Vibrational energies of some diatomic molecules for a modified and deformed potential

C. A. Onate1,5, I. B. Okon2, M. C. Onyeaju3 & O. Ebomwonyi4

A molecular potential model is proposed and the solutions of the radial Schrödinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov–Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.

In the recent time, exponential-type potential has been the subject of interest in the quantum mechanics which greatly popularized the relativistic and non-relativistic wave equations such as the Schrödinger equation, Klein–Gordon equation, Dirac equation and others1–15. The approximate solutions of these wave equations have been obtained mostly for one-dimensional system with various exponential-type potentials using different approximation methods developed by different authors. The frequently used methods are Nikiforov–Uvarov method16,17, asymptotic iteration method18, supersymmetric approach19,20, factorization method21, exact and proper quantization rule22,23. Recently, Ikot et al.24,25 have used a new approach called NU Functional analysis method. The different methods have different approach for the solutions of the wave equations but give results that are approximately the same. For instance, the solutions of the radial Schrödinger equation under the Deng–Fan potential model has been studied by Dong and Gu26 using factorization method. Zhang et al.27 and Onate et al.28 respectively, also studied the potential via supersymmetry quantum mechanics and parametric Nikiforov–Uvarov method. The results of these authors agreed with one another.

The solutions of the wave equations studied for different potentials, have been applied to the study of several systems such as Theoretic quantities29–32 and Thermal properties (mean energy, heat capacity, free energy and entropy)33–38. In ref.27, the result was used to study the rotation transition frequency for HF. In ref.28, the wave function was used to study some theoretic quantities such Shannon entropy and Rényi entropy. In ref.39, the problem of so(2, 2) was studied under the Pöschl–Teller potential. Several authors have also studied the energy eigenvalues for many diatomic molecules on molecular dynamics and spectroscopy in the field of chemistry and molecular physics40,41. This provides explanations about the dynamics and physical properties of some molecules. The potential energy function involved are used to study the bonding between atoms, hence the predictions to the behaviour of some class of molecules42. Some of these potentials can be used to describe some experimental values. Generally, a good empirical internuclear potential function should reproduce the experimental energy potential curves as determined by the RKR method. Considering this, the present study wants to examine an approximate solutions of the Schrödinger equation with a new modified and deformed exponential-type molecular potential model confined on a cesium dimer, sodium dimer and lithium dimer. The study also aims to investigate the potential with two different values for each of the deformed parameter and adjustable parameter under the same cesium dimer. This potential has not been reported for any study yet to the best of our understanding.

The cesium dimer is an important molecule that has many applications, e.g. vibrational cooling of molecules, population dynamics, and even coherent control43–47. The cesium molecule is an attractive system for examining a
possible variation of the electron-to-proton mass ratio and of the fine-structure constant. It is noted that the \(\sum_{n}^{+} \) state of cesium dimer has a strong Fermi contact interaction with the nuclei, and possesses a large hyperfine splitting. The potential energy curve of the cesium dimer for \(\sum_{n}^{+} \) and \(\alpha^{1} \sum_{n}^{+} \) states has been reported in ref. The modified and deformed exponential-type molecular potential model under consideration, is given as

\[
V(r) = D_{e} - \frac{D_{s}}{C e^{-\alpha r} + q_{1}} \left(\frac{e^{\alpha r} + q_{1}}{\frac{e^{\alpha r} + q_{1}}{C e^{-\alpha r} + q_{1}}} \right),
\]

where \(C \) is a modified parameter, \(q_{0} \) is a deformed parameter and \(q_{1} \) is an adjustable parameters whose value can be taken as \(\pm 1 \). When the value of the adjustable parameter equals the value of the deformed parameter within \(\pm 1 \), the results of potential (1) gives other useful results. \(D_{e} \) is the dissociation energy \(r_{e} \) is the equilibrium bond separation and \(\alpha \) is the screening parameter. Its numerical value can be obtain using the formula

\[
\alpha = \pi \cos \frac{2\mu_{c}e}{\sqrt{\alpha_{0}}} + \frac{1}{r_{e}} \left(\pi \cos \frac{2\mu_{c}e}{\sqrt{\alpha_{0}}} \right),
\]

where \(W \) is the Lambert function, \(\mu \) is the reduced mass, \(c \) is the speed of light and \(\omega_{c} \) is the vibrational frequency.

