Effect of mono-dopants (Mg$^{2+}$) and co-dopants (Mg$^{2+}$, Zr$^{4+}$) on the dielectric, ferroelectric and optical properties of BaTiO$_3$ ceramics

Mst Sharmin Mostari1, Md Jahidul Haque1,3, Sunbeam Rahman Ankur1, Md Abdul Matin2 and Ahsan Habib Munna3

1Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi-6204, Bangladesh
2Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh
3Author to whom any correspondence should be addressed.

E-mail: mjh.ruet26@gmail.com, matin.md.a@gmail.com and ahsanhabibmunna@gmail.com

Keywords: solid-state reaction, x-ray diffraction, oxygen vacancy, lattice strain, ferroelectrics

Abstract

In this work, BaTiO$_3$, Ba(Mg$_{0.01}$Ti$_{0.99}$)O$_3$, Ba(Mg$_{0.015}$Ti$_{0.985}$)O$_3$, Ba(Mg$_{0.02}$Ti$_{0.98}$)O$_3$ and Ba(Mg$_{0.015}$Zr$_{0.15}$Ti$_{0.84}$)O$_3$ ceramics have been prepared through conventional solid-state route to investigate the effects of Mg$^{2+}$ and Zr$^{4+}$ dopants as mono-substitution (only Mg$^{2+}$) and co-substitution (Mg$^{2+}$ and Zr$^{4+}$) of B-site on the structural, electrical and optical properties of BaTiO$_3$ ceramics. Exhibiting perovskite structure, Ba(Mg$_{x}$Ti$_{1-x}$)O$_3$ ceramics revealed a decrement pattern of tetragonality with the increment of the concentration of MgO which was confirmed through Rietveld analysis.

Morphological analysis of the sintered samples by scanning electron microscope showed a grain growth retardation phenomenon with Mg$^{2+}$ addition. Releasing from this retardation process, Ba(Mg$_{0.015}$Zr$_{0.15}$Ti$_{0.84}$)O$_3$ showed a maximum dielectric constant of \sim1269.94 due to the enhanced domain wall motion and the confinement within the solubility limit of Mg$^{2+}$. The ferroelectric characteristic of Ba(Mg$_{0.015}$Ti$_{0.985}$)O$_3$ was sluggish due to the effects of grain size and its boundary. The optical band gap for BaTiO$_3$ was found to be decreased from 3.55 eV to 3.06 eV with the addition of Mg$^{2+}$ content but for Ba(Mg$_{0.015}$Zr$_{0.15}$Ti$_{0.84}$)O$_3$, the value increased due to the Burstein-Moss effect. Again the FTIR analysis proved that no impurity phases were formed during the doping phenomenon, but in Ba(Mg$_{0.015}$Zr$_{0.15}$Ti$_{0.84}$)O$_3$ ceramics, a significant reduction of Ti-O bond strength was observed. However, BaTiO$_3$, Ba(Mg$_{0.01}$Ti$_{0.99}$)O$_3$, Ba(Mg$_{0.015}$Ti$_{0.985}$)O$_3$ and Ba(Mg$_{0.02}$Ti$_{0.98}$)O$_3$ ceramics had manifested P-E loop having lower remanent polarization and coercive field compared to Ba(Mg$_{0.015}$Zr$_{0.15}$Ti$_{0.84}$)O$_3$ ceramics with moderate electrical and optical properties. So, co-doping with Mg$^{2+}$ and Zr$^{4+}$ evidenced a favorable accession for the increment of the properties of BaTiO$_3$ ceramics.

1. Introduction

Demonstration of a perovskite structure with relaxor characteristics, Barium Titanate (BaTiO$_3$) (BT) is nominated as a plausible dielectric and ferroelectric material which exhibits environmental friendliness as compared with numerous widely recognized lead (Pb)-based electroceramics, i.e. Pb(Zr,Ti)O$_3$ (PZT), Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$ (PMN), Pb(Zn$_{1/3}$Nb$_{2/3}$)$_3$O$_3$ (PZN), Pb$_2$(Zr$_{1/2}$Ti$_{1/2}$)$_3$O$_7$ (PLZT), etc [1]. As BaTiO$_3$ retains some spanning prominences due to high electrochemical coupling factor, high dielectric constant and low loss factor, it is thoroughly exploited to yield several electronic components such as Multilayer Ceramic Capacitors (MLCCs), Micro-Electro-Mechanical Systems (MEMs), Dynamic Random Access Memories (DRAM), PTC Thermistors, Piezoelectric Transducers, Pyroelectric Sensors, Phase Shifters, Tunable Filters and a variety of electro-optic devices [2].

Just after the first advancement of MLCCs, Ag-Pd was used as an internal electrode [3]. However, a few years later, their usages were minimized due to some costing related issues. Afterward, the Ni electrode was thought to be used as a replacement of the previous electrode [4]. But, during the propagation of Ni electrode into MLCCs through the sintering mode under a partial pressure of oxygen gas ($P_O > 10^{-10}$ MPa), reduction of BaTiO$_3$ and...
evolution of oxygen vacancies with the n-type carries were resulted in accordance with the following reaction [5]:

$$\text{BaTiO}_3 \rightarrow \text{BaTiO}_3 - \delta + \frac{\delta}{2} \text{O}_2 + \delta V_O + 2\delta e'$$

(1)

Where, V'_o prevails an oxygen vacancy into BaTiO$_3$ lattice as derived by Kröger Vink notation [6].

