Measurement of Azimuthal Asymmetries in Inclusive Production of Hadron Pairs in e^+e^- Annihilation at Belle

R. Seidl, K. Hasuko, K. Abe, I. Adachi, H. Aihara, D. Anipko, Y. Asano, T. Aushev, A. M. Bakich, V. Balagura, E. Barberio, W. Bartel, A. Bay, U. Bitenc, I. Bizjak, S. Blyth, A. Bozek, M. Bračko, T. E. Browder, P. Chang, A. Chen, B. G. Cheon, Y. Choi, Y. K. Choi, A. Chuvikov, J. Dalseno, M. Danilov, M. Dash, J. Dragic, S. Eidelman, S. Fratina, N. Gabyshev, T. Gershon, A. Go, G. Gokhroo, B. Goloh, A. Gorisek, M. Grosse Perdekamp, H. C. Ha, K. Hayasaka, H. Hayashii, M. Hazumi, T. Hokuue, Y. Hoshi, S. Hou, W.-S. Hou, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, M. Iwasaki, Y. Kang, P. Kapusta, N. Katayama, H. Kawai, T. Kawasaki, H. R. Khan, H. Kichimi, S. K. Kim, S. M. Kim, R. Kulasiri, R. Kumar, C. C. Kuo, A. Kuzmin, Y.-J. Kwon, J. S. Lange, J. Lee, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, D. Liventsev, F. Mandl, T. Matsumoto, A. Mutyja, W. Mitanoff, H. Miyake, H. Miyata, Y. Miyazaki, R. Mizuk, T. Mori, I. Nakamura, E. Nakano, Z. Natkaniec, S. Nakao, S. Nishida, O. Nitoh, A. Ogawa, S. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. L. Olsen, H. Ozaki, P. Pakhlov, H. Palka, C. W. Park, H. Park, N. Parslow, L. S. Peak, R. Pestotnik, L. E. Pilouen, Y. Sakai, N. Sato, N. Satoyama, T. Schienger, O. Schneider, J. Schimann, K. Senyo, M. E. Sevior, M. Shapkin, H. Shibuya, A. Somov, N. Soni, R. Stamen, S. Stanic, M. Staric, K. Sumisawa, F. Takasaki, K. Tanami, M. Tanaka, G. N. Taylor, Y. Teramoto, X. C. Tian, T. Tsukamoto, S. Uehara, T. Uglov, S. Uno, P. Urquijo, Y. Usov, G. Varner, S. Villa, C. C. Wang, C. H. Wang, Y. Watanabe, E. Won, Q. L. Xie, D. Yabsley, A. Yamaguchi, Y. Yamashita, M. Yamauchi, J. Ying, Y. Yusa, L. M. Zhang, Z. P. Zhang, V. Zhilich, and D. Zürcher

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3Chonnam National University, Kwangju
4University of Cincinnati, Cincinnati, Ohio 45221
5Deutsches Elektronen-Synchrotron, Hamburg
6University of Frankfurt, Frankfurt
7University of Hawaii, Honolulu, Hawaii 96822
8High Energy Accelerator Research Organization (KEK), Tsukuba
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute of High Energy Physics, Protvino
12Institute for Theoretical and Experimental Physics, Moscow
13J. Stefan Institute, Ljubljana
14Kanagawa University, Yokohama
15Korea University, Seoul
16Kyungpook National University, Taegu
17Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
18University of Ljubljana, Ljubljana
19University of Maribor, Maribor
20University of Melbourne, Victoria
21Nagoya University, Nagoya
22Nara Women’s University, Nara
23National Central University, Chung-li
24National United University, Miaoli
25Department of Physics, National Taiwan University, Taipei
26H. Niewodniczanski Institute of Nuclear Physics, Krakow
27Nippon Dental University, Niigata
28Niigata University, Niigata
29Nova Gorica Polytechnic, Nova Gorica
30Osaka City University, Osaka
31Osaka University, Osaka
32Panjab University, Chandigah
33Peking University, Beijing
The relationship between quark spin and the properties of hadrons is still poorly understood. In the fragmentation of a quark into hadrons, Collins\cite{1} has proposed a relation between transverse quark spin and the final state azimuthal distribution of hadrons around the original quark momentum direction. Azimuthal asymmetries of hadron yields have recently been reported in deep inelastic scattering off transversely polarized hydrogen\cite{2} and deuteron\cite{3} targets: these are believed to be due to the product of Collins fragmentation functions and transverse quark spin. Though Collins\cite{1} and the incoming leptons. Experimentally the quark di-

