LETTER TO THE EDITOR

Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars

II. s-process nucleosynthesis during the core He flash

S. W. Campbell1,2,3,⋆, M. Lugaro3,⋆, and A. I. Karakas4,3

1 Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, EUETIB, Carrer Comte d’Urgell 187, 08036 Barcelona, Spain
e-mail: simon.w.campbell@upc.edu
2 Institut de Ciències de l’Espai (ICE-CSIC), Campus UAB, Fac. Ciències, Torre C5 parell 2, 08193 Bellaterra, Spain
3 Centre for Stellar and Planetary Astrophysics, Monash University, Clayton, VIC 3800, Australia
e-mail: maria.lugaro@monash.edu
4 Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australia
e-mail: akarakas@mso.anu.edu.au

Received 19 July 2010 / Accepted 6 October 2010

ABSTRACT

Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core.

Aims. We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs.

Methods. We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M⊙ and a metallicity of [Fe/H] = −6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously.

Results. We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 15N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds.

We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance.

Conclusions. Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early Universe. If this is true, it puts constraints on the primordial initial mass function.

Key words. nuclear reactions, nucleosynthesis, abundances – stars: evolution – stars: individual: HE 1327-2326 – stars: interiors – stars: Population II – stars: Population III

1. Introduction

Stars with a similar mass as the Sun eventually expand and become red giants, and at the end of their red giant phase they undergo a thermonuclear runaway in the core known as the core helium flash. The ignition of helium in this flash event occurs at the hottest place in the core, which is located off centre because of cooling via neutrino energy losses deep in the stellar interior. The amount of energy released by the He flash is so large that it cannot be carried radiatively, and thus convective motions are triggered, forming the so-called He convective zone (HeCZ). A typical HeCZ extends from the location of the He-burning region to close to the base of the H-burning shell. The convection does not normally break through the H-burning shell because the active H-burning shell provides an entropy barrier against mixing (Iben Jr. 1976).

However, in solar-mass red giant stars of primordial (Z = 0) or hyper-metal-poor ([Fe/H] ≤ −5.0) composition the H-He interface is not as impenetrable as in more metal-rich red giant stars. The reason for this is twofold. First, the core helium flash starts much farther away from the centre in these low-metallicity models (at ~0.27 M⊙ in the model we present here, Fig. 1) than at solar metallicity and is thus closer to the H shell. Second, the entropy barrier at the H shell is much weaker in stars of very low metallicity because the H-burning shell almost switches off at this stage of evolution (Fujimoto et al. 1990).

Thus, in primordial solar-mass red giants the He convective region can penetrate into the overlying H-rich region and protons can be carried down into the hot He-burning zone. If enough protons are ingested, a secondary (H-burning) “flash” will occur within the He convective region while the He-burning flash is still ongoing. This can result in the He-convective region splitting into two convective regions at the location where the H burning releases most of its energy. This sequence of events

* The first two authors have contributed equally to this paper.
is well established in 1D stellar models and is referred to vari-
ously as “dual core flash” (DCF), “proton ingestion episode” or
“helium-flash-induced mixing” (Fujimoto et al. 1990; Hollowell
et al. 1990; Schlattl et al. 2001; Picardi et al. 2004; Campbell &
Lattanzio 2008; Suda & Fujimoto 2010). Importantly, the mate-
rial processed by the DCF is later carried to the stellar surface
by a (single) dredge-up event. Thus the nucleosynthetic prod-
ucts of the DCF are available to be shed into the surrounding

eatly qualifies with the observations of C-rich extremely
companion. The main chemical products are C and N, and this
is well established in 1D stellar models and is referred to vari-
ings by the details of the
We have used one of the stellar structure models computed in
Campbell & Lattanzio (2008) (Paper I). This model was cal-
culated using the Schwarzschild criterion to define the border of
convective regions and a diffusive mixing treatment of the
movement of material inside convective regions similar to that
of Meynet et al. (2004). The stellar structure code follows six
chemical species: $^1$H, $^3$He, $^6$He, $^{12}$C, $^{14}$N, and $^{16}$O. The rest of
the isotopes involved in the CNO cycles are included by assum-
ing that they are always present in their equilibrium abundances.

