Generating Information-Sharing Subdialogues in Expert-User Consultation

Jennifer Chu-Carroll and Sandra Carberry
Department of Computer and Information Sciences
University of Delaware
Newark, DE 19716, USA
E-mail: {jchu, carberry}@cis.udel.edu

Abstract

In expert-consultation dialogues, it is inevitable that an agent will at times have insufficient information to determine whether to accept or reject a proposal by the other agent. This results in the need for the agent to initiate an information-sharing subdialogue to form a set of shared beliefs within which the agents can effectively re-evaluate the proposal. This paper presents a computational strategy for initiating such information-sharing subdialogues to resolve the system’s uncertainty regarding the acceptance of a user proposal. Our model determines when information-sharing should be pursued, selects a focus of information-sharing among multiple uncertain beliefs, chooses the most effective information-sharing strategy, and utilizes the newly obtained information to re-evaluate the user proposal. Furthermore, our model is capable of handling embedded information-sharing subdialogues.

1 Introduction

We have been studying a particular kind of collaborative dialogue in which two participants (a consultant and an executing agent) collaborate on developing a plan to achieve the executing agent’s domain goal. In such an environment, the consultant and the executing agent have different knowledge about the domain and about the executing agent’s particular circumstances and preferences that may affect the domain plan being constructed. Thus, it is inevitable that an agent will not always immediately accept the actions or beliefs proposed by the other agent. However, an agent should recognize the collaborative nature of the interaction and the fact that each agent has private knowledge that is not shared by the other agent. Thus, rather than indiscriminately rejecting proposals that she does not have sufficient reasons to accept, a collaborative agent should both share her private knowledge with the other agent and solicit relevant information from the other agent in order for both agents to effectively re-evaluate the proposal and come to the most beneficial decision.

Such collaborative information-sharing behaviour is illustrated in the following dialogue segment based on transcripts of naturally occurring dialogues [SRI Transcripts, 1992]. In this dialogue, a travel agent (T) and a customer (C) are constructing a plan for two other agents to travel from San Francisco to Los Angeles. This segment follows a proposal that the travelers be booked on a particular USAir flight.

(1) T: Can we put them on American?
(2) C: Why?
(3) T: We’re having a lot of problems on the USAir seat maps so I don’t know if I can get them together.
(4) But American whatever we request pretty much we get.
(5) C: I don’t know if they care if they sit together.
(6) Let’s go ahead and stick with USAir.

In this dialogue, T proposes putting the travelers on American Airlines instead of USAir in utterance (1). In (2), C questions T’s motivation for this proposed action — i.e., the support that T’s private knowledge provides for this proposal. After T provides her motivation, C informs T in (5) that she rejects the motivation, re-evaluates the proposal, and in (6) rejects the actions proposed by T.

This paper presents a computational model for collaborative information-sharing during proposal evaluation. Our model first uses the system’s existing beliefs along with evidence provided by the user to evaluate user proposals and to determine whether they should be accepted or rejected. If the system has insufficient information to make this decision, it initiates an information-sharing subdialogue to form a set of shared beliefs within which the agents can effectively re-evaluate the proposal and come to agreement. This may lead to evaluation of an agent’s reasons for a proposal and further information-sharing about an agent’s beliefs supporting these reasons, thus leading to an embedded information-sharing subdialogue.

This material is based upon work supported by the National Science Foundation under Grant No. IRI-9122026.
Our research contributes to response generation in collaborative interaction by 1) providing an algorithm for identifying when an information-sharing subdialogue should be initiated during proposal evaluation, 2) providing a selection algorithm for determining the beliefs that should be the focus of information-sharing, 3) formulating information-sharing strategies and identifying the criteria for invoking each strategy, and 4) capturing the process in a Propose-Evaluate-Modify cycle that enables embedded information-sharing subdialogues.

2 Modeling Collaborative Activities

In modeling collaborative activities, it is essential that the system captures the agents’ intentions conveyed by their utterances. Our model utilizes an enhanced version of the dialogue model described in [Lambert and Carberry, 1991] to represent the current status of the interaction. The enhanced dialogue model has four levels: the domain level which consists of the domain plan being constructed for later execution, the problem-solving level which contains the actions being performed to construct the domain plan, the belief level which consists of the mutual beliefs pursued to further the problem-solving intentions, and the discourse level which contains the communicative actions initiated to achieve the mutual beliefs [Chu–Carroll and Carberry, 1994].

In our earlier work, we developed a plan-based model that captures collaborative planning in a Propose-Evaluate-Modify cycle of actions [Chu–Carroll and Carberry, 1994]. This model treats a collaborative planning process as a sequence of the following actions: agent A’s proposal of a set of actions and beliefs to be added to the shared plan [Grosz and Sidner, 1990; Allen, 1991] being developed, agent B’s evaluation of the proposed actions and beliefs, and B’s proposed modifications to the original proposal in cases where the proposal is rejected. Notice that B’s proposed modifications will again be evaluated by A, and if conflicts arise, A may propose modifications to B’s proposed modifications, resulting in a recursive process.

