Searching for Dark Photons with Maverick Top Partners

Jeong Han Kima, Samuel D. Lanea, Hye-Sung Leeb, Ian M. Lewisa, Matthew Sullivana

aDepartment of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
bDepartment of Physics, KAIST, Daejeon 34141, Korea

Abstract

In this paper, we present a model in which an up-type vector-like quark (VLQ) is charged under a new $U(1)_d$ gauge force which kinetically mixes with the SM hypercharge. The gauge boson of the $U(1)_d$ is the dark photon, γ_d. Traditional searches for VLQs rely on decays into Standard Model electroweak bosons W, Z or Higgs. However, since no evidence for VLQs has been found at the Large Hadron Collider (LHC), it is imperative to search for other novel signatures of VLQs beyond their traditional decays. As we will show, if the dark photon is much less massive than the Standard Model electroweak sector, $M_{\gamma_d} \ll M_Z$, for the large majority of the allowed parameter space the VLQ predominately decays into the dark photon and the dark Higgs that breaks the $U(1)_d$. That is, this VLQ is a “maverick top partner” with nontraditional decays. One of the appeals of this scenario is that pair production of the VLQ at the LHC occurs through the strong force and the rate is determined by the gauge structure. Hence, the production of the dark photon at the LHC only depends on the strong force and is largely independent of the small kinetic mixing with hypercharge. This scenario provides a robust framework to search for a light dark sector via searches for heavy colored particles at the LHC.
1 Introduction

Some of the most important searches for Beyond the Standard Model (BSM) physics at the Large Hadron Collider (LHC) are searches for new vector like quarks (VLQs). Up-type VLQs, so-called top partners T, are ubiquitous in composite [1–7] and Little Higgs [8–15] models where the top partners help solve the hierarchy problem. Traditionally, searches for VLQs rely on decays into the Standard Model (SM) electroweak (EW) bosons: $W/Z/Higgs$. However, there is a class of “maverick top partners” with non-traditional decays into photons [16–21], gluons [16–21], new scalars [22–29], etc. These new decays can easily be dominant with minor tweaks to the simplest VLQ models. We consider a VLQ that is charged under both the SM and a new abelian gauge symmetry $U(1)_d$, where the SM is neutral under the $U(1)_d$. As we will show, in a very large range of the parameter space, this opens new dominant decays of VLQs that have not yet been searched for.

This new $U(1)_d$ can be motivated by noting that dark matter may very well have self-interactions through this new force. The $U(1)_d$ gauge boson, the so-called dark photon, kinetically mixes with the SM hypercharge through a renormalizable interaction [30–32]. This kinetic mixing can be generated via new vector like fermions charged under both the SM and the new $U(1)_d$ [30, 33, 34], as considered here. In the limit that the dark photon is much less massive than the Z and the kinetic mixing is small, the dark photon inherits couplings to SM particles of the form $\varepsilon J_{\mu EM}$, where $J_{\mu EM}$ is the electromagnetic current and ε is the kinetic mixing parameter. Hence, the name dark photon. Most of the searches for the dark photon take place at low energy experiments such as fixed target experiments or B-factories [32]. However, it is also possible to search for dark photons through the production and decays of heavy particles at high energy colliders [35–37]. For example, Higgs decays [33,34,38] into dark photons is a plausible scenario for discovery.

A recent paper [39] studied the scenario where down-type VLQs and vector like leptons are charged under the SM and $U(1)_d$. Ref. [39] relied on a very large mass gap between the SM fermions and their vector-like fermion partners to suppress the traditional vector-like fermion decays into $W/Z/Higgs$. With this mass gap, the branching ratios of vector-like fermions into dark photons and SM fermions is enhanced. Here we point out that this mechanism does not require a mass gap in the fermion sector, although such a gap further enhances the effect. To illustrate this, we will focus on an up-type VLQ, T, that mixes with the SM top quark, t. The mass gap between t and T does not need to be as large as between the bottom quark/leptons and vector-like fermions. From the Goldstone equivalence theorem, the partial width of T into fully SM final states is

$$\Gamma(T \to b/t + W/Z/h) \sim \sin^2 \theta \frac{M_T^3}{v_{EW}^2},$$

where θ is a mixing angle between the SM top quark and T, $v_{EW} = 246$ GeV is the Higgs boson.
vacuum expectation value (vev), and M_T is the mass of the VLQ T. The partial width is inversely proportional to v_{EW}^2 due to an enhancement of decays into longitudinal Ws and Zs. If the new vector like quark is charged under the dark force (and assuming there is a dark sector Higgs mechanism), the partial widths of T into the dark photon, γ_d, or dark Higgs, h_d, is

$$\Gamma(T \to t + \gamma_d/h_d) \sim \sin^2 \theta \frac{M_T^3}{v_d^2},$$

where v_d is the vev of the dark sector Higgs boson. Note that now the partial width is inversely proportional to v_d^2. Hence, the ratio of the rates into γ_d/h_d and $W/Z/h$ is

$$\frac{\Gamma(T \to t + \gamma_d/h_d)}{\Gamma(T \to t/b + W/Z/h)} \sim \left(\frac{v_{EW}}{v_d}\right)^2.$$

For dark photon masses $M_{\gamma_d} \lesssim 10$ GeV, we generically expect that the vev $v_d \lesssim 10$ GeV and

$$\frac{\Gamma(T \to t + \gamma_d/h_d)}{\Gamma(T \to t/b + W/Z/h)} \gtrsim O(100).$$

Hence, the VLQ preferentially decays to light dark sector bosons due to the mass gap between the dark sector bosons and the SM EW bosons. Since there is a quadratic dependence on v_{EW} and v_d, this mass gap does not have to be very large for the decays $T \to t + \gamma_d/h_d$ to be dominant.

This is a new avenue to search for light dark sectors using decays of heavy particles at the LHC, providing a connection between heavy particle searches and searches for new light sectors. The appeal of such searches is that pair production of VLQs is through the QCD interaction and is fully determined via $SU(3)$ gauge interactions. That is, the pair production rate only depends on the mass, spin, and color representation of the produced particles. Additionally, as we will show, for a very large region of parameter space VLQs will predominantly decay into dark photons and dark Higgses. Hence, the dark photon can be produced at QCD rates at the LHC independently of a small kinetic mixing parameter. The major dependence on the kinetic mixing parameter ε arises in the decay length of the dark photon, and for small ε the dark photon can be quite long lived. In fact, for small dark photon masses, its decay products will be highly collimated and may give rise to displaced “lepton jets” [40].

In Section 2 we present an explicit model that realizes this mechanism for dark photon searches and review current constraints in Sec. 3. We calculate the decay and production rates of the new VLQ in Sec. 4 and the decay of the dark photon in Sec. 5. In Section 6 we present collider searches relevant for our model. This includes the current collider sensitivity as well as demonstrating the complementarity between the searches for dark photons via heavy particle decays at the LHC and low energy experiments. Finally we conclude in Section 7. We also include several appendices with the details on perturbative unitarity calculation in App. A, kinetic mixing in App. B, relevant scalar interactions in App. C, and relevant dark photon-fermion couplings in App. D.
2 Model

We consider a simple extension of the SM consisting of a new $SU(2)_L$ singlet up-type vector-like quark, t_2, and a new $U(1)_d$ gauge symmetry. For simplicity, we will only consider mixing between the new vector-like quark and 3rd generation SM quarks:

$$Q_L = \begin{pmatrix} t_{1L} \\ b_L \end{pmatrix}, \quad t_{1R}, \quad \text{and} \quad b_R.$$ \hspace{2cm} (1)

The SM particles are singlets under the new symmetry, and we give the VLQ t_2 a charge +1 under the new symmetry. The $U(1)_d$ is broken by a dark Higgs field H_d that is a singlet under the SM and has charge +1 under $U(1)_d$. The relevant field content and their charges under $SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_d$ are given in Table 1. This particle content and charges are similar to those in Ref. [39].

This field content allows for kinetic mixing between the SM $U(1)_Y$ field, B'_μ, and the new $U(1)_d$ gauge boson, $B'_{d,\mu}$:

$$L_{Gauge} = -\frac{1}{4} G^A_{\mu\nu} G'^{A,\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W'^{a,\mu\nu} - \frac{1}{4} B'_{\mu\nu} B'^{\mu\nu} + \frac{e'}{2 \cos \theta_W} B'_{d,\mu\nu} B'^{\mu\nu}_{d,\mu\nu},$$ \hspace{2cm} (2)

where $G^A_{\mu\nu}$ are the $SU(3)$ field strength tensor with $A = 1, \ldots, 8$ and $W^a_{\mu\nu}$ are the $SU(2)_L$ field strength tensors with $a = 1, 2, 3$. The relevant fermion kinetic terms for the third generation quarks and VLQ are

$$L_{F,kin} = \bar{Q}_L i \partial \Phi Q_L + \bar{t}_{1R} i \partial t_{1R} + \bar{b}_R i \partial b_R + \bar{t}_2 i \partial t_2,$$ \hspace{2cm} (3)

and the relevant scalar kinetic terms are

$$L_{S,kin} = |D_\mu \Phi|^2 + |D_\mu H_d|^2.$$ \hspace{2cm} (4)

The general covariant derivative is

$$D_\mu = \partial_\mu - ig s t^A G^A_\mu - ig T^a W^a_\mu - ig' Y B'_{\mu} - ig'_d Y_d B'_{d,\mu},$$ \hspace{2cm} (5)

where g_s is the strong coupling constant, g is the $SU(2)_L$ coupling constant, g' is the $U(1)_Y$ coupling constant, and g'_d is the $U(1)_d$ coupling constant. Values for Y, Y_d and the generators of $SU(3)$, $SU(2)_L$ are given according to the charges in Table 1.

2.1 Scalar Sector

The allowed form of the scalar potential symmetric under the gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_d$ is

$$V(\Phi, H_d) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 - \mu_{h_d}^2 |H_d|^2 + \lambda_{h_d} |H_d|^4 + \lambda_{h_{h_d}} |\Phi|^2 |H_d|^2.$$ \hspace{2cm} (6)
Table 1: Field content and their charges. t_{1R}, b_R, and Q_L are 3rd generation SM quarks, Φ is the SM Higgs doublet, t_2 is the $SU(2)_L$ singlet VLQ, and H_d is the $U(1)_d$ Higgs field. Y is the SM Hypercharge and Y_d is the $U(1)_d$ charge.

Since H_d does not break EW symmetry, Φ must have a vev of $v_{EW} = 246$ GeV. Imposing that the potential has a minimum where the SM Higgs and dark Higgs have vacuum expectation values $\langle \Phi \rangle = (0, v_{EW}/\sqrt{2})$ and $\langle H_d \rangle = v_d/\sqrt{2}$, the mass parameters are found to be

$$\mu^2 = \lambda v_{EW}^2 + \frac{\lambda_{hh_d} v_d^2}{2}, \quad \mu_{h_d}^2 = \lambda_{hd} v_d^2 + \frac{\lambda_{hh_d} v_{EW}^2}{2}.$$ \hspace{1cm} (7)

Now we work in the unitary gauge:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{EW} + h \end{pmatrix}, \quad H_d = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d + h_d \end{pmatrix}.$$ \hspace{1cm} (8)

The two Higgs bosons h, h_d mix and can be rotated to the mass basis:

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_S & -\sin \theta_S \\ \sin \theta_S & \cos \theta_S \end{pmatrix} \begin{pmatrix} h \\ h_d \end{pmatrix},$$ \hspace{1cm} (9)

where h_1 can be identified as the observed Higgs boson with a mass $M_1 = 125$ GeV, and h_2 is a new scalar boson with mass M_2. After diagonalizing the mass matrix, the free parameters of the scalar sector are

$$\theta_S, \quad M_1 = 125 \text{ GeV}, \quad M_2, \quad v_d, \quad \text{and} \quad v_{EW} = 246 \text{ GeV}.$$ \hspace{1cm} (10)

All parameters in the Lagrangian can then be determined

$$\lambda = \frac{M_1^2 \cos^2 \theta_S + M_2^2 \sin^2 \theta_S}{2 v_{EW}^2}, \quad \lambda_{hd} = \frac{M_1^2 \cos^2 \theta_S + M_2^2 \sin^2 \theta_S}{2 v_d^2},$$

$$\lambda_{hh_d} = \frac{M_2^2 - M_1^2}{2 v_{EW} v_d} \sin 2\theta_S,$$

$$\mu^2 = \frac{1}{2} \left[M_1^2 \cos^2 \theta_S + M_2^2 \sin^2 \theta_S + \frac{\tan \beta}{2} (M_2^2 - M_1^2) \sin 2\theta_S \right],$$
\[\mu_{h_d}^2 = \frac{1}{2} \left[M_2^2 \cos^2 \theta_S + M_1^2 \sin^2 \theta_S + \frac{1}{2 \tan \beta} (M_2^2 - M_1^2) \sin 2\theta_S \right], \] (11)

where \(\tan \beta = v_d/v_{EW} \).

To check the stability of the scalar potential, we consider it when the fields \(\Phi \) and \(H_d \) are large:

\[V(\Phi, H_d) \rightarrow \lambda |\Phi|^4 + \lambda_{hh_d} |\Phi|^2 |H_d|^2 + \lambda_{h} |H_d|^4 \]
\[= \left(\lambda - \frac{1}{4} \frac{\lambda_{hh_d}}{\lambda_{h_d}} \right) |\Phi|^4 + \lambda_{h} \left(|H_d|^2 + \frac{1}{2} \frac{\lambda_{hh_d}}{\lambda_{h_d}} |\Phi|^2 \right)^2, \] (12)

where in the last step we completed the square. The potential is bounded when

\[4 \lambda_{h_d} \lambda \geq \lambda_{hh_d}^2, \quad \lambda > 0, \quad \text{and} \quad \lambda_{h_d} > 0. \] (13)

From the relationships in Eq. (11) we have

\[4 \lambda_{h_d} \lambda - \lambda_{hh_d}^2 = \frac{M_2^2 M_2^2}{v_d^2 v_{EW}} > 0. \] (14)

Hence, the boundedness condition for the potential is always satisfied as long as \(\lambda \) and \(\lambda_{h_d} \) are both positive.

