Review Article

Applications of Biodiesel in Drilling Fluids

Ashraf Ahmed, Salaheldin Elkatatny, and Saad Al-Afnan

College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Correspondence should be addressed to Salaheldin Elkatatny; elkatatny@kfupm.edu.sa

Received 11 January 2021; Revised 9 February 2021; Accepted 28 February 2021; Published 11 March 2021

Academic Editor: Mohammad Sarmadivaleh

Copyright © 2021 Ashraf Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Biodiesel, referred to as the monoalkyl ester of long-chain fatty acid ester that is synthesized by the complete transesterification of triglycerides, has captured the attention of drilling researchers attributing to its magnificent characteristics such as the high flash point, excellent lubricity, nontoxicity, high biodegradability, and abundant feedstock resources, which make it ecofriendly and technically and economically feasible for a sustainable drilling operation. There are several studies that reported and documented the usage of biodiesel in drilling fluids on laboratory and field scales. In this paper, the production and the key physical and chemical properties of biodiesel are thoroughly reviewed. Moreover, the applications of biodiesel in drilling muds either as base fluids or additives were comprehensively surveyed. The literature review revealed that the challenges of biodiesel applications in drilling mud systems are related to its chemical reactivity and adverse interactions with some additives, along with its performance deficiency at temperature above 120°C. Therefore, further investigation on temperature stability and additive compatibility is recommended. In addition, as a new approach, it is recommended to study the potentiality of using crude waste oils in drilling mud formulations. The lessons learned and recommendations stated in this paper will assist in enhancing the proved use of biodiesel and drilling fluid optimization.

1. Introduction

Over the years, the petroleum industry has employed different chemicals and additives to design various fluid systems—named as drilling fluids or drilling muds—to drill a wellbore. These drilling fluids are composed of a continuous phase mixed with active/inactive solids and chemicals [1].

Appropriate drilling fluid design has always been a challenge. It requires some standardized testing and screening for many key factors such as the formation type, pressure, temperature, well trajectory, economics, and environmental restrictions. Hence, the drilling fluid system must be designed and treated in a manner that its chemical and physical properties fulfill the optimum drilling performance criteria alleviating problems associated with drilling operations such as stuck pipe, wellbore instability, lost circulation, formation damage, and shale heaving [2–5].

The commonly used types of drilling fluids over drilling operations, either onshore or offshore, are the aqueous drilling fluids commonly named water-based mud and nonaqueous-based drilling fluids called oil-based mud [6–8].

Although the water-based muds are inexpensive and have lower environmental impact, they associate some limitations in the complicated and hostile operational conditions [9–12]. Examples are high-pressure high-temperature, deep slim holes, water-sensitive shales, and salt beds, necessitating the demand for oil-based muds to assure an acceptable drilling performance [13–19]. However, the use of diesel or mineral oil as base fluids has substantial adverse ecological effects, because they include dispersed oil, aromatics and alkyl-phenols, n-olefins, and heavy metals all of which may be detrimental or toxic to the nearby ecosystems making them falling short of the standard environmental regulations [20–31].

Accordingly, the industry has recognized the need for alternative ecofriendly and cost-effective additives and base fluids that uphold the higher technical criterions and fulfill the environmental regulations [31–35]. As a response, synthetic-based muds were developed to combine the practical advantages of both oil- and water-based muds. Different base fluids were developed (i.e., synthetic hydrocarbons, ethers, acetals, and esters) [36–38]. The synthetic...
hydrocarbons include linear alpha olefins (LAOs), polyal-
phaolesins (PAOs), internal olefins (IOs), linear alkyl ben-
zenes (LABs), and linear paraffins (LP). The ethers are usu-
ally synthesized by condensing and partially oxidizing
different chain lengths of alcohols. Acetals can be generated
by reacting an aldehyde with an alcohol or carbonyl com-
pound in the presence of catalyzed acid, while the reaction
of carboxylic acids with an alcohol under acidic conditions
is used to produce the esters [22, 25].

Among these synthetic-based muds, it had been realized
that the ester-based mud has the best drilling practices and
ecological performance [39–43]. The first field trial of ester-
based muds was in offshore Norway; then, they were applied
successfully in drilling hundreds of wells in North Sea,Aus-
tralia, Gulf of Mexico, and Malaysia [25, 30, 32, 44–47].

Generally, esters have three types: natural, synthetic oleo-
chemical, and petrochemical esters. The conventional esters,
which are artificially synthesized, associate relatively high
cost [48–51]. Therefore, the attention was shifted to biodiesel
as naturally occurring esters that have the favorable charac-
teristics of conventional esters [52–55]. The substantial
increase in the global production of biodiesel from 0.81 mil-
ion m³ in 2000 to 30.8 million m³ in 2018 makes biodiesel a
sustainable and cost-efficient option in drilling operations
[56, 57]. Many investigations and case studies have been con-
ducted on core and reservoir scales with promising outcomes
[51, 58–65]. In this paper, the production process and the key
physical and chemical properties of biodiesel were thor-
oughly reviewed. Then, a comprehensive assessment was
conducted on the applications of biodiesel in drilling muds
as base fluids or additives.

2. Biodiesel Formulation

Biodiesel is the monoalkyl ester that is generated by the com-
plete transesterification process of the long-chain fatty acid
esters (known as triglycerides) [58, 66, 67]. This process
refers to the chemical reaction for converting the triglycer-
ides contained in the natural fats and oils to biodiesel and
glycerol as a by-product.

To minimize the undesirable side products of diglycer-
ides or monoglycerides, the triglycerides should react
completely by adding alcohol (usually methanol) as an alkyl
source along with sodium or potassium hydroxide as a base
catalyst [54, 66, 68–74] (see Figure 1). Then, the products
are separated as shown in Figure 2.

There is a significant diversity of biodiesel feedstock since
it can be derived from many plant oils, animal fats, and waste
vegetable oils [76–83] (Figure 3).

