Resonant inelastic scattering spectra at the Ir L-edge in Na$_2$IrO$_3$

Jun-ichi Igarashi1 and and Tatsuya Nagao2

1Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
2Faculty of Engineering, Gunma University, Kirya, Gunma 376-8515, Japan
(Dated: January 12, 2018)

We analyze resonant x-ray scattering (RIXS) spectra in Na$_2$IrO$_3$ on the basis of the itinerant electron picture. Employing a multi-orbital tight-binding model on a honeycomb lattice, we find that the zigzag magnetic order is the most stable with sizable energy gap in the one-electron band within the Hartree-Fock approximation. We derive the RIXS spectra, which are connected to the generalized density-density correlation function. We calculate the spectra as a function of excitation energy ω, within the random phase approximation. The spectra consist of the peaks with $\omega < 20$ meV, and of the peaks with $0.4 < \omega < 0.8$ eV. The former peaks are composed of four bound states in the density-density correlation function, and may be identified as the magnetic excitations, while the latter peaks are composed of sixteen bound states below the energy continuum of individual electron-hole pair excitations, and may be identified as the excitonic excitations. The calculated spectra agree qualitatively with the recent RIXS experiment.

PACS numbers: 71.10.Fd 75.30.Gw 71.10.Li 71.20.Be

I. INTRODUCTION

Resonant inelastic x-ray scattering (RIXS) has attracted much interest as a useful tool probing the elementary excitations in the materials. It could directly access to the d states in transition-metal compounds by using the L-edge resonance. The magnetic excitations have been clearly detected due to recent instrumental improvement of the energy resolution. In this respect, RIXS could be compared with inelastic neutron scattering (INS). In particular, RIXS provides a valuable tool for the study of magnetic order when some isotopes show strong neutron absorption. Iridium, for instance, is the case where its main isotopes are strong neutron absorbers.

Recently, the elementary excitations in iridium oxides, such as CaIrO$_3$, Sr$_2$IrO$_3$, and Na$_2$IrO$_3$, have been investigated by RIXS experiments. Such $5d$ transition-metal compounds have drawn much attention, since their physical properties would be quite different from those of the $3d$ transition-metal compounds because of the competition between the large spin-orbit interaction (SOI) and the Coulomb interaction. Among them, we focus on Na$_2$IrO$_3$ in this paper. Its crystal structure belongs to the space group $C2/m$ [24], where Ir$^{4+}$ ions constitute approximately two-dimensional honeycomb lattice with a Na ion located at its center. It is revealed to be a magnetic insulator with a zigzag spin order on the honeycomb lattice [25]. In the RIXS experiment, the spectra as a function of excitation energy ω show peaks with $\omega < 35$ meV [10,11], which may be associated with the magnetic excitations. The INS experiment has detected similar peaks much lower region below 6 meV [12]. In addition, there exist peaks with $0.4 < \omega < 0.8$ eV [10,11], which may be associated with the excitonic excitations.

The spin order as well as the magnetic excitations have been studied theoretically on the basis of the localized electron picture. In these studies, spin models of Kitaev-Heisenberg type with the spin-orbital coupled isospin $J_{\text{eff}} = \frac{1}{2}$ [18,22] and of more generic types of models [23–25] have been introduced. On the other hand, the band structure calculations based on the density functional theory (DFT) have been carried out [26–28]. By making the self-interaction correction (SIC) to the DFT, it is found that the zigzag spin order is realized as the ground state, and that the energy band has an energy gap ~ 0.5 eV [29]. Although such itinerant-electron approaches look promising, the elementary excitations have not been calculated yet along this line. In our previous paper, employing a tight-binding model on a honeycomb lattice, we have calculated the generalized density-density correlation function within the random phase approximation (RPA) on a zigzag spin ordered ground state given by the Hartree-Fock approximation (HFA) [29]. Though the calculated correlation function has captured some of the qualitative aspects of the low energy excitation scheme exhibited in the RIXS data, a direct comparison between the experiment and the theoretical RIXS spectra may be a next requirement.

