Granular metamaterials for seismic protection. Hyperelastic and hypoelastic models

Sergey Kuznetsov1,2,3,* and Hubert Maigre4

1Moscow State University of Civil Engineering, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3Institute for Problems in Mechanics, Moscow, Russia
4INSA de Lyon, Villeurbanne, France

$kuzn-sergey@yandex.ru$

Abstract. The hyperelastic potentials along with hypoelastic models applicable to describe dynamic behaviour of the granular metamaterials at wave propagation in their structure under seismic activity are studied. The specially constructed potentials suitable for bimodular materials are analysed. Effects of possible mechanical energy transformation due to formation and propagation of the shock wave fronts are discussed.

1. Introduction
Granular metamaterials used for fillings of seismic barriers and seismic pads are of extensive research at different laboratories, institutes, and companies across the globe. For describing dynamic properties of these materials several approaches are developed, including elastic, elastic-plastic, viscoelastic-plastic, hydrodynamic equations of state, etc. Herein, various nonlinear elastic models are considered.

For elastic models that do not exhibit loss of mechanical energy at the reversal loadings, the following implications hold

\[\text{hyperelastic} \subset \text{elastic} \subset \text{hypoelastic} \subset \text{elasto-plastic}. \] (1)

All the elastic models considered below are confined to the infinitesimal relations, however, with minor modifications the presented analysis can be extrapolated to the case of large deformations.

2. Hyperelastic potentials
2.1. General equations
The strain-stress relation for these models takes the form

\[\sigma = \lambda (I_\varepsilon, II_\varepsilon, III_\varepsilon) I_\varepsilon + 2\mu (I_\varepsilon, II_\varepsilon, III_\varepsilon) \cdot \varepsilon, \] (2)

where Lame’s \(\lambda \) and \(\mu \) are functions of strain invariants

\[I_\varepsilon \equiv \text{tr}(\varepsilon), \quad II_\varepsilon \equiv \frac{1}{2} (I_\varepsilon^2 - \varepsilon : \varepsilon), \quad III_\varepsilon \equiv \text{det}(\varepsilon). \] (3)

In the equation of state (2) \(1 \) is the unit diagonal matrix. It is usually assumed that the strain energy related to the constitutive relation (2), is positive definite. That imposes the following restriction on Lame’s constants

\[\mu > 0, \quad 3\lambda + 2\mu > 0 \] (4)
2.2. Equations of motion
Substituting equation of state (2) into (infinitesimal) equation of motion, yields
\[(\lambda + 2\mu) \nabla \chi \text{div} \mathbf{u} - \mu \text{rot} \nabla \chi \text{rot} \mathbf{u} + (\nabla \chi \lambda) \text{div} \mathbf{u} + \nabla \chi \mu \cdot (\nabla \chi \mathbf{u} + \nabla \chi \mathbf{u}^T) = \rho \ddot{u}, \tag{5}\]
where in view of (2)
\[
\nabla \chi \lambda = \left(\frac{\partial \lambda}{\partial I} \nabla I + \frac{\partial \lambda}{\partial II} \nabla II + \frac{\partial \lambda}{\partial III} \nabla III \right). \tag{6}\]
The gradient \(\nabla \chi \mu\) is defined similarly.

In addition to Eq. (2) for a hyperelastic material it is assumed the potential \(\Psi(I_\epsilon, II_\epsilon, III_\epsilon)\) exists, such that (Truesdell and Toupin, 1960)
\[
\sigma = \nabla \epsilon \Psi(I_\epsilon, II_\epsilon, III_\epsilon). \tag{7}\]

Accounting relations (3), the condition (7) can be rewritten as (Ericksen, 1960)
\[
\sigma = \frac{\partial \Psi}{\partial I} I + \frac{\partial \Psi}{\partial II} (II - I) + \frac{\partial \Psi}{\partial III} (\epsilon - I_\epsilon + II_\epsilon I). \tag{8}\]

Comparing Eqs. (2) and (8) yields the following representation of Lame’s constants in terms of potential
\[
\lambda(I_\epsilon, II_\epsilon, III_\epsilon) = \frac{\partial \Psi}{\partial I} I^{-1} + \frac{\partial \Psi}{\partial II} II^{-1} - \frac{\partial \Psi}{\partial III} III^{-1} \tag{9}\]
\[2\mu(I_\epsilon, II_\epsilon, III_\epsilon) = -\frac{\partial \Psi}{\partial II} + \frac{\partial \Psi}{\partial III} (\epsilon^{-1} - I_\epsilon) .\]

