This article can be cited before page numbers have been issued, to do this please use: M. Khorloo, Y. Cheng, H. Zhang, M. Chen, H.-Y. Sung, I. D. Williams, J. W. Y. Lam and B. Z. Tang, Chem. Sci., 2019, DOI: 10.1039/C9SC04239C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Polymorph Selectivity of AIE Luminogen under Nano-Confinement to Visualize Polymer Microstructure

Michidmaa Khorloo,a Yanhua Cheng,a,b Haoke Zhang,c Ming Chen,a Herman H. Y. Sung,a Ian D. Williams,a Jacky W. Y. Lamac and Ben Zhong Tang*a,c

Despite the huge progress of luminescent molecular assemblies over the past decade, it is still challenging to understand their confined behavior in semi-crystalline polymers for constrained space recognition. Here, we report a polymorphic luminogen with aggregation-induced emission (AIE), capable of selective growth in polymer amorphous and crystalline phases with distinct color. The polymorphic behaviors of the AIE luminogen embedded within polymer network is dependent on the size of nano-confinement: a thermodynamically stable polymorph of the AIE luminogen with green emission is stabilized in amorphous phase, while a metastable polymorph with yellow emission is confined in crystalline phase. The information on polymer crystalline and amorphous phases is transformed into distinct fluorescence colors, allowing a single AIE luminogen as a fluorescent marker for visualization of polymer microstructures in terms of amorphous and crystalline phases distribution, quantitative polymer crystallinity measurement, and spatial morphological arrangement. Our findings demonstrate that confinement of AIE luminogen in polymer network can achieve the free space recognition, also provide a correlation between microscopic morphologies and macroscopic optical signals. We envision our strategy will inspire the development of other materials with spatial confinement to incorporate AIE luminogen for various applications.

Introduction

Polymorphism is a widespread phenomenon in nature and industrial materials. It describes the ability of a substance to exist in more than one form or crystal structure that have different arrangements of molecules but with same chemical formula.1-3 Polymorphism is of great importance to determine the functional properties of materials.4 For example, in natural minerals, polymorphs of graphite and diamond exhibit distinct mechanical properties; in pharmaceuticals, a same medicine formula.5-7 show two emissive states, but multicolour luminogens have also been reported by using metastable states.8-10 Experiments to control different polymorphs are normally carried out in bulk solution and driven by the self-organization process.11-13 However, uncertainty and inhomogeneity are usually resulted, hampering the precise control over the polymorphism of the molecular systems across large areas.14 Recent studies show spatial confinement is allowed to address above problem.15-20 Owing to the large ratios of surface area to volume of confined nano-space, the embedded crystals show a series of phase behaviours, such as polymorphs selective formation, size-dependent polymorphism, and thermodynamic stabilization of metastable phases.15-17 Although the nano-pores of porous glass powders17 and polymer monolith18 have been utilized as spatial confinements, reliable materials that can retain continuous active layers when deformed are still required to suit for future flexible devices.19 The fact that polymer network is generally composed of intrinsically free volumes at the nanoscale that originated from the gaps between entangled polymer chains,20 encourages research in polymers. Importantly, previous...
diffusion measurements have suggested that size of free volume is varied in crystalline and amorphous regions of semi-crystalline polymers.21 These studies show the potential of achieving polymorphism control of molecular systems by using semi-crystalline polymers as tailorable nano-constrained environments.

In this context, a polymorphic molecular system that are sensitive to polymer microenvironment should be a prior choice. A molecular system characterized with aggregation-induced emission (AIE) is well suited for such purposes. AIE describes a general phenomenon that molecules are non-luminescent in solution but give intense emission when aggregated.22-24 The restriction of intramolecular motion (RIM) has been recognized as the mechanism of the AIE phenomenon, which prevents the dissipation of excited-state energy through nonradiative decay channels.25-27 According to the RIM mechanism, the AIE systems have been successfully exploited to examine the local microenvironments.28-33 Moreover, the twisted 3D molecular conformation and weak intermolecular interactions of AIE molecules afford them to show multiple structural transformability, generating variable polymorphs with different emission properties.12,24-37 Take advantage of the AIE features and the tailorable confined space of semi-crystalline polymer, polymorph selectivity in macroscopic and continuous samples can be anticipated.

