Selective attention within the foveola

Martina Poletti1, Michele Rucci1,2 & Marisa Carrasco3,4

Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking—that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.

Covert attention is essential for visual perception. Among its many advantages, covert allocation of attentional resources increases contrast sensitivity and spatial resolution, speeds information accrual and reaction times1–4, and alters the signal at the target location during saccade preparation5–7. Covert attention has been studied sometimes in the parafovea (1°–5°) and mostly in the perifovea (5°–10°) and periphery (>10° of eccentricity)—that is, far outside the fovea, the high-acuity region of the retina at the center of gaze1–4,8,9. This is the rod- and capillary-free region of the fovea where cones are most densely packed, an area that covers only ~1° of visual angle10, or about the size of the index fingernail at arm’s length.

At first sight, it may appear that studying covert attention in the foveola makes little sense. This anatomical region is commonly identified with ‘where the observer is looking’11, and covert attention is traditionally regarded as a process that focuses neural resources outside this portion of the visual field. In addition, small eye movements incessantly move stimuli across the foveola during fixation12–14, so that the conceptual distinction between covert and overt responses is unclear at this scale. Furthermore, it is commonly assumed that the spatial scale of attention is too coarse to selectively process information within subregions of the foveola15,16. However, the opposite possibility that high-resolution control of covert attention could be beneficial around the center of gaze has also been raised17–19. This proposal is feasible considering the large representation devoted to the fovea in striate and extrastriate cortical areas, as well as the recent observation that microscopic eye movements precisely position the line of sight20.

Until recently, technical difficulties rendered it impossible to investigate covert attention within the foveola. But these challenges have now been overcome20,21. We report here the results of four experiments that examined the selective deployment and fine control of attention at the very center of gaze and its effects on discriminability and speed of processing. In this study, we first established a baseline by conducting a detection task in the parafovea (experiment 1), as in previous studies. We then investigated the consequences of attention for both detection (experiment 2) and discrimination (experiments 3 and 4) tasks within the foveola.

RESULTS

Experiment 1 consisted of a central spatial cueing task with parafoveal stimuli (Fig. 1a,b), a standard procedure to study endogenous (voluntary) covert attention. As expected, compared to the neutral condition, attention resulted in a benefit—faster detection—at the attended location and a cost—slower detection—at the unattended location (Fig. 1c, ANOVA F(2,4) = 23.6; P = 0.0004). This effect is not the consequence of speed-accuracy trade-offs, as accuracy remained high with shorter reaction times (in fact, it slightly increased; Fig. 1d, ANOVA F(2,4) = 14.9; P = 0.002), and it is consistent with previous studies in which stimuli were presented many degrees away from the center of gaze. Such enhancement is highly beneficial for extrafoveal vision because various visual functions gradually decline with increasing eccentricity, and attention can effectively attenuate these effects by improving extrafoveal performance1–4.

Foveal control of attention facilitates detection

What happens when the attended location is not in the visual periphery, but already at the center of gaze; that is, within the foveola? Can attention be fine-tuned to selectively enhance vision at specific locations in this tiny portion of the visual field?

Studying attentional control within the foveola is challenging (Fig. 2a). It requires high accuracy in localizing the position of a stimulus with respect to the preferred retinal locus of fixation, a requirement that is beyond the limits of standard video-oculography. These methods typically yield an area of uncertainty that is about 1 deg2 (ref. 22), approximately the size of the entire foveola. Furthermore, it requires dealing with the retinal motion resulting from incessant fixational eye movements13, which continually shift the retinal projection of the attended location across the foveola23,24 (Fig. 2b,d).

1Department of Psychological & Brain Sciences, Boston, University, Boston, Massachusetts, USA. 2Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, USA. 3Department of Psychology, New York University, New York, New York, USA. 4Center for Neural Science, New York University, New York, New York, USA. Correspondence should be addressed to M.P. (martinap@bu.edu).

Received 22 November 2016; accepted 9 July 2017; published online 14 August 2017; doi:10.1038/nn.4622
Thus, whereas standard procedures to study covert attention work well when stimuli are presented far from the center of gaze, where visual resolution is lower, they cannot be applied to examine selective attention within the high-resolution portion of the visual field.

