Nonrelativistic Limit of the Dirac–Schwarzschild Hamiltonian: Gravitational Zitterbewegung and Gravitational Spin–Orbit Coupling

U. D. Jentschura1,2 and J. H. Noble1
1Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2MTA–DE Particle Physics Research Group, P.O.Box 51, H-4001 Debrecen, Hungary

We investigate the nonrelativistic limit of the gravitationally coupled Dirac Equation via a Foldy–Wouthuysen transformation. The relativistic correction terms have immediate and obvious physical interpretations in terms of a gravitational zitterbewegung, and a gravitational spin-orbit coupling. We find no direct coupling of the spin vector to the gravitational force, which would otherwise violate parity. The particle-antiparticle symmetry described recently by one of us in [Phys.Rev.A 87, 032101 (2013)] is verified on the level of the perturbative corrections accessed by the Foldy–Wouthuysen transformation. The gravitational corrections to the electromagnetic transition current are calculated.

PACS numbers: 11.10.-z, 03.70.+k, 03.65.Pm, 95.85.Ry, 04.25.dg, 95.36.+x, 98.80.-k

I. INTRODUCTION

The ever-increasing precision of spectroscopic experiments necessitates the consideration of gravitational effects in relativistic quantum mechanics. General relativistic effects already have to be taken into account in the synchronization of clocks in the global positioning system (GPS) satellites, which implies that the satellite-based clocks get ahead of ground-based clocks by about 45 s. The corresponding Hamiltonian as the Dirac–Schwarzschild Hamiltonian, a term proportional to $\vec{g} \cdot \vec{\Sigma}$, is obtained in the nonrelativistic limit of the quantum dynamics, and, therefore as a pseudo-vector. By contrast, the gravitational force $F_g = m \vec{g}$ with $m g = m |\vec{g}| = G m M / r^2 = m r_s / (2 r)$ is a vector. (Here, m and M are the masses of the test particle and planet, respectively, and r_s is the Schwarzschild radius; we use natural units with $\hbar = c = \epsilon_0 = 1$). One might thus conclude that any term in the Hamiltonian proportional to $\vec{g} \cdot \vec{\Sigma}$ would indeed violate parity symmetry. Apparently, the question of how to physically interpret the leading relativistic corrections in a curved space-time akin to the Schwarzschild geometry still constitutes an open problem.

The gravitational Dirac Hamiltonian is similar in its mathematical structure to the Dirac–Coulomb Hamiltonian, and we would a priori expect that the Foldy–Wouthuysen transformation should yield similar terms, but respect the particle-antiparticle symmetry from $\vec{g} \cdot \vec{\Sigma}$. The nature of the Foldy–Wouthuysen program is inherently perturbative. In the following, we expand to first order in the gravitational coupling constant, i.e., we only keep terms of first order in the Schwarzschild radius r_s. The corresponding dimensionless expansion parameter is $\chi = r_s / r$, where r measures the distance from the center of the black hole (in the sense of a space-time coordinate). Regarding the momenta and distances, we assume that the Cartesian components p^i are of order ξm and that $r^i \sim 1 / (\xi m)$, and expand to order $\chi \xi^3$ or to order ξ^4 (for the gravitationally uncoupled terms). After a rederivation of the Hamiltonian form of the Dirac–Schwarzschild equation in Sec.11, the Foldy–Wouthuysen transformation is carried out explicitly in Sec.13 while conclusions are reserved for Sec.17 We again emphasize the use of natural units throughout the article ($\hbar = c = \epsilon_0 = 1$).

II. FORMALISM

We use the same conventions as in Refs.16 and assume that the curved-space Dirac γ (overlined) and flat-
space (tilde) Dirac matrices fulfill the relations
\[\{ \bar{\gamma}^\mu(x), \bar{\gamma}^\nu(x) \} = 2 \bar{\gamma}^{\mu\nu}(x), \quad \{ \gamma^\mu, \bar{\gamma}^\nu \} = 2 \bar{g}^{\mu\nu}. \] (1)

Here, \{\cdot,\cdot\} is the anticommutator. The curved-space metric is \(\bar{g}^{\mu\nu} \) with \(\mu, \nu = 0, 1, 2, 3 \), while the “West-Coast” flat-space metric is \(g^{\mu\nu} = \text{diag}(1, -1, -1, -1) \). Overlining the curved-space Dirac matrices and using the tilde for the flat-space variants avoids a conceivable confusion with the particle physics literature \[30\text{-}34\], where one denotes the flat-space matrices as \(\gamma^\mu \), and the flat-space metric as \(g^{\mu\nu} \), whereas in the literature on general relativity, one usually denotes the curved-space Dirac matrices without a tilde, and uses \(g^{\mu\nu} \) for both flat-space as well as curved-space metrics \[35\text{-}39\]. Explicit use of the overlining and the tilde avoids any possible confusion.