For our analysis in the next sections, only two trilinear scalar couplings are relevant:

\[V(h_1, h_2) \supset \frac{1}{2} \lambda_{122} h_1^2 h_2^2 + \frac{1}{2} \lambda_{112} h_1^2 h_2, \] (15)

where

\[\lambda_{122} = -\frac{M_2^2 + 2 M_2^2}{2 v_d} \sin 2\theta_S (\cos \theta_S - \tan \beta \sin \theta_S), \] (16)
\[\lambda_{112} = \frac{2 M_1^2 + M_2^2}{2 v_d} \sin 2\theta_S (\tan \beta \cos \theta_S + \sin \theta_S). \]

2.2 Gauge Sector

From Eq.(2), the \(U(1)_d \) gauge boson can mix with the SM electroweak gauge bosons. After diagonalizing the gauge bosons, the covariant derivative in Eq. (5) becomes

\[D_\mu = \partial_\mu - ig_s t^A G^A_\mu - ig T^+ W^+ - ig T^- W^- - i e Q A_\mu \]
\[-i \left(\hat{g}_Z \hat{Q}_Z \cos \theta_d - g_d Y_d \sin \theta_d - \frac{g'}{\cos \theta_W} Y \sin \theta_d \right) Z_\mu \]
\[-i \left(\hat{g}_Z \hat{Q}_Z \cos \theta_d + g_d Y_d \cos \theta_d + \frac{g'}{\cos \theta_W} Y \cos \theta_d \right) \gamma_{d,\mu}, \]

where \(\theta_d \) is a mixing angle between the dark photon and SM Z-boson; \(e = g \sin \theta_W = g' \cos \theta_W \) and \(Q = T^3 + Y \) are the usual electromagnetic charge and operator respectively; \(\hat{g}_Z = e/\cos \theta_W/\sin \theta_W \)
and $Q_Z = T_3 - \hat{x}_W Q$ with $\hat{x}_W = \sin^2 \hat{\theta}_W$ are the neutral current coupling and operator respectively; $T^\pm = (T^1 \pm iT^2)/\sqrt{2}$; Z is the observed EW neutral current boson with mass M_Z; and $\gamma_{d,\mu}$ is the dark photon with mass M_{γ_d}. Additionally, $\hat{\theta}_W$ is the mixing angle between B'_{μ} and W^3_{μ}. The relationship between $\hat{\theta}_W$ and other model parameters is not the same as the SM weak mixing angle. Hence, we introduce the hat notation to emphasize the difference. The relationship between the SM weak mixing angle and $\hat{\theta}_W$ is given below\(^1\). For simplicity of notation, we have redefined the coupling constant and kinetic mixing parameter

$$g_d = g_d' / \sqrt{1 - \varepsilon'^2 / \cos^2 \hat{\theta}_W} \quad \text{and} \quad \varepsilon = \varepsilon' / \sqrt{1 - \varepsilon'^2 / \cos^2 \hat{\theta}_W}.$$ \hspace{1cm} (18)

The SM EW sector has three independent parameters, which we choose to be the experimentally measured Z mass, the fine-structure constant at zero momentum, and G-Fermi [41]:

$$M_Z = 91.1876 \text{ GeV}, \quad \alpha^{-1}_{EM}(0) = 137.035999074, \quad G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}.$$ \hspace{1cm} (19)

In addition to the EW parameters, we have the new free parameters:

$$v_d, \quad M_{\gamma_d}, \quad \text{and} \quad \varepsilon.$$ \hspace{1cm} (20)

All other parameters in the gauge sector can be expressed in terms of these. Since $\varepsilon^2 \ll 1$, we can solve equations for $\sin \theta_d$, g_d, and $\cos \hat{\theta}_W$ iteratively as an expansion in ε:

$$\sin \theta_d = \tan \frac{\theta^S_W}{1 - \tau^2_{\gamma_d}} \varepsilon + O(\varepsilon^3), \quad \cos \hat{\theta}_W = \cos \theta^S_W + O(\varepsilon^2), \quad \text{and} \quad g_d = \frac{M_{\gamma_d} v_d}{\varepsilon} + O(\varepsilon^2),$$

where $\tau_{\gamma_d} = M_{\gamma_d}/M_Z$ and the SM value of the weak mixing angle is

$$\cos^2 \theta^S_W = \frac{1}{2} + \frac{1}{2} \sqrt{1 - \frac{2 \sqrt{2} \pi \alpha_{EM}(0)}{G_F M_Z^2}}.$$ \hspace{1cm} (21)

Although these are good approximations for $\varepsilon^2 \ll 1$, unless otherwise noted we will use exact expressions of parameters as given in Appendix B.

Note that in the limit of small kinetic mixing $\varepsilon \ll 1$ and dark photon mass much less than the Z-mass $M_{\gamma_d} \ll M_Z$ we find the covariant derivative

$$D_\mu = \partial_\mu - ig s_t A_\mu - ig^S T^+ W^+ - ig^S T^- W^- - ie Q A_\mu$$

$$-i \left[g^S Z^S - \varepsilon g_d Y_d \tan \theta^S_W \right] Z_\mu - i \left[\varepsilon Q + g_d Y_d \right] \gamma_{d,\mu} + O(\varepsilon^2, M_{\gamma_d}^2/M_Z^2),$$

where the superscript SM indicates the SM value of parameters. Hence we see that the dark photon couples to SM particles through the electromagnetic current with coupling strength εQ. Additionally, the Z-boson obtains additional couplings to particles with non-zero dark charge Y_d with strength $\varepsilon g_d Y_d \tan \theta^S_W$.

\(^1\)The details of diagonalizing the gauge boson kinetic and mass terms, including precise definitions of $\hat{\theta}_W$ and θ_d, are given in Appendix B.
2.3 Fermion Sector

To avoid flavor constraints, we only allow the VLQ t_2 to mix with the third generation SM quarks. The allowed Yukawa interactions and mass terms that are symmetric under $SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_d$ are

$$\mathcal{L}_{Yuk} = -y_b \overline{Q}_L \Phi b_R - y_t \overline{Q}_L \tilde{\Phi} t_{1R} - \lambda_t H_u \tilde{t}_{2L} t_{1R} - M_{t2} \tilde{t}_{2L} t_{2R} + \text{h.c.}. \quad (23)$$

After symmetry breaking, the VLQ and top quark mass terms are then

$$\mathcal{L}_{T,mass} = -\chi \mathcal{M} \chi + \text{h.c.}, \quad (24)$$

where

$$\chi = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}, \quad \mathcal{M} = \begin{pmatrix} \frac{y b v_{EW}}{\sqrt{2}} & 0 \\ \frac{\lambda t v_d}{\sqrt{2}} & M_{t2} \end{pmatrix}, \quad (25)$$

and $\tau = L, R$. To diagonalize the mass matrix, we perform the bi-unitary transformation:

$$\begin{pmatrix} t_L \\ T_L \end{pmatrix} = \begin{pmatrix} \cos \theta^t_L & -\sin \theta^t_L \\ \sin \theta^t_L & \cos \theta^t_L \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}, \quad \begin{pmatrix} t_R \\ T_R \end{pmatrix} = \begin{pmatrix} \cos \theta^t_R & -\sin \theta^t_R \\ \sin \theta^t_R & \cos \theta^t_R \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}, \quad (26)$$

where t and T are the mass eigenstates with masses $M_t = 173$ GeV and M_T, respectively. Since the Lagrangian only has three free parameters, the top sector only has three inputs which we choose to be

$$M_t = 173 \text{ GeV}, \quad M_T, \quad \text{and} \quad \theta^t_L. \quad (27)$$

The Lagrangian parameters λ_t, y_t, M_{t2} can be expressed by

$$y_t = \sqrt{2} \frac{M_t^2 \cos^2 \theta^t_L + M_T^2 \sin^2 \theta^t_L}{v_{EW}}, \quad (28)$$

$$\lambda_t = \frac{(M_T^2 - M_t^2) \sin 2\theta^t_L}{\sqrt{2} v_d \sqrt{M_t^2 \cos^2 \theta^t_L + M_T^2 \sin^2 \theta^t_L}}, \quad (29)$$

$$M_{t2} = \frac{M_t M_T}{\sqrt{M_t^2 \cos^2 \theta^t_L + M_T^2 \sin^2 \theta^t_L}}. \quad (30)$$

The right-handed mixing angle is redundant and can be determined via

$$\cos \theta^t_R = \frac{M_{t2}}{M_T} \cos \theta^t_L \quad \text{and} \quad \sin \theta^t_R = \frac{M_{t2}}{M_T} \sin \theta^t_L. \quad (31)$$

After rotating to the scalar and fermion mass eigenbases, the $h_{1,2}$ couplings to the third generation and VLQ are given by

$$\mathcal{L} \ni -h_1 \left[\lambda^{h_1}_{tt} \bar{t} t + \lambda^{h_1}_{TT} \bar{T} T + \bar{t} \left(\lambda^{h_1}_{tt} P_R + \lambda^{h_1}_{tL} P_L \right) T + \bar{T} \left(\lambda^{h_1}_{TT} P_R + \lambda^{h_1}_{tL} P_L \right) t \right] \quad (32)$$
− \ h_2 \left[\lambda_{tt}^h \bar{t}t + \lambda_{TT}^h \bar{T}T + \bar{t} \left(\lambda_{tT}^h P_R + \lambda_{TT}^h P_L \right) T + \bar{T} \left(\lambda_{TT}^h P_R + \lambda_{TT}^h P_L \right) t \right],

where the \(h_1 \) couplings are

\[
\begin{align*}
\lambda_{tt}^{h_1} &= \frac{1}{\sqrt{2}} \cos \theta_R^t \left(y_t \cos \theta_L^t \cos \theta_S + \lambda_t \sin \theta_L^t \sin \theta_S \right), \\
\lambda_{TT}^{h_1} &= \frac{1}{\sqrt{2}} \sin \theta_R^t \left(y_t \cos \theta_L^t \cos \theta_S + \lambda_t \sin \theta_L^t \sin \theta_S \right), \\
\lambda_{Tt}^{h_1} &= \frac{1}{\sqrt{2}} \cos \theta_R^t \left(y_t \sin \theta_L^t \cos \theta_S - \lambda_t \cos \theta_L^t \sin \theta_S \right), \\
\lambda_{TT}^{h_1} &= \frac{1}{\sqrt{2}} \sin \theta_R^t \left(y_t \sin \theta_L^t \cos \theta_S - \lambda_t \cos \theta_L^t \sin \theta_S \right),
\end{align*}
\]

and the \(h_2 \) couplings are

\[
\begin{align*}
\lambda_{tt}^{h_2} &= \frac{1}{\sqrt{2}} \cos \theta_R^t \left(y_t \cos \theta_L^t \sin \theta_S - \lambda_t \sin \theta_L^t \cos \theta_S \right), \\
\lambda_{TT}^{h_2} &= \frac{1}{\sqrt{2}} \sin \theta_R^t \left(y_t \cos \theta_L^t \sin \theta_S - \lambda_t \sin \theta_L^t \cos \theta_S \right), \\
\lambda_{Tt}^{h_2} &= \frac{1}{\sqrt{2}} \cos \theta_R^t \left(y_t \sin \theta_L^t \cos \theta_S + \lambda_t \cos \theta_L^t \cos \theta_S \right), \\
\lambda_{TT}^{h_2} &= \frac{1}{\sqrt{2}} \sin \theta_R^t \left(y_t \sin \theta_L^t \sin \theta_S + \lambda_t \cos \theta_L^t \cos \theta_S \right).
\end{align*}
\]

Now we consider the small angle limit \(|\theta_L^t| \ll 1 \). If the VLQ and top quark have similar masses \(M_T \sim M_t \), then Eq. (30) becomes \(M_{t_2} \sim M_T \sim M_t \). In this limit, from Eq. (31), we see that \(\theta_R^t \sim \theta_L^t \) and both mixing angles are small. However, for a large fermion mass hierarchy \(M_t / M_T \ll 1 \), the right-handed mixing angle expressions in Eq. (31) become

\[
\begin{align*}
\cos \theta_R^t &\approx \frac{M_t / M_T}{\sqrt{\sin^2 \theta_L^t + M_t^2 / M_T^2}}, & \sin \theta_R^t &\approx \frac{\sin \theta_L^t}{\sqrt{\sin^2 \theta_L^t + M_t^2 / M_T^2}}.
\end{align*}
\]

There are two cases then:

\[
\sin \theta_R^t \sim \begin{cases}
(M_T / M_t) \sin \theta_L^t & \text{if } |\sin \theta_L^t| < M_t / M_T \ll 1 \\
\pm 1 & \text{if } M_t / M_T \lesssim |\sin \theta_L^t| \ll 1,
\end{cases}
\]

where the sign of \(\pm 1 \) depends on the sign of \(\theta_L^t \). Hence, as discussed in Ref. [39], the right-handed mixing angle is enhanced relative to the left-handed mixing angle due to a large fermion mass hierarchy.

Since \(t_2 \) and \(t_1 \) have different quantum numbers and mix, flavor off-diagonal couplings between the VLQ \(T \) and the SM third generation quarks appear. In the small mixing angle limit,
\[\frac{M_t}{M_T}, |\theta_L^t|, |\epsilon| \ll 1 \] the relevant couplings are

\[W - T - b \sim i \frac{g}{\sqrt{2}} \sin \theta_L^t \gamma^\mu P_L , \]

\[Z - T - t \sim i \frac{g_{SM}^Z}{2} \sin \theta_L^t \gamma^\mu P_L + i g_d \frac{(M_T/M_t) \sin \theta_L^t}{1 + (M_T/M_t)^2 \sin^2 \theta_L^t} \sin \theta_d \gamma^\mu P_R , \]

\[\gamma_d - T - t \sim -i g_d \sin \theta_L^t P_L - i g_d \frac{(M_T/M_t) \sin \theta_L^t}{1 + (M_T/M_t)^2 \sin^2 \theta_L^t} P_R . \]

The full Feynman rules are given in Appendix D. Note that although the right-handed coupling to the Z appears of order \(\theta^2 \), if \(M_t/M_T \sim |\theta_L^t| \sim |\theta_d| \) the left- and right-handed couplings can be of the same order. However, with this counting the right-handed coupling of the dark photon, VLQ, and top quark is unsuppressed. This is precisely the fermionic mass hierarchy enhancement noticed in Ref. [39]. However, as we will point out, a fermionic mass hierarchy is not necessary for the VLQ decays into the dark Higgs or dark photon to be dominant.

