Coxiella burnetii in ticks, livestock, pets and wildlife: A mini-review

Seyma S. Celina* and Jiří Černý

Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia

Coxiella burnetii is a zoonotic bacterium with an obligatory intracellular lifestyle and has a worldwide distribution. *Coxiella burnetii* is the causative agent of Q fever in humans and coxiellosis in animals. Since its discovery in 1935, it has been shown to infect a wide range of animal species including mammals, birds, reptiles, and arthropods. *Coxiella burnetii* infection is of public and veterinary health and economic concern due to its potential for rapid spread and highly infectious nature. Livestock are the primary source of *C. burnetii* infection in most Q fever outbreaks which occurs mainly through inhalation of contaminated particles. Aside from livestock, many cases of Q fever linked to exposure to wildlife. Changes in the dynamics of human-wildlife interactions may lead to an increased potential risk of interspecies transmission and contribute to the emergence/re-emergence of Q fever. Although *C. burnetii* transmission is mainly airborne, ticks may act as vectors and play an important role in the natural cycle of transmission of coxiellosis among wild vertebrates and livestock. In this review, we aim to compile available information on vectors, domestic, and wild hosts of *C. burnetii*, and to highlight their potential role as bacterial reservoirs in the transmission of *C. burnetii*.

KEYWORDS
Coxiella burnetii, Q fever, coxiellosis, ticks, livestock, wildlife

Introduction

Coxiella burnetii, a member of the *Coxiellaceae* family and the aetiologic agent of Q fever disease in humans and the epizootic disease coxiellosis in animals, is an obligate intracellular gram-negative bacterium. *Coxiella burnetii* infection occurs in a wide variety of animals such as mammals, birds, reptiles, and arthropods (1). Due to its widespread availability, environmental stability, and low infective dose, *C. burnetii* is reported as an emerging pathogen and classified as a potential bioterror agent (2).

Coxiella burnetii has a wide and diverse host range. The pathogen primarily affects sheep, goats, and cattle which are considered the primary reservoirs of the pathogen and the primary source of human outbreaks (3, 4). *Coxiella burnetii* has a worldwide geographical distribution, apart from Antarctica and New Zealand (5, 6). People get infected through inhalation of bacteria contaminated aerosols expelled by infected animal feces, urine, milk, and birth products, while alternative routes of the infection such as sexual, oral, or congenital are uncommon (Figure 1) (7, 8). As the infective
Transmission routes of Coxiella burnetii. The bacterium is most often transmitted to humans during parturition of animals. It can be transmitted to humans when they directly come into contact with or inhale contaminated dust from infected animals. It can also be transmitted from a tick bite or by ingesting contaminated/unpasteurized milk and dairy products. Among humans, the bacterium can be transmitted through blood transfusion, sexual, nosocomial and vertical transmission. Sheep, cattle, and goats are the most common reservoirs of the organism for human infection, but infected cats and less commonly dogs can also transmit the infection to humans. Ticks also harbor the organism and are thought to maintain transmission to wildlife species. Dogs and cats, and humans can also become infected when they contact (or ingest) wildlife species.

Coxiella burnetii in animals

Apart from domestic ruminants, a diverse range of other domestic animals (e.g., dog, cat, rabbit, pig, horse, camel, buffalo, rodent, birds) have been reported to be infected with *C. burnetii*. Additionally, these animals have been also documented to spread the pathogen to humans without manifesting clinical signs of coxiellosis (1). Furthermore, more than a 100 different wild mammal species, which can act as reservoirs for both humans and domestic livestock, have been shown to harbor *C. burnetii* (12).

In this review, we provide compiled available information on vectors, domestic, and wild hosts of *C. burnetii*, and highlight their potential role as bacterial reservoirs in the transmission of *C. burnetii*. This review provides a short synopsis of much broader topics that have been covered in depth by recent publications (5, 12–17) for those who are interested in more details on *C. burnetii* in animals.

Coxiella burnetii in ticks

Q fever was first recognized in 1,935 among abattoir workers in Australia by pathologist Derrick (18). Two years later, the pathogenic agent was first isolated from *Dermacentor andersonii* (Nine Mile isolate) (19) and *Haemaphysalis humerosa* (20) in the US. Since then, ticks have been discussed as possible vectors for transmission of the bacterium (21).

The role of ticks in Q fever epidemiology is being disputed due to the rare detection of *C. burnetii* in ticks. Also, difficulties in distinguishing *C. burnetii* from *Coxiella*-like endosymbionts (CLEs) of ticks, which are non-infectious for the vertebrate hosts but necessary for tick fitness, is problematic (13, 22). CLEs have a strong genetic similarity to *C. burnetii* therefore, routine PCR detection usually cross-react and its results may lead to misinterpretation of real prevalence of *C. burnetii* in ticks (23, 24). Moreover, in contrast to majority of vector-borne diseases, ticks are not essential as vector in transmission of *C. burnetii* (25). However, several studies have identified ticks as a potential risk for coxiellosis in livestock and other domestic...
animals (26–30). On the other hand, ticks may play a significant role as reservoirs of C. burnetii in wild animals (31).

Coxiella burnetii was isolated from over 40 species of hard ticks and 14 soft tick species collected from vegetation, and domestic and wild animals (25, 32). Ticks can get infected with C. burnetii either through a blood meal from an infected animal at all stages of their development or transovarially. However, under experimental conditions, not all tick species were capable of being infected or being able to transmit the pathogen to experimental animals or to their offspring (25). Seven species of hard and soft ticks, including D. andersoni, Ha. humerosa, Hyalomma aegyptium, Hy. asiaticum, Ixodes holocyclus, Ornithodoros hermsi, and Or. moubata have yet to be demonstrated in experiments to be competent vectors of C. burnetii (13). In ticks, C. burnetii has been detected in several tick tissues, including midgut, hemolymph, Malpighian tubules, salivary glands, and ovaries (33). Ticks have also been shown to excrete considerable amount of infectious feces (up to 10^{10} organisms per gram of feces) (34). This finding emphasizes the potential risk of tick-borne infection posed by tick excreta, through inhalation (e.g., among shearingers), direct contact (e.g., using bare hands to crush a tick), or tick bites (13, 31, 35).

