GU IRLAB at SemEval-2018 Task 7:
Tree-LSTMs for Scientific Relation Classification

Sean MacAvaney, Luca Soldaini, Arman Cohan, and Nazli Goharian
Information Retrieval Lab
Department of Computer Science
Georgetown University
{firstname}@ir.cs.georgetown.edu

Abstract

SemEval 2018 Task 7 focuses on relation extraction and classification in scientific literature. In this work, we present our tree-based LSTM network for this shared task. Our approach placed 9th (of 28) for subtask 1.1 (relation classification), and 5th (of 20) for subtask 1.2 (relation classification with noisy entities). We also provide an ablation study of features included as input to the network.

1 Introduction

Information Extraction (IE) has applications in a variety of domains, including in scientific literature. Extracted entities and relations from scientific articles could be used for a variety of tasks, including abstractive summarization, identification of articles that make similar or contrastive claims, and filtering based on article topics. While ontological resources can be leveraged for entity extraction (Gábor et al., 2016), relation extraction and classification still remains a challenging task. Relations are particularly valuable because (unlike simple entity occurrences) relations between entities capture lexical semantics. SemEval 2018 Task 7 (Semantic Relation Extraction and Classification in Scientific Papers) encourages research in relation extraction in scientific literature by providing common training and evaluation datasets (Gábor et al., 2018). In this work, we describe our approach using a tree-structured recursive neural network, and provide an analysis of its performance.

There has been considerable previous work with scientific literature due to its availability and interest to the research community. A previous shared task (SemEval 2017 Task 10) investigated the extraction of both keyphrases (entities) and relations in scientific literature (Augenstein et al., 2017). However, the relation set for this shared task was limited to just synonym and hypernym relationships. The top three approaches used for relation-only extraction included convolutional neural networks (Lee et al., 2017a), bi-directional recurrent neural networks with Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber, 1997) cells (Ammar et al., 2017), and conditional random fields (Lee et al., 2017b).

There are several challenges related to scientific relation extraction. One is the extraction of the entities themselves. Luan et al. (2017) produce the best published results on the 2017 ScienceIE shared task for entity extraction using a semi-supervised approach with a bidirectional LSTM and a CRF tagger. Zheng et al. (2014) provide an unsupervised technique for entity linking scientific entities in the biomedical domain to an ontology.

Contribution. Our approach employs a tree-based LSTM network using a variety of syntactic features to perform relation label classification. We rank 9th (of 28) when manual entities are used for training, and 5th (of 20) when noisy entities are used for training. Furthermore, we provide an ablation analysis of the features used by our model. Code for our model and experiments is available.1

2 Methodology

Syntactic information between entities plays an important role in relation extraction and classification (Mintz et al., 2009; MacAvaney et al., 2017). Similarly, sequential neural models, such as LSTM, have shown promising results on scientific literature (Ammar et al., 2017). Therefore, in our approach, we leverage both syntactic structures and neural sequential models by employing a tree-based long-short term memory cell (tree-LSTM). Tree-LSTMs, originally introduced by Tai et al. (2015), have been successfully used to

1https://github.com/Georgetown-IR-Lab/semeval2018-task7
capture relation information in other domains (Xu et al., 2015; Miwa and Bansal, 2016). On a high level, tree-LSTMs operate very similarly to sequential models; however, rather than processing tokens sequentially, they follow syntactic dependencies; once the model reaches the root of the tree, the output is used to compute a prediction, usually through a dense layer. We use the child-sum variant of tree-LSTM (Tai et al., 2015).

Formally, let $S_j = \{t_{1,j}, \ldots, t_{n,j}\}$ be a sentence of length n, $e_1 = \{t_{1}, \ldots, t_{k}\}$ and $e_2 = \{t_{p}, \ldots, t_{q}\}$ two entities whose relationship we intend to classify; let $H(e_1), H(e_2)$ be the root of the syntactic subtree spanning over entities e_1 and e_2. Finally, let $T(e_1, e_2)$ be the syntactic sub-tree spanning from $H(e_1)$ to $H(e_2)$. For the first example in Table 1, $e_1 = \{'oral', 'communication'\}, e_2 = \{'indices'\}, H(e_1) = \{'communication'\}, T(e_1, e_2) = \{'communication', 'offer', 'indices'\}. The proposed model uses word embeddings of heads $H(e_1)$ to $H(e_2)$ as inputs; the output of the tree-LSTM cell on the root of the syntactic tree is used to predict one of the six relation types (y) using a soft-max layer. A diagram of our tree LSTM network is shown in Figure 1.

