Adult stem cell lineage tracing and deep tissue imaging

Juergen Fink#, Amanda Andersson-Rolf# & Bon-Kyoung Koo*
Department of Genetics and Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, United Kingdom

Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667]

FROM EARLY CELL TRACKING TO TODAY’S GENETIC LINEAGE TRACING

How an organism develops, starting from fertilization, is a fundamental question in biology. In the 19th century, conventional embryology described the development of the embryo from fertilization through the various stages of development. Although the fascinating nature of embryonic development was revealed, its description remained at the level of gross morphological changes due to the lack of modern devices as well as the complexity of developmental processes involving millions or billions of cells. In 1974, Sidney Brenner first started investigating the simple invertebrate organism Caenorhabditis elegans (C. elegans) in order to describe development at cellular resolution (1) (Fig. 1A). Its easily visible embryonic development allowed non-invasive microscopic analysis of developmental processes that remained inaccessible to scientists in

*Corresponding author. E-mail: bkk25@cam.ac.uk
#These authors contributed equally.

http://dx.doi.org/10.5483/BMBRep.2015.48.12.249

Received 1 December 2015

Keywords: Adult stem cells, Advanced imaging, Intravital imaging, Lineage tracing, Tissue clearing

Fig. 1. C. elegans early development and BrdU tracing. (A) Schematic representation of C. elegans embryonic development. The germ-line develops from one single primordial germ cell (PGC) which appears in the early embryo at the 4-cell stage. This PGC will divide and give rise to the two PGCs Z2 and Z3. These PGCs will not divide further until after hatching. Postembryonic divisions result in variable, non-reproducible placement of the daughter cells (3, 4). (B) Illustration of bromodeoxyuridine (BrdU), a synthetic nucleoside that is analogous to thymidine, and how it is incorporated into the genome. (C) Representation of how BrdU is diluted during tracing. Rapid self-renewal of the stem cells (top row) will lead to dilution of BrdU. In contrast, quiescent stem cells (bottom row) will retain the BrdU label. During asymmetric self-renewal the progenitor cells divide and give rise to differentiated cells, leading to a dilution of BrdU.
other organisms. This enabled extensive lineage tracking studies and revealed that at early developmental stages the fate of a specific cell is invariably conserved between individuals. Furthermore, each cell undergoes a defined number of divisions thus resulting in a defined number of somatic cells in the adult (hermaphrodite: 959; male: 1031) (2-4). Nevertheless, limitations of the imaging technology at that time hindered scientists from tracking cell divisions in the later embryo. Thus, the advancement of imaging technology to visualize cellular events was predicted to lead to a deeper understanding of developmental processes.

The labeling of specific cells is one method employed to visualize subsequent cellular events. This represents an improved tracking strategy for the later stages of development, when millions of cells are present. A simple example is the labeling of proliferating cells by incorporation of radioactive nucleoside or nucleoside analogues such as 5-bromo-2′-deoxyuridine (BrdU) (Fig. 1B). BrdU had first been described as an antagonist of the terminal steps of DNA-thymine synthesis in 1958 by Kit et al. (5). The use of BrdU incorporation for cell lineage tracing experiments became possible following the development of monoclonal antibodies against BrdU-containing DNA by Gratzner in 1982 (6). In the following years, BrdU incorporation was used extensively to study cell proliferation (7-12) and to label proliferative cells in order to trace their fates in various organ systems (13-17). However, BrdU is diluted following each cell division and is eventually lost in rapidly dividing cells as newly synthesized, unlabeled nucleotides are incorporated into the genome (Fig. 1C). Therefore, BrdU incorporation is useful only in studying cell proliferation, short term lineage hierarchy and label-retention.

Recent advances in genetic manipulation techniques have facilitated the development of genetic labeling strategies that allow the long term labeling of both cycling and quiescent stem cells as well as the permanent tracing of all their descendants. One of the most important tools in performing lineage tracing studies in mice is the Cre/loxP site-specific recombinase and reporter lines have revealed details about the development of a ligand-dependent Cre recombinase – CreERT2 – additionally enabled scientists to temporally control the recombinase activity through the administration of inducing agents (19). For lineage tracing studies, two genetic tools needed to be combined: i) CreERT2 expression under the control of a cell type-specific promoter and ii) reporter gene expression that can be induced upon Cre activity, thus allowing heritable expression of active reporter genes in all progeny. Initially, β-galactosidase (LacZ) was used as a reporter gene (20, 21) (Fig. 2A). Nowadays, single (22-24) to multi-color fluorescent proteins (25-27) are widely utilized for lineage tracing (Fig. 2B, C).

In this review we will discuss recent lineage tracing studies and quantification tools as well as novel live imaging approaches to give an overview of existing techniques and to outline future directions in the field of modern adult stem cell tracking and fate choice studies.

