Title
Acupressure to Reduce Treatment-Related Symptoms for Children With Cancer and Recipients of Hematopoietic Stem Cell Transplant: Protocol for a Randomized Controlled Trial.

Permalink
https://escholarship.org/uc/item/7hk9858z

Authors
Lown, E Anne
Banerjee, Anu
Vittinghoff, Eric
et al.

Publication Date
2019

DOI
10.1177/2164956119870444

Peer reviewed
Acupressure to Reduce Treatment-Related Symptoms for Children With Cancer and Recipients of Hematopoietic Stem Cell Transplant: Protocol for a Randomized Controlled Trial

E Anne Lown, DrPH1, Anu Banerjee, MD2, Eric Vittinghoff, PhD3, Christopher C Dvorak, MD4, Wendy Hartogensis, PhD5, Alexis Melton, MD, PhD4, Christina Mangurian, MD6, Hiroe Hu, BA1, Deborah Shear, BA1, Robyn Adcock, LAc7, Michael Morgan, LAc1, Carla Golden, MD8, and Frederick M Hecht, MD5

Abstract

Background: We describe the study design and protocol of a pragmatic randomized controlled trial (RCT) Acupressure for Children in Treatment for a Childhood Cancer (ACT-CC).

Objective: To describe the feasibility and effectiveness of an acupressure intervention to decrease treatment-related symptoms in children in treatment for cancer or recipients of a chemotherapy-based hematopoietic stem cell transplant (HSCT).

Design: Two-armed RCTs with enrollment of 5 to 30 study days.

Setting: Two pediatric teaching hospitals.

Patients: Eighty-five children receiving cancer treatment or a chemotherapy-based HSCT each with 1 parent or caregiver.

Intervention: Patients are randomized 1:1 to receive either usual care plus daily professional acupressure and caregiver delivered acupressure versus usual care alone for symptom management. Participants receive up to 20 professional treatments.

Main Outcome: A composite nausea/vomiting measure for the child.

Secondary Outcomes: Child’s nausea, vomiting, pain, fatigue, depression, anxiety, and positive affect.

Parent Outcomes: Depression, anxiety, posttraumatic stress symptoms, caregiver self-efficacy, and positive affect. Feasibility of delivering the semistandardized intervention will be described. Linear mixed models will be used to compare outcomes between arms in children and parents, allowing for variability in diagnosis, treatment, and age.

Discussion: Trial results could help childhood cancer and HSCT treatment centers decide about the regular inclusion of trained acupressure providers to support symptom management.

Keywords

childhood cancer, symptom management, nausea, vomiting, pain, acupuncture, acupressure

Received December 31, 2018; Revised received June 2, 2019. Accepted for publication July 2, 2019

1Social and Behavioral Sciences, School of Nursing, University of California, San Francisco, California
2Department of Neurological Surgery, University of California, San Francisco, California
3Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California
4Division of Pediatric Allergy, Immunology, & Blood and Marrow Transplantation, University of California, San Francisco, California
5Osher Center for Integrative Medicine, University of California, San Francisco, California
6Division of Pediatric Allergy, Immunology, & Blood and Marrow Transplantation, University of California, San Francisco, California
7Compass Care/Integrative Pediatric Pain and Palliative Care (IP3), UCSF Benioff Children’s Hospital, San Francisco, California
8Department of Pediatric Hematology-Oncology, UCSF Benioff Children’s Hospital, Oakland, California

Corresponding Author:
E Anne Lown, Social and Behavioral Sciences, University of California, San Francisco, 3333 California Street, Suite 455, San Francisco, CA 94118, USA. Email: Anne.Lown@UCSF.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Background and Rationale

Despite advances in pharmacologic symptom management, most children with cancer or receiving a hematopoietic stem cell transplant (HSCT) suffer from multiple treatment-related symptoms including nausea, vomiting, pain, and fatigue. Pharmacologic symptom management can be effective, but can have side effects that decrease quality of life. Symptom distress is an important predictor of poor health-related quality of life among children treated for cancer or receiving HSCT. Severe symptoms can result in interruptions in planned treatment, dose reductions, or other therapy changes with the potential to compromise survival.

A growing body of high-quality evidence from large meta-analyses and systematic reviews of adult acupuncture point stimulation supports the use of acustimulation for the management of adult pain, headache, postoperative nausea/vomiting (PONV), presurgery anxiety, chemotherapy-related nausea/vomiting (CINV), cancer-related pain, cancer-related anxiety, chemotherapy-related fatigue, and cancer treatment-related symptoms. (The term acustimulation is used throughout the protocol and refers to the use of needles, laser, or pressure stimulation.) A National Institutes of Health (NIH) Consensus Conference assessed acupuncture as effective in reducing CINV and PONV.

Fewer studies support the use of acustimulation in children. Systematic reviews reported that acupuncture decreased pain, and a Cochrane review reported decreased PONV. Three randomized controlled trials (RCTs) reported no statistically significant effect of acupressure on CINV or PONV. Two well-designed, but small RCTs of children receiving highly emetogenic chemotherapy for treatment of a childhood cancer reported decreased nausea and vomiting as well as reduced the use of antiemetics and opioids.

The primary objective of Acupressure for Children in Treatment for a Childhood Cancer (ACT-CC) is to describe the feasibility, benefits, and risks of an acupressure intervention plus usual care versus usual care alone for symptom management in children in treatment for a childhood cancer and/or receiving a chemotherapy-based HSCT. Aim 1 assesses whether patients in the acupressure arm, compared to usual care alone arm, will report decreased nausea/vomiting (primary outcome) and improved management of treatment-related symptoms such as nausea, vomiting (separately), pain interference and intensity, fatigue, anxiety, depression, and greater positive affect (secondary outcomes). It is hypothesized that rescue antiemetic and analgesic use will be lower in the acupressure arm and that greater acupressure dose will lead to greater improvement of primary and secondary outcomes. Aim 2 investigates whether parent involvement in the delivery of acupressure reduces posttraumatic stress symptoms, anxiety and depression, and increases positive affect and caregiving self-efficacy.

This protocol manuscript is based on the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines to ensure comprehensiveness of reporting with recommended additions from the SPIRIT protocol to Traditional Chinese Medicine (TCM). The study protocol will be made available on the ACT-CC study website once the trial is complete.

Trial Design

This is a 2.5-year pragmatic RCT among children receiving treatment for a childhood cancer or a HSCT. We will enroll 85 dyads consisting of a child with a parent/caregiver for a total of 170 participants. Study
staff and health-care providers are blinded to study arm assignment. Participants will be randomized 1:1 into the 2 arms and will be followed for up to 30 days of hospital-based oncology or HSCT treatment (continuous or intermittent days) within 2 calendar months from enrollment. If a patient finishes treatment before 30 study days (ie, end of stem cell transplant hospitalization), the study enrollment period ends. Children in Arm A will receive professional acupressure 5 days/week along with usual care, and their parent/caregiver will be trained in how to provide additional acupressure to manage symptoms. Arm B participants will receive usual care alone. (The caregiver will be trained in how to provide acupressure at the end of study participation.)

Stakeholder Involvement
Stakeholders were engaged with the original design for the pilot study during study development, and have ongoing involvement in the study implementation (recruitment, outreach, intervention, and reviewing patient materials). Stakeholders will continue their involvement in the interpretation of the results and in discussions on framing or interpretation of findings.

Methods: Participants, Intervention, and Outcomes

Study Setting
Inpatients and outpatients are enrolled from a United States, Northern California Pediatric Teaching Hospital with 2 sites. Patients are enrolled from hematology-oncology, neuro-oncology, or HSCT units.

Participants’ Eligibility Criteria
The ACT-CC study aims to enroll 85 patients, most with 1 caregiver. Recruitment started in October 2017. Inclusion criteria for ACT-CC require that the child is either receiving treatment for childhood cancer (curative or supportive care) or a chemotherapy-based HSCT (nonmalignant central nervous system tumors are considered a childhood cancer); be age 5 through 24 years old; be receiving hospital-based treatment (inpatient or outpatient); English or Spanish speaking; and availability and willingness of a parent or caregiver to deliver acupressure for patients aged 5 to 17 years. (For young adults aged 18–24 years, participation of a parent, close friend, or family member/caregiver is preferred but not required.) Children are excluded if the treating oncologist, health-care provider, or a study investigator advises against study participation for physical health, mental health (parent or child), or logistical reasons. Examples of exclusion reasons include when the health-care provider thinks participation might be burdensome, there are serious mental health issues for child or caregiver, family stress, a child is receiving a radioactive treatment and is in isolation, or hospital visits are not long enough or frequent enough to provide the intervention.

Intervention
The protocol is based on adherence to the STRICTA reporting guidelines (Standards for Reporting Interventions in Clinical Trials of Acupuncture) which are an extension of the CONSORT Statement and the CONSORT guidelines for nonpharmacologic interventions. The STRICTA guidelines were developed to improve the completeness and transparency of reporting acupuncture interventions (see Table 1).

