QUBIT REPRESENTATIONS OF THE BRAID GROUPS FROM
GENERALIZED YANG-BAXTER MATRICES

JENNIFER F. VASQUEZ, ZHENGHAN WANG, AND HELEN M. WONG

Abstract. Generalized Yang-Baxter matrices sometimes give rise to braid group representations. We identify the exact images of some qubit representations of the braid groups from generalized Yang-Baxter matrices obtained from anyons in the metaplectic modular categories.

1. Introduction

A generalized Yang-Baxter (gYB) matrix is an invertible 8×8 matrix $R : (\mathbb{C}^2)^{\otimes 3} \to (\mathbb{C}^2)^{\otimes 3}$ such that

$$(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R),$$

where I is the identity operator on \mathbb{C}^2. As in quantum information, we will refer to \mathbb{C}^2 as a qubit. This generalization of the Yang-Baxter equation, inspired by quantum information, is proposed in [6], and referred to as the $(2, 3, 1)$-generalized in [5]. One application of a gYB matrix is to give rise to new representations of the braid groups B_n on $(n+1)$-qubits $(\mathbb{C}^2)^{\otimes (n+1)}$ by sending the standard braid generator σ_i to

$$R_{\sigma_i} = I^{\otimes (i-1)} \otimes R \otimes I^{\otimes (n-i-1)}.$$

But R_{σ_i}’s do not necessarily satisfy the far commutativity relation automatically. Therefore, we need to check the commutativity in order to have braid group representations from gYB matrices. We will refer to a braid group representation from a gYB matrix a qubit braid group representation.

One systematic way to find gYB matrices is to use weakly-integral anyons [5]. An interesting class of weakly-integral anyons are those from the metaplectic modular categories related to parfermion zero modes [4]. In [3], the authors considered the braid group representations from the anyon types Y_i in the metaplectic modular categories $SO(m)_2, m \geq 3$ odd. But the authors did not exactly identify the images of the resulting qubit representations of the braid groups. In this note, we completely identify the images for the case of odd m.

The explicit representation matrices can be used as quantum gates to set up quantum computation models. One particular way would be to allow some qubits in the B_n representation spaces to be ancillas. Since the braid representations have finite images, therefore the braiding gates alone cannot be universal for quantum computation. It would be interesting to see if we can obtain universality by supplementing braiding gates with measurements as in [12].

2. Qubit braid group representations and their images

Let B_n be the braid group on n strings, generated by the elementary braids $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$. We consider a representation $\rho_R : B_n \to \text{End}((\mathbb{C}^2)^{\otimes (n+1)})$ considered in [3]. We define ρ_R and express it using the standard operators.

The second author is partially supported by NSF grant DMS-1411212, and the third author by NSF grants DMS-1105692 and DMS-1510453. The authors thanks Matt Hastings for valuable communications.
2.1. Definition of the gYB representation ρ_R. Let $m \geq 3$ be an odd integer. Let $\nu = -1$ if $m = 3$, and $\nu = +1$ if $m \geq 5$. Then R (which was denoted by R_{YB} in [3]) is the 8×8 gYB matrix

$$
\begin{pmatrix}
\nu \cos(\frac{\pi}{m}) & 0 & -i \sin(\frac{\pi}{m}) & 0 \\
0 & \nu \cos(\frac{\pi}{m}) & 0 & -i \sin(\frac{\pi}{m}) \\
i \sin(\frac{\pi}{m}) & 0 & \nu \cos(\frac{\pi}{m}) & 0 \\
0 & i \sin(\frac{\pi}{m}) & 0 & \nu \cos(\frac{\pi}{m})
\end{pmatrix} \oplus
\begin{pmatrix}
-i \sin(\frac{\pi}{m}) & 0 & \cos(\frac{\pi}{m}) & 0 \\
0 & \nu \cos(\frac{\pi}{m}) & 0 & \nu \cos(\frac{\pi}{m}) \\
\cos(\frac{\pi}{m}) & 0 & -i \sin(\frac{\pi}{m}) & 0 \\
i \sin(\frac{\pi}{m}) & 0 & \nu \cos(\frac{\pi}{m}) & 0
\end{pmatrix},
$$

where the \oplus is the block sum of matrices. Here, we use the lexicographical convention for the order of the eight 3-qubit basis elements.

