Abstract

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and the proliferating antigen Ki67 have been widely studied in several tumors. However, their role as indicator in non-small cell lung cancer (NSCLC) remains unknown. Here, we investigated the expression of PTEN and Ki67 in NSCLC tissues and paired normal lung tissues to identify whether these proteins are associated with lung cancer development and survival. Immunohistochemistry for PTEN and Ki67 was performed on 67 lung cancer tissues and 41 paired adjacent normal lung tissues to detect the expression of these two proteins. The expression of PTEN in NSCLC tissues (32.8%) was significantly lower than that in normal tissues (82.9%, \(P < 0.05 \)). In contrast, the expression of Ki67 in NSCLC tissues (76.1%) was significantly higher than that in normal tissues (27.3%, \(P < 0.05 \)). Expression of both PTEN and Ki67 were strongly associated with tumor histology, clinical stage, lymph node metastasis, differentiation and 4-year postoperative survival rate (\(P < 0.05 \)). However, PTEN expression was negatively correlated with Ki67 expression (\(r = -0.279, P < 0.05 \)). In conclusion, low PTEN expression and Ki67 overexpression are associated with malignant invasion and lymph node metastasis of NSCLC. These proteins may serve as diagnostic and prognostic biomarkers of NSCLC.

Keywords: non-small cell lung cancer (NSCLC), Ki67, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), immunohistochemistry, lymph node, prognosis

INTRODUCTION

Non-small cell lung cancer (NSCLC) is a slow-developing cancer with a complex pathogenesis; its progression involves several stages as well as activation of many oncogenes and inactivation of tumor suppressor genes\(^{[1]}\). Alterations in the expression of extracellular growth factors and signaling molecules commonly occur during NSCLC development. These proteins are involved in various cellular functions, including proliferation and cell cycle progression. Changes in their expressions can lead to undue proliferation of tumor cells or escape from cell cycle checkpoints and apoptosis\(^{[2]}\).

One such factor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is involved in receptor tyrosine kinase (RTK) signaling due to its phosphatase functions\(^{[3,4]}\). PTEN is a negative con-
trol factor in the phosphoinositide-3 kinase (PI3K)/
serine-threonine kinase (AKT) pathway. This protein
plays a role as tumor suppressor to inhibit the malign-
ancy transformation of cells as well as the invasion,
metastasis and growth of tumors. Mutation in PTEN
eliminates its antitumor effects and promotes tumor-
origenesis[5-9]. Previous studies have demonstrated the
importance of other RTKs in lung tumors (particularly
epidermal growth factor receptor (EGFR)); alterations
in PTEN may, therefore, play a role in the pathogene-
sis of NSCLC[10]. Another protein with demonstrated
roles in tumorigenesis is Ki67, a nuclear antigen re-
lated to cell proliferation as increased Ki67 expression
is closely correlated with the proliferation and inva-
siveness of tumors[11]. Although the exact functions
of Ki67 are unclear, there is accumulating evidence
that Ki67 plays a critical role in cell cycle progression
[12-14].

In this study, immunohistochemistry was performed
to detect the expression of PTEN and Ki67 in NSCLC
tissues and paired adjacent normal lung tissues. Ad-
ditionally, the expression was compared with clinico-
pathologic features of NSCLC.

PATIENTS AND METHODS

Patients

Surgical tissues were collected from 67 patients
with lung cancer who were treated at Wuxi People’s
Hospital Affiliated to Nanjing Medical University
from June 2007 to May 2008. Diagnosis was con-
firmed as NSCLC by postoperative pathology. The
patients with lung cancer included 33 males and 34
females with age ranging from 39 to 80 years. Patho-
logical staging was performed for all cases in ac-
cordance with the diagnostic criteria of the Union for
International Cancer Control (UICC) and there were
20 cases in stage I, 29 cases in stage II and 18 cases
in stage III. Twenty-eight cases were squamous cell
carcinoma, 31 cases were adenocarcinoma and 8 cases
were large-cell carcinoma. In addition, 25 cases were
poorly differentiated tumors, while 42 cases were
highly or moderately differentiated tumors. Lymph
node metastasis was evident in 29 cases and absent in
38 cases. Paired normal tissues were collected from
adjacent tissues (> 5 cm away from tumors) of 41
cases. No patients had received radiotherapy or chem-
otherapy before surgery.

