Molecular cloning, structural and expression profiling of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour.

Zhizhen Fang, Chengchun Lai, Yaling Zhang and Zhongxiong Lai*

Abstract
To clone and examine expression profiles of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. Thirty cDNA sequences and two genomic sequences encoding DlRan proteins were isolated from longan embryogenic cultures. Structural analysis of DlRan genes revealed that the longan Ran gene family is more expanded than that of Arabidopsis. Expression analysis of DlRan genes during somatic embryogenesis uncovered a high abundance of DlRan genes in early embryogenic cultures and heart- and torpedo-shaped embryos. The expression of DlRan genes in embryogenic calli was affected by exogenous 2,4-dichlorophenoxyacetic acid treatment. DlRan is involved in 2,4-D induced somatic embryogenesis and development of somatic embryos in longan.

Keywords: Cloning, Dimocarpus longan, Gene expression, Ras-related nuclear protein, Somatic embryogenesis

Background
Ras-related nuclear protein (Ran) is a highly conserved, small GTPase family that is essential to multiple cellular processes in eukaryotes (Clarke and Zhang 2008). The roles of Ran have been extensively researched and well documented in animals. In contrast, little is known about Ran in plants. Plant Ran proteins share high homology and perform similar functions in the regulation of mitotic progress with their counterparts in yeast and animals (Lü et al. 2011; Lee et al. 2008; Wang et al. 2006; Zang et al. 2010). Furthermore, Ran is involved in mediating responses to external stimuli, such as heat, salt and drought stresses (Ferreira et al. 2006; Jiang et al. 2007; Xu and Huang 2008, 2010; Yoshimura et al. 2008; Zang et al. 2010). Inhibition expression of OsRan2 in rice leads to pleiotropic developmental abnormalities (Chen et al. 2011; Zang et al. 2010). These results suggest that Ran is crucial to plant growth and development.

Longan (Dimocarpus longan Lour.), an evergreen fruit tree of great commercial value, is distributed in subtropical and tropical countries (Matsumoto 2006; Zheng et al. 2009). Longan embryo development is of great scientific interest because of its role in fruit quality and yield. The developmental regulation of Ran during the middle stage of longan somatic embryogenesis (SE) implies a role for Ran in this process (Fang et al. 2011). Furthermore, Ran has been proposed as a target for breeding and production improvement in longan (Fang et al. 2014) because of its role in delaying flowering and enhancing cold tolerance in other plants (Chen et al. 2011; Wang et al. 2006). Nevertheless, cloning and characterization of longan Ran has not yet been reported.

In this study, 30 cDNA sequences and two genomic sequences encoding DlRan proteins were isolated. We analyzed the structures of DlRan genes, and investigated their expression profiles during SE and under exogenous 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. On the basis of our results, we propose that DlRan is involved in cell division during longan SE and participates in 2,4-D-induced SE through signal transduction.
Methods

Plant materials
The establishment and maintenance of our longan embryogenic callus line “Honghezi” was described in Lai et al. (2000). The synchronization of embryogenic cultures at different developmental stages was carried out as described previously (Fang et al. 2014). All cultures were kept in dark conditions at 25 ± 1 °C.

RNA extraction
Total RNA was extracted from embryogenic cultures using TriPure Isolation Reagent (Roche Molecular Biochemicals, Basel, Switzerland) and then treated with DNase I (Takara, China) to remove genomic DNA.

5′ and 3′ rapid amplification of cDNA ends (RACE)
A 469-bp cDNA fragment of DiRan (Ran fragment 1) was obtained by reverse-transcription PCR with degenerate primers (RanF1 and RanR1) generated according to mass spectrophoric analysis results in our previous study (Fang et al. 2011). 5′ and 3′ RACE were performed to generate full-length gene transcripts. The 3′ RACE was performed using a First-Strand cDNA synthesis kit (Fermentas). 12 3′-ends of DiRan cDNAs were obtained using specific primers designed from Ran fragment 1 (Table 1). Multiple alignment of these 3′ ends indicated the existence of DiRan homologs. A specific primer, RanR2, was designed according to the isolated DiRan homologs. Specific primers based on the expressed DiRan homologs were used for 5′ RACE, yielding three additional DiRan cDNA 3′ ends (Table 1). A 5′ RACE was performed using a GeneRacer kit (Invitrogen). Specific primers were designed according to the isolated DiRan fragments and 3′-RACE products of DiRan and used for 5′ RACE. Primers and corresponding 5′-RACE products are indicated in Table 1. For amplification of full-length DiRan cDNAs, gene-specific primers were generated according to the DiRan 5′ and 3′ ends, with cDNAs synthesized from the GeneRacer kit used as templates. Specific primers used are listed in Table 2 and Additional file 1: Figure S1.

