Efeito da papaverina local na maturação de fístulas arteriovenosas em pacientes com doença renal terminal

Effect of local papaverine on arteriovenous fistula maturation in patients with end-stage renal disease

Introdução: A maturação da fístula arteriovenosa (FAV) é uma das principais preocupações em pacientes com doença renal terminal (DRT). Assim, é importante identificar estratégias para aumentar as taxas de sucesso e acelerar a maturação da fístula. O objetivo do presente estudo foi avaliar os efeitos da infiltração de papaverina sobre a maturação da FAV e suas taxas de sucesso.

Método: O presente ensaio clínico randomizado incluiu 110 pacientes com DRT encaminhados para colocações de FAV. Os pacientes foram randomizados em grupo caso ou controle. Os indivíduos no grupo caso receberam infiltração local de papaverina (0,1 ou 0,2 ml) no plano da sub-adventícia da artéria e veia após o controle proximal e distal durante a construção da FAV. No grupo controle, a construção da FAV foi realizada rotineiramente sem infiltração de papaverina.

Resultados: Os tempos de maturação dos grupos caso e controle foram 37,94 ± 11,49 e 44,23 ± 9,57 dias, respectivamente (p = 0,004). Foi observado hematoma em apenas um paciente do grupo controle. Um paciente do grupo caso desenvolveu hipertensão venosa. Quatro fístulas funcionais, uma (1,8%) no grupo caso e três (5,5%) no grupo controle, não amadureceram (p = 0,618). A taxa de maturação não diferiu estatisticamente entre os dois grupos (p = 0,101).

Conclusão: A infiltração local de papaverina aumentou o diâmetro do vaso e o fluxo sanguíneo, elevando a tensão de cisalhamento nos segmentos arterial e venoso da FAV recentemente criada. Desta forma, a papaverina provavelmente consegue reduzir o tempo de maturação da FAV sem aumentar as complicações.

Palavras-chave: Fístula Arteriovenosa; Papaverina; Falência Renal Crônica.

Background: Arteriovenous fistula (AVF) maturation is one of the main concerns in patients with end-stage renal disease (ESRD) and finding a strategy for increasing success rate and accelerating fistula maturation is valuable. The aim of this study was to evaluate the effects of papaverine injection on AVF maturation and success rate.

Method: This study was a randomized clinical trial that involved 110 patients with ESRD that were referred for AVF construction. Patients were allocated in papaverine group and control group with block randomization according to age and sex. In the case group, papaverine (0.1 or 0.2 cc) was injected locally within the subadventitia of artery and vein after proximal and distal control during AVF construction and in the control group, AVF construction was done routinely without papaverine injection.

Results: Maturation time in case and control groups was 37.94 ± 11.49 and 44.23 ± 9.57 days, respectively (p = 0.004). Hematoma was not seen in the case group but occurred in one patient in the control group. One patient of the case group developed venous hypertension. Four functional fistulas, 1 (1.8%) in the case group and 3 (5.5%) in the control group, failed to mature (p = 0.618). Maturation rate did not differ between the two groups statistically (p = 0.101).

Conclusion: Local papaverine injection increased vessel diameter and blood flow, increasing shearing stress in both arterial and venous segment of recently created AVF. In this way, papaverine probably can decrease AVF maturation time without an increase in complications.

Keywords: Arteriovenous Fistula; Papaverine; Kidney Failure, Chronic.
Introdução

Segundo estudos epidemiológicos, cerca de 10% dos pacientes com doença renal crônica (DRC) são submetidos a transplante renal e os 90% restantes que não recebem transplante renal devem permanecer em terapia dialítica (hemodiálise ou diálise peritoneal).1 A doença renal terminal (DRT) é um importante problema de saúde com significativa morbidade, mortalidade e efeitos socioeconômicos na comunidade.2 Atualmente, a fistula arteriovenosa (FAV) é o acesso vascular preferencial para pacientes em hemodiálise.3 Devido ao elevado número de pacientes com doença renal terminal, identificar formas de aumentar as taxas de sucesso da FAV de veia nativa tem grande valia na melhora da qualidade e quantidade de vida desses pacientes, além de reduzir os custos do tratamento.4

