Some functional inequalities under lower Bakry-Émery-Ricci curvature bounds with ε-range

Yasuaki Fujitani*

November 23, 2022

Abstract

For n-dimensional weighted Riemannian manifolds, lower m-Bakry-Émery-Ricci curvature bounds with ε-range, introduced by Lu-Minguzzi-Ohta [10], integrate constant lower bounds and certain variable lower bounds in terms of weight functions. In this paper, we prove a Cheng type inequality and a local Sobolev inequality under lower m-Bakry-Émery-Ricci curvature bounds with ε-range. These generalize those inequalities under constant curvature bounds for $m \in (n, \infty)$ to $m \in (-\infty, 1] \cup \{\infty\}$.

Contents

1 Introduction

2 Preliminaries

2.1 ε-range

2.2 Upper bounds of the L^p_μ-spectrum

2.3 Local Sobolev inequality

3 Upper bound of the L^p_μ-spectrum with ε-range

4 Functional inequalities with ε-range

4.1 Local Poincaré inequality

4.2 Local Sobolev inequality

1 Introduction

The Ricci curvature plays an important role in geometric analysis. For example, lower bounds of Ricci curvature imply comparison theorems such as the Laplacian comparison theorem and Bishop-Gromov volume comparison theorem. This paper is concerned with the Bakry-Émery-Ricci curvature Ric_ψ^m, which is a generalization of the Ricci curvature for weighted Riemannian manifolds and m is a real parameter called the effective dimension. The condition $\text{Ric}_\psi^m \geq K$ for $K \in \mathbb{R}$ implies many comparison geometric results similar to those for Riemannian manifolds with Ricci curvature bounded from below by K and dimension bounded from above by m. Especially the case of $m \geq n$ is now classical and well investigated. Recently, there is a growing interest in the m-Bakry-Émery-Ricci curvature in the case of $m \in (-\infty, 1]$. For this range, some Poincaré inequalities [3] (see also [11] for its rigidity), Beckner inequality [2] and the curvature-dimension condition [13] were studied.

It is known that some comparison theorems (such as the Bishop-Gromov volume comparison theorem and the Laplacian comparison theorem) under the constant curvature bound $\text{Ric}_\psi^m \geq Kg$ hold only for $m \in [n, \infty)$ and fail for $m \in (-\infty, 1] \cup \{\infty\}$. Nonetheless, Wylie-Yeroshkin [20] introduced a variable curvature bound

$$\text{Ric}_\psi^m \geq Ke^{-\frac{4}{m-1}\psi}g$$

associated with the weight function ψ, and established several comparison theorems. They were then generalized to

$$\text{Ric}_\psi^m \geq Ke^{-\frac{4}{m-1}\psi}g$$

*Department of Mathematics, Osaka University, Osaka 560-0043, Japan (u197830k@ecs.osaka-u.ac.jp)
with $m \in (-\infty, 1)$ by Kuwae-Li [3]. In [10], Lu-Minguzzi-Ohta gave a further generalization of the form

$$\text{Ric}_m^\psi \geq K e^{\frac{(\varepsilon-1)}{m-n} \psi} g$$

for an additional parameter ε in an appropriate range, depending on m, called the ε-range (see also [9] for a preceding work on singularity theorems in Lorentz-Finsler geometry). This is not only a generalization of [20] and [3], but also a unification of both constant and variable curvature bounds by choosing appropriate ε. We refer to [5, 6, 7] for further investigations on the ε-range.

In this paper, we assume lower bounds of the m-Bakry-Émery-Ricci curvature with ε-range and study analytic applications on non-compact manifolds. The main contributions of this paper are the following:

- We give an upper bound of the L_p-spectrum. In particular, when $p = 2$, this gives an upper bound of the first nonzero eigenvalue of the weighted Laplacian.
- We give an explicit form of a local Sobolev inequality.

An upper bound of the first nonzero eigenvalue of the Laplacian under lower Ricci curvature bounds was first investigated in [1] in 1975 and it is called the Cheng type inequality. Some variants of the Cheng type inequality are known (we refer to [16], for example) under lower bounds of the Bakry-Émery-Ricci curvature in the case of $m \in [n, \infty]$. Our Theorem 6 generalizes them. The local Sobolev inequality is an important tool for the De Giorgi-Nash-Moser theory. Recently in [17], they obtained a Liouville type theorem for the weighted p-Laplacian by using a local Sobolev inequality and Moser’s iteration techniques. Our results in Theorem 8 are consistent with the local Sobolev inequality in [17] in the case of constant curvature bounds and the effective dimension $m \in [n, \infty]$.

This paper is organized as follows. In Section 2, we briefly review the Bakry-Émery-Ricci curvature and Cheng type inequalities and local Sobolev inequalities. We show a Cheng type inequality in Section 3 and a local Sobolev inequality in Section 4 under lower bounds of the Bakry-Émery-Ricci curvature with ε-range. In Appendix, we give a variant of Cheng type inequality for deformed metrics under lower bounds of the Bakry-Émery-Ricci curvature with ε-range.

2 Preliminaries

2.1 ε-range

Let (M, g, μ) be an n-dimensional weighted Riemannian manifold. We assume that M is non-compact in this paper. We set $\mu = e^{-\psi} v_g$ where v_g is the Riemannian volume measure and ψ is a C^∞ function on M. For $m \in (-\infty, 1] \cup [n, +\infty]$, the m-Bakry-Émery-Ricci curvature is defined as follows:

$$\text{Ric}_m^\psi := \text{Ric}_g + \nabla^2 \psi - \frac{d\psi \otimes d\psi}{m-n},$$

where when $m = +\infty$, the last term is interpreted as the limit 0 and when $m = n$, we only consider a constant function ψ, and set $\text{Ric}_n^\psi := \text{Ric}_g$.

In [10], [9], they introduced the notion of ε-range:

$$\varepsilon = 0 \text{ for } m = 1, \quad |\varepsilon| < \frac{m-1}{m-n} \text{ for } m \neq 1, n, \quad \varepsilon \in \mathbb{R} \text{ for } m = n. \tag{1}$$

In this ε-range, for $K \in \mathbb{R}$, they considered the condition

$$\text{Ric}_m^\psi (v) \geq K e^{\frac{(\varepsilon-1)}{m-n} \psi (v)} g(v,v), \quad v \in T_x M.$$

We also define the associated constant c as

$$c = \frac{1}{m-1} \left(1 - \varepsilon \frac{m-n}{m-1}\right) > 0 \tag{2}$$

for $m \neq 1$ and $c = (n-1)^{-1}$ for $m = 1$. We define the comparison function s_κ as

$$s_\kappa (t) := \begin{cases} \frac{1}{\sqrt{\kappa}} \sin(\sqrt{-\kappa}t) & \kappa > 0, \\ t & \kappa = 0, \\ \frac{1}{\sqrt{-\kappa}} \sinh(\sqrt{-\kappa}t) & \kappa < 0. \end{cases} \tag{3}$$

We denote $B(x,r) = \{ y \in M \mid d(x,y) < r \}$, $V(x,r) = \mu(B(x,r))$ and $tB = B(x,tr)$ if $B = B(x,r)$.
In this subsection, we explain Cheng type inequalities under lower Bakry-Émery-Ricci curvature bounds.