However, our previous research assumed that an agent’s evaluation of a proposal always results in the proposal being accepted or rejected, and did not take into account cases in which the agent initially has insufficient information to determine whether or not to accept the proposal, as shown in the example in utterances [1]-[6]. This paper extends our earlier work by providing a computational strategy for collaborative information-sharing during proposal evaluation. We focus on situations in which the system’s lack of knowledge occurs during the evaluation of proposals at the belief level of the dialogue model.

3 Information-Sharing During Collaboration

Since a collaborative agent initiates information-sharing subdialogues to help determine whether to accept or reject a proposed belief, the information-sharing process is captured as part of the evaluation process in the Propose-Evaluate-Modify cycle for collaborative activities. Thus the evaluation of a proposed belief involves the agent 1) determining the acceptance of the proposed belief based on the information currently available to her, and 2) in cases where she cannot decide whether to accept or reject the belief, initiating an information-sharing subdialogue so that the agents can exchange information and re-evaluate the proposed belief. The following sections describe these two processes.

3.1 Evaluating Proposed Beliefs

Our system maintains a set of beliefs about the domain and about the user’s beliefs. Associated with each belief is a strength that represents the agent’s confidence in holding the belief. We model the strength of a belief using endorsements [Cohen, 1985], following [Galliers, 1992; Logan et al., 1994], based on the semantic form of the utterance used to convey a belief, the level of expertise of the agent conveying the belief, stereotypical beliefs, etc.

The belief level of our dialogue model consists of one or more belief trees where the belief represented by a child node is intended to support that represented by its parent. When an agent proposes a new belief and gives (optional) supporting evidence for it, this set of proposed beliefs is represented as a belief tree. The system must then evaluate the proposed belief.

Figure 1: Algorithm for Evaluating a Belief

```
Evaluate-Belief(_bel):
1. evidence set ← _bel (appropriately endorsed as conveyed by the user) and the system’s beliefs that support or attack _bel.
2. If _bel has no children, return Evaluate(_bel, evidence set).
3. Evaluate each of _bel’s children: _bel₁, . . . , _belₙ:
   3.1 belief_result ← Evaluate-Belief(_bel₁)
   3.2 rel_result ← Evaluate-Belief supports(_bel₁, _bel)
   3.3 If belief_result = reject or rel_result = reject, ignore _bel, and supports(_bel₁, _bel).
   3.4 Else if belief_result = rel_result = accept, add { _bel₁, supports(_bel₁, _bel) } to the potential evidence set.
   3.5 Else if belief_result = unsure or rel_result = unsure, add { _bel₁, supports(_bel₁, _bel) } to the potential evidence set.
4. Evaluate _bel:
   4.1 upperbound ← Evaluate(_bel, evidence set + potential evidence set)
   4.2 lowerbound ← Evaluate(_bel, evidence set)
   4.3 If upperbound = lowerbound = accept, accept _bel.
   4.4 Else if upperbound = lowerbound = reject, reject _bel.
   4.5 Else unsure about _bel; annotate _bel with upperbound, lowerbound, evidence set, and potential evidence set.
```

We are concerned with situations in which the system recognizes the user’s proposal but cannot decide whether to accept or reject it, not those where the system initiates a clarification subdialogue to disambiguate the user’s proposal [van Beek et al., 1992; Logan et al., 1994; Heeman and Hirst, 1992; Raskutti and Zukerman, 1993].
beliefs in order to determine whether to accept the proposal, reject it, or pursue information-sharing to allow the agents to re-evaluate it. The algorithm for evaluating proposed beliefs is shown in Figure 1 and is applied to the root node of each proposed belief tree (the top-level proposed beliefs). Since the acceptance of a child belief may affect the acceptance of its parent, before determining the acceptance of a belief or evidential relationship, its children in the proposed belief tree must be evaluated (step 3). Thus, for each child belief of \( \text{bel} \), the system evaluates both the belief (step 3.1) and the evidential relationship between the belief and \( \text{bel} \) (step 3.2). A piece of evidence is marked as 1) accepted if both the child belief and the evidential relationship are accepted, 2) rejected if either the child belief or the evidential relationship is rejected, or 3) uncertain otherwise.

