Remote sensing
Kevin White
Department of Geography, University of Reading, Whiteknights, Reading RG6 2AB, UK

I Introduction

The UNCED 'Earth summit' Conference in Rio De Janeiro identified remote sensing as a source of information to build up a global environmental database (CEOS, 1992). In addition to this role, remote sensing is also needed to monitor environmental pollution at regional and national levels (Oberg and Andersson, 1993). For example, the synthetic aperture radar (SAR) onboard the European satellite ERS-1 can be used to monitor oil slicks (Bern et al. 1993). Techniques using thermal infrared sensors can also be used (Salisbury et al., 1993), and sensors operating in the ultraviolet part of the electromagnetic spectrum can detect even thin sheens of oil (Rogne et al., 1993). The advanced very high resolution radiometer (AVHRR) onboard the NOAA series of meteorological satellites provided an operational system to monitor the environmental effects of the Gulf war, such as burning oil wells (Dech and Glaser, 1992), oil slicks, dust and airplane contrails (Stephens and Matson, 1993). Under certain circumstances, air pollution can be monitored from space (Sifakis and Deschamps, 1992), although it is easier to monitor the effect of pollutants such as SO$_2$ (Gemmell and Colls, 1992) and ozone (Essery and Morse, 1992) on vegetation canopies. Complex phenomena such as urban heat islands (Kim, 1992) and land rehabilitation (Hill and Phinn, 1993) can also be analysed with the help of remote sensing.

Data on biomass burning in tropical forests in becoming increasingly important in the study of the carbon cycle and atmospheric processes in general (Grégoire et al., 1993). A variety of techniques for monitoring forest fires have been developed using coarse resolution geostationary satellite data (Prins and Menzel, 1992) and high spatial resolution data from the Landsat thematic mapper (TM) (Pereira and Setzer, 1993b). However, most techniques employ coarse (1.1 km) spatial resolution AVHRR data (Pereira and Setzer, 1993a). As an alternative to monitoring smoke plumes, AVHRR and ERS-1 SAR data can be used to study resulting wildfire scars (Kasischke et al., 1992; 1993).

II Lithosphere

As visible/shortwave infrared sensor technology has improved, data from earlier sensors have tended to come down in price. Landsat multispectral scanner (MSS) imagery is now

© Edward Arnold 1994.
relatively cheap, even though the sensor is still operational for the benefit of long-term monitoring programmes. If the 79 m spatial resolution is appropriate for the required application, MSS data can provide a cost-effective way of studying the relationship between lithology (El Rakaiby and Shalaby, 1992) and landforms (Dwivedi and Ravi Sankar, 1992; Mitra et al., 1992). The lower cost of MSS data facilitates acquisition of a number of images of different dates to monitor changes in features such as rivers (Nagarajan et al., 1993) and sand dunes (Kumar et al., 1993). The large area coverage of MSS permits mapping megageomorphological features, such as glacial lineations (Clark, 1993).

However, the enhanced spectral information afforded by TM enables applications such as mapping degrees of dynamic metamorphism (Riaza, 1993) and the development of rock coatings and weathering features (White, 1993). TM data have proved effective for monitoring volcanoes (Oppenheimer, 1993), but a number of problems remain, such as sensor overload and infrequent revisit capability (Rothery, et al., 1992). Another problem is that the shortwave infrared signal that is used for much of this work (Oppenheimer et al., 1993) is related to solar input as well as lava temperature. Night-time (Reddy et al., 1993), or thermal infrared (Realmuto et al., 1992) imagery can be used to solve this problem. The 10 m resolution and stereo capability of the French SPOT satellite can be used for detailed analysis of crater morphology (Rowland and Munro, 1992), ashfall and mudflows (Chorowicz et al., 1992). A greater understanding of ash inputs into the atmosphere is needed; ashfall from the June 1991 eruption of Mt Pinatubo in the Philippines is thought to have lowered satellite-measured vegetation values over southern India for the latter half of 1991; despite low values there was a bumper harvest that year (Jeyaseelan and Thiruvengadachari, 1993).

At hyperspectral resolutions, airborne data from NASAs AVIRIS sensor (Vane et al., 1993) enable semi-automated mineral mapping (Kruse et al., 1993; Rubin 1993). In salt-lake areas, evaporite minerals can be mapped to yield information on brine chemistry (Crowley, 1993).