Equations (9) impose some restrictions on behavior of the potential \(\Psi\). In particular, since Lame’s constants assumed to be continuous with respect to strain invariants, should be bounded at \(I_\epsilon \to 0, \epsilon \to 0\), Eqs. (9) yield
\[
\frac{\partial \Psi}{\partial I} = O(I_\epsilon), \quad I_\epsilon \to 0; \quad \frac{\partial \Psi}{\partial II} = O(I_\epsilon), \quad I_\epsilon \to 0, \quad \frac{\partial \Psi}{\partial III} = O(III_\epsilon), \quad III_\epsilon \to 0. \tag{10}\]

At modeling both statics and dynamics of granular materials the hyperelastic constitutive equations are applied quite often (Wang, Truesdell, 1973; Jackson, 1983; Nesterenko, 2001; 2008; Herbold et al., 2008; Sen, 2008; Molinari and Daraio, 2009; Sun and Sundaresan, 2013). It should be noted that in most of these works a concept of multimodulus, actually, bi-modulus material, was applied (Lomakin and Rabotnov, 1978) with elastic potential
\[
\Psi(I_\epsilon, II_\epsilon) \equiv \alpha I_\epsilon^2 + \beta II_\epsilon + \gamma I_\epsilon \sqrt{II_\epsilon}, \tag{11}\]
where \(\alpha, \beta, \gamma\) are elastic material constants, independent of invariants \(I_\epsilon, II_\epsilon\)
\[
II_\epsilon^- = -II_\epsilon + I_\epsilon^2. \tag{12}\]
Introducing parameter \(\gamma\) allows one to account dependence of material properties on sign of the first invariant.

It should also be noted that with introduction (Volokh, 2005) of the potential
\[
\Psi(I_\epsilon, II_\epsilon^-) = \Psi_1(I_\epsilon, II_\epsilon^-)(1 - \exp(-\chi(II_\epsilon^-))) \tag{13}\]
\[
\chi(II_\epsilon^-) \to 0 \quad @ \quad II_\epsilon^- \to 0 \quad \& \quad \chi(II_\epsilon^-) \to \infty \quad @ \quad II_\epsilon^- \to \infty \]
where \(\Psi_1(I_\epsilon, II_\epsilon^-)\) is an arbitrary potential, media with the dropdown (softening) diagrams can be modeled.

3. Elastic models
3.1. General equations
Elastic models are described by the following equation of state
Modelling and Methods of Structural Analysis

IOP Conf. Series: Journal of Physics: Conf. Series 1425 (2020) 012184
doi:10.1088/1742-6596/1425/1/012184

\[\mathbf{\sigma} = \lambda (I_\sigma, II_\sigma, III_\sigma) I_{\mathbf{\varepsilon}} + 2\mu (I_\sigma, II_\sigma, III_\sigma) \cdot \mathbf{\varepsilon}. \]

14. Equations of motion

By analogy with Eq. (5), the linearized equation of motion can be represented in a form

\[\frac{\lambda + 2\mu}{\rho} \nabla_x \text{div}_x \mathbf{u} - \frac{\mu}{\rho} \text{rot}_x \text{rot}_x \mathbf{u} + \frac{1}{\rho} \left(\nabla_x \lambda \cdot \text{div}_x \mathbf{u} + \nabla_x \mu \cdot (\nabla_x \mathbf{u} + \nabla_x \mathbf{u}^T) \right) + \mathbf{b} = \mathbf{\dot{u}}. \]

Despite the apparent more generality, the elastic models are rarely used for modeling granular materials. Norris and Johnson (1997) and Coste and Gilles (1999) considered determination of velocities of acoustic waves in a granular media modeled by a system of elastic balls, interacting by the Hertz theory.

