Measurements of the branching fractions of $\Lambda_c^+ \to p\eta$ and $\Lambda_c^+ \to p\pi^0$ decays at Belle

S. X. Li, C. P. Shen, J. K. Ahn, H. Aihara, D. M. Asner, T. Aushev, R. Ayad, V. Babu, S. Bahinipati, P. Behera, J. Bennett, F. Bernlochner, M. Bessner, V. Bharadwaj, B. Bhuyan, T. Bilka, J. Biswal, A. Bobrov, A. Bozek, T. E. Browder, M. Campajola, B. Cervenkov, A. Chen, B. Červenkov, M.-C. Chang, B. G. Cheon, K. Chilikin, H. E. Cho, K. Cho, Y. Choi, S. Choudhury, D. Cinabro, D. Cinabro, S. Cunliffe, N. Dash, G. De Nardo, Z. Doležal, T. V. Dong, D. Epifanov, T. Ferber, D. Ferlewicz, B. G. Fulsom, R. Garg, V. Gaur, A. Garmash, A. Giri, O. Grzymkowska, A. Korobov, S. Korpar, E. Kovalenko, R. Kroeger, P. Krokovny, T. Kuhr, M. Kumar, K. Kumara, N. K. Nisar, S. Nishida, V. Nottoli, G. Pakhlova, A. Natochii, L. Nayak, P. Pakhlov, G. Parkhlova, T. Pang, S. Pardi, V. Popov, T. Podobnik, E. Prencipe, M. T. Prim, R. Rout, G. Schnell, J. Schueler, M. Senyo, G. Wang, M.-Z. Wang, P. Wang, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, and V. Zhulanov

(The Belle Collaboration)

1Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao
2University of Bonn, 53115 Bonn
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Gwangju 61186
7University of Cincinnati, Cincinnati, Ohio 45221
8Deutsches Elektronen-Synchrotron, 22607 Hamburg
9Duke University, Durham, North Carolina 27708
10University of Florida, Gainesville, Florida 32611
11Department of Physics, Fu Jen Catholic University, Taipei 24205
12Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
13Justus-Liebig-Universität Gießen, 35392 Gießen
14Gifu University, Gifu 501-1193
15SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
16Gyeongsang National University, Jinju 52828
17Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
18University of Hawaii, Honolulu, Hawaii 96822
19High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
20J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21Higher School of Economics (HSE), Moscow 101000
22Forschungszentrum Jülich, 52425 Jülich
23IKERBASQUE, Basque Foundation for Science, 48013 Bilbao

PHYSICAL REVIEW D 103, 072004 (2021)
Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306

Indian Institute of Technology Bhubaneswar, Satya Nagar 751007

Indian Institute of Technology Guwahati, Assam 781039

Indian Institute of Technology Hyderabad, Telangana 502285

Indian Institute of Technology Madras, Chennai 600036

Indian University, Bloomington, Indiana 47408

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049

Institute of High Energy Physics, Vienna 1050

Institute for High Energy Physics, Protvino 142281

INFN—Sezione di Napoli, 80126 Napoli

Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195

J. Stefan Institute, 1000 Ljubljana

Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe

Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583

Kitasato University, Sagamihara 252-0373

Korea Institute of Science and Technology Information, Daejeon 34141

Korea University, Seoul 02841

Kyoto Sangyo University, Kyoto 603-8555

Kyungpook National University, Daegu 41566, South

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay

P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991

Liaoning Normal University, Dalian 116029

Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

Ludwig Maximilians University, 80539 München

Luther College, Decorah, Iowa 52101

Malaviya National Institute of Technology Jaipur, Jaipur 302017

University of Maribor, 2000 Maribor

Max-Planck-Institut für Physik, 80805 München

School of Physics, University of Melbourne, Victoria 3010

University of Mississippi, University, Mississippi 38677

University of Miyazaki, Miyazaki 889-2192

Moscow Physical Engineering Institute, Moscow 115409

Graduate School of Science, Nagoya University, Nagoya 464-8602

Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602

Università di Napoli Federico II, 80126 Napoli

Nara Women's University, Nara 630-8506

National Central University, Chung-li 32054

National United University, Miao Li 36003

Department of Physics, National Taiwan University, Taipei 10617

H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342

Nippon Dental University, Niigata 951-8580

Niigata University, Niigata 950-2181

University of Nova Gorica, 5000 Nova Gorica

Novosibirsk State University, Novosibirsk 630090

Osaka City University, Osaka 558-8585

Pacific Northwest National Laboratory, Richland, Washington 99352

Panjab University, Chandigarh 160014

Peking University, Beijing 100871

University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Research Center for Nuclear Physics, Osaka University, Osaka 567-0047

Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026

Seoul National University, Seoul 08826

Showa Pharmaceutical University, Tokyo 194-8543

Soochow University, Suzhou 215006

Soongsil University, Seoul 06978

Sungkyunkwan University, Suwon 16419
I. INTRODUCTION

Weak decays of charmed baryons are useful for testing many contradictory theoretical models and methods—e.g., the flavor symmetry approach and heavy quark effective theory [1–4]. In contrast with the decays of charmed mesons, the decays of some charmed baryons are helicity suppressed, making the W-boson exchange favored [5]. The understanding of charmed baryons has progressed relatively slowly compared to that of charmed mesons. The main reason is that the cross section for the generation of charmed baryons is smaller than that of the mesons, so that some reactions with small decay branching fractions are difficult to observe experimentally [6–8]. Although there have been many improved measurements of the properties of charmed baryons, precision measurements of the decay branching fractions still remain poor for many Cabibbo-favored (CF) decay modes and even worse for some decay modes dominated by Cabibbo suppression and W-boson exchange [9].

In theory, the singly Cabibbo-suppressed (SCS) decays \(\Lambda_c^+ \rightarrow p\eta \) and \(\Lambda_c^+ \rightarrow p\eta \) proceed predominantly through internal W emission and W exchange. Typical decay diagrams of two SCS decays are shown in Fig. 1. The internal W emission involving an s quark in Fig. 1(f) is allowed in \(\Lambda_c^+ \rightarrow p\eta \) but absent in \(\Lambda_c^+ \rightarrow p\eta \). The theoretical calculations predict the branching fraction of \(\Lambda_c^+ \rightarrow p\eta \) to be at least an order of magnitude greater than that of \(\Lambda_c^+ \rightarrow p\eta \) and give different assumption-dependent results for the branching fractions of these SCS decays [1,3,10–12]. In contrast with the strong decays of heavy-flavor mesons, the W-boson exchange mechanism plays an important role in the decay of charmed baryons. Thus, measuring the branching fractions of these two SCS decays will help elucidate the decay mechanism of charmed baryons.

The first evidence for the decay \(\Lambda_c^+ \rightarrow p\eta \) with a statistical significance of 4.2 \(\sigma \) and a branching fraction of \(B(\Lambda_c^+ \rightarrow p\eta) = (1.24 \pm 0.30) \times 10^{-3} \) was reported by the BESIII Collaboration [13]. They found no significant \(\Lambda_c^+ \rightarrow p\eta \) signal and set an upper limit on its branching fraction \(B(\Lambda_c^+ \rightarrow p\eta) < 3.5 \times 10^{-4} \) at a 90% confidence level [13].

To improve the measurement precision, we measure the ratio of the branching fractions of the two SCS processes with respect to the CF \(\Lambda_c^+ \rightarrow pK^-\pi^+ \) decay mode:

\[
\frac{B(\text{SCS})}{B(\text{CF})} = \frac{N_{\text{CF}}^{\text{obs}}(\text{SCS})}{e^{\text{MC}}(\text{SCS}) \times B(p\eta/\eta \rightarrow \gamma \gamma)} \times \frac{e^{\text{MC}}(\text{CF})}{N_{\text{CF}}^{\text{obs}}(\text{CF})},
\]

1. INTRODUCTION

Weak decays of charmed baryons are useful for testing many contradictory theoretical models and methods—e.g., the flavor symmetry approach and heavy quark effective theory [1–4]. In contrast with the decays of charmed mesons, the decays of some charmed baryons are helicity suppressed, making the W-boson exchange favored [5]. The understanding of charmed baryons has progressed relatively slowly compared to that of charmed mesons. The main reason is that the cross section for the generation of charmed baryons is smaller than that of the mesons, so that some reactions with small decay branching fractions are difficult to observe experimentally [6–8]. Although there have been many improved measurements of the properties of charmed baryons, precision measurements of the decay branching fractions still remain poor for many Cabibbo-favored (CF) decay modes and even worse for some decay modes dominated by Cabibbo suppression and W-boson exchange [9].