When $\text{Ric} \leq R$ and $\text{vol} M$ is bounded from below, according to the argument in [10, Theorem 3.6], the condition $\text{Ric}(x) \geq R$ holds for all $x \in M$. Assume that $\text{Ric}(x) \geq R$ holds for all $x \in M$. Theorem 1. (\cite{10}, Theorem 3.11) Let (M, g, μ) be a complete weighted Riemannian manifold and $m \in (-\infty, 1] \cup [n, +\infty]$, $\varepsilon \in \mathbb{R}$ in the ε-range \cite{11}, $K \in \mathbb{R}$ and $b \geq a > 0$. Assume that

$$\text{Ric}^m_{\psi}(v) \geq Ke^{\frac{4(e-1)}{n-1}}\psi(g(v, v))$$

holds for all $v \in T_xM \setminus 0$ and $a \leq e^{-\frac{2(e-1)}{n-1}} \psi \leq b$.

Then we have

$$\frac{\mu(B(x, R))}{\mu(B(x, r))} \leq \frac{b}{a} \frac{\int_0^{\min\{R/a, \pi/\sqrt{CR}\}} s_{\varepsilon K}(\tau)^{1/c} d\tau}{\int_0^{r/b} s_{\varepsilon K}(\tau)^{1/c} d\tau}$$

for all $x \in M$ and $0 < r < R$, where $R \leq b\pi/\sqrt{CR}$ when $K > 0$ and we set $\pi/\sqrt{CR} := \infty$ for $K \leq 0$.

We briefly review the argument in [10] (where they considered, more generally, Finsler manifolds equipped with measures). Given a unit tangent vector $v \in T_xM$, let $\eta: [0, l) \to \mathbb{R}$ be the geodesic with $\dot{\eta}(0) = v$. We take an orthonormal basis $\{e_i\}_{i=1}^n$ of T_xM with $e_n = v$ and consider the Jacobi fields $E_i(t) := (d\exp_x)_{t_0}(te_i)$, $i = 1, 2, \ldots, n - 1$, along η. Define the $(n - 1) \times (n - 1)$ matrices $A(t) = (a_{ij}(t))$ by

$$a_{ij}(t) := g(E_i(t), E_j(t)).$$

We define

$$h_0(t) := (\det A(t))^{1/2(n-1)}, \quad h(t) := e^{-c\psi(\eta(t))}(\det A(t))^{c/2}, \quad h_1(\tau) := h(\varphi_{\eta}^{-1}(\tau))$$

for $t \in [0, l)$ and $\tau \in [0, \varphi_{\eta}(l))$, where

$$\varphi_{\eta}(t) := \int_0^t e^{\frac{2(e-1)}{n-1}\psi(\eta(s))} ds.$$

By the definition, we have the following relationship:

$$(e^{-\psi(\eta)}h_0^{n-1})(t) = h(t)^{1/c} = h_1(\varphi_{\eta}(t))^{1/c}. $$

According to the argument in [10] Theorem 3.6, the condition $\text{Ric}^m_{\psi}(v) \geq Ke^{\frac{4(e-1)}{n-1}}\psi(g(v, v))$ implies that

$$(e^{-\psi(\eta)}h_0^{n-1})/s_{\varepsilon K}(\varphi_{\eta})^{1/c} \text{ is non-increasing. (4)}$$

This plays the key role in proving Theorem 1 above.

2.2 Upper bounds of the L^p-spectrum

In this subsection, we explain Cheng type inequalities under lower Bakry-Émery-Ricci curvature bounds by constants. We generalize these results to the ε-range in Section 3. For $p > 1$, the L^p-spectrum is defined by

$$\lambda_{\mu, p}(M) := \inf_{\phi \in C_0^\infty(M)} \frac{\int_M |\nabla \phi|^p d\mu}{\int_M |\phi|^p d\mu}.$$

When $p = 2$, the L^2 spectrum is the first nonzero eigenvalue of the weighted Laplacian. Under lower m-Bakry-Émery-Ricci curvature bounds with $m \in [n, \infty)$, we have the following theorems.

Theorem 2. (\cite{10}, Theorem 3.2) Let (M, g, μ) be an n-dimensional weighted complete Riemannian manifold. Assume that $\text{Ric}^m_{\psi} \geq -K$ ($K \geq 0$). Then the L^p-spectrum satisfies

$$\lambda_{\mu, p}(M) \leq \left(\frac{\sqrt{(m-1)K}}{p} \right)^p.$$

An additional assumption on the weight function leads to the following Cheng type inequality under a lower ∞-Bakry-Émery-Ricci curvature bound.
Theorem 3. ([16, Theorem 3.3]) Let (M, g, μ) be an n-dimensional complete weighted Riemannian manifold. We fix a point $q \in M$. Assume that $\text{Ric}_m^\infty \geq -K (K \geq 0)$ and $\frac{\text{Ric}_m^\infty}{\text{Vol}} \geq -k (k \geq 0)$ along all minimal geodesic segments from the fixed point $q \in M$, where r is the distance from q. Then the L_p^μ-spectrum satisfies

$$\lambda_{\mu,p}(M) \leq \left(\frac{\sqrt{(n-1)K + k}}{p}\right)^p.$$

These results are generalizations of the original Cheng type inequality in [1].

2.3 Local Sobolev inequality

We have the following local Sobolev inequality under lower bounds of the m-Bakry-Émery-Ricci curvature in the case of $m \in (n, \infty)$ and $n \geq 2$. We generalize the following result in Section 4. We refer to [12] for the case of $m = \infty$.

Theorem 4. ([14, Lemma 3.2]) Let (M, g, μ) be an n-dimensional weighted complete Riemannian manifold. If $\text{Ric}_m^\infty \geq -(m-1)K$ for some $K \geq 0$ and $m > n \geq 2$, then there exists a constant C, depending on m, such that for all $B(a, r) \subset M$ we have for $f \in C_0^\infty (B(a, r))$,

$$\left(\int_{B(a, r)} |f|^{\frac{2m}{2m-1}} \, d\mu\right)^{\frac{2m-1}{2m}} \leq e^{C(1+\sqrt{K}r)} \mu(B(a, r))^{-\frac{1}{\nu}} r^2 \int_{B(a, r)} (|\nabla f|^2 + r^{-2} f^2) \, d\mu.$$

We will use the next theorem in Subsection 4.2 to prove a local Sobolev inequality under lower Bakry-Émery-Ricci curvature bounds with ϵ-range.

Theorem 5. ([14, Theorem 2.2]) Let e^{-tA} be a symmetric submarkovian semigroup acting on the spaces $L^p(M, d\mu)$. Given $\nu > 2$, the following three properties are equivalent.

1. $\|e^{-tA} f\|_\infty \leq C_0 t^{-\nu/2} \|f\|_1$ for $0 < t < t_0$.
2. $\|f\|_{2^{\nu/(\nu-2)}} \leq C_1 \left(\|A^{1/2} f\|_2^2 + t_0^{-1} \|f\|_2^2\right)$.
3. $\|f\|_{2^{\nu+1}/\nu} \leq C_2 \left(\|A^{1/2} f\|_2^2 + t_0^{-1} \|f\|_2^2\right)^{\frac{1}{\nu}} \|f\|_1^{\frac{2}{\nu}}$.