Parametric Nikiforov–Uvarov method

The parametric Nikiforov–Uvarov method is one of the shortest and accurate traditional techniques to solve bound state problems. This method was derived from the conventional Nikiforov–Uvarov method by Tezcan and Sever. According to the authors, the reference equation for the parametric Nikiforov–Uvarov is given as

\[
\left(\frac{d^{2}}{ds^{2}} + \frac{\alpha_{1} - \alpha_{2}}{s(1 - \alpha_{3} s)} \frac{d}{ds} + \frac{-\xi_{1} s^{2} + \xi_{2} s - \xi_{3}}{s^{2}(1 - \alpha_{3} s)^{2}} \right) \psi(s) = 0.
\]

Following the work of these authors, the condition for eigenvalues equation and wave function are respectively given by

\[
n\alpha_{2} - (2n + 1)\alpha_{5} + \alpha_{7} + 2\alpha_{3}\alpha_{8} + n(n - 1)\alpha_{3} + (2n + 1)\sqrt{\alpha_{9}} + (2\sqrt{\alpha_{9}} + \alpha_{3} (2n + 1)) \sqrt{\alpha_{8}} = 0,
\]

\[
\psi_{n,\ell}(s) = N_{n,\ell} e^{a_{12} (1 - \alpha_{3} s)^{-a_{12} - a_{13}} / s} \times P_{n}^{(\alpha_{10} - 1, \alpha_{11} - 1)} (1 - 2\alpha_{3} s),
\]

The parametric constants in Eqs. (3) and (4) are deduced as follows

\[
\begin{align*}
\alpha_{4} &= \frac{1 - \alpha_{1}}{2}, \\
\alpha_{5} &= \frac{\alpha_{2} - 2\alpha_{3}}{2}, \\
\alpha_{6} &= \alpha_{2} + \xi_{1}, \\
\alpha_{7} &= 2\alpha_{4}\alpha_{5} - \xi_{2}, \\
\alpha_{8} &= \alpha_{5} + \xi_{3}, \\
\alpha_{9} &= \alpha_{3}(\alpha_{7} + \alpha_{4}\alpha_{8}) + \alpha_{6}, \\
\alpha_{10} &= \alpha_{1} + 2\alpha_{4} + 2\sqrt{\alpha_{8}}, \\
\alpha_{11} &= \alpha_{2} - \alpha_{5} + 2(\sqrt{\alpha_{9}} + \alpha_{3}\sqrt{\alpha_{8}}), \\
\alpha_{12} &= \alpha_{4} + \sqrt{\alpha_{6}}, \\
\alpha_{13} &= \alpha_{5} - (\sqrt{\alpha_{9}} + \alpha_{3}\sqrt{\alpha_{8}})
\end{align*}
\]

The radial Schrödinger equation and the interacting potential

To obtain the energy eigenvalues of the Schrödinger equation with potential (1), we consider the original Schrödinger equation given by

\[
\left[-\frac{\hbar^{2}}{2\mu} \left(\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right) + V(r) - \mu \right] \psi(r) = 0.
\]

Setting the wave function \(\psi(r) = U_{n,\ell}(r) Y_{n,\ell}(\theta, \phi) r^{-1} \), and consider the radial part of the Schrödinger equation, Eq. (7) becomes

\[
\frac{\hbar^{2}}{2\mu} \frac{d^{2} U_{n,\ell}(r)}{dr^{2}} = E_{n,\ell} U_{n,\ell}(r) - V(r) U_{n,\ell}(r),
\]

where \(V(r) \) is the interacting potential given in Eq. (1), \(E_{n,\ell} \) is the non-relativistic energy of the system, \(\hbar \) is the reduced Planck’s constant, \(\mu \) is the reduced mass, \(n \) is the quantum number, \(U_{n,\ell}(r) \) is the wave function. Substituting Eq. (1) into (8), and by defining \(y = \frac{1}{r_{0} y} \), the radial Schrödinger equation with the deformed exponential-type potential turns to be