So in order to prevent the afore-mentioned unexpected situation, the structural compositions could be manipulated through the addition of acceptor additives, i.e. Mg$^{2+}$, Al$^{3+}$, Mn$^{3+}$, Fe$^{3+}$ and Co$^{2+}$ in a radical range of 0.54 Å to 0.83 Å [4]. Amongst the acceptor elements, MgO is considered as the most efficient additive for attaining nondeductible compositions in MLCCs with Ni electrodes [3]. Several research works were already performed to dig up the effects of MgO addition on the microstructural and the dielectric properties of BaTiO$_3$ ceramics [7, 8]. Whither, S H Yoon observed a special feature that the accession of Mg$^{2+}$ dominates the rate of grain growth and simultaneously reduces the grain size of BT ceramics [9].

Apart from that, among the doped BaTiO$_3$ systems, Ba(Zr$_{0.01}$Ti$_{0.99}$)O$_3$ ceramics have recently received attention due to their high strain level and piezoelectric effect in both single crystals and polycrystalline ceramics [10]. From the research of Zhi Yu, it is cleared that a distinct phase transition is triggered with Zr enrichment, whereas a merged broad peak corresponds to a three-phase transition [11]. Again, as the replacement of titanium with zirconium takes place, the transition of the polymorphous phase is reconfigured to higher temperatures and also arises the degeneration of the Curie temperature [12]. Besides, regarding higher doping levels (more than 10 mol%), the commencement of the relaxor behavior is obtained which is broadly investigated by C Ciomaga et al [1]. Whereas, Jean Ravez claimed a ferroelectric-relaxor behavior at $x > 0.25$ [13].

However, following the previous researches, we tried to perform further exploration on BT ceramics by adopting variable Mg component (0 mol%, 1 mol%, 1.5 mol%, and 2 mol%) as mono substitution dopants and 15 mol% Zr with 1 mol% Mg as co-dopants, where co-doping (Mg$^{2+}$ + Zr$^{4+}$) supposed to be a new approach which perpetuates the dielectric and ferroelectric behavior of the corresponding ceramics. Moreover, the results were analyzed in terms of crystal anisotropy correlated with the impression of grain size.

2. Methodology

BaTiO$_3$ (BT), BaMg$_{0.01}$Ti$_{0.99}$O$_3$ (BMT1), BaMg$_{0.015}$Ti$_{0.985}$O$_3$ (BMT2), BaMg$_{0.02}$Ti$_{0.98}$O$_3$ (BMT3) and BaMg$_{0.02}$Zr$_{0.025}$O$_{3}$ (BMZT1) solid solutions were prepared via conventional solid-state reaction scheme. Awfully sterling raw materials including BaCO$_3$ (purity > 99%, Merck Specialties, India), MgO (purity > 99%, Merck Specialties, India), ZrO$_2$ (purity > 99%, SRL, India) and TiO$_2$ (purity > 99%, Merck Specialties, India) were used with appropriate stoichiometric ratios. The weighed powders were ball-milled using ethanol (purity > 99%, Merck, Germany) as milling media with yttria-stabilized alumina balls for 20 h. After milling, the slurry was dried in an oven at 100 °C for 2 h. Followed by the incineration at 900 °C for 24 h, the incinerated powder was re-ground, compounded with a binder (2 wt% polyvinyl alcohol) and compacted into disk pellets under an axial pressure of 2.5 tons. The prepared pellets were then sintered at 1250 °C for 4 h. X-ray diffraction (XRD) measurement was carried out at room temperature for phase detection using 40 kV-40 mA (scanning step of 0.01° and counting time of 1 s per step) and Cu-K$_\alpha$ radiation of wavelength $\lambda = 1.54060$ Å and $\theta_{02} = 1.54439$ Å (Panalytical Empyrean, Netherlands) in the range of 10°–80°. Structural refinement was redacted using a standard refinement program ‘Full Prof’. Scanning Electron Microscope (SEM) (JEOL JSM-6510, Netherlands) was devoted to observing the morphologies of the swatches. The average grain size was explored by the linear intercept method and the grain size distribution was attained via Imagej and OriginPro software. Dielectric measurements were effectuated at 500 mV over the frequency range of 100 Hz to 3.17 MHz through Impedance Analyzer (Wayne Kerr 6500B series, UK). Ferroelectric polarization-electric field (P-E) hysteresis loop was obtained using Multifireroic Tester (Radiant Tech., Inc., USA) retaining the reliability on voltage (200 V-1 kV at 1 Hz). The optical band gap energy was assessed using UV–vis spectroscopy (SHIMADZU UV/Vis-1650 PC, Japan) over the range of 200–800 nm. Fourier Transform Infrared spectroscopic measurements were accomplished by using the FTIR spectrometer (JASCO FTIR 6100, Japan) in the wavenumber range of 400–4000 cm$^{-1}$.