The common plant oils for biodiesel production are palm,
castor, almond seed, coconut, cottonseed, mustard,
peanut, rapeseed, rice bran, Salicornia, soybean, sunflower,
copaiba, jatropha, jojoba, paradise, and pongamia oils [84–
98], while the animal fat sources include tallow, lard, chicken
fat, yellow grease, and fish oil [99–102].

Recently, among these different sources, waste oils have
been heavily targeted to produce biodiesel. This is mainly
attributed to the global trend of managing the waste disposals
and reducing the negative impact on the environment, along
with the cost reduction (i.e., the feedstock constitutes 70-95%
of biodiesel production cost) [103, 104].

3. Biodiesel Characteristics

The physical and chemical properties of biodiesel vary
depending on the used feedstock. Table 1 lists the key prop-
erties of biodiesel that are derived from different feedstock
[60, 105–112]. Generally, biodiesel shares similar characteris-
tics as diesel. The content of unsaturated fatty acids con-
tained in biodiesel, however, reduces the liquidity resulting
in higher kinematic viscosity and higher pour point [113,
114]. Moreover, biodiesel has a spectacularly higher flash
point, reducing flammability risks. The absence of aromatic
and sulfur contents in most biodiesel types reduces toxicity
and corrosivity [61, 115]. Biodiesel has good oxidation stabil-
ity, exhibiting good shelf life, but less than that of diesel
because of the low content of linoleic acid in the biodiesel
[116]. Acid values present in the biodiesel controls the rheo-
logical properties. Biodiesel free of fatty acid is preferred at
low temperature to assure high drilling performance [117,
118].

4. Biodiesel Applications in Drilling Fluids

According to the ASTM D6751 [119] and EN14214 stan-
dards [120] and considering the abovementioned characteris-
tics, biodiesel has an acceptable low kinematic viscosity,
sufficiently high flash point, pour point lower than the most
ambient temperature, nontoxicity, reasonable acid value,
suitable thermal stability, remarkable biodegradability,
lubricity, environmentally friendly production process, and
abundance [121–123]. All these characteristics have made
biodiesel a viable option in drilling operations. Many
researchers have developed different drilling mud formula-
lations using biodiesel either as base fluids or additives.

4.1. Free Water Biodiesel-Based Mud. The feasibility of bio-
diesel replacing diesel in nonaqueous-based mud has been
extensively reported in the literature. Wang et al. [58] took
the initiative to formulate water-free biodiesel-based mud.
The formulated mud showed competent rheological and
shale stabilization behavior compared to the oil-based mud
commonly known as white oil. They showed that biodiesel,
as base fluid which is less viscous than white oil by 50%,
can serve the purpose of preparing a high-density mud more
easily. Moreover, biodiesel showed better tolerance to the
impurity of calcium and dry soil. In that study, several mud
formulations were investigated to acquire the optimum reci-
pe including biodiesel, bentonite, and ecodeterritorial addi-
tives, such as organolignite for filtration reduction, without
investigating the potential adverse environmental impact.
Another study on water-free biodiesel-based mud was per-
formed by Yang et al. [124]. They followed a similar
approach to obtain the optimum formulation for desirable
properties by adjusting and varying the included additives
and barite particles. It is worth mentioning that the origin
of biodiesel used in these studies was not described.
Nevertheless, total elimination of water associates cost and rheological challenges [125].

4.2. Biodiesel in Water Emulsion Mud. Different approaches of using biodiesel in water emulsion were introduced by Ismail et al. [60]. The work focused on studying the toxicity and biodegradation rate of biodiesel produced from palm, rice bran, and corn oils in comparison with conventional diesel. The formulated muds showed satisfactory environmental performance with the rice bran upholding the highest standards of environmental impact. Paswan and Mahto [65] developed sunflower-derived biodiesel in water emulsion mixed with a novel surfactant sodium methyl ester sulfonate that is synthesized from sunflower oil. Their developed formulation indicated better rheology and high emulsion and thermal stability. Table 2 describes the mud used in these two studies and the main findings. In aforementioned formulations of biodiesel in the water emulsion system, shale inhibition was problematic since water was the external phase.

4.3. Water in Biodiesel Invert Emulsion Mud. Many studies investigated the development of water in biodiesel invert emulsion mud. Amin et al. [30] used biodiesel derived from palm oil as an external phase for the formulated invert emulsion mud. The formulation showed an acceptable operation and environmental characteristics. The drawbacks are the economical concern of using palm oil as a source of biodiesel and the potential adverse contamination with cement and seawater. Radzlan et al. [126] studied the effect of lime and primary emulsifier on the performance of biodiesel invert emulsion mud and found that the high content of lime increases the biodiesel hydrolysis, in which biodiesel reacts with water to form the undesirable carboxylic acid and alcohol. Hence, the lime content should be carefully controlled to reduce the hydrolysis effect [127]. A series of studies were
Table 1: Basic properties of different types of biodiesel compared with diesel.

Properties	Density (g/cc)	Kinematic viscosity at 40°C (cSt)	Flash point (°C)	Pour point (°C)	Aromatic materials (wt.%)	Sulfur content (wt.%)	Acid value (mgKOH/g)	Oxidation stability at 110°C (hours)
Palm oil biodiesel	0.864	4.5	135	15	—	0.003	0.24	10.3
Soybean oil biodiesel	0.913	4.04	254	—	—	0.8	0.266	2.1
Almond seed oil biodiesel	0.874	4.31	169	-9	None	None	0.13	6
Peanut oil biodiesel	0.849	4.42	166	-8	None	None	0.28	—
Fish oil biodiesel	0.871	3.83	161	-3	None	None	—	—
Chicken fat biodiesel	0.883	4.98	172	—	—	—	0.22	6
Waste vegetable oil biodiesel	0.87	5.03	164	-16	None	None	0.29	—
Waste vegetable oil biodiesel	0.87	4.4	168	4	None	None	0.12	>6
Diesel #2	0.848	3.52	78	-18	33.8	0.035	0.006	23

Table 2: Mud components and findings of biodiesel in water emulsion mud studies.