In an effort to demonstrate the above hypothesis, herein, we report a D-A structured, polymorphism-dependent emissive AIE luminogen, which are crystallized within semi-crystalline polymers of poly(L-lactide) (PLLA) as confined spaces and exhibit polymorph selectivity behaviour. An amphiphilic D-A based AIE molecule (denoted as TPE-EP) was used by attaching a pyridinium salt unit to tetraphenylethene (TPE) group via a double bond (Fig. 1a), yielding segregated solid structures by separating its hydrophilic and hydrophobic units. The AIE structure forces the molecules to form segregated nanocrystals in hydrophobic PLLA: in amorphous PLLA, molecular aggregates in polymorph G are stabilized in loose network; in crystalline PLLA, molecular aggregates in polymorph Y are confined in between lamellae. Such phenomenon allows TPE-EP to operate as a fluorescent marker for visualization of polymer microstructure, including amorphous and crystalline phases distribution, quantitative polymer crystallinity measurement, and spatial morphological arrangement. The AIE molecules with suitable polymorphic characteristics are expected to have broad applications in diverse polymers, facilitating both mechanistic studies of polymorphism control in nano-confinement as well as the development of fluorescent materials with tunable emission.

Results and Discussion

Molecular information and polymorphic properties. In this study, a highly twisted AIE luminogen with D-A structure named TPE-EP was crystallized within semi-crystalline PLLA network. TPE-EP consists of three subunits: a hydrophobic TPE as electron donor unit, a hydrophilic pyridinium salt group as electron acceptor unit, and double bond as a spacer unit (Fig. 1a). Initially, polymorphs of TPE-EP obtained from bulk solution were studied in order to understand the relationship between photophysical behaviour and structural arrangement. By controlling the precipitation conditions, three crystalline forms (G, Y and O) can be produced. Fig. 1b shows the photos of G-, Y-, and O-crystals taken under fluorescent microscope. Green photoluminescence was observed from G-crystals under UV excitation (405 nm) with emission maximum at 507 nm, quantum yield (Φ) of 0.21 and life time (τ) of 2.1 ns (Table S1, ES†; Fig 1c, green solid line). The crystal structure of G was determined by single-crystal X-ray diffraction (XRD). G-crystals were found to be monoclinic (P2₁/n, a = 11.2525(2) Å, b = 9.21940(13) Å, c = 59.1397(9) Å, α = 90°, β = 93.8053(14)°, γ = 90° at 100.03 K, Z = 4, goodness of fit (GOF) = 1.036, calculated
Fig. 2 Crystal structures of polymorphs G and Y. (a) Ellipsoid drawing (50% probability level) of the crystal structure of G adopting the cross-packing mode. A dimer unit consisting of the crystallographically ordered unit (G1) and disordered unit (G2) with two conformations. Conformers I and II are colored with blue and pink, respectively. Occupancies of the conformers I and II are 75% and 25%, respectively. (b) Crystal structure of G depicted as stick model viewed along the b axis. (c) Crystal structure of G viewed along the a axis. (d) Ellipsoid drawing of the crystal structure of Y adopting the parallel-stacking mode. (e, f) Crystal structures of Y. The hydrogen atoms in G- and Y-crystals are omitted for clarity.

density: 1.384 g cm\(^{-3}\), Table S2, ESI†). The polymorphic Y-crystals (Fig. 1b) were produced by slow evaporation of a tetrahydrofuran/hexane mixture of TPE-EP and showed a yellow emission (\(\lambda_{em} = 543\) nm) under UV irradiation (405 nm, Fig. 1c, yellow solid line). Y-crystals were found to exhibit a \(\Omega_1\) of 0.32 (Table S1, ESI†). The crystal structure of Y was also monoclinic with a space group of P2\(_1\)/c (\(a = 24.8939(7)\) Å, \(b = 9.1783(2)\) Å, \(c = 12.5794(3)\) Å, \(\alpha = 90^\circ\), \(\beta = 98.168(3)^\circ\), \(\gamma = 90^\circ\) at 100.01 K, \(Z = 4\), goodness of fit (GOF) = 1.019, calculated density: 1.390 g cm\(^{-3}\), Table S2, ESI†). O-crystals showed orange emission (\(\lambda_{em} = 575\) nm) but it is too brittle to be studied by single crystal XRD. A thermal phase transformation from Y to G was revealed at elevated temperature of 116°C (Fig. S1, ESI†). No reverse phase was observed when the sample was cooled. Y-crystals were only obtained by re-dissolution and recrystallization process. Similar phenomenon was also observed in O-crystals (Fig. S1, ESI†). The thermal analyses suggest that G is a thermodynamically favourable form, while Y- and O-crystals are metastable (Fig. S2, ESI†).38

