Minimal Size of Basic Families*

Ziqin Feng and Paul Gartside

July 2009

Abstract

A family Φ of continuous real-valued functions on a space X is said to be basic if every $f \in C(X)$ can be represented $f = \sum_{i=1}^n g_i \circ \phi_i$ for some $\phi_i \in \Phi$ and $g_i \in C(\mathbb{R})$ ($i = 1, \ldots, n$). Define $\text{basic}(X) = \min\{|\Phi| : \Phi$ is a basic family for $X\}$. If X is separable metrizable then either X is locally compact and finite dimensional, and $\text{basic}(X) < \aleph_0$, or $\text{basic}(X) = c$. If K is compact and either $w(K)$ (the minimal size of a basis for K) has uncountable cofinality or K has a discrete subset D with $|D| = w(K)$ then either K is finite dimensional, and $\text{basic}(K) = \text{cof}(w(K)) \cdot \aleph_0$, or $\text{basic}(K) = |C(K)| = w(K)^\aleph_0$.

1 Introduction

The 13th Problem of Hilbert’s celebrated list [5] asks whether every continuous real valued function of three variables can be written as a superposition (i.e. composition) of continuous functions of two variables. Hilbert conjectured that the answer was no, but in 1957 Kolmogorov, building on previous work of himself and Arnold, proved a remarkable result: every continuous real valued function of n-variables from a closed and bounded interval can be expressed as a superposition of functions of just one variable, and addition.

Theorem 1 (Kolmogorov Superposition, [7]) For a fixed $n \geq 2$, there are $n(2n + 1)$ continuous maps $\psi_{pq} : [0,1] \rightarrow \mathbb{R}$ such that every continuous $f : [0,1]^n \rightarrow \mathbb{R}$ can be written:

$$f(x) = \sum_{q=1}^{2n+1} (g_q \circ \phi_q)(x) \quad \text{where} \quad \phi_q(x_1, \ldots, x_n) = \sum_{p=1}^{n} \psi_{pq}(x_p),$$

and the $g_q : \mathbb{R} \rightarrow \mathbb{R}$ are continuous maps depending on f.

*2000 Mathematics Subject Classification: 26B40, 54C30, 54C35, 54E45.

Key Words and Phrases: Superposition of functions, Hilbert’s 13th Problem, basic family, dimension, separable metrizable, compact, small cardinals, PCF theory.
Recently the authors have extended the Kolmogorov Superposition Theorem to functions of \(n\) real variables. This gives a more complete solution of Hilbert’s 13th Problem free from the restriction to bounded intervals which is unnatural in the context (solution functions of polynomials) that Hilbert placed his problem.

In this paper we focus on the functions \(\phi_q\) in Kolmogorov’s theorem. Even in the case when \(n = 2\), Theorem 1 says something unexpected and insightful: there are just 5 continuous functions, \(\phi_1, \ldots, \phi_5\), on the unit square so that every continuous function on the unit square can be obtained in a simple way from just these 5 functions along with functions of one real variable. In other words, to understand \(C([0,1]^2)\) it suffices to understand \(C([0,1])\) and these 5 functions. (Here and below, all topological spaces are Tychonoff, \(C(X,Y)\) is the set of all continuous functions from \(X\) to \(Y\), and \(C(X) = C(X,\mathbb{R})\). We write \(\aleph_\alpha\) for the \(\alpha\)th infinite cardinal and \(c = 2^{\aleph_0}\).)

Following Sternfeld and others a family \(\Phi\) of continuous real-valued functions on a space \(X\) is said to be basic if every \(f \in C(X)\) can be represented \(f = \sum_{i=1}^n g_i \circ \phi_i\) for some \(\phi_i \in \Phi\) and \(g_i \in C(\mathbb{R})\) for \(i = 1, \ldots, n\).

In [3], building on work of Sternfeld [10], Ostrand [8], and others, the authors showed that a space \(X\) has a finite basic family if and only if \(X\) is locally compact, finite dimensional and separable metrizable (or equivalently, homeomorphic to a closed subspace of Euclidean space). In this case, \(\dim(X) \leq n\) if and only if basic \((X) \leq 2n + 1\). It might seem plausible that a space \(X\) has a countable basic family precisely when \(X\) is suitably ‘nice’ and countable dimensional, but this is not the case. The result from [3] says that if a space has a countable basic family, then in fact it has a finite basic family.

These results help motivate the following definition of a new cardinal invariant of topological spaces: basic \((X) = \min\{|\Phi| : \Phi\ is a basic family for X\}\).

Natural questions arise: what are the possible values for basic \((X)\)? can we calculate, or at least bound, basic \((X)\) using other cardinal invariants of \(X\), such as weight, \(w(X)\), the minimal size of a basis for \(X\)?

Since the natural map of \(X\) into \(\mathbb{R}^\Phi\) is an embedding when \(\Phi\) is a basic family a simple restriction on the size of basic families is: \(w(x) \leq \text{basic}(X) \cdot 2^\aleph_0 \leq |C(X)|\). So further natural questions are: when is basic \((X) \leq w(X)\)? when is basic \((X) = |C(X)|\)? is it possible to have basic \((X)\) strictly between \(w(X)\) and \(|C(X)|\)?