DNA extraction and isolation of genomic DNA encoding DiRan
Total genomic DNA was isolated from longan embryogenic calli with a Plant Genomic DNA kit (Tiangen, China). A 2389-bp DiRan DNA sequence was obtained using specific primers (RanF18 and RanR29; Table 2) and Takara LA Taq (Takara) and was designated as DiRan3A (GenBank accession no. JQ775539). The genomic sequence of DiRan3B (JQ779697) has been characterized previously (Fang et al. 2013).

Quantitative real-time PCR analysis
cDNAs were synthesized with random primers and Oligo dT Primer using a SYBR ExScript kit (Takara). Real-time PCR amplifications were performed on a Lightcycler 480 system (Roche Applied Science, Switzerland) in 20-µl total volumes containing 10 µl of 2× SYBR Premix Ex Taq II (Takara), 1 µl cDNA (1:10 dilution), and 0.4 µl of each 0.20-µM primer. PCR conditions were as follows: denaturation at 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s, 60 °C for 30 s and 72 °C for 30 s. Reactions were run in triplicate. EF-1a and Fe-SOD, the most stable genes selected by Lin and Lai (2010), were used as endogenous controls. Expression data were analyzed with geNORM (version 3.5) (Vandesompele et al. 2002). The high sequence similarity among isolated DiRan transcripts made it very difficult to design specific primers to detect their expression. We found that the identified DiRan transcripts could be divided into two types, N (asparagine) and D (aspartic acid), based on the tenth residue in their predicted amino acid sequences. Specific primers based on the 5′-end proximal region of these N and D DiRan transcript sequences (Additional file 2: Figure S2) were designed and used for qRT-PCR analyses. Primer pairs used for qRT-PCR analyses are listed in Table 3.

Treatment of embryogenic calli with 2,4-D
Embryogenic calli cultured on M0 medium (Murashige-Skoog basal salts, 2% sucrose and 6 g/L agar, pH 5.8) supplemented with 1 mg 2,4-D/l were transferred and maintained for 24 h on M0 medium or M0 medium supplemented with

Table 1 Specific primers used for 3’ and 5’ RACE and corresponding products
Specific primers
Outer primer: RanF2
Nested primer: RanF3
Outer primer: RanF4
Nested primer: RanF5
Outer primer: RanF8
Nested primer: RanF9
Outer primer: RanR3
Nested primer: RanR4
Outer primer: RanR5
Nested primer: RanR6
Outer primer: RanR7
Nested primer: RanR8
Outer primer: RanR9
Nested primer: RanR10
Outer primer: RanR12
Nested primer: RanR13
Outer primer: RanR1
either 0.5, 1.5 or 2.0 mg/l of 2,4-D. All samples were frozen in liquid nitrogen after harvesting and stored at −80 °C.

Bioinformatics analysis
Predicted protein sequences were analyzed and theoretical isoelectric points (pIs) and mass values of mature peptides were calculated using the PeptideMass program (http://us.expasy.org/tools/peptidemass.html). Amino acid sequence alignment was performed using DNA-MAN software. A phylogenetic tree of Ran proteins was constructed using MEGA5 software.

Results
Cloning of DlRan cDNAs from torpedo-shaped somatic embryos of longan
Fifteen 3′ ends of DlRan genes were obtained through 3′ RACE. Alignment of these 3′ ends indicated the existence of sequence polymorphism in DlRan gene open reading frames (ORFs) and 3′ untranslated regions (UTRs) (Additional file 3: Figure S3). 18 5′ ends of DlRan genes were obtained using RNA ligase-mediated RACE (Additional file 4: Figure S4). Using primers designed from the isolated 5′ and 3′ ends, we isolated 30 DlRan transcripts from torpedo-shaped somatic embryos in longan and deposited their sequences in GenBank (Table 4).

