Parasites and diet of *Serrasalmus maculatus* in a hydroelectric reservoir in Brazil

Parasitos e dieta de *Serrasalmus maculatus* em um reservatório no Brasil

Bianca da Silva Miguel*; Lidiane Franceschini1; Leticia de Oliveira Manoel1; Bruna Caroline Kotz Kliemann1; Rosilene Luciana Delariva1; Igor Paiva Ramos1,2

1Programa de Pós-graduação em Ciências Biológicas (Zoologia), Instituto de Bicências, Universidade Estadual Paulista – UNESP, Botucatu, SP, Brasil

2Laboratório de Ecologia de Peixes, Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista – UNESP, Ilha Solteira, SP, Brasil

3Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná – UNIOESTE, Cascavel, PR, Brasil

How to cite: Miguel BS, Franceschini L, Manoel LO, Kliemann BCK, Delariva RL, Ramos IP. Parasites and diet of *Serrasalmus maculatus* in a hydroelectric reservoir in Brazil. *Braz J Vet Parasitol* 2022; 31(1): e019221. https://doi.org/10.1590/S1984-29612022013

Abstract

Serrasalmus maculatus is a species of piranha which, despite being abundant in a reservoir environment, has few studies related to its parasitological and diet aspects. Thus, we aimed to document the parasitic fauna and diet of the *S. maculatus* in a hydroelectric reservoir in Brazil. In addition, we perform two literature reviews for the Neotropical region, recording the parasitic fauna already associated with *S. maculatus* and the occurrence of parasite genera identified in this study parasitizing Characiformes from other aquatic systems. Thirty-one hosts were collected with gillnets, from August 2014 to September 2016. *Serrasalmus maculatus* had a piscivorous feeding habit and a low richness parasitic component community, including two taxa of monogeneans, *Anacanthorus lepyrophallus* and *Mymarothecium* sp.; no endohelminths were observed. Data from the literature review, together with the findings of the study, showed that *S. maculatus* in the Neotropical region harbors 25 helminth taxa, with the monogenean being the most prevalent parasitic group and Brazil is the country with the most reports of the parasitic genera. These findings provide information on the relationships between diet, social behavior, and parasitic fauna of *S. maculatus* and on the patterns of distribution and infection of the observed parasite rates.

Keywords: Ectoparasites, *Anacanthorus*, *Mymarothecium*, freshwater fish, piranha.

Resumo

Serrasalmus maculatus é uma espécie de piranha que, a despeito de ser abundante em ambiente de reservatório, possui poucas informações sobre seus aspectos parasitológicos e dieta. Assim, o presente estudo objetivou documentar a fauna parasitária e a dieta de *S. maculatus* em um reservatório brasileiro. Além disso, foram realizadas duas revisões literárias para a região Neotropical, registrando a fauna parasitária, já associada a *S. maculatus* e a ocorrência dos gêneros parasitários identificados neste estudo, registrados em outros peixes Characiformes em outros sistemas aquáticos. Foram coletados 31 hospedeiros com redes de espera entre agosto de 2014 e setembro de 2016. *Serrasalmus maculatus* apresentou hábito alimentar piscívoro e comunidade componente parasitária com baixa riqueza, incluindo dois táxons de monogenéticos, *Anacanthorus lepyrophallus* e *Mymarothecium* sp.; não foram observados endohelminths. Dados da revisão da literatura, juntamente com os achados deste estudo, mostraram que *S. maculatus*, na região Neotropical, abriga 25 táxons de helmintos, sendo monogenéticos o grupo de parasitos mais prevalente, e o Brasil o país com mais relatos de parasitos. Estes resultados fornecem informações sobre as relações entre dieta, o comportamento social e a fauna parasitária de *S. maculatus* e sobre os padrões de distribuição e infecção das taxas de parasitos observadas.

Palavras-chave: Ectoparasitos, *Anacanthorus*, *Mymarothecium*, peixe de água doce, piranha.
Introduction

Parasites can influence local communities by affecting host physiology, morphology, reproduction, and behaviour, thereby affecting population, community, and ecosystem structures, and host behaviours (e.g., feeding habits and predator-prey relationships) in turn, can affect the structures of parasite communities (Timi & Poulin, 2020). However, even though the ecological relevance of parasitism is widely recognised, many studies have neglected the effects of these organisms on their hosts (Timi & Poulin, 2020). For example, even though Brazil harbours a megadiverse freshwater ichthyofauna (~3500 species) (Froese & Pauly, 2020a), the parasitology of only 13% of the region's species has been evaluated, of which the majority are economically important species. Nevertheless, little is known about the parasitology of fish species with low commercial importance (Eiras et al., 2010, 2011).

The piranha, or pirambeba, Serrasalmus maculatus (Kner, 1858) is a medium-sized freshwater fish belonging to Characiformes, that is widely distributed in South America, throughout both the Amazon and Paraguay-Paraná River basins (Froese & Pauly, 2020b). The species is piscivorous, preferentially consuming fish musculature, fins, and scales. Eventually, invertebrates are the species most common prey (Agostinho & Marques, 2001; Agostinho et al., 2003; Villares et al., 2008). It is also generally gregarious and, although has low economic importance, is one of the most abundant species in hydroelectric reservoirs, because readily adapts to artificial lentic environments (Sazima & Machado, 1990; Hoffmann et al., 2005; Behr & Signor, 2008). Despite the abundance of S. maculatus in hydroelectric reservoirs, there are few studies on its parasitological aspects.

Most studies of the parasitology of S. maculatus have focused on populations in the Upper Paraná River floodplain region (Pavanelli et al., 1997, 2004; Takemoto et al., 2009; Casali & Takemoto, 2016; Moreira et al., 2019), and few studies have examined this species ecology or parasitology in artificial environments. In addition, considering the diet is an important factor in host-parasite interactions and hosts with more diverse diets tend to be more susceptible to endoparasite infections (Lima et al., 2016), we aimed (i) document the parasitic fauna and (ii) characterize the diet of S. maculatus in a hydroelectric reservoir in Brazil. We targeted also (iii) to verify the parasite fauna already associated with S. maculatus in the Neotropical region; and (iv) the occurrence of parasite genera - identified in the present study - in characiform fishes from other aquatic systems (natural or artificial) in the Neotropical region.

Material and Methods

Study area

The Ilha Solteira hydroelectric reservoir is an accumulation basin that was formed in 1978 and is situated along the Upper Paraná River, between the states of São Paulo, Minas Gerais, and Mato Grosso do Sul, Brazil (Figure 1). With a mean depth of 17.6 m, maximum volume of 21.06 × 10^9 m^3, hydrographic basin area of 1195 km^2, and residence time of 46.7 days, it is one of the largest artificial reservoirs in the neotropics (Garcia et al., 2014). For the present study, host sampling was conducted in the Can-Can arm in municipality of Santa Clara D’Oeste, São Paulo state, Brazil (50° 55’ 59.65” W and 20° 02’ 30.54” S).

Host sampling

Serrasalmus maculatus specimens were collected using gill nets (3, 4, 5, 6, 7, 8, 10, 12 and 14 cm between non-adjacent nodes) between August 2014 to September 2016 (authorization SISBio nº 42229-1). The collected specimens were euthanized (Authorization CEUA/FEIS nº 001/2014 and Certified SisGen A9038DB) and identified as described by Ota et al. (2018). The total weight (g, with viscera) and standard length (cm, from snout to last vertebra) of each specimen were recorded, and the fish were subsequently individually stored in plastic bags, frozen and sent to the laboratory for additional analyses. All measurements are expressed as the mean ± standard deviation followed by the range.

Parasitological procedures

The organs (skin, fins, nasal cavities, gills, eyes, heart, liver, gonads, intestines, swim bladder, spleen, gallbladder, and mesentery) were analysed for parasitological procedures, using a stereomicroscope, and parasites preserved in 70% ethanol or mounted on semipermanent slides using Gray and Wess medium. The parasite specimens were then subject to morphological analysis, using a computerised image analysis system with differential interference
Parasites and diet of *Serrasalmus maculatus*

contrast (DIC) - LAS V3 (Leica Application Suite V3; Leica Microsystems, Wetzlar, Germany) and identified according to Kritsky et al. (1992) and Kritsky et al. (1996). Parasite prevalence (P, in percentage), mean intensity of infestation (MII), and mean abundance (MA) were then calculated according to Bush et al. (1997). Mean intensity of infestation and mean abundance are expressed as the mean ± standard error followed by the range.

The host and parasite voucher specimens were deposited in the Fish Collection of São Paulo State University (UNESP), Campus of São José do Rio Preto, São Paulo state, Brazil (DZSJRP 21374), and the Helminthological Collection of the Institute of Bioscience, Section of Parasitology, UNESP, Campus of Botucatu, São Paulo state, Brazil, (*Mymarothecium* sp. - CHIBB 652 L–655 L; *Anacanthorus lepyrophallus* - CHIBB 656 L–663 L), respectively.

Literature review

Two literature reviews were conducted to verify the parasite fauna already associated with *S. maculatus* in the Neotropical region; and to verify the occurrence of parasite genera - identified in the present study - in characiform fishes from other aquatic systems (natural or artificial) in the Neotropical region. In the first review, we collected data on the helminth fauna previously reported for *S. maculatus* and its synonymy (= *Serrasalmus spilopleura* Kner, 1860) from the Neotropical region, from the first report in 1997 to 2021. In the second review, we collected data regarding the occurrence of monogenean species belonging to *Anacanthorus* and *Mymarothecium* genera in *S. maculatus*, as well as in other characiforms from the Neotropical region, from the first report of each genus (1965 to 2021 for *Anacanthorus*, and 1996 to 2021 for *Mymarothecium*).

The literature reviews were performed by searching relevant databases (SciELO, ISI, Scopus, Google Scholar, and WoRMS) for relevant terms: *Serrasalmus*, piranha, pirambeba, fish parasite, helminth, Monogenea, Dactylogyridae, Gyrodactylidae, Nematoda, Cestoda, Acanthocephala, Trematoda, Digenea, digenetic, digenean, monogenic, monogenean, cestode, acanthocephalan, *Anacanthorus*, and *Mymarothecium*. All common names were searched using both singular and plural forms in English, Portuguese, and Spanish.
Parasites and diet of *Serrasalmus maculatus*

Diet analysis

The stomachs of the host specimens were removed, fixed in 4% formaldehyde, and preserved in 70% alcohol, and stomach contents were analysed using an optical stereomicroscope. Recovered food items were quantified using the volumetric method (displacement of each measured food item from stomach contents using a gridded Petri dish) (Hyslop, 1980). Glass slides were used to compress food items to 1.0 mm in height, and the number of quadrants occupied by each food item was multiplied by 0.001 to calculate the volume in ml (Hellawell & Abel, 1971). All food items were identified to lowest possible taxonomic (Bicudo & Bicudo, 1970; Mugnai et al., 2010; Ota et al., 2018).

