Branched-Chain Amino Acids and Risk of Breast Cancer

Oana A. Zeleznik, Ph.D.1, Raji Balasubramanian, Sc.D.2, Yumeng Ren, MS1,3, Deirdre K. Tobias, Sc.D.4,6, Bernard A. Rosner, Ph.D.1, Cheng Peng, Sc.D.1, Alaina M. Bever, BS1,3, Lisa Frueh, BA1, Sarah Jeanfavre, M.S.5, Julian Avila-Pacheco, Ph.D.5, Clary B. Clish, Ph.D.5, Samia Mora, MD2, Frank B. Hu, Ph.D.6, A. Heather Eliassen, Sc.D.1,3

1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
2Department of Biostatistics & Epidemiology, University of Massachusetts – Amherst, Amherst, MA, USA
3Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
4Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA;
5Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Corresponding author:
Oana A. Zeleznik, PhD
Channing Division of Network Medicine, Brigham and Women’s Hospital
181 Longwood Avenue, Boston, MA 02115
ozeleznik@bwh.harvard.edu | 617 525 4670

© The Author(s) (2021). Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Background: Circulating branched-chain amino acid (BCAA) levels reflect metabolic health and dietary intake. However, associations with breast cancer are unclear.

Methods: We evaluated circulating BCAA levels and breast cancer risk within Nurses’ Health Study (NHS) and NHSII (1,997 cases and 1,997 controls). 592 NHS women donated two blood samples 10 years apart. We estimate odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer risk in multivariable logistic regression models. We conducted an external validation in 1765 cases in the Women’s Health Study (WHS). All statistical tests were two-sided.

Results: Among NHSII participants (predominantly premenopausal at blood collection), elevated circulating BCAA levels were associated with lower breast cancer risk (e.g., isoleucine highest vs. lowest quartile, multivariable OR=0.86, 95% CI = 0.65-1.13, P_{trend}=0.20), with statistically significant linear trends among fasting samples (e.g., isoleucine OR=0.74, 95% CI = 0.53-1.05, P_{trend}=0.05). In contrast, among postmenopausal women, proximate measures (<10 years from blood draw) were associated with increased breast cancer risk (e.g., isoleucine OR=1.63, 95% CI = 1.12-2.39, P_{trend}=0.01), with stronger associations among fasting samples (OR=1.73, 95% CI = 1.15-2.61, P_{trend}=0.01). Distant measures (10-20y since blood draw) were not associated with risk. In the WHS, a positive association was observed for distant measures of leucine among postmenopausal women (OR=1.23, 95% CI = 0.96-1.58, P_{trend}=0.04).
Conclusion: No statistically significant associations between BCAA levels and breast cancer risk were consistent across NHS/NHSII and WHS. Elevated circulating BCAA levels were associated with lower breast cancer risk among predominantly premenopausal NHSII women and higher risk among postmenopausal women in NHS but not in the WHS. Additional studies are needed to understand this complex relationship.
Breast cancer is the most common malignancy in women, with >250,000 diagnoses annually in the US1. Epidemiologic studies have identified modifiable risk factors, including increased BMI and low physical activity in postmenopausal women2. However, BMI is inversely associated with premenopausal breast cancer3. These findings indicate that poor metabolic health may be associated with breast cancer, although mechanisms and explanations for the variation by menopausal status remain unclear.

The branched-chain amino acids (BCAA) leucine, valine, and isoleucine are essential amino acids obtained from diet, and important metabolites involved in cell-signaling pathways and muscle protein synthesis4. Elevated plasma BCAA concentrations are strongly positively correlated with BMI and insulin resistance, and are a marker of dysfunctional metabolism5. Whether elevated BCAAs are associated with breast cancer incidence, and whether this differs by menopausal status, remains unknown.

To date, few studies have evaluated BCAAs with breast cancer risk, with inconsistent results, and only one assessed menopausal status6-10. We conducted a nested case-control study within the Nurses’ Health Study (NHS) and NHSII to investigate the association between plasma BCAA levels with breast cancer risk. In secondary analyses, we conducted a validation analysis in the Women’s Health Study (WHS).
Methods

Study Population

In 1976, 121,701 female registered nurses aged 30-55y enrolled in the NHS with the return of a mailed questionnaire11. Participants have been followed biennially with questionnaires on reproductive history, lifestyle factors, diet, medication use, and new disease diagnoses. The NHSII began in 1989 with 116,429 female registered nurses aged 25-42y, with biennial follow-up using similar questionnaires as NHS.

In 1989-1990, 32,826 NHS participants aged 43-69y contributed blood samples, as previously described12. In 2000-2002, 18,473 of these women aged 53-80y donated a second sample using a similar protocol. In the NHSII, 29,611 women aged 32-54y donated blood samples in 1996-1999. Follow-up in the blood subcohorts is high (NHS 97% in 2010; NHSII 96% in 2011). Detailed information on sample collection, covariates, and selection of cases and controls in NHS/NHSII and WHS is in the Supplementary Methods.

The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. The return of the self-administered questionnaire and blood sample was considered to imply consent.

Laboratory Assays

In the NHS/NHSII, BCAAs were assayed through a metabolomic profiling platform at the Broad Institute using a liquid chromatography tandem mass
spectrometry (LC-MS) method designed to measure polar metabolites such as amino acids, amino acids derivatives, dipeptides, and other cationic metabolites. BCAAs were identified by matching measured chromatographic retention times and mass-to-charge ratios with authentic reference standards. The relative abundance of each BCAA was determined by integration of LC-MS peak areas, which are unitless numbers directly proportional to metabolite concentrations. Detailed description of the laboratory assays used to measure BCAAs, gene expression, estradiol and C-peptide is included in the **Supplementary Methods**.

Statistical Analysis

BCAA values were log transformed and standardized (mean=0; standard deviation [SD]=1) within each cohort and blood collection separately (based on the distribution in all samples, including both cases and controls). To estimate the association between BCAAs as a group and risk of breast cancer we calculated the sum of all three BCAAs (total BCAAs) and considered it an exposure in our analyses.

We estimated within-person stability over 10 years by calculating intra-class correlation (ICC) using mixed liner models among participants who donated two blood samples 10 years apart.

We used linear regression models of probit transformed circulating BCAA levels to estimate beta coefficients for potential predictors, such as dietary BCAA intake, fasting status, BMI, age, and other lifestyle factors among NHS/NHSII (N=9,112) women.
Conditional logistic regression was used to evaluate the associations between BCAAs and breast cancer risk in each cohort separately. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) across quartiles (based on the control distribution) of BCAA levels and used quartile medians (based on the control distribution) to estimate linear trend p-values. In a sensitivity analysis, we compared conditional to unconditional logistic regression adjusted for matching factors and obtained similar results (data not shown). Thus, we used unconditional logistic regression in analyses stratified by BMI and ER status.

