Room temperature spin-orbit torque efficiency and magnetization switching in SrRuO$_3$-based heterostructures

Sheng Li, Bin Lao, Zengxing Lu, Xuan Zheng, Kenan Zhao, Liguang Gong, Tao Tang, Keyi Wu, Run-Wei Li and Zhiming Wang

1CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China

*These authors contributed equally to this work
† runweili@nimte.ac.cn
‡ zhiming.wang@nimte.ac.cn

Abstract

Spin-orbit torques (SOTs) from transition metal oxides (TMOs) in conjunction with magnetic materials have recently attracted tremendous attention for realizing high-efficient spintronic devices. SrRuO$_3$ is a promising candidate among TMOs due to its large and tunable SOT-efficiency as well as high conductivity and chemical stability. However, a further study for benchmarking the SOT-efficiency and realizing SOT-driven magnetization switching in SrRuO$_3$ is still highly desired so far. Here, we systematically study the SOT properties of high-quality SrRuO$_3$ thin film heterostructuring with different magnetic alloys of both IMA and PMA configuration by the harmonic Hall voltage technique. Our results indicate that SrRuO$_3$ possesses pronounced SOT-efficiency of about 0.2 at room temperature regardless of the magnetic alloys, which is comparable to typical heavy metals (HMs). Furthermore, we achieve SOT-driven magnetization switching with a low threshold current density of 3.8×1010 A/m2, demonstrating the promising potential of SrRuO$_3$ for practical devices. By making a comprehensive comparison with HMs, our work unambiguously benchmarks the SOT properties and concludes the advantages of SrRuO$_3$, which may bring more diverse choices for SOT applications by utilizing hybrid-oxide/metal and all-oxide systems.
Introduction

Current-induced spin-orbit torques (SOTs) provide an efficient way to manipulate magnetization states for the potential magnetic memory and oscillator applications. SOTs originate from charge-spin conversion with strong spin-orbit coupling (SOC), which is intensively studied in heavy-metals (HMs) over a decade due to their potentially useful SOT-efficiency and low resistivity [1-4]. In addition to HMs, recently, a wide range of material systems are explored for realizing efficient SOT devices including topological materials [5-8], 2D transition metal dichalcogenide [9-11], and transition metal oxides (TMOs) [12-23]. In particular, TMOs with perovskite structure attract tremendous attention due to their rich electromagnetic properties and high SOT-efficiency closely related to their exotic electronic structures [24-28]. Due to the intimate entanglement among multiple degrees of freedom, including charge, spin, orbit, lattice, the electronic structure and the associated SOT-efficiency can be precisely engineered in high quality TMO films at atomic scale [29,30]. Therefore, TMOs provide a wide platform for searching and designing materials in future energy efficient and scalable multifunctional spintronics [31-33].

Among oxide materials, 4d SrRuO$_3$ (SRO) is an outstanding member of perovskite family due to its low resistivity at ambient temperature, as well as high chemical and thermal stability [34,35]. These properties have been exploited as the electrodes for complex oxide heterostructures, such as Josephson junction, magnetic tunnel junctions, and capacitors [35-37]. Currently, it is recognized that SRO holds large Berry curvature and Weyl nodes, leading to lots of novel electromagnetic phenomena such as chiral anomaly induced negative magnetoresistance and anomalous Hall effect [28,38-40]. This intrinsic Berry phase of SRO, moreover, has been demonstrated to provide strong and high tunable SOT properties [14-16]. The spin Hall conductivity as large as 9×104 ℏ/2e S·m$^{-1}$ [15], and can be further manipulated via strain-controlled crystalline structure engineering. However, the reported spin Hall conductivity associated SOT-efficiency ξ_{SOT} sometimes exhibit inconsistent magnitudes. For example, the ξ_{SOT} can differ by several times in the same SRO/Py heterostructures grown on SrTiO$_3$ substrates [16]. Thus, it’s desirable to benchmark the SOT-efficiency of SRO through a systematical study. Moreover, as a crucial step for realizing SOT-driven device, current-induced magnetization switching has not been demonstrated in SRO so far.

In this work, we systematically investigate the SOTs properties at room temperature based on SRO/magnetic-alloy heterostructures with different magnetic easy axes of in-plane and perpendicular to plane (IMA, PMA). To benchmark the SRO system, SOT-efficiencies and spin Hall conductivity of SRO are separately evaluated in both IMA and PMA configurations by harmonic Hall voltage technique. Besides, we demonstrate the SOT-induced magnetization switching in the PMA system, and the threshold current density could be one order of magnitude smaller than those in HMs. Finally, we compare the evaluated SOT properties with that of the previous reported SRO and HMs, and highlight the advantages of SRO as a spin source in oxide-metal hybrid and all-oxide systems for various SOT applications.

