Population genetics of ectoparasitic mites

Varroa spp. in Eastern and Western honey bees

Vincent Dietemann1,2,* , Alexis Beaurepaire3,4,* , Paul Page1,5, Orlando Yañez1,5, Ninat Buawangpong6, Panuwan Chantawannakul6,7 and Peter Neumann1,5

1Agroscope, Swiss Bee Research Center, Bern, Switzerland; 2Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; 3INRA, UR 406 Abéilles et Environnement, Avignon, France; 4Molecular Ecology Group, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany; 5Institute of Bee Health, Vetuisse Faculty, University of Bern, Bern, Switzerland; 6Bee protection laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand and 7Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Host shifts of parasites are often causing devastating effects in the new hosts. The Varroa genus is known for a lineage of Varroa destructor that shifted to the Western honey bee, Apis mellifera, with disastrous effects on wild populations and the beekeeping industry. Despite this, the biology of Varroa spp. remains poorly understood in its native distribution range, where it naturally parasitizes the Eastern honey bee, Apis cerana. Here, we combined mitochondrial and nuclear DNA analyses with the assessment of mite reproduction to determine the population structure and host specificity of V. destructor and Varroa jacobsonii in Thailand, where both hosts and several Varroa species and haplotypes are sympatric. Our data confirm previously described mite haplogroups, and show three novel haplotypes. Multiple infestations of single host colonies by both mite species and introgression of alleles between V. destructor and V. jacobsonii suggest that hybridization occurs between the two species. Our results indicate that host specificity and population genetic structure in the genus Varroa is more labile than previously thought. The ability of the host shifted V. destructor haplotype to spillback to A. cerana and to hybridize with V. jacobsonii could threaten honey bee populations of Asia and beyond.

Introduction

Host shifts of parasites can lead to biological invasions and result in emerging infectious diseases with devastating effects on the populations of the new hosts (Pimentel et al., 2005; Kumschick et al., 2015; Wells and Clark, 2019). A better knowledge of the drivers of host shifts in the natural distribution areas of parasites could help mitigating their negative effects, preventing future invasions (Kolar and Lodge, 2001; Woolhouse et al., 2005) and can contribute to a better understanding of the coevolution between hosts and parasites (Thompson, 1994). Host shifts can be promoted by high parasite genetic diversity, low host specificity and by introgression between species (Longdon et al., 2014; Depoetter et al., 2016; Wells and Clark, 2019), all of which can be studied using molecular tools (Criscione et al., 2005; de Meeus et al., 2007).

The Western honey bee, Apis mellifera, is a good model species to study host shifts. Because of the pollination service it provides and its economic importance (Klein et al., 2007; Kleijn et al., 2015), colonies of this social insect have been translocated to where beekeepers deemed appropriate and beneficial. Consequently, A. mellifera has been introduced to ecosystems beyond its natural distribution range and frequently exposed to parasites and pathogens never encountered before. In Asia, the ectoparasitic mite Varroa destructor successfully shifted to A. mellifera following its introduction into territories occupied by the Eastern honey bee, Apis cerana, the original host of this parasite (Rosenkranz et al., 2010). Lacking the necessary adaptive mechanisms against the parasite, most A. mellifera populations are unable to survive infestations, with negative consequences climaxing in colony failure within a few years (Rosenkranz et al., 2010). Subsequently, V. destructor has become the most detrimental biotic threat to A. mellifera by negatively affecting the development of honey bee brood, on which the parasite feeds and reproduces (Rosenkranz et al., 2010), and by transmitting viruses (Wilfert et al., 2016). This pest has led to the near eradication of wild A. mellifera populations in the Northern hemisphere (Le Conte et al., 2007; Jaffé et al., 2009) and to high losses of managed colonies worldwide (Genersch et al., 2010; Guzmán-Novoa et al., 2010; Le Conte et al., 2010; Nguyen et al., 2011; Smith et al., 2013) with high economical and societal costs (Kumschick et al., 2015).

Since V. destructor invaded Europe and the Americas in the 1970s and 1980s, an intense research activity on its biology in A. mellifera has been undertaken with the main aim of finding effective control methods to protect colonies (Rosenkranz et al., 2010; Dietemann et al., 2012). Comparatively, little attention has been devoted to the interaction between Varroa spp. mites and their original host, A. cerana (Dietemann et al., 2012; Wang et al., 2018),
Despite the fact that several other mite haplotypes shifted host (Beaurepaire et al., 2015; Roberts et al., 2015). Although they did not yet lead to new large-scale invasions, these new shifts show the propensity of the mite genus to generate more ecological and economic problems. Even though high genetic diversity has been shown in the genus Varroa (Anderson and Fuchs, 1998; de Guzman et al., 1998; Anderson and Trueman, 2000; Warrit et al., 2006; Navajas et al., 2010; Beaurepaire et al., 2015; Roberts et al., 2015), little knowledge currently exists on host specificity and their potential to hybridize, making it difficult to evaluate risks for new host shifts and invasions. Indeed, previous studies in the endemic range of Varroa spp. rarely reported whether the mites collected were reproducing in their host brood, preventing a systematic evaluation of host specificity (see Roberts et al., 2015 for an exception). In addition, the genetic markers used to define species and haplotype distribution of these mites (i.e. mitochondrial markers), do not allow for the detection of introgression. Indeed, mitochondrial DNA is maternally inherited and only reflects maternal gene flow (Harrison, 1989), giving only a partial picture of population structure. Even though paternal transmission can seem insignificant due to the reproductive system of the Varroa mites (mother mites produce one son and several daughters that mate together in the brood cells, Rosemurnat et al., 2010), recent studies showed that paternal gene flow is not negligible. In fact, reproduction can occur between inbred lineages when occupying the same cell (Beaurepaire et al., 2017a). Therefore, the use of nuclear DNA markers such as microsatellites can help completing the picture by unravelling finer levels of genetic structuring of populations than mitochondrial DNA (Beaurepaire et al., 2015; Roberts et al., 2015).