ASTER (advanced spaceborne thermal emission and reflection radiometer), part of the forthcoming Earth observation system (EOS), will provide global multispectral thermal data with 90 m resolution. In anticipation of this, a concerted effort is under way to improve our understanding of thermal characteristics of natural surfaces and to develop algorithms to differentiate between emissivity and temperature components of radiance measured by thermal satellite sensors. One approach is to compare thermal images taken at different times of the day and assume that the observed change in radiance is due totally to temperature. This assumption is reasonable for rocks and dry soils, but not for vegetation or wet soils, where emissivity will also vary over time (Watson, 1992). Alternatively, emissivity can be calculated from laboratory measurements of spectral reflectance (Salisbury and D’Aria, 1992a). It is possible to retrieve compositional information from thermal data, as mineral spectra mix linearly at these wavelengths, as long as particle size is greater than wavelength (Thomson and Salisbury, 1993). Thus, linear mixture models (Settle and Drake, 1993) can be applied to thermal images (Gillespie, 1992). The above-mentioned control of particle size means that ASTER data have the potential to map soil particle size (Salisbury and D’Aria, 1992b). Other controls on thermal characteristics of surfaces are roughness, aeolian mantle, vegetation (Weitz and Farr, 1992) and rock varnish (Rivard et al., 1993).

Airborne radar data have been used to examine the time-dependent smoothing of lava flows by weathering processes, enabling reconstruction of the eruptive history of volcanic
terrains (Arvidson et al., 1993). Interpretation of backscatter images is likely to be considerably enhanced by the use of radar interferometry. This utilizes the interference pattern produced by two vertically displaced antennas, which can be processed to yield a digital elevation model (DEM) coregistered with the backscatter image. The precision of this technique compares favourably with traditional DEM creation using stereo SPOT images (Tateishi and Akutsu, 1992). These data have been used to study alluvial fans in Death Valley and volcanoes in Iceland (Evans et al., 1992). In addition, multitemporal interferometry can highlight topographic changes, such as those resulting from earthquakes (Massonnet et al., 1993).

III Pedosphere

Hyperspectral data can be used to map different soil types (Mustard, 1993; Roberts et al., 1993) and determine aspects of soil chemistry (Henderson et al., 1992; Joffre et al., 1992; Csillag et al., 1993), but the high variability of soil reflectance, even within a single soil type, remains a significant problem (Major et al., 1992). Interpretation of soil information from these data involves understanding of both spectral and bidirectional reflectance characteristics (Pinty and Verstaete, 1992). Hapke’s model can be adapted to integrate these properties, helping to explain the variability (Jacquemoud et al., 1992) and improve soil mapping techniques (Kimes et al., 1993). Research on soil moisture mapping from radar (Bertuzzi et al., 1992) has suggested that H-H polarization (Schmullins and Furrer, 1992b) and L-band (1GHz) frequency (Schmullins and Furrer, 1992a) is the optimum configuration for this work. Depth of water table can be estimated from passive microwave emissivity (Reutov and Shutko, 1992).

IV Biosphere

Remote sensing techniques are used to analyse vegetation communities from tundra (Hope et al., 1993) to arid rangelands (Pickup et al., 1993). Long time series of images are now available for systems such as AVHRR, and can be used for sophisticated analysis of seasonal/interannual vegetation changes (Eastman and Fulk, 1993). Forest monitoring is routinely undertaken using empirical techniques (Oza et al., 1992; Fiorella and Ripple, 1993), although some canopy reflectance models can be inverted (Rosema et al., 1992). Canopy structure is an important control on vegetation reflectance (Taylor, 1993), particularly for forests (Danson and Curran, 1993). The traditionally employed leaf-area index (Bonan, 1993) is a poor measure of structure, but more appropriate canopy parameters are very difficult to measure. Over some forest types, such as the oak savanna-like ‘dehesa’ of southern Spain, resource inventory is a simple matter, as individual trees can be counted directly using 10 m resolution SPOT data (Joffre and Lacea, 1993). In other situations, a more appropriate technique is to mixture model coarse resolution data to produce vegetation fraction maps (Holben and Shimabukuro, 1993). Hyperspectral data can be used to measure woodland reflectance down to low percentage covers (Elvidge et al., 1993), employing techniques such as second derivative calculation (rate of change of reflectance with wavelength) (Li et al., 1993). SAR data have great potential for forestry work, particularly when used synergistically with multispectral data (Nezry et al., 1993).
The L-band instrument on board JERS-1 (now renamed FUYO-1) should be particularly sensitive to forest canopy roughness (Nishidai, 1993).

