Abstract. For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle $TM \oplus E$, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on $TM \oplus (\mathbb{R} \times M)$ and two on $TM \oplus (\mathbb{R}^2 \times M)$ are constructed. It is shown that two of those connections – one from each pair – may be identified with the standard flat connection in \mathbb{R}^N, after suitable local affine embedding of (M, ∇) into \mathbb{R}^N.

1. Introduction

In the article [9] R. Sasaki proposed to add the property of describing pseudospherical surfaces to other remarkable properties – such as applicability of the inverse scattering method, infinite number of conservation laws and Bäcklund transformations – which characterize soliton equations in $1 + 1$ dimensions. He expressed the $\mathfrak{sl}(2, \mathbb{R})$-valued 1-form Ω, which arises in the corresponding linear scattering problem $dv = \Omega v$, $v = (\begin{smallmatrix} v_1 \\ v_2 \end{smallmatrix})$, by 1-forms ω^1, ω^2 and ω^2_1

$$\Omega = \begin{pmatrix} -\frac{1}{2} \omega^2 & \frac{1}{2} (\omega^2_1 + \omega^1) \\ \frac{1}{2} (-\omega^2 + \omega^1) & \frac{1}{2} \omega^2 \end{pmatrix}$$

AMS (2010) Subject Classification: 53C07, 53B05, 53B15.
Keywords and phrases: connection on a vector bundle, associated vector bundle, connection form, locally symmetric connection.
In such a way, that the integrability condition \(d\Omega - \Omega \wedge \Omega = 0 \) is equivalent to the structural equations \(dw^1 = \omega^2_1 \wedge \omega^2, dw^2 = -\omega^2_1 \wedge \omega^1 \) and \(dw^2_1 = \omega^1 \wedge \omega^2 \) of a pseudospherical surface \((K = -1) \). This \(\mathfrak{sl}(2,\mathbb{R}) \)-valued 1-form \(\Omega \) itself can be interpreted as the connection form of a connection on some principal \(SL(2,\mathbb{R}) \)-bundle. The condition \(d\Omega - \Omega \wedge \Omega = 0 \) means that the curvature of this connection vanishes. In this respect the connection \(\Omega \) differs from the Levi-Civita connection of the considered pseudospherical metric. On the other hand, \(\Omega \) appeared to be somehow related to the Levi-Civita connection, because the Levi-Civita connection form \(\left(\begin{array}{cc} 0 & -\omega^2_1 \\ \omega^2_1 & 0 \end{array} \right) \) is contained in \(\Omega \). As might be expected, the question of finding the geometric interpretation of \(\Omega \) occurred.

In the paper [11] A.V. Shchepetilov explained the geometric meaning of the Sasaki connection. Using an equivalent representation of \(\Omega \), \(\mathfrak{so}(2,1) \)-valued, he constructed a flat connection \(\nabla \) on the vector bundle \(TM \oplus E \), where \(TM \) is the tangent bundle and \(E = \mathbb{R} \times M \) is a trivial one-dimensional vector bundle (our notation is slightly different from that in [10])

\[
\hat{\nabla}_X (Y \oplus f) = (\nabla_X Y + fX) \oplus (X(f) + g(X,Y)).
\]

Here \(g \) is a metric on \(M \), \(\nabla \) is its Levi-Civita connection, \(f \in C^\infty(M) \) is a section of \(E \) and \(X, Y \) are vector fields on \(M \).

Shchepetilov considered also manifolds with metric of constant positive curvature \(K = +1 \). The corresponding flat connection \(\hat{\nabla} \) on \(TM \oplus E \) is

\[
\hat{\nabla}_X (Y \oplus f) = (\nabla_X Y + fX) \oplus (X(f) - g(X,Y)).
\]

The aim of this paper is to construct a similar flat connection \(\hat{\nabla} \) for a two-dimensional manifold with non-metrizable locally symmetric connection \(\nabla \) and with \(\nabla \)-parallel volume element. Our main motivation for research is as follows. Firstly, manifold with locally symmetric linear connection can be thought of as a generalization of a constant sectional curvature Riemannian manifold. Secondly, sometimes more important than \((M,g) \) or \((M,\nabla) \) alone is an embedding of \(M \) into \(\mathbb{R}^3 \). For example, every isometric embedding of a pseudospherical surface \((M,g) \) into \(\mathbb{R}^3 \) corresponds to some particular solution of the sine-Gordon equation. Therefore restriction to those non-flat locally symmetric connections which are induced on hypersurfaces in \(\mathbb{R}^{n+1} \) is legitimated. If such hypersurface \(f \) is degenerate and its type number \(r \) is greater than 1, then around each generic point of \(M \) there exists a local cylinder decomposition which contains as a part a non-degenerate hypersurface in \(\mathbb{R}^{r+1} \) with some locally symmetric connection (see [4]). On the other hand, if \(f \) is non-degenerate and \(n > 2 \), then \(\nabla \) is the Blaschke connection, \(\nabla h = 0 \), \(S = \rho \text{id} \), \(\rho = \text{const} \), \(\rho \neq 0 \) and \(f(M) \) is an open part of a quadric with center [4]. Similarly as in the second proof of Berwald theorem in [3] one can then define a pseudo-scalar product \(G \) in \(\mathbb{R}^{n+1} \) such that \(G(f_*X,f_*Y) = h(X,Y) \), \(G(f_*X,\xi) = 0 \) and \(G(\xi,\xi) = \rho \), where \(\xi \) is the affine normal. It is easy to check that relative to this pseudo-scalar product \(f \) is a hypersurface of constant sectional curvature \(\rho \). If \(f \) is non-degenerate, \(n = 2 \) and the induced locally symmetric connection satisfies the condition \(\dim \text{im} \hat{\nabla} = 2 \), then there also exists a pseudo-scalar product on \(\mathbb{R}^{n+1} = \mathbb{R}^3 \) relative to which \(f \) has constant Gaussian curvature and \(\xi \) is perpendicular to \(f \) [3].
Affine analogues of the Sasaki-Shchepetilov connection

On the contrary, if \(f : M \to \mathbb{R}^{n+1} \) is of type number 1 or if \(f : M \to \mathbb{R}^3 \) is nondegenerate and \(\text{dim} \ker R = 1 \), then the connection as a connection of 1-codimensional nullity (\(\text{dim} \ker R = n - 1 \)) is not metrizable \([7]\), therefore we have reason for generalizing Shchepetilov’s construction. The present paper deals with the case \(n = 2 \).

