Revising Johnson’s table for the 21st century – current table
Celina M. H. de Figueiredo Alexsander A. de Melo Diana Sasaki Ana Silva
May 10, 2024

We try to keep Johnson’s table as up-to-date as possible. Please feel free to send us additions and corrections at celina@cos.ufrj.br.

Graph Class	Member	INDSET	CLIQUE	CLIPAR	CHRUNUM	CHIND	HAMCIR	DOMSET	MAXCUT	STTREE	GRAPHISO
Trees/Forests	P [T]	P [GJ]	P [T]	P [GJ]	P [T]	P [GJ]	P [T]	P [GJ]	P [GJ]	P [T]	P [GJ]
Almost Trees (k)	P [OG]	P [OG]	P [T]	P [105]	P [5]	P [17]	P [5]	P [5]	P [20]	P [76]	P [17]
Partial k-trees	P [OG]	P [5]	P [T]	P [105]	P [5]	P [17]	P [5]	P [5]	P [20]	P [76]	P [17]
Bandwidth-k	P [OG]	P [OG]	P [T]	P [105]	P [5]	P [17]	P [5]	P [5]	P [OG]	P [76]	P [OG]
Degree-k	P [T]	N [GJ]	P [T]	N [29]	N [GJ]	N [OG]	N [GJ]	N [GJ]	N [GJ]	N [GJ]	P [OG]
Planar	P [GJ]	N [GJ]	P [T]	N [78]	N [GJ]	O	N [GJ]	N [GJ]	P [GJ]	N [OG]	P [GJ]
Series Parallel	P [OG]	P [OG]	P [T]	P [105]	P [5]	P [17]	P [5]	P [OG]	P [GJ]	P [OG]	P [GJ]
Outerplanar	P [OG]	P [OG]	P [T]	P [OG]	P [OG]	P [OG]	P [T]	P [OG]	P [GJ]	P [OG]	P [GJ]
Halin	P [OG]	P [OG]	P [T]	P [OG]	P [5]	P [17]	P [T]	P [OG]	P [GJ]	P [118]	P [GJ]
k-Outerplanar	P [OG]	P [OG]	P [T]	P [OG]	P [5]	P [17]	P [OG]	P [GJ]	P [76]	P [GJ]	P [OG]
Grid	P [OG]	P [GJ]	P [T]	N [GJ]	P [T]	P [OG]	P [GJ]	N [GJ]	N [32]	P [T]	P [GJ]
$K_{3,3}$-Free	P [OG]	N [GJ]	P [T]	N [78]	N [GJ]	O?	N [GJ]	N [GJ]	P [OG]	N [GJ]	P [40]
Thickness-k	N [OG]	N [GJ]	P [T]	N [78]	N [GJ]	N [OG]	N [GJ]	N [GJ]	N [119]	N [GJ]	I [RG]
Genus-k	P [OG]	N [GJ]	P [T]	N [78]	N [GJ]	O?	N [GJ]	N [GJ]	O?	N [GJ]	P [OG]
Perfect	P [34]	P [OG]	P [OG]	P [OG]	P [OG]	N	[28]	N [OG]	N [GJ]	P [20]	N [GJ]
Chordal	P [OG]	O?	N [93]	N [OG]	N [GJ]	P [20]	N [GJ]				
Split	P [OG]	O?	N [93]	N [OG]	N [GJ]	P [20]	N [GJ]				
Strongly Chordal	P [OG]	O?	N [93]	N [OG]	N [GJ]	P [20]	N [GJ]				
Comparability	P [OG]	N	[28]	N [OG]	N [94]	N [102]	N [GJ]				
Bipartite	P [T]	P [GJ]	P [T]	P [GJ]	P [T]	P [GJ]	N [OG]	N [GJ]	N [119]	N [GJ]	I [RG]
Permutation	P [OG]	O?	P [44]	P [OG]	N [120]	P [OG]	P [OG]				
Cographs	P [T]	P [OG]	P [OG]	P [OG]	P [OG]	O?	P [OG]	N [13]	N [120]	P [OG]	P [OG]
Undirected Path	P [OG]	O?	N	[13]	N [OG]	N [20]	N [RG]				
Directed Path	P [OG]	O?	N	[99]	P [OG]	N [1]	P [OG]				
Interval	P [OG]	O?	P [OG]	N	[106]	P [OG]	N [1]				
Circular Arc	P [OG]	P [OG]	P [OG]	P [OG]	N [OG]	O?	P	[106]	P [OG]	N [1]	P [OG]
Circle	P [OG]	P [GJ]	P [OG]	N [73]	N [OG]	O?	N	[39]	N [71]	N [26]	P [OG]
Proper Circ. Arc	P [OG]	O?	P [OG]	N	[11]	P [OG]	N [1]				
Edge (or Line)	P [GJ]	P [GJ]	P [T]	N	[95]	N [OG]	N	[28]	N [OG]	N [GJ]	P [59]
Claw-Free	P [T]	P [OG]	N [103]	N [85]	N [OG]	N	[28]	N [OG]	N [GJ]	N [20]	N [19]