Moreover, 3. implies 1. with $C_0 = (\nu CC_2)^{\nu/2}$ and 1. implies 2. with $C_1 = CC_0^{2/\nu}$, where C is some numerical constant.

3 Upper bound of the L_p^μ-spectrum with ϵ-range

Theorem 6. Let (M, g, μ) be an n-dimensional weighted complete Riemannian manifold and $m \in (-\infty, 1] \cup [n, +\infty]$, $\epsilon \in \mathbb{R}$ in the ϵ-range [1], $K > 0$ and $b \geq a > 0$. Assume that

$$\text{Ric}_m^\infty (v) \geq -Ke^{\frac{4(\epsilon - 1)}{\mu} \psi(x)} g(v, v)$$

holds for all $v \in T_x M \setminus 0$ and

$$a \leq e^{-\frac{2(\epsilon - 1)}{\mu} \psi} \leq b.$$

Then, for $p > 1$, we have

$$\lambda_{\mu,p}(M) \leq \left(\frac{\sqrt{K}}{c a} \frac{1}{p}\right)^p.$$

Proof. We apply the argument in [16, Theorem 3.2]. For an arbitrary $\delta > 0$, we set

$$\alpha := -\frac{\sqrt{K} \frac{1}{c a} + \delta}{p}$$

and, for $x \in M$ and $R \geq 2$,

$$\phi(y) := \exp(\alpha r(y)) \phi(y),$$

where $r(y) := \text{dist}(y, M \setminus B(a, r))$ and $\psi(x) := \frac{1}{c a} \text{dist}(x, M \setminus B(a, r))$.
where \(r(y) = d(x, y) \) and \(\varphi \) is a cut off function on \(B(x, R) \) such that \(\varphi = 1 \) on \(B(x, R - 1) \), \(\varphi = 0 \) on \(M \setminus B(x, R) \) and \(|\nabla \varphi| \leq C_3 \), where \(C_3 \) is a constant independent of \(R \). For an arbitrary \(\zeta > 0 \), we have

\[
|\nabla \phi|^p = |a e^{\alpha r} \varphi \nabla r + e^{\alpha r} \nabla \varphi|^p \\
\leq e^{\mu a r} (\alpha \varphi + |\nabla \varphi|)^p \\
\leq e^{\mu a r} \left[(1 + \zeta)^{p-1} (\alpha \varphi)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} |\nabla \varphi|^p \right].
\]

By the definition of \(\lambda_{\mu, p}(M) \), we find

\[
\lambda_{\mu, p}(M) \leq (1 + \zeta)^{p-1} (-\alpha)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \int_M e^{\mu a r} |\nabla \varphi|^p d\mu \\
= (1 + \zeta)^{p-1} (-\alpha)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \int_{B(x, R)} e^{\mu a r} |\nabla \varphi|^p d\mu \\
\leq (1 + \zeta)^{p-1} (-\alpha)^p + C_3^p \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{e^{\mu (R-1)} \mu(B(x, R))}{\int_{B(x, 1)} e^{\mu a r} d\mu} \\
\leq (1 + \zeta)^{p-1} (-\alpha)^p + C_3^p \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{e^{\mu (R-1)} \mu(B(x, R))}{e^{\mu a} \mu(B(x, 1))}.
\]

(6)

It follows from Theorem[1] that

\[
\mu(B(x, R)) \leq \mu(B(x, 1)) \frac{b}{a} \int_0^{R/a} s^{1/c} K(\tau) d\tau, \quad (7)
\]

To estimate the RHS of (7), we observe

\[
(\sqrt{KR})^{1/c} \int_0^{R/a} s^{1/c} K(\tau) d\tau = \frac{1}{2} \left\{ \exp(\sqrt{K} \tau) - \exp(-\sqrt{K} \tau) \right\} \frac{d\tau}{\sqrt{\frac{c}{a}}}
\]

\[
\leq \int_0^{R/a} \exp \left(\sqrt{\frac{K}{\tau}} \right) d\tau
\]

\[
= \sqrt{\frac{c}{K}} \left\{ \exp \left(\sqrt{\frac{K}{\tau} \frac{R}{a}} \right) - 1 \right\}.
\]

Thus, we have

\[
\mu(B(x, R)) \leq \mu(B(x, 1)) \frac{b}{a} \int_0^{R/a} s^{1/c} K(\tau) d\tau \sqrt{\frac{c}{K}} \exp \left(\sqrt{\frac{K R}{c a}} \right) \frac{1}{(\sqrt{c K})^{1/c}}.
\]

This implies

\[
\frac{e^{\mu (R-1)} \mu(B(x, R))}{e^{\mu a} \mu(B(x, 1))} \leq C_4 \exp \left(\mu a R + \sqrt{\frac{K R}{c a}} \right) = C_4 \exp(-\delta R) \to 0
\]

as \(R \to \infty \), where \(C_4 \) is a constant depending on \(a, b, K, \delta \). Hence, (6) yields

\[
\lambda_{\mu, p}(M) \leq (1 + \zeta)^{p-1} (-\alpha)^p.
\]

Since \(\zeta > 0 \) and \(\delta > 0 \) are arbitrary, this implies the theorem.

When \(m \in [n, \infty) \), \(\varepsilon = 1 \) and \(a = b = 1 \), then \(c = \frac{1}{m-1} \) and it holds

\[
\lambda_{\mu, p}(M) \leq \left(\frac{\sqrt{(m-1)K}}{p} \right)^p,
\]

which recovers Theorem[2].
4 Functional inequalities with ε-range

4.1 Local Poincaré inequality

In this subsection, we prove the following Poincaré inequality.

Theorem 7. (Local Poincaré inequality) Let (M, g, μ) be an n-dimensional complete weighted Riemannian manifold and $m \in (-\infty, 1] \cup [n, +\infty]$, $\varepsilon \in \mathbb{R}$ in the ε-range Π. $K > 0$ and $b \geq a > 0$. Assume that

$$\text{Ric}^m_{\varepsilon}(v) \geq -K e^{\frac{4a(1-\varepsilon)}{n}}(e\varepsilon) g(v, v)$$

holds for all $v \in T_x M \setminus 0$ and

$$a \leq e^{\frac{2(1-\varepsilon)}{m}} \leq b.$$ \hspace{1cm} (8)

Then we have

$$\forall f \in C^\infty(M), \int_B |f - f_B|^2 d\mu \leq 2n + 3\left(\frac{2b}{a}\right)^{1/c} \exp\left(\sqrt{\frac{K}{c} \frac{2r}{a}}\right) r^2 \int_{2B} |\nabla f|^2 d\mu$$

for all balls $B \subset M$ of radius $0 < r < \infty$, where

$$f_B := \frac{1}{\mu(B)} \int_B f d\mu.$$ \hspace{1cm} (9)

