IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts

Yang, Guangtao; Ingenito, Andrea; Isabella, Olindo; Zeman, Miro

DOI
10.1016/j.solmat.2016.05.041

Publication date
2016

Document Version
Final published version

Published in
Solar Energy Materials & Solar Cells

Citation (APA)
Yang, G., Ingenito, A., Isabella, O., & Zeman, M. (2016). IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Solar Energy Materials & Solar Cells, 158, 84-90. https://doi.org/10.1016/j.solmat.2016.05.041

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts

Guangtao Yang *, Andrea Ingenito, Olindo Isabella, Miro Zeman

Laboratory of Photovoltaic Material and Device, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

A R T I C L E I N F O

Article history:
Received 31 March 2016
Received in revised form 15 May 2016
Accepted 19 May 2016
Available online 26 May 2016

Keywords:
Ion-implantation
Poly-silicon
Passivating contact
IBC c-Si solar cells

A B S T R A C T

Ion-implanted poly-crystalline silicon (poly-Si), in combination with a tunnel oxide layer, is investigated as a carrier-selective passivating contact in c-Si solar cells based on an interdigitated back contact (IBC) architecture. The optimized poly-Si passivating contacts enable low interface recombination, resulting in implied V_{OC} (V_{OC}) of about 720 mV and 704 mV for n-type and p-type, respectively, before any hydrogenation step. It is found that high-quality passivation can be obtained when confining the dopants within the poly-Si layers and realizing a shallow diffusion of dopants into the c-Si bulk, meaning a sharp decrease in doping concentration in the c-Si at the poly-Si/c-Si interface. The doping profile at the poly-Si/c-Si interface can be influenced by poly-Si layer thickness, poly-Si ion-implantation parameters, and post-implantation annealing conditions. The detailed discussion on the passivation properties of the poly-Si passivating contacts and their preparation conditions are presented in this paper. In addition, IBC solar cells with/without front surface field (FSF) are fabricated, with the optimized poly-Si passivating contacts as back surface field, BSF (n-type poly-Si), and emitter (p-type poly-Si). The best cell shows an efficiency of 21.2% (V_{OC}=692 mV, J_{SC}=39.2 mA/cm², FF=78.3%, and pFF=83.5%).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The conversion efficiency of crystalline silicon (c-Si) solar cells, continuously improved owing to both material and surface passivation innovation, is minimizing the gap with the theoretical efficiency limit. Still, minority carriers’ recombination velocity at c-Si/contact interface can be further quenched by means of carrier-selective contacts. One good example is the hydrogenated amorphous silicon (a-Si:H)/c-Si hetero-junction structure [1,2]. Because of the excellent passivation properties of a-Si:H material, a very high cell open-circuit voltage (V_{OC}) was obtained [3,4]. Due to the interdigitated back contact (IBC) solar cell design, no optical shading occurs at the front side of the cell comparing to the standard front / rear contacted cell design, which has current loss due to the front metal grid [5,6]. With the hetero-junction IBC structure, a record cell efficiency of 25.6% was achieved [6]. The drawback of the hetero-junction solar cell is that the temperature stability of the a-Si:H-based layers (< 250 °C) limits an effective industrialization of this technology.

Recently, the semi-insulating poly-crystalline silicon (SIPOS) has attracted attention in several research groups as a high-temperature stable carrier selective contact [7–9]. SIPOS is a mixture of micro-crystalline silicon and silicon oxide (SiOₓ). By using such a carrier-selective contact, very good passivation of c-Si surface was obtained with an V_{OC} of 720 mV for the c-Si solar cell test structure n⁺–SIPOS/thin SiO₂/p-type c-Si/thin SiO₂/n⁺–SIPOS [10]. On the same concept, materials and similar test structures, research is currently ongoing and high-quality passivation is obtained with n-type doped poly-Si/tunnelling SiO₂/c-Si structure [7–9] which is also referred as the TOPCon structure. With such structure on the back side of a 2-cm² wide front/rear contacted cell, AlO₃/SiNₓ-passivated front emitter and selectively heavily-doped p++ front emitter under the metallic contact area, a record efficiency of 25.1% was achieved [11]. Recently, a 21.2% efficiency has been reported with a similar cell structure on large area commercial grade n-type Cz wafer [12].

