Bio-efficacy, persistence and residual toxicity of different insecticides against soybean pod borer

Helicoverpa armigera (Hubner) infesting soybean

VK Bhamare, GR Wahekar, DR Bankar, BA Thakre, PB Hajare and RS Mahajan

DOI: https://doi.org/10.22271/j.ento.2020.v8.i6x.8073

Abstract

Two studies on the bio-efficacy, persistence and residual toxicity of different insecticides viz., chlorantraniliprole 0.004 per cent, ethion 0.100 per cent, triazophos 0.050 per cent, indoxacarb 0.010 per cent, emamectin benzoate 0.001 per cent, quinalphos 0.050 per cent and profenophos 0.100 per cent against *Helicoverpa armigera* (Hubner) infesting soybean were conducted at the Research Farm of Department of Agril. Entomology, College of Agriculture, Latur (MS). The overall result revealed that all the insecticidal treatments were significantly superior over untreated control in minimizing the larval population of *H. armigera* infesting soybean. Among the treatments, chlorantraniliprole 0.004 per cent was found to be the most effective insecticide in reducing larval population of *H. armigera* on soybean (1.22 and 1.44 larvae per mrl) followed by emamectin benzoate 0.001 per cent (1.33 and 1.78 larvae per mrl), indoxacarb 0.010 per cent (2.22 and 1.89 larvae per mrl), quinalphos 0.050 per cent (2.41 and 2.00 larvae per mrl), profenophos 0.100 per cent (3.67 and 2.22 larvae per mrl), triazophos 0.050 per cent (3.78 and 2.67 larvae per mrl) and ethion 0.100 per cent (4.11 and 2.78 larvae per mrl) after first and second spray, respectively. The highest soybean yield was achieved by chlorantraniliprole 0.004 per cent (34.87 q per ha) while quinalphos 0.050 per cent (1:19.72) registered highest incremental cost benefit ratio. The results on residual toxicity of different insecticides against *H. armigera* infesting soybean indicated that chlorantraniliprole 0.004 per cent and emamectin benzoate 0.001 per cent illustrated highest persistent toxicity index (PT) (953.68 and 913.48 and; 885.64 and 875.80, respectively) and LT$_{50}$ values (7.93 and 7.78 and; 7.06 and 7.09 days, respectively) against third instar larvae of *H. armigera* after first and second spray as compared to the other insecticides.

Keywords: Soybean, pod borer *Helicoverpa armigera* (Hubner), bio-efficacy, residual toxicity, persistence, LT$_{50}$

Introduction

Soybean (*Glycine max* (L.) Merrill) often described as the miracle golden bean, the pearl of the Orient, the Cinderella crop of the century, the meat that grows on vines, the protein hope of the future and the salvation crop among others is globally considered as nutritious meal with tremendous food value (Lawrence, 2011) [13]. It is world’s most remarkable seed legume with the unique chemical composition which offers the health benefits not only to human being but also to animals, poultry, birds and fishes. The key benefits are related to their excellent protein content (contains all 8 essential amino acids), high levels of essential fatty acids, numerous vitamins and minerals, isoflavones, and fiber (Dwevedi and Kayastha, 2011) [14]. Soybean placed first in the world as edible oil and occupies important place in the national economy of many developed and developing countries. About 85 per cent of the world’s soybeans are processed annually into soybean meal and oil (Anonymous, 2020) [4]. Approximately 98 per cent of the soybean meal is crushed and further processed into animal feed with the balance used to make soy flour and proteins. Of the oil fraction, 95 per cent is consumed as edible oil; the rest is used for industrial products such as fatty acids, soaps and biodiesel (Dwevedi and Kayastha, 2011) [9].

Globally, soybean is cultivated on an area of 126.95 million ha with 362.64 million MT of total production and 2860 kg per ha of an average yield (USDA, 2020) [30]. In India, soybean crop covers 11.13 million ha area with 13.26 million MT of total production and an average yield of 1192 kg per ha (SOPA, 2020) [28]. The major soybean growing states are Madhya Pradesh, Maharashtra, Rajasthan, Karnataka, Andhra Pradesh, Gujarat and Chhattisgarh.

Corresponding Author:

VK Bhamare
Department of Agriculture
Entomology, College of Agriculture, Latur Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India
In Maharashta, the area under soybean crop is 0.40 million ha with total production of 0.45 million MT and an average yield of 1125 kg per ha (SOPA, 2020)\(^2\).