In multivariable models, we adjusted for established breast cancer risk factors: BMI at age 18, weight change from age 18 to blood draw, age at menarche, parity and age at first birth, family history of breast cancer, history of benign breast disease, physical activity, alcohol consumption, exogenous hormone use, and breastfeeding history. In a separate analysis among NHS participants, we cross-classified participants based on the median BCAA levels among controls at the two blood collections. In the WHS, we used Cox proportional hazards regression models with follow-up from the date of randomization to date of first invasive cancer diagnosis, death, or December 31, 2018. The Cox proportional hazard assumption was tested through the inclusion of a cross product term for BCAA and time (years from baseline blood draw); this assumption was met, with no indication for a violation. We assessed heterogeneity between NHS/NHSII and WHS using the DerSimonian-Laird estimator\(^\text{16}\), and based on these findings, meta-analyzed individual cohort results using a fixed or random effects approach.
We used Correlation Adjusted Mean Rank (CAMERA) on tumor gene expression data to explore functional enrichment of biological pathways associated with BCAAs (Supplementary Methods)17.

We conducted sensitivity analyses restricting to fasting samples (>8h since last meal), restricting to premenopausal or postmenopausal women at blood collection, adjusting for BMI at the time of the blood collection instead of BMI at age 18 and weight change between age 18 and blood collection, and adjusting for plasma C-peptide (a marker of insulin production) and estradiol in individual models.

All statistical tests were two-sided and a P value of less than 0.05 was considered statistically significant. Analyses were conducted using R version 3.6.0, R version 3.1.4 and SAS Version 9.3 software (SAS Institute, Cary, NC).

Results

In total, 1997 matched case-control pairs were included (Table 1, Figure 1). NHSII women (N=1057 cases, 1057 controls) were predominantly premenopausal (80.2% cases, 79.7% controls) at blood collection (mean age=45 years). NHS participants included 940 cases and their matched controls with a blood sample during the first collection (1989-1990, distant); of these, 592 cases and their matched controls had a second sample (2000-2002, proximate). NHS participants were predominantly postmenopausal (first collection=61.9%; second collection=98.1%) with a mean age of 55 years at distant and 66 years at proximate collections. Mean times between blood
collection and diagnosis were: NHSII, 8 years; NHS distant measure, 15 years; and
NHS proximate measure, 4 years.

WHS (N=1765 cases) included 54.0% postmenopausal and 46.0%
premenopausal women at blood collection. Mean time to diagnosis was similar to
NHS/NHSII: 6 years for postmenopausal cases with proximate samples, 16 years for
postmenopausal cases with distant samples and 5 years for premenopausal women at
blood collection. Demographics were similar to NHS; exceptions include lower family
history of breast cancer (Table 2).

BCAA levels were reasonably stable over 10 years among women with repeated
measures (N=592; ICC isoleucine=0.45, leucine=0.44, valine=0.48). Dietary intake of
BCAAs, BMI, and non-fasting blood collection were statistically significantly positively
associated with BCAA levels, and Asian Americans had higher levels than Caucasians
(Table 3). Alcohol consumption and diet quality were statistically significantly inversely
associated with BCAA levels.

Among predominantly premenopausal women at blood collection (1057 cases),
BCAAs were inversely associated with risk of breast cancer (simple model) (e.g.,
isoleucine highest vs. lowest quartile OR=0.76, 95% CI = 0.59-0.99, $P_{\text{trend}}=0.02$; Table
4), with statistically significant linear trends. These associations were attenuated and no
longer statistically significant with adjustment for breast cancer risk factors (e.g.,
isoleucine highest vs. lowest quartile OR=0.86, 95% CI = 0.65-1.13, $P_{\text{trend}}=0.20$).
Associations were similar for leucine (OR=0.77, 95% CI = 0.58-1.01) and valine
(OR=0.82, 95% CI = 0.62-1.08). We observed stronger associations among fasting
samples only (715 cases; top vs. bottom quartile OR: isoleucine=0.74, 95% CI = 0.53-
1.05, $P_{\text{trend}} = 0.05$; leucine=0.66, 95% CI = 0.47-0.94, $P_{\text{trend}} = 0.04$; valine=0.74, 95% CI = 0.53-1.04, $P_{\text{trend}} = 0.08$). Associations with total BCAAs followed a similar pattern, but were attenuated compared to individual BCAAs: OR=0.79, 95% CI = 0.56-1.11, $P_{\text{trend}} = 0.12$. We observed similar associations when we further restricted to premenopausal women at blood collection (541 cases; OR; leucine=0.61, 95% CI = 0.40-0.92, $P_{\text{trend}} = 0.04$; data not shown), and when we restricted to women premenopausal at diagnosis (255 cases; data not shown).

Among postmenopausal women, we observed positive associations between distant (10-20y before diagnosis; 940 cases) measures of isoleucine and leucine and breast cancer risk in the simple model; however, these were attenuated and no longer statistically significant with multivariable adjustment (e.g., isoleucine OR=1.15, 95% CI = 0.87-1.52, $P_{\text{trend}} = 0.35$). BCAAs from proximate samples (592 cases) were positively associated with breast cancer risk and similar between the simple and multivariable models (e.g., isoleucine multivariable OR=1.63, 95% CI = 1.12-2.39, $P_{\text{trend}} = 0.01$). Weaker associations were observed for leucine (OR=1.26, 95% CI = 0.87-1.83, $P_{\text{trend}} = 0.17$) and valine (OR = 1.34, 95% CI = 0.93-1.94, $P_{\text{trend}} = 0.12$). Associations were stronger, with statistically significant linear trends (except for leucine), when restricted to fasting samples (513 cases; isoleucine OR=1.73, 95% CI = 1.15-2.61, $P_{\text{trend}} = 0.01$; leucine OR=1.31, 95% CI = 0.87-1.98, $P_{\text{trend}} = 0.12$; valine OR=1.64, 95% CI = 1.11-2.43, $P_{\text{trend}} = 0.04$). Association with total BCAAs followed the same pattern as individual BCAAs (e.g., fasting samples, multivariable OR=1.56, 95% CI = 1.04-2.34, $P_{\text{trend}} = 0.06$). A statistically significant interaction with menopausal status at blood collection.
(P<0.004) was observed when we pooled NHSII and NHS women with proximate measures in the multivariable model.

Individual and total BCAAs were not associated with breast cancer risk among WHS premenopausal at blood collection (763 cases) or postmenopausal women with distant (515 cases) or proximate (487 cases) blood collections. For example, among postmenopausal women with proximate measures, the multivariable OR for isoleucine was 0.97 (95% CI = 0.75-1.26, Pr\text{_trend} =0.85) (Table 5). A suggestive positive association was observed for leucine and risk among postmenopausal women with distant sample collection (multivariable OR=1.23, 95% CI = 0.96-1.58, Pr\text{_trend} =0.04). Results were similar when restricted to fasting samples (70.1%-73.8%). There were too few women premenopausal at diagnosis to examine these associations in WHS (n=36). We did not observe statistically significant heterogeneity between the cohorts except for isoleucine among postmenopausal women with proximate blood collection. We observed no statistically significant associations between individual and total BCAA levels and breast cancer risk when meta-analyzing NHS/NHSII and WHS results.

