Predecessor search with distance-sensitive query time

Djamal Belazzougui
Université Paris Diderot—Paris 7, France
Paolo Boldi Sebastiano Vigna
Università degli Studi di Milano, Italy

Abstract

A predecessor (successor) search finds the largest element x^- smaller than the input string x (the smallest element x^+ larger than or equal to x, respectively) out of a given set S; in this paper, we consider the static case (i.e., S is fixed and does not change over time) and assume that the n elements of S are available for inspection. We present a number of algorithms that, with a small additional index (usually of $O(n \log w)$ bits, where w is the string length), can answer predecessor/successor queries quickly and with time bounds that depend on different kinds of distance, improving significantly several results that appeared in the recent literature. Intuitively, our first result has a running time that depends on the distance between x and x^\pm: it is especially efficient when the input x is either very close to or very far from x^- or x^+; our second result depends on some global notion of distance in the set S, and is fast when the elements of S are more or less equally spaced in the universe; finally, for our third result we rely on a finger (i.e., an element of S) to improve upon the first one; its running time depends on the distance between the input and the finger.

1 Introduction

In this paper we study the predecessor problem on a static set S of binary strings of length w. It is known from recent results [11, 12] that structures à la van Emde Boas (e.g., y-fast tries [13]) using time $O(\log w)$ are optimal among those using linear space. The lower bound proved in [11, 12] has actually several cases, another one is realised, for instance, in exponential trees [1]. A very comprehensive discussion of the literature can be found in Mihai Pătraşcu’s thesis [10].

Albeit the match between upper and lower bounds settles up the problem in the worst case, there is a lot of space for improvement in two directions: first of all, if access to the original set S (as a sorted array) is available, it is in principle possible to devise an index using sublinear additional space and still answer predecessor queries in optimal time; second, one might try to improve upon the lower bound by making access time dependent on the structure of S or on some property relating the query string x to the set S.

In this paper, we describe sublinear indices that provide significant improvements over previous bound [1]. Given a set S, we denote with x^- and x^+ the predecessor and successor in S of a query string x, and let $d(x, S) = \min\{x^+ - x, x - x^-\}$ and $D(x, S) = \max\{x^+ - x, x - x^-\}$. Note that $d(x, S)$ is small when x is close to some element of S, whereas $w - D(x, S)$ is

\footnote{Our space bounds are always given in terms of the additional number of bits besides those that are necessary to store S.}
small when \(x \) is far from at least one of \(x^\pm \). Finally, let \(\Delta_M \) and \(\Delta_m \) be the maximum and minimum distance, respectively, between two consecutive elements of \(S \).

1. We match the static worst-case search time \(O(\log \log d(x, S)) \) of \([7]\), which was obtained using space \(O(nw \log \log w) \), but our index requires just \(O(n \log w) \) additional space (and thus overall linear space).

2. We improve exponentially over \emph{interval-biased search trees} \([6]\), answering predecessor queries in time \(O(\log(w - \log D(x, S))) \), again using just \(O(n \log w) \) additional bits of space.

3. We improve exponentially over \emph{interpolation search} \([8]\), answering predecessor queries in time \(O(\log(\log(\Delta_M/\Delta_m))) \), always using just \(O(n \log w) \) additional bits of space.

4. Finally, with slightly more (but still sublinear) space we can exploit a \emph{finger} \(y \in S \) to speed up our second result to \(O(\log(\log |x - y| - \log D(x, S))) \), which is in some cases better than the bound reported in \([1]\), and improves exponentially over interval-biased search trees, which need time \(O(\log(2^w - y) - \log D(x, s)) \) \([6]\).

We remark that combining the first two results we show that predecessor search can be performed in time \(O(\log \min \{ \log d(x, S), w - \log D(x, S) \}) \) using \(O(n \log w) \) bits of additional space. Our results are obtained starting from a refined version of \emph{fat binary search in a z-fast trie} \([2]\) in which the initial search interval can be specified under suitable conditions, confirming the intuition that fat binary search can be used as a very versatile building block for data structures.

2 Notation and tools

We use von Neumann’s definition and notation for natural numbers, and identify \(n = \{0, 1, \ldots, n - 1\} \), so \(2 = \{0, 1\} \) and \(2^* \) is the set of all binary strings. If \(x \) is a string, \(x \) juxtaposed with an interval is the substring of \(x \) with those indices (starting from 0). Thus, for instance, \(x[a . . b] \) is the substring of \(x \) starting at position \(a \) (inclusive) and ending at position \(b \) (exclusive). We will write \(x[a] \) for \(x[a . . a] \). The symbol \(\preceq \) denotes prefix order, and \(< \) is its strict version. Given a prefix \(p \), we denote with \(p + 1 \) and \(p - 1 \) the strings in \(2^{|p|} \) that come before and after \(p \) in lexicographical order; in case they do not exist, we assume by convention that the expressions have value \(\perp \). All logarithms in this paper are binary and we postulate that \(\log x = 1 \) whenever \(x < 2 \).

