Novel mutations in the \textit{RS1} gene in Japanese patients with X-linked congenital retinoschisis

Hiroyuki Kondo1, Kazuma Oku1, Satoshi Katagiri2, Takaaki Hayashi2, Tadashi Nakano2, Akiko Iwata3, Kazuki Kuniyoshi3, Shunji Kusaka3, Atsushi Hiyoshi4, Eiichi Uchio5, Mineo Kondo6, Noriko Oishi6, Shuhei Kameya6, Atsushi Mizota7, Nobuhisa Naoi8, Shinji Ueno9, Hiroko Terasaki9, Takeshi Morimoto10, Masayoshi Iwaki11, Kazutoshi Yoshitake12, Daisuke Iejima12, Kaoru Fujinami13, Kazushige Tsunoda13, Kei Shinoda14 and Takeshi Iwata12

Abstract

X-linked congenital retinoschisis (XLRS) is an inherited retinal disorder characterized by reduced central vision and schisis of the macula and peripheral retina. XLRS is caused by mutations in the \textit{RS1} gene. We have identified 37 different mutations in the \textit{RS1} gene, including 12 novel mutations, in 67 Japanese patients from 56 XLRS families. We present clinical features of these patients in relation to the associated mutations.

X-linked congenital retinoschisis (XLRS) is an inherited retinal disorder that affects central vision and manifests in early childhood1. XLRS is the most common inherited retinal disorder; its highest reported prevalence is 14 per 10,000 individuals in Finland2. XLRS is characterized by foveal retinoschisis, which occurs in nearly 100\% of patients, whereas peripheral schisis is present in 50\% of XLRS patients3. Neuronal dysfunction, manifested as a reduction in the b-wave/a-wave ratio of dark-adapted electroretinograms (DA-ERGs), is also a characteristic of XLRS, although the detection rate for this sign has varied2,3. Clinical diagnosis is not easily determined in certain cases because of the wide range of phenotypes, which may include macular and retinal degeneration and secondary complications such as vitreous hemorrhage and retinal detachment; thus, genetic diagnosis is helpful.

XLRS is caused by mutations in the \textit{RS1} gene4, which encodes retinoschisin, a 24-kDa retina-specific protein secreted by photoreceptors and bipolar cells. Retinoschisin functions as a cell adhesion protein that maintains the synaptic structure of the retina5. To date, according to the Human Gene Mutation Database (HGMD; 2018.2 version, https://portal.biobase-international.com), 251 different mutations in this gene are known to cause XLRS. Because of variations in phenotypes among and within families, the genotype–phenotype relationship has not yet been definitively established 6,7.

We conducted a multicenter observational study at 12 institutions located throughout Japan; this study was approved by the ethics committee of each institution. Signed written informed consent was obtained from all participants or their parents.

