Eisenstein cocycles in motivic cohomology

Romyar Sharifi
joint with A. Venkatesh

University of California, Los Angeles

Oct. 19, 2020
The maps

Goals

1. To give a new construction of explicit maps of Busuioc and S. for $N \geq 1$:

$$\Pi_N : H_1(X_1(N), \mathbb{Z})^+ \rightarrow K_2(\mathbb{Z}[\mu_N])^+, \quad [c : d] \mapsto \{1 - \zeta_N^c, 1 - \zeta_N^d\}.$$

taking (projections of) Manin symbols to Steinberg symbols. Here, $+$ denotes the part fixed by complex conjugation after inverting 2.

2. To verify that Π_N is Eiseinstein, i.e., factors through the quotient of homology by an Eisenstein ideal I in the weight 2 Hecke algebra.

Details

- The symbols in question lie in a homology group relative to cusps $C_1^0(N)$ not over $\infty \in X_0(N)$ and the second K-group of $\mathbb{Z}[\mu_N, \frac{1}{N}]$. We define a map Π_N^0 on these groups and restrict.

- The Manin symbols are classes of geodesics $[c : d] = \{\frac{a}{c} \rightarrow \frac{b}{d}\}$ between cusps, where $ad - bc = 1$. They depend only on (nonzero) c, d modulo N.

- The Steinberg symbols $\{1 - \zeta_N^c, 1 - \zeta_N^d\}$ are of cyclotomic N-units. Here, $\zeta_N = e^{2\pi i/N}$, viewing $\overline{\mathbb{Q}} \subset \mathbb{C}$.

- The Eisenstein ideal I is generated by $T_\ell - 1 - \ell \langle \ell \rangle$ for primes ℓ, where we take $\langle \ell \rangle = 0$ if $\ell \nmid N$. The action is via dual correspondences on $X_1(N)$.

Construction (2007)

The map Π_N was independently constructed by Busuioc and S. Its well-definedness follows via explicit presentation of relative homology and relations of the form $\{x, 1 - x\} = 0$ on Steinberg symbols.

Conjecture (S.)

1. The map Π_N is Eisenstein, i.e., $\Pi_N \circ (T_\ell - 1 - \ell \langle \ell \rangle) = 0$ for all primes ℓ.
2. The resulting map ϖ_N on the quotient by I is an isomorphism.

Work of Fukaya and Kato (2011)

- Proved the first (original) conjecture after tensoring with \mathbb{Z}_p for $p \mid N$. Their method can be extended to $p \nmid N$ if $p \nmid \varphi(N)$.
- Proved a result towards the second conjecture (on p-parts, same conditions) and a stronger p-adic form.

Theorem (S.-Venkatesh)

We have $\Pi_N \circ (T_\ell - 1 - \ell \langle \ell \rangle) = 0$ for all primes $\ell \nmid N$.
Approach of Fukaya-Kato

Method of Fukaya-Kato

Very roughly, for $Y_1(N)$ viewed as a $\mathbb{Z}[\frac{1}{N}]$-scheme, show that Π_N factors as:

$$H_1(X_1(N), C_1^0(N), \mathbb{Z}) \xrightarrow{\mathbb{Z}_N^N} K_2(Y_1(N)) \xrightarrow{\Pi_N^\circ} K_2(\mathbb{Z}[\mu_N, \frac{1}{N}])^+$$

$$\Pi_N^\circ$$

$\{1 - \zeta^c_N, 1 - \zeta^d_N\}.$

Here:

- $\{g_\frac{c}{N}, g_\frac{d}{N}\}$ are Beilinson-Kato elements, which are Steinberg symbols of Siegel units on $Y_1(N),$
- \mathbb{Z}_N is well-defined and Hecke-equivariant by a regulator computation, taking place first up modular and cyclotomic towers,
- ∞ is Eisenstein (for $\ell \mid N$, only on Beilinson-Kato elements).

