ON 2 ACYCLIC SIMPLE GRAPHOIDAL COVERING OF BICYCLIC GRAPHS

VENKAT NARAYANAN1,∗, SURESH SUSEELA2, KALA1

1Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India
2Department of Mathematics, St. John’s College, Tirunelveli, India

Abstract. A 2—simple graphoidal cover of G is a set ψ of (not necessarily open) paths in G such that every edge is in exactly one path in ψ and every vertex is an internal vertex of at most two paths in ψ and any two paths in ψ has at most one vertex in common. The minimum cardinality of the 2—simple graphoidal cover of G is called the 2—simple graphoidal covering number of G and is denoted by η2s. A 2—simple graphoidal cover ψ of a graph G is called 2—acyclic simple graphoidal cover if every member of ψ is a path. The minimum cardinality of a 2—acyclic simple graphoidal cover of G is called the 2—acyclic graphoidal covering number of G and is denoted by η2as. This paper discusses 2—acyclic simple graphoidal cover on bicyclic graphs.

Keywords: bicyclic graphs; 2-simple graphoidal cover; 2-acyclic simple graphoidal cover.

2010 AMS Subject Classification: 05C70, 05C76.

1. Introduction

In graph theory, Graph Decomposition is the one of the fastest-growing research topics and plays a major role in Road Network, Block design and so on. A decomposition of a graph G is a collection of edge disjoint subgraphs H1, H2, …, Hn of G such that every edge of G is in exactly one Hi. Several authors [1][3][7][9][12] impose different conditions and parameters to

*Corresponding author
E-mail address: gvenkatnarayan@gmail.com
Received January 2, 2020
find out different types of decomposition of the graphs. The above motivates the definition of Graphoidal covers.

2. Preliminaries

All the graph $G = (V, E)$ in this paper is a nontrivial, simple-connected, and undirected graphs. The number of elements of V is said to be the order of G is expressed by p and the number of elements in the E are said to be the size of G is expressed by q. For graph theoretic terminology, Harary [8] is referred. The vertices u_0 and u_l are called external vertices of P and $u_1, u_2, \ldots, u_{l-1}$ are internal vertices of P, where $P = (u_0, u_1, u_2, \ldots, u_{l-1}, u_l)$ is a path or cycle in G. Two paths P_1 and P_2 are said to be internally disjoint if no vertex of G is an internal vertex of both P_1 and P_2. The graphoidal cover introduced and discussed by Acharya and Sampath Kumar [1] [2]. 2−graphoidal path cover introduced by Nagarajan et.al [9]. 2−graphoidal cover extensively studied and discussed by Das and Singh [7]. The authors [12] discuss about 2−acyclic simple graphoidal cover and discusses 2−acyclic simple graphoidal covering on standard graph. In this paper, the authors determine the 2−acyclic simple graphoidal cover on bicyclic graphs.

Definition 2.1 (1). A graphoidal cover of G is a set ψ of (not necessarily open) paths in G satisfying the following conditions.

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

Definition 2.2 (9). An 2−graphoidal cover of a graph G is a collection ψ of paths (not necessarily open) in G such that

(i) Every path in ψ has at least two vertices.

(ii) Every edge is exactly in one path ψ.

(iii) Every vertex is an internal vertex of at most two paths in ψ.
The minimum cardinality of a 2−graphoidal cover of G is called the 2−graphoidal covering number of G and is denoted by $\eta_2(G)$.

Definition 2.3 (12). A 2−simple graphoidal cover of a graph G is a 2−graphoidal cover ψ of G such that any two paths in ψ have at most one vertex in common. The minimum cardinality of a 2−simple graphoidal cover of G is called the 2−simple graphoidal covering number of G and is denoted by $\eta_{2s}(G)$.

Definition 2.4 (12). A 2−acyclic simple graphoidal cover of G is said to be 2− simple graphoidal cover ψ of G such that every member ψ of G is a path. The minimum cardinality of a 2−acyclic simple graphoidal cover of G is called the 2−acyclic simple graphoidal covering number of G and is denoted by $\eta_{2as}(G)$.

Definition 2.5. Let ψ be a collection of internally disjoint paths in G. A vertex v of G is said to be an interior vertex of ψ if it is an internal vertex of some path in ψ. Otherwise, it is said to be an exterior vertex.

Notations 2.6 (9). Let ψ be a 2−acyclic simple graphoidal cover of G. The following notations are used in the theorems. Here $i_\psi(P), t_1(\psi), t_2(\psi), t_\psi$ denotes the number of internal vertices of the path P, the number of vertices appear as internal vertex exactly in one path ψ, the number of vertices appears as internal vertex exactly in two paths of ψ and the number of vertices are not internal in ψ respectively.

If 2−acyclic simple graphoidal cover ψ of G is minimum, then it is clear that $t_1(\psi), t_2(\psi)$ should be maximum and $t(\psi)$ should be minimum. We define $t_i = \max t_i(\psi) \ (i = 1, 2)$ where the maximum is taken over all 2−acyclic simple graphoidal covers of ψ of G and $t = \min t_\psi$ where the minimum is taken over all 2−acyclic simple graphoidal cover ψ of G.

Theorem 2.7 (12). For any (p,q) graph, $\eta_{2as}(G) = q - p - t_2 + t$.

Corollary 2.8 (12). There exists a 2−acyclic simple graphoidal cover ψ of G in which every vertex is internal vertex in exactly 2 paths in ψ of G if and only if $\eta_{2as}(G) = q - 2p$.
Theorem 2.9 (12). Let G be a unicycle graph with n pendant vertices. Let C be the unique cycle on G. Let l be the number of vertices of degree greater than 2 on C. Then

$$\eta_{2as}(G) = \begin{cases}
3 & \text{if } l=0 \\
(n+1) - m & \text{if } l=2 \\
(n+2) - m & \text{if } l=1 \\
n - m & \text{otherwise}
\end{cases}$$

where m is the total number of vertices of degree ≥ 4 on G.

Definition 2.10 (6). A connected $(p, p+1)$ graph G is called a Bicyclic graph.

Definition 2.11 (6). A one-point union of two cycles is a simple graph obtained from two cycles, say C_l and C_m where $l, m \geq 3$, by identifying one and the same vertex from both cycles. Without loss of generality, we assume $C_l = (u_0, u_1, \ldots, u_{l-1}, u_0)$ and $C_m = (u_0, u_l, u_{l+1}, \ldots, u_{m+l-2}, u_0)$. This graph is denoted by $U(l : m)$.

Definition 2.12 (6). A long dumbbell graph is a simple graph obtained by joining two cycles C_l and C_m where $l, m \geq 3$, with a path of length $i, i \geq 1$. Without loss of generality, we may assume $C_l = (u_0, u_1, \ldots, u_{l-1}, u_0)$, $P_i = (u_{l-1}, u_l, \ldots, u_{l+i-1})$ and $C_m = (u_{l+i-1}, u_{l+i}, \ldots, u_{l+m+i-2}, u_{l+i-1})$. This graph is denoted by $D(l : m : i)$.

