Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy

Chiara Tontini and Silvia Bulfone-Paus*

Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Ra, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.

Keywords: mast cells, IgE, desensitization, food allergy, biologics, immunotherapy, cytokines, inhibitory receptors

INTRODUCTION

Nowadays, over 20% of the world population actively suffers from one or more allergies, among which approximately 10% is living with food allergy (1, 2). Food allergies carry a high risk of developing systemic reactions upon allergen exposure, with 0.4–39.9% of allergic subjects experiencing at least one severe episode in their lifetime (3).

Abbreviations: AIT, allergen immunotherapy; Akt, protein kinase B; BTK, Bruton Tyrosine Kinase; ERK, extracellular signal-regulated kinase; FcεRI, high-affinity IgE receptor; FcεRII, low affinity IgE receptor; FcγRII, low affinity IgG receptor; IgE, immunoglobulin E; IgG, immunoglobulin G; IL, interleukin; IL-4Ra, interleukin 4 receptor alpha chain; ITAM, immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibition motif; Kd, dissociation constant; LARI, low affinity allergic response inhibitors; MCs, mast cells; NF-k B, Nuclear Factor kappa-light-chain-enhancer of activated B cells; PI3K, phosphatidylinositol 3-OH kinase; SCF, stem cell factor; Siglec, Sialic acid-binding immunoglobulin-like lectins; sIgE, allergen-specific immunoglobulin E; STAT6, signal transducer and activator of transcription 6; Syk, Spleen Tyrosine Kinase; TSLP, Thymic stromal lymphopoietin; Tregs, T regulatory cells.
Anaphylaxis is a systemic reaction involving two or more organ systems, occurring shortly after the exposure to the culprit allergen. It manifests with a plethora of symptoms, including hives, angioedema, shortness of breath, vomiting, hypotension and cardiovascular collapse, which is potentially life-threatening and requires emergency treatment (4). The complex allergic reaction starts with the cross-linking of high-affinity immunoglobulin E (IgE) receptors (FceRI) expressed on effector cells such as mast cells (MCs) and basophils by IgE-allergen complexes. FcεRI engagement causes cell degranulation and release of preformed mediators, such as amines (histamine, polypeptides), proteoglycans (heparin, chondroitin sulphates, serglycin), proteases (tryptase, chymase-1, cathepsin G, granzyme B, carboxypeptidase A3), lysosomal enzymes (β-glucuronidase, β-hexosaminidase, aroyl sulfatase), newly formed lipid mediators (leukotrienes B4-C4, prostaglandin D2-E2), cytokines and chemokines (GM-CSF, IL-1β, IL-8, IL-13, MCP-1) (5, 6).

MC activation is also the cause of the delayed release of newly synthesized cytokines and chemokines (5, 6), that promote dendritic cell recruitment and activation (7, 8), T helper 2 (Th2) skewing (9–11), affinity maturation and epitope spreading on B and T cells (12, 13), additional IgE synthesis (14), and altogether the amplification of allergic responses (15). The release of vasoactive products, such as histamine, cysteinyl leukotrienes and platelet activating factor (16), serves as the main pathogenetic mechanism of anaphylaxis, which can lead to generalized cardiovascular involvement and collapse, the latter burdened with high mortality and morbidity (4).

In addition to their prominent role in the genesis of allergic and anaphylaxis symptoms, MCs actively participate to the complex interplay of innate and adaptive immunity in the defense against pathogens, wound healing and tumor surveillance (17–19). Due to the conspicuous array of surface receptors expressed, capable of sensing the surrounding environment and participate to immune recognition, MCs act as both initiators and suppressors of local immune responses (17, 20, 21). MCs engage in a bidirectional cross-talk with various immune cells, such as dendritic cells (10, 22–24), T cells (25) including T regulatory (Treg) cells (26–28), eosinophils (29, 30), B cells (31) and other cell types (17). Being capable of secreting both pro- and anti-inflammatory cytokines, like TNFα (7) and IL-10 (32), and several chemokines (6), MCs also contribute to the prevention and resolution of food allergy (33). Along with MCs, the above cell populations are considered equally important targets in food allergy treatment, however outside the main scope of the review and discussed elsewhere (34–36).

Strategies to pre-emptively curb MC activation are currently being explored for therapeutic purposes. Allergen-specific immunotherapy, recently developed biologics, a combination of both, and the discovery of new druggable targets are the most promising options available to treat food allergy.

The purpose of this review is to highlight the different immunological mechanisms targeting IgE-mediated MC activation as a therapeutic option for the treatment of food allergy, with particular focus on peanut allergy. However, two crucial preliminary considerations should be made. First, no treatment option currently available is uniquely targeting MCs. In fact, receptors inhibiting MC activation are shared among different cell types, and cytokines and other soluble mediators have pleiotropic effects affecting multiple cell populations at once. Second, any treatment inhibiting IgE-mediated MC activation should also take into consideration the broader implications and the potential loss of MC protective functions. Hence a benefit/risk assessment should be made, especially when considering highly disruptive interventions, like active MC depletion, not covered by the present manuscript (37).

ALLERGEN-INDEPENDENT APPROACHES

IgE-Mediated Mast Cell Activation

IgE antibodies are the mainstay of allergic responses. They are monomeric glycoproteins composed of two light and heavy chains, the latter showing four constant Ig-like domains (C C1–4), bound via disulphide bridges (38). Several factors are involved in the development of functional IgE antibodies, including specific affinity maturation, conformational/allosteric properties, and glycosylation patterns (38–40). IgE blood concentration in healthy individuals is very low (below 210 IU/ml) compared to normal levels of IgG (5.65–17.65 mg/ml) (41, 42). IgE are mostly sequestered in peripheral tissues, with an average half-life estimated of 16–20 days in the skin versus 2–4 days in blood (43). Given the high affinity of FcεRI to IgE (Kd = 10¹⁰–10¹¹ M⁻¹) and the slow dissociation rate (44, 45), the majority of IgE are cell-bound to either FcεRI or the low-affinity receptor FcεRII (CD23) via the Cε3-4 Fc domains (46). FcεRI is the high-affinity IgE receptor constitutively expressed on MCs and basophils, while inducible on monocytes, dendritic cells, eosinophils and neutrophils (47–50). A tight correlation between atopic status, circulating IgE levels and surface expression of FcεRI on MCs, basophils and other cell types has been proven (45, 47, 51, 52). While peripheral blood-resident cells acquire IgE directly from the circulation, perivascular tissue-resident MCs, sensing changes in total IgE levels, probe IgE from blood vessels using endoluminal cell processes (53).

Furthermore, occupancy of the FcεRI receptor is crucial to ensure its expression on the cell membrane by MCs and basophils, as shown by mechanistic studies demonstrating increased FcεRI expression upon IgE binding due to decreased FcεRI endocytosis and degradation (44, 54–56). IgE bound to FcεRI persists as long as MCs are alive, thus indicating that MCs preferentially display rather than catabolize IgE. FcεRI-mediated constitutive internalization of IgE by dendritic cells and monocytes promotes serum IgE clearance instead (57).

FcεRI is constituted by one alpha and one beta chain on MCs and basophils, or a single alpha chain on monocytes and dendritic cells (45, 58, 59), complexed with two additional gamma chains with immunoreceptor tyrosine-based activation motif (ITAM) domains acting as docking and activation sites for the Spleen tyrosine kinase (Syk) pathway (60, 61). The activation of the Syk, phosphatidylinositol 3-OH kinase/protein kinase B
(PI3K/Akt) and extracellular signal-regulated kinase (ERK) pathways leads to increased intracellular calcium flux, calcium-dependent release of preformed mediators stored in intracellular granules and activation of transcription factors for eicosanoids, cytokines and chemokines production (62).

MCs and basophils express the highest density of FcεRI receptor [estimated 0.7 × 10^5 molecules per cell measured on LAD2 MCs (63)], with a bell-shaped dose–response when exposed to increasing allergen concentrations (64). Degranulation is tightly regulated via mechanisms modulating the MC activation threshold, not limited to IgE–FcεRI complex expression. In fact, the nature and dose of the eliciting allergen also play a modulatory role. For instance, simultaneous stimulation using multiple allergens shows an additive effect on MC activation when suboptimal allergen concentrations are used. Conversely, stimulation with supra-optimal allergen concentrations inhibits MC degranulation (64, 65).

Anti-IgE/FcεRI Strategies

Given the pivotal role of IgE in the initiation and maintenance of allergic responses, increasing evidence supports the use of anti-IgE molecules as therapeutic strategy to treat allergic diseases, including food allergy (Tables 1 and 2). Anti-IgE therapy disrupts the IgE–FcεRI axis via the active removal of circulating IgE and the downregulation of FcεRI on MCs, basophils and dendritic cells (136–138). By removing circulating IgE, the turnover between circulating and cell-bound allergen-specific IgE (sIgE) slowly declines, ultimately reducing the amount of sIgE bound on the cell surface and decreasing the likelihood of allergen-IgE cross-linking and allergen-specific effector cell responses (139–141) (Figure 1A).

Furthermore, anti-IgE treatment induces FcεRI downregulation by interfering with the accumulation of IgE–FcεRI complexes occurring at the cell surface due to reduced receptor occupancy by IgE (54–56, 136). The reduced availability of sIgE–FcεRI complexes further inhibits the release of Th2 cytokines and allergic mediators upon allergen challenge by MCs, basophils and dendritic cells (136, 137, 141–144).

Some anti-IgE treatments also inhibit IgE binding to the CD23 receptor, the low affinity IgE receptor constitutively expressed on naïve B cells, exerting an inhibitory effect on IgE-mediated antigen presentation (145, 146), inducing energy or apoptosis of membrane IgE-bearing B cells (147, 148) and in some cases modulating IgE production (146, 149). However, treatment discontinuation is followed by the quick restoration of pre-treatment IgE levels (150).

Omalizumab, a humanized anti-IgE monoclonal antibody, is the first and most studied biologic, currently used to treat severe asthma and chronic spontaneous urticaria (Table 2). It binds to IgE Ce3 domains, outside of the FcεRI-binding site, and sterically disrupts binding to both FcεRI and CD23 (151). Omalizumab does not affect pre-bound IgE-receptor interactions, due to conformational changes of receptor-bound IgE masking omalizumab binding sites, and does not induce IgE cross-linking on the cell surface (151, 152).

Omalizumab downregulates the surface expression of FcεRI in both basophils and MCs (153). However, while FcεRI expression declines rapidly in circulating basophils (less than 24 h), this process requires longer time in tissue resident MCs (estimated 10–20 days) (136, 154, 155).

The effects exerted by omalizumab on MCs are of clinical relevance also in non-IgE-mediated diseases such as inducible urticarias (156) and MC activation syndrome (105), thus suggesting a broad MC stabilizing function. In food allergy, several clinical trials and real-life evidence showed the safety and usefulness in inhibiting allergic responses of omalizumab as monotherapy (157–160) (Table 1), or in association with allergen-specific immunotherapy, further discussed in Combination Treatments With Biologies section.

Designed Ankyrin Repeat Proteins (DARPins), genetically engineered antibody mimetic proteins, recognize IgE Ce3 domains with high specificity and affinity, and have been shown to be 10,000-fold more efficient than omalizumab in dissociating IgE complexes in vitro and in both ex vivo transgenic mouse models and human tissues. Thus, their rapid onset of action makes them of particular interest as treatment option to thwart pre-initiated anaphylaxis episodes (161) (Table 3). Along with DARPins, other new generation high-affinity anti-IgE monoclonal antibodies like ligelizumab can actively bind IgE Ce3–4 fragments and efficiently disrupt IgE–FcεRI complexes without, however, interfering with CD23 binding, differently than omalizumab (146) (Table 3). Thus, DARPins and ligelizumab might improve treatment efficacy in food allergy, albeit to date no trials on food allergy are ongoing (Table 2).