3. Results and discussions

3.1. XRD analysis

Room temperature (RT) XRD patterns of BT, BMT1, BMT2, BMT3 and BMZT1 ceramics sintered at 1250 °C is shown in figure 1 (a). The identified characteristic peaks for BT, BMT1, BMT2, BMT3 and BMZT1 ceramics with high diffraction intensity and sharpness were discovered to be at crystal faces of (100), (110), (111), (002), (200), (210), (211), (220), (221), (301), and (311). All the compositions exhibited a pure perovskite structure without
any trace of impurity phase, indicating that Mg$^{2+}$ and Zr$^{4+}$ have completely incorporated into BT lattices to form complete solid solutions and the reaction for Mg$^{2+}$ as follows [14]:

$$\text{BaO} + \text{MgO} \rightarrow \text{Ba}_{\text{Ba}} + \text{Mg}_{\text{Ti}}'' + 2\text{O}_2 + V''_O$$

(2)

$$\text{Mg}_{\text{Ti}}'' + V''_O \rightarrow (\text{Mg}_{\text{Ti}}'' - \text{O}_2)$$

(3)

Figure 1(b) shows the diffraction spectra attained from the sluggish scanning wreath in the 2θ range of 44°–46°. The emergence of the splitting of (002) peak of doped BT ceramics confirmed the tetragonal phase. The replacement of Ti$^{4+}$ (0.605 Å, 6 coordinate) with Mg$^{2+}$ (0.720 Å, 6 coordinate) and Zr$^{4+}$ (0.720 Å, 6 coordinate) demonstrated the shifting of (002) peak to lower 2θ backing the reason of the higher ionic radius of the dopants than that of the replaced ions [15].

Moreover, incorporation of Zr$^{4+}$ into BaTiO$_3$ ceramics usually follows three mechanisms to attain structural stability as revealed through the leading equations [16, 17]:

Consideration for network modifier:

$$[\text{BaO}_{12}']^x + [\text{BaO}_{11} \cdot \text{V}_0^x] \rightarrow [\text{BaO}_{12}']' + [\text{BaO}_{11} \cdot \text{V}_0^x]$$

(4)

$$[\text{BaO}_{12}']^x + [\text{BaO}_{11} \cdot \text{V}_0^x] \rightarrow [\text{BaO}_{12}']' + [\text{BaO}_{11} \cdot \text{V}_0^x]$$

(5)

$$[\text{BaO}_{11} \cdot \text{V}_0^x] + \frac{1}{2}\text{O}_2 \rightarrow [\text{BaO}_{12}]$$

(6)

Consideration for network formers:

$$[\text{TiO}_3]^x + [\text{TiO}_5 \cdot \text{V}_0^x] \rightarrow [\text{TiO}_3]' + [\text{TiO}_5 \cdot \text{V}_0^x]$$

(7)

$$[\text{TiO}_3]^x + [\text{TiO}_5 \cdot \text{V}_0^x] \rightarrow [\text{TiO}_3]' + [\text{TiO}_5 \cdot \text{V}_0^x]$$

(8)

$$[\text{TiO}_3\cdot \text{V}_0^x] + \frac{1}{2}\text{O}_2 \rightarrow [\text{TiO}_4]$$

(9)

$$[\text{ZrO}_2]^x + [\text{ZrO}_3 \cdot \text{V}_0^x] \rightarrow [\text{ZrO}_2]' + [\text{ZrO}_3 \cdot \text{V}_0^x]$$

(10)

$$[\text{ZrO}_2]^x + [\text{ZrO}_3 \cdot \text{V}_0^x] \rightarrow [\text{ZrO}_2]' + [\text{ZrO}_3 \cdot \text{V}_0^x]$$

(11)

$$[\text{ZrO}_2\cdot \text{V}_0^x] + \frac{1}{2}\text{O}_2 \rightarrow [\text{ZrO}_3]$$

(12)

The structure reveals that clusters of [BaO$_{12}$, V$_0^x$], [TiO$_3$, V$_0^x$] and [ZrO$_2$, V$_0^x$] belongs to benefactor postulants, whereas [BaO$_{12}$], [TiO$_3$, V$_0^x$] are acknowledged with promising postulants but [BaO$_{12}$, V$_0^x$], [TiO$_3$, V$_0^x$] and [ZrO$_2$, V$_0^x$] are featuring both characteristics equally. However, the stabilization of defect mechanisms is prompted by the presence of these clusters. Cavalcante and Gurgel believed that the vacancies could be eliminated by the loss of energy of electrons residing into the conduction band and the re-acqurement of the hole in the valence band [16].

Figure 2 shows the final outputs of the Rietveld refinement programs, confirming that the configurations belong to tetragonal symmetry with space group p4mm which were carried out using ‘FullProf’ and ‘Maud: Materials Analysis Using Diffraction’ software by adopting Wyckoff’s series [18]. The refined lattice parameters and reliability factors (R factors) derived from Rietveld analysis are enlisted in table 1. In consideration of co-doping, an expanded cell volume results in due to the replacement of lower radii Ti$^{4+}$ (0.605 Å) with higher...
radii Zr$^{4+}$ (0.720 Å) and Mg$^{2+}$ (0.605 Å) (table 1) [19]. However, a minor variation in tetragonality takes place as the axial ratio (c/a) alters in the compositional sequence [20].

