Invited Review

Species of *Angiostrongylus* (Nematoda: Metastrongyloidea) in wildlife: A review

David M. Spratt *

Australian National Wildlife Collection, CSIRO National Research Collections, GPO Box 1700, Canberra, ACT 2601, Australia

ARTICLE INFO

Article history:
Received 15 January 2015
Revised 16 February 2015
Accepted 20 February 2015

Keywords:
Angiostrongylus spp
Wildlife
Geographical distribution
Pathology
Zoonoses

ABSTRACT

Twenty-one species of *Angiostrongylus* plus *Angiostrongylus* sp. (Nematoda: Metastrongyloidea) are known currently in wildlife. These occur naturally in rodents, tupaiids, mephitids, mustelids, procyonids, felids, and canids, and aberrantly in a range of avian, marsupial and eutherian hosts including humans. Adults inhabit the pulmonary arteries and right atrium, ventricle and vena cava, bronchioles of the lung or arteries of the caecum and mesentery. All species pass first-stage larvae in the faeces of the host and all utilise slugs and/or aquatic or terrestrial snails as intermediate hosts. Gastropods are infected by ingestion or penetration of first-stage larvae; definitive hosts by ingestion of gastropods or gastropod slime. Transmission of at least one species may involve ingestion of paratenic hosts. Five developmental pathways are identified in these life cycles. Thirteen species, including *Angiostrongylus* sp., are known primarily from the original descriptions suggesting limited geographic distributions. The remaining species are widespread either globally or regionally, and are continuing to spread. Small experimental doses of infective larvae (ca. 20) given to normal or aberrant hosts are tolerated, although generally eliciting a granulomatous histopathological response; large doses (100–500 larvae) often result in clinical signs and/or death. Two species, *A. cantonensis* and *A. costaricensis*, are established zoonoses causing neurological and abdominal angiostrongliasis respectively. The zoonotic potential of *A. mackerrasae*, *A. malaysiensis* and *A. siamensis* particularly warrant investigation. *Angiostrongylus cantonensis* occurs in domestic animals, mammalian and avian wildlife and humans in the metropolitan areas of Brisbane and Sydney, Australia, where it has been suggested that tawny frogmouths and brushtail possums may serve as biosentinels. A major conservation issue is the devastating role *A. cantonensis* may play around zoos and fauna parks where captive rearing of endangered species programmes may exist and where *Rattus* spp. are invariably a problem.

Crown Copyright © 2015 Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The parasitic nematode genus Angiostrongylus Kamensky, 1905 belongs to the superfamly Metastrostrongylidae, the so-called “lung-worms” of vertebrates. Species occur naturally in cricetid, heteromyid, soricid, glirid, sciurid and murid rodents, tupaiids, nephitids, mustelids, procyonids, felids, canids and aberrantly in a range of avian, marsupial and eutherian hosts including humans. Some species inhabit the pulmonary arteries and right ventricle, some develop in the brain and then migrate via the venous system to the heart and pulmonary arteries, some occur in mesenteric veins and others occur in the bronchioles of the lung. Regardless of site in the definitive host, all first-stage larvae pass through the gastrointestinal tract and exit with the faeces. All species in which the life cycle is known utilise gastropods (slugs and terrestrial and aquatic snails) as intermediate hosts and some species may also use paratenic or transport hosts.

2. Taxonomy

Readers are referred to Ubelaker (1986) and Costa et al. (2003) for a detailed taxonomic history of the genus Angiostrongylus and its treatment by numerous workers. Here, I offer only sufficient background to clarify the species I consider as occurring in wildlife.

The genus Angiocaulus was proposed by Schulz (1951) for Angiostrongylus gubernaculatus Dougherty, 1946 from mustelids; however, Chabaud (1965) placed Angiocaulus as a synonym of Angiostrongylus and this was followed by Dróżdż (1970) and Anderson (1978). Dróżdż (1970) recognised two subgenera, Angiostrongylus (Angiostrongylus) and Angiostrongylus (Parastrostrongylus). In the former, the externalateral (sometimes termed anterolateral) ray of the bursa of males is separate from the other two lateral rays, and in the latter the externalateral ray is joined to a common stalk with the other lateral rays. Chabaud (1972) recognised Angiostrongylus and Parastrostrongylus as separate genera based on the above features of the bursa, the former occurring in carnivores with A. vasorum, A. raielliti, A. chabaudi and A. gubernaculatus; the latter occurring in rodents with P. tateroniae, P. cantoniensis, P. mackerrasae, P. sandarsae, P. sciuri, P. dujardini and P. schmidti.

Anderson (1978) proposed the family Angiostrongyliidae for the genus Angiostrongylus and 16 related genera. He followed Dróżdż (1970) in recognising two subgenera while appreciating that some authors (Chabaud, 1972) might prefer to regard these as separate genera. Ubelaker (1986) recognised separate genera, using morphological criteria of the male bursa which allowed separation along host groups as well. He relegated species often placed in the genus Angiostrongylus to six distinct genera all containing species located primarily in specific host groups. He recognised Angiostrongylus Kamensky, 1905 (syn. Haemonstrongylus Railliet & Henry, 1907) parasitic in the arterial vasculature of the heart and lungs of carnivores and Parastrostrongylus Baylis, 1928 (syn. Pulmonema Chen, 1935, Rattstrostrongylus Schulz, 1951, Morraerastrostrongylus Chabaud, 1972, Chbaudiastrostrongylus Kontramivculus and Delamyure, 1979) occurring in the arterial circulatory system of rodents (primarily Muridae). He placed the following species in each genus: Angiostrongylus chabaudi. A. raielliti. A. vasorum; Parastrostrongylus cantoniensis, P. costariensis, P. dujardini, P. mackerrasae, P. malaysiensis, P. petrowi, P. ryjikovi, P. sandarsae, P. schmidti, P. siamensis and P. tateroniae. All the above species occur in the pulmonary arteries, right ventricle and lungs, with the exceptions of A. costariensis and A. siamensis which occur in the mesenteric arteries of their hosts.

Ubelaker (1986) retained the genus Angiocaulus with type species A. gubernaculatus and placed Cardinonema ten Yamaguti, 1941 from Martes malampus in Japan in Angiocaulus, while recognising its close relationship with Parastrostrongylus. I follow Chabaud (1965), Dróżdż (1970) and Anderson (1978) in recognising Angiocaulus as a synonym of Angiostrongylus and thus recognise Angiostrongylus gubernaculatus. Given the importance of the male bursa in defining genera in the Angiostrongyliidae, I follow Yamaguti (1961) and recognise the species A. ten as incerta sedis, given it is based on female specimens only.

Yanchev and Genov (1988) described Angiostrongylus daskalovi from three mustelid species in Bulgaria incorrectly placing it in the Filaroididae rather than Angiostrongyliidae and distinguishing it from A. chabaudi, A. gubernaculatus and A. vasorum. Subsequently, several new species of Angiostrongylus have been reported from members of the genus Akodon (Cricetidae) in South America; A. moreral from Ak. azarae in Argentina (Robles et al., 2008), A. lenzii from Ak. montensis in Brazil (Souza et al., 2009) and A. sp. from Ak. cursor and Ak. montensis in Brazil (Simões et al., 2011).

