Identification of Putative Chemosensory Receptor Genes from the *Athetis dissimilis* Antennal Transcriptome

Junfeng Dong¹, Yueqin Song¹, Wenliang Li¹, Jie Shi², Zhenying Wang³

¹ Forestry College, Henan University of Science and Technology, Luoyang, 471003, China, ² Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China, ³ State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

*zywang@ippcaas.cn

Abstract

Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of *Athetis dissimilis*, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO₂ detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads.

Introduction

Athetis dissimilis (Hampson, 1909) (Lepidoptera: Noctuidae) is found in many countries including Japan, Korea, India, Philippines and Indonesia [1–4]. In 2012, it was first observed that this species caused damage to summer maize seedling in Shandong province in China, although it had not been documented previously as an agricultural pest [4]. Since then, this pest has been found in Henan, Shanxi and Anhui provinces. Because of the fact that larvae of *A. dissimilis* live under plant residues, it is difficult to control the spread of the pest with chemical pesticides. Therefore, novel control strategies are urgently needed to mitigate crop damage.
Olfaction plays several vital roles in insect biology, including food selection, mate choice, the location of suitable oviposition sites by females, warning, and defense [5]. Accurate detection of volatile compounds in the surrounding environment is essential for insect survival. Antennae are specialized main olfactory organs containing a large variety of sensilla. Environmental chemical compounds transported from micro-pore on the sensilla through antennal lymph to olfactory receptor neurons (ORNs) that generate an electrical impulse [6]. Several families of transmembrane proteins at the membrane surface of ORNs appear to detect and recognize odorant molecules [7]. These transmembrane protein families occupied with odorant molecules classified as olfactory receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) [8–12]. Insect OR proteins contain seven transmembrane domains, but they have an inverted topology compared to those of vertebrates [13,14]. To function, one conventional OR and one obligate olfactory co-receptor (Orco) must form a dimer complex that works as a ligand-gated ion channel [13,15–17]. ORs in moths contain pheromone receptors (PRs) detecting sex pheromone and non-PR ORs. GRs were mainly expressed in the gustatory organs such as the mouthparts [18], in fact, some GRs are also expressed in olfactory structures and presumably have olfactory function [19]. The conservation of GR sequences is much higher than the ORs [20,21]. IRs is another variant subfamily of ionotropic glutamate receptors (iGluRs) [13]. In insects, the IR family includes the conserved "antennal IRs" having an olfactory function, and the species-specific "divergent IRs" having gustatory function [22].

The identification of chemosensory receptor genes in pest insects is especially significant due to their potential as novel targets in insect pest control. With the improvement of high-throughput sequencing methods, more chemosensory receptors have been discovered to date. Transcriptome sequencing or RNA sequencing (RNA-seq) is one common method that helps to obtain a large variety of functional genes. It has been used widely to identify genes involved in chemosensation in insects [23,24].

In order to identify chemosensory receptor genes of *Athetis dissimilis*, an organism with no available genomic information, we sequenced and analyzed an antennae transcriptome of adult females and males using Illumina HiSeq2500 sequencing. We report here that the antennal transcriptome of *A. dissimilis* includes 60 OR, 18 GR and 12 IR genes.

Materials and Methods

Insect rearing and antennae collection

Athetis dissimilis originally collected in July 2012 from infested maize seedlings in the Experiment Station of Henan University of Science and Technology in Luoyang, Henan province, China. The insects were fed with an artificial diet in the laboratory under conditions of 27 ± 1°C with 70 ± 5% relative humidity and maintaining 16 h: 8 h light/dark cycle. After pupation, pupae sexed according to the position of the genital scar. Male and female pupae were stored in separate cages for the emergence. Adults fed with 10% sugar solution. About 200 pairs of antennae of 3–4 days old male and female moths were excised and immediately stored in liquid nitrogen until use.

RNA purification and sequencing

Total RNA was extracted using the RNAiso Plus kit (TaKaRa) and treated with RNase-free DNase I (TaKaRa) to remove residual DNA following the manufacturer’s instructions and then measured for purity, concentration and integrity respectively using NanoDrop 2000c spectrophotometer (NanoDrop Products, Thermo Scientific, USA), Qubit 2.0 (Qubit® 2.0 fluorometer, Life Technologies, USA) and Agilent 2100 (Quantifluor-ST fluorometer, Promega, USA). The qualified RNA samples were then used for transcriptome sequencing.
Following the TruSeq RNA Sample Preparation Guide v2 (Illumina), mRNA was enriched using oligo (dT) magnetic beads and sheared to create short fragments by adding Fragmentation Buffer. The first strand cDNAs were synthesized using random hexamer primers, which were further transformed into double stranded cDNA by using dNTPs, RNase H and DNA polymerase I. Next to the purification of the double stranded cDNA with AMPure XP beads, the end-repairing, Poly-A tailing and, sequencing adapters linking processes were completed. The size of the fragment was chosen using AMPure XP beads, and cDNA library was constructed by PCR amplification (Veriti96-Well Thermal Cycle, Applied Biosystems, USA). The concentration and insert size of cDNA library were detected using Qubit 2.0 and Agilent 2100, and quantified with q-PCR (CFX-96, Bio-Rad, USA). Finally, 125 bp pair-end reads were generated by sequencing cDNA with Illumina HiSeq2500 based on sequencing-by-synthesis method. Sequencing analysis was performed by the Genomics Services Lab of Beijing Biomarker Technologies Co., Ltd. (Beijing, China). The raw data processing and base calling were performed by the Illumina instrument software.

