Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee

Stuart G. Tangye1,2 · Waleed Al-Herz3 · Aziz Bousfiha4 · Charlotte Cunningham-Rundles5 · Jose Luis Franco6 · Steven M. Holland7 · Christoph Klein8 · Tomohiro Morio9 · Eric Oksenhendler10 · Capucine Picard11,12 · Anne Puel13,14 · Jennifer Puck15 · Mikko R. J. Seppänen16 · Raz Somech17 · Helen C. Su7 · Kathleen E. Sullivan18 · Troy R. Torgerson19 · Isabelle Meyts20

Received: 20 March 2022 / Accepted: 2 May 2022 © The Author(s) 2022

Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.

Keywords Inborn errors of immunity · immune dysregulation · primary immunodeficiencies · autoinflammatory disorders · IUIS Committee update

Introduction
Inborn errors of immunity (IEI) are caused by damaging germline variants in single genes. IEI present clinically as increased susceptibility to infections, autoimmunity, auto-inflammatory diseases, allergy, bone marrow failure, and/or malignancy. While individually rare, the aggregated number of individuals with an IEI represents a significant health burden [1]. Genetic variants cause disease by altering the encoded gene product, such as by abolishing or reducing protein expression and function (null/hypomorphic) or modifying the protein to acquire gain-of-function (GOF) [2–5]. Mechanisms of disease in IEI depend on the nature of the variant as well as the mode of inheritance. Thus, monoallelic variants can cause disease by haploinsufficiency, negative dominance, or GOF. In contrast, biallelic genetic lesions (homozygous, compound heterozygous) cause autosomal recessive (AR) traits by loss of expression, loss of function (LOF), GOF, or even neomorphic function of the encoded protein, while X-linked recessive traits arise from LOF or GOF variants on the X chromosome, either in hemizygosity in males, or homozygous state in females.

The fact that some monogenic variants are pathogenic clearly highlights the non-redundant and fundamental roles of individual genes and proteins, and associated pathways and cell types, in the development and function of leukocytes and non-hematopoietic cells that contribute to immune homeostasis and host defense [6, 7]. Thus, IEI represent an elegant model linking defined monogenic defects with clinical phenotypes of immune dysregulation. IEI have also revealed mechanisms of disease pathogenesis in, and
enabled the implementation of gene- or pathway-specific therapies for the treatment of, rare and common conditions and established fundamental aspects of human immunology [8–10]. Thus, the study of IEI has enabled profound advances in molecular medicine and human biology.

Since 1970, an international expert committee comprising pediatric and adult clinical immunologists, clinician/scientists and researchers in basic immunology — initially under the auspices of the World Health Organization and currently the International Union of Immunological Societies (IUIS) — has provided the clinical and research communities with an update of genetic causes of immune deficiency and dysregulation https://iuis.org/committees/iei/ (Fig. 1A).

IEI are currently categorized into 10 Tables, with sub-tables segregating groups of disorders into overlapping phenotypes. These tables describe the following: combined

![Fig. 1 Accumulative discovery of novel inborn errors of immunity: 1980–2022.](image)
Here, we summarize data on the genetic cause of 55 gene sequencing to facilitate genetic diagnoses of IEI. Well as guiding the design of panels used for targeted intended as resources for clinicians and researchers, as "Phenotypical IUIS Classification" publications are characterization. This 2022 update and the accompany -

individuals, and the level of immune and mechanistic cases, the depth of the clinical descriptions of affected alternative candidate gene variants identified in single — cases for whom compelling mechanistic data are provided, often revealed from complementary studies in animal or cell culture models. We also considered whether sufficient justification was provided to exclude alternative candidate gene variants identified in single cases, the depth of the clinical descriptions of affected individuals, and the level of immune and mechanistic characterization. This 2022 update and the accompanying "Phenotypical IUIS Classification" publications are intended as resources for clinicians and researchers, as well as guiding the design of panels used for targeted gene sequencing to facilitate genetic diagnoses of IEI. Here, we summarize data on the genetic cause of 55 novel IEI, and 1 phenocopy due to autoantibodies, that have been assessed since the previous update [5] (Supplementary Table 1). Remarkably, 15 of the 55 novel IEI have come from the identification and extensive work-up of single patients. Two themes that are expanded in this new set of genes are narrow infection susceptibility and immune dysregulation, which collectively account for over half of the phenotypes associated with these new genetic etiologies of IEI. This paper increases the number of known genetic defects identified as causing IEI to 485 (Fig. 1A, B; see all Tables and Supplementary Table 1).

Novel Inborn Errors of Immunity

Novel gene defects have been found for most categories of IEI, including novel causes of:

- Combined immunodeficiencies (LCP2 (SLP76) [12], PAX7 [13, 14], ITPKB [15], SASH3 [16, 17], MAN2B2 [18], COPG1 [19], IKZF2 [20–23], CHUK [24], IKZF3 [25, 26], CRACR2A [27], CD28 [28]) (Table 1; Supplementary Table 1);
- Combined immunodeficiencies with syndromic features (MCM10 [29, 30], IL6ST [31–33], DIAPH1 [34]) (Table 2; Supplementary Table 1);
- B cell deficiencies, agammaglobulinemia, or hypogammaglobulinemia (FNIP1 [35, 36], SPII [37], PIK3CG [38, 39], POU2AF1 [40], CTNNBL1 [41], TNSRSF13 [42]) (Table 3; Supplementary Table 1);
- Immune dysregulation (RHOG [43], SOCS1 [44–46], PDCD1 [47], ELF4 [48, 49], TET2 [50], CEBPE [51], IKZF1 GOF [52]) (Table 4; Supplementary Table 1);
- neutropenia CXCRI2 [53, 54] (Table 5, Supplementary Table 1)
- innate immune defects resulting in susceptibility to mycobacterial/bacterial (TBX21 [55, 56], IFNG [57], TLR8 [58, 59]), viral (NOS2 [60], SNORA31 [61], ATG4A, MAP1LC3B2 [62], ZNFX1 [63–65], TLR7 [66–68]), and/or fungal infections (MAPK8 [69]) (Table 6; Supplementary Table 1);
- Autoimmune/autoinflammatory disorders (TMEM173 [70], LSM11, RNU7-1 [71], CDC42 [72–78], STAT2 [79, 80], ATAD3A [81], AR Tbk1 [82], C2orf69 [83, 84], RIPK1 [85, 86], NCKAP1L [87–89], SYK [90], HCK1 [91], IKBKG [92–94]; PSMB9 [95, 96]; and somatic variants in UBA1 [97]) (Table 7, 10, Supplementary Table 1);
• Bone marrow failure (MECOM1) [98, 99] (Table 9; Supplementary Table 1); and
• Phenocopies of IEI (somatic variants in TLR8 [58], autoAbs against type 1 IFNs [100–104]) (Table 10; Supplementary Table 1).

Novel IEI Phenocopy Known IEI, Confirming Critical Pathways for Immune Function

Some of these novel genetic findings link common clinical phenotypes that converge on a shared pathway. Examples in this update include:

• SLP76, encoded by LCP2, is part of the TCR signalosome, interacting with or being downstream of ZAP70, LCK, LAT and ITK [105]. Thus, the phenotype of AR SLP76 deficiency overlaps substantially with that of individuals with mutations in these genes [12].
• MCM10 is a component of the DNA replication machinery of mammalian cells and forms part of multimeric/multiprotein “replisome” complexes [106]. Thus, bi-allelic mutations in MCM10 result in a clinical phenocopy of AR MCM4 or GINS1 variants [29, 30], which also encode key proteins involved in DNA replication [106].
• The non-redundant role of IFNγ-mediated immunity in protection against mycobacterial infection was established by identifying individuals with mutations in not only IFNG itself [57], but also TBX21 [55], the transcription factor that regulates IFNγ, who develop Mendelian susceptibility to mycobacterial disease. T-bet deficiency also resulted in upper airway inflammation and Th2 dysregulation [56], further highlighting immune regulation mediated by opposing functions of transcription factors in T cells with distinct fates (Th1 vs Th2).

One Gene, Several Phenotypes

The discovery of novel IEI continues to demonstrate that distinct types of variants (GOF, LOF, mono-allelic, bi-allelic, exon splicing) in the same gene can cause disparate clinical conditions. This update includes AR and AD forms of IKZF2 (HELIOS) [20–23] and IL6ST [31–33] deficiency, as well as AD RIPK1 LOF [85, 86], AR GOF TMEM173/STING [70], AR LOF TBK1 [82], and mono-allelic IKZF1 GOF [52] variants which complement previous reports of AR RIPK1 deficiency, AD GOF TMEM173/STING, AD TBK1 deficiency, and mono-allelic IKZF1 inactivating variants, respectively [5]. AR GOF variants in CEBPE also represent a novel IEI [51]. Notably, these variants resulted in neomorphic function of the C/EBPε transcription factor, causing dysregulated expression of >400 genes, ~15–20% of which are not normally targeted by C/EBPε [51]. This may represent the prototype for neomorphic variants causing IEI.
Intriguingly, specific variants in *STAT2* or *IKBKG*—which are already well-known to cause IEIs—have recently been reported that cause very distinct phenotypes from those previously associated with pathogenic variants in these genes. *STAT2* plays a ying/yang role in type 1 IFN signalling. Thus, it is responsible for not only inducing, but also restraining, responses elicited via IFNαR1/2 complexes [110]. This regulatory role of *STAT2* is mediated by binding to and recruiting USP18 to IFNαR2, which then prevents further recruitment of JAKs to type 1 IFN receptors, thereby attenuating IFNα signalling [110]. Bi-allelic variants in *STAT2* that specifically affect amino acid R148 (*STAT2*R148Q/W) have now been reported [79, 80]. These *STAT2*R148Q/W variants are LOF for binding to USP18 [79, 80, 110]. Consequently, *STAT2*R148Q/W prevents USP18-mediated restraint of type 1 IFN signalling. It is important to appreciate that while *STAT2*R148Q/W is not intrinsically GOF, the net outcome of loss of *STAT2*-mediated regulation of type 1 IFN signalling is reminiscent of other Mendelian IFN-opathies. Indeed, *STAT2*R148Q/W is a phenocopy of USP18 deficiency [110], which is clearly distinct from severe susceptibility to some live attenuated viral vaccines and viral infections typical of individuals with null/nonsense mutations in *STAT2* [110]. Lastly, unique variants in *IKBKG* that result in deletion of exon 5 were found to cause an autoinflammatory disease which is also very different from ectodermal dysplasia and immunodeficiency that is typically associated with hypomorphic *IKBKG* variants that impair NEMO expression and/or function [92–94].

Somatic/mosaic disease-causing mutations in *TLR8* [58] and *UBA1* [97] have also been identified, even though the pathogenic alleles were detected in only 5–30% of most blood cells (*TLR8*) [58] or 50–85% of myeloid cells but not in lymphocytes of fibroblasts (*UBA1*) [97]. These findings are an important reminder to consider the nature of genetic variants identified from unbiased next-generation sequencing, recognizing multiple mechanisms of pathogenicity for the same gene. This is highlighted by at least 40 genes having multiple entries in the current update to reflect these distinct modes of disease pathogenesis (Supplementary Table). This also emphasizes the crucial need to undertake in-depth in vitro functional validation of any variant considered to be potentially pathogenic. Alternatively, it signifies the difficulty in excluding a candidate pathogenic variant without functional testing. It also underscores the need to consider variants detected at low allelic frequencies that may represent somatic/mosaic, rather than germline, variants. These findings also predict that somatic variants in key immune genes will be frequently discovered as causes of novel IEIs in the not-too-distant future [111].

IEI Define Specific Roles for Known Genes and Reveal Immune-Specific Functions of Novel Genes

One of most profound outcomes of discovering the genetic cause of an IEI is the ability to ascribe unequivocally non-redundant, as well as redundant, functions to a specific gene in human immunity. Classic examples of this are the fundamental requirement for *IL2RG* in humans for the development of *T* and NK cells, but not B cells, and the essential role of *STAT3* for *CD4*+ T cell differentiation into Th17 cells and subsequent host defense against fungal infections, but not for the generation of most other *CD4*+ T cell effector populations [112]. Findings included in this update confirm data from mice on the importance of *FNIP1* and *SPI1* (encoding PU.1) during human B cell development [35–37] and the fundamental regulatory role of PD-1 (encoded by *PDCD1*) in human immune function [47]. However, and perhaps counter to all expectations and immunology dogma relating to T cell co-stimulation, CD28 is required for host defense against HPV but is largely redundant in the face of other infectious pathogens [28]. Who would have thought!

The latest IEI have also revealed critical roles for genes not previously strongly associated with immune regulation and/or host defense. For instance, we have now learned that:

- The SH3-domain containing protein SASH3 contributes to B and T cell developments [16, 17].
- ZNFX1, a member of an RNA helicase superfamily, plays a dual role in human immunity, including in innate immune responses against viruses, bacteria, mycobacteria, and fungi, as well as in restraining type 1 IFN-mediated inflammation [63–65].
• The small nucleolar RNA SNORA31 plays a critical role in CNS-intrinsic immunity against HSV-2 infection, likely via production of type 1 IFN, yet the exact mechanism remains unknown [61].
• The hitherto uncharacterized protein-coding gene C2orf69 has a multitude of roles across numerous biological systems, including regulating autoinflammation [83, 84].

The discovery of these novel IEIs provides opportunities to further extend our understanding of human immunity and immune regulation.

SARS-CoV2 and Inborn Errors of Immunity

The emergence of novel pathogens poses potential health risks to the general population due to the lack of substantial pre-existing immune memory. More critically though, individuals with specific germline genetic variants — causing known and unknown IEIs — may be at greater risk of experiencing more severe disease following infection than the general population. The COVID-19 pandemic has indeed revealed genes and pathways essential for anti-SARS-CoV2 immunity. Genomic studies discovered that ~2–3% of cases of severe life-threatening SARS-CoV2 infection resulted from germline LOF/LOE variants in the type 1 IFN signaling pathway: TLR3, UNC93B1, TICAM1, TBK1, IRF3, IRF7, IFNAR1, and IFNAR2 [113]. These findings are reminiscent of earlier studies that identified variants in these genes in individuals susceptible to life-threatening infections with other viruses, including influenza virus, HSV-1, and live viral vaccines [114]. Hemizygous deleterious variants have also been identified in TLR7 in ~1% of males who developed severe/fatal COVID-19 [66–68]. Thus, X-linked TLR7 deficiency represents a novel IEI predisposing to severe COVID-19.

The importance of type 1 IFN in anti-SARS-CoV2 immunity was also realized by the finding that ~10–20% of patients with severe COVID-19 have high levels of neutralizing serum autoantibodies (autoAbs) against type 1 IFNs; these were not detected in asymptomatic infected individuals [100–104]. Collectively, these studies defined a non-redundant role for type 1 IFNs in host defense against SARS-CoV2 infection and established that autoAbs against type 1 IFN phenocopy an IEI.

Conclusions

The goals of the IUIS Expert Committee on IEI are to increase awareness, facilitate recognition, promote optimal treatment, and support research in the field of clinical immunology. Since the last IEI update, we have continued to witness the ongoing rapid identification, and molecular, biochemical, and cellular characterization, of genetic variants that cause human diseases by disrupting host defense or immune regulation. The 55 novel gene defects reported here bring to total number of IEI to 485 (Fig. 1A, B), thus underscoring the power of next-generation sequencing technologies and sophisticated functional validation of candidate pathogenic variants to (1) identify novel gene defects underlying human disease, (2) elucidate mechanisms of disease pathogenesis, (3) define non-redundant functions of key genes in human immune cell development, host defense and immune regulation, (4) expand the immunological and clinical phenotypes of IEI, and (5) implement gene-specific therapies. These fundamental discoveries continue to highlight the critical contributions of IEI to our broader understanding of basic, translational, and clinical immunology, as well as molecular medicine. And we will no doubt observe novel insights into basic and clinical immunology with the next wave of novel IEIs.
1. T-B+ Severe Combined Immune Deficiency (SCID)

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
IL2RG deficiency	IL2RG	XL	308230	Normal to low IgM, IgG+, IgA+, IgE+	Normal	Low NK	Severe and opportunistic infections, idiopathic neutropenia, hepatitis and cholangitis, Cryptosporidium infections, cholanguio carcinoma; autoimmune blood cytopenias; peripheral neuroectodermal tumors
RAG deficiency	RAG1	AR	179815	Very low	Very low	Decreased	Normal NK cell number, but increased risk of graft rejection, possibly due to activated NK cells
RAG2 deficiency	RAG2	AR	179816	Very low	Very low	Decreased	Normal NK cell number, but increased risk of graft rejection, possibly due to activated NK cells, radiation sensitivity
DCLRE1C deficiency	DCLRE1C	AR	605988	Very low	Very low	Decreased	Normal NK cell number, but increased risk of graft rejection, possibly due to activated NK cells, radiation sensitivity, microcephaly
DNA PKcs deficiency	PRKDC	AR	615496	Very low	Very low	Variable	Normal NK cell number, radiation sensitivity, microcephaly
Cernunnos/XLF deficiency	NHEJ1	AR	611290	Very low	Very low	Decreased	Normal NK cell number, radiation sensitivity, microcephaly
Adenosine deaminase (ADA) deficiency	ADA	AR	600067	Very low	Low, decreasing	Decreased	Low NK, bone defects, may have pulmonary alveolar proteinosis, cognitive defects
AK2 defect	AK2	AR	103020	Very low	Very Low	Decreased	Recurrent bacterial and viral infections, lymphoproliferation; neutropenia
Activated RAC2 defect	RAC2	AD GOF	602049	Very low	Very Low	Decreased	Recurrent bacterial and viral infections, lymphoproliferation; neutropenia

