Adaptive Dialog Policy Learning with Hindsight and User Modeling

Yan Cao 1 Keting Lu 2 Xiaoping Chen 1 Shiqi Zhang 3
1School of Computer Science, University of Science and Technology of China
2Commercialization Recommending Researching Department, Baidu Inc.
3Department of Computer Science, SUNY Binghamton

Abstract

Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts.

1 Introduction

Dialog systems have enabled intelligent agents to communicate with people using natural language. For instance, virtual assistants, such as Siri, Echo, and Cortana, have been increasingly popular in daily life. We are particularly interested in goal-oriented dialog systems, where the task is to efficiently and accurately exchange information with people, and the main challenge is on the ubiquitous ambiguity in natural language processing (spoken or text-based). Goal-oriented dialog systems typically include components for language understanding, dialog management, and language synthesis, while sometimes the components can be constructed altogether, resulting in end-to-end dialog systems (Bordes et al., 2016; Williams and Zweig, 2016; Young et al., 2018). In this paper, we focus on the problem of policy learning for dialog management.

Reinforcement learning (RL) algorithms aim at learning action policies from trial-and-error experiences (Sutton and Barto, 2018), and have been used for learning dialog policies (Young et al., 2013; Levin et al., 1997). Deep RL methods (e.g. (Mnih et al., 2013)) have been developed for dialog policy learning in dialog domains with large state spaces. While it is always desirable for RL agents to learn from the experiences of interacting with the real world, such interactions can be expensive, risky, or both in practice. Back to the context of dialog systems, despite all the advances in RL (deep or not), dialog policy learning remains a challenge. For instance, interacting with people using natural language is very costly, and low-quality dialog policies produce very poor user experience, which is particularly common in early learning phases. As a result, it is critical to develop sample-efficient RL methods for learning high-quality dialog policies with limited conversational experiences.

In this paper, we develop an algorithm called LHUA (Learning with Hindsight, User modeling, and Adaptation) for sample-efficient dialog policy learning. LHUA, for the first time, enables a dialog agent to simultaneously learn from real, simulated, and hindsight experiences, which identifies the key contribution of this research. Simulated experience is generated using learned user models, and hindsight experience (of successful dialog samples) is generated by manipulating dialog segments and goals of the (potentially many) unsuccessful samples. Dialog experience from simulation and hindsight respectively provide more dialog samples and more positive feedback for dialog policy learning. To further improve the sample efficiency, we develop a meta-agent for LHUA that adaptively learns to switch between real and simulated users in the dialog-based interactions, which identifies...
Figure 1: An overview of LHUA. A dialog agent interacts with both real and simulated users while learning a dialog policy from this interaction experience. A simulated user is modeled using real dialog samples, and interacting with this simulated user provides the dialog agent with simulated dialog samples. An adaptive coordinator learns from the dialog agent’s recent performance to adaptively assign one user (real or simulated) for the dialog agent to interact with. A hindsight manager manipulates both real and simulated dialog samples (of mixed qualities) to “synthesize” successful dialog samples.

2 Related Work

In this section, we summarize three different ways of improving the efficiency of dialog policy learning (namely user modeling, hindsight experience replay, and reward shaping), and qualitatively compare them with our methods.

Researchers have developed “two-step” algorithms that first build user models through supervised learning with real conversational data, and then learn dialog policies by interacting with the simulated users (Schatzmann et al., 2007; Li et al., 2016). In those methods, user modeling must be conducted offline before the start of dialog policy learning. As a result, the learned policies are potentially biased toward the historical conversational data. Toward online methods for dialog policy learning, researchers have developed algorithms for simultaneously constructing models of real users, and learning from the simulated interaction experience with user models (Su et al., 2016; Lipton et al., 2016; Zhao and Eskenazi, 2016; Williams et al., 2017; Dhingra et al., 2017; Li et al., 2017; Liu and Lane, 2017; Peng et al., 2017; Wu et al., 2019). Those methods enable agents to simultaneously build and leverage user models in dialog policy learning. However, the problem of learning high-quality user models by itself can be challenging. Our algorithms support user modeling, while further enabling agents to adaptively learn from both hindsight and real conversations.