3 Current Constraints

3.1 Electroweak Precision and Direct Searches

Electroweak precision measurements place strong constraints on the addition of new particles. In the model presented here, there are many contributions to the oblique parameters [42–44]: new loop contributions from the VLQ [45–50] and scalar [51–56] as well as shifts in couplings to EW gauge boson couplings from the mixing of the dark photon with hypercharge [35, 57], dark Higgs with the SM Higgs, and the VLQ with the top quark. Since there are multiple contributions to the oblique parameters in this model, there is the possibility of cancellations that could relax some of the constraints. To be conservative, we will only consider one contribution at a time.

There are also many direct searches for VLQs, new scalars, and dark photons at colliders and fixed target experiments. Here we summarize the current state of constraints:

- **VLQ**: The dashed line labeled “EW Pec” in Fig. 1(a) shows the EW precision constraints on the VLQ-top quark mixing angle. This result is taken from Ref. [50]. The current limits are \(| \sin \theta_L^t | \lesssim 0.16 \) (0.11) for VLQ mass \(M_T = 1 \text{ TeV} \) (2 TeV).

Additionally, in our model the top-bottom component of the CKM matrix is \(V_{tb} = (V_{tb})_{SM} \cos \theta_L^t \), where the subscript SM denotes the SM value. The most stringent constraints on \(V_{tb} \) come from single top quark production. A combination of Tevatron and LHC single top measurements give a constraint of \(| V_{tb} | = 1.019 \pm 0.025 \) [41]. Another more recent analysis including differential distributions gives a bound of \(| V_{tb} | = 0.986 \pm 0.008 \) [58]. Both constraints give an upper bound of \(| \sin \theta_L^t | \leq 0.24 \) at the 95% confidence level. This limit is indicated by the
orange dotted line labeled “CKM” in Fig. 1(a), where the region above is excluded. We see that the CKM measurements are not currently as important as EW precision constraints.

As mentioned above, in the model presented here traditional T decays into SM EW bosons Z, W, Higgs will be suppressed and not directly applicable. Nevertheless, for completeness we summarize their results here. In these traditional modes, the LHC excludes VLQ masses $M_T \lesssim 1.1 - 1.4$ TeV in pair production searches [59–61] and $M_T \lesssim 1 - 1.2$ TeV in single production searches [62–64]. Single production of an $SU(2)_L$ singlet T depends on the mixing angle θ^L_t and decouples as $\theta^L_t \to 0$ [16] weakening the above limit. Taking this into account, LHC searches for single T production have been cast into constraints on θ^L_t which are comparable to EW precision constraints for $M_T \lesssim 1$ TeV [62,65].

- **Scalar:** The addition of a new scalar shifts Higgs boson couplings away from SM predictions, as well as contributing to new loop contributions to EW precision parameters. Additionally, many searches have been performed for new scalar production at the LHC [66–72] as well as at LEP [73–75]. However, the most stringent constraints [76] come from precision measurements of the observed $M_1 = 125$ GeV Higgs boson for $M_1 \lesssim M_2 \lesssim 650$ GeV and precision W-mass constraints [55,56,77] for 650 GeV $\lesssim M_2 \lesssim 1$ TeV. The constraints on the scalar mixing angle is $|\sin \theta_S| \lesssim 0.21 - 0.22$ for $M_1 < M_2 < 1$ TeV [76]. For $M_2 < 100$ GeV LEP searches can be very constraining on the scalar mixing angle, as shown in Fig. 1(b). These results are adapted from Ref. [56].

- **Kinetic Mixing:** As can be seen in covariant derivative in Eq. (17), the couplings between the Z and SM particles are shifted due to the kinetic mixing of the Hypercharge and $U(1)_d$ gauge boson. Hence, electroweak precision data can place bounds on the value of the kinetic mixing parameter ε [35,57]. The most stringent constraints from EW precision are $|\varepsilon| \lesssim 3 \times 10^{-2}$ [35]. This is less constraining than direct searches for dark photons at fixed target experiments or low energy experiments [78] which require $|\varepsilon| \lesssim 10^{-3}$ for $M_{\gamma d} = 0.1 - 10$ GeV.

3.2 Perturbativity Bounds

Requiring the top quark and VLQ Yukawa couplings be perturbative can place strong constraints on the top quark-VLQ mixing angle. As can be seen in Eq. (29), in the limit that $M_t/M_T \sim |\sin \theta^L_t| \ll 1$ the Yukawa couplings become

\[
\begin{align*}
y_t &= \sqrt{2} \frac{M_t}{v_{EW}} \sqrt{1 + \frac{M_T^2}{M_t^2} \sin^2 \theta^L_t} + O(\sin^2 \theta^L_t, M_T^2/M_t^2), \\
\lambda_t &= \sqrt{2} \frac{M_T^2 - M_t^2}{v_d M_t} \sin \theta^L_t + O(\sin^2 \theta^L_t).
\end{align*}
\]
While y_t is well-behaved for $M_t/M_T \sim |\sin \theta^t_L|$, λ_t is enhanced by M_T/v_d. Hence, the mixing angle must be small to compensate for this and ensure λ_t remains perturbative.

To determine when λ_t becomes non-perturbative, we calculate the perturbative unitarity limit for the $H_d t \rightarrow H_d t$ scattering process and find that

$$|\lambda_t| \leq 4\sqrt{2\pi}.$$

(39)

When this limit is saturated, there must be a minimum higher order correction of 41% to unitarize the S-matrix [79]. Hence, this is near or at the limit for which we can trust perturbative calculations. Details of this calculation can be found in Appendix A.

To translate the limit on λ_t to a limit on the mixing angle $|\sin \theta^t_L|$ we solve Eq. (29) to find

$$|\sin \theta^t_L| = \frac{1}{2} \sqrt{\frac{2 M_T^2 - 2 M_t^2 - \lambda_t^2 v_d^2}{M_T^2 - M_t^2}} \left(1 - \sqrt{1 - \frac{8 \lambda_t^2 v_d^2 M_t^2}{(2 M_T^2 - 2 M_t^2 - v_d^2 \lambda_t^2)^2}}\right).$$

(40)

This solution is real if $|\lambda_t| \leq \sqrt{2}(M_T - M_t)/v_d$. Combining with the perturbative unitarity limit in Eq. (39), we find an upper limit on λ_t:

$$|\lambda_t| \leq \sqrt{2} \min\left\{ \frac{M_T - M_t}{v_d}, 4\sqrt{\pi}\right\}.$$

(41)
Note that for VLQ mass $M_T < 4\sqrt{\pi} v_d + M_t$, the perturbative unitarity limit is never saturated. Hence, for a fixed v_d there is an upper bound on M_T for which λ_t is always perturbative. Assuming $M_t, v_d \ll M_T$, the upper-bound on $\sin \theta_L^t$ becomes

$$|\sin \theta_L^t| \lesssim \begin{cases}
\frac{4 \sqrt{\pi} v_d M_t}{M_T^2} & \text{for } M_T \geq 4 \sqrt{\pi} v_d + M_t \\
\frac{\sqrt{M_t/M_T}}{\sqrt{M_t/M_T}} & \text{for } M_T < 4 \sqrt{\pi} v_d + M_t
\end{cases}.$$ (42)

In Fig. 1(a) we show the limits on $|\sin \theta_L^t|$ from (solid) requiring that λ_t satisfies Eq. (41) for various values of v_d together with (dashed magenta) EW precision data and (dotted orange) CKM constraints. The kink in the $v_d = 100$ GeV line occurs at VLQ mass $M_T \sim 4 \sqrt{\pi} v_d + M_t \sim 880$ GeV. For $M_T < 4 \sqrt{\pi} v_d + M_t$ the upper bound on $\sin \theta_L^t$ is proportional to $M_T^{-1/2}$, while for $M_T \geq 4 \sqrt{\pi} v_d + M_t$ it is proportional to M_T^{-2} as shown in Eq. (42). As can be clearly seen, over much of the parameter range the limits on λ_t in Eq. (41) provide the most stringent constraint on $\sin \theta_L^t$. As mentioned earlier, this is due to λ_t having an enhancement of $M_T^2/M_t/v_d$, requiring $\sin \theta_L^t$ to be quite small to ensure λ_t does not get too large. EW precision is more constraining for larger v_d and smaller M_T.

3.3 $h_1 \rightarrow \gamma_d \gamma_d$ Limits

There have been searches at the LHC [80] for $h_1 \rightarrow \gamma_d \gamma_d \rightarrow 4\ell$ where $\ell = e, \mu$ that place limits on combination

$$\frac{\sigma(pp \rightarrow h_1)}{\sigma_{SM}(pp \rightarrow h_1)} \frac{\text{BR}(h_1 \rightarrow \gamma_d \gamma_d)}{\text{BR}(h_1 \rightarrow \gamma_d \gamma_d)} \lesssim \text{BR}_{\text{lim}},$$ (43)

for dark photons in the mass range $1 \text{ GeV} < M_{\gamma_d} < 60$ GeV. The subscript SM indicates a SM production rate. The h_1 production rate is dominantly via gluon fusion which in the model presented here is altered via the shift in the $h_1 - t - t$ coupling away from the SM prediction as shown in Eqs. (32,33) and new loop contributions from the new VLQ. However, in the small mixing angle limit with the counting $\theta_L^t \sim \theta_S \sim M_t/M_T$, we have

$$\sigma(pp \rightarrow h_1) = \sigma_{SM}(pp \rightarrow h_1) + \mathcal{O}(\theta^2).$$ (44)

In addition to the usual SM decay modes, h_1 can decay into $\gamma_d \gamma_d$, $\gamma_d Z$, and $h_2 h_2$ when kinematically allowed. Using the counting $\varepsilon \sim \theta_L^t \sim \theta_S \sim M_{\gamma_d}/M_Z \sim M_2/M_Z$, the partial widths into the new decay modes are

$$\Gamma(h_1 \rightarrow h_2 h_2) \approx \Gamma(h_1 \rightarrow \gamma_d \gamma_d) = \frac{M_1^3 \sin^2 \theta_S}{32 \pi v_d^2} + \mathcal{O}(\theta^3),$$ (45)

$$\Gamma(h_1 \rightarrow Z \gamma_d) = \mathcal{O}(\theta^4).$$
For the decays into SM, all the couplings between h_1 and SM fermions and gauge bosons, except for the $h_1 − Z − Z$ and $h_1 − t − t$ couplings, are uniformly suppressed by $\cos \theta$. The $h_1 − Z − Z$ and $h_1 − t − t$ couplings are more complicated due to the $Z − \gamma_d$ mixing and $t − T$ mixing, respectively. Additionally, there are new contributions to the loop level decays $h_1 \rightarrow gg$, $h_1 \rightarrow \gamma \gamma$, and $h_1 \rightarrow \gamma Z$ due to the new VLQ. Since the partial widths $\Gamma(h_1 \rightarrow \gamma \gamma)$ and $\Gamma(h_1 \rightarrow Z \gamma)$ make negligible contributions to the total width, we will neglect changes in these quantities. Reweighting the SM partial widths with the new contributions, the width into fully SM final states are then

$$\Gamma(h_1 \rightarrow X_{SM} X_{SM}^{(s)} = \cos^2 \theta_S \left(\Gamma_{SM}(h_1 \rightarrow X_{SM} X_{SM}^{(s)} - \Gamma_{SM}(h_1 \rightarrow ZZ^*) - \Gamma_{SM}(h_1 \rightarrow gg) \right)$$

$$+ \left(\cos \theta_S - \frac{g^2_{\gamma h}}{M_Z^2} \sin^2 \theta_d \left(\cos \theta_S + \sin \theta_S \frac{v_{EW}}{v_d} \right) \right)^2 \Gamma_{SM}(h_1 \rightarrow ZZ^*)$$

$$+ \left| \frac{v_{EW} \lambda_{h_1}^{h_1} \lambda_{TT}^{h_1}}{M_t} - \frac{4 v_{EW} \lambda_{TT}^{h_1}}{3 M_T F(\tau_{1})} \right|^2 \Gamma_{SM}(h_1 \rightarrow gg)$$

$$= \Gamma_{SM}(h_1) + O(\theta^2) , \quad (46)$$

where X_{SM} are SM fermions or gauge bosons, the subscript SM indicates SM values of widths, $\Gamma_{SM}(h_1) = 4.088$ MeV [81], and $\lambda_{h_1}^{h_1}, \lambda_{TT}^{h_1}$ are in Eq. (33). Other SM values for the partial widths of h_1 can be found in Ref. [81]. The loop function $F(\tau_{1})$ can be found in Ref. [82], where $\tau_{1} = 4 M_t^2 / M_1^2$ and we have used $M_T \gg M_{1}$ such that $F(\tau_{1}) = F(\infty) = -4/3$.

The total width is then

$$\Gamma_{tot}(h_1) = \Gamma(h_1 \rightarrow X_{SM} X_{SM}^{(s)} + \Gamma(h_1 \rightarrow \gamma_d \gamma_d) + \Gamma(h_1 \rightarrow Z \gamma_d) + \Gamma(h_1 \rightarrow h_2 h_2) \theta(M_1 - 2 M_2) \right)$$

$$= \Gamma_{SM} (h_1) + O(\theta^2) , \quad (48)$$

and Eq. (43) becomes

$$BR_{lim} \geq \frac{\sigma(pp \rightarrow h_1)}{\sigma_{SM}(pp \rightarrow h_1)} \frac{BR(h_1 \rightarrow \gamma_d \gamma_d) = \frac{\Gamma(h_1 \rightarrow \gamma_d \gamma_d)}{\Gamma_{SM}(h_1)} + O(\theta^4) . \quad (49)$$

Using Eq. (45) we find the limit

$$|\sin \theta_S| \leq \sqrt{\frac{32 \pi v_d^2 \Gamma_{SM}(h_1)}{M_1^3} BR_{lim} = 4.6 \times 10^{-4} \left(\frac{v_d}{\text{GeV}} \right) \sqrt{BR_{lim}} . \quad (50)$$

ATLAS has measured the upper limit BR_{lim} in the mass range $M_{\gamma_d} = 1 − 15$ GeV when both dark photons decay into muons [80]. However, they have assumed $BR(\gamma_d \rightarrow e^− e^+) = BR(\gamma_d \rightarrow \mu^- \mu^+) = 0.5$ neglecting possible hadronic decays of the dark photon. We reweight the results of Ref. [80] using the BR($\gamma_d \rightarrow \mu^+ \mu^-$) including hadronic decays2, as shown in Fig. 2(a). The hatched

2See Sec. 5 for details of the BR($\gamma_d \rightarrow \mu^+ \mu^-$) calculation.
Figure 2: (a) BR_{lim} as defined in Eq. (43). These are the ATLAS results for a $h_1 \rightarrow 2\gamma_d \rightarrow 4\mu$ search [80] reweighted by $BR(\gamma_d \rightarrow \mu^+\mu^-)$ including hadronic decays. The dashed regions are not included in the $h_1 \rightarrow 2\gamma_d \rightarrow 4\mu$ search due to resonant hadrons [80]. (b) Upper bounds on $|\sin \theta_S|$ from Eq. (50). The solid colored regions are ruled out for (red) $v_d = 5$ GeV, (maroon) $v_d = 25$ GeV, and (blue) $v_d = 100$ GeV.

regions correspond to hadronic resonances and were not included in the search in Ref. [80]. This is the BR_{lim} to be used in Eqs. (43,50).

