Intimal Hyperplasia in Balloon Dilated Coronary Arteries is Reduced by Local Delivery of the NO Donor, SIN-1 Via a cGMP-Dependent Pathway.

Harnek, Jan; Zoucas, Evita; Perez de Sá, Valéria; Ekblad, Eva; Arner, Anders; Stenram, Unne

Published in:
BMC Cardiovascular Disorders

DOI:
10.1186/1471-2261-11-30

2011

Link to publication

Citation for published version (APA):
Harnek, J., Zoucas, E., Perez de Sá, V., Ekblad, E., Arner, A., & Stenram, U. (2011). Intimal Hyperplasia in Balloon Dilated Coronary Arteries is Reduced by Local Delivery of the NO Donor, SIN-1 Via a cGMP-Dependent Pathway. BMC Cardiovascular Disorders, 11(1), [30]. https://doi.org/10.1186/1471-2261-11-30

Total number of authors:
6
Intimal Hyperplasia in Balloon Dilated Coronary Arteries is Reduced by Local Delivery of the NO Donor, SIN-1 Via a cGMP-Dependent Pathway

Jan Harnek1*, Evita Zoucas2, Valéria Perez de Sá3, Eva Ekblad4, Anders Arner5 and Unne Stenram6

Abstract

Background: To elucidate the mechanism by which local delivery of 3-morpholino-sydnonimine (SIN-1) affects intimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA).

Methods: Porcine coronary arteries were treated with PTCA and immediately afterwards locally treated for 5 minutes, with a selective cytosolic guanylate cyclase inhibitor, 1 H-(1,2,4)oxadiazo(4,3-alpha)quinoxaline-1-one (ODQ) + SIN-1 or only SIN-1 using a drug delivery-balloon. Arteries were angiographically depicted, morphologically evaluated and analyzed after one and eight weeks for actin, myosin and intermediate filaments (IF) and nitric oxide synthase (NOS) contents.

Results: Luminal diameter after PCI in arteries treated with SIN-1 alone and corrected for age-growth was significantly larger as compared to ODQ + SIN-1 or to controls (p < 0.01). IF/actin ratio after one week in SIN-1 treated segments was not different compared to untreated segments, but was significantly reduced compared to ODQ + SIN-1 treated vessels (p < 0.05). Expression of endothelial NADPH diaphorase activity was significantly lower in untreated segments and in SIN-1 treated segments compared to controls and SIN-1 + ODQ treated arteries (p < 0.01). Restenosis index (p < 0.01) and intimal hyperplasia (p < 0.01) were significantly reduced while the residual lumen was increased (p < 0.01) in SIN-1 segments compared to controls and ODQ + SIN-1 treated vessels.

Conclusions: After PTCA local delivery of high concentrations of the NO donor SIN-1 for 5 minutes inhibited injury induced neointimal formation. This favorable effect was abolished by inhibition of guanylyl cyclase indicating mediation of a cyclic guanosine 3',5'-monophosphate (cGMP)-dependent pathway. The momentary events at the time of injury play crucial role in the ensuring development of intimal hyperplasia.

Keywords: Nitric oxide, Angioplasty, Endothelium-derived factors, Restenosis, Remodeling

Background

Endothelial injury after PTCA results in denudation or even rupture of the internal elastic lamina, causing damage to smooth muscle cells (SMC) and release of signal substances, which in turn contribute to neointimal formation and often restenosis [1].

Endothelial-derived NO reduces these events and modulates several physiological processes in the vasculature, including vascular tone, SMC migration, leukocyte adhesion, platelet adhesion and aggregation [2]. The biologic response of SMC and endothelial cells to NO differs. NO inhibits SMC proliferation and can increase apoptotic SMC cell death [3]. On the contrary NO in physiological concentrations enhances endothelial proliferation and reduces endothelial cell apoptosis [4-7]. NO exerts its effects both by a cGMP-dependent and a cGMP-independent pathway [8].

Orally or intravenously administered NO precursors and donors have been shown to moderately affect intimal hyperplasia after arterial injury in animal and human studies [9-12]. These studies have been hampered by the fast degradation rate of NO in blood, which allows only minimal amounts of NO, if any, to reach the injured area. However, intrapericardial delivery
of NO has been shown to inhibit PTCA induced restenosis [13]. The NO donor SIN-1 has recently been shown to reduce intimal hyperplasia after PTCA, and may be advantageous as it releases NO by fast and spontaneous degradation[14].

The aim of the present study was to evaluate the effect of locally delivered NO on intimal hyperplasia after PTCA, and to investigate whether the NO donor SIN-1 affects intimal hyperplasia via a cGMP dependent pathway.