V Cryosphere

The frozen regions of the Earth are difficult to study in situ, so scientists working in this environment have frequent recourse to satellite imagery for a variety of tasks, from measuring velocity (Scambos et al., 1992) and radiation budgets (Gratton et al., 1993) of glaciers, to estimating snow grain size (Nolin and Dozier, 1993). The response of the cryosphere to climatic change can be studied by monitoring the date of breakup of lake ice (Wynne and Lillesand, 1993), or by monitoring the equilibrium line between firn and superimposed ice (Parrot et al., 1993). Remotely sensed data on ground cover can significantly improve mapping of the depth of the active permafrost layer (Peddle and Franklin, 1993).

VI Hydrosphere

For effective monitoring of inland water quality, a comprehensive database of lake and river conditions is needed (Dekker and Peters, 1993). Work has begun on such large-scale monitoring (Gitelson et al., 1993), but problems already identified include a lack of understanding of the mechanisms involved, particularly those associated with the atmosphere (Tassan and D'Alcalá, 1993), and technical limitations of the instruments (van Stokkom et al., 1993). Nevertheless, thermal sensors can be used to study diurnal and seasonal lake temperature changes (Xin and Shih, 1993), highlighting features such as thermal bars, which can isolate nearshore waters and cause pollution problems (Malm and Jönsson, 1993). Work with the airborne thematic mapper sensor (ATM) has shown that temperature is directly related to water quality parameters such as suspended sediment content in cooling water reservoirs of power stations (Ramsey et al., 1992; Davies and Mofor, 1993). A variety of techniques are available to estimate suspended sediment using visible/near-infrared data, including chromaticity analysis (Gallie and Murtha, 1993), high resolution derivative spectra (Goodin et al., 1993) and mixture modelling (Mertes et al., 1993). In coastal waters, both empirical techniques (Sunar, 1992; Froidefond et al., 1993) and physical models (Estep and Armone, 1993; Nanu and Robertson, 1993) are used to retrieve suspended sediment information, though equations derived from both approaches are similar (Tassan, 1993a). Imaging spectrometer data (Sun and Anderson, 1993) can be used to study the relationship between turbidity and salinity (Carder et al., 1993). Chlorophyll concentrations in water can be estimated from remotely sensed data (Gitelson, 1992), but can easily be confused with coloured dissolved organic matter, or 'yellow substance' (Hamilton et al., 1993), often concentrated around pollution sources (Ferrari and Tassan, 1992; Nichol, 1993). Coastal zone colour scanner (CZCS) data are particularly suitable for phytoplankton estimation, an important aspect of ocean ecology (Prasad and Haedrich, 1993), enabling study of upwelling systems (Hernández-Guerra et al., 1993), and prediction of good sites for aquaculture (Cusidó et al., 1992). TM data enable algae, a major pollutant problem in coastal waters, to be mapped in terms of depth (Tassan, 1992). Although different algal species are spectrally very similar, they have different scattering properties, and may be distinguished using remote sensing (Quibell,
AVHRR, though of low spatial resolution, can be useful in monitoring algae due to its high temporal resolution (Tassan, 1993b).

Larger freshwater plants provide another indicator of water quality that can be remotely sensed (Jensen et al., 1993), and similar techniques can be applied to coastal submerged vegetation canopies (Armstrong, 1993). Sea-bottom cover can be mapped using multispectral band ratios (Luczkovich et al., 1993) and mixture modelling, where good bathymetry information is available (Bierwirth et al., 1993). Such data can be used for detecting change (Michalek et al., 1993; Zainal et al., 1993), or analysing the relationships between coral reef construction and wave action (Courboules and Maniere, 1992).

References

Armstrong, R.A. 1993: Remote sensing of submerged vegetation canopies for biomass estimation. International Journal of Remote Sensing 14, 621-27.

Arvidson, R.E., Shepard, M.K., Guinness, E.A., Petrov, S.B., Plaut, J.J., Evans, D.L., Farr, T.G., Greeley, R., Lancaster, N. and Gaddis, L.R. 1993: Characterisation of lava-flow degradation in the Pisgah and Cima volcanic fields, California, using Landsat thematic mapper and AIRSAR data. Geological Society of America Bulletin 105, 175-88.

Bern, T.I., Wahl, T., Anderssen, T. and Olsen, R. 1993: Oil spill detection using satellite based SAR, experience from a field experiment. Photogrammetric Engineering and Remote Sensing 59, 423-28.

Bertuzzi, P., Chanzy, A., Vidal-Madjar, D. and Autret, M. 1992: The use of a microwave backscatter model for retrieving soil moisture over bare soil. International Journal of Remote Sensing 13, 2653-68.

