Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids

Xinqian He 1, Fan Yang 1 and Xin’an Huang 1,2,*

1 Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; charilce@foxmail.com (X.H.); 18810950658@163.com (F.Y.)
2 The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
* Correspondence: xinanhuang@gzucm.edu.cn; Tel.: +86-020-36585450

Abstract: Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer’s disease and Parkinson’s disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.

Keywords: biflavonoids; chemistry; pharmacology; pharmacokinetics; synthesis

1. Introduction

Flavonoids, one of the main classes of secondary metabolites in plants, and have representative scaffolds as flavones, chalcones, isoflavones, aurones, and xanthenes. Biflavonoids, as members of the flavonoid family, are comprised of two monoflavonoids by a direct connection, or a linear linker. In 2017, Gontijo et al., summarized 139 biflavonoids and their medical applications [1]. In the same year, Sheng Yu et al. [2] also reviewed the phytochemistry, pharmacology, and pharmaceutics of amentoflavone in biflavonoids, including a comprehensive description and summary of the source and current situation of amentoflavone derivatives. It is known that amentoflavone can be obtained from different parts of 127 plants, 45 kinds of derivatives that belong to the same type of connection with amentoflavone. The pharmacological effects of amentoflavone are summarized, including its anti-inflammatory, antioxidant, antitumor, antiaging, antidiabetes, antiviral, central nervous, cardiovascular system, antifungal, and other pharmacological effects. The amentoflavone family is recorded in detail.

In this report, 592 biflavonoids, as well as their distribution, structural scaffolds, and chemical subtype are reviewed. In addition, the pharmacology and synthesis of biflavonoids are summarized.

2. Distribution of Biflavonoids

A total of 592 biflavonoids are widely distributed in angiosperms, ferns, gymnosperms, and bryophytes, but most of them are found in angiosperms, including: Anacardiaceae, Apiaceae, Aristolochiaceae, Asteraceae, Balsaminaceae, Berberidaceae, Caprifoliaceae, Chloranthaceae, Clusiaceae (especially Garcinia), Daphniphyllaceae, Ephedraceae, Ericaceae, Euphorbiaceae, Gentianaceae, Juglandaceae, Lanariaceae, Leguminosae, Liliaceae, Lythraceae, Menispermaceae, Moraceae, Myrtaceae, Ochnaceae, Polygonaceae, Rosaceae,
Rubiaceae, Theaceae, Thymelaeaceae, Velloziaceae, and Vitaceae. The vast majority of biflavonoids are come from Clusiaceae, Thymelaeaceae, Ochnaceae, and Selaginellaceae, which account for approximately 50% of the biflavonoids in all families. The standard names of the plant families are from The Plant List (2013), which was published in http://www.theplantlist.org/ (accessed on 21 October 2020).

3. The Scaffold of Biflavonoids

In these 592 biflavonoids, according to the C6-C3-C6 combination pattern, flavan (A), flavone (B), anthocyanidin (C), isoflavon (D), isoflavone (E), neoflavan (F), chalcone (G), aurone (H), and xanthone (I) were the main monoflavonoid scaffolds. According to the different monomer combination types, 592 biflavonoids were divided into 17 kinds, including: AA (flavan-flavan), AB (flavan-flavone), AC (flavan-anthocyanidin), AD (flavan-isoflavan), AE (flavan-isoflavone), AG (flavan-chalcone), AH (flavan-aurone), BB (flavone-flavone), BD (flavone-isoflavan), BE (flavone-isoflavone), BG (flavone-chalcone), CC (anthocyanidin-anthocyanidin), EE (isoflavone-isoflavone), EG (isoflavone-chalcone), FF (neoflavan-neoflavan), GG (chalcone-chalcone), HH (aurone-aurone), and II (xanthone-xanthone) (Figure 1). Among them, AA type biflavonoids are abundant in natural plants, and have good development prospects.

![The scaffold of biflavonoids.](image)

Figure 1. The scaffold of biflavonoids.

4. Subtypes of Biflavonoids

4.1. C-C Type

According to the connection mode of biflavonoids, they are divided into three major groups.

Group A is about C-C linkages (Tables 1–8); C-C type biflavonoids have a large number, so they can according the positions of their combinations, divide into: 2-3′, 2′-2″, 2′-6″, 2′-8″, 3-3″, 3′-3″, 3′-4″, 3′-5″, 3-6″, 3′-6″, 3′-7″, 3″-7″, 3-8″, 3′-8″, 4-6″, 4-8″, 4′-8″, 5-5″, 6-6″, 6-γ, 6-8″, 7-7″, and 8-8″.

The detailed data about subtypes, No., monomer types, origin families and references of 2-3″, 2′-2″, 2′-6″, 2′-8″, 3-3″ type biflavonoids were showed in Table 1, the structure of them were drew in Figure 2.
Table 1. The 2-3′′, 2′-2″′, 2′-6″, 2′-8″, and 3-3″ subtypes of biflavonoids.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
2-3′′	1	Linobiflavonoid	AH	Thym	[1]
2′-2″	2	1,3,II-3,5,II-5,1,7,II-7,1-4′′,II-4-octahydroxy[1-2′,II-2′]biflavone	BB	Clus	[3]
	3	1,3,II-3,5,II-5,1,7,II-7,1-4′′,II-4-octamethoxy[1-2′,II-2′]biflavone	BB	Clus	[3]
	4	3,3′- di-O-α-L-rhamnopyranoside,2′,2″′-bimyricetin	BB	Myrt	[4]
	5	Acuminatanol	AA	Anac	[5]
	6	Theasinensin A	AA	Thea	[6]
	7	Theasinensin B	AA	Thea	[6]
2′-6″	8	2′,6″-Biapignin	BB	Sela	[7]
2′-8″	9	2′,8″-Biapignin	BB	Sela	[7]
3-3″	10	Chamaejasmine	AA	Thym, Legu	[8]
	11	7-methoxychamaejasmin	AA	Thym	[8]
	12	Ruxianglangdu B	AA	Thym	[8]
	13	Isosikokianin	AA	Thym	[8]
	14	7,4′,7″,4″′-tetramethylisochamaejasmin	AA	Ochn	[9]
	15	7,7″- di-O-methylchamaejasmin	AA	Ochn	[10]
	16	Campylospermeone A	AA	Ochn	[10,11]
	17	Campylospermeone B	AA	Ochn	[11]
	18	Isochamaejasmine	AA	Thym	[12]
	19	7,7″- di-O-glucosylisochamaejasmin	AA	Thym	[13]
	20	Neochamaejasmin A	AA	Thym	[8]
	21	Chamaejasmenin B	AA	Thym	[8]
	22	Chamaejasmenin C	AA	Thym	[8]
	23	Sikokianin A	AA	Thym	[8]
	24	7-methoxyneocheamaejasmin A	AA	Thym	[8]
	25	Chamaejasmenin D	AA	Thym	[8]
	26	Isoneochamaejasmin A	AA	Thym	[8]
	27	Isochamaejasmine B	AA	Thym	[8]
	28	Neochamaejasmin B	AA	Thym	[8]
	29	Sikokianin B	AA	Thym	[8]
	30	Chamaejasmenin A	AA	Thym	[12]
	31	Sikokianin C	AA	Thym	[8,12]
	32	Ruxianglangdu A	AA	Thym	[8]
	33	Isosikokianin A	AA	Thym	[8]
	34	Asteromenin	AA	Aste	[14]
	35	Wikstaivanone C	AA	Thym	[12]
	36	Sikokianin D	AA	Thym	[15]
	37	2″′-dehydroxy-2,2″′-bisteppogenin	AA	Thym	[1]
	38	2,2″-bisteppogenin	AA	Thym	[1]
	39	2,2″′-bisteppogenin	AA	Thym	[1]
	40	Apigenil-(I-3,II-3)-naringenin	AA	Legu	[1]
	41	6-aminoacryloylchamaejasmin	AA	Legu, Thym	[1,16]
	42	Ormocarpin	AA	Legu	[1,13,17]
	43	(−)-7,7″′-di-O-glucosylchamaejasmin	AA	Legu	[1,13]
	44	(−)-(2S, 3S, 2″′S, 3″′R)-7-O-glucosylchamaejasmin	AA	Legu	[1]
	45	(2S, 3R, 2″′S, 3″′R)-7-O-glucosylchamaejasmin	AA	Legu	[1,17]
	46	Campylospermeone B	AA	Ochn	[1]
	47	Neochamaejasmin C	AA	Thym	[1]
	48	7-methoxyneocheamaejasmin B	AA	Thym	[1]
	49	2″′-dehydroxy-2,2″′-bisteppogenin	AA	Thym	[1]
	50	3″′-epidiphysin	FF	Legu	[1]
	51	5,5″′- di-O-methylidiphysin	FF	Legu	[1,17]
	52	Diphysin	FF	Legu	[1]
	53	2,3-didehydro-(+)-chamaejasmin	AA	Thym	[16]
	54	3,3″′-biliquiritigenin	AA	Ochn, Legu	[17]
	55	Euchamaejasmin A	AA	Thym	[18]
Table 1. Cont.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
56	7-O-β-D-glucopyranoside-diphysin	FF	Legu	[17]	
57	3-Epimer, 5,5′-dideoxy-diphysin	FF	Anac	[19]	
58	3,3′-diepimer, 5,5′-dideoxy-diphysin	FF	Anac	[19]	
59	6′′-hydroxylophirone	AG	Ochn	[20]	

* Anac: Anacardiaceae; Aste: Asteraceae; Clus: Clusiaceae; Legu: Leguminosae; Myrt: Myrtaceae; Ochn: Ochnaceae; Sela: Selaginellaceae; Thea: Theaceae; and Thym: Thymelaeaceae.

Figure 2. The structure of 2-3′, 2′-2″, 2′-6″, 2′-8″, and 3-3″ type.

The detailed data of 3-3″, 3′-3″, 3′-4″, 3′-5″, 3-6″, 3′-6″, 3-7″, 3′-7″ type biflavonoids were showed in Table 2, the structure of them were drew in Figure 3.
Table 2. The 3-3‴, 3′-3‴, 3′-4‴, 3′-5‴, 3-6‴, 3-6‴, 3-7‴, and 3′-7‴ subtypes of biflavonoids.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
3-3‴	60	Taiwaniaflavone	BB	Cupr, Sela, Taxo	[21–23]
61	7-O-methyltaiwaniaflavone	BB	Taxo	[23]	
62	4‴-di-O-methyltaiwaniaflavone	BB	Taxo	[23]	
63	Lupinabione A	BB	Legu	[24]	
3′-3‴	64	2,3-dihydro-3‴-biapigenin	BB	Sela	[7]
65	3‴-3‴-binaringenin	BB	Sela	[7,25]	
66	Thuidinin	BB	Thui	[25]	
67	Kudzuisoflavone A	EE	Faba	[26]	
3′-4‴	68	Lupinabisone A	AB	Legu	[24]
69	4‴-7-di-O-methyltaiwaniaflavone	BB	Taxo	[23]	
70	Aulacomniumbiaureusidin	HH	Aula	[28]	
3-5‴	71	Chrysocauloflavone III	AB	Sela	[7]
72	Japoflavone D	BB	Capr	[27]	
3-6‴	73	2,3-dihydro-3‴,3‴-biapigenin	BB	Sela	[7]
74	3‴-3‴-binaringenin	BB	Sela	[7,25]	
75	Thuidinin	BB	Thui	[25]	
76	Kudzuisoflavone A	EE	Faba	[26]	
77	4‴-5‴,5‴,7‴-tetrahydroxy-3‴,4‴-trimethoxy-3,6‴-biflavone	BB	Aris	[32,34]	
78	Robustaflavone	BB	Anac, Arau, Clus, Sela	[35,36]	
79	7‴-O-methylrobustaflavone	BB	Sela	[7]	
80	4‴-O-methydrobustaflavone	BB	Sela	[7,35,37]	
81	7‴,4‴-di-O-methydrorobustaflavone	BB	Sela	[7,38]	
82	4‴,4‴-di-O-methydrorobustaflavone	BB	Sela	[7,39]	
83	7‴,4‴-di-O-methydrorobustaflavone	BB	Sela	[7,37]	
84	7‴,4‴-tri-O-methydrorobustaflavone	BB	Sela	[7,39]	
85	4‴,5‴,7‴-tetrahydroxy-3‴,4‴,7‴-trimethoxy-3,6‴-biflavone	BB	Aris	[32,34]	
3′-6‴	86	Robustaflavone	BB	Anac, Arau, Clus, Sela	[35,36]
87	7‴-O-methydrorobustaflavone	BB	Sela	[7]	
88	4‴-O-methydrorobustaflavone	BB	Sela	[7,35,37]	
89	7‴,4‴-di-O-methydrorobustaflavone	BB	Sela	[7,38]	
90	4‴,4‴-di-O-methydrorobustaflavone	BB	Sela	[7,39]	
91	7‴,4‴-tri-O-methydrorobustaflavone	BB	Sela	[7,37]	
92	Imbricataflavone A	AB	Podo, Sela	[7,35,40]	
93	Caesalflavone	AB	Legu, Sela	[7,41,42]	
94	Uncinatabiflavone D	AB	Sela	[7,43,44]	
95	7‴,4‴,7‴-tri-O-methyl-2,3,3‴-dihydrorobustaflavone	AB	Sela	[7,39]	
96	5-O-methyl-2,3-dihydrorobustaflavone	AB	Sela	[7,42]	
97	Macrophyloflavone	AB	Sela	[45]	
98	2,3-dihydrorobustaflavone	AB	Sela, Thym	[1]	
99	Imbricataflavone B	AB	Podo	[40]	
100	4‴-O-methyl-2‴,3‴-dihydrorobustaflavone	AB	Sela, Thym	[7,43]	
101	7‴,4‴-di-O-methyl-2‴,3‴-dihydrorobustaflavone	AB	Sela, Thym	[7,37]	
102	4‴,7‴-di-O-methyl-2‴,3‴-dihydrorobustaflavone	AB	Sela, Thym	[7,37]	
103	7‴,4‴,7‴-tri-O-methyl-2‴,3‴,3‴-dihydrorobustaflavone	AB	Sela, Thym	[7,37]	
104	Robustaflavanone	AA	Sela, Thym	[7,38]	
105	Uncinatabiflavone A	AA	Sela	[7,43,44]	
106	Uncinatabiflavone B	AA	Sela	[7,43,44]	
107	Uncinatabiflavone C	AA	Sela	[7,43,44]	
108	7‴,4‴,7‴-tri-O-methyl-2,3,2‴,3‴-tetrahydrorobustaflavone	AA	Sela	[7,35]	
109	Abiesin	BB	Pina	[46]	
110	5‴-hydroxyrobustaflavone	BB	Hylo	[47]	
111	2‴,3‴-dihydro-5‴-hydroxyrobustaflavone	AB	Mnia	[48]	
112	5‴,6‴-biluteolin	BB	Hylo, Dicr	[49]	
Table 2. Cont.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
	113	2,3-dihydro-5′,6′-biluteolin	AB	Dicr	[49]
	114	2″,3″-dihydro-5′,6′-biluteolin	AB	Mnia	[50]
3-7‴	115	5,5‴,6‴,7,8-pentahydroxy-2,2‴-bis(p-hydroxyphenyl)-4H,4‴H(3,7‴-bichromene)-4,4‴-dione	BB	Anac	[51]
3‴.7‴	116	Lophirone M	AB	Ochn	[52]
	117	Lophirone M hexa-acetate	AB	Ochn	[52]

* Aula: Aulacomniaceae; Arau: Araucariaceae; Aris: Aristolochiaceae; Capr: Caprifoliaceae; Cupr: Cupressaceae; Faba: Fabaceae; Meni: Menispermaceae; Podo: Podocarpaceae; Taxa: Taxaceae; Taxo: Taxodiaceae; and Thui: Thuidiaceae.

Figure 3. The structure of 3-3‴, 3‴-3‴, 3‴-4‴, 3‴-5‴, 3-6‴, 3‴-6‴, 3-7‴, and 3‴-7‴ type.

The data of 3-8‴ type biflavonoids were showed in Table 3, the structure of them were drew in Figure 4.
Table 3. The 3-8′′ subtype of biflavonoids.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
118	Garciniaflavone E	AB	Clus	[1]
119	Garciniaflavone F	AB	Clus	[1]
120	Morelloflavone-7″′-O-β-D-glucoside	BB	Clus	[1]
121	(+)-4″′-O-methylmorelloflavone	AB	Clus	[1]
122	Biapigenin	BB	Clus	[1]
123	4″′-O-methyl-1,3,118-binaringenin	AA	Clus	[1,53]
124	Volensiflavone	AB	Clus	[54]
125	Morelloflavone	AB	Clus	[55]
126	Spicataside	AB	Clus	[55]
127	Fukugiside	AB	Clus	[55]
128	3″′-O-methylfukugetin	AB	Clus	[1]
129	Garcinianin	AB	Clus	[55–57]
130	Madrunoudeaside	AB	Clus	[58]
131	Morelloflavone-7″-sulfate	AB	Clus	[59]
132	(2R,3S)-morelloflavone	AB	Mora	[60]
133	7,4″′,7″′,3″′,4″′″-penta-O-acetylmorelloflavone	BB	Mora	[60]
134	7,4″′,7″′,3″′,4″′″-penta-O-methylmorelloflavone	BB	Mora	[60]
135	7,4″′,7″′,3″′,4″′″-penta-O-butanoylmorelloflavone	BB	Mora	[60]
136	Talbotafavone	BB	Clus	[1,61]
137	Balsamiside A	AB	Bals	[62]
138	Balsamiside B	AB	Bals	[62]
139	Balsamiside C	AB	Bals	[62]
140	Balsamiside D	AB	Bals	[62]
141	Daphnodorin D1	AB	Thym	[29]
142	Daphnodorin D2	AB	Thym	[29]
143	Wikstrol A	AB	Thym	[63]
144	Wikstrol B	AB	Thym	[63]
145	II-3,1-5, II-5,II-7,II-7″,II-4″′,II-4″′-hexahydroxy-(I-3,II-8)-flavonoyflavanonol	BB	Clus	[1]
146	GB-1a	AA	Clus	[54,64]
147	GB-2a	AB	Clus	[65]
148	GB-1a-7″′-O-glycoside	AA	Clus	[55]
149	Xanthochymuside	AA	Clus	[55,66]
150	Kolaflavonan	AA	Clus	[55,64]
151	GB-1	AA	Clus	[55,64]
152	GB-2	AA	Clus	[55,64]
153	Manniflavonan	AA	Clus	[54,64]
154	GB-2a-II-4″′-OMe	BB	Clus	[65]
155	Buchanani flavonan	AA	Clus	[1,67]
156	Manniflavone-7″′-O-β-D-glucopyranoside	AB	Clus	[1]
157	(2R,3S,2″′R)3,8″′-binaringenin-7″′-O-β-glucoside	AA	Clus	[1,68]
158	(2R, 3S, 2″′R, 3″′R)GB1-7″′-O-β-glucoside	AA	Clus	[1,68]
159	Ent-naringenil-(I-3α,II-8)-4″′-O-metilnaringenin	BB	Clus	[1,53]
160	3,8″′-biapigenin	BB	Poly, Clus	[69,70]
161	Sumaflavone	BB	Anac	[7,71]
162	4″′-methoxydaphnodorin D1	AB	Thym	[72]
163	4″′-methoxydaphnodorin D2	AB	Thym	[72]
164	Pancibiflavonol	AB	Clus	[73]
165	Volensiflavone 7″-sulfate	AB	Clus	[74]
166	8-(3″′′,A′,5,7-tetrahydroxyflavanon-3-yl)-4″′,5,7-trihydroxyflavone	AB	Clus	[75]
167	GB-3	AA	Clus	[64]
168	GB-4	AA	Clus	[76]
169	GB-2b	AA	Clus	[64]
170	GB-4a	AA	Clus	[76]
171	4″′-O-methylfukugetin	AB	Clus	[77]
172	Lupinatalbinoside B	AB	Legu	[34]

*Bals: Balsaminaceae; Dicr: Dicranaceae; Hylo: Hylocomiaceae Mnia: Mniaceae; Mora: Moraceae; Poly: Polygonaceae; and Pina: Pinaceae.
The data of 3′-8′′ type biflavonoids were showed in Table 4, the structure of them were drew in Figure 5.