Several biotic and abiotic factors are found responsible for reduction in soybean yield under Indian conditions. The major biotic stresses which reduce soybean productivity are diseases and insect-pests (Agarwal et al. 2013)\(^1\). Soybean is attacked by 273 species of insect-pests (Ruwat and Kapoor, 1968)\(^2\), amongst 20 insect-pest species are important in India (Singh and Singh, 1990)\(^3\) and 13 in Marathwada region of Maharashta (Bhamare et al. 2018)\(^4\). These insect-pests of soybean inflicted 30.8 per cent avoidable losses in seed yield (Ahiwar et al. 2014)\(^5\). Whereas, 20 to 100 per cent yield losses were noticed in soybean due to individual disease or insect or weed species (Sharma et al. 2014)\(^6\).

Soybean pod borer, *Helicoverpa armigera* (Hubner) (Lepidoptera: Noctuidae) is an important pest capable of colonizing several species of cultivated plants, including soybean (Coelho et al. 2019)\(^7\). *H. armigera* represents a significant challenge to soybean cropping systems in many parts of the world (Fathipour and Sedarati, 2013)\(^8\). The larvae damage vegetative and reproductive plant stages by feeding on leaves, stems, shoots, inflorescence, pods and seeds resulting in variable economic loss (Rogers and Brier, 2019)\(^9\) and Bhamare and Shetgar, 2015)\(^10\). The loss due to *H. armigera* in vegetable soybean varied from 38.49 to 45.04 per cent (Naik et al. 2020)\(^11\). However, the major damage due to *H. armigera* occurs during pod-filling reproductive stage of soybean. Even relatively low infestations of *H. armigera* during this stage can cause significant reductions for soybean (Stacke et al. 2018)\(^12\). Moreover, several chemical insecticides have been recommended by CIB and RC for the control of insect-pests infesting soybean in India. However, these label claimed insecticides need to be revalidated from time to time for the effective management of insect-pests. In addition, the residual toxicity resulting from foliar application of insecticides could be of great significance in indicating an effective periods over which an insecticide could persist in biologically active stage under field conditions. In this context, the present investigation was planned to investigate the bio-efficacy, persistence and residual toxicity of different insecticides against *H. armigera* infesting soybean.

Materials and Methods

Bio-efficacy of different insecticides against *H. armigera* infesting soybean

The field experiment was conducted using variety MAUS-71 in RBD comprised of eight treatments replicated thrice on bio-efficacy of different label recommended insecticides of soybean against *H. armigera* at the Research Farm of Department of Agril. Entomology, College of Agriculture, Latur (Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani) (MS)-India during Kharif 2015. Soybean was cultivated with all recommended package of practices recommended by VNMKV, Parbhani for raising the crop except insect-pest management. The first application of insecticide spray was done at ETL. The observations on total number of pod borer larvae, *H. armigera* were recorded on one meter row length from each treatment at three randomly selected places at one day before and 1, 3, 7 and 14 days after first and second application of insecticides. The data on larval population were transformed into square root transformation before statistical analysis to know the significance of difference among different treatments. At maturity the crop was harvested and weight of grain per plot was recorded separately from each treatment. Plot wise yield was computed on hectare basis for statistical interpretation. The economics of the treatment was also computed based on grain yield and cost of protection. The incremental cost benefit ratio (ICBR) was computed based on cost of protection and gross profit. The data in respect of bio-efficacy and economics of different insecticides against *H. armigera* infesting soybean were statistically analyzed by standard ‘analysis of variance’. The null hypothesis was tested by ‘F’ test of significance at 5 per cent level (Gomez and Gomez, 1984)\(^13\).

Persistence and residual toxicity of different insecticides against *H. armigera* infesting soybean

The toxicity of different insecticides was investigated against third instar larvae of *H. armigera* at 1, 3, 7 and 14 days after first and second application of insecticides. Due care was taken to cover the entire plant while application of insecticides. The required numbers of leaves and pods receiving application of insecticides were tagged for investigations on residual toxicity of insecticides. The number of test insects used for the bioassay studies were ten for each treatment in each replication. The tagged leaves and pods were brought into the laboratory at the prescribed day intervals. The treated leaves and pods were kept into plastic containers separately. The stalk of leaves and pods was covered with moistened cotton wool in order to retain their turgidity for 24 hours. Then the laboratory reared third instar larvae of *H. armigera* were released on treated leaves and pods of soybean separately. The numbers of dead or moribund larvae of *H. armigera* were counted after 24 hours of exposure. Similarly control mortality of *H. armigera* larvae was also observed by releasing them on untreated substrate of soybean plant.

