Charmonium dissociation by mesons in heavy-ion collisions

G.I. Lykasova and W. Cassingb

aJINR, Dubna, 141980, Moscow region, Russia
bInstitut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany

The charmonium dissociation by mesons in relativistic heavy-ion reactions is analyzed within the Regge approach. It is shown that the inclusion of the initial and final state interactions in the dissociation of J/Ψ to \bar{D}^*D^* close to threshold increases the cross section significantly and can not be neglected in comparison to the total dissociation rate. This is due to resonant \bar{D}^*-D^* interactions in \sqrt{s} close to the masses of the $\Psi(4.04)$ and $\Psi(4.16)$ mesons. We also investigate thermal effects of the $(c\bar{c})$ width for such processes in the medium. All these effects change both the magnitude and the shape of the cross section as a function of \sqrt{s}. The results obtained should be applied in the analysis of open and hidden charm production in heavy-ion collisions.

PACS: 25.75.-q; 13.60.L2; 14.40.Lb; 14.65.Dw

Keywords: Relativistic heavy-ion collisions; Charmonium dissociation; Charmed mesons; Charmed quarks.

In the last decade the search for a quark-gluon plasma (QGP) has been intensified in line with the development of new experimental facilities \cite{1}. For instance, the J/Ψ-meson plays a significant role in the context of a phase transition to the QGP \cite{2} where charmonium $(c\bar{c})$ states might no longer be formed due to color screening \cite{3,4}. However, the suppression of J/Ψ and Ψ' mesons in the high density (hadronic) phase of nucleus-nucleus collisions \cite{5,6} might also be attributed to inelastic comover scattering (cf. \cite{7,8} and references therein), provided that the corresponding J/Ψ-hadron cross sections are in the order of a few mb \cite{9,10}. Present theoretical estimates here differ by more than an order of magnitude \cite{11} especially with respect to J/Ψ-meson scattering such that the question of charmonium suppression is not yet settled. Moreover, the calculation of these cross sections within the chiral Lagrangian approach results in either a constant or a slowly increasing cross section with energy \cite{9,10,12,13} that contradicts the true Regge asymptotics predicting a decrease with energy. The inclusion of meson structure and the introduction of meson form factors in this Lagrangian model lead to a large uncertainty for the shape and the magnitude of the J/Ψ dissociation cross sections by mesons.

The amplitude of the reactions have to satisfy the Regge asymptotics at large s. For the elastic and the total hadron-proton cross section the relation of their true Regge asymptotics to the hadron form factors has been discussed in \cite{14}. Here we will find a
similar relation for $\bar{D}D^*$ production in $\pi(\rho)J/\Psi$ collisions. In Refs. [15, 16] the cross section of the reaction $\pi N \rightarrow \bar{D}(D^*)\Lambda_c$ was estimated within the framework of the Quark-Gluon String Model (QGSM) developed in Ref. [17]. The QGSM is a nonperturbative approach based on a topological $1/N$ expansion in QCD and on Regge theory. This approach can be considered as a microscopic model describing Regge phenomenology in terms of quark degrees of freedom. It provides a possibility of establishing relations between many soft hadronic reactions as well as masses and partial widths of resonances with different quark contents (see e.g. [18]).

The QGSM has been applied in Refs.[15, 20] to analyze the $p\bar{p}$ and $\pi(\rho)J/\Psi$ binary reactions, respectively. It has been shown [20] that the dissociation cross section of J/Ψ by pions has a maximum value of a few mb at energies close to threshold and is decreasing smoothly with energy furtheron. Approximately the same result has been obtained in Ref.[21] within the relativistic quark model. The main contribution to this process stems from $\pi + J/\Psi \rightarrow \bar{D}D^*$ and $\pi + J/\Psi \rightarrow \bar{D}D^0$ channels. The J/Ψ dissociation by pions to a \bar{D}^*D^* pair usually is neglected because its cross section is estimated to be small (cf. Ref. [22]). However, the \bar{D}^*-D^* interaction has a resonance form at invariant energies corresponding to the masses of the $\Psi(4.04)$ and $\Psi(4.16)$ mesons (cf. Fig.1 (lhs)).

In this contribution we focus on the analysis of the J/Ψ dissociation by pions to \bar{D}^*D^* mesons to show that the resonance form of the \bar{D}^*-D^* cross section increases the cross section of this channel by a large amount. We include both the initial (ISI) and the final state interactions (FSI).