In principle, it should be possible to further improve the conversion efficiency potential of TOPCon structure by switching to an IBC architecture endowed with thermally-stable carrier-selective passivating contacts. In this respect, many efforts have been spent on both test structures and IBC solar cells with poly-Si carrier-selective contacts [8,13,14]. At the test structures level, high implied V_{OC} and pseudo fill factor (pFF) were reported [8]. At IBC solar cells level, progresses have been made so far by: Young et al. [15] at NREL working on low-cost, ion-implanted IBC solar cells with poly-Si passivating contacts. We have recently published a fully ion-implanted IBC cell with poly-Si passivating contacts [16] based on an industry-scalable and self-aligned process technology.
2. Experimental

2.1. Symmetrical structures based on poly-Si passivating contacts

The process to make and the techniques to characterize symmetrical structures based on poly-Si passivating contacts are described in this section. Our typical poly-Si passivating contact consists of an ultra-thin tunnelling SiO2 layer and a doped poly-Si layer, fabricated in a four-step process. First, the tunnelling SiO2 layer is formed on both sides of the wafer by a wet-chemical method; second, the intrinsic amorphous silicon (a-Si) is also deposited on both sides of the wafer by means of low-pressure chemical vapour deposition (LPCVD); third, an ex-situ single sided doping process is realized using ion-implantation technique; fourth, a high temperature annealing step is carried out to activate and drive-in the implanted dopants while also turning the a-Si to poly-Si.

Raman spectroscopy by means of Renishaw equipment was used to study the microstructure of the poly-Si layers before and after high temperature annealing. The injection-dependent minority carrier lifetime (τ) and implied open-circuit voltage (\(V_{oc}\)) were measured by the Photoconductance Lifetime Tester (Sinton, WCT-120) using Quasi-Steady State Photoconductance (QSSPC) mode and transient mode [19]. The values reported in this paper are taken from the transient analysis mode with an optical constant of 0.7 and at the minority carrier density of \(1 \times 10^{19} \text{ cm}^{-3}\). Four point probe measurements and transmission line method (TLM) were used to obtain the sheet resistance (RSh) of the passivating contacts and the contact resistance (Rc) between such passivating contacts and the evaporated Al, respectively. In order to ensure an accurate measurement, the c-Si bulk used for the RSh and Rc measurements exhibited opposite doping type than the one of the passivating contacts under test.

In this work, (001) oriented, 1–5 \(\Omega \cdot \text{cm}, 285-\mu \text{m} \) thick, double-side polished FZ wafers were used. The parameters used for the poly-Si passivating contacts preparation are listed in Table 1. The detailed descriptions of each step are presented in the following sub-sections.

2.1.1. Ultra-thin tunnelling SiO2 layer

The tunnelling SiO2 layer is formed by the method of Nitric Acid Oxidation of Silicon (NAOS) [20]. Before the NAOS process, in order to remove the native oxide, the Si wafer is dipped into HF, 0.55% for 4 min. The NAOS used in this work is a two-step process: (1) HNO3 (99%, room temperature) for 10 min, followed by a rinsing in DI water for 5 min, then (2) HNO3 (68%, at 110 °C) for 10 min, followed by a rinsing step in DI water for 5 min. Such a two-step process is basically a standard cleaning in our clean room environment. The thickness of the obtained NAOS-based SiO2 layer is \(\sim 1.5 \text{ nm}\) (see Section 4.1).

2.1.2. Intrinsic amorphous silicon layer

The a-Si layer is deposited on the NAOS-based SiO2 layer on both sides of the wafer by a Tem press LPCVD tube furnace (temperature of 580 °C; SiH4 gas flow of 45 sccm; pressure of 150 mTorr for a deposition rate of 2.2 nm/min). After the a-Si layer deposition, an annealing step at a temperature of 600 °C for 1 h is used to release the stress. In this work, the influence of a-Si layer thickness on the passivation properties of poly-Si passivating contacts is studied.

2.1.3. Ion-implantation

In order to obtain a doped a-Si layer, a Varian Implanter E500HP is used to implant P or B atoms into the a-Si layer. With such an implanter, the implantation of B or P atoms can be done with a minimum energy of 5 keV and maximum dose of \(10^{16} \text{ cm}^{-2}\). In this work, the P-implantation is done at fixed implantation energy of 20 keV and variable implantation dose; on the other hand, as the penetration depth of B is larger than P during the implantation, due to B atoms being smaller than P atoms, the B-implantation is done at lower fixed implantation energy of 5 keV and implantation dose of \(5 \cdot 10^{15} \text{ cm}^{-2}\). In this work, the influence of the implantation parameters on the final passivation properties of poly-Si passivating contacts is studied.

