Large kagome family candidates with topological superconductivity and charge density waves

Xin-Wei Yi,1 Xing-Yu Ma,1 Zhen Zhang,1 Zheng-Wei Liao,1 Jing-Yang You2,† and Gang Su3,1,†
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2 Department of Physics, Faculty of Science, National University of Singapore, 117551, Singapore
3 Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

A group of newly discovered non-magnetic metal kagome structures AV3Sb5 (A = K, Rb, Cs) have aroused widespread interest in experiment and theory due to their unusual charge density wave (CDW) and intertwined superconductivity. However, they all possess weak electron-phonon coupling (EPC) and low superconducting transition temperature \(T_c \). Here, we performed high-throughput first-principles calculations on novel kagome candidates with AV3Sb5 prototype structure, and proposed 24 dynamically novel stable kagome metals. The calculation based on Bardeen-Cooper-Schrieffer theory shows that most of these metals are superconductors with much stronger EPC than the reported AV3Sb5 materials, and their \(T_c \) are between 0.3 and 5.0K. Additionally, several compounds, such as KZr3Pb5 with the highest \(T_c \), are identified as \(\mathbb{Z}_2 \) topological metals with clear Dirac cone topological surface states near Fermi level. And NaZr2As5 is shown to have possible CDW phases. Our results provide rich platforms for exploring various new physics with kagome structure, in which the coexistence of superconductivity and nontrivial topological nature provides promising insights for the discovery of topological superconductors.

Introduction.—In 2019, a new class of nonmagnetic metals AV3Sb5 (A = K, Rb, Cs) with perfect vanadium kagome net were synthesized [1]. Since then, surprises have emerged in the study of these structures. The electronic structures of AV3Sb5 show Dirac nodal lines, nontrivial \(\mathbb{Z}_2 \) topological band indices and clear topological surface states near Fermi level, indicating that their normal states are \(\mathbb{Z}_2 \) topological metals [1–4]. The superconducting transition temperatures \(T_c \) of KV3Sb5, RbV3Sb5 and CsV3Sb5 are 0.93 [2], 0.92 [5] and 2.5K [3](2.3K [6, 7]), respectively, and the temperatures \(T^* \) corresponding charge density wave (CDW) transition are 78 [8], 102 [9] and 94K [10], respectively. The exotic CDW states of non electron-phonon coupling (EPC) mechanism [9] display many unconventional characteristics. The CDWs in these three compounds exhibit chiral anisotropy [11–13] and reduce the density of electronic states near the Fermi level [11, 14–16]. Various evidences, including giant anomalous Hall response [17, 18], CDW chirality adjustable by magnetic field [11–13], edge supercurrent [19] and spontaneous internal magnetic field [20], indicate that the charge order may break the time-reversal symmetry, which has also been verified theoretically [11, 21, 22]. Moreover, CsV3Sb5 samples have been found to own roton pair density wave [7], which is similar to the one in unconventional high-\(T_c \) cuprate superconductors [23]. The coexistence of \(V \)- and U-shaped superconducting gaps [24] and the anisotropic superconducting properties in CsV3Sb5 [25] imply the possible multi-band superconducting pairing. Intertwinned superconductivity with CDW shows many new features. For instance, \(T_c \) exhibits an unconventional double dome behavior, and \(T^* \) decreases rapidly with increasing pressure [10, 26, 27]. The second dome of \(T_c \) and the disappearance of \(T^* \) occur at the same pressure. The superconducting properties and charge order of AV3Sb5 can also be tuned by magnetic impurity [24], strain [28] and thickness [29–31], which dramatically enriches the phase diagram. The experimental and theoretical studies on AV3Sb5 show a complementary and rapid trend. However, to further explore the exotic properties of AV3Sb5, more candidate compounds based on the AV3Sb5 prototype structure are urgently needed.