In this Letter we present a measurement of azimuthal asymmetries in hadron-hadron correlations for inclusive charged di-hadron production $e^+e^-\rightarrow hhX$, which we interpret as a direct measure of the Collins effect. Exploratory studies for this measurement were reported in\cite{4}. This analysis was performed using a sample of 79 million events (29 fb$^{-1}$) collected at a center-of-mass energy 60 MeV below the $\Upsilon(4S)$ resonance with the Belle detector\cite{5} at the KEKB asymmetric-energy e^+e^- storage rings\cite{6}. For systematic checks, Monte Carlo (MC) simulated events generated by the GEANT-based\cite{8} simulation of the Belle detector were used. The Collins effect occurs in the fragmentation of a quark q with transverse spin S_q and 3-momentum k into an unpolarized hadron h with transverse momentum $P_{h\perp}$ with respect to the original quark direction. The corresponding number density is defined as:

$$D_{hq^+}(z, P_{h\perp}) = D_{h^q}(z, P_{h\perp}^2) + H_{1}^{z,q}(z, P_{h\perp}^2) \left(\frac{k \times P_{h\perp}}{z M_h}\right) : S_q,$$

where $z = \frac{2E_h}{Q}$ is the fractional energy of the hadron relative to half of the CMS energy Q. The first term describes the spin averaged fragmentation function (FF), and the second, containing the Collins function $H_1^{z,q}(z, P_{h\perp}^2)$, depends on the spin of the quark and produces an asymmetry as it changes sign if S_q flips. The vector product leads to a $\sin(\phi)$ modulation, where ϕ is the azimuthal angle between the plane spanned by the hadron and quark momenta, and the plane spanned by the quark momentum and the incoming leptons. Experimentally the quark direction is approximated by the thrust axis n.

In hadron production in $e^+e^-\rightarrow q\bar{q}$ events, the Collins effect can be observed when the fragments of the quark and anti-quark are considered simultaneously. Combining two hadrons from different hemispheres in jet-like events, with azimuthal angles ϕ_1 and ϕ_2 as defined in Fig.\cite{1}(note that all angular variables as well as n are defined in the CMS), produces a $\cos(\phi_1 + \phi_2)$ modulation of the di-hadron yield. A MC comparison of thrust axis cal-

PACS numbers: 13.88.+e,13.66.-a,14.65.-q,14.20.-c

The Collins effect connects transverse quark spin with a measurable azimuthal dependence in the yield of hadronic fragments around the quark’s momentum vector. Using two different reconstruction methods we find evidence of statistically significant azimuthal asymmetries for charged pion pairs in e^+e^- annihilation at a center-of-mass energy of 10.52 GeV, which can be attributed to a transverse polarization of the primordial quarks. The measurement was performed using a sample of 79 million hadronic events collected with the Belle detector.
Two experimental methods are used to measure azimuthal asymmetries. The first method \((M_{12})\) gives rise to the \(\cos(\phi_1 + \phi_2)\) modulation in the di-hadron yields. The yield is recorded as a function of the hadron angle sum \(\phi_1 + \phi_2\) and, divided by the average yield to obtain the normalized rate \(R_{12} := N_{12}(\phi_1 + \phi_2)/\langle N_{12} \rangle\), parametrized by \(R_{12} = a_{12} \cos(\phi_1 + \phi_2) + b_{12}\).