2.1.4. Annealing/Oxidation

After the ion-implantation, a high temperature process is used to activate and drive-in the dopants. A Tem press tube furnace is used to anneal the samples in \(\text{N}_2\) or \(\text{O}_2\) atmosphere. In this work, the annealing is done at the temperature between 850 and 950 °C. The ramping rate for heating or cooling is 10 °C/min. The effect of annealing time and atmosphere on the final passivation properties of poly-Si passivating contacts is also studied.

2.2. IBC solar cells

The main steps to fabricate our IBC solar cells are shown in Fig. 1, which is a modified process flow based on the self-aligned process for c-Si homo-junction IBC solar cells previously developed in our group [17–18]. First, the n-type Fz wafer is cleaned using the abovementioned standard cleaning step, during which the tunnelling SiO2 layer is formed, see Fig. 1(1). Then the wafer is loaded into a LPCVD furnace for a-Si layer deposition, see Fig. 1(2). Afterwards, the P-implantation of the a-Si layer is used to form the back surface field (BSF) of the cell, which is followed by a plasma-enhanced CVD (PECVD) SiNx layer that is deposited only at the back side of the wafer. Then, the first photolithography step is used to pattern the SiNx layer, which is followed by a wet-chemical etch-back step to remove the P-implanted a-Si layer and a thin layer of the c-Si bulk, see Fig. 1(3). Due to this etch-back, the alignment markers appear on the wafer, which will be used for the alignment in the following lithography steps. Afterwards, the second NAOS-based tunnelling SiO2 layer is formed before another intrinsic LPCVD a-Si layer deposition, shown in Fig. 1(4). The a-Si layer is then implanted with B to form the emitter of the cell. During the B-implantation, the part of BSF layer that is underneath of the SiNx layer is protected against the B penetration, see Fig. 1(5). Subsequently, the second patterning step by photolithography is used to pattern the B-implanted a-Si layer see Fig. 1(6). After texturing the front side with SiNx, as protective for the backside, P-implantation on the front textured surface is used to form a pattern with BSF. Then the wafer is annealed at high temperature to activate and drive-in the dopants for BSF, emitter, and BSF in one step, see Fig. 1(7). Following the annealing, NAOS-based tunnelling SiO2 and PECVD SiN\(_x\) layers are used to passivate the FSF, and SiNx layer on the back-side of the cell is used as an insulating layer. Therefore, the etched gap region is passivated by...
NAOS-SiO$_2$/PECVD-SiN layers. Finally the IBC cell is finished with the metallization step by lift-off evaporated 2000-nm thick Al layer, see Fig. 1(8). A cross-sectional scanning electron microscope picture of the trench formed in step (3) is shown in Fig. 1(9). In order to have better visual contrast, a thin LPCVD SiO$_2$ layer is deposited on this structure. This trench ensures that no shunting appears between the p/n fingers. The cell area is $3.3 \times 3 \text{cm}^2$. The pitch size of the cell reported in this work is 650 μm, with 38% BSF in area and 2-μm wide etched gap region. The metal coverage of cell is 37% for emitter, and 20% for BSF. The J-V curve of the IBC cells is then measured with a class AAA Wacom WXS-156S solar simulator. Measurements are performed including the 2 mm wide bus bar. The series-resistance-free J-V curve and its relative pFF are instead measured with a Sinton Suns-VOC. The reference cells for both J-V and external quantum efficiency (EQE) measurements were calibrated at Fraunhofer Institute for Solar Energy Systems.

3. Results and discussion

High-efficiency IBC solar cells based on poly-Si passivating contacts must exhibit, besides high-grade passivation properties, low sheet resistance (i.e. high conductivity) and low contact resistance. The dependence of both passivating and conductive properties of the poly-Si layers on the preparation parameters is here evaluated in terms of poly-Si layer thickness, ion-implantation dose, annealing temperature and atmosphere. The optimized n-type poly-Si passivating contact is characterized by $J_0 = 6 \text{ fA/cm}^2$ and sheet resistance (R_{sh}) = 89 Ω/sq; while the p-type poly-Si passivating contact shows $J_0 = 19 \text{ fA/cm}^2$ and R_{sh} = 122 Ω/sq. These two optimized layers are highlighted in Table 1, where a detailed overview of the preparation parameters and test structure results is also reported. In Section III.A we report on the nature of our poly-Si/c-Si interface; in Section III.B we analyse and discuss the passivating/conductive behaviour of our poly-Si layers; and in Section III.C we present our IBC solar cells and give an outlook on how to further enhance the conversion efficiency.

