The Global Spread of Severe Obesity in Toddlers, Children, and Adolescents: A Systematic Review and Meta-Analysis

Orit Pinhas-Hamiel, Uri Hamiel, Cole D. Bendor, Aya Bardugo, Gilad Twig, Tali Cukierman-Yaffe

Keywords
Severe obesity · Childhood · Infancy

Abstract

Introduction: Severe obesity among children and adolescents has emerged as a public health concern in multiple places around the world. **Methods**: We searched the Medline database for articles on severe obesity rates in children published between January 1960 and January 2020. For studies with available prevalence rates for an early and a more recent time period, the relative increase in prevalence was imputed. **Results**: In total, 874 publications were identified, of which 38 contained relevant epidemiological data. Rates of severe obesity varied significantly according to age, gender, geographic area, and the definition of severe obesity. The highest rates of class II and III obesity in the USA according to the Centers of Disease Control cut-off were 9.5% and 4.5%, respectively. Seventeen studies reported prevalence rates in at least two time periods. Data for 9,190,718 individuals showed a 1.71 (95% CI, 1.53–1.90) greater odds for severe obesity in 2006–2017 (N = 5,029,584) versus 1967–2007 (N = 4,161,134). In an analysis limited to studies from 1980s with a minimum follow-up of 20 years, a 9.16 (95% CI, 7.76–10.80) greater odds for severe obesity in recent versus earlier time was found. An analysis limited to studies from 2000, with a follow-up of 5–15 years, a 1.09 (95% CI, 0.99–1.20) greater odds was noted when comparing (2011–2017; N = 4,991,831) versus (2000–2011; N = 4,134,340). **Conclusion**: Severe pediatric obesity is escalating with a marked increase from the 1980s and a slower rate from 2000.
other parts of the world, depending on the population studied. Some studies with longitudinal follow-up report no change in the prevalence of severe obesity. Considering the extensive reporting of this phenomenon, we felt that a collation of available international data, beyond Europe and the USA, and including both preschool children and adolescents, would be helpful for examining underlying emerging patterns. Our primary objective is to describe changes in the prevalence of severe childhood obesity; the secondary objective is to study risk factors, such as sex, ethnicity, and socioeconomic position.

Methods

This review follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) suggestions (online suppl. material 1; see www.karger.com/doi/10.1159/000521913 for all online suppl. material). The Medline database was searched for articles on severe obesity in children and adolescents published between January 1960 and January 2020 in English. The following keywords were used alone and in combination: “severe obesity,” “morbid obesity” “extreme obesity” “children,” “adolescents,” “youth.” Published reports of studies that described obesity prevalence in children and adolescence were sought by systematically searching Medline, discussion with experts, and examination of the bibliographies of relevant articles. An experienced librarian and one of the authors (O.P.H.) conducted a comprehensive electronic search for articles using Medline, to identify studies that described prevalences of obesity, severe obesity, and morbid obesity among children and adolescents. Studies were included if they met all of the following: (1) they described severe obesity category prevalence in children and adolescence were sought by systematically searching Medline, discussion with experts, and examination of the bibliographies of relevant articles. An experienced librarian and one of the authors (O.P.H.) conducted a comprehensive electronic search for articles using Medline, to identify studies that described prevalences of obesity, severe obesity, and morbid obesity among children and adolescents. Studies were included if they met all of the following: (1) they described severe obesity category prevalence; (2) described a cohort of children and adolescence; (3) were in English; and (4) were published between September 1960 and January 2020. These criteria were applied to all retrieved titles and abstracts of publications, to arrive at a final list of papers. Data from the retrieved studies were then abstracted and analyzed.

Data Abstraction

The following data were extracted from each study: (a) age; (b) sex; (c) date of data collection (d) obesity, definitions of severe obesity and morbid obesity; (e) rates of severe obesity category in recent and earlier time periods when available; (f) type of study; (e) ethnic group distribution according to obesity category, when available. The number of participants was 6,542,161. For each article, prevalence rates in the different time periods reported were collected. Thus, “early time period” corresponds to the prevalence rates in the first time period reported, and “recent time period” corresponds to the prevalence rates in the latest time period reported. Overlap between time periods did not preclude using the data collected for each time period.

Statistical Analysis

All the data were tabulated. In studies that provided prevalence rates in two time periods, the difference between the periods was calculated and plotted. The pooled estimates of the change in prevalence rates comparing the most recent to earlier time periods were obtained using the random effect model. Pooled estimates were conducted for all studies that provided data for recent versus earlier time periods and separately for studies with a minimum follow-up of 20 years and studies with a follow-up ranging from 5 to 15 years. Heterogeneity was assessed using the Q and I² statistics. All analyses and graphics were conducted using Review Manager (RevMan) Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Results

A total of 874 publications were identified; 836 articles addressed bariatric surgery in severe obesity (n = 204), comorbidities associated with severe obesity (n = 259), genetic studies (n = 120), articles on treatment, nutrition, and psychology of severe obesity (n = 156) or unrelated data (n = 83), and were thus excluded from this review. Of the 50 full test articles assessed for eligibility, 38 contained epidemiological data on severe obesity in children and adolescents.

In all included studies weight and height were measured. The included studies defined severe obesity according to the following definitions:

a. The age and gender-specific 99th percentile and above cut-offs, as proposed by the US Center of Disease Control and Prevention (CDC), according to growth curves [3]. This corresponds to body mass index (BMI) ≥1.2 times the 95th percentile, or the definition in adults of class II obesity, BMI ≥35 kg/m². The majority of the studies included this definition [1, 4–15].

b. Severe obesity was further classified to class II obesity and class III obesity, as class II obesity (≥120% to <140% of the 95th percentile, or BMI ≥35 kg/m², whichever was lower), and class III obesity (≥140% of the 95th percentile, or BMI ≥40 kg/m², whichever was lower) [5, 6, 13, 14].

c. WHO) median [16]. A few studies used this criterion [17–19].

d. Cut-off values according to the International Obesity Task Force [20] [21–24].

e. The age- and gender-specific 99th percentile and above according to the CDC cut-off [25–27] or according to the WHO [16] BMI cut-off standards.

f. Cut-off values according to specific country BMI standards [28, 29].