2. T-B- SCID

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
CD40 ligand (CD154) deficiency	CD40LG	XL	308230	Normal to low IgM, IgG, IgA, IgE	Normal	Low	Severe and opportunistic infections, idiopathic neutropenia, hepatitis and cholangitis, Cryptosporidium infections, cholangiocarcinoma; autoimmune blood cytopenias; peripheral neuroectodermal tumors
CD40 deficiency	CD40	AR	605984	Normal	Normal	Low	Recurrent infections, autoimmunity, gastrointestinal and biliary tract disease, liver disease, Cryptosporidium infections
ICOS deficiency	ICOS	AR	604558	Normal	Normal	Low	Recurrent infections, autoimmunity, gastrointestinal and biliary tract disease, liver disease
ICOSL deficiency	ICOSLG	AR	607176	Low	Low	Low	Recurrent bacterial and viral infections, autoimmunity
CD3 deficiency	CD3G	AR	186740	Normal number, but low TCR expression	Normal	Normal	Immune deficiency and autoimmunity of variable severity
CD8 deficiency	CD8A	AR	186910	Absent CD8, Normal CD4	Normal	Normal	May have immune dysregulation, autoimmunity
ZAP-70 deficiency (ZAP70 LOP)	ZAP70	AR	617006	Low CD8 number, normal CD4 number but with poor function	Normal	Normal	Recurrent infections, may be asymptomatic
ZAP-70 combined hypomorphic and activating mutations	ZAP70	AR (LOF/GOF)	617006	Decreased CD8, normal or decreased CD4 cells	Normal or decreased	Normal IgA, low IgM, low IgG, low IgE, protective Ab responses to vaccines	Severe autoimmunity (bulfous pemphigoid, inflammatory colitis
MHC class I deficiency	TAP1	AR	170260	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Vasculitis, pyoderma gangrenosum
MHC class II deficiency group A, B, C, D	TAP2	AR	170260	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Vasculitis, pyoderma gangrenosum
MHC class II deficiency	TAPB	AR	615662	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Bacterial infections, cutaneous granulomas. Absent LD1 associated proteins MHC-I, CD11a, CD11b, and CD1c
ZAP-70 combined	ZAP70	AR (LOF/GOF)	617006	Decreased CD8, normal or decreased CD4 cells	Normal or decreased	Normal IgA, low IgM, low IgG, low IgE, protective Ab responses to vaccines	Severe autoimmunity (bulfous pemphigoid, inflammatory colitis
IKAROS deficiency	IKZF1	AD ON	603023	no memory T cells	no memory B cells	Low Ig	Recurrent cryptosporidium infections, pneumocystis early CID onset

3. Combined Immunodeficiency (CID), Generally Less Profound than SCID

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
CD40 ligand (CD154) deficiency	CD40LG	XL	308230	Normal to low IgM, IgG, IgA, IgE	Normal	Low	Severe and opportunistic infections, idiopathic neutropenia, hepatitis and cholangitis, Cryptosporidium infections, cholangiocarcinoma; autoimmune blood cytopenias; peripheral neuroectodermal tumors
CD40 deficiency	CD40	AR	605984	Normal	Normal	Low	Recurrent infections, autoimmune blood cytopenias, granulomas
ICOS deficiency	ICOS	AR	604558	Normal	Normal	Low	Recurrent infections, autoimmune blood cytopenias, granulomas
ICOSL deficiency	ICOSLG	AR	607176	Low	Low	Low	Recurrent bacterial and viral infections, autoimmunity
CD3 deficiency	CD3G	AR	186740	Normal number, but low TCR expression	Normal	Normal	Immune deficiency and autoimmunity of variable severity
CD8 deficiency	CD8A	AR	186910	Absent CD8, Normal CD4	Normal	Normal	May have immune dysregulation, autoimmunity
ZAP-70 deficiency (ZAP70 LOP)	ZAP70	AR	617006	Low CD8 number, normal CD4 number but with poor function	Normal	Normal	Recurrent infections, may be asymptomatic
ZAP-70 combined hypomorphic and activating mutations	ZAP70	AR (LOF/GOF)	617006	Decreased CD8, normal or decreased CD4 cells	Normal or decreased	Normal IgA, low IgM, low IgG, low IgE, protective Ab responses to vaccines	Severe autoimmunity (bulfous pemphigoid, inflammatory colitis
MHC class I deficiency	TAP1	AR	170260	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Vasculitis, pyoderma gangrenosum
MHC class II deficiency group A, B, C, D	TAP2	AR	170260	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Vasculitis, pyoderma gangrenosum
MHC class II deficiency	TAPB	AR	615662	Low CD8, normal CD4, absent MHC I on lymphocytes	Normal	Normal	Vasculitis, pyoderma gangrenosum
ZAP-70 combined	ZAP70	AR (LOF/GOF)	617006	Decreased CD8, normal or decreased CD4 cells	Normal or decreased	Normal IgA, low IgM, low IgG, low IgE, protective Ab responses to vaccines	Severe autoimmunity (bulfous pemphigoid, inflammatory colitis
IKAROS deficiency	IKZF1	AD ON	603023	no memory T cells	no memory B cells	Low Ig	Recurrent cryptosporidium infections, pneumocystis early CID onset
Deficiency	Gene	Gene ID	Phenotype	Immunology	Other Features		
-----------	------	---------	-----------	------------	---------------		
DOCK deficiency	DOCK8	AR 243709	T cell lymphopenia, reduced naïve CD8+ T cells, increased exhausted CD8+ T cells, reduced MAIT, NKT cells, increased γδ T cells; poor proliferation; few Treg with poor function	Low IgM, normal/high IgG and IgA, very high IgG, poor antibody responses	Low NK cells with poor function. Eosinophilia, recurrent infections, cutaneous viral, fungal and staphylococcal infections, severe atopic/allergic disease, cancer diathesis		
DOCK2 deficiency	DOCK2	AR 603122	Low	Normal IgG normal or low, poor antibody responses	Early invasive herpes viral infections, skin infections, warts and molluscum, short stature, intellectual disability		
Polymerase γ deficiency	POLG1 POLG2	AR 603581	Low CD4+ T cells	Low IgG	Recurrent respiratory tract infections, skin infections, lymphoproliferation, autoimmune cytopenias, lymphoma, congenital heart disease		
RHOH deficiency	RHOH	AR 603037	Normal, few naïve T cells, restricted repertoire, poor proliferation to CD3	Normal	HPV infection, lung granulomas, molluscum contagiosum, lymphoma		
STK4 deficiency	STK4	AR 614666	CD8+ lymphopenia; reduced naïve T cells, increased TEM and TEMRA cells; poor proliferation	Reduced IgM, increased IgG, IgA, IgE; impaired Ab responses	Informant neoplasia, bacterial, viral (HPV, EBV, molluscum), candidal infections, lymphoproliferation, autoimmune cytopenias, lymphoma		
TCRα deficiency	TRAC	AR 615387	Absent TCRβ- except for a minor CD3dim TCRβ+ population; most T cells γδ; poor proliferation	Normal	Recurrent viral, bacterial, fungal infections, immune dysregulation and autoimmunity, diarrhea		
LCK deficiency	LCK	AR 615758	Low CD4+; few Treg, restricted T cell repertoire, poor TCR signaling	Normal IgG and IgA, high IgM	Recurrent infections, immune dysregulation, autoimmune disorders		
ITP deficiency	ITK	AR 156973	Progressive CD4+ T cell lymphopenia; reduced T cell activation	Normal	EBV associated B cell lymphoproliferation, lymphoma, immune dysregulation		
MALAT1 deficiency	MALAT1	AR 615468	Normal number, poor proliferation	Normal	Normal levels, poor specific antibody response		
CARD11 deficiency	CARD11	AR LOF	Normal number, predominantly naïve T cells, poor proliferation	Normal, transitional B cell predominance	Absent/low		
BCL10 deficiency	BCL10	AR 616098	Normal number, few memory T and Treg cells, poor antigen and anti-CD3 proliferation	Normal number, decreased memory and switched B cells	Low		
IL-21 deficiency	IL-21	AR 615767	Normal numbers, normal/low function	Low, decreased memory and switched B cells	Hypogammaglobulinemia, poor specific antibody responses; increased IgG		
IL-21R deficiency	IL-21R	AR 615207	Normal number, low cytokine production, poor antigen proliferation	Normal, decreased memory and switched B cells	Recurrent infections, Pneumocystis jirovecii pneumonia, bacterial and viral infections		
OKX40 deficiency	OKX40	AR 615933	Normal numbers, low antigen specific memory CD4+ cells	Normal numbers, low memory B cells	Impaired immunity to HHV8, Kaposi's sarcoma		
IKBKB deficiency	IKBKB	AR 615592	Normal number, absent Treg and γδ T cells, impaired TCR activation	Normal number, poor function	Low		
NIK deficiency	MAP3K14	AR 604655	Normal number, poor proliferation to antigen	Low, low switched memory B cells	Low IgG; Low NK number and function, recurrent bacterial, viral and Cryptosporidium infections		
RELB deficiency	RELB	AR 604758	Normal number, poor diversity, reduced proliferation to mitogens; no response to Ag	Marked increase in B cell number	Normal Ig levels, but impaired specific antibody responses		
RELA deficiency	RELA	AD 519287	Normal	Normal	Chronic mucocutaneous ulceration, Impaired NFκB activation; reduced production of inflammatory cytokines		
Moesin deficiency	MSN	XL 300988	Normal number, defective migration, proliferation	Low number	Low IgG over time		
TFRC deficiency	TFRC	AR 616740	Normal number, poor proliferation	Normal number, low memory B cells	Recurrent infections with bacteria, varicella, neutropenia		

Table 1 (continued)
Table 1 (continued)

Deficiency	Gene	Inheritance	N. Affected	T cell dysfunction	B cell dysfunction	Complement abnormalities	Other clinical manifestations	Laboratory findings
c-Rel deficiency	REL	AR	164910	Normal, decreased	Normal number	Normal	Re-activated infections with bacteria, mycobacteria, salmonella and opportunistic organisms. Defective innate immunity.	
FCHO1 deficiency	FCHO1	AR	613437	Low, poor	Normal number	Normal	Ommen-like syndrome (erythroderma, lymphocytosis, eosinophilia, severe recurrent infections), no thymus, T cell deficiency not corrected by HSCT. Otosefaciocervical syndrome type 2, ear abnormalities.	
PAX1 deficiency (8 patients)	PAX1	AR	610560	Severe T cell lymphopenia, low TREC's	Normal number	Normal	FTI, recurrent bacterial/fungal infections, pan-leukopenia, anemia, thrombocytopenia.	
ITPKB deficiency (1 patient)	ITPKB	AR	NA	Very low T cells	Normal	Normal IgM, A; low IgG	FTI, recurrent bacterial/fungal infections, pan-leukopenia, anemia, thrombocytopenia.	
SASH3 deficiency (5 patients)	SASH3	XL	NA	T/NK cell lymphopenia	B cell lymphopenia	Low, poor specific antibody responses	Recurrent sinopulmonary, cutaneous and mucosal infections, refractory autoimmune neutropenia.	
MAN2B2 deficiency (1 patient)	MAN2B2	AR	NA	Low T cells	Low B cells	Normal	Recurrent infections, vasculitis, arthritis, FTT, microcephaly, neurodevelopmental delay; congenital disorder of glycosylation.	
COPG1 deficiency (5 patients)	COPG1	AR	NA	T cell lymphopenia	Normal	Normal but poor Ig response to vaccines	Recurrent pneumonia, viral respiratory infections, chronic EBV, CMV viremia, FTT, bronchiectasis.	
HELIOS deficiency	IKZF2	AD	NA	Increased activated T cells	Normal number; reduced memory	Reduced	Recurrent upper respiratory infections/pneumonia, thrush, mucocutaneous ulcers, chronic lymphoadenopathy, SLE, ITP, AIHA (Evans's syndrome), EBV-associated HLH, lymphoma.	
IKKδ deficiency (1 patient)	CHUK	AR	NA	Normal	Reduced	Low	Recurrent bacterial, viral, fungal infections, absent secondary lymphoid tissues; skeletal abnormalities, FTT.	

SCID/CID spectrum: Infants with SCID who have maternal T cell engraftment may have T cells in normal numbers that do not function normally; these cells may cause autoimmune cytopenias or graft versus host disease. Hypomorphic mutations in several of the genes that cause SCID may result in Omenn syndrome (OS), or “leaky” SCID, or still less profound combined immunodeficiency (CID) phenotypes. Both OS and leaky SCID can be associated with >300 autologous T cells/μL of peripheral blood and reduced, rather than absent, proliferative responses when compared with typical SCID caused by null mutations. A spectrum of clinical findings including typical SCID, OS, leaky SCID, CID, granulomas with T lymphopenia, autoimmunity and CD4 T lymphopenia can be found in an allelic series of RAG1/2 and other SCID-associated genes. There can be clinical overlap between some genes listed here and those listed in Table 7.

Total number of mutant genes: 66. New inborn errors of immunity: 8 (SLP76 [12], PAX1 [13, 14], ITPKB [15]; SASH3 [16, 17], MAN2B2 [18], COPG1 [19], IKZF2 [20–23], CHUK [24])

SCID severe combined immunodeficiency, CID combined immunodeficiency, EBV Epstein-Barr virus, MHC major histocompatibility complex, HPV human papillomavirus, Treg T regulatory cell, XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, LOF loss-of-function, GOF gain-of-function, FTT failure to thrive.
1. Immunodeficiency with Congenital Thrombocytopenia

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	lg	Associated features
Wiskott-Aldrich syndrome (WAS LOF)	WAS	XL	300392	Progressive decrease in numbers, abnormal lymphocyte responses to anti-CD3 Normal numbers	Low IgM and antibody responses to polysaccharides, often high IgG and IgE	Thrombocytopenia with small platelets, eczema, recurrent bacterial/viral infections, bloody diarrhea, lymphoma, autoimmune disease, IgA, -nephropathy. Patients with XL-thrombocytopenia have later onset of complications and more favourable life expectancy but eventually develop similar complications as observed in WAS	
WIP deficiency	WIP1	AR	602357	Reduced, defective lymphocyte responses to anti-CD3 Normal or low	Normal except for high IgG	Thrombocytopenia with or without small platelets, recurrent bacterial and viral infections, eczema, bloody diarrhea, WAS protein absent	
Arp2/3-mediated filament branching defect	ARPC1B	AR	604223	Normal numbers	Normal numbers	Mtd thrombocytopenia with normal sized platelets, recurrent invasive infections, cutis, vasculitis, autoantibodies (ANA, ANCA), eosinophilia; defective Arp2/3 filament branching	

2. DNA Repair Defects Other Than Those Listed in Table 1

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	lg	Associated Features
Ataxia-filangiectasia	ATM	AR	600585	Progressive decrease, poor proliferation to mitogens; may have low TREC’s and T cells by newborn screening (NBS) Normal	Variably reduced	Often low IgA, IgE and IgG subclasses, increased IgM monomers; antibodies variably decreased	Ataxia-teleangiectasia especially of cerebellum, pulmonary infections; lymphocytopenia and other malignancies; increased alpha fetoprotein; increased radiosensitivity; chromosomal instability and chromosomal translocations
Nijmegen breakage syndrome	NBS1	AR	602686	Progressive decrease; may have low TREC’s and T cells by NBS	Normal	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency
Bloom syndrome	BLM	AR	600610	Normal	Normal	Low	Short stature, dysmorphic faces sun-sensitive erythema; narrow mouth; leukemia; lymphoma; chromosomal instability
Immunodeficiency with centromeric instability and facial anomalies (ICF types 1, 2, 3, 4)	DNMT3B	AR	602900	Decreased or normal	Decreased	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, developmental delay, macrocephaly as observed in ICF 1; radiosensitivity, malformations; increased radiosensitivity and chromosomal instability
Bloom syndrome	DUB1	AR	614064	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	
Bloom syndrome	CDCA7	AR	600937	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	
Bloom syndrome	REV3L	AR	600846	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	

Table 2 Combined immunodeficiencies with associated or syndromic features

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	lg	Associated Features
Bloom syndrome	BLM	AR	600610	Normal	Normal	Low	Short stature, dysmorphic faces sun-sensitive erythema; narrow mouth; leukemia; lymphoma; chromosomal instability
Bloom syndrome	DUB1	AR	614064	Decreased or normal	Decreased	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, developmental delay, macrocephaly as observed in ICF 1; radiosensitivity, malformations; increased radiosensitivity and chromosomal instability
Bloom syndrome	CDCA7	AR	600937	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	
Bloom syndrome	REV3L	AR	600846	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	

Table 2 Combined immunodeficiencies with associated or syndromic features

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	lg	Associated Features
Bloom syndrome	BLM	AR	600610	Normal	Normal	Low	Short stature, dysmorphic faces sun-sensitive erythema; narrow mouth; leukemia; lymphoma; chromosomal instability
Bloom syndrome	DUB1	AR	614064	Decreased or normal	Decreased	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, developmental delay, macrocephaly as observed in ICF 1; radiosensitivity, malformations; increased radiosensitivity and chromosomal instability
Bloom syndrome	CDCA7	AR	600937	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	
Bloom syndrome	REV3L	AR	600846	Decreased or normal	Hypogammaglobulinemia or agammaglobulinemia, variable antibody deficiency	Facial dysmorphic features, macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidirectional configurations of chromosomes 1, 9, 16	
3. Thymic Defects with Additional Congenital Anomalies