2. Preliminaries

Let \(M \) be a connected two-dimensional real manifold and let \(\nabla \) be a locally symmetric connection on \(M \), satisfying the condition \(\text{dim} \ker R = 1 \), where for \(p \in M \)

\[\text{im} R|_p := \text{span}\{R(X, Y)Z : X, Y, Z \in T_p M\} \]

and \(R \) is the curvature tensor of \(\nabla \). Such connections were studied by B. Opozda in \([5]\). Opozda proved that for every \(p \in M \) there is a coordinate system \((u, v)\) around \(p \) such that

\[\nabla_{\partial_u} \partial_u = \nabla_{\partial_u} \partial_v = 0 \quad \text{and} \quad \nabla_{\partial_v} \partial_v = \varepsilon u \partial_u, \]

where \(\varepsilon \in \{1, -1\} \). A local coordinate system in which a locally symmetric connection \(\nabla \) is expressed by \([3]\) will be called a canonical coordinate system for \(\nabla \) \([3]\). It is not unique. It is easy to check that if \(u, v \) and \(\pi, \tau \) are canonical coordinate systems then on each connected component of the intersection of their domains we have \(\pi = Au + \chi(v), \tau = \delta v + B \), where \(A, B, \delta \) are constants, \(\delta^2 = 1 \), and \(\chi \) satisfies the differential equation \(\chi'' + \varepsilon \chi = 0 \).

The Ricci tensor \(\text{Ric}(X, Y) := \text{trace}[V \mapsto R(V, X)Y] \) of such a connection is symmetric and for every \(p \in M \) there exists a \(\nabla \)-parallel volume element around \(p \). Here we assume that a \(\nabla \)-parallel volume element \(\text{vol} \) exists on the whole \(M \).

It follows, that for every \(p \in M \) we can find around \(p \) a local basis \((X_1, X_2)\) of \(TM \), satisfying the conditions:

\[X_1 \in \ker \text{Ric}, \quad \text{Ric}(X_2, X_2) = \varepsilon \quad \text{and} \quad \text{vol}(X_1, X_2) = 1. \]

For example, on the domain of canonical coordinates \((u, v)\) as in \([3]\) we may take \(X_1 = \frac{1}{c} \partial_u \) and \(X_2 = \partial_v \), where \(c \) is the non-zero constant such that \(\text{vol} = c \, du \wedge dv \). Let \(\omega^1, \omega^2 \) be the dual basis for \((X_1, X_2)\). The local connection form is \((\omega^i_j) = \begin{pmatrix} 0 & \omega^1_2 \\ 0 & 0 \end{pmatrix} \) and the structural equations are \(d\omega^1 = -\omega^1_2 \wedge \omega^2, d\omega^2 = 0 \) and \(d\omega^1_2 = \varepsilon \omega^1 \wedge \omega^2 \).

The following proposition is easy to check.

Proposition 2.1

Let \(M \) be a two-dimensional manifold with locally symmetric connection \(\nabla \) satisfying condition \(\text{dim} \ker R = 1 \). Let \(\omega^1, \omega^2 \) and \(\omega^1_j \) be the dual basis and the local connection forms for some local basis of \(TM \) satisfying the condition \([1]\). Then each of the following four 1-forms \(\Omega_i \)

\[\Omega_1 = \begin{pmatrix} 0 & -\omega^1_2 & \omega^1 \\ 0 & 0 & \omega^2 \\ 0 & -\varepsilon \omega^2 & 0 \end{pmatrix}, \quad \Omega_2 = \begin{pmatrix} 0 & -\omega^1_2 & \varepsilon \omega^2 \\ 0 & 0 & 0 \\ -\omega^2 & \omega^1 & 0 \end{pmatrix}, \]
those \(\mathfrak{gl}(N,\mathbb{R}) \)-valued \((N = 3 \text{ or } N = 4)\) 1-forms were obtained in [8] as the local connection forms of connections on some principal \(GL(N,\mathbb{R}) \)-bundle \(P \) and seem to be analogous to the Sasaki connection form. The bundle \(P(M,G) \), \(G = GL(N,\mathbb{R}) \), is an extension of the bundle \(Q(M,H) \) consisting of all linear frames on \(M \) which satisfy (4). The structure group is \(H := \{ (t,1) : t \in \mathbb{R} \} \cup \{ (0,t^{-1}) : t \in \mathbb{R} \} \). Here we need not explain what the bundle \(P(M,G) \) is. It suffices to know that there exists \(f : Q \to P \) such that the triple \((f, \text{id}_M, \iota) \) is a homomorphism of principal fibre bundles \(Q(M,H) \) and \(P(M,G) \). The homomorphism \(\iota : H \to G \) of structure groups is given by \(\iota(a) := (0, t^{-1}) \), where \(I_{N-2} \) is the identity \((N - 2) \times (N - 2)\) matrix. Each of the forms \(\Omega \) is a local connection form associated with a local section \(f \circ \sigma \) of \(P \), where \(\sigma \) is some local section of \(Q \).

