Comparison of five major trichome regulatory genes in Brassica villosa with orthologues within the Brassicaceae
Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.
Comparision of Five Major Trichome Regulatory Genes in *Brassica villosa* with Orthologues within the *Brassicaceae*

Naghabushana K. Nayidu1,2,*, Sateesh Kagale1,3, Ali Taheri1, Thushan S. Withana-Gamage4, Isobel A. P. Parkin1, Andrew G. Sharpe3, Margaret Y. Gruber1*

1 Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada, 2 Department of Biology, University of Saskatchewan, Saskatoon SK, Canada, 3 National Research Council (NRC), Saskatoon SK, Canada, 4 POS Bio-Sciences, Saskatoon, SK, Canada

Abstract

Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild *Brassica villosa*, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in *B. villosa* leaves compared with expression levels of GL1 and EGL3 genes in either *B. villosa* or the reference genome species, glabrous *B. oleracea*; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC; which were much more highly expressed in trichome-rich *B. villosa* leaves than in glabrous *B. oleracea* leaves and in glabrous cotyledons from both species. The *B. villosa* TRY expression pattern also contrasted with TRY expression patterns in two diploid *Brassica* species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each *B. villosa* gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in *B. villosa* was predicted to be from *B. oleracea*. In particular the unpredicted expression patterns for TRY and CPC in *B. villosa* suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the *Brassicaceae*.

Introduction

Trichomes are protruding structures which protect plant surfaces against dehydration and insect pests, and provide a storage organ to handle metal toxicity [1,2]. Trichome development has been studied extensively at the molecular level in non-glandular trichomes of the model plant, *Arabidopsis thaliana*, in which trichome regulation is controlled by multiple transcription factors. Among these, a number of major positive regulatory genes for trichome initiation have been detailed, including GLABRA 1(GL1), GLABRA 2 (GL2), GLABRA 3 (GL3), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) [3]. GL1 was isolated by gene tagging [4] and is a member of the R2R3 activator MYB gene family in *A. thaliana* [5]. GL3 and EGL3 encode members of an IIIf subfamily of basic Helix-Loop-Helix (bHLH) proteins [6]. TTG1 encodes a WD40 domain protein [7]. GL1, TTG1 and GL3/EGL3 are positive patterning proteins which form an activator MYB-bHLH-WD40 (MBW) tri-protein complex that induces the expression of an immediate downstream target gene, GLABRA 2 (GL2). GL2 encodes a homeobox transcription factor and its induction is required both for trichome cell specification and for subsequent phases of trichome morphogenesis such as cell expansion, branching, and cell wall maturation [8–10]. Mutations in any of these four above-mentioned genes reduce trichome initiation and the density of trichome patterning in *A. thaliana* [11–14] A yeast two hybrid assay demonstrated a direct physical interaction between GL3 and GL1, TTG1, and itself; GL1 and GL3 co-overexpression confirmed their interaction, but GL1 and TTG1 do not physically interact [15]. Mutations in GL3 modestly reduce trichome density, branching, DNA endoduplication, and trichoblast size [11,15]. *Egl* mutant plants have no obvious trichome defects, but *egl3* double mutants show a complete glabrous phenotype [14] due to some functional overlap between the two genes [16].

TRIPTYCHON (TRY) is the first identified negative regulator of Arabidopsis trichome initiation [11] and encodes a small single R3-MYB repeat protein which lacks the R2 activation domain [6,17]. The activator proteins of the Arabidopsis MBW tri-protein complex are assumed to locally activate their own expression and that of TRY [18]. TRY moves through plasmodesmata into adjacent cells where it and several other potent inhibitor proteins such as CAPRICE (CPC), ENHANCER OF TRY and CPC1 and 2 (ETC1 and ETC3) can competitively bind to the MBW complex.
to release GL1 [19–23]. This release of GL1 renders the MYB complex inactive at stimulating GL2 expression and prevents trichome initiation in neighbouring cells [2,10]. At the same time, the GL3 protein “traps” and reduces the mobility of TTG1 proteins (which can move from neighboring cells into trichome-initiating cells) by binding to them in trichome-initiating cells [3,24,25].

Trichomes are found on other species within the Brassicaceae, but very few details are known about Brassica trichome genes and their regulation compared with the model Arabidopsis. Brassica napus is an amphidiploid species originating from a cross between Brassica rapa (of the A genome) and Brassica oleracea (of the C genome) [26]. Leaf trichomes are found in substantial numbers on many lines of B. rapa, but not on B. oleracea, and the distribution on B. rapa is patchy rather than even, the patterning is light, and occurs mainly on only a few tissues (e.g., leaves and stems) [27]. Leaf trichomes are mainly found on the adaxial side of the A. thaliana and B. rapa leaves. In contrast, B. napus is practically devoid of trichomes.

Trichome genes that have been characterized from the Brassicas only include B. rapa TTG1, GL1, and GL2, but analysis of a full set of regulatory genes has never been conducted within a single species. An orthologue, BvTTG1, isolated from a brown-seeded hairy B. rapa genotype, was found to functionally complement (rescue) an A. thaliana tyy1 mutant [28], while the orthologue isolated from B. rapa yellow-seeded glabrous germplasm was not functional. B. rapa leaf hairiness was associated with nucleotide polymorphisms in the DNA-binding domain of the BrGL1 gene [29], and several BrGL1 alleles with varying impact on phenotype have been found. B. rapa harbouring the B-allele of BrGL1 produces hairy plants when transformed with the A-allele and hairless plants with the C-allele [30]. GL2 promoter regions in A. thaliana and B. napus have low homology and confer differential expression patterns, such that the BrGL2 promoter introduced into A. thaliana is only expressed at an early stage of trichome development, whereas the native AGL2 promoter is expressed throughout the whole process of trichome development [31]. Moreover, glabrous B. napus plants expressing the A. thaliana GL3 from a constitutive promoter develop an extremely dense coverage of trichomes on stems and young leaves [32] compared with overexpression in Arabidopsis. These findings indicate differences between the Brassica and A. thaliana genes that can impact trichome function and trichome patterning.

Brassica villosa is a wild C genome relative of glabrous B. oleracea, yet B. villosa is even more densely covered, with evenly distributed trichomes over most surfaces of the plant, than B. napus transformed with the AGL2 gene [32,33]. Like other Brassica species, B. villosa trichomes are without branches, whereas trichomes on the model species, A. thaliana, are multi-branched. The limited information available for Brassica trichome genes and the dense trichome patterning on B. villosa organs prompted us to dissect the trichome regulatory gene network in this species. In this regard, we successfully amplified B. villosa orthologues to the GL1, GL2, EGL3, TTG1 and TRI coding sequences and compared their expression patterns and sequence structure with corresponding genes available from B. rapa, B. oleracea, B. napus, and A. thaliana.