The formulation of the gravitationally coupled Dirac equation \[4\text{-}16\] suggests the use of the vierbein formalism, which is particularly straightforward to formulate if the “square root of the metric” can be taken with ease (see Sec. 6 of Ref. \[40\]). The Dirac action in curved space-time is given by the invariant integral
\[S = \int d^4x \sqrt{-\det \bar{g}} \bar{\psi}(x) \left(\frac{1}{2} \bar{\gamma}^\mu(x) \nabla_\mu - m \right) \psi(x), \] (2)
where the covariant derivative is \(\nabla_\mu = \partial_\mu - \Gamma_\mu \), and
\[\Gamma_\mu = -\frac{i}{4} \bar{g}_{\mu\alpha} \left(\frac{\partial b_\rho}{\partial x^\alpha} a_\rho^\beta - \Gamma_\rho^{\alpha\beta} \right) g^{\mu\nu}. \] (3)
is the affine spin-connection matrix. Here, the curved-space spin matrices are \(\bar{\gamma}^{\mu\alpha} = \frac{i}{2} \bar{\gamma}^\nu \gamma_\alpha \). We represent the \(\bar{\gamma}^{\mu\alpha} \) matrices in terms of the flat-space \(\gamma^\nu \),
\[\bar{\gamma}^\rho = b_\rho^\alpha \gamma_\alpha; \quad \bar{\gamma}^\rho = a_\rho^\alpha \gamma_\alpha, \] (4a)
\[\bar{\gamma}^\tau = a_\rho^\alpha \gamma_\rho; \quad \bar{\gamma}^\tau = b_\rho^\alpha \gamma_\rho. \] (4b)
We use the flat-space Dirac matrices in the Dirac representation,
\[\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^1 = \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix}, \] (5a)
\[\gamma^2 = \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix}, \quad \gamma^3 = \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix}, \] (5b)
\[\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \] (5c)
The metric is recovered as
\[\{ \bar{\gamma}^\rho, \bar{\gamma}_\sigma \} = b_\rho^\alpha b_\sigma^\beta \{ \gamma_\alpha, \gamma_\beta \} = 2 \bar{g}_{\alpha\beta} b_\rho^\alpha b_\sigma^\beta = 2 \bar{g}_{\rho\sigma}, \] (6a)
\[\{ \gamma^\tau, \gamma^\nu \} = a_\rho^\alpha a_\sigma^\beta \{ \bar{\gamma}_\alpha, \bar{\gamma}_\beta \} = 2 \bar{g}^{\tau\nu} a_\rho^\alpha a_\sigma^\beta = 2 \bar{g}^{\tau\sigma}. \] (6b)
The gravitationally coupled Dirac equation, obtained by variation of Eq. (2), is
\[(i \bar{\gamma}^\mu \nabla_\mu - m) \psi(x) = 0. \] (7)
We now specialize to a static space-time metric \[41\] of a generalized Schwarzschild type,
\[\bar{g}_{\mu\nu} = \text{diag} \left(w^2(r), -v^2(r), -v^2(r), -w^2(r) \right), \] (8)
where the vierbein coefficients are given as \(b_0^\beta = \delta_0^\beta w(r), b_1^\beta = \delta_1^\beta v(r), a_\beta^\alpha = \delta_\alpha^\beta / w(r) \), and \(a_0^\beta = \delta_0^\beta / v(r) \). The \(a \) and \(b \) matrices are symmetric in this case, \(a_\mu^\nu = a_\nu^\mu \) and \(b_\mu^\nu = b_\nu^\mu \). With these coefficients, using computer algebra \[42\], it is easy to evaluate all Christoffel symbols and to establish that \[16\]
\[\tau^0 \bar{\gamma}^\mu \Gamma_\mu = -\frac{\tilde{\gamma}^0 \tilde{\gamma}^\tau}{r} G(r), \] (9a)
\[G(r) = \frac{2 v^2(r) w(r) + v(r) w(r)}{2 v^2(r) w^2(r)}. \] (9b)
The Hamiltonian form of the gravitationally coupled Dirac equation,
\[i \left(\bar{\gamma}^\mu \right)^2 \partial_\mu \psi = \left(\bar{\gamma}^\mu \gamma^\mu + m \right) \psi, \] (10)