We calculate the detailed nucleosynthesis with a post-
processing code that activates nuclear reactions in the star on the
basis of the information on the temperature, density, and con-
vective velocities provided by the stellar structure model (see
Paper I and references therein for details). The equations that
describe the changes in the abundances are solved using an im-
licit method so that a large matrix of $n^2$ is solved, where $n$ is the
number of species in the network. Nuclear burning and convec-
tive mixing are both included in the equations of the abundance
changes and thus solved simultaneously. Our present calcula-
tion was performed using a nuclear network of $n = 320$ species,
from protons and neutrons up to lead and bismuth, and 2336 re-
actions with rates from the JINA reaclib database (Cyburt et al.
2010). The initial composition for the elements up to Zn was taken
as a mix of standard Big Bang material and supernova cal-
culations as described in Paper I. The abundances of the el-
ements heavier than Zn were taken equal to zero, however we
note that this choice is mostly irrelevant for our results because
the neutron-capture nucleosynthesis overwrites the memory of
the initial abundances.

Owing to our computationally expensive scheme we only in-
cluded some of the s-process branching points that may be ac-
tivated under conditions of a high neutron flux. This shortcoming
should not have a strong impact on the overall heavy-element
distribution reported here because the overall neutron flux is only
very marginally affected by the details of the s-process path.

Due to computational problems we have not yet proceeded
much past the end of the neutron superburst. However, this did
not prevent us from accurately estimating the surface composi-
tion of the neutron-capture elements for the model (Sect. 3.2).
This is because there are no further mixing episodes following
the dredge-up event that mixes the products of the core He flash
into the stellar envelope.

---

**2. Method**

We have used one of the stellar structure models computed in
Campbell & Lattanzio (2008) (Paper I). This model was cal-
culated using the Schwarzschild criterion to define the border of
convective regions and a diffusive mixing treatment of the
movement of material inside convective regions similar to that
to Fujimoto et al. (1990) specified that neutrons and light s-process elements may be pro-
duced during this event.

The superburst occurs during the earliest phases of the in-
gestion (Fig. 1). This is because the H profile is very extended
(Fig. 2) owing to the nature of the previous H-shell burning. In
a star with a negligible amount of CNO catalysts the p-p chain
reactions dominate over the CNO cycles in terms of the energy
production. Because the p-p chains have a low temperature de-
pendence, the H-burning shell is active over an extended region,
leading to a broadened H-abundance profile. This long H “tail”
leads to variations in the amount of protons ingested into the
expanding HeCZ. In the early ingestion phases, the mixing of
small amounts of protons mostly lead to the production of $^{13}$C
nuclei and the consequent neutron superburst ($t = 0$ to $1.2$ yr
in Fig. 2). After about 1.7 yr, the HeCZ has expanded through
the entire H abundance profile up to the base of the unburnt
envelope. At this point the abundance of protons in the HeCZ
becomes so high that the abundance of the neutron poison $^{14}$N
exceeds that of $^{13}$C owing to complete CN-cycling. Under these
conditions the $^{14}$N($p, n$)${}^{14}$C reactions dominate and the neutron
superburst is quenched.

The neutron density during the superburst peaks at
$\sim 10^{13}$ n cm$^{-3}$, remains above $10^{14}$ n cm$^{-3}$ for about 0.2 years
(Fig. 3), and the time-integrated neutron flux is 287 mbarn$^{-1}$. At

