Supporting Information for

Molecular Alignment of a Meta-Aramid on Carbon Nanotubes by In-Situ Interfacial Polymerization.

Cécile A.C. Chazot1,3,*, Behzad Damirchi2, Adri C. T. van Duin2, A. John Hart1,*

1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2 Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA

3 Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

*Correspondence to: ajhart@mit.edu & cchazot@mit.edu

S1. Molecular Dynamic Simulation

To conduct MD simulation of the ISIP reaction, the ReaxFF1 reactive force field must feature accurate parameters to representatively simulate the polymerization reaction and polymer-CNT interaction. ReaxFF force field parameters are the same as presented elsewhere2 for most species and that of Chlorine are taken from Wood. et al.3 Additionally, validation of the force field was conducted by comparing the polymerization energy barrier with that obtained by density functional theory (DFT) method. Specifically, the Becke, 3-parameter, Lee–Yang–Parr (B3LYP) approach with the 6-311G**++ basis set are used for DFT calculations. The optimized ReaxFF force field parameters result in a value of energy barrier of 13 kcal/mol, on-par with the 19 kcal/mol calculated by DFT calculations.

The MD simulation protocol for ISIP is divided in three stages described in Table S1. Structures are studied in the NVT ensemble at a temperature of 300K and using accelerated molecular dynamics. More details on accelerating the target reactions can be found elsewhere.2
A time step of 0.25 fs is used, and the box dimensions are set at 80 x 80 x 81 Å³ in the case of circular CNTs, and a larger 130 x 70 x 51 Å³ in the case of flattened CNTs to accommodate the anisotropic shape of the nanotube.

Table S1. Molecular Dynamics (MD) simulation setup to study the influence of monomer concentration on PMPI-CNT interaction.

	Low monomer concentration simulation			
	m-phenylene diamine (MPD)	Isophthaloyl chloride (IPC)	Cyclohexanone	
Stage 1	50	50	500	
Stage 2	50	50	250	
Stage 3	50	50	0	

	High monomer concentration simulation			
	m-phenylene diamine (MPD)	Isophthaloyl chloride (IPC)	Cyclohexanone	
Stage 1	250	250	500	
Stage 2	250	250	250	
Stage 3	250	250	0	

In addition to studying ISIP in presence of circular CNTs (Figure 1), the ReaxFF reactive force field is also used to study the influenced of flattened CNTs (flCNTs) on molecular interaction with PMPI (Figure S1). To ensure comparable geometries between the circular and flattened CNT models, the dimensions of the flCNT-polyaramid simulation are assigned so that the distances from neighboring CNTs are almost identical for both cases in x and y directions. The depth of flCNT-polyaramid simulation box (z) is calculated so that the available space for monomers is identical for both cases of circular and flattened CNTs models. The same MD simulation protocol is also used on both cases (Figure S1a). While at low concentration (50 of each monomer), the Herman function relevant to the polymer backbone elements is similar for circular and flattened CNTs ($f \sim 0.8$) (Figure S1b), we notice that f is greater for flattened CNTs than for circular CNTs when 250 of each monomer are initially introduced in the system (Figure S1c). Indeed, while $f \sim 0.4$ in the case of flattened CNTs, it varies between 0.2 and 0.3 when a circular CNT is studied. This can be explained by two main phenomena. First, flCNTs feature flat stable areas for which the polymer affinity and alignment are greater. The localization of macromolecular chains on thise
flat areas prevents the formation of polymer bridges between neighboring nanotubes by periodic boundary condition. Bridging results in overall loss of polymer alignment and occur when circular CNTs are studied (Figure 1e). Additionally, flattened CNTs feature a central area with no curvature, allowing for greater polymer alignment for short chains with lower backbone flexibility.

Figure S1. MD simulation of ISIP in the case of flattened CNTs. (a) Snapshot at subsequent stages of the simulations showing monomer molecules attaching to each other and building oligomers, as well as half the solvent molecules begin removed (Stage 2), and then all the solvent molecules being removed (Stage 3). The color scheme is that of Figure 3. (b) Herman function during stage 3 for a simulation featuring 50 and 250 of each monomer. Both simulations feature 500 cyclohexanone molecules. (c-d) Polymer morphology and spatial distribution of the normal vector to the PMPI aromatic rings at t=1500ps for an initial number of each monomer molecules of (c) 50 and (d) 250.