3. Main Results

Theorem 3.1. Let G be a bicyclic graph with n pendant vertices. Also let $U(l : m)$ be the unique bicycle in G and let l be the number of vertices of degree greater than 2 on C. Then
Let $G = U(l : m)$

$$
\eta_{2as}(G) = \begin{cases}
4 & \text{if } G = U(l : m) \\
(n+5) - m & \text{if } (l = 1 \text{ and } \deg(u_0) \geq 5) \\
(n+4) - m & \text{if } (l = 2 \text{ and } \deg(u_0) \geq 4, \deg(v) \geq 3) \\
(n+3) - m & \text{if } (l = 3 \text{ and } \deg(u_0) \geq 4, \deg(v) \geq 3, \deg(u) \geq 3) \\
& \text{Or } (l = 4 \text{ and } \deg(u_0) \geq 4, \deg(u) \geq 3, \deg(v) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3, \deg(x) \geq 3, \{u, v, w, x \in C_i\}) \\
(n+2) - m & \text{if } (l = 4 \text{ and } \deg(u_0) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3, \deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3, \deg(x) \geq 3, \{u, v, w, x \in C_i\}) \\
(n+1) - m & \text{otherwise}
\end{cases}
$$

Proof: Let $C_i = (u_0, u_1, \ldots, u_{l-1}, u_0)$ and $C_m = (u_0, u_l, \ldots, u_{l+m-2}, u_0)$ be two cycles sharing a common vertex say u_0 with $q = p + 1$.

Case 1. Suppose $G = U(l : m)$

Let $P_1 = (u_2, u_3, \ldots, u_0, u_1, \ldots, u_{l+m-5})$, $P_2 = (u_{l+m-5}, u_{l+m-4})$, $P_3 = (u_{l+m-4}, u_{l+m-3}, u_{l+m-2}, \ldots, u_{l-1}, u_0)$, $P_4 = (u_1, u_2)$ is a minimum 2–acyclic simple graphoidal cover of G so that $\eta_{2as}(G) = 4$.

Case 2. When $l = 1$ and $\deg(u_0) \geq 5$

Let $P = (w, x)$, where P be a path on $U(l : m)$ and $w, x \in C_m$. Take $G_1 = G - P$ is a unicyclic graph with $(n + 2)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 1$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 2) + 2 - m = (n + 4) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a minimum 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 5) - m$. For any 2–acyclic simple graphoidal cover of G,
n pendent vertices and at least four vertices in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 4), t_2(\psi) \leq m$. Hence $t \geq (n + 4), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 4) \geq (n + 5) - m$. Thus $\eta_{2as}(G) = (n + 5) - m$.

Case 3. When $l = 2$ and let u_0, v be the two vertices is of degree greater than two on $U(l : m)$ and $\deg(u_0) \geq 4, \deg(v) \geq 3, v \in C_l$

Take $G_1 = G - P$ where $P = (w, x)$ be a path on $U(l : m)$ and $w, x \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 2$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 2) + 1 - m = (n + 3) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a minimum 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 4) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices and at least three vertices in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 3), t_2(\psi) \leq m$. Hence $t \geq (n + 3), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 3) \geq (n + 4) - m$. Thus $\eta_{2as}(G) = (n + 4) - m$.

Case 4. When $l = 3$ and let u_0, u, v be the vertices is of degree greater than two on $U(l : m)$ and $\deg(u_0) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3$. Then there are two subcases.

Subcase 4.1. Suppose $u, v \in C_l$

Take $G_1 = G - P$ where $P = (x, y)$ be a path on $U(l : m)$ and $x, y \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a minimum 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices and at least two vertices in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 4.2. Suppose $u \in C_l, v \in C_m$, then there are two subcases.

Subcase 4.2.1. Suppose $\deg(v) = 3$ (Or) $\deg(v) \geq 5$

Take $G_1 = G - P$ where $P = (v, x)$ be a path on $U(l : m)$ and $x \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 1)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 2$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal
Subcase 4.2.2. Suppose $\deg(v) = 4$

Take $G_1 = G - P$ where $P = (v,x)$ be a path on $U(l : m)$ and $x \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 1)$ pendent vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 2$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 1) + 1 - (m - 1) = (n + 3) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_1 be a path in ψ_1 in which v is an external. Then $\psi = (\psi_1 - P_1) \cup \{P_1 P\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 3) - m) - 1 + 1 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices and atleast two vertices in $U(l : m)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Case 5. Suppose $l = 4$ and let u_0, u, v, w be the vertices is of degree greater than two on $U(l : m)$ and $\deg(u_0) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3$, then there are two subcases.

Subcase 5.1. Suppose $u, v, w \in C_l$

Take $G_1 = G - P$, where $P = (y, z)$ be a path on $U(l : m)$ and $y, z \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices and atleast two vertices in $U(l : m)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 5.2. Suppose $u, v \in C_l$ and $w \in C_m$, then there are two subcases.

Subcase 5.2.1. Suppose $\deg(w) = 3$ (Or) $\deg(w) \geq 5$
Take $G_1 = G - P$, where $P = (w, y)$ be a path on $U(l : m)$ and $y \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 1)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - m$. Let ψ_1 be the minimum 2-acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a 2-acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 2) - m$. For any 2-acyclic simple graphoidal cover of G, n pendent vertices and at least one vertex in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Subcase 5.2.2. Suppose $deg(w) = 4$

Take $G_1 = G - P$, where $P = (w, y)$ be a path on $U(l : m)$ and $y \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 1)$ pendent vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - (m - 1) = (n + 2) - m$. Let ψ_1 be the minimum 2-acyclic simple graphoidal cover of G_1. Let P_1 be a path in ψ_1 in which x is an external vertex. Then $\psi = (\psi_1 - P_1) \cup \{P_1P\}$ is a 2-acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 2) - m) - 1 + 1 = (n + 2) - m$. For any 2-acyclic simple graphoidal cover of G, n pendent vertices and at least one vertex in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Case 6. When $l \geq 5$ and let u_0, u, v, w, x be the vertices is of degree greater than two on $U(l : m)$ and Suppose $deg(u_0) \geq 4, deg(u) \geq 3, deg(v) \geq 3, deg(w) \geq 3, deg(x) \geq 3$, then there are three subcases.

Subcase 6.1. Suppose $u, v, w, x \in C_l$

Take $G_1 = G - P$, where $P = (y, z)$ be a path on $U(l : m)$ and $y, z \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendent vertices and m vertices is of degree ≥ 4 with $l \geq 5$. By theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2-acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P\}$ is a 2-acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 3) - m$. For any 2-acyclic simple graphoidal cover of G, n pendent vertices and at least two vertices in $U(l : m)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t =
\[(p + 1) - p - m + (n + 2) \geq (n + 3) - m. \text{ Thus } \eta_{2as}(G) = (n + 3) - m.\]

Subcase 6.2. When \(u, v, w \in C_l\) and \(x \in C_m\) and let \(P = (x, y)\) be a path in \(U(l : m)\) and \(y \in C_m\). Then there are two subcases.

Subcase 6.2.1. Suppose \(\deg(x) = 3\) (Or) \(\deg(x) \geq 5\)

Take \(G_1 = G - P\) is a unicyclic graph with \((n + 1)\) pendent vertices and \(m\) vertices is of degree \(\geq 4\) with \(l \geq 4\). By theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m\). Let \(\psi_1\) be the minimum 2-acyclic simple graphoidal cover of \(G_1\). Then \(\psi = \psi_1 \cup \{P\}\) is a 2-acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq \eta_{2as}(G_1) = (n + 2) - m\). For any 2-acyclic simple graphoidal cover of \(G\), \(n\) pendent vertices and atleast one vertex in \(U(l : m)\) are external and atmost \(m\) vertices are internal twice.