To circumvent these limitations, we relied on a state-of-the-art system for gaze-contingent display control coupled with a Dual Purkinje Image eyetracker, a device with high spatial and temporal resolution. This enabled use of (i) a gaze-contingent calibration procedure that effectively improves localization of the center of the preferred retinal locus of fixation by more than one order of magnitude compared to standard methods and (ii) retinal stabilization to ensure that visual stimuli always remained at the desired eccentricities despite the continual presence of fixational eye movements (Figure 2c). Using these techniques, in experiment 2 we tested performance in a spatial cueing task similar to the one shown in Figure 1, but for targets appearing well within the fovea, only a few arcminutes away from the center of gaze (1 arcmin = 1/60 of a degree). In this experiment, the stimuli were scaled down in size so that their cortical representations approximately matched those of the stimuli used in experiment 1 (ref. 26).

All observers exhibited the classical attention effects, even though attended and unattended locations were now only 20 arcmin (0.33°) apart (Figure 2c). As with stimuli outside the fovea, observers were faster at detecting targets presented at the attended location (ANOVA F(2,4) = 25.5; P = 0.0003). Notably, the effect of attention did not change with retinal distance. The difference between reaction times in valid and invalid trials was similar to the one measured in experiment 1 (fovea: 22 ms ± 5 ms; parafovea: 25 ms ± 10 ms; two-tailed paired t-test, P = 0.31), but the distance between attended and unattended locations was now approximately 20 times smaller. Again, no speed–accuracy trade-off was present: that is, faster reaction times tended locations was now approximately 20 times smaller. Again, no speed–accuracy trade-off was present: that is, faster reaction times

\[F(2,4) = 25.5; \quad P = 0.0003 \]

Notably, the effect of attention did not change with retinal distance. The difference between reaction times in valid and invalid trials was similar to the one measured in experiment 1 (fovea: 22 ms ± 5 ms; parafovea: 25 ms ± 10 ms; two-tailed paired t-test, P = 0.31), but the distance between attended and unattended locations was now approximately 20 times smaller. Again, no speed–accuracy trade-off was present: that is, faster reaction times tended to come at the cost of accuracy; accuracy remained high in all conditions, and it even slightly increased in the valid trials (Figure 2f, ANOVA F(2,4) = 9.6; P = 0.008). Also note that despite retinal stabilization, eye movement characteristics were virtually identical to those measured in experiment 1 (Supplementary Fig. 1). These data show that attention facilitates detection at attended locations at the expense of unattended ones in the fovea, just as in the rest of the visual field.
Figure 3 Attention and fine spatial discrimination (experiment 3). (a) Observers reported whether a tiny bar, which could appear in one of four boxes 14 arcmin away from the fixation marker, was tilted vertically or horizontally. The target was preceded by a central cue that indicated its most likely location (76% cue validity). (b,c) Experimental results, measured as (b) accuracy (d') and (c) reaction times, for different trial types across observers ($n = 9$). Differences between valid and invalid trials were statistically significant for all individuals (sensitivity, two-tailed z-tests: S1: $P = 1.9 \times 10^{-4}$; S2: $P = 0.01$; S3: $P = 4.9 \times 10^{-4}$; S4: $P = 0.019$; S5: $P = 2.9 \times 10^{-12}$). Reaction times, two-tailed Wilcoxon rank sum tests: S1: $P = 1.6 \times 10^{-9}$; S2: $P = 6.4 \times 10^{-16}$; S3: $P = 2.1 \times 10^{-10}$; S4: $P = 1.7 \times 10^{-11}$; S5: $P = 8 \times 10^{-24}$). Accuracy and reaction times are also shown separately for the invalid trials in which the cue and the target were presented in the same and opposite hemifield, respectively. Error bars are 95% CI. * $P < 0.05$ (Tukey HSD post hoc tests). Validity: sensitivity: valid trials vs. neutral trials, $P = 0.0123$; valid vs. invalid, $P = 0.00004$; neutral vs. invalid, $P = 0.0008$. Reaction times: valid vs. neutral, $P = 0.0009$; valid vs. invalid, $P = 0.00004$; neutral vs. invalid $P = 0.0084$). Conventions are as in Figure 1.