The earliest population-based studies on severe obesity were published between 2000 and 2009 (N = 4) (Table 1). The remaining 34 were published between 2010 and January 2020. The studies defined morbid obesity according to different cut-off levels and described different age ranges.
Table 1. Prevalence of severe obesity in children and adolescents

Author, reference, country	Age-group, years	Children with severe obesity, %	Type of study	Classification	Participant in the presented years, n	
Skinner et al. [13] USA 2015–2016	2–19	Class II 6 (4.3, 7.6)	Class III 1.9 (1, 2.9)	Nationally representative data	>120% of 95th percentile and >140% of 95th percentile CDC cut-off	3,340
	2–5	1.8 (0.6, 3.0)	0.2 (~0.1, 0.4)			
	6–8	5.1 (3.2, 7.1)	1.4 (0.5, 2.3)			
	9–11	5.3 (2.9, 7.7)	1.0 (0.4, 1.7)			
	12–15	7.5 (4.2, 10.8)	2.2 (0.9, 3.4)			
	16–19	9.5 (5.8, 13.1)	4.5 (1.7, 7.4)			
Pan et al. [10] USA 2014	2–4	1.96		Serial cross-sectional national data	>120% of 95th percentile, CDC cut-off	3,016,487
	2	1.13				
	3	2.10				
	4	3.12				
Marcus et al. [27] USA 2006	12	6.9		School-based screening	>99th percentile CDC cut-off	6,365
Skelton et al. [32] USA 1999–2004	2–19	3.8		Nationally representative data	>99th percentile CDC cut-off	12,384
	2–5	4.2				
	6–11	4.0				
	12–19	3.4				
Flores and Lin [26] USA 2007–2008	5.6±0.03	5.7		The National Center for Education Statistics Institute of Education Sciences (IES)	>99th percentile CDC cut-off	14,000
Robbins et al. [11] Philadelphia 2012–2013	5–18	7.3		Philadelphia public schoolchildren	>120% of 95th percentile, CDC cutoff	88,798
Lohrmann et al. [33] Pennsylvania Pre k–SG 2012	12.5			National data	BMI ≥97 percentile CDC cut-off	212,055
	6G–8	14.9				
	G9–12	13.9				
Nguyen et al. [1] Philadelphia 2010	3–17	7.7 (5.8–9.9)	8 public community health centers	>120% of 95th percentile, CDC cut-off	691	
	3–5	6 (3–11)				
	6–8	7 (3–13)				
	9–12	8 (5–13)				
	13–17	8 (5–13)				
Kharofa et al. [6] Cincinnati OH 2012–2014	2–18	Class II 4.7	Class III 2.7	Chart review of children	>120% of 95th percentile and 140% of 95th percentile CDC cut-off	217,037
	2–5	1.6	0.7			
	6–11	5.0	2.4			
	12–18	6.3	4.3			
Author, reference, country	Years presented in the table	Age-group, years	Children with severe obesity, %	Type of study	Classification	
----------------------------	-----------------------------	-----------------	-------------------------------	---------------	----------------	
Day et al. [3] New York City	2010–2011	5–14	5.7	VIC public school students	>120% of 95th percentile CDC cut-off	
Lo et al. [8] Northern California	2007–2010	3–5	1.6	Kaiser Permanente Northern California	>120% of 95th percentile CDC cut-off	
Lo et al. [7] Northern California	2007–2010	6–17	5.3	Kaiser Permanente Northern California	>120% of 95th percentile CDC cut-off	
Koebnick [47] Southern California	2007–2008	2–19	6.4	Kaiser Permanente Southern California	>120% of 95th percentile CDC cut-off	
Koebnick [47] Southern California	2007–2008	2–5	2.5	Kaiser Permanente Southern California	>120% of 95th percentile CDC cut-off	
Koebnick [47] Southern California	2007–2008	6–11	7.4	Kaiser Permanente Southern California	>120% of 95th percentile CDC cut-off	
Koebnick [47] Southern California	2007–2008	12–19	7.7	Kaiser Permanente Southern California	>120% of 95th percentile CDC cut-off	
Ball et al. [17] Edmonton Calgary Alberta, Canada	2017	4–6	2.16		BMI Z >3SD WHO cut-off	
Carsley et al. [18] Ontario, Canada	2009–2015	0–12	0.6	Electronic Medical Records Administrative data Linked Database (EMRALD)	BMI Z >3SD WHO cut-off (≥99.9th)	
Carsley et al. [34] Ontario, Canada	2014–2015	0–6	0.5	Practice-based research network in 5-6	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<0.1–2	0.3	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<1–2	1.5	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<2–3	2.2	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<3–4	3.3	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<4–5	4.4	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Satkunam et al. [12] Ontario, Canada	2014–2016	<5–6	5.5	Survey	BMI Z >3SD WHO cut-off (≥99.9th)	
Shackleton et al. [38] New Zealand	2015–2016	6–12	5.2		A national screening program ≥97th percentile CDC cut-off	
Shackleton et al. [38] New Zealand	2015–2016	≥13	17		A national screening program ≥97th percentile CDC cut-off	
Shackleton et al. [38] New Zealand	2015–2016	≥14	17		A national screening program ≥97th percentile CDC cut-off	
Shackleton et al. [38] New Zealand	2015–2016	≥15	17		A national screening program ≥97th percentile CDC cut-off	
Shackleton et al. [38] New Zealand	2015–2016	≥16	17		A national screening program ≥97th percentile CDC cut-off	
Shackleton et al. [38] New Zealand	2015–2016	≥17	17		A national screening program ≥97th percentile CDC cut-off	
Table 1 (continued)

Author, reference, country	Years presented in the table	Age-group, years	Children with severe obesity, %	Type of study	Classification	Participant in the presented years, n
Utter et al. [22] New Zealand 2012	13–18	3.7 (2.5, 5.0)	National representative sample	BMI >35 kg/m²	8,372	
Garnett et al. [5] Australia 2012	7–15	Class II 2.0 Class III 0.5	Australian cross-sectional surveys	>120% of 95th percentile and >140% of 95th percentile CDC cut-off	2,940	
Xu et al. [23] Australia 2014	7–15	1.9	Cross-sectional Australian database	BMI >35 kg/m²	2,079	
Cho et al. [29] Korea 2007–2014	10–18	Class II 5.9 (5.2, 6.6) Class III 0.9 (0.6, 1.1)	National Health and Nutrition Examination Surveys	>120% of 95th percentile and >140% of 95th percentile Korean growth curve	7,197	
Nam et al. [9] Korea 2013–2014	2–19 2–9 10–19	2.1 (1.6–2.7) 0.6 (0.3–1.3) 3.0 (2.2–4.0)	Korea Centers for Disease Control and Prevention	>120% of 95th percentile CDC cut-off	3,226	
Chen et al. [36] Xiamen, China 2017	2–7	0.28	Cross-sectional survey, kindergarten	Weight-for height >50% reference population WHO cut-off	21,883	
Zhang [24] China 2014	7–18 7–12 13–18	Girls 1.29 1.95 0.63 Boys 2.73 3.93 1.51	National surveys	BMI >35 kg/m² IOTF cut-off	9,719	
Ells et al. [30] United Kingdom 2012–2013	4–5 10–11	Girls 1.1 1.2 Boys 1.5 1.5	NCMP	99.9th percentile of the British 1990 (UK90) growth reference	1,076,824	
Beynon and Bailey [40] Wales 2017–2018	4–5	3.1 (3.0–3.2)	CMP	99.6th percentile Royal College of Paediatrics	34,163	
Bohn et al. [42] Germany 2015	<21	12.7	APR	≥99.5th percentile for age and sex	4,196	
Segna et al. [39] Austria 2003–2004	2–16 2–4 4–7 7–10 10–1 13–16	2.1 1.8 2.4 2.5 1.3 1.2	Viennese sample of children and adolescents	BMI ≥99.5th percentile of German national reference	24,989	
Author, reference, country	Age-group, years	Children with severe obesity, %	Type of study	Classification	Participant in the presented years, n	
---------------------------	-----------------	-------------------------------	--------------	---------------	---------------------------------------	
Cadenas-Sanchez et al. [41] Spain 2014–2015	4.6±0.9	Class II 1.2, Class III 1.3	PREFIT project	>120% of 95th percentile and >140% of 95th percentile WHO cut-off	3,178	
van Dommelen et al. [15] Holland 1980–2009	2–18	Girls 1.00, Boys 0.53	National Dutch Growth Studies	>120% of 95th percentile WHO cut-off	10,894	
Twig et al. [14] Israel 2015	17	Girls Class II 1.2, Class III 0.4, Boys Class II 1.9, Class III 0.5	National data	>120% of 95th percentile and >140% of 95th percentile CDC cut-off	63,652	
El Mouzan et al. [19] Saudi Arabia 2005	5–18	2	Cross-sectional sample from a stratified listing based on the population census	BMI >3 SDS WHO cut-off	19,317	
AlBlooshi et al. [25] Ras Al-Khaimah United Arab Emirates 2014–2015	3–6	3.3	Population-based study	BMI ≥99th percentile CDC cut-off	44,842	
Total, N					6,542,161	