Results

The weight and standard length of the 31 *S. maculatus* specimens ranged from 32.24 to 650.40 g (139.95 ± 24.42 g) and from 9.5 to 24.0 cm (14.44 ± 0.53), respectively.

The richness of the *S. maculatus* component parasite community was low and included two monogenean ectoparasites from gills, belonging to Dactylogyridae: *Anacanthorus lepyrophallus* (P = 84.2%, MII = 7.51 ± 1.50 [1–35], MA = 6.54 ± 1.38 [0–35]) and *Mymarothecium* sp. (P = 10.5%, MII = 2.33 ± 1.33 [1–7], MA = 0.22 ± 0.92 [0–7]). A total of 210 specimens were collected, and the overall P, MII, and MA of the parasites were 87.09%, 7.78 ± 1.48 (1–35), and 6.77 ± 1.37 (0–35), respectively. No endohelminths were recorded.

Data from the literature review jointly with data from the specimens evaluated here demonstrated that *S. maculatus* in the Neotropical region harbour 25 helminth taxa (Table 1). Of these 25 taxa, 10 are monogeneans, nine nematodes, three digeneans, two acanthocephalans, and one cestode (Figure 2). Monogeneans most commonly infect host gills, followed by the nasal cavities and body surface (mucus), whereas the endohelminth groups with higher richness, nematodes and acanthocephalans, most commonly infect host intestines (Table 1 and Figure 3). Furthermore, the majority (16/25) of parasite taxa were reported from the Upper Paraná River floodplain in Brazil.

Monogenean species belonging to *Anacanthorus* and *Mymarothecium* in Neotropical hosts comprise 101 species (Table 2 and Figure 4). The genus *Anacanthorus* includes ~92 valid species (Table 2 and Figure 4), which are gill parasites of characiform fishes of the Serrasalmidae (41 species), Triportheidae (20 species), Bryconidae (19 species), Erythrinidae (eight species), and Characidae (four species). Brazil harbours the greatest number of *Anacanthorus* taxa.
Parasites and diet of *Serrasalmus maculatus*

Table 1. Helminth parasites reported from the piranha *Serrasalmus maculatus* in Neotropical region.

Parasites	Locality	Site of infection	Reference
Platyhelminthes			
Monogenea			
Anacanthorus lepyrophallus (Kritsky, Boeger & Van Every, 1992)	Upper Paraná River floodplain, Paraná state, Brazil; Ilha Solteira reservoir, Grande River, Upper Paraná River basin, São Paulo state, Brazil	Gills	Moreira et al. (2019), Present study
Anacanthorus paraxaniophallus (Moreira, Carneiro, Ruz & Luque, 2019)	Miranda River, Pantanal, Mato Grosso do Sul state	Gills	Moreira et al. (2019)
Anacanthorus sciponophallus (Van Every & Kritsky, 1992)	Batalha River and Peixe River, Upper Paraná River basin, São Paulo state, Brazil	Body surface, gills, and nasal cavity	Dias et al. (2017)
Kritskyia annakohnae (Boeger, Tanaka & Pavanelli, 2001)	Baía River, Upper Paraná River basin, Brazil; Upper Paraná River floodplain in Mato Grosso do Sul state (next to municipality of Porto Rico), Paraná state, Brazil	Urinary bladder and ureters; Unspecified	Boeger et al. (2001), Pavanelli et al. (2004), Takemoto et al. (2009), Casali & Takemoto (2016)
Mymarothecium sp.	Ilha Solteira reservoir, Grande River, Upper Paraná River basin, São Paulo state, Brazil	Gills	Present study
Notothecium deleastoideum (Kritsky, Boeger & Jégu, 1998)	Peixe River, Upper Paraná River basin, São Paulo state, Brazil	Gills and body surface	Dias et al. (2017)
Notozothecium minus Boeger & Kritsky, 1988 (=*Notozothecium minor* Boeger & Kritsky, 1988)	Batalha River, Upper Paraná River basin, São Paulo state, Brazil	Body surface, gills and nasal cavity	Dias et al. (2017)
Rhinoxenus euryxenus (Domingues & Boeger, 2005)	Paraná River, Paraná state, Brazil; Colastiné River, Sauce Viejo, Santa Fe Province, Argentina; Paraná Viejo River, Sauce Viejo, Santa Fe Province, Argentina	Nasal cavity	Domingues & Boeger (2005), Rossin et al. (2019)
Rhinoxenus paranaensis (Rossin & Timi, 2019)	Paraná River, Entre Ríos Province, Argentina; La Chancha Lagoon, Sauce Viejo, Santa Fe Province, Argentina; Lima, Partido de Zárate, Buenos Aires Province, Argentina	Nasal cavity	Rossin et al. (2019)
Rhinoxenus piranhus (Kritsky, Boeger & Thatcher, 1988)	Paraná River, Paraná state, Brazil; Batalha River, Upper Paraná River basin, São Paulo state, Brazil	Nasal cavity; body surface, gills, and nasal cavity	Domingues & Boeger (2005), Dias et al., (2017), Rossin et al. (2019)
Trematoda, Digenea			
Digenea gen. sp.	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (1997)

*Parasitological reports from the Paraná River basin address the species *Serrasalmus maculatus* and *Serrasalmus spilopleura* Kner, 1860, as they were all synonymized with *S. maculatus* (Jégu & dos Santos, 2001; Rossin et al., 2019). However, for the Northern Brazil basin, the identification of *S. spilopleura* is still valid, so records of *S. spilopleura* in the northern basins were not included in the review. Furthermore, it is noteworthy that the occurrence of *S. maculatus* is recorded for the Amazon and Paraguay-Paraná River basins (Froese & Pauly, 2020b), while *S. spilopleura* is restricted to the basins of the Northern region of Brazil (Jégu & dos Santos, 2001).
Table 1. Continued...

Parasites	Locality	Site of infection	Reference
Austrodiplostomum compactum	Rosana reservoir, Paranapanema River, Brazil	Eyes	Yamada et al. (2008)
(Lutz, 1928) Dubois, 1970			
Prosorhynchus piranhus	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (2004), Takemoto et al. (2009)
(Thatcher, 1999)			
Cestoda			
Proteocephalus serrasalmus	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (1997), Pavanelli et al. (2004), Takemoto et al. (2009)
(Rego & Pavanelli, 1990)			
Acanthocephala			
Acanthocephala gen. sp	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (1997), Pavanelli et al. (2004), Takemoto et al. (2009)
Echinorhynchus sp.	Upper Paraná River floodplain in Mato Grosso do Sul state (next to municipality of Porto Rico), Paraná state, Brazil	Intestine and stomach	Casali & Takemoto (2016)
Nematoda			
Capillariidae gen. sp	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (2004), Takemoto et al. (2009), Luque et al. (2011)
Contracaeum sp. (larvae)	Upper Paraná River floodplain in Mato Grosso do Sul state (next to municipality of Porto Rico), Paraná state, Brazil; Riachuelo River Lagoon, Corrientes Province, Argentina	Mesentery	Casali & Takemoto (2016)
		Mesentery	Hamann (1999), Chemes & Takemoto (2011)
Cucullanus sp.	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (1997), Pavanelli et al. (2004), Takemoto et al. (2009), Luque et al. (2011)
Eustrongylides ignotus	Upper Paraná River floodplain, Brazil	Unspecified	Pavanelli et al. (2004), Takemoto et al. (2009), Luque et al. (2011)
(Jägerskiöld, 1909)			
Eustrongylides sp.	Riachuelo River Lagoon, Corrientes Province, Argentina	Visceral cavity (encysted larvae)	Chemes & Takemoto (2011)
Philometridae gen. sp	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (2004), Takemoto et al. (2009), Luque et al. (2011)
Procamallanus sp.	Upper Paraná River floodplain, Paraná state, Brazil	Unspecified	Pavanelli et al. (1997)

*Parasitological reports from the Paraná River basin address the species *Serrasalmus maculatus* and *Serrasalmus spilopleura* Kner, 1860, as they were all synonymized with *S. maculatus* (Jégu & dos Santos, 2001; Rossin et al., 2019). However, for the Northern Brazil basin, the identification of *S. spilopleura* is still valid, so records of *S. spilopleura* in the northern basins were not included in the review. Furthermore, it is noteworthy that the occurrence of *S. maculatus* is recorded for the Amazon and Paraguay-Paraná River basins (Froese & Pauly, 2020b), while *S. spilopleura* is restricted to the basins of the Northern region of Brazil (Jégu & dos Santos, 2001).
Parasites and diet of *Serrasalmus maculatus*

Table 1. Continued...

Parasites	Locality	Site of infection	Reference
*Parasitological reports from the Paraná River basin address the species Serrasalmus maculatus and Serrasalmus spilopleura Kner, 1860, as they were all synonymized with S. maculatus (Jégu & dos Santos, 2001; Rossin et al., 2019). However, for the Northern Brazil basin, the identification of S. spilopleura is still valid, so records of S. spilopleura in the northern basins were not included in the review. Furthermore, it is noteworthy that the occurrence of S. maculatus is recorded for the Amazon and Paraguay-Paraná River basins (Froese & Pauly, 2020b), while S. spilopleura is restricted to the basins of the Northern region of Brazil (Jégu & dos Santos, 2001).			
Procamallanus (Spirocamallanus) inopinatus (Travassos, Artigas & Pereira, 1928)	Upper Paraná River floodplain; Riachuelo River Lagoon, Corrientes Province, Argentina; Upper Paraná River, Brazil	Unspecified; Pyloric caecum	Pavanelli et al. (2004), Takemoto et al. (2009), Luque et al. (2011), Chemes & Takemoto (2011), Casali & Takemoto (2016)
*Parasitological reports from the Paraná River basin address the species Serrasalmus maculatus and Serrasalmus spilopleura Kner, 1860, as they were all synonymized with S. maculatus (Jégu & dos Santos, 2001; Rossin et al., 2019). However, for the Northern Brazil basin, the identification of S. spilopleura is still valid, so records of S. spilopleura in the northern basins were not included in the review. Furthermore, it is noteworthy that the occurrence of S. maculatus is recorded for the Amazon and Paraguay-Paraná River basins (Froese & Pauly, 2020b), while S. spilopleura is restricted to the basins of the Northern region of Brazil (Jégu & dos Santos, 2001).			
Procamallanus (Spirocamallanus) neocaballeroi (Caballero-Deloya, 1977)	Upper Paraná River floodplain in Mato Grosso do Sul state (next to municipality of Porto Rico), Paraná state, Brazil	Intestine	Casali & Takemoto (2016)

Figure 3. Species richness of parasites reported in *Serrasalmus maculatus* from Neotropical region, according with their site of infection.