Sequence analyses and molecular characterization of DlRan genes
Sequence analysis indicated that all of the isolated DlRan transcripts contained a 663-bp ORF. The 3′ UTRs of the isolated DlRan transcripts lack the typical AATAAA polyadenylation signal. The isolated DlRan cDNAs were divided into nine groups according to their ORF sequences (Fig. 1). DlRan3As, DlRan3Bs, DlRan3C-1, DlRan3C-2, DlRan3C-3, DlRan3Ds, DlRan3E-1, DlRan3F-1 and DlRan3G-1 had unique ORFs (Fig. 1).
Table 4: GenBank accession numbers of *Ran* cDNAs and primer pairs used for their amplifications.

Name	Accession no.	Primer pairs (forward/reverse)
DlRan3A-1	JF461272	RanF10/RanR14
DlRan3A-2	JF461273	RanF10/RanR15
DlRan3A-3	JF461274	RanF10/RanR16
DlRan3A-4	JF461275	RanF10/RanR17
DlRan3A-5	JF461276	RanF10/RanR18
DlRan3A-6	JF461277	RanF10/RanR19
DlRan 3A-7	JF461278	First PCR: RanF10/3P
		Nested PCR: RanF11/3NP
DlRan3A-8	JF461279	First PCR: RanF10/3P
		Nested PCR: RanF11/3NP
DlRan3A-9	JF461280	First PCR: RanF10/3P
		Nested PCR: RanF11/3NP
DlRan A-10	JF461281	First PCR: RanF10/3P
		Nested PCR: RanF11/3NP
DlRan3A-11	JF461282	First PCR: RanF10/3P
		Nested PCR: RanF11/3NP
DlRan3A-12	JQ861699	First PCR: SP/RanR25
		Nested PCR: SNP/RanR26
DlRan3A-13	JQ775533	RanF12/RanR24
DlRan3A-14	JQ775532	RanF12/RanR24
DlRan3B-1	HM773390	RanF18/RanR20
DlRan3B-2	JF461283	RanF18/RanR21
DlRan3B-3	JF461284	RanF18/RanR14
DlRan3B-5	JF461286	RanF13/RanR21
DlRan3B-6	JF461287	RanF13/RanR22
DlRan3B-7	JF461288	RanF13/RanR14
DlRan3B-8	JQ775530	RanF14/RanR30
DlRan3B-9	JQ775531	RanF14/RanR30
DlRan3C-1	JF461289	RanF13/RanR23
DlRan3C-2	JF461290	RanF13/RanR23
DlRan3C-3	JF461291	RanF13/RanR23
DlRan3D-1	JF461292	RanF13/RanR19
DlRan3D-2	JF461293	RanF13/RanR17
DlRan3E-1	JF461294	RanF10/RanR20
DlRan3F-1	JQ775527	RanF10/RanR20
DlRan3G-1	JQ775528	RanF10/RanR20

Sequence alignment showed that the first half of sequences of *DlRan3D-1*, *DlRan3C-1*, *DlRan3C-2* and *DlRan3C-3* were identical to that of *DlRan3B-1*, while the second half of sequences of these cDNAs were identical to that of *DlRan3A-1*. In contrast, the first half of *DlRan3E-1* and *DlRan3G-1* sequences were identical to *DlRan3A-1*, and the second half of sequences of these cDNAs were identical to that of *DlRan3B-1*. One fragment of *DlRan3F-1* was identical to neither *DlRan3A-1* nor *DlRan3B-1* (Fig. 1). These results prompted us to explore whether the transcripts identified in the present study were alternative spliced isoforms produced by the same gene or were instead transcribed from different genes.

To determine exon and intron organization of *DlRan* cDNAs, we try to isolate genomic sequences of *DlRan* genes and only 2 *DlRan* sequences (*DlRan3A* and *DlRan3B*) were obtained. The comparative analysis of *DlRan* genomic and cDNA sequences indicated that *DlRan3A-1–DlRan3A-14* was derived from *DlRan3A* and that *DlRan3B-1–DlRan3B-3* and *DlRan3B-5–DlRan3B-9* were derived from *DlRan3B*. As indicated in Fig. 2, both *DlRan3A* and *DlRan3B* contained 8 exons. Interestingly, the first half of the sequences of *DlRan3D-1*, *DlRan3C-1*, *DlRan3C-2* and *DlRan3C-3* were identical to the genomic sequence of *DlRan3B*, whereas the second half of these cDNA sequences was identical to the genomic sequence of *DlRan3A* (Fig. 2). In contrast, the first half of sequences of *DlRan3E-1* and *DlRan3G-1* were identical to the genomic sequence of *DlRan3A*, whereas the second half of these cDNA sequences was identical to the same gene, thereby implying the existence of multiple *Ran* genes in the longan genome.

