Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang∗
CMU
hongyanz@cs.cmu.edu
Eric P. Xing
CMU & Petuum Inc.
epxing@cs.cmu.edu

Yaodong Yu†
University of Virginia
yy8ms@virginia.edu
Laurent El Ghaoui
UC Berkeley
elghaoui@berkeley.edu

Jiantao Jiao
UC Berkeley
jiantao@eecs.berkeley.edu
Michael I. Jordan
UC Berkeley
jordan@cs.berkeley.edu

Abstract

We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although the problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we quantify the trade-off in terms of the gap between the risk for adversarial examples and the risk for non-adversarial examples. The challenge is to provide tight bounds on this quantity in terms of a surrogate loss. We give an optimal upper bound on this quantity in terms of classification-calibrated loss, which matches the lower bound in the worst case. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of 1,995 submissions in the robust model track, surpassing the runner-up approach by 11.41% in terms of mean ℓ2 perturbation distance.

1 Introduction

In response to the vulnerability of deep neural networks to small perturbations around input data [SZS+13], adversarial defenses have been an imperative object of study in machine learning [HPG+17], computer vision [SKN+18, XWZ+17, MC17], natural language processing [JL17], and many other domains. In machine learning, study of adversarial defenses has led to significant advances in understanding and defending against adversarial threat [HWC+17]. In computer vision and natural language processing, adversarial defenses serve as indispensable building blocks for a range of security-critical systems and applications, such as autonomous cars and speech recognition authorization. The problem of adversarial defenses can be stated as that of learning a classifier with high test accuracy on both natural and adversarial examples. The adversarial example for a given labeled data (x, y) is a data point x′ that causes a classifier c to output a different label on x′ than y, but is “imperceptibly similar” to x. Given the difficulty of providing an operational definition of “imperceptible similarity,” adversarial examples typically come in the form of restricted attacks such as ϵ-bounded perturbations [SZS+13], or unrestricted attacks such as adversarial rotations, translations, and deformations [BCZ+18, ETT+17, GAG+18, XZL+18, AAG19, ZCS+19]. The focus of this work is the former setting.

Despite a large literature devoted to improving the robustness of deep-learning models, many fundamental questions remain unresolved. One of the most important questions is how to trade off adversarial robustness

∗Part of this work was done while H. Z. was visiting Simons Institute for the Theory of Computing.
†Part of this work was done while Y. Y. was an intern at Petuum Inc.
against natural accuracy. Statistically, robustness can be at odds with accuracy when no assumptions are made on the data distribution \([TSE+19]\). This has led to an empirical line of work on adversarial defense that incorporates various kinds of assumptions \([SZC+18, KGB17]\). On the theoretical front, methods such as relaxation based defenses \([KW18, RSL18a]\) provide provable guarantees for adversarial robustness. They, however, ignore the performance of classifier on the non-adversarial examples, and thus leave open the theoretical treatment of the putative robustness/accuracy trade-off.

The problem of adversarial defense becomes more challenging when considering computational issues. This is due to the fact that direct formulations of robust-classification problems involves minimizing the robust 0-1 loss

$$\max_{x': \|x' - x\| \leq \epsilon} 1\{c(x') \neq y\},$$ \hspace{1cm} (1)

a loss which is NP-hard to optimize \([GR09]\). This is why progress on algorithms that focus on accuracy have built on minimum contrast methods that minimize a surrogate of the 0–1 loss function \([BJM06]\), e.g., the hinge loss or cross-entropy loss. While prior work on adversarial defense replaced the 0-1 loss \(1(\cdot)\) in Eqn. (1) with a surrogate loss to defend against adversarial threat \([MMS+18, KGB17, UOKvdO18]\), this line of research may suffer from loose surrogate approximation to the 0-1 loss. It may thus result in degraded performance.

1.1 Our methodology and results

We begin with an illustrative example that illustrates the trade-off between accuracy and adversarial robustness, a phenomenon which has been demonstrated by \([TSE+19]\), but without theoretical guarantees. We demonstrate that the minimal risk is achieved by a classifier with 100% accuracy on the non-adversarial examples. We refer to this accuracy as the natural accuracy and we similarly refer to the natural error or natural risk. In this same example, the accuracy to the adversarial examples, which we refer to as the robust accuracy, is as small as 0% (see Table 1). This motivates us to quantify the trade-off by the gap between optimal natural error and the robust error. Note that the latter is an adversarial counterpart of the former which allows a bounded worst-case perturbation before feeding the perturbed sample to the classifier.

We study this gap in the context of a differentiable surrogate loss. We show that surrogate loss minimization suffices to derive a classifier with guaranteed robustness and accuracy. Our theoretical analysis naturally leads to a new formulation of adversarial defense which has several appealing properties; in particular, it inherits the benefits of scalability to large datasets exhibited by Tiny ImageNet, and the algorithm achieves state-of-the-art performance on a range of benchmarks while providing theoretical guarantees. For example, while the defenses
overviewed in [ACW18] achieve robust accuracy no higher than \(\sim 47\% \) under white-box attacks, our method achieves robust accuracy as high as \(\sim 57\% \) in the same setting. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge where we won first place out of 1,995 submissions, surpassing the runner-up approach by 11.41\% in terms of mean \(\ell_2 \) perturbation distance.

1.2 Summary of contributions

Our work tackles the problem of trading accuracy off against robustness and advances the state-of-the-art in multiple ways.

- Theoretically, we characterize the trade-off between accuracy and robustness for classification problems via the gap between robust error and optimal natural error. We provide an upper bound for this gap in terms of surrogate loss. The bound is optimal as it matches the lower bound in the worst-case scenario.

- Algorithmically, inspired by our theoretical analysis, we propose a new formulation of adversarial defense, TRADES, as optimizing a regularized surrogate loss. The loss consists of two terms: the term of empirical risk minimization encourages the algorithm to maximize the natural accuracy, while the regularization term encourages the algorithm to push the decision boundary away from the data, so as to improve adversarial robustness (see Figure 1).

- Experimentally, we show that our proposed algorithm outperforms state-of-the-art methods under both black-box and white-box threat models. In particular, the methodology won the final round of the NeurIPS 2018 Adversarial Vision Challenge.

2 Preliminaries

Before proceeding, we define some notation and clarify our problem setup.

2.1 Notations

We will use bold capital letters such as \(X \) and \(Y \) to represent random vector, bold lower-case letters such as \(x \) and \(y \) to represent realization of random vector, capital letters such as \(X \) and \(Y \) to represent random variable, and lower-case letters such as \(x \) and \(y \) to represent realization of random variable. Specifically, we denote by \(x \in \mathcal{X} \) the sample instance, and by \(y \in \{-1, +1\} \) the label, where \(\mathcal{X} \subseteq \mathbb{R}^d \) indicates the instance space. \(\text{sign}(x) \) represents the sign of scalar \(x \) with \(\text{sign}(0) = +1 \). Denote by \(f : \mathcal{X} \rightarrow \mathbb{R} \) the score function which maps an instance to a confidence value associated with being positive. It can be parametrized, e.g., by deep neural networks. The associated binary classifier is \(\text{sign}(f(\cdot)) \). We will frequently use \(1\{\text{event}\} \), the 0-1 loss, to represent an indicator function that is 1 if an event happens and 0 otherwise. For norms, we denote by \(\|x\|_{\infty} \), the infinity norm of vector \(x \), and \(\|x\|_2 \), the \(\ell_2 \) norm of vector \(x \). We use \(B(x, \epsilon) \) to represent a neighborhood of \(x \): \(\{x' \in \mathcal{X} : \|x' - x\| \leq \epsilon\} \). For a given score function \(f \), we denote by \(\text{DB}(f) \) the decision boundary of \(f \); that is, the set \(\{x \in \mathcal{X} : f(x) = 0\} \). \(B(\text{DB}(f), \epsilon) \) indicates the neighborhood of the decision boundary of \(f \): \(\{x \in \mathcal{X} : \exists x' \in B(x, \epsilon) \text{ s.t. } f(x)f(x') \leq 0\} \). For a given function \(\psi(u) \), we denote by \(\psi^*(v) := \sup_u \{u^T v - \psi(u)\} \) the conjugate function of \(\psi \), by \(\psi^{**} \) the bi-conjugate, and by \(\psi^{-1} \) the inverse function. We will frequently use \(\phi(\cdot) \) to indicate the surrogate of 0-1 loss.

2.2 Robust (classification) error

In the setting of adversarial learning, we are given a set of instances \(x_1, \ldots, x_n \in \mathcal{X} \) and labels \(y_1, \ldots, y_n \in \{-1, +1\} \). We assume that the data are sampled from an unknown distribution \((X, Y) \sim D\). To characterize
the robustness of a score function $f : X \rightarrow \mathbb{R}$, [SST$^{+}$18, CBM18, BPR18] defined robust (classification) error under the threat model of bounded ϵ distortion:

$$R_{\text{rob}}(f) := \mathbb{E}_{(X,Y) \sim D} 1\{\exists X' \in B(X,\epsilon) \text{ s.t. } f(X')Y \leq 0\}.$$

This is in sharp contrast to the standard measure of classifier performance—the natural (classification) error $R_{\text{nat}}(f) := \mathbb{E}_{(X,Y) \sim D} 1\{f(X)Y \leq 0\}$. We note that the two errors satisfy $R_{\text{rob}}(f) \geq R_{\text{nat}}(f)$ for all f; the robust error is equal to the natural error when $\epsilon = 0$.

2.3 Trade-off between natural and robust errors

Our study is motivated by the trade-off between natural and robust errors. [TSE$^{+}$19] showed that training robust models may lead to a reduction of standard accuracy. To illustrate the phenomenon, we provide a toy example here.