(84 species). Meanwhile, the genus *Mymarothecium* includes nine species, which are also parasites of characiform fishes of the family Serrasalminae, specifically of the genera *Serrasalmus* (four species), and *Piaractus* (two species), from Brazil, Peru, and Bolivia (Table 2 and Figure 4).

Stomach content analysis resulted in the identification of ten food items, which mostly included fish fragments (81.7%) but also included terrestrial plants and decapods (*Macrobrachium* sp.) (Table 3). *Serrasalmus maculatus* showed piscivorous food habits, due to the predominant consumption of fish fragments (81.7%).

Braz J Vet Parasitol 2022; 31(1): e019221 7/28
Table 2. Checklist of valid species of monogeneans belonging to *Anacanthorus* and *Mymarothecium* (Dactylogyridae) reported in characiform fishes from Neotropical region.

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus acrophallus (Neto, Muriel-Cunha & Domingues, 2019)	Haploerythrinus unicaudatus (Spix & Agassiz, 1829)	Erythrinidae	Guamá River, Pará state, Brazil	Neto et al. (2019)
Anacanthorus acuminatus (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus (Spix & Agassiz, 1829)	Triportheidae	Furo do Catalão and Solimões River, Amazonas state, Brazil	Kritsky et al. (1992), Moreira et al. (2017)
	Triportheus elongatus (Günther, 1864)			
	Triportheus albus (Cope, 1872)			
Anacanthorus adkruidenieri (Monteiro, Cohen & Brasil-Sato, 2015)	Salminus franciscanus (Lima & Britski, 2007)	Bryconidae	São Francisco River, Minas Gerais state, Brazil	Monteiro et al. (2015)
Anacanthorus alatus (Kritsky, Boeger & Van Every, 1992)	Triportheus albus	Triportheidae	Furo do Catalão and Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)
	Triportheus elongatus			
Anacanthorus amazonicus (Van Every & Kritsky, 1992)	Serrasalmus rhombeus (Linneaus, 1766); *Serrasalmus* sp.; *Pristobrycon striolatus* (Steindachner, 1908)	Serrasalmidae	Pitinga, Uatumã and Negro Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
	Serrasalmus altispinis (Merckx, Jégu & Santos, 2000)			Córdova & Pariselle (2007)
			San Martin, Beni and Ichilo Rivers, Bolivia	Morey & Malta (2018)
			Solimões and Purus Rivers, Amazonas state, Brazil.	
Anacanthorus anacanthorus (Mizelle & Price, 1965)	Pygocentrus nattereri Kner 1858 (=Serrasalmus nattereri Kner, 1858)	Serrasalmidae	Amazonas River, Brazil; Brito-Junior & Tavares-Dias (2018)	Mizelle & Price (1965)
Anacanthorus andersoni (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus	Triportheidae	São Jorge's district, Manaus, Amazonas state, Brazil	Kritsky et al. (1992)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus ataidei	Erythrinus erythrinus (Bloch & Schneider, 1801)	Erythrinidae	Caeté and Moju Rivers, Pará state, Brazil	Neto et al. (2019)
Anacanthorus beleophallus	Serrasalmus eigenmanni (Kritsky et al., 1992)	Serrasalmidae	Negro River, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus bellus	Triportheus albus	Triportheidae	Furo do Catalão and Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus bicuspidatus	Triportheus elongatus, Triportheus sp.			
Anacanthorus bicuspidatus	Salminus brasiliensis (Cuvier, 1816)	Bryconidae	Paraná River, Paraná state, Brazil; Taquari River, São Paulo state, Brazil	Cohen et al. (2012)
Anacanthorus brazilensis	Pygocentrus nattereri (= Serrasalmus nattereri)	Serrasalmidae	Amazonas River, Brazil;	Mizelle & Price (1965)
Anacanthorus brevicirrus	Brycon orthotaenia (Günther, 1864)	Bryconidae	São Francisco River, Minas Gerais state, Brazil	Brito-Junior & Tavares-Dias (2018)
Anacanthorus brevis	Brycon melanopterus (Cope, 1872)	Bryconidae	Xeruiny River, Amazonas state, Brazil	Mizelle et al. (1969)
Anacanthorus calophallus	Triportheus elongatus	Triportheidae	Solimões River, Amazonas state, Brazil; Manaus Fish Market, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus camposbacii	Myloplus schomburgii (Jardine, 1841)	Serrasalmidae	Nanay River, Iquitos, Peru.	Morey et al. (2019)
Anacanthorus carinatus	Triportheus angulatus	Triportheidae	São Jorgé's district, Manaus, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus carmenrosae	Myloplus schomburgii	Serrasalmidae	Nanay River, Iquitos, Peru.	Morey et al. (2019)
Anacanthorus catoprioni	Catoprion mento (Cuvier, 1819)	Serrasalmidae	Uatumã River and Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus chaunophallus (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus	Triportheidae	Furo do Catalão River, Amazonas state, Brazil	Kritsky et al. (1992); Moreira et al. (2017)
Anacanthorus chelophorus (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus	Triportheidae	São Jorge's district, Manaus, Amazonas state, Brazil; Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus cinctus (Van Ever & Kritsky, 1992)	Triportheus sp.	Triportheidae	São Jorge's district, Manaus, Amazonas state, Brazil; Furo do Catalão, Amazonas state, Brazil	Van Every & Kritsky (1992); Morey & Malta (2018)
Anacanthorus cirrumpatatulatus (Neto, Muriel-Cunha & Domingues, 2019)	Erythrinus erythrinus	Erythrinidae	Caeté and Moju Rivers, Pará state, Brazil	Neto et al. (2019)
Anacanthorus cladophallus (Van Ever & Kritsky, 1992)	Serrasalmus spilopleura (Kner, 1860)	Serrasalmidae	Solimões River, Manaus, Amazonas state, Brazil	Van Every & Kritsky (1992)
Anacanthorus cohenea (Pereira, Mota, Paiva & Tavares, 2020)	Markiana nigripinnis (Perugia, 1891)	Characidae	Marginal lake to the road MS184, Corumbá, Mato Grosso do Sul state, Brazil	Pereira et al. (2020)
Anacanthorus colombianus (Kritsky & Thatcher, 1974)	Salminus affinis (Steindachner, 1880)	Bryconidae	Jamundi River, Colômbia	Kritsky & Thatcher (1974)
Anacanthorus contortus (Cohen, Kohn & Boeger, 2012)	Salminus brasiliensis	Bryconidae	Paraná River, Paraná state, Brazil	Cohen et al. (2012)
Anacanthorus cornutus (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus	Triportheidae	São Jorge's district, Manaus, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus crytoailatus (Van Ever & Kritsky, 1992)	Pristobrycon striolatus	Serrasalmidae	Pitinga and Uatumã Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
Serrasalmus altispinis			Solimões and Purus Rivers, Amazonas state, Brazil	Morey & Malta (2018)
Parasites	Hosts	Host Family	Locality	Reference
-------------------------------	---------------------	-------------	---	----------------------------------
Anacanthorus cururuviensis	Hoplerythrinus unitaenius	Erythrinidae	Caeté and Guamá Rivers, Pará state, Brazil	Neto et al. (2019)
Anacanthorus cuticulovaginus	Salminus affinis	Bryconidae	Jamundi River, Colômbia	Kritsky & Thatcher (1974)
Anacanthorus doulometrus	Salminus brasiliensis	Bryconidae	Paraná River, Paraná state, Brazil	Cohen et al. (2012)
Anacanthorus dipelecinus	Roeboides myersii	Characidae	Solimões and Negro Rivers, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus douradensis	Salminus brasiliensis	Bryconidae	Paraná River, Paraná state, Brazil	Cohen et al. (2012)
Anacanthorus elegans	Brycon melanopterus	Bryconidae	Janauacá Lake, Amazonas state, Brazil	Kritsky et al. (1979)
Anacanthorus euryphallus	Triportheus angulatus; Triportheus elongatus; Triportheus albus	Triportheidae	Furo do Catalão, Amazonas state, Brazil; Manaus Fish Market, Brazil	Kritsky et al. (1992); Moreira et al. (2017)
Anacanthorus femaris	Brycon amazonicus	Bryconidae	River Tahuayo, Loreto state, Peru	Morey et al. (2021)
Anacanthorus formosus	Triportheus elongatus; Triportheus sp.	Triportheidae	Furo do Catalão and Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus franciscanus	Brycon orthotaenina	Bryconidae	São Francisco River, Minas Gerais state, Brazil	Monteiro et al. (2010)
Anacanthorus furculus	Triportheus elongatus	Triportheidae	Solimões River, Amazonas state, Brazil; Manaus Fish Market, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus glyptophallus	Triportheus angulatus	Triportheidae	São Jorge's district, Manaus, Amazonas state, Brazil	Kritsky et al. (1992)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus gravihamulatus (Van Every & Kritsky, 1992)	*Serrasalmus rhombeus; Serrasalmus eigenmanni (=Pristobrycon eigenmanni); Serrasalmus sp.*	Serrasalmidae	Pitinga and Uatumã Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
	Serrasalmus rhombeus		Madre Dios River, Bolivia	Córdova & Pariselle (2007)
