Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja. Badanie nerek, moczowodów oraz pęcherza moczuowego

Standards of the Polish Ultrasound Society – update. Ultrasound examination of the kidneys, ureters and urinary bladder

Janusz F. Tyloch¹, Magdalena Maria Woźniak², Andrzej Paweł Wieczorek²

¹ Katedra i Klinika Urologii Ogólnej, Onkologicznej i Dziecięcej, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu, Bydgoszcz, Polska
² Zakład Radiologii Dziecięcej, Katedra Radiologii, Uniwersytet Medyczny w Lublinie, Lublin, Polska

Correspondence: Dr n. med. Janusz F. Tyloch, Szpital Uniwersytecki nr 1 im. A. Jurasza, Katedra i Klinika Urologii Ogólnej, Onkologicznej i Dziecięcej, CM, UMK, ul. Marii Skłodowskiej-Curie 9, 85-094 Bydgoszcz, e-mail: janusztyloch@gmail.com

Streszczenie
Przedstawiono zasady prawidłowego wykonania badania ultrasonograficznego układu moczuowego. Uwzględniono przygotowanie chorego, rodzaj optymalnego ultrasonografu, przedstawiono technikę badania oraz warunki, jakie powinien spełniać jego opis. Badanie układu moczuowego u dorosłych i u dzieci stanowi integralną część każdego badania jamy brzusznej. Badanie powinno być wykonane na czczo lub kilka godzin po posiłku, z wypełnionym pęcherzem moczowym. Aparatura: Badania u dzieci i niemowląt wykonuje się głowicami o częstotliwości 5,0–9,0 MHz, a u dorosłych o częstotliwości 2,0–6,0 MHz, najlepiej w połowie ich możliwości diagnostycznych w różnicowaniu zmian ogniskowych nerek. Technika badania: Badanie nerek wykonywane jest w połowie leżącej na plecach. Nerkę prawą bada się w prawym podżebrzu, wykorzystując wątróbkę jako „okno ultrasonograficzne”. Nerkę lewą bada się w okolicy lewego podżebrza, najlepiej w linii pachowej tylniej. Badanie ultrasonograficzne moczuowego, w ich górnym odcinku, wykonuje się po badaniu nerek, w przypadku poszerzenia układu kielichowo-miedniczkowego. Warunkiem dobrze przeprowadzonego badania przypęcherzowego odcinka moczuowego jest wypełnienie pęcherza moczuowego. Badanie pęcherza moczuowego wykonywane jest, przy jego wypełnieniu, w przekrojach poprzecznym i podłużnym oraz w przekrojach skośnych. Opis badania: Opis powinien zawierać dane pacjenta, dane jednostki wykonującej, dane lekarza wykonującego badanie, typ aparatu oraz głowic, a także tekst właściwego opisu badania.
Abstract

The paper presents the principles of performing proper ultrasound examinations of the urinary tract. The following are discussed: preparation of patients, type of optimal apparatus, technique of examination and conditions which its description should fulfill.

Introduction

Urinary tract ultrasound (US) imaging in adults and in children constitutes an integral part of each abdominal US examination. The examination of the urinary tract encompasses the assessment of the kidneys (e.g. their location, size and echostucture) as well as the urinary bladder and if there are disorders in urine flow, also of the ureters (as far as they are visible in ultrasonography). The examination of the ureters should determine the cause of their dilatation and specify the level on which a potential obstacle may be localized. Additionally, in men, the size of the prostate gland may be estimated.

Due to the fact that US imaging of the urinary system constitutes a part of abdominal ultrasound examination, it is recommended that it be performed with the fasting patient or several hours after the last meal with filled urinary bladder.

In practice, patients are advised to drink approximately 1.5 liters of still water 1.5–2 hours prior to the examination. The examination should be performed at the moment of urinary urgency (1–12).

Apparatus

US examinations of the urinary tract in adult patients are performed through the transabdominal access (transabdominal ultrasound, TAU) with sector or convex-type transducers with the frequency of 2.0–6.0 MHz and with color and power Doppler modes. The examination may be supplemented with scans obtained by means of a linear transducer with the frequency of 5.0–9.0 MHz and in adults – with the frequency of 2.0–6.0 MHz. Doppler options are desirable since they improve diagnostic capacity of sonography in terms of differentiation between renal focal lesions.

Details of procedures: The description should include patient’s personal details, details of the referring unit, of the unit in which the examination is performed, examining physician’s details, type of ultrasound apparatus and transducers as well as the description proper.
ukrwiennia nerek. U dzieci i niemowląt do badania układu mocowego stosuje się głowice o wyższej częstотliwości, tj. 5,0–9,0 MHz, sektorowe, convex lub liniowe.5-13,14

Pęcherz mocowy, poza dostępem przezbrzuszonym, w szczególnych przypadkach można uwidocznić także z dostępu przeodbytniczego lub przepochwowego głowicami o częstотliwości 8,0–10,0 MHz. Nie jest to postępowanie rutynowe, jednak przydatne w przypadku niepewnego rozpoznania uzyskanego na podstawie badania przez powłoki jamy brzusznej, szczególnie w przypadkach diagnozy zmian w obrębie trójkąta pęcherza mocowego, cewki sterczowej oraz w przypadku znacznej otyłości, jak również ran podbrzusza. Ze względu na stosowanie głowic o wysokiej częstотliwości niemożliwa jest jednak ocena całego pęcherza, a zwłaszcza przedniej jego ściany.15-17

Technika badania

Badanie nerek

Badanie nerek u pacjentów dorosłych wykonywane jest w pozycji leżącej na plecach, a także na prawym i lewym boku, podczas spokojnego oddychania oraz po wstrzymaniu przez pacjenta maksymalnego wdechu (ryc. 1, 2). U dzieci oceny nerek dokonuje się z dostępu przeodbytniczego w pozycji leżącej na plecach i z dostępu lędźwiowego w pozycji leżącej na brzuchu.