The CDC cut-off of >120% of the 95th percentile and WHO cut-off of zBMI >3, applied to the age and sex standardized. zBMI scores from WHO growth reference charts were used to estimate prevalence of severe obesity. IOTF, International Obesity Task Force; NCMP, National Child Measurement Programme; CMP, Childhood Measurement Programme; APV, Adiposity Patients Registry; BORN, Better Outcomes Registry and Network.
Time Trends in the Prevalence of Severe Obesity

Seventeen studies reported trends of severe obesity over a period of time. Data for 9,190,718 individuals showed a 1.71 (95% CI, 1.53–1.90) greater odds for severe obesity in the recent time period 2006–2017 (N = 5,029,584) than during the earlier time period, 1967–2007 (N = 4,161,134) (Fig. 1a). There was significant heterogeneity between the studies (p for heterogeneity 0.0001, I²
Table 2. Prevalence of severe obesity in children according to ethnic groups

Author and Location	Class	Ethnicity	Age	Prevalence
Skinner et al. [13] USA 2015–2016	Class II	White	12–19	3.9 (2.8, 5.0)
	Class III	Black	12–19	3.8 (1.8, 5.9)
		Hispanic	12–19	6.1 (6.7, 11.6)
		Asian/PI	12–19	1.4 (0.3, 3.1)
		Other	12–19	7.6 (0.0, 15.3)
			2–4	0.7 (−0.3, 1.6)
Pan et al. [10] USA 2014	Class II	African American	12–19	1.41
		Hispanic	12–19	1.41
		Hispanic	12–19	2.58
		Hispanic	12–19	1.31
		American Indian Alaska Native	2–4	2.35
Marcus et al. [27] USA 2006	>99th percentile	Girls	12	4.9
		Boys	12	5.8
Skelton et al. [32] USA 1999–2004	>99th percentile	Girls	12–19	3.1
		Boys	12–19	5.8
Robbins et al. [11] Philadelphia 2012–2013	Class II	White	5–18	5.8
		Hispanic	5–18	8.3
		Hispanic	5–18	7.7
		Other	5–18	1.8
		Other	5–18	5.3
Nguyen [1] Philadelphia 2010	Class II	White	5–18	4.0 (0–20)
		Hispanic	5–18	9.6 (6–12)
		Hispanic	5–18	6.3 (3–12)
		Hispanic	5–18	9.3 (3–19)
		Hispanic	5–18	6.2 (2–13)
Kharofa et al. [6] Cincinnati OH 2012–2014	Class II	White	2–18	4.3
		Black	2–18	5.6
		Hispanic	2–18	6.5
		Other	2–18	3.0
		Other	2–18	2.0
Day et al. [4] New York City 2010–2011	Class II	White	5–14	3.7
		Hispanic	5–14	6.5
		Hispanic	5–14	7.2
		Other	5–14	2.3
Lo et al. [8] Northern California 2007–2010	Class II	White	3–5	1.0
		Hispanic	3–5	1.7
		Hispanic	3–5	2.2
		Other	3–5	1.0
		Other	3–5	1.1
Lo et al. [7] Northern California 2007–2010	Class II	White	3–5	3.8
		Hispanic	3–5	8.3
		Hispanic	3–5	8.5
		Other	5–18	3.5
		Other	5–18	5.3
Koebnic [47] Southern California 2007–2008	Class II	White	2–19	3.8
		Hispanic	2–19	8.2
		Hispanic	2–19	7.9
		Other	2–19	3.4
		Other	2–19	6.8
Farrant et al. [21] New Zealand 2007	Class II	White	13–18	1 (0.7, 1.3)
		Hispanic	13–18	Asian 0.9 (0.2, 1.6)
		Hispanic	13–18	PI 9 (6.7–11.2)
		Hispanic	13–18	Maori 4.6 (3.4–5.9)
Utter et al. [22] New Zealand 2012	Class II	White	4	1.4 (1.1, 1.7)
		Hispanic	4	Asian 0.8 (0.2, 1.4)
		Hispanic	4	PI 14.0 (10.7–17.3)
		Hispanic	4	Maori 4.6 (3.3–5.9)
Shackleton et al. [38] New Zealand 2015–2016	≥99.7th percentile	White	4	2.0–2.1
		Hispanic	4	Asian 1.8 (1.7, 1.8)
		Hispanic	4	PI 7.9 (7.7, 8.0)
		Hispanic	4	Maori 4.2 (4.1, 4.3)
Ells et al. [30] UK 2006–2013	99.6th percentile	White	4–5	1.83
		Hispanic	4–5	4.46
		Hispanic	4–5	3.41
		Other	4–5	3.16
van Dommelen et al. [15] Holland 2009	2–18	White	10–11	3.12
		Hispanic	10–11	Girls 6.39
		Hispanic	10–11	Boys 4.38
		Hispanic	10–11	5.00

PI, Pacific Islanders.
Ethnicity

Table 2 presents the distribution of severe obesity according to ethnic groups for the studies for which this was presented. Substantial racial-ethnic differences were demonstrated. In the USA, the highest rates of severe obesity were observed in Hispanic and non-Hispanic blacks across nearly all classes of obesity and all years between 1999 and 2016; prevalences of class II obesity reached 11.9% and 8.6%, respectively, in 2015–2016 [13]. Notably, for Asian Americans prevalences of obesity in all age and sex categories were relatively low [13]. In New Zealand, the prevalence of severe obesity was higher for Pacific students (9%) and Maori students (5%). Of the Pacific islanders, those of Tongan and Samoan ethnicity had a higher prevalence. In England, the highest prevalence levels were documented in 10 to 11-year-old black Caribbean children [30]. In Holland, the prevalence of morbid obesity in children of Turkish and Moroccan ethnicity was 2 to 3-fold higher than in Dutch children [15]. In general, severe obesity was associated with lower socioeconomic status.