All of the isolated *DlRan* transcripts encoded seven predicted polypeptides of 221 amino acid residues with similar calculated molecular masses and predicted pIs (Table 5). It is noteworthy that *DlRan3C-1*, *DlRan3C-2* and *DlRan3C-3*, which contain different ORFs, encoded the same protein. The modulation of protein expression via alteration of mRNA secondary structure has been demonstrated to involve the usage of synonymous codons (Nackley et al. 2006). We therefore used Mfold (Zuker 2003) to predict the secondary structures of the ORFs of these transcripts, which demonstrated that the Gibbs free energy for *DlRan3C-2* and *DlRan3C-3* was lower than that for *DlRan3C-1*.

As shown in Additional file 5: Figure S5, alignment analysis revealed that the predicted *DlRan* proteins are highly identical to the identified peptides in our previous study (Fang et al. 2011). This result indicates that the predicted proteins were orthologs of the identified protein. *DlRan* members are highly similar to one another, differing by a total of only nine amino acids. Multiple sequence alignment indicated that the *DlRan* proteins share a significant degree of sequence identity with Ran proteins from *Arabidopsis thaliana*, *Medicago truncatula*, *Zea mays*, *Vitis vinifera*, *Allium cepa* and *Oryza sativa* (Fig. 3). The characteristic domains of the Ran proteins that are known to be involved in GTP-binding and hydrolysis, as well as the acidic C-terminal domain...
Fig. 1 Multiple alignments of the open reading frame sequence of DlRan genes. Sequence fragments consistent with DlRan3B-1 were indicated with grey shadow, sequence fragment of DlRan3F-1 that is not consistent with DlRan3B-1 nor DlRan3A-1 were highlighted with underline, different bases among the aligned sequences are indicated by colors.
and the effector-binding domain, were detected in the deduced DlRan proteins (Fig. 3). As shown in Fig. 3, the conserved sequences of these motifs were nearly identical between DlRan proteins and Ran proteins from other plant species, except for AtRan4, which has distinct functions in Arabidopsis (Vernoud et al. 2003). In the neighbor-joining phylogenetic tree based on the DlRan proteins and Ran proteins from multiple plant species, the DlRan proteins, AtRan3 and Ran3-like proteins from Glycine max and V. vinifera were clustered into one group (Fig. 4). These results suggest that the DlRan proteins are Ran3 homologs.

Table 5 Calculated molecular mass and predicted pl of DlRan proteins

Protein name	Molecular weight (Da)	pI
DlRan3A	25,106.5	6.38
DlRan3B	25,150.6	6.75
DlRan3C	25,105.5	6.65
DlRan3D	25,159.6	6.65
DlRan3E	25,151.5	6.50
DlRAN3F	25,147.6	6.65
DlRAN3G	25,123.5	6.50

Expression analysis of DlRan genes during SE in longan

We used qRT-PCR to detect abundances of DlRan transcripts at different developmental stages of longan SE. As indicated in Fig. 5, the expression profiles of two types of DlRan genes during longan SE were very similar. High levels of DlRan transcripts were detected in early embryogenic cultures and heart- and torpedo-shaped embryos. The highest levels were found in heart-shaped embryos, while the lowest were detected in globular, cotyledonary and mature embryos.