	Serrasalmus altispinis		Matapi River, Amapá state, Brazil	Neves et al. (2020)
			Solimões and Purus Rivers, Amazonas state, Brazil	Morey & Malta (2018)
Anacanthorus hoplophallus (Kritsky, Boeger & Van Every, 1992)	*Myloplus rubripinnis* (Müller & Troschel, 1844)	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus jegui (Van Every & Kritsky, 1992)	*Serrasalmus spilopleura; Serrasalmus sp.; Serrasalmus eigenmanni (=Pristobrycon eigenmanni); Pristobrycon sp.; Serrasalmus rhombeus*	Serrasalmidae	Solimões, Pitinga and Uatumã Rivers and Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)
			San Martin, Beni, Madre Dios and Ichilo Rivers, Bolivia	Córdova & Pariselle (2007)
			Igarapé basin, Amapá state, Brazil; Matapi River, Amapá state, Brazil	Hoshino & Tavares-Dias (2014); Neves et al. (2020); Morey & Malta (2018)
Anacanthorus lacinimentulatus (Neto, Muriel-Cunha & Domingues, 2019)	*Serrasalmus altispinis*	Serrasalmidae	Solimões and Purus Rivers, Amazonas state, Brazil	Morey & Malta (2018)
Anacanthorus kruidenieri (Kritsky, Thatcher & Kayton, 1979)	*Brycon melanopterus*	Bryconidae	Janauacá Lake, Amazonas state, Brazil	Kritsky et al. (1979)
Anacanthorus kukamensis (Morey, Sol & Cachique, 2021)	*Brycon amazonicus*	Bryconidae	River Tahuayo, Loreto state, Peru	Morey et al. (2021)
Anacanthorus kukamensis (Morey, Sol & Cachique, 2021)	*Hoploberythrinus unitaeniatus*	Erythrinidae	Guamá and Moju Rivers, Pará state, Brazil	Neto et al. (2019)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus lasiophallus (Van Every & Kritsky, 1992)	Pristobrycon striolatus	Serrasalmidae	Pitinga and Uatumã Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
Anacanthorus lpyrophallus (Kritsky, Boeger & Van Every, 1992)	Serrasalmus elongatus; Serrasalmus sp.	Serrasalmidae	Negro and Solimões Rivers, Lago do Rei, Paraná, Ilha do Careiro and Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)
Serrasalmus altispinis			Solimões and Purus Rivers, Amazonas state, Brazil	
			Ilha Solteira reservoir, Upper Paraná River basin, São Paulo state, Brazil	Moreira et al. (2019)
Anacanthorus luquei (Pereira, Mota, Paiva & Tavares, 2020)	Markiana nigripinnis	Characidae	Marginal lake to the road MS184, Corumbá, Mato Grosso do Sul state, Brazil	Pereira et al. (2020)
Anacanthorus lygophallus (Kritsky, Boeger & Van Every, 1992)	Triportheus angulatus	Triportheidae	Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992), Moreira et al. (2017)
Anacanthorus maltai (Boeger & Kritsky, 1988)	Pygocentrus nattereri (= Serrasalmus nattereri)	Serrasalmidae	Mamoré River, Rondônia state, Brazil	Boeger & Kritsky (1988)
Anacanthorus maratininguensis (Neto, Muriel-Cunha & Domingues, 2019)	Hoplythrinus untaeniatus	Erythriniidae	Moju, Caeté and Guamá Rivers, Pará state, Brazil	Neto et al. (2019)
Anacanthorus mastigophallus (Kritsky, Boeger & Van Every, 1992)	Serrasalmus eigenmanni (=Pristobrycon eigenmanni)	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus mesocondylus (Van Every & Kritsky, 1992)	*Serrasalmus elongatus*; *Serrasalmus rhombus*; *Serrasalmus spilopleura*; *Serrasalmus sp*; *Serrasalmus eigenmannii* (=*Pristobrycon eigenmannii*); *Pristobrycon sp.*	Serrasalmaidae	Solimões, Negro, Uatumã and Pitinga Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
	Serrasalmus altispinis			
Anacanthorus myleusi (Moreira, Carneiro, Ruz & Luque, 2019)	*Myloplus schomburgii*	Serrasalmaidae	Xingu River, Pará state, Brazil	Moreira et al. (2019)
Anacanthorus nanus (Kritsky, Boeger & Van Every, 1992)	*Triportheus angulatus*	Triportheidae	Bairro de São Jorge, Manaus, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus neotropicalis (Mizelle & Price, 1965)	*Pygocentrus nattereri* (=*Serrasalmus nattereri*)	Serrasalmaidae	Amazonas River, Brazil	Mizelle & Price (1965)
Anacanthorus palamophallus (Kritsky, Boeger & Van Every, 1992)	*Serrasalmus eigenmannii* (=*Pristobrycon eigenmannii*)	Serrasalmaidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus paradouradensis (Monteiro, Cohen & Brasil-Sato, 2015)	*Salminus franciscanus*	Bryconidae	São Francisco River, near to Três Marias reservoir, Minas Gerais state, Brazil	Monteiro et al. (2015)
Anacanthorus parakruidenieri (Cohen, Kohn & Boeger, 2012)	*Salminus brasiliensis*	Bryconidae	Paraná River, Paraná state, Brazil	Cohen et al. (2012)
Anacanthorus paraspathulatus (Kritsky, Boeger & Van Every, 1992)	*Mylossoma duriventris* (Cuvier, 1817)	Serrasalmaidae	Solimões River, Amazonas state, Brazil	Kritsky et al. (1992);
	Mylossoma aureum (Spix & Agassiz, 1829)		Lake Coari, Amazonas state, Brazil	Silva & Tavares-Dias (2012)
				Azevedo et al. (2011)
Parasites	Hosts	Host Family	Locality	Reference
---------------------------------	--------------------------------	---------------	---	---
Anacanthorus paraxaniophallus	*Serrasalmus maculatus*;	Serrasalmidae	Miranda River, Pantanal, Mato Grosso do	Moreira et al. (2019)
	Serrasalmus marginatus		Sul state, Brazil	
Anacanthorus pedanophallus	*Myloplus rubripinnis* Müller	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
	& Troschel, 1844 (=*Myleus rubripinnis*)			
Anacanthorus pelorophallus	*Triportheus elongatus*	Triportheidae	Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)
			Manaus Fish Market, Manaus, Amazonas state,	
			Brazil	
Anacanthorus penilabiatus	*Piartuctus mesopotamicus*	Serrasalmidae	Aquaculture Center, UNESP, São Paulo state,	Boeger et al. (1995)
(Boeger, Husak & Martins, 1995)			Brazil	
			“Departamento Nacional de Obras Contra as	Pamplona-Basilio et al. (2001);
			Secas, DNOCS”, Ceará state, Brazil	Cohen & Kohn (2009)
Piartuctus mesopotamicus				
Piartuctus brachypomus				Leão et al. (2017)
Colossoma macropomum				
			Itaipu reservoir, Paraná River, Paraná state,	
			Brazil	
Piartuctus mesopotamicus	*Serrasalmus sp.*	Serrasalmidae	Furo do Catalão and Solimões River, Amazonas	Kritsky et al. (1992)
			state, Brazil	
			Solimões and Purus Rivers, Amazonas state,	Morey & Malta (2018)
			Brazil	
Serrasalmus altispinis				
Anacanthorus pithophallus	*Triportheus angulatus*	Triportheidae	São Jorge’ district, Manaus, Amazonas state,	Kritsky et al. (1992), Moreira et al. (2017)
(Kritsky, Boeger & Van Every,			Brazil; Catalão floodplain lake Manaus,	
1992)			Amazonas state, Brazil	
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference	
Anacanthorus prodigiosus (Van	*Serrasalmus elongatus*;	Serrasalmidae	Negro, Solimões, Uamutá, and Pitinga Rivers, Amazonas, Brazil	Kritsky et al. (1992)	
Every & Kritsky, 1992)	*Serrasalmus rhombeus*;				
	Serrasalmus sp.				
Serrasalmus altispinis			Solimões and Purus Rivers, Amazonas state, Brazil	Morey & Malta, (2018)	
Anacanthorus quinqueramus	*Triportheus albus*;	Serrasalmidae	Furo do Catalão and Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)	
(Kritsky, Boeger & Van Every,	*Triportheus elongatus*;				
1992)	*Triportheus sp.*				
Anacanthorus ramosissimus	*Serrasalmus elongatus*	Serrasalmidae	Solimões River, Amazonas state, Brazil	Van Every & Kritsky (1992)	
(Van Every & Kritsky, 1992)					
Anacanthorus ramosus	*Triportheus albus*;	Serrasalmidae	Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)	
(Kritsky, Boeger & Van Every,	*Triportheus elongatus*				
1992)					
Anacanthorus rarus (Morey, Sol	*Brycon amazonicus*	Bryconidae	River Tahuayo, Loreto state, Peru	Morey et al. (2021)	
& Cachique, 2021)					
Anacanthorus reginae	*Pygocentrus nattereri (=	Serrasalmidae	Solimões River, Amazonas state, Brazil	Boeger & Kritsky (1988)	
(Boeger & Kritsky, 1988)	*Serrasalmus nattereri*)			Morais & Malta (2015)	
				Iannacone & Luque (1993)	
			Amazonas River, Peru		
Anacanthorus rondonensis (Boeger	*Pygocentrus nattereri (=	Serrasalmidae	Mamoré River, Rondônia state, Brazil;	Boeger & Kritsky (1988)	
& Kritsky, 1988)	*Serrasalmus nattereri*)			Córdova & Pariselle (2007)	
				Madre de Dios River, Bolivía	
Anacanthorus sabaloi (Morey, Sol	*Brycon amazonicus*	Bryconidae	River Tahuayo, Loreto state, Peru	Morey et al. (2021)	
& Cachique, 2021)					
Anacanthorus scapanus (Van Every	*Serrasalmus spilopleura*	Serrasalmidae	Solimões River, Amazonas state, Brazil	Van Every & Kritsky (1992)	
& Kritsky, 1992)					
Anacanthorus scholzi (Pereira,	*Markiana nigripinnis*	Characidae	Marginal lake to the road MS184, Corumbá, Mato Grosso do Sul state, Brazil	Pereira et al. (2020)	
Mota, Paiva & Tavares, 2020)					