In this paper, we first apply the high-throughput first-principles calculations to 800 new kagome structures based on AV3Sb5 prototype, and find 24 dynamically stable metal compounds. Then, we carefully study their superconducting and topological properties. The results show that 14 novel compounds are superconductors with the \(T_c \) between 0.3 and 5.0K. Moreover, several structures, including KZr3Pb5 with the highest \(T_c \), have strong \(\mathbb{Z}_2 \) indices with abundant nontrivial topological surface states near Fermi surface, suggesting that they are \(\mathbb{Z}_2 \) topological metals. The coexistence of superconductivity and nontrivial band topology opens a door for the discovery of topological superconductivity based on the kagome net. Additionally, we also find two possible CDW phases in NaZr2As5, which exhibit soft modes in phonon spectrum, and may provide useful information for further understanding the CDW phases in AV3Sb5.

Crystal structure of AV3Sb5.—The AV3Sb5 crystallize in a layered structure with the space group of P6/mmm (No.191) as shown in FIG. 1. The perfect V-kagome net mixed with the Sb-triangular net of is located in the middle layer, which is sandwiched by two additional honeycomb layers of Sb atoms. The upper and lower triangular layers of alkali metal A atoms have a large bond distance relative to the middle V-Sb layer and are loosely bonded.
TABLE I. Electronic density of states at Fermi energy $N(E_F)$ (eV$^{-1}$f.u.$^{-1}$), logarithmic average frequency ω_{ag} (K), EPC $\lambda(\omega = \infty)$ and T_c of 14 stable compounds.

Compound	$N(E_F)$	ω_{ag} (K)	λ	T_c (K)
KNb$_3$Sn$_5$	4.22	149.1	0.52	2.102
CsRu$_3$Ge$_5$	3.19	170.8	0.36	0.353
RbTi$_3$Bi$_5$	5.96	149.8	0.41	0.719
CsTi$_3$Bi$_5$	5.96	163.4	0.35	0.316
KT$_3$Pb$_5$	7.29	157.9	0.51	2.039
RbTi$_3$Pb$_5$	7.50	156.5	0.50	1.857
KT$_3$Sn$_5$	6.57	180.3	0.42	0.974
RbTi$_3$Sn$_5$	6.50	182.5	0.42	0.961
CsTi$_3$Sn$_5$	6.87	174.6	0.45	1.375
CsZ$_3$As$_5$	7.30	125.8	0.56	2.289
KZ$_3$Pb$_5$	6.47	94.1	0.91	5.027
RbZ$_3$Pb$_5$	6.56	111.9	0.72	4.154
CsZ$_3$Pb$_5$	6.53	119.2	0.58	2.438
CsZ$_3$Te$_5$	2.88	123.5	0.48	1.266

TABLE II. Electronic density of states at Fermi energy $N(E_F)$ (eV$^{-1}$f.u.$^{-1}$), experimental superconducting temperature $T_{c exp}$ and T_c of pristine phase of AZr$_3$Pb$_5$.

Compound	$N(E_F)$	λ	T_c (K)	$T_{c exp}$ (K)
KV$_3$Sb$_5$	2.9	0.38	0.22	0.93
RB$_3$Sb$_5$	2.33	0.32	0.05	0.92
CS$_3$Sb$_5$	1.30	0.25	0.0008	2.5 (2.3)
KZ$_3$Pb$_5$	6.47	0.91	5.027	-
RB$_3$Pb$_5$	6.56	0.72	4.154	-
CS$_3$Pb$_5$	6.53	0.58	2.438	-

We choose AZr$_3$Pb$_5$ group with relative higher T_c for further discussions. The phonon spectra, phonon density of states (PhDOS), $\alpha^2F(\omega)$ and $\lambda(\omega)$ of this group are plotted in FIG. 2. We can see that the phonon spectra of

FIG. 1. The crystal structure of AV$_3$Sb$_5$. 22 new stable AB$_3$C$_5$ members with the same crystal structure as AV$_3$Sb$_5$ are also indicated.