Given a set \(S \) of \(n \) binary strings of length \(w \), we let

\[
\begin{align*}
\preceq &= \max\{ y \in S \mid y < x \} \quad \text{(the predecessor of \(x \) in \(S \))} \\
\succeq &= \min\{ y \in S \mid y \geq x \} \quad \text{(the successor of \(x \) in \(S \))},
\end{align*}
\]

where \(\leq \) is the lexicographic order. A \emph{predecessor/successor} query is given by a string \(x \), and the answer is \(x^\pm \). In this paper, for the sake of simplicity we shall actually concentrate on predecessor search only, also because our algorithms actually return the \emph{rank} of the

\footnote{The bound in \([6]\) is \(O(w - \log(x^+ - x^-)) \). Our proofs are correct even replacing \(D(x, S) \) with \(x^+ - x^- \), but the difference is immaterial as \(x^+ - x^- \leq 2D(x, S) \), and we like the duality with the previous bound better.}
We assume to be able to store a constant-time r-bit function on n keys using $rn + cn + o(n)$ bits for some constant $c \geq 0$: the function may return arbitrary values outside of its domain (for practical implementations see [3]).

We work in the standard RAM model with a word of length w, allowing multiplications, and adopt the full randomness assumption. Note, however, that the dependence on multiplication and full randomness is only due to the need to store functions succinctly; for the rest, our algorithms do not depend on them.

2.1 Z-fast tries

We start by defining some basic notation for compacted tries. Consider the compacted trie [9] associated with a prefix-free set of strings $S \subseteq 2^*$. Given a node α of the trie (see Figure 1):

- the **extent** of α, denoted by e_α, is the longest common prefix of the strings represented by the external nodes that are descendants of α (extents of internal nodes are called internal extents);
- the **compacted path** of α, denoted by c_α, is the string labelling α;
- the **name** of α is the extent of α deprived of its suffix c_α.
- the **skip interval** of α is $[1 \ldots |e_\alpha|]$ for the root, and $[|n_\alpha| \ldots |e_\alpha|]$ for all other nodes.

Given a string x, we let $\text{exit}(x)$ be the exit node of x, that is, the only node α such that n_α is a prefix of x and either $e_\alpha = x$ or e_α is not a prefix of x. We recall a key definition from [2]:

3 Albeit the results of this paper are discussed for sets of strings of length w, this section provides results for arbitrary sets of prefix-free strings whose length is $O(w)$.
Definition 1 (2-fattest numbers and handles) The 2-fattest number of an interval \((a .. b)\) of positive integers is the unique integer in \((a .. b)\) that is divisible by the largest power of two, or equivalently, that has the largest number of trailing zeroes in its binary representation. The handle \(h_\alpha\) of a node \(\alpha\) is the prefix of \(e_\alpha\) whose length is 2-fattest number in the skip interval of \(\alpha\) (see Figure 1). If the skip interval is empty (which can only happen at the root) we define the handle to be the empty string.

We remark that if \(f\) is 2-fattest in \((a .. b)\), it is also 2-fattest in every subinterval of \((a .. b)\) that still contains \(f\).

Definition 2 (z-fast trie) Given a prefix-free set \(S \subseteq 2^*\), the z-fast trie on \(S\) is a function \(T\) mapping \(h_\alpha \mapsto e_\alpha\), for each internal node \(\alpha\) of the compacted trie associated with \(S\), and any other string to an arbitrary internal extent.

The most important property of \(T\) is that it makes us able to find very quickly the name of the exit node of a string \(x\) using a fat binary search (Algorithm 1). The basic idea is that of locating the longest internal extent \(e\) that is a proper prefix of \(x\): the name of \(\text{exit}(x)\) is then \(x[0 .. |e| + 1]\). The algorithm narrows down an initial search interval by splitting it on its 2-fattest number (rather than on its midpoint). The version reported here (which builds upon [5]) has two main features: very weak requirements on \(T\), and the possibility of starting the search on a small interval. The latter feature will be the key in obtaining our main results.

Algorithm 1 Fat binary search on the z-fast trie: at the end of the execution we return the name of \(\text{exit}(x)\).