Sixty-seven Japanese patients from 56 families with XLRS were studied (Table 1). All patients were male, and their average age was 19.1 years (range: 2 months to 57 years). XLRS was diagnosed based on retinal findings, including the presence of foveal schisis with or without peripheral schisis and a reduced b-wave/a-wave ratio on dark-adapted ERGs as well as family history1. The 56 patients included 14 patients with familial XLRS and 42 patients with sporadic XLRS. Medical records were reviewed for all patients who had been identified as carriers of mutations in the \textit{RS1} gene.
Family no	Patient ID	Kinship	Age	Familial/ sporadic	Mutation	Nucleotide change (NM_000330.3)	Amino acid change	Novel/ reported (ID)	Visual features	Refraction of spherical equivalent (D)	Retinopathy	Electroretinogram	Comment		
1	K50001	Proband	4mo	Sporadic	c.35T>C	πLeu12Pro	Novel	0.02/NA	-0.375 +0.375	-/+	+/ +	46/38.3	06/066	30	
2	F111	Proband	2	Sporadic	c.38T>C	πLeu11Pro	r10494935	NA/NA	NA/NA	+/ +	+/ +	312/326	0.78/93	3	
3	J0968	Proband	36	Sporadic	c.49G>T	πGlu17*	Novel	0.8/0.3	+0.25/-0.375	+/ +	+/ +	227/167	0.99/95	30	
4	R500-1	Proband	8	NOD	c.3 exon2-3 del	Nov	0.3/0.3	+4/-2.3	+/ +	+/ +	+/ +	267/35	0.56/NA	200	
5	J0913	Proband	6	Sporadic	c.78-2T>C	U5D9	Nov	0.5/0.7	+1.25/-0.75	+/ +	+/ +	490/46	1.1/167	3	
6	R513-1	Proband	4	Familial	c.3 exon3 del	Undetermined	0.4/0.2	+5.5/-2.2	+/ +	+/ +	1.2/1.2	0.5/0.12	267/35	0.56/NA	200
7	R513-2	Sibling	11	Familial	c.98A>G	πTrp33*	CM141035	0.6/0.06	+5.25/-0.5	+/ +	+/ +	345/274	0.99/12	b	
8	R500-1	Proband	16	Familial	c.175T>G	πGlu59Ry	Novel	0.5/0.02	0/-7.5	+/ +	+/ +	467/390	0.59/07	3	
9	R500-2	Sibling	16	Sporadic	c.175T>G	πGlu59Ry	Novel	0.5/0.05	+0.25/-0.5	+/ +	+/ +	314/33	0.25/05	3	
10	R500-3	Sibling	20	Sporadic	c.175T>G	πGlu59Ry	Novel	0.4/0.04	-0.25/0	+/ +	+/ +	375/374	0.59/04	3	
11	J0381	Proband	17	Sporadic	c.185-186insT	πGlu60Aprp*24	Novel	0.3/0.3	3/-2.5	+/ +	+/ +	457/401	0.90/76	3	
12	J0673	Proband	13	Sporadic	c.214G>A	πGlu71lys	r10494928	0.8/0.07	2/2	+/ +	+/ +	129/146	1.1/116	3	
13	J1033	Proband	13	Sporadic	c.214G>A	πGlu71lys	r10494928	0.5/0.09	1/-1	+/ +	+/ +	185/195	0.79/07	3	
14	J1062	Proband	32	Sporadic	c.214G>A	πGlu71lys	r10494928	0.5/0.04	2.375/-0.875	+/ +	+/ +	119/1343	0.76/086	3	
15	R500-1	Proband	16	Familial	c.214G>A	πGlu71lys	r10494928	0.4/0.15	1.75/-2.5	+/ +	+/ +	362/344	0.55/07	200	
16	R500-1	Sibling	9	Familial	c.214G>A	πGlu71lys	r10494928	0.7/0.06	1.25/0.5	+/ +	+/ +	370/373	0.78/09	30	
17	R500-1	Sibling	9	Sporadic	c.214G>A	πGlu71lys	r10494928	0.2/0.02	2.75/-1.625	N/N	N/N	383/408	0.74/083	3	
18	R500-1	Sibling	9	Sporadic	c.214G>A	πGlu71lys	r10494928	0.15/0.03	0.25/-0.75	-/ +	-/ +	308/249	1.07/118	10	
19	R500-1	Sibling	9	Sporadic	c.214G>A	πGlu71lys	r10494928	0.0/-0	-/ -	+/ +	+/ +	250/168	0.72/061	3	
20	R500-1	Sibling	9	Sporadic	c.214G>A	πGlu71lys	r10494928	0.0/0.08	0.75/1.5	0/0	+/ +	309/137	0.59/053	10	
21	R500-1	Sibling	9	Sporadic	c.214G>A	πGlu71lys	r10494928	0.0/0.08	0.75/1.5	0/0	+/ +	309/137	0.59/053	10	
22	K500-1	Proband	36	Sporadic	c.305G>A	πArg102Gln	r10494928	0.1/0.1	5/6	+/ +	+/ +	146/5104	0.69/062	b	
