Tick-borne pathogens and the vector potential of ticks in China

Zhijun Yu, Hui Wang, Tianhong Wang, Wenying Sun, Xiaolong Yang and Jingze Liu*

Abstract
Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. They are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals. Of the 117 described species in the Chinese tick fauna, 60 are known to transmit one or more diseases: 36 species isolated within China and 24 species isolated outside China. Moreover, 38 of these species carry multiple pathogens, indicating the potentially vast role of these vectors in transmitting pathogens. Spotted fever is the most common tick-borne disease, and is carried by at least 27 tick species, with Lyme disease and human granulocytic anaplasmosis ranked as the second and third most widespread tick-borne diseases, carried by 13 and 10 species, respectively. Such knowledge provides us with clues for the identification of tick-associated pathogens and suggests ideas for the control of tick-borne diseases in China. However, the numbers of tick-associated pathogens and tick-borne diseases in China are probably underestimated because of the complex distribution and great diversity of tick species in this country.

Keywords: Ticks, Tick-borne pathogens, Vector potential, China

Review
Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates, including humans, and they are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals [1]. They transmit a variety of pathogens of medical and veterinary interest, including viruses, bacteria, rickettsiae, helminthes, and protozoans, all of which are able to cause damage to livestock production and human health. The global threat of tick-borne diseases is increasing, with new pathogens identified continuously [2]. There are an estimated 899 species of ticks belonging to three families: Argasidae, Ixodidae, and Nuttalliellidae (represented by a monotypic species restricted to South Africa) [3].

In China, 117 species of the following genera have been identified: Argas (seven species), Carios (four species), and Ornithodoros (two species) in the family Argasidae; and Amblyomma (eight species), Anomalohimalaya (two species), Dermacentor (twelve species), Haemaphysalis (forty four species), Hyalomma (six species), Ixodes (twenty four species), and Rhipicephalus (eight species) in the family Ixodidae [4]. Some of these species carry or transmit one or more infectious pathogens, resulting in severe zoonotic diseases. The most commonly observed human tick-borne diseases in China are reportedly Lyme disease, tick-borne encephalitis, Crimean-Congo hemorrhagic fever, Q fever, tularemia, and North-Asia tick-borne spotted fever [5]. Epidemiologically important tick-borne diseases, such as Human Granulocytic Anaplasmosis (HGA) and severe Fever with Thrombocytopenia Syndrome (FLTS), have also emerged in recent years. The characterization of a new bunyavirus (associated with fever, thrombocytopenia, and leukopenia syndrome) in 2010 has prompted greater attention to ticks and tick-borne diseases throughout China. However, tick-associated pathogens and diseases are still underestimated because of the complex distribution and the large diversity of tick species in China.

Although the rapid development of molecular techniques has greatly advanced the identification of emerging tick pathogens, continuous research is required to fully comprehend the diversity of tick-borne pathogens and to completely identify the vector roles of ticks in...
In this study, with regard to the Chinese tick fauna, we reviewed the tick-associated pathogenic microorganisms that have been identified world-wide, and evaluated the potential roles of the ticks as vectors throughout China. This will extend the identification of tick-associated pathogens and suggest better strategies for the control of tick-borne diseases in China.

Role of argasid ticks as vectors in China and their associated tick-borne pathogens

In China, there are 13 species of argasid ticks, belonging to three genera: Argas (seven species), Carious (four species), and Ornithodoros (two species) [4]. The majority of these are nidicolous, usually residing in the burrows, caves, or nests of their hosts. Among all the argasids found in China, four Argas species, two Carious species, and two Ornithodoros species are competent to transmit or cause human disease (Table 1) [6-17]. Among these eight tick species, four (A. japonicas, A. persicus, O. tartakovskyi, and O. tholozani) have been confirmed as causing host illnesses in China. A case of human dermatitis was recorded in 1986 after a bite by A. japonicas, but no pathogen has been identified from this tick species in China [6]. The tick A. persicus mainly infests poultry and carries the most diverse array of pathogens in the family Agaridae, including Borrelia anserine, Kyasanur Forest disease virus, and Wolbachia persica n. sp. However, only B. anserine, known to cause avian spirochetosis, has been confirmed in China [7]. Lake Clarendon virus was isolated from A. robertsi; Quaranfil virus and Gissar virus were identified in A. vulgaris; and “Issyk-Kul” virus has been identified in C. vespertilionis. No virus has been detected in ticks collected in China. The symptoms or diseases caused by these viruses are still unclear [11-13,16], and the vector roles of these ticks in China remain unknown.

Ixodid ticks in China, their roles as vectors, and associated tick-borne pathogens

There are 104 species of ixodid ticks in China in seven genera: Amblyomma (eight species), Anomalousalaya (two species), Dermacentor (twelve species), Haemaphysalis (forty four species), Hyalomma (six species), Ixodes (twenty four species), and Rhipicephalus (eight species) [4]. Of these, 52 species from six genera have been shown to carry or transmit pathogenic microorganisms: Ixodes (seven species), Amblyomma (three species), Dermacentor (nine species), Haemaphysalis (twenty one species), Hyalomma (five species), and Rhipicephalus (seven species) (Table 2) [18-114]. Of these 52 species, 32 occur in China (Table 2). Tick-borne spotted fever is the most commonly detected disease, carried by at least 27 tick species. Lyme disease and human granulocytic anaplasmosis are the second and third most widespread tick-borne diseases, transmitted by at least 13 and 10 tick species, respectively (Table 2). Eight tick species are vectors for human granulocytic ehrlichiosis, seven tick species carry tick-borne encephalitis and babesiosis, and six species transmit hemorrhagic fever. The ixodid ticks that act as vectors of Babesia are usually coinfected with more than one Babesia species. These ticks include I. persulceatus, D. nuttalli, R. microplus, and R. haemaphysaloides, which are often infected by Babesia bigemina and Ba. bovis (Table 2).

