Detection of Pleiotropy through a Phenome-Wide Association Study (PheWAS) of Epidemiologic Data as Part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study

Molly A. Hall1, Anurag Verma1, Kristin D. Brown-Gentry2, Robert Goodloe2, Jonathan Boston2, Sarah Wilson2, Bob McClellan2, Cara Sutcliffe2, Holly H. Dilks2,3, Nila B. Gillani2, Hailing Jin2, Ping Mayo2, Melissa Allen2, Nathalie Schnetz-Boutaud2, Dana C. Crawford2,3, Marylyn D. Ritchie1, Sarah A. Pendergrass1*

1 Center for Systems Genomics, Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America, 3 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America

Abstract

We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999–2000, and 2001–2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p < 0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.

Citation: Hall MA, Verma A, Brown-Gentry KD, Goodloe R, Boston J, et al. (2014) Detection of Pleiotropy through a Phenome-Wide Association Study (PheWAS) of Epidemiologic Data as Part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study. PLoS Genet 10(12): e1004678. doi:10.1371/journal.pgen.1004678

Editor: Greg Gibson, Georgia Institute of Technology, United States of America

Received March 28, 2014; Accepted August 16, 2014; Published December 4, 2014

Copyright: © 2014 Hall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. Some of the data underlying the manuscript are available in the Supporting Information files. Other data are available from the Centers for Disease Control (CDC) for interested researchers. Researchers must apply for access to the genotype-phenotype linked data through the Centers for Disease Control, questions about proposing to use the NHANES genotype-phenotype linked data should be directed to NHANESGenetics@CDC.gov and the Research Data Center (RDC) though RDCA@cdc.gov, and for more details visit: http://www.cdc.gov/nchs/nhanes/genetics/genetic.htm. Restrictions apply in order to protect the privacy of the individuals providing genotypic data to NHANES. The phenotype data alone is more readily accessible to researchers from the Centers for Disease Control, for more details visit http://www.cdc.gov/nchs/nhanes.htm.

Funding: The “Epidemiologic Architecture for Genes Linked to Environment (EAGLE)” was funded through the NHGRI PAGE program (U01HG004798 and its NHGRI ARRA supplement). Genotyping services for select NHANES III SNPs presented here were also provided by the Johns Hopkins University under federal contract number (N01-HV-48195) from NHLBI. The study participants derive from the National Health and Nutrition Examination Surveys (NHANES), and these studies are supported by the Centers for Disease Control and Prevention. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: sap29@psu.edu
Introduction

Genome-wide association studies (GWAS) have led to the discovery of thousands of variants associated with disease and phenotypic outcomes [1]. GWAS focus on investigating the association between hundreds of thousands to over a million single-nucleotide polymorphisms (SNPs) and a single, or small set, of phenotypes and/or disease outcomes. While a wealth of information about the relationship between SNPs and phenotypes has been revealed, an extensive picture of the complex genetic architecture underlying common diseases has yet to be elucidated. In addition, the relationship between SNPs and multiple phenotypes (pleiotropy) is only beginning to be explored.

A complementary approach to GWAS are phenome-wide association studies (PheWAS), an approach for investigating the complex networks that exist between human phenotypes and genetic variation, through testing a series of SNPs for association with a large and diverse set of phenotypes [2–5]. These analyses can be used to investigate the relationship between genetic variants and presence/absence of disease and phenotypic outcomes as well as the association between genetic variation and intermediate clinically measured variables such as cholesterol levels, blood pressure measurements, and total iron binding capacity. PheWAS can be used to replicate relationships found in GWAS as well as to discover novel associations and generate hypotheses for further research. This approach also allows for the detection of SNPs with pleiotropic effects, where one genetic variant is associated with multiple phenotypes [6,7]. Investigating the interrelationships that exist between phenotypes as well as between genetic variation and phenotypic variation has the potential for uncovering the complex mechanisms underlying common human phenotypes.

Here we describe a PheWAS using epidemiologic data from the National Health and Nutrition Examination Surveys (NHANES) collected by the Centers for Disease Control and Prevention and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study as part of the Population Architecture using Genomics and Epidemiology (PAGE) network [9]. A major focus of the PAGE network is the replication and generalization of GWAS-identified variants in diverse populations, as the majority of published GWAS have been performed in populations of European-descent with little generalization across other racial/ethnic groups. Thus, the PAGE network has pursued investigating associations for genetic variants that have been well replicated in previous research across ancestry groups beyond European-descent.

As a part of PAGE, EAGLE genotyped 80 GWAS-identified variants in two NHANES datasets representing three surveys: NHANES III, collected between 1991 and 1994, and Continuous NHANES which was collected between 1999–2000 and 2001–2002 across three race-ethnicities. The majority of the SNPs within our study were chosen for genotyping based on published lipid trait genetic association studies (51 SNPs), but our study also included SNPs previously associated with phenotypes such as C-reactive protein levels, coronary heart disease, and age-related macular degeneration, with detailed information about these SNPs in S1 Table. Genotyping was performed in a total of 14,998 NHANES participants with DNA samples including 6,634 self-reported non-Hispanic whites, 3,458 self-reported non-Hispanic blacks, and 3,950 self-reported Mexican Americans. Similar to the PheWAS framework outlined by the PAGE study [3], we performed comprehensive unadjusted tests of association for 80 SNPs with 1,008 phenotypes, using linear or logistic regression, depending on the phenotype, stratified by race-ethnicity.

With this approach we replicated many previously reported associations and identified novel genotype-phenotype relationships. We have performed our analyses across multiple genetic ancestries. Most importantly, we have also found indications of pleiotropy for a number of the SNPs included in our investigation. Contrasting the association results for SNPs with multiple phenotypes, interesting direction of effect differences were identified. We further explored the relationship between SNPs, genes, and known biological relationships between the genes, identifying network relationships within these results. The findings in this paper demonstrate that PheWAS is a useful method for both validating findings from GWAS and discovering previously unknown genotype-phenotype relationships in diverse populations, enriching our understanding of the complex underpinnings of human phenotypes.

Results

The study population characteristics for the epidemiologic surveys accessed by EAGLE for this PheWAS are given in Table 1. Across the data collected for NHANES, there were 14,998 participants with DNA samples. More than half of the participants were female (54.12%), and the median age was 43. While ~44% of the samples were from participants self-described as non-Hispanic white (n = 6,634), more than half of the samples were from participants self-described as either non-Hispanic black (n = 3,458) or Mexican American (n = 3,950). As expected, based on ascertainment and changes in consenting for genetic studies [9], NHANES III had more female and non-European participants with DNA samples including 6,634 self-reported non-Hispanic whites, 3,458 self-reported non-Hispanic blacks, and 3,950 self-reported Mexican Americans. Similar to the PheWAS framework outlined by the PAGE study [3], we performed comprehensive unadjusted tests of association for 80 SNPs with 1,008 phenotypes, using linear or logistic regression, depending on the phenotype, stratified by race-ethnicity.

As detailed in the PheWAS workflow diagram shown in Fig. 1, we first identified 184 phenotype classes across NHANES from a total of 1,008 unique variables available for analysis in NHANES III and Continuous NHANES, respectively (Table 2). We then performed unadjusted single SNP tests of association assuming
additive genetic model for each SNP and phenotype (within each phenotype class) in NHANES III and Continuous NHANES. Our criteria for a significant PheWAS result was a SNP-phenotype association observed in both NHANES III and Continuous NHANES with p-value <0.01, for SNPs with an allele frequency >0.01, and a sample size >200, for the same race-ethnicity, phenotype-class, and direction of effect. We identified 69 PheWAS results meeting this significance threshold. Of these 69 PheWAS results, 39 replicated previously reported SNP-phenotype associations from the literature. Of the remaining results, 9 were related to previously reported associations in the literature, and 21 were novel SNP-phenotype associations. Moreover, 13 SNPs showed evidence of pleiotropy – where a particular SNP was associated with more than one phenotype. For the majority of results meeting our PheWAS criteria for replication, each SNP had multiple associations for each phenotype class; thus, in the text we report

Table 1. Study population characteristics.

	NHANES III (n = 7,159)	Continuous NHANES (n = 7,839)	Combined NHANES (n = 14,998)	
% Female*	56.67	51.79	54.12	
Median age	38	47	43	
	NHW	51	52	51
	NHB	33	45	38
	MA	33	43	38
Race-ethnicity				
% NHW	36.74	51.07	44.23	
% NHB	29.45	17.22	23.06	
% MA	28.96	23.94	26.34	
Number of phenotypes	750	258	489	

Abbreviations: non-Hispanic white (NHW), non-Hispanic black (NHB), Mexican American (MA).

* $\chi^2 = 35.95$; $p<0.0001$.
doi:10.1371/journal.pgen.1004678.t001

Fig. 1. Overview of the approach for this study. Genotypic and phenotypic data were collected in NHANES III and Continuous NHANES. The phenotypes for the two studies were matched into phenotype classes. Comprehensive associations were calculated for the genotypes and phenotypes for each survey independently. The results that were found in both surveys, with $p<0.01$, for the same race-ethnicity, direction of effect, and same direction of effect, were maintained for further inspection in this study.

doi:10.1371/journal.pgen.1004678.g001
Table 2. Phenotype-classes.