Results

SrRuO$_3$/Py and SrRuO$_3$/CoPt hybrid structures

High-quality SRO thin film with a thickness of 20 nm is coherently grown on (001)-orientated SrTiO$_3$ (STO) substrate by pulsed laser deposition (PLD, see details in Method Section). Structural
properties of the film are determined by high-resolution X-ray diffraction (XRD) measurements. Figure 1(a) shows the \(\theta-2\theta \) scan of the SRO film, in which distinct (001) and (002) peaks of both film and substrate imply the epitaxial growth of the film. The well-defined Kiessig fringes indicate a sharp SRO/STO interface and flat surface. According to the peak position, the out-of-plane lattice constant is calculated as 3.942 Å by Bragg’s Law, which is larger than the bulk value 3.925 Å, indicating an in-plane compressive strain in the deposited film. Figure 1(b) exhibits the epitaxial relationship between the SRO film and substrate characterized via X-ray reciprocal space mapping (RSM) along (103) direction, in which the identical \(Q_X \) values (marked by a red dash line) strongly suggest that the film is fully strained by the substrate. The atomic force microscope (AFM) result (Figure 1(c)) demonstrates an atomically flat surface with clear terraces, which is in consistent with the XRD results. After preparation of the SOT-source SRO layers, two magnetic components, i.e. 7-nm permalloy (Ni\(_{0.81}\)Fe\(_{0.19}\)) with pure IMA and amorphous 3.5-nm CoPt ((Pt(1)/Co(0.5)/Pt(0.5)/Co(0.5)/Pt(1))) with pure PMA, are individually deposited on the bare SRO by PLD and sputtering, respectively. Thereafter, two different SOT-switching systems with IMA and PMA, i.e. SRO/Py and SRO/CoPt, are prepared, as shown in Figure 1(d) and (e) respectively.

SOTs-efficiency of IMA system

The harmonic Hall voltage measurements are performed to characterize the SOT associated properties in the SRO/Py sample with IMA [11,41,42]. Figure 2(a) schematically presents the sample structure, directions of applied charge current \(I \) and external magnetic field \(H \) in our measurement configuration. The first and second harmonic Hall voltages, \(V_{xy}^{1\omega} \) and \(V_{xy}^{2\omega} \), are acquired simultaneously while rotating the angle \(\varphi \) between \(H \) and \(I \) [43-45]. Figure 2(b) shows typical \(V_{xy}^{1\omega} \) signals as a function of \(\varphi \). Since the \(V_{xy}^{1\omega} \) is equivalent to conventional Hall voltage, the obtained \(\cos2\varphi \) dependence indicates that the magnetization in the IMA sample is always aligned in plane during the measurements. The \(V_{xy}^{2\omega} \) provides information about the spin current induced SOT, which cause small precession of the magnetization \(M \) about its equilibrium position against external field. Correspondingly, the dampinglike and fieldlike components can be quantitatively analyzed via the \(V_{xy}^{1\omega} \) and \(V_{xy}^{2\omega} \) results by following formulas:

\[
V_{xy}^{1\omega} = V_{PHE} \sin 2\varphi, \tag{1}
\]
\[
V_{xy}^{2\omega} = -\frac{1}{2}V_{DL} \cos \varphi + V_{FL} \cos \varphi \cos 2\varphi, \tag{2}
\]
\[
V_{DL} = \frac{V_{AHE}}{H + H_K} H_{DL}, \tag{3}
\]
\[
V_{FL} = \frac{V_{PHE}}{H} (H_{FL} + H_{Oe}). \tag{4}
\]