3.1. Poly-Si material analysis and poly-Si/c-Si interface

As passivating contact, poly-Si works with an ultra-thin tunnelling SiO$_2$ layer, the NAOS-based SiO$_2$ layer in this case. In order to understand the properties of both layers, the poly-Si layer microstructure is studied via Raman spectroscopy and the thickness

| Poly-Si Implantation Annealing/Oxidation Passivation R$_{sh}$ [Ω/sq] |
|---|---|---|---|---|
| n-type | Sample number | Thickness [nm] | Energy [keV] | Dose [$\times 10^{15} \text{ cm}^{-2}$] | Temperature [°C] | Time [min] | N_2/O_2 | τ [ms] | J_0 [fA/cm2] | V_{oc} [mV] | R_{sh} [\Omega/\text{sq}] |
| 1 | n-type | 70 | ~ | ~ | 850 | 90 | N_2 | 0.03 | 1000 | 560 | ~ |
| 2 | 75 | 20 | 2 | 850 | 90 | N_2 | 3.5 | 9.5 | 706 | 900 |
| 3 | 75 | 20 | 3,5 | 850 | 90 | N_2 | 3 | 21.5 | 694 | 237 |
| 4 | 75 | 20 | 6 | 850 | 90 | N_2 | 1.5 | 51 | 684 | 152 |
| 5 | 75 | 20 | 6 | 850 | 90 | N_2 | 0.3 | 228 | 637 | 55 |
| 6 | 250 | 20 | 2 | 950 | 5 | N_2 | 1.2 | 48 | 679 | 157 |
| 7 | 250 | 20 | 6 | 950 | 5 | N_2 | 8 | 9 | 721 | 88 |
| 8 | 250 | 20 | 6 | 950 | 5 | O_2 | 11.8 | 6 | 723 | 89 |
| p-type | 12 | 200 | 5 | 5 | 950 | 5 | N_2 | 1.8 | 25 | 695 | 129 |
| 13 | 200 | 5 | 5 | 950 | 15 | N_2 | 1.6 | 33 | 690 | 108 |
| 14 | 200 | 5 | 5 | 950 | 30 | N_2 | 1.1 | 65 | 677 | 127 |
| 15 | 250 | 5 | 5 | 950 | 5 | N_2 | 1.9 | 30 | 692 | 106 |
| 16 | 250 | 5 | 5 | 950 | 5 | O_2 | 3.8 | 19 | 704 | 122 |

* R_{sh} values are obtained by means of 4-point probe measurements from samples whose c-Si bulk has the opposite doping than the passivating contact under test.

** τ values are taken at the minority carrier density of $1 \times 10^{15} \text{ cm}^{-3}$.

* SiO$_2$ layers are removed before Sinton measurement.
that once the tunnelling SiO$_2$ thickness exceeds 1.5 nm, the FF of the device drops dramatically with the tunnel oxide thickness even by fractions of nanometer. From the TEM measurement, our NAOS-based SiO$_2$ layer is 1.5-nm thick as shown in Fig. 3(b).

3.2. Passivating and conductive behaviour of poly-Si layers

The passivation properties of both n-type and p-type passivating contacts and their preparation conditions are listed in Table 1. It is found that the passivation properties of the poly-Si can be affected by the poly-Si thickness, the ion-implantation energy and dose, the annealing temperature, time, and atmosphere. However, our research shows that these parameters are correlated to each other when pursuing the right balance between passivation and conductivity.

