Experience of individual correction of elemental status of cows with reproductive disorder

S A Miroshnikov¹,², A V Kharlamov¹, A N Frolov¹, O A Zavyalov¹

¹Federal Research Center of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russia
²Orenburg State University, 13, Pobedy Ave., Orenburg, 460018, Russia

E-mail: forleh@mail.ru

Abstract. The purpose of the study was to apply the method of individual correction of elementosis to increase the reproductive qualities of white-faced cows. The deficit of iodine and selenium in wool (I <0.28 mg/kg, Se <0.58 mg/kg) and low reproductive abilities (more than 2 months without estrus period) served the selection criterion of animals. The animals were divided by analogs into 2 groups – control (n=15) and experimental (n=15). On the 1st and 10th day the experimental animals were subjected to intramuscular injection of commercial formulations (10 ml) containing in 1 ml: iodine – 5.5–7.5 mg, selenium in organic form – 0.07–0.09 mg (corresponds to 0.16–0.20 mg of sodium selenite. It is found that the cows of the experimental group were characterized by the increase of I and Se content on the 28th day, which fell within permissible values (25–75 percentile), while the concentration of Ca, K, Mg, Na, Zn, Al, Sr, Pb, Hg decreased in relation to the beginning of the experiment. The assessment of reproductive qualities of cows showed that in the first month of the experiment 46.7% of cows came in season in the control group and 60.0% – in the experimental group. Within the next month the control group saw additional 20.0%, while the experimental group – 33.3%. During the first service of breeding 66.7% of cows were bred in the control group, 80.0% – in the experimental group. In the control group two cows were aborted, which reduced the number of living calves in the control group to 7 or 47%. The experimental group gave 14 calves or 93%.

1. Introduction

The reproductive function is the most important economic and biological feature of cattle, which depends on a number of factors – management and feeding conditions, calving, etc. [1].

The elemental status of animals is one of the key factors closely connected with the reproductive function of animals [2].

There is considerable amount of scientific data explaining close relation of reproduction of animals with exchange of some chemical elements, including iodine [3]; selenium [4, 5]; complex of elements [6].

Imbalances of microelements result in reproductive disorders of animals. Hence, the diagnostics and treatment of elementosis is a key tool in increasing the reproductive ability in livestock breeding. This can be achieved through individual assessment of the elemental status of animals according to multielement composition of bio-substrates. The method was widely adopted in medicine with the use of hair composition [7], which is confirmed by the number of appeals to medical centers that use new approaches to diagnostics and correction of elementosis [8].
The purpose of the study was to apply the method of individual correction of elementosis to increase the reproductive qualities of white-faced cows.

2. Materials and methods
The protocol of the present study was approved by the Local Ethics Committee of the Orenburg State University, Orenburg, Russia. All animal studies were performed in accordance with ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

The first stage covered the study of the element composition of wool and the elemental status of beef cows raised in Orenburg Region (n=190), and 25 and 75 percentile values were defined and accepted according to recommendation [9] as “physiologically normal state”.

At the second stage out of 48 white-faced cows with reproductive disorders (more than 2 months without estrous period), with identified hypovarianism, on the basis of the elemental status analysis established according to element composition of wool 30 heads were selected, the wool of which contained iodine and selenium below earlier established norm (below 25 percentiles, I<0.28 mg/kg, Se<0.58 mg/kg). The animals were divided by analogs into 2 groups – control (n=15) and experimental (n=15). On the 1st and 10th day the experimental animals were subjected to intramuscular injection of commercial formulations (10 ml) containing in 1 ml: iodine – 5.5-7.5 mg, selenium in organic form – 0.07-0.09 mg (corresponds to 0.16-0.20 mg of sodium selenite).

During the experiment the animal feed included the following: hay of natural lands – 8 kg, alfalfa silage – 6 kg, concentrates: mixture of barley, wheat, oats, – 3.0 kg containing available energy – 106.2 MJ, dry matter – 12.1 kg, transferable protein – 1092 g, Ca – 123.2 g, P – 35.6 g, Mg – 15.6 g, K – 97.4 g, Fe – 3.91 g, Cu – 71.6 mg, Zn – 496.8 mg, Mn – 734.1 mg, I – 3.27 mg, Se – 1.25 mg.

