DIFFERENTIATION OF MEASURES ON COMPLETE RIEMANNIAN MANIFOLDS

JÜRGEN JOST, HONG VAN LÊ, AND TAT DAT TRAN

Abstract. In this note we give a new proof of a version of the Besicovitch covering theorem, given in [EG1992], [Bogachev2007] and extended in [Federer1969], for locally finite Borel measures on finite dimensional complete Riemannian manifolds \((M, g)\). As a consequence, we prove a differentiation theorem for Borel measures on \((M, g)\), which gives a formula for the Radon-Nikodym density of two nonnegative locally finite Borel measures \(\nu_1, \nu_2\) on \((M, g)\) such that \(\nu_1 \ll \nu_2\), extending the known case when \((M, g)\) is a standard Euclidean space.

1. Introduction

The existence of the Radon-Nikodym derivative is one of the most frequently employed results in probability theory and mathematical statistics. In the general case, where \(\nu, \mu\) are locally finite measures on a general measurable space \(X\) and \(\nu \ll \mu\), classical proofs of the existence of the Radon-Nikodym derivative \(d\nu/d\mu\) are non constructive, see e.g. [Bogachev2007, p. 429, vol. 1], [BBT2008, §8.7, p. 336] for historical comments. For a class of metrizable measurable spaces \(X\), the theorem of differentiation of measures with a constructive proof [1] yields not only the existence of the Radon-Nikodym derivative, but also computes the Radon-Nikodym density based on an appropriate metric. As far as we know, that is the only way to get an explicit formula for the Radon-Nikodym derivative, see [SG1977, p. 189], [Panangaden2009, p. 56] for discussions on the relation between the Radon-Nikodym theorem and the theorem of differentiation of measures.

The main ingredient of all known proofs of the theorem of differentiation of measures is the construction (or the existence) of a differentiation basis, which is based on a covering theorem. All covering theorems are based on the same idea: from an arbitrary cover of a set in a metric space, one tries to select a subcover that is, in a certain sense, as disjointed as possible. According to [Heinonen2001, Chapter 1], there are three (types) of

2010 Mathematics Subject Classification. Primary: 28A15, Secondary: 49Q15, 53C20.

Key words and phrases. Besicovitch-Federer covering theorem, differentiation of measure, Radon-Nikodym derivative, complete Riemannian manifold.

Research of HVL was supported by GAČR-project 18-01953J and RVO: 67985840.

1The proof of the theorem of differentiation of measures on complete \(\sigma\)-finite measure spaces given in [BBT2008, Chapter 8] utilizes the existence of lifting, whose proof is non constructive.
covering theorems: the basic covering theorem, which is an extension of the classical Vitali theorem for \mathbb{R}^n to arbitrary metric space, the Vitali covering theorem, which is an extension the classical Vitali theorem to the case of doubling metric measure spaces, and the Besicovitch-Federer theorem that has been first proved by Besicovitch [Besicovitch1945] for the case of \mathbb{R}^n and then extended by Federer for directionally (ε, M)-limited subsets of a metric space X [Federer1969, Theorem 2.8.14, p.150]. Examples of such subsets are compact subsets in a Riemannian manifold. The essence of Vitali theorems is that one finds a disjointed subcollection of the sets of a given cover that need not be a cover itself, but that when the radii are all enlarged by a fixed factor, covers everything. The essence of the Besicovitch theorems is to select a subcover so that each point is only covered a controlled number of times. Clearly, such theorems are useful when one has to estimate constants occurring in covering arguments.

The Besicovitch-Federer covering theorems has been revisited for the case of \mathbb{R}^n [Sullivan1994, EG1992], and for any finite dimensional normed vector space, which results in a variation of the Besicovitch-Federer covering theorem for arbitrary metric spaces [Loeb1989], and extended in [Itoh2018] for non directionally limited subsets in \mathbb{R}^n.

In our note we give a new proof of the following version of the Besicovitch-Federer theorem.

Theorem 1.1. Assume that \mathcal{F} is a collection of open 4-proper geodesic balls in a complete Riemannian manifold (M, g) such that the set A of the centers of the balls in \mathcal{F} is bounded. Then one can find $N \in \mathbb{N}^*$ and subcollections $\mathcal{F}_1, \ldots, \mathcal{F}_N \subset \mathcal{F}$ each of which consists of at most countably many disjoint balls such that A is covered by the balls from $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_N$.