4. Hypoelastic models

4.1. General equations

According to Trusiedell (1955, 1963) the speed of the stress tensor \(\mathbf{\sigma} \) for a hypo-elastic medium is determined by speed of the strain tensor \(\mathbf{\varepsilon} \). Assuming infinitesimal strains, the constitutive relation for an isotropic hypo-elastic material can be written in a form

\[\mathbf{\sigma} = \lambda (I_\sigma, II_\sigma, III_\sigma) I_{\mathbf{\varepsilon}} + 2\mu (I_\sigma, II_\sigma, III_\sigma) \cdot \mathbf{\varepsilon} \]

where \(\lambda = \frac{\partial\sigma}{\partial\varepsilon} \), \(\lambda \) and \(\mu \) are functions of the corresponding invariants. Comparing the stress-strain relations for hypo-elastic (16) and elastic media (14) reveals, the only difference is in the incremental form of the constitutive relation for the hypo-elastic medium.

In Thomas (1955), Green (1956), and Gurtin (1983) it was demonstrated that the special triggering mechanism can be incorporated into equation of state (16) allowing to account different states for active and unloading cases; thus, the general elastic-plastic behavior can be modeled within the hypo-elastic models.

4.2. Equations of motion

For a hypo-elastic medium the equation of motion can be written in the form

\[\text{div} \mathbf{\sigma} + \rho \mathbf{b} = \rho \mathbf{\ddot{v}} \]

where \(\rho \) is the material density; it is assumed that \(\rho = 0 \); \(\mathbf{b} \) is the field of body forces. Substituting the equation of state (16) into equation of motion (17) with account of the linearized Cauchy relations

\[\mathbf{\varepsilon} = \frac{1}{2} \left(\nabla_x \mathbf{v} + \nabla_x \mathbf{v}^T \right) \]

yields

\[\frac{\lambda + 2\mu}{\rho} \nabla_x \text{div}_x \mathbf{v} - \frac{\mu}{\rho} \text{rot}_x \text{rot}_x \mathbf{v} + \frac{\lambda}{\rho} \nabla_x \mathbf{v} + \nabla_x \frac{\mu}{\rho} \cdot (\nabla_x \mathbf{v} + \nabla_x \mathbf{v}^T) + \mathbf{b} = \mathbf{\ddot{v}} \]

where

\[\nabla_x \frac{\lambda}{\rho} = \frac{1}{\rho} \left(\frac{\partial\lambda}{\partial I_\sigma} \nabla_x I_\sigma + \frac{\partial\lambda}{\partial II_\sigma} \nabla_x II_\sigma + \frac{\partial\lambda}{\partial III_\sigma} \nabla_x III_\sigma \right) \]

The gradient \(\nabla_x \mu \) is defined analogously.

Despite the obvious generality, the hypo-elastic media are rarely used for modeling granular materials; in this regard it should be mentioned that the hypo-elastic models were used for analyzing propagation of the impact bulk wave fronts propagating in granular materials (Varley, 1965; Nariboli, 1971), and the horizontally polarized surface acoustic waves (Chandrasekharaiah, 1977).
5. Some inelastic models

5.1. General considerations
Along with various elastic models, there is a large number of works accounting inelastic behavior of granular metamaterials. Apparently, one of the simplest inelastic models applicable for static and quasi-static modeling of granular metamaterials are based on various variants of the Mohr – Coulomb and Drucker – Prager theories.

Within the Mohr-Coulomb theory, there are several approaches applied for modeling granular materials; see (Goodman and Cowin, 1977; Massoudi and Mehrabadi, 2001; Nedderman, 2005). The Mohr-Coulomb theory was also applied to modeling effects associated with the early stage of beginning and developing inelastic deformations prior to flow of avalanches (Rajchenbach, 1990).

5.2. Specific inelastic models for dynamics of granular metamaterials
For the considered inelastic models used for dynamics of granular metamaterials apparently, the most widespread is the Cam-Clay (CC), the Modified Cam-Clay (MCC) and the related models; see (Borja et al., 1990, 1998, 2003; Roscoe et al., 1958, 1963), along with some more recent works (Goldstein et al., 2016; Ilyashenko et al., 2017).

6. Concluding remarks
As the literature review shows, currently, the hyperelastic models are the most widely used for characterizing dynamic problems of wave propagation inside granular metamaterials; see Eq. (11).