Follow-up

The patients were followed up by telephone or let-
ter, and all had complete follow-up information on
survival. Survival time was defined as the time in-
terval from the date of surgery until the date of last
follow-up (June 2012) or death.

Detection of PTEN and Ki67 expression

Tissues were fixed in 10% formaldehyde and em-
bedded in paraffin by using conventional methods.
Serial tissue sections were cut at 4 μmol/L thickness
and placed on microscope slides for immunohisto-
chemistry. We used a mouse monoclonal antibody for
PTEN and a mouse monoclonal antibody for Ki-67
(both from Zhongshan Golden Bridge Biotechnology,
Beijing, China). As immunohistochemistry with an-
tibodies against PTEN and Ki67 was performed using
the streptomyces avian-peroxidase (SP) method, sec-
tions were deparaffinized and rehydrated. The slides
were then heated in a microwave for 10 minutes in a
10-μmol/L citrate buffer solution at pH 6.0 and then
cooled to room temperature. After quenching endog-
ous peroxidase activity with 0.3% H2O2 (in absolute methanol) for 30 minutes, the sections were incubated
for 2 hours at room temperature with 5% bovine se-
rum albumin. Duplicate sections were then incubated
overnight at 4°C with the specific primary antibodies
against PTEN and Ki-67, respectively. Sections were
then treated successively with secondary antibodies
and streptavidin (Zhongshan Golden Bridge Biotech-
nology). The 3, 3′-diaminobenzidine (DAB) substrate
was performed to develop staining color, and then
sections were counterstained with hematoxylin prior
to dehydration and mounting. Sections of breast can-
cer tissue containing the above-mentioned antigens
were used as positive control. Phosphate buffered sa-
line (PBS) was used in place of primary antibody as
negative control. Positive staining appeared in cells as
yellowish-brown puncta of PTEN and Ki67. Stained
tissues were scored for the proportion of positive cells
out of the total number of cells. Fewer than 5% posi-
tive cells were considered as negative; 5%-20% posi-
tive cells were considered as weakly positive (+); >
20% positive cells were considered as strongly posi-
tive (++). Therefore, “positive expression” referred to
both + and ++.

Statistical analysis

Analyses were performed by using SPSS 16.0 sta-
tistical analysis software, including χ2 test and Spear-
man rank correlation analysis. Quantitative variables
were compared by using Student’s t-test, and catego-
rical variables were compared by using χ2 test. Kaplan-
Meier survival curve and Log-rank tests were used to
compare the survival rate between groups as designed.
Two-sided alpha level was set at 0.05, with P < 0.05
considered statistically significant.
RESULTS

PTEN and Ki67 expression in NSCLC and paired normal lung tissues

We examined the expression of PTEN and Ki67 in 67 NSCLC specimens and 41 adjacent paired normal lung tissue specimens. PTEN was detected in both NSCLC and normal tissues (Fig. 1), but the positive expression rate of PTEN in NSCLC tissues was 32.8%, which was significantly lower than that of normal lung tissues (82.9%) (P < 0.05). In contrast, Ki67 was detected significantly more often in NSCLC tissues (76.1%) than in normal lung (27.3%) (P < 0.05). Furthermore, we analyzed whether the expression of PTEN correlated with the expression of Ki67 in NSCLC. The result showed that their expression in NSCLC was negatively correlated (r = -0.239, P = 0.022) (Table 1).

