Flexible Antenna: A Review of Design, Materials, Fabrication, and Applications

M A S M AL-Haddad1, Nursabirah Jamel1* and Anis Nurashikin Nordin2

1 Faculty of Electrical Engineering Technology University Malaysia Perlis, Pauh Putra Campus, 02600, Arau, Perlis, Malaysia
2 Electrical and Computer Engineering Department, Kulliyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia.

*Email: nursabirah@unimap.edu.my

Abstract. The Flexible antenna is experiencing major growth recently because of the demand for wearable devices, military applications, health monitoring systems, communication devices, and global positioning systems (GPS). The choice of the flexible antenna relies on many factors such as materials used, substrate, antenna performance, processing technique, and the surrounding environment. Numerous antenna designs had been investigated by the researchers using conductive materials such as silver. Substrates such as cotton and elastomeric polymers with different fabrication techniques such as screen printing and inkjet printing had been implemented for various applications. This paper focuses on the previous work of flexible antenna design and miniaturization techniques such as electromagnetic bandgap (EBG) for button antenna. A summary of previous works on the flexible antenna is also highlighted.

1. Introduction
Flexible electronics integrated with a textile substrate whose mechanical properties are able to bend, and twist would considerably offer many advantages in modern electronic devices. A wearable antenna for example can sense, communicate data, harvest energy, and function while being worn[1]. Recently, a lot of interest in wearable devices and antenna sensors in particular due to the simple configurations, sensing, multimodality, and low-cost fabrication[2]. The design of the antenna varies depending on the environment, frequency range, and transmission strength[3]. However, the performance of the antenna depends on the materials used. to design the antenna such as the substrate properties in terms of its ability to adapt to a harsh environment like bending and twisting, conductive materials in terms of resistance, and high tolerance to degradation due to mechanical deformation. In [4], the authors had design A circular antenna, aimed to measure the humidity content of sludge samples as a new method for determining the moisture content of dielectric materials. the wearable textile antenna becomes more involved in on-body applications, due to its ability to detect microstructure deformation and human motion and to monitor and supervise human health[5]. In a comparison with conventional antennas, textile antennas have the advantages of being integrated with the outfits and offer many key features such as lightweight, comfort, and washability. There are many different types of flexible antennas such as a microstrip patch antenna, monopole antenna, and planar inverted-F antenna. Conductive materials used such as gold, silver, and copper are widely used as a radiating element due to their high conductivity. High conductive materials ensure high gain, efficiency, and bandwidth. Silver, for example, had a conductivity of 6.173×10^{7} (S/m). Another important consideration to design the flexible antenna is the substrate itself. Felt fabric[6], Jeans[7], and polyethylene terephthalate (PET)[8] are among many other substrates used due to low dielectric constant.
2. Flexible antenna design

The design of a flexible antenna near the human body will affect many parameters such as detuning and impedance mismatching[9]. Researchers had to design the flexible antenna without compromising the antenna performance parameters like bandwidth, gain, efficiency, impedance matching, and radiation pattern. Researches had proposed some of the wearable antenna design such as microstrip patch antenna[10], monopole antenna[11], the planar inverted-F antenna[12], substrate-integrated waveguide antenna (SIW)[13], magneto dipole antenna[14], and electromagnetic bandgap (EBG)-type antenna[15]. Slot monopole antenna[16], and fractal patch antenna[17] are two examples of flexible antenna which can reduce the physical structure of the antenna without compromising on the radiation efficiency. Figure 1. Shows the common types of antenna design.

![Figure 1. Flexible antenna design. (a) Microstrip patch antenna[10]. (b) Monopole antenna[11]. (c) Planar Inverted-F antenna[12]. (d) Magneto dipole antenna[14].](image)

2.1. Antenna miniaturization

The minimization technique of the antenna is commonly related to the electrical and physical properties. It can be divided into two groups, the topology, and materials method. Therefore, each of the groups contains various shapes and types. For example, meander lines, fractal shapes, space-filling curves, high dielectric materials, and metamaterial surface (MT)[18], button-shaped and single and multiband antennas are using metamaterial surfaces are widely used in the WBAN systems. Theses mentioned techniques have successfully minimized the backward radiation and reduced the coupling effect between the body and the antenna[18]. researchers had developed an electromagnetic bandgap (EBG) structures which have the ability to reduce the physical surface of the antenna without compromising on the radiation efficiency of the antenna. this structure (EBG) has shown a great result in improving the bandwidth, reduce the impedance mismatch caused by the body user permittivity, and reduce the antenna size. In addition, studies have shown that Photonic bandgap (PBG) structures, which is another form of EBG, Photonic bandgap PBG is a 3-D structure with stacked EBG layers or a combination of multilayer metallic and tripod array, it has the advantage of preventing the propagation of a certain wavelength due to its periodic nature. It has also shown some help to minimize the effect of the radiation on the cylindrical curvature and it helps to improve the gain and directivity.