Searching new structures.—The high-throughput first-principles calculations are used to search for kagome topological superconductor candidates (as indicated in FIG. S1 in Supplementary Material (SM)). Based on the prototype structure of AV$_3$Sb$_5$, 800 new compounds are constructed by replacing A with alkali metal elements Li, Na, K, Rb and Cs, replacing V with all transition metal elements (Ge, As, Se, Sn, Sb, Te, Pb, and Bi). These new compounds will be abbreviated as AB$_3$C$_5$ below. For all these new compounds, we first carry out fully geometric relaxation and replacing Sb with its neighboring elements (Ge, As, Se, Sn, Sb, Te, Pb, and Bi). These new compounds, we first carry out fully geometric relaxation and then using the phonon spectra to determine the dynamic stability of these compounds to further demonstrate their stability, as listed in Table S1. Electronic structure calculations show that they are all metals similar to AV$_3$Sb$_5$. Furthermore, 22 members maintain the same crystal structure as AV$_3$Sb$_5$ after structural optimization (as listed in FIG. 1), except for CsRu$_3$Ge$_5$ and RbCr$_3$Te$_5$, whose triangles in the kagome nets are twisted, which changes their space group to P6$_3$cm.
three compounds are very similar. Careful comparison of their phonon spectra shows that the faint phonon softening at L point gradually becomes obvious from K to Rb to Cs. It can be seen from PhDOS that the contributions of Pb and Zr atoms to PhDOS are mainly distributed in the relatively low and high frequency regions with much prominent peaks, respectively, while the PhDOS of alkali metal atoms distributed in the medium frequency region are very small. The relatively low frequency (<3THz) phonons corresponding to the vibration modes of Pb account for more than half of the total EPC. The T_c of the three compounds decreases with the gradual increase of the atomic number of alkali metals as shown in Table I. The gradual decrease of T_c from K to Rb to Cs is due to the negligible contribution of alkali metal elements to the EPC, and the increase of atomic radius from K to Cs, resulting in the gradual increase of the lattice parameters, is equivalent to applying a negative pressure (tensile strain) to the lattice, which significantly reduce the parameters related to the lattice and weakens the EPC.

Electronic band structure and topological property.— We plot the electronic energy bands and density of states (DOS) with spin-orbit coupling (SOC) for KZr$_3$Pb$_5$ in FIG. 3(a). The electronic band structures of RbZr$_3$Pb$_5$ and CsZr$_3$Pb$_5$ are also given in FIGs. S21-22. The 3D Fermi surface (FS) of KZr$_3$Pb$_5$ and its 2D slice at $k_z=0$ and π planes are drawn in FIGs. 3(b)-(d), which is obviously different from the FS of AV$_3$Sb$_5$ that exhibits strong 2D characteristics. Furthermore, we can see the obvious Fermi surface nesting with the nesting vector parallel to A-L and A-H in the $k_z=\pi$ slice. A Z$_2$=0 and (d) π slices. Different colors of FS refers to different band indices consistent with (a), (e) Product of parity and Z$_2$ indices of bands near Fermi level. (f) The Brillouin zone with high symmetry paths indicated. Topological surface states along (g) Γ-M-Γ and (h) K-M-K paths on (001) plane for KZr$_3$Pb$_5$.

FIG. 2. The phonon spectra, projected PhDOS, Eliashberg spectral function $\alpha^2 F(\omega)$, and cumulative frequency dependent EPC $\lambda(\omega)$ of (a) KZr$_3$Pb$_5$, (b) RbZr$_3$Pb$_5$, (c) CsZr$_3$Pb$_5$.

FIG. 3. (a) The electronic energy bands and density of states calculated with SOC for KZr$_3$Pb$_5$. (b) 3D FS of KZr$_3$Pb$_5$, and its 2D maps at (c) $k_z=0$ and (d) π slices. Different colors of FS refers to different band indices consistent with (a). (e) Product of parity and Z$_2$ indices of bands near Fermi level. (f) The Brillouin zone with high symmetry paths indicated. Topological surface states along (g) Γ-M-Γ and (h) K-M-K paths on (001) plane for KZr$_3$Pb$_5$.