In theory, the singly Cabibbo-suppressed (SCS) decays \(\Lambda_c^+ \rightarrow p\eta \) and \(\Lambda_c^+ \rightarrow p\eta \) proceed predominantly through internal W emission and W exchange. Typical decay diagrams of two SCS decays are shown in Fig. 1. The internal W emission involving an s quark in Fig. 1(f) is allowed in \(\Lambda_c^+ \rightarrow p\eta \) but absent in \(\Lambda_c^+ \rightarrow p\eta \). The theoretical calculations predict the branching fraction of \(\Lambda_c^+ \rightarrow p\eta \) to be at least an order of magnitude greater than that of \(\Lambda_c^+ \rightarrow p\eta \) and give different assumption-dependent results for the branching fractions of these SCS decays [1,3,10–12]. In contrast with the strong decays of heavy-flavor mesons, the W-boson exchange mechanism plays an important role in the decay of charmed baryons. Thus, measuring the branching fractions of these two SCS decays will help elucidate the decay mechanism of charmed baryons.

The first evidence for the decay \(\Lambda_c^+ \rightarrow p\eta \) with a statistical significance of 4.2 \(\sigma \) and a branching fraction of \(B(\Lambda_c^+ \rightarrow p\eta) = (1.24 \pm 0.30) \times 10^{-3} \) was reported by the BESIII Collaboration [13]. They found no significant \(\Lambda_c^+ \rightarrow p\eta \) signal and set an upper limit on its branching fraction \(B(\Lambda_c^+ \rightarrow p\eta) < 3.5 \times 10^{-4} \) at a 90% confidence level [13].

To improve the measurement precision, we measure the ratio of the branching fractions of the two SCS processes with respect to the CF \(\Lambda_c^+ \rightarrow pK^-\pi^+ \) decay mode:

\[
\frac{B(\text{SCS})}{B(\text{CF})} = \frac{N_{\text{CF}}^{\text{obs}}(\text{SCS})}{e^{\text{MC}}(\text{SCS}) \times B(p\eta/\eta \rightarrow \gamma \gamma)} \times \frac{e^{\text{MC}}(\text{CF})}{N_{\text{CF}}^{\text{obs}}(\text{CF})},
\]
Signal MC samples of $e^+e^- \to c\bar{c}$; $c\bar{c} \to \Lambda_+ p$, with X denoting anything; and $\Lambda_+ \to pK^+\pi^+ / p\pi^0 / p\eta$ are used to optimize the selection criteria and estimate the reconstruction and selection efficiency, and are generated under the $\Upsilon(4S)$ resonance condition with PYTHIA [16] and EvtGen [17] and propagated with GEANT3 [18] to simulate the detector performance. The charged-conjugate modes are included unless otherwise stated.

Inclusive MC samples of $\Upsilon(4S) \to B^+B^- / B^0\bar{B}^0$, $\Upsilon(5S) \to B^{(*)+}\bar{B}^{(*)-}$, and $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$) at $\sqrt{s} = 10.58$ and 10.867 GeV, and $\Upsilon(1S, 2S, 3S)$ decays corresponding to 2 times the integrated luminosity of each dataset are used to characterize the (potentially peaking) backgrounds [19].

III. EVENT SELECTION CRITERIA

For charged-particle tracks, the distances of closest approach with respect to the interaction point (IP) along the z axis (parallel to the positron beam) and in the transverse $r\phi$ plane are required to be less than 2.0 cm and 0.1 cm, respectively. In addition, each track is required to have at least one SVD hit. Particle identification (PID) is used to discriminate the type of charged hadron tracks: $R(h/h') = L(h)/(L(h) + L(h'))$ is defined as the ratio of the likelihoods for the h and h' hypotheses, where $L(h')$ ($h = \pi, K, \text{or} p$) is the combined likelihood derived from the ACC, TOF, and CDC dE/dx measurements [20]. $R(p|\pi) > 0.9$ and $R(p|K) > 0.9$ are required for protons. $R(K|p) > 0.4$ and $R(K|\pi) > 0.9$ are required for charged kaons. $R(\pi|p) > 0.4$ and $R(\pi|K) > 0.4$ are required for charged pions. $R(e)$, a likelihood ratio for e and h identification formed from ACC, CDC, and ECL information [21], is required to be less than 0.9 for all charged tracks to remove electrons. For the typical momentum range of our SCS decays, the identification efficiencies of p, K, and π are 81.7%, 79.6%, and 96.9%, respectively.