Debye–Scherrer formula [21] was used to measure the crystallite size (table 2) for the most vivid peak (110). The formula can be expressed as:

$$D = \frac{k\lambda}{\beta \cos \theta}$$

(13)

Hither, β is the Full Width at Half Maxima, k being a dimensionless shape factor having a constant value of 0.94 associated with the crystal symmetry, while λ and θ are the wavelengths of Cu K$_\alpha$ radiation (1.54 Å) and Bragg angle respectively.

Through the x-ray diffraction analysis, the degree of crystallinity (x_c) can be usually derived by two-phase model according to the following formulae:

$$x_c = \frac{I_{\text{crystalline}}}{I_{\text{crystalline}} + I_{\text{amorphous}}} \times 100$$

(14)
Structural properties of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics.

Table 1.

Composition	Space group	Cell parameter	Axial ratio \((c/a)\)	Cell volume \((\text{Å}^3)\)	R factors (%)	GoF	Bragg R factor	RF factors
BT	P 4 mm	\(a = 3.997141\)	1.0037	64.328	Rp = 6.53	1.4	2.78	1.52
		\(b = 3.997141\)			Rwp = 8.75			
		\(c = 4.012226\)			Rexp = 6.33			
BMT1	P 4 mm	\(a = 4.002433\)	1.0041	64.335	Rp = 5.91	1.2	1.55	1.44
		\(b = 4.002433\)			Rwp = 7.84			
		\(c = 4.019126\)			Rexp = 6.29			
BMT2	P 4 mm	\(a = 4.001557\)	1.0040	64.337	Rp = 5.92	1.2	1.56	1.58
		\(b = 4.001557\)			Rwp = 7.84			
		\(c = 4.017944\)			Rexp = 6.29			
BMT3	P 4 mm	\(a = 4.001638\)	1.0039	64.368	Rp = 5.86	1.2	2.74	2.18
		\(b = 4.001638\)			Rwp = 7.80			
		\(c = 4.017632\)			Rexp = 6.45			
BMZT1	P 4 mm	\(a = 3.997768\)	1.0043	64.935	Rp = 6.24	1.3	1.80	1.54
		\(b = 3.997768\)			Rwp = 8.09			
		\(c = 4.013503\)			Rexp = 6.03			

Table 2.

Composition	Crystallite size, \(\tau\) (nm)	Tolerance factor, \(t\)	Degree of crystallinity, \(x_c\) (%)	Lattice strain, \(\varepsilon\) (%)	Average grain size (nm)
BT	35.98	1.061542	66.52	0.0016	809.23
BMT1	38.93	1.333495	68.86	0.0019	811.37
BMT2	39.26	1.333015	69.81	0.0020	717.27
BMT3	39.36	1.332535	67.18	0.0022	645.93
BMZT1	24.45	1.319238	63.69	0.0033	873.72

Where, \(I_{\text{crystalline}}\) and \(I_{\text{amorphous}}\) belong to the area of the crystalline and the amorphous peaks respectively. However, BMZT1 exhibits lower \(x_c\) as compared to BT and BMT ceramics which are enlisted into table 2.

The structural transformation could be evaluated by using RD Shannon’s ionic radii table [22] and Goldschmidt’s rule [23]. Following the formula, the tolerance factor \((t)\) could be computed by,

\[
t = \frac{r_A + r_X}{\sqrt{2(r_B + r_X)}}
\]

Where, \(r_A\), \(r_B\), and \(r_X\) are the ionic radii of A-site \([\text{CN} = 12]\), B-site \([\text{CN} = 6]\) and O [\text{CN} = 6] ion correspondingly.

The decrement pattern of \(t\) (table 2) implies that BaTiO\(_3\) doped with MgO and ZrO\(_2\) is attaining structural transformation as well as more stability in the perovskite structure [24]. The value for BMT varies between 1.333495 to 1.332535 inducing the reduction of the tetragonal phase and approaching a cubic phase which will be again evidenced as the discretion of \(c/a\) ratio. Besides, the obtained values of the tolerance factor \((t > 1)\) reflect the presence of the ferroelectric phase at room temperature [25].

The resulted lattice strain arisen in the sample was obtained using Williamson–Hall equation [26],

\[
\frac{\beta \cos \theta}{\lambda} = \frac{1}{D} + \frac{\varepsilon \sin \theta}{\lambda}
\]

Where \(D\) corresponds to crystallite size, \(\lambda\) is the wavelength of Cu-K\(_\alpha\) radiation, \(\beta\) being the Full Width at Half Maximum (FWHM) of diffraction peak, \(\theta\) represents the peak position and \(\varepsilon\) stands for the microstrain present in the sample. The lattice strain values are obtained from the slope of the plot drawn between \(\frac{\beta \cos \theta}{\lambda}\) and \(\frac{\sin \theta}{\lambda}\), which are curtailed in table 2. The presence of tensile strain is indicated by the positive slope value (figure 3) [27]. An enhancement of the tensile strain is emerged with the accession of Mg\(^{2+}\) and Zr\(^{4+}\) due to the lattice alteration sourced from the substitution of Ti\(^{4+}\) ions by larger Mg\(^{2+}\) and Zr\(^{4+}\) ions.

