Score Predicting Acute Chest Syndrome During Vaso-occlusive Crises in Adult Sickle-cell Disease Patients

Pablo Bartolucci b,c,⁎, Anoosha Habibib,c, Mehdi Khellafc, Françoise Roudot-Thoravalg, Giovanna Melicad, Anne-Sophie Lascauxd, Stéphane Moutereauf, Sylvain Lorif, Orianne Wagner-Ballonb, Jugurtha Berkenoua, Aline Santine, MarcMichelic, Bertrand Renaudeb, YvesLévyb, Frédéric Galactérosb,c, Bertrand Godeauc

a Sickle Cell Referral Center, Henri-Mondor Hospital-UPEC, Créteil, France
b IMRB, Henri-Mondor Hospital-UPEC, Créteil, France
c Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
d Department of Hematology and Immunology, Henri-Mondor Hospital-UPEC, Créteil, France
e Department of Biochemistry, Henri-Mondor Hospital-UPEC, Créteil, France
f Department of Radiology, Henri-Mondor Hospital-UPEC, Créteil, France
g Clinical Research Unit, Department of Public Health, Henri-Mondor Hospital-UPEC, Créteil, France
h Department of Hematology and Immunology, Henri-Mondor Hospital-UPEC, Créteil, France

ABSTRACT

Background: Vaso-occlusive crisis (VOC), hallmark of sickle-cell disease (SCD), is the first cause of patients’ Emergency-Room admissions and hospitalizations. Acute chest syndrome (ACS), a life-threatening complication, can occur during VOC, be fatal and prolong hospitalization. No predictive factor identifies VOC patients who will develop secondary ACS.

Methods: This prospective, monocenter, observational study on SS/S-βthalassemia SCD adults aimed to identify parameters predicting ACS at Emergency-Department arrival. The primary endpoint was ACS onset within 15 days of admission. Secondary endpoints were hospitalization duration, morphine consumption, pain evaluation, blood transfusion(s) (BT(s)), requiring intensive care and mortality.

Findings: Among 250 VOCs included, 247 were analyzed. Forty-four (17.8%) ACSs occurred within 15 (median [IQR] 3 [2, 3]) days post-admission based on auscultation abnormalities; missing chest radiographs excluded three patients. Comparing ACS to VOC, respectively, median hospital stay was longer 9 [7–11] vs 4 [3–7] days (p < 0.0001), 7/41 (17%) vs 1/203 (0.5%) required intensive care (p < 0.0001), and 20/41 (48.7%) vs 6/203 (3%) required BTs (p < 0.0001). No patient died. The multivariate model retained reticulocyte and leukocyte counts, and spine and/or pelvis pain as being independently associated with ACS; the resulting ACS-predictive score’s area under the ROC was 0.840 [95% CI 0.780–0.900], 98.8% negative-predictive value and 39.5% positive-predictive value for the real ACS incidence.

Interpretation: The ACS-predictive score is simple, easily applied and could change VOC management and therapeutic perspectives. Assessed ACS risk could lead to earlier discharges or close monitoring and rapid medical intensification to prevent ACS.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Vaso-occlusive crisis (VOC), hallmark of sickle-cell disease (SCD), is the primary cause of Emergency-Department admissions and patients’ hospitalizations (Dallas and Lusardi, 2005). About 20% of all-age deaths in the United States occurred during VOCs, and more frequently for those 20–54 years old in an inpatient facility (Hamideh and Alvarez, 2013). Secondary acute chest syndrome (ACS), the main severe VOC complication (Platt et al., 1994; Perronne et al., 2002), represented 50% of ACSs in a prospective study, appearing a mean of 2.5 days post-admission for VOC (Vichinsky et al., 2000). ACS remains a major cause of SCD-associated adult mortality (Platt et al., 1994; Perronne et al., 2002; Vichinsky et al., 2000; Maitre et al., 2000) and a major risk factor for early death (Platt et al., 1994). ACS is also associated with shortened survival probability, even long after the episode (Castro et al., 1994), particularly in conjunction with acute pulmonary hypertension (Mekontso Dessap et al., 2008). Still, prospective studies on adult VOCs are rare. Dallas et al., who studied 117 VOCs in 36 SCD patients...
over 6 years (Charache et al., 1992), found higher leukocyte and reticulocyte counts, lactate dehydrogenase (LDH) levels and inflammatory markers at the initial VOC phase vs steady state. In another study, half of the 102 patients studied had a prodromal phase 1–2 days pre-hospitalization, after the following precipitating factors, in decreasing frequency: cold, exertion, tiredness, infection, stress or worry, dehydration, alcohol consumption and pregnancy (Murray and May, 1988).