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
DiGeorge/velocardio-facial syndrome	Large deletion (3Mb) typically in chromosome 22 (TBX1)	AD	602054	Decreased or normal; 5% have low TREC at NBS and <1500 CD3T cells/µL in neonatal period	Normal or decreased	Normal or decreased	Hypoparathyroidism; conotruncal cardiac malformation; velopapalatal insufficiency; abnormal facies; intellectual disability
DiGeorge/velocardio-facial syndrome	Unknown	Sporadic		Decreased or normal			
TBX1 deficiency	TBX1	AD	602054	Decreased or normal may have low TREC at NBS			
CHARGE syndrome	CHD7	AD	608892	Decreased or normal may have low TREC at NBS; response to PHA may be decreased	Normal or decreased	Normal or decreased	Coloboma of eye; heart anomaly; choanal atresia; intellectual disability; genitourinary anomalies; CNS malformation; some are SCID-like
Winged helix nude FOXN1 deficiency	FOXN1	AR	601705	Very low	Normal	Decreased	Severe infections; abnormal thymic epithelium; immunodeficiency; congenital alopecia; nail dystrophy; neural tube defect
FOXN1 haploinsufficiency	FOXN1	AD	600913	Severe T cell lymphopenia at birth, normalised by adulthood	Normal/low	Not assessed	Recurrent; viral and bacterial respiratory tract infections; skin involvement (eczema, dermatitis), nail dystrophy
Chromosome 10p13-p14 deletion syndrome (10p13-p14DS)	Del10p13-p14	AD	601362	Normal, rarely lymphopenia and decreased lymphoproliferation to mitogens and antigens; hypoplastic thymus may be present	Normal	Normal	Hypoparathyroidism; renal disease; deafness; growth retardation; facial dysmorphism; cardiac defects may be present; recurrent infections +/-
Chromosome 11q deletion syndrome (Jacobsen syndrome)	11q23del	AD	147791	Lymphopenia; low NK cells Decreased B cells and switched memory B cells	Decreased to normal	Decreased normal	Recurrent respiratory infections; multiple warts; facial dysmorphism, growth retardation

4. Immuno-osseous Dysplasias

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
Cartilage hair hypoplasia (CHH)	RMRP	AR	157660	Normal	Normal or reduced, antibodies variably decreased	Short-limbed dwarfism with metaphyseal dysostosis; sparse hair; bone marrow failure; autoimmunity; susceptibility to lymphoma and other cancers; impaired spermatogenesis; neuronal dysplasia of the intestine	
Schimke Immuno-osseous dysplasia	SMARCAL1	AR	606622	Decreased	Normal	Normal	Short stature, spodnyloepiphysyal dysplasia, intrauterine growth retardation; nephropathy; bacterial, viral, fungal infections; may present as SCID; bone marrow failure
MYSM1 deficiency	MYSM1	AR	612176	T cell lymphopenia, reduced naive T cells, low NK cells	Decreased B-cell deficiency	Hypogammaglobulinemia	Short stature; recurrent infections; congenital bone marrow failure, myelodysplasia; immunodeficiency affecting B-cells and granulocytes; skeletal anomalies; cataracts; developmental delay
MOPD1 Deficiency (Rofman syndrome)	RNU4ATAC	AR	601428	Decreased NK cell function	Decreased total and memory B cells	Hypogammaglobulinemia, variably decreased specific antibodies	Recurrent bacterial infections; lymphadenopathy; spodnyloepiphysyal dysplasia, extreme intrauterine growth retardation; renal dystrophy; facial dysmorphism; may present with microcephaly; short stature
Immunoskeletal dysplasia with neurodevelopmental abnormalities (EXTL3 deficiency)	EFTL3	AR	617425	Decreased	Normal	Decreased to normal	Short stature; cervical spinal stenosis, neurodevelopmental impairment; eosinophilia; may have early infant mortality
5. Hyper IgE Syndromes (HIES)

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
AD-HIES STAT3 deficiency (Job syndrome)	STAT3	AD LOF (dominant negative)	147960	Normal overall; Th17, T follicular helper, MAIT, NKT cells decreased; Treogs may be increased; impaired responses to STAT3-activating cytokines	Normal, reduced memory B cells, BAFF expression increased, impaired responses to STAT3-activating cytokines	Very high IgE, specific antibody production decreased	Distinctive facial features (broad nasal bridge), bacterial infections (boli, pulmonary abscesses, pneumatoceles) due to S. aureus, pulmonary Aspergillus, H. influenzae, Pneumocystis (trowes), eczema, mucocutaneous candidiasis, hyperextensible joints, osteosclerosis and bone fractures, scoliosis, retained primary teeth, coronary and cerebral aneurysms
IL-6 receptor deficiency	IL6R	AR	147880	Normal Increases; normal responses to mitogens	Normal total and memory B cells; reduced switched memory B cells	Normal low serum IgM, G, A, V. Very high IgE, specific antibody production low	Recurrent pyogenic infections, cold abscesses, high circulating IL-6 levels
IL-6 signal transducer (IL6ST) deficiency (partial)	IL6ST	AD	618523	Decreased Th17 cells	Reduced switched and non-switched memory B cells	High IgE, specific antibody production variably affected	Bacterial infections, boils, eczema, pulmonary abscesses, pneumatoceles; bone fractures; scoliosis; retention of primary teeth; craniofacial anomalies
IL6ST deficiency (partial) (12 patients)	IL6ST	AD	619752	Normal, increased naive, increased Th2	Normal total but reduced memory	Normal IgM, G, A, hyper-IgE	Dermatitis/eczema, eosinophilia, recurrent skin infections, pneumonia, bronchiolitis, pneumatoceles with severe secondary pulmonary aspergillosis, connective tissue defects (scloiosis, face, joints, fractures, palate, tooth retention). Phenocopy aspects of IL6R and IL1R deficiencies (due to unresponsiveness to these cytokines), as well as STAT3 ONAR ZNF341
IL6ST deficiency (complete) (6 patients)	IL6ST	AR	619751	ND death in utero or in neonatal period occurred for most affected individuals	Normal overall, but impaired responses to STAT3-activating cytokines	High IgE and IgG, specific antibody production decreased	Phenocopy of AD-HIES; mild facial dysmorphism; early onset eczema, MCD, bacterial skin infections, abscesses, recurrent bacterial respiratory infections (S. aureus), lung abscesses and pneumatoceles; hyperextensible joints; bone fractures and retention of primary teeth
ZNF341 deficiency	ZNF341	AR	618283	Decreased Th17 and NK cells	Normal, reduced memory B cells, impaired responses to STAT3-activating cytokines	High IgE and IgG, specific antibody production decreased	Pheno.py of AD-HIES; mild facial dysmorphism; early onset eczema, MCD, bacterial skin infections, abscesses, recurrent bacterial respiratory infections (S. aureus), lung abscesses and pneumatoceles; hyperextensible joints; bone fractures and retention of primary teeth
ERBB2 deficiency	ERBB2	AD	900944	Increased circulating Treg	Normal	Moderately increased IgE	Recurrent respiratory infections; susceptibility to S. aureus, eczema; hyperextensible joints, scoliosis, arterial dilatation in some patients
Loes-Deitz syndrome (TGFBR deficiency)	TGFBR1	AD	609190	Normal	Normal	Elevated IgE	Recurrent respiratory infections; eczema, food allergies; hyperextensible joints, scoliosis; retent ion of primary teeth; aortic aneurysms
Comed-Netherton syndrome	SPINK5	AR	600010	Normal	Low switched and non-switched B cells	High IgE and IgG, Antibody variably decreased	Congenital diarrhoxis, panda hair, atopic diathesis; increased bacterial infections; failure to thrive
PGM3 deficiency	PGM3	AR	172100	CDR and CD4 T cells may be decreased	Low B and memory B cells	Normal or elevated IgG and IgA, most with high IgE, eosinophilia	Severe and sometimes fatal bacterial and viral infections; skeletal anomalies/dysplasia: short stature, brachydactyly, dysmorphic facial features; intellectual disability and cognitive impairment, delayed CNS myelination in some affected individuals
CARD11 deficiency (heterozygous DN)	CARD11	AD LOF	617638	Normal overall, but defective T cell activation and proliferation; skewing toward Th2	Normal to low	High IgE, poor specific antibody production; impaired activation of both NF-kB and mTORC1 pathways	Variable atopy, eczema, food allergies, eosinophilia; cutaneous viral infections, recurrent respiratory infections; lymphoma; CID

6. Defects of Vitamin B12 and Folate Metabolism

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
Transcobalamin 2 deficiency	TCN2	AR	613441	Normal	Variable	Decreased	Megaloblastic anaemia, pancytopenia; if untreated (B12) for prolonged periods results in intellectual disability
SLC4A1/PCFT deficiency causing hereditary folate malabsorption	SLC4A1	AR	229095	Variable numbers and activation profile	Variable	Decreased	Megaloblastic anaemia, failure to thrive; if untreated for prolonged periods results in intellectual disability
Methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1) deficiency	MTHFD1	AR	170460	Low thymic output, normal in vitro proliferation	Low	Decreased/normal antibody responses to conjugated polysaccharide antigens	Recurrent bacterial infection, Pneumocystis jirovecii; megaloblastic anaemia; failure to thrive; neutropenia; seizures, intellectual disability; folate-responsive

7. Anhidrotic Ectodermal Dysplasia with Immunodeficiency (EDA-ID)

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
EDA-ID due to NEMO IKBKG deficiency (ectodermal dysplasia, immune deficiency)	IKBKG	XL	300248	Normal or decreased, TCR activation impaired	Normal	Decreased, some with elevated IgG, IgM, poor antibody responses, absent antibodies to polyclonal antibodies	Anhidrotic ectodermal dysplasia (in some); various infections (bacteria, mycobacteria, viruses, fungi); colitis; conical teeth, variable defects of skin, hair and teeth; monocyte dysfunction
EDA-ID due to IKBA-GOF mutation	NFkB1A	AD GOF	64006	Normal total T cells, TCR activation impaired	Normal B cell numbers, impaired BCR activation, low memory and isotype switched B cells	Decreased IgG and IgA, elevated IgG, poor specific antibody response, absent antibodies to polyclonal antibodies	Anhidrotic ectodermal dysplasia; various infections (bacteria, mycobacteria, viruses, fungi); colitis; variable defects of skin, hair and teeth; T cell and monocyte dysfunction
8. Calcium Channel Defects

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features
CACNA1 deficiency	ORMA1	AR	610277	Decreased T cells, impaired TCR activation	Normal	Normal or low	Autosomal hypomorphic anemia; neurological impairment
STIM1 deficiency	STIM1	AR	610551	Inheritance	Normal	Normal	
CRACR2A deficiency (1 patient)	CRACR2A	AR	NA	Mild reduction in T cell numbers	Normal	Low	Later onset, chronic diarrhea, recurrent lower respiratory tract infections, including pneumonia

9. Other Defects

Disease	Genetic defect	Inheritance	OMIM	T cells	B cells	Ig	Associated features	
Purine nucleotide phosphorylase (PNP)	PNP	AR	144900	Progressive decrease	Normal	Normal or low	Congenital abnormalities, cranial dystrophy; developmental abnormalities	
Immunodeficiency with multiple intestinal atresias	TTCTA	AR	609332	Variable, but sometimes absent or low TREC at birth	Normal or low	Markedly decreased IgG, IgM, IgA	Bacterial septicaemia; viral infections; multiple intestinal atresias; hypereosinophilic syndrome; oral abnormalities	
Tricho-Hepato-Erantic Syndrome (THES)	TTCT37	AR	222470	Impaired IFNγ production	Normal	Variable low number of switched memory B cells	Hypogammaglobulinemia; may have low antibody responses	Respiratory infections; IUGR; facial dysmorphic features; wooly hair; early onset intractable diarrhea; liver cirrhosis; platelet abnormalities
Hepatic veno-occlusive disease with immunodeficiency (VOID)	SP110	AR	604457	Normal (decreased memory T cells)	Normal	Decreased IgG, IgA, IgM, absent germinal center and tissue plasma cells	Respiratory infections; IUGR; facial dysmorphic features; wooly hair; early onset intractable diarrhea; liver cirrhosis; platelet abnormalities	
BCL11B deficiency	BCL11B	AD	617237	Low, poor proliferation	Normal	Normal	Congenital abnormalities, cranial dystrophy; developmental abnormalities	
EPGS deficiency (Ric syndrome)	EPGS	AR	619068	Profound depletion of CD4+ cells	Defective	Decreased (particularly IgG2)	Agenesis of the corpus calicis; cataracts; cardiomyopathy; skin hypopigmentation; intellectual disability; microcephaly; recurrent infections, chronic mucocutaneous candidiasis	
HOIL1 deficiency	RBCK1	AR	610294	Normal numbers	Normal	Decreased antibody responses	Bacterial infections; autoinflammation; amylopectinosis	
HDP deficiency	RNF31	AR	612487	Normal, decreased memory B cells	Normal	Decreased	Bacterial infections; autoinflammation; amylopectinosis	
Hennekam-lymphangiectasia-lymphedema syndrome	CCBE1	AR	612753	Low variable	Low variable	Decreased	Hypogammaglobulinemia; decreased antibody responses	Recurrent respiratory and skin infections; growth retardation; developmental delay; white matter cerebral lesions; increased level of homocysteine; increased expression of stress response genes; early mortality
Activating de novo mutations in nuclear factor, erythroid 2-like (NEF2L2)	NEF2L2	AD	617744	Not reported	Decreased	Decreased	Hypogammaglobulinemia; decreased antibody responses	Recurrent respiratory and skin infections; growth retardation; developmental delay; white matter cerebral lesions; increased level of homocysteine; increased expression of stress response genes; early mortality
STAT5b deficiency	STAT5B	AR	245590	Modestly decreased, reduced Treg number and function	Normal	Increased IgE	Growth-hormone resistant dwarfism; dysmorphic features; seizures; lymphocytic interstitial pneumonitis; prominent autoimmunity	
STAT5b deficiency (dominant negative)	STAT5B	AD	604260	Normal	Normal	Increased IgE	Growth-hormone resistant dwarfism; dysmorphic features; seizures; lymphocytic interstitial pneumonitis; prominent autoimmunity	
Kabuki syndrome (type 1 and 2)	KMTF2D	AD	682113	Normal	Normal	Low IgG and occasionally low IgA	Typical facial abnormalities, cleft or high arched palate, skeletal abnormalities, short stature; intellectual disability; congenital heart defects; recurrent infections (otitis media, pneumonia); in 50% of patients; autoimmunity may be present	
KMT2A deficiency (Wiedemann-Steiner syndrome)	KMT2A	AD	689192	Normal	Normal	Decreased	Hypogammaglobulinemia; decreased antibody responses	Respiratory infections; short stature; hypotonia; hairy elbows; developmental delay; intellectual disability
DIAPH1 deficiency (7 patients)	DIAPH1	AR	616632	Decreased naive T cells	Decreased	Decreased memory B cells	Low IgM, normal	Seizures, cortical blindness, microcephaly syndrome (SCBMS); recurrent bacterial, viral, fungal infections; B-lymphoma (3/7)
AIOLOS deficiency (7 patients)	IKZF3	AD	610437	Normal	Reduced, impaired development	Very low	EBV susceptibility, recurrent simonopharyngitis & respiratory infections, Pneumocystis jiroveci, warts (HPV), M avium, B cell malignancy	
CD28 deficiency (3 patients)	CD28	AR	NA	Normal	Normal	Normal	Susceptibility to HPV infection only	

Total number of mutant genes in Table 2: 69. New inborn errors of immunity: 7 (MCM10 [29, 30], AR and AD IL6ST [31–33], CRACR2A [27], DIAPH1 [34], IKZF3 [25, 26], CD28 [28]). Unknown cause of DiGeorge syndrome, unknown cause of CHARGE syndrome, unknown gene(s) within 10p13-14 deletion responsible for phenotype

EDA ectodermal dysplasia anhidrotic, HSV herpes simplex virus, VZV varicella zoster virus, BCG Bacillus Calmette-Guerin, NBS newborn screen, TREC T cell receptor excision circle (biomarker for low T cells used in NBS), IUGR intrauterine growth retardation
1. Severe Reduction in All Serum Immunoglobulin Isotypes with Profoundly Decreased or Absent B Cells, Agammaglobulinemia

Disease	Genetic defect	Inheritance	OMIM	Ig	Associated features
BTK deficiency, X-linked agammaglobulinemia (XLA)	BTK	XL	300300	All isotypes decreased in majority of patients; some patients have detectable immunoglobulins	Severe bacterial infections, normal numbers of pro-B cells
Ig heavy chain deficiency	A2HM	AR	143200	Low IgG and IgM	Severe bacterial infections, normal numbers of pro-B cells
T cell deficiency	RAG1	AR	143241		
Ig deficiency	CD79A	AR	143245		
Ig deficiency	CD79B	AR	143247		
BLNK deficiency	BLNK	AR	143251		
p110δ deficiency	PIK3CD	AR	656319		
p58 deficiency	PIK3R1	AR	658214		
E47 transcription factor deficiency	TOC1	AR	658411		
SLC39A7 (ZIP7) deficiency	SLC36A4	AR	640416		
Hoffman syndrome/TOP2B deficiency	TOP2B	AR	143411		
FNP1 deficiency (6 patients)	FNP1	AR	617925		
P11 deficiency	SP11	AD	617927		

