INTRODUCTION

SWCNTs have considered as the leading candidate for nano-device applications because of their one-dimensional electronic bond structure, molecular size, and biocompatibility, controllable property of conducting electrical current and reversible response to biological reagents hence SWCNTs make possible bonding to polymers and biological systems such as DNA and carbohydrates.28-35

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter.1-15. Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly.12-30

Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall
CNT according to the number of layers of the rolled graphite.22-42

The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of "nanotube" of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released.42-50

CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of "nanotube" of 0.4 to 2 nanometers50-63.

Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly.60-74

The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet.71-81

The lids consist of hexagonal crystalline structures (six-membered ring structures) and a total of six pentagonal structures (five-membered ring structures) placed here and there in the hexagonal structure79-99. The first report by Iijima was on the multiwall form, coaxial carbon cylinders with a few tens of nanometers in outer diameter. Two years later single walled nanotubes were reported.

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter.94-98

In the NBO analysis, the interaction arising from electron delocalization are analyzed by selecting a number of natural bonding and antibonding orbitals that distort from the idealized Lewis structure, caused by interactions among them through hyper-conjugative or electrostatic interactions. In NBO analysis, the input atomic orbital basis set is transformed via natural atomic orbitals (NAOs) and natural hybrid orbital (NHOs) into NBO. In the present theoretical study, particular attention has been paid to the structural properties of The Si6O12-CNTs and Si7O14-CNTs systems. So, the NBO analysis gives supplementary information of the relative structural properties. It should be noted that conjugated systems, such as benzene and p-conjugated linear molecules, have been well studied with NBO analysis.

Computacional details

Calculations were performed using an all-electron linear combination of atomic orbitals Hartree–Fock (HF) and density functional theory (DFT) calculations using the Gaussian 03 package.

Table 1:

Nucleus List	Charge	x, y, z (Bohr)	Energy (a.u.)
CO	8.00000	x, y, z (Bohr)	-3.678102
CO	8.00000	x, y, z (Bohr)	-3.734370
CO	8.00000	x, y, z (Bohr)	-3.548378
CO	8.00000	x, y, z (Bohr)	-3.523262
CO	8.00000	x, y, z (Bohr)	-3.553535
CO	8.00000	x, y, z (Bohr)	-3.553535
CO	8.00000	x, y, z (Bohr)	-3.553535
CO	8.00000	x, y, z (Bohr)	-3.553535
CO	8.00000	x, y, z (Bohr)	-3.553535

LUMO-LUMO gap	0.005179 a.u.	0.110229 eV
LUMO-HOMO gap	13.595330 kJ/mol	
Table 2: NMR parameters of Silicon and Oxygen in Si₆O₁₂CNTs and Si₇O₁₄CNTs at the different levels