Anthropometry	Body measurement (weight)	Disease/Condition	Allergy	Exposures	Alcohol	Liver	Liver
	Body measurements	Anxiety (symptoms)			Caffeine	Liver	(albumin)
	Body measurements (arm)	Arthritis			Calcium intake	Liver	(alkaline phosphatase)
	Body measurements (BMI)	Blindness			Caloric intake	Liver	(bilirubin)
	Body measurements (head)	Broken/Fractured Bone			Carbohydrate intake	Liver	(GGT)
	Body measurements (height)	Cataracts			Carotene intake	Lung	Asthma
	Body measurements (leg)	Cell/Tissue Damage			Cholesterol intake	Chest	
	Body measurements (skinfold)	Cerebral Palsy			Copper intake	Chronic Bronchitis	
	Body measurements (waist)	Chronic Limp			Fat intake	Lung	
	Body measurements (weight)	Cold			Fiber intake	Lungs	
Blood Pressure	Blood pressure	Depression (symptoms)			Folate intake	Other	Age
	Blood pressure (Ankle Brachial Pressure Index)	Diabetes	Folic acid intake			Alanine Aminotransferase Test	
	Blood pressure (Brachial Systolic)	Diabetes (glycohemoglobin)	Iron intake			Aspartate Aminotransferase Test	
	Blood pressure (Diastolic)	Emphysema	Magnesium intake			Balance Dental	
	Blood pressure (Posterior tibial systolip)	Epilepsy	Niacin intake			Dental Maximum Inflation Level	
	Blood pressure (Systolic)	GoiterFracture	Nutrition			Urination	
	High blood pressure	Gout	Phosphorus intake			Bleeding Disorder Test	
	High blood pressure (diagnosis)	Hay fever	Potassium			Homocysteine	
	Hypertension (doctor diagnosed) Recommendation	Heart Attack	Protein intake			Hypoglycemia (C-peptide)	
	Hypertension (medication)	Hepatitis Antibody	Riboflavin intake			Inflammation (C-reactive protein)	
Bone Density	Bone density	Hip Dysplasia	Smoking			Osmolality	
	Bone density (bone alkaline phosphatase)	Infection	Sodium intake			Protoporphyrin	
	Bone density (calcium)	Injury	Thiamin intake			Total Iron Binding Content (TIBC)	
	Bone density (N-telopeptides)	Leg Pain	Transferrin				
Circulating Cell Measurements	Blood clotting	Lupus	Tobacco Measurement			Reproductive	
	Erythrocyte protoporphyrin	Osteoporosis	Tocopherol intake			Birth Control	
	Hematocrit	Pain	Vitamin			Fertility	
Phenotype Class	Phenotype Type	Cause/Intake	Disease/Condition				
----------------	----------------	-------------	-------------------				
Hemoglobin	Paralysis	Vitamin A intake	Hysterectomy				
Monocyte	Rheumatic Fever	Vitamin B12 intake	Menstruation				
Monocytes	Rheumatoid Arthritis	Vitamin B6 intake	Oophorectomy				
Mononuclear number	Scoliosis	Vitamin C intake	Pregnancy				
Platelet	Stroke	Vitamin D intake	Thyroid (T4)				
Red Blood Cell	Surgery	Vitamin E intake	Thyroid (TSH)				
White Blood Cell	Thyroid Disease	Vitamin K intake					
Circulating Levels	Bicarbonate	Water intake					
Calcium							
Carotene							
Chloride							
Ferritin							
Folate Levels							
Glucose							
Insulin			Kidney (Creatinine)				
Iron Levels			Kidney (Globulin)				
Phosphorus			Kidney (Urea nitrogen)				
Potassium			Kidney (Uric acid)				
Selenium							
Sodium							
Total protein							
Vitamin A levels			Apolipoprotein				
Vitamin B12			Cholesterol				
Vitamin C levels			Cholesterol (Doctor)				
Vitamin D levels			HDL Cholesterol				
Vitamin E levels			High Cholesterol				
Vitamin K levels			LDL Cholesterol				

The phenotype classes of this study, grouped here into broader categories.

doi:10.1371/journal.pgen.1004678.t002
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size
BSND - PCSK9	rs1206510	1	55496039	T	LDL Cholesterol Coronary heart disease	20864672 Globulin MA NHANES III	0.0095	0.012(0.0046)	2023		Serum globulin (g/dL)			
						18193043 Serum globulin (g/dL)	0.0099	0.052(0.020)	2023					
						19198609 (ln+1) Serum globulin: SI (g/L)	0.0097	0.015(0.0058)	2023					
						21378990 Serum globulin: SI (g/L)	0.0099	0.523(0.20)	2023					
						19060906 (ln+1) Serum globulin (g/L)	0.0095	0.012(0.0046)	2023					
						20198609 Serum globulin: SI (g/L)	0.0099	0.052(0.020)	2023					
						2023 Myocardial infarction (early onset)	0.0099	0.052(0.020)	2023					
GCKR	rs1260326	2	27730940	T	Triglycerides Cholesterol lipids Hypertriglyc - ceridemia	20657596 Vitamin A NHW NHANES III	0.0061	1.30(0.47)	2550		Vitamin A (ug/dL)			
						22286219 Vitamin A (umol/L)	0.0061	0.045(0.017)	2550					
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (GWAS Catalog)	Previously Reported Phenotype (PAGE)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
----------------	-----	------------	----------	--------------	---	------------------------------------	----------	----------------	---------------------	------------------------	---------	----------	-------------	
Metabolite levels	20139978	8	118184783	T	Type 2 Diabetes and other traits	Vitamin E	NHW	NHANES III	(In +1)Vitamin E (ug/dL)	6.37E-05	0.024(0.0060)	4189		
Liver enzyme levels (gamma-glutamyl transferase)	22139419	NHANES 1999–2002								0.00028	0.024 (0.0066)	1639		
C-reactive protein	20383146									0.0012	0.082(0.021)	1639		
Triglycerides	18454146									0.00011	2.34(0.61)	1639		
Chronic kidney disease	21300955	NHANES Combined								6.37E-05	0.024(0.0060)	4189		
Platelet counts	19060906									1.06E-05	1.65(0.37)	4189		
Two-hour glucose challenge	22001757									3.49E-05	0.016(0.0040)	4189		
Cardiovascular disease risk factors	19060910									1.08E-05	0.057(0.013)	4189		
Metabolic traits	21943158									6.37E-05	0.024(0.0060)	4189		
Glycated hemoglobin levels	17463246									5.00E-03	-0.23(17.86)	2959		
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
----------------	-----	------------	----------	--------------	-------------------------------------	---	----------	----------------	---------------------	------------------------	----------	----------	------------	
FADS1	rs174547	11	61570783	T	HDL Cholesterol	Resting heart rate	22286219 Ferritin MA	NHANES III	(ln +1)Vitamin E (umol/L)	0.005	-1.16(0.41)	2595		
					HDL cholesterol	20639392	Ferritin (ng/mL)	NHANES III	0.005	0.11(0.037)	1826			
					Metabolic traits	21886157	Ferritin (ng/mL)	NHANES III	0.005	0.11(0.037)	1826			
					Phospholipid levels	21829377	Ferritin:SI (ng/mL)	NHANES III	0.005	0.11(0.037)	1826			
					Metabolite levels	20037589	Ferritin (ug/dL)	NHANES Combined	0.0064	9.16(3.35)	3687			
					Triglycerides	1960906	Ferritin (ng/mL)	NHANES Combined	0.0064	9.16(3.35)	3687			
					Lipid metabolism phenotype	NHANES Combined	Ferritin (ng/mL)	NHANES Combined	0.0064	9.16(3.35)	3687			
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size
----------------	-----	------------	----------	--------------	--------------------------------------	---	----------	----------------	---------------	-------	---------------------	---------	---------	-------------
FADS1	rs174547	11	61570783	T	HDL Cholesterol Resting heart rate	20639392 Folate	NHB	NHANES III	(ln +1)RBC folate (ng/mL)	0.0013	-0.079(0.025)	2028		
					HDL cholesterol	21886157	RBC folate (ng/mL)	0.00015	-15.14(3.98)	2028				
					Metabolic traits	21829377	(ln +1)RBC folate: SI (nmol/L)	0.0013	-0.080(0.025)	2028				
					Phospholipid levels (plasma)	20037589	RBC folate: SI (nmol/L)	0.00015	-34.31(9.029)	2028				
					Metabolite levels	19060906	(ln +1)RBC folate (ng/mL)	0.0013	-0.079(0.025)	2028				
					Triglycerides	22286219	RBC folate (ng/mL)	0.00015	-15.14(3.98)	2028				
					Lipid metabolism phenotypes	20037589	RBC folate: SI (nmol/L)	0.00015	-34.31(9.029)	2028				
					NHANES 1999–2002	Folate, serum (nmol/L)	0.0013	-4.54(1.41)	1330					
					NHANES 1999–2002	Folate, RBC (nmol/L RBC)	0.002	-56.51(18.25)	1329					
					NHANES 1999–2002	Folate, serum (ng/mL)	0.0013	-2.0036(0.62)	1330					
					NHANES 1999–2002	Folate, RBC (ng/mL RBC)	0.002	-24.95 (8.059)	1329					
LPC	rs1800588	15	58723675	T	HDL Cholesterol HDL cholesterol	18193044 Folate	MA	NHANES III	(ln +1)Folate, RBC (nmol/L RBC)	0.0001	-0.047(0.012)	1838		
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size
----------------	-----	------------	----------	--------------	-------------------------------------	---	----------	----------------	---------------	-------	----------------------	----------	----------	-------------
LIPC	rs1800588	15	58723675	T	HDL Cholesterol	HDL cholesterol	18193044	Vitamin E	NHW	NHANES	(ln +1)Folate: RBC (ng/mL RBC)	0.00054	-3.106(0.96)	1838
											Folate, RBC (ng/mL RBC)	0.0001	-0.047(0.012)	1838
											Folate, RBC (ng/mL RBC)	0.00054	-1.371(3.95)	1838
											NHANES Combined			
											Serum folate (ng/mL)	0.0074	-0.035(0.013)	3837
											Serum folate (nmol/L)	0.0083	-0.037(0.014)	3837
											Serum folate: SI (nmol/L)	0.003	-1.058(0.35)	3837
											(ln +1)RBC folate (ng/mL)	0.002	-0.032(0.010)	3815
											RBC folate (ng/mL)	0.00045	-9.38(2.67)	3815
											(ln +1)RBC folate: SI (nmol/L)	0.002	-0.032(0.010)	3815
											RBC folate: SI (nmol/L)	0.00045	-2.126(0.053)	3815
											(ln +1)RBCfolate (ng/mL)	0.002	-0.032(0.010)	3815
											RBCfolate (ng/mL)	0.00045	-9.38(2.67)	3815
											(ln +1)RBCfolate:SI (nmol/L)	0.002	-0.032(0.010)	3815
											RBCfolate:SI (nmol/L)	0.00045	-2.126(0.053)	3815
											(ln +1) Serum folate (ng/mL)	0.0074	-0.035(0.013)	3837
											Serum folate (ng/mL)	0.003	-0.46(0.15)	3837
											Serum folate: SI (nmol/L)	0.0083	-0.037(0.014)	3837
											Serum folate:SI (nmol/L)	0.003	-1.058(0.35)	3837
											Vitamin E (ug/dL)	0.00059	0.044(0.013)	2553
											Vitamin E (ug/dL)	0.0035	56.21(19.26)	2553
											Vitamin E (umol/L)	0.0035	1.31(0.45)	2553
											Vitamin E (ug/dL)	0.0035	56.21(19.26)	2553
											Vitamin E (umol/L)	0.0035	1.31(0.45)	2553

