Key points
- Hospital-acquired pneumonia has a major impact in terms of mortality and morbidity.
- Empirical treatment approach is still the best course of action.
- Prevention is of critical importance.
Hospital-acquired pneumonia

Educational aims

- To improve knowledge of HAP management.
- To better understand the epidemiological basis for the correct empirical therapy of HAP.

Summary

HAP still has a major impact in terms of mortality and morbidity among hospitalised patients. Early appropriate antibiotic therapy is associated with a reduction in mortality and improved outcome. Although, in most cases, an empirical approach is still the rule, taking into account the risk factors, the severity of illness and length of stay before the pneumonia onset can better target antibiotic therapy. The patient’s follow-up course, in terms of microbiological, clinical and radiological monitoring, is important. Prevention strategies are of critical importance and are based on the understanding of the epidemiology and pathogenesis of HAP. Routine efforts for the prevention of HAP should be directed towards obtaining effective surveillance and infection-control programmes, including staff education, use of proper isolation techniques and infection-control practices. This review aims to increase understanding of these points to allow improved knowledge and treatment of HAP.

Glossary

Hospital-acquired pneumonia (HAP) is defined as a pulmonary infection developing during hospitalisation, 48 hours or more after admission, and not present or incubating at the time of admission.

Ventilator-associated pneumonia (VAP) is defined as a pneumonia that arises more than 48–72 hours after endotracheal intubation.

Healthcare-associated pneumonia (HCAP) is defined as a pneumonia in any patient who has been hospitalised in an acute care hospital for 2 or more days within 90 days of the infection; resided in a nursing home or long-term care facility; received recent i.v. antibiotic therapy, chemotherapy or wound care within the past 30 days of the current infection; or attended a hospital or haemodialysis clinic. Patients with HCAP require therapy for multidrug-resistant (MDR) pathogens [1].
Epidemiology
The incidence of HAP is ~0.5–2.0% among all hospitalised patients and is the second most common nosocomial infection, yet the first in terms of mortality (ranging 30–>70%). These figures further increase in patients with VAP, which alone represents >80% of overall HAPs in the USA [2, 3].

The incidence in different hospitals and different wards of the same hospital varies considerably. The main risk factors are age, type of hospital and type of ward [4]. Patients aged <35 years are less prone to develop HAP than elderly patients; the incidence of HAP may vary between 5 and 15 episodes per 1,000 discharges. In large teaching hospitals, the incidence is higher than in district hospitals, possibly relating to differences in patient complexity. HAP is quite uncommon in paediatric and obstetric wards, and clearly most common in surgical wards and intensive care units (ICUs), particularly in ventilated patients in whom the incidence may be >35 episodes per 1,000 patient days [5–7].

Pathogenesis and risk factors
The understanding of the pathogenesis of HAP is a fundamental step for the comprehension of risk factors involved in nosocomial pneumonia [8]. Colonisation of the oropharynx by enteric Gram-negative bacteria rises with the increasing severity of underlying conditions, and occurs in a large majority of critically ill patients within a few days of admission. Oropharyngeal and gastric colonisation, and the subsequent aspiration of their contents into the lungs in patients with impaired mechanical, cellular and humoral defences leads to the possible development of HAP. Other possible mechanisms of lung infection in these patients include the passage of enteric bacteria or their products from the gut to the lung, haematogenous spread from a distant site of infection and direct inoculation into the airways of intubated patients from ICU personnel. Inadequate hand washing may, in fact, facilitate the spread of bacteria [9].
Critical risk factors comprise the following: prolonged (>48 hours) mechanical ventilation, with pneumonia developing in 9–40% of patients [10, 11]; duration of hospital or ICU stay; severity of underlying illness; Acute Physiology and Chronic Health Evaluation (APACHE) score; presence of acute respiratory distress syndrome (ARDS); and comorbidities. Risk factors for the early development of HAP in ventilated patients have been evaluated in a prospective study [12]. The results of a multivariate analysis indicated cardiopulmonary resuscitation (odds ratio (OR) 5.1) and continuous sedation (OR 4.4) as the main risk factors for early development of pneumonia, whereas prior antibiotic use was protective (OR 0.29). Another prospective study indicated low serum albumin at admission, high maximum positive end-respiratory pressure, upper respiratory tract colonisation by Gram-negative bacilli, smoking and duration of mechanical ventilation as independent risk factors for pneumonia [13]. In addition, it was shown that antibiotic use prior to admission to the ICU was associated with a lower incidence of pneumonia [13].