Results among NHS/NHSII women did not change in sensitivity analyses (data not shown), among pre- and postmenopausal women separately, in which we adjusted for BMI at blood collection instead of BMI at age 18 and weight change between age 18 and blood collection. Among women with previously measured plasma C-peptide (n=579 NHSII, 244 NHS proximate, 407 NHS distant) and estradiol (n=558 luteal and 532 follicular NHSII, 234 NHS proximate, 288 NHS distant), the associations with BCAAs were unchanged with additional adjustment for C-peptide or estradiol levels.
No associations were observed for individual and total BCAAs when we cross-classified BCAA levels 10 years apart. However, we observed a 3-fold increase in breast cancer risk for NHS participants with low isoleucine levels in the first sample but high isoleucine levels in the second sample (low/high) compared to participants who had low isoleucine levels in both timepoints (low/low; Table 6).

Interactions with BMI were not statistically significant (Supplementary Table 1). There were no statistically significant associations between BCAA levels and breast cancer risk by ER status (Supplementary Table 2).

In breast tumor gene expression analyses, similar pathway activity was observed for each of the individual BCAAs. Circulating BCAA levels were associated with upregulation of mTOR signaling, interferon response, MYC, E2F and G2M targets, and DNA repair among NHSII women (73.2% premenopausal at blood collection) but with upregulation of estrogen response among NHS participants (all postmenopausal women; Supplementary Table 3).

Discussion

In this prospective analysis, elevated circulating BCAA levels were associated with lower breast cancer risk among premenopausal women at blood collection but higher breast cancer risk among postmenopausal women at blood collection with proximate (<10y before diagnosis) assessments, independent of adiposity measures. Associations were similar across individual and total BCAAs. Both inverse and positive associations were slightly stronger with statistically significant linear trends among fasting women (statistically significant predictor of circulating BCAA levels), which may
better reflect underlying metabolic dysregulation compared with samples collected shortly after meals, when BCAA levels may be more likely to reflect recent dietary intake than long-term metabolic state. Statistically significant associations generally were not observed when assessing distant measures of BCAAs among postmenopausal women. We did not observe interactions with BMI or heterogeneity by ER status. Associations did not validate in WHS.

BCAAs are essential nutrients acquired from food or biosynthesized by the microbiome. Several studies found a weak positive correlation between dietary BCAA intake and circulating BCAAs ($r=0.11-0.14$). Similarly, we observed that dietary intake was a statistically significant but fairly weak predictor of circulating levels. Diets high in animal protein, especially red meat, are associated with increased BCAA levels compared to those with predominately plant sources of protein, while higher intake of red meat is associated with increased risk of pre- and postmenopausal breast cancer. However, BCAAs were not identified as markers of dietary patterns or dietary intake, suggesting the role of BCAAs in breast cancer etiology may reflect mechanisms beyond their dietary intake.

The role of obesity in postmenopausal breast cancer is well established, and diabetes and insulin resistance have been associated with breast cancer risk. Elevated levels of circulating BCAAs are associated with obesity and insulin resistance in cross-sectional studies, and associated with incident Type II Diabetes (T2D). Adiposity and insulin resistance have a causal effect on serum BCAA levels, and circulating BCAAs play a causal role in the development of T2D. Together, these findings emphasize that elevated BCAA levels are indicative of dysregulated...
metabolism. Further, dietary BCAAs in experimental and human studies cause impaired insulin activity through upregulation of the mTOR pathway40,41, which has been implicated in breast carcinogenesis42.

Our observed opposite associations between plasma BCAAs and breast cancer risk by menopausal status parallel the associations between BMI and breast cancer, though associations with BCAAs persisted even with adjustment for different adiposity measures and was independent of plasma estradiol levels. We also observed differential associations by menopausal status between circulating BCAAs and breast tumor gene expression, with mTOR and interferon signaling and DNA repair among premenopausal women at blood collection, but estrogen response among postmenopausal women. These findings suggest that BCAAs play a role in breast carcinogenesis beyond their role in obesity.

Few epidemiologic studies have investigated the association of circulating BCAA levels with breast cancer risk and only one assessed this relationship by menopausal status. No statistically significant association was observed between BCAAs and breast cancer risk7 in a case-cohort analysis in the EPIC-Heidelberg cohort (114 pre- and 248 postmenopausal cases) or in a larger study6 in EPIC (434 pre-, 318 peri- and 872 postmenopausal cases). Higher levels of valine were associated with increased breast cancer risk among pre- and postmenopausal women within the SU.VI.MAX study (129 pre- and 82 postmenopausal cases)8. Given the mix of menopausal status, it is difficult to compare these results to our findings. Consistent with our results, in an examination of BMI-correlated metabolites in the PLCO cohort, which included valine and allo-isoleucine, (N=621 postmenopausal cases), higher levels of allo-isoleucine, a byproduct
of isoleucine transamination43, were associated with increased postmenopausal breast cancer risk9. Notably, two other metabolites involved in alternative isoleucine and leucine degradation, 2-methylbutyrylcarnitine and 3-methylglutaryl carnitine, were positively associated with risk9. Sensitivity analyses adjusting for insulin resistance-related metabolites resulted in slight attenuation of the associations. Similarly, we observed no changes when adjusting for C-peptide, a measure of insulin production, suggesting that the role of BCAAs in postmenopausal breast cancer etiology may be independent of insulin resistance. In summary, results from PLCO and NHS/NHSII suggest that isoleucine and leucine may play a role in postmenopausal breast cancer, although findings from WHS were not consistent. However, to what extent individual BCAAs contribute to breast cancer and how this relationship is modulated by menopausal status is not clear. Additional prospective studies are needed to confirm these relationships.

Our study has several strengths and limitations. We measured pre-diagnostic plasma BCAAs among a large number of pre- and postmenopausal women. We had detailed information on breast cancer risk factors, including measures of adiposity. We had limited statistical power in analyses of ER- tumors. Although we had some participants with two blood samples, our main findings are based on one-point-in-time blood samples. However, BCAAs showed good within-person stability over 1-2 years (ICC\textgeq0.55)44 as well as good within-person stability over 10 years (ICC\textgt0.4). Metabolomics platforms differed between NHS/NHSII and WHS; NMR approaches may be more limited in measuring BCAA levels45. However, others showed good correlations and consistent associations with diabetes between the platforms46.
In summary, elevated circulating BCAA levels were associated with higher risk of postmenopausal breast cancer in NHS when assessed within 10 years of diagnosis, independent of established risk factors, including adiposity, though this finding was not replicated among predominantly postmenopausal WHS women. Whether circulating BCAAs levels are inversely associated with breast cancer risk among premenopausal women warrants further investigation.