3. Flexible materials for flexible antenna

Two most important materials which will affect the performance of the Flexible antennas are the conductive materials and the substrates. The conductive material is chosen according to the electrical conductivity, while the substrate material is based on the dielectric properties, tolerance to its mechanical deformation like bending, wrapping, and twisting, endurance in the external environment, and susceptibility to miniaturization[19]. Material selection is preferred to be chosen based on the abovementioned properties to ensure high gain, efficiency, and bandwidth

3.1. Conductive material

The investigation of conductive materials with high electrical conductivity is preferred to ensure high efficiency of the antenna such as silver with a conductivity of 6.173×10^7 (S/m)[20]. Resistance and high tolerance to degradation due to mechanical deformations are some of the desired features when it comes to conductive materials. Nanoparticle (NP) inks such as silver and copper are preferred by the researchers for fabricating the antenna because they possess a high electrical conductivity[21]. For example, copper tapes[22], adhesive copper[23], polyaniline (PANI)[24]. In[25], a dual-band antenna
for wearable applications has been developed to improve the low conductivity of conductive polymers by adding carbon nanoparticles. To employ mechanical strain and deformation without a reduction in terms of antenna performance and efficiency various stretchable conductive materials exploit doping to improve their conductivity such as silver loaded fluorine[26], CNT based films[27], and silver flakes embedded silicone[28], [29]. In [30], authors developed a Graphene-based dipole antenna for ultrahigh-frequency (UHF) remote frequency identification (RFID) tag the authors claimed a novel antenna can be an alternative to much more expensive circuits printed with silver-based inks in applications where the interrogation range is not crucial. Nevertheless, authors tend to utilize graphene because of its excellent mechanical properties and decent electrical conductivity[31]–[34]. Table 1. shows two types of conductive materials used by the researchers.

Ref.	Material type	Conductive materials	Conductivity σ (S/m)
[35]	Conductive polymers	PEDOT: PSS	100-1500
		Polyaniline (Pani)	5
		Polypyrrole (PPy)	40-200
		Polyacetylene (PA)	200-1000
[20]	Metal nanoparticles	Silver nanoparticle	6.173 × 10⁷
		Copper nanoparticle	5.813 × 10⁷
		Gold nanoparticle	4.098 × 10⁷

3.2. Substrate

Substrate material with low dielectric loss, low coefficient of thermal expansion, low relative primitivity, and high thermal conductivity[36] is the ideal condition for the flexible antenna. To minimize the size of the antenna, the dielectric constant of the substrate needs to be large. However, to increase the antenna efficiency it will cost at large antenna size, which offers a trade-off between the efficiency and the size of the antenna design. In many flexible antenna applications, substrates that possess the features of robustness, washability, flexibility, and stretchability tend to be the most popular and attractive to be used by researchers Table 2 lists the different substrates used by researchers in the designing of a flexible antenna.

Ref.	Substrate	Dielectric constant (εr)	Return loss (tanδ)	Thickness (mm)
[37]	Wash cotton	1.51	0.023	3
[11]	Kapton polyimide	3.5	0.003	1
[38]	FR-4	4.3	0.02	0.8
[39]	Jeans	1.54	0.03	2.84
[40]	PDMS	2.65	0.02	2

3.2.1. Relative constant (Dielectric constant)

The dielectric constant is one of the most crucial parameters, it affects the ability to transmit changing signals through the fabric transmission line[41]. The relative primitivity is expressed as Equation (1):

$$\varepsilon = \varepsilon_0 \varepsilon_r = \varepsilon_0 (\varepsilon'_r - j\varepsilon''_r)$$ \hspace{1cm} (1)