Materials and Methods

Plant Material
A. thaliana (Columbia), Brassica oleracea (TO1000 DH3), and Brassica napus (cv. Westar) seeds were obtained from germplasm collections at the Saskatoon Research Centre, Saskatoon, Canada. Brassica villosa Bv. subsp. drepanensis seeds were obtained from the Centre for Genetic Resources, Wageningen, The Netherlands. Seeds of B. rapa (cv. Echo) were obtained from Plant Gene Resources Canada, Saskatoon, Canada. All seeds were grown in soil-less potting mixture in a controlled greenhouse environment (16 h light/8 h dark, 20/17 °C) supplemented with halogen lights at Agriculture and Agri-Food Canada, Saskatoon, Canada.

Amplification and Sequence Analysis of Five Major Trichome Genes from B. villosa

Specific primers to amplify Brassica villosa (Bv) orthologues to GL1, GL2, EGL3, TTG1 and TRI were designed from coding sequences from B. napus and B. rapa (Table 1). The orthologues were amplified from cDNA developed from B. villosa seedling leaf RNA (isolated as described under gene expression profiling). At the time of amplification, the B. rapa EGL3 (accession HM206589.1) was mis-annotated as GL3 in NCBI, but the nomenclature was recently corrected. PCR was conducted using 32 cycles of 94°C for 30 sec, 56°C for 30 sec, and 72°C for up to 3 minutes (based on the length of the template cDNA), a final extension time of 5 minutes at 72°C, and PFU Ultra II fusion HotStart DNA polymerase enzyme (Stratagene, USA). Primers were designed starting at the translational start and ending with the 3' ends of the B. napus and B. rapa cDNA sequences (including restriction sites) except for TRI, for which the forward primer was designed from the 72nd residue upstream from the translational start site (Table 1). At the time of cloning, only an unannotated EST was available for TRI rather than a cDNA with a verified translational start site. Amplified sequences were cloned into the pGEM-Teasy vector (Promega, Madison, WI, USA), and then several amplicons (clones) per gene were sequenced in the DNA Technologies Laboratory of National Research Council, Saskatchewan, and used to search the NCBI database using BLASTN to determine gene identity.

Construction of Transgenic Expression Vectors and Transformation into the Arabidopsis Wild Type

Binary vectors pMP79-103 and pBI121 were initially modified by inserting a 1.7 kb Hydroperoxide Lyase (HPL) [34] promoter between HindIII/XhoI sites, and then a 2.2 kb BrGL2 and 506 bp Br/TRI cDNA sequence were cloned, respectively, downstream of the promoter using BamHI/KpnI restriction sites. In a separate construct, pMP79-103 vector was modified by inserting a 2.5 kb Elongation factor 1 (EF1) promoter between HindIII/XhoI sites, and then a 1.8 kb Br/EGL3 cDNA sequence was cloned using BamHI/PstI restriction sites. pCAMBIA1305.2 vector was modified by cloning a cassette carrying 570 bp NOS promoter, 1.1 kb cDNA clone of TTG1 and 400 bp NOS terminator between EcoRI and HindIII restriction sites. All of these binary constructs were individually transformed into Agrobacterium tumefaciens strain GV3101 by electroporation. Arabidopsis plants were transformed with respective plasmids using the floral dip method [34]. Transformed plants were selected on the basis of respective vector based resistance markers. Pictures were taken from T1 generation plants three weeks after germination.

RNA Sequencing for Verification and Expression Profiling of Individual Gene Copies

Fresh-frozen cotyledons and first true-leaves (before the second true leaf emergence) of B. villosa and B. oleracea were collected for RNA sequencing from seedlings (5–7 plants per replicate) for 3 biological replicates. RNA was extracted using standard methods, then developed into libraries using a TruSeq RNA sample preparation kit (Illumina, San Diego, CA, USA). Library sequencing (100 cycles) was conducted from both ends on an
B. oleracea deposited to NCBI with SRA accession number, SRP035213. www.r-project.org/. Raw data from the RNAseq experiment was copies was conducted using Cummerbund package in R; http://Differential expression and statistical analysis of individual gene RNAseq reads were assembled into transcripts and their relative 11000, and distance between pair ends (r) of 30) [35]. The aligned minimum intron length (i) of 20, maximum intron length (I) of minimum length of 20, which was then aligned to the genome of B. rapa. from primers, respectively; BamH primers to the 3

Table 1. Primers used to isolate/analyze GL1, GL2, GL3, TTG1 and TRY genes from B. villosa.
Primers
Coding Sequences from B. napus1
GL1-F
GL1-R
GL2-F
GL2-R
TRY-F
TRY-R
Coding Sequences from B. rapa1
BL1-F
BL1-R
BL2-F
GL1-R
GL2-R
TRY-F
TRY-R
Conserved regions (g for Q-PCR)2
GL1-F
GL1-R
GL2-F
GL2-R
GL3-F
GL3-R
GL4-F
GL4-R
TRY-F
TRY-R
BnEF1R (B. napus)
BnEF1R (B. rapa)
BnTTG1

1Forward (F) primers were designed at the 5’ end of the coding sequence and reverse (R) primers to the 3’ end of cDNA sequences from B. napus for GL1 and GL2 and from B. rapa for EGL3 and TTG1. Forward primers for TRY were designed to nucleotides before coding region and reverse primer at 3’ end of the cDNA from B. rapa. Underlined sequences indicate incorporated restriction enzyme sites; BamHI and PstI sites in the GL1, GL2, EGL3 and TRY forward and reverse primers, respectively; BamHI and KpnI sites in the TTG1 forward and reverse primers, respectively.

2Primers for Q-PCR were designed to conserved regions based on alignments between the A. thaliana homologue and the homologues from four Brassica species. B.nEF1F/BnEF1R are endogenous reference gene primers.

Illumina HiSeq 2000. A total of 51Gb of B. oleracea reads (Cotyledons; 26Gb and true leaves; 25Gb) and 60Gb of B. villosa reads (Cotyledons; 33Gb and true leaves; 27Gb) were obtained. The RNAseq data was trimmed using trimmomatic ver.0.30 with minimum quality score of 15, removing the first 12 bp, and a minimum length of 20, which was then aligned to the genome of B. oleracea with TopHat ver. 2.0.7 (with parameters, including minimum intron length (i) of 20, maximum intron length (I) of 11000, and distance between pair ends (r) of 30) [35]. The aligned RNAseq reads were assembled into transcripts and their relative abundance was estimated as fragments per kilobase of exon per million fragments mapped (FPKM) using Cufflinks software [35]. Differential expression and statistical analysis of individual gene copies was conducted using Cummerbund package in R; http://www.r-project.org/. Raw data from the RNAseq experiment was deposited to NCBI with SRA accession number, SRP035213.