To determine the status (accepted, rejected, or uncertain) of a belief \( \text{bel} \), the algorithm constructs an evidence set that contains the user’s proposal of \( \text{bel} \), endorsed according to the user’s level of expertise in that subarea as well as the user’s strength in the belief as conveyed by the semantic form of the utterance (step 1), the system’s own beliefs pertaining to \( \text{bel} \) (step 1), and evidence proposed by the user that is accepted by the system (step 3.4). It also constructs a potential evidence set consisting of evidence proposed by the user whose acceptance is undetermined (step 3.5). The algorithm must then determine whether the potential evidence could have an impact on the system’s decision-making. It first evaluates \( \text{bel} \) by invoking the \textbf{Evaluate} function to compute an upperbound and a lowerbound for the system’s acceptance of \( \text{bel} \). The upperbound is computed by invoking the \textbf{Evaluate} function with evidence from both the evidence set and the potential evidence set, i.e., treating all uncertain evidence as accepted, and the lowerbound is computed by invoking \textbf{Evaluate} with only the evidence set, i.e., treating all uncertain evidence as rejected (steps 4.1 and 4.2). If \( \text{bel} \) is either accepted or rejected in both cases, indicating that the uncertainty of the evidence, if any, does not affect the acceptance of \( \text{bel} \), the system accepts or rejects \( \text{bel} \) (steps 4.3 and 4.4). Otherwise, the system has insufficient information to determine the acceptance of \( \text{bel} \) and it is marked as uncertain (step 4.5). If the top-level proposed belief is marked as uncertain, an information-sharing subdialogue will be initiated, as described in the next section.

3.2 Initiating Information-Sharing Subdialogues

A collaborative agent, when facing a situation in which she is uncertain about whether to accept a proposal, should attempt to share information with the other agent so that each agent can knowledgably re-evaluate the proposal and the agents can come to agreement — to do otherwise is to fail in her responsibilities as a collaborative agent. Furthermore, a collaborative agent should engage in effective and efficient dialogues;

| Upper | Lower | Action |
|-------|-------|--------|
| accept| accept| accept \( \text{bel} \) |
| accept| unsure| attempt to accept uncertain children in order to accept \( \text{bel} \) |
| accept| reject| actions in cases 2 and 5 |
| unsure| unsure| resolve uncertainty regarding \( \text{bel} \) itself |
| unsure| reject| attempt to reject uncertain children in order to reject \( \text{bel} \) |
| reject| reject| reject \( \text{bel} \) |

Figure 2: Combinations of Upperbounds and Lowerbounds

thus she should pursue the information-sharing subdialogue that she believes will most likely result in the agents coming to an intelligent decision about the proposal. The process for initiating information-sharing subdialogues involves two steps: selecting a focus of information-sharing from the proposed beliefs marked as uncertain during the initial evaluation process, and selecting an effective information-sharing strategy.

Selecting the Focus of Information-Sharing

The possible combinations of the upperbound and lowerbound values produced by the \textbf{Evaluate-Belief} algorithm (Figure 1) are shown in Figure 2. Cases 1 and 6 correspond to steps 4.3 and 4.4 in Figure 1 respectively, in which the decision to accept or reject is the same whether or not beliefs in the potential evidence set are accepted. In these cases, the uncertainty in the child beliefs need not be resolved since their acceptance will not impact acceptance of the parent belief that they are intended to support, and thus will not affect acceptance of the top-level proposed belief that is important to the plan being constructed. In case 4, the system will remain unsure whether to accept or reject \( \text{bel} \) regardless of whether the uncertain child beliefs, if any, are accepted or rejected, i.e., resolving the uncertainty in the child beliefs will not help resolve the uncertainty in \( \text{bel} \). Thus, the system should focus on sharing information to resolve the uncertainty about \( \text{bel} \) itself instead of its children. In cases 2 and 3, acceptance of the child beliefs has the potential to influence acceptance of \( \text{bel} \) and in cases 3 and 5, rejection of the child beliefs can lead to rejection of \( \text{bel} \). Thus in all three cases, the system should initiate information-sharing that will allow the agents to come to agreement about the currently uncertain child beliefs.

However, there may be more than one uncertain child belief. Thus when the system initiates information-sharing, it must first select a belief on which to focus during the information-sharing process. Our algorithm for selecting the

---

2\textit{Evaluate} utilizes a simplified version of Galliers’ belief revision mechanism [Galliers, 1992; Logan et al., 1992] which, given a set of evidence, compares the endorsements of the beliefs that support and attack \( \text{bel} \) and determines whether or not \( \text{bel} \) should be accepted.

3Our model assumes that a child belief is always intended to provide support for its parent belief (a piece of counterevidence is represented as a child belief supporting the negation of the parent belief); thus only six out of the nine theoretically possible combinations may occur.

4Young et al. [Young et al., 1994] argued that if a belief is accepted even though a child belief that is intended to support it is rejected, the rejection of the child belief need not be addressed since it is no longer relevant. Our strategy extends this concept to uncertain information.
Select-Focus-Info-Sharing(\textit{bel}): 

