Higgs decays to γ and invisible particles in the standard model

Yi Sun† and Dao-Neng Gao‡

Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 China

Abstract

Using the Higgs boson mass $m_h = 125$ GeV, the radiative Higgs decays $h \to \gamma \nu_l \bar{\nu}_l$ with $\nu_l = \nu_e, \nu_\mu$ and ν_τ are analyzed in the standard model. Our calculation shows that the inclusive width of these processes, i.e., the sum of $\Gamma(h \to \gamma \nu_l \bar{\nu}_l)$ for $\nu_l = \nu_e, \nu_\mu, \nu_\tau$, is 1.41 keV, which is about 15% of $\Gamma(h \to \gamma \gamma)$. Therefore, the observation of these channels in the future precise experiments may provide us some useful information on the Higgs physics both in the standard model and in its possible extensions.
The discovery of the Higgs-like particle at around 125 GeV, thanks to the hard work of ATLAS \cite{1} and CMS \cite{2} Collaborations at the Large Hadron Collider (LHC), is a big triumph of the high energy physics community. Since elementary particles in the standard model (SM) become massive via the Higgs mechanism \cite{3}, the Higgs sector plays a key role in our understanding of the nature of the world. Thus it is very important to identify the new resonance with the elementary Higgs boson in the SM. ATLAS \cite{1} and CMS \cite{2} have observed several decay channels of this Higgs-like particle, including $\gamma\gamma$, ZZ^*, WW^*, bb and $\tau\tau$ channels, and have found that its properties are consistent with the SM Higgs boson.

With the increasing of the experimental data, besides the above dominant decay channels, some rare decay modes will also be interesting. The radiative decays $h \rightarrow \gamma\ell^+\ell^-$ have been analyzed both theoretically \cite{4–13} and experimentally \cite{14, 15}. In the present paper, we will study another rare decay channels $h \rightarrow \gamma\nu\bar{\nu}$ with $\nu_1 = \nu_e$, ν_μ and ν_τ. Obviously, only a photon, or more accurately, a photon and missing energy \cite{16}, can be observed in these decays experimentally. On the other hand, in the new physics, the decay channel $h \rightarrow \gamma$ invisible is more complex than that in the SM, where the invisible particles could be, besides neutrinos, other new particles which are absent in the SM. Model independently, in Ref. \cite{17}, the Higgs decay mode involving a photon together with one or two invisible particles has been investigated using effective interactions. In some specific models, the mode $h \rightarrow \gamma Z_d$, where Z_d is a light vector boson associated to a “dark sector” U(1) gauge group, has been analyzed in \cite{18}; in the next to minimal supersymmetric standard model, the process $h \rightarrow \gamma\chi_1\bar{\chi}_1$, where χ_1 is the lightest supersymmetry particle and invisible in the experiments, may be interesting in some parameter space \cite{19}. Therefore, in order to analyze these exotic decays in the new physics beyond the SM, we should first evaluate their contributions in the SM. Only after we fully understand their SM background, the future precise experimental study of the $h \rightarrow \gamma\nu\bar{\nu}$ decays might provide us some useful information on the Higgs sector in new physics scenarios.

In the SM, the tree-level contribution of the processes $h \rightarrow \gamma\nu\bar{\nu}$ is forbidden and the lowest order contribution is given by the one-loop diagrams. The typical one-loop Feynman diagrams for these processes have been shown in Figures \cite{1} and \cite{2} respectively, which are of two basic types: (i) the Z^* pole three-point diagrams via $h \rightarrow \gamma Z^* \rightarrow \gamma\nu\bar{\nu}$ (Figure \cite{1}); (ii) four-point box diagrams involving W gauge boson and the charged lepton l inside the loop (Figure \cite{2}), where the photon is emitted from the W or l internal lines.

The amplitude of $h \rightarrow \gamma\nu\bar{\nu}$ at the one-loop level can be expressed as

$$M = M_{tri} + M_{box},$$

where M_{tri} and M_{box} denote the amplitudes of the three-point and four-point diagrams, respectively.

$$M_{tri} = \varepsilon^{\nu\nu}(p)C_1(p_\mu q_\nu - g_{\mu\nu}p \cdot q) \bar{u}(k_2)\gamma^\mu P_L v(k_1),$$

$$M_{box} = \varepsilon^{\nu\nu}(p)\bar{u}(k_2) [(C_2 k_1^\nu + C_3 k_2^\nu) \not{p} P_L - (C_2 k_1 \cdot p + C_3 k_2 \cdot p) \gamma^\nu P_L] v(k_1),$$
with $P_L = (1 - \gamma^5)/2$. One can check that the amplitudes of the three-point and four-point diagrams are separately gauge invariant. The expressions of C_i’s in the amplitudes are