Proof. We apply the argument in [15, Theorem 5.6.6, Lemma 5.6.7]. For any pair of points $(x, y) \in M \times M$, let

$$\gamma_{x,y} : [0, d(x, y)] \to M$$

be a geodesic from x to y parametrized by arclength. We also set

$$l_{x,y}(t) = \gamma_{x,y}(td(x, y))$$

for $t \in [0, 1]$. We have, using Jensen’s inequality,

$$\int_B |f - f_B|^2 d\mu = \int_B \left| \int_B (f(x) - f(y)) \frac{d\mu(y)}{\mu(B)} \right|^2 d\mu(x)$$

$$\leq \frac{1}{\mu(B)} \int_B \int_B |f(l_{x,y}(1)) - f(l_{x,y}(0))|^2 d\mu(x) d\mu(y)$$

$$\leq \frac{1}{\mu(B)} \int_B \int_B \left\{ \int_0^1 \left| \frac{df \circ l_{x,y}(t)}{dt} \right| dt \right\}^2 d\mu(x) d\mu(y)$$

$$\leq \frac{1}{\mu(B)} \int_B \int_B \int_0^1 \left| \frac{df \circ l_{x,y}(t)}{dt} \right|^2 dt d\mu(x) d\mu(y)$$

$$= \frac{2}{\mu(B)} \int_B \int_{1/2}^1 \left| \frac{df \circ l_{x,y}(t)}{dt} \right|^2 dt d\mu(x) d\mu(y).$$

To obtain the last equality we decompose the set

$$\{(x, y, t) : x, y \in B, t \in (0, 1)\}$$

into two pieces,

$$\{(x, y, s) : x, y \in B, t \in (1/2, 1)\}$$

and

$$\{(x, y, s) : x, y \in B, t \in (0, 1/2)\},$$

then use $l_{x,y}(t) = l_{y,x}(1-t)$. Now, suppose that we can bound the Jacobian $J_{x,t}$ of the map

$$\Phi_{x,t} : y \mapsto l_{x,y}(t)$$

from below by

$$\forall x, y \in B, \forall s \in [1/2, 1], \quad J_{x,t}(y) \geq 1/F(r),$$

\hspace{1cm} (10)
where r is the radius of the ball B. Then

$$\int_B \int_B \int_{1/2}^1 \left| \frac{df(l_{x,y}(t))}{dt} \right|^2 dt \, d\mu(x) \, d\mu(y) \leq F(r) \int_B \int_B \int_{1/2}^1 \left| \frac{df(l_{x,y}(t))}{dt} \right|^2 J_{x,t}(y) dt \, d\mu(x) \, d\mu(y)$$

$$\leq F(r) \int_B \int_B \int_0^1 |\nabla f(l_{x,y}(t))|^2 d(x,y)^2 J_{x,t}(y) dt \, d\mu(x) \, d\mu(y)$$

$$\leq (2r)^2 F(r) \int_0^1 \int_B \int_B |\nabla f(l_{x,y}(t))|^2 J_{x,t}(y) d\mu(y) \, d\mu(x) \, dt$$

$$= (2r)^2 F(r) \int_0^1 \int_B \left(\int_{\Phi_x(y)} |\nabla f(z)|^2 d\mu(z) \right) d\mu(x) \, dt$$

$$\leq (2r)^2 F(r) \int_0^1 \int_B \left(\int_{2B} |\nabla f(z)|^2 d\mu(z) \right) d\mu(x) \, dt$$

$$\leq (2r)^2 F(r) \mu(B) \int_{2B} |\nabla f(z)|^2 d\mu(z).$$

We finally prove (10). Let ξ be the unit tangent vector at x such that $\partial_s \gamma_{x,y}(s)|_{s=0} = \xi$. Let $I(x, s, \xi)$ be the Jacobian of the map $\exp_x : T_x M \to M$ at $s\xi$ with respect to μ. Then

$$d\mu = I(x, s, \xi) ds \, d\xi,$$

where $d\xi$ is the usual measure on the sphere. Using the notation in Subsection 2.1, we have $I(x, s, \xi) = e^{-\psi(s)} h_n s^{-1}$. According to (11), we find that

$$s \to \frac{I(x, s, \xi)}{s^{-cK(\varphi(s))^{1/c}}},$$

is non-increasing. Under the relationship $l_{x,y}(t) = \gamma_{x,y}(s)$, it follows that

$$J_{x,t}(y) = \left(\frac{s}{d(x,y)} \right)^n \frac{I(x, s, \xi)}{I(x, d(x,y), \xi)} \geq \left(\frac{1}{2} \right)^n \frac{s^{-cK(\varphi(s))^{1/c}}}{s^{-cK(\varphi(d(x,y)))^{1/c}}}$$

for all $s \in (d(x,y)/2, d(x,y))$. Thus, we have, since $s/b \leq \varphi(s) \leq s/a$,

$$J_{x,t}(y) \geq \left(\frac{1}{2} \right)^n \frac{s^{-cK(\varphi(d(x,y)/2))^{1/c}}}{s^{-cK(\varphi(d(x,y)))^{1/c}}}$$

$$\geq \left(\frac{1}{2} \right)^n \left(\frac{\varphi(d(x,y)/2)}{\varphi(d(x,y))} \right)^{1/c} \exp \left(-\sqrt{\frac{K}{c}} \varphi(d(x,y)) \right)$$

$$\geq \left(\frac{1}{2} \right)^n \left(\frac{a}{b} \right)^{1/c} \exp \left(-\sqrt{\frac{K}{c}} \frac{2r}{a} \right).$$

This proves (10) with $F(r) = \left\{ \left(\frac{1}{2} \right)^n \left(\frac{a}{b} \right)^{1/c} \exp \left(-\sqrt{\frac{K}{c}} \frac{2r}{a} \right) \right\}^{-1}$ and the theorem follows. \hfill \square

Given that we have the local Poincaré inequality and the volume doubling property (obtained explicitly later in (12)), we can apply [15 Corollary 5.3.5] and we obtain the following inequality.

Corollary 1. Under the same assumptions as in Theorem 7, there exist constants C, P such that

$$\forall f \in C^\infty(M), \quad \int_B |f - f_B|^2 \, d\mu \leq P e^{C r^2} \int_B |\nabla f|^2 \, d\mu$$

for all balls $B \subset M$ of radius $r > 0$.

7
4.2 Local Sobolev inequality

It is shown in [14] that the volume doubling property and Poincaré inequality imply a local Sobolev inequality. We follow this line with Theorems [1] and [7].

Theorem 8. (Local Sobolev inequality) Let (M, g, μ) be an n-dimensional complete weighted Riemannian manifold with $n \geq 3$ and $m \in (-\infty, 1] \cup [n, +\infty]$, $\varepsilon \in \mathbb{R}$ in the ε-range [1], $K > 0$ and $b \geq a > 0$. Assume that

$$\text{Ric}_\psi^n(v) \geq -K e^{\frac{\varepsilon b - 1}{\varepsilon}} \mu(v, v)$$

holds for all $v \in T_x M \setminus 0$ and

$$a \leq e^{-\frac{2 \varepsilon b}{\varepsilon}} \psi \leq b.$$ \hspace{1cm} (11)

Then there exist constants D, E depending on c, a, b, n such that for all $B(o, r) \subset M$ we have for $f \in C_0^\infty(B(o, r))$,

$$\left(\mu(B(o, r))^{-1} \int_{B(o, r)} |f|^{2(1+\varepsilon)} \mu \right)^{\frac{1}{1+\varepsilon}} \leq E \exp \left(D \left(1 + \sqrt{\frac{K}{c}} \right) \frac{r}{a} \right) r^2 \mu(B(o, r))^{-1} \int_{B(o, r)} (|\nabla f|^2 + r^{-2} f^2) \mu.$$

We first prove two lemmas. We set

$$f_s(x) = \int \chi_s(x, z) f(z) \mu(z),$$

where $V(x, s) = \mu(B(x, s))$ and $\chi_s(x, z) = \frac{1}{v(x, s)^{-1}} B(x, s)(z)$.