Example. Consider the case $(X,Y) \sim D$, where the marginal distribution over the instance space is a uniform distribution over $[0,1]$, and for $k = 0, 1, \ldots, \lceil \frac{1}{2\epsilon} - 1 \rceil$,

$$\eta(x) := \Pr(Y = 1 | X = x) = \begin{cases} 0, & x \in [2k\epsilon, (2k+1)\epsilon), \\ 1, & x \in ((2k + 1)\epsilon, (2k + 2)\epsilon] \end{cases}.$$

(2)

See Figure 2 for the visualization of $\eta(x)$. We consider two classifiers: a) the Bayes optimal classifier $\text{sign}(2\eta(x) - 1)$; b) the all-one classifier which always outputs “positive.” Table 1 displays the trade-off between natural and robust errors: the minimal natural error is achieved by the Bayes optimal classifier with large robust error, while the optimal robust error is achieved by the all-one classifier with large natural error. Despite a large literature on the analysis of robust error in terms of generalization [SST$^{+}$18, CBM18, YRB18] and computational complexity [BPR18, BLPR18], the trade-off between the natural error and the robust error has not been a focus of theoretical study.

Our goal. To characterize the trade-off, we aim at approximately solving a constrained problem for a score function \hat{f} with guarantee $R_{\text{rob}}(\hat{f}) \leq \text{OPT} + \delta$, given a precision parameter $\delta > 0$:

$$\text{OPT} := \min_{f} R_{\text{rob}}(f), \quad \text{s.t.} \quad R_{\text{nat}}(f) \leq R_{\text{nat}}^* + \delta,$$

where R_{nat}^* represents the risk of the Bayes optimal classifier, the classifier with the minimal natural error. We note that it suffices to show $R_{\text{rob}}(f) - R_{\text{nat}}^* \leq \delta$. This is because a) $R_{\text{nat}}(f) - R_{\text{nat}}^* \leq R_{\text{rob}}(f) - R_{\text{nat}}^* \leq \delta$, 4
Table 1: Comparisons of natural and robust errors of Bayes optimal classifier and all-one classifier in example (2). The Bayes optimal classifier has the optimal natural error while the all-one classifier has the optimal robust error.

	Bayes Optimal Classifier	All-One Classifier
\(R_{nat} \)	0 (optimal)	1/2
\(R_{rob} \)	1	1/2 (optimal)

and b) \(R_{rob}(f) \leq R_{nat}^* + \delta \leq \text{OPT} + \delta \), where the last inequality holds since \(R_{nat}(f) \leq R_{rob}(f) \) for all \(f \)'s and therefore \(\min_f R_{nat}(f) \leq \min_f R_{rob}(f) \leq \text{OPT} \). In this paper, our principal goal is to provide a tight bound on \(R_{rob}(f) - R_{nat}^* \), using a regularized surrogate loss which can be optimized easily.

2.4 Classification-calibrated surrogate loss

Definition. Minimization of the 0-1 loss in the natural and robust errors is computationally intractable and the demands of computational efficiency have led researchers to focus on minimization of a tractable surrogate loss, \(R_\phi(f) := \mathbb{E}_{(X,Y) \sim D} \phi(f(X)Y) \). We then need to find quantitative relationships between the excess errors associated with \(\phi \) and those associated with 0–1 loss. We make a weak assumption on \(\phi \): it is classification-calibrated [BJM06]. Formally, for \(\eta \in [0,1] \), define the conditional \(\phi \)-risk by

\[
H(\eta) := \inf_{\alpha \in \mathbb{R}} C_\eta(\alpha) := \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha)),
\]

and define \(H^-(\eta) := \inf_{\alpha(2\eta - 1) \leq 0} C_\eta(\alpha) \). The classification-calibrated condition requires that imposing the constraint that \(\alpha \) has an inconsistent sign with the Bayes decision rule \(\text{sign}(2\eta - 1) \) leads to a strictly larger \(\phi \)-risk:

Assumption 1 (Classification-Calibrated Loss). We assume that the surrogate loss \(\phi \) is classification-calibrated, meaning that for any \(\eta \neq 1/2 \), \(H^-(\eta) > H(\eta) \).

We argue that Assumption 1 is indispensable for classification problems, since without it the Bayes optimal classifier cannot be the minimizer of the \(\phi \)-risk. Examples of classification-calibrated loss include hinge loss, sigmoid loss, exponential loss, logistic loss, and many others (see Table 2).

Properties. Classification-calibrated loss has many structural properties that one can exploit. We begin by introducing a functional transform of classification-calibrated loss \(\phi \) which was proposed by [BJM06]. Define the function \(\psi : [0,1] \rightarrow [0,\infty) \) by \(\psi = \tilde{\psi}^{**} \), where \(\tilde{\psi}(\theta) := H^- \left(\frac{1+\theta}{2} \right) - H \left(\frac{1+\theta}{2} \right) \). Indeed, the function \(\psi(\theta) \) is the largest convex lower bound on \(H^- \left(\frac{1+\theta}{2} \right) - H \left(\frac{1+\theta}{2} \right) \). The value \(H^- \left(\frac{1+\theta}{2} \right) - H \left(\frac{1+\theta}{2} \right) \) characterizes how close the surrogate loss \(\phi \) is to the class of non-classification-calibrated losses.

Below we state useful properties of the \(\psi \)-transform. We will frequently use the function \(\psi \) to bound \(R_{rob}(f) - R_{nat}^* \).

Lemma 2.1 ([BJM06]). Under Assumption 1, the function \(\psi \) has the following properties: \(\psi \) is non-decreasing, continuous, convex on \([0,1] \) and \(\psi(0) = 0 \).

3 Relating 0-1 Error to Surrogate Loss

In this section, we present our main theoretical contributions for binary classification and compare our results with prior literature. Binary classification problems have received significant attention in recent years as many competitions evaluate the performance of robust models on binary classification problems [BCZ+18]. We defer the discussions for multi-class problems to Section 4.
Table 2: Examples of classification-calibrated loss ϕ and associated ψ-transform. Here $\psi_{\log}(\theta) = \frac{1}{2}(1 - \theta) \log_2(1 - \theta) + \frac{1}{2}(1 + \theta) \log_2(1 + \theta)$.

Loss	$\phi(\alpha)$	$\psi(\theta)$
Hinge	$\max\{1 - \alpha, 0\}$	θ
Sigmoid	$1 - \tanh(\alpha)$	θ
Exponential	$\exp(-\alpha)$	$1 - \sqrt{1 - \theta^2}$
Logistic	$\log_2(1 + \exp(-\alpha))$	$\psi_{\log}(\theta)$

3.1 Upper bound

Our analysis leads to the following guarantee on the performance of surrogate loss minimization.

Theorem 3.1. Under Assumption 1, for any non-negative loss function ϕ such that $\phi(0) \geq 1$, any measurable $f : X \to \mathbb{R}$, any probability distribution on $X \times \{\pm 1\}$, and any $\lambda > 0$, we have

$$R_{\text{rob}}(f) - R_{\text{nat}}^* \leq \psi^{-1}(R_{\phi}(f) - R_{\phi}^*) + \Pr[X \in B(DB(f), \epsilon), c_0(X) = Y]$$

$$\leq \psi^{-1}(R_{\phi}(f) - R_{\phi}^*) + \mathbb{E}_{X' \in B(X, \epsilon)} \max_{f' : \mathbb{R}^d \to \mathbb{R}} \phi(f(X')f(X)/\lambda),$$

where $R_{\phi}(f) := \mathbb{E}_{X} \phi(f(X)Y)$, $R_{\phi}^* := \min_f R_{\phi}(f)$ and $c_0(\cdot) := \text{sign}(2\eta(\cdot) - 1)$ is the Bayes optimal classifier.

Quantity governing model robustness. Our result provides a formal justification for the existence of adversarial examples: learning models are brittle to small adversarial attacks because the probability that data lie around the decision boundary of the model, $\Pr[X \in B(DB(f), \epsilon), c_0(X) = Y]$, is large. As a result, small perturbations may move the data point to the wrong side of the decision boundary, leading to weak robustness of classification models.

3.2 Lower bound

We now establish a lower bound on $R_{\text{rob}}(f) - R_{\text{nat}}^*$. Our lower bound matches our analysis of the upper bound in Section 3.1 up to an arbitrarily small constant.

Theorem 3.2. Suppose that $|X| \geq 2$. Under Assumption 1, for any non-negative loss function ϕ such that $\phi(x) \to 0$ as $x \to +\infty$, any $\xi > 0$, and any $\theta \in [0, 1]$, there exists a probability distribution on $X \times \{\pm 1\}$, a function $f : \mathbb{R}^d \to \mathbb{R}$, and a regularization parameter $\lambda > 0$ such that $R_{\text{rob}}(f) - R_{\text{nat}}^* = \theta$ and

$$\psi\left(\theta - \mathbb{E}_{X' \in B(X, \epsilon)} \phi(f(X')f(X)/\lambda)\right) \leq R_{\phi}(f) - R_{\phi}^*$$

$$\leq \psi\left(\theta - \mathbb{E}_{X' \in B(X, \epsilon)} \phi(f(X')f(X)/\lambda)\right) + \xi.$$

Theorem 3.2 demonstrates that in the presence of extra conditions on the loss function, i.e., $\lim_{x \to +\infty} \phi(x) = 0$, the upper bound in Section 3.1 is tight. The condition holds for all the losses in Table 2.

