A cold-blooded tiptoer: non-resolving cellulitis in an immunocompromised patient

Satoshi Kitaura, Koh Okamoto, Yoshitaka Wakabayashi, Yuta Okada, Aiko Okazaki, Mahoko Ikeda, Shu Okugawa, Fumie Fujimoto, Chie Bujo, Shun Minatsuki, Kensuke Tsushima, Kinuyo Chikamatsu, Satoshi Mitarai, Kyoji Moriya

1. Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
2. Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
3. Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Japan
4. Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, Tokyo, Japan

Corresponding author:

Koh Okamoto

Department of Infectious Diseases, The University of Tokyo Hospital
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 JAPAN
TEL: +81-3-3815-5411
E-MAIL: kokamoto-tky@umin.ac.jp

© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Acknowledgements:

Potential conflicts of interests: All authors declare no conflicts of interest. All authors have submitted the International Committee of Medical Journal Editors (ICMJE) Form for Disclosure of Potential Conflicts of Interest.

Patient Consent:

The authors have obtained consent from the patient’s family to publish this case report. The “ID Teaching Cases” article type does not require formal approval by an ethics committee.
Abstract

Mycobacterium haemophilum (*M. haemophilum*) is a non-tuberculous mycobacteria (NTM) with a predilection for skin and soft tissue infection (SSTI) in the immunocompromised host. We report a case of disseminated *M. haemophilum* infection initially presenting as a non-resolving subacute cellulitis of bilateral lower extremities. Genetic sequencing was utilized for final identification, while a commercially available polymerase chain reaction test returned false positive result for *Mycobacterium intracellulare*. Consequently, we highlight the importance of *M. haemophilum* as a major differential diagnosis of SSTI in the immunocompromised host and the need for careful interpretation of rapid diagnostic tests.

Keywords:

Mycobacterium haemophilum; nontuberculous mycobacteria; skin and soft tissue infection; immunocompromised patients
Case presentation:

A 53-year-old man with a history of non-ischemic cardiomyopathy, end-stage renal disease on hemodialysis, and idiopathic alveolar hemorrhage on 40 mg prednisolone daily was admitted for heart failure exacerbation. The patient had received prednisolone for 20 months after onset of idiopathic alveolar hemorrhage with a cumulative dose of approximately 17 grams. He had a prolonged hospital course requiring inotrope and continuous renal replacement therapy. Three months after admission, the patient gradually developed left thigh pain, erythema, and swelling without fever. Vancomycin and cefepime were empirically initiated for nosocomial cellulitis. Blood cultures showed no growth. Non-resolving pain, erythema, and swelling extended to the entire left lower extremity and then to the right lower extremity over the course of 2 weeks despite antibiotic therapy (Figure 1). Laboratory findings were only remarkable for slightly increased C-reactive protein level of 0.59 mg/dL (reference range, 0–0.3 mg/dL) and normal white blood cell counts.

A skin biopsy specimen was subjected to pathological evaluation. Gram stain was negative for bacteria or fungi; however, Ziehl–Neelsen staining of the culture and pathology specimen revealed abundant acid-fast bacilli with Gaffky scale 9 (Figure 2). Polymerase chain reaction (PCR) for Mycobacterium tuberculosis (COBAS TaqMan MTB, Roche, Switzerland) was negative while simultaneous testing for Mycobacterium intracellulare (COBAS TaqMan MAI, Roche, Switzerland) yielded weakly positive results (Figure 3). The atypical appearance of the amplification curve prompted the microbiology laboratory and the team to consider the MAC PCR test as a potential false positive result. The skin sample was sent to a reference laboratory for identification. According to the advice from the reference laboratory, the skin samples were cultured on Ogawa medium (Kyokuto Pharmaceutical Industrial, Japan) and in Mycobacteria Growth Indicator Tube (BD BBL MGIT, Becton Dickinson, USA) at 30°C. A blood sample was submitted for mycobacterial culture (BD BACTEC Myco/F Lytic Culture Vials, Becton Dickinson, USA) in consideration of disseminated NTM infection. Subsequently, treatment with amikacin, imipenem, rifampin, ethambutol, and
clarithromycin was initiated to encompass both rapid- and slow-growing non-tuberculous mycobacteria pending final identification. Because there was no growth on mycobacterial culture after 7 days, we assumed it was a slow grower and discontinued amikacin and imipenem. Subsequent genetic analysis revealed *Mycobacterium haemophilum* with 100% homology based on 16S, hsp65, and rpoB gene sequencing. The antimicrobial treatment was changed to rifampin, ciprofloxacin, and clarithromycin. Despite maximal medical therapy, the hospital course was soon complicated by concomitant *Acinetobacter* bacteremia and worsening cardiac function with multiorgan failure. The patient was eventually transitioned to comfort care and expired one month after the skin biopsy. The mycobacterial blood culture turned positive after 24 days. In view of *M. haemophilum* found in the skin sample, the blood was plated on chocolate agar (Cholate II agar, Beckton Dickson, USA). After 10 days of incubation, the culture showed growth and it was identified as *M. haemophilum* using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI Biotyper Version 2.0, Bruker Daltonics, US) with a score of 1.960. The skin culture completed incubation without heme supplement and showed no growth. The final diagnosis was disseminated *Mycobacterium haemophilum* infection.