2. Severe Reduction in at Least 2 Serum Immunoglobulin Isotypes with Normal or Low Number of B Cells, CVID Phenotype

Disease	Genetic defect	Inheritance	OMIM	Ig	Associated features
Common variable immune deficiency with no gene defect specified (CVID)	Unknown	Variable		Low IgG and IgA and/or IgM	Clinical phenotypes vary; most have recurrent infections, some have polyclonal lymphoproliferation, autoimmune cytopenias and/or granulomatous disease
Activated p110γ syndrome (APDS)	PIK3CD GOF	AD	615513 (APDS1)		
CD19 deficiency	CD19	AR	107265	Low IgG and IgA and/or IgM	Severe bacterial infections, reduced memory B cells and increased transitional B cells, EBV c CMV, visna, lymphadenopathy/splenomegaly, autoimmune, lymphoproliferation, lymphoma, dermatitis
CD81 deficiency	CD81	AR	168646	Low IgG, low or normal IgA and IgM	Severe recurrent infections, recurrent bacterial infections, reduced memory B cells and increased transitional B cells, lymphadenopathy/splenomegaly, lymphoproliferation, lymphoma, dermatitis
CD20 deficiency	CD20	AR	112210	Low IgG, normal or elevated IgA and IgM	Recurrent infections
CD21 deficiency	CD21	AR	120450	Low IgM, impaired anti-neoplastic response	Recurrent infections
TACI deficiency	TNFRSF13B	AR or AD	644907	Low IgG and IgA and IgM	Variable clinical expression and penetrance for monomelic variants
BAFB receptor deficiency	TNFRSF11C	AR	606265	Low IgG and IgM	Variable clinical expression
TWEAK deficiency	TNFSF12	AR	604946	Low IgM and A, lack of anti-neoplastic response	Phaeohyphomycosis, bacterial infections, warts, thrombocytopenia, neutropenia
TNRT1 deficiency	TRNT1	AR or AD	612907	Normal or low IgG, IgA, IgM, low or normal B cells, low memory B cells	Recurrent sinopulmonary infections, COPD, EBV viremia, autoimmune cytopenias, atopy and autoimmune dysautonomia
NFKB1 deficiency	NFKB1	AD	164011	Normal or low IgG, IgA, IgM, low or normal B cells, low memory B cells	Clinical phenotypes vary; most have recurrent infections, some have polyclonal lymphoproliferation, autoimmune cytopenias and/or granulomatous disease
NFKB2 deficiency	NFKB2	AD	615077	Low serum IgG, A and M; low B cell number	Recurrent sinopulmonary infections, atopy and eosinophilopathies
IKAROS deficiency	IKZF1	AD (haploinsufficiency)	630639	Low IgG, IgA, IgM, low or normal B cells; B cells and Ig levels reduce with age	Recurrent sinopulmonary infections, atopy and eosinophilopathies
IRF2BP2 deficiency	IRF2BP2	AR	615332	Hypogammaglobulinemia, absent IgG	Recurrent infections, probable autoimmune and inflammatory disease
ATP6AP1 deficiency	ATP6AP1	XL	300072	Variable immunoglobulin findings	Hepatitis, neutropenia, low IgG
ARHGEF1 deficiency	ARHGEF1	AR	615459	Lack of antibody	Recurrent infections, bronchiectasis
SH2KBP1 (CIN5) deficiency	SH2KBP1	XL	300010	IgG IgA deficiency, lack of antibody	Severe bacterial infections
SEC61A1 deficiency	SEC61A1	AD	606911	Hypogammaglobulinemia	Severe recurrent respiratory tract infections
RAC2 deficiency	RAC2	AR	603949	Low IgG, IgA, IgM, low or normal B cells, reduced Ab responses following vaccination	Recurrent sinopulmonary infections, selective IgG deficiency, posthepatic cirrhosis and/or splenectomy
Mannosyl-oligosaccharide glucosidase deficiency	MOGS	AR	661356	Low IgG, IgA, IgM, increased B cells; poor Ab responses following vaccination	Bacterial and viral infections, severe neurologic disease; also known as congenital disorder of glycosylation type IIb (CDG-IIb)
PIK3CG deficiency (2 patients)	PIK3CG	AR	616802	Reduced memory B cells, hypogammaglobulinemia, neutropenia, splenomegaly, lymphadenopathy, glucocerebrosidase deficiency	Recurrent infections, hypogammaglobulinemia, neutropenia, splenomegaly, lymphadenopathy, HLH-like
BOB1 deficiency (1 patient)	BOB1	AR	604849	Reduced memory B cells, agammaglobulinemia	Recurrent respiratory infections, possible chronic viral infection of CNS with progressive tetraparesis
Table 3 (continued)

Disease	Genetic defect	Inheritance	OMIM	Ig	Associated features
AID deficiency	AICDA	AR	6055258	IgG and IgA decreased, IgM increased	Bacterial infections, enlarged lymph nodes and terminal centers, autoimmunity
		AD	605257	IgG absent or decreased, IgA undetected, IgM increased; normal memory B cells with intact somatic hypermutation	Bacterial infections, enlarged lymph nodes and terminal centers. Mutations uniquely localise to the nuclear export signal.
UNG deficiency	UNG	AR	191526	IgG and IgA decreased, IgM increased	Enlarged lymph nodes and germinal centers
INO80 deficiency	INO80	AR	610169	IgG and IgA decreased, IgM increased	Severe bacterial infections
MSH6 deficiency	MSH6	AR	600678	Variable IgG, defects, increased IgM in some, normal B cells, low switched memory B cells, Ig class switch recombination and somatic hypermutation defects	Family or personal history of cancer
CTNNBL1 deficiency (1 patient)	CTNNBL1	AR	NA	Reduced memory B cells, Ig class switch recombination and somatic hypermutation defects, progressive hypogammaglobulinemia	CVID, autoimmune cytopenias, recurrent infections, hyperplastic germinal centers
APRIL deficiency (1 patient)	TNFSF13	AR	NA	Normal total B cell counts, Reduced memory B cells, hypogammaglobulinemia	CVID, chronic but mild infections, alopecia areata

4. Isotype, Light Chain, or Functional Deficiencies with Generally Normal Numbers of B Cells

Disease	Genetic defect	Inheritance	OMIM	Ig	Associated features
Ig heavy chain mutations and deletions	Mutation or chromosomal deletion at 14q32	AR		One or more IgG and/or IgA subclasses as well as IgE may be absent	May be asymptomatic
Kappa chain deficiency	IGKC	AR	147200	All immunoglobulins have lambda light chain	Asymptomatic
Isolated IgG subclass deficiency	Unknown	?		Reduction in one or more IgG subclass	Usually asymptomatic, a minority may have poor antibody response to specific antigens and recurrent viral/bacterial infections
IgG subclass deficiency with IgA deficiency	Unknown	?		Reduced IgA with decrease in one or more IgG subclass	Recurrent bacterial infections
Selective IgA deficiency	Unknown	?		Absent IgA with other isotypes normal, normal subclasses and specific antibodies	May be asymptomatic
Specific antibody deficiency with normal Ig levels and normal B cells	Unknown	?		Normal	Reduced ability to produce antibodies to specific antigens
Transient hypogammaglobulinemia of infancy	Unknown	?		IgG and IgA decreased	Normal ability to produce antibodies to vaccine antigens, usually not associated with significant infections
CARD11 GOF	CARD11	AD GOF	616452	Polyclonal B cell lymphocytosis due to constitutive NF-κB activation	Splenomegaly, lymphadenopathy, poor vaccine response
Selective IgM deficiency	Unknown	?		Absent serum IgM	Pneumococcal / bacterial

Common variable immunodeficiency disorders (CVID) include several clinical and laboratory phenotypes that may be caused by distinct genetic and/or environmental factors. Some patients with CVID and no known genetic defect have markedly reduced numbers of B cells as well as hypogammaglobulinemia. Identification of causal variants can assist in defining treatment. In addition to monogenic causes on this table, a small minority of patients with XLP (Table 4), WHIM syndrome (Table 6), ICF (Table 2), VODI (Table 2), thymoma with immunodeficiency (Good syndrome) or myelodysplasia are first seen by an immunologist because of recurrent infections, hypogammaglobulinemia and normal or reduced numbers of B cells

Total number of mutant genes in Table 3: 45. New inborn errors of immunity: 6 (FNIP1 [35, 36], SP1I [37], PIK3CG [38, 39], POU2AF1 [40], CTNNBL1 [41], TNFRSF13 [42])

* Heterozygous variants in TNFRSF13B have been detected in healthy individuals, thus such variants are likely to be disease-modifying rather than disease-causing

EBV Epstein-Barr virus, COPD chronic obstructive pulmonary disease

*Heterozygous variants in TNFRSF13B have been detected in healthy individuals, thus such variants are likely to be disease-modifying rather than disease-causing
1. Familial Hemophagocytic Lymphohistiocytosis (FHL syndromes)

Disease	Genetic defect	Inheritance	OMIM	Circulating T Cells	Circulating B cells	Functional defect	Associated Features
Perforin deficiency (FHL2)	PRF1	AR	170290	Increased activated T cells	Normal	Decreased to absent NK and CTL activities cytotoxicity	Fever, HSM, hemophagocytic lymphohistiocytosis (HLH), cytopenias
UNC13D / Munc13-4 deficiency (FHL3)	UNC13D	AR	608857	Increased activated T cells	Normal	Decreased to absent NK and CTL activities cytotoxicity and/or degradation	Fever, HSM, HLH, cytopenias,
Syntaxin 11 deficiency (FHL4)	STX11	AR	609012	Increased activated T cells	Normal		
STXB2 / Munc18-2 deficiency (FHL5)	STXB2	AR or AD	601712				
FAAP24 deficiency	FAAP24	AR	610881	Increased activated T cells	Normal	Failure to kill autologous EBV transformed B cells. Normal NK cell function	EBV-driven lymphoproliferative disease
SLC7A7 deficiency	SLC7A7	AR	222700				
RHOG deficiency (1 patient)	RHOG	AR	NA	Normal	Sl slightly reduced	Impaired CTL and NK cell cytotoxicity	HLH (hemophagocytosis, hepatosplenomegaly, fever, cytopenias, low hemoglobin, hypertriglyceridemia, elevated ferritin, sCD25)

2. FHL Syndromes with Hypopigmentation

Disease	Genetic defect	Inheritance	OMIM	Circulating T Cells	Circulating B cells	Functional defect	Associated Features
Chediak-Higashi syndrome	LYST	AR	606872	Increased activated T cells	Normal	Decreased NK and CTL activities cytotoxicity and/or degradation	Partial abism, recurrent infections, fever, HSM, HLH, giant lymphosomas, neutropenia, cytopenias, bleeding tendency, progressive neurological dysfunction
Griscelli syndrome, type 2	RAB27A	AR	603968	Normal	Normal	Decreased NK and CTL activities cytotoxicity and/or degradation	Partial abism, fever, HSM, HLH, cytopenias,
Hermansky-Pudlak syndrome, type 2	AP3B1	AR	603401	Normal	Normal	Decreased NK and CTL activities cytotoxicity and/or degradation	Partial abism, recurrent infections, pulmonary fibrosis, increased bleeding, neutropenia, HLH
Hermansky-Pudlak syndrome, type 10	AP3D1	AR	617050	Normal	Normal	Decreased NK and CTL activities cytotoxicity and/or degradation	Oculocutaneous abism, severe neutropenia, recurrent infections, seizures, hearing loss and neurodevelopmental delay
CEBPE neofunction (3 patients)	CEBPE	AR GOF	245486	Mild reduction	Not done	Autoinflammation activation TIF1 IF gene expression, altered chromatin occupancy of mutant CEBPE, and transcriptional changes	Recurrent abdominal pain, aseptic fever, systemic inflammation; abscesses, ulceration, infections; mild bleeding diathesis

3. Regulatory T Cell Defects

Disease	Genetic defect	Inheritance	OMIM	Circulating T Cells	Circulating B cells	Functional defect	Associated Features
IPEX, immune dysregulation, polyendocrinopathy, enteropathy X-linked	FOXP3	XL	300929	Normal	Normal	Lack of and/or impaired function of CD4+ CD25+ FOXP3 regulatory T cells (Tregs)	Autoimmune enteropathy, early onset diabetes, thyroiditis, hypothyroidism, thyroiditis, eczema, elevated IgG and IgA
CD25 deficiency	IL2RA	AR	147735	Normal	Normal	No CD4+CD25+ cells with impaired function of Treg cells	Lymphoproliferation, autoimmunity, impaired T cell proliferation in vitro
CD122 deficiency	IL2RB	AR	618499	Increased memory CD8 T cells, decreased Tregs	Increased memory B cells	Diminished IL2Rg expression, dysregulated signaling in response to IL-2/IL-15, increased immature NK cells	Lymphoproliferation, lymphadenopathy, hepatosplenomegaly, autoimmune hemolytic anemia, dermatitis, enteropathy, hypergammaglobulinemia, recurrent viral (EBV, CMV) infections
CTLA4 haploinsufficiency (ALPS-V)	CTLA4	AD	124860	Decreased	Decreased	Impaired function of Tregs.	Autoimmune cytopenias, enteropathy, interstitial lung disease, extra-lymphoid lymphoproliferative disease, recurrent infections
LRBA deficiency	LRBA	AR	606453	Normal or decreased CD4 numbers T cell dysregulation	Low or normal numbers of B cells	Reduced IgG and IgA in most	Recurrent infections, inflammatory bowel disease, autoimmunity
DEF6 deficiency	DEF6	AR	610904	Mild CD4 and CD8 lymphopenia	Low or normal numbers of B cells	Impaired Treg function	Enteropathy, hepatosplenomegaly, cardiomyopathy, recurrent infections
Table 4 (continued)

STAT3 GOF mutation	STAT3	AD GOF	Decreased	Decreased	Enhanced STAT3 signaling, leading to increased Th17 cell differentiation, lymphoproliferation and autoimmunity. Decreased Tregs and impaired function	Lymphoproliferation, solid organ autoimmunity, recurrent infections
BACH2 deficiency	BACH2	AD	Decreased	Normal	Progressive T cell lymphopenia, impaired memory B cell development, hyporesponsiveness for a critical lineage transcription factor	Lymphoprophic colitis, sinupulmonary infections
FERMT1 deficiency	FERMT1	AR	Normal	Normal	Intra cellular accumulation of IgG, IgM, IgA, and C3 in cellular bodies under the basement membrane	Dermatosis characterized by congenital blistering, skin atrophy, photosensitivity, skin fragility, and scaling
IKAROS GOF (8 patients)	IKZF1	AD-GOF	Normal	Normal	Increased binding of mutant IKAROS to DNA/target genes	Multiple autoimmune features (diabetes, colitis, thyroditis), allergy, lymphoproliferation, plasma cell expansion (IgG4), Evans Syndrome, recurrent infections

4. Autoimmunity with or without Lymphoproliferation

Disease	Genetic defect	Inheritance	OMIM	Circulating T Cells	Circulating B Cells	Functional defect	Associated Features
APECED (APS-1), autoimmune polyendocrinopathy with candidiasis and ectodermal dystrophy	AIRE	AR or AD	240300	Not assessed	Not assessed	AIRE serves as check-point in the thymus for negative selection of autoreactive T cells and for generation of Tregs: AIRE deficiency may cause immune dysregulation by affecting both energy induction in autoreactive effector T cells and generation of Tregs	Autoimmunity: hypoparathyroidism, hypothyroidism, adrenal insufficiency, diabetes, gonadal dysgenesis, and other endocrine abnormalities; dental enamel hypoplasia, alopecia areata enteropathy, pernicious anemia; chronic mucocutaneous candidiasis; Early-onset chronic lung disease (interstitial pneumonitis), autoimmunity (thyroiditis, type 1 diabetes, chronic diarrhea/enteropathy, and hepatitis), failure to thrive, developmental delay, dysmorphic facial features
ITCH deficiency	ITCH	AR	606409	Not assessed	Not assessed	Itch deficiency may cause immune dysregulation by affecting both energy induction in autoreactive effector T cells and generation of Tregs:	Variable lymphoproliferation, severe autoimmune cytopenias, hypergammaglobulinemia, recurrent infections
Tripeptidyl-Peptidase II Deficiency	TPP2	AR	190470	Decreased	Decreased	TPP2 deficiency results in premature immune dysregulation and immune dysregulation	Variable lymphoproliferation, severe autoimmune cytopenias, hypergammaglobulinemia, recurrent infections
JAK1 GOF	JAK1	AD-GOF	147726	Not assessed	Not assessed	Hyperactive JAK1	HSM, eosinophilia, eosinophilic enteritis, thyroid disease, poor growth, viral infections
Proline deficiency	PEPD	AR	613830	Decreased	Reduced	Reduced expression of memory B cells	Autoimmune diseases, chronic skin ulcers, exacerbations
SOCS1 haploinsufficiency (15 patients)	SOCS1	AD	619375	Decreased	Reduced switched memory B cells	Reduced expression of memory B cells	Early onset severe multisystemic autoimmunity, neutropenia, lymphopenia, TIF, AIHA, SLE, GN, hepatosplenomegaly, poorsis, arthritis, thyroiditis, hepatitits, recurrent bacterial infections, incomplete penetrance
PD-1 deficiency (1 patient)	PDCD1	AR	NA	Mostly intact	Normal	Lack of PD-1 on patient PBMCs, reduced IFNγ production in response to mycobacterial stimuli	Tuberculosis, autoimmunity (T1D, hypothyroidism, JIA), fatal pulmonary autoimmunity, hepatosplenomegaly

5. Immune Dysregulation with Colitis

Disease	Genetic defect	Inheritance	OMIM	Circulating T Cells	Circulating B Cells	Functional defect	Associated Features
IL-10 deficiency	IL-10	AR	124092	Normal	Normal	No functional IL-10 secretion	Inflammatory bowel disease (IBD) Folliculitis, recurrent respiratory diseases, arthritis,
IL-10R deficiency	IL10RA	AR	146933	Normal	Normal	Leukocytes unresponsive to IL-10	IBD, Folliculitis, recurrent respiratory diseases, arthritis, lymphoma
IL-10R deficiency	IL10RB	AR	123889	Normal	Normal	Leukocytes unresponsive to IL-10, IL-22, IL-26, IL-28A, IL-28B and IL-29	IBD, Folliculitis, recurrent respiratory diseases, arthritis, lymphoma
NFAT5 haploinsufficiency	NFAT5	AD	604786	Normal	Normal	Decreased memory B cells and plasmablasts	IBD, recurrent sinupulmonary infections
TGFβ1 deficiency	TGFβ1	AR	618213	Normal	Normal	Decreased T cell proliferation in response to anti-CD3	Recurrent infections, early-onset IBD, progressive polyarthritis
RIPK1	RIPK1	AR	618108	Reduced	Normal	Reduced activation of NFKB, NFKB pathways to	Recurrent infections, early-onset IBD, progressive polyarthritis
ELF4 deficiency (3 patients)	ELF4	XL	301074	Normal	Normal	Hyper inflammatory macrophages	Early onset IBD/mucosal autoinflammation, fevers, ulcers, Responded to IL-1, TNF or IL-12p40 blockade
6. Autoimmune Lymphoproliferative Syndrome (ALPS, Cerate-Smith syndrome)