Remark

The map \mathbb{Z}_N actually takes values in ordinary cohomology $H^2_{\text{ét}}(Y_1(N), \mathbb{Q}_p(2))^\text{ord}.$ There is a map $K_2(Y_1(N)) \otimes_\mathbb{Z} \mathbb{Z}_p \rightarrow H^2_{\text{ét}}(Y_1(N), \mathbb{Z}_p(2))^\text{ord}$ with unknown kernel.
Our approach

Our method

• For the \mathbb{Q}-scheme \mathbb{G}_m^2, there is a $\text{GL}_2(\mathbb{Z})$-equivariant exact sequence

$$0 \rightarrow H^2(\mathbb{G}_m^2, 2) \rightarrow K_2(\mathbb{Q}(\mathbb{G}_m^2)) \xrightarrow{\partial} \bigoplus_D \mathbb{Q}(D) \times \mathbb{Q}(D) \xrightarrow{\partial} \bigoplus_x \mathbb{Z} \rightarrow 0$$

where D runs over divisors and x over closed points, and $H^2(\mathbb{G}_m^2, 2)$ is motivic cohomology. The residue maps ∂ are tame symbols and take orders of zeros in the two cases.

• Associate to $1 \in \mathbb{Z}$ at $x = (1, 1)$ a 1-cocycle

$$\Theta: \text{GL}_2(\mathbb{Z}) \rightarrow K_2(\mathbb{Q}(\mathbb{G}_m^2))/H^2(\mathbb{G}_m^2, 2).$$

• Using the exact sequence, one sees that has an explicit description, is parabolic, integral, and Eisenstein.

• Specialize via pullback by $(1, \zeta_N)$ to obtain a parabolic cocycle

$$\Theta_N: \Gamma_0(N) \rightarrow K_2(\mathbb{Z}[\mu_N, \frac{1}{N}])/\langle{-1, -\zeta_N}\rangle$$

that is Eisenstein for primes $\ell \nmid N$.

• The restriction of Θ_N to $\Gamma_1(N)$ induces Π_N.
For primes $n \nmid N$, we construct a motivic cocycle

$$n \Theta : \text{GL}_2(\mathbb{Z}) \to K_2(\mathbb{Q}(\mathcal{E}^2)) \otimes_{\mathbb{Z}} \mathbb{Z}'$$

for $\mathbb{Z}' = \mathbb{Z}[\frac{1}{5!}]$ for the universal elliptic curve \mathcal{E} over $Y_1(N)$.

The cocycle $n \Theta$ is parabolic, integral, Hecke-equivariant away from the level, and has an explicit formula in terms of products of theta functions.

The cocycle $n \Theta$ specializes to a cocycle

$$n \Theta_N : \Gamma_0(N) \to H^2(Y_1(N), \mathbb{Z}'(2)).$$

There exists a universal cocycle $\Theta_N : \Gamma_0(N) \to H^2(Y_1(N), \mathbb{Q}(2))$ that gives rise to all $n \Theta_N$.

Taking \mathbb{Z}_p-coefficients and ordinary parts, we recover the maps z_N for $p > 5$ and show their Hecke-equivariance for T_ℓ with $\ell \nmid N$.

Remark

We do not use this construction in studying Π_N.
Motivic cohomology (naive version)

Notation
- Y an equidimensional quasi-projective scheme of finite type over a field F
- Δ^j the j-simplex over F

Definition (Bloch’s cycle complex)
Bloch’s cycle complex $z^k(Y, \cdot)$ has terms

$$z^k(Y, j) = \{\text{pure codim. } k \text{ cycles in } Y \times \Delta^j \text{ meeting faces of } \Delta^j \text{ properly}\}$$

with boundaries given by alternating sums of face maps.

Definition
Set $H^i(Y, k) = H_{2k-i}(z^k(Y, \cdot))$ for $i \in \mathbb{Z}$ and $k \geq 0$.

Remark
For Y smooth and F perfect, these are isomorphic to the motivic cohomology groups of Voevodsky.
Properties of motivic cohomology

There are pullback and proper pushforward maps.

If \(Y = \bigsqcup_{h=1}^t Y_h \), then \(H^i(Y, k) = \bigoplus_{h=1}^t H^i(Y_h, k) \).

\(H^i(Y, k) \cong H^i(Y \times \mathbb{A}^1, k) \) via pullback.