S2. Materials and synthesis

All chemicals were used as received and did not undergo any additional purification. Isophthaloyl Chloride (≥99%) was obtained from TCI America and stored under inert atmosphere to prevent hydrolysis of the compound. M-phenylene diamine (≥99%) was purchased from Millipore Sigma and was also stored under inert atmosphere. Cyclohexanone (ACS reagent, ≥99.0%), water (ACS reagent), and acetone (ACS reagent, ≥99.5%) were also obtained from Millipore Sigma. CNT
sheets were manufactured by Nanocomp Technologies, Inc using a floating catalyst chemical vapor deposition (CVD) process. After synthesis, the CNT sheets are liquid-saturated and stretched by ~35%, resulting in a final CNT Herman orientation function of 0.7. The sheets comprise of both circular and flattened CNTs, along with 5-10wt.% amorphous carbon and 10-20wt.% residual catalyst. Details on the ISIP synthesis can be found elsewhere.

S3. Characterization methods

Scanning Electron microscopy (SEM). SEM imaging was conducted on a Zeiss Gemini 450 SEM High-Resolution Scanning Electron Microscope (SEM) using the High-Resolution mode, the in-lens detector, an acceleration voltage of 3kV, and a probe current of 100 pA.

Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectra were acquired with a Bruker ALPHA II FT-IR spectrometer equipped with the Platinum Attenuated Total Reflection (ATR) accessory. 128 scans were used for each acquisition and the raw signals were corrected by removing the baseline and removing atmospheric contributions using Bruker OPUS spectroscopy software. The average and standard deviation for relevant peak locations were obtained by measuring 5 composite samples synthesized at the same concentration.

Raman Spectroscopy. Raman Spectroscopy was conducted on a Renishaw Invia Reflex Raman Confocal Microscope, using a 532 nm laser (50 mW), a 1200 l/mm grating and a 100x objective. The Raman spectrum of pure PMPI was obtained with 5% laser power, 2 sec integration time and 15 accumulations. Neat CNT sheets and CNT-PMPI composites were cut and mounted on a 90° Specimen Mount (Ø32 x 12mm) to focus the laser spot on the cross-section of the composite. A CNT-PMPI composite sheet obtained using a monomer concentration of 0.150 mol.L\(^{-1}\) was chosen as it would feature a high polymer content (i.e. a more easily detectable polymer signal) while still exhibiting signs of strong CNT-polymer interaction through its FT-IR response. Numerous spectra were taken at different locations on the cross-section using the mapping functionality of Renishaw Windows®-based Raman Environment (WiRE) software. Acquisition parameters for both the neat and composite CNT sheets were 10% laser power, 30 sec integration time and 3 accumulations. Focus was maintained throughout mapping using Renishaw FocusTrack™ function. FocusTrack™ periodically checks and adjusts the sample focus between data acquisitions,
scanning over a pre-defined vertical range and finding the optimum focus (position of maximum laser intensity). For the CNT-PMPI composite, 2379 spectra were acquired over a 40 \times 20 \, \mu \text{m} area. For the neat CNT sheet, 100 spectra were acquired over a 10 \times 10 \, \mu \text{m} area. All spectra were cleaned by removing cosmic rays and subtracting baseline. Shape changes of the Raman spectra are analyzed by extracting partial Raman spectra (PRS) - also called component spectra - with a custom algorithm relying on Principal component analysis (PCA), and sparse non-negative matrix factorization (NMF). The sum of the PRS, i.e. the sum of its Raman-active structural species, describes the overall Raman spectrum of the characterized material.

S4. Spectroscopy and peak assignment

Table S2. Peak assignment for FTIR spectra as described in the literature,7,8 for neat PMPI synthesized by IP at a static liquid-liquid interface, and for PMPI-CNT composite obtained by ISIP.

Neat PMPI synthesized by IP (cm-1)	PMPI-CNT composites synthesized by ISIP (cm-1)	Assignment of vibrational mode	
3305 (w)		N-H stretching vibrations in a secondary amide	
1646 (s)	1647 (s)	Amide I (C=O) stretching vibration	
1605 (s)	1603 (m)	Aromatic quadrant stretch (meta)	
1533 (s)	1528 (s)	Amide II vibration, \(\delta(\text{NH})\) and \(\nu(\text{CN})\)	
1484 (s)	1473-1480 (m)	Aromatic semicircle stretch (meta)	
1432 (w)	1432 (w)	In-plane C-H bending	
1409 (m)	1398-1406 (m)	Aromatic in-plane C-H bend	
1298 (w)		Aromatic C-N stretching	
1242 (m)	1232 (m)	Amide III vibration, \(\nu(\text{CN})\), \(\delta(\text{NH})\), and \(\nu(\text{CC})\)	
1166 (w)	1160 (w)	CH deformation which are coupled to aromatic C-C stretch/C-H bend vibrations	
1080 (w)		Ring stretching-CH bending	
933 (w)		CH deformation which are coupled to aromatic C-C	
PMPI (reported) (cm$^{-1}$)	Neat PMPI synthesized by IP (cm$^{-1}$)	PMPI-CNT composite synthesized by ISIP (cm$^{-1}$)	Assignment of vibrational mode
-----------------------------	--	---	-------------------------------
1002 (vs)	1001 (vs)		Trigonal ring breathing vibration
1180 (w)	1193 (w)		ω_4 ring and ring CH deformation
1254 (m)	1247 (m)	1246 (w)	NH bending and CN stretching
1310 (w), 1340 (s)	1309 (w), 1338 (s)	1333 (m)	Ring CH in-plane bending
1417 (w), 1441 (w)	1432 (w)	1401 (w),1427 (w)	ω_3 ring puckering vibration; aromatic CH bending
1487 (w)	1486 (w)	1478 (w)	CH in-plane and NH in-plane bending
1544 (m)	1548 (m)	1565 (s)	NH in-plane bending