Methods

Animal care and handing followed guidelines in the National Institutes of Health (NIH publication No 85-23, revised 1996). The local ethical committee for animal care approved the study. Twenty-nine domestic pigs weighing 21.5 ± 0.6 kg were premedicated with azaperone 2 mg/kg intramuscularly 30 minutes before the procedure. After induction of anesthesia with thiopental 5-25 mg/kg the animals were orally intubated with cuffed endotracheal tubes. A slow infusion of 1.25 μL/mL Fentanyl in Ringer-acetate was started at a rate of 1.5 mL/min and adjusted as needed. Mechanical ventilation was then established with a Siemens-Elema 300 B ventilator with a mixture of nitrous oxide (70%) and oxygen (30%). Hynosis was complemented with small intermittent doses of 5 mg meprobamat as needed.

An 8 F introducer sheath (Cordis, USA) was inserted into the left carotid artery and 10,000 IU Heparin given. After an angiogram, PTCA was performed in the left anterior descending artery (LAD) and in the left circumflex artery (LCX). The artery was dilated at 8 atm with a 20 × 3.0 or 3.5 mm dilation balloon (Boston Scientific, USA) using balloon: artery ratios 1.3:1. Before each balloon inflation the pig was given intra-cardially 100 μg nitro-glycerine to avoid spasm and to obtain consistent epicardial artery dilatation. Inflation time was 30 s, and immediately after deflation a corresponding 3 or 3.5 × 20 mm drug delivery catheter (Dispatch, Boston Scientific, USA) was inserted into the PTCA-treated site and inflated at 8 - 10 atm. Effort was taken to minimize the time from balloon angioplasty to the time of drug treatment (approximately 1 minute), in order to avoid thrombus formation. Infusion with 10⁻⁵ M ODQ, a selective inhibitor of NO-sensitive guanylyl cyclase activity (Tocris Cookson, UK.) was performed at a rate of 1 mL/min. for 5 minutes. The Dispatch balloon was flushed with 1 mL saline and continued with infusion of 5 mL 10⁻⁴ M SIN-1 for 5 minutes. The selected high dose has been used in earlier studies, and we have recently demonstrated an inhibiting effect on intimal hyperplasia after 10 minutes [15-17]. A 0.5-mm over-dilation was performed for 30 seconds in the corresponding, still untreated LAD or LCX, which were thereafter treated only with SIN-1. In five animals arteries used as controls, underwent PTCA and were treated with NaCl 1 mL/min for 10 minutes. Treatment of the arteries was randomized.

During coronary artery occlusion perfusion pressure was increased by a dopamine infusion and small doses of noradrenaline (10 μg). Xylocain, 10 mg/kg was injected i.v. before releasing the occlusion to prevent the occurrence of malignant arrhythmias during reperfusion.

The catheters were withdrawn after a final angiogram. The left carotid artery was surgically reconstructed, and the skin sutured. Postoperatively, the pigs received 0.15 mg buprenorphine and 5 mL Streptocillin Vet. The pigs were given 250 mg aspirin daily starting at the day of the procedure.

One week after the angioplasty, one group of eleven pigs was sedated and euthanized with an intra-cardiac injection of 40-mmol potassium chloride. The treated segments were harvested immediately, using micro-surgical technique and cut into a proximal, a medial and a distal segment. An untreated segment was also obtained distal to the treated area. The vessel segments were analyzed electrophoretically for the following proteins actin, myosin and intermediate filaments (IF) and histochemically for NADPH diaphorase in order to visualize the presence of NOS.

Eight weeks postoperatively a second group of sixteen pigs was euthanized as described above. Coronary angiograms were performed and the arteries perfusion-fixated at 100 mmHg with 4% formaldehyde before harvesting. The arteries were examined by routine histology and NADPH histochemistry. A perfusion-fixated vessel segment distal to each of the treated areas was harvested as well.

Angiographic examination

Fluoroscopic video recordings and angiographic stills were examined. Using the guide catheter as reference, luminal diameter was calculated before, immediately after treatment, and at 8 weeks. Pigs grow fast in 8 weeks, in order to determine the growth of the artery; the diameter of the proximal reference segment, approximately 1 cm proximal to the treated area, was measured at the time of treatment and after 8 weeks. Artery growth was thus calculated as the difference in diameter of the arterial reference segments.

The absolute diameter of the treated segments at 8 weeks was reduced by age growth, in order to measure the angiographic late loss without the influence of natural growth in this non-stent model.