In this paper we consider these questions for separable metrizable spaces and compact spaces. Suppose first that \(X\) is separable metrizable. Then from the above, either basic \((X)\) is finite, and this happens if and only if \(X\) is locally compact and finite dimensional, or \(\aleph_1 \leq \text{basic}(X) \leq \mathfrak{c} = |C(X)|\). Experience of other related cardinal invariants of separable metrizable spaces would suggest that basic \((X)\) should be undetermined by the standard axioms of set theory (ZFC). For example \(k(X)\), which is the minimal size of a cofinal family in the set of all compact subsets of \(X\), is undetermined even when \(X\) is the rationals or the irrationals. However (Theorem 3) basic \((X)\) is determined in ZFC for all separable metrizable \(X\):
either X is locally compact and finite dimensional, and basic $(X) < \aleph_0$,

or X is either infinite dimensional or not locally compact, and basic $(X) = \mathfrak{c}$.

This theme — that basic (X) is remarkably absolute — is continued when we consider compact spaces. Note that if K is compact, then Stone \cite{11} has shown that $|C(K)| = w(K)^{\aleph_0}$. Hence, basic (K) lies between the weight of K and the countable power of the weight. This leads to some intriguing connections with Shelah’s Potential Cofinalities Theory (PCF).

Let κ be an uncountable cardinal. Shelah observed that $\kappa^{\aleph_0} = cof([\kappa]^{\aleph_0}, \subseteq) \times |P(\aleph_0)|$. (Here $cof([\kappa]^{\aleph_0}, \subseteq)$ is the minimal size of a cofinal set in the countably infinite subsets of κ ordered by inclusion.) If κ has uncountable cofinality then $cof([\kappa]^{\aleph_0}, \subseteq) = \kappa$, and so κ^{\aleph_0} is easily computed — it is $\max(\kappa, \mathfrak{c})$.

However, if κ has countable cofinality then Shelah has shown \cite{9} that interesting things happen. Whereas the value of $|P(\aleph_0)| = \mathfrak{c}$ is almost entirely unconstrained by the axioms of set theory and can be made arbitrarily large, $cof([\kappa]^{\aleph_0}, \subseteq)$ seems to be almost absolute. For example $\aleph_2 < cof([\aleph_2]^{\aleph_0}, \subseteq) < \aleph_{\omega_4}$, and making $cof([\aleph_n]^{\aleph_0}, \subseteq) > \aleph_{\omega_4+1}$ requires large cardinals.

We prove (Theorems 13 and 15) that if K is compact and either $w(K)$ has uncountable cofinality or K is suitably ‘nice’ then

either K is finite dimensional, and basic $(K) = cof([w(K)]^{\aleph_0}, \subseteq)$,

or K is infinite dimensional, and basic $(K) = |C(K)| = w(K)^{\aleph_0}$.

This gives almost complete information on the possible values of basic (K) for compact K. These are teased out and examples given below.

It is also interesting to note that if K is compact, finite dimensional, ‘nice’ and of weight κ (for example, $K = 2^\kappa$), and if Φ is a basic family for K of minimal size, then $C(K) \sim \bigcup_{n \in \mathbb{N}} (\Phi^n \times C(\mathbb{R})^n)$ is a natural ‘topological realization’ of the cardinal identity $\kappa^{\aleph_0} = cof([\kappa]^{\aleph_0}, \subseteq) \times |P(\aleph_0)|$.

Finally we briefly discuss connections of the above results with Banach algebras. Let K be a compact space. Then $C(K)$ with the supremum norm is a Banach algebra. Sternfeld has observed that for any $\phi \in C(K)$ the set $L(\phi) = \{ g \circ \phi : g \in C(\mathbb{R}) \}$ is a closed subring of $C(K)$ containing the constants and generated by a single element, and conversely every closed subring with these properties is of the form $L(\phi)$ for some ϕ in $C(K)$.

Thus saying that basic $(K) \leq \kappa$ is the same as saying that $C(K)$ is the sum of no more than κ closed subrings containing the constants and generated by a single element. So the results above imply that the problem of deciding whether the Banach algebra $C(K)$ can be written as a sum of a certain size of ‘small’ closed subrings is closely linked to $cof([w(K)]^{\aleph_0}, \subseteq)$ and PCF theory.

2 Sepa###rable Metrizable Spaces

The following simple lemma is used repeatedly and without further reference. Let Φ be a basic family for a space X, and let C be a C–embedded subspace
(every continuous real valued function on C can be extended over X). Then

Clearly $\Phi \mid C = \{ \phi \mid C \in \Phi \}$ is basic for C. Hence:

Lemma 2 Let C be a C-embedded subspace of a space X — for example if X

is normal, and C is closed — then basic $(X) \geq$ basic (C).

Theorem 3 Let X be separable metrizable. Then either basic (X) is finite,

which occurs if and only if X is locally compact and finite dimensional, or

basic $(X) = \mathfrak{c}$.

Proof. Let X be separable metrizable. Four cases arise.

The first case is when X is locally compact and finite dimensional. Then

basic $(X) \leq 2 \dim(X) + 1$, by the Main Theorem of [3].

In all remaining cases we show basic $(X) \geq \mathfrak{c}$, and so equals the continuum.

The second case is when X is not locally compact. Then, as X is first

countable and normal, X contains a closed copy of the metric fan, F (defined

below). So basic $(X) \geq$ basic $(F) \geq \mathfrak{c}$ by Proposition 9 and Proposition 10.

