Review Article

Ngoc Bich Hoang*, Thi Cam Quyen Ngo, Thi Kim Ngan Tran, Van Tan Lam*

Comprehensive review on synthesis, physicochemical properties, and application of activated carbon from the Arecaceae plants for enhanced wastewater treatment

https://doi.org/10.1515/chem-2021-0117
received October 3, 2021; accepted December 9, 2021

Abstract: Arecaceae presents one of the plant families distributed mainly in the equatorial and subequatorial regions. Arecaceae are widely applied in many fields such as food, cosmetics, fuel, and chemical industries. However, a large amount of agricultural waste from the Arecaceae trees has been released into the environment. The objective of this report is to gain more insights into the potentials and applications of activated carbon (AC) from the Arecaceae trees in wastewater treatment, in which, the ability to handle organic pigments, metals, and antibiotics is focused. The physical properties and processability of AC are statistically evaluated. With a uniform structure, large specific surface area, processing ability according to Langmuir and pseudo-second-order models, we showed that ACs from Arecaceae trees are promising materials for water treatment applications. This is the basis for the development and reduction of by-products that affect the environment.

Keywords: Arecaceae family, activated carbon, wastewater treatment

1 Introduction

The palm family (Arecaceae) of the perennial flowering plant family including five subfamilies, 28 tribes, 181 genera, about 2600 species are known and distributed mainly in equatorial and subequatorial regions [1]. Among, the popular trees including the date palm (Phoenix dactylifera) [2,3], coconut palm (Cocos nucifera) [4], oil palm (Elaeis guineensis) [5–7], areca palm (Areca catechu) [8,9], nipa palm (Nypa fruticans) [10,11], palmyra palm (Borassus flabelifer) [8,12], and rattan palm (Calamus) [8,13] have been widely cultivated to meet human necessities. According to the Food and Agriculture Organization (FAO), the cultivated area and production yield of Arecaceae plants (coconut, oil palm, date palm, and areca palm) have increased annually (Figure 1a). Besides, the oil palm is known to meet the requirement ability of food, cosmetics, animal feed, and fuel production [14]. Next is the coconut tree (13.35 and 27.91%), the second source of production after the palm tree (84.47 and 66.27%) in terms of total production and area worldwide (Figure 1b) [14]. To meet the decoration and construction necessities, the rattan is one of the trees associated with bamboo in projects according to the announcement of the International Bamboo and Rattan Organisation [15]. Besides, trees such as date palm, nypa palm, areca palm, and palmyra palm are also species to meet the food and pharmaceutical [3,8,11,16–19] requirement.

Apart from economic applications, the Arecaceae family is helping to assess the impact of climate change. The study by Aboubacar Oumar Zion has highlighted the effects of climate change on the growth, reproduction, and productivity of the Arecaceae family in West Africa [20]. Although the Arecaceae family tree brings many socioeconomic and environmental benefits, the agricultural by-products were released in large quantities into the environment [21]. They even cause numerous environmental problems such as the transmission of toxic fumes, the pollution of ground water, and the creation of a breeding ground for most microbial
pathogens and mosquito vectors [22]. To benefit from agricultural by-products and contribute to environmental protection, the researchers have been focusing to convert them into activated carbon (AC) for application in environmental treatment. In this study, the physicochemical properties and the adsorption capacity of AC from the Arecaceae plants are summarized, revealing the potential for practical applications. The prospects for the future will be generalized and directed toward future studies to realize the benefits provided by the Arecaceae family.

2 Potential materials from the Arecaceae plants

Numerous plant species of the Arecaceae family are used for oil extraction, and their worldwide production amounts to millions of tons per year. Nevertheless, the agricultural waste of the Arecaceae family is generated in large quantities during the cultivation process. In the Arecaceae family, the palm tree has an output of 410.69 Mt in 2019 as announced by FAO. In the study of Muthanna J. Ahmed published in 2016, there is 10% of agricultural by-products for every ton of palm [23], which shows it is about 41 Mt as of 2019. The amount of waste is a potential for use as a precursor for AC. Over the past decade, by-products from Arecaceae have attracted the attention of researchers (Table 1). Applied research for AC materials from Arecaceae including CO₂, NaCl, dye, heavy metals, and some other toxic substances have been studied in recent years [24–38], in which palm trees, coconut trees, and date palm have more scientific publications than other types of trees. The potential for by-products of the Arecaceae family has not been fully exploited.

3 Techniques of AC from the Arecaceae plants

The method of synthesizing AC through activation process includes physical, chemical, and physicochemical
activation [54,55]. Physical activation method is to use heat with inert gases, such as nitrogen and carbon dioxide, and water. Chemical activation method is to use activators such as NaOH, KOH, H₃PO₄, and ZnCl₂. The physicochemical activation method is a combination of two physical and chemical methods. In addition, the microwave-assisted activation method is currently a method using microwaves to heat the activation process (Figure 2). Looking at Table 2, AC from the Arecaceae family was synthesized mainly by chemical or physicochemical methods, in which, activators such as NaOH, KOH, and H₃PO₄ are often used. After the activation process, the solvent washing and removing the residue of the activator is usually with acids or distilled water. The material was accepted until the pH of the wash solution reached neutral. The iodine index is an important indicator that characterizes the pore surface area and the adsorption capacity of AC. The higher the value of the iodine index in AC, the higher the activation level of the charcoal.