Here, 4-proper means that the radius of the ball is at most $1/4$ of the injectivity radius of its center. A particular case of Theorem 1.1 is the version of the Besicovitch covering theorem for the standard Euclidean space \mathbb{R}^n [Besicovitch1945], which has been formulated as Theorem 5.8.1 in [Bogachev2007, p. 361, vol. 1] based on the proof of [EG1992, Theorem 1.27]. There are three differences between Theorem 1.1 and Theorem 5.8.1 ibid.: firstly we make the assumption that A is bounded, secondly, the geodesic balls are 4-proper, and thirdly, the balls are open instead of nondegenerate closed as in Theorem 5.8.1 ibid. Note that in the Besicovitch-Federer theorem [Federer1969, Theorem 2.8.14] the similar family \mathcal{F} also consists of closed balls. (In fact Theorem 1.1 is also valid for closed balls, but we need to track and change, if necessary, several similar strict or non-strict inequalities in the proof.) The main idea of our proof is to use comparison theorems in Riemannian geometry to reduce the situation to the Euclidean one.

As a result, we shall prove a theorem of differentiation of measures for locally finite Borel measures on complete Riemannian manifolds [1.2], which
The balls

Lemma 2.1. Let \(\nu_1 \) and \(\nu_2 \) be locally finite Borel measures on \((M, g)\) such that \(\nu_2 \ll \nu_1 \). For \(x \in M \) we denote by \(D_r(x) \) the open geodesic ball of radius \(r \) in \(M \) with center in \(x \) and we set

\[
D_{\nu_1} \nu_2(x) := \lim_{r \to 0} \sup \frac{\nu_2(D_r(x))}{\nu_1(D_r(x))},
\]

\[
D_{\nu_1} \nu_2(x) := \lim_{r \to 0} \inf \frac{\nu_2(D_r(x))}{\nu_1(D_r(x))},
\]

where we set \(D_{\nu_1} \nu_2(x) = D_{\nu_1} \nu_2(x) = +\infty \) if \(\nu_1(D_r(x)) = 0 \) for some \(r > 0 \).

Furthermore if \(D_{\nu_1} \nu_2(x) = D_{\nu_1} \nu_2(x) \) then we denote their common value by

\[
D_{\nu_1} \nu_2(x) := \overline{D}_{\nu_1} \nu_2(x) = \underline{D}_{\nu_1} \nu_2(x)
\]

which is called the derivative of \(\nu_2 \) with respect to \(\nu_1 \) at \(x \).

Theorem 1.2. Let \(\nu_1 \) and \(\nu_2 \) be two nonnegative locally finite Borel measures on a complete Riemannian manifold \((M, g)\) such that \(\nu_2 \ll \nu_1 \). Then there is a measurable subset \(S_0 \subset M \) of zero \(\nu_1 \)-measure such that the function \(D_{\nu_1} \nu_2 \) is defined and finite on \(M \setminus S_0 \). Setting \(\overline{D}_{\nu_1} \nu_2(x) := 0 \) for \(x \in S_0 \) and \(\overline{D}_{\nu_1} \nu_2(x) := D_{\nu_1} \nu_2(x) \) for \(x \in M \setminus S_0 \), the function \(\overline{D}_{\nu_1} \nu_2 : M \to \mathbb{R} \) is measurable and serves as the Radon-Nikodym density of the measure \(\nu_2 \) with respect to \(\nu_1 \).

Theorem 1.2 is also different from Theorem 5.8.8 in [Bogachev2007, vol.1] in defining \(\overline{D}_{\nu_1} \nu_2 \), since we need to apply it to a family of Nikodym derivatives in our paper [JLT2020].

2. Proof of Theorem 1.1

Assume the conditions of Theorem 1.1. Let \(R := \sup\{r : D_r(a) \in \mathcal{F}\} \). We can find \(D_1 = D_{r_1}(a_1) \in \mathcal{F} \) with \(r_1 > 3R/4 \). The balls \(D_j, j > 1 \), are chosen inductively as follows. Let \(A_j := A \setminus \bigcup_{i=1}^{j-1} D_i \). If the set \(A_j \) is empty, then our construction is completed and, letting \(J = j - 1 \) we obtain \(J \) balls \(D_1, \ldots, D_J \). If \(A_j \) is nonempty, then we choose \(D_j := D_{r_j}(a_j) \in \mathcal{F} \) such that

\[
a_j \in A_j \text{ and } r_j > \frac{3}{4} \sup\{r : D_r(a) \in \mathcal{F}, a \in A_j\}.
\]

In the case of an infinite sequence of balls \(D_j \) we set \(J = \infty \).