Lemma 1. Under the same assumptions as in Theorem [8] there exists a constant C_5 such that for all $y \in M$ and all $0 < s < r,$ we have

$$\|f_s\|_2 \leq C_5 r^{-\frac{1}{2}} \left(\frac{r}{a} \right)^{\frac{1}{2} \left(1 + \frac{\varepsilon}{2} \right)} \|f\|_1,$$

for all $f \in C_0^\infty(B)$, where $B = B(y, r)$ and $V = V(r) = V(y, r)$.

Proof. We apply the argument in [14] Lemma 2.3. We use the notations in Subsection 2.1. For $\tau \geq 0$, $0 < s < r$, we set

$$t := \frac{r b}{a s} \tau.$$

Since $\frac{r b}{a s} \geq 1$, we have $\tau \leq t$. Hence, by direct computations, we obtain

$$s^{-c K(t)^{1/c}} \leq s^{-c K(\tau)^{1/c}} \left(\frac{t}{\tau} \right)^{1/c} \exp \left(\sqrt{\frac{K}{c}} \frac{t}{\tau} \right).$$

Integrating both sides in t from 0 to r/a, we have

$$\int_0^{r/a} s^{-c K(t)^{1/c}} dt \leq \int_0^{r/a} s^{-c K(\tau)^{1/c}} \left(\frac{t}{\tau} \right)^{1/c} \exp \left(\sqrt{\frac{K}{c}} \frac{t}{\tau} \right) \mu dt$$

$$\leq \left(\frac{r b}{a s} \right)^{1/c} \exp \left(\sqrt{\frac{K}{c}} \frac{r}{a} \right) \int_0^{r/a} s^{-c K(\tau)^{1/c}} dt$$

$$= \left(\frac{r b}{a s} \right)^{1+\frac{\varepsilon}{2}} \exp \left(\sqrt{\frac{K}{c}} \frac{r}{a} \right) \int_0^{s/b} s^{-c K(\tau)^{1/c}} dt.$$
Therefore, we also have the doubling property:

\[
V(2r) \leq V(r) \left(\frac{b}{a} \right)^{2+\frac{1}{s}} 2^{\frac{1}{s}+1} \exp \left(\sqrt{\frac{K}{c}} \frac{2r}{a} \right).
\] \hspace{1cm} (12)

For \(x, z \in M \) satisfying \(d(z, x) < s \), we have

\[
V(z, s) \leq V(x, 2s) \leq V(x, s) \left(\frac{b}{a} \right)^{2+\frac{1}{s}} 2^{\frac{1}{s}+1} \exp \left(\sqrt{\frac{K}{c}} \frac{2s}{a} \right).
\]

This implies

\[
\chi_s(x, z) \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} 2^{\frac{1}{s}+1} \exp \left(\sqrt{\frac{K}{c}} \frac{2s}{a} \right) \chi_s(z, x).
\]

Thus,

\[
\|f_s\|_1 \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} 2^{\frac{1}{s}+1} \exp \left(\sqrt{\frac{K}{c}} \frac{2s}{a} \right) \|f\|_1.
\] \hspace{1cm} (13)

We moreover assume \(B \cap B(x, s) \neq \emptyset \). Since

\[
\frac{V(x, 2r + s)}{V(x, s)} \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} \left(\frac{2r + s}{s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{2r + s}{a} \right)
\]

and

\[
\frac{V(x, 4r)}{V(x, 2r + s)} \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} \left(\frac{4r}{2r + s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{4r}{a} \right),
\]

we have

\[
\frac{1}{V(x, s)} \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} \left(\frac{2r + s}{s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{2r + s}{a} \right) \frac{1}{V(x, 2r + s)} \leq \left(\frac{b}{a} \right)^{2(2+\frac{1}{s})} \left(\frac{2r + s}{s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{2r + s}{a} \right) \left(\frac{4r}{2r + s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{4r}{a} \right) \frac{1}{V(x, 4r)} \leq \left(\frac{b}{a} \right)^{2(2+\frac{1}{s})} \left(\frac{4r}{s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{6r + s}{a} \right) \frac{1}{V(y, r)}.
\]

Hence,

\[
\|f_s\|_{\infty} = \left\| \int \chi_s(x, z) f(z) d\mu(z) \right\|_{\infty} \leq \left(\frac{b}{a} \right)^{2(2+\frac{1}{s})} \left(\frac{4r}{s} \right)^{1+\frac{1}{s}} \exp \left(\sqrt{\frac{K}{c}} \frac{6r + s}{a} \right) \frac{\|f\|_1}{V(y, r)}.
\]

Using (13), we have

\[
\|f_s\|_2 = \left(\int f_s^2 d\mu \right)^{\frac{1}{2}} \leq \sqrt{\|f_s\|_{\infty}} \sqrt{\|f\|_1} \leq \left(\frac{b}{a} \right)^{2+\frac{1}{s}} \left(\frac{4r}{s} \right)^{\frac{1}{s}(1+\frac{1}{s})} \exp \left(\sqrt{\frac{K}{c}} \frac{6r + s}{2a} \right) \frac{1}{\sqrt{V(y, r)}} \left(\frac{b}{a} \right)^{(2+\frac{1}{s})} \left(\frac{2r + s}{s} \right)^{\frac{1}{s}(1+\frac{1}{s})} \exp \left(\sqrt{\frac{K}{c}} \frac{4r}{a} \right) \|f\|_1 \leq \left(\frac{b}{a} \right)^{3+\frac{1}{s}} 2^{\frac{1}{s}(1+\frac{1}{s})} \left(\frac{4r}{s} \right)^{\frac{1}{s}(1+\frac{1}{s})} \exp \left(\sqrt{\frac{K}{c}} \frac{6r + 3s}{2a} \right) \frac{1}{\sqrt{V(y, r)}} \|f\|_1.
\]

Setting \(C_5 = \left(\frac{b}{a} \right)^{3+\frac{1}{s}} 2^{\frac{1}{s}(1+\frac{1}{s})} \left(\frac{4r}{3s} \right)^{\frac{1}{s}(1+\frac{1}{s})} \exp \left(\sqrt{\frac{K}{c}} \frac{9r}{3a} \right) \), we get the desired inequality. \(\square \)
Lemma 2. We fix a constant $r > 0$. Under the same assumptions as in Theorem 5, there exists C_6 depending only on c, a, b, r, K, n such that

$$\|f - f_s\|_2 \leq C_6 s \|\nabla f\|_2, \quad f \in C_6^\infty(M)$$

for all $0 < s < r$.