Where ε_0 is equal to 8.854 × 10⁻¹² F/m which is the permittivity of vacuum[42]. The dielectric property depends on many factors, such as the temperature, the frequency, surface texture roughness, purity, moisture content, and the homogeneity of the materials. Some textiles materials are anisotropic materials and their characterization also depends upon the orientation of the electrical field. As a consequence, textiles show a low dielectric constant as they are very porous materials due to the presence of air, which makes the relative primitivity close to one. In general, the low dielectric constant reduces the surface wave losses. Therefore, lowering the dielectric constant increases the impedance bandwidth of the antenna and increases the spatial waves which make the antenna acceptable with high efficiency and gain. Table 2. shows the dielectric constant for some of the substrates.
3.2.2. Absorption of the moisture
Textile materials are establishing dynamic stability with the humidity and temperature and its constantly exchanging water molecules with the surrounding air. However, the material regains which is the ratio of the mass of absorbed water in the specimen to the mass of dry specimen determines to what extent material is sensitive to moisture. The moisture absorption alters the properties of the textile materials in general. Therefore, the small moisture absorption value for example regain less than 3% is more stable[43]. In general, materials of low regain are desirable to use as a substrate such as polyester fiber which presents a regain of 0.2%[44].

3.2.3. Thickness of the dielectric fabric
The thickness and substrate dielectric constant determines the efficiency performance and bandwidth of the antenna. The thickness may give larger variations because of the very narrow range of primitivity values of the textile materials. Therefore, it is crucial in the design of the antenna because it determines the input impedance as well as the bandwidth and also its resonance frequency[45], the thickness of the substrate material used to design the antenna influences the geometric sizing of the antenna. the thin substrate with low relative primitivity close to 1 and 2 results in a small size of the antenna path, and conversely the thick substrate with low relative permittivity results in a large antenna patch[46], [47].

3.2.4. The electrical surface resistivity of the conductive fabrics
Good performance of the flexible antenna is highly influenced by choosing suitable conductive fabric for the patch and the ground of the antenna. The surface resistivity is the ratio of the dropped DC voltage to the current of the surface per unit length. Fabrics must possess a very low electrical surface resistance to minimize the electrical loss and hence increase the antenna performance. [48]. The bending, twisting, elongation, and curvature of dielectric fabrics have excellent flexibility and elasticity, and they adapt very well to the human body. However, whenever the textile material adapts to a surface topology or human body movement like standing or sitting, it deforms and bends causing changes to its electromagnetic properties and influence the antenna performance, such as the bandwidth and the resonates frequency.

4. Fabrication Methods
In order to provide excellent stability as well as electrical performance for the Flexible antenna, it is necessary to implement a suitable fabrication technique. Researchers had used a variety of fabrication techniques based on their requirements. Screen printing, inkjet printing, sewing, and embroidering are among the common fabrication techniques used.

4.1. Screen Printing
Screen printing is a low cost and highly effective printing technology[49]. Furthermore, it is fast and one of the easiest techniques used to fabricate the antenna. screen printing is considered a versatile technique because it can be used to printing images on most of the materials Figure 2. below shows some of the fabricated antennas using screen-printing techniques.

![Screen Printing](image)

Figure 2. screen-printing antenna. (a) screen printing of strain test patterns[50]. (b) screen printed textile antenna[51]. (c) Meandered-line antenna structure[33].

4.2. Inkjet Printing
Inkjet printing is another fabrication technique for the flexible antenna and it considers one of the low-cost printing technologies[52]. Inkjet printing technique can produce a very high precision pattern due to its use of ink droplets of the size of up to little picolitres[53]. The inkjet printing technique is among
the economical manufacturing methods because it projects the single ink droplet from the nozzle to the desired position without any waste. Because of that inkjet printing outweighs the traditional etching technology[54]. This technology is incompatible with some types of conductive inks because of the clogging of the nozzles and the larger particle size. Figure 3. shows some of the inkjet printing antennas.

![Figure 3. Inkjet printer antenna. (a) Z-shaped antenna using inkjet printer technique[55]. (b) inkjet printer antenna[56]. (c) Flexible inkjet-printed antenna on PET film[57].](image)

4.3. Sewing and embordering

The method of sewing and embroidering is currently employed in many applications of the flexible antenna. This method does not use adhesion material over the fabric which may affect the electrical properties of the material. Furthermore, due to the sewing process wrinkles are formed on the fabric, which results in distorted antenna characteristics. However, this method is not suitable for a spacer textile substrate[58]. For the embroidery technique, the method has been involved to allow a digital image or layout to be embroidered using a computer-assisted embroidery machine. Nowadays embroidery antennas are offering a better solution compared with the traditional antennas in flexible electronics due to the embroidered geometry which is much stretchable than metallic antennas[59]. Figure 4. shows some of the fabricated antennas using embroidering and sewing techniques.