Authors	Mud components	Findings
Ismail et al.	Water, biodiesel/diesel, CaCl₂, emulsifier, lime, viscosifier, fluid loss controller, and barite.	Biodiesel has less toxicity rating, lower mortality rate, and higher degradation rate.
Paswan and Mahto	Water, biodiesel/diesel, surfactant, xanthan gum, and bentonite.	Biodiesel showed lower plastic viscosity by 6.3% and higher yield point by 110% compared to diesel.

carried out by Li et al. [51, 61, 63, 111, 125] to develop biodiesel invert emulsion mud formulation using the waste cooking oil as feedstock. They performed extensive experimental work to investigate the technical, environmental, and economic feasibility of the approach. They showed that such formulations have satisfied rheological and filtration properties, high lubricity and competency to be applied in deviated and horizontal wells, reasonable shale inhibition, tolerance to contamination, nontoxicity and high biodegradability, and economic feasibility. They also determined the appropriate amount of lime content to assure hydrolytic stability. Moreover, they improved the mud performance by developing various novel emulsifiers, organophilic clay, and rheological modifier. Sulaimon et al. [128] formulated biodiesel invert emulsion mud from palm oil. It shows comparable performance with diesel and better environmental performance. Palm oil was also used by Said and El-Sayed [67] to develop an optimized biodiesel invert emulsion mud formulation free of lime to obtain a flat rheology, contamination-tolerant and stable mud up to 18 ppg. A comprehensive study was conducted by Amanullah and Arfaj [129] to formulate biodiesel mud and derive a novel green emulsifier and lubricant from waste cooking oil. The laboratory tests showed a competent performance of the developed products as potential alternatives to the commercially used ones.

Oseh et al. [112, 130] investigated the potentiality of using biodiesel derived from almond seed oil in invert emulsion mud formulation. The experiments proved its technical and environmental competency, as it showed comparable behavior to diesel in terms of rheology, filtration, shale compatibility, and thermal and electrical stability. Moreover, the formulation showed an improved environmental performance with less toxicity and better biodegradability. Recently, Onuh et al. [131, 132] studied the use of biodiesel extracted from Calophyllum inophyllum plant oil as a continuous phase for invert emulsion mud with similar promising results compared to commercial synthetic base oil.

The mud description and findings of the water in biodiesel invert emulsion mud studies are summarized in Table 3.

Generally, utilizing biodiesel in the invert emulsion drilling fluid system has favorable operational and environmental characteristics but restricted to thermal stability of around 120°C, a temperature that could be exceeded in harsh drilling operations.

4.4. Biodiesel as Additives. Li et al. [54] introduced a novel biodiesel-derived lubricant to be used with water-based muds. The results reported high lubricity performance with different aqueous mud formulations. The presence of sulfonated lignite, however, incapacitates the lubricity behavior due to the adsorbatibility and surface activity of sulfonated lignite. A green lubricant derived from waste vegetable oil was introduced by Amanullah and Arfaj [64], showing an improved lubricity of different water-based muds. The novelty of using biodiesel as a lubricant in water-based muds can be integrated with the usage of nanoparticle materials which indicated satisfied improvement in mud lubricity and rheology, particularly at elevated temperature [133].
and indicated high emulsion stability. As a by-product of the biodiesel production process, glycerol is produced with an amount ranging 9–13% w/w [72, 136, 137]. Extensive research has been conducted to utilize the considerable surplus of the produced glycerol. Pormerlau [138] investigated using glycerol-based mud in water-sensitive formations. Glycerol was used as a base fluid for drilling mud with 95/5 to 20/80 volume% of glycerol/water ratio. The results proved the competency of glycerol-based mud in such formations. Soares et al. [72] showed that glycerol has excellent performance as a lubricant with water-based mud and as an emulsifier with oil-based mud when compared with the available commercial products. Marbun et al. [73, 139] also evaluated the application of both crude and purified glycerol as base fluid for invert emulsion mud and lubricant for water-based mud. The results showed an increase in the viscosity of the crude glycerol-based mud, while the purified glycerol-based mud showed a significant viscosity reduction. They reported that glycerol has very effective lubricity and film strength with better filtration properties when used with water-based mud.

Allen et al. [140] verified that using polyglycerol as a dispersed phase has better behavior than calcium chloride in the invert emulsion mud system. The results showed some enhancement in the rate of penetration and well stability when using polyglycerol.

Malgaresi et al. [141] developed a new mud system by substituting 50% of water in water-based mud by crude glycerol. The results indicated superior filtration performance with lower formation damage and higher return permeability compared with the conventional water-based mud.

Pacheco et al. [142] examined drilling muds containing glycerol in presalt formation drilling by studying the dissolution kinetics of NaCl in these mud systems. They studied crude and purified glycerol at several rotation speeds and salt concentrations. They concluded that crude glycerol is not recommended due to the presence of residues in its composition.

4.6. Direct Usage of Biodiesel Feedstock. Over the years, there are several groups studying comprehensively the direct use of plant and vegetable oils in drilling fluids such as soybean, jatropha, palm, rapeseed, cottonseed, castor, coconut, groundnut, and moringa oils. They reported advantageous