Here, \(V_{PHE} \) and \(V_{AHE} \) represent the planar Hall voltage and anomalous Hall voltage. \(H_{DL} \) and \(H_{FL} \) denote the effective field of dampinglike and fieldlike components, which correspond to \(\cos\varphi \) and \(\cos\varphi \cos 2\varphi \) dependences. \(H_K \) is effective anisotropy field of Py estimated to be 6500 Oe by the anomalous Hall measurement. \(H_{Oe} \) denotes the Oersted field which has the same symmetry with \(H_{FL} \). By fitting the measured \(V_{xy}^{2\omega} \) data to Eq. (2), we obtained amplitudes of the two components varied with \(\varphi \). Typical curves under \(I = 3.5 \) mA and \(H = 1000 \) Oe are shown
in Fig. 2(c). Accordingly, as shown in Figs. 2(d) and 2(e), the extracted dampinglike and fieldlike voltages, V_{DL} and V_{FL}, exhibit linear dependence against $1/(H+H\zeta)$ and $1/H$ for I ranging from 1.5 to 3.5 mA. This indicates that our data can be well explained by Eqs. (3)-(4), thereby the H_{DL} and H_{FL} are reasonably estimated from the slopes, $V_{\text{AHE}}H_{DL}$ and $V_{\text{PHE}}(H_{FL}+H\zeta)$, respectively. Particularly, H_{FL} is obtained by subtracting the contribution of $H\zeta$, where $H\zeta = \mu_{0}Jt_{\text{SRO}}/2$ is derived from Biot-Savart Law. Here J and t_{SRO} are current density and thickness of the SrRuO$_3$ layer. Figure 2(f) shows the estimated effective fields as a relationship of H_{DL} and H_{FL} are calculated to be 13.81 ± 0.28 Oe/(1011 A/m2) and 12.32 ± 0.05 Oe/(1011 A/m2). Finally, we evaluate the dampinglike (fieldlike) SOT-efficiency and spin Hall conductance via $\xi_{DL(FL)} = (2e\mu_{0}M_{S}t_{FM}/\hbar)(H_{DL(FL)}/J)$ [19,46] and $\sigma_{SH} = \xi_{DL} \cdot \sigma_{\text{SRO}}$, where $M_{S} = 597$ emu/cm3 and t_{FM} denote saturation magnetization and thickness of the magnetic layer, $\sigma_{\text{SRO}} = 64.1\times10^4$ S.m$^{-1}$ is conductance of the SRO layer. The values of ξ_{DL}^{IMA} and σ_{SH}^{IMA} are 0.175 and 11.2×10^4 $h/2e$ S.m$^{-1}$, comparable to the recent studies of SRO and the representative heavy metals, such as Pt [47-49], W [50], and Ta [51,52]. The ξ_{FL}^{IMA} is estimated to be -0.003, which is negligible in this system.

SOT-efficiency of PMA system

To systematic confirm the SOT associated properties of SRO, the harmonic Hall measurements are alternatively carried out in the SRO/CoPt sample with PMA [53,54]. The measurement geometry is schematically depicted in Fig. 3(a), where the AC current I is applied along x direction, magnetic easy axis of the CoPt aligns toward z (perpendicular) direction. During the measurements, the magnetic field H is applied along either x (longitudinal) or y (transverse) direction to estimate the effective fields H_{DL} and H_{FL} by acquiring the first and second harmonic voltages V_{xy}^{1o} and V_{xy}^{2o}. Because in the PMA configuration, the $H_{DL(HFL)}$ is parallel (perpendicular) to the I in the xy plane, and can be expressed as follows:

$$H_{DL(FL)} = -2B_{DL(FL)}\frac{\partial B_{DL(FL)}}{\partial H}/(4\eta^2),$$

$$B_{DL(FL)} = \left\{\frac{\partial^2 V_{xy}^{2o}}{\partial H^2}/\frac{\partial^2 V_{xy}^{2o}}{\partial H^2}\right\}^{\frac{1}{2}}H_{DL(FL)},$$

where $\eta = 0.105$ is the ratio of R_{SHE} to R_{AHE} used to exclude the contribution from the planar Hall effect. We firstly confirm the AHE loop of the SRO/CoPt sample, as shown in Fig. 3(b), which exhibits the typical characteristic of PMA with a sharp coercivity field of about 100 Oe. To estimate the H_{DL}, V_{xy}^{1o} and V_{xy}^{2o} are measured simultaneously by sweeping H along x direction. The V_{xy}^{1o} exhibits a characteristic parabolic behavior with opposite sign of the quadratic term for the contrary sweeping directions, while V_{xy}^{2o} follows a linear dependence with the same sign of slopes, as shown in Figs. 3(c) and 3(d). By substituting the extracted quadratic coefficient and the slope under different I into Eqs. (5)-(6), the H_{DL} are obtained and summarized in Fig. 3(f). The H_{DL}/J_{SRO} is estimated to be 39.65 ± 1.44 Oe/(1011 A/m2). Using the similar procedure while the H is applied along y direction, the H_{FL} associated V_{xy}^{1o} and V_{xy}^{2o} are measured. The V_{xy}^{2o} for H_{FL} exhibits the opposite sign of the slopes, as shown in Fig. 3(e), which is consistent with the symmetry of the fieldlike torque. Accordingly, the relationship between H_{FL} and J is plotted in Fig. 3(f), and the H_{FL}/J is estimated to be 2.42 ± 0.34 Oe/(1011
A/m²) after deducting the contribution of H_{Oe}. The SOT-efficiencies ξ_{DL}^{PMA}, ξ_{FL}^{PMA} and spin Hall conductance σ_{SH}^{PMA} therefore are confirmed to be 0.210, 0.013 and $4.68 \times 10^4 \ h/2e \ S\cdot m^{-1}$ in the PMA system with M_s of 499 emu/cm³.