New anti-IgE strategies involve self-assembled mRNA vaccines, that provide epitopes mimicking IgE Ce3 domains and stimulate the production of endogenous anti-IgE IgG antibodies, eventually modulating circulating IgE levels via the same mechanisms of omalizumab and other anti-IgE molecules (166, 167). These new treatments inhibited IgE-mediated anaphylaxis in animal models (Table 3) and were tested in a Phase I trial conducted on allergic rhinitis patients (NCT01723254, Table 2); however their application in food allergy is still unclear.

Concerns over the long-lasting implications of irreversible IgE suppression might also arise, considering that, along with omalizumab and other high affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest. The use of covalent heterobivalent low affinity molecules, broad anti-IgE agents bind also to IgE antibodies serving housekeeping functions, like protection against parasitic infections and tumor surveillance (185–187). Therefore, alternative strategies have been developed to specifically target IgE of interest.
Strategy	Reference	Trial identifier	Study acronym	Investigational product	Phase	Placebo controlled	Age range	Tested peanut dose	Study status as of 12/2020
EPI	(66) NCT01170286	PEP01.09	Epidermal Patch (peanut DBV712)	1	yes	6-50	20-100-250-500 mcg		
	(67, 68) NCT01904604	DAIT CoFAR6	Epidermal Patch (peanut DBV712)	2	yes	4-25	100-250 mcg		
	(69) NCT01675882	VIPES	Epidermal Patch (peanut DBV712)	2	yes	6-55	50 mcg		
	(70) NCT01955109	OLFUS-VIPES	Epidermal Patch (peanut DBV712)	2	no	7-56	250 mcg		
	(71, 72) NCT02636699	PEPITES	Epidermal Patch (peanut DBV712)	3	yes	4-11	250 mcg		
	NCT02916446	REALISE	Epidermal Patch (peanut DBV712)	3	yes	4-11	250 mcg		
	NCT03211247	EPITOPE	Epidermal Patch (peanut DBV712)	3	yes	1-3	250 mcg		
OIT	(73) NCT01259904	STOP-I	Peanut Flour	1	no	7-17	800 mg		
	NCT02203799	PeanutFlour	Peanut Flour	1	no	5-16	6-10 gr		
	NCT01601522	REB 07-348	Peanut Protein	1	yes	5-10	500 mg		
	NCT04163562	INP20-20	Peanut Oral Formulation (INP20)	1-2	yes	12-65	n/d		
	(74, 75) NCT00815035	PnOIT3	Peanut Flour	2	yes	1-6	4-5-6 gr		
	(76) NCT00932828	DEVIL	Peanut Flour	2	no	9-36	5 gr		
	(77-79) NCT02103270	POISED	Peanut Protein	2	yes	7-55	300-4000 mg		
	NCT01867671	IMPACT Liquid Extract, Peanut Flour	2	yes	12-48	5 gr			
	NCT00597675	PMIT	Peanut Flour	2	yes	1-18	4710 mg		
	NCT03907397	CAFETERIA	Peanut Protein	2	no	4-14	9043 mg		
	NCT02046083	PITA 3	Whole Peanuts (crushed)	2-3	yes	12-18	2 gr		
	(81) NCT02635776	PALISADE	Peanut protein capsule (AR101)	3*	yes	4-55	1043 mg		
	(82) NCT03201003	ARTEMIS	Peanut protein capsule (AR101)	3*	yes	4-17	2043 mg		
	NCT03736447	POSEIDON	Peanut protein capsule (AR101)	3*	yes	1-3	600-1000 mg		
	(83) n/d	n/d	Whole Peanuts (crushed)	Other	no	3-14	500 mg		
	(84) n/d	n/d	Peanut Flour	Other	yes	1-16	6 mg		
	(85) ISRCTN62416244	STOP-II	Peanut Flour	Other	yes	7-16	1400 mg		
	(86) NCT02350660	15098	Peanut Flour	Other	no	4-80	306 mg		
	(87) DRKS00004553	Peanut OIT	Peanut Protein	Other	yes	3-17	300 mg		
	(88) NCT02457416	TAKE-AWAY	Peanut Protein	Other	no	5-15	250-4000 mg		
	NCT02149719	BOPI-1	Boiled Peanut	Other	no	8-16	1400 mg		
	NCT03937726	BOPI-2	Boiled Peanut	Other	no	7-18	1440 mg		
	NCT03532360	2017-3204	Whole Peanuts (crushed)	Other	no	2-40	30-300-4172 mg		
	NCT03648320	GUPI	Peanut Protein	Other	no	18-40	1400 mg		
	NCT04511494	SmOChO	Peanut Protein	Other	no	1-3	775 mg		
OIT/SLIT	(89) NCT01084174	NA_00032256	Peanut Flours, Peanut Extract	1-2	yes	6-21	3.7 mg (SLIT), 2 gr (OIT)		

(Continued)
Strategy	Reference	Trial identifier	Study acronym	Investigational product	Phase	Placebo controlled	Age range	Tested peanut dose	Study status (as of 12/2020)
SLIT	NCT03070561	JHU NA_00072576	Major Peanut Allergen Ara h 2 in Dissolving Film	Early 1	no	3-30	60 mcg		
	NCT04603300	INT301-101	Peanut Extract Toothpaste Formulation (INT301)	1	yes	18-55	n/d		
	NCT03463135	TDR14287	Glucopyranosyl Lipid A Peanut Extract	1	yes	12-55	n/d		
(90, 91)	NCT00580606	DAIT CoFAR4	Glycerinated Allergenic Peanut Extract	1-2	yes	12-40	5 gr		
(92)	NCT01373242	SLIT-TLC	Liquid Peanut Protein Extract	1-2	no	1-12	5 gr		
(93–95)	NCT00597727	SLB	Liquid Peanut Protein Extract	2	yes	1-11	5 gr		
	NCT02304991	FARE/SLIT	Liquid Peanut Protein Extract	2	yes	12-48	5 mg		
	NCT00429429	1R21AT002557-02	Liquid Peanut Protein Extract	Other	no	6-35	8 gr		
SCIT/ Vaccine	NCT00650668	DAIT CoFAR1	E. Coli-Encapsulated, Recombinant Modified Peanut Proteins Ara h 1, Ara h 2, and Ara h 2 (EMP-123)	1	no	18-50	n/d		
	NCT02163018	HAL-MPE1/0043	Aluminium hydroxide adsorbed peanut extract (HAL-MPE1)	1	yes	18-65	n/d		
	NCT02991885	HAL-MPE1/0049	Aluminium hydroxide adsorbed peanut extract (HAL-MPE1)	1	yes	5-50	n/d		
	NCT02851277	0892-CL-1001	ARA-LAMP-vax (ASP0892), Multivalent Peanut (Ara h1, h2, h3) Lysosomal Associated Membrane Protein DNA Plasmid Vaccine	1	yes	18-55	n/d		
	NCT03755713	0892-CL-1002	ARA-LAMP-vax (ASP0892), Multivalent Peanut (Ara h1, h2, h3) Lysosomal Associated Membrane Protein DNA Plasmid Vaccine	1	yes	12-17	n/d		
	NCT04200989	IRB-19-7380	Intralymphatic Immunotherapy with Peanut Allergen	1-2	no	15-80	n/d		
degranulation and cytokine production in human MCs and basophils, decreased bronchoconstriction in isolated human bronchi, and proved effective in preventing anaphylaxis in a passive systemic anaphylaxis model using humanized mice (170, 188) (Table 3). Although ibrutinib is well known for its gastrointestinal, cardiovascular and hematological side effects, newer generation molecules, like acalabrutinib, show better safety profile and could become effective, fast-acting oral treatments (189). To this date, however, no clinical trials using BTK inhibitors in food allergy are on-going.

Current evidence suggests that IgE from atopic individuals show an increased sialic acid content, contrary to subjects with no atopy, thus pointing at an important role of sialylation to determine IgE allergenicity (40). Neuraminidase-induced desialylation of IgE in a non-FcεRI dependent manner also diminished downstream signaling in MCs (40). Therefore, desialylation of IgE promises to decrease IgE allergenicity, without disrupting non-allergic IgE activity (Table 3). However, sialidases are ubiquitously expressed in human tissues and play an important role in a variety of physiological and pathological processes, including tumor, infection and inflammation (190), hence the manipulation of the sialylation axis remains an ambitious goal. Notwithstanding, selective small molecule inhibitors of human sialidases hold a great potential for therapeutic development and warrants further investigation (191).

Cytokines Modulating Mast Cell Activity in Allergy

Cytokines involved in Th2 responses, such as IL-4 and IL-13, promote MC proliferation, FcεRI expression, IgE-mediated degranulation and cytokine production, adhesion and chemotaxis (171, 192, 193). IL-4 and IL-13 receptors share a common alpha chain (IL-4Rα), broadly expressed on lymphocytes, granulocytes and MCs, forming different functional heterodimers according to the associated beta chain (i.e. IL-4R Type I and II, IL-13R), which ultimately activate the intracellular signal transducer and activator of transcription 6 (STAT6) via the phosphorylation of Janus Kinases (Jak1-3,}

TABLE 1 | Continued

Strategy	Reference	Trial identifier	Study acronym	Investigational product	Phase	Placebo controlled	Age range	Tested peanut dose	Study status (as of 12/2020)
Biologics + OIT	(97–99)	NCT01290913	Xolair and Peanut Allergy	Omalizumab, Peanut Flour	1-2	no	7-25	1 gr	Terminated
	(100, 101)	NCT02402231	FASTXP201	Omalizumab, Peanut Flour	2	no	12-22	2800 mg	Terminated
		NCT00932282	PAIE/Xolair	Omalizumab, Peanut Flour	1-2	no	12+	950 mg - 20 gr	Terminated
		NCT01781637	PRROTECT	Omalizumab, Peanut Flour	1-2	yes	7-25	4 gr	Terminated
	(102)	NCT01510626	22872	Omalizumab, Multi-Allergen OIT	1	no	4-55	2 gr	Terminated
	(103)	NCT02826611	M-TAX	Omalizumab, Multi-Allergen OIT	2	yes	4-55	2 gr	Terminated
	(104)	NCT04045301	BOOM	Omalizumab, Multi-Allergen OIT	2	yes	6-25	1.5 gr	Terminated
		NCT03881696	OUTIMATCH	Omalizumab, Multi-Allergen OIT	3	yes	1-55	600 mg	Terminated
		NCT03682770	R668-ALG-16114	Dupilumab, Peanut protein capsule (AR101)	2	yes	6-17	2044 mg	Completed
	(105)	NCT00949078	NA_00026397	Omalizumab	2	no	18-50	n/d	Terminated
	(106)	NCT02643862	MAP-X	Omalizumab	1-2	yes	4-55	2 gr	Terminated
		NCT00382148	Q3623g	Omalizumab	2	no	6-75	n/d	Terminated
		NCT00086606	Q2788g	Omalizumab	2	no	6-75	n/d	Terminated
		NCT03679676	IRB-47935	Omalizumab, Dupilumab	2	yes	6-25	1043 mg	Terminated
		NCT03793608	R668-ALG-1702	Dupilumab	2	no	6-17	n/d	Terminated
	(107)	NCT02920021	ANB020-003	ANB020 (Etokimab)	2	yes	18+	n/d	Terminated

*Phase 3 pivot trials only. EPI, Epicutaneous immunotherapy; n/d, not disclosed; OIT, Oral Immunotherapy; SLIT, Sublingual Immunotherapy.