Association between PTEN and Ki67 expression and clinicopathologic features

To identify whether the expression of the two proteins in lung tumors was associated with clinical features of the disease, we assessed expression patterns in terms of clinicopathologic features (Table 2). No statistically significant differences were observed in the expressions of PTEN and Ki67 when the data were stratified for gender and age. However, expressions of PTEN and Ki67 correlated with the degree of differentiation, presence or absence of lymph node metastasis, clinical stage and tumor histological category,

Fig. 1 PTEN and Ki67 expression by immunohistochemistry in non-small cell lung cancer (NSCLC) tissues. PTEN (brown) is expressed in the cytoplasm of NSCLC cells, A: adenocarcinoma; B: squamous carcinoma. Ki67 (brown) is expressed in the nuclei of NSCLC cells, C: adenocarcinoma; D: squamous carcinoma. PTEN is negatively expressed in adenocarcinoma (E) and squamous carcinoma (F). Ki67 is negatively expressed in adenocarcinoma (G) and squamous carcinoma (H).
Table 1 Correlation between PTEN and Ki67 expression in NSCLC

PTEN expression	Ki67 expression	Total	R value	P-value
Positive	+	13	9	22
Negative	-	38	7	45
Total		51	16	67

respectively. Interestingly, inverse correlations were found: PTEN expression gradually increased with increased malignant differentiation while Ki67 expression gradually decreased. The expression of PTEN was significantly negatively correlated with lymph node metastasis, but Ki67 expression was positively correlated with lymph node metastasis (P < 0.05). Moreover, we showed that positive expression of PTEN and Ki67 in adenocarcinoma was higher than that in squamous cell carcinoma (P < 0.05). The expression of either PTEN or Ki67 did not correlate with tumor location and size (P > 0.05).

Table 2 Correlation between expressions of PTEN and Ki67 in NSCLC with clinicopathologic features

N	PTEN	Ki67							
	Positive expression (%)	Positive expression (%)	R value	P-value					
	+	-	+	-					
Age (years)									
≤ 60	30	11	19	36.67	0.548	21	9	70.00	0.290
> 60	37	11	26	29.73	0.664	30	7	81.08	0.614
Sex									
Male	33	10	23	30.30	0.694	26	7	78.79	0.614
Female	34	12	22	35.29	0.732	25	9	73.53	0.732
Tumor position									
Periphery type	40	10	30	25.00	0.096	31	9	77.50	0.747
Central type	27	12	15	44.44		20	7	74.07	
Tumor size (cm)									
≤ 3	35	13	22	37.14	0.432	24	11	68.57	0.130
> 3	32	9	23	28.13	0.582	27	5	84.38	
Tumor category									
Squamous cancer	28	5	23	18.71		19	9	67.9	
Adenocarcinoma	31	12	19	38.70	0.014	25	6	80.65	0.037
Large cell carcinoma	8	3	5	37.50		5	3	62.50	
Lymph metastasis									
Yes	29	5	24	17.24	0.018	31	9	77.5	0.023
No	38	17	21	44.74		8	9	47.0	
TNM Stage									
I,II	49	22	27	44.90	0.038	30	19	61.22	0.043
III	38	6	32	33.33	0.142	14	4	77.8	
Differentiation degree									
Low	25	5	20	20.00	0.007	23	2	92.00	0.020
High/moderate	42	19	23	45.24		28	14	66.67	

Relationship between Ki67 or PTEN expression in NSCLC tissues and postoperative survival

Follow-up data from all patients indicated that there were 30 living patients on the cut-off date of follow-up, while 4 patients experienced recurrence during follow-up and 33 patients died. Kaplan-Meier survival curve analysis was performed (Fig. 2). Furthermore, Kaplan-Meier plots of survival showed that patients...
with negative Ki67 expression had a median overall survival time of 31.1 months, whereas patients with positive Ki67 expression had an overall survival of 17.9 months (Log-rank, P < 0.05). For PTEN expression, the overall survival was 19.3 months for patients with negative expression and 24.6 months for those with positive expression (Log-rank, P < 0.05; Table 3).