In the construction of \(P \) and \(\Omega \) in [8] and in the present paper we consider the left action of \(H \) on \(Q \) : \(a * q := qa^{-1} \), where \((v_1, v_2)h := (h_1v_1 + h_2v_2, h_3v_1 + h_4v_2) \) for \(h = \begin{pmatrix} h_1 & h_2 \\ h_3 & h_4 \end{pmatrix} \in H \), and some left action of \(G \) on \(P \). Another possible way is to consider traditionally a right action, but we have then \(-\Omega\) instead of \(\Omega \).

3. The connections on the vector bundle \(TM \oplus E \)

We will use the definition of the covariant derivative of a section of an associated bundle which comes from [1], and is described for example in [2]. Since we consider here the left action of \(G \) on \(P \) and the right action of \(G \) on \(\mathbb{R}^N \), \(z * c := c^{-1}z \), some details may be different from that of [1] and [2].

Let \(TM \) be the tangent bundle of \(M \) and let \(E \) be the trivial bundle, \(E = \mathbb{R}^{N-2} \times M \).

Proposition 3.1

The bundle \(TM \oplus E \) is a vector bundle associated to \(P \) with fibre \(\mathbb{R}^N \)

\[
P \times_G \mathbb{R}^N = (P \times \mathbb{R}^N)/\sim,
\]

with the equivalence relation \(\sim \) given by \((cp, z * c^{-1}) \sim (p, z) \).

Proof. For \(x \in M \) we take a basis \(q = (v_1, v_2) \in Q \) of \(T_xM \) and identify \((z^1v_1 + z^2v_2) \oplus (z^3, \ldots, z^N) \) from \((TM \oplus E)_x \) with \([(f(q), z)] \in (P \times \mathbb{R}^N)/\sim \). This identification is correct, because if we take another basis \(q' = (v'_1, v'_2) \in Q_x \), then \(q' = a * q = qa^{-1} \) for some \(a \in H \) and \(z^1v_1 + z^2v_2 = z'^1v'_1 + z'^2v'_2 \) with \(z'^1 = a^1z^1 + a^2z^2 \), \(z'^2 = a^3z^1 + a^4z^2 \). It follows that \((z'^1v'_1 + z'^2v'_2) \oplus (z'^3, \ldots, z'^N) = (z^1v_1 + z^2v_2) \oplus (z^3, \ldots, z^N) \) for \(z' = \iota(a)z = z * (\iota(a))^{-1} \). We obtain \([(f(q'), z')] = [(f(a * q), z * (\iota(a))^{-1})] = [(\iota(a)f(q), z * (\iota(a))^{-1})] = [(f(q), z)] \).

Let \([(p, z)] \in P \times_G \mathbb{R}^N \) and let \(\pi(p) = x \), where \(\pi : P \to M \). Let \(q = (v_1, v_2) \in Q_x \), then \(f(q) \in P_x \). Since \(G \) acts transitively on fibres of \(P \), there exists \(b \in G \)
such that \(p = bf(q) \). It follows that \([[(p, z)] = [(bf(q), z)] = [[bf(q), (z * b) * b^{-1}]] = [[[f(q), z * b]] = [[[f(q), b^{-1}z]], \text{ therefore we have to identify } [[(p, z)] \text{ with } (y_{1}v_{1} + y_{2}v_{2}) \oplus (y^{3}, \ldots, y^{N})\), where \(y = b^{-1}z \).

To each local section \(\eta \) of an associated vector bundle \(P \times_{G} \mathbb{R}^{N} \) corresponds some mapping \(\overline{\eta} : |P| \to \mathbb{R}^{N} \) - called the Crittenden mapping - which satisfies the condition \(\overline{\eta}(bp) = \overline{\eta}(p) * b^{-1} \). Since we have actually defined the right action of \(G \) on \(\mathbb{R}^{N} \) using the left action, \(x * c := c^{-1}x \), we can write this condition simply as \(\overline{\eta}(bp) = b\overline{\eta}(p) \). By definition of the Crittenden mapping, \([(p, \overline{\eta}(p))] = \eta(\pi(p)) \). Conversely, to each mapping \(\overline{\eta} : |P| \to \mathbb{R}^{N} \) satisfying the condition \(\overline{\eta}(b * p) = \overline{\eta}(p) * b^{-1} \) corresponds a local section of the associated bundle. Let \(X \) be a vector field on \(M \). For every connection form \(\Omega_{i} \) from Proposition 2.1 we will find the covariant derivative \(\overline{\nabla}_{X} \eta \) of a local section \(\eta \) of \(TM \oplus E \).

Theorem 3.2
Let \(\eta = \Psi \oplus \Psi \), with a vector field \(Y \) on \(U \subset M \) and \(\Psi : U \to \mathbb{R}^{N(i)} \), be a local section of \(TM \oplus E \). Here \(N(1) = N(2) = 1 \) and \(N(3) = N(4) = 2 \). Let \(\overline{\nabla}_{X} \eta \) denote the covariant derivative of \(\eta \) with respect to the connection corresponding to local connection form \(\Omega_{i} \) from Proposition 2.1. Then

\[
\begin{align*}
\overline{\nabla}_{X}^{1}(Y \oplus \Psi) &= (\nabla_{X}Y - \Psi X) \oplus (X(\Psi) + \text{Ric}(X, Y)), \\
\overline{\nabla}_{X}^{2}(Y \oplus \Psi) &= (\nabla_{X}Y - \Psi LX) \oplus (X(\Psi) - \text{vol}(X, Y)), \\
\overline{\nabla}_{X}^{3}(Y \oplus (\Psi^{1}, \Psi^{2})) &= (\nabla_{X}Y - \Psi^{1}X - \varepsilon\Psi^{2}LX) \oplus (X(\Psi^{1}) + \text{Ric}(X, Y), X(\Psi^{2}))
\end{align*}
\]

and

\[
\begin{align*}
\overline{\nabla}_{X}^{4}(Y \oplus (\Psi^{1}, \Psi^{2})) &= (\nabla_{X}Y - \Psi^{1}LX) \oplus (X(\Psi^{1}) - \text{vol}(X, Y), X(\Psi^{2}) - \varepsilon\text{Ric}(X, Y)),
\end{align*}
\]

with the \((1, 1)\) tensor field \(L \) such that \(\text{vol}(LX, Y) = \text{Ric}(X, Y) \) for every \(X, Y \).

