اثاث کوانزمی \(Q_{10} \) بر میزان لیپیدهای سرم در موش‌های صحرایی نر دیابتی

حسن احمدنژاد*، مجید طوافی، علی خسروپور، فواد عبدالله پور، شاهرخ بابی‌زاده، لیلادیمتی

1. مرکز تحقیقات دارویی گیاهی رازی دانشگاه علوم پزشکی لرستان
2. استادیار بیوشیمی، گروه بیوشیمی، دانشگاه علوم پزشکی لرستان
3. استادیار واکسیناسی، گروه علوم تربیتی، دانشگاه علوم پزشکی لرستان
4. کارشناس ارشد بیوشیمی، گروه بیوشیمی، دانشگاه علوم پزشکی لرستان

چکیده

دریافت مقاله: ۱۳۹۳/۸/۱۵ ، پذیرش مقاله: ۱۳۹۳/۸/۱۸

مقدمه: شیوع دیابت در جهان در حال افزایش است. در حال حاضر بیش از ۸۰۰ میلیون نفر مبتلا به دیابت در جهان وجود دارد و تا سال ۲۰۳۰ این تعداد دو برابر خواهد شد. در دیابت مازکره‌ای اسکسیداتوژنژیک مایفایوکدومنیک خفیف‌وزنی که افزایش Q۱۰ به عنوان یک آنتی‌اکسیدان قوی بین مدار پراکسیداز‌ها و هیدروکربن‌ها و حفظ رادیکال‌های آزاد می‌شود. در این مطالعه اثرات کوانزمی \(Q_{10} \) بر میزان لیپیدهای سرم در موش‌های صحرایی نر دیابتی بررسی شده است.

مواد و روش‌ها: بسته و یک عدد موش صحرایی نر (وزن ویژه ۲۰۰-۲۵۰ گرم) حضور تصادفی به سه گروه تقسیم شدند. گروه هفت عدد، گروه کنترل و گروه سوم دیابتی درمان شده با کوانزمی \(Q_{10} \) با دوز ۱۵ mg/kg روی آوردند.

SPSS مان و آزمون Mann Whitney بسته بودن بسته آمده با ترم افزار SPSS و آزمون Mann Whitney ساده میزان لیپیدهای سرم اندامان بهتر شد. داده‌ها بدست آمده با ترم افزار SPSS و آزمون Mann Whitney ساده با دو گروه VLDL، LDL، HDL و کلسترول، کلسترول، کلسترول و LDL بسته بودند.

بحث و نتیجه‌گیری: باتوجه به اینکه کوانزمی \(Q_{10} \) باعث کاهش فاکتورهای لیپیدی سرم می‌شود می‌تواند با بررسی بیشتر از آن به عنوان مکمل درمانی دیابت استفاده گردد.

واژه‌های کلیدی: دیابت، کوانزمی \(Q_{10} \) و لیپید سرم

آدرس مکاتبه: خرم آباد کیلومتر ۵ جاده خرمآباد-پرورود. پردیس دانشگاهی دانشگاه علوم پزشکی لرستان

پست الکترونیک: hassan_a46@yahoo.com

پایه ۵ / یافته، روزه سیزدهم، بیمار ۹۰
مقدمه
دیابت، مهم‌ترین بیماری منشاً تولیدی انسان است که فقط در امروز ۲۰۰ میلیون نفر (معادل ۷ هرسد جمعیت این کشور) به آن مبتلا است. بیماری دیابت با مشکلات عضلانی به‌سیاسی آنها تهدیدگذاری زنده‌بستر، همزمان است. (۱) هیپرکولسترول‌زده بیماران، سرطان‌های ایمنی آنریزیمی نیز رونمایی و پروتوئن‌های آنریزیمی که در حذف رادیکال‌های آزاد نقش دارد، می‌شود. در تحقیقاتی سیده، رادیکال‌های آزاد افزایش می‌یابند. افزایش رادیکال‌های آزاد باعث افزایش و تشدید علائم بالینی دیابت مانند فنزتوکسیسیمی و غیر می‌شود (۲).