The ATS/IDSA guidelines state that routine prophylaxis of HAP with oral or parenteral antibiotics reduces the incidence of ICU-acquired VAP, but it is not recommended for routine use, particularly in patients with a high risk for MDR pathogens [1]. Prophylaxis of gastric bleeding with H2-antagonist or sucralfate is acceptable and strict control of hyperglycaemia is indicated. Table 1 summarises the main recommendations for modifiable risk factors management.

Aetiology

The spectrum of pathogens involved in HAP, VAP and HCAP is certainly different from that of community-acquired pneumonia and is influenced by the presence of at least three main factors [14]: 1) severity of illness; 2) presence of risk for specific pathogens; and 3) time to onset of pneumonia.

The pathogens that are most frequently involved in HAP are aerobic Gram-negative bacilli (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Acinetobacter spp., etc.) and Staphylococcus aureus. These bacteria can be considered the "core" pathogens in HAP, along with Streptococcus pneumoniae. The role of a polymicrobial aetiology of HAP has been proposed in ~50% of cases [15, 16]; however, CUNHA [17] has questioned the aetiological role of multiple-pathogen recovery in respiratory secretion specimens. Table 2 shows the main aetiology according to pneumonia time of onset, and the main risk factors for specific pathogens are outlined in table 3.

Diagnosis

The clinical diagnosis of HAP is often difficult to establish. The new ATS/IDSA guidelines suggest the use of clinical and bacteriological strategy [1]. Table 4 summarises the major points and recommendations of the guidelines.

Pathogen	Risk factors
Staphylococcus aureus	Coma, head trauma, recent influenza, history of i.v. drug use, diabetes mellitus, renal failure
Methicillin-resistant Staphylococcus aureus	Antibiotics before onset of pneumonia, prolonged mechanical ventilation
Pseudomonas aeruginosa	Prolonged ICU stay, steroids, antibiotics, structural lung diseases (bronchiectasis, cystic fibrosis), malnutrition
Anaerobes	Witnessed aspiration, recent abdominal surgery
Acinetobacter spp.	Antibiotics before onset of pneumonia plus mechanical ventilation

Table 2 Main aetiology of HAP according to time of onset of the pneumonia

No known risk factors for MDR pathogens (early onset)
Streptococcus pneumoniae*
Haemophilus influenzae
Methicillin-sensitive Staphylococcus aureus
Antibiotic-sensitive enteric Gram-negative bacilli
Escherichia coli
Klebsiella pneumoniae
Enterobacter spp.
Proteus spp.
Serratia marcescans

Risk factors for MDR pathogens (late onset)
Pathogens listed above plus
MDR pathogens
Pseudomonas aeruginosa
Klebsiella pneumoniae (ESBL)
Acinetobacter spp.
Methicillin-resistant Staphylococcus aureus
Legionella pneumophila

ESBL: extended spectrum β-lactamases. *: taking into account the resistance prevalence in each country.
therapy should not be postponed for the purpose of performing diagnostic tests.

Treatment

Antibiotic selection for empirical therapy of HAP should be primarily based on the risk for MDR pathogen infection. Figure 1 summarises the indication of the ATS/IDSA guidelines [1].

Patients with HCAP should be treated for potentially MDR pathogens, and antibiotic class change is indicated in the presence of recent antibiotic treatment. Combination therapy should be used if patients are likely to be infected by MDR pathogens, and monotherapy can also be used in severe pneumonias in the absence of such a risk.

A short course of therapy (e.g. 7 days) can be appropriate, provided that the patient has a good clinical response and *P. aeruginosa* is not involved as aetiological agent [1].

Figure 1

Algorithm for empirical antibiotic approach for HAP, VAP and HCAP.