- Completed
- Active, not recruiting
- Recruiting
- Not yet recruiting
- Terminated.
| Biological target | Reference | Trial identifier | Study acronym | Investigational product | Condition(s) | Phase | Placebo controlled | Age range | Study status (as 12/2020) |
|-------------------|-----------|-----------------|---------------|--------------------------|--------------|-------|--------------------|-----------|-------------------------|
| **IgE** | (108) | n/d | n/d | Omalizumab | Asthma | 3* | yes | 12-75 | |
| | (109) | n/d | n/d | Omalizumab | Asthma | 3* | yes | 12-76 | |
| | (110) | n/d | n/d | Omalizumab | Asthma | 3* | yes | 12-75 | |
| | (111) | NCT00046748 | INNOVATE | Omalizumab | Asthma | 3* | yes | 12-75 | |
| | (112) | n/d | SOLAR | Omalizumab | Asthma, Allergic Rhinitis | 3* | yes | 12-74 | |
| | (113) | NCT00314574 | EXTRA | Omalizumab | Asthma | 3* | yes | 12-75 | |
| | (114) | NCT00079937 | OGE025AA05 | Omalizumab | Asthma | 3* | yes | 6-12 | |
| | (115) | NCT01287117 | ASTERIA I | Omalizumab | Chronic Spontaneous Urticaria | 3* | yes | 12-75 | |
| | (116) | NCT01292473 | ASTERIA II | Omalizumab | Chronic Spontaneous Urticaria | 3* | yes | 12-75 | |
| | (117) | NCT01264939 | GLACIAL | Omalizumab | Chronic Spontaneous Urticaria | 3* | yes | 12-75 | |
| | (118) | NCT03280550 | POLYP1 | Omalizumab | Chronic Rhinosinusitis with Nasal Polyps | 3* | yes | 18-75 | |
| | (119) | NCT03280537 | POLYP2 | Omalizumab | Chronic Rhinosinusitis with Nasal Polyps | 3* | yes | 18-75 | |
| | (119–121)| NCT0078195 | DAIT ITN019AD | Omalizumab, Ragweed AIT | Allergic Rhino-conjunctivitis, Grass Pollen Allergy | 3 | yes | 18-50 | |
| | (122) | UMIN00001545 | n/d | Omalizumab, Cow’s milk AIT | Cow’s milk allergy | 2 | no | 6-14 | |
| | (84) | NCT01157117 | DAIT AADCRC-MSSM-01 | Omalizumab, Cow’s milk AIT | Cow’s milk allergy | 2 | yes | 7-35 | |
| | (110) | NCT01703312 | QGE031B2203 | QGE031 (Ligelizumab) | Allergic Asthma | 1-2 | yes | 18-65 | |
| | (111) | NCT01716754 | QGE031B2201 | QGE031 (Ligelizumab) | Asthma | 2 | yes | 18-75 | |
| | (112) | NCT02336425 | QGE031B2204 | QGE031 (Ligelizumab) | Asthma | 2 | yes | 18-75 | |
| | (113) | NCT01552629 | QGE031X2201 | QGE031 (Ligelizumab) | Atopic Dermatitis | 2 | yes | 18-65 | |
| | (114) | NCT04513548 | QGE031C2203 | QGE031 (Ligelizumab) | Chronic Spontaneous Urticaria, Cholinergic Urticaria, Cold Urticaria | 1 | yes | 18-79 | |
| | (115) | NCT02477332 | QGE031C2201 | QGE031 (Ligelizumab) | Chronic Spontaneous Urticaria | 2 | yes | 18-75 | |
| | (116) | NCT03437278 | QGE031C2202 | QGE031 (Ligelizumab) | Chronic Spontaneous Urticaria | 2 | yes | 12-18 | |
| | (117) | NCT03580369 | QGE031C2302 | QGE031 (Ligelizumab) | Chronic Spontaneous Urticaria | 3 | yes | 12+ | |
| | (118) | NCT03580356 | QGE031C2303 | QGE031 (Ligelizumab) | Chronic Spontaneous Urticaria | 3 | yes | 12+ | |
| | (119) | NCT01723254 | Anti-IgE VACCINE | Anti-IgE Vaccine (PF-06444753, PF-06444752) | Allergic Rhinitis | 1 | yes | 18-55 | |
| **IL-4Ra** | (120) | NCT04442269 | R668-ABPA-1923 | Dupilumab | Allergic Bronchopulmonary Aspergillosis | 3 | yes | 12+ | |
| | (121) | NCT03935971 | 2018P002882 | Dupilumab | Allergic Contact Dermatitis | 4 | no | 18+ | |
| | (122) | NCT03558997 | R668-ALG-16115 | Dupilumab | Allergic Rhinoconjunctivitis, Grass Pollen Allergy | 2 | yes | 18-55 | |
| | (123) | NCT04502966 | GRADUATE | Dupilumab | Allergic Rhinoconjunctivitis, Grass Pollen Allergy | 2 | yes | 18-65 | |
| | (124) | NCT03595488 | 1828-A-18 | Dupilumab | Aspirin-exacerbated Respiratory Disease | 2 | no | 18+ | |
| | (125) | NCT04442256 | 2019-004889-18 | Dupilumab | | 4 | no | 18-70 | |

(Continued)
Biological target	Reference	Trial identifier	Study acronym	Investigational product	Condition(s)	Phase	Placebo controlled	Age range	Study status (as 12/2020)
Il-33									
ST2/IL-33R									
TSLP	(134)	NCT01405963	20101183	AMG 157 (Tezepelumab)	Asthma	1	yes	18-60	
		NCT02698501	UPSTREAM	MED10929 (Tezepelumab)	Asthma	2	yes	18-75	
Siglec 8									
Tyk2) (194, 195). In particular, the proliferation and chemotaxis of MCs induced by IL-4/IL-4R engagement in mucosal interfaces are crucial for the amplification of local allergen responses and responsible for augmented permeability in the intestines and enhanced sensitivity to food allergens and anaphylaxis in experimental mouse models (196–198).

Alongside classical Th2 cytokines, MCs respond rapidly to tissue damage signals such as IL-33 and thymic stromal lymphopoietin (TSLP), alarmins produced mostly by epithelial, innate lymphoid cells and, in some conditions, by MCs themselves (199, 200). IL-33 is known to promote maturation and survival of MCs, enhance the production of pre-formed mediators (e.g. tryptase, serotonin) (201), cytokines (e.g. IL-4, IL-6, IL-13, GM-CSF), and chemokines (e.g. CCL2, CCL17) (201–203), while inhibiting the expression of regulatory cytokines, such as IL-10 (204). Furthermore, IL-33 potentiates IgE-mediated degranulation (202). However, a long-lasting IL-33 stimulation downregulates FcεRI expression in human MCs, thus inhibiting IgE-dependent MC activation (201), and generating a hyporesponsive phenotype in both mouse and human MCs (205).

TSLP shares common properties with IL-33. They both promote the proliferation and differentiation of MC progenitors (206), and the production of pro-inflammatory cytokines (IL-5, IL-6, IL-13, GM-CSF) and chemokines (CXCL8, CCL1) without inducing the release of pre-formed granule mediators (207). In a food allergy mouse model, TSLP participates in the skin sensitization to food antigens, promoting basophil recruitment and initiating Th2 responses, whereas IL-33 is essential for gut-mediated sensitization and effector responses, including anaphylaxis (208).

Anti-Cytokine Treatments (IL-4/13, IL-33, TSLP)

Several anti-cytokine treatments have shown promising results in food allergy. The monoclonal antibody dupilumab, blocking IL-4 and IL-13 from binding to the IL-4Rα chain, is currently approved for treatment of severe atopic dermatitis and asthma (Table 2). IL-4Rα blockade broadly reduces Th2-responses (171) while increasing Treg suppressive responses (98), reduces eosinophil infiltration (171) and MC proliferation in mucosal tissues of IL4Rα−/− mice (198). Dupilumab potentially inhibits MC priming and enhancement of IgE-mediated responses by IL-4 (171) (Table 3), while hampering B cell activation and IgE synthesis in mice (171, 209). In fact, recent evidence shows an important role of dupilumab in modulating B cell recall responses, as demonstrated by the reduction of peanut-specific IgE production by human B cells in vitro, and sustained inhibition after in vivo re-exposure in a peanut anaphylaxis mouse model (210) (Figure 1B). Albeit limited to a single case report, dupilumab is an efficient therapeutic option for multiple co-occurring food allergies (211), and under clinical trial as treatment for peanut allergy (Table 1).

The upstream role of IL-33 and TSLP in promoting Th2 responses makes them interesting targets for the treatment of atopic conditions, including food allergy (36) (Figure 1C). In a Phase II study 73% of peanut allergic patients treated with the anti-IL-33 antibody etokimab achieved tolerance to target peanut dose, showing reduced IL-4, IL-5, IL-13 and IL-9 production after an in vitro T cell challenge with peanut extract, along with reduced peanut-specific IgE levels compared to the placebo arm (107) (NCT02920021, Table 1). As for TSLP blockade, mouse models suggest some efficacy, in combination with either IL-25 or IL-33 receptor monoclonal antibodies, in preventing sensitization to food allergens, and promoting tolerance in association with oral immunotherapy (172) (Table 2). Anti-TSLP (tezepelumab, AMG 157, MEDI9929) has been successfully used in reducing allergen-induced bronchoconstriction and indexes of airway inflammation in patients with allergic asthma (NCT01405963) (134, 212) and is currently under investigation in a study combining tezepelumab with allergen-specific immunotherapy for the induction of tolerance in subjects with cat allergy (NCT02237196, Table 2). However, no clinical studies assessing the efficacy of anti-TSLP treatment in food allergy are currently on-going.

EXPLOITING MAST CELL INHIBITORY RECEPTORS

Known inhibitory receptors of IgE-mediated MC activation are the Fc gamma receptor FcγRIib, CD200R, Sialic acid-binding immunoglobulin-type lectins (Siglec) of the CD33 family and CD300a. Most inhibitory receptors exert broad suppressive functions on MC activation, with the exception of FcγRIib and CD200R, producing allergen-specific inhibition.

Excluding CD200R, all inhibitory receptors expressed on MCs show intracellular immunoreceptor tyrosine-based inhibition motif (ITIM) domains that actively inhibit the
phosphorylation of the Syk pathway via the recruitment of tyrosine phosphatases with Src homology 2 domains (e.g. SHP, Grb2 and SHIP), or PI3K binding-motifs (213, 214), disrupting intracellular calcium flux and IgE-dependent intracellular activation (Figure 1D).

FcγRII/CD32 receptors are immunoglobulin-like transmembrane proteins binding to the hinge region of IgG and IgG immune complexes. Of the three different subtypes, namely, FcγRIIa (CD32a), FcγRIIb (CD32b), and FcγRIIc (CD32c), only FcγRIIb is inhibitory. In mice, IgG binding to FcγRIIb inhibits antigen-specific IgE-mediated activation and Th2 cytokine production by MCs, IgE antibody production by B cells (215–218), while promoting dendritic cell-mediated mucosal tolerance by inducing Treg recruitment in the gut (215, 217, 218). In humans, while FcγRIIb is widely expressed on B cells, dendritic cells, monocytes and basophils (219), FcγRIIb transcripts are detectable in gastrointestinal MCs (220), but not skin MCs (221). Although the expression of FcγRIIb by gut MCs could correlate with increased pro-tolerogenic functions, the lack of FcγRIIb-mediated inhibition on skin MCs could be a reason for the increased risk of allergic sensitization via the skin compared to the gut route, as currently suggested by the dual exposure hypothesis (222), and diverging clinical responses observed in the skin versus gut after allergen immunotherapy (220).