Here, we studied the population genetic structure of V. destructor and Varroa jacobsonii mites in Thailand using both mitochondrial DNA and microsatellite markers to unravel phenomena promoting host shifts. In this country, the sympatric occurrence of the two hosts and several mite species (Warrit et al., 2006) leads to opportunities for host shifts. Yet, in the former study, a single mite was sampled per colony and a small fragment of the COI gene (328 bp) was used to determine the prevalence of mite haplotypes and species. We conducted a more intense sampling at a local scale and observed the ability of these mites to reproduce on the host they were collected from by monitoring their reproductive status. This allowed us to increase chances of detecting phenomena that promote host shifts (e.g. drifting of mites, introgression) or host shifts per se (e.g. reproduction in a new host’s brood). Surveying the distribution of mitochondrial haplotypes in the same regions as Warrit et al. (2006) more than a decade later, we also assess temporal changes in population structure. Our results show that genetic structure and host specificity in the genus Varroa is more labile than previously thought. We detected the occurrence of several phenomena promoting host shifts, which could represent a threat to the honey bee populations of Asia and beyond.

Methods

Populations, sampling
Between 2013 and 2015, 200 Varroa spp. mites were collected from drone brood cells of *A. cerana* in one to five apiaries from four regions of Thailand (Table 1, Fig. 1): (1) Chiang Mai (North) where *V. jacobsonii* haplotype North Thai and *V. destructor* Vietnam were reported in *A. cerana* (above 1000 m for the latter); (2) Bang Saen (Chon Buri, central Thailand) with *V. jacobsonii* haplotype North Thai; (3) Ko Samui (island) with *V. jacobsonii* Samui; (4) Phattalung (South) with *V. jacobsonii* Malay (Warrit et al., 2006). North of the Isthmus of Kra (North

Table 1. Sampling region, host species of origin and number of *Varroa* spp. mites genotyped by mtDNA and microsatellites. The table also indicates the numbers of mite drifts between host species and of introgression events between mite species.

Host species	Location (region)	mtDNA	Microsatellites
A. mellifera	Chiang Mai (North)	117 (10)	0
A. cerana	Bang Saen (centre)	2 (2)	0
A. cerana	Chiang Mai (North)	65 (10)	3 (2)
A. cerana	Ko Samui (island)	20 (9)	0
A. cerana	Phattalung (South)	18 (5)	0

Table 1.** Sampling region, host species of origin and number of *Varroa* spp. mites genotyped by mtDNA and microsatellites. The table also indicates the numbers of mite drifts between host species and of introgression events between mite species.

Host species	Location (region)	mtDNA	Microsatellites
A. mellifera	Chiang Mai (North)	117 (10)	0
A. cerana	Bang Saen (centre)	2 (2)	0
A. cerana	Chiang Mai (North)	65 (10)	3 (2)
A. cerana	Ko Samui (island)	20 (9)	0
A. cerana	Phattalung (South)	18 (5)	0

Drift and introgression were identified based on mitochondrial DNA and microsatellite data. Detection was first identified based on the Instruct results and then verified by visual inspection of the mite genotypes (Table S8). Likely hybrids were identified based on a probability over 5% of belonging to the other cluster revealed by Instruct. A less conservative threshold set at 1.5% probability identified further likely hybrids.
and centre locations), *A. mellifera* hosting the host shifted lineage of *V. destructor* Korea can be found. A sample of 172 mites was thus collected from drone and worker brood cells of *A. mellifera* in Chiang Mai and Bang Saen (*Table 1, Fig. 1*). Although *A. mellifera* is occasionally kept south of the Isthmus, they do not survive there for long periods and have to be imported regularly from the North (P. Chantawannakul unpublished) and were therefore not screened in this region.

Mite reproductive status

Upon opening of infested host brood cells, the reproductive state of mite foundresses was determined (Dietemann et al., 2013). The occurrence of at least one offspring of any sex confirmed that the foundresses were fertile, unless host developmental stage preceded oviposition. These cases, together with infertile foundresses were considered as non-reproductive. Percentage of reproductive foundresses is reported out of the total number of foundress mites found (fertile and non-reproductive). Mites were placed in 75% EtOH and frozen at −20 °C until DNA extraction.