Sex

Most studies showed higher rates of severe obesity among boys (Table 3). Three out of the 38 studies exceptions to such were observed. One is the study from Philadelphia, of randomly selected children aged 3–17 years, in which the rates in girls and boys were 9 and 6%, respectively [1]; the other exceptions are studies conducted in the United Arab Emirates, among children aged 3–10 years [25], and among 13–18-year-old adolescents from New Zealand [22].

Age

In most of the reports from the USA, the prevalence of severe obesity increased with increasing age. Similar trends were observed in Canada, Korea [9], the United Arab Emirates [25], and Saudi Arabia [19]. In contrast, decreases in the prevalence of severe obesity with age were observed in China, Holland [15], and Austria.

Severe Childhood Obesity according to Region

US – NHANES Reports

The first data on the increasing prevalences of childhood severe obesity are from the mid-1970s and reported initially in 2011 [31]. According to National Health and Nutrition Examination Surveys (NHANES) data, the prevalence in 1976–1980 of severe obesity in US children and adolescents aged 2–19 years was 1.2%. This prevalence increased incrementally to 2.9% and 3.1% in the years 1988 and 1994, respectively, and were 5.1% and 4.7% in 1999 and 2006, respectively (p value for the trend <0.001) [31, 32]. Among 6,358 children aged 12 years in 2006, 6.9% were with severe obesity [27]. Data for the sexes combined showed a prevalence of class II obesity of 5.8% (4.6–7.15) in 2009–2010, 6.2% (5.2–7) in 2013–2014; and 6.0% (4.3–7.6) in 2015–2016 [13]. Prevalences of class III obesity in the respective years were 1.6%, 2.3%, and 1.9%. The prevalence of severe obesity was shown to increase with age. In 2015–2016, 9.5% and 4.5% of 16- to 19-year-old adolescents had class II and class III obesity. Prevalence was higher in African Americans and Hispanics (Table 2) and in boys (Table 3). Of note, the prevalence of severe obesity among infants aged 2–4 years in 2014 was 2.0% [10].

Despite the gradual increase in severe pediatric obesity reported by NHANES, in various regions of the USA, a decrease in the prevalence of severe obesity has been recorded. Other reports from the USA since the year 2000. Three studies reported the prevalence of severe obesity in Philadelphia, Pennsylvania [1, 11, 33]. Using the criteria of a BMI percentile of 120% or higher, the prevalence of severe obesity decreased significantly for all children from 8.5% in 2006–2007 to 7.3% in 2012–2013, a relative decline of 13.9% [11]. Decreased prevalence was observed in all racial/ethnic groups, except for Hispanics. Using the definition of BMI ≥97th percentile, high rates of severe obesity were reported, reaching up to 16% of students in grades 6–12 in 2007. However, between 2007 and 2011, declines were observed of 6.3% among girls and 8.1% among boys [33]. In Cincinnati, Ohio a decrease in class III obesity in 6- to 11-year-old girls (2.7% to 2.3) was observed over 3 years, between 2012 and 2014 [6]. Similarly, an overall reduction in severe obesity was observed in New York City public schoolchildren aged 5–14 years, over a 5-year period, from 6.3 in 2006 to 5.7% in 2011, representing a 9.5% decrease [4]. Overall, prevalence rates of severe obesity categories were higher in older children (12–18 years of age), Hispanic children, and children on Medicaid [6–8].
Table 3. Prevalence of severe obesity in children and adolescents according to gender

Author	Country	Years	Age-group, years	Children with severe obesity, %	Author	Country	Years	Age-group, years	Children with severe obesity, %																																																																						
Skinner et al.	USA	2015–2016	2–19	Class II Class III	Pan et al.	USA	2000	2–4	1.85 1.75	Marcus et al.	USA	2006	12	6.4 7.5	Skelton et al.	USA	1999–2004	2–19	2.9 4.6	Robbins et al.	Philadelphia, USA	2006	5–18	8.1 8.9	Nguyen et al.	Philadelphia, USA	2010	3–17	9 (6–12) 6 (4–10)	Kharofa et al.	Cincinnati, OH, USA	2012–2014	2–18	4.9 4.5	Day et al.	New York City, USA	2006	5–14	5.5 7.2	Lo et al.	Northern California, USA	2007–2010	3	1.0 1.1	Koebnick	Southern California, USA	2007–2008	2–19	5.5 7.3	Carsley et al.	Toronto, Canada	2009–2015	0–2	0.4 0.6	Carsley et al.	Ontario, Canada	2004–2015	≤4	0.6 (0.4, 0.8) 1.2 (0.9, 1.4)	Cruz et al.	Mexico Tijuana and Ensenada, Mexico	2007	6–12	4.1 6.3	Shackleton et al.	New Zealand	2010–2011	4	2.9 (2.8, 3.0) 4.0 (3.9, 4.1)	Farrant et al.	New Zealand	2007	13–18	2.3 (1.4, 3.2) 2.6 (2.0, 3.3)	Utter et al.	New Zealand	2007–2012	13–18	2.4 (1.5, 3.2) 2.6 (2.0, 3.3)
Canada
Four studies have been published from various regions of Canada. They are particularly important in their reporting the prevalence of severe obesity among infants and toddlers.

Edmonton and Calgary, Alberta
During an 8-year period, 2010–2017, the prevalence of severe obesity remained steady, at 2.2–2.4%, among children aged 4–6 years [17]. A greater proportion of boys than girls were classified as having severe obesity.

Author	Country	Years	Age-group, years	Children with severe obesity, %	
Nam et al. [9]	Korea	2014	2–9	0.8 (0.4, 1.9)	
		10–19		1.0 (0.5, 2.0)	
				>120% of 95th percentile CDC cut-off	
Chen et al. [36]	Xiamen, China	2017	2–7	0.17	
		2	0.08	0.24	
		3	0.14	0.17	
		4	0.09	0.28	
		5	0	0.34	
		6	0.55	0.86	
Zhang [24]	China	1995–2014	7–18	0.11	
		2014	7–12	1.29	
		2014	13–18	1.95	
				0.63	
				>50% reference population	
Ells et al. [30]	United Kingdom	2006–2013	4–5	1.9	
		2005–2015	<21	11.2	
				12.2	
				≥99.5th percentile for age and sex	
Beynon and Bailey [40]	Wales, United Kingdom	2017–2018	4–5	3.0 (2.7–3.2)	3.6 (3.4–3.9)
				99.6th percentile Royal College of Paediatrics	
Bohn et al. [42]	Germany	2005–2015	<21	11.2	
				12.2	
				≥99.5th percentile for age and sex	
Segna et al. [39]	Vienna, Austria	2003–2004	2–16	1.9	
Cadenas-Sanchez et al. [41]	Spain	2014–2015	4.6±0.9	1.2	1.3
van Dommelen et al. [15]	Holland	1980–2009	2–5	1.00	0.53
		6–11	0.63	0.62	
		12–18	0.17	0.60	
Twig et al. [14]	Israel	1967–2015	17	1.2	
			Class II	1.9	
			Class III	0.4	0.5
				>120% of 95th percentile and >140% of 95th percentile	
El Mouzan et al. [19]	Saudi Arabia	2005	5–12	1.0	
		12–18	2.1	2.6	
AliBlooshi et al. [25]	United Arab Emirates	2013–2015	3–6	3.4	2.5
			7–10	4.4	3.9
			11–14	5.6	7.1
			15–18	7.2	9.6