Let $n \geq 2$. The qubit representation ρ_R is the representation of \mathcal{B}_n on $(n+1)$-qubits such that

$$
\rho_R(\sigma_i) = I^\otimes(i-1) \otimes R \otimes I^\otimes(n-i-1)
$$

for every $i = 1, \ldots, n - 1$ (earlier referred to as R_{σ_i}). Since \mathcal{B}_n is generated by the elementary braids $\sigma_1, \ldots, \sigma_{n-1}$, this determines the action of ρ_R for all elements of \mathcal{B}_n. The far commutativity can be checked directly, therefore, we have a qubit representation of the braid group.

The matrices $U_{i-1,i,i+1}$ in [3] correspond to our $\rho_R(\sigma_{i-1})$; we follow their convention for the sake of symmetry. For the remainder of the paper, we take $i = 2, \ldots, n$. In particular, $\rho_R(\sigma_{i-1})$ acts on the $(i-1, i, i+1)$-qubits using R and leaves all the others the same.

2.1.1. Standard gates. Let X_i be the Pauli gate that changes the i-th qubit. Let Z_i be the Pauli gate that negates the qubit if the i-th qubit is nonzero. For example,

$$
X_2(|abc\rangle) = |abc\rangle \text{ and } Z_1Z_3(|abc\rangle) = \begin{cases}
|abc\rangle & \text{if } a = c \\
-|abc\rangle & \text{if } a \neq c
\end{cases}.
$$

Let $\Lambda^2_{XOR\text{NOT}}$ be the XOR controlled 3-qubit gate defined on the 3-qubit $|abc\rangle$:

$$
\Lambda^2_{XOR\text{NOT}}(|abc\rangle) = \begin{cases}
|abc\rangle & \text{if } a = c \\
|\overline{abc}\rangle & \text{if } a \neq c
\end{cases}.
$$

Let NOT_i (or $\text{NOT}_{i-1,i,i+1}$) be the operator $I^\otimes(i-2) \otimes \Lambda^2_{XOR\text{NOT}} \otimes I^\otimes(n-i-2)$. In particular, NOT_i is defined for $2 \leq i \leq n$. It acts like $\Lambda^2_{XOR\text{NOT}}$ on the consecutive $(i-1, i, i+1)$-qubits and leaves all the others unchanged. Whereas $Z_{i-1}Z_{i+1}$ negates the qubit iff the $(i-1)$th and $(i+1)$th qubits disagree, NOT_i reverses the ith qubit iff the $(i-1)$th and $(i+1)$th qubits disagree.

Note the following well-known commutativity properties between the Pauli gates and the NOT_i operators.

Lemma 1.

1. $[X_i, X_j] = 0 \forall i, j$.
2. $[Z_i, Z_j] = 0 \forall i, j$.
3. $X_iZ_i = -Z_iX_i$ and $[X_i, Z_j] = 0 \forall i \neq j$.
4. $Z_i \text{NOT}_i = (Z_{i-1}Z_{i+1}) \text{NOT}_i Z_i$ and $[Z_i, \text{NOT}_i] = 0 \forall i \neq j$.
5. $\text{NOT}_iX_{i-1} = X_{i-1}X_i\text{NOT}_i$, $\text{NOT}_iX_{i+1} = X_iX_{i+1}\text{NOT}_i$, and $[\text{NOT}_i, X_j] = 0 \forall j \neq i - 1, i + 1$.

The NOT_i operators also satisfy the following relations:

Lemma 2.

1. $\text{NOT}_i^2 = \text{Id}$.
2. $\text{NOT}_i\text{NOT}_{i+1}\text{NOT}_i = \text{NOT}_{i+1}\text{NOT}_i\text{NOT}_{i+1}$.
A variation of the next proposition features prominently in the characterization of the image of ρ_R. We present it separately, as it may be of independent interest.

