A cooperative system which does not satisfy the limit set dichotomy

Eduardo D. Sontaga,1
aDepartment of Mathematics \\
Rutgers University, New Brunswick, NJ 08903, USA

Yuan Wangb,2
bDepartment of Mathematical Sciences \\
Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract

The fundamental property of strongly monotone systems, and strongly cooperative systems in particular, is the limit set dichotomy due to Hirsch: if $x(0) < y(0)$, then either $\omega(x) < \omega(y)$, or $\omega(x) = \omega(y)$ and both sets consist of equilibria. We provide here a counterexample showing that this property need not hold for (non-strongly) cooperative systems.

Key words: Monotone systems, cooperative systems, limit set dichotomy

1 Introduction

The field of cooperative, and more generally monotone systems, provides one of the most fruitful areas of theory as well as practical applications –particularly in biology– of dynamical systems. For an excellent introduction, see the textbook by Smith [4] and the recent exposition [3]. One of its central tools is a classical theorem of Hirsch ([1,2]), the “limit set dichotomy” for strongly monotone (in particular, strongly cooperative) systems, see Theorem 1.16 in [3]. The limit set dichotomy states that if $x(0) < y(0)$, then either $\omega(x) < \omega(y)$, or $\omega(x) = \omega(y)$ and both sets consist of equilibria.

According to the recent survey [3], the problem of deciding if there are any cooperative systems for which the dichotomy fails is still open. In [3], example

1 E-mail: sontag@math.rutgers.edu \\
2 E-mail: ywang@math.fau.edu

Preprint submitted to Elsevier Science
1.24, one finds a system which is monotone but not strongly monotone, for which the dichotomy fails. The order in this example is the “ice cream cone” order, and the authors explicitly state that it is unknown whether a polyhedral cone example exists. A cooperative system is one defined by a set of ordinary differential equations $\dot{x} = f(x)$, where $f = (f_1, \ldots, f_n)'$, with the property that $\frac{\partial f_i}{\partial x_j}(x) \geq 0$ for all $i \neq j$ and all x. Cooperative systems are monotone with respect to a polyhedral cone, namely the main orthant in \mathbb{R}^n. Thus, a counterexample using cooperative systems provides an answer to this open question. We provide such a counterexample here.

To be precise, we construct here two differentiable functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(0) = g(0) = 0$, $xf(x) < 0$ and $yg(y) < 0$ for all $x, y \neq 0$, and consider essentially the following system:

$$
\begin{align*}
\dot{x} &= f(x) \\
\dot{y} &= g(y) \\
\dot{z} &= x + y.
\end{align*}
$$

This system is cooperative. Note that solutions of the x and y equations converge to zero as $t \to \infty$. Moreover, for this system, there exist \bar{x}, \bar{y} such that the following property holds:

There exists some $\delta > 0$ such that for any solution X with initial condition $(x(0), y(0), z(0))^T$ such that $|x(0) - \bar{x}| < \delta$, $|y(0) - \bar{y}| < \delta$, and $|z(0)| < 1$, the omega-limit set $\omega(X)$ is compact and it contains the set

$$
\left\{(0, 0, \zeta) \mid \frac{1}{2} \leq \zeta \leq \frac{1}{2} \right\}.
$$

The limit set dichotomy states would imply that, for any initial conditions $(x(0), y(0), z(0))^T$ and $(\hat{x}(0), \hat{y}(0), \hat{z}(0))^T$ for which $x(0) \leq \hat{x}(0)$, $y(0) \leq \hat{y}(0)$, and $z(0) \leq \hat{z}(0)$, and with at least one of the inequalities being strict, the corresponding solutions X, \hat{X} have the property that either $\omega(X) = \omega(\hat{X})$ or $\omega(X) < \omega(\hat{X})$. This last property implies in particular that $\omega(X)$ and $\omega(\hat{X})$ are disjoint. Now, for our example, clearly $\omega(X) \neq \omega(\hat{X})$ as long as $z(0) \neq \hat{z}(0)$ (since the z-components of solutions are translates by $z(0)$ of the solutions with $z(0) = 0$ and the ω-limit sets are compact), but the omega-sets intersect as long as the x and y initial conditions are less than δ, $\hat{z}(0) \leq z(0)$, and

$$
|z(0)| < 1, \ |\hat{z}(0)| < 1.
$$
i.e.

\[0 \leq z(0) - \hat{z}(0) \leq 1, \quad |z(0)| < 1, \quad |\hat{z}(0)| < 1. \]

Thus we contradict the limit set dichotomy.