Hair samples were collected by technique [10] on the 1st, 14th and 28th day of the experiment.

The elemental composition of hair was defined by atomic emission and mass spectrometry (AES and MS) at the Test Laboratory of the ANO Center for Biotic Medicine, Moscow (Registration Certificate ISO 9001:2000, No. 4017 of 5.04.06). The biosubstrates were ashed using the MD-2000 microwave decomposition system (USA). The content of elements in the resulting ash was estimated using the Elan 9000 mass spectrometer (Perkin Elmer, USA) and the Optima 2000 V atomic emission spectrometer (Perkin Elmer, USA). The elemental composition of biosubstrates was studied according to 25 indicators (Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, I, K, Li, Mg, Mn, Na, Ni, P, Pb, Se, Si, Sn, Hg, Sr, V, Zn).

2.1 Blood sampling and study
Blood sampling was made on the 1st, 14th and 28th day of the experiment, in the morning before feeding and drinking supply. Blood was taken in vacuum test tubes from a tail vein at the level of the average one third of the body of 2-5 tail vertebrae.

Blood for biochemical study, antioxidant status, and malondialdehyde was taken in vacuum test tubes APEXLAB with clot activator by Hebei Xinl Sky & Tech Co., Ltd, needle for blood sampling – Bodywin. The biochemical blood test was carried out by automatic biochemical analyzer CS-T240 (Dirui Industrial Co., Ltd., China). The biochemical analysis was performed using commercial biochemical sets for veterinary science DiaVetTest (Russia) and commercial biochemical sets Randox (USA) at the Federal Research Center of Biological Systems and Agro-Technologies of the Russian Academy of Sciences (accreditation certificate No. ROSS RU. 0001.21PF59 of 12.10.2015).

2.2 Definition of pregnancy
Ultrasonic diagnostics of cows to define pregnancy and futility was carried out via veterinary ultrasonography scanner IMAGO S (France) with rectal sector probe DB 355 M.

2.3 Statistical processing
The Shapiro-Wilk test was used to check the hypothesis of normality of distribution of quantitative criteria. A median (Me) was used to calculate the average values and as a measure of central tendency.
The distribution law of studied numerical indicators was different from the normal one, therefore the significance of differences was checked by Mann-Whitney U-test. All procedures of statistical analysis calculated the reached significance value (p), at the same time the critical significance value in this study was accepted smaller or equal 0.05. Statistica 10.0 application software package (Stat Soft Inc., USA) was used for data processing.

Table 1. Concentration and percentile values of chemical elements in hair of cows of the experimental group, mg/kg

Element	“Physiologically normal state” in percentile values	Concentration of elements in the experiment	25	75	1	14	28
		Macrolelements					
Ca	1593 2910	2029±86.1	1715±125.9	1659±89.8**			
K	806 3523	2815±233.3	2109±234.7	2094±152.9*			
Mg	425 980	535±26.6	440±48.1	427±33.0**			
Na	405 1501	1406±119	1051±157.5	941±70.3**			
P	168 298	241±9.2	272±3.5	258±7.4			
		Essential microelements					
Co	0.05 0.12	0.078±0.01	0.060±0.01	0.060±0.00			
Cr	0.13 0.28	0.44±0.06	0.51±0.10	0.36±0.03			
Cu	4.87 6.61	11.39±0.54	11.92±1.14	11.37±0.59			
Fe	38.25 95.63	396.72±81.10	356.75±33.54	202.67±47.36			
I	0.28 0.69	0.27±0.01	0.29±0.02	0.35±0.01***			
Mn	11.87 30.64	13.73±1.75	16.19±0.44	16.45±0.30			
Se	0.58 1.07	0.56±0.03	0.60±0.01	0.66±0.01**			
Zn	107.0 153.0	198.9±19.25	144.0±3.44	131.4±5.68***			
		Conditional essential microelements					
B	1.58 3.85	4.35±0.17	2.97±0.22***	2.75±0.22***			
Si	10.75 27.38	18.31±1.18	15.50±2.29	13.95±1.26*			
Li	0.42 1.9	0.69±0.06	0.47±0.04***	0.42±0.03***			
Ni	0.39 0.84	0.62±0.09	0.45±0.05	0.35±0.04**			
V	0.13 0.34	0.18±0.02	0.15±0.04	0.07±0.01***			
As	0.08 0.17	0.07±0.005	0.07±0.003	0.05±0.004			
		Toxic microelements					
Al	26.74 58.42	81.88±12.97	74.83±4.22	35.15±4.45***			
Sr	9.28 17.31	10.91±0.70	9.04±1.60	6.90±0.89**			
Pb	0.142 0.244	1.20±0.18	0.86±0.20*	0.41±0.03***			
Sn	0.009 0.018	0.013±0.001	0.010±0.0042	0.02±0.006			
Cd	0.014 0.036	0.009±0.001	0.006±0.001**	0.006±0.001***			
Hg	0.002 0.009	0.01±0.001	0.003±0.001**	0.002±0.000***			