A papaverina é um fármaco de baixo custo, prontamente disponível e com poucos efeitos colaterais. É um derivado do ópio que relaxa a musculatura lisa da parede vascular. Tal efeito se deve à inibição da fosfodiesterase e aumento da adenosina monofosfato cíclico (AMPc).5, 14 O fármaco tem meia-vida de noventa minutos e é metabolizado no fígado. A hemodiálise causa a sua depuração. Não há limite de idade para sua prescrição, e seus efeitos colaterais, como bradicardia e apneia, são observados nas vias sistêmicas de consumo (endovenoso ou oral). Nenhum efeito colateral grave foi relatado na administração local.

Poucos estudos clínicos avaliaram os efeitos clínicos da papaverina sobre as fistulas arteriovenosas. Segundo esses poucos estudos, a aplicação local de papaverina resultou em queda entre 5,5% e 12% da taxa de trombose precoce.6, 13 Procuramos ensaios clínicos que investigaram os efeitos do uso local de papaverina sobre o tratamento de FAV e sua taxa de sucesso. No entanto, não encontramos nenhuma pesquisa. Portanto, o objetivo do presente estudo foi investigar o papel da administração local de papaverina na redução dos efeitos colaterais e melhora das taxas de sucesso de FAV.

Materiais e métodos

Delinearimento do Estudo e População

O presente ensaio clínico prospectivo foi realizado na clínica de cirurgia vascular do Hospital Imam Reza da Universidade de Ciências Médicas de Mashhad no Irã. O estudo incluiu 110 pacientes com DRT encaminhados por nefrologistas para hemodiálise. Os critérios de inclusão foram: pacientes com DRT que necessitassem de hemodiálise e fossem bons candidatos para FAV em membros superiores distais (tábua e arco palmar). O estudo incluiu pacientes com pressão arterial sistólica < 120 mmHg durante o procedimento, histórico de FAV em ambos os membros superiores e alergia a papaverina. Após a descrição completa do procedimento e da prestação de informações sobre a papaverina (efeitos colaterais e benefícios), consentimento informado foi obtido dos pacientes. Após o pareamento por idade e sexo, os pacientes foram divididos em dois grupos iguais de acordo com a randomização em blocos com tamanho de bloco aleatório, a saber: grupo papaverina (caso) e grupo controle. Houve blocos com números pares (2, 4 e 6) de indivíduos alocados para tratamento com papaverina e para o grupo controle. Em todos os blocos, os indivíduos foram distribuídos de forma uniforme e aleatória. Por exemplo, em um bloco de seis pessoas, três foram alocadas para o grupo papaverina e três para o grupo controle. A ordem de tratamento de cada membro dos grupos foi escolhida aleatoriamente. Os blocos também foram escolhidos aleatoriamente. Este foi um estudo triplo cego.

O presente estudo foi aprovado pelo comitê de ética local e recebeu o protocolo 910600. O estudo está registrado no Registro Iraniano de Ensaios Clínicos sob o código IRTC20171023036953N2. Todos os pacientes participantes assinaram termo de consentimento livre e informedo. O estudo recebeu o apoio financeiro do departamento de pesquisa da Universidade de Ciências Médicas de Mashhad, no Irã.

Intervenção

O grupo controle foi submetido ao método convencional de colocação de FAV sem uso de papaverina. Os indivíduos no grupo caso foram submetidos a implantação de FAV com veia autógena com infiltração local de papaverina (Exir Medical Inc., Irã). Os seguintes fatores influenciaram a seleção do acesso vascular: diâmetro da artéria > 2,0 mm; diâmetro da veia > 3,0 mm; diferença da pressão arterial sistólica entre os dois membros superiores inferior a 20 mmHg; proximidade adequada entre artéria e veia e arco palmar completo. Ausência de sinais de estenose da veia central, estenose
Efeito da papaverina local na maturação de fístulas arteriovenosas

