Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

To the Editor: Rhabdoviruses (family Rhabdoviridae) are enveloped single-stranded negative-sense RNA viruses belonging to the Mononegavirales order. The International Committee on Taxonomy of Viruses recognizes 11 genera (Cytorhabdovirus, Ephemerovirus, Lyssavirus, Novirhabdovirus, Nucleorhabdovirus, Perhabdovirus, Sigavirus, Spiriviridae, Tribovirus, Tupavirus, Vesiculovirus) (1). In addition, many recently described rhabdoviruses remain unassigned. Rhabdoviruses contain 5 major genes, encoding for nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G), and RNA-dependent RNA polymerase (L). The Rhabdoviridae family includes pathogens of various animal species, humans, and plants. Viruses of the genus Lyssavirus are the most relevant to public health because they can cause rabies. Bats are the driving force within this genus; foxes and various other species of wild carnivores also can be infected with lyssaviruses and transmit them to humans and dogs (2).

During a viral metagenomic survey, conducted as described previously (3), of fecal samples collected from 4 red foxes (Vulpes vulpes) that were found dead in Alava, Basque Country, Spain, we identified the complete coding sequence and the partial leader and trailer sequence of a novel rhabdovirus, tentatively called red fox fecal rhabdovirus (RFFRV; 15,541 nt, GenBank accession no. KF823814; online Technical Appendix, http://wwwnc.cdc.gov/EID/article/20/12/14-0236-Techapp1.pdf) by mapping 8,287 of the 56,519 sequence reads in the sample of a red fox. A proportion of obtained reads contained sequences that were ≥99% identical to mitochondrial DNA of V. vulpes, which confirmed that the sample was collected from a red fox.

The obtained sequence of RFFRV was partially confirmed by specific primers and Sanger sequencing of PCR amplicons. Five major and 3 minor open reading frames (ORFs) were identified that had a genome organization similar to that of other rhabdoviruses (Figure, panel A). No significant hits were obtained by BLAST analysis (http://blast.ncbi.nlm.gov/Blast.cgi) of N, P, M, and G nucleotide and amino acid sequences, which was reported previously for novel divergent rhabdoviruses (4).

Predicted N, P, and M genes of RFFRV consist of 1,629, 2,490, and 813 nt, respectively, encoding for 543, 830, and 271 aa (online Technical Appendix Table 1). In addition to the absence of significant hits observed by BLAST analysis, no significant sequence homology was observed with known rhabdovirus proteins in pairwise alignments. Furthermore, no conserved motifs were detected in N, P, and M genes of RFFRV that are commonly observed in rhabdoviruses. However, intergenic regions between all major ORFs contained relatively conserved motifs that could be transcription termination/polyadenylation sequences (A/U) CU, similar to other rhabdoviruses (5). Adjacent to this terminal signal was a stretch of conserved nucleotides that might function as a transcription initiation signal (online Technical Appendix Table 1).

The amino acid sequence of the G protein consisted of 669 aa and contained an N terminal signal peptide (1-MYHLIVLLVMLGQR-VA-17), a noncytoplasmic domain (aa 18–646), a transmembrane domain (647-ITAILEPLSSLAVVVGIMCC-667), and a cytoplasmic tail of 2 aa, similar to other rhabdovirus G proteins as predicted by using Phobius and TMHMM (http://www.cbs.dtu.dk/services/TMHMM) (6, 7). We predicted 3 potential glycosylation sites in the ectodomain at positions 38–40
(NKT), 554–556 (NAS), and 592–594 (NIS) using NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc).

Between the G and L genes, a complex intergenic region was present that contained 3 ORFs of 246 nt (7,413–7,658 aa), 231 nt (7,716–7,946 aa), and 459 nt (7,893–8,355 aa), of which 2 were overlapping frames (U1–3). Additional ORFs between G and L genes were detected previously in other rhabdoviruses (8,9). We detected transmembrane domains in the amino acid sequences of all 3 additional ORFs, suggesting they might act as viroporin (8,9).

The L gene of RFFRV contained 6,591 nt (2,197 aa). We detected several conserved domains and motifs, including RNA-dependent RNA polymerase, mRNA-capping region, mRNA capping enzyme, and virus-capping methyltransferase. Alignment of the deduced amino acid sequence of the L gene with the L gene of various other viruses belonging to the Mononegavirales order by using MAFFT version 7 (http://mafft.cbrc.jp/alignment/software/) and subsequent phylogenetic reconstruction by using a maximum-likelihood tree (WAG+F+I+G model with 100 bootstrap replicates in MEGA5 [http://www.megasoftware.net]) suggested that this virus belongs to a novel genus of the Rhabdoviridae family. In addition, pairwise identities of the deduced amino acid sequence of the L gene of RFFRV with that of other rhabdoviruses of the Rhabdoviridae family were only ≤35% (online Technical Appendix Table 2).