DNA extraction

DNA of individuals used for sequencing were extracted with phenol-chloroform (*N* = 193; Evans et al., 2013) and with TaKaRa lysis buffer for microorganisms (*N* = 32; Takara Bio Inc., Otsu, Japan). For the latter, the tubes were heated at 65 °C for 30 min and then at 100 °C for 10 min before adding 40 µL double distilled H₂O. The tubes were then vortexed and centrifuged. Ten microlitres of 2X GenStar PCR-ready mix (with Taq + loading dye), 7 µL double distilled H₂O, 1 µL forward, 1 µL reverse primers and 1 µL of DNA extract was added to PCR tubes. Total DNA of mites collected in Bang Saen (*n* = 51) was isolated according to Beaurepaire et al. (2017a). DNA of individuals of microsatellite analyses (*N* = 164) were extracted with Chelex: the ethanol used to preserve the mites was rinsed twice in double distilled H₂O and each mite was placed individually in 100 µL 5% Chelex solution in a 96 well plate and crushed with a pestle. Finally, 5 µL proteinase K were added and the plate was placed in a thermocycler with standard Chelex cycling conditions (Walsh et al., 1991).

PCR amplification and sequencing

PCR assays were performed to amplify regions of the cytochrome oxidase subunit I (cox1) gene of the mites sampled from the North, South and island locations (Evans et al., 2013; *Table S1*). The analyses were performed by using MyTaq™ kit (Bioline, London, UK) following the manufacturer’s recommendations. Briefly, 2 µL 10-fold-diluted of the extracted DNA, 5X reaction buffer, forward and reverse primers (final concentration of 0.4 µM each) and Taq polymerase (0.63 units) were mixed in 25 µL final reaction volume. Primers given in *Table S1* were used to produce 380 and 800 bp amplicons.

The PCR cycling protocols are given in *Table S2*. The PCR products were analysed with a 2% two-dimensional agarose gel electrophoresis. The gels were stained GelRed (Biotium, Hayward, CA, USA) for visualization under UV light. The PCR products were purified using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Co., Düren, Germany) following the manufacturer’s recommendations. Purified PCR products were commercially sequenced. Each PCR product was sequenced in both directions.

Haplotype network analyses

A dataset including the overlapping region of the 380 and 800 bp sequences together with GenBank references (Anderson and Trueman, 2000; Warrit et al., 2006; Navajas et al., 2010) was generated (*Fig. 2*). Median-Joining haplotype networks of this 290 bp region were obtained in PopART with epsilon = 0 (http://popart.otago.ac.nz).

The sequence of one representative mite per host species and region was uploaded to GenBank with the accession numbers MN179648–MN179654.

Microsatellite DNA analyses

Varroa spp. mites collected at all locations were genotyped at eight DNA microsatellite loci (VD305, VD307, VD112, VJ292, VJ294, Vdes-01, Vdes-02, Vdes-04; Evans, 2000; Solignac et al., 2005) using the Fragment Profiler software V. 1.2 of the MEGABACE DNA Analysis System (GE Healthcare Life Science, Buckinghamshire, England). Samples with missing information for more than three loci were excluded, resulting in a dataset of 147 mites (*Table 1*). Hardy–Weinberg equilibrium and linkage disequilibrium tests were performed within samples for each marker using Fstat V. 2.9.3 (Goudet, 1995).
Identification of drifters

To identify putative drifters (mites found in colonies of an atypical host, i.e. *V. destructor* Korea in *A. cerana* and *V. jacobsonii* in *A. mellifera*), an analysis not relying on *a priori* information was conducted with the software InStruct (Gao *et al.*, 2007). InStruct is an alternative to the software STRUCTURE (Pritchard *et al.*, 2000) that can handle analyses of inbred or partially self-fertilizing species, as is the case for *Varroa* spp. The number of clusters in the dataset (*K*) varied from 1 to 12 and 20 chains for each run were performed with 50,000 burn-in iterations and 100,000 total iterations for each chain using the Admixture model. The most likely number of clusters was then estimated manually following the method described in Evanno *et al.* (2005). The results of the runs were combined with the software CLUMPP (Jakobsson and Rosenberg, 2007) and the software

Table 2.

Locus	Allele size	Species	Ratio	Higher/lower frequency
		V. destructor	*V. jacobsonii*	
VD305	110	5.1		
	113*	1.0	6.8	7.1
	116	20.5		
	119	19.9		
	122	28.8		
	125*	1.0	12.5	13.0
	128		34.1	
	131	61.5		
	134	7.7		
	137		1.1	
VD307	163	24.0		
	165**	75.0	2.2	33.4
	167	0.6		
	169	61.8		
	171	2.2		
	173	12.4		
	175*	1.0	20.2	21.0
	179		0.6	
VD112	133	1.2		
	135	2.1		
	137***	4.3	1.7	2.4
	139**	46.8	6.4	7.3
	141	22.1		
	143	5.2		
	145***	46.8	22.1	2.1
	147	16.9		
	149	3.5		
	151	3.5		
	153	15.7		
	159		1.7	
VJ292	210	100.0		
	232	2.9		
	234	97.1		
VJ294	150	1.6		
	164	9.5		
	166	19.8		
	168	4.0		
	172	12.7		
	174**	98.1	9.5	10.3
	176	1.6		
	178*	1.9	14.3	7.4
	180	5.6		
	182	15.1		

(Continued)

Table 2. (Continued.)