Table 1: The updated NP-Completeness Column: An Ongoing Guide table 35 years later. Depicted in bold are the references that correspond to unresolved entries in [OG] and [GJ]. The references not in bold confirm resolved entries from [OG] or [GJ], that we updated either because they cited private communications, because the cited reference is not easily accessible, or could not be confirmed. There is one entry highlighted in italic that corrects the entry for HAMCIRC restricted to CIRCLE GRAPHS. We keep the abbreviations used by [OG], namely for entries: P = Polynomial-time solvable; N = NP-complete; I = Open, but equivalent in complexity to general GRAPH ISOMORPHISM; O? = Apparently open, but possibly easy to resolve; and O = Open, and may well be hard; and for references [T] = Restriction trivializes the problem. Here [GJ] = the Guide [53]; [OG] = the Ongoing guide [66], and [RG] = original paper [121]; please refer to these references for the definitions of the problems and graph classes.
References

[1] R. Adhikary, K. Bose, S. Mukherjee, and B. Roy. Complexity of maximum cut on interval graphs, 2020, arXiv:2006.00061.

[2] T. Akiyama, T. Nishizeki, and N. Saito. NP-completeness of the Hamiltonian cycle problem for bipartite graphs. Journal of Information Processing, 3(2):73–76, 1980.

[3] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica, 54(4):544–556, 2009.

[4] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[5] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[6] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[7] L. Babel, I. Ponomarenko, and G. Tinhofer. The isomorphism problem for directed path graphs and for rooted directed path graphs. Journal of Algorithms, 21(3):542–564, 1996.

[8] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM, 41(1):153–180, 1994.

[9] F. Barahona. On the complexity of max cut. Technical report, Université Scientifique et Medicale et Institut National Polytechnique de Grenoble, France, 1980.

[10] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algorithmic applications. Theoretical Computer Science, 511:54–65, 2013.

[11] B. Bergougnoux and M. M. Kanté. More applications of the d-neighbor equivalence: Connectivity and acyclicity constraints. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[12] F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized planar matching. Journal of Algorithms, 11(2):153–184, 1990.

[13] A. A. Bertossi and M. A. Bonuccelli. Hamiltonian circuits in interval graph generalizations. Information Processing Letters, 23(4):195–200, 1986.

[14] M. D. Biasi. Polynomial problems in graph classes defined by forbidden induced cyclic subgraphs. Theoretical Computer Science Stack Exchange. https://cstheory.stackexchange.com/q/24882 (version: 2014-06-15).

[15] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset convolution. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 67–74, 2007.

[16] M. Blanchette, E. Kim, and A. Vetta. Clique cover on sparse networks. In 2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 93–102. SIAM, 2012.

[17] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990.

[18] H. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1-2):1–45, 1998.