Parasites and diet of *Serrasalmus maculatus*
Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus sciponophallus (Van Every & Kritsky, 1992)	*Serrasalmus elongatus*; *Serrasalmus rhombeus*; *Serrasalmus spilopleura*; *Serrasalmus sp.*	Serrasalminae	Solimões, Negro, Pitinga, Uatumã Rivers, and Ilha do Careiro, Amazonas state, Brazil	Van Every & Kritsky (1992)
Serrasalmus rhombeus				
Serrasalmus altispinis				
Serrasalmus maculatus	*Erythrinus erythrinus*	Erythriniidae	Caeté River, Pará state, Brazil	Neto et al. (2019)
Anacanthorus scyphophilus (Neto, Muriel-Cunha & Domingues, 2019)	*Serrasalmus rhombeus*; *Serrasalmus elongatus*; *Serrasalmus sp.*; *Pristobrycon sp.*	Serrasalminae	Pitinga, Uatumã, Negro, and Solimões Rivers, Amazonas state, Brazil	Van Every & Kritsky (1992)
Serrasalmus altispinis				
Anacanthorus siphonocommus (Neto, Muriel-Cunha & Domingues, 2019)	*Hopylerythrinus unitaeniatus*	Erythriniidae	Caeté and Guamá Rivers, Pará state, Brazil	Neto et al., (2019)
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Anacanthorus spathulatus	Piaractus brachypomus	Serrasalmidae	Janauacá Lake, Amazonas state, Brazil	Kritsky et al. (1979)
	(=Colossoma bidens; Colossoma			
	macropomum)			
	Colossoma macropomum		Solimões and Amazon Rivers, Pará, Brazil	Fischer et al. (2003)
	Híbrido (C. macropomum x		“Experimental Papelón, del Instituto Nacional	Aragort et al. (2002)
	Piaractus brachypomus)		de Investigaciones Agropecuarias”, Portuguesa state, Venezuela	
			Delta Amacuro Experimental Station of the	
			National Institute of Agricultural Research	
			(INIA), Venezuela	
	Myloplus rubripinnis (=Myleus	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Centeno et al. (2004)
	rubripinnis)			
Anacanthorus spinatus	Brycon melanopterus	Bryconidae	Janauacá Lake, Amazonas state, Brazil	Kritsky et al. (1979)
(Kritsky, Boeger & Van Every,			Amazonas state, Brazil	Andrade & Malta (2006);
1992)	Brycon amazonicus			
			River Tahuayo, Loreto state, Peru	Morey et al. (2021)
Anacanthorus stachophallus	Pygocentrus nattereri (=	Serrasalmidae	Solimões River and Furo do Catalão, Amazonas	Kritsky et al. (1992)
(Kritsky, Boeger & Van Every,	Serrasalmus nattereri)		state, Brazil	
1992)			Solimões River, Amazonas state, Brazil	Morais & Malta (2015)
			Amazonas River, Peru	
				Iannacone & Luque (1993)
Anacanthorus stagnophallus	Myloplus rubripinnis (=Myleus	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
(Kritsky, Boeger & Van Every,	rubripinnis)			
1992)				
Anacanthorus strongilophallus	Triportheus elongatus	Triportheidae	Solimões River, Amazonas state, Brazil	Kritsky et al. (1992)
(Kritsky, Boeger & Van Every,				
1992)				
Parasites	Hosts	Host Family	Locality	Reference
------------------------------	--	---------------	--	---
Anacanthorus thatcheri	*Pygocentrus nattereri (= Serrasalmus nattereri)*	Serrasalmidae	Solimões River, Amazonas state, Brazil	Boeger & Kritsky (1988); Morais & Malta (2015)
Anacanthorus toledoensis	*Piaractus mesopotamicus*	Serrasalmidae	Paraná River, Paraná state, Brazil	Iannacone & Luque (1993)
Anacanthorus tricornis	*Triportheus elongatus; T. angulatus*	Triportheidae	Solimões River and Manaus Fish Market, Amazonas state, Brazil; São Jorge's district, Manaus; and Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1992)
Anacanthorus xaniophallus	*Serrasalmus eigermanni* (=*Pristobrycon eigermanni*; *Pristobrycon* sp.)*	Serrasalmidae	Uatumã River, Amazonas state, Brazil	Kritsky et al. (1992)
Mymarothecium boegeri	*Colossoma macropomum*	Serrasalmidae	Aquarium from "Centro de Pesquisas em Aquicultura Rodolfo von Ihering, DNOCS", Ceará state, Brazil	Cohen & Kohn (2005); Cohen & Kohn (2009)
Mymarothecium dactylotum	*Serrasalmus rhombeus*	Serrasalmidae	Pitinga, Uatumã, Negro and Jatapú Rivers, Cachoeira das Garças, Furo do Catalão, Amazonas state, Brazil	Kritsky et al. (1996)
Híbrido (Colossoma macropomum x Raractus brachypomus)			Matapi, Amapá state, Brazil	
Mymarothecium dactylotum	*Pristobrycon* sp.			
Serrasalmus sp.				
Table 2. Continued...

Parasites	Hosts	Host Family	Locality	Reference
Mymarothecium galeolum	*Serrasalmus eigenmanni* (*=Pristobrycon eigenmanni; Pristobrycon sp.; Serrasalmus goulângi* (Fink & Machado-Allison 1992); *Serrasalmus rhombeus*)	Serrasalidae	Uatumã, Jatapú, Pitinga and Negro Rivers, Cachoeira das Garças, Furo do Catalão Amazonas state, Brazil	Kritsky et al. (1996)
			San Martín, Madre de Dios and Ichilo Rivers, Bolivia	
Mymarothecium ianwhittingtoni	*Piaractus mesopotamicus*	Serrasalidae	Paraná River, Toledo, Paraná state, Brazil	Córdova & Pariselle (2007)
(Leão, São Clemente & Cohen, 2015)			Itaipu reservoir, Paraná River, Paraná state, Brazil	
Mymarothecium iiapense	*Colossoma macropomum*	Serrasalidae	Fishpond from the “Centro de Investigações Fernando Alcântara Bocanegra (CIFAB), Instituto de Investigações de la Amazônia Peruana (ILAP)”, Iquitos, Peru	Morey et al. (2019)
Morey, Aliano & Grandez, 2019 (=*Mymarothecium iiapens* Morey, Aliano e Grandez, 2019)				
Mymarothecium perplanum	*Serrasalmus spilopleura*	Serrasalidae	Uatumã and Solimões Rivers, Amazonas state, Brazil	Kritsky et al. (1996)
(Kritsky, Walter, Boeger & Jegu, 1996)				
Mymarothecium tantaliani	*Colossoma macropomum*	Serrasalidae	Puerto Maldonado, Madre de Dios River, Peru	Cayulla-Quispe et al. (2021)
(Cayulla-Quispe, Mondragón-Martinez, Rojas-De-Los-Santos, García-Candela, Babilonia-Medina & Martinez-Rojas, 2020)				
Parasites	Hosts	Host Family	Locality	Reference
---------------------------------	--	-------------------	--	---------------------------
Mymarothecium viatorum (Boeger, Piasecki & Sobecka, 2002)	*Piaractus brachypomus* (Cuvier, 1818); *Piaractus mesopotamicus* (Holmberg, 1887)	Serrasalmidae	Aquarium of the “Centro de Pesquisas em Aquicultura Rodolfo von Ihering, DNOCS”, Ceará state, Brazil	Cohen & Kohn (2005)
	Híbrido (*Colossoma macropomum* x *Piaractus mesopotamicus*)			
	Piaractus mesopotamicus			
	Híbrido “patinga” (*P. mesopotamicus* x *Piaractus brachypomus*)			
	Piaractus mesopotamicus		Piscicultures from municipality of Estrela d’Oeste, São Paulo state, Brazil	Franceschini et al. (2013)
Mymarothecium whittingtoni (Kritsky, Walter, Boeger & Jegu, 1996)	*Serrasalmus* sp.; *Serrasalmus rhombeus*; *Serrasalmus spilopleura*; *Serrasalmus maculatus*	Serrasalmidae	Solimões River, Furo do Catalão, Ilha do Careiro, Amazonas state, Brazil	Kritsky et al. (1996)
	Mymarothecium sp.			
	Serrasalmus maculatus		Ilha Solteira reservoir, Upper Paraná River basin. São Paulo state, Brazil	Present study
Parasites and diet of *Serrasalmus maculatus*

Figure 4. Monogeneans belonging to *Anacanthorus* and *Mymarothecium* (Dactylogyridae) reported from Neotropical characiform fishes.

Table 3. Dietary components of piranha *Serrasalmus maculatus* specimens collected from the Ilha Solteira hydroelectric reservoir, Upper Paraná River basin, São Paulo state, Brazil.

Food items	% Volume
Fish fragments	81.7
Terrestrial plants	7.7
Decapoda (*Macrobrachium* sp.)	4.6
Gastropoda	1.8
Odonata	0.9
Other aquatic invertebrates	0.9
Remains of terrestrial insects	0.9
Aquatic plants	0.6
Seed	0.5
Detritus	0.4

Discussion

This is the first study to report the parasitic fauna of *S. maculatus* from the northwest region of the Upper Paraná River basin, São Paulo, Brazil. In addition, represents the first report of monogeneans belonging to *Mymarothecium* in this host species and first report of *Anacanthorus lepyrophallus* in the Ilha Solteira Reservoir. For monogeneans that parasitise fish gills, the phylogenetic relationships and evolutionary history between host orders are important factors for host-parasite interaction and distribution (Braga et al., 2014).

Previous studies have demonstrated that most monogeneans prefer to parasitise specific host lineages (Graça et al., 2018; Moreira et al., 2019) (e.g., *Mymarothecium* taxa parasitise members of the Serrasalmidae).
(Braga et al., 2015). However, in some cases, members of other monogenean families have been reported to colonize phylogenetically distant hosts. In both cases, host-parasite relationships result from a combination of factors, including cospeciation, host-switching, and ecological fitting (Janzen, 1985; Brooks et al., 2006; Braga et al., 2014, 2015). Considering the monophyly of the Characiformes and the diversification of the group only in the continental neotropics, the phylogenetic contiguity between the order's families may indicate the sharing of a range of intrinsic resources (Braga et al., 2015). Anacanthorus spp. are widely distributed in hosts of the five families of the order Characiformes (Figure 4). The sharing of resources (e.g., phylogenetic conservatism and phenotypic flexibility) may have favoured its occurrence within individuals of the same order and family (see Braga et al., 2014, 2015 and cited references).

The predominance of monogeneans in S. maculatus in Neotropical region could be associated with both the parasites' monoxenous biology and host species' gregarious habit (Sazima & Machado, 1990; Strona, 2015). Indeed, the proximity of fish in shoals can facilitate monogenean transmission, which occurs through simple contact between hosts (Thatcher, 2006). Furthermore, gregarious behaviour also allows free-native larval forms (oncomiracidia) to locate hosts more easily (Thatcher, 2006), which would justify the results observed in the present study.

The low parasite richness and absence of endoparasites observed in the present study may be related to host behaviour and/or foraging. Several studies have reported that heteroxenous parasites are transmitted via food interactions and that intermediate hosts are nearly always dietary components of the parasites' definitive hosts (Luque & Poulin, 2008; Lima et al., 2016). Therefore, host diet is considered an important factor in host-parasite interactions, and hosts with more diverse diets tend to be more susceptible to endoparasite infections and, thus, usually harbour greater parasite richness (Lima et al., 2016).