Table 1: Research statistics on Arecaceae family trees

Common name	AC material from	Adsorption application	Year	Ref.
Nipa palm	Nut	Lead(II)	2011	[39]
Date palm	Leaflets	Ciprofloxacin	2012	[40]
Conoon	Husk	Methylen blue (MB)	2012	[41]
Coconut and oil palm	Shell and kernel shell	Six metal ions	2012	[42]
Oil palm	Fronds	Pesticides	2014	[43]
Nipa palm	Leaves	Azo-benzene carboxylic acid	2014	[44]
Date palm	Fronds, seeds, and fiber	Bismarck brown G, Reactive yellow dye 145	2015	[45]
Date palm	Seeds	MB	2015	[46]
Oil palm	Shell	Reactive black 5 dye	2016	[47]
Palmyra	Tuber peel	Rhodamine 6 G dye	2016	[48]
Areca	Nut	Hg(II) and phenol	2017	[49]
Coconut	Shell	MB	2017	[50]
Rattan	Stalks	MB	2017	[51]
Areca	Nut	Fluoride	2017	[52]
Coconut	Fiber	MB, Congo red (CR), and Neutral red dyes	2018	[53]
Oil palm	Shell	MB	2019	[36]
Date palm	Seed	NaCl	2019	[35]
Nipa palm	Fiber	MB	2020	[34]
Date palm	Leaflets and rachis	Methyl-thioninium chloride	2020	[33]
Oil palm	Empty fruit bunch fiber	Cibacron blue 3G-A	2020	[32]
Oil palm	Kernel shell	CO₂	2020	[31]
Oil palm	Trunk	Chromium (Cr(III))	2020	[30]
Oil palm	Shell	CO₂	2021	[29]
Date palm	Seeds	Organochlorine pesticides	2021	[28]
Coconut	Shell	Heavy metals	2021	[27]
Coconut and palm	Kernel shell	MB and iodine	2021	[26]
Palmyra	Shell	MB	2021	[25]
Coconut	Shell	Diclofenac (DCF) and amoxicillin (AMX)	2021	[24]
Rattan	Trunk	Uranium(III)	2021	[38]
Palmyra	Male inflorescence	Cd(II) ions	2021	[37]

4 Physicochemical properties of AC from the Arecaceae plants

The physical properties of AC were analyzed using scanning electron microscope, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and fourier-transform infrared spectroscopy (FTIR). In Figure 3, it can be seen that the material of the Arecaceae family gives a structure similar to the honeycomb network [33,34,36,49,56–60]. This shows that the Arecaceae family has its own characteristic structure, the surface area of the plants is also almost the same. The surface area of the material depends on the activation method. For the chemical method, the surface area is about 4–12 m² g⁻¹ [26]. Physical methods give a surface area of about 800 m² g⁻¹ [31]. Physicochemical methods give a surface area about 300–1,200 m² g⁻¹ [28,32], and with the microwave-assisted method, the surface area is about 500 m² g⁻¹ [36]. This shows that the average surface area
of AC from the Arecaceae family is about 300–1,200 m² g⁻¹. With a large specific surface area, the structure of AC was analyzed through XRD and FTIR methods. In recent studies, the structure of AC is semiamorphous [24,26,28,38]. This similarity was found when analyzing the crystal structure of activated carbon from jackfruit and coffee (2θ = 20–25°, 40–45°) [61,62]. The functional groups OH, CO, CH, C=O, and C=C are recognized as functional groups that characterize the structure of AC (Figure 3). Besides, AC from jackfruit, bamboo, citrus, and coffee

![Activation methods of AC from Arecaceae.](image)

Table 2 : Method for synthesizing AC from the Arecaceae family

Tree name	Activation methods	Activator	Ref.
Oil palm	Microwave-assisted activation	Microwave radiation	[36]
Date palm	Physicochemical activation	KOH + 1,173 K	[35]
Nipa palm	Physicochemical activation	KOH + 973 K	[34]
Date palm	Physical activation	873 K	[33]
Oil palm	Physicochemical activation	H₂SO₄ + 873 K	[32]
Date palm	Chemical activation	H₃PO₄	[28]
Coconut	Chemical activation	NaOH, HNO₃, KMnO₄, and FeSO₄	[27]
Coconut and oil palm	Chemical activation	Distilled water, H₃PO₄, and NaOH	[26]
Palmyra	Physical activation	773 K	[25]
Coconut	Chemical activation	H₃PO₄	[24]
Rattan	Physicochemical activation	ZnCl₂ + 873 K	[38]
Palmyra	Physical activation	673 K	[37]
had the same structure as OH, CH, C=O, C=C, and CO [63–66]. The functional groups of Arecaaceae ACs did not differ when compared with commercial ACs [67]. The characteristic structure of AC of the Arecaaceae to nondifference from other types of AC [26,33,53,68] can be seen. The results from the analysis of structural and physicochemical properties have shown the uniformity of pore structure, surface area, and surface functional groups. The structural homogeneity shows a very high potential for the commercialization of the material (Table 3).