Electrophoretic examination

To investigate the relative content of actin, myosin and intermediate filament protein (IF) in smooth muscle
cells (SMC’s), the proteins were separated on one-
dimensional SDS polyacrylamide gel electrophoresis
(SDS-PAGE). The vascular preparations were homo-
genized in an SDS-buffer (composition: 25 mM tris
(hydroxymethyl) aminomethane HCl (pH 6.8), 2% SDS,
5% mercaptoethanol and 10% glycerol) at a concentra-
tion of 50 μl/mg tissue wet weight. The homogenate
was then boiled for 2 minutes and centrifuged at 10,000
rpm for 5 minutes. The supernatant was removed and
stored at -20°C before electrophoretic analysis. The
SDS-PAGE was performed essentially as described by
Malmqvist et al. [18] using 8% polyacrylamide gels in a
BioRad minigel system. The gels were stained with Coom-
assie blue, destained and scanned using a GS-300 den-
sitometer (Hoeffer Scientific Instruments, USA). The
areas under the myosin heavy chains, actin and inter-
mediate filament bands were evaluated. The ratios of
actin/myosin and intermediate filaments/actin were cal-
culated from these areas.

NADPH histochemistry
The vascular segments were fixed overnight in a mixture
of 2% formaldehyde and 0.2% picric acid in phosphate
buffer (pH 7.2) or in buffered 4% formaldehyde, fol-
lowed by rinsing in Tyrode’s solution containing 10%
sucrose. Specimens were frozen on dry ice and cut in a
cryostat at a thickness of 10 μm. NADPH diaphorase
activity was rendered visible by incubation of the sec-
tions for 45 minutes in 0.1 M Tris-HCl (pH 7.2) con-
taining 1 mM NADPH (Sigma, USA), 0.2% Triton X-
100 at 37°, followed by washing in Tris-HCl [19].

Each segment was cut into multiple sections, exam-
ined under a light microscope and photographed with
maximum of light, creating a completely yellow photo-
grah where only NADPH cells stained dark blue. The
images obtained were transferred to a CD-ROM in
Kodak format and imported into Photoshop 5.5 (Adobe
Inc., USA). These photographs were subtracted into a
black and white image. Due to the gray scale practically
only the NADPH-stained endothelial cells were black. A
45 × 15 mm representative portion of the cross sectional
screen-area consisting of endothelium and media was
selected. From the histogram menu, the percentage of
black pixels in the photo was registered as percentage of
the total number of pixels in the selection.

Histo-morphological examination
Each sample was cut further into 4-14 sections, which
were stained with haematoxylin-eosin for routine histo-
logical evaluation. A similar number of sections was cut
and stained with van Gieson elastica and used for mor-
phological measurements. Measurements were per-
formed without knowledge of the treatment of the
segments.

The intimal (I), medial (M), and luminal (L) areas as
well as the internal elastic lamina (IEL) circumference
and the IEL fracture length (F) were measured using
computerized digital planimetry with a video microscope
(Olympus BX 50 F4, Japan) and customized software
(Analysis 3.0, Soft Imaging System, Germany). Vessel
size was assessed by measuring the area circumscribed
by the outer border of the external elastic lamina (EEL
area). Injury index = F/IEL, was calculated as fracture
length of the IEL normalized for the size of the artery
by the circumference of the IEL. Intimal hyperplasias
were also normalized for the total artery wall area: I/(I+M).
The restenosis index = (I/(I+M))/(F/IEL) could then be
calculated taking into account the degree of injury.
Changes in vessel geometry after injury and repair
denoted the residual lumen and were defined as L/(L+I)
[20,21].

Summary of the study design
A total of 29 pigs were treated with local drug delivery
in the LAD as well as the LCX with either SIN-1 alone
or ODQ + SIN-1, except for the control pigs were only
NaCl was used. After 7 days 11 pigs were sacrificed and
the treated segments examined by electrophoresis and
NADPH histochemistry. 56 days later the rest were
sacrificed, 5 control animals and 11 pigs were examined
by NADPH, angiography, electrophoresis, histochemis-
try, and histo-morphology

Statistics
One-way ANOVA with Bonferroni post hoc test was
used to compare multiple means. Mann-Whitney test
was used for comparison between two groups. p values
< 0.05 were considered significant. Data are presented
as mean ± SD.

Results
Two pigs, which were excluded from the study, died
peri-procedurally due to ischemic events. The remaining
pigs survived the procedure without complications. The
pigs weighed at baseline 21.5 ± 0.64; after 7 days 23.1 ±
1.28 and increased to 41.5 ± 2.14 Kg at 56 days. Blood
pressure was stable throughout the drug delivery
procedure.

Angiographic examination
The diameters of the proximal reference segments, used
for calculating age growth, were 3.24 ± 0.40 mm at day
0 and 3.73 ± 0.44 mm at 8 weeks resulting in 0.55 ±
0.31 mm diameter growths (17%). There was no signifi-
cant difference in growth between treatment groups.

The angiographic results are presented in (Table 1).
With or without age correction SIN-1 treated arteries
had significantly larger diameter compared to control (p
Following ODQ + SIN-1 treatment vascular diameter was not changed significantly compared to control.