A Λ^+_c candidate for the CF decay is reconstructed from three tracks identified as p, K, and π, subject to a common-vertex fit. The χ^2 of the vertex fit is required to be less than 40 to reject background from incorrect combinations. The scaled momentum of the Λ^+_c, defined as $x_p = p^+ / \sqrt{E_{\text{cm}}^2 / 4 - M^2}$ [22], is required to be greater than 0.53 for all Λ^+_c candidates to suppress the combinatorial background, especially from B-meson decays. Here, E_{cm} is the center-of-mass (CM) energy, while p^+ and M are the momentum and invariant mass, respectively, of the Λ^+_c candidates in the CM frame. All of these optimized selection criteria are taken from Ref. [23].

An ECL cluster not matching any track is identified as a photon candidate. Each photon candidate is required to have a ratio of energy deposited in the central 3×3 square of ECL cells to that deposited in the enclosing 5×5 square of cells of $E9/E25 > 0.8$ to reject neutral hadrons. An optimized figure-of-merit (FOM) study determines that the
energies of photon candidates must exceed 50 MeV and
110 MeV in the barrel and end cap regions of the ECL,
respectively, for both photons from $\pi^0 \rightarrow \gamma\gamma$. For the $\eta \rightarrow \gamma\gamma$ decay, the γ_1 (γ_2) energies must exceed 220
(260) MeV, 480 (340) MeV, and 260 (360) MeV in the
barrel, forward, and backward end caps, respectively. Two
photon candidates are combined to form a π^0/η candidate,
and a mass-constrained fit is performed for this candidate.
The χ^2 value of the mass-constrained fit must be less than
7.5 and 4 for π^0 and η candidates, respectively, to suppress
the background in which the two-photon invariant mass is
far from π^0 and η nominal masses [9]. The momentum in
the CM frame must be greater than 0.69 GeV/c and
0.82 GeV/c for π^0 and η candidates, respectively. All
these requirements are optimized. An SCS $\Lambda_c^+ c$ candidate is
reconstructed by combining a proton candidate with a π^0/η
candidate. Again, x_p for the $\Lambda_c^+ \rightarrow p\pi^0/p\eta$ candidates is
required to exceed 0.53. After applying all the selection
criteria, about 0.8%, 1.4%, and 1.7% of the events in the
required to exceed 0.53. After applying all the selection
criteria, about 0.8%, 1.4%, and 1.7% of the events in the
signal region have multiple Λ_c^+ candidates for the $pK^-\pi^+$,
$\eta\pi$, and $p\pi^0$ decays, respectively.

The SCS signal region in data is optimized with the
control sample of $\Lambda_c^+ \rightarrow pK^-\pi^+$, as well as the Λ_c^+ mass
sidebands to the hidden SCS signal region (i.e., the signal
region is blinded), by optimizing the ratio $S/\sqrt{S+B}$,
where S and B are the expected number of signal events
for SCS decays in data and the number of background
events normalized to the signal region, respectively. S is
obtained via

$$S = e^{MC}(\Lambda_c^+ \rightarrow p\pi^0/p\eta) \times \frac{N^{obs}(\Lambda_c^+ \rightarrow pK^-\pi^+)}{e^{MC}(\Lambda_c^+ \rightarrow pK^-\pi^+)} \times \frac{B(\Lambda_c^+ \rightarrow p\pi^0/p\eta) \times B(\pi^0/\eta \rightarrow \gamma\gamma)}{B(\Lambda_c^+ \rightarrow pK^-\pi^+)} , \quad (2)$$

where N^{obs} and e^{MC} are the fitted Λ_c^+ events of data
and the detection efficiency of the signal MC sample, respectively;
$B(\Lambda_c^+ \rightarrow p\pi^0/p\eta)$ are the branching fractions of
2.7 \times 10$^{-4}$ and 1.24 \times 10$^{-3}$ for $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow p\eta$, respectively [13]; and $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ is the branching
fraction of the CF decay [9].