FIG. 4. (a) The phonon spectrum in FIG. 4(d) shows an obvious
softening acoustic phonon modes at M and L points at
the boundaries of Brillouin zone, and the imaginary
frequency at L point is slightly larger than that at M point,
which is very similar to AV$_3$Sb$_5$ [15, 32]. The symmetry
analysis on AV$_3$Sb$_5$ indicates that the irreducible repre-
sentations of the imaginary mode at M and L points are
M$^\Gamma_7$ and L$^\Gamma_2$, respectively, which is also consistent with
the previous studies [15, 34]. However, similar analysis
shows that the irreducible representations of the imagi-
nary mode in NaZr$_3$As$_5$ are M$^\Gamma_5$ and L$^\Gamma_3$, which makes
NaZr$_3$As$_5$ exhibit completely different distortions from
AV$_3$Sb$_5$. In consideration of one L point, it gives the
phase as shown in FIG. 4(b). The soft mode at M point
makes corner-shared triangles in layers rotate around the
corner, while the soft mode at L point leads to the distor-
tion of adjacent layers with an additional π-shift. Clock-
wise and counterclockwise distortions will generate the
same structure. The combination of all three unequal L
points gives a similar phase as shown in FIG. 4(c), which
differs from FIG. 4(b) in that Zr atoms in the kagome
layers rotate around the center of triangles. These two
structures have Ibam (No.72) and P6/mcc (No.192) space
groups, respectively. Both of them reduce the rotation
symmetry of C$_5$ to C$_2$, but still retain the spatial inver-
sion symmetry.

Their phonon spectra in FIGs. 4(e) and (f) show dy-
namic stability with completely disappeared imaginary
frequency, so both of them are possible CDW phases of
NaZr$_3$As$_5$. We label them CDW I and CDW II, respec-
tively. Compared with the pristine phase, the displace-
ment values of Zr atoms in kagome layer in CDW I and
CDW II are 0.12 and 0.15Å, respectively. The total en-
ergy as a function of displacement of Zr atoms is shown
in FIGs. 4(h) and (i). The total energies of the two sta-
ble CDW phases are 11.3 and 25.1meV lower than that of
pristine structure, respectively.

Unfolded energy bands and DOS of CDW phases in
FIG. S30 show no clear changes compared with the pris-
tine phase except that some gaps are opened and the
saddle point at the L point moves closer to the Fermi
level. Saddle-point nesting in electronic structure is un-
likely the origin of the CDW order NaZr$_3$As$_5$. The real
CDW phase, its origin and the possible interplay between
charge order and superconductivity in NaZr$_3$As$_5$ deserve
future experimental exploration. Besides NaZr$_3$As$_5$, we
also plot those structures with obvious soft modes at high
symmetry paths that may have CDW phases in FIG. S31.

Discussion. —In addition to AZr$_3$Pb$_5$, the calculated
results of all other stable AB$_3$C$_5$ members are presented
in FIGs. S3-23. The new AV$_3$C$_5$ members are not only
structurally similar to AV$_3$Sb$_5$, but also inherit many at-
ttractive features, such as Van Hove singularities at high
symmetry points near the Fermi level, Dirac points at the
Fermi level, Dirac nodal lines, and strong 2D character-
istics of the phonon spectrum and FS, which are worthy
of further studies.

For all AB$_3$C$_5$ kagome families proposed in this paper
and the reported AV$_3$Sb$_5$, we hardly see some obvious
flat bands in band structures. To further interpret this
feature, we construct a tight-binding model in SM. By
tuning the hopping parameters, we find that with the in-
crease of the hopping parameters between B atoms in the
kagome lattice and C atoms, the flat band becomes more
dispersive as seen in FIG. S27. C atoms and kagome B
atoms are very close to each other, and the overlap of
their orbitals makes the interaction between them very
complex and destroys the destructive interference condi-
tion for the formation of a flat band in kagome lattice,
resulting in the disappearance of the flat band.