5 Potential of AC from Arecaaceae in wastewater treatment

5.1 Removal of heavy metal ions

Heavy metals are those that have a density greater and are generally only those associated with pollution and toxicity. Heavy metals are divided into three main groups: highly toxic metals (Hg, Cr, Pb, Ni, Cd, As, Sn, etc.), precious
metals (Pd, Pt, Au, Ag, Ru, etc.), and radioactive metals (U, Th, Ra, Am, etc.) [70]. Most of the heavy metal elements such as mercury, nickel, lead, arsenic, cadmium, and platinum are highly toxic and have almost no nutritional role in living things; when entering the organism and accumulating in the cell, they will be highly toxic. For humans, heavy metals are potentially toxic not only at high concentrations but even at low concentrations for a long time due to the bioaccumulation process reaching toxic concentrations. The toxicity of these elements can be at very low concentrations around 0.1–10 mg L\(^{-1}\) [71]. The toxicity and nontoxicity of heavy metals depend not only on the metal itself, but also on its content in soil, water, and chemical, physical, and biological factors. The reuse of agricultural by-products in the preparation of AC is also an effective way of removing metal ions from wastewater and reducing the use of raw materials, minimizing waste, and protecting water resources [72,72–74]. It can be seen that the application of AC from Arecaceae to remove metals studied in a variety of ways. Kinetic, isothermal models, and influencing factors are shown in Table 4.

In 2010, *A. catechu* was selected and collected from Bakhrapara village in Bongaigaon district of Assam in India. Because of its soft and porous nature, the heartwood of the tree has been used as an adsorbent in the treatment of polluted water. Chakravarty et al. conducted an experiment to investigate the factors of time, pH, and adsorption dose to remove Pb\(\text{II}\) ions. The study results also showed that the adsorbent heartwood of *A. catechu* powder removal of Pb\(\text{II}\) follows the Langmuir isotherm model and the pseudo-second-order kinetic model [75].

In 2014, the study of Alagesan Kannan showed the efficiency of cadmium removal from aqueous solution by palmyra palm fruit seed carbon (PPFSC). The results show that the treatment efficiency is 92.5%. In addition, PPFSC was also tested and compared with commercial AC in electroplating wastewater treatment. During the 5 h period, 86% of cadmium was removed by 1 g of PPFSC and only 58% for 1.6 g of commercial AC [76].

In 2017, the removal of fluoride from the water was performed by the group Sahira Joshi et al. (2016) by AC from areca nut seeds in the presence of Fe\(_2\)O\(_3\). The maximum adsorption capacity to remove fluoride of Fe\(_2\)O\(_3\)/areca nut AC (4.8 mg g\(^{-1}\)) is higher than commercial AC (1.2 mg g\(^{-1}\)) and groundnut shell AC Zr-Imp (2.3 mg g\(^{-1}\)) [52]. Lalmunsiana et al. used microwave irradiation with succinic anhydride to functionalize AC from areca nut waste. The Langmuir adsorption isotherm was suitable for Hg\(\text{II}\) with the maximum adsorption capacity found to be 11,235 mg g\(^{-1}\). Besides, the nonlinear Thomas equation is used to calculate the column load capacity when removing Hg(\(\text{II}\)) of areca nut AC functionalized at 2.49 mg g\(^{-1}\) [49].

In addition, the studied Arecaceae plants have been treated with other ions such as chromium, copper, iron, and zinc as shown in Table 4. It can be seen that AC from the Arecaceae family all following the Langmuir isotherm model when applying heavy metal removal. The best metal treatment concentration is 20 mg g\(^{-1}\) in acidic medium (pH < 5) and room temperature.

5.2 Removal of antibiotics

The problems associated with antibiotics are similar to heavy metal pollution. Similar to heavy metals, antibiotics are natural compounds found in different ecosystems. Synthetic antibiotics (e.g., quinolones) are difficult to biodegrade. However, they are still degraded to varying degrees in the natural environment. Studies have demonstrated that ciprofloxacin present in river water samples is completely

Table 3: Physical properties of activated carbon from Arecaceae

AC name	Activator	BET	Surface area (m\(^2\) g\(^{-1}\))	Pore volume (cm\(^3\) g\(^{-1}\))	Ref.
Coconut shell (CS)	H\(_3\)PO\(_4\)		11.62	0.29	[26]
Palm kernel shell (PKS)	H\(_3\)PO\(_4\)		8.76	0.27	[26]
Fibre-rich Palmyra palm tree biomass derived carbon (PP-C)	1,573 K		190	—	[69]
Palm date stone AC	H\(_3\)PO\(_4\)		1,262	—	[28]
Oil palm trunk activated carbon Fibers (ACFs)	H\(_2\)SO\(_4\)		1,800	0.7	[30]
PKS	1,273 K		803	—	[31]
Oil palm empty fruit	H\(_2\)SO\(_4\)		362.84	—	[32]
Date seed porous activated carbon	1,273 K		1020.85	0.2	[35]
Waste palm shell	Microwave steam		570.8	0.262	[36]
Table 4: Optimum conditions and treatment efficiency of AC produced from Arecaceae species