Of note, observers were slower at detecting targets presented within the foveola than in the parafovea ($P = 0.0001$, two-tailed paired t-test; compare Figs. 1c and 2e), even though the stimuli were equally detectable in both experiments ($P > 0.77$ in all three trial types, two-tailed paired t-tests). On average, across all types of trials, the increment in reaction time was 46 ± 3 ms. These findings parallel the eccentricity-dependent effects reported outside the fovea—namely, the slower information accrual for stimuli presented in the parafovea than in the perifovea—and point at qualitative differences in the processing of foveal and parafoveal stimuli.

Oculomotor reaction times also follow a similar trend: it takes longer to generate a microsaccade toward a stimulus already within the fovea than a larger saccade toward a more eccentric stimulus. In fact, we found similar results when observers were asked to report the target by performing a microsaccade toward its location rather than by pressing a button (Supplementary Fig. 2). These effects might originate from various factors, such as the characteristics of cone photoreceptors in the fovea and in the visual periphery, the different proportions of parvocellular and magnocellular neurons in the two regions, and/or influences from the rostral part of the superior colliculus, where foveal space is represented. Yet, despite these differences, attention facilitates detection in a similar way inside and outside the fovea.

Foveal control of attention enhances fine spatial discrimination

The data in Figure 2 show that attention speeds up detection of foveal stimuli. Can attention also enhance discrimination of fine detail? This is a critical question given that many daily activities require examination of fine patterns, and the finding of attentional control within the fovea in detection (experiment 2) suggests that microscopic shifts of attention may play an important role in high-acuity vision. To investigate this hypothesis, we used a spatial cueing discrimination task in experiment 3. Observers were asked to report the orientation of a tiny bar that could appear at four possible locations, all at the same eccentricity within the foveola (Fig. 3a).

Discrimination accuracy, expressed as the index of sensitivity d', was significantly higher in the valid trials, when the cue correctly predicted the target location, than in the neutral and invalid trials (Fig. 3b; ANOVA $F(2,4) = 49.9; P < 0.0001$). Reaction times were also faster in valid trials (ANOVA $F(2,4) = 51; P < 0.0001$, Fig. 3c). Thus, for both accuracy and reaction times, significant benefits and costs occurred, respectively, in the valid- and invalid-cue trials relative to the neutral trials. Moreover, the cost resulting from focusing attention at the ‘wrong’ location was similar, irrespective of whether this location fell within the same or opposite hemifield as the target (Fig. 3b,c). $P = 0.83$ two-tailed paired t-test). Therefore, attentional shifts retained a high degree of selectivity even for locations separated by only 20 arcmin within the same hemifield.

We also obtained similar results when the discrimination task of experiment 3 (Fig. 3) was repeated with normal, nonstabilized, fixation (experiment 4, Fig. 4). In this case also, there were significant accuracy (ANOVA $F(2,4) = 79; P < 0.0001$) and reaction time (ANOVA $F(2,4) = 98; P < 0.0001$) effects. Compared to the neutral condition, attention resulted in a benefit—higher and faster discrimination—at the attended location, and a cost—lower and slower discrimination—at the unattended location. As under retinal stabilization, perceptual enhancements were not the consequence of fixation eye movements repositioning the stimulus on a preferred retinal locus. These effects were also present in the trials without microsaccades (Supplementary Fig. 3), as well as both in trials in which the center of gaze—determined by means of our high-resolution localization procedure—remained far from the target (for example, distance from target > 14 arcmin; ANOVA $F(2,4) = 52; P < 0.0001$) and in trials in which the center of gaze remained close to the fixation marker (for example, distance from marker < 7 arcmin; ANOVA $F(2,4) = 19; P = 0.0009$). Thus, fine attentional control continues to operate in the presence of the physiological motion of
the retinal image, when stimuli move across the foveola because of natural fixational instability (Supplementary Fig. 4b).

