A feeding aggregation of Omura’s whale Balaenoptera omurai off Nosy Be, Mozambique Channel

Pierre Laboute, Philippe Borsa

To cite this version:

Pierre Laboute, Philippe Borsa. A feeding aggregation of Omura’s whale Balaenoptera omurai off Nosy Be, Mozambique Channel. Western Indian Ocean Journal of Marine Science, 2018, 17, pp.93-97. ird-01917512

HAL Id: ird-01917512
https://hal.ird.fr/ird-01917512
Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License
To be cited as:
Laboute P, Borsa P (2018) A feeding aggregation of Omura’s whale *Balaenoptera omurai* off Nosy Be, Mozambique Channel. Western Indian Ocean Journal of Marine Science 17, 93-97.

Short note

A feeding aggregation of Omura’s whale *Balaenoptera omurai* off Nosy Be, Mozambique Channel

Pierre Laboute and Philippe Borsa*

Corresponding author, e-mail: philippe.borsa@ird.fr; philippeborsa@gmail.com
Abstract – A feeding aggregation of Omura’s whales *Balaenoptera omurai* was documented off Nosy Be Island at the northeastern entrance of the Mozambique Channel in November 1994. Underwater photographs of live individuals illustrated sub-surface skimming as main feeding behaviour, with small crustaceans, small jellyfish, and other gelatinous micronekton identified as prey. A precise description of the whales’ pigmentation patterns completes previous descriptions from the recent literature.

Key words: Omura’s whale, feeding aggregation, Mozambique Channel

Introduction

The recently discovered Omura’s whale *Balaenoptera omurai* Wada, Oishi and Yamada 2003 has been reported from, mainly, the tropical waters of the Atlantic, Indian and western-Pacific Oceans (Fig. 1). The osteology of the skull has been described in detail from a number of specimens from the Indian and Pacific oceans (Wada et al. 2003; Yamada et al. 2006a, b, 2008). DNA markers have been used to ascertain identification in a number of captured or stranded (Sasaki et al. 2006; Jung et al. 2016; Ottewell et al. 2016; Ranjbar et al. 2016; Cypriano-Souza et al. 2017; Xu et al. 2017) as well as live, Omura’s whales (Kahn and Pet 2002; Cerchio et al. 2015). Cerchio et al. (2015) have reported regular sightings of Omura’s whales (whose identity was validated by mitochondrial DNA sequence) along the northwestern coast of Madagascar, mainly off the Ampasindava peninsula and also north of Nosy Be island in 2007-2014.

We recently exhumated a series of diapositives, taken by one of us (PL), of a then unidentified balaenopterid whale off Nosy Be in 1994. The present note is a brief account of the observations made on these whales, now identified as Omura’s whales in the present report. We describe some of their external morphological features and their pigmentation patterns, and we provide details on their feeding behaviour, thus adding to our knowledge of the external aspect and behaviour of Omura’s whale.

Methods

From July 1991 to December 1995, and again in June-August 1998 and in June-August 2000 one of us (PL) undertook field work along the reef plateau west of Nosy Be island (northern Mozambique Channel), using a 5-meter outboard motorboat for daily to weekly outings at sea. No outing was made in January or February. Rorquals of moderately large size, from approximately 8 m to approximately 12 m, were observed on almost every occasion, from June to September every year and occasionally in October and November. Aggregations of whales, with, on 06 November 1994 ca. 10:00 local time, up to a dozen individuals within a radius of less than 500 m, were sighted. The coordinates were 13°26’S 48°05’E. The bottom depth was between 80 m and 40 m, sloping gently towards the shallower reef plateau westwards. On that occasion, the boat was stopped and PL free dived amid the whale aggregation for about one hour to take underwater pictures. Three of the pictures are presented here (Fig. 2) to illustrate the whales’ external morphological features, pigmentation patterns, and feeding behaviour.
Results and Discussion

Seen from above, the maxilla had a slightly pointed ogival shape (Fig. 2A). The rostrum bore a single median ridge, and two or three subtle lateral grooves were visible, parallel to the median ridge each side of it (Fig. 2A). The dorsal fin was relatively small, falcate and recurved, its tip pointing backwards (Fig. 2C). The pigmentation of the right mandible was light (Fig. 2B) while that of the left mandible was dark (Fig. 2C). Asymmetry in pigmentation was also visible on the inner part of the lip, which was dark on the right and light on the left (Fig. 2A, C). A series of three parallel, S-shaped dark chevrons connecting the eye and posterior edge of mouth to the nuchal region was visible on the right side (Fig. 2B), without matching symmetrical chevrons on the left side (Fig. 2B, C). A lighter-grey, Z-shaped chevron connecting the axil to the anterior part of the back below the shoulders was visible on the right side (Fig. 2B) and a symmetrical, S-shaped chevron was visible on the left side (Fig. 2B, C). The flipper’s anterior edge was light-pigmented, contrasting with the darker pigmentation of the flipper’s dorsal side (Fig. 2A-C).