The effect of 2,4-D on expression of DlRan genes in longan embryogenic calli

2,4-D is a growth regulator commonly used in the induction of somatic embryos. However, high concentrations inhibit development of somatic embryos in longan and other plants (Aiqing et al. 2011; Lai et al. 2000). Furthermore, application of 2,4-D in various concentrations is able to synchronize SE in longan (Chen and Lai 2002). Wang et al. (2006) have demonstrated that Ran is involved in auxin signaling. 1 mg 2,4-D/l is necessary to maintain longan calli at embryogenic state (Lai et al. 2000). To investigate the effect of 2,4-D on the expression of DlRan genes, embryogenic calli cultured on M0 medium supplemented with 1 mg 2,4-D/l were transferred to M0 medium supplemented with different concentrations of 2,4-D.
Fig. 3 Multiple alignments of the deduced Dran sequences with other Ran sequences. Sequences are from *A. thaliana* (AtRan1, NP_197501; AtRan2, NP_197502; AtRan3, NP_200330; AtRan4, NP_200319), *M. truncatula* (MtRan, ACJ83982), *Z. mays* (ZmRan, NP_001149221), *V. vinifera* (VvRan, XP_002284967), *A. cepa* (AsRan2, ABD17864) and *O. sativa* (OsRan, NP_001043550). Identical and similar amino acid residues among the aligned sequences are indicated by green, yellow and grey shading, respectively. Conserved GTP binding and hydrolysis domains (G1–G5) were indicated by bold lines. The effector-binding domain (RanGAP-binding) and the acidic C-terminal region (acidic tail) are indicated with asterisks and triangles, respectively.
concentrations of 2,4-D. As indicated in Fig. 6, reducing the concentration of 2,4-D gradually increased the abundance of \textit{DlRan} gene transcripts. Increasing the concentration of 2,4-D to 1.5 mg/l also enhanced the accumulation of \textit{DlRan} genes transcripts. In contrast, application of 2.0 mg 2,4-D/l reduced the abundance of \textit{DlRan} transcripts to levels lower than initial values.

Discussion

Characterization of an expanded \textit{Ran} gene family in longan

The \textit{Ran} gene family comprises a small number of genes found in different organisms, namely one member in humans and \textit{Schizosaccharomyces pombe} and four in \textit{Arabidopsis} (Ma 2007; Takai et al. 2001). In this study, 30 \textit{DlRan} cDNAs were cloned from torpedo-shaped embryos in longan. Alignments between \textit{DlRan} cDNA sequences and genomic DNA sequences suggested the existence of more \textit{Ran} genes in the longan genome. Phylogenetic analysis revealed that seven deduced \textit{DlRan} proteins are closely related to \textit{Ran3} from other species. Our results suggest that the longan \textit{Ran} gene family is expanded compared with \textit{Arabidopsis} (Ma 2007). The estimated size of the longan genome is 444 Mb (Van-Buren et al. 2011), about threefold larger than that of \textit{Arabidopsis}. Nevertheless, the exact number of \textit{Ran} genes in longan cannot be determined until whole genome sequencing is completed. Sequence features of the longan \textit{Ran} gene family that may be unique to this species and cannot be determined until all \textit{Ran} genes have been isolated from the longan genome.

Regulation of \textit{DlRan} gene expression

In the present study, \textit{DlRan} genes were significantly upregulated at the heart-shaped embryo stage. At the torpedo-shaped embryo stage, \textit{DlRan} genes were downregulated whereas the Ran protein was rapidly upregulated. Our results indicate that the expression patterns of \textit{DlRan} genes were different from that of the Ran protein.
identified in our previous study (Fang et al. 2011; Lai et al. 2012). Discordance between protein and mRNA expression is a common phenomenon in eukaryotic cells (Skrzycki et al. 2010; Wang et al. 2010). We speculate that unidentified post-transcriptional mechanisms participate in regulation of \(DlRan \) gene expression.

We found that changes in synonymous codon usage gave rise to mRNA secondary structure alterations among \(DlRan3C-1 \), \(DlRan3C-2 \) and \(DlRan3C-3 \). Although synonymous mutations have no effect on the resulting protein sequence, the selection of synonymous codons affects the modulation of gene expression and cellular functions (Plotkin and Kudla 2011). The differential usage of synonymous codons among these transcripts may be functional, but further tests are required to confirm this hypothesis.

Potential functions of \(DlRan \) genes during SE in longan

The involvement of Ran in longan SE has been demonstrated previously (Fang et al. 2011). Our results indicated that reduction of 2,4-D concentration in the medium, which promotes initiation of somatic embryo development, enhanced \(DlRan \) gene expression. This result further supports the involvement of \(DlRan \) in longan SE. Plant Ran is involved in cell proliferation (Lü et al. 2011; Wang et al. 2006). The sequence alignment in the present study indicates that \(DlRan \) proteins are highly conserved with respect to Ran proteins from other plants, suggesting similar functionality. Our expression analysis showed that \(DlRan \) gene transcripts are more abundant during SE stages associated with active cell division. The high expression of \(DlRan \) genes observed at heart- and torpedo-shaped stages may be related to the cell proliferation that gives rise to the cotyledons and radicle. We believe that \(DlRan \) proteins may regulate mitotic progress in a manner similar to their homologs in other plants.

