The Complete Chloroplast Genome Sequence of

Podocarpus lambertii: Genome Structure, Evolutionary Aspects, Gene Content and SSR Detection

Leila do Nascimento Vieira¹, Helisson Faoro², Marcelo Rogalski³, Hugo Pacheco de Freitas Fraga¹, Rodrigo Luis Alves Cardoso², Emanuel Maltempi de Souza², Fábio de Oliveira Pedroso², Rubens Onofre Nodari¹, Miguel Pedro Guerra¹*

¹Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, ²Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil, ³Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil

Abstract

Background: *Podocarpus lambertii* (Podocarpaceae) is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp) genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of *P. lambertii*.

Methodology/Principal Findings: The *P. lambertii* cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR). It contains 118 unique genes and one duplicated tRNA (trnN-GUU), which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (*Nageia nagi*) and Araucariaceae (*Agathis dammara*). Structurally, *P. lambertii* shows 4 inversions of a large DNA fragment ~20,000 bp compared to the *Podocarpus totara* cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The *P. lambertii* cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymer occurring with less frequency.

Conclusion: The complete cp genome sequence of *P. lambertii* revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the *P. lambertii* cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of this genus.

Introduction

Extant gymnosperms are considered the most ancient group of seed-bearing plants that first appeared approximately 300 million years ago [1]. They consist of four major groups, including Gnetophytes, Conifers, Cycads and Ginkgo. Podocarpaceae are considered the most diverse family of Conifers, and much of this diversity has taken place within the *Podocarpus* and *Dacrydium* genera [2]. The Podocarpaceae family comprises 18 genera and 173 species distributed mainly in the Southern Hemisphere, but extending to the north in subtropical China, Japan, Mexico and the Caribbean [3,4].

The *Podocarpus sensu lato* (s.l.) genus comprises nearly 100 species, widely spread throughout the Southern Hemisphere and northward to the West Indies, Mexico, southern China and southern Japan [5]. Ledru et al. [6] described that *Podocarpus* populations in Brazil are widely dispersed in eastern Brazil, from north to south, and three endemic species have been reported: *Podocarpus sellowii* Klotzch ex Endl, *Podocarpus lambertii* Klotzsch ex Endl, and *Podocarpus brasiliensis* de Laubenfels [7]. *P. lambertii* is a native species from the Araucaria Forest, a subtropical moist forest ecoregion of the Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots of the world [8]. It is a dioecious evergreen tree of variable height, measuring 1–10 m, shade-tolerant, adapted to high frequency and density of undergrowth [9].
Phylogeny analyses by maximum parsimony of Podocarpaceae family using 18S rDNA gene sequencing and morphological characteristics indicated Podocarpaceae as monophyletic and Podocarpus s.l. and Dacrydium s.l. genera as unnatural [2]. This author concluded that single-gene studies rarely result in perfect phylogenies, but they could provide a basis for choosing between competing hypotheses. Parks et al. [10] suggested chloroplast (cp) genome sequencing as an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and genetic population analyses.

The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole cp genome sequences at low cost when compared with traditional sequencing approaches. Chloroplast sequences are available for all families of Conifers: Cephalotaxaceae [11], Cupressaceae [12], Pinaceae [13–15], Podocarpaceae (NC_020361.1) and [16], Taxaceae (NC_020321.1), and Araucariaceae [16]. For Podocarpus genus, the cp sequence of only one species has recently been obtained: the endemic New Zealand Podocarpus totara G. Benn. ex Don (NC_020361.1).

Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as probe the structural and functional evolution of plants [11,17–20]. Hirao et al. [12] sequenced the cp genome of the first species in the Cupressaceae family, Cryptomeria japonica. They reported the deletion of one large inverted repeat (IR), numerous genomic rearrangements, and many differences in genomic structure between C. japonica and other land plants, thus supporting the theory that a pair of large IR can stabilize the cp genome against major structural rearrangements and, in turn, providing new insights into both the evolutionary lineage of coniferous species and the evolution of the cp genome [12,21,22].