The whales were observed feeding on a large swarm of zooplankton and micronecton that included small crustaceans, small jellyfish, and other gelatinous organisms. The main mode of feeding was by skimming, with the animal gliding at shallow depth (less than 5 m below surface), mouth slightly gaping, allowing the flow of filtered seawater to escape laterally along the gaping rear extremity of the mandible (Fig. 2A, C). Lunge feeding was also observed occasionally, when the rorqual opened its mouth wide and gulped large quantities of gelatinous micronecton. On one occasion, a whale was observed defecating: the animal stood immobile in an upright position below the surface, allowing the plume of faeces to sink.

The whales documented in the present report were identified as Omura’s whales on the basis of their external morphology and pigmentation, including the markedly recurved dorsal fin, the ogival shape of the rostrum, the single median ridge, and the asymmetry in pigmentation patterns (Wada et al. 2003; Cerchio et al. 2015; Ottewell et al. 2016). Pigmentation patterns were very similar between the whales photographed by PL in 1994 (present report) and those photographed in the same area 18-20 years later (Cerchio et al. 2015). In particular, two individuals presented on figure 3 of Cerchio et al. (2015) exhibited a series of three parallel, dark-grey chevrons similar to that photographed on Fig. 2B. Sample monomorphism in the control-region sequences (N = 11) reported by Cerchio et al. (2015) indicates a low genetic diversity for the population of Omura’s whales off northwestern Madagascar, suggesting a low effective population size. This in turn may explain similarities in pigmentation patterns such as those we observed and which at first sight appeared to differ from those of a few individuals from other areas where pigmentation patterns were partly scoreable (Western Australia: Ottewell et al. 2016; Persian Gulf: Ranjbar et al. 2016). However, the skin of the Western Australian specimen had likely undergone post-mortem darkening (Ottewell et al. 2016) and the skin of the Persian Gulf specimen presented cuts, scratches and abrasions on part of its surface, erasing part of the pigmentation (Ranjbar et al. 2016; we ascribe these injuries to a collision with a ship). The fact that a similar three-dark chevrons pattern also characterized an individual documented from off Komodo island (Kahn and Pet 2002) and another one from off southern Sri Lanka (de Vos 2017) suggests that it is, at least, a pattern frequently encountered in Omura’s whales from the Indian-Ocean.

The occurrence of medium-sized rorquals including Omura’s whales off Nosy Be every winter and spring for five consecutive years (present report) and 20 years later again for three consecutive years (Cerchio et al. 2015) may be either related to seasonal and perhaps year-round
suitable trophic conditions, or to suitable conditions for reproduction, or both. Sightings of mother-calf pairs (Cerchio et al. 2015), acoustic records interpreted as courtship vocalizations (Cerchio et al. 2015) and the documentation of feeding behaviour (Cerchio et al. 2015; present report) suggest that the continental shelf waters at the northeastern entrance of Mozambique Channel harbour a permanent or semi-permanent breeding population of Omura’s whale. The interaction of the westward-flowing extension of the South Equatorial current with the topography of the northeastern entrance of the Mozambique Channel generates large anticyclonic eddies (Schouten et al. 2003). Anticyclonic eddies provoke upwellings which in turn favour high phytoplankton production. Eddies and currents play an important part in the spatial distribution of the chlorophyll in the Mozambique Channel (Quartly and Srokosz 2003). High chlorophyll concentration associated with upwellings are found along the coasts of Madagascar and Mozambique, notably at the northwestern and southwestern tips of Madagascar (Zubkov and Quarty 2003). It is possible that the particular topography of the shelf area off northwestern Madagascar favours the accumulation and retention of drifting, fast-growing zooplankton and micronekton including small jellyfish and other gelatinous animals, which Omura’s whales exploit. Although poorly energetic, this diet may suffice to contribute a part of the energetic requirements of middle-sized rorquals such as Omura’s whales in tropical waters, where individual energetic expenditure is less than in colder waters.