Table 1 Tick-borne pathogens and the vector role of argasid ticks distributed in China

Tick species	Pathogens	Diseases	References
Argas			
A. japonicas	Unidentified	Dermatitis	[6]
A. persicus	Borrelia anserine; Kyasanur Forest disease virus^a; Wolbachia persica, n. sp.^a	Avian spirochetosis; Kyasanur forest disease; Paralysis	[7-10]
A. robertsi	Lake Clarendon virus^a	unknown	[11]
A. vulgaris	Quaranfil virus^a; Gissar virus^a	unknown	[12,13]
Carious			
C. capensis	West Nile Virus^{a,b}; Borrelia, Caxiella, and Rickettsia^{a,b}	West Nile fever	[14,15]
C. vespertilionis	“Issyk-Kul” virus^a	unknown	[16]
Ornithodorous			
O. tartakovskyi	B. latishevsky	Tick-borne relapsing fever	[17]
O. tholozani	B. persica	Tick-borne relapsing fever	[17]

^aThese pathogenic microorganisms have been recorded outside China.
^bThese pathogenic species have been detected within ticks or have been shown to be transmitted by ticks under controlled experimental conditions.
Table 2: Tick-borne pathogens and the role of ixodid ticks as vectors within China

Tick species	Pathogens	Diseases	References
Ixodes			
I. persulcatus	B. burgdorferi; human granulocytic Ehrlichia (HGE); Spotted Fever Group Rickettsia (SFGR); Anaplasma phagocytophila; tick-borne Encephalitis virus (TBEV); Babesia bigemina, B. bovis	Lyme disease; Ehrlichiosis; spotted fever; human granulocytic anaplasmosis; babesiosis	[18-25]
I. kazakstani	B. burgdorferi	Lyme disease	[26]
I. nipponensis	B. afzelii; TBEV; B. burgdorferi	Lyme disease; tick-borne encephalitis;	[27-28]
I. ovatus	Ehrlichia; TBEV; R. japonica	Ehrlichiosis; tick-borne encephalitis; Oriental spotted fever	[29-31]
I. granulatus	B. burgdorferi	Lyme disease	[32]
I. auticaurus	B. burgdorferi	Lyme disease	[33]
I. sinensis	R. monacensis; Ehrlichia, Bartonella, and Borrelia; B. garinii	Lyme disease; Mediterranean Spotted Fever	[34]
Amblyomma			
Am. geoemydae	Reptile-associated Borrelia spp.; relapsing fever Borrelia sp.	Relapsing fever	[35]
Am. helvolum	SFGR; Rickettsia sp.	Spotted fever	[36,37]
Am. testudinum	R. tamariscæ sp. nov.; Ehrlichia chaffeensis;	Human monocytic ehrlichiosis	[38,39]
Haemaphysalis			
H. longicornis	New bunyavirus; B. burgdorferi; A. phagocytophila; SFGR; Babesia sp.; Huaiyangshan virus; Borrelia, Bartonella, Anaplasma, and Ehrlichia; Theileria ulenbergi	Severe fever with thrombocytopenia syndrome; Lyme disease; human granulocytic anaplasmosis; spotted fever; babesiosis; Huaiyangshan hemorrhagic fever	[40-47]
H. concinna	B. garinii; HGE; SFGR; TBEV	Human granulocytic Ehrlichiosis	[23,48-50]
H. punctata	B. burgdorferi sensu stricto; Ba. major and T. orientalis; Crimean-Congo hemorrhagic fever virus; Rickettsia; R. aeschlimannii; An. phagocytophilum; Flavivirus	Lyme disease; Babesiosis; tick-borne encephalitis; Crimean-Congo hemorrhagic fever	[3,51-55]
H. cornigera	R. helionigriensis; Ehrlichia;	Spotted fever	[31]
H. erinacei	SFGR	Spotted fever	[50]
H. flavescens	Ehrlichia; T. japonica	Ehrlichiosis; Japanese Spotted fever	[57,58]
H. formosensis	R. asiatica sp. nov.; Kyasanur Forest disease virus; R. japonica; An. phagocytophilum	Spotted fever; Kyasanur Forest disease;	[31,59-61]
H. hystrix	An. phagocytophilum; R. japonica	Human granulocytic anaplasmosis; Japanese Spotted fever	[31,62]
H. japonica	B. garinii; TBEV	Lyme disease; tick-borne encephalitis	[63,64]
H. kitaokai	SFGR	Spotted Fever	[65]
H. lanyongi	Anaplasma spp.; Rickettsia;	Human granulocytic ehrlichiosis; Rickettsioses	[66,67]
H. bispinosa	B. burgdorferi; T. sergenti; B. bigemina	Lyme disease; Piromplasmosis	[32,68,69]
H. megaspinosa	A. bovis and An. phagocytophilum; SFGR	Human granulocytic anaplasmosis; spotted fever;	[65,70]
H. ornithophila	SFGR	Spotted Fever	[71]
H. phasiana	TBEV	Tick-borne encephalitis	[64]
H. qinghaiensis	T. ulenbergi; An. phagocytophilum; Theileria spp;	Human granulocytic anaplasmosis; theileriosis	[72-74]
H. spinigera	Flavivirus;	Kyasanur forest disease	[3]
H. tibetensis	GRD spirochetes	Unknown	[75]
H. wellingtoni	Kyasanur forest disease virus; Eubacterium sp. strain Hw124 and Eubacterium sp. strain Hw191;	Kyasanur forest disease;	[66,76]
H. campanulata	Coxella burnetii	Q fever	[77]
H. yeni	R. sibirica	North-Asia Spotted fever	[78]
Table 2 Tick-borne pathogens and the role of ixodid ticks as vectors within China (Continued)