Late loss occurring in treated segments after 8 weeks was calculated as the artery diameter after PTCA at day 0 minus the diameter at 8 weeks adjusted for growth.

Electrophoretic examination
Biochemical analysis of the effect of SIN-1 on intermediate filament proteins one week after treatment is presented in (Figure 1). The ratio of IF/actin in SIN-1 treated segments did not differ significantly from the corresponding ratios in untreated segments. PTCA followed by ODQ prior to SIN-1 treatment caused a significant increase in the IF/actin ratio compared to untreated arteries as well as SIN-1 treated vessels. IF/myosin ratio was not affected by SIN-1 whereas PTCA followed by ODQ + SIN-1 treatment non-significantly increased the ratio (p = 0.06) (Figure 2). We could not detect any statistically significant changes in the relative amount of myosin heavy chain normalized to actin.

NADPH histochemistry
At 8 weeks saline treated controls showed significant increase in NADPH staining compared to untreated vessels (p < 0.01) as a normal response to artery injury. The increase was inhibited after PTCA with SIN-1 treatment, whereas PTCA with ODQ prior to SIN-1 treatment resulted in significant elevation of NADPH staining (p < 0.01) (Figure 3).

The increase in NADPH staining after ODQ + SIN-1 application was detectable one week after treatment (Figure 4).

Changes in NADPH diaphorase activity were circumscribed to treated segments while there were no changes observed in correlating matched distal untreated segments.

Histo-morphological examination
8 weeks after treatment all arteries were patent. There were no statistically significant differences in the internal elastic lamina fracture lengths inflicted to the arteries. In the SIN-1 treated segments, the restenosis index (0.60 ± 0.65) was 72% less and the amount of intimal hyperplasia (0.07 ± 0.06) 71% reduced compared to controls. The residual lumen (0.92 ± 0.08) was 26%

Table 1 Angiographic characteristics

Diameter measurements	ODQ+/SIN-1	SIN-1	NaCl Control	P-value
mm (n = 11)	mm (n = 11)	mm (n = 5)		
Pre- treatment (A)	2.62 ± 0.36	2.76 ± 0.35	2.81 ± 0.41	ns
After treatment (B)	2.77 ± 0.38	2.93 ± 0.34	3.10 ± 0.37	ns
After 8 weeks (C)	3.17 ± 0.35	3.53 ± 0.30	3.07 ± 0.25	< 0.01
Age-corrected at 8 weeks (D)	2.60 ± 0.32	3.12 ± 0.41	2.62 ± 0.29	< 0.01
Late Loss (B-D)	0.21 ± 0.30	0.19 ± 0.51	0.48 ± 0.31	< 0.05

Legend to Table 1: Age related growth of the arteries was similar for segments treated either with SIN-1 or ODQ + SIN-1 or to controls. With or without age correction, SIN-1 treated arteries had after 8 weeks significantly larger diameter compared to ODQ + SIN-1 or control segments. Data presented as mean ± SD. One way ANOVA test.

Figure 1 Artery wall ratio of intermediate filaments/actin after PTCA with ODQ prior to SIN-1 treatment or SIN-1 alone
Legend: Figure 1 depicts the ratio of intermediate filaments to actin in treated and untreated segments. ODQ + SIN-1 caused a significant increase in the ratio compared to untreated segments and segments treated only with SIN-1 (p < 0.05). All groups summarize data from six animals. Data presented as mean ± SD. Mann-Whitney test.

Figure 2 Artery wall ratio of intermediate filaments/myosin after PTCA with ODQ prior to SIN-1 treatment or SIN-1 alone
Legend: Figure 2 depicts the ratio of intermediate filaments to myosin in treated and untreated segments. ODQ + SIN-1 caused a non-significant increase in the ratio compared to untreated segments and segments treated only with SIN-1 (p = 0.06). All groups summarize data from six animals. Data presented as mean ± SD. Mann-Whitney test.
larger in SIN-1 segments and there were no differences in EEL compared to controls. Intimal hyperplasia is significantly decreased after SIN-1 treatment compared to controls (p < 0.01). Addition of ODQ prior to SIN-1 treatment resulted in response to injury similar to the response of controls (NaCl) (Table 2).

Discussion

This study shows that delivery of the NO donor SIN-1 at the site of a PTCA injury for 5 minutes decreases significantly intimal hyperplasia/restenosis. Inhibition of guanylyl cyclase by ODQ attenuated the beneficial effect of NO delivery indicating the involvement of a cGMP dependent pathway. In this experiment additional ODQ to the delivery system did not increase intimal hyperplasia compared with controls.

Application of a NO donor was chosen in the present study, since NO interferes with the restenotic process at several levels. NO has three major properties in the vascular system: anti-ischemic/anti-hypertensive, anti-atherosclerotic and anti-thrombotic. Nitric oxide interferes with most intracellular messengers because it diffuses rapidly and isotopically through tissues [2].