Atom	δ	η	σ_{aniso}	σ_{iso}	Atom
B3LYP/6-31G** Si₆O₁₂CNTs	O(1)	129	49.5	-18.9	0.25
	O(2)	65.1	81	-45	0.8
	O(3)	50.4	92.7	-51.5	0.79
	O(4)	-26.7	277.6	-133.2	0.61
	O(5)	58.3	57.2	-22.8	0.3
	O(6)	177	120.3	-59	0.64
	O(7)	76.9	324	-159.8	0.64
	O(8)	108.6	53.3	-20	0.22
	O(9)	159.1	21.9	-13	0.87
	O(10)	47.2	92.1	-54.8	0.88
	O(11)	171.8	35.9	-18.8	0.72
	O(12)	203.8	45	-55.1	0.08
	Si(1)	179.4	16.5	-16.2	0.35
	Si(2)	183	16.3	-9.4	0.84
	Si(3)	159.3	26.9	-24.2	0.48
	Si(4)	72.3	74.4	-42.2	0.82
	Si(5)	164.6	49.8	-19.3	0.28
	Si(6)	167	48.8	-18.1	0.2
B3LYP/6-31G Si₆O₁₂CNTs	O(1)	175.5	33.7	-19.3	0.83
	O(2)	90	317.1	-159.6	0.67
	O(3)	79.1	80.5	-43.4	0.76
	O(4)	20.8	255.5	-129.4	0.68
	O(5)	94.2	46.03	-19.2	0.4
	O(6)	217.8	126.5	-56.6	0.5
	O(7)	75.7	81.9	-56	0.94
	O(8)	203.5	52.2	-62.04	0.12
	O(9)	187.5	16.9	-9.4	0.8
	O(10)	74.6	76.2	-45.6	0.8
	O(11)	131	83.3	-72.7	0.52
	O(12)	179.5	37.2	-20	0.76
	Si(1)	200.3	14.1	-15.1	0.23
	Si(2)	207.4	131.7	-58	0.48
	Si(3)	185.8	20.4	-20.3	0.34
	Si(4)	77.8	67.8	-42.5	0.93
	Si(5)	160.7	88.5	-65.5	0.8
	Si(6)	142	56.1	-24	0.4
B3LYP/6-311G** Si₇O₁₄CNTs	O(1)	90.5	44.7	-30.9	0.92
	O(2)	97	308.8	152.4	0.64
	O(3)	75.4	77.1	-41.2	0.75
	O(4)	93.9	46.3	-33.2	0.85
	O(5)	95.7	45.6	-19.2	0.42
	O(6)	220.2	117.5	-53.4	0.53
	O(7)	73	80.1	-51.1	0.95
	O(8)	83.3	48.4	-34.3	0.87
	O(9)	139.9	42.6	-23.1	0.77
The optimizations of antibiotics and Si$_6$O$_{12}$ are carried out including exchange and correlation contributions using Becke’s three parameter hybrid and Lee-Yang-Parr (LYP) correlation [B3LYP]; including both local and non local terms. We have geometric optimization calculation at the HF/6-31G, HF/6-31G**, HF/6-311G**. We have also performed a geometric optimization calculation at the B3LYP/6-31G, B3LYP/6-31G** and B3LYP/6-31G** level.

The NMR isotropic shielding constants were calculated using the standard GIAO (Gauge-Independent Atomic Orbital) approach of Gaussian 03 program package.

	B3LYP/6-31G	Si7O14CNTs
O(10)	49.9 92.7 -57.1 0.91	
O(11)	162.3 53.1 -59.4 0.19	
O(12)	65.1 81 -45.1 0.8	
O(13)	55.6 -45.6 101.5 0.51	
O(14)	155.3 -19.6 44.8 0.47	
Si(1)	196.3 12.7 -13 0.3	
Si(2)	165.2 35.3 -18.2 0.7	
Si(3)	183.5 21.1 -19.4 0.44	
Si(4)	75.9 65.4 -39.5 0.89	
Si(5)	176.7 77.9 -60.5 0.71	
Si(6)	138.3 48.5 -18.6 0.26	
Si(7)	98.4296 75.4 -88.8 0.13	
(1)O	135.1 55 -23.6 -0.44	
(2)O	32.5 256.6 -128.7 -0.67	
(3)O	67.6 81.7 -43.2 -0.73	
(4)O	8.15 269.41 -137.3 -0.69	
(5)O	86.57 51.01 -20.6 -0.35	
(6)O	156.8 39.8 -22.5 -0.82	
(7)O	65.2 85 -54.1 -0.95	
O(8)	190.53 46.7 -58.5 0.06	
O(9)	174 18.4 -10.2 -0.8	
O(10)	55 79.8 -45.26 -0.82	
O(11)	156 51.5 -19.78 -0.26	
O(12)	167.8563 35.8143 -20.5798 -0.83	
O(13)	187.6 95.83 -41.2 0.45	
O(14)	29.1 115.6 -70.7 0.9	
Si(1)	188.9 15.2 -14.5 0.39	
Si(2)	156.6 35.9 -18.6 -0.71	
Si(3)	175.7 23.6 -21.2 0.48	
Si(4)	68.8 71.3 -42.8 -0.89	
Si(5)	162.2 87.43 -67.24 0.73	
Si(6)	129 49.5 -18.9 -0.25	
Si(7)	41.28770.4 -41.3 0.86	

a) The isotropic value σ_{iso} of the shielding tensor which can be defined as:

$$\sigma_{iso} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

b) The anisotropy parameter ($\Delta\sigma$) defined as:

$$\Delta\sigma = \sigma_{11} - \frac{\sigma_{22} + \sigma_{33}}{2}$$

If $|\sigma_{11} - \sigma_{iso}| \geq |\sigma_{33} - \sigma_{iso}|$

If $|\sigma_{11} - \sigma_{iso}| \leq |\sigma_{33} - \sigma_{iso}|$

and

c) The asymmetry parameter (ζ) which is given by:
Table 3: Summary of Natural Population Analysis