---

**Fig. 1.** Internal evolution of our solar-mass model star with a metallicity of $[\text{Fe}/\text{H}] = -6.5$ during the core He flash. Proton ingestion starting at $t = 0$ (6.3 Gyr into the stellar evolution) owing to the expansion of the HeCZ leads to the production of $^{13}$C and the consequent neutron superburst via $^{13}$C($p, n$)${}^{14}$O. Convective regions are grey, HeCZ: H convective zone. The blue solid line and the black dashed line represent the location in mass where the abundance of H is 0.0001 and 0.73, respectively. The insert is a zoomed-out view to help localize the region of interest within the star as a whole. It can be seen that some of the processed material starts to be dredged up by the encroaching convective envelope at around $t = 1000$ yr.
and 126, as represented by the isotopes of 88Sr, 138Ba, and 208Pb peaks corresponding to the magic number of neutrons 50, 82, and 150. Slightly later on, the abundance of 88Sr starts to decrease and that of 138Ba to increase. This is caused by neutrons overcoming the first bottle-neck at N = 82. Slightly later on, as the neutron exposure reaches ≃10 mbarn^{-1}, the abundance of 88Sr starts to decrease and that of 138Ba to increase. This is caused by neutrons overcoming the first bottleneck at N = 82. Slightly later on, as the neutron exposure reaches ≃10 mbarn^{-1}, the absolute abundances increase until the end of the neutron flux. By the end of the neutron flux the abundance of 56Fe has grown by a factor of about 10, as expected from the neutron capture reaction.

3.2. Surface composition and comparison to the halo star HE 1327-2326

Dredge-up of the material previously included in the HeCZ occurs about 10^4 years later, where we find the maximum postflash penetration of the convective envelope. In Table 1 (Col. 2) we show the resultant surface abundances of the model after this dredge-up event. Owing to numerical problems, our current calculations only reached to a time just after the splitting of the convective zone. Thus, in Table 1 the surface abundances of the elements up to Al have been taken from Paper I because they are affected by further proton captures after the convective zone splits, which were not included in the present calculations. The abundances of the elements heavier than Al are evaluated by considering that ≃0.1 M⊙ of the material previously involved in the neutron superburst is dredged-up to the stellar surface and diluted with an envelope mass of 0.44 M⊙, corresponding to a dilution factor f_dredge-up = 0.23. The surface abundances are then calculated for each nuclear species as mass fractions: X_{surf} = \left[ X_{initial} + X_{HeCZ} \times f_{dredge-up} \right] / \left[ 1 + f_{dredge-up} \right], where X_{initial} is the initial envelope value and X_{HeCZ} is the value in the HeCZ.

It can be seen in Table 1 that neutron-capture elements appear at the surface. Their abundances are highly enriched, in the case of Pb reaching up to the level of the absolute solar abundance. The high neutron density of the neutron flux contributes to a distribution that is weighed towards neutron-rich nuclei. For example, 87Rb is produced, resulting in Rb/Sr = solar. Fe is also increased by 2.2 dex. As reported in Paper I, the model also predicts a large overproduction of C, N, O, and F and milder enhancements of Na and Mg.

1 This is self-consistent because the nuclear species included in our present extended network have so much smaller abundances than the lighter elements that their effect on the overall neutron flux is insignificant.

| Element | Stellar surface [model] | f_dredge-up \times 10^{-4} | HE 1327-2326 [observations] |
|---------|-------------------------|-----------------------------|-----------------------------|
| log (e(Li)) | 1.63 | 1.87 | <0.62 |
| C | 5.08 | 3.78 | 3.78 |
| N | 4.98 | 3.68 | 4.28 |
| O | 5.18 | 3.88 | 3.42 |
| F | 4.19 | 2.90 | |
| Na | 2.77 | 1.47 | 2.73 |
| Mg | 2.17 | 0.87 | 1.97 |
| Al | 1.48 | 0.18 | 1.46 |
| Ca | 1.31 | 0.36 (0.03) | 0.44–0.91 |
| Ti | 2.83 | 1.59 (0.57) | 0.91 |
| Ni | 1.04 | −0.04 (0.04) | 0.18 |
| Rb | 4.29 | 3.05 (1.88) | |
| Sr | 4.19 | 2.94 (1.79) | 1.17 |
| Y | 4.32 | 3.07 (1.91) | |
| Zr | 4.48 | 3.23 (2.06) | |
| Ba | 5.07 | 3.28 (2.65) | <1.40 |
| La | 5.11 | 3.86 (2.69) | |
| Ce | 5.26 | 4.01 (2.84) | |
| Nd | 5.03 | 3.79 (2.62) | |
| Eu | 4.26 | 3.01 (1.90) | <4.64 |
| Pb | 6.25 | 5.00 (3.82) | |

