Complicated glaucomas present considerable diagnostic and management challenges. Response to treatment can be unpredictable or reduced compared with other glaucomas. However, target intraocular pressure and preservation of vision may be achieved with selected medical, laser and surgical treatment. The evidence for such treatment is expanding and consequently affords clinicians a better understanding of established and novel techniques. Herein we review the mechanisms involved in the development of complicated glaucoma and the current evidence supporting its management.

Key words: Angle-recession, intraocular pressure, keratoplasty, rubeosis, silicone oil, steroids, uveitis, vitrectomy

Indian J Ophthalmol; 2011;59 Suppl 1:S141-147

DOI: 10.4103/0301-4738.73686

Complicated glaucomas are difficult to manage. Most often, they are secondary and may be characterized by a mixture of very high intraocular pressure (IOP), multiple and possibly changing mechanisms for raised IOP, ocular factors limiting assessment and/or treatment, often the need for combined therapy and the potential for rapid deterioration in vision.

IOP may be reduced by medical, laser and/or surgical means. The chances for success are maximized when the cause for raised IOP is identified and able to be treated. In some instances, certain treatment options are not effective or are contraindicated.

Basic Treatment Principles

Medical reduction of IOP

Initial treatment is usually medical, with the aim being either long-term control or a “safer” IOP whilst awaiting more definitive treatment. The same agents are available as for other glaucomas, but have been less extensively studied for this purpose. Whilst the efficacy and safety of the prostaglandin analogues and beta-blockers in primary open-angle glaucoma (POAG) are well known, this does not apply equally to complicated glaucomas. Response to medical treatment may be unpredictable or reduced, with a few notable exceptions.

In conditions where there is pre- or post-trabecular pathology causing elevated IOP, medical treatment on average appears less effective. Retrospective analysis of patients with glaucoma secondary to iridocorneal endothelial syndrome suggests a poorer response to medical treatment, with 88% requiring filtration surgery. Similarly, efficacy of prostaglandin analogues is reported to be less in pediatric glaucomas and glaucoma associated with Sturge-Weber syndrome. There are little data on the IOP-lowering potency of medical agents in rubeotic glaucoma, although it is considered to be poor.

More favorable responses to medical treatment have been reported where there is reduced outflow facility from pathology within the trabecular meshwork despite an open angle. Scherer and Hauber reported a 28% reduction in steroid-induced glaucoma with prostaglandins, comparable with the response seen in POAG. Prostaglandins may be more effective than beta-blockers at lowering and stabilizing IOP in secondary glaucomas with pigment dispersion and at least as effective in many cases of uveitic glaucoma (vide infra). An exception is inflammatory glaucoma associated with juvenile arthritis, where IOP is difficult to control medically.

Laser and/or surgical reduction of IOP

When IOP cannot be controlled by medical means alone, laser and/or surgical options may be considered; there is no consensus on the best approach.

The least invasive option remains laser trabeculoplasty (LT) but its application is limited in this setting. Whilst predominantly used in POAG and ocular hypertension, the response to LT has been reported in steroid-induced glaucoma, pseudoexfoliation glaucoma (PXFG), pigment dispersion glaucoma (PDG) and glaucoma associated with penetrating keratoplasty (PK). Control of steroid-induced glaucoma has been reported and response in PXFG is similar to that achieved in POAG with an average IOP reduction of 31.4%, 18 months after treatment. Paradoxically, elevated IOP has been reported in PDG following LT. In PK-associated glaucoma, a 29.7% reduction in IOP was maintained for 22 months following argon LT (ALT). However, LT in this group is often difficult due to opaque cornea, scarring at the host-graft interface or narrowing of the iridocorneal angle.

The commonest surgical options include trabeculectomy (with or without antimetabolites) or glaucoma drainage devices.
(GDD). Most glaucoma surgeons still prefer trabeculectomy over GDD in most complicated glaucomas, although GDD use is increasing.[13] This is paralleled by a decline in the rate of antimetabolite use with trabeculectomy despite i) a high level of use (68–83%) for “routine” trabeculectomy and ii) evidence that outcome is enhanced with antimetabolite use in complicated cases.[14,15] The reason for this shift is not clear but may relate to concern over increased rates of late postoperative complications such as bleb leak and blebitis in cases where antimetabolites have been used. For example, a mitomycin-C (MMC) trabeculectomy in uveitic glaucoma has an odds ratio for an avascular bleb of 3.93 compared with the rate in eyes with POAG trabeculectomy in uveitic glaucoma has an odds ratio for an avascular bleb of 3.93 compared with the rate in eyes with POAG.[16]

Non-penetrating glaucoma surgery (NPGS) might be a surgical option for managing complicated glaucomas. Viscoanalostomy augmented with antimetabolite (MMC) has a reported success rate of 85% after 4 years in eyes at risk of trabeculectomy failure.[19] However, the exclusion of patients with uveitis, trabeculitis, irido corneal endothelial (ICE) syndrome or peripheral anterior synechiae (PAS) from any other cause diminishes the relevance of these findings for complicated glaucomas. Further, this technique is more challenging than other IOP-lowering procedures, with a steep learning curve; this will slow any uptake of this procedure.