MODERN LINEAGE TRACING STUDIES IN ADULT TISSUES

Recent lineage tracing studies with temporally regulated CreER recombinase and reporter lines have revealed details about the
homeostatic turnover of multiple tissues and about underlying cellular plasticity in homeostasis, injury response and cancer formation. An excellent example is the study of Lgr5-expressing stem cells in the small intestine and colon (28). In a previous study, the group of Hans Clevers identified Lgr5 as a Wnt target gene whose expression is spatially restricted to the base of intestinal crypts (29, 30). They then designed a bicistronic construct – GFP-ires-CreERT2 – to be inserted into the endogenous Lgr5 locus, which allowed expression of 2 useful proteins (GFP for visualization and CreERT2 for time-controlled recombination) under the control of the Lgr5 promoter (See Fig. 2C for an example of this bicistronic construct in combination with Rosa-YFP reporter). Using this novel strategy combined with the Rosa26-LacZ reporter they showed that the Lgr5+ crypt base columnar (CBC) cell population maintains itself with Rosa26-LacZ reporter they showed that the Lgr5+ crypt base columnar (CBC) cell population maintains itself for over a year and gives rise to all lineages present in the intestinal epithelium, therefore identifying the Lgr5+ population as intestinal stem cells (28) (Fig. 3). Similar lineage tracing analysis identified additional Lgr5+ stem cell populations in other tissues such as the colon, the hair follicle and the pylorus of the stomach (16, 31). These studies nicely illustrate the utility of lineage tracing as a tool to elucidate the stem cell properties of potential stem cell populations.

IMAGING TECHNOLOGIES ENHANCE TISSUE-WIDE LINEAGE TRACING STUDIES

Unlike the highly ordered epithelium of the intestine, other epithelial structures (e.g. in lung, pancreas, liver and mammary glands) have a highly branched morphology that necessitates the use of sophisticated 3D imaging of thick tissue to analyze the entire lineage tracing event. In today’s confocal microscopes, a selective filter only allows light of the desired wavelength to pass while a pinhole before the detector blocks any out-of-focus light to generate the corresponding emission image of the excited specimen spot. The resulting image is generated point by point, allowing in-focus imaging from selected specimen depths. Subsequent 3D-reconstruction can help in turn to identify stem- or progenitor cell-derived clonal expansions in lineage tracing experiments. However, the limitations of confocal laser scanning microscopy include photo-bleaching, laser light scattering, emission light scattering and imaging time (32-34).

The development of 2-photon microscopy aimed to circumvent these photo bleaching and laser light scattering problems by using photons of longer wavelengths (lower energy) that can excite fluorescent proteins or dyes only in a defined focal plane (34). Where the paths of both photon beams cross, simultaneous absorption of the individual photons leads to a selective increase in photon energy (35-37) which subsequently reaches the required energy to excite the fluorescent dye or protein of interest.

Light-sheet microscopy represents another alternative to conventional confocal microscopy, with improved imaging speed due to illumination and detection of entire focal planes at the same time (Table 1). This technology presents unprecedented low photo toxicity at very high image acquisition speed optimal for live imaging. The development of smaller light sheets, for higher axial excitation resolution, in combination with higher numerical aperture (NA) lenses for higher axial detection resolution enabled the fast detection of molecular processes like transcription factor binding kinetics in up to 35 µm thick live mouse embryonic stem cell spheroids (38). Alternatively, using lower NA lenses and thicker light sheets, this technology can be used to image entire small organisms or organs while maintaining high speed image acquisition, though at lower resolution (For technical details see: 38-42). Due to its superior performance in cell viability, light sheet microscopy has been used extensively for live imaging of developmental processes in e.g. C. elegans and Drosophila melanogaster, Tribolium castaneum, zebrafish or mouse embryos (38, 40, 41, 43-49). In the field of adult stem cell lineage tracing, the light sheet microscopy technology holds particular promises in live tracking of stem cell mediated homeostasis and for the observation of injury mediated repair mechanisms.

Fig. 3. Lineage tracing of Lgr5+ intestinal stem cells using the lacZ reporter system. Lineage tracing of Lgr5+ stem cells. An eGFP-coupled, tamoxifen inducible knock-in mouse is used in which the expression of eGFP and CreERT2 is driven by the LGR5 promoter. All Lgr5+ stem cells express eGFP. Following the administration of tamoxifen, recombined stem cells express Lgr5 promoter driven eGFP and ubiquitous promoter driven LacZ. Upon division, daughter cells of Lgr5+ stem cells either remain as stem cells expressing both GFP and LacZ, or differentiate turning off the expression of Lgr5 expressing only the lacZ reporter gene. LacZ+ cells derived from labelled Lgr5+ stem cells quickly move upwards towards the villi (day 5). Neutral drift within the stem cell zone results in complete labeling of the entire crypt within several weeks. All cells of the adjacent villi have been replaced by labelled progeny of one initially labelled Lgr5+ stem cell (day 60).
A few stem cell lineage tracing studies have utilized this novel technology. One example is the identification of perivascular collagen \(\alpha_1 \) cells as the main source of the cellular composition of the fibrotic scar after contusive spinal cord injury (50). Commercially available light sheet microscopes and readily available access to this novel technology in imaging facilities will speed up adult stem cell lineage tracing experiments.

Currently light sheet microscopy is being used for small organs or organisms (up to a few hundred \(\mu m \)) at high axial resolution using high NA lenses. However, the use of these lenses results in steric hindrance due to the required working distance of each lens (38). Therefore, Imaging of larger specimens (up to cm\(^2\)) is performed using low NA lenses at a lower axial resolution. The main obstacle of light sheet microscopy as well as all other imaging techniques aiming at deep tissue visualization is optical heterogeneity of the specimen and the resulting light refraction, which causes light scattering and reduces the number of photons reaching the detector or camera.