In comparison to many other RL applications, goal-oriented dialog systems have very sparse feedback from the “real world” (human users), where one frequently cannot tell dialogs being successful or not until reaching the very end. Positive feedback is even rarer, when dialog policies are of poor qualities. Hindsight experience replay (HER) (Andrychowicz et al., 2017) methods have been developed to convert unsuccessful trials into successful ones through goal manipulation. The “policy learning with hindsight” idea has been applied to various domains, including dialog (Lu et al., 2019). Our methods support the capability of learning from hindsight experience, while further enabling user modeling and learning from simulated users.

Within the dialog policy learning context, reward shaping is another way of providing the dialog agents with extra feedback, where a dense reward function can be manually designed (Su et al., 2015), or learned (Su et al., 2016). Researchers also developed efficient exploration strategies to speed up the policy learning process of dialog agents, e.g., (Pietquin et al., 2011; Lagoudakis and Parr, 2003). Those methods are orthogonal to ours, and can potentially be combined to further improve the dialog learning efficiency. In comparison to all methods mentioned in this section, LHUA is
the first that enables dialog policy learning from real, simulated, and hindsight experiences simultaneously, and its performance is further enhanced through a meta-policy for switching between interactions with real and simulated users.

3 Background

In this section, we briefly introduce the two building blocks of this research, namely Markov decision process (MDP)-based dialog management, and Deep Q-Network (DQN).

3.1 MDP-based Dialog Management

Markov Decision Processes (MDPs) can be specified as a tuple \(<S, A, T, R, s_0> \), where \(S \) is the state set, \(A \) is the action set, \(T \) is the transition function, \(R \) is the reward function, and \(s_0 \) is the initial state. In MDP-based dialog managers, dialog control can be modeled using MDPs for selecting language actions. \(s \in S \) represents the current dialog state including the agent’s last action, the user’s current action, the distribution of each slot, and other domain variables as needed. \(a \in A \) represents the agent’s response. The reward function \(R: S \times A \rightarrow \mathbb{R} \) gives the agent a big bonus in successful dialogs, a big penalty in failures, and a small cost in each turn.

Solving an MDP-based dialog management problem produces \(\pi \), a dialog policy. A dialog policy maps a dialog state to an action, \(\pi: S \rightarrow A \), toward maximizing the discounted, accumulative reward in dialogs, i.e., \(R_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i \), where \(\gamma \in [0,1] \) is a discount factor that specifies how much the agent favors future rewards.

3.2 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) is a model-free RL algorithm. The approximation of the optimal Q-function, \(Q^* = Q(s, a; \theta) \), is used by a neural network, where \(a \) is an action executed at state \(s \), and \(\theta \) is a set of parameters. Its policy is defined either in a greedy way: \(\pi_Q(s) = \text{argmax}_{a \in A} Q(s, a; \theta) \) or being \(\epsilon \)-greedy, i.e., the agent takes a random action in probability \(\epsilon \) and action \(\pi_Q(s) \) otherwise. The loss function for minimization in DQN is usually defined using TD-error:

\[
L = \mathbb{E}_{s,a,r,s'} [(Q(s, a; \theta) - y)^2],
\]

where \(y = r + \gamma \text{max}_{a' \in A} Q(s', a'; \theta) \).

To alleviate the problem of unstable or non-convergence of Q values, two techniques are widely used. One is called target network whose parameters are updated by \(\theta \) once every many iterations in the training phase. The other technique is experience replay, where an experience pool \(\epsilon \) stores samples, each in the form of \((s_t, a_t, r_t, s_{t+1}) \). It randomly selects small batches of samples from \(\epsilon \) each time during training. Experience replay can reduce the correlation of samples, and increases the data efficiency.

4 Algorithms

In this section, we first introduce Learning with Hindsight, and User modeling (LHU), and then present LHU with Adaptation (LHUA), where algorithms LHU and LHUA point to the main contribution of this research.