In fact, in the above discussion, \(\bar{x} \) and \(\bar{y} \) can be chosen arbitrarily small, that is, for any \(r_0 > 0 \), \(\bar{x} \) and \(\bar{y} \) can be chosen so that \(|\bar{x}| < r_0 \), \(|\bar{y}| < r_0 \). Also note that by properly choosing a function \(\sigma(z) \) and modifying the \(z \)-subsystem to \(\dot{z} = x + y - \sigma(z) \), all trajectories of the system can be made to have compact closures and the above discussions will still remain valid. For details, see Proposition 2.5.

2 The Example

To present an example as discussed in Section 1, we first consider the following result.

Lemma 2.1 For any \(\delta > 0 \), there exist two \(C^1 \) functions \(p, q : [-1, \infty) \to [0, \infty) \) such that the following holds:

1. both \(p \) and \(q \) are strictly decreasing functions;
2. \(0 < p(0) < \delta \), \(0 < q(0) < \delta \);
3. \(p(t) \to 0 \) and \(q(t) \to 0 \);
4. for any \(a, b \in (-1, 1) \), the function \(H_{a,b} \) defined by
 \[
 H_{a,b}(T) = \int_0^T (p(t + a) - q(t + b)) \, dt
 \]
 is bounded; and
5. for any \(a, b \in (-1, 1) \),
 \[
 \lim_{T \to \infty} H_{a,b}(T) > 0, \quad \lim_{T \to \infty} H_{a,b}(T) < 0;
 \]
 and
 \[
 \lim_{T \to \infty} H_{a,b}(T) - \lim_{T \to \infty} H_{a,b}(T) \geq 1.
 \]

We will prove the lemma in Section 3.1 by showing that the two functions can be chosen as

\[
p(t) = \frac{1}{\sqrt{t + c_0}}, \tag{1}
\]

\[
q(t) = \frac{1}{\sqrt{t + c_0}} + \frac{\sin[(t + c_0)^{1/4}]}{(t + c_0)^{3/4}}, \tag{2}
\]

where \(c_0 \) can be any number in \([\alpha, \infty) \) for some \(\alpha \) to be chosen. Observe that with proper choices of \(c_0 \), one can have \(p(0) = 1/\sqrt{c_0} \), \(q(0) = [1/\sqrt{c_0}] + 1/c_0^{3/4} \).
As a consequence, property (ii) in the lemma can be fulfilled with large enough values of c_0.

Below we show that, for some C^1 maps f and g, $p(t + a)$ is a solution of $\dot{x} = f(x)$; $q(t + a)$ and $-q(t + a)$ are solutions of $\dot{y} = g(y)$ for any $|a| < 1$.

It is readily seen that, for $|a| < 1$, $p(t + a)$ is the solution of the initial value problem

$$\dot{x} = -\frac{x^3}{2}, \quad x(0) = \frac{1}{\sqrt{c_0 + a}}.$$

To get a C^1 map $g(\cdot)$ with the desired properties, let $\psi : (−1, ∞) → (−∞, 0)$ be defined by $\psi(t) = q(t)$, and $\varphi : (0, \rho) → (−1, ∞)$ be defined by $\varphi(r) = q^{-1}(r)$, where $\rho = q(−1) ≥ q(t)$ for all $t > −1$. Let $g(r) = \psi \circ \varphi(r)$ for $r \neq 0$, and $g(0) = 0$.

Lemma 2.2 The function $g : [0, \rho) → (−∞, 0)$ is of C^1.

We will prove Lemma 2.2 in Section 3.2.