IOTF, International Obesity Task Force.
Toronto
A longitudinal study was conducted through The Applied Research Group for Kids! (TARGet Kids!), a practice-based research network [18]. Among 5,738 children aged <5 years, 0.8% had a BMI-Z >3. Among 626 children aged 5–6 years, 2.1% had a BMI-Z >3.

Ontario
A cross-sectional study was conducted among toddlers aged 17–24 months (n = 768) [12]. In total, 1.1% (95% CI, 0.8–1.4) of them met the adapted WHO definition of severe obesity compared to 0.3% (95% CI, 0.2–0.6) using the CDC definition. Low neighborhood household income and maternal prepregnancy obesity were associated with severe obesity.

In a repeated cross-sectional study that included 55,233 children aged 18 years or less, a plateauing of estimates and a small decrease in BMI-Z over time were observed, from 2.6% in 2004 to 1.8% in 2015 [34]. Overall, the prevalence of severe obesity increased with increasing age (Table 1) and was 2-fold higher in boys than in girls [18].

Central America
Mexico
A survey was conducted among 2,690 boys and girls aged 6–12 years in Tijuana and Ensenada [35]. An overall prevalence of severe obesity (the 99th percentile of BMI) was 5.2%: 6.3% among boys and 4.1% among girls.

Asia-Pacific Region
Shandong Province, China
A total of 41,500 students of Han nationality, aged 7–18 years old, were assessed [24]. For children aged 7–12 years, the prevalence of severe obesity increased from 0.39% in boys and 0.11% in girls in 1995 to 3.93% in boys and 1.95% in girls in 2014. For adolescents aged 13–18 years, the increases were from 0.11% in boys and 0.11% in girls in 1995 to 1.51% and 0.63%, respectively, in 2014. Thus, the incremental increases were greater in younger children than in adolescents. In more recent years, there has been a halt to the rise in severe obesity incidents. Xiamen, China. The prevalence of severe obesity decreased from 0.32% in 2011 to 0.28% in 2017 in preschool children aged 2–7 years (n = 567,338) in urban areas [36].

Korea
Data from 19,593 youth (10,271 boys) aged 2–19 were obtained from the Korean National Health and Nutrition Examination Surveys (2001–2014) [9]. The data were assessed according to two sets of criteria for severe obesity, based on BMI calculations. Severe obesity was defined as a BMI ≥120% of the 95th percentile according to the US CDC criteria; and as BMI ≥99th percentile according to the Korean CDC criteria (Table 1). According to CDC criteria, the overall prevalence of severe obesity increased from 1.2–1.8% in 2001 to 2.1–2.4% in 2013–2014 (p for trend 0.01). The increasing trend was statistically significant in boys, especially those aged 10–19 years (2.5% [95% CI: 1.5–3.9%] in 2001 to 4.7% [95% CI: 3.4–6.5%] in 2014, p for the trend 0.049) with no significant change among girls of any of the age-groups investigated.

Thailand, Bangkok
A cross-sectional survey was conducted among 462 schoolchildren aged 6 and 14 years old in northeastern Thailand between 2013 and 2014 [37]. According to a definition of severe obesity as weight for age >3 SD, 1.73% were classified as severely obese.

New Zealand
Trends in the prevalence of severe obesity among New Zealand 4 year olds across 5 years (2010–2015) were examined across quintiles of socioeconomic deprivation and by ethnicity [38]. Overall, 2.9% of the children were with severe obesity in 2016, a downtrend prevalence of 0.6% from 2010. The highest prevalence was observed among Pacific Islander children, specifically Tongans, 9.3%.

Similarly, in a national survey of the health and well-being of secondary school students in New Zealand, conducted in 2007 [21], the prevalence of severe obesity among Pacific students was 9.0%, Maori students 4.6%, and those from European origin 1.0%. Severe obesity was more common among students living in deprived (5.7%) than affluent (0.8%) areas and among students living in urban (3%) than rural areas (1%). In a survey that assessed the trend of severe obesity during 2007–2012, the prevalence for the general population did not change, while the prevalence for students aged 13–17 years from Pacific ethnicity increased from 9% to 14% [22].

Australia
Between 1985 and 2012, the prevalence of class II severe obesity increased from 0.3% to 2.0%, and of class III obesity from 0.1% to 0.5% [5]. In 2014, 28% of children with obesity were classified as having severe obesity [23].

Europe
A review [2] on severe obesity among children aged 6–9 years old in 21 countries in Europe was recently pub-
lished (Albania, Belgium, Bulgaria, Czech Republic, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Malta, Norway, Portugal, Slovenia, Spain, Republic of Macedonia, Republic of Moldova, Romania, San Marino, Sweden, Turkey). We report here data from countries that were not included in that report, more recent data, and data of age ranges that were not reported.

Austria
A total of 24,989 Viennese children, which represents 8% of the children and adolescents in Vienna, were recruited between 2003 and 2004 [39]. More boys (2.3%) than girls had severe obesity. Severe obesity was more prevalent in children from Turkish families and among those presumably of Serbo-Croatian origin than among children of native German origin. The respective prevalences of severe obesity among these groups were 2.7%, 3.4%, and 1.8% for boys; and 2.4%, 2.4%, and 1.6%, for girls. The highest prevalence was identified among children aged 7–10 years (2.5%), followed by 4–7 years (2.4%), 2–4 years (1.8%), 10–13 years (1.3%), and 13–16 years (1.2%).

Holland
Cross-sectional height and weight data of children of Dutch, Turkish, and Moroccan origin, aged 2–18 years, were selected from three national Dutch Growth Studies performed in 1980, 1997, and 2009 (n = 54,814) [15]. A significant upward trend occurred, and in 2009, the prevalence of severe obesity in children of Dutch origin was 0.59% in boys and 0.53% in girls. The prevalence was 3 to 4-fold higher in Turkish than in Dutch children (2.53% of the Turkish boys and 1.71% of the girls). Similarly, the prevalence of severe obesity in Moroccan children was 2- to 3-fold higher than in Dutch children. The highest prevalence rates of severe obesity were observed among children whose parents had low education.