Authors	Mud components	Findings
Amin et al.	Biodiesel, water, CaCl₂, emulsifier, viscosifier, and barite.	The formulated muds had plastic viscosity of 17-23 cP, yield point of 7-11 lb/100 ft², and electrical stability > 700 volts. The toxicity of biodiesel was compared with paraffin and mineral oil and indicated lower toxicity rating.
Radzlan et al.	Biodiesel/diesel/mineral oil, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	The higher amount of lime and emulsifier in biodiesel mud resulted in unstable mud and high plastic viscosity and yield point with 40 cP and 40 lb/100 ft², respectively. However, biodiesel showed better filtration properties compared to diesel.
Li et al.	Biodiesel/diesel, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	Biodiesel derived from waste cooking oil gave almost similar electrical stability, plastic viscosity, and yield point to diesel with values of 2000 volts, 18.5-29 cP, and 2.5-10.5 lb/100 ft². The tests indicated the nontoxicity and biodegradability of biodiesel with higher lubricity.
Sulaimon et al.	Biodiesel/mineral oil, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	Biodiesel resulted in plastic viscosity of 20-39 cP and yield point of 5-11 lb/100 ft², while the mineral oil gave 13 cP and 7 lb/100 ft². Also, biodiesel showed better stability with >1200 volts compared to 608 volts for the mineral oil.
Said and El-Sayed	Biodiesel/mineral oil, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	The developed biodiesel showed better electrical stability, plastic viscosity, and yield point with values of >1000 volts, 20 cP, and 14 lb/100 ft² compared to 210 volts, 18 cP, and 11 lb/100 ft² for mineral oil.
Amanullah and Arfaj	Biodiesel/mineral oil, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	Biodiesel derived from refined waste vegetable oil has marginally higher plastic viscosity values than mineral oil.
Oseh et al.	Biodiesel/diesel, water, CaCl₂, lime, emulsifier, viscosifier, and barite.	Biodiesel gave almost similar plastic viscosity and yield point to diesel with values of 22 cP and 16 lb/100 ft². The tests indicated better stability with 1123 volts, nontoxicity, and biodegradability of biodiesel with lower cost.
properties and ecofriendly performance compared to the conventional oil-based fluids [121, 128, 143–155]. However, the associated poor thermal and hydrolytic stability, immoderate viscosity, oxidative effect, high cost, and priority for the food industry present some serious drawbacks limiting direct utilization of vegetable oils in drilling mud applications [123, 127, 129, 151].

5. Lessons Learned

Based on the conducted review on biodiesel formulation, characteristics, and applications in drilling fluids, the lessons learned are summarized as follows:

(i) The direct usage of plant oils in drilling mud applications showed some beneficial properties, but they are expensive and thermally and hydrolytically unstable and have excessive viscosity

(ii) To overcome the limitations of formulating drilling muds from pure vegetable oils, biodiesel is derived from nonedible and waste oils

(iii) The studies proved that using biodiesel in drilling fluids showed improved rheological and filtration properties, excellent lubricity, reasonable emulsion stability, nontoxicity, and high biodegradation, which make biodiesel technically, economically, and environmentally feasible

(iv) The deficiencies of biodiesel in drilling mud systems are related to the chemical reactivity and the interactions with other additives

(v) The hydrolysis tendency of biodiesel is significantly affected by the presence of base catalysts, so the lime concentration in mud formulations must be highly controlled

(vi) The review showed that biodiesel performance is limited to 120°C, and over this temperature, biodiesel might not be stable

(vii) The application of water-free biodiesel-based mud is undesirable in terms of cost-saving and obtaining satisfactory rheological properties

(viii) Shale inhibition is problematic when using biodiesel in water emulsion mud since water is the external phase

(ix) The novel biodiesel-derived lubricants and emulsifiers have competent performance

6. Recommendations

Based on the review of the literature, some recommendations can be drawn as follows:

(i) Compatibility test between drilling fluid components is advised before using biodiesel-derived additives

(ii) The effect of different biodiesel mud formulations on formation damage should be verified

(iii) Studies should be conducted to investigate the effect of high temperature on biodiesel performance. Thermal stabilizers could be investigated for potential use

(iv) The viscoelastic properties of biodiesel muds should be studied to examine the elasticity behavior and the inner structure

(v) Detailed cost analysis is required to verify the economic feasibility of biodiesel muds

(vi) The potentiality of using crude waste oils in drilling mud formulations should be thoroughly studied

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

The authors would like to thank King Fahd University of Petroleum & Minerals (KFUPM) for employing its resources in conducting this work.

References

[1] R. Caenn, H. C. H. Darley, and G. R. Gray, Composition and Properties of Drilling and Completion Fluids. 6th Edition, Chapter 1, Gulf Professional Publishing, Amsterdam, Netherlands, 2011.

[2] R. Bleier, “Selecting a drilling fluid,” Journal of Petroleum Technology, vol. 42, no. 7, pp. 832–834, 1990.

[3] J. A. T. Bourgoyne, K. K. Millheim, M. E. Chenevert, and J. F. S. Young, Applied Drilling Engineering. Vol. 2, Chapter 2, Society of Petroleum Engineers, Richardson, TX, 1991.

[4] B. Bloys, N. Davis, B. Smolen et al., "Designing and managing drilling fluid," Oilfield Review, vol. 6, pp. 33–43, 1994.

[5] A. Hamoodi, A. A. Rahimy, and A. W. Khalid, “The effect of proper selection of drilling fluid on drilling operation in Janbour field,” American Scientific Research Journal for Engineering, Technology, and Sciences, vol. 39, pp. 224–234, 2018.

[6] H. Rabia, Well Engineering and Construction. Chapter 7, Entrac Consulting, London, 2002.

[7] F. H. T. Growcock, Drilling Fluids Processing Handbook. Chapter 2, Gulf Professional Publishing, 2004.

[8] P. Scott, P. Broussard, M. Freeman, F. Growcock, and R. Bland, IADC Drilling Manual. Chapter 10, IADC, Houston, Texas, 12th edition, 2015.

[9] S. Z. Razali, R. Yunus, S. A. Rashid, H. N. Lim, and B. Mohamed Jan, “Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 171–186, 2018.
[10] W. Li, J. J. Huang, Y. X. Liu, X. S. Luo, and C. X. Li, “Influence of drilling fluid additives on the formation of gas hydrate,” Journal of Southwest Petroleum University (Science & Technology Edition), vol. 27, pp. 62–64, 2005.

[11] A. S. Apaleke, A. A. Al-Majed, and M. E. Hossain, “Drilling fluid: state of the art and future trend,” in Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, 2012.

[12] M. Dekker and D. Reid, “Deepwater Development Strategy,” in Proceedings of the Offshore Technology Conference, pp. 5–8, Houston, Texas, May 2014.

[13] IOGP, Inputs to the North Sea from the Oil & Gas Industry 1989 to 1998; Report 316, The International Association of Oil & Gas Producers (IOGP), 2001.

[14] J. N. Yan, Drilling Fluid Technology, China University of Petroleum Press, Shandong, 2001.