References

Cerchio S, Andrianantenaina B, Lindsay A, Rekdahl M, Andrianarivelo N, Rasoloarjajo T (2015) Omura’s whales (Balaenoptera omurai) off northwest Madagascar: ecology, behaviour and conservation needs. Royal Society Open Science 2: 150301
Cypriano-Souza AL, Oliveira de Meirelles AC, Carvalho VL, Bonatto SL (2017) Rare or cryptic? The first report of an Omura’s whale (Balaenoptera omurai) in the South Atlantic Ocean. Marine Mammal Science 33: 80-95
deVos A (2017) First record of Omura’s whale, Balaenoptera omurai, in Sri Lankan waters. Marine Biodiversity Records 10: 18
Jung J-L, Mullié WC, Van Waerebeek K, Wagne MM, Ould Bilal AS, Ould Sidaty ZA, Toomey L, Méheust E, Marret F (2016) Omura’s whale off West Africa: autochtonous population or inter-oceanic vagrant in the Atlantic Ocean? Marine Biology Research 12: 66-75
Kahn B, Pet J (2002) Rare whale species identified in Komodo National Park, Indonesia. Apex Environmental, Denpasar, 3 p
Krajewsky H (2012) Extraordinarily rare whale sighting – Omura’s whale (Balaenoptera omurai). Marine Education and Research Society, Alert Bay (accessible online from https://mersociety.wordpress.com/author/mersociety/)
Ottewell K, Coughran D, Gall M, Irvine L, Byrne M (2016)A recent stranding of Omura’s whale (Balaenoptera omurai) in Western Australia. Aquatic Mammals 42: 193-197
Ponnampalam LS (2012) Opportunistic observations on the distribution of cetaceans in the Malaysian South China, Sulu and Sulawesi Seas and an updated checklist of marine mammals in Malaysia. Raffles Bulletin of Zoology 60: 221-231
Quartly GD, Srokosz MA (2003) Eddies in the southern Mozambique Channel. Deep-Sea Research Part II Topical Studies in Oceanography 51: 69-83
Ranjbar S, Dakhteh MS, Van Waerebeek K (2016) Omura’s whale (Balaenoptera omurai) stranding on Qeshm Island, Iran: further evidence for a wide (sub)tropical distribution, including the Persian Gulf. Journal of Marine Biology and Oceanography 5: 1-9

Sasaki T, Nikaido M, Wada S, Yamada TK, Cao Y, Hasegawa M, Okada N (2006) Balaenoptera omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. Molecular Phylogenetics and Evolution 41: 40–52

Schouten MW, de Ruijter WPM, van Leeuwen PJ, Ridderinkhof H (2003) Eddies and variability in the Mozambique Channel. Deep-Sea Research Part II Topical Studies in Oceanography 50: 1987-2003

Wada S, Oishi M, Yamada TK (2003) A newly discovered species of living baleen whale. Nature 426: 278-281

Xu M, Wang X, Miao X, Wu F, Ma M, Tao C, Zhu Q (2017) Stranding record of Omura’s Whale (Balaenoptera omurai Wada, Oishi, and Yamada, 2003) in the Taiwan strait, China. Aquatic Mammals 43: 289-298

Yamada T (2009) Omura’s whale, Balaenoptera omurai. Pages 330–331 in Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T (eds.) The wild mammals of Japan. Mammalogical Society of Japan, Kyoto

Yamada TK, Chou L-S, Chantrapornsyl S, Adulyanukosol K, Chakravarti SK, Oishi M, Wada S, Yao C-J, Kakuda T, Tajima Y, Arai K, Umetani A, Kurihara N (2006a) Middle-sized balaenopterid whale specimens (Cetacea: Balaenopteridae) preserved at several institutions in Taiwan, Thailand, and India. Memoirs of the National Science Museum, Tokyo 44: 1-10

Yamada TK, Kakuda T, Tajima Y (2008) Middle sized balaenopterid whale specimens in the Philippines and Indonesia. Memoirs of the National Museum of Natural Sciences, Tokyo 45: 75–83

Yamada TK, Kemper C, Tajima Y, Umetani A, Janetzki H, Pemberton D (2006b) Marine mammal collections in Australia. National Science Museum Monographs 34: 117-126

Zubkov M, Quartly GD (2003) Ultraplankton distribution in surface waters of the Mozambique Channel – flow cytometry and satellite imagery. Aquatic Microbial Ecology 33: 155-161
Fig. 1. Point-map distribution of Omura’s whale as obtained from sightings (Kahn and Pet 2002; Yamada 2009; Krajewsky 2012; Cerchio et al. 2015, and references therein; de Vos 2017; present report) symbolized by triangles; strandings [Wada et al. 2003; Yamada et al. 2006b; Ponnampalam 2012; Jung et al. 2016; Ottewell et al. 2016; Ranijbar et al. 2016; Cypriano-Souza et al. 2017; Xu et al. 2017, and references therein; also including three presumably stranded specimens reported from Thailand, and six from Taiwan, by Yamada et al. (2006a)] symbolized by circles; and captures (Wada et al. 2003; Yamada et al. 2008) symbolized by squares, with number of specimens reported.

Fig. 2. Omura’s whales photographed off Nosy Be (13°26’S 48°05’E), 06 November 1994. A. Skimming posture of Omura’s whale, viewed from above. B. View of the right and dorsal sides of an individual. C. Backlight view of the left side of another individual, also showing a swarm of gelatinous micronekton under the surface.