Locus	Allele size	Species	Ratio	Higher/lower frequency
		V. destructor	*V. jacobsonii*	
	186	4.0		
	192	2.4		
Vdes-01	400**	41.8	1.2	34.3
	402*	3.1	98.8	32.3
	406	55.1		
Vdes-02	296	71.6		
	308	28.4		
	310	11.6		
	312	57.5		
	314	21.2		
	316	6.2		
	318	1.4		
	330	2.1		
Vdes-04	271***	49.0	10.9	4.5
	273**	51.0	3.8	13.3
	275		6.4	
	277		17.9	
	279		13.5	
	281		7.7	
	283		7.7	
	285		1.3	
	287		8.3	
	289		0.6	
	291		0.6	
	293		3.2	
	299		2.6	
	301		0.6	
	303		10.3	
	305		4.5	

*: alleles rare in *V. destructor* but common in *V. jacobsonii*; **: alleles rare in *V. jacobsonii* but common in *V. destructor* (ratio of higher/lower frequency >5). ***: alleles common to both species but of uncertain origin (ratio of higher/lower frequency <5).
Distruct (Rosenberg, 2004) was used to draw the corresponding figures. To match the genotype clusters to known mite species using the nucleotide BLAST tool on the NCBI platform (Altschul et al., 1990), a subset of 15 mites used in the microsatellite analysis were sequenced with the 929 bp COI primer from Navajas et al. (2010). See section ‘Mitochondrial DNA analysis’ for methodology.

Identification of hybrids

To identify hybrids between V. destructor and V. jacobsonii, the cluster membership probabilities of each individual over the 20 chains obtained for $K = 2$ with the software CLUMPP were compared. Individuals with a probability to belong to both clusters superior to 5% was considered as a likely hybrid. Any individual with a probability superior to 2.5% to belong to two clusters was considered as a less likely hybrid. Introgression of alleles was then confirmed based on the occurrence of heterospecific alleles, i.e. common to the two species. When the allele frequency in one of the species was 5-fold that of the same allele in the other species, we considered that the allele very likely belonged to the former species. When the ratio of allele frequencies was below five, we did not propose an origin for the allele.

Analyses of the genetic diversity and population structure

To estimate the level of genetic diversity and population structure of the different Varroa taxa found in Thailand, all drifters identified by InStruct were removed from the dataset. The number of alleles (N_A), allelic richness (R) and the expected (H_e) and observed heterozygosity (H_o) indexes were then calculated for each mite group sampling location using the software Fstat v. 2.9.3 (Goudet, 1995).

Several estimates of genetic differentiation (F_{ST}, G_{ST}, D_{ST}) were calculated using GenAlex V. 6.503 (Jost, 2008; Peakall and Smouse, 2012). F_{ST} index quantifies how the reduction in gene flow among populations affects their level of heterozygosity. In addition, it reflects the variance in allele frequencies for markers with two alleles. When markers have more than two alleles, interpreting F_{ST} is more challenging (Jost, 2008). We nevertheless report F_{ST} since it is the most commonly used estimate of the reduction in heterozygosity due to population structure in population genetics studies (Whitlock, 2011). To work around this bias, we also calculated G_{ST}, which is a corrected estimate of F_{ST}, adjusted for markers with more than two alleles (Nei, 1973). A third estimate, Jost’s D_{ST} (Jost, 2008) was calculated. It focuses on variance in allele frequencies among populations. Thus, we report the three estimates to provide complementary information on the genetic differences among the mites of the different populations as recommended in Meirmans and Hedrick (2011). In case several individuals sharing the same genotype were found in a colony, only one sample was included to estimate levels of genetic differentiation in order to avoid biasing the analysis with highly related individuals. This led to the exclusion of 25 individuals, leaving 116 for the analyses.

In addition, a pairwise distance-based AMOVA with 1000 permutations was performed for each species using the software Arlequin V.3.5.1.3 (Excoffier et al., 2005). These analyses were based on the microsatellite dataset without drifters but with putative hybrids and individuals sharing the same genotype to identify the distribution of genetic variation in each species.

Finally, a Principal Component Analysis (PCA) was conducted on the same dataset to identify the main genetic clusters among the mite samples. Since we were interested in the occurrence of putative hybrids, we performed the PCA including the data of both species. The R package Adegenet (Jombart, 2008) in R v. 3.5.2 (R core Team, 2018) was used.

Results

Mite distribution and reproduction

With a single exception, mitochondrial DNA sequences of the mites collected from A. mellifera colonies in North Thailand ($N = 118$) were identified as the V. destructor Korean haplotype 1 (K1) (Figs 2 and 3). Twenty eight of these mites (24%) had successfully produced offspring, while the remaining mites ($N = 89$) either had not reproduced or were collected from early host brood stages on which reproduction is not yet detectable. The exception was a non-reproductive V. jacobsonii mite in an A. mellifera colony (Table 1). This individual belonged to a novel haplotype that we named NorthThai3.

Varroa destructor K1 mites were also found in two years in ten drone brood cells of four A. cerana colonies in the North (Fig. 2). Eight of these mites (80%) had successfully produced offspring...
colonies. Reduced on drone brood in at least one occurrence in these four species. Each of these mite species and haplotypes reproduced on drone brood in at least one occurrence in these mites (53%) had reproduced on drone brood. In the North were infested by the two mite species simultaneously in these individuals (Table S8, Tables 1 and 2). Lowering the cut-off to 2.5% revealed five additional less likely hybrids in the southern population of A. cerana. Visual inspection of the genotype of these individuals confirmed the presence of shared alleles in all these individuals and identified an additional seven putative hybrids. Shared alleles occurred at one or at up to three markers simultaneously in these individuals (Table S8, Tables 1 and 2).