DISCUSSION
The results of experiments 2 and 3 (Figs. 2 and 3) show that attention is much more fine-grained and flexible than hitherto assumed: selective enhancement of visual processing can be restricted to narrow regions and shifted across locations separated by only a few minutes of arc at the center of gaze. That is, contrary to widespread assumption, spatial attention is not uniformly distributed within the region of highest acuity, but its allocation varies according to the demands of the task and the characteristics of the observed stimulus. These findings reveal that the intuitive view of covert attention as a process that operates only far from the fovea is misleading. Covert attention acts as a selection mechanism that modulates information throughout the visual field, and it can be controlled with surprising precision at the very center of gaze.

A direct consequence of our findings is that covert attentional mechanisms contribute to fine pattern vision. Covert shifts of attention are not only useful for enhancing low-resolution vision at peripheral locations, but also for improving high-acuity performance at selected locations where the observer is already looking. It has been argued that an important function of covert attention is to attenuate gaps in visual function between the fovea and the periphery. Lack of homogeneity at both the anatomical and functional levels has also been reported in the fovea. Thus, our results support that attentional deployment may serve a similar function in the parafovea and the periphery. Attentional trade-offs—benefits at the attended location and costs at the unattended locations—in the fovea and the parafovea are present even in the absence of these oculomotor events.

To conclude, our finding that shifts in covert attention occur even within the high-acuity portion of the visual field at the center of gaze call for a generalization of the very concept of covert attention. Covert attention is not a process that facilitates perceptual computations away from where the observer looks, but is the manifestation of a more general mechanism evolved for selectively improving and accelerating processing throughout the visual field, including the region of highest acuity.

METHODS
Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.
ACKNOWLEDGMENTS
This work was supported by National Science Foundation grants BCS-1534932 (M.P.) and 1420121 (M.R.), and National Institutes of Health grants R01-EY18363 (M.R.), R01-EY019693 (M.C.) and R01-EY016200 (M.C.). We thank M. Landy, S. Ling, E. Niebur, M. Spering, J. Victor, A. White and Y. Yeshurun for comments and R. Ezo for helping with data collection.