[15] A. L. Martins, R. A. F. Leal, I. J. Junior, R. F. T. Lomba, and A. F. L. Aragao, “Minimizing drilling fluid invasion in coring operations,” in Proceedings of the European Formation Damage Conference, Scheveningen, Netherlands, 2007.

[16] X. He and L. Zheng, “Research on the application of environment acceptable modified natural macromolecule based drilling fluid,” in Proceedings of the Asia Pacific Health, Safety, Security and Environment Conference, Jakarta, Indonesia, 2009.

[17] A. A. Fadairo, G. A. Adeyemi, A. Ameloko, E. Ogidigbo, and O. Airende, “Environmental impact evaluation of a safe drilling mud,” in SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition, Abu Dhabi, UAE, 2012.

[18] S. Sayindla, B. Lund, J. D. Ytrehus, and A. Saasen, “Hole-cleaning performance comparison of oil-based and water-based drilling fluids,” Journal of Petroleum Science and Engineering, vol. 159, pp. 49–57, 2017.

[19] A. T. A. Waldmann, A. L. Martins, A. F. L. Aragao, and R. F. T. Lomba, “Predicting and monitoring fluid invasion in exploratory drilling,” SPE Drilling and Completion, vol. 20, no. 4, pp. 268–275, 2005.

[20] J. M. Davies, J. M. Addy, R. A. Blackman et al., “Environmental effects of the use of oil-based drilling muds in the North Sea,” Marine Pollution Bulletin, vol. 15, no. 10, pp. 363–370, 1984.

[21] A. D. Patel and C. S. Salandanan, “Thermally stable polymeric gelant for oil-base drilling fluids,” in SPE Oilfield and Geothermal Chemistry Symposium, Phoenix, Arizona, 1985.

[22] J. E. Candler, J. H. Rushing, and A. J. J. Leuterman, “Synthetic-based mud systems offer environmental benefits over traditional mud systems,” in SPE/IADC Middle East Drilling Technology Conference and Exhibition, Houston, Texas, May 2014.

[23] R. Dann and M. Mulder, Long-term effects of OBM cutting discharges in the sandy erosion area of the Dutch continental shelf, Netherlands Institute for Sea Research, Netherland, 1994, Report NIOZ–1994–10.

[24] L. Xiao and C. Piatti, “Biodegradable invert oil emulsion drilling fluids for offshore operations: a comprehensive laboratory evaluation and comparison,” in International Meeting on Petroleum Engineering, Beijing, China, 1995.

[25] J. E. Friedheim and H. L. Conn, "Second generation synthetic fluids in the North Sea: are they better?", in IADC/SPE Drilling Conference, New Orleans, Louisiana, 1996.

[26] R. James, P. Navestad, T. Schei, T. Geddes, G. Nelson, and D. Webster, “Improving the working environment and drilling economics through better understanding of oil based drilling fluid chemistry,” in SPE/IADC Middle East Drilling Technology Conference, Abu Dhabi, UAE, 1999.

[27] J. E. Friedheim and A. Patel, "Technical solutions for environmental problems: novel drilling formulations to minimize environmental impact,” in SPE/EPA Exploration and Production Environmental Conference, Austin, Texas, 1999.

[28] US EPA, Development Document for Final Effluent Limitations Guidelines and Standards for Synthetic-based Drilling Fluids and Other Non-aqueous Drilling Fluids in the Oil and Gas Extraction Point Source Category, Environmental Protection Agency, Office of Water, Washington, DC, 2000, EPA-821-B-00-013.

[29] S. von Tapavicza and J. Hall, “Development of environmentally safe drilling fluids based on esters,” in Proceedings of the The OfiC, Kuala Lumpur, Malaysia, 2002.

[30] R. A. M. Amin, D. K. Clapper, J. E. Norfleet et al., “Joint development of an environmentally acceptable ester-based drilling fluid,” in Trinidad and Tobago Energy Resources Conference, Port of Spain, Trinidad, 2010.

[31] M. Amanullah, “Physio-chemical characterisation of vegetable oils and preliminary test results of vegetable oil-based muds,” in In Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Dubai, UAE, 2005.

[32] R. L. Peresich, B. R. Burrell, and G. M. Prentice, “Development and field trial of a biodegradable invert emulsion fluid,” in SPE/IADC Drilling Conference, Amsterdam, Netherlands, 1991.

[33] R. G. Bland, D. K. Clapper, N. M. Fleming, and C. A. Hood, “Biodegradation and drilling fluid chemicals,” in SPE/IADC Drilling Conference, Amsterdam, Netherlands, 1993.

[34] J. E. Friedheim, J. E. Candler, and S. P. Rabke, “New testing protocols and regulatory guidelines to promote further development of synthetic-based fluid technology,” in SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 2001.

[35] P. Rae, G. Di Lullo, and A. B. Ahmad, “Towards environmentally-friendly additives for well completion and stimulation operations,” in SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 2001.

[36] S. Young, J. E. Friedheim, J. Lee, and O. I. Prebensen, “A new generation of flat rheology invert drilling fluids,” in SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 2012.

[37] K. Nanthagopal, B. Ashok, K. R. Tarun, and B. Dhinesh, “Investigation on diethyl ether as an additive with Calophyllum inophyllum biodiesel for CI engine application,” Energy Conversion and Management, vol. 179, pp. 104–113, 2019.

[38] A. Daya, M. Sajjadian, and M. Esmaeilpour, “Experimental investigation of new additive to optimize the properties of synthetic-based drilling fluid,” Journal of Mining and Metallurgy A: Mining, vol. 52, no. 1, pp. 37–43, 2016.

[39] H. Mueller, C. P. Herold, and S. von Tapavicza, “Monocarboxylic acid methyl esters in invert drilling muds,” 1992, US Patent No. 5106516.
8 Geo

[40] H. Mueller, C. P. Herold, S. von Tapavicza, D. J. Grimes, J. M. Braun, and S. P. T. Smith, "Drilling fluids and muds containing selected ester oils," 1993, US Patent No. 5252554.

[41] H. Mueller, C. P. Herold, S. von Tapavicza, D. J. Grimes, J. M. Braun, and S. P. T. Smith, "Use of selected ester oils in drilling fluids and muds," 1999, US Patent No. US20036066E2.