The action of NO in regulating growth and migration of vascular smooth muscle cells is mainly mediated through a cGMP-dependent mechanism [22,23]. Activated platelets participate by adhering to endothelial ulcerations and releasing mitogens and cytokines, which induce SMC migration and proliferation. SMCs in the vascular lesion change their phenotype from contractile to secretory [8]. In the present study we examined whether the beneficial effect of an externally applied NO donor in a high concentration could be modified by a guanylyl cyclase inhibitor, as an indication for the implication of a cGMP dependent pathway in the development of intimal hyperplasia/restenosis.

NO, derived from endothelial cells, modulates SMC migration and reduces production of extracellular matrix [24,25]. In physiological concentrations NO contributes to human endothelial cell survival, whereas in high concentrations NO induces endothelial cell apoptosis [26,27]. SIN-1 spontaneously releases NO, which can further react with superoxide and at high concentrations form peroxynitrite (ONOO-) [28]. NO scavenges superoxide anion directly and independent of cGMP. Peroxynitrite is a selective oxidant [29] causing nitration of structural proteins [28]. SIN-1 in concentrations of 400

![Figure 3](image3.png)

Figure 3 NADPH stained pixels 8 weeks after PTCA treated with ODQ prior to SIN-1 or SIN-1 alone. Legend to figure 3: NADPH staining at 8 weeks was significantly decreased in SIN-1 treated arteries compared to controls (p < 0.01). There was no significant difference between SIN-1 treated and untreated segments. NADPH staining in control segments and ODQ + SIN-1 treated segments was increased compared to untreated arteries. There was no difference in NADPH staining between controls and ODQ + SIN-1 treated vessels. All groups summarize data from six animals. Data presented as mean ± SD. * indicates p < 0.05 One-way ANOVA with Bonferroni post hoc test.

![Figure 4](image4.png)

Figure 4 NADPH stained pixels 1 week after PTCA treated with ODQ prior to SIN-1 or SIN-1 alone. Legend to figure 4: At one week there was no significant difference in NADPH staining between the SIN-1 treated arteries compared to untreated vessels. NADPH staining was significantly higher in ODQ + SIN-1 treated segments compared to SIN-1 treated as well as untreated vessels (p < 0.01). All groups summarize data from six animals. Data presented as mean ± SD. * indicates p < 0.05 Mann-Whitney test.
Table 2 Histo-pathological characteristics of PTCA injured coronary arteries 8 weeks after treatment with ODQ + SIN-1 and SIN-1 and control

8 weeks after treatment	ODQ+ SIN-1	SIN-1	NaCl Controls	P-value
	n = 11	n = 11	n = 5	
EEL area (mm²)	2.79 ± 0.55	2.64 ± 1.11	3.28 ± 1.16	ns
Medial area (mm²)	1.16 ± 0.36	1.27 ± 0.46	1.27 ± 0.47	ns
Intimal area (I) (mm²)	0.50 ± 0.59	0.11 ± 0.10	0.73 ± 0.69	< 0.01
Luminal area (L) (mm²)	1.12 ± 0.36	1.26 ± 0.67	1.28 ± 0.91	ns
IEL length (mm)	3.91 ± 1.06	4.40 ± 0.73	4.20 ± 1.37	ns
Fracture length (F) (mm)	0.71 ± 0.54	0.91 ± 0.73	1.21 ± 0.77	ns
Injury index	0.22 ± 0.21	0.21 ± 0.19	0.35 ± 0.29	ns
Residual lumen	0.73 ± 0.26	0.92 ± 0.08	0.63 ± 0.30	< 0.01
Restenosis index	2.10 ± 2.24	0.60 ± 0.65	1.02 ± 0.70	< 0.01
Intimal hyperplasia	0.25 ± 0.23	0.07 ± 0.06	0.32 ± 0.24	< 0.01

Results are presented as mean ± SD. One-way ANOVA was used for statistical evaluation. EEL: External elastic lamina. IEL: Internal elastic lamina.

1Injury index: IEL fracture length/IEL circumference.
2Residual lumen: L/(L+I)
3Restenosis index: (I/I+M)/(F/IEL)
4Intimal hyperplasia: I/(I+M)

Legend to table 2: PTCA followed by SIN-1 treatment demonstrated significant larger residual lumen and reduced intimal area, restenosis index, and intimal hyperplasia compared to NaCl treated or if treated with ODQ prior to SIN-1.

Data presented as mean ± SD. One way ANOVA test.

µM has been shown to result in necrosis of cell cultures due to peroxynitrite. However, concentrations of 200 µM SIN-1 caused cellular apoptosis [30]. In the present study it is plausible that production of peroxynitrite at a concentration of 100 µM SIN-1, affected our results. However, since the effect of SIN-1 on intimal hyperplasia was inhibited in the presence of ODQ, a cytotoxic guanylyl cyclase inhibitor, this assumption seems unlikely.