Hyalomma	Trypanosoma theileri-like flagellates\(^a\), Crimean-Congo haemorrhagic fever virus\(^b\); T. annulata	Crimean-Congo haemorrhagic fever	[79-81]
Hy. asiaticum	Hemorhagic fever virus\(^b\); R. mongolotimonae\(^b\); T. annulata; Rickettsiae	Hemorrhagic fever; theileriosis	[81-84]
Hy. scapulare	T. annulata	Theileriosis	[81]
Hy. rufipes	T. annulata\(^a\)	Theileriosis	[85]
Hy. dammini	Kadas virus\(^b\)	Unknown	[86]

Dermacentor

D. nuttalli	B. burgdorferi\(^b\); SFGR\(^b\); HGE; Ba. caballi and Ba. equi\(^a\); Rickettsiae	Lyme disease; North Asia Spotted Fever; human granulocytic ehrlichiosis; babesiosis	[23,84,87-89]
D. reticulatus	R. helvetica\(^a\); R. slovaca\(^b\); An. phagocytophilum\(^a\); Babesia	Unexplained febrile illness; Spotless rickettsiosis; human granulocytic anaplasmosis; babesiosis	[90-93]
D. silvarum	HGE\(^b\); E. chaffeensis\(^b\); TBEV; R. raoultii sp. nov.\(^b\); R. heliograssensis\(^a\), B. silvarum\(^a\)	Human granulocytic ehrlichiosis; Encephalitis; Spotted Fever,	[23,94-98]
D. auratus	SFGR\(^b\)	Spotted Fever	[99]
D. everestianus	An. ovis\(^b\); R. raoultii-like bacteria\(^b\); Bacillus tularensis\(^b\)	Spotted Fever; Tularemia	[100-102]
D. marginatus	B. burgdorferi\(^b\); R. slovaca\(^b\)	Lyme disease; tick-borne lymphadenopathy	[51,103]
D. niveus	SFGR\(^b\); An. ovis\(^b\); Bacillus tularensis\(^b\)	Spotted Fever; Tularemia	[100,102,104]
D. sinticus	SFGR\(^b\)	Spotted fever	[105]
D. taiwanensis	R. japonica\(^b\),	Japanese Spotted fever	[106]

Rhipicephalus

Rh. microplus	A. marginale\(^b\), Ba. bigemina, Ba. bovis, T. equi; E. chaffeensis\(^b\); TBEV\(^b\); C. burnetii\(^b\)	Babesiosis; theileriosis; Encephalitis; Q fever	[2,107,108]
Rh. bursa	An. marginale\(^b\); An. ovis\(^b\); An. phagocytophilum\(^b\); Ba. bigemina\(^b\), Ba. ovis\(^b\), Bhanja virus\(^b\); Crimean-Congo haemorrhagic fever virus\(^b\)	Human granulocytic anaplasmosis; babesiosis; Crimean-Congo haemorrhagic fever	[3,109]
Rh. pumilio	SFGR\(^b\); R. conorii\(^b\); An. phagocytophilum\(^b\)	Spotted fever; human granulocytic anaplasmosis	[110,111]
Rh. rossicus	West Nile virus\(^b\)	West Nile fever	[112]
Rh. sanguineus	Ba. vogeli\(^b\); E. canis\(^b\), R. conorii\(^b\), R. massiliae\(^b\), R. rickettsia\(^b\)	Babesiosis; Mediterranean spotted fever	[3,113]
Rh. turanicus	R. conorii\(^b\), R. massiliae\(^b\)	Mediterranean spotted fever	[114]
Rh. haemaphysaloides	SFGR\(^b\); Ba. bigemina\(^b\), B. bovis\(^b\)	Spotted fever; Babesiosis	[109]

\(^a\)These pathogenic microorganisms have been recorded outside China.
\(^b\)These pathogenic species have been detected within ticks or have been shown to be transmitted by ticks under controlled experimental conditions.

Genus Ixodes

Ixodes persulcatus is undoubtedly the most notorious tick within China, and is known to carry a wide range of microorganisms, including *Borrelia, Ehrlichia, Rickettsia, Anaplasmata*, and *Babesia* [18-25]. Lyme disease is mainly transmitted by *Ixodes* ticks, and *Borrelia* spp. have been isolated from or detected in *I. persulcatus, I. kazakstani, I. nipponensis, I. granulatus, I. acutatatus*, and *I. sinesis* in China [18,26,27,32-34]. Tick-borne encephalitis virus is carried by *I. persulcatus, I. nipponensis*, and *I. oattus* [24,28,30], whereas spotted fever can only be transmitted by *I. persulcatus and I. oattus* [20,31]. Among these *Ixodes* species, only *I. kazakstani* and *I. nipponensis* have not yet been shown to carry Lyme disease in China, because *B. burgdorferi* has not been found in *I. kazakstani* collected in China [26], and *B. afzelii* has not been detected in *I. nipponensis* distributed in China [28]. Although their pathogens have not been confirmed in China, the vector roles of these ticks are widely recognized [26,28]. Tick-borne encephalitis virus has not been found in *I. kazakstani* in China [27], whereas *Ehrlichia* and *R. japonica* have only been found in the species *I. oattus*, distributed outside China [29,31].

Genus Amblyomma (Am.)