Adsorbent	Pollutants	\(C_0 \) (mg L\(^{-1}\))	Dose (gL\(^{-1}\))	Temp. (K)	Time (min)	pH	Adsorption capacity (mg g\(^{-1}\))	Adsorption efficiency (%)	Adsorption model	Ref.		
Palmyra palm fruit seed	Cadmium	20	—	303	300	3–5	—	92.5	PFO and Langmuir	[76]		
Areca nut seeds	Fluoride	20	20	—	180	2	—	4.8	—	Langmuir	[52]	
Areca nut waste	Hg\((\text{II})\)	10	2	298	720	2–8	—	11.235	—	Langmuir	[49]	
Areca catechu	Pb(II)	20	—	304	25	5	—	—	97	Langmuir and PSO	[75]	
Coconut husk	2,4,6-Trichlorophenol	100	—	303	1,440	2	—	716.10	92.93	Langmuir and PSO	[96]	
CS	Ammonium ion	500	40	283	120	9	—	—	93	Freundlich and PSO	[97]	
Chitosan-treated banana and areca fiber	Chromium(VI)	40	1.2	300	120	3	—	92.5	Langmuir	[76]		
CS	Cu\(^{2+}\), Fe\(^{3+}\), Zn\(^{2+}\), and Pb\(^{2+}\)	—	1	305	80	6	—	<90	PSO	[99]		
Date palm leaflets	Ciprofloxacine	200	0.5	298	2,880	6	100	83	—	Langmuir and PSO	[40]	
Palm oil	CPX	20	1.6	298	60	4–5	57.47	<90	—	Langmuir and PSO	[85]	
Date palm fiber	Tylosin	15–150	1	303	120	5.8	147	99	—	PSO and Langmuir	[100]	
Palm tree male	MB	200	—	303	60	6	56.93	—	—	Langmuir and PSO	[87]	
Cocos nucifera	MB	19.01	1.26	300	5	8.65	112.35	86.38	—	Langmuir and PSO	[88]	
B. aethiopum	MG	25–100	0.1	300	1,440	6.78	48.48	<98	—	Langmuir and PSO	[86]	
PTF	CR and RhB	25	5	298	120	2	—	—	98	—	Langmuir and PSO	[91]
Palmyra shell	MB	55	5	—	50	10	—	—	100	—	Langmuir and intraparticle diffusion	[25]
CS	Basic yellow13 and basic red14	100	—	—	—	11	—	20–50	—	Langmuir	[101]	
Coconut frond	Carboburan insecticide	250	0.2	303	240	Not dependent on pH	—	80	—	Langmuir and PSO	[102]	
Date palm seeds	Acid dye Eosin yellow	200	0.05	303	240	2	—	99.78	—	—	Langmuir, PSO, and intraparticle diffusion	[103]
Coir pith	CR	—	4	308	40	2	6.72	—	—	—	Langmuir and PSO	[103]
Date palm waste	Methylthioninium chloride	2,000	—	296	1,440	7	—	83	—	—	Langmuir, PSO, and intraparticle diffusion	[33]
B. flabellifer shell	Naphthalene	200	—	313	720	7	—	76	—	—	Langmuir and PSO	[59]
degraded after 3 months, whereas only 20% of oxolinic acid in samples is degraded after 5 months [77]. Concentrations of several antibiotics were found in wastewater in several Asian countries [78]. In addition, wastewater is another important source of antibiotic contamination in the aquatic environment. The presence of antibiotics in surface water, groundwater, seawater, soil, and sludge has also been investigated [79–81]. AC can be used to remove hydrophobic and charged particles from wastewater [82]. AC is also used in the drug manufacturing industries to purify antibiotics [83]. Kinetic, isothermal models, and influencing factors are shown in Table 4.

In 2008, Hameed et al. used locally available coir materials to prepare AC to eliminate the harmful effects of 2,4,6-Trichlorophenol (TCP) in the country. The highest adsorption efficiency removes TCP up to 92.93% at pH 2 and an initial TCP concentration of 100 mg L\(^{-1}\). The Langmuir isotherm model (716.10 mg g\(^{-1}\) at 303 K) and pseudo-second-order kinetics were found to be suitable for TCP adsorption, and the adsorption mechanism was determined through the intraparticle diffusion model [84].

In 2012, Said Ibrahim and coworkers used date palm leaflets to adsorb the antibiotic ciprofloxacin through sulfuric acid carbonization at 433 K. After 48 h of adsorption equilibrium, the activation energy was 17 kJ mol\(^{-1}\) at pH 6. The adsorption of the positively charged antibiotic ciprofloxacin is described by cation exchange and hydrogen bonding, along with electrostatic interactions with the charges on the AC surface [40].

In 2021, Daouda et al. optimized the removal of DCF and AMX using the response surface methodology through the use of CS by-products as adsorbents. The pseudo-quadratic kinetic model and Langmuir isotherm are said to be suitable for kinetic and isothermal research. Results showed that AMX adsorbed more slowly than DCF, removing more than 98% in 15 min (DCF) and 90 min (AMX) [24]. The activity of removing the antibiotic cephalaxin (CPX) in an aqueous solution by AC from palm oil fiber residues was reported by Acelas et al. conducted survey. Experimental results show that AC is the best adsorbent for CPX in wastewater, and this process is consistent with the pseudo-second-order kinetic model and Langmuir isotherm (57.47 mg g\(^{-1}\)). However, pH is one of the factors affecting the removal of CPX, with the removal efficiency of about 90% (acidic pH), and 20% (pH >6.5). The interaction between adsorbent and antibiotic is shown specifically through hydrogen bonding, π–π interaction, and electrostatic interaction representing the CPX adsorption mechanism [85].