Proof. We apply the argument in [13, Lemma 2.4]. Fix $a > 0$, let $\{B_j : j \in J\}$ be a collection of balls of radius $s/2$ such that $B_i \cap B_j = \emptyset$ if $i \neq j$ and $M = \bigcup_{i \in J} \overline{B_i}$. For $z \in M$, let $J(z) = \{i \in J : z \in 8B_i\}$ and $N(z) = \#J(z)$. We first estimate $N(z)$ from above. Let B_2 be a ball in $\{B_j : j \in J\}$ such that $z \in 2B_2$. For $i \in J(z)$, we have $B_2 \subset 16B_i$. Hence,

$$\mu(B_2) \leq \mu(16B_i) \leq C_7 \mu(B_i),$$

where

$$C_7 := (\frac{b}{a})^{2+\frac{1}{2}} 2^{\frac{7}{2} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{8r}{a}} \right) \geq \left(\frac{b}{a} \right)^{2+\frac{1}{2}} 2^{\frac{7}{2} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{8s}{a}} \right).$$

Therefore, we have

$$\sum_{i \in J(z)} \mu(B_i) \geq N(z) \frac{\mu(B_2)}{C_7^2}.$$

On the other hand, for $i \in \{j \in J : z \in 8B_j\}$, we have $B_i \subset 16B_2$. Hence,

$$\sum_{i \in J(z)} \mu(B_i) \leq \mu(16B_2) \leq C_7 \mu(B_2).$$

Therefore, we find

$$N(z) \frac{\mu(B_2)}{C_7^2} \leq C_7 \mu(B_2).$$

Letting $N_0 := C_7^2$, we have $N(z) \leq N_0$. We now estimate $\|f - f_s\|_2$. Note that

$$\|f - f_s\|_2 \leq \sum_{i \in J} \left(2 \int_{2B_i} |f(x) - f_{4B_i}|^2 + |f_{4B_i} - f_s(x)|^2 \, d\mu(x) \right).$$

By the Poincaré inequality (29), we have

$$\int_{4B_i} |f(x) - f_{4B_i}|^2 \, d\mu(x) \leq 2^{n+3} \left(\frac{2h}{a} \right)^{\frac{1}{2}} \exp \left(\sqrt{\frac{K}{c} \frac{4s}{a}} \right) (2s)^2 \int_{8B_i} |\nabla f|^2 \, d\mu \leq C_8 s^2 \int_{8B_i} |\nabla f|^2 \, d\mu,$$

where

$$C_8 = 2^{n+5} \left(\frac{2h}{a} \right)^{\frac{1}{2}} \exp \left(\sqrt{\frac{K}{c} \frac{4s}{a}} \right).$$

Since for any $x \in 2B_i = B(x_i, s),

$$V(x_i, s) \leq V(x, 2s) \leq V(x, s) \left(\frac{b}{a} \right)^{2+\frac{1}{2}} 2^{\frac{7}{2} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{2s}{a}} \right),$$

we have

$$\int_{2B_i} |f_{4B_i} - f_s(x)|^2 \, d\mu(x) \leq \int_{2B_i} \int_{B(x_i, s)} \frac{1}{V(x_i, s)} |f_{4B_i} - f(z)| \, d\mu(z) \, d\mu(x) \leq \int_{2B_i} \int_{B(x_i, s)} \frac{1}{V(x_i, s)} |f_{4B_i} - f(z)| \, d\mu(z) \, d\mu(x) \leq \frac{1}{V(x_i, s)} \left(\frac{b}{a} \right)^{2+\frac{1}{2}} 2^{\frac{7}{2} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{2s}{a}} \right) \int_{2B_i} \int_{4B_i} |f_{4B_i} - f(z)|^2 \, d\mu(z) \, d\mu(x) \leq \left(\frac{b}{a} \right)^{2+\frac{1}{2}} 2^{\frac{7}{2} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{2s}{a}} \right) C_8 s^2 \int_{8B_i} |\nabla f|^2 \, d\mu.$$
Using (14), (15), (16), we have
\[\|f - f_s\|^2 \leq C_9 s^2 \sum_{x \in J} \int_{B_r(x)} |\nabla f|^2 \, d\mu \leq C_9 N_0 s^2 \|\nabla f\|^2,\]
where
\[C_9 = 4 \left(\frac{b}{a} \right)^{2 + \frac{1}{r} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{2r}{a}} \right) C_8 \geq 2 \left(\frac{b}{a} \right)^{2 + \frac{1}{r} + 1} \exp \left(\sqrt{\frac{K}{c} \frac{2r}{a}} \right) C_8 + C_8,\]
Therefore, setting
\[C_6 := \sqrt{N_0 C_9},\]
we have the desired inequality.

Proof of Theorem 3
We apply the argument in [14] Theorem 2.1. Fix \(x \in M, r > 0\). For \(0 < s \leq r\) and \(f \in C_0^\infty (B(x, r))\), we have
\[\|f\|_2 \leq \|f - f_s\|_2 + \|f_s\|_2.\]
It follows from Lemmas 1, 2 that
\[\|f\|_2 \leq C_6 s \|\nabla f\|_2 + C_5 V^{-\frac{1}{r}} \left(\frac{r}{s} \right)^{\frac{1}{r}} \|f\|_1,\]
where \(\nu = 1 + \frac{1}{r}\). Hence, we obtain
\[\|f\|_2 \leq 4 C_6 s \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right) + C_5 V^{-\frac{1}{r}} \left(\frac{r}{s} \right)^{\frac{1}{r}} \|f\|_1,\]
(17)
To obtain the minimum of the RHS of (17), we consider its differential with respect to \(s > 0\). At \(s > 0\) which attains the minimum, we have
\[4 C_6 \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right) + C_5 V^{-\frac{1}{r}} \left(\frac{r}{s} \right)^{\frac{1}{r}} \|f\|_1 = 0.\]
Thus,
\[s^{\frac{1}{r} + 1} = \frac{C_{10} V^{-\frac{1}{r} r} \|f\|_1}{\|\nabla f\|_2 + \frac{1}{r} \|f\|_2},\]
(18)
where \(C_{10} = \nu \frac{C_5}{2 C_6}\). Substituting (18) to the RHS of (17), we obtain
\[\|f\|_2 \leq 4 C_6 \left(C_{10} V^{-\frac{1}{r} \frac{r}{s} \|f\|_1} \right) \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right) + C_5 V^{-\frac{1}{r} \frac{r}{s} \|f\|_1} \left(\frac{C_{10} V^{-\frac{1}{r} \frac{r}{s} \|f\|_1}}{\|\nabla f\|_2 + \frac{1}{r} \|f\|_2} \right)^{\frac{1}{r}} \|f\|_1 \]
\[= 4 C_6 C_{10} \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right)^{-\frac{1}{r} \frac{r}{s} + 1} \left(V^{-\frac{1}{r} \frac{r}{s} \|f\|_1} \right)^{\frac{1}{r}} \]
\[+ C_5 C_{10} \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right)^{\frac{1}{r} \frac{1}{r} \frac{r}{s}} \left(V^{-\frac{1}{r} \frac{r}{s} \|f\|_1} \right)^{-\frac{1}{r}} \|f\|_1 \]
\[= \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right)^{\frac{1}{r} \frac{1}{r} \frac{r}{s}} \left(4 C_6 C_{10} V^{-\frac{1}{r} \frac{r}{s} \|f\|_1} \right) \|f\|_1^{\frac{1}{r}} \]
\[+ C_5 C_{10} V^{-\frac{1}{r} \frac{1}{r} \frac{r}{s} \frac{r}{s}} \|f\|_1^{\frac{1}{r}} \}
\[= 4 C_6 C_{10} + C_5 C_{10} \left(\|\nabla f\|_2 + \frac{1}{r} \|f\|_2 \right)^{\frac{1}{r} \frac{1}{r} \frac{r}{s}} V^{-\frac{1}{r} \frac{1}{r} \frac{r}{s} \frac{r}{s} \|f\|_1^{\frac{1}{r}}}.\]
and also define measures for $K > 0$, we define

$$
\{ 4C_6 C_{10}^{\frac{2}{r}} + C_5 C_{10}^{\frac{2}{r}} \}^{2+\frac{\phi}{r^2}} V^{-\frac{\phi}{r^2}} \left(2 \left(\| \nabla f \|_2^2 + \| f \|_2^2 \right) \right) \| f \|_1^\phi.
$$