Case 3 is that X is locally compact, infinite dimensional, but contains no

infinite dimensional compact subspaces. Then we can write X as a union of

open sets $(U_n)_n$ such that, for all n, compact $\bigcup_n \subset U_{n+1}$ and $\dim(U_n) < \dim(U_{n+1})$. Using the Countable Sum Theorem for dimension, we can extract

compact subsets C_n from the ‘gaps’ $U_{n+1} \setminus \bigcup_n$ such that $\dim C_n \leq \dim C_{n+1}$

for all n. Now we see that C, the disjoint union of the C_n’s is a closed subspace

of X satisfying the conditions of Proposition 7 so we indeed have, basic $(X) \geq$

basic $(C) \geq \mathfrak{c}$.

Finally, suppose X is locally compact and contains an infinite dimensional

compact subspace K. It suffices to show basic $(K) \geq \mathfrak{c}$, which is the content of

Proposition 8.

Independent Families In vector spaces one method of giving a lower bound

for the size of a basis is to find large linearly independent sets. We apply

the same approach to give lower bounds for basic (X). Note that if V is a vector

space, then $L \subseteq V$ is linearly independent if and only if its intersection with

any subspace spanned by n members of V contains no more than n elements.

This leads us to the correct definition of ‘functional independence’.

Let \mathcal{C} be a subset of $C(X)$. We say that \mathcal{C} is (functionally) independent if

for all n, and any $\phi_1, \ldots, \phi_n \in C(X)$ we have $|\mathcal{C} \cap \{ \sum_{i=1}^n \phi_i : g_1, \ldots, g_n \in C(\mathbb{R}) \}| \leq n$. (We omit the adjective ‘functionally’ except when we need to
differentiate from linear independence in the vector space sense.)

Further, we say \mathcal{C} is weakly independent if for all n, and any $\phi_1, \ldots, \phi_n \in$ $C(X)$ we have $|\mathcal{C} \cap \{ \sum_{i=1}^n \phi_i : g_1, \ldots, g_n \in C(\mathbb{R}) \}| < \mathfrak{c}$, and we say \mathcal{C} is

strongly independent if for all n, and any $\phi \in C(X, \mathbb{R}^n)$ we have $|\mathcal{C} \cap \{ g \circ \phi : g \in C(\mathbb{R}^n) \}| \leq n$.

Clearly ‘independent’ implies ‘weakly independent’. Further, writing $\sum_{i=1}^n \phi_i \in$

ϕ_i as $g \circ \phi$ where $\phi(x_1, \ldots, x_n) = (\phi_1(x_1), \ldots, \phi_n(x_n))$ and $g(y_1, \ldots, y_n) =$

$\sum_{i=1}^n g_i(y_i)$, we see that ‘strongly independent’ implies ‘independent’.
Lemma 4 If a space X has a weakly independent family \mathcal{C} of size $\geq \kappa$, then $\text{basic}(X) \geq \kappa$.

Proof. Let Φ be a basic family for X. For each $f \in \mathcal{C}$, pick ϕ_1, \ldots, ϕ_n from Φ so that $f = \sum_{i=1}^n g_i \circ \phi_i$. Then as \mathcal{C} is weakly independent, the map taking f in \mathcal{C} to $\{\phi_1, \ldots, \phi_n\}$ in $\bigcup_{m \in \mathbb{N}}[\Phi]^m$ is $< \kappa$-to-1. Since $|\mathcal{C}| \geq \kappa$, it follows that $|\Phi| \geq \kappa$ — as required.

To create large functionally independent families we will start from large linearly independent sets in the vector space \mathbb{R}^n (with its usual inner product).

Proposition 5 Fix a natural number n.

(a) There is a Cantor set C contained in the unit $(n-1)$-sphere of \mathbb{R}^n such that for any distinct x_1, \ldots, x_n in C, the x_i’s form a basis of \mathbb{R}^n.

(b) Let J be a non-trivial closed bounded interval, and B a homeomorph of the n-cube, J^n. There is a Cantor set D contained in $C(B, J)$ such that for any distinct d_1, \ldots, d_n in D the map $d = (d_1, \ldots, d_n) : B \to J^n$ is an embedding.

Proof (of (a)). Let $U = \{(x_1, \ldots, x_n) \in (\mathbb{R}^n)^n : x_1, \ldots, x_n \text{ are linearly independent}\}$. Then U is open and dense in $(\mathbb{R}^n)^n$. One can further check that $U_K = \{K \in \mathcal{K}(\mathbb{R}^n) : \text{ for all distinct } x_1, \ldots, x_n \in K (x_1, \ldots, x_n) \in U\}$ is comeagre in the space $\mathcal{K}(\mathbb{R}^n)$ of compact subsets of \mathbb{R}^n with the Hausdorff metric. (This is the Mycielski–Kuratowski technique, see 19.1 of [6].) Since the set $P_K = \{K \in \mathcal{K}(\mathbb{R}^n) : K \text{ is perfect}\}$ is also comeagre in the Polish space $\mathcal{K}(\mathbb{R}^n)$, and perfect compact metric spaces contain Cantor sets, we can indeed pick a Cantor set $C \subseteq \mathbb{R}^n$ such that for any distinct x_1, \ldots, x_n in C, the x_i’s are linearly independent, and hence form a basis. Mapping each x in C to $x/\|x\|$ we see we can assume C is contained in the unit $(n-1)$-sphere.