Angiostrongylus raielliti was first described by Travassos (1927) as Haemonstrongylus raielliti from the crab-eating fox, Cerdocyon thous azarae (as Canis azarae) in Rio de Janeiro, Brazil. It was subsequently redescribed by Grisi (1971) from domestic dogs in Rio and he placed Angiostrongylus vasorum from dogs in Rio as a synonym of Angiostrongylus raielliti. Dougherty (1946) reported Angiostrongylus raielliti in C. a. thous (as Dusicyonous azarae), noting that the species was quite likely the same as A. vasorum from domestic dogs. Gonçalves (1961) identified Angiostrongylus vasorum in C. a. thous in Columbia and in domestic dogs in Brazil. Rosen et al. (1970) recognised Angiostrongylus raielliti as a synonym of Angiostrongylus vasorum. Costa et al. (2003) described A. vasorum from experimentally infected dogs in Brazil and concluded that Angiocaulus should be considered, if not a nomen nudum (sic), then at least a synonym of Angiostrongylus. Several other workers in South America have reviewed, in particular, morphological criteria of the male bursa of A. vasorum from dogs in Brazil (Robles et al., 2008) and foxes in Italy (Souza et al., 2009) demonstrating either that the lateral rays have a common trunk, although the externalateral ray is deeply cleft, a character shared by A. chabaudi and A. moreral (Robles et al., 2008), or that the right externalateral ray does not arise from a single trunk while the left externalateral ray does (Souza et al., 2009). Recently, Jefferies et al. (2009) looked at the molecular characterisation of isolates of A. vasorum from dogs in Europe and Brazil on the basis of the mitochondrial COI gene and the second ribosomal internal transcribed spacer. Sequence analyses revealed two distinct genotypes. Estimated rates of evolution based on the COI sequences for both nematodes and hosts were consistent with the hypothesis that the occurrence of A. vasorum in South America represents an ancient evolutionary event and may represent a cryptic species separate to that in Europe, implying that the synonymy of A. raielliti with A. vasorum may be premature.

Angiostrongylus felineus has recently been described from the puma, Puma (Herpailurus) yagouaroundi, in Brazil (Vieira et al., 2013). As indicated above, features of the bursa and the morphology of its rays primarily define genera in the Angiostrongyliidae including the genus Angiostrongylus. Despite the efforts to divide the genus Angiostrongylus into subgenera that conveniently separate species in carnivors from species in rodents, this separation now appears artificial rather than phylogenetic. With the exception of A. tens, incerta sedis, this review of Angiostrongylus in wildlife shall deal with each of the 21 above-mentioned species plus Angiostrongylus sp.,
Species of Angiostrongylus (n = 13) occurring in wildlife and known only from the original description and possibly an additional geographic record or discussion.

Parasite species	Host species	Site in host	Geographic locale	References
A. chabaudi	Felis silvestris	Lungs	Central Italy	Biocca, 1957
A. daskalovi	Meles meles, Martes martes, M. foina	Pulmonary arteries	Bulgaria, Virginia	Yanchev & Genov, 1988; Gerrikagoitia et al., 2010
A. felineus	Puma (P. patiudus) yagouraundi	Pulmonary arteries	Brazil, Iberian Peninsula, California, USA	Vieira et al., 2013; Dougherty, 1946; Faulkner et al., 2001
A. guberculatus	Taxidea taxus, Mephitis mephitis, Urocyon littoralis	Heart (Right ventricle)	Rio de Janeiro, Brazil	Souza et al., 2009
A. lenzii	Akodon montensis	Pulmonary arteries	Buenos Aires, Argentina	Robles et al., 2008
A. moreraei	Akodon azarae	Pulmonary arteries	Azerbaijan, SSR	Travassos, 1927; Grisi, 1971; Vieira et al., 2008; Jeffries et al., 2009; Jushkov, 1971
A. petrovi	Dryomys nitedula	Heart and bronchi	Rio de Janeiro, Brazil	Travassos, 1927; Grisi, 1971; Vieira et al., 2008; Jeffries et al., 2009; Jushkov, 1971
A. raillieti	Cerdocyon thous azarae, Canis familiaris, Nasua nasua	Pulmonary arteries	Northern Urals, USSR	Jushkov, 1971
A. ryjkovi	Clethrionomys rutilus	Pulmonary arteries	Mozambique, Kenya, Africa	Alicata, 1968; Kamiya & Fukumoto, 1988
A. sandarsae	Praomys (=Mastomys) natalensis, Gerbil tatera	Pulmonary arteries	Turkey	Merdivenci, 1964
A. sciuri	Sciurus vulgaris	Pulmonary arteries	Brazil	Vieira et al., 2008; Simões et al., 2011
Angiostrongylus sp.	Cerdocyon thous, Eira barbara, Akodon cursor, A. montensis	Lungs		
A. tateraoni	Apodemus mystacinus	Uncertain tissue site	Nigeria, Albania	Baylis, 1928; Erchardová, 1960

3. Host and geographic distribution of species occurring in wildlife

Species of Angiostrongylus (n = 13) occurring in wildlife and known only from the original description and possibly an additional geographic record or brief discussion are listed in Table 1. Angiostrongylus andersoni was described from large abscesses in the lungs of the African gerbilid rodents, Taterillus nigeriae and Tatera kempi from Upper Volta (Petter, 1972). First-stage larvae collected from the faeces of a host identified as being similar to (cf.) Tatera nigrita from Tchad were used to study the life cycle in molluscan intermediate hosts and in T. cf. nigrita and Taterillus cf. congicus from Tchad (Petter, 1974; Petter and Cassone, 1975).

Angiostrongylus cantonensis is a parasite of the pulmonary arteries and right ventricle of numerous wild Rattus spp., Bandicota indica, Melomys burtoni, M. cervinipes and Suncus murinus in the Asian, Pacific and Australian regions (Mackerras and Sandars, 1955; Cross, 1979a; Smales et al., 2004). Discovered originally in the pulmonary arteries and right ventricle of Rattus rattus and R. norvegicus in Guangzhou, China (Chen, 1935), it spread subsequently to South Asia, the Pacific islands and Australia where it is endemic (Alicata, 1988). The first reports of A. cantonensis in rats and humans in the Western Hemisphere were from Cuba (Aguirai et al., 1981), then Puerto Rico (Andersen et al., 1986), followed by the southeastern United States (Campbell and Little, 1988; Kim et al., 2002) where it is now considered endemic in wildlife. It has subsequently been reported from Jamaica (Lindo et al., 2002), Haiti (Racourt et al., 2003) and Brazil (Simões et al., 2011). Angiostrongylus cantonensis is the causative agent of eosinophilic meningoencephalitis, a zoonotic infection of humans (Fig. 1). Consequently, there is an extensive literature. Readers are referred to relevant literature reviews: historical events (Alicata, 1988), the complex life cycle of this nematode and its myriad of natural and experimental intermediate and wildlife definitive hosts (Anderson, 1968, 1992; Jindrik, 1968; Wallace and Rosen, 1969; Bhaibulya, 1975), the situation in Southeast Asia and Australia (Alicata and Jindrik, 1970; Cross, 1979a) and documented worldwide cases in humans (Wang et al., 2008).