Nevertheless, from the perspective of public health, the epidemiological importance of C. burnetii tick-borne transmission is lower compared to airborne transmission (13). However, inhaling tick excreta can be a significant source of infection. Additionally, ticks may play a meaningful role in the natural cycle of transmission of coxiellosis among wild-living animals and livestock (31). By crossing these species barriers, C. burnetii may increase its diversity of virulence and resistance factors (13).

Furthermore, several studies showed variable C. burnetii prevalence in ticks collected from vegetation. Although the prevalence of C. burnetii in ticks sampled from animals (6.6%) is higher than in ticks collected from vegetation (2.8%) (36), the C. burnetii prevalence in ticks collected from vegetation varies geographically. For instance, C. burnetii could not detected in 1891 I. ricinus collected in the Netherlands (37), or 887 I. ricinus collected in Sweden (38). However, C. burnetii was detected in I. ricinus, D. reticulatus, D. marginatus, Ha.concina, and Ha. inermis in Slovakia (39), in I. ricinus, D. marginatus, and Ha.concina in Hungary (40), in I. ricinus in Germany (41), in Ha. punctata in Spain (42), and in I. ricinus in Austria (43). These results suggest that ticks may play an important role at least in the forest cycle of C. burnetii (31).

Coxiella burnetii in livestock and domestic animals

As already mentioned, livestock is the most frequent reservoir of C. burnetii and frequent contacts with domestic ruminants are one of the most important risk factors for C. burnetii infection in humans. Therefore, the detection and control of infected herds is a critical issue in control of Q fever from the public health perspective (25). Massive excretion of C. burnetii into the environment occurs during parturition in infected females, with shedding a very large number of bacteria in birth products and in urine, feces, and milk. Shedding of C. burnetii may persist over several months in various body tissues and fluids such as vaginal mucus, feces, urine, and milk (44). According to experimental studies, C. burnetii shedding through vaginal discharge is more frequently observed in sheep, while milk is the most common route of pathogen shedding in cattle and goats (45–47).

In most Q fever outbreaks, infected ruminants are typically the primary source of infection (3, 4) and the number of cases is correlated to the local livestock population (48). Transmission of C. burnetii between ruminant hosts mainly occurs via the airborne route. However, other factors such as transboundary animal trade and transportation of animal source foods enhance movement of the pathogen across large distances (16, 49). Aside from livestock, pet animals, especially dogs and cats kept in a close contact with their owners, are known to be important reservoirs of C. burnetii during urban Q fever outbreaks. Many cases of human Q fever have been reported from infected dogs and cats (15, 50–57). Most of these reported cases of Q fever in humans were associated with exposure to parturient pets. Although the main origins of infection in pets remain poorly understood, it has been speculated that dogs and cats may be infected by tick bite, consumption of placenta or milk from infected livestock, consumption of raw meat, inhalation of aerosolized bacteria in the environment, and preying of contaminated animal species (16, 17).

Coxiella burnetii infection has been reported in other domestic mammals—though less frequently than livestock — , including horses, rabbits, pigs, camels, water buffalo, rats, and mice (11, 30, 35, 58–72). So far, serological evidence of C. burnetii infection in many horses have been reported (66, 73–75). However, the epidemiological importance of horses as C. burnetii reservoirs has not been adequately studied.

The role of European rabbits as a reservoir for C. burnetii was evaluated and rabbits were identified as a major source of coxiellosis in livestock and Q fever in humans in Europe, and it is possible that they have a similar role in Australia (68, 76).

The role of pigs in epidemiology of C. burnetii is relatively obscure. Their susceptibility to C. burnetii infection has been confirmed based on previous serological study (77), but there is a lack of evidence that pigs serve as reservoirs of C. burnetii. Until today, no C. burnetii transmission from pigs to humans has been documented. The study on evaluation of the prevalence and genotypes of C. burnetii in pigs from South Korea revealed low seropositivity among pigs (39).

Domestic water buffalo (Bubalus bubalis) is a globally important livestock species due to its high-quality milk, meat and leather. Many studies revealed that buffalo may have a significant impact on the epidemiology of Q fever and
emphasizes the necessity for *C. burnetii* surveillance and control measures in buffalo (60, 65–67).

In camels, *C. burnetii* is among the most widespread zoonotic pathogens (61). Camel populations worldwide are estimated to be ~30 million, with dromedary camels constituting 95% of the population (78). Dromedary camels (*Camelus dromedarius*) play an important role as a high-quality protein source for people in semi-dry and arid zones of Africa (5). The most recent *C. burnetii* serological studies conducted in herds and farms in Africa, Arabian Peninsula, and Asia reported a very high prevalence of Q fever antibodies in the sera of camels (5, 79, 80).

The pathogenesis of Q fever in domestic animals is not fully understood. *Coxiella burnetii* infections in animals are frequently asymptomatic. In the acute phase, *C. burnetii* can be detected in the blood, lungs, spleen, and liver (17). When persistent shedding of bacterium occurs in feces and urine, the infection often becomes chronic. However, unlike humans, animals do not usually develop chronic endocarditis (17). Nonetheless, recent studies reported *C. burnetii* detection in inflamed cardiac valves in slaughtered cattle (81) as well as chronic endometritis in dairy cattle, resulting chronic subfertility (82). Chronic *C. burnetii* infection mostly affects female uterus and mammary glands. Therefore, the most significant clinical cases of *C. burnetii* infection is limited to pregnant animals and are commonly associated with abortions, stillbirths, the birth of small or weak offspring, and mastitis (17, 25).

In laboratory animals, *C. burnetii* inoculation of guinea pigs and mice leads to pneumonia, hepatitis and splenomegaly (83, 84). In addition, the importance of *C. burnetii* strain in determining the severity of pathological changes was reported (17). Splenomegaly in guinea pigs and mice is considered to be an indication of *C. burnetii* strain pathogenicity. Furthermore, the method of inoculation appears to impact pathogenesis. In mice, intranasal inoculation causes pneumonia, whereas intraperitoneal inoculation causes hepatitis-plenomegaly (84).