Because the fox was found dead and no tissue samples were collected, whether RFFRV played a role in the animal’s death is unknown. In addition, multiple attempts to isolate this virus on various cell lines of eukaryotes (Vero E6, MDCK, CRFK, N2a, and BHK cells, primary fox kidney cells) failed because of the absence of cytopathic effects and viral replication by quantitative reverse transcription PCR, despite a high number of reads in the original sample. The fox might have acquired the virus through spillover from a small prey, such as a bat, and additional studies are required to elucidate the prevalence, original host, and pathogenic potential of this novel virus.

Acknowledgments

We thank all researchers and institutions for their invaluable help during sampling and for providing the specimens used in this study, especially Patricia Lizarraga, Laura Elorza, Ricardo Gutierrez, and Luis Javier Chueca.

This work was funded by the European Community’s Seventh Framework Program (FP7/2007–2013) under the project “European Management Platform for Emerging and Re-emerging Infectious Disease Entities” European Community grant agreement no. 223498; the Virgo Consortium; and the Niedersachsen-Research Network on Neuroinfectiology of the Ministry of Science and Culture of Lower Saxony, Germany. In addition, this research was funded partially by the Basque Government through the research group on “Systematics, Biogeography and Population Dynamics” (ref. IT317-10; GIC10/76).

A.R.-G. holds a postdoctoral fellowship awarded by the Department of Education, Universities and Research of the Basque Government (ref. DKR-2012-64) and was awarded a short-visit research grant from the ConGenOmics Research networking program of the European Science Foundation to visit the Department of Viroscience, Erasmus Medical Centre and develop the current research project.
Rogier Bodewes, Anita C. Schürch, Albert D.M.E. Osterhaus, and Saskia L. Smits

Author affiliations: Erasmus Medical Centre, Rotterdam, the Netherlands (R. Bodewes, A.C. Schürch, A.D.M.E. Osterhaus, S.L. Smits); University of the Basque Country, Vitoria-Gasteiz, Spain (A. Ruiz-Gonzalez); National Institute for Environmental Protection and Research, Ozzano dell’Emilia, Italy (A. Ruiz-Gonzalez); and Viroclincs Biosciences, Rotterdam (A.D.M.E. Osterhaus, S.L. Smits)

LETTERS

References

1. International Committee on Taxonomy of Viruses. Virus taxonomy: 2013 release [cited 2014 Feb 9]. http://www.ictvonline.org/virusTaxonomy.asp

2. Matha IS, Salunke SR. Immunogenicity of purified Vero cell rabies vaccine used in the treatment of fox-bite victims in India. Clin Infect Dis. 2005;40:611–3. http://dx.doi.org/10.1086/427700

3. Bodewes R, Ruiz-Gonzalez A, Schapendonk CM, van den Brand JM, Osterhaus AD, Smits SL. Viral metagenomic analysis of feaces of wild small carnivores. Virol J. 2014;11:89. http://dx.doi.org/10.1186/1743-422X-11-89

4. Palacios G, Forrester NL, Savji N, Travassos da Rosa AP, Guzman H, Detoy K, et al. Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae. Virol J. 2013;10:219. http://dx.doi.org/10.1186/1743-422X-10-219

5. Albertini AA, Ruigrok RW, Blondel D. Rabies virus transcription and replication. Adv Virus Res. 2011;79:1–22. http://dx.doi.org/10.1016/B978-0-12-387040-7.00001-9

6. Coll JM. The glycoprotein G of rhabdoviruses. Arch Virol. 1995;140:827–51. http://dx.doi.org/10.1007/BF01314961

7. Käll L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–36. http://dx.doi.org/10.1016/j.jmb.2004.03.016

8. Gubala AJ, Proll DF, Barnard RT, Cowled CJ, Crameri SG, Hyatt AD, et al. Genomic characterisation of Wongabel virus reveals novel genes within the genus Orthobunyavirus. Virusology. 2008;376:13–23. http://dx.doi.org/10.1016/j.virol.2008.03.004

9. McWilliam SM, Kongsuwan K, Cowley JA, Byrne KA, Walker PJ. Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. J Gen Virol. 1997;78:1309–17.

Address for correspondence: Rogier Bodewes, Erasmus Medical Centre, Department of Viroscience Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands; email: r.bodewes@erasmusmc.nl

Ngari Virus in Goats during Rift Valley Fever Outbreak, Mauritania, 2010

To the Editor: Ngari virus (NRIV) is a single-stranded RNA virus belonging to the family Bunyaviridae, genus Orthobunyavirus. The genome comprises 3 segments, the small (S), medium (M), and large (L) segments, which encode the nucleocapsid (N) protein, the 2 glycoproteins Gn and Gc, and the RNA-dependent RNA-polymerase, respectively. Sequence analysis showed that NRIV is a reassortant between Bunyamwera virus (BUNV) and Batai virus (BATV), both from the genus Orthobunyavirus. S and L segments derived from BUNV, and the M segment derived from BATV (1,2). NRIV is more virulent than BUNV and BATV and is associated with hemorrhagic fever. NRIV was first isolated from Aedes simpsoni mosquitoes in 1979 and from humans in 1993, both in Senegal (3). During 1997 and 1998, humans were affected with hemorrhagic fever diseases in Kenya and Somalia that were caused by Rift Valley fever virus (RVFV) and by NRIV (2,4).