LHU, for the first time, enables a dialog agent to learn dialog policies from three dialog sources, namely real users, simulated users, and hindsight dialog experience. More specifically, a real user refers to the human who converses with the dialog agent, and a simulated user refers to a learned user model that captures real users’ interactive behaviors with our dialog agent. In this way, a simulated user is used for generating “human-like” dialog experience for speeding up the process of dialog policy learning. The last dialog source of “hindsight dialog experience” is used for creating many successful dialog samples using both successful and unsuccessful dialog samples, where the source samples are from both real and simulated users. Different from “simulated users” that generate dialog samples of mixed qualities, hindsight experience produces only successful (though not real) dialog samples, which is particularly useful for dialog policy learning at the early phase due to the very few successful samples.

Among the three dialog sources, hindsight experience is “always on”, and synthesizes dialog samples throughout the learning process. The “real” and “simulated” dialog sources bring in the selection problem: At a particular time, from which source should the agent obtain dialog experience for policy learning? The “adaptation” capability of LHUA aims at enabling the dialog agent to learn to, before starting a dialog, select which user (real or simulated) to interact with.
4.1 Learning with Hindsight, and User Modeling

In this subsection, we focus on two components of LHUA, including user modeling, and hindsight management, which together form LHU, an ablation algorithm of LHUA. The two components’ shared goal is to generate additional dialog experience (simulated and hindsight experiences respectively) to speed up dialog policy learning.

Dialog (Sub)Goal and Segmentation

Goal-oriented dialog agents help users accomplish their goals via language-based multi-turn communications. Goal G includes a set of constraints C and a set of requests R, where $G = (C, R)$. Consider a service request “I’d like to purchase one ticket of Titanic for this evening. Which theater is available?” In this example, the goal is of the form:

$$G = (C = \{ticket = one, time = eve, movie = titanic\}, R = \{theater = \?\})$$

We define $G’$ as a subgoal of $G = (C, R)$: $G’ = (C’, R’)$, where $C’ \subseteq C$, $R’ \subseteq R$, and $G’$ cannot be empty. Continuing the “titanic” example, one of its subgoals is

$$G’ = (C’ = \{ticket = one, movie = titanic\}, R’ = \emptyset).$$

Given an intact dialog D, we say D_{seg} is a segment of D, if D_{seg} includes a consecutive sequence of turns of D. With the concepts of dialog segment and subgoal, we introduce two segment sets (head and tail), which are later used in hindsight manager. A head segment set Ω consists of dialog segments D_{head} that include the early turns in the intact dialog with the corresponding completed subgoal $G’$. HeadSegGen is implemented to generate tail segments after interactions terminate. It receives a dialog D, a goal G and a corresponding head segment Ω. If the dialog D accomplishes the goal G, for each pair $(D_{head}, G’)$ from the head segment set Ω, TailSegGen outputs a corresponding pair $(D \ominus D_{head}, G’)$, where $D_1 \ominus D_2$ produces a dialog segment by removing D_2 from D_1.

Hindsight Manager

Given head and tail segment sets (Ω and Γ), hindsight manager is used for stitching two tuples, $(D_{head}, G’_{head})$ and $(D_{tail}, G’_{tail})$, respectively to “synthesize” successful dialog samples. There are two conditions for synthesization:

1. The two subgoals from head and tail segments are identical, $G’_{head} == G’_{tail}$, and
2. The last state of D_{head}, s_{last}, and the first state of D_{tail}, $s’_{first}$, are of sufficient similarity.

We use KL Divergence to measure the similarity between two states:

$$D_{KL}(s_{last}||s’_{first}) \leq \delta \tag{4}$$

where $\delta \in R$ is a threshold parameter. We implement a function to synthesize successful dialog samples as hindsight experience for dialog policy learning, as follows:

$$D_{hind} \leftarrow \text{HindMan}(\delta, \Omega, \Gamma) \tag{5}$$

Dialog with Simulated Users

In dialog policy learning, dialog agents can learn from interactions with real users, where the generated real experience is stored in reply buffer B^{R}. To provide more experience, we develop a simulated user for generating simulated dialog experience to further speed up the learning of dialog policies.