The PCA placed most of the putative hybrids between V. jacobsonii and V. destructor, along the axis 1, which separated the species, and which explained 30% of the genetic variance (Fig. 5). These individuals did not cluster halfway between their suspected parental groups because they only showed heterospecific alleles at one to two loci and were thus closer to the parental groups than the centred between the two parental groups (likely hybrids) were found in A. cerana in the North (N = 1) and the South (N = 1) and in both hosts in the centre (N = 3, Fig. 4, Table S8). Lowering the cut-off to 2.5% revealed five additional less likely hybrids in the southern population of A. cerana. Visual inspection of the genotype of these individuals confirmed the presence of shared alleles in all these individuals and identified an additional seven putative hybrids. Shared alleles occurred at one or at up to three markers simultaneously in these individuals (Table S8, Tables 1 and 2).

The AMOVA results indicated that genetic differences among mites infesting colonies of the same location were the least important in A. cerana and A. mellifera (13.8 and 5.3%, respectively, Table 3). The highest level of genetic structuring was within colonies for mites infesting A. cerana (57.4%), and among locations for mites infesting A. mellifera (60.9%).

Discussion

Our data confirm the Varroa spp. haplgroups detected previously (Smith and Hagen, 1996; Warrit et al., 2006), but the haplotypes we found differed in 1–4 nucleotides from those described

![Fig. 3. Average (±S.D.) allelic richness vs heterozygosity in Varroa spp. mite populations of two host species (Ae: Apis mellifera, Ac: Apis cerana) in four regions of Thailand.](https://www.cambridge.org/core/terms)
earlier. The reproductive status of the sampled mites further confirmed that these haplotypes were indeed parasites of the host populations they were collected from. Spillbacks of *V. destructor* to *A. cerana* and spillovers of *V. jacobsonii* mites to *A. mellifera* colonies were observed. Genotyping revealed infestation of single host colonies with both *V. destructor* and *V. jacobsonii* as well as with several haplotypes of *V. jacobsonii*, thereby setting the stage for hybridization, which the microsatellites indicated in up to 17 out of 147 mites genotyped.

Distribution, reproduction and genetic diversity of Varroa spp. in Thailand

All haplogroups reported earlier (Warrit *et al.*, 2006; Navajas *et al.*, 2010) were confirmed. Yet, our choice to sequence a mitochondrial genome region common to several previous studies (Warrit *et al.*, 2006; Navajas *et al.*, 2010) led to compromises in mite identification. For instance, the V1 and C2 haplotypes and hence the V and C haplogroups of *V. destructor* could not be

Fig. 4. Results of population structure InStruct analysis of Varroa spp. mites infesting *A. cerana* and *A. mellifera* in Thailand. The y-axis represents the likelihood for each individual to belong to a genetic cluster. Each cluster is represented by a distinct colour. The x-axis shows the different individuals, their location (North, centre, South or island) and host (*Apis mellifera* or *Apis cerana*).

Fig. 5. Principal Component Analyses. Genetic clustering based on eight microsatellite markers of mite populations occurring in four regions of Thailand and parasitizing imported *Apis mellifera* (*Varroa destructor*, shades of red) and endemic *Apis cerana* (*Varroa jacobsonii*, shades of blue). The three factors explaining most of the variance are plotted. Percentage of explained variance is indicated on each axis. Putative hybrids identified by InStruct are indicated with numbered squares from 7 to 16. Ellipses represent 95% confidence intervals.
distinguished from each other using the chosen region. Since the V1 haplotype was reported earlier (Warrit et al., 2006), it seems likely that this is the V. destructor haplogroup, which we sampled in the North of Thailand. Interestingly, the Japanese V. destructor haplogroup was not detected, emphasizing that its presence in Thailand is dubious (Warrit et al., 2006). The distribution patterns of the remaining haplogroups described by Warrit et al. (2006) were confirmed in broad terms based on reproductive data and genotyping: V. destructor K1 was found to infest A. mellifera, while V. jacobsonii North Thai, Malay and Samui infested A. cerana in the North (Chiang Mai), South (Phattalung) and on Samui Island, respectively.

The V. jacobsonii haplotypes detected here varied from one to four nucleotides compared to those described over a decade earlier (Warrit et al., 2006). The haplotype network indicates that the novel NorthThai3 haplotype of V. jacobsonii has not emerged recently because of its intermediate position between the NorthThai2 and Laos1 haplotypes, but has probably not been sampled previously. Despite the collection of a high number of mites in the same region, some previously described haplotypes (Warrit et al., 2006) were not confirmed, which could be due to a sampling bias. Indeed, the haplotype network inferred the existence of a few non-sampled haplotypes. Irrespective of their cause, the differences between studies and the high genetic diversity measured suggest that the mite population structure is dynamic in time or space. A more accurate description of the population structure and dynamics of Varroa spp. in their original range thus requires even higher sampling efforts.

The number of mites we sampled nevertheless allowed for the detection of unexpected host–parasite associations. Reproduction of the Korea haplotype of V. destructor was repeatedly observed for the first time on A. cerana drone brood outside of its natural range, thereby demonstrating a lower host specificity than previously suspected (see Navajas et al., 2010). Possible differences in drone brood entombing (Rath, 1999) and/or susceptibility of host worker brood (Page et al., 2016) between populations may explain why this particular lineage has not invaded all A. cerana populations sympatric with infested A. mellifera. Despite the ubiquity of imported A. mellifera in Asia, none of the studies investigating population genetics in Varroa spp. reported the invasive Korean lineage of V. destructor (K1) infesting A. cerana outside its original distribution range (Anderson and Trueman, 2000; Fuchs et al., 2000; Solignac et al., 2005; Navajas et al., 2010; Beaurrapeire et al., 2015). The number of surveys remains small and spillbacks of the V. destructor Korea haplotype into non-native host populations of A. cerana could have gone undetected. Yet, the spillback of the virulent V. destructor lineage or its hybridization with endemic mites could have dramatic consequences for populations of A. cerana (Depotter et al., 2016). Moreover, its propensity to vector a large diversity of viruses represents a threat to honey bees and other pollinators (Fürst et al., 2014; Wilfert et al., 2016).