Oceny nerk prawej dokonuje się z przyłożenia głowicy w prawym podbrzuszu, wzdluż długiej osi ciała, następnie przesuwając głowicę od linii środowo-ojboczykowej w kierunku linii pachowej tylnej (ryc. 3). Osie podłużne prawidłowo położonych nerek zbiegają się dokręgosłupowo powyżej ich górnych biegunów. Po uzyskaniu maksymalnego przekroju podłużnego obraca się głowicę o 90º, uzyskując poprzeczny przekrój nerk.

Oceny nerk lewej dokonuje się z przyłożenia w okolicy lewego podbrzusza. O ile nerk prawaoglądana jest przez

hump, renal column hypertrophy) or disorders in renal vasculariy. For ultrasound imaging of the urinary tract in children and infants, sector, convex or linear transducers with higher frequencies are used (5.0–9.0 MHz).5-13,14

Apart from the transabdominal access, the urinary bladder may also, in certain cases, be visualized transrectally or transvaginally with the use of probes with the frequency of 8.0–10.0 MHz. It is not a routine procedure but it proves useful when there are doubts concerning the diagnosis established on the basis of the transabdominal examination, particularly in the case of lesions localized in the region of the trigone of the urinary bladder and prostatic urethra as well as in the case of considerable obesity and wounds in the hypogastric region of the abdomen. However, because high-frequency transducers are used, it is not possible to evaluate the entire bladder, particularly its anterior wall.15-17

Scanning technique

Renal examination

The examination of the kidneys in adult patients is performed in the supine and left or right lateral positions while the patients breathe slowly and when they hold their maximal breath (figs. 1, 2). In children, the kidneys are examined transabdominally in the supine position and via lumbar access in the prone position.

The right kidney is examined with the transducer placed in the right hypochondriac region along the long axis. Subsequently, the transducer is moved from the midclavicular towards the posterior axillary line (fig. 3). The longitudinal axes of normally positioned kidneys converge towards the spine above their upper poles. When the maximal longitudinal section has been obtained, the transducer should be rotated by 90º, which helps obtain a transverse view of the kidney.

The left kidney is assessed by placing the transducer in the left hypochondriac region. As long as the right kidney is

Ryc. 1. Schemat piersiowego toru oddychania. Pacjent nabiera powietrza do plec, pociągając jednocześnie przeponę ku górze. Narządy górnej części jamy brzusznej zostają przemieszczono, za przeponą, ku górze, chowając się pod żebra

Fig. 1. Thoracic breathing pattern. The patient draws air into the lungs and the diaphragm is shifted upwards. The organs of the upper abdomen are shifted upwards with the diaphragm and are located behind the ribs

Ryc. 2. Schemat brzusznego toru oddychania. Pacjent nabiera powietrza do plec, jednocześnie przepina przeponu wstróbkę i nerk ku dolowi. Nerk wychodzą pod luku żebrowego, co znacznie ułatwia badanie ultrasonograficzne

Fig. 2. Abdominal breathing pattern. The patient draws air into the lungs and the diaphragm moves the liver and kidneys downwards. The kidneys are moved from under the costal margin, which renders ultrasound examination considerably easier
„okno wątrobowe”, co pozwala na uwidocznienie jej już w linii pachowej przedniej, o tyle nerkę lewą można najlepiej uwidocznić w linii pachowej tylniej (ryc. 4). Trudności stwarzają artefakty pochodzące od gazów znajdujących się w jelitach, szczególnie w zagięciu śledzionowym okrężnicy. Nerkę należy uwidocznić w maksymalnym przekroju podłużnym, a następnie ocenić przekroje poprzeczne i w ten sposób dokładnie przesłodzić jej budowę od górnego do dolnego biegunu. Niewidoczny dolny biegun może być objawem nerki podkowiastej.

Jeśli nerki trudno uwidocznić w ułożeniu badanego na plecach, badanie należy wykonać w ułożeniu chorego na prawym i lewym boku lub na brzuchu. Jeżeli podejrzewa się nadmiernie ruchomą nerkę, badanie trzeba przeprowadzić dodatkowo w pozycji stojącej, mierząc odcinek, o jaki przesuną się nerka ku dolowi w pozycji stojącej, w porównaniu z pozycją leżącą. Czasem prawidłowe uwidocznienie nerki wymaga wprowadzenia głowicy głęboko pod prawy lub lewy łuk żebrowy oraz poprzez przestrzeni międzyżebrowe. Pomocne może być także badanie z zastosowaniem głowic wysokiej częstotliwości 6,0–9,0 MHz.