Acupoint treatment order. Most points used are located distal to the elbows or knees. Treatment is applied based on symptom/complaint using standard points (termed “platform points”) prescribed for each symptom. Additional points (+) are included in the protocol and can be chosen based on secondary symptoms, experience, and TCM diagnosis (see Table 2). Acupressure points are applied in the following order:

- Upper limbs—yin (medial) side (distal to proximal) then yang (outer) side (distal to proximal)
- Lower limbs—yin side (distal to proximal) then yang side (distal to proximal)
- Prone (face down)—lower torso working up to head
- Supine (face up)—abdomen working up to chest and then face

Delivery of Intervention for Each Group

Intervention precautions. Before proceeding with the acupressure session, the provider verifies platelet counts, assesses for skin breakdown associated with graft versus host disease (GVHD), or infection precautions. If platelet counts are <10,000/mL, usual supportive care guidelines recommend a transfusion. If the patient has not received a transfusion, the acupressure provider instructs parents to defer acupressure until platelets recover. Professional acupressure will continue to be delivered by the practitioner using gentle touch as per recommendations from the oncology team. In the case of infection precautions, the acupressure provider follows designated institutional infection control protocols including wearing gloves, mask, and gown as indicated. Acupressure will not be performed when there is skin breakdown or performed only on unaffected areas.

Patients are treated in their clothing or hospital gowns either lying in bed or seated in a chair according to patient preference. Lotion is not used.
intervention fidelity, randomly selected sessions are observed by study investigators.

Parent acupressure intervention. Caregivers are trained by the acupressure providers in the performance of acupressure for the patient. The training occurs at the same time as the professional acupressure intervention is initiated. Parents are encouraged to provide acupressure on a daily basis or as requested by the child. Teaching materials include a brochure with instructions including pictures of each point, a description of recommended points for each symptom, and point names (in English and Chinese). Video teaching instructions are also available on the study website for parents in Arm A (using a website log-in). During the first week of regular child acupressure, the provider begins by teaching parents the safety precautions and acupressure points for specific symptoms (eg, nausea, vomiting, pain, and fatigue). Teaching is updated each time the acupressure provider gives a session until parents are confident. Parents in Arm B (controls) are given acupressure instructions and materials when they complete the study.

Usual care for symptom management applied to both groups. Usual care is defined according to Children’s Oncology Group endorsed supportive care guidelines for nausea or vomiting with updated guidelines and guidelines for management of pain and fatigue. Usual care for symptom management to reduce nausea and vomiting involves the classification of the antineoplastic agents into varying levels of emetogenicity (highly emetogenic chemotherapy [HEC], moderately emetogenic chemotherapy [MEC], low and minimal emetic risk) and the provision of appropriate antiemetic agents on a regular schedule. The goal is to achieve optimal control of acute CINV, defined as “no vomiting, no retching, no nausea, no use of antiemetic agents other than those given for CINV prevention, no nausea-related change in the child’s usual appetite and diet.” Different antiemetic agents are recommended based on the age of the child, treatment factors (ie, avoidance of drug interactions), and the emetic risk. Guidelines to treat anticipatory and breakthrough nausea and for the prevention of refractory nausea are also followed.

Discontinuation of Intervention

The intervention will be discontinued if continued participation is no longer in the patient’s best interest (ie, in...
response to an adverse event as needed; emergence of skin breakdown due to GVHD), upon patient or caregiver request, when exclusion criteria occurs (even mid-enrollment) or in the case of concurrent illness that prevents acupressure from being delivered (ie, when a patient is moved to the Pediatric Intensive Care Unit).

Intervention Fidelity

The principal investigator (PI) does periodic observations of the acupressure providers for fidelity to the written intervention protocol.

Outcomes

Patient-Reported Outcomes Measurement Information System (PROMIS) measures are used when available consistent with the study interest in patient-reported outcomes (PROs). They are valid, easily understood and interpreted, comparable across studies, often used in clinical trials, demonstrate strong reliability (≥.85) for each domain measured, and when a repeated measure, are responsive to changes in status in pediatric cancer patients and in adults. Both adult and pediatric measures are designed for those with chronic health conditions (as well as general populations), aged 8 to 17 years, and child proxy measures can be filled out by parents to assess symptoms in children aged 5 to 7 years or when children are unable to fill out forms. Studies have verified the feasibility and efficiency of administering PROMIS instruments via tablet computers (see Table 3).

Additional data related to child outcomes are collected from the electronic medical records including supportive care pain and antiemetic medications; medications for sleep; vomiting episodes; pain; ability to drink; parenteral nutrition; fever; chemotherapy complications (infection/sepsis, bleeding, GVHD, or hepatic veno-occlusive disease). Laboratory data being collected include the absolute neutrophil count and platelet count. Additional information will be collected on likely precipitants for nausea/vomiting including chemotherapy (agent, dose, timing), surgery

Table 2. Points for Each Symptom/TCM Diagnosis.

Symptom(s)	TCM Diagnosis	AcuPointsa
Nausea and Vomiting	Rebellious Stomach Qi (this diagnosis applies to all nausea/vomiting)	
	Excess Condition: Accumulation of Heat, Cold or Food in Stomach	
	Deficient Condition: Spleen Qi Def	
	Deficient Condition: Stomach Yin Def	
	Platform Points: P6 → SP4 → ST36 → REN 12	
Pain	Qi and Blood Stagnation in the Channel (true for most cases)	
	Platform Points: LV3 → HT7 → LI4	
	Head Pain (+): LI4 → SJ5 → GB41	
	Chest Pain (+): P6 → Ren 17 → KI27 → LU1	
	Stomach Pain (+): UB 40 → ST36 → REN12	
	Hypochondria Pain (+): SJ5 → GB34 → LV8 → LV14	
	Upper Limb Pain (+): LI4 → LI11 → LI15	
	Lower Limb Pain (+): ST40 → GB34 → SP10	
Fatigue	Deficiency of Qi, Blood, Yin, Yang	
	Platform Points: SP6 → ST36 → DU20	
	Qi Deficient (+): LU9 → UB13 → REN6	
	Blood Deficiency (+): HT7 → SP4 → LV8 → UB17 → UB18	
	Yin Deficiency (+): KI7 → UB23	
	Yang Deficiency (+): KI7 → UB23 → DU14	
Depression	Excess Diagnosis: Liver Qi Stagnation	
	Deficient Diagnosis: Deficiency of Qi, Blood, Yin, Yang	
	Platform Points: LI4 → P6 → LV3	
Anxiety	Excess Diagnosis: Qi Stagnation	
	Deficient Diagnosis: Deficiency of Qi, Blood, Yin, Yang	
	Platform Points: KI1 → HT7 → P6 → Yintang → Du20	
	Platform Points: SP6 → ST36 → DU20	
General Well-Being	Platform Points: LU7 → LI4 → LI11 → SP6 → ST36	
	Additional Points: KI1 → Yintang → DU2	

Abbreviations: TCM, Traditional Chinese Medical; +, additional points that can be used to supplement the platform of points.

Parents only use bolded points.
Table 3. Study Child and Parent Outcomes.

Measure	Description	Frequency
Primary Child Outcome	Age, sex, race, ethnicity, highest years of education, socioeconomic status, family structure, siblings (number and ages), and single parenthood, diagnosis, COG study protocol.	Baseline
Nausea/vomiting	Composite measure capturing the continuum of nausea/vomiting with a range of 1 to 8. The raw number will be assessed. The measures are defined for 2 age groups.	Daily
PeNAT and vomiting question	Among children age 5 to 17, nausea is measured using the PeNAT which is validated for ages 5 to 17. The 1 to 4 scale = none, mild, moderate, and severe using faces is a preferred method of measuring distress among children. Daily vomiting is assessed with one question (no. of episodes 1 min apart) with a range of 0 to 4+, capped at 4.	Daily
MAT	For young adults ages 18 to 24, the MAT is used to assess both nausea and vomiting domains. MAT nausea responses are on a 0-10 scale and can be re-categorized on a 1 to 4 scale for comparability. The MAT nausea question has been adapted by deleting the phrase “. . . since your last chemotherapy” given the current study is interested in nausea and vomiting from any source. The number of MAT vomiting episodes are recorded and later capped so the range will be 0 to 4+ episodes in a 24-hour period. Together, the scale represents a continuum from complete control (value = 1), partial control (value = 2–4), and severe nausea and vomiting (value = 5–8).	Daily
Secondary Child Outcomes	These measures will be used separately as secondary outcomes (described above).	Daily
PeNAT, MAT, and vomiting		
Pain interference and intensity	PROMIS: 4 items assess pain interference, and a single item assesses pain intensity in children ages 8+.	Daily
Faces Pain Intensity	FPS-R: 1 item assesses pain in children ages 5 to 7. Scores range from 0 to 10.	Daily
Fatigue	PROMIS: 4 items assess fatigue.	Twice/week
Depression, anxiety	PROMIS: 4 items each assess depression and anxiety.	Once/week
Positive affect	PROMIS: 4 items each assess well-being.	Once/week
SSPedi	SSPedi is a pediatric cancer-specific symptom screening and assessment scale measuring physical and psychological symptoms (eg, feeling angry, sad or worried, tired, mouth sores, headache, constipation or diarrhea, problems thinking or remembering, body changes, or appetite loss, among others) in 15 questions. The SSPedi is also used in a pediatric HSCT population. This instrument provides a brief measure of the most burdensome pediatric symptoms with minimal respondent burden.	Twice/week
Prior and current acustimulation exposure	Children age 10+ are asked about child’s previous experience with acustimulation at baseline. Parents are asked about same when for children age 5 to 9 years. At the final interview data on exposure to acustimulation or massage from nonstudy providers during study enrollment will be collected including number of times and symptoms treated.	Baseline and final interview
Acupressure expectations	Will be assessed at baseline consistent with previous research scoring on a 5-point scale with 1 = not at all effective and 5 = very effective. Treatment outcome expectations have been reported to influence outcomes.	Baseline, at 1 week, and final interview
Rescue pain and antiemetics	Extracted from EMR.	Daily
Parent Outcomes	For child, parent, and household	Baseline
Demographics		
Prior experience	Parents are asked about child’s prior experience with acupuncture.	Baseline