Proof (of (b)). First note that if (b) holds for one choice of J and B, then it holds for all. We will use the interval $J = [-1, +1]$, and the closed n-ball, $B^{(n)}$. Also note that we work in the inner product space \mathbb{R}^n.

Fix a Cantor set C in the unit sphere of \mathbb{R}^n as in part (a). Let $\hat{C} = \{\hat{c} : c \in C\}$ where \hat{c} is the linear functional on \mathbb{R}^n dual to c, namely $\hat{c}(x) = \langle c, x \rangle$. Then, by duality, \hat{C} is a Cantor set in $\mathbb{R}^* \subseteq C(\mathbb{R}^n, \mathbb{R})$, and any n-many distinct elements of \hat{C} are linearly independent.

Let $D = \{\hat{c} \mid B^{(n)} : c \in C\}$. Then D is a family of continuous functions mapping $B^{(n)}$ to $[-1, +1]$, with the required properties.

Compact Case, Fixed n

Proposition 6 Fix K a compact space of dimension $> n \geq 2$.

Then there is a Cantor set $C \subseteq C(K, I)$ such that for all $\phi \in C(K, I^n)$ we have $|C \cap \{g \circ \phi : g \in C(I^n, I)\}| \leq n$.

5
Proof. Recall (see [1], for example) that a normal space, X, has dimension $\leq n$ if and only if every continuous map from a closed subspace into the n–sphere (which is homeomorphic to the boundary of the $(n + 1)$–cube) has a continuous extension over X. Hence, as dim $K > n$, there is a map $p : K \to \partial I^{n+1}$ and closed subspace A, such that $p \upharpoonright A : A \to \partial I^{n+1}$ can not be continuously extended (over K into ∂I^{n+1}). We may suppose that $A = p^{-1}\partial I^{n+1}$.

By Proposition 5 (b) there is a Cantor set D contained in $C(I^{n+1}, I)$ such that for any distinct $d_1, \ldots, d_{n+1} \in D$ the map $d = (d_1, \ldots, d_{n+1}) : I^{n+1} \to I^{n+1}$ is an embedding. For distinct $d_1, \ldots, d_{n+1} \in D$, and embedding $d = (d_1, \ldots, d_{n+1})$ define $f_d = d \circ p$. Note that $f_d \neq f_{d'}$ if $d \neq d'$. Let $C = \{f_d : d \in D\}$. This is a Cantor set in $C(K, I^{n+1})$.

Suppose, for a contradiction, for some $\phi \in C(K, I^{n})$, there were $(n + 1)$ distinct elements f_1, \ldots, f_{n+1} in $C\{g \circ \phi : g \in C(I^n, I)\}$. So, for $i = 1, \ldots, n+1$, we have $f_i = d_i \circ p$ for some (distinct) $d_i \in D$, and $f_i = g_i \circ \phi$ for some $g_i \in C(I^n, I)$.

Let $d = (d_1, \ldots, d_{n+1})$, and $g = (g_1, \ldots, g_{n+1})$. So $p \circ d = g \circ \phi$. Since d is an embedding, we have $p = h \circ \phi$ where $h = (d^{-1} \circ g)$ is in $C(I^n, I^{n+1})$.

Let $A' = h^{-1}\partial I^{n+1}$. Note that $\phi^{-1}A' = p^{-1}\partial I^{n+1} = A$, so ϕ maps A inside A'. Since $K' = \phi(K)$ is contained in I^n it has dimension $\leq n$. Hence the map $h : A' \to \partial I^{n+1}$ has a continuous extension $h' : K' \to \partial I^{n+1}$.

But now $p \upharpoonright A : A \to \partial I^{n+1}$ has a continuous extension over K into ∂I^{n+1}—namely $h' \circ \phi$—contradiction!

Locally Compact, All Compact Subspaces Small

Proposition 7 Let $(C_n)_n$ be a sequence of compact spaces such that each C_n has finite dimension $> n$. Let $X = \bigoplus_n C_n$, and γX be a compactification of X.

Then there is a Cantor set C contained in $C(\gamma X, I) \subseteq C(X)$ such that C is strongly independent for $C(X)$ (and hence for $C(\gamma X)$).

Hence basic $(X) \geq c$ and basic $(\gamma X) \geq c$

Proof. For each $n \geq 2$, fix the Cantor set, E_n, guaranteed by Proposition 6 for the $> n$ dimensional space C_n, and fix a homeomorphism h_n from the standard Cantor set C to E_n. Let $C = \{f_c : c \in C\}$ where f_c is constantly equal to zero on C_1 and on the remainder $\gamma X \setminus X$, and equals $h_n(c)/n$ on C_n. Note that each f_c is continuous, and so C is a Cantor set in $C(\gamma X, I)$.

Take any $n \geq 2$ and $\phi \in C(X, \mathbb{R}^n)$. Considering the restrictions of ϕ and elements of C to C_n, it is immediate from the properties of E_n, that $|C \cap \{g \circ \phi : g \in C(\mathbb{R}^n)\}| \leq n$. Thus C is strongly independent.