Table 3. Cont.
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenytype Class	Race/Ethnicity Study	Sample Size	Phenotype Description	P-value	Beta(SE)
					SerumvitaminE (ug/dL)	SerumvitaminE (ug/dL)					(ln+1)SerumvitaminE (ug/dL)	0.00059	0.044(0.013)
					SerumvitaminE (ug/dL)	SerumvitaminE (ug/dL)					SerumvitaminE (ug/dL)	0.0035	56.21(19.26)
NHANES 1999–2002					Vitamin E (umol/L)	Vitamin E (umol/L)					Vitamin E (umol/L)	0.0017	2.15(0.69)
NHANES Combined					Vitamin E (ug/dL)	Vitamin E (ug/dL)					Vitamin E (ug/dL)	0.0017	92.75(29.57)
ABCG2	rs2231142	4	89052323	C	Gout	Uric acid levels	22229870	Blood Pressure (Diastolic)	MA	NHANES III	(ln+1)KS for second BP measure(diastolic, mmHg)	0.0003	0.044(0.012)
											KS for second BP measure(diastolic, mmHg)	0.00098	1.76(0.53)
											KS for third BP measure(diastolic, mmHg)	0.0063	0.032(0.012)
											Overall average KS, diastolic BP(age5+)	1.45E-06	0.033(0.0068)
											Overall average KS, diastolic BP(age5+)	2.21E-06	2.19(0.46)

PheWAS in the EAGLE Study
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size		
ABCG2	rs2231142	4	89052323	C	Gout Urate levels	BPXDI3:Diastolic: Blood pre(3rd rdg) mm Hg	NHANES 1999–2002			0.0045	1.69(0.59)	1605			
							NHANES Combined			0.0088	1.092(0.41)	3338			
						(ln +1) KS for first BP measure (diastolic, mmHg)	NHANES Combined			0.0033	0.032(0.011)	3340			
						(ln +1) KS for second BP measure (diastolic, mmHg)	19503597	MA	NHANES III	2.61E-07	-0.075(0.015)	2029			
						(ln +1) Protoporphyrin (ug/dl RBC)				0.004	-3.92(1.36)	2029			
						(ln +1) Protoporphyrin (umol/L RBC)				18834626	-0.037(0.0083)	2029			
						Protoporphyrin (umol/L RBC)				0.004	-0.070(0.024)	2029			
						Protoporphyrin (umol/L RBC)				NHANES 1999–2002	0.00037	968			
						Protoporphyrin (umol/L RBC)				0.0018	-0.094(0.030)	968			
						Protoporphyrin (umol/L RBC)				NHANES Combined	9.41E-08	3987			
						Protoporphyrin (umol/L RBC)				9.85E-08	0.092(0.017)	3987			
ABCG2	rs2231142	4	89052323	C	Gout Urate levels	BPXDI3:Diastolic: Blood pre(3rd rdg) mm Hg	NHANES 1999–2002			19503597	6.00E-06	2587			
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size		
----------------	-----	------------	----------	--------------	--------------------------------------	---	----------	-----------	---------------------	------------------------	----------	-----------	-------------		
					(ln+1)Protoporphyrin (umol/L RBC)	(ln+1)Protoporphyrin (umol/L RBC)	18834626				9.60E-06	-0.032(0.0073)	2587		
					Protoporphyrin (umol/L RBC)	Protoporphyrin (umol/L RBC)					9.60E-06	-0.032(0.0073)	2587		
					Protoporphyrin (umol/L RBC)	Protoporphyrin (umol/L RBC)					3.70E-05	-0.087(0.021)	2587		
					Protoporphyrin (umol/L RBC)	Protoporphyrin (umol/L RBC)					3.60E-05	-0.087(0.021)	2587		
					Protoporphyrin (ug/dL RBC)	Protoporphyrin (ug/dL RBC)					3.76E-05	-4.88(1.18)	2587		
					Protoporphyrin (ug/dL RBC)	Protoporphyrin (ug/dL RBC)					3.76E-05	-4.88(1.18)	2587		
					NHANES 9902	NHANES 9902					6.60E-04	-0.060(0.01)	1667		
					(ln+1)Protoporphyrin (ug/dL RBC)	(ln+1)Protoporphyrin (ug/dL RBC)					0.0012	-0.029(0.0092)	1667		
					Protoporphyrin (umol/L RBC)	Protoporphyrin (umol/L RBC)					0.0064	-0.058(0.021)	1667		
					Protoporphyrin (umol/L RBC)	Protoporphyrin (umol/L RBC)					0.0065	-3.28(1.20)	1667		
					NHANES 1999–2002	NHANES 1999–2002					0.0034	2.20(0.74)	258		
					Right Threshold @ 1000Hz-Second Reading	Right Threshold @ 1000Hz-Second Reading					0.0034	2.20(0.74)	258		
					NHANES Combined	NHANES Combined					0.006	1.11(0.40)	1415		
					Right threshold @ 500Hz	Right threshold @ 500Hz					0.006	1.11(0.40)	1415		
					NHANES Combined	NHANES Combined					0.0071	1.010(0.37)	1669		
					Right Threshold @ 1000Hz-Second Reading	Right Threshold @ 1000Hz-Second Reading					0.0071	1.010(0.37)	1669		
					Right threshold @ 500Hz	Right threshold @ 500Hz					0.0023	1.12(0.36)	1673		
					Right Threshold @ 1000Hz-Second Reading	Right Threshold @ 1000Hz-Second Reading					0.0028	1.14(0.38)	1673		
					Right Threshold @ 1000Hz	Right Threshold @ 1000Hz					0.0028	1.14(0.38)	1673		
					Right Threshold @ 1000Hz	Right Threshold @ 1000Hz					0.0028	1.14(0.38)	1673		
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
----------------	--------	------------	----------	--------------	-------------------------------------	---	-----------	-----------------	----------------	-------	---------------------	----------	-----------	-------------	
KCTD10	rs2338104	12	109895168	G	HDL Cholesterol	HDL cholesterol	19060906	Hemoglobin	NHW	NHANES III	(ln +1)Mean cell hemoglobin: SI (pg)	0.0016	-0.050	0.016	2582
											Mean cell hemoglobin: SI (pg)	0.0017	-0.15	0.048	2582
					(ln +1)Mean cell hemoglobin: SI (pg)						Mean cell hemoglobin: SI (pg)	0.0016	-0.050	0.016	2582
											Mean cell hemoglobin: SI (pg)	0.0017	-0.15	0.048	2582
NHANES					(ln +1)Mean Cell Hemoglobin Concentration (MCHC) (g/dL)	(ln +1)Mean cell hemoglobin: SI (pg)	0.0024	-0.0015	0.00048	3964					
1999–2002											Mean Cell Hemoglobin Concentration (MCHC) (g/dL)	0.0025	-0.050	0.017	3964
					(ln +1)Mean cell hemoglobin: SI (pg)						Mean cell hemoglobin: SI (pg)	0.0018	-0.042	0.0013	3964
											Mean cell hemoglobin: SI (pg)	0.0028	-0.12	0.042	3964
NHANES Combined					(ln +1)Mean cell hemoglobin: SI (pg)						Mean cell hemoglobin: SI (pg)	2.16E-05	-0.044	0.0010	6546
								Mean cell hemoglobin: SI (pg)	3.85E-05	-0.13	0.031	6546			
					(ln +1)Mean cell hemoglobin concentration						Mean cell hemoglobin concentration	0.0038	-0.001	0.00036	6546
								Mean cell hemoglobin concentration	0.0043	-0.036	0.012	6546			
					(ln +1)Mean cell hemoglobin: SI (pg)						Mean cell hemoglobin: SI (pg)	2.16E-05	-0.044	0.0010	6546
					(ln +1)Mean cell hemoglobin: SI (pg)			Mean cell hemoglobin: SI (pg)	3.85E-05	-0.13	0.031	6546			
								Mean cell hemoglobin: SI (pg)	3.80E-03	-0.001	0.00036	6546			
Table 3. Cont.

Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
					Mean corpuscular hemoglobin concentration							0.0043	-0.036 (0.012)	6546	
BUD13	rs28927680	11	116619073	G	HDL Cholesterol Triglycerides	18193044 Vitamin E NHW NHANES III					(In +1)Vitamin E (ug/dL)	4.45E-05	-0.086 (0.021)	2596	
					Vitamin E (ug/dL)							0.00063	-109.024 (31.84)	2596	
					Vitamin E (umol/L)						(In +1)SerumvitaminE (ug/dL)	4.45E-05	-0.086 (0.021)	2596	
					SerumvitaminE (ug/dL)							0.00063	-109.024 (31.84)	2596	
					Vitamin E (umol/L)							0.001	-0.090 (0.027)	1624	
					Vitamin E (ug/dL)						(In +1)Vitamin E (ug/dL)	0.003	-3.17 (1.077)	1624	
					Vitamin E (umol/L)						(In +1)Vitamin E (ug/dL)	0.001	-0.093 (0.028)	1624	
					Vitamin E (ug/dL)							0.003	-136.39 (46.39)	1624	
					Vitamin E (umol/L)							1.34E-07	-0.090 (0.017)	4220	
					Vitamin E (ug/dL)						(In +1)Vitamin E (ug/dL)	5.36E-06	-122.098 (26.79)	4220	
					Vitamin E (umol/L)						(In +1)Vitamin E (ug/dL)	1.40E-07	-2.83 (0.62)	4220	
					SerumvitaminE (ug/dL)							1.34E-07	-0.090 (0.017)	4220	
					SerumvitaminE (ug/dL)							5.36E-06	-122.098 (26.79)	4220	
												0.0036	0.30 (0.10)	2077	
												3.60E-03	0.30 (0.10)	2077	
												0.0036	0.30 (0.10)	2077	
RPS26P35 -	rs4355801	8	119923873	G	Bone mineral density	18455228 White Blood Cell NHANES III					White blood cell count: SI	0.0079	0.378 (0.14)	1334	
TNFRSF11B											(In +1)White blood cell count: SI	5.77e-05	0.042 (0.010)	3411	
												7.19e-05	0.042 (0.010)	3411	
												7.19e-05	0.042 (0.010)	3411	
												7.19e-05	0.042 (0.010)	3411	
												0.33 (0.083)		3411	
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size		
----------------	------	------------	----------	--------------	--------------------------------------	---	----------	----------------	---------------------	----------------------	----------	----------	-------------		
SLC2A9	rs855911	4	9935910	G	Uric acid	Urate levels	17997680	Body Measurements (Leg)	NHB	NHANES III	0.0012	0.80(0.25)	1972		
										Thigh circumference (cm)	NHB	NHANES 1999–2002	0.0087	0.014(0.0053)	1256
										Thigh circumference (cm)	NHB	NHANES Combined	0.0061	0.89(0.33)	1256
										Thigh circumference (cm)	NHB	NHANES 9902	1.09E-05	0.015(0.0034)	3228
										Thigh circumference (cm)	NHB	NHANES 9902	6.12E-06	0.90(0.19)	3228
APOB - KLHL29	rs562338	2	21288321	T	LDL Cholesterol	LDL Cholesterol	1.83E+15	Hearing	NHB	NHANES III	0.0071	0.20(0.075)	377		
										Left threshold @ 1000Hz (db)	NHB	NHANES 9902	0.0096	1.99(0.77)	528
GCKR	rs730094	2	27741237	G	Metabolic syndrome	C-reactive Protein	22581228	Potassium intake	MA	NHANES III	0.0043	-132.98(0.66)	1961		
										LDLC glucose/ HOMA-B	MA	NHANES 9902	0.0053	-0.05(0.66)	1961
										Uric acid levels	T2D	NHANES 9902	21886157		
										Metabolic traits		NHANES 9902	21829377		
										C-reactive protein		NHANES 9902	20081858		
										Phospholipid levels (plasma)		NHANES 9902	19503597		
										Triglycerides		NHANES 9902	18439548		
										Fasting glucose-related traits		NHANES 9902	18193044		
										Fasting insulin-related traits		NHANES 9902	18193043		
										Potassium (mg)		NHANES 9902	18179892		
Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity	Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
----------------	-------	------------	----------	--------------	--------------------------------------	---	-----------	-----------------	----------------	-------------	---------------------	---------	----------	-------------	
GCKR	rs780094	2	27741237	G	Metabolic syndrome	C-reactive Protein	22581228	Vitamin B6 intake	MA	NHANES III	Vitamin B6(mg)	0.0098	-0.10(0.66)	1961	
					LDL cholesterol	gloscerine/ HOMA-B	22399527	NHANES 9002			Vitamin B6 (mg)	0.0042	-0.1124(0.67)	1798	
					Uric acid levels	T2D	21886157								
					Metabolic traits		21829377								
					C-reactive protein		20081858								
					Phospholipid levels (plasma)		19503597								
					Triglycerides		18439548								
					Fasting glucose-related traits		18193044								
					Fasting insulin-related traits		18193043								
							18179892								
None	rs1800795	7	227664	G	C-reactive Protein	N/A	15820616	White Blood Cell Count	NHB	NHANES III	White blood cell count: SI	0.0047	-0.34(0.12)	2038	
							19435922	NHANES 9002			(ln+1)Segmented Neutrophils number	0.0048	-0.071(0.023)	1316	
							19452524	(ln+1)White blood cell count: SI				0.0071	-0.054(0.028)	1324	
							19140996	Segment Neutrophils number				0.0083	-0.325(0.12)	1316	
							19267250	NHANES Combined	(ln+1)White blood cell count: SI			7.01E-05	-0.047(0.011)	3362	
							19280716	White blood cell count: SI				1.60E-04	-0.36(0.096)	3362	
							19330901								
							19337712								
							19387461								
							20149313								
							20175976								
							20176930								
							20333461								
							20361391								
							20436380								
							20459474								
Table 3. Cont.

Closest Gene(s) SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size
Sample Size												
Table 3. Cont.

Closest Gene(s)	SNP	Chromosome	Position	Coded Allele	Previously Reported Phenotype (PAGE)	Previously Reported Phenotype (GWAS Catalog)	Pubmed ID	Phenotype Class	Race/Ethnicity Study	Phenotype Description	P-value	Beta(SE)	Sample Size	
CNQ1	rs2237895	11	2857194	C	Type 2 Diabetes	Type 2 Diabetes	20174558	MA	NHANES III	Arm circumference(cm)(2 months and over)	0.0019	-0.47(0.15)	1987	
										NHANES 9902	(ln+1)Arm circumference(cm)(2 months and over)	0.002	-0.015(0.0047)	1987
										NHANES 9902	(ln+1)Upper Arm Length (cm)	0.0061	-0.0062(0.0022)	1835
										NHANES 9902	Upper Arm Length (cm)	0.0068	-0.23(0.084)	1835
None	rs1529729	19	11163562	G	LDL-C	None	18714375	NHW	NHANES III	Doctor told had broken/fractured spine	0.0042	0.493(0.25)	2303	
										NHANES 9902	(ln+1)Broken or fractured spine	0.002	1.54(0.14)	3933
										Broken or fractured spine	0.002	1.54(0.14)	3933	

Novel PheWAS results with the same SNP, phenotype class, and race-ethnicity across NHANES, ordered by these variables. Information on the closest gene and previously reported phenotypes from the PAGE network and GWAS Catalog (with PubMed ID) are included for each SNP. Long phenotype description, along with the corresponding p-value, beta (SE = standard error), coded allele frequency (CAF), and sample size for the association are also listed. Significant measures from NHANES III and Continuous NHANES are included, and NHANES Combined was also included when the phenotype was harmonized across both surveys. Phenotypes correlated with r > 0.6 with any of the significant traits, in either NHANES III or Continuous NHANES for the race/ethnicity of significant PheWAS result.
doi:10.1371/journal.pgen.1004678.t003
only the most statistically significant result. We detail all association results meeting our PheWAS criteria for replication in S2, S3, and S4 Tables and Table 3.

Replication of Known Results

As a positive control, we first sought evidence for associations that replicate findings from the literature. Replication of previously reported associations validates our PheWAS pipeline and data integrity. Thirty-nine out of the 69 (56.5%) of our PheWAS associations have previously been described in the literature with the same direction of effect, and our results for these associations are presented in S2 and S3 Tables as well as visualized in Fig. 2. A proportion of the phenotypes could have phenotypic harmonization such that we could explore the association result for the phenotype across both surveys, NHANES III and Continuous NHANES, which we refer to as NHANES Combined. A Combined NHANES result was not available for every phenotype, as not all phenotypes could be harmonized across both surveys even if phenotypes could be binned into phenotype classes across both surveys. Our result tables contain this NHANES Combined information when available.

The majority of the SNPs within our study (51 out of 80), but not all of the SNPs, were chosen for genotyping based on published lipid trait genetic association studies (for example, [10–12]), and of these,
Novel Associations

The remainder of the PheWAS results with phenotypes that did not match previously reported SNP-phenotype associations had phenotypes very distinct from previously reported phenotypes. A total of 21/69 (~30%) PheWAS results are potentially novel findings. These are associations with a greater divergence between the previously associated phenotype for a given SNP and the associated phenotype found in this study (Table 3). We found novel results for all three racial/ethnic groups. However, only one novel result meeting our PheWAS significance criteria generalized across two or more populations showing the same direction of effect: protoporphyrin levels in both non-Hispanic whites and Mexican Americans for the ABCG2 SNP rs2231142 (coded allele C). Of the replicating measures for protoporphyrin levels, the most significant results for this association in Mexican Americans for NHANES III was: \(p = 2.61 \times 10^{-7}, \beta = -0.075, n = 2,029 \), for Continuous NHANES was: \(p = 2.0 \times 10^{-4}, \beta = -0.079, n = 968 \), and for Combined NHANES: \(p = 9.41 \times 10^{-5}, \beta = -5.21, n = 3,897 \). The most significant result for this association in non-Hispanic whites was for NHANES III: \(p = 2.61 \times 10^{-7}, \beta = -0.062, n = 2,587 \) and for Continuous NHANES was: \(p = 6.0 \times 10^{-4}, \beta = -0.06, n = 1,667 \). This SNP was previously associated with uric acid [20–23]. We also found this SNP to be associated with uric acid in non-Hispanic whites and Mexican Americans with the same direction of effect as previously reported associations, as well as an additional novel result for blood pressure measurements only in Mexican Americans with an opposite direction of effect. The number of novel results was similar across race-ethnicities, even

Related Associations

After determining results where the phenotype of our association matched that of the same SNP-phenotype association in the GWA catalog, we evaluated whether any of our phenotypes were extremely similar to previously published SNP-phenotype associations. There were a total of 9/69 (~13%) PheWAS results where the SNPs had been previously associated with lipid measurements not exactly matching the respective lipid measurements of our study (S4 Table and Fig. 3). For example, the SNP rs515135 near APOB/KLHL29 has been previously associated with LDL cholesterol levels in European-descent populations [16,17]. In this PheWAS, rs515135 (coded allele G) was associated with total cholesterol levels in non-Hispanic whites from NHANES III \((p = 9.07 \times 10^{-5}, \beta = -0.012, n = 2,436) \) and Continuous NHANES \((p = 0.0053, \beta = -0.015, n = 3,966) \). In the larger sample size of Combined NHANES, this association with total cholesterol levels was maintained \((p = 1.1 \times 10^{-4}, \beta = -0.014, n = 6,404) \). Given that total cholesterol includes HDL-C and that HDL-C is inversely correlated with triglycerides [18,19], this PheWAS finding was also expected.