Correction on percentage mortality

The observations on mortality of *H. armigera* larvae were converted into percentage mortality. The average percentage mortality was calculated from the observations in 3 replications. The observations on percentage mortality thus obtained were corrected with Abbott’s (1925)\(^14\) formula as follows.

\[
P = \frac{T - C}{100 - C} \times 100
\]

Where as,

- \(P\) = Corrected percentage mortality,
- \(T\) = Percentage mortality in treatment,
- \(C\) = Percentage mortality in control.

\(LT_{50}\) values

The values of LT \(50\) (time required to give 50 per cent mortality) for different insecticides applied on soybean plants were calculated by using software of Probit analysis as suggested by Finney (1971)\(^15\).

\(PT\) values

The product (PT) of average residual toxicity (T) and the period (P) for which the toxicity persisted was used as an index of persistent toxicity. The values of corrected percentage mortalities at various specified periods were added. This sum was then divided by number of observations

\(^{1}\)Data obtained from https://www.economicshelp.org.

\(^{2}\)Sharma, SK et al. 2014. *Journal of Entomology and Zoology Studies* 2(3): 100x C-100

\(^{3}\)Abbott, W.S. 1925. *Journal of Economic Entomology* 18 (1): 265-269.

\(^{4}\)Fathipour, H, Sedarati, A. 2013. *Agricultural Research Journal* 2(1): 218-225.

\(^{5}\)Gomez, K.A. and A.A. Gomez. 1984. *Principles of Statistical Analysis in Agricultural Research* (2nd ed.). Wiley, New York.

\(^{6}\)Singh, S. and J. Singh. 1990. *Crop Pests and their Management* (1st ed.). Kalyani Publishers, New Delhi.

\(^{7}\)Coelho, J.J., et al. 2019. *Micron* 100: 1004.

\(^{8}\)Singh, T. and B. A. Bhamare. 2019. *Journal of Entomology and Zoology Studies* 7(9): 71-76.

\(^{9}\)Rogers, J. and R. Brier. 2019. *Insecticide Resistance and Management* (2 ed.). Cambridge University Press, New York.

\(^{10}\)Bhamare, B.A. and V. Shetgar. 2015. *Journal of Entomology and Zoology Studies* 3(8): 191-196.

\(^{11}\)Rawat, A. and R. Kapoor. 1968. *Journal of Agricultural Sciences* 69: 325-333.

\(^{12}\)Stacke, L., et al. 2018. *Journal of Entomology and Zoology Studies* 6(11): 175-179.

\(^{13}\)Gomez, K.A. and A.A. Gomez. 1984. *Principles of Statistical Analysis in Agricultural Research* (2nd ed.). Wiley, New York.

\(^{14}\)Abbott, W.S. 1925. *Journal of Economic Entomology* 18 (1): 265-269.

\(^{15}\)Finney, D.J. 1971. *Probit Analysis* (3rd ed.). Cambridge University Press, New York.
in order to obtain residual toxicity (T). The procedure followed by Saini (1959) [23] and elaborated further by Pradhan (1967) [18], Sarup et al. (1970) [24] and Sonune and Bhamare (2016) [27] was utilized.

Table 1: Effect of different insecticides on larval population of H. armigera, grain yield and ICBR of soybean

