A SUBEXPONENTIAL QUANTUM ALGORITHM FOR THE SEMIDIRECT DISCRETE LOGARITHM PROBLEM
Friday 14th June, 2024

Christopher Battarbee, Delaram Kahrobaei, Ludovic Perret and Siamak F. Shahandashti
Historical Disclaimer
Comparison with Recent Work

Not this work\(^1,^2\)	This work
Reduction to quantum-easy problems	Reduction to quantum-hard-ish problem
Works for some finite groups but not for semigroups	Works for any finite semigroup

\(^1\)Imran and Ivanyos 2023.
\(^2\)Mendelsohn, Dable-Heath, and Ling 2023.
Timeline

2014-2021: design/analysis of different versions of an SDLP-based cryptosystem

Summer 2022: this work, first dedicated analysis of SDLP

Spring 2023: applications of techniques in this paper to DSS

Christmas 2023: faster SDLP methods in some finite groups

3 Habeeb, Kahrobaei, Koupparis, and Shpilrain 2014.
4 B., Kahrobaei, Perret, and Shahandashti 2023.
5 Imran and Ivanyos 2023; Mendelsohn, Dable-Heath, and Ling 2023.
SDLP
Definitions

Semidirect Product

Let G be a finite semigroup and $End(G)$ its semigroup of endomorphisms. We define $G \rtimes End(G)$ to be the semigroup of pairs in $G \times End(G)$ equipped with the following multiplication:

$$(g, \phi)(h, \psi) := (g\phi(h), \phi \circ \psi)$$
Semidirect Product

Let G be a finite semigroup and $\text{End}(G)$ its semigroup of endomorphisms. We define $G \rtimes \text{End}(G)$ to be the semigroup of pairs in $G \times \text{End}(G)$ equipped with the following multiplication:

$$(g, \phi)(h, \psi) := (g\phi(h), \phi \circ \psi)$$

Notice

$$(g, \phi)^2 = (g\phi(g), \phi^2)$$

$$(g, \phi)^3 = (g, \phi)(g\phi(g), \phi^2) = (g\phi(g)\phi^2(g), \phi^3)$$

$$(g, \phi)^4 = (g, \phi)(g\phi(g)\phi^2(g), \phi^3) = (g\phi(g)\phi^2(g)\phi^3(g), \phi^4)$$
Definitions

Semidirect Exponentiation

Fix \((g, \phi) \in G \rtimes \text{End}(G)\). Define \(s_{g,\phi} : \mathbb{N} \rightarrow G\) to be the group element such that

\[
(g, \phi)^x = (s_{g,\phi}(x), \phi^x)
\]

We have seen that

\[
s_{g,\phi}(x) = g \phi(g) \cdots \phi^{x-1}(g)
\]

SDLP

Fix \(G \rtimes \text{End}(G)\) and a pair \((g, \phi)\). Suppose we are given \(s_{g,\phi}(x)\) for some \(x \in \mathbb{N}\). The Semidirect Discrete Logarithm Problem is to recover \(x\).
Examples

Let $G = M_3(\mathbb{Z}_3)$, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then
Examples

Let $G = M_3(\mathbb{Z}_3)$, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then

$$s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
Examples

Let $G = M_3(\mathbb{Z}_3)$, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then

$s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Examples

Let $G = M_3(\mathbb{Z}_3)$, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then

$s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$s_{A,\phi_B}(4) = A(BAB^{-1})(B^2AB^{-2})(B^3AB^{-3}) = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
Examples

Let $G = M_3(\mathbb{Z}_3)$, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then

$s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$s_{A,\phi_B}(4) = A(BAB^{-1})(B^2AB^{-2})(B^3AB^{-3}) = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

\ldots

$s_{A,\phi_B}(10) = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = s_{A,\phi_B}(2)$
A Group Action
The \ast Operator

$$(s_g, \phi(x + y), \phi^{x+y}) = (g, \phi)^{x+y} = (g, \phi)^x (g, \phi)^y$$

$$= (s_g, \phi(x), \phi^x) (s_g, \phi(y), \phi^y)$$

$$= (s_g, \phi(x) \phi^x (s_g, \phi(y)), \phi^{x+y})$$

so $s_g, \phi(x + y) = s_g, \phi(x) \phi^x (s_g, \phi(y))$. We can add in the argument of s_g, ϕ.

The \ast Operator

$$(s_g, \phi(x + y), \phi^{x+y}) = (g, \phi)^{x+y} = (g, \phi)^x(g, \phi)^y$$

$$= (s_g, \phi(x), \phi^x)(s_g, \phi(y), \phi^y)$$

$$= (s_g, \phi(x)\phi^x(s_g, \phi(y)), \phi^{x+y})$$

so $s_g, \phi(x + y) = s_g, \phi(x)\phi^x(s_g, \phi(y))$. We can add in the argument of s_g, ϕ.

\ast

Let $X_{g, \phi} = \{s_g, \phi(i) : i \in \mathbb{N}\}$, and define $\ast : \mathbb{N} \times X_{g, \phi} \to X_{g, \phi}$ by

$$x \ast s_g, \phi(y) = s_g, \phi(x)\phi^x(s_g, \phi(y))$$

We have $x \ast s_g, \phi(y) = s_g, \phi(x + y)$.
Set $\mathcal{X}_{g,\phi} = \{s_{g,\phi}(i) : i \in \mathbb{N}\}$.
Shape of $\mathcal{X}_{g,\phi}$

Set $\mathcal{X}_{g,\phi} = \{s_{g,\phi}(i) : i \in \mathbb{N}\}$.

