Draft Genome Sequences of Four *Alteromonas macleodii* Strains Isolated from Copper Coupons and Grown Long-Term at Elevated Copper Levels

Kathleen D. Cusick, Jason R. Dale, Brenda J. Little, Justin C. Biffinger

National Research Council, Washington, District of Columbia, USA; U.S. Naval Research Laboratory, Washington, District of Columbia, USA; U.S. Naval Research Laboratory, Stennis Space Center, Mississippi, USA

Alteromonas macleodii is a marine bacterium involved in the early stages of biofouling on ship hulls treated with copper as an antifouling agent. We report here the draft genome sequences of an *A. macleodii* strain isolated from copper coupons and three laboratory mutants grown long-term at elevated copper levels.

A marine bacterium was isolated from copper coupons at the Naval Research Laboratory (Key West [KW], FL) seawater corrosion test facility which demonstrated the ability to generate copper nanoparticles. The isolate was initially maintained in artificial seawater medium supplemented with elevated concentrations of copper (1 to 2.75 mM). Preliminary phylogenetic analysis based on sequencing of the 16S rRNA and gyrase subunit B genes identified it as a strain of *Alteromonas macleodii*, a ubiquitous marine gammaproteobacterium. The species clusters by molecular and phenotypic analyses into two ecotypes: one from surface marine gammaproteobacterium. The species clusters by molecular and phenotypic analyses into two ecotypes: one from surface

Strain	Mean coverage (×)	No. of contigs	Genome size (bp)	\(N_{\text{iso}}\) (bp)	G+C content (%)	No. of transcripts + RNA	Accession no.
CUKW	102	78	5,250,689	498,754	44.6	4,991	MIPW00000000
KCC01	180	74	5,244,637	498,754	44.6	4,982	MIPX00000000
KCP01	134	86	5,249,355	499,040	44.6	4,999	MIPY00000000
KCPu01	172	70	5,249,355	498,754	44.6	4,987	MIPZ00000000

* TABLE 1 Summary characteristics of whole-genome assembly and annotation

Received 28 September 2016; Accepted 7 October 2016; Published 23 November 2016

Copyright © 2016 Cusick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kathleen D. Cusick, kdcusick@gmail.com.
sis between the original isolate and KCC01 will be described in a future publication.

Accession number(s). The whole-genome shotgun projects have been deposited in the DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions described in this paper are their first versions.

ACKNOWLEDGMENTS

We thank the IGS Annotation Engine service at the University of Maryland School of Medicine for providing structural and functional annotation of the sequences. We would also like to thank the IGS Annotation Engine team for their assistance in submission of the annotated sequences to GenBank.

FUNDING INFORMATION

This work, including the efforts of Justin C. Biffinger, was funded by DOD | United States Navy | Office of Naval Research (ONR) (NRL 6.1 NSI).

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Ivars-Martinez E, Martin-Cuadrado AB, D’Auria G, Mira A, Ferreira S, Johnson J, Friedman R, Rodriguez-Valera F. 2008. Comparative genomics of two ecotypes of the marine planktonic copiotroph *Alteromonas macleodii* suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212. http://dx.doi.org/10.1038/ismej.2008.74.

2. López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, Rodríguez-Valera F. 2012. Genomes of surface isolates of *Alteromonas macleodii*: the life of a widespread marine opportunistic copiotroph. Sci Rep 2:696. http://dx.doi.org/10.1038/srep00696.

3. Chen C, Maki JS, Rittschof D, Teo SL. 2013. Early marine bacterial biofilm on a copper-based antifouling paint. Int Biodeterior Biodegrad 83:71–76. http://dx.doi.org/10.1016/j.ibiod.2013.04.012.

4. Borkow G, Gabbay J. 2005. Copper as a biocidal tool. Curr Med Chem 12:2163–2175. http://dx.doi.org/10.2174/0929867054637617.

5. Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104. http://dx.doi.org/10.1016/j.porgcoat.2003.06.001.

6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

7. Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S, White O, Wortman J, Mahurkar A, Giglio MG. 2011. The IGS standard operating procedure for automated prokaryotic annotation. Stand Genomic Sci 4:244–251. http://dx.doi.org/10.4056/sgs.1123234.