3.2. Structural analysis

Figures 4(a)–(e) displays the SEM micrographs of the empirical formulas of BaTiO\(_3\) ceramics doped with Mg and Zr. The average grain size was enumerated by using the linear intersection method [28]. At a lower proportion of MgO (1.0 mol%), inhabiting in the solubility range of MgO in BT, the microstructure shows aesthetic conformation, with an average grain size of 811.37 nm [4]. But a significant reduction in grain size is observed when the MgO content is above 1.0 mol% (table 2) [14]. This result reveals that the grain growth of BT
ceramics is suppressed by Mg which designates it as the grain growth inhibitor \[29\]. It is due to the fact that the incorporation of Mg\(^{2+}\) ions persuades the formation of oxygen vacancy \((V_\text{O})\). Simultaneously, the generated \(V_\text{O}\) introduces a motion into the crystal lattices which attempts to consume some energy. However, the consumption of the energy is benefited as the segregation of the solutes \((\text{Mg}^{2+})\) is manifested in the grain boundary. Positioning themselves into the grain boundary, Mg\(^{2+}\) ions counteract the motion of the boundary resulting the suppression of the grain growth. Besides, in consideration of Zr embodiment, a symbolical enhancement in the grain size is observed accompanied by more effectiveness in the densification mechanisms as shown in figure 4(d) \[30\]. This can be caused by the accelerated matter transport mechanism which is generally materialized at the interim locus of the grains during the densification course \[17\]. A narrative scatter diagram associated with the distribution contour of the grain size distribution (appraised by exploiting ImageJ software and OriginPro 2018 software) are stereotyped in figures 4(a)–(d) \[31\].

Furthermore, from the quantitative Energy-dispersive x-ray spectroscopy (EDS), the weight percentage of the elements in the samples were computed (table 3). The curves as stereotyped in the inset of figure 5 reveal the elemental provinces of the perovskite phases of un-doped and doped BT ceramics. However, the tabulated values ensure the absence of impure phases in the experimental specimens and also dispel the burden of losing any ingredients during its formulation \[32, 33\].

3.3. Dielectric properties

Figure 6(a) shows the frequency dependence of dielectric constant \((\kappa)\) of the experimental ceramics in the frequency range of 100 Hz to 3.17 MHz at room temperature. All the samples exhibited a high dielectric constant at the starting frequency which is abstracted into table 4. This phenomenon results from the ability of readjustment of the dipolar complex \((\text{Mg}^{2+} - V_\text{O})\) and the dynamism of the oxygen vacancies \((V_\text{O})\) allowing rotation around the centrum of impurity \((\text{Mg}^{2+})\) for retaining the drift of poling actions \[34\]. But proceeding at high frequencies, the dipoles show incapability to provide sufficient response to the imposed field resulting in degradable dielectric constant. The observed dielectric behavior at the low frequencies due to the oxygen vacancies can be coordinated with the Maxwell-Wagner interfacial polarization model with Koop’s phenomenological theory. According to the hypothesis, the dielectric structure comprises two layers, i.e. layers of immensely conducting grains and layers of flimsy conducting grain boundaries, where the grain boundaries become more enterprise than the grains at a lower frequency and only the grains withhold their distinctiveness at the higher frequencies \[35\].

Besides, the acquired data confirms a strong relationship between \(\kappa\) and dopant \%. Enhanced dielectricity is observed at 1 mol\% MgO, while further increment of MgO demonstrates a declined \(\kappa\) value \[14\]. It is backed by the dominance of grain size and grain boundary permittivity. Generally, Grain boundary comprises space charges which exclude polarization charges from the grain surface and creates a depletion layer on it. However, the layer introduces a depolarization field which lowers the polarization value simultaneously. Whereas, in consideration of the ZrO\(_2\) accession into BT, a maximal value of the relative permittivity is demonstrated by the emergence of the largest grain size as well as the dominance of maximum tetragonality \[36\].
Figure 6(b) interprets the dielectric loss factor ($\tan\delta$) as a function of frequency and the $\tan\delta$ values for BMT and BMZT ceramics at 100 Hz are tabulated into Table 4. Actually, there involves two mechanisms contributing to the loss factor, i.e. resistive loss and relaxation loss. For the consideration of resistive loss, a certain quantity of energy is devoured by the whirling charge bearers, while for later one, the contribution results from the relaxation of electric doublets. However, the dependence of the dielectric loss on frequency turns into nonpartisan at the higher frequency range [37].
3.4. Ferroelectric property

Figure 7 represents the characteristic polarization versus electric field (P-E) loops of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics. The arisen of interruption at 0 V coupling with the generation of an unsaturated hysteresis loop express the appearance of leakage current into the samples. Actually, P-E loops describe a total polarization value comprising of remanent and non-remanent polarization. The remanent polarization is concerned with switchable dipoles which retain their polarization in the removal of the applied field. While for the non-remanent polarization, it is mainly influenced by the dielectric linear capacitance and its loss factor accompanied by the non-retainable polarized dipoles. The obtained remanent polarization (P_r) and the coercive field (E_c) are enlisted in table 4. However, the maximal value of remanent polarization (P_r) of 0.21 μC/cm² with a field of maximum coercive value (E_c) of 2.10 kV/cm were found for BMZT solid solution. It is caused by the presence of Zr⁴⁺ which influences to generate the space charges and in the meantime preserve the domain configuration resulting in the higher poling efficiency as well as enhanced remanent polarization value. Moreover, the graphs (figures 7(a)–(c)) for BMT exhibit a decreased pattern of P_r with the increment of the mol% of Mg. Actually, reduction of poling proficiency can be usually caused by the effects of grain size, grain boundary, internal stress, depolarizing field and also the mutual interaction between the domain walls and their clamping characteristics. Again, the larger area of the grain boundaries results in enhanced electrical insulation associated with a haphazard arrangement of space charges that interrupts and lowers the polarizability.
3.5. Optical property