Lemma 2.1. The balls \(D_j \) satisfy the following properties

(a) if \(j > i \) then \(r_j \leq 4r_i/3 \),

(b) the balls \(D_{r_j/3}(a_j) \) are disjoint and if \(J = \infty \) then \(r_j \to 0 \) as \(j \to \infty \),

(c) \(A \subset \bigcup_{j=1}^{\infty} D_j \).
Proof. Property (a) follows from the definition of \(r_i \) and the inclusion \(a_j \in A_j \subseteq A_i \).

Property (b) is a consequence of the following observation. If \(j > i \) then \(a_j \notin D_i \) and hence by (a) we have

\[
\rho_g(a_i, a_j) \geq r_i > \frac{r_i}{3} + \frac{r_j}{3}.
\]

Since \(A \) is bounded, \(r_j \) goes to 0 as \(j \to \infty \) if \(J = \infty \).

Finally (c) is obvious if \(J < \infty \). If \(J = \infty \) and \(\mathcal{D}_r(a) \in \mathcal{F} \) then there exists \(r_j \) with \(r_j < 3r/4 \) by (b). Hence \(a \in \bigcup_{i=1}^{J-1} D_i \) by our construction of \(r_j \). This completes the proof of Lemma 2.1.

\[\square \]

We fix \(k > 1 \) and let

\[
I_k := \{ j : j < k, D_j \cap D_k \neq \emptyset \}, \quad M_k := I_k \cap \{ j : r_j \leq 3r_k \}.
\]

Lemma 2.2. There is a number \(c(A) \) independent of \(k \) such that \(\#M_k \leq c(A) \).

Proof. If \(j \in M_k \) and \(x \in D_{r_j/3}(a_j) \) then the balls \(D_j \) and \(D_k \) are open and have nonempty intersection and \(r_j \leq 3r_k \), hence

\[
\rho_g(x, a_k) \leq \rho_g(x, a_j) + \rho_g(a_j, a_k) < \frac{r_j}{3} + r_j + r_k < 5r_k.
\]

It follows that \(D_{r_j/3}(a_j) \subseteq D_{5r_k}(a_k) \). Denote by \(\text{vol}_g \) the Riemannian volume on \((M, g)\). By the disjointness of \(D(a_j, r_j/3) \) and the boundedness of \(A \), taking into account the Bishop volume comparison theorem [BC1964, Theorem 15, §11.10], see also [Le1993] for a generalization, there exists a number \(c_1(A) \) (depending on an upper bound for the Ricci curvature and on the local topology, but the latter will play no role for \(4\)-proper balls) such that

\[
\text{vol}_g(D_{5r_k}(a_k)) \geq \sum_{j \in M_k} \text{vol}_g(D_{r_j/3}(a_j)) \geq c_1(A) \sum_{j \in M_k} \left(\frac{r_j}{3} \right)^n.
\]

Using property (a) in Claim 1, we obtain from (2.3)

\[
\text{vol}_g(D_{5r_k}(a_k)) \geq \sum_{j \in M_k} c_1(A) \left(\frac{r_j}{4} \right)^n = \#(M_k) c_1(A) \left(\frac{r_k}{4} \right)^n.
\]

By the Bishop comparison theorem there exists a number \(c_2(A) \) (depending on a lower bound for the Ricci curvature) such that \(\text{vol}_g(D_{5r_k}(a_k)) \leq c_2(A) \cdot (5r_k)^n \). In combination with (2.4) we obtain

\[
\#(M_k) \leq \frac{c_2(A)}{c_1(A)} 20^n.
\]

This completes the proof of Lemma 2.2.

\[\square \]

Lemma 2.3. There exists a number \(d(A) \) independent of \(k \) such that \(\#(I_k \setminus M_k) \leq d(A) \).
Proof. Let us consider two distinct elements $i, j \in I_k \setminus M_k$. By (2.2) we have

$$1 < i, j < k, D_i \cap D_k \neq \emptyset, D_j \cap D_k \neq \emptyset, r_i > 3r_k, r_j > 3r_k.$$

For notational simplicity we shall redenote $\rho_g(a_k, a_i)$ by $|a_i|$. Then (2.6) implies

$$|a_i| < r_i + r_k \text{ and } |a_j| < r_j + r_k.$$

Let $\theta_{def}(a_i, a_j)\in[0, \pi]$ be the deformed angle between the two geodesic rays (a_k, a_i) and (a_k, a_j), connecting a_k with a_i and a_j respectively, which is defined as follows

$$\theta_{def}(a_i, a_j) := \arccos \frac{|a_i|^2 + |a_j|^2 - \rho_g(a_i, a_j)^2}{2|a_i||a_j|}.$$

Figure 1. The $\theta_{def}(a_i, a_j)$ vs $\theta_{ak}(a_i, a_j)$ (defined below).