To circumvent this problem, another strategy that aims to aid visualization of thick specimens by reducing the light scattering properties of intact tissues and therefore increasing overall optical transparency has been developed. In 1914, Werner Spalteholz performed pioneering studies in this field by using organic solvents to reduce light scattering within tissues (51). Commercially available mounting reagents, e.g. RapiClear \(^\text{\textregistered} \) (RC), can improve the light permeability of samples by minimizing light scattering at the interface between coverslip and specimen and within the specimen itself. The refractive index (RI) of RC 1.52 is around 1.52nD, close to that of lipid membranes, which are a major source of light scattering in the tissue. Additionally, the RI of RC 1.52 is close to that of glass. If oil lenses are used, all RIs on the path from the samples to the cover slip and objective are consistent, increasing the resolving power as well as signal brightness.

Several additional clearing reagents have been described in recent years to perform clearing and subsequent 3D imaging of whole organs (39, 52, 53). These techniques have further been optimized to reduce fluorescent quenching during the process of clearing (54-57). All of these tissue clearing strategies aimed at increasing the light permeability of tissues in order to visualize expressed fluorescent proteins, but limited antibody penetration poses another challenge to the molecular interrogation of intact tissues that needed to be overcome. Chung et al developed an ionic extraction technique, named CLARITY (originally an acronym for Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue-hYdrogel), to remove the lipid bilayer of cells while maintaining the structural integrity of the tissue.
Table 2. Tissue clearing summary
BAABB *(Becker et al., 2006; Dent et al., 1989; Dodt et al., 2007; Spalteholz, 1914)*
Fixation method and other tissue preparation
Dehydration
Clearing solution
Time of protocol
Tissue clearing principle (RI matching)
Fluorescence quenching
Main Disadvantages
Main Advantages
tissue (58). First, the tissue of interest gets perfused with a combination of hydrogel monomers, formaldehyde and polymerization initiators (at 4°C). After incubation at 37°C, the hydrogel monomers polymerize, incorporating biomolecules within the mesh of hydrogel and stabilizing the 3D structure of the tissue. In the second step, lipids and other unbound biomolecules can be extracted by active electrophoresis. Besides the obvious effect of optical tissue clearance, the hydrogel mesh in combination with lipid extraction allows increased antibody penetration and reduced loss of proteins compared to other clearing or permeabilization protocols (42, 59). Yang et al reported a perfusion-based modification of the CLARITY protocol with superior tissue clearing speed and reduced risk of tissue degradation or overheating (PACT: Passive CLARITY Technique / PARS: Perfusion-assisted Agent Release in Situ) (60) (Table 2). The application of this technique in combination with modern deep tissue imaging and long term lineage tracing studies of potential organ-specific progenitor or adult stem cell populations will enable 3D analysis in various tissues.

MATHMATICALE MODELING TO UNDERSTAND UNDERLYING CELLULAR DYNAMICS

The development of better 3D imaging techniques resulted in the capability to acquire induced clonal expansion data from lineage tracing that enables additional retrospective analysis of clonal behavior. Although analysis of individual time points after labeling of specific stem cell populations only reveals restricted information about the underlying clonal expansion, the consecutive analysis of multiple time points and subsequent integration of the acquired data allows the development of mathematical models which permit a glimpse of clonal behavior on a population level. In other words, the acquisition of clonal expansion data at multiple time points and in multiple biological replicates provides the dynamic information required to understand both the kinetics of cell proliferation and stem cell fate behavior. Two conceptual approaches are frequently taken to infer information about these two biological concepts. Here we outline the main strategies that can be followed to infer information about biological processes by utilizing mathematical modeling approaches in combination with adult stem cell lineage tracing experiments.

Analysis on a population level

To deciper the kinetics of cell proliferation by lineage tracing analysis, scientists and mathematicians use quantitative population average measurements following a continuous labeling approach such as BrdU incorporation. Following the BrdU incorporation, over time all newly generated cells are going to be labeled, ultimately resulting in labeling of all cells at a rate that depends on both the rate of stem cell divisions (λ) and the rate of differentiated cell loss (Ω). Assuming a simplified two compartment model in which cell divisions and cell loss occur independently of each other, the behavior of the labeled cell population is described by the fraction of labeled cells over all cells as a function of chase time: $f(t) = (1 - pe^{-\lambda t} - (1 - pe^{-\Omega}) \times 100\%$, with the fraction of proliferative cells $p = 1/(1 + \lambda \Omega)$ (61). For homeostatic conditions, the curve resulting from this model is entirely described by only cell division (λ) and loss rate (Ω), and average information about both biological processes can be inferred using mathematical modeling in combination with this simple labeling approach and quantitative data acquisition. Similarly, label dilution assays can be utilized to describe proliferation kinetics. However, as both strategies rely on population average measurements, these approaches can only give information about the stem cell behavior on a population basis. Beyond the average information on cell division and extinction, individual cell fate decisions underlying the observable population dynamics should be interrogated using a clonal approach.