The formulae of the G-crystals and Y-crystals are \(\text{C}_{20}\text{H}_{35}\text{Cl}_{2}\text{F}_{2}\text{N}_{2}\text{P}_{2}\) (TPE-EP dimer with dichloromethane at a ratio of 1:2) and \(\text{C}_{28}\text{H}_{33}\text{F}_{2}\text{N}_{2}\text{P}_{2}\) respectively (Fig. 2a-f, Table S2, ESI†). In the case of G-crystals, G1 and G2 form a pair in which two molecules are cross packed with two TPE units arranged on the same sides (Fig. 2a). No apparent overlap of their n-planes was found (Fig. S3, ESI†). In addition, an orientational disorder (G2) was observed in the crystal structure because of the adoption of two crystallographically independent conformations with occupancies of 75:25 (I:II). The ordered (G1) and disordered (G2) conformers are alternately placed from row to row (Fig. S4, ESI†). Besides, infinite channels exist in G-crystals, which are enough to accommodate small solvent molecules in the crystal lattice (Fig. 2b).39 The presence of voids in G-crystals can explain the observed larger crystal volume (6121.68 Å\(^3\)/8 molecules) relative to that of Y-crystals (2845.01 Å\(^3\)/4 molecules) (Table S2, ESI†). The inclusion of dichloromethane solvent in G-crystals results in an increase of molecular flexibility and decrease of radiative transition.34 These cross-stacking dimers account for the needle-like crystals (Fig. 1b),40 which are stabilized by multiple intermolecular interactions (Fig. S5, ESI†).

Compared with G-crystals, the increased overlapping between the pyridine rings and the double bonds of Y-crystals accounts for the stronger intermolecular interactions to induce a red-shift in emission (Fig. 2d, Fig. S3, ESI†). The two adjacent molecules adopt comparatively parallel head-to-head arrangement, in which one molecule slides to its neighbour along the molecular long axis. They show strong 2D growth trend along the crystallographic a-b plane (Fig. 2e) that results in the formation of plate-like crystals (Fig. 1b).41 Meanwhile, more and stronger interatomic hydrogen bonds (C-H···F: 2.041-2.555 Å, Fig. S6, ESI†) are observed in Y-crystals than that in G-
crystals (C-H···F: 2.413-2.666 Å, Fig. S5, ESI†), which further rigidify the molecular conformation and inhibit intramolecular rotations. These results are consistent with the higher $\Phi_F (0.32)$ of Y-crystals than G-crystals ($\Phi_F = 0.21$, Table S1, ESI†). The TPE-EP molecule is characterized by a segregated structure in G- and Y-crystals, which aggregates into layered structures with separated hydrophobic and hydrophilic units. The period distances of the layer structures are 24.6 Å for the Y-crystals (Fig. 2f) and 29.6 Å for the G-crystals (Fig. 2c), respectively.

To gain more insight into the mechanism of the fluorescence properties of different polymorphs of G- and Y-crystals, theoretical calculations were carried out using the density functional theory (DFT). The geometry of the monomer and dimer at the ground state was constructed based on the conformers of single crystals. As expected, the HOMO (highest occupied molecular orbital) is mainly contributed by the orbitals of the TPE unit, while the LUMO (lowest unoccupied molecular orbital) is mainly localized on the pyridinium moiety (Fig. 3, Fig. S7, ESI†). Such a D-A structure imparts TPE-EP with solvatochromic effect (Fig. S8, ESI†).