Extend g from $[0, \rho)$ to $[0, ∞)$ as a C^1 function, and then extend g to \mathbb{R} by letting $g(−r) = −g(r)$ for $r < 0$. Still denote the newly extended function by g. Then g is a C^1 function. Let $f(x) = −x^3/2$.

Lemma 2.3 For any $a, b ∈ (−1, 1)$, the function $(x_a(t), y_b(t))^T$ defined by

$$x_a(t) = p(t + a), \quad y_b(t) = −q(t + b)$$

is the solution to the initial value problem

$$\dot{x} = f(x), \quad x_a(0) = \frac{1}{\sqrt{c_0 + a}},$$

$$\dot{y} = g(y), \quad y_b(0) = −q(b).$$

The proof of Lemma 2.3 will be given in Section 3.3.

To get a system as discussed in Section 1, we would like to cascade the system (3) with the one-dimensional system $\ddot{z} = x + y$. To obtain a system for which all trajectories are bounded, we choose a C^1 function $\sigma : \mathbb{R} → \mathbb{R}$ with the property such that

- $\sigma(r) = 0$ for all $|r| ≤ 1 + M$, where $M = \sup\{|H_{a,b}(t)| : |a| ≤ 1, |b| ≤ 1, t ≥ 0\}$;
- $r\sigma(r) > 0$ for all $|r| > M + 1$; and
- σ is proper.

Consider the system

$$\dot{x} = f(x)$$

$$\dot{y} = g(y)$$

$$\ddot{z} = x + y - \sigma(z).$$

(4)
It is clear that the system (4) is cooperative.

Lemma 2.4 Consider system (4):

(1) the \((x, y)\)-subsystem is globally asymptotically stable; and

(2) every trajectory of the system (4) has a compact closure.

Below we present our final result. We use \(X(t) = (x(t), y(t), z(t))^T\) to denote a solution of the system (4).

Proposition 2.5 Consider the cooperative system (4). For any \(\delta > 0\), there exist two trajectories \(X_1(t)\) and \(X_2(t)\) with \(X_1(0) < X_2(0)\) and \(|X_1(0)| < \delta, |X_2(0)| < \delta\) such that \(\omega(X_1) \neq \omega(X_2)\) and \(\omega(X_1) \leq \omega(X_2)\) fails.

Remark 2.6 In fact, we have obtained a system for which the statement of Proposition 2.5 can be made generic in the following sense. For any given \(\delta > 0\), there exists \(|X_0| < \delta_0\) and some \(\delta_1 > 0\) such that for any pair of trajectories \(X_1, X_2\) of the system (4) satisfying \(|X_1(0) - X_0| < \delta_1, |X_2(0) - X_0| < \delta_1\), and \(z_1(0) \neq z_2(0), |z_1(0)| < 1, |z_2(0)| < 1\), it holds that \(\omega(X_1) \neq \omega(X_2)\) and \(\omega(X_1) \leq \omega(X_2)\) fails.

Proof of Proposition 2.5. Assume that \(\delta > 0\) is given. Choose \(c_0\) as in (1)-(2) large enough so that \(\frac{1}{\sqrt{c_0} - 1} < \delta\) and \(q(-1) < \delta\). According to Lemma 2.3, for any trajectory of the system

\[
\dot{x} = f(x), \quad \dot{y} = g(y)
\]

with

\[
\frac{1}{\sqrt{c_0} + 1} < x(0) < \frac{1}{\sqrt{c_0} - 1}, \quad -q(-1) < y(0) < -q(1),
\]

one has \(x(t) = p(t + a), y(t) = -q(t + b)\) for some \(a, b \in (-1, 1)\), and hence,

\[
\lim_{t \to \infty} \int_0^t (x(s) + y(s)) \, ds - \lim_{t \to \infty} \int_0^t (x(s) + y(s)) \, ds
\]

\[= \lim_{t \to \infty} H_{a,b}(t) - \lim_{t \to \infty} H_{a,b}(t) \geq 1.\]