Compact, Infinite Dimensional

Proposition 8 Let K be compact and infinite dimensional. Then there is a Cantor set C contained in $C(K, I)$ which is strongly independent.

Hence, basic $(K) \geq c$.

6
Proof. We show an appropriate, strongly independent, Cantor set C exists. Dowker has shown \[2\] that if X is a normal space and M is a closed subspace with $\dim \leq n$ then $\dim X \leq n$ if and only if $\dim F \leq n$ for all closed subsets of X disjoint from M. In particular: (*) if M contains a single point, x, then $\dim X > n$ if and only if $\dim F > n$ for some closed subset F of $X \setminus \{x\}$. For each point x in K pick a closed neighborhood of minimal dimension, B_x. By compactness, for some x, B_x is infinite dimensional, and so all neighborhoods of x are infinite dimensional. Let $K_1 = K$. Apply (*) to get a compact subset C_1 of K_1 not containing x with $\dim C_1 > 1$. Pick a closed neighborhood K_2 of x disjoint from C_1. Apply (*) to get a compact subset C_2 of K_2 not containing x with $\dim C_2 > \max(2, \dim C_1)$. Inductively, we get a pairwise disjoint collection, \{\$C_n : n \in \mathbb{N}\}$, of compact subsets of K which are either (i) of strictly increasing (finite) dimensions, or (ii) all infinite dimensional. Let K' be the closed subspace $\bigoplus_n C_n$.

In the first case we apply Proposition 4 to K' to get a strongly independent Cantor set in $C(K')$ and hence in $C(K)$ as required.

In the second case, by Proposition 8, for each n there is a Cantor set $E_n \subseteq C(C_n, I)$ such that for all $\phi \in C(C_n, I^n)$ we have $|E_n \cap \{g \circ \phi : g \in C(I^n, I)\}|$ finite. Fix homeomorphisms h_n between the standard Cantor set C and E_n.

Define, for $c \in C$, a map $f_c : K' \to I$ by: f_c is identically zero on $K' \setminus \bigoplus_n C_n$ and $f_c(x') = (1/n)h_n(c)(x')$ if $x' \in C_n$. Then the f_c's are continuous, can be continuously extended over K, and so form a Cantor set C in $C(K, I)$. Further, if $\phi \in C(K, I)$ and $f_1, \ldots, f_{n+1} \in C$, then the f_i's are not all in $\{g \circ \phi : g \in C(I^n, I)\}$, because $f_1 \mid E_n, \ldots, f_{n+1} \mid E_n$ are not all in $\{g \circ (\phi \mid E_n) : g \in C(I^n, I)\}$, by choice of E_n.

Thus the Cantor set C is strongly independent as required.

The Non Locally Compact Case Let F be the metric fan where $F = (\{n \times \mathbb{N}\} \cup \{\ast\}$, points in $\mathbb{N} \times \mathbb{N}$ are isolated and basic neighborhoods of \ast are $B(\ast, n) = (\{n, \infty\} \times \mathbb{N}) \cup \{\ast\}$. Then a separable metric space is not locally compact if and only if it contains a closed copy of the metric fan. Thus if $\text{basic}(F) = c$ then $\text{basic}(X) = c$ for every separable metric space X which is not locally compact.

We first reduce the calculation of basic (F) to that of basic $(\mathbb{N}, [-1, +1])$. Here we say that a family $\hat{\Phi} \subseteq C(\mathbb{N}, [-1, +1])$ is ‘basic for \mathbb{N} into $[-1, 1]$’ if $\forall \hat{f} \in C(\mathbb{N}, [-1, +1])$ there are $\hat{\phi}_1, \ldots, \hat{\phi}_n \in \hat{\Phi}$, and $\hat{g}_1, \ldots, \hat{g}_n \in C(\mathbb{R})$ such that $\hat{f} = \sum_{i=1}^n \hat{g}_i \circ \hat{\phi}_i$, and define basic $(\mathbb{N}, [-1, +1]) = \min\{\mid \hat{\Phi} : \hat{\Phi}$ is basic for \mathbb{N} into $[-1, 1]\}$.

Proposition 9 \(\text{basic}(F) \geq \text{basic}(\mathbb{N}, [-1, +1])\).

Proof. Let Φ be basic for F. We will show that there is a $\hat{\Phi}$ with $|\hat{\Phi}| = |\Phi|$ such that $\hat{\Phi}$ is basic for \mathbb{N} into $[-1, +1]$.

For each $\phi \in \Phi$ and n such that ϕ maps $\{n\} \times \mathbb{N}$ into $[-1, +1]$, define $\hat{\phi}_n$ in $C(\mathbb{N}, [-1, +1])$ by $\hat{\phi}_n(m) = \phi(n, m)$. Let $\hat{\Phi}_n = \{\hat{\phi}_n : \phi \in \Phi\}$ and $\hat{\Phi} = \bigcup_n \hat{\Phi}_n$. Note that $|\hat{\Phi}| = |\Phi|$.

7
Take any \(\hat{f} \in C(\mathbb{N}, [-1, +1]) \). Define \(f : F \rightarrow [-1, +1] \) by \(f(*) = 0 \) and \(f(n, m) = f(m)/n \). Note \(f \) is continuous. So there are \(\phi_1, \ldots, \phi_n \) in \(\Phi \) and \(g_1, \ldots, g_n \) in \(C(\mathbb{R}) \) such that \(f = \sum_i g_i \circ \phi_i \).