SOT-induced magnetization switching

To directly demonstrate practical capability of the SOT that arises from SRO, we further perform current-induced magnetization switching in the SRO/CoPt sample. The measurement configuration is shown in Fig. 4(a). A train of 200 μs pulsed currents I_{pulse} with gradually magnitude in the range between ±24 mA is applied to trigger the magnetization switching. Concurrently, the Hall resistance is acquired under a small DC current I_{DC} of 200 μA that cause negligible influence on the magnetization state. As shown in Fig. 4(b), we observe typical SOT-induced behaviors in the PMA system. Firstly, no switching is detected under a zero bias field due to the mirror symmetry of SOT with respect to normal plane. After applying in-plane bias fields H_x to break the symmetry, deterministic switching occurs at approximately ±19 mA. Further reversing the polarity of H_x, the chirality of the loops changes accordingly. These behaviors indicate that the current-induced switching is governed by SOT. The magnitude of the Hall resistance ΔR_H is partial with that of the AHE curve in Fig. 3(b), likely because the non-uniform pinning hampers a further domain walls displacement in this domain-wall-mediated switching regime. The threshold current density J_{th} of SRO is estimated to be $3.8 \times 10^{10} \ A/m^2$, which is about one order of magnitude smaller than those in typical heavy metals [4], such as Pt, Ta, and W. Additionally, to confirm the repeatability and stability of SOT switching using SrRuO₃, multiple I_{pulse} with alternative magnitudes of ±22 mA and width of 200 μs are applied to the sample at $H_x = ±200$ Oe. Fig 4(c) shows the switching results of total 168 pulses, which exhibits highly reproducible SOT-driven response with an almost unchanged ΔR_H, demonstrating the robustness of SRO for current-induced magnetization switching.

Discussion

Although previous works have demonstrated that SRO holds novel and highly tunable spin Hall properties, however, there is uncertain magnitude among the reported SOT-efficiencies in IMA system by different measurement techniques. For a reasonable benchmarking, we characterize the SOT properties of high-quality SRO in heterostructures with both IMA and PMA configuration. Since SOT characterization by ST-FMR technique in the previous studies suffers from two main issues of impedance mismatch and phase asynchrony that may introduce undesirable artifacts in the estimated results, we use harmonic Hall voltage technique that can avoid these issues and obtain reasonable results after excluding the extrinsic factors caused from thermal effects and magnetic moment misalignment. As the results listed in table 1, a consistent magnitude of SOT-efficiencies is evaluated to be 0.2 from the both systems, indicating that SRO possesses the pronounced charge-spin conversion efficiency. The subsequently calculated spin Hall conductivity $\sigma_{SH} = \xi_{DL} \sigma_{SRO}$ with the value as high as $4.7 \times 10^4 \ h/2e \ S\cdot m^{-1}$ in agreement with that of the previous reported magnitude [14]. Moreover, we demonstrate that SOT-driven magnetization switching can be efficiently realized by SRO at room temperature. The threshold current density J_{th} is about $3.8 \times 10^{10} \ A/m^2$ in a pulsed time of 200 μs, taking a crucial step for utilizing SRO towards practical SOT applications.

Finally, we compare the SOT properties of SRO with other HMs. As a massively explored system, magnetic alloys combined with HMs, is practically important for realizing SOT device
with the advantages of high melting point and non-toxicity. Our study clearly shows that, as listed in table 1, SRO holds comparable ζ_{DL} and σ, and about one of magnitude smaller J_th than that of the typical HMs. Besides, SRO also possesses excellent thermal and chemical stabilities [35], thereby maintains low element diffusivity with the adjacent magnetic alloy layer. Such elemental diffusion should bring adverse impact to SOT efficiency and/or magnetic properties near the heterostructure interface, hindering performance stabilities of practical devices. Therefore, we suggest that by combining these advantages, SRO should be a versatile material for realizing various SOT applications in high quality oxide-metal hybrid system as another choice of HMs, and in all-oxide heterostructures as a standard spin source.

Conclusion

We systematically investigate the SOT associated properties of SRO via constructing SRO/magnetic alloy hybrid systems with different magnetization easy axes. One of the main aims of our work is to accurately evaluate the SOT-efficiency in SRO, and make a conclusive comparison with heavy metals. Using harmonic Hall voltage technique in IMA and PMA configuration, we clearly demonstrate that SRO possess a large dampinglike efficiency ζ_{DL} of about 0.2 at room temperature regardless of the magnetic alloys, which is comparable to the typical HMs. The other aim is to demonstrate the current-induced magnetization switching by SRO. We unambiguously observe the SOT-driven magnetization switching behavior, with threshold current density of 3.8×10^{10} A/m2, which is about one magnitude smaller than that of the HMs. From these benchmarks, we suggest that transition metal oxide SRO may bring more diverse choices for SOT applications by utilizing hybrid-oxide/metal and all-oxide systems.
Methods
Film and device fabrication