Therefore \(t \geq (n + 1), t_1(\psi) \leq m\). Hence \(t \geq (n + 1), t_2 \leq m\) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m.\) Thus \(\eta_{2as}(G) = (n + 2) - m.\)

Subcase 6.2.2. Suppose \(\deg(x) = 4\)

Take \(G_1 = G - P\) is a unicyclic graph with \((n + 1)\) pendent vertices and \((m - 1)\) vertices is of degree \(\geq 4\) with \(l \geq 4\). By theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - (m - 1) = (n + 2) - m\). Let \(\psi_1\) be the minimum 2-acyclic simple graphoidal cover of \(G_1\). Let \(P_1\) be a path in \(\psi_1\) in which \(x\) is an external vertex. Then \(\psi = (\psi_1 - P_1) \cup \{P_1 \cup P\}\) is a 2-acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq ((n + 2) - m) - 1 + 1 = (n + 2) - m\). For any 2-acyclic simple graphoidal cover of \(G\), \(n\) pendent vertices and atleast one vertex in \(U(l : m)\) are external and atmost \(m\) vertices are internal twice. Therefore \(t \geq (n + 1), t_2(\psi) \leq m\). Hence \(t \geq (n + 1), t_2 \leq m\) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m.\) Thus \(\eta_{2as}(G) = (n + 2) - m.\)

Subcase 6.3. Suppose \(u, v \in C_l\) and \(w, x \in C_m\) and let \(P = (w, x)\) be a path in \(U(l : m)\). Then there are three subcases.

Subcase 6.3.1. When \((\deg(w) = \deg(x) = 3)\) (Or) \((\deg(w) = 3 \text{ and } \deg(x) \geq 5)\) (Or) \((\deg(w) \geq 5 \text{ and } \deg(x) \geq 5)\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \(m\) vertices is of degree \(\geq 4\) with \(l = 3\). By theorem 2.9, \(\eta_{2as}(G_1) = n - m\). Let \(\psi_1\) be the minimum 2-acyclic simple graphoidal cover of \(G_1\). Then \(\psi = \psi_1 \cup \{P\}\) is a 2-acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq (n + 1) - m\). For any 2-acyclic simple graphoidal cover of \(G\), \(n\) pendent vertices are external and atmost \(m\) vertices are internal twice. Therefore \(t_\psi \geq n, t_2(\psi) \leq m.\)
Hence $t \geq n, t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m$. Thus $\eta_{2as}(G) = (n + 1) - m$.

Subcase 6.3.2. When $(\deg(w) = 3$ and $\deg(x) = 4)$ (Or) $(\deg(w) \geq 5$ and $\deg(x) = 4)$

Take $G_1 = G - P$ is a unicyclic graph with n pendent vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = n - (m - 1) = (n + 1) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_1 be a path in ψ_1 in which x is an external vertex. Then $\psi = (\psi_1 - P_1) \cup \{PP_1\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 1) - m) - 1 + 1 = (n + 1) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices are external and atmost m vertices are internal twice. Therefore $t_\psi \geq n, t_2(\psi) \leq m$. Hence $t \geq n, t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m$. Thus $\eta_{2as}(G) = (n + 1) - m$.

Subcase 6.3.3. When $\deg(w) = 4$ and $\deg(x) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendent vertices and $(m - 2)$ vertices is of degree ≥ 4 with $l = 3$. By theorem 2.9, $\eta_{2as}(G_1) = n - (m - 2) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_1 be a path in ψ_1 in which x is an external vertex and P_2 be a path in ψ_1 in which w is an external vertex. Then $\psi = (\psi_1 - P_1 - P_2) \cup \{P_2PP_1\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 2) - m) - 2 + 1 = (n + 1) - m$. For any 2–acyclic simple graphoidal cover of G, n pendent vertices are external and atmost m vertices are internal twice. Therefore $t_\psi \geq n, t_2(\psi) \leq m$. Hence $t \geq n, t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m$. Thus $\eta_{2as}(G) = (n + 1) - m$. \qed
Example 3.2. Consider the Bicyclic graph $U(l : m)$ shown in Figure 1

Here $p = 33$, $q = 34$, $n = 14$, $l = 6$ and $m = 4$, then

$$\eta_{2as}(G) = \{ \langle v_{16}, v_6, v_5, v_3, v_{19} \rangle, \langle v_{20}, v_3, v_{14}, v_{13}, v_{31} \rangle, \langle v_{13}, v_{12}, v_{11}, v_{21}, v_{25}, v_{26} \rangle, \langle v_{25}, v_{27} \rangle, \langle v_{24}, v_{21}, v_{22}, v_{28} \rangle, \langle v_{22}, v_{23}, v_{29} \rangle, \langle v_{23}, v_{30} \rangle, \langle v_{11}, v_{10}, v_9, v_{33} \rangle, \langle v_{32}, v_9, v_{15}, v_3 \rangle, \langle v_3, v_2, v_1, v_8, v_{18} \rangle, \langle v_8, v_7, v_6, v_{17} \rangle \} = 11 = (n + 1) - m$$

Theorem 3.3. Let G be a bicyclic graph with n pendant vertices. Also let $D(l : m : i)$ be the unique bicycle in G and let l be the number of vertices of degree greater than 2 on cycles on $D(l : m : i)$ Then
\[
\eta_{2as}(G) = \begin{cases}
5 & \text{if } G = D(l : m : i) \\
(n + 5) - m & \text{if } (l = 2 \text{ and } \deg(u_{l-1}) \geq 4, \deg(u_{l+i-1}) \geq 3) \\
(n + 4) - m & \text{if } (l = 3 \text{ and } \deg(u_{l-1}) \geq 3, \deg(u_{l+i-1}) \geq 3, \\
& \deg(u) \geq 3) \\
(n + 3) - m & \text{if } (l = 4 \text{ and } \deg(u_{l-1}) \geq 3, \deg(u_{l+i-1}) \geq 3, \deg(u) \geq 3, \deg(v) \geq 3, u, v, w \in C_l) \\
(n + 2) - m & \text{if } (l = 5 \text{ and } \deg(u_{l-1}) \geq 3, \deg(u_{l+i-1}) \geq 3, \deg(u) \geq 3, \\
& \deg(v) \geq 3, \deg(w) \geq 3, u, v \in C_l, w \in C_m) \text{ Or } (l > 5, \\
& \deg(u_{l-1}) \geq 3, \deg(u_{l+i-1}) \geq 3, \deg(u) \geq 3, \deg(v) \geq \\
& \deg(w), \deg(x) \geq 3, u, v, x \in C_l, w \in C_m) \\
(n + 1) - m & \text{otherwise}
\end{cases}
\]

Proof. Let \(C_l = (u_0, u_1, \ldots, u_{l-1}, u_0), P_i = (u_{l-1}, u_i, \ldots, u_{l+i-1}) \) and \(C_m = (u_{l+i-1}, u_{l+i}, \ldots, u_{l+m+i-2}, u_{l+i-1}) \).

Case 1. Suppose \(G = D(l : m : i) \)

Let \(P_1 = (u_2, u_3, \ldots, u_{l-3}), P_2 = (u_{l-3}, u_{l-2}, u_{l-1}, u_i, \ldots, u_{l+i-1}, u_{l+i}), P_3 = (u_{l+i}, u_{l+i+1}), P_4 = (u_{l+i+1}, u_{l+i+2}, \ldots, u_{l+i-1}), P_5 = (u_{l-1}, u_0, u_1, u_2) \) is a minimum 2-acyclic simple graphoidal cover of \(G \) so that \(\eta_{2as}(G) = 5 \).