23	J0381	Proband	17	Sporadic	c.305G>A	πArg102Gln	r10494928	0.4/0.04	9.5/-8	+/ +	+/ +	463/607.8	0.79/074	200	
24	J0381	Proband	13	Sporadic	c.305G>A	πArg102Gln	r10494928	0.7/0.06	6.625/0.50V +500U	+/ +	+/ +	43.8/43.8	0.55/069	200	
Family no	Patient ID	Kinship	Age	Familial/ sporadic	Mutation	Exon/ intron	Nucleotide change (NM_003363:63)	Amino acid change	Novel/ reported (ID)	Ocular features	Retinoschisis	Electroretinogram	Light intensity (cd/m²)	Comment	
-----------	------------	---------	-----	-------------------	----------	-------------	-----------------------------	-------------------	-----------------	-----------------	----------------	----------------	----------------------	-----------	
29	RS3-2	Sibling	4	Familial	c.305G>A	p.Ala102Gln	rs17575068						0.30/0.12	N/A	+ / +
30	R09-1	Proband	2	Sporadic	c.326G>A	p.Glu109Ala	Novel						0.20/0.3	+ 2.25/2.75	
31	MYA003-1	proband	16	Family	c.307T>A	p.Glu110*	rs180161						0.71/2.0	0.50/1.5	
32	MYA003-2	Sibling	14	Familial	c.370T>A	p.Glu116*	rs180161						0.90/0.7	0.25/0.75	
33	RS18-1	Proband	8	Familial	c.406G>A	p.Glu135Glu	Novel						0.40/0.3	+ 4.625/4.65	
34	J0690	Proband	25	Familial	c.117G>T	p.Gln39His	Novel						0.30/0.4	0.25/0.25	
35	J0832	Proband	7	Sporadic	c.422G>A	p.Arg141His	rs1752319						0.70/0.6	1.85/1.85	
36	MIE32	Proband	3	Familial	c.490G>C	p.Arg163Cys	rs1753363						0.50/0.4	0.50/1.0	
37	J0892	Proband	19	Sporadic	c.522G>A	p.Arg174Cys	rs1753348						0.40/0.3	4.625/4.65	
38	NH0023	Proband	34	Sporadic	c.567G>A	p.Arg189Cys	Novel						0.20/0.0	0.15/0.15	
39	RS25-1	Proband	8	Sporadic	c.590C>T	p.Arg197Cys	rs1753371						0.12/2.9	0.625/0.625	
40	RS26-1	Proband	3	Sporadic	c.590C>T	p.Arg197Cys	rs1753371						0.52/0.5	0.75/0.75	
41	J1401	Proband	38	Sporadic	c.590C>T	p.Arg197Cys	rs1753371						0.30/0.3	0.25/0.25	
42	J1191	Proband	33	Sporadic	c.579G>A	p.Arg193Cys	rs1753371						0.60/0.6	0.25/0.25	
43	R007-1	Proband	16	Sporadic	c.580C>T	p.Arg199Cys	rs1753354						0.10/0.1	0.25/0.25	
44	MIE49	Proband	43	Sporadic	c.580C>T	p.Arg199Cys	rs1753354						0.20/0.2	0.25/0.25	
45	RS31-2	Proband	5	Sporadic	c.590C>T	p.Arg197Cys	Follow/Follow						0.03/0.0	0.25/0.25	
46	RS10-1	Proband	28	Sporadic	c.590G>A	p.Arg197His	rs1753355						0.06/0.0	0.25/0.25	
47	RS13-1	Proband	43	Familial	c.590C>T	p.Arg197Cys	rs1753357						0.20/0.2	0.25/0.25	
48	RS15-1	Proband	6	Sporadic	c.590G>A	p.Arg197Cys	rs1753358						0.40/0.4	0.75/0.75	
50	RS29-1	Proband	1	Sporadic	c.608C>T	p.Arg202Cys	rs17549430						0.40/0.3	0.25/0.25	
51	J0903	Proband	52	Sporadic	c.608C>T	p.Arg202Cys	rs17549430						0.50/0.3	1.25/1.25	
52	J0711	Proband	57	Sporadic	c.625C>T	p.Arg215Cys	rs1754936						0.03/0.0	0.25/0.25	
53	J0440	Proband	31	Sporadic	c.625C>A	p.Arg215Glu	Novel						0.67/0.6	0.75/0.75	
54	R006-1	Proband	49	Sporadic	c.689C>A	p.Arg229Gln	rs1754964						0.15/0.0	0.25/0.25	
55	R005-1	Proband	7	Sporadic	c.657C>G	p.Arg219Pro	OM101549*						0.30/0.2	0.25/0.25	
56	MYA001-1	proband	9	Familial	c.667T>C	p.Arg222Arg	rs17549692						0.40/0.5	0.50/0.52	
57	MYA002-1	Sibling	12	Familial	c.667T>C	p.Arg222Arg	rs17549692						0.40/0.5	0.50/0.52	