The dietary components of S. maculatus identified in the present study were like the findings of previous studies in the Upper Paraná floodplain, including the Ibicuí River, Rio Grande do Sul state, and a lower stretch of the Sorocaba River basin, São Paulo state, Brazil (Agostinho & Marques, 2001; Agostinho et al., 2003; Behr & Signor, 2008; Villares et al., 2008). Serrasalmus maculatus is piscivorous, preferentially ingesting fish fragments (instead of ingesting the host's entire body), and its feeding behaviour includes the mutilation of prey scales, fins, and muscle tissue, which we infer can hinder the ingestion of endoparasites (Sazima & Pombal-Jr, 1988; Sazima & Machado, 1990; Casali & Takemoto, 2016). In the present study, the dietary components of S. maculatus were fish fragments, terrestrial plants, and decapods (Macrobrachium sp.). However, even though Macrobrachium sp. is one of the most common of S. maculatus' prey items, this genus of shrimp is native from Amazon basin (Collart & Moreira, 1993), and was introduced in Paraná River basin (Bialetzki et al., 1997). When a species is introduced to a new area, it may lose part of its natural parasite fauna (i.e., Enemy Release Hypothesis - Keane & Crawley, 2002; Touchin et al., 2002; Mitchell & Power, 2003; Torchin et al., 2003) and, thereby, break the natural network of complex interactions between intermediate and definitive hosts, which alters the infection dynamics and enables the loss of parasite taxa (Madi & Ueta, 2009).

Several authors have reported rich endoparasite fauna for S. maculatus in the Upper Paraná River floodplain, whereas endoparasites were completely absent in the present study, and the richness of ectoparasites was low (Pavanelli et al., 1997; Pavanelli et al., 2004; Takemoto et al., 2009; Casali & Takemoto, 2016 – see Table 1). It is possible that the dynamics of parasitic infections are negatively affected by abiotic and biotic homogenisation in artificial habitats (Agostinho et al., 2007), such as hydroelectric reservoirs, especially for endoparasites with heteroxenous life cycles.

Floodplains are highly dynamic and complex systems because they include a wide variety of aquatic habitats (e.g., rivers, lakes, and canals) (Junk, 1980; Power et al., 1995), when compared to artificial reservoirs, since the hydrodynamics and biotic communities of such last environments are altered during the damming process. The conversion of lotic to lentic environments involves a series of negative biotic and abiotic impacts, including changes in flow and channel granulometry, increases in fish mortality, increased predation rates, simplification of trophic chains, interruption of fish migration, eutrophication, deterioration of water quality, reduction of benthic community stability, colonisation by macrophytes, invasion by non-native species, and simplification of habitats (Agostinho et al., 1992; 2008). Furthermore, these changes can ultimately reduce the abundance and richness of local biota, disrupt the dynamics of host-parasite relationships, and, consequently, alter the structure of parasitic communities (Morley, 2007), and these seem to be the drivers involved here regarding the low parasite richness observed for S. maculatus.

In summary, the richness of the component parasite community of S. maculatus in the Ilha Solteira hydroelectric reservoir in Brazil was low, in contrast to what has been previously reported in other water environments.
Parasites and diet of *Serrasalmus maculatus* (Pavanelli et al., 1997, 2004; Takemoto et al., 2009; Casali & Takemoto, 2016). These findings provide insight into the relationships between *S. maculatus* diet, social behaviour, and parasite fauna and the distribution and infection patterns of the observed parasite taxa. The present study also illustrates the possible effects of habitat homogenisation on parasite infection dynamics in artificial reservoirs. However, additional multidisciplinary research is needed to elucidate the effects of biotic and abiotic factors on the structure and dynamics of component communities of fish parasites in natural and artificial habitats in the neotropics.

References

Agostinho AA, Júlio Júnior HF, Borghetti JR. Considerações sobre os impactos dos represamentos na ictiofauna e medidas para sua atenuação. Um estudo de caso: reservatório do Itaipu. *Rev Unimar* 1992; 14(Suppl): 89-107.

Agostinho AA, Pelicce FM, Gomes LC. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. *Braz J Biol* 2008; 68(4 Suppl): 1119-1132. http://dx.doi.org/10.1590/S1519-69842008000500019. PMid:19197482.

Agostinho AA, Pelicce FM, Petry AC, Gomes LC, Júlio HF Jr. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. *Aquat Ecosyst Health Manage* 2007; 10(2): 174-186. http://dx.doi.org/10.1080/14634980701341719.

Agostinho CS, Hahn NS, Marqués EE. Patterns of food resource use by two congeneric species of piranhas (*Serrasalmus*) on the Upper Paraná River floodplain. *Braz J Biol* 2003; 63(2): 177-182. http://dx.doi.org/10.1590/S1519-69842003000200002. PMid:14509839.

Agostinho CS, Marques EE. Selection of netted prey by piranhas, *Serrasalmus spilopleura* and *S. marginatus* (Pisces, Serrasalmidae). *Acta Sci Biol Sci* 2001; 23(2): 461-464.

Andrade SMS, Malta JCO. Parasite fauna monitoring of matrixxá *Brycon amazonicus* (Spix & Agassiz, 1829) raised in an intensive husbandry system a stream channel in the state of Amazonas, Brazil. *Braz J Biol* 2006; 66(4): 1123-1132. http://dx.doi.org/10.1590/S1519-69842006000600020. PMid:17299949.

Aragort W, Morales G, Leon E, Pino LA, Guillen A, Silva M. Patologías asociadas a monogeneos branquiales en cachama bajo cultivo. *Vet Trop* 2002; 27(2): 75-85.

Azvedo RK, Abdallah VE, Luque JL. Biodiversity of fish parasites from Guandu river, Southeastern Brazil: an ecological approach. *Neotrop Helminthol* 2011; 5(2): 155-159.

Behr ER, Signor CA. Distribuição e alimentação de duas espécies simpátricas de piranhas *Serrasalmus maculatus* e *Pygocentrus nattereri* (Characidae, Serrasalminae) do rio Ibicuí, Rio Grande do Sul, Brasil. *Iheringia Ser Zool* 2008; 98(4): 501-507. http://dx.doi.org/10.1590/S0085-85142008000400014.

Bialetzki A, Nakatani K, Baumgartner G, Bond-Buckup G. Occurrence of *Macrobrachium amazonicum* (Heller) (Decapoda, Palaemonidae) in Leopoldo’s inlet (Ressaco do Leopoldo), upper Paraná River, Porto Rico, Paraná. *Rev Bras Zool* 1997; 14(2): 379-390. http://dx.doi.org/10.1590/S0101-81751997000200011.

Bicudo CEM, Bicudo RMT. Algêos de águas continentais brasileiras chave ilustrada para identificação de gêneros. São Paulo: Fundação Brasileira para o Desenvolvimento do Ensino de Ciências; 1970.

Boeger WA, Husak WS, Martins ML. Neotropical monogeneida. 25. *Anacanthorina penilabiatus* n. sp. (Dactylogyridae, Anacanthorinae) from *Piaractus mesopotamicus* (Osteichthyes, Serrasalminae), cultivated in the State of São Paulo, Brazil. *Mem Inst Oswaldo Cruz* 1995; 90(6): 699-701. http://dx.doi.org/10.1590/S0073-47212000004000014.

Boeger WA, Kritsky DC. Neotropical Monogenea. 12. Dactylogyridae from *Serrasalmus nattereri* (Cypriniformes, Serrasalminae) and aspects of their morphological variation and distribution in the Brazilian Amazon. *Proc Helminthol Soc Wash* 1988; 55(2): 188-213.

Boeger WA, Tanaka LK, Pavanelli GC. Neotropical Monogeneida. 39: a new species of *Kritskyia* (Dactylogyridae, Ancyrocephalinae) from the ureters and urinary bladder of *Serrasalmus marginatus* and *S. spilopleura* (Characiformes, Serrasalmidae) from southern Brazil with an emended generic diagnosis. *Zoosystena* 2001; 23(1): 5-10.

Braga MP, Araújo SBL, Boeger WA. Patterns of interaction between Neotropical freshwater fishes and their gill Monogeneida (*Platyhelminthes*). *Parasitol Res* 2014; 113(2): 481-490. http://dx.doi.org/10.1007/s00436-013-3677-8. PMid:24221891.

Braga MP, Razzolini E, Boeger WA. Drivers of parasite sharing among Neotropical freshwater fishes. *J Anim Ecol* 2015; 84(2): 487-497. http://dx.doi.org/10.1111/1365-2656.12298. PMid:2583218.

Brandão H, Yamada FH, Toledo GM, Carvalho ED, da Silva RJ. Monogeneans (Dactylogyridae) parasitizing gills of *Salminus hilarii* from a Neotropical reservoir, Brazil. *Rev Bras Parasitol Vet* 2013; 22(4): 579-587. http://dx.doi.org/10.1590/S1984-29612013000400020. PMid:24473885.
Parasites and diet of *Serrasalmus maculatus*

Brito-Junior IA, Tavares-Dias M. Metazoários parasitos de quatro espécies de peixe da bacia Igaraçupé Fortaleza, estado do Amapá (Brasil). *Biot Amazônia* 2018; 8(2): 1-3. http://dx.doi.org/10.18561/2179-5746/biotamazonia.v8n2p1-3.

Brooks DR, León-Régagnon V, McLennan DA, Zelmer D. Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. *Ecology* 2006;87(7 Suppl): S76-S85. http://dx.doi.org/10.1890/0012-9658(2006)87[76:EFAA DO]2.0.CO;2. PMid:16922304.

Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. *J Parasitol* 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227. PMid:9267395.

Campos DWJ, Manoel LO, Franceschini L, Veríssimo-Silveira R, Delariva RL, Ribeiro CS, et al. Occurrence of metacercariae of *Austrodiplostomum compactum* (Lutz, 1928) (Trematoda, Diplostomidae) in *Pimelodus plicatissimus* in the Ilha Solteira Reservoir, São Paulo, Brazil. *An Acad Bras Cienc* 2020;92(Suppl 2):e20180649. http://dx.doi.org/10.1590/0001-3765202020180649.

Casali GP, Takemoto RM. Endoparasitic fauna of *Serrasalmus* spp. (Characidae: Serrasalminae) in a neotropical floodplain. *Acta Sci Bioi Sci* 2016; 38(1): 105-112. http://dx.doi.org/10.4025/actascibiolsci.v38i1.28592.