1. If \textit{bel} is accepted or rejected, focus $\leftarrow \varnothing$, return focus.
2. If \textit{bel} has no children, focus $\leftarrow \textit{bel}$; return focus.
3. If upper = lower = uncertain, focus $\leftarrow \textit{bel}$; return focus.
4. If upper = accept,
   4.1 Assign each piece of uncertain evidence (\textit{bel}, and supports(\textit{bel}, \textit{bel})) to a set, and order the sets according to how close the beliefs in each set were to being accepted. Call them $\textit{set}_1, \ldots, \textit{set}_m$.
   4.2 For each set in ranked order, do until new_result = accept:
       new_result $\leftarrow$ Evaluate(\textit{bel}, evidence set + set).
   4.3 If new_result $\neq$ accept, increase set size by one, re-rank and goto 4.2;
   4.4 Else focus $\leftarrow \bigcup_{i=1}^{m} \textit{set}_i$, Select-Focus-Info-Sharing(\textit{el}_1); return focus.
5. If lower = reject,
   5.1 Assign each piece of uncertain evidence (\textit{bel}, and supports(\textit{bel}, \textit{bel})) to a set, and order the sets according to how close the beliefs in each set were to being rejected. Call them $\textit{set}_1, \ldots, \textit{set}_m$.
   5.2 For each set in ranked order, do until new_result = reject:
       new_result $\leftarrow$ Evaluate(\textit{bel}, evidence set + potential evidence set - set).
   5.3 If new_result $\neq$ reject, increase set size by one, re-rank and goto 5.2;
   5.4 Else focus $\leftarrow \bigcup_{i=1}^{m} \textit{set}_i$, Select-Focus-Info-Sharing(\textit{el}_1); return focus.

Figure 3: Selecting the Focus of Information-Sharing

focus of information-sharing is shown in Figure 3. Select-Focus-Info-Sharing is initially invoked with \textit{bel} instantiated as the top-level proposed belief. Step 6 of the algorithm corresponds to case 4 in Figure 2 where the uncertainty in the child beliefs is irrelevant to the acceptance of \textit{bel}; thus the focus of information-sharing is \textit{bel} itself. Steps 4 and 5 of the algorithm correspond to cases 2, 3 and 5 in Figure 2 where the system attempts to share information to resolve the uncertainty in the child beliefs and perhaps thereby accept or reject \textit{bel}.

Step 3 of the algorithm is concerned with cases where the potential acceptance of uncertain child beliefs may lead to the acceptance of \textit{bel} (cases 2 and 3 in Figure 2). In selecting the focus of information-sharing in such cases, two factors should come into play: 1) how strongly the acceptance of each piece of evidence affects the acceptance of \textit{bel} — the stronger the impact that the potential evidence can have on the acceptance of \textit{bel}, the more useful it is to expend effort on resolving the uncertainty about the proposed evidence, and 2) how close each piece of evidence was to being accepted during the initial evaluation process — the closer a piece of evidence is to being accepted, the easier it is for the system to gather sufficient information to accept the evidence. Our algorithm first constructs a singleton set for each piece of uncertain evidence for \textit{bel}, where a piece of evidence includes a pair of beliefs: a child belief \textit{bel}_i, and the evidential relationship between \textit{bel}_i and \textit{bel}, supports(\textit{bel}_i, \textit{bel}). The sets are ordered according to how close the beliefs in a set were to being accepted in the initial evaluation process (step 4.1). The first set (\textit{set}_1) is then added to the evidence set, and \textit{bel} is re-evaluated with respect to the augmented evidence set (step 4.2), thus considering the potential effect of the acceptance of beliefs in \textit{set}_1 on the acceptance of \textit{bel}. If the result of the evaluation is to accept \textit{bel}, indicating that resolving the uncertainty of the beliefs in \textit{set}_1 is sufficient to resolve the uncertainty of \textit{bel}, then Select-Focus-Info-Sharing is recursively applied to each belief in \textit{set}_1 in order to determine the focus for resolving the uncertainty of beliefs in \textit{set}_1 (step 4.3). On the other hand, if the evaluation indicates that accepting \textit{set}_1 does not result in the acceptance of \textit{bel}, the next set (\textit{set}_2) is tried. This continues until either the uncertain evidence in a set is predicted to resolve the uncertainty of \textit{bel}, or all of the uncertain evidence is tried and none suffices for acceptance of \textit{bel}. In the latter case, the set size is increased by one, sets of the requisite size are constructed by combining individual pieces of evidence, the new sets are ordered, and the same process is repeated (step 4.4). Thus our algorithm guarantees that the fewest possible beliefs are selected as the focus of information-sharing and that these beliefs require the least effort to achieve among those that are strong enough to affect the acceptance of \textit{bel}.

Step 3 of the algorithm corresponds to cases 3 and 5 in Figure 2. The procedure for step 3 is similar to that for step 2 except that in predicting the effect of resolving a piece of uncertain evidence, \textit{bel} is evaluated under the assumption that the set of uncertain evidence under consideration is rejected while the other uncertain beliefs are accepted (step 5.2).

Selecting an Information-Sharing Strategy

We have identified four strategies which a collaborative agent may adopt in initiating an information-sharing subdialogue to allow the agents to share information and re-evaluate a belief or evidential relationship, \textit{bel}:

1. Agent A may present a piece of evidence against \textit{bel} and (implicitly) invite agent B to attack it. Such a strategy focuses B’s attention on the counter evidence and suggests that it is what keeps A from accepting \textit{bel}. Thus in collaborative activities, this strategy should only be employed if A’s counter evidence is critical, i.e., if proving that the counter evidence is invalid will cause A to accept \textit{bel}. This strategy also allows the possibility of B accepting the counter evidence and perhaps both agents subsequently adopting $\neg \textit{bel}$ instead of $\textit{bel}$.