![Figure 4. Embroider Technique (a) E-shape antenna fabricated based on embroidering technique[60]. (b) Embroidered patch antenna[61]. (c) Embroidered NMPA on a flexible felt substrate[62].](image)

5. Applications of Flexible antenna

There are many applications of the flexible antenna due to the increase of wearable devices and the rapid growth of the user’s requirement. For example, the health monitoring system in particular may lead to a good impact on people’s health such as monitoring physiological issues and physical fitness. Flexible antenna is also used in other applications such as sports, smart clothes, and gaming. Flexible antennas are also widely used in the military like a battlefield, helmet, and identifications. There are many other applications of Flexible antennas such as telecommunications, Global positioning systems (GPS), and telemedicine. Table 3. Shows some of the previous studies with different applications of the flexible antenna.
Table 3. Review of the previous Studies about Flexible antenna with different applications

Ref.	Type of the antenna	Substrate	Fabrication method	Application	Advantages
[8]	Monopole antenna	polyethylene terephthalate (PET)	Inkjet printer DMP-3000	Wearable devices at 1.8 GHz	Obtained efficiency of 93.33%. The proposed design can overcome the cost and size.
[50]	RFID	Thermoplastic polyurethane (TPU)	Screen printing	Radio frequency	The antenna shows a good performance with high elongation. Simulation and experiment results were excellently matched.
[63]	Microstrip patch	Polydimethylsiloxane (PDMS)	Embroidery	Realization of Robust Passive and Active Flexible Wearable Antennas at ISM 2.45GHz	Consistence performance. The antenna could be reconfigurable Experienced no performance change after exposing to harsh environment.
[64]	Planar monopole	Kapton polyimide	Inkjet	Flexible Wireless Devices at 1.2-3.4 GHz	Lightweight and conformal design. Multiband performance in bent configurations.
[65]	Square patch antenna	NinjaFlex	Prenta Duo 3D printer.	Wearable antennas and wireless on-body applications. At 2.45GHz	Excellent wireless performance when bent. Good impedance matching and efficiency.
[33]	Meandered-line antenna	paper	Screen-printing	Low-Cost RFID and Sensing Applications	Good radiation efficiency. Acceptable return loss, bandwidth, gain, and radiation pattern for mid and short-range RFID. Flexible and stable thermally and electronically.
[66]	Microstrip patch	Elastomeric polydimethylsiloxane	Soft lithographic process	Conformal antenna applications. At 3-4 GHz	Good performance of the flexible antenna with no hysteretic behavior. New and novel fabrication technique.
[67]	Inverted-F antenna	Fabric	Dimatix DMP-2831 Inkjet printer	Wearable electronics applications at 2.45GHz	Shows an acceptable return loss and radiation pattern. No significant difference between the simulated and fabricated results.
[68]	Microstrip patch	Fabric	Screen-Printed with stretchable silver ink DuPont PE873	Millimetre-wave Applications at 77 GHz band	The antenna array maintains a good performance in flat and bent conditions. The antenna array succeeds in detect moving objects in three different directions.
6. Conclusion
The area of the Flexible antenna is evolving and relates to more interdisciplinary subjects such as mechanical, electrical engineering, and material science. Flexible antennas that are integrated with textiles can be implemented in medical and telecommunications applications. The advantages of the flexible antenna, which are lightweight, low-cost fabrications, reduced form of factors, and the ability to fit the non-planar surface will open more possibilities for future applications. However, the materials for the antenna design such as conductive materials and substrate, need to be chosen carefully based on the requirement needed, to gain a satisfactory performance. Therefore, conductive materials and substrates with high conductivity such as silver with a conductivity of 6.30×10^7 (S/m) and low dielectric constant, respectively, are preferred.

7. Acknowledgment
The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of (RACER/1/2019/TK04/UNIMAP//4) from the Ministry of Higher Education Malaysia.