Analysis on a clonal level

Understanding individual stem cell fate behavior requires clonal assays in which in many cases are achieved by genetic labeling, utilizing the inducible CreERT2 system. Assuming that clonal labeling is achieved, a snapshot of clone size and cellular composition of multiple clones at a given time point should reflect all possible fate paths that lead to the recorded clonal data. By increasing the number of analyzed clones and time points, the empirically observed frequency of clones in a certain fate path becomes proportional to the actual chance of that particular fate path. The application of mathematical models in this context is dependent on the initial hypothesis that needs to be tested to dissect a given biological process. One very good example of how mathematical modeling can be applied to clonal data is the description of neutral drift within the Lgr5+ intestinal stem cell population towards monoclonality. The mathematical principles that underlie this analysis have been described in detail in the original paper by Snippert et al and in a subsequent paper by the group of Jacco van Rheenen (26, 62). Here we want to summarize the most important criteria that need to be considered for the experimental design. For this type of study it is important that the induction frequency is low enough so that subsequent tracing events have a defined high chance of being the progeny of a single labeled cell. Additionally, the scoring method needs to be well defined to address the hypothesis in question. Scoring all clones by size can be helpful to decipher the variability in fate paths that a single cell can follow, but to understand stem cell dynamics in detail it might be important to score clones by taking additional criteria into consideration. In this example, to decipher stem cell population behavior on a clonal level, all clones that have entirely left the stem cell niche (i.e. no more Lgr5+ stem cell within the clone) and therefore ceased to contribute to the stem cell population have been considered as depleted clones. Clones that consist of 6 Lgr5+ and 10 Lgr5dim cells were scored as a clone size of 6. This simplified approach allows for more
detailed analysis of the stem cell compartment by discarding potentially misleading clone information caused by the high proliferative turnover of the transit amplifying cell population. The resulting clone size distribution describes the clonal behavior within the stem cell population.

Other examples of how lineage tracing experiments in combination with quantitative analysis have contributed to our current knowledge of adult stem cell behavior can be found in multiple studies. In 2007, the group of Philip H. Jones in collaboration with Benjamin D. Simons showed that in mouse tail epidermis only one type of progenitor cell maintains homeostasis, in contrast to the proposed model of two distinct populations of self-renewing stem cells and transit amplifying progenitor cells (63). In the following years, Benjamin Simons has worked together with multiple groups aiming to unravel the underlying cellular mechanisms that govern homeostasis, injury response and malignancies in multiple tissues. His collaborative studies have shed light on adult stem cell behavior in the ear epidermis, the esophagus (64, 65) and the intestinal epithelium (26, 66, 67) in mice. Other studies included the analysis of stem cell behavior in the mouse germ line (68), prostate (69), skin and intestinal tumors (70-72). These examples demonstrate that quantitative analysis of lineage tracing events expands the biological significance of the acquired data, so providing new insights into adult stem cell differentiation and self-renewal.

LIVE CELL IMAGING IN VITRO AND IN VIVO

In contrast to the retrospective analysis of clonal expansion based on lineage tracing, live imaging allows continuous direct observation of the cells or organism of interest, for a certain period of time. Up until the late 1980s, the conditions during the live imaging process were incompatible with the maintenance of mammalian cells for more than a few hours, thus severely limiting the information that could be gained. In order to study the hierarchy of neural progenitors, Sally Temple placed her microscope inside the incubator and for the first time mammalian cells could be imaged for a longer time period. This was the beginning of the development of incubation chambers (73, 74). Today, computerized incubation chambers, microscope stages and major technical advances in the development of microscopes (e.g. two-photon and spinning disc microscopes) combined with rapidly expressed, bright fluorescent proteins have allowed the use of live imaging to monitor biological events in real time (73, 75-78). On a cellular level, the application of live cell imaging has been used to monitor the phenotype of rat retinal progenitor cells prior to mitosis in order to determine whether characteristic phenotypes could predict the fate choice (79). At a larger scale, in toto (Latin: as a whole) imaging is commonly applied. As the name implies, the aim is to image and track every single cell movement and division that forms a tissue or organ (80). Since its development in 2003 by Sean Megason and Scott Fraser, it has been extensively used to study embryonic development. Model organisms such as zebrafish and C. elegans are commonly used due to their suitability for imaging and genetic manipulation, as both zebrafish embryos and C. elegans are small and transparent (81).

While zebrafish embryos develop freely outside of their mother in water, mouse embryonic development takes place inside the uterus. The developmental stages prior to implantation have been extensively studied, as mouse pre-implantation embryos can be isolated and their development can be observed in vitro by live imaging (82-84). Conversely, post implantation events have largely remained elusive as implanted embryos are inaccessible for direct observation. Recently the group of Zernicka-Goetz developed a novel in vitro culture system that allows the live imaging of the previously inaccessible implantation process (85). This exemplifies how novel in vitro culture systems in combination with live imaging can provide knowledge of biological processes and events that would otherwise be inaccessible in vivo.

Another example of how in vitro studies can provide new insights into adult stem cell behavior is the recently developed long term culture of organoids. The organoid culture system, maintained by actively cycling adult stem cells, provides a novel platform to study biological processes involved in the regulation of adult tissue specific stem cells. Organoids are self-organizing 3D structures whose architecture and physiological properties closely resemble the in vivo tissue (86). The development of genetic tool kits, such as retroviral transduction (87), bacterial artificial chromosome (BAC-transgenesis (88) and CRISPR/Cas genome engineering (89) has allowed cell type- or gene-specific labeling with fluorescent proteins and functional genetics to be performed in this in vitro culture system to study stem cell maintenance, cell fate decisions and cell-cell interactions in combination with live imaging (86, 90).