\[\text{translates into } i \partial_t \psi = H \psi, \quad H = \frac{w}{v} \tilde{\alpha} \cdot \tilde{p} - \frac{i}{2v} \tilde{\alpha} \cdot \tilde{\nabla} w - i \frac{m}{v^2} \tilde{\alpha} \cdot \tilde{\nabla} v + \beta m w. \] (11)
Here, we use the notation \(\tilde{\alpha} = \tilde{\gamma}^0 \tilde{\gamma}^\tau \) and \(\beta = \tilde{\gamma}^0 \). We now stretch space according to the scaling
\[\psi' = v^{3/2} \psi, \quad H' = v^{3/2} H v^{-3/2}. \] (12)
This leads to a Hermitian Hamiltonian, which acts on the Hilbert space of square-integrable functions with the scalar product \(\langle \phi, \psi \rangle = \int d^3 \phi^*(\vec{r}) \psi(\vec{r}) \). In three-space reads as
\[H' = \frac{1}{2} \{ \tilde{\alpha} \cdot \tilde{p}, F \} + \beta m w, \quad F = \frac{w}{v}. \] (13)
We here confirm the result given in Eq. (14) of Ref. \[19\]. For the Schwarzschild metric in isotropic coordinates (see Sec. 43 of Chap. 3 of Ref. \[41\]), we have to first order in the Schwarzschild radius \(r_s \),
\[w = \left(1 - \frac{r_s}{4r} \right) \left(1 + \frac{r_s}{4r} \right)^{-1} = \frac{4r - r_s}{4r + r_s} \approx 1 - \frac{r_s}{2r}, \]
\[v = \left(1 + \frac{r_s}{4r} \right)^2 \approx 1 + \frac{r_s}{2r}, \]
\[w \frac{v}{w} = \frac{16}{(4r + r_s)^3} \approx 1 - \frac{r_s}{r}. \] (14)
The Schwarzschild radius is given as \(r_s = 2GM \), where \(G \) is Newton’s gravitational constant, and \(M \) is the mass of the planet. So, to first order in \(r_s \), we have to analyze the Dirac–Schwarzschild Hamiltonian \(H_{\text{DS}} \), which is given by
\[H_{\text{DS}} = \frac{1}{2} \{ \tilde{\alpha} \cdot \tilde{p}, \left(1 - \frac{r_s}{2r} \right) \} + \beta m \left(1 - \frac{r_s}{2r} \right). \] (15)
We can now carry through the Foldy–Wouthuysen program as usual.
III. FOLDY–WOUTHUYSEN TRANSFORMATION

A. Transformation of the Hamiltonian

Contrary to widespread belief, the rationale of the Foldy–Wouthuysen transformation [20] actually is rather well-defined [21] and in some sense tied to the Dirac representation of the Dirac matrices given in Eq. 5. One has to (i) identify the odd (in spinor space) part of the Hamiltonian H and denote this odd part as O. (ii) One then defines the Hermitian operator $S = -i \beta \mathcal{O} / (2m)$ and the unitary operator $U = \exp(iS)$. (iii) The calculation of multiple nested commutators of U and H proceeds until further nested commutators only yield higher-order terms when expressed in terms of defined operational parameters of the expansion. (iv) If there are odd terms left after the first transformation, to the desired order in the expansion, one then employs a second Foldy–Wouthuysen transformation by identifying the odd part of the new Hamiltonian, which resulted from the first Foldy–Wouthuysen step, as O'. One does this recursively until all odd parts of the input Hamiltonian are eliminated. In the case of the free Dirac Hamiltonian, it is possible to perform a Foldy–Wouthuysen transformation to all orders in the moments [30], but one may also choose a perturbative approach (see Appendix A). However, an exact Foldy–Wouthuysen transformation has not been described for more complicated Hamiltonians like the Dirac–Coulomb Hamiltonian [27, 28]

$$H_{DC} = \vec{\alpha} \cdot \vec{p} + \beta m - \frac{Z \alpha}{r},$$

where Z is the nuclear charge number and α is the fine-structure constant, or for other, nontrivial extensions of the standard free Dirac equation [33]. The Dirac–Schwarzschild Hamiltonian [13] still is of an intricate nature. A nonperturbative Foldy–Wouthuysen transformation has not been described in the literature for the Dirac–Coulomb Hamiltonian [16], and we can thus conclude that a perturbative approach seems most promising for the Dirac–Schwarzschild Hamiltonian.