Discussion:

Non-tuberculous mycobacterium (NTM) skin and soft tissue infections is a common presentation following next to respiratorty infections\(^1\)\(^2\). The advent of cosmetic procedures and increased use of immunosuppressive agents have created new risks for acquiring NTM skin and soft tissue infections (SSTI)\(^3\). 7-18% of non-HIV patients with NTM infection manifest as SSTI\(^2\)\(^4\) and 25% of those were immunocompromised patients receiving systemic glucocorticoids, immunosuppressants, chemotherapeutics, and/or immunomodulators\(^2\). Several species within non-tuberculosis mycobacteria (NTM) including both rapid-growing mycobacteria and slow-growing mycobacteria are known to cause skin and soft tissue infections\(^5\)\(^6\). The proportion of causative NTM vary depending
on previous studies2,4,7,8. Common rapid growers in SSTI include \textit{M. fortuitum} group, \textit{M. abscessus} group, \textit{M. chelonae} whereas slow growers include \textit{M. marinum}, \textit{M. avium} complex, \textit{M. haemophilum}, and \textit{M. ulcerans}3.

\textit{M. haemophilum} was the culprit in our patient. First described in 1978, \textit{M. haemophilum} was named as a “blood-loving” organism due to its specific requirement for iron or hemin supplementation9,10. Its optimal growth also requires lower temperatures, which explains its predilection to skin and soft tissues of distal body parts9. These specific culture requirements make diagnosis difficult9. In contrast to cervicofacial lymphadenitis in children, most adult cases involve skin and soft-tissue infections in immunocompromised states including lymphoma, HIV/AIDS, and organ transplantation9. A case series of \textit{M. haemophilum} infections revealed HIV/AIDS as the most common immunocompromising condition, followed by systemic lupus erythematosus11. Skin and soft tissue was the most common site of infection11,12. In particular, erythematous nodules on the extensor surface of elbows, lower extremities, and the auricular region were the most common11,12. Skin biopsy of these regions revealed granulomatous inflammation as the most common pathological finding11. Other skin manifestations include erythematous plaques, necrotic abscesses, or chronic ulcers11,12. These lesions tend to develop more frequently on the extremities, particularly over the joints and less commonly on the trunk or face12. In addition, past reports have described disseminated infection11,12. Our patient’s presentation was concurrent with \textit{M. haemophilum} infection including the immunocompromised state and the initial cellulitis presentation.

The optimal diagnostic procedure for \textit{M. haemophilum} disease involves acid-fast staining and mycobacterial culturing at two temperatures (for instance, 35\degree C and 30\degree C), with and without iron supplementation9,11. Preparation of two temperatures for mycobacterial culture is also beneficial in isolating \textit{M. marinum} and \textit{M. ulcerans} as they both exhibit optimal growth at lower temperatures13. In addition, concurrent molecular diagnostics including PCR and sequencing of complete/partial
internal transcribed spacer (ITS) regions and 16s rRNA, rpoB, and hsp65 may be necessary for confirmatory identification.

Treatment of M. haemophilum infections varies across reported cases and a consensus for interpreting susceptibility patterns is lacking. However, M. haemophilum is presumed to be resistant to isoniazid and ethambutol, while most likely susceptible to ciprofloxacin, clarithromycin, rifabutin, and clofazimine, based on in vitro results. In accordance with past literature, experts generally recommend a combination therapy of clarithromycin, ciprofloxacin, and rifampin. Treatment duration is generally prolonged to several months but is adjusted to clinical response and the degree of underlying immunosuppression.