B both eyes, CF counting finger, L left eye, I/OL intraocular lens, mo month-old, NA not available, ODRI Ouchichi disease-like retinal reflex, R right eye, USD undetermined splicing defect, VH vitreous hemorrhage, Vx vitectomy, + present, − absent

aSNP (a) ID is unavailable and ID of the Human Gene Mutation Database is shown

b20J (data are not interchangeable with unit of cds/m²)
Genomic DNA was extracted from peripheral blood using DNA extraction kits or manual extraction with ethanol. Polymerase chain reaction (PCR) followed by Sanger sequencing was performed on 56 samples for six coding exons of the RS1 gene unless whole-exon deletions were detected via PCR. In brief, oligonucleotide primers for the flanking intron/untranslated region sequences were designed, and PCR was performed, followed by uni- or bidirectional sequencing depending on the quality of the PCR products. The primer sequences and annealing temperature for PCR for each exon are available on request. The other 11 samples were screened by whole-exome sequencing with at least 30× coverage for all exons. To identify sequence variations, reference sequences of RS1 (NM_000330.3) were used; variations were numbered based on the cDNA sequence, with +1 corresponding to the first nucleotide of the initiation codon (ATG).

Thirty-seven different mutations in the RS1 gene were identified in the 56 families, including 26 missense, 4 nonsense, 3 splicing, 1 deletion, 1 insertion, and 2 whole-exon deletion mutations (Table 1). Eleven point mutations were novel mutations, and 24 point mutations had previously been reported, based on the HGMD and one recent report (Table 1). A whole-exon deletion of exon 3 had been reported, whereas a deletion of exons 2 and 3 has not been reported. In our study, DNA break points were not determined, and it is unknown whether the exon 3 deletion that we observed was identical to the known exon 3 deletion at the DNA level.

The frequency of the 11 novel point mutations was assessed using public domain databases. None of these variants were found in human genome variation databases for the Japanese population (the Human Genetic Variation Database (HGVD), http://www.hgvd.genome.med.kyoto-u.ac.jp/) or other population databases, such as the 1000 Genomes Project database (http://www.internationalgenome.org/1000-genomes-browsers), the Exome Aggregation Consortium (ExAC) database (http://www.exac.broadinstitute.org), and the 6500-exome database of the NHLBI-ESP project (ESP6500, http://evs.gs.washington.edu/EVS/). The pathogenicity of the seven novel missense mutations was predicted in silico by nine programs and via folding energy assessments. Overall, all variants were considered to be pathogenic (Table 2).

Seven of the known mutations were detected in more than one family; in particular, p.Glu72Lys, p.Tyr89Cys, p.Arg182Cys, p.Arg102Trp, p.Arg197Cys, p.Arg200His, and p.Pro203Leu were observed in 6, 4, 4, 3, 3, 2, and 2 families, respectively. These mutations have previously been reported in the same population and in other populations. Mutation hot spots were suggested instead of founder effects as an explanation of these mutations.
Overall, the clinical findings of this study were consistent with those of earlier reports, although detailed phenotype–genotype relationships remain undetermined. Of the 109 phakic eyes for which refractive error (in spherical equivalents) was measured, there were 60 (55.0%), 5 (4.6%), and 44 (40.4%) hypermetropic, emmetropic, and myopic eyes, respectively (Table 1). For the hypermetropic eyes, the refractive error ranged from −0.125 to 7.5 D, and the average error was +2.7 D. For the myopic eyes, the refractive error ranged from −0.125 to −7.5 D, and the average error was −1.6 D. The average difference in refractive error between the two eyes was 1.0 D for 51 patients.