8. Reference
[1] K. N. Paracha, S. K. Abdul Rahim, P. J. Soh, and M. Khalily, “Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing,” IEEE Access, vol. 7, Institute of Electrical and Electronics Engineers Inc., pp. 56694–56712, 2019, doi: 10.1109/ACCESS.2019.2909146.
[2] H. Huang, “Flexible wireless antenna sensor: A review,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3865–3872, 2013, doi: 10.1109/JSEN.2013.2242464.
[3] H. Rmili, J.-L. Miane, H. Zangar, and T. Olinga, “Design of microstrip-fed proximity-coupled conducting-polymer patch antenna,” Microw. Opt. Technol. Lett., vol. 48, no. 4, pp. 655–660, Apr. 2006, doi: 10.1002/mop.21435.
[4] I. Gagnadre, C. Gagnadre, and J. P. Fenelon, “Circular patch antenna sensor for moisture content measurement on dielectric material,” Electron. Lett., vol. 31, no. 14, pp. 1167–1168, Jul. 1995, doi: 10.1049/el:19950801.
[5] Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, and Y. Xie, “Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features,” Sensors, vol. 18, no. 2, p. 645, Feb. 2018, doi: 10.3390/s18020645.
[6] A. Hasliza, A. M. M. Fareq, A. Ismahayati, A. Sahadah, M. H. N. Baya, and P. Hall, “Design and simulation of a wearable textile monopole antenna for Body Centric Wireless Communications,” undefined, 2012.
[7] S. Purohit and F. Raval, “Wearable -Textile Patch Antenna using Jeans as Substrate at 2.45 GHz.” Accessed: Dec. 14, 2020. [Online]. Available: www.ijert.org.
[8] A. Hassan, S. Ali, J. Bae, and C. H. Lee, “All printed antenna based on silver nanoparticles for 1.8 GHz applications,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 8, pp. 1–7, Aug. 2016, doi: 10.1007/s00339-016-0286-2.
[9] N. Vidal, S. Curto, J. M. Lopez Villegas, J. Sieiro, and F. M. Ramos, “Detuning study of implantable antennas inside the human body,” Prog. Electromagn. Res., vol. 124, pp. 265–283, 2012, doi: 10.2528/PIER11120515.
[10] S. Hussain, S. Haifeez, S. A. Memon, and N. Pirzada, “Design of Wearable Patch antenna for wireless body area networks,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 146–151, 2018, doi: 10.14569/ijacsa.2018.090920.
[11] H. R. Khaleel, H. M. Al-Rizzo, D. G. Rucker, and Y. Al-Naiemy, “Flexible printed monopole antennas for WLAN applications,” in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2011, pp. 1334–1337, doi: 10.1109/APS.2011.5996536.
[12] A. Harish, M. R. Hidayat, L. O. Nur, B. S. Nugroho, and A. Munir, “Spiral-shaped printed planar inverted-F antenna for body wearable application,” in Proceeding of 2017 11th International Conference on Telecommunication Systems Services and Applications, TSSA 2017, Jan. 2018, vol. 2018-January, pp. 1–4, doi: 10.1109/TSSA.2017.8272937.
[13] R. Moro, S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, “Textile microwave components
in substrate integrated waveguide technology,” *IEEE Trans. Microw. Theory Tech.*, vol. 63, no. 2, pp. 422–432, Feb. 2015, doi: 10.1109/TMTT.2014.2387272.

[14] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, “Wearable Dual-Band Magneto-Electric Dipole Antenna for WBAN/WLAN Applications,” *IEEE Trans. Antennas Propag.*, vol. 63, no. 9, pp. 4165–4169, Sep. 2015, doi: 10.1109/TAP.2015.2443863.

[15] D. Rano and M. Hashmi, “Extremely compact EBG-backed antenna for smartwatch applications in medical body area network,” *IET Microwaves, Antennas Propag.*, vol. 13, no. 7, pp. 1031–1040, Jun. 2019, doi: 10.1049/iet-map.2018.6021.

[16] S. P. Pinapati, D. C. Ranasinghe, and C. Fumeaux, “Textile Multilayer Cavity Slot Monopole for UHF Applications,” *IEEE Antennas Wirel. Propag. Lett.*, vol. 16, pp. 2542–2545, Aug. 2017, doi: 10.1109/LAWP.2017.2731978.

[17] B. Biswas, R. Ghatak, and D. R. Poddar, “A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System,” *IEEE Trans. Antennas Propag.*, vol. 65, no. 11, pp. 6126–6129, Nov. 2017, doi: 10.1109/TAP.2017.2748361.

[19] S. G. Kirtania et al., “Flexible Antennas: A Review,” *Micromachines*, vol. 11, no. 9, p. 847, Sep. 2020, doi: 10.3390/mi11090847.

[20] “(4) (PDF) EM Modeling of Board Surface Finish Effect on High Speed PCB Performance.” https://www.researchgate.net/publication/268513244_EM_Modeling_of_Board_Surface_Finish_Effect_on_High_Speed_PCB_Performance (accessed Nov. 08, 2020).