Targeted Therapy

Steroid-induced glaucoma

Widely used following ocular surgery as well as to treat several ophthalmic conditions (including corneal disease, uveitis and retinal edema), corticosteroids are delivered topically for anterior segment disease and peri-ocularly or with intraocular depots for posterior segment conditions. A common complication for both modes of delivery is raised IOP.

First, reduce or withdraw the steroid. As not all topical steroids have equal effects on IOP,[40] it may be possible to switch to a different topical steroid rather than withdraw altogether. In individuals manifesting dexamethasone ocular hypertensive response, fluorometholone may allow better IOP control,[41,42] and the aqueous concentrations of steroid required for anti-inflammatory control may be suboptimal,[43] leading the inflammation to recur.

Substitution of topical steroid treatment may be possible; postoperatively, a non-steroidal anti-inflammatory may be beneficial. Diclofenac may offer superior control of ocular inflammation and reduced risk of postoperative macular edema compared with betamethasone following small incision cataract surgery.[44] Similarly, replacement of a topical steroid with cyclosporine A has been used in individuals whose IOP increases secondary to steroids following PK.[45,46] In both studies, cyclosporine A therapy was associated with a significant reduction in IOP whilst maintaining graft clarity. However, risk of graft rejection increased with cyclosporine A.

Where topical steroid treatment must continue, topical ocular anti-hypertensive medication(s) might help. The commonest agents used are β-blockers as monotherapy or in combination with other classes of agents. Prostaglandin analogues are used less frequently as monotherapy despite evidence suggesting good efficacy because of concerns over their potential effects on the blood–aqueous barrier and increased ocular inflammation (vide infra).

The frequency of IOP > 21 mmHg after intravitreal triamcinolone (IVTA) can be as high as 40%, 9 months after initial injection.[47,48] Medical therapy is often enough to maintain IOP within an acceptable range, but occasionally trabeculectomy or a GDD is required.

Selective laser trabeculoplasty (SLT) shows benefit as an alternative to medical therapy or in addition to it, in management of steroid-induced glaucoma.

Glaucoma in uveitis

Raised IOP in uveitis is common. Up to 40%[49,50] of patients with uveitis develop raised IOP at some time during the course of the...
condition or its treatment. While patients with chronic uveitis are more likely to have raised IOP than patients with acute uveitis, the primary location of the uveal inflammation (anterior versus posterior) appears to be less important.\(^{[90]}\) Although the commonest reason for raised IOP is steroid use,\(^{[91]}\) other factors may contribute including inflammation (increased aqueous viscosity, trabeculitis) and secondary structural changes (PAS, iris and angle rubeosis, posterior synechiae with iris bombe, forward rotation of the ciliary body/lens diaphragm).

Aside from treating inflammation, initial treatment for raised IOP in uveitis is usually with topical therapy. Prostaglandins have been avoided or used cautiously due to concerns that they decrease the blood–aqueous barrier with increased intraocular inflammation and cystoid macular edema. Support for this caution comes from animal studies, case reports and retrospective case series.\(^{[92]}\) However, some commentators question the scientific validity of avoiding prostaglandin use in uveitis\(^{[93]}\) and recent quality research backs this position. A randomized prospective trial\(^{[94]}\) and two large independent retrospective case series\(^{[95,96]}\) demonstrated i) no association between prostaglandin analogue use and the development of cystoid macular edema or increased ocular inflammation in uveitis and ii) significant reduction in IOP following initiation of prostaglandin analogues. On balance, current evidence supports prostaglandin use.

IOP may be elevated by angle-closure secondary to posterior synechiae and iris bombe. Peripheral laser iridotomy (PLI) is advocated as initial treatment in this setting but has a much higher failure rate (60%) than seen in primary angle closure.\(^{[97]}\) Techniques to promote PLI success in this setting include creating multiple PLIs, making the PLIs larger, aggressive use of anti-inflammatories and possible surgical iridectomy.