Unigene generation and annotation
In order to obtain the clean data, the raw reads were initially processed for removing the adapter sequences and low-quality bases. Then, the Q30 and GC-content were used to assess the sequencing quality. Sequenced reads were assembled de novo with Trinity software [25] by setting min_kmer_cov to 2 and all other parameters to default. Unigene sequences were aligned by online BLASTX program on the databases of NR, Swiss-Prot, KOG and KEGG using a cut-off E-value of \(10^{-5}\). Unigenes were then annotated using BLAST with E-value of \(10^{-5}\) and HMMER with E-value of \(10^{-10}\). Then, NR BLASTX results were directed into GO annotation using Blast2GO. Genes are described in terms related to molecular function, cellular component or biological process. TransDecoder software was used to predict the coding sequences (CDS) and amino acid sequences of Unigene.

Identification of the target genes and phylogenetic analyzes
Target sequences were identified from the BLAST results obtained by running against the database with E-value of \(<10^{-5}\). The complete coding region was determined using the ORF finder (http://www.ncbi.nlm.nih.gov/orffinder). The nucleotide sequences of annotated genes were translated into amino acid sequences using ExPASy portal (http://web.expasy.org/translate/). The transmembrane-domains (TMDs) of annotated genes were then predicted using TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/). Genes of other insect species such as Bombyx mori, Cydia pomonella, and Heliothis virescens were used as references.

After completing the alignments of the candidate ORs, GRs and IRs using ClustalX (1.83) [26], phylogenetic trees were constructed using PhyML and Seaview v.4. The OR data set contains 204 genes in total, containing 60 candidate AdisOR sequences from A. dissimilis, 18 sequences from Helicoverpa armigera [7], 50 sequences from B. mori [27], 41 sequences from C. pomonella [23] and 35 sequences from Danaus plexippus. The GR data set, on the other hand, comprises respectively 17, 33 and 57 sequences from Helicoverpa assulta [28], B. mori [29], Drosophila melanogaster [30] in addition to 18 candidate AdisGR genes identified. In the IR data set, following numbers of sequences were collected 11 IRs from Spodoptera littoralis [31], 31 IRs from H. assulta [28], 6 IRs from Tenebrio molitor [32], 15 IRs from Dendroctonus ponderosae [33], and 7 IRs from Ips typographus [33]. The phylogenetic trees were viewed and edited using FIG TREE v. 1.3.1.
OR, GR and IR transcription abundance analysis

Transcription levels of OR, IR and GR genes of *A. dissimilis* are reported in values of Fragments Per Kilobase of transcript per million mapped reads (FPKM). The FPKM measure considers the effect of sequencing depth and gene length for the read count at the same time, and is currently the most commonly used method for estimating gene expression levels [34]. Thus, the FPKM of each gene was calculated based on the length of the gene and read count mapped to this gene.

Results

Sequence analysis and assembly

We obtained 26,234,196 female and 28,315,769 male clean reads with a total of 13.74 Gb nucleotides from the antennal cDNA libraries. The sample GC content was consistently about 45%, and the average quality value was \(\geq 30 \) for more than 87.83% of the cycle (Table 1). In total 10,821,996 contigs were generated with a k-mer of 25. Then 177,477 transcripts and 98,001 unigenes with N50 length of 1,666 and 1,172, were obtained from assembled using Trinity (Table 2).

Sequence annotation

The unigenes were annotated according to the alignments done in the diverse protein databases listed in the Methods section. The analyze showed significant matches of 25,355 unigenes (25.87%) in the NR, 14,618 unigenes (14.92%) in the Pfam, 14,026 unigenes (14.92%) in the KOG, and 13,807 unigenes (14.09%) in the Swiss-Prot databases. As a result, up to 25,930 putative coding sequences were identified (Table 3). NR database queries revealed that a high percentage of *A. dissimilis* sequences closely matched to sequences of *B. mori* (11224, 44.63%), followed by *D. plexippus* (6567, 26.11%), *Tribolium castaneum* (959, 3.70%), *Acyrthosiphon pisum* (587, 2.26%), and *Papilio xuthus* (407, 1.57%) respectively (Fig 1).

Table 1. Summary of Illumina transcriptome sequencing for *Athetis dissimilis*.

Samples	Read Number	Base Number	GC Countent	% \(\geq Q30 \)
♀ antennae	26,234,196	6,607,416,977	45.92%	87.83%
♂ antennae	28,315,769	7,132,586,940	45.17%	88.32%

doi:10.1371/journal.pone.0147768.t001

Table 2. Summary of de novo assembly of the *Athetis dissimilis* transcriptome.

Length Range	Contig	Transcript	Unigene
200–300	10,773,766	69,750 (39.30%)	55,927 (57.07%)
300–500	22,814	33,897 (19.10%)	18,694 (19.08%)
500–1000	11,939	30,000 (16.90%)	10,148 (10.35%)
1000–2000	7,405	25,057 (14.12%)	7,329 (7.48%)
2000+	6,072	18,773 (10.58%)	5,903 (6.02%)
Total Number	10,821,996	177,477	98,001
Total Length	538,597,162	149,497,716	58,127,312
N50 Length	49	1,644	1,172
Mean Length	49.77	842.35	593.13

doi:10.1371/journal.pone.0147768.t002
In total, 38,759 unigenes were classified into the following three ontologies with the GO analysis: i.) Molecular Function: 14,727 unigenes (38.00%), ii.) Cellular Components: 6,512 unigenes (16.80%) and, iii.) Biological Processes: 17,520 unigenes (45.20%) (Fig 2). Especially the proteins involved in binding in the Molecular Function category were abundant, which enabled us to identify the genes related to the olfactory recognition pathways. In addition to this, all unigenes were searched against the COG database for functional prediction and classification. After all, they were grouped into 25 specific categories (Fig 3). The largest group was “General function prediction only” (1609 genes, 26.97%) succeeding with “replication, recombination and repair” (1210, 20.28%), “translation, ribosomal structure and biogenesis” (575, 9.64%), “amino acid transport and metabolism” (489, 8.20%), “carbohydrate transport and metabolism” (417, 6.99%), “post-translation modification, protein turnover and chaperones” (411, 6.89%), and “signal transduction mechanisms” (370, 6.20%) which is one of the most important categories assigned for insect chemical signal transduction. Only a few unigenes were