Let \(x_0 = 1/\sqrt{c_0}, y_0 = q(0)\), and

\[
\delta_1 = \min \left\{ \frac{1}{\sqrt{c_0} - 1} - \frac{1}{\sqrt{c_0}}, \frac{1}{\sqrt{c_0}} - \frac{1}{\sqrt{c_0} + 1}, q(-1) - q(0), q(0) - q(1) \right\}.
\]

Then (6) holds for any trajectory \((x(t), y(t))^T\) of (5) with \(|x(0) - x_0| < \delta_1, |y(0) - y_0| < \delta_1\). Take any \(|z_0| < 1,\)

\[
|z_0 + \int_0^t (x(s) + y(s)) \, ds| = |z_0 + H_{a,b}(t)| < M + 1,
\]

5
and therefore, $z_0 + \int_0^t (x(s) + y(s)) \, ds$ is the solution of the z-subsystem of (4) with the initial value $z(0) = z_0$ (note that $\sigma(s) = 0$ when $|s| \leq M + 1$). It then follows from statement (v) of Lemma 2.1 that for any $x(0), y(0)$ satisfying (5), it holds that

$$\lim_{t \to \infty} (z(t) - z(0)) > 0, \quad \lim_{t \to \infty} (z(t) - z(0)) < 0,$$

and

$$\left[\lim_{t \to \infty} (z(t) - z(0)) \right] - \left[\lim_{t \to \infty} (z(t) - z(0)) \right] > 1.$$

Observe that for any trajectory $X(t)$ of the system (4),

$$\omega(X) \supseteq \{(0, 0, \alpha) : \lim_{t \to \infty} z(t) < \alpha < \lim_{t \to \infty} z(t)\}.$$

For any two solutions $X_1(t) := (x(t), y(t), \hat{z}(t))$ and $X_2(t) := (x(t), y(t), \hat{z}(t))$, where $x(0)$ and $y(0)$ satisfy (5), and $\hat{z}(0) \neq z(0)$, $|z(0)| < 1$, $|\hat{z}(0)| < 1$, the sets of ω-limit points of $z(t)$ and $\hat{z}(t)$ are different (since $z(t) - \hat{z}(t) \equiv z(0) - \hat{z}(0)$). Moreover, with $\hat{z}(0) < z(0)$,

$$\lim_{t \to \infty} \hat{z}(t) - \lim_{t \to \infty} z(t) = \left[\lim_{t \to \infty} (\hat{z}(t) - \hat{z}(0)) \right] - \left[\lim_{t \to \infty} (z(t) - z(0)) \right]$$

$$= (\hat{z}(0) - \hat{z}(0)) \geq 1 - (z(0) - \hat{z}(0)) > 0$$

if $0 < z(0) - \hat{z}(0) < 1$. Hence, $\omega(\hat{X}) \leq \omega(X)$ fails.

3 Proofs of the Lemmas

In this section, we provide proofs of the results.

3.1 Proof of Lemma 2.1

First we let

$$p_0(t) = \frac{1}{\sqrt{t}}, \quad q_0(t) = \frac{1}{\sqrt{t}} + \frac{1}{t^{3/4}} \sin t^{1/4} \quad t \geq 1. \quad (7)$$

To show that q_0 is decreasing, we consider $q_0'(t)$:

$$q_0'(t) = -\frac{1}{2t^{3/2}} - \frac{3}{4t^{7/4}} \sin t^{1/4} + \frac{1}{t^{3/4}} \cdot \frac{1}{4t^{3/4}} \cos t^{1/4}$$

$$= -\frac{1}{2t^{3/2}} - \frac{3}{4t^{7/4}} \sin t^{1/4} + \frac{1}{4t^{3/2}} \cos t^{1/4}$$

$$\leq -\frac{1}{4t^{3/2}} + \frac{3}{4t^{7/4}}. \quad (8)$$
So, $q'(0) \leq 0$ when $\frac{1}{t^{3/2}} - \frac{3}{t^{7/4}} \geq 0$. This is the same as $t^{3/2} \leq t^{7/4}/3$, or $t^{1/4} \geq 3$, that is, $t \geq 81$.