In order to overcome the limitation imposed by the small amount of training data available for this task, we modify the general architecture proposed in (Miwa and Bansal, 2016) in two crucial ways. First, rather than using the representation of entities as input, we only consider the syntactic head of each entity. This approach improves the generalizability of the model, as it prevents overfitting on very specific entities in the corpus. For example, by reducing ‘Bag-of-words methods’ to ‘methods’ and ‘segment order-sensitive models’ to ‘models’, the model is able to recognize the con-
Table 2: Frequency of relation labels in train, validation, and test sets. See Table 1 for relation label abbreviations. Subtask 1.1 uses manual entity labels, and subtask 1.2 uses automatic entity labels (which may be noisy).

Table 3: Performance result comparison to other task participants for subtasks 1.1 and 1.2.

Figure 2: Confusion matrix for subtask 1.1.

The two embedding sources, the available embeddings are concatenated with a vector of appropriate size sampled from $\mathcal{N}(0, 10^{-8})$.

For our official SemEval submission, we train our model using the concatenated embeddings and one-hot encoded dependency label features. We use a hidden layer of 200 nodes, a 0.2 dropout rate, and a training batch size of 16. Syntactic trees were extracted using SpaCy\footnote{https://spacy.io/}, and the neural model was implemented using MxNet\footnote{https://mxnet.incubator.apache.org/}.

The official evaluation metric is the macro-averaged F1 score of all relation labels. For additional analysis, we use the macro precision and recall, and the F1 score for each relation label.

4 Results and Discussion

In Table 3, we provide our official SemEval results in the context of other task participants. In both subtasks, we ranked above both the median and mean team scores, treating the top-ranking approach for each team as the team’s score. For Subtask 1.1, we ranked 9 out of 28, and for Subtask 1.2, we ranked 5 out of 20. This indicates
Features	Overall	F1 by label							
	P	R	F1	U	M-F	P-W	C	R	T
Subtask 1.1									
(no features)	56.9	64.1	59.5	81.4	51.5	59.9	57.8	61.9	44.4
DEP	53.5	54.1	53.6	79.1	55.5	58.2	63.8	64.9	0.0
DEP + POS	60.1	59.1	59.5	79.9	57.1	58.5	68.3	60.0	33.3
DEP + POS + EntLen	59.4	**64.1**	**60.9**	80.0	**59.0**	56.9	58.3	61.1	**50.0**
DEP + POS + EntLen + Height	52.1	53.3	52.4	79.2	57.4	**62.2**	56.0	59.5	0.0
Subtask 1.2									
(no features)	74.2	78.9	75.4	80.0	65.6	72.6	57.1	80.0	**97.1**
DEP	76.4	78.5	76.4	79.2	67.2	73.0	**66.7**	79.4	93.1
DEP + POS	75.5	**80.3**	77.3	**82.0**	**73.9**	**73.6**	57.1	80.0	**97.1**
DEP + POS + EntLen	**78.2**	79.7	**78.0**	81.9	69.3	70.5	**66.7**	**82.5**	**97.1**
DEP + POS + EntLen + Height	73.0	78.7	74.8	79.5	70.7	70.3	57.1	74.3	**97.1**

Table 4: Feature ablation results for subtasks 1.1 and 1.2. DEP are dependency labels, POS are part of speech labels, EntLen is the length of the input entities, and Height is the height of the entities in the dependency tree. In both subtasks 1.1 and 1.2, the combination of dependency labels, parts of speech, and entity lengths yield the best performance in terms of overall F1 score.