Fig. 4(a) presents the P-doping profile of the n-type poly-Si passivating contacts with different implantation dose, while the other parameters are fixed (implantation energy of 20 keV and annealing at 850 °C for 90 min in the N$_2$ atmosphere). The passivation parameters for each sample are listed in Table 1. By increasing the implantation dose, the P-doping concentration is increased. During the annealing process, the implanted P atoms will be activated and diffuse within the poly-Si and possibly into the c-Si bulk. Fig. 4(a) shows that when the P-implantation dose is 2×10^{15} cm$^{-2}$, after high temperature annealing, the P atoms are mostly confined in the poly-Si material with a very shallow diffusion into the c-Si bulk. However, when increasing the P-implantation dose, more P atoms migrate into the c-Si bulk and the passivation capability of the poly-Si layer decreases dramatically. When the P atoms diffuse too deeply within the c-Si bulk (e.g. as in case of 6×10^{15} cm$^{-2}$ implantation dose), the minority carrier lifetime becomes 0.3 ms, which is too low for high-efficient solar cell application. However, the i-FF obtained by calculating "implied I-V curves" from the solar cell precursor lifetime data, similar to sum-V_{OC} measurements [24] is weakly dependent with ion-implantation dose. The i-FFs for samples 2 to 5 are 84.9% ± 0.3%: i-$FF_{sample-2} = 85.3\%$, i-$FF_{sample-3} = 84.6\%$, i-$FF_{sample-4} = 84.6\%$, i-$FF_{sample-5} = 85.0\%$.

In order to explain the variation of passivation properties with the doping profile, the passivation of the ion-implanted poly-Si passivating contact is thought to depend on two aspects: (1) the chemical passivation due to the tunnelling SiO$_2$ layer and (2) the field-effect passivation at the poly-Si/c-Si interface due to the dopants within the poly-Si layer. As the same NAOS-based SiO$_2$ layer is used in all samples, chemical passivation can be assumed to be equal between samples. Therefore, the variation of passivation properties obtained in this work is mainly attributed to the difference in the field-effect passivation at the NAOS/c-Si interface. Sample 1 in Table 1 shows that there is barely any passivation coming from the intrinsic poly-Si/NAOS-SiO$_2$ layers. This indicates that the passivation should be mainly attributed to the second aspect, the field-effect passivation. When the P-dopants are mostly confined in the poly-Si material with a shallow profile in the c-Si bulk, a strong band bending is established at the poly-Si/c-Si interface, preventing the minority carriers to diffuse through such interface. Therefore, a high field-effect passivation is obtained, and a high minority carrier lifetime is observed. But when the P-dopants diffuse too deeply in the c-Si bulk, there will be less or even no band bending at the poly-Si/c-Si interface capable to offer sufficient field-effect passivation. This explains why the sample with 6×10^{15} cm$^{-2}$ implantation dose, shown in Fig. 4(a), presents a low minority carrier lifetime, more specifically, a low effective lifetime due to the high surface recombination velocity at the NAOS/c-Si interfaces. No field-effect passivation occurs also when the P-dopants are too shallow in a thicker poly-Si material (e.g. 250-nm thick), as shown in Fig. 4(b). Instead, also shown in Fig. 4...
Fig. 4. (a) P-doping profile measured by ECV for 75-nm thick poly-Si passivating contacts with fixed implantation energy of 20 keV and annealing at 850 °C for 90 min in N₂, but different P-implantation doses. (b) P-doping profile measured by ECV for 250-nm thick poly-Si passivating contacts with fixed implantation energy of 20 keV and annealing at 950 °C for 5 min in N₂, but different P-implantation dose.

Fig. 5. B-doping profile measured by ECV for 200-nm thick poly-Si passivating contacts with fixed implantation energy of 5 keV, implantation dose of 5 × 10¹⁶ cm⁻² and annealing at 950 °C in N₂ but different annealing time (5, 15 and 30 min).

(b), keeping the same thickness (250 nm), but augmenting the implantation dose, allows to obtain high minority carrier lifetime. The passivating behaviour of B-implanted poly-Si passivating contacts shows similar trend as of P-implanted ones. When the B atoms are confined in the poly-Si material, a good passivation is observed, but when the B atoms diffuse too deeply into the c-Si bulk, the passivation properties decrease. Fig. 5 shows the B-doping profile for three different samples with the same poly-Si layer thickness, B-implantation parameters, and annealing temperature, but varying the annealing time from 5 min to 30 min. Increasing the annealing time, B atoms diffuse deeper into the c-Si bulk and a decrease in passivation properties are observed.

The variation in passivation properties depending on the dopants profile might be due to not only the abovementioned band bending, but also from other reasons. We speculate, for example, (i) that the c-Si at the interface between c-Si bulk and the NAOS-SiO₂/poly-Si becomes a heavily doped n⁺/p⁺ region due to the P/B in-diffusion inducing a strong increase of the Auger recombination rate; (2) that the pin-holes in the NAOS-SiO₂ tunneling layer due to the high temperature process may also increase the oxide layer interface trap density or create local pinholes, thus increasing the SiO₂/c-Si interface recombination, which is considered as the dominating recombination mechanism [9,25].