Let $p(t) = p_0(t + c_0)$, $q(t) = q_0(t + c_0)$, where $c_0 \geq 81$ will be chosen later on. Now both p and q are differentiable on $[0, \infty)$ and monotonically decrease to 0. For $a \in (-1, 1)$ and $b \in (-1, 1)$, let $H_{a,b}(T)$ be as defined as in Lemma 2.1. Then

$$H_{a,b}(T) = \int_{0}^{T}(p(t + a) - q(t + b)) dt$$

$$= \int_{0}^{T} \frac{1}{\sqrt{t + c_0 + a}} - \frac{1}{\sqrt{t + c_0 + b}} - \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} dt$$

$$= \int_{0}^{T} \frac{\sqrt{t + c_0 + b} - \sqrt{t + c_0 + a}}{\sqrt{t + c_0 + a}\sqrt{t + c_0 + b}} \frac{b - a}{\sqrt{t + c_0 + a} + \sqrt{t + c_0 + b}} - \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} dt. \quad (9)$$

Now, for the first term in (9), we have

$$\left| \frac{\sqrt{t + c_0 + b} - \sqrt{t + c_0 + a}}{\sqrt{t + c_0 + a}\sqrt{t + c_0 + b}} \frac{b - a}{\sqrt{t + c_0 + a} + \sqrt{t + c_0 + b}} \right|$$

$$\leq \frac{|b - a|}{2(t + c_0 - 1)^{3/2}} \quad \forall |a| < 1, |b| < 1,$$

and hence, the integral

$$\int_{0}^{\infty} \frac{\sqrt{t + c_0 + b} - \sqrt{t + c_0 + a}}{\sqrt{t + c_0 + a}\sqrt{t + c_0 + b}} dt$$

is convergent, and for $|a| < 1, |b| < 1$,

$$\left| \int_{0}^{T} \frac{\sqrt{t + c_0 + b} - \sqrt{t + c_0 + a}}{\sqrt{t + c_0 + a}\sqrt{t + c_0 + b}} dt \right| \leq \frac{2}{\sqrt{c_0}} \quad \forall T > 0. \quad (10)$$

For the second term in (9), using $u = (t + c_0 + b)^{1/4}$, one has

$$\int_{0}^{T} \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} dt = \int_{(c_0 + b)^{1/4}}^{(T + c_0 + b)^{1/4}} \sin u du$$

$$= - \cos(T + c_0 + b)^{1/4} + \cos(c_0 + b)^{1/4}.$$
Combining this with (10), one sees that, for any $|a| < 1, |b| < 1$, $H_{a,b}(t)$ is bounded on $[0, \infty)$. Let $c_0 \geq 82$ be of the form $(2k\pi + \pi/2)^4$. For $|b| < 1$,

$$
\frac{d}{db} (c_0 + b)^{1/4} = \frac{1}{4(c_0 + b)^{3/4}} \leq \frac{1}{4} \leq \frac{\pi}{6}
$$

Consequently,

$$
c_0^{1/4} - \frac{\pi}{6} \leq (c_0 + b)^{1/4} \leq c_0^{1/4} + \frac{\pi}{6} \quad \forall |b| < 1.
$$

This implies that

$$
-\frac{1}{2} \leq \cos(c_0 + b)^{1/4} \leq \frac{1}{2} \quad \forall |b| < 1.
$$

Thus,

$$
\lim_{T \to \infty} \int_0^T \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} \, dt = 1 - \cos(c_0 + b)^{1/4} \geq \frac{1}{2}
$$

$$
\lim_{T \to \infty} \int_0^T \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} \, dt = -1 - \cos(c_0 + b)^{1/4} \leq -\frac{1}{2}.
$$

