Time to clinical response and remission for therapeutics in inflammatory bowel diseases: What should the clinician expect, what should patients be told?

Abhinav Vasudevan, Peter R Gibson, Daniel R van Langenberg

Abstract
An awareness of the expected time for therapies to induce symptomatic improvement and remission is necessary for determining the timing of follow-up, disease (re)assessment, and the duration to persist with therapies, yet this is seldom reported as an outcome in clinical trials. In this review, we explore the time to clinical response and remission of current therapies for inflammatory bowel disease (IBD) as well as medication, patient and disease related factors that may influence the time to clinical response. It appears that the time to therapeutic response varies depending on the indication for therapy (Crohn's disease or ulcerative colitis). Agents with the most rapid time to clinical response included corticosteroids, calcineurin inhibitors, exclusive enteral nutrition, aminosalicylates and anti-tumor necrosis factor therapy which will work in most patients within the first 2 mo. Vedolizumab,...
INTRODUCTION

The therapeutic armamentarium for inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), continues to expand, providing valuable additional opportunities to achieve optimal long term outcomes for patients. Equally, however, there is added complexity, commensurate with the number of options, an enhanced understanding of the risks and benefits, plus the differential effects of treatments on objective disease outcomes (e.g., mucosal healing), clinical remission and/or patient-reported outcomes.

Yet when better outcomes are potentially achievable, there are higher expectations. It is increasingly important with current therapeutics that the physician plans ahead, given delays in escalating treatment are likely just as common and detrimental as delays in diagnosis are in IBD[11]. Hence an awareness of the approximate time expected to achieve a treatment goal is fundamental to making decisions such as whether to persist with a therapy or switch to an alternative. Equally, one does their patient a disservice by prematurely switching therapies before an agent is given an appropriate length of time to achieve efficacy.

Achieving an optimal time to therapeutic response has further benefits in the doctor-patient relationship, as it allows the clinician to provide the patient a cogent framework of the expected period to see response to a new drug and hopefully empower the patient to persevere with, and maintain adherence to therapy. This is particularly relevant for therapies that have a longer time to therapeutic response, such as the immunomodulators, where it might take several months to reach maximal therapeutic efficacy without the patient necessarily experiencing any symptom benefit for a significant part of this.

Hence, time-to-therapeutic response is an important yet underestimated factor in the day-to-day management of IBD and has not been a major focus of attention in the literature to date. This review attempts to address this unmet need by analyzing the available literature relating to the expected time-to-clinical-response for currently available therapies in IBD and measures that can assist the clinician in determining whether a medication has reached its therapeutic potential. We will also analyze disease and patient related factors that may impact on the time-to-clinical-response of therapies. Therapies discussed in the review will include corticosteroids, aminosalicylates (5-ASA), thiopurines, methotrexate, anti-tumor necrosis factor (anti-TNF) therapies, vedolizumab, calcineurin inhibitors and exclusive enteral nutrition.

DEFINING TIME TO CLINICAL RESPONSE AND REMISSION

The concept of time-to-clinical-response is schematically represented in Figure 1. Given the lack of focus on time to response in previous literature, there is no broadly accepted definition. Table 1 provides a summary of some of the important components of time to response. These include the earliest time at which a patient can expect a response, the time at which most patients (i.e., greater than 50%) expecting to benefit from therapy will achieve a response and the time point where therapeutic benefit remains improbable, the so-called time to futility. For this review, time-to-clinical-response refers to the time from the initiation of therapy until the patient achieves a clinical response. It only pertains to patients who attain a clinical response and can thereby aid the
A higher dose may lead to a more rapid response. The time to futility of therapy is reported in Table 1, which will be expected to respond to therapy will be reported. Where available, estimates of timeframes in which the majority of patients who ultimately respond to therapy will be expected to respond to therapy will be reported. The time to futility of therapy is reported in Table 1, however, this will not be a primary focus of this review.

The methods of determining when a "response" has occurred are heterogeneous and include both clinical symptoms and endoscopic (or objectively-assessed) findings. The correlation between symptomatic improvement and achievement of endoscopic remission differs between UC and CD, with improvement in symptoms correlating better with mucosal healing in UC than CD. There are data to support early clinical remission, albeit not response, to be predictive of endoscopic improvement and healing at 12 mo. The value of symptomatic improvement, however, cannot be discounted from a patient's perspective given the correlation with long-term steroid-free remission and the inherent part that alleviation of symptoms plays in improving quality of life. Moreover, the complex interplay of patient symptoms and structural damage in IBD is being increasingly recognized with both symptoms and endoscopic findings important factors in determining overall disease severity and burden.

Thus, response is a multi-faceted concept and this review will primarily address the time-to-clinical-response and time-to-clinical-remission, given that the focus here is to engender a patient-centered approach when clinicians discuss therapeutic options with their patients. Time to endoscopic response and remission will also be reported where data are available, although this is a secondary focus.

Given the heterogeneity across studies in defining clinical response, clinical remission and endoscopic remission, we have used broad outcome measures of "clinical or endoscopic improvement" or "clinical or endoscopic remission or mucosal healing" as defined by the authors of each study. For the purpose of this review, clinical response will consider symptom improvement only rather than an improvement in symptoms and laboratory indices.

A summary of the relative time-to-therapeutic-response of different therapies for IBD is presented in Table 1 and Figure 1. Medication related factors that influence the time to response of different therapies are discussed within each of the therapeutic classes.

AMINOSALICYLATES

Time to clinical response

Aminosalicylates are more effective at inducing response and remission in patients with mild-moderate ulcerative colitis than placebo, but their evidence for efficacy in patients with Crohn’s disease is poor. Therefore, with regards to ulcerative colitis, available data indicate that it generally takes two to four weeks to achieve clinical response with oral and/or topical aminosalicylates. Mesalazine induces endoscopic remission in 67% of patients at 4 wk for active colitis for both 2 and 4 g preparations, while another study found higher endoscopic remission rates of 78% and 69% after 8 wk with multimatrix mesalazine 4.8 g and 2.4 g, respectively, suggesting some patients who will achieve endoscopic remission may take up to 8 wk.

Therapy-related factors affecting time-to-response

Key issues for aminosalicylates include whether the formulation, the dose and/or the route(s) of delivery

Table 1 Expected time to clinical response for therapeutic agents used in the management of inflammatory bowel disease

Agent	Earliest published clinical response	Earliest published objective response	Time to response in most patients	Time to response in at least 50% of patients	Time to clinical remission	Use of therapeutic drug monitoring	Comments
Mesalazine (oral)	1 wk[3,4]	3 wk[14,15]	4 wk	> 12 wk	N	N	A higher dose may lead to a more rapid response
Prednisolone (oral)	2 wk[2,3,4]	2 wk[2,3,4]	3 to 7 wk	8 wk	N	N	May take longer for CD
Corticosteroids (IV)	3 d[22]	1 wk[22]	3-5 d	7-10 d	N	N	N
Infliximab (IV)	1 wk[6,14]	8 wk[6,14]	2-8 wk	> 6 mo	Y	Y	Y
Adalimumab (SC)	4 wk[6,14]	8 wk[6,14]	4-8 wk	> 6 mo	Y	Y	Y
Certolizumab (SC)	2 wk[14]	10 wk[14]	10 wk	> 16 wk	N	N	N
Golimumab (SC)	6 wk[20]	6 wk[20]	6 wk	> 14 wk	Y	Y	Y
Certolizumab (SC)	2 wk[20]	10 wk[20]	10 wk	> 16 wk	N	N	N
Vedolizumab (IV)	6 wk[20]	6 wk[20]	12 wk	12 mo	N	Y	Y
Thiopurines (oral)	2 wk[6,14]	3 mo[6,14]	> 6-9 mo	Y	N	N	Endoscopic response may take much longer than clinical response
Methotrexate (oral or SC)	9 wk[14,15]	12 wk[14,15]	10 to 12 wk	9 wk	> 6 mo	Y	Y
Cyclosporin (IV then oral)	1 wk[14]	1 wk[12]	4 to 5 d	> 14 d	Y	Y	Y
Tacrolimus (oral)	2 wk[14]	2 wk[12]	2 wk	4 wk	Y	Y	Y
EEN (oral)	10 d[6,14]	4 wk[6,14]	3 to 4 wk	8 wk	N	N	N

1Clinical response reported in at least 50% of patients who achieve a response to therapy; 2Therapeutic drug monitoring is not yet widely available. EEN: Exclusive enteral nutrition; IV: Intravenous; SC: Subcutaneous; Y: Yes; N: No; CD: Crohn’s disease; UC: Ulcerative colitis.
mesalazine only (25.5 d) for left-sided colitis in the only randomized study reporting this end-point \[23\]. Another randomized trial of sixty patients with distal UC comparing oral mesalazine with mesalazine enemas or combination topical and oral treatment found a median time to resolution of rectal bleeding of 8 d on combination therapy and bleeding were significantly lower after ten days with either topical or combination therapy compared to oral mesalazine only. The findings indicate that topical therapy alone or in combination with oral therapy achieves symptom resolution more rapidly than oral therapy \[23,24\]. The efficacy of topical 5-ASA does not appear dose-dependent in the single study where this was specifically examined, but rapidity of response was not addressed \[25\].

CORTICOSTEROIDS

A clinical response to steroids should be expected within 1 to 4 wk of commencing therapy for both CD and UC (not applicable to acute severe colitis) with response occurring more rapidly with intravenous than oral therapy \[26,27\]. There are several types of corticosteroids available for the treatment of IBD and the influence of route of administration and type of corticosteroid are relevant to determining the time to response, as discussed below.