Amblyomma geomydæ [35], *Am. helvolum* [36,37], and *Am. testudinarium* [38,39], collected from Japan, Thailand, and China, are known to carry pathogen DNA from
Borrelia, Rickettsia, and Ehrlichia, respectively. However, although all these species are found in China, E. chaffeensis, detected in Am. testudinarium, is the only bacterial species that has been found in specimens collected within China [38].

Genus Haemaphysalis
The majority of ixodid ticks found in China belong to the genus Haemaphysalis. Globally, 21 of the 44 species found within China are known to be associated with pathogens. Of these 21 species, 11 (H. longicornis, H. concinna, H. punctata, H. flava, H. hystricis, H. japonica, H. bispinosa, H. qinghaiensis, H. tibetensis, H. campanaulata, and H. yeni) have been confirmed as pathogen vectors in China (Table 2) [40-78]. The most commonly detected diseases vectored by this genus of ticks are spotted fever and human granulocytic anaplasmosis, which are transmitted by 11 and six species, respectively. Borrelia is carried by at least five species of this genus, and Babesia by at least four species (Table 2).

The ticks H. longicornis, H. punctata, and H. concinna support the greatest diversity of pathogenic microorganisms, with H. longicornis the major vector of B. burgdorferi, Theileria spp., CoxIELla burnetti, Babesia spp., Anaplasma phagocytophilum, Ehrlichia, Bartonella, spotted-fever-group rickettsiae, Huaiyangshan virus, and the recently discovered New bunyavirus (Table 2), which has caused many deaths in China, Japan, and Korea [40-47]. Haemaphysalis concinna is mainly distributed in northern China, where multiple outbreaks of H. concinna–borne disease have been reported since the early 20th century. These outbreaks have been attributed to a diverse array of pathogens, including B. garinii, human granulocytic Ehrlichia, spotted-fever-group Rickettsiae, and encephalitis viruses [23,48-50]. Haemaphysalis punctata transmits B. burgdorferi sensu stricto, Ba. major, T. orientalis, Crimean–Congo hemorrhagic fever virus, Rickettsia, R. aeschlimannii, An. phagocytophilum, and Flavivirus, resulting in diseases such as Lyme disease, babesiosis, tick-borne encephalitis, and Crimean–Congo hemorrhagic fever [3,51-55]. Haemaphysalis formosensis has been shown to carry pathogen DNA from a number of bacterial species, including R. asiatica sp. nov., Kyasun Forest disease virus, R. japonica, and An. phagocytophilum, but these pathogens have not yet been detected in this tick species within China. Among the pathogenic microorganisms transmitted by Haemaphysalis species, most have been characterized with molecular techniques, and some species have been shown to transmit particular pathogens under controlled experimental conditions (Table 2).

Genus Hyalomma (Hy.)
Five species of Hyalomma are known to harbor pathogenic microorganisms (Table 2) [79-86], and three have been confirmed as vectors within China: Hy. anatolicum, Hy. asiaticum, and Hy. scupense. Hyalomma anatolicum and Hy. asiaticum carry the greatest diversity of pathogens, and each transmits at least three pathogens. Theileria annulata is the most common pathogenic microorganism, and is transmitted by four of the five Hyalomma vector ticks (Hy. anatolicum, Hy. asiaticum, Hy. scupense, and Hy. rufipes) [79,85]. Trypanosoma theileri-like flagellates and Crimean-Congo hemorrhagic fever virus have been detected in Hy. anatolicum outside China, whereas T. annulata was characterized from Hy. asiaticum within China [79-81]. Hemorrhagic fever virus and R. mongolotimonae were detected in Hy. asiaticum in north China [81-83], and Hy. asiaticum is the only tick species that can transmit Rickettsia [84]. Hyalomma dromedarii has been shown to transmit Kadam virus outside China, although the resulting symptoms are still unknown [86].

Genus Dermacentor
Nine of the 12 species of Dermacentor found within China can transmit pathogens, and seven of these species (D. nuttalli, D. silvarum, D. auratus, D. everestianus, D. marginatus, D. niveus, and D. sinicus) are of epidemiological importance in China (Table 2) [23,84-106]. The widely distributed D. nuttalli, D. reticulatus, and D. silvarum carry the largest numbers of different pathogenic microorganisms, and Rickettsiae are the most commonly found bacteria in this genus (Table 2). The causative agent of human granulocytic ehrlichia has been detected in D. silvarum and D. nuttalli within China [23], and Babesia is commonly found in D. nuttalli and D. reticulatus outside China [89]. Borrelia burgdorferi has been found in D. marginatus [51] and D. nuttalli within China [87]; An. ovis and Bacillus tularensis are most commonly found in D. everestianus [100] and D. niveus within China [104]; and An. phagocytophilus is specifically detected in D. reticulatus outside China [92].

Genus Rhipicephalus (Rh.)
In the genus Rhipicephalus, seven tick species are known to harbor pathogenic microorganisms, and five of these species (Rh. microplus, Rh. bursa, Rh. pemilio, Rh. sanguineus, and Rh. haemaphysaloides) are confirmed vectors in China (Table 2) [107-114]. Rhipicephalus microplus and Rh. bursa carry the largest numbers of different pathogens in this genus. Ehrlichia chaffeensis, Bhanja virus, and Crimean–Congo hemorrhagic fever virus have not yet been detected in Rh. microplus or Rh. bursa within China. Babesia is the most common microorganism transmitted by Rh. microplus [2], Rh. bursa, Rh. sanguineus [3], and Rh. haemaphysaloides [109], and various Rickettsia species have been found in Rh. pemilio [110], Rh. sanguineus, Rh. haemaphysaloides, and Rh. turanicus. West Nile virus and Crimean–Congo hemorrhagic fever virus have been
characterized solely in *Rh. rossicus* [112] and *Rh. bursa* [109], respectively, whereas *Ehrlichia* has been found in both *Rh. microplus* [107] and *Rh. sanguineus* [113]. *Anaplasma marginale*, *An. ovis*, and *An. phagocytophilum* can be acquired by *Rh. bursa* [3,113]. Among these bacterial species, no spotted-fever-group *Rickettsia* has been detected in *Rh. purmilum* collected in China; West Nile virus has not been characterized in *Rh. rossicus* within China; *R. conori*, *R. massiliasiae*, and *R. rickettsii* have not been detected in *Rh. sanguineus* in China; and *R. massiliasiae* has not been detected in *Rh. turanicus* within China.