An important feature of those predicted structures be-
yond AV$_3$Sb$_5$ is their much stronger EPC strengths.
The calculated T_c of KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ based
on BCS theory are 0.0008, 0.05 and 0.22K, respectively
[32], which are much lower than their experimental val-
ues (see Table II), because the CDW in AV$_3$Sb$_5$ reduces
the DOS near Fermi level and suppresses BCS supercon-
ductivity. This indicates there may be an unconventional
superconducting mechanism. This mechanism is also ex-
pected to appear in the materials listed in Table I. From
Table II, it can be observed that the calculated T_c of
AZr$_3$Pb$_5$ are much higher than those of AV$_3$Sb$_5$, thereby
experimental T_c of AZr$_3$Pb$_5$ may be higher.

The coexistence of superconductivity and topologi-
cal nontrivial surface states is essentially rare [35–38].
It is reported that the robust zero-bias conductance
peak in CsV$_3$Sb$_5$ exhibits similar characteristics to the

FIG. 4. Crystal structures of NaZr$_3$As$_5$ in the (a) 2 × 2 su-
percell of pristine phase, (b) CDW I phase, and (c) the CDW
II phase and their corresponding phonon spectra (d), (e) and
(f), respectively. (g) 3D FS of NaZr$_3$As$_5$. The comparision
of total energies ΔE for (b) pristine phase and CDW I, (i)
pristine phase and CDW II, where the distortion represents
the displacement of Zr atoms and ΔE stands for the relative
total energy with respect to the pristine phase per cell with
72 atoms. The Brillouin zone of (b) and high symmetry paths
of (e) are plotted in FIG. S30(d).
Bi$_2$Te$_3$/NbSe$_2$ heterostructures with Majorana bound state [6]. Our new compounds with both the superconducting ground state and the nontrivial topological surface states near the Fermi surface would provide a rich platform for exploring topological superconductivity and Majorana zero-energy modes.

Mature experimental methods like flux method have been used to synthesize high-quality and stable AV$_3$Sb$_5$ compounds, which is a prerequisite for the rapid development of experimental analysis. In the initial work of Brenden et al. for the AV$_3$Sb$_5$ family, they explore the combination of (K, Rb, Cs)(V, Nb, Ta)(Sb, Bi) under different synthetic conditions [1]. However, only KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ are crystallized. In this work, 800 AB$_3$C$_5$ members in the high-throughput screening process contain most of the combinations they explored. Our calculation results show that these compounds not synthesized in their experiment are dynamically unstable except KNb$_3$Sb$_5$. The agreement with the experimental results indicates that our present calculations are resolvable, and the stable structures presented here are very likely to be synthesized in future experiments. Very recently, a newly discovered family of kagome metals RV$_6$Sb$_6$ (R = Gd, Ho, Y) with two V-derived kagome layers in the primitive cell was also synthesized by flux method [39, 40]. Therefore, the versatile and matured flux method may be employed to synthesize the stable structures in Table S1.

Summary.—In conclusion, we calculate 800 new kagome candidates based on the prototype structure of AV$_3$Sb$_5$ using a high-throughput DFT screening process, and discover 24 dynamically novel stable metal compounds, including one ferromagnetic, one antiferromagnetic and 22 nonmagnetic structures. These compounds display many appealing properties similar to AV$_3$Sb$_5$. Furthermore, based on the McMillan-Allen Dynes approach, 14 compounds among them are predicted to be phonon-mediated BCS superconductors with T_c between 0.3-5K. KZr$_3$Pb$_5$ with the highest T_c exhibits strong Z_2 invariants of the energy bands and abundant nontrivial topological surface states near the Fermi level, revealing that it is a Z$_2$ topological metal. In addition, we also find two possible CDW phases in NaZr$_3$As$_5$. This present work would give more insights on the exploration of possible topological superconductors.

ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D Program of China (Grant No. 2018YFA0305800), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants No. XDB28000000), the National Natural Science Foundation of China (Grant No.11834014), and High-magnetic field center of Chinese Academy of Sciences.

* phyjyy@nus.edu.sg
gsu@ucas.ac.cn

[1] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertexin, T. M. McQueen, and E. S. Toberer, New kagome prototype materials: discovery of KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$, Phys. Rev. Mater. 3, 094407 (2019).

