DFT calculations on conjugated organic molecules based on thienothiophene for electronic applications

Ismail Elaati Allah1,2, Hsaine Zgou1*, Abdelkrim AMKASSOU1,2, Hind LAFRIDI1,2

1Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Morocco
2Faculty of Sciences Agadir, Ibn Zohr University, Morocco

ABSTRACT. We report theoretical studies on the optoelectronic structural properties of five thienothiophene (T) conjugated π-conjugates. The geometries, the prediction of the optoelectronic structural properties of the five compounds are studied by calculations of functional density theory (DFT). The absorption properties (λmax, Etr, f) of molecules are gained by the (DFT) B3LYP / 6-31G (d) ZINDO method, so that the most occupied molecular orbitals (HOMO), the least molecular orbitals occupied (LUMO), the energy deficit being calculated using the factor Gaussian 09 and its GaussView 5.0.8 graphical interface.

Keywords: DFT; Structural properties; Optoelectronic properties; Thienothiophene; HOMO; LUMO; Gap.

1. INTRODUCTION

Organic photovoltaic tool have opened up the potential for producing light energy in a simple and economical way. The bilayer technology typically uses organic semiconductor cables intercalated between the anode and cathode electrodes, the first is an electron acceptor and the second is an electron donor [1-2]. In this work, we have based on unsubstituted thienothiophene (fig.1a) as a π-conjugated organic semiconductor. We mainly used DFT to study the optoelectronic and structural properties of the four molecules.

Thienothiophene often refers to all the structurally related thiophene derivatives with the given formula C6H4S2. As for importance, they are: thiophene thieno (3,2-b), thieno (2,3-b) thiophene and thieno (3,4-b) thiophene. The other isomers are characterized by S (IV) and are less stable [3]. Thieno (2,3-b) thiophene was the series’ first member of the series to be isolated.

The thienothiophene conjugate compounds have extensive delocalization of n electrons along the molecular backbone, making them attractive for various optoelectronic applications [4-5].

Because of this applicative interest and to that these shirt systems can be used as model compounds for the parent polymer, they have been extensively studied [6-7]. Also, because of their controllable and precisely defined structure, physical properties can be correlated with the conjugation length and the side chains. Therefore implementing these molecular structures by functionalization at the terminal and side positions permit their application as molecular materials in organic field-effect transistors [8-9], light-emitting devices [10, 11, 12,13], photovoltaic cells [14-15], or even as molecular wires for information storage or transfer [16-17].

Polymers and oligomers with low band gap are expected to show not only good intrinsic conductivity but also nonlinear optical properties [18-19]. For their successful design, it is vital to have a complete understanding of the relationship between electronic properties and the chemical structure of polymers [20-21]. Different routes are followed for designing novel conducting polymers, one is provided by donor-acceptor polymers, based on the approach suggested for the first time by Havinga et al. [22]. The study of conjugated oligomers is very attractive for finite-size systems can be achieved with a well-defined chemical structure and high purity. This opens the way for the investigation of electronic properties as a function of chain length and extent of the parent π-electron system.

In this paper, we present a detailed study of DFT (B3LYP / 6-31 (d)) of the four thienothiophene compounds. We focus on the geometric structure of the compounds and the electronic properties. The chemical structure and optimized structures of the compounds studied are illustrated in FIG. 1.
The general abbreviation of our studied compounds is T1 (Monothienothiophene), T2 (Dithienothiophene), T3 (Trithienothiophene), T4 (Tetrathienothiophene) and T5 (Pentathienothiophene) thienothiophene, varies between 1 and 5.
2. Calculation methodology

The calculations done on the geometries of the four molecules were carried out under functional density theoretical theory (DFT) B3LYP and the set of bases 6-31G (d) [23]. The notation B3 indicates a parameter with three parameters of Becke [24] and LYP indicates the function Lee - Yang - Parr [25]. Calculations were given using the Gaussian 09 program. All structures are fully optimized by B3LYP/6-31G (d) without any constraint.

3. Results and discussion

3.1. Geometric structure results

The optimized geometries of the five compounds (T1, T2, T3, T4 and T5) obtained at B3LYP / 6-31G (d) are shown in FIG. 1b.

The calculated lengths di (i = 1 to 29) and the dihedral angles θi (i = 1 to 4) of the interatomic bonds are presented in FIG. 2 and their optimized values are summed up in Tables 1 and 2 respectively.