It can be seen that at a temperature of 25, pH < 6 gives more than 80% treatment efficiency. The ability to handle antibiotics of negative origin is better than that of positive ones. This shows the uniformity in the adsorption process of AC from Arecaaceae when following the kinetic (PSO) and adsorption isotherm model (Langmuir).

5.3 Removal of organic dyes

To contribute to the study of utilizing waste materials in water pollution treatment, in this study, Arecaaceae by-products were used to fabricate color adsorbents for application in color treatment of dyeing wastewater. The recycling and utilization of waste not only brings economic and social benefits but also plays an important role in environmental protection. Kinetic, isothermal models and influencing factors are shown in Table 4.

In 2010, AC derived from Borassus aethiopum flower was prepared and applied as a malachite green (MG) dye adsorbent by Nethaji et al. The adsorption efficiency was evaluated through influencing parameters at three different particle sizes 100, 600, and 1,000 μm, adsorbent dosage of 10 g L\(^{-1}\), pH 6.78, and temperature 300 K. The Langmuir equilibrium isotherm model is evaluated to be effective for the actual adsorption process compared to the Temkin and Freundlich models. The research team also investigated the adsorption mechanism and determined the adsorption rate constant through intraparticle diffusion models, Elovich model, pseudo-first-order model, and pseudo-second-order model [86].

In 2014, Kini et al. have been used palm tree male flower (PTMF) as a MB adsorbent from an aqueous solution. Medium PTMF powder particles with a size of 150 μm were used for biosorption experiments. When increasing the adsorbent content from 0.05 to 0.30 g, the MB dye adsorption efficiency increased from 40.75 to 91.65% at equilibrium. Besides, the pseudo-second-order kinetics model is evaluated as suitable with a very good correlation coefficient for MB adsorption rate. The adsorption isotherm of MB onto PTMF was described by Langmuir isotherm with an adsorption capacity of 157.3 mg g\(^{-1}\) at 323 K [87].

In 2015, Jawad et al. used an available source of agricultural waste, which is fallen coconut leaves as an adsorbent for cationic dye (MB) from an aqueous solution. The leaf material will be processed into a powder with a particle size of 150–212 μm. MB adsorption efficiency was up to 86.38% under the optimal conditions of stirring time, initial MB concentration, adsorbent dosage, and initial solution pH of 5.00 min, 19.01 mg L\(^{-1}\), 1.26 g L\(^{-1}\), and 8.65, respectively. The correlation coefficient of the pseudo-quadratic model was better than that of the pseudo-first-order model under optimal experimental conditions [88].
In 2016, one of the popular materials for the production of AC, which is still used the most by its adsorption capacity, is CSs. Therefore, Islam et al. conducted the preparation of AC from CSs through the activation process with potassium hydroxide. In addition, 100% of the methyl orange dye was adsorbed for 12 min and followed the pseudo-second-order adsorption model mechanism \((R^2 > 0.995) \) [89].

In 2019, Youssef et al. used by-products from date palm pits at the pastry factory in (Shubra Al Khaimah) to prepare AC. Optimal conditions for MB removal were confirmed at 24 h equilibration time, pH 7, and increasing with temperature. The correlation coefficient reached 0.9943 for the MB adsorption of AC according to the pseudo-second-order kinetic model. Three adsorbents (CP212, CP214, and CP124) investigated MB adsorption according to the Langmuir isotherm model to obtain a maximum adsorption capacity of 19.2, 20, and 80 mg g\(^{-1}\), respectively [90].

In 2021, the date palm tree remains an irreplaceable symbol for the natives, numbering about 23 million trees in Saudi Arabia. Therefore, Alhogbi et al. have been used palm tree fiber (PTF) to test AC production. Since then, AC is applied to remove cationic dyes (Rhodamine B [RhB]) and anionic dyes (CR) in polluted water. The pseudo-second-order reaction and the suitable Langmuir model are considered suitable for the studies of adsorption kinetics and isotherms. PTFAC results in a relatively high dye removal from contaminated water with RHb (99.86%) and CR (98.24%), along with the ability to reuse up to five uses [91]. The adsorption efficiency of MB dye from textile wastewater from Palmyra shell activated carbon (palm) was investigated by Muniyandi et al. The experimental process obtained optimal conditions such as time of 50 min, initial concentration of 55 mg L\(^{-1}\), pH 10, and adsorbent dosage of 5 g L\(^{-1}\). With the characteristics of large surface area and pore volume, dye adsorption is almost 100% based on the electrostatic repulsion mechanism between the surface of the adsorbent and the cationic MB dye [25].

This indicates temperature, concentration, time, and content significantly unaffected with adsorption ability. For the positive dye, the pH >6 conditions give the treatment efficiency about 80%. For negative dye, pH <6 gives about 90% treatment efficiency. The adsorption process has been dominated by the pH of the medium. With the porous structure and large surface area, the processing efficiency does not change significantly.