AUTHOR CONTRIBUTIONS
M.P. conceived the study and collected and analyzed the data. The three authors contributed to the design of the experiments, the interpretation of experimental data, and the writing of the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).
2. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).
3. Carrasco, M. Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies. Prog. Brain Res. 154, 33–70 (2006).
4. Anton-Erxleben, K. & Carrasco, M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14, 188–200 (2013).
5. Cowie, L., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).
6. Schall, J.D. On the role of frontal eye field in guiding attention and saccades. Vision Res. 44, 1453–1467 (2004).
7. Li, H.H., Barbot, A. & Carrasco, M. Saccade preparation reshapes sensory tuning. Curr. Biol. 26, 1564–1570 (2016).
8. Egeth, H.E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).
9. Kraulis, R.J., Lovejoy, L.P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).
10. Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).
11. Cavanagh, P., Hunt, A.R., Afraz, A. & Rolfs, M. Visual stability based on remapping of attention pointers. Trends Cogn. Sci. 14, 147–153 (2010).
12. Poletti, M. & Rucci, M. A compact field guide to the study of microsaccades: challenges and functions. Vision Res. 118, 85–97 (2016).
13. Kowler, E. Eye movements: the past 25 years. Vision Res. 51, 1457–1483 (2011).
14. Rucci, M. & Poletti, M. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1, 499–518 (2015).
15. Eriksen, C.W. & Hoffman, J.E. Temporal and spatial characteristics of selective encoding from visual displays. Percept. Psychophys. 12, 260, 201–204 (1972).
16. Eriksen, C.W. & St James, J.D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).
17. Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vision Res. 29, 1631–1647 (1989).
18. Intriligator, J. & Cavanagh, P. The spatial resolution of visual attention. Cognit. Psychol. 43, 171–216 (2001).
19. Barbot, A. & Carrasco, M. Attention modifies spatial resolution according to task demands. Psychol. Sci. 28, 285–296 (2017).
20. Poletti, M., Listorti, C. & Rucci, M. Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Curr. Biol. 23, 1691–1695 (2013).
21. Santini, F., Redner, G., Iovin, R. & Rucci, M. EyeRIS: a general-purpose system for eye-movement-contingent display control. Behav. Res. Methods 39, 350–364 (2007).
22. Holmqvist, K. et al. Eye Tracking: A Comprehensive Guide to Methods and Measures (Oxford Univ. Press, 2011).
23. Poletti, M., Aytekin, M. & Rucci, M. Head-eye coordination at a microscopic scale. Curr. Biol. 25, 3253–3259 (2015).
24. Aytekin, M., Victor, J.D. & Rucci, M. The visual input to the retina during natural head-free fixation. J. Neurosci. 34, 12701–12715 (2014).
25. Ko, H.-K., Poletti, M. & Rucci, M. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13, 1549–1553 (2010).
26. Vissu, V. & Rosvano, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 475–494 (1979).
27. Carrasco, M., McCilcre, B., Denisova, K. & Giordano, A.M. Speed of visual processing increases with eccentricity. Nat. Neurosci. 6, 699–700 (2003).
28. Wyman, D. & Steinman, R.M. Latency characteristics of small saccades. Vision Res. 13, 2173–2175 (1973).
29. Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426 (2017).
30. Azzopardi, P., Jones, K.E. & Cowey, A. Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vision Res. 39, 2179–2189 (1999).
31. Malpe, J.G., Lee, D. & Baker, F.H. Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular magnification functions. J. Comp. Neurol. 375, 363–377 (1996).
32. Goffart, L., Hafed, Z.M. & Kraulis, R.J. Visual fixation as equilibrium: evidence from superior colliculus inactivation. J. Neurosci. 32, 10627–10636 (2012).
33. He, S., Cavanagh, P. & Intriligator, J. Attentional resolution. Trends Cogn. Sci. 1, 115–121 (1997).
34. Yeshurun, Y. & Rashal, E. Precueing attention to the target location diminishes crowding and reduces the critical distance. J. Vis. 10, 16 (2010).
35. Levi, D.M., Klein, S.A. & Aristebsomao, A.P. Vernier acuity, crowding and cortical magnification. Vision Res. 25, 963–977 (1985).
36. Rucci, M., Iovin, R., Poletti, M. & Santini, F. Miniature eye movements enhance fine spatial detail. Nature 447, 851–854 (2007).
37. Worsedlf, T., Antopn-Exleven, K. & Treue, S. Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J. Neurosci. 28, 8934–8944 (2008).
38. Fries, P., Reynolds, J.H., Rorie, A.E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).
39. Cohen, M.R. & Maunsell, J.H.R. Attention improves performance primarily by reducing interneuonal correlations. Nat. Neurosci. 12, 1594–1600 (2009).
40. Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuro 63, 879–888 (2009).
41. Azzopardi, P. & Cowey, A. Preferential representation of the fovea in the primary visual cortex. Nature 361, 719–721 (1993).
42. Cherici, C., Kuang, X., Poletti, M. & Rucci, M. Precision of sustained fixation in trained and untrained observers. J. Vis. 12, 1–16 (2012).
43. Lisi, M., Cavanagh, P. & Zorzi, M. Spatial constancy of attention across eye movements is mediated by the presence of visual objects. Attent. Percep. Psychophys. 77, 1159–1169 (2015).
44. Yuval-Greenberg, S., Merriam, E.P. & Heeger, D.J. Spontaneous microsaccades reflect shifts in covert attention. J. Neurosci. 34, 13693–13700 (2014).
45. Hafed, Z.M. Alteration of visual perception prior to microsaccades. Neuron 77, 775–786 (2013).
ONLINE METHODS

Observers. A total of thirteen emmetropic human observers, all naive to the purpose of the study, participated in the experiments (age range 20–29). Five observers (2 males and 3 females) took part in experiments 1 and 2 (Figs. 1 and 2), four of these subjects took part in the experiment in Supplementary Figure 2, five (2 males and 3 females) in experiment 3 (Fig. 3), and five observers (2 males and 3 females) in experiment 4 (Fig. 4). One observer participated in all experiments. Only emmetropic observers were enrolled in this study to ensure optimal stabilization of the stimulus on the retina. Informed consent was obtained from all participants following procedures approved by the Boston University Charles River Campus Institutional Review Board.