\[
\frac{d^{2} U_{n,\ell}(y)}{dy^{2}} + \frac{1 + y}{y(1 + q_{0} y)} \frac{d U_{n,\ell}(y)}{dy} + \frac{P y^{2} + Q y - R}{y^{3}(1 + q_{0} y)^{2}} U_{n,\ell}(y) = 0,
\]

where

\[
P = \frac{2\mu D_{e}^{2}}{\alpha^{2} \hbar^{2}} \left(\frac{E_{n,\ell} q_{0}^{2}}{D_{e}} - 2q_{0} e^{\alpha r} + q_{1} (1 + e^{\alpha r} + q_{1}) \right),
\]
\[Q = \frac{4 \mu D_e}{\alpha^2 \hbar^2} \left(\frac{E_{n,0} q_0}{D_e} - q_0 + e^{\alpha T} + q_1 \right), \]
(11)

\[R = \frac{2 \mu (D_e - E_{n,0})}{\alpha^2 \hbar^2}. \]
(12)

Comparing Eq. (9) with Eq. (3), the parametric constants in Eq. (6) are obtained as follows:

\[\alpha_1 = 1, \alpha_2 = \alpha_3 = -q_0, \alpha_4 = 0, \alpha_5 = \frac{q_0}{2}, \alpha_6 = \frac{q_0^2}{4} + \frac{2 \mu D_e}{\alpha^2 \hbar^2} \left(\frac{q_0^2}{4} - 2 q_0 (e^{\alpha T} + q_1) - \frac{E_{n,0} q_0}{D_e} + e^{\alpha T} + q_1 \right). \]

\[\alpha_7 = \frac{4 \mu D_e}{\alpha^2 \hbar^2} \left(q_0 - \frac{E_{n,0} q_0}{D_e} - e^{\alpha T} - q_1 \right), \]

\[\alpha_8 = \frac{2 \mu (D_e - E_{n,0})}{\alpha^2 \hbar^2}, \alpha_9 = \frac{1}{4} \left(q_0^2 + \frac{8 \mu D_e (e^{\alpha T} + q_1)^2}{\alpha^2 \hbar^2} \right). \]

\[\alpha_{10} = 1 + 2 T_V, \alpha_{11} = -2 q_0 \left[1 + T_V \right] + T_V, \alpha_{12} = T_V, \alpha_{13} = \frac{q_0}{2} - \frac{1}{2} T_V + q_0 T_V, T_V = \sqrt{\frac{2 \mu (D_e - E_{n,0})}{\alpha^2 \hbar^2}}. \]

Substituting the parameters in Eq. (13) into Eq. (4), we have the energy equation for the system as

\[E_n = D_e - \frac{\alpha^2 \hbar^2}{2 \mu} \left[\frac{4 \mu D_e (e^{\alpha T} + q_1)}{\alpha^2 \hbar^2} - n(n + 1) q_0 + \frac{q_0}{2} - \left(n + \frac{1}{2} \right) \sqrt{q_0^2 + \frac{8 \mu D_e (e^{\alpha T} + q_1)^2}{\alpha^2 \hbar^2}} \right] \left(n + \frac{1}{2} \right) \]
(14)

and the corresponding wave function is obtained when the values of \(\alpha_{10} \) to \(\alpha_{13} \) in Eq. (6) are substituted into Eq. (5),

\[U_n(y) = N_n y^T_V \left(1 + q_0 y \right)^T_V (q_0 - 1 + \frac{1}{2} (T_V - q_0) \left(\frac{T_V - \frac{T_V}{2}}{m} \right) (1 + 2 q_0 y) \right). \]
(15)