Bierwirth, P.N., Lee, T.J. and Burne, R.V. 1993: Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogrammetric Engineering and Remote Sensing 59, 331-38.

Bonan, G.B. 1993: Importance of leaf area index and forest type when estimating photosynthesis in Boreal forests. Remote Sensing of Environment 43, 303-14.

Carder, K.L., Steward, R.G., Chen, R.F., Hawes, S. and Lee, Z. 1993: AVIRIS calibration and application in coastal oceanic environments: tracers of soluble and particulate constituents of the Tampa Bay coastal plume. Photogrammetric Engineering and Remote Sensing 59, 339-44.

CEOS (Committee on Earth Observations Satellites) 1992: The relevance of satellite missions to the study of the global environment. London: British National Space Centre.

Chorowicz, J., Defontaines, B., Huaman-Rodrigo, D., Guillaume, R., Leguern, F. and Thouret, J.C. 1992: SPOT satellite monitoring of the eruption of Nevado Sabancaya volcano (southern Peru). Remote Sensing of Environment 42, 43-49.

Clark, C.D. 1993: Mega-scale glacial lineations and cross-cutting ice flow landforms. Earth Surface Processes and Landforms 18, 1-29.

Courboules, J. and Maniere, R. 1992: Apport de la télédetection à l'étude de la relation entre l'hydrodynamique de surface et les récifs coralliens. International Journal of Remote Sensing 13 2911-23.

Crowley, J.K. 1993: Mapping playa evaporite minerals with AVIRIS data, a first report from Death Valley, California. Remote Sensing of Environment 44, 337-56.

Caillag, F., Pasztor, L. and Biehl, L.L. 1993: Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment 43, 231-42.

Cusidó, J.A., Puigdomènech, J., Jorge, J. and Arnau, J. 1992: Aerial infrared studies of delta de l'Ebre coast for aquaculture purposes. International Journal of Remote Sensing 13, 2169-76.

Danson, F.M. and Curran, P.J. 1993: Factors affecting the remotely sensed response of coniferous forest plantations. Remote Sensing of Environment 43, 55-65.

Davies, P.A. and Mofor, L.A. 1993: Remote sensing observation and analysis of cooling water discharge from a coastal power station. International Journal of Remote Sensing 14, 253-73.

Dech, S.W. and Gaiser, R. 1992: Burning oilwells in Kuwait - smoke plume monitoring and effects on vegetation derived from AVHRR data. International Journal of Remote Sensing 13, 3243-49.

Dekker, A.G. and Peters, S.W.M. 1993: The use of the thematic mapper for the analysis of eutrophic lakes: a case study in The Netherlands. International Journal of Remote Sensing 14, 799-821.

Dwivedi, R.S. and Ravi Sankar, T. 1992: Principal component analysis of Landsat MSS data for delineation of terrain features. International Journal of Remote Sensing 13, 2309-18.
Eastman, J.R. and Fulk, M. 1993: Long sequence time series evaluation using standardized principal components. *Photogrammetric Engineering and Remote Sensing* 59, 991–96.

El Rakaiby, M.L. and Shalaby, M.H. 1992: Geology of Gebel Qaltar batholith, central Eastern Desert, Egypt. *International Journal of Remote Sensing* 13, 2337–47.

Elvidge, C.D., Chen, Z. and Groeneveld, D.P. 1993: Detection of trace quantities of green vegetation in 1990 AVIRIS data. *Remote Sensing of Environment* 44, 271–79.

Essery, C.I. and Morse, A.P. 1992: The impact of ozone and acid mist on the spectral reflectance of young Norway spruce trees. *International Journal of Remote Sensing* 13, 3045–54.

Estep, L. and Arnone, R. 1993: Correlation of CZCS surface k_s with k_s derived from Secchi disk. *Photogrammetric Engineering and Remote Sensing* 59, 345–50.

Evans, D.L., Farr, T.G., Zebker, H.A., van Zyl, J.J. and Mouginis-Mark, P.J. 1992: Radar interferometry studies of the Earth's topography. *EOS Transactions of American Geophysical Union* 73, 553–58.

Ferrari, G.M. and Tassan, S. 1992: Evaluation of the influence of yellow substance absorption on the remote sensing of water quality in the Gulf of Naples: a case study. *International Journal of Remote Sensing* 13, 2177–89.

Fiorella, M. and Ripple, W.J. 1993: Determining successional stage of temperate coniferous forests with Landsat satellite data. *Photogrammetric Engineering and Remote Sensing* 59, 359–46.