The simulated user is of the form:

$$s’, r \leftarrow \text{M}(s, a; \theta_M)$$

where, $\text{M}(s, a; \theta_M)$ takes the current dialog state s and the last dialog agent action a as input, and generates the next dialog state $s’$, and reward r. M is implemented by a Multi-Layer Perceptron (MLP) parameterized by θ_M, and refined via stochastic
Algorithm 1 Algorithm LHU

Input: K, the times of interactions with the simulated user; δ, KL-divergence threshold

Output: the success rate $SR_{D_{lq}}$ and average rewards $R_{D_{lq}}$ of agent D_{lq}; $Q(\cdot)$ for agent D_{lq}

1: Initialize $Q(s, a; \theta_Q)$ of agent D_{lq} and $M(s, a; \theta_M)$ of the simulated user via pre-training on human conversational data
2: Initialize experience replay buffers B^R and B^S for the interaction of agent D_{lq} with real and simulated users
3: Initialize head and tail dialog segment sets: $\Omega \leftarrow \emptyset$, and $\Gamma \leftarrow \emptyset$
4: Collect initial state, s, by interacting with a real user
5: Initialize $D_{Real} \leftarrow \emptyset$ for storing dialog turns (real)
6: while $s \notin \text{term do}$ // Start a dialog with real user
7: Select $a \leftarrow \text{argmax}_a Q(s, a'; \theta_Q)$, and execute a
8: Collect next state s', and reward r
9: Add dialog turn $d = (s, a, r, s')$ to B^R and D_{Real}
10: $\Omega \leftarrow \Omega \cup \text{HeadSegGen}(D_{Real}, G_{Sim})$
11: $\Gamma \leftarrow \Gamma \cup \text{TailSegGen}(D_{Real}, G_{Sim})$
12: end while
13: $\Gamma \leftarrow \Gamma \cup \text{TailSegGen}(D_{Sim}, G_{Sim}, \Omega)$
14: for $k = 1 : K$ do // K interactions with simulated user
15: Sample goal G_{Sim}, and initial state s
16: Initialize $D_{Sim} \leftarrow \emptyset$ for storing dialog turns (sim)
17: while $s \notin \text{term do}$ // The k^{th} dialog with sim user
18: Select $a \leftarrow \text{argmax}_a Q(s, a'; \theta_Q)$, and execute a
19: Collect next state s', and reward r from $M(s, a; \theta_M)$
20: Add dialog turn $d = (s, a, r, s')$ to B^S and D_{Sim}
21: $\Omega \leftarrow \Omega \cup \text{HeadSegGen}(D_{Sim}, G_{Sim})$
22: $\Gamma \leftarrow \Gamma \cup \text{TailSegGen}(D_{Sim}, G_{Sim})$
23: end while
24: $\Gamma \leftarrow \Gamma \cup \text{TailSegGen}(D_{Sim}, G_{Sim}, \Omega)$
25: end for
26: Synthesize hindsight experience, and store it in B^S: $D_{hind} \leftarrow \text{HindMan}(\delta, \Gamma, \Omega)$ // Hindsight Manipulation
27: Calculate the success rate $SR_{D_{lq}}$ and average rewards $R_{D_{lq}}$ of total interactions
28: Randomly sample a minibatch from both B^R and B^S, and update $agent_{D_{lq}}$ via DQN // $agent_{D_{lq}}$ training
29: Randomly sample a minibatch from B^R, and update simulated user via SGD
30: return $SR_{D_{lq}}, R_{D_{lq}}, Q(\cdot)$

State In each turn of interaction with the LHU agent, adaptive coordinator updates the adaptation state s^A using the equation below:

$$s^A_i = \begin{cases} [0, 0, 0, 0] & i = 0 \\ [SR_i, R_i, SR_i - SR_{i-1}, R_i - R_{i-1}] & i > 0 \end{cases}$$

where SR_i and R_i are respectively average success rate and rewards from LHU agent's training performance at i^{th} episode. In practice, R is normalized to have values between 0 and 1, same as SR. This form of adaptation state provides accessible information on different training phrases to represent LHU agent’s current performance.