5.4 Removal of harmful organics

In 2017, Research by Rebecca Manesco Paixão’s team was using AC from Babassu coconut to remove nitrate from water. The adsorption capacity was recorded as 10.13 mg g\(^{-1}\) at 45°C. The best conditions for adsorption were recorded at pH 2, the mass of material (0.2 g), time (90 min), and concentration of nitrate (100 mg L\(^{-1}\)) [92]. Mohammad Hassan’s research was using AC-based membrane materials from the date for removal of *Escherichia coli* bacteria from water. The membrane filter showed a high ability to remove *E. coli* bacteria (removal of ~96–99%) [93].

In 2019, AC from date seeds was used to remove NaCl in saline solution by the author group Abdul Hai. The adsorption capacity was recorded as 22.5 mg g\(^{-1}\), with conditions such as time (20–60 min), concentration (250 mg L\(^{-1}\)), dosage (2 g L\(^{-1}\)). Adsorption takes place in a continuous device with flow rate of 10 mL min\(^{-1}\) [35].

In 2020, The group of Adeline Lim was using AC from oil palm trunk to remove the tannin in aqueous solution. The processability of the material was evaluated based on its suitability with the kinetic and isothermal models of adsorption. The AC sample was showed a good fit for the Freundlich and pseudo-first-order models. Maximum adsorption capacities were recorded at 1047.47 mg g\(^{-1}\) (pH 2) and 1087.28 mg g\(^{-1}\) (pH 4). It can be seen that the material performs well in acidic environments [94].

In 2021, a continuous adsorption system was used to treat organochlorine pesticides from contaminated water by using date AC in Sahmarani Rayane’s study. The selected conditions for the adsorption process include 50 g of adsorbent, natural pH, low rate of 2.5 mL min\(^{-1}\), and inlet concentration of 57 µg L\(^{-1}\). The optimum adsorption capacity was 70–100% [95].

6 Conclusion

The focus of this review is on the biomass potential of plants in the Arecaceae family in wastewater treatment. Generally, plants in the Arecaceae are often manufactured by the physicochemical method to afford ACs with high specific surface area. The combination of activator and high temperature has been helped to stabilize the structure of the resulting AC. The surface functional groups were considerably increased by physical and chemical activators. For wastewater treatment, AC from Arecaceae has shown outstanding results for a wide range of pollutants from heavy metal ions, antibiotics/anti-inflammatory drugs, organic dyes to pollutants, and nonbiodegradable organic matter. Several plausible therapeutic mechanisms have been proposed with the main role of functional groups. Although there are many perspectives on Arecaceae family
ACs for emerging applications, some new directions are raised for better visibility in further studies.

Acknowledgments: The authors would also like to thank Nguyen Tat Thanh University for supporting the authors to carry out this review.

Funding information: This study was funded by Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.

Author contributions: N.B.H. and T.K.N.T. – writing – original draft; T.C.Q.N. – data curation and investigation; I.V.T. – writing – review and editing; N.B.H. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: All authors declare no competing interests.

Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: Not applicable.