For 125 eyes, the decimal best-corrected visual acuity varied from counting fingers to 1.2, with a median of 0.3. For 131 eyes for which retinal status was determined, retinoschisis was present in the macula in 110 eyes (84.6%) and in the periphery in 88 eyes (61.8%).

DA-ERGs were recorded in 104 eyes using different stimulus intensities; intensities that tended to be higher than those recommended in the standard protocol from the International Society of Clinical Electrophysiology of Vision were used for certain patients. Negative ERGs were more frequently observed in this study (84.6%, Table 1) than in earlier studies, likely due to the use of higher-intensity light stimuli.

The observed retinal complications included a need for pars plana vitrectomy (N = 16); macular or retinal degeneration, including Oguchi disease-like retinal surface abnormalities (N = 6); vitreous hemorrhage (N = 5); retinal folds (N = 4); and congenital glaucoma (N = 1).

We sought to establish a possible phenotype-genotype relationship for eyes with truncation mutations (i.e., nonsense, splicing, deletion, insertion, or exon deletion mutations) as opposed to missense mutations. The newly identified mutations do not appear to produce distinct clinical phenotypes compared with reported mutations. However, patients with novel missense mutations did present at an earlier age than those with reported missense mutations (data not shown).

Foveal schisis was more frequently found in eyes with truncation mutations than in those with missense mutations (100% versus 78%, P = 0.0035, Supplementary Table 1). It is possible that nearly normal foveal structure can only be seen in eyes with missense mutations. Peripheral schisis was found in 50% and 67% of eyes with truncation and missense mutations, respectively (P = 0.107).

Compared with eyes with missense mutations, eyes with truncation mutations showed larger b-waves (P = 0.023) and higher b/a ratios (P = 0.019) on DA-ERG, whereas no significant difference was observed for the mean a-wave amplitude (Supplemental Table 2). Differences in patient age, visual acuity, refractive error, and light stimulus settings for DA-ERGs were not significant.

Vincent et al. reported that truncation mutations were associated with poor visual acuity and a higher probability of a b/a ratio < 1.0. Our data yielded contradictory results, with higher b-wave amplitude and a greater b/a ratio in eyes with truncation mutations than in eyes with missense mutations. One possible reason for this discrepancy is that the patients with truncation mutations presented at a younger age, which tends to be associated with better preservation of ERG findings. Nonetheless, our study implies that it will be difficult to determine a phenotype–genotype relationship using ERGs.

This study has limitations. Because of the retrospective nature of this investigation, in which only mutation-proven cases were selected, the identification rate of the RS1 gene in XLRS has not been determined. A history of clinical findings, including vitreous hemorrhages, may have been missed in certain cases due to only reviewing medical records.

In summary, this study was the largest survey of patients with mutations in the RS1 gene in the Japanese population. The progress of gene therapy for XLRS has reached the clinical trial stage, and exact genetic determinations for each patient could lead to more efficient future treatments.