We shall prove the estimate

$$\theta_{def}(a_i, a_j) \geq \theta_0 := \arccos61/64 > 0.$$

By the construction, see also (2.1), we have $a_k \notin D_i \cup D_j$ and $r_i \leq |a_i|, r_j \leq |a_j|$. W.l.o.g. we assume that $|a_i| \leq |a_j|$. By (2.2) and (2.7) we obtain

$$3r_k < r_i \leq |a_i| < r_i + r_k, 3r_k < r_j \leq |a_j| < r_j + r_k, |a_i| \leq |a_j|.$$
We need two more claims for the proof of (2.8).

Claim 1. If \(\cos \theta_{\text{def}}(a_i, a_j) > 5/6 \) then \(a_i \in D_j \).

Proof of Claim 1. It suffices to show that if \(a_i \notin D_j \) then \(\cos \theta_{\text{def}}(a_i, a_j) \leq 5/6 \). Assume that \(a_i \notin D_j \). We shall consider two possibilities, first assume that \(\rho_g(a_i, a_j) \geq |a_j| \). Then our assertion follows from the following estimates

\[
\cos \theta_{\text{def}}(a_i, a_j) = \frac{|a_i|^2 + |a_j|^2 - \rho_g(a_i, a_j)^2}{2|a_i||a_j|} \leq \frac{|a_i|}{2|a_j|} \leq \frac{1}{2} < \frac{5}{6}.
\]

(2.10) Now assume that \(\rho_g(a_i, a_j) \leq |a_j| \). Then

\[
\cos \theta_{\text{def}}(a_i, a_j) = \frac{|a_i|^2 + |a_j|^2 - \rho_g(a_i, a_j)^2}{2|a_i||a_j|} \leq \frac{|a_i|}{2|a_j|} + \frac{(|a_j| - \rho_g(a_i, a_j))(|a_j| + \rho_g(a_i, a_j))}{2|a_i||a_j|}
\]

\[
\leq \frac{1}{2} + \frac{|a_j| - \rho_g(a_i, a_j)}{|a_j|} \leq \frac{1}{2} + \frac{r_j + r_k - r_j}{r_i} \leq \frac{5}{6}
\]

(2.11)

where in the second inequality we use the assumption \(|a_j| + \rho_g(a_i, a_j) \leq 2|a_j| \), in the third inequality we use \(|a_j| \leq r_j + r_k \) and taking into account \(a_i \notin D_j \) we have \(r_j \leq \rho_g(a_i, a_j) \), we also use \(r_i \leq |a_i| \) from (2.9), and in the last inequality we use \(3r_k < r_i \) from (2.6). This completes the proof of Claim 1.

Claim 2. If \(a_i \in D_j \) then

\[
0 \leq \rho_g(a_i, a_j) + |a_i| - |a_j| \leq \frac{8}{3}(1 - \cos \theta_{\text{def}}(a_i, a_j))|a_j|.
\]

(2.12) Proof of Claim 2. We utilize the proof of [Bogachev2007, 5.8.3, p. 363, vol. 2]. Since \(a_i \in D_j \) we have \(i < j \). Hence \(a_j \notin D_i \) and therefore \(\rho_g(a_i, a_j) \geq r_i \). Keeping our convention that \(|a_i| \leq |a_j| \) we have

\[
0 \leq \frac{\rho_g(a_i, a_j) + |a_i| - |a_j|}{|a_j|} \leq \frac{\rho_g(a_i, a_j) + |a_i| - |a_j|}{|a_j|} = \frac{2|a_i|(1 - \cos \theta_{\text{def}}(a_i, a_j))}{\rho_g(a_i, a_j)}
\]

\[
\leq \frac{2(r_i + r_k)(1 - \cos \theta_{\text{def}}(a_i, a_j))}{r_i} \leq \frac{8}{3}(1 - \cos \theta_{\text{def}}(a_i, a_j)).
\]

Here in the inequality before the last we use the above inequality \(r_i < \rho_g(a_i, a_j) \) and \(|a_i| < r_i + r_k \) from (2.9). This completes the proof of Claim 2.