تحقیقات اخیر نشان داده است که در دیابت مارکرهای استرس اسیدیتیوی آنزیم‌های می‌باشد. از طرفین از برآورد آثار اولین مطالعات بررسی که استرس اسیدیتیوی و رادیکال‌های آزاد گونه‌های اکسیژن افزایش بلافاصله در دیابت رل‌محور در ایجاد نفلوپاتی دیابتی و مقاومت به انسلون دارند. به‌طور که رادیکال‌های آزاد می‌توانند تا حد زیادی سایر مکانیسم‌های آسیب‌زایی فوق‌القداری و تخریب نشانه و از طرفی عامل فوق خود در مسیری با تحریک و افزایش رادیکال‌های آزاد نفلوپاتی و مقاومت به انسلون را تسریع نمایند (۳). افزایش مقاومت به انسلون با اختلال متابولیک قندی و پلی‌پلاستی می‌شود. همچنین با افزایش فعالیت به انسلون در دیابت نتوان آنزیم‌های آنتی‌کسیدان‌های نیز کاهش می‌یابد. با توجه به افزایش مارکرهای استرس اسیدیتیوی در دیابت استفاده از آنتی‌کسیدان‌های در دیابت

وکاهش علائم بالینی و کنترل دیابت می‌باشد (۴).

کوآنژیم Q۱۰ از نظر ساختاری یک بنتوزایون مخلوط در کربنی است که قدرت زیادی از غشاگر بیولوژی و نقش فنی‌زای در تولید انرژی (ATP) از طریق نجیب‌های انحلال الکترون در میکرو‌ودارنده (۵). کوآنژیم Q۱۰ به عنوان یک آنتی‌کسیدان قوی باعث مهاجر پروکسیداسیون لپیدها و حذف رادیکال‌های آزاد

مواد و روش‌ها
پیست و یک عدد منش تحریکی ناز وینتر از داشته‌گاه علوم پزشکی اوهاری خریداری شده. بطور صندوقی به سه گروه هفت رپتی تتای قسمی شده، گروه اول کنترول، گروه دوم دیابتی و گروه سوم دیابتی درمان شده با کوآنژیم Q۱۰ (۵۰ میلی‌گرم/کیلوگرم حاصله دوم و سوم از طریق تزریق داخل صافی پروتوپلاست‌های آلوکسان (۱۰۰ میلی‌گرم/کیلوگرام (۱۷۲۴ دیابتی شده). بعد از شش هفته درمان موشها به‌طور مکرر و از آنها خون تهیه شد. کشت رئی‌گلیسرید و HDL سرم با کیش‌های خریداری شده از شرکت قطعی شد. همچنین با استفاده از فرمول‌های زیر بدست آمد (۱۸).

VLDL = \frac{\text{plasmatrig lycercids}}{5}

LDL = (\text{total cholesterol}) - (\text{HDL cholesterol}) - (\text{TG})

بیان شده است. معنی دار بودن نتایج از نظر آماری و اختلاف بین Mann Whitney و آزمون و آزمون SPSS را ارزیابی‌شده.
یافته‌ها
نتایج بستد آمده نشان داد که کوانثیم Q10 باعث کاهش کلسترول، تری‌گلیسرید، LDL و VLDL در سرم در گروه‌های درمان شده نسبت به گروه دیابتی درمان نشده می‌شود که از نظر آماری معنی‌دار است (p<0.05).

نمودار شماره 1-اثر کوانثیم Q10 بر پارامتر LDL در سرم در گروه دیابتی درمان شده با کوانثیم Q10 نسبت به گروه دیابتی درمان نشده. * معنی‌دار نسبت به دیابتی درمان نشده (p<0.05).

نمودار شماره 2-اثر کوانثیم Q10 بر پارامتر HDL در سرم در گروه دیابتی درمان شده با کوانثیم Q10 نسبت به گروه دیابتی درمان نشده. * معنی‌دار نسبت به دیابتی درمان نشده (p<0.05).