Froidefond, J.M., Castaing, P., Jouarmeau, J.M., Prud'Homme, R. and Dinet, A. 1993: Method for the quantification of suspended sediments from AVHRR NOAA-11 satellite data. *International Journal of Remote Sensing* 14, 885–94.

Gallie, E.A. and Murtha, P.A. 1993: A modification of chromaticity analysis to separate the effects of water quality variables. *Remote Sensing of Environment* 44, 47–65.

Gemmell, F.M. and Colls, J.J. 1992: The effects of sulphur dioxide on the spectral characteristics of leaves of *Vicia faba* L. *International Journal of Remote Sensing* 13, 2547–63.

Gillespie, A.R. 1992: Spectral mixture analysis of multispectral thermal infrared images. *Remote Sensing of Environment* 42, 137–45.

Gitelson, A. 1992: The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. *International Journal of Remote Sensing* 13, 3367–73.

Gitelson, A., Garbuzov, G., Szilagy, F., Mittenzwey, K.-H., Karnieli, A. and Kaiser, A. 1993: Quantitative remote sensing methods for real-time monitoring of inland water quality. *International Journal of Remote Sensing* 14, 1269–95.

Goodin, D.G., Han, L., Fraser, R.N., Rundquist, D.C., Stebbins, W.A. and Schalles, J.F. 1993: Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. *Photogrammetric Engineering and Remote Sensing* 59, 505–10.

Gratton, D.J., Howarth, P.J. and Marceau, D.J. 1993: Using Landsat 5 thematic mapper and digital elevation data to determine the net radiation field of a mountain glacier. *Remote Sensing of Environment* 43, 315–31.

Grégoire, J.-M., Belward, A.S. and Kennedy, P.J. 1992: Dynamiques de saturation du signal dans la bande 3 du sensor AVHRR: handicaps majeur ou source d'information pour la surveillance de l'environnement en milieu soudano-guinéen d'Afrique de l'Ouest. *International Journal of Remote Sensing* 14, 2079–95.

Hamilton, M.K., Davis, C.O., Rhea, W.J., Pilorz, S.U. and Carder, K.L. 1993: Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data. *Remote Sensing of Environment* 44, 217–30.

Henderson, T.L., Baumgardner, M.F., Franzmeier, D.P., Stott, D.E. and Coster, D.C. 1992: High dimensional reflectance analysis of soil organic matter. *Soil Science Society of America Journal* 56, 865–72.

Hernández-Guerra, A., Aristegui, J., Canton, M. and Nykjaer, L. 1993: Phytoplankton pigment patterns in the Canary Islands area as determined using coastal zone colour scanner data. *International Journal of Remote Sensing* 14, 1431–37.

Hill, G.J.E. and Phinn, S.R. 1993: Revegetated sand mining areas, swamp wallabies and remote sensing: North Stradbroke Island, Queensland. *Australian Geographical Studies* 31, 3–13.

Holben, B. and Shimabukuro, Y.E. 1993: Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors. *International Journal of Remote Sensing* 14, 2231–40.

Hope, A.S., Kimball, J.S. and Stow, D.A. 1993: The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition. *International Journal of Remote Sensing* 14, 1861–74.

Jacquemoud, S., Baret, F. and Hanocq, J.F. 1992: Modelling spectral and bidirectional soil reflectance. *Remote Sensing of Environment* 41, 123–32.

Jensen, J.R., Narumalani, S., Weatherbee, O. and Mackay, H.E. Jr. 1993: Measurement of seasonal and yearly cat tail and water lily changes using multi-
date SPOT panchromatic data. *Photogrammetric Engineering and Remote Sensing* 59, 519–25.

Jeyaseelan, A.T. and Thiruvengadachari, S. 1993: Suspected Mt Pinatubo aerosol impact on the NOAA AVHRR NDVI over India. *International Journal of Remote Sensing* 14, 603–608.

Joffre, R., Gillon, D., Dardenne, P., Agnessens, R. and Biston, R. 1992: The use of near-infrared reflectance spectroscopy in litter decomposition studies. *Annales des Sciences Forestières* 49, 481–88.

Joffre, R. and Lacaze, B. 1993: Estimating tree density in oak savanna-like ‘dehesa’ of southern Spain from SPOT data. *International Journal of Remote Sensing* 14, 685–97.

Kasischke, E.S., Bourgeau-Chavez, L.L., French, N.H.F., Harrell, P. and Christensen, N.L. jr. 1992: Initial observations on using SAR to monitor wildfire scars in Boreal forests. *International Journal of Remote Sensing* 13, 3495–501.