Proof. By definition of the covariant derivative, the Crittenden mapping corresponding to \(\overline{\nabla}_{X} \eta \) is equal to \(X^{H}(\overline{\eta}) \), where \(X^{H} \) is the horizontal lift of \(X \) to \(P|_{U} \).

We use a local section \(\tau = f \circ \sigma \) of \(P \), where \(\sigma = (V_{1}, V_{2}) \) is a local section of \(Q \). Let \(Y = Y^{1}V_{1} + Y^{2}V_{2} \), then \(\overline{\tau} = (Y^{1}, Y^{2}, \Psi) \).

Let \(\overline{\Omega} \) be the connection form on \(P \). The local connection form is \(\tau^{\ast}\overline{\Omega} = \Omega_{\sigma} \). We have

\[
\overline{\nabla}_{X}\eta(\tau(x)) = X^{H}_{\tau(x)}(\overline{\eta}), \quad X^{H}_{\tau(x)} = d_{x}\tau(\tau_{x}) + B_{\tau(x)}^{*},
\]

where the right-invariant vector field \(B = -\Omega_{\sigma}(X_{x}) \), which we easily obtain from the condition \(\overline{\Omega}(X^{H}_{\tau(x)}) = 0 \):

\[
0 = \overline{\Omega}(d_{x}\tau(X_{x})) + \overline{\Omega}(B_{\tau(x)}^{*}) = (\tau^{\ast}\overline{\Omega})_{x}(X_{x}) + B = \Omega_{\sigma}(X_{x}) + B.
\]

The first part of \(X^{H}_{\tau(x)}(\overline{\eta}) \) is equal to

\[
(d_{x}\tau(X_{x}))(\overline{\eta}) = X_{x}(\overline{\eta} \circ \tau) = (X_{x}(Y^{1}), X_{x}(Y^{2}), X_{x}(\Psi)).
\]
The second part is

\[
B^*_{τ(x)}(\tilde{η}) = \left. \frac{d}{dt} \tilde{η}(b_t τ(x)) \right|_{t=0} = \left. \frac{d}{dt} b_t \tilde{η}(x) \right|_{t=0} = \left. \frac{d}{dt} b_t \right|_{t=0} \tilde{η}(τ(x)) = B\tilde{η}(τ(x)).
\]

Here \((b_t)\) is 1-parameter subgroup of \(G\) generated by \(B\). It follows that

\[
\tilde{∇}_X η(τ(x)) = \begin{pmatrix} X_1(Y_1) \\ X_2(Y_2) \\ X_1(Ψ) \end{pmatrix} - Ω_σ(X_1) \begin{pmatrix} Y_1(x) \\ Y_2(x) \\ Ψ(x) \end{pmatrix}.
\] (5)

For \(Ω_σ = Ω_1\) we obtain

\[
\tilde{∇}_X η ∘ τ = \begin{pmatrix} X_1^1 \\ X_1^2 \\ X_1(Ψ) \end{pmatrix} - \begin{pmatrix} 0 & -ω_2^1(X) & ω_1^2(X) \\ 0 & 0 & ω_2^1(X) \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Ψ \end{pmatrix}
\]

and

\[
\tilde{∇}_X η = ((X(Y_1) + ω_2^1(X)Y^2 - ω_1^2(X)Ψ)V_1 + (X(Y^2) - ω_2^2(X)Ψ)V_2) + (X(Ψ) + εω_2^1(X)Y^2).
\]

Since \(∇_X V_1 = 0\), we have

\[
∇_X Y = ∇_X (Y_1V_1 + Y_2V_2) = X(Y_1)V_1 + X(Y_2)V_2 + Y_1V_2 + Y_2V_1 = X(Y_1)V_1 + X(Y_2)V_2 + Y^2ω_2^1(X)V_1.
\]

We have also

\[
Ric(X, Y) = Ric(ω_1^1(X)V_1 + ω_2^2(X)V_2, Y_1V_1 + Y_2V_2) = \omega_2^2(X)Y^2 Ric(V_2, V_2) = \omega_2^2(X)Y^2 ε,
\]

because \(V_1\) is a local section of \(ker Ric\).

We obtain finally

\[
\tilde{∇}_X(Y ⊕ Ψ) = (∇_X Y - ΨX) ⊕ (X(Ψ) + Ric(X, Y)).
\] (6)

If we take \(Ω_σ = Ω_2\), then we obtain from (5)

\[
\tilde{∇}_X η ∘ τ = \begin{pmatrix} X_1(Y_1) \\ X_1(Y_2) \\ X_1(Ψ) \end{pmatrix} - \begin{pmatrix} 0 & -ω_2^1(X) & εω_2^1(X) \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Ψ \end{pmatrix},
\]

which gives

\[
\tilde{∇}_X(Y ⊕ Ψ) = ((X(Y_1) + ω_2^1(X)Y^2 - εω_2^1(X)Ψ)V_1 + X(Y^2)V_2) ⊕ (X(Ψ) + ω_2^2(X)Y^1 - ω_1^1(X)Y^2).
\]
Affine analogues of the Sasaki-Shchepetilov connection \[[43] \]

because \(\text{vol}(V_1, V_2) = 1 \).