Os pacientes foram alocados em quatro categorias em função de idade e sexo. Grupo A: idade < 15 anos; grupo B: idade 15-35 anos; grupo C: idade 35-50 anos; grupo D: idade > 50 anos. No total, 110 pacientes foram incluídos no estudo. O grupo papaverina incluiu 23 (42%) mulheres e 32 (58%) homens, enquanto o grupo controle contou com 24 (44%) mulheres e 31 (56%) homens. Não foram observadas diferenças de gênero entre os grupos (p = 0,847) (Tabela 1 e Figura 2). A idade média do grupo papaverina foi de 50,96 anos (DP = 11,86). Os indivíduos no grupo controle tinham idade média de 49,21 anos (DP = 11,97 anos) (Tabela 2). A diferença de idade entre os dois grupos não foi significativa (p = 0,443). Não houve casos de hematoma no grupo papaverina. No grupo de controle, um paciente teve hematoma (Tabela 3, Figura 3). Um paciente do grupo papaverina desenvolveu hipertensão venosa (Tabela 4) (Figura 4). Trombose precoce foi observada em dois (3,6%) pacientes do grupo papaverina e em cinco (9,1%) do grupo controle, uma diferença não estatisticamente significativa (p = 0,438). Quatro fístulas funcionais, uma (1,8%) no grupo papaverina e três (5,5%) no grupo controle, não amadureceram (p = 0,618) (Figura 5). O tempo de maturação foi de 37,94 dias (DP = 11,497) no grupo papaverina e 44,23 dias (DP = 9,572) no grupo controle, o que foi estatisticamente significativo (p = 0,004) (Figura 6). A taxa de maturação não diferiu estatisticamente entre os dois grupos (p = 0,101).

DISCUSSÃO

Após a criação da FAV, a tensão de cisalhamento deve ser elevada no segmento venoso. O diâmetro do vaso é um dos fatores importantes na tensão de

Figura 1. Imagem do procedimento de infiltração de papaverina no plano da sub-adventícia realizado no presente estudo.
TABELA 1 – DIFERENÇAS DE GÊNERO DOS PACIENTES PARTICIPANTES

Grupo Papaverina	Frequência	Percentual	Percentual Válido	
Negativo Válido	Mulheres	24	43,6	43,6
	Homens	31	56,4	56,4
	Total	55	100,0	100,0
Positivo Válido	Mulheres	23	41,8	41,8
	Homens	32	58,2	58,2
	Total	55	100,0	100,0

Testes de Qui-quadrado

Valor	df	Significância Assintótica (bicaudal)	Sig. Exata (bicaudal)	Sig. Exata (unicaudal)
Qui-quadrado de Pearson	0,037*a	1	0,847	
Correção de continuidadeb	0,000	1	1,000	
Razão de Probabilidade	0,037	1	0,847	
Teste Exato de Fisher			1,000	0,500
Associação linear por linear	0,037	1	0,848	
N de casos válidos	110			

TABELA 2 – PRESENÇA DE HEMATOMA NOS PACIENTES PARTICIPANTES

Grupo Papaverina	Frequência	Percentual	Percentual Válido	
Negativo Válido	Negativo	54	98,2	98,2
	Positivo	1	1,8	1,8
	Total	55	100,0	100,0
Positivo Válido	Negativo	55	100,0	100,0

Hematoma * Tabulação Cruzada do Grupo Papaverina

Grupo Papaverina	Frequência	Percentual	Percentual Válido
Hematoma Negativo Contagem	54	55	109
Contagem esperada	54,5	54,5	109,0
Positivo Contagem	1	0	1
Contagem esperada	0,5	0,5	1,0
Total Contagem	55	55	110
Contagem esperada	55,0	55,0	110,0

Testes de Qui-quadrado

Valor	df	Significância Assintótica (bicaudal)	Sig. Exata (bicaudal)	Sig. Exata (unicaudal)
Qui-quadrado de Pearson	1,009*a	1	0,315	
Correção de continuidadeb	0,000	1	1,000	
Razão de Probabilidade	1,395	1	0,237	
Teste Exato de Fisher			1,000	0,500c
Associação linear por linear	1,000	1	0,317	
N de casos válidos	110			

*a Duas células (50,0%) tinham contagens esperadas inferiores a 5. A contagem mínima esperada é 23,50. b Calculada apenas para tabela 2x2. c Não há diferença significativa na presença de hematoma entre os dois grupos.
TABELA 3
PRESENÇA DE HIPERTENSÃO VENOSA NOS PACIENTES PARTICIPANTES