Given the antigen-specific nature of FcγRIIb-mediated tolerance, its engagement could be especially useful to selectively inhibit food allergic reactions. Promising results have been achieved in *in vitro* studies using human basophils, bone marrow-derived MCs of human FcεRIα-transgenic mice, FcεRIα-transfected human cell lines and the HMC-1 mast cell
TABLE 3 | Interventions aimed at reducing IgE-mediated mast cell activation currently at pre-clinical/early clinical stage.

Biological target	Reference	Intervention	Observed results	Food allergens tested	Human tested*	Experimental setup
IgE	(162) DARPin E2_79 (E001)	E001 binds to IgE-Cc3 domains, promoting active disassociation of pre-formed IgE-FcRI complexes via allosteric inhibition	no	no	Selection of DARPin and surface plasmon resonance, fluorescence and ELISA binding assays in vitro	
	(163) DARPin E2_79 (E001)	E001 binds to IgE-Cc3 domains, promoting active disassociation of pre-formed IgE-FcRI complexes via allosteric inhibition	no	yes	Selection of DARPin, analysis of recombinant proteins in ELISA and surface plasmon resonance	
Biparotropic DARPin bi53_79 (E002)		E002 is a biparotropic variant complexing E001 to a second anti-IgE (DARPin E3_53) recognizing receptor-bound IgE, showing higher disruptive efficacy on IgE-FcRI complexes	no	yes	Human primary basophils FcRI expression and degranulation assays	
Biparotropic DARPin bi53_79 (E002)		E002 binds to IgE-Cc3 domains and receptor-bound IgE, actively disrupting IgE-FcRI complexes	no	yes	Culture of human PCLS sensitized with plasma of HDM-allergic donors	
	(165)	Rapid disassociation of pre-formed IgE-FcRI complexes inhibits degranulation and terminates pre-initiated allergic reactions. Co-engagement of FcγRIIB receptor improves the disruptive efficacy and reduces anaphylactogenicity.	no	yes	Isolated human basophils sensitized to grass pollen mix	
	(40)	Removal of sialic acid residues from IgEs of allergic donors attenuates degranulation by effector cells and reduces anaphylaxis	peanut	yes	De-sialylation of IgE using neuraminidase fusion protein (NEUFcRI)	
	(166)	Vaccine using virus-like particles conjugated to peptides and adjuvants to generate antibodies binding to the IgE Cc3 domain, promoting the active removal of circulating IgE	no	yes	Quantification of serum IgE levels pre and post treatment in Cynomolgus monkeys, competition ELISA for anti-IgE antibody avidity testing with human sera	
	(167)	Vaccine using self-assembled peptides to generate antibodies binding to the IgE Cc3 domain, promoting the active removal of circulating IgE and inhibition of acute IgE-mediated anaphylaxis	no	no	CD-1 mice DNP anaphylaxis model, quantification of mouse free IgE levels via competition ELISA	
slgE	(168) Covalent Heterovalent Inhibitors (cHBIs)	Irreversible binding to circulating human slgE specific for Ara h2 and Ara h 6	peanut	yes	Human BAT using Ara h 2 - Ara h 6 sera from peanut allergic patients with or without cHBIs	
FcRI	(169) Anti-human FcRI monoclonal antibodies	Binding to human FcRI, rapid suppression of IgE-mediated anaphylaxis and rapid desensitization achieved and maintained using repeated small doses. Treatment induces loss of blood basophils, removal of membrane IgE and FcRIxa on mouse peritoneal MCs	egg	yes	huFcRIxa/F709 expressing huFcRIxa and huIL-4Rα-anaphylaxis and desensitization model	
BTK	(170) Ibrutinib, Acalabrutinib	Inhibited IgE-mediated degranulation and release of IL-6, IL-8, IL-10, MCP-1 and GM-CSF by skin-derived human MCs. Prevented IgE-mediated bronchoconstriction and anaphylaxis	no	no	Skin-derived human MCs, bronchial constriction assay using isolated human bronchi. PSA model using NSG-SGM3 humanized mice sensitized to NP-ligand and huIL-4Rα ligand-free mice lung inflammation model using intranasally administered IL-4 and IL-13	
IL-4Rxα	(171) Dupilumab, IL-4/IL-13 MC priming (indirect evidence of the effects of IL-4Rxα blockade)	Dupilumab prevents the expression of chemokines, proinflammatory Th2 cytokines and eosinophil infiltration in the lungs, while not affecting circulating eosinophils. Exposure to IL-4 enhances IgE-mediated MC responses, causing an increase in Th2-associated chemokine and cytokine gene expression upon IgE crosslinking	no	yes	In vitro-generated human MCs cultured with or without IL-4, IL-13 and stimulated with Fel d 1 - Fel d 1 IgE	

(Continued)
TABLE 3 | Continued

Biological target	Reference	Intervention	Observed results	Food allergens tested	Human tested*	Experimental setup
TSLP-IL-25-IL-33R/ST2	(172)	Anti-mouse TSLP, IL-25 and IL-33R/ST2 monoclonal antibody cocktail	Binding and neutralization of key alarmins TSLP, IL-25 and IL-33 cytokine receptor. Suppression of established allergy and anaphylaxis upon allergen challenge, reduction and prevention of sensitization to allergens	egg	no	BALB/c mice medium-chain triglycerides plus egg white anaphylaxis model
						Cytokine, antibodies and mouse mast cell protease 1 measurement by ELISA, immunofluorescence and flow cytometry for tissue analysis
FcγRIib	(173)	FcγRIib-FcγRIx bifunctional fusion protein	Simultaneous binding of FcγRIib and FcγRIx inhibits Syk phosphorylation and FcγRIx-mediated activation	no	yes	Binding analysis on CHO3D10 and HMC-1 cells expressing FcγRIib
						Human basophil histamine release using NIP/anti-NIP stimulation
	(174)	Anti-IgE/FcγRIib fusion protein (bivalent DARPin E53 and DE53-Fc)	Simultaneous binding to FcγRI-bound IgE and FcγRIib inhibits basophil and MC activation	no	yes	Selection of DARPin and surface plasmon resonance
	(175)	Ara h 2-Fcγ fusion protein (AHG2)	Inhibition of peanut-specific anaphylaxis and inhibition of histamine release by engagement of FcγRIib, decreased airways induced inflammation by peanut challenge	peanut	yes	Human basophil histamine release using whole peanut extracts
						Transgenic mice expressing human FcγRIib and C57BL/6 and Fcgr2b−/− mice peanut allergy model
	(176)	Anti-IgE/FcγRIib fusion protein (D11, E53)	Simultaneous binding to FcγRI-bound IgE and FcγRIib inhibits basophil degranulation and anaphylaxis, abrogating intracellular activation signaling pathways	no	yes	Selection of DARPin and surface plasmon resonance and ELISA binding assays
						Human primary basophils from healthy and grass pollen allergic donors used for BAT, inhibition assay
						Transgenic mice expressing human FcγRIa anaphylaxis model
	(177)	Anti-Ara h 2 monoclonal antibody	Anti-Ara h 2 binds to FcγRIib receptor, inhibits systemic and local allergic reactions elicited by peanut and protects from anaphylaxis	peanut	no	BALB/c mice sensitized intraperitoneally with peanut extract, local and intravenous anaphylaxis model
CD200R	(178)	Soluble CD200-IgG fusion protein	Inhibition of FcγRI-mediated MC degranulation and cytokine secretion	no	yes	Human cord-blood derived and skin MCs, mouse C57BL/6 bone marrow and skin MCs
						MC degranulation assays using anti-FcγRI monoclonal antibodies, cytokine assay by ELISA
						Human cord blood-derived MCs, Murine bone marrow-derived MCs
CD300a	(179)	Bispecific IgE-CD300a antibody fragment (E1)	Dose-dependent inhibition of signaling events induced by FcγRI and IgE-mediated MC degranulation in vitro, abrogates anaphylaxis and allergic airway inflammation in vitro	no	yes	BALB/c DNP PCA mouse model, CVA-sensitized asthma model
Siglec 3	(180)	Liposomal nanoparticles coated with CD33L and antigen (TNP)	Engagement of CD33 prevents antigen-specific degranulation, suppresses MC IgE-mediated activation and anaphylaxis and inhibits IgE-mediated airway bronchoconstriction via phosphorylation of Syk, PLCγ1, MEK and ERK	peanut	yes	Human LAD2 and skin-derived MCs
(CD33)						Lung PCLS bronchoconstriction challenge
						Humanized Mcpt5-Cre+/−R26-CD33+ TNP PCA and PSA mouse models, peritoneal MCs
Siglec 8	(181)	Anti-Siglec 8 monoclonal antibodies	Engagement of Siglec-8 on MCs inhibits FcγRI-dependent release of mediators, except IL-8, reduces calcium flux and anti-IgE-evoked bronchoconstriction	no	yes	Human CD34-derived MCs
						Intrapulmonary bronchi for bronchoconstriction challenge using anti-IgE
						RBL-2H3 cells transfected with normal and mutated forms of Siglec-8

(Continued)
TABLE 3 | Continued

Biological target	Reference	Intervention	Observed results	Food allergens tested	Human tested*	Experimental setup
AK002 (lirentelimab)	(182)	AK002 induced apoptosis of eosinophils activated with IL-5, promoted antibody-dependant cell cytotoxicity by NK cells, reduced the infiltration of eosinophils in lung tissues and prevented anaphylaxis through the inhibition of MCs	no	yes	Human peripheral blood eosinophils and lung tissues NSG-SGM3 BLT mice NP PSA model	
AK002 (lirentelimab)	(135)	AK002 decreases eosinophils in sputum and inhibits IgE-mediated activation of MCs in lung tissues	no	yes	Sputum and lung tissue from asthma patients, analysis of gene expression for eosinophils and MCs, MC activation assay using anti-FcεRI antibodies BALB/c mice sensitized to casein and intranasally immunized using casein mixed with 20% nanoemulsion adjuvant (ultra-pure soybean oil with cetylpyridinium chloride). Duodenal and jejunal MCs quantification via tissue sections	
Intranasal casein nanoemulsion vaccine	(183)	Suppression of MC activation and infiltration in small intestine upon oral challenge. Broad reduction in Th2 immunity against casein, increased Th1, Th17 and IL-10 responses.	cow’s milk	no	BALB/c mice peanut anaphylaxis model, subcutaneous immunization with CuMVtt combined with either whole extract of roasted peanut (Ara R), Ara h 1 or Ara h 2 Murine bone marrow–derived MCs sensitized with sera of mice sensitized to peanut and challenged with peanut extract	
Vaccine using engineered virus-like particles displaying major peanut allergens (CuMVtt-Ara R, CuMVtt-Ara h 1, CuMVtt-Ara h 2)	(184)	Protection against anaphylaxis, induction of peanut-specific IgG antibodies, reduced tissue infiltration by eosinophils and MCs, reduced MC activation upon allergen challenge	peanut	no		

*Tested in human sera/cells/tissues. BAT, basophil activation test; BTK, Bruton Tyrosine Kinase, CuMVtt, Cucumber Mosaic Virus including tetanus toxoid epitopes; DARPin, Designed Ankyrin Repeat Protein; DNP, dinitrophenol; ELISA, Enzyme-linked Immunosorbent Assay; FcεRI, high-affinity IgE receptor; FcγRIIb, Fc gamma receptor II b; HDM, house dust mites; IgE, Immunoglobulin E; IL-4Ra, Interleukin-4 receptor alpha; IL-33R/ST2, Interleukin -33 receptor; MC, mast cell; NIP, 4-hydroxy-3-iodo-5-nitrophenylacetyl; NK, natural killer; NP, 4-hydroxy-3-nitrophenylacetyl; OVA, ovalbumin; PCA, passive cutaneous anaphylaxis; PCLS, precision cut lung slices; PSA, passive systemic anaphylaxis; sIgE, allergen-specific Immunoglobulin E; TNP, trinitrophenol; TSLP, thymic stromal lymphopoietin.
line (173, 174, 176) (Table 3). Conversely, FcγRIIb bisspecific molecules specifically targeted to major allergic epitopes reduced allergen-specific responses in a peanut allergy mouse model using an RNA 2-FcγRIIb fusion protein (175) (Table 3). Furthermore, FcγRIIb exerts a pivotal role in the generation of allergen-specific tolerance during the course of allergen immunotherapy, as outlined in *Modulation of Mast Cell Reactivity Using Allergen-Specific Immunotherapy*.