Treatments	Mean larval population of H. armigera per mrl	Main grain yield q/ha	ICBR									
	I* spray One day before spray	Days after spraying	I* spray One day before spray	Days after spraying								
	1	2	3	4	1	2	3	4				
Profenophos 0.100 per cent	4.00	1.89	2.22	3.00	3.67	3.80	1.33	1.67	2.00	2.22	20.46	1:6.77
Triazophos 0.050 per cent	4.11	2.00	2.33	3.72	3.78	3.79	1.67	2.00	2.32	2.67	20.96	1:1.69
Quinalphos 0.050 per cent	4.34	1.47	1.67	1.89	2.41	3.00	1.30	1.21	1.27	1.36	19.29	1:19.27
Indoxacarb 0.010 per cent	4.89	1.29	1.55	1.77	2.22	3.33	0.78	1.00	1.56	1.89	31.25	1:11.24
Ethion 0.100 per cent	4.22	2.78	3.00	3.67	4.11	4.22	1.89	2.22	2.44	2.78	16.43	1:3.51
Chlorantraniliprole 0.004 per cent	4.22	0.44	1.00	1.07	1.23	1.80	0.33	0.78	1.14	1.44	34.87	1:7.95
Emamectin benzoate 0.001 per cent	3.67	0.89	1.11	1.14	1.33	2.00	0.66	0.89	1.33	1.78	31.55	1:9.87
Untreated Control	4.12	4.22	4.33	5.00	5.77	5.77	5.78	6.11	6.33	6.56	12.09	-
S.E ±	-	0.05	0.08	0.09	0.09	0.06	0.04	0.04	0.04	0.02	-	-
C.D. at 5 per cent	NS	0.17	0.24	0.28	0.29	NS	0.18	0.13	0.14	0.13	0.08	-
C.V.	-	7.79	10.55	10.63	9.97	8.88	5.98	5.62	4.70	0.61	-	-

* Figures in parentheses are angular transformed values
N.S.: Non-significant

Results and Discussion

Effect of different insecticides on larval population of H. armigera infesting soybean

Data pertaining to effect of different insecticides on larval population of H. armigera on soybean after first and second spray are presented in Table 1.

First spray

The results revealed that all the insecticides were found to be significantly superior over untreated control in reducing larval population of soybean pod borer at 1, 3, 7 and 14 days after first spray of insecticides. At one day after first spray, significantly minimum larval population of H. armigera (0.44 per mrl) was registered from the plots treated with chlorantraniliprole 0.004 per cent. The subsequent order of effectiveness was emamectin benzoate 0.001 per cent (0.89 larva per mrl), indoxacarb 0.010 per cent (1.29 larvae per mrl), quinalphos 0.050 per cent (1.47 larvae per mrl), profenophos 0.100 per cent (1.89 larvae per mrl), trichlorfon 0.050 per cent (2.00 larvae per mrl) and ethion 0.100 per cent (2.78 larvae per mrl). At three days after first spray, chlorantraniliprole 0.004 per cent (1.00 per cent) and emamectin benzoate 0.001 per cent (0.89 larva per mrl), indoxacarb 0.100 per cent (1.11 per mrl) and indoxacarb 0.010 per cent (1.55 per mrl) registered significantly lowest larval population of H. armigera. All these treatments were statistically at par with each other. The next effective treatments were quinalphos 0.050 per cent (1.67 larvae per mrl), profenophos 0.100 per cent (2.22 larvae per mrl), trichlorfon 0.050 per cent (2.33 larvae per mrl) and ethion 0.100 per cent (3.00 larvae per mrl). At seven days after first spraying, significantly minimum population of H. armigera (1.07 per mrl) was evidenced in the plots treated with chlorantraniliprole 0.004 per cent followed by emamectin benzoate 0.001 per cent (1.14 per mrl) and indoxacarb 0.010 per cent (1.77 per mrl). All these treatments were statistically at bar with each other. However, quinalphos 0.050 per cent, profenophos 0.100 per cent, trichlorfon 0.050 per cent and ethion 0.100 per cent were next effective treatments registered 1.89, 3.00, 3.22 and 3.67 larval population per mrl, respectively. At 14 days after first spraying, significantly minimum larval population H. armigera was revealed in the plots treated with chlorantraniliprole 0.004 per cent (1.22 per mrl) and emamectin benzoate 0.001 per cent (1.33 per mrl). Nevertheless, indoxacarb 0.010 per cent (2.22 larvae per mrl), quinalphos 0.050 per cent (2.41 larvae per mrl), profenophos 0.100 per cent (3.67 larvae per mrl), trichlorfon 0.050 per cent (3.78 larvae per mrl) and ethion 0.100 per cent (4.11 larvae per mrl) were found to be subsequently effective treatments.