Angiostrongylus costaricensis, like A. cantonensis, is a zoonotic infection and the causative agent of abdominal angiostrongyliasis in humans in Costa Rica, Honduras, Mexico, Nicaragua, Brazil, Guatemala, Columbia and islands of the Caribbean (Miller et al., 2006). It was first discovered in the small branches of the mesenteric artery of humans in Costa Rica (Morera and Céspedes, 1971).
Granulomatous lesions with massive eosinophilic infiltrations occurred in the intestine and regional lymph nodes and contained encapsulated eggs and larvae, but these were never passed in faeces. Subsequently, *A. costaricensis* was found to occur commonly in arteries of the caecum and branches of the cranial mesenteric artery of rodent species in the families Cricetidae (*Sigmodon hispidus*, *Oligoryzomys* (=*Oryzomys*) *fulvescens*, *Sooretamys angouya* (syn. *Oryzomys nigripes*), *Zygodontomys microtus*), Heteromyidae (*Liomys adpersus*) and Muridae (*Rattus rattus*, *R. norvegicus*) in Costa Rica, Brazil, Ecuador, the Canal Zone and the Republic of Panama (*Tesh et al., 1973; Monge et al., 1978; Morera, 1978, 1985; Morera et al., 1983; Graeff-Teixeira et al., 1990).

Angiostrongylus dujardini occurs in the heart and pulmonary arteries of *Apodemus Sylvaticus* and *Chromomys glareolus* in southern France (Drózd and Doby, 1970a) and in *A. sylvaticus dichrurus* and *Apodemus squadron* in Portugal (Doby et al., 1971). Mészáros and Doby (1972) reported the species in these hosts plus *A. flavicollis* and *Pitymys subterravan* in Hungary. Tenora et al. (1983) recorded *A. dujardini* for the first time in Finland but only in *C. glareolus*; it was not found in *C. rutilus*, *C. rufocanus*, *Microtus agrestis*, *M. oeconomus*, *Arvicola terrestris* and *Apodemus flavicollis*. This species has also been reported in rodents in the Iberian Peninsula (*Cordero del Campillo, 1968; Tenora et al., 1983*). *A. dujardini* was recorded in fresh water and saltwater marshes in Florida. *R. norvegicus* and in mixed infections with *R. norvegicus* and *R. rattus*, *R. exulans*, *R. argentiventer*, *R. norvegicus*, *R. muelleri*, *R. bowersi*, *R. surifer*, *R. ammandalei*, *R. crenaliventer*, *R. whiteheadi*, *R. sabanus*, *Suncus murinus* and *Tupaia glis* in Malaysia (*Lim and Ramachandran, 1979a*), in *R. tiomanicus*, *R. exulans* and *R. rattus diardii* in Indonesia (*Bhaiululya and Cross, 1971; Carney and Stafford, 1979a; Lim and Ramachandran, 1979a*) and in *R. norvegicus*, *R. rattus* and the snail, *Achatina fulica*, in Thailand (*Bhaiululya and Techasophommanhi, 1972; Pipitgool et al., 1997*). Mixed infections with *A. cantonensis* occurred in *R. norvegicus* and *R. rattus* in Bangkok (*Bhaiululya and Techasophommanhi, 1972*). *Lim and Ramachandran (1979a)* list a variety of terrestrial slugs and terrestrial and aquatic snails as natural intermediate hosts of *A. malayensis* in eight habitats in Malaysia. The high prevalence and widespread distribution of *A. malayensis* in rodents in Malaysia and development of a monoclonal antibody-ELISA system sensitive to detecting *A. malayensis* adult worm antigens have led to an assumption that this species is the causative agent of angiostrongyliasis in that country (*Ambu et al., 1997*). However, as with the previous species and despite the close similarity in morphology and life cycle of *A. malayensis* and *A. cantonensis*, unequivocal evidence that *A. malayensis* is zoonotic has not been forthcoming to date.

Angiostrongylus schmidtii was described by Kinsella (1971) from the pulmonary artery and its branches of the rice rat, *Oryzomys palustris*, trapped in fresh water and saltwater marshes in Florida. He described the pathology associated with infection and subsequently described the complete life cycle and host specificity of *A. schmidtii* (Kinsella, 1971, 1987).

Angiostrongylus siamensis was described from the mesenteric arteries of *Rattus sabasus* northeast of Bangkok, Thailand, and was the first mesenteric species of *Angiostrongylus* to be recorded from Eurasia (*Ohbayashi et al., 1979*). Subsequent investigations added *R. berdmorei*, *R. rattus*, *R. surifer*, *Bandicota savilei* and *B. indicus* as natural definitive hosts (*Kamiya et al., 1980; Ohbayashi et al., 1983*). A suspected case was reported in a crab-eating monkey, *Macaca fascicularis*, imported to Japan from Malaysia (*Oku et al., 1983*).

Angiostrongylus vasorum was found in the right ventricle and pulmonary arteries of the dog in Toulouse, France by Serres (1854) and was subsequently described by Baillet (1866). It is now known from a wide spectrum of canid hosts in different parts of the world including red foxes (*Vulpes vulpes*) in Europe (*Bolt et al., 1994*), the Basque Country of the Iberian Peninsula (*Gerrikagoitia et al., 2010*), Great Britain (*Morgan et al., 2008*) and Newfoundland, Canada (*Jeffery et al., 2004*); pampas foxes (*Pseudalopex gymnocerus*) in Bolivia (*Fiorello et al., 2006*); hoary foxes (*Pseudalopex vetulus*) and crab-eating foxes (*Cerdocyon thous*) in Brazil (*Lim et al., 1994*); wolves (*Canis lupus*) in Spain (*Segovia et al., 2001; Torres et al., 2001) and Italy (*Eleni et al., 2014*); coyotes (*Canis latrans*) in Newfoundland and Labrador (*Bourque et al., 2005*); and badgers (*Meles meles*) in Spain (*Miquel et al., 1993; Torres et al., 2001*). Experimental infection of cats demonstrated that they are permissive rather than susceptible to infection and first-stage larvae were never passed in faeces of cats with adult female worms containing eggs (*Guilhon and Cens, 1970; Dias et al., 2008*).

4. Life cycles

There are two modalities of infection of the gastropod intermediate host, either first-stage larvae are ingested while the snails or slugs are feeding on the faeces from an infected definitive host, or the first-stage larvae penetrate the foot of the gastropod while it crawls across substrate.