In Fig. 2(b) we show the upper limit on $\sin \theta_S$ from Eq. (50) and using BR_{lim} in Fig. 2(a). The solid regions are ruled out by the $h_1 \rightarrow 2\gamma_d \rightarrow 4\mu$ search for (red) $v_d = 5$ GeV, (maroon) $v_d = 25$ GeV, and (blue) $v_d = 100$ GeV. These constraints are very strong with limits in the range of $|\sin \theta_S| \lesssim 10^{-5} - 10^{-2}$. These limits are more constraining than the direct searches for h_2 as shown in Fig. 1(b). Eq. (50) is linear in the dark Higgs vev v_d, so the limits on $\sin \theta_S$ become less constraining for large v_d. However, since $M_{\gamma_d} \approx g_d v_d$ these constraints cannot be arbitrarily relaxed without very small dark gauge coupling g_d.

If there is dark matter (DM) with mass $M_{DM} < M_{\gamma_d}/2$, it is possible that the decay of the dark photon into DM is dominant since, unlike the dark photon coupling to SM fermions, the γ_d-DM coupling would not be suppressed by the kinetic mixing parameter ε. Hence, it is possible for the Higgs to decay invisibly $h_1 \rightarrow 2\gamma_d \rightarrow \text{DM}$. There are searches for invisible decays of h_1 with limits $BR(h_1 \rightarrow \text{Invisible}) \leq 0.19$ [83] from CMS and $BR(h_1 \rightarrow \text{Invisible}) \leq 0.26$ from ATLAS [84].
Assuming that BR(\(\gamma_d \rightarrow \text{DM}\)) = 1, from Eq. (50) these limits correspond to

\[
|\sin \theta_s| \leq \left(\frac{v_d}{\text{GeV}} \right) \times \begin{cases}
2.0 \times 10^{-4} & \text{for CMS [83]} \\
2.3 \times 10^{-4} & \text{for ATLAS [84]}
\end{cases}
\]

(51)

4 Production and Decay of Vector Like Quark

Figure 3: Standard production modes of VLQs at the LHC for (a-c) pair production and (d,e) VLQ plus a jet production. The conjugate processes for (d,e) are not shown here.

In this section, we focus on the production and decay of the VLQ, \(T\), at the LHC based on the model in Sec. 2. Figure 3 displays the VLQ (a,b,c) pair production (\(TT\)) and (d,e) single production in association with a jet (\(T/\bar{T} + \text{jet}\))\(^3\). The pair production is induced by QCD interactions so that the production cross section depends only on \(M_T\), the spin of \(T\), and the gauge coupling. Hence, pair production is relatively model independent\(^4\). The single production, on the other hand, relies on the \(b - W - T\) coupling in Eq. (37) which is proportional to the mixing angle \(\sin \theta_L^t\). Therefore the production cross section is proportional to \(\sin^2 \theta_L^t\) and is suppressed for small \(\theta_L^t\) [16].

In Fig. 4 we show cross sections for single and pair production of \(T\) from Ref. [85]\(^5\). The pair production cross section with NNLO QCD corrections is computed using the HATHOR code [89] with the MSTW2008 parton distribution functions (PDF) [90]. The single production cross section with NLO QCD corrections is calculated using MCFM [91–93] with the same PDF. The NLO

3There is also \(TW^- + \bar{T}W^+\) production which is subdominant. In the model with an additional \(SU(2)_L\) singlet scalar, a loop-induced \(T\bar{T} + \bar{T}t\) production [16] can be as large as the pair production.

4In a scenario where the top partners are pair produced via a heavier resonance, the production cross section can be model dependent. See Refs. [86–88] and references therein.

5It should be noted that these results are for a charge 5/3 VLQ. However, a charge 2/3 partner has the same QCD and spin structure so the results are still valid since the QCD production does not depend on the electric charge of the particle.
single production cross sections are rescaled by \(\sin^2 \theta^t_L \) to take into account the normalization of the \(b - W - T \) coupling in Eqs.(37,98). The single production becomes more important at high mass, where the gluon PDF sharply drops suppressing \(gg \rightarrow T \bar{T} \) and the pair production phase space is squeezed relative to single production. With a sizable mixing angle \(|\sin \theta^t_L| \gtrsim 0.1 \), the single production outperforms the pair production in a wide range of \(M_T \). The single production, however, vanishes as the \(t - T \) mixing angle becomes very small, as required by perturbativity and EW precision [Fig. 1(a)]. This can be already seen from Figure 4 when \(\sin \theta^t_L = 0.01 \), where the \(T + \text{jet} \) cross section goes into the sub-femtobarn level which will be challenging to probe at the LHC.

Traditionally, searches for the VLQ rely on the \(T \rightarrow t Z, T \rightarrow b W, \) and \(T \rightarrow th_1 \) decays, as shown in Fig 5. However, in the scenario where \(T \) is charged under both the SM and \(U(1)_d \), new decay modes into \(T \rightarrow th_2 \) and \(T \rightarrow t\gamma_d \) appear, which alters \(T \) phenomenology significantly. Partial widths into \(Z/W/h_1 \) in the limit \(|\varepsilon|, |\theta^t_L|, |\theta_S| \ll 1 \) and \(v_{EW}, v_d \ll M_T \) are

\[
\Gamma(T \rightarrow t Z) \approx \Gamma(T \rightarrow th_1) \approx \frac{1}{2} \Gamma(T \rightarrow b W) \approx \frac{1}{32\pi} \frac{M_T^3}{v_{EW}^2} \sin^2 \theta^t_L \cdot
\]

(52)

For large \(M_T \), the partial widths of \(T \) into fully SM final states are proportional to \(\sim \sin^2 \theta^t_L M_T^2/v_{EW}^2 \)

\footnote{To produce numerical results and plots, however, we will use exact width expressions.}
Figure 5: Representative Feynman diagrams for VLQ decays into (a-c) $Zt, Wb, h_1 t$. Since T is charged under both the SM and $U(1)_d$, the T is allowed to decay into (d,e) h_2 and γ_d.

due to the Goldstone equivalence theorem. The partial widths into h_2 and γ_d in the limit $|\varepsilon|, |\theta_L^t|, |\theta_S| \ll 1$ and $v_d, v_{EW} \ll M_T$ are

$$\Gamma(T \to t \gamma_d) \approx \Gamma(T \to t h_2) \approx \frac{1}{32\pi} \frac{M_T^3}{M_t^2 v_d^2} \left(1 + \frac{M_T}{M_t} \sin^2 \theta_L^t \right)^2. \quad (53)$$

Hence, the ratios of the rates of VLQ decays into the dark Higgs/photon and into fully SM final states are

$$\frac{\Gamma(T \to t + h_2/\gamma_d)}{\Gamma(T \to t/b + W/Z/h_1)} \sim \left(\frac{M_T}{M_t}\right)^2 \left(\frac{v_{EW}}{v_d}\right)^2 \frac{1}{1 + (M_T/M_t)^2 \sin^2 \theta_L^t}. \quad (54)$$

There are two enhancements: (1) the $(v_{EW}/v_d)^2$ enhancement since decays into longitudinal dark photons are enhanced by v_d^{-2} compared to decays into longitudinal SM bosons which are proportional to v_{EW}^{-2}. (2) If $|\sin \theta_L^t| \lesssim M_t/M_T$ there is a $(M_T/M_t)^2$ enhancement since the right-handed top-VLQ mixing angle is larger than left-handed mixing due to a fermion mass hierarchy as seen in Eqs. (35-37). However, note that for fixed $|\sin \theta_L^t| \gg M_t/M_T$, the fermion mass hierarchy enhancement cancels and only the $(v_{EW}/v_d)^2 M_t^2/M_T^2 \sin^4 \theta_L^t$ survives. Although, note there is now a suppression from the fermion mass hierarchy and $|\sin \theta_L^t| \gg M_t/M_T$ is disfavored by perturbative unitarity [Eq. (42)]. This is because in this limit $|\sin \theta_R^t| \to 1$ and does not grow with M_T.

Equation (54) shows that even in the absence of a fermionic mass hierarchy ($M_T \sim M_t$), T decays into light dark sector bosons are still strongly enhanced. This can be clearly seen in
Figure 6: (a,b) The combined branching ratio $BR(T \to t + h_2) + BR(T \to t + \gamma_d)$ in $M_T - v_d$ plane for maximally allowed $\sin \theta_L^d$ and $\sin \theta_S$ in Fig. 1(a) and Eq. (50), respectively. In (a) $M_2 = 0.1 v_d$ and (b) $M_2 = v_d$. The full branching ratios of the T as a function of M_T for (c) $M_2 = 0.1 v_d = 1$ GeV and (d) $M_2 = v_d = 200$ GeV. For all subfigures we assume $\varepsilon = 0.001$.

Figure 6(a,b) where we show contours of the total VLQ branching ratio in h_2 and γ_d. Note that $BR(T \to t + h_2) + BR(T \to t + \gamma_d) \sim 0.99$ for $v_d \lesssim 30$ GeV in the entire M_T range. As M_T
increases, branching ratios into the dark photon/Higgs increase due to the fermionic mass hierarchy, as discussed above. Fig. 6(b) is the same as Fig. 6(a) with a different choice of M_2. The results in both Fig. 6(a,b) are very similar, showing the conclusions about the branching ratio dependence on boson and fermion mass hierarchies are robust against model parameters. The reach of current searches into th, tZ, and bW [59] are shown in the gray shaded regions. We have rescaled the results of Ref. [59] according to the branching ratios in our model. There were no limits below $M_T = 800$ GeV, hence the exclusion region is truncated. As can be seen, the traditional searches are largely insensitive to our model and our approach provides a new avenue to search for T. New search strategies are necessary depending on the decays of γ_d, h_2 as we will discuss in section 6.

In Fig. 6(c,d) we show the branching ratios of T into all final states, including W, Z, h_1. The T branching ratios into the fully SM particles are less than $\sim 1\%$ for smaller $M_2 = 0.1 v_d = 1$ GeV as shown in Fig. 6(c). For enhanced dark sector mass scales $M_2 = v_d = 200$ GeV the rates to the SM final states can reach at most $\sim 45\%$ for $M_T \sim 300$ GeV shown in Fig. 6(d), but then fall to the percent level for higher VLQ masses.

There is a kink in Fig. 6(d) around $M_T \sim 1.9$ TeV. For $M_T \lesssim 1.9$ TeV EW precision constraints on $\sin \theta_L^t$ are the most stringent and for $M_T \gtrsim 1.9$ TeV the perturbativity bounds on λ_t are most constraining [see Fig. 1(a)]. The EW precision and perturbativity bounds on $\sin \theta_L^t$ have different

Figure 7: (a) Contours of $\Gamma_T^{\text{tot}}/M_T = 0.1$ in the $M_T - \sin \theta_L^t$ plane for various v_d. (b) The total width (Γ_T^{tot}) of T in $M_T - v_d$ plane for $\sin \theta_L^t = 0.001$. For both sub-figures, we set $\varepsilon = 0.001$, $M_{\gamma_d} = M_2 = 2$ GeV, and $\sin \theta_S$ to its maximal value in Eq. (50).
dependencies on M_T, hence the kink. The branching ratios into W/Z/Higgs become flat for M_T approaching 1.9 TeV. Without perturbative unitarity constraints, these branching ratios would eventually increase due to the suppression of $T \rightarrow t h_d/\gamma_d$ by the fermionic mass hierarchy for the limit of $M_T \gg M_t$ and fixed $\sin \theta'_L$, as discussed around Eq. (54). Perturbative unitarity instead prevents this increase from occurring. Once perturbativity constraints are dominant $\sin \theta'_L \sim M_T/M_t$, the fermion mass hierarchy enhancement reasserts itself, and branching ratios into fully SM final states decrease precipitously.

Finally, in the limit $M_t \ll M_T$ and $v_d \ll v_{EW}$, the total width of the VLQ normalized to M_T is

$$\frac{\Gamma_{\gamma_d}^{\text{tot}}}{M_T} = \frac{\Gamma(T \rightarrow t \gamma_d) + \Gamma(T \rightarrow t h_2)}{M_T} \approx \frac{1}{16\pi} \frac{M_T^4}{v_d^2} \frac{\sin^2 \theta'_L}{(1 + (M_T/M_t)^2 \sin^2 \theta'_L)^2}. \quad (55)$$

Due to the very large enhancement of $M_T^4/M_t^2/v_d^2$, the mixing angle $\sin \theta'_L$ must be quite small for T to be narrow. In Fig. 7(a) we show contours of fixed $\Gamma_{\gamma_d}^{\text{tot}}/M_T = 10\%$ in the $\sin \theta'_L$–M_T plane for various dark Higgs vevs v_d. When compared to the constraints in Fig. 1(a), it is clear that the constraint T be narrow with $\Gamma_{\gamma_d}^{\text{tot}} \lesssim 10\% M_T$ is by far the strongest constraint on $\sin \theta'_L$. In Fig. 7(b) we show the total width $\Gamma_{\gamma_d}^{\text{tot}}$ in the v_d–M_T plane. As is clear, VLQ total width grows for small v_d and larger M_T.