نمودار شماره 3-اثر کوانثیم Q10 بر پارامتر VLDL در سرم در گروه دیابتی درمان شده با کوانثیم Q10 نسبت به گروه دیابتی درمان نشده. * معنی‌دار نسبت به دیابتی درمان نشده (p<0.05).

اختلاف بین گروه‌ها معنی‌دار نیست.
بحث و نتایج گیری
نتایج شناسی داده کوانتیم Q10 باعث کاهش تری‌گلیسرید، کلسترول، LDL و VLDL نسبت به گروه دیابتی درمان نشد.

شده (0.05) و افزایش HDL سرم ممکن بود. در حال حاضر تا حدود نسبی زایده مکانیسم‌های آسیب‌پزایی هبئیرگلیسریدی در دیابتی مشخص شده است. در نهایت شروع هم آن‌ها هبئیرگلیسریدی باعث کاهش مکانیسم‌های آسیب‌پزایی شده یا به مجموعه دارویی به نام Super pills(3) اثر مهار عوارض دیابتی هم به‌صورت فوریتی دیابتی بیماری می‌گیرد.

شاید با ترکیب بعدی آنتی‌ایکسیدان بر روی لبه‌های مهار کننده AG2 بتوان اثر بهتر و حیاتی در داروهای مهار کننده را AG2 در این افراد کاهش داد. با اطلاعات کنونی مکانیسم‌های آسیب‌پزایی از دیابتی مکانیسم‌ها هر چند به ظاهر مجزا به نظر می‌رسد ولی یک شبکه مولکولی به‌چنیه و بازسازی یا یکدیگر را به آسیب‌پزایی می‌کند، البته که در اکثریت مکانیسم‌ها به‌ایستایی آسیب‌پزایی دیده می‌شود(6).

هم یا کاهش مراکز تحقیقات زیادی در حال تولید ، جداسازی و کاربرد انواع آنتی‌ایکسیدان‌ها در مهار عوارض عروقی سرمی و بافتی دیابتی نیشان دهنده توجه عجیبی به این‌گونه تحقیقات بوده و آنتی‌اسیدان‌ها با استحکام سطحی داشته است. این، بخش که به‌راهه معجزه بین میزان کوانتیم Q10 پاسخ‌ده و میزان الیپروپرسیس، کسید شده انتهاش شده در پلاک‌های جدار عروق و سطح(30) بر اساس نتایج بدبست آمده در این مطالعه کوانتیم Q10 کاهش معمولی دارد در سرم گلوه‌سوم درمان LDL و VLDL کوانتیم، کلسترول، HDL شده نسبت به گروه درمان نشان داده است.

با توجه به نتایج آنتی‌ایکسیدان کوانتیم Q10، با تأثیری که از این تحقیق بدست آمده است، می‌توان مطالعاتی را در جهت بررسی اثر آن در انسان پردازی نمود. به‌نحوی که به‌طوری که با اختلاف در فهرست و به‌راهه منجر به‌چنین‌که با دیابتیستی پس از ۹۰

پایه‌گذاری، نورد سیلور هم، بخار
References

1. Hideaki K, Taka M and Yoshihisa N. Oxidative stress and JNK pathway in diabetes. Current Diabetes Review. 2005; 1: 65-72.

2. Chun Y, Min C and Csaba S. Polypolymerase contribute to the development of diabetic nephropathy. Journal of Pharmacology and Experimental Therapeutics. 2004; 310: 498-504.

3. Levente K and Csaba S. The pathogenesis of diabetic complications: role of DNA injury and PARP activation in peroxynitrite-mediated cytotoxicity. Mem?rias do Instituto Oswaldo Cruz 2005; 100(s1): 29-37.

4. Pal P and Csaba S. Role of PARO-1 activation in the pathogenesis of diabetic complications. Antioxidant & Redox signaling. 2005; 7(11): 1568-80.