Annotated databases	All sequences	≥ 300 bp	≤ 1000 bp
COG_Annotation	5967	1537	3722
GO_Annotation	9170	3089	3930
KEGG_Annotation	5678	1618	3206
KOG_Annotation	14026	4191	7657
Pfam_Annotation	14618	4416	8420
Swiss-Prot_Annotation	13807	4067	7800
nr_Annotation	25355	9420	10457
All_Annotated	25930	9675	10487

doi:10.1371/journal.pone.0147768.t003

In a total, 38,759 unigenes were classified into following three ontologies with the GO analysis: i.) Molecular Function: 14,727 unigenes (38.00%), ii.) Cellular Components: 6,512 unigenes (16.80%) and, iii.) Biological Processes: 17,520 unigenes (45.20%) (Fig 2). Especially the proteins involved in binding in the Molecular Function category were abundant, which enabled us to identify the genes related to the olfactory recognition pathways. In addition to this, all unigenes were searched against the COG database for functional prediction and classification. After all, they were grouped into 25 specific categories (Fig 3). The largest group was “General function prediction only” (1609 genes, 26.97%) succeeding with “replication, recombination and repair” (1210, 20.28%), “translation, ribosomal structure and biogenesis” (575, 9.64%), “amino acid transport and metabolism” (489, 8.20%), “carbohydrate transport and metabolism” (417, 6.99%), “post-translation modification, protein turnover and chaperones” (411, 6.89%), and “signal transduction mechanisms” (370, 6.20%) which is one of the most important categories assigned for insect chemical signal transduction. Only a few unigenes were
assigned to the functional groups like “cell motility” (18; 0.30%) and “nuclear structure” (2; 0.03%). In order to identify the biological pathways comprising annotated genes, 98,001 unigenes were mapped to reference canonical pathways in KEGG and correspondingly 5,678 sequences assigned into 184 KEGG pathways. The top 13 KEGG pathways contained over
100 unigenes (Fig 4). For example, 264 sequences belonged to the class “ribosome” (PATH: ko03010), followed by 190 in the “protein processing in endoplasmic reticulum” (PATH: ko04141) and 170 in “purine metabolism” (PATH: ko00230).

Chemosensory receptors

A total of 73 different sequences that encode candidate OR genes were identified by bioinformatic analysis. Among them, 59 were deposited in the GenBank database under accession numbers in between KR935700 to KR935758, the one Orco gene was deposited under the accession number KR632987. Although 13 other sequences are either shorter than 200 bp or have no common sites found for computing distances, we did not exclude the possibility that they may represent non-conserved portions of genes. Hereby we only analyzed the 60 OR sequences used in our phylogenetic tree construction. The information on the 60 ORs can be found in Table 4, while the sequences of 13 residues OR gene were listed in S2 File. Confirmation was made by phylogenetic analysis for the four candidates AdisPR genes (AdisOR3, 6, 11, and 14), which clusters them into the conserved clade of lepidopteran species PRs. As expected, the AdisOrco sequence showed high homology to the conserved insect co-receptor clustered in the Orco clade. Aside from AdisOR47, all putative AdisORs were assigned to Lepidoptera ORs ortholog clades (Fig 5).

In the current study, 18 candidate GRs from the A. dissimilis antennal transcriptome were identified. Only two GR genes were full-length ORFs while the others were only partial sequences. All these genes were registered to NCBI GenBank (KR674128-KR674145). The information on the GR genes was listed in Table 5. A phylogenetic tree was constructed using 18 candidate ApisGRs, 18 H. assulta GRs, 33 B. mori GRs, and 56 D. melanogaster GRs (Fig 6). AdisGR1, 6, 7, 8 and 94 are the members of the “sugar” receptor subfamily and they were
Table 4. Unigenes of candidate olfactory receptors.