\(H^0(Y, 0) \cong \mathbb{Z} \) if \(Y \) is connected, \(H^i(Y, 0) = 0 \) for all \(i \neq 0 \).

For \(Y \) smooth, \(H^1(Y, 1) \cong O_Y^\times \), and \(H^i(Y, 1) = 0 \) for all \(i \notin \{1, 2\} \).

For \(Y \) smooth, \(H^i(Y, k) = 0 \) for all \(i > k + \dim Y \). If moreover \(Y \) separated, then \(H^i(Y, k) = 0 \) for \(i > 2k \).

For \(\rho: Z \to Y \) a closed embedding of pure codimension \(c \) with open complement \(\iota: U \to Y \), there is an exact Gysin sequence (\(\partial = \text{residue map} \)):

\[
\cdots \to H^i(Y, k) \xrightarrow{\iota^*} H^i(U, k) \xrightarrow{\partial} H^{i-2c+1}(Z, k-c) \xrightarrow{\rho^*} H^{i+1}(Y, k) \to \cdots.
\]

Products of cycles give rise to external products, and pulling back external products for \(Y \times Y \) by the diagonal yields cup products

\[
H^i(Y, k) \times H^{i'}(Y, k') \xrightarrow{\cup} H^{i+i'}(Y, k + k').
\]

\(\bigoplus_{i=0}^\infty H^i(\text{Spec} \, F, i) \cong \bigoplus_{i=0}^\infty K^M_i(F) \), the Milnor \(K \)-theory ring.

Note that \(K^M_i(F) \cong K_i(F) \) for \(i \leq 2 \).
A coniveau spectral sequence

For \(n \geq 0 \), there is a right half-plane spectral sequence

\[
E_1^{p,q} = \bigoplus_{x \in Y_p} H^{q-p}(k(x), n - p) \Rightarrow H^{p+q}(Y, n),
\]

where \(Y_i \) denotes the irreducible codimension \(i \) cycles on \(Y \) (a smooth variety).

For \(n = 2 \), its row for \(q = 2 \) is a complex \(K \) in homological degrees \([2, 0]\):

\[
K_2(Q(Y)) \to \bigoplus_{D \in Y_1} K_1(Q(D)) \to \bigoplus_{x \in Y_2} K_0(Q(x)),
\]

and we have

\[
H_i(K) \cong H^{4-i}(Y, 2).
\]

The case of \(\mathbb{G}_m^2 \)

We have \(H^i(\mathbb{G}_m^2, 2) = 0 \) for \(i > 2 \), so there is an exact sequence

\[
0 \to H^2(\mathbb{G}_m^2, 2) \to K_2 \to K_1 \to K_0 \to 0.
\]

It is equipped with a pullback action of \(\Delta = M_2(\mathbb{Z}) \cap \text{GL}_2(\mathbb{Q}) \) induced by the right action of \(\Delta \) on \(\mathbb{G}_m^2 \), given on coordinates by \((z_1, z_2) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (z_1^a z_2^c, z_1^b z_2^d)\).
Symbols

Let z_1 and z_2 denote the coordinate functions on \mathbb{G}_m^2.

- In K_0, let e be the canonical generator of $H^0(\{1\}, 0) \cong \mathbb{Z}$.
- In K_1, for $a, c \in \mathbb{Z}$ with $(a, c) = 1$, let
 \[
 \langle a, c \rangle = 1 - z_1^b z_2^d \in H^1(S_{a,c} - \{1\}, 1),
 \]
 where $ad - bc = 1$ and $S_{a,c} = \ker(\mathbb{G}_m^2 \xrightarrow{(x,y) \mapsto ax + cy} \mathbb{G}_m)$. Then
 \[
 \langle a, c \rangle = (a \ b \\ c \ d)^* \langle 1, 0 \rangle.
 \]
- In K_2, for $\gamma = (a \ b \\ c \ d) \in \text{GL}_2(\mathbb{Z})$, let
 \[
 \langle \gamma \rangle = \langle (a, c), (b, d) \rangle = (1 - z_1^a z_2^c) \cup (1 - z_1^b z_2^d) \in H^2(\mathbb{G}_m^2 - S_{a,c} \cup S_{b,d}, 2).
 \]
 Then \[
 \langle \gamma \rangle = \gamma^* \langle (1 \ 0) \rangle.
 \]