Second spray

The results revealed that all the insecticides were found to be significantly superior over untreated control in reducing larval population of H. armigera at 1, 3, 7 and 14 days after second application of insecticides. At one day after second spray, significantly minimum larval population H. armigera (0.33 per mrl) was registered from the plots treated with chlorantraniliprole 0.004 per cent. The next order of effectiveness was emamectin benzoate 0.001 per cent (0.66 larva per mrl), indoxacarb 0.010 per cent (0.78 larva per mrl) and quinalphos 0.050 per cent (1.00 larva per mrl). The subsequently efficient treatments in reducing larval population were profenophos 0.100 per cent (1.33 per mrl), trichlorfon 0.050 per cent (1.67 per mrl) and ethion 0.100 (1.89 per mrl).

At three days after second spray, chlorantraniliprole 0.004 per cent, emamectin benzoate 0.001 per cent and indoxacarb 0.010 per cent registered significantly lowest larval population of H. armigera on soybean to the extent of 0.78,
The significantly highest grain yield of soybean was registered in chlorantraniliprole 0.004 per cent (34.87 q per ha) which was followed by emamectin benzoate 0.001 per cent (31.55 q per ha), indoxacarb 0.010 percent (31.25 q per ha), quinalphos 0.050 per cent (29.63 q per ha), triazophos 0.050 per cent (20.96 q per), profenophos 0.100 per cent (20.46 q per ha) and ethion 0.100 per cent (16.43 q per ha). The result of present investigation are in agreement with the findings of Patil et al. (2014) [17] who reported that significantly highest seed yield of soybean (19.88 q per ha) was obtained in chlorantraniliprole (30 g a.i. per ha). Kothalkar et al. (2015) [14] revealed that emamectin benzoate 5 SG at the rate of 0.002 per cent + triazophos 40 EC at the rate of 0.06 per cent, emamectin benzoate 5 SG at the rate of 0.002 per cent, triazophos 40 EC at the rate of 0.06 per cent and flubendiamide 20 WG at the rate of 0.01 per cent + triazophos 40 EC at the rate of 0.06 per cent obtained comparatively highest yield. The data on ICBR revealed that all the insecticidal treatments were economical and most remunerative. Among all the treatments, highest incremental cost benefit ratio (1:19.72) was achieved by quinalphos 0.050 per cent which was followed by triazophos 0.050 per cent (1:11.69), indoxacarb 0.005 per cent (1:11.24), emamectin benzoate 0.001 per cent (1:9.87), chlorantraniliprole 0.004 per cent (1:7.95), profenophos 0.100 per cent (1:6.77) and ethion 0.100 per cent (1:3.51). These results are analogous to the findings of Wagh et al. (2015) [31] who documented that highest cost benefit ratio of 1:6.43 was observed in profenophos 0.100 EC followed by quinalphos (1:6.24) in soybean. Kothalkar et al. (2015) [14] revealed that emamectin benzoate 5 SG at the rate of 0.002 per cent + triazophos 40 EC at the rate of 0.06 per cent, emamectin benzoate 5 SG at the rate of 0.002 per cent, triazophos 40 EC at the rate of 0.06 per cent and flubendiamide 20 WG at the rate of 0.01 per cent + triazophos 40 EC at the rate of 0.06 per cent were obtained comparatively highest ICBR. Raghuvanshi et al. (2014) [19] observed highest ICBR (1:9.6) in triazophos; however, indoxacarb and emamectin benzoate noticed ICBR of 1:6.2 and 1:4.1, respectively. Thus, these results endorse the present finding.

Treatments	Corrected percentage mortality after different intervals (days)	P	T	PT	R.E.	O.R.E.												
	1	3	7	14														
Profenophos 0.100 per cent	89.29	64.34	55.22	13.85	55.67	14	779.45	1.11	5	82.73	71.13	42.79	10.81	51.86	14	726.11	1.11	5
Triazophos 0.050 per cent	85.67	62.56	51.70	13.83	53.44	14	748.16	1.07	6	79.31	67.88	42.79	10.81	50.19	14	702.76	1.07	6
Quinalphos 0.050 per cent	89.29	62.04	58.63	17.26	56.80	14	795.27	1.13	4	86.24	75.03	50.00	14.34	56.40	14	789.63	1.20	4
Indoxacarb 0.010 per cent	92.82	67.88	58.63	17.26	59.14	14	828.06	1.18	3	89.65	78.58	53.64	14.34	59.05	14	826.73	1.26	3
Ethion 0.100 per cent	82.11	58.63	48.29	10.34	49.84	14	697.79	1.00	7	75.90	64.34	39.29	7.17	46.67	14	653.38	1.00	7
Chlorantraniliprole 0.004 per cent	100.00	82.73	65.56	24.19	68.12	14	953.68	1.36	1	96.58	82.11	60.78	21.52	65.24	14	913.46	1.39	1
Emamectin benzoate 0.001 per cent	94.46	75.05	62.84	20.68	63.26	14	885.64	1.26	2	93.07	82.11	57.17	17.88	62.55	14	875.80	1.34	2