As regards the RIXS spectra, no theoretical attempt has been done within the itinerant electron picture. Therefore, in this paper, we formulate the RIXS spectra connected to the density-density correlation function on the basis of the itinerant model introduced in our previous work [29]. With the revised parameter values of the tight-binding model, we calculate the RIXS spectra within the HFA-RPA scheme. Note that the HFA-RPA scheme has worked well when the antiferromagnetic long-range order is established, even if the system is strongly correlated, such as La$_2$CuO$_4$ [30] and Sr$_2$IrO$_3$ [32]. In the present case, the HFA to the tight-binding model leads to a magnetic insulator with the zigzag spin order in the ground state, although the energy differences from those of the Néel or stripy orders are obtained as small as ~ 50 meV per Ir ion. We have the energy gap ~ 0.8 eV in the one-electron energy band with the conduction band...
composed mainly of the \(J_{\text{eff}} = \frac{1}{2} \) states. These results are consistent with the SIC-DFT calculation\(^{22} \).

In formulating the RIXS spectra, we adopt the fast collision approximation (FCA), which is justified when the Ir 2p-level life-time broadening width is larger than the relevant excitation energy. Then, the RIXS spectra are connected to the density-density correlation function. We evaluate the formula of the RIXS spectra as a function of \(\omega \) for momentum transfer \(\mathbf{q} \) along symmetry directions within the RPA. We obtain the peaks for \(\omega < 20 \) meV, which are originated from four bound states in the density-density correlation function. We also obtain the peaks for \(0.4 < \omega < 0.8 \) eV, which are originated from sixteen bound states in the density-density correlation function below the energy continuum of individual electron-hole pair excitations. The calculated spectra are in qualitative agreement with the RIXS experiments\(^{10,11} \).

The present paper is organized as follows. In Sec. II, we introduce a multi-orbital tight-binding model and carry out the HFA to the model. In Sec. 3, introducing the dipole transition, we formulate the RIXS spectra in terms of the density-density correlation function within the FCA, which is expressed within the RPA. In Sec. 4, we present the numerical calculations. Section 5 is devoted to the concluding remarks.

II. MODEL AND THE HARTREE-FOCK APPROXIMATION

A. Description of model

Neglecting the crystal distortion, we assume each Ir ion in Na\(_2\)IrO\(_3\) resides around the center of oxygen octahedra. The energy level of the \(c_g \) orbitals of Ir atom is about 2-3 eV higher than that of the \(t_{2g} \) orbitals due to the crystal electric field of IrO\(_6\). Therefore, taking account of only \(t_{2g} \) orbitals, we employ a multi-orbital tight-binding model on a honeycomb lattice, which is defined by

\[
H = H_{\text{SO}} + H_1 + H_{\text{kin}}, \tag{2.1}
\]

with

\[
H_{\text{SO}} = \sum_{i} \sum_{n,n',\sigma} \sum_{\sigma'} \langle \mathbf{L} \rangle_{n\sigma} \cdot \langle \mathbf{S} \rangle_{\sigma\sigma'} d_{in\sigma}^\dagger d_{in'\sigma'}, \tag{2.2}
\]

\[
H_1 = U \sum_{i,n} n_{i\sigma} n_{i\sigma'} + \sum_{i,n,n',\sigma} [U' n_{i\sigma} n_{i\sigma'} - \sigma + (U' - J) n_{i\sigma} n_{i\sigma'}] + J \sum_{i,n,n',\sigma} (d_{i\sigma}^\dagger d_{i\sigma'\downarrow} d_{i\sigma'\downarrow} d_{i\sigma'} + d_{i\sigma}^\dagger d_{i\sigma'\downarrow} d_{i\sigma'\uparrow} d_{i\sigma'+\uparrow}), \tag{2.3}
\]

\[
H_{\text{kin}} = \sum_{(i,i')} \sum_{n,n',\sigma} \langle \bar{T}_{i,i'} \rangle_{n,n'} d_{in\sigma}^\dagger d_{in'\sigma} + \text{H.c.}, \tag{2.4}
\]

where the annihilation \((d_{in\sigma})\) and creation \((d_{in\sigma}^\dagger)\) operators are for the 5d electron with orbital \(n \) \((= yz, zx, xy)\) and spin \(\sigma \) at the Ir site \(i \), and \(n_{i\sigma} \equiv d_{i\sigma}^\dagger d_{i\sigma} \).

The \(H_{\text{SO}} \) stands for the SOI of 5d electrons with \(L \) and \(S \) denoting the orbital and spin angular momentum operators, respectively. The \(H_1 \) represents the Coulomb interaction among the \(t_{2g} \) electrons, satisfying \(U = U' + 2.33 \). We use the values \(\zeta_{\text{SO}} = 0.45 \) eV, \(U = 1.4 \) eV, and \(J/U = 0.15 \) in the following calculation. Similar values of the parameters have been utilized for Ir atom in Sr\(_2\)IrO\(_3\),\(^{22} \).