IV. EFFICIENCY ESTIMATION AND FIT RESULTS

With the final selection criteria applied, the invariant
mass distributions of $pK^-\pi^+$, $\eta\pi$, and $p\pi^0$ from data are
shown in Figs. 2, 3, and 4, respectively. From the study of
the topology of inclusive MC samples [19], no peaking
backgrounds contribute to these mass distributions in the
Λ_c^+ signal region.

For the CF mode, we fit the invariant mass distribution of
$pK^-\pi^+$ displayed in Fig. 2 from 2.15 to 2.42 GeV/c^2
using the binned maximum likelihood fit with a bin width
of 3 MeV/c^2. A double-Gaussian function with the
common mean value is used to model the signal events,
and a second-order polynomial is used to model the
background events. The parameters of the signal and
background shapes are free in the fit. The reduced χ^2
value of the fit is $\chi^2/\text{ndf} = 87/82 = 1.06$, and the fitted
number of signal events is 1476 ± 1560, where ndf is
the number of degrees of freedom and the uncertainty is statistical only.

The Dalitz [24] distribution of $M^2(K^-\pi^+)$ versus $M^2(p\pi^-)$ in the signal region from data is shown in Fig. 5. The signal region is taken from 2.274 to 2.298 GeV/c^2. We divide this into 120×120 pixels, with size 0.027 GeV/c^2 for $M^2(p\pi^-)$ and 0.016 GeV/c^2 for $M^2(K^-\pi^+)$. The number of background events has been subtracted using the normalized sidebands. The sideband regions are defined to be $(2.262, 2.274)$ GeV/c^2 and $(2.298, 2.310)$ GeV/c^2. A MC sample mixing four sub-channels of CF decay weighted with the corresponding branching fractions taken from Ref. [9] is used to assess the selection efficiency of the CF mode. The total number of reconstructed MC signal events is normalized to that of signal candidates in data. We calculate the overall efficiency using the efficiency of each pixel. The formula is $\epsilon = \Sigma s_j/\Sigma (s_j/\epsilon_j)$, where Σs_j is the number of signal candidates in data, and s_j and ϵ_j are the number of signal events from data and the efficiency from the MC sample for each pixel, respectively. The efficiency of one pixel is obtained by dividing the number of events remaining in the signal MC sample by the number of generated events. The weighted efficiency for each bin is exhibited in Fig. 6, and the corrected efficiency for data is $(14.06 \pm 0.01)%$.

An obvious Λ^+_c signal peaking in the signal region of the $M(p\eta)$ spectrum is observed. We use the binned maximum likelihood method to fit the invariant mass distribution of $p\eta$ from 2.15 to 2.42 GeV/c^2 with a 3 MeV/c^2 bin width. A combined Gaussian and crystal ball (CB) [25] function with a common mean value models the signal, and a second-order polynomial models the background. The parameters of the signal and background line shapes are free in the fit. Figure 3 exhibits the distribution of the invariant mass of $p\eta$ and the corresponding fit result. The reduced χ^2 of the fit is $\chi^2/ndf = 102/83 = 1.23$, and the fitted number of signal events is 7734 ± 263.

There is no significant excess observed in the signal region for $\Lambda^+_c \to p\pi^0$. We fit $M(p\pi^0)$ with the binned maximum likelihood method; the fit result is shown in Fig. 4. The signal is modeled by a combined Gaussian and CB function with the common mean convolved with a Gaussian function; the background is described by a second-order polynomial. The parameters of the signal are fixed to MC-derived values, and the convolving Gaussian with width 2.1 MeV accounts for the difference in widths between data and MC for the $\Lambda^+_c \to p\eta$ signal. The fitted number of signal events and the parameters of the background polynomial are free in the fit. The fitting range is from 2.15 to 2.42 GeV/c^2, with a bin width of 3 MeV/c^2. The fitted number of signal events is 11 ± 140.
which is consistent with zero. Thus, with a uniform prior probability density function, the estimation of a Bayesian upper limit is performed to obtain the 90% credibility level (C.L.) upper limit on the branching fraction of $\Lambda^+_c \rightarrow p\pi^0$. The likelihood function is integrated from zero to the value that gives 90% of the total area. Before integrating, we include the systematic uncertainty (σ_{sys}) described below by convolving the likelihood distribution with a Gaussian whose width is equal to σ_{sys}. An upper limit on the branching fraction of 9.44×10^{-5} at 90% C.L. is set. The likelihood distribution as a function of the branching fraction, with the systematic uncertainty included, is displayed in Fig. 7.