1We study the population form of the loss function, although we believe that our analysis can be extended to the empirical form by the uniform convergence argument. We leave this analysis as an interesting problem for future research.
4 Algorithmic Design for Adversarial Defenses

Optimization. Theorems 3.1 and 3.2 shed light on algorithmic designs of adversarial defenses. In order to minimize \(R_{\text{rob}}(f) - R_{\text{nat}}^* \), the theorems suggest minimizing
\[
\min_f \mathbb{E}\left\{ \phi(f(X)) + \max_{X' \in B(X, \epsilon)} \phi(f(X), f(X')) / \lambda \right\}.
\]

We name our method TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization).

Intuition behind the optimization. Problem (3) captures the trade-off between the natural and robust errors: the first term in (3) encourages the natural error to be optimized by minimizing the “difference” between \(f(X) \) and \(Y \), while the second regularization term encourages the output to be smooth, that is, it pushes the decision boundary of classifier away from the sample instances via minimizing the “difference” between the prediction of natural example \(f(X) \) and that of adversarial example \(f(X') \). This is conceptually consistent with the argument that smoothness is an indispensable property of robust models [CBG+17]. The tuning parameter \(\lambda \) plays a critical role on balancing the importance of natural and robust errors. To see how the hyperparameter \(\lambda \) affects the solution in the example of Section 2.3, problem (3) tends to the Bayes optimal classifier when \(\lambda \to +\infty \), and tends to the all-one classifier when \(\lambda \to 0 \).

Comparisons with prior works. We compare our approach with several related lines of research in the prior literature. One of the best known algorithms for adversarial defense is based on robust optimization [MMS+18, KW18, WSMK18, RSL18a, RSL18b]. Most results in this direction involve algorithms that approximately minimize
\[
\min_f \mathbb{E}\left\{ \max_{X' \in B(X, \epsilon)} \phi(f(X'), Y) \right\},
\]
where the objective function in problem (4) serves as an upper bound of the robust error \(R_{\text{rob}}(f) \). In complex problem domains, however, this objective function might not be tight as an upper bound of robust error, and may not capture the trade-off between natural and robust errors.

A related line of research is adversarial training by regularization [KGB17, RDV17, ZSLG16]. There are several key differences between the results in this paper and those of [KGB17, RDV17, ZSLG16]. Firstly, the optimization formulations are different. In the previous works, the regularization term either measures the “difference” between \(f(X') \) and \(Y [KGB17] \), or its gradient [RDV17]. In contrast, our regularization term measures the “difference” between \(f(X) \) and \(f(X') \). While [ZSLG16] generated the adversarial example \(X' \) by adding random Gaussian noise to \(X \), our method simulates the adversarial example by solving the inner maximization problem in Eqn. (3). Secondly, we note that the losses in [KGB17, RDV17, ZSLG16] lack of theoretical guarantees. Our loss, with the presence of the second term in problem (3), makes our theoretical analysis significantly more subtle. Moreover, our algorithm takes the same computational resources as adversarial training at scale [KGB17], which makes our method scalable to large-scale datasets. We defer the experimental comparisons of various regularization based methods to Table 5.

Heuristic algorithm. In response to the optimization formulation (3), we use two heuristics to achieve more general defenses: a) extending to multi-class problems by involving multi-class calibrated loss; b) approximately solving the minimax problem via alternating gradient descent. For multi-class problems, a surrogate loss is calibrated if minimizers of the surrogate risk are also minimizers of the 0-1 risk [PS16]. Examples of

\[\text{There is correspondence between the } \lambda \text{ in problem (3) and the } \lambda \text{ in the right hand side of Theorem 3.1, because } \psi^{-1} \text{ is a non-decreasing function. Therefore, in practice we do not need to involve function } \psi^{-1} \text{ in the optimization formulation.}\]
Algorithm 1: Adversarial training by TRADES

1: **Input:** Step sizes η_1 and η_2, batch size m, number of iterations K in inner optimization, network architecture parametrized by θ
2: **Output:** Robust network f_θ
3: Randomly initialize network f_θ, or initialize network with pre-trained configuration
4: **repeat**
5: **for** $i = 1, \ldots, m$ (in parallel) **do**
6: $x'_i \leftarrow x_i + 0.001 \cdot \mathcal{N}(0, I)$, where $\mathcal{N}(0, I)$ is the Gaussian distribution with zero mean and identity variance
7: for $k = 1, \ldots, K$ do
8: $x'_i \leftarrow \Pi_{B(x_i, \epsilon)}(\eta_1 \text{sign}(\nabla_{x'_i} \mathcal{L}(f_\theta(x_i), f_\theta(x'_i))) + x'_i)$, where Π is the projection operator
9: end for
10: $\theta \leftarrow \theta - \eta_2 \sum_{i=1}^{m} \nabla_\theta [\mathcal{L}(f_\theta(x_i), y_i) + \mathcal{L}(f_\theta(x_i), f_\theta(x'_i))/\lambda]/m$
11: end for
12: **until** training converged

multi-class calibrated loss include cross-entropy loss. Algorithmically, we extend problem (3) to the case of multi-class classifications by replacing ϕ with a multi-class calibrated loss $\mathcal{L}(\cdot, \cdot)$:

$$
\min_f \mathbb{E} \left\{ \mathcal{L}(f(X), Y) + \max_{X' \in B(X, \epsilon)} \mathcal{L}(f(X), f(X'))/\lambda \right\},
$$

where $f(X)$ is the output vector of learning model (with softmax operator in the top layer for the cross-entropy loss $\mathcal{L}(\cdot, \cdot)$), Y is the label-indicator vector, and $\lambda > 0$ is the regularization parameter. The pseudocode of adversarial training procedure, which aims at minimizing the empirical form of problem (5), is displayed in Algorithm 1.

The key ingredient of the algorithm is to approximately solve the linearization of inner maximization in problem (5) by the projected gradient descent (see Step 7). We note that x_i is a global minimizer with zero gradient to the objective function $g(x') := \mathcal{L}(f(x_i), f(x'))$ in the inner problem. Therefore, we initialize x'_i by adding a small, random perturbation around x_i in Step 5 to start the inner optimizer. More exhaustive approximations of the inner maximization problem in terms of either optimization formulations or solvers would lead to better defense performance.

5 Experimental Results

In this section, we verify the effectiveness of TRADES by numerical experiments. We denote by $A_{\text{rob}}(f) := 1 - R_{\text{rob}}(f)$ the robust accuracy, and by $A_{\text{nat}}(f) := 1 - R_{\text{nat}}(f)$ the natural accuracy on test dataset. The pixels of input images are normalized to $[0, 1]$. We release our PyTorch code at https://github.com/yaodongyu/TRADES.

5.1 Optimality of Theorem 3.1

We verify the tightness of the established upper bound in Theorem 3.1 for binary classification problem on MNIST dataset. The negative examples are ‘1’ and the positive examples are ‘3’. Here we use a Convolutional Neural Network (CNN) with two convolutional layers, followed by two fully-connected layers. The output size of the last layer is 1. To learn the robust classifier, we minimize the regularized surrogate loss in Eqn. (3), and use the hinge loss in Table 2 as the surrogate loss ϕ, where the associated ψ-transform is $\psi(\theta) = \theta$.
To verify the tightness of our upper bound, we calculate the left hand side in Theorem 3.1, i.e.,
\[\Delta_{LHS} = R_{rob}(f) - R_{nat}^\star, \]
and the right hand side, i.e.,
\[\Delta_{RHS} = (R_\phi(f) - R_\phi^\star) + \max_{X' \in B(X, \epsilon)} \phi(f(X'))f(X)/\lambda. \]

As we cannot have access to the unknown distribution \(D \), we approximate the above expectation terms by test dataset. We first use natural training method to train a classifier so as to approximately estimate \(R_{nat}^\star \) and \(R_\phi^\star \), where we find that the naturally trained classifier can achieve natural error \(R_{nat}^\star = 0\% \), and loss value \(R_\phi^\star = 0 \) for the binary classification problem. Next, we optimize problem (3) to train a robust classifier \(f \). We take perturbation \(\epsilon = 0.1 \), number of iterations \(K = 20 \) and run 30 epochs on the training dataset. Finally, to approximate the second term in \(\Delta_{RHS} \), we use FGSM\(^k \) (white-box) attack (a.k.a. PGD attack) [KGB17] with 20 iterations to approximately calculate the worst-case perturbed data \(X' \).

The results in Table 3 show the tightness of our upper bound in Theorem 3.1. It shows that the differences between \(\Delta_{RHS} \) and \(\Delta_{LHS} \) under various \(\lambda \)'s are very small.

5.2 Sensitivity of regularization hyperparameter \(\lambda \)

The regularization parameter \(\lambda \) is an important hyperparameter in our proposed method. We show how the regularization parameter affects the performance of our robust classifiers by numerical experiments on two datasets, MNIST and CIFAR10. For both datasets, we minimize the loss in Eqn. (5) to learn robust classifiers for multi-class problems, where we choose \(\mathcal{L} \) as the cross-entropy loss.

MNIST setup.
We use the CNN which has two convolutional layers, followed by two fully-connected layers. The output size of the last layer is 10. We set perturbation \(\epsilon = 0.1 \), perturbation step size \(\eta_1 = 0.01 \), number of iterations \(K = 20 \), learning rate \(\eta_2 = 0.01 \), batch size \(m = 128 \), and run 50 epochs on the training dataset.
To evaluate the robust error, we apply FGSM\(^k\) (white-box) attack with 40 iterations and 0.005 step size. The results are in Table 4.

CIFAR10 setup. We apply ResNet-18 [HZRS16] for classification. The output size of the last layer is 10. We set perturbation \(\epsilon = 0.031\), perturbation step size \(\eta_1 = 0.007\), number of iterations \(K = 10\), learning rate \(\eta_2 = 0.1\), batch size \(m = 128\), and run 100 epochs on the training dataset. To evaluate the robust error, we apply FGSM\(^k\) (white-box) attack with 20 iterations and the step size is 0.003. The results are in Table 4.