For the gravitational correction terms, the expansions below are carried through to to first order in $\xi = r_s / r$ and to third order in $\xi = \vec{p} / m \xi = 1 / (m r)$, and we assume the exchanged photons to be soft, i.e., $k = \xi^2 m$. This is the same expansion as for the Lamb shift [30, 31] if we identify χ with $Z \alpha$, where Z is the nuclear charge number, and α is the fine-structure constant. Terms are calculated up to order χ^3 if there is no gravitational interaction, and up to order $\xi \chi^3$ if there is a gravitational interaction. Terms of order ξ^2 (second order in the gravitational interaction) are ignored.

To leading order in r_s, we have to analyze the Hamiltonian $H_1 = H_{DS}$ as given in Eq. [13]. For the first Foldy–Wouthuysen transformation, we therefore have

$$S_1 = -i \frac{1}{2m} \beta \mathcal{O}_1, \quad \mathcal{O}_1 = \frac{1}{2} \left\{ \vec{\alpha} \cdot \vec{p}, \left(1 - \frac{r_s}{r} \right) \right\}.$$

The transformation is calculated as

$$H_2 = e^{i S_1} H_1 e^{-i S_1},$$

$$= H_1 + i [S_1, H_1] + \frac{i^2}{2!} [S_1, [S_1, H_1]] + \ldots$$

The result is

$$H_2 = \beta \left(m + \frac{\vec{p}^2}{2m} - \frac{\vec{p}^4}{8m^3} \right) - \beta \frac{m r_s}{2r}$$

$$+ \beta \left(\frac{3r_s}{8m} \left\{ \vec{p}^2 \frac{1}{r} \right\} + \frac{3\pi r_s}{4m} \delta(\vec{r}) + \frac{3r_s}{8m} \frac{\vec{S} \cdot \vec{L}}{r^3} \right)$$

$$- \left\{ \vec{\alpha} \cdot \vec{p} \right\}^3 + \frac{1}{4} \left\{ \frac{r_s}{r}, \vec{\alpha} \cdot \vec{p} \right\}. \quad (19)$$

A central ingredient of the Foldy–Wouthuysen transformation is presence of the term βm in the initial Hamiltonian and the commutator relation $[\beta \mathcal{O}, \beta m] = -2m \mathcal{O}$ in the Hamiltonian. Indeed, the first commutator in equation [13] then eliminates the leading odd terms in the initial Hamiltonian H_1. One might think that this scheme is not applicable to the Hamiltonian [13], because the mass term is multiplied by a factor $[1 - r_s / (2r)]$, but this is not the case: The nature of the Foldy–Wouthuysen transformation is perturbative, and the term $-\beta m r_s / (2r)$ is a perturbative gravitational correction to the mass. The modification of the mass term therefore is of higher order in χ and does not inhibit the application of the perturbative approach to the Foldy–Wouthuysen transformation.

For the second Foldy–Wouthuysen transformation, we have

$$S_2 = -\frac{1}{2m} \beta \mathcal{O}_2, \quad \mathcal{O}_2 = -\left\{ \vec{\alpha} \cdot \vec{p} \right\}^3 + \frac{1}{4} \left\{ \frac{r_s}{r}, \vec{\alpha} \cdot \vec{p} \right\}.$$

The transformation is calculated as $H_{FW} = e^{i S_2} H_2 e^{-i S_2}$. Taking notice of the well-known identity $\vec{p}^2 (\frac{\vec{L}}{r}) = 4 \pi \delta^{(3)}(\vec{r})$, the Foldy–Wouthuysen transformation gives the result,

$$H_{FW} = \beta \left(m + \frac{\vec{p}^2}{2m} - \frac{\vec{p}^4}{8m^3} \right) - \beta \frac{m r_s}{2r}$$

$$+ \beta \left(-\frac{3r_s}{8m} \left\{ \vec{p}^2 \frac{1}{r} \right\} + \frac{3\pi r_s}{4m} \delta^{(3)}(\vec{r}) + \frac{3r_s}{8m} \frac{\vec{S} \cdot \vec{L}}{r^3} \right). \quad (21)$$