Residues

We have

\[
\partial \langle a, c \rangle = e \quad \text{and} \quad \partial \langle \gamma \rangle = \begin{cases}
 \langle a, c \rangle - \langle -b, -d \rangle, & \text{det } \gamma = 1 \\
 \langle -a, -c \rangle - \langle b, d \rangle, & \text{det } \gamma = -1.
\end{cases}
\]
Proposition

Set \(\overline{K}_2 = K_2 / H^2(\mathbb{G}_m^2, 2) \). There exists a unique 1-cocycle

\[
\Theta : GL_2(\mathbb{Z}) \rightarrow \overline{K}_2, \quad \gamma \mapsto \Theta_\gamma
\]

such that

\[
\partial \Theta_\gamma = (\gamma^* - 1)\langle 0, 1 \rangle.
\]

for all \(\gamma \in GL_2(\mathbb{Z}) \).

Proof.

For \(\gamma, \mu \in GL_2(\mathbb{Z}) \), we have

\[
\partial \Theta_{\gamma \mu} = ((\gamma \mu)^* - 1)\langle 0, 1 \rangle
\]

\[
= (\gamma^* - 1)\langle 0, 1 \rangle + \gamma^* (\mu^* - 1)\langle 0, 1 \rangle
\]

\[
= \partial \Theta_\gamma + \gamma^* \partial \Theta_\mu.
\]

Since \(\partial : \overline{K}_2 \rightarrow K_1 \) is injective and \(K \) is \(GL_2(\mathbb{Z}) \)-equivariant, we have

\[
\Theta_{\gamma \mu} = \Theta_\gamma + \gamma^* \Theta_\mu.
\]
Proposition

The cocycle Θ is parabolic, i.e., $\Theta|_P$ is null-cohomologous on all stabilizers of $\mathbb{P}^1(\mathbb{Q})$ under its right action of $\text{GL}_2(\mathbb{Z})$.

Proof.

Let

$$P = \left\{ \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} \mid c \in \mathbb{Z}, \ d = \pm 1 \right\}.$$

For $\gamma \in P$, we have $\gamma^* \langle 0, 1 \rangle = \langle 0, 1 \rangle$, so $\partial \Theta_\gamma = 0$, so $\Theta_\gamma = 0$. Thus $\Theta|_P = 0$. Since the parabolic subgroups form a single conjugacy class, Θ is a coboundary on all of them.
Definition

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z})$, a connecting sequence $v = (v_i)_{i=0}^k$ for γ is $v_i = (b_i, d_i) \in \mathbb{Z}^2$ such that $v_0 = (0, 1)$, $v_k = \text{det}(\gamma)(b, d)$, and

$$\text{det} \begin{pmatrix} b_{i-1} & b_i \\ d_{i-1} & d_i \end{pmatrix} = 1$$

for all $1 \leq i \leq k$.

Proposition

Let $\gamma \in \text{GL}_2(\mathbb{Z})$ and $v = (v_i)_{i=0}^k$ be a connecting sequence for γ. Then

$$\Theta_\gamma = \sum_{i=1}^k \langle v_i, -v_{i-1} \rangle \in \overline{K}_2.$$
Hecke operators

Notation

Set \(\Gamma = \text{GL}_2(\mathbb{Z}) \). Fix a prime \(\ell \). Let \(g_0 = (\ell \; 1) \in \Delta = M_2(\mathbb{Z}) \cap \text{GL}_2(\mathbb{Q}) \), and write

\[
\Gamma g_0 \Gamma = \bigsqcup_{j=0}^{\ell} g_j \Gamma
\]

with \(g_j = (\ell \; j \; 1) \) for \(0 \leq j \leq \ell - 1 \) and \(g_\ell = (1 \; \ell) \).