References

[1] Baker WJ, Dransfield J. Beyond Genera Palmarum: progress and prospects in palm systematics. Bot J Linn Soc. 2016;182(2):207–33.
[2] Hazzouri KM, Flowers JM, Visser HJ, Kheriallah HSM, Rosas U, Pham GM, et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun. 2015;6(1):8824.
[3] Ibrahim SA, Fidan H, AlJaloud SO, Stankov S, Ivanov G. Application of date (Phoenix Dactylifera L.) fruit in the composition of a novel snack bar. Foods. 2021;10(5):918.
[4] Zhang R, Cao H, Sun C, Martin JJJ. Characterization of morphological and fruit quality traits of coconut (Cocos Nucifera L.) Germplasm. HortScience. 2021;56(8):961–9.
[5] Nair KP. Oil palm (Elaeis Guineensis Jacquin). Tree Crop. Cham: Springer International Publishing; 2021. p. 249–85.
[6] Babu BK, Mathur RK, Anitha P, Ravichandran G, Bhagya HP. Phenomics, genomics of oil palm (Elaeis Guineensis Jacq.): way forward for making sustainable and high yielding quality oil palm. Physiol Mol Biol Plants. 2021;27(3):587–604.
[7] Manorama K, Behera SK, Suresh K, Prasad MV, Mathur RK, Harinarayana P. Mulching and technological interventions avoid land degradation in an intensive oil palm (Elaeis Guineensis Jacq.) production system. L. Degrad Dev. 2021;32(13):3785–97.
[8] de Souza FG, de Araújo FF, de Paulo Farias D, Zanotto AW, Neri-Numa IA, Pastore GM. Brazilian fruits of arecaceae family: an overview of some representatives with promising food, therapeutic and industrial applications. Food Res Int. 2020;138:109690.
[9] Nair KP. Arecanut (Areca Catechu L.). Tree Crop. Cham: Springer International Publishing; 2021. p. 1–25.
[10] Yub Harun N, Ameen Hezam Saeed A, Ramachandran VAA. Abundant nipa palm waste as bio-pellet fuel. Mater Today Proc. 2021;42:436–43.
[11] Saengkrjang W, Chaijan M, Panpipat W. Physicochemical properties and nutritional compositions of nipa palm (Nypa fruticans Wurmb) syrup. NFS J. 2021;23:58–65.
[12] Selvakumar PM, Thanapaul RJRS. An insight into the polymeric structures in Asian palmyra palm (Borassus Flabellifer Linn.). Org Polym Mater Res. 2021;2:2.
[13] Yulianto, Noguchi R, Soekmadi R, Hakim A, Kusmana C, Supriyanto, et al. Reconciling livelihoods and conservation for ratten sustainable harvesting in lore Lindu National Park. Indonesia Small-Scale For. 2021;20(2):175–97.
[14] Ritchie H, Roser M. Forests and deforestation. Our World Data; 2021.
[15] Lulu L, Pradella L, Sunderland T. Sharing the latest news and activities from the bamboo and rattan sector. Bamboo Ratt Updat. 2021;2(2):20.
[16] Salomón-Torres R, Valdez-Salas B, Norzagaray-Plasencia S. Date palm: source of foods, sweets and beverages; 2021. p. 3–26.
[17] Salehi B, Konovalov DA, Fru P, Kapewangolo P, Peron G, Ksenija MS, et al. Areca Catechu –From farm to food and biomedical applications. Phyther Res. 2020;34(9):2140–58.
[18] Pammi N, Bhukya KK, Lunavath RK, Bhukya B. Bioprospecting of palmyra palm (Borassus Flabellifer) nectar: unveiling the probiotic and therapeutic potential of the traditional rural drink. Front Microbiol. 2021;12:683996.
[19] Huynh Thi Le D, Lu W-C, Li P-H. Sustainable processes and chemical characterization of natural food additives: palmyra palm (Borassus Flabellifer Linn.) granulated sugar. Sustainability. 2020;12(7):2650.
[20] Zon AO, Kouassi EK, Ouédraogo A. Current knowledge and future directions on west African wild palms: an analytical review for its conservation and domestication in the context of climate change and human pressures. Genet Resour Crop Evol. 2021;68(5):1731–45.
[21] Singh RP, Embrandiri A, Ibrahim MH, Esa N. Management of biomass residues generated from palm oil mill: vermicomposting a sustainable option. Resour Conserv Recycl. 2011;55(4):423–34.
[22] Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, Camacho-Ferre F. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv. 2020;22:e00902.
[23] Ahmed MJ. Preparation of activated carbons from date palm (Phoenix Dactylifera L.) palm stones and application for wastewater treatments: review. Process Saf Env Prot. 2016;102:168–82.
[24] Daouda MMA, Akowonou AVO, Mahunon SER, Adjinka CK, Aina MP, Drogui P. Optimal removal of diclofenac and amoxicillin by activated carbon prepared from coconut shell through response surface methodology. South Afr J Chem Eng. 2021;38:78–89.
[25] Muniyandi M, Govindaraj P, Bharath Balji G. Potential removal of methylene blue dye from synthetic textile effluent...
using activated carbon derived from palmyra (Palm) shell. Mater Today Proc. 2023;47:299–311.

[26] Lee CL, Chin KL, H’ng PS, Rashid U, Maminski M, Khoo PS. Effect of pretreatment conditions on the chemical–structural characteristics of coconut and palm kernel shell: a potentially valuable precursor for eco-efficient activated carbon production. Environ Technol Innov. 2021;21:101309.

[27] Deng Z, Sun S, Li H, Pan D, Patil RR, Guo Z, et al. Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater. 2021;4(1):65–73.

[28] Sahmarani R, Net S, Chbib C, Baroudi M, Ouddane B. Elimination of organochlorine pesticides from water by a new activated carbon prepared from phoenix dactylifera date stones. Environ Pollut. 2021;288:108140.

[29] Lai JY, Ngu LH, Hashim SS, Chew JJ, Sunarso J. Review of oil palm-derived activated carbon for CO2 capture. Carbon Lett. 2021;31(2):201–52.

[30] Lin J, Choo wang R, Zhao G. Fabrication and characterization of activated carbon fibers from oil palm trunk. Polym (Basel). 2020;12(12):2777.

[31] Prasetyo I, Mukti NIF, Cahyo ny RB, Prasetya A, Ariyanto T. Nanoporous carbon prepared from palm kernel shell for CO2/CH4 separation. Waste Biomass Valoriz. 2020;11(10):5599–606.

[32] Jabar JM, Odusote YA. Removal of cibacron blue 3G-A (CB) dye from aqueous solution using chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arab J Chem. 2020;13(5):5417–29.

[33] Ahmad M, Akanji MA, Usman ARA, Al-Farraj ASF, Tsang YF, Al-Wabel MI. Turning date palm waste into carbon nanodots and nano zerovalent iron composites for excellent removal of methylvinyl chloride from water. Sci Rep. 2020;10(1):16125.

[34] Somsesta N, Piyamawadee C, Sricharoenchaikul V, Ahtong D. Adsorption isotherms and kinetics for the removal of cationic dye by cellulose-based adsorbent biocomposite films. Korean J Chem Eng. 2020;37(11):1999–2010.

[35] Hai A, Bharath G, Babu KR, Taher H, Naushad M, Banat F. Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution. Process Saf Environ Prot. 2019;129:103–11.

[36] Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al. Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon. J Environ Manage. 2019;236:245–53.

[37] Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Yaashika P. Modeling analysis on the effective elimination of toxic pollutant from aquatic environment using pyrolysis assisted palmira palm male in florescence. Environ Res. 2021;197:111146.

