ON A CERTAIN FAMILY OF INVERSE TERNARY CYCLOMATIC POLYNOMIALS

BARTŁOMIEJ BZDEGA

ABSTRACT. We study a family of inverse ternary cyclotomic polynomials \(\Psi_{pqr} \) in which \(r \leq \varphi(pq) \) is a positive linear combination of \(p \) and \(q \). We derive a formula for the height of such polynomial and characterize all flat polynomials in this family.

1. Introduction

Let

\[
\Phi_n(x) = \prod_{1 \leq k \leq n, (k,n) = 1} (x - e^{2k\pi i/n}) = \sum_m a_n(m)x^m
\]

be the \(n \)th cyclotomic polynomial. The \(n \)th inverse cyclotomic polynomial is defined by the formula

\[
\Psi_n(x) = \frac{x^n - 1}{\Phi_n(x)} = \sum_m c_n(m)x^m.
\]

Like for cyclotomic polynomials, for odd primes \(p < q < r \), we say that \(\Psi_{pq} \) is binary, \(\Psi_{pqr} \) is ternary, etc.

Recall that the height of a given polynomial \(F \) is the maximal absolute value of its coefficients. We say that polynomial is flat, if its height equals 1. Traditionally we denote the height of \(\Phi_n \) by \(A(n) \) and the height of \(\Psi_n \) by \(C(n) \).

Ternary inverse cyclotomic polynomials were studied by P. Moree [5]. He proved that \(C(pqr) \leq p - 1 \) and for every prime \(p \geq 3 \) there are infinitely many pairs \((q,r)\) of primes for which \(C(pqr) = p - 1 \). Additionally he came up with the following bound ([5], Theorem 7):

\[
C(pqr) \leq \max\{\min\{p', q'\}, \min\{q - p', p - q'\}\} \text{ for } \deg \Psi_{pqr} < 2qr.
\]

He also found some flat inverse ternary cyclotomic polynomials.

Let us remark that the case \(r > \varphi(pq) = \deg \Phi_{pq} \) is trivial, because by the identity \(\Psi_{pqr}(x) = \Psi_{pq}(x^r)\Phi_{pq}(x) \) we have \(c_{pqr}(ar+b) = a_{pq}(b)c_{pq}(a) \) for \(a \geq 0 \) and \(0 \leq b < r \). The coefficients of polynomials \(\Phi_{pq} \) and \(\Psi_{pq} \) are well known, so we can evaluate \(c_{pqr}(ar+b) \) easily.

1991 Mathematics Subject Classification. 11B83, 11C08.

Key words and phrases. inverse cyclotomic polynomial, height of a polynomial, flat polynomial.
Although there is a substantial research on flat ternary cyclotomic polynomials [1, 2, 3], we do not know much about flat ternary inverse cyclotomic polynomials. Particularly, no infinite family of such polynomials in which \(r \leq \varphi(pq) \) was known so far.

In this paper we investigate polynomials \(\Psi_{pqr} \) in which \(r \leq \varphi(pq) \) is a positive linear combination of \(p \) and \(q \). For this specific type of polynomials we improve some of the results of P. Moree mentioned above. Our main result is the following theorem.

Theorem 1. Let \(r = \alpha p + \beta q \leq \varphi(pq) \), where \(\alpha, \beta > 0 \). Let also \(p' \in \{1, 2, \ldots, q-1\} \) be the inverse of \(p \) modulo \(q \) and \(q' \in \{1, 2, \ldots, p-1\} \) be the inverse of \(q \) modulo \(p \). Then

\[
C(pqr) = \max \left\{ \min \left\{ \left\lceil \frac{p'}{\alpha} \right\rceil, \left\lceil \frac{q'}{\beta} \right\rceil \right\}, \min \left\{ \left\lceil \frac{q-p'}{\alpha} \right\rceil, \left\lceil \frac{p-q'}{\beta} \right\rceil \right\} \right\}.
\]

The above formula is similar to the already mentioned one obtained by P. Moree. However, our theorem does not require the assumption \(\deg \Psi_{pqr} < 2qr \). We use Theorem 1 to characterize all flat inverse ternary cyclotomic polynomials \(\Psi_{pqr} \) in which \(r \) is a positive linear combination of \(p \) and \(q \).