Expectation Values

In this section, we calculated some expectation values using Hellmann-Faynman Theory (HFT)\(^{52-56}\). When a Hamiltonian \(H \) for a given quantum system is a function of some parameter \(v \), the energy-eigenvalue \(E_n \) and the eigenfunction \(U_n(v) \) of \(H \) are given by

\[\frac{\partial E_n(v)}{\partial v} = \left\langle U_n(v) \left| \frac{\partial H(v)}{\partial v} \right| U_n(v) \right\rangle, \]
(16)

with the effective Hamiltonian as

\[H = \frac{\hbar^2}{2 \mu} \frac{\partial^2 U_{\text{eff}}(r)}{\partial r^2} + \frac{\hbar^2}{2 \mu} \ell (\ell + 1) + D_e \left(e^{-\alpha r} + q_1 \right) - \frac{(e^{\alpha T} + q_1)^2}{e^{-\alpha r} + q_0}. \]
(17)

Setting \(v = \mu \) and \(v = D_e \), we have the expectation values of \(p^2 \) and \(V \) respectively as

\[\langle p^2 \rangle_n = \left[\frac{4 (e^{\alpha T} + q_1)^2}{2 \mu} + \frac{\alpha^2 \hbar^2}{\mu (\lambda_T - q_0 (2n + 1))^2} \right] \left(n + \frac{1}{2} \right)^2, \]
(18)

\[\langle V \rangle_n = \frac{4 (e^{\alpha T} + q_1)^2 (A \mu - (n + \frac{1}{2}) \lambda_T)^2}{\lambda_T (\lambda_T - q_0 (2n + 1))^2} - A_T \left(\lambda_T - (e^{\alpha T} + q_1) \left(n + \frac{1}{2} \right) \right) \frac{\alpha^2 \hbar^2 (A \mu - (n + \frac{1}{2}) \lambda_T)}{\mu (\lambda_T - q_0 (2n + 1))^2}. \]
(19)

\[A = \frac{4 D_e (e^{\alpha T} + q_1)}{\alpha^2 \hbar^2} + \frac{q_0}{2} - n(n + 1) q_0, \]
(20)

\[\lambda_T = \sqrt{q_0^2 + \frac{8 \mu D_e (e^{\alpha T} + q_1)^2}{\alpha^2 \hbar^2}}. \]

The average deviation of the calculated results from the experimental results is obtained using the formula

\[\sigma_{av} = \frac{100}{N} \sum_{n=1}^{N} \left| \frac{E_{ER} - E_{CR}}{E_{ER}} \right|. \]
(21)
The state of cesium dimer with parameter \(q_1 = q_1 = 1 \text{ cm}^{-1} \) and \(q_0 = q_1 = -1 \text{ cm}^{-1} \) is obtained with a percentage deviation of 0.0038% for sodium dimer and 0.0016% for lithium dimer. In Table 3, we presented the numerical results for the two different expectation values calculated in Eq. (20) and Eq. (21). The effect of the deformed and adjustable parameters on the expectation values can be seen in Table 3. For \(\langle p^2 \rangle \), the values obtained with \(q_0 = q_1 = 1 \) are higher than their counterpart obtained with \(q_0 = q_1 = -1 \). However, for \(\langle V \rangle \), the values obtained with \(q_0 = q_1 = -1 \) are higher than their counterpart obtained with \(q_0 = q_1 = 1 \).

The effect of the screening parameter on the energy eigenvalues with two values each of the deformed parameter and adjustable parameter are shown in Fig. 1. In each case, the energy of the system varies inversely with \(\Delta e \) and \(\Delta r \), respectively.

Table 1. Comparison of theoretical values with experimental values for the vibrational energy levels of the modified deformed exponential-type molecular potential for \(3^1 \Sigma_A^+ \) state of cesium dimer.