Here, \(a_{12}\) is a function of the first moment \(\langle H_1^{q,1} \rangle\) of the Collins function

\[
a_{12}(\theta, z_1, z_2) = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{H_1^{q,1}(z_1) H_1^{q,1}(z_2)}{D_1^q(z_1) D_1^q(z_2)},
\]

where \(\theta\) is the angle between the incoming lepton axis and the thrust axis. An alternative method \((M_0)\) does not rely on knowledge of the thrust axis: yields are measured as a function of \(\phi_0\), the angle between the plane spanned by the momentum vector of the first hadron and the lepton momenta, and the plane defined by the two hadron momenta. The corresponding normalized rate

\[R_0 = N_0(2\phi_0)/\langle N_0 \rangle\]

is a function of \(\cos(2\phi_0)\), and (following \([13]\)) can be parametrized as

\[a_0(\theta_2, z_1, z_2) = \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{f(H_1^{q,1}(z_1) H_1^{q,1}(z_2) M_1 M_2)}{D_1^q(z_1) D_1^q(z_2)}.
\]

\(f\) denotes convolution over the transverse hadron momenta. \(M_1\) and \(M_2\) are the masses of the two hadrons, \(z_1\) and \(z_2\) are their fractional energies and \(\theta_2\) is the angle between the beam axis and the second hadron momentum. The \(\sin \theta_2\) dependence reflects the probability of finding the two initial quarks with transverse spin. \(D_1^q(z)\) and \(\bar{D}_1^q(z)\) denote fragmentation functions for anti-quarks.

To reduce hard gluon radiation, a two-jet-like topology is enforced by requiring a thrust value \(T > 0.8\), calculated from all charged and neutral particles with momentum exceeding 7 GeV. (4a) The tracks must lie in opposite jet-hemispheres: \((P_{h1} \cdot \hat{n})/(P_{h2} \cdot \hat{n}) < 0\). (4b) \(Q_T\) is the transverse momentum of the virtual photon from the \(e^+e^-\) annihilation in the rest frame of the hadron pair \([11]\). We require \(Q_T < 3.5\) GeV/c, which removes contributions from hadrons assigned to the wrong hemisphere.

The analysis is performed in \((z_1, z_2)\) bins with boundaries at \(z_1 = 0.2, 0.3, 0.5, 0.7, 1.0\), where complementarity off-diagonal bins \((z_1, z_2)\) and \((z_2, z_1)\) are combined. In each \((z_1, z_2)\) bin, normalized rates \(R_{12}\) and \(R_0\) are evaluated in 8 bins of constant width in the angles \(\phi_1 + \phi_2\) and \(\phi_0\) respectively, and fitted with the functional form introduced above. Results in the lowest \((z_1, z_2)\) bin are shown in Fig. 2. In both methods the constant term \((b_{12}\) or \(b_0\)) is found to be consistent with unity for all bins.

In addition to their sensitivity to the Collins effect, \(R_{12}\) and \(R_0\) have contributions from instrumental effects and QCD radiative processes: these are charge independent,
and cancel in the double ratio of normalized rates for unlike-sign(U) over like-sign(L) pion pairs,

\[
\frac{R^U_0}{R^L_0} = \frac{N^U_0(\beta_0)/N^L_0}{N^U_2(\beta_0)/N^L_2}, \quad \alpha = 0, 12, \quad \beta_0 = 2\phi_0, \quad \beta_{12} = \phi_1 + \phi_2. \tag{4}
\]

In linear approximation the double ratio is proportional to a combination of the favored and disfavored fragmentation functions: omitting the transverse momentum dependence,

\[
\frac{R^U_0}{R^L_0} = 1 + \cos(2\phi_0) \frac{\sin^2 \theta}{1 + \cos^2 \theta} \times \left\{ \frac{f(H^\perp_{1,0}^\text{fav} H^\perp_{1,0}^\text{dis} + H^\perp_{1,0}^\text{dis} H^\perp_{1,0}^\text{dis})}{(D^\text{fav}_1 D^\text{dis}_1 + D^\text{dis}_1 D^\text{dis}_1)} - \frac{f(H^\perp_{1,0}^\text{fav} H^\perp_{1,0}^\text{dis} + D^\text{dis}_1 D^\text{dis}_1)}{D^\text{dis}_1} \right\}; \tag{5}
\]