Chloroplast genome sequencing in gymnosperms also brought insights into evolutionary aspects in Gnetales. Wu et al. [23] considered that the reduced cp genome size in Gnetales was based on a selection toward a lower-cost strategy by deletions of genes and noncoding sequences, leading to genomic compactness and accelerated substitution rates. More recently, comparative analysis of the cp genomes in cupressophytes and Pinaceae provided inferences about the loss of large IR [11,20]. On one hand, Wu et al. [20] and Wu and Chaw [16] argue that each Pinaceae and cupressophyte lost a different copy of IR. On the other hand, Yi et al. [11] showed that distinct isomers are considered as alternative structures for the ancestral cp genome of cupressophyte and Pinaceae lineages. Therefore, it is not possible to distinguish between hypotheses favoring retention or independent loss of the same IR region in cupressophytes and Pinaceae cp genomes.

The present study focuses on establishing the complete cp genome sequence of a further member of the Podocarpaceae family, the Brazilian endemic species P. lambertii. Here, we characterize the cp genome organization of P. lambertii and compare its cp genome structure with other conifer species.

Materials and Methods

Plant material and cp DNA purification

Chloroplast isolation of P. lambertii was performed from young plants collected at a private area located at Lages, Santa Catarina, Brazil (27° 48’ 57” S, 50° 19’ 33” W), where the species is abundant, with previous permission from the owner (José Antônio Riba Ribeiro). This species is not considered threatened. Afterwards, the young plants were transplanted to the greenhouse until the collection of needles. The cpDNA isolation was performed according to Vieira et al. [24].

Chloroplast genome sequencing, assembling and annotation

Approximately 50 ng of cp DNA were used to prepare sequencing libraries with Nextera DNA Sample Prep Kit (Illumina Inc., San Diego, CA) according to the manufacturer’s instructions. Chloroplast DNA was sequenced using Illumina MiSeq (Illumina Inc., San Diego, CA) at the Federal University of Paraná, Brazil. In total, 495,071 paired-end reads (2 x 250 bp) were obtained, and de novo assembly was performed using Newbler 2.6 v. The obtained paired-end reads were mapped on P. lambertii cp genome and the genome coverage estimated using the CLC Genomics Workbench 5.5 software. By using this approach, a total of 377,437 paired-end reads (76.23%) was obtained from cpDNA, resulting in 1,200-fold genome coverage. Initial annotation of the P. lambertii cp genome was performed using Dual Organellar GenoMe Annotator (DOGMA) [25]. From this initial annotation, putative starts, stops, and intron positions were determined based on comparisons to homologous genes in other cp genomes. The rRNA genes were further verified by using tRNAscan-SE [26]. A physical map of the cp circular genome was drawn using OrganellarGenomeDRAW (OGDRAW) [27]. The complete nucleotide sequence of P. lambertii cp genome was deposited in the GenBank database under accession number KJ010812.

Comparative analysis of genome structure

We used the PROtein MUMmer (PROmer) Perl script in MUMmer 3.0 [28], available at http://mummer.sourceforge.net/, to visualize gene order conservation (dot-plot analyses) between P. lambertii and the non-Pinaceae conifer representatives P. totara (Podocarpaceae), Cephalotaxus oliveri, Cephalotaxus wilsoniana (Cephalotaxaceae), Taxus mairei (Taxaceae), Taxodiaceae cryptomerioides, T. floriana (Cupressaceae), C. japonica (Cupressaceae), as well as Pinus thunbergii, a Pinaceae representative.

Repeat sequence analysis and IR identification

Simple sequence repeats (SSRs) were detected using MISA perl script, available at (http://pgrc.ipk-gatersleben.de/misa/), with thresholds of eight repeat units for mononucleotide SSRs, four repeat units for di- and trinucleotide SSRs, and three repeat units for tetra-, penta- and hexanucleotide SSRs. Tandem repeats were analyzed using Tandem Repeats Finder (TRF) [29] with parameter settings of 2, 7 and 7 for match, mismatch, and indel, respectively. The minimum alignment score and maximum period size were set as 50 and 300, respectively. All of the repeats found were manually verified, and the nested or redundant results were removed. REPiter [30] was used to visualize the remaining IRs in P. lambertii by forward vs. reverse complement (palindromic) alignment. The minimal repeat size was set to 30 bp and the identity of repeats ≥90%.