Where medical therapy has failed to control IOP, optic nerve damage is occurring, or is at great risk of occurring, and there is no pupil block, trabeculectomy is indicated. Ideally, this should be performed in a non-inflamed eye, although this is rarely the case and explains the higher failure rate. Success may be increased by the use of antimetabolites although they appear to be used less often compared with “routine” glaucoma. Despite using antimetabolites, uveitic eyes are still more likely to require postoperative 5-fluorouracil (5-FU) injections and topical IOP lowering treatments compared with non-uveitic glaucoma.\(^{[98,99]}\) The use of a GDD may offer better IOP control in uveitis than does trabeculectomy not augmented by antifibrotics.\(^{[100]}\)

Glaucoma secondary to neovascularization

Neovascularization most commonly follows proliferative diabetic retinopathy or ischemic central retinal vein occlusion. Other causes include ocular ischemic syndrome, central retinal artery occlusion, chronic uveitis, longstanding retinal detachment, radiation retinopathy and ocular tumors. The process involves proliferation of a fibrovascular membrane across the iris and iridocorneal angle, leading to secondary angle closure and reduced outflow facility. Prognosis is usually poor.

Anti-vascular endothelial growth factor (anti-VEGF) agents offer promise in the treatment of neovascular glaucoma. They decrease neovascularization, lower IOP (and thereby improve vision) by halting PAS formation. Both case reports\(^{[60,61]}\) and small prospective case series\(^{[82,83]}\) of intravitreal bevacizumab (Avastin) have been consistent. In the largest case series so far,\(^{[23,60]}\) patients received three injections at 4-weekly intervals with follow-up for 12 months. By the third injection, there had been regression of iris neovascularization in most cases with mean Snellen Visual Acuity (VA) improvement from Counting Fingers to 20/50 and a mean reduction in IOP of 13 mmHg. Three eyes required a GDD to control IOP and 15 eyes remained on at least two topical IOP lowering agents (timolol–dorzolamide). The largest reductions in IOP and improvement in VA occur in those with highest IOP and worst VA at presentation.

Pan-retinal photocoagulation remains central to the long-term control of rubeosis. Patients who received pan-retinal photocoagulation with or without combined bevacizumab use have been compared retrospectively.\(^{[101]}\) Those receiving bevacizumab achieved better IOP control throughout follow-up, used less topical IOP lowering medications, retained better VA and were less likely to need GDD to control IOP.

Glaucoma and silicone oil retinal tamponade

In cases of complex retinal detachment (tractional diabetic retinal detachment, giant retinal tear, proliferative vitreoretinopathy), retinal tamponade is required and is most frequently achieved with silicone oil. Silicone oil leads to a 40% incidence of postoperative glaucoma.\(^{[102]}\) Mechanisms for raised IOP may include pre-existing glaucoma, neovascular glaucoma, emulsified oil in the anterior chamber or secondary angle closure.\(^{[65,66]}\) Independent risk factors for developing silicone oil glaucoma include rubeosis iridis, aphakia, diabetes, and the use of highly purified silicone oil (5000 cSt) or its presence in the anterior chamber.

Silicone oil removal alone may be effective to lower IOP but is not always possible. The ability to control IOP medically is variable (30–78%)\(^{[65,67]}\) with more invasive treatment often required. Where angle closure contributes, PLI may be attempted, but there is a lower success rate and need for multiple treatments,\(^{[103]}\) compared with primary angle closure. Trabeculectomy and cycloablation have inferior outcomes to those reported for GDD insertion.\(^{[104]}\) With an inferiorly placed shunt tube to minimize silicone oil passage into the bleb, Ishida et al.\(^{[105]}\) have reported successful IOP control after 4 years in 70% of patients uncontrolled on medication alone. Although the failure rate was higher compared with eyes without silicone oil, it still appears to be a better option than either trabeculectomy or cycloablation.

Glaucoma and penetrating keratoplasty

Glaucoma and corneal disease often coexist. Elevated IOP, particularly in aphakia or pseudophakia, may lead to bullous keratopathy. Similarly, PK for any reason may be complicated by elevated IOP in the postoperative period and is a common cause for graft failure. The risk of developing post-PK glaucoma may be related to the underlying condition requiring corneal surgery. The rate following Fuchs’ endothelial dystrophy and keratoconus is low compared with infective keratitis and corneal perforation.\(^{[70]}\) In the acute perioperative period, IOP may be elevated because of retained viscoelastic, persistent inflammation or pre-existing glaucoma. In the longer term,
Elevated IOP from long-term topical steroids postoperatively is problematic and may partly explain the difficulty with pressure control in patients with pre-existing glaucoma. Early withdrawal of topical steroids in such patients could aid IOP control, but increases the risk of graft rejection. An alternative strategy might involve substituting topical steroids with a non-steroidal anti-inflammatory anti-rejection agent without known IOP effects. Two prospective studies used cyclosporine A instead of a topical steroid in steroid responders following PK. In both studies, there was a significant reduction in mean IOP following cyclosporine A treatment. Most patients maintained graft clarity though an increased risk of allograft rejection was reported. In cases where the trabecular meshwork is clearly visible on gonioscopy, LT may be an option.