We observe that as the regularization parameter \(1/\lambda\) increases, the natural accuracy \(A_{\text{nat}}(f)\) decreases while the robust accuracy \(A_{\text{rob}}(f)\) increases, which verifies our theory on the trade-off between robustness and accuracy. Note that for MNIST dataset, the natural accuracy does not decrease too much as the regularization term \(1/\lambda\) increases, which is different from the results of CIFAR10. This is probably because the classification task for MNIST is easier. Meanwhile, our proposed method is not very sensitive to the choice of \(\lambda\). Empirically, when we set the hyperparameter \(1/\lambda\) in \([1, 10]\), our method is able to learn classifiers with both high robustness and high accuracy.

5.3 Adversarial defenses under various attacks

Previously, [ACW18] showed that 7 defenses in ICLR 2018 which relied on obfuscated gradients may easily break down. In this section, we verify the effectiveness of our method with the same experimental setup under both white-box and black-box threat models.
Table 6: Comparisons of TRADES with prior defenses under black-box FGSM attack on the MNIST dataset. The models inside parentheses are source models which provide gradients to adversarial attackers. The defense model ‘Madry’ is the same model as in the antepenultimate line of Table 5. The defense model ‘TRADES’ is the same model as in the penultimate line of Table 5.

Defense Model	Robust Accuracy $A_{rob}(f)$
Madry	97.43% (Natural) 97.38% (Ours)
TRADES	97.63% (Natural) 97.66% (Madry)

Table 7: Comparisons of TRADES with prior defenses under black-box FGSM attack on the CIFAR10 dataset. The models inside parentheses are source models which provide gradients to adversarial attackers. The defense model ‘Madry’ is implemented based on [MMS+18] and defined in Section 5.3.2, and the defense model ‘TRADES’ is the same model as in the 11th line of Table 5.

Defense Model	Robust Accuracy $A_{rob}(f)$
Madry	84.39% (Natural) 66.00% (Ours)
TRADES	87.60% (Natural) 70.14% (Madry)

MNIST setup. We use the CNN architecture in [CW17] with four convolutional layers, followed by three fully-connected layers. We set perturbation $\epsilon = 0.3$, perturbation step size $\eta_1 = 0.01$, number of iterations $K = 40$, learning rate $\eta_2 = 0.01$, batch size $m = 128$, and run 100 epochs on the training dataset.

CIFAR10 setup. We use the same neural network architecture as [MMS+18], i.e., the wide residual network WRN-34-10 [ZK16]. We set perturbation $\epsilon = 0.031$, perturbation step size $\eta_1 = 0.007$, number of iterations $K = 10$, learning rate $\eta_2 = 0.1$, batch size $m = 128$, and run 100 epochs on the training dataset.

5.3.1 White-box attacks

We summarize our results in Table 5 together with the results from [ACW18]. We also implement methods in [ZSLG16, KGB17, RDV17] on the CIFAR10 dataset as they are also regularization based methods. For MNIST dataset, we apply FGSMk (white-box) attack with 40 iterations and the step size is 0.01. For CIFAR10 dataset, we apply FGSMk (white-box) attack with 20 iterations and the step size is 0.003, under which the defense model in [MMS+18] achieves 47.04% robust accuracy. Table 5 shows that our proposed defense method can significantly improve the robust accuracy of models, which is able to achieve robust accuracy as high as 56.61%. We also evaluate our robust model on MNIST dataset under the same threat model as in [SKC18] (C&W white-box attack [CW17]), and the robust accuracy is 99.46%. See appendix for detailed information of models in Table 5.

5.3.2 Black-box attacks

We verify the robustness of our models under black-box attacks. We first train models without using adversarial training on the MNIST and CIFAR10 datasets. We use the same network architectures that are specified in the beginning of this section, i.e., the CNN architecture in [CW17] and the WRN-34-10 architecture in [ZK16]. We denote these models by naturally trained models (Natural). The accuracy of the naturally trained CNN model is 99.50% on the MNIST dataset. The accuracy of the naturally trained WRN-34-10 model is 95.29% on the CIFAR10 dataset. We also implement the method proposed in [MMS+18] on both datasets. We denote these models by Madry’s models (Madry). The accuracy of [MMS+18]’s CNN model is 99.36% on the MNIST dataset. The accuracy of [MMS+18]’s WRN-34-10 model is 85.49% on the CIFAR10 dataset.
For both datasets, we use FGSM\(^k\) (black-box) method to attack various defense models. For MNIST dataset, we set perturbation \(\epsilon = 0.3\) and apply FGSM\(^k\) (black-box) attack with 40 iterations and the step size is 0.01. For CIFAR10 dataset, we set \(\epsilon = 0.031\) and apply FGSM\(^k\) (black-box) attack with 20 iterations and the step size is 0.003. Note that the setup is the same as the setup specified in Section 5.3.1. We summarize our results in Table 6 and Table 7. In both tables, we use two source models (noted in the parentheses) to generate adversarial perturbations: we compute the perturbation directions according to the gradients of the source models on the input images. It shows that our models are more robust against black-box attacks transferred from naturally trained models and [MMS+18]’s models. Moreover, our models can generate stronger adversarial examples for black-box attacks compared with naturally trained models and [MMS+18]’s models.

5.4 Case study: NeurIPS 2018 Adversarial Vision Challenge

Competition settings. In the NeurIPS 2018 Adversarial Vision Challenge [BRK+]18, the adversarial attacks and defenses are under the black-box setting. The dataset in this challenge is Tiny ImageNet, which consists of 550,000 data (with our data augmentation) and 200 classes. The robust models only return label predictions instead of explicit gradients and confidence scores. The task for robust models is to defend against adversarial perturbations: we compute the perturbation directions according to the gradients of the source models on the input images. It shows that our models are more robust against black-box attacks transferred from naturally trained models and [MMS+18]’s models. Moreover, our models can generate stronger adversarial examples for black-box attacks compared with naturally trained models and [MMS+18]’s models.

Competition results. The methodology in this paper was applied to the competition, where our entry ranked the 1st place in the robust model track. We implemented our method to train ResNet models. We report the mean \(\ell_2\) perturbation distance of the top-6 entries in Figure 3. It shows that our method outperforms other approaches with a large margin. In particular, we surpass the runner-up submission by 11.41% in terms of mean \(\ell_2\) perturbation distance.

6 Conclusions

In this paper, we study the problem of adversarial defenses against structural perturbations around input data. We focus on the trade-off between robustness and accuracy, and show an upper bound on the gap between
robust error and optimal natural error. Our result advances the state-of-the-art work and matches the lower bound in the worst-case scenario. The bounds motivate us to minimize a new form of regularized surrogate loss, TRADES, for adversarial training. Experiments on real datasets and NeurIPS 2018 Adversarial Vision Challenge demonstrate the effectiveness of our proposed algorithms. It would be interesting to combine our methods with other related line of research on adversarial defenses, e.g., feature denoising technique [XWvdM+18] and network architecture design [CBG+17], to achieve more robust learning systems.

References

[AAG19] Rima Alaifari, Giovanni S Alberti, and Tandri Gauksson. ADef: an iterative algorithm to construct adversarial deformations. In International Conference on Learning Representations, 2019.

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In International Conference on Machine Learning, 2018.

[Bar01] Franck Barthe. Extremal properties of central half-spaces for product measures. Journal of Functional Analysis, 182(1):81–107, 2001.

[BCZ+18] Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, and Ian Goodfellow. Unrestricted adversarial examples. arXiv preprint arXiv:1809.08352, 2018.

[BJM06] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

[BLPR18] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples from cryptographic pseudo-random generators. arXiv preprint arXiv:1811.06418, 2018.

[BPR18] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational constraints. arXiv preprint arXiv:1805.10204, 2018.

[BRB18] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In International Conference on Learning Representations, 2018.

[BRK+18] Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel Salathé, Sharada P Mohanty, and Matthias Bethge. Adversarial vision challenge. arXiv preprint arXiv:1808.01976, 2018.

[BRRG18] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way to resist adversarial examples. In International Conference on Learning Representations, 2018.

[CBG+17] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval networks: Improving robustness to adversarial examples. In International Conference on Machine Learning, 2017.

[CBM18] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. PAC-learning in the presence of adversaries. In Advances in Neural Information Processing Systems, pages 228–239, 2018.
[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *IEEE Symposium on Security and Privacy*, pages 39–57, 2017.

[DAL+18] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial defense. *arXiv preprint arXiv:1803.01442*, 2018.

[DLP+18] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 9185–9193, 2018.

[ETT+17] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a translation suffice: Fooling CNNs with simple transformations. *arXiv preprint arXiv:1712.02779*, 2017.

[FFF18] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any classifier. In *Advances in Neural Information Processing Systems*, pages 1186–1195, 2018.

[GAG+18] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the rules of the game for adversarial example research. *arXiv preprint arXiv:1807.06732*, 2018.

[GR09] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with noise. *SIAM Journal on Computing*, 39(2):742–765, 2009.

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learning Representations*, 2015.

[HPG+17] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on neural network policies. *arXiv preprint arXiv:1702.02284*, 2017.

[HWC+17] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example defenses: Ensembles of weak defenses are not strong. *arXiv preprint arXiv:1706.04701*, 2017.

[HXSS15] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adversary. *arXiv preprint arXiv:1511.03034*, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

[JL17] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems. In *Empirical Methods in Natural Language Processing*, 2017.

[KGB17] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In *International Conference on Learning Representations*, 2017.

[KW18] J Zico Kolter and Eric Wong. Provably defenses against adversarial examples via the convex outer adversarial polytope. In *International Conference on Machine Learning*, 2018.