The annealing atmosphere is also a crucial parameter that has influence on the passivation properties of the poly-Si passivating contacts. It is found that by switching the annealing atmosphere from N₂ to O₂, an obvious increase in the passivation properties is found for both n-type and p-type poly-Si passivating contacts. For n-type poly-Si, the minority carrier lifetime increases from 8.0 ms (Sample 7) to 11.8 ms (Sample 8); for p-type poly-Si, the minority carrier lifetime increases from 1.9 ms (Sample 15) to 3.8 ms (Sample 16). We attribute this increase in passivation properties to the O₂ atmosphere during annealing to non-stoichiometric SiOₓ, formed by oxygen atoms diffusing into the poly-Si material, which can passivate the Si nano-crystals within the poly-Si layer. In fact, the surface of such nano-crystals is not passivated, being populated by dangling bonds and vacancies. In other words, even though the nano-crystals are embedded in an amorphous tissue, due to the absence of H atoms because of the high temperature process, the a-Si tissue itself cannot passivate the nano-crystals. This is also why annealing in forming gas, 10% H₂ in N₂, can dramatically increase the passivation properties of poly-Si passivating contacts [7]. Finally, by annealing in O₂ atmosphere, a (slightly) higher sheet resistance can be observed due to the existence of SiOₓ (see Table 1).

3.3. IBC solar cells

For highly-efficient IBC cells, a well passivated front side is desired. In this work, we used at first a P-implanted c-Si FSF passivated with NAOS-SiO₂ and PECVD SiNₓ layers. Later, the same implanted FSF was optimized by changing the passivation with a combination of thermally grown SiO₂ and PECVD SiNₓ layers. The passivation properties of the c-Si with P-implantation in
the front side, which leads to poor light trapping, the cell efficiency decreases to 83%.

The cell weighted area for BSF and emitter are 38% and 62%, respectively. When using the same FSF and the same NAOS-SiO2/SiN passivation stack, a cell efficiency of 83% indicates that our IBC solar cell process is not limited by the front side passivation. However, in cell-5 when a simplified NAOS-SiO2 is used as tunnelling layer between poly-Si and c-Si bulk, which is obtained by immersion the wafer in 68% HNO3 at 110 °C for 5 min, the cell Voc increased to 694 mV. Symmetrical test samples with the simplified NAOS-SiO2 show that, the simplified NAOS does not influence the passivation properties of the poly-Si BSF and emitter, with respect to the two steps NAOS. The reason for this enhancement in cell Voc due to the simplified NAOS process is still not clear and under investigation. In order to understand where this loss in Voc comes from, more work needs to be done on the NAOS-SiO2 layer properties, simulation on cell level, and statistics on cell results.

Table 3. Performance of IBC solar cell with different front side structure and passivation.

Test structure	rs [ns]	J0 [A/cm²]	Voc [mV]	Rsh [Ω/cm²]
Poly-Si BSF (Sample 8, Table 1)	11.8	6	723	89
Poly-Si emitter (Sample 16, Table 1)	3.8	19	704	122
FSF (flat)	0.4	100	684	245
FSF (textured)	0.3	192	638	500
No-BSF (textured)	0.6	52	673	–
Optimized FSF (textured)	1.1	31	679	282

* * values are taken at the minority carrier density of 1 x 10¹⁹ cm⁻³.
FSF passivated by NAOS-SiO2/PECVD-SiNc.
FSF implanted with a lower energy and passivated by ~15-nm thick thermal-SiO2 and 65-nm thick PECVD-SiNs.

The IBC solar cell based on poly-Si passivating contacts presented in this work can be further optimized as follows: (i) the performance of the poly-Si layers can be improved by hydrogenation, aiming to act on both passivation quality (preliminary results show, for sample 8 in Table 1, that hydrogenation via forming gas annealing at 400 °C for 2 h can improve the Voc from 723 mV to 733 mV) and mobility (i.e. conductivity); (ii) the rear p/n gap can be made deeper to prevent any slight chance of shunting; (iii) the NAOS-SiO2 process can be further optimized; (v) the passivation of the front side can be still increased by further symmetrical test structures are listed in Table 2, together with the selected poly-Si BSF and emitter.