As member of the Immunoglobulin receptor superfamily, CD200R is an inhibitory receptor widely expressed on myeloid cells and skin MCs, shown to hinder MC activation and cytokine release in the absence of ITIM domains but in need of FcεRI co-ligation, similar to FcγR receptors (178, 223). Antibodies targeting CD200R were effective in inhibiting MC activation in experimental mouse models and in *vitro* and tissue-derived human MCs (178) (Table 3), but no evidence of efficacy in food allergy models has been provided to date.

Siglec receptors selectively bind to sialic acid-containing glycoproteins, each with a specific sialoside ligand preference (224). Among the many Siglec receptors expressed by human MCs [i.e. Siglec 2, 3 (CD33), 5 through 10] (225, 226), CD33 and other CD33-like molecules (i.e. Siglec 5–11) are inhibitory receptors with intracellular ITIM/ITIM-like domains inhibiting FcεRI-dependent activation (227, 228).

Beyond their suppressive role in IgE-mediated activation, recent evidence also suggests an inhibitory role in IL-33-mediated activation of MCs, with reduction of airway inflammation and fibrosis markers, studied in non-allergic mouse models of cigarette-induced chronic obstructive bronchopulmonary disease and bleomycin-induced lung injury (229).

Siglec 3 and 8 are currently the most promising targets in the treatment of allergic diseases. In fact, CD33 ligand-coated liposomal nanoparticles suppress MC activation, prevent IgE-mediated anaphylaxis and induce allergen desensitization lasting a few days in ovalbumin and peanut allergy mouse models (180) (Table 3). On the other hand, the engagement of Siglec 8 reduces intracellular calcium flux and FcεRI-dependent release of mediators on human MCs (181, 229), while exerting a potent pro-apoptotic effect on human eosinophils and reducing tissue distribution *ex vivo* (135, 182, 230) (Table 3). Furthermore, in a humanized mouse model, lireetilimab (AK002) successfully inhibited IgE-mediated passive systemic anaphylaxis (182) (Table 3). In recent clinical trials, lireetilimab showed positive effects in the treatment of patients with asthma and eosinophilic gastroenteritis (135, 231), and further clinical applications are currently under investigation, albeit not for food allergy (Table 2).

Within the CD300 receptor family, only CD300a and CD300f show ITIM/ITIM-like domains, expressed on MCs. In humans, CD300 receptor ligands include phosphatidylycerine (CD300a), ceramide, sphingomyelin (CD300f), released by apoptotic, tumor or infected cells (214). In addition to the disruption of IgE-mediated activation (179), CD300a engagement also impairs MC proliferation and survival by inhibiting stem cell factor (SCF) signaling (232), whereas co-engagement of CD300f with IL-4Rα promotes IL-4 mediated activation of MCs (233). Fusion proteins targeting CD300a and IgE on MCs in a passive cutaneous anaphylaxis mouse model, showed a successful reduction in MC activation (179) (Table 3).

ALLERGEN-DEPENDENT APPROACHES

Modulation of Mast Cell Reactivity Using Allergen-Specific Immunotherapy

Allergen-specific immunotherapy (AIT) is the only disease-modifying intervention currently available to treat some allergic conditions, like insect venom allergy, allergic rhinitis and asthma due to respiratory allergy to pollens and house dust mites (234–237).

AIT consists in the repetitive exposure to escalating doses of native allergen extracts, which might induce generalized MC and basophil activation. The risk of eliciting an anaphylactic episode is mitigated by starting with very low allergen doses, by being performed only by trained professionals and in safe conditions under careful monitoring of potential early signs of systemic reaction (236, 238). The timing of dose increase depends on the protocol, ranging from weeks in conventional AIT to days/hours in rush/ultra-rush protocols (234, 238).

The concerted activity of cells from both innate and acquired immunity contributes to the efficacy of AIT (34–36), ultimately eliciting antigen-selective inhibition of MC and basophil activation and long-lasting suppression of IgE-mediated responses at large. In fact, AIT induces a pro-tolerogenic state, promoting allergenspecific IgG/IgG4 production opposed to IgE by B cells (15). IgG and IgG4 not only selectively compete with IgE in allergen binding, but also the engagement of the FcγRIIb receptor by allergen-IgG complexes cross-linking with surface IgE-FcεRI actively inhibits MC activation (218, 239–242). IgG-mediated inhibition also prevents further amplification of IgE production, by reducing Th2 cytokine release from activated MCs and basophils (242).

AIT also promotes the development of Tregs, which suppress MC activities, not only by secreting the anti-inflammatory cytokine IL-10, but also inducing MC cell anergy via OX40L receptor engagement (15, 27, 243). OX40–OX40L binding on MCs activates downstream signalling by C-terminal Src kinases, suppressing Fyn kinase activity and impairing microtubule rearrangement and degranulation (243) (Figure 1E).

Although effective, these events require time to induce a protective response, while exposure to incremental doses of allergen rapidly desensitizes MCs. However, the mechanism explaining such effect remains unclear. A study suggests that rapid incremental IgE receptor occupancy induces the depletion of cell surface IgE by internalization of IgE–FcεRI complexes (244). Others find in desensitized anergic MCs an impaired internalization of allergen–IgE–FcεRI complexes (245), and aberrant rearrangements of cytoskeleton actin fibers that inhibit FcεRI-mediated calcium flux and intracellular vesicles trafficking (246).

Rapidly desensitized MCs, in turn, produce IL-2 that contribute to Treg survival and recruitment in the periphery,
hence indirectly contributing to peripheral tolerance, as demonstrated in mice (247).

Both tolerance induction and MC desensitization are widely exploited to achieve long-term modulation and quick onset protection of allergic reactions with rush/ultra-rush protocols, respectively (248).

Allergen-Specific Immunotherapy in Food Allergy

For both treatment and prevention of severe reactions upon accidental exposure to food allergens, increasing the maximum tolerated dose of allergen is necessary and can be achieved with AIT (249).

AIT in food allergy is performed using either native allergens (e.g., whole food, allergen extracts) administered via the oral, sublingual or epicutaneous routes, or baked allergens (alone or mixed with other ingredients creating a food matrix) via the oral route (250).

Recently, the first peanut allergen powder formulation (AR101) was approved for peanut AIT by the U.S. Food and Drug Administration and European Medicines Agency (251, 252), and numerous other trials using either whole peanut or peanut extracts promoted tolerance to varying doses of crude peanut in 60–80% of treated subjects (72, 81, 83, 85, 90, 92, 94) (Table 1). However, the safety of AIT protocols in food allergy is still a matter of debate, since the risk of a severe allergic reaction during AIT cannot be completely abated (253). In fact, a 1–21% frequency of systemic adverse reactions and increased occurrence with higher peanut end goal doses were observed in peanut AIT trials (254). Furthermore, while long-term treatment is effective in preventing severe allergic reactions in AIT responders (79, 92), a fraction of subjects might still experience anaphylaxis with previously tolerated allergen doses when aggravating co-factors are present (i.e., physical exercise, use of non-steroidal anti-inflammatory drugs, infections, etc.) or due to poor AIT adherence (79, 253).

Combination Treatments With Biologics

To increase AIT safety in food allergy, newer therapeutic strategies involve the combination of AIT with biologics. Evidence suggests that omalizumab administered during AIT reduces the risk of severe reactions and facilitates AIT (97, 99, 101) (Tables 1 and 2). In fact, while AIT caused an increase in the levels of inhibitory allergen-specific IgG4, in the threshold for MC responsiveness and a reduction of Th2 cytokine production (83, 84, 92, 239), omalizumab decreased the likelihood of basophil degranulation, especially relevant during dose escalation (101). This omalizumab-induced protection is most likely dependent on basophil IgE–FceRI disengagement, as suggested by empirical evidence (159) and omalizumab pharmacokinetics.

However, studies on long-term use of omalizumab in cow’s milk AIT proved long-term omalizumab add-on treatment not being cost-effective, albeit the higher safety profile (255) (Table 2). Further trials testing the utility of omalizumab adjunct to food AIT, or other biologics like dupilumab with AR101 (NCT03682770) are currently ongoing (Tables 1 and 2).

Alternative Food Immunotherapy Approaches

Allergen-dependent strategies alternative to AIT are currently being tested. Among these, the use of hypoallergenic molecules, lacking key anaphylactogenic conformational epitopes, promises to obtain safer alternatives to AIT using native allergen extracts, as observed in fish and peanut allergy studies conducted in humans and mice, albeit still in early development (256, 257).

Other therapeutic approaches involve antibodies targeting major allergenic molecules, like a recently developed monoclonal anti-Ara h 2, preventing both local and systemic allergic reactions, as tested in a mouse model of peanut allergy (177) (Table 3). The advantage of monoclonal treatment is not only given by their competition with IgE molecules in allergen binding, but also by sharing with endogenous allergen-specific IgG antibodies the same mechanisms, regardless of patients’ capacity to mount an effective anti-allergic immune response as in conventional allergen immunotherapy. However, subjects sensitized to multiple allergen epitopes might only partially benefit from such treatment, unless multiple monoclonal antibodies against different epitopes are used in combination.

The complexing of allergenic epitopes with molecules actively promoting a tolerogenic state (i.e. production of IL-10, induction of IgG4, generation of Tregs), such as Toll-like receptor ligands (i.e. CpG, LPS, R848), viral-attenuated molecules, Siglec-engaging tolerance-inducing antigenic liposomes (STALs) and nanoformulations, is used as adjuvant immunotherapy to elicit allergen-specific tolerance (258).

An alternative approach under study is the use of plasmid DNA-based vaccines. Such vaccines induce the production of specific exogenous target proteins via allergen-coding DNA particles, exploiting the natural immune pathways leading to the production of IgG to promote long-lasting tolerance (259). In addition, peptide vaccines aimed at eliciting IgG antibody production targeted against highly allergenic epitopes are also currently under scrutiny (260).

Several recent studies on nanoformulations and adjuvant immunotherapy candidates for cow’s milk and peanut allergy have been conducted, showing promising results in mouse allergy models (183, 184, 261, 262) (Table 3). In humans, few ongoing clinical trials on DNA-based vaccines (ASP0892, NCT03755713; ASP0892, NCT02851277) and modified allergen proteins (HAL-MPE1 subcutaneous AIT, NCT02991885) are currently in Phase I, while a previous attempt with attenuated E. Coli Ara h 1-2-3 recombinant vaccine candidate failed to promote tolerance, inducing severe adverse reactions in 20% of participants (96) (Table 1).

CONCLUSIONS

Albeit complex, the allergic immune response relies on MC functionality, making these cells important targets for therapeutic intervention. Given the plethora of current and
future treatments, some considerations on most promising choices and benefit/risk assessment are warranted.