Conclusion

Of the estimated 117 species of ticks in China, 36 have been confirmed to carry or transmit one or more pathogens, and 24 additional species are known to be pathogenic vectors in other countries. Furthermore, 38 species have been shown to carry multiple pathogens, indicating the major roles they play in the spread and transmission of these pathogens. Therefore, the number of pathogens and the vector potential of ticks may still be underestimated, because of the complex distributions and the great diversity of tick species in diverse ecological habitats in China. However, such knowledge will provide clues to the further identification of tick-associated pathogens, especially in epidemic areas with multiple tick species. Much more work is required to better distinguish between ticks that carry potential pathogens and those that are competent to transmit pathogens to a host. Targeted prevention methods will then be more effective in controlling tick-borne diseases.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YJ-Z and LJ-Z conceived and designed the study, drafted the manuscript, and critically revised the manuscript. W H, W T-H, S W-Y and YX-L participated in data collection and helped to revise the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Dr. Alexander Smith from the Department of Biological Sciences at the University of Alberta, Canada for English editing. This work was supported by National Natural Science Foundation of China (31400342, 31272372), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20131303130001), Natural Science Research Programs of Educational Department of Hebei Province (L2012205; L2011813).

Received: 13 October 2014 Accepted: 29 December 2014

Published online: 14 January 2015

References

1. de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshein DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2007;13:6938–46.

2. Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:53–14.

3. Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012;28:47–46.

4. Chen Z, Yang XJ, Bu FJ, Yang XH, Yang XL, Liu JZ. Ticks (Acarina: Ixodoidea: Argasidae, Ixodidae) of China. Exp Appl Acarol. 2010;5:393–404.

5. Wu XB, Na RH, Wei SS, Zhu JS, Peng HJ. Distribution of tick-borne diseases in China. Parasit Vectors. 2013;6:9.

6. Li WX, Du XJ, Zhong DA. Investigation on human dermatitis caused by *Argas japonensis* bedroom. Chin J Parasitol Parasit Dis. 1986;4:77 (in Chinese).

7. Liu K, Ding XY, Chen LY, Mei JJ, Zhai LJ. A case report on the diagnosis of gowing spirochetosis. Jilin Anim Husb Vet Med. 2006;27:42–3 (in Chinese).

8. Singh KR, Govendran MK, Bhat UK. Transmission of Kyaasanur Forest disease virus by soft tick, *Argas persicus* (Ixodoidea: Argasidae). Indian J Med Res. 1971;59:213–8.

9. Rosenstein M. Paralysis in chickens caused by larvae of the poultry tick, *Argas persicus*. Avian Dis. 1976;20:607–9.

10. Suito EC, Weiss E. Isolation of a *Rickettsia*-like microorganism (Walbachia Pensa, N. SP.) from *Argas persicus* (Oken). J Infect Dis. 1961;108:95–106.

11. George TDS, Cibynski DH, Main AJ, McMillan N, Kemp DH. Isolation of a new arbovirus from the tick *Argas robertsi* from a cattle egret (*Bubulcus ibis coromandus*) colony in Australia. Aust J Biol Sci. 1984;37:85–90.

12. Klein JM, Sureau P, Casali J, Pazak N, Kotouri C, Calvo MA. Isolation of *Anaplasma* virus in Iran from ticks *Argas vulgaris* (Argasidae, orbiviruses). Cahiers-ORSTOM Serie Entomologie Medicale et Paratuberculose. 1980;1:201–6.

13. Gordeeva ZE, Kostyukov MA, Kulina AU, Daniyarov OA, Bulchev VP, Nemnova NV, et al. *Gissar virus*—a new virus of the family Bunyaviridae isolated from the argasid tick *Argas vulgaris* Fil. in Tajikistan. Meditsinskaya Parazitologiya i Parasitarnye Boleznii. 1990;6:34–5.

14. Hutcheson HJ, Corham CH, Machain-Williams C, Lororo-Pino MA, James AM, Marlenee NL, et al. Experimental transmission of West Nile virus (*Flaviviridae: Flavivirus*) by *Carassius capensis* ticks from North America. Vector-Borne Zoonotic Dis. 2005;5:293–5.

15. Reeves WJ, Lofitis AD, Sanders F, Spinks MD, Willis W, Denison AM, et al. *Borreli* and *Rickettsia* in *Carassius capensis* (Acantho Argasidae) from a brown pelican (*Pelecanus occidentalis*) rookery in South Carolina, USA. Exp Appl Acarol. 2006;39:321–9.

16. Lovoz DJ, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG, Veseloskaya OV, et al. "Iisyk-Kul" virus, a new arbovirus isolated from bats and Argas (Carios) vectenpontis (Latr., 1802) in the Kirghiz SSR. Arch Virol. 1973;42:207–9.

17. Shao GN. Methods on investigation of the epidemic focus of tick-borne relapsing fever. People’s Mil Sur. 1982;2:17–9 (in Chinese).