DISCUSSION

PTEN-encoded phosphatases can dephosphorylate focal adhesion kinase by blocking the PI3K/protein kinase B pathway and downstream signaling, thereby regulating cell cycle, proliferation, infiltration and migration of cells\(^{15-17}\). Alterations in its activity, therefore, can effect changes in regulation of these cellular process and lead to tumorigenesis\(^{18,19}\). In addition, the mutation rate of **PTEN** was found to be 43% in prostate cancer\(^4\). Here, we demonstrated that loss of PTEN expression was commonly found in lung cancer tissues, indicating that the deletion or mutation of **PTEN** may promote lung cancer development and/or progression. PTEN loss or reduced expression may lead to altered epithelium and excessive proliferation of lung tissues, thus forming tumors\(^{19}\). The expression of PTEN was less common in lung squamous carcinoma than other histological categories of lung tumor, such as adenocarcinoma or large cell cancer. Moreover, it also varied among differently differentiated lung tumors. In fact, poorer differentiation leads to lower expression rate of PTEN, indicating that loss of PTEN expression correlated with tumor histology and malignant differentiation degree. In addition, with advanced stage, PTEN expression level gradually declined, more patients developed lymph node metastases and 4-year survival rate gradually decreased. Therefore, PTEN expression may be useful as a prognostic biomarker, as the loss of expression indicates more advanced disease.

The proliferation marker Ki67 has been shown to be upregulated in many tumors\(^20\). Indeed, it is an indicator of poorer prognosis for some cancers\(^21,22\). Therefore, this study extended previous work by assessing the relationship between Ki67 and malignant biological characteristics of NSCLC. Perhaps unsurprisingly, Ki67 expression was significantly more frequent in NSCLC than in normal adjacent lung tissues. These results indicated that Ki67 indirectly reflects undue proliferation of malignant tumors. Furthermore, Ki67 expression was also associated with lymph node metastasis, tumor histology and more advanced tumors.

Table 3 The relationship between PTEN and Ki67 expression and prognosis of NSCLC patients

Protein	Total (n)	Deaths (n)	Median overall survival (Months)	Adjusted HR (95% CI)\(^a\)	Adjusted P\(^b\)
PTEN					
+	22	9	24.6	ref	
-	45	24	19.3	2.85 (1.32-4.21)	<0.001
Ki67					
+	51	27	17.9	ref	
-	16	6	31.1	0.55 (0.32-0.88)	0.021

HR: hazard ratio; CI: confidence interval; ref: reference \(^a\)Cox regression with adjustment for age, sex and stage.
The 4-year survival of patients with Ki67-positive tumors was significantly lower than those with Ki67-negative tumors. This finding suggested that Ki67 expression in NSCLC is closely related to disease prognosis. The expression of Ki67 also varied among differently differentiated lung tumors. On the contrary, Ki67 expression in poorly differentiated tumor was significantly higher than in moderately or highly differentiated tumor, indicating that Ki67 expression closely correlated with tumor differentiation degree.

In conclusion, this study demonstrated that low PTEN expression and high Ki67 expression are associated with high proliferation activity, low differentiation of tumor tissues and high possibility of early invasion and metastasis. Additionally, the expression levels of both proteins are closely related to postoperative 4-year survival of NSCLC patients. Combined detection of PTEN and Ki67 can aid in determining malignancy degree and the prognosis of patients with NSCLC.

References

[1] Lee S, Choi EJ, Jin C, Kim DH. Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecologic Oncology 2005; 97: 26-34.

[2] Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000; 182: 311-22.

[3] Neto JC, Ikoma MM, Carvalho KC, Vassallo J, De Brot M, Gobbi H, et al. MGMT and PTEN as potential prognostic markers in breast cancer. Exp Mol Pathol 2012; 92: 20-6.

[4] Yoshimoto M, Cutz JC, Nuin PA, Joshua AM, Bayani J, Evans AJ, et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet 2006; 169: 128-37.

[5] Gomes CP, Andrade LA. PTEN and p53 expression in primary ovarian carcinomas: immunohistochemical study and discussion of pathogenetic mechanisms. Int J Gynecol Cancer 2006; 16: 254-8.