Time to clinical response

CD: Although most patients with CD can expect a response to high dose oral corticosteroids within 4 wk, some data suggest a more prolonged course
may be necessary to capture response. For example, clinical response after three to seven weeks of 1 mg/kg per day oral prednisolone in a prospective cohort study of 146 patients with active ileocolonic or colonic CD increased from 63% to 92% between weeks 4 and 7 respectively, although only 29% achieved endoscopic remission.[2]. These data suggest that a clinician should wait up to 7 wk before deciding that a response to high doses of prednisolone is unlikely if that approach is clinically acceptable.

UC: Response to oral prednisolone is rapid in UC, with 17%-76% achieving clinical remission and 65%-78% endoscopic improvement after 2 wk of oral prednisone in two randomized studies, with the higher response rates noted by Truelove et al.[28] who used both oral and rectal prednisolone in combination.[29,28] Other studies have also suggested a response within the first two weeks of a tapering dose of oral prednisolone beginning at 40 mg/d in the majority of patients with moderate UC.[30].

Therapy related factors affecting time to response

Route of administration: (1) CD: While direct comparisons between intravenous and oral corticosteroids are not available in CD, response appears rapid with intravenous corticosteroids, with 78% of patients having symptom resolution after five days of intravenous hydrocortisone (300 mg daily), which increased to 93% after 10 d in one randomized study comparing intravenous hydrocortisone to corticotrophin, to which response rates were also high (71% and 82% at days 5 and 10, respectively).[27,31].

(2) UC: Moderate UC has been shown to typically improve within five days of intravenous corticosteroids, including patients who failed to respond to high-dose oral prednisolone. Time frames for expected response are well described for acute severe colitis, where most patients appear to respond to therapy within 3 or 5 d of intravenous steroids (methylprednisolone 60 mg/d or hydrocortisone 300-400 mg/d), although these are observational data only.[27,28]. A lack of response within 5 d is associated with a higher rate of subsequent colectomies again in observational studies, and therapy beyond 7 d is unlikely to be beneficial.[36].

Type of glucocorticoid: (1) CD: Several randomized studies have suggested the mean times to clinical response and remission with budesonide in CD were comparable to systemic corticosteroids, ranging from 22 to 27 d.[27-40].

(2) UC: Induction of remission when using budesonide MMX 9 mg daily in mild to moderate UC should occur within 4 to 8 wk of commencing therapy, with 42%-47% of patients achieving an endoscopic or clinical improvement in randomized controlled trials (RCT).[41,42].

Dose: The effect of corticosteroid dose on time to response has not been evaluated. One randomized study assessed response rates with 20 mg, 40 mg and 60 mg daily of oral prednisolone for outpatient management of ulcerative colitis and suggested a higher response rate at both 2 wk and 3-5 wk of follow-up with 40 and 60 mg/d of therapy (both 50% at 2 wk, then 65% at 3-5 wk respectively) compared to 20 mg daily (20% then 30%), but did not specifically assess time to response.[50]. Determining the appropriate dose of steroid has traditionally been either empiric or weight-based. Accordingly, corticosteroid dosing evaluated in clinical trials has varied; for instance, studies have used 1 mg/kg/d or 40-60 mg/d of prednisolone, 9 mg of budesonide orally, while for intravenous therapy includes 300-400 mg/d of hydrocortisone (divided doses) or 60 mg/d of methylprednisolone.[26,43,44].

TUMOR NECROSIS FACTOR ALPHA INHIBITORS

Pertinent issues relating to time to therapeutic response of anti-TNF therapy include the associations with serum drug levels and antibodies, plus concomitant therapy.

Time to response

Infliximab: (1) CD: Clinical response and remission after administration of infliximab appear to be rapid in luminal CD, taking 8 and 9 d respectively in one observational study of 129 patients.[45]. Clinical response rates in RCTs of infliximab in CD were 61% and 81% for weeks 2 and 4 respectively after a single infusion of infliximab.[46,47]. Clinical remission rates were reportedly 88% one week after a single infliximab dose for colonic CD although the data were observational only.[48]. Rates of mucosal healing in Crohn’s disease have ranged from 30%-67% after 6 mo of infliximab, with higher rates typically observed in ‘real-world’ clinical cohorts than trials.[46,50].

(2) UC: Clinical and endoscopic response to infliximab in patients with moderate to severe chronic active ulcerative colitis appears to take several weeks, although this may be due to a lack of reporting of early outcomes after initiation of therapy in the outpatient setting, given that response rates reported for acute severe colitis are generally more rapid than this. Nevertheless, about half of patients previously not responding to either intravenous or oral corticosteroids experienced a clinical response two weeks after the first infusion of infliximab in one prospective uncontrolled study.[51]. Such early response rates have not been reported in RCTs, but data from such studies have shown a significantly higher rate of clinical response (69% vs 37%), remission (39% vs 15%) and mucosal healing (62% vs 33%) by week 8 with 5 mg/kg induction dosing versus placebo.[52]. For infliximab
use in ulcerative colitis, two large randomized studies of moderately severe ulcerative colitis showed a significantly higher rate of mucosal healing by week 8 with both 5 mg/kg and 10 mg/kg induction therapy (62% vs 33% with placebo)\(^{(52)}\).

For acute severe colitis, a clinical response to infliximab therapy should be expected within the first 7 d after therapy\(^{(53)}\). Achieving a higher serum infliximab level during induction has been associated with a higher rate of short term mucosal healing and an accelerated induction regimen of infliximab in acute severe colitis has been associated with a more prolonged time to colectomy than standard induction, although the rapidity of response has not been directly assessed\(^{(54,55)}\). Indeed, recent data suggest that a rebound of higher C-reactive protein, lower albumin and/or symptoms within a few days after the first dose of infliximab should prompt concerns of infliximab non-response and a potentially higher risk of colectomy\(^{(55)}\). A trial is currently underway to assess the utility of an accelerated induction regimen of infliximab in acute severe colitis and this may provide further information on the effect of dose and drug levels on time to response\(^{(56)}\).

Adalimumab: (1) CD: An initial response to adalimumab typically occurs within the first few weeks of therapy, as inferred from a phase 2 RCT showing clinical remission rates of 36% at week 4 following induction treatment with 160/80 mg at week 0 and 2 for CD, compared to 12% with placebo\(^{(57)}\). While clinical remission rates were higher from week 1 than placebo in this study (16% vs 7% respectively), this only reached statistical significance at week 4. Moreover, the rate of mucosal healing for moderately severe ileocolonic CD with induction 160/80 mg adalimumab followed by 40 mg fortnightly was significantly higher than placebo at 12 wk (27% vs 13%) and sustained until 52 wk (24% vs 0%) in another RCT\(^{(58)}\). Endoscopic remission rates were 52% and 28% at weeks 12 and 52 respectively in this study, the latter likely reflecting secondary loss of response during maintenance therapy.

(2) UC: Clinical remission and mucosal healing rates with adalimumab induction with 160/80 mg regimen in patients with moderate to severe UC after 8 wk was achieved in 19 and 47% respectively, with separation in clinical remission rates as early as week 4 compared to placebo in a RCT\(^{(59)}\). The lower remission rates in this study may relate to the high proportion (75%) of patients who had failed other therapies prior study enrolment\(^{(59)}\). In another RCT assessing long term remission rates with adalimumab in moderate to severe UC, mucosal healing rates were 41% at week 8 and 25% at week 52 with fortnightly adalimumab 40 mg, compared to 32% and 15% for placebo, respectively\(^{(60)}\). Mucosal healing rates following adalimumab induction for UC have varied between 32% and 47% in RCTs\(^{(59,60)}\).

Cetolizumab pegol: CD: Cetolizumab pegol at a dose of 400 mg given subcutaneously at weeks 0, 2 and 4 wk, about a third of patients with CD will have a clinical response to therapy within 2 wk, increasing to 41% by week 6 based on RCT data\(^{(61)}\). One study found response rates peak at 10 wk of 400 mg 4-weekly therapy\(^{(62)}\), while another study found response rates, as per a reduction in CDAI of 100, peaked by week 16 and declined thereafter\(^{(63)}\). Endoscopic activity was assessed at week 10 in one prospective, open label clinical trial of patients on 400 mg certolizumab 4-weekly and showed endoscopic remission occurred in 37%, reducing to 27% by week 54 in CD\(^{(64)}\).

Golimumab: UC: Golimumab is administered subcutaneously and has been approved for use in ulcerative colitis in many countries. Approximately half of patients will achieve a clinical response by 6 wk with regimens of 100/200 mg and 400/200 mg as induction at weeks 0 and 2 for moderate to severe ulcerative colitis from one large RCT\(^{(65)}\). Observational data suggest that response rates may continue to increase up until week 14, when reported to be between 69% and 86%\(^{(66,67)}\). Mucosal healing appears to be rapid, with 42 and 45% of patients achieving mucosal healing 6 wk after induction therapy with 100/200 mg and 400/200 mg, respectively\(^{(65)}\). Intravenous induction therapy for golimumab does not appear to confer any additional benefit in terms of response rate compared to subcutaneous induction, although time to response of this strategy has not been evaluated\(^{(68)}\). Since there are no data evaluating clinical response rates beyond week 14, the benefits of continuing therapy beyond this time point in patients who have not achieved a response remains uncertain.

Factors affecting time to response

Demographic factors: One study assessed baseline factors that were predictive of a more rapid attainment of clinical remission with induction certolizumab therapy for CD and found that younger age, non-smokers, the absence of previous IBD surgery and a lower disease activity score were associated with a more rapid attainment of clinical remission\(^{(69)}\).