Table 4. The 3′-8′′ subtype of biflavonoids.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
173	Amentoflavone	BB	Anac, Capr, Clus, Cupr, Gink, Pina, Podo, Pter, Sela, Taxa, Taxo	[2]
174	Isoginkgetin	BB	Gink, Sela	[2,7]
175	3′,8′′-bisoskaempferide	BB	Pter, Vell	[1,2]
176	7,7′′-di-O-methylamentoflavone	BB	Arau, Cupr, Podo, Sela, Taxo	[2,7]
177	4′,7′′-di-O-methylamentoflavone	BB	Arau, Sela, Taxo	[2,7]
178	5′-methoxybilobetin	BB	Gink, Mnia	[2]
179	7,4,7′,4′′-tetra-O-methylamentoflavone	BB	Sela	[2,7]
180	Acetyl ginkgetin	BB	Gink	[78]
181	Acetyl isoginkgetin	BB	Gink	[78]
182	Acetyl sciadopitysin	BB	Gink	[78]
183	6-C-methyl-7-O-methylamentoflavone	BB	Ceph	[79]
184	3′′-hydroxy-4′′,7-dimethylamentoflavone	BB	Aris, Taxa	[80]
185	Anacarduflavone	BB	Anac	[81]
186	Bilcarobetin	BB	Gink, Sela	[2,7]
187	CGY-1	BB	Lili	[82]
188	Ginkgetin 7-O-D-glucopyranoside	BB	Gink	[83]
189	Heveaflavone	BB	Euph, Sela	[2,7]
190	7-O-gluamentoflavone	BB	Cupr, Gink	[84]
191	Isoginkgetin 7-O-D-glucopyranoside	BB	Gink	[83]
192	Amentoflavone 7′′-O-β-D-glucopyranoside	BB	Cupr, Gink	[84]
193	Kayaflavone	BB	Podo, Sela, Taxa, Taxo	[2,7]
194	Oliveriflavone	BB	Taxa	[79]
195	Oliveriflavone B	BB	Taxa	[85]
196	Oliveriflavone C	BB	Taxa	[85]
197	Podocarduflavone B	BB	Podo	[2]
198	Podocarpusflavone A	BB	Podo, Sela	[2,7]
199	Sciadopitysin	BB	Cupr, Gink, Podo, Taxa	[2]
200	Sequoiaflavone	BB	Sela, Taxo	[2,7]
201	Sotetsuflavone	BB	Cyca, Sela, Taxo	[2,7]
202	Taiwaniaflavone A	BB	Ceph	[2]
203	Dulcisbiflavonoid A	BB	Clus	[59]
204	Putraflavone	BB	Euph, Podo	[1]
205	(2S,2′′S)-2,3-di-hydroisoginkgetin	AB	Cyca	[86]
206	2,3-dihydro-6-methylginkgetin	AB	Ceph	[1]
207	2,3-dihydrosiadiopitysin	AB	Gink, Taxo	[83]
208	4′,7′′-di-O-methyl-2,3-dihydroamentoflavone	AB	Sela	[7]
209	7,4′-di-O-methyl-2,3-dihydroamentoflavone	AB	Sela	[7]
210	7,4′-tri-O-methyl-2,3-dihydroamentoflavone	AB	Arau, Sela, Taxa	[7]
211	2,3-dihydro-4-O-methylamentoflavone	AB	Cyca, Sela	[87]
212	(2S)-4′-O-methyl-2,3-tetrahydroamentoflavone	AB	Cyca, Sela	[7]
213	Garciniaflavone A	AB	Clus	[1,2]
214	Garciniaflavone B	AB	Clus	[1,2]
215	Garciniaflavone C	AB	Clus	[1,2]
216	Garciniaflavone D	AB	Clus	[1,2]
217	6′-hydroxy-2,3-dihydroamentoflavone	AB	Sela	[7]
218	Selamariscina A	AB	Sela	[36]
Table 4. Cont.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
222	2′′,3′′-dihydroamentoflavone	AB	Anac, Cyca, Sela, Taxo	[7]
223	4′-O-methyl-2′′,3′′-dihydroamentoflavone	AB	Cyca, Sela	[1,7]
224	(2S,2′′S)-2,3′′,4′′,5′′-tetrahydroisoginkgetin	AA	Arau, Cyca, Podo	[86]
225	(2S,2′′S)-4′-O-methyl-2,3′′,4′′,5′′-tetrahydroamentoflavone	AA	Anac, Cyca, Sela	[7,86]
226	(2S,2′′S)-2,3′′,4′′,5′′-tetrahydroamentoflavone	AA	Sela	[7]
227	Taxush biflavone A	BB	Capr	[88]
228	3′′-methoxyamentoflavone BB	BB	Anac	[89]
229	3′′,5′′-dihydroxy-4′,4′′,7′′-trihydroxy-8,3′′-biflavanone	AA	Anac	[90]

* Capr: Caprifoliaceae; Ceph: Cephalotaxaceae; Cyca: Cycadaceae; Euph: Euphorbiaceae; Gink: Ginkgoaceae; Lili: Liliaceae; Pter: Pteridiaceae; and Vell: Velloziaceae.

The data of 4-6′′ type biflavonoids were showed in Table 5, the structure of them were drew in Figure 6.

Table 5. The 4-6′′ subtype of biflavonoids.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
234	Sarcandrone D	AA	Chlo	[1]
235	Procyanidin B5	AA	Myro	[93,94]
236	Epicatechin 3-O-gallate-(4β→6)-epicatechin 3-O-(4-hydroxybenzoate)	AA	Myro	[95]
237	3′′-O-galloylprocyanidin B5	AA	Myro	[95,96]
238	3′′,3′′-di-O-galloyloxyprocyanidin B5	AA	Poly	[97]
239	Epigallocatechin 3-O-gallate-(4β→6)-epicatechin 3-O-gallate	AA	Thea	[98]
240	Epicatechin 3-O-gallate-(4β→6)-epigallocatechin 3-O-gallate	AA	Thea	[98]
241	Epigallocatechin-(4β→6)-epigallocatechin 3-O-gallate	AA	Cist	[99]
242	3′′,3′′-di-O-galloylprodelphinidin B5	AA	Myri	[100]
243	Epiafzelechin 3-O-gallate-(4β→6)-epigallocatechin 3-O-gallate	AA	Thea	[98]
244	Procyanidin B6	AA	Cupr, Eric	[93]
245	Procyanidin B7	AA	Cupr, Eric	[93]
246	Procyanidin B8	AA	Cupr, Eric, Sali	[93]
247	Ent-epicatechin-(4α→6)-ent-epicatechin	AA	Malp	[101]
248	Fisetinidol-(4β→6)-fisetinidol-4β-ol	AA	Legu	[102]
249	Fisetinidol-(4β→6)-fisetinidol	AA	Legu	[103]
250	Fisetinidol-(4β→6)-fisetinidol-4α-ol	AA	Legu	[102]
251	Fisetinidol-(4β→6)-ent-epifisetinidol	AA	Legu	[103]
252	Fisetinidol-(4α→6)-fisetinidol-4β-ol	AA	Legu	[102]
253	Fisetinidol-(4α→6)-fisetinidol-4α-ol	AA	Legu	[103]
254	Fisetinidol-(4α→6)-ent-epifisetinidol	AA	Legu	[103]
255	Globiflorin 3B1	AA	Legu	[104]
256	Globiflorin 3B2	AA	Legu	[104]
257	Guibourtinidol-(4α→6)-afzelechin	AA	Legu	[105]
258	ent-Guibourtinidol-(4β→6)-catechin	AA	Legu	[106]
259	Epicatechin-(4β→6)-epicatechin-(4β→2)-phloroglucinol	AA	Legu, Pina, Rosa	[107–109]
260	Guibourtinidol-(4α→6)-epicatechin-8-carboxylic acid	AA	Legu	[104]
261	Guibourtinidol-(4α→6)-catechin-8-carboxylic acid	AA	Legu	[104]
262	Epiortinin-(4β→6)-epiortinin-4α-ol	AA	Legu	[110]
Table 5. Cont.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
264	Epioritin-(4β→6)-epioritin-4β-ol	AA	Legu	[110]
265	Epioritin-(4β→6)-oritin-4α-ol	AA	Legu	[111]
266	Epioritin-(4β→6)-ent-oritin-4α-ol	AA	Legu	[110]
267	Ent-Oritin-(4β→6)-epioritin-4α-ol	AA	Legu	[111]
268	Ent-Oritin-(4α→6)-epioritin-4β-ol	AA	Legu	[113]
269	Ent-Oritin-(4β→6)-ent-oritin-4α-ol	AA	Legu	[110]
270	Ent-Oritin-(4α→6)-oritin-4α-ol	AA	Legu	[111]

* Chlo: Chloranthaceae; Cist: Cistaceae; Dava: Davalliaceae; Eric: Ericaceae; Malv: Malvaceae; Malp: Malpighiaceae; Myri: Myricaceae; Myro: Myrothamnaceae; Rosa: Rosaceae; Sali: Salicaceae; and Sapi: Sapindaceae.

The data of 4-8′′ type biflavonoids were showed in Tables 6 and 7, the structure of them were drew in Figure 7.

Table 6. The 4-8′′ subtype of biflavonoids.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
272	Jugl biflavone A	AB	Jugl	[112]
273	Sarcandrone	AA	Chlo	[1]
274	Procyanidin B2	AA	Aizo, Rosa, Sapi	[94,113,114]
275	Procyanidin B2 7′-xyloside	AA	Legu	[115]
276	3′-galloylprocyanidin B2	AA	Poly, Vita	[6]
277	3,3′-digalloylprocyanidin B2	AA	Rosa	[6,114]
278	3′-O-(3,4-di-O-methylgalloyl)procyanidin B2	AA	Poly	[94]
279	Epicatechin-(4α→8)-epicatechin	AA	Rosa	[116]
280	Procyanidin B1	AA	Legu	[114]
281	3′-(4-hydroxybenzoyl)procyanidin B1	AA	Hama	[117]
282	3-galloylprocyanidin B1	AA	Poly	[114,118]
283	3′-O-(1-hydroxy-6-oxo-2-cyclohexene-1-carboxylate)procyanidin B1	AA	Sali	[119]
284	Procyanidin B4	AA	Sali	[113]
285	3-O-β-D-glucopyranoside, 3′-O-(6-O-E-cinnamoyl-β-D-glucopyranoside)Procyanidin B4	AA	Legu	[120]
286	3′-galloylprocyanidin B4	AA	Euph	[6]
287	Procyanidin B3	AA	Sali	[113,121]
288	3-rhamnoside-procyanidin B3	AA	Faga	[122]
289	3-glucoside-procyanidin B3	AA	Faga	[122]
290	3-O-β-D-glucopyranoside, 3′-O-(2-O-E-cinnamoyl-β-D-glucopyranoside)procyanidin B3	AA	Legu	[120]
291	Procyanidin B3 3′′-rhamnoside	AA	Faga	[122]
292	Procyanidin B3 3′-O-glucoside	AA	Rosa	[123]
293	Procyanidin B3 7′-glucoside	AA	Poly	[124]
294	Catechin-(4α→8)-catechin 7′-xylloside	AA	Betu	[125]
295	3-galloylprocyanidin B3	AA	Rosa	[126]
296	3,3′-di-Ac-3′′-O-β-D-glucopyranoside procyanidin B3	AA	Poly	[127]
297	3′-O-(1-Hydroxy-6-oxo-2-cyclohexene-1-carboxylate)procyanidin B3	AA	Sali	[119]
298	Epicatechin-(4β→8)-ent-epicatechin	AA	Arecc	[128]
299	Ent-epicatechin-(4α→8)-epicatechin	AA	Arecc	[128]
300	Ent-epicatechin-(4α→8)-catechin	AA	Arecc	[128]
301	Ent-epicatechin-(4α→8)-ent-epicatechin	AA	Arecc	[128]
302	3-O-(3,4,5-trihydroxybenzoyl)ent-epicatechin-(4α→8)-ent-epicatechin	AA	Malp	[101]
303	3′-O-(3,4,5-trihydroxybenzoyl)ent-epicatechin-(4α→8)-ent-epicatechin	AA	Malp	[101]
304	3,3′-bis-O-(3,4,5-trihydroxybenzoyl)ent-epicatechin-(4α→8)-ent-epicatechin	AA	Malp	[101]
305	Auricassidin	AA	Legu	[129]
Table 6. Cont.

No.	Compounds Name	Monomer Type	Origin (Family *)	References
306	3,3’,4’,5,7-penta hydroxyflavan-(4→8)-3,4’,5,7-tetrahydroxyflavan	AA	Legu	[130]
307	Epicatechin-(4β→8)-epiafzelechin	AA	Legu	[131,132]
308	Catechin-(4α→8)-epiafzelechin	AA	Legu	[133]
309	Epicatechin-(4β→8)-ent-epiafzelechin	AA	Legu	[134]
310	Ent-epicatechin-(4α→8)-epiafzelechin	AA	Legu	[134]
311	Ent-epicatechin-(4α→8)-ent-epiafzelechin	AA	Legu	[134]
312	Epiguibourtinidol-(4β→8)-epicatechin	AA	Legu	[135]
313	Guibourtinidol-(4β→8)-epicatechin	AA	Legu	[105]
314	Guibourtinidol-(4β→8)-epiafzelechin	AA	Legu	[105]
315	Guibourtinidol-(4α→8)-epicatechin	AA	Legu	[104]
316	Guibourtinidol-(4α→8)-epiafzelechin	AA	Legu	[105]
317	Guibourtinidol-(4β→8)-catechin	AA	Legu	[104]
318	Guibourtinidol-(4α→8)-catechin	AA	Legu	[104]
319	Calodenin C	AA	Legu	[136]
320	Ent-guibourtinidol-(4β→8)-epicatechin	AA	Legu	[105]
321	Epiafzelechin-(4β→8)-epicatechin	AA	Legu, Poly	[134,137]
322	3′-O-(3,4,5-trihydroxybenzoyl)epiafzelechin-(4β→8)-epicatechin	AA	Poly	[137]
323	3,3′-bis-O-(3,4,5-trihydroxybenzoyl)epiafzelechin-(4β→8)-epicatechin	AA	Poly	[137]
324	Ouratea proanthocyanidin A	AA	Cela, Ochn	[138]
325	Ouratea proanthocyanidin B	AA	Cela, Ochn	[138]
326	Epiafzelechin-(4ε→8)-epicatechin	AA	Poly	[94]
327	3′-O-(4-hydroxybenzoyl)epiafzelechin-(4ε→8)-epicatechin	AA	Poly	[94]
328	3′-O-(4-hydroxy-4,5-dimethoxybenzoyl)epiafzelechin-(4ε→8)-epicatechin	AA	Poly	[94]
329	Gambiriin C	AA	Rubi	[139]
330	Afzelechin-(4α→8)-epicatechin	AA	Rhiz	[140]
331	3′-O-(4-hydroxy-3-methoxybenzoyl), 3′-O-L-rhamnopyranoside-afzelechin-(4α→8)-epicatechin	AA	Euph	[141]

* Arec: Arecaceae; Aizo: Aizoaceae; Betu: Betulaceae; Faga: Fagaceae; Hama: Hamamelidaceae; Jugl: Juglandaceae; and Vita: Vitaceae.

Figure 4. The structure of 3-8′ type biflavonoids.
Figure 5. The structure of 3′-8′ type biflavonoids.

Table 7. The 4-8′ subtype of biflavonoids.

No.	Compounds Name	Monomer Type	Origin	References
332	3′-O-(4-hydroxy-3,5-dimethoxybenzoyl),	AA	Euph	[141]
333	3-O-α-L-rhamnopyranoside-afzelechin-(4α→8)-epicatechin	AA	Rhiz, Rosa	[121,140]
334	3-O-α-L-rhamnopyranoside-afzelechin-(4α→8)-catechin	AA	Faga	[142]
335	3-O-β-D-glucopyranoside-afzelechin-(4α→8)-catechin	AA	Faga	[142]
336	Epiafzelechin-(4β→8)-ent-epicatechin	AA	Legu	[132]
337	Ent-epiafzelechin-(4α→8)-epicatechin	AA	Legu	[132]
338	Ent-epiafzelechin-(4α→8)-ent-epicatechin	AA	Legu	[132]
339	Ichangol	AA	Adox	[143]
340	Epicatechin-(4β→8)-epicatechin-(4β→2)-phloroglucin	AA	Legu, Pina	[109,144]
341	Epigallocatechin-(4β→8)-epicatechin-(4β→2)-phloroglucin	AA	Legu	[109]
342	Epigallocatechin-(4β→8)-epigallocatechin-(4β→2)-phloroglucin	AA	Cist	[145]
343	Catechin-(4α→8)-epicatecin-(4β→2)-phloroglucin	AA	Pina	[144]
344	Galallocatechin-(4α→8)-epigallocatechin-(4β→2)-phloroglucin	AA	Cist	[145]
No.	Compounds Name	Monomer Type	Origin (Family *)	References
-----	----------------	--------------	------------------	------------
345	Epirobinetinidol-(4β→8)-catechin	AA	Legu	[146]
346	Robinetinidol-(4β→8)-epigallocatechin	AA	Mimo	[147]
347	Robinetinidol-(4α→8)-epigallocatechin-3′-gallate	AA	Mimo	[147]
348	Robinetinidol-(4α→8)-epigallocatechin	AA	Mimo	[147]
350	Robinetinidol-(4β→8)-catechin	AA	Legu	[148]
351	Robinetinidol-(4α→8)-epigallocatechin-3′-gallate	AA	Legu	[149]
352	Robinetinidol-(4α→8)-catechin	AA	Legu	[149]
353	Prodelphinidin B2	AA	Phyl, Legu, Myri	[100]
354	3′-O-(4-hydroxybenzoyl)prodelphinidin B2	AA	Legu	[150]
355	3-O-galloylprodelphinidin B2	AA	Cist, Poly	[99,151]
356	3′-galloylprodelphinidin B2	AA	Cist, Myri, Thea	[6,99,100,152]
357	Rhodisin	AA	Myri, Cras	[100,153]
358	Rhodinoside	AA	Cras	[153]
359	Epicatechin-(4β→8)-epigallocatechin-3-O-gallate	AA	Thea	[98]
360	Epicatechin-3-O-gallate-(4β→8)-epigallocatechin-3-O-gallate	AA	Thea	[98]
361	Epicatechin-(4β→8)-4′-O-methylepigallocatechin	AA	Cela	[154]
362	Epigallocatechin-(4β→8)-epicatechin-3-O-gallate	AA	Thea	[155]
363	Prodelphinidin B1	AA	Cist, Legu	[150,156]
364	3-galloylprodelphinidin B1	AA	Cist, Hama	[117,156]
365	3,3′-digalloylprodelphinidin B1	AA	Myri	[100]
366	Epigallocatechin-(4β→8)-4′-O-methylgallocatechin	AA	Legu	[157]
367	Epicatechin-(4β→8)-gallocatechin	AA	Phyl	[158]
368	Epicatechin-(4β→8)-4′-O-methylgallocatechin	AA	Legu	[157]
369	Epigallocatechin-(4β→8)-catechin	AA	Legu, Pina	[117,159]
370	3′′′-Deoxy, 3-O-(3,4,5-trihydroxybenzoyl)epigallocatechin-(4β→8)-catechin	AA	Hama	[117]
371	Prodelphinidin B4	AA	Thea, Phyl, Gros	[160]
372	Galloatechin-(4α→8)-epigallocatechin-3-O-(4-hydroxybenzoate)	AA	Mimo	[150]
373	3′-galloylprodelphinidin B4	AA	Thea	[98]
374	4″,4″′-di-O-methylprodelphinidin B4	AA	Legu	[130]
375	Catechin-(4α→8)-epigallocatechin	AA	Thea	[161]
376	Catechin-(4α→8)-epigallocatechin-3-O-gallate	AA	Thea	[161]
377	Galloatechin-(4α→8)-epicatechin	AA	Thea	[161]
378	Prodelphinidin B3	AA	Faga, Rham	[162,163]
379	4″,4″′-di-O-methylprodelphinidin B3	AA	Legu	[157]
380	Catechin-(4α→8)-gallocatechin	AA	Cist	[156]
381	Prodelphinidin C	AA	Hama, Myri, Faga, Sali	[117,160,163,164]
382	Epifisetinidol-(4β→8)-epicatechin	AA	Legu	[135]
383	Epifisetinidol-(4β→8)-catechin	AA	Legu	[165]
384	Fisetinidol-(4β→8)-epicatechin	AA	Legu	[166]
385	Fisetinidol-(4α→8)-epicatechin	AA	Legu	[166,167]
386	Fisetinidol-(4α→8)-catechin	AA	Legu	[166]
387	Fisetinidol-(4α→8)-catechin	AA	Legu	[168]
388	Fisetidinol-(4α→8)-3-O-galloylcatechin	AA	Legu	[166]
389	Ent-fisetinidol-(4β→8)-epicatechin	AA	Anac	[149]
390	Ent-fisetinidol-(4β→8)-catechin	AA	Anac, Legu	[149,169]
391	Ent-fisetinidol-(4α→8)-catechin	AA	Anac, Legu	[149]

* Adox: Adoxaceae; Cela: Celastraceae; Cras: Crassulaceae; Gros: Grossulaceae; Mimo: Mimosaceae; Phyl: Phyllanthaceae; Rhiz: Rhizophoraceae; and Rubi: Rubiaceae.
Figure 6. The structure of 4-6′′ type biflavonoids.

Figure 7. The structure of 4-8′′ type biflavonoids.
The data of 4′-8′, 5-5′, 6-6′, 6-γ, 6-8′, 7-7′, and 8-8′ type biflavonoids were showed in Table 8, the structure of them were drew in Figure 8.