Recalling the expressions of C_5 and C_6 in the proofs of Lemmas 1, 2, we use constants E_1, E_2 depending on c, a, b, n such that

$$
C_6 C_{10}^{\frac{2}{r}} = E_1 \exp \left(\frac{\sqrt{K}}{c} \left(\frac{35r}{a} - \frac{61r}{2a} \frac{2}{2 + \nu} \right) \right)
$$

and

$$
C_5 C_{10}^{\frac{2}{r}} = E_2 \exp \left(\frac{\sqrt{K}}{c} \left(\frac{9r}{2a} - \frac{61r}{2a} \frac{2}{2 + \nu} \right) \right).
$$

Thus, there exist constants D, E_3 such that

$$
\left\{ 4C_6 C_{10}^{\frac{2}{r}} + C_5 C_{10}^{\frac{2}{r}} \right\}^{2+\frac{\phi}{r^2}} < E_3 \exp \left(D \left(1 + \sqrt{\frac{K}{c}}\frac{r}{a} \right) \right).
$$

We remark that D, E_3 depend only on c, a, b, n. Since $c \leq \frac{1}{\pi - 1}$, we have $\nu = 1 + \frac{1}{c} \geq n > 2$ when $n \geq 3$. Hence, we can use Theorem 5 and Theorem 8 follows. \hfill \square

Remark 1. At the end of the proof of Theorem 8, we use the fact that $1 + \frac{1}{c} > 2$, it is the only reason why we need the assumption $n \geq 3$. In the case of $n = 2$, we have the local Sobolev inequality when $\varepsilon \neq 0$ under the same curvature bound and 11 in Theorem 8.

Remark 2. One of the possible subjects of further research is the gradient estimate of eigenfunctions of the weighted Laplacian with ε-range, which turned out to be difficult. If Ric^{ε} is bounded from below with $m > n$, then one way to obtain the gradient estimate is to apply the Li-Yau trick as described in 18, 19 and another way is to use the DeGiorgi-Nash-Moser theory 8 as described in 12. Once we obtained the gradient estimate by the Li-Yau trick, an upper bound of eigenvalues of the weighted Laplacian is obtained as in 18, 19. However, it seems that the Li-Yau trick and Moser’s iteration argument in 17 do not work well in the case where Ric^{ε} is bounded from below with $m \leq 1$. The main difficulty stems from the lack of a suitable Bochner formula for analyzing lower Bakry-Émery-Ricci curvature bounds with ε-range. Although 5 Lemma 2.1 obtained the Bochner formula for the distance function with ε-range, a suitable Bochner formula for eigenfunctions of the weighted Laplacian is yet to be known. Finding a suitable Bochner formula for eigenfunctions is our future work.

Appendix: Upper bound of the L^p-spectrum for deformed measures

Although we considered the Riemannian distance d, it is also possible to study comparison theorems associated with a metric deformed by using the weight function (we refer 20, 4, 5, for example). In this appendix, we start from a volume comparison theorem in 5 and prove a variant of Cheng type inequality for the L^p-spectrum.

Let $(M, g, \mu = e^{-\psi} v_g)$ be an n-dimensional weighted Riemannian manifold, $m \in (-\infty, 1] \cup [n, +\infty)$ and $\varepsilon \in \mathbb{R}$ in the range 1. We fix a point $q \in M$. We define lower semi continuous functions $s_q : M \to \mathbb{R}$ by

$$
s_q(x) := \inf_{\gamma} \int_0^{d(q,x)} e^{-\frac{2(1-\varepsilon)\psi(q(x))}{\varepsilon^2}} d\xi,
$$

where the infimum is taken over all unit speed minimal geodesics $\gamma : [0, d(q,x)] \to M$ from q to x. For $r > 0$, we define

$$
B_{\psi,q}(r) := \{ x \in M \mid s_q(x) < r \},
$$

and also define measures

$$
\mu := e^{-\psi} v_g, \quad \nu := e^{\frac{2(1-\varepsilon)\psi}{\varepsilon^2}} \mu.
$$

We set

$$
S_{-K}(r) := \int_0^r s_{-K}^{1/c}(s) ds
$$

for $K > 0$. In 5, they obtained the following theorem.
Theorem 9. ([5] Proposition 4.6, Volume comparison) Let \((M, g, \mu) \) be an \(n \)-dimensional weighted Riemannian manifold. We assume \(\text{Ric}_\nu^m \geq -Ke^{(c-1)\nu}g \) for \(K > 0 \). Then for all \(r, R > 0 \) with \(r \leq R \) we have
\[
\frac{\nu(B_{\psi, \rho}(R))}{\nu(B_{\psi, \rho}(r))} \leq \frac{S_{-cK}(R)}{S_{-cK}(r)}.
\]

In the following argument, we start from Theorem 9 instead of Theorem 1 to prove a Cheng type inequality of the \(L^p \)-spectrum for the deformed measure \(\nu \).

Theorem 10. Let \((M, g, \mu) \) be a complete weighted Riemannian manifold. We assume that \(s_\eta \) is smooth and there exists a constant \(k > 0 \) such that
\[
|\nabla s_\eta(x)| \leq k
\]
holds for arbitrary \(x \in M \). We also assume
\[
\text{Ric}_\nu^m \geq -K e^{(c-1)\nu}g
\]
for \(K > 0 \). Then we have
\[
\lambda_{\nu, p}(M) \leq \left(\frac{k}{p} \sqrt{\frac{K}{e}} \right)^p.
\]

Proof. We apply the argument in Theorem 9.

