Supporting Information for:
Synergy of Binary Substitutions for Improving the Cycle Performance in LiNiO$_2$ Revealed by Ab Initio Materials Informatics

Tomohiro Yoshida,*† Ryo Maezono,‡ and Kenta Hongo*¶§∥

† Department of Computer-Aided Engineering and Development, Sumitomo Metal Mining Co., Ltd., 3-5, Sobiraki-cho, Niihama, Ehime 792-0001, Japan
‡ School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
¶ Research Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
§ PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 322-0012, Japan
∥ Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

E-mail: tomohiro.yoshida.r7@smm-g.com; kenta_hongo@mac.com
Table S 1: Δd_{ave} for unary substitution.

Element	Δd_{ave} (Å)	Element	Δd_{ave} (Å)	Element	Δd_{ave} (Å)
V	0.124	Pt	0.147	Ag	0.199
Nb	0.125	Ho	0.148	Gd	0.216
Ge	0.132	In	0.149	Ce	0.257
Ir	0.134	Er	0.149	Eu	0.283
Au	0.134	Sc	0.150	Tl	0.290
Al	0.135	Sn	0.155	Pm	0.306
Ti	0.135	Pb	0.159	Sm	0.314
Ta	0.135	Pa	0.160	Hg	0.337
Mg	0.135	Hf	0.160	Na	0.347
Ga	0.137	Rh	0.161	Th	0.385
Ru	0.137	Fe	0.161	Nd	0.395
Bi	0.139	Cu	0.162	Pr	0.420
Dy	0.139	Po	0.163	Sr	0.426
Os	0.140	W	0.165	La	0.440
Sb	0.140	Zn	0.167	Ac	0.493
Mn	0.141	Cr	0.167	Ba	0.574
Tc	0.141	Zr	0.169	Ra	0.622
Y	0.142	Pd	0.172	K	0.685
Tb	0.143	Mo	0.177	Rb	0.777
Re	0.144	Ca	0.189	Fr	0.856
Tm	0.146	Yb	0.191	Cs	0.865
Lu	0.147	Cd	0.193		
Table S 2: Δd_{ave} for binary substitution.

Elements	Δd_{ave} (Å)	Elements	Δd_{ave} (Å)	Elements	Δd_{ave} (Å)
GeSn	0.386	SrTa	0.448	AlGa	0.139
VTh	0.431	VIr	0.127	MnPt	0.131
ZnRu	0.166	ZrPt	0.194	FeGa	0.125
FePt	0.168	MnMo	0.166	CrRu	0.129
EuPt	0.473	CuBi	0.150	CrOs	0.133
CuNb	0.145	DyPt	0.461	CrFe	0.133
VGa	0.114	NbGd	0.653	TiRh	0.160
ErLu	0.484	ErOs	0.433	FeNb	0.158
VFe	0.136	CdTa	0.554	MnZn	0.160
SnEr	0.240	SnYb	0.144	AlTl	0.247
FeNd	0.489	CrLu	0.132	CuYb	0.176
HoOs	0.431	TiFe	0.116	MgCr	0.109
SnPr	0.359	CrZn	0.146	CrGe	0.136
IrRa	0.693	VMn	0.129	FeIr	0.135
CrHg	0.128	AlFe	0.130	CrPt	0.139
SrZr	0.469	AlMn	0.123	CrRe	0.083
ZnHg	0.373	NaPt	0.314	GeHf	0.291
CdSn	0.474	GaHo	0.256	GeCd	0.231
SnSb	0.391	VTa	0.127	GaNb	0.278
AgHf	0.164	NbHf	0.336	ZnOs	0.145
PdAu	0.186	AlHf	0.215	MnRe	0.146
ReTl	0.475	AlCr	0.123	CuRe	0.153
PdCe	0.470	MgPt	0.133		
OsHg	0.368	MgCu	0.124		