Anti-TNF drug levels: Currently, data supporting a correlation between anti-TNF drug levels and time to therapeutic response are limited. For golimumab, drug levels at weeks 2 and 4 were shown to correlate with week 6 clinical response rates, but the effect on time to therapeutic response was not further assessed as response was only evaluated at a single time point in this study\(^{(70)}\). Higher certolizumab plasma concentrations at week 8 are associated with higher rates of clinical remission and endoscopic remission.
at week 10, but not a higher clinical response rate\footnote{71}. There is a lack of data concerning the relationship between time-to-response for infliximab and adalimumab in relation to drug levels.

Concurrent immunomodulator therapy: While time to response has not been directly compared between anti-TNF monotherapy and in combination with immunomodulator therapy, there was a trend toward a higher rate of clinical remission at week 10 with combination infliximab and azathioprine compared to infliximab alone in the Study of Biologic and Immunomodulator Naive Patients in Crohn’s Disease (SONIC) Study, and a significantly higher rate of endoscopic remission at 26 wk with adalimumab and azathioprine, suggesting combination therapy may work faster than either therapy alone\footnote{50,72}. Similar findings of more rapid clinical remission have also been found for certolizumab therapy when used with concomitant immunomodulator therapy in CD\footnote{69}.

VEDOLIZUMAB

Vedolizumab appears to have a generally slower time to response compared to other biologic agents. This may relate to the mechanism of anti-integrin therapy, with inhibition of lymphocyte gut migration taking more time to achieve therapeutic efficacy\footnote{23}.

Time to response

CD: Clinical remission with vedolizumab appears to take at least 10 to 14 wk in CD. This slower onset of action of vedolizumab, compared to anti-TNF therapies for instance, was evident in the RCTs GEMINI 2 and 3 registration trials of vedolizumab comparing therapy to placebo induction and maintenance therapy in CD\footnote{74}. Clinical remission rates increased from 15% to 27% between weeks 6 and 10 while remained stable in the placebo group (12%) at these time points in GEMINI 3 (i.e., those with prior anti-TNF failure), and in GEMINI 2 there was a significant increase in clinical remission after 6 wk compared to placebo\footnote{73}. Subsequent real-world observational data have also demonstrated that clinical remission rates to increase from week 6 to week 14 and in one study the median time to clinical response was 19 wk\footnote{75}. Mucosal healing rates of 30% were attained after a median of 22 wk in CD in one observational study\footnote{76}. Furthermore, GEMINI 2 found that almost 40% of initial vedolizumab responders remained in clinical remission to 52 wk although clinical remission rates only became superior to placebo after 30 wk\footnote{77}.

UC: Response and remission rates appear more rapid in UC than CD. At week 6 after a 2-dose induction, clinical response, remission rates and mucosal healing were significantly higher with vedolizumab than placebo (47%, 17% and 41% vs 26%, 5% and 25% respectively) in one RCT\footnote{78}. Moreover, maintenance vedolizumab resulted in higher rates of clinical and endoscopic remission at week 52 than week 6 and mean partial Mayo scores continued to decline until week 52, suggesting that maximal response often takes several months.

Therapy-related factors affecting time to response

While immunomodulators appear to reduce the formation of antidrug antibodies to vedolizumab\footnote{79}, the low proportion of patients who actually formed antidrug antibodies in trials might imply that combination therapy may be unnecessary and hence may not provide additional benefit to time to therapeutic response, in contrast to anti-TNF therapies\footnote{78}.

THIOPURINES

Thiopurines, including azathioprine and 6-mercaptopurine, appear to exert their effect via the metabolites, 6-thioguanine nucleotides (6-TGNs). Thiopurines inhibit the synthesis of DNA, RNA and proteins leading to inhibition of lymphocyte proliferation and apoptosis, thereby immunosuppression\footnote{70}.

Time to response

CD: Azathioprine or mercaptopurine take at least 4 to 8 wk to achieve clinical remission\footnote{80}. A small RCT suggested that a median of 10.7 wk was required to achieve clinical remission with oral azathioprine 2 mg/kg/d\footnote{81}. Time to clinical response with 1.5 mg/kg/d of mercaptopurine was assessed in an RCT by Present et al\footnote{82} in patients with CD failing corticosteroids or sulfasalazine. They demonstrated a wide-ranging time to therapeutic response from two weeks to nine months with a median of 3.1 mo; 19% of cases took more than 4 mo to achieve a sustained clinical response\footnote{82}. Similarly, in another RCT, Ardizzone et al\footnote{83} found a clinical remission rate gain from 33% to 63% from 3 to 6 mo after initiating azathioprine 2 mg/kg/d in patients with corticosteroid-dependent CD. Endoscopic remission rates also appear to be slow to achieve with only 17% of patients on azathioprine in the SONIC study achieving mucosal healing after 26 wk of therapy\footnote{80}. Yet another RCT comparing budesonide to azathioprine with 1 year follow up found mucosal healing occurred with thiopurines in 83% of steroid-dependent CD by 12 mo, implying that endoscopic improvement continues to slowly accumulate over extended periods\footnote{84}.

UC: Both clinical and endoscopic response to thiopurines in UC appear to take a minimum of one month but more typically 3-6 mo for steroid-dependent UC\footnote{85,86}. Ardizzone et al\footnote{87} found that more than half of patients on azathioprine were in steroid-free endoscopic and clinical remission after 6 mo for patients with steroid-dependent UC, which was significantly higher.
than that with mesalazine (53% vs 21%) in an RCT. Another RCT showed a significant decrease in a composite disease activity score (including endoscopic, clinical and biochemical findings) at 3 and 6 mo after commencing azathioprine 2.5 mg/kg/d for steroid-dependent UC, implying that time to therapeutic response is likely between 3 and 6 mo\cite{88}.

Factors affecting time to response

Metabolite levels: Azathioprine undergoes rapid non-enzymatic conversion to 6-mercaptopurine which is then further metabolized to 6-TGNs in erythrocytes and leukocytes\cite{89}. The therapeutic effect of thiopurines appears commensurate with 6-TGN concentrations, with steady state achieved at two to four weeks, so response can only be expected after this period\cite{90}. Intravenous loading with azathioprine has been associated with a more rapid time to therapeutic response initially (1 wk for clinical response and 4 wk for endoscopic improvement). However, when compared to oral azathioprine at 8 wk, no difference in remission rates or 6-TGN levels had persisted\cite{88,91}. Using dose titration guided by therapeutic drug monitoring, the mean time to therapeutic response decreased from 22 to 19 wk\cite{92}. While prospective studies have not demonstrated a difference in outcomes between patients treated with weight-based and individualized, metabolite-guided dosing of thiopurines\cite{93,94}, robust retrospective data elucidated higher rates of clinical remission with 6-TGN levels above 230-260 pmol/8 × 10⁸ RBCs\cite{95-97}. Indeed, 78%-90% of patients had improved clinical outcomes from dose optimization after having a subtherapeutic 6-TGN level\cite{98-100}.

Addition of allopurinol: A combination of allopurinol 100 mg and 25%-50% of the standard thiopurine dose has been utilized to overcome a number of thiopurine related side effects and correct an unfavorable metabolite profile (so called hypermethylators), with high clinical efficacy\cite{101-105}. This has piqued interest as to whether combination allopurinol-thiopurine therapy might be able to achieve not only higher rates of, but quicker time to therapeutic response, especially compared to slow-titrating introductory dosing protocols (as advocated by treatment guidelines\cite{26,106} and widely used to mitigate early side effects\cite{107}). The result of controlled trials addressing this issue are awaited\cite{108}. Additional strategies that may affect time to response of therapies are summarized in Table 2.

METHOTREXATE

Methotrexate is a folic acid analogue used in the treatment of multiple autoimmune conditions, including IBD. Methotrexate has been shown effective as an induction and maintenance therapy in CD particularly when administered parenterally. The role of methotrexate in UC is less clear, although a placebo-controlled trial of subcutaneous methotrexate did suggest clinical efficacy in the induction of steroid-free remission\cite{109}.

Time to response

CD: A clinical response should be expected within 12 wk on parenterally-administered methotrexate according to an open label, non-randomized trial by Kozarek et al\cite{110}. An observational study suggested that the median clinical response time was 9 wk for both oral and parenteral therapy (although 86% were on parenteral therapy in this study) and clinical remission took 22 wk\cite{111}. Despite most patients clinically responding within the first several weeks of therapy, a subgroup may take up to 6 mo to respond\cite{83}.

UC: While a placebo-controlled trial of oral methotrexate 12.5 mg in patients with steroid-refractory UC showed no significant difference in clinical remission between the groups, those who reached clinical remission with methotrexate took a mean of 4.1 mo

Table 2 Previously documented and potential/novel methods of improving time to response to therapy in Crohn’s disease and ulcerative colitis

Clinical scenario	Method	Improves time to response	Improves response rate	Improves tolerability	Published data?	Comments	Ref.
Corticosteroids	CD and UC	Intravenous administration	-	-	Yes		[27,32,150]
Anti-tumour necrosis factor-a	Initial or for flare to recapture response (CD and UC)	Addition of azathioprine	-	-	Yes		[50]
Thiopurine	CD and UC	Addition of allopurinol	-	-	Yes		[105,108]
	CD	Split dosing of thiopurine	-	-	Yes		[151]
Methotrexate	CD	High dose parenteral with corticosteroids if relapse on lower dose	-	-	Yes	Can recapture response	[152]
Tacrolimus	UC	Target levels of 10-15 ng/mL	-	-	Yes		[123]
Aminosalicylates	UC	Maximize dose	-	-	Yes		[21]
Distal UC	Distal UC	Choice of formulation (balsalazide)	-	-	Yes		[17,20]

CD: Crohn’s disease; UC: Ulcerative colitis.
to do so112. Subsequent uncontrolled observations by Kozarek et al110 showed a rapid clinical response (71% within 12 wk) with high-dose intramuscular dosing in UC, albeit in only 7 patients. The METEOR RCT, assessed the efficacy of parenteral methotrexate 25 mg weekly in steroid-dependent UC and found almost a third of patients had corticosteroid-free clinical remission by week 16, which increased to 40% by week 24109. Endoscopic remission was achieved in a numerically greater proportion then did the placebo group, but the difference did not reach statistical significance, perhaps due to lack of statistical power.