[42] A. D. Patel, “Choosing the right synthetic-based drilling fluids: drilling performance versus,” in SPE India Oil and Gas Conference and Exhibition, New Delhi, India, 1998.

[43] M. M. Dardir, S. Ibrahime, M. Soliman, S. D. Desouky, and A. A. Hafia, "Preparation and evaluation of some esteramides as synthetic based drilling fluids," Egyptian Journal of Petroleum, vol. 23, no. 1, pp. 35–43, 2014.

[44] R. G. Fechhelm, B. J. Gallaway, and J. M. Farmer, “Deepwater sampling at a synthetic drilling mud discharge site on the outer continental shelf, Northern Gulf of Mexico,” in SPE/EPA Exploration and Production Environmental Conference, Austin, Texas, 1999.

[45] D. Eckhout, S. Dolan, R. Gogan et al., “Development process and field applications of a new ester-based mud system for ERD wells on Australia’s northwest shelf,” in IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, Malaysia, 2000.

[46] K. Burrows, J. Evans, J. Hall, and J. Kirsner, “New low viscosity ester is suitable for drilling fluids in deepwater applications,” in In Proceedings of the SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio, Texas, 2001.

[47] S. von Tapavicza, “Special report: vegetable esters make drilling fluids more environmentally friendly,” Oil & Gas Journal, vol. 103, p. 22, 2005.

[48] R. Gaenn and G. V. Chillingar, “Drilling fluids: state of the art,” Journal of Petroleum Science and Engineering, vol. 14, no. 3–4, pp. 221–230, 1996.

[49] J. E. Friedheim, “Second-generation synthetic drilling fluids,” Journal of Petroleum Technology, vol. 49, no. 7, pp. 724–728, 1997.

[50] A. R. Ismail, A. Kamis, and K. S. Foo, “Performance of the mineral blended ester oil-based drilling fluid systems,” in Canadian International Petroleum Conference, Calgary, Alberta, 2001.

[51] W. Li, J. Liu, X. Zhao et al., “Novel modified rectorite provides reliable rheology and suspensibility for biodiesel based drilling fluid,” in SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, UAE, 2018.

[52] D. P. Geller and J. W. Goodrum, “Effects of specific fatty acid methyl esters on diesel fuel lubricity,” Fuel, vol. 83, no. 17-18, pp. 2351–2356, 2004.

[53] B. R. Moser and S. Z. Erhan, “Branched chain derivatives of alkyl oleates: tribological, rheological, oxidation, and low temperature properties,” Fuel, vol. 87, no. 10-11, pp. 2253–2257, 2008.

[54] W. Li, X. Zhao, H. Peng et al., “A novel environmentally friendly lubricant for water-based drilling fluids as a new application of biodiesel,” in IADC/SPE Asia Pacific Drilling Technology Conference, Singapore, 2016.

[55] K. Bharadwaj, WBA Global Bioenergy Statistics 2017, World Bioenergy Association, 2017.

[56] F. O. Licht, FO Licht world ethanol and biofuels report, vol. 12, p. 42, Agra Informa, Ratzeburg, Germany, 2013.

[57] M. R. Monteiro, C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha, and A. da Silva César, “Glycerol from biodiesel pro-
duction: technological paths for sustainability,” Renewable and Sustainable Energy Reviews, vol. 88, pp. 109–122, 2018.

[58] M. Wang, M. Sun, H. Shang, S. Fan, M. Liu, and F. Liu, “Biodiesel-based drilling fluids,” in IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Tianjin, China, 2012.

[59] M. B. Sun, J. Qiao, B. F. Liu, H. Li, and S. Mou, “Research and application of biodiesel-based drilling fluid,” Drilling Fluid and Completion Fluid, vol. 30, no. 4, pp. 15–18, 2013.

[60] A. R. Ismail, N. Ismail, M. Z. Jaafar, and R. Hassan, “The application of biodiesel as an environmental friendly drilling fluid to drill oil and gas wells,” in Proceedings of the The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology, Palembang, Indonesia, 2014.

[61] W. Li, X. Zhao, Y. Ji et al., “An investigation on environmentally friendly biodiesel-based invert emulsion drilling fluid,” Journal of Petroleum Exploration and Production Technologies, vol. 6, no. 3, pp. 505–517, 2016.

[62] M. Yadav, V. Singh, and Y. C. Sharma, “Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: process optimization and homogeneity study of catalyst,” Energy Conversion and Management, vol. 148, pp. 1438–1452, 2017.

[63] W. Li, X. Zhao, Y. Ji et al., “Investigation of biodiesel-based drilling fluid, part 2: formulation design, rheological study, and laboratory evaluation,” SPE Journal, vol. 21, no. 5, pp. 1767–1781, 2016.

[64] M. Amanullah and M. K. Arfaj, “ARC eco-lube - a food industry waste-based green lubricant,” in Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 2017.

[65] B. K. Paswan and V. Mahto, “Development of environment-friendly oil-in-water emulsion based drilling fluid for shale gas formation using sunflower oil,” Journal of Petroleum Science and Engineering, vol. 191, article 107129, 2020.

[66] D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010.

[67] M. M. Said and A.-A. H. El-Sayed, “The use of palm oil fatty acid methyl ester as a base fluid for a flat rheology high-performance drilling fluid,” Journal of Petroleum Science and Engineering, vol. 166, pp. 969–983, 2018.

[68] K. S. Tyson, Biodiesel R&D Potential; Montana Biodiesel Workshop, National Bioenergy Center, National Renewable Energy Laboratory, US. Department of Energy, 2003.

[69] B. R. Moser, “Biodiesel production, properties, and feedstocks,” In Vitro Cellular & Developmental Biology - Plant, vol. 45, no. 3, pp. 229–266, 2009.

[70] Y. X. Xu and M. A. Hanna, “Synthesis and characterization of hazelnut oil-based biodiesel,” Industrial Crops and Products, vol. 29, no. 2-3, pp. 473–479, 2009.