Unlike the TPE-EP monomers in crystals (Fig. S7, ESI†), the calculated energy gap (ΔE_g) of Y-dimer (0.852 eV) is smaller than that of G-dimer (G1/G2, 0.978 eV) (Fig. 3). The change of the energy gap further suggests that intermolecular interactions exert significant effects on the emission red-shift from G- to Y-crystals.

Therefore, intervening the crystallization process at the nanometer scale provides an opportunity to control the polymorphism in the condensed state, notably the molecular packing and interactions between them.

Polymorph selectivity in polymer phases. PLLA is a biodegradable and bio-based polymer, and is the product of...
resulting from polymerization of L-lactide (Fig. 4a). To impose nano-confinement in PLLA, the polymer crystallization was proceeded to form alternating layers of crystalline lamellae and amorphous region at the nanometer length scale. The fluorescence and aggregation of TPE-EP in PLLA network is shown in Fig. 4a-d. The respective amorphous (Fig. 4b) and crystalline (Fig. 4c) PLLA films were produced by evaporative crystallization, in which polymorphs of TPE-EP were grown within PLLA network simultaneously. The content of TPE-EP in PLLA was controlled to be 0.1 wt% to simultaneously minimize the influence of TPE-EP on polymer morphology and maintain the bright emission of polymer film. As shown in Fig. 4b-c insets, amorphous and crystalline films show distinct emission under UV irradiation. In the amorphous region, the random molecular jumble lets the chains to cross each other, affording amorphous polymer network with flexibility and elasticity (Fig. 4a, Fig. S9, ESI†). Because of the nanoconfined space of the rigid amorphous phase (~5 nm, Fig. S10, ESI†) between two crystalline layers, the included TPE-EP molecules are locked in place against one another and folded into aggregates with a structure similar to that of G-crystals (Fig. 4a; 4b, inset) due to the presence of large free volumes in the amorphous polymer network. Oppositely, in the crystalline region, the molecular chains are largely locked in place against one another and folded into crystalline lamellae, giving materials strength and rigidity (Fig. 4a, Fig. S9, ESI†). Because of the nanoconfined space of the rigid amorphous phase (~5 nm, Fig. S10, ESI†) between two crystalline layers, the included TPE-EP molecules in Y-aggregations are kinetically-trapped in confined space (Fig. 4a; 4c, inset). When observed under fluorescent microscope, the homogenous amorphous film shows green emission, while the crystalline film composed of inter-linked spherulites exhibits yellow emission (Fig. 4b, c). The fluorescence properties of above two films are further confirmed by photoluminescence (PL) spectroscopy (Fig. 4d). It is found that PL spectra of amorphous PLLA film shows an emission maximum at 512 nm, while the crystalline PLLA film exhibits an emission maximum at 539 nm. Both values are very close to those of G- crystals ($\lambda_{\text{max}} = 507$ nm) and Y-crystals ($\lambda_{\text{max}} = 543$ nm). The difference of emission maximum between bulk single crystals (G- and Y-crystals) and TPE-EP-embedded polymer matrix (amorphous and crystalline) originates from the imperfect molecular arrangement at the nanoscale. The wide-angle XRD (WAXD) measurements of these two polymer films are performed, further confirming a significant difference in PLLA polymer chain order between the amorphous and crystalline states (Fig. 4e). A broad and structure-less pattern was observed for amorphous PLLA, while the WAXD pattern of the crystalline PLLA shows many sharp peaks that correspond to the α-crystalline phase. By varying the dye ratio in the polymer matrix from 0.1 to 0.001 wt% and film thickness, analogous experiments were conducted to prepare series of amorphous and crystalline PLLA films (Fig. S11-12, ESI†). Results showed that the emission maximum exerted little change at different TPE-EP concentrations and varied thickness (Fig. S13, Table S3, ESI†). These data suggest that the aggregation states of guest TPE-EP molecules are mainly dependent on the microenvironment of their host polymer, showing a readily detectable color change to distinguish between amorphous and crystalline PLLA.