(continued)
Related to the timing of treatment, variables will be created based on the following conditions: CINV will be categorized for children reporting nausea during administration and up to 24 hours following chemotherapy. For delayed CINV, we will analyze CINV scores in groups (HEC, MEC, vs lower intensity) up to 4 days after the end of chemotherapy administration based on recommendations from a National Institute for Health Research report. For PONV, we will categorize a participant at risk for nausea/vomiting following surgery for up to 24 hours.

Participant Timeline

Table 4 details the participant timeline.

Sample size. The target sample size is 85 participants along with ~85 parents/caregivers. Participants are randomized on a 1:1 basis into each of the 2 study arms. Under some simplifying assumptions, detailed below, we estimate that this sample of 85 patients, randomized 1:1 to acupressure versus usual symptom management, will provide 80% power in 2-sided tests with α of .05 to detect average reductions of 0.52 to 0.58 standard deviations (SDs) in pairwise comparisons between the **Table 3. Continued.**

Measure	Description	Frequency
Depression and anxiety	PROMIS 4 item depression and 4 item anxiety measures from the PROMIS Adult Profile Bank.	Baseline, week 1
PANAS	Positive Affect Subscale of the PANAS (5-items): This positive affect sub-scale of the 10-item PANAS scale (i-PANAS-SF) assessed positive or pleasurable engagement with the environment, well-being, and satisfaction with life. The scale can be used cross-culturally and has acceptable internal reliability, temporal stability, convergent, and criterion-related validity. A Spanish translation is available. A translation exists for the full 20 item version and the study translator used that version to create the shorter 5-item Spanish version.	Baseline, week 1 and final
PTSS	Posttraumatic stress disorder Checklist (PCL-5) (20 items): updated to meet DSM5 criteria, responses assess frequency and intensity of symptoms (strong internal consistency, test-retest reliability and validity).	Baseline and final
PSES	Parent’s Self-Efficacy Scale (PSES) (6 items): adapted from Bandura and Lorig, and previously used in parents of children with disabilities (excellent psychometric reliability and validity).	Baseline and final
Parent delivered acupressure	Parent-delivered acupressure data: frequency, duration, acupoints used, and child symptoms being treated.	Daily
Acupressure expectation-met?	One item assesses whether acupressure expectations were met using 5-item Likert scale.	Final
Patient satisfaction	Two items assess satisfaction with hospital stay and with intervention.	Final
Experience (open-ended)	One open question asked at the final interview: “Can you tell us in a few words how it was for you to learn and do acupressure on your child?	Final
Rewards and burden	Parent rewards and burdens of delivering acupressure: 2 questions use Likert scale to assess parent reward and burden in delivering acupressure.	Final
Acupressure Provider Information	The acupressure provider documents each session: chief complaint/symptom, secondary complaints, observation of the pulse and tongue, TCM diagnosis, points used, total minutes of acupressure, and patient response. The provider also asks parents about delivery of acupressure to their child: minutes of acupressure delivered each day, points used, symptoms treated, and child’s reaction.	At each intervention session

Abbreviations: COG, Children’s Oncology Group; EMR, electronic medical record; FPS-R, Faces Pain (Intensity) Scale-Revised; HSCT, hematopoietic stem cell transplant; MASCC, Multinational Association of Supportive Care in Cancer; MAT, MASCC Anti-emesis Tool; PeNAT, Pediatric Nausea Assessment Tool; PANAS, positive and negative affect schedule; PROMIS, Patient-Reported Outcomes Measurement Information System; PTSS, posttraumatic stress disorder Checklist; SSPedi, The Symptom Screening in Pediatrics; TCM, Traditional Chinese Medical.
Table 4. Participant Timeline: Schedule of Enrollment, Interventions, Assessments, and Visits to Participants.

Activity/Assessment	Staff Member(s)	Approximate Time/Frequency	−1	0	TI−T30	F1	Follow-Up: I Month Post Last Study Day
Identification and Screening	Study Nurse CRC, PI	10 minutes	X				
Eligibility Documents	CRC, PI, Study Nurse	10 minutes	X				
Consent Prep	CRC, PI	15 minutes	X				
Bill of Rights, HIPPA, Informed Consent/Assent	CRC	30 minutes		X			
Consent Note	CRC	5 minutes	X				
Baseline (Parent and Child)	CRC	15 minutes	X				
Randomization	Study Nurse	2 minutes	X				
Acupressure Intervention (Arm A)	Acupressure Provider	20 minutes	Week days	X			
Acupressure Provider Log	Acupressure Provider	10 minutes	Each session	X			
Week 1 (Parent and Child) Survey	CRC	5 minutes	Once	X			
Nausea/vomiting and Pain Survey	CRC	2 minutes	Daily	X			
Sx Assess-Long Form Survey	CRC	5 minutes					
Sx Assess-Short Form Survey	CRC	4 minutes	1/week	X			
Follow-up (Parent and Child)	CRC	20 minutes	Once			X	
Parent Acupressure Training (Arm B)	Acupressure Provider	20 minutes	1–2 times	X			
APeX EMR Record Capture-CTSI	CTSI^a	Done digitally		As needed throughout protocol			
SAE (Serious Adverse Event) Form Note to File	CRC, PI	15 minutes		As needed throughout protocol			
Study Progress Tracking	CRC	10 minutes	Daily	X	X	X	

Abbreviations: CRC, clinical research coordinators; CTSI, Clinical & Translational Science Institute; EMR, electronic medical record; HIPPA, Health Insurance Portability and Accountability Act; PI, principal investigator.

^aClinical and Translational Science Institute services doing digital downloads of specified data.
acupressure arm and the usual care only arm, depending on the intraclass correlation (ICC) of the repeated outcome measures (assumed to be 0.6–0.8). (With a more conservative assumption where ICC = 0.9, the minimal detectable effects [MDE] would increase to 0.61.)

MDEs in context. In a systematic review of acupressure studies of CINV, the standardized ES for vomiting episodes was 0.53 SDs, for retching episodes ES = 0.44 SDs, for severity of nausea, ES = 0.73 SDs, for the use of rescue antiemetics ES = 0.46 SD's, child-reported pain ES = 0.42 SDs, and fatigue ES = 0.78 SDs. A composite score for nausea/vomiting should fall within the ES range for CINV in previous studies. Additional ESs for secondary symptoms fall within a similar range where pain ES = 0.37–0.55. Thus, our calculations suggest that, in the case where the ICC = 0.6, with a sample size of 85 we expect to have 80% power to detect plausible and clinically significant effects for nausea, vomiting, and fatigue outcomes and may be able to detect differences in pain. If the ICC = 0.8, we expect to be able to detect differences for nausea and fatigue.

Recruitment. Patients are identified and recruited at varying stages of their disease course: at the time of diagnosis; during a new or repeat hospitalization, mid-treatment, or at relapse.

The study nurse monitors all planned and unplanned admissions and outpatient appointments, and prescreens for eligibility including age, diagnosis, language, and availability of a parent/caregiver. Approval of a treating health-care provider is sought before eligible patients are approached during inpatient or outpatient visits to the hospital. Consent is obtained from parents/caregivers and patients who are 18 years and older, and assent is obtained from patients aged 8 to 17 years following UCSF institutional review board (IRB) guidelines (see Figure 1).

![Figure 1. Research design schema.](image-url)
Methods: Assignment of Interventions for Controlled Trials

Randomization, Allocation Concealment Mechanism, and Blinding

After collection of baseline data, the study nurse (who does not see study patients) performs 1:1 simple randomization into 2 groups: acupressure + usual care versus usual care alone using a Qualtrics computer-based assignment program in which the study nurse enters the participant ID number before randomization is revealed. Assignment is immediately locked into the database. Study staff who carry out the symptom assessments and health-care providers are blinded to study arm assignment. The use of simple randomization is considered the strongest design to prevent selection bias. The acupressure provider, floor nurses, patients, and caregivers are not blinded due to the type of intervention. Floor nurses are informed before the acupressure provider enters the room to ensure that there are no medical issues that need to be addressed. Families are asked not to disclose their study arm to the staff and periodic checks assure us that the physicians remain unaware of allocation. Allocation is communicated to the family by the acupressure provider who naturally knows the allocation.