[71] F. B. Growcock and A. D. Patel, “AADE-11-NTCE-33 the revolution in non-aqueous drilling fluids,” in Proceedings of the AADE National Technical Conference and Exhibition, Houston, Texas, April 2011.

[72] V. L. P. Soares, R. Elizabeth, J. De A Rodrigues Jr., N. Luciano, and R. S. V. Nascimento, “New applications for soybean biodiesel glycerol,” in Soybean - Applications and Technology, InTech, 2011.

[73] B. T. H. Marbun, R. Aristya, A. N. Corina, and P. A. Hutapea, “Innovation of purified glycerol palm oil in drilling fluid
A. Chhetri, K. Watts, and M. Islam, “Waste cooking oil as an alternate feedstock for biodiesel production,” *Energies*, vol. 1, no. 1, pp. 3–18, 2008.

J. Nagi, S. Ahmed, and F. Nagi, “Palm biodiesel an alternative green renewable energy for the energy demands of the future,” *International Conference on Construction and Building Technology*, vol. 7, pp. 79–94, 2008.

A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” *Renewable and Sustainable Energy Reviews*, vol. 16, no. 4, pp. 2070–2093, 2012.

S. Ushakov, H. Valland, and V. Æsøy, “Combustion and emissions characteristics of fish oil fuel in a heavy-duty diesel engine,” *Energy Conversion and Management*, vol. 65, pp. 228–238, 2013.

E. Alptekin, M. Canakci, and H. Sanli, “Biodiesel production from vegetable oil and waste animal fats in a pilot plant,” *Waste Management*, vol. 34, no. 11, pp. 2146–2154, 2014.

W. Li, X. Zhao, Y. Ji et al., “Investigation of biodiesel-based drilling fluid, part 1: biodiesel evaluation, invert-emulsion properties, and development of a novel emulsifier package,” *SPE Journal*, vol. 21, no. 5, pp. 1755–1766, 2016.

J. O. Oseh, M. N. A. Mohd Norddin, I. Ismail et al., “Investigating almond seed oil as potential biodiesel-based drilling mud,” *Journal of Petroleum Science and Engineering*, vol. 181, article 106201, 2019.

H. Tang, S. Salley, and N. K. Simon, “Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends,” *Fuel*, vol. 87, no. 13-14, pp. 3006–3017, 2008.

P. Verma, M. P. Sharma, and G. Dwivedi, “Evaluation and enhancement of cold flow properties of palm oil and its biodiesel,” *Energy Reports*, vol. 2, pp. 8–13, 2016.

A. H. Al Kurki and M. Morris, *Biodiesel: The Sustainability Dimensions*, ATTRA Publication, Butte, US, 2007.

S. S. Pantoja, L. R. V. da Conceição, C. E. F. da Costa, J. R. Zamian, and G. N. da Rocha Filho, “Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation,” *Energy Conversion and Management*, vol. 74, pp. 293–298, 2013.

G. Knothe and K. R. Steidley, “Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petroleum fuel components,” *Fuel*, vol. 84, no. 9, pp. 1059–1065, 2005.

M. Acaroglu and A. Demirbas, “Relationships between viscosity and density measurements of biodiesel fuels,” *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, vol. 29, no. 8, pp. 705–712, 2007.

ASTM D6751-20, *Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels*, ASTM International, West Conshohocken, PA, 2020.

European Committee for Standardization, *BS EN 14214:2012 + A2:2019, Liquid Petroleum Products - Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications - Requirements and Test Methods*, British Standards Institution, 2019.

A. A. M. Yassin, A. Kamis, and M. O. Abdullah, “Formulation of an environmentally safe oil based drilling fluid,” in *SPE Asia-Pacific Conference*, Perth, Australia, 1991.

G. Knothe and J. van Gerpen, *The Biodiesel Handbook*, AOCS Publishing, New York, 1st edition, 2010.

O. E. Agwu, I. A. Isemin, and M. G. Akpabio, “Cost benefit analysis of vegetable oils used as alternatives to diesel in the formulation of oil-based drilling muds,” in *SPE Nigeria Annual International Conference and Exhibition*, Lagos, Nigeria, 2015.

J. Yang, T. Xu, X. Wu, X. Pan, and R. Hou, “The studies of bio-diesel drilling fluids,” *Drilling Fluid and Completion Fluid*, vol. 30, pp. 36–40, 2013.

W. Li, J. Liu, X. Zhao et al., “Development and screening of additives for biodiesel based drilling fluids: principles, strategies and experience,” in *SPE International Conference on Oilfield Chemistry*, Galveston, Texas, USA, 2019.

R. Radzlan, S. Yusup, N. R. Yusuf, R. N. M. Kamil, and C. Chok, “The effect of lime and primary emulsifier on the rheological behaviour of palm fatty acid distillate (PFAD) biodiesel – based drilling fluid,” *Australian Journal of Basic and Applied Sciences*, vol. 8, pp. 267–272, 2014.

S. Z. Razali, R. Yunus, S. Abdul Rashid, H. N. Lim, and B. Mohamed Jan, “Review of biodegradable synthetic-based drilling fluid: progression, performance and future prospect,” *Renewable and Sustainable Energy Reviews*, vol. 90, pp. 171–186, 2018.

A. A. Sulaimon, B. J. Adeyemi, and M. Rahimi, “Performance enhancement of selected vegetable oil as base fluid for drilling HPHT formation,” *Journal of Petroleum Science and Engineering*, vol. 152, pp. 49–59, 2017.

M. Amanullah and M. K. Afzai, “Waste cooking oil- a potential source of raw material for localization of green products development,” in *SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition*, Dammam, Saudi Arabia, 2018.

J. O. Oseh, M. N. A. Mohd Norddin, I. Ismail et al., “Performance evaluation of a benign oil-based mud from non-edible sweet almond seed oil,” in *SPE Nigeria Annual International Conference and Exhibition*, Lagos, Nigeria, 2019.

C. Onuh, D. Adewale, A. Paul, and R. Oluwatosin, “The chemical modification of plant oil for potential base oil in drilling mud operation,” in *Proceedings of the SPE Nigeria Annual International Conference and Exhibition*, Virtual, 2020.