The \(H_{\text{kin}} \) stands for the kinetic energy of 5d electrons with the hopping matrix \(\bar{T}_{i,i'} \) between the sites \(i \) and \(i' \). The summation \(\langle i,i' \rangle \) is restricted within the nearest neighbor Ir ions. There exist two kinds of transfer mechanisms between the Ir 5d orbitals. The first one is a direct transfer between the Ir 5d orbitals, which may be described by means of the Slater-Koster parameters, \(V_{dd\sigma} \), \(V_{dd\pi} = -2V_{dd\sigma}/3 \), and \(V_{dd\delta} = V_{dd\sigma}/6 \). We may evaluate \(V_{dd\sigma} = -0.511 \) eV by applying Harrison’s procedure\(^{22} \). The second one is an indirect transfer via oxygen 2p-orbitals. Since the energy required for transferring the electron from oxygen 2p levels to Ir 5d levels is rather large, the effective transfer between 5d orbitals may be estimated by the second-order perturbation. Hence the hopping matrix \(\bar{T}_{i,i'}^{(pd)} \) may be expressed in a matrix form with the bases \(n \equiv yz, zx, xy \) in order:

\[
\begin{pmatrix}
0 & 0 & t_p \\
0 & 0 & 0 \\
t_p & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & -t_p \\
0 & -t_p & 0
\end{pmatrix}, \begin{pmatrix}
0 & -t_p & 0 \\
0 & 0 & 0 \\
-t_p & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & t_p & 0 \\
0 & 0 & 0 \\
-t_p & 0 & 0
\end{pmatrix}, \tag{2.5}
\]

where \((i,i')\) belongs to bonds 1, 2, and 3, respectively, with the bonds defined in figure 1 (a). The \(t_p \) may be as large as \(\sim 0.25 \) eV, which value is similar to the one used in the study of Sr\(_2\)IrO\(_3\). The opposite sign had been assigned to \(t_p \) in our previous paper\(^{22} \).
B. Hartree-Fock Approximation

We carry out the HFA by following the procedure given in22. In that process, we rewrite the Hamiltonian in terms of the Fourier transformed operator with the wave vector \mathbf{k} within the first magnetic Brillouin zone (MBZ) shown in figure II(b):

\begin{equation}
\begin{aligned}
d_{\Lambda\sigma}(\mathbf{k}) = (4/N)^{\frac{1}{2}} \sum_{i \in \Lambda} d_{i\alpha\sigma} e^{-i\mathbf{k}\cdot\mathbf{r}_i}.
\end{aligned}
\end{equation}

Here, Λ specifies one of the four sublattices A, B, C, and D, and N is the number of Ir ions. The first MBZ is divided into 40 × 40 meshes in the numerical calculation. The parameter values are set $\zeta_{SO} = 0.45$ eV, $U = 1.4$ eV, $J/U = 0.15$, $V_{ddz} = -0.511$ eV, and $t_p = 0.25$ eV.

The staggered magnetic moment is known to be directing to the a axis by the experiment15. Fixing the staggered moment parallel to the a axis, we carry out the HFA to evaluate the energies of the zigzag, Néel, and stripy ordered states. We find the zigzag ordered state is the most stable. Its energy per Ir ion is 0.09 eV and 0.04 eV smaller than that of the Néel ordered state and that of the stripy ordered state, respectively. The orbital and spin moments align anti-parallel to each other at each site, and their magnitudes are $|\langle L_a \rangle| = 0.51$ and $|\langle S_a \rangle| = 0.16$, respectively, where $\langle X \rangle$ represents the ground state average of operator X. Hence the total magnetic moment is evaluated as 0.19 μ_B, which is comparable to the experimental value of 0.22 μ_B.

Figure 2 shows the one-electron energy as a function of \mathbf{k} along symmetry directions in the zigzag ordered state. Each line is doubly degenerate. Hence there exist four states per unit cell in the conduction band. The energy gap is found as large as 0.15 eV and 0.04 eV smaller than that of the Néel ordered state and of the stripy ordered states. We find the zigzag ordered state is the most stable. Its energy per Ir ion is 0.09 eV and 0.04 eV smaller than that of the Néel ordered state and that of the stripy ordered state, respectively. The orbital and spin moments align anti-parallel to each other at each site, and their magnitudes are $|\langle L_a \rangle| = 0.51$ and $|\langle S_a \rangle| = 0.16$, respectively, where $\langle X \rangle$ represents the ground state average of operator X. Hence the total magnetic moment is evaluated as 0.19 μ_B, which is comparable to the experimental value of 0.22 μ_B.