Continuation of the proof of (2.8). If \(\cos \theta_{\text{def}}(a_i, a_j) \leq 5/6 \), then \(\cos \theta_{\text{def}}(a_i, a_j) \leq 61/64 \). If \(\cos \theta_{\text{def}}(a_i, a_j) > 5/6 \) then \(a_i \in D_j \) by Lemma 2.1. Then \(i < j \) and hence \(a_j \notin D_i \). It follows that \(r_i \leq \rho_g(a_i, a_j) < r_j \).
Recall by Lemma 2.1 (a) \(r_j \leq 4r_i/3 \). Taking into account \(r_j > 3r_k \) from 2.2 we obtain

\[
\rho_g(a_i, a_j) + |a_i| - |a_j| \geq r_i + r_j - r_k \geq \frac{r_j}{2} - r_k \geq \frac{1}{8}(r_j + r_k) \geq \frac{1}{8}|a_j|
\]

which in combination with (2.12) yields \(|a_j|/8 < 8(1 - \cos \theta_{deF}(a_i, a_j))|a_j|/3 \). Hence \(\cos \theta_{deF}(a_i, a_j) \leq 61/64 \). This completes the proof of estimate (2.8).

In the next step we shall prove the existence of a lower bound for the angle \(\theta_{ak}(a_i, a_j) \) between the two geodesic rays \((a_k, a_i)\) and \((a_k, a_j)\), namely \(\theta_{ak}(a_i, a_j) \) is the angle between two vectors \(\vec{a}_i \) and \(\vec{a}_j \) on the tangent space \(T_{a_k}M^n \) provided with the restriction of the metric \(g \) to \(T_{a_k}M^n \), where \(\vec{a}_i \) (resp. \(\vec{a}_j \)) is the tangent vector at \(a_k \) of the geodesic \((a_k, a_i)\) (resp. of the geodesic \((a_k, a_j)\)).

Claim 3. There exists a positive number \(\alpha(A) \) independent of \(k, i, j \) such that \(\theta_{ak}(a_i, a_j) \geq \alpha(A) \).

Proof of Claim 3. Since \(A \) is bounded, by the Bishop-Crittenden comparison theorem [BC1964, Theorem 15, §11.10] that estimates the differential of the exponential map via the sectional curvature of the Riemannian manifold there exists a constant \(b(A) \) independent of \(a_i, a_j, a_k \) and sectional curvature bounds for \(A \subset M \) such that \(\theta_{ak}(a_i, a_j) > b(A) \cdot \theta_{deF}(a_i, a_j) \). Combining this with (2.8) implies Claim 3.

Continuation of the proof of Lemma 2.3 Denote by \(\text{inj rad}_M(x) \) the injectivity radius of \(M \) at \(x \). Let \(r_A := \inf_{x \in A} \text{inj rad}_M(x) \). Since \(A \) is bounded, \(r_A > 0 \).

- Let \(\delta(A) \) be the largest positive number such that:
 - (i) \(\delta(A) \leq r_A/8 \),
 - (ii) For any \(x \neq y \neq z \neq x \in A \) satisfying the following relations

 \[
 \rho_g(x, y) \leq \frac{r_A}{4} \quad \text{and} \quad \rho_g(y, z) \leq \rho_g(x, y) \cdot \delta(A)
 \]

we have \(\theta_{ak}(y, z) \leq \alpha(A) \).

The existence of \(\delta(A) \) follows from the boundedness of \(A \) and the Bishop-Crittenden comparison theorem.

- Let \(d(A) \) be the smallest natural number such that for any \(x \in A \) and any \(r \in (0, r_A/4) \) we can cover the geodesic sphere \(S(x, r) \) of radius \(r \) centered at \(x \) by at most \(d(A) \) balls of radius \(r \cdot \delta(A) \). The existence of \(d(A) \) follows from the boundedness of \(A \) and Bishop’s comparison theorem (lower Ricci bound).

Claim 3 implies that \(\#(I_k \setminus M_k) \leq d(A) \). This completes the proof of Lemma 2.3.

Completion of the proof of Theorem 1.1 Lemmas 2.2 and 2.3 imply that \(\#(I_k) \leq c(A) + d(A) \).
Now we make a choice of F_i in the same way as in the proof of Theorem 5.8.1 ibid. Set $L(A) := c(A) + d(A)$. We define a mapping
\[\sigma : \{1, 2, \cdots \} \to \{1, \cdots, L(A)\} \]
as follows: $\sigma(i) = i$ if $1 \leq i \leq L(A)$. If $k \geq L(A)$, we define $\sigma(k + 1)$ as follows. Since
\[\#(I_{k+1}) = \#\{j | 1 \leq j \leq k, D_j \cap D_{k+1} \neq \emptyset\} < L(A) \]
there exists a smallest number $l \in \{1, \cdots, L(A)\}$ with $D_{k+1} \cap D_j = \emptyset$ for all $j \in \{1, \cdots, k\}$ such that $\sigma(j) = l$. Then we set $\sigma(k + 1) := l$. Finally, let
\[F_j := \{D_i : \sigma(i) = j\}, j \leq L(A). \]
By definition of σ, every collection F_j consists of disjoint balls. Since every ball D_i belongs to some collection F_j, we have
\[A \subset \bigcup_{j=1}^{L(A)} D_j = \bigcup_{j=1}^{L(A)} \bigcup_{D \in D_j} D. \]
This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 uses the argument in the proof of [Bogachev2007, Theorem 5.8.8, p. 368, vol. 1], based on [EG1992], with a modification to deal with a general complete Riemannian metric g. Furthermore, assuming the conditions in Theorem 1.2, we modify D_{ν_1, ν_2} a bit to get a function \tilde{D}_{ν_1, ν_2} defined on M. This is necessary for dealing with a family of Radon-Nikodym derivatives, considered in [JLT2020].