C. Y. Onuh, A. Dosunmu, P. A. L. Anawe, E. O. Bolujo, O. A. Olabode, and T. F. Ogunkunle, “Investigating the potential of Calophyllum inophyllum plant base oil for oil and gas drilling mud operations,” *Journal of Physics Conference Series*, vol. 1299, article 012069, 2019.

A. R. Ismail, W. R. W. Sulaiman, M. Z. Jaafar, A. Aftab, A. Al-Razi, and Z. Ibputo, “The application of MWCNT to enhance the rheological behavior of drilling fluids at high temperature,” *Malaysian Journal of Fundamental and Applied Sciences*, vol. 12, no. 3, pp. 95–98, 2016.

J. Ramasamy, M. Amanullah, and M. M. Alsaihati, “Emulsifier developed from waste vegetable oil for application in invert-emulsion oil based mud,” in *SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition*, Dammam, Saudi Arabia, 2018.

J. Ramasamy and M. Amanullah, “Converting waste vegetable oil to emulsifier for invert-emulsion oil based mud,” in *International Petroleum Technology Conference*, Beijing, China, 2019.
S. Akintola, A. B. Oriji, and M. Momodu, "B. K. Paswan, R. Jain, S. K. Sharma, V. Mahto, and V. P. A. L. Anawe, V. E. Efeovbokhan, A. A. Ayoola, and M. Auta, W. Setyawan, A. S. Ashfahani, K. Fajarwati, B. Marbun, and A. Dosunmu and O. O. Joshua, M. L. Drachmann, "Petrobras’ initiatives for glycerin co-produced with biodiesel," in 19th World Petroleum Congress, Madrid, Spain, 2008.

P. U. Okoye and B. H. Hameed, "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, vol. 53, pp. 558–574, 2016.

D. G. Pormerlau, “Glycerol based drilling fluids,” 2009, US Patent No. 2009/0143254 A1.

B. T. H. Marbun, P. A. Hutapea, A. N. Corina, R. Aristya, and S. D. Purwandari, “Purification and physio-chemical characterization of glycerol by-product of palm oil biodiesel industry as a potential base fluid for synthetic oil-based drilling fluid system,” American Journal of Oil and Chemical Technologies, vol. 1, no. 10, 2013.

T. Allen, K. Scott, S. Baker et al., “A novel invert emulsion system using a polyglycerol internal phase,” in Offshore Mediterranean Conference and Exhibition, pp. 25–27, Ravenna, Italy, March 2015.

G. V. C. Malgaresi, A. S. L. Vaz, C. C. Corrêa, G. F. Cruz, R. F. T. Lomba, and A. Waldmann, “A new crude-glycerin-based drilling fluid,” Journal of Petroleum Science and Engineering, vol. 160, pp. 401–411, 2018.

L. V. Pacheco, R. Fernando de Oliveira Borges, B. Rosas de Oliveira, C. M. Scheid, and L. A. Calçada, “Study on the dissolution kinetics of NaCl in environmentally friendly drilling fluids containing glycerin,” Journal of Petroleum Science and Engineering, vol. 182, article 106165, 2019.

A. Fadairo, D. Orodu, and O. Falode, "Investigating the carrying capacity and the effect of drilling cutting on rheological properties of Jatropha oil based mud," in SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2013.

A. Fadairo, O. Falode, C. Ako, A. Adeyemi, and A. Ameloko, “Novel formulation of environmentally friendly oil based drilling mud,” in New Technologies in the Oil and Gas Industry, ITech, 2012.

A. Dosunmu and O. O. Joshua, "Development of environmentally friendly oil based mud using palm-oil and groundnut-oil," in Nigeria Annual International Conference and Exhibition, Tinapa – Calabar, 2010.

W. Setyawan, A. S. Ashfahani, K. Fajarwati, B. Marbun, and R. Manurung, "Alternative use of castor oil for vegetable oil based mud environmentally friendly potential domestic oil based mud," in Proceedings of the Annual Convention, 35th Indonesian Petroleum Association; Indonesia energy, growth, security and sustainability, pp. 239–250, Jakarta, 2011.

M. Auta, "Extraction and characterization of drilling fluid from castor oil," International Journal of Innovation and Applied Studies, vol. 3, pp. 382–387, 2013.

P. A. L. Anawe, V. E. Efoevbokhan, A. A. Ayoola, and A. Otuekong, "Investigating alternatives to diesel in oil based drilling mud formulations used in the oil industry," Journal of Environment and Earth Science, vol. 4, pp. 70–78, 2014.

S. Akintola, A. B. Oriji, and M. Momodu, "Analysis of filtration properties of locally sourced base oil for the formulation of oil based drilling fluids," Scientia Africana, vol. 13, pp. 171–177, 2014.

B. K. Paswan, R. Jain, S. K. Sharma, V. Mahto, and V. P. Sharma, “Development of Jatropha oil-in-water emulsion drilling mud system,” Journal of Petroleum Science and Engineering, vol. 144, pp. 10–18, 2016.

M. Amanullah and M. Al-Arfaj, "Novel method and apparatus for sticking fluid performance evaluation," in SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 2017.

H. A. N. Bastidas, J. S. C. Perez, and C. V. Castellanos, "Development of an environmentally friendly oil based drilling fluid using castor oil with polar activator and in presence of strong bases lime," in SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 2017.

T. FakharanyEl, A. A. Geliel, and H. Salhin, "Formulating environmentally friendly oil- base mud using soybean oil," IARJSET, vol. 4, pp. 57–61, 2017.

T. FakharanyEl, R. Khaled, and A. Mahmoud, "Formulating environmentally friendly oil- base mud using Jatropha oil," IARJSET, vol. 4, pp. 1–6, 2017.

A. Nasiri, M. Ameri Shahrabi, and M. Keshavarz Moraveji, "Application of new eco-friendly LCMs for combating the lost circulation in heavy-weight and oil-based mud," RSC Advances, vol. 8, pp. 9685–9696, 2018.