[19] H. Bodlaender, N. Brettell, M. Johnson, G. Paesani, D. Paulusma, and E. J. van Leeuwen. Steiner trees for hereditary graph classes: a treewidth perspective, 2020, arXiv:2004.07492.

[20] H. L. Bodlaender and K. Jansen. On the complexity of the maximum cut problem. In Annual Symposium on Theoretical Aspects of Computer Science, pages 769–780. Springer, 1994.

[21] É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, and R. Watrigant. Parameterized complexity of independent set in H-free graphs. In 13th International Symposium on Parameterized and Exact Computation, 2019.
[22] K. S. Booth and C. J. Colbourn. Problems polynomially equivalent to graph isomorphism. Technical Report CS-77-04, Computer Science Department, University of Waterloo, Waterloo, Ont., 1979. Available on https://cs.uwaterloo.ca/research/tr/1977/CS-77-04.pdf.

[23] K. Booth and J. Johnson. Dominating sets in chordal graphs. SIAM Journal on Computing, 11(1):191–199, 1982.

[24] N. Bousquet, D. Gonçalves, G. B. Mertzios, C. Paul, I. Sau, and S. Thomassé. Parameterized domination in circle graphs. Theory of Computing Systems, 54(1):45–72, 2014.

[25] A. Brandstädt, C. Hundt, F. Mancini, and P. Wagner. Rooted directed path graphs are leaf powers. Discrete Mathematics, 310(4):897–910, 2010.

[26] C. Buchheim and L. Zheng. Fixed linear crossing minimization by reduction to the maximum cut problem. In International Computing and Combinatorics Conference, pages 507–516. Springer, 2006.

[27] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer Science, 511:66–76, 2013.

[28] L. Cai and J. A. Ellis. NP-completeness of edge-colouring some restricted graphs. Discrete Applied Mathematics, 30(1):15–27, 1991.

[29] M. Cerioli, L. Faria, T. Ferreira, C. Martinhon, F. Protti, and B. Reed. Partition into cliques for cubic graphs: Planar case, complexity and approximation. Discrete Applied Mathematics, 156(12):2270–2278, 2008.

[30] J. Chen, I. A. Kanj, L. Perković, E. Sedgwick, and G. Xia. Genus characterizes the complexity of certain graph problems: Some tight results. Journal of Computer and System Sciences, 73(6):892–907, 2007.

[31] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex cover. In International Symposium on Mathematical Foundations of Computer Science, pages 238–249. Springer, 2006.

[32] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165–177, 1990.

[33] C. J. Colbourn and L. Stewart. Dominating cycles in series-parallel graphs. Ars Combinatoria, 19:107–112, 1985.

[34] G. Cornuéjols, X. Liu, and K. Vuskovic. A polynomial algorithm for recognizing perfect graphs. In Proceedings 44th Annual IEEE Symposium on Foundations of Computer Science, pages 20–27, 2003.

[35] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

[36] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[37] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms, volume 4. Springer, 2015.

[38] M. Cygan, G. Philip, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science, 412(50):6982–7000, 2011.

[39] P. Damaschke. The Hamiltonian circuit problem for circle graphs is NP-complete. Information Processing Letters, 32(1):1–2, 1989.

[40] S. Datta, P. Nimbhorkar, T. Thierauf, and F. Wagner. Graph Isomorphism for $K_{3,3}$-free and K_5-free graphs is in Log-space. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, volume 4, pages 145–156, 2009.

[41] H. N. de Ridder et al. Information System on Graph Classes and their Inclusions (ISGCI).
https://www.graphclasses.org.

[42] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos. Exponential Speedup of Fixed-Parameter Algorithms on $K_{3,3}$-Minor-Free or K_5-Minor-Free Graphs. In Algorithms and Computation, pages 262–273. Springer Berlin Heidelberg, 2002.
[43] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos. Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors. *Algorithmica*, 41(4):245–267, 2004.