Single crystal SRO films of 20 nm are deposited on the (001)-oriented SrTiO$_3$ (STO) substrates by pulsed laser deposition (PLD) with a KrF excimer laser ($\lambda = 248$ nm). During the deposition, substrate temperature is set at 670 °C and the oxygen partial pressure was 0.1 mbar. The energy density of laser spot is 2.45 J/cm2. After SrRuO$_3$ growth, the films are cooled to room temperature with a rate of 10 °C/min in 1 mbar oxygen atmosphere. Subsequently, a 7-nm-thick Py (Ni$_{81}$Fe$_{19}$) layer is deposited on SrRuO$_3$ under high vacuum, then the IMA system sample of SRO/Py is obtained. For the PMA sample, a CoPt film with a stacking structure of Pt(1nm)/Co(0.5nm)/Pt(0.5nm)/Co(0.5nm)/Pt(1nm) is sputtered on bare SRO by a magnetron sputter at room temperature. The thickness of SRO layer (t_{SRO}) is monitored by the in-situ Reflection High Energy Electron Diffraction (RHEED) equipped in PLD during the growth processions. And the thicknesses of Py and CoPt layers are estimated by X-Ray Reflectivity (XRR) scan.

Device fabrication and measurements

For electrical measurements, the samples are fabricated into Hall bar devices using standard photolithography and argon ion etching techniques. The Hall bar pattern has channel dimension of 10μm in current-interface width and 5μm in voltage-interface width. After that, 10-nm Ti and 50-nm Au are successively deposited on the Hall bar pattern by electron-beam evaporation. The saturation magnetization M_S of magnetic layers is measured by superconducting quantum interference device (SQUID, Quantum Design). The electrical measurements are performed on the home-build low-temperature and high magnetic field electronic test system. The fixed AC current with frequency 133.73 Hz and the pulse DC current are applied by Keithley 6221 current source, and the constant DC current is generated by Keithley 6220 current source. The harmonic voltage signals and DC voltage signal are respectively measured by SR830 DSP Lock-in amplifiers and Keithley 2182A nanovoltmeter.
Reference

[1] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta and K. Takanashi, Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices, Nat. Mater. 7, 125 (2008).

[2] I. M. Miron, K. Garelo, G. Gaudin, P. J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476, 189 (2011).

[3] L. Liu, C. F. Pai, D. C. Ralph, and R. A. Buhrman, Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices, Phys. Rev. Lett. 109, 186602 (2012).

[4] L. Zhu, D. C. Ralph, and R. A. Buhrman, Maximizing spin-orbit torque generated by the spin Hall effect of Pt, Appl. Phys. Rev. 8, 031308 (2021).

[5] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth et al., Spin-transfer torque generated by a topological insulator, Nature 511, 449 (2014).

[6] Y. Wang, P. Deorani, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Topological Surface States Originated Spin-Orbit Torques in Bi$_2$Se$_3$, Phys. Rev. Lett. 114, 257202 (2015).

[7] M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv et al., Room-temperature high spin-orbit torque due to quantum confinement in sputtered Bi$_2$Se$_3$$_{(1-x)}$ films, Nat. Mater. 17, 800 (2018).

[8] N. H. D. Khang, Y. Ueda, and P. N. Hai, A conductive topological insulator with large spin Hall effect for ultralow power spin-orbit torque switching, Nat. Mater. 17, 808 (2018).

[9] Q. Shao, G. Yu, Y. W. Lan, Y. Shi, M. Y. Li, C. Zheng, X. Zhu, L. J. Li, P. K. Amiri, and K. L. Wang, Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers, Nano Lett. 16, 7514 (2016).

[10] M. H. D. Guimaraes, G. M. Stiehl, D. MacNeill, N. D. Reynolds, and D. C. Ralph, Spin-Orbit Torques in NbSe$_2$/Permalloy Bilayers, Nano Lett. 18, 1311 (2018).

[11] P. Li, W. Wu, Y. Wen, C. Zhang, J. Zhang, S. Zhang, Z. Yu, S. A. Yang, A. Manchon, and X. X. Zhang, Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe$_2$, Nat. Commun. 9, 3990 (2018).

[12] F. Trier, P. Noël, J.-V. Kim, J.-P. Attané, L. Vila, and M. Bibes, Oxide spin-orbitronics: spin–charge interconversion and topological spin textures, Nat. Rev. Mater. 7, 258 (2021).

[13] H. Chen and D. Yi, Spin–charge conversion in transition metal oxides, APL Mater. 9, 060908 (2021).

[14] Y. Ou, Z. Wang, C. S. Chang, H. P. Nair, H. Paik, N. Reynolds, D. C. Ralph, D. A. Muller, D. G. Schlom, and R. A. Buhrman, Exceptionally High, Strongly Temperature Dependent, Spin Hall Conductivity of SrRuO$_3$, Nano Lett. 19, 3663 (2019).

[15] J. Zhou, X. Shu, W. Lin, D. F. Shao, S. Chen, L. Liu, P. Yang, E. Y. Tsymbal, and J. Chen, Modulation of Spin-Orbit Torque from SrRuO$_3$ by Epitaxial-Strain-Induced Octahedral Rotation, Adv. Mater. 33, 2007114 (2021).