If the kidneys cannot be visualized in the patient’s prone position, the examination should be performed in the right and left lateral or prone positions. If nephroptosis is suspected, the patient should be additionally scanned in the standing position and the distance by which the kidney moves in the standing position as compared to the lying one should be measured. Sometimes, in order to visualize the kidney properly, the transducer must be placed deep under the right of left costal margins and in the intercostal spaces. The application of high-frequency transducers (6.0–9.0 MHz) might also prove useful.

If the kidneys cannot be visualized in the patient’s prone position, the examination should be performed in the right and left lateral or prone positions. If nephroptosis is suspected, the patient should be additionally scanned in the standing position and the distance by which the kidney moves in the standing position as compared to the lying one should be measured. Sometimes, in order to visualize the kidney properly, the transducer must be placed deep under the right of left costal margins and in the intercostal spaces. The application of high-frequency transducers (6.0–9.0 MHz) might also prove useful.
W przypadku braku nerki w typowej lokalizacji należy poszukiwać jej w obrębie jamy brzusznej oraz w miednicy mniejszej.

Prawidłowa nerka w przekroju podłużnym ma kształt podobny do ziarna fasoli. Składa się z zewnętrznego, hipoechogenicznego echa, które jest obrazem jej miąższu, składającego się z warstwy korowej i warstwy rdzeniowej. U dzieci i u niektórych osób dorosłych można te warstwy zróżnicować, bowiem dobrze widoczne są piramidy i kolumny nerckowe, będące częścią warstwy rdzeniowej. Na hiperechogeniczny obszar centralny (inaczej: echo kowe, pole centralne) skąd się rozgałęzia się, będące częścią warstwy rdzeniowej. Na hiperechogeniczne echa centralne, które jest obrazem jej miąższu,つくają się w obrębie wnęki nerki naczyń krwionośnych oraz tkanki łącznej (ryc. 5). U osób starszych fizjologicznie może występować zwiększenie zawartości tkanki tłuszczowej – tłuszczowe wnęki nerki. U niektórych chorych można stwierdzić nieznaczne wypełnienie układu kielichowo-miedniczkowego, samej miedniczki lub łącznie z kielichami. U takich pacjentów należy badanie powtórzyć po mictii. Jeśli obraz nie ulegnie zmianie, trzeba to odnotować w opisie badania. U wczesniaków i noworodków obraz nerki różni się od obrazu nerki dzieci starszych i osób dorosłych – ma cechy nerki płodowej, tj. płatowaty kształt z obecnością hipoechogenicznych piramid nerkowych.

If the kidney is not present in its typical location, it should be searched for in the abdominal cavity and pelvis minor.

In the longitudinal view, the normal kidney has a bean-like shape. It consists of the outer hypoechogenic echo, which represents the parenchyma composed of the cortical and medullary layers. In children and in certain adults these layers may be differentiated since the renal pyramids and columns, which are parts of the medullary layer, are well-visible. The hyperechoic central echo (or middle echo, central field) consists of: reflected ultrasounds, walls of non-dilated pelvicalyceal system, blood vessels branching in the region of the renal hilum and connective tissue (fig. 5). In physiologically older patients, an increase of the connective tissue may be observed – fatty degeneration of the renal hilum. In some patients, a slightly filled collecting system, renal pelvis or renal pelvis with the calyces may be detected. Such patients should undergo a repeated examination following miction. If the presentation does not change, this needs to be noted in the description of the examination. In premature infants and neonates the image of the kidneys is different from the image seen in older children and adults – it shows the features of a fetal kidney, i.e. lobar structure with hypoechoic renal pyramids.

Ryc. 5 A, B. Prawidłowy obraz nerki. Nerka w kształcie ziarna fasoli. Warstwa miąższowa (kora i rdzeń) widoczna jako obwodowy, hipoechogeniczny obszar. Elementy nieposzerzonego układu kielichowo-miedniczkowego nerki, naczynia wnęki nerki widoczne są jako hiperechogeniczne echo centralne. C, D. W obrębie warstwy rdzeniowej miąższu widoczne piramidy nerkowe

Fig. 5 A, B. Normal image of the kidney. Bean-shaped kidney. The parenchymal layer (cortex and medulla) is seen as a peripheral hypoechogenic area. The elements of the non-dilated pelvicalyceal system and vessels of the renal hilum are visible as hyperechoic central echoes. C, D. Renal pyramids are seen in the region of the medullary parenchyma
In normal conditions, the renal parenchyma is characterized by a lower echogenicity than the hepatic parenchyma. It is associated with increased content of water in the renal tissue as a result of intense blood flow through the kidneys.

Each abnormal morphological lesion in the kidney should be described with the specification of its localization, size in three dimensions, echogenicity and echostructure, manner of circumscription from the remaining parenchyma as well as the relation to the central field. Each time, the assessment should be supplemented with the evaluation of vascularity of the lesion in Doppler examination (figs. 6–8). If a neoplastic lesion is suspected, the local lymph nodes should be examined as well as the renal vein and inferior vena cava should be checked for the presence of a tumor-related plugging. The length of the plug ought to be measured as well.

In addition, if tumors of the upper pole are suspected, the adrenal gland should be visualized for differential diagnosis. In the case of cystic lesions, the capsule and their echostructure should be examined (septations, exophytic lesions, calcifications and vascularity)(19–21).