Trabeculectomy may be performed where there has been previous PK and glaucoma is uncontrolled despite medical therapy. Trabeculectomy alone may fail to control IOP in 75–90% of cases, whereas intraoperative antimitabolite use improves outcome significantly. Adverse outcome is more likely in patients who have had multiple PKs or if there is synchial angle closure. While a trabeculectomy may threaten graft survival (5 year probability is 0.62), failure to control IOP is likely to cause graft failure.

Transscleral diode laser photocoagulation may be performed for refractory glaucoma following PK. In a series of 32 patients, IOP was controlled in 72%, with 44% needing re-treatment during the 12-month follow-up. Importantly, no graft failure was observed.

In cases where severe corneal disease and poorly controlled glaucoma coexist, PK is destined to fail unless the IOP is controlled simultaneously. Trabeculectomy with antimitabolite combined with PK has a good chance to control IOP (91%) and maintain graft clarity (82%) in the short to medium term. Less successful has been the combination of GDD with PK. Although IOP often is well controlled, graft failure is universal by 5 years and appears to be independent of anterior chamber or pars plana tube placement.

Postoperative glaucoma remains an issue for newer corneal grafting techniques. Elevated IOP is common after Descemet’s Stripping Endothelial Keratoplasty (DSEK) in patients with or without pre-existing glaucoma, although no adverse effect on visual improvement was noted. Those with pre-existing glaucoma were more likely to need steroid reduction or topical glaucoma medication to control IOP, and prior trabeculectomy was a risk factor for post-DSEK trabeculectomy (prior trabeculectomy 19%, glaucoma 5%, no glaucoma 0.3%).

Globe Injury and Glaucoma

Acute or delayed IOP rises may occur following ocular trauma. Early-onset IOP elevation may result from anterior segment inflammation, disruption of trabecular meshwork, hyphema or lens-related glaucoma. Angle recession, ghost cells, hemolysis, hemosiderin, lens-related glaucoma or retained intraocular foreign body are all potential causes of elevated IOP later on. The incidence of elevated IOP within 6 months of closed globe injury is approximately 3.4%. Increased risk of developing raised IOP is seen in individuals presenting with hyphema, angle recession, lens dislocation, traumatic cataract, angle pigmentation, IOP > 21 mmHg at presentation, VA < 20/200 at presentation and increasing age. Successful management requires careful identification of contributing mechanisms and addressing them accordingly.

Angle recession is a major contributor to impaired IOP regulation following blunt ocular trauma. It is present in up to 100% of individuals with trauma-induced hyphema; an estimated 7–9% of these patients go on to develop angle recession glaucoma. Elevated IOP may occur because of collapse, atrophy and fibrosis of the trabecular meshwork as well as effects on the ciliary body itself. Therapy that increases outflow facility, such as miotics and laser trabeculoplasty, are less effective than in POAG. Suppression of aqueous production should be more successful to lower IOP, but the efficacy of β-blockers, α-agonists or carbonic anhydrase inhibitors has not been studied specifically in these patients. Also, the response to prostaglandin analogues is yet to be studied.

As many patients with angle recession glaucoma have inadequate IOP control on medication alone, surgical treatment is often required. However, retrospective analysis has shown angle recession to be a risk factor for trabeculectomy failure. Compared with POAG, successful trabeculectomy in angle recession is significantly lesser (74% vs. 43%) with most failures occurring within a few months of surgery. Superior outcomes have been achieved with trabeculectomy combined with intraoperative antimitabolite (77% IOP control) whilst a study examining GDDs showed a low success rate comparable with trabeculectomy without antimitabolite.

Conclusion

Management of complex glaucoma has progressed on two fronts. Firstly, studies show the most appropriate ways to apply available therapies. Examples include the recently documented efficacy of prostaglandin analogues in uveitic glaucoma and the utility of LT in steroid-induced glaucoma. Secondly, novel treatments are emerging which offer hope in conditions where the outcome was previously invariably poor: anti-VEGF therapy for rubeotic glaucoma. Together, these advances allow clinicians to maximize outcomes for their patients with complex glaucoma.

References

1. Laganowski HC, Kerr Muir MG, Hitchings RA. ICE Glaucoma and the iridocorneal endothelial syndrome. Arch Ophthalmol 1992;110:346-50.
2. Enyedi LB, Freedman SF, Buckley EG. The effectiveness of latanoprost for the treatment of pediatric glaucoma. J AAP 1999;3:33-9.
3. Altuna JC, Greenfield DS, Wand M, Liebmann JM, Taglia DP, Kaufman PL, et al. Latanoprost in glaucoma associated with Sturge-Weber syndrome: Benefits and side-effects. J Glaucoma 1999;8:199-203.
4. Yang CB, Freedman SF, Myers JS, Buckley EG, Herndon LW, Allingham RR. Use of latanoprost in the treatment of glaucoma associated with Sturge-Weber syndrome. Am J Ophthalmol 1998;126:600-2.
5. Scherer WJ, Hauber FA. Effect of latanoprost on intraocular pressure in steroid-induced glaucoma. J Glaucoma 2000;9:179-82.
6. Mastropasqua L, Carpino P, Ciancaglini M, Gallenga PE. A 12-month, randomized, double-masked study comparing...
laminoprost with timolol in pigmentary glaucoma. Ophthalmology 1999;106:550-5.