*In cases where the focus set contains multiple beliefs, additional processing is needed to determine the most coherent order in which to address the beliefs.*
2. Agent A may query B about his reasons for believing in \(\text{bel1}\). This strategy is appropriate when A does not know B's support for \(\text{bel1}\), and also does not have evidence against \(\text{bel1}\) herself. It would result either in A gathering evidence that contributes toward her adopting \(\text{bel1}\), or in A discovering B's invalid justification for holding \(\text{bel1}\) and attempting to convince B of \(\neg \text{bel1}\).

3. Agent A may query B for his evidence for \(\text{bel1}\) and also present her reasons for believing in \(\neg \text{bel1}\). This strategy is adopted when A does not know B's reasons for believing \(\text{bel1}\), but does have non-critical evidence against accepting \(\text{bel1}\). In this case B may provide his support for \(\text{bel1}\), attack A's evidence against \(\text{bel1}\), or accept A's counter-evidence and perhaps subsequently adopt \(\neg \text{bel1}\).

4. Agent A may indicate her uncertainty about \(\text{bel1}\) and present her reasons against \(\text{bel1}\). This strategy is adopted when A is least certain about how to go about sharing information to resolve the uncertainty — when A already knows B's reasons for believing \(\text{bel1}\), and only has non-critical evidence against accepting \(\text{bel1}\). In a collaborative environment, A's indication of the uncertainty in her decision should lead B to provide information that he believes will help A re-evaluate the proposal.

The process for initiating information-sharing subdialogues is performed by invoking the \text{Share-Info-Reevaluate-Belief} problem-solving action on the focus identified by \text{Select-Focus-Info-Sharing} (Figure 4). It initiates an information-sharing subdialogue using the most appropriate of the four information-sharing strategies and re-evaluates the top-level belief taking into account the newly obtained information. The recipe for \text{Share-Info-Reevaluate-Belief} specifies that in order for the action to be invoked, it must be the case that the system believes in neither a top-level proposed belief (\(\text{bel1}\)) nor its negation — that is, the system cannot determine whether to accept or reject \(\text{bel1}\). The body of \text{Share-Info-Reevaluate-Belief} consists of alternative subactions which correspond to the aforementioned strategies that a collaborative agent can use to pursue information-sharing. The recipes for two of these subactions are shown in Figure 4.

The first specialization, \text{Reevaluate-After-Invite-Attack}, corresponds to the first information-sharing strategy in which the system \((s1)\) has a piece of critical evidence \((\text{bel2})\) against believing \(\text{bel1}\), a belief proposed by the user \((s2)\) and about which the system is uncertain. This criterion is captured in the applicability conditions of the action: the conditions that the system is uncertain about the acceptance of \(\text{bel1}\), that the system believes in \(\text{bel2}\) which provides support for \(\neg \text{bel1}\), and that the system's disbelief in \(\text{bel2}\) will result in its adoption of \(\text{bel1}\). The preconditions of \text{Reevaluate-After-Invite-Attack}, however, show that the action cannot be performed until one of the following conditions is true: 1) the system and the user mutually believe (MB) in \(\text{bel2}\) and mutually believe that \(\text{bel2}\) supports \(\neg \text{bel1}\), 2) the system and the user mutually believe in \(\neg \text{bel2}\), or 3) the system and the user mutually believe that \(\text{bel2}\) does not support \(\neg \text{bel1}\).

In order to satisfy the preconditions, the system will adopt the \text{Express-Doubt} discourse action [Lambert and Carrberry, 1992], in which the system expresses doubt about \(\text{bel1}\) by contending \(\text{bel2}\) and the evidential relationship between \(\text{bel1}\) and \(\neg \text{bel1}\), as an attempt to achieve \(\text{MB}(S,U,\text{bel2})\) and \(\text{MB}(S,U,\text{supports}(\text{bel2},\neg \text{bel1}))\). Thus the system will initiate an information-sharing subdialogue by expressing its evidence against the proposed belief and inviting the user to comment on it. If the outcome of the information-sharing subdialogue satisfies one of the preconditions of \text{Reevaluate-After-Invite-Attack}, the system can perform the body of the action and re-evaluate _top-belief_ (the root node of the proposed belief tree of which \(\text{bel1}\) is a part) taking into account the newly obtained information. Notice that the user's response to the \text{Express-Doubt} discourse action is again considered a proposal of mutual beliefs and will be evaluated by the system. The system may again have insufficient information to determine whether to accept or reject the new proposal which was intended to resolve the uncertainty of the

---

6A recipe [Pollack, 1982] is a template for performing actions. It contains the applicability conditions for performing an action, the subactions comprising the body of an action, etc.