Little is known about the pathogenesis of *C. burnetii* infections in companion animals. In pet animals, especially dogs and cats, reproductive anomalies, including dystocia, stillbirths and perinatal mortality have been recorded. However, many studies reported short-lived bacterial shedding and indicated that bacterial shedding by companion animals is rare given the lack of *C. burnetii* DNA in samples from companion animals (85).

Coxiella burnetii in wildlife

Coxiella burnetii occurs in many free-living and captive wildlife species worldwide that have been suspected to play a role in the epidemiology of Q fever (12, 86–92). González-Barrio and Ruiz-Fons discussed in details about how it is exceedingly difficult to identify *C. burnetii* infection in wildlife, particularly farmed wild species and free-roaming wildlife (12, 93, 94), and highlighted the importance of daily survey to easily detect reproductive disorders associated to *C. burnetii* in captive animals of zoological gardens (12).

Natural infections of *C. burnetii* have been reported in a large variety of wild species (Table 1). Starting with birds, *C. burnetii* infection has been documented in avian wildlife in addition to farm and pet birds (14, 98)—e.g., barn swallow (*Hirundo rustica*), eclectus parrot (*Eclectus roratus*), hen (*Gallus gallus domesticus*), turkey (*Meleagris spp.*), magpie (*Pica spp.*), pheasant (*Phasianus colchicus*), wood-pigeon (*Columba palumbus*), turtle dove (*Streptopelia turtur*), pigeon (*Columba livia*), house sparrow (*Passer domesticus*), Italian sparrow (*Passer italica*), rook (*Corvus frugilegus*), hooded crow (*Corvus cornix*), carrion crow (*Corvus corone*), raven (*Corvus corax*), Eurasian griffon vulture (*Gyps fulvus*), black kite (*Milvus migrans*), redstart (*Phoenicurus phoenicurus*), white wagtail (*Motacilla alba*), western yellow wagtail (*Motacilla flava*), common quail (*Coturnix coturnix*), Japanese quail (*Coturnix japonica*), black-headed gull (*Chroicocephalus ridibundus*), common gull (*Larus canus*), white-winged tern (*Chlidonias leucopterus*), common tern (*Sterna hirundo*), common starling (*Sturnus vulgaris*), wild ducks (*Anas spp.*), common blackbird (*Turdus merula*), fieldfare (*Turdus pilaris*), thrush nightingale (*Luscinia luscinia*), willow warbler (*Phylloscopus trochilus*), great white pelican (*Pelecanus onocrotalus*), Eurasian reed warbler (*Acrocephalus scirpaceus*), and wood sandpiper (*Tringa glareola*). Ebani and Mancianti reviewed *C. burnetii* infections in birds from 1952, when they were first documented, to the present, and supports the potential role of avian populations in the epidemiology of *C. burnetii* (14). However, it is yet unclear how *C. burnetii* spreads among avian wildlife and what factors affect the transmission of the pathogen, as information about prevalence rates in different geographic locations is scarce (14).

The pathogenesis of *C. burnetii* infection in birds is not well-defined. Previous studies observed *Coxiella* persistence in birds with (polyorganous lesions resulting in mortality) and without clinical signs (101, 106, 154).

In reptiles, two earlier studies have identified *C. burnetii* in India, where two tortoises, snakes and skinks were seropositive for *C. burnetii* (108, 155). A recent study examined turtles in Illinois and Wisconsin, USA, for *C. burnetii* using qPCR, and 5 out of 605 turtles yielded positive results for *C. burnetii* (107). Furthermore, *C. burnetii* has been detected in various reptilian ticks, including tortoise tick *H. aegyptium* from Romania (156), *Amblyomma exornatum* from Guinea Bissau, *A. variegatum* from Ghana, and *A. variegatum* in Africa (157).

In mammals, *C. burnetii* infection has been detected in a broad range of species. In cervids, *C. burnetii* has been reported in black-tailed deer (*Odocoileus hemionus columbianus*), California mule deer (*O. h. californicus*), Rocky Mountain mule deer (*O. h. hemionus*), and white-tailed deer...
Family	Common name	Scientific name	Country	Reference
Accipitridae	Black kite	Milvus migrans	Spain	(95)
	Eurasian griffon vulture	Gyps fulvus	Spain	(95)
Gruidae	Eurasian reed warbler	Accrocephalus scapaceus	Bulgaria	(96)
Anatidae	Eurasian teal	Anas crecca	Italy	(97)
	Eurasian wigeon	Anas penelope	Italy	(97)
	Mallard	Anas platyrhynchos	Russia	(96)
			Japan	(94)
Columbidae	Pigeon	Columba livia	Bulgaria	(99)
			Czechoslovakia	(100)
			Italy	(101)
			Slovakia	(102)
			France	(102)
			Italy	(103)
			Japan	(98)
Corvidae	Crow	Corvus spp.	Bulgaria	(99)
			Japan	(98)
	Carrion crow	Corvus corone	Japan	(98)
	Hooded crow	Corvus cornix	Russia	(96)
	Magpie	Pica spp.	Bulgaria	(99)
	Raven	Corvus corax	Bulgaria	(99)
	Rook	Corvus frugileus	Russia	(104)
Hirundinidae	Barn swallow	Hirundo rustica	Czechoslovakia	(100)
Laridae	Black-headed gull	Chroicocephalus ridibundus	Russia	(103)
	Common gull	Larus canus	Russia	(105)
	Common tern	Sterna hirundo	Russia	(105)
	White-winged tern	Chlidonias leucopterus	Russia	(105)
Motacillidae	Western yellow wagtail	Motacilla flava	Bulgaria	(96)
	White wagtail	Motacilla alba	Czechoslovakia	(100)
			Russia	(96)
Muscicapidae	Redstart	Phoenicurus phoenicurus	Czechoslovakia	(100)
Passeridae	Thrush nightingale	Lucina lucinia	Bulgaria	(96)
	House sparrow	Passer domesticus	Russia	(96)
	Italian sparrow	Passer italiae	Italy	(103)
Pelecanidae	Great white pelican	Pelecanus onocrotalus	Bulgaria	(96)
Phasianidae	Common quail	Coturnix coturnix	Japan	(98)
			Russia	(96)
	Hens	Gallus gallus domesticus	Czechoslovakia	(100)
	Japanese quail	Coturnix japonica	Japan	(98)
	Phasian	Phasianus colchicus	Bulgaria	(99)
	Turkey	Meleagris spp.	Czechoslovakia	(100)
Phylloscopidae	Willow warbler	Phylloscopus trochilus	Bulgaria	(96)
Ptiltanidae	Eclectus parrot	Eclectus roratus	USA	(106)