[44] J. S. Deogun and G. Steiner. Polynomial algorithms for Hamiltonian cycle in cocomparability graphs. *SIAM Journal on Computing*, 23(3):520–552, 1994.

[45] A. K. Dewdney. *Fast Turing Reductions Between Problems in NP: Chapter 4: Reductions Between NP-complete Problems*. Department of Computer Science, University of Western Ontario, 1981.

[46] R. Diestel. *Graph Theory*. Springer Berlin Heidelberg, 2017.

[47] R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In P. Clote and J. B. Remmel, editors, *Feasible Mathematics II*, pages 219–244, Boston, MA, 1995. Birkhäuser Boston.

[48] R. G. Downey and M. R. Fellows. *Parameterized Complexity*. Monographs in Computer Science. Springer Verlag, 1999.

[49] R. G. Downey and M. R. Fellows. *Fundamentals of Parameterized Complexity*. Texts in Computer Science. Springer, 2013.

[50] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. *Networks*, 1(3):195–207, 1971.

[51] J. Ellis, H. Fan, and M. Fellows. The dominating set problem is fixed parameter tractable for graphs of bounded genus. *Journal of Algorithms*, 52(2):152–168, 2004.

[52] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. *Kernelization: Theory of Parameterized Preprocessing*. Cambridge University Press, 2019.

[53] M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman & Co., New York, 1979.

[54] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring circular arcs and chords. *SIAM Journal on Algebraic Discrete Methods*, 1(2):216–227, 1980.

[55] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. *Theoretical Computer Science*, 1:237–267, 1976.

[56] F. Gavril. A recognition algorithm for the intersection graphs of paths in trees. *Discrete Mathematics*, 23(3):211–227, 1978.

[57] E. M. Gurari and I. H. Sudborough. Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement problem. *Journal of Algorithms*, 5(4):531–546, 1984.

[58] F. Gurski. The behavior of clique-width under graph operations and graph transformations. *Theory of Computing Systems*, 60(2):346–376, 2017.

[59] V. Gurusswami. Maximum cut on line and total graphs. *Discrete Applied Mathematics*, 92(2-3):217–221, 1999.

[60] T. W. Haynes, S. Hedetniemi, P. Slater, *Fundamentals of Domination in Graphs*. CRC Press, 1998.

[61] D. Hermelin, M. Mnich, E. J. V. Leeuwen, and G. Woeginger. Domination when the stars are out. *ACM Transactions on Algorithms*, 15(2):1–90, 2019.

[62] P. Hliněný and S.-i. Oum. Finding branch-decompositions and rank-decompositions. *SIAM Journal on Computing*, 38(3):1012–1032, 2008.

[63] I. Holyer. The NP-completeness of edge-coloring. *SIAM Journal on Computing*, 10(4):718–720, 1981.

[64] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. *SIAM Journal on Computing*, 11(4):676–686, 1982.

[65] L. Jaffke, O.-j. Kwon, T. J. Strømme, and J. A. Telle. Mim-width iii. graph powers and generalized distance domination problems. *Theoretical Computer Science*, 796:216–236, 2019.

[66] D. S. Johnson. The NP-completeness column: an ongoing guide. *Journal of Algorithms*, 6(3):434–451, 1985.

[67] M. Jones, D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and O. Suchý. Parameterized complexity of directed Steiner tree on sparse graphs. *SIAM Journal on Discrete Mathematics*, 31(2):1294–1327, 2017.
[68] V. Kalisz, P. Klavík, and P. Zeman. Circle graph isomorphism in almost linear time, 2019, arXiv:1908.09151v1.

[69] M. Kamiński, V. V. Lozin, and M. Milanič. Recent developments on graphs of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.

[70] R. Karp. Reducibility among Combinatorial Problems, chapter Complexity of Computer Computations, pages 85–103. New York: Plenum., 1972.

[71] J. Keil. The complexity of domination problems in circle graphs. Discrete Applied Mathematics, 42(1):51–63, 1993.