$$C_1 = P_Z \frac{\alpha_e^2}{\sqrt{2m_W}} \left[-\cos \theta_W I_1 - \frac{2N_f^f Q_f m_f^2}{(m_h^2 - q^2)^2 \cos \theta_W} (T_f - 2Q_f \sin^2 \theta_W) I_2 \right],$$ \hspace{1cm} (4)$$

$$C_2 = \frac{-\alpha_e^2}{2m_W \sin^3 \theta_W} I_3, \hspace{2cm} (5)$$

$$C_3 = \frac{-\alpha_e^2}{2m_W \sin^3 \theta_W} I_4. \hspace{2cm} (6)$$

Here α_e is the fine-structure constant and θ_W is the electroweak mixing angle. m_f is the mass, N_f^f is the color multiplicity, Q_f, in unit of e, is the charge, T_f is the third component of weak isospin of the fermion f inside the fermion loop in Figure 1, k_1, k_2 and p represent the momentum of $\nu_l, \bar{\nu}_l$ and γ in the final states, respectively. We denote q as the momentum of the virtual particle Z^* in Figure 1, $q^2 = (k_1 + k_2)^2$ is neutrino pair mass squared, and P_Z is from the propagator of the virtual Z^* gauge boson, which reads

$$P_Z = \frac{1}{q^2 - m_Z^2 + i m_Z \Gamma_Z}. \hspace{2cm} (7)$$
The notations I_i’s are given by

\begin{align}
I_1 &= -8m_W^2(4m_W^2 - q^2)C_0^0 - 4(12m_W^4 + 4m_W^2q^2 - q^2m_h^2)(C_1^0 + C_{11}^0 + C_{12}^0), \\
I_2 &= -2q^2B_0(m_h^2, m_{\ell}^2, m_{\ell}^2) + 2q^2B_0(q^2, m_{\ell}^2, m_{\ell}^2) \\
&\quad + (m_h^2 - q^2)(-2 + (m_h^2 - q^2 - 4m_{\ell}^2)C_0(0, q^2, m_h^2, m_{\ell}^2, m_{\ell}^2)), \\
I_3 &= -4C_0^4 + 2C_1^2 - 2C_2^2 + 4(1 + a + b + f)C_{12}^4 + i^2(C_2^2 - C_{12}^2 + C_{12}^2 + C_{22}^2) + 2m_W^2 \\
&\quad \left[3D_1^2 - 2D_2^2 - D_3^2 + D_4^2 + D_5^2 - i^2(D_1^0 + D_0^0 + D_0^0) - (-2 + i^2(b + f))D_2^2 - (2 \\
&\quad + i^2 + a^2)D_3 + (2 + i^2(1 + a + b + f))(D_2^3 - D_2^3 - D_2^3 - D_2^3) \right], \\
I_4 &= -2(C_0^2 + C_1^2 + 2C_2^2 + 2C_3^2) + 4(1 + a + b + f)C_{12}^4 + i^2(C_1^5 + C_{12}^5 + C_{22}^5 + C_5^6) \\
&\quad \left[2D_1^1 + D_0^1 + D_0^1 + D_2^1 + D_2^1 + D_3^1 + D_3^1 + D_3^1 \right] \\
&\quad + (2 + i^2(1 + a + b + f))(D_1^2 + D_2^2 + D_3^2 - D_2^2 - D_2^2 - D_2^2) \right],
\end{align}

with some dimensionless parameters: $a = k_1 \cdot p/m_W$, $b = k_2 \cdot p/m_W$, $f = k_1 \cdot k_2/m_W$, and $l = m_l/m_W$, where m_l is the mass of the charged lepton in the four-point diagram. The notations C_i^0’s and D_i^0’s read

\begin{align}
C_i^0 &= C_i(0, q^2, m_h^2, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2, m_{W}^2), \\
C_i^1 &= C_i(0, 2k_1 \cdot p, 0, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2), \quad C_i^2 = C_i(0, m_h^2, 2k_2 \cdot p, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2, m_{W}^2), \\
C_i^3 &= C_i(0, 0, 2k_1 \cdot p, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2), \quad C_i^4 = C_i(0, m_h^2, 2k_1 \cdot k_2, 0, m_{\ell}^2, m_{\ell}^2, m_{W}^2), \\
C_i^5 &= C_i(2k_2 \cdot p, 0, 0, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2), \quad C_i^6 = C_i(0, 2k_2 \cdot p, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2), \\
D_i^1 &= D_i(0, 2k_2 \cdot p, 0, 2k_1 \cdot p, 0, m_{\ell}^2, m_{\ell}^2, m_{\ell}^2), \\
D_i^2 &= D_i(0, 2k_1 \cdot k_2, 0, 2k_1 \cdot p, 0, m_{\ell}^2, m_{\ell}^2, m_{W}^2), \\
D_i^3 &= D_i(0, 0, m_h^2, 0, 2k_2 \cdot p, 0, m_{\ell}^2, m_{\ell}^2, m_{W}^2), \\
\end{align}

with C_i’s and D_i’s are the three-point and four-point Feynman integrals defined in Ref. [20], respectively.