7. Foster CS, Havrlikova K, Baltatzis S, Christen WG, Merayo-Lloves J. Secondary glaucoma in patients with juvenile rheumatoid arthritis-associated iridocyclitis. Acta Ophthalmol Scand 2000;78:576-9.

8. Rubin B, Taglienti A, Rothman RF, Marcus CH, Serle JB. The effect of selective laser trabeculoplasty on intraocular pressure in patients with intravitreal steroid-induced elevated intraocular pressure. J Glaucoma 2008;17:287-92.

9. Gracner T. Intraocular pressure response of capsular glaucoma and primary open-angle glaucoma to selective Nd: YAG laser trabeculoplasty. A prospective, comparative clinical trial. J Ophthalmol 2002;12:287-92.

10. Harasymowycz PJ, Papamathakis DG, Latina M, De Leon M, Lesk MR, Damji KF. Selective Laser Trabeculoplasty (SLT) complicated by intraocular pressure elevation in eyes with heavily pigmented trabecular meshworks. Am J Ophthalmol 2005;139:301-3.

11. Van de Veire S, Zeyen T, Stalmans I. Argon versus selective laser trabeculoplasty: Bull Soc Belge Ophthalmol 2006;299:5-10.

12. Van Meter WS, Allen RC, Waring GO 3rd, Stulting RD. Laser trabeculoplasty for glaucoma in aphakic and pseudophakic eyes after penetrating keratoplasty. Arch Ophthalmol 1988;106:185-8.

13. Joshi AB, Parrish RK 2nd, Feuer WF. 2002 Survey of the American Glaucoma Society: Practice Preferences for Glaucoma Surgery and Antifibrotic Use. J Glaucoma 2005;14:172-4.

14. Skuta GL, Beeson CC, Higginbotham EJ, Lichter PT, Musch DC, Bergstrom TJ, et al. Intraoperative mitomycin versus postoperative 5-fluorouracil in high-risk glaucoma filtering surgery. Ophthalmology 1992;99:438-44.

15. Towler HM, McCluskey P, Shaer B, Lightman S. Long-term follow-up of trabeculectomy with intraoperative 5-fluorouracil for uveitis-related glaucoma. Ophthalmology 2000;107:1022-8.

16. Hirooka K, Mizote M, Baba T, Takagishi M, Shiraga F. Risk factors for developing avascular filtering bleb after fornix-based trabeculectomy with mitomycin C. J Glaucoma 2009;18:301-4.

17. Ceballos EM, Beck AD, Lynn MJ. Trabeculectomy with antiproliferative agents in uveitic glaucoma. J Glaucoma 2002;11:189-96.

18. Sisto D, Vetrugno M, Trabucco T, Cantatore F, Ruggeri G, Sorgia C. The role of antimetabolites in filtration surgery for neovascular glaucoma: Intermediate-term follow-up. Acta Ophthalmol Scand 2007;85:267-71.

19. Lloyd MA, Sedlak T, Heuer DK, Minckler DS, Lee MB, et al. Clinical experience with the single plate Molteno implant in complicated glaucomas. Update of a pilot study. Ophthalmology 1992;99:679-87.

20. Freedman J, Rubin B. Molteno implants as a treatment for refractory glaucoma in black patients. Arch Ophthalmol 1991;109:1417-20.

21. Mills RP, Reynolds A, Edmond JM, Barlow WE, Leen MM. Long-term survival of Molteno glaucoma drainage devices. Ophthalmology 1996;103:299-305.

22. Mastropasqua L, Carpineto P, Ciancaglini M, Zuppardi E. Long-term results of Krupin-Denver valve implants in filtering surgery for neovascular glaucoma. Ophthalmologica 1996;210:203-6.

23. Broadway DC, Iester M, Schulzer M, Douglas GR. Survival analysis for success for Molteno tube implants. Br J Ophthalmol 2001;85:689-95.

24. Krishna R, Godfrey DG, Budenz DL, Esclavona-Camaaño E, Gedde SJ, Greenfield DS, et al. Intermediate term outcomes of 350-mm2 Baerveldt glaucoma implants. Ophthalmology 2001;108:621-6.