Disease	Genetic defect	Inheritance	OMIM	Decreased T cells	Decreased B cells	Functional defect	Associated Features
ALPS-FAS	TNSF5F6	AR	144673	Normal or increased T cells	B cells	Apoptosis defect FAS mediated	Splenomegaly, adenopathy, autoimmune cytopenias, recurrent lymphoma risk, IgG and A normal or increased, elevated serum Fas, IL-10, vitamin B12
ALPS-FASLG	TNSF5F6	AR	144676	Normal or increased T cells	B cells	Apoptosis defect FAS mediated	Splenomegaly, adenopathy, autoimmune cytopenias, SLE, soluble Fas, is not elevated
ALPS-Caspase10	CASP10	AD	601746	Normal or increased T cells	B cells	Defective lymphocyte apoptosis	Adenopathy, splenomegaly, autoimmunity
ALPS-Caspase 8	CASP8	AR	601790	Normal or increased T cells	B cells	Defective lymphocyte apoptosis	Adenopathy, splenomegaly, autoimmunity
FADD deficiency	FADD	AR	602457	Normal or increased T cells	B cells	Defective lymphocyte apoptosis	Autoimmune haemophagocytic syndrome, bacterial and viral infections, recurrent episodes of encephalopathy and liver dysfunction

7. Susceptibility to EBV and Lymphoproliferative Conditions

Disease	Genetic defect	Inheritance	OMIM	Decreased T cells	Decreased B cells	Functional defect	Associated Features
SAP deficiency (XLP1)	SMZD1A	XL	300499	Normal or increased T cells	B cells	Reduced Memory B cells	EBV infection. Splenomegaly, lymphoproliferation, Myeloma, B-cell lymphoma, Low NK cells
XIAP deficiency (XLP2)	XIAP	XL	300079	Normal or increased T cells	B cells	Reduced Memory B cells	EBV infection, Splenomegaly, lymphoproliferation, Myeloma, B-cell lymphoma, Low NK cells
CD27 deficiency	CD27	Normal	615232	Normal or reduced T cells	B cells	Decreased Memory B cells	EBV infection, Hodgkin lymphoma, autoimmunity in some patients
CD7 deficiency	CD7	Normal	602842	Normal or reduced T cells	B cells	Decreased Memory B cells	EBV infection, Hodgkin lymphoma, autoimmunity in some patients
RASGRF1 deficiency	RASGRF1	AR	603962	Normal or reduced T cells	B cells	Increased NK cell and CTL cytotoxic activity	Recurrent viral and EBV infections
CD137 deficiency (1BB)	TNSF5F6	AR	602250	Normal or reduced T cells	B cells	Normal or increased T cells	EBV lymphoproliferation, B-cell lymphoma, chronic active EBV infection
X-linked magnesium EBV and neoplasia (XMEN)	MAGT1	XL	300513	Normal or increased T cells	B cells	Progressive hypergammaglobulinemia	Recurrent infections, EBV, CMV infection, lymphoproliferation, SLE-like autoimmunity and autoimmune cytopenia, neutropenia and antiphospholipid syndromes, low IgG
PRKCD deficiency	PRKCD	AR	615558	Normal or increased T cells	B cells	DNA hypermethylation, defective FAS-mediated apoptosis	ALPS-like, recurrent viral infections, EBV symptoms, lymphadenopathy, hypoplasmenoglymphasia, autoimmunity, B-lymphoma, T-cell development

Total number of mutant genes in Table IV: 52. New inborn errors of immunity: 7 (RHOG [43], CEBPE [51], AD GOF IKZF1 [52], SOCS1 [44-46], PDCD1 [47], ELF4 [48], TET2 [50])

FHL familial hemophagocytic lymphohistiocytosis, HLH hemophagocytic lymphohistiocytosis, HSM hepatosplenomegaly, DN double-negative, SLE systemic lupus erythematosus, IBD inflammatory bowel disease
Table 5 Congenital defects of phagocyte number or function

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features	
Elastase deficiency (Severe congenital neutropenia [SCN] 1)	ELANE	AD	130130	N + M	Myeloid differentiation	Severe congenital neutropenia or cyclic neutropenia	
GFI 1 deficiency (SCN2)	GFI1	AD	600871	N	Myeloid differentiation	B/T-lymphopenia	
HAX1 deficiency (Kostmann Disease) (SCN3)	HAX1	AR	609998	N	Myeloid differentiation	Cognitive and neurological defects in patients with defects in both HAX1 isoforms, susceptibility to MDS/leukemia	
G6PC3 deficiency (SCN4)	G6PC3	AR	611045	N	Myeloid differentiation, chemotaxis, O2 production	Structural heart defects, urogenital abnormalities, inner ear deafness, and venous angiectasias of trunks and limbs	
VPS45 deficiency (SCN5)	VPS45	AR	610335	N	Myeloid differentiation, migration	Extramedullary hematopoiesis, bone marrow fibrosis, nephromegaly	
Glycogen storage disease type 1b	G6PT1	AR	602671	N + M	Myeloid differentiation, chemotaxis, O2 production	Fading hypoglycemia, tachyacidos, hyperiprproteinemia, hematomegaly	
X-linked neutropenia/myelodysplasia	WAS	XL	GOF	300299	N	Differentiation, mitosis. Results from GOF mutations in GTPase binding domain of WASp	Neutropenia, myeloid maturation arrest, monocytopenia, variable lymphoid anomalies
P14/LAMTOR2 deficiency	LAMTOR2	AR	610389	N + M	Endosomal biogenesis	Neutropenia, hypergammaglobulinemia, CD8 cytotoxicity, partial aloysis, growth failure	
Barth Syndrome (3-Methylglutaconic aciduria type II)	TAZ	XL	300394	N+L MEL	Mitochondrial function	Cardiomyopathy, myopathy, growth retardation, neutropenia	
Cohen syndrome	VPS13B	AR	607817	N	Myeloid differentiation	Dyshormon, mental retardation, obesity, deafness, neutropenia	
Clericuzio syndrome (Papillon-Lefèvre Syndrome)	USB1	AR	613276	N	Myeloid differentiation	Retinopathy, developmental delay, facial dysmorphism, poikiloderma	
JAGN1 deficiency	JAGN1	AR	610122	N	Myeloid differentiation	Neutropenia, myeloid maturation arrest, osteopenia	
3-Methylglutaconic aciduria	CLPB	AR	616254	N	Myeloid differentiation	Mitochondrial protein	Neurocognitive developmental abnormalities, microcephaly, hypoglycemia, hypotonia, ataxia, seizures, cataracts, IUGR
G-CSF receptor deficiency	CSF3R	AR	138971	N	Stress granulopoesis disturbed		
SMARCD2 deficiency	SMARCD2	AR	601736	N	Chromatin remodeling, Myeloid differentiation and neutrophil functional defect	Neutropenia, developmental abnormalities, bones, hematopoietic stem cells, myelodysplasia	
Specific granule deficiency	CEBPE	AR	189965	N	Terminal maturation and global dysfunction	Neutropenia, Neutrophils with blocked nuclei	
Shwachman-Diamond Syndrome	SBDS	AR	607444	N	Neutrophil maturation, chemotaxis, ribosomal biogenesis	Panctyopenia, exocrine pancreatic insufficiency, chondrodysplasia	
	DNAJC21	AR	671552	N + HBC	Neutrophil maturation, chemotaxis, ribosomal biogenesis	Panctyopenia, exocrine pancreatic insufficiency	
	EFL1	AR	67541	N + HBC	Neutrophil maturation, chemotaxis, ribosomal biogenesis	Panctyopenia, exocrine pancreatic insufficiency	
HYOU1 deficiency	HYOU1	AR	601746	N	Unfolded protein response	Hypoglycemia, inflammatory complications	
SRP54 deficiency	SRP54	AD	604857	N	Protein translocation to ER, myeloid differentiation and neutrophil functional defect	Neutropenia, exocrine pancreatic insufficiency	
CXCR2 deficiency (6 patients)	CXCR2	AR	619407	N	Reduced expression of CXCR2 on patient cells, impaired responses to CXCL8	Profound neutropenia, myelokathexis, recurrent gingivitis, oral ulcers, hypergammaglobulinemia	

2. Defects of Motility

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
Leukocyte adhesion deficiency type 1 (LAD1)	ITGB2	AR	609965	N + M + L + NK	Adherence, Chemotaxis, Endocytosis, TANK cytotoxicity	Delayed cord separation, skin ulcers, periodontitis, leukoagglutinosis
Leukocyte adhesion deficiency type 2 (LAD2)	SLC35C1	AR	605881	N + M	Rolling, chemotaxis	Mild LAD type 1 features with hh-blood group, growth retardation, developmental delay
Leukocyte adhesion deficiency type 3 (LAD3)	FERM3	AR	607021	N + M + L + NK	Adherence, chemotaxis	LAD type 1 plus bleeding tendency
Rac2 deficiency	RAC2	AD, LOF	689203	N	Adherence, chemotaxis, O2 production	Poor wound healing, leukocytosis
β actin deficiency	ACTB	AD	192640	N + M	Motility	Mental retardation, short stature
Localized juvenile periodontitis	FPR1	AR	139357	N	Fibrinolysed induced chemotaxis	Periodontitis only
Papillon-Lefèvre Syndrome	CTSC	AR	602365	N + M	Chemotaxis	Periodontitis, palmoplantar hyperkeratosis in some patients
WDR1 deficiency	WDR1	AR	604734	N	Spreading, survival, chemotaxis	Mild neutropenia, poor wound healing, severe stomatitis, neutrophilic ulcer
Cystic fibrosis	CFTR	AR	60221	M only	Chemotaxis	Respiratory infections, pancreatic insufficiency, elevated sweat chloride
Neutropenia with combined immune deficiency due to MKL1 deficiency	MKL1	AR	690078	N + M + L + NK	Impaired expression of cytokineral genes	Mild thrombocytopenia
Table 5 (continued)

3. Defects of Respiratory Burst

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
X-linked chronic granulomatous disease (CGD), gp91phox	CYBB	XL	306400	N + M	Killing (faulty O2− production)	Infections, autoinflammatory phenotype, IBD McLeod phenotype in patients with deletions extending into the contiguous Kell locus
Autosomal recessive CGD		AR				
	CYBA		629609			
	CYBC1		614334			
	NCF1		608512			
	NCF2		608515			
	NCF4		617980			
G6PD deficiency class I	G6PD	XL	325900	N	Reduced O2− production	Infections

4. Other Non-Lymphoid Defects

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
GATA2 deficiency	GATA2	AD	137295	Monocytes + peripheral DC	Multi lineage cytopenia	Susceptibility to mycobacteria, HPV, histoplasmosis, alveolar proteinosis, MDS/AML/CMML, lymphedema
Pulmonary alveolar proteinosis	CSF2RA	XL (Biallelic mutations in pseudo-autosomal gene)	300770	Alveolar macrophages	GM-CSF signaling	Alveolar proteinosis
	CSF2RB	AR	614370			

Total number of mutant genes in Table 5: 42. New inborn errors of immunity: 1 (CXCR2 [53, 54]). Removed: Cyclic neutropenia was merged with elastase deficiency

* MDS myelodysplastic syndrome, IUGR intrauterine growth retardation, LAD leukocyte adhesion deficiency, AML acute myelogenous leukemia, CMML chronic myelomonocytic leukemia, N neutrophil, M monocyte, MEL melanocyte, L lymphocyte, NK natural killer
Table 6 Defects in intrinsic and innate immunity

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
IL-12 and IL-23 receptor β1 chain deficiency	IL12RB1	AR	601604	L + NK	IFN- secretion	Susceptibility to mycobacteria and Salmonella
IL-12p40 (IL-12 and IL-23) deficiency	IL12B	AR	619561	M		
IL-12R2 deficiency	IL12RB2	AR	801468	M + L		
IFN-γ receptor 1 deficiency	IFNGR1	AD	259256	M + L	IFN- binding and signaling	
IFN-γ receptor 2 deficiency	IFNGR2	AR	147569	M + L	IFN- signaling	
STAT1 deficiency	STAT1	AD/LOF	614893	M + L		
Macrophage gp91 phox deficiency	CYBB	XL	300645		Macrophage only	Isolated susceptibility to mycobacteria
IRF8 deficiency	IRF8	AD	614893	M + L	Impaired development of cDCs and Th1** cells	Susceptibility to mycobacteria
SPP2 deficiency	SPP2	AR	226690	M + L	Lack of circulating monocytes and DCs, reduced NK cell numbers and function reported in some patients	Susceptibility to mycobacteria and multiple other infectious agents including EBV
Tyk2 deficiency	TYK2	AR	611521	M + L	Impaired development of cDCs and Th1** cells	Susceptibility to mycobacteria and Salmonella
P110A4 Tyk2 homozygosity	TYK2	AR	178911	L	Impaired cellular responses to IL-10, IL-12, IL-23, and type I IFNs	Susceptibility to intracellular bacteria (mycobacteria, Salmonella), and viruses
ISG15 deficiency	ISG15	AR	147571	L + NK	IFN- production defect	Susceptibility to mycobacteria (BCG), brain calcification
RORγt deficiency	RORC	AR	609243	L + NK	Lack of functional RORγt protein, IFN-γ production defect, complete absence of IL-17A-producing T cells	Susceptibility to mycobacteria and candida
Jak1 deficiency	JAK1	AR/LOF	147726	N + L	Reduced Jak1 activation to cytokines, Reduced IFNγ production	Susceptibility to mycobacteria and viruses, urotelial carcinoma
T-bet deficiency (1 patient)	TBX21	AR	619630	L	↓ IFN- and TNF-α production and IFN-γ and IFN-β production by γδ T cells, MAIT cells, INKt cells, NK cells, and CD4** T cells	Susceptibility to mycobacteria
IFN-γ deficiency (2 patients)	IFNG	AR	619630	L	No IFN- production by patient T and NK cells	Susceptibility to mycobacteria

2. Epidermodysplasia verruciformis (HPV)

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
EVER1 deficiency	TMC6	AR	600425	Keratinocytes	EVER1, EVER2 and CIB1 form a complex in keratinocytes	Human papillomavirus (HPV) (group B1) infections and cancer of the skin (typical EV)
EVER2 deficiency	TMC6	AR	600425	Keratinocytes	EVER1, EVER2 and CIB1 form a complex in keratinocytes	Human papillomavirus (HPV) (group B1) infections and cancer of the skin (typical EV)
CIB1 deficiency	CIB1	AR	615967			
WHIM (Warts, Hypogamaglobulinemia, infections, Myelokathexis) syndrome	CXCR4	AD/GOF	162843	Leukocytes	Increased response of the CXCR4 chemokine receptor to its ligand CXCL12 (SDF-1)	Warts (HPV) infection, neutropenia, low B cell number, hypogamaglobulinemia

3. Predisposition to Severe Viral Infection

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
STAT1 deficiency	STAT1	AR/LOF	600550	Leukocytes and other cells	STAT1-dependent IFN-α and β responses	Severe viral infections, mycobacterial infection
STAT2 deficiency	STAT2	AR	600550	Leukocytes and other cells	STAT2-dependent IFN-α and β responses	Severe viral infections (disseminated vaccine-strain measles)
IRF9 deficiency	IRF9	AR	147724	Leukocytes and other cells	IRF9- and ISG54-dependent IFN-β and γ responses	Severe influenza disease
IRF7 deficiency	IRF7	AR	609447	Leukocytes, plasmacytoid dendritic cells, non-hematopoietic cells	IFN-α, β and γ production and IFN-γ, production	
IFNAR1 deficiency	IFNAR1	AR	107450	Leukocytes and other cells	IFNAR1-dependent responses to IFN-α, β, and γ	Severe disease caused by Yellow Fever virus vaccine and Measles vaccine
IFNAR2 deficiency	IFNAR2	AR	602376	Broadly expressed	IFNAR2-dependent responses to IFN-α, β, and γ	Severe viral infections (disseminated vaccine-strain measles, HHV6)
CD16 deficiency	FCGR3A	AR	146740	NK cells	Allergic NK cells function	Severe herpes viral infections, particularly VZV, Epstein Barr virus (EBV), and (HPV)
MDA5 deficiency	IFIH1	AR/LOF	600561	Broadly expressed	Viral recognition and IFN induction	Herpesvirus and other RNA viruses
NOG2 deficiency (1 patient)	NOG2	AR	NA	Myeloid cells	Mutant NOG2 failed to induce nitrous oxide	Severe (fatal) susceptibility to CMV-induced disease; pneumonia, profound abnormalities second to CMV, intact responses to infection with other herpes viruses (EBV, VZV, HSV)
ZNF5X1 deficiency (29 patients)	ZNF5X1	AR	616444	Broadly expressed	↑ ISG in response to poly I/C	Severe infections by RNA/DNA viruses, mycobacteria, early-onset severe inflammation affecting liver, brain, kidneys, lungs; virally triggered inflammatory episodes, hepatosplenomegaly, lymphadenopathy
RNA polymerase III deficiency	POLR3A	AD	634209	Leukocytes and other cells	Impaired viral recognition and IFN induction in response to VZV or poly I/C	Severe VZV infection
4. Herpes Simplex Encephalitis (HSE)

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features	
TLR3 deficiency	TLR3	AD	619002	Lymphocytes +	TRAIL-dependent IFN-α, β and γ response	Herpes simplex virus 1 encephalitis (incomplete clinical penetrance for all etiologies listed here); severe pulmonary influenza; VZV	
UNC93B1 deficiency	UNC93B1	AR	608204	T cells IL-17F-containing dimers	UNC-50B-dependent IFN-α, β and γ response	Herpes simplex virus 1 encephalitis	
TRAF3 deficiency	TRAF3	AD	601986	Lymphocytes +	TRAF3-dependent IFN-α, β and γ response	Herpes simplex virus 1 encephalitis	
TRIF deficiency	TRIF	AD	607901	T cells IL-17F-containing dimers	TRIF-dependent IFN-α, β and γ response	Herpes simplex virus 1 encephalitis	
TBK1 deficiency	TBK1	AD	604834	T cells IL-17F-containing dimers	TBK1-dependent IFN-α, β and γ response	Herpes simplex virus 1 encephalitis	
IRF3 deficiency	IRF3	AD	616532	T cells IL-17F-containing dimers	Low IFN-α, β and γ production in response to HSV1 and decreased IRF3 phosphorylation	Herpes simplex virus 1 encephalitis	
D8R1 deficiency	D8R1	AR	607024	T cells IL-17F-containing dimers	Impaired production of anti-viral IFNs	T-cell lymphopenia; Other viral infections of the brainstem.	
SNORA31 deficiency (5 patients)	SNORA31	AD	619396	T cells IL-17F-containing dimers	Impaired production of anti-viral IFNs	T-cell lymphopenia; Other viral infections of the brainstem.	
ATG4A deficiency (1 patient)	ATG4	AD	NA	T cells IL-17F-containing dimers	Central nervous system (CNS) resident cells and fibroblasts	Impaired HSV2-induced autophagy - increased viral replication and apoptosis of patient fibroblasts	Mohr's meningitis (recurrent lymphocytic meningitis) due to HSV2
MAP1LC3B2 deficiency (1 patient)	MAP1LC3B2	AD	NA	T cells IL-17F-containing dimers	Central nervous system (CNS) resident cells and fibroblasts	Impaired HSV2-induced autophagy - increased viral replication and apoptosis of patient fibroblasts	Mohr's meningitis (recurrent lymphocytic meningitis) due to HSV2