Table 8. The 4′-8′, 5-5′, 6-6′, 6-γ, 6-8′, 7-7′, and 8-8′ subtypes of biflavonoids.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
4′-8′	392	5,3′,5′,6′-tetrahydroxy-3′-5′-dimethoxy-biflavone(4′→8′)-7-O-(2-rhamnoside)rhamnoside	BB	Apia	[170]
5-5′	393	8,8′-bis(7,8-dihydroxy-2-C-methyl-2H-1-benzopyran-5-yl)-4,4′-dimethoxy-[5,5′-bi-6H-furo[3,2-h][1]benzopyran]-6,6′-dione	BB	Legu	[171]
	394	3-C-(6-deoxy-α-L-mannopyranosyl)-3′-C-α-D-glucopyranosyl-2,2′-bis(4-hydroxyphenyl)-7,7′-dimethyl-[5,5′-bi-4H-1-benzopyran]-4,4′-dione	BB	Legu	[171]
6-6′	395	Succedaneaflavanone	AA	Anac	[1]
	396	6,6′-binegenkwanin	BB	Ochn	[172]
6-γ	397	8-methylsocotrin-3′-methoxy-4′-ol	AG	Drac	[1]
	398	8-methylsocotrin-4′-methoxy-3′-ol	AG	Drac	[1]
	399	8-methylsocotrin-4-methoxy-3-ol	AG	Drac	[1]
	400	8-methylsocotrin-3-methoxy-4-ol	AG	Drac	[1]
6-8′	401	8-methylsocotrin-4-ol	AG	Ochn	[1]
	402	6,8′-binegenkwanin	BB	Arau, Ochn	[1]
	403	Agathisflavone	BB	Arau, Ochn	[1]
	404	7,7′,8′-tri-O-methylagathisflavone	BB	Arau	[1,174]
	405	7,4′-di-O-methylagathisflavone	BB	Arau	[1]
	406	Agathisflavone A	BB	Arau	[173,174]
	407	Ouratine A	BB	Ochn	[1,175]
	408	Agathisflavone	AB	Ochn	[1]
	409	7,4′,7′,8′-tetra-O-methylcupressuflavone	AB	Sela	[7]
	410	7,4′,7′-tri-O-methylcupressuflavone	AB	Arau	[1]
	411	7,7′-di-O-methylcupressuflavone	AB	Arau	[1]
	412	Rhusflavone	AB	Anac	[176]
	413	Lateriflavanone	AB	Clus	[1]
	414	4′′-O-methylagathisflavone	AB	Clus, Ochn	[54,177]
	415	Rhusflavone	AA	Anac	[178]
	416	6,8′-binaringenigen	AA	Clus	[178]
	417	3′′,4′′,5′′,6′′-hepta-me ether-3,3′′,3′′,5′′,7,7′-nonahydroxy-6,8′-biflavonone	AA	Ochn	[179]
	418	Ouratine B	BB	Ochn	[175]
	419	4′′-O-methylagathisflavone	BB	Ochn	[177]
	420	7′′-O-methylagathisflavone	BB	Ochn	[180]
	421	Agathisflavone B	BB	Arau	[174]
7-7′	422	4′-methoxy-7,7′-biflavone	BB	Legu	[181]
8-8′	423	Cupressuflavone	AA	Anac, Arau, Cupr	[182]
	424	3,3′-dihydroxycupressuflavone	BB	Thea	[183]
	425	4′-O-methylcupressuflavone	BB	Clus	[54]
	426	Mesuaferrone B	AB	Anac, Clus	[178,184]
	427	4′,4′′-di-O-methylcupressuflavone	AA	Comp	[185]
	428	(R)4′′-O-β-D-glucopyranoside-cupressuflavone	AA	Cupr	[186]
	429	(S)4′′-O-β-D-glucopyranoside-cupressuflavone	AA	Cupr	[186]
	430	7-me ether-cupressuflavone	BB	Arau	[173,187]
	431	8,8′-bigenkwanin	BB	Arau, Cupr	[186,187]
	432	W11	BB	Arau, Phyl	[188]
	433	4′,7,7′′-tri-O-methylcupressuflavone	BB	Arau	[187]
	434	WB1	BB	Arau	[173,187]
	435	Moghatin	BB	Malv	[189]
	436	Neorhusflavonese	AA	Anac, Calo	[184,190]

* Apia: Apiaceae; Calo: Calophllaceae; Comp: Compositae; Drac: Dracaenaceae; and Rham: Rhamnaceae.
4.2. C-Linear Fragment-C Type

Group B (Table 9) is consist of C-O-C connections, C-C-C connections and other linear fragment connections, including: 3′-O-3′′, 3-O-4′, 3-0-4′′, 3′-O-4′′, 3-O-7′, 3′-O-7′′, 4-O-4′, 4′-O-4′′, 4′-O-6′, 4′-O-7′, 4′-O-8′, 5-O-5′, 6-O-7′, 7-O-7′′, 6-C-8′′, and 8-C-8′′. The structure of C-linear fragment-C biflavonoids were showed in Figures 9 and 10.

Table 9. The C-linear fragment-C subtypes of biflavonoids.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
3′-O-3′′	437	Sparinaritin	AB	Chry	[191]
3-O-4′′	438	Epioritin(β-3)-epioritin-β-ol	AA	Legu	[20]
3-O-4′′	439	Delicaflavone	BB	Sela	[7]
3′-O-3′′	440	5,7,4′,5′-tetrahydroxy-7′-metoxy-[3-O-4′′]-biflavone	BB	Sela	[7]
3′-O-3′′	441	Chrysocauloflavone I	AB	Sela	[7]
3′-O-3′′	442	Chrysocauloflavone II	AB	Sela	[7]
3′-O-3′′	443	Baeckine E	AB	Myrt	[192]
3′-O-3′′	444	Baeckine C	AB	Myrt	[192]
3′-O-3′′	445	Baeckine D	AB	Myrt	[192]
3′-O-3′′	446	Ochnaflavone	BB	Ochn	[7,193]
3′-O-3′′	447	Ochnaflavone 7′-O-β-D-glucopyranoside	BB	Ochn	[194]
3′-O-3′′	448	2,3,5′-dihydroochnaflavone	AB	Ochn	[7,195]
3′-O-3′′	449	2,3-dihydro-7,7′-tri-O-methylochnaflavone	AB	Ochn	[7,196]
3′-O-3′′	450	Sulcatone A	AB	Ochn	[197]
3′-O-3′′	451	4′-methoxy-ochnaflavone	BB	Ochn	[193]
3′-O-3′′	452	7′-O-methylochnaflavone	BB	Ochn	[198]
3′-O-3′′	453	7′-O-methylochnaflavone	BB	Ochn	[199]
3′-O-3′′	454	4′,7-di-O-methylochnaflavone	BB	Ochn	[193]
3′-O-3′′	455	2,3-dihydroochnaflavone	AB	Ochn	[200]
3′-O-3′′	456	2,3-dihydro-7-O-methylochnaflavone	AB	Ochn	[200]
3′-O-3′′	457	2,3-dihydro-7-O-methylochnaflavone	AB	Ochn	[9]
Subtype No.	Compounds Name	Monomer Type	Origin (Family *)	References	
------------	----------------	--------------	-------------------	------------	
458	2′′,3′′-dihydro-2′′-O-methyllochnaflavone	AB	Ochn	[9]	
459	2′′,3′′-tetrahydrolochnaflavone	AB	Ochn	[201]	
460	2′′,3′′-tetrahydro-7′-O-methyllochnaflavone	AB	Ochn	[201]	
461	2′′,3′′-tetrahydro-7′′-di-O-methyllochnaflavone	AB	Ochn	[202]	
462	3′′-hydroxylochnaflavone	BB	Rubi	[203]	
463	6,6′-dimethyllochnaflavone	BB	Sela	[1]	
464	2,3-dihydro-6,6′-dimethyllochnaflavone	AB	Sela	[196]	
465	Hyphnum biflavonoid B	AA	Hypn, Ochn	[197,204,205]	
466	3-O-7′-bilinein	BB	Aste	[206]	
467	Lophirome L	BB	Ochn	[52]	
468	Lophirome penta-acetate	BB	Ochn	[52]	
469	5,7,4′,5′,3′′-hexahydroxy-3′′-O-β-glucosyl-3′′-O-biflavone	BB	Legu	[207]	
470	5,7,4′,5′,3′′,4′′′-hexahydroxy-3′′-di-O-β-glucosyl-3′′-O-biflavone	BB	Vita	[208]	
471	Epimesquitol(4′-β-4′-epioritin-4β-o)	AA	Legu	[30]	
472	Achyrobochalcone	GG	Aste	[209]	
473	Loniaroflavone	BB	Capr	[1]	
474	3′-O-methylioniflavone	BB	Capr	[210]	
475	Oniflavone	BB	Capr	[210]	
476	Erisocide	AB	Eric	[211]	
477	Hinokiflavone	BB	Cupr, Psil, Sela, Taxo, Cyca	[212-216]	
478	Isocryptomerin	BB	Cupr, Sela, Taxo	[7,213–215,217]	
479	Neocryptomerin	BB	Podo	[7]	
480	Cryptomerin B	BB	Taxo	[7,214,218]	
481	Chamaeyparin	BB	Cupr, Sela	[7,217,219]	
482	2,3-dihydrohinofoflavone	AB	Cupr, Cyca	[7,215,216]	
483	(2S,2S′)-2,3,2′-dihydroisocryptomerin	AB	Sela	[7,37]	
484	2′′,3′′-dihydrolochnaflavone	AB	Sela	[7,220]	
485	2′′,3′′-dihydroisocryptomerin	AB	Sela	[7,221]	
486	7-O-methyl-2′′,3′′-dihydroisocryptomerin	AB	Sela	[7,221]	
487	Taiwaniaflavone B	AB	Capr	[7,29]	
488	(25,2S′)-2,3,2′,3′-tetrahydrohinofoflavone	AA	Cyca	[7,222]	
489	7′′′′-O-methyl-2,2′,3′′,3′′-tetrahydrolochnaflavone	AA	Sela	[7]	
490	7′′′′-O-methyl-2,3,2′,3′′-tetrahydrohinofoflavone	AA	Sela	[7]	
491	Oliveriflavone A	AA	Capr	[65]	
492	Cryptomerin A	BB	Taxo	[215,218]	
493	2,2′′,3′′-tetrahydro-7′′′-di-O-methylhinofoflavone	AA	Cyca	[223]	
494	2,3′-dihydrohinofoflavone	AB	Sela	[39]	
495	Brevipedicelone E	BB	Clus	[224]	
496	Lanarofoflavone	BB	Anac, Lana	[225,226]	
497	7-O-methyllanarofoflavone	BB	Ochn	[227]	
498	4′′′′′′-7′-di-O-methyllanarofoflavone	BB	Ochn	[227]	
499	7′′′′′′-7′-di-O-methyllanarofoflavone	BB	Ochn	[228]	
500	Potifugone	AA	Rosa	[1]	
501	Masazinoflavanone	AA	Anac	[229]	
502	(myricetin-3-O-α-L-rhamnoside(C7I-O-C7II)myricetin-3-O-α-L-rhamnoside)	BB	Legu	[230]	
503	Bosistoabiflavone	AA	Ruta	[231]	
504	Trianguletin	BG	Adia	[20]	
505	Pentragametin	AB	Adia	[20]	
506	Di(8-catechyl)methane	AA	Malv	[232]	
507	3-O-β-D-glucopyranosyl-malvidin 8-(8'-ethylicetachin)	AC	Red wine	[233]	
508	3′,3′′-bis-[β-O-xilopananosyl(1→2)[4-hydroxy-3,5-dimethoxy-E-cinnamoyl(1→6)]-β-D-galactopyranosyl]	CC	Apia	[234]	
Others	Carinoside A	BE	Gent	[235]	
510	Mesuferol A	II	Clus	[236]	
511	Mesuferol B	II	Clus	[236]	

*Adia: Adiantaceae; Chry: Chrysobalanaceae; Gent: Gentianaceae; Hypn: Hypnaceae; Para: Paracyphiaceae; Lana: Lanariaceae; Psil: Psilotaceae and Rut: Rutaceae.
4.3. Complex Biflavonoids

Group C belongs to the complex biflavonoids (Tables 10 and 11). They include the simple-ring type (C-C & C-C, C-C & C-C-C, C-C & C-O-C, C-O-C & C-O-C), the bicyclic type, the atom-shared type, and spirobiflavonoids. The structure of complex biflavonoids were showed in Figure 11.
Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
C-C & C-C	512	Licobichalcone	GG	Legu	[237]
C-C & C-C-C	513	Selacyclic biflavone A	AB	Sela	[7]
C-C & C-O-C	514	Licoagrocin	AD	Legu	[20]
	515	Daphnodorin A	AG	Thym	[29,238]
	516	Daphnodorin B	AG	Thym	[29,238]
	517	Dihydrodaphnodorin B	AG	Thym	[239]
	518	Daphnodorin J	AG	Thym	[29,238,240]
	519	Daphnodorin E	AA	Thym	[29]
	520	Daphnodorin H	AA	Thym	[29]
	521	4′-methoxydaphnodorin E	AA	Thym	[241]
	522	Daphnodorin F	AA	Thym	[29]
	523	Daphnodorin G	AA	Thym	[29]
	524	Lawsonia biflavone A	AB	Lyth	[230]
	525	3′-O-methyldaphnodorin G	AA	Thym	[242]
	526	4′′-O-methyldaphnodorin E	AA	Thym	[241]
	527	3-O-methyldaphnodorin H	AA	Thym	[242]
	528	3′-O-methyldaphnodorin H	AA	Thym	[242]
	529	Daphnogirin A	AA	Thym	[243]
	530	Daphnogirin B	AA	Thym	[243]
	531	Ephedrannin B	AB	Ephe, Daph	[244,245]
	532	Ephedrannin A	AB	Ephe, Daph, Vita	[244,245]
	533	Ent-epiafzelechin-(2α→7, 4α→8)-quercetin	AB	Rosa	[246]
	534	Proanthocyanidin A5³	AA	Ephe, Rosa	[247,248]
	535	3-O-α-L-arabinopyransylproanthocyanidin A5³	AA	Malv	[248]
	536	3-O-β-D-galactopyransylproanthocyanidin A5³	AA	Malv	[248]
	537	Pavetannin A2	AA	Ephe, Rosa, Rubi	[249]
	538	3-O-α-L-arabinopyranosylpavetannin A2	AA	Malv	[232]
	539	Ent-epicatechin-(2α→7,4α→8)-ent-catechin	AA	Rubi	[250]
	540	Ent-epicatechin-(2α→7,4α→8)-ent-epicatechin	AA	Ephe	[248]
	541	Proanthocyanidin A2	AA	Sapi, Legu, Laur	[251–253]
	542	3′-O-trans-cinnamoylproanthocyanidin A2	AA	Legu	[254]
	543	Proanthocyanidin A1	AA	Sapi, Legu, Laur	[253]
	544	Proanthocyanidin A4	AA	Sapi, Rubi	[250]
	545	Baeckein F	AB	Myrt	[1]
	546	Baeckein G	AB	Myrt	[255]
	547	Baeckein H	AB	Myrt	[1]
	548	Baeckein I	AB	Myrt	[255]
	549	Lophirone C	GG	Ochn	[256,257]
	550	Dihydrolophirone C	GG	Ochn	[257]
	551	Isolophirone C	GG	Ochn	[257]
	552	Lophirone K	GG	Ochn	[258]
	553	Lophirone F	GG	Ochn	[259]
	554	Lophirone G	GG	Ochn	[259]
	555	Lophirone L‡	GG	Ochn	[260]
	556	Dysoverine D	AB	Berb	[261]
	557	Dysoverine F	AB	Berb	[261]
	558	Dysoverine A	AB	Berb	[261]
	559	(2R,2′R,3S,3′S,4α,4′α-α)-3′,4′,7,7′-trihydroxyflavanaa-(3→O→4)(4→O→3)-3′,4′,7,7′-trihydroxyflavan	AA	Legu	[262]

* Berb: Berberidaceae; Daph: Daphniphyllaceae; Ephe: Ephedraceae; Laur: Lauraceae; and Lyth: Lythraceae.
Figure 11. The structure of Complex biflavonoids.
Table 11. The other types of bioflavonoids.

Subtype	No.	Compounds Name	Monomer Type	Origin (Family *)	References
Bicyclic type	560	Daphnodorin M	AG	Thym	[29]
	561	Daphnodorin N	AG	Thym	[29]
	562	Stellaranol	AG	Thym	[1]
	563	Genkwanol B	AG	Thym	[1]
	564	Genkwanol C	AG	Thym	[1]
Atom-shared type	565	Chamaechromone	EG	Thym	[63]
	566	Mohsenone	EG	Thym	[63]
	567	Isomohsenone	EG	Thym	[63]
	568	Lophirone A	EG	Ochn	[263]
	569	Calodenone	EG	Ochn, Anac	[264]
	570	Afzelone D	EG	Ochn	[265]
	571	Campylopusaurone	AH	Clus	[266]
	572	Preussianone	AB	Clus	[267]
	573	Paucinervin K	AE	Clus	[268]
	574	Lancedatin A	BD	Legu	[20]
	575	Lancedatin B	BD	Legu	[20]
Spirobiflavonoids	576	Absienol A	AA	Mora	[60]
	577	Absienol B	AA	Pina	[1]
	578	Absienol C	AA	Mora	[60]
	579	Absienol D	AA	Pina	[1]
	580	Absienol E	AA	Mora	[60]
	581	Absienol F	AA	Pina	[1]
	582	Daphnodorin C	AA	Thym	[29]
	583	Daphnodorin I	AA	Thym	[29]
	584	Genkwanol A	AA	Thym	[269]
	585	2″-hydroxygenkwanol A	AA	Thym	[1]
	586	4″-methylgenkwanol A	AA	Thym	[1]
	587	Olgensinosinol A	AA	Pina	[270]
	588	Olgensinosinol B	AA	Pina	[270]
	589	Olgensinosinol C	AA	Pina	[270]
	590	Olgensinosinol D	AA	Pina	[270]
	591	Vitisinol	AA	Pina	[270]
	592	Larixinol	AA	Pina	[271]

5. Pharmacology of Biflavonoids

5.1. Antioxidant

Andrade et al. [272] conducted an antioxidant test on agathisflavone in 2018. Trolox was used as a control, and agathisflavone was extracted and isolated from the fresh leaves of Caesalpinia pyramidalis Tull. In the experiment of DPPH radical scavenging, it was found that agathisflavone scavenged DPPH free radicals in a concentration-dependent manner; the EC$_{50}$ of agathisflavone was 0.474 mM, and for Trolox it was 0.149 mM, within the 95% confidence interval. The ABTS scavenging assay data found that agathisflavone was EC$_{50}$ = 0.179 mM, while for Trolox, it was EC$_{50}$ = 0.311 mM. In the OH radical scavenging assay, agathisflavone also showed a concentration-dependent hydroxyl radical scavenging ability, while agathisflavone and Trolox both showed a concentration-dependent reduction in the three iron ions to ferrous iron. Through structural analysis of agathisflavone, it was found that the hydroxyl groups at positions 4″,7,7″,4‴‴ in its structure can provide free radical hydrogen to reduce free radicals. In addition, agathisflavone can also inhibit the production of TBARS, and has a significant ability to protect against oxidative damage, indicating that agathisflavone is likely to be a good antioxidant.

The antioxidant effect of Garcinia kola is mainly based on the biflavonoids in the extract. Through the DPPH method and the ABTS method, Lixian et al., studied the antioxidant capacity of garcinianin, kolaflavanone, GB1a, GB2, and panciflavanon. The antioxidant activity of different compounds determined by the DPPH method was garcinianin > panciflavanon > GB2 > kolaflavanone > GB1a, and the antioxidant activity of
different compounds determined by the ABTS method was garcinianin > panciflavanon > GB1a > kolaflavanone > GB2. Among them, the antioxidant effect of garcinianin was more obvious [273].

In a study of the antioxidant mechanism of the neuroprotective biflavonoids, hinokiflavone, isocryptomerin, amentoflavone, ginkgetin, amentoflavone, and ginkgetin have good antioxidant capacities, can inhibit the activity of SOD, GR, Gpx, CAT, and other oxidases, reduce the content of GSH, and achieve an antioxidant effect. Ginkgetin can also act on the ERK1/2 target for antioxidants [274]. In 2013, Jia et al. [192] extracted baeckein E from Baeckea frutescens and six other known compounds, and its IC\textsubscript{50} value ranged from 11.8–16.1 \(\mu\)M in the DPPH free radical scavenging test. Baeckein A and B (IC\textsubscript{50} = 23.5 \(\mu\)M, IC\textsubscript{50} = 26.2 \(\mu\)M) showed cytotoxicity and could not be used in \(H_2O_2\)-induced oxidation experiments. The treatment rates of biflavonoid baeckein E, baeckein C, and baeckein D were 31.8%, 34.8%, and 36.0%, respectively, which were lower than those of nonbiflavonoids (43.0–44.7%).

5.2. Anti-Inflammatory Properties

The anti-inflammatory activity of biflavonoids is mainly detected by inhibiting the expression of cyclooxygenase 2 (COX-2) and iNOS. In 2006, Park et al. [275] looked for C-C linked biflavonoids as anti-inflammatory drugs and examined the production of PGE2 and nitric oxide (NO) of synthetic biflavonoids in RAW cells treated with lipopolysaccharide (LPS). The results showed that 3′-6″, 6-6″, and 3-4″′ linked biflavonoids showed resistance to COX-2-mediated significant inhibition of PGE2 production (IC\textsubscript{50} = 17.3 \(\mu\)M; IC\textsubscript{50} = 3.7 \(\mu\)M; IC\textsubscript{50} = 7.0 \(\mu\)M, respectively). Western blot and reverse transcription-polymerase chain reaction analyses showed that these compounds are not COX-2 downregulation mediated, but are instead COX-2 inhibition mediated. Among them, 6-6″ biflavonoids have the strongest PGE2 production inhibitory activity. To ensure accuracy, PGE2 and NO tests were performed after LPS pretreatment. The IC\textsubscript{50} of the 6-6″ is < 3.0 \(\mu\)M, and it can be used as a synthetic leader of new anti-inflammatory agents. However, the biflavonoids 4′-6″ and 3-4″′ can have cytotoxic effects on RAW cells.

In 2002, the anti-inflammatory mechanism of amentoflavone as a natural biflavonoid was studied. Banerjee et al. [276] found that amentoflavone can inhibit TNF-\(\alpha\)-mediated COX-2 expression through the NF-\(\kappa\)B pathway, thereby showing anti-inflammatory effects. In 2019, Li et al. [277] also studied the anti-inflammatory mechanism of the natural biflavonoid ginkgetin, and found that it can produce anti-inflammatory effects through the TLR4/NF-\(\kappa\)B signaling pathway and improve ischemia/regeneration perfusion injury.

Jia et al. [255] extracted and separated root products from Baeckea frutescens in 2014 and discovered four new natural biflavonoids of baeckeins F-I. It was found that the four biflavonoids are the cyclic biflavonoids. The conformations of baeckein F, baeckein H (2S, 3S), baeckein G, and baeckein I (2R, 3R) are different, while baeckein H and baeckein I are glycosyl substituted biflavonoids. An anti-inflammatory activity test was performed in the RAW264.7 cell line induced by LPS to produce NO. It was found that the IC\textsubscript{50} values of baeckein F, baeckein G, baeckein H, and baeckein I were 54.7 ± 5.26 \(\mu\)M, 25.4 ± 2.78 \(\mu\)M, 43.8 ± 3.30 \(\mu\)M, and 15.2 ± 1.34 \(\mu\)M, respectively, while the IC\textsubscript{50} of the control indomethacin was 13.8 ± 1.29 \(\mu\)M, and there was no cytotoxicity. Data analysis showed that baeckein H and baeckein I had glycosylated biflavonoids that had more anti-inflammatory activity than the nonglycosylated biflavonoids. The anti-inflammatory activity of baeckein I was not much different from that of indomethacin, and it can be developed as a new anti-inflammatory drug.