Q-PCR for Total Gene Expression Profiling Relative to B. napus

First true leaves were collected separately from three individual plants at the same stage as mentioned above for B. villosa for each of the four other species mentioned under plant material. Total RNA was extracted from the seedling leaves (three independent preparations per species) with a commercial RNA-Easy mini kit (Qiagen, Valencia, CA, USA) and cDNA synthesized using Superscript II (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. Quantitative real-time PCR (Q-PCR) was conducted using a Platinum SYBR Green Super Mix-UDG kit (Invitrogen), a CFX96 Real-Time PCR system (BioRad, Hercules, CA, USA), and primers to conserved regions for GL1, GL2, EGL3, TTG1 and TRY within all five species (Table 1). Even though the B. napus EGL3 coding sequence was not available, the primers to EGL3-conserved specific regions in other species amplified the B. napus transcripts in Q-PCR reactions. For each pair of gene-specific primers, melting curve analysis was conducted to determine the melting temperature and to ensure a unique PCR amplicon of the expected length. Three independent RNA preparations were assayed per species and data was analyzed using CFX Manager Software (BioRad). The expression level of each mRNA was determined using the mean cycle threshold (ΔCt) value normalized to an endogenous reference gene, BrEF1 (Table 1). Mean values with corresponding standard errors were expressed relative to glabrous B. napus leaf tissue and analysed by one-way analysis of variance (ANOVA) using PROC GLM in SAS ver. 9.2 [SAS, 2008] and a completely randomized design (CRD) with genes and species as the two main factors. Significantly different means were detected by Fisher’s protected Least Significant Difference (LSD) tests.

Bioinformatic Analysis of Brassica Trichome Regulatory Genes

A. thaliana nucleotide and protein sequence information for GL1, GL2, EGL3, TTG1, and TRY was collected from http://www.arabidopsis.org. B. villosa sequences were obtained as above. B. napus sequences for GL1, GL2, TTG-2 and TRY were obtained from EST databases available at http://rapa.agr.gc.ca and http://blast.ncbi.nlm.nih.gov. B. napus EST databases were searched at http://napus.agr.gc.ca/aped (B. napus EGL3 sequence was unavailable). B. rapa sequence information was collected from http://brassicadb.org/brad, http://www.plantgdb.org/BrGDB, and http://www.brassica-rapa.org/BRGP/index.jsp. B. oleracea sequences were collected from the B. oleracea genome database at Agriculture and Agri-Food Canada, Saskatoon (Parkin, unpublished). Nucleotide and translated protein sequences were aligned using Clustal-W in Vector NTI 9 (Invitrogen). Molecular weight (M) and isoelectric point [35] were determined on translated protein sequences using http://web.expasy.org/compute_pi/. Amino acid frequencies were determined using http://emboss.bioinformatics.nl/cgi-bin/emboss/fuzzpro. Phylogenetic analysis was carried out using Molecular Evolutionary Genetics Analysis software (MEGA v5.1) and the neighbour joining method of phylogenetic inference with a bootstrap parameter of 1000 replications [36]. Initially, all six copies (ESTs) for BrTTG1 and the short (<100 bp) B. rapa sequences for BrTRY2 and BrTRY3 were used in phylogeny testing, but later only the longer overlapping BrTTG1 consensus sequence and the longer BrTRY1 were used with the other orthologues to improve the confidence (bootstrap values) of phylogenetic relationships above 50%. Protein conserved domain recognition was determined at http://www.ebi.ac.uk/Tools/pfa/iprscan/.
Evolutionary analysis was performed to obtain more information on similarity and variation between the five major trichome regulatory genes of *B. villosa* and orthologues within three other *Brassica* and *A. thaliana*. A pairwise comparison of GL1, GL2, EGL3, TTG1 and TRY coding regions of the orthologous genes was used to calculate the ratio of non-synonymous amino acid substitution rate (\(K_a\)) to synonymous substitution rate (\(K_s\)) using the maximum likelihood algorithm implemented in Phylogenetic Analysis by Maximum Likelihood (PAML) [37]. As with the phylogenetic analysis, all the *B. napus* TTG1 coding sequences and the very short *B. rapa* TRY2 and TRY3 sequences were initially aligned with other sequences, but later excluded from the evolutionary analysis due to lack of sufficient overlapping sequence. Generally, a \(K_a/K_s\) of 1 indicates neutral selection, \(K_a/K_s < 1\) indicates a functional constraint with purifying selection, and \(K_a/K_s > 1\) shows accelerated evolution with positive selection [37].

Results

Trichome Regulatory Gene Amplification in *B. villosa*

Amplification of the coding regions for *B. villosa* orthologues to the GL1, GL2, EGL3, TTG1 and TRY regulatory genes using primers based on available *B. napus* and *B. rapa* sequences gave single PCR bands (in some cases amplifying multiple copies). The bands were cloned, sequenced and used to search the NCBI database to confirm gene identity and to determine copy number. Three independent clones each were sequenced for the *BvGL1*, *BvGL2*, and *BvTTG1* genes from *B. villosa*, and this was expanded to 10 clones for *BvEGL3*, and thirty clones for *BvTRY*. Alignments of the cloned sequences to private (*B. oleracea*) and public (*B. rapa*, *B. napus*) databases, plus RNAseq data, indicated that *B. villosa* contained a single copy each for GL1 and GL2 and two unique sequences for EGL3 (95% amino acid identity) (Table 2; Figure S1, protein sequence shown). Only one TTG1 copy could be isolated from *B. villosa* using the *B. rapa* primers in spite of a second copy (with only 45% nucleotide identity) in the *B. oleracea* database (Parkin, unpublished). Sequencing of 30 TRY clones indicated two copies from *B. villosa* with 100% amino acid identity (Figure S1). RNAseq suggested a 3rd copy for *B. villosa* TRY1 not seen within the 30 amplicons (Table 2).

Phylogeny of *B. villosa* Trichome Regulatory Genes

In general, the amplified *B. villosa* translated coding sequences were over 90% identical to other *Brassica* orthologues, especially GL2 and TTG1 (Table S1), with only a few exceptions. *B. villosa* GL1 was only 82% similar to *B. rapa* GL1-2 and 75% similar to *A. thaliana*. *B. villosa* EGL3-1 was 87% similar to *B. oleracea*, *B. rapa*, and Arabidopsis EGL3-2, while *B. villosa* EGL3-2 was 82% similar to the three latter sequences. *B. villosa* TRY1 and TRY2 were 86% and 87% similar to *B. oleracea* TRY-3 and *B. rapa* TRY-1, respectively. In contrast, *B. villosa* TTG1-1 and all other orthologues were only 48% similar to *B. oleracea* TTG1-2.