Funding

The NHS/NHSII is funded by the National Cancer Institute (R01 CA050385, UM1 CA186107, P01 CA087969, R01 CA49449, U01 CA176726, R01 CA67262). The WHS (CA-047988, HL-043851, HL-080467, HL-099355, and UM1 CA182913) and Dr. Mora (R01HL134811, K24 HL136852, DK112940) are supported by the National Institutes of Health.

Notes

The role of the founder: Funding agencies played no role in the study design, sample collection, data analysis, results interpretation, manuscript writing and submission.

Disclosers: The authors have nothing to disclose.

Author contributions: OAZ contributed to data curation, formal analysis, investigation, methodology, manuscript writing and manuscript review. RB and BAR contributed to investigation, methodology and manuscript review. YR and CP contributed to formal analysis and manuscript review. DKT contributed to formal analysis, investigation and manuscript review. AMB and LF contributed to resources and manuscript review. SJ,
JAP and CBC contributed to data curation, resources and manuscript review. SM contributed to resources, investigation and manuscript review. FBH contributed to investigation and manuscript review. AHE contributed to conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision, manuscript writing and manuscript review. Acknowledgements: We would like to thank the participants and staff of the Nurses' Health Studies for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Data Availability

Data access must be approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health. Inquiries are encouraged through http://www.nurseshealthstudy.org/researchers.

References

1. American Cancer Society. Cancer Facts & Figures 2020. (American Cancer Society, Atlanta, 2020).
2. Wilson, L.F., Page, A.N., Dunn, N.A., Pandeya, N., Protani, M.M., et al. Population attributable risk of modifiable risk factors associated with invasive breast cancer in women aged 45-69 years in Queensland, Australia. Maturitas 76, 370-376 (2013).
3. Schoemaker, M.J., Nichols, H.B., Wright, L.B., Brook, M.N., Jones, M.E., et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA oncology 4, e181771-e181771 (2018).
4. Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr 14, 30 (2017).
5. Newgard, C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. *Cell Metab* **9**, 311-326 (2009).

6. His, M., Viallon, V., Dossus, L., Gicquiau, A., Achaintre, D., et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. *BMC medicine* **17**, 178 (2019).

7. Kühn, T., Floegel, A., Sookthai, D., Johnson, T., Rolle-Kampczyk, U., et al. Higher plasma levels of lysophosphatidylcholine 18: 0 are related to a lower risk of common cancers in a prospective metabolomics study. *BMC medicine* **14**, 13 (2016).

8. Lécuyer, L., Dalle, C., Lyan, B., Demidem, A., Rossary, A., et al. Plasma metabolomic signatures associated with long-term breast cancer risk in the SU. VI. MAX prospective cohort. *Cancer Epidemiology and Prevention Biomarkers* **28**, 1300-1307 (2019).

9. Moore, S.C., Playdon, M.C., Sampson, J.N., Hoover, R.N., Trabert, B., et al. A metabolomics analysis of body mass index and postmenopausal breast cancer risk. *JNCI: Journal of the National Cancer Institute* **110**, 588-597 (2018).

10. Tobias, D.K., Hazra, A., Lawler, P.R., Chandler, P.D., Chasman, D.I., et al. Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. *Sci Rep* **10**, 1-9 (2020).

11. Hankinson, S.E., Willett, W.C., Michaud, D.S., Manson, J.E., Colditz, G.A., et al. Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. *J. Natl. Cancer Inst.* **91**, 629-634 (1999).

12. Tworoger, S.S., Sluss, P. & Hankinson, S.E. Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. *Cancer research* **66**, 2476-2482 (2006).

13. Mascanfroni, I.D., Takenaka, M.C., Yeste, A., Patel, B., Wu, Y., et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. *Nature medicine* **21**, 638 (2015).

14. O’sullivan, J.F., Morningstar, J.E., Yang, Q., Zheng, B., Gao, Y., et al. Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. *The Journal of clinical investigation* **127**, 4394-4402 (2017).

15. Paynter, N.P., Balasubramanian, R., Giulianini, F., Wang, D.D., Tinker, L.F., et al. Metabolic predictors of incident coronary heart disease in women. *Circulation* **137**, 841-853 (2018).

16. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. *Controlled clinical trials* **7**, 177-188 (1986).

17. Wu, D. & Smyth, G.K. Camera: a competitive gene set test accounting for inter-gene correlation. *Nucleic Acids Res* **40**, e133 (2012).

18. Schmedes, M., Balderas, C., Aadland, E.K., Jacques, H., Lavigne, C., et al. The effect of lean-seafood and non-seafood diets on fasting and postprandial serum metabolites and lipid species: results from a randomized crossover intervention study in healthy adults. *Nutrients* **10**, 598 (2018).

19. Ferguson, J.F. & Wang, T.J. Branched-Chain Amino Acids and Cardiovascular Disease: Does Diet Matter? *Clinical Chemistry* **62**, 545-547 (2016).

20. Lotta, L.A., Scott, R.A., Sharp, S.J., Burgess, S., Luan, J.a., et al. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. *PLoS Med* **13**(2016).

21. McCormack, S.E., Shaham, O., McCarthy, M.A., Deik, A.A., Wang, T.J., et al. Circulating Branched-chain Amino Acid Concentrations Are Associated with Obesity and Future Insulin Resistance in Children and Adolescents. *Pediatr Obes* **8**, 52-61 (2013).

22. Tobias, D.K., Clish, C., Mora, S., Li, J., Liang, L., et al. Dietary Intakes and Circulating Concentrations of Branched-Chain Amino Acids in Relation to Incident Type 2 Diabetes
Risk Among High-Risk Women with a History of Gestational Diabetes Mellitus. Clinical Chemistry 64, 1203-1210 (2018).

23. Zheng, Y., Li, Y., Qi, Q., Hruby, A., Manson, J.E., et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. International Journal of Epidemiology 45, 1482-1492 (2016).

24. López, A.M., Noriega, L.G., Díaz, M., Torres, N. & Tovar, A.R. Plasma branched-chain and aromatic amino acid concentration after ingestion of an urban or rural diet in rural Mexican women. BMC Obesity 2, 8 (2015).

25. Merz, B., Frommherz, L., Rist, M.J., Kulling, S.E., Bub, A., et al. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women—Results from the KarMeN Study. Nutrients 10, 623 (2018).

26. Rousseau, M., Guénard, F., Garneau, V., Allam-Ndoul, B., Lemieux, S., et al. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 11, 173 (2019).

27. Guo, J., Wei, W. & Zhan, L. Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast cancer research and treatment 151, 191-198 (2015).