Input: a nonempty string \(x \in 2^*\), an integer \(0 \leq a < |x|\) such that \(a = 0\) or \(x[0 .. a]\) is an internal extent of the compacted trie on \(S\), and an integer \(b \leq |x|\) larger than the length of the longest internal extent of the compacted trie on \(S\) that is a proper prefix of \(x\).

Output: the name of \(\text{exit}(x)\).

0 while \(b - a > 1\) do
1 \(f \leftarrow \text{the 2-fattest number in } (a .. b)\)
2 \(e \leftarrow T(x[0 .. f])\)
3 if \(f \leq |e| \land e < x\) then \(a \leftarrow |e|\) \{ Move from \((a .. b)\) to \((|e| .. b)\) \}
4 else \(b \leftarrow f\) \{ Move from \((a .. b)\) to \((a .. f)\) \}
5 od
6 if \(a = 0 \land e_{\text{root}} \neq \epsilon\) return \(\epsilon\)
7 else return \(x[0 .. a + 1]\)

Lemma 1 Let \(p_0 = \epsilon\) and \(p_1, p_2, \ldots, p_t\) be the internal extents of the compacted trie that are proper prefixes of \(x\), ordered by increasing length. Let \((a .. b)\) be the interval maintained by Algorithm 1. Before and after each iteration the following invariants are satisfied:

1. \(a = |p_j|\) for some \(j\);
2. \(|p_i| < b\).

Thus, at the end of the loop, \(a = |p_t|\).
Proof. 1 The fact that \(a = |p_j| \) for some \(j \) is true at the beginning, and when \(a \) is reassigned (say, \(a \leftarrow |e| \)) it remains true: indeed, since \(e \) is an internal extent, \(a < f \leq |e| \) and \(e < x \), \(e = p_k \) for some \(k > j \).

2 By 1, \(a \) is always the length of some \(p_j \), so \(b > |p_i| \) at the beginning, and then it can only decrease; thus, \((a \ldots b) \) contains the concatenation of some contiguous skip intervals of the proper ancestors of \(\text{exit}(x) \) up to the skip interval of \(\text{exit}(x) \) (which may or may not be partially included itself).

Now, assume by contradiction that when we update \(b \) there is a node \(\alpha \) with extent \(e_\alpha \) which is a proper prefix of \(x \) of length \(f \) or greater. Since \(f \) is 2-fattest in \((a \ldots b) \), it would be 2-fattest in the skip interval of \(\alpha \) (as the latter is contained in \((a \ldots b) \)), so \(x[0 \ldots f] \) would be the handle of \(\alpha \), and \(T \) would have returned \(e_\alpha \), which satisfies \(f \leq |e_\alpha| \) and \(e_\alpha < x \), contradicting the fact that we are updating \(b \). We conclude that the invariant \(|p_i| < b \) is preserved.

Theorem 1 Algorithm\(\square \) completes in at most \(\lceil \log(b-a) \rceil \) iterations, returning the name of \(\text{exit}(x) \).

Proof. We first prove the bound on the number of iterations. Note that given an interval \((\ell \ldots r)\) in which there is at most one multiple of \(2^i \), the two subintervals \((\ell \ldots f)\) and \((f \ldots r)\), where \(f \) is the 2-fattest number in \((\ell \ldots r)\), contain both at most one multiple of \(2^{i-1} \) (if one of the intervals contained two such multiples, there would be a multiple of \(2^i \) inbetween, contradicting our assumption); this observation is a fortiori true if we further shorten the intervals. Thus, we cannot split on a 2-fattest number more than \(i \) times, because at that point the condition implies that the interval has length at most one. But clearly an interval of length \(t \) contains at most one multiple of \(2^\lceil \log \ell \rceil \), which shows that the algorithm iterates no more than \(\lceil \log(b-a) \rceil \) times.

Finally, if \(t > 0 \) then \(x[0 \ldots |p_i| + 1) \) is the name of \(\text{exit}(x) \). Otherwise, \(\text{exit}(x) \) is the root (hence the special case in Algorithm 1).

Note that finding the 2-fattest number in an interval requires the computation of the most significant bit\(^4 \), but alternatively starting from the interval \((\ell \ldots r)\) one can set \(i = \lceil \log(r-\ell) \rceil \) (this can be computed trivially in time \(O(\log(r-\ell)) \)) and then check, for decreasing \(i \), whether \((-1 \ll i) \& \ell \neq (-1 \ll i) \& r \); when the test is satisfied, there is exactly one multiple of \(2^i \) in the interval, namely \(f = r \& -1 \ll i \), which is also 2-fattest. This property is preserved by splitting on \(f \) and possibly further shortening the resulting interval (see the first part of the proof of Theorem\(\square \)), so we can just continue decreasing \(i \) and testing, which requires still no more than \(\lceil \log(r-\ell) \rceil \) iterations.