Residual toxicity of different insecticides against soybean pod borer, *H. armigera*

The data on the average percentage mortality of *H. armigera* larvae on soybean leaves and pods receiving first and second spray recorded at 1, 3, and 7 and 14 days intervals are presented in Table 2.

First spray

The result of first spray evident that chlorantraniliprole 0.004 per cent and emamectin benzoate 0.001 per cent concentrations exhibited comparatively high percentage mortality of *H. armigera* larvae to the tune of 24.19 and 20.68 per cent, respectively at 14 days after spraying. On the basis
of PT values the descending order of persistent toxicity was chlorantraniliprole 0.004 per cent (953.68) > emamectin benzoate 0.001 per cent (885.64) > indoxacarb 0.010 per cent (828.06) > quinalphos 0.050 per cent (795.27) > profenophos 0.100 per cent (779.45) > triazophos 0.050 per cent (748.16) > ethion 0.100 per cent (697.79).

The data pertaining to LT50 values of insecticides against larvae of *H. armigera* on soybean leaves and pods are presented in Table 3.

The data revealed that chlorantraniliprole 0.004 per cent registered highest LT50 value (7.93 days) against the larvae of *H. armigera* on soybean leaves and pods receiving first application of insecticides. The descending relative order of efficacy of insecticides in days was found to be chlorantraniliprole 0.004 per cent (7.93) > emamectin benzoate 0.001 per cent (7.06) > indoxacarb 0.010 per cent (6.21) > quinalphos 0.050 per cent (5.63) > profenophos 0.100 per cent (5.25) > triazophos 0.050 per cent (4.54) > ethion 0.100 per cent (4.05).

Second spray

The result of second spray evident that chlorantraniliprole 0.004 per cent and emamectin benzoate 0.001 per cent concentrations exhibited comparatively high percentage mortality of *H. armigera* larvae to the extent of 21.52 and 17.88 per cent, respectively at 14 days after spraying. On the basis of PT values the descending order of persistent toxicity was chlorantraniliprole 0.004 per cent (913.46) > emamectin benzoate 0.001 per cent (875.80) > indoxacarb 0.010 per cent (826.73) > quinalphos 0.050 per cent (789.63) > profenophos 0.100 per cent (726.11) > triazophos 0.050 per cent (702.76) > ethion 0.100 per cent (653.38).

The data pertaining to LT50 values of insecticides against larvae of *H. armigera* on soybean leaves and pods are presented in Table 3.

The data revealed that chlorantraniliprole 0.004 per cent registered highest LT50 value (7.78 days) against the larvae of *H. armigera* on soybean leaves and pods receiving second application of insecticides. The descending relative order of efficacy of insecticides in days was found to be chlorantraniliprole 0.004 per cent (7.78) > emamectin benzoate 0.001 per cent (7.09) > indoxacarb 0.010 per cent (6.22) > quinalphos 0.050 per cent (5.65) > profenophos 0.100 per cent (4.87) > triazophos 0.050 per cent (4.36) > ethion 0.100 per cent (3.72).

Thus, it indicates that chlorantraniliprole 0.004 per cent and emamectin benzoate 0.001 per cent illustrated higher residual toxicity against the larvae of *H. armigera* as compare to other insecticides.

These findings are in agreement with the results of Sonune and Bhamare (2016) who stated that that emamectin benzoate 0.0022 per cent and chlorantraniliprole 0.0055 per cent revealed the highest persistent toxicity index (PT) value of (925.08, 920.52 and 898.60 and; 864.36, 907.78 and 835.89) and LT50 values (7.63, 7.52 and 7.27 and; 6.60, 7.32 and 6.23 days) against first instar larvae of pod borer after first, second and third spray, respectively as compared to the other insecticides. Dake et al. (2015) reported that emamectin benzoate 0.002 per cent and chlorantraniliprole 0.005 per cent noticed highest PT (977.55 and 979.75) and LT50 values (8.18 and 7.32 days) against head borer of sunflower.