28. Cho, E., Chen, W.Y., Hunter, D.J., Stampfer, M.J., Colditz, G.A., et al. Red meat intake and risk of breast cancer among premenopausal women. Archives of internal medicine 166, 2253-2259 (2006).

29. Playdon, M.C., Ziegler, R.G., Sampson, J.N., Stolzenberg-Solomon, R., Thompson, H.J., et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr 106, 637-649 (2017).

30. Marmot, M., Atinmo, T., Byers, T., Chen, J., Hirohata, T., et al. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. (2007).

31. Lauby-Secrétan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., et al. Body fatness and cancer—viewpoint of the IARC Working Group. New England Journal of Medicine 375, 794-798 (2016).

32. Larsson, S.C., Mantzoros, C.S. & Wolk, A. Diabetes mellitus and risk of breast cancer: a meta - analysis. International journal of cancer 121, 856-862 (2007).

33. Rangel-Huerta, O.D., Pastor-Villaescusa, B. & Gil, A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 15(2019).

34. Newgard, C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism 9, 311-326 (2009).

35. Libert, D.M., Nowacki, A.S. & Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acyclycarnitine levels change along a spectrum of metabolic wellness. PeerJ 6(2018).

36. Wang, T.J., Larson, M.G., Vasan, R.S., Cheng, S., Rhee, E.P., et al. Metabolite profiles and the risk of developing diabetes. Nature Medicine 17, 448-453 (2011).

37. Würtz, P., Wang, Q., Kangas, A.J., Richmond, R.C., Skarp, J., et al. Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change. PLoS Med 11, e1001765 (2014).

38. Wang, Q., Holmes, M.V., Smith, G.D. & Ala-Korpela, M. Genetic Support for a Causal Role of Insulin Resistance on Circulating Branched-Chain Amino Acids and Inflammation. Diabetes Care 40, 1779-1786 (2017).

39. Mahendran, Y., Jonsson, A., Have, C.T., Allin, K.H., Witte, D.R., et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 60, 873-878 (2017).
40. Krebs, M., Brunmair, B., Brehm, A., Artwohl, M., Szendroedi, J., et al. The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. *Diabetes* **56**, 1600-1607 (2007).

41. Tremblay, F. & Marette, A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. *Journal of Biological Chemistry* **276**, 38052-38060 (2001).

42. Dillon, R., White, D. & Muller, W. The phosphatidylinositol 3-kinase signaling network: implications for human breast cancer. *Oncogene* **26**, 1338-1345 (2007).

43. Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., et al. HMDB 3.0—the human metabolome database in 2013. *Nucleic acids research* **41**, D801-D807 (2012).

44. Townsend, M.K., Clish, C.B., Kraft, P., Wu, C., Souza, A.L., et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. *Clinical chemistry* **59**, 1657-1667 (2013).

45. Ghosh, S., Sengupta, A. & Chandra, K. Quantitative metabolic profiling of NMR spectral signatures of branched chain amino acids in blood serum. *Amino acids* **47**, 2229-2236 (2015).

46. Wolak-Dinsmore, J., Gruppen, E.G., Shalaurova, I., Matyus, S.P., Grant, R.P., et al. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. *Clinical biochemistry* **54**, 92-99 (2018).
Tables

Table 1: Characteristics of breast cancer cases and matched controls in the Nurses’ Health Studies

Participant characteristics	NHSII Cases (N=1057)	NHS II Controls (N=1057)	NHS distant collection Cases (N=940)	NHS distant collection Controls (N=940)	NHS proximate collection Cases (N=592)	NHS proximate collection Controls (N=592)
Mean age at blood collectionc (SD), y	44.7 (4.5)	44.8 (4.4)	55.5 (6.9)	55.6 (6.9)	66.4 (6.9)	66.5 (6.8)
Mean time between blood collection and diagnosis (SD), y	8.0 (4.4)	—	14.6 (3.0)	—	4.0 (2.6)	—
Mean age at menarche (SD), y	12.4 (1.3)	12.5 (1.4)	12.5 (1.4)	12.6 (1.4)	12.5 (1.4)	12.6 (1.4)
Parity and age at first birth, %:						
Nulliparous	21.1	18.4	9.6	8.0	8.6	5.9
1-2 children <25y	14.7	15.9	13.5	14.1	13.0	15.9
1-2 children ≥25y	39.2	34.9	20.1	20.6	20.4	19.3
3+ children <25y	11.3	16.6	35.5	35.5	36.5	38.3
3+ children ≥25y	13.8	14.2	21.3	21.7	21.5	20.6
Family history of breast cancer, %	17.4	10.8	14.6	10.7	22.5	14.2
Personal history of benign breast disease, %	22.1	15.6	45.9	37.8	62.5	54.7
BMI at age 18, kg/m²	20.8 (2.9)	21.1 (3.1)	21.1 (2.7)	21.3 (3.0)	21.0 (2.6)	21.3 (3.0)
Mean weight change between age 18 years and blood collection (SD), kg	11.6 (12.0)	12.6	12.3	10.6	15.5	13.8
Mean physical activity (SD), MET-hrs/wk	18.0 (15.3)	18.1	15.4	15.9	17.7	19.0
Mean alcohol consumption (SD), g/day	3.8 (6.9)	3.3 (5.6)	6.9 (9.9)	5.9 (8.2)	6.7 (9.2)	5.8 (7.7)
Past/current exogenous hormone usec,d,%	86.3	86.7	68.1	68.2	80.6	81.2
Ever breastfed, %	63.1	65.0	64.3	62.0	67.4	64.4
Menopausal status at blood collectionc, %	80.2	79.7	25.4	25.5	0.5	0.8
Premenopausal	12.7	13.1	61.9	61.9	98.1	98.1
Postmenopausal	7.1	7.3	12.7	12.6	1.4	1.0
Unknown						
Menopausal status at diagnosisc, %	42.0	42.2	1.3	1.3	1.4	1.0
Premenopausal	46.4	47.1	97.3	98.1	97.8	98.3
Postmenopausal	11.6	10.7	1.4	0.6	0.8	0.7
Fasting (>8h) at blood collectionc, %	68.7	74.7	66.6	72.7	87.0	92.4
Caucasianc, %	97.2	98.4	98.3	98.8	98.6	99.5

a NHS first blood collection. BMI = body mass index.
b NHS second blood collection
c matching factor
d oral contraceptive or menopausal hormone therapy
— data available for cases only
Table 2: Characteristics of the Women’s Health Study