Theorem 2. Let \(r = \alpha p + \beta q \leq \varphi(pq) \), where \(\alpha, \beta > 0 \). Then \(\Psi_{pqr} \) is flat if and only if at least one of the following conditions holds:

(a) \(\alpha \geq \max \{p', q-p', \} \),
(b) \(\beta \geq \max \{q', p-q', \} \),
(c) \(\alpha \geq p' \) and \(\beta \geq p-q' \),
(d) \(\alpha \geq q - p' \) and \(\beta \geq q' \),

where \(p' \) and \(q' \) are like in Theorem 1.

At first one may expect that the set of primes \(r \leq \varphi(pq) \) satisfying at least one of the conditions (a) – (d) of Theorem 2 is rather small and consists of primes which are relatively close to \(\varphi(pq) \) (if (a) or (b) holds, then \(r > pq/2 \)). Fortunately, the following theorem says that this is not the truth in general.

Theorem 3. Let \(S(p, q) \) denote the set of primes \(r \leq \varphi(pq) \) of form \(\alpha p + \beta q \), \(\alpha, \beta > 0 \), for which \(\Psi_{pqr} \) is flat. Then

(i) For every \(M > 0 \) and every \(p \) there exists such \(q \) that \(\#S(p, q) > M \).
(ii) For every \(\varepsilon > 0 \) there exists a triple \((p, q, r) \) of primes such that \(r \in S(p, q) \) and \(r < \varepsilon \varphi(pq) \).

So we reveal a new, vast family of nontrivially flat ternary inverse cyclotomic polynomials.

Our paper is organized in the following way. In section 3 we derive a formula for \(c_{pqr}(m) \), the \(m \)th coefficient of \(\Psi_{pqr} \). In section 4 we prove Theorem 1. Finally, in section 5 we prove Theorems 2 and 3.

2. Preliminaries

In this section we recall some basic properties of standard and inverse cyclotomic polynomials. All of them can be found in [4] or [5]. Let us start
with the properties of their degrees:

\[
\deg \Phi_n = \varphi(n), \quad \deg \Psi_n = n - \varphi(n).
\]

Particularly \(\deg \Psi_{pqr} = qr + rp + pq - p - q - r + 1\).

We say that a polynomial \(F\) is reciprocal if \(F(x) = x^{\deg F} F(1/x)\) and anti-reciprocal if \(F(x) = -x^{\deg F} F(1/x)\). It is known that all cyclotomic polynomials except of \(\Phi_1\) are reciprocal and all inverse cyclotomic polynomials except of \(\Psi_1\) are anti-reciprocal.

In our investigations we need to know the coefficients of \(\Phi_{pq}\). The following lemma, proved in [4], derives a formula on \(a_{pq}(m)\).

Lemma 4. Let \(m \in \{0, 1, \ldots, pq - 1\}\) and let \(u, v\) be the unique numbers such that \(m \equiv up + vq \pmod{pq}\) and \(0 \leq u < q, 0 \leq v < p\). Then we have

\[
a_{pq}(m) = \begin{cases}
1, & \text{if } u < p' \text{ and } v < q', \\
-1, & \text{if } u \geq p' \text{ and } v \geq q', \\
0, & \text{otherwise}.
\end{cases}
\]

Following P. Moree [5], we define the polynomial

\[
f_{pqr}(x) = (1 + x^r + \ldots + x^{(p-1)r})\Phi_{pq}(x) = \sum_m e_{pqr}(m)x^m.
\]

Let also

\[
\tau(pqr) = \deg f_{pqr} = (p - 1)r + \varphi(pq) = (p - 1)(q + r - 1).
\]

The next lemma was proved in [5].

Lemma 5. For primes \(p < q < r\) we have

\[
\Psi_{pqr}(x) = (x^{qr} - 1)f_{pqr}(x).
\]

By this lemma \(e_{pqr}(m) = e_{pqr}(m - qr) - e_{pqr}(m)\), so if we want to determine the coefficients of \(\Psi_{pqr}\), we need to know the coefficients of \(f_{pqr}\).

Let us remark that in the formula

\[
\Psi_{pqr}(x) = \frac{(1 - x)(1 - x^{qr})(1 - x^{rp})(1 - x^{pq})}{(1 - x^p)(1 - x^q)(1 - x^r)}
\]

one can replace the assumption that \(p, q, r\) are primes by the assumption that they are pairwise coprime. This way we receive the definition of inverse inclusion-exclusion polynomial \(\Psi_{p',q',r'}\). Theorems 1 and 2 hold also for inverse inclusion-exclusion polynomials and they can be proved by analogous methods.