The differential decay rate of $h \rightarrow \gamma \nu \bar{\nu}$, including both three-point and four-point diagrams contributions, can be expressed as

\begin{equation}
\frac{d\Gamma}{dE_\gamma d\cos \theta} = \frac{m_h^2E_\gamma^3(m_h - 2E_\gamma)}{128\pi^3} \left[|C_1|^2(1 + \cos^2 \theta) + 2|C_2|^2\sin^4(\theta/2) + 2|C_3|^2\cos^4(\theta/2) \right. \\
\left. + 4Re[C_1 C_2^*]\sin^4(\theta/2) + 4Re[C_1 C_3^*]\cos^4(\theta/2) \right],
\end{equation}

where E_γ is the photon energy in the rest frame of the Higgs boson, and in this frame we have $q^2 = m_h^2 - 2m_hE_\gamma$. θ is the angle between the three momentum of the Higgs boson and the three momentum of ν in the rest frame of the neutrino pair (since the neutrino cannot be observed

\footnote{One should take care of the difference between m_f, which is the mass of the fermion inside the fermion-loop of the three-point diagrams, and m_l, which is the mass of the charged lepton in the four-point diagrams.}
Figure 3: The decay spectrum for $h \rightarrow \gamma \nu_e \bar{\nu}_e$ normalized by $\Gamma(h \rightarrow \gamma \gamma)$ (denoted as $\Gamma_{\gamma \gamma}$). The dashed line denotes the contribution of the three-point diagrams, the dotted line shows the behavior of the interference between the three-point and four-point diagrams and the dotted-dashed line the contribution from the four-point diagrams. The real line gives the total contributions.

experimentally, θ should be integrated out later). The range of these two variables is given by

$$0 \leq E_\gamma \leq \frac{m_h}{2}, \quad -1 \leq \cos \theta \leq 1.$$ (14)

The first term in eq. (13) is from the three-point diagrams and will dominate the differential decay rate, the second and third terms are induced from the four-point diagrams while the last two terms are contributed by the interference between three-point and four-point diagrams.

After integrating over $\cos \theta$ in eq. (13), one can get the decay spectrum $d\Gamma/dE_\gamma$. The $h \rightarrow \gamma \nu_e \bar{\nu}_e$ decay spectrum, normalized by $\Gamma(h \rightarrow \gamma \gamma)$, has been displayed in Figure 3. Different types of contributions, including the three-point, four-point diagrams and their interference, are plotted separately for comparison. From these plots, one can easily find that the three-point diagrams give the dominant contribution while the contribution of the four-point diagrams is very small. It is easy to see that the amplitude (2) and differential decay rate in eq. (13) from the dominant three-point diagrams, if neglecting the small mass of the neutrinos, have no any difference for different types of neutrinos in the final states. Therefore it is expected that the decay spectrum for the ν_μ and ν_τ modes will be very similar to the case of the ν_e mode, as already shown in Figure 3. Actually, we have confirmed this point in our numerical analysis.

The decay rate of $h \rightarrow \gamma \nu_l \bar{\nu}_l$ can be obtained by integrating E_γ in the decay spectrum $d\Gamma/dE_\gamma$, so we get

$$\Gamma(h \rightarrow \gamma \nu_e \bar{\nu}_e) = 0.47 \text{ keV},$$ (15)
in which the contribution of the three-point diagrams is \(\Gamma(h \to \gamma Z^* \to \gamma \nu_e \bar{\nu}_e) = 0.447 \text{keV} \). Since the four-point diagrams give very small contributions, both the charged lepton and neutrino masses can actually be neglected in our numerical calculations. This will lead to the same results as eq. (15) for the \(\nu_\mu \) and \(\nu_\tau \) modes. Experimentally, the neutrinos are invisible, only a single photon and missing energy can be observed, so the decay rate of the Higgs decays to a photon and invisible particles in the SM is

\[
\Gamma(h \to \gamma + \text{invisible}) = \sum_{\nu_l = \nu_e, \nu_\mu, \nu_\tau} \Gamma(h \to \gamma \nu_l \bar{\nu}_l) = 1.41 \text{keV} = 15.2\% \Gamma(h \to \gamma \gamma). \tag{16}
\]

In conclusion, we have analyzed the rare decay modes \(h \to \gamma \nu_l \bar{\nu}_l \) with \(\nu_l = \nu_e, \nu_\mu \) and \(\nu_\tau \) in the SM. It is found that these processes are dominated by the \(Z^* \) pole transition \(h \to \gamma Z^* \to \gamma \nu_l \bar{\nu}_l \), and four-point box diagrams only give very small contributions. Theoretical prediction of the decay rate in the SM is quite under control, as shown in eqs. (15) and (16). Therefore, in the future high statistics experiments, such as Higgs factory, the investigation of the \(h \to \gamma + \text{invisible} \) decays could be very interesting both to increase our understanding of the properties of SM Higgs boson and to explore the novel Higgs dynamics in new physics scenarios.