Anti-IgE treatment is a valuable option for the control of food allergy symptoms and especially beneficial when adjunct toAIT. The lack of specificity and long term use of anti-IgE treatment was historically considered a concern, due to the loss of the protective IgE housekeeping functions. However, after 20+ years of omalizumab use, no increased risks for parasitic or neoplastic events could be observed (185, 263). Apart from a negligible risk of anaphylaxis upon the first administrations (264), omalizumab has been successfully used for long-term treatment and during pregnancy with an excellent safety profile (265). However, limited data is currently available on its safety in children less than 6 years of age, hence narrowing its therapeutic range.

AIT and allergen-specific vaccines are currently the only allergen-dependent interventions showing a curative potential in food allergy, however the risks associated to the exposure to allergenic molecules for treatment purposes should be minimized as much as possible, with safer protocols and drug formulations.

While allergen-dependent therapeutic strategies require the full functionality of the immune system to work, showing great variability in treatment response between individuals, sIgE inhibition could hamper allergen-specific activation regardless of the quality of patients’ immune response, but likely without comparable long-term disease-modifying effect asAIT.

The engagement of inhibitory receptors, abundantly expressed and not unique toMCs, are not only effectively inhibiting MC functions, but their activities can be directed against specific epitopes by formulating bispecific allergen-inhibitory ligand molecules [e.g. CD33L-coated liposomal nanoparticles (180), Ara h 2-FcYRIIb fusion proteins (175)]. This envisages a targeted allergen-specific inhibitory approach, while preserving pathways for IgE-mediated housekeeping functions, albeit still in early development.

Given the wide distribution of cytokine receptors and their pleiotropic effects exerted on many different cell types, therapeutic strategies blocking IL-4Rα, or cytokines important for the initiator phase of immune responses, like IL-33 and TSLP, pose some concerns. The suppression of protective immunity, the generation of paradoxical responses as, for instance, the conjunctivitis induced by dupilumab treatment in atopic dermatitis (266), or the little known effects of long-term exposure are safety issues that need further clarification.

Conversely, the broad, simultaneous and unspecific inhibition of multiple effector cells involved in allergic responses by anti-cytokine or by anti-Siglec monoclonal antibodies is potentially beneficial in the modulation of complex inflammatory diseases, as observed in asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, eosinophilic gastroenteritis and other Th2-mediated conditions, including food allergy (Tables 1 and 2). Therefore, both anti-cytokine and anti-Siglec monoclonal antibodies are among the most encouraging disease-modifying allergen-independent therapies available in the near future for the treatment of severe allergic conditions, warranting further consideration especially in the field of food allergy.

Despite that there is still a strong need for clinical trials to assess the efficacy and safety of both allergen-independent and -dependent therapeutic approaches, the knowledge on the immunological mechanisms behind MC activation are the ultimate key for a successful allergy therapeutic intervention.

AUTHOR CONTRIBUTIONS

CT and SB-P reviewed literature and wrote the article. All authors contributed to the article and approved the submitted version.

FUNDING

CT is funded by the UK Research and Innovation (UKRI) Medical Research Council Doctoral Training Partnership (MRC-DTP) studentship. SB-P received funding from MRC (MR/S036954/1).

REFERENCES

1. Pawankar R, Canonica GW ST, Holgate ST, Lockey RF BM. Allergic Diseases As a Global Public Health Issue (2013). Available at: https://www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf.

2. Loh W, Tang MLK. The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health (2018) 15(9):2043. doi: 10.3390/ijerph15092043.

3. Nwaru BI, Hickstein L, Panesar SS, Muraro A, Werfel T, Cardona V, et al. The Epidemiology of Food Allergy in Europe: A Systematic Review and Meta-Analysis. Allergy Eur J Allergy Clin Immunol (2014) 69(1):62–75. doi: 10.1111/all.12305.

4. Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and Management of Food Allergy. Allergy Eur J Allergy Clin Immunol (2014) 69(8):1008–25. doi: 10.1111/all.12429.

5. Moon TC, Dean Befus A, Kulka M. Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Front Immunol (2014) 5:569. doi: 10.3389/fimmu.2014.00569.

6. Mukai K, Tsai M, Saito H, Galli SJ. Mast Cells as Sources of Cytokines, Chemokines, and Growth Factors. Immuno Rev (2018) 282(1):121–50. doi: 10.1111/imr.12634.

7. Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast Cell-Associated TNF Promotes Dendritic Cell Migration. J Immunol (2006) 176(7):4102–12. doi: 10.4049/jimmunol.176.7.4102.

8. Dawicki W, Jawdat DW, Xu N, Marshall JS. Mast Cells, Histamine, and IL-6 Regulate the Selective Influx of Dendritic Cell Subsets Into an Inflamed Lymph Node. J Immunol (2010) 184(4):2116–23. doi: 10.4049/jimmunol.0803894.

9. Caron G, Delneve Y, Roelants E, Duez C, Bonnefoy JY, Pestel I, et al. Histamine Polarizes Human Dendritic Cells Into Th2 Cell-Promoting Effector Dendritic Cells. J Immunol (2001) 167(7):3682–6. doi: 10.4049/jimmunol.167.7.3682.

10. Mazzoni A, Siraganian RP, Leifer CA, Segal DM. Dendritic Cell Modulation by Mast Cells Controls the Th1/Th2 Balance in Responding T Cells. J Immunol (2006) 177(6):3577–81. doi: 10.4049/jimmunol.177.6.3577.

11. Kitawaki T, Kadowaki N, Sugimoto N, Kambe N, Hori T, Miyachi Y, et al. IgE-Activated Mast Cells in Combination With Pro-Inflammatory Factors...
Inhibition of IgE-Induced Mast Cell Reactivity

87. Blumchen K, Trendelenburg V, Ahrens F, Gruetl A, Hamelmann E, Hansen G, et al. Efficacy, Safety, and Quality of Life in a Multicenter, Randomized, Placebo-Controlled Trial of Low-Dose Peanut Oral Immunotherapy in Children With Peanut Allergy. J Allergy Clin Immunol Pract (2019) 7(2):379–91.e10. doi: 10.1016/j.jacip.2018.10.048

88. Reier-Nilsen T, Michelsen MM, Ledrup Carlse KC, Carlse KH, Mowinckel P, Nygaard UC, et al. Feasibility of Desensitizing Children Highly Allergic to Peanut by High-Dose Oral Immunotherapy. Allergy (2019) 74(2):337–48. doi: 10.1111/all.13604

90. Narisety SD, Frischmeyer-Guerrerio PA, Keet CA, Gorelik M, Schroeder JF, Saini SS, et al. Efficacy and Safety of a Recombinant Anti-Immunoglobulin E Antibody, for the Treatment of Severe Allergic Asthma. J Allergy Clin Immunol (2001) 108(2):184–90. doi: 10.1067/mui.2001.117880

93. Chin SJ, Vickery BP, Kulis MD, Kim EH, Varshney P, Steele P, et al. Individually Dosed Omalizumab: An Effective Treatment for Severe Allergic Asthma. SOLAR. Allergy (2004) 59:709–13. doi: 10.1111/j.1398-9995.2004.00772.x

94. Kim EH, Bird JA, Kulis M, Laubach S, Pons L, Shref...

96. Wood RA, Sicherer SH, Burks AW, Grishin A, Henning AK, Lindblad R, et al. Evidence of Desensitization. J Allergy Clin Immunol (2013) 132(2):476–82.e1. doi: 10.1016/j.jaci.2013.02.017

98. Yoon YJ, Jeong CL, Kang HY, Kim EJ, Jeong JH, Park SY, et al. Retrospective Comparison. J Allergy Clin Immunol (2013) 132(6):1368–74.e1. doi: 10.1016/j.jaci.2013.09.021

100. Brandström J, Vetander M, Lilja G, Hamelmann E, Hansen G, et al. Efficacy, Safety, and Quality of Life in a Multicenter, Randomized, Placebo-Controlled Trial of Low-Dose Peanut Oral Immunotherapy in Children With Peanut Allergy. J Allergy Clin Immunol Pract (2019) 7(2):379–91.e10. doi: 10.1016/j.jacip.2018.10.048

101. Brandström J, Vetander M, Sundqvist AC, Lilja G, Johansson SG, Melen E, et al. Individually Dosed Omalizumab Facilitates Peanut Oral Immunotherapy in Peanut Allergic Adolescents. Clin Exp Allergy (2019) 49(10):1328–41. doi: 10.1111/tea.13469

102. Andorf S, Maohar M, Dominguez T, Block W, Tupa D, Khursagar RA, et al. Observational Long-Term Follow-Up Study of Rapid Food Oral Immunotherapy With Omalizumab. Allergy Asthma Clin Immunol (2017) 13:51. doi: 10.1186/s13232-017-0223-8

103. Andorf S, Purington N, Kumar D, Long A, O’Laughlin KL, Sicherer S, et al. A Phase 2 Randomized Controlled Multisite Study Using Omalizumab-Facilitated Rapid Desensitization to Test Continued vs Discontinued Dosing in Multifood Allergic Individuals. ClinEcmil (2019) 7:27–38. doi: 10.1016/j.clinjcm.2018.12.006

104. Langlois A, Lavergne MH, Leroux H, Killer K, Azzano P, Paradis L, et al. Protocol for a Double-Blind, Randomized Controlled Trial on the Dose-Related Efficacy of Omalizumab in Multi-Food Oral Immunotherapy. Allergy Asthma Clin Immunol (2020) 16:265. doi: 10.1186/s13232-020-00419-z

105. Berry R, Hollingsworth P, Lucas M. Successful Treatment of Idiopathic Mast Cell Activation Syndrome With Low-Dose Omalizumab. Clin Transl Allergy (2019) 8(10):1–5. doi: 10.1002/cti2.1075

106. Andorf S, Purington N, Block WM, Long AJ, Tupa D, Brittian E, et al. Anti-IgE Treatment With Oral Immunotherapy in Multifood Allergic Participants: A Double-Blind, Randomised, Controlled Trial. Lancet Gastroenterol Hepatol (2018) 3(2):85–94. doi: 10.1016/S2468-1253(17)30398-2

107. Chinthrajah S, Cao S, Liu C, et al. Phase 2a Randomized, Placebo-Controlled Study of Anti-IL-33 in Peanut Allergy. JCI Insight (2019) 4(22):1–14. doi: 10.1172/jci.insight.131347

108. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, Anti-IgE Recombinant Humanized Monoclonal Antibody, for the Treatment of Severe Asthma. J Allergy Clin Immunol (2001) 108(2):184–90. doi: 10.1067/mui.2001.117880

109. Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H, et al. The Anti-IgE Antibody Omalizumab Reduces Exacerbations and Steroid Requirement in Allergic Asthmatics. Eur Respir J (2001) 18(2):254–61. doi: 10.1183/09031936.01.00092101

110. Holgate ST, Chuchalin AG, Hébert J, Lötvall J, Persson GB, Chung KF, et al. Efficacy and Safety of a Recombinant Anti-Immunoglobulin E Antibody (Omalizumab) in Severe Allergic Asthma. Clin Exp Allergy (2004) 34:362–8. doi: 10.1111/j.1365-2222.2004.1916.x

111. Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J, et al. Benefits of Omalizumab as Add-on Therapy in Patients With Severe Persistent Asthma Who Are Inadequately Controlled Despite Best Available Therapy (GINA 2002 Step 4 Treatment): INNOVATE. Allergy (2005) 60:309–16. doi: 10.1111/j.1398-9995.2004.00772.x