[2] B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Superconductivity in the Z_2 kagome metal KV$_3$Sb$_5$, Phys. Rev. Mater. 5, 034801 (2021).

[3] B. R. Ortiz, S. M. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, CsV$_3$Sb$_5$: A Z_2 topological kagome metal with a superconducting ground state, Phys. Rev. Lett. 125, 247002 (2020).

[4] J. Zhao, W. Wu, Y. Wang, and S. A. Yang, Electronic correlations in the normal state of the kagome superconductor KV$_3$Sb$_5$, Phys. Rev. B 103, 124117 (2021).

[5] Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Superconductivity and normal-state properties of kagome metal RbV$_3$Sb$_5$ single crystals, Chin. Phys. Lett. 38, 037403 (2021).

[6] Z. Liang, X. Hou, F. Zhang, W. Ma, P. Wu, Z. Zheng, F. Yu, J.-J. Ying, K. Jiang, L. Shan, Z. Wang, and X.-H. Chen, Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV$_3$Sb$_5$, Phys. Rev. X 11, 031026 (2021).

[7] H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian, Z. Huang, G. Li, Y. Ye, S. Ma, S. Ni, H. Zhang, Q. Yin, C. Gong, Z. Tu, H. Lei, H. Tan, S. Zhou, C. Shen, X. Dong, B. Yan, Z. Wang, and H.-J. Gao, Roton pair density wave in a strong-coupling kagome superconductor, Nature 599, 222 (2021).

[8] F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Pressure-induced double superconducting domes and charge instability in the kagome metal KV$_3$Sb$_5$, Phys. Rev. B 103, L220504 (2021).

[9] H. Li, T. Zhang, T. Yilmaz, Y. Pai, C. Marvinney, A. Said, Q. Yin, C. Gong, Z. Tu, E. Vescovo, C. Nelson, R. Moore, S. Murakami, H. Lei, H. Lee, B. Lawrie, and H. Miao, Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV$_3$Sb$_5$ (A=Rb, Cs), Phys. Rev. X 11, 031050 (2021).

[10] K. Chen, N. Wang, Q. Yin, Y. Gu, K. Jiang, Z. Tu, C. Gong, Y. Uwatoko, J. Sun, H. Lei, J. Hu, and J.-G. Cheng, Double superconducting dome and triple enhancement of T_c in the kagome superconductor CsV$_3$Sb$_5$ under high pressure, Phys. Rev. Lett. 126, 247001 (2021).

[11] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, J. Belopol’ski, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Unconventional chiral charge order in kagome superconductor KV$_3$Sb$_5$,

[12] Z. Wang, Y.-X. Jiang, J.-X. Yin, Y. Li, G.-Y. Wang, H.-L. Huang, S. Shao, J. Liu, P. Zhu, N. Shumiyi, M. S. Hossain, H. Liu, Y. Shi, J. Duan, X. Li, G. Chang, P. Dai, Z. Ye, G. Xu, Y. Wang, H. Zheng, J. Jia, M. Z. Hasan, and Y. Yao, Electronic nature of chiral charge order in the kagome superconductor CsV$_3$Sb$_5$, Phys. Rev. B 104, 075148 (2021).

[13] N. Shumiyi, M. S. Hossain, J.-X. Yin, Y.-X. Jiang, B. R. Ortiz, H. Liu, Y. Shi, Q. Yin, H. Lei, S. S. Zhang, G. Chang, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Guguchia, S. D. Wilson, and M. Z. Hasan, Intrinsic nature of chiral charge order in the kagome superconductor RbV$_3$Sb$_5$, Phys. Rev. B 104, 035131 (2021).

[14] E. Uykur, B. R. Ortiz, S. D. Wilson, M. Dressel, and A. A. Tsirlin, Optical detection of the density-wave instability in the kagome metal KV$_3$Sb$_5$, npj Quantum Mater. 7, 1 (2022).