Proposition 3. The group G generated by $\text{NOT}_2, \ldots, \text{NOT}_n$ is isomorphic to the symmetric group S_n.

Proof. Let $(i - 1, i)$ denote the element in S_n that transposes the $(i - 1)$th and ith places. As S_n is generated by such transpositions, we may define a map $\phi : S_n \rightarrow G$ by $\phi((i - 1, i)) = \text{NOT}_i$ for $2 \leq i \leq n$.

Lemma 2 immediately implies that ϕ is a surjective homomorphism. To show that ϕ is injective, first note that $\ker \phi$ is a normal subgroup of S_n. For $n \geq 5$, S_n is solvable. So $\ker(\phi) \in \{\{e\}, S_n, A_n\}$. Since the image of ϕ is G and obviously $|G| > 2$ for this choice of n, $\ker(\phi) = \{e\}$. Therefore, ϕ is an isomorphism for $n \geq 5$. Of the remaining cases, the one for $n = 2$ is obvious, since both S_n and G are isomorphic to \mathbb{Z}_2. For $n = 3$ and $n = 4$, we proceed similarly to the argument above for $n \geq 5$, except that we need to find explicit, distinct elements of G to show $|G| > 2$ for $n = 3$ and $|G| > 6$ for $n = 4$. For $n = 3$, we check that NOT_2, NOT_3, and NOT_2NOT_3 are distinct by comparing their actions on the 4-qubit $|0100\rangle$. For $n = 4$, we need at least seven distinct elements. We check that $\text{NOT}_2\text{NOT}_3\text{NOT}_4$, $\text{NOT}_2\text{NOT}_3\text{NOT}_4\text{NOT}_5$, $\text{NOT}_3\text{NOT}_4\text{NOT}_5$, $\text{NOT}_3\text{NOT}_2\text{NOT}_5$, $\text{NOT}_4\text{NOT}_2\text{NOT}_5$ act distinctly on the 4-qubit $|0110\rangle$. □

2.1.2. Writing the gYB representation in terms of standard gates. We express the action of R on 3-qubits as

$$R(|abc\rangle) = \begin{cases} \nu \cos((\frac{2\pi}{3})|abc\rangle + i \sin((\frac{2\pi}{3})|abc\rangle & \text{if } a = c \\ -i \sin((\frac{2\pi}{3})|abc\rangle + \cos((\frac{2\pi}{3})|abc\rangle & \text{if } a \neq c \end{cases}.$$

Direct computation then shows

$$R = \begin{cases} e^{\frac{2\pi i}{3}} X_2 \cdot Z_1 Z_3 A_{\text{XOR}}^3 \text{NOT}, & \text{for } m = 3 \\ e^{\frac{2\pi i}{3}} Z_1 X_2 Z_3 A_{\text{XOR}}^3 \text{NOT}, & \text{for } m \geq 5 \end{cases}.$$

Hence for $2 \leq i \leq n$

$$\rho_R(\sigma_{i-1}) = \begin{cases} e^{\frac{2\pi i}{3}} X_i \cdot Z_{i-1} Z_{i+1} \text{NOT}_i, & \text{for } m = 3 \\ e^{\frac{2\pi i}{3}} Z_{i-1} X_i Z_{i+1} \cdot \text{NOT}_i, & \text{for } m \geq 5 \end{cases}.$$

Note that there was an error in [3] for the $m = 3$ case.

2.2. The image of the qubit representation when $m \geq 5$ is odd.

Theorem 4. For $m \geq 3$ odd, the image of ρ_R is isomorphic to $\mathbb{Z}_{m^n} / 2 \times S_n$.