* - P≤0.05; ** - P≤0.01; *** - P≤0.001 compared to the 1st day

3. Results

On the 14th day the content of toxic elements decreased in the experiment group: Pb – by 28.3% (P≤0.05), Cd – by 36.7% (P≤0.01), Hg – by 65.6% (P≤0.01), on the 28th day the concentration of I increased by 29.2% (P≤0.001), Se – by 17.9% (P≤0.01) with the decrease of macroelements: Ca – by 18.25% (P≤0.01), K – by 25.63% (P≤0.05), Mg – by 20.24% (P≤0.01), Na – by 33.09% (P≤0.01), essential macroelements: Zn – by 33.96% (P≤0.01), toxic: Al – by 57.07% (P≤0.001), Sr – by 36.76%
(P≤0.01), Pb – by 65.83% (P≤0.001), Hg – by 80.0% (P≤0.001) in relation to the beginning of the experiment (Table 1).

On the 28th day the elemental profile of cows within the compared groups revealed their significant changes on the basis of concentration of chemical elements in wool (Fig. 1).

![Image of chemical elements profile](image-url)

a - P≤0.05; *b* - P≤0.01; *c* - P≤0.001 in relation to the control group

Figure 1. Elemental profile of white-faced cows of the experimental group in relation to the control group on the 28th day, %

The use of iodine and selenium resulted in changes of interelement interactions in wool estimated according to the level of toxic and essential elements. At the beginning of the experiment there were 15 reliable relations, including two negative ones: Hg-Mn (r= -0.63) and Hg-Zn (r= -0.78). At the end of the experiment there were 9 relations, including negative ones: Se-Al (r= -0.65). For iodine none reliable correlation was recorded.

The assessment of antioxidant defense enzymes and catalase showed their increase in the experimental group on the 28th day of the experiment by 25.1 (P≤0.05) and 106.1 (P≤0.001) % respectively, in the control group these indicators did not change (Table 2).

Indicator	Days		
	1	14	28
SOD, %	318±21.3	377±17.2*	398±25.7*
Catalase, µ H2O2/lxmin	3358±67.8	4370±83.3***	6922±76.5***
Malondialdehyde, nm/ml	13.6±4.9	23.8±4.0	24.9±4.1

Control

SOD, % | 356±28.3 | 375±21.2 | 340±27.1 |
Catalase, µ H2O2/lxmin | 4218±73.6 | 4494±91.1* | 4352±84.5 |
Malondialdehyde, nm/ml | 15.8±5.0 | 38.1±5.1*** | 38.8±4.9*** |

* - P≤0.05; ** - P≤0.01; *** - P≤0.001 compared to the 1st day
The study showed that during the first month after the beginning of the experiment in the control group 7 cows (46.7%) came in season, in the experimental group – 9 (60%). Within the next month the control group saw additional 3 (20%), the experimental group – 5 (33.3%). During the first service of breeding 6 (66.7%) cows were bred in the control group, 12 (80%) cows – in the experimental group. In the control group two cows were aborted, which reduced the number of living calves in the control group to 7 or 47%. The experimental group gave 14 calves or 93%.