[15] N. Ratcliff, L. Hallett, B. R. Ortiz, S. D. Wilson, and J. W. Harter, Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV$_3$Sb$_5$, Phys. Rev. Mater. 5, 111101 (2021).

[16] S. Cho, H. Ma, W. Xia, Y. Yang, Z. Liu, Z. Huang, Z. Jiang, X. Lu, J. Liu, Z. Liu, J. Li, J. Wang, Y. Liu, J. Jia, Y. Guo, J. Liu, and D. Shen, Emergence of new van hove singularities in the charge density wave state of a topological kagome metal RBV$_3$Sb$_5$, Phys. Rev. Lett. 127, 236401 (2021).

[17] F. H. Yu, T. Wu, Z. Y. Wang, B. Lei, W. Z. Zhuo, J. J. Ying, and H. X. Chen, Concurrency of anomalous hall effect and charge density wave in a superconducting topological kagome metal, Phys. Rev. B 104, 1044103 (2021).

[18] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Šmejkal, Y. Chen, S. S. Parkin, S. D. Wilson, E. S. Toberer, T. McQueen, and M. N. Ali, Giant, unconventional anomalous hall effect in the metallic frustrated magnet candidate, K$_3$V$_3$Sb$_5$, Sci. Adv. 6, 6003 (2020).

[19] Y. Wang, S. Yang, P. K. Sivakumar, B. R. Ortiz, S. M. L. Teicher, H. Wu, A. K. Srivastava, C. Garg, D. Liu, S. S. Parkin, E. S. Toberer, T. McQueen, S. D. Wilson, and M. N. Ali, Proximity-induced spin-triplet superconductivity and edge supercurrent in the topological kagome metal, K$_{1-x}$V$_3$Sb$_5$, (2020), arXiv:2012.05898 [cond-mat.supr-con].

[20] C. Mielke, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang, M. Medarde, X. Wu, H. C. Lei, J. Chang, P. Dai, Q. Si, H. Miao, R. Thomale, T. Neupert, Y. Shi, R. Khasanov, M. Z. Hasan, H. Luetkens, and Z. Guguchia, Time-reversal symmetry-breaking charge order in a kagome superconductor, Nature 602, 245 (2022).

[21] M. M. Denner, R. Thomale, and T. Neupert, Analysis of charge order in the kagome metal AuV$_3$Sb$_5$ (A=K, Rb, Cs), Phys. Rev. Lett. 127, 217601 (2021).

[22] Y.-P. Lin and R. M. Nandkishore, Complex charge density waves at van hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AuV$_3$Sb$_5$ (A=K, Rb, Cs), Phys. Rev. B 104, 045122 (2021).

[23] W. Ruan, X. Li, C. Hu, Z. Hao, H. Li, P. Cai, X. Zhou, D.-H. Lee, and Y. Wang, Visualization of the periodic modulation of cooper pairing in a cuprate superconductor, Nat. Phys. 14, 1178 (2018).

[24] H.-S. Xu, Y.-J. Yan, R. Yin, W. Xia, S. Fang, Z. Chen, Y. Li, W. Yang, Y. Guo, and D.-L. Feng, Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV$_3$Sb$_5$, Phys. Rev. Lett. 127, 187004 (2021).

[25] S. Ni, S. Ma, Y. Zhang, J. Yuan, H. Yang, Z. Lu, N. Wang, J. Sun, Z. Zhao, D. Li, S. Liu, H. Zhang, H. Chen, K. Jin, J. Cheng, L. Yu, F. Zhou, X. Dong, J. Hu, H.-J. Gao, and Z. Zhao, Anisotropic superconducting properties of kagome metal CsV$_3$Sb$_5$, Chin. Phys. Lett. 38, 057403 (2021).

[26] F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B. Lei, J. J. Ying, and X. H. Chen, Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal, Nat. Commun. 12, 23928 (2021).

[27] F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Pressure-induced double superconducting domes and charge instability in the kagome metal KV$_3$Sb$_5$, Phys. Rev. B 103, 1220404 (2021).