Results and Discussion

Chloroplast genome sequencing, assembling and annotation

P. lambertii cp genome size was determined to be 133,734 bp, which is very similar to P. tootara [133,259 bp] (NC_020361.1) and larger than the sequenced cp genomes of Pinaceae species, which range from 116,479 bp in Pinus monophylla [14] to 124,168 bp in Pinus thunbergii [31]. P. lambertii cp genome size is smaller than the cp sequences in the cycads Cycas taitungensis (165,403 bp) [32]
and *Cycas Revoluta* (162,489 bp) (NC_020319.1). The genome size of *P. lambertii* cp is consistent with the size of non-Pinaceae conifer species, which ranges from 127,665 bp in *T. mairei* (NC_020321.1) to 136,196 bp in *C. wilsoniana* [20]. A total of 119 genes were identified in the *P. lambertii* cp genome, of which 118 genes were single copy and one gene, *trnN-GUU*, was duplicated and occurred as an inverted repeat sequence. The following genes were identified and are listed in Figure 1 and Table 1: 4 ribosomal RNA genes, 31 unique transfer RNA genes, 20 genes encoding large and small ribosomal subunits, 1 translational initiation factor, 4 genes encoding DNA-dependent RNA polymerases, 50 genes encoding photosynthesis-related proteins, 8 genes encoding other proteins, including the unknown function gene *ycf2*, and 1 pseudogene, *ycf68*. Among these 118 single copy genes, 14 were genes containing introns (Table 1). The GC content determined for *P. lambertii* cp genome is 37.1%, which is higher than *C. oliveri* (35.2%), *C. wilsoniana* (35.1%), *T. cryptomerioides* (34.6%), and *C. japonica* (35.4%), but lower than *C. taitungensis* (39.5%) and *P. thunbergii* (38.8%).

Figure 1. Gene map of *Podocarpus lambertii* chloroplast genome. Genes drawn inside the circle are transcribed clockwise, and genes drawn outside are counterclockwise. Genes belonging to different functional groups are color-coded. The darker gray in the inner circle corresponds to GC content, and the lighter gray corresponds to AT content. doi:10.1371/journal.pone.0090618.g001
Gene content differences

The gene content of *P. lambertii* cp genome and that of other conifer cp genomes sequenced to date show high similarity. However, some differences are observed when we compare *P. lambertii* cpDNA with other non-Pinaceae and Pinaceae conifers. One exception is the *rps16* gene, which is absent from the *P. lambertii* cp genome. This result reinforces the apparently loss of *rps16* gene in Podocarpaceae and Araucariaceae families. Wu and Chow [16] reported the *rps16* gene loss in *Nageia nagi* (Podocarpaceae) and *Agathis dammara* (Araucariaceae). This gene is present in other non-Pinaceae conifer cp genomes published so far [11,12,20,32]. Wu et al. [20] considered *rps16* gene loss as a structural mutation unique to the cpDNAs of gymnothyes and Pinaceae, but since the loss of this gene has been identified in Podocarpaceae and Araucariaceae families, we can consider that some cupresso-phytes may also present this mutation. This gene is also absent, or nonfunctional, in some angiosperm species of the Fabaceae family, such as *Medicago truncatula*, in which it is completely absent, and *Phaseolus vulgaris* and *Vigna radiata*, in which it is nonfunctional. In this angiosperm family, the coding sequence contains many internal stop codons and a modified initial stop codon [34,35]. Since this gene was shown to be essential for cell survival in tobacco [36], it was probably transferred to the nucleus, as observed for different species of the Fabaceae family [34,35], and has since become a functional nuclear gene required for normal plastid translation.