We prove this theorem in a series of lemmas. Assume m is odd from now on. Following [3], for $2 \leq i \leq n$, define

$$H_i = \begin{cases} X_i, & \text{for } m = 3 \\ Z_{i-1} Z_{i+1} X_i, & \text{for } m \geq 5 \end{cases}.$$

For $k \leq l$, define the product of consecutive H’s as

$$S_{k,l} = H_k H_{k+1} \cdots H_l.$$
Lemma 5. The image of ρ_R is generated by:

- (when $m = 3$) $\{e^{\frac{\pi i}{3}(-1)^{l-k}S_{k,l}} \mid 2 \leq k \leq l \leq n \}$ and $\{Z_{k-1}Z_{k+1}NOT_k \mid 2 \leq k \leq n \}$.
- (when $m \geq 5$ odd) $\{-e^{\frac{\pi i}{m}(-1)^{l-k}S_{k,l}} \mid 2 \leq k \leq l \leq n \}$ and $\{-NOT_k \mid 2 \leq k \leq n \}$.

Proof. Case for $m = 3$: Recall that $\rho_R(\sigma_{k-1}) = e^{\frac{\pi i}{3}X_k}Z_{k-1}Z_{k+1}NOT_k$. It follows from Lemma 1 that $\text{Image}(\rho_R)$ also contains

$$ (e^{\frac{\pi i}{3}X_k}Z_{k-1}Z_{k+1}NOT_k)^3 = Z_{k-1}Z_{k+1}NOT_k $$

and

$$ (e^{\frac{2\pi i}{3}X_k}Z_{k-1}Z_{k+1}NOT_k)^4 = e^{\frac{2\pi i}{3}X_k}Z_{k-1}Z_{k+1}NOT_k. $$

Recall $S_{k,l} = X_kX_{k+1} \cdots X_l$. Induction shows the following is also in $\text{Image}(\rho_R)$:

$$ (Z_lZ_{l+2}NOT_{l+1})(e^{\frac{2\pi i}{3}(-1)^{l-k}S_{k,l}})(Z_lZ_{l+2}NOT_{l+1}) = e^{\frac{2\pi i}{3}(-1)^{l+1-k}S_{k,l+1}}. $$

Again Lemma 1 is used to rearrange the operators. Thus all the elements $e^{\frac{2\pi i}{3}(-1)^{l-k}S_{k,l}}$ and $Z_{k-1}Z_{k+1}NOT_k$ are contained in $\text{Image}(\rho_R)$. Containment in the other way is obvious, because the image of each braid element $\rho(\sigma_{k-1}) = e^{\frac{\pi i}{3}X_k}Z_{k-1}Z_{k+1}NOT_k$ can be written as a product of $e^{\frac{2\pi i}{m}X_k}$ and $Z_{k-1}Z_{k+1}NOT_k$.

Case for $m \geq 5$ odd: Here $\rho_R(\sigma_{k-1}) = e^{\frac{\pi i}{m}H_k}NOT_k$, where $H_k = Z_{k-1}X_kZ_{k+1}$. Thus

$$ (e^{\frac{\pi i}{m}H_k}NOT_k)^m = NOT_k $$

and

$$ (e^{\frac{\pi i}{m}H_k}NOT_k)^{m+1} = -e^{\frac{\pi i}{m}H_k} $$

are also in the image of ρ_R. Moreover, with $S_{k,l} = H_kH_{k+1} \cdots H_l$,

$$ (-NOT_{l+1})(-e^{\frac{\pi i}{m}(-1)^{l-k}S_{k,l}})(-NOT_{l+1}) = -e^{\frac{\pi i}{m}(-1)^{l+1-k}S_{k,l+1}}. $$

Arguing similarly to the $m = 3$ case, we see that $\text{Image}(\rho_R)$ is generated by all the $e^{\frac{\pi i}{m}(-1)^{l-k}S_{k,l}}$ and $-NOT_k$.

We distinguish between the two kinds of generators. Define groups Γ_{skl} and Γ_{not} as follows:

- (when $m = 3$)
 \begin{align*}
 \Gamma_{skl} & \text{ to be the group generated by } \{e^{\frac{\pi i}{3}(-1)^{l-k}S_{k,l}} \mid 2 \leq k \leq l \leq n \}, \\
 \Gamma_{not} & \text{ to be the group generated by } \{Z_{k-1}Z_{k+1}NOT_k \mid 2 \leq k \leq n \}.
 \end{align*}

- (when $m \geq 5$ odd)
 \begin{align*}
 \Gamma_{skl} & \text{ to be the group generated by } \{-e^{\frac{\pi i}{m}(-1)^{l-k}S_{k,l}} \mid 2 \leq k \leq l \leq n \}, \\
 \Gamma_{not} & \text{ to be the group generated by } \{-NOT_k \mid 2 \leq k \leq n \}.
 \end{align*}

Lemma 6. The image of ρ_R is a semi-direct product $\Gamma_{skl} \rtimes \Gamma_{not}$.