Kasischke, E.S., French, N.H.F., Harrell, P., Christensen, N.L. jr., Ustin, S.L. and Barry, D. 1993: Monitoring of wildfires in Boreal forests using large area AVHRR NDVI composite image data. *Remote Sensing of Environment* 45, 61–71.

Kim, H.H. 1992: Urban heat island. *International Journal of Remote Sensing* 13, 2319–36.

Kimes, D.S., Irons, J.R., Levine, E.R. and Hornung, N.A. 1993: Learning class descriptions from a database of spectral reflectance of soil samples. *Remote Sensing of Environment* 43, 161–69.

Kruse, F.A., Lefkoff, A.B. and Dietz, J.B. 1993: Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). *Remote Sensing of Environment* 44, 309–36.

Kumar, M., Goosens, E. and Goosens, R. 1993: Assessment of sand dune change detection in Rajasthan (Thar) Desert, India. *International Journal of Remote Sensing* 14, 1689–703.

Li, Y., Demetriades-Shah, T.H., Kanemaru, E.T., Shultis, J.K. and Kirkham, M.B. 1993: Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds. *Remote Sensing of Environment* 44, 81–87.

Luczkovich, J.J., Wagner, T.W., Michalek, J.L. and Stoffle, R.W. 1993: Discrimination of coral reefs, seagrass meadows and sand bottom types from space. A Dominican Republic case study. *Photogrammetric Engineering and Remote Sensing* 59, 385–89.

Major, D.J., Janzen, H.H., Olson, B.M. and McGinn, S.M. 1992: Reflectance characteristics of southern Alberta soils. *Canadian Journal of Soil Science* 72, 611–15.

Malm, J. and Jönsson, L. 1993: A study of the thermal bar in Lake Ladoga using water surface temperature data from satellite images. *Remote Sensing of Environment* 44, 35–46.

Massonnet, D., Rossi, M., Carmona, C., Adraga, F., Peltzer, G., Feigl, K. and Rabaute, T. 1993: The displacement field of the Landers earthquake mapped by radar interferometry. *Nature* 364, 138–42.

Mertes, L.A.K., Smith, M.O. and Adams, J.B. 1993: Estimating suspended sediment concentrations in surface waters of the Amazon river wetlands from Landsat images. *Remote Sensing of Environment* 43, 281–301.

Michalek, J.L., Wagner, T.W., Luczkovich, J.J. and Stoffle, R.W. 1993: Multispectral change vector analysis for monitoring coastal marine environments. *Photogrammetric Engineering and Remote Sensing* 59, 381–84.

Mitra, D.S., Bhoj, R. and Josji, S.V. 1992: Evaluation of Rajasthan desertic terrain, India, for logistic support in oil exploration using Landsat thematic mapper data. *International Journal of Remote Sensing* 15, 2773–82.

Mustard, J.F. 1993: Relationships of soil, grass and bedrock over the Kaweah Serpentinite melange through spectral mixture analysis of AVIRIS data. *Remote Sensing of Environment* 44, 293–308.

Nagarajan, R., Marathe, G.T. and Collins, W.G. 1993: Identification of flood prone regions of Rapti river using temporal remotely sensed data. *International Journal of Remote Sensing* 14, 1297–303.

Nanu, L. and Robertson, C. 1993: The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation. *International Journal of Remote Sensing* 14, 225–39.

Nezry, E., Mougin, E., Lopez, A., Castellu-Etchegorry, J.P. and Laumonier, Y. 1993: Tropical vegetation mapping with combined visible and SAR spaceborne data. *International Journal of Remote Sensing* 14, 2165–84.

Nichol, J.E. 1993: Remote sensing of water quality in the Singapore-Johor-Riau growth triangle. *Remote Sensing of Environment* 43, 139–48.

Nishidai, T. 1993: Early results from ‘FUYO-1’, Japan’s Earth resources satellite (JERS-1). *International Journal of Remote Sensing* 14, 1825–33.

Nolin, A.W. and Dozier, J. 1993: Estimating snow grain size using AVIRIS data. *Remote Sensing of Environment* 44, 231–38.

Oberg, M. and Andersson, C. 1993: Estonia: mapping environmental damage by satellite. *GIS Europe* 2, 50–52.

Oppenheimer, C. 1993: Infrared surveillance of crater lakes using satellite data. *Journal of Volcanology and Geothermal Research* 55, 117–28.
Oppenheimer, C., Rothery, D.A. and Francis, P.W. 1993: Thermal distributions at fumarole fields: implications for infrared remote sensing of active volcanoes. *Journal of Volcanology and Geothermal Research* 55, 97-115.