For \(\gamma \in \Gamma \), there exists a permutation \(\sigma \) of \(\{0, \ldots, \ell\} \) and \(\gamma_j \in \Gamma \) with

\[
\gamma g_j = g_{\sigma(j)} \gamma_j
\]

for \(0 \leq j \leq \ell \).

Definition

Let \(A \) be a \(\mathbb{Z}[\Delta] \)-module. If \(\theta : \Gamma \to A \) is a 1-cocycle, then set

\[
T_\ell \theta(\gamma) = \sum_{j=0}^{\ell} g_{\sigma(j)}^* \theta(\gamma_j).
\]

This descends to a well-defined action on \(H^1(\Gamma, A) \).
Proposition

In $H^1(\text{GL}_2(\mathbb{Z}), \overline{K}_2)$, the classes of $T_\ell \Theta$ and $(\ell + [\ell]^*) \Theta$ agree.

Proof.

Define T_ℓ on K by $T_\ell = \sum_{j=0}^{\ell} g_j^*$. Then $T_\ell e$ is the sum of the classes of the cyclic subgroups of order ℓ in μ_ℓ^2, and μ_ℓ^2 has class $[\ell]^* e \in K_0$. That is,

$$T_\ell e = (\ell + [\ell]^*) e.$$

So there exists a unique $\psi \in \overline{K}_2$ with

$$\partial \psi = (T_\ell - \ell - [\ell]^*) \langle 0, 1 \rangle.$$

Since $\gamma^* g_j^* = g_{\sigma(j)}^* \gamma_j^*$, we have

$$\partial (T_\ell \Theta)_{\gamma} = (\gamma^* - 1) T_\ell \langle 0, 1 \rangle,$$

so we have

$$(T_\ell - \ell - [\ell]^*) \Theta_{\gamma} = (\gamma^* - 1) \psi,$$

which is to say that $(T_\ell - \ell - [\ell]^*) \Theta_{\gamma}$ is null-cohomologous.
Equivariant class

Definition

For Γ acting on the right on Y, let $H^*_\Gamma(Y, k)$ denote the cohomology of the total complex of the double complex that is the Γ-bar resolution of Bloch’s cycle complex $z^k(Y, 2k - \cdot)$. This provides a spectral sequence

$$E^{i,j}_2 = H^i(\Gamma, H^j(Y, k)) \Rightarrow H^{i+j}_\Gamma(Y, k).$$

Remark

We set $\Gamma = \text{GL}_2(\mathbb{Z})$ and implicitly tensor everything by $\mathbb{Z}[\frac{1}{6}]$ in what follows. A Gysin sequence gives an isomorphism

$$H^3_\Gamma(\mathbb{G}_m^2 - \{1\}, 2) \simto H^0_\Gamma(\{1\}, 0) \cong \mathbb{Z}.$$

Let $E \in H^3_\Gamma(\mathbb{G}_m^2 - \{1\}, 2)$ map to the identity class under this isomorphism. The image of E under the composition

$$H^3_\Gamma(\mathbb{G}_m^2 - \{1\}, 2) \to H^3_\Gamma(\mathbb{Q}(\mathbb{G}_m^2), 2) \to H^1(\Gamma, H^2(\mathbb{Q}(\mathbb{G}_m^2), 2))$$

gives the class of Θ.
Fixed parts under trace operators

Definition

For $m \geq 1$, the *trace map* $[m]_* : K \to K$ is in degree i the sum of maps

$$[m]_* : K_i(\mathbb{Q}(x)) \to \bigoplus_{y \in Y_{2-i}, my = x} K_i(\mathbb{Q}(y)).$$

for $x \in Y_{2-i}$ given by the norms for the field extensions $\mathbb{Q}(y)/\mathbb{Q}(x)$. Set

$$K_i^{(0)} = \{ c \in K_i \mid [m]_*(c) = c \text{ for all } m \geq 1 \}.$$

Example

Consider $1 - z \in \mathbb{Q}(\mathbb{G}_m)^\times$, where z is the coordinate function on \mathbb{G}_m. For any $m \geq 1$, we have

$$[m]_*(1 - z) = \prod_{i=0}^{m} (1 - \zeta_m^i z^{1/m}) = 1 - z.$$
Lemma

The symbols e, $\langle a, c \rangle$, and $\langle \gamma \rangle$ lie in $K^{(0)}$, and

$$H^2(\mathbb{G}^2_m, 2)^{(0)} = \langle -z_1 \cup -z_2 \rangle \cong \mathbb{Z}.$$

We therefore have $\Theta: \text{GL}_2(\mathbb{Z}) \to K_2^{(0)}/\langle \{ -z_1, -z_2 \} \rangle$.