\(n \)	\(\text{RKR} \text{ cm}^{-1} \)	\(q_0 = q_1 = 1 \text{ cm}^{-1} \)	\(\text{RKR} \text{ cm}^{-1} \)	\(q_0 = q_1 = -1 \text{ cm}^{-1} \)
0	14.4248	14.42647874	19.477.5507	19.477.55769
1	43.1680	43.17554991	19.506.2939	19.506.29999
2	71.7657	71.77608344	19.534.8916	19.534.90041
3	100.2211	100.2450878	19.563.3470	19.563.35986
4	128.5375	128.55090535	19.591.6634	19.591.68592
5	156.7182	156.7410068	19.619.8441	19.620.43756
6	184.7663	184.7735524	19.647.8922	19.648.55903
7	212.6851	212.6619860	19.675.8110	19.677.08704
8	240.4778	240.4268832	19.703.6037	19.704.38389
9	268.1477	268.2399412	19.731.2736	19.732.74500
10	295.6980	296.0578830	19.758.8239	19.759.62187
11	323.1320	323.3428999	19.786.2579	19.786.99999
12	350.4529	351.0169355	19.813.5788	19.814.29857

Table 1. Comparison of theoretical values with experimental values for the vibrational energy levels of the modified deformed exponential-type molecular potential for \(3^1 \Sigma_A^+ \) state of cesium dimer.

Table 2. Comparison of theoretical values with experimental (in \(\text{cm}^{-1} \)) values for the vibrational energy levels of the modified deformed exponential-type molecular potential for \(5^1 \Delta_g \) state sodium dimer and \(a^1 \Sigma_u^+ \) state of lithium dimer.

\(n \)	\(N\Delta_{3g} \text{ cm}^{-1} \)	\(q_0 = q_1 = 1 \text{ Present results} \)	\(L_{12} \text{ cm}^{-1} \)	\(q_0 = q_1 = -1 \text{ Present results} \)
0	60.33000	60.30301255	31.8570	31.76487540
1	180.37300	180.2529821	90.4530	90.32373499
2	299.55500	299.30301255	142.5230	142.3750821
3	417.87100	417.2590837	188.2400	188.0291646
4	535.31300	534.4058726	227.6790	227.3301735
5	651.87200	650.2238934	260.8370	260.3399997
6	767.53900	765.0058797	287.6650	287.1458022
7	882.30500	879.4527801	308.0980	307.8296283
8	996.16200	993.0286669	322.1550	322.4300795
9	1109.10000	1104.2639849	330.1700	331.0234210
10	1221.11300	1215.346550	333.2690	333.6470384

Table 2. Comparison of theoretical values with experimental values for the vibrational energy levels of the modified deformed exponential-type molecular potential for \(5^1 \Delta_g \) state sodium dimer and \(a^1 \Sigma_u^+ \) state of lithium dimer.

where \(E_{EBR} \) is the experimental data, \(E_{CR} \) is the calculated values and \(N \) is the total number of the experimental data.

Discussion of result

The comparison of the observed values of RKR and calculated values for \(3^1 \Sigma_A^+ \) state of cesium dimer with \(q_0 = q_1 = 1 \), \(q_0 = q_1 = -1 \), \(D_e = 2722.28 \text{ cm}^{-1} \), \(r_e = 5.3474208 \text{ Å} \), and \(\omega_e = 28.891 \text{ cm}^{-1} \) is reported in Table 1. The results for two values for each of the deformed parameter and adjustable parameter agree with the observed values of the cesium dimer. However, the results obtained with \(q_0 = q_1 = -1 \) are higher than their counterpart obtained with \(q_0 = q_1 = 1 \). In Table 2, the comparison of vibrational energies of sodium dimer and lithium dimer respectively are reported. When the deformed parameter and the adjustable parameter are taken as one with \(D_e = 79885 \text{ cm}^{-1} \), \(r_e = 1.097 \text{ Å} \), \(\omega_e = 2358.6 \text{ cm}^{-1} \), the results agreed with the observed values of \(5^1 \Delta_g \) state of sodium dimer. Taken the deformed parameter and adjustable parameter respectively as minus one, with \(D_e = 2722.28 \text{ cm}^{-1} \), \(r_e = 4.173 \text{ Å} \) and \(\omega_e = 65.130 \text{ cm}^{-1} \), the results obtained correspond to the observed values of lithium dimer.