Fig. 6. Nephrolithiasis: A. a concretion in the lower calyx; B. two concretions – one in the lower calyx, the other in the middle calyx; C. staghorn nephrolithiasis

Fig. 7. Left kidney. A hypoechoic, round area in the lower pole of the kidney is a renal abscess (interview: temperature and acute pain in the left lumbar region)

Fig. 8. Left kidney. In the central part, a round solid shadow presents renal tumor
The dilatation of the pelvicalyceal system (fig. 9) may indicate disorders in the urine outflow from the kidney. During US examination, one should assess the region of the ureteropelvic junction and ureteral orifice to the bladder. The image of a "closed" balloon-shaped dilatation of the renal pelvis with coexistent non-dilated ureter may indicate the narrowing of the ureteropelvic junction. Such a narrowing may be a consequence of a dysplasia in the region of the junction or a result of secondary narrowing caused by the vessels running from the lower pole of the kidney and crossing the ureter on this level. Other reasons for pelvic dilatation are: closed, extrarenal pelvis (exact diagnosis is based on functional examinations), urinary retention, urothelial tumor of the upper urinary tract (mainly, of the renal pelvis) and nephrolithiasis which is usually correlated with specific clinical symptoms (fig. 10).

In patients with urinary retention in the upper urinary tract (kidneys) detected in the examination, a repeated assessment should be performed after miction. If there is no obstruction in the urine flow, the retention should disappear (3–5).

When the kidneys have been examined, the perirenal tissues should be assessed, particularly the suprarenal areas.

Ureter examination

When considerably dilated, the ureters may be visualized on their entire length only in children and in slim patients. In the remaining cases, it is possible to image only the upper segment and the lower, perivesical portion of the ureters. Their middle parts are generally concealed by intestinal gas.

If the upper segments cannot be visualized in the patient’s prone position, the examination should be performed in the right and left lateral or prone positions using the iliopsoas muscle as an "acoustic window."

Badanie moczowodów

Moczowody, przy ich znacznym poszerzeniu, można uwidocznić na całej długości jedynie u dzieci i osób szczupłych. W pozostałych przypadkach jedynie przyzerwowy oraz dolny, przyczeńierzowy odcinek moczowodu udaje się zobrazić, podczas gdy część środkowa moczowodu z reguły jest przesłonięta przez gazy jelitowe.

Jeśli przyzerwowe odcinki moczowodów trudno uwidocznić w ułożeniu badanego na plecach, należy badanie uzupełnić badaniem w ułożeniu na prawym i lewym boku lub
na brzuchu, używając mięśnia biodrowo-lędźwiowego jako „okna akustycznego”.

Do uwidocznienia dolnego odcinka moczowodu konieczne jest bardzo dobre wypełnienie pęcherza moczowego. Badanie rozpoczyna się, przekładając głowicę poprzecznie, tuż nad spojeniem łonowym, następnie przesuwa się ją poprzecznie w celu uwidocznienia trójkąta pęcherza i ujść obu moczowodów. Cały pęcherz jest oceniany na szeregu skośnych przekrojów. Badanie można uzupełnić o ocenę dopplerowską (kolorowy doppler lub doppler mocy), która umożliwia ocenę wytrysku moczu z obu moczowodów (jet phenomenon) i jest pewnego rodzaju badaniem czynnościowym układu moczowego (ryc. 11, 12). Jest to szczególnie ważne w przypadku wątpliwości co do czynności wydzielniczej nerek i długości moczowodów, między innymi u chorych cierpiących z powodu kolki nerkowej. W trakcie napadu kolki nerkowej należy potwierdzić lub wykluczyć obecność złoża w moczowodzie. U pacjentów ze złogiem widoczne są poszerzenie moczowodu powyżej przeszkody i, z reguły, sam złóg (ryc. 12)(22–24).

Badanie pęcherza moczowego

Badanie pęcherza moczowego przez powłoki jamy brzusznej wykonuje się w ułożeniu na plecach. Warunkiem prawidłowo przeprowadzonego badania jest bardzo dobre wypełnienie pęcherza moczowego (chory zgłasza uczucie silnego parcia na moczy)(15–17,25).

In order to visualize the lower segment of the ureter, the urinary bladder needs to be well-filled. The examination begins with placing the transducer transversely slightly above the pubic symphysis and subsequently, moving it transversely in order to visualize the trigone of the urinary bladder and the oriﬁces of both ureters. The entire bladder is assessed on a range of transverse views. The examination may be supplemented with Doppler assessment (color or power Doppler) which enables to observe the jet of urine from both ureters (jet phenomenon) and therefore, constitutes a type of a functional test of the urinary system (ﬁgs. 11, 12). It is particularly signiﬁcant, among others, in patients suffering from renal colic if there are doubts concerning excretory function of the kidneys and patency of the ureters. During the attack of renal colic, the presence of concretions in the ureter should be conﬁrmed or ruled out. If it is present, the dilatation of the ureter is visible above the obstruction site. Generally the concretion itself is visible as well (ﬁg. 12)(22–24).

Urinary bladder examination

The transabdominal examination of the urinary bladder is performed with the patient in the supine position. The condition for a properly conducted examination is full bladder (the patient should report strong urge to urinate)(15–17,25).