PTCA treatment causes intimal hyperplasia [20]. In the present study we have shown angiographically increased artery diameter after local delivery of SIN-1. A clinical multicenter study (ACCORD) indentified modest improvement of restenosis after intravenous or oral administration of sydnonimines [11]. Yet, a recent randomized trial of 166 patients failed to show benefit of 8 mg/day controlled release tablets for 6 month on restenosis after PTCA [12]. Site-specific delivery of SIN-1 affects more potently intimal thickening as in this case the biological action of NO is not circumscribed by immediate degradation upon exposure oxyhaemoglobin. Exposure of vascular tissue to NO delivery for a very short interval (5 minutes) has been proven in this and a previous study to exert long-lasting effects on tissue remodelling and patency [14]. These effects are of outmost clinical relevance in everyday treatment of atherosclerosis.

Biochemical analysis of the arterial wall proteins actin, myosin and intermediate filaments was performed one week postoperatively, as histological examination is uncertain at this time point. The SMC cytoskeleton contains a high amount of IF but IF can be found in all types of cells. The function of IF in SMC is not established, but IF is increased in hypertrophy and hyperplasia [31]. The content of actin is not changed in smooth muscle in intimal hyperplasia when related to total tissue weight [32]. Since SMC adaption is associated with an increase in IF while the amount of actin is unchanged, we chose to use the IF/actin ratio as a measurement of PTCA induced adaption to arterial injury.

We found that SIN-1 treatment after PTCA affects the structural IF system in the SMC in a pronounced way. NO released by SIN-1 and applied to the injured area inhibits the increase of the IF/actin and IF/myosin ratios. On the contrary when the cGMP dependent NO-pathway is blocked by ODQ, IF/actin increase significantly, indicating a rapid turnover of IF proteins and cell growth after injury.

It cannot be excluded that the increased IF/actin and IF/myosin ratios seen after ODQ+SIN-1 treatment represents an increase in the number of non-SMC, activated at the time of injury. The present results suggest a possible role for NO in SMC remodeling in response to injury, as exposure to SIN-1 significantly reduced the IF/actin ratio, which directly correlated to the degree of neointimal formation at 8 weeks. Interestingly, a recent study has demonstrated that hematopoietic stem cells give rise to SMC after angioplasty [33]. If this is the case our results indicate that NO may influence stem cells.

In the heart, nitric oxide synthase (NOS) is found almost exclusively in vessels [30]. Practically none is found in the endocardium, valves or cardiac muscle fibers. Most NOS in the heart is in the form of the endothelial isoform (eNOS). Recently, it has been suggested that eNOS localized in the endothelial caveolae may act as a mechanosensor to couple NO release to long time hemodynamic changes that regulate extracellular matrix turnover, endothelial and SMC proliferation, migration and responsiveness to growth factors; events ultimately responsible for artery remodeling [8,24,25]. The inducible isoform (iNOS) is only found after injury [34]. In an attempt to establish the amount of NOS in the endothelium after PTCA treatment with SIN-1 or ODQ+SIN-1, NADPH diaphorase histochemistry of the arteries was performed. This histochemical reaction is sensitive to temperature and fixation-time. For this reason treated segments were always matched and compared with their distal untreated segment, which was harvested simultaneously. Although NADPH also marks other enzymes such as cytochrome P450 reductase, NADPH oxidase and non-specific...
phosphatases these enzymes are predominantly found in the liver [35,36]. This response was inhibited by SIN-1. We attributed this effect to the release of NO as addition of ODQ abolished the favorable result of SIN-1 application. Events modulating endothelial NOS appeared early after vascular injury as changes in NADPH diaphorase staining were present already at one week. The present findings suggest that NO down-regulates the expression of NOS in newly formed endothelial cells to normal levels and implicate a long lasting change in the mRNA expression of endothelial cells [37]. A plausible alternative explanation may be that the local delivery of SIN-1, leads to a greater degree of local endothelial loss, which is not recovered at later time-points as compared with NaCl treated animals. However, in this case one would expect decreased NADPH activity whenever SIN-1 is applied even in the presence of ODQ. Our results do not show decrease when ODQ is used, indicating that the SIN-1 effect is mediated through the cGMP dependent NO pathway, which requires functioning endothelium.

Porcine coronary arteries respond to injury with constrictive remodeling, elastic recoil and tissue proliferation, in a manner similar to human arteries [38,39]. Development of intimal hyperplasia is related to the degree of injury [20] and events at the onset [14]. There was no significant difference in the IEL fracture length inflicted to the arteries, but the arteries treated with SIN-1 had a 72% lower restenosis index, 71% less intimal hyperplasia compared to controls, and 26% larger residual lumen. This effect is apparently due to NO since it is abolished in the presence of ODQ.