3. Coefficients of \(f_{pqr}\)

The following lemma, partially proved in [5], derives a formula on coefficients of \(f_{pqr}\) in terms of coefficients of \(\Phi_{pq}\). We remark that this is true for all primes \(r\).

Lemma 6. The following equalities hold:

(i) if \(m < pr\), then \(e_{pqr}(m) = \sum_{j=0}^{\lfloor m/r \rfloor} a_{pq}(m - jr)\),
(ii) for \(pq < m < pr \) we have \(e_{pqr}(m) = e_{pqr}(m - r) \).

(iii) if \(pr \leq m \leq \tau(pqr) \), then \(e_{pqr}(m) = e_{pqr}(m') \), where \(m' = \tau(pqr) - m < pr \).

Proof. Case (i) follows directly from the definition of \(f_{pqr} \). The polynomial \(f_{pqr} \) is reciprocal as a product of reciprocal polynomials, so \(e_{pqr}(m) = e_{pqr}(\tau(pqr) - m) \). Because \(\tau(pqr) < 2pr \), for \(m \geq pr \) we have \(m' = \tau(pqr) - m < pr \), so (iii) holds. To prove (ii) we observe that for \(pq < m < pr \) we have \(a_{pq}(m) = 0 \) and then by (i)

\[
e_{pqr}(m) = a_{pq}(m) + \sum_{j=1}^{\lfloor m/r \rfloor} a_{pq}(m-jr) = \sum_{j=0}^{\lfloor (m-r)/r \rfloor} a_{pq}(m-r-jr) = e_{pqr}(m-r),
\]

which completes the proof. \(\Box \)

Now we use Lemmas 4 and 6 to determine coefficients of \(f_{pqr} \). We do it for the exponents not greater than \(pq \), since for greater ones we can use (ii) and (iii) of Lemma 6. In order to simplify the notation, for a finite set \(A \) we define

\[
\min_{\geq 0} A = \max\{0, \min A\}.
\]

Theorem 7. Let \(r = \alpha p + \beta q \leq \varphi(pq) \), \(\alpha, \beta > 0 \) and \(m < pq \). Put \(m = (a - 1)r + b \), where \(0 \leq b < r \).

(i) If \(\frac{b}{b} \) for some integers \(0 \leq u < q \) and \(0 \leq v < p \), then

\[
e_{pqr}(m) = \min_{\geq 0} \left\{ a, \left\lfloor \frac{p'-u}{\alpha} \right\rfloor, \left\lfloor \frac{q'-v}{\beta} \right\rfloor \right\}.
\]

(ii) If \(b + pq = up + vq \) for some integers \(0 \leq u < q \) and \(0 \leq v < p \), then we define

\[
j_0 = \min \left\{ \left\lfloor \frac{q-u}{\alpha} \right\rfloor, \left\lfloor \frac{p-v}{\beta} \right\rfloor \right\}, \quad a^* = a - j_0,
\]

\[
(u^*, v^*) = \begin{cases} (u + j_0 \alpha - q, v + j_0 \beta) & \text{if } j_0 = \left\lfloor \frac{(q - u)}{\alpha} \right\rfloor, \\
(u + j_0 \alpha, v + j_0 \beta - p) & \text{if } j_0 = \left\lfloor \frac{(p - v)}{\beta} \right\rfloor.
\end{cases}
\]

We have \(e_{pqr}(m) = e_{pqr}^+(m) - e_{pqr}^-(m) \), where

\[
e_{pqr}^+(m) = \min_{\geq 0} \left\{ a^*, \left\lfloor \frac{p'-u^*}{\alpha} \right\rfloor, \left\lfloor \frac{q'-v^*}{\beta} \right\rfloor \right\},
\]

\[
e_{pqr}^-(m) = \min_{\geq 0} \left\{ \min \left\{ a, \left\lfloor \frac{q-u}{\alpha} \right\rfloor, \left\lfloor \frac{p-v}{\beta} \right\rfloor \right\}, - \max \left\{ 0, \left\lfloor \frac{p'-u}{\alpha} \right\rfloor, \left\lfloor \frac{q'-v}{\beta} \right\rfloor \right\} \right\}.
\]