Using mtDNA sequencing, we also detected the occurrence of a single V. jacobsonii mite spillover from A. cerana to A. mellifera. The observed frequency of 1% (once in 117 cases), suggests that opportunities for host shifts by this mite species (e.g. in Papua New Guinea, Roberts et al., 2015) are not extremely rare. Whether this V. jacobsonii mite reproduced on its A. mellifera host could not be established. Nevertheless, this finding is alarming and highlights the risks of host shifts by mite lineages of further haplogroups.

Drifting of mites between host species, as well as the natural sympathy of several haplotypes of mites, can lead to infestations of single host colonies and even brood cells by mites of multiple haplotypes and species, thereby setting the stage for hybridization. Indeed, such cases were detected in five A. cerana colonies and in one A. mellifera colony. In addition, the relatively high frequency of multiply infested drone cells in these populations (up to 13% of infested cells, Wang et al., in prep.) supports the idea that opportunities for hybridization can in fact be frequent.

Putative introgression between mite species

The occurrence of several species and haplotypes in single colonies leads to the possibility of foundress mites of different taxa entering the same host brood cell to reproduce (Beaurrapeire et al., 2017a). The cohabitation of their sexually mature offspring sets the stage for hybridization. Indeed, our analysis with Instruct revealed that five likely hybrids could not unambiguously be assigned to a single genetic cluster. In complement, visual inspection of the genotypes of these individuals revealed that they carried alleles usually found on mites infesting the other host species at up to three markers (Table S8). On the PCA, some of the likely hybrids were also found outside of the 95% confidence ellipses of their group. However, given that the Adegenet PCA function incorporates missing data as averaged alleles, the other individuals (likely and less likely hybrids) carrying heterospecific alleles could not be clearly distinguished from the rest using this method. Although the presence of an identical allele in the mite species may be due to size homoplasy, this event alone does not seem sufficient to explain the patterns we observed, with the presence of shared alleles in six loci out of eight (Table S8). The large size difference with a putative parent allele strengthens our argument. For instance, we found the allele ‘175’ at locus VD307 in an individual with a dominant V. destructor genotype and 99.88% identity to the K1 COI haplotype (Tables S7 and S8). The closest allele found in the gene pool of V. destructor is 165 (75% prevalence). With a repeat motif of this microsatellite of 2 bp, at least five additions/deletions would be necessary to generate homoplasy, which seem highly unlikely.

The introgression of alleles of V. destructor in the gene pool of V. jacobsonii from the centre and the South of Thailand at some but not all loci suggests the presence of second or third generation hybrids and indicates that the two species are capable of interbreeding and of producing fertile offspring. Introgression suggests that reproductive barriers between these species are absent and questions the segregation of V. destructor and V. jacobsonii into two species. Differences in behaviour, morphology and virulence promoted the investigation of genetic divergence within the genus Varroa (Anderson and Fuchs, 1998; de Guzman et al., 1998; Anderson, 2000). The percentage of divergence measured resulted in the definition of V. destructor as a new species (Anderson and Trueman, 2000). Yet, whether the typical biological basis for
The differentiation between expected and observed heterozygosity (Table S6) indicates that the sampled Varroa populations were not in Hardy–Weinberg equilibrium, which is in line with the mites’ inbred reproductive system (Rosenkranz et al., 2010). This mating system also explains the low levels of genetic diversity, which were further exacerbated by a genetic bottleneck due to host shift (for the invasive V. destructor, Solignac et al., 2005) and to isolation on an island (V. jacobsonii Samui2; Oldroyd and Wongsiri, 2006). As a result of these bottlenecks, the number of alleles and allelic richness of these populations was inferior to that of the mites in other A. cerana populations. A notable inconsistency was observed for the northern (Chiang Mai) population, which showed the high range in allelic richness typical for V. jacobsonii (except Samui2), but a lower range of heterozygosity (similar to Samui2; Fig. 5). This suggests a higher inbreeding rate in this population, but without loss of allelic richness, of which the causes remain unknown. Overall, the range of genetic diversity of the V. jacobsonii populations in Thailand was similar to that found in other populations of this mite taxon (Roberts et al., 2015).

Our investigations of the population structure with microsatellite markers show that the gene flow between V. destructor and V. jacobsonii was overall low (Table S5) but may be mediated by occasional hybridization. The comparison of the different indexes of population differentiation revealed contrasting patterns in the mites infesting the two host species. The two indexes Fst and Gst were generally higher in A. mellifera than Dn. This trend was reversed for the mite populations infesting A. cerana. These discrepancies can be explained by the differences in the number of alleles and heterozygosity levels within these two groups (Meirmans and Hedrick, 2011), with V. destructor subpopulations being less diverse than those of V. jacobsonii.