![Fig. 2. Marked bond lengths and dihedral angles.](image)

Table 1. The bond length values (Å) of the examined molecules.

Molecules Inter-atomics distance	T1	T2	T3	T4	T5
d1	1.36052	1.36002	1.35998	1.36191	1.35994
d2	1.44337	1.44391	1.44391	1.43600	1.44389
d3	1.38669	1.38756	1.38773	1.39277	1.38773
d4	1.44337	1.43647	1.43627	1.43001	1.43611
d5	1.36052	1.37118	1.37141	1.37259	1.37142
d6	1.44127	1.44098	1.45197	1.44100	
d7	1.37118	1.37083	1.37220	1.37075	
d8	1.43647	1.43708	1.43065	1.43709	
d9	1.38757	1.38837	1.39319	1.38839	
d10	1.44390	1.43708	1.43042	1.43681	
d11	1.36002	1.37082	1.37245	1.37091	
d12	1.44097	1.45163	1.44085		
d13	1.37140	1.37249	1.37087		
d14	1.43627	1.43040	1.43686		
d15	1.38773	1.39323	1.38844		
d16	1.44391	1.43062	1.43686		
d17	1.35998	1.37222	1.37087		
d18	1.45189	1.44085			
d19	1.37264	1.37091			
d20	1.43002	1.43681			
d21	1.39276	1.38839			
d22	1.43600	1.43708			
d23	1.36191	1.37077			
d24	1.44100				
d25	1.37144				
d26	1.43610				
d27	1.38773				
d28	1.44390				
d29	1.35994				
The interatomic distances \(d_i \) take small values for \(d_i \) (\(i = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 \)) and high values for \(d_i \) (\(i = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 \)). The inter-ring distances \(d_i \) (\(i = 6, 12, 18 \)) take the highest value which is close to 1.45 Å. This implies that these links are sometimes simple and sometimes double, thus favoring a good delocalization and combination of \(\pi \) electrons.

Table 2. The dihedral angles (°) of the compounds examined.

Molecules	\(\Theta_1 \)	\(\Theta_2 \)	\(\Theta_3 \)	\(\Theta_4 \)
T1				
T2	36.36610			
T3	35.44174	35.43358		
T4	35.08110	34.31442	34.91680	
T5	35.47490	35.78527	35.79901	35.42736

For the two systems (T2 and T3), we observe a great deference in the optimized binding angle (\(\Theta_1 \)) when we add thienothiophene (T) compound, but for T3, T4 and T5 the optimized binding angles (\(\Theta_1 \) and \(\Theta_2 \)) since they remain constant.
3.2. Electronic properties of the compounds examined

The electronic properties depend essentially on the fundamental and excited states. The lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The gap energy is calculated by the difference between the LUMO and HOMO levels, their values for all the molecules examined are shown in Table 3. Calculations have been achieved by the method B3LYP / 6-31 (d).

Table 3. The energies of the compounds examined in (ev): EHOMO, ELUMO and Egap.

Compound	ELUMO(ev)	EHOMO(ev)	Egap(ev)= ELUMO- EHOMO
T1	-0.624	-6.180	5.556
T2	-1.399	-5.688	4.289
T3	-1.514	-5.585	4.071
T4	-1.300	-5.355	4.055
T5	-1.594	-5.538	3.944

Fig 3. Band structure diagram illustrating the gap energy in function 1/n (1 to 5).

In this result, we first observed that the synthesized molecules generally have a high gap energy, especially the molecule (T1) of 5.556 eV, but when we add a base (T) the band gap decreased slightly for all molecules, then the gap energy gap decrease of the molecule (T1) to (T5) from 5.556 eV to 3.944 eV.

3.3. Electronic structures of the compounds examined

In this section, we study the lowest virtual orbitals LUMO and highest occupied HOMO orbitals for these compounds, because the relative order of occupied and virtual orbitals give a reasonable qualitative indication of the excitation properties [26] and the capacity of electron transitions or whole transport. We plotted the contour curves of the LUMO and HOMO orbitals of five molecules (T1, T2, T3, T4 and T5) in their fully optimized conformation B3LYP / 6-31G (d) in FIG. 4.
Molecule	HOMO contour plots	LUMO contour plots
T1	![HOMO contour plot of T1](image)	![LUMO contour plot of T1](image)
T2	![HOMO contour plot of T2](image)	![LUMO contour plot of T2](image)
T3	![HOMO contour plot of T3](image)	![LUMO contour plot of T3](image)
T4	![HOMO contour plot of T4](image)	![LUMO contour plot of T4](image)
T5	![HOMO contour plot of T5](image)	![LUMO contour plot of T5](image)