Conclusions

Events at the onset of injury are crucial to the process of neointimal formation. Intimal hyperplasia/restenosis is significantly reduced by application of SIN-1 immediately after PTCA. The mechanism underlying the effect of SIN-1 was shown to rely on NO release, which is inhibited by guanylyl cyclase, both in SMC as well as in endothelial cells.

List of abbreviations used

PTCA: Percutaneous transluminal coronary angioplasty; LAD: left anterior coronary artery; LCA: Left circumflex coronary artery; SIN-1: 3-morpholino-sydnonimine; ODQ: 1 H-(1,2,4)oxadiazole(4,3-alpha)quinoxaline-1-one; IF: intermediate filaments; NOS: nitric oxide synthetase; cGMP: cyclic guanosine 3’5'-monophosphate; SMC: smooth muscle cells; I: intimal vascular layer; M: medial vascular layer; L: luminal area; IEL: internal elastic lamina; F: fracture length of the IEL; Injury index = F/IEL; IH: Intimal hyperplasia; (I/I+M)/(F/IEL: restenosis index; L/(L+I): residual lumen; eNOS: endothelial isoform; iNOS: inducible isoform

Acknowledgements

The study was supported by the Swedish Medical Research Council (04X-13406). Catheters were granted by Boston Scientific Co. We are grateful for expert help with the biochemical assays from Mrs. Christina Persson and for copy editing by Dr. Goran K. Ollivcrona.

Author details

1Department of Coronary Heart Disease. Skane University Hospital. Institute of Clinical Sciences. Lunds University, Getingeve 4, SE-22185 Lund, Sweden. 2Department of Surgery. Skane University Hospital. Institute of Clinical Sciences. Lunds University, Getingeve 4, SE-22185 Lund, Sweden. 3Department of Anaesthesiology. Skane University Hospital. Institute of Clinical Sciences. Lunds University, Getingeve 4, SE-22185 Lund, Sweden. 4Department of Experimental Medical Science. Skane University Hospital. Institute of Clinical Sciences Lunds University, Getingeve 4, SE-22185 Lund, Sweden. 5Department of Cellular Musclephysiology. Institute of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden. 6Department of Pathology. Skane University Hospital. Institute of Clinical Sciences. Lunds University. Getingeve 4, SE-22185 Lund, Sweden.

Authors’ contributions

JH and EZ drafted the primary study protocol. EE carried out the NADPH histochemistry. AA did all the electrophoretic examination. We all participated in the design of the study and performed the statistical analysis. US did all the pathology. VP did the entire anesthetic. All Authors conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 29 October 2010 Accepted: 11 June 2011

Published: 11 June 2011

References

1. Libby P. Inflammation in atherosclerosis. Nature 2002, 420(6917):868-874. 2. Pacher P, Beckmann JS, Liao J. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007, 87:315-424. 3. Sarkan K, Sharma SK, Sachdeva R, Romeo F, Mehta JL. Coronary artery stenosis: vascular biology and emerging therapeutic strategies. Expert Rev Cardiovasc Ther 2006, 4(4):543-556. 4. Sarkan K, Gordon D, Stanley JC, Webb RC. Dual cell cycle-specific mechanism mediate the antimitogenic effects of nitric oxide in vascular smooth muscle cells. Hypertens 1997, 15:275-283. 5. Munzel T. Recent findings on nitrites: their action, bioactivation and development of tolerance. Dtsch Wochenschr 2008, 133(44):2277-2282. 6. Kim YM, Bombeck CA, Billar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999, 84:253-256. 7. Rabkin SW. Nitric oxide-induced cell death in the heart. The role of autophagy. Autophagy 2007, 3(4):347-349. 8. Maxwell AJ. Mechanisms of dysfunction of the nitric oxide pathway in vascular disease. Nitric Oxide 2002, 6(2):101-124. 9. Shiaki T, Takamura A, Oka T, Saihi D. Effect of short-term administration of high dose L-Aarginine on restenosis after percutaneous coronary angioplasty. J Cardiol 2004, 44(1):13-20. 10. Yoon J, Wu C-J, Homme J, Tuch T, Wolff RG, Topol EJ, Lincoff AM. Local delivery of nitric oxide from a eluting stent to inhibit neointimal thickening in a porcine coronary injury model. Vascoular Medical Journal 2002, 43(2):242-251. 11. Lablanche J-M, Grollier G, Luson J-R, et al. Effect of direct nitric oxide donors Linsidomine and Molsidomine on angiographic restenosis after coronary balloon angioplasty. The ACCORD study. Circulation 1997, 95(1):83-89. 12. Wohrle J, Hoher M, Nusser T, Kocks M: No effect of highly dosed nitric oxide donor molsidomine on the angiographic restenosis after percutaneous coronary angioplasty: a randomized, placebo controlled double-blind trial. Can J Cardiol 2003, 19(5):495-500. 13. Baek SH, Hrabie JA, Keefee LR, Hou D, Fineberg N, Rhoades R, March KL: Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after percutaneous coronary angioplasty. Circulation 2002, 105:2779-2784. 14. Harnek J, Zouaie E, Juid M, Fige R, Amer A, Ebboll E, Schou H, Perez de S& V, Stenram U: Local infusion of the NO donor SIN-1 after angioplasty reduces intimal hyperplasia in porcine coronary arteries. Acta Radiol 2003, 44(4):395-402.
15. Palmer RMJ, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327:665-666.