The pattern of genetic structure among the A. cerana mite populations mostly correlated with geographic distance and isolation (Table S5, Figs 4–6). In the native host, mite subpopulations from the continent may have exchanged alleles frequently, probably as a consequence of A. cerana colonies migrating seasonally (Oldroyd and Wongsiri, 2006). Notably, lower levels of genetic differentiation were detected between mites from the North and the centre compared to the mites from the South (Figs 5 and 6), probably reflecting mite adaptation to the local host haplotypes (Rueppell et al., 2011). However, we found evidence of nuclear gene flow across the Kra Isthmus, which physically separates A. cerana Mainland and Sundaland subpopulations. These results support the hypothesis that host–parasite associations in theApis–Varroa system are not only due to local coevolution, but can be influenced by biogeographic history and population migration (Rueppell et al., 2011). The genetic distinctiveness of the Samui island mite population mirrors its host’s geographical isolation (see Rueppell et al., 2011). Gene flow between the continental and the Samui populations was likely interrupted 18 000 to 10 000 years ago as the sea level rose (Oldroyd and Wongsiri, 2006). Using the substitution rates proposed by Solignac et al. (2005), this timespan corresponds to a range of 3–14 substitutions on the COI gene when comparing the island with the other V. jacobsonii haplotypes, fitting with our mtDNA results (Fig. 2).

In accordance with the genetic differentiation estimates, the two AMOVAs revealed different patterns of genetic structuring in A. mellifera mites and in mites of the native host. The gene flow of the new host is likely a consequence of human transportation of colonies, as feral colonies of A. mellifera do not occur in Asia (Oldroyd and Wongsiri, 2006). Although trade and the associated translocation of hosts along the country’s North-South axis (Chantawannakul, 2018) could be expected to level out population structuring in the parasite, we found high population differentiation levels in mites infesting A. mellifera (Figs 5 and 6). These may be due to mite introductions of different origins and genotypes and/or due to local adaptation.

Additionally, we detected a low genetic structuration among colonies of the same location in V. jacobsonii and V. destructor, most likely reflecting that mites readily disperse among colonies (Dynes et al., 2016; Beaurepaire et al., 2017b). The analysis of genetic structuring at the lowest scale (within colony) revealed that the genetic diversity between V. jacobsonii mite infesting the same colonies was considerable. Indeed, the V. jacobsonii genotypes in A. cerana colonies were sampled only once (Table S8). In contrast, the moderate genetic variance at this level in V. destructor reflects the lack of diversity of the Korea haplotype outside its natural distribution (Solignac et al., 2005). Altogether, given the peculiar patterns of Varroa population structure, varying in space, time and according to its host species, a broader sampling scheme will be necessary to seize the extent of this parasite’s complex biogeography in Asia.

Conclusion

Several of the phenomena known to promote host shifts have been observed in our screening of natural infestations of A. cerana and A. mellifera by V. jacobsonii and V. destructor. Genetic

Mite species	Host species	Level	D.F.	Sum of square	% Variation	Significance
V. jacobsonii	Among locations	3	50.44	28.80 ***	28.80	***
A. cerana	Among colonies of the same location	6	16.85	13.79 ***	13.79	***
V. destructor	Within colonies	178	100.83	57.41 ***	57.41	***
A. mellifera	Among colonies of the same location	9	9.46	5.32 n.s.	5.32	n.s.
V. destructor	Within colonies	89	40.50	33.75 ***	33.75	***

Levels of significance were calculated based on 1000 permutations (* * P < 0.001; ** P < 0.01 and n.s. non-significant).
diversity of V. jacobsonii was higher compared to V. destructor. Spillovers of invasive V. destructor mites from A. mellifera into A. cerana and spillovers of endemic V. jacobsonii mites from A. cerana to introduced A. mellifera were observed. These events resulted in infestations of single colonies with both mite species and microsatellite marker based evidence suggested hybridization between V. destructor and V. jacobsonii. The relatively high frequency of these phenomena indicate risks of further host shifts, which could threaten honey bee populations of Asia and beyond.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1007/s00318201900091X

Acknowledgments. Ana Paula Machado, Zheguang Lin and Kaspar Roth for assistance with genotyping; Zongyot Chaiwong, Weeraya Sommana and Weerapon Houjam for outstanding assistance in the field and for accommodation; Laurent Genoud for accommodation. Guntima Suwannapong is acknowledged for providing mites from central Thailand.

Financial support. This research was supported by the Swiss National Science Foundation (V.D., P.N. grant number 31003A_147363), by the Vinetum Foundation (P.N.), by Agroscope (V.D.) and by the Thailand Research Fund (P.C., grant number RSA6080028) and the Nicola foundation and by the Ricola foundation (P.C., grant number RSA6080028) and the Ricola foundation; Laurent Genoud for accommodation. Guntima Suwannapong is acknowledged for providing mites from central Thailand.

Conflict of interest. None.

Ethical standards. Not applicable.

References

Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.

Anderson DL (2000) Variation in the parasitic bee mite Varroa jacobsoni Oudem. Apidologie 31, 281–292.

Anderson DL and Fuchs S (1998) Two genetically distinct populations of Varroa jacobsoni with contrasting reproductive abilities on Apis mellifera. Journal of Apicultural Research 37, 69–78.

Anderson DL and Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology 24, 165–189.