2.2 Implementing the function \(T \)

A z-fast trie (i.e., the function \(T \) defining it) can be implemented in different ways; in particular, for the purpose of this paper, we show that if constant-time access to the elements of \(S \) in sorted order is available, then the function \(T \) describing a z-fast trie can be implemented using additional \(O(n \log w) \) bits. We will use the notation \(S[i] \) \((0 \leq i < |S|)\) for the \(i \)-th element of \(S \). We need two key components:

1. a constant-time function \(q \) mapping the handles to the length of the name of the node they are associated with (i.e., \(h_\alpha \mapsto |n_\alpha| \) for every internal node \(\alpha \));

\(^4 \)More precisely, the 2-fattest number in \((\ell \ldots r)\) is \(-1 \ll \text{msb}(\ell \oplus r) \& r \).
Given a set \(S \), we want to be able to check in constant time and little space that a prefix \(p \) either belongs to \(S \), or is not a prefix of a string in \(S \). Assume that we have a function \(f \) defined on \(P \) and returning, for each \(p \in P \), the length of the name of the exit node of \(p \). Our key observation is that a range locator, combined with access to the array \(S \), can be used to “patch” \(f \) so that it returns a special value \(\perp \) outside of \(\text{Pref}(S) \):

Theorem 2 If access to the set \(S \) is available, the z-fast trie can be implemented in constant time using additional \(O(n \log w) \) bits of space.

This function enjoys the additional property that, no matter which the input, it will always return an extent. We also notice that using the same data it is also easy to implement a function that returns a node extent given a node name:

Definition 3 (extent) Let \(p \) be a node name. Then extent\((p)\) (the extent of the node named \(p \)) can be computed in constant time as the longest common prefix of \(\text{left}(p) \) and \(\text{right}(p) \).

2.3 Using the range locator to check prefixes

Given a set \(P \subseteq \text{Pref}(S) \), we want to be able to check in constant time and little space that a prefix \(p \) either belongs to \(P \), or is not a prefix of a string in \(S \). Assume that we have a function \(f \) defined on \(P \) and returning, for each \(p \in P \), the length of the name of the exit node of \(p \). Our key observation is that a range locator, combined with access to the array \(S \), can be used to “patch” \(f \) so that it returns a special value \(\perp \) outside of \(\text{Pref}(S) \):

Theorem 3 Let \(P \subseteq \text{Pref}(S) \) and \(f : P \rightarrow \mathbb{N} \) be a constant-time function mapping \(p \in P \) to \(|n_{\text{exit}}(p)| \). If access to the set \(S \) is available, using an additional constant-time range locator we can extend \(f \) to a constant-time function \(\hat{f} : 2^* \rightarrow \mathbb{N} \cup \{\perp\} \) such that \(\hat{f}(p) = |n_{\text{exit}}(p)| \) for all \(p \in P \), and \(\hat{f}(p) = \perp \) for all \(p \notin \text{Pref}(S) \).

Proof. To compute \(\hat{f}(p) \) for a \(p \in 2^* \) we proceed as follows:

1. we compute the candidate length \(t = f(p) \) of the name of \(\text{exit}(p) \);
2. if \(t \leq |p| \) and \(p \leq \text{extent}(p[0 \ldots t]) \) we return \(f(p) \), otherwise we return \(\perp \).

Clearly, if \(p \in P \), by definition \(f(p) = |n_{\text{exit}}(p)| \leq |p| \), and we compute correctly the extent of \(\text{exit}(p) \), so we return \(f(p) = |n_{\text{exit}}(p)| \). On the other hand, if \(p \notin \text{Pref}(S) \) it cannot be the prefix of an element of \(S \), so in the last step we certainly return \(\perp \).

3 Locally sensitive predecessor search

Our purpose is now to combine Theorem 2 and 3 to answer efficiently predecessor queries in a way that depends on the distance between the query string and its predecessor and successor. First of all, it is clear that we can easily compute the index of the predecessor of a string if its exit node is known (e.g., by fat binary search):
Hence d (prefixed by $Suppose that neither Proof.