There are many mechanisms for the anti-inflammatory activity of biflavonoids. There have been reviews summarizing the anti-inflammatory targets of natural biflavonoids including: ICAM-1, PPAR-\(\gamma\), COX-2, NF-\(\kappa\)B, iNOS, ERK1/2, MMP-9, TIMP-1, and P38/Ark, etc. [278]. These are all targets of conventional anti-inflammatory pathways. In addition, predictive pathways such as arachidonic acid metabolism are also new anti-inflammatory mechanisms of biflavonoids.
5.3. Antiviral Activities

To find new molecules against dengue fever virus (DV), Coulerie et al. [279] extracted four biflavonoids from the ethyl acetate extract of Dacrydium balansae, including amentoflavone, podovarpusflavone A, isoginkgetin, and hinokiflavone, and found that the biflavonoid compounds were the strongest inhibitors of the full activity of DV-NS5 RDRP and DV-NS5, with IC\textsubscript{50}s lower than 3.1 and 5.3 \(\mu\)M. The IC\textsubscript{50} values were as follows: hinokiflavone (IC\textsubscript{50} = 0.26 \(\mu\)M) > podovarpusflavone A (IC\textsubscript{50} = 0.75 \(\mu\)M) > amentoflavone (IC\textsubscript{50} = 1.40 \(\mu\)M) > isoginkgetin (IC\textsubscript{50} = 3.10 \(\mu\)M). Hinokiflavone was the most active biflavonoid with IC\textsubscript{50} = 0.26 \(\mu\)M, but podocarpusflavone A was the strongest non-cytotoxic DV-NS5 inhibitor and could inhibit polymerase activity in the DV replicon, so podocarpusflavone A can be used as a template for the development of drugs against dengue fever virus. In addition, amentoflavone can also be developed as an antiviral drug for herpes simplex virus (HSV-1) [280], and agathisflavone can produce an anti-influenza virus effect [281].

5.4. Antibacterial and Antifungal Activities

Although the antibacterial and antifungal effects are different in mechanism, this review describes them to facilitate the summary of biflavonoids. Tang et al. [282] isolated six biflavonoids from the bark of Ochna macrocalyx. Dehydroxyhexaspermone C, and hexaspermone C are the C-C linked biflavonoids, and ochnone, cordigol, calodenin B, and 2,3-dihydrocalodenin B are all different from general biflavonoids. Calodenin B and 2,3-dihydrocalodenin B have a certain cytotoxicity, but also show strong antibacterial effects. Compared with the control drug, the antibacterial activities of calodenin B and 2,3-dihydrocalodenin B were more obvious. In addition, fukugiside can inhibit the activity of Streptococcus pyogenes [283].

The antifungal activity test mainly uses Candida albicans to test the antifungal effect of the biflavonoids. Lee et al. [284] used bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], a traditional membrane potential dye, in a regeneration test with fungal protoplasts to study the mechanism of isocryptomerin by depolarization. In this study, amphotericin B was used as a positive control, and isocryptomerin had an MIC value of 18.11 \(\mu\)M, which showed antifungal activity against human pathogenic fungi (such as Candida albicans and Trypanosoma beige). The cumulative amount of the DiBAC4(3) in isocryptomerin is small and less than the value of amphotericin B, which proves that it destroys the plasma membrane of Candida albicans and causes cell death. In addition, fungal arthritis, caused by Candida albicans, and ochnaflavone can promote the expression of IL-2 and IL-10 through the T cell immune system, and inhibit the expression of inflammatory mediators such as IFN-\(\gamma\) and IL-2, but it does not cause hemolysis, kill redundant macrophages, or improve fungal arthritis [285].

5.5. Anti-Diabetic and Anti-Atherosclerosis

A biflavonoid composed of two molecules of kaemferol was isolated from the seeds of Semecarpus anacardium and its antihyperglycemic mechanism in diabetic mice induced by a high-fat diet plus streptozotocin, was studied showing it could reduce the content of plasma glucose and increase the level of plasma insulin [286]. At a dose of 80 mg/kg b.wt, the biflavonoid’s effect is basically the same as that of metformin, and when the biflavonoid is combined with metformin, they can significantly increase liver and muscle glycogen content, maintain hemoglobin levels, and restore the glycosynthase and glycogen phosphorylase close to normal levels. The glucose metabolism is also maintained at a normal level, and it can significantly increase enzymatic antioxidants (SOD, CAT, GPx, and GST) and nonenzymatic antioxidants (vitamin C, vitamin E, and GSH) and improve the activity of enzymes, thereby curing hyperglycemia. Liu et al. [287] indicated that biflavonoids (isoginkgetin, bilobetin, ginkgetin, and sciadopitysin), which are extracted from Ginkgo biloba, have the potential to become pancreatic lipase inhibitors. Four natural biflavonoids had a strong inhibitory effect on pancreatic lipase, and their residual
activities were isoginkgetin = 35.7%, bilobetin = 22.3%, ginkgetin = 41.6%, and sciadopitysin = 58.6%. Through the lipase of a concentration-dependent inhibitor of 4-MUO hydrolysis, each IC_{50} value was isoginkgetin = 2.90 ± 0.98 µM, bilobetin = 3.57 ± 0.53 µM, ginkgetin = 6.90 ± 1.60 µM, and sciadopitysin = 12.78 ± 2.30 µM, showing a degree of medium to strong inhibition. Isoginkgetin can also improve the healing of foot ulcer wounds in diabetic rats [288].

There are many pathological mechanisms of atherosclerosis, but they are related to hypertension, hyperlipidemia, and other mechanisms. Therefore, the treatment of atherosclerosis is basically inseparable from the antioxidant and anti-inflammatory effects [289]. Tabares-Guevara et al. performed oxygen radical absorbance capacity (Orac) and IDI oxidation inhibition assays on three natural biflavonoids: morelloflavone, volkensiflavone, and fukugiside, and found that all of them were effective reactive oxygen scavengers, inhibited the production of reactive oxygen species and the secretion of proinflammatory factors (IL-6, IL-12p70, TNF-α, MIP-1α, and NLRP3, etc.) in macrophages, and they reduced the circulating levels of cholesterol and the lipid peroxidation product propylene glycol, showing the antioxidation, anti-inflammatory, hypolipidemic, and anti-atherosclerotic effects of biflavonoids in the body [290].

5.6. Alzheimer’s Disease and Parkinson’s Disease

Alzheimer’s disease in terms of anti-inflammatory, antioxidative stress, and neurodegenerative damage overlaps to a large extent with the treatment pathway of biflavonoids [291] so biflavonoids have great potential in the treatment of Alzheimer’s disease [292]. Moreover, due to the aromatic interaction of biflavonoids, their therapeutic effect is better than that of a flavonoid [293], indicating that biflavonoids can be used as lead compounds for the development of treatments for Alzheimer’s disease. In particular, the amentoflavone type includes amentoflavone (1) and its monomethoxy derivatives. They can inhibit the formation and accumulation of amyloid β, thereby preventing Alzheimer’s disease [294].

Choi et al. used the peptide of Aβ1-42 to inhibit the aggregation of Aβ1-42 in vitro by thioflavin T fluorescence analysis of biflavonoids (amentoflavone, bilobetin, sequoiaflavone, sotetsuflavone, podocarpuflavone, ginkgetin, isoginkgetin, and sciadopitysin), and found that amentoflavone has the strongest comprehensive strength in inhibiting the formation of Aβ1-42 fibers and reducing the formation of Aβ1-42 fibers among the eight biflavonoids, and it has great potential as a lead compound for treating Alzheimer’s disease [295]. CGY-1 [82], GB1, and other gambogic biflavonoids [296] also have the potential to treat Alzheimer’s disease.

Biflavonoids extracted from Impatiens balsamina can prevent the production of NO, have neuroprotective activity, and improve neurodegenerative diseases [61]. Amentoflavone can improve Parkinson’s disease through the PI3K/Akt and ERK signaling pathways [297], while ginkgetin can improve Parkinson’s disease nerve damage through neuroprotection [298].

5.7. Cytotoxic Activity and Antitumor Activities

The cytotoxicity of flavonoids with different structures is also different. A review had summarized that the flavonoids with flavone(B) units (galangin, kaempferol, quercetin, myricetin, apigenin, and chrysin) had the ability to antihepatoma; the flavonoids with chalcone(C) units (flavokavain C) could cause hepatic failure; the flavonoid with isoflavone(E) units (genistein) had an antiestrogen, increasing the risk of breast cancer and the flavonoids with flavan(A) units (catechin) had no effect on tumor cells, but had the hemolytic anemia thrombocytopenia [299]. Biflavonoids are composed of two flavone monomers, so the toxicity study of flavonoids is also helpful to the toxicity activity of biflavonoids. The structure of these flavonoids are shown in Figure 12.

For the toxicity of biflavonoids, a study found that amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, and bilobetin extracted from ginkgo can reduce the cell viability of
human renal tubular epithelial cells (HK-2 cells) in a dose-dependent manner. Ginkgetin, isoginkgetin, and bilobetin showed the cell viability of HK-2 cells were less than 50% at 10 and 100 µg/mL. At the dose of 100 µg/mL, ginkgetin, isoginkgetin, and bilobetin injured the human normal hepatocytes (L-02 cells), moreover, the cell viability of isoginkgetin and bilobetin were less than 50%. After HE staining of mouse liver sections, it was found that bilobetin and ginkgetin were more toxic to hepatocytes. In renal tissue, these five biflavonoids caused acute renal injury, and renal interstitial hemorrhage was a common pathological phenomenon [300]. Therefore, Ginkgo biloba extract preparation should pay attention to its hepatorenal toxicity. A study found that hinokiflavone, as the cytotoxic principle, its ED$_{50}$ value was 2.0 µg/mL in KB cells. It was proven that the ether bond between the two flavonoid monomers had a significant cytotoxicity. However, other biflavonoids with C-C linkages, being hexamethyl ethers of ring C/A-linked dimers between two flavonoid units, also showing the cytotoxic activity (the ED$_{50}$ value was 3.0~4.0 µg/mL) [301]. A non-clinical toxicological study in 2019 revealed that there were no reported fatalities after agethisflavone acted on the female mice, and it has an LD$_{50}$ larger than 2000 mg/kg [302].

Adem et al. [10] used the caspase-Glo assay to test the cytotoxicity of three biflavonoids (chamaejasmin, 7,7′′-di-O-methylchamaejasmin, and campylospermone A) and other compounds. The cell cycle, apoptosis, mitochondrial membrane sites, and reactive oxygen species were analyzed by flow cytometry. The model cells were CCRF-CEM leukemia cells and CEM/ADR5000 cells and seven other cancer cells including U87MG. = EGFR glioblastoma, HepG2 liver cancer cells, U87MG. = EGFR cells, MDA-MB-231/BCRP breast cancer cells, MDA-MB-231 cells, and HepG2 cells. The IC$_{50}$ values of chamaejasmin in CCRF-CEM cells and CEM/SDR5000 cells were both greater than 61 µM, and the IC$_{50}$ value of campylospermone A to CEM/ADR5000 cells was also greater than 61 µM. Therefore, chamaejasmin and campylospermone A were considered to be less cytotoxic. However, 7, 7′′-di-O-methylchamaejasmin had an IC$_{50}$ = 3.58 ± 0.09 µM for CCRF-CEM cells, and an IC$_{50}$ = 5.69 ± 0.51 µM for CEM/ADR5000 cells, and the IC$_{50}$ values of the other cancer cells were less than 8 µM, indicating that it had greater cytotoxicity, and could inhibit the growth of cancer cells.

Due to the cytotoxicity of biflavonoids, they have great potential in the treatment of cancer. For example, delicaflavone can inhibit the PI3K/Akt/mTOR and Ras/MEK/Erk signaling pathways in rectal cancer cells through the mitochondrial ROS pathway [303], inhibit the MSPK signaling pathway in HeLa cervical cancer cells, and induce cell apoptosis in G2/M phase [304]; hinokiflavone inhibits the induction of apoptosis of the NF-κB signaling pathway in liver cancer cells by activating the mitochondrial ROS/JNK/caspase pathway [305]. However, the spirobiflavonoids of abiesinolA-F extracted from Abies sachalinensis can effectively inhibiting the activation of NOR1, thereby inhibiting the activity of skin cancer [306]. In the literature on the toxicology of biflavonoids, only the toxicological experiments of biflavonoids with Aunits, B units, and spirobiflavones were included. For instance, 6-8′′ linkage biflavonoid (agathisflavone) had no cytotoxic activity [302], but 3′-8′′ linkage biflavonoids (amentoflavone, ginkgetin, isoginkgetin, and bilobetin) impaired the liver and renal cells [300] and 3-3′′ linkage biflavonoids (chamaejasmin, 7,7′′-di-O-methylchamaejasmin, and campylospermone A) had the capacity to inhibit the growth of cancer cells [10]. The biflavonoids with the ether bond between two flavonoid monomers (delicaflavone [301,304], hinokiflavone [305], and spirobiflavone [306]) had the ability of anticancer. Additionally, the biflavonoids with the hexamethyl ether substituents could reduce cell activity [301].
5.8. Anti-Angiogenesis

Li et al. [307] correlated zebrafish angiogenesis measurement with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) as the base chemometric analysis to identify the potential antiangiogenic active compounds of *Garcinia xanthochymus*. Preliminary biological activity results showed that amentoflavone can significantly inhibit the growth of subintestinal vessels at 10 and 20 µM, and down-regulate the expression of the Angpt2 and Tie2 genes in zebrafish embryos. In addition, the zebrafish model was used to evaluate the structure-activity relationship of seven biflavonoids (volkensiflavone, fukugetin, fukugeside, GB 1a, GB 1a with glycosides, GB 2a and GB 2a with glycosides) isolated from *Garcinia*. Fukugetin, which has anticancer effects, and can effectively inhibit the growth of subintestinal vessels. Both amentoflavone and fukugetin showed antiangiogenic effects on zebrafish for the first time [308].

5.9. Other

In addition, the other pharmacological effects of biflavonoids are: morelloflavone has 63% preventive inhibition of PLA2-induced myotoxic activity, its 38% cure rate inhibits myotoxicity, and it can inhibit edema formation and anticoagulation in a concentration-dependent manner, proving that morelloflavone can be developed as an inhibitor of secretory PLA2 such as in snake venom [309]; GB1 can inhibit α-glucosidase (IC$_{50}$ = 0.90 ± 0.01 mM) and aromatase (IC$_{50}$ = 0.28 ± 0.02 mM), and produce anti-plasmodium activity [310]; robustaflavone-4′-dimethyl ether can inhibit the accumulation of inflammatory cells by inhibiting the AKT and APK pathways, improve lung tissue damage, and reduce pulmonary edema [311]; rhusflavone, from Rhus parviflora, has a sedative and hypnotic effect, significantly binds to the GABAA-BZD receptor (IC$_{50}$ = 0.045 mM), and induces sleep [178]; II-3, I-5, II-7, I-4′,II-4′-hexahydroxy-(I-3,II-8)-flavonylflavanonol, from G arcinia nervosa var. pubescens King can produce 73.9% in 18.2 µg/mL Platelet-Activating-Factor Inhibition (IC$_{50}$ = 20.4 µM) [312]; and GB-2a-II-4′-OMe has a certain analgesic effect on the pain sensation induced by Marfrine, and its mechanism from analgesic effect is different of morphine [64]; amentoflavone can reduce the influence of gamma rays [313], and six biflavonoids of *Araucaria angustifolia* can improve DNA damage caused by ultraviolet radiation, including: amentoflavone, mono-O-methylamentoflavone, di-O-methylamentoflavone, ginkgetin, tri-O-methylamentoflavone, and tetra-O-methylamentoflavone [314]; GB-2a can inhibit the formation of melanin [315]; studies have shown that isoginkgetin is an inhibitor of mRNA splicing [316]; and chamaejasmine and ginkgetin can improve chronic dermatitis through anti-inflammatory effects [317–319]. All of the above are the pharmacological effects discovered and studied in recent years for biflavonoids, indicating that biflavonoids have great developmental prospects.
6. Pharmacokinetics

LC-MS/MS is a sensitive method used in pharmacokinetics, and it is also used in the pharmacokinetics of biflavonoids. It is used in the study of amentoflavone pharmacokinetics by different drug intake modes, including oral gavage (p.o.), intravenous (i.v.), or intraperitoneal (i.p.) injection in rat models. As a result, 90.7% ± 8.3% of the total amount of amentoflavone (300 mg/kg) by p.o., 73.2% ± 6.29% of amentoflavone (10 mg/kg) by i.v., and 70.2% ± 5.18% of the total amentoflavone (10 mg/kg) by i.p. could be detected. The total amentoflavone was found to circulate as conjugated metabolites in the plasma of rats after different modes of administration [320].

Amentoflavone was used as the standard of the study of pharmacokinetics of biflavonoids in LC-MS/MS. For instance, the pharmacokinetics of total hinokiflavone in rat plasma was studied by LC-MS/MS. It was discovered that $T_{1/2}$ was 6.10 ± 1.86 h [321].

However, there are other ways to calculate the main index of pharmacokinetics. The main components of Platycladus orientalis leaf extract include amentoflavone and hinokiflavone. Therefore, their pharmacokinetics in the plasma of a rat model were evaluated by UFLC-MS/MS. Their $T_{1/2}$ and T_{max} were 2.60 ± 1.34 h and 1.5 ± 0.00 h (amentoflavone), and 2.11 ± 0.29 h and 1.92 ± 0.20 h (hinokiflavone), respectively [322]. All the pharmacokinetics data of biflavonoids were showed in Table 12.

Name	Testline	Delivery Route	Doses (mg/kg)	Method	$T_{1/2}$ (h)	References
Amentoflavone	Rat plasma	i.p.	10	LC-MS/MS	3.42 ± 1.45	[320]
Amentoflavone	Rat plasma	i.v.	10	LC-MS/MS	5.88 ± 1.78	[320]
Amentoflavone	Rat plasma	p.o.	300	LC-MS/MS	11.3 ± 3.61	[320]
Amentoflavone	Rat plasma	p.o.	4.31	UFLC-MS/MS	2.60 ± 1.34	[322]
Hinokiflavone	Rat plasma	p.o.	4.30	UFLC-MS/MS	2.11 ± 0.29	[322]
Hinokiflavone	Rat plasma	i.v.	1.0	LC-MS/MS	6.10 ± 1.86	[321]

7. The Biosynthesis and Synthesis of Biflavonoids

7.1. The Biosynthesis of Biflavonoids

There were few references about the biosynthesis of biflavonoids, but it involves the oxidative coupling of two flavonoid units; therefore, the biosynthesis of flavonoids was a significant step to shape biflavonoids in plants. Alzand et al. [323] had reviewed the major pathways of flavonoid biosynthesis. Starting from phenylpropanoid metabolism and then giving the chalcone (trihydroxychalcone and tetrahydroxychalcone). The tetrahydroxychalcone is isomerised to naringenin, a key intermediate, which can transform to several end-flavonoids (Figure 13).

Furthermore, promoting the biosynthesis of biflavonoids can improve the yield of biflavonoids in plants by changing different catalytic enzymes or elicitors. Kicia Karinne Pereira Gromes-Copeland et al. [324] had converted the elicitors of 30 g/L of sucrose and 5 mg/L of 2,4-dichlorophenoxyacetic acid in Poincianella pyramidalic. Providing a higher accumulation of amentoflavone (16.44 mg/L) and agathisflavone (0.58 mg/L). Subsequently, they found that the amentoflavone biosynthesis is superior to agathisflavone. It seems to be related to the linkage type between two flavonoid units.
Figure 13. The biosynthesis of flavonoids. Enzyme names are abbreviated as follows: cinnamate-4-hydroxylase (C4H), chalcone isomerase (CHI), chalcone reductase (CHR), chalcone synthase (CHS), 4-coumaroyl-CoA-ligase (4CL), flavone synthase (FS I and FS II), isoflavone synthase (IFS), and Phe ammonia-lyase (PAL).

7.2. The Synthesis of Biflavonoids

Biflavonoids have great medicinal value and great development prospects. Therefore, the quantity needed in treatment and research will increase. However, it is impossible to obtain a large number of single and high-quality biflavonoids by simply extracting and separating the biflavonoids. In the process of synthesizing biflavonoids, Xue Ying et al. [325] reviewed the previous synthesis methods of biflavonoids in 2010, compared the differences between the various methods, and concluded that the synthesis method of biflavonoids is mainly to synthesize a flavonoid monomer. Then, two molecules of flavonoids coupled with boron-containing flavonoids are chosen by Suzuki or iodide-biflavonoids to obtain the final product, or the two molecules are coupled with the catalyst. The related C-C biosynthesis and reverse synthesis analysis, and the Ullmann ether condensation reaction of C-O-C, are also introduced. In the case of the literature that has been previously summarized, this review will conduct a general analysis of the new biflavonoid synthesis method, and compare the old method with the new one, so that readers can be more intuitive.

Until 2017, the syntheses of biflavonoids were the construction of a biflavonoid skeleton, and different types of dimers were synthesized under different synthesis conditions. First, the biflavonoid skeleton, bichalcones (S3) is obtained by Claisen–Schmidt aldol condensation from the different dialdehyde molecules (S1) with the corresponding acetophenone (S2). Second, the bichalcone skeleton can obtain biflavones (S4), through iodine-mediated or produce biaurones (S6) by mercury acetate oxidation [27]. Biflavans can be obtained by oxalic acid with EtOH [326], but biflavans will change to biflavones in MeOH with HCl [327]. (Scheme 1). These methods can synthesize different types of biflavonoids as long as different dialdehydes can be provided. For example, the di-
aldehydes S1 are 4,4′-biphenyldicarboxaldehyde, 4,4′-diaryletherdicarboxaldehyde, or 4,4′-bitoluenedicarboxaldehyde, and the biflanonoids are C-C, C-O-C, or C-C-C. It can be said that this Claisen–Schmidt aldol condensation of dialdehyde and acetophenone can be the synthesis route of most symmetric biflavonoids. According to the difference in the final product, bichalcones, biflavones, biflavans, and biaurones can also be obtained by autonomously controlling the conditions.