However, no study has yet focused on differences at admission between VOC patients who will or will not develop ACS. Predictive clinical and biological markers could provide important information on VOC and ACS pathophysiology needed to develop new therapeutic targets. Moreover, a score predicting ACS could generate innovative strategies to prevent ACS and/or simplify low-risk VOC management, thereby limiting morbidity and mortality, and shortening hospitalizations.

This predictive severity (PRESEV) study was undertaken to identify VOC-risk factors and construct a score predicting ACS at Emergency-Department arrival for VOC.

2. Patients and Methods

2.1. Participants

This prospective, monocenter, observational study included SS or S-βthalassemia patients, ≥18 years old arriving at the Emergency Room with severe VOC requiring hospitalization in our university hospital’s Adult Sickle-Cell Referral Center. Severe VOC was defined as pain or tenderness not controlled by grade-II analgesics (codeine or tramadol), affecting at least one part of the body, ie, limbs, ribs, sternum, head (skull), and spine and/or pelvis (S ± P), that required opioids and was not attributable to other causes. Exclusion criteria included: VOC with parenteral hydration lasting >24 h (because 24 h of treatment could modify clinical and biological parameters), primary ACS, transfusion or blood-product reactions. Moreover, a score predicting ACS could generate innovative strategies to prevent ACS and/or simplify low-risk VOC management, thereby limiting morbidity and mortality, and shortening hospitalizations.

This predictive severity (PRESEV) study was undertaken to identify VOC-risk factors and construct a score predicting ACS at Emergency-Department arrival for VOC.

2.2. Primary and Secondary Endpoints

VOC and ACS groups were formed. The primary endpoint was ACS onset within 15 days of admission, defined as the appearance of an auscultatory abnormality (crepitants and/or bronchial breathing) and/or chest pain and an infiltrate on chest film and/or thoracic computed-tomography (CT) scan but excluding atelectasia. Secondary endpoints were: hospitalization duration, BT, morphine consumption, visual analog scale (VAS: 0 mm, none; 100 mm, worst possible) for pain and our categorical pain score (CPS: range 0–3 points: 0, no pain; 1, mild pain, unaffected by mobilization; 2, moderate pain, increased by mobilization; 3, severe pain with disability) (Bartolucci et al., 2009) evaluations, BT, intensive care unit admission and mortality.

Each patient’s clinical and biological parameters were determined at admission. Every patient was examined by two physicians at least twice daily (for independent determinations of auscultatory abnormality), and nurses recorded temperature, pain, SpO2, respiratory and cardiac frequencies at least every 6 h. For the CPS, patients graded their pain in seven body sites (all four limbs, ribs and sternum, head, and S ± P; Fig. 1). Chest radiograph or thoracic CT scan was obtained for an auscultatory abnormality and/or chest pain. A radiologist and Referral Center physician blindly analyzed images. Daily morphine consumption was recorded on hospitalization days 1, 2 and 4. Patients could be discharged once pain was controlled by grade-II analgesics. All patients consulted at steady state, defined as ≥1 month post-hospitalization for VOC, infection, ACS, any other clinical event necessitating hospitalization and/or BT, and ≥3 months after the last BT, with biological parameter determinations.

Our local Ethics Committee (CPP Île-de-France IX) approved this study, conducted in accordance with the Declaration of Helsinki, Good Clinical Practice guidelines, and local laws and regulations. Patients were enrolled after giving their written informed consent.

2.3. Statistical Analyses

To detect relevant major biological parameter differences with 80% power and a 5% alpha risk, 250 inclusions including 20% ACSs were required (e.g., differences of 1 g of hemoglobin/dL with standard deviation (SD) = 2 with unequal variance) and 40 × 109 reticulocytes/L (SD = 80, with unequal variance).

Continuous variables are expressed as means ± 1 SD or medians [interquartile range], depending on their normal or asymmetric distributions. Categorical variables are expressed as numbers (%). ACS-associated factors were first sought by univariate analyses, using Student’s t-test or Mann–Whitney non-parametric test, depending on the distribution, or χ2 or Fisher’s exact test, where appropriate. Analysis of variance for repeated measures compared morphine doses on the first 4 days of hospitalization. Continuous variables significantly associated with ACS were transformed into binary variables, based on whole-population medians and confirmed by receiver operating characteristics (ROC) curve-determined thresholds. ACS-associated factors (p ≤ 0.05) were entered into logistic-regression models with a backward-stepwise procedure, confirmed by a forward procedure adjusted to two-day–1 hemoglobin-level classes. Variables achieving p ≤ 0.05 were kept in the model. Goodness-of-fit was assessed with the Hosmer–Lemeshow test and improvement by the final model of the explained variability by Nagelkerke’s R².