One can easily prove that every \(0 \leq b < pq \) can be written in exactly one of forms: \(up + vq \) or \(up + vq - pq \), where \(0 \leq u < q \) and \(0 \leq v < p \). So cases (i) and (ii) cover all possible values of \(b \).
Proof. First consider \(\mathbf{b} = \mathbf{u}p + \mathbf{v}q \). Then for \(0 \leq j < a \) we have
\[
\mathbf{b} + j\mathbf{r} = (u + j\alpha)p + (v + j\beta)q.
\]
Notice that \(\mathbf{b} + j\mathbf{r} \leq \mathbf{b} + (a - 1)r = \mathbf{m} < \mathbf{pq} \), so \(u + j\alpha < \mathbf{q} \) and \(v + j\beta < \mathbf{p} \). By Lemma 4
\[
a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = \begin{cases} 1, & \text{if } u + j\alpha < p' \text{ and } v + j\beta < q', \\ 0, & \text{otherwise}, \end{cases}
\]
where the case \(a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = -1 \) was omitted, as the inequalities \(u + j\alpha \geq p' \) and \(v + j\beta \geq q' \) cannot hold at the same time (if they both held then we would have \(\mathbf{pq} > \mathbf{b} + j\mathbf{r} \geq p'\mathbf{p} + q'\mathbf{q} = \mathbf{pq} + 1 \), a contradiction). So for \(0 \leq j < a \) we have
\[
a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = \begin{cases} 1, & \text{if and only if both equalities } \\
0, & \text{if at least one equality does not hold} \end{cases}
\]
hold. Thus by Lemma 6
\[
e_{\mathbf{pqr}}(\mathbf{m}) = \sum_{j=0}^{a-1} a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = \min_{j \geq 0} \left\{ a, \left\lceil \frac{p' - u}{\alpha} \right\rceil, \left\lceil \frac{q' - v}{\beta} \right\rceil \right\}
\]
as desired. We have proved (i).

Now consider \(\mathbf{b} + \mathbf{pq} = \mathbf{u}p + \mathbf{v}q \). For \(0 \leq j < a \) we have
\[
\mathbf{b} + j\mathbf{r} = (u + j\alpha)p + (v + j\beta)q - \mathbf{pq}.
\]
As long as \(u + j\alpha < \mathbf{q} \) and \(v + j\beta < \mathbf{p} \) (or equivalently \(j < j_0 \)), \(\mathbf{b} + j\mathbf{r} \) is clearly not a nonnegative linear combination of \(\mathbf{p} \) and \(\mathbf{q} \), while for \(j \geq j_0 \) it is. Therefore we put
\[
-h^- = \sum_{j=0}^{\min\{j_0, a\}-1} a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}), \quad h^+ = \sum_{j=\min\{j_0, a\}}^{a-1} a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}).
\]
(if a sum is empty then it equals 0). By Lemma 6 we have \(e_{\mathbf{pqr}}(\mathbf{m}) = h^+ - h^- \), so we need to prove that \(h^- = e^{-}_{\mathbf{pqr}}(\mathbf{m}) \) and \(h^+ = e^{+}_{\mathbf{pqr}}(\mathbf{m}) \).

The value of \(h^- \) is easier to determine. For \(j < j_0 \) the inequalities \(u + j\alpha < p' \) and \(v + j\beta < q' \) cannot hold at the same time, because if \(kp + lq \geq \mathbf{pq} \), then \(k \geq p' \) or \(l \geq q' \). So for \(j < j_0 \) we receive
\[
a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = \begin{cases} -1, & \text{if } u + j\alpha \geq p' \text{ and } v + j\beta \geq q', \\ 0, & \text{otherwise}. \end{cases}
\]
Therefore for \(0 \leq j < \min\{j_0, a\} \) we have \(a_{\mathbf{pq}}(\mathbf{b} + j\mathbf{r}) = -1 \) if and only if both inequalities
\[
\frac{p' - u}{\alpha} \leq j < \frac{q - u}{\alpha}, \quad \frac{q' - v}{\beta} \leq j < \frac{p - v}{\beta}
\]
hold. Thus

\[h^- = \min_{\geq 0} \left\{ \min \left\{ j_0, a, \left\lceil \frac{q - u}{\alpha} \right\rceil, \left\lceil \frac{p - v}{\beta} \right\rceil \right\} \right. \]
\[\left. - \max \left\{ 0, \left\lceil \frac{p'}{\alpha} \right\rceil, \left\lceil \frac{q'}{\beta} \right\rceil \right\} \right\} \]
\[= e_{pqr}(m), \]

by the definition of \(j_0 \).