19/23 lipid-associated SNPs were associated with lipid traits in this PheWAS. For example, total cholesterol levels and LDL cholesterol levels have been previously associated with the SNP rs646776 near CELSR2 in European-descent populations [13–15]. In this PheWAS, we observed a significant association between rs646776 (coded allele G) and total cholesterol levels in NHANES III \((p = 3.17 \times 10^{-7}, \beta = -7.66, n = 2,224) \) and Continuous NHANES \((p = 9.15 \times 10^{-7}, \beta = -0.014, n = 3,943) \) for non-Hispanic whites with the same direction of effect as the association previously reported for this SNP and LDL cholesterol levels. The association between rs646776 and total cholesterol remained significant in Combined NHANES \((p = 1.0 \times 10^{-10}, \beta = -0.029, n = 6,389) \).

Another example of a closely related association was for SNP rs7557067 near APOB, previously found to be associated with triglyceride levels in European-descent populations [17]. In this PheWAS, rs7557067 (coded allele G) was associated with total cholesterol levels in non-Hispanic whites from NHANES III \((p = 0.0050, \beta = -0.012, n = 2,436) \) and Continuous NHANES \((p = 0.0053, \beta = -0.015, n = 3,966) \). In the larger sample size of Combined NHANES, this association with total cholesterol levels was maintained \((p = 1.1 \times 10^{-4}, \beta = -0.014, n = 6,404) \). Given that total cholesterol includes HDL-C and that HDL-C is inversely correlated with triglycerides [18,19], this PheWAS finding was also expected.
with the difference in sample size across non-Hispanic whites, non-Hispanic blacks, and Mexican Americans that could affect power for detection of novel associations.

An example novel result showing a very unique divergence from previously reported associations was for the SNP rs1206510 (coded allele T) near the gene PCSK9. This SNP has been previously associated with coronary heart disease [24], LDL-C [16,17,25], and myocardial infarction [26] in European-descent populations, but we did not replicate any of those previously reported associations. In this study we found this SNP was associated with serum globulin levels in Mexican Americans from NHANES III (p = 0.0095, β = 0.0120, n = 2,023), Continuous NHANES (p = 0.0042, β = 0.012, n = 1,871), and Combined NHANES (p = 8.7 × 10^-4, β = 0.015, n = 3,894). We contrasted the direction of effect of this SNP with the previously reported associations for this SNP and the direction of effect was the same.

Another example of novel divergence from previously reported results involved two SNPs, we found to be associated with white blood cell counts in non-Hispanic blacks. The SNP rs1800795 (coded allele G) near IL6 previously was associated with C-reactive protein levels [27–29]. In our study, this SNP was associated with white blood cell counts in non-Hispanic blacks from NHANES III (p = 0.0047, β = -0.34, n = 2038) and Continuous NHANES (p = 0.0048, β = -0.071, n = 1,316). We also found that rs4355801 in TNFRSF11B was associated with white blood cell counts in non-Hispanic blacks from NHANES III (p = 0.0036, β = 0.30, n = 6,991), Continuous NHANES (p = 0.0079, β = 0.378, n = 3,728), and Combined NHANES (p = 5.77 × 10^-3, β = 0.042, n = 3,411). Previously, TNFRSF11B rs4355801 (coded allele G) was associated with bone mineral density in women of European-descent [30]. We did not observe a significant ePhesassoc with C-reactive protein or bone mineral density in our study for these two SNPs, respectively.

We found a total of six novel ePhesassoc-significant results associated with circulating vitamin levels (vitamin E, vitamin A, and folate). For example, a ePhesassoc-significant association for the missense SNP rs1260326 (coded allele T) in the gene GCKR was found with vitamin A levels in non-Hispanic whites from NHANES III (p = 6.1 × 10^-5, β = 1.30, n = 2,250), Continuous NHANES (p = 1.11 × 10^-4, β = 2.34, n = 1,639), and Combined NHANES (p = 1.06 × 10^-3, β = 1.65, n = 4,189). This SNP was previously associated with serum albumin levels and serum total protein levels in European- and Japanese-descent individuals [31], non-albumin protein levels in Japanese-descent individuals [32], platelet counts [33], cardiovascular disease risk factors [34], C-reactive protein levels [35], urate levels [20], total cholesterol and triglyceride levels [36], and chronic kidney disease [37] in individuals of European ancestry, and liver enzyme levels in European- and Asian-descent populations [38]. None of these previously reported associations replicated in our study. We compared the positive direction of effect of this SNP rs1260326, associated with vitamin levels, with previously reported associations. Associations with the same coded allele (T) with urate levels [20], serum albumin levels [31], serum total protein levels [31], platelet counts [33], liver enzyme levels [36], cardiovascular disease risk factors [34], C-reactive protein levels [35], total cholesterol and triglyceride levels [36], chronic kidney disease [37] all had a positive direction of effect. This SNP was associated with non-albumin protein levels [32] with a negative direction of effect.

Identification of Pleiotropy

While any of the novel ePhesassoc associations indicate potential pleiotropy as all of the SNPs of this study have previously reported genome-wide associations, within our study, we found 13 SNPs with more than one significant ePhesassoc phenotype class (Table 4 and Fig. 4). While the majority of these were SNPs were associated with more than one lipid phenotype, there were nine SNPs associated with other phenotypes.

For example, the missense SNP in ABCG2 rs2231142, also described in novel results, was found to have two novel associations, protoporphyrin (in non-Hispanic whites and Mexican Americans) and blood pressure levels (Mexican Americans), and one replication of a previously known association with uric acid levels (non-Hispanic whites and Mexican Americans). The results for this SNP are plotted in Fig. 5.

For another example, rs2338104, an intronic SNP in KCTD10, which was previously associated with HDL cholesterol (HDLC-C) in European-descent populations [17,25], was associated here with hemoglobin and hearing levels, both novel results in non-Hispanic whites (Fig. 6). Another example of potential pleiotropy was for SNP rs1800588 near LIPC, previously associated HDL-C in European-descent populations [15]. We observed significant associations between this SNP and the novel phenotypes of folate (in Mexican Americans) and vitamin E levels (in non-Hispanic whites), as well as replication for cholesterol and the related phenotype of triglycerides (both in non-Hispanic whites; Fig. 7). The intronic SNP rs174547 of FADS1 provides another example. This SNP was previously associated with phospholipid levels [39], resting heart rate [40], phosphatidylcholine levels [41], HDLC-C and triglyceride levels [17] in individuals of European ancestry. Here, this SNP is associated with ferritin levels in Mexican Americans and with folate levels in non-Hispanic blacks.

To further characterize these putative pleiotropic relationships, we compared and contrasted direction of effect for each association (Table 4). We found variants related to potentially protective effects for certain traits, and a potential risk effects for other traits. For example, intergenic SNP rs12678919 near LPL was associated with HDLC cholesterol levels in non-Hispanic whites with a positive direction of effect and hearing in non-Hispanic blacks with a negative direction of effect (coded allele G). Intronic SNP rs174547 in FADS1 was associated with ferritin levels in Mexican Americans with a positive direction of effect and folate (in non-Hispanic blacks) and triglycerides (in non-Hispanic whites) with a negative direction of effect (coded allele T). The intronic SNP rs6855911 in SLC2A9 was associated with uric acid (in both non-Hispanic blacks and Mexican Americans) with a negative direction of effect and thigh circumference measurements (non-Hispanic blacks) with a positive direction of effect (coded allele G).

Investigating Interrelationships within ePhesasso Results

ePhesassoc-significant results provide an opportunity to explore the relationships between SNPs, genes, traits/outcomes, and pathways or other known relationships between genes and gene-products. We used the software tool Biofilter to identify the genes the ePhesassoc-significant SNPs were within or closest to. We then used Biofilter to annotate the resultant genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [42], Gene- Ontology (GO) [43], and NetPath [44] which allowed us to identify any known connections between genes due to shared biological pathways or other known biological connections. After stratifying the results by race-ethnicity, we used Cytoscape [45] to visualize the connections between genes based on their annotation. We present here the networks where there were two or more SNPs significant in our ePhesassoc connected via genes and those two or more genes were connected by a pathway or other gene-gene connection.

For example, Fig. 8 shows one example for ePhesassoc results in Mexican Americans, where LPL SNP rs328 had a significant
Nearest Gene	Distance to Gene	SNP	Coded Allele	Regulatory Evidence	Context	Previously Published Phenotype (NHGRI GWAS Catalog)	What Gene (BF)	Phenotype-Class
LPL	19452	rs12678919	G	no	Intergenic	HDL Cholesterol, Triglycerides	N/A	HDL-Cholesterol (NHW +), Triglycerides (NHW +)
APOB	21376	rs562338	T	no	Intergenic	LDL Cholesterol	N/A	Cholesterol (NHW -), Hearing (NHB +)
FADS1	0	rs174547	T	6: Minimal binding evidence, motif hit	intron	Resting heart rate, HDL cholesterol, Metabolic traits, Phospholipid levels (plasma), Metabolite levels, Triglycerides, Lipid metabolism phenotypes	FADS1	Ferritin (MA +), Folate (NHB -), Triglycerides (NHW -)
KCTD10	0	rs2338104	G	6: Minimal binding evidence, motif hit	intron	HDL Cholesterol	KCTD10	Hearing (NHW +), Hemoglobin (NHW -)
GCKR	0	rs780094	G	3a: Less likely to affect binding, TF binding + any motif + DNase peak	intron	Metabolic syndrome, Phospholipid levels (plasma), Triglycerides, Fasting glucose-related traits, LDL cholesterol, Fasting insulin-related traits, Uric acid levels, Metabolic traits, C-reactive protein	GCKR	Glucose (MA +), Potassium intake (MA -), Vitamin B6 intake (MA -)
SLC2A9	0	rs6855911	G	no	intron	Urate Levels	SLC2A9	Kidney (Uric Acid) (MA, NHB, -), Body measurements (NHB +)
CELSR2	152	rs646776	G	1f: Likely to affect binding and linked to expression of a gene target, eQTL + TF binding/DNase peak	nearGene-3	Coronary heart disease, Response to statin therapy, Cholesterol, total, Progranulin levels, Myocardial infarction (early onset), LDL cholesterol	N/A	Cholesterol (MA, NHB, NHW -), LDL Cholesterol (MA -)
ZNF259	359	rs964184	G	1f: Likely to affect binding and linked to expression of a gene target, eQTL + TF binding/DNase peak	nearGene-3	Cholesterol, total, LDL cholesterol, Phospholipid levels (plasma), Hypertriglyceridemia, Vitamin E levels, Metabolic syndrome, Triglycerides, Lipoprotein-associated phospholipase A2 activity and mass, HDL cholesterol, Coronary heart disease	N/A	Cholesterol (MA, NHW +), Triglycerides (MA, NHW +), Vitamin E (MA, NHW +)
LIPC	500	rs1800588	T	4: Minimal binding evidence, TF binding + DNase peak	nearGene-5	HDL cholesterol	N/A	Cholesterol (NHW +), Folate (MA -), Triglycerides (NHW +), Vitamin E (NHW +)
ABCG2	0	rs2231142	C	5: Minimal binding evidence, TF binding or DNase Peak	STOP-GAIN	Uric acid levels, Urate levels	ABCG2	Blood Pressure (diastolic) (MA +), Kidney (Uric Acid) (MA, NHW -), Protoporphyrin (MA, NHW -)
LPL	0	rs328	G	5: Minimal binding evidence, TF binding or DNase Peak	STOP-GAIN	HDL cholesterol, Triglycerides	LPL	HDL Cholesterol (MA, NHW +), Triglycerides (NHW -)
CELSR2	0	rs12740374	T	4: Minimal binding evidence, TF binding + DNase peak	UTR-3	LDL cholesterol, Coronary heart disease	CELSR2	Cholesterol (MA, NHB, NHW -), LDL Cholesterol (MA, NHB -)
BUD13	0	rs28927680	G	no	UTR-3	Triglycerides	BUD13	Triglycerides (MA, NHW -), Vitamin E (NHW -)