(Continued)
Family	Common name	Scientific name	Country	Reference
Scolopacidae	Wood sandpiper	*Tringa glareola*	Bulgaria	(96)
Sturnidae	Common starling	*Sturnus vulgaris*	Russia	(96)
Turdidae	Common blackbird	*Turdus merula*	Russia	(96)
	Fieldfare	*Turdus pilaris*	Russia	(96)
Coxiella burnetii infection in reptiles				
Emydidae	Blanding’s turtle	*Emydoidea blandingii*	USA	(107)
	Ornate box turtle	*Terrapene ornata*		
	Painted turtle	*Chrysemys picta*		
Geoemydidae	Roofed turtles	Batagur and Pangshura spp.	India	(108)
	(formerly in genus Kachuga)			
Colubridae	Chinese ratsnake	*Ptyas korros*	India	(108)
	Grass snake	*Natrix natrix*		
Pythonidae	Indian python	*Python molurus*	India	(108)
Coxiella burnetii infection in terrestrial mammals				
Bovidae	Alpine chamois	*Rupicapra rupicapra*	France	(109)
	Alpine ibex	*Capra ibex*	Switzerland	(110)
	Bighorn sheep	*Ovis canadensis*	USA	(111)
	Cuvier’s gazelle	*Gazella cuvieri*	Europe	(112)
	Dama gazelle	*Nanger dama*	UAE	(113)
			Europe	(112)
	Moufflon	*Ovis orientalis*	Spain	(114)
			Czech Republic	(115)
			Cyprus	(116)
			(117)	
	Muskox	*Ovis moschatus*	USA	(118)
	Sable antelope	*Hippotragus niger*	Portugal	(119)
	Saiga antelope	*Saiga tatarica*	Kazakhstan	(120)
	Spanish ibex	*Capra pyrenaica*	Spain	(121)
	Waterbuck	*Kobus ellipiprymnus*	Portugal	(119)
	Yak	*Bos mutus*	China	(122)
Cervidae	Black-tailed deer	*Odocoileus hemionus*	USA	(123)
	California mule deer	*Odocoileus hemionus*	USA	(123)
		colombianus		
		californicus		
	Fallow deer	*Dama dama*	Czech Republic	(113)
			Italy	(124)
			Spain	(121)
			Czech Republic	(115)
			Slovakia	(123)
			Spain	(121)
			(121)	
	Red deer	*Cervus elaphus*	Spain	(94)
			(126)	
			(114)	
			France	(127)
			Italy	(128)
			Hungary	(129)

(Continued)
Family	Common name	Scientific name	Country	Reference
Suidae	Eurasian wild boar	Sus scrofa	Czech Republic	(115)
			Spain	
Liporidae	European hare	Lepus europaeus	Cyprus	(116)
	European rabbit	Oryctolagus cuniculus	Spain	(95)
				(76)
				(70)
Cricetidae	Japanese hare	Lepus brachyurus	Japan	(134)
	Bank vole	Myodes glareolus	UK	(88)
	Cursor Grass Mouse	Akodon cursor	Brazil	(138)
	Delta Pygmy Rice Rat	Oligoryzomys nigripes	Brazil	(138)
	Field vole	Microtus agrestis	UK	(88)
	Red vole	Myodes rutilus	Russia/China	(139)
	Reed vole	Microtus fortis	Russia/China	(139)
Muridae	Black rat	Rattus rattus	Netherlands	(140)
	Brown rat	Rattus norvegicus	Russia/China	(139)
			Germany	(141)
			Netherl.	(140)
	House mouse	Mus musculus	Spain	(42)
			Brazil	(138)
	Large Japanese Field Mouse	Apodemus speciosus	Russia/China	(139)
	Long-tailed field mouse	Apodemus sylvaticus	Italy	(142)
			Spain	(42)
			UK	(88)
Sciuridae	Striped Field Mouse	Apodemus agrarius	Russia/China	(139)
	American red squirrel	Tamiasciurus hudsonicus	Canada	(143)
	Carolina flying squirrel	Glaucomys sabrinus	Canada	(143)
	Siberian Chipmunk	Tamias sibiricus	Russia/China	(139)
Canidae	Coyote	Canis latrans	USA	(144)
	Red fox	Vulpes vulpes	Cyprus	(116)
TABLE 1 (Continued)

Family	Common name	Scientific name	Country	Reference
Erinaceidae	Amur hedgehog	Erinaceus amurenensis	China	(143)
	North African Hedgehog	Atelerix algirus	Tunisia	(146)
Felidae	Jaguar	Panthera onca	Brazil	(149)
	Wild cat	Felis silvestris	Spain	(121)
Macropodidae	Western grey kangaroo	Macropus fuliginosus	Australia	(149)
Viveridae	Common genet	Genetta geneta	Spain	(143)

Coxiella burnetii infection in marine mammals

Family	Common name	Scientific name	Country	Reference
Mustelidae	Sea otter	Enhydra lutris	USA	(150)
Otaridae	Northern fur seal	Callorhinus ursinus	USA	(151)
	Steller sea lion	Eumetopias jubatus	USA	(151)

Phocidae

Common name	Scientific name	Country	Reference
Harbor seal	Phoca vitulina richardi	USA	(153)