Participant characteristics	WHS Premenopausal at blood collection	WHS Postmenopausal at blood collection
Total, No. (%)	12413 (46.0)	14587 (54.0)
Mean age at blood collection (SD), y	50.2 (3.5)	58.5 (7.1)
Mean age at menarche (SD), y	12.4 (1.4)	12.5 (1.5)
Parity and age at first birth, %:		
Nulliparous	22.4	22.8
1-2 children <30y	27.2	18.0
3+ children <30y	28.7	33.6
1-2 children ≥30y	5.8	3.8
3+ children ≥30y	1.6	2.2
Unknown	14.4	19.7
Family history of breast cancer, %	5.7	6.5
Personal history of benign breast disease, %	32.5	27.6
Mean BMI at blood draw (SD), kg/m²	26.0 (5.2)	25.8 (4.8)
Mean physical activity (SD), MET-hrs/wk	14.8 (18.6)	14.8 (18.3)
Alcohol consumption, frequency of intake, %		
Rarely/never	42.6	45.0
1-3/months	13.7	13.0
1-6/week	34.3	30.8
1+/day	9.3	11.3
Past/current exogenous hormone use, %	29.7	69.9
Fasting (>8h) at blood collection, %	70.1	73.8
Caucasian, %	94.4	94.6

\(^a\) BMI = body mass index; WHS = Women’s Health Study
Table 3: Effect estimates for predictors of probit transformed circulating BCAA levels from multivariable linear regression among 9,112 NHS/NHSII women.

Predictors	No.	Isoleucine β (95% CI)	Leucine β (95% CI)	Valine β (95% CI)
Dietary intake, mg/d				
Q1	1999-2010	ref	ref	ref
Q2	2016-2026	0.10 (0.03; 0.16)	0.09 (0.03; 0.16)	0.11 (0.05; 0.17)
Q3	2014-2030	0.13 (0.06; 0.20)	0.18 (0.11; 0.25)	0.26 (0.20; 0.33)
Q4	2011-2034	0.16 (0.08; 0.24)	0.21 (0.13; 0.28)	0.31 (0.23; 0.39)
Q5	2025-2034	0.21 (0.11; 0.31)	0.28 (0.18; 0.37)	0.42 (0.32; 0.51)
P_{trend}		<0.001	<0.001	<0.001
Fasting status				
fasting (>8h)	7836	ref	ref	ref
non-fasting	2771	0.20 (0.16; 0.25)	0.11 (0.07; 0.15)	0.10 (0.06; 0.15)
Age at blood collection, y				
<40	574	ref	ref	ref
40-50	3829	0.00 (-0.09; 0.09)	-0.04 (-0.13; 0.05)	0.04 (-0.05; 0.13)
50-60	3541	0.00 (-0.11; 0.11)	-0.03 (-0.14; 0.08)	0.12 (0.01; 0.23)
>60	2665	0.02 (-0.10; 0.14)	-0.03 (-0.15; 0.09)	0.12 (<0.01; 0.23)
P_{trend}	0.47	0.95	0.04	
Race				
Caucasian	10248	ref	ref	ref
Black	264	-0.11 (-0.26; 0.04)	-0.04 (-0.19; 0.11)	-0.19 (-0.33; -0.04)
Asian	68	0.28 (0.03; 0.53)	0.26 (0.01; 0.51)	0.34 (0.09; 0.58)
Other	29	0.03 (-0.34; 0.40)	0.06 (-0.31; 0.43)	-0.01 (-0.37; 0.35)
Smoking status				
Never	5602	ref	ref	ref
Past	3722	-0.01 (-0.05; 0.04)	0.01 (-0.03; 0.06)	0.01 (-0.04; 0.05)
Current	1263	0.01 (-0.06; 0.07)	0.00 (-0.06; 0.07)	-0.02 (-0.09; 0.04)
BMI, kg/m2				
<25	5601	ref	ref	ref
[25,30)	3154	0.34 (0.3; 0.38)	0.34 (0.3; 0.39)	0.40 (0.36; 0.45)
>30	1822	0.70 (0.65; 0.76)	0.68 (0.62; 0.74)	0.82 (0.77; 0.88)
P_{trend}	<0.001	<0.001	<0.001	
Physical activity, MET-hr/wk				
<9	4734	ref	ref	ref
9-27	3718	-0.05 (-0.09; 0.00)	-0.05 (-0.09; 0.00)	-0.04 (-0.09; 0.00)
≥27	1946	-0.01 (-0.06; 0.05)	0.01 (-0.05; 0.07)	0.01 (-0.04; 0.06)
P_{trend}	0.62	0.88	0.88	
Alcohol consumption, g/day				
0	3531	ref	ref	ref
0.88-10	4309	-0.08 (-0.13; -0.04)	-0.07 (-0.11; -0.02)	-0.04 (-0.09; 0.00)
10-20	1099	-0.12 (-0.19; -0.06)	-0.07 (-0.14; -0.01)	-0.07 (-0.14; -0.01)
Category	Number	\(P_{\text{trend}} \)		
----------	--------	----------------		
\(\geq 20 \)	632	0.001	0.001	0.001

Alternative Healthy Eating Index

Category	Number	\(P_{\text{trend}} \)		
\(< 43.5\)	1909	ref	ref	ref
\([37.9, 43.5)\)	1906	-0.04 (-0.10; 0.02)	-0.01 (-0.07; 0.05)	0.01 (-0.05; 0.07)
\([43.5, 49)\)	1910	-0.07 (-0.13; -0.01)	-0.04 (-0.10; 0.03)	-0.04 (-0.10; 0.02)
\([49, 55.6)\)	1908	-0.10 (-0.16; -0.03)	-0.06 (-0.13; 0.00)	-0.04 (-0.10; 0.02)
\(\geq 55.6\)	1909	-0.08 (-0.15; -0.02)	-0.04 (-0.10; 0.03)	-0.02 (-0.08; 0.04)

Menopausal status and PMH use

Category	Number	\(P_{\text{trend}} \)		
Premenopausal	4337	ref	ref	ref
Postmenopausal PMH	2447	0.05 (-0.02; 0.11)	0.06 (-0.01; 0.12)	0.12 (0.06; 0.18)
Postmenopausal no PMH	3189	0.10 (0.04; 0.17)	0.15 (0.08; 0.22)	0.17 (0.11; 0.24)
Unknown	649	0.08 (-0.01; 0.17)	0.06 (-0.04; 0.15)	0.10 (0.00; 0.19)

\(a\) Number and cutpoints vary by BCAA: Isoleucine dietary intake quintile cutpoints [mg/d]: <2.86; [2.86, 3.47]; [3.47, 4.06]; [4.06, 4.82]; \(\geq 4.82\). Leucine dietary intake quintile cutpoints [mg/d]: <5.33; [5.33, 6.49]; [6.49, 7.58]; [7.58, 9.05]; \(\geq 9.05\). Valine dietary intake quintile cutpoints [mg/d]: <3.22; [3.22, 3.93]; [3.93, 4.59]; [4.59, 5.47]; \(\geq 5.47\). CI = confidence interval; NHS = Nurses' Health Study; NHSII = Nurses' Health Study II; PMH = postmenopausal hormone therapy.