25. Da Mata A, Burk SE, Netland PA, Baltatzis S, Christen W, Foster CS. Management of uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999;106:2168-72.

26. Molteno AC, Sayamat N, Herbison P. Otago Glaucoma Surgery Outcome Study. Long-term results of uveitis with secondary glaucoma drained with Molteno implants. Ophthalmology 2001;108:605-13.

27. Molteno AC, Ancker E, Bijl VN. Surgical technique for advanced juvenile glaucoma. Arch Ophthalmol 1984;102:51-7.

28. Billson F, Thomas R, Aylward W. The use of two-stage Molteno implants in developmental glaucoma. J Pediatr Ophthalmol Strabismus 1989;26:3-8.

29. Netland PA, Walton DS. Glaucoma drainage implants in pediatric patients. Ophthalmic Surg 1993;24:723-9.

30. Eid TE, Katz LJ, Spaeth GL, Augsburger JJ. Long-term effects of tube-shunt procedures on management of refractory childhood glaucomas. Ophthalmology 1997;104:1011-6.

31. Pereira ML, Araujo SV, Wilson RP, Aza-lura-Blanco A, Moster MR, Schmidt CM. Aqueous shunts for intractable glaucoma in infants. Ophthalmic Surg Lasers 2002;33:19-29.

32. Hill RA, Nguyen QH, Baerveldt G, Forster DJ, Minkler DS, Rao N, et al. Trabeculectomy and Molteno implantation for glaucomas associated with uveitis. Ophthalmology 1993;100:903-8.

33. Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: A critical comparison of types Curr Opin Ophthalmol 2006;17:181-9.

34. Vernon SA, Koppens JM, Menon JG, Negi AK. Diode laser cycloablation in adult glaucoma: Long-term results of a standard protocol and review of current literature. Clin Exp Ophthalmol 2006;34:411-20.

35. Izgi B, Demirci H, Demirci FY, Turker G. Diode laser cyclophotocoagulation in refractory glaucoma: Comparison between pediatric and adult glaucomas. Ophthalmic Surg Lasers 2001;32:100-7.

36. Brancato R, Carassa RG, Bettin P, Fiori M, Trabucchi G. Contact transscleral cyclophotocoagulation with diode laser in refractory glaucoma. Eur J Ophthalmol 1995;5:32-9.

37. Murthy GJ, Murthy PR, Murthy KR, Kulkarni VV, Murthy KR. A study of the efficacy of endoscopic cyclophotocoagulation for the treatment of refractory glaucomas. Indian J Ophthalmol 2009;57:127-32.

38. Lima FE, Magacho L, Carvalho DM, Susanna R Jr, A’vila MP. A Prospective, Comparative Study between Endoscopic Cyclophotocoagulation and the Ahmed Drainage Implant in Refractory Glaucoma. J Glaucoma 2004;13:233-7.

39. Choudhary A, Wishart PK. Non-penetrating glaucoma surgery augmented with mitomycin C or 5-fluorouracil in eyes at high risk of failure of filtration surgery: Long-term results. Clin Exp Ophthalmol 2007;35:340-7.

40. Kitazawa Y. Increased intraocular pressure induced by corticosteroids. Am J Ophthalmol 1976;82:492-5.

41. Morrison E, Archer DB. Effect of fluorometholone (FML) on the intraocular pressure of corticosteroid responders. Br J Ophthalmol 1984;68:581-4.

42. Cass M, Cheetham J, Duzman E, Burke PJ. The ocular hypertensive effect of 0.25% fluorometholone in corticosteroid responders. Am J Ophthalmol 2000;129:19-26.

43. McGhee CN, Watson DG, Midgley JM, Noble MJ, Dutton GN, Fern L, Hill RA, Nguyen QH, Baerveldt G, Forster DJ, Minkler DS, Rao N, et al. Trabeculectomy and Molteno implantation for glaucomas associated with uveitis. Ophthalmology 1993;100:903-8.

44. Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: A critical comparison of types Curr Opin Ophthalmol 2006;17:181-9.

45. Vera RA, Araujo SV, Wilson RP, Aza-lura-Blanco A, Moster MR, Schmidt CM. Aqueous shunts for intractable glaucoma in infants. Ophthalmic Surg Lasers 2002;33:19-29.

46. Hill RA, Nguyen QH, Baerveldt G, Forster DJ, Minkler DS, Rao N, et al. Trabeculectomy and Molteno implantation for glaucomas associated with uveitis. Ophthalmology 1993;100:903-8.

47. Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: A critical comparison of types Curr Opin Ophthalmol 2006;17:181-9.