Let \((\tilde{V}_1, \tilde{V}_2) \) be another local basis of \(TM \) satisfying (4). Then in the intersection of the corresponding domains we have \(\tilde{V}_3 = \delta V_1, \tilde{V}_2 = tV_1 + \delta V_2 \) with \(\delta \in \{1,-1\} \). For the new dual basis we obtain \(\omega^1 = t\omega^1 - \delta \omega^2, \omega^2 = \delta \omega^2 \). It follows that \(\tilde{\omega}^2 V_1 = \omega^2 V_1 \), therefore the vector field \(LX := \varepsilon \omega^2(X)V_1 \) is defined on the whole \(M \) and \(L \) is a \((1,1)\) tensor field.

Note that for every \(Z \) we have

\[
\text{vol}(LX, Z) = \text{vol}(\varepsilon \omega^2(X)V_1, Z) = \varepsilon \omega^2(X)\omega^2(Z) \text{vol}(V_1, V_2) = \varepsilon \omega^2(X)\omega^2(Z) = \text{Ric}(X, Z).
\]

For the second connection we finally obtain the global formula

\[
\tilde{\nabla}_X (Y \oplus \Psi) = (\nabla_X Y - \Psi LX) \oplus (X(\Psi) - \text{vol}(X, Y)). \tag{8}
\]

For \(\Omega_2 = \Omega_3 \) we have

\[
\tilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \omega^1(X) & \omega^2(X) \\ 0 & 0 & \omega^2(X) & 0 \\ 0 & -\varepsilon \omega^2(X) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix},
\]

hence

\[
\tilde{\nabla}_X (Y \oplus (\Psi^1, \Psi^2)) = (X(Y^1) + \omega^1_2(X)Y^2 - \omega^1(X)\Psi^1 - \omega^2(X)\Psi^2)V_1 + (X(Y^2) - \omega^2(X)\Psi^1)V_2 \\
\oplus (X(\Psi^1) + \varepsilon \omega^2(X)Y^2, X(\Psi^2)),
\]

which gives

\[
\tilde{\nabla}_X (Y \oplus (\Psi^1, \Psi^2)) = (\nabla_X Y - \Psi^1 X - \varepsilon \Psi^2 LX) \oplus (X(\Psi^1) + \text{Ric}(X, Y), X(\Psi^2)). \tag{9}
\]

For \(\Omega_2 = \Omega_4 \) we obtain

\[
\tilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \varepsilon \omega^2(X) & 0 \\ 0 & 0 & 0 & 0 \\ -\omega^2(X) & \omega^1(X) & 0 & 0 \\ 0 & \omega^2(X) & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix}
\]

and

\[
\tilde{\nabla}_X (Y \oplus (\Psi^1, \Psi^2)) = (\nabla_X Y - \Psi^1 LX) \oplus (X(\Psi^1) - \text{vol}(X, Y), X(\Psi^2) - \varepsilon \text{Ric}(X, Y)). \tag{10}
\]
4. Flatness of $\hat{\nabla}$

Theorem 4.1
Each of four connections $\hat{\nabla}^i$ in Theorem 3.2 is flat.

Proof. We will compute

$$\hat{R}(X, Y)(Z \oplus \Psi) = (\hat{\nabla}_X \hat{\nabla}_Y - \hat{\nabla}_Y \hat{\nabla}_X - \hat{\nabla}_{[X,Y]})(Z \oplus \Psi)$$

for each of four connections (6), (8), (9) and (10).

If we use $\nabla X - \nabla Y - [X,Y] = T(X,Y) = 0$, then for the connection (6) we obtain

$$\hat{R}(X, Y)(Z \oplus \Psi) = (R(X, Y)Z - (Ric(Y, Z)X - Ric(X, Z)Y))$$

$$\oplus (\nabla Y \text{Ric}(Y, Z) - (\nabla X \text{Ric})(X, Z) - \Psi(Ric(X, Y) - Ric(Y, X)))$$

But Ric is symmetric, $\nabla R = 0$ implies $\nabla \text{Ric} = 0$, and for each two-dimensional manifold

$$R(X, Y)Z = Ric(Y, Z)X - Ric(X, Z)Y. \quad (11)$$

Therefore $\hat{R}(X, Y)(Z \oplus \Psi) = 0 \oplus 0$.

For the connection (8) we obtain

$$\hat{R}(X, Y)(Z \oplus \Psi)$$

$$= (R(X, Y)Z + \text{vol}(Y, Z)LX - \text{vol}(X, Z)LY - \Psi((\nabla X \text{L}Y - (\nabla Y \text{L})X))$$

$$\oplus (\nabla Y \text{vol})(X, Z) - (\nabla X \text{vol})(Y, Z) + \Psi(\text{vol}(X, LY) - \text{vol}(Y, LX)).$$