Phylogenetic trees using translated protein sequences indicate that GL1 and GL2 from hairy *B. villosa* are closest to several sequences from the two non-hairy species *B. napus* and *B. oleracea* (Figure 1). The two *BvEGL3* sequences both showed strong relationships to EGL3-1 from *B. oleracea* and *B. rapa*, and were less close to *B. rapa* and *B. oleracea* EGL3-2 sequences, which were closer to the Arabidopsis EGL3 (B. napus EGL3 sequence was not available). *BvTTG1* sequence was intermediate between Arabidopsis and *B. napus*, *BoTTG1*-1, and *B. rapa* TTG1 sequences, and farthest from BoTTG1-2 (which was only 45% similar to BoTTG1-1). *BvTRY*1 and *BvTRY*2 paired together and fell...
nearest to the pairing between the *B. napus* consensus sequence and the *B. oleracea* TRY-3 sequences. Initially, all six copies (ESTs) for BrTTG1 and the short (<100 bp) *B. rapa* sequences for BrTRY2 and BrTRY3 were used in this phylogenetic testing. Later (due to differences in sequence length), only the longer overlapping BrTTG1 consensus sequence and longer BrTRY1 were compared with the other orthologues, and this improved the confidence (bootstrap values) of the phylogenetic relationships.

Total Trichome Regulatory Gene Expression in Leaves of Hairy *B. villosa*, Diploid Brassica, and *A. thaliana*, Relative to Glabrous *B. napus*

Alignment of the *B. villosa* nucleotide sequences with other known *Brassica* and *A. thaliana* trichome regulatory sequences in public and private databases (data not shown) indicated conserved regions from which we designed Q-PCR primers (Table 1) to compare total expression levels of the five genes relative to orthologues of glabrous *B. napus*. In a preliminary Q-PCR expression experiment, all five trichome regulatory genes were highly expressed in trichome-bearing first true leaves of *A. thaliana* (with *GL1*, *GL2*, and *EGL3* being the highest and *TTG1* and *TRY* being the lowest) (Figure S2, insert). In contrast, expression of these orthologues in the first leaf of *B. villosa*, *B. oleracea*, *B. rapa* and *B. napus* (set at 1) was dramatically lower than in Arabidopsis (Figure S2). *GL1* and *GL2* transcription was highest in *B. villosa* when only the four *Brassica* species were compared. *B. villosa* expression was proportionately more similar to *B. rapa* expression (in leaves bearing a light coverage of leaf trichomes) when total relative expression patterns of each of the four positive regulatory genes were compared across the *Brassica* species. Moreover, the relative expression pattern was highly distinct for the two hairy *Brassica* species compared with the glabrous *B. oleracea* and *B. napus*. Both hairy lines showed proportionately lower total leaf expression for *EGL3* and *TTG1* than *GL1* and *GL2*, but *TRY* expression in *B. rapa* was much lower. In contrast, *B. villosa* with its dense leaf trichome coverage showed high expression for *TRY*.

Copy-specific Trichome Regulatory Gene Expression in *B. villosa* and its C Genome Relative, *B. oleracea*

Since total overall transcript levels for *GL1*, *GL2* and unexpectedly for *TRY* were very high in *B. villosa* leaves relative to the other *Brassica* species in the Q-PCR analysis, expression levels were examined for the four trichome positive regulatory genes, and *TRY* by RNA seq. This analyses was expanded to include three other major negative regulatory genes (*CPC*, *ETC1* and *ETC3*) to determine whether any particular copy was more prominently expressed in hairy *B. villosa* first true leaves (and glabrous cotyledons). To do this, we took advantage of a new reference genome in the glabrous C genome relative, *B. oleracea* (Parkin, unpublished). Expression of two copies were detected for *EGL3* and *TTG1* and three copies for *TRY* and *CPC* in *B. villosa* by mapping to the *B. oleracea* genome. RNA seq showed that the single-copy *BoGL2* gene and *BoTTG1-1* and *BoTTG1* have very high transcript levels in hairy *B. villosa* leaves compared with the *GL1* and *EGL3* positive regulatory genes. Transcripts of the single *BoGL2* were undetectable in glabrous *B. oleracea* leaves and similarly *TTG1-2* was undetectable in glabrous cotyledons of both species (Figure 2). Expression of the single copy *GL1* gene was very low (<0.5 FPKM) in leaves and equivalent between the two species, and undetectable in cotyledons. Both copies of *EGL3* were expressed at a slightly higher levels in leaves (ranging from 0.3 to 2.5 FPKM) than cotyledons (ranging from 0.05 to 1 FPKM), but the transcript levels were reduced in *B. villosa* leaves compared

![Figure 1. Phylogenetic relationships for the five major trichome regulatory genes present in *Brassica* and *A. thaliana*.](image-url)
with *B. oleracea* leaves (Figure 2). Curiously, *BvEGL3-1* had higher leaf transcript levels proportionally to *BvEGL3-2* in *B. villosa*, whereas the converse was true in *B. oleracea*. In cotyledons, *BiEGL3-1* had expression (equivalent to leaf), and both genes were almost undetectable in *B. oleracea* cotyledons (Figure 2). The single copy *B. villosa* GL3 has a similar pattern of expression to that of *BvEGL3-1*, with higher expression of *BvGL3* in cotyledons compared to *BoGL3*, whereas *BvGL3* expression was much lower in leaves (18–20 FPKM) and *BoGL3* expression was equally high regardless of the extreme differences in leaf trichome density between *B. villosa* and *B. oleracea* (data not shown).

Figure 2. Transcript levels for individual gene copies of the four trichome positive regulatory genes and four negative regulatory genes in *B. villosa* compared with *B. oleracea*. RNAseq data is expressed as fragments per kilobase of exon per million fragments mapped (FPKM). Within each panel, different letters represent significantly different means (± standard error) for 3 independent RNA extractions (1st true leaves or cotyledons from up to 10 plants per extraction) at p≤0.05. doi:10.1371/journal.pone.0095877.g002

The expression pattern of *TRY* negative regulatory gene and two copies of *BeTRY* were detected (Figure 2). Very high leaf and cotyledon expression was detected for *BvTRY-1* in *B. villosa* (18–20 FPKM) and *BoTRY-1* in *B. oleracea* (9–10 FPKM), whereas *BvTRY-2*/*BoTRY-2* and *BvTRY-3*/*BoTRY-3* transcript levels were much lower in both leaves and cotyledons (Figure 2). The ranking and proportionate expression of individual *TRY* gene copies for *B. oleracea* was similar to *B. villosa*, but 50% lower in leaves and much higher in cotyledons. The higher combined expression level (FPKM value) for the three *TRY* genes in trichome-rich *B. villosa* leaves correlated with the overall higher total *TRY* expression level measured in the *B. villosa* leaves by Q-PCR. The fact that the relative expression for all three *TRY* genes was quite similar in both species and that *BiTRY-1* and *BoTRY-1* expression was equally high regardless of the extreme differences in leaf trichome density between *B. villosa* and *B. oleracea* was inconsistent with the Arabidopsis model of *TRY* being a negative regulator in *B. villosa*, even though Arabidopsis leaf trichomes were eliminated when Arabidopsis was transformed with a *BiTRY-1* expression construct (Figure 3).