4. Discussion
The study showed that the elemental status of animals concerning wool composition with subsequent comparison of data with the norm allows revealing cows with elementosis and treating them individually. In Orenburg Region of Russia wide circulation of elementosis by selenium and iodine is caused by environmental conditions [11]. In turn iodine and selenium are functionally connected among themselves and influence the production of thyroid hormones. Closely interacting with female sex hormones thyroid hormones ensure normal functioning of ovaries and maturation of ovum [12, 13].

It shall be noted that the elemental status of cows changes considerably with the introduction of selenium and iodine. On the 28th day of the experiment the element composition of hair of experimental cows was characterized by the increase of essential (Mn, Cu, I, Se) and decrease of toxic elements (As, Cd, Fe, Al, Pb, Sn), which may be explained by antagonism between Se and toxic elements [14, 15]. Perhaps this can also explain the increase of malondialdehyde content partially caused by the pathology of the reproductive system [16, 17].

The study showed the increase of malondialdehyde as lipid peroxidation indicator in comparison with the beginning of the experiment by 75.0 and 83.1% in the experimental and 141.1 and 145.5% in the control group respectively on the 14th and 28th day. In our opinion this is explained first of all by the change of the physiological state, since the samples were taken from cows in service and breeding. Earlier similar results were received by Mihu D. et al. 2012 [18].

In the experimental group the activity of free radical oxidation of lipids in comparison with the control group at the same time of the experiment on the 14th and 28th day was 33.0-34.9% lower (P≤0.05), which is explained by the introduction of iodine-selenium corrective additive, where the latter one has strongly pronounced antioxidant capacity, decreases the oxidative stress [19-21].

The study of enzymatic antioxidants showed reliable increase of superoxide dismutase of experimental cows. In comparison with the control group the increase of SOD concentration and CAT activity in blood serum indicates the efficiency of iodine-selenium drug, which improves antioxidant function and reduces the oxidizing stress. The confirming data of this effect were earlier obtained for dairy cows [22].

5. Conclusion
The deficit of iodine in wool lower than 0.28 mg/kg, selenium – 0.58 mg/kg requires correction by double intramuscular injection of 10 ml of commercial drug containing in 1 ml: iodine – 5.5-7.5 mg, selenium in organic form – 0.07-0.09 mg, which allows increasing the concentration in iodine in wool up to 0.35, selenium – up to 0.66 mg/kg, which corresponds to “physiologically normal state” (25-75 percentile) and improving reproductive qualities.

6. Acknowledgments
The study is performed according to the research plan for 2018-2020 of the Federal Research Center of Biological Systems and Agro-Technologies of the Russian Academy of Sciences (No. 0761-2019-0006).

References
[1] Mallard B A, Dekkers J C, Ireland M J, Leslie K E, Sharif S, Lacey Vankampen C, Wagter L and Wilkie B N 1998 Alteration in immune responsiveness during the peripartum period and its ramification on dairy cows and calf health J. Dairy Sci. 81 585–95
[2] González-Maldonado J, Rangel-Santos R, Rodríguez-de Lara R and García-Peña O 2017 Effect of injectable trace mineral complex supplementation on development of ovarian structures and serum copper and zinc concentrations in over-conditioned Holstein cows Anim. Reprod Sci. 181 57–62 doi: 10.1016/j.anireprosci.2017.03.015. Epub 2017 Mar 28

[3] Kumar S 2003 Management of infertility due to mineral deficiency in dairy animals Proc. of ICAR summer school on “Advance diagnostic techniques and therapeutic approaches to metabolic and deficiency diseases in dairy animals” (Izatnagar: Held at IVRI, UP 15 July – 4 Aug) pp 128–37

[4] Campbell J R, Jim G K, Booker C W and Guichon P T 1995 A survey of the selenium status of beef cows in Alberta Can Vet. J. 36(11) 698–702

[5] Rutigliano H M, Lima F S, Cerri R L, Greco L F, Vilela J M, Magalhães V, Silvestre F T, Thatcher W W and Santos J E 2008 Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows J. Dairy Sci. 91(9) 3323–36 doi: 10.3168/jds.2008-1005