5 Decay of the dark photon

We now discuss the dark photon γ_d decays, since this specifies experimental signatures in the VLQ decay $T \rightarrow t \gamma_d$. The lowest order (LO) γ_d partial decay widths can be computed using the couplings to the light fermions from the covariant derivative in Eq. (22). However, this does not take into account the higher-order QCD corrections and hadronic resonances. To reflect these combined effects, we follow Ref. [35] and utilize the experimental data on electron positron collisions [41]

$$R(M_{\gamma_d}) \equiv \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}. \quad (56)$$

Since γ_d couplings are approximately electromagnetic, hadronic decays of γ_d can be incorporated into the total width of γ_d via

$$\Gamma_{\gamma_d}^{\text{tot}} = R(M_{\gamma_d}) \Gamma(\gamma_d \rightarrow \mu^+\mu^-) + \sum_{f=e,\mu,\tau,\nu_e,\nu_\mu,\nu_\tau} \Gamma(\gamma_d \rightarrow f\bar{f})$$

$$\approx \frac{\epsilon^2}{12\pi} \frac{e^2}{M_{\gamma_d}} \left[R(M_{\gamma_d}) + \sum_{\ell=e,\mu,\tau} \theta(M_{\gamma_d} - 2 M_\ell) \right]. \quad (57)$$

We have used the approximation $\epsilon \ll 1$ and $M_{\gamma_d} \ll M_Z$ as in Eq. (22). We have also assumed there are no DM candidates with mass $2 M_{DM} < M_{\gamma_d}$ and that $2 M_2 > M_{\gamma_d}$ so that $\gamma_d \rightarrow \text{DM}$ and $\gamma_d \rightarrow 2 h_2$ decays are forbidden.
The lifetime of the dark photon can be calculated by

\[\tau = \frac{1}{\Gamma_{\gamma_d}}. \]

Hence, the \(\gamma_d \) lifetime is inversely proportional to \(\varepsilon^2 \). For small kinetic mixing parameter the dark photon can be quite long lived and have a large decay length. In Fig. 8(a) we show the decay length \(c\tau \) of the dark photon as a function of the kinetic mixing parameter \(\varepsilon \) for various dark photon masses. For \(\varepsilon \) in the range of \(1 - 5 \times 10^{-6} \) the decay length can be \(c\tau \sim 1 \text{ mm} \). As discussed in the next section, this can lead to a spectacular collider signature of displaced vertices.

In Fig. 8(b) we show the branching ratios of the dark photon into electrons and muons. This reproduces the results from Ref. [35], which we have recalculated and included for completeness. The branching ratios of the dark photon into electrons and muons are almost identical when \(M_{\gamma_d} > 2M_\mu \). For much lower masses below \(\sim 200 \text{ MeV} \), the \(\gamma_d \) decay to muons is kinematically closed, and hence \(\gamma_d \to e^+e^- \) decays dominate. The multiple dips in the branching ratios starting around \(M_{\gamma_d} \sim 770 \text{ MeV} \) are attributed to hadronic resonances \(\rho, \omega, \phi, \rho', J/\psi, \psi(2S), \) and \(\Upsilon(nS) \) for \(n = 1, 2, 3, 4 \) [41].
6 Searching for the dark photon with $T \rightarrow t\gamma_d$ decays

We now discuss the collider signatures of this model. As discussed previously, the pair production of T only depends on the spin and mass of T and $\text{BR}(T \rightarrow t\gamma_d) \approx 50\%$ in a very large range of parameter space. Hence, the production rate of the dark photon is at QCD rates and largely independent of the model parameters. The major model dependence comes from the lifetime of γ_d. If ε is sufficiently small, the dark photon becomes long-lived.

The decay length of the dark photon from T decays is

$$d = \bar{b}c\tau \ , \quad (59)$$

where $c\tau$ is a proper lifetime as shown in Fig. 8(a) and \bar{b} is the average boost of the dark photon. Assuming the VLQs are produced mostly at rest, the boost is

$$\bar{b} = \frac{|\vec{p}_{\gamma_d}|}{M_{\gamma_d}} \rightarrow \frac{1}{M_T} \frac{2M_{\gamma_d}M_t}{2M_{\gamma_d}} \ , \quad (60)$$

where $|\vec{p}_{\gamma_d}|$ is the dark photon 3-momentum. Using the total γ_d width in Eq. (57), we can then solve for the decay length:

$$d = 580 \ \mu m \times \frac{7}{R(M_{\gamma_d}) + \sum_{\ell=e,\mu\tau} \theta(M_{\gamma_d} - 2M_{\ell}) \left(\frac{M_T}{1 \text{ TeV}} \right) \left(\frac{1 \text{ GeV}}{M_{\gamma_d}} \right)^2 \left(\frac{10^{-4}}{\varepsilon} \right)^2} \ . \quad (61)$$

Hence, for reasonable parameter choices, the decay length of the dark photon can be several hundreds of microns. The precise direction of the dark photon in the detector will determine if it appears as a displaced vertex or where it will decay in the detector. Nevertheless, for $d \lesssim 500 \ \mu m$ the dark photon decay can be considered prompt, for $d = 1 \text{ mm} – 1 \text{ m}$ it will be a displaced vertex, for $d \sim 1 \text{ m} – 10 \text{ m}$ the dark photon will decay in the detector, and $d \gtrsim 10 \text{ m}$ the dark photon will decay outside the detector [16]. Hence, we can solve for the values of ε for these various scenarios:

$$\varepsilon = \left(\frac{7}{R(M_{\gamma_d}) + \sum_{\ell=e,\mu\tau} \theta(M_{\gamma_d} - 2M_{\ell})} \right)^{1/2} \left(\frac{M_T}{1 \text{ TeV}} \right)^{1/2} \left(\frac{1 \text{ GeV}}{M_{\gamma_d}} \right) \times \begin{cases} 1 \times 10^{-3} & \text{for prompt decays} \\ 2.4 \times 10^{-6} - 7.6 \times 10^{-5} & \text{for displaced vertices} \\ 7.6 \times 10^{-7} - 2.4 \times 10^{-6} & \text{for decays in detector} \\ \lesssim 7.6 \times 10^{-7} & \text{for decays outside the detector} \end{cases} \ . \quad (62)$$

If the dark photon decays outside the detector it is unobserved, giving rise to the final state characterized by $t\bar{t} + E_T$. This is the same signature as pair produced scalar tops, \tilde{t}, in R-Parity
conserving SUSY models with the decays \(\tilde{t} \to t \tilde{\chi}_1^0 \), where \(\tilde{\chi}_1^0 \) is the lightest superpartner and stable. Hence, the currently available CMS [94–99] and ATLAS [100,101] searches for stop pair production can be used to obtain constraints on the model presented here. In the limit of large gluino/squark masses, the most stringent bound is at 13 TeV excludes stop masses up to 1225 GeV for a massless \(\tilde{\chi}_1^0 \) [99]. Since Ref. [99] assumes \(\text{BR}(\tilde{t} \to t \tilde{\chi}_1^0) = 1 \), the corresponding 95\% CL upper limit on the NLL-NLO stop pair production cross section is given by \(\sim 1.3 \text{ fb} \) [102].

Since both stop and \(T \) pair production yield similar kinematic distributions in the final states, the efficiencies of two searches are quite similar [103]. The upper bound on the stop pair production cross section can then be reinterpreted as a bound on the VLQ pair production cross section:

\[
\sigma(pp \to T \bar{T}) \times (\text{BR}(T \to t \gamma d) + \text{BR}(T \to tZ \to t \nu \bar{\nu}))^2 \leq 1.3 \text{ fb} .
\]

(63)

In Fig. 9(a) we show this limit in the \(v_d - M_T \) plane for a dark photon mass of \(M_{\gamma_d} = 1 \text{ GeV} \) (gray region is ruled out). We used the \(T \) branching ratios in Fig. 6 and the NNLO \(T \bar{T} \) cross section in Fig. 4. As shown in Sec. 4, the production and decay rates of the VLQ are relatively independent of model parameters and this result is robust. We find that VLQ masses

\[
M_T \lesssim 1.2 \text{ TeV} ,
\]

(64)

are excluded for \(M_{\gamma_d} = 1 \text{ GeV} \) and \(v_d \lesssim 500 \text{ GeV} \) when the dark photon is stable on collider time scales. The bound can be weakened for higher values of \(v_d \) since the branching ratio of \(T \) into SM bosons with visible decays increases, suppressing \(\text{BR}(T \to t \gamma d) \) as displayed in Figure 6.

Searches for single \(T \) production can be important if \(t - T \) mixing is not too small. It is clear from Figure 4 that for \(\sin \theta_L^t \sim 0.1 \) the single production dominates over the pair production at high VLQ masses. Refs. [125, 126] showed that the \(T \to tZ(\to \nu \bar{\nu}) \) channel displays a superior performance in prospects for discovering the \(T \). The signature is then \(T \to t + \slashed{E}_T \), which is the same as for \(T \to t \gamma_d \) when \(\gamma_d \) is long lived. The ATLAS collaboration [104] presented results on the single production of \(T \) with the decay \(T \to tZ(\to \nu \bar{\nu}) \). Assuming that efficiencies of \(T \to tZ \to t \nu \bar{\nu} \) and \(T \to t \gamma_d \) searches are the same, we re-interpret the 95\% CL upper limit on the cross section in Ref. [104] to derive constraints on \(M_T - \sin \theta_L^t \) plane, as shown as dotted lines in Figure 9(b). The regions within the curves are ruled out. As in Fig. 9(a), we consider both \(T \to t \gamma_d \) where the dark photon is assumed to escape the detector, and \(T \to t \nu \bar{\nu} \). For VLQ masses around \(M_T = 1 \sim 2 \text{ TeV} \), the limits on \(\sin \theta_L^t \) are

\[
| \sin \theta_L^t | \lesssim 0.3 \sim 0.6 ,
\]

(65)

where the stronger bounds are expected for smaller values of \(v_d \) due to the enhancement of the branching ratio \(\text{BR}(T \to t \gamma_d) \). For smaller \(| \sin \theta_L^t | \) the single VLQ production rate is too small to
be detectable yet. For larger $\sin \theta_L^t$ and larger v_d, the VLQ essentially decays like a top quark with a near 100% branching ratio into Wb. Hence, the branching ratio to $t\gamma_d$ is suppressed and a gap appears for $|\sin \theta_L^t| \gtrsim 0.9$ and $v_d = 250$ GeV. These bounds are, however, weaker as compared to the EW precision test [see Figure 1(a)].

CMS has also performed a recent search for electroweak production of T decaying through Z and Higgs channels with fully hadronic decays [105]. These searches can be re-interpreted into constraints in the $M_T - \sin \theta_L^t$ plane. The 95% CL exclusions are shown as solid lines in Figure 9(b) with the regions inside the curves ruled out. In the small v_d limit ($v_d = 10$ GeV) the branching ratios into SM final states are negligible so there are not strong constraints. As v_d increases the branching ratios become viable and some constraints emerge. In the high v_d the generic search constraints start to become more stringent than $T \rightarrow tZ(\rightarrow \nu\bar{\nu})$ constraints. Hence, there is a complementarity between the fully hadronic and missing energy searches.

Figure 10 shows the decay lengths of dark photons originating from the VLQ with masses (a) $M_T = 1.2$ TeV and (b) $M_T = 2$ TeV in $M_{\gamma_d} - \epsilon$ plane. We show several lines of the dark photon decay
Figure 10: Various decay lengths of the dark photon originating from VLQs with masses (a) 1.2 TeV and (b) 2 TeV in $\varepsilon - M_{\gamma_d}$ plane. The blue shaded regions are excluded by searches for stop pair production with decay $\tilde{t} \rightarrow t \, \tilde{\chi}_1^0$. Gray shaded regions correspond to existing 90% confidence level limits from the SLAC and Fermilab beam dump experiments E137, E141, and E774 [31,106–108], the U70 accelerator [109,110], LHCb [111,112], NA64 [113], the electron and muon anomalous magnetic moment a_μ [33,114,115], KLOE [116,117], WASA-at-COSY [118], the test run results reported by APEX [119] and MAMI [120], an estimate using a BaBar result [31,121,122], and a constraint from supernova cooling [123,124]. The shaded green regions are favored to explain the muon anomalous magnetic moment [114] at 95% confidence level.

The length $d = 5 \sigma \tau$ that are indicative of prompt decays ($d = 500 \, \mu m$), displaced vertices ($d = 1 \, mm$), decays in the detector ($d = 1 \, m$), and decays outside the detector ($d = 10 \, m$). Additionally, there is a proposed MATHUSLA detector [127] to search for long lived particles. MATHUSLA will be on the surface $140 - 230 \, m$ away from the interaction point. Hence, we also show lines for dark photons that could decay inside the MATHUSLA detector. The blue shaded regions are excluded by searches for stop pair production with decay $\tilde{t} \rightarrow t \, \tilde{\chi}_1^0$, as discussed above. This blue exclusion region exists for $M_T \lesssim 1.3 \, TeV$. Hence, it appears in Fig. 10(a) but not Fig. 10(b). The grey shaded regions are excluded by various low energy experiments [78] and supernova measurements [123,124]. As can be clearly seen, searches for $T \rightarrow t \gamma_d$ with a wide range of possible signals can cover a substantial portion of the parameter space. This is because in the model presented here the production of γ_d from VLQ production is largely independent of the small kinetic mixing parameter. Hence, the production rate of γ_d is unsuppressed at low ε and the LHC can be quite sensitive to this region.
The dark photon branching ratios into e^-e^+ and $\mu^-\mu^+$ is non-negligible as shown in Fig. 8(b). Hence, the most promising signature of the $T \to t \gamma_d$ would be the leptonic decays of the dark photon, which would help avoid large QCD backgrounds. Since the dark photon is highly boosted, its decay products are highly collimated. The angular distance between the leptons from γ_d decays can be estimated as

$$\Delta R_{\ell\ell} \sim \frac{2 M_{\gamma_d}}{E_{\gamma_d}} = 4 \times 10^{-3} \left(\frac{M_{\gamma_d}}{1 \text{ GeV}} \right) \left(\frac{1 \text{ TeV}}{M_T} \right),$$

where $\Delta R_{\ell\ell} = \sqrt{(\phi_{\ell^-} - \phi_{\ell^+})^2 + (\eta_{\ell^-} - \eta_{\ell^+})^2}$, ϕ are the azimuthal angles of the leptons, and η are their rapidities. At such small angular separation, the leptons are very difficult to isolate and the dark photon can give rise to so-called “lepton jets” [39, 40] which are highly collimated clusters of electrons and muons. In fact, for not too small kinetic mixing ε, there could be displaced lepton jets or even lepton jets originating in the detector.