Beaupaire AL, Truong TA, Fajardo AC, Dinh TQ, Cervancia C and Moritz RFA (2015) Host specificity in the honeybee parasitic mite, Varroa spp. in Apis mellifera and A. cerana. PLoS ONE 10, e0135103.

Beaupaire AL, Krieger KJ and Moritz RFA (2017a) Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honey bee colonies and its implications for the selection of acaricide resistance. Infection Genetics and Evolution 50, 49–54.

Beaupaire AL, Ellis JD, Krieger KJ and Moritz RFA (2017b) Association of Varroa destructor females in multiply infested cells of the honeybee Apis mellifera. Insect science 26, 128–134.

Chantawannakul P (2018) Bee diversity and current status of beekeeping in Thailand. In Chantawannakul P, Williams G and Neumann P (eds.), Asian Beekeeping in the 21st Century. Singapore: Springer, 325 pp. doi: 10.1007/978-981-10-8222-1-2.

Criscone DC, Poulin R and Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology 14, 2247–2225.

de Guzmán L, Rinderer TE, Stelzer JA and Anderson D (1998) Congruence of RAPD and mitochondrial DNA markers in assessing Varroa jacobsoni genotypes. Journal of Apicultural Research 37, 49–51.

de Meeus T, McCoy K, Prugnolle F, Chevillon C, Durand P, Hurtrez-Boussès S and Renaud F (2007) Population genetics and molecular epidemiology or how to “débusquer la bête”. Infection, Genetics and Evolution 7, 308–332.

Depoter JRL, Sérid MF, Wood TA and Thonma BPIH (2016) Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Current Opinion in Microbiology 32, 7–13.

Dietemann V, Pfugfelder J, Anderson D, Charrière J-D, Chejanovsky N, Dainat B, de Miranda J, Delaplane K, Dillier F-X, Fuch S, Gallmann P, Gauthier L, Imdorf A, Koeniger N, Kralj J, Meikle W, Pettis J, Rosenkranz P, Sammataro D, Smith D, Taïeb O and Neumann P (2012) Varroa destructor: research avenues towards sustainable control. Journal of Apicultural Research 51, 125–132.

Dietemann V, Nazzi F, Martin SJ, Anderson D, Locke B, Delaplane KS, Wauquier Q, Tannahill C, Frey E, Ziegelmann B, Rosenkranz P and Ellis JD (2013) Standard methods for varroa research. In Dietemann V, Ellis JD, Neumann P (eds.). The COLOSS BEEBOOK, Volume II: standard methods for Apis mellifera pest and pathogen research. Journal of Apicultural Research 52, doi: 10.3896/IBRA.1.52.1.09.

Dynes TL, De Roode JC, Lyons JJ, Berry JA, Delaplane KS and Brosi BJ (2016) Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48, 93–101.

Evanno G, Regnaut S and Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 2611–2620.

Evanno G, Regnaut S and Goudet J (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 47–50.

Fuchs S, Tu Long L and Anderson D (2000) A scientific note on the genetic distinctness of Varroa mites on Apis mellifera L. and on Apis cerana Fabr. in North Vietnam. Apidologie 31, 459–460.

Fürst MA, McMahon DP, Osborne JL, Paxton RJ and Brown MJF (2014) Disease associations between honeybees and humblebees as a threat to wild pollinators. Nature 506, 364–366.

Gao H, Williamson S and Basta-mante CD (2007) An MCMC approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176, 1635–1651.

Genersch E, Von der Ohe V, Kaatz H, Schroeder A, Otten C, Bückler R, Berg S, Ritter W, Mühlén W, Gisder S, Meixner M, Liebig G and Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 352–352.

Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485–486.

Guzmán-Novoa E, Eccles L, Calvete Y, McGowan J, Kelly PG and Correa-Benitez A (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41, 443–450.

Harrison RG (1899) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution 4, 6–11.

Jaffé R, Dietemann V, Allopp MH, Costa C, Crewe RM, Dall’Olio R, de la Rúa P, El-NIEWi MA, Fries I, Kezic N, Meusel M, Paxton RJ, Shaihi T, Stolle E and Moritz RFA (2009) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology 24, 583–593.

Jakkrit R, Dietemann V, Allopp MH, Costa C, Crewe RM, Dall’Olio R, de la Rúa P, El-NIEWi MA, Fries I, Kezic N, Meusel M, Paxton RJ, Shaihi T, Stolle E and Moritz RFA (2009) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology 24, 583–593.

Jakobsson M and Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics (Oxford, England) 23, 1801–1906.

Jombart T (2008) adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics (Oxford, England) 24, 1403–1405.

Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026.

Klein D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein A-M, Kremer C, Gonzile LKM, Rader R, Ricketts TH, Williams NM, Adamsen NL, Ascher JS, Baldi A, Batary P, Benjamin F, Biesmeijer JC, Blitzer EJ, Bonmarco R, Brand MR, Bretagnolle V, Button L, Cariveau DP, Chifflet R, Colville JF, Danforth BN, Elle E, Garratt MPD, Herzog F, Holzhausch A, Howlett BG, Jauker F, Jha S, Knop E, Krewenka KM, Le Féon V, Mandelik Y, May EA, Park MG, Pisanty G, Reemer M, Riedinger V, Rollin O, Rundlöf M, Sardiñas HS, Scheper J, Schillog AR, Smith HG, Steffan-Dewenter I, Thorp R, Tscharnkte T, Verbuist J, Viana BF,