| Table 1. List of genes identified in *Podocarpus lambertii* chloroplast genome. |
|---------------------------------|-------------------------------|
| **Category of Genes** | **Group of gene** |
| | **Name of gene** |
| **Self-replication** | |
| Ribosomal RNA genes | *rrn*16 |
| | |
| Transfer RNA genes | *trnA*-UGC* |
| | *trnC*-GCA |
| | *trnD*-GUC |
| | *trnE*-UUC |
| | *trnF*-GAA |
| | *trnM*-CAU |
| | *trnG*-UCC* |
| | *trnG*-GCC |
| | *trnH*-GUG |
| | *trnL*-CAU |
| | *trnL*-UAG |
| | *trnM*-CAU |
| | *trnN*-GU* |
| | *trnP*-GGG |
| | *trnQ*-UGG |
| | *trnR*-ACG |
| | *trnR*-UCU |
| | *trnR*-CG |
| | *trnS*-GGA |
| | *trnS*-GGU |
| | *trnS*-GU |
| | *trnS*-UG |
| | *trnT*-GGU |
| | *trnV*-GAC |
| | *trnV*-UAC* |
| | *trnW*-CCA |
| | |
| Small subunit of ribosome | *rps*2 |
| | |
| | *rps12* |
| | *rps14 |
| | *rps15 |
| | *rps18 |
| | *rps19 |
| | |
| Large subunit of ribosome | *rpl2* |
| | |
| | *rpl14 |
| | *rpl16 |
| | *rpl20 |
| | *rpl22 |
| | *rpl23 |
| | |
| DNA-dependent RNA polymerase | *rpoA* |
| | |
| | *rpoB* |
| | *rpoC* |
| | |
| Translational initiation factor | *infA* |
| | |
| Genes for photosynthesis | |
| Subunits of photosystem I | *psaA* |
| | |
| | *psaB* |
| | *psaC* |
| | *psaD* |
| | *psaE* |
| | *psaF* |
| | |
| | *ycf3* |
| | |
| | *ycf4* |
| | |
| Subunits of photosystem II | *psbA* |
| | |
| | *psbB* |
| | *psbC* |
| | *psbD* |
| | *psbE* |
| | *psbF* |
| | |
| | *psbH* |
| | |
| | *psbI* |
| | *psbK* |
| | *psbL* |
| | *psbM* |
| | |
| | *psbN* |
| | |
| | *psbT* |
| | *psbZ* |
| | |
| Subunits of cytochrome | *petA* |
| | |
| | *petB* |
| | *petD* |
| | *petE* |
| | |
| | *petG* |
| | *petL* |
| | *petN* |
| | |
| Subunits of ATP synthase | *atpA* |
| | |
| | *atpB* |
| | *atpE* |
| | |
| | *atpF* |
| | |
| | *atpH* |
| | |
| | *atpl* |
| | |
| Large subunit of Rubisco | *rbcL* |
| | |
| Chlorophyll biosynthesis | *chlB* |
| | |
| | *chlL* |
| | *chlN* |
| | |
| Subunits of NADH dehydrogenase | *ndhA* |
| | |
| | *ndhB* |
| | *ndhC* |
| | |
| | *ndhD* |
| | |
| | *ndhE* |
| | *ndhF* |
| | |
| | *ndhG* |
| | |
| | *ndhH* |
| | |
| | *ndhI* |
| | |
| | *ndhK* |
| | |
| Other genes | *matK* |
| | |
| | *cemA* |
| | |
| | *accD* |
| | |
| | *ccsA* |
| | |
| | *clpP* |
| | |
| | *ycf1* |
| | |
| Genes of unknown function | *ycf2* |
| | |
| | *ycf68* |
| Pseudogenes | |

*Genes containing introns.
**Duplicated gene.
doi:10.1371/journal.pone.0090618.t001
Figure 2. Dot-plot analyses of eight sampled conifer chloroplast DNAs against *Podocarpus lambertii*. A positive slope denotes that the two compared sequences are in the same orientation, whereas a negative slope indicates that the compared sequences can be aligned, but their orientations are opposite. Graphs represent comparisons between *Podocarpus lambertii* (axis X) and *Podocarpus totara* (A), *Taxus mairei* (B), *Pinus*
The trnR-CCG gene present in C. japonica Podocarpaceae taxa. In addition, it has been lost during the second split separating Araucariaceae and Cupressaceae/Cupressaceae group [38]. This trnR-CCG gene may have been lost from the Cupressaceae s.l., which has only relatively recently diverged during the long evolutionary history of plants. These data corroborate the hypothesis based on phytochrome phylogenetic data and other gymnosperms, such as C. taitungensis and C. wilsoniana, as well as the cp genomes of P. thunbergii and P. lambertii cp genome. Interestingly, the trnR-CCG gene is highly conserved in angiosperms, and knockout of this gene in tobacco plants produced viable plants, whereas the growth of these plants was strongly affected, suggesting an important role during plastid translation [39]. The loss of the trnR-CCG gene in several gymnosperm species suggests that a uridine modification in the anticodon position of the trnT gene would facilitate the decoding of threonine codons and makes the trnT-GGU gene dispensable in these species [39-42]. Evolutionarily, the loss of this tRNA gene could be used as a tool, or marker gene, to study the possible ways that the conifers diverged during evolution. However, it remains to be determined whether structural differences in the cp ribosome or modification in the structure of this tRNA, between angiosperms and gymnosperms, would facilitate the decoding.