England
Trend of severe obesity was assessed for the years 2006–2007 and 2012–2013 [30]. Severe obesity was classified in 1.9% of girls and 2.3% of boys aged 4–5 years. The odds of being severely obese slightly decreased for this age-group. For the 10- to 11-year age-group, the prevalence of severe obesity in 2012–2013 was 2.9% for girls and 3.9% for boys. The odds of being severely obese increased for the older girls and boys by 1.02 times for each additional year of measurement. Significant variations in prevalences of severe obesity were documented between ethnic groups, with the highest levels in 10-year-old to 11-year-old black Caribbean children. Among 10- to 11-year-old girls, the odds of being severely obese were 4.35 times greater for those in the most-deprived index of the multiple deprivation deciles than for those in the least-deprived reference category.

Wales
Data were assessed of 162,208 children mean age 5.06 ± 0.35 years, during 2013–14 and 2017–18 [40]. The overall prevalence of severe obesity was 3.1% (95% CI 3.0–3.2%). This ranged from 1.9% (95% CI 1.7–2.1%) in the least deprived areas to 3.9% (95% CI 3.7–4.0%) in the most deprived areas and was higher among boys than girls: 3.6% (95% CI 3.4–3.9%) versus 3.0% (95% CI 2.7–3.2%). Prevalence has increased over time, but the trend is not statistically significant.

Spain
Prevalences of class II and class III obesity among 3,178 preschool children, mean age 4.6 ± 0.9, were 1.2% and 1.3%, respectively [41].

Germany
Data were provided by the Adiposity Patients Registry [42], used by 182 centers in Germany that specialize in pediatric obesity care; thus, the data do not reflect the prevalence in the general population. Severe obesity was defined as a BMI ≥99.5th percentile for age and sex. Overall, among children with overweight and obesity, the prevalence of severe obesity increased from 11.6% in 2005 to 12.7% in 2015. This trend was present in both sexes. Severe obesity became more frequent both among younger (<11 years: from 22.6% to 23.7% p < 0.0001) and older individuals (≥11 years: from 10.0% to 12.8%; p < 0.0001). The highest prevalence of severe obesity was found among Turkish native-speaking children and adolescents.

East/Middle East Israel
A total of 2,785,227 Israeli adolescents (aged 17.2 ± 0.5 years) between 1967 and 2015 were included in a national study [14]. In 2015, 1.6% of the adolescents were class II obesity and 0.44% with class III obesity. The rate of class II obesity was higher among boys, 1.9%, than among girls, 1.2%. Class III obesity was present in 0.5% of boys and 0.4% of girls. From 1967 through 1998, the prevalence of class II obesity increased from 0.12% to 0.80% in boys and from 0.01% to 0.50% in girls. The prevalence subsequently increased markedly, to approximately 2.0% in boys and 1.2% in girls during 2010–2015. The
Severe Obesity in Childhood

prevalence of class III obesity remained low, at less than 0.05% until the late 1990s. From then, it increased dramatically, reaching 0.55% and 0.45% in boys and girls, respectively, by 2015.

Saudi Arabia
A total of 19,317 healthy children and adolescents aged 5–18 years were screened using WHO criteria for diagnosis [19]. The reported prevalence of severe obesity in 2005 was 2%. The prevalence was significantly higher among boys than girls (2.3% vs. 1.6%; p < 0.001).

United Arab Emirates
A population-based study comprised of 15,532 children (aged 4–12 years) in 2013–2014, and 29,410 children (aged 3–18 years) in 2014–2015 [25]. The rate of severe obesity was 9.6-fold higher in boys than girls (0.58% vs. 0.06%). For ages 15–18 years, 10.3% of boys and 3.0% of girls were severely obese.

Discussion
This review confirms the rise in global reporting of severe obesity in children and adolescents. Data recording during 1967–2017, including 9 million children and adolescents demonstrated a 1.7 increase in the prevalence of severe obesity when comparing recent to earlier time periods (2006–2017 and 1967–2007, respectively). When the analysis was limited to studies with a minimum of 20 years of follow-up, including data from the 1980s a 9.16-fold increase in the prevalence of severe obesity was demonstrated compared to a 0.9-fold increase in more recent studies with a 5- to 15-year follow-up. The varying definitions of severe obesity, age-groups, time periods, and study designs render the data hard to compare directly over time and across countries. Nonetheless, the relative homogenous results obtained in an analysis of data obtained from the studies with the longer follow-up period support the hypothesis that from 1980 to 2015 there was a substantial increase in severe obesity rates in children, with a slower rate of increase from 2000.

These findings are consistent with previous reports. Accordingly, Spinelli et al. [2] reported that during 2007–2013, among 636,933 primary schoolchildren in 21 countries in Europe, the prevalence of severe obesity varied greatly among countries, ranging from 1.0% in Swedish and Moldovan children to 5.5% in Maltese children. In many countries, 1 in 4 children with obesity had severe obesity. The consistent findings of increases over time in rates of severe obesity, across heterogeneous studies, demonstrate that the phenomenon is not limited to particular regions, but has become nearly universal.

Interestingly, an analysis of data from 2000 onward, showed no significant changes in the prevalence of severe obesity. Decreased prevalence of severe obesity in New Zealand was speculated to be secondary to improved diet and increased activity levels [38]. Decreased prevalence of severe obesity in New York [10] was speculated to be secondary to a number of federal programs promoting healthy food choices, increased support for families and communities, and the implementation of comprehensive public health strategies aimed to prevent and manage childhood obesity. The latter include school-based nutrition education, greater access to free or reduced-price meals, shifts toward healthier food items [11, 38], and outreach to parents by means of mobile health technology [38]. Alternatively, 6 years may be too short to detect changes at a national level.”

Among adults, greater prevalences of severe obesity have been reported among certain ethnic minority groups, such as African-Americans and Hispanic Americans. Similarly, prevalences of severe obesity are particularly high among adolescents from minority groups in the USA (African-Americans, Hispanic-Americans), Canada (First Nations people), Australia (Aboriginal), and New Zealand (Maori). In addition, data from Holland, the United Kingdom, and Austria indicate significantly higher prevalences among children and adolescents from immigrant groups (Morrocan, Turkey, Pakistan). While analyses of social trends suggest that adoption of a Western lifestyle is strongly associated with severe obesity in these populations, the low socioeconomic position should be considered. Indeed, data from England [30] and Wales, in particular [40] revealed significantly higher levels of severe obesity in regions of socioeconomic deprivation. Moreover, in the USA, severe obesity was more prevalent among children who were on Medicaid [6].