an analogous expression can be given for \(R^U_{12}/R^L_{12}\). Favorited fragmentation processes (e.g. \(D^\text{fav}_1\)) are transitions in which a valence quark of the hadron is of the same flavor as the initial quark, for example \(u, d \rightarrow \pi^+\); the corresponding unfavored process is \(u, d \rightarrow \pi^-\). Following our analysis of the normalized rates we parametrize the double ratios as \(R^U_0/R^L_0 = A_0 \cos(\beta_0) + B_0\) with \(\alpha = 0, 12\), \(\beta_0 = 2\phi_0\) and \(\beta_{12} = \phi_1 + \phi_2\); the parameters \(A_0, B_0\) are determined from fits in each \((z_1, z_2)\)-bin.

An example is shown in Fig. 2. The parameters \(A_0\) and \(A_{12}\), related to the Collins fragmentation functions (see Eq. 3), are shown in Fig. 3 and listed in Table I. Significant non-zero values are observed, especially at high \(z\). The observed increase with \(z\) is predicted in several models [12, 13, 14]. The weighted averages over all \((z_1, z_2)\)-bins, corrected for the charm contribution (see below), are found to be \(A_0 = (3.06 \pm 0.65 \pm 0.55)\%\) and \(A_{12} = (4.26 \pm 0.78 \pm 0.68)\%\) [12].

By measuring asymmetries using double ratios, acceptance effects cancel, while the contribution of gluon radiation cancels only to first order. The size of any additional contribution was estimated by subtracting like-sign from unlike-sign pair rates, in which case gluon effects should cancel exactly and only experimental effects should remain. The differences, 0.04% on average for method \(M_0\) and 0.03% for \(M_{12}\), are assigned as systematic errors. Double ratios were formed using MC events, which do not include the Collins effect but take into account gluon radiation and detector effects: the parameters \(A_0\) and \(A_{12}\) were found to be consistent with zero. The statistical errors of these fits, 0.45% and 0.56% respectively, are included in the systematic uncertainty. Double ratios of positively-charged over negatively-charged pairs were found to be consistent with unity, and limit the possibility of charge dependent detector effects; again, the precisions of the fits (0.26% and 0.21%) are included as systematic errors. An additional test was performed by taking pion pairs from jet hemispheres in different events: no asymmetry was found.

In addition to fitting the double ratios with a \(\cos \phi\) modulation, higher harmonics (\(\sin 2\phi, \cos 4\phi\)) were introduced. The change in the results, 0.03% on average for \(A_0\) and 0.01% for \(A_{12}\), was included in the systematic uncertainty. In method \(M_{12}\), the single hadron yield around the thrust axis was also studied. Although the Collins effect leads to a sinusoidal modulation, this should average to zero in the absence of a specified quark spin. The \(\sin \phi_{1,2}\) modulation was found to be consistent with zero.

As a consistency check, we also measure double ratios from an event sample with a reversed thrust selection, \(T < 0.8\): asymmetries in this sample are reduced for \(Q_T < 3.5\) GeV/c (see Fig. 4). For the low-thrust sample there is no clear two-jet topology, and, thus, the Collins effect should be suppressed while any radiative or acceptance effects remain present. A fit to a constant for \(Q_T < 3.5\) GeV/c finds \((0.4 \pm 0.3)\%\) for both \(A_0\) and \(A_{12}\). The asymmetries for \(Q_T > 3.5\) GeV/c and \(T < 0.8\) were found to be due to events with low visible energy as well as background from interactions in the detector material.

The uncertainty due to particle misidentification was estimated by applying tighter selection criteria. The difference in the double ratio with respect to the default selection is included in the systematic error, 0.12% for method \(M_0\) and 0.28% for \(M_{12}\).