Terminology

We call n the **index**, r the **period**, $\{g, \ldots, s_{g,\phi}(n - 1)\}$ the **tail**, and $\{s_{g,\phi}(n), \ldots, s_{g,\phi}(n + r - 1)\}$ the **cycle**.
Definitions

Finite Group Action

Let G be a finite group, X be a finite set and $*$ be a function $*: G \times X \to X$. The tuple $(G, X, *)$ is a **group action** if

1. $1_G * x = x$ for each $x \in X$
2. $(gh) * x = g * (h * x)$ for each $g, h \in G, x \in X$

Vectorisation6/Group Action DLog

Let $(G, X, *)$ be a group action. Given $x, y \in X$, the **vectorisation problem** is to find a g (if one exists) such that $g * x = y$.

6Couveignes 2006.
Theorem [B., Kahrobaei, Perret, Shahandashti]

Let G be a finite semigroup and consider the semigroup $G \rtimes \text{End}(G)$. Fix a pair $(g, \phi) \in G \rtimes \text{End}(G)$, and let $C_{g,\phi}$ denote the corresponding cycle. The tuple $(\mathbb{Z}_r, C_{g,\phi}, \star)$ is a free, transitive group action, where r, the period associated to (g, ϕ), is $|C_{g,\phi}|$.
Theorem [B., Kahrobaei, Perret, Shahandashti]

Let G be a finite semigroup and consider the semigroup $G \rtimes \text{End}(G)$. Fix a pair $(g, \phi) \in G \rtimes \text{End}(G)$, and let $C_{g,\phi}$ denote the corresponding cycle. The tuple $(\mathbb{Z}_r, C_{g,\phi}, \star)$ is a free, transitive group action, where r, the period associated to (g, ϕ), is $|C_{g,\phi}|$.

Theorem [B., Kahrobaei, Perret, Shahandashti]

There is a fast quantum reduction from SDLP w.r.t (g, ϕ) to a vectorisation problem, and therefore quantum algorithms for SDLP of quantum complexity $2^\mathcal{O}(\sqrt{\log r})$, where r is the period associated to (g, ϕ).
The Reduction
Well-known that the Vectorisation Problem reduces to dihedral hidden subgroup problem.7

Dihedral hidden subgroup problem admits (a) quantum algorithm with complexity $2^{O(\sqrt{\log n})}$ for D_{2n}.8

Reduction of Semigroup DLog to a DLog problem has to address a similar structure to us.9

7 Childs, Jao, and Soukharev 2014.
8 Kuperberg 2005.
9 Childs and Ivanyos 2014.
Scenario 1: $x < n$

$$s_g,\phi(1) \quad s_g,\phi(2) \quad ... \quad s_g,\phi(x) \quad ... \quad s_g,\phi(n)$$

$$s_g,\phi(n + 1)$$

$$s_g,\phi(n + r - 1)$$
Scenario 2: $x \geq n$
Roadmap Given \(n, r \)

Suppose we are given \(n, r \).
Roadmap Given n, r

Suppose we are given n, r.
Notice that $r \ast s_{g,\phi}(x) = s_{g,\phi}(x) \iff s_{g,\phi}(x) \in C_{g,\phi}$
Roadmap Given n, r

Suppose we are given n, r.
Notice that $r \ast s_{g,\phi}(x) = s_{g,\phi}(x) \iff s_{g,\phi}(x) \in C_{g,\phi}$

\[
\begin{align*}
\text{find smallest } k \text{ s.t. } & r \ast (k \ast s_{g,\phi}) \\
\text{return } n - k
\end{align*}
\]

\[
\begin{align*}
\text{obtain } k \text{ by giving } & s_{g,\phi}(n), s_{g,\phi}(x) \\
\text{to Vectorisation Problem oracle} & \\
\text{return } n + k
\end{align*}
\]
Given \(r \) compute \(n \) as the smallest integer such that
\[
r \ast s_{g,\phi}(n) = s_{g,\phi}(n).
\]
Given r compute n as the smallest integer such that $r \cdot s_{g,\phi}(n) = s_{g,\phi}(n)$.

$$\sum_{j=0}^{M-1} |j\rangle |s_{g,\phi}(j)\rangle \xrightarrow{\text{Observe second register}} \frac{1}{\sqrt{s_r}} \sum_{j=0}^{s_r-1} |x_0 + jr\rangle$$

Possible failure

QFT, classical post-processing
Conclusions
One can solve SDLP for \((g, \phi)\) in quantum time \(2^{O(\sqrt{\log r})}\) where \(r\) is a function of \(g, \phi\) - not much known about its size. In the generic case this remains state-of-the-art; possible that specific semigroups would yield faster results. Fast classical methods of computing \(n, r\) might give us interesting crypto.
Further Reading

Fast SDLP now resolved for all* finite groups.

https://eprint.iacr.org/2024/905

More on group-based cryptography:

http://aimpl.org/postquantgroup/

*up to constructive recognition.