Grupo Papaverina	Frequência	Percentual	Percentual Válido	Percentual Cumulativo
Negativo Válido	Negativo	55	100,0	100,0
Positivo Válido	Negativo	54	98,2	98,2
	Positivo	1	1,8	1,8
Total		55	100,0	100,0

Hipertensão Venosa * Tabulação Cruzada do Grupo Papaverina

	Grupo Papaverina	Contagem	Contagem Esperada	Contagem Esperada	Contagem Esperada	Contagem Esperada
	Negativo	55	54,5	54,5	109,0	109,0
	Positivo	0	0,5	0,5	1,0	1,0
Total		55	55	55,0	110,0	110,0

Testes do Qui-quadrado

- **Qui-quadrado de Pearson**: 1,009^a 1 0,315
- **Correção de continuidade^b**: 0,000 1 1,000
- **Razão de Probabilidade**: 1,395 1 0,237
- **Teste Exato de Fisher**: 1,000 1 0,317

^a Duas células (50,0%) tinham contagens esperadas inferiores a 5. A contagem mínima esperada é 0,50. ^b Calculada apenas para tabela 2x2.

TABELA 4
COMPARAÇÃO DE NÃO-MATURAÇÃO

Grupo Papaverina	Frequência	Percentual	Percentual Válido	Percentual Cumulativo
Negativo Válido	Negativo	52	94,5	94,5
	Positivo	3	5,5	5,5
	Total	55	100,0	100,0
Positivo Válido	Negativo	54	98,2	98,2
	Positivo	1	1,8	1,8
Total		55	100,0	100,0

Não maturação * Tabulação Cruzada do Grupo Papaverina

	Grupo Papaverina	Contagem	Contagem Esperada	Contagem Esperada	Contagem Esperada	Contagem Esperada
	Negativo	52	53,0	53,0	106,0	106,0
	Positivo	3	2,0	2,0	4	4
Total		55	55	55,0	110,0	110,0

Testes do Qui-quadrado

- **Qui-quadrado de Pearson**: 1,038^a 1 0,308
- **Correção de continuidade^b**: 0,259 1 0,611
- **Razão de Probabilidade**: 1,084 1 0,298
- **Teste Exato de Fisher**: 0,618 0,309^c

^a Duas células (50,0%) tinham contagens esperadas inferiores a 5. A contagem mínima esperada é 2,00. ^b Calculada apenas para tabela 2x2. ^c Não há diferença significativa na ocorrência de maturação entre os dois grupos.
Efeito da papaverina local na maturação de fístulas arteriovenosas

Figura 2. Tempo médio de maturação nos grupos papaverina e controle em dias.

Figura 3. Diferença de gênero dos pacientes participantes.

Figura 4. Presença de hematoma nos pacientes participantes.

Figura 5. Presença de hipertensão venosa nos pacientes participantes.

Figura 6. Comparação de não maturação.

cisalhamento.16,19,20 Saucy et al. mostraram que fluxo sanguíneo < 120 ml/min é um fator prognóstico para falência precoce da FAV8. A infiltração de papaverina na parede vascular durante o procedimento leva ao relaxamento das células musculares lisas vasculares e aumenta o diâmetro do vaso e o fluxo sanguíneo, o que pode acelerar a maturação da FAV.

Muitos estudos enfocaram o efeito de agentes antiplaquetários como AAS, dipiridamol, clopidogrel e ticlopidina, por conta dos efeitos antitrombóticos desses fármacos.15,17,18 Um estudo duplo-cego randomizado mostrou que dipiridamol com aspirina causou
aumento discreto, porém significativo, da patência primária sem intervenção em um ano (CHR: 0,82; IC: 0,68-0,98; p = 0,03), sem contudo demonstrar efeito significativo sobre a sobrevida acumulada. Quatro estudos avaliaram os efeitos do dipiridamol sobre FAV e mostraram que o fármaco diminuiu trombose tanto em FAV como EAV durante um curto período de tempo. Contudo, tais estudos apresentavam limitações como tamanho da amostra, curto tempo de seguimento e falha em relatar variáveis confundentes. 10