Case 2. Suppose \(l = 2 \) and let \(P \) denote \((u_{l+i-1}, w)\) section of \(C_m \) such that it has at least one internal vertex say \(u_i \) and \(w \in C_m \). Let \(P_1 \) and \(P_2 \) denote the \((u_{l+i-1}, u_i)\) and \((u_i, w)\) section of \(P \) respectively. Then there are two subcases.

Subcase 2.1. When \(\deg(u_{l-1}) \geq 4 \) and \((\deg(u_{l+i-1}) = 3 \text{ (Or } \deg(u_{l+i-1}) \geq 5)\)

Take \(G_1 = G - \{P\} \) is a unicyclic graph with \((n + 1)\) pendent vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l = 1 \). Hence by the theorem 2.9, \(\eta_{2as}(G_1) = ((n + 1) + 2) - m = (n + 3) - m \).
Let ψ_1 be a minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2\text{ar}}(G) \leq (n+5) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendent vertices and four vertices in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n+4), t_2(\psi) \leq m$. Hence $t \geq (n+4), t_2 \leq m$ so that $\eta_{2\text{ar}}(G) = q - p - t_2 + t = (p + 1) - p - m + (n+4) \geq (n+5) - m$. Thus $\eta_{2\text{ar}}(G) = (n+5) - m$.

Subcase 2.2. When $\text{deg}(u_{l-1}) \geq 4$ and $\text{deg}(u_{l+i-1}) = 4$

Take $G_1 = G - \{P\}$ is a unicyclic graph with $(n+1)$ pendent vertices and $(m-1)$ vertices is of degree ≥ 4 with $l = 1$. Hence by the theorem 2.9, $\eta_{2\text{ar}}(G_1) = ((n+1) + 2) - (m-1) = (n+4) - m$. Let ψ_1 be a minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which u_{l+i-1} is an external vertex. Take $\psi = (\psi_1 - P_3) \cup \{P_3 P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G and $\eta_{2\text{ar}}(G) \leq ((n+4) - m) + 1 + 2 = (n+5) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendent vertices and four vertices in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n+4), t_2(\psi) \leq m$. Hence $t \geq (n+4), t_2 \leq m$ and hence $\eta_{2\text{ar}}(G) = q - p - t_2 + t = (p + 1) - p - m + (n+4) \geq (n+5) - m$. Thus $\eta_{2\text{ar}}(G) = (n+5) - m$.

Case 3. When $l = 3$ and let u be the only vertex is of degree greater than 2 other than u_{l-1}, u_{l+i-1}. Let P denote (u_{l+i-1}, w) section of C_m such that it has at least one internal vertex say u_i and $w \in C_m$. Let P_1 and P_2 denote the (u_{l+i-1}, u_i) and (u_i, w) section of P respectively. Suppose $\text{deg}(u_{l-1}) \geq 3, \text{deg}(u) \geq 3, u \in C_m$, then there are two subcases.

Subcase 3.1. When $\text{deg}(u_{l+i-1}) = 3$ (Or $\text{deg}(u_{l+i-1}) \geq 5$)

Take $G_1 = G - \{P\}$ is a unicyclic graph with $(n+1)$ pendent vertices and m vertices is of degree ≥ 4 with $l = 2$. Hence by the theorem 2.9, $\eta_{2\text{ar}}(G_1) = ((n+1) + 1) - m = (n+2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Then $\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2\text{ar}}(G) \leq (n+4) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendent vertices and three vertices in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n+3), t_2(\psi) \leq m$. Hence $t \geq (n+3), t_2 \leq m$ and hence $\eta_{2\text{ar}}(G) = q - p - t_2 + t = (p + 1) - p - m + (n+3) \geq (n+4) - m$. Hence $\eta_{2\text{ar}}(G) = (n+5) - m$.
Subcase 3.2. When \(\deg(u_{i-1}) = 4 \)

Take \(G_1 = G - \{P\} \) is a unicyclic graph with \((n + 1)\) pendent vertices and \((m - 1)\) vertices is of degree \(\geq 4 \) with \(l = 2 \). Hence by the theorem 2.9, \(\eta_{2as}(G_1) = ((n + 1) - (m - 1)) = (n + 3) - m. \) Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Let \(P_3 \) be a path in \(\psi_1 \) in which \(u_{i-1} \) is external vertex. Take \(\psi = (\psi_1 - P_3) \cup \{P_3P_1 \} \cup \{P_2\} \) is a 2–acyclic simple graphoidal cover of \(G \) and \(\eta_{2as}(G) \leq ((n + 3) - m) - 1 + 2 = (n + 4) - m. \) For any 2–acyclic simple graphoidal cover of \(G \) at least \(n \) pendent vertices and three vertices in \(D(l : m : i) \) are external and at most \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 3), t_2(\psi) \leq m. \) Hence \(t \geq (n + 3), t_2 \leq m \) and hence \(\eta_{2as}(G) = (p + 1) - p - m + (n + 3) \geq (n + 4) - m. \) Thus \(\eta_{2as}(G) = (n + 4) - m. \)

Case 4. When \(l = 4 \) and \(u, v \) be the only vertices is of degree greater than 2 other than \(u_{i-1}, u_{i+1-1} \). Then there are four sub cases.

Subcase 4.1. When \(\deg(u_{i-1}) \geq 3, \deg(u_{i+1-1}) = 3, \) then there are two subcases.

Subcase 4.1.1. When \(\deg(u) \geq 3, \deg(v) \geq 3 \) and \(u, v \in C_l \)

Take \(G_1 = G - P \), where \(P \) denotes \((u_{i-1}, w)\) section of \(C_m \) such that it has at least one internal vertex say \(u_i \) and \(w \in C_m \). Let \(P_1 \) and \(P_2 \) denote the \((u_{i-1}, u_i)\) and \((u_i, w)\) section of \(P \) respectively. It is clear that \(G_1 \) is a unicyclic graph with \((n + 1)\) pendent vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l = 2 \). Therefore by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m. \) Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Take \(\psi = \psi_1 \cup \{P_1\} \cup \{P_2\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 1) - m + 2 = (n + 3) - m. \) For any 2–acyclic simple graphoidal cover of \(G \) at least \(n \) pendent vertices and two vertices in \(D(l : m : i) \) are external and at most \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 2), t_2(\psi) \leq m. \) Hence \(t \geq (n + 2), t_2 \leq m \) and hence \(\eta_{2as}(G) = (p + 1) - p - m + (n + 2) \geq (n + 3) - m. \) Thus \(\eta_{2as}(G) = (n + 3) - m. \)

Subcase 4.1.2. When \(\deg(u) \geq 3 \) and \(\deg(v) \geq 3 \), \(u \in C_l, v \in C_m \) and let \(P \) denotes \((u_{i-1}, v)\) section of \(C_m \) such that it has at least one internal vertex say \(u_i \). Let \(P_1 \) and \(P_2 \) denote the \((u_{i-1}, u_i)\) and \((u_i, v)\) section of \(P \) respectively. Then there are two subcases.

Subcase 4.1.2.1. When \(\deg(v) = 3 \) (Or) \(\deg(v) \geq 5 \)
Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and m vertices is of degree ≥ 4 with $l = 2$. Therefore by theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Take $\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 1) - m + 2 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendant vertices and two vertices in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 4.1.2.2. When $\deg(v) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 2$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - (m - 1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which v is an external vertex. Take $\psi = \psi_1 \cup \{P_1\} \cup \{P_2P_3\}$ is a 2–acyclic simple graphoidal cover of G and $\eta_{2as}(G) \leq (n + 2) - m + 1 + 2 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendant vertices and two vertices in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 4.2. When $\deg(u_{l-1}) \geq 4$ and $\deg(u_{l+i-1}) \geq 4$, then there are three subcases.