Factors affecting time to response

Route of administration: It is likely that parenteral methotrexate generally achieves a faster time to therapeutic response in a higher proportion of patients due to greater bioavailability, though supportive evidence is found only in the rheumatological literature113.

Drug levels: Currently there is no reliable method to apply therapeutic drug monitoring of methotrexate in routine IBD care and this is therefore not useful in predicting time to therapeutic response. Serum methotrexate levels are only detectable for about 24 h post-dose and appear not to correlate with clinical response in IBD114, adenosine levels do not correlate with efficacy115, and methotrexate polyglutamates [active metabolite(s) of methotrexate] have displayed inconsistent results116-118. Finally, although folic acid is an important adjunct to methotrexate use and may reduce gastrointestinal upset and hepatic dysfunction, it has no apparent impact on time to therapeutic response119.

CALCINEURIN INHIBITORS

Tacrolimus and cyclosporin are calcineurin inhibitors with evidence in IBD primarily for steroid-refractory UC. Small case series have suggested efficacy of tacrolimus for induction of remission in luminal CD120. Cyclosporin is an effective rescue therapy in acute severe colitis and has been used in moderate to severe chronic UC. Oral cyclosporine does not appear to be an effective induction therapy in CD121.

Time to response

Tacrolimus: (1) UC: When targeting a trough level of 10-15 ng/mL, tacrolimus induces clinical response and mucosal healing rates of 50%-68% and 44%-79% respectively, in patients with UC within 2 wk based on results from two RCTs, with lower rates noted in the larger of these studies122,123. In contrast, clinical remission was reported in only 9%-20% after 2 wk in the aforementioned studies, but amongst those who continued tacrolimus, remission rates increased to 29% by week 12, with mucosal healing rates increasing from 67% to 86% over the same time period122,123. (2) CD: Small case series suggest a similarly rapid clinical response with tacrolimus in CD refractory to other therapies, occurring within 30-40 d124,125. However, time to therapeutic response appears longer than UC, with one study finding that 36% achieved clinical remission by 20 d which increased to 64% at 120 d125. Cyclosporin: UC: Clinical response to cyclosporine in acute severe colitis failing to respond to intravenous corticosteroids is usually rapid, with a median response time reported to be 4-5 d, with the vast majority responding within 7 d in two randomized studies53,126. Clinical remission rates were approximately 65% with cyclosporine monotherapy and 93% in combination with steroids after 7 d, according to the results of a randomized study by D’Haens et al127. In the above studies, endoscopic response was described within 7 d of initiation, with a continued improvement in endoscopic activity noted between weeks 1 and 4126,127.

Factors affecting time to response

Dose and drug levels: Targeting high levels (10-15 ng/mL) of tacrolimus for induction appears more effective than low levels (5-10 ng/mL) with possibly a more rapid time to therapeutic response123. For ongoing maintenance thereafter, targeting trough levels of 5-10 ng/mL appears sufficient122-125. For cyclosporin, no additional benefit in clinical response was achieved with 4 mg/kg compared to 2 mg/kg intravenously in an RCT for acute severe colitis with a median time to response of 4 d in both groups, suggesting that doses above 2 mg/kg do not produce a more rapid time to response126.

Route of administration: One observational study suggested that oral and intravenous tacrolimus achieved similar rates of clinical response by 14 d in steroid-refractory colitis, with comparable serum tacrolimus levels achieved with both strategies128. A retrospective study of oral and intravenous cyclosporin in ulcerative colitis actually found a higher early clinical response rate (exact timing not specified) with oral compared to intravenous cyclosporin (100% vs 65%) despite comparable serum drug levels, predominantly due to higher rates of side effects necessitating treatment cessation with intravenous cyclosporin129. Time to response was not directly assessed in this study and groups significantly differed with higher proportions of inpatients and intravenous corticosteroid failures in the intravenous cyclosporin group.

EXCLUSIVE ENTERAL NUTRITION

Exclusive enteral nutrition (EEN) involves the administration of a liquid nutrition formula to meet all
Table 3 Factors affecting time to response and response rates of therapies in inflammatory bowel disease

Variable	Parameter	Effect on time to response	Effect on response rate	Medications implicated	Level of evidence	Ref.
Age	> 65 yr	↑	?	Anti-tumour necrosis factor-α (anti-TNF)	2b	Lobaton et al[134]
Increased body mass index	BMI > 25	-	↓	Azathioprine	2b	Holtmann et al[135]
Concomitant therapies	Weight > 82 kg	-	↓	Anti-TNF	1b	Reinsieh et al[136]
Smoking status	Current smoker	↑	↓	Immunomodulators with anti-TNF	1b	Colombel et al[137]
Disease duration	> 2 yr	-	↓	Anti-TNF	1b	Sandborn et al[138]

1 As per the Oxford level of evidence scoring: The available literature suggests a slower initial response but comparable long-term response rate; The use of "-" denotes an absence of published data addressing this issue.

nutritional requirements, replacing normal diet, either orally or via nasoenteric tube. It is mostly used for induction of remission in CD typically over a duration of 6-8 wk. While most data emanates from pediatric studies, efficacy is also likely in adults.

Time to response with EEN seems rapid, with 75% of adult patients with active CD achieving clinical remission after 10 d of an elemental feeding in one small RCT[131]. Other small RCTs have demonstrated clinical remission rates of 25% to 80% within 3-4 wk of commencement[132-138]. In two non-randomized cohort studies utilizing objective disease activity endpoints, 44% of patients achieved mucosal healing after 4 wk of EEN and, in a pediatric cohort, 36% had mucosal healing after 8 wk of EEN[139,140].

ADDITIONAL FACTORS AFFECTING TIME TO CLINICAL RESPONSE

Disease related factors

There are several patient and disease-related factors that appear important when predicting the likelihood of response and time to therapeutic response in individual patients (see Table 3). Agents tend to achieve a more rapid time to therapeutic response in UC than CD. This may relate to the transmural nature of CD thus treatment takes longer to achieve resolution of inflammatory changes. This difference in time to therapeutic response is exemplified by the vedolizumab registration studies, where induction therapy appeared to have higher response rates in UC than CD and the benefits in CD were predominantly observed later during the maintenance phase[133,138].

Patients who have not achieved an adequate response to prior therapies may have a slower response to subsequent therapies. This was noted with vedolizumab induction, where previous anti-TNF failures achieved clinical remission rates that only became significantly different to placebo after 10 wk, in contrast to the overall cohort where clinical remission rates were higher at week 6 compared to placebo[59]. Similar findings of a longer time to clinical remission were found in patients who had received infliximab previously and were subsequently treated with induction certolizumab for CD[60].

Patient related factors

While several additional factors intuitively could affect time to therapeutic response such as nutritional status, age and the intestinal microbiome, published data are lacking. Advancing age is typically associated with a reduced glomerular filtration rate, greater oxidative stress, increased volume of distribution, comorbid conditions, decreased hepatic metabolism and frailty-any of which may affect treatment choice and a therapy’s time to clinical response[141,142]. For instance, one retrospective study found that rates of clinical response to anti-TNF therapy for IBD in patients > 65 years was significantly less at week 10 but not significantly different at 6 mo than matched controls with similar co-morbidities aged < 65 years, suggesting a slower onset of response overall[143]. The limited available evidence also suggests that obesity can affect the rate of response, although the effect on time to response has not been studied. For instance, higher baseline weight was associated with a lower rate of clinical remission following induction therapy with adalimumab in the ULTRA-1 study and has been associated with an earlier loss of response to infliximab and adalimumab in IBD[69,144,145].

Although many of these factors are not modifiable, intervening early in the disease course and/or simple complementary measures such as improving nutrition may allow for a more rapid time to therapeutic response.

DISCUSSION

This review has elucidated multiple important principles...
of time to therapeutic response with direct applicability to clinical practice. First, patience is critical (for patients and clinicians alike) to reap the maximal benefits of some agents, particularly thiopurines, vedolizumab and methotrexate, with cumulative gains in response to these agents up to 12 mo after commencement. The clinical benefits indeed might lag significantly beyond the drug reaching therapeutic levels. For instance, this was reflected in a study assessing whether initial intravenous loading of azathioprine might hasten time to response. Indeed, therapeutic levels of 6-TGN were achieved rapidly. However, this did not improve the time to therapeutic response compared to standard oral administration\(^{80}\). Thus assessment of response should be delayed until sufficient time has lapsed to reach clinical efficacy. Whilst symptomatic improvement may occur relatively early following the initiation of many therapies, there often appears to be a lag in achieving mucosal healing, which should be considered when interpreting an early endoscopic assessment. This concept was demonstrated in a randomized controlled trial by Sutherland et al\(^{146}\) comparing 4 g aminosalicylate enemas to placebo enemas for the management of distal UC. Clinical response rates and endoscopy were measured at 3 and 6 wk, with response rates reaching 60% by week 3 in the aminosalicylate arm, then plateauing to reach 68% by week 6. The mucosal healing rates over the same period increased from 25% to 42%, suggesting a later rise\(^{24}\). Additionally, patients kept a symptom diary for the first two weeks of this trial and rectal bleeding had ceased in over half of patients by day 6, so the symptom improvement may have occurred more rapidly than the time of outcome measurement. Hence, it may be appropriate to delay assessment until after the expected time to therapeutic response has passed.