(Odocoileus virginianus) in Canada and US (123, 135, 136). For European cervids, the infection has been documented in fallow deer (Dama dama), red deer (Cervus elaphus), and roe deer (Capreolus capreolus) (94, 95, 114, 115, 121, 124–133). The serological evidence of the infection was also reported in Sika deer (Cervus arbor) in Japan (134). Furthermore, the presence of C. burnetii has been detected in wild boars, hares, and many rodent species; including Eurasian wild boars (Sus scrofa) (95, 115, 137), European hares (Lepus europaeus) (95, 116), European rabbit (Oryctolagus cuniculus) (68, 70, 76), Japanese hare (Lepus brachyurus) (134), cursor grass mouse (Akodon cursor) (138, 158), bank vole (Myodes glareolus) (88), delta pygmy rice rat (Oligoryzomys nigripes) (138), the Atlantic forest hociucdo (Osmymycterus dasytrichus) (138), field vole (Microtus agrestis) (88), reed vole (Microtus fortis) (139), red vole (Myodes rutilus) (139), black rat (Rattus rattus) (140), brown rat (Rattus norvegicus) (139–141), house mouse (Mus musculus) (42, 138), long-tailed field mouse (Apodemus sylvaticus) (42, 88, 142), large Japanese field mouse (Apodemus speciosus) (139), striped field mouse (Apodemus agrarius) (139), American red squirrel (Tamiasciurus hudsonicus) (143), Carolina flying squirrel (Glaucomys sabrinus) (143), and Siberian chipmunk (Tamias sibiricus) (139). Rodents are considered to be significant reservoirs of infection in the domestic cycle of C. burnetii (139), and several rodent species have been found to be a source of livestock coxiellosis (140, 160).

Additionally, C. burnetii has been implicated in reproductive losses in captive exotic ungulates, including waterbuck (Kobus ellipsiprymnus) (119), sable antelope (Hippotragus niger) (119), and many gazelles, such as arbor gazelle (Gazella arbor neglecta), dama gazelle (Nanger dama mhorr) and Cuvier’s gazelle (Gazella cuvieri) (112, 113). Reproductive disorders caused by C. burnetii in endangered species such as exotic ungulates that are bred in captivity for conservation programs may be of critical threat and pose a risk for the programs (113). Other bovids reported to be exposed to/infected by C. burnetii are Alpine ibex (Capra ibex) (110), Bighorn sheep (Ovis arboris) (111), Alpine chamois (Rupicapra rupicapra) (109), Spanish ibex (Capra pyrenaica) (121), mouflon (Ovis orientalis) (114–117), muskox (Ovibos moschatus) (118), saiga antelope (Saiga tatarica) (120), and yak (Bos mutus) (122).

Apart from terrestrial mammals, C. burnetii has also been detected in marine wildlife—e.g., sea otter (Enhydra lutris) (150), northern fur seal (Callorhinus ursinus) (151, 152), steller sea lion (Eumetopias jubatus) (151, 153, 161), and harbor seal (Phoca vitulina richardi) (153).

Other mammals that have been shown to harbor C. burnetii are coyote (Canis latrans) (144), red fox (Vulpes vulpes) (88, 116, 145), jaguar (Panthera onca) (148), wild cat (Felis silvestris) (121), common genet (Genetta genetta) (145), western grey kangaroo (Macropus fuliginosus) (149), North African hedgehog (Atelerix algirus) (147), and Amur hedgehog (Erinaceus amurenensis) (146).

Coxielllosis causes similar clinical outcomes and pathologies in wild animals as it does in domestic animals (12). Placenta is one of the most common lesions identified in wild animals with coxiellosis which have been observed in dama gazelle (113), Steller sea lion (161), and Pacific harbor seal (162).

Disease control

Preventive veterinary practices are critical in the control of coxiellosis. Two methods are available to control coxiellosis in animals: vaccination and antibiotic treatment.
Vaccination is one of the most effective management strategies to reduce abortion rates and spread of the bacterium. WHO recommends only the administration of vaccines containing or prepared from phase I C. burnetii as it has been scientifically showed that the full-length phase I lipopolysaccharide is the protective antigen of C. burnetii (163). Vaccines prevent successive transmission to healthy individuals and humans, and reduce but do not eliminate shedding of the bacterium (164–166). Two vaccines against C. burnetii are currently commercially available for veterinary use in many regions of the world. The first one is an inactivated bivalent vaccine developed from Chlamydia abortus and phase II C. burnetii (Chlamyvax®, Mérial, Lyon, France), indicated for use in sheep and goats. The second one is an inactivated non-adjuvanted phase I C. burnetii antigen Nine Mile strain vaccine (Coxevac®, CEVA Santé Animale, Libourne, France) recommended for use in goats and cattle (167).

Antibiotic treatment is another available option to control coxielirosis in animals. Pregnant animals might have a decrease in abortion rates and C. burnetii shedding by receiving antibiotic treatment with oxytetracycline (20 mg/kg) during the last trimester of pregnancy (168). However, antibiotic treatment of animals is not recommended since the effect of the treatment is not sufficiently demonstrated and proportionate use of antibiotics is required to avoid microbial resistance (8).

Conclusion

Q fever is a significant zoonotic disease worldwide that affects both public and veterinary health, as well as has a detrimental socioeconomic impact on livestock industry. In view of the threats related to this disease, a thorough understanding of transmission routes and potential sources of infection is crucial. Coxiella burnetii has been detected in various hosts, including humans, domestic and wild animals, pets, birds, and arthropods. Ticks are considered as vectors of C. burnetii and may pose a risk for infection of animals and humans. However, further field studies should be implemented to assess the role of the ticks as vectors for C. burnetii under natural conditions. Understanding their role can help us to develop and/or improve vector control strategies that would lead to decrease of C. burnetii risk. It is also noteworthy that our understanding about C. burnetii infection patterns in ticks and role of ticks as possible C. burnetii vectors are limited since CLEs are likely to have been mistakenly identified as C. burnetii in many studies. The development of the diagnostic tests to distinguish between C. burnetii and CLEs to improve our understanding of Q fever epidemiology should also be a key area of future research.

Another point of contention is the role of wildlife—livestock—human interactions which should be further investigated. It is important to develop effective preventive and control strategies using on evidence-based “One Health” approach. In the context of inadequate biosafety controls implemented in the wildlife—livestock—human interface, the possibility of a high rate of transmission of the zoonotic pathogens, including C. burnetii, at these interfaces cannot be precluded.