48. Vera RA, Araujo SV, Wilson RP, Aza-lura-Blanco A, Moster MR, Schmidt CM. Aqueous shunts for intractable glaucoma in infants. Ophthalmic Surg Lasers 2002;33:19-29.
Topical cyclosporin A in the management of postkeratoplasty glaucoma. Cornea 1997;16:284-8.

46. Perry HD, Donnenfeld ED, Acheampong A, Kanellopoulos AJ, Sforza PD, D’Aversa G, et al. Topical Cyclosporine A in the management of postkeratoplasty glaucoma and corticosteroid-induced ocular hypertension (CIOH) and the penetration of topical 0.5% cyclosporine A into the cornea and anterior chamber. CLAO J 1998;24:159-65.

47. Smithen LM, Ober MD, Maranan L, Spaide RF. Intravitreal triamcinolone acetonide and intraocular pressure. Am J Ophthalmol 2004;138:740-3.

48. Jonas JB, Degenring RF, Kreissig I, Akkoyun I, Kampeter BA. Intraocular pressure elevation after intravitreal triamcinolone acetonide injection. Ophthalmology 2005;112:593-8.

49. Merayo-Lloves J, Power WJ, Rodriguez A, Pedroza-Seres M, Foster CS. Secondary glaucoma in patients with uveitis. OphthalmoLogica 1999;213:300-4.

50. Herbert HM, Viswanathan A, Jackson H, Lightman SL. Risk factors for elevated intraocular pressure in uveitis. J Glaucoma 2004;13:96-9.

51. Sallam A, Sheth HG, Habot-Wilmer Z, Lightman S. Outcome of Raised Intraocular Pressure in Uveitic Eyes with and without a Corticosteroid-Induced Hypertensive Response Am J Ophthalmol 2009;148:207-13.e1.

52. Susanna R, Medeiros FA. The pros and cons of different prostanooids in the medical management of glaucoma. Curr Opinion Ophthalmol 2001;12:149-56.

53. Schumer RA, Camras CB, Mandal AK. Latanopro and cystoid macular edema: Is there a causal relation? Curr Opinion Ophthalmol 2000;11:94-100.

54. Markomichelakis NN, Kostakou A, Halkiadakis I, Chalkidou S, Papakonstantinou D, Georgopoulos G. Efficacy and safety of latanoprost in eyes with uveitic glaucoma. Graefes Arch Clin Experimental Ophthalmol 2009;247:775-80.

55. Chang JH, McCluskey P, Missotten T, Ferrante P, Jalaludin B, Lightman S. Use of ocular hypotensive prostaglandin analogues in patients with uveitis: Does their use increase anterior uveitis and cystoid macular oedema? BJO 2008;92:916-21.

56. Fortuna E, Castaneda-Cervantes RA, Bhat P, Doctor P, Foster CS. Flare-up rates with bimatoprost therapy in uveitic glaucoma. Am J Ophthalmol 2008;146:876-82.

57. Spencer NA, Hall AJ, Stawell RJ. Nd:YAG laser iridotomy in uveitic glaucoma. Clin Exp Ophthalmol 2001;29:217-9.

58. Park UC, Ahn JK, Park KH, Yu HG. Phacotrabeculectomy with mitomycin C in patients with uveitis. Am J Ophthalmol 2006;142:1005-12.

59. Noble J, Derzko-Dzulynsky L, Rabinovitch T, Birt C. Outcome of trabeculectomy with intraoperative mitomycin C for uveitic glaucoma. Can J Ophthalmol 2007;42:89-94.

60. Chilov MN, Grigg JR, Playfair TJ. Bevacizumab (Avastin) for the treatment of neovascular glaucoma. Clin Exp Ophthalmol 2007;35:494-6.

61. Yazdani S, Hendi K, Pakravan M. Intravitreal bevacizumab (avastin) injection for neovascular glaucoma. J Glaucoma 2007;16:437-9.

62. Costagliola C, Cipolone U, Rinaldi M, della Corte M, Semeraro F, Romano MR. Intravitreal bevacizumab (Avastin) injection for neovascular glaucoma: A survey on 23 cases throughout 12-month follow-up. Br J Clin Pharmacol 2008;66:667-73.

63. Duch S, Buchaer O, Milla E, Andreu D, Teitel J. Intracameral Bevacizumab (Avastin) for Neovascular Glaucoma A Pilot Study in 6 Patients. J Glaucoma 2009;18:140-3.

64. Ehlers JP, Spinn MJ, Lam A, Sivilingam A, Samuel MA, Tasman W. Combination intravitreal bevacizumab/panretinal photoacoagulation versus panretinal photoacoagulation alone in the treatment of neovascular glaucoma retina. Retina 2008;28:696-702.

65. Honavar SG, Goyal M, Majji AB, Sen PK, Naduvilath T, Dandona L. Glaucoma after pars plana vitrectomy and silicone oil injection for complicated retinal detachments. Ophthalmology 1999;106:169-76.