Transverse, longitudinal and oblique views of the urinary bladder should be obtained. One should assess its shape (normal – round, neurogenic – tower-like) and degree of
Badanie pęcherza moczowego wykonywane jest w przekrojach poprzecznym i podłużnym oraz w przekrojach skośnych. Ocenia się kształt pęcherza moczowego (prawidłowy – kulisty, neurogenny – wieżowaty) oraz stopień filling (its volume). Furthermore, it is necessary to assess its walls, including their thickness, outlines, presence of diverticula and mural exophytic lesions, as well as the trigone of the bladder and both orifices of the ureters. Frequently,
jego wypełnienia (pojemność pęcherza moczowego). Należy ocenić ściany pęcherza, w tym ich grubość, obrusy, obecność ewentualnych uchyłków, przyściennych zmian egzofitycznych, trójkąt pęcherza i ujęcia obu moczowo-

W sytuacjach, gdy istnieje konieczność pomiaru pojemno-
ści pęcherza moczowego i oceny ilości moczu zalegającego
po mikcji, w praktyce wykorzystuje się moduły automatycz-

nego pomiaru objętości stanowiące część oprogramowania
aparatów ultrasonograficznych, które charakteryzują się
największą dokładnością pomiarów. Są to, w większości

przypadków, metody oparte na pomiarze z użyciem wzoru
na objętość elipsoidy obrotowej ($V = \pi/6 \times \text{szerokość} \times \text{wysokość} \times \text{długość}$) wymagające od badającego prze-

prowadzenia dokładnych pomiarów pęcherza moczowego
w dwóch, prostopadłych do siebie płaszczyznach, w maksymalnym ich przekroju. Należy pamiętać, że wyniki są

obarczone błędami pomiarowymi, których nie da się uniknąć
(26–30) (ryc. 15).

Inaczej należy podejść do badania, gdy celem jest ocena gru-

bości ścian pęcherza moczowego u kobiet. Badanie wykonu-

jemy przy minimalnym wypełnieniu pęcherzu moczowym,
sondą dopochwową o częstotliwości 8–10 MHz. Pęcherz

such an examination may help detect the turbulent outflow
of the urine from the ureteral orifices. Such an outflow may
be more accurately visualized when Doppler option is used
(ﬁgs. 11–14).

When it is necessary to measure the volume of the urinary
bladder and assess the amount of residual urine after mici-
thion, the automatic volume-measuring modes are applied
which constitute a part of ultrasound software and are
characterized by the highest measurement accuracy. In the majority of cases, these methods are based on the measurements with the use of the prolate ellipsoid equation ($V = \pi/6 \times \text{width} \times \text{height} \times \text{length}$). It requires taking accurate measurements of the urinary
bladder in two perpendicular planes in their maximal sec-
tions. It should be remembered that the results are burdened
with calculation errors which cannot be avoided(26–30) (ﬁg. 15).

When the examination aims at measuring the thickness of
the bladder wall in women, a different approach should be
adopted. The examination should be performed with mini-
mally ﬁlled bladder with the use of a transvaginal probe
with the frequency of 8–10 MHz. The urinary bladder must
not contain more than 30 ml of urine. Each patient should
pass urine prior to the examination which is performed
approximately 15 minutes after miction. The measure-
ments of the thickness of the wall are performed in speciﬁcally
defined locations, i.e. the trigone, apex and anterior

Ryc. 13 A. Badanie ultrasonograficzne pęcherza moczowego – przekrój poprzeczny. B. Przekrój poprzeczny pęcherza moczowego. Widoczny przekrój trójkąta pęcherza z ujęciami moczowo-

w. Fig. 13 A. Ultrasound examination of the urinary bladder – transverse view. B. Transverse view of the bladder. The trigone of the bladder with ureteral orifices and interureteric fold

Ryc. 14. Przekrój poprzeczny pęcherza moczowego. Nierówności lewej ściany są obrazem nowotworu pęcherza moczowego

Fig. 14. Transverse view of the bladder. Irregularities of the left wall indicate the presence of a neoplasm

Wymyślił Paweł Wiczyzek

Anatomia i Histologia

Janusz F. Tycho, Magdalena Maria Woźniak, Andrzej Paweł Wiczyzek

J Ultrason 2013; 13: 293–307
moczowy nie może zawierać więcej niż 30 ml moczu. Każda chora przed badaniem oddaje mocz, a do badania przystępuje się mniej więcej 15 minut po miksie. Pomiary grubości ściany przeprowadza się w ściśle zdefiniowanych miejscach, tj. w trójkącie pęcherza, szczycie pęcherza i ścianie przedniej. Dzięki temu badanie jest porównywalne i powtarzalne. Badania grubości ściany pęcherza mocowego znajdują zastosowanie w diagnostyce różnicowej dysfunkcji neurogennej pęcherza mocowego, nadczynności wypieracza, zespołu bólowego miednicy mniejszej (ryc. 16)[25].

U pacjentów po urazach układu moczowego należy zwrócić uwagę na integralność miejsza nerki, obecność zbiorników płynowych położonych śródnerkowo i okołonekrowo, wall of the bladder. This makes the examination comparable and reproducible. The measure of the thickness of the bladder wall is used for differential diagnosis in neurogenic dysfunctions of the bladder, detrusor muscle hyperfunction and chronic pelvic pain syndrome (fig. 16)[25].