III. FORMULATION OF RIXS SPECTRA

A. Dipole transition at the Ir L edge

In the dipole transition, the $2p$ core-electron is excited to the 5d states by absorbing photon at the L edge (and the reverse process). This process may be described by the interaction

\begin{equation}
\begin{aligned}
H_2 = \sum_{i} \sum_{n,s,j_i,m,\lambda} w(n\sigma; j_i m; \lambda) \\
\times \sum_{\mathbf{q}} [d_{i\alpha\sigma}^\dagger \Phi_{lj,m}(\mathbf{k}) c_{\alpha}(\mathbf{q}) e^{-i\mathbf{G}\cdot\mathbf{a}_\lambda} + \text{H.c.}],
\end{aligned}
\end{equation}

where $c_{\alpha}(\mathbf{q})$ is the annihilation operator of photon with momentum \mathbf{q} and polarization α. The $\Phi_{lj,m}$ is the annihilation operator of core electron with the angular momentum $j_e (= \frac{3}{2}, \frac{1}{2})$, and magnetic quantum number m

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure2.png}
\caption{One-electron energy as a function of \mathbf{k} along symmetry directions within the HFA. Parameters are set $V_{ddz} = -0.511$ eV, $t_p = 0.25$ eV, $\zeta_{SO} = 0.45$ eV, $U = 1.4$ eV, and $J/U = 0.15$. The origin of energy is set at the top of the valence band. Each band is doubly degenerate.

at site i. The $w(n\sigma; j_i m; \alpha)$ represents the matrix elements of the $2p \rightarrow 5d$ transition, which explicit values for $\alpha = x, y, z$ and z are listed in Table I of15. In the Fourier transform representation, 15 may be rewritten as

\begin{equation}
\begin{aligned}
H_2 = \sum_{\lambda,n,s,j_i,m,\alpha} w(n\sigma; j_i m; \lambda) \\
\times \sum_{\mathbf{k},\mathbf{q}} [d_{i\alpha\sigma}^\dagger \Phi_{lj,m}(\mathbf{k}) c_{\alpha}(\mathbf{q}) e^{-i\mathbf{G}\cdot\mathbf{a}_\lambda} + \text{H.c.}],
\end{aligned}
\end{equation}

with

\begin{equation}
\begin{aligned}
p_{lj,m}(\mathbf{k}) = (4/N)^{\frac{1}{2}} \sum_{i} p_{lj,m} e^{-i\mathbf{k}\cdot\mathbf{r}_i},
\end{aligned}
\end{equation}

where \mathbf{k} is defined on the first MBZ in the honeycomb lattice. The photon momentum \mathbf{q} is now regarded as the photon momentum projected onto the two-dimensional ab plane. Here $\mathbf{k} + \mathbf{q}$ indicates the vector reduced back to the MBZ by a reciprocal vector \mathbf{G}, that is, $\mathbf{k} + \mathbf{q} = (\mathbf{k} + \mathbf{G})$ and \mathbf{a}_λ is defined by (0, 0), (0, 1), ($\sqrt{3}/2$, 3/2), and ($\sqrt{3}/2$, −1/2) in units of a (the nearest neighbor distance) for $\lambda = A, B, C, D$, respectively.

B. Second-order optical process and the scattering geometry

The RIXS spectral intensity may be expressed by the second-order optical process,