The UV-Visible spectra of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics are interpreted in figure 8(a). The optical band gap energy was computed via allowed direct inter-band transition between valence and conduction bands by adopting Tauc’s Law [38]:

\[(\alpha h\nu)^2 = A(\nu^2 - E_g)\]

Where, \(A\) is a constant, \(\alpha\) being the absorption coefficient, \(h\nu\) stands for the photon energy and \(E_g\) represents the optical band gap energy. \(E_g\) can be attained from the \((\alpha h\nu)^2\) versus \(h\nu\) plot and the extrapolation of the graphical segment of the trajectory to \((\alpha h\nu)^2 = 0\) as shown in the inset of figure 8(b). With proceeding from BMT1 to BMT3, the band gap significantly reduces from 3.18 to 3.06 eV while for BT, the value is 3.55 eV (table 4).

Generally, the obtained \(E_g\) values are strongly dominated by the appearance of ordered or disordered patterns into the lattice structure. The disordered arrangement is mainly caused due to the presence of asymmetry into the O-Ti-O bond or due to the misrepresentation of the TiO\(_6\) clusters. Again, another contributing factor is the

![Figure 6](image)

(a) Dielectric constant (inset of (a) shows dielectric constant versus log frequency curves between 100 Hz to 1 MHz) and (b) Dielectric loss (loss tangent) as a function of log frequency of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics.

Composition	Dielectric constant (\(\kappa\)) at 200 kHz	Dielectric loss \((\tan\delta)\)	Remanent polarization \(P_r\) \((\mu C/cm^2)\)	Coercive field \(E_c\) \((kV/cm)\)	Optical band gap energy, \(E_g\) \((eV)\)
BT	438.48	0.06	0.09	1.48	3.55
BMT1	907.32	0.17	0.10	1.25	3.18
BMT2	858.31	0.15	0.09	1.45	3.14
BMT3	817.84	0.14	0.07	1.43	3.06
BMZT1	1269.94	0.26	0.21	2.10	3.71

3.5. Optical property

The UV-Visible spectra of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics are interpreted in figure 8(a). The optical band gap energy was computed via allowed direct inter-band transition between valence and conduction bands by adopting Tauc’s Law [38]:

\[(\alpha h\nu)^2 = A(\nu^2 - E_g)\]

Where, \(A\) is a constant, \(\alpha\) being the absorption coefficient, \(h\nu\) stands for the photon energy and \(E_g\) represents the optical band gap energy. \(E_g\) can be attained from the \((\alpha h\nu)^2\) versus \(h\nu\) plot and the extrapolation of the graphical segment of the trajectory to \((\alpha h\nu)^2 = 0\) as shown in the inset of figure 8(b). With proceeding from BMT1 to BMT3, the band gap significantly reduces from 3.18 to 3.06 eV while for BT, the value is 3.55 eV (table 4).

Generally, the obtained \(E_g\) values are strongly dominated by the appearance of ordered or disordered patterns into the lattice structure. The disordered arrangement is mainly caused due to the presence of asymmetry into the O-Ti-O bond or due to the misrepresentation of the TiO\(_6\) clusters. Again, another contributing factor is the
defect mechanisms into the structure [39, 40]. However, the inauguration of lattice defects into the crystal structure allows for the establishment of certain intermediate energy levels (comprising of oxygen 2p, titanium 3d, and magnesium 3p orbitals) between the valence band and the conduction band (as shown in figure 9) which reduce the band gap energy significantly. Moreover, as the amount of Mg increases, the corresponding defect mechanism enhances which triggers the shifting of E_g to a lower extent for BMT ceramics.

On the other hand, in consideration of Zr$^{4+}$ addition, the E_g shifts to a higher extent value (3.71 eV) as compared to BMT. Whenever these materials are heavily doped, the electrons seize themselves into the lowest

![Figure 7. Polarization versus electric field curves (P-E loop) of (a) BT, (b) BMT1, (c) BMT2, (d) BMT3 and (e) BMZT1 ceramics at RT.](image-url)
Figure 8. (a) UV-Visible spectra of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics and (b) $(\alpha \ h \ \nu)^2$ versus photon energy plot for determining the corresponding band gap energy of the samples ((inset shows the extrapolation of the trajectory to $(\alpha \ h \ \nu)^2 = 0$).

Figure 9. Band model having deep and shallow holes within the band gap.
potency level adjacent to the conduction band which is ordinarily commenced from the defect mechanisms i.e. oxygen vacancy and this phenomenon is considered as Burstein-Moss effect \[41\]. Another contributing factor known as crystallite size also affects the optical band gap energy significantly. Whereas, reduced band gap results from the cause of increment in the crystallite size of BT ceramics doped with Mg\(^{2+}\) and Zr\(^{4+}\) as derived from the XRD analysis \[42\].