Oza, M.P., Srivartava, V.K. and Devaiah, P.K. 1992: Estimating the mean canopy diameter of teak plantations from Landsat MSS data. *International Journal of Remote Sensing* 13, 2363-69.

Parrot, J.F., Lyberis, N., Lefrauconnier, B. and Manby, G. 1993: SPOT multispectral data and digital terrain model for the analysis of ice-snow fields on arctic glaciers. *International Journal of Remote Sensing* 14, 425-40.

Peddle, D.R. and Franklin, S.E. 1993: Classification of permafrost active layer depth from remotely sensed and topographic evidence. *Remote Sensing of Environment* 44, 67-80.

Pereira, M.C. and Setzer, A.W. 1993a: Spectral characteristics of deforestation fires in NOAA/AVHRR images. *International Journal of Remote Sensing* 14, 583-97.

— 1993b: Spectral characteristics of fire scars in Landsat-5 TM images of Amazonia. *International Journal of Remote Sensing* 14, 2061-78.

Pickup, G., Chewings, V.H. and Nelson, D.J. 1993: Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. *Remote Sensing of Environment* 43, 243-63.

Pinty, B. and Verstraete, M.M. 1992: On the design and validation of surface bidirectional reflectance and albedo models. *Remote Sensing of Environment* 41, 155-67.

Prasad, K.S. and Haedrich, R.L. 1993: Satellite observations of phytoplankton variability on the Grand Banks of Newfoundland during a spring bloom. *International Journal of Remote Sensing* 14, 241-52.

Prins, E.M. and Menzel, W.P. 1992: Geostationary satellite detection of biomass burning in South America. *International Journal of Remote Sensing* 13, 2783-99.

Quibell, G. 1992: Estimating chlorophyll concentrations using upwelling radiance from different freshwater algal genera. *International Journal of Remote Sensing* 13, 2611-21.

Ramsey, E.W., Jensen, J.R., Mackay, H. and Gladden, J. 1992: Remote sensing of water quality in active to inactive cooling water reservoirs. *International Journal of Remote Sensing* 13, 3465-88.

Realmuto, V.J., Hon, K., Kahle, A.B., Abbott, E.A. and Pieri, D.C. 1992: Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii. *Bulletin of Volcanology* 55, 33-44.

Reddy, C.S.S., Bhattacharya, A. and Srivastav, S.K. 1993: Night-time TM short wavelength infrared data analysis of Barren Island volcano, South Andaman, India. *International Journal of Remote Sensing* 14, 783-87.

Reutov, E.A. and Shutko, A.M. 1992: Estimation of the depth to a shallow water-table using microwave radiometry. *International Journal of Remote Sensing* 13, 2223-32.

Riaza, A. 1993: Study of reflectance of precambrian detritic rocks for structural analysis in the visible and near-infrared. *International Journal of Remote Sensing* 14, 927-42.

Rivard, B., Petrov, S.B. and Miller, J.R. 1993: Measured effects of desert varnish on the mid-infrared spectra of weathered rocks as an aid to TIMS imagery interpretation IEEE Transactions on Geoscience and Remote Sensing 31, 284-91.

Roberts, D.A., Smith, M.O. and Adams, J.B. 1993: Green vegetation, nonphotosynthetic vegetation and soils in AVIRIS data. *Remote Sensing of Environment* 44, 255-69.

Rogne, T., MacDonald, I., Smith, A., Kennicutt, M.C. and Giammona, C. 1993: Multispectral remote sensing and truth data from the Tenyo Maru oil spill. *Photogrammetric Engineering and Remote Sensing* 59, 391-97.

Rosema, A., Verhoeve, W., Noorbergen, H. and Borgesius, J.J. 1992: A new forest light interaction model in support of forest monitoring. *Remote Sensing of Environment* 42, 23-41.

Rothery, D.A., Borgia, A., Carlton, R.W. and Oppenheimer, C. 1992: The 1992 Etna lava flow imaged by Landsat TM. *International Journal of Remote Sensing* 13, 2759-63.

Rowland, S.K. and Munro, D.C. 1992: The caldera of Volcan Fernandina: a remote sensing study of its structure and recent activity. *Bulletin of Volcanology* 55, 97-109.

Rubin, T.D. 1993: Spectral mapping with imaging spectrometers. *Photogrammetric Engineering and Remote Sensing* 59, 215-21.

Salisbury, J.W. and D'Aria, D.M. 1992a: Emissivity of terrestrial materials in the 8-14 μm atmospheric window. *Remote Sensing of Environment* 42, 83-106.