First we shall show that $D_{\nu_1, \nu_2}(x)$ exists and is finite for ν_1-a.e. Let $S := \{x : \tilde{D}_{\nu_1, \nu_2}(x) = +\infty\}$. We denote by μ^* the outer measure defined by a locally finite Borel measure μ on M. To show $\nu_1(S) = 0$ we need the following

Proposition 3.1. Let $0 < c < \infty$ and A a subset of M.

(i) If $A \subset \{x : \tilde{D}_{\nu_1, \nu_2}(x) \leq c\}$ then $\nu_2^*(A) \leq c \nu_1^*(A)$.

(ii) If $A \subset \{x : \tilde{D}_{\nu_1, \nu_2}(x) \geq c\}$ then $\nu_2^*(A) \geq c \nu_1^*(A)$.

Proposition 3.1 is an extension of [Bogachev2007, Lemma 5.8.7, vol. 1] and will be proved in a similar way based on Theorem 1.1 and Lemma 3.2 below. We shall say that an open geodesic ball $D_r(x) \subset (M, g)$ is k-proper, if kr is at most the injectivity radius of (M, g) at x.

Lemma 3.2. Let μ be a locally finite Borel measure on a complete manifold (M, g). Suppose that \mathcal{F} is a collection of open 4-proper geodesic balls in (M, g) the set of centers of which is denoted by A, and for every $a \in A$ and every $\varepsilon > 0$, \mathcal{F} contains an open 4-proper geodesic ball $D_r(a)$ with $r < \varepsilon$. If
A is bounded then for every nonempty closed set $U \subset M$, one can find an at most countable collection of disjoint balls $D_j \in \mathcal{F}$ such that

$$\bigcup_{j=1}^{\infty} D_j \subset U \text{ and } \mu^*((A \cap U) \setminus \bigcup_{j=1}^{\infty} D_j) = 0.$$

Proof of Lemma 3.2. We prove Lemma 3.2 using Theorem 1.1 and the Bishop comparison theorem as well as arguments in the proof of [Bogachev2007, Corollary 5.8.2, p. 363]. Let A, \mathcal{F} and U be as in Lemma 3.2. By Theorem 1.1 there exist subcollections \mathcal{F}_j such that \mathcal{F}_j consists of at most countably many disjoint balls and

$$A \subset \bigcup_{j=1}^{L(A)} \bigcup_{D \in \mathcal{F}_j} D.$$

Set

$$\mathcal{F}^1 := \{D \in \mathcal{F} | D \subset U\}.$$

Now we shall apply Theorem 1.1 to $A \cap U$ and \mathcal{F}^1. Then we have

$$(A \cap U) \subset \bigcup_{j=1}^{L(A \cap U)} \bigcup_{D \in \mathcal{F}_j^1} D.$$

Claim 4. We can choose $L(A \cap U) \leq L(A)$.

Proof of Claim 4. Since $A \cap U \subset A$, we can choose the constant $c_1(A \cap U)$ (resp. $c_2(A \cap U)$, $d(A \cap U)$, $\alpha(A \cap U)$, $b(A \cap U)$) equal to $c_1(A)$ (resp. $c_2(A)$, $d(A)$, $\alpha(A)$, $b(A)$) such that the statements in the proof of Theorem 1.1 holds for $A \cap U$ with these (modified) constants. Since $A \cap U \subset A$, we have $r_{A \cap U} \geq r_A$, hence we can also choose $\delta(A \cap U) := \delta(A)$, and therefore $d(A \cap U) := d(A)$ such that the statements in the proof of Theorem 1.1 holds for $A \cap U$ with these (modified) constants. This proves Claim 4. \[\square\]

It follows that

$$\mu^*(A \cap U) \leq \sum_{j=1}^{L(A)} \mu^*((A \cap U) \cap \bigcup_{D \in \mathcal{F}_j} D).$$