Methods: Data Collection, Management, and Analysis

Data Collection

Study staff were trained in the collection of survey data. Data are monitored post interview for accuracy and completeness. Survey data collection can occur in 4 ways: paper survey administered by staff, paper survey filled out by patient or parent, staff administered assessment using a portable device (ipad) with a link to a programmed questionnaire, or patient/parent filling out survey using link to the online questionnaire. See Table 3 for survey outcomes and timing. Study assessments are allowed a window of ±3 weekdays, ±4 days between consent and baseline, and ±10 days for final surveys. Electronic Medical data for each patient participant for each study day are collected using digital methods.

Patient retention is promoted by efforts of study staff to form a trusting relationship with participants, the use of a financial incentive of $50 each (caregiver and child) upon study completion, and, for the control arm, by providing instruction and training for caregivers to deliver acupressure at the end of participation.

Data Management

Survey data are entered into the Qualtrics database and recruitment and enrollment tracking data are recorded and stored using secure HIPAA compliant software. The study project manager monitors data entry for accuracy and completeness for both sites. Survey data include study ID with no protected health information (PHI) with the exception of the baseline and follow-up survey. Baseline and follow-up surveys are deidentified before the analysis phase. Information linking the study ID and patient PHI are kept in a HIPAA secured environment separate from survey data. Physical records are kept in an area accessible only to research staff and in a locked file cabinet. No names or individual identities will be used in publications resulting from the study. Research data are stored on a secure, HIPAA-compliant server and drive with monitored and controlled access for study staff and investigators.

Statistical Analysis

Aim 1: Child Outcomes

Summary of proposed modeling approach. This study will use linear mixed models (LMMs), an extension of least squares regression to longitudinal data. Among other advantages, this approach will accommodate differences in treatment timing, intensity and emetogenicity between the treatment groups, and differences related to treatment uptake and the semistandardized intervention, while also accounting for within-patient correlation of repeated measures, optimally weighting data for patients with different numbers of responses, and providing valid estimates in the presence of missing data under relatively mild assumptions about how the missing data arise. In brief, we will flexibly model the time course of the composite nausea/vomiting severity scale for each treatment group and by emetogenicity, which will allow us to estimate average differences between these trajectories by randomized study intervention assignment (acupressure vs usual care). The model will intrinsically weight patients in proportion to the length of the course of treatment.

Technical description of analysis approach. We will flexibly model the average time course of the composite nausea/vomiting scores (and severity of symptoms for other outcomes) for each combination of treatment modality and intervention assignment, using group-specific restricted cubic splines (RCS) in time since the start of study enrollment. The model will also include random intercepts and RCS components, to flexibly model patient-specific departures from the average group-specific trajectory. In addition, to capture spikes in symptom
severity in the first few days after surgery or chemotherapy, the model will include time-dependent covariates flexibly modeling the effect of time since the most recent chemotherapy, surgery, and/or radiation, depending on the outcome (ie, for CINV chemotherapy will be dominantly factored in). The function of these adjustments is to explain variability in the outcome, increasing model efficiency. Normalizing transformation of the composite nausea/vomiting symptom severity scale will be used if necessary. We will assess the adequacy of both the fixed and random parts of the model and check for modification of the effects of the acupressure by both time and treatment modality. We will perform intent-to-treat analyses (by original assigned groups), which is the recommended method for describing clinical trial results, and additional analyses will report on groups as treated.

Assumptions and sensitivity analyses. This approach relies on the plausible assumption that the timing and duration of treatment will not be affected by assignment to or intensity of the use of acupressure. Sensitivity analyses will be conducted assessing evidence for violations of this assumption, using between-arm comparisons of treatment patterns, as well as models for the association of lagged acupressure intensity with the timing of subsequent treatments.

Dose–response analysis using marginal structural models (Aim 1). Our primary analyses for each symptom will be by intent-to-treat, according to allocation assignment, without regard to the intensity or duration of acupressure actually received. To assess dose effects as an exploratory analysis, the effects of total minutes of professional acupressure (as well as total minutes of professional plus caregiver provided acupressure) received per week, treated as an ordinal category with 3 to 4 levels, will be estimated in a secondary analysis. Because acupressure duration may depend on earlier levels of the outcome, marginal structural models will be used.

Aim 2: Parent Outcomes

We will determine whether parents differ in posttraumatic stress symptoms (total symptom scores), depression, and anxiety (T scores) and caregiver self-efficacy (score) between groups at 2 points: at week 1 for both arms regardless of pattern of hospital-based treatment; and at 1 month post-study enrollment, which will vary depending on whether patients have 1 month of continuous hospitalization followed by 1 month for follow-up or intermittent hospitalization or outpatient treatment over 2 months followed by a 1 month follow-up. In both cases, analysis will control for baseline values as appropriate. We will use similar analytic approaches as in Aim 1, with LMM as the primary analysis approach.

Exploratory analysis of heterogeneity of treatment effects. Using LMMs we will explore heterogeneity of treatment effects by demographics (age, sex, race/ethnicity), diagnosis, treatment agent/modality, or initiation of most recent treatment dose, with the goal of assessing variation in benefit from acupressure by subgroup. Our overall hypothesis in regard to heterogeneity of treatment effect is that groups with more severe symptoms of nausea and vomiting will experience greater benefit. If certain groups benefit more from acupressure, recommendations may target provision of the intervention to these groups. Given our anticipated sample size of n = 85, within-subgroup effect estimates will likely have wide confidence intervals, and power to detect between-subgroup differences may be low. Since previous research has not documented point estimates for differences between subsamples within pediatric populations, these findings will provide preliminary estimates of ESs within subgroups which will be the basis for future studies of subsamples.

Missing Data Approaches

Some outcome data may be missing not at random (MNAR)—in particular, when missing symptom assessments occur due to early hospital discharge, moving into hospice care, severe symptoms or illness, refusal to answer, or conflicts with other medical procedures. To address this difficulty, we will perform sensitivity analyses using multiple imputation of missing outcomes under plausible MNAR scenarios as well as under the standard MAR assumptions for key outcomes. Where feasible, we will utilize appropriate information on nausea, vomiting, and pain available in the EMR in multiple imputation models to take advantage of data that may be available even when patient-reported symptom data cannot be collected directly.

Definition of populations. Intent to treat is defined as the entire randomized sample.

Methods: Monitoring

Data Safety Monitoring and Audits

The study is monitored by the Helen Diller Family Comprehensive Cancer Center (HDFCCC) Regulatory Unit for quality and regulatory compliance with yearly audits of 20% of participants (guideline for minimal risk trial) and biannual review by the Data Safety Monitoring Board (DSMB) reporting on data quality, subject safety, serious adverse reactions, and yearly
accrual. The DSMB is independent from PCORI and the Investigators have no competing interests. The DSMB is made up of members who are knowledgeable in the conduct of research, with backgrounds in cancer, biostatistics, experimental design, or bioethics. The HDFCCC DSMB charter can be found at http://cancer.ucsf.edu/itr/itr-dsm.

Interim Analyses and Stopping Rules

The primary clinical outcome variable, nausea/vomiting, is a symptom associated with exposure to pediatric cancer treatment and HSCT conditioning. Continued nausea/vomiting is not an outcome that would justify early termination rules for a study of this nature, and it is highly unlikely that there would be differences in mortality or any other major health difference between arms. No interim analyses related to outcome will be performed and we do not anticipate stopping the trial early.

Adverse Events

Any adverse events (AEs) related to the administration of acupressure, specifically including bruising or skin irritation, are recorded. AEs can be reported by the family or the medical provider. All AEs are entered into the study records. Study AEs are graded. Serious (grade 3 and above) AEs are reported to IRB and the DSMB. AEs are monitored and discussed at every study staff and Co-Investigator meeting.

Ethics and Dissemination

The ACT-CC study has been approved by UCSF Helen Diller Family Comprehensive Cancer Center Protocol Review Committee and the IRB at UCSF Benioff Children’s Hospital Mission Bay site (9-26-17) and Benioff Children’s Hospital-Oakland site (11/3/17). HIPAA permissions, Patient Bill of Rights and consent/assent is obtained by trained study staff who receive 6 weeks of Cancer Center training in addition to training from the PI. No biological samples are collected for this trial.

This study includes a vulnerable population of children with life-threatening conditions. Thus efforts are made to reduce patient burden in the following way: after baseline regular assessments are short (<5 min) and enrolled patients can decline acupressure sessions or assessments; parents in Arm A are taught to provide acupressure and training is available throughout enrollment; surveys can be performed using the most convenient survey method. A pediatric cancer or HSCT population can be challenging to access given severe symptoms, fatigue, the need to have both the child and parent present for consent and intervention delivery for the youngest group, and the need to work around curative treatment procedures, medical equipment, and healthcare personnel visits to the room. Thus, study staff receive training and ongoing monitoring as recruitment and enrollment occurs to ensure that patient needs are honored and study procedures are transparent, clear, and optional. Acupressure training is provided to caregivers in the control arm after the family finishes the trial to ensure that everyone enrolled has the opportunity to benefit from the intervention if desired. We ask participants to refrain from receiving acupuncture, acupressure or massage from outside providers during the trial unless medically indicated, in which case, patients can remain in the trial and receive integrative medicine services. The use of integrative medicine services is documented.