By continuity of \(\phi_1, \ldots, \phi_n \) at * there is an \(N \) such that each \(\phi_i \) maps \(\{N\} \times \mathbb{N} \) into a closed bounded interval, say \(I_i \). Fix homeomorphisms \(h_i \) of \(\mathbb{R} \) with itself carrying \(I_i \) to \([-1, +1]\). Now we see that, replacing \(g_i \) with \(g_i \circ h_i^{-1} \) and \(\phi_i \) with \(h_i \circ \phi_i \), we can assume that the \(\phi_i \) all map into \([-1, +1]\).

Thus \(\phi_1 = (\hat{\phi}_1)_N, \ldots, \phi_n = (\hat{\phi}_n)_N \) are in \(\hat{\Phi}_N \subseteq \hat{\Phi} \). Further, as \(\hat{f}(m)/N = f(N, m) = \sum_{i=1}^{n} g_i(\phi_i(N, m)) = \sum_{i} g_i(\hat{\phi}_i(m)) \), we have that \(\hat{f} = \sum_{i=1}^{n} \hat{g}_i \circ \hat{\phi}_i \) where \(\hat{g}_i = N \circ \hat{g}_i \) — as required.

Proposition 10 There is a Cantor set \(C \) contained in \(C(\mathbb{N}, [-1, +1]) \) such that \(|C \cap \{ \sum_{i=1}^{n} g_i \circ \phi_i : g_1, \ldots, g_n \in C(\mathbb{R}) \}| \leq \aleph_0 \) for all \(\phi_1, \ldots, \phi_n \) from \(C(\mathbb{N}, [-1, +1]) \).

Thus \(C \) is `weakly independent’ in the sense appropriate for \(C(\mathbb{N}, [-1, +1]) \), and so basic \((\mathbb{N}, [-1, +1]) = c \).

Proof. Define \(C = \{ f \in C(\mathbb{N}, [-1, +1]) : f(\mathbb{N}) = \{-1, +1\} \} \). Then \(C \) is a Cantor set, and we will prove that, for each \(n \), and finite \(\Phi' \subseteq C(\mathbb{N}, [-1, +1]) \) we have \(|C \cap L(\Phi')| = \aleph_0 \).

Fix \(n \geq 1 \). Fix \(\phi \in C(\mathbb{N}, [-1, +1]^n) \). As in the argument that `strongly independent’ implies `independent’ to prove the claim it suffices to show that there are only countably many \(f \in C \) representable as \(g \circ \phi \) for some \(g \in C([-1, +1]^n, [-1, +1]) \).

Let \(K = \phi(\mathbb{N}) - a \) compact subset of \([-1, +1]^n \). A composition \(g \circ \phi : \mathbb{N} \rightarrow [-1, +1] \) is determined by the values of \(g \) on \(\phi(\mathbb{N}) \), and so definitely determined by its values on \(K \).

If \(g \circ \phi \) is in \(C \), then, by continuity, \(g \mid K \) maps \(K \) onto \([-1, +1] \). Thus \(K \) is partitioned into two non–empty clopen pieces, one of which is mapped by \(g \) to \(-1\), and the other to \(+1\). But a compact metric space only has countably many clopen subsets. So there are only a countable number of possibilities for \(g \) on \(K \), and only countably many \(f \in C \) representable as \(g \circ \phi \) — as claimed.

Corollary 11 Let \(X \) be finite dimensional, locally compact, not compact, separable metrizable. Then:

1. there is a basic family \(\Phi \subseteq C(X) \) such that \(\Phi \) is finite, but
2. there is no basic* family \(\Phi^* \) consisting of bounded functions such that \(|\Phi^*| < c \).

Proof. The first claim is just the Main Theorem of [3]. For the second part, first note that since \(\mathbb{N} \) can be embedded as a closed subspace of \(X \), it is sufficient to show that (2) holds for \(\mathbb{N} \). Suppose, for contradiction, there exists a basic family \(\Phi^* \) for \(\mathbb{N} \) consisting of bounded function whose cardinality is \(< c \).

Write \(\Phi^* = \bigcup_{n \in \mathbb{N}} \Phi_n \) where \(\Phi_n = \{ \phi : -n \leq \phi(a) \leq n, \text{ for each } n \in \mathbb{N} \} \).

Then \(C^*(\mathbb{N}) = \bigcup_{n \in \mathbb{N}} L(\Phi_n) \). Let \(F = \{ f \in C(\mathbb{N}, [-1, +1]) : f(\mathbb{N}) = \{-1, +1\} \} \)
as in the proof of Proposition 10. There exists an \(m_0 \) such that \(|F \cap L(\Phi_{m_0})| = c\). But the argument in the proof of Proposition 10 shows \(L(\Phi_{m_0}) \leq |\Phi^*| < c\) which is the desired contradiction.

3 Compact Spaces

Proposition 12 Suppose \(K \) is compact and finite dimensional. Then basic \((K) \leq cof([w(K)]^{\omega_1}, \subseteq)\).