The very last term on the right-hand side of Eq. [21] describes the gravitational spin-orbit coupling; it is in agreement with the classical result for the interaction of a spinning classical particle with the gravitational field, which is otherwise known as the geodesic precession or Fokker precession [43, 47]. When comparing the spin-orbit term with Eq. (26) of Ref. [47], which has a prefactor of $3/2$ instead of $3/8$, one should take note that the spin operator carries a factor one half ($\vec{S} = \frac{1}{2} \vec{\Sigma}$), and there is an additional factor 2 in the definition of
the Schwarzschild radius. The prefactor β in Eq. 21 describes the particle-antiparticle symmetry, which cannot be obtained based on classical considerations. The result thus offers a straightforward physical interpretation, as follows: First, we have the usual relativistic corrections to the kinetic energy. The second term on the right-hand side of Eq. 21 is the gravitational potential, duly decorated with a β prefactor which ensures that antiparticles are attracted. The third term consists of a kinetic correction to the gravitational coupling, and a Darwin (zitterbewegung) term which is not experimentally relevant because it is located at the center of the planet, i.e., inside the Schwarzschild radius. However, for completeness, we should include this term. Finally, the spin-orbit coupling term commutes with the Dirac angular operator $K = \beta (\vec{\Sigma} \cdot \vec{L} + 1)$ and with the total angular momentum (orbital+spin).

Let us conclude the discussion by pointing out a subtlety. One might think that, if the total angular momentum operator commutes with the Hamiltonian, then it should automatically commute with the Foldy–Wouthuysen transformed Hamiltonian. However, that is not the case. If \mathcal{A} is an operator that commutes with the Hamiltonian, $[\mathcal{A}, H] = 0$, and $H_{FW} = U H_{DS} U^{-1}$, then the transformed operator $A_{FW} = U A U^{-1}$ commutes with H_{FW}. This can be seen as follows,

$$[H_{FW}, A_{FW}] = U [H_{DS}, A] U^{-1} = 0$$ (22)

So, if \mathcal{J} commutes with H_{DS}, then this does not automatically mean that \mathcal{J} commutes with H_{FW}. Let us recall that the total angular momentum \mathcal{J} and the Dirac angular operator K are defined as follows,

$$\mathcal{J} = \vec{L} + \frac{i}{2} \vec{\Sigma}, \quad K = \beta \left(\vec{\Sigma} \cdot \vec{L} + 1 \right).$$ (23)

We can establish the following commutator relations,

$$[H_{DS}, K] = 0, \quad [H_{DS}, \mathcal{J}] = 0. \quad (24a)$$

$$[H_{FW}, K] = 0, \quad [H_{FW}, \mathcal{J}] = 0. \quad (24b)$$

In view of 22, it is not a triviality to separately establish that both \mathcal{J} and K commute with H_{DS} and H_{FW}, individually, but the relations hold. Eigenfunctions of H_{DS} and of H_{FW} are eigenstates of \mathcal{J} and K, i.e., the spinor components of the eigenfunction are $\chi_{\kappa\mu}(\vec{r})$ (upper component) and $\chi_{-\kappa\mu}(\vec{r})$ (lower component), and they have the same $j = |\kappa| - 1/2$.

B. Transformation of the Transition Current

The main result derived in the current work concerns the Foldy–Wouthuysen Hamiltonian H_{FW} derived in Eq. 21. However, it is also interesting to investigate the gravitational corrections to the electromagnetic transition current. The transition current operator for the emission of transverse photons in flat space is given by

$$j^i = \frac{1}{2} \left\{ 1 - \frac{r_s}{r}, \alpha^i \exp(i \vec{k} \cdot \vec{r}) \right\}$$ (25)