Secondly, it follows that a prolonged period of bridging therapy such as co-administration of EEN, corticosteroids or even perhaps tacrolimus is an important component of treatment planning, particularly in patients who are acutely unwell, so that relapse is avoided if possible, prior to the expected maximal response of a newly introduced therapy. Thirdly, in agents where a delayed time to therapeutic response is more likely, one must consider whether potential methods of hastening onset of action can be employed, such as thiopurine and allopurinol in combination or perhaps using EEN in combination with an anti-TNF agent in CD as induction therapy.

Significantly, the lack of reporting of time-to-response in clinical trials is a deficiency. Mostly, data must be extrapolated from studies rather than being directly reported. Given its utility in clinical practice and the relatively basic calculations required, this should be addressed in future studies. The expected time-to-response can potentially assist in trial design by providing an estimate of the necessary duration of a study to show maximal efficacy. For example, for vedolizumab for the management of CD, the CDAI-100 response rate was not significant at week 6 and only surpassed placebo around week 28\(^{23}\). Similarly, modest early response rates were also noted with another anti-integrin therapy natalizumab at week 10 with response rates increasing during maintenance therapy\(^{147}\). The use of week 6 rather than week 10 or later as the response times for vedolizumab has been a criticism of the large randomized studies\(^{77}\). Hence, such information can potentially be reported in early studies and thus provide further insight into the rapidity of action of drugs or more widely, drug classes, which can be incorporated into future studies of that therapy, plus into clinical practice.

Finally, the concept of time-to-response is a broad term and it is likely that it can be further divided based on the proportion of patients who have respond to therapy, as shown in Table 1. There is a time point at which most patients will respond and then following this there is progressively diminishing returns in the likelihood of further response, culminating in a point where response is unlikely; the time to futility. This concept remains clinically important, as the yield from persisting with therapy beyond this point is low and thus place patients at higher risk, for minimal or no benefit. Again, such information be ideally included in published data to better aid clinicians with therapeutic decisions.

CONCLUSION

In a chronic disease like IBD, where many therapies are effective yet of relatively slow onset of action, time-to-therapeutic response is of central importance both quantitatively to frame the patient’s expectations and the clinician’s decision making but also conceptually-encouraging the mindset of forward treatment planning, overlapping bridging therapies and accuracy in determining therapeutic failure. Furthermore, in contrast to the homogenized, group-based reporting of results from the seminal RCTs as the reference standard for each new agent, time to therapeutic response is inherently patient-centric and individualized. This is not only because it has the potential to vary by indication, dosage, demographic, clinical factors and is dependent on which endpoint is chosen \(i.e.,\) clinical response, remission, or endoscopic remission) but one can argue that the time to therapeutic response is of far greater relevance to patients and perhaps even to clinicians in day-to-day practice, thus future studies should examine and incorporate this paradigm further.

REFERENCES

1 Markowitz J. Early inflammatory bowel disease: different treatment response to specific or all medications? *Dig Dis* 2009; 27:358-365 [PMID: 19786765 DOI: 10.1159/000228574]
Vasudevan A et al. Time to response of therapies in IBD

2 Modigliani R, Mary JD, Simon JT, Cortot A, Soule JC, Gendre JP, Rene E. Clinical, biological, and endoscopic picture of attacks of Crohn’s disease. Evolution on prednisolone. Groupe d’Etude Thérapeutique des Affections Inflammatoires Digestives. Gastroenterology 1990; 98: 811-818 [PMID: 2179031 DOI: 10.1016/0016-5085(90)90002-I]

3 Cellier C, Sahmoud T, Fregou E, Adenis A, Belaiche J, Bretagne JF, Florent C, Bouvry M, Mary JD, Modigliani R. Correlations between clinical activity, endoscopic severity, and biological parameters in colon or ileocolonic Crohn’s disease. A prospective multicentre study of 121 cases. The Groupe d’Etudes Thérapeutiques des Affections Inflammatoires Digestives. Gut 1994; 35: 231-235 [PMID: 7508411 DOI: 10.1136/gut.35.2.231]

4 Peyrin-Biroulet L, Reinisch W, Colombel JF, Manzur GJ, Kornbluth A, Diamond R, Rutgeerts P, Tang LK, Cornillie FJ, Sandborn WJ. Clinical disease activity, C-reactive protein normalisation and mucosal healing in Crohn’s disease in the SONIC trial. Gut 2014; 63: 88-95 [PMID: 23974954 DOI: 10.1136/gutjnl-2013-304984]

5 Jharap B, Sandborn WJ, Reinisch W, D’Haens G, Robinson AM, Wang W, Huang B, Lazar A, Thukkar RB, Colombel JF. Randomised clinical study: discrepancies between patient-reported outcomes and endoscopic appearance in moderate to severe ulcerative colitis. Aliment Pharmacol Ther 2015; 42: 1082-1092 [PMID: 26381802 DOI: 10.1111/apt.13387]

6 Kiss LS, Szamosi T, Molnar T, Mihelcic M, Sotomayor Q, Tracy J, Genest D, Bouchard C. Comparison of delayed-release 5-aminosalicylic acid (mesalazine) and sulfasalazine as maintenance treatment for patients with ulcerative colitis. Gastroenterology 1988; 94: 1383-1389 [PMID: 32896139 DOI: 10.1016/0016-5085(88)90677-4]

7 Turner D, Griffiths AM, Veerman G, Johanns J, Dammaraju L, Blank M, Hyams J. Endoscopic and clinical variables that predict sustained remission in children with ulcerative colitis treated with infiximab. Clin Gastroenterol Hepatol 2011; 9: 911-922 [PMID: 21883326 DOI: 10.1016/j.cgh.2011.04.049]

8 Peyrin-Biroulet L, Panés J, Sandborn WJ, Vermeire S, Danese S, Feagan BG, Colombel JF, Hanauer SB, Yeo CJ, Manganelli N, Erasmi K, Tedder RS, Thibault S, Dellon ES, Orrell MW, Findling RL, Rutgeerts P, Goffin JR, Colombel JF. Comparison of delayed-release 5-aminosalicylic acid (mesalazine) and sulfasalazine as maintenance treatment for patients with ulcerative colitis. Aliment Pharmacol Ther 2015; 42: 1082-1092 [PMID: 26381802 DOI: 10.1111/apt.13387]

9 Ford AC, Kane SV, Khan KJ, Ackhar JP, Talley NJ, Marshall JK, Moayyedi P. Efficacy of 5-aminosalicylates in Crohn’s disease: systematic review and meta-analysis. Am J Gastroenterol 2011; 106: 617-629 [PMID: 21407190 DOI: 10.1038/ajg.2011.71]

10 Lim WC, Wang Y, MacDonald JK, Hanauer S. Aminosalicylates for induction of remission or response in Crohn’s disease. Cochrane Database Syst Rev 2016; 7: CD000543 [PMID: 27101467 DOI: 10.1002/14651858.CD000543.pub4]

11 Kornbluth A, Diamond R, Rutgeerts P, Tang LK, Cornillie FJ, Sandborn WJ. Clinical disease activity, C-reactive protein normalisation and mucosal healing during the first year of adalimumab therapy in Crohn’s disease. Aliment Pharmacol Ther 2015; 42: 1082-1092 [PMID: 26381802 DOI: 10.1111/apt.13387]

12 Ratnayake H, Silverberg MS, Behar E, Jing H, Wilte D, Hanssen KJ, Gustafson H, Sleiman M, Yee J. The optimal dose of 5-aminosalicylic acid in active ulcerative colitis: a dose-finding study with newly developed mesalazine. Clin Gastroenterol Hepatol 2003; 1: 36-43 [PMID: 15017515 DOI: 10.1016/j.cgh.2003.50006]

13 Safdi M, DeMicco M, Sninsky C, Banks P, Wruble L, Deren J, Turnberg LA. A double-blind comparison of oral versus rectal mesalazine versus combination therapy in the treatment of distal ulcerative colitis. Am J Gastroenterol 1997; 92: 1867-1871 [PMID: 9382054]

14 Sandborn WJ, Hanauer S, Lichtenstein GR, Safdi M, Edelme M, Scott Harris M. Early symptomatic response and mucosal healing with mesalazine rectal suspension therapy in active distal ulcerative colitis–additional results from two controlled studies. Aliment Pharmacol Ther 2011; 34: 747-756 [PMID: 21385195 DOI: 10.1111/j.1572-0241.2011.05781.x]

15 Hanauer SB. Dose-ranging study of mesalamine (PENTASA) enemas in the treatment of acute ulcerative proctosigmoiditis: results of a multicentered placebo-controlled trial. The U.S. PENTASA Enema Study Group. Inflamm Bowel Dis 1998; 4: 79-83 [PMID: 9589293]

16 Lichtenstein GR, Abreu MT, Cohen R, Tremaine W; American Gastroenterological Association. American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 2006; 130: 940-987 [PMID: 16530532 DOI: 10.1053/j.gastro.2006.01.048]