Table 3 reports the performance of IBC solar cells with different front side structures and passivation stacks. The high FF, generally higher than 83%, indicates that our IBC solar cell process flow does not induce shunting. The IBC cell with a flat FSF shows an efficiency of 18.2% (Voc = 680 mV, FF = 74.5%, JSC = 35.6 mA/cm²). The cell Voc is compatible with Voc = 686 mV, calculated by means of the equation:

\[V_{OC} = \frac{n k T}{q} \ln \left(\frac{J_0}{J_{BSF} + J_{emitter} + J_{PSF} + J_{bulk} + 1} \right) \]

where J0 = 35.9 mA/cm² is the Jsc of the cell, J0[BSF] = 6 FA/cm², J0[emitter] = 19 FA/cm² and J0[PSF] = 101 FA/cm², are the contributions of BSF, emitter and flat FSF, respectively (see Table 2). The weighted area for BSF and emitter are 38% and 62%, respectively. J0[bulk] is assumed to be equal to 10 FA/cm². Due to the flatness of the front side, which leads to poor light trapping, the Jsc is limited to 35.9 mA/cm². By texturing of the front surface passivated with the same FSF and the same NAOS-SiO2/SiNp passivation stack, a boost in Jsc from 35.9 to 38.0 mA/cm² is obtained (mainly due to enhanced infrared response) and the cell efficiency increases from 18.2% to 19.2%. However, as the textured surface passivation is not as good as in case of the flat surface, a higher Jsc is observed in the symmetrical test structure of the textured FSF sample comparing to the flat one. Thus a Voc = 673 mV is obtained, indicating that the front side recombination limits the Voc of the textured cell. In order to reduce the front side recombination, we fabricated a device without FSF implantation, for which the cell Voc reaches 696 mV due to the lower J0 from the front side of the cell.
optimizing the ion-implanted FSF.

4. Conclusion

Ion-implanted poly-Si with tunnelling SiO₂ passing contacts applied in IBC solar cells are presented in this paper. Both n-type and p-type passing contacts used in the cells are prepared with ion-implantation and subsequent annealing of LPCVD intrinsic a-Si layers. The passing contacts are optimized after having varied a wide range of process parameters. The impact of doping profile at the poly-Si/c-Si interface of the passivating contacts on their passivation quality has been studied. It is found that, by confining the implanted dopants within the poly-Si layers, an excellent surface passivation, before hydrogenation, of \(V_{OC} \) of 723 mV for n-type and 704 mV for p-type passing contacts can be achieved. The doping profile can be controlled by modifying the poly-Si layer thickness, the energy and dose of the ion-implantation, and the temperature and time of the annealing. The annealing in \(O_2 \) and in forming gas are found to be helpful for improving the passivation. The best IBC solar cell with FSF presents an efficiency of 21.2%, with \(V_{OC} = 692 \) mV, \(FF = 78.3\% \), and \(pFF = 83.5\% \).

Acknowledgement

This work was carried out with a subsidy of the Dutch Ministry of Economic Affairs (TKI Solar Energy - IBChampion project). The authors thank Ard Vlooswijk from the Tempress Systems BV for the ECV measurements and discussions.