\begin{equation}
\begin{aligned}
W(\omega_1, \omega_2; \alpha_1, \alpha_2) = 2\pi \sum_j \sum_n \left| \frac{\langle \Phi_j | H_2 | \Phi_n \rangle \langle \Phi_n | H_2 | \Phi_j \rangle}{\omega_1 + \epsilon_\alpha - \epsilon_n + i\Gamma_c} \right|^2 \\
\times \delta(\omega_1 + \epsilon_\alpha - \omega_2 - \epsilon_{\alpha_2}),
\end{aligned}
\end{equation}
where the initial state $|\Phi_1\rangle$ may be expressed by $c^\dagger_{\alpha_1}(q_1)|0\rangle|g\rangle$ with $|g\rangle$ denoting the ground state of the matter with energy ϵ_g, and $|0\rangle$ denoting the vacuum state with photon, respectively. The intermediate state $|\Phi_n\rangle$ may be expressed by $|0\rangle|n\rangle$ with $|n\rangle$ denoting the intermediate state of the matter with energy ϵ_n, and Γ_c stands for the lifetime broadening width of the 2p-core hole state. The state $|\Phi_f\rangle$ may be expressed by $c^\dagger_{\alpha_f}(q_f)|0\rangle|f\rangle$ with $|f\rangle$ denoting the excited state of the matter with energy ϵ_f. The incident photon has momentum and energy $q_i = (q_i, \omega_i)$ with polarization α_i, while the scattered photon has momentum and energy $q_f = (q_f, \omega_f)$ with polarization α_f. The momentum and energy transferred to the matter are accordingly given by $q = q_i - q_f = (q, \omega)$.

Most of RIXS experiments have been carried out in a horizontal scattering geometry with the scattering angle 2θ set to be close to 90°. In the following analysis, we tentatively assume that the scattering plane is perpendicular to the plane of honeycomb, and is including the b axis, as illustrated in figure 3. Note that only a few degrees of tilt of the scattering plane could sweep the entire Brillouin zone, since $\omega \sim 11.2$ keV at the Ir L_3 edge. In the coordinate frame with a, b, and c axes, the polarization vectors are given by

$$\alpha_i = \begin{cases} (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), & \text{for } \pi \text{ polarization,} \\ (1, 0, 0), & \text{for } \sigma' \text{ polarization,} \\ (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), & \text{for } \pi' \text{ polarization.} \end{cases}$$

Note that the t_{2g} states, $yz, zx, \text{ and } xy$, as well as the polarizations in $w(n\sigma; j\epsilon; m; \alpha)$ are defined in the cubic coordinate frame.

C. Fast collision approximation

Since the value of $\Gamma_c (\sim 2.5 \text{ eV})$ is much larger than a variation of ϵ_n with n, the energy denominator of (3.3) could be factored out in a reasonable accuracy. This procedure is called as the FCA, and (3.4) may be rewritten as

$$W(\omega, q; \alpha_i, \alpha_f) = 2\pi|R(\omega_i, E_0)|^2 \left| \sum_{f'} \langle \Phi_f | H_{\text{int}} | \Phi_{n}\rangle \right|^2 \delta(\omega + \epsilon_g - \epsilon_f)$$

with

$$R(\omega_i, E_0) = \frac{1}{\omega_i - E_0 + i\epsilon_{2p}(j\epsilon_c) + i\Gamma_c},$$

where E_0 stands for a typical energy of the conduction band. Using the Fourier transform representation, (3.7) is rewritten as

$$W(\omega, q; \alpha_i, \alpha_f) = |R(\omega_i, E_0)|^2 \hat{M}(\alpha_i, \alpha_f; j\epsilon_c) \hat{M}^\dagger(\alpha_i, \alpha_f; j\epsilon_c),$$

where

$$\hat{M}(\alpha_i, \alpha_f; j\epsilon_c) = \delta_{\lambda, \lambda'} \sum_{\alpha, \alpha'} \langle \alpha_i | n\sigma; j\epsilon_c m; \alpha \rangle \cdot w^\ast(n\sigma'; j\epsilon_c m; \alpha') \langle \alpha_f | \rangle,$$

with $\xi = (\lambda, n, \sigma) \text{ and } \xi' = (\lambda', n', \sigma')$. The summations for α and α' run over $x, y, $ and z. The $\hat{M}(\alpha_i, \alpha_f; j\epsilon_c)$ is regarded as a vector with 576 dimensions. The $\hat{Y}^+(q)$ represents the generalized density-density correlation function defined by

$$\hat{Y}^+(q, \omega)_{\xi; \xi'; \xi''} = \int_{-\infty}^{\infty} \langle \{ \rho_{q\xi\xi'}(t) \}^\dagger \rho_{q\xi\xi'}(0) \rangle e^{i\omega t} dt,$$

with

$$\rho_{q\xi\xi'}(t) = \langle 4/N \rangle \sum_{k} d_{\xi}^\dagger(\mathbf{k} + q) d_{\xi'}(k) e^{-iG \cdot a_x}.$$

Thereby $\hat{Y}^+(q)$ is a matrix of 576×576 dimensions. Since an extra phase factor $e^{-iG \cdot a_x}$ is contained in (3.12), the RIXS intensities may become different between the inside and the outside of the first MBZ.