Hence there exists $j \in \{1, \cdots, L(A)\}$ such that

$$\mu^*((A \cap U) \cap \bigcup_{D \in \mathcal{F}_j^1} D)) \geq \frac{1}{L(A)} \mu^*(A \cap U).$$

Therefore there exists a finite collection $D_1, \cdots, D_{k_1} \in \mathcal{F}_j^1$ such that

$$\mu^*((A \cap U) \cap \bigcup_{i=1}^{k_1} D_i) \geq \frac{1}{2L(A)} \mu^*(A \cap U).$$
Proof of Proposition 3.1. By the property of outer measures it suffices to prove Proposition 3.1 for bounded sets A.

Assume that ν of disjoint balls $D_{k_1+1}, \ldots, D_{k_2}$ from \mathcal{F}^2 and by (3.1) we have

$$
\mu^*((A \cap U) \setminus \bigcup_{j=1}^{k_1} D_j) = \mu^*((A \cap U) \setminus \bigcup_{j=k_1+1}^{k_2} D_j)
\leq (1 - \frac{1}{2L(A)}) \mu^*(A \cap U_2) \leq (1 - \frac{1}{2L(A)})^2 \mu^*(A \cap U).
$$

Repeating this process we get for all $p \in \mathbb{N}^+$

$$
\mu^*((A \cap U) \setminus \bigcup_{j=1}^{k_p} D_j) \leq (1 - \frac{1}{2L(A)})^p \mu^*(A \cap U).
$$

Since $\mu^*(A) < \infty$ this proves Lemma 3.2 \hfill \Box

Proof of Proposition 3.1. By the property of outer measures it suffices to prove Proposition 3.1 for bounded sets A. We shall derive Proposition 3.1 from Lemma 3.2 as in the proof of [Bogachev2007, Lemma 5.8.7, p. 368, vol 1]. Assume that $A \subset \{ x : D_{a \nu_2} \leq c \}$. Let $\varepsilon > 0$ and U be a closed set containing A. Denote by \mathcal{F} the class of all open 4-proper geodesic balls $D_r(a) \subset U$ with $r > 0$, $a \in A$ and $\nu_2(D_r(a)) \leq (c + \varepsilon) \nu_1(D_r(a))$. By the definition of $D_{a \nu_2}$ we have inf$\{r : D_r(a) \in \mathcal{F}\} = 0$ for all $a \in A$. By Lemma 3.2 there exists an at most countable family of disjoint balls $D_j \in \mathcal{F}$ with $\nu_2^*(A \setminus \bigcup_{j=1}^{\infty} D_j) = 0$ and $\bigcup_{j=1}^{\infty} D_j \subset U$. Hence

$$
\nu_2^*(A) \leq \sum_{j=1}^{\infty} \nu_2(D_j) \leq (c + \varepsilon) \sum_{j=1}^{\infty} \nu_1(D_j) \leq (c + \varepsilon) \nu_1(U).
$$

Since $U \supset A$ is arbitrary, we obtain the desired estimate. The second assertion (ii) is proven similarly, one has only to take for \mathcal{F} the class of balls that satisfy $\nu_2(D_r(a)) \geq (c - \varepsilon) \nu_1(D_r(a))$. This completes the proof of Proposition 3.1 \hfill \Box

Completion of the proof of Theorem 1.2. Proposition 3.1 implies that $\nu_1^*(S) = 0$.

Next let $0 < a < b$ and set

$$
S(a, b) : \{ x : D_{a \nu_2}(x) < a < b < D_{b \nu_2}(x) < +\infty \}.
$$

Proposition 3.1 implies that

$$
b \nu_1^*(S(a, b)) \leq \nu_2^*(S(a, b)) \leq a \nu_1^*(S(a, b)).
$$
Hence $\nu_1^*(S(a,b)) = 0$ because $a < b$. The union S_1 of $S(a,b)$ over all positive rational numbers a, b also has zero ν_1^*-measure. Hence there exists a measurable subset $S_0 \subset M$ of zero ν_1-measure such that $S \cup S_1 \subset S_0$. This proves the first assertion of Theorem 1.2.

Now let us show that $\hat{D}_{\nu_1} \nu_2(x)$ is measurable. Clearly, it suffices to show that $D_{\nu_1} \nu_2 : M^n \setminus S_0 \to \mathbb{R}$ is measurable.

Lemma 3.3. For each $r > 0$ the function $f_r(x) := \nu_1(D_r(x)) : M^n \to \mathbb{R}$ is lower-semi continuous and hence measurable.