Stimuli and gaze-contingent control apparatus. Stimuli were displayed on a fast-phosphor CRT monitor (Iyama HM204DT) at a vertical refresh rate of 150 Hz and spatial resolution of 768 × 1,024 pixels. Observers performed the task monocularly with their right eye while the left eye was patched. A dental-imprint bite bar and a headrest prevented head movements. The movements of the right eye were measured by means of a Generation 6 Dual Purkinje Image (DPI) eye-tracker (Fourward Technologies), a system with an internal noise of ~20 arcsec and a spatial resolution of 1 arcmin (ref. 46). Vertical and horizontal eye positions were sampled at 1 kHz and recorded for subsequent analysis.

Stimuli were rendered by means of EyeRIS21, a custom-developed system based on dedicated hardware, which allows flexible gaze-contingent display control. This system acquires eye movement signals from the eyetracker, processes them in real time and updates the stimulus on the display according to the desired combination of estimated ocularmotor variables. Precise foveal stimulation was achieved by means of retinal stabilization. The stimulus moved in real time, under EyeRIS control, to compensate for the observer’s eye movements, ensuring that both the cue and target remained at fixed foveal eccentricities with respect to the estimated center of gaze. The delay of the system in these experiments was 10 ms (the time required to render 1.5 frames on the display), which resulted in a stabilization error of approximately 1 arcmin, as measured posteriorly by comparing the recorded ocularmotor traces to the coordinates of the stabilized stimulus saved by EyeRIS during the experiments. All trials in which the delay exceeded 14 ms (two frames) were discarded (less than 10 trials per observer).

Procedure and experimental tasks. Data were collected by means of multiple experimental sessions at various times of the day. Each session lasted approximately 1 h, and each subject completed on average 12 sessions. Every session started with preliminary setup operations that lasted a few minutes, which involved comfortably positioning the observer in the apparatus, tuning the eyetracker for optimal performance, and executing a two-step gaze-contingent calibration procedure to map the eyetracker’s output to visual angles. This procedure improves localization of the preferred retinal locus of fixation by approximately one order of magnitude over standard methods42. In the first phase (automatic calibration), observers sequentially fixated on each of the nine points of a 3 × 3 grid, as it is standard in ocularmotor experiments. These points were located 1.32° apart from each other on both the horizontal and vertical axes. In the second phase (manual calibration), observers confirmed or refined the voltage-to-pixel mapping given by the automatic calibration by fixating again on each of the nine points of the grid while the location of the line of sight estimated on the basis of the automatic calibration was displayed in real time on the screen. Observers used a joystick to fine-tune the predicted gaze location if necessary. The manual calibration procedure was repeated for the central position before each trial to compensate for possible drifts in the electronics as well as microscopic head movements that may occur even on a bite bar. Note that the center of gaze estimated in this way corresponds to the preferred retinal locus of fixation and does not necessarily coincide with the foveal locus of highest cone density43,44.

Detection experiments. Data in experiments 1 and 2 (Figs. 1 and 2) were collected using a standard spatial cueing detection task. The target (a red square) appeared at one of two possible locations, either to the left or to the right of the point of fixation and, in all trials, was preceded by a cue (a horizontal bar at the center of the display) that pointed toward the target (valid trials), in the opposite direction (invalid trials), or in both directions (neutral trials). Both the cue and the target were displayed for 100 ms, with an inter-stimulus interval randomly alternating between 400 and 700 ms. Observers were instructed to press one of two keys on a joystick as soon as the target was detected. Four types of trials were presented: valid trials with congruent cue direction and target location (47% of all trials and 76% of the directional cue trials); invalid trials with incongruent cue direction and target location (15% of all trials); neutral trials in which the cue pointed in both directions (19%); and catch trials in which a directional or neutral cue was presented without a following target (19%). In the catch trials, observers were instructed not to press any button. In experiment 1 (Fig. 1), the target (10 arcmin × 10 arcmin in size) was presented in the parafovea, 3° away from the center of gaze. In experiment 2 (Fig. 2), the target (5 arcmin × 5 arcmin) appeared at only 10 arcmin eccentricity, well within the foveola.