To estimate the efficiencies of the two SCS decays, we take the ratio of the number of fitted signal events in the invariant mass distribution of $p\pi^0/\pi\eta$ to that of generated events from signal MC samples as the efficiency. We find $(8.28 \pm 0.03)\%$ and $(8.89 \pm 0.03)\%$ for $\Lambda^+_c \rightarrow \pi\eta$ and $\Lambda^+_c \rightarrow p\pi^0$, respectively. The uncertainties are statistical only.

V. SYSTEMATIC UNCERTAINTIES

Since the branching fraction is obtained from the ratio of the corresponding quantities in Eq. (1), some systematic uncertainties for $\Lambda^+_c \rightarrow p\pi^0/\pi\eta$ cancel. The sources of systematic uncertainties include the fits of CF and SCS decays, PID, tracking efficiency, photon efficiency, the uncertainties of branching fractions of CF and $\pi^0/\eta \rightarrow \gamma\gamma$ decays, and the statistics of the signal MC samples.

To estimate the uncertainties from the fits of CF and SCS decays, we modify the signal and background functions, the bin width, and the fit range and refit. To evaluate the uncertainty from the signal function, the signal shape for $\Lambda^+_c \rightarrow pK^-\pi^+\pi^-/\pi\eta$ is fixed to that from the fit to the MC sample, while that for $\Lambda^+_c \rightarrow p\pi^0$ is changed from a Gaussian and CB combined function to a double CB function. The uncertainty from the background line shape is assessed by using a first-order polynomial. Furthermore, we change the bin width to 2 MeV/c^2 or 4 MeV/c^2, and adjust the fit range of the invariant mass spectrum to estimate the uncertainties from binning and fit range. The difference of branching fractions between the refitted and nominal conditions is taken as the uncertainty, which is 3.86% for $\Lambda^+_c \rightarrow p\pi^0$ and 2.85% for $\Lambda^+_c \rightarrow \pi\eta$, respectively.

The systematic uncertainties from PID and tracking efficiency of the proton cancel in the branching-fraction ratio. Systematic uncertainties of 1.6% and 1.2% are assigned for the K and π identification efficiencies, respectively, by studying a low-background control sample of D^*. The total systematic uncertainty from PID is 2.0%, the sum in quadrature of the individual uncertainties for K and π. From the study of the mid- to high-momentum track reconstruction efficiency in $D^* \rightarrow \pi D^0$ decay, the uncertainty of the efficiency for each charged track is 0.35%, resulting in a total uncertainty of 0.7% from tracking efficiency. We assign a 2% systematic uncertainty due to the photon efficiency per photon according to a study of radiative Bhabha events; the total systematic uncertainty from photon reconstruction is thus 4%.

The systematic uncertainties from the branching fractions of CF and $\pi^0/\eta \rightarrow \gamma\gamma$ are 5.1%, 0.034%, and 0.5% [9], respectively.

The systematic uncertainty from the size of the signal MC sample is estimated to be 0.34% and 0.35% for $\Lambda^+_c \rightarrow p\pi^0$ and $\Lambda^+_c \rightarrow \pi\eta$ decays, respectively.

The systematic uncertainties are summarized in Table I and give in total 7.8% and 7.4% for $\Lambda^+_c \rightarrow p\pi^0$ and $\Lambda^+_c \rightarrow \pi\eta$, respectively, which are obtained by assuming

![Image](072004-7)

FIG. 7. The likelihood distribution as a function of the branching fraction for $\Lambda^+_c \rightarrow p\pi^0$ with the systematic uncertainty included. The blue arrow refers to the 90% C.L. upper limit on the branching fraction.
all uncertainties are independent and therefore added in quadrature.