Unigene reference	Gene name	ORF (aa)	BLASTx best hit (Reference/Name/Species)	E-value	Identify	Full length	TMD (No)	accession numbers		
c73355.graph_c0	AdisOrco	473	dbj	BAG71415.1	olfactory receptor-2 [Mythimna separata]	8e-128	97%	Yes	7	KR632987
c64879.graph_c0	AdisOR3	435	gb	AGH58122.1	odorant receptor 16 [Spodoptera exigua]	5e-177	69%	Yes	6	KR935700
c68561.graph_c0	AdisOR6	129	gb	AGI96751.1	olfactory receptor 16 [Spodoptera litura]	2e-122	49%	No	0	KR935702
c71431.graph_c0	AdisOR11	442	gb	ACF32965.1	olfactory receptor 11 [Helicoverpa armigera]	0.0	76%	Yes	8	KR935707
c73498.graph_c0	AdisOR14	442	dbj	BAG71414.1	olfactory receptor-1 [Mythimna separata]	0.0	96%	Yes	5	KR935711
c71708.graph_c1	AdisOR4	357	ref	NP_001116817.1	olfactory receptor-like [Bombyx mori]	3e-114	64%	Yes	5	KR935701
c74206.graph_c0	AdisOR7	406	gb	AGK90001.1	olfactory receptor 7 [Helicoverpa armigera]	0.0	83%	Yes	5	KR935703
c70218.graph_c0	AdisOR8	382	emb	CAD31949.1	putative chemosensory receptor 8 [Heliolthis virescens]	8e-136	59%	Yes	6	KR935704
c62603.graph_c0	AdisOR9	203	gb	AGK90002.1	olfactory receptor 9 [Helicoverpa armigera]	4e-124	53%	Yes	3	KR935705
c68869.graph_c0	AdisOR10	383	gb	AGK90003.1	olfactory receptor 10 [Helicoverpa armigera]	0.0	90%	No	4	KR935706
c68437.graph_c0	AdisOR12a	456	gb	AGG08878.1	putative olfactory receptor 12 [Spodoptera litura]	0.0	68%	Yes	5	KR935708
c585.graph_c0	AdisOR12b	117	gb	AFC91721.1	putative olfactory receptor OR12 [Cydia pomonella]	4e-21	53%	No	2	KR935709
c71384.graph_c0	AdisOR13	431	emb	CAG38113.1	putative chemosensory receptor 12 [Heliolthis virescens]	0.0	80%	No	6	KR935710
c69788.graph_c0	AdisOR15	390	tpg	DA05974.1	odorant receptor 15 [Bombyx mori]	5e-118	54%	Yes	6	KR935712
c67162.graph_c0	AdisOR16	388	ref	NP_001104832.2	olfactory receptor 16 [Bombyx mori]	3e-157	68%	Yes	6	KR935713
c61610.graph_c0	AdisOR17	393	gb	AFC91725.1	putative odorant receptor OR17 [Cydia pomonella]	1e-84	49%	Yes	6	KR935714
c69146.graph_c0	AdisOR18	398	gb	ACL81188.1	putative olfactory receptor 18 [Mamestra brassicae]	0.0	83%	Yes	5	KR935715
c56910.graph_c0	AdisOR19	402	gb	AGG08879.1	putative olfactory receptor 19 [Spodoptera litura]	4e-142	61%	Yes	6	KR935716
c69267.graph_c1	AdisOR20	392	gb	AGK90009.1	olfactory receptor 20 [Helicoverpa armigera]	0.0	78%	Yes	7	KR935717
c68838.graph_c0	AdisOR21	401	emb	CU099410.1	olfactory receptor 29 [Manduca sexta]	0.0	69%	Yes	6	KR935718
c75449.graph_c0	AdisOR22	316	dbj	BAR43488.1	putative olfactory receptor 46 [Ostrinia furnacalis]	3e-88	42%	No	4	KR935719
c49866.graph_c0	AdisOR23	114	gb	AFC91730.1	putative odorant receptor OR22, partial [Cydia pomonella]	2e-06	31%	No	2	KR935720
c69916.graph_c0	AdisOR24	321	gb	AFC91732.1	putative odorant receptor OR24 [Cydia pomonella]	3e-75	47%	Yes	4	KR935721
c54998.graph_c0	AdisOR25	421	dbj	BAH66322.1	olfactory receptor [Bombyx mori]	2e-86	42%	Yes	6	KR935722

(Continued)
Unigene reference	Gene name	ORF (aa)	BLASTx best hit (Reference/Name/Species)	E-value	Identify	Full length	TMD (No)	accession numbers
c75146.graph_c0	AdisOR26	326	refNP_001091790.1 candidate olfactory receptor [Bombyx mori]	3e-154	67%	Yes 4	KR935723	
c66614.graph_c0	AdisOR27	376	refNP_001166893.1 olfactory receptor 27 [Bombyx mori]	2e-111	65%	Yes 6	KR935724	
c67713.graph_c0	AdisOR28	400	refNP_001166605.1 olfactory receptor 20 [Bombyx mori]	5e-115	52%	Yes 7	KR935725	
c65666.graph_c0	AdisOR29	398	refNP_001166894.1 olfactory receptor 29 [Bombyx mori]	2e-161	68%	Yes 6	KR935726	
c61198.graph_c0	AdisOR30	396	tpgDAA05986.1 odorant receptor 30 [Bombyx mori]	1e-125	57%	Yes 5	KR935727	
c70461.graph_c0	AdisOR31	407	gbAGG08876.1 putative olfactory receptor 51 [Spodoptera litura]	0.0	85%	Yes 4	KR935728	
c70212.graph_c0	AdisOR32a	87	dbiBAG12812.1 olfactory receptor-like receptor [Bombyx mori]	4e-82	39%	No 0	KR935729	
c61091.graph_c0	AdisOR32b	179	gbAFC91741.1 putative odorant receptor OR33, partial [Cydia pomonella]	5e-42	49%	No 0	KR935730	
c69561.graph_c0	AdisOR33	377	refNP_001103623.1 olfactory receptor 33 [Bombyx mori]	3e-87	40%	Yes 2	KR935731	
c67193.graph_c0	AdisOR34	390	refNP_001103623.1 olfactory receptor 33 [Bombyx mori]	2e-77	34%	No 4	KR935732	
c66964.graph_c1	AdisOR35	289	refNP_001166892.1 olfactory receptor 36 [Bombyx mori]	6e-101	60%	Yes 3	KR935733	
c74970.graph_c0	AdisOR36	307	gbAFL70813.1 odorant receptor 50, partial [Manduca sexta]	3e-112	58%	No 4	KR935734	
c71270.graph_c0	AdisOR37	415	gbAFL70813.1 odorant receptor 50, partial [Manduca sexta]	8e-122	53%	Yes 6	KR935735	
c72094.graph_c0	AdisOR38	419	refNP_001103476.1 olfactory receptor 35 [Bombyx mori]	8e-133	58%	Yes 5	KR935736	
c59825.graph_c0	AdisOR39	168	gbAFL70813.1 odorant receptor 50, partial [Manduca sexta]	5e-45	54%	No 1	KR935737	
c67128.graph_c1	AdisOR40	406	refXP_004925617.1 putative odorant receptor 85c-like [Bombyx mori]	2e-47	38%	Yes 7	KR935738	
c72958.graph_c0	AdisOR41	392	refNP_001091818.1 olfactory receptor 42 [Bombyx mori]	1e-133	60%	Yes 7	KR935739	
c61041.graph_c0	AdisOR42	173	refNP_001091818.1 olfactory receptor 42 [Bombyx mori]	8e-91	56%	No 4	KR935740	
c74000.graph_c0	AdisOR43	252	refXP_004927858.1 putative odorant receptor 85c-like [Bombyx mori]	0.0	73%	Yes 2	KR935741	
c67839.graph_c0	AdisOR44	429	gbAGG08877.1 putative olfactory receptor 44 [Spodoptera litura]	0.0	90%	Yes 6	KR935742	
c68687.graph_c0	AdisOR45	412	gbAEF32141.1 odorant receptor [Spodoptera exigua]	0.0	82%	Yes 7	KR935743	
c71141.graph_c0	AdisOR46	357	gbAGK89999.1 olfactory receptor 3 [Helicoverpa armigera]	0.0	86%	Yes 6	KR935744	
c69399.graph_c0	AdisOR47	393	refXP_003691419.1 odorant receptor 43a-like [Apis florea]	7e-08	24%	No 6	KR935745	
c64283.graph_c0	AdisOR53	403	gbAFC91736.1 putative odorant receptor OR28 [Cydia pomonella]	4e-138	55%	Yes 6	KR935746	
c63838.graph_c0	AdisOR54	289	gbEH72218.1 odorant receptor-like receptor [Danaus plexippus]	2e-110	56%	Yes 5	KR935747	
c69790.graph_c0	AdisOR56	402	refNP_001166617.1 olfactory receptor 56 [Bombyx mori]	7e-167	72%	No 5	KR935748	
classified as a clade with *H. assulta* “sugar” receptors (HassGR6, HassGR7 and HassGR8). In addition, two putative GR receptors (AdisGR3 and 93) were identified as the “CO₂” receptor genes of the insect that are sharing high sequence identity with *H. assulta* “CO₂” receptors (HassGR2 and HassGR3).