17 Shepherd HA, Barr GD, Jewell DP. Use of an intravenous steroid regimen in the treatment of acute Crohn’s disease. J Clin Gastroenterol 1986; 8: 154-159 [PMID: 3745849 DOI: 10.1097/000483-198604000-00010]

18 Truelove SC, Watkinson G, Draper G. Comparison of hydrocortisone hemisuccinate used as out-patient treatment for ulcerative colitis. Gut 1960; 1: 217-222 [PMID: 13768040 DOI: 10.1136/gut.13.2.217]

19 Selby WS, Barr GD, Ireland A, Mason CH, Jewell DP. Oral mesalazine in active ulcerative colitis. Br Med J (Clin Res Ed) 1985; 291: 1373-1375 [PMID: 3933675 DOI: 10.1136/bmj.291.6506.1373]

20 Green JR, Lob AJ, Holdsworth CD, Leecher RJ, Gibson JA, Kerr GD, Hodgson HJ, Parkins KJ, Taylor MD. Balsalazide is more effective and better tolerated than mesalamine in the treatment of acute ulcerative colitis. The Abacus Investigator Group. Gastroenterology 1998; 114: 1-22 [PMID: 9428213 DOI: 10.1016/S0016-5085(98)70672-4]

21 Olivia-Hemker M, Hurthess S, Al Kazi ES, L Berton, Mack D, LeLeiko N, Griffiths A, Cabrera J, Otley A, Rick J, Bousvaros A, Rosh J, Grossman A, Sued S, Kay M, Carvalho R, Keljo D, Pfefkerkon M, Faubion W Jr, Kappelmann M, Suel D, Schaefer ME, Markowitz J, Hyams JS. Clinical Presentation and Five-Year Therapeutic Management of Very- Early-Onset Inflammatory Bowel Disease in a Large North American Cohort. J Pediatr 2015; 167: 527-532.e1-3 [PMID: 25982142 DOI: 10.1016/j. jpedi.2015.04.045]

22 Riley SA, Mani V, Goodman MJ, Herd ME, Dutt S, Turnberg LA. Comparison of delayed-release 5-aminosalicylic acid (mesalazine) and sulfasalazine as maintenance treatment for patients with ulcerative colitis. Aliment Pharmacol Ther 1989; 9: 1383-1389 [PMID: 29896139 DOI: 10.1002/14651858.CD000543.pub2]

23 Orzech TR, van de Geest SA, Travis SP. Randomised clinical trial: early assessment after 2 weeks of high-dose mesalazine for moderately active ulcerative colitis-new light on a familiar question. Aliment Pharmacol Ther 2011; 33: 1028-1035 [PMID: 21385195 DOI: 10.1111/j.1572-0241.2011.05781.x]
corticosteroid and sulphasalazine therapy in ulcerative colitis. Br Med J 1962; 2: 1708-1711 [PMID: 13994348 DOI: 10.1136/ bmj.2.5321.1708]

Hawthorne AB, Rook CN, Holdsworth CD, Giaffer MH, Burke DA, Keech ML, Hawkey CJ. Double blind trial of oral fluticasone propionate v prednisolone in the treatment of active ulcerative colitis. Gut 1993; 34: 125-128 [PMID: 8432442 DOI: 10.1136/ gut.34.1.125]

Baron JH, Connell AM, Kanaghis TG, Lennard-Jones JE, Jones AF. Outpatient treatment of ulcerative colitis. Comparison between three doses of oral prednisone. Br Med J 1962; 2: 441-443 [PMID: 13865152]

Chun A, Chadi RM, Kereulitz BI, Colonna T, Felder JB, Jackson MH, Morgenstern EH, Rubin SD, Sackoff AG, Gleim GM. Intravenous corticosterin v hydrocortisone in the treatment of hospitalized patients with Crohn's disease: a randomized double-blind study and follow-up. Inflamm Bowel Dis 1998; 4: 177-181 [PMID: 9741018 DOI: 10.1097/00054725-199808000-00001]

Truelove SC, Jewell DP. Intensive intravenous regimen for severe attacks of ulcerative colitis. Lancet 1974; 1: 1067-1070 [PMID: 4135487 DOI: 10.1001/jama.1978.37102080138032]

Truelove SC, Willoughby CP, Lee EG, Kettlewell MG. Further experience in the treatment of severe attacks of ulcerative colitis. Lancet 1978; 2: 1086-1088 [PMID: 82099 DOI: 10.1016/ S0140-6736(78)91816-0]

Järnerot G, Rolny P, Sandberg-Gertzén H. Intensive intravenous treatment of ulcerative colitis. Gastroenterology 1985; 89: 1005-1013 [PMID: 390339 DOI: 10.1016/0016-5085(85)90201-X]

Travis SP, Farrant JM, Ricketts C, Nolan DJ, Mortensen NM, Kettlewell MG, Jewell DP. Predicting outcome in severe ulcerative colitis. Gut 1996; 38: 905-910 [PMID: 8984031 DOI: 10.1136/ gut.38.6.905]

Molnár T, Farkas K, Nyári T, Szepes Z, Nagy F, Wittmann T. Farkas, K, Nyári T, Szepes Z, Nagy F, Wittmann T. Crohn's Colitis and safety study of a new Budesonide-MMX® 9 mg extended-release tablets in patients with active left-sided ulcerative colitis. J Crohns Colitis 2010; 4: 153-160 [PMID: 21122499 DOI: 10.1016/ j.crohns.2009.09.007]

Carter MJ, Lobo AJ, Travis SP; IBID Section, British Society of Gastroenterology. Guidelines for the management of inflammatory bowel disease in adults. Gut 2004; 53 Suppl 5: V1-V16 [PMID: 15306569 DOI: 10.1136/gut.2004.037372]

Digenass A, Lindsay JO, Sturm A, Windsor A, Colombel JF, Allez M, D’Haens G, D’Hoore A, Mantzaris G, Novacek G, Oresland T, Reischin W, Sans M, Stange E, Vermeire S, Travis S, Van Assche G. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohns Colitis 2012; 6: 991-1030 [PMID: 23040451 DOI: 10.1016/j.crohns.2012.09.003]

Cohen RD, Tsang JF, Hanauer SB. Infliximab in Crohn's disease: first anniversary clinical experience. Am J Gastroenterol 2000; 95: 3469-3477 [PMID: 11151879 DOI: 10.1111/j.1572-0241.2000.03363.x]

Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWooody KL, Schuable TF, Rutgeerts PJ. A short-term study of chimeric monoclonal antibody CA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease CA2 Study Group. N Engl J Med 1997; 337: 1029-1035 [PMID: 9231520 DOI: 10.1056/NEJM199709337150102]

Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Wolf DC, Olson A, Bao W, Rutgeerts P; ACCENT I Study Group. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359: 1541-1549 [PMID: 12047962 DOI: 10.1016/ S0140-6736(02)68512-4]

Nikolaus S, Raeder A, Kühbecke T, Sfilmak N, Fólksch UR, Schreiber S. Mechanisms in failure of infliximab for Crohn's disease. Lancet 2000; 356: 1475-1479 [PMID: 11081350 DOI: 10.1016/S0140-6736(00)62871-3]

Tursi A, Elisei W, Giorgetti GM, Penna A, Picchio M, Brandimarte G. Factors influencing mucosal healing in Crohn's disease during infliximab treatment. Hepatogastroenterology 2013; 60: 1041-1046 [PMID: 23803367 DOI: 10.5754/he11514]

Colombel JF, Sandborn WJ, Reischin W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Brousard DL, Tang KL, van der Woude CJ, Rutgeerts P; SONIC Study Group. Infliximab, azathioprine, or combination therapy for active Crohn's disease. Lancet 2000; 356: 1475-1479 [PMID: 11081350 DOI: 10.1016/S0140-6736(00)62871-3]

Sands BE, Targan SR, Sandborn WJ, Rutgeerts PJ, Hanauer SB, Mayer L, Targan SR, Poddolosky DK. Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: a pilot study. Inflamm Bowel Dis 2001; 7: 63-88 [PMID: 11383595 DOI: 10.1097/000547 25-200105000-00001]

Rutgeerts P, Sandborn WJ, Feagan BG, Reischin W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR, de Villiers WJ, Present D, Sands BE, Colombel JF. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 2010; 362: 1383-1395 [PMID: 20393175 DOI: 10.1056/NEJMoa0904492]

Laharie D, Bourreille A, Branche J, Allez M, Bounhuy F, Filippi J, Zerbib F, Savoye G, Nachury M, Moreau J, Delchier JC, Cosnes J, Ricart E, Dewit O, Lopez-Sanroman A, Dupas JL, Carbonnel F, Bommelaer G, Coffin B, Roblin X, Van Assche G, Esteve M, Färkkilä M, Gisbert JP, Marteau P, Nahon S, de Vos M, Franchimont D, Mary JY, Colombel JF, Lémann M; Groupe d’ Etudes Thérapeutiques des Affections Inflammatoires Digestives. Ciclosporin versus infliximab in patients with severe ulcerative colitis refractory to intravenous steroids: a parallel, open-label randomised controlled trial. Lancet 2012; 380: 1900-1915 [PMID: 23063316 DOI: 10.1016/S0140-6736(12)61084-8]

Pappamichael K, Van Stappen T, Vande Casteele N, Gils A, Billiet T, Tops S, Claes K, Van Assche G, Rutgeerts P, Vermeire S, Ferrante M. Infliximab Concentration Thresholds During Induction Therapy Are Associated With Short-term Mucosal Healing in Patients With Ulcerative Colitis. Clin Gastroenterol Hepatol 2016; 14: 543-549 [PMID: 26681486 DOI: 10.1016/j.cgh.2015.11.014]