INTRAVITAL IMAGING (IN VIVO LIVE CELL IMAGING)

The development of advanced in vitro culture systems has enabled studies of in vivo processes otherwise hidden from sight. An alternative has been the development of tools permitting imaging to be performed in vivo to study biological events in living animals. The ability of the firefly (Photinus pyralis) and sea pansy (Renilla reniformis) to biochemically generate light using luciferase enzymes inspired scientists to develop a reporter system, using the same enzymes, allowing the non-invasive tracking of cells (91, 92). To date, several transgenic luciferase reporter mice have been generated and used to study metastasis, gene expression and bacterial and viral infections (92, 93). Although in vivo bioluminescence imaging has minimal background and a high signal-to-noise ratio, it lacks cellular resolution (92, 94). This issue can be circumvented by using confocal and two-photon microscopy in combination with fluorescent reporter mice. The innovation of imaging windows (95) allowed Lehr et al to be among the first to perform intra-
vital imaging over multiple days (96, 97). Ever since, imaging windows for skin, cranial, mammary and abdominal imaging have been developed (98-101) and intravital imaging has been applied to investigate various biological processes in several different research areas, for example angiogenesis, neurobiology, immunology, and cancer biology (99, 102-109). For long-term imaging (days to weeks), tattooed reference marks in combination with vascular and extracellular matrix structures can be used as landmarks to re-identify previously imaged cells (110-112).

An excellent example of the use of intravital imaging in adult stem cell research is from the group of Jacco van Rheenen. Previous studies utilizing lineage tracing managed to delineate the hierarchical organization of squamous skin tumors, intestinal adenomas and glioblastomas (72, 113, 114). Nonetheless, the static images fail to address the issue of plasticity and individual clone behavior. Using the Lgr5-CreERT2;confetti mouse line (26), van Rheenen and his team confirmed the previously observed neutral drift model and in addition provided insight into the short-term dynamics of the Lgr5+ stem cells. Even though all Lgr5+ cells possess long-term self-renewal potential, the stem cells located at the crypt base, called ‘central stem cells’, have a survival advantage over the ‘border stem cells’, which are located in the upper part of the niche and can be displaced into the transit-amplifying domain following the division of adjacent cells (107) (Fig. 4).

OUTLOOK

To date, the technical advancement of microscopes (in both hardware and software) as well as the development of sophisticated molecular and genetic tools has led to a parallel development of live imaging and lineage tracing. In recent years the two have started to come together, a synergy that has led to novel insights ranging from developmental processes to cellular hierarchies within adult tissues and tumors. An obstacle still remaining is the long-term, intravital imaging of deep-tissue, the solution of which would allow the observation of adult stem cell dynamics directly inside organs and tissues. Until this issue is resolved, the development of advanced in vitro culture systems which fully or partially recapitulate the in vivo situation, together with the innovation of new imaging windows, will be of paramount importance. Choosing the appropriate method best suited for the purpose of the experiment is crucial to achieve reproducible results and to draw solid conclusions from the observations.

Despite the existing technical obstacles, there are prospective new techniques and systems providing other highly interesting options. One is magnetic resonance imaging (MRI). It is the least invasive imaging technique (115) and can be applied to large volumes or whole organisms. In addition, it is safe enough to be used as a diagnostic tool (78). However, advanced experimental machines allowing near single-cell resolution in a spatiotemporal manner remain very expensive and are therefore not widely available (116, 117). Another major limitation is low contrast and signal strength. To overcome this issue, scientists have been using contrasting agents usually based on gadolinium (Gd³⁺) (118). To use this technique for the purpose of adult stem cell lineage tracing, new genetic labels for MRI-contrasting agents can be used instead of fluorescent (e.g. YFP) or colorimetric (e.g. LacZ) labels. One approach is to utilize divalent metal ion transporters (DMT1) which facilitate the transport of Mn²⁺ and metabolically bio- tylated cell surface protein, which can then be detected using a streptavidin-horseradish peroxidase conjugate in conjunction with a peroxidase-sensitive gadolinium agent (119). Recently, an Oatp1a1 reporter has been described by Patrick et al. This transport protein mediates the uptake of Gd³⁺ (in the form of gadolinium-ethoxybenzylidenediethylenetriamine penta- acetic acid), a clinically approved contrast agent for MRI (120). Genetic modification to generate ferritin-expressing cells has been shown to increase the contrast (121-123). Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as contrast agents to label and track stem cells in rabbit (124), rat (125, 126) and human patients (127, 128).

Another technical advancement comes from the group of F. Levent Degertekin, which has developed a camera 1.5 mm in size. Still to be tested on animals, it holds the potential for taking 3D images from inside veins and arteries (129). This type of miniaturization of cameras and detectors, with the option of adding guiding wires or possibly implantation, even if transient, could aid and expand the field of vision for live imaging as well as lineage tracing. Recently, the group of Hongjie Dai developed a method utilizing nanotubes with intrinsic photoluminescence to image the mouse cerebral vasculature without any invasive procedures (except the injection of the nanotubes) (130). These two examples demonstrate how the development of micro- and nanotechnology can facilitate and enable previously unknown imaging possibilities.

Transparency is one of the strongest advantages of using zebrafish and C. elegans for the purpose of imaging. At the same

![Fig. 4](http://bmbreports.org)
time, the lack of transparency is a significant hurdle that obscures vision and imaging of biological processes in many other organisms. Tissue clarification techniques like CLARITY can render some tissue samples transparent and thereby improve imaging conditions (58). However, this procedure cannot be performed on live animals, so while we await the generation of a live transparent mouse it might be interesting to consider model organisms that are naturally transparent. Glass frogs belonging to the family *Centrolenidae* are, potentially, the highest vertebrate displaying high level in vivo transparency (131). In combination with CRISPR/Cas genome engineering, they might become a valuable model for genetic and live imaging studies to understand tissue homeostasis (132, 133).