66. Al-Jazzaf AM, Netland PA, Charles S. Incidence and management of elevated intraocular pressure after silicone oil injection. J Glaucoma 2005;14:40-6.

67. Nguyen QH, Lloyd MA, Heuer DK, Baerveldt G, Minckler DS, Lean JS, et al. Incidence and management of glaucoma after intravitreal silicone oil injection for complicated retinal detachments. Ophthalmology 1992;99:1520-6.

68. Zalta AH, Boyle NS, Zalta AK. Silicone oil pell block: An exception to combined argonNd:YAG laser iridotomy success in angle-closure glaucoma. Arch Ophthalmol 2007;125:883-8.

69. Ishida K, Ahmed I, Netland P. Ahmed glaucoma valve surgical outcomes in eyes with and without silicone oil endotamponade. J Glaucoma 2009;18:325-30.

70. Lee RK, Fantes F. Surgical management of patients with combined glaucoma and corneal transplant surgery. Curr Opinion Ophthalmol 2003;14:95-9.

71. Perry HD, Donnenfeld ED, Kanellopoulos AJ, Grossman GA. Topical cyclosporin A in the management of post-keratoplasty glaucoma. Cornea 1997;16:284-8.

72. Perry HD, Donnenfeld ED, Acheampong A, Kanellopoulos AJ, Sforza PD, D’Aversa G, et al. Topical cyclosporine A in the management of postkeratoplasty glaucoma and corticosteroid-induced ocular hypertension (CIOH) and the penetration of topical 0.5% cyclosporine A into the cornea and anterior chamber. CLAO J 1998;24:159-65.

73. Nakakura S, Imamura H, Nakamura T. Selective laser trabeculectomy for glaucoma after penetrating keratoplasty. Optom Vision Sci 2009;86:e404-6.

74. Gilvary AM, Kirkness CM, Steele AD, Rice NS, Ficker LA. The management of post-keratoplasty glaucoma by trabeculectomy. Eye 1989;3:713-8.

75. Ishioka M, Shimazaki J, Yamagami J, Fujishima H, Shimamura S, Tsubota K. Trabeculectomy with mitomycin C for post-keratoplasty glaucoma. J Glaucoma 2000;8:714-7.

76. Ficker LA, Kirkness CM, Steele AD, Rice NS, Gilvary AM. Intraocular surgery following penetrating keratoplasty: The risks and advantages. Eye 1990;4:693-7.

77. Reinhard T, Kallmann C, Cinin R, Sundmacher R. The influence of glaucoma history on graft survival after penetrating keratoplasty. Graefes Arch Clin Experimental Ophthalmol 1997;235:533-7.

78. Okacoglu O, Arslan OS, Kayiran A. Diode laser transscleral cyclophotocoagulation for the treatment of refractory glaucoma after penetrating keratoplasty. Curr Eye Res 2005;30:569-74.

79. Chowers I, Teich O. Mitomycin-C in combined or two-stage procedure trabeculectomy followed by penetrating keratoplasty. J Glaucoma 1999;8:184-7.

80. Kwon YH, Taylor JM, Hong S, Honkanen RA, Zimmerman MB, Alward WL, et al. Long-term results of eyes with penetrating keratoplasty and glaucoma drainage tube implant. Ophthalmology 2001;108:272-8.

81. Ritterband DC, Shapiro D, Trubnik V, Marmor M, Meskin S, Seedor JS, et al. Penetrating keratoplasty with pars plana glaucoma drainage devices. Cornea 2007;26:1060-6.

82. Vajaranant TS, Price MO, Price FW, Gao W, Wilensky JT, Edward DF. Visual acuity and intraocular pressure after Descemet’s stripping endothelial keratoplasty in eyes with and without preexisting glaucoma. Ophthalmology 2009;116:1644-50.

83. Girkir CA, McGwin G, Long C, Morris R, Kuhn F. Glaucoma after...
ocular contusion: A cohort study of the united states eye injury registry. J Glaucoma 2005;14:470-3.
84. Goldberg I. Argon laser trabeculoplasty and the open-angle glaucomas. ANZ J Ophthalmol 1985;13:243-8.
85. Mermoud A, Salmon JF, Straker C, Murray AD. Post-traumatic angle recession glaucoma: A risk factor for bleb failure after trabeculectomy. BJO 1993;77:631-4.
86. Manners T, Salmon JF, Barron A, Willies C, Murray AD. Trabeculectomy with mitomycin C in the treatment of post-traumatic angle recession glaucoma. BJO 2001;85:159-63.
87. Mermoud A, Salmon JF, Barron A, Straker C, Murray AD. Surgical management of post-traumatic angle recession glaucoma. Ophthalmology 1993;100:634-42.