However, Eq. (11) is not the only equation allowing description of materials exhibiting different behavior in tension and compression. For one dimensional motions various potentials used in atomic and molecular dynamics can also be used, e.g. Lennard-Jones and Morse potentials; see (Zhen and Davies, 1985).

Yet another problem relating to dynamic behavior of wave propagation in granular media associates with possible formation of shock wave fronts at interaction of smooth waves travelling with different velocities when compression wave moves faster than tension wave; such a situation is very common in granular media.

Another problem relating to wave dynamics of granular media relies on the possible inhomogeneity of the physical properties. Some interesting phenomena relating to wave propagation in the functionally graded and stratified media are studied recently; e.g. works by (Ilyashenko et al., 2017, 2018a, b; Kuznetsov et al., 2018, 2019). It can be anticipated that combination of inhomogeneity with physical nonlinearity may result in new peculiarities in respect of wave propagation, shock wave front formation, and loss of the mechanical energy due to the thermodynamic conversion at the shock wave front.

Acknowledgements
The author (SVK) thanks the Russian Foundation for Basic Research (RFBR Grants 17-08-00311, 18-58-4100, and 19-01-00100) for partial financial support.

References
[1] Borja, R.I., & Lee S.R. Cam-Clay plasticity. Part I: Implicit integration of elasto-plastic constitutive relations. *Comput. Methods Appl. Mech. Eng.*, 1990, vol. 78, 49-72.
[2] Borja, R., & Tamagnini, C. Cam-Clay plasticity, Part III: Extension of the infinitesimal model to include finite strains. *Comput. Methods Appl. Mech. Eng.*, 1998, vol.155, 73–95.
[3] Borja, R., Sama, K., & Sanz, P. On the numerical integration of three-invariant elastoplastic constitutive models. *Comput. Methods Appl. Mech. Eng.*, 2003, vol. 192, 1227–1258.
[4] Chandrasekharaih D.S. On Love waves in a stratified hypo-elastic solid with material boundary. *Proc. Indian Acad. Sci.*, Sec. A, 1977, vol. 86, pp. 383-391.
[5] Coste C. and Gilles B. On the validity of Hertz contact law for granular material, *European Physical Journal B*, 1999, vol. 7(1), pp. 155–168.

[6] Erickstaff J.L. *Tensor Fields*. In: Handbuch der Physik, vol. III/1, ed. by S. Flügge, Springer, 1960.

[7] Green A.E. Hypo-elasticity and plasticity, *Proc. Roy. Soc. London*, 1956, vol. A234, pp. 46–59.

[8] Goldstein, R.V., Dudchenko, A.V. and Kuznetsov, S.V. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading, *Archive of Applied Mechanics*, 2016, vol. 86, 2021-2031.

[9] Goodman M. A. and Cowin S. C. A Continuum Theory for Granular Materials, *Arch. Rational Mech. Anal.*, 1977, vol. 44, pp.250-267.

[10] Gurtin M.E. On the hypoelastic formulation of plasticity using the past maximum of stress, *ASME J. Appl. Mech.*, 1983, vol. 50, pp. 894–896.

[11] Herbold E.B. et al., Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials, *Journal of Applied Physics*, 2008, vol. 104, pp. 103903 1-11.

[12] Ilyashenko, A.V. and Kuznetsov S.V. Cam–clay models in mechanics of granular materials, *Mechanics and Mechanical Engineering*, 2017, vol.21(4), pp. 813-821.

[13] Ilyashenko A., Kuznetsov S., SH waves in anisotropic (monoclinic) media. *Zeitschrift für angewandte Mathematik und Physik*, 2018, vol. 69(142), pp. 1-8.

[14] Ilyashenko A.V., Kuznetsov S.V., Horizontally polarized shear waves in stratified anisotropic (monoclinic) media. *Archives of Mechanics*, 2018, vol. 70(4), pp. 305-315.

[15] Kuznetsov S.V., Abnormal dispersion of flexural Lamb waves in functionally graded plates, *Zeitschrift für angewandte Mathematik und Physik*, 2019, vol. (70)89, 1-8.

[16] Kuznetsov S.V., Lamb waves in functionally graded plates with transverse inhomogeneity. *Acta Mechanica*, 2018, vol. (229)10, 4131-4139.