$−$ setup described in Theorem 3 but with a different choice of the function the long distance between the query string and the queried set devise two distinct predecessor algorithms whose performance depend on the short and on Lemma 2 following lemmata:

We remark that the definition above implies that predecessor search (by means of $FBS^−(x, 0, |x|)$ is possible in time $O(\log w)$ using an index of $O(n \log w)$ bits.

The rest of this section is devoted at making the computation of the predecessor of x more efficient by storing selected prefixes of strings in S to reduce significantly the initial search interval of Algorithm 1 (i.e., to increase the parameter a). It turns out that this pre-computation phase does dramatically reduce the number of steps required, making them depend on the distance between the query string x and its predecessors and successors. More precisely, for a given set S and a string x, let us define

$$d(x, S) = \min \{x^+ - x, x - x^+\} \quad \text{and} \quad D(x, S) = \max \{x^+ - x, x - x^+\};$$

if only $x^−$ (equivalently for x^+) is defined, we let $d(x, S) = D(x, S) = x - x^−$. We call $d(x, S)$ (respectively, $D(x, S)$) the short distance (long distance) between x and S. We will devise two distinct predecessor algorithms whose performance depend on the short and on the long distance between the query string and the queried set S: both algorithms use the setup described in Theorem 3 but with a different choice of the function $f : P → \mathbb{N}$. Before proceeding with the presentation of the algorithms, it is worth observing the following lemmata:

Lemma 2 Let x be a string, $j ≤ w - \log d(x, S)$ and $p = x[0..j]$. Then either p or $p + 1$ or $p - 1$ belong to $\text{Pref}(S)$.

Proof. Suppose that neither p nor $p + 1$ nor $p - 1$ belong to $\text{Pref}(S)$; there are 2^{w-j} strings prefixed by p (x being one of them), and the same is true of $p - 1$ and $p + 1$. So, the element $y ∈ S$ that minimises $|y - x|$ (that will be one of $x^−$ or x^+) is such that $|y - x| > 2^{w-j}$. Hence $d(x, S) > 2^{w-j}$, so $j > w - \log d(x, S)$, contradicting the hypothesis.

Lemma 3 Let x be a string; if p is a prefix of x such that $p ∈ \text{Pref}(S)$ and $|p| > w - \log D(x, S)$, then x is either smaller or larger than all the elements of S that have p as prefix.

Proof. Suppose that there is some prefix $p ∈ \text{Pref}(S)$ of x longer than $w - \log D(x, S)$ and that there are two elements of S having p as prefix and that are smaller and larger than x, respectively; in particular, p is also a prefix of x^+ and x^-. Since p is the prefix of less than $2^{\log D(x, S)} = D(x, S)$ strings, $x^+ - x^- < D(x, S)$; but $x^+ - x^- ≥ D(x, S)$, so we have a contradiction.
3.1 Short-distance predecessor algorithm

Our first improvement allows for the computation time to depend on short distances, using techniques inspired by [7]. To this aim, let us consider the following set of prefixes:

\[P = \{ x[0..w-2^i] \mid x \in S \text{ and } i = 0, 1, \ldots, \lfloor \log \log w - 1 \rfloor \}. \]

To store the function \(f : P \to \mathbb{N} \) needed by Theorem 3, we define a subset of \(P \):

\[Q = \bigcup_{\text{node } \alpha} \min_{\leq} \{ p \in P \mid n_\alpha \preceq p \preceq e_\alpha \} \]

In other words, for every node we take the shortest string in \(P \) that sits between the name and the extent of the node (if any). We can map every element \(q \in Q \) to \(|n_{\text{exit}(q)}| \) in space \(O(n \log w) \) as \(|Q| \leq n \). Then, we map every \(p \in P \) to smallest \(i \) such that \(p[0..w-2^i] \in Q \). This map takes \(O(n \log \log w \log \log \log w) \) = \(O(n \log w) \) bits. To compute \(f(p) \), we first compute the index \(i \) using the second map, and then query the first map using \(p[0..w-2^i] \).

Algorithm 2 probes prefixes of decreasing lengths in the set \(X \). More precisely, at each step we will probe a prefix \(p \) of length \(t = w-2^i \) of the query string \(x \); if this probe fails, then \(p+1 \) and finally \(p-1 \) are probed (if they exist). If we succeed in the first case, we have found a valid prefix of \(x \) in the trie, and we can proceed with a fat binary search. Otherwise, no element is prefixed by \(x \), and if by any chance an element is prefixed by \(p-1 \) or \(p+1 \) we can easily locate its predecessor.

Algorithm 2 Short-distance speedup.