Proof. Let \(K \) be compact of dimension \(n \). Then there is a directed set \((\Lambda, \leq)\) where \(|\Lambda| = w(K)\), compact metric \(K_\lambda \) with \(\dim K_\lambda = n \), and for all \(\lambda \geq \mu \) a continuous map \(f_{\lambda, \mu} \) such that \(K = \lim \{ K_\lambda : \lambda \in \Lambda \} = \{ \langle x_\lambda \rangle \in \prod_{\lambda} K_\lambda : \lambda \geq \mu \implies f_{\lambda, \mu}(x_\lambda) = x_\mu \}\).

Let \(\mathcal{C} \) be cofinal in \([w(K)]^{\omega_1}, \subseteq\). We may suppose that each \(C \) in \(\mathcal{C} \) is directed. For each \(C \in \mathcal{C} \), \(C = \lim \{ K_\lambda : \lambda \in C \} \) is compact, metric of dimension \(\leq n \). So \(K_C \) has a basic family \(\Phi_C \) of size \(2n + 1 \). Define \(p_C = \pi_C \mid \lim \{ K_\lambda : \lambda \in \Lambda \} \). Define \(\Phi_C = \{ \phi' \circ p_C : \phi' \in \Phi_C^* \} \), and \(\Phi = \bigcup_{C \in \mathcal{C}} \Phi_C \). Then \(|\Phi| = |C|\). We show that \(\Phi \) is basic – as required.

To this end, take any \(f \in C(K) \). Extend \(f \) to continuous \(\hat{f} : \prod_{\lambda \in \Lambda} K_\lambda \to \mathbb{R} \) to \(\mathcal{C} \). Then there is a countable \(\Lambda_0 \subseteq \Lambda \) and continuous \(g_0 : \prod_{\lambda \in \Lambda_0} K_\lambda \to \mathbb{R} \) such that \(\hat{f} = g_0 \circ \pi_{\Lambda_0} \). Pick \(C \in \mathcal{C} \) such that \(C \supseteq \Lambda_0 \). Note that as \(C \) is directed, \(\{ \langle x_\lambda \rangle_{\lambda \in C} : \lambda \geq \mu \implies f_{\lambda, \mu}(x_\lambda) = x_\mu \} = \lim \{ K_\lambda : \lambda \in \Lambda \} \).

We can write \(\hat{f} = \hat{g} \circ \pi_C \) where \(\hat{g} = g_0 \circ \pi_{\Lambda_0}^C \) is a continuous map \(\prod_{\lambda \in C} K_\lambda \) into \(\mathbb{R} \). Thus \(f = \hat{f} \mid \lim \{ K_\lambda : \lambda \in \Lambda \} = g \circ p_C \) where \(p_C = \pi_C \mid \lim \{ K_\lambda : \lambda \in \Lambda \} \) and \(g = \hat{g} \mid \lim \{ K_\lambda : \lambda \in \Lambda \} \).

Now we see that \(g = \sum_{i=1}^{2n+1} g_i \circ \phi_i' \) where \(\phi_i' \in \Phi_C^* \), and \(g_i \in C(\mathbb{R}) \). Thus

\[
\hat{f} = g \circ p_C = \sum_{i=1}^{2n+1} g_i \circ (\phi_i' \circ \pi_C) = \sum_{i=1}^{2n+1} g_i \circ \phi_i,
\]

where \(\phi_1, \ldots, \phi_{2n+1} \) are in \(\Phi_C \subseteq \Phi \) and \(g_1, \ldots, g_{2n+1} \) are in \(C(\mathbb{R}) \).

Suppose \(K \) is compact and \(w(K) \) has uncountable cofinality. Then recalling that \(cof([w(K)]^{\omega_1}, \subseteq) = \kappa \) in this case, from Propositions 8 and 12 we deduce:

Theorem 13 If \(K \) is compact and its weight has uncountable cofinality, then either \(K \) is finite dimensional, basic \((K) = cof([w(K)]^{\omega_1}) = w(K) \), and basic \((K) < w(K)^{\omega_1} \) if and only if \(w(K) < c \), or \(K \) is infinite dimensional, basic \((K) = |C(K)| = w(K)^{\omega_1} \), and \(w(K) < basic(K) \) if and only if \(w(K) < c \).
Thus, considering only compact spaces K whose weight has uncountable cofinality, the statements: ‘there is a space with basic $(K) < w(X)^{\aleph_0}$’, ‘there is a space with $w(K) < \text{basic } (K)$’, and ‘the continuum hypothesis fails’, are all equivalent. Further, ‘there is a space with $w(K) < \text{basic } (K) < w(K)^{\aleph_0}$’ is false.

Call a space X ‘nice’ if it contains a discrete subset D with $|D| = w(X)$. Note that there are many examples of compact ‘nice’ spaces, for example: 2^κ, $I^n \times 2^\kappa$ and I^κ are compact, ‘nice’ and span the dimensions.

Proposition 14 If K is compact and ‘nice’, then $\text{basic } (K) \geq \text{cof } ([w(K)]^{\aleph_0}, \subseteq)$.

Proof. Let D be discrete in K with $w(K) = |D|$. Let $K' = \overline{D}$, and $K'_c = K' \setminus D$. Since $w(K') = w(K)$ and basic $(K) \geq \text{basic } (K')$ it suffices to show basic $(K') \geq \text{cof } ([w(K')]^{\aleph_0}, \subseteq)$.