5. Alexander G, Minchenko M and Martin J. Diabetes induced overexpression of endothelin-1 and endothelin receptor in the rat renal cortex is mediated via PARP activation. Federation of American Societies for Experimental Biology Journal. 2003; 17: 1514-1521.

6. Leszek T, Boleslaw R and Walter H. Antioxidant: A possible role in kidney protection. Kidney &Blood Pressure Research. 2003; 26(5-6): 12.

7. Brian S, Jhama S, William E and Kelli A. Reduction in podocyte density as a pathologic feature in early diabetic nephropathy in rodents: prevention by lipoic acid treatment. BioMed Central Nephrology. 2006; 7: 6-9.

8. Nige E. Cellular oxidative process in relation to renal disease. Nephrology. 2005; 25: 13-22.

9. Enyjoma O and Abdu A. Update in diabetic nephropathy. International Journal of Diabetes and Metabolism 2005; 13: 1-9.

10. Msheilla D. Role of free radicals in pathogenesis of diabetes nephropathy. Annals of African Medicine. 2004; 3(2): 55-62.

11. Jeanette S, Alex K and Adviye E. Oxidative stress and the use of antioxidants in diabetes. Cardiovascular Diabetology. 2005; 4: 5-8.

12. Petra N, Thomas M, Werner A and Jurgen GO. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clinica Chimica Acta. 2004; 342(1-2): 219-226.

13. Abd El-Gawad HM and Khalifa AE. Quercetin, coenzyme Q10, and l- canavanine as protective against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacological Research. 2001; 43(3): 257-263.

14. Thomas M, Petra N, Stefan A, Michael W, Bernhard S and Werner A. Simultaneous detection of ubiquinol-10, ubiquinone-10, and tocopherols in human plasma microsamples and macrosamples as a marker of oxidative damage in neonates.

15. Pawan KS, Neelam K, Vince P and Dinender K. The role of oxidative stress in the genesis...
of heart disease. Cardiovascular Research. 1998; 40: 426-432.

16. Pawan KS, Neelam K, Vince P and Dinender K. On the role of coenzyme Q in cardiovascular diseases. Cardiovascular Research. 1999; 43: 250-251.

17. Modi K, Santani DD, Goyal RK and Bhatt PA. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biological Trace Element Research. 2006; 109(1): 25-33.

18. Friedewald WT, Levy RI and Fredrickson DS. Estimation of the concentration of LDL-C in plasma without use of the preparative ultracentrifuge. Clinical Chemistry. 1972; 18: 499-502.

19. Beyer RE, Segura-Aguilar J, Bernardo SD, Cavazzoni M, Fato R, Fiorentini D, et al. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane system. Proceedings of the National Academy of Sciences. 1996; 93: 2528-2532.

20. Gustav D and Pavel JS. Regulation of ubiquinone metabolism. Free radical Biology & Medicine. 2000; 29(3-4): 285-294.

21. Choy KJ, Deng YIM, Hou JIU, Wu B, Lau A, Wiltting PK, et al. Coenzyme Q10 supplementation inhibits aortic lipid oxidation but fails to attenuate intimal thickening in ballooninjured new Zealand white rabbits. Free Radical Biology & Medicine. 2003; 35(3): 300-309.

22. Pacanowski MA, Frye RF, Enogieru O, Schofield RS, Zineh I. Plasma Coenzyme Q10 predicts lipid-lowering response to high-dose Atorvastatin. J Clin Lipidol. 2008; 2(4): 289-297.

23. Shojaei M, Djalali M, Khatami M, Siassi F, Eshraghian M. Effects of carnitine and coenzyme Q10 on Lipid Profile and Serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapy. Iran J Kidney Dis. 2011; 5(2): 114-8.

24. Shiomi M, Yamada S, Amano Y T, Nishimoto T, Ito T. Lapaquistat acetate, a squalene synthase inhibitor, changes macrophage/lipid-rich coronary plaques of hypercholesterolaemic rabbits into fibrous lesions. Br J Pharmacol. 2008; 154, 949-957.