Table 3: Relative efficacy of different insecticides against larvae of *H. armigera* on soybean leaves and pods applied as first and second spray

Treatments	1st Spray			2nd Spray										
	Heterogeneity	Regression Equation	Log LT50 ± S.Em	LT50 (days)	Fiducial Limit (days)	R.E.	O.R.E.	Heterogeneity	Regression Equation	Log LT50 ± S.Em	LT50 (days)	Fiducial Limit (days)	R.E.	O.R.E.
Profenophos 0.100 per cent	2	1.154	y=0.1273-1.8061x	0.7205 ± 0.1275	5.25	1.09	12.37	1.29	5					
	2	1.375	y=0.904-1.8081x	0.6570 ± 0.1291	4.54	1.00	10.19	1.12	6					
	2	1.462	y=0.1802-1.8631x	0.7506 ± 0.1285	5.63	1.14	13.82	1.39	4					
	2	0.898	y=0.1755-2.0003x	0.9735 ± 0.1232	6.21	1.17	14.93	1.53	3					
Ethion 0.100 per cent	2	1.186	y=0.0423-1.6898x	0.6079 ± 0.1364	4.05	0.96	9.30	1.00	7					
	2	0.938	y=0.3321-2.5099x	0.8992 ± 0.1074	7.93	1.26	18.25	1.95	1					
Chlorantraniliprole 0.004 per cent	2	0.719	y=0.1863-2.1842x	0.8492 ± 0.1176	7.06	1.22	16.87	1.74	2					

Conclusion

The overall results proved that chlorantraniliprole 0.004 per cent was the most effective insecticide against *H. armigera* infesting soybean followed by emamectin benzoate 0.001 per cent and indoxacarb 0.010 per cent. Similarly the higher residual toxicity was exhibited by these insecticides against larvae of *H. armigera* on soybean.

References
1. Abbott WS. A method of computing the effectiveness of insecticide. J Econ. Entomol 1925;18(4):265-267.
2. Agarwal DK, Billeore SD, Sharma AN, Dupare BU, Srivastava SK. Soybean: introduction, improvement, and utilization in India-problems and prospects. Agric. Res 2013;2(4):293-300.
3. Ahirwar KC, Marabi RS, Bhowmick AK. Population dynamics of major Insect Pests and seed yield of soybean. Annu. Pl. Prot. Sci 2014;22(1):56-59.
4. Anonymous, SOY FACTS, Oilseed and Grain News https://www.oilseedandgrain.com/soy-facts, 2020.
5. Bhamare VK, Shetgar SS. Pod borer of soybean published in soybean production technology and trade management. Public Private partnership for Integrated Agriculture Development Programme, Agriculture Department, Government of Maharashtra and ADM Agro Industries 2015, 30-32.
6. Bhamare VK, Phatak SV, Kumbhar SC, Bade AS. Influence of ambient weather on the incidence of major insect-pests of sole soybean and soybean intercropped with pigeonpea. J Entomol. Zool. Stud 2018;6(5):437-443.

7. Coelho M, Godoy AF, Baptista YA, Bentivenha JPF, Lourencao AL, Baldin ELL et al. Assessing soybean genotypes for resistance to Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 2019;20(20):1-11 (doi: 10.1093/jee/toz269).

8. Duke RB, Bhamare VK, Mhaske SH. Bio-Efficacy, Persistence and residual toxicity insecticides against head borer Helicoverpa armigera (Hubner) of sunflower. Bulletin of Environment, Pharmacology and Life Sciences 2017;6(2):64-70.

9. Dwevedi A, Kayastha AM. Soybean: A multifaceted legume with enormous economic capabilities. In Soybean - Biochemistry, Chemistry and Physiology Edited by Tzi Bun Ng. Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia 2011, 165-188.

10. Fatihipour Y, Sedaratian Amin. Integrated management of Helicoverpa armigera in soybean cropping systems, Soybean - Pest Resistance, Hany A. El-Shemy, Intech Open 2013, 231-279 (DOI: 10.5772/54522).