[MC17] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In *ACM SIGSAC Conference on Computer and Communications Security*, pages 135–147, 2017.
[MLW⁺18] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Michael E Houle, Grant Schoenebeck, Dawn Song, and James Bailey. Characterizing adversarial subspaces using local intrinsic dimensionality. *arXiv preprint arXiv:1801.02613*, 2018.

[MMS⁺18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018.

[NKM17] Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay. Cascade adversarial machine learning regularized with a unified embedding. *arXiv preprint arXiv:1708.02582*, 2017.

[PS16] Bernardo Ávila Pires and Csaba Szepesvári. Multiclass classification calibration functions. *arXiv preprint arXiv:1609.06385*, 2016.

[RBB17] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models. *arXiv preprint arXiv:1707.04131*, 2017.

[RDV17] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. *arXiv preprint arXiv:1711.09404*, 2017.

[RSL18a] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples. In *International Conference on Learning Representations*, 2018.

[RSL18b] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying robustness to adversarial examples. In *Advances in Neural Information Processing Systems*, pages 10899–10909, 2018.

[SKC18] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against adversarial attacks using generative models. *arXiv preprint arXiv:1805.06605*, 2018.

[SKN⁺18] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging generative models to understand and defend against adversarial examples. In *International Conference on Learning Representations*, 2018.

[SND18] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled adversarial training. In *International Conference on Learning Representations*, 2018.

[SST⁺18] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Mądry. Adversarially robust generalization requires more data. In *Advances in Neural Information Processing Systems 31*, pages 5019–5031, 2018.

[SYN15] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing local stability of neural nets through robust optimization. *arXiv preprint arXiv:1511.05432*, 2015.

[SZC⁺18] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the cost of accuracy? — a comprehensive study on the robustness of 18 deep image classification models. In *European Conference on Computer Vision*, 2018.
[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[TKP+18] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In International Conference on Learning Representations, 2018.

[TSE+19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. In International Conference on Learning Representations, 2019.

[TV16] Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In International Joint Conference on Neural Networks, pages 426–433, 2016.

[UOKvdO18] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron van den Oord. Adversarial risk and the dangers of evaluating against weak attacks. In International Conference on Machine Learning, pages 5025–5034, 2018.

[VNS+18] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio Savarese. Generalizing to unseen domains via adversarial data augmentation. In Advances in Neural Information Processing Systems, pages 5339–5349, 2018.

[WSMK18] E Wong, F Schmidt, JH Metzen, and JZ Kolter. Scaling provable adversarial defenses. In Advances in Neural Information Processing Systems, 2018.

[XWvdM+18] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.

[XWZ+17] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial examples for semantic segmentation and object detection. In International Conference on Computer Vision, 2017.

[XZL+18] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially transformed adversarial examples. In International Conference on Learning Representations, 2018.

[YRB18] Dong Yin, Kannan Ramchandran, and Peter Bartlett. Rademacher complexity for adversarially robust generalization. arXiv preprint arXiv:1810.11914, 2018.

[ZCS+19] Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and Cho-Jui Hsieh. The limitations of adversarial training and the blind-spot attack. In International Conference on Learning Representations, 2019.

[Zha02] Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527–550, 2002.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference, 2016.

[ZSLG16] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep neural networks via stability training. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4480–4488, 2016.
[ZSS18] Hongyang Zhang, Junru Shao, and Ruslan Salakhutdinov. Deep neural networks with multi-branch architectures are less non-convex. *arXiv preprint arXiv:1806.01845*, 2018.

[ZXJ+18] Hongyang Zhang, Susu Xu, Jiantao Jiao, Pengtao Xie, Ruslan Salakhutdinov, and Eric P Xing. Stackelberg GAN: Towards provable minimax equilibrium via multi-generator architectures. *arXiv preprint arXiv:1811.08010*, 2018.
A Other Related Works

Attack methods. Although deep neural networks have achieved great progress in various areas [ZXJ+18, ZSS18], they are brittle to adversarial attacks. Adversarial attacks have been extensively studied in the recent years. One of the baseline attacks to deep neural networks is the Fast Gradient Sign Method (FGSM) [GSS15]. FGSM computes an adversarial example as

\[x' := x + \epsilon \text{sign}(\nabla_x \phi(f(x)y)), \]

where \(x \) is the input instance, \(y \) is the label, \(f : \mathcal{X} \rightarrow \mathbb{R} \) is the score function (parametrized by deep neural network for example) which maps an instance to its confidence value of being positive, and \(\phi(\cdot) \) is a surrogate of 0-1 loss. A more powerful yet natural extension of FGSM is the multi-step variant FGSM\(^k\) (also known as PGD attack) [KGB17]. FGSM\(^k\) applies projected gradient descent by \(k \) times:

\[x'_{t+1} := \Pi_{B(x,\epsilon)}(x'_t + \epsilon \text{sign}(\nabla_x \phi(f(x'_t)y))), \]

where \(x'_t \) is the \(t \)-th iteration of the algorithm with \(x'_0 := x \) and \(\Pi_{B(x,\epsilon)} \) is the projection operator onto the ball \(B(x,\epsilon) \). Both FGSM and FGSM\(^k\) are approximately solving (the linear approximation of) maximization problem:

\[\max_{x' \in B(x,\epsilon)} \phi(f(x')y). \]

They can be adapted to the purpose of black-box attacks by running the algorithms on another similar network which is white-box to the algorithms [TKP+18]. Though defenses that cause obfuscated gradients defeat iterative optimization based attacks, [ACW18] showed that defenses relying on this effect can be circumvented. Other attack methods include MI-FGSM [DLP+18] and LBFGS attacks [TV16].

Robust optimization based defenses. Compared with attack methods, adversarial defense methods are relatively fewer. Robust optimization based defenses are inspired by the above-mentioned attacks. Intuitively, the methods train a network by fitting its parameters to the adversarial examples:

\[\min_{f} \mathbb{E} \left\{ \max_{x' \in B(x,\epsilon)} \phi(f(x')Y) \right\}. \]

Following this framework, [HXSS15, SYN15] considered one-step adversaries, while [MMS+18] worked with multi-step methods for the inner maximization problem. There are, however, two critical differences between the robust optimization based defenses and the present paper. Firstly, robust optimization based defenses lack of theoretical guarantees. Secondly, such methods do not consider the trade-off between accuracy and robustness.

Relaxation based defenses. We mention another related line of research in adversarial defenses—relaxation based defenses. Given that the inner maximization in problem (6) might be hard to solve due to the non-convexity nature of deep neural networks, [KW18] and [RSL18a] considered a convex outer approximation of the set of activations reachable through a norm-bounded perturbation for one-hidden-layer neural networks. [WSMK18] later scaled the methods to larger models, and [RSL18b] proposed a tighter convex approximation. [SND18, VNS+18] considered a Lagrangian penalty formulation of perturbing the underlying data distribution in a Wasserstein ball. These approaches, however, do not apply when the activation function is ReLU.

Theoretical progress. Despite a large amount of empirical works on adversarial defenses, many fundamental questions remain open in theory. There are a few preliminary explorations in recent years. [FFF18] derived upper bounds on the robustness to perturbations of any classification function, under the assumption that the data is generated with a smooth generative model. From computational aspects, [BPR18, BLPR18] showed that adversarial examples in machine learning are likely not due to information-theoretic limitations, but rather it
B Proofs of Main Results

In this section, we provide the proofs of our main results.

B.1 Proofs of Theorem 3.1

We denote by \(f^*(\cdot) := 2\eta(\cdot) - 1 \) the Bayes decision rule throughout the proofs.

Lemma B.1. For any classifier \(f \), we have

\[
\mathcal{R}_{\text{rob}}(f) - \mathcal{R}^*_\text{nat} = \mathbb{E}[1\{\text{sign}(f(X)) \neq \text{sign}(f^*(X)), X \in \mathbb{B}(DB(f), \epsilon)_0\} | 2\eta(X) - 1] + \Pr[X \in \mathbb{B}(DB(f), \epsilon), \text{sign}(f^*(X)) = Y].
\]

Proof. For any classifier \(f \), we have

\[
\Pr(\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) \neq Y | X = x) = \Pr(Y = 1, \exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) = -1 | X = x) + \Pr(Y = -1, \exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) = 1 | X = x)
\]

\[
= \mathbb{E}[1\{Y = 1\}1\{\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) = -1\} | X = x] + \mathbb{E}[1\{Y = -1\}1\{\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) = 1\} | X = x]
\]

\[
= 1\{\exists x' \in \mathbb{B}(x, \epsilon) \text{ s.t. } \text{sign}(f(x')) = -1\} \mathbb{E}1\{Y = 1 | X = x\} + 1\{\exists x' \in \mathbb{B}(x, \epsilon) \text{ s.t. } \text{sign}(f(x')) = 1\} \mathbb{E}1\{Y = -1 | X = x\}
\]

\[
= 1\{\exists x' \in \mathbb{B}(x, \epsilon) \text{ s.t. } \text{sign}(f(x')) = -1\} \eta(x) + 1\{\exists x' \in \mathbb{B}(x, \epsilon) \text{ s.t. } \text{sign}(f(x')) = 1\} (1 - \eta(x))
\]

\[
= \begin{cases}
1, & x \in \mathbb{B}(DB(f), \epsilon), \\
1\{\text{sign}(f(x)) = -1\} (2\eta(x) - 1) + (1 - \eta(x)), & \text{otherwise}.
\end{cases}
\]