[72] J. Keil, R. Laskar, and P. Manuel. The vertex clique cover problem and some related problems in chordal graphs. Submitted in 1997. Abstract presented at SIAM conference on Discrete Mathematics, 1994, Albuquerque, New Mexico.

[73] J. Keil and L. Stewart. Approximating the minimum clique cover and other hard problems in subtree filament graphs. Discrete Applied Mathematics, 154(14):1983–1995, 2006.

[74] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hereditary properties. In Lecture Notes in Computer Science, pages 137–147. Springer Berlin Heidelberg, 2000.

[75] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003.

[76] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree in graphs with bounded treewidth. Technical Report 632, Israel Institute of Technology, 1990.

[77] R. K. Kothari, Citation showing minors are topological minors for subcubic graphs. Theoretical Computer Science Stack Exchange, https://cstheory.stackexchange.com/q/7331 (version: 2011-07-12).

[78] D. Kráľ’, J. Kratochvíl, Z. Tuza, and G. J. Woeginger. Complexity of coloring graphs without forbidden induced subgraphs. In Graph-Theoretic Concepts in Computer Science, pages 254–262. Springer Berlin Heidelberg, 2001.

[79] D. Kratsch. Finding dominating cliques efficiently, in strongly chordal graphs and undirected path graphs. Discrete Mathematics, 86(1-3):225–238, 1990.

[80] T. Krawczyk. Testing isomorphism of circular-arc graphs – Hsu’s approach revisited, 2019, arXiv:1904.04501v3.

[81] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi. On the algorithmic complexity of total domination. SIAM Journal on Algebraic Discrete Methods, 5(3):420–425, sep 1984.

[82] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter. A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs. In Scandinavian Workshop on Algorithm Theory, pages 355–366. Springer, 2008.

[83] D. Lokshantanov, N. Misra, G. Philip, M. S. Ramanujan, and S. Saurabh. Hardness of r-dominating set on graphs of diameter $(r+1)$. In G. Gutin and S. Szeider, editors, Parameterized and Exact Computation, pages 255–267. Springer International Publishing, 2013.

[84] G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph isomorphism. Journal of the ACM, 26(2):183–195, 1979.

[85] F. Maffray and M. Preissmann. On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Mathematics, 162(1):313–317, 1996.

[86] M. Mahajan and V. Raman. Parameterizing above guaranteed values: Maxsat and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

[87] S. Malitz. Genus g graphs have pagenumber $O(\sqrt{g})$. Journal of Algorithms, 17(1):85–109, 1994.

[88] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved algorithms for connected vertex cover and tree cover. Theory of Computing Systems, 43(2):234–253, 2008.

[89] B. Monien. How to find long paths efficiently. In G. Ausiello and M. Lucertini, editors, Analysis and Design of Algorithms for Combinatorial Problems, North-Holland Mathematics Studies, pages 239–254. Elsevier, 1985.

[90] B. Monien and I. H. Sudborough. Bandwidth constrained NP-complete problems. Theoretical Computer Science, 41:141–167, 1985.
[91] C. L. Monma and V. K. Wei. Intersection graphs of paths in a tree. *Journal of Combinatorial Theory, Series B*, 41(2):141–181, 1986.

[92] E. Mujuni and F. Rosamond. Parameterized complexity of the clique partition problem. In *Proceedings of the Fourteenth Symposium on Computing: the Australasian Theory-Volume 77*, pages 75–78, 2008.

[93] H. Müller. Hamiltonian circuits in chordal bipartite graphs. *Discrete Mathematics*, 156(1-3):291–298, 1996.

[94] H. Müller and A. Brandstädt. The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. *Theoretical Computer Science*, 53(2-3):257–265, 1987.

[95] A. Munaro. Bounded clique cover of some sparse graphs. *Discrete Mathematics*, 340(9):2208–2216, 2017.

[96] R. Niedermeier. *Invitation to Fixed-Parameter Algorithms*. Oxford University Press, 2006.