In our case, an initial false-positive result from COBAS Taqman MAI (Roche, Switzerland) confounded the diagnosis and was a reminder that rapid diagnostics must be interpreted cautiously. Previous reports have identified COBAS AMPLICOR (Roche, Switzerland) and COBAS TaqMan (Roche, Switzerland) showing false positive tests in cases of M. leprae, M. lentiflavum, and M. haemophilum. While COBAS Taqman MAI (Roche, Switzerland) was used in our case, the available rapid diagnostics may vary among countries, and most tests are known to have risk of misidentification. For instance, Tortoli, E., et al. investigated the specificity of commercially available DNA probes and discovered that commonly used AccuProbe (Hologic, USA) cross-reacted with nine species while probes targeting M. avium complex were most involved. The study further discovered that INNO LiPA Mycobacteria (Innogenetics, Belgium) and GenoType Mycobacterium (Hain Lifescience, Germany) misidentified 20 and 28 taxa, respectively. Among other commercially available tests, GenoType Mycobacterium-DR ver 1.0 (Hain Lifescience, Germany) revealed 16 misidentifications as M. intracellulare and a recently introduced Speed-oligo assay (Vircell SL, Spain) have shown that M. marinum, M. pereprinum, and M. kansasii may require more in-depth speciation for accurate identification.
In contrast to extensive investigations on various commercially available probes, only a handful of misidentification case reports have been described in the literature, as shown in table 117,20-25. Previous case reports revealed that most misidentification cases involved \textit{Mycobacterium avium complex} and reasons for further identification usually involved discrepancy between rapid diagnostic test and culture results17,20,22-24. In our case, \textit{M. intracellulare} PCR testing was positive, although the validity of the test result was questioned due to an atypical clinical presentation as \textit{M. intracellulare} disease and a suboptimal PCR amplification curve (Figure 3). A report on misidentification of \textit{M. haemophilum} for \textit{M. intracellulare} due to a single base insertion in the bacterial genome also supported our hypothesis for a false positive test result20. The scarcity of case reports on misidentification may be a result of overreliance on rapid diagnostics in clinical practice16-20,22-24,26-30.

In summary, NTM SSTI is a significant differential diagnosis especially in immunocompromised patients. In particular, \textit{M. haemophilum} is an iron-loving pathogen with a tendency to cause non-resolving skin and soft tissue infections in colder body parts. Diagnosis involves biopsy and culturing at two temperatures along with molecular studies as key tools. A good diagnostic strategy is to deploy several modes of identification to prevent misidentification. Hence, good communication among the primary team, dermatology and infectious disease specialists is crucial in the management of such patients.
1. Henkle E, Hedberg K, Schafer SD, Winthrop KL. Surveillance of Extrapulmonary Nontuberculous Mycobacteria Infections, Oregon, USA, 2007-2012. Emerg Infect Dis. Oct 2017;23(10):1627-1630. doi:10.3201/eid2310.170845
2. Bodle EE, Cunningham JA, Della-Latta P, Schluger NW, Saiman L. Epidemiology of nontuberculous mycobacteria in patients without HIV infection, New York City. Emerg Infect Dis. Mar 2008;14(3):390-6. doi:10.3201/eid1403.061143
3. Atkins BL, Gottlieb T. Skin and soft tissue infections caused by nontuberculous mycobacteria. Curr Opin Infect Dis. Apr 2014;27(2):137-45. doi:10.1097/QCO.0000000000000041
4. Henry MT, Inamdar L, O’Riordain D, Schweiger M, Watson JP. Nontuberculous mycobacteria in non-HIV patients: epidemiology, treatment and response. Eur Respir J. May 2004;23(5):741-6. doi:10.1183/09031936.04.00114004
5. Lee WJ, Kang SM, Sung H, et al. Non-tuberculous mycobacterial infections of the skin: a retrospective study of 29 cases. The Journal of dermatology. Nov 2010;37(11):965-72. doi:10.1111/j.1346-8138.2010.00960.x
6. Wagner D, Young LS. Nontuberculous mycobacterial infections: a clinical review. Infection. Oct 2004;32(5):257-70.
7. Chen HY, Chen CY, Huang CT, et al. Skin and soft-tissue infection caused by nontuberculous mycobacteria in Taiwan, 1997-2008. Epidemiol Infect. Jan 2011;139(1):121-9. doi:10.1017/S0950268810001603
8. Song Y, Zhang L, Yang H, et al. Nontuberculous mycobacterium infection in renal transplant recipients: a systematic review. Infect Dis (Lond). Jun 2018;50(6):409-416. doi:10.1080/23744235.2017.1411604
9. Lindeboom JA, Bruinesteijn van Coppenraet LE, van Soolingen D, Prins JM, Kuijper EJ. Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections. Clin Microbiol Rev. Oct 2011;24(4):701-17. doi:10.1128/CMR.00020-11
10. Sompolinsky D, Lagziel A, Rosenberg I. Further studies of a new pathogenic mycobacterium (M. haemophilum sp. nov.). Canadian journal of microbiology. Feb 1979;25(2):217-26.
11. Nookeu P, Angkasekwinai N, Foongladda S, Phoompoung P. Clinical Characteristics and Treatment Outcomes for Patients Infected with Mycobacterium haemophilum. Emerg Infect Dis. Sep 2019;25(9):1648-1652. doi:10.3201/eid2509.190430
12. Kelley CF, Armstrong WS, Eaton ME. Disseminated Mycobacterium haemophilum infection. The Lancet Infectious diseases. Jul 2011;11(7):571-8. doi:10.1016/s1473-3099(11)70029-9
13. Franco-Paredes C, Marcos LA, Henao-Martinez AF, et al. Cutaneous Mycobacterial Infections. Clin Microbiol Rev. Jan 2018;32(1)doi:10.1128/cmr.00069-18
14. Shah MK, Sebti A, Kiehn TE, Massarella SA, Sepkowitz KA. Mycobacterium haemophilum in immunocompromised patients. *Clin Infect Dis*. Aug 1 2001;33(3):330-7. doi:10.1086/321894