2,4-D was shown to alter \(Ran \) expression when applied at different concentrations. Auxin plays pivotal roles in SE. 2,4-D, the most commonly used synthetic auxin for induction of SE (Karami and Saidi 2010), affects the indole acetic acid (IAA) synthetic pathway and promotes IAA accumulation (Michalczuk et al. 1992a, b). Ectopic postembryonic expression of \(LEC2 \) has been shown to induce somatic embryo formation (Stone et al. 2001). \(LEC2 \) has been proposed to induce SE by promoting auxin activity, and 2,4-D exerts effects similar to those of ectopic \(LEC2 \) expression (Stone et al. 2008). Su et al. (2009) have suggested that exogenous auxin levels play an important role in determining expression patterns of \(WUS \), a correct expression of which is essential for somatic embryo induction. 2,4-D can induce SE, but also inhibits somatic embryo development (Aiqing et al. 2011). Pan et al. (2010) found that treatment with high concentrations of 2,4-D changed the proteome of \(Valencia \) embryogenic callus. Although the mechanisms involved in induction of SE by 2,4-D and the inhibitory effect of this auxin on somatic embryo development remain to be uncovered, 2,4-D functions by altering gene expression in plant cells through signal transduction. Ran is a vital regulator of nucleocytoplasmic trafficking in plants (Meier and Somers 2011; Merkle 2011). Numerous studies have detailed the involvement of Ran in plant responses to hormonal and environmental signaling (Ferreira et al. 2006; Jiang et al. 2007; Krieks et al. 2006; Lee et al. 2008; Mahong et al. 2012; Wang et al. 2011).
is unsurprising to find that expression is influenced by auxin signaling (Wang et al. 2006) and it is involved in auxin signaling (Wang et al. 2006) and it is involved in auxin signaling (Wang et al. 2006) and it is involved in auxin signaling (Wang et al. 2006). Our results suggest that DlRan participate in abiotic response signaling by modulating the nuclear transportation of proteins and RNA. Taking the results of these studies and ours into consideration, we speculate that DlRan may participate in 2,4-D-induced SE by transmitting 2,4-D signals and may regulate the expression of embryogenesis-related genes by controlling nuclear trafficking.

In this study, 30 cDNA and two genomic DNA sequences of DlRan genes were isolated. We also revealed the expression profiles of DlRan genes during SE and under exogenous 2,4-D treatment. Our results suggest the importance of DlRan genes in longan embryo development. Future research should focus on the elucidation of mechanisms involved in regulation of DlRan gene expression and the functions of different DlRan genes during SE in longan.

Competing interests
The authors declare that they have no competing interests.

Received: 17 November 2015 Accepted: 16 February 2016 Published online: 25 February 2016

References
Aiping J, Xueqing G, Yan Z, Yang H, Guiwiang W (2011) Advances in somatic embryogenesis research of horticultural plants. Am J Plant Sci 2:727–732. doi:10.4236/ajps.2011.26087
Chen CL, Lai ZX (2002) Synchronization regulation of embryogenesis of embryonic calli and their histological observation in longan (Dimocarpus longan Lour.). J Fujian Agric Univ (Nat Sci) 31:192–194
Chen NA, Xu Y, Wang X, Du C, Du J, Yuan M, Xu Z, Chong K (2011) OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ 34:52–64. doi:10.1111/j.1365-3040.2010.02225.x
Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477. doi:10.1038/nrm2410
Fang ZZ, Lai ZX, Lai CC, Jiang SR (2011) Proteomics on somatic embryogenesis during the middle stage in longan. Sci Agric Sin 44:2966–2979. doi:10.3864/j.issn.0578-1752.2011.14.014
Fang ZZ, Lai CC, Zhang YL, LinYL, Lai ZX (2013) Identification of a PTC-containing DlRan transcript and its differential expression during somatic embryogenesis in Dimocarpus longan. Gene 529:37–44. doi:10.1016/j.gene.2013.07.091
Fang ZZ, Zhang YL, Lai CC, Lai ZX (2014) Developmental regulation of Ran 3′untranslated region during somatic embryogenesis in Dimocarpus longan Lour. Sci Hortic 176:297–302. doi:10.1016/j.scienta.2014.07.023
Ferreira S, Hjernø K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salomé Pais M (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377. doi:10.1093/adb/md106
Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607. doi:10.1093/jxb/erm207
Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507. doi:10.1007/s11033-009-9764-3
Kriegs B, Theisen R, Schnabl H (2006) Inositol 1,4,5-trisphosphate and Ran GTPase. Nat Rev Mol Cell Biol 9:464–477. doi:10.1038/nrm2410
Lee Y, Kim MH, Kim SK, Kim SH (2008) Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins. Planta 228:215–224. doi:10.1007/s00425-007-0745-x
Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in Longan (Dimocarpus longan Lour.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 235:499–511. doi:10.1007/10535-011-0048-0
Mahong B, Rooyaksl, Phaonaklopl, Wongtratan, J, Yotkhongwattana K (2012) Proteomic analysis of a model unicellular green alga, Chlorella variabilis, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins. Planta 235:499–511. doi:10.1007/s00425-011-1521-x