Scheme 1. Total synthesis of C-O-C, C-C-C, and C-C biflavonoids.

Due to the large number and types of biflavonoids connected to C-C, there are many related synthetic studies. Among them, Chen et al., achieved the synthesis of C-C biflavonoids through the construction of two flavonoid analogs in 2006: one flavonoid analog substituted by a halogen atom (bromide), and the other substituted by a group coupled by a transition metal-catalyzed cross-coupling method, namely two typical methods: the Suzuki coupling reaction and the Stille coupling reaction. The two flavonoid monomers are connected through the biaryl group. In addition, they synthesized a series of C-C 4′-4′ linkage biflavonoids a–f and compared the inhibition of sPLA2-IIA among them. Amentoflavone and ochnaflavone were used as controls. Subsequently, they found that the inhibitory potency of the synthesis biflavonoid a(IC50 = 3.0 + 0.9 M) was slightly better than ochnaflavone(IC50 = 3.5 + 0.6 M), the biflavonoids b(IC50 = 15.5 + 3.7 M), d(IC50 = 19.9 + 4.6 M), and f(IC50 = 23.2 + 3.1 M) possessed the comparative inhibitory potency with amentoflavone(IC50 = 23.8 + 3.4 M) [328]. The C-C 4′-4′ linkage biflavonoids a–f are shown in Figure 14.
Figure 14. The structure of C-C 4′-4′ linkage biflavonoids.

However, due to the low yield of the above method, it is impossible to obtain high-yield biflavonoids on a large scale; as a result, researchers have found other ways to synthesize C-C type biflavonoids. Brominated, iodinated, or chlorine substituted flavones (S7) and commercially available bis(pinacolato) diboron are reacted to obtain the corresponding pinacolato boronates (S8), and then S8 (120 mol%) and S7 under standard conditions (Pd(PPh₃)₄ (5 mol%), NaOH (400 mol%), and DMF-water (9:1), 100 °C) are reacted to obtain C-C biflavones. R₁, R₂, R₃, R₄, R′₁, R′₂, R′₃, and R′₄ are the positions attacked by brominated, iodinated, chlorine, or bis(pinacolato) diboron. Moon et al., adjusted the reaction conditions to catalytic PdCl₂(dppf) and K₂CO₃ in DMF at 90 °C, to reduce the loss of products [329] (Scheme 2).

Scheme 2. The synthesis of C-C biflavonoids.

According to the above method, Lim et al., processed chrysin into the precursor product required for the reaction and then performed the relevant synthesis under standard conditions to obtain a C-C (6-6′) anti-inflammatory biflavonoid G168 [330], which had the potency of inhibiting COX-2 mediated PGE2 production. For G168, the IC₅₀ value of inhibiting PGE2 production and againsting iNOS-mediated NO production were 0.1 µM and 50 µM. Furthermore, 5 mg/kg G168 was able to inhibit the paw edema in mice (30% inhibition) and 1–5 mg/kg G168 had the capacity to inhibit writhing in mice (57.3–82.9%). It has been proven that this method can synthesize amentoflavone-type biflavonoids [331] and Wikstrol A and B [332].

In addition to the synthesis shown in Scheme 1, C-C-C-type biflavonoids can be obtained by the Ullmann condensation reaction of the corresponding flavonoid monomers; assuming the relevant conditions are controlled, and the yield is generally high. For instance, the flavonoid monomer chrysin was used to obtain 7-hydroxy-8-hydroxymethyl-4′-methoxyisoflavonoid [333]. Therefore, the synthesis of C-C-C can be summarized as follows: flavone monomer S9 reacts with formaldehyde to form an intermediate, and then it reacts with another flavone monomer S′9 to form C-C-C type biflavone S10 (Scheme 3).

However, the yield of the synthesis in the above conditions is low. Thus, Xue Ying et al., modified the method in 2010; they used daidzein as the raw material, the catalyst was concentrated sulfuric acid, and the feed ratio of the raw material was daidzein. When the amount of catalyst was 10% of the molar ratio of daidzein, and the reaction temperature...
was 80 °C for 24 h, the highest yield of daidzein biflavonoid derivative was obtained [334]. Later, in 2011, Xue Ying et al., further improved the method: using 9% Lewis acid as a catalyst, isoflavones and formaldehyde as raw materials, and controlling the reaction temperature to 90 °C for 20 h; the yield can reach 82–85% [335].

Scheme 3. The synthesis of C-C-C biflavonoids.

In 2015, Baron and Mead first synthesized 3-benzylidene-dihydrofurochromen2-ones (S14), a flavan-chalcone type biflavonoid [336]. This was the first time de novo synthesis was attempted. The raw material of this synthetic route was flavonoids and chromene (S11). In the presence of catalytic Rh2(S-TBSP)4, the researchers treated S11 with a diazo derivative to obtain the donor-acceptor cyclopropane, and then used Sn(OTf)2 to rearrange the donor-acceptor cyclopropane to obtain the α-carbomethoxy lactone (S12). Then, removal from the hydroxyl protection and treatment with enolate lithium will result in a mixture of stereoisomers with a high hydroxyl alcohol ratio. The alcohol base was protected by TESCl and oxidized by DDQ to selectively oxidize the protected allyl alcohol to obtain aldehyde S13. After adding the aryl lithium reagent, 71% of the final product S14 was obtained, which was an inseparable isomer mixture, but it had all of the functions of target biflavonoids (Scheme 4). Compared with the synthetic methods of Scheme 1, the required conditions are more difficult to control, but it may become one kind of synthetic method that can control the separation of intermediate stereoisomers to better obtain a pure single product and heterobiflavonoids with different types of flavonoid monomers.

Scheme 4. The de novo synthesis of biflavonoids.

8. Conclusions

In recent years, the method of extracting active ingredients from herbs and using them in research experiments has been a key research direction, and also a huge challenge. As the components in plants are complex, there are many metabolites, and current extraction and separation technologies are still insufficient. A suitable method to efficiently extract, purify, and apply the required active ingredients is the goal we need to achieve. There are many
kinds of biflavonoids, and there is an increasing number of synthetic biflavonoids; they are used as anti-inflammatory and antioxidant therapeutics, as treatments for Alzheimer’s disease and Parkinson’s disease, and for other therapeutic applications. Their use is more significant in anticancer and antiviral treatment. Moreover, Qiu-xia et al. [337] developed and applied amentoflavone based on antisolvent freeze-drying technology, and studied its stability during storage and the stable type of drug efficacy to solve the problem of poor water solubility of amentoflavone micropowder, and improve the oral availability of the drug. In particular, *Ginkgo biloba* has been proven to be useful in clinical treatment [338]. In summary, there is still much room for developing the pharmacology and synthesizing of biflavonoids, but there is a large gap in the research on dosage forms that needs to be supplemented by additional research. This review mainly provides a more detailed report on the classification, pharmacology, pharmacokinetics, synthesis, and other aspects of biflavonoids, to assist researchers in exploring biflavonoids.

Author Contributions: X.H. (Xinqian He) and X.H. (Xin’an Huang) designed the paper. X.H. (Xinqian He) collected literature on the phyto-chemistry, pharmacokinetics, and synthesis. F.Y. collected literature on the pharmacology. X.H. (Xinqian He) wrote the paper. X.H. (Xin’an Huang) provided some suggestions and modified the language in the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a Natural Science Foundation of Guangdong Province (2018A030313731).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: All the authors declare no conflicts of interest.

References

1. Gontijo, V.S.; Dos Santos, M.H.; Viegas, C., Jr. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review. *Mini Rev. Med. Chem.* 2017, 17, 834–862. [CrossRef]
2. Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. *Molecules* 2017, 22, 299. [CrossRef] [PubMed]
3. Parveen, M.; Ilyas, M.; Mushfiq, M.; Busudan, O.A.; Muhaisen, H.M. A new biflavonoid from leaves of *Garcinia nervosa*. *Nat. Prod. Res.* 2004, 18, 269–275. [CrossRef] [PubMed]
4. Kamiya, K.; Satake, T. Chemical constituents of *Baeckea frutescens* leaves inhibit copper-induced low-density lipoprotein oxidation. *Fitoterapia* 2010, 81, 185–189. [CrossRef]
5. Hu, J.-F.; Garo, E.; Hough, G.W.; Goering, M.G.; O’Neil-Johnson, M.; Eldridge, G.R. Acuminatanol, the first 2’′,2′′′-bis-dihydrobiflavonol from the aqueous extract of *Trichoscypha acuminata*. *Tetrahedron Lett.* 2007, 48, 5747–5749. [CrossRef]
6. Nonaka, G.; Kawahara, O.; Nishioka, I. Tannins and Related Compounds. XV. A New Class of Dimeric Flavan-3-ol Gallates, Theasinensins A and B, and Proanthocyanidin Gallates from Green Tea Leaf. (1). *Chem. Pharm. Bull.* 1983, 31, 3906–3914. [CrossRef]
7. Yang, X.; Kang-Ping, X.; Zhen-Xing, Z.; Gui-Shan, T. Advances in chemodiversity from *Selaginella*. *Cent. South. Pharm.* 2017, 15, 129–142.
8. Yun-Yun, Y.; Lu, H.; Ping, W.; Guo-Zhu, S.; Tian-Tian, S.; Chang-Cai, B. Advances on chemical constituents and bioactivities of genus Stellera. *J. Chin. Mater. Med.* 2015, 40, 4324–4332. [CrossRef]
9. Reddy, B.A.K.; Reddy, N.P.; Gunasekar, D.; Blond, A.; Bodo, B. Biflavonoids from *Ochna lanceolata*. *Phytochem. Lett.* 2008, 1, 27–30. [CrossRef]
10. Adem, F.A.; Mbavang, A.T.; Kuete, V.; Heydenreich, M.; Ndakala, A.; Irungu, B.; Yenesew, A.; Efferth, T. Cytotoxicity of isoflavones and biflavonoids from *Ormocarpum kirkii* towards multi-factorial drug resistant cancer. *Phytomedicine* 2019, 58, 152853. [CrossRef]
11. Manga, S.S.E.; Tih, A.E.; Ghogomu, R.T.A.; Blond, B.B. Biflavonoid constituents of *Campylospermum mannii*. *Biochem. Syst. Ecol.* 2009, 37, 402–404. [CrossRef]
12. Chen, L.Y.; Chen, L.S.; Peng, C.F. Structural elucidation and bioactivity of biflavonoids from the stems of *Wikstroemia taiwanensis*. *Int. J. Mol. Sci.* 2012, 13, 1029–1038. [CrossRef]
13. Nyandat, E.; Hassanali, A.; Vicente, Y.D.; Multari, G.; Galeffi, C. The 7,7′-β-diglucoside of (2S,3R)-chamaejasmin from *Ormocarpum kirkii*. *Phytochemistry* 1990, 29, 2361–2364. [CrossRef]
14. Kim, A.R.; Jin, Q.; Jin, H.G.; Ko, H.J.; Woo, E.R. Phenolic compounds with IL-6 inhibitory activity from Aster yomena. *Arch. Pharm. Res.* 2014, 37, 845–851. [CrossRef]

15. Li, J.; Lu, L.Y.; Zeng, L.H.; Zhang, C.; Hu, J.L.; Li, X.R. Sikokianin D, a new C-3/C-3'-biflavonone from the roots of Wikstroemia indica. *Molecules* 2012, 17, 7792–7797. [CrossRef] [PubMed]

16. Xu, Y.-J.; Foubert, K.; Dhooghe, L.; Lemière, F.; Maregesi, S.; Coleman, C.M.; Zou, Y.; Ferreira, D.; Apers, S.; Pieters, L. Rapid isolation and identification of minor natural products by LC–MS, LC–SPE–NMR and ECD: Isoflavanones, biflavonones and bisdihydocoumarins from *Ormocarpum kirkii*. *Phytochemistry* 2012, 79, 121–128. [CrossRef]

17. Dhooghe, L.; Maregesi, S.; Mincheva, I.; Ferreira, D.; Marais, J.P.J.; Lemière, F.; Matheussen, A.; Cos, P.; Maes, L.; Vlie tinck, A.; et al. Antiplasmodial activity of (I-3,II-3)-biflavonoids and other constituents from *Ormocarpum kirkii*. *Phytochemistry* 2010, 71, 785–791. [CrossRef]

18. Li, X.-Q.; Rahman, K.; Zhu, J.-Y.; Zhang, H. Chemical Constituents and Pharmacological Activities of Stellera chamaejasme. *Curr. Pharm. Des.* 2018, 24, 2825–2838. [CrossRef]

19. NISHIMUTA, S.; Taki, M.; Takaishi, S.; Iijima, Y.; Akiyama, T. Structures of 4-aryl-coumarin (neoflavone) dimers isolated from *Pistacia chinensis* BUNGE and their estrogen-like activity. *Chem. Pharm. Bull.* 2000, 48, 505–508. [CrossRef] [PubMed]

20. Zhi, X.; Jian-hui, S. Research Progress of Biflavonoids. *China J. Mod. Med.* 2004, 14, 88–91.

21. Chien, S.-C.; Liu, H.-K.; Kuo, Y.-H. Two New Compounds from the Leaves of Calocedrus microlepae var. formosana. *Chem. Pharm. Bull.* 2004, 52, 762–763. [CrossRef]

22. Lee, C.-W.; Choi, H.-J.; Kim, H.-S.; Kim, D.-H.; Chang, I.-S.; Moon, H.T.; Lee, S.-Y.; Oh, W.K.; Woo, E.-R. Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. *Bioorg. Med. Chem.* 2008, 16, 732–738. [CrossRef] [PubMed]

23. Kamil, M.; Ilyas, M.; Rahman, W.; Asaka, N.; Okigawa, M.; Kawano, N. Taivaniaflavone and its derivatives: A new series of biflavones from Taivania cryptomerioides Hayata. *J. Chem. Soc. Perkin Trans. 1* 1981, 12, 535–539. [CrossRef]

24. Sakasai, M.; Fukui, H.; Yamane, H.; Kyaw, A.N.; Tahara, S. A New Class of Biflavonoids: 2'-Hydroxy genistein Dimers from the Roots of White Lupin. *Z. Nat. C.* 2000, 55, 165–174. [CrossRef] [PubMed]

25. Zhao, X.; Jiang, H.-X.; Huang, H.; Zhu, R.-L.; Jiang, B. Ring-B Linked Bidihydroflavonoids from Thuidium kanedae Sak. *Chin. J. Chem.* 2006, 24, 393–395. [CrossRef]

26. Hamada, T. Studies on the medicinal plant in the “Sambutsu-cho” of Bungo Province possessed by the Kumamoto Clan (II); studies on the medicinal herbs. *Yakushigaku Zasshi* 1992, 27, 117–124.

27. Wan, H.; Ge, L.; Li, J.; Zhang, K.; Wu, W.; Peng, S.; Zou, X.; Zhou, H.; Zou, B.; Zeng, X. Effects of a novel biflavonoid of Lonicerajaponica flower buds on modulating apoptosis under different oxidative conditions in hepatoma cells. *Phytomedicine* 2019, 57, 282–291. [CrossRef]

28. Sum, T.H.; Sum, T.J.; Collins, S.; Galloway, W.; Twigg, D.G.; Hollfelder, F.; Spring, D.R. Divergent synthesis of biflavonoids yields novel inhibitors of the aggregation of amyloid beta (1–42). *Org. Biomol. Chem.* 2017, 15, 4554–4570. [CrossRef]

29. Zheng, R.; Rui-jie, C.; Yan-ying, Y.; Shi-wen, C. Research Progresses on Chemical Constituents of Genus Daphne genus and Their Bioactivities. *Food Sci.* 2009, 30, 249–258.

30. Duanrui, S.; Shouxun, Z. Non-alkaloid constituents from aerial parts of Stephania tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. *Bioorg. Med. Chem.* 2018, 36, 553–559. [CrossRef] [PubMed]

31. Kamil, M.; Ilyas, M.; Rahman, W.; Hasaka, N.; Okigawa, M.; Kawano, N. Taivaniaflavone and its derivatives: A new series of biflavones from Taivania cryptomerioides Hayata. *J. Chem. Soc. Perkin Trans. 1* 1981, 12, 535–539. [CrossRef]

32. Sakasai, M.; Fukui, H.; Yamane, H.; Kyaw, A.N.; Tahara, S. A New Class of Biflavonoids: 2'-Hydroxy genistein Dimers from the Roots of White Lupin. *Z. Nat. C.* 2000, 55, 165–174. [CrossRef] [PubMed]

33. Zhao, X.; Jiang, H.-X.; Huang, H.; Zhu, R.-L.; Jiang, B. Ring-B Linked Bidihydroflavonoids from Thuidium kanedae Sak. *Chin. J. Chem.* 2006, 24, 393–395. [CrossRef]

34. Carneiro, F.J.C.; Boralle, N.; Silva, D.H.S.; Lopes, L.M.X. Bi- and tetraflavonoids from Aristolochia ridicula. *Phytochemistry* 2008, 69, 3095–3102. [CrossRef] [PubMed]

35. Machado, M.B.; Lopes, L.M.X. Tetraflavonoid and biflavonoids from Aristolochia ridicula. *Phytochemistry* 2005, 66, 669–674. [CrossRef] [PubMed]

36. Carneiro, F.J.C.; Boralle, N.; Silva, D.H.S.; Lopes, L.M.X. Bi- and tetraflavonoids from Aristolochia ridicula. *Phytochemistry* 2000, 55, 823–832. [CrossRef]

37. Lee, N.-Y.; Min, H.-Y.; Lee, J.; Nam, J.-W.; Lee, Y.-J.; Han, A.-R.; Wiryawan, A.; Supraptto, W.; Lee, S.K.; Seo, E.-K. Identification of a new cytotoxic biflavone from Selaginella doederleinii. *Chem. Pharm. Bull.* 2008, 56, 1360–1361. [CrossRef]

38. Park, S.Y.; Nguyen, P.H.; Kim, G.; Jang, S.N.; Lee, G.H.; Phuc, N.M.; Wu, Z.; Liu, K.H. Strong and Selective Inhibitory Effects of the Biflavonoid Selamarcisina A against CYP2C8 and CYP2C9 Enzyme Activities in Human Liver Microsomes. *Pharmaceutics* 2020, 12, 343. [CrossRef]

39. Lin, L.-C.; Kuo, Y.-C.; Chou, C.-J. Cytotoxic biflavonoids from Selaginella delicatula. *J. Nat. Prod.* 2000, 63, 627–630. [CrossRef] [PubMed]

40. Kassem, M.E.S.; El-Desoky, S.K.; Sharaf, M. Biphenyl esters and biflavonoids from the fruits of Schinus terebenthifolius. *Chem. Nat. Compd.* 2004, 40, 447–450. [CrossRef]

41. Chen, J.-J.; Duh, C.-Y.; Chen, J.-F. New cytotoxic biflavonoids from Selaginella delicatula. *Planta Med.* 2005, 71, 659–665. [CrossRef]

42. Gu, S.; Xu, L.; Sun, N. Studies on chemical compositions of Podocarpus imbricatus. *China J. Chin. Materia Med.* 1995, 20, 105–106.