Comparative analysis of genome structure

Chloroplast genome organization is much conserved in angiosperms, as well as the presence of IRs, with very few exceptions. As reported by Terakami et al. [43] in Pyrus, Malus and Nicotiana, neither translocation nor inversion was detected in the three species. In addition, considering the many dicot and monocot species, only one large inversion was reported [43].

In addition to the loss of the large IR in conifers, many genome rearrangements were observed in the cp genome, and such rearrangements appear to play an important role in their evolution. Dot-plot analyses indicate that the structure of the P. lambertii cp genome differs significantly from cp genomes of other conifer species, and, surprisingly, it has significant differences when compared to P. to Eaton (Figure 2A-H).

For the genus Cephalotaxus s.l., specifically C. wilsoniana and C. oliveri, it was shown that the genome structures were almost the same [11]. Similar results were observed in the present study, as revealed by the high similarity in the dot-plot analyses between Podocarpus and Cephalotaxus genera, as represented by P. lambertii × C. wilsoniana (Figure 2E) and P. lambertii × C. oliveri (Figure 2F), and between the Podocarpus and Taiwania genera, as represented by P. lambertii × T. floriana (Figure 2G) and P. lambertii × T. thunbergii (C), Cryptomeria japonica (D), Cephalotaxus wilsoniana (E), Cephalotaxus oliveri (F), Taiwania floriana (G), and Taiwania cryptomerioides (H) in axis Y.

doi:10.1371/journal.pone.0090618.g002

doi:10.1371/journal.pone.0090618.g003

Figure 3. Comparison of IR and genome structure in 5 cupressophytes. Five cupressophyte species from top to bottom are *Taiwania cryptomerioides*, *Cryptomeria japonica*, *Cephalotaxus oliveri*, *Cephalotaxus wilsoniana* and *Podocarpus lambertii*. Genes are represented by boxes extending above or below the baseline, according to the direction of transcription; genes with the same function have the same color. Transfer RNA genes are abbreviated as the type of one letter. Dashed boxes represent the retained IR region, and arrows indicate the short IR on each species. Adapted from Yi et al. (2013).

doi:10.1371/journal.pone.0090618.g003
explained by, and probably result from, the large distance between Podocarpus the same region of natural occurrence, which is not true for either Cephalotaxus and four large inversions of about 20,000 bp in length each. In both species indications between occurances of exactly the same structural modifications between P. lambertii and these two Cephalotaxus and Taiwania species.

Differently, for P. lambertii and P. totara (Figure 2A), we observed four large inversions of about 20,000 bp in length each. In both Cephalotaxus and Taiwania genera, the two sequenced species share the same region of natural occurrence, which is not true for either Podocarpus species sequenced. Thus, these large inversions can be explained by, and probably result from, the large distance between the natural occurrence of these two species in that P. lambertii occurs in Brazil, while P. totara occurs in New Zealand. Moreover, podocarps have a rich fossil record that suggests an origin in the Triassic period (about 220 million years) and a distribution in both the Northern and Southern Hemispheres through the Cretaceous and earliest Tertiary periods, about 100 million years ago [44–46]. Thus, geographic distance and different adaptive traits could explain the structural differences found between these two species of the same genera.

In addition, the loss of one large IR copy already reported in other conifer species was also observed in the P. lambertii cp genome [11,12,20]. However, short remaining IR sequences of 326 bp can be found in P. lambertii, 544 bp in C. oliveri, 530 bp in C. wilsoniana, 277 bp in T. cryptomerioides and 284 bp in C. japonica [11]. These short remaining IR sequences also differ in the nucleic acid sequences and gene content between different conifer species. In P. lambertii, trnN-GUU remain from the lost IR copy region, while in T. cryptomerioides and C. japonica, trnL-CAU remained after the rearrangements that determined the loss of one IR copy [11]. In C. oliveri and C. wilsoniana, the trnQ-UUG is duplicated; however, this gene is not normally present in the IR region, and its duplication was probably produced by other rearrangements not involved with the IR regions [20]. After much evidence provided by different conifer plastid genomes, it can be concluded that the loss of one IR copy occurred after a reduction in sequence and gene content and that such loss was most likely caused by this reduction [11,12,14,20,23,32,33]. However, this speculation remains to be established. To date, it is not entirely clear whether cupressophytes and Pinaceae species have lost different IR regions [11]. However, we can observe in P. lambertii an inversion in the direction of transcription of ribosomal RNA genes spanning rmt5-rml6 and protein-coding genes, ndhB and ycf2, when compared to C. oliveri, C. wilsoniana, T. cryptomerioides and C. japonica (Figure 3).