These are the SNPs of this study that had a PheWAS significant association with more than one phenotype. Results marked with a star in the phenotype-class column indicate they are a novel result for this study, not a “related” or replicating result.

doi:10.1371/journal.pgen.1004678.t004
association with HDL-C levels, and the \textit{FADS1} SNP rs17547 had an association with ferritin levels. Both genes are found in the TGF-\beta receptor regulated NetPath pathway. Fig. 9 shows another example in Mexican Americans in which three SNPs were associated with uric acid levels: rs2231142, rs7442295, rs685911. One of the SNPs is located within the gene \textit{ABCG2}, and the other two SNPs are located within \textit{SLC2A9} (blue boxes). Both \textit{ABCG2} and \textit{SLC2A9} are found within the GO biological process “urate metabolic process”, a collection of the gene products involved in the chemical reactions and pathways involving urate. These same connections were also found for non-Hispanic whites, as this group had a PheWAS-significant association between these SNPs and uric acid levels. One of the SNPs, rs2231142, was also associated with diastolic blood pressure and protoporphyrin levels.

Fig. 10 displays an example using KEGG and the Mexican American PheWAS results. \textit{LPL} and \textit{LIPC} both are involved in
Fig. 5. Sun plot of \((p<0.01)\) results for **ABCG** rs2231142, coded allele C. This SNP has been previously reported to be associated with uric acid levels. Significant SNP-phenotype associations \((p<0.01)\) are plotted clockwise with the smallest \(p\)-value result at the top. The length of the each line corresponds to the \(-\log(p\text{-value})\) of each result, with the longest line representing the most significant result for this SNP, meeting our PheWAS replication criteria for inclusion. Study, transformed \((\text{LN} + 1)\) or untransformed (none) phenotype description, self-reported race-ethnicity, and direction of effect are listed for each association. This SNP was associated with a number of phenotypes in this study including uric acid levels (as previously published) in non-Hispanic whites (NHW) and Mexican Americans (MA), protoporphyrin levels in non-Hispanic whites and Mexican Americans, and diastolic blood pressure in Mexican Americans.

doi:10.1371/journal.pgen.1004678.g005

Fig. 6. Sun plot of \((p<0.01)\) results for **KCTD10** rs2338104, coded allele G. This SNP was previously associated with HDL-C levels. Significant SNP-phenotype associations \((p<0.01)\) for this study are plotted clockwise with the smallest \(p\)-value result at the top. The length of the each line corresponds to the \(-\log(p\text{-value})\) of each result, with the longest line representing the most significant result for this SNP, meeting our PheWAS replication criteria for inclusion. Study, transformed \((\text{LN} + 1)\) or untransformed (none) phenotype description, self-reported race-ethnicity, and direction of effect are listed for each association. This SNP was associated with mean cell hemoglobin levels, as well as right ear hearing levels in non-Hispanic whites (NHW).

doi:10.1371/journal.pgen.1004678.g006
the KEGG biological process "glycerolipid metabolism". LPL SNP rs328 was associated in this study with HDL-C, while LIPC SNP rs1800588 was associated with folate levels. LPL was also involved in the KEGG pathway "Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway", along with APOA5, which was associated with triglyceride levels through its SNP rs3135506. PPARs are transcription factors activated by lipids.

Discussion

For this PheWAS, performed using the data of NHANES, we have replicated a number of previously published results and have found novel and pleiotropic associations. For example, for rs2231142, a missense SNP in ATP-binding cassette subfamily G member 2 (ABCG2), we replicated previous associations with uric acid levels observed in European-descent populations and in Mexican Americans with the same direction of effect. Additionally, we identified a novel association for this SNP with protoporphyrin in both the European-descent population and Mexican Americans, where the coded allele (C) was associated with increased uric acid levels as well as increased protoporphyrin. This PheWAS finding is intriguing in light of some of the known connections that link protoporphyrin with uric acid levels, suggesting the potential for this SNP to have an impact on the levels of one or both resulting in the associations identified here. Protoporphyrin combines with heme to form iron-containing proteins. This gene is in the bile secretion pathway [42], and bile consists of substances including bilirubin, which is converted from heme/porphyrin [43]. Thus, the observed association is consistent with a known biological process. There is also a known correlation between ferritin levels and uric acid levels, and urate forms a coordination complex with iron to diminish electron transport, acting as an iron chelator and antioxidant [46]. This correlation implies an expected link between protoporphyrin and uric acid association results; however, we did not observe an association with ferritin levels in this study for this SNP.

Another intriguing result was for rs2338104, an intronic SNP in the potassium channel tetramerisation domain containing 10 (KCTD10) gene, which is a member of the polymerase delta-interacting protein 1 gene family. KCTD10 has been previously associated...
Fig. 8. Using PheWAS results, Biofilter, and Cytoscape to explore gene-gene connections with NetPath. We used Biofilter to annotate the SNPs of this PheWAS with gene information. We then mapped the genes to concomitant pathways or other gene groupings through GO, KEGG, and NetPath. This is one example for the results for Mexican Americans and annotation with NetPath. The pink diamonds are associated phenotypes of this PheWAS, the green hexagons are Mexican Americans and annotation with NetPath. The pink diamonds mapped the genes to concomitant pathways or other gene groupings to annotate the SNPs of this PheWAS with gene information. We then explored gene-gene connections with NetPath.

Fourteen of our results showed both a significant PheWAS association and the same direction of effect for a different race-ethnicity. We did not investigate non-significant results with a similar direction of effect for this study. We evaluated the differences in allele frequency across the two surveys, across race-ethnicity, for the SNPs that met our criteria for PheWAS replication (S5 Table). There were not consistent trends between similar or markedly different allele frequencies and whether we did or did not see the same SNP-phenotype associations across more than one race-ethnicity. The reason for differences in association may lie in the variation between linkage disequilibrium patterns across populations. Additionally, as genetic architecture can vary across different race-ethnicities, there is the potential for finding novel associations that exist in only one population. Low power due to sample size could have also contributed to fewer significant associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the SNPs that met our criteria for PheWAS replication (S5 Table). There were not consistent trends between similar or markedly different allele frequencies and whether we did or did not see the same SNP-phenotype associations across more than one race-ethnicity. The reason for differences in association may lie in the variation between linkage disequilibrium patterns across populations. Additionally, as genetic architecture can vary across different race-ethnicities, there is the potential for finding novel associations that exist in only one population. Low power due to sample size could have also contributed to fewer significant associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the two surveys that could contribute to being unable to detect SNP-phenotype associations across different race-ethnicities.

We found examples of gene-gene connections that link our PheWAS results from the SNP to gene to pathway level. These associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the two surveys that could contribute to being unable to detect SNP-phenotype associations across different race-ethnicities.

We found examples of gene-gene connections that link our PheWAS results from the SNP to gene to pathway level. These examples show the utility of applying known information about genes to provide biological context for individual PheWAS results through visually linking the information together. Multiple PheWAS results showed both a significant PheWAS association and the same direction of effect for a different race-ethnicity. We did not investigate non-significant results with a similar direction of effect for this study. We evaluated the differences in allele frequency across the two surveys, across race-ethnicity, for the SNPs that met our criteria for PheWAS replication (S5 Table). There were not consistent trends between similar or markedly different allele frequencies and whether we did or did not see the same SNP-phenotype associations across more than one race-ethnicity. The reason for differences in association may lie in the variation between linkage disequilibrium patterns across populations. Additionally, as genetic architecture can vary across different race-ethnicities, there is the potential for finding novel associations that exist in only one population. Low power due to sample size could have also contributed to fewer significant associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the two surveys that could contribute to being unable to detect SNP-phenotype associations across different race-ethnicities.

We found examples of gene-gene connections that link our PheWAS results from the SNP to gene to pathway level. These examples show the utility of applying known information about genes to provide biological context for individual PheWAS results through visually linking the information together. Multiple PheWAS results showed both a significant PheWAS association and the same direction of effect for a different race-ethnicity. We did not investigate non-significant results with a similar direction of effect for this study. We evaluated the differences in allele frequency across the two surveys, across race-ethnicity, for the SNPs that met our criteria for PheWAS replication (S5 Table). There were not consistent trends between similar or markedly different allele frequencies and whether we did or did not see the same SNP-phenotype associations across more than one race-ethnicity. The reason for differences in association may lie in the variation between linkage disequilibrium patterns across populations. Additionally, as genetic architecture can vary across different race-ethnicities, there is the potential for finding novel associations that exist in only one population. Low power due to sample size could have also contributed to fewer significant associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the two surveys that could contribute to being unable to detect SNP-phenotype associations across different race-ethnicities.