D. $\hat{Y}^+(q)$ within the RPA

Now that the RIXS spectra are connected with the density-density correlation function, we outline the procedure to calculate it within the RPA. See [21] for details. Let us introduce the two-particle Green’s function,

$$\hat{Y}^T(q)_{\xi; \xi'; \xi''} = -i \int \langle \{ \rho_{q\xi\xi'}(t) \}^\dagger \rho_{q\xi\xi'}(0) \rangle e^{i\omega t} dt,$$

where T denoting the time ordering operator and $X(t) \equiv e^{iHt} X e^{-iHt}$. By taking account of the multiple scattering between particle-hole pair, it is expressed as

$$\hat{Y}^T(q) = \hat{F}(q)[I + \hat{F}(q)]^{-1} = \left[\hat{F}(q)^{-1} + I \right]^{-1},$$
where $\hat{\Gamma}$ stands for the antisymmetrized vertex function, which is expressed as
\begin{equation}
[\hat{\Gamma}]_{\xi_2 \xi_3 \xi_4 \xi'_{1} \xi'_{2} \xi'_{3} \xi'_{4}} = g(\xi_2 \xi'_{1} ; \xi_3 \xi'_{2}) - g(\xi_2 \xi'_{1} ; \xi_4 \xi'_{3}),
\end{equation}
with g defined by the coefficient in the Coulomb interaction,
\begin{equation}
H_1 = \frac{1}{2} \sum_{i} \sum_{\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}} g(\nu_{1} \nu_{2}; \nu_{3} \nu_{4}) d_{\nu_{1} \nu_{2}}^{\dagger} d_{\nu_{3} \nu_{4}}^{\dagger} d_{\nu_{4} \nu_{3}} d_{\nu_{2} \nu_{1}}.
\end{equation}
Then, $\hat{F}(q)$ in (3.14) is defined as
\begin{equation}
[\hat{F}(q)]_{\xi_2 \xi_3 \xi_4 \xi'_{1} \xi'_{2} \xi'_{3} \xi'_{4}} = -i \frac{4}{N} \sum_{k} \int \frac{dk_{0}}{2\pi} \hat{G}([k+q], k_0 + \omega) [\xi_2 \xi_3] \cdot \left[\hat{G}(k, k_0) \right]_{\xi_1 \xi_4} e^{iG(a_{\lambda} \lambda_{2} - a_{\lambda} \lambda_{1})},
\end{equation}
where $\hat{G}(k, \omega)$ stands for the single-particle Green’s function:
\begin{equation}
\left[\hat{G}(k, \omega) \right]_{\xi \xi'} = -i \int \left(T[d_{\xi}(k, t) d_{\xi'}^{\dagger}(k, 0)] \right) e^{i\omega t} dt.
\end{equation}
This may be written within the HFA as
\begin{equation}
\left[\hat{G}(k, \omega) \right]_{\xi \xi'} = \sum_{\omega} \frac{[\hat{U}(k)]_{\xi \xi'} [\hat{U}(k)^{-1}]_{\xi' \xi}}{\omega - E_{\xi}(k) + i\delta \text{sgn}[E_{\xi}(k)]}.
\end{equation}
where $\text{sgn}[A]$ stands for a sign of quantity A and δ denotes a positive convergent factor. The $E_{\xi}(k)$ and $[\hat{U}(k)]_{\xi \xi'}$ stand for the ξ-th energy eigenvalue measured from the chemical potential and the corresponding wave function, respectively. By inserting (3.19) into (3.17), we have
\begin{align}
[\hat{F}(q)]_{\xi_2 \xi_3 \xi_4 \xi'_{1} \xi'_{2} \xi'_{3} \xi'_{4}} &= \frac{4}{N} \sum_{k} \sum_{\ell, \ell'} U_{\xi_1 \ell}(k+q) U_{\xi_2 \ell}^{\ast}(k) \cdot \\
&\times \left[1 - n_{\ell}(k+q) \right] \frac{n_{\ell}(k)}{\omega - E_{\xi}(k+q) + E_{\ell}(k) + i\delta} - \\
&\times \left[1 - n_{\ell'}(k+q) \right] \frac{n_{\ell'}(k)}{\omega - E_{\xi}(k+q) + E_{\ell'}(k) - i\delta}.
\end{align}
Once we obtain the two-particle Green’s function $\hat{Y}^{\dagger}(q)$, we can evaluate the density-density correlation function $\hat{Y}^{\dagger\dagger}(q)$ with the help of the fluctuation-dissipation theorem,
\begin{equation}
\left[\hat{Y}^{\dagger\dagger}(q) \right]_{\xi_1 \xi_2 \xi_3 \xi'} = i \left\{ \left[\hat{Y}^{\dagger}(q) \right]_{\xi_1 \xi_2 \xi_3 \xi'} - \left[\hat{Y}^{\dagger}(q) \right]_{\xi_3 \xi_1 \xi_2 \xi'}^{\ast} \right\}.
\end{equation}