Crystalline phase of PLLA comprises of stacked lamellae and rigid amorphous regions sandwiched between the lamellae. Embedded TPE-EP molecules are distributed in these amorphous regions as they are driven out of lamellae during crystallization. The lamellar amorphous region has a thickness of ~5 nm (Fig. S10, ESI†). Moreover, the flexibility of polymer chains in this amorphous region is hindered by the surrounding crystalline region as a polymer molecule changes conformation from crystalline to amorphous phase. Consequently, the rigidity of lamellar amorphous region is higher compared with the mobile amorphous region surrounding the crystalline spherulites. These factors synergistically contribute to the formation and stabilization of Y-crystals in the crystalline phase. Nanoconfined spacing between lamellae can be a favourable factor for the formation of densely packed Y-crystals (unit cell volume is smaller compared to G-crystals). Meanwhile, rigid environment between lamellae can further stabilize and glassify the metastable Y-crystals.

The incompatibility between amphiphilic TPE-EP and hydrophobic PLLA polymer chains results in formation of the nanocrystalline-like aggregates rather than amorphous aggregates in the polymer matrix (Fig. S14, ESI†). The formation of nanocrystals can be explained by the segregated structure of TPE-EP, which forces the molecules to align in the same direction to take ordered organizations (Fig. S15, ESI†). In addition, the stability of TPE-EP nano-aggregates of G- and Y-crystals in the polymer matrix were also investigated by monitoring the PL spectra for a time period (Fig. S16, ESI†). The stable PL spectra demonstrate the excellent photostability of the fluorescent films at ambient temperature. Moreover, the emission color is unaffected when the film was heated above its glass transition temperature ($T_g = 63 \degree$ C, Fig. S17, ESI†). The unaltered emission wavelength suggests the thermal stability of the system.52-53

Crystallinity visualization. The highly fluorescent emission contrast of TPE-EP in different phase of PLLA inspire us to explore their potential in detecting microphase distribution and composition via polymorph selectivity. Polymer films were obtained via controlled evaporative crystallization. The microphase structure of a semi-crystalline polymer is established during materials processing, which is responsible for full understanding of its physical properties. The 2D and 3D microscopic images of the semi-crystalline PLLA films are shown in Fig. 5a and b. Through careful but relatively rapid crystallization from chloroform solution, a film with a mixture of crystalline and amorphous regions was produced (Fig. 5a). Numerous spherulites with circular shapes and yellow emission...
are apparently recognized and are randomly distributed within the amorphous green region. The distinct fluorescent emission of the polymer crystalline/amorphous phases lights up the whole morphology of the polymer film. The shape and distribution of the spherulites observed were in accordance with the observation under the bright field (Fig. S18, ESI†). The crystalline nature of the polymer spherulites could be supported by the polarized optical microscope (Fig. S19, ESI†). In addition, noticeable boundary rings in bright emission surrounding the crystalline spherulites are clearly observed. Relatively high intensity observed in these boundary rings results from the accumulation of rejected TPE-EP molecules during the crystallization process. The intensity profile of the fluorescence micrograph across amorphous-boundary ring-spherulite indicates presence of both G- and Y-polymorphs of TPE-EP (Fig. S20, ESI†). The interior morphology can be directly observed through confocal fluorescent microscopy (CFM) based on the different emission properties of G- and Y-aggregates. The confocal image (XY plane) was obtained using a linear unmixing method (Fig. S21, ESI†), showing excellent consistency with the observation under fluorescence microscopy. A total of 22 images in the XY plane were collected at different depths using Z-scan technique, resulting in an architecture of PLLA spherulites in the thin film (Fig. 5b, Fig. S22, ESI†). Fluorescence inspection reveals that the noticeable bright rings are interfaces between the amorphous and crystalline polymer regions. Scanning electron microscopy (SEM) was further used to verify the interior morphology (Fig. S23, ESI†). With assistance of solvent (acetone) processing, the amorphous region was etched out to create a pseudo-3D construction. The SEM image (Fig. S23, ESI†) of the etched film surface shows apparent circular spherulites and crystalline-amorphous interface, which are coincided with those in fluorescent images.