Since the expression pattern of *TRY-1* was higher in trichome-covered *B. villosa* leaves, we took advantage of the new *B. oleracea* genome database to examine individual copies of several other prominent negative regulatory genes, *CPC*, *ETC1*, and *ETC3* ([23]; Table 2). Only one copy existed for *ETC1* in both *B. villosa* and *B. oleracea* and the expression level of both was very low (0.05 FPKM) in leaves (Figure 2) and undetected in cotyledons of both species (data not shown). *ETC3* had three copies in both species, but only *BvETC3-3* was expressed (2–4 FPKM) in *B. villosa* leaves (Figure 2), and the other copies were undetectable in either species and in cotyledons (data not shown). In contrast, all three
copies of the CPC gene were expressed in leaves of both species, but expression of CPC-1 was predominant in hairy B. villosa leaves and 6-fold higher than BoTRY-1 in glabrous B. oleracea leaves. The other two CPC copies had low transcript levels in leaves and cotyledons, and BvCPC-3 expression (2.5 FPKM) was predominant in cotyledons.

Sequence Comparisons between B. villosa, three other Brassicas and Arabidopsis

Since gene function impacts phenotype from a combination of transcript level and translated protein sequence, amino acid sequence diversity was determined for translated sequences of the five cloned regulatory genes in B. villosa, the three other Brassica species and A. thaliana (Figure S1). Overall, sequences for B. villosa were quite similar to those of the other Brassicas and A. thaliana in length, Mr and pI, with the following exceptions (Table 3). BvEGL3-2 was 20 kDa shorter than BvEGL3-1 from B. villosa and the other EGL3 sequences from B. oleracea, B. rapa, and Arabidopsis. The Mr of BvTRY-1 was most similar to that of B. oleracea, B. napus, and Arabidopsis, while BvTRY-2 was smaller. Isoelectric points for proteins from B. villosa were similar to those of orthologues in other Brassica species and Arabidopsis and usually acidic, except in the case of GL1 (Table 3). Here, the B. villosa orthologue BvGL1 was neutral and had a pI closest to B. rapa BrGL1-1 rather than to alkaline pI of BnGL1-1, BoGL1-1, BrGL1-2, BoTTG1-2 and most of the TRY sequences.

Many amino acid substitutions, additions and deletions were apparent within each of the five trichome genes when comparisons...
were made between *B. villosa* and the four other species. In total, there were 58 amino acid changes (26.2%) out of a total of 237 consensus amino acids (CAA) for GL1, 30 (3.8%) out of 786 CAA for GL2, 92 (15.1%) out of 608 CAA for EGL3-1, 132 (27.2%) out of 485 CAA for EGL3-2, and 111 (31.2%) out of 356 CAA for TTG1. TRY genes were the smallest compared to the positive regulatory genes and had the most amino acid differences between the species: 99 (84.6%) out of 117 CAA for TRY-1 and 111 (69.4%) out of 160 CAA for TRY-2 (Figure S1). Out of the total amino acid differences observed, those which were unique to *B. villosa* or distinguished hairy germplasm from glabrous germplasm were more closely examined (Table 4, Figure S1). Several particularly noteworthy variations between hairy and glabrous germplasm involved more extreme charge and hydrophobicity differences that potentially could affect the molecular structure and functional properties of a protein. These included consensus amino acid (CAA) position 223 in the 3' end of GL1, where the aromatic phenylalanine [38] in *B. villosa* and *B. rapa* and the hydrophobic residue leucine (Leu) in *A. thaliana* and *B. rapa* [hydrophobicity values of 2.8 (F) and 3.8 (L), respectively [39]] were replaced by the slightly hydrophilic serine (Ser, value of −0.8) in glabrous *B. napus* and *B. oleracea* (Table 4). CAA position 275 in GL2 included a glutamine (Gln) residue in hairy *B. villosa*, *B. napus* (one out of two copies), and the hairy *B. rapa* sequences, and a negatively charged glutamate acid (Glu) residue in *A. thaliana*. These were replaced by a positively charged imidazole ring (histidine, His) in the other copy of glabrous *B. napus* and in glabrous *B. oleracea* sequences. CAA position 439 in GL2-1 included an alanine conserved between hairy *B. villosa*, *A. thaliana*, and *B. rapa* proteins and replaced by a hydrophobic valine in GL2 of glabrous *B. napus* and *B. oleracea*. Finally, three positions in BVGL1, two in BVGL2, two in Egl3, one in BVTTG1, and one in TRY were unique to *B. villosa*. In particularly, the serine in CAA position 154 of all BVTRY sequences was replaced by an arginine in TRY genes from all other species.

Each of the four trichome initiation genes and TRY had domains which were conserved within all the *Brassica* species and *A. thaliana*, but they also showed species distinctions not correlated with a trichome phenotype (Figure S1). GL1 consisted of well known conserved R2 and R3 MYB DNA binding domains, but *B. rapa* GL1 was missing CAA 1-29 and the BoGL1 had a nonsense mutation at the end of the sequence and five unique amino acids (CAA position 119–123) in a conserved region immediately downstream of the R3MYB domain. GL2 showed no significant differences in the conserved homeobox domain and had the most consistent amino acid profile across all species compared to the other regulatory genes (Figure S3). However, CAA positions 114 to 118 present in the conserved *A. thaliana* START domain and the unique 29 amino acid (aa) Arabidopsis leader sequence were missing in GL2 from the four *Brassica* species (Figure S1). EGL3 translated sequences were mainly equivalent in their bHLH-DNA binding domains, but variable between CAA 391-3 in all orthologues (Figure S1). Noteworthy was an entirely different sequence post-CAA 426 for *B. villosa* EGL3-2, whereas all other EGL3s were missing aa from 426–455 and 485 to the stop codon, aa 456–484 were completely different, and sequences for *B. oleracea* EGL3s were missing CAA 164–187. BoTTG1-2 and TRY also showed diversity. TRY was completely conserved in the R3 MYB binding domain but diverse in other areas (Figure S1). BVTRY-2, BVTRY-1 and BVTRY-2 sequences were each missing CAA 55–85, *B. rapa* TRY-3 was missing aa 105–160 within and beyond the R3 binding region, TRY-3 of *B. oleracea* had a unique 52 aa leader sequence, while *B. rapa* TRY-2 and 3 had the smallest R3 MYB binding regions. Except for CAA 1–85 missing in BVTRY-2,
BvTRY-1 and BvTRY-2 were identical, but the very low expression of BvTRY-3 prevented evaluation.