Proof. Note that the intersection is $\Gamma_{skl} \cap \Gamma_{not} = \{ e \}$. To show that we have a semi-direct product, we need to prove two things. Firstly, that every element of $Image(\rho_R)$ is a product of an element of Γ_{skl} with an element of Γ_{not}. And secondly, that conjugation by elements of Γ_{not} is an automorphism of Γ_{skl}. Both of these can be shown from the following identities:

When $m = 3$, where $S_{k,l} = X_k X_{k+1} \cdots X_l$,

$$(Z_{j-1}Z_{j+1} NOT_j) S_{k,l} (Z_{j-1}Z_{j+1} NOT_j) = \begin{cases}
-S_{k-1,l} & \text{when } j = k - 1 \\
-S_{k+1,l} & \text{when } j = k \text{ and } k < l \\
-S_{k,l-1} & \text{when } j = l \text{ and } k < l \\
-S_{k,l+1} & \text{when } j = l + 1 \\
S_{k,l} & \text{otherwise}
\end{cases}$$

So

$$(Z_{j-1}Z_{j+1} NOT_j) e^{2\pi i (-k)} S_{k,l} (Z_{j-1}Z_{j+1} NOT_j) = \begin{cases}
e^{2\pi i (-k)} S_{k-1,l} & \text{when } j = k - 1 \\
e^{2\pi i (-k-1)} S_{k+1,l} & \text{when } j = k \text{ and } k < l \\
e^{2\pi i (-k-1)} S_{k,l-1} & \text{when } j = l \text{ and } k < l \\
e^{2\pi i (-k-1)} S_{k,l+1} & \text{when } j = l + 1 \\
e^{2\pi i (-k)} S_{k,l} & \text{otherwise}
\end{cases}$$

In particular, conjugating a generator of Γ_{skl} by a generator of Γ_{not} is again a generator of Γ_{skl}. It immediately follows that conjugation by Γ_{not} is an automorphism of Γ_{skl}. And with a bit more work, the same identities show that every element of $Image(\rho_R)$ is a product of an element of Γ_{skl} with an element of Γ_{not}. Since Γ_{skl} is a normal subgroup, $Image(\rho_R) = \Gamma_{skl} \rtimes \Gamma_{not}$.

When $m \geq 5$ odd, where $H_k = Z_{k-1} X_k Z_{k+1}$ and $S_{k,l} = H_k H_{k+1} \cdots H_l$, the same identities are true. Namely,

$$(NOT_j) S_{k,l} (NOT_j) = \begin{cases}
-S_{k-1,l} & \text{when } j = k - 1 \\
-S_{k+1,l} & \text{when } j = k \text{ and } k < l \\
-S_{k,l-1} & \text{when } j = l \text{ and } k < l \\
-S_{k,l+1} & \text{when } j = l + 1 \\
S_{k,l} & \text{otherwise}
\end{cases}$$

$$(NOT_j) (e^{2\pi i (-1)^l} S_{k,l}) (NOT_j) = \begin{cases}
-e^{2\pi i (-1)^l} S_{k-1,l} & \text{when } j = k - 1 \\
-e^{2\pi i (-1)^l} S_{k+1,l} & \text{when } j = k \text{ and } k < l \\
-e^{2\pi i (-1)^l} S_{k,l-1} & \text{when } j = l \text{ and } k < l \\
-e^{2\pi i (-1)^l} S_{k,l+1} & \text{when } j = l + 1 \\
-e^{2\pi i (-1)^l} S_{k,l} & \text{otherwise}
\end{cases}$$

So for the same reasons as in the $m = 3$ case, $Image(\rho_R) = \Gamma_{skl} \rtimes \Gamma_{not}$ when $m \geq 5$ odd. \qed

Lemma 7. Γ_{not} is isomorphic to the symmetric group S_n.