Embeddings	P	R	F1
Subtask 1.1			
Wiki News	59.2	57.3	57.6
arXiv	58.5	55.1	56.4
Wiki News + arXiv	**59.4**	**64.1**	**60.9**
Subtask 1.2			
Wiki News	73.1	76.2	72.7
arXiv	65.4	67.4	65.9
Wiki News + arXiv	**78.2**	**79.7**	**78.0**

Table 5: Performance comparison for subtasks 1.1 and 1.2 when using Wiki News and arXiv embeddings. The concatenated embeddings outperform the individual methods.

that our approach is generally more tolerant to the noisy entities given in Subtask 1.2 than most other approaches. Figure 2 is a confusion matrix for the official submission for subtask 1.1. The three most frequent labels in the training data (USAGE, MODEL-FEATURE, and PART_WHOLE) are also the most frequently confused relation labels. This behavior can be partially attributed to the class imbalance.

In Table 4, we examine the effects of various feature combinations on the model. Specifically, we check the macro averaged precision, recall, and F1 scores for both subtask 1.1 and 1.2 with various sets of features on the test set. Of the combinations we investigated, including the dependency labels, part of speech tags, and the token length of entities yielded the best results in terms of overall F1 score for both subtasks. The results by individual relation label are more mixed, with the overall best combination simply yielding better performance on average, not on each label individually. Interestingly, the entity height feature reduces performance, perhaps indicating that it is easy to overfit the model using this feature.

Table 5 examines the effect of the choice of word embeddings on performance. In both subtasks, concatenating the Wiki News and arXiv embeddings yields better performance than using a single type of embedding. This suggests that the two types of embeddings are useful in different cases; perhaps Wiki News better captures the general language linking the entities, whereas the arXiv embeddings capture the specialized language of the entities themselves.

5 Conclusion

In this work, we investigated the use of a tree LSTM-based approach for relation classification in scientific literature. Our results at SemEval 2018 were encouraging, placing 9th (of 28) at subtask 1.1 (relation classification with manually-annotated entities), and 5th (of 20) at subtask 1.2 (relation classification using automatically-generated entities). Furthermore, we conducted an analysis of our system by varying the system parameters and features.
References

Waleed Ammar, Matthew E. Peters, Chandra Bhagavatula, and Russell Power. 2017. The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction. In SemEval-2017.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew D McCallum. 2017. SemEval 2017 Task 10: ScienceIE - extracting keyphrases and relations from scientific publications. In SemEval-2017.

Steven Bird, Robert Dale, Bonnie J. Dorr, Bryan R. Gibson, Mark Thomas Joseph, Min-Yen Kan, Dong-won Lee, Brett Powley, Dragomir R. Radev, and Yee Fan Tan. 2008. The ACL anthology reference corpus: A reference dataset for bibliographic research in computational linguistics. In LREC.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Kim Seokhwan Bui, Trung, Walter Chang, and Nazli Goharian. 2018. A discourse-aware attention model for abstractive summarization of long documents. In NAACL-HLT.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh, Haifa Zargayouna, and Thierry Charnois. 2018. SemEval-2018 Task 7: Semantic relation extraction and classification in scientific papers. In SemEval-2018.

Kata Gábor, Haifa Zargayouna, Davide Buscaldi, Isabelle Tellier, and Thierry Charnois. 2016. Semantic annotation of the ACL anthology corpus for the automatic analysis of scientific literature. In LREC.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits. 2017a. MIT at SemEval-2017 Task 10: Relation extraction with convolutional neural networks. In SemEval-2017.

Lung-Hao Lee, Kuei-Ching Lee, and Y Jane Tseng. 2017b. The NTNU system at SemEval-2017 Task 10: Extracting keyphrases and relations from scientific publications using multiple conditional random fields. In SemEval-2017.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi. 2017. Scientific information extraction with semi-supervised neural tagging. In EMNLP.

Sean MacAvaney, Arman Cohan, and Nazli Goharian. 2017. GUIR at SemEval-2017 Task 12: A framework for cross-domain clinical temporal information extraction. In SemEval-2017.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. 2018. Advances in pre-training distributed word representations. In LREC.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In ACL/IJCNLP. Association for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using lstms on sequences and tree structures. In ACL.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. 2015. Classifying relations via long short term memory networks along shortest dependency paths. In EMNLP.

Jinguang Zheng, Daniel P Howsmnon, Boliang Zhang, Juergen Hahn, Deborah L. McGuinness, James A. Hendler, and Heng Ji. 2014. Entity linking for biomedical literature. In DTMBIO@CIKM.