5. Predisposition to INVASIVE Fungal Diseases

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
CARD9 deficiency	CARD9	AR	607212	Mononuclear phagocytes	CARD9 signaling pathway	Invasive candidiasis infection, deep dermatophytoses, other invasive fungal infections

6. Predisposition to Mucocutaneous Candidiasis

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
IL-17RA deficiency	IL-17RA	AR	605461	Lymphocytes, fibroblasts, mononuclear phagocytes	IL-17RA signaling pathway	CMC, folliculitis
IL-17RC deficiency	IL-17RC	AR	610926	Lymphocytes, fibroblasts, mononuclear phagocytes	IL-17RC signaling pathway	CMC
IL-17F deficiency	IL-17F	AD	604834	T cells	IL-17F-containing dimers	CMC, folliculitis
STAT1 GOF	STAT1	AD GOF	606555	T cells, B cells, monocytes	CARD-1 mutations that impair the development of IL-17-producing T cells	CMC, various fungal, bacterial and viral (HSV1, infections, auto-immunity (thyroiditis, diabetes, cytopenias), enteropathy
ACT1 deficiency	TRAF3p2	AR	607043	T cells, fibroblasts	Fibroblasts fail to respond to IL-17A and IL-17F, and their T cells to IL-17E	CMC, folliculitis and macrogliosis
JNK1 haplo-insufficiency (3 patients)	MAPK8	AD	NA	T cells, fibroblasts	2 T cell subsets (in vitro, and in vivo) responses to fibroblasts to IL-17A, IL-17F, L-α-JUN/AFT-2-dependent TGF β signaling	CMC, connective tissue disorder (similar to Ehlers-Danlos syndrome)

7. TLR Signaling Pathway Deficiency with Bacterial Susceptibility

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Affected function	Associated features
IRAK4 deficiency	IRAK4	AR	608483	Lymphocytes + Granulocytes+ Monocytes	TLR-IRAK4 signaling pathway	Bacterial infections (pyogens)
MyD88 deficiency	MYD88	AR	601217	Lymphocytes + Granulocytes+ Monocytes	TLR-MYD88 signaling pathway	Bacterial infections, X-linked MECF2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECF2 and IRAK1
IRAK1 deficiency	IRAK1	XL	300283	Lymphocytes + Granulocytes+ Monocytes	TLR-IRAK1 signaling pathway	Bacterial infections, X-linked MECF2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECF2 and IRAK1
TIRAP deficiency	TIRAP	AR	614382	Lymphocytes + Granulocytes+ Monocytes	TLR4-AP, signaling pathway; TLR1/2, TLR2/4, and TLR4 agonists were impaired in the fibroblasts and leukocytes	Staphylococcal disease during childhood
TLR7 deficiency	TLR7	XL	301661	Lymphocytes, Myeloid cells	Impaired responses to TLR7 ligands; reduced production of type 1 IFN	Severe COVID19 infection
TLR8 GOF	TLR8	XL	NA	Myeloid cells	Elevated proinflammatory serum cytokines; increased proinflammatory responses of patient myeloid cells to TLR8 agonists; reduced ability of mutant TLR8 to attenuate TLR7 signaling	Early onset, severe cytopenias, hepatosplenomegaly, lymphadenopathy; progressive autoinflammatory disease

8. Other Inborn Errors of Immunity Related to Non-Hematopoietic Tissues

Disease	Genetic defect	Inheritance	Gene	OMIM	Affected cells	Affected function	Associated features
Isolated congenital asplenia (ICA)	APSA	AD	APSA	771400	No spleen	APSA encodes ribosomal protein SA, a component of the small subunit of the ribosome	Bacteremia (encapsulated bacteria)
Trypanosomiasis	APOL1	AD	607442	Granulocytes	Poly-forming serum protein	Trypanosomiasis	
Disease	Genetic defect	Inheritance	Gene OMIM	Affected cells	Affected function	Associated features	
---------	---------------	-------------	------------	---------------	------------------	---------------------	
IRF4 haploinsufficiency	IRF4	AD	601900	L + M	IRF4 is a pleiotropic transcription factor	Whipple’s disease	
IL-18BP deficiency	IL-18BP	AR	604113	Leukocytes and other cells	IL-18BP neutralizes secreted IL-18	Fulminant viral hepatitis	

Total number of mutant genes in Table 6: 74. New inborn errors of immunity: 10 (TBX21 [55], IFNG [57], NOS2 [60], ZNFX1 [63–65], SNORA31 [61], ATG4A, MAP1LC3B2 [62], MAPK8 [69], TLR7 [66–68], TLR8 [58, 59])

NFκB nuclear factor kappa B, **TIR** Toll and interleukin 1 receptor, **IFN** interferon, **TLR** Toll-like receptor, **MDC** myeloid dendritic cell, **CNS** central nervous system, **CMC** chronic mucocutaneous candidiasis, **HPV** human papillomavirus, **VZV** varicella zoster virus, **EBV** Epstein-Barr virus
1. Type 1 Interferonopathies

Disease	Genetic defect	Inheritance	OMIM	T Cells	B cells	Functional defect	Associated Features
AD STING-associated vasculopathy, infantile-onset (SAVI)	TMEM173 (STING)	AD	612374	Not assessed	Not assessed	STING activates both the NF-kappa-B and IRF3 transcription pathways to induce expression of IFN	Skin vasculopathy, inflammatory lung disease, systemic autoinflammation and ICG, FCL
AR STING-associated vasculopathy, infantile-onset (SAVI)	TMEM173 (STING)	AR GOF	619334	Not assessed	Not assessed	STING activates both the NF-kappa-B and IRF3 transcription pathways to induce expression of IFN	FTT, early onset rash, fever, dyspnea, interstitial lung disease/pneumonitis, polyarthritis, autoAbs, increased inflammatory markers, IFN gene signature. Phenocopy of SAVI due to AD GOF TMEM173

ADA2 deficiency	ADA2	AR	607576	Not assessed	Not assessed	ADAs deactivate extracellular adenosine and terminate signaling through adenosine receptors	Polyarthritides nodosa, childhood-onset, early-onset recurrent ischemic stroke and fever; some patients develop hypogammaglobulinemia
TREX1 deficiency, Aicardi-Goutières syndrome 1 (AGS1)	TREX1	AR	606609	Not assessed	Not assessed	Intracellular accumulation of abnormal ss DNA species leading to increased type I IFN production	Classical AGS, SLE, FCL
RNASEH2B deficiency, AGS2	RNASEH2B	AR	610326	Not assessed	Not assessed	Intracellular accumulation of abnormal RNA-DNA hybrid species leading to increased type I IFN production	Classical AGS, SP
RNASEH2C deficiency, AGS3	RNASEH2C	AR	610330	Not assessed	Not assessed		Classical AGS
RNASEH2A deficiency, AGS4	RNASEH2A	AR	606334	Not assessed	Not assessed		Classical AGS
SAMHD1 deficiency, AGS5	SAMHD1	AR	606754	Not assessed	Not assessed	Controls dNTPs in the cytosol, failure of which leads to increased type I IFN production	Classical AGS, FCL
ADAR1 deficiency, AGS6	ADAR1	AR	146920	Not assessed	Not assessed	Catalyzes the deamination of adenosine to inosine in dsRNA substrates, failure of which leads to increased type I IFN production	Classical AGS, BSN, SP
Aicardi-Goutières syndrome 7 (AGS7)	IFIH1	AD GOF	615846	Not assessed	Not assessed	IFIH1 gene encodes a cytoplasmic viral RNA receptor that activates type I interferon signaling through the MAVS adaptor molecule	Classical AGS, SLE, SP, SMS
DNAse II deficiency	DNAse2	AR	126350	Not assessed	Not assessed	DNAse II degrades and eliminates DNA. Loss of DNAse II activity induces type I interferon signaling	AGS
LSM11 deficiency (2 patients)	LSM11	AR	619486	Not assessed	Not assessed	Increased IFN signaling in fibroblasts	AGS, type 1 IFN-opathy
RNUT7-1 deficiency (16 patients)	RNUT7-1	AR	619487	Not assessed	Not assessed	Increased IFN signaling in fibroblasts	AGS, type 1 IFN-opathy
Pediatric systemic lupus erythematosus due to DNASE1L3 deficiency	DNASE1L3	AR	614420	Not assessed	Not assessed	DNASE1L3 is an endonuclease that degrades extracellular DNA. DNASE1L3 deficiency decreases clearance of apoptotic cells	Very early onset SLE, reduced complement levels, autoantibodies (dsDNA, ANCA), lupus nephritis, hypocomplementemic urticarial vasculitis syndrome
Spondyloenchondrodysplasia with immune dysregulation (SPEDC)	ACP5	AR	171640	Not assessed	Not assessed	Upregulation of IFN through mechanism possibly relating to pDCS	Short stature, SP, ICG, SLE, thrombocytopenia and autoimmune hemolytic anemia, possibly recurrent bacterial and viral infections
X-linked reticulate pigmentary disorder	POLA1	XL	301220	Not assessed	Not assessed	POLA1 is required for synthesis of cytosolic RNA:DNA and its deficiency leads to increased production of type I interferon	Hyperpigmentation, characteristic facies, lung and GI involvement
USP18 deficiency	USP18	AR	607057	Not assessed	Not assessed	Defective negative regulation of ISG15 leading to increased IFN	TORCH-like syndrome
OAS1 deficiency	OAS1	AD GOF	164392	Low	Not assessed	Increased interferon recognition of RNA	Pulmonary alveolar proteinosis, skin rash
CDC42 deficiency (15 patients)	CDC42	AD	618787	Normal/ decreased	Normal/ decreased	↑ serum levels of IL1, IL18, IFN-γ, ferritin, sCD25, CRP etc. Mutation affects actin function, ↑ NK cell cytotoxicity	Neonatal onset: pancytopenia, fever, rash, hepatosplenomegaly, multisystemic inflammation, myofibrosis/proliferation, HLH, enteroctocytosis, Recurrent GIT/URT infections; neurodevelopmental delay, FTT
STAT2 R148 LOF-regulation (3 patients)	STAT2	AR	616636	Increased	Normal	Patient cells hyper-sensitive to IFN-α, GOF for induction of the late (not early) response to type I IFNs due to impaired interaction of mutant STAT2 with USP18, a negative regulator of type I IFN responses	Severe fatal early onset autoinflammation, ↑ serum IFN-α, IL6, TNFa, phenocopy of USP18 deficiency
ATAD3A deficiency (8 patients)	ATAD3A	AD/AR	617183	Not assessed	Not assessed	Elevated ISG expression, increased serum type I IFNs	Predominantly neurological defects (development delay, spasticity)

2. Defects Affecting the Inflammasome

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Functional defects	Associated Features
Familial Mediterranean fever	MEVF	AR LOF	664910	Mature granulocytes, cytokine-activated monocytes.	Increased inflammasome-mediated induction of IL1β	Recurrent fever, serositis and inflammation response to colchicine. Predisposes to vasculitis and inflammatory bowel disease.
Table 7 (continued)

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Functional defects	Associated Features
Mevalonate kinase deficiency (Hyper IgD syndrome)	MVK	AR	616115	PMNs, monocytes	Periodic fever and leukocytosis with high IgD levels	
Muckle-Wells syndrome	AD GOF	134610		PMNs, monocytes	Urticaria, SNHL, amyloidosis	
Familial cold autoinflammatory syndrome 1	NLRC4	AD GOF	614468	Monocytes	Defect in cryopyrin, involved in leukocyte apoptosis and NFkB signaling and IL-1 processing	Neutonatal onset rash, chronic meningitis, and arthropathy with fever and inflammation
Familial cold autoinflammatory syndrome 2	NLRP12	AD GOF	611762	PMNs, monocytes	Non-pruritic urticaria, arthritis, chills, fever and leukocytosis after cold exposure	
NLRC4/MAIP (macrophage activating receptor)	NLRP1 GOF	AD	615226	Keratinocytes	Inflammatory markers and pro-inflammatory cytokines/gene signature	Autoinflammatory disorder: regular/prolonged fevers, lymphadenopathy, splenomegaly, ulcers, arthralgia, GI features,

3. Non-Inflammasome Related Conditions

Disease	Genetic defect	Inheritance	OMIM	Affected cells	Functional defects	Associated Features
TNF receptor-associated periodic syndrome (TRAPS)	TNFRSF1A	AD	142680	PMNs, monocytes	Mutations of 55-kD TNF receptor leading to intracellular receptor retention or diminished soluble cytokine receptor available to bind TNF	Recurrent fever, serositis, rash, and ocular or joint inflammation
Pyogenic sterile arthritis, pyoderma gangrenosum, acne (PAPA) syndrome, hypercalprotectinemia	PSTPIP1	AD	604416	Hematopoietic tissues, upregulated in activated T-cells	Disordered actin reorganization leading to compromised physiologic signaling during inflammatory response	Destructive arthritis, inflammatory skin rash, myositis
Blau syndrome	NOD2	AD	186580	Monocytes	Mutations in nucleotide binding site of CARD15, possibly disrupting interactions with lipopolysaccharides and NF-kB signaling	Uveitis, granulomatous synovitis, campylobacterlyc, rash and cranial neuropathies, 30% develop Crohn colitis
ADAM17 deficiency	ADAM17	AR	614328	Leukocytes and epithelial cells	Defective TNFα production	Early onset diarrhea and skin lesions
Chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia (Majed syndrome)	LPIN2	AR	609628	Neutrophils, bone marrow cells	Undefined	Chronic recurrent multifocal osteomyelitis, transfusion-dependent anemia, cutaneous inflammatory disorders
DIRA (Deficiency of the Interleukin 1 Receptor Antagonist)	IL1RN	AR	612852	PMNs, Monocytes	Mutations in the IL1 receptor antagonist allow unopposed action of Interleukin 1	Neutonatal onset of sterile multifocal osteomyelitis, periostitis and pustulosis.
DITRA (Deficiency of IL-36 receptor antagonist)	IL36RN	AR	614204	Keratinocytes, leukocytes	Mutations in IL-36RN leads to increase IL-8 production	Pustular ponorasis
SLC29A3 mutation	SLC29A3	AR	602782	Leukocytes, bone cells	Hyperpigmentation hyperichrosis, hyperesisis-lymphadenopathy plus syndrome	
CAMPS (CARD14 mediated porsitias)	CARD14	AD	602723	Mainly in keratinocytes	Mutations in CARD14 activate the NF-kB pathway and production of IL-18	Psoriasis
Cherubism	SH3BP2	AD	115400	Stroma cells, bone cells	Hyperactive macrophage and increase NF-kB	Bone degeneration in jaws
Table 7 (continued)

CANDLE (chronic atypical neutrophilic dermatitis with lipodystrophy)	PSMBB*	AR and AD	Lymphocytes, B cell adipose cells	Mutations cause increased IFN signaling through an undefined mechanism	Contractures, panniculitis, ICS, fevers
COPA defect	COPA	AD	Lymphocytes, PMN and tissue specific cells	Defective intracellular transport via the coat protein complex I (COP1)	Autimmune inflammatory arthritis and intestinal lung disease with Th17 dysregulation and autoantibody production
Otoilipenia/ORAS	OTULIN	AR	Leukocytes	Increase LUBAC induction of NF-κB activation leading to high proinflammatory cytokine levels	Fever, diarrhea, dermatitis
A20 deficiency	TNFAIP3	AD	Lymphocytes	Defective inhibition of NF-κB signaling pathway	Arthralgia, mucosal ulcers, ocular inflammation
API53 deficiency	API53	AR	Lymphocytes	Increased SYK phosphorylation, enhance downstream signaling	Pustular psoriasis
ALPI deficiency	ALPI	AR	Intestinal epithelial cells	Deficient inhibition of LPS in intestine	Inflammatory bowel disease
TRIM22	TRIM22	AR	Macrophages, intestinal epithelial cells	Inflammatory bowel disease	
T-cell lymphoma					
subcutaneous panniculitis-like (TML3 deficiency)	HAVCR2	AR	Leukocytes	Increased inflammatory activity due to defective checkpoint signaling	Panniculitis, HCL, polyclonal cutaneous T cell infiltrates or T-cell lymphoma
C2orf69 deficiency (28 patients)	C2orf69	AR	Leukocytes	Early onset severe autoinflammation disorder, often fatal. Global developmental delay, with recurrent seizures, Muscle weakness. Liver dysfunction.	
NCKAP1L deficiency (9 patients)	NCKAP1L	AR	Lymphocytes	Hyperinflammation and cytokine overproduction (Th1), ↓ T cell proliferation, cytoskeletal defects	Recurrent URI, skin rashes/abscesses/ atopy, ulcers, lymphoproliferation/ lymphadenopathy, hyperinflammation, anti dsDNA Abs, fever, FTT
SYK GOF (6 patients)	SYK	AD GOF	Lymphocytes	Increased SYK phosphorylation, enhance downstream signaling	Recurrent infections, multi-organ inflammation/inflammatory disease (gut, skin, CNS, lung, liver), B cell lymphoma (2 pts)
HCK GOF (1 patient)	HCK	AD GOF	NA	Cutaneous vasculitis, inflammatory leucocyte infiltration of the lungs (pulmonary fibrosis) and skin, anemia, hepatosplenomegaly	
PSMB9 GOF (3 patients)	PSMB9	AD GOF	Leukocytes	Elevated levels of inflammatory cytokines (IL-6, IL-10, TNF-α, ROS)	Severe autoinflammatory phenotype (neonatal-onset fever, skin rash, myositis, severe pulmonary hypertension, basal ganglia calcification), periodic inflammatory exacerbation; immunodeficiency. Partial phenocopy of PRAAS
IKBK G (NEMO exon 5 deletion (5 patients)	IKBK G	XL	Leukocytes	Mutant NEMO lacked exon 5 (NEMO-Δex5), failed to bind TBK1; NEMO-Δex5 stabilized IKK, increasing type 1 IFN production	Fever, skin rash, systemic autoinflammation, infections, CNS involvement, panniculitis, uveitis, hepatosplenomegaly, ectodermal dysplasia
TBK1 deficiency (4 patients)	TBK1	AR	Leukocytes	Autoinflammation driven by TNF-induced RIPK1-dependent cell death	Chronic systemic autoinflammation (poliarthritis, vasculitis, rash); delayed neurocognitive development

Total number of disorders in Table 7: 56. New inborn errors of immunity: 14 (AR GOF TMEM173 [70], LSM11, RNUT7-I [71], CDC42 [72–78], STAT2 [79, 80], ATAD3A [81], C2orf69 [83, 84], RIPK1 [85, 86], NCKAP1L [87–89], SYK [90], HCKI [91], PSMB9 [95, 96], IKBK G NEMO-Δex5, AR TBK1 [82]).