Input: a nonempty string \(x \in 2^w \)

Output: the index \(i \) such that \(S[i] = x^- \)

1. \(i \leftarrow 0 \)
2. **while** \(2^i \leq w/2 \) **do**
3. \(p \leftarrow x[0..w-2^i] \)
4. \(t \leftarrow \hat{f}(p) \)
5. **if** \(t \neq \perp \) **then**
6. \(e \leftarrow \text{extent}(x[0..t]) \)
7. **if** \(e < x \) **return** FBS\(^-\)(\(x, |e|, |x| \)) \{ We found a long extent \}
8. **return** pred\((x,t) \) \{ We exit at the node of name \(x[0..t] \) \}
9. **fi**
10. \(t \leftarrow \hat{f}(p+1) \)
11. **if** \(t \neq \perp \) **return** left\((p+1)[0..t]) \{ x^- \text{ is the predecessor of } p+1 \}
12. \(t \leftarrow \hat{f}(p-1) \)
13. **if** \(t \neq \perp \) **return** right\((p-1)[0..t]) \{ x^- \text{ is the successor of } p-1 \}
14. **od**
15. **return** FBS\(^-\)(\(x, 0, |x| \)) \{ Standard search (we found no prefix long enough) \}

More precisely, it turns out that:

Theorem 4 Algorithm 2 returns the predecessor of \(x \) in time \(O(\log \log d(x, S)) \), and requires an index of \(O(n \log w) \) bits of space (in addition to the space needed to store the elements of \(S \)).
Proof. First we show that the algorithm is correct. If we exit at the first return instruction, e is a valid extent and a prefix of x, so we start correctly a fat binary search. At the second return instruction we know the $x[0..t]$ is the name node α, but the extent of α is not a prefix of x, so x exits exactly at α, and again we return the correct answer. If $p + 1$ is a valid prefix of some element of S, but p is not, then the predecessor of p is the predecessor of the least element prefixed by $p + 1$, which we return (analogously for $p - 1$).

By Lemma 2 we will hit a prefix in our set P as soon as $w - 2^{2i} \leq w - \log d(x, S)$, that is, $i > \log \log \log d(x, S)$. If i is the smallest integer satisfying the latter condition, then $i - 1 \leq \log \log \log d(x, S)$, so $2^{2i} \leq (\log d(x, S))^2$, which guarantees that the fat binary search, which starts from an extent of length at least $|e| \geq t \geq w - 2^{2i} \geq w - (\log d(x, S))^2$, will complete in time $O(\log b - a) = O(\log \log d(x, S))$ (see Theorem 1). If we exit from the loop, it means that $i > \log \log \log d(x, S)$ implies $2^{2i} > w/2$, hence $(\log d(x, S))^2 > w/2$, so the last fat binary search (that takes $O(\log w)$ steps to complete) is still within our time bounds.

3.2 Long-distance predecessor algorithm

We now discuss Algorithm 3 whose running time depends on long distances. Let P be the set obtained by “cutting” every internal extent e_α to the length of the smallest power of 2 (if any) in the skip interval of α; more precisely:

$$P = \bigcup_{\alpha \text{ internal}} \{ e_\alpha[0..2^k] | 2^k \in [n_\alpha..|e_\alpha|] \text{ and } k \text{ is the smallest possible} \}$$

where α ranges over all nodes. Since this time we have at most one prefix per node, $|P| = O(n)$, so the function f required by Theorem 3 is stored in $O(n \log w)$ bits.

Algorithm 3 keeps track of the length a of an internal extent that is known to be a prefix of x. At each step, we try to find another extent by probing a prefix of x whose length is the smallest power of two larger than a. Because of the way the set P has been built, we can miss the longest prefix length at most by a factor of two.

Theorem 5 Algorithm 3 returns the predecessor of an input string x in time $O(\log(w - \log D(x, S)))$, and requires an index of $O(n \log w)$ bits of space (in addition to the space needed to store the elements of S).

Proof. First we show that the algorithm is correct. It can be easily seen that at each step a is either 0 or the length of an internal extent that is a prefix of x. Moreover, if there is an internal extent of length at least m that is a prefix of x, then $t = \perp$, so we if we exit at the first return instruction, the fat binary search completes correctly. If $t = \perp$, we know that $x[0..t]$ is the name of a node α (because $(a..w)$ is a union of consecutive skip intervals, and the smallest power of two in such $(a..w)$ is a fortiiori the smallest power of two in a skip interval): if x is smaller than the smallest leaf under α (or larger than the largest such leaf), we immediately know the predecessor and can safely return with a correct value. The return instruction at the exit of the loop is trivially correct.