O efeito do clopidogrel foi avaliado em três estudos. No estudo mais recente, realizado pelo Dialysis Access Consortium (DAC), a taxa de trombose em FAV foi avaliada por seis semanas após o procedimento. Um total de 877 pacientes foram alocados aleatoriamente para clopidogrel ou placebo. O estudo mostrou que, apesar da diminuição nos casos de obstrução da FAV por seis semanas (risco relativo = 0,63), não foi observado efeito significativo no desfecho secundário (funcionalidade da fistula). 11

Lyme et al. apresentaram os resultados de 411 procedimentos de FAV. Os autores usaram papaverina local e dilatação mecânica caso ocorresse vasoespasmo durante o procedimento. O estudo relatou taxa de trombose precoce de 5,98%, valor inferior aos níveis relatados na literatura, e atribuiu os resultados à dilatação mecânica com sonda para alívio do espasmo arterial e venoso e ao uso de papaverina local. 12

Por conta da lesão intimal oriunda da dilatação mecânica, utilizamos apenas injeção local de papaverina nas paredes arterial e venosa. Em nosso estudo, não houve diferença estatisticamente significativa entre os dois grupos em termos de taxa de maturação e complicações pós-operatórias, mas o tempo de maturação no grupo papaverina foi significativamente menor do que no grupo controle (37,94 dias vs. 44,23 dias, p = 0,004). Em nosso estudo, a taxa de sucesso da maturação foi maior do que em outros estudos, possivelmente em função do efeito vascular da papaverina (vasodilatação e consequente maturação precoce). Além disso, a seleção de pacientes pode ter afetado os resultados. Por exemplo, as taxas de falha na maturação em pacientes diabéticos - não incluídos em nosso estudo - são mais elevadas do que as taxas observadas em pacientes não diabéticos.

Finalmente, devido ao perfil farmacológico seguro da papaverina, seu baixo preço e técnica de injeção fácil, ela pode ser considerada um fármaco adequado para acelerar a maturação após a construção da FAV. No entanto, mais estudos com amostras maiores são necessários para investigar em detalhe os efeitos locais da papaverina na maturação da FAV em pacientes com DRT.

AGRADECIMENTOS

O presente artigo foi extraído de uma tese de um estudante de cirurgia vascular e foi fundamentado no trabalho realizado no centro de pesquisa de cirurgia vascular com o apoio e aprovação do departamento de pesquisa da Universidade de Ciências Médicas de Mashhad. Gostaríamos de agradecer a Sra. Elham Lotfian por sua gentil assistência na preparação do presente artigo.

REFERÊNCIAS

1. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J. Disorders of the kidney urinary tract. In: Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J Harrison’s. Principles of Internal Medicine. 18th ed. New York: McGraw-Hill; 2011.

2. Chen SS, Al Mawed S, Unruh M. Health-Related Quality of Life in End-Stage Renal Disease Patients: How Often Should We Ask and What Do We Do with the Answer? Blood Purif 2016;41:218-24.

3. Park HS, Lee YH, Kim HW, Bok JH, Won YS, Park CW, et al. Usefulness of assisted procedures for arteriovenous fistula maturation without compromising access patency. Hemodial Int 2017;21:335-42.

4. Jamil M, Usman R. Predictive parameters for successful functional maturation of native arteriovenous fistula. J Ayub Med Coll Abbottabad 2015;27:821-4.

5. Fusi F, Manetti F, Durante M, Sgaragli G, Saponara S. The vasodilator papaverine stimulates L-type Ca(2+) current in rat tail artery myocytes via a PKA-dependent mechanism. Vascul Pharmacol 2016;76:53-61.

6. Sidawy AN, Spergel LM, Besarab A, Allon M, Jennings WC, Padberg FT Jr, et al.; Society for Vascular Surgery. The Society for Vascular Surgery: clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access. J Vasc Surg 2008;48:25-25S.

7. III. NKF-K/DOQI Clinical Practice Guidelines for Vascular Access: update 2000. Am J Kidney Dis 2001;37:137-81.

8. Saucy F, Haesler E, Haller C, Déglise S, Teta D, Corpataux JM. Is early failure of arteriovenous fistulas for hemodialysis graft patency. N Eng J Med 2009;360:2191-201.