Further studies are also required to better understand the pathogenicity of C. burnetii for its arthropod and wild hosts. Research about possible routes of transmission of C. burnetii between different host should not be omitted as well. Finally, we should focus also on research evaluating the pathogenicity of CLEs for humans and other mammals or at least their ability to infect them.

Author contributions

SSC and JČ: conceptualization and writing—review and editing. SSC: writing—original draft preparation and visualization. JČ: supervision. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Babudieri B. Q fever: a zoonosis. Adv Vet Sci. (1959) 5:81–154.
2. Rathish B, Pillay R, Wilson A, Pillay VV. Comprehensive review of bioterrorism. In: StatPearls. Treasure Island, FL: StatPearls Publishing (2022).
3. Pouquet M, Bareille N, Guatteo R, Moret L, Beausneau F. Coxiella burnetii infection in humans: to what extent do cattle in infected areas free from small ruminants play a role?
infection. Prev Vet Med. (2014) 117:103–9. doi: 10.1016/j.prevetmed.2014.08.016

27. Cantas H, Muwonge A, Sareyyupoglu B, Yardimci H, Şkipere E. Q fever abortions in ruminants and associated on-farm risk factors in northern Cyprus. BMC Vet Res. (2011) 7:13. doi: 10.1186/1746-6147-8-13

28. Asadi J, Khalili M, Kafi M, Ansari-Lari M, Hosseini SM. Risk factors of Q fever in sheep and goat flocks with history of abortion. Comp Clin Path. (2014) 23:625–30. doi: 10.1007/s00058-012-1661-9

29. Benaisa MH, Amsel S, Mohamed-Cherif A, Benfodi K, Khelief D, Youngs CR, et al. Seroprevalence and risk factors for Coxiella burnetii, the causative agent of Q fever in the dromedary camel (Camelus dromedarius) population in Algeria. Understoept J Vet Res. (2017) 84:1–7. doi: 10.4102/ouj.v8i4.e1461

30. Dražnovská M, Prokež M, Vojtěch B, Moužíková J, Ondřejková A, Korytár L. First serological result of Coxiella burnetii infection in the equine population of Slovakia. Biologa. (2022) 77:1645–9. doi: 10.1017/s11756-021-00898-4

31. Kazar J. Coxiella burnetii infection. Ann N Y Acad Sci. (2015) 1305:103–5. doi: 10.1196/annals.1355.018

32. Koka H, Sang R, Kutmania HL, Musula L. Coxiella burnetii detected in tick samples from pastoral communities in Kenya. Biomed Res Int. (2018) 2018:8158102. doi: 10.1155/2018/8158102

33. Lang GH. Q fever: an emerging public health concern in Canada. Can J Vet Res. (1989) 53:3–6.

34. Philip CB. Observations on experimental Q fever. J Parasitol. (1948) 34:457–64. doi: 10.2307/3273312

35. Abdioull H, Hussein HA, El-Razik KA, Barakat AM, Soliman YA. Q fever: a neglected disease of camels in Gaza and Cairo provinces, Egypt. Vet World. (2019) 12:1945–50. doi: 10.1007/s10391-2019-1945-1950

36. Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The prevalence of Coxiella burnetii in hard ticks in Europe and their role in Q fever transmission revisited—a systematic review. Front Vet Sci. (2021) 8.655715. doi: 10.3389/fvets.2021.655715

37. Sprogl H, Tissje-Klæsen E, Langelaar M, de Bruijn A, Fonville M, Gassner E, et al. Prevalence of Coxiella burnetii in ticks after a large outbreak of Q fever. Zoonoses Public Health. (2012) 59:69–75. doi: 10.1111/j.1863-2378.2011.01421.x

38. Wallenius K, Pettersson JH-O, Jaenson TGT, Nilsson K. Prevalence of Rickettsia spp. Anaplasma phagocytophilum, and Coxiella burnetii in adult Ixodes ricinus ticks from 29 study areas in central and southern Sweden. Ticks Tick Borne Dis. (2012) 3:100–6. doi: 10.1111/j.2040-7341.2011.003

39. Reháček J, Urvolgyi L, Kocianova E, Sekyrová Z, Vavříková M, Kovačiová E. Extensive examination of different tick species for infections with Coxiella burnetii in Slovakia. Eur J Epidemiol. (1991) 7:299–303. doi: 10.1007/BF01719288

40. Špitalská E, Kocianová E. Detection of Coxiella burnetii in ticks collected in Slovakia and Hungary. Eur J Epidemiol. (2002) 18:263–8. doi: 10.1023/A:1023330222657

41. Hildebrandt A, Straube E, Neubauer H, Schmook G. Coxiella burnetii and coinfections in Ixodes ricinus ticks in central Germany. Vector Borne Zoonotic Dis. (2011) 11:2005–7. doi: 10.1089/vbz.2010.00180

42. Varangis P, Foucard A, Coste A, Hadjar S, Suppan P, et al. Prevalence of Coxiella burnetii infection in Ixodes ricinus ticks from Northern Spain. Vector Borne Zoonotic Dis. (2015) 15:835–40. doi: 10.1089/vbz.2014.0422

43. Davis GE, Cox HR, Parker RR, Dyer RE. A filter-passing infectious agent of Coxiella burnetii. J Biol Chem. (1940) 18:1–8. doi: 10.1038/icb.1940.1

44. Hellman M, Kratisch W, Brauner JO, Leven J. Differentiation of Coxiella burnetii and other Coxiella-like bacteria by salivary antigen 1. J Gen Microbiol. (1968) 48:457–63. doi: 10.1099/jgm.0.017343-x

45. Davis GE, Cox HR, Parker RR, Dyer RE. A filter-passing infectious agent of Coxiella burnetii. J Biol Chem. (1940) 18:1–8. doi: 10.1038/icb.1940.1

46. Hellman M, Kratisch W, Brauner JO, Leven J. Differentiation of Coxiella burnetii and other Coxiella-like bacteria by salivary antigen 1. J Gen Microbiol. (1968) 48:457–63. doi: 10.1099/jgm.0.017343-x