In 2010, during an ongoing RVFV outbreak in Mauritania, we collected 163 serum samples (62 from camels, 8 from cattle, and 93 from small ruminants) (5). RVFV RNA was isolated from serum samples as described previously (5). Further molecular testing of the samples was conducted by a SYBRGreen-based real-time reverse transcription PCR (RT-PCR) adapted from a conventional RT-PCR and based on generic primers (bun_group_forw 5′-CTGCTAAACACCAGCAGTACTTTTGAC-3′ and bun_group_rev 5′-TGAGGGTATAGACCATCGTCAGGAACTG-3′) that target a 250-nucleotide sequence of the S segment of Bunyamwera serogroup members (6). Real-time RT-PCR was performed in a CFX 96 real-time PCR system (Bio-Rad, Hercules, CA, USA) by using 5 μL RNA with a QuantiTect SYBR Green RT-PCR Kit (QIAGEN, Hilden Germany) in a final volume of 25 μL. Cycling conditions included RT at 50°C for 30 min and 95°C for 15 min, followed by amplification with 44 cycles of 95°C for 15 s, 55°C for 25 s, 72°C for 30 s, and 77°C for 5 s. A melting curve analysis was then performed starting with 95°C for 60 s, and a temperature gradient was conducted from 68°C to 94°C in increments of 0.2°C.

Of the 163 serum samples tested, 2 samples from goats resulted in a positive signal with cycle thresholds of 23 (sample 51) and 28 (sample 65), respectively. Both samples showed similar melting peaks at ≈78.2°C and shared the identical partial nucleotide sequence of the S segment. The sequence belongs to the Bunyamwera serogroup, but the short partial sequence is not sufficient for accurate virus determination and identification. For this reason, both serum samples were used to inoculate cell monolayers of Vero E6 cells that were assayed for virus replication. Only sample 51 displayed a cytopathic effect after 72 h and was further analyzed. We isolated the viral RNA from cell culture with TRIzol reagent
Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

Technical Appendix

Technical Appendix Table 1. Characteristics of RFFRV genes and intergenic sequences*

Gene	Length, nt	Length, aa	Conserved intergenic sequence between 2 ORFs†	Start and stop codon of the flanking genes are underlined.
N	1,629	542	UAG-60nt-ACAAAAAAACCUACCACGCUAUG	
P	2,490	829	UAA-75nt-UCAAAAAACUAACACCGGAAUG	
M	813	270	UAA-23nt-AACAAAAACCUACCACGGUAAAUG	
G	2,010	669	UAA-70nt-AACAAAAACCUACCACGGUAAAUG	
U1	246	81	UAA-29nt-AACAAAAACCUACCACCGGAAUG	
U2	231	76	NA	
U3	459	152	UAA-116nt-ACAAAAAAACCUACCACCUUGAAUAAAACGAAUUG	
L	6,591	2,196	NA	

*NA, not applicable; ORF, open reading frame; RFFRV, red fox fecal rhabdovirus.
†Start and stop codon of the flanking genes are underlined.

Technical Appendix Table 2. Pairwise amino acid identities between the L protein of RFFRV and other rhabdoviruses

RFFRV	LNYV	BEFV	RABV	IHNV	RYSV	SIGMAV	VSIV	TBIV	BASV	FARV	LBV	SHIBV	OZEV		
RFFRV	27	31	34	23	27	30	32	31	30	29	35	35	35		
LNYV	NC_007642	27	25	30	23	35	25	28	46	44	40	29	86	87	35
BEFV	NC_002526	31	25	45	24	24	60	57	60	57	52	25	46	45	29
RABV	SRV9 AAT48626	34	30	45	24	25	34	36	46	44	40	29	86	87	35
IHNV	L40883	23	23	45	24	24	23	23	20	27	25	26	25	25	25
RYSV	NC_003746	27	35	24	28	22	25	24	25	24	30	28	29	29	25
SIGMAV	Q410979	32	60	25	60	74	54	50	26	47	47	42	50	47	47
VSIV	AAA48441	30	25	57	44	24	24	60	59	52	48	23	46	45	45
TBIV	GQ294472	32	25	60	46	23	25	74	59	53	51	27	47	46	46
BASV	JX297815	30	25	57	44	23	23	54	52	53	52	24	43	43	42
FARV	HM627182	29	33	25	29	27	30	26	23	27	24	23	28	28	28
LBV	JX901139	35	30	46	85	25	28	47	46	47	43	41	28	92	86
SHIBV	ADD84511	35	30	46	87	26	29	47	45	46	43	41	28	92	87
OZEV	FJ905105	35	30	45	86	25	28	47	45	46	42	41	28	86	87