18. Cao YX, Zhang XT, Ma J, Zhang YG, Qian JQ, Wei GH. *Borrelia burgdorferi* isolated from *Ixodes persulcatus* in Xinjiang. Endemic Dis Bull. 1988;4:13–5 (in Chinese).

19. Zhang ZQ, Wu YM, Feng L, Wang H, Yu M, Wang Z. Molecular epidemiology investigation on DNA of *Ehrlichia* in ticks in border region. Chin J Epidemiol. 2010;10:41–3 (in Chinese).

20. Tang K, Zuo SY, Zhang YC. Dynamic investigation on the co-infection status of two pathogens in ticks from tourist point in Heilongjiang province. Chin J Epidemiol. 2012;33:508–11 (in Chinese).

21. Fu WM, Ding DW, Li M, Cui ZQ, Zhao W, Cui YM. Preliminary investigation on the *Anaplasm phagocytophilum* infection in the ticks from Port Areas of Heilongjiang Province, China. Acta Parasitol Med Entomol Sin. 2010;17:152–6 (in Chinese).

22. Zhao JX. Epidemiological investigation and prevention research of bovine babesiosis in Turpan. Urumqi: Xinjiang Agriculture University; 2012 (in Chinese).

23. Gao DQ, Cao WC, Zhang XT, Zhao QM, Tong YG, Deng SY. The amplifying methods and application of the 16S rRNA gene of two kinds of human *Ehrlichia* species. Acta Parasitol Med Entomol Sin. 2008;8:175–80 (in Chinese).

24. Yan DC, Li YG, Wang SY, Chen LF, Ren GS, Liu YC. First detection of tick-borne encephalitis virus in *Daxing* aniling forest regions, Inner Mongolia. Inner Mongolia Med J. 1996;7:95–7 (in Chinese).

25. Zhao QM, Cao WC, Zhang XT, Gao DQ, Zhang BH, Luo SF, et al. Detection of *Ehrlichia* in *Ixodes persulcatus* collected from Heilongjiang. Chin J Zoonoses. 2010;17:78–30 (in Chinese).

26. Lane RS, Piesman J, Burgdorfer W. Lyme borreliosis: Relation of its causative agent to its vectors and hosts in North America and Europe. Ann Rev Entomol. 1991;36:587–609.