Each patient’s ACS-predictive score was calculated using rounded linear transformation of the model coefficients and a binary value, 0/1, for the respective absence/presence of the event. The predictive score’s performance was assessed with ROC curves and calculation of the area under them (AUROC) and its 95% confidence interval (CI). The threshold best discriminating between 2 ACS and VOC was retained, based on the score’s highest sensitivity and negative-predictive value (NPV).
Sensitivity analysis used a third reticulocyte-count category for patients with missing data. All statistical analyses were computed with SPSS v18 and/or Stata v11 software.

3. Results

3.1. Patients and Inclusion Characteristics

Recruitment lasted from July 2006 through September 2012 (Fig. 2), including 250 VOCs with 247 analyzed after excluding three (one psychiatric disorder and two non-SS or -S-βthalassemia genotypes). One hundred and forty-five patients were included once and 43 more than once. Among patients who developed ACS and were included twice, all but one had a VOC during the other hospitalization. Forty-four/41 (17.8%) ACSs occurred within 15 (median 3 [2, 3]) days post-admission based on auscultation abnormalities and/or chest pain, but three patients were excluded from the analysis because of missing confirmatory chest radiographs. Only 2/41 chest radiograph-confirmed ACSs did not have an auscultatory abnormality. One VOC-group patient developed a late ACS 20 days post-hospitalization.

Between-group clinical characteristics and SCD history at inclusion (Table 1) were comparable, except for the precipitating factor during the preceding 3 days. Patients were equally treated with hydroxyurea. VOC and ACS steady-state biological parameters for 222 episodes were comparable for the two groups, except red blood-cell (RBC) counts, respectively: 3.2 ± 0.7 × 10¹²/L and 2.9 ± 0.5 × 10¹²/L (p = 0.02).

A factor precipitating 186/203 (91.6%) VOCs and 34/41 (82.9%) ACSs was identified, with ≥2 for 92/203 (45.3%) and 18/41 (43.9%), respectively. The most frequent precipitating factors were cold (39·7%; significantly more frequent for VOCs; p = 0.004), exertion (31.1%), stress (23.4%), physician-suspected infection (20%), menstruation (14.9%) and decreased oral hydration (13.1%).

The mean VOC-onset-to-arrival (Table 2) interval was ~1 day; pain appeared at night for ~25% of the patients with no between-group differences. SpO₂ was <96% in 9.8% of VOC and 19.5% of ACS patients (p = 0.04). Despite similar respiratory frequency values, tachypnea (~20 breaths/min) was more frequent in ACS (39% vs 29.1% in VOC; p = 0.001). The mean VAS-assessed global pain intensity and total CPS were comparable, but ACS patients had significantly more intense S ± P (Table 3, Fig. 1) and milder left arm pain. Pain intensity in the five other body sites, including chest, was similar for both groups. According to univariate analyses, ACS patients’ leukocyte, neutrophil and reticulocyte counts, and LDH, direct bilirubin, aspartate aminotransferase, alkaline phosphatase and C-reactive protein levels were significantly higher, but their RBC counts and hemoglobin levels were lower than those of VOC patients.

3.2. Scores

Multivariate analyses retained day-1 > 216 × 10⁹ reticulocytes, >11 × 10⁹ leukocytes and S ± P CPS = 2 or 3 as being independently associated with ACS. The model was adjusted to hemoglobin ≤ or > 9 g/dL (Table 3). The final score is the sum of the points accorded those four parameters; it was unchanged when adjusted for hydroxyurea. A score predicting ACS, calculated by adding the transformed β-coefficients for the 226 (189 VOC and 37 ACS) patients with no missing data for the parameters, ranged between 0 and 16.

The AUROC was 0.836 [0.773–0.898] (Supplementary fig. S1). The ROC curve determined two cutoffs, yielding three ACS-risk groups, each representing a third of the patients: score ≤5 (n = 89): low, with NPV = 98.9% (88/89); score > 11 (n = 47): high, with positive-predictive value (PPV) = 44.7% (21/47); and score 6–10 (n = 90): intermediate NPV = 83.3% and PPV = 16.7% (75/90) (Table 3). Applying the ACS-predictive score to the study population would have missed only 1/40 analyzable ACSs.