Red Fox Fecal Rhabdovirus, Partial Genome (GenBank Accession No. KF823814)*

GGATATCAAGTCCACCAATACCTTATATGTGATGATGATCATGACATCACATACATTCTACG
CATACGACTCCAGGGAGTACACTAABAAAGAGCCTAACACAGACTTTGGAATTACGT
CAAGTCTAAGTTTTAAATTCGGTTAATTTCAATGGATACGATACGATACGAAAGCGCAAT
CTCGTACACTTCAATAGCGGAGTCTCTGATATAAGTTGTCATGCCATACCAGCATACATTCAG
CATTCAAAGGTGAGCCCATCATCATATTTTGGAAAATCCGCTGCAACAGGAAATTACCG
GAAAGGGGGGGAGAAGACTGGACCAAGAGACATGATGCCGTGGAGTGGAGTGAGTG
TTCCCTGCCCGAGACTGTAGCTAATCTGCTCAATCTCATAGCCGGGAAACGGAAGCC
CCTGAGCTGAGAAATGCCACCATCATCCAGATCCGGGAAAGAGGGAATCTTGGAAGA
ATTTGAAACGAGTGGGAGTTCGCAATGGGCAACCTGCTGGTTCGACTTGCAAAA

Page 1 of 13
ACTGACGACACCAAGAAGAAGCTAGAAGAAAAAGGTGCAGCAAATCTTGTCGGATCTAGG
GAAGAAGTGCAGCTATATCTGGATTTTGTCGCTATAGCAGATGATAGCAACGCTAGG
ATATGATGTCCGGGTTGTTAACCCTGTCCTGCGGGATTTTGAGATCTGAGGACTCTATTG
GTGTGGAAAGCGCTTTGGAGTATGAGAAGAACCCGTATCTTTTTTGATGAAAGTGGA
AGCGCAATTGGAGGAATCTCTGCAGAAAAAAACCAAGCGAAAACACCTGAAAAAGAAGATGTG
AGGTTATTCGGGAAGAAAGGGAAATTGGCAAGCCGGGACAAAGCTATAAGAGTGAC
GCACCCGTTCCTCTACCTAGTTATCCTAACAAAGACACAAAGGTGGAAGGCTCGAG
CTGGAACCTCCCATCTCTTGATGAAATGATCGGTTCTTTCTGCCCCAAGGGAGACAGAGGC
TGCAAGACTCCTGGACGACACCAAGAGGGTGGAGACGCTACGCTGAACTGATAGACT
GCGACTCTAGCCAAATCGGGGACATCAAACCTTATTAGCTAGGAGCGCAAAGCAGCTCC
CCCCGAAATGGAAGGAACCGGATGAGCACCACAAGGGGCAATGCTCTCAGAAAGG
AGTTAGGGATCTGAGTGGAGAATAGAAGGGTTAGTGATAGGAGCATGAGACGGGAG
TAACGAGGCTATGCAACAGATGAGGGCTACTGCTGAAATGAGCCAGATGCAG
GGTATTACGCCTGTACCTCCCTCCCTCCCTACGGGTATTCACCTGCGAGT
TCTCTCAAAGGCTCCCTCCCTCCCTCCCTACGGGTATTCACCTGCGAGT
ACTGATGTTCAGCGGGAGTACAGAAGGGCTAGAAGAAAGAGGCTCAAATTTGGGAGG
CCAAATGTTTTCAGCACAGCATTGGAAGGATTTGGGCAGCCCGGATCTA
TGGGTTTCAGCTAGGATCTACTTTCTGCTAATCATTACAAATCTTACTAAGAG
GGAGGAAACAAAACCGTCACCACAAAGGAGGTCACGCGCTCCACCTCCCATCGGCAC
CTCGAAAAGAAAGCGTGAATAAATTCAGTCAAGCTACCACCTGCTAGGAGTTCAAT
ACCAAAAGAAGATCCTCGCACCACCCCTCCTAGAGCGAAAGAAACCGGACCCGAGAAG
CTGGATGACTGGGAAACCATCAAGGTTATATCTGACCAGGATCGGATGACGGTTATGG
AATTTCGCAACAAATGGAGGCGGAGCTTGACAACCTTACATTACATCATGTGTTGCTGAGG
ACAAGTTTACCTGAGGCCCCATATATCTCCATAGAGCTGCTGGGAG
AGAATCTCTCTAGAGGTGGTGTCACACACATGGGAGAAGGCTGCTCCCGACGCTGTTATG