References

[1] S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif. High-efficiency silicon heterojunction solar cells: a review, Green 2 (1) (2012) 7–24.
[2] D. Deligiannis, S. Alivizatos, A. Ingenito, D. Zhang, M. van Sebille, R.A.C.M. M. van Swaaij, M. Zeman, Wet-chemical treatment for improved surface passivation of textured silicon heterojunction solar cells, Energy Procedia 55 (2014) 197–202.
[3] H. Angermann, W. Henrion, A. Röseler, M. Rehbn, Wet-chemical passivation of Si (111)- and Si (100)-substrates, Mater. Sci. Eng. 73 (2000) 178–183.
[4] H. Angermann, Passivation of structured p-type silicon interfaces: effect of surface morphology and wet-chemical pre-treatment, Appl. Surf. Sci. 254 (2008) 8067–8074.
[5] A. Tomasi, B. Paviet-Salomon, D. Lachenal, S.M. de Nicolas, A. Descoeudres, J. Geissbuhler, S. De Wolf, C. Ballif. Back-contacted silicon heterojunction solar cells with efficiency >21%, IEEE J. Photovolt. 4 (4) (2014) 1046–1054.
[6] R. Masuok, M. Shimematsu, T. Hashigushi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Tamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovolt. 4 (6) (2014) 1433–1435.
[7] A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benicke, M. Hermle, Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO₂ layers, Sol. Energy Mater. Sol. Cells 142 (2015) 123–127.
[8] C. Reichel, F. Feldmann, R. Muller, A. Moldovan, M. Hermle, and S. W. Glunz, Interdigitated back contact silicon solar cells with tunnel oxide passivated contacts formed by ion implantation, in: Proceedings of the 29th European PV Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 2014.
[9] U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, R. Brendel, Recombination behavior and contact resistance of n- and p-type poly-crystalline Si/mono-crystalline Si junctions, Sol. Energy Mater. Sol. Cells 31 (2014) 85–91.
[10] S.W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinckemper, J. Benicke, M. Hermle, The irresistible charm of a simple current flow pattern > 25% with a solar cell featuring a full-area back contact, Presented at the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 2015.
[11] Y. Tao, V. Upadhyaya, C.W. Chen, A. Payne, E.L. Chang, A. Upadhyaya, A. Rohatgi, Large area tunnel oxide passivated rear contact n-type Si cells with 21.2% efficiency, Progress Photovolt. Res. Appl. 24 (2016) 830–835.
[12] U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, T. Wietler, R. Brendel, Ion implantation for poly-Si passivated back-junction back-contacted solar cells, IEEE J. Photovolt. 5 (2) (2015) 507–514.
[13] M. Rienäcker, A. Merkle, U. Römer, H. Kohlenberg, J. Krügener, R. Brendel, R. Peibst, Recombination behavior of photolithography-free back junction back contact solar cells with carrier-selective polysilicon on oxide junctions for both polarities, Energy Procedia (2016).
[14] D. Young, J. Aguilar, F. Feldman, V. La Salvia, B. Lee, W. Nemeth, M. Page, C. Reichel, F. Straids, Progress Towards A Low-Cost, Ion Implanted Interdigitated Back Passivated Contact (IBPC) Solar Cell, in: 6th international Conference on Crystalline Silicon photovoltaics, Oral Presentation, Silicon PV, Chambéry, France, 2016.
[15] G. Yang, A. Ingenito, N. van Hameren, O. Isabella, M. Zeman, Design and application of ion-implanted poly-Si passivating contacts for interdigitated back contact p-type solar cells, Appl. Phys. Lett. 108 (2016) 033903.
[16] A. Ingenito, O. Isabella, and M. Zeman, International Patent Application, 0160047 IW, 2015.
[17] A. Ingenito, O. Isabella, M. Zeman, Simplified process for high efficiency, self-aligned IBC c-Si solar cells combining ion implantation and epitaxial growth: design and fabrication, Sol. Energy Mater. Sol. Cells (2016). http://dx.doi.org/10.1016/j.solmat.2015.05.021.
[18] R.A. Sinton, A. Cuevas, Contactless determination of current-voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady state photoconductance data, Appl. Phys. Lett. 69 (1996) 2510.
[19] H. Kobayashi, K. Imamura, W.B. Kim, S.S. Im, A. Murdoch, Nitric acid oxidation of Si (100) method for low temperature fabrication of SiO₂/Si and SiO₂/SiC structures, Appl. Surf. Sci. 256 (2010) 5744–5756.
[20] H. Tan, E. Psmadakis, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, A.H.M. Smets, Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells, Appl. Phys. Lett. 103 (2013) 173905, http://dx.doi.org/10.1063/1.4826639.
[21] A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benicke, M. Hermle, Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO₂ layers, Sol. Energy Mater. Sol. Cells 142 (2015) 123–127.
[22] H. Steinckemper, F. Feldmann, M. Bivour, M. Hermle, Numerical simulation of carrier-selective electron contacts featuring tunnel oxides, IEEE J. Photovolt. 5 (2) (2015) 1348–1356.
[23] R.A. Sinton, A. Cuevas, A quasi-steady-state open-circuit voltage method for solar cell characterization, in: Proceeding of 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, 2000, pp. 1152–1155.
[24] F. Feldmann, R. Muller, C. Reichel, M. Hermle, Ion implantation into amorphous Si layers to form carrier-selective contacts for Si cells, Physica Status Solidi (RRL) Rapid Res. Lett. 8 (2014) 767.