Gibson DJ, Heetun ZS, Redmond CE, Nanda KS, Keegan D,
Vasudevan A et al. Time to response of therapies in IBD

Byrne K, Mulcahy HE, Cullen G, Doherty GA. An accelerated infliximab induction regimen reduces the need for early colectomy in patients with acute severe ulcerative colitis. *Clin Gastroenterol Hepatol* 2015; 13: 330-335.e1 [PMID: 25066187 DOI: 10.1016/j.cgh.2014.07.041]

65 Austin Health. Optimising Infliximab Induction Therapy for Acute Severe Ulcerative Colitis (PRESCRIPT-UC). Bethesda (MD): National Library of Medicine (US). Cited 2016-12-20. Available from: URL: https://clinicaltrials.gov/show/NCT02777004

67 Castro-Lara L, Argüelles-Arias F, García-Sánchez V, Benítez JM, Fernández-Pérez R, Trapero-Fernández AM, Gallardo-Sánchez F, Pallarés-Mañique H, Gómez-García M, Cabello-Tapia MJ, Talavera-Fabuel A, Bejarano-García A, Leo-Carnerero E, Hernández-Martínez A, Caunedo-Alvarez A, Herreras-Gutiérrez JM. Initial experience with golimumab in clinical practice for ulcerative colitis. *Rev Esp Enferm Dig* 2016; 108: 129-132 [PMID: 26786341 DOI: 10.17235/reed.2016.4068/2015]

68 Rutgeerts P, Feagan BG, Marano CW, Padgett L, Strauss R, Johanss J, Adedokun OJ, Guzzo C, Zhang H, Colombel JF, Reinsich W, Gibson PR, Sandborn WJ; PURSUIT-IV study group. Randomised clinical trial: a placebo-controlled study of intravenous golimumab induction therapy for ulcerative colitis. *Aliment Pharmacol Ther* 2015; 42: 504-514 [PMID: 26191226 DOI: 10.1111/apt.13291]

69 Sandborn WJ, Melmed GY, McGovern DP, Loftus EV Jr, Choi JM, Cho JH, Abraham B, Gutierrez A, Lichtenstein G, Lee SD, Randall CW, Schwartz DA, Regueiro M, Siegel CA, Spearman M, Kosutic G, Pierre-Louis B, Corrêa J, Schreiber S. Clinical and demographic characteristics predictive of treatment outcomes for certolizumab pegol in moderate to severe Crohn’s disease: analyses from the 7-year PRECISE 3 study. *Aliment Pharmacol Ther* 2015; 42: 330-342 [PMID: 26031921 DOI: 10.1111/apt.13251]

70 Adedokun OJ, Xu Z, Marano CW, Strauss R, Zhang H, Johanss J, Zhou H, Davis HM, Reinsich W, Feagan BG, Rutgeerts P, Sandborn WJ. Pharmacokinetics and Exposure-response Relationship of Golimumab in Patients with Moderately-to-Severely Active Ulcerative Colitis: Results from Phase 2/3 PURSUIT Induction and Maintenance Studies. *J Crohns Colitis* 2017; 11: 35-46 [PMID: 27440869 DOI: 10.1093/ecco-jcc/jjw133]

71 Colombel JF, Sandborn WJ, Allez M, Dupas JL, Dewit O, D’Haens G, Bouhnik Y, Parker G, Pierre-Louis B, Hébuterne X. Association between plasma concentrations of certolizumab pegol and endoscopic outcomes of patients with Crohn’s disease. *Clin Gastroenterol Hepatol* 2014; 12: 423-431.e1 [PMID: 24184736 DOI: 10.1016/j.cgh.2013.10.025]

72 Matsumoto T, Motosu S, Watanabe K, Hisamatsu T, Nakase H, Yoshimura N, Ishida T, Kato S, Nakagawa T, Esaki M, Nagahori M, Matsui T, Naitou Y, Kainai T, Suzuki Y, Nojima M, Watanabe M, Hibi T. 854 Comparison of Adalimumab Monotherapy and a Combination With Azathioprine for Patients With Crohn’s Disease: A Prospective, Multicenter, Open-Labeled Clinical Trial (DIAMOND Study). *Gastroenterology* 2016; 150: S182 [DOI: 10.1053/j.gastro.2016.03.0967]

73 Sandborn WJ, van Asche G, Reinisch W, Colombel JF, D’Haens G, Wolf DC, Kron M, Tighe MB, Lazar A, Thakkar RB. Adalimumab for induction of and maintenance mucosal healing in patients with Crohn’s disease. *Gastroenterology* 2015; 148: 71-80 [PMID: 25178642 DOI: 10.1053/j.gastro.2014.07.048]

74 Hébuterne X, Léumann M, Bouhnik Y, Dewit O, Dupas JL, Moss M, D’Haens G, Mitchev K, Ernault É, Vermeire S, Brixio-Bennamour H, Moreels TG, Mary JY, Marteau P, Colombel JF. Endoscopic improvement of mucosal lesions in patients with moderate to severe ileocolonic Crohn’s disease following treatment with certolizumab pegol. *Gut* 2013; 62: 201-208 [PMID: 22525883 DOI: 10.1136/gut.2012-302262]

75 Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanss J, Adedokun OJ, Guzzo C, Colombel JF, Reinsich W, Gibson PR, Collins J, Järnerot G, Hibi T, Rutgeerts P, PURSUIT-SC Study Group. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. *Gastroenterology* 2014; 146: 9-15 [PMID: 23735746 DOI: 10.1053/j.gastro.2013.03.048]

76 Bosca-Watts MM, Cortes X, Ibarra M, Huguet JM, Sempere L, Garcia G, Gil R, Garcia M, Muñoz M, Almela P, Maroto N, Paredes JM. Short-term effectiveness of golimumab for ulcerative colitis: Observational multicenter study. *World J Gastroenterol* 2016; 22: 10432-10439 [PMID: 28058024 DOI: 10.3748/wjg.v22.i47.10432]
controlled trial of azathioprine in the management of chronic ulcerative colitis.

Rational dosing of azathioprine and 6-mercaptopurine.

A randomised, investigator-blind study.

Comparison between methotrexate and thiopurine therapy in inflammatory bowel disease.

Thiopurine metabolite measurement leads to improvement in clinical outcome of patients treated with thiopurine therapy in inflammatory bowel disease.

The impact of introducing thiopurine metabolite measurement for 6-thioguanine nucleotides levels and clinical remission in inflammatory disease: a meta-analysis.

The impact of introducing thiopurine metabolite measurement for 6-thioguanine nucleotides levels and clinical remission in inflammatory disease: a meta-analysis.

A randomised, controlled trial of azathioprine in the management of steroid dependent ulcerative colitis.

A study of azathioprine and 6-mercaptopurine in patients with inflammatory bowel disease.

Thiopurine metabolite measurement for 6-methylmercaptopurine in patients not responding to azathioprine and mercaptopurine.

Pharmacokinetics and pharmacogenetics for safe and effective thiopurine therapy in inflammatory bowel disease.

Review article: recent advances in the management of inflammatory bowel disease.

A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine.

Am J Gastroenterol 2005; 100: 2239-2247 [PMID: 16181376 DOI: 10.1111/j.1572-0241.2005.41900.x]

Reinshagen M, Schütz E, Armstrong VW, Behrens C, von Tirpitz C, Stallmach A, Herfarth H, Stein J, Bias P, Adler G, Shippokova M, Knapen M, Schreiber M, von Ahnen F, 6-thioguanine nucleotide-adapted azathioprine therapy does not lead to higher remission rates than standard therapy in chronic active Crohn disease: results from a randomized, controlled, open trial.

Clim Chem 2007; 53: 1306-1314 [PMID: 17495015 DOI: 10.1373/clinchem.2007.086215]

Dassopoulos T, Dubinsky MC, Bentsen JL, Martin CF, Galanko JA, Seidman EG, Sandler RS, Hanauer SB. Randomised clinical trial: individualised vs. weight-based dosing of azathioprine in Crohn’s disease.

Aliment Pharmacol Ther 2014; 39: 163-175 [PMID: 24237037 DOI: 10.1111/apt.12555]

Moreau AC, Paul S, Del Tedesco E, Rinaudo-Gaujous M, Boukhadra N, Genin C, Peyrin-Biroulet L, Robin X. Association between 6-thioguanine nucleotides levels and clinical remission in inflammatory disease: a meta-analysis.

Inflamm Bowel Dis 2014; 20: 464-471 [PMID: 24418904 DOI: 10.1097/MBD.0000000000000162]

Dubinsky MC, Lamote S, Yang HY, Targan SR, Sinnett D, Théoret Y, Seidman EG. Pharmacogenomics and metabolism measurement for 6-mercaptopurine therapy in inflammatory bowel disease.

Gastroenterology 2000; 118: 705-713 [PMID: 10734022 DOI: 10.1016/S0016-5085(00)70140-5]

Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease.

Gut 2001; 48: 642-646 [PMID: 11302961 DOI: 10.1136/gut.48.5.642]

Haines ML, Ajlouni Y, Irving PM, Sparrow MP, Rose R, Garry RB, Gibson PR. Clinical usefulness of therapeutic drug monitoring of thiopurines in patients with inadequately controlled inflammatory bowel disease.

Inflamm Bowel Dis 2011; 17: 1301-1307 [PMID: 20812329 DOI: 10.1002/ibd.21485]

Kennedy NA, Asser TL, Mountfield RE, Doogae MP, Andrews JM, Bampton PA. Thiopurine metabolite measurement leads to changes in management of inflammatory bowel disease.