Now we determine \(h^+ \). If \(j_0 \geq a \), then \(h^+ = 0 \), so further we assume that \(j_0 < a \). We have two analogous cases here: \(j_0 = \lceil (q - u)/\alpha \rceil \) and \(j_0 = \lceil (p - v)/\beta \rceil \). Let us consider the first one. For \(j_0 \leq j < a \) we have

\[b + jr = (u + j\alpha - q)p + (v + j\beta)q \]

with \(0 \leq u + j\alpha - q < q \) and \(v + j\beta < p \). We have \(u^* = u + j_0\alpha - q \) and \(v^* = v + j_0\beta \). Additionally put

\[b^* = b + j_0r = (u + j_0\alpha - q)p + (v + j_0\beta)q = u^*p + v^*q. \]

Clearly \(b^* \leq b + (a - 1)r < pq \), so \(u^* < q \) and \(v^* < p \). Note that \(b^* \) does not have to be smaller than \(r \), however, we can still use the arguments from the proof of (i) to obtain that

\[h^+ = \sum_{j=0}^{a^*-1} a_{pq}(b^* + jr) = e_{pqr}^+(m). \]

This formula remains correct even if \(j_0 \geq a \). Applying the analogous argument to the case \(j_0 = \lceil (p - v)/\beta \rceil \) we complete the proof. \(\square \)

From the results of this section, we obtained an algorithm which instantly computes the value of \(c_{pqr}(k) \). By Lemma 5 we have \(c_{pqr}(k) = e_{pqr}(k - qr) - e_{pqr}(k) \). Then using Lemma 6 we reduce computing \(e_{pqr}(k) \) to computing \(e_{pqr}(m_1) \) and \(e_{pqr}(m_2) \) for some \(m_1, m_2 < pq \). Finally we apply Theorem 7 to evaluate \(e_{pqr}(m_1) \) and \(e_{pqr}(m_2) \).

4. The Height of \(f_{pqr} \) and \(\Psi_{pqr} \)

In this section we evaluate the height of \(f_{pqr} \) and compare it with the height of \(\Psi_{pqr} \).

Lemma 8. Let \(H(pqr) \) denotes the height of \(f_{pqr} \). Then for \(r = \alpha p + \beta q \leq \varphi(pq), \alpha, \beta > 0 \), we have

\[H(pqr) = \max \left\{ \min \left\{ \left\lceil \frac{p'}{\alpha} \right\rceil, \left\lceil \frac{q'}{\beta} \right\rceil \right\}, \min \left\{ \left\lceil \frac{q - p'}{\alpha} \right\rceil, \left\lceil \frac{p - q'}{\beta} \right\rceil \right\} \right\}. \]
Theorem 7. We receive the inequalities

Proof. By Lemma 6 we can restrict our considerations to \(m < pq \) and use Theorem 7. We have to prove that

\[
\begin{align*}
\tau &= \frac{p'}{\alpha} \leq \frac{q'}{\beta}, \\
-\epsilon_{\tau\eta}(m) &\leq \max_{\eta,\tau} \left\{ \min \left\{ \frac{q - u}{\alpha}, \frac{p - v}{\beta} \right\} - \max \left\{ \frac{p' - u}{\alpha}, \frac{q' - v}{\beta} \right\} \right\} \\
\end{align*}
\]

To complete the proof we will show that we have equalities: in the first inequality for \(m = m_1 \) and in the second one for \(m = m_2 \), where

\[
\begin{align*}
m_1 &= \left(\min \left\{ \frac{p'}{\alpha}, \frac{q'}{\beta} \right\} - 1 \right) r, \\
m_2 &= \left(\min \left\{ \frac{p' - p}{\alpha}, \frac{p - q'}{\beta} \right\} - 1 \right) r + 1.
\end{align*}
\]

Now we are ready to prove our main result.