IFN interferon, HSM hepatosplenomegaly, CSF cerebrospinal fluid, SLE systemic lupus erythematosus, TORCH toxoplasmosis, other, rubella, cytomegalovirus, and herpes infections, SNHL sensorineural hearing loss, AGS Aicardi-Goutiéres syndrome, BSN bilateral striatal necrosis, FCL familial chilblain lupus, ICC intracranial calcification, IFN interferon type I, pDCs plasmacytoid dendritic cells, SP spastic paraparesis, SMS Singleton-Merten syndrome, ss single-stranded DNA.

*Variants in PSMB4, PSMB9, PSMA3, and POMP have been proposed to cause a similar CANDLE phenotype in compound heterozygous monogenic (PSMB4), digenic (PSMA3/PSMB8, PSMB9/PSMB4, PSMB4/PSMB8) and AD monogenic (POMP) models [115].
Table 8 Complement deficiencies

Disease	Genetic defect	Inheritance	Gene OMIM	Laboratory features	Associated features
C1q deficiency due to defects	C1QA	AR	120550	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms
	C1QB	AR	120570	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms
	C1QC	AR	120575	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms
C1r deficiency	C1R	AR	613785	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms, Ehlers Danlos phenotype
C1r Periodontal Ehlers-Danlos	C1R	AD GOF	613785	Hyperpigmentation, skin fragility	SLE, infections with encapsulated organisms, Ehlers Danlos phenotype
C1s deficiency	C1S	AR	613785	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms, Ehlers Danlos phenotype
C1s Periodontal Ehlers-Danlos	C1S	AD GOF	613785	Hyperpigmentation, skin fragility	SLE, infections with encapsulated organisms, Ehlers Danlos phenotype
Complete C4 deficiency	C4A+C4B	AR	120810	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms, atherosclerosis
C2 deficiency	C2	AR	217000	Absent CH50 hemolytic activity, defective activation of the classical pathway	SLE, infections with encapsulated organisms, atherosclerosis
C3 deficiency (LOF)	C3	AR	120700	Absent CH50 and AH50 hemolytic activity, defective opsonization, defective humoral immune response	Infections, glomerulonephritis, atypical hemolytic-uremic syndrome with GOF mutations.
C3 GOF	C3	AD GOF	120700	Increased activation of complement	Atypical hemolytic-uremic syndrome
C5 deficiency	C5	AR	120900	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C6 deficiency	C6	AR	217050	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C7 deficiency	C7	AR	217070	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C8a deficiency	C8A	AR	120950	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C8 y deficiency	C8G	AR	120930	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C8 § deficiency	C8B	AR	120960	Absent CH50 and AH50 hemolytic activity, Defective bactericidal activity	Atypical hemolytic-uremic syndrome
C9 deficiency	C9	AR	120940	Reduced CH50 and AP50 hemolytic activity, Deficient bactericidal activity	Milder susceptibility to disseminated neisserial infections
MASP2 deficiency	MASP2	AR	605102	Deficient activation of the lectin activation pathway	Pyogenic infections, inflammatory lung disease, autoimmunity
Ficolin 3 deficiency	FCN3	AR	604973	Absence of complement activation by the Ficolin 3 pathway	Respiratory infections, abscesses
C1 inhibitor deficiency	SERPING1	AD	606860	Spontaneous activation of the complement pathway with consumption of C4/C2, spontaneous activation of the contact system with generation of bradykinin from high molecular weight kininogen	Hereditary angioedema
Factor B GOF	FCB	AD GOF	612924	Gain-of-function mutation with increased spontaneous AH50	Atypical hemolytic-uremic syndrome
Factor B deficiency	FCB	AR	615561	Deficient activation of the alternative pathway	Infections with encapsulated organisms
Factor D deficiency	FCD	AR	134350	Absent AH50 hemolytic activity	Neisserial infections
Properdin deficiency	CFP	XL	300383	Absent AH50 hemolytic activity	Neisserial infections
Factor I deficiency	CF1	AR	217030	Spontaneous activation of the alternative complement pathway with consumption of C3	Infections, disseminated neisserial infections, atypical Hemolytic-uremic syndrome, pemphigus
Factor H deficiency	CFH	AR or AD	134370	Spontaneous activation of the alternative complement pathway with consumption of C3	Infections, disseminated neisserial infections, atypical Hemolytic-uremic syndrome, pemphigus
Factor H--related protein deficiencies	CFHR1	AR or AD	134371	Normal CH50, AH50, autoantibodies to Factor H, linked deletions of one or more CFHR genes leads to susceptibility autoantibody-mediated aHUS	Older onset atypical hemolytic-uremic syndrome, disseminated neisserial infections
	CFHR2	AR or AD	600085	Normal CH50, AH50, autoantibodies to Factor H, linked deletions of one or more CFHR genes leads to susceptibility autoantibody-mediated aHUS	Older onset atypical hemolytic-uremic syndrome, disseminated neisserial infections
	CFHR3	AR or AD	605537	Normal CH50, AH50, autoantibodies to Factor H, linked deletions of one or more CFHR genes leads to susceptibility autoantibody-mediated aHUS	Older onset atypical hemolytic-uremic syndrome, disseminated neisserial infections
	CFHR5	AR or AD	606953	Normal CH50, AH50, autoantibodies to Factor H, linked deletions of one or more CFHR genes leads to susceptibility autoantibody-mediated aHUS	Older onset atypical hemolytic-uremic syndrome, disseminated neisserial infections
Thrombomodulin deficiency	THBD	AD	188040	Normal CH50, AH50, autoantibodies to Factor H, linked deletions of one or more CFHR genes leads to susceptibility autoantibody-mediated aHUS	Older onset atypical hemolytic-uremic syndrome, disseminated neisserial infections
Membrane Cofactor Protein (CD46) deficiency	CD46	AD	120920	Inhibitor of complement alternate pathway, decreased C3 binding	Atypical hemolytic-uremic syndrome, infections, pemphigus
Membrane Attack Complex Inhibitor (CD59) deficiency	CD59	AR	102721	Erythrocytes highly susceptible to complement-mediated lysis	Membranolytic anemia, polynuropathy
CD55 deficiency (CHAPEL disease)	CD55	AR	126240	Hyperactivation of complement on endothelium	Protein-losing enteropathy, thrombosis

Total number of mutant genes in Table 8: 36. New disorders: Nil

MAC membrane attack complex, SLE systemic lupus erythematosus
Table 9 Bone marrow failure

Disease	Genetic defect	Inheritance	Gene OMIM	T cells	B cells	Other affected cells	Associated features	Major Category	Subcategory
Fanconi Anemia Type A	FANCA	AR	227650	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type B	FANCB	XLR	300914	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type C	FANCC	AR	227645	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type D1	BRCA2	AR	603724	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type D2	FANCD2	AR	227646	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type F	FANCE	AR	603467	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type G	XRC9	AR	614982	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type I	FANCI	AR	609053	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type J	BRIP1	AR	609054	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type L	FANCL	AR	612683	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type M	FANCM	AR	618096	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type N	PALB2	AR	610832	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type O	RAD51C	AR	613390	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type P	SLX4	AR	613951	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type Q	ERCC4	AR	615272	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type R	RAD51	AR	617244	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type S	BRCA1	AR	617783	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type T	UBE2T	AR	616435	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type U	XRCC2	AR	617247	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
Fanconi Anemia Type V	MAD2L2	AR	617245	normal to low	normal to low	HSC	normal to low NK, CNS, skeletal, skin, cardiac, GI, urogenital anomalies, increased chromosomal breakage	Bone marrow failure with immune deficiency	Fanconi Anemia
MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, enteropathy)	SAMD9	AD GOF	619085	Not reported	Not reported	HSC, myeloid cells	Intrauterine growth retardation, gonadal abnormalities, adrenal failure, MDS with chromosome 7 aberrations, predisposition to infections, enteropathy, absent spleen	Malignant / myelodysplastic syndrome	Malignant / myelodysplastic syndrome
Ataxia Pancytopenia Syndrome	SAMD6	AD GOF	611170	Normal to low	Normal to low	HSC, myeloid cells	MDS, neurological features	Malignant / myelodysplastic syndrome	Malignant / myelodysplastic syndrome
DKC1X	DKC1T	XL	305000	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA1	TERG	AD	127550	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA2	TERT	AD	181270	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA3	TINF2	AD	604319	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA4	TINF2	AD	613998	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA5	TINF2	AD	613998	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCA6	ACD	AD	616553	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCB1	NOLC3	AR	224230	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCB2	NOLC2	AR	613887	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
DKCB3	WRAP53	AR	613988	Normal to low	Normal to low	HSC	Bone marrow failure, pulmonary and hepatic fibrosis, nail dystrophy, leukoplakia, reticulate skin pigmentation, microcephaly, neurodevelopmental delay	Dyskaratosis Congenita	Malignant / myelodysplastic syndrome
Table 9 (continued)									

DKCB4	TERT	AR	612882						
DKCB5	RTEL1	AR	616190						
DKCB6	PARV	AR	616353						
DKCB7	ACD	AR	616553						
BMFS1 (SRP72-deficiency)	SRP72	AD	602122						
BMFS2	ERCC6L2	AR	616667						
BMFS5	FUS1	AD	618186						
Coats plus syndrome	STN1	AR	617272						
CTC1	AR	617653							
MECOM deficiency	MECOM	AD	618738						

DKCB: autosomal recessive dyskeratosis congenita, DKCX: X-linked dyskeratosis congenital, DKCA: autosomal dominant dyskeratosis congenita, BMFS: bone marrow failure syndrome.

Total number of mutant genes in Table 9: 44. New Inborn errors of immunity: 1 (MECOM) [98, 99]

HSC: hematopoietic stem cell, NK: natural killer, CNS: central nervous system, GI: gastrointestinal, MDS: myelodysplastic syndrome, DKCX: X-linked dyskeratosis congenital, DKCA: autosomal dominant dyskeratosis congenita, DKCB: autosomal recessive dyskeratosis congenita, BMFS: bone marrow failure syndrome.
1. Phenocopies of Inborn Errors of Immunity

Disease	Genetic defect/presumed pathogenesis	Circulating T cells	Circulating B cells	Serum Ig	Associated features/similar PID
Associated with somatic mutations					
Autoimmune lymphoproliferative syndrome (ALPS–SFAS)	Somatic mutation in TNFRSF6	Increased CD4–CD8– double negative (DN) αβ T cells	Normal, but increased number of CD5+ B cells	Normal or increased	Splenomegaly, lymphadenopathy, autoimmune cytopenias, defective lymphocyte apoptosis/ALPS–FAS (=ALPS type Im)
RAS-associated autoimmune leukoproliferative disease (RALD)	Somatic mutation in KRAS (GOF)	Normal	B cell lymphocytosis	Normal or increased	Splenomegaly, lymphadenopathy, autoimmune cytopenias, granulocytosis, monocytes/ALPS-like
RAS-associated autoimmune leukoproliferative disease (RALD)	Somatic mutation in NRAS (GOF)	Increased CD4–CD8– double negative (DN) αβ T cells	Lymphocytosis	Normal or increased	
Cryopyrinopathy, (Muckle-Wells /CINCA/NOMID-like syndrome)	Somatic mutation in NLRP3	Normal	Normal	Normal	Urticaria-like rash, arthropathy, neurological signs
Hyper eosinophilic syndrome due to somatic mutations in STAT5b	Somatic mutation in STAT5b (GOF)	Normal	Normal	Normal	Eosinophilia, atopic dermatitis, urticarial rash, diarrhea
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome	Somatic mutation in UBA1 (XL)	Reduced			Late onset treatment-refractory inflammatory syndrome (fevers, cytopenias, dysplastic bone marrow, interstitial nephritis, chondritis, vasculitis).
TLR8 GOF (5 patients)	Somatic mutation in TLR8	+ (mild) CD4+, CD8+ T cells, effector/memory subsets; ΔNK cells	Normal	Normal	Severe cytopenias, hepatosplenomegaly, lymphadenopathy, recurrent infections; hypoplastic bone marrow, increased proinflammatory serum cytokines
Associated with autoantibodies					
Chronic mucocutaneous candidiasis	AutoAb to IL-17 and/or IL-22	Normal	Normal	Normal	Endocrinopathy, chronic mucocutaneous candidiasis/CMC
Adult-onset immunodeficiency with susceptibility to mycobacteria	AutoAb to IFNγ	Decreased naive T cells	Normal	Normal	Mycobacterial, fungal, Salmonella ZV, infections/MSMD, or CID
Recurrent skin infection	AutoAb to IL-6	Normal	Normal	Normal	Staphylococcal infections/STAT3 deficiency
Pulmonary alveolar proteinosis	AutoAb to GM-CSF	Normal	Normal	Normal	Pulmonary alveolar proteinosis, cryptococcal meningitis, disseminated nocardiosis/CSF2RA deficiency
Acquired angioedema	AutoAb to Cl inhibitor	Normal	Normal	Normal	Angioedema/C1 INH deficiency (hereditary angioedema)
Atypical Hemolytic Uremic Syndrome	AutoAb to Complement Factor H	Normal	Normal	Normal	aHUS = Spontaneous activation of the alternative complement pathway
Thymoma with hypogammaglobulinemia (Good syndrome)	AutoAb to various cytokines	Increased CD8+ T cells	No B cells	Decreased	Invasive bacterial, viral or opportunistic infections, autoimmune, PRCA, lichen planus, cytopenia, colitis, chronic diarrhea
Severe COVID-19	AutoAb to type 1 IFNs (IFNα2, IFNα)				Severe, life-threatening infection with SARS-CoV-2

Total number of conditions for Table 10: 15 (7 due to somatic mutations; 8 due to autoAbs). New phenocopies: 3 (somatic variants in UBA1 [97], TLR8 [58]; autoAbs against type 1 IFNs [100–104])

aHUS atypical hemolytic uremic syndrome, XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, LOF loss-of-function, GOF gain-of-function, PRCA pure red cell aplasia
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10875-022-01289-3.

Author Contribution SGT wrote the drafts of the manuscript, prepared the tables, and revised the original manuscripts for resubmission. All co-authors contributed to and edited drafts of the original and revised manuscripts and tables and approved the final submitted version.

Funding The Inborn Errors of Immunity Expert Committee received funding from the International Union of Immunological Societies; CSL Behring, Baxalta, and Shire/Takeda provided educational grants to enable us to compile this interim update to novel causes of immune diseases. This work was also supported in part by the Intramural Research Program of the NIAID, NIH. SGT is supported by an Investigator Grant (Level 3) awarded by the National Health and Medical Research Council of Australia. IM is a senior clinical investigator of FWO Vlaanderen (EBD-D8974-FKM)

Data Availability Not applicable

Declarations

Ethics Approval This work is a summary of recently reported genetic variants that represent novel inborn errors of immunity. No human research studies were performed to produce this summary. Thus, no approvals by appropriate institutional review boards or human research ethics committees were required to undertake the preparation of this report.

Consent to Participate Not applicable.

Consent for Publication The authors consent to publish the content of this summary. However, as noted above, as this is a summary of recently-reported genetic variants that represent novel inborn errors of immunity, we did not require consent to publish from participants.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang Q, Frange P, Blanche S, Casanova JL. Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol. 2017;48:122–33. https://doi.org/10.1016/j.coi.2017.09.002.

2. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128. https://doi.org/10.1007/s10875-017-0464-9.

3. Bousfiha A, Jeddane L, Picard C, Ailaf H, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43. https://doi.org/10.1007/s10875-017-0465-8.

4. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailaf F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS Phenotypical Classification. J Clin Immunol. 2020;40(1):66–81. https://doi.org/10.1007/s10875-020-00758-x.

5. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Eizioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64. https://doi.org/10.1007/s10875-019-00737-x.

6. Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12. https://doi.org/10.1016/j.smim.2017.12.008.

7. Fischer A, Rausell A. What do primary immunodeficiencies tell us about the essentiality/redundancy of immune responses? Semin Immunol. 2018;36:13–6. https://doi.org/10.1016/j.smim.2017.12.001.

8. Picard C, Fischer A. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies. Eur J Immunol. 2014;44(10):2854–61. https://doi.org/10.1002/eji.201444669.