The amplitude of a binary reaction $a + b \rightarrow c + d$ in the impact parameter space including the ISI and FSI within the quasieikonal approximation can be presented in the
\[\mathcal{M}(s, b, z) = \mathcal{M}_R(s, b, z) \exp \left(-[\chi^\alpha(s, b, z) + \chi^\beta(s, b, z)] \right), \]

where

\[\chi^\alpha(s, b, z) = \frac{\sigma_{ab}^{\text{tot}} C}{4\pi \Lambda_P} \exp(-\frac{b^2}{2\Lambda_P}) \frac{1}{2\sqrt{2\Lambda_P \pi}} \int_{-\infty}^z \exp(-\frac{y^2}{2\Lambda_P}) dy, \]

and

\[\chi^\beta(s, b, z) = \frac{\sigma_{cd}^{\text{tot}} C}{4\pi \Lambda_P} \exp(-\frac{b^2}{2\Lambda_P}) \frac{1}{2\sqrt{2\Lambda_P \pi}} \int_{z}^{\infty} \exp(-\frac{y^2}{2\Lambda_P}) dy, \]

\[\mathcal{M}_R(s, b, z) = \frac{1}{(2\pi)^{3/2}} \int d^2 q_d dq_z \mathcal{M}_R(s, q_d, q_z) e^{i q_d b} e^{i q_z z}, \]

\[= \mathcal{M}_R(s, t = 0) \exp(\frac{q_0^2 \Lambda_R/2}{2}) \exp \left(-\frac{b^2 + z^2}{2\Lambda_R} \right), \]

where \(C \) is the so-called “enhancement factor” including possible inelastic diffractive rescattering (cf. Refs. [19, 20]), \(\sigma_{ab}^{\text{tot}} \) and \(\sigma_{cd}^{\text{tot}} \) are the total cross sections for \(\pi - J/\Psi \) and \(D^* - D^* \) interactions. Here (cf. Refs. [15, 16]),

\[\mathcal{M}_{\pi(p, p)}(s, t) = C_I \frac{g_1^2}{f(t)} (s/s_0)^{\alpha_{\pi}(t)} \exp(\frac{q_0^2 \Lambda_R/2}{2}), \]

where the isotopic factor \(C_I = \sqrt{2} \) for \(\pi^\pm(p)^\pm J/\Psi \) and \(C_I = 1 \) for \(\pi^0(\rho^0)J/\Psi \) reactions, respectively [18]. \(g_1^2 = (M_{\pi/\rho}^2) g_0^2 \) is the universal coupling constant and \(g_0^2/4\pi = 2.7 \) is determined from the width of the \(\rho \)-meson [15]. \(\alpha_{\pi}(t) = \alpha_{D^*} = \alpha_{D^*}(t) \) is the \(D^* \)-Regge trajectory, \(s = 1 \). \((GeV)^2 \) is a universal dimensional factor, \(s_0 = 4.9 \ (GeV)^2 \) is the flavor-dependent scale factor which is determined by the mean transverse mass and the average momentum fraction of quarks in colliding hadrons [15], while \(F(t) \) is a form factor describing the \(t \) dependence of the residue (cf. Refs. [15, 16]). We assume – as in Refs. [15, 16] – that the \(D^* \)-Regge trajectory is linear in \(t \) and therefore can be expanded in the transfer \(t \) as: \(\alpha_{D^*}(t) = \alpha_{D^*}(0) + \alpha'_{D^*}(0) t \). The intercept \(\alpha_{D^*}(0) = -0.86 \) and the slope \(\alpha'_{D^*}(0) = 0.5 \text{GeV}^{-2} \) are found from their relations to the same quantities for the \(J/\Psi \) and \(\rho \) trajectories which are known [15]. Finally the scattering amplitude is

\[\mathcal{M}(s, t) = \frac{1}{(2\pi)^{3/2}} \exp(\frac{q_0^2 \Lambda_R/2}{2}) \int d^2 b dz \mathcal{M}(s, b, z) e^{-i q_d b} e^{-i q_z z}, \]