Therefore,

\[
\mathcal{R}_{\text{rob}}(f) = \int_{\mathcal{X}} \Pr(\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) \neq Y | X = x) d\Pr_X(x)
\]

\[
= \int_{\mathbb{B}(DB(f), \epsilon)} \Pr(\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) \neq Y | X = x) d\Pr_X(x)
\]

\[
+ \int_{\mathbb{B}(DB(f), \epsilon)} \Pr(\exists X' \in \mathbb{B}(X, \epsilon) \text{ s.t. } \text{sign}(f(X')) \neq Y | X = x) d\Pr_X(x)
\]

\[
= \Pr(X \in \mathbb{B}(DB(f), \epsilon)) + \int_{\mathbb{B}(DB(f), \epsilon)} \{1\{\text{sign}(f(x)) = -1\} (2\eta(x) - 1) + (1 - \eta(x))\} d\Pr_X(x).
\]
We have
\[
\mathcal{R}_{\text{rob}}(f) - \mathcal{R}_{\text{nat}}(f^*)
\]
\[
= \Pr(X \in B(\text{DB}(f), \epsilon)) + \int_{B(\text{DB}(f), \epsilon)^\perp} [\{\text{sign}(f(x)) = -1\}(2\eta(x) - 1) + (1 + \eta(x))]|d\Pr_X(x)
\]
\[
- \int_{B(\text{DB}(f), \epsilon)^\perp} [\{\text{sign}(f^*(x)) = -1\}(2\eta(x) - 1) + (1 + \eta(x))]|d\Pr_X(x)
\]
\[
- \int_{B(\text{DB}(f), \epsilon)} [\{\text{sign}(f^*(x)) = -1\}(2\eta(x) - 1) + (1 - \eta(x))]|d\Pr_X(x)
\]
\[
= \Pr(X \in B(\text{DB}(f), \epsilon)) - \int_{B(\text{DB}(f), \epsilon)} [\{\text{sign}(f^*(x)) = -1\}(2\eta(x) - 1) + (1 - \eta(x))]|d\Pr_X(x)
\]
\[
+ \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2), X \in B(\text{DB}(f), \epsilon)^\perp\}|2\eta(X) - 1]\]
\[
= \Pr(X \in B(\text{DB}(f), \epsilon)) - \mathbb{E}[\{X \in B(\text{DB}(f), \epsilon)\} \min\{\eta(X), 1 - \eta(X)\}]
\]
\[
+ \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2), X \in B(\text{DB}(f), \epsilon)^\perp\}|2\eta(X) - 1]\]
\[
= \mathbb{E}[\{X \in B(\text{DB}(f), \epsilon)\} \max\{\eta(X), 1 - \eta(X)\}]
\]
\[
+ \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2), X \in B(\text{DB}(f), \epsilon)^\perp\}|2\eta(X) - 1]\]
\[
= \Pr[X \in B(\text{DB}(f), \epsilon), \text{sign}(f^*(X)) = \text{Y}]
\]
\[
+ \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(f^*(X)), X \in B(\text{DB}(f), \epsilon)^\perp\}|2\eta(X) - 1].
\]

Now we are ready to prove Theorem 3.1.

Theorem 3.1 (restated). Under Assumption 1, for any non-negative loss function \(\phi\) such that \(\phi(0) \geq 1\), any measurable \(f : \mathcal{X} \to \mathbb{R}\), any probability distribution on \(\mathcal{X} \times \{\pm 1\}\), and any \(\lambda > 0\), we have
\[
\mathcal{R}_{\text{rob}}(f) - \mathcal{R}_{\text{nat}}^*(f^*) \leq \psi^{-1}(\mathcal{R}_\phi(f) - \mathcal{R}_\phi^*) + \Pr[X \in B(\text{DB}(f), \epsilon), c_0(X) = \text{Y}]
\]
\[
\leq \psi^{-1}(\mathcal{R}_\phi(f) - \mathcal{R}_\phi^*) + \mathbb{E}\max_{X' \in B(\epsilon, \epsilon)} \phi(f(X')) f(X)/\lambda,
\]
where \(\mathcal{R}_\phi^* := \min_f \mathcal{R}_\phi(f)\) and \(c_0(\cdot) = \text{sign}(2\eta(\cdot) - 1)\) is the Bayes optimal classifier.

Proof. By Lemma B.1, we note that
\[
\psi(\mathcal{R}_{\text{rob}}(f) - \mathcal{R}_{\text{nat}}(f^*)) - \Pr[X \in B(\text{DB}(f), \epsilon), \text{sign}(f^*(X)) = \text{Y}]
\]
\[
= \psi(\mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(f^*(X)), X \in B(\text{DB}(f), \epsilon)^\perp\}|\eta(X) - 1])
\]
\[
\leq \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(f^*(X)), X \in B(\text{DB}(f), \epsilon)^\perp\} \psi(|\eta(X) - 1|)]
\]
\[
\leq \mathbb{E}[\{\text{sign}(f(X)) \neq \text{sign}(f^*(X))\} \psi(|\eta(X) - 1|)]
\]
\[
= \mathbb{E}\left[\inf_{\alpha : \alpha(2\eta(X) - 1) \leq 0} C_{\eta}(\alpha) - H(\eta(X))\right]
\]
\[
= \mathbb{E}[C_{\eta}(X) f(X) - H(\eta(X))]
\]
\[
= \mathcal{R}_\phi(f) - \mathcal{R}_\phi^*.
\]
Also, notice that
\[
\Pr[X \in \mathcal{B}(\text{DB}(f), \epsilon), \text{sign}(f^*(X)) = Y] \leq \Pr[X \in \mathcal{B}(\text{DB}(f), \epsilon)]
\]
\[
= \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} 1 \{f(X') \neq f(X)\}
\]
\[
= \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} 1 \{f(X')f(X)/\lambda < 0\}
\]
\[
\leq \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} \phi(f(X')f(X)/\lambda),
\]
as desired.

\[\square\]

B.2 Proofs of Theorem 3.2

Theorem 3.2 (restated). Suppose that \(|\mathcal{X}| \geq 2\). Under Assumption 1, for any non-negative loss function \(\phi\) such that \(\phi(x) \rightarrow 0\) as \(x \rightarrow +\infty\), any \(\xi \geq 0\), and any \(\theta \in [0, 1]\), there exists a probability distribution on \(\mathcal{X} \times \{\pm 1\}\), a function \(f : \mathbb{R}^d \rightarrow \mathbb{R}\), and a regularization parameter \(\lambda > 0\) such that \(R_{\text{rob}}(f) - R^*_\text{nat} = \theta\) and

\[
\psi(\theta - \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} \phi(f(X')f(X)/\lambda)) \leq R_\phi(f) - R^*_\phi \leq \psi(\theta - \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} \phi(f(X')f(X)/\lambda)) + \xi.
\]

Proof. The first inequality follows from Theorem 3.1. Thus it suffices to prove the second inequality.

Fix \(\epsilon > 0\) and \(\theta \in [0, 1]\). By the definition of \(\psi\) and its continuity, we can choose \(\gamma, \alpha_1, \alpha_2 \in [0, 1]\) such that \(\theta = \gamma \alpha_1 + (1 - \gamma) \alpha_2\) and \(\psi(\theta) \geq \gamma \psi(\alpha_1) + (1 - \gamma) \psi(\alpha_2) - \epsilon/3\). For two distinct points \(x_1, x_2 \in \mathcal{X}\), we set \(\mathcal{P}_x\) such that \(\Pr[X = x_1] = \gamma, \Pr[X = x_2] = 1 - \gamma, \eta(x_1) = (1 + \alpha_1)/2\), and \(\eta(x_2) = (1 + \alpha_2)/2\). By the definition of \(H^-\), we choose function \(f : \mathbb{R}^d \rightarrow \mathbb{R}\) such that \(f(x) < 0\) for all \(x \in \mathcal{X}, C_{\eta(x_1)}(f(x_1)) \leq H^-(\eta(x_1)) + \epsilon/3\), and \(C_{\eta(x_2)}(f(x_2)) \leq H^-(\eta(x_2)) + \epsilon/3\). By the continuity of \(\psi\), there is an \(\epsilon' > 0\) such that \(\psi(\theta) \leq \psi(\theta - \epsilon_0) + \epsilon/3\) for all \(0 \leq \epsilon_0 < \epsilon'\). We also note that there exists an \(\lambda_0 > 0\) such that for any \(0 < \lambda < \lambda_0\), we have

\[
0 \leq \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} \phi(f(X')f(X)/\lambda) < \epsilon'.
\]

Thus, we have

\[
R_\phi(f) - R^*_\phi = \mathbb{E} \phi(Yf(X)) - \inf_f \mathbb{E} \phi(Yf(X))
\]
\[
= \mathbb{E} \phi(Yf(x_1)) - \mathbb{E} \phi(Yf(x_2))
\]
\[
\leq \gamma \psi(\alpha_1) + (1 - \gamma) \psi(\alpha_2) + \epsilon/3
\]
\[
\leq \psi(\theta + 2\epsilon/3)
\]
\[
\leq \psi\left(\theta - \mathbb{E} \max_{X' \in \mathcal{B}(X, \epsilon)} \phi(f(X')f(X)/\lambda)\right) + \epsilon.
\]

Furthermore, by Lemma B.1,

\[
R_{\text{rob}}(f) - R^*_\text{nat} = \mathbb{E}[1 \{\text{sign}(f(X)) \neq \text{sign}(f^*(X)), X \in \mathcal{B}(\text{DB}(f), \epsilon)\} | 2\eta(X) - 1] + \Pr[X \in \mathcal{B}(\text{DB}(f), \epsilon), \text{sign}(f^*(X)) = Y]
\]
\[
= \mathbb{E}[2\eta(X) - 1]
\]
\[
= \gamma(2\eta(x_1) - 1) + (1 - \gamma)(2\eta(x_2) - 1)
\]
\[
= \theta,
\]
where \(f^*\) is the Bayes optimal classifier which outputs “positive” for all data points.

\[\square\]
C Extra Theoretical Results

In this section, we provide extra theoretical results for adversarial defenses.