7Applicability conditions are conditions that must already be satisfied in order for an action to be reasonable to pursue, whereas an agent can try to achieve unsatisfied preconditions.

---

---
previous proposal. It will then initiate another information-sharing subdialogue to resolve the new uncertainty, resulting in embedded information-sharing subdialogues.

The second specialization of Share-Info-Reevaluate-Belief is Reevaluate-After-Ask-Why, which corresponds to the second information-sharing strategy in which the system attempts to find out the user’s justification for believing $\_bel1$. The action is applicable (Figure 3) if the system’s ($s1$) does not know the user’s ($s2$’s) justification for holding $\_bel1$, and also does not have any evidence against $\_bel1$ itself. We argue that a collaborative agent should not accept a proposed belief merely because of the lack of evidence to the contrary. Instead, she should only accept a belief if the evidence supporting the belief is strong enough to warrant acceptance. For instance, suppose a student informs his advisor that the AI course scheduled for next semester has been canceled, without giving any justification for it (such as attributing the source of the knowledge); although the advisor may not have evidence against believing in the cancellation, she does not immediately accept the proposed belief because, given the student’s presumed low expertise in the domain, the endorsement attached to the proposed belief is not reliable enough to warrant acceptance. The precondition of Reevaluate-After-Ask-Why indicates that the action can be performed only if the system knows the user’s evidence for holding $\_bel1$. In order to satisfy this precondition, the system will adopt discourse actions to query the user for such information, thus initiating an information-sharing subdialogue.

4 Example

Suppose that the system, an expert in the university course advisement domain, has proposed the options of taking Logic or Algorithms to satisfy the user’s core course requirement. Consider the following continuation which illustrates many of the features of our strategy for information-sharing during proposal evaluation:

(7) $U$: Logic is a better choice than Algorithms.

(8) $Dr. Smith is teaching Logic.$

(9) $S$: Isn’t Dr. Smith going on sabbatical next year?

(10) $U$: I thought he postponed his sabbatical until 1996.

(11) $S$: Why do you think Dr. Smith postponed his sabbatical until 1996?

(12) $Isn’t he spending next year at IBM?$

In utterance (8), S initiates an information-sharing subdialogue to determine whether to accept or reject the belief that Dr. Smith is teaching Logic, proposed by U in (8), by expressing a strong but not warranted belief that Dr. Smith is going on sabbatical next year. In (11), U initiates an information-sharing subdialogue to determine whether to accept S’s claim that Dr. Smith is going on sabbatical next year by expressing his weak belief that Dr. Smith has postponed his sabbatical. Finally, in (11) and (12), S initiates an information-sharing subdialogue to determine whether to accept U’s claim that Dr. Smith has postponed his sabbatical by explicitly querying U’s reasons for holding this belief and expressing her belief that Dr. Smith is spending next year at IBM. The following sections describe how our model will produce these information-sharing subdialogues.

4.1 Evaluating Utterances (7) and (8)

Utterances (7) and (8) propose two mutual beliefs, Better-Than(Logic, Algorithms) and Teaches(Smith,Logic), as well as an evidential relationship that the latter provides support for the former. When presented these proposed beliefs, the system will first determine whether to accept or reject the proposal by invoking Evaluate-Belief (Figure 1) on the top-level proposed belief, Better-Than(Logic,Algorithms). The system will evaluate the proposed evidence as part of evaluating the belief (step 3 in Figure 1), thus recursively invoking Evaluate-Belief on Teaches(Smith,Logic) (step 3.1) and the proposed evidential relationship (step 3.2). Since Teaches(Smith,Logic) has no children in the proposed belief tree, it will be evaluated by a simplified version of Galliers’ belief revision mechanism (Galliers, 1992) (step 2). Suppose that the system has the following evidence pertaining to Teaches(Smith,Logic): 1) a strong belief that Dr. Smith usually teaches Logic, 2) a strong belief that Dr. Smith is going on sabbatical next year and a warranted belief that going on sabbatical implies that a faculty member is not teaching courses, and 3) the user’s belief that Dr. Smith is teaching Logic. The strengths of evidence for and against Teaches(Smith,Logic) will be combined and compared. In this case, the strengths of the two sets of evidence are relatively comparable; thus the system will not be able to decide whether to accept or reject Teaches(Smith,Logic) based on the available information. The system will then evaluate the proposed evidential relationship (step 3.2). Since the system believes that 1) the user believes that Dr. Smith is a good teacher and 2) students generally prefer courses taught by good teachers, Dr. Smith teaching Logic provides support for the user preferring Logic to Algorithms; thus the proposed evidential relationship will be accepted. Since the proposed evidential relationship is accepted while the child belief is uncertain, this piece of evidence will be added to the potential evidence set (step 3.5).