For \(R \geq 2 \), let \(\eta : \mathbb{R} \to \mathbb{R} \) be a nonnegative smooth function such that \(\eta = 1 \) on \(-(R-1), R-1 \), \(\eta = 0 \) on \(\mathbb{R}\setminus(R,R) \) and \(|\eta'| \leq C_3 \), where \(C_3 \) is a constant independent of \(R \). We set, for an arbitrary \(\delta > 0 \),
\[
\alpha = -\frac{\sqrt{K/e + \delta}}{p}
\]
and
\[
\phi(y) := \exp(\alpha s_\eta(y))\varphi(y),
\]
where \(\varphi(y) := \eta(s_\eta(y)) \). By the assumption of \(s_\eta \), we have
\[
|\nabla \varphi| = |\eta'(s_\eta)||\nabla s_\eta| \leq kC_3.
\]
As in the proof of Theorem 9 we find for an arbitrary \(\zeta > 0 \),
\[
|\nabla \varphi|^p = |ae^{\alpha s_\eta}\varphi \nabla s_\eta + e^{\alpha s_\eta} \nabla \varphi|^p
\]
\[
\leq e^{\alpha s_\eta} (-k\alpha \varphi + |\nabla \varphi|)^p
\]
\[
\leq e^{\alpha s_\eta} \left((1 + \zeta)^{p-1}(-k\alpha \varphi)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} |\nabla \varphi|^p \right).
\]

By the definition of \(\lambda_{\nu, p}(M) \), we obtain
\[
\lambda_{\nu, p}(M) \leq (1 + \zeta)^{p-1}(-k\alpha \varphi)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{\int_M \exp(\alpha s_\eta)|\nabla \varphi|^p d\nu}{\int_M \exp(\alpha s_\eta) \varphi^p d\nu}
\]
\[
= (1 + \zeta)^{p-1}(-k\alpha \varphi)^p + \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{\int_{B_{\psi, \rho}(R)} \exp(\alpha s_\eta)|\nabla \varphi|^p d\nu}{\int_{B_{\psi, \rho}(R)} \exp(\alpha s_\eta) \varphi^p d\nu}
\]
\[
\leq (1 + \zeta)^{p-1}(-k\alpha \varphi)^p + (kC_3)^p \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{\exp(p\alpha(R-1)) \nu(B_{\psi, \rho}(1))}{\int_{B_{\psi, \rho}(1)} \exp(\alpha s_\eta) d\nu}
\]
\[
\leq (1 + \zeta)^{p-1}(-k\alpha \varphi)^p + (kC_3)^p \left(\frac{1 + \zeta}{\zeta} \right)^{p-1} \frac{\exp(p\alpha(R-1)) \nu(B_{\psi, \rho}(R))}{\exp(\alpha) \nu(B_{\psi, \rho}(1))}.
\]

From Theorem 9 and
\[
(\sqrt{cK})^{1/c} S_{-cK}(R) \leq \int_0^R \left[\frac{1}{2} \exp(\sqrt{cK}s) - \exp(-\sqrt{cK}s) \right]^{1/c} ds
\]
\[
\leq \sqrt{\frac{c}{K}} \exp \left(\sqrt{\frac{K}{c}} R \right),
\]
we deduce
\[
\frac{\frac{c}{\alpha}(R-1)^\nu(B_{\psi,q}(R))}{\frac{c}{\alpha}(B_{\psi,q}(1))} \leq \frac{1}{c^2} \exp \left(\frac{K}{c} \right) \exp \left(\frac{p\alpha R + \sqrt{K}}{c} \right) \rightarrow 0
\]
as \(R \to \infty \). Letting \(R \to \infty \) in (20), we obtain
\[
\lambda_{\nu,p}(M) \leq (1 + \zeta)^{(p-1)(-k\alpha)^p}.
\] (21)

Since \(\zeta > 0 \) and \(\delta > 0 \) are arbitrary, the theorem follows.

Acknowledgement.

I would like to express deep appreciation to my supervisor Shin-ichi Ohta for his support, encouragement and for making a number of valuable suggestions and comments on preliminary versions of this paper.

References

[1] Shiu-Yuen Cheng. “Eigenvalue comparison theorems and its geometric applications.” Mathematische Zeitschrift 143.3 (1975): 289-297.
[2] Ivan Gentil and Simon Zugmeyer. “A family of Becker inequalities under various curvature-dimension conditions.” Bernoulli 27.2 (2021): 751-771.
[3] Alexander V. Kolesnikov and Emanuel Milman. “Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary.” The Journal of Geometric Analysis 27.2 (2017): 1680-1702.
[4] Kazuhiro Kuwae and Xiang-Dong Li. “New Laplacian comparison theorem and its applications to diffusion processes on Riemannian manifolds,” Bulletin of the London Mathematical Society 54.2 (2022): 404-427.
[5] Kazuhiro Kuwae and Yohei Sakurai. “Rigidity phenomena on lower \(N \)-weighted Ricci curvature bounds with \(\varepsilon \)-range for nonsymmetric Laplacian.” Illinois Journal of Mathematics 65.4 (2021): 847-868.
[6] Kazuhiro Kuwae and Yohei Sakurai. “Comparison geometry of manifolds with boundary under lower \(N \)-weighted Ricci curvature bounds with \(\varepsilon \)-range.” Journal of the Mathematical Society of Japan 1.1 (2022): 1-22.
[7] Kazuhiro Kuwae and Yohei Sakurai. “Lower \(N \)-weighted Ricci curvature bound with \(\varepsilon \)-range and displacement convexity of entropies.” arXiv preprint arXiv:2009.12986 (2020), to appear in J. Topol. Anal.
[8] Peter Li. “Lecture notes on geometric analysis”. No. 6. Seoul: Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1993.
[9] Yufeng Lu, Ettore Minguzzi and Shin-ichi Ohta. “Geometry of weighted Lorentz-Finsler manifolds I: Singularity theorems.” Journal of the London Mathematical Society 104.1 (2021): 362-393.
[10] Yufeng Lu, Ettore Minguzzi and Shin-ichi Ohta. “Comparison theorems on weighted Finsler manifolds and spacetimes with \(\varepsilon \)-range.” Analysis and Geometry in Metric Spaces 10.1 (2022): 1-30.
[11] Cong Hung Mai. “On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension.” Kyushu Journal of Mathematics 73.1 (2019): 205-218.
[12] Ovidiu Munteanu and Jiaping Wang. “Analysis of weighted Laplacian and applications to Ricci solitons.” Communications in Analysis and Geometry 20.1 (2012): 55-94.
[13] Shin-ichi Ohta. “\((K,N)\)-convexity and the curvature-dimension condition for negative \(N \)” The Journal of Geometric Analysis 26.3 (2016): 2067-2096.
[14] Laurent Saloff-Coste. “A note on Poincaré, Sobolev, and Harnack inequalities.” International Mathematics Research Notices (1992): 27-38.

[15] Laurent Saloff-Coste. “Aspects of Sobolev-type inequalities.” Vol. 289. Cambridge University Press, 2002.

[16] Lin Feng Wang. “On L^p-spectrum and τ-quasi-Einstein metric.” Journal of Mathematical Analysis and Applications, Volume 389, Issue 1, (2012): 195-204.

[17] Lin Feng Wang, Ze Yu Zhang, Liang Zhao and Yu Jie Zhou. “A Liouville theorem for weighted p-Laplace operator on smooth metric measure spaces.” Mathematical Methods in the Applied Sciences 40.4 (2017): 992-1002.

[18] Jia-Yong Wu. “Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature.” Journal of mathematical analysis and applications 361.1 (2010): 10-18.

[19] Jia-Yong Wu. “Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature II.” Results in Mathematics 63.3 (2013): 1079-1094.

[20] William Wylie and Dmytro Yeroshkin. “On the geometry of Riemannian manifolds with density.” arXiv preprint [arXiv:1602.08000] (2016).