Similarly, there are two forms of transmission to the definitive host, either infective third-stage larvae are ingested when the definitive host eats the gastropod intermediate host or third-stage larvae emerge spontaneously from the gastropod and are subsequently ingested. The latter has been proposed as one mechanism of transmission of *A. cantonensis* to humans on improperly washed vegetables such as lettuce (*Heyneman and Lim, 1967*). These authors
demonstrated that infective larvae pass spontaneously from the slug, *Micropararmon malayanus*, the most common intermediate host of *A. cantonensis* (*A. malaysiensis*) in Malaya, while it is feeding. They remain viable for at least 72 hours embedded in the mucus trail of the slug. *Barcante et al.* (2003) experimentally infected * Biomphalaria glabrata* with first-stage larvae of *A. vasorum* and subjected them to four stimulus treatments to assess the emergence of third-stage larvae and then tested their infectivity in dogs. Most larvae emerged from snails in a water bath at 37 °C for 24 hours and from snails exposed to a 60W light bulb for 24 hours. Two dogs were infected demonstrating, rather artificially, that infection of dogs could occur without ingestion of infected gastropods. *Brandao et al.* (1998) experimentally infected veronicellid slugs of the genus *Phylolaussia*, described the kinetics of elimination of third-stage larvae in the mucus secretions of three species and confirmed the importance of *P. variegatus* as an intermediate host of *A. costaricensis*.

Transmission of at least one species of *Angiostrongylus* may involve paratenic hosts, hosts which ingest infected gastropods but in which no further larval development occurs. Land crabs, shrimp, frogs and monitor lizards may serve as paratenic hosts of *A. cantonensis* and are thought to be one of the major sources of human infection (Fig. 1). Ingestion of raw or undercooked meat of the invasive freshwater golden apple snail, *Pomacea canaliculata*, imported from South America as a food source, has become the major source of human infection in Taiwan, mainland China and possibly Japan, whereas ingestion of raw snails of the genus *Pila* is the major source of human infection in Thailand (Wang et al. 2008). In an experiment with surprising results, *Bolt et al.* (1993) exposed the common frog, *Rana temporaria*, to first-stage larvae; they developed to the infective stage in 30 days and were infective to a fox. Third-stage larvae of *A. vasorum* given to frogs remained viable for at least two weeks and these also were infective to a fox, demonstrating that *R. temporaria* could serve as both an intermediate and a paratenic host of this species.

The basic pattern of development in the definitive host is as follows. Hosts become infected by ingesting gastropods or a paratenic host and migrate, or are carried in the vascular system to a site where they undergo two moults from the third to the fourth and from the fourth to the fifth or sub-adult stage. Further movement may occur to a site where females lay eggs. The eggs become trapped in the arterioles of the lungs or the lower intestine and colon, hatch, and the first-stage larvae either emerge into the airways, move up the respiratory tree, are swallowed and pass out with faeces or escape into the intestinal lumen and pass out in faeces. Five types of development in definitive hosts are distinguished by the location of the third and fourth moults, where adult worms mature, and where first-stage larvae emerge from tissues.

4.1. Type I

Two moults occur in the lungs where adults deposit eggs; first-stage larvae emerge, move up the airways, are swallowed and pass in the faeces. This developmental pathway is exemplified by *A. andersoni*, *A. dujardini* and *A. schmidti*, parasites of rodents.

Larval development of *A. andersoni* occurs in experimentally infected aquatic snails, *Limnea stagnalis* and *Planorbarius corneus* (Petter, 1974; Petter and Cassone, 1975). Larvae developed equally well in these hosts and in the terrestrial snail *Helix aspersa*, but not in *Physa acuta* and *Arion hortensis*. Infection of aquatic snails was by ingestion. Larvae reached the third stage after 15 days, and occurred in nodules in the connective tissue and muscles throughout the body of the snails. Ingested third-stage larvae reached the liver of the definitive host in 14 hours, implying use of the hepatic portal system rather than direct migration through the peritoneal cavity. The majority of larvae were found in the lungs at 24 hours, again suggesting use of the circulatory system. Larvae moulted to fourth-stage between days 2 and 3 and to young adults between days 5 and 6 after infection. Eggs underwent development in the lung parenchyma and first-stage larvae were passed in the faeces of infected rodents 24 days after infection.

A variety of aquatic snails collected from the habitat of rodents infected with *A. dujardini* served as suitable experimental intermediate hosts as well as *B. glabrata* (Doby and Drózd, 1971). Terrestrial gastropods were either less suitable or unsuitable hosts. Natural infections with third-stage larvae were not found in gastropods collected from the habitat of infected hosts (Doby and Drózd, 1971; Drózd et al., 1971). Drózd and Doby (1970b) examined the development in five species of wild and three species of laboratory definitive hosts and showed that there was no obligatory period of development in the central nervous system. Rather, larvae of *A. dujardini* penetrated the intestine of *A. sylvaticus* and *C. glareolus*, reached the liver and were in the lungs as early as 28 hours post infection. Development in the lungs was rapid with the third moult at day 3 and young adults at day 7. Unsegmented eggs occurred in the lungs at 16 days and larvae in the faeces at 24–26 days post infection. *Pitymys subterraneus*, hamsters and white mice were receptive to experimental infection but surprisingly, laboratory rats were not, despite development occurring experimentally in three rodent families, Cricetidae, Microtidae and Muridae.

Kinsella (1987) used land snails, *Polygyra septemvolva* and the aquatic snail, *B. glabrata*, as experimental intermediate hosts of *A. schmidti*. Third-stage infective larvae were recovered 26–28 days later and used to infect marsh rice rats (*Oryzomys palustris*), cotton rats (*Sigmodon hispidus*), white-footed deer mice (*Peromyscus leucopus*), *Mus musculus*, *Rattus norvegicus*, gerbils (*Meriones unguiculatus*) and golden hamsters (*Mesocricetus auratus*). At 12 hours after infection, 50% of larvae were recovered from the lungs and 43% from the liver of *O. palustris*, implying migration via the hepatic portal system, although the small size of the hosts does not preclude an alternative route. At 24 hours, 80% of larvae were recovered from the lungs. Eggs were first seen in the lungs at day 26 and the first larvae were observed in the faeces at day 31. The number of larvae recovered from rice rats in comparison with the number dosed was low (9–30%), implying a degree of resistance and perhaps the reason for lack of mortality in this natural host. *Peromyscus leucopus* were refractory to infection; all white mice, and hamsters died from infection, although worms developed to adult in the lungs. Larvae appeared in the lungs of gerbils but the hosts died prior to larvae appearing in the faeces. Patent infections were established in rice rats, cotton rats and white rats, with the first larvae appearing in the faeces at days 30–31. However, none of the 86 wild cotton rats, many trapped in the same sites as infected wild rice rats, were infected (*Kinsella, 1971, 1974*).