We now employ the multipole expansion

$$\alpha^i \exp(i \vec{k} \cdot \vec{r}) \approx \alpha^i + \alpha^i (i \vec{k} \cdot \vec{r}) - \frac{1}{2} \alpha^i (\vec{k} \cdot \vec{r})^2$$ (26)

in Eq. 25. A subsequent calculation of the Foldy–Wouthuysen transformation $j_{FW} = U j^i U^{-1}$ of the transition current [with $U = \exp(i S_2)$] gives the result,

$$j_{FW}^i = \frac{p^i}{m} - \frac{p^i \vec{p}^2}{2m} - \frac{1}{2m} \left(\vec{k} \times \vec{\sigma} \right)^i + \frac{1}{2} \left\{ \frac{p^i}{m}, (i \vec{k} \cdot \vec{r}) \right\}$$

$$- \frac{1}{4} \left\{ \left(\vec{k} \cdot \vec{r} \right)^2 \frac{p^i}{m} + \frac{1}{2m} \left(\vec{k} \cdot \vec{r} \right) \left(\vec{k} \times \vec{\sigma} \right)^i \right\}$$

$$- \frac{3}{4} \left\{ \frac{p^i}{m} \frac{r_s}{r} \right\} + \frac{r_s}{2r} \frac{\left(\vec{\sigma} \times \vec{r} \right)^i}{m}$$

$$- \frac{1}{2} \left\{ (i \vec{k} \cdot \vec{r}), \left(\frac{p^i}{m}, \frac{r_s}{r} \right) \right\} + \frac{3 i r_s (\vec{k} \times \vec{\sigma})^i}{4r}$$

$$+ \frac{1}{4} \left\{ \frac{r_s}{r} (i \vec{k} \cdot \vec{r}), \frac{p^i}{m} \right\}.$$ (27)

In addition to the canonical corrections to the relativistic transition current \mathcal{J} (kinetic corrections and magnetic coupling), this result contains a gravitational kinetic correction, and gravitational corrections to the magnetic coupling.

IV. CONCLUSIONS

In this paper, we investigate the nonrelativistic limit of the gravitationally coupled Dirac Hamiltonian for a Dirac particle bound to the gravitational field of a planet. In order to calculate the relativistic corrections in the gravitational field, we carry out a Foldy–Wouthuysen transformation with relativistic corrections up to fourth order in the momenta and up to fourth “combined” order in the momenta and the gravitational interaction, i.e., we include terms of third order in the momenta (\vec{p}^2) and first order in the gravitational constant G. Within our
expansion, we have $|\vec{p}| \sim \xi m$, where m is the fermion mass. Our calculations are thus valid up to the orders ξ^4 and χ^3, where $\chi = r_s/r$ is the gravitational expansion parameter. We verify that the equivalence principle holds for the gravitational interaction of particles and antiparticles, based on an inspection of the functional form of the relativistic corrections, which are all proportional to the $\beta \equiv \gamma^0$ matrix [see Eqs. (4) and (21)]. A coupling term proportional to $\Sigma \cdot \vec{g}$, where \vec{g} is the acceleration due to gravity, would otherwise break parity and the equivalence principle. The conceivable existence of such a term has been discussed at various places in the literature; we find that it vanishes.

One may wonder if the spin operator in our gravitational spin-orbit coupling really describes the physical spin of the electron. In order to shed light on this question, we first observe that the total angular momentum $\vec{J} = \vec{L} + \vec{S} = \vec{L} + \frac{1}{2} \vec{\Sigma}$ of the electron commutes with the free Dirac Hamiltonian (a particularly clear exposition can be found in Sec. 11.3 of Ref. [49]), as well as the Dirac–Coulomb Hamiltonian [27–29] and the Dirac–Schwarzschild Hamiltonian [see Eq. (21)]. One may attempt to construct a “relativistic” spin operator \vec{Z} [see Eq. (22) of Ref. [51]] whose square \vec{Z}^2 “alone” (without any addition of orbital angular momentum) commutes with the fully relativistic Dirac Hamiltonian [50, 51].

In nonrelativistic limit accessed by the Foldy–Wouthuysen transformation, all “relativistic” spin operators discussed so far in the literature approach the limit of $\vec{S} = \frac{1}{2} \vec{\Sigma}$ [see Eq. (16) of Ref. [51] and the text following Eq. (4) of Ref. [51]]. We can thus uniquely identify our result as the gravitational spin-orbit coupling term corresponding to the classical geodesic precession (Fokker precession) of a spinning object in the gravitational field [43], formulated within quantum mechanics and respecting the particle-antiparticle symmetry (prefactor β). The spin of the electron precesses due to the coupling to the gravitational field, without violating parity symmetry. We also find the gravitational analogue of the zitterbewegung term, in the Foldy–Wouthuysen transformed Dirac–Schwarzschild Hamiltonian [21]. The result is complemented by the gravitational corrections to the transition current [27].