7 Conclusion

In this paper we have studied a model with an up-type VLQ charged under a new $U(1)_d$, where the $U(1)_d$ gauge boson kinetically mixes with the SM hypercharge. One of the most significant aspects of this model is that the decay patterns of the VLQ can be substantially altered from the usual scenario. That is, the VLQ is a “maverick top partner.” As shown in Figs. 6(a,b), if the scale of the $U(1)_d$ is smaller than the EW sector ($v_d \lesssim v_{EW}$), the VLQ decays into a dark photon or dark Higgs greater than 95% of the time independent of the VLQ mass. This is due to the longitudinal enhancement of decaying into light gauge bosons which enhances the VLQ partial widths into γ_d/h_2 by $(v_{EW}/v_d)^2$ relative to decays into the SM EW bosons. When the VLQ is substantially heavier than the top quark $M_T \gg M_t$, there can also an enhancement of $(M_T/M_t)^2$ for VLQ decays into γ_d/h_2 [39].

The appeal of this scenario is that the production rate of the dark photon γ_d is largely independent of model parameters. The VLQs can be pair produced via the strong interaction. This pair production rate is governed by gauge interactions and only depends on the VLQ mass and spin. As discussed above, the branching ratio $\text{BR}(T \to t \gamma_d) = 50\%$ in a very wide range of parameter space. Hence, the dark photon production rate is almost completely governed the strong interaction and is independent of the small kinetic mixing parameter ε.

While the production rate of the dark photon is independent of the kinetic mixing parameter, the collider searches are not. As we showed, for reasonable ε, the dark photon can give rise to displaced vertices, decay inside the detector, or even escape the detector and appear as missing energy as shown in Fig. 10. Besides the missing energy, the most promising signatures of the dark photon would be its decays into electrons and muons. For dark photon masses much below the
VLQ masses, the electrons and muons would be highly collimated giving rise to lepton jets \cite{40} or even displaced lepton jets.

The model presented here is a mild perturbation from the typical simplified models of dark photons and VLQs. However, as we demonstrated, the collider phenomenology is significantly changed from the usual scenarios. Hence, this provides a robust framework in which searches for heavy particles at the LHC can illuminate a light dark sector force.

Acknowledgements

We would like to thank KS Babu, KC Kong, and Chris Rogan for helpful discussions. We would also like to thank KC Kong and Douglas McKay for suggestions the term “maverick top partner.” JHK and IML are supported in part by the U.S. Department of Energy under grant No. DE-SC0017988. MS is supported in part by the State of Kansas EPSCoR grant program. SDL acknowledges financial support of Madison & Lila Self Graduate Fellowship. IISL is supported by National Research Foundation (NRF) Strategic Research Program (NRF2017R1E1A1A01072736). The data to reproduce the plots has been uploaded with the arXiv submission or is available upon request.

A Perturbative Unitarity

To derive a perturbative unitarity bound, we will look at tree-level $h_d t \rightarrow h_d t$ scattering in the high energy limit. For the high energy limit, we work with gauge eigenstate fields in the unbroken phase. In the broken phase, there would be t-channel diagrams with scalar trilinears. However, since trilinear scales are dimensionful, they will be suppressed by E^{-1} compared to the fermionic s-channel, were E is the energy of the process. Additionally, each vertex flips the chirality of the fermion. In the high energy limit, we neglect masses, so there can be no additional chiral flips from mass insertions. Hence, the chirality of the incoming and outgoing top quarks must be the
same. Finally, the dark higgs vertex only exists between t_R and T_L, so only the t_R amplitudes are non-zero. Fig. 11 shows the relevant diagram.

The tree-level amplitude for this process is given by

$$i\mathcal{M}(h_d t_R \rightarrow h_d t_R) = -\frac{i\lambda^2}{2} \cos \frac{\theta}{2},$$

where θ is the scattering angle. We now expand this amplitude into partial waves as

$$\mathcal{M} = 16\pi \sum_{j=1/2,3/2,\ldots}^\infty (2j + 1)a_j d_{1/2,1/2}^j(\theta),$$

where $d_{m,m'}^j(\theta)$ are Wigner d-functions. The only relevant term for this particular process corresponds to the $d_{1/2,1/2}^1(\theta) = \cos \frac{\theta}{2}$ term, and we get

$$a_{1/2} = -\frac{\lambda^2}{64\pi}.$$

Tree-level perturbative unitarity then corresponds to $|\text{Re}a_{1/2}| \leq \frac{1}{2}$, which, after taking a square root, gives us the final form of our bound,

$$|\lambda_t| \leq 4\sqrt{2\pi}.$$

B Kinetic Mixing

We now review diagonalizing the neutral gauge bosons. First, the kinetic mixing term in Eq. (2) with the transformations

$$B'_\mu = B_\mu + \frac{\varepsilon'}{\hat{c}_W \sqrt{1 - \varepsilon'^2 / \hat{c}_W^2}} B_{d,\mu}, \quad B'_{d,\mu} = \frac{1}{\sqrt{1 - \varepsilon'^2 / \hat{c}_W^2}} B_{d,\mu},$$

where $\hat{c}_W = \cos \hat{\theta}_W$. Then we have the normalized gauge kinetic terms

$$\mathcal{L}_{\text{Gauge}} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} B_{d,\mu\nu} B_{d}^{\mu\nu}.$$

The covariant derivative in Eq. (5) then contains

$$D_\mu \supset -ig (T^+ W^+ + T^- W^-) - igT^3 W^3 - ig Y B_\mu - i(g_d Y_d + \frac{g'}{\hat{c}_W} \varepsilon Y) B_{d,\mu},$$

where we have defined $g_d = g_d' / \sqrt{1 - \varepsilon'^2 / \hat{c}_W^2}$, $\varepsilon = \varepsilon' / \sqrt{1 - \varepsilon'^2 / \hat{c}_W^2}$.

$$T^+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad T^- = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
Here, B is identified as the SM-like hypercharge gauge boson. To get the photon we perform the usual rotation:

$\begin{pmatrix} W_\mu^3 \\ B_\mu \end{pmatrix} = \begin{pmatrix} \hat{c}_\mu & \hat{s}_\mu \\ -\hat{s}_\mu & \hat{c}_\mu \end{pmatrix} \begin{pmatrix} \hat{Z}_\mu \\ A_\mu \end{pmatrix}, \tag{75}$

where $\hat{s}_\mu = \sin \hat{\theta}_W$. The covariant derivative becomes

$D_\mu \supset -i g (T^+W^+ + T^-W^-) - i e Q A_\mu - i \hat{g}_Z Q Z_\mu - i (g_d Y_d + \varepsilon g' Y) B_{d,\mu},$

where $e = g \sin \hat{\theta}_W = g' \cos \hat{\theta}_W$, $\hat{Q}_Z = T_3 - \hat{x}_W Q$, $\hat{x}_W = \sin^2 \hat{\theta}_W$, and $\hat{g}_Z = e / \cos \hat{\theta}_W / \sin \hat{\theta}_W$. The charge operator is $Q = T_3 + Y$. Hence, $Q S = 0$ and $Q \Phi = 0$ in the unitary gauge. We can identify A_μ as the physical massless photon and e as the electric charge.

Evaluate the scalar kinetic terms to get the gauge boson masses:

$L_{S,\text{kin}} = |D_\mu S|^2 + |D_\mu \Phi|^2$

$\supset M_W^2 W_\mu^+ W_-^\mu + \frac{1}{2} \left[(M_{\gamma_d}^0)^2 B_{d,\mu} B_d^\mu - 2 M_{\gamma_d}^2 \hat{Z}_\mu B_{d,\mu} + (M_Z^0)^2 \hat{Z}_\mu \hat{Z}_\mu \right], \tag{76}$

where

$M_W = \frac{1}{2} g v = \frac{e v}{2 \sin \theta_W}, \quad (M_{\gamma_d}^0)^2 = g_d^2 v_d^2 + \varepsilon^2 t_W^2 (M_Z^0)^2,$

$M_{\gamma_d}^2 = \varepsilon t_W (M_Z^0)^2, \quad M_Z^0 = \frac{1}{2} \hat{g}_Z v,$ \tag{77}

and $t_W = \hat{s}_\mu / \hat{c}_\mu$. We rotate the basis to diagonalize the mass matrix

$\begin{pmatrix} \hat{Z}_\mu \\ B_d^\mu \end{pmatrix} = \begin{pmatrix} \cos \theta_d & \sin \theta_d \\ -\sin \theta_d & \cos \theta_d \end{pmatrix} \begin{pmatrix} Z_\mu \\ \gamma_d^\mu \end{pmatrix}, \tag{78}$

where Z has mass M_Z and γ_d has mass M_{γ_d}. We can solve for the mixing angle and masses

$\sin(2\theta_d) = \frac{2 \varepsilon t_W (M_Z^0)^2}{M_Z^2 - M_{\gamma_d}^2}, \tag{79}$

$M_Z^0 = \sqrt{M_Z^2 \cos^2 \theta_d + M_{\gamma_d}^2 \sin^2 \theta_d}, \tag{80}$

$M_{\gamma_d}^0 = \sqrt{M_{\gamma_d}^2 \cos^2 \theta_d + M_Z^2 \sin^2 \theta_d}. \tag{81}$

Now, for the degrees of freedom we choose:

$G_F, \quad \alpha_{EM}(0), \quad M_Z, \quad M_{\gamma_d}, \quad \varepsilon, \quad v_d, \quad \tag{82}$

with the $G_F, \alpha_{EM}(0), M_Z$ values in Eq. (19). Using $v_{EW}^2 = 1 / \sqrt{2}/G_F$ together with $g = e / \hat{s}_W$ and Eqs. (77,80), we find

$\hat{c}_W^2 = \frac{1}{2} + \frac{1}{2} \sqrt{1 - \frac{2 \sqrt{2} \alpha_{EM}(0)}{G_F M_Z^2} \frac{1}{\cos^2 \theta_d + \tau_{\gamma_d}^2 \sin^2 \theta_d}}, \tag{83}$

where $\tau_{\gamma_d} = M_{\gamma_d}/M_Z$. Now, Eqs. (79,83) can be used to recursively solve for $\sin \theta_d$ as an expansion in ε. All other parameters can then be easily solved for in terms of the input parameters in Eq. (82).
C Scalar Interactions

The scalar couplings relevant the analysis here are

$$\mathcal{L}_{V-S} = \frac{1}{1 + \delta_{VV'}} \lambda_{h_i V V'} h_i V_\mu V'^\mu. \quad (84)$$

The detailed expressions for the couplings are

$$\lambda_{h_1W^+W^-} = \frac{2M_W^2}{v} \cos \theta_S,$$ \hspace{1cm} (85)

$$\lambda_{h_2W^+W^-} = \frac{2M_W^2}{v} \sin \theta_S,$$ \hspace{1cm} (86)

$$\lambda_{h_1ZZ} = \frac{2M_Z^2}{v} \cos \theta_S - 2g_d^2 \sin^2 \theta_d v_d (\sin \theta_S + \cos \theta_S \tan \beta),$$ \hspace{1cm} (87)

$$\lambda_{h_2ZZ} = \frac{2M_Z^2}{v} \sin \theta_S + 2g_d^2 \sin^2 \theta_d v_d (\cos \theta_S - \sin \theta_S \tan \beta),$$ \hspace{1cm} (88)

$$\lambda_{h_1\gamma_d\gamma_d} = \frac{2M_Z^2}{v} \cos \theta_S - 2g_d^2 \cos^2 \theta_d v_d (\sin \theta_S + \cos \theta_S \tan \beta),$$ \hspace{1cm} (89)

$$\lambda_{h_2\gamma_d\gamma_d} = \frac{2M_Z^2}{v} \sin \theta_S + 2g_d^2 \cos^2 \theta_d v_d (\cos \theta_S - \sin \theta_S \tan \beta),$$ \hspace{1cm} (90)

$$\lambda_{h_1\gamma_dZ} = g_d^2 \sin 2\theta_d v_d (\sin \theta_S + \cos \theta_S \tan \beta),$$ \hspace{1cm} (91)

$$\lambda_{h_2\gamma_dZ} = -g_d^2 \sin 2\theta_d v_d (\cos \theta_S - \sin \theta_S \tan \beta),$$ \hspace{1cm} (92)

where M_W, M_Z are given in Eq.(77). The detailed expressions for gauge-sector parameters can be found in Appendix B.