In the end there will, most likely, never be one single ideal approach. Instead, each research question will require its own optimization with regards to model system (*in vitro* or *in vivo*), labeling approach, tissue clearing, image acquisition and relevant mathematical modelling strategies (See Fig. 5 for overview and summary). Together with recent developments and upcoming new systems, lineage tracing and live imaging will provide us with greater details of adult stem cell behavior and tissue homeostasis.

ACKNOWLEDGEMENTS

We thank Prof Jacco van Rheenen for providing examples of intra-vital imaging. Dr Chris Hindley, Dr Onur Basak and Dr Seungmin Han for comments and proof reading. JF and AAR are supported by the Wellcome Trust and MRC, respectively. BK is supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society [101241/Z/13/Z] and receives core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute.

REFERENCES

1. Brenner S (1974) The Genetics of Caenorhabditis Elegans. Genetics 77, 71-94
2. Sulston JE, Schierenberg E, White JG and Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119
3. Sulston JE and Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-156
4. Kimble J and Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70, 396-417
5. Kit S, Beck C, Graham OL and Graham O (1958) Effect
of 5-Bromodeoxyuridine on Deoxyribonucleic Acid-Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors Effect of 5-Bromodeoxyuridine on Deoxyribonucleic Acid-Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors. Cancer Res 18, 598-602.

6. Gratzer HG (1982) Monoclonal antibody to 5-bromo and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science (New York, N.Y.) 218, 474-475.

7. Trent JM, Gerner E, Broderick R and Crossen PE (1986) Cell cycle analysis using bromodeoxyuridine: Comparison of methods for analysis of total cell transit time. Cancer Genet Cytogenet 19, 43-50.

8. Miller MW and Nowakowski RS (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res 457, 44-52.

9. Dolbeare F, Gratzner HG, Pallavicini MG and Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80, 5573-5577.

10. Morstyn G, Pyke K, Gardner J, Ashcroft R, de Fazio A and Bhathal P (1986) Immunohistochemical identification of proliferating cells in organ culture using bromodeoxyuridine and a monoclonal antibody. J Histochem Cytochem 34, 697-701.

11. Gray JW, Dolbeare F, Pallavicini MG, Beisler W and Waldman F (1986) Cell cycle analysis using flow cytometry. Int J Radiat Biol Relat Stud Phys Chem Med 49, 237-255.

12. Kubbies M, Schindler D, Hoehn H and Rabinovitch PS (1985) Cell cycle kinetics by BrdU-Hoechst flow cytometry: an alternative to the differential metaphase labelling technique. Cell Tissue Kinet 18, 551-562.

13. Schulte DM, Shapiro I, Reincke M and Beuschlein F (2007) Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development. Gene Expr Patterns 7, 72-81.

14. Tanaka R, Tainaka M, Ota T et al (2011) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.

15. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 36-62.

16. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.

17. Van der Flier LG, Sabates-Bellver J, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144.

18. Cai D, Cohen KB, Luo T, Lichtman JW and Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10, 540-547.

19. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144.

20. Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25, 1766-1773.

21. Novak A, Guo C, Wang Y, Nagy A and Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 155, 147-155.

22. Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EF1FP and ECFP into the ROSA26 locus. BMC Dev Biol 1, 4.

23. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

24. Wang E, Babbey CM and Dunn KW (2005) Performance of methods for analysis of total cell transit time. Cancer Res 18, 598-602.

25. Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25, 1766-1773.

26. Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25, 1766-1773.

27. Tsien JZ, Chen DF, Gerber D et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317-1326.

28. Chen BC, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at scale. Nature 507, 41-46.

29. Abella ID (1962) Optical Double-Photon Absorption In Caesium Vapor. Phys Rev Lett 9, 453-455.

30. Abella ID (1962) Optical Double-Photon Absorption In Caesium Vapor. Phys Rev Lett 9, 453-455.

31. Chen BC, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at scale. Nature 507, 41-46.

32. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

33. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

34. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

35. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

36. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.