Table 2. List of simple sequence repeats identified in Podocarpus lambertii chloroplast genome.

SSR sequence	Number of repeats	TOTAL													
	3	4	5	6	7	8	9	10	11	12	13	14	15		
A/T	–	–	–	–	–	39	14	6	4	6	–	–	1	70	
C/G	–	–	–	–	–	3	3	–	1	1	–	–	2	10	
AC/GT	–	1	–	1	–	–	–	–	–	–	–	–	–	2	
AG/CT	–	21	1	–	–	–	–	–	–	–	–	–	–	22	
AT/AT	–	24	7	2	2	–	3	1	–	–	–	–	–	39	
AAG/CTT	–	1	–	–	–	–	–	–	–	–	–	–	–	1	
AAT/ATT	–	3	–	–	–	–	–	–	–	–	–	–	–	3	
AATC/ATTG	2	–	–	–	–	–	–	–	–	–	–	–	–	2	
AATG/ATTC	1	–	–	–	–	–	–	–	–	–	–	–	–	1	
AATT/AATT	–	–	–	–	–	–	–	–	–	–	–	–	–	–	
ACAT/AGT	1	–	–	–	–	–	–	–	–	–	–	–	–	1	
ACCT/AGGT	1	–	–	–	–	–	–	–	–	–	–	–	–	1	
AGAT/ACT	3	–	–	–	–	–	–	–	–	–	–	–	3		
AAATG/ATTTC	1	–	–	–	–	–	–	–	–	–	–	–	–	–	1
AGATAT/ATATCT	1	–	–	–	–	–	–	–	–	–	–	–	–	–	1
TOTAL														158	

doi:10.1371/journal.pone.0090618.t002

cryptomerioides (Figure 2H). This high similarity in dot-plot analysis indicates the occurrence of exactly the same structural modifications between P. lambertii and these two Cephalotaxus and Taiwania species.

Table 3. Distribution of tri-, tetra-, penta-, and hexapolymer simple sequence repeats (SSRs) loci in Podocarpus lambertii chloroplast genome.

SSR type sequence	Size	Start	End	Location
penta	(AATGA)13	15	21884	21898 trnE-UUC/trnT-GGU (IGS)
hexa	(AGATAT)3	18	37894	37911 trnF-GAA/trnH (IGS)
tetra	(ATCA)3	12	44346	44357 atpE/rbcL (IGS)
tri	(AAGT)4	12	75761	75772 ycf1 (CDS)
tetra	(AATG)3	12	86350	86361 ndhA (intron)
tetra	(TGAT)3	12	97140	97151 ndhl/trnN-GUU (IGS)
tetra	(CTAC)3	12	99809	99820 rm23 (CDS)
tri	(ATT)4	12	10366	10367 trn-GAU/rml6 (IGS)
tri	(ATA)4	12	120539	120550 rps7/ndh8 (IGS)
tri	(TTA)4	12	122046	122057 chl (CDS)
tetra	(AATT)3	12	122977	122988 chl/trnH-GUG (IGS)
tetra	(CATA)3	12	125437	125448 psbA/trnK-UUU (IGS)
tetra	(ATAG)3	12	125570	125581 psbA/trnK-UUU (IGS)

CDS, coding sequences; IGS, intergenic spacers.

doi:10.1371/journal.pone.0090618.t003

Chloroplast Genome Sequence of P. lambertii
Repeat sequence analysis

The cp genome mode of inheritance, paternal in most gymnosperms, allows us to elucidate the relative contributions of seed and pollen flow to the genetic structure of natural populations by comparison of nuclear and cp markers [47]. The cp microsatellites, or SSRs, may be identified in completely sequenced plant cp genomes by simple database searches, followed by primers designed to screen for polymorphism. To date, studies of cp microsatellites have revealed much higher levels of diversity than those of cp restriction fragment length polymorphisms (RFLP) [47–49].