[21] T. Kaufmann, A. Verma, S. F. Al-Sarawi, V. T. Truong, and C. Fumeaux, “Comparison of two planar elliptical ultra-wideband PPy conductive polymer antennas,” 2012, doi: 10.1109/APS.2012.6348930.

[22] V. Abhinav K, V. K. Rao R, P. S. Karthik, and S. P. Singh, “Copper conductive inks: Synthesis and utilization in flexible electronics,” *RSC Advances*, vol. 5, no. 79. Royal Society of Chemistry, pp. 63985–64030, Jul. 27, 2015, doi: 10.1039/c5ra08205f.

[23] L. Corchia, G. Monti, and L. Tarricone, “Wearable Antennas: Nontextile Versus Fully Textile Solutions,” *IEEE Antennas Propag. Mag.*, vol. 61, no. 2, pp. 71–83, Apr. 2019, doi: 10.1109/MAP.2019.2895665.

[24] J. S. Lee et al., “Platinum-decorated carbon nanoparticle/polyaniline hybrid paste for flexible wideband dipole tag-antenna application,” *J. Mater. Chem. A*, vol. 3, no. 13, pp. 7029–7035, Apr. 2015, doi: 10.1039/c4ta07064j.

[25] Z. Hamouda, J. L. Wojkiewicz, A. A. Pud, L. Kone, S. Bergheul, and T. Lasri, “Magnetodielectric Nanocomposite Polymer-Based Dual-Band Flexible Antenna for Wearable Applications,” *IEEE Trans. Antennas Propag.*, vol. 66, no. 7, pp. 3271–3277, Jul. 2018, doi: 10.1109/TAP.2018.2826573.

[26] A. Kumar et al., “A highly deformable conducting traces for printed antennas and interconnects: Silver/fluoropolymer composite amalgamated by triethanolamine,” *Flex. Print. Electron.*, vol. 2, no. 4, p. 045001, Dec. 2017, doi: 10.1088/2058-8585/aa8d38.

[27] X. Guo et al., “Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric,” *Smart Mater. Struct.*, vol. 26, no. 10, p. 105036, Sep. 2017, doi: 10.1088/1361-665X/aa88ec.

[28] L. Song, A. C. Myers, J. J. Adams, and Y. Zhu, “Stretchable and reversibly deformable radio frequency antennas based on silver nanowires,” *ACS Appl. Mater. Interfaces*, vol. 6, no. 6, pp. 4248–4253, Mar. 2014, doi: 10.1021/am405972e.

[29] T. Rai, P. Dantes, B. Bahreyni, and W. S. Kim, “A stretchable RF antenna with silver nanowires,” *IEEE Electron Device Lett.*, vol. 34, no. 4, pp. 544–546, 2013, doi: 10.1109/LED.2013.2245626.

[30] P. Kopyt et al., “Graphene-Based Dipole Antenna for a UHF RFID Tag,” *IEEE Trans. Antennas Propag.*, vol. 64, no. 7, pp. 2862–2868, Jul. 2016, doi: 10.1109/TAP.2016.2565696.

[31] A. Scidà et al., “Application of graphene-based flexible antennas in consumer electronic devices,” *Mater. Today*, vol. 21, no. 3, pp. 223–230, Apr. 2018, doi: 10.1016/j.mattod.2018.01.007.
[32] A. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, and J. Yang, “Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites,” *Polymers (Basel).* vol. 10, no. 5, p. 477, Apr. 2018, doi: 10.3390/polym10050477.

[33] T. Leng, X. Huang, K. Chang, J. Chen, M. A. Abdalla, and Z. Hu, “Graphene Nanoflakes Printed Flexible Meandered-Line Dipole Antenna on Paper Substrate for Low-Cost RFID and Sensing Applications,” *IEEE Antennas Wirel. Propag. Lett.*, vol. 15, pp. 1565–1568, 2016, doi: 10.1109/LAWP.2016.2518746.

[34] H. A. Elmobarak Elboud, S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, “A Transparent and Flexible Polymer-Fabric Tissue UWB Antenna for Future Wireless Networks,” *IEEE Antennas Wirel. Propag. Lett.*, vol. 16, pp. 1333–1336, 2017, doi: 10.1109/LAWP.2016.2633790.

[35] K. Guerchouche, E. Herth, L. E. Calvet, N. Roland, and C. Loyez, “Conductive polymer based antenna for wireless green sensors applications,” *Microelectron. Eng.*, vol. 182, pp. 46–52, Oct. 2017, doi: 10.1016/j.mee.2017.08.007.