Severe obesity was generally more prevalent among boys than girls. This is consistent with the comprehensive review from Europe [2]. In contrast, data collected from adults during 1975–2014 estimated severe obesity in 58 million men compared to 126 million women [43]. Similarly in the USA, women were more likely to have severe obesity than men: 9.7% versus 5.6% [44]. Physical activity, cultural values (obesity is more culturally acceptable among women because excess weight gain is associated with maternity and nurturing), biological factors (e.g., menopause), and urbanization were the most commonly discussed explanations for sex disparities [45]. However,
rarely did studies elaborate beyond general terms. We hypothesize that in children and adolescents, cultural factors that place increasing pressure on girls not to be obese are attributed to the gender disparities. Furthermore, in regions such as China and Arab countries, the societal preference has traditionally been for sons. This could result in boys enjoying more of a family’s resources [46]. In addition, in Arab countries, a perception still prevails among parents and their children that being overweight is a sign of high social class, beauty, fertility, and prosperity.

Severe obesity in children is higher in regions with a high incidence of severe obesity in adults. Population-based data have been pooled to estimate trends of severe obesity among adults from 1975 to 2014. Severe obesity was found to be highest in the high-income English-speaking countries (27.1%; 50 million), followed by the Middle East and Northern Africa (13.9%; 26 million) [43]. Thus, we suggest that attention to the epidemiology of general obesity in children and severe obesity in adult populations may be helpful in predicting the emergence of severe obesity in children. These data may have implications for screening programs in countries where severe obesity was not yet studied in children.

The association between age and severe obesity was not consistent. In some studies, the prevalence increased with age [47], while in others it did not. Severe obesity may be expected to develop during childhood, and thus be more prevalent in adolescents. On the other hand, body image is of great concern to adolescents, so they may strive harder to prevent severe obesity. The most worrying fact is the prevalence of severe obesity in infancy and early childhood. Data from Canada in infants aged 1.5–2 years show that 1.1% already have severe obesity, and at the age of 4–6 years the prevalence reaches 2.4%. Similar prevalence rates have been documented in Austria, among toddlers aged 2–4 years the prevalence is 1.8%, and in England, at 4–5 years it reaches 2.3%. In New Zealand, the prevalence in children aged 4–5 years was 2.9% years but reaches a prevalence of 9.3% among Pacific Islander toddlers. The significance of obesity so severe already at an early age on the associated morbidity associated should be investigated in long-term epidemiological studies.

This review has several limitations. First, it was limited to published data. Therefore, information was not available from regions where systemic data have not yet been collected. In addition, the exclusion of reports not in the English language limits generalizing globally. Moreover, the inclusion of varying definitions of severe obesity, age groups, time periods, and study designs render the data hard to compare directly, over time and across countries.

Despite these limitations, the studies reviewed here confirm that severe obesity is being recognized as a health problem of international scope in children and adolescents, following much the same pattern as in adults. Our findings suggest that particular attention should be given to anthropometric parameters of obesity-associated complications can also be expected to be higher in the pediatric age-group due to the longer disease duration, the implementation of appropriate screening measures is particularly important. Based on these data, it would be helpful in the future if researchers would adopt a standard age breakdown and limit samples to individuals up to age 20 years. Second, the classification of severe obesity is inconsistent. The adoption of a unified cutoff level will enable better comparison and understanding of the implications of increasing pediatric obesity for international public health.

Statement of Ethics

An ethics statement is not applicable because this study is based exclusively on published literature.

Conflict of Interest Statement

The authors of this manuscript have no conflicts of interest to declare.

Funding Sources

There is no relevant funding for this study.

Author Contributions

Orit Pinhas-Hamiel and Uri Hamiel performed the systematic search, did data extraction, interpreted the data, did the graphs and tables, and drafted and revised the review. Cole D. Bendor and Aya Bardugo contributed to the discussion and critically revised the manuscript. Gilad Twig and Tali Cukierman-Yaffe supervised the review, interpreted the data, and drafted and revised the manuscript. All authors read and approved the final manuscript.

Data Availability Statement

All data generated or analyzed during this study are included in these article material files. Further enquiries can be directed to the corresponding author.
Severe Obesity in Childhood

References

1 Nguyen JV, Robbins JM, Houck KL, Nobis EA, Inman KA, Khan KS, et al. Severe obesity and high blood pressure among children, Philadelphia health centers, 2010. J Prim Care Community Health. 2014;5:152–5.

2 Spinelli A, Buoncristiano M, Kovacs VA, Yngve A, Spirisobi I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12:244–58.

3 Barlow SE, Dietz WH. Obesity evaluation and treatment: expert committee recommendations. The maternal and child health bureau, health resources and services administration and the department of health and human services. Pediatrics. 1998;102:E29.

4 Day SE, Konty KJ, Leventer-Roberts M, Nona C, Harris TG. Severe obesity among children in New York City public elementary and middle schools, school years 2006–07 through 2010–11. Prev Chronic Dis. 2014;11:E118.

5 Garnett SP, Baur LA, Jones AM, Hardy LL. Trends in the prevalence of morbidity and severe obesity in Australian children aged 7–15 years, 1985–2012. PLoS One. 2016;11:e0154879.

6 Kharofa RY, Klein IA, Khoury P, Siegel RM. Severe obesity decreasing in children in Cincinnati, Ohio. Clin Pediatr. 2017;56:752–8.

7 Lo JC, Chandra M, Sainako A, Daniels SR, Prineas RJ, Maring B, et al. Severe obesity in children: prevalence, persistence and relation to hypertension. Int J Pediatr Endocrinol. 2014;4:3.

8 Lo JC, Maring B, Chandra M, Daniels SR, Sainako A, Daley MF, et al. Prevalence of obesity and extreme obesity in children aged 3–5 years. Pediatr Obes. 2014;9:167–75.

9 Nam HK, Kim HR, Rhie YJ, Lee KH. Trends in the prevalence of extreme obesity among Korean children and adolescents from 2001 to 2014. J Pediatr Endocrinol Metab. 2017;30:517–23.

10 Pan L, Park S, Slayton R, Goodman AB, Blanck HM. Trends in severe obesity among children aged 2 to 4 years enrolled in special supplemental nutrition program for women, infants, and children from 2000 to 2014. JAMA Pediatr. 2018;172:232–8.

11 Robbins JM, Mallya G, Polansky M, Schwarz DF. Prevalence, disparities, and trends in obesity and severe obesity among students in the Philadelphia, Pennsylvania, School District, 2006–2010. Prev Chronic Dis. 2012;9:E145.

12 Satkunam M, Anderson LN, Carsley S, Mugure JL, Parkin PC, Sprague AE, et al. Severe obesity in children 17 to 24 months of age: a cross-sectional study of TARGET Kids! and better outcomes registry & network (BORN) Ontario. Can J Public Health. 2018;109:489–97.

13 Skinner AC, Ravananth SN, Skelton IA, Permin EM, Armstrong SC. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. 2018;141(3):e20173459.

14 Thier JL, Parkin PC, Maguire JL, Birken CS. Severe obesity, obesity, and cardiometabolic risk in children 0 to 6 years of age. Child Obes. 2017;13:415–24.