IV. CALCULATED RESULTS

In addition to the continuous states of individual electron-hole pair excitations, there emerge several bound states as poles in $\hat{Y}^{\dagger\dagger}(q)$. To obtain such bound states, we search for ω giving zero eigenvalue in $\hat{F}(q)^{-1} + \hat{\Gamma}$. In this procedure, we evaluate $\hat{F}(q)$ by summing over k in (3.20) with dividing the MBZ into 40 \times 40 meshes. Let $\omega_{B}(q)$ be the bound-state energy. Then the residue of the pole, which is necessary to calculate the spectral intensity, is evaluated by finite difference between $\omega = \omega_{B}(q)$ and $\omega = \omega_{B}(q) + 0.0001\text{eV}$ in place of the differentiation. In order to compare the calculated RIXS spectra with those of the experiment, we should specify the polarization setting. As given in (3.3) and (3.6), the incident photon with π-polarization is prepared, then, the scattered photons have been collected without separating the σ' and π' polarizations in the experiment. Thus, all the results shown in this section represent the sum of the spectra in the $\pi - \sigma'$ and $\pi - \pi'$ channels.

A. Magnetic excitations

Panel (a) in figure 4 shows the calculated bound-state energy $\omega_{B}(q)$ as a function of q along the symmetry directions in the low-energy region. We find that four gapped excitation modes reside below 20 meV, which may be identified as magnetic excitations. Such small energy scale is consistent with the energy difference between the zigzag and other magnetic orders discussed in Sec. II B. The presence of four modes may be consistent with the spin-wave excitations in the localized $j_{\text{eff}} = \frac{1}{2}$ spin model in the zigzag ordered state. At the K’ point, four modes become two pairs of degenerate modes. Experimentally, the magnetic excitations have been identified below 6 meV by INS and found extending up to 35 meV by RIXS. It suggests there exist at least two magnetic excitations modes, which is consistent with our results. Finally, the excitation energy becomes smaller with q away from the Γ point in qualitative agreement with the RIXS experiment.

Panels (b) and (c) in figure 4 show the RIXS spectra as a function of q for q from the Γ to the M points and the Γ to K’ points, respectively. The δ-function peaks are convoluted with the Lorentzian function with the half width of half maximum 1 meV. Among four modes, two upper-energy modes have intensities much larger than two lower-energy modes in the present scattering geometry.

B. Excitonic excitations

Following the same procedure as the magnetic excitations, we find sixteen bound states for $0.4 < \omega_{B}(q) < 0.8$ eV below the energy continuum of individual electron-hole pair excitations in the density-density correlation function, which may be identified as excitonic excitations. They are composed mainly of a pair of $j_{\text{eff}} = \frac{3}{2}$ electron and $j_{\text{eff}} = \frac{1}{2}$ hole. The presence of sixteen modes may
be consistent with the localized excitations from \(j_{\text{eff}} = \frac{3}{2} \) to \(\frac{1}{2} \) states for four Ir ions in the unit cell of the zigzag ordering state. The continuous spectra are roughly estimated by sorting \(E_{\ell}(k + q) - E_{\ell}'(k) \) into segments with the width 0.05 eV in (3.20), resulting in a histogram representation.