Ka/Ks Amino Acid Substitutions

Leucine (L), serine (S) and arginine (R) were the most abundant amino acids within all five trichome regulatory genes for B. villosa as well as the other four species (Figure S3). However, cysteine was completely absent in TRY orthologues (except for B. oleracea and B. rapa TRY-2, each of which had one cysteine at CAA 95). Moreover, B. villosa TRY-2 and B. rapa TRY-1 were under-represented in V, F, S, T, D, H, K, and R compared with BvTRY-1 and TRY in other species examined (Figure S3). This led us to determine Ka/Ks amino acid substitution values for the five trichome genes to assess whether sufficiently different amino acid substitutions had occurred to potentially change protein function.

Ka/Ks values were much less than one for most pair-wise comparisons between homologs and orthologs, especially for GL2, TTG1, and TRY, indicating mainly synonymous substitutions that would not impact protein structure (Table S1). Ka/Ks values for EGL3 sequence comparisons were higher in general than one and lower than many of the Ka/Ks values determined for GL1 sequences (Table 5; Table S1). Most pairwise comparisons between GL1 in B. villosa and each Brassica species and Arabidopsis consisted showed synonymous substitutions. However, Ka/Ks ratios for BvGL1 and BoGL1 were much closer to one, indicating an evolutionary tendency towards significant change. This was even more extreme between GL1 from B. villosa and B. rapa (1.04) and from B. villosa and B. napus (1.87) (Table 5), indicating large substitution differences that may have the potential for functional changes.

Discussion

Brassica villosa is a weedy C genome species of the Brassicaceae and is of interest to molecular evolutionists and plant breeders for its dense trichome patterning on most tissues [33]. In the present study, we compared expression patterns and coding sequences for key trichome regulatory genes of B. villosa with those of orthologues from A. thaliana and several species within Brassica A and C genomes, as a means of distinguishing unique B. villosa sequence patterns from those of more modest trichome-bearing species and glabrous germplasm. Phylogenetic trees indicated that GL1, GL2, EGL3 and TRY sequences from hairy B. villosa are closest to several orthologues from the two non-hairy species B. napus and B. oleracea. These data confirm the closer relationship of these B. villosa positive regulatory trichome genes to those of B. oleracea and the C genome of B. napus than to Arabidopsis regardless of the trichome density differences. Li and co-workers showed pairing of GL1 sequences from hairy Brassica incana (related to B. villosa) with those from non-hairy B. napus lines (with a 92–94% sequence identity) [29].

Generally, RNA sequencing showed that transcript levels of one of the multiple copies of EGL3, TTG1, TRY, CPC, and ETC3 were predominantly compared to levels of the other copies in B. villosa. Expression for the trichome stimulating genes, BvGL2 and BvTTG1, and the trichome inhibiting genes, BvTRY-1 and BvTRY-1, was very high in young true leaves of B. villosa (where dense trichome coverage is found) and low in cotyledons compared with GL1, EGL3, ETC1, and ETC3 genes. This B. villosa RNAseq pattern was distinct and somewhat unexpected since the BvEGL3 expression was lower than in glabrous B. oleracea leaves and the BvTTG1 expression was quite similar in level to BvTTG1 expression. Expression of the BvTRY-1 and BvCPC-1 was also high in hairy B. villosa, and expression of BvTRY-1 was high in glabrous B. oleracea leaves. This was inconsistent with the Arabidopsis model of TRY and CPC as negative regulators of trichome initiation, where enhanced leaf trichome density phenotype occurred when TRY expression was knocked down in Arabidopsis try mutants [40]. The data implies that BvTRY-1, BvCPC-1, and (potentially) BvETC3-1 genes may not behave as negative regulators of trichome initiation in B. villosa. Protein coding sequences for BvTRY-1 and BvTRY-2 genes were closest to those of non-hairy BoTRY-3 and BnTRY, and all four of these are closer to each other and to A. thaliana than to the other Brassica TRY genes. Redundant trichome negative regulatory genes exist in the A. thaliana model [25] and functional redundancy can speed up gene evolution [41–43]. Hence, B. villosa may use these R3 regulatory genes with high expression for a different purpose in the densely covered B. villosa true leaves. This hypothesis is supported

Table 4. Specific amino acids in five trichome regulatory genes within the Brassicaceae.

*Consensus position	A. thaliana hairy	B. rapa AC hairy	B. napus CC glabrous	B. oleracea CC glabrous	B. villosa CC hairy
GL1 137*	Pro	Pro	Pro	Pro	Thr
154*	Gln	Gln	Gln	Gln	Glu
202*	Asn	Asn	Asn	Asn	Asp
223(1) 223(2)	Leu NA	Phe Leu	Ser NA	Ser NA	Phe NA
GL2 273(1) 273(2)	Gln NA	Gln NA	His Gln	His Gln	Gln NA
282*	Tyr	Tyr	Tyr	Tyr	Phe
287*	Ala	Ala	Ala	Ala	Ser
439-(1) 439-(2)	Ala	Ala	Val	Val	Ala
EGL3 171(1) * 171(2)	Val NA	Val Val	ND ND	Val Val	Ala Val
552*	Leu	Leu	ND	Leu	Val
TTG1 4*	Ser	Ser	Ser	Ser	Ser
TRY 154(1) * 154(2) * 154(3) *	Arg NA NA	Arg NIL NIL	Arg NA NA	Arg Arg Arg	Ser Ser NA

*Selected positions in the aligned consensus amino acid sequence (CAA) were selected from Figure S1 if they distinguished hairy from glabrous germplasm (dark arrows in Fig. S1) or were unique to B. villosa (*red arrows in Fig. S1). ND, not determined (sequence not available). NIL, missing amino acid. NA, not applicable. Note: Multiple gene copies are only indicated if an amino acid differed between the copies.

doi:10.1371/journal.pone.0095877.t004
by the insertion of BrTRY-1 into B. napus, yielding transgenic plants in which trichome density is not affected even though the same binary construct was used to depress Arabidopsis trichome development [Naydu and Gruber, unpublished and Figure 3 respectively]. In the future, it will be particularly useful to express these B villosa genes in a range of other Brassica species and to develop knock-out RNAi lines in B. napus to solve the mystery of their true function. This will depend on the development of a transformation system for B. villosa, such as the protocols that now exist for B. napus, B. rapa, B. oleracea, and B. carinata [44–47]. Additional analysis of B. villosa gene structure is also necessary for a complete understanding of their introns, untranslated regions, and promoters. For example, intron 1 and 30 non-coding nucleotides are important for the expression of the GL1 gene [5,48,49]. A 620 bp fragment of the TRY promoter contains sequences that mediate the repression of its own expression, and deletion of this promoter region can rescue the mutant phenotype [50]. Moreover, the Arabidopsis TRY deletion of this promoter region can rescue the mutant phenotype [50].

Table 5. Ka/Ks* ratios for trichome regulatory gene comparisons between B. villosa and three other Brassica species and Arabidopsis.