4.2. Type II

Two moults occur in the visceral lymph nodes; sub-adults move via the venous system to the right ventricle and pulmonary arteries. Eggs hatch in the lungs and larvae emerge, pass up the airways, are swallowed and passed in the faeces. This developmental pathway is exemplified by *Angiostrongylus vasorum*, parasitic in canids. *Guillien* (1960, 1963) demonstrated that *Arion ater* and *A. rufus* were natural intermediate hosts of *A. vasorum* in France and infected dogs by forcing them to consume infected slugs. *Rosen et al.* (1970) conducted a number of experiments using aquatic and terrestrial gastropods. The slug, *L. alte*, contained large numbers of infective larvae, but there were relatively few in the other gastropods. Infective larvae were recovered from *B. glabrata* at 16 days. These migrated to the visceral lymph nodes of dogs where the third and fourth moults occurred at 4–5 days. Subadult worms then migrated via the hepatic portal vein, the liver and the caudal venous cava to reach the right ventricle and pulmonary arteries at days 9–10.
after infection, where they matured. The prepant period in experimentally infected dogs averaged 45 days. Guilhon and Cens (1973) confirmed the life cycle as reported by Rosen et al. (1970) and provided morphological descriptions of the various life stages. Of 17 terrestrial molluscs tested, 11 proved suitable intermediate hosts as well as the aquatic snails *B. glabratia* and *Physa* sp.

4.3. Type III

Two moults occur in the neural parenchyma of the central nervous system (primarily the brain); sub-adults relocate to the right heart and pulmonary arteries, eggs are filtered out in the lungs, hatch and larvae emerge, pass up the airways, are swallowed and passed in the faeces. This developmental pathway is exemplified by *A. cantonensis*, *A. mackerrasae* and *A. malaysiensis*, parasitic in rodents (Fig. 1).

The slug *Dercerus laeves* (= *Agriolimax laevis*) and an indigenous snail, *Helicarion* sp. have been used as experimental intermediate hosts for *A. cantonensis* and *A. mackerrasae* (*Mackerras and Sander, 1955; Bhaiyalaya, 1974, 1975*). The latter author reported the first moult of *A. cantonensis* and *A. mackerrasae* in snails at 7–10 days and the second at 12–16 days. At both moults, larvae retained the sheaths of the previous stage. Using a PCR-based detection assay, Teem et al. (2013) demonstrated that introduced apple snails, *Pomacea maculata*, were infected with *A. cantonensis* in Louisiana but not in Texas, Mississippi and Florida. However, the introduced giant African snail, *Ac. fulica*, was found infected in Florida, indicating that the parasite is now established in Florida as well as Louisiana. *Angiostrongylus cantonensis* developed to infect third-stage larvae in a broad range of aquatic and terrestrial gastropods in the southeastern USA (Richards and Merritt, 1967; Campbell and Little, 1988).

The aquatic snail, *Lymnea rubiginosa*, was used as an experimental intermediate host for *A. malaysiensis* and natural infections occurred primarily in the slugs *Microparmanio malayanus*, *L. alte* and *Girasia peguensia*; the terrestrial snails *Macrochlamys resplendens* and *Ac. fulica*; and the aquatic snails of rice fields, *Pila sututa*, *Bellamyia ingalisiana*, *Indoplanorbus exustus* and *L. rubiginosa* (*Lim and Ramachandran, 1979a*). These authors recorded the first moult in experimentally infected snails at 5–7 days and the second at 9–12 days. Following ingestion by laboratory rats of infective third-stage larvae of *A. cantonensis*, *A. mackerrasae* and *A. malaysiensis*, most larvae penetrated the stomach and entered the hepatic portal and mesenteric lymphatic system carrying them to the heart and lungs (*Bhaiyalaya, 1975; Lim and Ramachandran, 1979a*). They entered alveoli, invaded the pulmonary veins, were returned to the left heart and then distributed around the body in the arterial circulation. Larvae reached the central nervous system, primarily the cerebrum, 2–3 days post-infection where growth and both moults occurred in the neural parenchyma. Young adults invaded the subarachnoid space where they resided for 2 weeks before entering the cerebral vein and being carried to the right heart and pulmonary arteries where they matured. Oviposition occurred in the lungs and first-stage larvae occurred in the faeces. The following major differences occurred in the respective life cycles: (i) the third moult in the definitive host occurred at the same time in *A. cantonensis* and *A. malaysiensis* at 4–6 days and a few days earlier than in *A. mackerrasae* at 6–10 days; (ii) the fourth moult occurred earlier in *A. cantonensis* at 7–9 days than in *A. malaysiensis* at 8–12 days and *A. mackerrasae* at 10–11 days; (iii) *A. malaysiensis* reached the pulmonary arteries at days 24–28, *A. mackerrasae* at days 25–26 and *A. cantonensis* at days 26–29; (iv) the prepatent period was 32 days in *A. malaysiensis*, 40–42 days in *A. mackerrasae* and 42–45 days in *A. cantonensis* (*Bhaiyalaya, 1979a*). There were no differences in the migratory patterns of infective larvae in experimentally infected definitive hosts.

In addition to a period of larval development in terrestrial or aquatic gastropods, the life cycle of *A. cantonensis* may involve a range of paratenic hosts (freshwater prawns, land crabs, planarians, frogs, lizards) which feed on gastropods (Fig. 1). Human infection frequently involves these paratenic hosts which are eaten raw or the juices are used in the preparation of local dishes. Infective larvae may survive several days in fresh water and Heyneman and Lim (1967) have shown that larvae may leave molluscs and contaminate vegetables. The use of paratenic hosts has not been determined in *A. mackerrasae* and *A. malaysiensis*.

4.4. Type IV

Two moults occur in the mesenteric lymph nodes and vessels; sub-adults relocate to the arteries of the colon and mesentery, adults occur in the mesenteric arteries of the lower small intestine and colon, eggs are lodged in the capillaries, first-stage larvae escape into the intestinal lumen and are passed in the faeces. This developmental pathway is exemplified by *A. siamensis*, parasitic in rodents.

Kamiya et al. (1980) examined 278 small mammals from six localities in Thailand for *A. siamensis*, noting infection in *Rattus bernsmorei*, *R. rattus*, *R. norvegicus* and *R. surifer*. Intestinal wall containing first-stage larvae was fed to *B. glabratia*. Third-stage larvae were recovered 25 days later and fed to rats, cotton rats and Mongolian gerbils. First stage larvae were shed in the faeces of cotton rats and rats after 29 and 34 days, respectively. Two gerbils died at 21 and 25 days and contained adult worms, but larvae were not shed in faeces. Kudo et al. (1983) maintained *A. siamensis* in the laboratory using *B. glabratia* as the intermediate host and mice, laboratory rats, cotton rats and Mongolian gerbils as definitive hosts. They traced the development and migration route of the parasite in white mice. Third-stage larvae entered the wall of the colon and caecum, and migrated to the marginal and intermedial sinuses of the mesenteric lymph nodes and vessels where the third moult occurred between 30 and 72 hours and the fourth moult between 4 and 7 days post infection. Young adults moved from the lymphatic vessels to arterioles of the colon and mesentery, then reached the mesenteric arteries and branches supplying the lower small intestine and caecum. Oviposition commenced 22 days post infection. Eggs released into the blood lodged in the capillaries of the lower small intestine, caecum and colon. Larvae escaped into the lumen of the intestine and appeared in the faeces 31 days post infection.