Action Based on the state s^A, adaptive coordinator chooses action k to determine, after each dialog:
Algorithm 2 LHU with Adaptation (LHUA)

Input: H, the max length of adaptation episode; δ, KL-divergence threshold; N, training times

Output: Π, the dialog policy;

1: Initialize $A(s^A, k; \theta_A)$ of agent$_{Adv}$, and replay buffer B^A as empty
2: for $i = 1 : N$ do
3: Initialize adaptation state s^A using Eqn. 6
4: Initialize turn counter h: $h = 0$
5: while $h \leq H$ do
6: Select action k: $k \leftarrow \arg\max_k A(s^A, k; \theta_A)$
7: Execute action k:
 $\begin{align*}
 SR^{Diag}, R^{Diag}, Q(\cdot) & \leftarrow LHU^1(k, \delta) \\
 B^A & \leftarrow B^A \cup (s^A, k, r^A, \hat{s}^A), s^A \leftarrow \hat{s}^A, \text{ and } h \leftarrow h + 1
 \end{align*}$
8: Collect reward r^A via Eqn. 7, and next adaptation state \hat{s}^A using Eqn. 6
9: $B^A \leftarrow B^A \cup (s^A, k, r^A, \hat{s}^A), s^A \leftarrow \hat{s}^A, \text{ and } h \leftarrow h + 1$
10: end while
11: Sample a minibatch from B^A, and update θ_A via DQN
12: end for
13: for all $s \in S$: $\Pi(s) \leftarrow \arg\max_{a'} Q(s, a'; \theta_Q)$
14: return $\Pi(\cdot)$

with the real user, how many dialogs should be conducted with the simulated user. The value of action k ranges from 1 to K.

Reward Adaptive coordinator receives immediate rewards after executing an action k (i.e. LHU(k)) each time. We use success rate increment of LHU agent to design the reward function, as shown below:

$$r^A_i = \frac{SR_i - SR_{i-1}}{SR_i} \cdot \frac{k_i}{L_i} \quad (0 < i \leq H) \quad (7)$$

where k_i is the i^{th} action chosen by adaptive coordinator, and L_i means the total number of times of interactions with both real and simulated users. From the above we can know $L_i = k_i + 1$. Reward is continuously harvested, until the H^{th} turn.

Due to the continuous state space, the approximated value function of adaptive coordinator is implemented using a two-layer fully connected neural network, $A(s^A, k; \theta_A)$, parameterized by θ_A. Interactions between the adaptive coordinator and the LHU agent start with an initial state. In each turn, the adaptive coordinator obtains the state s^A using Eqn. 6, and selects the action k via ϵ-greedy policy to execute. Then, the current training performance of LHU agent is used for acquiring the reward r^A using Eqn. 7, and updating the next state \hat{s}^A. Finally, the experience (s^A, k, r^A, \hat{s}^A) is stored for meta-policy learning. We improve the value function by adjusting θ_A to minimize the mean-squared loss function.

The LHUA Algorithm Algorithm 2 presents the dialog policy learning process, where our dialog agent adaptively learns from both simulated and real users. In addition to parameter δ for KL-divergence threshold, there is parameter H representing the length of one episode for adaptive coordinator as a part of the input.

Algorithm 2 starts with an initialization of replay buffer B^A for adaptive coordinator, and the value function $A(s^A, k; \theta_A)$. Before the start of each episode, a turn counter h is initialized as zero for turn counting. Adaptive coordinator interacts with LHU agent for H turns while collecting and saving experience in B^A. At the end of each adaptation episode, we use DQN to update θ_A.

LHUA enables the dialog agent to simultaneously learn from the dialogs with both real and simulated users. At the same time, hindsight manager manipulates both real and simulated dialog samples to synthesize more successful dialog samples. Dialog experience from simulation and hindsight respectively provide more dialog samples and more positive feedback for dialog policy learning. The adaptive coordinator is learned at runtime for adaptively switching between real and simulated users in the dialog policy learning process to further improve the sample efficiency. So far, LHUA enables dialog agents to adaptively learn with hindsight from both simulated and real users.

5 Experiment

Experiments have been conducted in a dialog simulation platform, called TC-bot (Li et al., 2016, 2017). TC-bot provides a realistic simulation platform for goal-oriented dialog system research. We use its movie-ticket booking domain that consists of 29 slots of two types, where one type is on search constraints (e.g., number of people, and date), and the other is on system-informable properties that are needed for database queries (e.g., critic rating, and start time). The dialog agent has 11 dialog actions, representing the system intent (e.g., confirm question, confirm answer, and thanks).