Proof. The proof is essentially the same as in Lemma 3 with a few minor tweaks. Specifically, define $\phi : S_n \to \Gamma_{not}$ so that

- (when $m = 3$) $\phi((k-1,k)) = Z_{k-1} Z_{k+1} NOT_k$
- (when $m \geq 5$) $\phi((k-1,k)) = -NOT_k$
Lemmas 1 and 2 imply that ϕ is a surjective homomorphism. The proof of injectivity is identical for $n = 2$ and $n \geq 5$. For the case $n = 3$: use $Z_1 Z_3 NOT_2$, $Z_2 Z_4 NOT_3$, and $(Z_1 Z_3 NOT_2)(Z_2 Z_1 NOT_3)$ for $m = 3$ and use $-NOT_2$, $-NOT_3$, and $(-NOT_2)(-NOT_3)$ for $m \geq 5$, acting on $|0100\rangle$. Similarly, for $n = 4$: use $Z_1 Z_3 NOT_2$, $Z_2 Z_4 NOT_3$, $Z_3 Z_5 NOT_4$, $(Z_1 Z_3 NOT_2)(Z_2 Z_4 NOT_3)$, $(Z_2 Z_4 NOT_3)(Z_1 Z_3 NOT_2)$, and $(Z_3 Z_5 NOT_4)(Z_2 Z_4 NOT_3)$ for $m = 3$ and use $-NOT_2$, $-NOT_3$, $-NOT_4$, $(-NOT_2)(-NOT_3)$, $(-NOT_3)(-NOT_4)$, $(-NOT_4)(-NOT_3)$ for $m \geq 5$, acting on $|0110\rangle$. □

Lemma 8. Γ_{skl} is a finite abelian group, isomorphic to the product of $n(n-1)$ copies of \mathbb{Z}_m.

Proof. In both the $m = 3$ and $m \geq 5$ odd cases, the given generators of Γ_{skl} are distinct and no power of one is equal to the power of another. In fact, the generators form a linearly independent set of $n(n-1)/2$ elements, as can be seen by their action on the qubit $|00\cdots0\rangle$. Moreover, the generators commute with each other, and each generator has exactly order m. So it must be the abelian product of $n(n-1)/2$ copies of \mathbb{Z}_m. □

Putting all the lemmas together proves Theorem 4 that for $m \geq 3$ odd, $\text{Image}(\rho_R) \cong \mathbb{Z}_{m^{n(n-1)/2}} \rtimes S_n$.

References

[1] S. X. Cui, S.M. Hong, and Z. Wang. Universal quantum computation with weakly integral anyons. Quantum Information Processing (2014), 1-41.

[2] S. X. Cui, and Z. Wang. Universal quantum computation with metaplectic anyons. Journal of Mathematical Physics 56.3 (2015), 032202.

[3] M. B. Hastings; C. Nayak; Z. Wang, On metaplectic modular categories and their applications. Comm. Math. Phys. 330 (2014), no. 1, 45–68.

[4] M. B. Hastings; C. Nayak; Z. Wang, Metaplectic anyons, Majorana zero modes, and their computational power Phys. Rev. B 87, (2013), 165421.

[5] A. Kitaev, and Z. Wang, Solutions to generalized Yang-Baxter equations via ribbon fusion categories. Geometry and Topology Monographs 18 (2012), 191-197.

[6] E. C. Rowell, Y. Zhang, , Y. S. Wu, M. L. Ge, M. L. Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates. Quantum Inf. Comput., 10(2010), 685-702.

E-mail address: jennifer.vasquez@scranton.edu

The Mathematics Department, The University of Scranton, Scranton, PA 18510

E-mail address: zhenghwa@microsoft.com

Microsoft Station Q and Dept of Mathematics, University of California, Santa Barbara, CA 93106

E-mail address: hwong@carleton.edu

Carleton College, Department of Mathematics and Statistics, Northfield, MN 55057