Subcase 4.2.1. When $\deg(u) \geq 3, \deg(v) \geq 3, u, v \in C_l$

Take $G_1 = G - P$, where P denotes (x, y) section of C_m and $x, y \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendant vertices and m vertices is of degree ≥ 4 with $l = 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Take $\psi = \psi_1 \cup \{P\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 2) - m + 1 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendant vertices and two vertices in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 4) - m$. Thus $\eta_{2as}(G) = (n + 4) - m$.

Subcase 4.2.2. When $\deg(u_{l+i-1}) = 4, \deg(u) \geq 3, \deg(v) \geq 3, u \in C_l, v \in C_m$ and let P denotes (u_{l+i-1}, v) section of C_m such that it has atleast one internal vertex say u_i. Let P_1 and P_2 denote
the \((u_{l+i-1}, u_i)\) and \((u_i, v)\) section of \(P\) respectively. Then there are two subcases.

Subcase 4.2.2.1. When \(\deg(v) = 3\) (Or) \(\deg(v) \geq 5\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \((m - 1)\) vertices is of degree \(\geq 4\) with \(l = 2\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - (m - 1) = (n + 2) - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Let \(P_4\) be a path in \(\psi_1\) in which \(u_{l+i-1}\) is an external vertex. Take \(\psi = (\psi_1 - P_4) \cup \{P_4P_1\} \cup \{P_2\}\) is a 2–acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq (n + 2) - m - 1 + 2 = (n + 3) - m\). For any 2–acyclic simple graphoidal cover of \(G\) atleast \(n\) pendent vertices and atleast two vertices in \(D(l : m : i)\) are external and atmost \(m\) vertices are internal twice. Therefore \(t\psi \geq (n + 2), t_2(\psi) \leq m\). Hence \(t \geq (n + 2), t_2 \leq m\) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m\). Thus \(\eta_{2as}(G) = (n + 3) - m\).

Subcase 4.2.2.2. When \(\deg(v) = 4\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \((m - 2)\) vertices is of degree \(\geq 4\) with \(l = 2\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n - 1) - (m - 2) = (n + 3) - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Let \(P_3\) be a path in \(\psi_1\) in which \(v\) is an external vertex and let \(P_4\) be a path in \(\psi_1\) in which \(u_{l+i-1}\) as the external vertex. Take \(\psi = (\psi_1 - P_3 - P_4) \cup \{P_4P_1\} \cup \{P_2P_3\}\) is a 2–acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq (n + 3) - m - 2 + 2 = (n + 3) - m\). For any 2–acyclic simple graphoidal cover of \(G\) at least \(n\) pendent vertices and at least two vertices in \(D(l : m : i)\) are external and at most \(m\) vertices are internal twice. Therefore \(t\psi \geq (n + 2), t_2(\psi) \leq m\). Hence \(t \geq (n + 2), t_2 \leq m\) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m\). Thus \(\eta_{2as}(G) = (n + 3) - m\).

Subcase 4.3. When \(\deg(u_{l+i-1}) \geq 5\) and \(\deg(u) \geq 3\), \(\deg(v) \geq 3\), \(u \in C_l, v \in C_m\) and let \(P\) denotes \((u_{l+i-1}, v)\) section of \(C_m\) such that it has at least one internal vertex say \(u_i\). Let \(P_1\) and \(P_2\) denote the \((u_{l+i-1}, u_i)\) and \((u_i, v)\) section of \(P\) respectively. Then there are two subcases.

Subcase 4.3.1. When \(\deg(v) = 3\) Or \(\deg(v) \geq 5\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \(m\) vertices is of degree \(\geq 4\) with \(l = 2\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Let \(P_4\) be a path in \(\psi_1\) in which \(u_{l+i-1}\) is an external vertex. Take \(\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}\) is a 2–acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq \).
(n + 3) − m. For any 2–acyclic simple graphoidal cover of G at least n pendant vertices and at least two vertices in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 4.3.2. When $\deg(v) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 2$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - (m - 1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which v is an external vertex. Take $\psi = (\psi_1 - P_3) \cup \{P_1\} \cup \{P_2P_3\}$ is a 2–acyclic simple graphoidal cover of G and $\eta_{2as}(G) \leq (n + 2) - m - 1 + 2 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendant vertices and at least two vertices in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Case 5. When $l = 5$ and u, v, w be the only vertices is of degree greater than 2 other than u_{l-1}, u_{l+i-1}. Then there are three subcases.

Subcase 5.1. Suppose $\deg(u_{l-1}) \geq 3, \deg(u_{l+i-1}) = 3$, then there are two subcases.

Subcase 5.1.1. When $\deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3, u, v, w \in C_l$

Take $G_1 = G - P$, where Let $P = (x, y)$ be a path in C_m and $x, y \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendant vertices and m vertices is of degree ≥ 4 with $l > 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Take $\psi = \psi_1 \cup \{\cup P\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 2) - m) + 1 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendant vertices and two vertices in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_\psi \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 5.1.2. When $\deg(u) \geq 3$, $\deg(v) \geq 3$, $\deg(w) \geq 3$ and $u, v \in C_l, w \in C_m$. Let P denotes (u_{l+i-1}, w) section of C_m such that it has at least one internal vertex say u_i. Let P_1 and P_2 denote
the \((u_{l+i-1}, u_l)\) and \((u_i, w)\) section of \(P\) respectively. Then there are two subcases.

Subcase 5.1.2.1. When \(\text{deg}(w) = 3\) (Or) \(\text{deg}(w) \geq 5\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \(m\) vertices is of degree \(\geq 4\) with \(l = 3\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Take \(\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}\) is a 2–acyclic simple graphoidal cover of \(G\), hence \(\eta_{2as}(G) \leq (n + 2) - m\). For any 2–acyclic simple graphoidal cover of \(G\) at least \(n\) pendent vertices and at least one vertex in \(D(l : m : i)\) are external and at most \(m\) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 1), t_{\psi}(\psi) \leq m\). Hence \(t \geq (n + 1), t_2 \leq m\) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m\). Thus \(\eta_{2as}(G) = (n + 2) - m\).

Subcase 5.1.2.2. When \(\text{deg}(w) = 4\)

Take \(G_1 = G - P\) is a unicyclic graph with \(n\) pendent vertices and \((m - 1)\) vertices is of degree \(\geq 4\) with \(l = 3\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - (m - 1) = (n + 1) - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Let \(P_3\) be a path in \(\psi\) in which \(w\) as the external vertex. Take \(\psi = (\psi_1 - P_3) \cup \{P_1\} \cup \{P_2P_3\}\) is a 2–acyclic simple graphoidal cover of \(G\) and \(\eta_{2as}(G) \leq (n + 1) - m - 1 + 2 = (n + 2) - m\). For any 2–acyclic simple graphoidal cover of \(G\) at least \(n\) pendent vertices and at least one vertex in \(D(l : m : i)\) are external and at most \(m\) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 1), t_{\psi}(\psi) \leq m\). Hence \(t \geq (n + 1), t_2 \leq m\) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m\). Thus \(\eta_{2as}(G) = (n + 2) - m\).