[97] S.-I. Oum. Approximating rank-width and clique-width quickly. *ACM Transactions on Algorithms*, 5(1):1–20, 2008.

[98] S.-i. Oum and P. Seymour. Approximating clique-width and branch-width. *Journal of Combinatorial Theory, Series B*, 96(4):514–528, 2006.

[99] B. S. Panda and D. Pradhan. NP-completeness of Hamiltonian cycle problem on rooted directed path graphs, 2008, arXiv:0809.2443v1.

[100] G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels. In *European Symposium on Algorithms*, pages 694–705. Springer, 2009.

[101] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. V. Leeuwen. Network sparsification for Steiner problems on planar and bounded-genus graphs. *ACM Transactions on Algorithms*, 14(4):1–73, 2018.

[102] R. V. Pocai. The complexity of simple max-cut on comparability graphs. *Electronic Notes in Discrete Mathematics*, 55:161–164, 2016. 14th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW16).

[103] S. Poljak. A note on stable sets and colorings of graphs. *Commentationes Mathematicae Universitatis Carolinae*, 15(2):307–309, 1974.

[104] V. Raman and S. Saurabh. Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. *Algorithmica*, 52(2):203–225, 2008.

[105] M. Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-width. *Theoretical Computer Science*, 377(1-3):260–267, 2007.

[106] W. Shih, T. Chern, and W.-L. Hsu. An $O(n^2 \log n)$ algorithm for the Hamiltonian cycle problem on circular-arc graphs. *SIAM Journal on Computing*, 21(6):1026–1046, 1992.

[107] J. Spinrad. *Efficient Graph Representations*. American Mathematical Society, Fields Institute, 2003.

[108] L. Stewart. Cographs - a class of tree representable graphs. Master’s thesis, University of Toronto, Canada, 1978. also a Technical Report, 126/78, Department of Computer Science, University of Toronto.

[109] R. Sucupira, L. Faria, and S. Klein. A complexidade do problema corte máximo para grafos fortemente cordais. In *Anais do XLV Simpósio Brasileiro de Pesquisa Operacional*, pages 2979–2988, 2013.

[110] M. Syslo. NP-complete problems on some tree-structured graphs: a review. In *Proc. WG’83 International Workshop on Graph Theoretic Concepts in Computer Science, Univ. Verlag Rudolf Trauner, Linz, West Germany*, 1983.

[111] R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs. *Discrete Applied Mathematics*, 145(3):479–482, 2005.

[112] W. Unger. On the k-colouring of circle-graphs. In R. Cori and M. Wirsing, editors, *Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science STACS 88*, Lecture Notes in Computer Science, vol. 294, pages 61–72, Berlin, Heidelberg, 1988. Springer.

[113] M. Vatshelle. *New width parameters of graphs*. PhD thesis, The University of Bergen, 2012.
[114] J. A. Wald and C. J. Colbourn. Steiner trees in outerplanar graphs. In Proc. 13th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 15–22, 1982.

[115] J. A. Wald and C. J. Colbourn. Steiner trees, partial 2–trees, and minimum IFI networks. Networks, 13(2):159–167, 1983.

[116] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics, 54(2-3):251–266, 1994.

[117] K. White, M. Farber, and W. Pulleyblank. Steiner trees, connected domination and strongly chordal graphs. Networks, 15:109–124, 1985.

[118] P. Winter. Steiner problem in Halin networks. Discrete Applied Mathematics, 17(3):281–294, 1987.

[119] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing - STOC’78, pages 253–264. ACM Press, 1978.

[120] C. M. H. de Figueiredo, A. A. de Melo, F. S. Oliveira, and A. Silva. MaxCut on Permutation Graphs is NP-complete. Journal of Graph Theory, 104:5–16, 2023.

[121] C. M. H. de Figueiredo, A. A. de Melo, D Sasaki, and A. Silva. Revising Johnson’s table for the 21st century. Discrete Applied Mathematics, 323:184–200, 2022.