Pairwise Comparison	GL1	GL2	EGL3	TTO1	TRY	
B. napus	B. villosa	1.87	0.09	NA	0.03	0.23
B. villosa	B. rapa-1	1.04	0.06	0.42	0.02	0.19
B. oleracea	B. villosa	0.78	0.14	0.51	0.1	0.06
B. villosa	B. rapa-2	0.21	-	0.31	-	-
B. villosa	A. thaliana	0.24	0.07	0.2	0.01	0.06
B.napus-2	B. villosa	0.09	0.09	0.09	0.09	-
B.villosa-1	B. villosa	-	-	0.86	-	0.00
B.villosa-1	B. oleracea-2	-	-	0.30	0.27	0.15
B. oleracea-1	B. villosa	-	-	0.86	-	0.06
B.villosa-2	B. oleracea-2	-	-	0.40	-	0.15
B.villosa-2	B. rapa-1	-	-	0.49	-	-
B.villosa-2	A. thaliana	-	-	0.21	-	0.06
B.napus-3	B. villosa	-	-	-	0.05	-
B.napus-4	B. villosa	-	-	-	0.03	-
B.napus-5	B. villosa	-	-	-	0.03	-
B.napus-6	B. villosa	-	-	-	0.03	-
B.villosa-1	B. oleracea-3	-	-	-	0.19	
B.villosa-2	B. oleracea-3	-	-	-	0.19	

*Ka/Ks (Yang Z, 1997): Ka, non-synonymous nucleotide substitution. Ks, synonymous nucleotide substitution value.

* Ka/Ks	B. villosa	B. rapa-2 (BTRY-2)	B. rapa-3 (BTRY-3)
0.78	0.14	0.51	0.1
0.24	0.07	0.2	0.01
0.21	-	0.31	-
0.09	0.09	0.09	0.09
-	-	0.86	-
-	-	0.30	0.27
-	-	0.40	-
-	-	0.49	-
-	-	0.21	-
-	-	-	0.05
-	-	-	0.03
-	-	-	0.03
-	-	-	0.03
-	-	-	0.19
-	-	-	0.19

*Ka/Ks values for an entire protein may remain dominated by non-adaptive changes and be substantially lower than unity (reviewed in [52]) as seen by the Ka/Ks scores for GL2, EGL3, TTO1, and TRY. Moreover, once a protein achieves a new advantageous function, the frequency of non-synonymous substitutions at the adapted sites will be reduced by new functional constraints [52].

A substantial proportion of the differences that distinguished the four Brassica trichome regulatory sequences occurred outside of conserved domains. Several of these individual amino acid differences were sufficiently dramatic to potentially change the molecular and functional properties of these proteins. Particularly, three variable positions in GL1 and GL2 translated sequences distinguished hairy B. villosa and B. rapa from glabrous B. napus and B. oleracea germplasm, and all the B. villosa genes had a minimum of one unique site (and usually more) compared with the other species. Bloomer [53] reported on the effects of natural variation in GL1 from Arabidopsis and suggested that qualitative differences in trichome phenotypes (glabrous or hairy) might have arisen independently several times by three unique protein coding changes and a whole locus deletion. The same authors also suggested that quantitative variation (in trichome density) might have arisen because of completely linked amino acid replacements and mutations in a known (as yet uncharacterized) enhancer region within the AbGL1 locus. In addition, Li et al. proposed that a 5-bp deletion in exon 3 of the B. rapa GL1 gene (starting at CAA 110 in the present study) is the basis of a hairless phenotype that arose from a normally hairy double haploid brown-seeded line [29]. Hence, the extremely dense trichome coverage of B. villosa could be due to a combination of relatively higher transcription of...
GL2, hydrophobic amino acids and evolutionary changes in GL1, as well as the replacement of serine in all BoTRY sequences, and potentially a different function for TRY-1, CPC-1, and ETC3-3 (consistent with their higher B. villosa leaf transcript levels). Moreover, the glabrous leaves of the C genome relative B. oleracea could result from two non-synonymous substitutions (from asparagine to serine at CAA 26 and 112), five continuous amino acid replacements (at CAA 119–123), one nonsense mutation (at CAA 224) leading to a shortened GL1 amino acid sequence, and a missing aa stretch in the bHLH DNA binding region of BoEGL3-1 and BoEGL3-2. Our study adds additional sequence variation data to a previous report detailing two 1 bp deletions and 1 bp insertion in exon 3 of the B. oleracea GL1 sequence [29]. Changes in protein function with individual amino acid modifications are also seen in other species and genes. Yeam et al. (2007) showed that a G/R polymorphism at aa 107 of the Capsicum eukaryotic translation initiation factor 4E protein (eIF4E) is sufficient for the acquisition of resistance against several Capsicum and tobacco etch potyvirus strains by expressing the amino acid substituted gene in potato (Solanum lycopersicum) [54].

Likely, the genetic variation we have uncovered is the “tip of the iceberg” in terms of variation that affects the function of Brassica trichome genes, since the trichome pathway in the simpler A. thaliana genome is already considered to be an integrated hierarchy of regulation by complex cell cycle status, transcriptional control and cytoskeletal function [55]. This is confirmed by the ever increasing number of trichome genes being discovered in A. thaliana mutant populations (>80 genes known in TAIR) [38] (Taheri et al., 2014 submitted manuscript from the same lab) and by the on-going discovery of cis-regulatory sequences that provide greater diversification in gene function, eg. for GL1 and MYB23 [56]. The constant improvement in genomic-scale sequencing technology, SNP analysis, and computation can now be applied to characterize large within-accession and within-species variance in trichome gene patterning in the Brassicaceae and identify statistically robust associations hitherto undetectable [57,58].

Conclusion

The present study utilized expression profiling and bioinformatics to compare B. villosa trichome regulatory genes with their orthologues in B. oleracea, B. rapa, B napus, and A. thaliana. In doing so, we discovered the potential for positive evolutionary selection in the GL1 gene between B. villosa, B. rapa and B napus. Several point mutations found within GL1 and GL2 protein sequences correlated with hairy and glabrous phenotypes within these five species and have the potential to be predictive factors. We also discovered high transcript levels for BoGL2, BoTTG1, BoTRY-1, and BoCPC-1 in B. villosa leaves with densely covered trichomes. This B. villosa gene expression pattern is contrary to the trichome gene models in Arabidopsis in which cells are glabrous when expression of trichome R3 MYB inhibitor genes is high and trichomes are present in greater density and clustered when these genes are knocked down by mutation [23]. These B. villosa genes are now being tested in comparative over-expression studies in Arabidopsis and B. napus. Investigations on these genes should also be expanded to include a much broader range of hairy and glabrous Brassica germplasm within the Triangle of U [26].