Natural Atom No	Charge	Core	Valence	Rydberg	Total
O 1	-1.03191	1.99983	7.02846	0.00362	9.03191
O 2	-1.03280	1.99983	7.02937	0.00360	9.03280
O 3	-0.99952	1.99982	6.99622	0.00348	8.99952
O 4	-0.99456	1.99982	6.99123	0.00351	8.99456
O 5	-1.09586	1.99983	7.02792	0.00386	9.09586
O 6	-1.06143	1.99980	7.05852	0.00311	9.06143
O 7	-1.09858	1.99982	7.09490	0.00386	9.09858
O 8	-1.06326	1.99980	7.06038	0.00308	9.06326
Si 9	1.95810	10.00000	2.00789	0.03401	12.04190
Si 10	2.12946	10.00000	1.83252	0.03801	11.87054
Si 11	2.13076	10.00000	1.83150	0.03774	11.86924
Si 12	2.12971	10.00000	1.83228	0.03801	11.87029
O 13	-1.00017	1.99982	6.96687	0.00348	9.00017
O 14	-1.03137	1.99983	7.02792	0.00362	9.03137
O 15	-0.99548	1.99982	6.99215	0.00351	8.99548
O 16	-1.03226	1.99983	7.02883	0.00360	9.03226
Si 17	2.13094	10.00000	1.83132	0.03774	11.86906
Si 18	1.95821	10.00000	2.00777	0.03402	12.04179

* Total *

0.00000 83.99786 95.74030 0.26185 180.00000

Table 4: Natural Electron Configuration

Atom No	valance/core
O 1	[core]2S(1.80)2p(5.23)
O 2	[core]2S(1.80)2p(5.23)
O 3	[core]2S(1.79)2p(5.20)
O 4	[core]2S(1.79)2p(5.20)
O 5	[core]2S(1.80)2p(5.29)
O 6	[core]2S(1.78)2p(5.28)
O 7	[core]2S(1.80)2p(5.30)
O 8	[core]2S(1.77)2p(5.29)
Si 9	[core]3S(0.79)3p(1.21)4p(0.03)
Si 10	[core]3S(0.62)3p(1.21)4S(0.01)4p(0.03)
Si 11	[core]3S(0.62)3p(1.21)4S(0.01)4p(0.03)
Si 12	[core]3S(0.62)3p(1.21)4S(0.01)4p(0.03)
Si 13	[core]2S(1.79)2p(5.21)
Si 14	[core]2S(1.80)2p(5.23)
Si 15	[core]2S(1.79)2p(5.20)
Si 16	[core]2S(1.80)2p(5.23)
Si 17	[core]3S(0.62)3p(1.21)4S(0.01)4p(0.03)
Si 18	[core]3S(0.79)3p(1.21)4p(0.03)
RESULTS AND DISCUSSION

We studied about Si\textsubscript{6}O\textsubscript{12} and Si\textsubscript{7}O\textsubscript{14} molecules as the novel material for drug delivery.

Before and after connecting to the CNTs, NMR and NBO calculations were performed in electric field of charges. NMR and NBO parameters are listed in tables 1-5 in different levels and different basis sets.