Intern Med J 2013; 43: 278-286 [PMID: 22946880 DOI: 10.1111/j.1445-5994.2012.02936.x]

Smith M, Blaker P, Patel C, Marinaki A, Arenas M, Escuredo E, Anderson S, Irving P, Sanderson J. The impact of introducing thioguanine nucleotide monitoring into an inflammatory bowel disease clinic.

Int J Clin Pract 2013; 67: 161-169 [PMID: 23253089 DOI: 10.1111/ijcp.12039]

Sparrow MP, Hande SA, Friedman S, Lim WC, Reddy SI, Cao D, Hanauer SB. Allopurinol safely and effectively optimizes thioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine.

Aliment Pharmacol Ther 2005; 22: 441-446 [PMID: 16128682 DOI: 10.1111/j.1365-2036.2005.02583.x]

Rahhal RM, Bishop WP. Initial clinical experience with allopurinol-thiopurine combination therapy in pediatric inflammatory bowel disease.

Inflamm Bowel Dis 2008; 14: 1678-1682 [PMID: 18521913 DOI: 10.1002/ibd.20522]

Leung Y, Sparrow MP, Schwartz M, Hanauer SB. Long term efficacy and safety of allopurinol and azathioprine or 6-mercaptopurine in patients with inflammatory bowel disease.

J Crohns Colitis 2009; 3: 162-167 [PMID: 21172265 DOI: 10.1016/j.jciii.2009.02.003]

Ansari A, Patel N, Sanderson J, O’Donohue J, Duley JA, Florin TH. Low-dose azathioprine or mercaptopurine in combination with allopurinol can bypass many adverse drug reactions in patients with inflammatory bowel disease.

Aliment Pharmacol Ther 2010; 31: 640-647 [PMID: 20015102 DOI: 10.1111/j.1365-2036.2009.04221.x]

Pavlidis P, Stamoulos P, Abdulrahman A, Kerr P, Bull C, Duley J, Ansari A. Long-term Safety and Efficacy of Low-dose Azathioprine and Allopurinol Cotherapy in Inflammatory Bowel Disease: A Large Observational Study.

Inflamm Bowel Dis 2016; 22: 1639-1646 [PMID: 27271488 DOI: 10.1097/IBD.0000000000000931]

Vasudevan A et al. Time to response of therapies in IBD
Lee KM, Kim YS, Seo GS, Kim TO, Yang SK; IBDB Study Group of the Korean Association for the Study of Intestinal Diseases. Use of Thiopiramine in Inflammatory Bowel Disease: A Consensus Statement by the Korean Association for the Study of Intestinal Diseases (KASID). *Intest Res* 2015; 13: 193-207 [PMID: 26130993 DOI: 10.5217/ir.2015.13.3.193]

Yip JS, Woodward M, Abreu MT, Sparrow MP. How are Azathioprine and 6-mercaptopurine dosed by gastroenterologists? Results of a survey of clinical practice. *Inflamm Bowel Dis* 2008; 14: 514-518 [PMID: 18088072 DOI: 10.1002/ibd.20345]

Kisaka-Kanowitz M, Theede K, Mertz-Nielsen A. Randomized clinical trial: a pilot study comparing efficacy of low-dose azathioprine and allopurinol on azathioprine clinical outcomes in inflammatory bowel disease. *Scand J Gastroenterol* 2016; 51: 1470-1475 [PMID: 27686602 DOI: 10.1080/00365526.2016.1216589]

Carbonnel F, Colombel JF, Filippini J, Katsanos KH, Peyrin-Biroulet L, Allez M, Nachury M, Novack G, Danese S, Abitbol V, Bossa F, Moreau J, Bonnecalle G, Bourelle A, Fumery M, Roblin X, Reinisch W, Bousñh Y, Breix H, Saksik P, Malanmut G, Fäkirliä M, Coulhaly B, Dewit O, Louis E, Deplanque D, Michetti P, Sartee H, Laharie D, European Crohn’s and Colitis Organisation; Groupe d’Étude Thérapeutique des Affections Inflammatoires Digestives. Methotrexate Is Not Superior to Placebo for Inducing Steroid-Free Remission, but Induces Steroid-Free Clinical Remission in a Larger Proportion of Patients With Ulcerative Colitis. *Gastroenterology* 2016; 150: 380-388.e4 [PMID: 26632520 DOI: 10.1053/j.gastro.2015.10.050]

Kozarek RA, Patterson DJ, Gelfand MD, Botoman VA, Ball TJ, Wilks KR. Methotrexate induces clinical and histologic remission in patients with refractory inflammatory bowel disease. *Ann Intern Med* 1989; 110: 353-356 [PMID: 2492786 DOI: 10.7326/0003-4812-110-9-5-353]

Chong RY, Hanauer SB, Cohen RD. Efficacy of parenteral methotrexate in refractory Crohn’s disease. *Aliment Pharmacol Ther* 2001; 15: 35-44 [PMID: 11136276 DOI: 10.1046/j.1365-2036.2001.00908.x]

Oren R, Abner N, Odes S, Moshkowitz M, Keter D, Pomeranz K, Arts J, D’Hoore A, Penninckx F, Rutgeerts P. Randomized, double-blind, placebo-controlled trial of oral tacrolimus (FK506) in the management of hospitalized patients with steroid-refractory ulcerative colitis. *Inflamm Bowel Dis* 2012; 18: 803-808 [PMID: 21877732 DOI: 10.1002/ibd.21853]

Ogata H, Matsui T, Nakamura M, Iida M, Takaezo M, Suzuki Y, Hibi T. A randomized dose finding study of oral tacrolimus (FK506) therapy in refractory ulcerative colitis. *Gut* 2006; 55: 1255-1262 [PMID: 16484504 DOI: 10.1136/gut.2005.087194]

Baumgart DC, Pintoff JP, Sturm A, Wiedenmann B, Dignass AU. Tacrolimus is safe and effective in patients with severe steroid-refractory or steroid-dependent inflammatory bowel disease—a long-term follow-up. *Am J Gastroenterol* 2006; 101: 1048-1056 [PMID: 16573777 DOI: 10.1111/j.1572-0241.2006.00524.x]

Takami H, Nakase H, Matsuura M, Inoue S, Mikani S, Uno S, Uza N, Kitamura H, Kasahara K, Chiba T. The effect of tacrolimus (FK-506) on Japanese patients with refractory Crohn’s disease. *J Gastroenterol* 2008; 43: 774-779 [PMID: 18955846 DOI: 10.1007/s00535-008-2229-y]

Van Asche G, D’Haens G, Noman M, Vermeiren S, Hiele M, Asnong K, Arts J, D’Hoore A, Penninckx F, Rutgeerts P. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. *Gastroenterology* 2003; 125: 1025-1031 [PMID: 14517785 DOI: 10.1016/S0016-5085(03)01214-9]

D’Haens G, Lennerns L, Geboes K, Vandeputte L, Van Acker F, Mortelmans L, Peeters M, Vermeiren S, Penninckx F, Nevens F, Hiele M, Rutgeerts P. Intravenous cyclosporine versus intravenous corticosteroids as single therapy for severe attacks of ulcerative colitis. *Gastroenterology* 2001; 120: 1323-1329 [PMID: 11313301 DOI: 10.1053/gast.2001.23983]

Fellermann K, Tanko Z, Herrlinger KR, Wittooth T, Homann N, Bruening A, Ludwig D, Stange EF. Response of refractory colitis to intravenous or oral tacrolimus (FK506). *Inflamm Bowel Dis* 2002; 8: 317-324 [PMID: 12479646 DOI: 10.1007/10054725-200209060-00002]

Actis GC, Aimo G, Priolo G, Moscato D, Rizzetto M, Pagni R. Efficacy and efficiency of oral microemulsion cyclosporin versus intravenous and soft gelatin capsule cyclosporin in the treatment of severe steroid-refractory ulcerative colitis: an open-label retrospective trial. *Inflamm Bowel Dis* 1998; 4: 276-279 [PMID: 9836679]

Wall CL, Day AS, G erry RB. Use of exclusive enteral nutrition in adults with Crohn’s disease: a review. *World J Gastroenterol* 2013; 19: 7652-7660 [PMID: 24292335 DOI: 10.3748/wjg.v19.i43.7652]

Giaffer MH, North G, Holdsworth CD. Controlled trial of polymeric versus elemental diet in treatment of active Crohn’s disease. *Lancet* 1990; 335: 816-819 [PMID: 1969560 DOI: 10.1016/0140-6736(90)90936-EY]

Gassull MA, Fernández-Bañares F, Cabré E, Papo M, Giaffer MH, Sánchez-Lombaño JL, Richart C, Malchow H, González-Huix F, Esteve M, European Group on Enteral Nutrition in Crohn’s Disease.
D’Haens G, Baert F, van Assche G, Caenepeel P, Vergauwe P, Tuynman H, De Vos M, van Deventer S, Stitt L, Donner A, Vermeire S, Van De Mierop FJ, Coche JR, van der Woude J, Ochsenkühn T, van Bodegraven AA, Van Hootegem PP, Lambrecht GL, Mana F, Rutgeerts P, Feagan BG, Hommes D; Belgian Inflammatory Bowel Disease Research Group; North-Holland Gut Club. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet 2008; 371: 660-667 [PMID: 18295023 DOI: 10.1016/S0140-6736(08)60304-9]

P- Reviewer: Gazouli M, Jadallah KA, Mitsui K S- Editor: Gong ZM
L- Editor: A E- Editor: Huang Y