Acknowledgments

This work was supported in part by the NSF of China under Grant Nos. 11075149 and 11235010.

References

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214].

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235]; Observation of a new boson with mass near 125 GeV in PP collisions at \(\sqrt{s}=7 \text{TeV} \) and \(8 \text{TeV} \), JHEP 06 (2013) 081 [arXiv:1303.4571].

[3] F. Englert and R. Brout, Broken symmetries and the masses of vector mesons, Phys. Rev. Lett. 13 (1964) 321; P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132. Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508. Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554.

[4] A. Abbasabadi, D. Bowser-Chao, D. A. Dicus and W. W. Repko, Radiative Higgs boson decays \(H \to f \bar{f} \gamma \), Phys. Rev. D 55 (1997) 5647 [hep-ph/9611209].

[5] C.S. Li, S.H. Zhu and C.F. Qiao, Radiative Higgs boson decays \(H \to f \bar{f} \gamma \) beyond the standard model, Phys. Rev. D 57 (1998) 6928 [hep-ph/9801334].

[6] A. Abbasabadi and W.W. Repko, Higgs boson decay to \(\mu \bar{\mu} \gamma \), Phys. Rev. D 62 (2000) 054025 [hep-ph/0004167].
[7] Ana Firan and Ryszard Stroynowski, *Internal conversions in Higgs decays to two photons*, Phys. Rev. D 76 (2007) 057301 [arXiv:0704.3987].
[8] L.B. Chen, C.F. Qiao and R.L. Zhu, *Reconstructing the 125 GeV SM Higgs boson through $l\bar{l}\gamma$*, Phys. Lett. B 726 (2013) 306 [arXiv:1211.6058].
[9] D.A. Dicus and W.W. Repko, *Calculation of the decay $H \rightarrow e\bar{e}\gamma$*, Phys. Rev. D 87 (2013) 077301 [arXiv:1302.2159].
[10] A.Yu. Korchin and V.A. Kovalchuk, *Polarization effects in the Higgs boson decay to γZ and test of CP and CPT symmetries*, Phys. Rev. D 88 (2013) 036009 [arXiv:1303.0363].
[11] Y. Sun, H.-R. Chang and D.-N. Gao, *Higgs decays to γl^+l^- in the standard model*, JHEP 05 (2013) 061 [arXiv:1303.2230].
[12] G. Passarino, *Higgs Boson Production and Decay: Dalitz Sector*, arXiv:1308.0422.
[13] D. A. Dicus, C. Kao and W. W. Repko, *Comparison of $H \rightarrow \gamma \ell\bar{\ell}$ and $H \rightarrow \gamma Z, Z \rightarrow \ell\bar{\ell}$ including the ATLAS cuts*, arXiv:1310.4380.
[14] ATLAS Collaboration, *Search for the Standard Model Higgs boson in the $H \rightarrow \gamma Z$ decay mode with pp collisions at $\sqrt{s} = 7$ and 8 TeV*, ATLAS-CONF-2013-009.
[15] CMS Collaboration, *Search for a Higgs boson decaying into a Z and a photon in pp collisions at $\sqrt{s} = 7$ and 8 TeV*, arXiv:1307.5515.
[16] ATLAS Collaboration, *Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS*, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602].
[17] J.F. Kamenik and C. Simin, *Could a light Higgs boson illuminate the dark sector?*, Phys. Rev. D 85 (2012) 093017 [arXiv:1201.4814].
[18] H. Davoudiasl, H.-S. Lee, I. Lewis and W. J. Marciano, *Higgs decays as a window into the dark sector*, Phys. Rev. D 88 (2013) 015022 [arXiv:1304.4935].
[19] S. Gori, T. Liu and J. Shelton, to appear; T. Liu, *Exotic Decays of the 125GeV Higgs*, report at the University of Science and Technology of China.
[20] G. Passarino and M. Veltman, *One-loop corrections for e^+e^- annihilation into $\mu^+\mu^-$ in the Weinberg model*, Nucl. Phys. B 160 (1979) 151. R. Mertig, *Guide to FeynCalc 1.0*, University of Wurzburg, 1992; T. Hahn and M. Perez-Victoria, *Automatized One-Loop Calculations in 4 and D dimensions*, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565]; Y. Sun and H.-R. Chang, *One loop integrals reduction*, Chinese Phys. C 36 (2012) 1055 [arXiv:1204.4120].