11. Finney DJ. Probit Analysis, Cambridge University Press, Cambridge 1971, 333.

12. Gomez KA, Gomez AA. Statistical procedures for agricultural and research (2 edn.). A John Wiley and Sons Interscience Publications. An International Res. Institute, Philippines 1984, 680.

13. Keyhaniyan Ali Akbar. Efficacy of new insecticides against pod borer of soybean 2009 (http://agris.fao.org/aos/records/ir2010000176?output=x ml).

14. Kothalkar RR, Thakare AY, Salunke PB. Effect of newer insecticides in combination with Triazophos against insect pest of soybean. Agric. Sci. Digest 2015;35(1):46-50.

15. Lawrence KA. Soybean: Africa’s potential Cinderella food crop. In Soybean - Biochemistry, Chemistry and Physiology Edited by Tzi Bun Ng. Published by In Tech Janeza Trdine 9, 51000 Rijeka, Croatia 2011, 137-150.

16. Naik MI, Basavadarshan AV, Boraiah B, Thippaiah M. Yield loss estimation and efficacy of biopesticides on the management of Helicoverpa armigera (Hubner) in vegetable soybean [Glycine max (L.) Merrill]. Journal of Pharmacognosy and Phytochemistry 2020;9(4):3421-3425.

17. Patil MU, Kulkarni AV, Gavkare O. Evaluating the efficacy of novel molecules against soybean defoliators. The Bioscan 2014;9(1):577-580.

18. Pradhan S. Strategy of integrated pest control. Indian J Entomol 1967;29(1):105-122.

19. Raghuvanshi S, Bhadauria NS, Singh P. Efficacy of insecticides against major insect pests of soybean. Indian J Com 2014;7(3):191-193.

20. Rawat RR, Kapoor RH. Arthropod pest of soybean in MP conference on soybean production and marketing, September 20-23. Proceeding of J.N.J.K.V., Jabalpur 1968, 62-65.

21. Rogers DJ, Brier HB. Pest-damage relationships for Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on vegetative soybean. Crop Protection 2010;29(1):39-46 (https://doi.org/10.1016/j.cropro.2009.08.016).

22. Sagar VM. Bioefficacy of newer insecticides against major pests of soybean. Ph.D. (Agri.) Thesis, submitted to Department of Agricultural Entomology, VNMKV, Parbhani 2015. (http://krishikosh.egranth.ac.in/handle/1/5810050234).

23. Saini ML. Bioassay of persistence of spray residues on leaf surface of maize using just hatched larvae of Chilo zonellus (Swinhoe) as test insect. Assoc. I.A.R.I. Thesis, Indian Agricultural Research Institute, New Delhi (Unpublished) 1959.

24. Sarup P, Singh DS, Amarpuri S, Rattan Lal. Persistent and relative residual toxicity to some important pesticides to the adults of sugarcane leaf-hopper, Pyrilla perpusilla Walker (Lophopidae: Homoptera). Indian J Entomol 1970;32(3):256-267.

25. Sharma AN, Gupta GK, Verma RK, Sharma OP, Bhagat S, Amaresan N et al. Handbook of integrated pest management package for soybean, NCIPM, New Delhi 2014, 1-2.

26. Singh OP, Singh KJ. Insect pest of soybean and their management. Indian farming 1990;39(10):9-14.

27. Sonune KR, Bhamare VK. Persistence and residual toxicity of different insecticides against pod borer, Helicoverpa armigera (Hubner) infesting pigeonpea. The Ecocasan 2016. Special issue, Vol. IX: 237-242.

28. SOPA, http://www.sopa.org/india-oilseeds-area-production-and-productivity/ 2020.

29. Stackea RF, Arnemann JA, Rogersb J, Stackea RS, Straha TT, Perinia CR et al. Damage assessment of Helicoverpa armigera (Lepidoptera: Noctuidae) in soybean reproductive stages. Crop Protection 2018;112:10-17 (https://doi.org /10.1016/j.cropro.2018.05.002).

30. USDA. World Agricultural Production, United States Department of Agriculture Foreign Agricultural Service Circular Series WAP 11-20 November 2020.

31. Wagh GV, Deotale RO, Lavhe NV, Jiotode DJ, Patil KA. Validation of different insecticides against defoliator on soybean. Pestology 2015;39(5):35-40.