[36] M. Wagih, Y. Wei, and S. Beeby, “Flexible 2.4 GHz Node for Body Area Networks with a Compact High-Gain Planar Antenna,” *IEEE Antennas Wirel. Propag. Lett.*, vol. 18, no. 1, pp. 49–53, Jan. 2019, doi: 10.1109/LAWP.2018.2880490.

[37] A. Basir, S. Ullah, M. Zada, and S. Faisal, “Design of efficient and flexible patch antenna using an electromagnetic band gap (EBG) ground plane,” in *ICOSST 2014 - 2014 International Conference on Open Source Systems and Technologies, Proceedings*, Feb. 2014, pp. 1–5, doi: 10.1109/ICOSST.2014.7029312.

[38] R. Raihan, M. S. Alam Bhuiyan, R. R. Hasan, T. Chowdhury, and R. Farhin, “A wearable microstrip patch antenna for detecting brain cancer,” in *2017 IEEE 2nd International Conference on Signal and Image Processing, ICSIP 2017*, Nov. 2017, vol. 2017-January, pp. 432–436, doi: 10.1109/SIPROCESS.2017.8124578.

[39] S. H. Li and J. S. Li, “Smart patch wearable antenna on Jeans textile for body wireless communication,” Feb. 2019, doi: 10.1109/ISAPE.2018.8634084.

[40] H. A. Rahman and S. K. A. Rahim, “Dual band PDMS based flexible antenna for wearable application,” in *2015 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, IMWS-BIO 2015 - Proceedings*, Oct. 2015, pp. 193–194, doi: 10.1109/IMWS-BIO.2015.7303843.

[41] S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, “Transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks,” *IEEE Antennas Wirel. Propag. Lett.*, vol. 16, pp. 1333–1336, 2017, doi: 10.1109/LAWP.2016.2633790.

[42] K. Guerchouche, E. Herth, L. E. Calvet, N. Roland, and C. Loyez, “Conductive polymer based antenna for wireless green sensors applications,” *Microelectron. Eng.*, vol. 182, pp. 46–52, Oct. 2017, doi: 10.1016/j.mee.2017.08.007.

[43] C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of Relative Humidity on Textile Antenna Performance,” *Text. Res. J.*, vol. 80, no. 2, pp. 177–183, 2010, doi: 10.1177/0040517509105696.

[44] W. Sultan, *Physical Properties of Textile Fibres (4th Edition)* By Morton & Hearle _ Waleed Sultan _ Academia.

[45] P. Salonen, Y. Rahmat-Samii, M. Schaffrath, and M. Kivikoski, “Effect of textile materials on wearable antenna performance: A case study of GPS antennas,” in *IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)*, 2004, vol. 1, pp. 459–462, doi: 10.1109/aps.2004.1329673.

[46] C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Textile materials for the design of wearable antennas: A survey,” *Sensors (Switzerland)*, vol. 12, no. 11, pp. 15841–15857, Nov. 15, 2012, doi: 10.3390/s121115841.

[47] I. Locher, M. Klemm, T. Kirstein, and G. Tröster, “Design and characterization of purely textile patch antennas,” *IEEE Trans. Adv. Packag.*, vol. 29, no. 4, pp. 777–788, Nov. 2006.
[49] G. G. Xiao, Z. Zhang, S. Lang, and Y. Tao, “Screen printing RF antennas,” Aug. 2016, doi: 10.1109/ANTEM.2016.7550245.

[50] J. Suikkola et al., “Screen-Printing Fabrication and Characterization of Stretchable Electronics,” Sci. Rep., vol. 6, no. 1, pp. 1–8, May 2016, doi: 10.1038/srep25784.

[51] K. N. Paracha, S. K. A. Rahim, H. T. Chattha, S. A. Aljaafreh, S. U. Rehman, and Y. C. Lo, “Low-cost printed flexible antenna by using an office printer for conformal applications,” Int. J. Antennas Propag., vol. 2018, 2018, doi: 10.1155/2018/3241581.

[52] Y. Wang et al., “Flexible RFID Tag Metal Antenna on Paper-Based Substrate by Inkjet Printing Technology,” Adv. Funct. Mater., vol. 29, no. 29, p. 1902579, Jul. 2019, doi: 10.1002/adfm.201902579.

[53] V. Lakafosis, A. Rida, R. Vyas, … L. Y.-P. of the, and U. 2010, “Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags,” ieeeexplore.ieee.org.