Specialization on motivic cohomology

Let $s: \text{Spec } \mathbb{Q}(\mu_N) \to \mathbb{G}^2_m$ with value $(1, \zeta_N) \in \mathbb{G}^2_m(\mathbb{Q}(\mu_N))$, corresponding to

$$\mathbb{Q}[z_1^{\pm 1}, z_2^{\pm 1}] \to \mathbb{Q}(\mu_N), \quad z_1 \mapsto 1, \; z_2 \mapsto \zeta_N.$$

Let

$$s^*: H^2(\mathbb{G}^2_m, 2) \to K_2(\mathbb{Q}(\mu_N)).$$

Then

$$s^*(-z_1 \cup -z_2) = \{-1, -\zeta_N\} = \begin{cases} \{-1, -1\} & N \text{ odd} \\ 0 & N \text{ even.} \end{cases}$$
Specialization of values of Θ

Remark

The pullback by s doesn’t make sense on K_2! There is no $\mathbb{Q}(\mathbb{G}_m^2) \to \mathbb{Q}(\mu_N)$. However, it does make sense on $\lim_{\longrightarrow} H^2(U, 2)$ inside K_2.

Congruence subgroup

Let $\Gamma_0 = \tilde{\Gamma}_0(N) = \{(a/b) \in \text{GL}_2(\mathbb{Z}) \mid N \mid c\}$.

Specialization of Θ_γ

For $\gamma \in \Gamma$, we have $\Theta_\gamma \in H^2(\mathbb{G}_m^2 - S_{0,1} \cup S_{b,d})/\langle \{z_1, z_2\} \rangle$. If $\gamma \in \Gamma_0$, then $N \nmid d$, so we may set

$$\Theta_{N,\gamma} = s^* \Theta_\gamma \in K_2(\mathbb{Q}(\mu_N))/\langle \{-1, -\zeta_N\} \rangle.$$

Notation and conventions

- For $N \nmid d$, we let $\sigma_d \in \text{Gal}(\mathbb{Q}(\mu_N)/\mathbb{Q})$ be such that $\sigma_d(\zeta_N) = \zeta_N^d$.
- We have $\Gamma_0 \to \text{Gal}(\mathbb{Q}(\mu_N)/\mathbb{Q})$ given by $(a/b) \mapsto \sigma_d$.
- We let Γ_0 act on $K_2(\mathbb{Q}(\mu_N))$ through this map.
The main theorem

Theorem

The map

\[\Theta_N : \tilde{\Gamma}_0(N) \to K_2(\mathbb{Q}(\mu_N))/\langle \{-1, \zeta_N\} \rangle, \quad \gamma \mapsto \Theta_{N,\gamma} \]

is a parabolic 1-cocycle such that the following hold:

1. **There exists a connecting sequence** \((b_i, d_i)_{i=0}^k\) for \(\gamma\) with \(N \nmid d_i\) for all \(i\), and

 \[\Theta_{N,\gamma} = \sum_{i=0}^k \left\{ 1 - \zeta_{d_i}^i, 1 - \zeta_{-d_i-1}^N \right\}, \]

2. \((T_\ell - \ell - \sigma_\ell)\Theta_N\) is null-cohomologous for all primes \(\ell \nmid 2N\), and if \(2 \nmid N\), then \(2(T_2 - 2 - \sigma_2)\Theta_N\) is null-cohomologous.

3. \(\Theta_N\) takes values in \(K_2(\mathbb{Z}[\mu_N, \frac{1}{N}])/\langle \{-1, -\zeta_N\} \rangle\).