15 Van Dommelen P, Schönbeck Y, Van Buuren S, Hirasing RA. Trends in a life threatening condition: morbidity obesity in Dutch, Turkish and Moroccan children in The Netherlands. PLoS One. 2014;9:e94299.

16 de Onis M, Onyango AW, Borghi E, Siyam A, Chanez P. Severe obesity and extreme obesity in children aged 3–5 years, 1985–2012. PLoS One. 2016;11:e0154879.

17 El Mouzan MI, Foster PJ, Al Herbish AS, Al Shehhi L, Al Shehhi H, et al. Increasing obesity rates in school children in United Arab Emirates. Obes Facts. 2019;12:244–58.

18 Barlow SE, Dietz WH. Obesity evaluation and treatment: expert committee recommendations. The maternal and child health bureau, health resources and services administration and the department of health and human services. Pediatrics. 1998;102:E29.

19 El Mouzan MI, Foster PJ, Al Herbish AS, Al Shehhi L, Al Shehhi H, et al. Increasing obesity rates in school children in United Arab Emirates. Obes Facts. 2019;12:244–58.

20 Barrett G, McGee A, Spiroski I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12:244–58.

21 Day SE, Konty KJ, Leventer-Roberts M, Nona C, Harris TG. Severe obesity among children in New York City public elementary and middle schools, school years 2006–07 through 2010–11. Prev Chronic Dis. 2014;11:E118.

22 Spinelli A, Buoncristiano M, Kovacs VA, Yngve A, Spirisobi I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12:244–58.

23 Barlow SE, Dietz WH. Obesity evaluation and treatment: expert committee recommendations. The maternal and child health bureau, health resources and services administration and the department of health and human services. Pediatrics. 1998;102:E29.

24 El Mouzan MI, Foster PJ, Al Herbish AS, Al Shehhi L, Al Shehhi H, et al. Increasing obesity rates in school children in United Arab Emirates. Obes Facts. 2019;12:244–58.

25 AlBlooshi A, Shaban S, AlTunaiji M, Fares N, El Mouzan MI, Foster PJ, Al Herbish AS, Al Shehhi L, Al Shehhi H, et al. Increasing obesity rates in school children in United Arab Emirates. Obes Facts. 2019;12:244–58.

26 Flores G, Lin H. Factors predicting severe childhood obesity in kindergarteners. Int J Obes. 2013;37:31–9.

27 Marcus MD, Baranowski T, DeBar LL, Edelstein S, Kaufman FR, Schneider M, et al. Severe obesity and selected risk factors in a sixth grade multiracial cohort: the healthy study. J Adolesc Health. 2010;47:604–7.

28 Shomaker LB, Cox S, Lehman DP, Kelly NR, Thompson KA, Mehari RM, et al. Depressive symptoms in adolescent girls at-risk for type 2 diabetes and their parents. Psychol Health Med. 2020 Jun;25(5):530–40.

29 Cho WK, Han K, Ahn MB, Park YM, Jung MH, Suh BK, et al. Metabolic risk factors in Korean adolescents with severe obesity: results from the Korea National Health and Nutrition Examination Surveys (K-NHANES) 2007–2014. Diabetes Res Clin Pract. 2018; 138:169–76.

30 Ellis LJ, Hancock C, Copley VR, Mied E, Dinsdale H, Kinra S, et al. Prevalence of severe childhood obesity in England: 2006–2013. Arch Dis Child. 2015;100:631–6.

31 Claire Wang Y, Gortmaker SL, Taveras EM. Trends and racial/ethnic disparities in severe obesity among US children and adolescents, 1976–2006. Int J Pediatr Obes. 2011;6:12–20.

32 Skelton JA, Cook SR, Auinger P, Klein JD, Barlow SE. Prevalence and trends of severe obesity among US children and adolescents. Acad Pediatr. 2009;9:322–9.

33 Loehmann D, YoussefAgha A, Jayawardene W. Trends in body mass index and prevalence of extreme high obesity among Pennsylvania children, 2007–2011: promising but cautiously. Am J Public Health. 2014;104:e62–8.

34 Carsley S, Pope EI, Anderson LN, Tremblay MS, Tu K, Birken CS, et al. Temporal trends in severe obesity prevalence in children and youth from primary care electronic medical records in Ontario: a repeated cross-sectional study. CMAJ Open. 2019;7:E351–9.

35 Jimenez Cruz A, Bacardi-Gascon M, Jones E. Extreme obesity among children in Mexico. J Pediatr. 2007;151:e12–3.

36 Chen J, Hu C, Zeng G, Xu C, Xu L, Shi J, et al. Preschool obesity and extreme obesity in children aged 2–7 years from 2011 to 2017 in Xiamen, China. Obes Facts. 2019;12:476–88.

37 Ungarporn N, Matrakool L, Kaewpitoon SJ, Rujirakul R, Churproong S, Kaewpitoon N. Nutritional status among schoolchildren in the risk areas of liver fluke infection, Surin province, Thailand. J Med Assoc Thai. 2016; 99 Suppl 7:S17–23.

38 Shackleton N, Milne BJ, Audas R, Derraik JG, Zhu T, Taylor RW, et al. Improving rates of obesity, overweight, and extreme obesity in New Zealand 4-year-old children in 2010–2016. Pediatr Obes. 2018;13:766–77.
39 Segna D, Widhalm H, Pandey MP, Zehetmayrer S, Dietrich S, Widhalm K. Impact of mother tongue and gender on overweight, obesity and extreme obesity in 24,989 Viennese children/adolescents (2–16 years). Wien Klin Wochenschr. 2012;124:782–8.

40 Beynon C, Bailey L. Prevalence of severe childhood obesity in Wales UK. J Public Health. 2020 Nov 23;42(4):e435–9.

41 Cadenas-Sanchez C, Intemann T, Labayen I, Artero EG, Alvarez-Bueno C, Sanchis-Moysi J, et al. Prevalence of severe/morbid obesity and other weight status and anthropometric reference standards in Spanish preschool children: the PREFIT project. Pediatr Res. 2020 Feb;87(3):501–10.

42 Bohn B, Wieges S, Kiess W, Reinehr T, Stachow R, Oepen J, et al. Changing characteristics of obese children and adolescents entering pediatric lifestyle intervention programs in Germany over the last 11 years: an adiposity patients registry multicenter analysis of 65,453 children and adolescents. Obes Facts. 2017;10:517–30.

43 Collaboration NCDRF. Trends in adult body mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

44 Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007–2008 to 2015–2016. JAMA. 2018;319:1723–5.

45 Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr. 2012;3:491–8.

46 Zhang Y, Zhao J, Chu Z, Zhou J. Increasing prevalence of childhood overweight and obesity in a coastal province in China. Pediatr Obes. 2016;11:e22–6.

47 Koebnick C, Smith N, Coleman KL, et al. Prevalence of extreme obesity in a multiethnic cohort of children and adolescents. J Pediatr. 2010;157(1):26–31.