4.5. Type V

Infective larvae undergo primarily a lymphatic/venous-arterial pathway and secondarily a venous portal pathway. In the former, one moult occurs in the abdominal lymphatic system and another in the arteries of the caecum and large intestine, subadults and adults occur in the arterial vessels of these organs, eggs are lodged in the arterioles, first-stage larvae escape into the intestinal lumen and are passed in the faeces. In the secondary pathway, two moults occur in venous intra-hepatic vessels; eggs laid here by females embolise, adults migrate to the mesenteric veins, first-stage larvae escape into the intestinal lumen and are passed in the faeces. This developmental pathway is exemplified by *A. costaricenensis*, parasitic in rodents. The first-stage larvae of *A. costaricenensis* gain the molluscan intermediate host simultaneously by an oral and percutaneous route (Morera, 1973: Mendoza et al., 1999). Veronicellid slugs are the main intermediate hosts (Morera and Ash, 1970; Morera, 1973; Morera et al., 1988); however, the limacid slugs, *Limax maximus* and *L. flavus*, and *Bradybaena similaris* are also suitable intermediate hosts in nature (Graeff-Teixeira et al., 1993). I am not aware of a study of developmental stages and times in the slug intermediate host. Development in the definitive host was reported by Morera (1973) and
Mota and Lenzi (1995, 2005). Following ingestion by mice or the natural definitive host, *Sigmodon hispidus*, infective larvae underwent two migratory routes, a lymphatic/venous-arterial pathway and a venous portal pathway, the former considered the principal one. In this pathway, larvae entered lymphatic vessels of the stomach, large intestine, mesentery and mesenteric lymph nodes where they were found from 3 hours to 11 days, preferentially in the vessels of the submucosa. The fourth moult occurred in the abdominal lymphatic system about day 5, and fourth-stage larvae were found in the arteries of the caecum and large intestine from day 6 onwards. Parasites moulted to subadult in the arterial vessels about day 7 and most were in the definitive site in arterial vessels of the caecum, large intestine and mesentery by day 11. Oviposition commenced 15 days post infection; first-stage larvae escaped into the lumen of the intestine and the prepatent period was 24 days. In the second pathway, development and maturation of *A. costaricensis* occurred in the liver together and independently of the parasites present in the lymphatic or arterial circulation. Third-stage larvae were found in venous intra-hepatic vessels 3 hours after infection; both moults occurred in this system and females laid eggs here, but these and first-stage larvae became embolised in intrahepatic venous vessels. Adults that developed in this pathway subsequently migrated to the mesenteric veins and first-stage larvae escaped into the lumen of the intestine.

5. Geographic distribution and epidemiology

The dearth of reports in the literature of many species of *Angiostrongylus* occurring in wildlife, *A. andersoni*, *A. chabaudi*, *A. daskalovi*, *A. felineus*, *A. guberungatus*, *A. lenzi*, *A. mackerrasae*, *A. Petrovi*, *A. raiilliti*, *A. ryjikovi*, *A. sandarsae*, *A. schmidti*, *A. sciuri*, *A. siamensis* and *A. tateronae*, suggests that they may have a rather limited geographic distribution. Alternatively, it may reflect lack of opportunity or interest in examining non-urban and non-agricultural hosts. Others species, *A. cantonensis*, *A. costaricensis*, *A. dujardinii*, *A. mackerrasae*, *A. malaysiensis*, and *A. vasorum* are widespread, either globally or regionally. These species appear to be species on the move, spreading into regions where previously they did not occur (Mészáros, 1972; Campbell and Little, 1988; Procví and Carlisle, 2001; Kim et al., 2002; Morgan et al., 2005; Miller et al., 2006; Stokes et al., 2007; Jefferies et al., 2010; Simin et al., 2014 and references therein).

This is epitomised by the global movement of *A. cantonensis* from China through Asia to the Pacific region and Australia, and thence to the western hemisphere and the Americas under the aegis either of transport of infected *Rattus norvegicus* on ships or intermarine hosts. For example, the giant African snail, *A. fulica*, a long known suitable as a suitable intermediate host of *A. cantonensis*, was recently introduced to Brazil as an alternative for *Helix aspersa*, providing the escargot for traditional French cuisine (Teles et al., 1997). When some of these snail farms collapsed, *A. fulica* spread into the wild and is thought to be partially responsible for the spread of *A. cantonensis* across parts of Brazil. Cowie (2013) presents a detailed picture of the recent geographic distribution of *A. cantonensis*.

6. Impacts on hosts – pathology and pathogenesis

Experimental infections of natural and aberrant definitive hosts with *A. dujardinii* indicated that small doses of infective larvae (ca. 20) were tolerated while large doses (50–1500) were not and often resulted in clinical signs and/or death (Drózdé and Doby, 1970b), a feature which may be general across species of *Angiostrongylus*. Nonetheless, studies of the routes taken by *A. cantonensis* and *A. mackerrasae* to the brain of rats (*Bhaibulya, 1975*) and of *A. costaricensis* to the mesenteric arteries of cotton rats (*Mota and Lenzi, 2005*) have relied on large doses in the hope that some larvae would be found at examination of the various tissues post mortem. Mackerras and Sands (1955) described swollen lobes with mottled appearance and a firm pleural covering in lungs of rats infected with *A. mackerrasae* (as *A. cantonensis*, see *Bhaibulya, 1975*). The cut surface revealed normal alveoli between masses of developing larvae with no sign of reaction around them while the intervening tissue was emphysematous with an infiltration of leucocytes into the surrounding tissues. Arteries containing worms became hypertrophied to accommodate the increasing bulk. A similar macroscopic picture was described by Alicata (1968) for *A. sandarsae*. Microscopically, lung parenchyma in affected lobes was replaced by nodules containing eggs or hatched larvae and consisting of fibrous tissue arranged concentrically and containing multinuclear giant cells and histiocytes (Alicata, 1968). Some arteries were extremely dilated but the walls did not show hypertrophy, thrombosis or degeneration of the muscle. The adventitia of infected and uninfected arteries was infiltrated primarily by plasma cells. Okano et al. (2014) reported *A. cantonensis* in Ryukyu Islands tree rats, *Diploplax legata*, noted that pathological observations were similar to those reported by Mackerras and Sands (1955) for *A. mackerrasae* and suggested that they might be lethal in this rat species. Lung lobes of rice rats infected with *A. schmidti* were as described by Mackerras and Sands (1955) for *A. mackerrasae* and by Alicata (1968) for *A. sandarsae*, i.e. swollen, mottled and firm to touch (*Kinsella, 1971*). The parenchyma of infected lobes was largely replaced by developing eggs and first-stage larvae. There was almost complete obliteration of the lumen of smaller arteries due to proliferation of the intima.

Natural infection with *A. cantonensis* in the USA, including deaths, has been reported in non-human primates (Gardiner et al., 1990), a miniature horse (*Costa et al., 2000*), a lemur (*Varocina variegata rubra*), wood rat (*Neotoma floridana*) and oppossums (*Didelphis virginiana*) (Kim et al., 2002). *Angiostrongylus cantonensis* has been reported from domestic animals, mammalian and avian wildlife and humans in eastern Australia (Table 2, Figs. 2 and 3). Some of these records and others from elsewhere in the world come from animals associated with zoos and nature parks where rat control, invariably, is a major issue.