[6] Omur A, Kirbas A, Aksu E, Kandemir F, Dorman E, Kaynar O and Ucar O 2016 Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period Pol. J. Vet. Sci. 19(4) 697–706 doi: 10.1515/pjvs-2016-0088

[7] Skalny A V 2003 The reference values of the concentration of chemical elements in hair obtained by ICP-AES Trace elements in medicine 4(1) 55–6

[8] Center for Biotic Medicine Retrieved from: https://en.microelements.ru

[9] Miroshnikov S A, Zavyalov O A, Frolov A N, Bolodurina I P, Skalny A V, Kalashnikov V V, Grabeklis A R and Tinkov A A 2017 The reference intervals of hair trace element content in hereford cows and heifers (Bos taurus) Biol.Trace Element Res. 180(1) 56–62

[10] Miroshnikov S, Kharlamov A, Zavyalov O, Frolov A, Duskaev G, Bolodurina I and Arapova O 2015 Method of sampling beef cattle hair for assessment of elemental profile Pakistan J. of Nutrition 14(9) 632–6

[11] Burtseva TI, Golubkina NA, Miroshnikov SA, Byrlytskaia OI. (2009) Selenium content in bread of Orenburg region Voprosy pitaniia 78(4) 47–50

[12] Logachev K, Karimov I, Duskaev G, Frolov A, Tulebaev S and Zav’yalov O 2015 Study of Intercellular Interaction of Ruminal Microorganisms of Beef Cattle Asian J. of Animal Sci. 9 248–53

[13] Blackburn H and, Gollin D 2009 Animal genetic resource trade flows: The utilization of newly imported breeds and the gene flow of imported animals in the United States of America Livestock Sci. 120(3) 240–7 Retrieved from: https://doi.org/10.1016/j.livsci.2008.07.006

[14] Jaiswal S K, Prakash R, Prakash N T, Grabeklis A R, Zhegalova I V, Zhang F, Guo X, Tinkov A A and Skalny A V 2018 The Level of Toxic Elements in Edible Crops from Seleniferous Area (Punjab, India) Biol. Trace Elem. Res. 184(2) 523–8 doi: 10.1007/s12011-017-1216-7. Epub 2017 Dec 8. PMID: 29222648

[15] Xu T, Gao X and Liu G 2015 The Antagonistic Effect of Selenium on Lead Toxicity Is Related to the Ion Profile in Chicken Liver Biol. Trace Element Res. 169(2) 365–73 doi: 10.1007/s12011-015-0422-4

[16] Finkel T 2003 Oxidant signals and oxidative stress Curr. Opin. Cell Biol. 15(2) 247–54 doi: 10.1016/S0955-0674(03)00002-4

[17] Serdar Z, Gur E, Colakoehullary M, Develioehlulu O and Lipid S E. 2003 Protein oxidation and antioxidant function in women with mild and severe preeclampsia Arch Gynecol Obstet. 268(1) 19–25

[18] Mihu D, Sabău L, Costin N, Ciortea R, Măluţan A and Mihu C M 2012 Implications of maternal systemic oxidative stress in normal pregnancy and in pregnancy complicated by preeclampsia J. Matern Fetal Neonatal Med. 25(7) 944–51 doi: 10.3109/14767058.2011.600796.
[19] Hu Y J et al 2015 Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows J. Anim Sci. 93(5) 2246–54 doi: 10.2527/jas.2014-7767

[20] Lykkesfeldt J and Svendsen O 2007 Oxidants and antioxidants in disease: oxidative stress in farm animals Vet J. 173(3) 502–11 doi: 10.1016/j.tvjl.2006.06.005

[21] Chen J et al 2016 Selenium and vitamin E in sow diets: I Effect on antioxidative status and reproductive performance in multiparous sows Anim. Feed Sci. Tech. 221 111–23 doi: 10.1016/j.anifeedsci.2016.08.022.

[22] Gong J and Xiao M 2018 Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period Biol. Trace Elem. Res. 186(2) 430–40 doi: 10.1007/s12011-018-1323-0