In patients with urological trauma, particular attention should be paid to the integrity of the renal parenchyma, presence of intrarenal and periureteral fluid collections, presence of fluid in the retroperitoneal space, in the pelvis minor and the degree of filling of the bladder. According to the standards of the European Association of Urology, computed tomography (CT) is a method of choice. US examination is the first choice test performed in the ambulance when the patient is being
obecność płynu w okolicy zaotrzewnowej, w miednicy mniejszej, stopień wypełnienia pęcherza moczowego. Badaniem z wyboru, zgodnie ze standardami European Association of Urology, jest tomografia komputerowa (TK). Badanie USG jest badaniem „pierwszego rzutu”, wykonywanym już w karecie, w czasie transportu chorego do szpitala, w celu wstępnjej oceny rozległości urazu, a także może służyć do monitorowania cofania się zmian pourazowych (np. wchłanianie się krwiaka podtorekowego) (ryc. 17)[37–40].

Opis badania

Opis każdego badania powinien zawierać następujące dane:

- dane pacjenta (imię i nazwisko, data urodzenia i/lub numer ewidencyjny);
- dane jednostki kierującej;
- nazwę jednostki, w której wykonano badanie;
- typ aparatu USG oraz głowic wykorzystanych wtrakcje badania;
- opis badania;
- dane lekarza wykonującego badanie.

Nerki

Opis badania USG nerek powinien określać położenie nerek (prawidłowe lub nieprawidłowe). W przypadku nerk przemieszczonej należy opisać jej położenie, w przypadku nerek nadmiernie ruchomych – zakres ich ruchomości.

Trzeba podać wymiary nerek, w tym największy wymiar podłużny (długość) i największy wymiar poprzeczny (grubość) oraz dwa wymiary szerokości miąższu – w jego najgrubszej i najcieńszej części.

Opis należy ocenić zarysy nerek (m.in. równe/nierówne – pozaciągane, czyli zmienione pozapalnie) oraz echogeniczność miąższu nerek w stosunku do echogeniczności wątroby po prawej stronie i śledziony po lewej stronie.

W przypadku stwierdzonych zmian ogniskowych podajemy ich liczbę, lokalizację, echogeniczność i echostrukturę, wielkość w trzech wymiarach, sposób odgraniczenia od miąższu nerkowego (obecność lub brak pseudotorebki). Należy ocenić ich unaczynienie (szczególnie w przypadku torbieli złożonej i kwalifikacji do tomografii komputerowej). Wszystkie zmiany ogniskowe lit (poza typowym angiomielipomą) złożone torbiele i inne zmiany o niejednoznacznym obrazie USG są wskazaniem do tomografii komputerowej.

Opis badania USG jest badaniem „pierwszego rzutu”, wykonywanym już w karecie, w czasie transportu chorego do szpitala, w celu wstępnjej oceny rozległości urazu, a także może służyć do monitorowania cofania się zmian pourazowych (np. wchłanianie się krwiaka podtorekowego) (ryc. 17)[37–40].

Description of the examination

Each examination description should include the following details:

- patient details (name and surname, date of birth and/or patient identification number);
- details of the referring unit;
- name of the unit which carried out the examination;
- type of US apparatus and transducers used during the examination;
- description of the examination;
- details of the examining physician.

Kidneys

First of all, the description of renal US examination should specify the localization of the kidneys (normal or abnormal). In the case of ectopic kidney, its localization should be provided and in excessively floating kidney, the description should include the range of its movement.

Moreover, the size of the kidneys ought to be provided as well, including the greatest longitudinal (length) and the greatest transverse (thickness) dimensions as well as two dimensions of parenchymal width – in its thickest and thinnest areas.

The description should include the assessment of the outlines of the kidneys (e.g. even/uneven – altered by inflammation) and the echogenicity of its parenchyma in relation to the echogenicity of the liver (for the right kidney) and of the spleen (for the left kidney).

If focal lesions are detected, the following should be noted in the description: their number, localization, echogenicity and echostructure, size in three dimensions as well as the manner of circumscrition from the renal parenchyma (presence or absence of a pseudocapsule). Moreover, their vascularity should be assessed (especially in the case of complex cysts and qualification to CT). All solid focal lesions (apart from a typical presentation of angiomeliopia), complex cysts and other lesions with ambiguous US images constitute an indication for CT.

Solid lesions which develop in the region of the central field arouse suspicions of a neoplasm that arises from the transitional epithelium of the pelvicalyceal system (transitional cell carcinoma, TCC). These lesions may be visualized during US examination only when the fragment of or entire pelvicalyceal system is distended. Due to the fact that a TCC tumor may have multifocal character, i.e. may involve the kidney, ureter and bladder, all these structures must be thoroughly assessed, as enabled by ultrasonography.
wieloogólnikowy (zajęcie nerki, mocowodu i płucznika moczowego), obowiązuje dokładna ocena tych trzech struktur, w zakresie dostępnym USG.

Charakterystycznym, hiperechogenicznym guzem nerki jest angiomyolipoma (naczyniakomięśniakotłuszcza, AML). W przypadku jednoznacznego obrazu zmiany w badaniu USG i wielkości poniżej 4 cm wskazane jest okresowe monitorowanie wielkości zmiany w USG. W pozostałych przypadkach należy zalecić wykonanie badania tomografii komputerowej lub rezonans magnetyczny[19–21].