To test the reconstruction of azimuthal asymmetries, Monte Carlo samples were reweighted in \(\cos(2\phi_0)\) and \(\cos(\phi_1 + \phi_2)\), producing generated moments of 5% and
a tau enhanced data sample have low statistical significance. The process is small (1.7%), and the asymmetries obtained in outgoing quarks only on average.) This dilution was corrected for the charm background) for the data samples with T > 0.8 (triangles) and T < 0.8 (squares).

10% for unlike-sign pairs, and 0% and −5% for like-sign pairs. The reconstructed azimuthal asymmetries were consistent with generated values for method M0, but lower by 17.6 ± 1.1% on average for method M12, which depends on the thrust axis of the reconstructed event. (Note that the thrust axis represents the direction of the outgoing quarks only on average.) This dilution was corrected by rescaling A_{12} with a factor $1.210 ± 0.014$.

Both methods depend on the assumption that the electron and positron beams are unpolarized. This was tested by studying the angular distribution of $e^+e^- → \mu^+\mu^-$ events: no significant azimuthal asymmetries are observed and thus no systematic error assigned to it. We correct for the contribution from charm decays using measured asymmetries in events where a D^* meson has been reconstructed, and the $e^+e^- → c\bar{c}$ event fraction determined from MC (23%). The corresponding uncertainty is included in the statistical errors in Table I. The fraction of selected events due to the $e^+e^- → \tau^+\tau^-$ process is small (1.7%), and the asymmetries obtained in a tau enhanced data sample have low statistical significance: $A_0 = (0.17 ± 0.30)%$ and $A_{12} = (0.74 ± 0.30)%$.

This contribution is added to the systematic error. All systematic uncertainties were added in quadrature. Correlations among individual angular and (z_1,z_2)-bins were tested using a large number of MC samples, by comparing uncertainties returned by the fits with the expected values. We find the statistical error to be underestimated by 14%; the final uncertainty is increased by the corresponding factor.

In summary we have performed a measurement of the azimuthal asymmetry in the inclusive production of pion pairs as a function of the fractional energy z of pion pairs. In the double ratio of asymmetries from unlike-sign and like-sign pairs, possible contributions of gluon radiation and detector effects cancel and the observed asymmetry can be attributed to the Collins effect. This asymmetry in e^+e^- annihilation is the first direct evidence for this effect.

The authors would like to thank D. Boer for fruitful discussions on the theoretical aspects of the measurement. We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MHEST (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] J. C. Collins, Nucl. Phys. B 396, 161 (1993).
[2] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 94, 012002 (2005).
[3] V. Y. Alexakhin et al. (COMPASS Collaboration), Phys. Rev. Lett. 94, 202002 (2005).
[4] A. V. Efremov, O. G. Smirnova and L. G. Tkachev, Nucl.
[5] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Meth. A 479, 117 (2002).

[6] S. Kurokawa, E. Kikutani, Nucl. Instrum. Meth. A 499, 1 (2003), and other papers included in this volume.

[7] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994); www.lns.cornell.edu/public/CLEO/soft/QQ(unpublished).

[8] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini (1984), CERN-DD/EE/84-1.

[9] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D 70, 117504 (2004).

[10] D. Boer, Ph.D. Thesis, RX1630, Vrije U., Amsterdam (1998).

[11] D. Boer, R. Jakob, and P. J. Mulders, Nucl. Phys. B504, 345 (1997).

[12] A. Bacchetta, R. Kundu, A. Metz, and P. J. Mulders, Phys. Rev. D 65, 094021 (2002).

[13] D. Amrath, A. Bacchetta, and A. Metz Phys. Rev. D 71, 114018 (2005).

[14] L. P. Gamberg, G. R. Goldstein, and K. A. Oganessyan, Phys. Rev.D 68, 051501(R) (2003).

[15] The raw, charm uncorrected asymmetries are $a_U^0 = (-8.90 \pm 0.07)\%$, $a_U^L = (-10.33 \pm 0.08)\%$, $a_{12}^U = (5.37 \pm 0.07)\%$ and $a_{12}^L = (3.14 \pm 0.08)\%$.