Fig. 4. The LUMO and HOMO orbitals of the four compounds (T1, T2, T3, T4 and T5) obtained by B3LYP / 6-31G (d).
We observe that in the HOMO orbital the electron density is mainly distributed throughout the chain of compounds. However, it moves completely to the acceptor unit in the case of LUMO. In the case of T5 the electron cloud are delocalized to the innermost ring in orbit LUMO.

3.4. Absorption spectra

The table 3 shows the vertical excitation energy E_{ex} (eV), the maximum absorption λ_{max} (nm), and the oscillator strength (f) in all studied molecules. These properties are counted by the DFT-B3LYP/6-31G(d) ZINDO method.

Compound	E_{ex}(eV)	λ_{max} (nm)	f	Transition
T1	3.9469	314.13	0.0478	HOMO→LUMO (0.68442)
	4.4539	278.37	0.0155	HOMO→LUMO+2 (0.69993)
	4.7053	263.50	0.1803	HOMO→LUMO+1 (0.67453)
T2	3.3350	371.77	0.0118	HOMO→LUMO+1 (-0.15240), HOMO→LUMO (0.67777)
	3.8623	321.01	0.0888	HOMO→LUMO (-0.37502), HOMO-1→LUMO+2 (-0.17132)
	4.2448	292.08	0.5040	HOMO→LUMO+1 (-0.34244), HOMO-1→LUMO+3 (-0.11824)
T3	3.2804	377.95	0.0245	HOMO→LUMO+2 (0.11121),HOMO→LUMO+1(-0.25489), HOMO→LUMO (0.61551)
	3.3270	372.66	1.0415	HOMO-1→LUMO (-0.38114), HOMO→LUMO+1 (0.54366), HOMO→LUMO+3 (0.11054)
	3.8370	323.13	0.1262	HOMO→LUMO (-0.28946), HOMO→LUMO+2 (0.11835)
	3.1207	397.30	0.7974	HOMO→LUMO (0.12101), HOMO→LUMO+2 (-0.32377)
	3.2732	378.79	0.3866	HOMO→LUMO (-0.17502), HOMO-2→LUMO+1 (-0.12720)
	3.3141	374.11	0.6951	HOMO→LUMO+1 (0.15994),HOMO→LUMO+1 (-0.19999), HOMO→LUMO+2 (0.16608)
T4	3.2550	380.90	0.0006	HOMO→LUMO+3 (-0.13073), HOMO→LUMO (0.10505)
	3.2902	376.83	0.0357	HOMO→LUMO (-0.11026), HOMO→LUMO+1 (-0.12900)
	3.3027	375.40	2.3232	HOMO→LUMO (-0.21785), HOMO→LUMO+1 (0.28140)

The compounds T1, T2, T3, T4 and T5, have absorption maxima (λ_{max}) respectively at 314.13 nm, 371.77 nm, 377.95 nm and 397.30 nm, 380.90 nm reflecting the transition HOMO - LUMO. In addition, the absorption spectra simulated for all studied oligomers have a peak; this can be attributed to the charge transfer intermolecular band caused by acceptor unit introduced in the molecular structures. This indicates that these organic oligomers could absorbed the maximum amount of incident radiation light, especially T4 and T5 molecules. In the excitation state S_1, it corresponds exclusively to the
promotion of an electron from the HOMO to the LUMO. Moreover, the largest oscillation force (f < 1) that comes from the S0 to S1 electronic transition.

The simulated absorption spectra of the five compounds (T1, T2, T3, T4 and T5) are illustrated in FIG. 5.

![UV-Vis Spectra](image)

Fig. 5. Computed UV-vis spectra of the examined molecules (T1, T2, T3, T4 and T5) by DFT/B3LYP/6-31(G) ZINDO method.

4. CONCLUSION

The geometric parameters of the four Thienothiophene-based \(\pi \)-conjugated organic compounds (T1, T2, T3, T4 and T5) were obtained by B3LYP / 6-31G (d) calculations. The gap energy calculated with the same method decreases when a base (thienothiophene) is added for all the molecules. It is basically due to the stabilization of the LUMO level and destabilization of the HOMO level of several compounds leads the reduction of energy gaps HOMO – LUMO. Regarding the T5 the reduction of the observed energy deficit is likely to guarantee the best electronic properties of the
corresponding polymers. These results showed that the T5 is promising material for optoelectronic application.