W przypadku zmian torbielowatych trzeba podać ich wymiary, lokalizację (torbiele okołomiedniczowe lub korowe) oraz ocenić światło i torebkę pod kątem różnicowania charakteru. Strukturę mas torbielowatych w nerkach najlepiej oddaje skala Bosniaka opracowana dla potrzeb tomografii komputerowej a importowana na potrzeby badań ultrasonograficznych[19].

W opisie poszerzenia układu kielichowo-miedniczkowego należy określić jego stopień (subiektywna skala zastępu: mały, średni i duży) z podaniem wymiarów kielichów (ich średnic), miedniczki i grubości miąższu nerwowego. Nagimnym błędem jest mylenie wodonercza z zastojem moczu dużego stopnia. Elementem różnicującym jest grubość miąższu, który w przypadku zastoju pozostaje prawidłowy, zaś jego ścięczenie jest cechą charakterystyczną wodonerczy.

W przypadku kamicy nerowej należy podać liczbę, wielkość i położenie zębów, zaznaczając, czy ich położenie powoduje utrudnienie odpływu moczu z nerki. Trzeba opisać, czy kamica daje klasyfikacyjny obraz hiperechogenicznego odbicia z następnym cieniem akustycznym, czy też tylko oginskowe, hiperechogeniczne odbicie w echu centralnym nerki, które będzie wymagało różnicowania z innymi zmianami o podobnym obrazie[24,41,42].

W opisie badania należy uwzględnić nieprawidłowe zmiany okołomiedniczki (m.in. krwiak, naciek zapalny, chłoniak, powiększona węży chlonne) oraz ewentualne patologie w nadnerczach.

Opis badania powinien być zakończony wnioskami diagnostycznymi z ewentualnym wskazaniem dalszych badań diagnostycznych (zdjęcie rentgenowskie przeglądowe, urografia, tomografia komputerowa, syntygraafia) i ewentualnej konsultacji lekarza specjalisty.

Do opisu badania należy dołączyć dokumentację zdjęciową stwierdzanych nieprawidłowości morfologicznych.

Moczowody

W odcinku górnym (proksymalnym, przynerkowym) mocowodu należy podać długość i szerokość uwidocznionego, poszerzonego odcinka oraz liczbę i wymiary ewentualnych zębów zlokalizowanych w świetle mocowodu lub mas litych.

A characteristic hyperechoic tumor in the kidney is angiomyolipoma (AML). With its unambiguous presentation during US examination and the size below 4 cm, only a periodical US monitoring of its size is indicated. In the remaining cases, computed tomography or magnetic resonance imaging should be scheduled[19–21].

When cystic lesions are visualized, one should measure them, specify their localization (parapelvic or cortical cysts) and assess their lumina and capsules in terms of characteristic differentiation. The structure of renal cystic masses is best reflected by Bosniak classification which has been prepared for computed tomography but is also imported for sonographic purposes[19].

Furthermore, in the description of pelvicalyceal dilatation, its degree should be provided (subjective retention scale: slight, moderate and large) including the size of the calices (in diameter), renal pelvis and thickness of the renal parenchyma. A common error is mistaking hydronephrosis for large urinary retention. The parameter which may help in the diagnosis is the thickness of the parenchyma which in urine retention remains normal but its thinning is a characteristic sign of hydronephrosis.

In nephrolithiasis, the number, size and localization of calculi should be provided including the indication whether their localization obstructs urine flow from the kidney. Furthermore, it is vital to note whether nephrolithiasis manifests itself as a conventional hyperechoic reflection with consequential acoustic shadow or whether it is merely a focal hyperechoic reflection in the central echo of the kidney, which requires the differentiation with several lesions presenting similar images[24,41,42].

What is more, the description should also encompass abnormal perirenal lesions (such as hematoma, inflammatory infiltration, lymphoma or enlarged lymph nodes) as well as possible adrenal pathologies.

The description should be ended with diagnostic conclusions including indications for further diagnostic examinations (such as plain X-ray, urography, computed tomography or scintigraphy) or, if necessary, for a consultation with a specialist.

The photographic documentation of detected abnormal morphological changes should be enclosed.

Ureters

In the upper segment of the ureter (proximal, renal), one should specify the length and width of the visualized, dilated fragment as well as the number and size of concretions or solid masses localized in the ureters, if such have been visualized.

In the lower segment (distal, perivesical), the length and diameter of the visualized ureter should be provided together with a visible cause of dilatation (concretion,
W odcinku dolnym (dystalnym, przypęcherzowym) moczo-
wdoru trzeba podać długość uwidocznionego moczowodu,
jej średnicę, opisać widoczną przyczynę poszerzenia
(zół, zmiana nowotworowa moczowodu lub pęcherza
moczowego naciekająca ujście moczowodu).

Pęcherz moczowy

Opis badania powinien zawierać następujące informacje:
kształt, pojemność, zarysy ścian, szacunkową wielkość
gruczołu krokoowego oraz objętość zalegającego moczu po
mikcji. W przypadku patologii ogniskowych należy określić
ich liczbę, lokalizację oraz wielkość. Badanie USG pozwala
zróżnicować zół i skrzepy, które ulegają przemieszaniu
przepływu, a zmienną pozycji badanego, z naciekaniami ścianą
rykiem. W tym ostatnim przypadku należy określić wielkość
zmiany, a szczególnie zmierzyć szerokość jej podstawy.