37. Mao X, Fujisawa Y, Chandelier A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326.
high spatiotemporal resolution. Science 346, 1257998-1257998
39. Dodt HU, Leischner U, Schierloh A et al (2007) Ultrami-
neroscopy : three-dimensional visualization of neuronal
etworks in the whole mouse brain. Nat Methods 4, 331-336
40. Huisken J, Swojer V, Del Bene F, Wittbrodt J and Stelzer
EH (2004) Optical sectioning deep inside live embryos
by selective plane illumination microscopy. Science 305, 13-16
41. Wu Y, Wawrzusin P, Senseney J et al (2013) Whole-
brain functional imaging with two-photon light-sheet
microscopy. Nat Methods 12, 379-380
42. Keller PJ and Ahrens MB (2015) Visualizing Whole-Brain
Activity and Development at the Single-Cell Level Using
Light-Sheet Microscopy. Neuron 85, 462-483
43. Lemon WC, Pulver SR, Hockendorf B et al (2015)
Whole-central nervous system functional imaging in larv-
al Drosophila. Nat Commun 6, 7924
44. Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK and
Dickinson ME (2014) Quantitative imaging of cell dy-
namics in mouse embryos using light-sheet microscopy.
Development (Cambridge, England) 141, 4406-4414
45. Keller PJ, Schmidt AD, Wittbrodt J and Stelzer EH (2011)
Digital scanned laser light-sheet fluorescence microscopy
(DSLM) of zebrafish and Drosophila embryonic develop-
ment. Cold Spring Harb Protoc 2011, 1235-1243
46. Tomer R, Khairy K, Amat F and Keller PJ (2012)
Quantitative high-speed imaging of entire developing
embryos with simultaneous multi-view light-sheet
microscopy. Nat Methods 9, 755-763
47. Soderblom C, Luo X, Blumenthal E et al (2013) Periva-
molecular fibroblasts form the fibrotic scar after contusive
spinal cord injury. J Neurosci 33, 13882-13887
48. Spalteholz W (1914) Über das Durchsichtigmachen von
menschlichen und tierischen Präparaten und seine theor-
etischen Bedingungen. Leipzig: S. Hirzel
49. Becker K, Jährling N, Kramer ER, Schnorrer F and Dodt
HU (2008) Ultramicroscopy: 3D reconstruction of large
microscopical specimens. J Biophotonics 1, 36-42
50. Dent JA, Polson AG and Klymkowsky MW (1989) A
whole-mount immunocytochemical analysis of the ex-
pression of the intermediate filament protein vimentin in
Xenopus. Development 74, 61-74
51. Hama H, Kurokawa H, Kawano H et al (2011) Scale: a
chemical approach for fluorescence imaging and re-
construction of transparent mouse brain. Nat Neurosci
14, 1481-1488
52. Ertürk A, Mauch CP, Hellal F et al (2012) Three-dimen-
sional imaging of the unsectioned adult spinal cord to as-
sess axon regeneration and glial responses after injury. Nat Med 18, 166-171
53. Ertürk A, Becker K, Jährling N et al (2012) Three-dimen-
sional imaging of solvent-cleared organs using 3DISCO.
Nat Protoc 7, 1983-1995
54. Becker K, Jährling N, Saghafi S, Weiler R and Dodt HU
(2012) Chemical clearing and dehydration of GFP ex-
pressing mouse brains. PLoS One 7, e33916
55. Chung K, Wallace J, Kim SY et al (2013) Structural and
molecular interrogation of intact biological systems.
Nature 497, 332-337
56. Lee H, Park JH, Seo I, Park SH and Kim S (2014)
Improved application of the electrophoretic tissue clear-
ting technology, CLARITY, to intact solid organs including
brain, pancreas, liver, kidney, lung, and intestine. BMC
Dev Biol 14, 48
57. Yang B, Treweek JB, Kulkarni RP et al (2014) Single-Cell
Phenotyping within Transparent Intact Tissue through
Whole-Body Clearing. Cell 158, 945-958
58. Blanpain C and Simons BD (2013) Unravelling stem cell
dynamics by lineage tracing. Nat Rev Mol Cell Biol 14,
489-502
59. Ritsma L, Ellenbroek SI, Zomer A et al (2014) Intestinal
crypt homeostasis revealed at single-stem-cell level by in
vivo live imaging. Nature 507, 362-365
60. Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD
and Jones PH (2007) A single type of progenitor cell
maintains normal epithelium. Nature 446, 185-189
61. Alcolea MP, Greulich P, Wabik A, Fredj J, Simons BD
and Jones PH (2014) Differentiation imbalance in single
oesophageal progenitor cells causes clonal immortal-
ization and field change. Nat Cell Biol 16, 615-622
62. Doupé DP, Klein AM, Simons BD and Jones PH (2010)
The ordered architecture of murine ear epithelium is
maintained by progenitor cells with random fate. Dev
Cell 18, 317-323
63. Lopez-Garcia C, Klein AM, Simons BD and Winton DJ
(2010) Intestinal stem cell replacement follows a pattern
of neutral drift. Science (New York, N.Y.) 330, 822-825
64. Snippert HJ, Scheper AG, van Es JH, Simons BD and
Clevers H (2014) Biased competition between Lgr5 in-
intestinal stem cells driven by oncogenic mutation induces
clonal expansion. EMBO Rep 15, 62-69
65. Klein AM, Nakagawa T, Ichikawa R, Yoshida S and
Simons BD (2010) Mouse germ line stem cells undergo
rapid and stochastic turnover. Cell Stem Cell 7, 214-224
66. Snippert HJ, Scheper AG, van Es JH, Simons BD and
Clevers H (2014) Biased competition between Lgr5 in-
intestinal stem cells driven by oncogenic mutation induces
clonal expansion. EMBO Rep 15, 62-69
by clonal analysis. Nature 488, 527-530
73. Baker M (2010) Taking a long, hard look. Nature 466, 1137-1140
74. Qian X, Goderie SK, Shen Q, Stem JH and Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 3152, 3143-3152
75. Hiraoka Y, Sedat JW and Agard DA (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science (New York, N.Y.) 238, 36-41
76. Lichtman JW and Conchello JA (2005) Fluorescence microscopy. Nat Methods 2, 910-919
77. Kokkaliaris KD, Loeffler D and Schroeder T (2012) Crocker of cell tracking in mammalian development. Dev Cell 23, 1407-1420
78. Megason SG and Fraser SE (2003) Self-organizing embryos. Nature 426, 314-3152
79. Krupa M, Mazur E, Szczepańska K, Filimonow K, Malezewski M and Swiwińska A (2014) Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev Biol 385, 136-148
80. Morris SA, Graham SJ, Li H, Robson P, Glover DM and Zernicka-Goetz M (2010) Computational prediction of neural progenitor cell fates. Nat Methods 7, 213-218