GACTTCTTCCAATAACACCCCTTGTCCATGGAGCCTATGATCTTCACATTCAGACGG
GCTTTATTCGGAACAAACTGCTGTTGACAGACATTACACCGGTAGGAGGCACCCACAACC
AAGGACTCTATCATCATATTTCCTGTAGCAAGAGACTGGGGCACCAGAAGAAATAGCA
GCAATCGGCTCTCGGACTAGACCTCCTGACGCGAGATTCATCTCTTGGAGGTCTTGG
AGGAGCAGTCCATTTAAAAAGTATATGATCAGGCGATTTCCCTAGATCTCTGACAGAGG
CCTATCATTGCAAAAAGTGTTGGTTAGCAAGGAGCAGAACACCTGAGCTAAAAGATGTG
GTTTCTCGGACTCTCTCCTCTACTCTGCTTTGAAATATGACTGCGGCG
GGTTTGTGAAAGGATACAGTCACAGAACACTGGACACGCTGGAACACTGCGGGTG
TTATCGGCTGCTCGATGAAGCAAGATATGCGACCGCCATTCTTGAAGATGTG
CATCCTACAGGCAATCCTTCCCCGATTGCTTCTTCATTCTGACAGTGCGACCCCAT
AGGAGTGCCAGAACAATTGGTGGAAAATTCTCGGGAACACTAAAACGTGTTGCAAGAA
TTGTCTCAGAGAGGCTGAGGGGCAGCTGGGAAAGAACTAGTAGAAAGCGAAGTT
GAGTTGATAAAACCTGATCTTACACAGTCTCCTGAACTGCTGCTGGACTTGGG
TGTTCTAGCAAATTGGAGACAGCTATAGGTCGAAAAGTTGGGGAGGCCAAATTTG
GGAAGTCACAGTGCCTACCCCTGCAAGGACAGTTTTACTTAGAGTGCGCAATGAACAA
GCAGGATGCTTCCAAGGAAAGCCTGGTTGATGAATATGGGTAATTTTGCCGAAGaAATGTGGA
AAGTTAGCTTGAATGAAaGAATGATCTATGGGACACACTCTCCGCGATACCGACCGAC
CTATGAATCCTTACTTACCTGAGCAGCTATAGGTCGAAAAGTTGGGGAGGCCAAATTTG
GGAAGTCACAGTGCTTCCAAGGAAAGCCTGGTTGATGAATATGGGTAATTTTGCCGAAGG
TCGACAGTGCCTACTTACTGAGGTCAATGGGAGCTAAAACTACTGTAAGTTTTG
GGAAGTATGGTCCAGATTTGGGGAGCTAGTAAGGAGAGGAGATAATGGGTCTCCGACTGCCACCT
TCACCCTAAATGCGAAGAATGCATGATACCATGTCCAGATGTTTCAATGGAGCTTTCA
AAAACCCTGGATGCTCCCGCTTTTAATCTAGTGGATGAGGAAGGAGGATAATGGGGTCTCCGACTGCGCCACCT
TCAACCCTAAATGCGAAGAATGATACCATGTCATCCGAGATGTTTCAATGGGAGCTTTCA
AAAACCCTGGATGCTCCCGCTTTTAATCTAGTGGATGAGGAAGGAGGATAATGGGGTCTCCGACTGCGCCACCT
TCAACCCTAAATGCGAAGAATGATACCATGTCATCCGAGATGTTTCAATGGGAGCTTTCA
AAAACCCTGGATGCTCCCGCTTTTAATCTAGTGGATGAGGAAGGAGGATAATGGGGTCTCCGACTGCGCCACCT
TCAACCCTAAATGCGAAGAATGATACCATGTCATCCGAGATGTTTCAATGGGAGCTTTCA
ACAAAAACAAATCCTCAAGGAAGATGGAGCTCTGGGGATACGAACTGCCATCCCGGT
GTATGCAGGTTACAAGTGCTCGTGGAAGGTACTTAAGAGCAAGATTTGTATTCTGGAC
TTTGCTATGTGTGTGCATCCTCCGGACATCAATAGAGTCAGAGGAGCTGACTGTGTA
GGCTTGTCAGCACAATCTTTAGAAGAAGCAACAGCAAGACTGGAACTGGCATAACC
CAACAAATGCTGGGAGGAGGTAGCTGAAGCAACACGGAGAGCATGACTGCATCCAA
GAGCAGATTCGCTACGCGAGGATTTCCTGACATCTATGGAATTCTGGAAGCTCTCCAA
GCAGGACAGTCTATTATCGACAGTGTGTGATCTCCCATGGAAAAAGATTTCTACACTAC
GAATTCAGAAGGAGGTAGTAGCTCTCCTCAGAGACATACAGAGGGACTGGAACTCC
GGCATATTATATCGCTCTAGATGTGTGATCTTGACCCGGCTCTTACTCAAAGGAGCAAAC
GGGACACTAAAAGCATTGCGAGGGCTGAGCCACTGAGTGAAGAAACACATCTGTATAG
CAAGCCAAGCATTGCAAGAAAGCAGAAGGACCTGACGGAGCCTTGTGAGATATGCTT
CGAAAAAACATCAACCTTGTGTGCTGCTGCTGACATTTGACCTAAACCTAACAAC
AAAAGGGGTCAAGACGTAGATCATCATATTCTCCGGGAAGCATACCTGCTATTTCACTT
GATACCCGTCAGAGGGGACATACGTGATATGGAAACACAGCATCAACAACAAACAGGCC
TGAATCATTCTTAACTTGGGAAAGGAGGGAGAGCCTGAGGTGACAAAAACCCCTATCA
TGATCTATTATCCGGCCCATCTTTAATGTGTCTGAACGATCAATCTGAGATTCTGCTG
CTTAAAAACTATCCGCTCTCAACAAAAATGTTGACAGTGTCGGAAGATGTAATG
GGGATTTTTTGAGGGCACTATTGGGTCTCTACCTACAGCTGAGTTTTTTTCAATTC
CCTATCTGAATGTCAACACTAGGGCGATCAAGGGAGTTCAACAATTTACCCCCGCTTG
TGTGCTAGACTCTCAGAAGTTGGGAAGGTGTCAATCTCGGAAAGGTCTTAAAC
ACTGCCTTTCAGACTTTGTCCTCAAGAGGAGTTGGCCTTCGGAGGTAACGAAATACGTGAT
GAAGAAATGCTTTGACCCAGACAGCTGCTGAGGTGACAAAAATACGTGAT
GAAGAGGTCAAGAAATCTTGGGACACCTCCTCAAGGATCGTGAGCCAGCGTGCTCAG
TCATAATCAAGCCACTTTTGCAAGAGTCAAGGACCTCCAGATGGCTTGGGAAAGGT
TTAGGAGTTGACTTTGGTGATACCTCGAAGTTGAGAAAGAACATATGAGGATGATGCAC
CAAAAGATACATATCTCATGTGGACTAGACAGCTGAATTCACGCTCACCCTACGTCC
AATAACAGCTTCCACAGCTTTTTCCTACTCTTGAAAAAGACGATAGACCTCC
GAGCTGTCCGGCGGATGTCAAGCTACGACGGCAATTTAGCAGGGTACACTAAGATA
AGACCGCAAGAGCTGTCCAGCGTGATGGAGGGAAGCAAAGAGCAGCGAGACATGG
GGTTCTGTAATTGGCTGCGACTACTTAGGAGTCCAAAGTTCTATCATCTATGCAAAC
ATTCTGTATATACGGGCAACTTCACATGCTGGGAGATTGAGAGCCAGCTTAAAGCGATCGGAGCTGATCGGGCTAATAGGGACTGCTATCGGTGCCTCATGCTTGGTGTCAGCCA
TTTCTCATCCGCATGATTACTGCTTGTTCATGGAAACTTTTCAAGAATGGGGTGGATGT
TGTTTTGGGCAATGATAAAGGGAATATCAAGCCAATTGTGGTCAGAGCCTGGTCAG
GTGAGTCCACTCCTGTAACCTATAAACCCCACAGGAAACTCAAAAAGCCTGTTACATCTA
TGCTGAGATACCTTGAGGGGCTTATTGTGGAGCTCTGTGATTTGAGATAACCACTCAA
GGTTAGAGTGCTGGTGGAAGAGAATATGAACCTCGGCTTTCGGAAGGGGTACAAAT
CATCTTGCCAGTAGCCACTTGGGATAACGATAACCTTTAGAGCTAGATCCCATTTGGAGTGT
ATAAGATGGGGAAGATCCTCCTAGGAAAGAATCCTGATATTCCGGGGGAGATAAT
TGATGAATAGCACTTTGATTTCTAAAAATAGTATCAGAGAAAAAAAAACAAAAAAAAAACAA
AAACACACATATACATACTATAAAAATTAGGAGCAATAACTGAAGATCAAAGGAG
CATAAAGAAGATCTAAGAGAAAAAGAGAAGAGCCTGGCAAAAAAGCTAAAAAGA
TACATAAGGAAACACAAAGAATTTTCTCGAGAGGGCGACACATAAGGATGATGG
GATCACATGAAAGGCTCCTGGGAACCTTGAAGCTTTGTAAGAAAAAGCTCAAAGCAAAA
ATTGCAGAAGAGAGGGAAACCACAAGTTGGTCCTGATGTGCTGACTGGCCGACACTCAG
CTTTTGCTCTTTACTGAAAGGCAAATCCTCTAGATAGTAGCTCTTCTAGTTGTCTGGCT
ATGAGTGTCACTATCGTACAAAGGCAATGGGTATGAGGGAAGGGCAGCACCATT
GTGGGGT