43. Bahia, M.V.; Santos, J.B.D.; David, J.P.D.L.; David, J.M. Biflavonoids and other phenolics from Caesalpinia pyramidalis (Fabaceae). *J. Braz. Chem. Soc.* 2005, 16, 1402–1405. [CrossRef]

44. Aguilar, M.I.; Romero, M.G.; Chávez, M.I.; King-Diaz, B.; Lotina-Hennsen, B. Biflavonoids Isolated from Selaginella lepidophylla Inhibit Photosynthesis in Spinach Chloroplasts. *J. Agric. Food Chem.* 2008, 56, 6994–7000. [CrossRef] [PubMed]
43. Zheng, J.; Wang, N.; Fan, M.; Chen, H.; Liu, H.; Yao, X. A new biflavonoid from Selaginella uncinata. *Asian J. Tradit. Med.* 2007, 2, 92–97.
44. Zheng, J.-X.; Wang, N.-L.; Liu, H.-W.; Chen, H.-F.; Li, M.-M.; Wu, L.-Y.; Fan, M.; Yao, X.-S. Four new biflavonoids from Selaginella uncinata and their anti-anoxic effect. *J. Asian Nat. Prod. Res.* 2008, 10, 945–952. [CrossRef] [PubMed]
45. Cane, H.; Saidi, N.; Yahya, M.; Darusman, D.; Erlidawati, E.; Safrida, S.; Musik, M. Macrophylloflavone: A New Biflavonoid from Garcinia macrophylla Mart. (Clusiaceae) for Antibacterial, Antioxidant, and Anti-Type 2 Diabetes Mellitus Activities. *Sci. World J.* 2020, 20293129. [CrossRef] [PubMed]
46. Chatterjee, A.; Kotoky, J.; Das, K.K.; Banerji, J.; Chakraborty, T. Abiesin, a biflavonoid of abies webbiana. *Phytochemistry* 1984, 23, 704–705. [CrossRef]
47. Seeger, T.; Zinsmeister, H.D.; Geiger, H. The Biflavonoid Pattern of Rhytididendelphus squarrosus (Hedw.) Warnst. *Z. Nat. C* 1989, 44, 189–192. [CrossRef]
48. Anhurt, S.; Seeger, T.; Zinsmeister, H.D.; Geiger, H. New Dihydrobiflavones from the Moss Plagiomnium cuspidatum. *Z. Nat. C* 1989, 44, 189–192. [CrossRef]
49. Markham, K.R.; Andersen, Ø.M.; Viotto, E.S. Unique biflavonoid types from the moss Dicranoloma robustum. *Phytochemistry* 1988, 27, 1745–1749. [CrossRef]
50. Rampendahl, C.; Seeger, T.; Geiger, H.; Zinsmeister, H.D. The biflavonoids of Plagiomnium undulatum. *Phytochemistry* 1996, 41, 1621–1624. [CrossRef]
51. Matamela, T.; Green, I.R.; Mtunzi, F.M. A Novel Biflavonoid from Rhus leptocarya. *Nat. Prod. Commun.* 2013, 8, 1237–1240. [CrossRef]
52. Tih, A.E.; Ghogomu, R.T.; Sondengam, B.L.; Caux, C.; Bodo, B. Minor biflavonoids from Lophira alata leaves. *J. Nat. Prod.* 2006, 69, 1206–1208. [CrossRef]
53. Pieters, L.; Mbwambo, Z.H.; Kapingu, M.J.; Moshi, M.J.; Machumi, F.; Apers, S.; Cos, P.; Ferreira, D.; Marais, J.P.; Berge, D.V.; et al. Antiparasitic Activity of Some Xanthones and Biflavonoids and Identification of a New Biflavonoid from the Root Bark of Garcinia livingstonei. *Planta Med.* 2006, 72, P_003. [CrossRef]
54. Al-Shagdari, A.; Alarcon, A.B.; Cuesta-Rubio, O.; Piccinelli, A.L.; Rastrelli, L. Biflavonoids, main constituents from Garcinia xanthochymus. *J. Nat. Prod.* 2008, 71, 1206–1208. [CrossRef]
55. Min, Y. Current Status of Research on Biflavonoids in Garcinia. *Guangdong Pharm.* 2004, 14, 5–8.
56. Konoshima, M.; Ishikawa, Y. Fukugiside, the first biflavonoid glycoside from garcinia spicata hook. f. *Tetrahedron Lett.* 1979, 20, 1717–1720. [CrossRef]
57. Terashima, K.; Aqil, M.; Niwa, M. Garcinianin, a novel biflavonoid from the roots of garcinia kola. *Heterocycles* 1995, 41, 2245–2250.
58. Osorio, E.; Londono, J.; Bastida, J. Low-density lipoprotein (LDL)-antioxidant biflavonoids from Garcinia madruno. *Nat. Prod. Lett.* 2005, 19, 704–705. [CrossRef] [PubMed]
59. Nakajima, Y.; Yamada, R.; Sasaki, H.; Nogami, Y. Biflavonoids from the unripe fruits of Clusia paralicola and their anti-anemic activity. *Nat. Prod. Commun.* 2012, 7, 1597–1600. [CrossRef] [PubMed]
60. Iwu, M.; Igboko, O. Flavonoids of Garcinia kola Seeds. *J. Nat. Prod.* 1982, 45, 650–651. [CrossRef]
61. Cechinel Filho, V.; da Silva, K.L.; de Souza, M.M.; Oliveira, A.E.; Yunes, R.A.; Guimaraes, C.L.; Verdi, L.G.; Simonatto, E.L.; Dell Monache, F. I3-naringenin-I8–4′-Ome-eriodictyol: A new potential analgesic agent isolated from Rheedia gardneriana leaves. *Z. Nat. C* 2000, 55, 820–823.
62. Konoshima, M.; Ishikawa, Y.; Miyahara, S.; Yen, K.-Y. The constitution of biflavonoids from Garcinia plants. *Tetrahedron Lett.* 1970, 11, 4203–4206. [CrossRef]
63. Terashima, K.; Kondo, Y.; Aqil, M.; Waziri, M.; Niwa, M. A study of biflavonones from the stems of garcinia kola (GUTTIFERAE). *Heterocycles* 1999, 50, 283–290. [CrossRef]
64. Terashima, K.; Kondo, Y.; Aqil, M.; Waziri, M.; Niwa, M. A study of biflavonones from the stems of garcinia kola (GUTTIFERAE). *Heterocycles* 1999, 50, 283–290. [CrossRef]
65. Loo, P.V.; Bruyn, A.D.; Verzele, M. On the liquid chromatography and identification of the flavonoids, present in the “s镛b tannic acid” extracted from Rhus coriaria. *Chromatographia* 1988, 25, 15–20.
72. Zhang, X.; Wang, G.; Huang, W.; Ye, W.; Li, Y. Biflavonoids from the Roots of Wikstroemia indica. Nat. Prod. Commun. 2011, 6, 1111–1114. [CrossRef]

73. Ito, C.; Itogawa, M.; Miyamoto, Y.; Rao, K.S.; Takayasu, J.; Okuda, Y.; Mukainaka, T.; Tokuda, H.; Nishino, H.; Furukawa, H. A New Biflavonoid from Calophyllum pinciflorum with Antitumor-Promoting Activity. J. Nat. Prod. 1999, 62, 1668–1671. [CrossRef]

74. Ferratti, J.; Terreaux, C.; Kurtán, T.; Szikszai-Kiss, A.; Antus, S.; Msonthi, J.D.; Hostettmann, K. Isolation and On-Line LC/CD Analysis of 3,8'-Linked Biflavonoids from Guilia involucrata. Heli. Chim. Acta 2003, 86, 2768–2778. [CrossRef]

75. Babu, V.; Ali, S.M.; Sultana, S.; Ilyas, M. A biflavonoid from Garcinia nervosa. [CrossRef]

76. Ferrari, J.; Terreaux, C.; Kurtán, T.; Szikszai-Kiss, A.; Antus, S.; Msonthi, J.D.; Hostettmann, K. Isolation and On-Line LC/CD Analysis of 3,8'-Linked Biflavonoids from Guilia involucrata. Heli. Chim. Acta 2003, 86, 2768–2778. [CrossRef]

77. Niwa, M.; Terashima, K.; Ishida, T.; Furukawa, T.; Takaya, Y. Constituents of green and ripened fruit of Garcinia subelliptica. Heterocycles 2008, 75, 407–413. [CrossRef]

78. Jingxian, P.; Huyi, Z.; Xianbin, Y.; Meifang, H. Biflavones from the testa of Ginkgo biloba L. [CrossRef]

79. Wenli, M.; Jiao, W.; Haofu, D. Advances in studies on chemical constituents in plants of Cephalotaxus Sieb. et Zucc. and their pharmacological activities. Chin. Tradit. Herb. Drugs 2006, 37, 452–458.

80. Chun, Y.; Jun-Song, W.; Ling-Yi, K. A new biflavone from needles of Taxus canadensis. China J. Chin. Mater. Med. 2016, 41, 443–445.

81. Murthy, S.S.N. A biflavonan from Semecarpus anacardium. Phytochemistry 1983, 22, 2636–2638. [CrossRef]

82. Zhang, R.R.; Lin, Z.X.; Lu, X.Y.; Xia, X.; Jiang, R.W.; Chen, Q.B. CGY-1, a biflavonoid isolated from Cardiocrinum giganteum seeds, improves memory deficits by modulating the cholinergic system in scopolamine-treated mice. Biomed. Pharmac. 2019, 111, 496–502. [CrossRef]

83. Zhang, R.R.; Lin, Z.X.; Lu, X.Y.; Xia, X.; Jiang, R.W.; Chen, Q.B. CGY-1, a biflavonoid isolated from Cardiocrinum giganteum seeds, improves memory deficits by modulating the cholinergic system in scopolamine-treated mice. Biomed. Pharmac. 2019, 111, 496–502. [CrossRef]

84. Li, M.; Li, B.; Xia, Z.M.; Tian, Y.; Zhang, D.; Rui, W.J.; Dong, J.X.; Xiao, F.J. Anticancer Effects of Five Biflavonoids from Ginkgo biloba. J. MUC (Natural Sciences Edition) 2012, 5, 135–136. [CrossRef] [PubMed]

85. Xiao, S.; Mu, Z.Q.; Cheng, C.R.; Ding, J. Three new biflavonoids from the branches and leaves of Cephalotaxus oliveri and their antioxidant activity. Nat. Prod. Res. 2019, 33, 321–327. [CrossRef]

86. Liu, T.X.; Wang, S.H. Research Progress on Use of Cycas Revolute. J. MUC (Natural Sciences Edition) 2016, 25, 49–54.

87. Das, B.; Mahender, G.; Koteswara Rao, Y.; Prabhakar, A.; Jagadeesh, B. Biflavonoids from Cycas beddomei. Chin. J. Exp. Tradit. Med. Formulae 2009, 15, 231–233. [CrossRef]

88. Wang, Y.; Huang, J.; Hua, H.; Sun, B.; Gao, H.; Wu, L. A new biflavone from the twigs and leaves of Taxus cuspidata Sieb et Zucc. Asian J. Tradit. Med. 2007, 2, 235–238. [CrossRef] [PubMed]

89. Sun, M.; Feng, X.; Yin, M.; Chen, Y.; Zhao, X.; Dong, Y. A biflavonoid from stens and leaves of Lonicerac macranthoides. Chem. Nat. Compld. 2012, 48, 231–233. [CrossRef]

90. Rao, N.S.P.; Row, L.R.; Brown, R.T. Phenolic constituents of Semecarpus anacardium. Phytochemistry 1973, 12, 671–681. [CrossRef]

91. Murthy, S.S.; Rao, N.S.; Anjaneyulu, A.S.; Row, L.R. Confirmation of structures of semecarpus biflavonanes A1 and A2. Planta Med. 1981, 43, 46–50. [CrossRef]

92. Murthy, S.S.N. New biflavonoids from Semecarpus anacardium Linn. Chrim. Acta Tisc. Istand. 1992, 20, 33.

93. Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant proanthocyanidins. J. Chem. Soc. Perkin Trans. 1 1972, 1387–1399. [CrossRef]

94. Ölschläger, C.; Regos, I.; Zeller, F.J.; Treutter, D. Identification of galloylated propelargonidins and procyanidins in buckwheat tenuipes BCC 1614. Planta Med. 1986, 66, 756–758. [CrossRef] [PubMed]

95. Kashiwada, Y.; Nonaka, G.-I.; Nishio, I. Tannins and Related Compounds. Phytochemistry 1983, 22, 237–241. [CrossRef]

96. Geiss, F.; Heinrich, M.; Huneker, D.; Rimpler, H. Proanthocyanidins with (+)-epicatechin units from Byrsonima crassifolia bark. Phytochemistry 1995, 39, 635–643. [CrossRef]
102. Viviers, P.M.; Young, D.A.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 6. The sequence of units, coupling positions and absolute configuration of the first linear [4,6,4]-triflavanoid with terminal 3,4-diol function. J. Chem. Soc. Perkin Trans. 1 1982, 13, 535–540. [CrossRef]

103. Steenkamp, J.A.; Malan, J.C.S.; Roux, D.G.; Ferreira, D. Oligomeric flavanoids. Part 1. Novel dimeric profisetinidins from Colophospermum mopane. J. Chem. Soc. Perkin Trans. 1 1988, 6, 1325–1330. [CrossRef]

104. Ferreira, D.; Cornelius du Preez, I.; Wijnmaalen, J.C.; Roux, D.G. Biflavanoid proguibourtinidin carboxylic acids and their biflavanoid homologues from Acacia luederitzii. Phytochemistry 1985, 24, 2415–2422. [CrossRef]

105. Malan, E.; Swinny, E.; Ferreira, D.; Steynberg, P. The structure and synthesis of proguibourtinidins from Cassia abbreviata. Phytochemistry 1996, 41, 1209–1213. [CrossRef]

106. Park, K.H.; Kim, S.K.; Choi, S.E.; Kwon, J.H.; Oh, M.H.; Lee, M.W. Three New Stereoisomers of Condensed Tannins from the Roots of Rosa multiflora. Chem. Pharm. Bull. 2010, 58, 1227–1231. [CrossRef]

107. Lou, H.; Yuan, H.; Ma, B.; Ren, D.; Ji, M.; Oka, S. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 2004, 65, 2391–2399. [CrossRef]

108. Yeap Foo, L.; Karchesy, J.J. Procyanidin dimers and trimers from Douglas fir inner bark. Phytochemistry 1989, 28, 1743–1747. [CrossRef]

109. Foo, L.Y.; Newman, R.; Waghorn, G.; McNabb, W.C.; Uylatt, M.J. Proanthocyanidins from Lotus corniculatus. Phytochemistry 1996, 41, 617–624. [CrossRef]

110. Malan, E.; Sireeparsad, A. The structure and synthesis of the first dimeric proteracacinidins from Acacia galpinii. Phytochemistry 1995, 38, 237–239. [CrossRef]

111. Bennie, L.; Coetzee, J.; Malan, E. The structure and synthesis of the first dimeric proteracacinidins from Acacia galpinii and Acacia caffra. Phytochemistry 2002, 60, 521–532. [CrossRef]

112. Li, J.; Xu, P.-S.; Zou, Z.-X.; Zou, H.; Long, H.-P.; Tan, L.-H.; Liu, R.-H.; Wang, Y.-K.; Xu, K.-P.; Tan, G.-S. Three new compounds from the roots of Juglans mandshurica Maxim. Phytochem. Lett. 2017, 20, 40–44. [CrossRef]

113. Lou, H.; Yuan, H.; Ma, B.; Ren, D.; Ji, M.; Oka, S. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 2004, 65, 2391–2399. [CrossRef]

114. Nonaka, G.; Nishio, I.; Nagasawa, T.; Oura, H. Tannins and Related Compounds. I. Rhubarb (1). Chem. Pharm. Bull. 1981, 29, 2862–2870. [CrossRef]

115. Bekker, M.; Bekker, R.; Brandt, V.E. Two flavonoid glycosides and a miscellaneous flavan from the bark of Guibourtia coleosperma. Phytochemistry 2006, 67, 818–823. [CrossRef]

116. Cheng, H.-Y.; Yang, C.-M.; Lin, T.-C.; Shieh, D.-E.; Lin, C.-C. ent-Epiafzelechin-(4α–>8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J. Med. Microbiol. 2006, 55, 201–206. [CrossRef] [PubMed]

117. Hartisch, C.; Kolodziej, H. Galloylhamameloses and proanthocyanidins from Hamamelis virginiana. Phytochemistry 1996, 42, 191–198. [CrossRef]

118. Nonaka, G.-I.; Miwa, N.; Nishio, I. Stilbene glycoside gallates and proanthocyanidins from Polygonum multiflorum. Phytochemistry 1982, 21, 439–442. [CrossRef]

119. Hsu, F.-L.; Nonaka, G.-I.; Nishio, I. Acylated flavanols and procyanidins from Salix sieboldiana. Phytochemistry 1985, 24, 2089–2092. [CrossRef]

120. Lokvam, J.; Coley, P.D.; Kursar, T.A. Cinnamoyl glucosides of catechin and dimeric procyanidins from young leaves of Inga umbellifera (Fabaceae). Phytochemistry 2004, 65, 351–358. [CrossRef]

121. Zhang, B.; Nonaka, G.-I.; Nishioka, I. Potentillanin, a biflavanoid and a procyanidin glycoside from Potentilla viscosa. Phytochemistry 1988, 27, 3277–3280. [CrossRef]

122. Ishimaru, K.; Nonaka, G.-I.; Nishio, I. Flavan-3-ol and procyanidin glycosides from quercus miyagi. Phytochemistry 1987, 26, 1167–1170. [CrossRef]

123. Tanaka, T.; Nonaka, G.-I.; Nishio, I. 7-O-Galloyl-(+)-catechin and 3-O-galloylprocyanidin B-3 from Sanguisorba officinalis. Phytochemistry 1983, 22, 2575–2578. [CrossRef]

124. Abe, I.; Seki, T.; Noguchi, H.; Kashiyada, Y. Galloyl Esters from Rhubarb are Potent Inhibitors of Squalene Epoxidase, a Key Enzyme in Cholesterol Biosynthesis. Planta Med. 2000, 66, 753–756. [CrossRef] [PubMed]

125. Liimatainen, J.; Karonen, M.; Sinkkonen, J. Procyanidin xylosides from the bark of Betula pendula. Phytochemistry 2004, 65, 2391–2399. [CrossRef]

126. Cho, Y.J. Isolation of 3-Galloylprocyanidin B3, a Glucosyltransferase Inhibitor from the Korean Green Tea Leaves. J. Appl. Biol. Chem. 2000, 43, 273–276.

127. Cong, H.J.; Zhang, S.W.; Zhang, C.; Huang, Y.J.; Xuan, L.J. A novel dimeric procyanidin glucoside from Polygonum aviculare. Chin. Chem. Lett. 2012, 23, 820–822. [CrossRef]

128. Ozawa, T.; Hiroto, M.; Imagawa, H. Procyanidins from Sago Palm Pith. Agric. Biol. Chem. 1990, 54, 217–218. [CrossRef]

129. Reddy, K.R.S.; Srimannarayana, G.; Rao, N.V.S. Ein proanthocyanidin-dimenes aus cassia auriculata-blumen. Cheminform 1973, 4, 291. [CrossRef]

130. Ariga, T.; Asao, Y. Isolation, Identification and Organoleptic Astringency of Dimeric Proanthocyanidins Occurring in Azuki Beans. Agric. Biol. Chem. 1981, 45, 2709–2712.
131. Middelkoop, T.B.; Labadie, R.P. The Action of Saraca asoca Roxb. de Wilde Bark on the PGH2 Synthetase Enzyme Complex of the Sheep Vesicular Gland. Z. Nat. C 1985, 40, 523–526. [CrossRef]
132. Morimoto, S.; Nonaka, G.-I.; Chen, R.-F.; Nishioka, I. Tannins and Related Compounds. LXXI: Isolation and Structures of Novel Bi- and Triflavanoids from the Leaves of Cassia fistula L. Chem. Pharm. Bull. 1988, 36, 39–47. [CrossRef]
133. Weinges, K.; Göritz, K.; Nader, F. Zur Kenntnis der Proanthocyanidine, XI1) Konfigurationsbestimmung von C30H26O12-Procyanidinen und Strukturauflärung eines neuen Procyanidins. Eur. J. Org. Chem. 1986, 715, 164–171.
134. Messanga, B.B.; Ghogomu, R.; Sondengam, B.L.; Martin, M.-T.; Blond, A.; Brouard, J.-P.; Bodo, B. Calodenin C: A New Guiaboutinidol-(4α→8)-afzelechin from Ochna calodendron. Planta Med. 1998, 64, 760–761. [CrossRef] [PubMed]
135. Karioti, A.; Bilia, A.R.; Gabbiani, C.; Messori, L.; Skaltsa, H. Proanthocyanidin glycosides from the leaves of Viburnum ichangense (Hemsl.) Rehd. Helv. Chim. Acta 1981, 64, 119–128. [CrossRef]
136. Nonaka, G.; Nonaka, G.-I.; Chen, R.-F.; Nishioka, I. Tannins and Related Compounds. XXXI. Isolation and Characterization of Proanthocyanidins in Cassia fistula L. and C. javanica L. Chem. Pharm. Bull. 1990, 38, 888–893. [CrossRef]
137. Nunes, D.S.; Haag, A.; Bestmann, H.-J. Two proanthocyanidins from the bark of Dalbergia monelari. Phytochemistry 1989, 28, 2183–2186. [CrossRef]
138. Messanga, B.B.; Ghogomu, R.; Sondengam, B.L.; Martin, M.-T.; Blond, A.; Brouard, J.-P.; Bodo, B. Calodenin C: A New Guiaboutinidol-(4α→8)-afzelechin from Ochna calodendron. Planta Med. 1998, 64, 760–761. [CrossRef] [PubMed]
139. Bicker, J.; Petereit, F.; Hensel, A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia 2009, 80, 483–495. [CrossRef] [PubMed]
140. Monache, F.D.; Pomponi, M.; Marini-Bettolo, G.B.; D’Albuquerque, I.L.; de Lima, O.G. A methylated catechin and proanthocyanidins from the cestaceaee. Phytochemistry 1976, 15, 573–574. [CrossRef]
141. Nonaka, G.; Nishioka, I. Novel Biflavonoids, Chalcon-flavan Dimers from Gambir. Chem. Pharm. Bull. 1980, 28, 3145–3149. [CrossRef]
142. Achenbach, H.; Benirschke, G. Joannesialactone and other compounds from Joannesia princeps. Phytochemistry 1997, 45, 149–157. [CrossRef]
143. Karioti, A.; Bilia, A.R.; Gabbiani, C.; Messori, L.; Skaltsa, H. Proanthocyanidin glycosides from the leaves of Quercus ilex L. (Fagaceae). Tetrahedron Lett. 2009, 50, 1771–1776. [CrossRef]
144. Wu, B.; Wang, K.; Wu, X. A New Phenolic Diglycoside Produced in Response to Copper Toxicity and a New Flavan Dimer from the Leaves of Viburnum ichangense (Hems1.) Rehd. Helv. Chim. Acta 2011, 94, 1677–1684. [CrossRef]
145. Foo, L.Y.; Karchesy, J.J. Procyanidin polymers of Douglas fir bark: Structure from degradation with phloroglucinol. Phytochemistry 1987, 28, 3185–3190. [CrossRef]
146. Kusano, R.; Ogawa, S.; Matsuo, Y.; Tanaka, T.; Yazaki, Y.; Kouno, I. α-Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark Proanthocyanidins. J. Nat. Prod. 2011, 74, 119–128. [CrossRef]
147. Palazzo de Mello, J.; Petereit, F.; Nahrstedt, A. Prorobinetinidin from Stryphnodendron adstringens. Phytochemistry 1996, 42, 857–862. [CrossRef]
148. Botha, J.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]-biflavonoids. J. Chem. Soc. Perkin Trans. 1 1981, 12, 1235–1245. [CrossRef]
149. Viviers, P.M.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Saayman, H.M. Synthesis of condensed tannins. Part 7. Angular [4,6:4,8]-biflavanoids. J. Chem. Soc. Perkin Trans. 1 1981, 17–22. [CrossRef]
150. Palazzo de Mello, J.C.; Petereit, F.; Nahrstedt, A. A dimeric proanthocyanidin from Stryphnodendron adstringens. Phytochemistry 1999, 51, 1105–1107. [CrossRef]
151. Makkumatuolov, A.B.; Kuliev, Z.A.; Vdovin, A.D.; Malikov, V.M. Proanthocyanidins of Polygonum corarium. II. Chem. Nat. Compd. 1994, 30, 214–222. [CrossRef]
152. Botha, J.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]- biflavonoids. J. Chem. Soc. Perkin Trans. 1 1981, 12, 1235–1245. [CrossRef]
153. Viviers, P.M.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Saayman, H.M. Synthesis of condensed tannins. Part 7. Angular [4,6:4,8]-prorobinetinidin triflavanoids from black wattle (‘Mimosa’) bark extract. J. Chem. Soc. Perkin Trans. 1 1983, 14, 17–22. [CrossRef]
154. Palazzo de Mello, J.C.; Petereit, F.; Nahrstedt, A. A dimeric proanthocyanidin from Stryphnodendron adstringens. Phytochemistry 1999, 51, 1105–1107. [CrossRef]
155. Makkumatuolov, A.B.; Kuliev, Z.A.; Vdovin, A.D.; Malikov, V.M. Proanthocyanidins of Polygonum corarium. II. Chem. Nat. Compd. 1994, 30, 214–222. [CrossRef]
156. Danne, A.; Petereit, F.; Nahrstedt, A. Proanthocyanidins from Cistus incanus. Phytochemistry 1993, 34, 1129–1133. [CrossRef]
157. Schmidt, C.A.; Murillo, R.; Heinzmann, B.; Laufier, S.; Wray, V.; Merfort, I. Structural and Conformational Analysis of Proanthocyanidins from Parapiptadenia rigida and Their Wound-Healing Properties. J. Nat. Prod. 2011, 74, 1427–1436. [CrossRef]
158. Zhang, Y.-J.; Tanaka, T.; Iwamoto, Y.; Yang, C.-R.; Kouno, I. Novel Norsesquiterpenoids from the Roots of Phyllanthus emblica. J. Nat. Prod. 2000, 63, 1507–1510. [CrossRef]
159. Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 7. Prodelphinidins from Pinus sylvestris. J. Chem. Soc. Perkin Trans. 1 1981, 12, 1148–1150. [CrossRef]
187. Ofman, D.J.; Markham, K.R.; Vilain, C.; Molloy, B.P.J. Flavonoid profiles of New Zealand kauri and other species of Agathis. *Phytochemistry* 1995, 38, 1223–1228. [CrossRef]