VI. CONCLUSION

We observe the decay $\Lambda_c^+ \to p\eta$. A significant Λ_c^+ signal is observed in the invariant mass distribution of $p\eta$ from data. Using the numbers of the fitted signal events of the $\Lambda_c^+ \to p\eta$ and $pK^-\pi^+$ models and the reconstruction efficiencies, the measured ratio of $\frac{B(\Lambda_c^+ \to p\eta)}{B(\Lambda_c^+ \to pK^-\pi^+)} = [2.258 \pm 0.077\text{(stat)} \pm 0.122\text{(syst)}] \times 10^{-2}$ is obtained via Eq. (1). With the independently measured value of $B(\Lambda_c^+ \to pK^-\pi^+)$ [9], we extract a branching fraction of $B(\Lambda_c^+ \to p\eta) = [1.42 \pm 0.05\text{(stat)} \pm 0.11\text{(syst)}] \times 10^{-3}$, which is consistent with both the latest published measurement of $(1.24 \pm 0.30) \times 10^{-3}$ [13], but with much improved precision, and with theoretical predictions within $1.3\,\sigma$ [11,12].

We see no obvious signal excess in the distribution $M(p\eta^0)$, and so we set an upper limit on the ratio of the branching fractions $\frac{B(\Lambda_c^+ \to p\eta^0)}{B(\Lambda_c^+ \to pK^-\pi^+)}$ at a 90% C.L. of 1.273×10^{-3}. From this, we extract an upper limit on the branching fraction of $B(\Lambda_c^+ \to p\eta^0) < 8.0 \times 10^{-5}$ at a 90% C.L., more than 3 times more stringent than the best current upper limit of 2.7×10^{-4} [13]. The measured $B(\Lambda_c^+ \to p\eta)$ is at least an order of magnitude larger than $B(\Lambda_c^+ \to p\eta^0)$, which is consistent with the theoretical prediction of an internal W-emission mechanism involving an s quark in $\Lambda_c^+ \to p\eta$ [11].

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; the KEK computer group and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Science Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, and No. FT130100303; the Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209, No. 11761141009, No. 11975076, and No. 12042509; the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the National Research Foundation (NRF) of Korea Grants No. 2016R1A1A1B01010135, No. 2016R1A1A1B0212900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1A1A1B07047294, No. 2019K1A3A7A09033840, and No. 2019R1I1A3A01058933; the Radiation Science Research Institute, the Foreign Large-size Research Facility Application Supporting Project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026; University of Tabuk research grants No. S-1440-0321, No. S-0256-1438, and No. S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, the Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.
[10] C. D. Lü, W. Wang, and F. S. Yu, Phys. Rev. D 93, 056008 (2016).

[11] H. Y. Cheng, X. W. Kang, and F. R. Xu, Phys. Rev. D 97, 074028 (2018).

[12] J. Q. Zou, F. R. Xu, G. B. Meng, and H. Y. Cheng, Phys. Rev. D 101, 014011 (2020).

[13] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 95, 111102 (2017).

[14] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. (2013), 03A001, and references therein.

[15] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also, see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).

[16] T. Sjostrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[17] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[18] R. Brun et al., GEANT3: User’s guide GEANT3.10, GEANT3.11, CERN Report No. DD/EE/84-1, 1984.

[19] X. Y. Zhou, S. X. Du, G. Li, and C. P. Shen, Comput. Phys. Commun. 258, 107540 (2021).

[20] E. Nakano, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 402 (2002).

[21] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima, and T. Tsukamoto, Nucl. Instrum. Methods Phys. Res., Sect. A 485, 490 (2002).

[22] We used units in which the speed of light is $c = 1$.

[23] S. B. Yang et al. (Belle Collaboration), Phys. Rev. Lett. 117, 011801 (2016).

[24] R. H. Dalitz, Philos. Mag. Ser. 5 44, 1068 (1953).

[25] J. E. Gaiser, Ph. D. thesis, Stanford Linear Accelerator Center, Stanford University, Report No. SLAC-R-255, 1982.