From $\nabla \text{vol} = 0$ it follows that $R \cdot \text{vol} = 0$, therefore

$$0 = (R(X, Y) \cdot \text{vol})(Z, W) = - \text{vol}(R(X, Y)Z, W) - \text{vol}(Z, R(X, Y)W)$$

$$= - \text{vol}(R(X, Y)Z, W) + \text{vol}(R(X, Y)W, Z),$$

hence

$$\text{vol}(R(X, Y)Z, W) = \text{vol}(R(X, Y)W, Z). \quad (12)$$

For an arbitrary vector field W using (12), (7) and (11) we obtain

$$\text{vol}(R(X, Y)Z + \text{vol}(Y, Z)LX - \text{vol}(X, Z)LY, W)$$

$$= \text{vol}(R(X, Y)W, Z) + \text{vol}(Y, Z)\text{Ric}(X, W) - \text{vol}(X, Z)\text{Ric}(Y, W)$$

$$= \text{vol}(R(X, Y)W + \text{Ric}(X, W)Y - \text{Ric}(Y, W)X, Z)$$

$$= 0.$$

From the non-degeneracy of vol it follows that

$$R(X, Y)Z + \text{vol}(Y, Z)LX - \text{vol}(X, Z)LY = 0. \quad (13)$$

Moreover, $\nabla \text{Ric} = 0$, $\nabla \text{vol} = 0$ and (7) imply $\nabla L = 0$. We have also $\text{vol}(X, LY) - \text{vol}(Y, LX) = - \text{vol}(LY, X) + \text{vol}(LX, Y) = - \text{Ric}(Y, X) + \text{Ric}(X, Y) = 0$. Hence $\hat{R}(X, Y)(Z \oplus \Psi) = 0 \oplus 0$ for $\hat{\nabla}$ given by (8).
For the connection (9) we obtain
\[
\begin{align*}
R(X,Y)(Z \oplus (\Psi^1, \Psi^2)) &= (R(X,Y) - \text{vol}(Y,Z)LX - \text{vol}(X,Z)LY - \Psi^1((\nabla_X L)(Y) - (\nabla_Y L)(X))) \\
&\quad \oplus ((\nabla_X \text{vol})(X,Z) - (\nabla_Y \text{vol})(Y,Z) + \Psi^1(\text{vol}(X,LY) - \text{vol}(Y,LX)), 0) \\
&= 0 \oplus (0,0).
\end{align*}
\]

Note that im $L \subset \ker \text{Ric}$.

For (10) we have
\[
\begin{align*}
R(X,Y)(Z \oplus (\Psi^1, \Psi^2)) &= (R(X,Y) + \text{vol}(Y,Z)LX - \text{vol}(X,Z)LY - \Psi^1((\nabla_X L)(Y) - (\nabla_Y L)(X))) \\
&\quad \oplus ((\nabla_Y \text{vol})(X,Z) - (\nabla_X \text{vol})(Y,Z) + \Psi^1(\text{vol}(X,LY) - \text{vol}(Y,LX)), 0) \\
&= 0 \oplus (0,0).
\end{align*}
\]

5. Some remarks about interpretation of ∇

As is shown in [10], in the metric case using (at least local) embedding of (M,g) with $K = \pm 1$ into Euclidean or pseudoeuclidean space E we may identify ∇ with the restriction of the flat connection on $T_E = E \times E$ to $E \times M$ and identify the trivial one-dimensional summand E with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection on M, dim $M = 2$. Let $f : M \to \mathbb{R}^3$ be an immersion and let ∇ be the connection induced on M by f and the transversal vector field ξ. If we identify the bundle $f^*(TM) \oplus \mathbb{R}\xi$ with $TM \oplus E$, then to the vector field $f^*(Y) + \Psi\xi$ corresponds the section $Y \oplus \Psi$ of $TM \oplus E$. The Gauss and Weingarten formulae yield that to $D_X(f^*Y + \Psi\xi)$ corresponds
\[
D_X(Y \oplus \Psi) = (\nabla_X Y - \Psi SX) \oplus (X(\Psi) + h(X,Y) + \Psi \tau(X)),
\]
where h is the affine fundamental form, S is the shape operator and τ is the transversal connection form (see [3] for the definitions). We look for f and ξ such that $\tilde{D} = \nabla$. Comparing the right-hand side of (14) with that of (6) and (8) for the section $0 \oplus 1$ gives $\tau = 0$, which means that we may restrict ourselves to equiaffine transversal vector fields.

Furthermore, since h is always symmetric and vol is anti-symmetric, we see that there are no f and ξ which allow to identify in the above described way the connection (8) with the standard connection D on the bundle $\mathbb{R}^3 \times M$.

As concerns (6), it should be $h = \text{Ric}$, which implies that we should consider some realization of ∇ on a degenerate surface f with the type number tf equal to 1. Such realizations were described by B. Opozda in [7]. Using a general description
given in Proposition 6.2 of [7] and claiming that $\xi = -f$, we easily obtain the
following particular local realizations of ∇
\[
 f(u,v) = (u, \cos v, \sin v) \in \mathbb{R}^3 \quad \text{for } \varepsilon = 1
\]
and
\[
 f(u,v) = \left(u, \frac{\sqrt{2}}{2} e^{-v}, \frac{\sqrt{2}}{2} e^v \right) \in \mathbb{R}^3 \quad \text{for } \varepsilon = -1.
\]
Here u, v is some fixed local canonical coordinate system for ∇. The volume element $\text{vol} = du \wedge dv$ is the element induced by (f, ξ) from \mathbb{R}^3.

For a centro-affine immersion $(f, \xi = -f)$ and $n = 2$ we have $SX = X$ and $\text{Ric}(X,Y) = h(X,Y)\text{tr} S - h(SX,Y) = (n - 1)h(X,Y) = h(X,Y)$. It follows that using the immersion (15) or (16) we may identify (6) with the standard \mathbb{S} from (9) from (16) we identify (16) with the standard connection D.