\(b\) calculated without alcohol intake
Table 4: Odds ratios (OR) of breast cancer according to quartiles of plasma branched-chain amino acids among premenopausal and postmenopausal women

BCAAs	Q1	Q2	Q3	Q4	\(P_{\text{trend}} \)			
Isoleucine								
All Samples								
No. of cases/controls	300/265	282/264	239/264	236/264				
Simple OR (95% CI)	ref 0.93 (0.73-1.18)	0.79 (0.61-1.01)	0.76 (0.59-0.99)	0.02				
Multivariable OR (95% CI)	ref 0.99 (0.77-1.27)	0.87 (0.67-1.13)	0.86 (0.65-1.13)	0.20				
Fasting Samples								
No. of cases/controls	216/179	201/179	149/178	149/179				
Multivariable OR (95% CI)	ref 0.97 (0.72-1.30)	0.77 (0.56-1.05)	0.74 (0.53-1.05)	0.05				
Leucine								
All Samples								
No. of cases/controls	296/265	268/264	278/264	215/264				
Simple OR (95% CI)	ref 0.90 (0.70-1.14)	0.93 (0.72-1.19)	0.71 (0.55-0.92)	0.02				
Multivariable OR (95% CI)	ref 0.92 (0.72-1.18)	1.00 (0.77-1.30)	0.77 (0.58-1.01)	0.11				
Fasting Samples								
No. of cases/controls	209/179	184/179	190/178	132/179				
Multivariable OR (95% CI)	ref 0.88 (0.66-1.18)	0.94 (0.68-1.29)	0.66 (0.47-0.94)	0.04				
Valine								
All Samples								
No. of cases/controls	293/265	262/264	283/264	219/264				
Simple OR (95% CI)	ref 0.89 (0.69-1.13)	0.95 (0.75-1.20)	0.74 (0.58-0.95)	0.04				
Multivariable OR (95% CI)	ref 0.91 (0.71-1.18)	1.02 (0.80-1.31)	0.82 (0.62-1.08)	0.28				
Fasting Samples								
No. of cases/controls	217/179	181/179	170/178	147/179				
Multivariable OR (95% CI)	ref 0.86 (0.63-1.16)	0.81 (0.60-1.10)	0.74 (0.53-1.04)	0.08				
Total BCAAs								
All Samples								
	Simple OR (95% CI)	Multivariable OR (95% CI)						
------------------	--------------------	---------------------------						
Fasting Samples								
No. of cases/controls	278/265	293/264						
Simple OR (95% CI)	ref	1.05 (0.83-1.34)						
Multivariable OR (95% CI)	ref	1.10 (0.86-1.41)						
Postmenopausal women in NHS, distant sample collection (10-20y before diagnosis, N=940 cases/controls)								
Isoleucine								
All Samples								
No. of cases/controls	226/235	220/235						
Simple OR (95% CI)	ref	0.98 (0.75-1.26)						
Multivariable OR (95% CI)	ref	0.95 (0.73-1.24)						
Fasting Samples								
No. of cases/controls	157/156	132/156						
Multivariable OR (95% CI)	ref	0.83 (0.60-1.15)						
Leucine								
All Samples								
No. of cases/controls	220/235	217/235						
Simple OR (95% CI)	ref	0.98 (0.75-1.29)						
Multivariable OR (95% CI)	ref	0.95 (0.72-1.25)						
Fasting Samples								
No. of cases/controls	147/156	145/156						
Multivariable OR (95% CI)	ref	0.95 (0.68-1.33)						
Valine								
All Samples								
No. of cases/controls	215/235	236/235						
Simple OR (95% CI)	ref	1.10 (0.85-1.42)						
Multivariable OR (95% CI)	ref	1.03 (0.79-1.34)						
	All Samples	Fasting Samples	Postmenopausal women in NHS, proximate sample collection (<10y before diagnosis, N=592 cases/controls)					
----------------	-------------	-----------------	--					
Total BCAAs								
No. of cases/controls	217/235	225/235	217/235	281/235	146/156	161/156	137/155	179/156
Simple OR (95% CI)	ref	1.00 (0.72-1.40)	0.91 (0.65-1.28)	1.06 (0.74-1.52)	0.90			
Multivariable OR (95% CI)	ref	1.04 (0.80-1.35)	1.32 (1.02-1.70)	1.17 (0.88-1.55)	0.05			

Isoleucine

	All Samples	Fasting Samples	Postmenopausal women in NHS, proximate sample collection (<10y before diagnosis, N=592 cases/controls)					
No. of cases/controls	112/148	146/148	154/148	180/148	91/129	130/128	136/128	156/128
Simple OR (95% CI)	ref	1.30 (0.94-1.81)	1.63 (1.17-2.29)	1.63 (1.12-2.39)	0.01			
Multivariable OR (95% CI)	ref	1.29 (0.91-1.83)	1.45 (1.01-2.09)	1.63 (1.12-2.39)	0.01			

Leucine

	All Samples	Fasting Samples	Postmenopausal women in NHS, proximate sample collection (<10y before diagnosis, N=592 cases/controls)					
No. of cases/controls	123/148	144/148	164/148	161/148	103/129	123/128	147/128	140/128
Simple OR (95% CI)	ref	1.17 (0.83-1.63)	1.32 (0.94-1.84)	1.26 (0.87-1.83)	0.08			
Multivariable OR (95% CI)	ref	1.20 (0.84-1.71)	1.43 (1.01-2.03)	1.26 (0.87-1.83)	0.17			

Valine

	All Samples	Fasting Samples	Postmenopausal women in NHS, proximate sample collection (<10y before diagnosis, N=592 cases/controls)					
No. of cases/controls	146/156	161/156	137/155	179/156	103/129	123/128	147/128	140/128
Multivariable OR (95% CI)	ref	1.29 (0.88-1.90)	1.58 (1.08-2.31)	1.31 (0.87-1.98)	0.12			
	No. of cases/controls	Simple^a OR (95% CI)	Multivariable^c OR (95% CI)					
-------------------------	-----------------------	---------------------------------	-------------------------------------					
No. of cases/controls	119/148	146/148	158/148					
Simple^a OR (95% CI)	ref	1.21 (0.87-1.68)	1.31 (0.95-1.80)					
Multivariable^c OR (95% CI)	ref	1.23 (0.87-1.73)	1.33 (0.94-1.88)					
Fasting Samples								
No. of cases/controls	99/129	134/128	111/128					
Multivariable^c OR (95% CI)	ref	1.45 (1.00-2.10)	1.13 (0.76-1.67)					
Total BCAAs								
All Samples								
No. of cases/controls	119/148	149/148	148/148					
Simple^a OR (95% CI)	ref	1.25 (0.90-1.74)	1.25 (0.90-1.74)					
Multivariable^c OR (95% CI)	ref	1.30 (0.92-1.85)	1.35 (0.94-1.93)					
Fasting Samples								
No. of cases/controls	101/129	129/128	123/128					
Multivariable^c OR (95% CI)	ref	1.41 (0.96-2.08)	1.35 (0.92-1.98)					

^a Predominantly premenopausal (see Table 1 and Figure 1 for details). CI = confidence interval; BCAA = branch chain amino acids; NHS = Nurses’ Health Study; NHSII = Nurses’ Health Study II

^b Simple model: no adjustment factors were included.