Subcase 5.2. When \(\text{deg}(u_{l-1}) \geq 4\) and \(\text{deg}(u_{l+i-1}) \geq 4\), then there are three subcases.

Subcase 5.2.1. Suppose \(\text{deg}(u_{l+i-1}) \geq 4\), \(\text{deg}(u) \geq 3\), \(\text{deg}(v) \geq 3\), \(\text{deg}(w) \geq 3\), \(u, v, w \in C_l\)

Take \(G_1 = G - P\), where let \(P = (y, z)\) be a path in \(C_m\) and \(y, z \in C_m\). It is clear that \(G_1\) is a unicyclic graph with \((n + 2)\) pendent vertices and \(m\) vertices is of degree \(\geq 4\) with \(l > 3\). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 2) - m\). Let \(\psi_1\) be the minimum 2–acyclic simple graphoidal cover of \(G_1\). Take \(\psi = \psi_1 \cup \{P\}\) is a 2–acyclic simple graphoidal cover of \(G\) so that \(\eta_{2as}(G) \leq ((n + 2) - m) + 1 = (n + 3) - m\). For any 2–acyclic simple graphoidal cover of \(G\) at least \(n\) pendent vertices and two vertices in \(D(l : m : i)\) are external and at most \(m\) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 2), t_{\psi}(\psi) \leq m\). Hence \(t \geq (n + 2), t_2 \leq m\) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 2) \geq (n + 3) - m\). Thus \(\eta_{2as}(G) = (n + 3) - m\).
Subcase 5.2.2. Suppose $\deg(u_{l+i-1}) = 4$, $\deg(u) \geq 3$, $\deg(v) \geq 3$, $\deg(w) \geq 3$, $u, v, w \in C_l, w \in C_m$ and let P denotes (u_{l+i-1}, w) section of C_m such that it has atleast one internal vertex say u_i. Let P_1 and P_2 denote the (u_{l+i-1}, u_i) and (u_i, w) section of P respectively. Then there are two subcases.

Subcase 5.2.2.1. When $\deg(w) = 3$ (Or) $\deg(w) \geq 5$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l = 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_4 be a path in ψ_1 in which u_{l+i-1} is an external vertex. Take $\psi = (\psi_1 - P_4) \cup \{P_4 P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 1) - m - 1 + 2 = (n + 2) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendent vertices and at least one vertex in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_{\psi} \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 1), t_2 \leq m$ and so $\eta_{2as}(G) = q - p - t + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Subcase 5.2.2.2. When $\deg(w) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 2)$ vertices is of degree ≥ 4 with $l = 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which w is an external vertex and let P_4 be a path in ψ_1 in which u_{l+i-1} is an external vertex. Take $\psi = (\psi_1 - P_3 - P_4) \cup \{P_4 P_1\} \cup \{P_2 P_3\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 2) - m - 2 + 2 = (n + 2) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendent vertices and at least one vertex in $D(l : m : i)$ are external and at most m vertices are internal twice. Therefore $t_{\psi} \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 1), t_2 \leq m$ and hence $\eta_{2as}(G) = q - p - t + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Subcase 5.2.3. When $\deg(u_{l+i-1}) \geq 5$, $\deg(u) \geq 3$, $\deg(v) \geq 3$, $\deg(w) \geq 3$ and $u, v, w \in C_l, w \in C_m$ and let P denotes (u_{l+i-1}, w) section of C_m such that it has atleast one internal vertex say u_i. Let P_1 and P_2 denote the (u_{l+i-1}, u_i) and (u_i, w) section of P respectively. Then there are two subcases.

Subcase 5.2.3.1. When $\deg(w) = 3$ Or $\deg(w) \geq 5$
ON 2 ACYCLIC SIMPLE GRAPHOIDAL COVERING OF BICYCLIC GRAPHS

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and m vertices is of degree ≥ 4 with $l = 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = n - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Take $\psi = \psi_1 \cup \{P_1\} \cup \{P_2\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 2) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendent vertices and atleast one vertex in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_{\psi} \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 1), t_2 \leq m$ and so $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Subcase 5.2.3.2. When $deg(w) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l > 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n + 1) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which w is an external vertex. Take $\psi = (\psi_1 - P_3) \cup \{P_1\} \cup \{P_2P_3\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n + 1) - m - 2 = (n + 2) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendent vertices and atleast one vertex in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_{\psi} \geq (n + 1), t_2(\psi) \leq m$. Hence $t \geq (n + 1), t_2 \leq m$ and so $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 1) \geq (n + 2) - m$. Thus $\eta_{2as}(G) = (n + 2) - m$.

Case 6. When $l \geq 5$ and u, v, w, x be the vertices is of degree greater than 2 on $D(l : m : i)$ other than $u_{l-1, l_{l+i-1}}$. Then there are three subcases.

Subcase 6.1. Suppose $deg(u_{l-1}) \geq 3$ and $deg(u_{l+i-1}) = 3$, then there are three sub cases.

Subcase 6.1.1. When $deg(u) \geq 3$, $deg(v) \geq 3$, $deg(w) \geq 3$ and $deg(x) \geq 3$, $u, v, w, x \in C_l$

Take $G_1 = G - P$ where $P = (y, z)$ be a path in C_m and $y, z \in C_m$. It is clear that G_1 is a unicyclic graph with $(n + 2)$ pendant vertices and m vertices is of degree ≥ 4 with $l > 3$. Hence by therorem 2.9, $\eta_{2as}(G_1) = (n + 2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Take $\psi = \psi_1 \cup \{P\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq ((n + 2) - m) + 1 = (n + 3) - m$. For any 2–acyclic simple graphoidal cover of G atleast n pendent vertices and two vertices in $D(l : m : i)$ are external and atmost m vertices are internal twice. Therefore $t_{\psi} \geq (n + 2), t_2(\psi) \leq m$. Hence $t \geq (n + 2), t_2 \leq m$ so that $\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 2) \geq (n + 3) - m$. Thus $\eta_{2as}(G) = (n + 3) - m$.

Subcase 6.1.2. When $deg(u) \geq 3$, $deg(v) \geq 3$, $deg(w) \geq 3$ and $deg(x) \geq 3$, $u, v, w \in C_l$, $x \in C_m$
and let \(P \) denotes \((u_{i+l-1}, x)\) section of \(C_m \) such that it has atleast one internal vertex say \(u_i \).

Let \(P_1 \) and \(P_2 \) denote the \((u_{i+l-1}, u_i)\) and \((u_i, x)\) section of \(P \) respectively. Then there are two subcases.

Subcase 6.1.2.1. When \(\deg(x) = 3 \) (Or) \(\deg(x) \geq 5 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendant vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Take \(\psi = \psi_1 \cup \{P_1\} \cup \{P_2\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 2) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D \) with \(\psi \) denotes the section of \(G \), therefore \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m \). Thus \(\eta_{2as}(G) = (n + 2) - m \).

Subcase 6.1.2.2. When \(\deg(x) = 4 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendant vertices and \((m - 1) \) vertices is of degree \(\geq 4 \) with \(l = 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Take \(P_3 \) be a path in \(\psi_1 \) in which \(w \) is an external vertex. Take \(\psi = (\psi_1 - P_3) \cup \{P_1\} \cup \{P_2 \cup P_3\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 1) - m - 1 + 2 = (n + 2) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D \) with \(\psi \) denote the section of \(G \). Therefore \(t_\psi \geq (n + 1), t_2(\psi) \leq m \). Hence \(t \geq (n + 1), t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m \). Thus \(\eta_{2as}(G) = (n + 2) - m \).