Letters in parentheses refer to the strength of the peak relatively to the spectrum baseline: vs = very strong, s = strong, m = medium, w = weak. The Greek letters ν and δ describe stretching and bending modes respectively.

Table S3. Peak assignment for Raman spectra as described in the literature,$^8,^9$ for neat PMPI synthesized by IP at a static liquid-liquid interface, and for PMPI component in composite obtained by ISIP.
Wavenumber	Wavenumber	Wavenumber	Description
1580 (m)	1581 (m)		Amide II vibration, δ(NH) and ν(CN)
1603 (m)	1601 (m)	1604 (m)	ω_2 (aromatic ring) CC vibration
1651 (m)	1649 (m)	1639 (m)	Amide I (C=O) stretching vibration

Letters in parentheses refer to the strength of the peak relatively to the spectrum baseline: vs = very strong, s = strong, m = medium, w = weak. The Greek letters ν and δ describe stretching and bending modes respectively.

S.5 Comparison of PMPI obtained by ISIP with other polymer systems

Figure S2. Polymers which feature amorphous sheath formation in presence of CNTs. Green functional groups have the potential to interact with CNTs through π-interaction.
S.6 References

(1) Van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. *J. Phys. Chem. A* 2001, 105 (41), 9396–9409. https://doi.org/10.1021/jp004368u.

(2) Damirchi, B.; Radue, M.; Kanhaiya, K.; Heinz, H.; Odegard, G. M.; Van Duin, A. C. T. ReaxFF Reactive Force Field Study of Polymerization of a Polymer Matrix in a Carbon Nanotube-Composite System. *J. Phys. Chem. C* 2020, 124.
https://doi.org/10.1021/acs.jpcc.0c03509.

(3) Wood, M. A.; Van Duin, A. C. T.; Strachan, A. Coupled Thermal and Electromagnetic Induced Decomposition in the Molecular Explosive AHMX; A Reactive Molecular Dynamics Study. 2014. https://doi.org/10.1021/jp406248m.

(4) Jolowsky, C.; Sweat, R.; Park, J. G.; Hao, A.; Liang, R. Microstructure Evolution and Self-Assembling of CNT Networks during Mechanical Stretching and Mechanical Properties of Highly Aligned CNT Composites. *Compos. Sci. Technol.* 2018, 166, 125–130. https://doi.org/10.1016/J.COMPSCITECH.2018.04.003.

(5) Chazot, C. A. C.; Jons, C. K.; Hart, A. J. In Situ Interfacial Polymerization: A Technique for Rapid Formation of Highly Loaded Carbon Nanotube-Polymer Composites. *Adv. Funct. Mater.* 2020, 30 (52), 2005499. https://doi.org/10.1002/adfm.202005499.

(6) Woelffel, W.; Claireaux, C.; Toplis, M. J.; Burov, E.; Barthel, É.; Shukla, A.; Biscaras, J.; Chopinet, M. H.; Gouillart, E. Analysis of Soda-Lime Glasses Using Non-Negative Matrix Factor Deconvolution of Raman Spectra. *J. Non. Cryst. Solids* 2015, 428, 121–131. https://doi.org/10.1016/J.JNONCRYSSOL.2015.08.016.

(7) Villar-Rodil, S.; Paredes, J. I.; Martinez-Alonso, A.; Tascón, J. M. D. Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. *Chem. Mater.* 2001, 13 (11), 4297–4304. https://doi.org/10.1021/cm001219f.

(8) Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. *The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules*, Academic Press, INC.; Harcourt Brace Jovanovich, Publishers: San Diego, 1991.

(9) Edwards, H. G. M.; Hakiki, S. Raman Spectroscopic Studies of Nomex and Kevlar Fibres under Stress. *Br. Polym. J.* 1989, 21 (6), 505–512. https://doi.org/10.1002/PL.4980210611.