27. Lee S, Jung K, Lee J, Kim S, Kim J, Wang W, et al. Characterization of *Borrelia afzelii* isolated from *Ixodes nipponensis* and *Apodemus agrarius* in Chungju,
Korea, by PCR-RFLP analyses of ospC gene and rts-rrl (32S) intergenic spacer. Microbiol Immunol. 2002;46:677–83.
28. Kim S, Yun S, Han MG, Lee FY, Lee NY, Jeong YE, et al. Isolation of tick-borne encephalitis viruses from wild rodents, South Korea. Vector-borne Zoonotic Dis. 2008;8:7–14.
29. Shibata SH, Kawahara M, Rikihisa Y, Fujita H, Watanabe Y, Suto C, et al. New Ehrlichia species closely related to *Ehrlichia chaffensis* isolated from ixodes ovatus ticks in Japan. J Clin Microbiol. 2003;41:1331–8.
30. Hou ZL, Huang WL, Bai D, Gong ZD, Lei YM. First characterization of tick-borne encephalitis virus from rodents and insectivores. Virolog Sin. 1992;7:397–403 (in Chinese).
31. Ando S, Kurosawa M, Sakata A, Fujita H, Sakai K, Sekine M, et al. Human Rickettsia heilongjiangensis infection, Japan. Emerg Infect Dis. 2010;16:306–8.
32. Wan KL, Zhang ZF, Dou GL, Hou XX, Wang HY, Zhang JS, et al. Investigation on primary vectors of *Borrelia burgdorferi* in China. Chin J Epidemiol. 1998;19:263–6 (in Chinese).
33. Sun Y, Xu XM. Experimental animal model of Lyme disease. Acta Parasitol Med Entomol Sin. 2001;8:20–6 (in Chinese).
34. Sun Y, Xu XM, Ge FX, Lu BL, Ji ZL. Ability of *Ixodes* sinensis nymphs to transmit *Rickettsia conorii* simulans strain. Acta Entomol Sin. 2003;46:667–73 (in Chinese).
35. Takanou S, Sugimori C, Fujita H, Kadosaka T, Taylor KR, Tsutoba T, et al. A novel relapsing fever *Borrelia* sp. infects the salivary glands of the molted hard tick, *Amblyomma hebraeum* (Ixodidae). *Tick-borne* Dis. 2012;3:259–61.
36. Sumrandee C, Hirunkanokpun S, Doornbos K, Kitthawee S, Baimai V, Teng A, et al. Identification of *Rickettsia* sp. isolates from naturally infected ticks and wild deer in areas of fever, thrombocytopenia and leucopenia syndrome in Henan province. Zhongguo Zhongwei Shou Sheng Hu Jiu Yu Jiu Shen Zhi. 2006;56:1673–5.
37. Liu Y. Survey on ticks and detection of new bunyavirus in the endemic areas of fever, thrombocytopenia and leucopenia syndrome in Henan province. Zhongguo Zhongwei Shou Sheng Hu Jiu Yu Jiu Shen Zhi. 2013;50:217–20.
38. Cao WC, Gao YM, Zhang PH, Zhang XT, Dai QH, Dumler JS, et al. Identification of *Ehrlichia chaffeensis* nested PCR in ticks from southern China. J Clin Microbiol. 2003;41:7778–80.
39. Foumier PE, Takada N, Fujita H, Raoult D. Rickettsia REHR-MRand *Rickettsia* species in *Amblyomma* ticks collected from snakes in Thailand. Ticks Tick-borne Dis. 2014;5:632–40.
40. Li ZQ, Liu ZJ, Gong ZW, Zhang F, Fei JX, Liu T, et al. Molecular detection of *Rickettsia* species in *Amblyomma* ticks collected from snakes in Thailand. J Med Entomol. 2013;50:217–20.
41. Lee JH, Park HS, Jung KD, Jang WJ, Koh SE, Kang SS, et al. Identification of *Anaplasma phagocytophilum* and a new *Ehrlichia* species closely related to *Ehrlichia chaffeensis* by sequence analyses of 16S rRNA genes amplified by nested PCR from ticks in Tibet. J Clin Microbiol. 2002;40:3286–90.
42. Hou Z, Chen DF, Li Y, Zhao Y, Li L, Li L, et al. Phylogenetic analysis of spotted fever group *Rickettsia* based on gltA, 17-kDa, and rOmpA genes amplified by nested PCR from ticks in Japan. Microbiol Immunol. 2003;47:823–5.
43. Kikuchi A, Ando S, Shinagawa Y, Matsuura K, Hasegawa S, Nakayama S, et al. Phylogenetic analysis of spotted fever group *Rickettsiae* from naturally infected ticks and wild deer in Japan. Jpn J Infect Dis. 2012;65:79–83.
44. Fu XP, Wang JQ, He JR, Zhang JS. Establishment of real-time PCR assay to detect *Anaplasma phagocytophilum* DNA from *Taeniopygia guttata*. *Mtbl. 2012;22:1411–4 (in Chinese).
45. Li ZQ, Liu ZJ, Gao ZW, Zhang F, Fei JX, Liu T, et al. Molecular epidemiological studies on *Borrelia burgdorferi* infection in ticks from Shanxi Province. Acta Parasitol Med Entomol Sin. 2010;17:48–51 (in Chinese).
46. Ko S, Kang JG, Kim SY, Kim HC, Chong ST, et al. Prevalence of tick-borne encephalitis virus in ticks from southern Korea. J Vet Sci. 2010;11:197–203.
47. Ikushima M, Ando S, Shinagawa Y, Matsuura K, Hasegawa S, Nakayama S, et al. Prevalence of tick-borne encephalitis virus in ticks from southern Korea. J Vet Sci. 2010;11:197–203.
48. Fournier PE, Fujita H, Takada N, Raoult D. Genetic identification of *rickettsiae* isolated from ticks in Japan. J Clin Microbiol. 2002;40:2576–81.
49. Fujita H, Foumier PE, Takada N, Saito T, Raoult D. *Rickettsia asiatica* sp. nov., isolated from ticks in Japan. Int J Syst Evol Microbiol. 2006;56:2865–6.
50. Mehta R, Kumar SR, Yadav P, Barde PV, Yergalck PN, Erickson BR, et al. Recent ancestry of *Kaswanthus* Forest disease virus. Emerg Infect Dis. 2009;15:1431–7.
51. Gaoa W, Wu D, Yoshikawa Y, Ohashi N, Kawamoto F, Sugiyama K, et al. Experimental infection of *Ehrlichia chaffeensis* with *P. berghei* from naturally infected ticks and wild deer in Japan. Jpn J Infect Dis. 2012;65:79–83.
52. Tuji N, Bottteger B, Boldaustar D, Miyoshi T, Xuan XN, Oliver Jr JH, et al. Babesial vector tick defense against Babesia sp. parasites. Infect Immun. 2007;75:3633–40.
53. Zhang ZY, Zhou DJ, Qin XC, Tian JH, Xiong YW, Wang JB, et al. The ecology, genetic diversity, and phylogeny of *Haemaphysalis longicornis* in Korea. Microbiol Immunol. 2005;49:301–4.
54. Chen ZQ, Liu ZJ, Gong ZW, Zhang F, Fei JX, Liu T, et al. Babesia vector tick defense against Babesia sp. parasites. Infect Immun. 2007;75:3633–40.
73. Yang J, Liu ZJ, Guan GQ, Liu Q, Li YQ, Chen Z, et al. Prevalence of Anaplasma phagocytophilum in ruminants, rodents and ticks in Gansu, north western China. J Med Microbiol. 2013;62:254–8.

74. Yin H, Guan GQ, Ma ML, Luo JX, Lua BY, Yuan GL, et al. Haemaphysalis gingeitosa ticks transmit at least two different Theilera species: one is infective to yaks, one is infective to sheep. Vet Parasitol. 2002;107:29–35.

75. Zhang PH, Cao JY, Li YG, Zhang QE. Ultra structure observation of newly GRI spirochetes isolate in Tibet. Corpus Epidemiol Invest. 1996;2:62–6 (in Chinese).

76. Bhat HR, Naik SV. Transmission of Kyasuran forest disease virus by Haemaphysalis welligtoni Nuttall and Warburton, 1907 (Acarina: Ixodidae). Indian J Med Res. 1987;86:569–73 (in Chinese).

77. Liu LZ, Li GP, Yu SR. Research on the experimental infection of Q-fever rickettsia against Haemaphysalis canpanulata. Acta Acad Med Till. 1982;2:17–21 (in Chinese).

78. Chen M, Fan M. A review on the research of North-Asia tick-borne spotted fever. Chinese J Public Health. 1997;6:373–6 (in Chinese).

79. Morzaria SP, Latif AA, jongejan F, Walker AR. Transmission of a Typhusoma sp. to cattle by the tick Hyalomma anatolicum anatolicum. Vet Parasitol. 1986;19:13–21.

80. Williams RJ, Busaduy S, Mehta FR, Maupin GO, Wagoner KD, Awaidy SA, et al. Identification of tick-tick transmitted rickettsiae in California. J Clin Microbiol. 2003;41:235–9 (in Chinese).