Proof of Theorem 7. Let

\[
\begin{align*}
\epsilon_{\tau\eta}(m) &= H(pqr) - H(qqr), \\
\end{align*}
\]

First let us verify that \(C(pqr) \geq H(pqr) \). Because \(f_{pqr} \) is reciprocal, \(|\epsilon_{pqr}(m)| = H(pqr) \) for some \(m \leq \tau(pqr)/2 \). Since \(\tau(pqr) < 2qr \), we have \(m < qr \) and hence \(\epsilon_{pqr}(m - qr) = 0 \). Thus by Lemma 5

\[
C(pqr) \geq |\epsilon_{pqr}(m)| = |\epsilon_{pqr}(m - qr) - \epsilon_{pqr}(m)| = | - \epsilon_{pqr}(m)| = H(pqr).
\]

The opposite inequality is much harder to prove. By Lemma 5 we have \(|\epsilon_{pqr}(m)| = | - \epsilon_{pqr}(m)| \leq H(pqr) \) for \(m < qr \). By the anti-reciprocity of \(\Psi_{pqr} \) we also have \(\epsilon_{pqr}(m) \leq H(pqr) \) for \(m > \tau(pqr) \). Therefore we can restrict our considerations to \(qr \leq m \leq \tau(pqr) \). In this case

\[
\begin{align*}
c_{pqr}(m) &= \epsilon_{pqr}(m - qr) - \epsilon_{pqr}(m) = \epsilon_{pqr}(m - qr) - \epsilon_{pqr}(\tau(pqr) - m) \\
&= \epsilon_{pqr}(m_1) - \epsilon_{pqr}(m_2),
\end{align*}
\]

Thus the proof is done.
where $m_1 = m - qr$ and $m_2 = \tau(pqr) - m$. Additionally,

$$m_1 + m_2 = \tau(pqr) - qr = \varphi(pq) - (q - 1 - p)r < pq.$$

Hence $0 \leq m_1 < pq$, $0 \leq m_2 < pq$ and so we can use Theorem 7. We will show that $e_{pqr}(m_1)$ and $e_{pqr}(m_2)$ cannot have opposite signs, which actually completes the proof. Without loss of generality we can assume that $e_{pqr}(m_1) > 0$.

For $i \in \{1, 2\}$ put

$$m_i = (a_i - 1)r + b_i, \quad 0 \leq b_i < r,$$

$$b_i \equiv u_ip + v_iq \pmod{pq}, \quad 0 \leq u_i < q, \quad 0 \leq v_i < p.$$

We have

$$m_2 = \tau(pqr) - qr - m_1 = (p - q - a_1)r + \varphi(pq) - b_1 = (t + p - q - a_1)r + b_2,$$

where $\varphi(pq) - b_1 = tr + b_2$ with $0 \leq b_2 < r$. Then $a_2 = t + p - q - a_1 + 1$.

Now we consider some cases, in which we determine different values of u_2, v_2.

Case (1): $b_1 = u_1p + v_1q$. Here

$$b_2 = \varphi(pq) - b_1 - tr = (p' - 1)p + (q' - 1)q - (u_1p + v_1q) - t(\alpha p + \beta q) = (p' - 1 - u_1 - t\alpha)p + (q' - 1 - v_1 - t\beta)q,$$

so $u_2 \equiv p' - 1 - u_1 - t\alpha \pmod{q}$ and $v_2 \equiv q' - 1 - v_1 - t\beta \pmod{p}$.

Both numbers $p' - 1 - u_1 - t\alpha$ and $q' - 1 - v_1 - t\beta$ cannot be negative at the same time, since $b_2 \geq 0$. If both are positive, then they equal u_2 and v_2 and $e_{pqr}(m_2) \geq 0$ by Theorem 7. Therefore we have to consider the situation in which one of these numbers is negative and one is positive. Without loss of generality, we assume that $p' - 1 - u_1 - t\alpha < 0$. Then

$$u_2 = q + p' - 1 - u_1 - t\alpha, \quad v_2 = q' - 1 - v_1 - t\beta, \quad b_2 = u_2p + v_2q - pq.$$

Case (2): $b_1 = u_1p + v_1q - pq$. Here $u_1 \geq p'$ or $v_1 \geq q'$. Without loss of generality we assume that $u_1 \geq p'$. Then

$$b_2 = \varphi(pq) - b_1 - tr = (p' - 1)p + (q' - 1)q - (u_1p + v_1q) + pq - t(\alpha p + \beta q) = (q + p' - 1 - u_1 - t\alpha)p + (q' - 1 - v_1 - t\beta)q.$$