where \(t = q_0^2 - q_x^2 - q_y^2 \) is the square of the four-momentum transferred having the components \(q_0, q_x, q_y \), \(\Lambda_R = 2\alpha_{D^*}(0)\ln(\frac{s_0}{s}) \) and \(\Lambda_P = 2\alpha_{D^*}(0)\ln(\frac{s_0}{s_0}) \), where \(\alpha_{D^*}(0) = 0.2 \text{GeV}^{-2} \) is the slope of the Pomeron trajectory [17]. One can see that for \(\sigma_{ab}^{\text{tot}} = \sigma_{cd}^{\text{tot}} \) the amplitude \(\chi(s, b, z) \) becomes the conventional phase function \(\chi(s, b) \) (cf. Ref. [19]). The cross section \(\sigma_{\pi J/\Psi}^{\text{tot}} \) is estimated assuming that \(\sigma_{\pi J/\Psi}^{\text{tot}} / \sigma_{\pi p}^{\text{tot}} = < r^2_{J/\Psi} > / < r^2_p > \), where \(\sigma_{\pi p}^{\text{tot}} \) and the square of the proton radius are well known experimentally, whereas the square of the \(J/\Psi \) radius \(< r^2_{J/\Psi} > \) has been taken from the calculation in Ref. [14]. The following \(D^* - D^* \) cross section has been calculated as in Ref. [23] in Breit-Wigner resonance form
and is presented in Fig.1. Furthermore, the dissociation rate of the charmonium \((c \bar{c}) \) in a medium depends on the temperature \(T \). Such thermal effects can be incorporated in an increasing \((c \bar{c}) \) width which broadens the shape of the cross section \(\sigma_{D^*D^*} \) slightly as seen from the lhs of Fig.1.

The cross section of \(J/\Psi \) dissociation to \(\bar{D}^0D^{++} \) by \(\pi^+ \) as a function of \(\sqrt{s} \) is presented in the rhs of Fig.1 which shows that the inclusion of the ISI, FSI and the thermal effects for the charmonium in a medium (solid line) lead to an increase of the cross section by a factor of \(4 - 5 \). Note that the calculated cross section neglecting all these effects (dotted curve in the rhs of Fig.1) is similar to the results presented in Ref.[22]. The inclusion of all isotopic channels for the reaction \(\pi + J/\Psi \rightarrow \bar{D}^*D^* \) will increase the cross section in Fig.1 (rhs) at least by another factor of \(4 - 5 \). Therefore the discussed type of the \(J/\Psi \) dissociation by pions can be comparable to the conventional channel \(\pi + J/\Psi \rightarrow \bar{D} + D^* \). The same conclusion applies to the \(J/\Psi \) dissociation to \(\bar{D}^*D^* \) by \(\rho \)- and \(\omega \)-mesons. Therefore the inclusion of the discussed effects is very important for the analysis of hidden and open charm production in heavy-ion collisions.

REFERENCES

1. Quark Matter '02 Nucl.Phys. A715(C)(2003) CO2.
2. U. W. Heinz, Nucl. Phys., A661(1999) 140.
3. T. Matsui and H. Satz, Phys. Lett.(1986) B178.
4. H. Satz, Rept. Prg. Phys. 63 (2000) 1511.
5. M. C. Abreu et al. (NA50 Collab.), Phys. Lett. B477 (2000) 28.
6. M. C. Abreu et al. (NA50 Collab.), Phys. Lett. B450 (1999) 456.
7. W. Cassing, E. L. Bratkovskaya, and S. Juchem, Nucl. Phys. A674 (2000) 249.
8. A. Capella, E. G. Ferreiro and A. B. Kaidalov, Phys. Rev. Lett. 85 (2000) 2080.
9. K. L. Haglin, Phys. Rev.C61 (2000) 031902.
10. K. L. Haglin and C. Gale, Phys. Rev. C63 (2001) 065201.
11. B. Müller, Nucl. Phys. A661, (1999) 272.
12. Z.-W. Lin and C. M. Ko, J. Phys. G27 (2001) 617.
13. A.Bourque, C.Gale, K.L.Haglin, Phys.Rev. C70 (2004)055203.
14. B. Povh and J. H{"u}fner,Phys. Rev. Lett.58 (1987) 1612.
15. K. G. Boreskov and A. B. Kaidalov, Sov. J. Nucl. Phys. 37 (1983) 100 , [Yad. Fiz. 37 (1983) 174].
16. W.Cassing, L.A. Kondratyuk, G.I. Lykasov, M.V. Rzhanin, Phys. Lett. B513 (2001) 1.
17. A. B. Kaidalov, Z. Phys.C12 (1982) 63.
18. A. B. Kaidalov, Surveys High Energ. Phys.13 (1999) 265.
19. A. B. Kaidalov and P. E. Volkovitsky, Z. Phys.C63 (1994) 517.
20. A.Yu.Illarionov and G.I.Lykasov, Phys.Part.Nucl.Lett. 2 (2005) 327.
21. M.A.Ivanov, J.G.Korner and P.Santorelli, Phys.Rev. D70, (2004)014005.
22. C.Y.Wong, Phys.Rev.C68 (2003) 014903.
23. Ye.S.Golubeva, W.Cassing, L.A.Kondratyuk, Eur.Phys.J. A14 (2002) 255.