Finally, we let $c_0 = (2k\pi + \pi/2)^4$ with k large enough so that $c_0 \geq 82$ (and consequently $\frac{2}{\sqrt{c_0}} < 1/4$). This way, we get for all $|a| < 1, |b| < 1$,

$$
\lim_{T \to \infty} H_{a,b}(T) = \lim_{T \to \infty} \int_0^T \left(\frac{1}{\sqrt{t + c_0 + a}} - \frac{1}{\sqrt{t + c_0 + b}} \right) \, dt
$$

$$
- \lim_{T \to \infty} \int_0^T \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} \, dt
$$

$$
\geq l_{a,b} + \frac{1}{2},
$$

where $l_{a,b} = \int_0^\infty \left(\frac{1}{\sqrt{t + c_0 + a}} - \frac{1}{\sqrt{t + c_0 + b}} \right) \, dt$; and

$$
\lim_{T \to \infty} H_{a,b}(T) = \lim_{T \to \infty} \int_0^T \left(\frac{1}{\sqrt{t + c_0 + a}} - \frac{1}{\sqrt{t + c_0 + b}} \right) \, dt
$$

$$
- \lim_{T \to \infty} \int_0^T \frac{1}{(t + c_0 + b)^{3/4}} \sin(t + c_0 + b)^{1/4} \, dt
$$

8
\[\leq l_{a,b} - \frac{1}{2}, \]

which implies that
\[\lim_{t \to \infty} H_{a,b}(t) - \lim_{t \to \infty} H_{a,b}(t) \geq 1. \]

Since \(c_0 \) was chosen so that \(|l_{a,b}| < 1/4 \), one has
\[\lim_{T \to \infty} H_{a,b}(T) < -1/4, \quad \lim_{T \to \infty} H_{a,b}(T) > 1/4. \]

3.2 Proof of Lemma 2.2

First of all, it can be calculated (see also (8)) that, for \(t \) large enough
\[|\psi(t)| = \left| \frac{d}{dt}q_0(t + c_0) \right| \leq \frac{M}{t^{5/2}} \]
for some \(M \geq 0 \), where \(q_0 \) is defined as in (7). Let \(\varphi : (0, \rho) \to (-1, \infty) \) be defined by \(\varphi(r) = q^{-1}(r) \), where \(\rho = q(-1) \geq q(t) \) for all \(t > -1 \). Note that
\[\lim_{r \to 0} \varphi(r) = \infty. \]

Let \(g(r) = \psi \circ \varphi(r) \) for \(r \neq 0 \), and \(g(0) = 0 \). Then \(g \) is continuous on \([0, \rho)\), and of \(C^1 \) on \((0, \rho)\). Observe that \(g(r) < 0 \) for all \(r \in (0, \rho) \). Below we show that \(g \) is differentiable at 0.

Fact 1. There exist some \(\delta_0 > 0 \) and some \(L_0 > 0 \) such that
\[\varphi(r) \geq \frac{L_0}{r^2} \quad \forall r \in (0, \delta_0). \]

To prove Fact 1, write \(t = q^{-1}(r) \). Then \(r = q(t) \), and
\[r \geq \frac{1}{\sqrt{t + c_0}} - \frac{1}{(t + c_0)^{3/4}} \geq \frac{L_0}{\sqrt{t}} \quad \forall t \geq T_0 \]
for some \(L_0 > 0 \) and some \(T_0 \geq 0 \). Since \(q(t) \) decreases to 0 as \(t \to \infty \), it follows that for some \(\delta_0 > 0 \), it holds that \(t \geq \frac{L_0}{r^2} \) for all \(r \in (0, \delta_0) \), this is, (12) holds.

Fact 2. \(g'(0) = 0 \).

Fact 2 follows from Fact 1 combined with (11):
\[|\psi(\varphi(r))| \leq \frac{M}{[\varphi(r)]^{3/2}} \leq M \left[\frac{L_0}{r^2} \right]^{-3/2} \leq \tilde{M}r^3 \]
for all \(r > 0 \) in a neighborhood of 0, where \(\tilde{M} > 0 \) is some constant. This shows that \(g \) is differentiable at 0, and \(g'(0) = 0 \).
Fact 3. $q'(r)$ is continuous at $r = 0$.