The clinical signs of neck stiffness, headache, vomiting, paresis, paralysis and sometimes death in domestic animals, wildlife and humans infected with *A. cantonensis* are induced as a consequence of its obligatory period of development, two moults and maturation in the parenchyma, and the meninges of the central nervous system. Young adults invade and reside in the subarachnoid space of the brain before moving to the right heart and pulmonary arteries via the cerebral vein. Most of the paresis and paralysis observed in aberrant wildlife hosts in Australia occurs when the nematodes are still in the central nervous system and are late third-, fourth- or young adult stage (Spratt, 2005a, 2005b) (Table 2) (Figs. 2 and 3).

Robles et al. (2012) described thrombosis of the pulmonary artery and complete obliteration of the lumen in *Akodon dolores* infected with *A. meroeri*. Macroscopic lesions of verminous pneumonia in the lungs were similar to those described for *A. mackerrasae* by Mackerras and Sands (1955) and *A. sandarsae* by Alicata (1968). Histopathological examination revealed nodules formed as a result of larvae being surrounded by granulocytes and mononuclear cells. Tesh et al. (1973) reported little or no inflammatory reaction to adults and eggs of *A. costaricensis* in moderately parasitised *S. hispidus*, *L. adspersus*, *O. fulvescens* and *R. rattus*. They noted that a mild inflammatory reaction with plasma cells and pigment-laden macrophages may occur and occasionally acute or granulomatous inflammation occurs around degenerating eggs or larvae. In severely infected individuals, regional lymph nodes were replaced by eosinophilic fibrogranulomatous tissue. In contrast to other infected rodent species, only 3 of 104 Z. microtinus were infected with *A. costaricensis*, few eggs were present in the caecum, those present
were undevolved and tissues surrounding eggs contained numerous eosinophils and multinucleated giant cells; some eggs were undergoing mineralisation (Tesh et al., 1973). Additional aberrant hosts of the parasite were the carnivorous coati mundi, Nasua narica, and the marmoset, Saguinus mystax (Monge et al., 1978). Ubelaker and Hall, 1979 reported A. costaricensis in two cotton rats from Texas which stood as the only endemic record of the parasite in the United States until Miller et al., (2006) reported it in a sipamang, Hylobates syndactylus, born at the Miami MetroZoo; two Ma’s night monkeys, Aotus nancymae, from the DuMond Conservancy at Monkey Jungle in Miami; four wild raccoons, Procyon lotor, trapped near the Metro Zoo; and an opossum, Didelphis virginiana, trapped at the Zoo. The primates were zoo-born, the raccoons and opossum native, indicating that the parasite is now endemic at two sites. Postulated sources of introduction of the parasite include (i) infected primates introduced to the zoo and subsequently infecting endemic molluscs and thus raccoons and opossums; (ii) infected Rattus spp. introduced through the Miami seaport; (iii) third-stage larvae from molluscs contaminating imported food supplies fed to the primates.

Mota and Lenzi (2005), using doses of 100 to 500 larvae, reported inflammatory reactions in the abdominal lymphatic circulation of experimentally infected cotton rats to the presence of larval A. costaricensis. From day 9 onwards, larvae in the arterial system were accompanied by increasing eosinophil and macrophage infiltration and fibrinoid necrosis of the muscular layer with microhaemorrhages in the arterial wall. Immature and embryonated eggs carried by the blood lodged in the mucosal layer of the small and large intestine and caecum. By day 27, eggs and first-stage larvae were present in all layers of the intestinal and gastric wall surrounded by an inflammatory reaction. They also found eggs and first-stage larvae embolised in intra-hepatic venous vessels.

Ohybayashi et al. (1979) reported granulomatous thickening of the upper colon and granulomatous reactions against larval A. siamensis in infected R. sabanus.

7. Biodiversity and conservation issues

A major conservation issue with species of *Angiostrongylus* pertains primarily to the potentially devastating role *A. cantonensis* may play in and around zoos and fauna parks where control of *Rattus* spp. is invariably a problem (Table 2). It is potentially an important issue for wildlife rehabilitators and in the captive rearing and release of endangered species, programmes often associated with zoos and fauna parks. The reports of debilitating infection with *A. cantonensis* in tawny frogmouths, Podargus strigoides (Monks et al., 2005; Spratt, 2005b); yellow-tailed black cockatoos, Calyptorhynchus funereus (Monks et al., 2005); gang gang cockatoos, Callocephalon fimbriatum (Reece et al., 2013); and brushtail possums, Trichosurus vulpecula (Ma et al., 2013), in Brisbane and Sydney, Australia, serve as a further reminder that this nematode is well established in some parts of these capital cities and that neuro-angiostrongyliasis may be expected in aberrant species (Figs 2 and 3). These include domestic, captive and free-living mammals and birds, and humans, especially children who deliberately or accidentally ingest snails or slugs containing infective larvae (Prociv and Tiernan, 1987; Prociv, 1999; Morton et al., 2013) or foolish young adults who do so for a bet (Senayake et al., 2003; Blair et al., 2013). Tawny frogmouths, *P. strigoides*, and subadult brushtail possums, *T. vulpecula*, infected with *A. cantonensis* exhibit conspicuous neurological signs. They have been identified as potential biosentinels in the Sydney region (Spratt, 2005a, 2005b; Ma et al., 2013) (Figs 2 and 3) and these hosts may be useful in monitoring the continuing southward spread of *A. cantonensis* in eastern Australia (Stokes et al., 2007).

8. Species in need of further investigation

The life cycles of *A. cantonensis*, *A. mackerrasae* and *A. malaysiensis* are extremely similar; all require a developmental phase, moults and growth in the central nervous system of the definitive host.
Angiostrongylus mackerrasae occurs in two native rats in Australia, R. fusipes and R. lutreolus, and in co-infections with A. cantonensis in R. norvegicus but not in R. rattus (Mackerras and Sandars, 1955; Bhaiobulya, 1968; Prociv et al., 2000). Its zoonotic potential is unknown. This is similar to A. malaysiensis occurring in many native rodent species in Malaysia, Indonesia and Central Thailand, as well as in R. norvegicus and R. rattus and co-occurring with A. cantonensis in some rodent species (Bhaiobulya and Cross, 1971; Bhaiobulya, 1979a; Carney and Stafford, 1979a; Lim and Ramachandran, 1979a). Angiostrongylus malaysiensis has not been incriminated definitively in human infection but causes neural disease in experimentally infected monkeys (Cross, 1979b). It occurs more commonly than A. cantonensis in rats in Malaysia where the incidence of human angiostrongyliasis is relatively high (Lim and Ramachandran, 1979a). Close attention must be paid to the zoonotic potential of A. mackerrasae and A. malaysiensis. Oku et al. (1981) suggested that A. siamensis and A. costaricenensis were closely related because they occupy the same niche in the definitive host, have similar life cycles and because F1 hybrids could be produced experimentally from both of them. Here again, the zoonotic predilection of A. costaricenensis demands focus on the potential of A. siamensis to occur as a zoonosis.