Acknowledgments

The authors acknowledge helpful conversations with T. N. Moentmann, Professor M. I. Eides as well as support by the National Science Foundation (Grant PHY–1068547) and by the National Institute of Standards and Technology (precision measurement grant).

Appendix A: Foldy–Wouthuysen of the Free Dirac Hamiltonian

It is instructive to carry out the Foldy–Wouthuysen transformation of the free Dirac Hamiltonian, in exactly the same two-step approach, with two iterative transformations, as described in Ref. [30] for the Dirac–Coulomb Hamiltonian (keeping in mind that the Foldy–Wouthuysen transformation of the free Dirac Hamiltonian can otherwise be carried out in a single step). The free Dirac Hamiltonian is given as,

$$H_{FD} = H_1 = \alpha \cdot \vec{p} + \beta m.$$ \hspace{1cm} (A1)

For the first Foldy–Wouthuysen transformation, we have

$$S_1 = -\frac{i}{2m} \beta \mathcal{O}_1, \quad \mathcal{O}_1 = \alpha \cdot \vec{p}.$$ \hspace{1cm} (A2)

The transformation is calculated as

$$H_2 = e^{iS_1} H_1 e^{-iS_1}.$$ \hspace{1cm} (A3)

This leads to the result

$$H_2 = \beta \left(m + \frac{\vec{p}^2}{2m} - \frac{\vec{p}^4}{8m^3} \right) - \frac{(\alpha \cdot \vec{p})^3}{3m^2}.$$ \hspace{1cm} (A4)

For the second Foldy–Wouthuysen transformation, we have

$$S_2 = -\frac{i}{2m} \beta \mathcal{O}_2, \quad \mathcal{O}_2 = -\frac{(\alpha \cdot \vec{p})^3}{3m^2}.$$ \hspace{1cm} (A5)

The transformation is calculated as

$$H_{FW} = e^{iS_2} H_2 e^{-iS_2}.$$ \hspace{1cm} (A6)

The transformed Hamiltonian is

$$H_{FW} = \beta \left(m + \frac{\vec{p}^2}{2m} - \frac{\vec{p}^4}{8m^3} \right).$$ \hspace{1cm} (A7)

This result corresponds to our Eq. (21) is the limit of vanishing r_s, as it should.

All unitary transformations discussed here respect the basic symmetries of the Dirac Hamiltonian such as parity. This is essential; as an extreme example, let us briefly supplement the discussion by considering the nonrelativistic free Schrödinger Hamiltonian $H_0 = \vec{p}^2/(2m)$ and the unitary transformation $U = \exp(i\vec{A} \cdot \vec{r})$, where \vec{A} is a constant vector. Then, $H'_0 = U H_0 U^+ = (\vec{p} - \vec{A})^2/(2m)$. Upon binomial expansion, one obtains a term proportional to $\vec{A} \cdot \vec{p}$, which breaks parity. However, the parity-breaking term in H'_0 is an artefact generated by the parity-breaking unitary transformation. As a further illustrative remark, let us consider the the transformation S_1, given in Eq. (A2), under parity,

$$S_1 = -\frac{i}{2m} \beta \alpha \cdot \vec{p}$$

$$\mathcal{O}_1 \to \beta \left[-\frac{i}{2m} \beta \alpha \cdot (-\vec{p}) \right] \beta = \frac{i}{2m} \alpha \cdot \vec{p} \beta = S_1.$$ \hspace{1cm} (A8)