To deduce the effect of the deformed and adjustable parameters on the numerical values and discrepancy of the calculated results from the experimental data, we used the formula given in Eq. (28). For cesium dimer, the average percentage deviation for \(q_0 = q_1 = 1 \) is 0.0038% while the average percentage deviation for \(q_0 = q_1 = -1 \) is 0.0002%. For sodium dimer with \(q_0 = q_1 = 1 \), the average percentage deviation is 0.0342% while the average percentage deviation for lithium dimer with \(q_0 = q_1 = -1 \), is 0.0016%. In Table 3, we presented the numerical results for the two different expectation values calculated in Eq. (20) and Eq. (21). The effect of the deformed and adjustable parameters on the expectation values can be seen in Table 3. For \(\langle p^2 \rangle \), the values obtained with \(q_0 = q_1 = 1 \) are higher than their counterpart obtained with \(q_0 = q_1 = -1 \). However, for \(\langle V \rangle \), the values obtained with \(q_0 = q_1 = -1 \) are higher than their counterpart obtained with \(q_0 = q_1 = 1 \).

The effect of the screening parameter on the energy eigenvalues with two values each of the deformed parameter and adjustable parameter are shown in Fig. 1. In each case, the energy of the system varies inversely with...
Conclusion
The solutions of a one-dimensional Schrödinger equation is obtained for a molecular potential model using parametric Nikiforov–Uvarov method. By changing the numerical values of the deformed parameter and adjustable parameter, the results obtained for different molecules agreed with experimental values. However, the results obtained with \(q_0 = q_1 = -1 \) are closer to the experimental values compared with the results obtained with \(q_0 = q_1 = 1 \). The results for lithium dimer are more closer to the experimental values followed by the results for cesium dimer obtained with \(q_0 = q_1 = -1 \).

Table 3. Expectation values at various quantum states with \(\hbar = \mu = 1, r_e = 0.4, \alpha = 0.25 \) and \(D_e = 5 \).

\(n \)	\(q_0 = q_1 = -1 \)	\(q_0 = q_1 = 1 \)		
\(\langle p^2 \rangle_n \)	\(\langle V \rangle_n \)	\(\langle p^2 \rangle_n \)	\(\langle V \rangle_n \)	
0	0.086637482	22.32941128	0.295409752	15.96118652
1	0.111005521	22.44835649	0.626165798	16.66269191
2	0.094264753	22.33359455	0.781132946	17.40250843
3	0.072569294	21.92055901	0.855219469	18.17986161
4	0.056599797	21.12697090	0.88914740	18.99025081
5	0.049804101	19.84830239	0.901338383	19.82213968
6	0.033277583	17.95340272	0.902210621	20.65071832
7	0.016766628	15.28301985	0.896751247	21.42578612
8	0.008774554	11.65940036	0.887879382	22.04728521
9	0.006903527	6.930904930	0.877275751	22.31342118
10	0.100533144	1.123376051	0.865926536	21.80368609

Figure 1. Variation of energy \(E_n \) against the screening parameter \(\alpha \), with \(\hbar = \mu = 1, r_e = 0.4 \) and \(D_e = 5 \).
References

1. Hu, X. T., Liu, J. Y. & Ija, C. S. The 3S1g state of Ca2 molecule. Comput. Theor. Chem. 1019, 137 (2013).

2. Lino da Silva, M., Guerra, V., Loureiro, I. & Sá, P. A. Vibrational distributions in N2 with an improved calculation of energy levels using the RRK method. Chem. Phys. 348, 187 (2008).

3. Egriés, H., Demirhan, D. & Buyukkülte, F. Exact solutions of the Schrödinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential. Phys. Lett. A 275, 229 (2000).

4. Horchani, R., Al-Kindi, N. & Jelassi, H. Ro-vibrational energies of caesium molecules with the Tietz-Hua oscillator. Mol. Phys. https://doi.org/10.1080/02678997.2020.1817246 (2020).

5. Whang, T. & Cheng, C.-P. Observation of L uncoupling in the 5D4 Rydberg state of Na2. J. Chem. Phys. 123, 224303 (2005).