9. Conclusions

Twenty one species of Angiostrongylus and Angiostrongylus sp. are reported here from wildlife around the world, thirteen of them with no further details concerning intermediate and definitive host, geographic range, pathogenesis nor life cycle. Angiostrongylus cantonensis, A. costaricenensis, A. dujardini, A. mackerrasae, A. malaysiensis and A. vasorum appear to be species on the move, spreading into regions where previously they did not occur. The life cycles, pathogenesis and geographic distributions of the two zoonotic species, A. cantonensis and A. costaricenensis, have been studied in detail. The zoonotic potential of other species with complex migratory pathways in definitive hosts, like these three species, i.e. A. mackerrasae, A. malaysiensis and A. siamensis, are deserving of further study. It is surprising, given the increasing occurrence and debilitating effects of A. cantonensis in mammalian and avian wildlife in Australia, that the same is not happening in wildlife species elsewhere in the world, or is it a case of such occurrences simply going undetected?

Acknowledgements

The author expresses his thanks to Professor Ian Beveridge and an anonymous reviewer for critical evaluation of an earlier draft of the manuscript, to Dr. Crystal Kelehear for preparation of the Graphical abstract, to Drs. Richard Montali and Karrie Rose for provision of Fig. 2, and to Gemma Ma for provision of Fig. 3. Fig. 1 is adapted from The Lancet Infectious Diseases Vol 8, Wang, Q-P., Lai, D-H, Zhu, X-Q, Chen, X-G, Lun, Z-R. Human angiostrongyliasis, pp. 621–630, October 2008, with permission from Elsevier, License number 3511700383518.

References

Aguia, P.H., Moreira, P., Pascual, J.E., 1981. First record of Angiostrongylus cantonensis in Cuba. Am. J. Trop. Med. Hyg. 30, 963–965.
Alicata, J.E., 1968. Angiostrongylus sandarsae sp. n. (Nematoda: Metastrongyloidea), a lungworm of rodents in Mozambique, East Africa. J. Parasitol. 54, 896–899.
Alicata, J.E., 1988. Angiostrongylus cantonensis (eosinophilic meningitis): historical events in its recognition as a new parasitic disease of man. J. Wash. Acad. Sci. 78, 38–46.
Alicata, J.E., Jindrk, K., 1970. Angiostrongylosis in the Pacific and Southeast Asia. Charles C. Thomas Publisher, New York.
Ambu, S., Noor Rain, A., Mak, J.W., Maslah, D., Maudah, S., 1997. Detection of Angiostrongylus malaysiensis circulating antigen using monoclonal antibody-based enzyme-linked immunoassorbent assay (Mab-ELISA). Southeast Asian J. Trop. Med. Public Health 28 (Suppl. 1), 143–147.
Andersen, E., Gubler, D.J., Sorenson, K., Beddard, J., Ash, L.R., 1986. First report of Angiostrongylus cantonensis in Puerto Rico. Am. J. Trop. Med. Hyg. 35, 319–322.
Anderson, R.C.A., 1968. The pathogenesis and transmission of neurotropic and accidental nematode parasites of the central nervous system of mammals and birds. Helm. Abs. 37, 191–210.
Anderson, R.C.A., 1978. Keys to genera of the superfamily Metastrongyloidea. In: Anderson, R.C.A., Chabaud, A.G., Willimott, S. (Eds.), C.I.H. Keys to the Nematode Parasites of Vertebrates, vol. 5. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, England.
Anderson, R.C.A., 1992. Nematode Parasites of Vertebrates. Their development and Transmission, CAB International, Wallingford UK.
Baillet, C.C., 1866. Strongylo des vaisseaux et du coeur du chien. Strongylus vasorum (Nobis). Nouveau Dictionnaire Practique de Médecine, de chirurgie et d’Hygiène vétérinaire, v. 8, pp. 587–588.
Barcante, T.A., Barcante, J.M., Dias, S.R., Lima Wdos, S., 2003. Angiostrongylus vasorum (Baillet, 1866) Kamensky, 1905: emergence of third-stage larvae from infected Biomphalaria glabrata snails. Parasitol. Res. 91, 471–475.
Barrett, J.L., Carlisle, M.S., Prociv, P., 2002. Neuro-angiostrongylosis in wild black and grey-headed flying foxes (Pteropus spp. Aust. Vet. J. 80, 554–558.
Bowie, R.H., 2013. Biology, systematics, life cycle and distribution of Angiostrongylus vasorum. Parasitol. Res. 112, 2329–2341.

Doby, J.M., Piedade-Guerrero, J., Drôzdz, J., 1971. Répartition géographique de Angiostrongylus vasorum dujardini Drôzdz et Dob, 1970 nématoide parasite des petits rongeurs sauvages. Préence au Portugal. An. Esc. Naz. Saúde Publica Med. Trop. (Lisboa) 5, 59–60.

Doughtery, E.C., 1946. The genus Aelurostrongylus Cameron, 1927 (Nematoda: Metastrongylidae), and its relatives; with descriptions of Pulparilides gen. nov. and Angiostrongylus vasorum sp. nov. Proc. Helminth. Soc. Wash. 13, 16–26.

Drôzdz, J., 1970. Révision de la systématique du genre Angiostrongylus Kamensi, 1905 (Nematoda: Metastrongylidea). An. Parasitol. Hum. Comp. 45, 599–603.

Doby, J.M., 1971a. Angiostrongylus dujardini sp. n. (Nematoda: Metastrongylidea) from albino Apodemus sylvaticus and Clethrionomys glareolus. Bull. Soc. Zool. Fr. 95, 659–668.

Doby, J.M., 1971b. Evolution, morphologie, migrations and chronologie du cycle de Angiostrongylus (Parasynchysis) dujardini Drôzdz et Dob, 1970 (Nematoda: Metastrongylidea) chez ses hôtes définitifs. Bull. Soc. Scient. Bretagne 45, 229–239.

Drôzdz, J., Dob, L., Decy, J.M., 1971a. Experimental infections of Angiostrongylus (Parasynchysis) dujardini Drôzdz and Dob, 1970 Nematoda: Metastrongylidea. Infection of molluscs hôtes intermédiaires. Ann. Parasitol. Hum. Comp. 46, 255–276.

Eleni, C., De Liberato, C., Azam, D., Morgan, E.R., Traversa, D., 2014. Angiostrongylus vasorum in wolves in Italy. Int. J. Parasitol. Parasites Wildl. 3, 12–14.

Ercardová, B., 1966. V spoznorte gejlovo-tunou s直观的插图和分析. Ceskoslov. Parasitol. 7, 91–96.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.

Faulkner, C.J., Patton, S., Munson, L., Johnson, E.M., Coonan, T.J., 2001. Angiostrongylus cantonensis in the laboratory. Vet. Parasitol. 96, 27–34.