By construction, the iterative Foldy–Wouthuysen transformations discussed here respect parity symmetry, and so does the final result given in Eq. (21).
[1] R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975).
[2] U. Bonse and T. Wroblewski, Phys. Rev. Lett. 51, 1401 (1983).
[3] U. Bonse and T. Wroblewski, Phys. Rev. D 30, 1214 (1984).
[4] O. S. Ivanitskaya, Extended Lorentz transformations and their applications (in Russian) (Nauka i Technika, Minsk, USSR, 1969).
[5] O. S. Ivanitskaya, Lorentzian basis and gravitational effects in Einstein's theory of gravity (in Russian) (Nauka i Technika, Minsk, USSR, 1969).
[6] N. V. Mitskevich, Physical fields in general relativity (in Russian) (Nauka, Moscow, 1969).
[7] A. K. Gorbatsievich, Quantum mechanics in general relativity. Basic principles and elementary applications (Nauka i Technika, Minsk, 1985).
[8] O. S. Ivanitskaya, N. V. Mitskevich, and Y. S. Vladimirov, in Proceedings of the 114th Symposium of the International Astronomical Union held in Leningrad, USSR, May 1985, edited by J. Kovelevsky and V. A. Brumberg (Kluwer, Dordrecht, 1985), pp. 177–186.
[9] R. Penrose and W. Rindler, Spinors and space-time — Vol. 1 (Cambridge University Press, Cambridge, UK, 1987).
[10] R. Penrose and W. Rindler, Spinors and space-time — Vol. 2 (Cambridge University Press, Cambridge, UK, 1987).
[11] D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).
[12] D. G. Boulware, Phys. Rev. D 12, 350 (1975).
[13] M. Soffel, B. Müller, and W. Greiner, J. Phys. A 10, 551 (1977).
[14] V. M. Redkov, Nonlinear Phenomena in Complex Systems 7, 250 (2011).
[15] J. Yepez, Einstein’s vierbein field theory of curved space, e-print arXiv:1106.2037v1 [gr-qc].
[16] U. D. Jentschura, Phys. Rev. A 87, 032101 (2013), [Erratum: Phys. Rev. A 87, 069903 (2013)].
[17] F. W. Hehl and W.-T. Ni, Phys. Rev. D 42, 2045 (1990).
[18] A. Peres, Phys. Rev. D 18, 2739 (1978).
[19] Y. N. Obukhov, Phys. Rev. Lett. 86, 192 (2001).
[20] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
[21] N. Nicolaevici, Phys. Rev. Lett. 89, 068902 (2002).
[22] Y. N. Obukhov, Phys. Rev. Lett. 89, 068903 (2002).
[23] A. J. Silenko and O. V. Teryaev, Phys. Rev. D 71, 064016 (2005).
[24] A. J. Silenko, Phys. Rev. A 77, 012116 (2008).
[25] Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Phys. Rev. D 84, 024025 (2011).
[26] B. Goncalves, Y. N. Obukhov, and I. L. Shapiro, Phys. Rev. D 80, 125034 (2009).
[27] R. A. Swainson and G. W. F. Drake, J. Phys. A 24, 79 (1991).
[28] R. A. Swainson and G. W. F. Drake, J. Phys. A 24, 95 (1991).
[29] R. A. Swainson and G. W. F. Drake, J. Phys. A 24, 1801 (1991).
[30] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
[31] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).
[32] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).
[33] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Cambridge, Massachusetts, 1995).
[34] M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007).
[35] F. P. A. M. Dirac, General Relativity (Wiley, New York, NJ, 1975).
[36] R. M. Wald, General Relativity (University of Chicago Press, Chicago, IL, 1984).
[37] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, UK, 1992).
[38] B. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, UK, 2009).
[39] T. Padmanabhan, Gravitation — Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010).
[40] P. A. M. Dirac, General Theory of Relativity (Princeton University Press, Princeton, 1996).
[41] A. S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, England, 1924).
[42] S. Wolfram, The Mathematica Book, 4 ed. (Cambridge University Press, Cambridge, UK, 1999).
[43] T. J. Yoder and G. S. Adkins, Phys. Rev. D 86, 116005 (2012).
[44] U. D. Jentschura, Master Thesis: The Lamb Shift in Hydrogenlike Systems, [in German: Theorie der Lamb-Verschiebung in wasserstoffartigen Systemen], (University of Munich, 1996, unpublished (see e-print hep-ph/0305065)).
[45] A. D. Fokker, Kon. Akad. Wetten. Amsterdam. Proc. 23, 729 (1920).
[46] I. B. Khriplovich, in Gyros, Clocks, Interferometers... Testing Relativistic Gravity in Space (Lecture Notes in Physics 562), edited by C. Lämmertz, C. W. F. Everitt, and F. W. Hehl (Springer, Heidelberg, 2001), pp. 109–128.
[47] I. B. Khriplovich, Acta Phys. Polon. B Proc. Suppl. 1, 197 (2008).
[48] U. Jentschura and K. Pachucki, Phys. Rev. A 54, 1853 (1996).
[49] V. Devanathan, Quantum Mechanics (Alpha Science, Oxford, UK, 2005).
[50] L. H. Ryder, Gen. Relativ. Gravit. 31, 775 (1999).
[51] H. Bauke, S. Ahrens, C. H. Keitel, and R. Grobe, What is the relativistic spin operator?, e-print arXiv:1303.3862v1 [quantum-ph].