47. Davis GE, Cox HR, Parker RR, Dyer RE. A filter-passing infectious agent of Coxiella burnetii. J Biol Chem. (1940) 18:1–8. doi: 10.1038/icb.1940.1

48. Hellman M, Kratisch W, Brauner JO, Leven J. Differentiation of Coxiella burnetii and other Coxiella-like bacteria by salivary antigen 1. J Gen Microbiol. (1968) 48:457–63. doi: 10.1099/jgm.0.017343-x

49. Davis GE, Cox HR, Parker RR, Dyer RE. A filter-passing infectious agent of Coxiella burnetii. J Biol Chem. (1940) 18:1–8. doi: 10.1038/icb.1940.1

50. Hellman M, Kratisch W, Brauner JO, Leven J. Differentiation of Coxiella burnetii and other Coxiella-like bacteria by salivary antigen 1. J Gen Microbiol. (1968) 48:457–63. doi: 10.1099/jgm.0.017343-x
PLoS ONE. (2015) 15:86. doi: 10.1186/s12917-020-02526-w
57. Norris JM, Bosward KL, Heller J. Q fever: pets, vets and validating tests. Vet Microbiol. (2013) 158:101–8. doi: 10.1093/infdis/158.1.101
58. Browne AS, Fèvre EM, Kinnaird M, Muloi DM, Wang CA, Larsen PS, et al. Serosurvey of C. burnetii in wolf, domestic cats, rabbits, wild boars, and ticks (Acari: Ixodidae) vectors. Acta Trop. (2020) 204:105443. doi: 10.1016/j.actatropica.2020.105443
59. Seo M-G, Ouh I-O, Lee S-H, Kwak D. Detection and genotyping of C. burnetii in pigs, South Korea, 2014–2015. Acta Trop. (2018) 188:234–9. doi: 10.1016/j.actatropica.2018.09.008
60. Klemmer J, Nourlangie J, Tardif P, Lesjak M, Paré D, Royan C, et al. Genotyping reveals the presence of a predominant genotype of C. burnetii in consumer milk products. J Clin Microbiol. (2017) 55:47–54. doi: 10.1128/JCM.01920-16
61. Hussein MF, Alshaikh MA, Al-Jumaah RS, Gareeb Nabi A, Al-Khalifa I, Mohammed OB. The Arabian camel (Camelus dromedarius) as a major reservoir of Q fever in Saudi Arabia. Comp Clin Pathol. (2015) 24:887–92. doi: 10.1007/s00058-014-0202-y
62. Bellabidi M, Renaissa MH, Bissati-Bouafia S, Harait Z, Braham K, Kerfi I. C. burnetii in dromedary camels (Camelus dromedarius) from Algeria. Seroprevalence, molecular characterization, and ticks (Acari: Ixodidae) vectors. Acta Trop. (2020) 204:105443. doi: 10.1016/j.actatropica.2020.105443
63. Fu M, He P, OuYang X, Xue Z, Chen X, Chen X, et al. Novel genotypes of C. burnetii circulating in rats in Yunnan Province, China. Zoonoses Public Health. (2017) 64:543–9. doi: 10.1111/zph.12337
64. Norris JM, Bosward KL, Heller J. Q fever: pets, vets and validating tests. Vet Microbiol. (2013) 158:101–8. doi: 10.1093/infdis/158.1.101
65. Keshavamurthy R, Singh BB, Kalambhe DG, Aulakh RS, Dhand MK, et al. New insights on the epidemiology of C. burnetii in dromedary camels (Camelus dromedarius) in Latkiupi County, Kenya. Zoonoses Public Health. (2017) 64:543–9. doi: 10.1111/zph.12337
66. Seo M-G, Ouh I-O, Lee S-H, Kwak D. Detection and genotyping of C. burnetii in pigs, South Korea, 2014–2015. Acta Trop. (2018) 188:234–9. doi: 10.1016/j.actatropica.2018.09.008
67. Agerholm JS, Jensen TK, Agger JF, Engelsma MY, Roest HH. Prevention of C. burnetii DNA in inflamed bovine cardiac valves. BMC Vet Res. (2017) 13:69. doi: 10.1186/s12917-017-0988-5
68. de Biase D, Costaglia A, del Piero F, di Palo R, Galiero G, et al. C. burnetii in infertile dairy cattle with chronic endometritis. Vet Pathol. (2018) 55:539–42. doi: 10.1177/030098581875076
69. Russell-Lodrigue KE, Zhang QQ, McMurray DN, Samuel JE. Clinical and pathological changes in a guinea pig model of aerosol challenge with genogroup 1 of acute Q fever. Infect Immun. (2000) 68:7468–95. doi: 10.1128/IAI.70.12.7468-7495.2000
70. Klaassen CHW. Genotyping reveals the presence of a predominant genotype of C. burnetii in consumer milk products. J Clin Microbiol. (2012) 50:1256–8. doi: 10.1128/JCM.00681-11
71. Arellano J-L. Detection of C. burnetii in sheep in a meso–mediterranean ecosystem. J Med Entomol. (2019) 57:551–6. doi: 10.1093/jme/tjz240
134. Ercijo CLA, Cai L, Htwe KK, Taki M, Inoshima Y, Kondo T, et al. Serological evidence of *Coxiella burnetii* infection in wild animals in Japan. *J Wildl Dis.* (1993) 29:481–4. doi: 10.7589/0090-3585-29.3.481

135. Yates L, Embil J, Marrie TJ. Seropidemiology of *Coxiella burnetii* among wildlife in nova scotia. *Am J Trop Med Hyg.* (1993) 49:613–5. doi: 10.4269/ajtmh.1993.49.613

136. Kirchgeessner MS, Dubovi EJ, Whipp CM. Seropidemiology of *Coxiella burnetii* in wild white-tailed deer (*Odocoileus virginianus*) in New York, United States. *Vector Borne Zoonotic Dis.* (2012) 12:942–7. doi: 10.1089/vbz.2011.0952

137. Jado I, Carranza-Rodriguez C, Barandika JE, Toledo A, García-Amil C, Serrano B, et al. Molecular method for the characterization of *Coxiella burnetii* from clinical and environmental samples: variability of genotypes in Spain. *AMC Microbiol.* (2012) 12:91. doi: 10.1186/1471-2180-12-91