C.1 Adversarial vulnerability under log-concave distributions

Theorem 3.1 states that for any classifier \(f \), the value \(\Pr[X \in B(DB(f), \epsilon)] \) characterizes the robustness of the classifier. In this section, we show that among all classifiers such that \(\Pr[\text{sign}(f(X)) = +1] = 1/2 \), linear classifier minimizes

\[
\liminf_{\epsilon \to +0} \frac{\Pr[X \in B(DB(f), \epsilon)]}{\epsilon},
\]

provided that the marginal distribution over \(X \) is products of log-concave measures. A measure is log-concave if the logarithm of its density is a concave function. The class of log-concave measures contains many well-known (classes of) distributions as special cases, such as Gaussian and uniform measure over ball.

Our results are inspired by the isoperimetric inequality of log-concave distributions by the work of [Bar01]. Intuitively, the isoperimetric problem consists in finding subsets of prescribed measure, such that its measure increases the less under enlargement. Our analysis leads to the following guarantee on the quantity (7).

Theorem C.1. Let \(\mu \) be an absolutely continuous log-concave probability measure on \(\mathbb{R} \) with even density function and let \(\mu^\otimes d \) be the products of \(\mu \) with dimension \(d \). Denote by \(d\mu = e^{-M(x)} \), where \(M : \mathbb{R} \to [0, \infty] \) is convex. Assume that \(M(0) = 0 \). If \(\sqrt{M(x)} \) is a convex function, then for every integer \(d \) and any classifier \(f \) with \(\Pr[\text{sign}(f(X)) = +1] = 1/2 \), we have

\[
\liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \mu^\otimes d}[X \in B(DB(f), \epsilon)]}{\epsilon} \geq c
\]

for an absolute constant \(c > 0 \). Furthermore, among all such probability measures and classifiers, the linear classifier over products of Gaussian measure with mean 0 and variance \(1/(2\pi) \) achieves the lower bound.

Theorem C.1 claims that under the products of log-concave distributions, the quantity \(\Pr[X \in B(DB(f), \epsilon)] \) increases with rate at least \(\Omega(\epsilon) \) for all classifier \(f \), among which the linear classifier achieves the minimal value.

C.1.1 Proofs of Theorem C.1

For a Borel set \(A \) and for \(\epsilon > 0 \), denote by \(A_\epsilon = \{ x : d(x, A) \leq \epsilon \} \). The boundary measure of \(A \) is then defined as

\[
\mu^+(A) = \liminf_{\epsilon \to +0} \frac{\mu(A_\epsilon) - \mu(A)}{\epsilon}.
\]

The isoperimetric function is

\[
I_\mu = \inf\{ \mu^+(A) : \mu(A) = 1/2 \}.
\]

Before proceeding, we cite the following results from [Bar01].

Lemma C.2 (Theorem 9, [Bar01]). Let \(\mu \) be an absolutely continuous log-concave probability measure on \(\mathbb{R} \) with even density function. Denote by \(d\mu = e^{-M(x)} \), where \(M : \mathbb{R} \to [0, \infty] \) is convex. Assume that \(M(0) = 0 \). If \(\sqrt{M(x)} \) is a convex function, then for every integer \(d \), we have \(I_{\mu^\otimes d} \geq I_{\gamma^\otimes d} \), where \(\gamma \) is the Gaussian measure with mean 0 and variance \(1/(2\pi) \). In particular, among sets of measure \(1/2 \) for \(\mu^\otimes d \), the halfspace \([0, \infty) \times \mathbb{R}^{d-1} \) is solution to the isoperimetric problem (8).

Now we are ready to prove Theorem C.1.
Figure 4: **Left figure:** boundary neighborhood of linear classifier. **Right figure:** boundary neighborhood of non-linear classifier. Theorem C.1 shows that the mass of S_{linear} is smaller than the mass of $S_{\text{non-linear}}$, provided that the underlying distribution over the instance space is the products of log-concave distribution on the real line.

Proof. We note that

$$\Pr[X \in B(DB(f), \epsilon)] = \Pr[X \in B(DB(f), \epsilon), \text{sign}(f(X)) = +1] + \Pr[X \in B(DB(f), \epsilon), \text{sign}(f(X)) = -1].$$

To apply Lemma C.2, we set the A in Lemma C.2 as the event $\{\text{sign}(f(X)) = +1\}$. Therefore, the set $\mathcal{A}_{\epsilon} = \{X \in B(DB(f), \epsilon), \text{sign}(f(X)) = -1\}$.

By Lemma C.2, we know that for linear classifier f_0 which represents the halfspace $[0, \infty) \times \mathbb{R}^{d-1}$, and any classifier f,

$$\liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \mu \otimes d}[X \in B(DB(f), \epsilon), \text{sign}(f(X)) = -1] - \Pr[\text{sign}(f(X)) = +1]}{\epsilon} \geq \liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \gamma \otimes d}[X \in B(DB(f_0), \epsilon), \text{sign}(f_0(X)) = -1] - \Pr[\text{sign}(f_0(X)) = +1]}{\epsilon}. \tag{9}$$

Similarly, we have

$$\liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \mu \otimes d}[X \in B(DB(f), \epsilon), \text{sign}(f(X)) = +1] - \Pr[\text{sign}(f(X)) = -1]}{\epsilon} \geq \liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \gamma \otimes d}[X \in B(DB(f_0), \epsilon), \text{sign}(f_0(X)) = +1] - \Pr[\text{sign}(f_0(X)) = -1]}{\epsilon}. \tag{10}$$

Adding both sides of Eqns. (9) and (10), we have

$$\liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \mu \otimes d}[X \in B(DB(f), \epsilon)]}{\epsilon} \geq \liminf_{\epsilon \to +0} \frac{\Pr_{X \sim \gamma \otimes d}[X \in B(DB(f_0), \epsilon)]}{\epsilon} \geq c.$$
C.2 Margin based generalization bounds

Before proceeding, we first cite a useful lemma. We say that function $f_1 : \mathbb{R} \rightarrow \mathbb{R}$ and $f_2 : \mathbb{R} \rightarrow \mathbb{R}$ have a γ separator if there exists a function $f_3 : \mathbb{R} \rightarrow \mathbb{R}$ such that $|h_1 - h_2| \leq \gamma$ implies $f_1(h_1) \leq f_3(h_2) \leq f_2(h_1)$. For any given function f_1 and $\gamma > 0$, one can always construct f_2 and f_3 such that f_1 and f_2 have a γ-separator f_3 by setting $f_2(h) = \sup_{|h-h'| \leq 2\gamma} f_1(h')$ and $f_3(h) = \sup_{|h-h'| \leq \gamma} f_1(h')$.

Lemma C.3 (Corollary 1, [Zha02]). Let f_1 be a function $\mathbb{R} \rightarrow \mathbb{R}$. Consider a family of functions $f_2^\gamma : \mathbb{R} \rightarrow \mathbb{R}$, parametrized by γ, such that $0 \leq f_1 \leq f_2^0 \leq 1$. Assume that for all γ, f_1 and f_2^γ has a γ separator. Assume also that $f_2^\gamma(z) \geq f_2^{\gamma'}(z)$ when $\gamma \geq \gamma'$. Let $\gamma_1 > \gamma_2 > \ldots$ be a decreasing sequence of parameters, and p_i be a sequence of positive numbers such that $\sum_{i=1}^{\infty} p_i = 1$, then for all $\eta > 0$, with probability of at least $1 - \delta$ over data:

$$\mathbb{E}_{(X,Y) \sim D} f_1(\mathcal{L}(w, X, Y)) \leq \frac{1}{n} \sum_{i=1}^{n} f_2^\gamma(\mathcal{L}(w, x_i, y_i)) + \sqrt{\frac{32}{n} \left(\ln 4 N_\infty(\mathcal{L}, \gamma, x_1:n) + \ln \frac{1}{\rho \delta} \right)}$$

for all w and γ, where for each fixed γ, we use i to denote the smallest index such that $\gamma_i \leq \gamma$.

Lemma C.4 (Theorem 4, [Zha02]). If $\|x\|_p \leq b$ and $\|x\|_q \leq a$, where $2 \leq p < \infty$ and $1/p + 1/q = 1$, then $\forall \gamma > 0$,

$$\log_2 N_\infty(\mathcal{L}, \gamma, n) \leq 36(p - 1) \frac{a^2 b^2}{\gamma^2} \log_2 \left[2 \left(4ab/\gamma + 2\right) + 1\right].$$

Theorem C.5. Suppose that the data is 2-norm bounded by $\|x\|_2 \leq b$. Consider the family Γ of linear classifier w with $\|w\|_2 = 1$. Let $\mathcal{R}_{\text{rob}}(w) := \mathbb{E}_{(X,Y) \sim D} 1[\exists X^{\text{rob}} \in \mathbb{B}(X, \epsilon) \text{ such that } Y w^T X^{\text{rob}} \leq 0]$. Then with probability at least $1 - \delta$ over n random samples $(x_i, y_i) \sim D$, for all margin width $\gamma > 0$ and $w \in \Gamma$, we have

$$\mathcal{R}_{\text{rob}}(w) \leq \frac{1}{n} \sum_{i=1}^{n} 1(\exists x_i^{\text{rob}} \in \mathbb{B}(x_i, \epsilon) \text{ s.t. } y_i w^T x_i^{\text{rob}} \leq 2\gamma) + \sqrt{\frac{C}{n} \left(\frac{b^2}{\gamma^2} \ln n + \ln \frac{1}{\delta} \right)}.$$

Proof. The theorem is a straightforward result of Lemmas C.3 and C.4 with

$$\mathcal{L}(w, x, y) = \min_{x^{\text{rob}} \in \mathbb{B}(x, \epsilon)} y w^T x^{\text{rob}},$$

$$f_1(g) = 1(g \leq 0) \quad \text{and} \quad f_2^\gamma(h) = \sup_{|g-h| \leq 2\gamma} f_1(g - 2\gamma) = 1(g \leq 2\gamma),$$

and $\gamma_i = b/2^i$ and $p_i = 1/2^i$. \hfill \Box

We note that for the ℓ_2 ball $\mathbb{B}_2(x, \epsilon) = \{x' : \|x - x'\|_2 \leq \epsilon\}$, we have

$$1(\exists x_i^{\text{rob}} \in \mathbb{B}(x_i, \epsilon) \text{ s.t. } y_i w^T x_i^{\text{rob}} \leq 2\gamma) = \max_{x_i^{\text{rob}} \in \mathbb{B}(x_i, \epsilon)} 1(y_i w^T x_i^{\text{rob}} \leq 2\gamma) = 1(y_i w^T x_i \leq 2\gamma + \epsilon).$$

Therefore, we can design the following algorithm—Algorithm 2.