Protocol changes related to eligibility or any significant change in study procedures are reported to the study funder, the HDFCCC Site Committee, the IRB, and updated on clinicaltrials.gov.

Study results will first be presented to our stakeholders for evaluation and discussion. After incorporating stakeholder feedback, final study results related to primary and secondary outcomes will be published in peer-reviewed journals and presented at one or more scientific conferences.

Confidentiality

At recruitment, personal information is collected through secure e-mails (to get treating health-care provider permission to approach). Enrollment tracking is recorded using HIPAA compliant software or stored in HIPAA compliant secure folders. No names or personal identifiers are available during the analysis phase.

Access to Data

Access to the data involves a formal request including an abstract, proposed aims, background, outcomes, analysis plan, and investigator qualifications. Upon approval a complete, cleaned, and de-identified copy of the final dataset will be provided. Data sharing will be coordinat-ed to avoid overlapping analyses.

Discussion

The results of the ACT-CC trial will provide both feasibility and effectiveness data so that Hematology-Oncology and HSCT treatment centers can assess the logistics, risks, and benefits of integrating acupressure into symptom management along with usual care in inpatient and outpatient settings treating childhood cancer or providing a chemotherapy-based HSCT. To our knowledge, this study represents the largest study employing a semistandardized daily acupressure intervention for pediatric oncology and HSCT-patients.
In 2002, the NIH convened a 14-member multidisciplinary expert panel to examine symptom management dilemmas for patients with cancer. The panel stated that all patients should have optimal symptom control throughout the course of their illness and suggested that pain, depression, and fatigue are inadequately treated in most cancer patients. Additional data show that effective management of nausea and vomiting in children remains challenging. This trial will provide data on an integrative medicine approach to improve symptom management.

Although the trial has employed rigorous methodology, nonetheless, it has limitations. A sample size of 85 may make it harder to detect differences between groups for pain. It is likely to be difficult to determine the effectiveness of the intervention between subgroups such as those receiving inpatient versus outpatient care, hematology-oncology versus HSCT, by age, or by diagnosis. A future larger multisite trial would be important to increase the sample size so that the effectiveness in subgroups could be explored in more depth.

Trail Status

The trial is currently active enrolling and was opened in October 2017. No posttrial care is required.

Appendix 1

A Clinical Review Team including experts in the field convened at the Acupuncture and Integrative Medicine College, Berkeley (AIMC). The team was organized by Robyn Adcock and included the following experts who reviewed the protocol and provided additional feedback. Robyn Adcock and Michael Morgan are the acupressure providers for the ACT-CC study.

Author Contributions

EAL drafted the manuscript. All remaining authors reviewed and edited versions.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by: Patient Centered Outcomes Research Institute (PCORI) R-1602-34557 (Lown); Pierre’s Birthday Fund for acupressure delivery; National Cancer Institute, P30CA082103 (UCSF Helen Diller Family Comprehensive Cancer Center); and UCSF Clinical & Translational Science Institute (CTSI) UL1 TR991872. The scientific direction and publication is determined by the investigator team.

ORCID iDs

E Anne Lown https://orcid.org/0000-0002-7502-4459

Eric Vittinghoff https://orcid.org/0000-0001-8535-0920
References

1. Kestler SA, LoBiondo-Wood G. Review of symptom experiences in children and adolescents with cancer. Cancer Nurs. 2012;35(2):E31–E49.
2. Rodgers CC, Hooke MC, Hockenberry MJ. Symptom clusters in children. Curr Opin Support Palliat Care. 2013;7(1):67–72.
3. Flank J, Sparavalio J, Vol H, et al. The burden of chemotherapy-induced nausea and vomiting in children receiving hematopoietic stem cell transplantation conditioning: a prospective study. Bone Marrow Transpl. 2017;52(9):1294–1299.
4. Johnston DL, Hyslop S, Tomlinson D, et al. Describing symptoms using the Symptom Screening in Pediatrics Tool in hospitalized children with cancer and hematopoietic stem cell transplant recipients. Cancer Med. 2018;7(5):1750–1755.
5. Phipps S, Dunavant M, Garvie PA, Lensing S, Rai SN. Acute health-related quality of life in children undergoing stem cell transplant: I. Descriptive outcomes. Bone Marrow Transplant. 2002;29(5):425–434.
6. Rodgers C, Highberger M, Powers K, Voigt K, Douglas C. Symptom trajectories of adolescents during hematopoietic stem cell recovery [published online ahead of print October 17, 2018]. Cancer Nurs. doi:10.1097/NCC.0000000000000643
7. Dupuis LL, Robinson PD, Boodhan S, et al. Guideline for the prevention and treatment of anticipatory nausea and vomiting due to chemotherapy in pediatric cancer patients. Pediatr Blood Cancer. 2014;61(8):1506–1512.
8. Dupuis LL, Lu X, Mitchell HR, et al. Anxiety, pain, and nausea during the treatment of standard-risk childhood acute lymphoblastic leukemia: a prospective, longitudinal study from the Children’s Oncology Group. Cancer. 2016;122(7):1116–1125.
9. Tomlinson D, Robinson PD, Oberoi S, et al. Pharmacologic interventions for fatigue in cancer and transplantation: a meta-analysis. Curr Oncol. 2018;25(2):e152–e167.
10. Chow R, Chiu L, Navari R, et al. Efficacy and safety of olanzapine for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV) as reported in phase I and II studies: a systematic review. Support Care Cancer. 2016;24(2):1001–1008.
11. Rosenberg AR, Orellana L, Ulrich C, et al. Quality of life in children with advanced cancer: a report from the PediQUEST study. J Pain Symptom Manage. 2016;52(2):243–253.
12. Rodgers CC, Krance R, Street RL, Hockenberry MJ. Symptom prevalence and physiologic biomarkers among adolescents using a mobile phone intervention following hematopoietic stem cell transplantation. Oncol Nurs Forum. 2014;41(3):229–236.
13. Cleeland CS. Symptom burden: multiple symptoms and their impact as patient-reported outcomes. J Natl Cancer Inst Monogr. 2007;37(1):16–21.
14. Wang XS, Shi Q, Williams LA, et al. Inflammatory cytokines are associated with the development of symptom burden in patients with NSCLC undergoing concurrent chemoradiation therapy. Brain Behav Immun. 2010;24(6):968–974.
15. Lee EJ, Frazier SK. The efficacy of acupressure for symptom management: a systematic review. J Pain Symptom Manage. 2011;42(4):589–603.
16. Vickers AJ, Cronin AM, Maschino AC, et al. Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med. 2012;172(19):1444–1453.
17. MacPherson H, Vertosick E, Lewith G, et al. Influence of control group on effect size in trials of acupuncture for chronic pain: a secondary analysis of an individual patient data meta-analysis. PLoS One. 2014;9(4):e93739.
18. Witt CM, Reinhold T, Brinkhaus B, Roll S, Jena S, Willich SN. Acupuncture in patients with dysmenorrhea: a randomized study on clinical effectiveness and cost-effectiveness in usual care. Am J Obstet Gynecol. 2008;198(2):166.e1–166.e8.
19. Witt CM, Jena S, Brinkhaus B, Liecker B, Wegscheider K, Willich SN. Acupuncture in patients with chronic neck pain. Pain. 2006;125(1–2):98–106.
20. Melhart D, Streng A, Hoppe A, et al. Acupuncture in patients with tension-type headache: randomised controlled trial. BMJ. 2005;331(7513):376–382.
21. Linde K, Streng A, Jurgens S, et al. Acupuncture for patients with migraine: a randomized controlled trial. JAMA. 2005;293(17):2118–2125.
22. Jena S, Witt CM, Brinkhaus B, Wegscheider K, Willich SN. Acupuncture in patients with headache. Cephalalgia. 2008;28(9):969–979.
23. Lee A, Done ML. The use of nonpharmacologic techniques to prevent postoperative nausea and vomiting: a meta-analysis. Anesth Analg. 1999;88(6):1362–1369.
24. Chao LF, Zhang AL, Liu HE, Cheng MH, Lam HB, Lo SK. The efficacy of acupoint stimulation for the management of therapy-related adverse events in patients with breast cancer: a systematic review. Breast Cancer Res Treat. 2009;118(2):255–267.
25. Choo SP, Kong KH, Lim WT, Gao F, Chua K, Leong SS. Electroacupuncture for refractory acute emesis caused by chemotherapy. J Altern Complement Med. 2006;12(10):963–969.
26. Dibble SL, Luce J, Cooper BA, et al. Acupuncture for chemotherapy-induced nausea and vomiting: a randomized clinical trial. Oncol Nurs Forum. 2007;34(4):813–820.
27. Dundee JW, Ghaly RG, Fitzpatrick KT, Abram WP, Lynch GA. Acupuncture prophylaxis of cancer chemotherapy-induced sickness. J R Soc Med. 1989;82(5):268–271.
28. Roscoe JA, Morrow GR, Hickok JT, et al. The efficacy of acupressure and acustimulation wrist bands for the relief of chemotherapy-induced nausea and vomiting. A University of Rochester Cancer Center Clinical Oncology Program multicenter study. J Pain Symptom Manage. 2003;26(2):731–742.
29. Ezzo J, Streitberger K, Schneider A. Cochrane systematic reviews examine P6 acupuncture-point stimulation for nausea and vomiting. J Altern Complement Med. 2006;12(3):489–495.
30. Ezzo J, Richardson MA, Vickers A, et al. Acupuncture-point stimulation for chemotherapy-induced nausea
or vomiting. *Cochrane Database Syst Rev.* 2010;11:CD002285.

