy, but their treatment is susceptible to some of the same criticisms as presented here.