To prove this fact, we first get an estimate on $\psi'(t)$ for t large enough:

$$
\psi'(t - c_0) = q_0'(t) = \frac{3}{4t^{5/2}} + \frac{21}{16t^{11/4}} \sin t^{1/4}
- \frac{3}{16t^{19/4}} \cos t^{1/4} - \frac{3}{8t^{5/2}} \cos t^{1/4} - \frac{1}{16t^{9/4}} \sin t^{1/4}.
$$

Hence, for some $T_1 > 0$ and some $L_1 \geq 0$,

$$
\left| \frac{d}{dt} \psi(t) \right| \leq \frac{L_1}{t^{9/4}} \quad \forall t \geq T_1.
$$

This implies that, for some $\delta_1 > 0$,

$$
|\psi'(\varphi(r))| \leq \frac{L_1}{|\varphi(r)|^{9/4}} \quad \forall r \in (0, \delta_1). \quad (14)
$$

We also need the following estimate on $\varphi'(r)$ near 0:

$$
\left| \frac{d}{dt} q(t - c_0) \right| = \left| \frac{d}{dt} q_0(t) \right| \geq \frac{1}{2t^{3/2}} - \frac{3}{4t^{7/4}} - \frac{1}{4t^{3/2}}
= \frac{1}{4t^{3/2}} - \frac{3}{4t^{7/4}} \quad \forall t \geq c_0.
$$

It then can be seen that for some $T_2 > 0$ and some $L_2 > 0$, one has

$$
|q'(t)| \geq \frac{L_2}{t^{3/2}} \quad \forall t \geq T_2,
$$

which implies that for some $\delta_2 > 0$,

$$
|q'(\varphi(r))| \geq \frac{L_2}{|\varphi(r)|^{3/2}} \quad \forall r \in (0, \delta_2).
$$

Finally,

$$
|g'(r)| = \left| \psi'(\varphi(r))\varphi'(r) \right| = \left| \psi'(\varphi(r)) \frac{1}{q'(\varphi(r))} \right|
\leq \frac{L_1}{|\varphi(r)|^{9/4}} \cdot \frac{1}{\left[\frac{L_2}{|\varphi(r)|^{3/2}} \right]^{3/4}} = \frac{L_1}{L_2 |\varphi(r)|^{3/4}} \to 0 \quad \text{as } r \to 0.
$$

Hence, $g'(r)$ is continuous at $r = 0$. With this we conclude that g is of C^1 on $[0, \rho)$.

\[\blacksquare\]
3.3 Proof of Lemma 2.3

The statement about $x_a(t)$ is certainly clear.
To treat the part about $y_b(t)$, first observe that $q'(t)$ can be written as $q'(\varphi(q(t)))$. Also note that for any $|b| < 1$, $0 \leq q(t + b) \leq q(-1)$ for all $t \geq 0$, that is, $q(t + b) \in (0, \rho)$ for all $t \geq 0$. Hence, we have

$$\frac{d}{dt}q(t) = g(q(t)),$$

that is, $q(t)$ is a solution of the differential equation $\dot{y} = q(y)$. Let $\tilde{q}(t) = -q(t)$. Then

$$\frac{d\tilde{q}(t)}{dt} = -\frac{dq}{dt} = -g(q(t)) = g(-\tilde{q}(t)) = g(\tilde{q}(t)).$$

This shows that $-q(t)$ is also a solution of the equation $\dot{y} = g(y)$. ■

3.4 Proof of Lemma 2.4

Since for $xf(x) < 0$ and $yg(y) < 0$ for all $x \neq 0, y \neq 0$, both the x- and the y-subsystems are globally asymptotically stable.
To complete the proof, it is enough to note that every trajectory of the system

$$\dot{z} = -\sigma(z) + h(t)$$

is bounded for any choice of bounded function $h(t)$. ■

References

[1] M.W. Hirsch, Convergence in ordinary and partial differential equations, Notes for Colloquium Lectures at University of Toronto, August 23-26, 1982, American Mathematical Society, Providence, Rhode Island (1982).

[2] M.W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Contemp. Math. 17(1983): 267–285.

[3] M.W. Hirsch, H.L. Smith, Monotone Dynamical Systems, in Handbook of Differential Equations, Ordinary Differential Equations (second volume), Elsevier, 2005, to appear.

[4] H.L. Smith, Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys and Monographs, 41, American Mathematical Society, Providence, Rhode Island (1995).