112. Vignola AM, Humbert M, Bousquet J, Boulet LP, Hedgecock S, Bloog M, et al. Efficacy and Tolerability of Anti-Immunoglobulin E Therapy With Omalizumab in Patients With Concomitant Allergic Asthma and Persistent Allergic Rhinitis: SOLAR. Allergy (2004) 59:709–17. doi: 10.1111/j.1398-9995.2004.00550.x

113. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, et al. Omalizumab in Severe Asthma Inadequately Controlled With Standard Therapy: A Randomized Trial. Ann Intern Med (2011) 154(9):73–82. doi: 10.7326/0003-4819-154-9-201105030-00002

114. Lanier B, Bridges T, Kulmus M, Taylor AF, Berhane I, Vidaurre CF. Omalizumab for the Treatment of Exacerbations in Children With Inadequately Controlled Allergic (IgE-Mediated) Asthma. J Allergy Clin Immunol (2009) 124(6):1210–6. doi: 10.1016/j.jaci.2009.09.021

115. Saini SS, Bindslev-Jensen C, Maurer M, Grob JF, Bülbül Baskan E, Bradley MS, et al. Efficacy and Safety of Omalizumab in Patients With Chronic Idiopathic/Spontaneous Urticaria Who Remain Symptomatic on H1 Antihistamines: A Randomized, Placebo-Controlled Study. J Invest Dermatol (2015) 135(1):67–75. doi: 10.1038/jid.2014.306

116. Maurer M, Rosen K, Hsieh HJ, Saini S, Grattan C, Gimenez-Arnau A, et al. Omalizumab for the Treatment of Chronic Idiopathic or Spontaneous Urticaria. N Engl J Med (2013) 368(10):924–35. doi: 10.1056/NEJMoa1215372

117. Casale TB, Bernstein JA, Maurer M, Saini SS, Traszkoma B, Chen H, et al. Similar Efficacy With Omalizumab in Chronic Idiopathic/Spontaneous Urticaria Despite Different Background Therapy. J Allergy Clin Immunol Pract (2015) 3(5):743–50.e1. doi: 10.1016/j.jacip.2015.04.015

118. Gøvaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE, et al. Efficacy and Safety of Omalizumab in Nasal Polyposis: 2 Randomized Phase 3 Trials. J Allergy Clin Immunol (2020) 146(3):595–605. doi: 10.1016/j.jaci.2020.05.032
119. Nayak A, Casale T, Miller SD, Condemi J, McAlary M, Fowler-Taylor A, et al. Tolerability of Retreatment With Omalizumab, a Recombinant Humanized Monoclonal Anti-IgE Antibody, During a Second Ragweed pollen Season in Patients With Seasonal Allergic Rhinitis. Allergy Asthma Proc (2003) 24(5):323–9.

120. Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG, et al. Omalizumab Pretreatment Decreases Acute Reactions After Rush Immunotherapy for Ragweed-Induced Seasonal Allergic Rhinitis. J Allergy Clin Immunol (2006) 117(1):134–40. doi: 10.1016/j.jaci.2005.09.036

122. Takahashi M, Soejima K, Taniuchi S, Hatano Y, Yamanouchi S, Ishikawa H, et al. Structural Basis of Omalizumab Therapy and Omalizumab-Mediated IgE Exchange. J Allergy Clin Immunol (2018) 142(1):171–7.e1. doi: 10.1016/j.jaci.2017.11.051

126. Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J, et al. Uncontrolled Moderate to Severe Atopic Dermatitis: A Phase 3 Clinical Trial. Arch Dermatol (2012) 148(1):165. doi: 10.1001/archdermatol.2011.16881

130. Simpson EL, Pallier AS, Siegfried EC, Boguniewicz M, Sher L, Gooderham MJ, et al. Efficacy and Safety of Dupilumab Therapy in Adolescents With Uncontrolled Moderate to Severe Atopic Dermatitis: A Phase 3 Randomized Clinical Trial. JAMA Dermatol (2020) 156(1):44–56. doi: 10.1001/jamadermatol.2019.3336

132. Bachert C, Han JK, Desrosiers M, Hellings PW, Amin N, Lee SE, et al. Omalizumab Pretreatment Decreases Acute Reactions After Rush Immunotherapy for Ragweed-Induced Seasonal Allergic Rhinitis. J Allergy Clin Immunol (2006) 117(1):134–40. doi: 10.1016/j.jaci.2005.09.036

133. Hirano I, Dellon ES, Hamilton JD, Collins MH, Peterson K, Chehade M, et al. Efficacy of Dupilumab in a Phase 2 Randomized Trial of Adults With Active Eosinophilic Esophagitis. Gastroenterology (2020) 158(1):111–22.e10. doi: 10.1053/j.gastro.2019.09.042

134. Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses. N Engl J Med (2014) 370(22):2102–10. doi: 10.1056/nejmoa1402895

135. Kerr SC, Gonzalez JR, Schanin J, Peters MC, Lambrecht BN, Brock EC, et al. An Anti-Siglec-8 Antibody Depletes Sputum Eosinophils From Asthmatic Subjects and Inhibits Lung Mast Cells. Clin Exp Allergy (2020) 50(8):904–14. doi: 10.1111/cea.13681

136. Beck LA, Marcotte GV, MacGlashan D, Togias A, Saini S. Omalizumab-Induced Reductions in Mast Cell FcεRI Expression and Function. J Allergy Clin Immunol (2004) 114(5):527–30. doi: 10.1016/j.jaci.2004.06.032

137. MacGlashan DWJ, Bochner BS, Adelman DC, Jardieu PM, Togias A, McKenzie-White J, et al. Down-Regulation of FcεR and FcεRI Expression on Human Basophils During In Vivo Treatment of Atopic Patients With Anti-IgE Antibody. J Immunol (1997) 158(3):1438–45.

138. Prusin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB. Omalizumab Treatment Downregulates Dendritic Cell FcεRI Expression. J Allergy Clin Immunol (2003) 112(6):1147–54. doi: 10.1016/j.jaci.2003.10.003

139. Chang TW. The Pharmacological Basis of Anti-IgE Therapy. Nat Biotechnol (2000) 18(2):157–62. doi: 10.1038/72601

140. Zaidi AK, Saini SS, MacGlashan DWJ. Regulation of Syk Kinase and FcεRβ Expression in Human Basophils During Treatment With Omalizumab. J Allergy Clin Immunol (2010) 125(4):902–8. doi: 10.1016/j.jaci.2009.12.096

141. MacGlashan D, Loss of Receptors and IgE in Vivo During Treatment With Anti-IgE Antibody. J Allergy Clin Immunol (2004) 114(6):1472–4. doi: 10.1016/j.jaci.2004.04.036

142. Lin H, Boesel KM, Griffith DT, Prusin C, Foster B, Romero FA, et al. Omalizumab Rapidly Decreases Nasal Allergic Response and FcεRI on Basophils. J Allergy Clin Immunol (2004) 113(2):297–302. doi: 10.1016/j.jaci.2003.11.044

143. Oliver JM, Tarleton CA, Gilmarthn L, Archiebeque T, Qualls CR, Didli L, et al. Reduced FcεRI-Mediated Release of Asthma-Promoting Cytokines and Chemokines From Human Basophils During Omalizumab Therapy. Int Arch Allergy Immunol (2010) 151(4):275–84. doi: 10.1159/000250436

144. Schroeder JT, Bienenman AP, Chichester KL, Hamilton RG, Xiao H, Saini SS, et al. Decreases in Human Dendritic Cell FcεRβ-Related Responses. J Allergy Clin Immunol (2010) 125 (4):896–901. doi: 10.1016/j.jaci.2009.10.021

145. van Neerven RJ, Wikborg T, Lund G, Jacobsen B, Brinch-Nielsen A, Arnved J, et al. Blocking Antibodies Induced by Specific Allergy Vaccination Prevent the Activation of CD4+ T Cells by Inhibiting Serum-IgE-Facilitated Allergen Presentation. J Immunol (1999) 163(5):2944–52.

146. Gasser P, Tarchevskaya SS, Gunterm P, Brigger D, Rupelli R, Zbären N, et al. The Mechanistic and Functional Profile of the Therapeutic Anti-IgE Antibody Omalizumab Differs From Omalizumab. Nat Commun (2020) 11(1):165. doi: 10.1038/s41467-019-13815-w

147. Chan MA, Gigliotti NM, Dotson AL, Rosenwasser LJ. Omalizumab may Reduce Fcε RI on Basophils. Arch Allergy Immunol (2003) 112(6):1147–4. doi: 10.1006/ajai.2003.0634

148. Brightbill H, Lin Y, Lin Z, Tan M, Meng G, Balas M, et al. Quilizumab is an Afucosylated Humanized Anti-MI Prime Therapeutic Antibody. Clin Anti-Inflmm Anti-Allergy Drugs (2014) 3(1):1–8. doi: 10.1186/2045-7022-3-29

149. Chu SY, Horton HM, Pong E, Leung IW, Chen H, Nguyen DH, et al. Reduction of Total IgE by Targeted Coengagement of IgE-B Cell Receptor and FcγRIb With Fc-engineered Antibody. J Allergy Clin Immunol (2012) 129(4):1102–15. doi: 10.1016/j.jaci.2011.11.029

150. Corren J, Shapiro G, Reimann D, Deniz Y, Wong D, Adelman D, et al. Allergen Skin Tests and Free IgE Levels During Reduction and Cessation of Omalizumab Therapy. J Allergy Clin Immunol (2008) 121(2):506–11. doi: 10.1016/j.jaci.2007.11.026

151. Pennington LF, Tarchevskaya S, Brigger D, Sathiyamoorthy K, Graham MT, Nadeau KC, et al. Structural Basis of Omalizumab Therapy and Omalizumab-Mediated IgE Exchange. Nat Commun (2016) 7:1–12. doi: 10.1038/ncomms11610

152. Chang TW, Davis FM, Sun N-C, Sun CRY, MacGlashan DW, Hamilton RG. Monoclonal Antibodies Specific for Human IgE-Producing B Cells: A Potential Therapeutic for IgE-Mediated Allergic Diseases. Bio/Technology (1999) 17(8):122–6. doi: 10.1038/nbt0290-122

153. Serrano-Candelas E, Martinez-Aranguren R, Valero A, Bartra J, Gastaminza G, Goikoetxea MJ, et al. Comparables Actions of Omalizumab on Mast Cells and Basophils. Clin Exp Allergy (2016) 46(1):92–102. doi: 10.1111/cea.12668
Gomez G, Jogie-Brahim S, Shima M, Schwartz LB. Omalizumab Reverses the Phenotypic and Functional Effects of IgE-Enhanced FcεRI on Human Skin Mast Cells. J Immunol (2007) 179(2):1353–61. doi: 10.4049/jimmunol.179.2.1353

Fox JA, Hotaling TE, Struble C, Ruppel J, Bates DJ, Schoenhoff MB. Tissue Distribution and Complex Formation With IgE of an Anti-IgE Antibody After Intravenous Administration in Cynomolgus Monkeys. J Pharmacol Exp Ther (1996) 279(2):1000–8.