Cayulla-Quispe D, Mondragón-Martínez A, Rojas-de-Los-Santos E, García-Candelia E, Babilonia-Medina J, Martínez-Rojas R. A New Species of *Myxomastericium tantiarnii* n. sp (Monogenea: Dactylogiridae) in the Gills of Gamitana *Colossoma macropomum* (Cuvier) from Madre de Dios, Peru. *Acta Parasitol* 2021; 66(1): 34-38. http://dx.doi.org/10.1007/s11168-020-00248-5. PMid:32656730.

Centeno L, Silva-Acuna A, Silva-Acuna R, Perez JL. Fauna Ectoparasitaria Asociada a *Colossoma macropomum* y al Híbrido de *C. macropomum* y *Piaractus brachypomus*, Cultivados en el Estado Delta Amacuro, Venezuela. *Bioagro*—2004; 16(2): 121-126.

Chemes SB, Takemoto RM. Diversity of parasites from middle Paraná system freshwater fishes, Argentina. *Int J Biodivers Conserv* 2011; 3(7): 249-266.

Cohen SC, Kohn A, Boeger WA. Neotropical Monogenoidea. 57. Nine new species of Dactylogiridae (Monogenoidea) from the gill of *Salminus brasiliensis* (Characidae, Characiformes) from the Parana River, State of Parana, Brazil. *Zootaxa* 2012; 3149(1): 57-68. http://dx.doi.org/10.11646/zootaxa.3149.1.3.

Cohen SC, Kohn A. A new species of *Myxomastericium* and new host and geographical records for *M. viatorum* (Monogenea: Dactylogiridae), parasites of freshwater fishes in Brazil. *Folia Parasitol (Praha)* 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042. PMid:16405294.

Cohen SC, Kohn A. On Dactylogiridae (Monogenea) of four species of characid fishes from Brazil. *Check List* 2009; 5(2): 351-356. http://dx.doi.org/10.15560/5.2.351.

Collart OO, Moreira LC. Potencial pesqueiro de *Macrobrachium amazonicum* na Amazônia Central (Ilha do Careiro): variação da abundância e do comprimento. *Amazoniana* 1993; 12(3/4): 399-413.

Córdoval L, Pariselle A. Monogenoidea en *Serrasalmus rhombeus* (Linnaeus, 1766) de la Cuenca Amazónica Boliviana. *Rev Peru Biol* 2007; 14(1): 11-16. http://dx.doi.org/10.15381/rpb.v14i1.1478.

Dias KGA, Vieira DHMD, Camargo AA, Silva RJ, Azevedo RK, Abdallah VD. Diversity of monogeneans parasites from Characiformes fishes in the Batalha River and Peixe’s River, State of São Paulo, Brazil. *Neotrop Helminthol* 2015; 45(2): 231-238. http://dx.doi.org/10.1590/1809-4399201400974.

Domingues MV, Boeger WA. Neotropical Monogenoidea. 47. Phylogeny and coevolution of species of *Rhinoxenus* (Platyhelminthes, Monogenoidea, Dactylogiridae) and their Characiformes hosts (Teleostei, Ostiaphyisis) with description of four new species. *Zoosystema* 2005; 27(3): 441-467.

Eiras JC, Takemoto RM, Pavanelli GC, Adriano EA. About the biodiversity of parasites of freshwater fish from Brazil. *Bull Eur Assoc Fish Pathol* 2011; 31(4): 161-168.

Eiras JC, Takemoto RM, Pavanelli GC. *Diversidade de peixes de água doce do Brasil*. Maringa: Eduem; 2010.

Fischer C, Malta JCO, Varella AMB. A fauna de parasitas do Tambaqui, *Colossoma macropomum* (Cuvier, 1818) (Characiformes: Characidae) do médio rio Solimões, estado do Amazonas (AM) e do baixo rio Amazonas, estado do Pará (PA), e seu potencial como indicadores biológicos. *Acta Amazon* 2003; 33(4): 651-662. http://dx.doi.org/10.1590/S0044-5972003000400012.

Franceschini L, Zago AC, Schalch SH, Garcia F, Romera DM, da Silva RJ. Parasitic infections of *Piaractus mesopotamicus* and hybrid (*P. mesopotamicus* x *Piaractus brachypomus*) cultured in Brazil. *Rev Bras Parasitol Vet* 2013; 22(3): 407-414. http://dx.doi.org/10.1590/S1984-29612013000300015. PMid:24142174.

Froese R, Pauly D. *Serrasalmus maculatus* Kner, 1858. [online]. FishBase; 2020b [cited 2020 Aug 26]. Available from: https://www. fishbase.de/summary/serrasalmus-maculatus.html
Parasites and diet of Serrasalmus maculatus

Froese R, Pauly D. List of Freshwater Fishes reported from Brazil [online]. FishBase; 2020a [cited 2020 Aug 26]. Available from: https://www.fishbase.de/Country/CountryChecklist.php?c_code=076&vhabitat=fresh&csub_code=&cpresence=present

Garcia F, Kimpara JM, Valenti WC, Ambrosio LA. Emery assessment of tilapia cage farming in a hydroelectric reservoir. Ecol Eng 2014; 68: 72-79. http://dx.doi.org/10.1016/j.ecoleng.2014.03.076.

Graça RJ, Fabrin TMC, Gasques LS, Prioli SMAP, Balbuena JA, Prioli AJ, et al. Topological congruence between phylogenies of Anaconanthus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation. PLoS One 2018; 13(3): e0193408. http://dx.doi.org/10.1371/journal.pone.0193408. PMID:29538463.

Hamann ML. Aspectos ecológicos de la relación parasitaria entre larvas de Contracaecum sp. (Nematoda, Anisakidae) y Serrasalmus spilopleura Kner, 1860 (Pisces, Characidae) en poblaciones naturales del nordeste argentino. Bol Chil Parasitol 1999; 54(3-4): 74-82. http://dx.doi.org/10.4067/S0365-94021999000300007. PMID:10883494.

Hellawell JM, Abel R. A rapid volumetric method for the analysis of the food fishes. J Fish Biol 1971; 3(1): 20-37. http://dx.doi.org/10.1111/j.1095-8649.1971.tb05903.x.

Hoffmann AC, Orsi ML, Shibatta AQ. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), Rio Paranapanema, bacia do alto rio Paraná, Brasil, e a importância dos grandes tributários na sua manutenção. Iheringia Ser Zool 2005; 95(3): 319-325. http://dx.doi.org/10.1590/S0073-47212005000300012.

Hoshino MDFG, Tavares-Dias M. Ecology of parasites of Metynnis lippincottianus (Characiformes: Serrasalmidae) from the eastern Amazon region, Macapá, State of Amapá, Brazil. Acta Sci Biol Sci 2014; 36(2): 249-255. http://dx.doi.org/10.4025/actasciolsci.v36i2.19876.

Hyslop EJ. Stomach contents analysis – a review of methods and their application. J Fish Biol 1980; 17(4): 411-429. http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x.

Iañacone JA, Luque JL. New records of helminths parasitic on Peruvian Amazonian fishes (Osteichthyes). Rev Biol Trop 1993; 41(2): 303-305.

Janzén DH. On ecological fitting. Oikos 1985; 45(3): 308-310. http://dx.doi.org/10.2307/3565565.

Jégu M, dos Santos MG. Mise au point à propos de Serrasalmus spilopleura Kner, 1858 et réhabilitation de S. maculatus Kner, 1858 (Characidae: serrasalminae). Cybium (Paris) 2001; 25(2): 119-143.

Junk WJ. Áreas inundáveis: um desafio para limnologia. Acta Amaz 1980; 10(4): 775-795. http://dx.doi.org/10.1590/1519-439219801004775.

Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 2002; 17(4): 164-170. http://dx.doi.org/10.1016/S0169-5347(02)02499-0.

Kritsky DC, Boeger WA, Jégu M. Neotropical Monogenoidea. 28. Anycoperocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil and French Guiana: Species of Notozothecium Boeger and Kritsky, 1988, and Mymarothecium gen. n. J Helminthol Soc Wash 1996; 63(1): 153-175.

Kritsky DC, Boeger WA, Van Every LR. Neotropical Monogenoidea. 17. Anaconanthus Mizelle and Price, 1965 (Dactylogyridae, Anacanthorinae) from Characid Fishes of the Central Amazon. J Helminthol Soc Wash 1992; 59(1): 25-51.

Kritsky DC, Thatcher VE, Kayton RJ. Neotropical Monogenoidea. 2. The Anacanthorinae Price, 1967, with the proposal of four new species of Anaconanthus Mizelle & Price, 1965, from Amazonian fishes. Acta Amaz 1979; 9(2): 355-361. http://dx.doi.org/10.1590/1809-439219790902355.

Kritsky DC, Thatcher VE. Monogenetic trematodes (Monopisthocotylea: Dactylogyridae) from freshwater fishes of Colombia, South America. J Helminthol 1974; 48(1): 59-66. http://dx.doi.org/10.1017/S0022149X00022604. PMID:4825435.

Leão MSL, Justo MCN, Bueno GW, Cohen SC, São Clemente SC. Parasitism by Monogenea in Piaractus mesopotamicus (Characiformes, Characidae) cultivated in Paraná River (Brazil). Braz J Biol 2017; 77(4): 787-793. http://dx.doi.org/10.1590/1519-6984.00916. PMID:28562776.

Leão MSL, São Clemente SC, Cohen S. Anaconanthus toledoensis n. sp. and Mymarothecium ianwhittingtoni n. sp. (Dactylogyridae: Monogenea) Parasitizing Cage-Reared Piaractus mesopotamicus (Characiformes, Characidae) in the State of Paraná, Brazil. Comp Parasitol 2015; 82(2): 269-274. http://dx.doi.org/10.1654/4759.1.

Lima LB, Bellay S, Giacomini HC, Isaac A, Lima-Junior DP. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitolology 2016; 143(3): 343-349. http://dx.doi.org/10.1017/S003118201500164X. PMID:26647725.

Luque JL, Aguier JC, Vieira FM, Gibson DI, Santos CP. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011; 3082(1): 1-88. http://dx.doi.org/10.11646/zootaxa.3082.1.1.

Luque JL, Poulin R. Linking ecology with parasite diversity in Neotropical fishes. J Fish Biol 2008; 72(1): 189-204. http://dx.doi.org/10.1111/j.1095-8649.2007.01695.x.
Madi RR, Ueta MT. O papel de Ancyrocephalinae (Monogenea: Dactylogyridae), parasito de Geophysagrus brasiliensis (Pisces: Cichlidae), como indicador ambiental. Rev Bras Parasitol Vet 2009; 18(2): 38-41. http://dx.doi.org/10.4322/rbpv.01802008. PMid:19602315.

