Large Ossified Rathke’s Cleft Cyst -A Case Report and Review of the Literature-

Choong-Hyun Lee, M.D, Eui-Kyo Seo, M.D., Yong-Jae Cho, M.D., Sang-Jin Kim, M.D.
Department of Neurosurgery, School of Medicine, Ewha Womans University, Seoul, Korea

INTRODUCTION

Rathke’s cleft cyst is a nonneoplastic epithelial-lined cyst developing around the sella turcica derived from the remnant of the Rathke’s cleft in the intermediate lobe of the pituitary gland1). Around the sella turcica, several cystic lesions have been documented. Those cystic lesions included Rathke’s cleft cyst, epithelial cyst, dermoid cyst, epidermoid cyst, and craniopharyngioma, which were sometimes indistinguishable pathologically as well as radiologically in spite of their defined clinicopathological entities1,2,10). We present a rare case of Rathke’s cleft cyst with round thick calcified wall.

CASE REPORT

A 42-year-old man was referred to our department due to progressive headache and vomiting for one month with a large suprasellar and sellar calcification in the skull radiograph (Fig. 1A). The patient didn’t have endocrinological problem but he complained of left temporal hemianopsia. Brain CT scans demonstrated a cystic sellar and suprasellar mass with thick irregular round calcification in the wall (Fig. 1B). Brain MR images showed a variable mixed signal cystic mass with subtle enhancement (Fig. 1C, D). We preoperatively considered the lesion as cystic craniopharyngioma or rare calcified Rathke’s cleft cyst. We selected the transcranial pterional approach, because the lesion might be a cystic calcified craniopharyngioma and calcified wall could not be removed easily by the transsphenoidal approach. In operation field, the cystic mass was well demarcated from surrounding brain parenchyme. The calcified wall was so hard that it had to be removed by drilling and ronguering. The contour of cystic wall was not shrunken at the end of mass removal. The content of cyst was yellowish muddy-like material with some fluid (Fig. 2). The cystic mass with calcified wall was totally removed piece by piece in the meticulous microsurgical fashion. Postoperative brain CT scans showed total removal of cystic mass.

Histopathologic examination revealed calcified Rathke’s cleft cyst with focal epithelial metaplasia, which was lined by a layer of columnar ciliated epithelium with a plate of mature bone and focal stratified squamous epithelial wall with fibrous stroma (Fig. 3A, B). The clinical course of patient has been unevenful postoperatively without pituitary symptoms and signs. No recurrence has been observed for 2 years.

DISCUSSION

The incidence of the Rathke’s cleft cyst has not been clear
Large Ossified Rathke’s Cleft Cyst | CH Lee, et al.

because most of Rathke’s cleft cyst is to be silent during the lifetime of the patients. The incidence and the number of surgical cases have increased recently due to the advent of MR imaging. The histological picture of Rathke’s cleft cyst and craniopharyngioma differs greatly, even though they might have common origin. Histologically, Rathke’s cleft cysts consist of a single or pseudostratified epithelium with an underlying layer of connective tissue. The epithelium may contain ciliated, goblet, and squamous cells, whereas craniopharyngioma has either adamantinomatous or squamous epithelium invading surrounding brain parenchyme, nodular formation, keratin formation, calcium deposit, chronic inflammation and hyaline granule layer.

The origin and the development of Rathke’s cleft cyst has been still in doubt. In the therapeutic point of view, preoperative differential diagnosis is crucial because the appropriate treatment for these lesions differs according to pathologic diagnosis. In spite of arguments, nowadays Rathke’s cleft cysts are commonly operated on by transsphenoidal route in order to avoid the frequent postoperative pituitary injury due to radical removal. However, in the case of Rathke’s cleft cysts with squamous metaplasia, some recurrences have been reported. In our case, we totally removed without necessity of adjunctive treatments because of open pterional approach and well identified calcified wall-arachnoid plane.

Radiologically, both of them do not have characteristic differential features except the craniopharyngioma often has some calcification. Calcification is considered as an important clue to differentiate craniopharyngiomas from other cystic lesions. Though Rathke’s cleft cysts are long-standing benign cysts, they rarely present with histologic findings of calcification or bone formation. In the literature review, the calcification of the Rathke’s cleft cysts of all reported cases showed exclusively thin, curvilinear and partially surrounded in shape. But, in our case, the calcification of the wall of cyst was thick, irregular, wholly surrounding around the
wall. This unique radiologic feature has not been reported. The calcification of the craniopharyngioma has been reported to be speckled or floccular in shape\(^7-9\). Therefore, the morphology of calcification is also important in the differentiation between Rathke’s cleft cyst and craniopharyngioma.

CONCLUSION

This case illustrates that calcification of suprasellar lesion does not always suggest craniopharyngioma. Radiologic features of suprasellar cyst with thin curvilinear calcified wall which is favored to Rathke’s cleft cyst may help to differentiate from the craniopharyngioma. Also, it is important finding to select operative approach.

References

1. Aho CJ, Liu C, Zelman V, Couldwell WT, Weiss MH: Surgical outcomes in 118 patients with Rathke cleft cysts. J Neurosurg 102: 189-193, 2005

2. Harrison MJ, Morgello S, Post KD: Epithelial cystic lesions of the sellar and parasellar region: a continuum of ectodermal derivatives? J Neurosurg 80: 1018-1025, 1995

3. Hirano A, Hirano M: Benign cysts in the central nervous system: neuropathological observations of the cyst walls. Neuropathology 24: 1-7, 2004

4. Hong SH, Gwak HS, Jung HW: Recurrent Symptomatic Rathke’s Cleft Cyst: Case Report and Review of the Literature. J Korean Neurosurg Soc 29: 286-290, 2000

5. Isono M, Kamida T, Kobayashi H, Shimomura T, Matsuyama J: Clinical features of symptomatic Rathke’s cleft cyst. Clin Neurol Neurosurg 103: 96-100, 2001

6. Mnif N, Hamrouni A, Illnercker C, Ouaslati S, Frueher F, Doyon D, et al: [MRI in the diagnosis of Rathke’s cleft cyst]. J Radiol 84: 699-704, 2003

7. Nakasu Y, Nakasu S, Nakajima M, Itoh R, Matsuda M: Atypical Rathke’s cleft cyst associated with ossification. AJNR Am J Neuroradiol 20: 1287-1289, 1999

8. Ogawa Y, Tominaga T, Ikeda H: Clinicopathological and endocrinological study of Rathke’s cleft cyst manifesting as hyponatremia. Neurol Med Chir (Tokyo) 47: 58-63; discussion 63-54, 2007

9. Wenger M, Simko M, Markwalder R, Taub E: An entirely suprasellar Rathke’s cleft cyst: case report and review of the literature. J Clin Neurosci 8: 564-567, 2001

10. Yamamoto M, Jimbo M, Ide M, Umehara Y, Hagiwara S, Kubo O: Recurrence of symptomatic Rathke’s cleft cyst: a case report. Surg Neurol 39: 263-268, 1993