We found examples of gene-gene connections that link our PheWAS results from the SNP to gene to pathway level. These examples show the utility of applying known information about genes to provide biological context for individual PheWAS results through visually linking the information together. Multiple

associated with DNA synthesis/cell proliferation [46], HDL cholesterol levels [13,21], and interaction with an ubiquitin ligase [47]. In this study, KCDT10 rs2338104 was associated with right ear hearing levels and mean cell hemoglobin levels in non-Hispanic whites. The biological function of KCDT10 has not been extensively studied; consequently, biological explanations for the relationship between this variant and hearing or mean cell hemoglobin do not yet exist.

Novel associations for hematologic traits were found in this PheWAS. The SNP rs1800795 near gene interleukin 6 (IL6) and rs4355801 in tumor necrosis factor receptor superfamily, member 11b (TNFRSF11B) had significant association with white blood cell counts in non-Hispanic blacks. There are known associations between hematologic traits and genetic variants on chromosome 1 in African Americans, spanning a wide region of chromosome 1 [47]. This region of association is due to the presence of the African-derived Duffy Null polymorphism, a genetic variant protective against Plasmodium vivax malaria. Presence of this variant explains the lower white blood cell and neutrophil counts in African Americans [48]. However, neither rs1800795 nor rs4355801 are located on chromosome 1 and therefore represent potentially unique associations with hematologic traits.

Further novel associations with circulating vitamin levels were found. The SNP rs1260926 was associated with vitamin A in non-Hispanic whites. Vitamin E was associated with rs13266634, r28927680, and rs1800388 in non-Hispanic whites and rs964184 in non-Hispanic whites and Mexican Americans. Additionally, folate levels were associated with rs174547 in non-Hispanic blacks and rs1800388 in Mexican Americans. When considering the direction of effect for the vitamin levels, we found that rs174547, an intronic SNP in fatty acid desaturase 1 (FADS1), was associated with ferritin and iron levels with different direction of effect in Mexican Americans. Conversely, vitamin E showed the same direction of effect as triglycerides. Recent findings indicate a potential relationship between vitamin E intake and triglyceride levels for certain SNPs [49]. Thus, these results may be reflective of an interaction between variability in vitamin E intake and genetic variance.

Other SNPs with pleiotropic effects showed associations with different directions of effect. For example, rs780094 in the intron of glucokinase regulator (GCKR) was associated with serum glucose levels with a positive direction of effect (0.67) and potassium and vitamin B6 intake levels with a negative direction of effect (β = −0.05 and −0.11, respectively) in Mexican Americans. This result is consistent with the demonstrated inverse relationship between potassium intake and glucose intolerance [50]. Likewise, glucose tolerance has been found to increase upon vitamin B6 supplement intake in women with gestational diabetes mellitus [51,52]. One possibility, requiring further investigation, is that this SNP modulates the effect of vitamin B6 and potassium on glucose levels.

Fourteen of our results showed both a significant PheWAS association and the same direction of effect for a different race-ethnicity. We did not investigate non-significant results with a similar direction of effect for this study. We evaluated the differences in allele frequency across the two surveys, across race-ethnicity, for the SNPs that met our criteria for PheWAS replication (S5 Table). There were not consistent trends between similar or markedly different allele frequencies and whether we did or did not see the same SNP-phenotype associations across more than one race-ethnicity. The reason for differences in association may lie in the variation between linkage disequilibrium patterns across populations. Additionally, as genetic architecture can vary across different race-ethnicities, there is the potential for finding novel associations that exist in only one population. Low power due to sample size could have also contributed to fewer significant associations in non-Hispanic black and Mexican American populations, when compared to non-Hispanic whites, as the sample sizes were generally smaller. Further, phenotypic outcome is impacted by both genetic variation and environmental exposure variation, and thus some associations may not replicate across race-ethnicity in part due to potentially different environmental exposure across racial/ethnic groups. Also, there are differences in the median age across race-ethnicity for the two surveys that could contribute to being unable to detect SNP-phenotype associations across different race-ethnicities.
connections not readily apparent when exploring tabular results can be highlighted with this approach. For example, Fig. 9 shows three SNPs within two different genes that are within the GO biological process of “urate metabolic process”, a group of gene products involved in the chemical reactions and pathways involving urate. These SNPs are all associated with uric acid levels in our PheWAS. These SNPs have previously reported associations with uric acid levels, and these genes are known to be involved with pathways that contain urate. However, through connecting phenotypes, SNPs, genes, and pathways, and visualizing the results, we can more clearly show how single genetic variants are likely biologically linked to outcome variation. Further, this example shows the SNP rs2231142 associated with two other phenotypes, as described earlier in this discussion.

We also presented network results in Figs. 8, 9 and 10. The results presented in Fig. 8 show two SNPs in different genes that both are found in the TGF-β receptor regulated NetPath pathway. This would not have been evident in the PhE WAS without applying annotation from known pathways. Fig. 10 shows one example of two genes involved in the KEGG biological process “glycerolipid metabolism”. Here, one SNP is associated with HDL-C levels, and, interestingly, a separate SNP in the network is associated with folate levels. Plasma folate levels have been associated with lipoprotein profiles [49]. Further, the LPL SNP rs328 was associated in this study with HDL-C and is also involved in the KEGG pathway “Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway”, along with a SNP in APOA5, which was associated with triglyceride levels. PPARs are transcription factors activated by lipids. In the future we will continue to use this network approach, to highlight both the biological context that supports results found in PhE WAS and the biological annotation that may identify relationships that forge new hypotheses about the connection between genetic variation and complex outcomes.

One limitation to the current PhE WAS approach is the risk of false-positive associations due to the large number of tests for association between SNPs and phenotypes. For this analysis, we required replication of association results across NHANES to

Fig. 9. Using PhE WAS results, Biofilter, and Cytoscape to explore gene-gene connections with GO biological processes. Three SNPs were associated with uric acid levels in Mexican Americans: rs2231142, rs7442295, rs685911 (green hexagons). One of the SNPs is within the gene ABCG2, and the other two SNPs are within SLC2A9 (blue boxes). Both ABCG2 and SLC2A9 are found within the GO biological process “urate metabolic process”, a collection of the gene products involved in the chemical reactions and pathways involving urate. This was also found for non-Hispanic whites. doi:10.1371/journal.pgen.1004678.g009
reduce the type-1 error rate. Correcting for multiple hypothesis testing to account for the comprehensive associations in PheWAS, and thus potentially inflated Type I error, based on the number of tests/studies/groups can be problematic for multiple reasons. Most multiple testing calculations assume independent tests, which we do not have here as phenotypes are correlated across our PheWAS studies. Also, our power from one result to another can vary in part due to variations in sample size for the specific phenotype. In addition we used phenotype-class binning of results which results in different numbers of sub-phenotypes in each bin for potential replication. Future work includes research into identifying additional methods for multiple testing burden in PheWAS, such as permutation testing. Another limitation to the PheWAS approach is the high-throughput nature of the analysis. For instance, adjustments were not made for participants on medication that could modify or lower measurements such as lipids. The results are considered preliminary and bear further inquiry. However, it is notable that we observed replication of a number of previously published results with the same direction of effect indicating that our high-throughput approach is functional for a number of measures. Because we chose to seek replication across NHANES surveys, we did not explore results unique to any one survey.

A major strength of the PheWAS approach is the potential for novel discoveries about genetic variants and their relation to phenotypes for future investigation as well as to replicate results found in GWAS. Phenome-wide associations provide the opportunity to uncover complex networks of phenotypes involved in disease through tests of association between genetic variants and a broad range of phenotypes. Utilizing existing epidemiologic collections such as the diverse NHANES allows for potential generalization of variant-phenotype relationships across race-ethnicities.

We have found novel associations for phenotypes such as white blood cell count and vitamin levels for SNPs with different previously known associations. We also have found indications of

Fig. 10. Using PheWAS results, Biofilter, and Cytoscape to explore gene-gene connections with KEGG connections. The LIPC SNP rs1800588 was associated with folate levels, the LPL SNP rs328 was associated with HDL cholesterol, and both of these genes are in the glycerolipid metabolism KEGG pathway in Mexican Americans. The APOA5 SNP rs135506, associated with triglyceride levels in our study, shares the PPAR signalling pathway along with LPL.

doi:10.1371/journal.pgen.1004678.g010
Genotyping and SNP Selection

For this study, EAGLE genotyped 80 GWAS-identified variants in two NHANES datasets representing three surveys: NHANES III, collected between 1991 and 1994, and Continuous NHANES, collected between 1999-2000 and 2001–2002. The majority of the SNPs within our study were chosen for genotyping based on published lipid trait genetic association studies. Also included in this study are SNPs previously associated with a range of other phenotypes, and we detail information about these SNPs in S1 Table, including the genotyping method for each SNP (unless the SNP was already available within NHANES before EAGLE genotyping, and there we cite the lab that provided the genotypic data to NHANES). Genotyping was performed in a total of 14,998 NHANES participants with DNA samples including 6,634 self-reported non-Hispanic whites, 3,458 self-reported non-Hispanic blacks, and 3,950 self-reported Mexican Americans. Genotypes included in this study were accessed from (1) genotyping performed using Sequenom by the Vanderbilt DNA Resources Core, or (2) existing data in the Genetic NHANES database. In addition to genotyping experimental NHANES samples, blinded duplicates provided by CDC and HapMap controls (n = 360) as part of the PAGE study were also genotyped. Quality control, which included concordance and Hardy Weinberg Equilibrium, was performed on all SNPs by the CDC. All SNPs that passed quality control are available for secondary analyses through NCHS/CDC.

Statistical Methods

Single SNP unadjusted tests of association were performed for 80 SNPs available in NHANES III and Continuous NHANES and 1,008 phenotypes. When the exact phenotype was measured in NHANES III and Continuous NHANES, the unadjusted tests of association were also performed for all samples as part of Combined NHANES. As outlined in the PAGE Study [7] tests of association between all SNPs and phenotypes were performed using linear or logistic regression, depending on whether the phenotype was binary or continuous. For categorical phenotypes, binning was used to create new variables of the form “A versus not A” for each category, and logistic regression was used to model the new binary variables. All continuous phenotypes were natural log transformed, following a y to log (y+1) transformation of the response variable with +1 added to all continuous measurements before transformation to prevent variables recorded as zero from being omitted from analysis. All analyses were stratified by self-reported race-ethnicity. Analyses were performed remotely in SAS v9.2 (SAS Institute, Cary, NC) using the Analytic Data Research by Email (ANDRE) portal of the CDC Research Data Center in Hyattsville, MD.