[54] L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, “RFID tag and RF structures on a paper substrate using inkjet-printing technology,” in IEEE Transactions on Microwave Theory and Techniques, Dec. 2007, vol. 55, no. 12, pp. 2894–2901, doi: 10.1109/TMTT.2007.909886.

[55] K. N. Paracha, S. K. A. Rahim, H. T. Chattha, S. A. Aljaafreh, S. U. Rehman, and Y. C. Lo, “Low-cost printed flexible antenna by using an office printer for conformal applications,” Int. J. Antennas Propag., vol. 2018, 2018, doi: 10.1155/2018/3241581.

[56] A. Shamim, “3D inkjet printed flexible and wearable antenna systems,” in 2017 International Symposium on Antennas and Propagation, ISAP 2017, Dec. 2017, vol. 2017-January, pp. 1–2, doi: 10.1109/ISANP.2017.8229043.

[57] S. F. Jilani, Q. H. Abbasi, and A. Alomainy, “Inkjet-Printed Millimetre-Wave PET-Based Flexible Antenna for 5G Wireless Applications,” Oct. 2018, doi: 10.1109/IMWS-5G.2018.8484603.

[58] Y. Manwal, S. Bisht, S. Kumari, S. Rai, and B. Chauhan, “Literature Review On Wearable Textile Antennas.”

[59] Y. Manwal, S. Bisht, S. Kumari, S. Rai, and B. Chauhan, “Literature Review On Wearable Textile Antennas.”

[60] B. Mohamadzade, R. M. Hashmi, R. B. V. B. Simorangkir, R. Gharaei, S. U. Rehman, and Q. H. Abbasi, “Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art,” Sensors (Switzerland), vol. 19, no. 10. MDPI AG, p. 2312, May 02, 2019, doi: 10.3390/s19102312.

[61] A. Shamim, “A flexible inkjet printed antenna for wearable electronics applications,” in 2016 IEEE Antennas and Propagation Society International Symposium, doi: 10.1109/TADVP.2006.884780.

[62] L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, “RFID tag and RF structures on a paper substrate using inkjet-printing technology,” in IEEE Transactions on Microwave Theory and Techniques, Dec. 2007, vol. 55, no. 12, pp. 2894–2901, doi: 10.1109/TMTT.2007.909886.

[63] K. N. Paracha, S. K. A. Rahim, H. T. Chattha, S. A. Aljaafreh, S. U. Rehman, and Y. C. Lo, “Low-cost printed flexible antenna by using an office printer for conformal applications,” Int. J. Antennas Propag., vol. 2018, 2018, doi: 10.1155/2018/3241581.

[64] A. Shamim, W. Whittow, A. Alexandridis, and J. Vardaxoglou, “Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities,” Electronics, vol. 3, no. 2, pp. 314–338, May 2014, doi: 10.3390/electronics3020314.

[65] S. Zhang, W. Whittow, R. Seager, A. Chauraya, and J. Y. C. Vardaxoglou, “Non-uniform mesh for embroidered microstrip antennas,” IET Microwaves, Antennas Propag., vol. 11, no. 8, pp. 1086–1091, Jun. 2017, doi: 10.1049/iet-map.2016.0901.

[66] R. B. V. B. Simorangkir, Y. Yang, R. M. Hashmi, T. Bjorninen, K. P. Esselle, and L. Ukkonen, “Polydimethylsiloxane-Embedded Conductive Fabric: Characterization and Application for Realization of Robust Passive and Active Flexible Wearable Antennas,” IEEE Access, vol. 6, pp. 48102–48112, Aug. 2018, doi: 10.1109/ACCESS.2018.2867696.

[67] M. Rizwan, M. W. A. Khan, L. Sydanheimo, J. Virkki, and L. Ukkonen, “Flexible and Stretchable Brush-Painted Wearable Antenna on a Three-Dimensional (3-D) Printed Substrate,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 3108–3112, Oct. 2017, doi: 10.1109/LAWP.2017.2763743.
APSURSI 2016 - Proceedings, Oct. 2016, pp. 1935–1936, doi: 10.1109/APS.2016.7696674.

[68] A. Meredov, K. Klionovski, and A. Shamim, “Screen-Printed, Flexible, Parasitic Beam-Switching Millimeter-Wave Antenna Array for Wearable Applications,” IEEE Open J. Antennas Propag., vol. 1, pp. 2–10, Nov. 2019, doi: 10.1109/ojap.2019.2955507.