9. Dixon BS, Beeck GJ, Vazquez MA, Greenberg A, Delmez JA, Allon M, et al.; DAC Study Group. Effect of dipyr idamole plus aspirin on hemodialysis graft patency. N Engl J Med 2009;360:2191-201.

10. Jackson AJ, Coats P, Kingsmore DB. Pharmacotherapy to improve outcomes in vascular access surgery: a review of current treatment strategies. Nephrol Dial Transplant 2012;27:2005-16.

11. Dembter LM, Beeck GJ, Allon M, Delmez JA, Dixon BS, Greenberg A, et al.; Dialysis Access Consortium Study Group. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA 2008;299:2164-71.

12. Iyem H. Early follow-up results of arteriovenous fistula created for hemodialysis. Vasc Health Risk Manag 2011;7:321-5.

13. Tsurushima H, Hyodo A, Yoshii Y. Papaverine and vaso spasms. J Neurosurg 2000;92:509-11.

14. McAfferty RB, Pryor RW 3rd, Johnson CM, Ramsey DE, Hodgson KJ. Outcome of a comprehensive follow-up program to enhance maturation of autogenous arteriovenous hemodialysis access. J Vascular Surg 2007;45:581-5.

15. Fiskerstrand CE, Thompson JW, Burnet ME, Williams P, Anderton JL. Double-blind randomized trial of the effect of ticlopidine in arteriovenous fistulas for hemodialysis. Artif Organs 1985;9:61-3.
16. Bashar K, Clarke-Moloney M, Burke PE, Kavanagh EG, Walsh SR. The role of venous diameter in predicting arteriovenous fistula maturation: when not to expect an AVF to mature according to pre-operative vein diameter measurements? A best evidence topic. Int J Surg 2015;15:95-9.
17. Abacilar AF, Atalay H, Dogan OF. Oral prostacycline analog and clopidogrel combination provides early maturation and long-term survival after arteriovenous fistula creation: A randomized controlled study. Indian J Nephrol 2015;25:136-42.
18. Irish A, Dogra G, Mori T, Beller E, Heritier S, Hawley C, et al. Preventing AVF thrombosis: the rationale and design of the Omega-3 fatty acids (Fish Oils) and Aspirin in Vascular access OUTcomes in REnal Disease (FAVOURED) study. BMC Nephrol 2009;10:1.
19. Browne LD, Bashar K, Griffin P, Kavanagh EG, Walsh SR, Walsh MT, et al. The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review. PLoS One 2015;10:e0145795.
20. Fitts MK, Pike DB, Anderson K, Shiu YT. Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access. Open Urol Nephrol J 2014;7:33-44.

ERRATA

No artigo “Efeito da papaverina local na maturação de fístulas arteriovenosas em pacientes com doença renal terminal”, com o DOI http://dx.doi.org/10.1590/2175-8239-jbn-2018-0170, publicado no Brazilian Journal of Nephrology, vol. 41, n. 2, Abr./Jun. 2019, Epub 11-Abr-2019:

Onde estava escrito:

Reza Manani¹
Gholamreza Kazemzadeh²
Ali Saberi²
Fatemeh Sadeghipour³
Asghar Rahmani⁴

¹Zanjan University of Medical Science, Fellowship of Vascular Surgery, School of Medicine, Zanjan, Iran.
²Mashhad University of Medical Science, School of Medicine, Mashhad, Iran.
³Mashhad University of Medical Science, Vascular Surgery Research Center, Mashhad, Iran.
⁴Ilam University of Medical Sciences, Iran, Ilam.

Leia-se:

Gholamhosein Kazemzadeh¹
Ali Saberi¹
Reza Mannani²
Fatemeh Sadeghipour¹
Asghar Rahmani⁴

¹Mashhad University of Medical Sciences, Vascular and Endovascular Surgery Research Center, Mashhad, Iran.
²Zanjan University of Medical Sciences, School of Medicine, Zanjan, Iran.
³Ilam University of Medical Sciences, School of Medicine, Ilam, Iran.