16. Groves PJ, Lewis MJ, Cheadle HA, Penny WJ: SIN-1 reduces platelet adhesion and platelet thrombus formation in a porcine model of balloon angioplasty. Circulation 1993, 87:590-597.

17. Furlong B, Henderson AM, Lewis MJ, Smith JA: Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br. J. Pharmacol 1987, 90(4):687-692.

18. Malmqvist U, Aner A: Isoform distribution and tissue content of contractile and cytoskeletal proteins in hypertrophied smooth muscle from rat portal vein. Circ. Res 1990, 66(3):832-845.

19. Hope B, Michael GJ, Knigge KM, Vincent SR: Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 1991, 88:2811-2814.

20. NUGENT HM, ROGERS C, Edelman ER: Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 1991, 84:384-391.

21. Bonan R, Paumen P, Scortichini D, Cloutier MJ, Leung TK: Coronary restenosis: Evaluation of a restenosis injury index in a swine model. Am Heart J 1993, 126(6):1334-1340.

22. Lee KW, Norell MS: Management of “no-reflow” complicating reperfusion therapy. Acute Card Care 2008, 10(1):5-14.

23. Pilz RB, Catteel DE: Regulation of gene expression by cGMP. Circ Res 2003, 93:1034-1046.

24. Rudic RD, Shesely EG, Nobuyo M, Maeda N, Smithies O, Segal SS, Sessa WC: Direct evidence for the importance of endothelium derived Nitric Oxide in vascular remodeling. J Clin Invest 1996, 101(4):731-736.

25. Gratton JP, Bernatchez P, Sessa WC: Caveola and calveolins in the cardiovascular system. Circ Res 2004, 94:1408-1417.

26. Shem YH, Wang XL, Wilken DE: Nitric oxide induces and inhibits apoptosis through different pathways. FASEB J 1998, 12:125-131.

27. BRUNE B, von Knethen A, Sandau KB: Nitric oxide and its role in apoptosis. Eur J Pharmacol 1998, 351:261-272.

28. Beckman JS, Koppell WH: Nitric oxide, superoxide and peroxynitrite: The good, the bad and the ugly. Am J Physiol 1996, 271(1):C124-C137.

29. RADI R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991, 266(7):4244-4250.

30. KAJI T, Kaeda I, Hisatsune T, Kaminogawa S: 3-Morpholinosydnonimine hydrochloride induces p53-dependent apoptosis in murine primary neural cells: A critical role for p21WW-RAF-MAPK-p19ARF pathway. Nitric Oxide 2002, 6(2):125-134.

31. KOCHER O, Gabbiani G: Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum Pathol 1986, 17(9):875-880.

32. Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K: Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 1984, 73(1):148-152.

33. SATA M, Sauria A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makucchi M, Hirata Y, Nagai R: Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002, 8(4):403-409.

34. UrSELL PC, Mayes M: Anatomic distribution of nitric oxide synthetase in the heart. Int J Cardiol 1995, 50(3):217-223.

35. PERSSSON K, Poljakovic M, Johansson K, Larsson B: Morphological and biochemical investigation of nitric oxide synthetase and related enzymes in the rat and pig urethrium. J Histochem Cytochem 1999, 47(6):739-750.

36. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewska A: Increased NAD(P)H oxidase and reactive species in coronary arteries after balloon injury. Arterioscler Thromb Vasc Biol 2001, 21:739-745.

37. BRUNE B, Sandau K, Knethen A: Apoptotic cell death and nitric oxide: activating and antagonistic transducing pathways. Biochemistry (Mosc) 1998, 63(7):817-825.

38. NOBUYOSHI M, Kimura T, Ohishi H, Horuchi H, Nosaka H, Hanasaki N, Yokoi H, Kim K: Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J Am Coll Cardiol 1991, 17(2):433-439.

39. MINTZ GS, Popma JJ, Hong MK, Pichard AD, Kent KM, Satler LF, Leon MB: Intravascular ultrasound to discern device-specific effects and mechanisms of restenosis. Am J Cardiol 1996, 78(3A):18-22.