[38] Zhang Y, Ye T, Wang Y, Zhou L, Liu Z. Adsorption of uranium(VI) from aqueous solution by phosphorylated lufa rattan activated carbon. J Radioanal Nucl Chem. 2021;327(3):1267–75.

[39] Nwabanne JT, Igbokeke PK. Preparation of activated carbon from nipa palm nut: influence of preparation conditions. Res J Chem Sci. 2011;2311:606X.

[40] El-Shafey E-SI, Al-Lawati H, Al-Sunra AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci. 2012;24(9):1579–86.

[41] Foo KY, Hameed BH. Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance. Chem Eng J. 2012;184:57–65.

[42] Ademiluyi FT, David-West EO. Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials. ISRN Chem Eng. 2012;2012:1–5.

[43] Salman JM. Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution. Arab J Chem. 2014;7(1):101–8.

[44] Aowele P, Spiff A, Abia AA. Evaluation of carbonized and surface-modified carbon produced from nipa palm (Nypa Fruiticans Wurmb) leaves for the removal of 2-(N, N-dimethyl-4-aminophenyl)-azo-benzene carboxylic acid (DMABA) in aqueous solution. Acta Chim Pharm Indica. 2014;4(3):146–56.

[45] Hussein FH, Halbus AF, Lafti AJ, Athab ZH. Preparation and characterization of activated carbon from Iraqi Khestawy date palm. J Chem. 2015;2015:1–8.

[46] Reddy KSK, AI Shoaib A, Srinivasakannan C. Preparation of porous carbon from date palm seeds and process optimization. Int J Environ Sci Technol. 2015;12(3):959–66.

[47] Wei Tze M, Aroua MK, Szlachta M. Palm shell-based activated carbon for removing reactive black 5 dye: equilibrium and kinetics studies. BioResources. 2015;11(1):1432–47.

[48] Sivakumar Natarajan T, Bajaj HC, Tayade RJ. Palmrya tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation. Process Saf Environ Prot. 2016;104:346–57.

[49] Lahmunsiam SA, Choi S, Tiwari D. Simultaneous removal of Hg(II) and phenol using functionalized activated carbon derived from areca nut waste. Met (Basel). 2017;7(7):248.

[50] Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage. 2017;203:237–44.

[51] Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma Secundiflorum) hydrochar for methylene blue removal. Ecotoxicol Environ Saf. 2017;138:279–85.

[52] Joshi S, Adhkari, Pradhananga M. Removal of fluoride ions by adsorption onto Fe2O3/areca nut activated carbon composite. J Inst Eng. 2017;12(1):175–83.

[53] Zhang L, Tu L, Liang Y, Chen Q, Li Z, Li C, et al. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018;8(74):42280–91.

[54] Khedr S, Shouman M, Fathy N, Attia A. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches. ISRN Env Chem. 2014;2014:1–10.

[55] Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, et al. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci. 2020;27(1):208–38.

[56] Sukla Baidya K, Kumar U. Adsorption of brilliant green dye from aqueous solution onto chemically modified Areca nut husk. South Afr J Chem Eng. 2021;35:33–43.
Islam M, Mahmud Y, Begum N. Inclusion of Monosex Tilapia (Oreochromis Niloticus) with freshwater prawn (Macrobrachium Rosenbergii) in polyculture systems in the ponds of coastal region: impact of stocking density of Tilapia on production and profitability. Am J Exp Agric. 2016;13(3):1–9.

Youssef AM, EL-Didamony H, Sobhy M, El Sharabasy SF. Adsorption of methylene blue onto chemically prepared activated carbon from date palm pits: kinetics and thermodynamics; 2019. p. 275–85.

Alhogbi BG, Altayeb S, Bahaidarah EA, Zawrah MF. Removal of anionic and cationic dyes from wastewater using activated carbon from palm tree fiber waste. Processes. 2021;9(3):416.

Boopathy R, Karthikeyan S, Mandal AB, Sekaran G. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Env Sci Pollut Res. 2013;20(1):533–42.

Begum HA, Haque AKMM, Islam MD, Hasan MM, Ahmed S, Razzak M, et al. Analysis of the adsorption of toxic chromium (vi) by untreated and chitosan treated banana and areca fiber. J Text Sci Technol. 2020;6(2):81–106.

Bernard E, Jimoh A, Odigure JO. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res J Chem Sci. 2013;3(8):3–9.

Melliti A, Srivastava V, Kheriji J, Sillanpää M, Hamrouni B. Date palm fiber as a novel precursor for porous activated carbon: optimization, characterization and its application as tylosin antibiotic scavenger from aqueous solution. Surf Interfaces. 2021;24:101047.

Srisorrachatr S, Kriarb P, Sukyang S, Jumruen C. Removal of basic dyes from solution using coconut shell charcoal. MATEC Web Conf. 2017;119:01019.

Njoku VO, Islam MA, Asif M, Hameed BH. Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. J Anal Appl Pyrolysis. 2014;110:172–180.

Abdus-Salam N, Ikudayisi-Ugbe AV, Ugbe FA. Adsorption studies of acid dye – eosin yellow on date palm seeds, goethite and their composite. Chem Data Collect. 2021;31:100626.