*Coding sequences of identified open reading frames are underlined; deduced amino acid sequences below, overlapping sequence of open reading frames U2 and U3 gene are in italics.

Deduced Amino Acid Sequences RFFRV Genes

N Gene RFFRV

MDHDNEKPISYTSIAEVPDNVAIGSTIYIQGEPIIYFGKSAATGTRKGGAGQKDWKDMIR
GVRVFLPQTDANLLLNIAGETAEPELEKYTIQDPEKKGILKKFESKWEFANWANLVDL
QSNTGNIPGKRGPSYALFSISATIKGAPVLAPAMKDLGDPVYVKAPDDLHPTGIEWH
GDKISVDEAAYIGYAGWALIMPRFTIKAESKDEIAASSKAFDTLRRLPETIKPQVLVSVV
TQLRLAYHGTLVPGSAYLAEEVAMRRAMNYESLKDARTECKAGEHFPGCGQLRLQDI
PQYDSCGFWGFGQVGLEMAGYSALMHLAGLDIYGTKIADLRMLINWRCDNYIADEIK
EGPLLADDPWRAASYLAPNIKTRPLSMGKHSIVAYLGLSISQAAAANISTGAPSPEGVKM
NELIRKTVYDHAVAVIESEWNDRLQPSTVTMTIGGQVIPKGVDPKRVNDLSRMFTQR
QTPLYEVPPHNRERRSPSVSVHTSSRDRDEGSWEGGNEEELLRLLEHRRGQYEEDTN
LGGFYSA.