3.3. Outcomes

Median hospital stay was longer for ACS than VOC patients, respectively: 9 [7–11] vs 4 [3–7] days (p < 0.0001). Seven/41 (17%) ACSs vs 1/203 (0.5%) VOC (p < 0.0001) patients required intensive care. No patient died. ACS patients required more BTs than VOC patients, respectively: 20/41 (48.7%) vs 6/203 (3%) (p < 0.0001). For all but one (pre-cholecystectomy) BT, ACS severity was the BT indication, according to
French guidelines, given almost simultaneously with ACS onset at a median of 3 [2, 3] days. VOC patients were transfused at a median 8 [5–11] days because of prolonged pain (3/6), late ACS on day 20 (1/6), severe cytomegalovirus infection (1/6) or severe anemia and low reticulocyte count (1/6).

Four/41 (9·7%) ACS vs 28/203 (13.8%) VOC (p = 0.4) patients were readmitted within 2 weeks of discharge. ACS- or VOC-patient morphine consumptions on days 1 (Table 1), as thereafter on days 2 and 4 (for 36 ACSs and 113 VOCs; p = 0.5), were comparable. At inclusion, only 7.3% of ACS and 3.9% of VOC patients were febrile (p = 0.64), with the former’s mean temperature being slightly higher (p = 0.05). Their hemocultures and CBEU were negative; colchicine attenuated one patient’s wrist arthritis and another had valganciclovir-treated cytolytic hepatitis. Throughout hospitalization, 12 (29%) of the 41 ACS patients were febrile, all were Legionella- and streptococcal pneumonia urinary antigen-negative; amoxicillin was prescribed for all but one and 6/12 also received a macrolide.

4. Discussion

VOC is the main cause of SCD-patient Emergency-Department arrival and ACS is one of its most severe complications, especially in adults, with high morbidity and mortality (Platt et al., 1994; Perronne et al., 2002; Maitre et al., 2000; Castro et al., 1994; Mekontso Dessap et al., 2008). ACS occurred in ~50% of hospitalized VOC patients a mean of 2.5 days post-admission (Vichinsky et al., 2000), similar to the 2.8 days herein (median: 3 days). A recent American epidemiological study (Hamideh and Alvarez, 2013) found higher mortality rates among rural SCD patients than their urban counterparts, highlighting the need to improve rural medical care. No biological or clinical marker predictive of developing ACS was previously available.

Our results enabled construction of a very simple ACS-predictive score based on four day-1 parameters (i.e., reticulocyte and leukocyte counts, hemoglobin and S ± P CPS). It has excellent NPV, enabling identification, as of Emergency-Department admission for VOC, of patients at very low or high risk (one-third each) of developing ACS. When applied routinely, this score enables emergency-care physicians to orient the former towards short hospital stays or outpatient monitoring, as in many African countries, and to transfer the latter to referral centers where ACS-preventive therapy-intensiﬁcation protocols can be applied. Indeed, therapeutic trials primarily aimed at lowering the ACS rate during VOC, based on the score to select patients at risk, would be more appropriate than the previous goal of shortening pain duration (Bartolucci et al., 2009; Orringer et al., 2001) or hospital stays (Bernini et al., 1998), or improving VOC resolution, as deﬁned by composite scores (Gladwin et al., 2011). We emphasize that the score was determined during Fig. 2. Study ﬂow chart. VOC = vaso-occlusive crisis. ACS = acute chest syndrome.

311 VOC hospitalizations

61 Exclusion criteria
17 refused to participate
8 neither SS nor S-β₀Thal
7 included in other trials
7 hospitalized for VOC <1 month earlier
6 primary ACSs
4 blood transfusion during the previous month and/or chronic blood exchange transfusion program
3 pregnancy
3 proven sepsis, surgery <15 days earlier
2 VOCs with parenteral hydration lasting >24 hours
1 impossible to evaluate (not French- or English-speaking)
1 psychiatric disorder
1 opioid allergy
1 transfusion impossible

3 Secondary exclusions
2 SS or S-β₀Thal not confirmed
1 psychiatric disorder

247 VOCs

44 ACSs appeared within 15 days

203 VOCs

41 ACSs

3 ACS presenting an abnormality auscultatory without a chest radiograph
severe VOCS, defined as pain not controlled by grade-II analgesics. However, it is unlikely that the score would be different if less severe VOCS were included.