A dialog is considered successful only if movie tickets are booked successfully, and the provided information satisfies all the user’s constraints. By the end of a dialog, the agent receives a bonus (positive reward) of $2 \times L$ if successful, or a penalty

To avoid possible confusions, we use “real user” to refer to the user directly provided by TC-bot, and use “simulated user” to refer to the user model learned by our dialog agents.
(negative reward) of \(-L\) for failure, where \(L\) is the maximum number of turns allowed in each dialog. We set \(L = 40\) in our experiments. The agent receives a unit cost in each dialog turn to encourage shorter conversations.

Implementation Details In line with existing research (Peng et al., 2018), all dialog agents are implemented using Deep Q-Network (DQN). The DQN includes one hidden layer with 80 hidden nodes and ReLU activation, and its output layer of 11 units corresponding to 11 dialog actions. We set the discount factor \(\gamma = 0.95\). The techniques of target network and experience replay are applied. Both \(B^R\) and \(B^S\) share the buffer size of 5000, and we use uniform sampling in experience replay. The target value function is updated at the end of each epoch. In each epoch, \(Q(\cdot)\) and \(M(\cdot)\) are refined using one-step 16-tuple-minibatch update. We then pre-filled the experience replay buffer with 100 dialogs before training. The simulated experience buffer \(B^S\) is initialized as empty. Neural network parameters are randomly initialized, and optimized using RMSProp (Hinton et al., 2012).

The simulated user model, \(M(\cdot)\), is a multi-task neural network (Liu et al., 2015), and contains two shared hidden layers and three task-specific hidden layers, where each layer has 80 nodes. Stitching threshold of hindsight manager \(\delta\) is set 0.2. The policy network of adaptive coordinator is a single-layer neural network of size 64. Parameters \(k\) and \(H\) are described in Algorithm 2, and have the value of \(k = 20\) and \(H = 8\).

LHUA and Three Baselines Our key hypothesis is that adaptively learning from real, simulated, and hindsight experiences at the same time performs better than baselines from the literature. To evaluate this hypothesis, we have selected three competitive baselines for goal-oriented dialog policy learning, including DDQ (Su et al., 2018), D3Q (Wu et al., 2019), and S-HER (Lu et al., 2019). In implementing the DDQ agent, the ratio of interaction experiences between simulated and real users is ten, which is consistent to the original implementation (Su et al., 2018). The differences between LHUA and the baseline methods are qualitatively discussed in Section 2.

It is necessary to explain how the curves are generated in the figures to be reported. For each of the four methods (LHUA and three baselines), we have conducted five “runs”, where each run include 250 episodes. In each run, after every single episode for learning, we let the dialog agent interact with the real user for 50 dialogs. We then compute the success rate over the 50 dialogs. Each data point in the figure is an average over the five success rates collected from the five runs of each method.

Figure 2 presents the key results of this research on the quantitative comparisons between LHUA and the three baselines. We can see that, except for the very early learning phase, LHUA performed consistently better than the three baseline methods. In particular, LHUA reached the success rate of 0.75 after about 70 episodes, whereas none of the baselines were able to achieve comparable performance within 150 episodes. The gap between LHUA and S-HER in early phase is due to the fact that LHUA needs to learn a user model, which requires extra interaction in early phase. Once the user model is of reasonable quality, LHUA is able to learn from the interaction experience with simulated users, and soon (after 45 episodes) LHUA outperformed S-HER.

LHUA and Its Ablations Results reported in Figure 2 have shown the advantage of LHUA over the three baseline methods. However, it is still unclear how much each component of LHUA contributes to its performance. We removed components from LHUA, and generated four different ablations of LHUA, including DQN, DDQ (LU, or Learning with User modeling), S-HER (LH, or Learning with Hindsight), LHU, and LHUA.

Figure 3 shows the ablation experiment’s results. From the results, we see that LHUA performed much better than no-hindsight (LU), and no-user-modeling (S-HER, or LH) ablations. When both
“hindsight” and “user modeling” are activated, there is LHUA’s ablation of LHU, which performed better than all the other ablations. LHU still cannot generate comparable performance, c.f., LHUA, which justified the necessity of the adaptive coordinator. It should be noted that performances of two of the ablations have been reported in Figure 2. We intentionally include their results in Figure 3 for the completeness of comparisons.