P Gene RFFRV
MANRVRKIHSVSVNDPAEAWQVALQYWAKRILSTDKECRITKSMVAMHSVYYGN
VKLDCDAVWVRWALLALAWMKSPDGIAMLALLEFGAKHVQRLRADLSKIDPRIDD
FERLTNTSIARVPKKFFKENSITDDTKKLEAAALSSDLGKKSYTGFCYYADDSNVGD
MMRSVLTASGALGSEDPIGVWKPLEDEKAPYLFDENVKRIGGISAEPSPPEKKMCRLF
GKKKGFAAPETSYKSAHPFSTQVSSKEPPKLKVKGVELPSLDEVIGLPPKGAEEAEELDD
TKELEGASAEPELADHAEPQLTQRSDYQGDQNFTSSVLKASPPHHSIDCDSSQIQGASN
LSARASALSPEWEKPDATGKDPEEVECANEIVGGNRRVSEEGCCLNEDTREEGSLQS
DQHPVKNNSSWAERASLESEVSPKHAEEAGSAIHSHSPQAEAVMDSVGVASSTIKPL
KSGVTRPMQTDEPHAILEAGSQQITSLYPLLPLVPGVLLPPSSLKSLPPKAKGKFEFGL
MLRGIRRGLEERGLNWEAKWFDTHELGIANKFGDPTDTGFQLGSFAQLTINPVLKREET
KPSPKEDHAVPPSPAPRPESVNKFSQARPQHSQVPTKEDPAHPPRAEEDPRSWMTGKPS
RVYLPGDVFMEFRTNEAELDNSITCVLEDKFTEPYILPKELSKEQLKNLLEVSVQH
QKASQLLCEHLTLRNYKSISALTANWAMKIAEMPRSMGIYFRTLGEAYGNAFEALQ
VATAGREGIDKWIARALVVKANTARGKVPVPPGWFVTRAKDSDNPVRARASALFKFL
NE.

M Gene RFFRV
MSNFRTLMKFKASKMSLTSKSKYKVGLGDELGQSNVNIIHEEGEDHTSIYESPSKKK
KTSRTMRPWVYTYPEPQKNIVRGLRARPKKVVLSSLTVGEPLDFPEATVSDILD
GMEMSAMRKVLQMMILSTRPMGRDFSGCGRYIFSNCFSTSCFPSSCLGEMFHDSGDFC
STTFDDKTYFSGSYRFLTFEDAIGNSHQYPLPLWFHLSYTNAKLKPDFTPGLAVCRAGFKFL
YLDKYSFKTSYDNIVLLLMGRAPKAIKQK.

G Gene RFFRV
MYHLIVLLVMLGQRAVEAPADIARAAKIQYAERLRLNKTGLRIELSSRDPAQSAASPPD
VPATKQPATKPAATTAAGTSAPIKVGLPESEYLQRQVPEPFWFTVCEKVPRTLTVDVHRIL
RKGDGKAHRMLGTPGDDHSSVYTKFGSGISPAPSRLVVLSESLOYEEQRQPQLYRVSRLR
SSSTPHRVVLCEVMSAFSPLNVEMECTGVLGKLSDTSSVTLNVDPGYVLTMRVCSCE
SAMRVRKWTSFNNVKERLEDWRPPDPKCECESHCIFAGEVTSAVRGSVPDYCAY
WMSTCEVQGDVYQVSLGTAKFHRFLNQIRAPFIVDPCTPSAPCKGSGLVLAKIEED
NPRFTTMNGELTPRTYNYWTHKVYYQVHLPGVTTSLASCGLFHGGYVVQLMSGRIVSV
SOTQFQGDKVPPICETKMPYMPFVLPDSQVASTQRLQDLHQCRTKEVLA
LATKRLPSITLFEGGLYKGSEYSLVSRKGLLYAACPSPVEYTDLEHVPEGNIVMWVVNG
REVGCLDGGLNFAVKSGLVCNPNASVILLSGEVKVISDRDGKLLAEPIKAGWGSIPAL
ENISAAGFGLASLEQPPPLWDGNGPIIPTSNSTQDPVIIHSGASSLWSSMSLASKITALM
PLLAVVVGIIMCCRR.

U1 Gene RFFRV
MSCLTQDLRKEIRERVNSISIQNSVPVTIIIEVILWVGLAYISIALGCHRYLQARIKNSVE
RRQRFGRDGVLLLPPDTGPA.

U2 Gene RFFRV
MEEKCSDSDYFKELTDAAIEGVWASPLYPITLATVIIFLILLIFVVAWARAVIAKIRHRIDE
STARRLRPDFGGRP.

U3 Gene RFFRV
MSPQHGSALSISVGPDHSLIESVIPILVGNYATLILTTLVLSFSLATIIFSSSVNNLT
DIRGVILYHLGNEVEFASHALAAVCSAQSTSTSAARTLEQFRLSGQVTEVTPSSGATGE
LSIPQRYRMLLEVEKDMLENEMFIAEHSV.