[6] Liu SC, Sauter ER, Clapper ML, Feldman RS, Levin L, Chen SY, et al. Markers of cell proliferation in normal epithelia and dysplastic leukoplakias of the oral cavity. Cancer Epidemiol Biomarkers Prev 1998; 7: 597-603.

[7] Igarashi N, Takahashi M, Okhubo H, Omata K, lida R, Fujimoto S. Predictive value of Ki67, p53 protein, and DNA content in the diagnosis of gastric carcinoma. Cancer 1999; 96: 1449-54.

[8] Leonardo E, Volante M, Barbareschi M, Cavazza A, Dei Tos AP, Bussolati G, et al. Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact. Appl Immunohistochem Mol Morphol 2007; 15: 220-3.

[9] Tian XX, Zhang YG, Du J, Fang WG, Ng HK, Zheng J. Effects of cotransfection of antisense-EGFR and wild-type PTEN cDNA on human glioblastoma cells. Neuropathology 2006; 26: 176-87.

[10] Ayoola A, Barochia A, Belani K, Belani CP. Primary and acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: an update. Cancer Invest 2012; 30: 433-6.

[11] Antonarakis ES, Keizman D, Zhang Z, Gurel B, Lotan TL, Hicks JL, et al. An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 2012; 118: 6063-71.

[12] Kinross KM, Montgomery KG, Kleinshmidt M, Waring P, Ivetea I, Tikoo A, et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J Clin Invest 2012; 122: 553-7.

[13] Gonzalez-Moles MA, Ruiz-Avila I, Gil-Montoya JA, Esteban F, Bravo M. Analysis of Ki-67 expression in oral squamous cell carcinoma: why Ki-67 is not a prognostic indicator. Oral Oncol 2010; 46: 525-30.

[14] Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Nat Cancer Inst 2011; 103: 1656-64.

[15] Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, et al. Short-term changes in Ki-67, PCNA, and p27kip1 in canine pituitary corticotroph adenomas. Domest Anim Endocrin 2010; 38: 244-52.

[16] Wang Y, Wang X, Zhang J, Sun G, Luo H, Kang C, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neuro-oncology 2012; 106: 217-24.

[17] Ettl T, Baader K, Stiegler C, Agaimy A, Zenk J, Kühnel T, et al. Loss of PTEN is associated with elevated EGFR and HER2 expression and worse prognosis in salivary gland cancer. Brit J Cancer 2012; 106 : 719-26.

[18] Gallardo A, Lerma E, Escuin D, Tibau A, Muoz J, Sancho JF, et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J Clin Invest 2012; 122: 553-7.

[19] Van Rijn SJ, Grinwis GC, Penning LC, Meij BP. Expression of Ki-67, PCNA, and p27kip1 in canine pituitary corticotroph adenomas. Domest Anim Endocrin 2010; 38: 244-52.

[20] Wang Y, Wang X, Zhang J, Sun G, Luo H, Kang C, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neuro-oncology 2012; 106: 217-24.

[21] Ettl T, Baader K, Stiegler C, Agaimy A, Zenk J, Kühnel T, et al. Loss of PTEN is associated with elevated EGFR and HER2 expression and worse prognosis in salivary gland cancer. Brit J Cancer 2012; 106 : 719-26.

[22] Gallardo A, Lerma E, Escuin D, Tibau A, Muoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Brit J Cancer 2012; 106: 1367-73.

[23] Brown DC, Gatter KC. Ki67 protein: the immaculate indicator? Histopathology 2002; 40: 2-11.

[24] Zheng Y, Wang L, Zhang JP, Yang JY, Zhao ZM, Zhang XY. Expression of p53, c-erbB-2 and Ki67 in intestinal metaplasia and gastric carcinoma. World J Gastroenterol 2010; 16: 339-44.

[25] Patil DT, Chou PM. Sialoblastoma: Utility of Ki-67 and p53 as a prognostic tool and review of literature. Pediatr Dev Pathol 2010; 13: 32-8.