Remark

All but the last property follow from the analogous property of \(\Theta\). The last is seen from the explicit formula.
Maps on homology

Notation

The restriction of Θ_N to $\Gamma_1 = \{(a \ b \ c \ d) \in \Gamma_0 \mid d \equiv 1 \mod N\}$ is a homomorphism. Being parabolic, its further restriction to $\Gamma_1(N) = \Gamma_1 \cap \text{SL}_2(\mathbb{Z})$ induces

$$H_1(X_1(N), \mathbb{Z})_+ \to K_2(\mathbb{Z}[\mu_N])/\langle\{-1, \zeta_N\}\rangle,$$

where the subscript $+$ is the maximal quotient on which complex conjugation acts trivially. If we invert 2, we obtain a homomorphism

$$\Pi_N: H_1(X_1(N), \mathbb{Z})^+ \to K_2(\mathbb{Z}[\mu_N])^+.$$

By the explicit formula, it is the restriction of Π_N°, so the map Π_N defined earlier.

Remarks

1. Π_N is $(\mathbb{Z}/N\mathbb{Z})^\times$-equivariant in the sense that for the diamond operator $\langle d \rangle$, we have $\Pi_N \circ \langle d \rangle = \sigma_d \circ \Pi_N$.

2. The theorem tells us that $\Pi_N \circ (T_\ell - \ell - \langle \ell \rangle) = 0$ for $\ell \nmid N$. This appears to differ from our original condition for being Eisenstein, but it is equivalent as we are now using usual rather than dual correspondences (and $\ell \nmid N$).
Set-up

Let \(E \) be an elliptic curve over \(Y \) over a characteristic 0 field \(F \). Again we have a \(\Delta \)-equivariant complex \(K \) in homological degrees \([2, 0]\),

\[
K_2(\mathbb{Q}(E^2)) \xrightarrow{\partial} \bigoplus_{D \in (E^2)_1} \mathbb{Q}(D) \xrightarrow{\partial} \bigoplus_{x \in (E^2)_2} \mathbb{Z},
\]

with \(H_i(K) = H^{4-i}(E^2, 2) \). None of these groups vanish.

Trace-fixed parts

Fix \(n > 1 \), and let \(\mathbb{N}_n = \{m \geq 1 \mid (m, n) = 1\} \). Let \(\mathbb{Z}' \) be a localization of \(\mathbb{Z} \).

For a \(\mathbb{Z}[\mathbb{N}_n] \)-module \(M \), let

\[
M^{(0)} = \{x \in M \otimes_{\mathbb{Z}} \mathbb{Z}' \mid [m]_* x = x \text{ for all } m \in \mathbb{N}_n\}.
\]

Trace-fixed parts of the cohomology of \(E^2 \)

For \(\mathbb{Z}' = \mathbb{Z}[\frac{1}{6}] \), we have \(H^i(E^2, 2)^{(0)} = 0 \) unless \(i = 4 \), in which case it isomorphic to \(\mathbb{Z}' \). This arises from a slight extension of work of Deninger-Murre to allow integral coefficients, and involves the Fourier-Mukai transform on \(E^2 \).
Construction of motivic cocycles

Remark

The sequence $0 \to K_2^{(0)} \to K_1^{(0)} \to K_0^{(0)} \to \mathbb{Z}' \to 0$ is exact outside of $K_0^{(0)}$.

Construction of an abstract cocycle

Let $Z \in \ker(K_0^{(0)} \to \mathbb{Z}')$ be $\text{GL}_2(\mathbb{Z})$-fixed. If it is the image of some $\eta \in K_1^{(0)}$, then we can define

$$
\Theta^Z: \text{GL}_2(\mathbb{Z}) \to K_2^{(0)}, \quad \gamma \mapsto \Theta^Z_\gamma
$$

for $\gamma \in \text{GL}_2(\mathbb{Z})$ by

$$
\partial \Theta^Z_\gamma = (\gamma^* - 1)\eta.
$$

Cocycles for the universal elliptic curve

For \mathcal{E} the universal elliptic curve over $Y = Y_1(N)$ over \mathbb{Q} with $N \geq 4$,

$$
e_n = n(n^3(0) - nT_n(0) + \mathcal{E}[n]^2) \in K_0^{(0)}
$$

is $\text{GL}_2(\mathbb{Z})$-fixed and the residue of an element $\langle 0, 1 \rangle_n \in K_1^{(0)}$ formed out of theta-functions on \mathcal{E} and their divisors. Hence, we obtain a cocycle $n\Theta$.