We also identified 12 candidate IR genes according to their similarities to known insect IRs, in which 4 sequences with full-length ORFs and 8 sequences with incomplete 5’ or 3’ terminus. These 12 sequences were deposited in the GenBank under succeeding accession numbers from KR912012 to KR912023. The information on the IRs was listed in Table 6. *A. dissimilis* IRs were named for their homology to those of *H. assulta* and *S. littoralis*. AdisIR8a.1 and 8a.2 were phylogenetically clustered with the highly conserved IR8a sub-family, but no single IR gene of *A. dissimilis* was located in the IR25a sub-family. Two IRs were clustered into the Sli-IR1/HassIR1.1 clade, with reliable bootstrap support, named as AdisIR1.1 and 1.2. IR75 was a very large clade that comprises four *A. dissimilis* IRs (AdisIR75d, 75q.2, 75p and 75p.1). Further, IR21a (containing Adis21a.2 and 21a.3) and IR41a (containing Adis41a) were also highly conserved clades. At least one insect IR orthologous could be assigned to the majority of the putative AdisIRs (Fig 7).

To analysis the transcription abundance of global chemosensory receptor genes in the sequenced libraries of both sexes, we surveyed the differential expression of all chemosensory receptor ORFs identified in the present study. The result is listed in S3 File.

Discussion

Transcriptome sequencing is a feasible and economical way to obtain target genes of interest in a short time; this technology has become popular for filtering chemosensory receptors from
insect antennae transcriptome. This has been accomplished for the orders and relevant species like: Lepidoptera: *Manduca sexta* (47 ORs, 6 IRs) [35], *H. armigera* (47 ORs, 12 IRs) [7], *C. pomonella* (43 ORs, 15 IRs) [23]; Hymenoptera: *Nasonia vitripennis* (225 ORs, 58 GRs) [36], *Apis mellifera* (170 ORs, 10 GRs) [37], *Glossina morsitans morsitans* (46 ORs, 14 GRs) [38]; Coleoptera: *Megacyllene caryae* (57 ORs) [39], *T. molitor* (20 ORs, 6 IRs) [32]; Diptera: *Calliphora stygia* (50 ORs, 21 GRs, 22 IRs) [24], *Anopheles gambiae* (75 ORs, 61 GRs, 46 IRs) [40]; and Homoptera: *Aphis gossypii* (45 ORs, 14 IRs) [41]; and Orthoptera: *Locusta migratoria* (142 ORs, 32 IRs) [42]. The genus *Athetis* is a group of 211 species [43]. Although the majority of the species are not considered as insect pests with major economic effects, a few *Athetis* species such as *A. lepigone*, *A. dissimilis* and *A. gluteosa* are identified as important crop pest insects in China. Here, we identified 60 candidate OR gene sequences, 18 GRs and 12 IRs from *A. dissimilis*. This is the first report in the genus *Athetis*, to our knowledge, that the olfactory receptors

Fig 5. Neighbor-joining tree of candidate olfactory receptor (OR) and pheromone receptor (PR) genes from *Athetis dissimilis* and other Lepidoptera. Unrooted tree was constructed using the BioNJ algorithm in SeaView v.4, which was made based on a sequence alignment using ClustalX 1.83. ORCO and PR genes are labeled in blue and red, respectively. Adis, *Athetis dissimilis*; Dple, *Danaus plexippus*; Cpom, *Cydia pomonella*; Bmor, *Bombyx mori*; Harm, *Helicoverpa armigera*.

doi:10.1371/journal.pone.0147768.g005
of moths are identified by using transcriptome technology with a transcriptome strategy proved to be effective in uncovering large sets of chemoreceptor from three major gene families.