[28] L. Yin, D. Zhang, C. Chen, G. Ye, F. Yu, B. R. Ortiz, S. Luo, W. Duan, H. Su, J. Ying, S. D. Wilson, X. Chen, H. Yuan, Y. Song, and X. Lu, Strain-sensitive superconductivity in the kagome metals KV$_3$Sb$_5$ and CsV$_3$Sb$_5$ probed by point-contact spectroscopy, Phys. Rev. B 104, 174507 (2021).

[29] T. Wang, A. Yu, H. Zhang, Y. Liu, W. Li, W. Peng, Z. Di, D. Jiang, and G. Mu, Enhancement of the superconductivity and quantum metallic state in the thin film of superconducting kagome metal KV$_3$Sb$_5$, (2021), arXiv:2105.07732 [cond-mat.supr-con].

[30] B. Q. Song, X. M. Kong, W. Xia, Q. W. Yin, C. P. Tu, C. C. Zhao, D. Z. Dai, K. Meng, Z. C. Tao, Z. J. Tu, C. S. Gong, H. C. Lei, Y. F. Guo, X. F. Yang, and S. Y. Li, Competing superconductivity and charge-density wave in kagome metal CsV$_3$Sb$_5$: evidence from their evolutions with sample thickness, (2021), arXiv:2105.09248 [cond-mat.supr-con].

[31] Y. Song, T. Ying, X. Chen, X. Han, X. Wu, A. P. Schnyder, Y. Huang, J. gang Guo, and X. Chen, Competition of superconductivity and charge density wave in selective oxidized CsV$_3$Sb$_5$ thin flakes, Phys. Rev. Lett. 127, 237001 (2021).

[32] H. Tan, Y. Liu, Z. Wang, and B. Yan, Charge density waves and electronic properties of superconducting kagome metals, Phys. Rev. Lett. 127, 046401 (2021).

[33] L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).

[34] B. R. Ortiz, S. M. Teicher, L. Kautzsch, P. M. Sarte, N. Ratcliff, J. Harter, J. P. Ruff, R. Seshadri, and S. D. Wilson, Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV$_3$Sb$_5$, Phys. Rev. X 11, 041030 (2021).

[35] L. Fu and E. Berg, Odd-parity topological superconductors: theory and application to Cu$_3$B$_2$Se$_3$, Phys. Rev. Lett. 105, 077001 (2010).

[36] Z. Wang, P. Zhang, G. Xu, L. K. Zeng, H. Miao, X. Xu, T. Qian, H. Weng, P. Richard, A. V. Fedorov, H. Ding, X. Dai, and Z. Fang, Topological nature of the FeSe$_{0.5}$Te$_{0.5}$ superconductor, Phys. Rev. B 92, 115119 (2015).
[37] T. Sato, Y. Tanaka, K. Nakayama, S. Souma, T. Takahashi, S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Fermiology of the strongly spin-orbit coupled superconductor Sn$_{1-x}$In$_x$Te: Implications for topological superconductivity, Phys. Rev. Lett. 110, 206804 (2013).

[38] J.-Y. You, B. Gu, G. Su, and Y. P. Feng, Two-dimensional topological superconductivity candidate in a van der waals layered material, Phys. Rev. B 103, 104503 (2021).

[39] S. Peng, Y. Han, G. Pokharel, J. Shen, Z. Li, M. Hashimoto, D. Lu, B. R. Ortiz, Y. Luo, H. Li, M. Guo, B. Wang, S. Cui, Z. Sun, Z. Qiao, S. Wilson, and J. He, Realizing kagome band structure in two-dimensional kagome surface states of RV$_6$Sn$_6$ (R=Gd, Ho), Phys. Rev. Lett. 127, 266401 (2021).

[40] G. Pokharel, S. M. L. Teicher, B. R. Ortiz, P. M. Sarte, G. Wu, S. Peng, J. He, R. Seshadri, and S. D. Wilson, Electronic properties of the topological kagome metals YV$_6$Sn$_6$ and GdV$_6$Sn$_6$, Phys. Rev. B 104, 235139 (2021).