[16] J. Wei, H. Zhong, J. Liu, X. Wang, F. Meng, H. Xu, Y. Liu, X. Luo, Q. Zhang, Y. Guang et al., Enhancement of Spin–Orbit Torque by Strain Engineering in SrRuO$_3$ Films, Adv. Funct. Mater. 31, 2100380 (2021).

[17] A. S. Patri, K. Hwang, H. W. Lee, and Y. B. Kim, Theory of Large Intrinsic Spin Hall Effect in Iridate Semimetals, Sci. Rep. 8, 8052 (2018).

[18] T. Nan, T. J. Anderson, J. Gibbons, K. Hwang, N. Campbell, H. Zhou, Y. Q. Dong, G. Y. Kim, D.
F. Shao, T. R. Paudel et al., Anisotropic spin-orbit torque generation in epitaxial SrIrO$_3$ by symmetry design, Proc. Natl. Acad. Sci. U.S.A. 116, 16186 (2019).

[19] L. Liu, Q. Qin, W. Lin, C. Li, Q. Xie, S. He, X. Shu, C. Zhou, Z. Lim, J. Yu et al., Current-induced magnetization switching in all-oxide heterostructures, Nat. Nanotechnol. 14, 939 (2019).

[20] A. S. Everhardt, M. Dc, X. Huang, S. Sayed, T. A. Gosavi, Y. Tang, C.-C. Lin, S. Manipatruni, I. A. Young, S. Datta et al., Tunable charge to spin conversion in strontium iridate thin films, Phys. Rev. Mater. 3, 051201 (2019).

[21] H. Wang, K.-Y. Meng, P. Zhang, J. T. Hou, J. Finley, J. Han, F. Yang, and L. Liu, Large spin-orbit torque observed in epitaxial SrIrO$_3$ thin films, Appl. Phys. Lett. 114, 232406 (2019).

[22] L. Liu, Q. Qin, W. Lin, C. Li, Q. Xie, S. He, X. Shu, C. Zhou, Z. Lim, J. Yu et al., Current-induced magnetization switching in all-oxide heterostructures, Nat. Nanotechnol. 14, 939 (2019).

[23] A. S. Everhardt, M. Dc, X. Huang, S. Sayed, T. A. Gosavi, Y. Tang, C.-C. Lin, S. Manipatruni, I. A. Young, S. Datta et al., Tunable charge to spin conversion in strontium iridate thin films, Phys. Rev. Mater. 3, 051201 (2019).

[24] H. Wang, K.-Y. Meng, P. Zhang, J. T. Hou, J. Finley, J. Han, F. Yang, and L. Liu, Large spin-orbit torque observed in epitaxial SrIrO$_3$ thin films, Appl. Phys. Lett. 114, 232406 (2019).

[25] A. S. Everhardt, M. Dc, X. Huang, S. Sayed, T. A. Gosavi, Y. Tang, C.-C. Lin, S. Manipatruni, I. A. Young, S. Datta et al., Tunable charge to spin conversion in strontium iridate thin films, Phys. Rev. Mater. 3, 051201 (2019).

[26] K. Ueda, N. Moriuchi, K. Fukushima, T. Kida, M. Hagiwara, and J. Matsuno, Stacking-Order Effect on Spin-Orbit Torque, Spin Hall Magnetoresistance, and Magnetic Anisotropy in Ni$_{89}$Fe$_{19}$-IrO$_2$ Bilayers, Phys. Rev. Appl. 16, 034039 (2021).

[27] Y. Tokura, M. Kawasaki, and N. Nagaosa, Emergent functions of quantum materials, Nat. Phys. 13, 1056 (2017).

[28] Y. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-Sanchez, D. C. Vaz, H. Naganuma, G. Sicoli, J. P. Attane, M. Jamet, E. Jacquet et al., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nat. Mater. 15, 1261 (2016).

[29] Y. Wang, R. Ramaswamy, M. Motapothula, K. Narayanapillai, D. Zhu, J. Yu, T. Venkatesan, and H. Yang, Room-Temperature Giant Charge-to-Spin Conversion at the SrTiO$_3$-LaAlO$_3$ Oxide Interface, Nano Lett. 17, 7659 (2017).

[30] K. Takiguchi, Y. K. Wakabayashi, H. Irie, Y. Krockenberger, T. Otsuka, H. Sawada, S. A. Nikolaev, H. Das, M. Tanaka, Y. Taniyasu et al., Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide, Nat. Commun. 11, 4969 (2020).

[31] E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257 (2005).

[32] C. Ahn, A. Cavalleri, A. Georges, S. Ismail-Beigi, A. J. Millis, and J. M. Triscone, Designing and controlling the properties of transition metal oxide quantum materials, Nat. Mater. 20, 1462 (2021).