L Gene RFFRV
MEKSLFLDRIPSDLHSLPLILRELCEFCRDPDKETSDYPAIPQPDEFTISRRPELIELRSLTLG
AISGVGCIKWLAYMRLNWEIAKDIMRLMAEELYQSTIHPEIASDFNVCEGLFSLHDAQ
WGENQHPSALQDIWNVFAQYQSDAIIDNWTYIRLSAALLWSNHKERGNQSEFQNSII
AKAGWGVRAINGVEVTHKLTKRERLNGKLTGVAYCCLLQLANQQPPRLFRKSLLLCEK
DLYLQRWSLFLCNQCNAFQGIGLPQPKHLIKYRMGDIILATEGNEGNAIKTIESIMVG
SAHKQLEDDESIPGDGKYEFITKXGLSACHLESSSSAMRKIIHIGEIVTPEVAIMAGCYR
HWGHPIINPVGGLTAVRENTALQPNTERNLMLAADLNYLRLSEYFEEGRWPPGVRY
EAAPEIAKDLFNKWNSTQFPGPTSASQVRNWSFFVYTDSLDFKNIQEIPSLISDKSHSV
GRSAIFMCLKMILLSSRPSRRVLQQLTSYAEIDVNYKFLDSIDTENGLSNDDLVILLREKE
RELKVKGRLSMTYKLRFTYFTATELYIAKHILPVLPEITMMQQGDILWKTFFGAVRTV
SQEKSTHMIHVDFEKWNFQREESTAPVFQIMDRAFGWNSNISRTHNFFSRCFVGYAG
RIMDFPIGLTDNWPCWTGHKGFGELRQKGSVVGVALLIRHMRLTLGLHKVLIQG
DNQVIILEYPLASSNTSSLALERHRHSKMTTTHFLSVFSELSKISGLRIKPEETWISSRMVY
YGKFVPVIDGSGMLVKKLCRIFAISNDLTPSINSISSSSLHTSCIAGCIQSSVAVPIYMAIF
YGFFLLHDFEFYNNPLSMEPMIFTFRRAWA半导KVRAPTTKDSIIIISVARDWAPAS
NKQQSALGLDLLTRDDSSLGLLGGASILKYMIRQFDPVPVEGLSFAKVGLSKAETPELKT1
FSSYGG TLPIKSGSVELLEAPMSINLPSTRPVNVRFFVEEKTQNMĐTTLVNQQLVYYQA
LSMKQDMPRPPLKMCASLQPFFPRFASSLYSATPIGVAEFVKGFLGKTKTARIALREGA
GQLGKKLVESEVLITITYLTULKLSALEHWGCSSKLADSYSRKSWSGGQIQWGVTVHPAE
QFYLEWPMSTGCFKESLAWMNDAEETVKVSLMNERMIYGTSPRASAGPMNPYLGGRTS
ERSSVQSWLLELETSSIAKRLVELINACGWAYQKGSGLHHAIKMLEMTQLTGLVIPSDAVC
RITESGSLGHFRFSDPRVSSGAMSATNNTATHIASSTNDLVLKRGEDNYMVLFQGLFV
YFTSIIIGELVRGDRNGSPTAHLLHPKCEECMIPCPDVMELSNPVVPYLISMFSLPRLPNDFL
TLPENLYVIDDPFKVPDQIKTVNIVPAYSTSVDTLSGEEISDAISNVAIIVAVTKTNPQ
GRWTLGIRTAIPVYAGYKCSKWKLSSKVIVFWTFAMLAFRHINESEEHDCEACEQHILRK
QAADHWNHLNPTMLGGMLSNTDIIVELAKEQIALSAGFPISPMELSSAAGQLSFEQCVS
HGKEFSLPFEKPQGVIALPRDMTGGGTPAYLIACMCMCYAGFFKGANTGPLKALALTTE
MKTSVIAASQAEESEGVWSRLVDMHLHENTSTLCCVLIDFKTLTKRGQDVDHILPGSIPA
ISLDTVRGAYCIWNTASTTGPRESSLYLEEEGPEVTQTPIMHLFRPILMSANGSIKLVLK
TIQLQPKNVAVGDNGGFRALLGLYPTAEFFNSLSEMNSNYGDQGEFTNPVACVLS
PSDWGVRINLGEVTLPSDLSSERWPEVTKYWMMKKCFLPDLLVCDAESAEDSIKRSEILS
NLLKVCQQRSHVIIKAHLSRMQDVQSLSVNAIHLSHNVMYLRAPSWNGKFEVILWYT
RIVERNDMRYAPKDTYLMWTRAENHANHPQLQLTAFHWSVFPHLEKDDRLRAVRRMSL
LRRHISRTKIRPQELSVERKAKEHGMGFCWLLLHLYLGSKFISSMNSVIRATSHAGR
LRAOLKRELIIGPAGTIALGASVSAISHPHDYCFLFLELYKNGVDVVLGNDKGNIPIVVR
AWSGESTPVTTIPKELKKPVHSMVRYLGGDLLWSSGIDRITQRLEWLREKYELLGFSEGY
NHLAVATWDTNLDVDPLECIRWEMEQAAVEEIDFGGIIDE.