188. Ilyas, M.; Usmani, J.N.; Bhatnagar, S.P.; Ilyas, M.; Rahman, W. WB1 and W11, the first optically active biflavones. *Tetrahedron Lett.* 1968, 9, 5515–5517. [CrossRef]

189. Meselhy, M.R. Constituents from Moghat, the Roots of Gossosistem mon bruguieri (Desf.). *Molecules* 2003, 8, 614–621. [CrossRef]

190. Chen, F.-C.; Lin, Y.-M.; Lin, Y.-C. Neohusflavonane, a New Biflavonane from Wax-tree. *Heterocycles* 1978, 9, 663–668. [CrossRef]

191. Adjapmoh, M.F.; Toze, F.A.; Songue, J.L.; Langat, M.K.; Kapche, G.D.; Hameed, A.; Lateef, M.; Shaiq, M.A.; Mbaze, L.M.; Wansi, J.D.; et al. A New Ceramide and Biflavonoid from the Leaves of Parinari hypochrysea (Chrysobalanaceae). *Nat. Prod. Commun.* 2016, 11, 615–620. [CrossRef] [PubMed]

192. Jia, B.X.; Ren, F.X.; Jia, L.; Chen, X.Q.; Yang, J.; Wang, Q. Baeckine E, a new bioactive C-methylated biflavonoid from the roots of Baeckea frutescens. *Nat. Prod. Res.* 2013, 27, 2069–2075. [CrossRef]

193. Okigawa, M.; Kawano, N.; Aqil, M.; Rahman, W. Ochnaflavone and ochnaflavone 7'-Methyltetrahydroochnaflavone, a New biflavonoid from Ochna obtusata. *J. Chem. Soc. Perkin Trans. 1* 1976, 5, 580–583. [CrossRef]

194. Ma, J.L.; Li, N.; Li, X. One new biflavone glucoside from the leaves of Lonicera japonica Thunb. *Chin. J. Med. Chem.* 2009, 19, 63–64.

195. Likhitwitayawuid, K.; Rungserichai, R.; Ruangrungsi, N.; Phadungcharoen, T. Flavonoids from Ochna integerrima. *Phytochemistry* 2005, 66, 353–357. [CrossRef]

196. Jayakrishna, G.; Reddy, M.K.; Jayaprakasam, B.; Gunasekar, D.; Blond, A.; Bodo, B. A new biflavonoid from Ochna beddomei. *J. Asian Nat. Prod. Res.* 2003, 5, 83–87. [CrossRef]

197. Pegnyemb, D.E.; Mbing, J.N.; de Theodore Atchade, A.; Tih, R.G.; Zinsmeister, H.D. Hypnogenols and other dihydroflavonols from the moss Hypnum cupressiforme. *Molecules* 2004, 9, 630–634. [CrossRef] [PubMed]

198. Ariyasena, J.; Baek, S.-H.; Perry, N.B.; Weavers, R.T. Ether-Linked Biflavonoids from Quintinia acutifolia. *Phytochemistry* 2005, 66, 2740–2744. [CrossRef] [PubMed]

199. Reutrakul, V.; Ningnuek, N.; Pohmakotr, M.; Yoosook, C.; Napaswad, C.; Kasisit, J.; Santisuk, T.; Tuchinda, P. Anti HIV-1 flavonoid Glycosides from Ochna integerrima. *Planta Med.* 2007, 73, 683–688. [CrossRef]

200. Rao, K.V.; Sreeramulu, K.; Venkata Rao, C.; Gunasekar, D.; Martin, M.T.; Bodo, B. Two New Biflavonoids from Ochna obtusata. *J. Nat. Prod.* 1997, 60, 632–634. [CrossRef]

201. Jayaprakasam, B.; Damu, A.G.; Rao, K.V.; Gunasekar, D.; Blond, A.; Bodo, B. 7'-Methyltetrahydroochnaflavone, a New Biflavonane from Ochna obtusata. *J. Nat. Prod.* 2000, 63, 507–508. [CrossRef]

202. Ariyasena, J.; Baek, S.-H.; Perry, N.B.; Weavers, R.T. Ether-Linked Biflavonoids from Quintinia acutifolia. *J. Nat. Prod.* 2004, 67, 693–696. [CrossRef]

203. Mbuwka, E.; Chacha, M.; Majinda, R.R.T. Phytochemical Constituents of Vangueria infausta: Their Radical Scavenging and Antimicrobial Activities. *Arkivoc* 2009, 5515–5517. [CrossRef] [PubMed]

204. Carini, J.P.; Kaiser, S.; Ortega, G.G.; Bassani, V.L. Development, optimisation and validation of a stability-indicating HPLC method of achyrobichalcone quantification using experimental designs. *Phytochemistry* 2016, 125, 13–17. [CrossRef]

205. Carini, J.P.; Kaiser, S.; Ortega, G.G.; Bassani, V.L. Development, optimisation and validation of a stability-indicating HPLC method of achyrobichalcone quantification using experimental designs. *Phytochemistry* 2013, 24, 193–200. [CrossRef]

206. Wild, S.H.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030. *Diabetes Care* 2004, 27, 1047–1053. [CrossRef] [PubMed]

207. Sievers, H.; Burkhart, G.; Becker, H.; Zinsmeister, H.D. Hypnogenols and other dihydroflavonols from the moss Hypnum cupressiforme. *Phytochemistry* 1992, 31, 3233–3237. [CrossRef]

208. Li, D.M.; Wong, K.C.; Lim, P.K. Flavonoids from Blumea balsamifera. *Fitoterapia* 2005, 76, 128–130. [CrossRef]

209. Sabudak, T.; Demirkiran, O.; Ozturk, M.; Topcu, G. Phenolic compounds from Trifolium echinatum Bieb. and investigation of their tyrosinase inhibitory and antioxidant activities. *Phytochemistry* 2013, 96, 305–311. [CrossRef] [PubMed]

210. Tartaglione, L.; Gambuti, A.; De Cicco, P.; Ercolano, G.; Ianaro, A.; Taglialetela-Scafati, O.; Moio, L.; Forino, M. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity. *Fitotropia* 2018, 125, 13–17. [CrossRef]

211. Carini, J.P.; Kaiser, S.; Ortega, G.G.; Bassani, V.L. Development, optimisation and validation of a stability-indicating HPLC method of achyrobichalcone quantification using experimental designs. *Phytochem. Anal.* 2013, 24, 193–200. [CrossRef]

212. Kumar, N.; Singh, B.; Bhandari, P.; Gupta, A.P.; Uniyal, S.K.; Kaul, V.K. Biflavonoids from Lonicera japonica. *Phytochemistry* 2005, 66, 2740–2744. [CrossRef] [PubMed]

213. Bitchagno, G.T.; Tankeo, S.B.; Tsopmo, A.; Simo Mpetga, J.D.; Tchinda, A.T.; Fobofou, S.A.; Nkuete, A.H.; Wessjohann, L.A.; Kuete, V.; Tane, P. Ericoside, a new antibacterial biflavonoid from Erica mannii (Ericaceae). *Fitotropia* 2016, 109, 206–211. [CrossRef] [PubMed]

214. Nakazawa, K. Syntheses of Ring-substituted Flavonoids and Allied Compounds. XI. Synthesis of Hinokiflavone. *Chem. Pharm. Bull.* 1968, 16, 2503–2511. [CrossRef]

215. Gadek, P.A.; Quinn, C.J. Biflavones of the subfamily cupressoideae, cupressaceae. *Phytochemistry* 1985, 24, 267–272. [CrossRef]

216. Geiger, H.; de Groot-Pfeiderer, W. Die biflavone von Taxodium distichum. *Phytochemistry* 1973, 12, 465–466. [CrossRef]

217. Markham, K.R.; Sheppard, C.; Geiger, H. 13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids. *Phytochemistry* 1987, 26, 3335–3337. [CrossRef]

218. Gadek, P.A. Biflavonoids from the seed testa of cycadaceae. *Phytochemistry* 1982, 21, 889–890. [CrossRef]

219. Miura, H.; Kawano, N. The Partial Demethylation of Flavones. IV. Formation of New Bisflavones, Hinokiflavone-7',7''-dimethyl Ether and Neocryptomerin. *Chem. Pharm. Bull.* 1968, 16, 1838–1840. [CrossRef]
218. Miura, H.; Kawano, N.; Anthony, C.W., Jr. Cryptomerin A and B, Hinokiflavone MethyI Ethers from the Leaves of Cryptomeria japonica. *Chem. Pharm. Bull.* 1966, 14, 1404–1408. [CrossRef]

219. Meurer-Grimes, B.; Yu, J. Chamaeclarypin—A Rare Biflavone from Selaginella Species. *Z. Nat. C* 1995, 54, 1143–1144. [CrossRef]

220. Swamy, R.C.; Kunert, O.; Schütl, W.; Bucar, F.; Ferreira, D.; Rani, V.S.; Kumar, B.R.; Appa Rao, A.V.N. Structurally Unique Biflavonoids from Selaginella chrysoaulus and Selaginella bryopteris. *Chem. Biodivers.* 2006, 3, 405–414. [CrossRef]

221. Silva, G.L.; Chai, H.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Beecher, C.W.W.; Douglas Kinghorn, A. Cytotoxic biflavonoids from Selaginella willdenowii. *Phytochemistry* 1995, 40, 129–134. [CrossRef]

222. Sobha Rani, M.; Venkata Rao, C.; Gunasekar, D.; Blond, A.; Bodo, B. A biflavonoid from Cycas beddomei. *Phytochemistry* 1998, 47, 319–321. [CrossRef]

223. Jayaprakasam, B.; Damu, A.G.; Gunasekar, D.; Blond, A.; Bodo, B. A biflavonone from Cycas beddomei. *Phytochemistry* 2000, 53, 515–517. [CrossRef]

224. Akongwi, M.; Tih, A.E.; Nyongbela, K.D.; Samje, M.; Ghogomu, R.T.; Bodo, B. Brevipedicelones D and E, Two C-O-C Flavonoid Dimmers from the Leaves of Garcinia brevipedicellata and Anti-onchocercal Activity. *Nat. Prod. Bioprospect.* 2019, 9, 61–68. [CrossRef]

225. Dora, G.; Edwards, J.M. Taxonomic Status of Lanaria lanata and Isolation of a Novel Biflavone. *J. Nat. Prod.* 1991, 54, 796–801. [CrossRef]

226. Weniger, B.; Vonthron-Senecheau, C.; Arango, G.J.; Kaiser, M.; Brun, R.; Anton, R. A bioactive biflavonoid from Camptosperma panamense. *Fitoterapia* 2004, 75, 764–767. [CrossRef] [PubMed]

227. Velandia, J.R.; Carvalho, M.G.D.; Braz-Filho, R.; Werle, A.A. Biflavonoids and a glucopyranoside derivative from Ouratea semisserrata. *Phytochem. Anal.* 2002, 13, 283–292. [CrossRef]

228. Daniel, J.F.d.S.; Carvalho, M.G.d.; Cardoso, R.d.S.; Agra, M.d.F.; Eberlin, M.N. Others flavonoids from Ouratea hexasperma (Ochnaceae). *J. Braz. Chem. Soc.* 2005, 16, 634–638. [CrossRef]

229. Mahjoub, M.A.; Ammar, S.; Mighri, Z. A new biflavonoid and an isobiflavonoid from Rhus tripartitum. *Nat. Prod. Res.* 2005, 19, 723–729. [CrossRef]

230. Li, Q.; Gao, W.; Cao, J.; Bi, X.; Chen, G.; Zhang, X.; Xia, X.; Zhao, Y. New cytotoxic compounds from flowers of Lawsonia inermis L. *Fitoterapia* 2014, 94, 148–154. [CrossRef]

231. Parsons, I.C.; Gray, A.I.; Waterman, P.G.; Hartley, T.G. New Triterpenes and Flavonoids from the Leaves of Bosistoa brassii. *J. Nat. Prod.* 1993, 56, 46–53. [CrossRef]

232. Hatano, T.; Miyatake, H.; Natsume, M.; Osakabe, N.; Takizawa, T.; Ito, H.; Yoshida, T. Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. *Phytochemistry* 2002, 59, 749–758. [CrossRef]

233. Lee, D.F.; Swinny, E.E.; Jones, G.P. NMR identification of ethyl-linked anthocyanin–flavanol pigments formed in model wine fermentations. *Tetrahedron Lett.* 2004, 45, 1671–1674. [CrossRef]

234. Abe, Y.; Sawada, A.; Momose, T.; Sasaki, N.; Kawahara, N.; Kamakura, H.; Goda, Y.; Ozeki, Y. Structure of an anthocyanin–anthocyanin dimer molecule in anthocyanin-producing cells of a carrot suspension culture. *Tetrahedron Lett.* 2008, 49, 7330–7333. [CrossRef]

235. Wang, Q.; Han, N.; Wu, X.; Tai, W.; Dai, N.; Wu, R.; Wu, J.; Bao, B. A biflavonoid glycoside from Lomatogonium carinthiacum (Wulff) Reichb. *Nat. Prod. Res.* 2015, 29, 77–81. [CrossRef] [PubMed]

236. Inumata, M.; Tosa, H.; Tanaka, T.; Ito, T.; Asai, F. Chemical Constituents of Guttiaceraceae Plants and Their Bioactivities. *Symp. Chem. Nat. Prod.* 1996, 38, 409–414. [CrossRef]

237. Bai, H.; Li, W.; Koike, K.; Dou, D.; Pei, Y.; Chen, Y.; Nikaido, T. A novel biflavonoid from roots of Glycyr rhiza uralensis cultivated in China. *Chem. Pharm. Bull.* 2003, 51, 1095–1097. [CrossRef] [PubMed]

238. Chen, R.J.; Cao, S.W.; Ruan, Z. Isolation of chemical constituents from Daphne odora var. Margirnt by high-speed counter-current chromatography. *Chem. Nat. Compd.* 2009, 45, 534–535. [CrossRef]

239. Liang, S.; Tian, J.-M.; Feng, Y.; Liu, X.-H.; Xiong, Z.; Zhang, W.-D. Flavonoids from Daphne aurantiaca and Their Inhibitory Activities against Nitric Oxide Production. *Chem. Pharm. Bull.* 2011, 59, 653–656. [CrossRef]

240. Taniguchi, M.; Fujiwara, A.; Baba, K. Three flavonoids from Daphne odora. *Phytochemistry* 1997, 45, 183–188. [CrossRef]

241. Huang, W.-H.; Zhou, G.-X.; Wang, G.-C.; Chung, H.-Y.; Ye, W.-C.; Li, Y.-L. A new biflavonoid with antiviral activity from the roots of Wikstroemia indica. *J. Asian Nat. Prod. Res.* 2012, 14, 401–406. [CrossRef]

242. Zheng, W.-F.; Shi, F. Three biflavonoids from ethanol extract of the root of Daphne genkwa. *Acta Pharm. Sin.* 2005, 40, 438–442. [PubMed]

243. Zhou, G.-X.; Jiang, R.-W.; Cheng, Y.; Ye, W.-C.; Shi, J.-G.; Gong, N.-B.; Lu, Y. Daphnogirins A and B, Two Biflavonoids from Daphne giraldii. *Chem. Pharm. Bull.* 2007, 55, 1287–1290. [CrossRef] [PubMed]

244. Xu, M.; Shen, L.; Wang, K. A new biflavonoid from Daphniphyllum angustifolium Hutch. *Fitoterapia* 2009, 80, 461–464. [CrossRef] [PubMed]

245. Tao, H.; Wang, L.; Cui, Z.; Zhao, D.; Liu, Y. Dimeric proanthocyanidins from the roots of Ephedra sinica. *Planta Med.* 2008, 74, 1823–1825. [CrossRef]

246. Bilia, A.R.; Morelli, I.; Hamburger, M.; Hostetmann, K. Flavans and A-type proanthocyanidins from Prunus prostrata. *Phytochemistry* 1996, 43, 887–892. [CrossRef]