Mitchell CE, Power AG. Release of invasive plants from fungal and viral pathogens. Nature 2003; 421(6923): 625-627. http://dx.doi.org/10.1038/nature01317. PMid:12571594.

Mizelle JD, Kritsky DC, Crane JW. Studies on monogenetic trematodes. XXXVIII. Ancyrocephalinae from South America with the proposal of Janiau gen. n. Am Midl Nat 1969; 80(1): 186-198. http://dx.doi.org/10.2307/2423609.

Mizelle JD, Price CE. Studies on Monogenetic Trematodes. XXVIII. Gill Parasites of the Piranha with Proposal of Anacanthorus gen. n. J Parasitol 1965; 51(1): 30-36. http://dx.doi.org/10.2307/3275640. PMid:14259477.

Monteiro CM, Cohen SC, Brasil-Sato MC. New species and reports of dactylogyrids (Monogenoidea) from Salminius franciscanus (Actinopterygii: Bryconidae) from the upper São Francisco River, Brazil. Zootaxa 2015; 3941(1): 137-143. http://dx.doi.org/10.11646/zootaxa.3941.1.9. PMid:25947500.

Monteiro CM, Kritsky DC, Brasil-Sato MC. Neotropical Monogenoidea. 56. New species of Anacanthorus (Dactylogyridae) from the gills of matrinchã, Brycon orthotaenia (Characiformes: Characidae), in the Rio São Francisco, Brazil. Folia Parasitol (Praha) 2010; 57(3): 164-168. http://dx.doi.org/10.14411/fp.2010.022. PMid:20941907.

Morais AM, Malta JCO. Biodiversity of monogeneoideans from red piranha Pygocentrus nattereri (Kner, 1958) (Characiformes: Serrasalidae) in central Amazonia: Occurrence and taxonomy. Neotrop Helminthol 2015; 9(2): 265-276.

Moreira ADC, Silva De Oliveira TT, Morey GAM, Malta JCO. Metazoários parasitas de Triptothus angulatus (Spix & Agassiz, 1829) do lago Catalão, Rio Solimões, Amazonas, Brasil. Folia 2017; 26(1): 9-16. http://dx.doi.org/10.24841/fa.v26i1.415.

Moreira J, da Silva Carneiro J, Ruz EJH, Luque JL. New Species and Records of Anacanthorus (Monogenea: Dactylogyridae) Parasitizing serrasalmid fish (Characiformes) from Brazil, including molecular data. Acta Parasitol 2019; 64(3): 449-455. http://dx.doi.org/10.2478/s11686-019-00055-7. PMid:31020494.

Morey GAM, Alano AMB, Grandez FAG. New species of Dactylogyridae Bychowsky, 1933 infecting the gills of Myloplus schomburgkii (Jardine) and Colossoma macropomum (Cuvier) in the Peruvian Amazon. Syst Parasitol 2019; 96(6): 511-519. http://dx.doi.org/10.1007/s11230-019-09965-9. PMid:31093872.

Morey GAM, Malta JCO. Metazoan parasites of Serrasalmus altispinis (Serrasalidae) from floodplain lakes of the Brazilian Amazon. Neotrop Helminthol 2018; 12(2): 141-146.

Morey GAM, Sol LGS, Cachique JCZ. New species and records of Anacanthorus (Monogenea: Dactylogyridae) from the gills of Brycon amazonicus (Characiformes: Bryconidae) in the Peruvian Amazon. Syst Parasitol 2021; 98(2): 85-97. http://dx.doi.org/10.1007/s11230-021-09962-8. PMid:33686564.

Morley NJ. Anthropogenic effects of reservoir construction on the parasite fauna of aquatic wildlife. EcoHealth 2007; 4(4): 374-383. http://dx.doi.org/10.1007/s10393-007-0130-4.

Mugnai R, Nesseimian JL, Baptista DF. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books Editora; 2010.

Neto JFS, Muriel-Cunha J, Domingues MV. New species of Anacanthorus (Dactylogyridae: Anacanthorinarae) from the gills of Hoplerythris uniaedntatus and Erythrus erythrus (Characiformes: Erythrinidae) the coastal drainage in the Eastern Amazon, Brazil. Zootaxa 2019; 4615(2): 303-320. http://dx.doi.org/10.11646/zootaxa.4615.2.4.

Neves LR, Negreiros LP, Silva LMA, Tavares-Dias M. Diversity of monogenean parasites on gills of fishes from the Matapi River, in the Brazilian Amazon. Rev Bras Parasitol Vet 2020; 29(4): e013520. http://dx.doi.org/10.1590/s1984-29612020081. PMid:33053058.

Ota RR, Deprá GC, Graça WJ, Pavanelli CS. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop Ichthyol 2020; 16(2): e170094. http://dx.doi.org/10.1590/1982-0224-20170094.

Pamplona-Basilio MC, Kohn A, Feitosa VA. New host records and description of the egg of Anacanthorus penilabatus (Monogenea, Dactylogyridae). Mem Inst Oswaldo Cruz 2001; 96(5): 667-668. http://dx.doi.org/10.1590/S0074-02762001000500014. PMid:11500767.

Pavanelli GC, Machado MH, Takamoto RM. Fauna helmintica de peixes do rio Paraná, região de Porto Rico, Paraná. In: Vazzoler AEAM, Agostinho AA, Hahn NS, editors. A Planicie de inundação do Alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Maringá: Eduem; 1997. p. 307-329.

Pavanelli GC, Machado MH, Takamoto RM, Guidelli GM, Lizama MAP. Helminth fauna of fishes: diversity and ecological aspects. In: Thomaz SM, Agostinho AA, Hahn NS, editors. The Upper Paraná river and its Floodplain: physical aspects, ecology and conservation. Leiden: Backhuys Publishers; 2004. p. 309-329.
Parasites and diet of *Serrasalmus maculatus*

Pereira FB, Mota MEBP, Paiva F, Tavares LE. Three new species of *Anacanthorus* Mizelle & Price, 1965 (Monogenea: Dactylogyridae) from *Markiana nigripinnis* Perugia (Actinopterygii: Characidae) in Pantanal wetlands, Brazil. *Syst Parasitol* 2020; 97(6): 661-667. http://dx.doi.org/10.1007/s11230-020-09935-3. PMid:32949340.

Power ME, Sun A, Parker G, Dietrich WE, Wootton JT. Hydraulic Food-chain Models: an approach to the study of food-web dynamics in large rivers. *Bioscience* 1995; 45(3): 159-167. http://dx.doi.org/10.2307/1312555.

Rossin MA, Francesco PN, Irigoitia MM, Scarabotti PA, Taglioretti V, Timi JT. *Rhinoxenus* (Dactylogyridae) parasitizing piranhas (Serrasalmidae) at its southernmost limit of distribution (Paraná River, Argentina), with the description of two new species. *An Acad Bras Cienc* 2019; 91(4): e20190711. http://dx.doi.org/10.1590/0001-3765201920190711. PMid:31800711.

Sazima I, Machado FA. Underwater observations of piranhas in western Brazil. *Environ Biol Fishes* 1990; 28(1-4): 17-31. http://dx.doi.org/10.1007/BF00751026.

Sazima I, Pombal-Jr JP. Mutilação de nadadeiras em acarás, *Geophagus brasiliensis*, por piranhas, *Serrasalmus spilopleura*. *Rev Bras Biol* 1988; 48(3): 477-483.

Silva EF, Tavares-Dias M. Infection by helminthes in *Mylossoma duriventre* Cuvier, 1817, a characid from the central Amazon, Brazil. *Neotrop Helminthol* 2012; 6(1): 67-73.

Silva RM, Tavares-Dias M, Dias MWR, Dias MKR, Marinho RGB. Parasitic fauna in hybrid tambacu from fish farms. *Pesq Agropec Bras* 2013; 48(8): 1049-1057. http://dx.doi.org/10.1590/S0100-204X2013000800034.

Strona G. The underrated importance of predation in transmission ecology of direct lifecycle parasites. *Oikos* 2015; 124(6): 685-690. http://dx.doi.org/10.1111/oik.01850.

Takemoto RM, Pavanelli GC, Lizama MAP, Lacerda ACF, Yamada FH, Moreira LHA, et al. Diversity of parasites of fish from the Upper Paraná River floodplain, Brazil. *Braz J Biol* 2009;69(2 Suppl 2): 691-705. http://dx.doi.org/10.1590/S1519-69842009000300023. PMid:19738975.

Thatcher VE. *Amazon fish parasites*. 2nd ed. Sofia: Pensoft Publishers; 2006.

Timi JT, Poulin R. Why ignoring parasites in fish ecology is a mistake. *Int J Parasitol* 2020; 50(10-11): 755-761. http://dx.doi.org/10.1016/j.ijpara.2020.04.007. PMid:32592807.

Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. Introduced species and their missing parasites. *Nature* 2003; 421(6923): 628-630. http://dx.doi.org/10.1038/nature01346. PMid:12571595.

Torchin ME, Lafferty KD, Kuris AM. Parasites and marine invasions. *Parasitology* 2002;124(7 Suppl): 137-151. http://dx.doi.org/10.1017/S0031182002001506. PMid:12396221.

Van Every LR, Kritsky DC. Neotropical Monogenoidea. 18. *Anacanthorus* Mizelle and Price, 1965 (Dactylogyridae, Anacanthorinae) of piranha (Characoidea, Serrasalmidae) from the Central Amazon, their phylogeny, and aspects of host-parasite coevolution. *J Helminthol Soc Wash* 1992; 59(1): 52-75.

Villasenor GA, Gomiero LM, Goitein R. Feeding of *Serrasalmus maculatus* (Kner, 1858) (Characiformes; Serrasalmidae) in the Sorocaba river, São Paulo State, Brazil. *Acta Sci Biol Sci* 2008; 30(3): 267-273. http://dx.doi.org/10.4025/actascibiolsci.v30i3.5011.

Yamada FH, Moreira LHA, Ceschin TL, Takemoto RM, Pavanelli GC. Novas ocorrências de metacercária de *Austrodiplostomum compactum* (Lutz, 1928) (Platyhelminthes: Digenea) parásito de olhos de peixes da Bacia do Rio Paraná. *Rev Bras Parasitol Vet* 2008; 17(3): 163-166. http://dx.doi.org/10.1590/S1984-29612008000300010. PMid:19245765.