The $h_{1,2}$ trilinear are given by

$$\mathcal{L}_{S-S-S} = \frac{1}{3!} \lambda_{h_1h_1h_1} h_1^3 + \frac{1}{2} \lambda_{h_1h_1h_2} h_1^2 h_2 + \frac{1}{2} \lambda_{h_1h_2h_2} h_1 h_2^2 + \frac{1}{3!} \lambda_{h_2h_2h_2} h_2^3, \quad (93)$$

where the couplings are

$$\lambda_{h_1h_1h_1} = \frac{3M_1^2}{v} \left(\cos^3 \theta_S - \sin^3 \theta_S \tan \beta \right),$$ \hspace{1cm} (94)

$$\lambda_{h_1h_1h_2} = \frac{2M_1^2 + M_2^2}{2v} \sin 2\theta_S \left(\cos \theta_S + \sin \theta_S \tan \beta \right),$$ \hspace{1cm} (95)

$$\lambda_{h_1h_2h_2} = \frac{M_1^2 + 2M_2^2}{2v} \sin 2\theta_S \left(\cos \theta_S \tan \beta - \sin \theta_S \right),$$ \hspace{1cm} (96)

$$\lambda_{h_2h_2h_2} = \frac{3M_2^2}{v} \left(\cos^3 \theta_S \tan \beta + \sin^3 \theta_S \right).$$ \hspace{1cm} (97)

D Gauge Boson Fermion Interactions

The W interactions with the top quark and VLQ are

$$\mathcal{L}_{W-f} = \frac{g}{\sqrt{2}} \cos \theta_L^t \, W_\mu^+ \gamma^\mu \, P_L \, b + \frac{g}{\sqrt{2}} \sin \theta_L^t \, W_\mu^+ \gamma^\mu \, P_L \, b + \text{h.c.} \quad (98)$$
The couplings of the neutral bosons to top quark and VLQ are defined as

\[\mathcal{L}_{V-f} = V_\mu \bar{f} \gamma^\mu (c^V_{L,f} P_L + c^V_{R,f} P_R) f', \]

where \(V = \gamma_d, Z \) and the couplings are

\[
\begin{align*}
 c^Z_{L,tt} &= \hat{g}_Z \left[\cos \theta_d \left(\frac{1}{2} \cos^2 \theta_L - Q_t \hat{s}^2_W \right) - \frac{1}{6} \sin \theta_d \hat{t}_W \varepsilon \left(1 + 3 \sin^2 \theta_L^t \right) \right] - g_d \sin \theta_d \sin^2 \theta_L^t, \\
 c^Z_{R,tt} &= -Q_t \hat{g}_Z \left(\cos \theta_d \hat{s}^2_W + \varepsilon \sin \theta_d \hat{t}_W \right) - g_d \sin \theta_d \sin^2 \theta_R^t, \\
 c^Z_{L,TT} &= \hat{g}_Z \left[\cos \theta_d \left(-Q_t \hat{s}^2_W + \frac{1}{2} \sin^2 \theta_L^t \right) \right] - g_d \sin \theta_d \cos^2 \theta_L^t, \\
 c^Z_{R,TT} &= -Q_T \hat{g}_Z \left(\cos \theta_d \hat{s}^2_W + \varepsilon \sin \theta_d \hat{t}_W \right) - g_d \sin \theta_d \cos^2 \theta_R^t, \\
 c^L_{L,tt} &= \frac{1}{4} \sin 2\theta_L \left[\hat{g}_Z \left(\cos \theta_d + \sin \theta_d \hat{t}_W \varepsilon \right) + 2 g_d \sin \theta_d \right], \\
 c^L_{R,tt} &= \frac{1}{2} g_d \sin \theta_d \sin 2\theta_R, \\
 c^{\gamma_4}_{L,tt} &= \hat{g}_Z \left[\sin \theta_d \left(\frac{1}{2} \cos^2 \theta_L - Q_t \hat{s}^2_W \right) \right] + \frac{1}{6} \cos \theta_d \hat{t}_W \varepsilon \left(1 + 3 \sin^2 \theta_L^t \right) + g_d \cos \theta_d \sin^2 \theta_L^t, \\
 c^{\gamma_4}_{R,tt} &= -Q_t \hat{g}_Z \left(\sin \theta_d \hat{s}^2_W - \cos \theta_d \hat{t}_W \varepsilon \right) + g_d \cos \theta_d \sin^2 \theta_R^t, \\
 c^{\gamma_4}_{L,TT} &= \hat{g}_Z \left[\sin \theta_d \left(-Q_t \hat{s}^2_W + \frac{1}{2} \sin^2 \theta_L^t \right) + Q_t \cos \theta_d \hat{t}_W \varepsilon \right] + g_d \cos \theta_d \cos^2 \theta_L^t, \\
 c^{\gamma_4}_{R,TT} &= -Q_t \hat{g}_Z \left(\sin \theta_d \hat{s}^2_W - \cos \theta_d \hat{t}_W \varepsilon \right) + g_d \cos \theta_d \cos^2 \theta_R^t, \\
 c^{\gamma_4}_{L,tt} &= \frac{1}{4} \sin 2\theta_L \left[\hat{g}_Z \left(\sin \theta_d - \cos \theta_d \hat{t}_W \varepsilon \right) - 2 g_d \cos \theta_d \right], \\
 c^{\gamma_4}_{R,tt} &= -\frac{1}{2} g_d \sin \theta_d \sin 2\theta_R \cos \theta_d.
\end{align*}
\]

The \(\gamma_d, Z \) interactions with the other SM fermions are flavor diagonal and can be obtained using the covariant derivative defined in Eq.(22) and their SM quantum numbers.

References

[1] K. Agashe, R. Contino, and A. Pomarol, The Minimal composite Higgs model, *Nucl. Phys. B* 719 (2005) 165–187, arXiv:hep-ph/0412089 [hep-ph].

[2] K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, *Nucl. Phys. B* 742 (2006) 59–85, arXiv:hep-ph/0510164 [hep-ph].

[3] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, A Custodial symmetry for Zbb, *Phys. Lett. B* 641 (2006) 62–66, arXiv:hep-ph/0605341 [hep-ph].

[4] R. Contino, L. Da Rold, and A. Pomarol, Light custodians in natural composite Higgs models, *Phys. Rev. D* 75 (2007) 055014, arXiv:hep-ph/0612048 [hep-ph].
[5] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, *The Strongly-Interacting Light Higgs*, *JHEP* **06** (2007) 045, arXiv:hep-ph/0703164 [hep-ph].

[6] A. Azatov and J. Galloway, *Light Custodians and Higgs Physics in Composite Models*, *Phys. Rev. D* **85** (2012) 055013, arXiv:1110.5646 [hep-ph].

[7] J. Serra, *Beyond the Minimal Top Partner Decay*, *JHEP* **09** (2015) 176, arXiv:1506.05110 [hep-ph].

[8] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, *The Littlest Higgs*, *JHEP* **07** (2002) 034, arXiv:hep-ph/0206021 [hep-ph].

[9] N. Arkani-Hamed, A. G. Cohen, T. Gregoire, and J. G. Wacker, *Phenomenology of electroweak symmetry breaking from theory space*, *JHEP* **08** (2002) 020, arXiv:hep-ph/0202089 [hep-ph].

[10] I. Low, W. Skiba, and D. Tucker-Smith, *Little Higgses from an antisymmetric condensate*, *Phys. Rev. D* **66** (2002) 072001, arXiv:hep-ph/0207243 [hep-ph].

[11] S. Chang and J. G. Wacker, *Little Higgs and custodial SU(2)*, *Phys. Rev. D* **69** (2004) 035002, arXiv:hep-ph/0303001 [hep-ph].

[12] C. Csaki, J. Hubisz, G. D. Kribs, P. Meade, and J. Terning, *Variations of little Higgs models and their electroweak constraints*, *Phys. Rev. D* **68** (2003) 035009, arXiv:hep-ph/0303236 [hep-ph].

[13] M. Perelstein, M. E. Peskin, and A. Pierce, *Top quarks and electroweak symmetry breaking in little Higgs models*, *Phys. Rev. D* **69** (2004) 075002, arXiv:hep-ph/0310039 [hep-ph].

[14] M.-C. Chen and S. Dawson, *One loop radiative corrections to the rho parameter in the littlest Higgs model*, *Phys. Rev. D* **70** (2004) 015003, arXiv:hep-ph/0311032 [hep-ph].

[15] J. Berger, J. Hubisz, and M. Perelstein, *A Fermionic Top Partner: Naturalness and the LHC*, *JHEP* **07** (2012) 016, arXiv:1205.0013 [hep-ph].

[16] J. H. Kim and I. M. Lewis, *Loop Induced Single Top Partner Production and Decay at the LHC*, *JHEP* **05** (2018) 095, arXiv:1803.06351 [hep-ph].

[17] H. Alhazmi, J. H. Kim, K. Kong, and I. M. Lewis, *Shedding Light on Top Partner at the LHC*, *JHEP* **01** (2019) 139, arXiv:1808.03649 [hep-ph].
[18] A. De Rujula, L. Maiani, and R. Petronzio, *Search for Excited Quarks*, *Phys. Lett.* **140B** (1984) 253–258.

[19] J. H. Kuhn and P. M. Zerwas, *Excited Quarks and Leptons*, *Phys. Lett.* **147B** (1984) 189–196.

[20] U. Baur, I. Hinchliffe, and D. Zeppenfeld, *Excited Quark Production at Hadron Colliders*, *Int. J. Mod. Phys.* **A2** (1987) 1285.

[21] U. Baur, M. Spira, and P. M. Zerwas, *Excited Quark and Lepton Production at Hadron Colliders*, *Phys. Rev.* **D42** (1990) 815–824.

[22] A. Anandakrishnan, J. H. Collins, M. Farina, E. Kuflik, and M. Perelstein, *Odd Top Partners at the LHC*, *Phys. Rev.* **D93** no. 7, (2016) 075009, arXiv:1506.05130 [hep-ph].

[23] M. J. Dolan, J. L. Hewett, M. Krämer, and T. G. Rizzo, *Simplified Models for Higgs Physics: Singlet Scalar and Vector-like Quark Phenomenology*, *JHEP* **07** (2016) 039, arXiv:1601.07208 [hep-ph].

[24] N. Bizot, G. Cacciapaglia, and T. Flacke, *Common exotic decays of top partners*, *JHEP* **06** (2018) 065, arXiv:1803.00021 [hep-ph].

[25] M. Chala, R. Gröber, and M. Spannowsky, *Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter*, *JHEP* **03** (2018) 040, arXiv:1801.06537 [hep-ph].

[26] J. A. Aguilar-Saavedra, D. E. López-Fogliani, and C. Muñoz, *Novel signatures for vector-like quarks*, *JHEP* **06** (2017) 095, arXiv:1705.02526 [hep-ph].

[27] M. Chala, *Direct bounds on heavy toplike quarks with standard and exotic decays*, *Phys. Rev.* **D96** no. 1, (2017) 015028, arXiv:1705.03013 [hep-ph].

[28] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler, *Charged Composite Scalar Dark Matter*, *JHEP* **11** (2017) 094, arXiv:1707.07685 [hep-ph].

[29] K. Das, T. Mondal, and S. K. Rai, *Nonstandard signatures of vectorlike quarks in a leptophobic 221 model*, *Phys. Rev.* **D99** no. 11, (2019) 115002, arXiv:1807.08160 [hep-ph].

[30] B. Holdom, *Two U(1)’s and Epsilon Charge Shifts*, *Phys. Lett.* **166B** (1986) 196–198.
[31] J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D80 (2009) 075018, arXiv:0906.0580 [hep-ph].

[32] R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013. 2013. arXiv:1311.0029 [hep-ph].

[33] H. Davoudiasl, H.-S. Lee, and W. J. Marciano, Dark Side of Higgs Diphoton Decays and Muon g-2, Phys. Rev. D86 (2012) 095009, arXiv:1208.2973 [hep-ph].

[34] Q. Lu, D. E. Morrissey, and A. M. Wijangco, Higgs Boson Decays to Dark Photons through the Vectorized Lepton Portal, JHEP 06 (2017) 138, arXiv:1705.08896 [hep-ph].

[35] D. Curtin, R. Essig, S. Gori, and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157, arXiv:1412.0018 [hep-ph].

[36] K. Kong, H.-S. Lee, and M. Park, Dark decay of the top quark, Phys. Rev. D89 no. 7, (2014) 074007, arXiv:1401.5020 [hep-ph].

[37] J. Alimena et al., Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497 [hep-ex].

[38] H. Davoudiasl, H.-S. Lee, I. Lewis, and W. J. Marciano, Higgs Decays as a Window into the Dark Sector, Phys. Rev. D88 no. 1, (2013) 015022, arXiv:1304.4935 [hep-ph].

[39] T. G. Rizzo, Kinetic Mixing and Portal Matter Phenomenology, Phys. Rev. D99 no. 11, (2019) 115024, arXiv:1810.07531 [hep-ph].

[40] N. Arkani-Hamed and N. Weiner, LHC Signals for a SuperUnified Theory of Dark Matter, JHEP 12 (2008) 104, arXiv:0810.0714 [hep-ph].

[41] M. Tanabashi et al., Particle Data Group Collaboration, Review of Particle Physics, Phys. Rev. D98 no. 3, (2018) 030001.

[42] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D46 (1992) 381–409.

[43] G. Degrassi and A. Sirlin, Gauge invariant selfenergies and vertex parts of the Standard Model in the pinch technique framework, Phys. Rev. D46 (1992) 3104–3116.
[44] G. Degrassi, B. A. Kniehl, and A. Sirlin, *Gauge invariant formulation of the S, T, and U parameters*, Phys. Rev. D48 (1993) R3963–R3966.

[45] L. Lavoura and J. P. Silva, *The Oblique corrections from vector - like singlet and doublet quarks*, Phys. Rev. D47 (1993) 2046–2057.

[46] H.-J. He, N. Polonsky, and S.-f. Su, *Extra families, Higgs spectrum and oblique corrections*, Phys. Rev. D64 (2001) 053004, arXiv:hep-ph/0102144 [hep-ph].

[47] J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria, *Handbook of vectorlike quarks: Mixing and single production*, Phys. Rev. D88 no. 9, (2013) 094010, arXiv:1306.0572 [hep-ph].

[48] S. Dawson and E. Furlan, *A Higgs Conundrum with Vector Fermions*, Phys. Rev. D86 (2012) 015021, arXiv:1205.4733 [hep-ph].

[49] S. A. R. Ellis, R. M. Godbole, S. Gopalakrishna, and J. D. Wells, *Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications*, JHEP 09 (2014) 130, arXiv:1404.4398 [hep-ph].

[50] C.-Y. Chen, S. Dawson, and E. Furlan, *Vectorlike fermions and Higgs effective field theory revisited*, Phys. Rev. D96 no. 1, (2017) 015006, arXiv:1703.06134 [hep-ph].

[51] M. Bowen, Y. Cui, and J. D. Wells, *Narrow trans-TeV Higgs bosons and H —¿ hh decays: Two LHC search paths for a hidden sector Higgs boson*, JHEP 03 (2007) 036, arXiv:hep-ph/0701035 [hep-ph].

[52] S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, *Singlet Higgs phenomenology and the electroweak phase transition*, JHEP 08 (2007) 010, arXiv:0705.2425 [hep-ph].

[53] V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf, and G. Shaughnessy, *LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet*, Phys. Rev. D77 (2008) 035005, arXiv:0706.4311 [hep-ph].

[54] G. M. Pruna and T. Robens, *Higgs singlet extension parameter space in the light of the LHC discovery*, Phys. Rev. D88 no. 11, (2013) 115012, arXiv:1303.1150 [hep-ph].

[55] D. López-Val and T. Robens, *Δr and the W-boson mass in the singlet extension of the standard model*, Phys. Rev. D90 (2014) 114018, arXiv:1406.1043 [hep-ph].