Supporting Information

Figure S1 Alignment of translated protein sequences for four major trichome positive regulatory genes and one negative regulatory gene in the Brassicaceae. GL1: Conserved R2 and R3 MYB DNA binding domains are boxed. A unique 5 aa variable sequence and a unique 14 aa 3’ deleted sequence are designated in the B. oleracea sequence by oval. GL2: The conserved HDZip homeobox domain and a large START domain are boxed. A unique A. thaliana 29 aa leader sequence is delineated by an oval. GL3: The conserved bHLH protein binding domain is boxed. TTG1: Two conserved WD40 protein domains are boxed. A unique 44 aa leader sequence in B. oleracea is designated by an oval. TRY: The conserved R2 MYB DNA binding domains are boxed. A 33 aa unique deletion in the B. rapa gene is designated by an oval. For all 5 genes, unique amino acid modifications are designated for B. villosa (red arrows) and for hairy vs. glabrous plants (blue arrows). (PDF)

Figure S2 Relative expression of four trichome regulatory genes and one negative regulatory gene in leaves of hairy Brassica villosa, three other Brassica species, and A. thaliana. Main panel shows expressed transcripts from four Brassica species. Insert panel shows A. thaliana orthologues which are much more highly expressed compared with the Brassica species. Expression (Q-PCR) in both panels is relative to glabrous B. napus cv. Westar (set at 1). Different letters in both panels indicate significant differences of the means (± standard error) at p≤0.05 in an LSD test (SAS, 2008). (TIF)

Figure S3 Amino acid profiles for five major trichome regulatory sequences from Brassica villosa, three other Brassica species, and A. thaliana. (TIF)

Table S1 *Ka/Ks values from pairwise comparisons of all trichome regulatory gene orthologues and homologues within four Brassica species and Arabidopsis. (DOCX)

Acknowledgments

The authors thank Dr. L. Visser at the Center for Genetic Resources, Wageningen, The Netherlands, for the gift of B. villosa seeds. Dr. N. Nayidu and Dr. A. Taheri were recipients of Visiting Fellowships to a Canadian Government Laboratory.

Author Contributions

Conceived and designed the experiments: NKN. Performed the experiments: NKN SK AT TSW-G. Contributed reagents/materials/analysis tools: MG IP AS. Wrote the paper: NKN MG.
Its Interaction with Partner Proteins in Arabidopsis. Journal of Biological Chemistry 287: 14109–14121.
7. Walker AR, Davison PA, Bolognesi-Winfeld AC, James CM, Sinivasan N, et al. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell Online 11: 1337–1349.
8. Cristina M, Sessa G, Dolan L, Linstead P, Baina S, et al. (2002) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. The Plant Journal 30: 493–492.
9. Riege WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development 8: 1388–1399.
10. Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125: 1161–1171.
11. Hulskamp M, Misera S, Jurgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 553–566.
12. Larkin JC, Walker JD, Bolognesi-Winfeld AC, Gray JC, Walker AR (1999) Allele-specific interactions between tgl and gtl during trichome development in Arabidopsis thaliana. Genetics 151: 1591–1604.
13. Schellmann S, Hulskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. International Journal of Developmental Biology 49: 579.
14. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859–4869.
15. Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 153: 1549–1562.
16. Morendt K, Zhao M, Yang M, Read B, Lloyd A, et al. (2007) Participation of the Arabidopsis bHLH factor GL2 in trichome induction regulatory events. Plant Physiology 145: 736–746.
17. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, et al. (2002) TRIPETYCHON and CARPECE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. The EMBO Journal 21: 5036–5046.
18. Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59: 365–386.
19. Dignani S, Schellmann S, Geier F, Greese B, Pesch M, et al. (2008) A cDNA clone corresponding to a homeo domain protein found in trichomes on Arabidopsis leaves. Molecular Systems Biology 4.
20. Esch JJ, Chen M, Sanders M, Hillestad M, Ndkium S, et al. (1999) The BrassicaGLABRA1 gene encodes a bHLH protein involved in leaf and flower development of Arabidopsis. Plant Cell Reports 17: 365–368.
21. Kurata T, Ishida T, Kawaihata-Arai C, Noguchi M, Hattori S, et al. (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132: 5387–5398.
22. Wang S, Kwak S-H, Zeng Q, Ellis RE, Chen X-Y, et al. (2007) TRICHOME-LESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134: 3873–3882.
23. Weser K, Dignani S, Geier F, Timmer J, Fleck C, et al. (2009) Functional diversity of R3 single-repeat genes in trichome development. Development 136: 1487–1496.
24. Rouyer D, Geier F, Kragler F, Schnittger A, Pesch M, et al. (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL2 in Arabidopsis trichome formation. PLoS Biology 6: e141.
25. Pesch M, Hulskamp M (2005) One, two, three...models for trichome patterning in Arabidopsis? Current Opinion in Plant Biology 12: 587–592.
26. U N (1935) Genome analysis in Brassica. Theoretical and Applied Genetics. Brassicaeae
27. Babic V, Datla RS, Scales GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Reports 17: 183–188.
28. Biala PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature protocols 3: 181–189.
29. Poulsen GB (1996) Genetic transformation of Brassica. Plant Breeding 115: 209–225.
30. Radke SE, Turner JC, Facchini D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Reports 11: 495–506.
31. Larkin JC, Oppenheimer DG, Pollock S, Marks MD (1995) Arabidopsis GLABRoun1 gene requires downstream sequences for function. The Plant Cell Online 3: 1739–1748.
32. Wang S, Wang JW, Yu N, Li CH, Luo B, et al. (2004) Control of plant trichome development by a cotton fiber AMY gene. The Plant Cell Online 16: 2323–2334.
33. Pesch M, Hulskamp M (2011) Role of GLABRou3 in trichome patterning in Arabidopsis. BMC Plant Biology 11: 130.
34. Wei S, Gruber MY, Yu B, Guo M-J, Khachatourians GG, et al. (2012) Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC plant biology 12: 169.
35. Pathy L (2009) Protein evolution: Wiley-Blackwell.
36. Bloomer RH, Jaeger TE, Symonds YY (2012) Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Molecular Ecology.
37. Yeam I, Cavaertta JR, Ripoll DR, Kang BG, Jalin MM (2007) Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive pyrethroid resistance in plants. The Plant Cell Online 19: 2915–2928.
38. Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science 5: 214–219.
39. Koornneef M, Dellaert LWM, Van der Veen JH (1982) EMS-and relation-induced mutation frequencies at individual loci in Arabidopsis thaliana. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis 95: 109–123.
40. Hauzer MT, Harr B, Schlotterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Molecular Biology and Evolution 18: 1754–1763.
41. Larkin JC, Young N, Pringle M, Marks MD (1996) The control of trichome spacing and number in Arabidopsis. Development 122: 997–1005.

Study of Brassica villosa Major Trichome Genes

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e95877