HGV database

The relevant data from this Data Report are hosted at the Human Genome Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2408
https://doi.org/10.6084/m9.figshare.hgv.2411
https://doi.org/10.6084/m9.figshare.hgv.2414
https://doi.org/10.6084/m9.figshare.hgv.2417
https://doi.org/10.6084/m9.figshare.hgv.2420
https://doi.org/10.6084/m9.figshare.hgv.2423
https://doi.org/10.6084/m9.figshare.hgv.2426
https://doi.org/10.6084/m9.figshare.hgv.2429
https://doi.org/10.6084/m9.figshare.hgv.2432
https://doi.org/10.6084/m9.figshare.hgv.2435
https://doi.org/10.6084/m9.figshare.hgv.2438
https://doi.org/10.6084/m9.figshare.hgv.2441
https://doi.org/10.6084/m9.figshare.hgv.2444
https://doi.org/10.6084/m9.figshare.hgv.2447
https://doi.org/10.6084/m9.figshare.hgv.2450
https://doi.org/10.6084/m9.figshare.hgv.2453
https://doi.org/10.6084/m9.figshare.hgv.2456
https://doi.org/10.6084/m9.figshare.hgv.2459
https://doi.org/10.6084/m9.figshare.hgv.2462
https://doi.org/10.6084/m9.figshare.hgv.2465
https://doi.org/10.6084/m9.figshare.hgv.2468
https://doi.org/10.6084/m9.figshare.hgv.2471
https://doi.org/10.6084/m9.figshare.hgv.2474
https://doi.org/10.6084/m9.figshare.hgv.2477
https://doi.org/10.6084/m9.figshare.hgv.2480
https://doi.org/10.6084/m9.figshare.hgv.2483
https://doi.org/10.6084/m9.figshare.hgv.2486
https://doi.org/10.6084/m9.figshare.hgv.2489
https://doi.org/10.6084/m9.figshare.hgv.2492
https://doi.org/10.6084/m9.figshare.hgv.2495
https://doi.org/10.6084/m9.figshare.hgv.2498
https://doi.org/10.6084/m9.figshare.hgv.2501
https://doi.org/10.6084/m9.figshare.hgv.2504
https://doi.org/10.6084/m9.figshare.hgv.2507
References

1. George, N. D., Yates, J. R. & Moore, A. T. X-linked retinoschisis. Br. J. Ophthalmol. 79, 697–702 (1995).
2. Khan, N. W., Jamison, J. A., Kemp, J. A. & Sieving, P. A. Analysis of photoreceptor function and inner retinal activity in juvenile X-linked retinoschisis. Vision. Res. 41, 3931–3942 (2001).
3. Renner, A. B. et al. ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT. Doc. Ophthalmol. 116, 97–109 (2008).
4. Sauer, C. G. et al. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat. Genet. 17, 164–170 (1997).
5. Wu, W. W. & Molday, R. S. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis. J. Biol. Chem. 278, 28139–28146 (2003).
6. Sergeev, Y. V. et al. Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis. Hum. Mol. Genet. 19, 1302–1313 (2010).
7. Shimoda, K., Ishida, S., Oguchi, Y. & Mashima, Y. Clinical characteristics of 14 Japanese patients with X-linked juvenile retinoschisis associated with XLR5 mutation. Ophthalmic Genet. 21, 171–180 (2000).
8. Katagiri, S. et al. Clinical features of a toddler with bilateral bullous retinoschisis with a novel RS1 mutation. Am. J. Ophthalmol. Case Rep. 5, 76–80 (2017).
9. Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. The Retinoschisis Consortium. Hum. Mol. Genet. 7, 1185–1192 (1998).
10. Azdhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
11. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PloS Comput. Biol. 6, e1001025 (2010).
12. Ioannidis, N. M. et al. RVEI: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).
13. Jagadeesh, K. A. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016).
14. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
15. Kumar, P., Henkoff, S. & Ng, P. C. Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
16. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).
17. Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34, 57–65 (2013).
18. Robson, A. G. et al. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 136, 1–26 (2018).
19. Marmor, M. F. et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc. Ophthalmol. 118, 69–77 (2009).
20. Vincent, A. et al. A phenotype-genotype correlation study of X-linked retinoschisis. Ophthalmology 120, 1454–1464 (2013).
21. Bowles, K. et al. X-linked retinoschisis: RS1 mutation severity and age affect the ERG phenotype in a cohort of 68 affected male subjects. Invest. Ophthalmol. Vis. Sci. 52, 9250–9256 (2011).
22. Haffer, B. P. Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing. Retina 37, 417–423 (2017).