Observe that when $m > w - \log D(x, S)$ either the string $x[0..m]$ will not be in $\text{Pref}(S)$ (because of Lemma 3) and thus $t = \perp$, or x will be larger (or smaller) than every element of S prefixed by $x[0..t]$, which will cause the loop to be interrupted at one of the last two if instructions. Since m gets at least doubled at each iteration, this condition will take place in at most $\log(w - \log D(x, S))$ iterations; moreover, $m \leq 2a$ (because there is always a power
of 2 in the interval \((a . 2a]\), so the fat binary search in the first return will take no more than \(\log(m - a) \leq \log a \leq \log(w - \log D(x, S))\). If the loop exits naturally, then there is a prefix of \(x\) belonging to \(\text{Pref}(S)\) and longer than \(w/2\), hence \(w - \log D(x, S) \geq w/2\) and the fat binary search at the end of the loop will end within the prescribed time bounds.

Algorithm 3 Long-distance speedup.

Input: a nonempty string \(x \in 2^w\)

Output: the index \(i\) such that \(S[i] = x^-\)

0 \(\quad a \leftarrow 0\)
1 \(\quad \text{while } a < w/2 \text{ do}\)
2 \(\quad m \leftarrow \text{least power of 2 in } (a .. w)\)
3 \(\quad t \leftarrow \hat{f}(x[0 .. m])\)
4 \(\quad \text{if } t = \bot \quad \text{return } \text{FBS}^-(x,a,m) \quad \{ \text{We obtained the longest possible prefix} \}\)
5 \(\quad p \leftarrow x[0 .. t]\)
6 \(\quad \text{if } S[\text{left}(p)] \geq x \quad \text{return } \text{left}(p) - 1\)
7 \(\quad \text{if } S[\text{right}(p)] < x \quad \text{return } \text{right}(p)\)
8 \(\quad a \leftarrow \text{extent}(p)\) \quad \{ \text{This is a valid extent} \}\)
9 \(\quad \text{od}\)
10 \(\quad \text{return } \text{FBS}^-(x,a,w)\)

Finally, we can combine our improvements for short and long distances, obtaining an algorithm that is efficient when the input \(x\) is either very close to or very far from \(x^-\) or \(x^+\):

Corollary 1 It is possible to compute the predecessor of a string \(x\) in a set \(S\) in time \(O(\log \min\{\log d(x, S), w - \log D(x, S)\})\), using an index that requires \(O(n \log w)\) bits of space (in addition to the space needed to store the elements of \(S\)).

4 Globally sensitive predecessor search

We can apply Theorem 5 to improve exponentially over the bound described in [8], which gives an algorithm whose running time depends on the largest and smallest distance between the elements of \(S\). More precisely, let \(\Delta_M\) and \(\Delta_m\) be, respectively, the largest and smallest distance between two consecutive elements of \(S\).

Corollary 2 Using an index of \(O(n \log w)\) bits, it is possible to answer predecessor queries in time \(O(\log \log(\Delta_M/\Delta_m))\).

Proof. See the appendix.

5 Finger predecessor search

We conclude with a generalisation of long-distance search that builds on previous results [4]. Using \(O(nw^{1/c})\) bits (for any \(c\)) it is possible to answer weak prefix search queries in constant time. A weak prefix search query takes a prefix \(p\) and returns the leftmost and rightmost
index of elements of S that are prefixed by p; if no such element exists, the results are unpredictable (hence the “weak” qualifier), but a single access to the set S is sufficient to rule out this case and always get a correct result. Thus, we will be able to compute $\text{left}(-)$, $\text{right}(-)$ and $\text{extent}(-)$ on arbitrary elements of $\text{Pref}(S)$ in constant time. As a consequence, also $\text{pred}(x,t)$ can be extended so to return a correct value for every t such that $x[0..t] \in \text{Pref}(S)$.

The basic idea of Algorithm 4 is that of using a finger $y \in S$ to locate quickly an extent e that is a prefix of x with the guarantee that $w - |e| \leq \log |x - y|$. The extent is then used to accelerate an algorithm essentially identical Algorithm 3, but applied to a reduced universe (the strings starting with e); the running time thus becomes $O(\log(w - |e| - \log D(x,S))) = O(\log(\log |x - y| - \log D(x,S)))$.

Algorithm 4 Long-distance finger-search speedup.