23 / 26
The cocycle $n\Theta$

Remarks

The cocycle

- is parabolic,
- satisfies an explicit formula for sums of symbols formed out of exterior products of theta-functions,
- is equivariant in the sense that the class of $T_\ell(n\Theta)$ for $\ell \nmid N$ equals the class of $T'_\ell(n\Theta)$ for T'_ℓ determined by a correspondence on Y. (Here, we also need to invert 5 for $\ell = 5$, so take $\mathbb{Z}' = \mathbb{Z}\left[\frac{1}{30}\right]$ from now on.)

There is no universal cocycle independent of n, much as with theta-functions. However, setting

$$V_\ell = \ell(\ell^3 - \ell T_\ell + [\ell]^*),$$

the classes $[V_\ell(n\Theta)]$ and $[V_n(\ell\Theta)]$ are equal.
Specialized cocycles

Specialization

On $\tilde{\Gamma}_0(N)$, we can pull back $n\Theta$ by $s = (0, \iota)$ with $\iota: Y \to \mathcal{E}$ the canonical N-torsion section to obtain a Hecke-equivariant parabolic cocycle

$$n\Theta_N: \tilde{\Gamma}_0(N) \to H^2(Y, \mathbb{Z}'(2)).$$

Universal cocycle

Much as with Siegel units, there exists $\Theta_N: \tilde{\Gamma}_0(N) \to H^2(Y, \mathbb{Z}'[\frac{1}{N}](2))$ satisfying $[V_n(\Theta_N)] = [n\Theta_N]$. For $\gamma \in \tilde{\Gamma}_1(N)$ and an N-connecting sequence $(b_i, d_i)_{i=0}^k$, we have

$$\Theta_{N, \gamma} \equiv \sum_{i=1}^k g_{\frac{d_i}{N}} \cup g_{\frac{-d_i-1}{N}} \mod \mathcal{V},$$

where $g_{\frac{u}{N}}$ is the usual Siegel unit on Y for $N \nmid u$, and \mathcal{V} is the common kernel of all (analogously-defined) operators V_{ℓ}' on $H^2(Y, \mathbb{Z}'(2))$.

Remarks

- On $\tilde{\Gamma}_1(N)$, these cocycles actually take values in the cohomology of $X_1(N)$.
- The group \mathcal{V} vanishes in any standard realization.
The motivic zeta map

The map Θ_N induces a zeta map

$$z_N : H_1(X_1(N), \mathbb{Z})_+ \to H^2(Y, \mathbb{Z}'[\frac{1}{N}](2))$$

satisfying $z_N \circ T_\ell = T_\ell \circ z_N$ for $\ell \nmid N$.

Comparison with known constructions

- The composition of z_N (defined over $\mathbb{Z}[\frac{1}{6N}]$) with the map to $K_2(Y) \otimes \mathbb{Z}[\frac{1}{6N}]$ agrees with maps of Goncharov and Brunault (modulo the image of \mathcal{V}).
- The composition of z_N with the map to $H^2_{\text{ét}}(Y, \mathbb{Q}_p(2))^{\text{ord}}$ agrees with a map of Fukaya-Kato for $p \mid N$ up to an Atkin-Lehner involution. They show their map to be equivariant for all Hecke-operators (using dual operators on the right) via a regulator computation. (For $p \nmid N$, it agrees with a map of Lecouturier and J. Wang.)

p-adic integrality

We can actually construct a zeta map z_N to $H^2_{\text{ét}}(Y, \mathbb{Z}_p(2))^{\text{ord}}$ after removing the $(\mathbb{Z}/p\mathbb{Z})^\times$-eigenspace for the square of $\omega : (\mathbb{Z}/p\mathbb{Z})^\times \leftrightarrow \mathbb{Z}_p^\times$.