81. Liu AH, Guan GQ, Liu JY, Li YQ, Ma ML, Niu QL, et al. Isolation and identification of the piroplasms species transmitted by Hyalomma dromedarii in Tibet. Clin Infect Dis. 2001;3:17–20 (in Chinese).

82. Xiao CE. Investigation on the vector host of hemorrhagic fever in Xinjiang. Endemic Dis Bull. 2004;19:50–2 (in Chinese).

83. Yu X, Fan M, Xu G, Liu Q, Raoul D. Genotypic and antigenic identification of two new strains of spotted fever group rickettsiae isolated from China. J Clin Microbiol. 1993;31:83–8.

84. Kang YJ, Diao XN, Zhao GY, Chen MH, Xiong YW, Shi M, et al. Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales. BMC Evol Biol. 2014;14:167.

85. Diperulo OO, Oguntu FO. The transmission of Theilenia annulata to a rabbit by the larvae of the tick Hyalomma nufipes. Lab Anim. 1977;11:39 (in Chinese).

86. Wood OL, Moussa ML, Hoostrag H, Buttiker W. Kadam virus (Togaviridea, flavivirus) infecting camel-parasitizing Hyalomma dromedarii ticks (Acarri Ixodidae) in Saudi Arabia. J Med Entomol. 1980;19:207–8.

87. Sun Y, Xu RM, Guo TY, Zhang BH, Cao WC. Failure to transmit Lyme spirochetes transstadially in Dermacentor silvarum ticks. Annals of Internal Medicine. 1999;15:285–9.

88. Battsetseg B, Xuan X, Ikadai H, Bautista JL, Byambaa B, Boldbaatar D, et al. Detection and identification of spotted fever group rickettsiae in Dermacentor ticks from Europe and Russia. J Med Sci. 2002;26:106–8 (in Chinese).

89. Chen ZG, Chen J, Zhong JP, Bi DZ. Using PCR/ RFLP to detect spotted fever group rickettsia in ticks and rodents collected in Ninghsia, Fujian province. Chin J Prev Med. 2002;36:106–8 (in Chinese).

90. Sun CQ, Liu JZ, Huang L, Luobu DZ, Wang YF, Liu JZ, et al. Molecular prevalence of Anaplasma ovis in Dangxiong county of China Tibet. Prog Vet Med. 2012;30:15–5 (in Chinese).

91. Wang YF, Liu JZ, Yang JF, Chen Z, Liu JZ, Li YQ, et al. Rickettsia rattioli-like Bacteria in Dermacentor spp. ticks, Tibet. China. Emerg Infect Dis. 2012;18:1532–4.

92. Zhou XR, Liu SK, Chang GS, Wang TX, Ma DX, Dou J, et al. Preliminary Investigation on Tularemia in At prefecture, the Tibet Autonomous Region of China. Endem Dis Bull. 1993;8:73–7 (in Chinese).

93. Selmi M, Benoletti L, Tomassone L, Manelli A. Rickettsia slovaca in Dermacentor marginatus and tick-borne lymphadenopathy, Tuscany, Italy. Emerg Infect Dis. 2008;14:817–20.

94. Shpynov S, Parola P, Rudakov N, Samoilenko I, Tankibaev M, Tarsevich I, et al. Detection and identification of spotted fever group rickettsiae in Dermacentor ticks from Russia and central Kazakhstan. Eur J Clin Microbiol Infect Dis. 2001;20:903–9.

95. He JF, Zheng K, Li W, Luo HM, Li LH, Bi DZ, et al. Study on spotted fever group Rickettsia in Guangdong province. Chin J Epidemiol. 2003;24:700–3 (in Chinese).

96. Ishikura M, Fujita H, Ando S, Matsuura K, Watanabe M, Ishikura M, et al. Phylogenetic analysis of spotted fever group rickettsiae isolated from ticks in Japan. Microbiol Immunol. 2002;46:241–7.

97. Wen B, Cao W, Pan H. Ehrlichia and ehrlichial diseases in China. Ann N Y Acad Sci. 2003;990:45–53 (in Chinese).

98. Yang LP, Zhang TS, Yuan XP, ZI DY. Two strain of Russian spring-summer Encephalitis virus isolated from Boophilus microplus and Hyposideros armiger in Yunnan province. Chin J Zoonoses. 1993;9:22–3 (in Chinese).

99. Liu ZL, Ma LH, Gao XS, Cheng XJ, Yang DJ, Wang SY. Study on babesiosis in buffaloes in Hupeh province II Experimental infection demonstrated that Rhicphillus haemaphysaloides to be the vector of babesiosis in buffaloes. Acta Vet Zootech Sin. 1987;18:173–8 (in Chinese).

100. Chaudhry D, Garg A, Singh I, Tandon C, Saini R. Rickettsial diseases in Haryana not an uncommon entity. J Assoc Physcians India. 2009;57:334–7 (in Chinese).

101. Liu XM, Zhang GL, Zhao Y, Sun X, Zheng C. Detection of pathogens of main tick-borne diseases in ticks from the desert area of Yuli, Xinjiang Uyghur Autonomous Region, China. Chin J Vector Biol Control. 2012;33:496–6 (in Chinese).

102. Hubalek Z, Halouzka J. West Nile fever-a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5:643–50 (in Chinese).

103. Fan H, Chen XR, Ma YH, Sun Y, Yu Q, Tong SD, et al. Ehrlichia canis DNA found in ticks in the south of China. Chin J Zoonoses. 1999;15:3–6 (in Chinese).

104. Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodidae with special reference to pathogen transmission. Exp Appl Acarol. 1999;23:496–512 (in Chinese).