To obtain $\nabla = \tilde{D}$ for ∇ given by (6) we choose and fix some local canonical coordinate system u, v for ∇ and use for example the immersion $f: M \to \mathbb{R}^4$, $f(u,v) = (u, \cos v, \sin v, 0)$ if $\varepsilon = 1$ and $f(u,v) = (u, \sqrt{2} e^{-v}, \sqrt{2} e^v, 0)$ if $\varepsilon = -1$, and the two-dimensional transversal bundle spanned by $\xi_1(u,v) = -f(u,v)$ and $\xi_2(u,v) = (-v, 0, 0, 1)$. The induced connection (which is equal to ∇), the affine fundamental forms h^1, h^2, the shape operators S_1, S_2, and the normal connection forms τ^i_j are defined by the following decompositions (cf [3])
\[
 D_X f_* Y = f_* \nabla_X Y + h^1(X,Y)\xi_1 + h^2(X,Y)\xi_2,
\]
\[
 D_X \xi_1 = -f_* S_1 X + \tau^1_1(X)\xi_1 + \tau^1_2(X)\xi_2,
\]
\[
 D_X \xi_2 = -f_* S_2 X + \tau^2_1(X)\xi_1 + \tau^2_2(X)\xi_2.
\]
We obtain $\tau^i_j = 0$, $S_1 X = X$, $S_2 = dv(\cdot)\partial_u = \varepsilon L$, $h^2 = 0$ and $h^1(\partial_u, \partial_u) = h^1(\partial_v, \partial_u) = \varepsilon$. The volume element $\text{vol} = du \wedge dv$ is induced from \mathbb{R}^4, $\text{vol}(X,Y) = \det(f_* X, f_* Y, \xi_1, \xi_2)$. Identifying the vector field $f_* (Y) + \Psi^1 \xi_1 + \Psi^2 \xi_2$ with the section $Y \oplus (\Psi^1, \Psi^2)$ of $TM \oplus E$ we obtain $\nabla_X (Y \oplus (\Psi^1, \Psi^2))$ as in (9) from $D_X (f_* Y + \Psi^1 \xi_1 + \Psi^2 \xi_2)$.

Similarly as it was for (6), the above immersion f is degenerate. By definition (see [3]), an immersion $f: M \to \mathbb{R}^4$ is non-degenerate if the symmetric bilinear function G_{σ} is non-degenerate. For a local frame field $\sigma = (X_1, X_2)$ the function G_{σ} is defined by the formula (cf [3])
\[
 G_{\sigma}(Y, Z) = \frac{1}{2} \left(\det(f_* (X_1), f_* (X_2), D_Y f_* (X_1), D_Z f_* (X_2))
 + \det(f_* (X_1), f_* (X_2), D_Z f_* (X_1), D_Y f_* (X_2)) \right).
\]
For $\sigma = (\partial_u, \partial_v)$ we obtain $G_{\sigma} = 0$.

It is impossible to obtain in a similar way the connection [10], because vol is anti-symmetric.
6. Some further remarks

In general, to each immersion \((f, \xi)\) and to each local basis \(\sigma = (X_1, X_2)\) of \(TM\) corresponds some \(GL(3, \mathbb{R})\)-valued 1-form \(\Omega_\sigma\)

\[
\Omega_\sigma = \begin{pmatrix} -\omega^1_1 & -\omega^2_1 & S^1(\cdot) \\ -\omega^1_2 & -\omega^2_2 & S^2(\cdot) \\ -h(\cdot, X_1) & -h(\cdot, X_2) & -\tau \end{pmatrix}.
\]

Here \(\omega^i_j\) are local connection forms of the induced connection and \(S = S^1(\cdot)X_1 + S^2(\cdot)X_2\) is the shape operator. The condition \(d\Omega_\sigma - \Omega_\sigma \wedge \Omega_\sigma = 0\) is equivalent to the fundamental Gauss, Codazzi and Ricci equations. The formula (5) gives on \(TM \oplus E\) a flat connection \(\bar{D}\) described by formula (14).

The considered in the present paper 1-forms \(\Omega_i\) were constructed as satisfying additional condition \(\Omega_i = A\omega^1 + B\omega^2 + C\omega^i\) with constant \(A, B\) and \(C\). For given \(\Omega_\sigma\), such constant \(A, B\) and \(C\) may not exist, in such a case the connection \(\bar{D}\) is always different from \(\bar{\nabla}\). For example, \((M, \nabla)\) can be affinely immersed also as a non-degenerate surface in \(\mathbb{R}^3\). Such immersions and transversal fields are described in [5]. If we use one of them, then we obtain \(\bar{D}\) different from [6] and [8].

For each given connection \(\nabla\) on \(M\), for each \((1, 1)\) tensor field \(A\) and \((0, 2)\) tensor field \(\alpha\) we can define some connection \(\bar{\nabla}^{A,\alpha}\) on \(TM \oplus E\) by the formula

\[
\bar{\nabla}^{A,\alpha}(Y \oplus \Psi) = (\nabla_X Y + \Psi AX) \oplus (X(\Psi) + \alpha(X, Y)).
\]

We may look for such connections \(\nabla\) for which there exist \(A\) and \(\alpha\) such that \(\bar{\nabla}^{A,\alpha}\) is flat.

It is easy to compute

\[
\bar{R}_{A,\alpha}(X, Y)(Y \oplus \Psi)
= \left(\nabla X Y \alpha + (\nabla_X Y)(\alpha)\right) \oplus \left(\nabla Y \alpha \right)
= \left(\nabla X Y \alpha + (\nabla_X Y)(\alpha)\right) \oplus \left(\nabla Y \alpha \right)
= \left(\nabla X Y \alpha - \nabla Y \alpha \right)
\]