By the similar argument to one used in case (1), we consider two subcases in which the signs of $q + p' - 1 - u_1 - t\alpha$ and $q' - 1 - v_1 - t\beta$ are opposite:

Case (2a): $u_2 = 2q + p' - 1 - u_1 - t\alpha$, $v_2 = q' - 1 - v_1 - t\beta$, $b_2 = u_2p + v_2q - pq$,

Case (2b): $u_2 = q + p' - 1 - u_1 - t\alpha$, $v_2 = p + q' - 1 - v_1 - t\beta$, $b_2 = u_2p + v_2q - pq$.

Now we show that in cases (1) and (2a) we have $e_{pqr}(m_2) \geq 0$. Note that $b_2 = u_2p + v_2q - pq$ and $v_2 = q' - 1 - v_1 - t\beta$ in both these cases, so we
estimate
\[
\max \left\{ 0, \left\lceil \frac{p' - u_2}{\alpha} \right\rceil, \left\lfloor \frac{q' - v_2}{\beta} \right\rfloor \right\} \geq \left\lceil \frac{q' - v_2}{\beta} \right\rceil = \left\lfloor \frac{v_1 + 1}{\beta} \right\rfloor + t \geq t,
\]
\[
\min \left\{ a_2, \left\lceil \frac{q - u_2}{\alpha} \right\rceil, \left\lfloor \frac{p - v_2}{\beta} \right\rfloor \right\} \leq a_2 = t + p - a_1 + 1 \leq t.
\]

Hence \(e_{pqr}(m_2) \geq e_{pqr}^-(m_2) = 0\) by Theorem 7 which completes the proof in cases (1) and (2a).

It remains to prove that \(e_2(m) \geq 0\) in case (2b). We will use variables \(u_1^*, v_1^*, a_1^*, j_{0,1}\), which we define like in part (ii) of Theorem 7. As we assumed \(e_{pqr}(m_1) > 0\), by Theorem 7 we have \(e_{pqr}^+(m_1) > 0\). Thus \(u_1^* < p'\) and \(v_1^* < q'\). So \(u_1^* \neq u_1 + j_{0,1}\alpha\) because \(u_1 \geq p'\). Therefore \(u_1^* = u_1 + j_{0,1}\alpha - q\) and \(v_1^* = v_1 + j_{0,1}\beta < q'\), which implies \(v_1 < q'\) and \(j_{0,1} = \lceil (q - u_1)/\alpha \rceil\).

Let us assume that \(e_{pqr}(m_2) < 0\). We will show that it leads to a contradiction. We have then \(e_{pqr}^+(m_1), e_{pqr}^-(m_2) > 0\) and so
\[
e_{pqr}^+(m_1) = \min \left\{ a_1^*, \left\lceil \frac{p' - u_1^*}{\alpha} \right\rceil, \left\lfloor \frac{q' - v_1^*}{\beta} \right\rfloor \right\} \leq \left\lfloor \frac{q' - v_1^*}{\beta} \right\rfloor - \left\lfloor \frac{q - u_1}{\alpha} \right\rfloor.
\]
Additionally,
\[
e_{pqr}^-(m_2) \leq \max \left\{ 0, \left\lceil \frac{p' - u_2}{\alpha} \right\rceil, \left\lfloor \frac{q' - v_2}{\beta} \right\rfloor \right\} - \left\lfloor \frac{p - v_2}{\beta} \right\rfloor \leq \left\lfloor \frac{p - v_2}{\beta} \right\rfloor - \left\lceil \frac{p' - u_2}{\alpha} \right\rceil = \left\lfloor \frac{v_1 + 1 - q'}{\beta} \right\rfloor - \left\lfloor \frac{u_1 + 1 - q}{\alpha} \right\rfloor.
\]

Let \(l_1 = q' - v_1\) and \(l_2 = q - u_1\). Combining the above bounds we conclude that
\[
e_{pqr}^+(m_1) + e_{pqr}^-(m_2) \leq \left(\left\lceil \frac{l_1}{\beta} \right\rceil + \left\lfloor \frac{1 - l_1}{\beta} \right\rfloor \right) - \left(\left\lceil \frac{l_2}{\alpha} \right\rceil + \left\lfloor \frac{1 - l_2}{\alpha} \right\rfloor \right).
\]