Discrimination experiments. In experiment 3 (Fig. 3), observers reported whether a small bar (7 arcmin × 2 arcmin) was tilted vertically or horizontally by pressing one of two keys on the joystick. The bar could appear in one of four boxes (7 arcmin × 7 arcmin) surrounding a central fixation point, each 14 arcmin from the fixation point. A central cue preceded the target by 600 ms. Three types of trials were presented: valid (congruent cue direction and target location; 53% of all trials and 76% of directional trials), invalid (incongruent cue direction and target location; 17% of all trials) or neutral (a cue pointed in all four directions; 30% of all trials).

In experiment 4 (Fig. 4), procedures were identical to those of experiment 3 (Fig. 3), but stimuli were not stabilized on the retina. They remained immobile at their fixed locations at the center of the display and moved on the retina because of fixational eye movements. In all four experiments, observers were instructed to maintain their gaze at the center of the display throughout the course of the trial, and presentation of different trials types was randomized. Although visual fading can occur under prolonged exposure to retinally stabilized stimuli, the brief duration and high contrast of visual stimulation in experiments 2 and 3 did not allow enough time for visual fading to occur within the fovea. Stimuli were maintained on the display for less than 2 s, and both the cue and the target were transiently presented for only 100 ms. In all experiments, reaction times were measured relative to the target’s offset.

In the experiment in Supplementary Figure 2, the stimuli were the same as in the detection experiments (experiments 1 and 2), but observers reported the target by making a saccade rather than pressing a button. Observers were instructed to look at the target as soon as it appeared. As in the manual detection experiments, the target was presented either in the parafovea or in the foveola and was preceded by a neutral cue. In the latter condition, the fixation marker and the boxes indicating the possible target location were retinally stabilized as in experiment 2. However, stabilization was turned off at the time of target appearance to allow the saccade to shift gaze normally.

Detailed information about the experimental design can be found in the Life Sciences Reporting Summary.

Data analysis. Performance was evaluated over trials with good retinal stabilization. To ensure that stimuli remained at fixed locations on the retina, we discarded all trials with suboptimal eye-tracking and/or those in which the eye moved too fast for the stabilization apparatus. These included trials with blinks and/or saccades at any point during the trial, trials with microsaccades at any time later than 150 ms before cue presentation (overall, 25% of the total trials), and trials in which the ocular span—defined as the radius of the smallest circle encompassing the eye trajectory—exceeded 0.5° during the period between cue and target onset (7% of the total trials). We also discarded trials in which the observers were not engaged in the task, as revealed by their anticipation or delays in responding (<100 ms and >1,000 ms in detection; <200 ms and >2,000 ms in discrimination; less than 10 trials excluded per observer, ~1% of the total trials). The same criteria were also applied in experiment 1 to enable rigorous comparison between data from the two experiments (Figs. 1 and 2). Supplementary Figure 1 shows that eye movements did not differ in these two experiments.

Approximately the same numbers of trials were discarded across subjects in different experiments. However, because of well-known individual variability in fixational eye movements, the proportion of selected valid, invalid, and neutral trials varied slightly across observers. Results did not change when weighted averages, based on the number of trials available per participant, were used and/or when less conservative selection criteria were applied—for example, when trials with microsaccades were included in the analyses. On average, performance was evaluated over 194 trials per trial type per observer.
In experiment 4 (Fig. 4), in which stimuli were not stabilized on the retina, trials with microsaccades were also included in the analysis. Again, results did not change when we eliminated these trials, as shown in Supplementary Figure 3 by the data for two subjects, who were run extensively to collect large pools of drift-only trials. Results also did not change when we selected trials in which the line of sight remained far from the target or close to the fixation marker at the center of the display.

In all reported experiments, all individual observers exhibited significant differences between valid and invalid trials using non-parametric tests that assumed independence only (Wilcoxon rank-sum tests). Results were neither affected by the target location (left/right of fixation) nor, in experiment 2, by the delay between cue and target (400 or 700 ms). Summary statistics are reported over \(N = 5 \) observers, a sample size chosen to guarantee with \(P < 0.05 \) that the effect generalizes to the majority of the population. All figures show average values for each individual observer and summary statistics across observers.