Input: a nonempty string $x \in 2^w$ and a $y \in S$ such that $y < x$

Output: the index i such that $S[i] = x$

0 $t \leftarrow \max\{ s \mid y[0..s] + 1 \preceq x \}$
1 $e \leftarrow \text{extent}(y[0..t] + 1)$
2 if $y[0..t] + 1 \not\preceq e$ return right$(y[0..t])$ { $y[0..t] + 1 \not\in \text{Pref}(S)$ }
3 if $e \not\preceq x$ return pred(x,t) { x exits between $y[0..t] + 1$ and e }
4 $a \leftarrow 0$ { Now $e < x$ and $w - |e| \leq \log |x - y|$ }
5 while $a < (w - |e|)/2$ do
6 $m \leftarrow \text{least power of 2 in } (a - |e|..w - |e|)$
7 $p \leftarrow x[0..m + |e|)$
8 if $p \not\in \text{Pref}(S)$ return FBS$^-$$(x, a + |e|, m + |e|)$
9 if $S[\text{left}(p)] \geq x$ return left$(p) - 1$
10 if $S[\text{right}(p)] < x$ return right(p)
11 $a \leftarrow |\text{extent}(p)| - |e|$ { This is a valid extent }
12 od
13 return FBS$^-$$(x, a + |e|, w)$

Theorem 6 Algorithm 4 returns the predecessor of an input string x given a finger $y \in S$, with $y < x$, in time $O(\log(\log |x - y| - \log D(x,S)))$ using an index of $O(nw^{1/c})$ bits of space, for any c (in addition to the space needed to store the elements of S).

Proof. See the appendix. □

References

[1] Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. Assoc. Comput. Mach. 54(3), 1–40 (2007)

[2] Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing: Searching a sorted table with $O(1)$ accesses. In: SODA ’09. pp. 785–794. ACM Press (2009)
Appendix

Proof. (of Corollary 2) We use a standard “universe reduction” argument, splitting the universe \(2^w\) by grouping strings sharing the most significant \(\lceil \log n \rceil\) bits. Each subuniverse \(U_i\) has size \(2^{w - \lceil \log n \rceil} = O(2^w/n)\), and we let \(S_i = S \cap U_i\). Using a constant-time prefix-sum data structure we keep track of the rank in \(S\) of the smallest element of \(S_i\), and we build the indices that are necessary for Algorithm 4 for each \(S_i\) (seen as a set of strings of length \(w - \lceil \log n \rceil\)). Thus, we can answer a query \(x\) in time \(O(\log(2^w - \lceil \log n \rceil) - \log D(x, S_i))\), where \(U_i\) is the subuniverse containing \(x\). Now note that \(\Delta_M \geq 2^w/n\), and that \(\Delta_m \leq x^+ - x^- = (x^+ - x) + (x - x^-) \leq 2D(x, S) \leq 2D(x, S_i)\) (unless \(x\) the smallest or the largest element of \(S_i\), but this case can be dealt with in constant time). The bound follows immediately.

Proof. (of Theorem 6) First we show that the algorithm is correct. If we exit at the first return instruction, \(y[0 \ldots t] + 1\) is not in \(\text{Pref}(S)\), which implies that \(x^-\) is prefixed by \(y[0 \ldots t]\), and thus the output is correct. If we exit at the second return instruction, \(x\) exits at the same node as \(y[0 \ldots t] + 1 = x[0 \ldots t]\). Otherwise, \(e\) is an extent that is a proper prefix of \(x\), and the remaining part of the algorithm is exactly Algorithm 5 applied to the set of strings.
of \(S \) that are prefixed by \(e \), with \(e \) removed (the algorithm is slightly simplified by the fact that we can test membership to \(\text{Pref}(S) \) and compute extents for every prefix). Correctness is thus immediate.

All operations are constant time, except for the last loop. Note that as soon as \(m + |e| \geq w - \log D(x, S) \) the loop ends or a prefix of \(x \) is found (as in the proof of Algorithm\(^3\)), and this requires no more than \(\log(w - |e| - \log D(x, S)) \) iterations; moreover, \(m \leq 2a \) (because there is always a power of 2 in the interval \((a \ldots 2a)\)), so the fat binary search in the first return will take no more than \(\log(m - a) \leq \log w - |e| - \log D(x, S) \). If the loop exits naturally, then there is a prefix \(e' \) of \(x \) belonging to \(\text{Pref}(S) \) and longer than \((w + |e|)/2 \), hence by Lemma\(^3\) \(w - \log D(x, S) \geq (w + |e|)/2 \); the fat binary search at the end takes time \(O(\log(w - (a + |e|))) = O(\log(w - |e'|)) = O(\log(w/2 - |e|/2)) = O(\log(w - |e| - \log D(x, S))) \), within the prescribed time bounds. \(Q.E.D. \)