The system will then evaluate the top-level proposed belief, taking into account the result of evaluating its only piece of evidence provided by the user. The system’s evidence set for Better-Than(Logic, Algorithms) consists of a warranted belief that Algorithms is a pre-requisite for more CS courses than Logic is, which provides some support for Algorithms being a better choice than Logic, as well as the user’s statement that Logic is a better choice than

---

The strength of a belief falls into one of three categories: warranted, strong, or weak, based on the endorsements of the belief.
Algorithms. The potential evidence set consists of a pair of beliefs: the uncertain belief that Dr. Smith is teaching Logic and the accepted evidential relationship that Dr. Smith teaching Logic provides support for Logic being a better choice than Algorithms. When both the evidence set and the potential evidence set are included in the evaluation, the system will compute the upperbound of the acceptance of Better-Than(Logic, Algorithms) to be accept. When considering only evidence from the evidence set, however, the system will be uncertain about the acceptance of the proposed belief. The result of this evaluation corresponds to case 2 in Figure 2, and results in the need for the system to initiate an information-sharing subdialogue to resolve the uncertainty.

Since the system cannot decide whether to accept either of the proposed mutual beliefs, it will select a focus of information-sharing by invoking Select-Focus-Info-Sharing (Figure 3) on Better-Than(Logic, Algorithms). Since acceptance of the only piece of evidence provided by the user results in acceptance of the top-level proposed belief (step 4.2), the algorithm will be applied recursively to the child belief. Since it in turn has no children, teaches(Logic) itself will be selected as the focus of information-sharing.

The system will now invoke Share-Info-Reevaluate-Belief on the identified focus. Since the system’s belief that Dr. Smith is going on sabbatical and its belief in the evidential relationship that being on sabbatical implies that Dr. Smith is not teaching Logic constitute the only obstacle against its accepting teaches(Logic), they are considered a pair of critical evidence. Thus, Reevaluate-After-Invite-Attack will be selected as the specialization of Share-Info-Reevaluate-Belief. Figure 3 shows the dialogue model that will be constructed for this process. In order to satisfy the preconditions of Reevaluate-After-Invite-Attack (Figure 3), the system will post MB(S, U, On-Sabbatical(Smith, next year)) and MB(S, U, supports(On-Sabbatical(Smith, next year), ¬teaches(Logic))) as mutual beliefs to be achieved.

The system will adopt the Express-Doubt discourse action to convey its strong belief in On-Sabbatical(Smith, next year) and its warranted belief in supports(On-Sabbatical(Smith, next year), ¬teaches(Logic)). However, the latter will not be explicitly stated because the system believes that the user will derive the evidential relationship based on stereotypical knowledge and the structure of the discourse. Thus the system would generate the following utterance:

(9) S: Isn’t Dr. Smith going on sabbatical next year?

4.2 Possible Follow-Ups to Utterance (9)

Consider the following alternative responses to (9):

(10a) U: Oh, you’re right. I forgot about that.

(10b) U: He was planning on it, but he told me that he had decided to postpone it until 1996.

Walker [Walker, 1994] has shown the importance of IRU’S (Informationally Redundant Utterances) in efficient discourse. We leave including appropriate IRU’s for future work.
Express-Doubt action is intended to achieve, namely a precondition of Reevaluate-After-Invite-Attack; thus the Express-Doubt action is abandoned. This example shows how the precondition of Reevaluate-After-Invite-Attack captures situations in which the user presents counterevidence to the system’s critical evidence and changes the system’s beliefs.

### 4.3 Evaluating Utterance (10d)

Utterance (10d) will be interpreted as a case in which the user is uncertain about whether to accept or reject the system’s proposal in 3 and attempts to share information with the system to re-evaluate the proposal. It proposes a mutual belief, Postpone-Sabbatical(Smith,1996), which will be evaluated by Evaluate-Belief. Suppose the system believes that Dr. Smith is spending next year at IBM, which is evidence against Dr. Smith postponing his sabbatical. Then the system cannot accept the certainty of the proposed belief, resulting in the need to initiate an information-sharing subdialogue. The focus of information-sharing is Postpone-Sabbatical(Smith,1996) since it is the only uncertain belief. The system will then select an appropriate information-sharing strategy. Since the system does not know the user’s reasons for believing Postpone-Sabbatical(Smith,1996), but does have a piece of non-critical evidence against the proposed belief, the third information-sharing strategy will be selected. Thus the system would query the user for support for the proposed belief and also provide its evidence against the belief, leading to the generation of the following utterances:

11) S: Why do you think Dr. Smith postponed his sabbatical until 1996?
12) Isn’t he spending next year at IBM?

### 5 Related Work

Grosz, Sidner and Lochbaum[1] Grosz and Sidner, 1990; Lochbaum, 1991] developed a SharedPlan approach to modeling collaborative discourse, and Sidner[2] Sidner, 1994] formulated an artificial language for modeling such discourse. Sidner viewed a collaborative planning process as proposal/acceptance and proposal/rejection sequences. Her artificial language treats an utterance such as Why do X? as a proposal for the hearer to provide support for his proposal to do X. However, Sidner’s work is descriptive and does not provide a mechanism for determining when and how such a proposal should be made nor how responses should be formulated in information-sharing subdialogues.