31. Gardani G, Cerrone R, Biella C, et al. A progress study of 100 cancer patients treated by acupressure for chemotherapy-induced vomiting after failure with the pharmacological approach. *Minerva Med.* 2007;98(6):665–668.

32. Genc F, Tan M. The effect of acupressure application on chemotherapy-induced nausea, vomiting, and anxiety in patients with breast cancer. *Palliat Support Care.* 2015;13(2):275–284.

33. Lee J, Dodd M, Dibble S, Abrams D. Review of acupressure studies for chemotherapy-induced nausea and vomiting control. *J Pain Symptom Manage.* 2008;36(5):529–544.

34. Shen J, Wenger N, Glasy J, et al. Electroacupuncture for control of myeloablative chemotherapy-induced emesis: a randomized controlled trial. *JAMA.* 2000;284(21):2755–2761.

35. Treish I, Shord S, Valgus J, et al. Randomized double-blind study of the Reliefband as an adjunct to standard antiemetics in patients receiving moderately-high to highly emetogenic chemotherapy. *Support Care Cancer.* 2003;11(8):516–521.

36. Alimi D, Rubino C, Pichard-Leandri E, Fermand-Brule S, Dubreuil-Lemaire ML, Hill C. Analgesic effect of auricular acupuncture for cancer pain: a randomized, blinded, controlled trial. *J Clin Oncol.* 2003;21(22):4120–4126.

37. Beikmoradi A, Najafi F, Roshanaei G, Pour Esmaeil Z, Khatibian M, Ahmadi A. Acupressure and anxiety in cancer patients. *Iran Red Crescent Med J.* 2015;17(3):e25919.

38. Molassiotis A, Bardy J, Finnegan-John J, et al. Acupuncture for cancer-related fatigue in patients with breast cancer: a pragmatic randomized controlled trial. *J Clin Oncol.* 2012;30(36):4470–4476.

39. Vickers AJ, Straus DJ, Fearon B, Cassileth BR. Acupuncture for postchemotherapy fatigue: a phase II study. *J Clin Oncol.* 2004;22(9):1731–1735.

40. NIH Consensus Conference. Acupuncture. *JAMA.* 1998;280(17):1518–1524.

41. Lee A, Fan LT. Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. *Cochrane Database Syst Rev.* 2009(2):CD003281.

42. Yang C, Hao Z, Zhang LL, Guo Q. Efficacy and safety of acupuncture in children: an overview of systematic reviews. *Pediatr Res.* 2015;78(2):112–119.

43. Jones E, Isom S, Kemper KJ, McLean TW. Acupuncture for chemotherapy-associated nausea and vomiting in children. *J Soc Integr Oncol.* 2008;6(4):141–145.

44. Lo L. Effect of acupuncture on acute and delayed nausea and vomiting in children receiving chemotherapy. Cleveland, OH: School of Nursing, Case Western Reserve University; 1998.

45. Dupuis LL, Kelly KM, Krischer JP, et al. Acupressure bands do not improve chemotherapy-induced nausea control in pediatric patients receiving highly emetogenic chemotherapy: a single-blinded, randomized controlled trial. *Cancer.* 2018;124(6):1188–1196.

46. Liöden I, Sandvik L, Valeberg BT, Borud E, Norheim AJ. Acupuncture versus usual care for postoperative nausea and vomiting in children after tonsillectomy/adenoidectomy: a pragmatic, multicentre, double-blinded, randomised trial. *Acupunct Med.* 2015;33(3):196–203.

47. Lewis IH, Pryn SJ, Reynolds PI, Pandit UA, Wilton NC. Effect of P6 acupressure on postoperative vomiting in children undergoing outpatient strabismus correction. *Br J Anaesth.* 1991;67(1):73–78.

48. Gottschling S, Reindl TK, Meyer S, et al. Acupuncture to alleviate chemotherapy-induced nausea and vomiting in pediatric oncology – a randomized multicenter crossover pilot trial. *Klin Padiatr.* 2008;220(6):365–370.

49. Yeh CH, Chien LC, Chiang YC, Lin SW, Huang CK, Ren D. Reduction in nausea and vomiting in children undergoing cancer chemotherapy by either appropriate or sham acupunctural acupuncture points with standard care. *J Altern Complement Med.* 2012;18(4):334–340.

50. Reindl TK, Geilen W, Hartmann R, et al. Acupuncture against chemotherapy-induced nausea and vomiting in pediatric oncology. Interim results of a multicenter crossover study. *Support Care Cancer.* 2006;14(2):172–176.

51. Bastani F, Khozravi M, Borinnejad L, Arbabi N. The effect of acupressure on cancer-related fatigue among school-aged children with acute lymphoblastic leukemia. *Iran J Nurs Midwifery Res.* 2015;20(5):545–551.

52. Lee A, Chan SK, Fan LT. Stimulation of the wrist acupuncture point PC6 for preventing postoperative nausea and vomiting. *Cochrane Database Syst Rev.* 2015;November(11):CD003281.

53. Adams D, Cheng F, Jou H, Aung S, Yasui Y, Vohra S. The safety of pediatric acupuncture: a systematic review. *Pediatrics.* 2011;128(6):e1575–e1587.

54. Children’s Oncology Group. COG Supportive Care Endorsed Guidelines. https://childrensoncologygroup.org/downloads/COG.SC_Guideline_Document.pdf. Published 2015. Accessed February 23, 2016.

55. Gold JI, Nicolau CD, Belmont KA, Katz AR, Benaron DM, Yu W. Pediatric acupuncture: a review of clinical research. *Evid Based Complement Alternat Med.* 2009;6(4):429–439.

56. Dune LS, Shiao SY. Metaanalysis of acustimulation effects on postoperative nausea and vomiting in children. *Explore (NY).* 2006;2(4):314–320.

57. Hunt K, Ernst E. The evidence-base for complementary medicine in children: a critical overview of systematic reviews. *Arch Dis Child.* 2011;96(8):769–776.

58. Kemper KJ, Sarah R, Silver-Highfield E, Xiarhos E, Barnes L, Berde C. On pins and needles? Pediatric pain patients’ experience with acupuncture. *Pediatrics.* 2000;105(4 Pt 2):941–947.

59. Kundu A, Berman B. Acupuncture for pediatric pain and symptom management. *Pediatr Clin North Am.* 2007;54(6):885–889.

60. Golianu B, Yeh AM, Brooks M. Acupuncture for Pediatric Pain. *Children.* 2014;1:134–148.

61. Wu S, Sapru A, Steward MA, et al. Using acupuncture for acute pain in hospitalized children. *Pediatr Crit Care Med.* 2009;10(3):291–296.

62. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. *Ann Intern Med.* 2013;158(3):200–207.
63. Dai L, Cheng CW, Tian R, et al. Standard protocol items for clinical trials with traditional Chinese medicine 2018: recommendations, explanation and elaboration (SPIRIT-TCM extension 2018). Chin J Integr Med. 2019;25(1):71–79.

64. MacPherson H, Altman DG, Hammerschlag R, et al. Revised STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA): extending the CONSORT statement. PLoS Med. 2010;7(6):e1000261.

65. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332.

66. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148(4):295–309.

67. Dodd MJ, Miaskowski C, Paul SM. Symptom clusters and their effect on the functional status of patients with cancer. Oncol Nurs Forum. 2001;28(3):465–470.

68. Miaskowski C, Aouizerat BE, Dodd M, Cooper B. Conceptual issues in symptom clusters research and their implications for quality-of-life assessment in patients with cancer. J Natl Cancer Inst Monogr. 2007(37):39–46.

69. Lu W, Dean-Clower E, Doherty-Gilman A, Rosenthal DS. The value of acupuncture in cancer care. Hematol Oncol Clin N Am. 2008;22(4):631–648, viii.

70. Zijlstra FJ, van den Berg-de Lange I, Huygen FJ, Klein J. Anti-inflammatory actions of acupuncture. Mediat Inflamm. 2003;12(2):59–69.

71. Song C, Halbreich U, Han C, Leonard BE, Luo H. Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry. 2009;42(5):182–188.

72. Moon PD, Jeong HJ, Kim SJ, et al. Use of electroacupuncture at ST36 to inhibit anaphylactic and inflammatory reaction in mice. Neuroimmunomodulation. 2007;14(1):24–31.

73. Lin WC, Yeh CH, Chien LC, Morone NE, Glick RM, Albers KM. The anti-inflammatory actions of auricular acupuncture at ST36 and acupressure: a randomised controlled trial. Evid Based Complement Alternat Med. 2015;2015:103570.