Subcase 6.1.3. When \(\deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3 \) and \(\deg(x) \geq 3 \), \(u, v, \in C_1, w, x \in C_m \) and let \(P \) denotes \((w, x)\) section of \(C_m \). Then there are three subcases.

Subcase 6.1.3.1. When \((\deg(w) = \deg(x) = 3) \) (Or) \((\deg(w) \geq 5, \deg(x) \geq 5) \) (or) \((\deg(w) = 3, \deg(x) \geq 5) \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendant vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Take \(\psi = \psi_1 \cup \{P\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 1) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices are external and atmost \(m \) vertices are internal twice. Therefore \(t_\psi \geq n, t_2(\psi) \leq m \).
Hence \(t \geq n, t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m. \) Thus \(\eta_{2as}(G) = (n + 1) - m. \)

Subcase 6.1.3.2. When \(\deg(w) = \deg(x) = 4 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \((m - 2) \) vertices is of degree \(\geq 4 \) with \(l \geq 3. \) Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 2) - m. \) Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1. \) Let \(P_3 \) be a path in \(\psi_1 \) in which \(w \) is an external vertex and let \(P_4 \) be a path in \(\psi \) in which \(x \) is an external vertex. Take \(\psi = (\psi_1 - P_3 - P_4) \cup \{P_3PP_4\} \) is a 2–acyclic simple graphoidal cover of \(G, \) hence \(\eta_{2as}(G) \leq (n + 2) - m - 2 + 1 = (n + 1) - m. \) For any 2–acyclic simple graphoidal cover of \(G \) at least \(n \) pendent vertices are external and atmost \(m \) vertices are internal twice. Therefore \(t_\psi \geq n, t_2(\psi) \leq m. \) Hence \(t \geq n, t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m. \) Thus \(\eta_{2as}(G) = (n + 1) - m. \)

Subcase 6.1.3.3. When \(\deg(w) = 3, \deg(x) = 4 \) Or \(\deg(w) \geq 5, \deg(x) = 4 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \((m - 1) \) vertices is of degree \(\geq 4 \) with \(l \geq 3. \) Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - (m - 1) = (n + 1) - m. \) Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1. \) Let \(P_3 \) be a path in \(\psi_1 \) in which \(w \) is an external vertex. Take \(\psi = (\psi_1 - P_3) \cup \{PP_3\} \) is a 2–acyclic simple graphoidal cover of \(G, \) hence \(\eta_{2as}(G) \leq (n + 1) - m - 1 + 1 = (n + 1) - m. \) For any 2–acyclic simple graphoidal cover of \(G \) at least \(n \) pendent vertices are external and atmost \(m \) vertices are internal twice. Therefore \(t_\psi \geq n, t_2(\psi) \leq m. \) Hence \(t \geq n, t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m. \) Thus \(\eta_{2as}(G) = (n + 1) - m. \)

Subcase 6.2. When \(\deg(u_{l-1}) \geq 4 \) and \(\deg(u_{l+i-1}) \geq 4, \) then there are three sub cases.

Subcase 6.2.1. When \(\deg(u_{l+i-1}) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3 \) and \(\deg(x) \geq 3, u, v, w, x \in C_l \)

Take \(G_1 = G - P \) where \(P = (y, z) \) be a path in \(C_m \) and \(y, z \in C_m. \) It is clear that \(G_1 \) is a unicyclic graph with \((n + 2) \) pendent vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l > 3. \) Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 2) - m. \) Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1. \) Take \(\psi = \psi_1 \cup \{P\} \) is a 2–acyclic simple graphoidal cover of \(G, \) hence \(\eta_{2as}(G) \leq ((n + 2) - m) + 1 = (n + 3) - m. \) For any 2–acyclic simple graphoidal cover of \(G \) at least \(n \) pendent vertices and two vertices in \(D(l : m : i) \) are external and atmost \(m \) vertices are
internal twice. Therefore \(t_\psi \geq (n+2), t_2(\psi) \leq m \). Hence \(t \geq (n+2), t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n+2) \geq (n+3) - m \). Thus \(\eta_{2as}(G) = (n+3) - m \).

Subcase 6.2.2. Suppose \(\text{deg}(u_{l+i-1}) = 4 \) and \(\text{deg}(u) \geq 3, \text{deg}(v) \geq 3, \text{deg}(w) \geq 3 \) and \(\text{deg}(x) \geq 3, u, v, w \in C_i, x \in C_m \) and let \(P \) denotes \((u_{l+i-1}, x)\) section of \(C_m \) such that it has atleast one internal vertex say \(u_i \). Let \(P_1 \) and \(P_2 \) denote the
\((u_{l+i-1}, u_i)\) and \((u_i, x)\) section of \(P \) respectively. Then there are two subcases.

Subcase 6.2.2.1. When \(\text{deg}(x) = 3 \) Or \(\text{deg}(x) \geq 5 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \((m-1)\) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n+1) - m \). Let \(\psi_1 \) be the minimum 2--acyclic simple graphoidal cover of \(G_1 \). Let \(P_4 \) be a path in \(\psi_1 \) in which \(u_{l+i-1} \) is an external vertex. Take \(\psi = (\psi_1 - P_4) \cup \{P_4 \cup P_1 \} \cup \{P_2 \} \) is a 2--acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n+1) - m - 1 + 2 = (n+2) - m \). For any 2--acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D(l : m : i) \) are external and atmost \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n+1), t_2(\psi) \leq m \). Hence \(t \geq (n+1), t_2 \leq m \) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n+1) \geq (n+2) - m \). Thus \(\eta_{2as}(G) = (n+2) - m \).

Subcase 6.2.2.2. When \(\text{deg}(x) = 4 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \((m-2)\) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n+2) - m \). Let \(\psi_1 \) be the minimum 2--acyclic simple graphoidal cover of \(G_1 \). Let \(P_3 \) be a path in \(\psi_1 \) in which \(x \) is an external vertex and let \(P_4 \) be a path in \(\psi_1 \) in which \(u_{l+i-1} \) is an external vertex. Take \(\psi = (\psi_1 - P_3 - P_4) \cup \{P_4 \cup P_1 \} \cup \{P_2 P_3 \} \) is a 2--acyclic simple graphoidal cover of \(G \) and \(\eta_{2as}(G) \leq (n+2) - m - 2 + 2 = (n+2) - m \). For any 2--acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D(l : m : i) \) are external and atmost \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n+1), t_2(\psi) \leq m \). Hence \(t \geq (n+1), t_2 \leq m \) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n+1) \geq (n+2) - m \). Thus \(\eta_{2as}(G) = (n+2) - m \).

Subcase 6.2.3. When \(\text{deg}(u_{l+i-1}) \geq 5 \) and \(\text{deg}(u) \geq 3, \text{deg}(v) \geq 3, \text{deg}(w) \geq 3 \) and \(\text{deg}(x) \geq 3, u, v, w \in C_i, x \in C_m \) and let \(P \) denotes \((u_{l+i-1}, x)\) section of \(C_m \) such that it has atleast one internal vertex say \(u_i \). Let \(P_1 \) and \(P_2 \) denote the
\((u_{l+i-1}, u_i)\) and \((u_i, x)\) section of \(P \) respectively. Then
there are two subcases.