232 because of neutron captures on the lighter elements starting from the abundant ^12C.
In Col. 3 of Table 1 we include the composition resulting from diluting the surface composition with material of initial composition by a factor $f_{\text{DIL}} \approx 3 \times 10^{-5}$. This specific dilution factor was used to match the C abundance derived from the most metal-poor star discovered to date, the subgiant star HE 1327-2326, with $[\text{Fe}/\text{H}] = -5.96$ (Col. 4 of Table 1, with typical error bars $\pm 0.25$; Aoki et al. 2006; Frebel et al. 2008). By applying this dilution factor our model self-consistently reproduces the observed C, N, and O abundances within a factor of 4 for N and 3 for O (observational error bars are $\sim$ a factor of 2), with Fe increasing by only 20%. However, it produces 59 times more Sr and at least 260 times more Ba than observed. We performed a preliminary post-processing calculation using an initial $[\text{Fe}/\text{H}] = -5.76$ (numbers in brackets and italics in Col. 3 of Table 1), more similar to HE 1327-2326. We would not expect this relatively small change in the Fe abundance to have a major impact on the overall stellar structure and the nucleosynthesis of the light elements, but we discovered that it has a strong impact on the nett yields of the neutron-capture process, while the relative abundance distribution is not significantly altered. The results from this calculation show a better match to the observed Sr abundance, within a factor of 4, while still producing too much Ba by a factor of at least 18. In this case, Fe is unchanged.

The composition of HE 1327-2326 could have arisen from binary system mass-transfer via wind accretion or Roche-lobe overflow from a star such as that modelled here (which would now be a white dwarf). Subsequent dilution of the accreted material in the envelope of HE 1327-2326 via convection or thermo-mahline mixing would be expected (Stancilue & Glebbeek 2008). Because radial velocity variations have so far not been detected for HE 1327-2326, the Roche-lobe overflow mass transfer scenario is not favoured. Wind accretion in a very wide binary remains a possibility and would be more in line with the large dilution factor that we have estimated. The amount of mass that a binary companion of mass 0.8 $M_\odot$ would need to accrete from our hypothetical primary star to match the observed C abundance is $\sim 2.4 \times 10^{-4} M_\odot$. Here we have assumed the extreme case where the accreted material mixes throughout the entire star. Using this accretion mass together with an estimated total mass loss from the primary star of 0.4 $M_\odot$ (leaving a 0.6 $M_\odot$ WD) the expected period of the system is 769 yr, using Eq. (12) of Suda et al. (2004), which includes Bondi-Hoyle accretion. This is consistent with the current non-detection of radial velocity variations.

4. Discussion

We compared our theoretical surface abundances with the observed abundances of HE 1327-2326. Owing to the high degree of surface pollution in our model only a small amount of mass should have been accreted by HE 1327-2326 to match its composition, indicating a wide binary configuration. The model self-consistently reproduced C, N, O, and Sr within a factor of 4 (if $[\text{Fe}/\text{H}] = -5.76$), but overproduced Ba. The model produces more Sr than Ba before 0.008 yr (Fig. 3), when the neutron exposure is less than $\approx 10$ mbar$^{-1}$. At the first peak of $^{88}$Sr we find $[\text{Ba}/\text{Sr}] < 0.19$, which would be consistent with the observed $[\text{Ba}/\text{Sr}] < 0.23$. However, the absolute Sr abundance in the HeCZ at this point is 120 times smaller than the final abundance dredged up (for the $[\text{Fe}/\text{H}] = -5.76$ model), while a factor of $\sim 17$ smaller could still provide a match to Sr in HE 1327-2326 within a factor of 4. To match the composition of HE 1327-2326, in this case also including Ba, we would need C, N, and O $\approx 7$ times smaller and $f_{\text{DIL}} \approx 7$ times larger than reported in Table 1 with an expected binary period of 179 yr, assuming the same amount of dredge-up. These possibilities may be within the model uncertainties and need to be carefully investigated because the DCF scenario appears to have the potential to self-consistently reproduce most of the strange overabundances in hyper-metal-poor stars (e.g. Schlattl et al. 2001; Picardi et al. 2004; Suda & Fujimoto 2010; Paper I; Table 1). The DCF would be best studied in the framework of multidimensional models (Deupree 1996; Dearborn et al. 2006; Mocák et al. 2010; Herwig et al. 2010), and effects such as convective overshoot, extra mixing, and rotationally induced mixing should be also investigated in this context.