We have analyzed the occurrence, type, and distribution of SRRs in the P. lambertii cp genome. In total, 156 SRRs were identified. Among them, homo- and dipolymers were the most common with, respectively, 80 and 63 occurrences, whereas tri- (4), tetra- (7), penta- (1), and hexaplyomers (1) occur with lower frequency (Table 2). Most homopolymers are constituted by A/T sequences (87.5%), and of the dipolymers, 61.1% were also constituted by multiple A and T bases. In this study, we identified 78 repeats with more than one nucleotide repeat, totaling almost 50% of all SRRs identified. The 13 tri-, tetra-, penta-, and hexaplyomers are shown in Table 3, as well as their size and location. From these 13 polymers identified, 9 are localized in intergenic spacers, 3 in coding sequences, and only 1 inside an intron. These results reveal the presence of several SSR sites in P. lambertii. Hereafter, these sites can be assessed for the intraspecific level of polymorphism, leading to highly sensitive phylogeographic and population structure studies for this species.

Tandem repeats with more than 30 bp and with a sequence identity of more than 90% have also been examined. Twenty-eight tandem repeats were identified in the P. lambertii cp genome (Table 4), of which 15 are located in coding regions of the cp genome of P. lambertii, as well as a higher number of repeats in the ycf1 (6) gene coding sequence [11]. The ycf1 gene, previously considered as an enigmatic function in the cp genome, has recently been identified as encoding an essential protein component of the cp translocase at the inner envelope membrane (TIC) [50]. In Salvia miltiorrhiza and Cocos nucifera, two angiosperms, only 7 and 8

Serial Number	Repeat Length (bp)	Consensus size × Copy number	Start-End	Location
1	32	16×2	3450-3482	atpA/atpF (IGS)
2	284	142×2	13170-13454	rpoC1 (Intron)
3	60	30×2	13496-13557	rpoC1 (Intron)
4	30	15×2	46625-46653	trnR-CCG/accD (IGS)
5	90	30×3	47533-47619	accD (IGS)
6	42	21×2	48149-48192	accD (IGS)
7	52	26×2	57988-58043	rps18 (IGS)
8	32	16×2	61875-61905	rpl2/rps19 (IGS)
9	54	18×3	62177-62237	rps19 (IGS)
10	63	21×3	66568-66630	rps11 (IGS)
11	32	16×2	75172-75203	clpP/ycf1 (IGS)
12	104	52×2	75412-75529	clpP/ycf1 (IGS)
13	36	18×2	79255-79292	ycf1 (IGS)
14	162	52×3	79351-79504	ycf1 (IGS)
15	162	81×2	79362-79519	ycf1 (IGS)
16	108	27×4	79401-79519	ycf1 (IGS)
17	132	33×4	80478-80619	ycf1 (IGS)
18	96	24×4	80732-80820	ycf1 (IGS)
19	273	21×13	81305-81571	ycf1 (IGS)
20	96	48×2	82408-82528	ycf1 (IGS)
21	30	15×2	89787-89817	ndhE/pcaC (IGS)
22	126	42×3	93843-93963	rpl32 (CDS)
23	64	32×2	97838-97902	trnR-CCG/rn5 (IGS)
24	300	60×5	109209-109531	rps12/rps7 (IGS)
25	36	12×3	116515-116547	ycf2 (CDS)
26	60	20×3	119998-120055	ycf2/trn-LCAU (IGS)
27	128	64×2	131733-131853	trnQ-UUG/psbK (IGS)
28	26	13×2	132530-132556	psbK/psbI (IGS)

CDS, coding sequences; IGS, intergenic spacers.
doi:10.1371/journal.pone.0090618.t004

Table 4. Distribution of tandem repeats in Podocarpus lambertii chloroplast genome.
tandem repeats, respectively, of about 20 bp were identified, none of them located at the rps16 coding sequence [51,52], corroborating the theory that the IR influences the stability of the plastid genome.

Yi et al. [11] attributed the expansion of the accD ORF to the presence of tandemly repeated sequences. In the _P. lambertii_ cp genome, we identified 2 tandem repeats in accD CDS, totaling 132 bp, or 44 codons. The accD reading frame length of the _P. lambertii_ cp genome is 864 codons, similar to other cupressophyte species, such as _C. oliveri_ (936 codons), _C. abies_ (1,056 codons), _C. japonica_ (700 codons) and _T. cryptomerioides_ (900 codons).