Several researchers have studied the role of clarification dialogues in disambiguating user plans[3] van Beek et al., 1993; Raskutti and Zukerman, 1995] and in understanding referring expressions[4] Heeman and Hirst, 1992]. Logan et al.[5] Logan et al., 1994] developed an automated librarian that could revise its beliefs and intentions and could generate responses as an attempt to revise the user’s beliefs and intentions. Although their system had rules for asking the user whether he holds a particular belief and for telling the system’s attitude toward a belief, the emphasis of their work was on conflict resolution and plan disambiguation. Thus they did not investigate a comprehensive strategy for information-sharing during proposal evaluation. For example, they did not identify situations in which information-sharing is necessary, did not address how to select a focus of information-sharing when there are multiple uncertain beliefs, did not consider requesting the user’s justifications for a belief, etc. In addition, they do not provide an overall dialogue planner that takes into account discourse structure and appropriately captures embedded subdialogues.

### 6 Conclusion

This paper has presented a computational strategy for collaborative information-sharing in situations where the system’s current knowledge does not allow it to make a decision about whether to accept or reject a user proposal. Our model includes algorithms for determining when information-sharing subdialogues should be initiated and for selecting a focus of information-sharing. The latter algorithm takes into account both the effect of the acceptance of a piece of evidence on the acceptance of the top-level belief, and the difficulty in resolving the uncertainty about acceptance of a piece of evidence. Furthermore, we have identified four alternative information-sharing strategies and the criteria under which each should be invoked, thus allowing the agents to share the most pertinent information in order to re-evaluate a proposal. In addition, by capturing information-sharing as part of the evaluation process in a Propose-Evaluate-Modify cycle of actions, our model can handle embedded information-sharing subdialogues.

### Acknowledgments

The research has benefitted from discussions with Stephanie Elzer, Kathy McCoy, and Candy Sidner.

### References

[1] Allen, 1991] James Allen. Discourse structure in the TRAINS project. In Darpa Speech and Natural Language Workshop, 1991.

[2] Chu.Carroll and Carberry, 1994] Jennifer Chu.Carroll and Sandra Carberry. A plan-based model for response generation in collaborative task-oriented dialogues. In Proceedings of the 12th AAAI, pages 799–805, 1994.

[3] Cohen, 1985 Paul R. Cohen. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach. Pitman Publishing Company, 1985.

[4] Galliers, 1992 Julia R. Galliers. Autonomous belief revision and communication. In Gardenfors, editor, Belief Revision. Cambridge University Press, 1992.
[Grosz and Sidner, 1990] Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In Cohen, Morgan, and Pollack, editors, *Intentions in Communication*, chapter 20, pages 417–444. MIT Press, 1990.

[Heeman and Hirst, 1992] Peter A. Heeman and Graeme Hirst. Collaborating on referring expressions. Technical Report 435, University of Rochester, 1992.

[Lambert and Carberry, 1991] Lynn Lambert and Sandra Carberry. A tripartite plan-based model of dialogue. In *Proceedings of the 29th ACL*, pages 47–54, 1991.

[Lambert and Carberry, 1992] Lynn Lambert and Sandra Carberry. Modeling negotiation dialogues. In *Proceedings of the 30th ACL*, pages 193–200, 1992.

[Lochbaum, 1991] Karen E. Lochbaum. An algorithm for plan recognition in collaborative discourse. In *Proceedings of the 29th ACL*, pages 33–38, 1991.

[Logan et al., 1994] Brian Logan, Steven Reece, Alison Cawsey, Julia Galliers, and Karen Sparck Jones. Belief revision and dialogue management in information retrieval. Technical Report 339, University of Cambridge, Computer Laboratory, 1994.

[Pollack, 1986] Martha E. Pollack. A model of plan inference that distinguishes between the beliefs of actors and observers. In *Proc. of the 24th ACL*, pages 207–214, 1986.

[Raskutti and Zukerman, 1993] Bhavani Raskutti and Ingrid Zukerman. Eliciting additional information during cooperative consultations. In *Proceedings of the 15th Annual Meeting of the Cognitive Science Society*, 1993.

[Sidner, 1994] Candace L. Sidner. An artificial discourse language for collaborative negotiation. In *Proceedings of the 12th AAAI*, pages 814–819, 1994.

[SRI Transcripts, 1992] SRI Transcripts. Transcripts derived from audiotape conversations made at SRI International, Menlo Park, CA, 1992.

[van Beek et al., 1993] Peter van Beek, Robin Cohen, and Ken Schmidt. From plan critiquing to clarification dialogue for cooperative response generation. *Computational Intelligence*, 9(2):132–154, 1993.

[Walker, 1994] Marilyn A. Walker. Discourse and deliberation: Testing a collaborative strategy. In *Proceedings of COLING-94*, 1994.

[Young et al., 1994] R. Michael Young, Johanna D. Moore, and Martha E. Pollack. Towards a principled representation of discourse plans. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, pages 946–951, 1994.