^c Multivariable model: BMI at age 18, weight change from age 18 to time of blood draw, age at menarche, parity and age at first birth, family history of breast cancer, history of benign breast disease, physical activity, alcohol consumption, exogenous hormone use, and breastfeeding history.

^d Predominantly postmenopausal women (see Table 1 and Figure 1 for details)
Table 5: Odds ratios (ORs) of breast cancer according to quartiles of plasma branched-chain amino acids among premenopausal and postmenopausal women in WHS

BCAAs	Q1	Q2	Q3	Q4	\(P_{\text{trend}}\)	
	Premenopausal women at blood collection in WHS (n=763 cases)					
Isoleucine	No. of cases/non-cases	191/2873	188/2906	190/2891	194/2980	
	Multivariable OR (95% CI)	Ref	0.98 (0.80, 1.20)	0.99 (0.81, 1.21)	0.99 (0.80, 1.20)	0.93
Leucine	No. of cases/non-cases	183/3000	187/2903	213/2798	180/2949	
	Multivariable OR (95% CI)	Ref	1.06 (0.87, 1.31)	1.22 (1.00, 1.49)	1.00 (0.81, 1.24)	0.62
Valine	No. of cases/non-cases	206/3081	187/2849	179/2836	191/2884	
	Multivariable OR (95% CI)	Ref	0.98 (0.80, 1.21)	0.95 (0.77, 1.16)	0.97 (0.79, 1.20)	0.76
Total BCAAs	No. of cases/non-cases	196/3058	181/2850	193/2780	193/2962	
	Multivariable OR (95% CI)	Ref	0.98 (0.80, 1.21)	1.07 (0.88, 1.32)	1.01 (0.82, 1.25)	0.76
	Postmenopausal women in WHS, distant sample collection (10-20y before diagnosis, n=515 cases)					
Isoleucine	No. of cases/non-cases	125/3561	118/3538	144/3525	128/3448	
	Multivariable OR (95% CI)	Ref	0.94 (0.73, 1.21)	1.16 (0.91, 1.47)	1.11 (0.86, 1.43)	0.25
Leucine	No. of cases/non-cases	121/3446	105/3555	146/3593	143/3478	
	Multivariable OR (95% CI)	Ref	0.85 (0.65, 1.10)	1.15 (0.90, 1.47)	1.23 (0.96, 1.58)	0.04
Valine	No. of cases/non-cases	127/3336	127/3587	129/3606	132/3543	
	Multivariable OR (95% CI)	Ref	0.94 (0.73, 1.21)	0.95 (0.74, 1.22)	0.99 (0.76, 1.29)	0.95
Total BCAAs	No. of cases/non-cases	127/3369	121/3598	135/3642	132/3463	
	Multivariable OR (95% CI)	Ref	0.88 (0.69, 1.13)	0.98 (0.76, 1.25)	1.05 (0.81, 1.36)	0.60
	Postmenopausal women in WHS, proximate sample collection (<10y before diagnosis, n=487 cases)					
Isoleucine	No. of cases/non-cases	136/3550	116/3540	120/3549	115/3461	
	Multivariable OR (95% CI)	Ref	0.87 (0.68, 1.12)	0.93 (0.73, 1.19)	0.97 (0.75, 1.26)	0.85
Leucine	No. of cases/non-cases	126/3441	115/3545	123/3616	123/3498	
	Multivariable OR (95% CI)	Ref	0.91 (0.70, 1.17)	0.97 (0.76, 1.25)	1.05 (0.81, 1.36)	0.68
Valine	No. of cases/non-cases	119/3344	133/3581	128/3607	107/3568	
	Multivariable OR (95% CI)	Ref	1.09 (0.85, 1.39)	1.04 (0.81, 1.34)	0.96 (0.73, 1.26)	0.75
Total BCAAs						

30
No. of cases/non-cases	128/3368	119/3600	126/3651	114/3481	
Multivariable OR (95% CI)	Ref	0.89 (0.69, 1.15)	0.97 (0.75, 1.24)	0.98 (0.75, 1.27)	0.98

aMultivariable model is adjusted for age, randomized treatment assignment, BMI, age at menarche, parity and age at first birth, family history of breast cancer, history of benign breast disease, physical activity, alcohol consumption, HRT, menopausal status, fasting status and race. WHS = Women’s Health Study
Table 6: Odds ratios (ORs) of breast cancer according to 10-year changea in plasma branched-chain amino acids in postmenopausal women in NHS

BCAAs	low/low	low/high	high/low	high/high
Isoleucine				
No. of Cases/Controls	118/96	55/69	55/50	118/131
Multivariableb OR (95% CI)	1.00 (ref)	3.00 (1.45,6.20)	0.87 (0.41,1.83)	1.45 (0.77,2.71)
Leucine				
No. of Cases/Controls	116/104	57/62	57/50	116/130
Multivariableb OR (95% CI)	1.00 (ref)	1.49 (0.72,3.08)	0.70 (0.32,1.50)	1.22 (0.64,2.33)
Valine				
No. of Cases/Controls	114/104	59/60	59/65	114/117
Multivariableb OR (95% CI)	1.00 (ref)	1.15 (0.58,2.28)	1.54 (0.76,3.11)	0.90 (0.48,1.69)
Total BCAAs				
No. of Cases/Controls	120/107	53/57	53/55	120/127
Multivariableb OR (95% CI)	1.00 (ref)	1.42 (0.69,2.93)	1.13 (0.55,2.33)	0.99 (0.53,1.85)

a Cross-classified by median in distant/proximate sample collections

b Multivariable model: body mass index at age 18, weight change from age 18 to time of blood draw, age at menarche, parity and age at first birth, family history of breast cancer, history of benign breast disease, physical activity, alcohol consumption, exogenous hormone use, and breastfeeding history. BCAAs = branched-chain amino acids; CI = confidence interval; NHS = Nurses’ Health Study
Figure Legend

Figure 1. Age and menopausal status distribution at blood collection. Panel A shows the age distribution in the three datasets: Nurses’ Health Study (NHS) distant collection in blue, NHS proximate collection in dark blue and NHSII in light blue. Median age is marked by vertical dashed lines. Panel B shows distribution of menopausal status in the three datasets: premenopausal status is shown in dark green, postmenopausal status is shown in light green and unknown status is shown in gray.