[33] Z. Huang, Ariando, X. Renshaw Wang, A. Rusydi, J. Chen, H. Yang, and T. Venkatesan, Interface Engineering and Emergent Phenomena in Oxide Heterostructures, Adv. Mater. 30, 1802439 (2018).

[34] F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr et al., Interface-induced phenomena in magnetism, Rev. Mod. Phys. 89, 025006 (2017).

[35] R. Ramesh and D. G. Schlom, Creating emergent phenomena in oxide superlattices, Nat. Rev. Mater. 4, 257 (2019).

[36] C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. vanDover, J. H. Marshall, J. W. P. Hsu, J. J. Krajewski, and W. F. Peck, Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr$_{1-x}$Ca$_x$RuO$_3$ (0≤x≤1), Science 258, 1766 (1992).

[37] G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank, and M. R. Beasley, Structure, physical properties, and applications of SrRuO$_3$ thin films, Rev. Mod. Phys. 84, 253 (2012).
[36] S. C. Gausepohl, M. Lee, L. Antognazza, and K. Char, Magnetoresistance probe of spatial current variations in high-Tc YBa2Cu3O−ε−SrRuO3−YBa2Cu3O7 Josephson junctions, Appl. Phys. Lett. 67, 1313 (1995).
[37] H. Boschker, T. Harada, T. Asaba, R. Ashoori, A. V. Boris, H. Hilgenkamp, C. R. Hughes, M. E. Holtz, L. Li, D. A. Muller et al., Ferromagnetism and Conductivity in Atomically Thin SrRuO3, Phys. Rev. X 9, 011027 (2019).
[38] Y. Gu, Q. Wang, W. Hu, W. Liu, Z. Zhang, F. Pan, and C. Song, An overview of SrRuO3-based heterostructures for spintronic and topological phenomena, J. Phys. D: Appl. Phys. 55, 233001 (2022).
[39] S. Itoh, Y. Endoh, T. Yokoo, S. Ibuka, J. G. Park, Y. Kaneko, K. S. Takahashi, Y. Tokura, and N. Nagaosa, Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3, Nat. Commun. 7, 11788 (2016).
[40] W. Lin, L. Liu, Q. Liu, L. Li, X. Shen, C. Li, Q. Xie, P. Jiang, X. Zheng, R. Guo et al., Electric Field Control of the Magnetic Weyl Fermion in an Epitaxial SrRuO3 (111) Thin Film, Adv. Mater. 33, 2101316 (2021).
[41] C. O. Avci, K. Garello, M. Gabureac, A. Ghosh, A. Fuhrer, S. F. Alvarado, and P. Gambardella, Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers, Phys. Rev. B 90, 224424 (2014).
[42] M. Hayashi, J. Kim, M. Yamanouchi, and H. Ohno, Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements, Phys. Rev. B 89, 144425 (2014).
[43] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996).
[44] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353 (1996).
[45] S. Zhang, P. M. Levy, and A. Fert, Mechanisms of spin-polarized current-driven magnetization switching, Phys. Rev. Lett. 88, 236601 (2002).
[46] L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect, Phys. Rev. Lett. 109, 096602 (2012).
[47] L. Liu, T. Moriya, D. C. Ralph, and R. A. Buhrman, Spin-torque ferromagnetic resonance induced by the spin Hall effect, Phys. Rev. Lett. 106, 036601 (2011).
[48] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures, Nat. Nanotechnol. 8, 587 (2013).
[49] L. Zhu, D. C. Ralph, and R. A. Buhrman, Spin-Orbit Torques in Heavy-Metal-Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling, Phys. Rev. Lett. 122, 077201 (2019).
[50] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl. Phys. Lett. 101, 122404 (2012).
[51] A. Kumar, R. Sharma, K. I. Ali Khan, C. Murapaka, G. J. Lim, W. S. Lew, S. Chaudhary, and P. K. Muduli, Large Damping-like Spin–Orbit Torque and Improved Device Performance Utilizing Mixed-Phase Ta, ACS Appl. Electron. Mater. 3, 3139 (2021).
[52] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum, Science 336, 555 (2012).
[53] S. Emori, U. Bauer, S. M. Ahn, E. Martinez, and G. S. Beach, Current-driven dynamics of chiral...
ferromagnetic domain walls, Nat. Mater. 12, 611 (2013).

[54] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO, Nat. Mater. 12, 240 (2013).