6. Farout, M., Bassalat, A. & Ikhdair, S. M. Exact quantized momentum eigenvalues and eigenstates of a general potential model. J. Appl. Math. Phys. 8, 1434 (2020).

7. Farout, M., Bassalat, A. & Ikhdair, S. M. Feinberg–Horodecki exact momentum states of improved deformed exponential-type potential. J. Appl. Math. Phys. 8, 1496 (2020).

8. Ija, C. S. et al. Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137, 014101 (2012).

9. Liu, J.-Y., Hu, X.-T. & Jia, C.-S. Molecular energies of the improved Rosen–Morse potential energy model. Can. J. Chem. 92, 40 (2014).

10. Song, X.-Q., Wang, C.-W. & Ija, C.-S. Thermodynamic properties of sodium dimer. Chem. Phys. Lett. 673, 50 (2017).

11. Hamzavi, M., Rajabi, A. A. & Talywe, K.-E. The rotation-vibration spectrum of diatomic molecules with the Tietz–Hua rotating oscillator. Int. J. Quant. Chem. 112, 2701 (2012).

12. Farout, M., Bassalat, A. & Ikhdair, S. M. Exact quantized momentum eigenvalues and eigenstates of a general potential model. J. Appl. Math. Phys. 8, 1434 (2020).

13. Onyeaju, M. C. & Onate, C. A. Vibrational entropy and complexity measures in modified Pöschl-Teller plus Woods-Saxon potential.

14. Onate, C. A., Adebiyi, L. S. & Bankole, D. T. Eigensolutions and theoretic quantities under the nonrelativistic wave equation.

15. Okorie, U. S., Ibekwe, E. E., Onyeaju, M. C. & Ikot, A. N. Solutions of the Dirac and Schrödinger equations with shifted Tietz-Wei potential.

16. Nikiforov, A. F. & Uvarov, V. B. Factorization Method in Quantum Mechanics (Springer, 2007).

17. Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981).

18. Cooper, F., Khare, A. & Sukhatme, U. Supersymmetry and quantum mechanics.

19. Ma, Z.-Q. & Xu, B.-W. Quantum correction in exact quantization rules. Europhys. Lett. 69, 685 (2005).

20. Qiang, W.-C. & Dong, S.-H. Proper quantization rule.

21. Ikot, A. N., Okorie, U. S., Rampho, G. J. & Amadi, P. O. Approximate analytical solutions of the Klein-Gordon equation with generalised Morse potential. Int. J. Thermophys. 42, 10 (2021).

22. Bayrak, O. & Boztosun, I. Bound state solutions of the Hulthén potential by using the asymptotic iteration method. Phys. Scr. 76, 92 (2007).

23. Boumali, A. & Labidi, M. Shannon entropy and Fisher information of the one-dimensional Klein-Gordon oscillator with energy-dependent potential. Mod. Phys. Lett. A 26, 103078 (2020).

24. Okorie, U. S., Ikot, A. N., Chukwuocha, E. O. & Rampho, G. J. Thermodynamic properties of improved deformed exponential-type potential (IDEP) for some diatomic molecules. Results Phys. 17, 103078 (2020).

25. Khoradad, R. & Ghanbari, A. Theoretical prediction of thermodynamic functions of TiC: Morse ring-shaped potential. Low Temp. Phys. 199, 1198 (2020).

26. Wang, J. et al. Thermodynamic properties for carbon dioxide. ACS Omega 4, 19139 (2019).

27. Onate, C. A. & Ojonubah, J. O. Relativistic and nonrelativistic solutions of the generalized Pöschl-Teller and hyperbolic potentials with some thermodynamic properties. Int. J. Mod. Phys. E 24, 1550020 (2015).

28. Yahya, W. & Oyewumi, K. J. Thermodynamic properties and approximate solutions of the t-state Pöschl-Teller-type potential. J. Ass. Arab. Univ. Basic Appl. Sci. 21, 53 (2016).

29. Oyewumi, K. J., Falaye, B. J., Onate, C. A., Oluwadare, O. J. & Yahya, W. A. Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng-Fan potential model. Mol. Phys. 112, 127 (2014).