Opis badania powinien być zakończony wnioskami dia-
gnostycznymi z ewentualnym wskazaniem dalszych badań
diagnostycznych (cystoskopia, zdjęcie rentgenowskie prze-
glądowe, urografia, tomografia komputerowa) i koniecznej
konsultacji specjalisty urologa.

Uzupełnieniem opisu badania powinna być doku-
mentacja wizualizacji stwierdzonych nieprawidłowości
morfologicznych.

Konflikt interesów

Autorszy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogą negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. American Urological Association (AUA), American Institute of Ultra-
sound in Medicine (AIUM): AIUM Practice Guideline for the Perfor-
mance of an Ultrasound Examination in the Practice of Urology. Effe-
tive November 5, 2011 – AIUM PRACTICE GUIDELINES – Ultrasound
in the Practice of Urology. Available from: www.aium.org.

2. ACR–AIUM–SPR–SRU Practice Guideline for the Performance of an
Ultrasound Examination in the Practice of Urology. Available from:
www.acr.org/guidelines.

3. Marciniś A: Badanie układu moczowego i nadnerczycy – wady układu
moczowego. In: Marciniś A (ed.): Ultrasonografia pediatryczna. San
Media Wydawnictwo Medyczne, Warszawa 1994: 201–234.

4. Fuigham PF, Bishoff JT: Urinary tract imaging: basic principles. In: Dou-
gle WS, Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA et al.
(ed.): Campbell- Walsh Urology. 10th ed., Saunders Elsevier, Philadelphia
2013: 99–139.

5. Jakubowski W: USG układu moczowo-płciowego. Ogólnopolski Prze-
gląd Medyczny 2008; (6): 46–48.

6. Sowińska-Neuman L: Umiejętność samodzielniego wykonywania badań
ultrasonograficznych w praktyce lekarza rodzinnego. Ultrasonografia
2009; 9 (38): 51–54.

7. Banaszkiewicz A, Dziekiewicz M, Pęczkowska B: Badanie ultrasono-
graficzne jamy bruzsnej u dzieci. Standardy Medyczne Pediatria 2011;
8 (2): 297–299.

8. Płaczyńska M, Lichosik M, Jung A: Przydatność badania ultrasonogra-
ficznego jamy bruzsnej u dzieci jako badania przesiewowego. Pediatr
Med Rodz 2011; 7: 236–240.

9. Palmer PES: Nerki i moczowody. In: Palmer PES (ed.): Diagnostyka
ultrasonograficzna. 2nd ed., Wydawnictwo Lekarskie PZWL, Warszawa
2000: 167–191.

10. Pęczkowska B pediatryczna. San Media Wydawnictwo Medyczne, Warszawa
1994: 235–249.

11. Füeßl HS: Nerki. In: Kremer H, Dobrinski W (ed.): Diagnostyka ultra-
sonograficzna. 1st Polish ed., edited by Jakubowski W, Urban & Partner
Wrocław 1996: 191–217.

12. Sudoł-Szopiński I, Szopiński T, Nerki. In: Sudol-Szopińska I, Szopiń-
ski T (ed.): Diagnostyka ultrasonograficzna w urologii. Seria Wydawni-
cza „Praktyczna Ultrasonografia”, Rzotockaśka Szkola Ultrasonografii,
Warszawa – Zamość 2007: 19–80.

13. Jakubowski W (ed.): Diagnostyka ultrasonograficzna w chorobach ne-
erek. Seria Wydawnicza „Praktyczna Ultrasonografia”, Rzotockaśka
Szkola Ultrasonografii, Warszawa – Zamość 2004.

14. Riccabona M, Avni FE, Damasio MB, Ording-Müller LS, Blickman JG,
Darge K et al.: ESPR Uroradiology Task Force and ESUR Paediatric
Working Group – Imaging recommendations in paediatric urology,
part V: childhood cystic kidney disease, childhood renal transplanta-
tion and contrast-enhanced ultrasonography in children. Pediatr Radiol
2012; 42: 1275–1283.

15. Szopiński T, Sudol-Szopińska I: Pęcherz moczowy. In: Sudol-Szopińska
I, Szopiński T (ed.): Diagnostyka ultrasonograficzna w urologii. Seria
Wydawnicza „Praktyczna Ultrasonografia”, Rzotockaśka Szkola Ultra-
sonografii, Warszawa – Zamość 2007: 81–93.

Urinary bladder

The description of the examination should contain the
information concerning: shape, volume, wall outline,
estimated size of the prostate gland and volume of resid-
ual urine following miction. If any focal pathologies are
detected, their number, localization and size should be
specified. US examination allows for the differentiation
of concretions and clots, which shift with the change of
patient’s position, from carcinomas that infiltrate the wall.
If the latter is found, the size of the lesion should be speci-
fied, particularly the width of its base.

The description should be ended with diagnostic conclu-
sions including indications for further diagnostic exami-
nations (such as cystoscopy, plain X-ray, urography, com-
puted tomography) or, if necessary, for a consultation with
a urologist.

The photographic documentation of detected abnormal
morphological changes should be enclosed.

Conflict of interest

Authors do not report any financial or personal links with other per-
sons or organizations, which might affect negatively the content of
this publication and/or claim authorship rights to this publication.

J Ultrasound 2013; 13: 293–307