Maurer M, Metz M, Brehler R, Hillen U, Jakob T, Mahler V, et al. Omalizumab Treatment in Patients With Chronic Inducible Urticaria: A Systematic Review of Published Evidence. J Allergy Clin Immunol (2017) 141(2):638–49. doi: 10.1016/j.jaci.2017.06.032

Leung DYM, Sampson HA, Yunginger JW, Burks AW Jr, Schneider LC, Wortel CH, et al. Effect of Anti-IgE Therapy in Patients With Peanut Allergy. N Engl J Med (2003) 348(11):986–93. doi: 10.1056/NEJMoa022613

Sampson HA, Leung DYM, Burks AW, A phase II, Lack G, Bhatia SL, Jones SM, et al. Randomized, Doubleblind, Parallelgroup, Placecontrolled Oral Food Challenge Trial of Xolair (Omalizumab) in Peanut Allergy. J Allergy Clin Immunol (2011) 127(5):1039–10.e1. doi: 10.1016/j.jaci.2011.01.051

Savage JH, Courneya JP, Sterba PM, Macglashan DW, Saini SS, Wood RA. Omalizumab Reverses the Tontini and Bulfone-Paus Inhibition of IgE-Induced Mast Cell Reactivity After Intravenous Administration in Cynomolgus Monkeys. J Allergy Clin Immunol (2011) 128(5):921.e3. doi: 10.1016/j.jaci.2011.01.023

Peptide Vaccines. 20. doi: 10.1016/j.jaci.2019.03.050

Terminates Acute Allergic Reactions. J Allergy Clin Immunol (2019) 141(5):1914–20.e5. doi: 10.1016/j.jaci.2017.02.046

Zhu D, Kepley CL, Zhang M, Zhang K, Saxon A. A Novel Human Immunoglobulin Fc Gamma Fc Epsilon Bifunctional Fusion Protein Inhibits Fc Epsilon RI-Mediated Degranulation. Nat Med (2002) 8(5):518–21. doi: 10.1038/nm0502-518

Eggel A, Buschor P, Baumann MJ, Amstutz P, Stadler BM, Vogel M. V. Inhibition of Ongoing Allergic Reactions Using a Novel Anti-IgE DARPin-Fc Fusion Protein. Allergy Eur J Allergy Clin Immunol (2011) 66(7):961–8. doi: 10.1111/j.1398-9995.2011.02546.x

Liu Y, Sun Y, Chang LJ, Li N, Li H, Yu Y, et al. Blockade of Peanut Allergy With a Novel Ara H 2-Fc Fusion Protein in Mice. J Allergy Clin Immunol (2013) 131(1):213–21.e5. doi: 10.1016/j.jaci.2012.10.018

Zellweger RD, Chikh G, Zhang L, Fraser JD, Thorn JM, Merson JR, et al. The CD200 Receptor Is a Novel and Potent Regulator of Murine and Human Mast Cell Function. J Immunol (2005) 174(13):1348–54. doi: 10.4049/jimmunol.174.13.1348

Bachelet J, Munitz A, Levi-Schaffer F. Abrogation of Allergic Reactions by a Bispecific Antibody Fragment Linking IgE to CD300a. J Allergy Clin Immunol (2006) 117(6):1314–20. doi: 10.1016/j.jaci.2006.04.031

Duan S, Koziol-White CJ, Jester WF, Smith SA, Nycho latent CM, Macauley MS, et al. CD33 Recruitment Inhibits IgE-Mediated Anaphylaxis and Desensitizes Mast Cells to Allergen. J Clin Invest (2019) 129(3):1387–401. doi: 10.1172/JCI125456

Yokoi H, Choi OH, Hubbard W, Lee HS, Canning BJ, Lee HH, et al. Inhibition of FcεRI-Dependent Mediator Release and Calcium Flux From Human Mast Cells by Sialic Acid-Binding Immunoglobulin-Like Lectin 8 Engagement. J Allergy Clin Immunol (2008) 121(2):499–506. doi: 10.1016/j.jaci.2007.10.004

Youngblood BA, Brock EC, Leung J, Falahati R, Bryce PJ, Bright J, et al. AK002, a Humanized Sialic Acid-Binding Immunoglobulin-Like Lectin-8 Antibody That Induces Antibody-Dependent Cell-Mediated Cytotoxicity Against Human Eosinophils and Inhibits Mast Cell-Dependent Anaphylaxis in Mice. Int Arch Allergy Immunol (2019) 180(2):91–102. doi: 10.1159/000501637

O’Konek J, Landers J, Janczak KW, Lindsey HK, Mondrusov AM, Totten TD, et al. Intranasal Nanoemulsion Vaccine Confers Long-Lasting Immunomodulation and Sustained Unresponsiveness in a Murine Model of Milk Allergy. Allergy Eur J Allergy Clin Immunol (2020) 75(4):872–81. doi: 10.1111/all.14064

Stormr F, Zeltsin A, Balke I, Heath MD, Kramer MF, Skinner MA, et al. Vaccine Against Peanut Allergy Based on Engineered Virus-Like Particles Displaying Single Major Peanut Allergens. J Allergy Clin Immunol (2020) 145(4):1240–53.e3. doi: 10.1016/j.jaci.2019.12.007

Cruz AA, Lima F, Sarinho E, Ayre G, Martin C, Fox H, et al. Safety of Anti-Immunoglobulin E Therapy With Omalizumab in Allergic Patients at Risk of Geohelminth Infection. Clin Exp Allergy (2007) 37(2):197–207. doi: 10.1111/j.1365-2222.2007.02650.x

Fitzsimmons CM, Falcone FH, Dunne DW. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol (2014) 5:61. doi: 10.3389/fimmu.2014.00601

Nigro EA, Brini AT, Yenagi VA, Ferreira LM, Achatz-Straussberger G, Ambrosi A, et al. Cutting Edge: IgE Plays an Active Role in Tumor Immunosurveillance in Mice. J Immunol (2016) 197(7):2583–8. doi: 10.4049/jimmunol.1601026
190. Wei M, Wang PG. Desialylation in Physiological and Pathological Processes. *Cell Mol Biol (Noisy)* (2018) 64(5):759–64. doi: 10.1111/cmlb.12540

191. Costa AF, Campos D, Reis CA, Gomes C. Targeting Glycosylation: A New Approach. *Frontiers in Cell and Developmental Biology* (2019) 7:135. doi: 10.3389/fcell.2019.00135

192. Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BS. Potential Applications of Bruton’s Tyrosine Kinase Inhibitors for the Prevention of Allergic Reactions. *Expert Rev Clin Immunol* (2017) 13(10):921–3. doi: 10.1080/17425599.2017.1370374

193. Ochi H, De Jesus NH, Hsieh FH, Austen KF, Boyce JA. IL-4 and -5 Prime Human Mast Cells for Different Pro-inflammatory Cytokine Responses. *Inflammation* (2019) 42(4):1311–23. doi: 10.1007/s10753-019-00853-5

194. Pesu M, Takaluoma K, Aittomäki S, Lagerstedt A, Saksela K, Kovanen PE. IL-13 Receptor Complexes. *Mol Cancer* (2019) 18(1):41. doi: 10.1186/s12943-019-0818-9

195. Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, et al. Direct Effects of IL-4 on Mast Cells Drive Their Intestinal Expansion. *J Immunol* (2013) 189(8):3979–90. doi: 10.4049/jimmunol.1201576

196. Mathias CB, Hobson SA, Garcia-Lloret M, Lawson G, Poddighe D, Freyschmidt EJ, et al. IgE-Mediated Systemic Anaphylaxis and Impaired Tolerance to Food Antigens in Mice With Enhanced IL-4 Receptor Signaling. *J Allergy Clin Immunol* (2011) 127(3):795–805. doi: 10.1016/j.jaci.2010.11.009

197. Burton OT, Darling AR, Zhou JS, Noval-Rivas M, Jones TG, Gurish MF, et al. Direct Effects of IL-4 on Mast Cells Drive Their Intestinal Expansion and Increase Susceptibility to Anaphylaxis in a Murine Model of Food Allergy. *Mucosal Immunol* (2013) 6(4):740–50. doi: 10.1038/mi.2012.112

198. Okayama Y, Okumura S, Sagara H, Yuki K, Sasaki T, Watanabe N, et al. IL-33 Mediated Amplification of Allergic Response in Human Mast Cells. *J Allergy Clin Immunol* (2015) 75(1):57–61. doi: 10.1016/j.jaci.2014.03.002

199. Oita T, Aoki T, Nakamura Y, Tanaka T, Takahashi M, Nishikawa M, et al. Dispersal of FcεRI Expression of the Low-Affinity IgG Receptor, FcεRI α, in Human Mast Cells. *Eur J Immunol* (2009) 39(2):425–35. doi: 10.1002/eji.2008301108

200. Rönningen E, Ghaib A, Ceriol C, Enoksson M, Arock M, Säfholm J, et al. Divergent Effects of Acute and Prolonged Interleukin 33 Exposure on Mast Cell IgE-Mediated Functions. *Front Immunol* (2019) 10:1361. doi: 10.3389/fimmu.2019.01361

201. Saluja R, Zoltowska A, Ketelaar ME, Nilsson G. IL-33 and Thymic Stromal Lymphopoietin in Mast Cell Functions. *Eur J Pharmacol* (2015) 778:68–76. doi: 10.1016/j.ejphar.2015.04.047

202. Hsu CL, Chhiba KD, Krier-Burris R, Hosakoppal S, Berdnikovs S, Miller NL, et al. Allergen Sensitization Is Initiated by IL-33–Dependent Crossstalk Between Mast Cells and Basophils. *PloS One* (2020) 15(1):1–21. doi: 10.1371/journal.pone.0226701

203. Parveen S, Saravanan DB, Saluja R, Elder BT. IL-33 Mediated Allergen Response in Human Mast Cells. *J Recept Signal Transduction* (2019) 39(4):359–67. doi: 10.1080/10440501.2019.1609151

204. Ochiai T, Takahashi A, Atsumi M, Kataoka T, Ishikawa H, Tanaka T, et al. Interleukin-33 Induces a Thymic Stromal Lymphopoietin Production in Mast Cells Through Mucosally Produced MDP2 and STAT6. *J Invest Dermatol* (2014) 134(10):2521–30. doi: 10.1038/jid.2014.198

205. Muto T, Fukushima A, Kabashima K, Gailus-Durner V, Fuchs H, Ohmann C, et al. The Role of Basophils and Proallergic Cytokines, TSLP and IL-33, in Cutaneously Sensitized Food Allergy. *Int Immunol* (2014) 26(10):539–49. doi: 10.1093/intimm/dzx058

206. Russkamp D, Aguilar-Pimentel A, Alessandrini F, et al. IL-4 Receptor α Blockade Prevents Sensitization and Alters Acute and Long-Lasting Effects of Allergen-Specific Immunotherapy of Murine Allergic Asthma. *Allergy Eur J Allergy Clin Immunol* (2019) 74(8):1549–60. doi: 10.1111/eac.13759

207. Allakhverdii Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Charteris S, et al. Thymic Stromal Lymphopoietin Is Released by Human Epithelial Cells in Response to Microbes, Trauma, or Inflammation and Potently Activates Mast Cells. *Exp Med* (2017) 204(2):253–8. doi: 10.1084/jem.201602211

208. Voit H, Myers A, Matsumoto K, Crocker PR, Saito H, Bochner BS. Alteration and Acquisition of Siglecs During In Vitro Maturation of CD34+...
264. Kim HL, Leigh R, Becker A. Omalizumab: Practical Considerations Regarding the Risk of Anaphylaxis. *Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol* (2010) 6(1):32. doi: 10.1186/1710-1492-6-32

265. Novartis Pharma AG. *xolair - Omalizumab Safety Profile* (2021). Available at: https://www.xolairhcp.com/safety-profile.html (Accessed January 3, 2021).

266. Wohlrab J, Werfel T, Wollenberg A. Pathomechanism of Dupilumab-Associated Inflammatory Eye Symptoms. *J Eur Acad Dermatol Venereol* (2019) 33(11):e435–6. doi: 10.1111/jdv.15755

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Tontini and Bulfone-Paus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.