30. Mesa, A. D. S., Quesen, C. & Smirnov, Y. F. Generalized Morse potential: Symmetry and satellite potentials. J. Phys. A: Math. Theor. 31, 321 (1998).

31. Rong, Z., Kjaergaard, H. G. & Søge, M. L. Comparison of the Morse and Deng-Fan potentials for Χ-H bonds in small molecules. Mol. Phys. 101, 2285 (2003).

32. Gordillo-Vázquez, F. J. & Kunc, J. A. Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation. J. Appl. Phys. 84, 4649 (1998).

33. Ackerman, C. & Tipping, R. H. Vibration-rotational and rotational intensities for CO isotopes. J. Mol. Spectrosc. 99, 431 (1983).

34. Manai, I., Horchani, R., Lignier, H., Pillet, P. & Comparat, D. Rowhbrational cooling of molecules by optical pumping. Phys. Rev. Lett. 109, 183001 (2012).

35. Viteau, M. et al. Optical pumping and vibrational cooling of molecules. Science 321, 232 (2008).
45. Vala, J., Dulieu, O., Masnou-Seeuws, F., Pillet, P. & Kosloff, R. Coherent control of cold-molecule formation through photoassociation using a chirped-pulsed-laser field. *Phys. Rev. A* **63**, 013412 (2000).

46. Fioretti, A. *et al.* Cold cesium molecules: From formation to cooling. *J. Mod. Opt.* **56**, 2089 (2009).

47. Vatasescu, M. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses. *Nucl. Instrum. Methods B* **279**, 8 (2012).

48. Beloy, K., Borschevsky, A., Flambaum, V. V. & Schwertfeger, P. Effect of a variation on a prospective experiment to detect variation of α/m in diatomic molecules. *Phys. Rev. A* **84**, 042117 (2011).

49. Li, D., Xie, F. & Li, L. Observation of the Cs$_2$(3$^3\Sigma^+_g$) state by infrared–infrared double resonance. *Chem. Phys. Lett.* **458**, 267 (2008).

50. Li, D. *et al.* The $3^3\Sigma^+_g$ and a $3^3\Sigma^+_u$ states of Cs$_2$: Observation and calculation. *Chem. Phys. Lett.* **441**, 39 (2007).

51. Onate, C. A. & Idiodi, J. O. A. Fisher information and complexity measure of generalized morse potential model. *Commun. Theor. Phys.* **66**, 275 (2016).

52. Jia, C.-S., Liu, J.-Y., Wang, P.-Q. & Lin, X. Approximate analytical solutions of the Dirac equation with the hyperbolic potential in the presence of the spin symmetry and pseudo-spin symmetry. *Int. J. Theor. Phys.* **48**, 2633 (2009).

53. Ikot, A. N. *et al.* Klein–Gordon equation and nonrelativistic thermodynamic properties with improved screened Kratzer potential. *J. Low Temp. Phys.* https://doi.org/10.1007/S10909-020-02544-w (2021).

54. Dong, S.-H., Lozada-Cassou, M., Yu, J., Jiménez-Ángeles, F. & Rivera, A. L. Hidden symmetries and thermodynamic properties for a harmonic oscillator plus an inverse square potential. *Int. J. Quant. Chem.* **107**, 366 (2007).

55. Esfahani, M., Mehraban, H. & Ikhaidar, S. M. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields. *Chin. Phys. B* **26**, 060302 (2017).

56. Okorie, U. S., Edet, C. O., Ikot, A. N., Rampho, G. J. & Sever, R. Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. *Indian J. Phys.* **95**, 411 (2021).

57. Yanar, H., Aydoğdu, O. & Salı, M. Modelling of diatomic molecules. *Mol. Phys.* **114**, 3134–3142 (2016).

Author contributions

C.A. Onate; Formulate the work, solved the calculations I.B. Okon; Wrote the introduction M.C. Onyeaju; Makes all the plots and discussed the results O. Ebomwonyi; Solved the calculations and typeset the paper.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to C.A.O.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021