81. Megason SG and Fraser SE (2003) Crocker of cell tracking in mammalian development. Dev Cell 23, 1407-1420
82. Krupa M, Mazur E, Szczepańska K, Filimonow K, Malezewski M and Swiwińska A (2014) Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev Biol 385, 136-148
83. Bedzhov I and Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032-1044
84. Sato T and Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science (New York, N.Y.) 340, 1190-1194
85. Greer LF 3rd and Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17, 43-74
86. Bedzhov I and Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032-1044
87. Kocher B and Piswinka-Worms D (2013) Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3, 616-629
88. Woolfenden S, Zhu H and Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis (New York, N.Y.) : 2000 47, 659-666
89. Sato A, Krausberg B and Tolvani W (2004) In vivo bioluminescence imaging. Comp Med 54, 631-634
90. Wood S (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66, 550-568
91. Weigert R, Sramkova M, Parente L, Amornphimoltham P and Messmer K (1993) Dorsal skinfold chamber technique for intravitral microscopy in nude mice. Am J Pathol 143, 1055-1062
92. Makale M (2007) Intravitral imaging and cell invasion. Methods Enzymol 426, 375-401
93. Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravitral imaging of metastatic behavior through a mammary imaging window. Nat Methods 5, 1019-1021
94. Wyckoff JB, Wang Y, Lin YE et al (2007) Direct visualization of macrophage-assisted tumor cell invasations in mammary tumors. Cancer Res 67, 2649-2656
95. Zhang L, Lapiriere A, Roy B et al (2012) Imaging glioma initiation in vivo through a polished and reinforced thin-skull cranial window. J Vis Exp 69, doi: 10.3791/4201
96. Ritsma L, Ellenbroek SI, Kranenburg O, Borel Rinkes IH and van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravitral microscopy. Nat Protoc 8, 583-594
97. Weigert R, Sramkova M, Parente L, Amornphimoltham P and Masedunskas A (2010) Intravitral microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133, 481-491
98. Pittet MJ and Weissleder R (2011) Intravitral imaging. Cell 147, 983-991
99. Ritsma L, Ponsioen B and van Rheenen J (2012) Intravitral imaging of cell signaling in mice. IntraVital 1, 1
100. Zhou ZN, Sharma VP, Beatty BT et al (2013) Autocrine HBEGF expression promotes breast cancer invasation, metastasis and macrophage-independent invasion in vivo. Oncogene 33, 3784-3793
101. Nakasone ES, Askautrud HA, Kees T et al (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488-503
102. Ritsma L, Ellenbroek SI, Zomer A et al (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 429-434
103. Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969-973
109. Zomer A, Ellenbroek SJ, Ritsma L, Beerling E, Vrisekoop N and Van Rheenen J (2013) Intravitral imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602-606
110. Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A 99, 3824-3829
111. Bins AD, van Rheenen J, Jalink K et al (2007) Intravitral imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol 7, 2
112. Perentes JY, McKee TD, Ley CD et al (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods 6, 143-145
113. Chen J, McKay RM and Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149, 36-47
114. Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science (New York, N.Y.) 337, 730-735
115. Jacobs RE, Papan C, Ruffins S, Tyszka JM and Fraser SE (2003) MRI: volumetric imaging for vital imaging and atlas construction. Nat Rev Mol Cell Biol Suppl, SS10-SS16
116. Avital I, Summers TA, Steele SR et al (2013) Colorectal cancer stem cells as biomarkers: where it all starts? J Surg Oncol 107, 791-793
117. Shapiro EM, Sharer K, Skrtic S and Koretsky AP (2006) In vivo detection of single cells by MRI. Magnetic Resonance in Medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 55, 242-249
118. Hao D, Ai T, Goerner F, Hu X, Runge VM and Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36, 1060-1071
119. Tannous BA, Grimm J, Perry KF, Chen JW, Weissleder R and Breakfield XO (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3, 391-396
120. Patrick PS, Hammersley J, Loizou L et al (2014) Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 111, 415-420
121. Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13, 498-503
122. Vande Velde G, Raman Rangarajan J, Vreys R et al (2012) Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. NeuroImage 62, 367-380
123. Vandsburger MH, Radoul M, Cohen B and Neeman M (2013) MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation. NMR Biomed 26, 872-884
124. Jing XH, Yang L, Duan Xi et al (2008) In vivo MRI imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75, 432-438
125. Hu SL, Lu PG, Zhang LJ et al (2012) In vivo magnetic resonance imaging tracking of SPION-labeled human umbilical cord mesenchymal stem cells. J Cell Biochem 113, 1005-1012
126. Jackson J, Chapon C, Jones W, Hirani E, Qassim A and Bakhoo K (2009) In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson's disease. J Neurosci Methods 183, 141-148
127. de Vries JH, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23, 1407-1413
128. Mahmoudi M, Hosseinkhani H, Hosseinkhani M et al (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111, 253-280
129. Gurun G, Tekes C, Zahorian J et al (2014) Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Trans Ultrason Ferroelect Freq Control 61, 239-250
130. Hong G, Diao S, Chang J et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8, 723-730
131. Guayasamin JM, Castroviejo-Fisher S, Avarazgiena J, Trueb L and Vilà C (2008) Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Mol Phylogenet Evol 48, 574-595
132. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838
133. Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389