Figure 10 illustrates the room temperature transmittance spectra of BT, BMT1, BMT2, BMT3, and BMZT1 ceramics. All of the samples (except BMT1) exhibit a broad absorption band at 3250 cm\(^{-1}\) due to the stretching vibration of water molecules \[43\]. However, the characteristic band at 2452 cm\(^{-1}\) is employed for the asymmetric stretching of CO\(_2\) \[44\]. Moreover, the absorption band at 1630 cm\(^{-1}\) appears due to the bending vibration of H\(_2\)O molecules \[45\]. The band at 585 cm\(^{-1}\) is caused due to the stretching vibration of TiO\(_6\) with barium, while for the bending vibration of Ti-O bond in [TiO\(_6\)]\(^{2-}\) octahedron, the band at 475 cm\(^{-1}\) has appeared. In addition, for BMT1, BMT2, BMT3 and BMZT1 ceramics, the maximum absorption occurs at the band of 578 cm\(^{-1}\), 576 cm\(^{-1}\), 571 cm\(^{-1}\), and 583 cm\(^{-1}\) respectively. It is observed that as the incorporation rate of MgO increases, the absorption band of BMT ceramics shifts to a lower extent. It is mainly caused due to the weakening of the Ti-O bond \[46\] and this weakening behavior is mainly caused by two reasons. The first one involves the replacement of Ti\(^{4+}\) ions with Mg\(^{2+}\) and Zr\(^{4+}\) ions having higher ionic radius than that of the replaced ions and the second one involves the formation of oxygen vacancies (V\(_{O}\)) for retaining the electric charge balance into the crystal lattice \[47\]. Whereas, for BMZT1, the absorption band increased due to the higher stabilization mechanism of Zr\(^{4+}\) as well as having a lower concentration of Mg\(^{2+}\).

4. Conclusion

In summary, BT doped with 0, 1, 1.5, 2 mol\% Mg and co-doped with 1 mol\% Mg and 15 mol\% Zr ceramics were successfully fabricated by conventional solid-state reaction method. A single perovskite tetragonal phase was found in all the ceramic specimens without the evidence of any additional phase which was simultaneously proved by XRD and FTIR analysis. An occurrence of retardation in grain growth of BMT ceramics was exhibited whenever the MgO content is >1 mol\%. The dielectric behaviors were predominantly attributed to the existence of oxygen vacancies, experiencing the extensive motion of V\(_{O}\) accompanied by the pinning phenomena derived by Mg\(_{6Ti}^{6+}\). However, due to the effect of larger grain size, BMZT1 exhibits enhanced relative permittivity value along with the appearance of higher remanent polarization as compared with other synthesized samples. However, the obtained optical band gap energy of the samples increases its probability to use in optoelectronic purposes.
Acknowledgments

The authors are grateful to Rajshahi University of Engineering & Technology (RUET) and Bangladesh University of Engineering and Technology (BUET), Bangladesh for providing the opportunities to perform variable tests.

Funding

This research did not receive any specific grant from funding agencies in public, commercial, or not-for-profit sectors.