7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with indefinite metric \(g\) of constant curvature \(\kappa\). We can assume, by replacing \(g\) by \(-g\) if necessary, that \(\kappa > 0\). Let \(\kappa = \frac{1}{\rho^2}\). We take a local basis \(X_1, X_2\) such that \(g(X_1, X_1) = 1 = -g(X_2, X_2), g(X_1, X_2) = 0\). The local connection forms are \(\omega^1_1 = \omega^2_2 = 0, \omega^1_2 = \omega^2_1 = \omega\). The structural equations are \(d\omega^1 = -\omega \wedge \omega^2\), \(d\omega^2 = -\omega \wedge \omega^1\), \(d\omega = -\kappa \omega^1 \wedge \omega^2\) and the 1-form

\[
\Omega_\sigma = \begin{pmatrix} 0 & -\omega & -\frac{1}{\rho} \omega^1 \\ -\omega & 0 & -\frac{1}{\rho} \omega^2 \\ \frac{1}{\rho} \omega^1 & \frac{1}{\rho} \omega^2 & 0 \end{pmatrix}.
\]
satisfies the condition \(d\Omega_{\sigma} - \Omega_{\sigma} \wedge \Omega_{\sigma} = 0 \). Using (5) we obtain

\[
\nabla_{X} (Y \oplus \Psi) = \left((X(Y^1) + \omega(X)Y^2 + \frac{1}{\rho} \omega^1(X)\Psi)X_1 + (X(Y^2) + \omega(X)Y^1 + \frac{1}{\rho} \omega^2(X)\Psi)X_2 \right) \oplus \left(X(\Psi) - \frac{1}{\rho} (\omega^1(X)Y^1 - \omega^2(X)Y^2) \right) \tag{17}
\]

Let \(\mathbb{R}^{2,1} = \mathbb{R}^3 \) with the scalar product \(\langle (v^1, v^2, v^3), (w^1, w^2, w^3) \rangle = v^1w^1 + v^2w^2 - v^3w^3 \). Let \(Q = \{ x \in \mathbb{R}^3 : \langle x, x \rangle = \rho^2 \} \). Let \(f: M \to Q \subset \mathbb{R}^{2,1} \) be a local isometric immersion. Then \(g(X,Y) = (f_*(X), f_*(Y)) \) and the connection induced by \(f \) and the normal vector field \(\xi = \frac{1}{\rho} f \) is the Levi-Civita connection of \(g \). We have \(h(X,Y) = g(SX,Y) \) and \(SX = -\frac{1}{\rho} X \). From (14) we obtain

\[
\nabla_{X} (Y \oplus \Psi) = \left(\nabla_{X} Y + \frac{1}{\rho} \Psi(X) \right) \oplus \left(X(\Psi) - \frac{1}{\rho} g(X,Y) \right) \tag{18}
\]

and we see that \(\nabla = \nabla \).

If \(\kappa = -\frac{1}{\rho^2} \), then to \(-g \) corresponds the positive curvature \(-\kappa = \frac{1}{\rho^2} \) and the formula (17) gives the flat connection

\[
\nabla_{X} (Y \oplus \Psi) = \left(\nabla_{X} Y + \frac{1}{\rho} \Psi(X) \right) \oplus \left(X(\Psi) - \frac{1}{\rho} (-g)(X,Y) \right) \tag{18}
\]

If \(\rho = 1 \), then from (18) we obtain (1) and from (17) we obtain (2). It follows that Shchepetilov’s formulae hold also for indefinite metric \(g \).

8. Summary

For a locally symmetric connection \(\nabla \) with one-dimensional \(\text{im}R \) we have constructed two flat connections on the vector bundle \(TM \oplus (\mathbb{R} \times M) \) and two flat connections on \(TM \oplus (\mathbb{R}^2 \times M) \). From each pair only one connection may be identified with the standard connection in \(\mathbb{R}^N \), \(N = 3 \) or \(N = 4 \), after suitable local embedding of \((M, \nabla) \) into \(\mathbb{R}^N \). Those embeddings are degenerate.

References

[1] Crittenden, Richard J. "Covariant differentiation." Quart. J. Math. Oxford Ser. (2) 13 (1962): 285-298. Cited on 40.

[2] Gancarzewicz, Jacek. Zarys współczesnej geometrii różniczkowej. Warszawa: Script, 2010. Cited on 40.

[3] Nomizu, Katsumi and Takeshi Sasaki. "Affine differential geometry. Geometry of affine immersions." Vol. 111 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 1994. Cited on 38, 45 and 46.
Affine analogues of the Sasaki-Shchepetilov connection

[4] Nomizu, Katsumi and Barbara Opozda. "Locally symmetric connections on possibly degenerate affine hypersurfaces." Bull. Polish Acad. Sci. Math. 40, no. 2 (1992): 143-150. Cited on 38

[5] Opozda, Barbara. "Locally symmetric connections on surfaces." Results Math. 20, no. 3-4 (1991): 725-743. Cited on 39 and 47

[6] Opozda, Barbara. "Some relations between Riemannian and affine geometry." Geom. Dedicata 47, no. 2, (1993): 225-236. Cited on 39

[7] Opozda, Barbara. "A characterization of affine cylinders." Monatsh. Math. 121, no. 1-2 (1996): 113-124. Cited on 39, 45 and 46

[8] Robaszewska, Maria. "On some flat connection associated with locally symmetric surface." Ann. Univ. Paedagog. Crac. Stud. Math. 13 (2014): 19-44. Cited on 40 and 48

[9] Sasaki, Ryu. "Soliton equations and pseudospherical surfaces." Nuclear Phys. B 154, no. 2 (1979): 343-357. Cited on 37

[10] Shchepetilov, Alexey V. "The geometric sense of the Sasaki connection." J. Phys. A 36, no. 13 (2003): 3893-3898. Cited on 38 and 45

Institute of Mathematics
Pedagogical University of Cracow
Podchorążych 2
30-084 Kraków
Poland
E-mail: robaszew@up.krakow.pl

Received: July 25, 2015; final version: July 8, 2016;
available online: July 22, 2016.