Acknowledgments

The authors are grateful to the “Association Marocaine des Chimistes Théoriciens (AMCT)” for help on computation software.

REFERENCES

1. Sonniger Rekord: Durchbruch für die Hybrid-Solarzelle, article du centre de recherche sur les matériaux (FMF); 2010/02/01
2. Des scientifiques renforcent l’efficacité des cellules solaires, Article corindis; 2010/02/17
3. H. Zgou, S. Boussaidi, A. Zahlou, m. Bouachrine, M. Hamidi, International Journal of Advanced Research in Computer Science and Software Engineering, 4 5 (2014) 10-19.
4. P. Damman, M. Dosière, M. Brunel, J-C. Wittmann, J. Am. Chem. Soc., 1997, 119, 4633.
5. S. Hotta, T. Katagiri, J. Heterocycl. Chem., 2000, 40, 845.
6. H. Zgou, M. Hamidi, M. Bouachrine, Journal of Molecular Structure: Theocem. 2007, 814, 25–32.
7. M. Amine, M. Hamidi, S.M. Bouzzine, A. Amine, M. Bouachrine, Adv. Mat. Lett., 2012, 3(1), 15-20.
8. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, nature, 2005, 434, 194–199.
9. S. M. Bouzzine, S. Bouzakraoui, M. Bouachrine, M. Hamidi, Journal of Molecular Structure: THEOCHEM. 2005, 726, 271–276.
10. C. Ego, D. Marsitzky, S. Becker, J. Y. Zhang, A. C. Grimsdale, K. Mullen, J. D. MacKenzie, C. Silva, R. H. Friend, J. Am. Chem. Soc., 2003, 125, 437–443.
11. J. Liu, X. Guo, L. J. Bu, Z. Y. Xie, Y. X. Cheng, Y. H. Geng, L. X. Wang, X. B. Jing, F. S. Wang, AdvFunct Mater, 2007, 17, 1917–1925.
12. W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 2006, 47, 527–538.
13. W. H. Tang, T. T. Lin, L. Ke, Z. K. Chen,J Polym Sci Part A: Polym Chem.,2008, 46, 7725–7738.
14. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. Brabec, J. Adv. Mater., 2008, 20, 579–583.
15. K. Hara, M. Kurashige, Y. Dan-Oh, C. Kasada, A. Shinko, S. Suga, K. Sayama, H. Arakawa, New J. Chem., 2003, 27, 783.
16. C. M. Carcel, J. K. Laha, R. S. Loewe, P. Thamyongkit, K.-H. Schweikart, V. Misra, D. F. Bocian, J. S. Lindsey, J. Org. Chem., 2004, 69, 6739-6750.
17. A. A. Yasseri, D. Syomin, R. S. Loewe, J. S. Lindsey, F. Zaera, D. F. Bocian, J. Am. Chem. Soc., 2004, 126, 15603-15612.
18. B. Chandrakantha, Arun M. Isloor, Kishore Sridharan, Reji Philip, Prakash Shetty, Mahesh Padaki. Arabian Journal of Chemistry, 2013, 6, 97–102.
19. A.J. Heeger, J. Orenstein, D. Ulrich (Eds.), Nonlinear Optical Properties of Polymers, vol. 109, Materials Research Society, Pittsburgh, 1988.
20. Sadiq M-H. Ismael, Kawkab A. Hussain, Hasanaein A S. A Majeed, Der Pharmacia Lettre, 2012, 4, (6), 1826-1831.
21. I.A. Adejoro, O. E. Oyeneyin, O. O. Adeboye, J. A. Obaley, J. Comput. Methods Mol. Des., 2012, 2 (4):142-148.
22. E.E. Havinga, T. Hoeve, H. Wynberg, Synth. Met., 1993, 55, 299.
23. V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern, I.A. Obaley, J. Org. Chem., 2001, 66, 9276.
24. A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
25. C. Lee et al. Phys. Rev. B, 1988, 37, 785.
26. M.A. D’Oliveira, H.A. Duarte, J.M. Pernant, W.B. D’Almeida, J. Phys. Chem., 2000, A104, 8256.