Table 5: Natural bond orbital analysis

Occupancies	Lewis Structure	Low	High	
Cycle	Occ.			
1(1)	1.90 174.53005 5.46995	12 27 0 21	19 27	0.13
2(2)	1.90 174.53151 5.46849	12 27 0 21	19 27	0.13
3(3)	1.90 174.53151 5.46849	12 27 0 21	19 27	0.13
4(1)	1.80 174.65362 5.34638	12 27 0 21	1 27	0.71
5(2)	1.80 174.72293 5.27707	12 28 0 20	0 28	0.13
6(3)	1.80 174.72293 5.27707	12 28 0 20	0 28	0.13
7(1)	1.70 171.93387 8.06613	12 16 0 32	1 24	0.73
8(2)	1.70 172.06530 7.93470	12 16 0 32	1 24	0.73
9(3)	1.70 171.87814 8.12186	12 16 0 32	3 25	0.71
10(4)	1.70 171.93387 8.06613	12 16 0 32	1 24	0.73
11(5)	1.70 172.06530 7.93470	12 16 0 32	1 24	0.73
12(6)	1.70 171.93387 8.06613	12 16 0 32	3 25	0.71
13(7)	1.70 171.87814 8.12186	12 16 0 32	1 24	0.73
14(8)	1.70 172.06530 7.93470	12 16 0 32	1 24	0.73
15(9)	1.70 171.93387 8.06613	12 16 0 32	3 25	0.71
16(1)	1.60 169.38902 10.61098	12 4 0 44	0 24	0.73
17(2)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
18(3)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
19(4)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
20(5)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
21(6)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
22(7)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
23(8)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
24(9)	1.60 169.22759 10.77241	12 4 0 44	0 24	0.73
25(1)	1.50 168.41325 11.58675	12 0 0 48	0 24	0.73
26(2)	1.50 168.41325 11.58675	12 0 0 48	0 24	0.73
27(1)	1.80 174.72293 5.27707	12 28 0 20	0 28	0.13

Structure accepted: RESONANCE keyword permits strongly delocalized structure

Effective Core 60.00000 Core 23.99785 (99.991% of 24)
Valence Lewis 90.72508 (94.505% of 96) Total Lewis 174.72293 (97.068% of 180)
Valence non-Lewis 5.04717 (2.804% of 180) Rydberg non-Lewis 0.22990 (0.128% of 180)
Total non-Lewis 5.27707 (2.932% of 180)
Table 6: Natural Bond Orbitals Summary

Principal	Delocalization	NBO	Occupancy	Energy geminal, vicinal, remote
1. BD (1) O	1 - Si 9	1.87941	-0.56226	163(g), 167(g), 165(g), 96(g)
2. BD (1) O	1 - Si 10	1.92550	-0.64049	161(g), 166(g), 171(g), 105(g)
3. BD (2) O	1 - Si 10	1.82990	-0.34040	169(g), 161(g), 171(g), 105(g)
4. BD (1) O	2 - Si 9	1.90043	-0.61423	167(g), 163(g), 165(g), 96(g)
5. BD (2) O	2 - Si 9	1.83917	-0.30943	167(g), 165(g), 173(v), 96(g)
6. BD (1) O	2 - Si 11	1.94562	-0.70204	173(g), 168(g), 95(v), 167(v)
7. BD (1) O	3 - Si 9	1.86082	-0.45296	159(g), 162(g), 167(g), 163(g)
8. BD (1) O	3 - Si 10	1.92039	-0.68742	169(g), 161(g), 105(g), 160(g)
9. BD (1) O	4 - Si 9	1.80147	-0.39265	159(g), 163(g), 165(g), 162(g)
10. BD (1) O	4 - Si 11	1.95367	-0.71006	173(g), 164(g), 165(v), 162(v)
11. BD (1) O	5 - Si 12	1.86911	-0.57783	179(g), 172(g), 177(g), 122(g)
12. BD (1) O	6 - Si 10	1.89379	-0.66554	169(g), 161(g), 121(v), 160(g)
13. BD (1) O	6 - Si 12	1.89334	-0.66492	170(g), 179(g), 104(v), 122(g)
14. BD (1) O	7 - Si 11	1.93844	-0.66897	176(v), 182(v), 185(v), 145(v)
15. BD (1) O	7 - Si 17	1.86963	-0.58112	185(g), 176(g), 182(g), 146(v)
16. BD (1) O	8 - Si 11	1.92651	-0.72737	182(v), 173(g), 174(v), 164(g)
17. BD (1) O	8 - Si 17	1.89564	-0.67064	174(g), 185(g), 113(v), 184(g)
18. BD (1) O	12 - O 13	1.92045	-0.68885	170(g), 179(g), 122(g), 178(g)

Fig. 1: Si6O12 & Si7O14 binding to (10,10)CNTs in different direction a) via Oxygen b) Via Silicone
are exactly repeated in σ_{iso}, σ_{aniso}, σ and η charts. These three atoms are the active sites in these structures. In general, the chart of electronic charge in different methods and basis sets is similar to the charts of NMR parameters Silicon atoms have more electrons than oxygen atoms.

So we can find that most chemical shielding. The concavity points are created due to the change of negative charge into a positive charge.