138. Rozental T, Ferreira MS, Guterres A, Mares-Guia MA, Teixeira BR, Gonçalves J, et al. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and *Coxiella* infections. *Acta Trop.* (2017) 168:64–73. doi: 10.1016/j.actatropica.2017.01.003

139. Liu L, Manxia H, Ming L, Chan I, Yingquin F, Yu Y, et al. *Coxiella burnetii* in rodents on Heixiazi island at the Sino-Russian border. *Am J Trop Med Hyg.* (2013) 87:770–3. doi: 10.4269/ajtmh.12-0580

140. Reusken C, van der Plaat P, Opsteegh M, de Bruin A, Swart RF, et al. Zoonotic pathogens associated with *Hyalomma aegyptium* in tick-infected rodents. *Emerg Infect Dis.* (2019) 25:735–43. doi: 10.3201/eid2505.180552

141. Runge M, von Keyserlingk M, Braune S, Becker D, Plenge-Bönig A, Freese JE, et al. Distribution of rodenticide resistance and zoonotic pathogens in Norway rats in Lower Saxony and Hamburg, Germany. *Pest Manag Sci.* (2013) 69:403–8. doi: 10.1002/ps.3369

142. Pascuacci I, Di Domenico M, D’Allacqua F, Soizzo G, Cammâ C. Detection of Lyme disease and Q fever agents in wild rodents in central Italy. *Vector Borne Zoonotic Dis.* (2015) 15:404–11. doi: 10.1089/vbz.2015.1807

143. Thompson M, Kyrtzicuz N, Goedherdam K, Schulte-Hostedde A. Prevalence of the bacterium *Coxiella burnetii* in wild rodents from a Canadian natural environment park. *Zoonoses Public Health.* (2012) 59:553–60. doi: 10.1111/j.1863-2378.2012.01938.x

144. McCluskey JH, Childs JE. Q fever in humans and animals in the United States. *Vector Borne Zoonotic Dis.* (2002) 2:179–91. doi: 10.1089/153036602606613747

145. Millán J, Provost T, Fernández de Mera IG, Chirife AD, de la Fuente I, Allet L. Molecular detection of vector-borne pathogens in wild and domestic carnivors and their ticks at the human-wildlife interface. Ticks Tick Borne Dis. (2016) 7:284–90. doi: 10.1016/j.tbd.2015.11.003

146. Gong X-Q, Xiao X, Liu J-W, Han H-J, Qin X-R, Lei S-C, et al. Occurrence and genotyping of *Coxiella burnetii* in Hedgehogs in China. *Vector Borne Zoonotic Dis.* (2020) 20:585–5. doi: 10.1890/19-0493.x

147. Balti G, Galon C, Derghal M, Souguir H, Guerbouj S, Rhim A, et al. *Coxiella burnetii* infection of a steller sea lion (*Eumetopias jubatus*) found in Washington state. *J Clin Microbiol.* (2010) 48:3428–31. doi: 10.1128/JCM.00758-10

148. Lapointe J-M, Gulland FM, Haines DM, Barr BC, Duiguan PL. Placentitis due to *Coxiella burnetii* in a pacific harbor seal (*Phoca vitulina richardsi*). *J Vet Diag Invest.* (1999) 11:541–3. doi: 10.1177/104063879901100612

149. Aitken ID. Clinical aspects and prevention of Q fever in animals. *Eur J Epidemiol.* (1989) 5:420–4. doi: 10.1007/BF00104132

150. Foronda P, Plata-Luis J, del Castillo-Figueroelo R, Fernández-Álvarez Á, Martín-Alonso A, et al. Serological survey of antibodies to *Toxoplasma gondii* and *Coxiella burnetii* in rodents in north-western African islands (Canary Islands and Cape Verde). *Onderstepoort J Vet Res.* (2015) 82:e1–4. doi: 10.1017/ojvr.2015.111

151. Kersh GJ, Lambourn DM, Self JS, Akmajian AM, Stanton JB, Basler T, et al. *Coxiella burnetii* infection of a steller sea lion (*Eumetopias jubatus*) found in Washington state. *J Clin Microbiol.* (2010) 48:3428–31. doi: 10.1128/JCM.00758-10

152. Lapointe J-M, Gulland FM, Haines DM, Barr BC, Duiguan PL. Placentitis due to *Coxiella burnetii* in a pacific harbor seal (*Phoca vitulina richardsi*). *J Vet Diag Invest.* (1999) 11:541–3. doi: 10.1177/104063879901100612

153. Aitken ID. Clinical aspects and prevention of Q fever in animals. *Eur J Epidemiol.* (1989) 5:420–4. doi: 10.1007/BF00104132

154. Guatteo R, Seegers H, Taurel A-F, Joly A, Beaudeau F. Prevalence of *Coxiella burnetii* infection in domestic ruminants: a critical review. *Vet Microbiol.* (2011) 149:1–16. doi: 10.1016/j.vetmic.2010.10.007

155. Arrianca-Bouvery N, Sourau A, Boget-Kouri C, Dufour P, Rousset E, Rodolakis A. Effect of vaccination with phase I and phase II *Coxiella burnetii* vaccines in pregnant goats. *Vaccine.* (2005) 23:4392–402. doi: 10.1016/j.vaccine.2005.04.010

156. Hogerwerf L, van den Brom R, Roest HJ, Bouma A, Vellema P, Pieterson M, et al. Reduction of *Coxiella burnetii* prevalence by vaccination of goats and sheep. *The Netherlands. Emerg Infect Dis.* (2011) 17:379–86. doi: 10.3201/eid1703.101157

157. Long CM. Q fever vaccine development: current strategies and future considerations. *Pathogens.* (2010) 1:1023. doi: 10.3390/pathogens10101223

158. Berti M, Rousset E, Champion JL, Russo P, Rodolakis A. Goats may experience reproductive failures and shed *Coxiella burnetii* at two successive parturitions after a Q fever infection. *Rez Vet S.* (2007) 83:47–52. doi: 10.1016/j.rvsc.2006.11.001