Adaptive Coordinator Learning Results reported in Figure 3 have shown the necessity of our adaptive coordinator in LHUA. In this experiment, we look into the learning process of the adaptive coordinator. More specifically, we are interested in how the value of \(k \) is selected (see Algorithm 2). We have implemented LHU with six different values of \(k \), and their performances are reported in Figure 4, where the left subfigure is on success rate, and the right is on Area under Curve (AUC). The AUC metric has been used for the evaluation of learning speed (Taylor and Stone, 2009; Stadie et al., 2015). We see that, in early learning phase (within 100 episodes), the \(k \) value of 10 produced the best performance overall, though the performance is comparable to that with \(k = 12 \) to some level.

Figure 5 reports the selection of \(k \) values by our adaptive coordinator. Each bar corresponds to an average over the \(k \) values of 25 episodes. We see that the value of \(k \) was suggested to be around 10 within the first 100 episodes, which is consistent to our observation from the results of Figure 4. The consistency further justified our adaptive coordinator’s capability of learning the interaction strategy in switching between real and simulated users.

6 Conclusions and Future Work

In this work, we develop an algorithm called LHUA (Learning with Hindsight, User modeling, and Adaptation) for sample-efficient dialog policy learning. LHUA enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that LHUA outperforms competitive baselines (including success rate and learning speed) from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. This is the first work that enables a dialog agent to adaptively learn from real, simulated, and hindsight experiences all at the same time.

In the future, we plan to evaluate our algorithm using other dialog simulation platform, e.g., PyDial (Ultes et al., 2017), and other testing environments. Another direction is to combine other efficient exploration strategies to further improve the dialog learning efficiency. Finally, we will further consider the noise from language understanding and generation.
References

Marcin Andrychowicz, Filip Wolski, Alex Ray, et al. 2017. Hindsight experience replay. In Advances in Neural Information Processing Systems, pages 5048–5058.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2016. Learning end-to-end goal-oriented dialog.

Bhuwan Dhingra, Lihong Li, Xiujun Li, et al. 2017. Towards end-to-end reinforcement learning of dialogue agents for information access. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2015. Deep neural networks for language processing. Proceedings of the 5th International Conference on Learning Representations, San Diego.

Xiujun Li, Yun-Nung Chen, Lihong Li, et al. 2017. Human-level control through deep reinforcement learning. Nature.

Bing Liu and Ian Lane. 2017. Iterative policy learning in end-to-end trainable task-oriented neural dialogue models. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), IEEE.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, et al. 2016. On-line active reward learning for policy optimisation in spoken dialogue systems. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.

Bing Liu and Ian Lane. 2017. Iterative policy learning in end-to-end trainable task-oriented neural dialogue models. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE.

Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685.

Shang-Yu Su, Xiujun Li, Jianfeng Gao, et al. 2018. Discriminative deep dyna-q: Robust planning for dialogue policy learning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Introduction. MIT Press.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2016. Learning end-to-end goal-oriented dialog.

Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685.

Shang-Yu Su, Xiujun Li, Jianfeng Gao, et al. 2018. Discriminative deep dyna-q: Robust planning for dialogue policy learning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Introduction. MIT Press.
Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. 2017. Hybrid code networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning. *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.*

Jason D Williams and Geoffrey Zweig. 2016. End-to-end lstm-based dialog control optimized with supervised and reinforcement learning. *arXiv preprint arXiv:1606.01269.*

Yuexin Wu, Xiujun Li, Jingjing Liu, et al. 2019. Switch-based active deep dyna-q: Efficient adaptive planning for task-completion dialogue policy learning. In *Proceedings of the AAAI Conference on Artificial Intelligence.*

Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. 2013. Pomdp-based statistical spoken dialog systems: A review. *Proceedings of the IEEE.*

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou, Subham Biswas, and Minlie Huang. 2018. Augmenting end-to-end dialogue systems with commonsense knowledge. In *Thirty-Second AAAI Conference on Artificial Intelligence.*

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards end-to-end learning for dialog state tracking and management using deep reinforcement learning. In *Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue.*