The ratio of G-to-Y nanocrystals of TPE-EP in respective amorphous and crystalline phases could be modified by the degree of polymer crystallinity at different processing conditions, to tune the luminescence response of the polymers. Fig. 5c shows the fluorescent response of TPE-EP-embedded PLLA films with crystallinity ranging from 0% to 48%. The crystallinity (c) was estimated by WAXD and differential scanning calorimetry (DSC), respectively (Fig. S24 and Table S4, ESI†). A progressive red-shift from green to yellow was observed, providing a visible crystallinity-detection platform. The fluorescence properties of the above films are further studied by PL spectroscopy. Fig. 5d exhibits the normalized PL spectra of TPE-EP-embedded PLLA films at crystallinity of 0%, 16%, 25%, 32% and 48%, respectively. With an increase in c (0-48%), the PL spectrum is progressively red-shifted from 511 nm to 531 nm. A linear relationship exists between the emission maximum and c, indicating that polymorphic TPE-EP can serve as colorimetric marker for crystallinity visualization (Fig. 5e). The crystallinity calculated from DSC and PL data also conform well to a linear relationship. Such a calibration line enables
quantitative measurements of D_i from the PL change. The results indicate that polymorph selectivity of the AIE luminogen could not only tell polymer crystalline phase distribution within the sample, but also provide the average crystallinity over the bulk material. In addition, benefit from the sensitivity of fluorescence light, our quantitative crystallinity measurements are applicable to the sample with a size even down to micrometer.

Spatial visualization. In the process of evaporative crystallization, because of the imbalanced stress at opposite folding surfaces of PLLA, twisting of the crystalline lamellae occurs (Fig. S25, ESI†). As a result, banded spherulites with a specific handedness are developed because of the radial growth of the helical lamellae from edge-on gradually twisting to flat-on orientations. Slow evaporation process was then conducted to produce banded PLLA spherulites with long pitch. The fluorescent microscopic image in Fig. 6a shows the formation of spherulites with alternating bright- and dark-yellow spirals in anti-clockwise direction. Such microstructure of PLLA spherulites was further verified by confocal analysis (Fig. 6b; Fig. S26, ESI†). A 3D spherulites with Archimedean spiral organization is presented in the upward vertical direction, which is attributed to the non-diametric sections of 3D spherulites. The SEM image of the acetone-etched interiors of PLLA spherulite and demonstrates interesting correlations between emission and lamellae assembly (Fig. 6c). The ridge band in bright-yellow is composed of lamellar bundles, and nano-cracks between the
parallel edge-on crystals are visible on the ridge band in SEM images (after solvent etching, Fig. S27, ESI†). Meanwhile, the smooth valley band in dark-yellow is mostly filled by flat-on lamellae.60 The bright-yellow emission of the ridge band is mostly ascribed to optical scattering when light penetrates through these fractured and rough places. The ridges and valleys in SEM images conform well to the bright- and dark-yellow spirals observed in fluorescent and confocal microscope. Fluorescence imaging provides a straightforward and non-invasive method to visualize both surface and interior of the polymer materials.

The 3D spirals highlighted with yellow emission in polymer spherulites present a good chiroptical activity,61 which can divide incident light into left/right-handed circularly polarized light (CPL) components by selective reflection and transmission.62 A reversal of the direction provides a clockwise (CW) spiral, resulting in a mirror image of the ACW spiral (Fig. 6d). Upon UV excitation, the AIE-embedded polymer films with chiral structured spherulites are supposed to have an intrinsic ability for CPL generation (Fig. 6e). The film reversal would result in chirality switching while keeping the enantiomer symmetry. In order to demonstrate the relationship between microscopic morphologies described above and macroscopic optical properties, CPL spectroscopy was conducted to study the chiroptical activity of such polymeric films. The magnitude of CPL can be evaluated by the luminescence dissymmetry factor (g_{bnum}), which equals to 2 (I_L-I_R)/(I_L+I_R), where I_L and I_R refer to the intensity of left- and right-handed CPL, respectively.53,64 In Fig. 6f, a negative CPL response with an emission maximum at ~540 nm with a g_{bnum} of $\sim-1.6 \times 10^{-3}$ was observed. Upon flipping the sample, a positive CPL response with g_{bnum} of $\sim1.6 \times 10^{-3}$ was detected (Fig. S28a, ESI†). The induced CPL spectra show mirror image upon film inversion, which is modulated by the spiral morphology of the spherulites (Fig. S28b, ESI†). In this regard, the fluorescent AIE luminogen in polymer matrix simultaneously offers understanding of the spatial organization of the crystalline polymer lamellae as well as provides a correlation between spiral morphological information and polarized optical signal.