Table 4 Major points and recommendations for the diagnosis of HAP*

Medical history and physical examination
Chest radiograph (posteroanterior and lateral)
Blood gas analysis
Blood cultures
Thoracentesis if pleural effusion
Endotracheal aspirate, bronchoalveolar lavage or protected brush sample for culture before antibiotic (negative results do not rule out viral or Legionella infections)
Extrapulmonary site of infection should be investigated

*: the most accurate clinical criteria for starting empirical antibiotic therapy: presence of a new or progressive radiographic infiltrate plus at least two of three clinical features (fever >38°C, leukocytosis or leukopaenia and purulent secretions).
References

1. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388–416.

 Evidence-based guidelines. This is an important article on the management of hospital-acquired pneumonia. Diagnosis, aetiology, antibiotic therapy and overall management are clearly examined.

2. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States, National Nosocomial Infections Surveillance System. Crit Care Med 1999; 27: 887–882.

3. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R, Centers for Disease Control and Prevention, Healthcare Infection Control Practices Advisory Committee. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of the CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 2004; 53: 1–36.

 CDC indication for the prevention of healthcare pneumonias. An interesting update.

4. Rello J, Cabello H, Torres A. Epidemiology, risk and prognostic factors of nosocomial pneumonia. Eur Respir Mon 1997; 3: 82–100.

5. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165: 867–903.

6. Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med 1993; 94: 281–288.

7. Rello J, Ollendorf DA, Oster G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 2002; 122: 2121.

8. Ceilis R, Torres A, Gatell JM, Almela M, Rodriguez-Roisin R, Agusti-Vidal A. Nosocomial pneumonia: a multivariate analysis of risk and prognosis. Chest 1988; 93: 318–324.

9. Bergmans DC, Bonten MJ, van Tiel FH, et al. Cross-colonization with Pseudomonas aeruginosa of patients in an intensive care unit. Thorax 1998; 53: 1053–1058.

10. Ewig S, Torres A, El-Ebiary M, et al. Bacterial colonisation patterns in mechanical ventilated patients with traumatic and medical head injury incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med 1999; 159: 188–198.

11. Cook DJ, Walter SD, Cook RJ, et al. Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 1998; 129: 433–440.

12. Rello J, Diaz E, Roque M, Valles J. Risk factors for developing pneumonia within 48 hours of intubation. Am J Respir Crit Care Med 1999; 159: 1742–1746.

13. George DL, Falk PS, Wunderink RG, et al. Epidemiology of ventilator-associated pneumonia based on protected bronchoscopic sampling. Am J Respir Crit Care Med 1998; 158: 1839–1847.

14. Lim WS, MacFarlane JT. Hospital-acquired pneumonia. Clin Med 2001; 1: 180–184.

15. Rouby JJ, Martin de Lassalle E, Poete P, et al. Nosocomial bronchopneumonia in the critically ill. Histologic and bacteriologic aspects. Am Rev Respir Dis 1992; 146: 1059–1066.

16. Lynch JP. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest 2001; 119: Suppl., 373s–384s.

17. Cunha BA. Nosocomial pneumonia: diagnostic and therapeutic considerations. Med Clin North Am 2001; 85: 79–114.

Educational questions

1. Late-onset HAP means:
 a) Pneumonia related to mechanical ventilation.
 b) Pneumonia diagnosed after at least 10 days of mechanical ventilation.
 c) Pneumonia that arises 5 days or more after admission.

2. Healthcare-associated pneumonia should be considered as a risk for:
 a) Infection with MDR pathogens.
 b) *Streptococcus pneumoniae* infection.
 c) *Haemophilus influenzae* infection.

3. A short course of therapy (e.g. 7 days) can be appropriate:
 a) Provided that the patient has a good clinical response and *Pseudomonas aeruginosa* is not involved as an aetiologic agent.
 b) Provided that the patient has an aetiologic diagnosis of *Streptococcus pneumoniae* infection.
 c) In early-onset pneumonia.

4. Antibiotic monotherapy can be used:
 a) In early-onset pneumonia and also in severe pneumonias in the absence of risk for MDR pathogens.
 b) Only in early-onset pneumonia.
 c) Only in mild VAP.

Suggested answers

1. c
2. a
3. a
4. a