ORs, sex-biased expression in the antennae of one sex, are generally considered as PRs that mediate behaviors specific to that sex. Lepidoptera sex pheromones produced by females may attract males for mating opportunities. Several moth sex pheromone receptors have now been functionally characterized, and most are expressed at higher levels in the male antennae [44–46]. Based on phylogenetic tree analyzes of the \textit{A. dissimilis} ORs, four of them clustered in a conserved clade of PRs found in Lepidopteran insects (Fig 5). We, therefore, hypothesize that some or all of them appear to be dedicated to sex pheromone detection. Accordingly, results from the transcription abundance analysis (S3 File) showed that \textit{AdisOR3}, \textit{6} and \textit{14} had very high expression quantities in the male antennae, while the gene expression level of \textit{AdisOR11} was the only one that is almost equal in the female and male antennae. \textit{AdisOR11} showed equal expression levels in male and female antennae, which may relate to females detecting their own pheromones.

Insect ORs are frequently co-expressed with a nonconventional OR, recently renamed as olfactory receptor co-receptor (Orco) while they were previously referred to as OR83b in \textit{D. melanogaster} and OR2 in \textit{B. mori} [47]. Unlike other insect ORs, with a little sequence homology, Orco is strikingly well conserved across insect species. We identified one AdisOrco sequence with a high degree of similarity to co-receptors from different insect orders clustered

Table 5. Unigenes of candidate gustatory receptors.
Unigene reference

c51995.graph_c0
c58414.graph_c0
c80317.graph_c0
c67557.graph_c0
c54401.graph_c0
c68781.graph_c0
c64495.graph_c0
c10749.graph_c0
c80494.graph_c0
c101589.graph_c0
c109192.graph_c0
c55668.graph_c0
c77716.graph_c0
c18632.graph_c0
c91868.graph_c0
c84147.graph_c0
c16232.graph_c0
c102934.graph_c0

doi:10.1371/journal.pone.0147768.t005
in the Orco clade. We found that the *AdisOrco* gene with biased male expression has the highest expression quantity in all OR genes from the female and male adult antennae (Please see **S3 File**). This is also in accordance with the expression pattern of all insect Orco genes.

The GR family of insect chemoreceptors includes receptors for sugars and bitter compounds, as well as cuticular hydrocarbons and odorants such as CO$_2$. Gustatory receptors perceive essential nutrients whose chemical structures remain constant (compared to bitter-tasting, secondary plant compounds) such as sugars and CO$_2$ receptors. Thus, sugar and CO$_2$ receptor genes are relatively highly conserved in most of the insect genomes that have been sequenced to date [10,24,29,48]. We have annotated 18 GR genes from the *A. dissimilis* antenal transcriptome dataset. The GR family in *A. dissimilis* includes two putative CO$_2$ receptors (*AdisGR3* and 93) and five sugar receptors (*AdisGR1, 6, 7, 8 and 94*). *AdisGR4*, the putative gustatory receptor, share the same clade with *BmorGR9, HassGR4* and HassGR9. In comparison with *BmorGR9*, a newly characterized receptor of fructose [49], we can suggest that *AdisGR4* is a sugar receptor (**Fig 6**). Sugars and sugar alcohols have been identified to affect the host plant selection and egg-laying behavior of codling moth females [50].

The iGluRs mediate excitatory neurotransmission in both vertebrate and invertebrate nervous systems [51]. Ionotropic receptor genes were first discovered in *D. melanogaster* through

Fig 6. Neighbor-joining tree of candidate gustatory receptor (GR) genes from *Athetis dissimilis* and other insects. Unrooted tree was constructed using the BioNJ algorithm in Seaview v.4, which was made based on a sequence alignment using ClustalX 1.83. The red and blue indicate sugar and CO$_2$ receptor genes, respectively. *Adis, Athetis dissimilis; Dmel, Drosophila melanogaster; Bmor, Bombyx mori; Hass, Helicoverpa assulta*. doi:10.1371/journal.pone.0147768.g006
genome analyzes [13]; they arose from an iGluR with a change in expression localization from an interneuron to a sensilla neuron [22]. In D. melanogaster antennae, IRs have been reported to detect a variety of molecules [52]. In the A. dissimilis antennal transcriptome, we identified 11 candidate IRs and 1 candidate iGluR. Recent studies have indicated that the coreceptors of IRs, IR8a/25a have a similar expression pattern with the Orco, playing an essential role in tuning IRs sensory cilia targeting and IR-based sensory channels [52]. Although we identified two IR8a genes from A. dissimilis namely AdisIR8a.1 and AdisIR8a.2, IR25a was not found. This may be the result of no biological repeats. We also found the expression level of AdisIR8a.1 was rather high and analogous to the Orco (Please see S3 File). While two IRs named AdisIR1.1 and 1.2 clustered together with their orthologous SlitIR1/HassIR1.1 in a “divergent IR” clade, four IRs (AdisIR75d, 75q.2, 75p, and 75p.1) are localized in a large clade of IR75. But so far, the function of IR75 is unclear. Moreover, IR21a (containing Adis21a.2 and 21a.3), IR76b and IR41a (containing Adis41a) were also highly conserved clades. All AdisIRs that we discovered have orthologs found in Hass/Slit/Dpon.