[56] T. Robens and T. Stefaniak, *Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1*, Eur. Phys. J. C75 (2015) 104, arXiv:1501.02234 [hep-ph].
[57] A. Hook, E. Izaguirre, and J. G. Wacker, *Model Independent Bounds on Kinetic Mixing*, *Adv. High Energy Phys.* **2011** (2011) 859762, arXiv:1006.0973 [hep-ph].

[58] B. Clerbaux, W. Fang, A. Giammanco, and R. Goldouzian, *Model-independent constraints on the CKM matrix elements* $|V_{tb}|$, $|V_{ts}|$ and $|V_{td}|$, *JHEP* **03** (2019) 022, arXiv:1807.07319 [hep-ph]. [Physics2019,22(2019)].

[59] M. Aaboud et al., , *ATLAS* Collaboration, *Combination of the searches for pair-produced vector-like partners of the third-generation quarks at* $\sqrt{s} = 13$ TeV *with the ATLAS detector*, *Phys. Rev. Lett.* **121** no. 21, (2018) 211801, arXiv:1808.02343 [hep-ex].

[60] *CMS Collaboration* Collaboration, *Search for Pair Production of Vector-Like Quarks in the Fully Hadronic Channel*, Tech. Rep. CMS-PAS-B2G-18-005, CERN, Geneva, 2019.

[61] A. M. Sirunyan et al., , *CMS* Collaboration, *Search for vector-like T and B quark pairs in final states with leptons at* $\sqrt{s} = 13$ TeV, *JHEP* **08** (2018) 177, arXiv:1805.04758 [hep-ex].

[62] M. Aaboud et al., , *ATLAS* Collaboration, *Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at* $\sqrt{s} = 13$ TeV, *Phys. Rev.* **D98** no. 11, (2018) 112010, arXiv:1806.10555 [hep-ex].

[63] A. M. Sirunyan et al., , *CMS* Collaboration, *Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at* $\sqrt{s} = 13$ TeV, *Phys. Lett.* **B781** (2018) 574–600, arXiv:1708.01062 [hep-ex].

[64] A. M. Sirunyan et al., , *CMS* Collaboration, *Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at* $\sqrt{s} = 13$ TeV, *Phys. Lett.* **B772** (2017) 634–656, arXiv:1701.08328 [hep-ex].

[65] M. Aaboud et al., , *ATLAS* Collaboration, *Search for single production of vector-like quarks decaying into Wb in pp collisions at* $\sqrt{s} = 13$ TeV *with the ATLAS detector*, *JHEP* **05** (2019) 164, arXiv:1812.07343 [hep-ex].

[66] V. Khachatryan et al., , *CMS* Collaboration, *Search for a Higgs boson in the mass range from* 145 to 1000 GeV *decaying to a pair of W or Z bosons*, *JHEP* **10** (2015) 144, arXiv:1504.00936 [hep-ex].
[67] A. M. Sirunyan et al., , CMS Collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, JHEP 06 (2018) 127, arXiv:1804.01939 [hep-ex].

[68] M. Aaboud et al., , ATLAS Collaboration, Search for heavy ZZ resonances in the \(\ell^+\ell^-\ell^+\ell^- \) and \(\ell^+\ell^-\nu\bar{\nu} \) final states using proton-proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, Eur. Phys. J. C78 no. 4, (2018) 293, arXiv:1712.06386 [hep-ex].

[69] G. Aad et al., , ATLAS Collaboration, Search For Higgs Boson Pair Production in the \(\gamma\gamma b\bar{b} \) Final State using pp Collision Data at \(\sqrt{s} = 8 \) TeV from the ATLAS Detector, Phys. Rev. Lett. 114 no. 8, (2015) 081802, arXiv:1406.5053 [hep-ex].

[70] V. Khachatryan et al., , CMS Collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D94 no. 5, (2016) 052012, arXiv:1603.06896 [hep-ex].

[71] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C75 no. 9, (2015) 421, arXiv:1507.06706 [hep-ph].

[72] U. Haisch, J. F. Kamenik, A. Malinauskas, and M. Spira, Collider constraints on light pseudoscalars, JHEP 03 (2018) 178, arXiv:1802.02156 [hep-ph].

[73] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138–167, arXiv:0811.4169 [hep-ph].

[74] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605–2631, arXiv:1102.1898 [hep-ph].

[75] P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, and K. E. Williams, HiggsBounds – 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C74 no. 3, (2014) 2693, arXiv:1311.0055 [hep-ph].

[76] T. Robens, , Personal communication.
[77] A. Ilnicka, T. Robens, and T. Stefaniak, *Constraining Extended Scalar Sectors at the LHC and beyond*, *Mod. Phys. Lett.* A33 no. 10n11, (2018) 1830007, arXiv:1803.03594 [hep-ph].

[78] M. Battaglieri *et al.*, *US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report*, in *U.S. Cosmic Visions: New Ideas in Dark Matter* College Park, MD, USA, March 23-25, 2017. 2017. arXiv:1707.04591 [hep-ph].

[79] A. Schuessler and D. Zeppenfeld, *Unitarity constraints on MSSM trilinear couplings*, in *SUSY 2007 Proceedings, 15th International Conference on Supersymmetry and Unification of Fundamental Interactions*, July 26 - August 1, 2007, Karlsruhe, Germany, pp. 236–239. 2007. arXiv:0710.5175 [hep-ph].

[80] M. Aaboud *et al.*, , *ATLAS* Collaboration, *Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at \(\sqrt{s} = 13 \text{ TeV} \)*, *JHEP* 06 (2018) 166, arXiv:1802.03388 [hep-ex].

[81] D. de Florian *et al.*, , *LHC Higgs Cross Section Working Group* Collaboration, *Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector*, arXiv:1610.07922 [hep-ph].

[82] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, *The Higgs Hunter’s Guide*, Front. Phys. 80 (2000) 1–404.

[83] A. M. Sirunyan *et al.*, , *CMS* Collaboration, *Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \(\sqrt{s} = 13 \text{ TeV} \)*, arXiv:1809.05937 [hep-ex].

[84] *ATLAS Collaboration* Collaboration, *Combination of searches for invisible Higgs boson decays with the ATLAS experiment*, Tech. Rep. ATLAS-CONF-2018-054, CERN, Geneva, Nov, 2018.

[85] O. Matsedonskyi, G. Panico, and A. Wulzer, *On the Interpretation of Top Partners Searches*, *JHEP* 12 (2014) 097, arXiv:1409.0100 [hep-ph].

[86] M. Chala, J. Juknevich, G. Perez, and J. Santiago, *The Elusive Gluon*, *JHEP* 01 (2015) 092, arXiv:1411.1771 [hep-ph].

[87] A. Azatov, D. Chowdhury, D. Ghosh, and T. S. Ray, *Same sign di-lepton candles of the composite gluons*, *JHEP* 08 (2015) 140, arXiv:1505.01506 [hep-ph].
[88] J. P. Araque, N. F. Castro, and J. Santiago, *Interpretation of Vector-like Quark Searches: Heavy Gluons in Composite Higgs Models*, *JHEP* 11 (2015) 120, arXiv:1507.05628 [hep-ph].

[89] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedermann, *HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR*, *Comput. Phys. Commun.* 182 (2011) 1034–1046, arXiv:1007.1327 [hep-ph].

[90] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, *Parton distributions for the LHC*, *Eur. Phys. J.* C63 (2009) 189–285, arXiv:0901.0002 [hep-ph].

[91] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, *NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders*, *JHEP* 10 (2009) 042, arXiv:0907.3933 [hep-ph].

[92] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, *Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders*, *Phys. Rev. Lett.* 102 (2009) 182003, arXiv:0903.0005 [hep-ph].

[93] J. M. Campbell, R. K. Ellis, and F. Tramontano, *Single top production and decay at next-to-leading order*, *Phys. Rev.* D70 (2004) 094012, arXiv:hep-ph/0408158 [hep-ph].

[94] A. M. Sirunyan et al., *CMS Collaboration*, *Search for top squark pair production in pp collisions at $\sqrt{s} = 13$ TeV using single lepton events*, *JHEP* 10 (2017) 019, arXiv:1706.04402 [hep-ex].

[95] A. M. Sirunyan et al., *CMS Collaboration*, *Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s} = 13$ TeV*, *Phys. Rev.* D97 no. 3, (2018) 032009, arXiv:1711.00752 [hep-ex].

[96] A. M. Sirunyan et al., *CMS Collaboration*, *Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV*, *Phys. Rev.* D96 no. 3, (2017) 032003, arXiv:1704.07781 [hep-ex].

[97] A. M. Sirunyan et al., *CMS Collaboration*, *Search for new phenomena with the M_{T2} variable in the all-hadronic final state produced in proton–proton collisions at $\sqrt{s} = 13$ TeV*, *Eur. Phys. J.* C77 no. 10, (2017) 710, arXiv:1705.04650 [hep-ex].

[98] A. M. Sirunyan et al., *CMS Collaboration*, *Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks*, *Phys. Rev.* D97 no. 1, (2018) 012007, arXiv:1710.11188 [hep-ex].
[99] CMS Collaboration, Searches for new phenomena in events with jets and high values of the M_{T2} variable, including signatures with disappearing tracks, in proton-proton collisions at $\sqrt{s} = 13$ TeV, Tech. Rep. CMS-PAS-SUS-19-005, CERN, Geneva, 2019.

[100] M. Aaboud et al., ATLAS Collaboration, Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector, JHEP 12 (2017) 085, arXiv:1709.04183 [hep-ex].

[101] M. Aaboud et al., ATLAS Collaboration, Search for direct top squark pair production in final states with two leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, Eur. Phys. J. C77 no. 12, (2017) 898, arXiv:1708.03247 [hep-ex].

[102] C. Borschensky, M. Krämer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, and X. Portell, Squark and gluino production cross sections in pp collisions at $\sqrt{s} = 13, 14, 33 \text{ and } 100 \text{ TeV}$, Eur. Phys. J. C74 no. 12, (2014) 3174, arXiv:1407.5066 [hep-ph].

[103] S. Kraml, U. Laa, L. Panizzi, and H. Prager, Scalar versus fermionic top partner interpretations of $t\bar{t} + E_T^{\text{miss}}$ searches at the LHC, JHEP 11 (2016) 107, arXiv:1607.02050 [hep-ph].

[104] M. Aaboud et al., ATLAS Collaboration, Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 05 (2019) 041, arXiv:1812.09743 [hep-ex].

[105] A. M. Sirunyan et al., CMS Collaboration, Search for electroweak production of a vector-like T quark using fully hadronic final states, arXiv:1909.04721 [hep-ex].

[106] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D38 (1988) 3375.

[107] E. M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755.

[108] A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942–2945.
[109] J. Blümlein and J. Brunner, New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, *Phys. Lett.* **B731** (2014) 320–326, arXiv:1311.3870 [hep-ph].

[110] J. Blumlein and J. Brunner, New Exclusion Limits for Dark Gauge Forces from Beam-Dump Data, *Phys. Lett.* **B701** (2011) 155–159, arXiv:1104.2747 [hep-ex].

[111] R. Aaij et al., LHCb Collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, *Phys. Rev. Lett.* **120** no. 6, (2018) 061801, arXiv:1710.02867 [hep-ex].

[112] P. Ilten, Y. Soreq, M. Williams, and W. Xue, Serendipity in dark photon searches, *JHEP* **06** (2018) 004, arXiv:1801.04847 [hep-ph].

[113] D. Banerjee et al., NA64 Collaboration, Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN, *Phys. Rev. Lett.* **120** no. 23, (2018) 231802, arXiv:1803.07748 [hep-ex].

[114] M. Pospelov, Secluded U(1) below the weak scale, *Phys. Rev.* **D80** (2009) 095002, arXiv:0811.1030 [hep-ph].

[115] M. Endo, K. Hamaguchi, and G. Mishima, Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy, *Phys. Rev.* **D86** (2012) 095029, arXiv:1209.2558 [hep-ph].

[116] D. Babusci et al., KLOE-2 Collaboration, Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, *Phys. Lett.* **B720** (2013) 111–115, arXiv:1210.3927 [hep-ex].

[117] F. Archilli et al., KLOE-2 Collaboration, Search for a vector gauge boson in φ meson decays with the KLOE detector, *Phys. Lett.* **B706** (2012) 251–255, arXiv:1110.0411 [hep-ex].

[118] P. Adlarson et al., WASA-at-COSY Collaboration, Search for a dark photon in the $\pi^0 \to e^+e^-\gamma$ decay, *Phys. Lett.* **B726** (2013) 187–193, arXiv:1304.0671 [hep-ex].

[119] S. Abrahamyan et al., APEX Collaboration, Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, *Phys. Rev. Lett.* **107** (2011) 191804, arXiv:1108.2750 [hep-ex].

[120] H. Merkel et al., A1 Collaboration, Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron, *Phys. Rev. Lett.* **106** (2011) 251802, arXiv:1101.4091 [nucl-ex].
[121] M. Reece and L.-T. Wang, *Searching for the light dark gauge boson in GeV-scale experiments*, JHEP 07 (2009) 051, arXiv:0904.1743 [hep-ph].

[122] B. Aubert *et al.*, BaBar Collaboration, *Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Upsilon → gamma A0*, Phys. Rev. Lett. 103 (2009) 081803, arXiv:0905.4539 [hep-ex].

[123] J. H. Chang, R. Essig, and S. D. McDermott, *Revisiting Supernova 1987A Constraints on Dark Photons*, JHEP 01 (2017) 107, arXiv:1611.03864 [hep-ph].

[124] J. H. Chang, R. Essig, and S. D. McDermott, *Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle*, JHEP 09 (2018) 051, arXiv:1803.00993 [hep-ph].

[125] M. Backović, T. Flacke, J. H. Kim, and S. J. Lee, *Discovering heavy new physics in boosted Z channels: Z → l+ l− vs Z → ν̄ν*, Phys. Rev. D92 no. 1, (2015) 011701, arXiv:1501.07456 [hep-ph].

[126] M. Backovic, T. Flacke, J. H. Kim, and S. J. Lee, *Search Strategies for TeV Scale Fermionic Top Partners with Charge 2/3*, JHEP 04 (2016) 014, arXiv:1507.06568 [hep-ph].

[127] D. Curtin and M. E. Peskin, *Analysis of Long Lived Particle Decays with the MATHUSLA Detector*, Phys. Rev. D97 no. 1, (2018) 015006, arXiv:1705.06327 [hep-ph].