The electron density figure show that the mechanism of positive charge is different from negative charge. Positive and negative areas are completely different.

The results show that the heterocycle drugs connect to Si_6O_{12} is stronger than Si_7O_{14}.

NBO analysis of the Si6O12 and Si7O14 system at the level of B3LYP/6-31g theory with different has been given in Table 3-6. The coefficients of s and p orbitals of both Si-O in Si6O12 and Si7O14 bonds can be distinguished based on these NBO data. Based on the constant values of the coefficients of linear combination of s and p orbitals of different bonds, a specific voltage differences could be
expected. Summary of Natural Population analysis and Natural Population is listed in Table 3. Natural electron configuration of Valance and core electrons is listed in Table 4. Occupancy, geminal, vicinal, energy, NBO, Principal delocalization is listed in Table 6.

REFERENCES

1. Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; De Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A. et al. Nature. 2011, 478 (7368), 218–220.
2. Hersant, Franck; Gautier, Daniel; Hure, Jean Marc. The Astrophysical Journal, 2001, 554 (1), 391–407.
3. Altweeg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J. J. et al. Science, 2014, 347: 1261952.
4. Rubio Angel; Corkill, Jennifer L.; Cohen, Marvin L. Phys. Rev. 1994, B, 49, 5081.
5. Bourgeois, L.; Bando, Y.; Han, W.Q.; Sato, T. Phys. Rev. 2000, B, 61, 7686.
6. Terauchi, M.; Tanaka, K.; Suzuki, A.; Ogino, K.; Kimura, Chem. Phys. Lett. 2000, 324, 359.
7. Sachdeva, H, Frank Müllera, F.; Stefan Hüfnerb, S. Diamond and Related Materials, 2010. 19, 1027-1033.
8. Massimo, Fusaro. :Quantum Matter, 2014, 3, 481-487
9. Micheal Arockiaraj, Rev. Theor. Sci. 2014, 2, 261-273
10. Krost, H.W.; Health, J.R.; O’Brien, S.C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature (London), 1985, 318, 162
11. Iijima Sumio. Nature (London), 1991, 354, 56.
12. Chopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. Science,1995, 269, 966.
13. Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry, 2008, 53 (9), 1430-1437
14. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
15. Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience, 2013, 10 (10), 2473-2477
16. Yahyaei ,H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361
17. Monajjemi, M.; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2013, 21(6), 503–515
18. Bhupesh, Bishnoi ; Bahniman, Ghosh. Quantum Matter,2014, 3, 469-475
19. Sule, Celasun, Rev. Theor. Sci.2013, 1, 319-343
20. Akshaykumar, Salimath.; Bahniman, Ghosh, Quantum Matter, 2014, 3, 72-77
21. Nafisi, S.; Monajjemi, M.; Ebrahimi, S. Journal of Molecular Structure. 2004, 705 (1-3) 35-39
22. Monajjemi, M.; Baheri, H.; Mollaamin, F. Journal of Structural Chemistry, 2011, 52(1), 54-59
23. Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
24. Monajjemi, M.; Boggis, J.E. J. Phys. Chem. A, 2013, 117, 1670–1684
25. Davide Fiscaletti and Amrit Sorli, Quantum Matter,2014 3, 200-214
26. Monajjemi, M.; Honaparvar, B.; Khalili Hadad, B.; Ilkhani, AR.; Mollaamin, F.Afr. J. Pharm. Pharmacol. 2010, 4 (8), 521-529
27. Bjürrn Piglosiewicz, Jan Vogelsang; Slawa Schmidt.; Doo Jae Park.; Petra Groß, ; Christoph Lienau ,Quantum Matter, 2014 ,3, 297-306
28. Monajjemi, M. Chemical Physics. 2013, 425, 29-45
29. Fazaeli, R.; Monajjemi, M.; Ataherian, F.; Zare, K. Journal of Molecular Structure: THEOCHEM,2002, 581 (1), 51-58
30. Monajjemi, M.; Mollaamin, F, J Clust Sci, 22(2011)673.
31. Medhat Ibrahim and Hanan Elhaes ,Rev. Theor. Sci. 2013, 1, 368-376
32. Anurag Srivastava.; Nileshi Saraf.; A. K. Nagawat, Quantum Matter,2013, 2, 401-407