Note that D is open in K', so K'_c is compact. Take any function $f \in C(K', \mathbb{R}^n)$. Then $f(K'_c)$ is a compact subset of \mathbb{R}^n, so it is a G_δ subset, and we can write $f(K'_c)$ as $\bigcap_{n \in \mathbb{N}} U_n$, where U_n is open set in \mathbb{R}^n for each n. As K' is compact, each $K' \setminus f^{-1}(U_n)$ is closed and discrete, and hence finite. So we can define a countable subset of D for each f by $K_f = \bigcup_{n \in \mathbb{N}} K' \setminus f^{-1}(U_n)$.

Now suppose $\Phi \subseteq C(K')$ with $|\Phi| < \text{cof } ([w(K')]^{\aleph_0}, \subseteq)$. We show Φ is not a basic family.

Given $\phi_1, \phi_2, \ldots, \phi_n$ from Φ, let $\hat{\phi} = (\phi_1, \ldots, \phi_n) : K' \to \mathbb{R}^n$, and $C(\phi_1, \ldots, \phi_n) = C_{\hat{\phi}}$. Let $C = \{C(\phi_1, \ldots, \phi_n) : \phi_1, \ldots, \phi_n \in \Phi\}$. Since $|\Phi| < \text{cof } ([w(K')]^{\aleph_0}, \subseteq)$, the collection C is not cofinal in $[D]^{\aleph_0}$. Therefore there exists a countably infinite subset C of D such that for any ϕ_1, \ldots, ϕ_n, C is not a subset of $C(\phi_1, \ldots, \phi_n)$.

Take any ϕ_1, \ldots, ϕ_n in Φ. Pick x in C but not $C(\phi_1, \ldots, \phi_n)$. By definition of $C(\phi_1, \ldots, \phi_n)$ there exists $x' \in K'_c$ such that $\hat{\phi}(x) = \hat{\phi}(x')$. Then for any g_1, \ldots, g_n from $C(\mathbb{R})$, $\sum_{i=1}^{n} g_i \circ \phi_i$ takes the same value at a point in C and at a point in K'_c.

But now we see that if we enumerate $C = \{x_1, x_2, \ldots\}$, and define h by $h(x_n) = 1/n$ and h is identically zero outside C, then h is continuous and $h(C)$ is disjoint from $h(K'_c)$. Thus h can not be represented by any finite collection of Φ, and so Φ is not basic.

From the identity $w(K)^{\aleph_0} = \text{cof } ([w(K)]^{\aleph_0}, \subseteq) \times \kappa$ and Propositions 8, 12 and 14 we conclude:

Theorem 15 If K is compact and ‘nice’ then:

either K is finite dimensional and basic $(K) = \text{cof } ([w(K)]^{\aleph_0}, \subseteq)$,

or K is infinite dimensional and basic $(K) = |C(K)| = w(K)^{\aleph_0}$.

Thus considering only ‘nice’, finite dimensional, compact spaces K whose weight has countable cofinality (for example, $K = 2^{\aleph_0}$), it is always true that $w(K) < \text{basic } (K)$, and it is consistent and independent (depending on the value of the continuum, κ) whether basic $(K) < w(K)^{\aleph_0} = |C(K)|$.
4 Open Questions

The most immediate question is whether the restriction to ‘nice’ compacta in Proposition 14 is necessary.

Question 16 Is it true that basic \((K) \geq \text{cof}(\|w(K)\|^{\aleph_0}, \subseteq) \) for all compact spaces \(K \)?

The proofs of the results for compact spaces clearly rely on facts and techniques that only apply to compact spaces. But it seems possible that the results could be extended to larger classes of spaces.

Question 17 Do the results for basic \((K) \) for compact \(K \) hold for (1) locally compact, Lindelof spaces or even (2) all Lindelof spaces?

In a different direction, what about discrete spaces?

Question 18 Is basic \((D(\aleph_0)) = \aleph_1 ? = 2^{\aleph_0} ? \)

References

[1] P. Alexandrov, On the dimension of normal spaces, Proc. Roy. Soc. London 189 (1947), 11–39
[2] C.H. Dowker, Local dimension of normal spaces, Quart. J. Math. 6 (1955), 101–120
[3] Z. Feng and P. Gartside, Spaces with a Finite Family of Basic Functions, (submitted)
[4] Z. Feng and P. Gartside, On Hilbert’s 13th Problem, (submitted)
[5] D. Hilbert, Mathematische Probleme, Nachr. Akad. Wies. Gottingen (1900), 253 297, Gesammelte Abhandlungen, Bd. 3, Springer, Berlin, 1935, pp. 290–329.
[6] A. Kechris, Classical descriptive set theory, published by Springer in 1995
[7] A. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. (Russian) Dokl. Akad. Nauk SSSR 114, 1957, pp 953–956
[8] P. Ostrand, Dimension of metric spaces and Hilbert’s problem 13. Bull. Amer. Math. Soc. 71 1965 619–622
[9] S. Shelah, Cardinal arithmetic, Oxford University Press, 1994
[10] Y. Sternfeld, Hilbert’s 13th problem and dimension. Geometric aspects of functional analysis (1987–88), 1–49, Lecture Notes in Math., 1376, Springer, Berlin, 1989.
[11] A. Stone, Cardinals of closed sets, Mathematika 6 1959 99–107