Conclusions

We first obtained abundant biology information on the transcriptome of A. dissimilis antennae using high-throughput sequencing technology with the aim of identifying of the genes potentially involved in the olfaction process. From the obtained transcriptome data, three important gene families encoding chemosensory receptors were identified, annotated, and further analyzed for their expression profile. Our results provide a foundational knowledge for exploring and understanding the molecule mechanism involved in olfactory recognition process of the insect pest A. dissimilis, and providing alternative novel targets for the pest management with semiochemicals.
Supporting Information

S1 File. Amino acid sequences of ORs, GRs and IRs were used in phylogenetic analyses.
(TXT)
(TXT)

S2 File. The amino acid sequences of 13 candidate olfactory genes identified in this study were not used in phylogenetic analyses. (TXT)
(TXT)

S3 File. Comparison of expression of ORs, GRs and IRs in female and male antennae as revealed by mapping Illumina read. (DOC)
(DOCX)
Acknowledgments
We are grateful to Dr. Tofael Ahmed for comments on an earlier draft of the paper. This study was supported by Special Fund for Agro-scientific Research in the Public Interest (201303026) and the Youth Scientific Fund of Henan University of Science and Technology (2015QN029).

Author Contributions
Conceived and designed the experiments: ZYW JS JFD. Performed the experiments: YQS JFD. Analyzed the data: JFD YQS. Contributed reagents/materials/analysis tools: WLL JS. Wrote the paper: JFD YQS ZYW.

References
1. Takahashi M (1975) *Athetis dissimilis* Hampson, a new nuisance? Medical Entomology and Zoology 26: 66.
2. Ando T, Yoshida S, Tatsuki S, Takahashi N (1977) Sex attractants for male Lepidoptera. Agricultural and Biological Chemistry 41: 1485–1492.
3. Cho YH, Kim YJ, Han YG, Jeong JC, Cha JY, Nam SH (2010) A faunistic study of moths on Wolchulsan National Park. Journal of National Park Research 1: 108–126.
4. Li JW, Yu Y, Zhang AS, Men XY, Zhou XH, Zhai YF, et al. (2014) Morphologically alike species of *Athe-\textit{tis lepigone* (Möschler)– *Athetis dissimilis* (Hampson) found in Shandong Province of China. Plant Protection 40: 193–195.
5. Sato K, Touhara K (2009) "Insect olfaction: receptors, signal transduction, and behavior,” in Chemosensory Systems in Mammals, Fishes, and Insects, eds Korschning S. and Meyerh W. of (Berlin; Heidelberg: Springer), 203–220.
6. Gao Q, Chess A (1999) Identification of candidate *Drosophila* olfactory receptors from genomic DNA sequence. Genomics 60: 31–39. PMID: 10458908
7. Liu Y, Gu S, Zhang Y, Guo Y, Wang G (2012) Candidate olfaction genes identified with in the *Helicoverpa armigera* antennal transcriptome. PloS ONE 7: e48260. doi: 10.1371/journal.pone.0048260 PMID: 23110222
8. Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in *Droso-\textit{phila*}. Proceedings of the National Academy of Sciences of the United States of America 104: 3574–3578. PMID: 1736084
9. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in *Drosophila*. Cell. 136: 149–162. doi: 10.1016/j.cell.2008.12.001 PMID: 19135896
10. Robertson HM, Kent LB (2009) Evolution of the gene lineage encoding the carbon dioxide receptor in insects. Journal of Insect Science 9: 19. doi: 10.1673/031.009.1901 PMID: 19613462
11. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annual Review of Physiology 71: 307–332. doi: 10.1146/annurev.physiol.010908.163209 PMID: 19575682
12. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11: 188–200. doi: 10.1038/nrn2789 PMID: 20145624
13. Benton R, Sachsse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of *Drosophila* odorant receptors in vivo. PLoS Biology 4, e20. PMID: 16402857
14. Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, et al. (2007) Membrane topology of the *Drosophila* OR33b odorant receptor. FEBS letters 581: 5601–5604. PMID: 18005664
15. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002–1006. doi: 10.1038/nature06850 PMID: 18408712
16. Pelletier J, Hughes DT, Luetje CW, Leal WS (2010) An odorant receptor from the southern house mosquito *Culex pipiens quinquefasciatus* sensitive to oviposition attractants. PLoS ONE 5: e10090. doi: 10.1371/journal.pone.0010090 PMID: 20386699
17. Nichols AS, Chen S, Luetje CW (2011) Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chemical Senses 36: 781–790. doi: 10.1093/chemse/bjr053 PMID: 21677030
Putative Chemosensory Receptor Genes of *Athens dissimilis*

18. Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in *Drosophila*. Science 287: 1830–1834. PMID: 10710312

19. Scott K, Brady JR, Cravchik A, Morozov P, Rzhetsky A, Zuker C, et al. (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in *Drosophila*. Cell 104: 661–673. PMID: 11257221

20. McBride CS, Arguello JR (2007) Five *Drosophila* genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177: 1395–1416. PMID: 18039874

21. Gardiner A, Barker D, Butlin RK, Jordan WC, Ritchie MG (2008) *Drosophila* chemoreceptor gene evolution: selection, specialization and genome size. Molecular Ecology 17: 1648–1657. doi: 10.1111/j.1365-294X.2008.03713.x PMID: 18371013

22. Cross V, Ritzy R, Cummins SF, Budd A, Brawand D, Kaessmann H, et al. (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics 6: e1001064. doi: 10.1371/journal.pgen.1001064 PMID: 20808886

23. Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, et al. (2012) Putative chemosensory receptors of the coding moth, *Cydia pomonella*, identified by antennal transcriptome analysis. PloS ONE 7: e31620. doi:10.1371/journal.pone.0031620 PMID: 22363688

24. Leitch O, Papanicolaou A, Lennard C, Kirkbride KP, Anderson A (2015) Chemosensory genes identified in the antennal transcriptome of the blowfly *Calliphora stygia*. BMC Genomics 16: 255. doi: 10.1186/s12864-015-1466-8 PMID: 25880816

25. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Amit DA, Adiconis X, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652. doi:10.1038/nbt.1883 PMID: 21572440

26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. PMID: 9396791

27. Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, et al. (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Current Biology 19: 881–890. doi: 10.1016/j.cub.2009.04.035 PMID: 19427209

28. Xu W, Papanicolaou A, Liu NY, Dong SL, Anderson A (2015) Chemosensory receptor genes in the oriental tobacco budworm *Helicoverpa assulta*. Insect Molecular Biology 24: 253–363. doi: 10.1111/imb.12153 PMID: 25430896

29. Wanner KW, Robertson HM (2008) The gustatory receptor family in the silkworm moth *Bombyx mori* is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Molecular Biology 17: 621–629. doi: 10.1111/j.1365-294X.2008.00836.x PMID: 19133074

30. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in *Drosophila melanogaster*. Proceedings of the National Academy of Science of the United States of America 100: 14537–14542.

31. Leguei F, Malpel S, Montagné N, Monsempes C, Cousserans F, Merlin C, et al. (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth *Spodoptera littoralis*: a resource for olfactory and pheromone detection research. BMC Genomics 12: 86. doi: 10.1186/1471-2164-12-86 PMID: 21276261

32. Liu S, Rao XJ, Li MY, Feng MF, He MZ, Li SG (2015) Identification of candidate chemosensory genes in the antennal transcriptome of *Tenebrio molitor* (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 13: 44–51.

33. Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, et al. (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, * Ips typographus* and *Dendroctonus ponderosae* (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14: 198. doi: 10.1186/1471-2164-14-198 PMID: 23517120

34. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5: 621–628. doi: 10.1038/nmeth.1226 PMID: 18516045

35. Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of *Manduca sexta*. Proceedings of the National Academy of Sciences of the United States of America 108: 7449–7454. doi: 10.1073/pnas.1017963108 PMID: 21498690

36. Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp *Nasonia vitripennis*. Insect Molecular Biology 19: 121–136.

37. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, *Apis mellifera*: Expansion of the odorant, but not gustatory, receptor family. Genome Research 16: 1395–1403. PMID: 17065611
38. Obiero GFO, Mireji PO, Nyanjom SRG, Christoffels A, Robertson HM, Masiga DK (2014) Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans. PLoS Neglected Tropical Diseases 8: e2663. doi:10.1371/journal.pntd.0002663 PMID: 24763191

39. Mitchell RF, Hughes DT, Luetje CW, Millar JG, Soriano-Agatón F, Hanks LM, et al. (2012) Sequencing and characterizing odorant receptors of the Cerambycid beetle Megacyllene caryae. Insect Biochemistry and Molecular Biology 42: 499–505. doi:10.1016/j.ibmb.2012.03.007 PMID: 22504490

40. Rinker DC, Zhou XF, Pitts RJ, Rokas A, Zwiebel L (2013) Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14: 749. doi:10.1186/1471-2164-14-749 PMID: 24182346

41. Cao D, Liu Y, Walker WB, Li J, Wang G (2014) Molecular characterization of the Aphis gossypii olfactory receptor gene families. PLoS ONE 9: e101187. doi:10.1371/journal.pone.0101187 PMID: 24971460

42. Wang ZF, Yang PC, Chen DF, Jiang F, Li Y, Wang XH, et al. (2015) Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust. Cellular and Molecular Life Sciences 72: 4429–4443. doi:10.1007/s00018-015-2009-9 PMID: 26265180

43. Han HL, Li CD (2008) Descriptions of two new species of the genus Athetis (Lepidoptera, Noctuidae, Xyleninae) from Xizang, China. Acta Zootaxonomica Sinica 33: 696–701.

44. Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proceedings of the National Academy of Sciences of the United States of America 101: 11845–11850. PMID: 15289611

45. Wanner KW, Nichols AS, Allen JE, Bunder PL, Garcynski SF, Linn CE, et al. (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE 5: e8685. doi:10.1371/journal.pone.0008685 PMID: 20084285

46. Zhang DD, Löfstedt C (2013) Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. PLoS ONE 8: e77345. doi:10.1371/journal.pone.0077345 PMID: 24130875

47. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chemical Senses 36: 497–498. doi: 10.1093/chemse/jbr022 PMID: 21441366

48. Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, et al. (2007) Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Current Biology 17: 1533–1544. PMID: 17764944

49. Sato K, Tanaka K, Touhara K (2011) Sugar-regulated cation channel formed by an insect gustatory receptor. Proceedings of the National Academy of Sciences of the United States of America 108: 11680–11685. doi:10.1073/pnas.1019622108 PMID: 21709218

50. Lombarkia N, Derridj S (2008) Resistance of apple trees to Cydia pomonella egg-laying due to leaf surface metabolites. Entomologia Experimentalis et Applicata 128: 57–65.

51. Olivier V, Monsempes C, Francois MC, Poivet E, Jacquin-Joly E (2011) Candidate chemosensory ionotropic receptors in a Lepidoptera. Insect Molecular Biology 20: 189–199. doi:10.1111/j.1365-2583.2010.01057.x PMID: 21091811

52. Abuin L, Bargent B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69: 44–60. doi:10.1016/j.neuron.2010.11.042 PMID: 21220098