Proof. Since $\lim_{k \to \infty} \nu_1\{D_{r-1/k}(x)\} = \nu_1(D_r(x))$, taking into account that $D_{r-1/k}(x) \subset D_r(y)$ if $|x - y| < 1/k$, we obtain

$$\lim_{y \to x} \inf \nu_1(D_r(y)) \geq \nu_1(D_r(x))$$

which we needed to prove. \qed

Since S_0 is measurable, we obtain immediately from Lemma 3.3 the following

Corollary 3.4. For each $r > 0$ the restriction $f_r|_{M \setminus S_0}$ is a measurable function.

In the same way, the restriction of function $f'_r(x) := \nu_2(D_r(x))$ to $M \setminus S_0$ is measurable. For $k \in \mathbb{N}^+$ and $x \in M \setminus S_0$ we set

$$\tau_k(x) := \frac{\nu_2(D_{1/k}(x))}{\nu_1(D_{1/k}(x))}.$$

It follows that the function $\tau_k : M \setminus S_0 \to \mathbb{R}$ is measurable. Hence the function $D_{\nu_1} \nu_2(x) : M \setminus S_0 \to \mathbb{R}$ is measurable, which we had to prove.

Finally we prove that $D_{\nu_1} \nu_2$ serves as the Radon-Nikodym derivative of ν_2 w.r.t. ν_1. Equivalently we need to show that for any $A \in \Sigma_M$ we have

$$\nu_2(A) = \int_A D_{\nu_1} \nu_2 d(\nu_1).$$

Here we use the argument in [Bogachev2007] p. 368-369, vol.1. Let $t > 1$ and set for $m \in \mathbb{Z}$

$$A_m := A \cap \{x \in (M \setminus S_0)| t^m < D_{\nu_1} \nu_2(x) < t^{m+1}\}.$$

The union $\cup_{m=-\infty}^{\infty} A_m$ covers A up to ν_2-measure zero set, since ν_2-a.e. we have $D_{\nu_1} \nu_2 > 0$. Hence we have

$$\nu_2(A) = \sum_{m=-\infty}^{\infty} \nu_2(A_m) \leq \sum_{m=-\infty}^{\infty} t^{m+1} \nu_1(A_m)$$

$$\leq t \sum_{m=-\infty}^{\infty} \int_{A_m} \hat{D}_{\nu_1} \nu_2 d\nu_1 = t \int_A D_{\nu_1} \nu_2 d\nu_1.$$
This is true for any $t > 1$. Hence

\[(3.3) \quad v_2(A) \leq \int_A D v_1 v_2 dv_1.\]

Using $v_2(A_m) \geq t^m v_1(A_m)$ we obtain

\[(3.4) \quad v_2(A) \geq \int_A D v_1 v_2 dv_1.\]

Clearly (3.2) follows from (3.3) and (3.4).

This completes the proof of Theorem 1.2.

Acknowledgement

The authors would like to thank Juan Pablo Vigneaux for helpful comments on an earlier version of this note.

References

[BBT2008] A. M. Bruckner, J.B. Bruckner and B. S. Thomson, Real analysis, www.classicalrealanalysis.com, second edition, 2008, xvi 642pp.

[BC1964] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academy Press, 1964.

[Besicovitch1945] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc. 1945, v. 41, p. 103-110, 1946, v. 42, p. 1-10.

[Bogachev2007] V. I. Bogachev, Measure theory, vol I, II, Springer 2007.

[EG1992] C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, 1992. Revised version 2015.

[Federer1969] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band. 153 (1969), Springer.

[Heinonen2001] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, 2001.

[Itoh2018] T. Itoh, The Besicovitch covering theorem for parabolic balls in Euclidean space, Hiroshima Math. J. 48 (2018), 279-289.

[JLT2020] J. Jost, H. V. Lê and T. D. Tran, Probabilistic morphisms and Bayesian non-parametrics (in preparation).

[Le1993] H. V. Lê, Curvature estimate for the volume growth of globally minimal submanifolds, Math. Ann. 296(1993), 103-118.

[Loeb1989] E. Loeb, On the Besicovitch covering theorem. SUTJ. Math. (Tokyo) 25, 51-55 (1989).

[Panangaden2009] P. Panangaden, Labelled Markov processes. Imperial College Press, London, 2009.

[SG1977] G. E. Shilov and B.L. Gurevich, Integral, measure and derivative: a unified approach, Dover Publications, New York, 1977.

[Sullivan1994] J. M. Sullivan, Sphere Packings Give an Explicit Bound for the Besicovitch Covering Theorem, The Journal of Geometric Analysis, Volume 4, Number 2, (1994), 219-231.