74. Kavoussi B, Ross BE. The neuroimmune basis of anti-inflammatory acupuncture. Integr Cancer Ther. 2007;6(3):251–257.

75. Jeong HJ, Hong SH, Nam YC, et al. The effect of acupuncture on proinflammatory cytokine production in patients with chronic headache: a preliminary report. Am J Chin Med. 2003;31(6):945–954.

76. Maciocia G. The Practice of Chinese Medicine: The Treatment of Diseases With Acupuncture and Chinese Herbs, Second Edition. Edinburgh, England: Elsevier Churchill Livingstone; 2008.

77. Xinnong CE. Chinese Acupuncture and Moxibustion. Beijing, China: Foreign Languages Press; 1998.

78. Butkovic D, Toljan S, Matolic M, Kralik S, Radesic L. Comparison of laser acupuncture and metoclopramide in PONV prevention in children. Paediatr Anaesth. 2005;15(1):37–40.

79. Chu YC, Lin SM, Hsieh YC, et al. Effect of BL-10 (tianzhu), BL-11 (dazhu) and GB-34 (yanglingquan) acuplaster for prevention of vomiting after strabismus surgery in children. Acta Anaesthesiol Sin. 1998;36(1):11–16.

80. Molassiotis A, Helin AM, Dabbour R, Hummerston S. The effects of P6 acupressure in the prophylaxis of chemotherapy-related nausea and vomiting in breast cancer patients. Complement Ther Med. 2007;15(1):3–12.

81. Rusy LM, Hoffman GM, Weisman SJ. Electroacupuncture prophylaxis of postoperative nausea and vomiting following pediatric tonsillectomy with or without adenoidectomy. Anesthesiology. 2002;96(2):300–305.

82. Schlagier A, Boehler M, Pulringer F. Korean hand acupressure reduces postoperative vomiting in children after strabismus surgery. Br J Anaesth. 2000;85(2):267–270.

83. Wang SM, Kain ZN. P6 acupoint injections are as effective as droperidol in controlling early postoperative nausea and vomiting in children. Anesthesiology. 2002;97(2):359–366.

84. Bao T, Goloubeva O, Pelser C, et al. A pilot study of acupuncture in treating bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Integr Cancer Ther. 2014;13(5):396–404.

85. Dean-Clower E, Doherty-Gilman AM, Keshaviah A, et al. Acupuncture as palliative therapy for physical symptoms and quality of life for advanced cancer patients. Integr Cancer Ther. 2010;9(2):158–167.

86. Garcia MK, Driver L, Haddad R, et al. Acupuncture for treatment of uncontrolled pain in cancer patients: a pragmatic pilot study. Integr Cancer Ther. 2014;13(2):133–140.

87. Garcia MK, Cohen L, Guo Y, et al. Electroacupuncture for thalidomide/bortezomib-induced peripheral neuropathy in multiple myeloma: a feasibility study. J Hematol Oncol. 2014;7:41.

88. Kotani N, Hashimoto H, Sato Y, et al. Preoperative intradermal acupuncture reduces postoperative pain, nausea and vomiting, analgesic requirement, and sympathoadrenal responses. Anesthesiology. 2001;95(2):349–356.

89. Mao JJ, Farrar JT, Bruner D, et al. Electroacupuncture for fatigue, sleep, and psychological distress in breast cancer patients with aromatase inhibitor-related arthralgia: a randomized trial. Cancer. 2014;120(23):3744–3751.

90. Lown EA, Mehling WE, Dvorak CC, et al. Acupuncture for cancer-related fatigue. J Soc Integr Oncol. 2014;7(1):4–11.

91. Lown EA, Mehling WE, Dvorak CC, et al. Acupuncture for cancer-related fatigue after chemotherapy with aromatase inhibitor-related arthralgia: a randomized, modified, double-blind, placebo-controlled trial of acupuncture for cancer-related fatigue. J Soc Integr Oncol. 2009;7(1):4–11.

92. Deng G, Chan Y, Sjoberg S, et al. Acupuncture for the treatment of post-chemotherapy chronic fatigue: a randomized, blinded, sham-controlled trial. Support Care Cancer. 2013;21(6):1735–1741.

93. Molassiotis A, Sylt P, Diggins H. The management of cancer-related fatigue after chemotherapy with acupuncture and acupressure: a randomised controlled trial. Complement Ther Med. 2007;15(4):228–237.
94. Lee B, Shim I, Lee HJ, Yang Y, Hahm DH. Effects of acupuncture on chronic corticosterone-induced depression-like behavior and expression of neuropeptide Y in the rats. *Neurosci Lett*. 2009;453(3):151–156.

95. Kasymjanova G, Grossman M, Tran T, et al. The potential role for acupuncture in treating symptoms in patients with lung cancer: an observational longitudinal study. *Curr Oncol*. 2013;20(3):152–157.

96. Dupuis LL, Boodhan S, Holdsworth M, et al. Guideline for the prevention of acute nausea and vomiting due to antineoplastic medication in pediatric cancer patients. *Pediatr Blood Cancer*. 2013;60(7):1073–1082.

97. Dupuis LL, Roscoe JA, Olver I, Aapro M, Molassiotis A. 2016 updated MASCC/ESMO consensus recommendations: anticipatory nausea and vomiting in children and adults receiving chemotherapy. *Support Care Cancer*. 2017;25(1):317–321.

98. Dupuis LL, Sung L, Molassiotis A, Orsey AD, Tissing W, van de Wetering M. 2016 updated MASCC/ESMO consensus recommendations: prevention of acute chemotherapy-induced nausea and vomiting in children. *Support Care Cancer*. 2017;25(1):323–331.

99. Flank J, Robinson PD, Holdsworth M, et al. Guideline for the treatment of breakthrough and the prevention of refractory chemotherapy-induced nausea and vomiting in children. *Pediatr Blood Cancer*. 2016;63(7):1144–1151.

100. Patel P, Robinson PD, Thackray J, et al. Guideline for the prevention of acute chemotherapy-induced nausea and vomiting in pediatric cancer patients: a focused update. *Pediatr Blood Cancer*. 2017;64(10):2148–2162.

101. World Health Organization. *Cancer Pain Relief and Palliative Care in Children*. Geneva, Switzerland: World Health Organization; 1998.

102. Robinson PD, Oberoi S, Tomlinson D, et al. Management of fatigue in children and adolescents with cancer and in paediatric recipients of haemopoietic stem cell transplants: a clinical practice guideline. *Lancet Child Adolesc Health*. 2018;2(5):371–378.

103. Varni JW, Thissen D, Stucky BD, et al. PROMIS(R) Parent Proxy Report Scales: an item response theory analysis of the parent proxy report item banks. *Qual Life Res*. 2012;21(7):1223–1240.

104. Garcia SF, Cella D, Clauer SB, et al. Standardizing patient-reported outcomes assessment in cancer clinical trials: a patient-reported outcomes measurement information system initiative. *J Clin Oncol*. 2007;25(32):5106–5112.

105. Forrest CB, Bevans KB, Tucker C, et al. Commentary: the patient-reported outcome measurement information system (PROMIS(R)) for children and youth: application to pediatric psychology. *J Pediatr Psychol*. 2012;37(6):614–621.

106. DeWitt EM, Stucky BD, Thissen D, et al. Construction of the eight-item patient-reported outcomes measurement information system pediatric physical function scales: built using item response theory. *J Clin Epidemiol*. 2011;64(7):794–804.

107. Irwin DE, Stucky B, Langer MM, et al. An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. *Qual Life Res*. 2010;19(4):595–607.

108. Varni JW, Stucky BD, Thissen D, et al. PROMIS pediatric pain interference scale: an item response theory analysis of the pediatric pain item bank. *J Pain*. 2010;11(11):1109–1119.

109. Kashikar-Zuck S, Carle A, Barnett K, et al. Longitudinal evaluation of patient-reported outcomes measurement information systems measures in pediatric chronic pain. *Pain*. 2016;157(2):339–347.

110. Yost KJ, Eton DT, Garcia SF, Cella D. Minimally important differences were estimated for six PROMIS-Cancer scales in advanced-stage cancer patients. *J Clin Epidemiol*. 2011;64(5):507–516.

111. DeWalt DA, Gross HE, Gipson DS, et al. PROMIS(R) pediatric self-report scales distinguish subgroups of children within and across six common pediatric chronic health conditions. *Qual Life Res*. 2015;24(9):2195–2208.

112. Irwin DE, Gross HE, Stucky BD, et al. Development of six PROMIS pediatrics proxy-report item banks. *Health Qual Life Outcomes*. 2012;10:22.

113. Hung M, Stuart AR, Higgins TF, Saltzman CL, Kubiak EN. Computerized adaptive testing using the PROMIS physical function item bank reduces test burden with less ceiling effects compared with the short musculoskeletal function assessment in orthopaedic trauma patients. *J Orthop Trauma*. 2014;28(8):439–443.

114. Stukkenborg GJ, Blackhall L, Harrison J, et al. Cancer patient-reported outcomes assessment using wireless touch screen tablet computers. *Qual Life Res*. 2014;23(5):1603–1607.