Acknowledgments
This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0303600, 2019YFA0307800), the National Natural Science Foundation of China (Nos. 12174406, 11874367, 51931011), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. ZDBS-LY-SLH008), K.C.Wong Education Foundation (GJTD-2020-11), the 3315 Program of Ningbo, the Natural Science Foundation of Zhejiang province of China (No. LR20A040001), the Beijing National Laboratory for Condensed Matter Physics.
Fig. 1 SrRuO₃-based heterostructures.

a XRD ω-2θ scan for the SrRuO$_3$ film grown on the SrTiO$_3$ (001) substrate. Inset shows the zoom-in range around (002) peaks of SrRuO$_3$ and SrTiO$_3$.

b Reciprocal space mapping around (103) peak for the prepared film.

c An AFM image of the film.

d-e Schematic diagram of spin orbit torques in SrRuO$_3$-based systems integrated with (d) permalloy and (e) CoPt, which show in-plane and perpendicular magnetic anisotropy, respectively. The purple, red, orange and green arrows represent charge current (I), magnetization (M), dampinglike and filedlike torques (τ_{DL} and τ_{FL}), respectively. The x, y and z axes in Cartesian coordinates are parallel to the [100], [010] and [001] crystal directions of the SrRuO$_3$, respectively.
Fig. 2 Harmonic Hall voltage measurement of the SrRuO$_3$/Py sample. a A schematic diagram for the measurement. The current I flows along the x-axis. ϕ is defined as the angle between I and the external magnetic field H. b-c Typical first (b) and second (c) harmonic Hall voltages ($V_{xy}^{1\omega}$ and $V_{xy}^{2\omega}$) measured at $H=1000$ Oe and $I=3.5$ mA. The $V_{xy}^{2\omega}$ consists of the dampinglike and fieldlike components (V_{FL} and V_{DL}). d Linear fitting of V_{FL} against $1/H$ measured at different I. e Linear fitting of V_{DL} against $1/(H+H_K)$ measured at different I. f The equivalent fields, i.e. H_{DL} and H_{FL}, as a function of current density J and corresponding linearly fitted lines.
Fig. 3 Harmonic Hall voltage measurement of the SrRuO$_3$/CoPt sample. a A schematic diagram for the measurement. b The measured anomalous Hall resistance R_{AHE} as a function of out-of-plane magnetic field H_z. c-d The first (c) and second (d) harmonic Hall voltages dependent on in-plane longitudinal field H_L measured at $I = 3\text{mA}$. When the first harmonic Hall voltage is measured. e The second harmonic Hall voltage dependent on the in-plane transverse field H_T measured at $I = 3\text{mA}$. f The equivalent fields, i.e. H_{DL} and H_{FL}, as a function of current density J and corresponding linearly fitted lines.
Fig. 4 Spin-orbit torque induced perpendicular magnetization switching in SrRuO$_3$/CoPt hybrid structure. a Left panel: the schematic diagram of the set-up for the switching. The pulsed current I_{pulse} and the DC constant current I_{DC} are used to switch and read the magnetization, respectively. Right panel: the sequence diagram of I_{pulse} (+24mA ~ -24mA) and I_{DC} (200 μA). b Magnetization switching driven by I_{pulse} under different external magnetic field H_x. ΔR_H represents the change of Hall resistance. c SOT-induced magnetization reversal with a switching current I_{pulse} (± 22mA, 200 μs) and an assistant field H_x (±200Oe).
Sample	Magnetic Anisotropy	Technique	ξ_{DL}	ξ_{FL}	ρ_{SOC} (µΩ·cm)	σ_{SH} ($\times 10^{4}$ h/2e S·m$^{-1}$)	J_{th} ($\times 10^{10}$ A/m2)	Reference
SRO(20)/Py(7)	IMA	Harmonic	0.18	-0.003	156	11	this work	
SRO(20)/CoPt(3.5)	PMA	Harmonic	0.21	0.013	450	4.7	3.8	this work
SRO(20)/Py(4) on STO(001)	IMA	ST-FMR	0.14		120	23	[15]	
SRO(20)/Py(4) on STO(001)	IMA	Harmonic	0.035		120	5.8	[15]	
SRO(6)/Py(6) on STO(001)	IMA	ST-FMR	0.49		810	5.7	[16]	
Pt(6)/Py(4)	IMA	ST-FMR	0.056		20	28	[47]	
Pt(3)/Co(0.6)	PMA	Harmonic	0.16		36	44	82	[48]
Pt(4)/Co(0.85)	PMA	Harmonic	0.2	-0.05	50	40	32	[49]
W(6)/CoFeB(5) (β-phase)	IMA	ST-FMR	0.3		170	17	18	[50]
Ta(8)/CoFeB(5) (β-phase)	PMA	ST-FMR	0.15		190	7.9	48	[52]
Ta(13)/Py(4) (β-phase)	IMA	ST-FMR	-0.37	0.17	122	-6.6	[51]	
Ta(13)/Py(4) (Mixed-phase)	IMA	ST-FMR	-0.52	-0.06	45	-50	[51]	

Table 1 Comparison of the SOT-efficiencies and spin Hall conductivity in different systems. ξ_{DL} and ξ_{FL} are the dampinglike (fieldlike) SOT-efficiency, ρ_{SOC} is the resistivity of SOC layer, σ_{SH} and J_{th} present the spin Hall conductivity and threshold current density, respectively.