Subcase 6.2.3.1. When \(\deg(x) = 3 \) (Or) \(\deg(x) \geq 5 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Let \(P_4 \) be a path in \(\psi_1 \) in which \(u_{l+i-1} \) is an external vertex. Take \(\psi = \psi_1 \cup \{P_1\} \cup \{P_2\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n+2) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D(l : m : i) \) are external and atmost \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 1), t_2(\psi) \leq m \). Hence \(t \geq (n + 1), t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m(n + 1) \geq (n + 2) - m \). Thus \(\eta_{2as}(G) = (n + 2) - m \).

Subcase 6.2.3.2. When \(\deg(x) = 4 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \((m - 1) \) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = (n + 1) - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Let \(P_3 \) be a path in \(\psi_1 \) in which \(x \) is an external vertex. Take \(\psi = (\psi_1 - P_3) \cup \{P_1\} \cup \{P_2P_3\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 1) - m + 2 = (n + 2) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices and atleast one vertex in \(D(l : m : i) \) are external and atmost \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq (n + 1), t_2(\psi) \leq m \). Hence \(t \geq (n + 1), t_2 \leq m \) so that \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + (n + 1) \geq (n + 2) - m \). Thus \(\eta_{2as}(G) = (n + 2) - m \).

Subcase 6.2.4. When \(\deg(u_{l+i-1}) \geq 4, \deg(u) \geq 3, \deg(v) \geq 3, \deg(w) \geq 3 \) and \(\deg(x) \geq 3, u, v \in C_l, w, x \in C_m \) and let \(P \) denotes \((w, x)\) section of \(C_m \). Then there are three subcases.

Subcase 6.2.4.1. When \(\deg(w) = \deg(x) = 3 \) Or \(\deg(w) = 3 \) and \(\deg(x) \geq 5 \) (Or) \(\deg(w) \geq 5 \) and \(\deg(x) \geq 5 \)

Take \(G_1 = G - P \) is a unicyclic graph with \(n \) pendent vertices and \(m \) vertices is of degree \(\geq 4 \) with \(l > 3 \). Hence by theorem 2.9, \(\eta_{2as}(G_1) = n - m \). Let \(\psi_1 \) be the minimum 2–acyclic simple graphoidal cover of \(G_1 \). Take \(\psi = \psi_1 \cup \{P\} \) is a 2–acyclic simple graphoidal cover of \(G \), hence \(\eta_{2as}(G) \leq (n + 1) - m \). For any 2–acyclic simple graphoidal cover of \(G \) atleast \(n \) pendent vertices are external and atmost \(m \) vertices are internal twice. Therefore \(t_{\psi} \geq n, t_2(\psi) \leq m \). Hence \(t \geq n, t_2 \leq m \) and hence \(\eta_{2as}(G) = q - p - t_2 + t = (p + 1) - p - m + n \geq (n + 1) - m \).
Thus $\eta_{2as}(G) = (n+1) - m$.

Subcase 6.2.4.2. When $(\deg(w) = 4$ and $\deg(x) = 3$) Or $(\deg(w) = 4$ and $\deg(x) \geq 5$)

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 1)$ vertices is of degree ≥ 4 with $l \geq 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n+1) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1.

Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G and $\eta_{2as}(G) \leq (n+1) - m - 1+1 = (n+1) - m$. For any 2–acyclic simple graphoidal cover of G at least n pendant vertices are external and at most m vertices are internal twice. Therefore $t_{\psi} \geq n, t_{2}(\psi) \leq m$.

Hence $t \geq n, t_{2} \leq m$ so that $\eta_{2as}(G) = q - p - t_{2} + t = (p+1) - p - m + n \geq (n+1) - m$. Thus $\eta_{2as}(G) = (n+1) - m$.

Subcase 6.2.4.3. When $\deg(w) = \deg(x) = 4$

Take $G_1 = G - P$ is a unicyclic graph with n pendant vertices and $(m - 2)$ vertices is of degree ≥ 4 with $l \geq 3$. Hence by theorem 2.9, $\eta_{2as}(G_1) = (n+2) - m$. Let ψ_1 be the minimum 2–acyclic simple graphoidal cover of G_1. Let P_3 be a path in ψ_1 in which w is an external vertex and let P_4 be a path in ψ in which x as the external vertex. Take $\psi = (\psi_1 - P_3 - P_4) \cup \{P_3P_4\}$ is a 2–acyclic simple graphoidal cover of G, hence $\eta_{2as}(G) \leq (n+2) - m - 2 + 1 = (n+1) - m$.

For any 2–acyclic simple graphoidal cover of G at least n pendant vertices are external and at most m vertices are internal twice. Therefore $t_{\psi} \geq n, t_{2}(\psi) \leq m$. Hence $t \geq n, t_{2} \leq m$ so that $\eta_{2as}(G) = q - p - t_{2} + t = (p+1) - p - m + n \geq (n+1) - m$. Thus $\eta_{2as}(G) = (n+1) - m$. □
Example 3.4. Consider the Bicyclic graph $D(l : m : i)$ shown in Figure 2

Here $p = 31$, $q = 32$, $n = 12$, $l = 8$ and $m = 6$, then $\eta_{2ax}(G) = \{(v_{28}, v_{6}, v_{5}, v_{4}, v_{3}, v_{26}), (v_{29}, v_{6}, v_{5}, v_{31}), (v_{29}, v_{6}, v_{7}, v_{8}, v_{30}), (v_{8}, v_{1}, v_{2}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}, v_{20}), (v_{21}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}, v_{23}), (v_{22}, v_{17}, v_{18}, v_{24}), (v_{25}, v_{18}, v_{19}, v_{12})\} = 7 = (n + 1) - m.$

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. Pure Appl. Math. 18 (10) (1987), 882-890.

[2] S. Arumugam, B. D. Acharya, and E. Sampathkumar, Graph Theory and Its Applications, Proceedings of the National Workshop, Manonmaniam Sundaranar University, Tirunelveli, 1996, Tata-McGraw-Hill, New Delhi, 1997, pp. 1–28.

[3] S. Arumugam and I. S. Hamid, Simple graphoidal covers in a graph, J. Comb. Math. Comb. Comput. 64 (2008), 79–95.

[4] S. Arumugam and I. S. Hamid, Simple path covers in graphs, Int. J. Math. Comb. 3 (2008), 94-105.

[5] S. Arumugam and C. Pakkiam, Graphoidal bipartite graphs, Graphs Comb. 10 (2-4) (1994), 305-310.
[6] K. R. Singh and P. Das, On Graphoidal Covers of Bicyclic Graphs, Int. Math. Forum, 5 (42) (2010), 2093-2101.

[7] P. Das and K. R. Singh, On 2-graphoidal covering number of a graph, Int. J. Pure Appl. Math. 72 (2) (2011), 125-135.

[8] Harary, F, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[9] K. Nagarajan, A. Nagarajan, and S. Somasundaram, 2-graphoidal path covers, Int. J. Appl. Math. 21 (4) (2008), 615-628.

[10] K. Nagarajan, A. Nagarajan, and S. Somasundaram. m-graphoidal path covers of a graph. In Proceedings of the Fifth International Conference on Number Theory and Smarandache Notions, pages 58-67, 2009.

[11] G. Venkat Narayanan, J. Suresh Suseela and R. Kala, On Simple Graphoidal covers of Bicyclic Graphs, International Conference on Computing Sciences, 16-17 Nov. 2018.

[12] G. Venkat Narayanan, J. Suresh Suseela and R. Kala, 2-simple acyclic graphoidal covers, IMMSC-18, SSN College of Engineering, 6-8 Dec. 2018.