Our model underproduces Na, Mg, Al, Ca, Ti, and Ni. This suggests that these elements came with Fe from an early supernova that polluted the protostellar cloud (Joggerst et al. 2010), even though Na is also underproduced in these models. The uncertainties of the Ne and Na proton-capture reactions must be investigated. Lithium is another mismatch because the DCF lowers the surface Li abundance by only a factor of two, while HE 1327-2326 is heavily depleted in Li. This problem needs to be addressed in terms of mixing processes on the secondary star HE 1327-2326.

The peculiar chemical signatures of the DCF event may be able to shed light on star formation and the initial mass function in the early Universe, since the implication of our scenario is that binary systems of roughly solar-mass stars should have formed from hyper-metal-poor gas. We suggest that our results should be taken into account in the study of the composition of extremely metal-poor stars in our halo and nearby galaxies.

Acknowledgements. We appreciate the help of the anonymous referee for the improvement of our discussion. M.L. is a Monash Research Fellow. S.W.C. acknowledges the support of the Consejo Superior de Investigaciones Científicas (CSIC) via a JAE-DOC postdoctoral fellowship. AK is a Stromlo Fellow. Calculations were made on the Australian National Facility supercomputer, under Projects $g12$ and $g61$.

References

Aoki, W., Frebel, A., Christlieb, N., et al. 2006, ApJ, 639, 897
Campbell, S. W. 2007, Ph.D. Thesis, Monash University
Campbell, S. W., & Lattanzio, J. C. 2008, A&A, 490, 769
Cyburt, R. H., Amthor, A. M., Ferguson, R., et al. 2010, ApJS, 189, 240
Dearborn, D. S. P., Lattanzio, J. C., & Eggleton, P. P. 2006, ApJ, 639, 405
Deupree, R. G. 1996, ApJ, 471, 377
Frebel, A., Collet, R., Enkissk, K., Christlieb, N., & Aoki, W. 2008, ApJ, 684, 588
Fujimoto, M. Y., Iben Jr., I., & Hollowell, D. 1990, ApJ, 349, 580
Herwig, F., Pignatari, M., Woodward, P. R., et al. 2010, ApJ, submitted Hollowell, D., Iben Jr., I., & Fujimoto, M. Y. 1990, ApJ, 351, 245
Iben, Jr., I. 1976, ApJ, 208, 165
Joggerst, C. C., Almgren, A., Bell, J., et al. 2010, ApJ, 709, 11
Lugaro, M., Campbell, S. W., & de Mink, S. E. 2009, PASA, 26, 322
Meynet, G., Maeder, A., & Mowlavi, N. 2004, A&A, 416, 1023
Mocák, M., Campbell, S. W., Müller, E., & Kifonidis, K. 2010, A&A, 520, A114
Picardi, I., Chieffi, A., Limongi, M., et al. 2004, ApJ, 609, 1035
Schlattl, H., Cassisi, S., Salaris, M., & Weiss, A. 2001, ApJ, 559, 1082
Stancilue, R. J., & Glebbeek, E. 2008, MNRAS, 389, 1828
Suda, T., & Fujimoto, M. Y. 2010, MNRAS, 405, 177
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, Jr., I. 2004, ApJ, 611, 476