Conclusions

In summary, we have demonstrated how polymorphic TPE-EP phases (amorphous and crystalline) is marked with distinct color based on the polymorphic states of TPE-EP in specific polymer phases. As a result, the complex hierarchical organization of polymer morphology is transformed into optical signals, which can be seen by color and polarization. We envision that the present concept would be applicable to diverse commodity polymers (Fig. S29, ESI†) through proper molecular structure design. These morphological sensing properties have potential for in-situ monitoring polymer manufacturing process, in turn, to predict materials physical properties. Furthermore, the synergic effects between luminescent molecular assemblies and polymer micro-structures account for versatile luminescence manipulation, including intensity, color, and polarization, providing continuous emissive materials in developing foldable devices and wearable systems.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was partially supported by the National Science Foundation of China (51603035, 51973030, 21788102, 21490570 and 21490574), the Research Grants Council of Hong Kong (16308116 and C6009-17G), the Innovation and Technology Commission (ITC-CNREC14SC01 and ITS/254/17), the Science and Technology Plan of Shenzhen (JCYJ20170818113602462 and JCYJ20160229205601482), Science and Technology Commission of Shanghai Municipality (17ZR1446300), the China Postdoctoral Science Foundation (2016M591572 and 2017T100256), the Fundamental Research Funds for the Central Universities (2232018D3-01), and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University.

Notes and references

1 D. D. Le Pevelen and G. E. Tranter, in Encyclopedia of Spectroscopy and Spectrometry, ed. J. C. Lindon, G. E. Tranter and D. W. Koppenaal, Academic Press, Oxford, 3rd edn, 2017, pp. 750-761.
2 D. Gentili, M. Gazzano, M. Melucci, D. Jones and M. Cavallini, Chem. Soc. Rev., 2019, 48, 2502-2517.
3 G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao and A. Amassian, Nat. Commun., 2014, 5, 3573.
4 A. Lavrenova, D. W. R. Balkenende, Y. Sagara, S. Schrettl, Y. C. Simon and C. Weder, J. Am. Chem. Soc., 2017, 139, 4302-4305.
5 H. Chung and Y. Diao, J. Mater. Chem. C, 2016, 4, 3915-3933.
6 Y. Sagara, S. Yamane, M. Mitani, C. Weder and T. Kato, Adv. Mater., 2016, 28, 1073-1095.
7 Y. Sagara and T. Kato, Nat. Chem., 2009, 1, 605-610.
8 A. J. Cruz-Cabeza and J. Bernstein, Chem. Rev., 2014, 114, 2170-2191.
9 C. Wang and Z. Li, Mater. Chem. Front., 2017, 1, 2174-2194.
10 Z. Yang, Z. Chi, Z. Mao, Y. Zhang, S. Liu, J. Zhao, M. P. Aldred and Z. Chi, Mater. Chem. Front., 2018, 2, 861-890.
63 S. Huo, P. Duan, T. Jiao, Q. Peng and M. Liu, *Angew. Chem. Int. Ed.*, 2017, **56**, 12174-12178.
64 J. Han, J. You, X. Li, P. Duan and M. Liu, *Adv. Mater.*, 2017, **29**, 1606503.
Polymorph Selectivity of AIE Luminogen under Nano-Confinement to Visualize Polymer Microstructure

Michidmaa Khorloo, Yanhua Cheng,* Haoke Zhang, Ming Chen, Herman H. Y. Sung, Ian D. Williams, Jacky W. Y. Lam and Ben Zhong Tang*

Polymorphic AIEgen is capable of selective growth in amorphous and crystalline polymer phases with distinct color for microstructure visualization.