115. Klassen AF, Dix D, Papsdorf M, Klaassen RJ, Yanofsky R, Sung L. Impact of caring for a child with cancer on single parents compared with parents from two-parent families. *Pediatr Blood Cancer*. 2012;58(1):74–79.

116. Dupuis LL, Taddio A, Kerr EN, Kelly A, MacKeigan L. Development and validation of the pediatric nausea assessment tool for use in children receiving antineoplastic agents. *Pharmacotherapy*. 2006;26(9):1221–1231.

117. Champion GD, Goodenough B, von Baeyer CL, Thomas W. Measurement of pain by self-report. In: Finley GA, McGrath PJ, eds. *Measurement of pain in infants and children: Progress in pain research and management*. Vol 10. Seattle, WA: IASP Press; 1998:123–160.

118. Hol V, Flank J, Lavoratore SR, et al. Poor chemotherapy-induced nausea and vomiting control in children receiving intermediate or high dose methotrexate. *Support Care Cancer*. 2016;24(3):1365–1371.

119. Hesketh PJ, Gralla RJ, du Bois A, Tonato M. Methodology of antiemetic trials: response assessment, evaluation of new agents and definition of chemotherapy emetogenicity. *Support Care Cancer*. 1998;6(3):221–227.

120. Molassiotis A, Coventry PA, Stricker CT, et al. Validation and psychometric assessment of a short clinical scale to measure chemotherapy-induced nausea and vomiting: the MASCC antiemesis tool. *J Pain Symptom Manage*. 2007;34(2):148–159. www.assessmentcenter.net/
121. PROMIS, System PROMI. PROMIS Pediatric Profile Scoring Manual; 2015.
122. International Association for the Study of Pain. FACES Pain Scale-Revised home. https://www.iasp-pain.org/ Education/Content.aspx?ItemNumber=1519&navItem Number=577. Published 2017. Accessed October 16, 2017.
123. Bieri D, Reeve RA, Champion GD, Addicoat L, Ziegler JB. The Faces Pain Scale for the self-assessment of the severity of pain experienced by children: development, initial validation, and preliminary investigation for ratio scale properties. Pain. 1990;41(2):139–150.
124. Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B. The Faces Pain Scale- Revised: toward a common metric in pediatric pain measurement. Pain. 2001;93(2):173–183.
125. Stinson JN, Kavanagh T, Yamada J, Gill N, Stevens B. Systematic review of the psychometric properties, interpretability and feasibility of self-report pain intensity measures for use in clinical trials in children and adolescents. Pain. 2006;125(1–2):143–157.
126. Tomlinson D, von Baeyer CL, Stinson JN, Sung L. A systematic review of faces scales for the self-report of pain intensity in children. Pediatrics. 2010;126(5):e1168–e1198.
127. Tsze DS, Hirschfeld G, van Baeyer CL, Bulloch B, Dayan PS. Clinically significant differences in acute pain measured on self-report pain scales in children. Acad Emerg Med. 2015;22(4):415–422.
128. Lai JS, Stucky BD, Thissen D, et al. Development and psychometric properties of the PROMIS((R)) pediatric fatigue item banks. Qual Life Res. 2013;22(9):2417–2427.
129. Forrest CB, Ravens-Sieberer U, Devine J, et al. Development and evaluation of the PROMIS((R)) pediatric positive affect item bank, child-report and parent-proxy editions. J Happiness Stud. 19(3):699–718.
130. Ravens-Sieberer U, Devine J, Bevans K, et al. Subjective well-being measures for children who were developed within the PROMIS project: presentation of first results. J Clin Epidemiol. 2014;67(2):207–218.
131. O’Sullivan C, Dupuis LL, Gibson P, et al. Refinement of the symptom screening in pediatrics tool (SSPedi). Br J Cancer. 2014;111(7):1262–1268.
132. Tomlinson D, Dupuis LL, Gibson P, et al. Initial development of the Symptom Screening in Pediatrics Tool (SSPedi). Support Care Cancer. 2014;22(1):71–75.
133. Dupuis LL, Johnston DL, Baggott C, et al. Validation of the symptom screening in pediatrics tool in children receiving cancer treatments. J Natl Cancer Inst. 2018;110(6):661–668.
134. Hyslop S, Dupuis LL, Baggott C, et al. Validation of the proxy version of symptom screening in pediatrics tool in children receiving cancer treatments. J Pain Symptom Manage. 2018;56(1):107–112.
135. Kong J, Kapticuk TJ, Polich G, et al. An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. Neuroimage. 2009;47(3):1066–1076.
136. Garcia MK, McQuade J, Lee R, Haddad R, Spano M, Cohen L. Acupuncture for symptom management in cancer care: an update. Curr Oncol Rep. 2014;16(12):418.
137. Mao J, Xie SX, Bowman MA. Uncovering the expectancy effect: the validation of the acupuncture expectancy scale. Altern Ther Health Med. 2010;16(6):22–27.
138. PROMIS. PROMIS Pediatric and parent proxy profile instruments. http://www.healthmeasures.net/images/PROMIS/manuals/PROMIS_Pediatric_and_Proxy_Profile_Scoring_Manual.pdf. Published 2017. Accessed December 14, 2017.
139. Pikonis PA, Choi SW, Reise SP, et al. Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS (R)): depression, anxiety, and anger. Assessment. 2011;18(3):263–283.
140. Thompson ER. Development and validation of an internationally reliable short-form of the positive and negative affect scale (PANAS). J Cross-Cult Psychol. 2007;38(2):227–242.
141. Sandin B. Escalas panas de afecto positivo y negativo para niños y adolescentes (PANASN) [PANAS scales of positive and negative affect for children and adolescents (PANAS)]. Revista de Psicopatología y Psicología Cúlica. 2003;8(2):173–182.
142. Vera-Villarroel P, Urzua A, Jaime D, et al. Positive and Negative Affect Schedule (PANAS): psychometric properties and discriminative capacity in several Chilean samples. Eval Health Prof. 2017;January:1–25.
143. Blevins CA, Weathers FW, Davis MT, Witte TK, Domino JL. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): development and initial psychometric evaluation. J Trauma Stress. 2015;28(6):489–498.
144. Barlow JH, Powell LA, Gilchrist M, Fotiadou M. The effectiveness of the Training and Support Program for parents of children with disabilities: a randomized controlled trial. J Psychosom Res. 2008;64(1):55–62.
145. Bandura A, Adams NE, Beyer J. Cognitive processes mediating behavioral change. J Pers Soc Psychol. 1977;35(3):125–139.
146. Lorig K, Chastain RL, Ung E, Shoor S, Holman HR. Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis Rheum. 1989;32:37–44.
147. Barlow JH, Shaw KL, Wright CC. Development and preliminary validation of a self-efficacy measure for use among parents of children with juvenile idiopathic arthritis. Arthritis Care Res. 2000;13(4):227–236.
148. Barlow J, Powell L, Gilchrist M. The influence of the training and support programme on the self-efficacy and psychological well-being of parents of children with disabilities: a controlled trial. Complement Ther Clin Pract. 2006;12(1):55–63.
149. Mehling WE, Jacobs B, Acree M, et al. Symptom management with massage and acupuncture in postoperative cancer patients: a randomized controlled trial. J Pain Symptom Manage. 2007;33(3):258–266.
150. Press Ganey. Patient Satisfaction Surveys. http://www.pressganey.com/cs/inpatient. Published 2010. Accessed August 2, 2019.

151. Molassiotis A, Russell W, Hughes J, et al. The effectiveness and cost-effectiveness of acupressure for the control and management of chemotherapy-related acute and delayed nausea: Assessment of Nausea in Chemotherapy Research (ANCHoR), a randomised controlled trial. Health Technol Assess. 2013;17(26):1–114.

152. Multinational Association of Supportive Care in Cancer (MASCC). Acute AINV Guideline, Guideline for the Prevention of Acute Nausea and Vomiting due to Antineoplastic Medication. http://www.pogo.ca/healthcare/practiceguidelines/acuteainvguideline/. Published 2016. Accessed September 28, 2016.

153. Carr KL, Johnson FE, Kenaan CA, Welton JM. Effects of P6 stimulation on postoperative nausea and vomiting in laparoscopic cholecystectomy patients. J Perianesth Nurs. 2015;30(2):143–150.

154. Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8(1):15–20.

155. Laird NM. Missing data in longitudinal studies. Statistics in medicine. 1988;7(1–2):305–315.

156. Witt CM, Schutzler L, Ludtke R, Wegscheider K, Willich SN. Patient characteristics and variation in treatment outcomes: which patients benefit most from acupuncture for chronic pain? Clin J Pain. 2011;27(6):550–555.

157. NIH State-of-the-Science Statement on symptom management in cancer: pain, depression, and fatigue. NIH Consens State Sci Statements. 2002;19(4):1–29.

158. Patrick DL, Ferketich SL, Frame PS, et al. National Institutes of Health State-of-the-Science Conference Statement: Symptom Management in Cancer: Pain, Depression, and Fatigue, July 15-17, 2002. J Natl Cancer Inst. 2003;95(15):1110–1117.