[17] Kuznetsov S.V., Abnormality of the longitudinal Pochhammer–Chree waves in the vicinity of C2 phase speed. *JVC/Journal of Vibration and Control*, 2018, vol. 24(23), pp. 5642-5649.

[18] Kuznetsov S.V., Cauchy formalism for Lamb waves in functionally graded plates. *JVC/Journal of Vibration and Control*, 2019, vol. (25)6, 1227-1232.

[19] Kuznetsov S.V., Closed form analytical solution for dispersion of Lamb waves in FG plates. *Wave Motion*, 2019, vol. (88)1, 196-204.

[20] Lomakin E.V., Rabotnov Yu.N. Relations of the theory of elasticity for isotropic multimodulus medium (in Russian), *Izv. RAN. MTT*. 1978. № 6, pp.29-34.

[21] Massoudi M. and Mehrabadi M.M., A continuum model for granular materials: Considering dilatancy and the Mohr–Coulomb criterion. *Acta Mechanica*, 2001, pp. 121-138.

[22] Molinari A. and Daraio Ch. Stationary shocks in periodic highly nonlinear granular chains, *Phys. Rev.*, 2009, vol. E 80, pp. 056602 1-15.

[23] Nariboli G.A., Juneja B.L. Wave propagation in an initially stressed hypo-elastic medium, *Int. J. Non-Linear Mechanics*, 1971, vol. 6, pp. 13-25.

[24] Nedderman R.M. *Statics and Kinematics of Granular Materials*. Cambridge Univ. Press, 2005. ISBN: 10: 0521404355.

[25] Nesterenko V. F. *Dynamics of Heterogeneous Materials*. Springer-Verlag, New York, 2001.

[26] Nesterenko V.F. et al. Strongly nonlinear behavior of granular chains and granular composites, *J. Acoust. Soc. Am.*, 2008, vol. 123, pp. 3271.

[27] Norris A.N. and Johnson D.L. Nonlinear elasticity of granular media, *J. Appl. Mech.*, 1997, vol. 64, pp. 39–49.

[28] Rajchenbach J. Flow in powders: From discrete avalanches to continuum regime. *Phys. Rev. Letters.*, 1990, vol. 65, pp. 2221-2224.
[29] Roscoe, K.H., Schofield, A.N., & Wroth C.P. On the yielding of soils. *Geotechnique*, 1958, vol. 8, 22-53.
[30] Roscoe, K.H., & Schofield, A.N. Mechanical behavior of an idealized wet clay. In: *Proc. 2nd European Conf. Soil Mechanics and Foundation Engineering*, Wiesbaden, Vol. I, 1963. (pp. 47-54).
[31] Sen S. et al. Solitary waves in the granular chain, *Phys. Rep.*, 2008, vol. 462, pp. 21 – 66.
[32] Sun J. and Sundaresan S. Radial hopper flow prediction using a constitutive model with microstructure evolution, *Powder Technology*, 2013, vol. 242, pp. 81–85.
[33] Thomas T.Y. Combined elastic and Prandtl-Reuss stress-strain relations, Proc. Natl. Acad. Sci. U. S., 1955, vol. 41, pp. 720–726.
[34] Truesdell C. Hypo-elasticity, *J. Rat. Mech. Anal.*, 1955, vol. 4, pp. 83–133, 1019–1020.
[35] Truesdell C. Remarks on hypo-elasticity, *J. Res. Nat. Bur. Stand.*, 1963, vol. B67, pp. 141–143.
[36] Truesdell C., Toupin R. *The classical field theories*. In: Handbuch der Physik, vol. III/1, ed. by S. Flügge, Springer, 1960.
[37] Varley E., Dunwoody J. The effect of non-linearity at an acceleration wave, *Journal of the Mechanics and Physics of Solids*, 1965, vol. 13, pp. 17 – 28.
[38] Volokh K.Y. Hyperelasticity with softening for modeling materials failure, *Journal of the Mechanics and Physics of Solids*, 2007, vol.55, pp. 2237-2264.
[39] Wang C.-C., Truesdell C. *Introduction to Rational Elasticity*. Springer, 1973.
[40] Zhen, Shu; Davies, G. J. Calculation of the Lennard-Jones n–m potential energy parameters for metals, *Physica Status Solidi A*. 1985, vol. 78 (2): 595–605.