Because no consensus ACS definition exists, we used a definition requiring chest radiograph. However, auscultation abnormality alone should suffice for ACS diagnosis, based on French guidelines and our clinical practice. Crepitants and/or bronchial breathing occur earlier than radiographic abnormality, and chest pain is not always present despite severe ACS. The major advantage of a definition based on the appearance of those signs (but not other anomalies) is its broad applicability, even where radiography is expensive and/or not available, as in many areas in Africa. Moreover, the onset of those signs should be sufficient to diagnose ACS.

Our ACS-predictive model's clinical parameter is S \pm P pain. Spine and pelvis trabecular bone characteristics probably explain our findings. VAS does not locate pain, unlike our CPS that we used previously (Bartolucci et al., 2009). Pain categorized at four levels and determined VAS does not locate pain, unlike our CPS that we used previously.
Table 3
ACS-predictive model derived from the multivariate analysis.

Day-1 variable	β-Coefficient	aOR [95% CI]	p	Points\(^a\)	
Reticulocytes (10^9/L) ≥216	0	1	-	0	
Spine and/or pelvis CPS 0 or 1	0	1	-	0	
Leukocytes (10^9/L) ≥11	1.60	4.60	[1.46–11.26]	0.007	4
Hemoglobin (g/dL) ≥9	1.16	3.19	[1.17–8.72]	0.024	3
Predictive model performance on the study population	0.246	1.279	[0.55–2.96]	0.567	1

\(aOR = \text{adjusted odds ratio}; \text{CPS} = \text{categorical pain score}. \text{ACS} = \text{secondary acute chest syndromes}. \text{VOCs} = \text{vaso-occlusive crises}. \text{PPV} = \text{predictive-positive value}. \text{NPV} = \text{negative-predictive value}.\)

\(\text{Point scores were calculated by multiplying the model's } \beta \text{-coefficients for each independent parameter } x + 3 \text{ and rounded to the nearest integer (AUC } = 0.836 \text{ [0.773–0.898]).}\)

\(\text{Model forced into the model to adjust to the Hosmer–Lemeshow statistic } = 0.967.\)

\(\text{Nagelkerke } R^2 = 0.338.\)

\(\text{The } \text{ACS-predictive score is the sum of the points accorded each of the four day-1 variables.}\)

(Ballas et al., 1988) however, they were less able to discriminate between ACS and VOC than reticulocytes. Leukocytes are known to be an independent factor predictive of SCD-associated death (Platt et al., 1994). Reported results demonstrated enhanced leukocyte adhesion to SS RBCs (Chaar et al., 2010) and vascular endothelium (Turhan et al., 2002), and their subsequent leukocyte participation in vaso-occlusion (Belcher et al., 2000; Hidalgo et al., 2009).

Pertinently, hydroxyurea did not modify the score, perhaps because patients taking it have lower reticulocyte and leukocyte counts. Hence, a reticulocyte or leukocyte rise under it would probably discriminate better between groups than without such increases. Furthermore, the comparable percentages of hydroxyurea-treated patients in our two groups indicate that, when treated patients develop severe VOCs requiring hospitalization, their risk of worsening is comparable to that of untreated patients, which should not be confused with hydroxyurea’s protective effect against ACS and VOC (Charache et al., 1995). Because the hydroxyurea dose was not considered in this study, we could not exclude a difference according to its dose. Morphine consumption on hospital days 1, 2 and 4 did not differ between groups, thereby excluding its possible effect on ACS appearance, in contrast to previous hypotheses (Kopecky et al., 2004; Buchanan et al., 2005).

Our study was homogenous because of its monocenter design with the same physicians, biologists and guidelines for all patients. Our results enabled a score to be built that could bring new perspectives to SCD management, but remains to be validated in other centers and countries, and tested on pediatric populations, before concluding as to its usefulness. In conclusion, a score predicting ACS as of Emergency-Department arrival for VOC, based on reticulocyte and leukocyte counts, hemoglobin and S ± P CPS, is simple enough to be easily applied and could change VOC therapeutic perspectives.

Authors Contributions

PB designed and performed research, analyzed data, and wrote the manuscript; BG and FG designed the research, analyzed data and gave advice; FRT performed the statistical analysis; AH, MK, VL, BR, AS, MM and ASL provided patients’ clinical data and discussed the results, gave advice, and commented on the manuscript; SL, SM and OWB performed biological analysis; and JB performed the monitoring.

Disclosure of Conflicts of Interest

The authors have declared that no conflicts of interest exist.