ORCID iDs

Md Jahidul Haque https://orcid.org/0000-0001-7945-5937

References

[1] Ciomaga C et al 2007 Preparation and characterisation of the Ba(Zr,Ti)O3 ceramics with relaxor properties J. Eur. Ceram. Soc. 27 4061–4
[2] Sadhana K et al 2008 Microwave sintering of nanobarium titanate Scr. Mater. 59 495–8
[3] Paper IRB 2003 Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives soldering tags internal electrodes dielectric material end terminal Appl. Phys. 42 1–15
[4] Jeong I and Han Y H 2004 Effects of MgO-doping on electrical properties and microstructure of BaTiO3 Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap 43 5373–7
[5] Umeda Y et al 2012 Theoretical analysis of oxygen vacancy formation in Zr-Doped BaTiO3 Jpn. J. Appl. Phys. 51 0–4
[6] Vink H J and Gloeijämpenfabriken N V P 1956 Relations between the concentrations of imperfections in crystalline solids Solid State Phys. 3 307–435
[7] Li et al 2014 Decisional role of MgO addition in the ultra-high temperature stability of multicomponent BaTiO3-based ceramics Ceram. Int. 40 1105–10
[8] Huang X et al 2015 Microstructure effect on dielectric properties of MgO-doped BaTiO3-BiYO3 ceramics Ceram. Int. 41 7489–95
[9] Yoon S H et al 2007 Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200 °C) temperatures of acceptor (Mg)-doped BaTiO3 ceramics Mater Sci Technol Conf Exhib MS T07 - Exploiting Struct Proces Appl Across Mul Mater Syst 2 723–34
[10] Yu Z et al 2002 Piezoelectric and strain properties of Ba(Ti1−xZr x)O3 ceramics J. Appl. Phys. 92 1489–93
[11] Yu Z et al 2002 Ferroelectric-relaxor behavior of Ba(Ti 0.7Zr 0.3)O3 ceramics J. Appl. Phys. 92 2655–7
[12] Amanande L et al 2017 Intrinsic and extrinsic effects near orthorhombic-tetragonal phase transition in barium titanate ceramics doped with small amounts of zirconium Ceram. Int. 43 4919–25
[13] Ravez J, Broustera C and Simon A 1999 Lead–free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system J. Mater. Chem. 9 1609–13
[14] Cai W et al 2011 Dielectric properties and microstructure of Mg doped barium titanate ceramics Adv Appl Ceram 110 181–5
[15] Wang M et al 2014 Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application Mater. Res. Bull. 60 485–91
[16] Cavalcante L S et al 2007 Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films Acta Mater. 55 6416–26
[17] Badapanda T et al 2011 Rietveld refinement, microstructure, conductivity and impedance properties of Ba(Zr0.25Ti0.75)O3 ceramic Cur. Appl. Phys. 11 1282–93
[18] Sharma P et al 2015 Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications Ceram. Int. 41 13423–32
[19] Czekaj D 2009 Fabrication and dielectric properties of donor doped BaTiO3 ceramics Arch. Metall. Mater. 54 923–33
[20] Sangwan K M et al 2018 Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications J. Phys. Chem. Solids 117 158–66
[21] Alexander L and Kluh H P 1990 Determination of crystallographic size with the x-ray spectrometer J. Appl. Phys. 21 137–42
[22] Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides bond energy, bond length and bond angles, , and plots of (1) radius vs volume, (2) radii vs coordination partial occupancy of cation sites, coval Acta Crystallogr. A32 751
[23] Travis W et al 2016 On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system Chem. Sci. 7 4548–56
[24] Ahmad A et al 2019 Effect of Y substitution on magnetic and transport properties of Ba0.95La0.05Ti1−xYxO3 ceramics Results Phys 12 1925–32
[25] Sukhia U et al 2014 Phase transition behavior of Ba(Mg1/3Nb2/3)O3 powdered PbZrO3 solid solution J. Mater. Chem. C2 2929–38
[26] Mahata M K et al 2015 Incorporation of Zn2+ ions into BaTiO3-Zr/Sr2+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing Phys. Chem. Chem. Phys. 17 20741–53
[27] Khanfekr A, Tamizifar M and Naghizadeh R 2014 Investigation on structure of BaTi1−xNbxO3 compound prepared by rotary–hydrothermal synthesis methods Mater Sci Pol 32 430–5
[28] Wurst J C and Nelson J A 1972 Two-phase polycrystalline ceramics J. Am. Ceram. Soc. 1972 40
[29] Zhang M et al 2011 MgO doping effects on dielectric properties of Ba0.55Sr 0.45TiO3 ceramics J. Am. Ceram. Soc. 94 3883–8
[30] Deluca M et al 2012 Investigation of the composition-dependent properties of BaTi1−xZr xO3 ceramics prepared by the modified Pechini method J. Eur. Ceram. Soc. 32 3551–66
[31] Singh L, Rai U S and Mandal K D 2011 Preparation and Characterization of Nanostructured CaCu 2.90 Zn 0.10 Ti4O 12 Ceramic Nanomater Nanotechnol 1 20
[32] Choudhury S et al 2008 Structural, dielectric and electrical properties of zirconium doped barium titanate perovskite J. Bangladesh Acad. Sci. 32 221–29
[33] Mostafa M, Rahman M J and Choudhury S 2017 Enhanced dielectric properties of BaTiO3 ceramics with cerium doping, manganese doping and Ce-Mn co-doping Sci Eng Compos Mater 26 62–9
[34] Cha S H and Han Y H 2006 Effects of oxygen vacancies on relaxation behavior of Mg-doped BaTiO3 Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap 45 7797–800.
[35] Jadhav R N, Mathad S N and Puri V 2012 Studies on the properties of Ni0.6Cu 0.4Mn 2O4 NTC ceramic due to Fe doping Ceram. Int. 38 5181–8
[36] Okuz K E, Sen S and Sen U 2017 Influence of ZrO2 addition on the structure and dielectric properties of BaTiO3 ceramics Acta Phys. Pol. A 131 197–9
[37] Al-hilli M F 2018 Structural and dielectric properties of Zr doped BaTiO3 synthesized by microwave assisted chemical route Iraqi J. Sci. 59 96–104
[38] Tauc J and Menth A 1972 States in the gap J Non Cryst Solids 8–10 569–85
[39] Badapanda T et al 2009 Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters J. Phys. D: Appl. Phys. 42 1–9
[40] Longo V M et al 2008 Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: Joint experimental and theoretical study Acta Mater. 56 2191–202
[41] Garbovskiy Y and Glushchenko A 2013 Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies Appl. Opt. 52 0–7
[42] Sengodan R, Chandar Shekar B and Sathish S 2014 Structure, surface morphology and optical properties of BaTiO3 powders prepared by wet chemical method Indian J. Pure Appl. Phys. 52 839–45
[43] Wu C Y et al 2017 Controllable synthesis of p-type Cu2S nanowires for self-driven NIR photodetector application J Nanoparticle Res; 19 35–43
[44] Paquin F et al 2015 Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors J. Mater. Chem. C 3 10715–22
[45] Stojanovic B D et al 2005 Mechanochemical synthesis of barium titanate J. Eur. Ceram. Soc. 25 1985–9
[46] Zak A K and Majid W H A 2011 Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol-gel method, in infrared region Ceram. Int. 37 753–8
[47] Sun D et al 2007 Investigation on FTIR spectrum of barium titanate ceramics doped with alkali ions Ferroelectrics 355 145–8