NCHS/CDC.
Correlations between Phenotypes

We calculated pairwise Pearson correlations between all phenotypes that had a significant PheWAS result, for NHANES III and Continuous NHANES, stratified by race-ethnicity. For any significant PheWAS phenotype, we listed correlations for any phenotypes with a correlation >0.6 with the significant PheWAS phenotype list.

We took the absolute value of the correlations and used the statistical package R [52] to create a clustered heat map of the correlations with color ranging from light yellow to dark blue. We present our correlation matrices in S1–S6 Figures. The most correlated phenotypes are shown in a light yellow color, the less correlated a phenotype pair, the more blue on the heatmap.

Biofilter

Biofilter [53,54] is a software package that allows the user to download and automatically integrate several different knowledge databases into a single accessible database called the Library of Knowledge Integration, and then run queries via Biofilter with the resultant integrated data [https://ritchielab.psu.edu/ritchielab/software/] . We used Biofilter to annotate the SNPs of this study with the location and identification of the nearest genes to each of our SNPs, from NCBI dbSNP and NCBI Gene (Entrez) (http://www.ncbi.nlm.nih.gov/). We also applied information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [42], Gene Ontology (GO) [43], and NetPath [44]. This allowed us to highlight known connections between genes. Thus, we were able to identify any biological pathway or grouping connections between the genes SNPs were in or near in our study.

Cytoscape

After we used Biofilter to annotate the genes as described above, we stratified the results by race-ethnicity. We used Cytoscape [45] to visualize the connections between genes based on their annotation. Using this visualization tool, we explored networks where one or more SNPs were connected, via genes, to mutual pathways or genes, and we did not further investigate any resultant networks comprised of single SNPs.

RegulomeDB

RegulomeDB [55] was used to annotate PheWAS-significant SNPs in this study with functional and regulatory information for our analyses. The results of this analysis are included in Table 4.

Supporting Information

S1 Figure Heatmap of correlations for phenotypes in NHANES III Non-Hispanic blacks (NHB).
(PNG)
S2 Figure Heatmap of correlations for phenotypes in NHANES III Non-Hispanic whites (NHW).
(PNG)
S3 Figure Heatmap of correlations for phenotypes in NHANES III Mexican Americans (MA).
(PNG)
S4 Figure Heatmap of correlations for phenotypes in Continuous NHANES Non-Hispanic blacks (NHB).
(PNG)
S5 Figure Heatmap of correlations for phenotypes in Continuous NHANES Non-Hispanic Whites (NHW).
(PNG)
S6 Figure Heatmap of correlations for phenotypes in Continuous NHANES Mexican Americans (MA).
(PNG)
S1 Table Information on the 80 SNPs of this study.
(XLSX)
S2 Table All results of this study meeting our PheWAS criteria for replication.
(XLSX)
S3 Table Results of this study replicating previously published associations.
(XLSX)
S4 Table Results of this study highly related to previously published associations.
(XLSX)
S5 Table Comparing the difference in allele frequency across race-ethnicity within this study.
(XLSX)
S6 Table Phenotypes and phenotype classes of this study.
(XLSX)

Author Contributions

Conceived and designed the experiments: MAH AV DCC MDR SAP. Performed the experiments: MAH AV KDBG RG JB SW BM CS HHD NBG HJ PM MA NSB. Analyzed the data: MAH AV KDBG RG JB SW BM CS HHD NBG HJ PM MA NSB SAP. Contributed reagents/materials/analysis tools: JB BM. Wrote the paper: MAH AV DCC MDR SAP.

References

1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci 106: 9362–9367. doi:10.1073/pnas.0903103106.
2. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, et al. (2010) PheWAS: demonstrating the feasibility of a phenotype-wide scan to discover gene-disease associations. Bioinforma Oxf Engl 26: 1205–1210. doi:10.1093/bioinformatics/btp126.
3. Pendergrass SA, Brown-Gentry K, Dudek S, Torstenson ES, Ambite JL, et al. (2011) The use of phenotype-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol 35: 410–422. doi:10.1002/gepi.20589.
4. Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, et al. (2013) Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. PLoS Genet 9: e1003087. doi:10.1371/journal.pgen.1003087.
5. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, et al. (2013) Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 31: 1102–1110. doi:10.1038/nbt.2749.
20. Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, et al. (2013) Genome-wide association study of three genetic loci with uric acid concentration and risk of gout: a genome-wide association analysis. PLoS Genet 7: e1002193. doi:10.1371/journal.pgen.1002193.

21. Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, et al. (2012) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 44: 137–141. doi:10.1038/ng.507.

22. Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, et al. (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43: 1131–1138. doi:10.1038/ng.970.

23. Dehghan A, Köttgen A, Yang Q, Hwang S-J, Kao WL, et al. (2008) Association of common variants in TNFRSF13B, TNFSF13, and ANXA3 with plasma ferritin and uric acid in humans. Free Radic Res 39: 337–342. doi:10.1080/10725520701452585.

24. Gluo AJ, Ford ES, Kennedy TP, Heidl JR (2005) The association between serum ferritin and uric acid in humans. Free Radic Biol Med 38: 519–525. doi:10.1016/j.freeradbiomed.2004.12.021.

25. Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, et al. (2010) A genome-wide association study identifies multiple loci related to circulating ferritin and corrected total iron binding capacity. PLoS Genet 6: e1000742. doi:10.1371/journal.pgen.1000742.

26. Semmler A, Moskau S, Grigull A, Farmand S, Klockgether T, et al. (2010) PhenoGram: a new platform for genomic and network-based data analysis. Nutr J 9: 31. doi:10.1186/1475-2891-9-31.

27. Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD (2012) Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View. BioData Min 5: 3. doi:10.1186/1756-0381-5-3.

28. Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, et al. (2009) Polygenic associations of common variants in TNFRSF13B, TNFSF13, and ANXA3 with plasma ferritin and uric acid in humans. PLoS One 4: e7038. doi:10.1371/journal.pone.0007038.

29. Vickers MA, Green FR, Terry C, Mosai BM, Julier C, et al. (2002) Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline levels of serum CRP in human coronary artery disease patients and controls. Circ Res 90: 293–298. doi:10.1161/01.RES.0000047923.60375.d4.

30. Wolfe D, Dukel S, Ritchie MD, Pendergrass SA (2013) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6: 18. doi:10.1186/1756-0381-6-18.

31. Francescini N, van Rooij EJ, Prins BP, Feitosa MF, Karakas M, et al. (2012) Genome-wide association study of multiple cardiovascular-related traits. BMC Med Genet 12: 125. doi:10.1186/1471-2350-12-123.

32. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. (2008) Newly identified variants account for large portions of heritable risk for type 2 diabetes. Nat Genet 40: 123–128. doi:10.1038/ng.106.

33. Willer CJ, Chasman DI, Sanna S, Maarek A, Johnatty P, et al. (2008) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 40: 1087–1092. doi:10.1038/ng.2008.200.

34. Semmler A, Moskau S, Grigull A, Farmand S, Klockgether T, et al. (2010) PhenoGram: a new platform for genomic and network-based data analysis. Nutr J 9: 31. doi:10.1186/1475-2891-9-31.

35. Wolfe D, Dukel S, Ritchie MD, Pendergrass SA (2013) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6: 18. doi:10.1186/1756-0381-6-18.

36. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al. (2011) Meta-analysis of genome-wide association studies in > 80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123: 731–738. doi:10.1161/CIRCULATIONAHA.110.948570.

37. Kang K, Sun G, Hao S, Sun G, Zou C, et al. (2013) Meta-analysis of genome-wide association studies for circulating lipids in Han Chinese populations. JAMA 309: 2257–2264. doi:10.1001/jama.2013.7037.

38. Chambers JC, Zhang W, Sun G, Li X, Wao MN, et al. (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43: 1131–1138. doi:10.1038/ng.970.

39. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, et al. (2011) Genetic architecture of common DNA sequence variants at 19 genetic loci influencing circulating lipid levels and risk of coronary artery disease. Nat Genet 43: 1139–1144. doi:10.1038/ng.971.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. doi:10.1038/75556.

41. NetPath: a public resource of curated signal transduction pathways. Genome Biol 11: R3. doi:10.1186/gb-2010-11-1-r3.

42. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M, et al. (2012) DgGNP: Disease Gene Network Pathway database, version 3.0. Nucleic Acids Res 40: D109–D114. doi:10.1093/nar/gkq967.

43. Zhang Y, Liao J, Xiao M, et al. (2007) A framework for visualizing genetic information across chromosomes with PhenoGram. BioData Min 7: e100504. doi:10.1186/1756-0381-7-e504.

44. Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD (2012) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6: 18. doi:10.1186/1756-0381-6-18.

45. Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, et al. (2009) Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 5: e1000740. doi:10.1371/journal.pgen.1000740.

46. McQuaid GM, Pan Q, Porter KS (2006) Consensus for genetic research in a general population: an update on the National Health and Nutrition Examination Survey experience. Genet Med 8(12): 934–940. doi:10.1097/GIM.0b013e38913102e6.

47. Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, et al. (2011) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 43: 145–150. doi:10.1038/ng.2250.

48. Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, et al. (2009) PathNet: a public resource of curated signal transduction pathways. Genome Biol 11: R3. doi:10.1186/gb-2010-11-1-r3.

49. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2012) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 28: 431–432. doi:10.1093/bioinformatics/bts657.

50. Semmler A, Moskau S, Grigull A, Farmand S, Klockgether T, et al. (2010) Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis. Nutr J 9: 31. doi:10.1186/1475-2891-9-31.

51. Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD (2012) Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View. BioData Min 5: 5. doi:10.1186/1756-0381-5-5.

52. TRACD T (2009) R: A Language and Environment for Statistical Computing.

53. Pendergrass SA, Fease A, Wallace J, Wolfe D, Krajewski N, et al. (2013) Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development. BioData Min 6: 25. doi:10.1186/1756-0381-6-25.
54. Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput Pac Symp Biocomput: 368–379.

55. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, et al. (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22: 1790–1797. doi:10.1101/gr.137323.112.