D Extra Experimental Results

In this section, we provide extra experimental results to verify the effectiveness of our proposed method TRADES.
Algorithm 2 Adversarial Training of Linear Separator via Structural Risk Minimization

1: **Input:** Samples \((x_{1:n}, y_{1:n}) \sim D\), a bunch of margin parameters \(\gamma_1, \ldots, \gamma_T\)
2: **Output:** Hypothesis \(w_k^*\)
3: for \(k = 1, 2, \ldots, T\) do
4: Solve the minimax optimization problem:
 \[
 L_k(w_k^*, x_{1:n}, y_{1:n}) = \min_{w \in S(0, 1)} \frac{1}{n} \sum_{i=1}^{n} \max_{x_{i}^{\text{rob}} \in B(x_i, \epsilon)} 1(y_i w^T x_{i}^{\text{rob}} \leq 2\gamma_k)
 \]
 \[
 = \min_{w \in S(0, 1)} \frac{1}{n} \sum_{i=1}^{n} 1(y_i w^T x_i \leq 2\gamma_k + \epsilon)
 \]
5: end for
6: \(k^* = \arg\min_k L_k(w_k^*, x_{1:n}, y_{1:n}) + \sqrt{\frac{C}{n} \left(\frac{\nu^2}{\gamma_k^2} \ln n + \ln \frac{1}{\delta} \right)}\)

D.1 Experimental setup in Section 5.3.1

We use the same model, i.e., the WRN-34-10 architecture in [ZK16], to implement the methods in [ZSLG16], [KGB17] and [RDV17]. The experimental setup is the same as TRADES, which is specified in the beginning of Section 5. For example, we use the same batch size and learning rate for all the methods. More specifically, we find that using one-step adversarial perturbation method like FGSM in the regularization term, defined in [KGB17], cannot defend against FGSM\(^k\) (white-box) attack. Therefore, we use FGSM\(^k\) with the cross-entropy loss to calculate the adversarial example \(X'\) in the regularization term, and the perturbation step size \(\eta_1\) and number of iterations \(K\) are the same as in the beginning of Section 5.

As for defense models in Table 5, we implement the ‘TRADES’ models, the models trained by using other regularization losses in [KGB17, RDV17, ZSLG16], and the defense model ‘Madry’ in the antepenultimate line of Table 5. We evaluate [WSMK18]’s model based on the checkpoint provided by the authors. The rest of the models in Table 5 are reported in [ACW18].

D.2 Extra attack results in Section 5.3.1

Extra white-box attack results are provided in Table 8.

Defense	Under which attack	Dataset	Distance	\(A_{\text{nat}}(f)\)	\(A_{\text{rob}}(f)\)
TRADES \((1/\lambda = 1)\)	FGSM	CIFAR10	0.031 (\(\ell_\infty\))	88.64%	56.38%
TRADES \((1/\lambda = 1)\)	DeepFool (\(\ell_2\))	CIFAR10	0.031 (\(\ell_\infty\))	88.64%	84.49%
TRADES \((1/\lambda = 6)\)	FGSM	CIFAR10	0.031 (\(\ell_\infty\))	84.92%	61.06%
TRADES \((1/\lambda = 6)\)	DeepFool (\(\ell_2\))	CIFAR10	0.031 (\(\ell_\infty\))	84.92%	81.55%

D.3 Experimental setup in Section 5.3.2

The robust accuracy of [MMS+18]’s CNN model is 96.01% on the MNIST dataset. The robust accuracy of [MMS+18]’s WRN-34-10 model is 47.66% on the CIFAR10 dataset. Note that we use the same white-box attack method introduced in the Section 5.3.1, i.e., FGSM\(^{20}\), to evaluate the robust accuracies of Madry’s models.
D.4 Extra attack results in Section 5.3.2

Extra black-box attack results are provided in Table 9 and Table 10. We apply black-box FGSM attack on the MNIST dataset and the CIFAR10 dataset.

Table 9: Comparisons of TRADES with prior defense models under black-box FGSM attack on the MNIST dataset. The models inside parentheses are source models which provide gradients to adversarial attackers.

Defense Model	Robust Accuracy $A_{rob}(f)$
Madry	97.68% (Natural) 98.11% (Ours)
TRADES	97.75% (Natural) 98.44% (Madry)

Table 10: Comparisons of TRADES with prior defense models under black-box FGSM attack on the CIFAR10 dataset. The models inside parentheses are source models which provide gradients to adversarial attackers.

Defense Model	Robust Accuracy $A_{rob}(f)$
Madry	84.02% (Natural) 67.66% (Ours)
TRADES	86.84% (Natural) 71.52% (Madry)

D.5 Interpretability of the robust models trained by TRADES

In this section, we show that models trained by TRADES have strong interpretability.

D.5.1 Adversarial examples on MNIST and CIFAR10 datasets

We show adversarial examples on MNIST and CIFAR10. We apply foolbox 3 [RBB17] to generate adversarial examples, which is able to return the smallest adversarial perturbations under the ℓ_∞-norm distance. The adversarial examples are generated by using FGSM$_k$ (white-box) attack on the models described in Section 5, including Natural models, Madry’s models and TRADES models. Note that the FGSM$_k$ attack is foolbox.attacks.LinfinityBasicIterativeAttack in foolbox. See Figure 5 and Figure 6 for the adversarial examples of different models on the MNIST and CIFAR10 datasets.

D.5.2 Adversarial examples on Bird-or-Bicycle dataset

We find that the robust models trained by TRADES have strong interpretability. To see this, we apply a (spatial-tranformation-invariant) variant of TRADES to train ResNet-50 models in response to the unrestricted adversarial examples in the Bird-or-Bicycle competition [BCZ$^+$18]. The dataset in the competition is Bird-or-Bicycle, which consists of 30,000 pixel-224 × 224 images with label either ‘bird’ or ‘bicycle’. The unrestricted threat models include structural perturbations, rotations, translations, resizing, 17+ common corruptions, etc. Please refer to [BCZ$^+$18] for more detailed setup of the competition.

We show in Figures 7 and 8 the adversarial examples by the boundary attack with random spatial transformation on our robust model trained by the variant of TRADES. The boundary attack [BRB18] is a black-box attack method which searches for data points near the decision boundary and attack robust models by these data points. Therefore, the adversarial images obtained by boundary attack characterize the images around the decision boundary of robust models. We attack our model by boundary attack with random spatial transformations, a baseline in the competition. The classification accuracy on the adversarial test data is as high as 95% (at 80% coverage), even though the adversarial corruptions are perceptible to human. We observe that the robust model trained by TRADES has strong interpretability: in Figure 7 all of adversarial images have obvious feature of ‘bird’, while in Figure 8 all of adversarial images have obvious feature of ‘bicycle’. This shows that images around the decision boundary of truly robust model have features of both classes.

3Link: https://foolbox.readthedocs.io/en/latest/index.html
Figure 5: Adversarial examples on MNIST dataset. In each subfigure, the image in the first row is the original image and we list the corresponding correct label beneath the image. We show the perturbed images in the second row. The differences between the perturbed images and the original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed image and the perturbation are generated by FGSM\(^k\) (white-box) attack on the model listed below. The labels beneath the perturbed images are the predictions of the corresponding models, which are different from the correct labels. We record the smallest perturbations in terms of \(\ell_\infty\) norm that make the models predict a wrong label.
Figure 6: Adversarial examples on CIFAR10 dataset. In each subfigure, the image in the first row is the original image and we list the corresponding correct label beneath the image. We show the perturbed images in the second row. The differences between the perturbed images and the original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed image and the perturbation are generated by FGSM^k (white-box) attack on the model listed below. The labels beneath the perturbed images are the predictions of the corresponding models, which are different from the correct labels. We record the smallest perturbations in terms of ℓ_∞ norm that make the models predict a wrong label (best viewed in color).
Figure 7: Adversarial examples by boundary attack with random spatial transformation on the ResNet-50 model trained by a variant of TRADES. The ground-truth label is ‘bicycle’, and our robust model recognizes the adversarial examples correctly as ‘bicycle’. It shows in the second column that all of adversarial images have obvious feature of ‘bird’ (best viewed in color).
Figure 8: Adversarial examples by boundary attack with random spatial transformation on the ResNet-50 model trained by a variant of TRADES. The ground-truth label is ‘bird’, and our robust model recognizes the adversarial examples correctly as ‘bird’. It shows in the second column that all of adversarial images have obvious feature of ‘bicycle’ (best viewed in color).