9. Leiding JW, Forbes LR. Mechanism-based precision therapy for the treatment of primary immunodeficiency and primary immunosuppressive diseases. J Allergy Clin Immunol Pract. 2019;7(3):761–73. https://doi.org/10.1016/j.jaip.2018.12.017.

10. Ma CS, Tangye SG. Flow cytometric-based analysis of defects in lymphocyte differentiation and function due to inborn errors of immunity. Front Immunol. 2019;10:2108. https://doi.org/10.3389/fimmu.2019.02108.

11. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med. 2014;211(11):2137–49. https://doi.org/10.1084/jem.20140520.

12. Lev A, Lee YN, Sun G, Hallumi E, Simon AJ, Ziresh KS, et al. Inherited SLP76 deficiency in humans causes severe combined immunodeficiency, neutrophil and platelet defects. J Exp Med. 2021;218(3). https://doi.org/10.1084/jem.202101062.

13. Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM, et al. PAX1 is essential for development and function of the human thymus. Sci Immunol. 2020;5(44). https://doi.org/10.1126/sciimmunol.aax1036.

14. Paganini I, Sestini R, Capone GL, Putignano AL, Contini E, Gioiti L, et al. A novel PAX1 null homozygous mutation in autosomal recessive ototechnical syndrome associated with severe combined immunodeficiency. Clin Genet. 2017;92(6):664–8. https://doi.org/10.1111/cge.13085.

15. Almutairi A, Wallace JG, Jaber F, Alosaimi MF, Jones J, Salam MTH, et al. Severe combined immunodeficiency caused by inositol-trisphosphate 3-kinase B (ITPKB) deficiency. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.01.014.

16. Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, et al. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood. 2021;138(12):1019–33. https://doi.org/10.1182/blood.2020008629.

17. Labrador-Horrillo M, Franco-Jarava C, Garcia-Prat M, Parra-Martinez A, Antolin M, Salgado-Perandres S, et al. Case report: X-Linked SASH3 deficiency presenting as a common variable immunodeficiency. Front Immunol. 2022;13:881206. https://doi.org/10.3389/fimmu.2022.881206.

18. Verheijen J, Wong SY, Rowe JH, Raymond K, Stoddard J, Delmonte OM, et al. Defining a new innate immunity deficiency syndrome: MAN2B2-CDG. J Allergy Clin Immunol. 2020;145(3):1008–11. https://doi.org/10.1016/j.jaci.2019.11.016.
19. Bainter W, Platt CD, Park SY, Stafstrom K, Wallace JG, Peters ZT, et al. Combined immunodeficiency due to a mutation in the gamma1 subunit of the coat protein I complex. J Clin Invest. 2021;131(3). https://doi.org/10.1172/JCI140944.

20. Hetemaki I, Kaustio M, Kinnunen M, Heikkila N, Keskitalo S, Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu T, Mayr D, Shoeb MR, Kuehn HS, Hoeger B, Giuliani S, Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magerus-Chatinet A, Mazerolles F, et al. Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood. 2019;134(1):9–21. https://doi.org/10.1182/blood-2018-11-887141.

21. Shahin T, Kuehn HS, Shoeb MR, Gawriwskyi L, Giuliani S, Repisak P, et al. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci Immunol. 2021;6(65):eab3981. https://doi.org/10.1126/sciim munol.abe3981.

22. Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magerus-Chatinet A, Mazerolles F, et al. Pediartic Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood. 2019;134(1):9–21. https://doi.org/10.1182/blood-2018-11-887141.

23. Yamashita M, Kuehn HS, Okuyama K, Okada S, Inoue Y, Mitsuiki N, et al. A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Commun. 2021;22(7):893–903. https://doi.org/10.1038/s41590-021-00951-z.

24. Kuehn HS, Chang J, Yamashita M, Niemela JM, Zou C, Okuyama K, et al. T and B cell abnormalities, pneumocystis pneumonia, and chronic lymphocytic leukemia associated with an AIOLOS defect in patients. J Exp Med. 2021;218(12). https://doi.org/10.1084/jem.202111118.

25. Watanabe M, Kuehn HS, Okuyama K, Okada S, Inoue Y, Mitsuiki N, et al. A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Commun. 2021;22(7):893–903. https://doi.org/10.1038/s41590-021-00951-z.

26. Wu B, Rice L, Shrimpton J, Lawless V, Walker K, Carter C, et al. Biallelic mutations in calcium release activated channel regulator 2A (CRACR2A) cause a primary immunodeficiency disorder. Elife. 2021;10. https://doi.org/10.7554/eLife.72559.

27. Bezier V, Rapaport F, Hu J, Titeux M, Bonnet des Claustres M, Bourgey M, et al. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell. 2021;184(4):3812–28 e30. doi:https://doi.org/10.1016/j.cell.2021.06.004.

28. Mace EM, Paust S, Conte ML, Baxley RM, Schmitt MM, Patil SL, et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J Clin Invest. 2020. https://doi.org/10.1172/JCI134966.

29. Baxley RM, Leung W, Schmitt MM, Matson JP, Yin L, Oram MK, et al. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun. 2021;12(1):1626. https://doi.org/10.1038/s41467-021-21878-x.

30. Bezier V, Tavernier SJ, Chen YH, Ma CS, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217(6). https://doi.org/10.1084/jem.20191804.

31. Monies D, Aboulhoda M, Assoum M, Moghribi N, Rafaillah R, Almontashiri N, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104(6):1182–201. https://doi.org/10.1016/j.ajhg.2019.04.011.

32. Chen YH, Grigelioniene G, Newton PT, Gullander J, Elving M, Hammersjo A, et al. Absence of GP130 cytokine receptor signaling causes extended Stuve-Wiedemann syndrome. J Exp Med. 2020;217(3). https://doi.org/10.1084/jem.20191306.

33. Kaustio M, Neyezbadeh N, Hinttalai R, Tapiainen T, Astrom P, Maimi K, et al. Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. J Allergy Clin Immunol. 2021;148(2):599–611. https://doi.org/10.1016/j.jaci.2020.12.656.

34. Niuehes T, Ozgur TT, Bikkes M, Waldmann R, Schoning J, Bransen J, et al. Mutations of the gene FNI1 associated with a syndromic autosomal recessive immunodeficiency with cardiomyopathy and pre-excitation syndrome. Eur J Immunol. 2020;50(7):1078–80. https://doi.org/10.1002/eji.201948504.

35. Saettini F, Poli C, Vengoechea J, Bonanomi S, Orellana JC, Fazio G, et al. Absent B cells, agammaglobulinemia, and hypertrophic cardiomyopathy in folliculin interacting protein 1 deficiency. Blood. 2020. https://doi.org/10.1182/blood.2020006441.

36. Le Coz C, Nguyen DN, Su C, Nolan BE, Albrecht AV, Khani S, et al. Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients. J Exp Med. 2021;218(7). https://doi.org/10.1084/jem.20201750.

37. Takeda AJ, Maher TJ, Zhang Y, Lanahan SM, Bucklin ML, Compton SR, et al. Human PI3Kgamma deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun. 2019;10(1):4364. https://doi.org/10.1038/s41467-019-12311-5.

38. Thian M, Hoeger B, Kameev A, Poyer F, Kostel Bal S, Caldera M, et al. Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica. 2020. https://doi.org/10.3324/haematol.2019.231399.

39. Kury P, Staniek J, Wegehaupt O, Janowska I, Eckenweiler M, Korinthenberg R, et al. Agammaglobulinemia with normal B-cell numbers in a patient lacking Bobi. J Allergy Clin Immunol. 2021;147(5):1977–80. https://doi.org/10.1016/j.jaci.2021.01.027.

40. Kuhny M, Forbes LR, Cakan E, Vega-Loza A, Kostiuk V, Dinesh RK, et al. Disease-associated CTNBNL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest. 2020. https://doi.org/10.1172/JCI131297.

41. Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K, et al. APRIL-dependent life-long plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.03.025.

42. Kalitchenko A, Perinetti Casoni G, Dupre L, Trotta L, Huemer JL, Galgano D, et al. RHOG deficiency abrogates cytotoxicity of human lymphocytes and causes hemophagocytic lymphohistiocytosis. Blood. 2021;137(15):2033–45. https://doi.org/10.1182/blood.2020008738.

43. Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K, et al. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.07.033.

44. Thaventhiran JED, Lango Allen H, Burren OS, Rae W, Greene D, Staples E, et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature. 2020;583(7814):90–5. https://doi.org/10.1038/s41586-020-2265-1.

45. Hoadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun. 2020;11(1):5341. https://doi.org/10.1038/s41467-020-18925-4.

46. Ogishi M, Yang R, Aytekin C, Langlais D, Bourgey M, Khan T, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med. 2021;27(9):1646–54. https://doi.org/10.1038/s41591-021-01388-5.

47. Tyler PM, Bucklin ML, Zhao M, Maher TJ, Rice AJ, Ji W, et al. Human autoinflammatory disease reveals
ELF4 as a transcriptional regulator of inflammation. Nat Immunol. 2021;22(9):1118–26. https://doi.org/10.1038/s41590-021-00984-4.

Sun G, Qui L, Yu L, An Y, Ding Y, Zhou L, et al. Loss of function mutation in ELF4 causes autoimmune and immunodeficiency disease in human. J Clin Immunol. 2022. https://doi.org/10.1007/s10875-022-02124-3.

Stremenova Špargarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood. 2020;136(9):1055–66. https://doi.org/10.1182/blood.2020005844.

Goos H, Fogarty CL, Sahu B, Plagnol V, Rajamaki K, Nurmi K, et al. Gain-of-function CBEPE mutation causes noncanonical autoimmune inflammatory immunosuppression. J Allergy Clin Immunol. 2019;144(5):1364–76. https://doi.org/10.1016/j.jaci.2019.06.003.

Hoshino A, Boutboul D, Zhang Y, Kuehn HS, Hadjadj J, Hoos H, Fogarty CL, Sahu B, Plagnol V, Rajamaki K, Nurmi K, et al. Gain-of-function CBEPE mutation causes noncanonical autoimmune inflammatory immunosuppression. J Allergy Clin Immunol. 2019;144(5):1364–76. https://doi.org/10.1016/j.jaci.2019.06.003.

Rapaport F, et al. Inherited human IFNgamma deficiency underlies mycobacterial disease. J Clin Invest. 2020. https://doi.org/10.1126/sciimmunol.abc2691.

Asano T, Boisson B, Onodi F, Maturozzo D, Moncada-Velaz M, Maglouris Renkiläraj MRL, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62). https://doi.org/10.1126/sciimmunol.abl4348.
77. He T, Huang Y, Ling J, Yang J. A new patient with NOCARH syndrome due to CDC42 defect. J Clin Immunol. 2020;40(4):571–5. https://doi.org/10.1007/s10875-020-00786-7.

78. Szczawinska-Poplonyk A, Ploski R, Bernatowska E, Pac M. A novel CDC42 mutation in an 11-year old child manifesting as syndromic immunodeficiency, autoinflammation, hemophagocytic lymphohistiocytosis, and malignancy: a case report. Front Immunol. 2020;11:318. https://doi.org/10.3389/fimmu.2020.00318.

79. Duncan CJA, Thompson BJ, Rice GI, Gothe F, Young DF et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci Immunol 2019;4(42). https://doi.org/10.1126/sciimmunol.aav7501.

80. Gruber C, Martin-Fernandez M, Ailal F, Qiu X, Taft J, Altman J, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020;217(5). https://doi.org/10.1084/jem.20192319.

81. Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, et al. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med. 2021;218(10). https://doi.org/10.1084/jem.20201560.

82. Taft J, Markson M, Legarda D, Patel R, Chan M, Malle L, et al. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell. 2021;184(17):4447–63 e20. https://doi.org/10.1016/j.cell.2021.07.026.

83. Wong HH, Seet SH, Maier M, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated lipodystrophy, and malignancy: a case report. Front Immunol. 2020;11:318. https://doi.org/10.3389/fimmu.2020.00318.

84. Cook SA, Comrie WA, Poli MC, Similuk M, Oler AJ, Faruqi M, et al. Mutations that prevent caspase cleavage of RIPK1 cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet. 2021;108(7):1301–17. https://doi.org/10.1016/j.ajhg.2021.05.003.

85. Lautsberg E, Gieselsmann S, Dewulf JP, Wiame E, Holz A, Salvinirova R, et al. C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation. J Clin Invest. 2021;131(12). https://doi.org/10.1172/JCI143078.

86. Castro CN, Rosenzwajg M, Carapito R, Shahrooei M, Konantz M, Khan A, et al. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med. 2020;217(12). https://doi.org/10.1084/jem.20192275.

87. Wang L, Aschenbrenner D, Zeng Z, Cao X, Mayr D, Mehta M, et al. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nat Genet. 2021;53(4):500–10. https://doi.org/10.1038/s41588-021-00803-4.

88. Kanderova V, Svobodova T, Borona S, Fejtkova M, Martinu V, Paderova J, et al. Early-onset pulmonary and cutaneous vasculitis driven by constitutively active SRC-family kinase HCK. J Allergy Clin Immunol. 2021. https://doi.org/10.1016/j.jaci.2021.07.046.

89. de Jesus AA, Hou Y, Brooks S, Malle L, Biancottio A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020;130(4):1669–82. https://doi.org/10.1172/JCI129301.

90. Hegazy S, Marques MC, Cannaw WA, Goldbach-Mansky R, de Jesus AA, Reyes-Mugica M, et al. NEMO-NDAS: a pannlicullis in the young representing an autoinflammatory disorder in disguise. Am J Dermatopathol. 2022. https://doi.org/10.1097/DAD.000000000002144.

91. Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, et al. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest. 2022;132(6). https://doi.org/10.1172/JCI128808.

92. Kataoka S, Kawashima N, Okuno Y, Muramatsu H, Miwata S, Narita K, et al. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J Allergy Clin Immunol. 2021;148(2):639–44. https://doi.org/10.1016/j.jaci.2021.03.010.

93. Kanazawa N, Hemmi H, Kinjo N, Ohnishi H, Hamazaki J, Mishima H, et al. Heterozygous missense variant of the proteasome subunit beta-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat Commun. 2021;12(1):6819. https://doi.org/10.1038/s41467-021-27085-y.

94. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2026834.

95. Nihori T, Ouchi-Uchiyama M, Sasahara Y, Kaneko T, Hashiyi Y, Irie M, et al. Mutations in MECom, encoding oncoprotein EVII cause radulinar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet. 2015;97(6):848–54. https://doi.org/10.1016/j.ajhg.2015.10.010.

96. Germehausen M, Ancliff P, Estrada J, Metzler M, Pongstingl E, Rutschle H, et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv. 2018;2(6):586–96. https://doi.org/10.1182/bloodadvances.2018016501.

97. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abc4585.

98. Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol. 2021;6(62). https://doi.org/10.1126/sciimmunol.abl4340.

99. Abers MS, Rosen LB, Delmonte OM, Shaw E, Bastard P, Imberti L, et al. Neutralizing type-I interferon autoantibodies are associated with delayed viral clearance and intensive care unit admission in patients with COVID-19. Immunol Cell Biol. 2021;99(9):917–21. https://doi.org/10.1111/imec.12495.

100. Troya J, Bastard P, Planas-Serra L, Ryan P, Ruiz M, de Carranza M, et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J Clin Immunol. 2021;41(5):914–22. https://doi.org/10.1007/s10875-021-01036-0.

101. Solanich X, Rigo-Bonnin R, Gumucio VD, Bastard P, Rosain J, Philippot Q, et al. Pre-existing autoantibodies neutralizing high concentrations of type I interferons in almost 10% of COVID-19 patients admitted to intensive care in Barcelona. J Clin Immunol. 2021;41(8):1733–44. https://doi.org/10.1007/s10875-021-01136-x.

102. Koretzky GA, Abtaian F, Silverman MA. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol. 2006;6(1):67–78. https://doi.org/10.1038/nri1750.
106. Bellelli R, Boulton SJ. Spotlight on the replisome: aetiology of DNA replication-associated genetic diseases. Trends Genet. 2021;37(4):317–36. https://doi.org/10.1016/j.tig.2020.09.008.

107. Chen YH, Spencer S, Laurence A, Thaventhiran JE, Uhlig HH. Inborn errors of IL-6 family cytokine responses. Curr Opin Immunol. 2021;72:135–45. https://doi.org/10.1016/j.coi.2021.04.007.

108. Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Ann NY Acad Sci. 2015;1356:45–79. https://doi.org/10.1111/nyas.12938.

109. Yamashita M, Morio T. Inborn errors of IKAROS and AIOLOS. Curr Opin Immunol. 2021;72:239–48. https://doi.org/10.1016/j.coi.2021.06.010.

110. Duncan CJA, Hambleton S. Human disease phenotypes associated with loss and gain of function mutations in STAT2: viral susceptibility and type I interferonopathy. J Clin Immunol. 2021;41(7):4196–211. https://doi.org/10.1172/JCI81260.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Stuart G. Tangye1,2 · Waleed Al-­Herz3 · Aziz Bousfiha4 · Charlotte Cunningham-Rundles5 · Jose Luis Franco6 · Steven M. Holland7 · Christoph Klein8 · Tomohiro Morio9 · Eric Oksenhendler10 · Capucine Picard11,12 · Anne Puel13,14 · Jennifer Puck15 · Mikko R. J. Seppänen16 · Raz Somech17 · Helen C. Su7 · Kathleen E. Sullivan18 · Troy R. Torgerson19 · Isabelle Meyts20

1 Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
2 St Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia
3 Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
4 Laboratoire d’Immunologie Clinique, d’Inflammation et d’Allergie LICIA Clinical Immunology Unit, Casablanca Children’s Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
5 Departments of Medicine and Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
6 Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
7 Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
8 Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
9 Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
10 Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
11 Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
12 Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
13 Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015 Paris, France
14 Université Paris Cité, Imagine Institute, 75015 Paris, France
15 Department of Pediatrics, University of California San Francisco and UCSF Benioff Children’s Hospital, San Francisco, CA, USA
16 Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
17 Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
18 Division of Allergy Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
19 Allen Institute for Immunology, Seattle, WA, USA
20 Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000 Leuven, Belgium