Figure 4 shows the calculated RIXS spectra as a function of \(\omega \) for \(q \) from the \(\Gamma \) to the \(K' \) points. The spectra are convoluted with Lorentzian function with the half width half maximum 0.04 eV. Arrows indicate the lowest boundary of individual electron-hole pair excitations. The spectra have been evaluated within the RPA. In the correlation function, there appear four bound states below 20 meV, and sixteen bound states between 0.4 and 0.8 eV, below the energy continuum of the individual electron-hole pair excitations. These bound states constitute the spectral peaks, which are in qualitative agreement with the RIXS experiment\(^{10,11} \). Note that the HFA-RPA scheme has worked well for describing the excitation spectra in the presence of the antiferromagnetic long-range order in \(\text{La}_2\text{CuO}_4^{30,31} \) and \(\text{Sr}_2\text{IrO}_4^{32} \). The present results are of qualitative nature, based on a simple model and neglecting electron correlations. To be quantitative along the itinerant-electron approach, it may be necessary to use more realistic models, and to go beyond the HFA-RPA.

V. CONCLUDING REMARKS

We have analyzed RIXS spectra in \(\text{Na}_2\text{IrO}_3 \) on a multi-orbital tight-binding model composed only of the \(t_{2g} \) orbitals for Ir ions on a honeycomb lattice. Using conventional parameter values for the SOI, the Coulomb interaction, and the Ir-Ir transfer energy, we have carried out the HFA to the model to calculate the one-electron energy as well as the ground-state energy by fixing the staggered magnetic moment along the \(a \) axis. The zigzag ordering phase is found stabler than the Néel and the stripy ordering phases. It may be remarkable that the HFA to the simple tight-binding model leads to the zigzag order, since the energy difference from other orders are rather small.

We have formulated the RIXS spectra in terms of the density-density correlation function within the FCA. The RIXS spectra have been evaluated within the RPA. In the correlation function, there appear four bound states below 20 meV, and sixteen bound states between 0.4 and 0.8 eV, below the energy continuum of the individual electron-hole pair excitations. These bound states constitute the spectral peaks, which are in qualitative agreement with the RIXS experiment\(^{10,11} \). Note that the HFA-RPA scheme has worked well for describing the excitation spectra in the presence of the antiferromagnetic long-range order in \(\text{La}_2\text{CuO}_4^{30,31} \) and \(\text{Sr}_2\text{IrO}_4^{32} \). The present results are of qualitative nature, based on a simple model and neglecting electron correlations. To be quantitative along the itinerant-electron approach, it may be necessary to use more realistic models, and to go beyond the HFA-RPA.

Acknowledgments

We thank M. Takahashi for valuable discussions. This work was partially supported by a Grant-in-Aid for Scien-
entific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Govern-

1. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).
2. M. P. M. Dean, J. Magn. Magn. Mater. 376, 3 (2015).
3. S. Fatale, S. Moser, and M. Grioni, J. Electron Spectrosc. Relat. Phenom. 200, 274 (2015).
4. L. Braicovich, J. van den Brink, V. Bisogni, F. Forte, C. Aruta, G. Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F. M. Granozio, et al., Phys. Rev. Lett. 102, 167401 (2009).
5. L. Braicovich, J. van den Brink, V. Bisogni, M. M. Sala, L. J. P. Ament, N. B. Brookes, G. M. De Luca, M. Salluzzo, T. Schmitt, V. N. Strocov, et al., Phys. Rev. Lett. 104, 077002 (2010).
6. M. Guarise, B. D. Piazza, M. M. Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N. Strocov, et al., Phys. Rev. Lett. 105, 157006 (2010).
7. M. M. Sala, K. Ohgushi, A. Al-Zein, Y. Hirata, G. Monaco, and M. Krisch, Phys. Rev. Lett. 112, 176402 (2014).
8. J. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, et al., Phys. Rev. Lett. 108, 177003 (2012).
9. H. Gretarsson, J. P. Clancy, X. Liu, J. P. Hill, E. Bozin, Y. Singh, S. Manni, P. Gegenwart, J. Kim, A. H. Said, et al., Phys. Rev. Lett. 110, 077204 (2013).
10. H. Gretarsson, J. P. Clancy, Y. Singh, P. Gegenwart, J. P. Hill, J. Kim, M. H. Upton, A. H. Said, D. Casa, T. Gog, et al., Phys. Rev. B 87, 220407(R) (2013).
11. S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart, K. R. Choi, et al., Phys. Rev. Lett. 108, 127204 (2012).
12. F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R. Castelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys. Rev. B 85, 180403(R) (2012).
13. W. Lovesey and A. N. Dobrynin, J. Phys.: Condens. Matter 24, 382201 (2012).
14. Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).