Acknowledgements
This work was funded by the National Natural Science Foundation of China (31272149 and 31572088) and Fujian provincial Major Special Project of Agricultural science and technology (2015NZ0002-1).

Additional files
Additional file 1: Figure S1. Schematic of RACE primer locations. Arrows indicate the locations of RACE primers.
Additional file 2: Figure S2. Location of binding sites for qRT-PCR primers.
Additional file 3: Figure S3. Alignment of 3′ ends of DlRan cDNAs.
Additional file 4: Figure S4. Alignment of 5′ ends of DlRan cDNAs.
Additional file 5: Figure S5. Multiple sequence alignment of DlRan proteins and previously identified Ran peptides.

Authors' contributions
ZF and YL conceived and designed the experiments. ZF, CL and YZ performed the experiments. ZF, CL and ZL analyzed the data. ZF and ZL wrote the paper. All authors read and approved the final manuscript.

Fang et al. SpringerPlus (2016) 5:181 Page 10 of 11
Matsumoto TK (2006) Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan. Plant Sci 170:500–510. doi:10.1016/j.plantsci.2005.09.016

Meier I, Samers DE (2011) Regulation of nucleocytoplasmic trafficking in plants. Curr Opin Plant Biol 14:538–546. doi:10.1016/j.pbi.2011.06.005

Merkle T (2011) Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Rep 30:153–176. doi:10.1007/s00299-010-0928-3

Michalczyk L, Coke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1109–1113. doi:10.1016/0031-9422(92)80241-6

Michalczyk L, Ribnicki DM, Coke TJ, Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314:1930–1933. doi:10.1126/science.1131262

Pan Z, Zhu S, Guan R, Deng X (2010) Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tissue Organ Cult 103:145–153. doi:10.1007/s11240-010-9762-0

Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. doi:10.1038/nrg2899

Skrzycki M, Majewska M, Czeczot H (2010) Superoxide dismutase mRNA and protein level in human colorectal cancer. Cent Eur J Biol 5:590–599. doi:10.2478/s11535-010-0054-9

Stone SL, Kwong LW, Yee KM, Petitet J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811. doi:10.1073/pnas.201413498

Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Petitet J, Hisieh T-F, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156. doi:10.1073/pnas.0712364105

Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. doi:10.1111/j.1365-313X.2009.03880.x

Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

VanBuren R, Li J, Zee F, Zhu J, Liu C, Arumuganathan K, Ming R (2011) Longli is not a hybrid of Longan and Lychee as revealed by genome size analysis and trichome morphology. Trop Plant Biol 4:226–236. doi:10.1007/s12042-011-9084-3

Vandenberghe J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11

Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208. doi:10.1104/pp.013052

Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in rice and arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140:91–101. doi:10.1104/pp.105.071670

Wang H, Wang Q, Pape U, Shen B, Huang J, Wu B, Li X (2010) Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics 11:364

Xu C, Huang B (2008) Root proteome responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot 59:4183–4194. doi:10.1093/jxb/erm258

Xu C, Huang B (2010) Differential proteome response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera. Physiol Plant 139:192–204. doi:10.1111/j.1399-3054.2010.01357.x

Yoshimura K, Masuda A, Kuvano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 Xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241. doi:10.1093/pcp/pcn180

Zang A, Xu X, Neill S, Cai W (2010) Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J Exp Bot 61:777–789. doi:10.1093/jxb/erp341

Zheng GM, Xu LX, Wu P, Xie HL, Jiang YM, Chen F, Wei XY (2009) Polyphenols from longan seeds and their radical-scavenging activity. Food Chem 116:433–436. doi:10.1016/j.foodchem.2009.02.059

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. doi:10.1093/nar/gkg595