In contrast, the reading frame lengths of cycads, Ginkgo and Pinaceae, range from 320 to 359 codons, less than half the size found in cupressophytes. These results support the hypothesis of Hirao et al. [12] and Yi et al. [11] which holds that the accD reading frame has displayed a tendency toward enlarging sizes in cupressophytes.

The complete cp genome sequence of _P. lambertii_ revealed significant structural changes occurring in the cp genome, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the _P. lambertii_ cp genome are likely intraspecific polymorphism sites which may allow highly sensitive phyllycopgrahic and population structure studies, as well as phylogenetic studies, of species of this genus.

Author Contributions

Conceived and designed the experiments: LNV MR MPG RON EMS FP. Performed the experiments: LNV HPFF RLAC. Contributed reagents/materials/analysis tools: EMS FOP RON MPG. Wrote the paper: LNV MR MPG.

References

1. Murray BG (2013) Karyotype variation and evolution in gymnosperms. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel JF, editors. Plant genome diversity I: Physical structure, behaviour and evolution of plant genomes. Springer:231–245.

2. Kelch DG (1998) Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. An. J. Bot. 85: 986–996.

3. Forest A (1998) Complete cp genome sequence of _Euphorbia pulcherrima_. Kew The Royal Botanical Gardens:1316.

4. Ruffin E, Conran J, Lowe A (2011) Podocarp Evolution: A Molecular Phylogenetic Perspective. In: Turner BL, Cermanuk LA, editors. Ecology of the Podocarpaceae in Tropical Forests. Washington: Smithsonian Institution Scholarly Press: pp. 1–20.

5. Page CN (1990) Coniferophyta. In: Kramer KU, Green PS, editors. The families and genera of vascular plants, Peripneurophyta and Gymnosperms: Systematics. Berlin: Springer: 305–278.

6. Marks M, Mittermeier RA, Mittermeier CG, Focan GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.

7. Longhi SJ, Brena DA, Ribeiro SB, Gracioli CR, Longhi RV, et al. (2010) Fatores ecológicos determinantes na ocorrência de Biodiversity hotspots for conservation priorities. Nature 403:853–858.

8. de Laubenfels BD (1985) A taxonomic revision of the genus _Blumea_. Blumea 30:251–278.

9. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J et al. (2001) Genome Biol 5:R12.

10. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:1047–1052.

11. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW: a tool for generating visualized plots of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res: doi:10.1093/nar/gks209.

12. Kurtz S, Philippe A, Delcher AL, Smaug M, Shumway M et al. (2004) VISTA and open software for comparing large genomes. Genome Biol 5:R12.

13. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res: 33: W686–689.

14. Loose M, Drenche O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW: a suite of tools for generating visualized plots of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res: doi:10.1093/nar/gks209.
39. Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, et al. (2012) The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet. 8(11):e1003076.
40. Ambrogelly A, Palioura S, Soll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–33.
41. Weidhaumer A, Murphy IV, Dzieregowska A, Malkiewicz A, Vendeix FA, et al. (2007) Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14:498–502.
42. Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198.
43. Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, et al. (2012) Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genomes 8:441–454.
44. Hill RS, Brodribb TJ (1999) Southern Conifers in Time and Space. Aust J Bot 47: 639–696.
45. Farjon A (2008) A natural history of conifers. Portland: Timber Press 1304.
46. Morley RJ (2011) Dispersal and paleoecology of tropical podocarps. In: Turner BL, Cernusak LA, editors. Ecology of the Podocarpaceae in tropical forests. Washington: Smithsonian Institute Scholarly Press. pp 21–42.
47. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147.
48. Provan J, Corbett G, McNicol JW, Powell W (1997) Chloroplast variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Genome 40:104–110.
49. Provan J, Russell JR, Booth A, Powell W (1999) Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus *Hododendron*. Mol Ecol 8:505–511.
50. Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, et al. (2013) Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339: 571–574.
51. Huang Y-Y, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE 8(8): e74736.
52. Qian J, Song J, Gao H, Zhu Y, Xu J, et al. (2013) The complete chloroplast genome sequence of the medicinal plant *Salvia miltiorrhiza*. PLoS ONE 8(2):e57607.