— 1992b: Infrared (8-14 μm) remote sensing of soil particle size. *Remote Sensing of Environment* 42, 157-65.

Salisbury, J.W., D'Aria, D.M. and Sabins, F.F. 1993: Thermal infrared remote sensing of crude oil slicks. *Remote Sensing of Environment* 45, 225-31.

Scambos, T.A., Dutkiewicz, M.J., Wilson, J.C. and Bindschadler, R.A. 1992: Application of image cross-correlation to the measurement of glacier velocity using satellite image data. *Remote Sensing of
Schmullins, C. and Furrer, R. 1992a: Frequency dependence of radar backscattering under different moisture conditions of vegetation-covered soil. *International Journal of Remote Sensing* 13, 2233–45.

— 1992b: Some critical remarks on the use of C-band radar data for soil moisture detection. *International Journal of Remote Sensing* 13, 3387–90.

Settle, J.J. and Drake, N.A. 1993: Linear mixing and the estimation of ground cover proportions. *International Journal of Remote Sensing* 14, 1159–77.

Sifakis, N. and Deschamps, P.-Y. 1992: Mapping of air pollution using SPOT satellite data. *Photogrammetric Engineering and Remote Sensing* 58, 1433–37.

Stephens, G. and Matson, M. 1993: Monitoring the Persian Gulf war with NOAA AVHRR data. *International Journal of Remote Sensing* 14, 1423–29.

Sun, X. and Anderson, J.M. 1993: A spatially variable light-frequency-selective component-based airborne pushbroom imaging spectrometer for the water environment. *Photogrammetric Engineering and Remote Sensing* 59, 399–406.

Sunar, F. 1992: Water quality assessment in the Izmit Bay using Landsat TM imagery. *Photogrammetric Journal of Finland* 13, 79–86.

Tassan, S. 1992: An algorithm for the identification of benthic algae in the Venice lagoon from thematic mapper data. *International Journal of Remote Sensing* 13, 2887–909.

— 1993a: An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentrations from thematic mapper data in coastal waters. *International Journal of Remote Sensing* 14, 1221–29.

— 1993b: An algorithm for the detection of the white tide ("mucilage") phenomenon in the Adriatic Sea using AVHRR data. *Remote Sensing of Environment* 45, 29–42.

Tassan, S. and D'Alcalá, M.R. 1993: Water quality monitoring by thematic mapper in coastal environments. A performance analysis of local biooptical algorithms and atmospheric correction procedures. *Remote Sensing of Environment* 45, 177–91.

Tateishi, R. and Akutsu, A. 1992: Relative DEM production from SPOT data without GCP. *International Journal of Remote Sensing* 13, 2517–30.

Taylor, J.E. 1993: Factors causing variation in reflectance measurements from bracken in eastern Australia. *Remote Sensing of Environment* 43, 217–29.

Thomson, J.L. and Salisbury, J.W. 1993: The mid-infrared reflectance of mineral mixtures. *Remote Sensing of Environment* 45, 1–13.

Vane, G., Green, R.O., Chrien, T.G., Enmark, H.T., Hansen, E.G. and Porter, W.M. 1993: The airborne visible/infrared imaging spectrometer (AVIRIS). *Remote Sensing of Environment* 44, 127–43.

van Stokkom, H.T.C., Stokman, G.N.M. and Hovenier, J.W. 1993: Quantitative use of passive optical remote sensing over coastal and inland water bodies. *International Journal of Remote Sensing* 14, 541–63.

Watson, K. 1992: Two-temperature method for measuring emissivity. *Remote Sensing of Environment* 42, 117–21.

Weitz, C.M. and Farr, T.G. 1992: Effects of surficial modification processes on thermal infrared signatures in the arid southwestern United States. *Journal of Geophysical Research* 97, 4649–65.

White, K. 1993: Image processing of thematic mapper data for discriminating piedmont surficial materials in the Tunisian Southern Atlas. *International Journal of Remote Sensing* 14, 961–77.

Wynne, R.H. and Lillesand, T.M. 1993: Satellite observations of lake ice as a climate indicator: initial results from statewide monitoring in Wisconsin. *Photogrammetric Engineering and Remote Sensing* 59, 1023–31.

Xin, J.N. and Shih, S.F. 1993: Lake surface temperature estimation using NOAA satellite APT data. *International Journal of Remote Sensing* 14, 1325–37.

Zainal, A.J.M., Dalby, D.H. and Robinson, I.S. 1993: Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. *Photogrammetric Engineering and Remote Sensing* 59, 415–21.