Acknowledgments

We thank Janet Jacobson for editorial assistance, Hélène Jouault and Mirna Saloum for their participation. No funding was needed for this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ebiom.2016.06.038.

References

Ballas, S.K., Lusardi, M., 2005. Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am. J. Hematol. 79 (1), 17–25.

Ballas, S.K., Lerner, J., Smith, E.D., Supery, S., Schwartz, E., Rappaport, E.F., 1988. Rheologic predictors of the severity of the painful sickle cell crisis. Blood 72 (4), 1216–1223.

Bartolucci, P., El Mur, T., Roudot-Thoraval, F., et al., 2009. A randomized, controlled clinical trial of ketoprofen for sickle-cell disease vaso-occlusive crises in adults. Blood 114 (18), 3742–3747.

Bartolucci, P., Chaar, V., Picot, J., et al., 2010. Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of LubaCAM protein phosphorylation. Blood 116 (12), 2152–2159.

Belcher, J.D., Marker, P.H., Weber, J.P., Hebbel, R.P., Vercellotti, G.M., 2000. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 96 (7), 2451–2459.

Bernini, J.C., Rogers, Z.R., Sandler, E.S., Reich, J.S., Quinn, C.T., Buchanan, G.R., 1998. Beneficial effect of intravenous dexamethasone in children with mild to moderately severe acute chest syndrome complicating sickle cell disease. Blood 92 (9), 3082–3089.

Browne, P.V., Hebbel, R.P., 1996. CD36-positive stress reticulocytosis in sickle cell anemia. J. Lab. Clin. Med. 127 (4), 340–347.

Buchanan, L.D., Woodward, M., Reed, G.W., 2005. Opioid selection during sickle cell pain crisis and its impact on the development of acute chest syndrome. Pediatr. Blood Cancer 45 (5), 716–724.

Kartron, J.P., Elson, J., 2008. Erythroid adhesion molecules in sickle cell disease: effect of hydroxyurea. Transfus. Clin. Biol. J. Soc. Fr. Transfus. Sanguine 15 (1–2), 39–50.

Castro, O., Brambilla, D.J., Thornton, B., et al., 1994. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84 (2), 643–649.

Chaar, V., Picot, J., Renaud, O., et al., 2010. Aggregation of mononuclear and red blood cells through an αβ/1-Lu basal cell adhesion molecule interaction in sickle cell disease. Haematologica 95 (11), 1841–1848.

Charache, S., Dower, G.J., Moore, R.D., et al., 1992. Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood 79 (10), 2555–2565.

Charache, S., Terrin, M.L., Moore, R.D., et al., 1995. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia: Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N. Engl. J. Med. 332 (20), 1317–1322.

El Nemer, W., Gane, P., Colin, Y., et al., 1998. The Lutheran blood group glycoproteins, the erythroid receptors for laminin, are adhesion molecules. J. Biol. Chem. 273 (27), 16686–16693.

Gladwin, M.T., Kato, G.J., Weiner, D., et al., 2011. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA 305 (9), 893–902.

Hamideh, D., Alvarez, O., 2013. Sickle cell disease related mortality in the United States (1999–2009). Pediatr. Blood Cancer 60 (9), 1482–1486.

Hebbel, R.P., 1997. Adhesive interactions of sickle erythrocytes with endothelium. J. Clin. Invest. 100 (11 Suppl.), S583–S586.

Hidalgo, A., Chang, J., Jang, J.E., Peirod, A., Chiang, E.Y., Frenette, P.S., 2009. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat. Med. 15 (4), 384–391.

Joneckis, C.C., Ackley, R.L., Orringer, E.P., Wayner, E.A., Parise, L.V., 1993. Integrin alpha 4 beta 1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood 82 (12), 3548–3555.

Kopecky, E.A., Jacobson, S., Joshi, P., Koren, G., 2004. Systemic exposure to morphine and the risk of acute chest syndrome in sickle cell disease. Clin. Pharmacol. Ther. 75 (3), 140–146.

Limbird, L.E., Gill, D.M., Stadel, J.M., Hickey, A.R., Lefkowitz, R.J., 1980. Loss of beta-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decrease in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes. J. Biol. Chem. 255 (5), 1854–1861.

Lionnet, F., Arlet, J.B., Bartolucci, P., Habibi, A., Ribeil, J.A., Stankovic, K., 2009. Guidelines for management of adult sickle cell disease. La Rev. Med. Interne 30 (Suppl. 3), S162–S223.