247. Kolodziej, H.; Sakar, M.K.; Burger, J.F.W.; Engelshowe, R.; Ferreira, D. A-type proanthocyanidins from Prunus spinosa. *Phytochemistry* 1991, 30, 2041–2047. [CrossRef]
256. Tih, R.G.; Sondengam, B.L.; Martin, M.T.; Bodo, B. Structure of lophirones B and C, biflavonoids from the bark of Lophira Bald
273. Lixian, W.; Yuanyuan, Y.; Meng, S.; Qi, W.; Changsheng, D.; Xin'an, H.; Jianping, S. Chemical Constituents from Garcinia kola Andrade, A.W.L.; Machado, K.D.C.; Machado, K.D.C.; Figueiredo, D.D.R.; David, J.M.; Islam, M.T.; Uddin, S.I.; Shilpi, J.A.; Costa, J.P. In vitro antioxidant properties of the biflavonoid agathisflavone. Chem. Cent. J. 2018, 12, 75. [CrossRef] [PubMed]
268. Jia, C.; Han, T.; Xu, J.; Li, S.; Sun, Y.; Li, D.; Li, Z.; Hua, H. A new biflavonoid and a new triterpene from the leaves of Garcinia Yang, B.-H.; Zhang, W.-D.; Liu, R.-H.; Tan, C.-H.; Li, T.-Z.; Zhang, C.; Xu, X.-K.; Su, J. Spiro-biflavonoids from Larix olgensis Baba, K.; Takeuchi, K.; Tabata, Y.; Taniguchi, M.; Kozawa, M. Chemical studies on the constituents of the thymelaeaceous plants. J. Nat. Prod. 2001, 67, 2806–2808. [PubMed]
267. Messi, B.B.; Ndjoko-Ioset, K.; Hertlein-Amslinger, B.; Lannang, A.M.; Nkengfack, A.E.; Wolfender, J.L.; Hostettmann, K.; Bringmann, G.; Preussianone, a new flavanone-chromone biflavonoid from Garcinia preussii Engl. Phytochemistry 1990, 30, 267–270. [CrossRef]
266. Pegnyemb, D.E.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Isolation and Structure Elucidation of a New Isobiflavonoid Messina, B.B.; Tih, R.G.; Kimbu, S.F.; Sondengam, B.L.; Martin, M.T.; Bodo, B. Calodenone, a New Isobiflavonoid from Ochna Messanga, B.B.; Tih, R.G.; Kimbu, S.F.; Sondengam, B.L.; Martin, M.T.; Bodo, B. Spironolactone, a New Isobiflavonoid from Ochna Messi, B.B.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Biflavonoids from Ochna afzelii. Phytochemistry 2000, 51, 579–582. [CrossRef] [PubMed]
265. Pegnyemb, D.E.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Biflavonoids from Ochna afzelii. Phytochemistry 2001, 57, 579–582. [CrossRef] [PubMed]
264. Messinga, B.; Tih, R.G.; Sondengam, B.-L.; Martin, M.-T.; Bodo, B. Biflavonoids from Ochna calodendron. Phytochemistry 1994, 35, 791–794. [CrossRef] [PubMed]
263. Kaewamatawong, R.; Likhitwitayawuid, K.; Ruangrungsi, N.; Takayama, H.; Kitajima, M.; Aimi, N. Novel Biflavonoids from the roots of Baeckea frutescens and their anti-inflammatory activities. Food Chem. 2014, 155, 31–37. [CrossRef] [PubMed]
262. Jia, B.X.; Zeng, X.L.; Ren, F.X.; Jia, L.; Chen, X.Q.; Yang, J.; Liu, H.M.; Wang, Q. Baeckeins F-I, four novel C-methylated biflavonoids from the roots of Baeckea frutescens and their biological activities. J. Nat. Med. 2019, 73, 662–670. [CrossRef] [PubMed]
261. Lingfang, P.; Lihe, L.; Liguo, Y.; Xueping, L.; Tao, C.; Zhaoyun, Z. A new biflavone from Dysosma versipellis. [CrossRef] [PubMed]
260. Anuradha, V.; Srinivas, P.V.; Ranga Rao, R.; Manjulatha, K.; Purohit, M.G.; Madhusudana Rao, J. Isolation and synthesis of a new biflavonoid from Ochna squarrosa stem bark. Phytochemistry 1992, 31, 551–557. [CrossRef] [PubMed]
259. Tih, R.G.; Sondengam, B.L.; Martin, M.T.; Bodo, B. Structure of the chalcone dimers lophirone F, and H from Lophira lanceolata. Phytochemistry 1991, 30, 337–342. [CrossRef] [PubMed]
258. Vivas, N.; Glories, Y.; Pianet, I.; Barbe, B.; Laguerre, M. A complete structural and conformational investigation of procyanidin A2 dimer. Tetrahedron Lett. 1996, 37, 2015–2018. [CrossRef] [PubMed]
257. Pegnyemb, D.E.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Biflavonoids from Ochna afzelii. Phytochemistry 1990, 30, 267–270. [CrossRef]
256. Tih, R.G.; Sondengam, B.L.; Martin, M.T.; Bodo, B. Structure of lophirones B and C, biflavonoids from the bark of Lophira Bald
255. Jia, B.X.; Zeng, X.L.; Ren, F.X.; Jia, L.; Chen, X.Q.; Yang, J.; Liu, H.M.; Wang, Q. Baeckeins F-I, four novel C-methylated biflavonoids from the roots of Baeckea frutescens and their anti-inflammatory activities. Food Chem. 2014, 155, 31–37. [CrossRef] [PubMed]
254. Su, B.-N.; Hwang, B.Y.; Chai, H.; Carcache-Blanco, E.J.; Kardono, L.B.S.; Afriastini, J.J.; Riswan, S.; Wild, R.; Laing, N.; Farnsworth, N.R.; et al. Activity-Guided Fractionation of the Leaves of Ormosia sumatrana Using a Proteasome Inhibition Assay. J. Nat. Prod. 2004, 67, 1911–1914. [CrossRef] [PubMed]
253. De Bruyne, T.; Pieters, L.; Witvrouw, M.; De Clercq, E.; Vanden Berghe, D.; Vlieghe, A.J. Biological Evaluation of Proanthocyanidin Dimers and Related Polyphenols. J. Nat. Prod. 1999, 62, 954–958. [CrossRef] [PubMed]
252. Vivas, N.; Glories, Y.; Pianet, I.; Barbe, B.; Laguerre, M. A complete structural and conformational investigation of procyanidin A2 dimer. Tetrahedron Lett. 1996, 37, 2015–2018. [CrossRef] [PubMed]
251. Kamiya, K.; Watanabe, C.; Endang, H.; Umar, M.; Satake, T. Studies on the Constituents of Bark of Parameria laevigata J. Nat. Med. 2019, 73, 662–670. [CrossRef] [PubMed]
250. Baldé, A.M.; Pieters, L.A.; Wray, V.; Kolodziej, H.; Berghe, D.A.V.; Claesys, M.; Vlieghe, A.J. Dimeric and trimeric proanthocyanidins possessing a doubly linked structure from Pavetta owariensis. Phytochemistry 1991, 30, 4129–4135. [CrossRef] [PubMed]
249. Baldé, A.M.; Pieters, L.A.; Gergely, A.; Kolodziej, H.; Claesys, M.; Vlieghe, A.J. A-type Proanthocyanidins from stem-bark of Pavetta owariensis. Phytochemistry 1991, 30, 337–342. [CrossRef] [PubMed]
248. Porter, L.J.; Ma, Z.; Chan, B.G. Cacao proacyanidins: Major flavonoids and identification of some minor metabolites. Phytochemistry 1991, 30, 1657–1663. [CrossRef] [PubMed]

Molecules 2021, 26, 6088
275. Park, H.; Kim, Y.H.; Chang, H.W.; Kim, H.P. Anti-inflammatory activity of the synthetic C-C biflavonoids. *J. Pharm. Pharmacol.* 2006, 58, 1661–1667. [CrossRef]

276. Banerjee, T.; Valacchi, G.; Ziboh, V.A.; van der Vliet, A. Inhibition of TNFalpha-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-kappaB activation in A549 cells. *Mol. Cell Biochem.* 2002, 238, 105–110. [CrossRef] [PubMed]

277. Li, Q.; Ye, T.; Long, T.; Peng, X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-kappaB signaling pathway. *Biosci. Biotechnol. Biochem.* 2019, 83, 675–683. [CrossRef] [PubMed]

278. Kim, H.P.; Park, H.; Son, K.H.; Chang, H.W.; Kang, S.S. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. *Arch. Pharm. Res.* 2008, 31, 265–273. [CrossRef]

279. Coulerie, P.; Eydoux, C.; Hnawia, E.; Stuhl, L.; Maciuk, A.; Lebouvier, N.; Canard, B.; Figadere, B.; Guillemet, J.C.; Nour, M. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. *Planta Med.* 2012, 78, 672–677. [CrossRef]

280. Li, F.; Song, X.; Su, G.; Wang, Y.; Wang, Z.; Jia, J.; Qing, S.; Huang, L.; Wang, Y.; Zheng, K.; et al. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. *Viruses* 2019, 11, 466. [CrossRef]

281. De Freitas, C.S.; Rocha, M.E.N.; Sacramento, C.Q.; Marttorelli, A.; Ferreira, A.C.; Rocha, N.; de Oliveira, A.C.; de Oliveira Gomes, A.M.; Dos Santos, P.S.; da Silva, E.O.; et al. Agathisflavone, a Biflavonoid from Anacamudium occidentale L. Inhibits Influenza Virus Neuraminidase. *Curr. Top. Med. Chem.* 2020, 20, 111–120. [CrossRef]

282. Tang, S.; Bremner, P.; Kortenkamp, A.; Schlage, C.; Gray, A.I.; Gibbons, S.; Heinrich, M. Biflavonoids with cytotoxic and antibacterial activity from Ochna macrocalyx. *Planta Med.* 2003, 69, 247–253. [CrossRef]

283. Nandu, T.G.; Subramenium, G.A.; Shiburaj, S.; Viszwapriya, D.; Iyer, P.M.; Balamurugan, K.; Rameshkumar, K.B.; Karutha Pandian, S. Fukugiside, a biflavonoid from Garcinia trancvancorica inhibits biofilm formation of Streptococcus pyogenes and its associated virulence factors. *J. Med. Microbiol.* 2018, 67, 1391–1401. [CrossRef]

284. Lee, J.; Choi, Y.; Woo, E.R.; Lee, D.G. Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. *Biochem. Biophys. Res. Commun.* 2009, 379, 676–680. [CrossRef]

285. Lee, J.H. Involvement of T-cell immunoregulation by ochnaflavone in therapeutic effect on fungal arthritis due to Candida albicans. *Arch. Pharm. Res.* 2011, 34, 1209–1217. [PubMed]

286. Ramalingam, S.; Karuppiah, M.; Thiruppathi, M.; Palanivelu, S.; Panchanatham, S. Antioxidant potential of biflavonoid attenuates hyperglycemia by modulating the carbohydrate metabolic enzymes in high fat diet/streptozotocin induced diabetic rats. *Redox Rep.* 2020, 25, 1–10. [CrossRef] [PubMed]

287. Liu, P.K.; Weng, Z.M.; Ge, G.B.; Li, H.L.; Ding, L.L.; Dai, Z.R.; Hou, X.D.; Leng, Y.H.; Yu, Y.; Hou, J. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. *Int. J. Biol. Macromol.* 2018, 118, 2216–2223. [CrossRef] [PubMed]

288. Xianming, W.; Aiqiong, L.; Lili, Z.; Jian, L. Study on wound healing mechanism of the foot ulcer in diabetic rats by isoginkgetin. *J. Xiangnan Univ. (Med. Sci.)* 2019, 21, 6–10.

289. Zhou, Q.; Han, X.; Li, R.; Zhao, W.; Bai, B.; Yan, C.; Dong, X. Anti-atherosclerosis of oligomeric proanthocyanidins from *Rhodiola rosea* on rat model via hypolipemic, antioxidant activities together with regulation of endothelial function. *Phytomedicine* 2018, 51, 171–180. [CrossRef]

290. Tabares-Guevara, J.H.; Lara-Guzman, O.J.; Londono-Londono, J.A.; Sierra, J.A.; Leon-Varela, Y.M.; Alvarez-Quintero, R.M.; Osorio, E.J.; Ramirez-Pineda, J.R. Natural Biflavonoids Modulate Macrophage-Oxidized LDL Interaction In Vitro and Promote Atheroprotection In Vivo. *Front. Immunol.* 2017, 8, 923. [CrossRef]

291. Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. *Sci. Total Environ.* 2020, 700, 134836. [CrossRef]

292. Thapa, A.; Chi, E.Y. Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer’s Disease. *Adv. Exp. Med. Biol.* 2015, 863, 55–77.

293. Thapa, A.; Woo, E.R.; Chi, E.Y.; Shararo, M.G.; Jin, H.G.; Shin, S.Y.; Park, I.S. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-beta toxicity and fibrillogenesis via accumulation of non-toxic oligomer-like structures. *Biochemistry* 2011, 50, 2445–2455. [CrossRef] [PubMed]

294. Sirimangkalakitti, N.; Juliawaty, L.D.; Hakim, E.H.; Waliana, I.; Saito, N.; Koyama, K.; Kinoshita, K. Naturally occurring biflavonoids with amyloid β aggregation inhibitory activity for development of anti-Alzheimer agents. *Biomol. Ther.* 2019, 29, 1994–1997. [CrossRef] [PubMed]

295. Choi, E.Y.; Kang, S.S.; Lee, S.K.; Han, B.H. Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils. *Biomed. Ther.* 2020, 28, 145–151. [CrossRef]

296. Olajide, O.I.; Ugboasami, A.T.; Enaibe, B.U.; Ogunrinola, K.Y.; Lewu, S.F.; Asogwa, N.T.; Akapa, T.; Imam, A.; Ibrahim, A.; Gbadamosi, I.T.; et al. Cerebellar Molecular and Cellular Characterization in Rat Models of Alzheimer’s Disease: Neuroprotective Mechanisms of Garcinia Biflavonoid Complex. *Ann. Neurosci.* 2017, 24, 32–45. [CrossRef]

297. Cao, Q.; Qin, L.; Huang, F.; Wang, X.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Chen, Z.; Wu, X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. *Toxicol. Appl. Pharm.* 2017, 319, 80–90. [CrossRef] [PubMed]
298. Wang, Y.Q.; Wang, M.Y.; Fu, X.R.; Peng, Y.; Gao, G.F.; Fan, Y.M.; Duan, X.L.; Zhao, B.L.; Chang, Y.Z.; Shi, Z.H. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radic. Res. 2015, 49, 1069–1080. [CrossRef]

299. Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004, 37, 287–303. [CrossRef]

300. Li, Y.Y.; Lu, X.Y.; Sun, J.L.; Wang, Q.Q.; Zhang, Y.D.; Zhang, J.B.; Fan, X.H. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin. J. Nat. Med. 2019, 17, 672–681. [CrossRef]

301. Lin, Y.-M.; Chen, F.-C.; Lee, K.-H. Hinokiflavone, a Cytotoxic Principle from Rhus succedanea and the Cytotoxicity of the Related Biflavonoids. Planta Med. 1989, 55, 166–168. [CrossRef]

302. Lopes Andrade, A.W.; Dias Ribeiro Figueiredo, D.; Torequiq Islam, M.; Viana Nunes, A.M.; da Conceicao Machado, K.; da Conceicao Machado, K.; Uddin, S.J.; Ahmed Shilpi, J.; Rouf, R.; de Carvalho Melo-Cavalcante, A.A.; et al. Toxicological evaluation of the biflavonoid, agathisflavone in albino Swiss mice. Biomed. Pharmacother. 2019, 110, 68–73. [CrossRef]

303. Yao, W.; Lin, Z.; Shi, P.; Chen, B.; Wang, G.; Huang, J.; Su, Y.; Liu, Q.; Li, S.; Lin, X.; et al. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells. Biochem. Pharmacol. 2020, 171, 113680. [CrossRef]

304. Yao, W.; Lin, Z.; Li, G.; Chen, B.; Su, Y.; Huang, J.; Liu, Q.; Shi, P.; Lin, X.; et al. Delicaflavone induces apoptosis via mitochondrial pathway accompanying G2/M cycle arrest and inhibition of MAPK signaling cascades in cervical cancer HeLa cells. Phytochemistry 2019, 62, 152973. [CrossRef]

305. Mu, W.; Cheng, X.; Zhang, X.; Liu, Y.; Lv, Q.; Liu, G.; Zhang, J.; Li, X. Hinokiflavone induces apoptosis via activating mitochondrial ROS/JNK/caspase pathway and inhibiting NF-kappaB activity in hepatocellular carcinoma. J. Cell Mol. Med. 2020, 24, 8151–8165. [CrossRef]

306. Wada, S.; Hitomi, T.; Tokuda, H.; Tanaka, R. Anti-tumor-initiating effects of spiro-biflavonoids from Abies sachalinensis. Chem. Biodivers. 2010, 7, 2303–2308. [CrossRef]

307. Li, P.; Yue, G.G.; Kwok, H.F.; Long, C.L.; Lau, C.B.; Kennelly, E.J. Using Ultra-Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry-Based Chemometrics for the Identification of Anti-angiogenic Biflavonoids from Edible Garcinia Species. J. Agric. Food Chem. 2017, 65, 8348–8355. [CrossRef][PubMed]

308. Tarallo, V.; Lepore, L.; Marcellini, M.; Dal Piaz, F.; Tudisco, L.; Ponticelli, S.; Lund, F.W.; Roepstorff, P.; Orlandi, A.; Pisano, C.; et al. The biflavonoid amentoflavone inhibits neovascularization preventing the activity of proangiogenic vascular endothelial growth factors. J. Biol. Chem. 2011, 286, 19641–19651. [CrossRef][PubMed]

309. Cabrini, D.A.; Patino, A.C.; Nunez, V.; Osorio, E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chem. Biol. Interact. 2014, 220, 94–101. [CrossRef]

310. Antia, B.S.; Pansanit, A.; Ekpa, O.D.; Ekpe, U.J.; Mahidol, C.; Kittakaopp, P. Alpha-glucosidase inhibitory, aromatase inhibitory, and antiplastmodial activities of a biflavonoid GB1 from Garcinia kola stem bark. Planta Med. 2010, 76, 276–277. [CrossRef]

311. Wu, X.-N.; Yang, Y.; Zhang, H.-H.; Zhong, Y.-S.; Wu, F.; Yu, B.; Yu, C.-H. Robustaflavone-4′-dimethyl ether from Selaginella uncinata attenuated lipopolysaccharide-induced acute lung injury via inhibiting FLT3-mediated neutrophil activation. Int. Immunopharmacol. 2020, 82, 106338–106342. [CrossRef]

312. Jalil, J.; Jantan, I.; Ghani, A.A.; Murad, S. Platelet-activating factor (PAF) antagonistic activity of a new biflavonoid from Garcinia cambogia. Biodivers. 2010, 7, 2303–2308. [CrossRef]

313. Qu, X.; Li, Q.; Zhang, X.; Wang, Z.; Wang, S.; Zhou, Z. Amentoflavone protects the hematopoietic system of mice against γ-irradiation %J Pharmaceutical Society of Korea. Arch. Pharm. Res. 2019, 42, 1021–1029. [CrossRef]

314. Yamaguchi, L.F.; Kato, M.J.; Di Mascio, P. Biflavonoids from Auracaria angustifolia protect against DNA UV-induced damage. Phytochemistry 2009, 70, 615–620. [CrossRef]

315. Campos, P.M.; Prudente, A.S.; Horinouchi, C.D.; Cechinel-Filho, V.; Favero, G.M.; Cabrini, D.A.; Otuki, M.F. Inhibitory effect of GBa-2a (I3-naringenin-II8-eriodictyol) on melanogenesis. J. Agric. Food Chem. 2014, 62, 8293–8298. [CrossRef][PubMed]

316. O’Brien, K.; Matlin, A.J.; Lowell, A.M.; Moore, M.J. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. Free Radic. Res. 2015, 49, 1069–1080. [CrossRef]

317. Kim, T.Y.; Park, N.J.; Jegal, J.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Chamaejasmine Isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-Induced Atopic Dermatitis in SKH-1 Hairless Mice. Biomolecules 2019, 9, 697. [CrossRef][PubMed]

318. Liao, S.; Ren, Q.; Yang, C.; Zhang, T.; Li, J.; Wang, X.; Qu, X.; Zhang, X.; Zhou, Z.; Zhang, Z.; et al. Liquid chromatography-tandem mass spectrometry and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. J. Agric. Food Chem. 2015, 63, 1957–1966. [CrossRef]

319. Yin, R.; Xiong, K.; Wen, S.; Wang, Y.; Xu, F. Development and validation of an LC-MS/MS method for the determination of hinokiflavone in rat plasma and its application to a pharmacokinetic study. Biomed. Chromatogr. 2017, 31, 3821–3840. [CrossRef][PubMed]
322. Shan, C.-X.; Guo, S.-C.; Yu, S.; Shan, M.-Q.; Li, S.F.Y.; Chai, C.; Cui, X.-B.; Zhang, L.; Ding, A.-W.; Wu, Q.-N. Simultaneous Determination of Quercitrin, Afzelin, Amentoflavone, Hinokiflavone in Rat Plasma by UFLC-MS-MS and Its Application to the Pharmacokinetics of Platycladus orientalis Leaves Extract. *J. Chromatogr. Sci.* 2018, 56, 895–902. [CrossRef] [PubMed]

323. Alzand, K.I.; Mohamed, M.A. Flavonoids: Chemistry, Biochemistry and Antioxidant activity. *J. Pharm. Res.* 2012, 5, 4013–4020.

324. Gomes-Copelanda, K.K.P.; Lêdob, A.d.S.; Almeidac, F.T.C.d.; Moreirad, B.O.; Santosd, D.C.d.; Santosd, R.A.F.; Jorge Mauro Davidd, J.P.D. Effect of elicitors in Poincianella pyramidalis callus culture in the biflavonoid biosynthesis. *Ind. Crop. Prod.* 2018, 126, 421–425. [CrossRef]

325. Ying, X.; Ling-bo, Q.; Jin-wei, Y. Research Progress on the Extraction and Synthesis of Biflavonoid Compounds. *J. Henan Univ. Technol. (Nat. Sci. Ed.)* 2010, 31, 78–85.

326. Ndoile, M.M.; van Heerden, F.R. Total synthesis of ochnaflavone. *Beilstein J. Org. Chem.* 2013, 9, 1346–1351. [CrossRef]

327. Zhang, Y.; Lin, S.; Shi, A.; Yang, Y.; Tang, W. The synthetic research of (±)-2,3,2″,3″-Tetrahydroochnaflavone. *Chin. J. Org. Chem.* 2015, 35, 2114–2118. [CrossRef]

328. Chen, J.; Chang, H.W.; Kim, H.P.; Park, H. Synthesis of phospholipase A2 inhibitory biflavonoids. *Bioorganic Med. Chem. Lett.* 2006, 16, 2373–2375. [CrossRef]

329. Moon, T.C.; Quan, Z.; Kim, J.; Kim, H.P.; Kudo, I.; Murakami, M.; Park, H.; Chang, H.W. Inhibitory effect of synthetic C-C biflavones on various phospholipase A2s activity. *Bioorg Med. Chem.* 2007, 15, 7138–7143. [CrossRef]

330. Lim, H.; Kim, S.B.; Park, H.; Chang, H.W.; Kim, H.P. New anti-inflammatory synthetic biflavonoid with C-C (6-6″) linkage: Differential effects on cyclooxygenase-2 and inducible nitric oxide synthase. *Arch. Pharm. Res.* 2009, 32, 1525–1531. [CrossRef] [PubMed]

331. Yunchang, T. Synthesis of I3″,II8-apigenin Biflavone and Inhibitory Activity Evaluation as α-Glucosidase Inhibitors. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2018.

332. Ming, L. Synthesis of Wikstro A/B and Morelloflavone. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2018.

333. Zhang, Z.T.; Gao, R.L.; Zhuang, S.K. Synthesis of biflavones and their interaction with DNA. *Acta Pharm. Sin.* 2009, 44, 873–878.

334. Ying, X.; Jinwei, Y.; Yongmei, X.; Pu, M.; Gonggong, H. The Process of Biflavonoids’ Synthesis by Acid Catalysis. In Proceedings of the Academic Annual Meeting of Henan Chemical Society and Celebration of its 70th Anniversary, Nanyang, China, 24 September 2010; p. 1.

335. Ying, X.; Jin-wei, Y.; Ling-bo, Q. Synthesis and Reaction Mechanism of Biflavonoids. In Proceedings of the The 12th National Annual Meeting of Applied Chemistry of the Chinese Chemical Society, Zhengzhou, China, 17 October 2011; p. 2.

336. Baron, V.; Mead, K.T. Synthesis of 3-benzylidene-dihydrofurochromen-2-ones: Promising intermediates for biflavonoid synthesis. *Heterocycl. Commun.* 2015, 21, 225–231. [CrossRef] [PubMed]

337. Ren, Q.X.; Zhou, Z.; Wang, S.Q. Preparation and analytical characterization of micronized amentoflavone by antisolvent freeze-drying method. *Int. J. Pharm. Res.* 2013, 40, 237–241.

338. DeKosky, S.T.; Williamson, J.D.; Fitzpatrick, A.L.; Kronmal, R.A.; Ives, D.G.; Saxton, J.A.; Lopez, O.L.; Burke, G.; Carlson, M.C.; Fried, L.P.; et al. Ginkgo biloba for prevention of dementia: A randomized controlled trial. *JAMA* 2008, 300, 2253–2262. [CrossRef] [PubMed]