Statistics. Individual observers’ data were examined using two-tailed Wilcoxon rank-sum tests and two-tailed \(z \)-tests. Averages across observers in different trials types were examined by means of one-way within-subjects ANOVAs followed by Tukey post hoc tests. Comparisons between two conditions across observers were tested using two-tailed paired \(t \)-tests. Data collection and analysis were not performed blind to the conditions of the experiments.

Data availability. The data sets generated and analyzed here are available from the corresponding author on reasonable request.

Code availability. All the computer code used to implement the experiments and to collect and analyze data is available from the corresponding author on reasonable request.

46. Crane, H.D. & Steele, C.M. Generation-V dual-Purkinje-image eyetracker. Appl. Opt. 24, 527–537 (1985).
47. Putnam, N.M. et al. The locus of fixation and the foveal cone mosaic. J. Vis. 5, 632–639 (2005).
48. Li, K.Y., Tiruveedhula, P. & Roorda, A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest. Ophthalmol. Vis. Sci. 51, 6858–6867 (2010).
49. Anderson, A.J. & Vingrys, A.J. Small samples: does size matter? Invest. Ophthalmol. Vis. Sci. 42, 1411–1413 (2001).
Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

- Experimental design

1. Sample size
 Describe how sample size was determined.
 Across observers, the sample size $N = 5$ was chosen to guarantee that, when all tested observers exhibit a statistically significant effect, the effect generalizes with $p < 0.05$ to the majority of the population (see Anderson & Vingrys, 2001).

2. Data exclusions
 Describe any data exclusions.
 Performance was evaluated over trials with good quality of retinal stabilization. To ensure that stimuli remained at fixed locations on the retina, we discarded all trials with sub-optimal eye-tracking and/or in which the eye moved too fast for the stabilization apparatus. These included: trials with blinks and/or saccades at any point during the trial, trials with microsaccades at any time later than 150 ms before cue presentation (altogether 25% of the total trials); and trials in which the ocular span—defined as the radius of the smallest circle encompassing the eye trajectory—exceeded 0.5 deg during the period between cue and target onset (7% of the total trials). We also discarded trials in which the observers were not engaged in the task, as revealed by their anticipation or delays in responding (<100 ms and >1000 ms in detection; <200 ms and >2000 ms in discrimination; less than 10 trials excluded per observer, ≈ 1% of the total trials).

3. Replication
 Describe whether the experimental findings were reliably reproduced.
 The experiments were repeated N times, where N is the number of subjects tested. $N = 5$ in all 4 experiment described in the main text and $N= 4$ in the experiment described in Supplementary Figure 2.

4. Randomization
 Describe how samples/organisms/participants were allocated into experimental groups.
 N/A

5. Blinding
 Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

Item	Confirmed
The exact sample size \(n \) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)	x
A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	x
A statement indicating how many times each experiment was replicated	x
The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)	x
A description of any assumptions or corrections, such as an adjustment for multiple comparisons	x
The test results (e.g. \(P \) values) given as exact values whenever possible and with confidence intervals noted	x
A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)	x
Clearly defined error bars	x

See the web collection on statistics for biologists for further resources and guidance.

7. Software

Policy information about availability of computer code

Describe the software used to analyze the data in this study.

All data analyses were performed using Matlab

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

N/A

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

N/A

b. Describe the method of cell line authentication used.

N/A
c. Report whether the cell lines were tested for mycoplasma contamination.

N/A
d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

N/A

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

N/A
12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

A total of thirteen emmetropic human observers, all naïve about the purpose of the study, participated in the experiments (age range 20-29). Five observers (2 males and 3 females) took part in Experiments 1 and 2 (Figs. 1-2), four of these subjects took part in the experiment of Supplementary Figure 1, five (2 males and 3 females) in Experiment 3 (Fig. 3), and five observers (2 males and 3 females) in the control experiment of Supplementary Figure 4. One observer participated in all experiments. Only emmetropic observers were enrolled in this study to ensure optimal stabilization of the stimulus on the retina. Informed consent was obtained from all participants following procedures approved by the Boston University Charles River Campus Institutional Review Board.