Since for all positive integers \(l\) and \(\gamma\) we have
\[
\left(\left\lceil \frac{l}{\gamma} \right\rceil + \left\lfloor \frac{1 - l}{\gamma} \right\rfloor \right) \in \{1, 2\},
\]
we receive \(e_{pqr}^+(m_1) + e_{pqr}^-(m_2) \leq 1\), contradicting \(e_{pqr}^+(m_1), e_{pqr}^-(m_2) > 0\). The proof is finally completed. \(\square\)

5. Flat Polynomials

Proof of Theorem 2 By Theorem 1 the polynomial \(\Psi_{pqr}\) is flat if and only if
\[
\max \left\{ \min \left\{ \left\lceil \frac{p'}{\alpha} \right\rceil, \left\lfloor \frac{q'}{\beta} \right\rfloor \right\}, \min \left\{ \left\lceil \frac{q - p'}{\alpha} \right\rceil, \left\lfloor \frac{p - q'}{\beta} \right\rfloor \right\} \right\} = 1.
\]
This is equivalent to
\[(\alpha \geq p' \text{ or } \beta \geq q') \text{ and } (\alpha \geq q - p' \text{ or } \beta \geq p - q'),\]
which by the logical distributive laws is equivalent to
\[(a) \text{ or } (b) \text{ or } (c) \text{ or } (d)\]
as desired. □

Proof of Theorem 3. Put \(q = tp + 1\). Then \(p' = q - t\) and \(q' = 1\), so (d) transforms into the condition
\[\alpha \geq t \text{ and } \beta \geq 1.\]
Therefore all primes \(r\) from the arithmetic progression
\[(q + tp, q + (t + 1)p, \ldots) = (2tp + 1, (2t + 1)p + 1, \ldots)\]
satisfy the condition (d). Recall that \(\pi(x; a, n)\) denotes the number of primes \(r \leq x\) satisfying \(r \equiv a \pmod{n}\). By the Dirichlet’s theorem on primes in arithmetic progressions and by the above observations, we have
\[
\#S(p, q) \geq \pi(\varphi(pq); 1, p) - \pi(2tp; 1, p)
\]
\[= \pi((p - 1)tp; 1, p) - \pi(2tp; 1, p)\]
\[\sim \frac{1}{p - 1} \left(\frac{(p - 1)tp}{\log t + \log(p^2 - p)} - \frac{2tp}{\log t + \log(2p)} \right)\]
\[\sim \frac{p(p - 3)}{p - 1} \frac{t}{\log t} \to \infty\]
with \(t \to \infty\), as we assumed \(p > 3\). Hence (1) is proved.
To prove (ii) we again put \(q = tp + 1\) and we assume that \(p > 5\), so
\[4tp + 1 = 4(q - 1) + 1 < \varphi(pq).\]
Then once more we use the Dirichlet’s theorem to show that the arithmetic progression
\[(2tp + 1, (2t + 1)p + 1, \ldots, 4tp + 1)\]
contains asymptotically \(\frac{2p}{p - 1} \frac{t}{\log t}\) primes as \(t \to \infty\), and hence for \(t\) large enough it contains at least one prime. If \(r\) is a prime contained in this progression, then \(r \in S(p, q)\) and
\[\frac{r}{\varphi(pq)} \leq \frac{4tp + 1}{(p - 1)tp} < \frac{5}{p}\]
Therefore for every prime \(p > 5\) there exist a prime \(q\) and a prime \(r \in S(p, q)\) such that \(r/\varphi(pq) < 5/p\). We can chose \(p\) arbitrarily, so the proof is completed. □

Acknowledgments

The author is partially supported by NCN grant. He would like to thank Bartosz Naskręcki for his impressive and inspiring numerical simulations.
References

[1] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
[2] S. Elder, Flat cyclotomic polynomials: A new approach, arXiv:1207.5811 [math.NT].
[3] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
[4] T.Y. Lam, K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(X)$, Amer.Math. Monthly 103 (1996), 562-564.
[5] P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), 667–680.

Adam Mickiewicz University, Poznań, Poland
E-mail address: exul@amu.edu.pl