15. Anukumar B, Shahir P. Chandipura virus infection in mice: the role of toll like receptor 4 in pathogenesis. *BMC infectious diseases*. May 29 2012;12:125. doi:10.1186/1471-2334-12-125

16. Katila ML, Katila P, Erkinjuntti-Pekkanen R. Accelerated detection and identification of mycobacteria with MGIT 960 and COBAS AMPLICOR systems. *Journal of clinical microbiology*. 2000;38(3):960-964. doi:10.1128/JCM.38.3.960-964.2000

17. Lefmann M, Moter A, Schweickert B, Gobel UB. Misidentification of Mycobacterium leprae as Mycobacterium intracellulare by the COBAS AMPLICOR M. intracellulare test. *J Clin Microbiol*. Apr 2005;43(4):1928-9. doi:10.1128/JCM.43.4.1928-1929.2005

18. Tomita M, Yoshida S, Tsuyuguchi K, Suzuki K, Okada M, Hayashi S. [Genetic analysis reveals misidentification of Mycobacterium lentiflavum as Mycobacterium intracellulare by the COBAS TaqMan MAI test]. *Kekkaku : [Tuberculosis]*. Aug 2014;89(8):703-9.

19. Toda H, Yamaguchi T, Kazumi Y, Nakae K, Kamisako T, Yoshida K. [An investigation of misidentification of Mycobacterium lentiflavum as Mycobacterium intracellulare by the COBAS TaqMan MAI test]. *Kansenshogaku Zasshi*. Mar 2013;87(2):215-7. doi:10.11150/kansenshogakuzasshi.87.215

20. Nishikawa R, Yamada Y, Kanki H, et al. Case of Mycobacterium haemophilum misdiagnosed as Mycobacterium intracellulare due to one base insertion in the bacterial genome. *The Journal of dermatology*. Jan 2018;45(1):64-66. doi:10.1111/1346-8138.13988

21. Nomura Y, Okamoto K, Ohama Y, Higurashi Y, Harada S, Moriya K. Tenosynovitis caused by Mycobacterium marseillense, initially identified as Mycobacterium avium complex using AccuProbe and COBAS TaqMan. *BMC Infectious Diseases*. 2021-12-01 2021;21(1)doi:10.1186/s12879-021-06770-9

22. Turenne CY, Thibert L, Williams K, et al. Mycobacterium saskatchewanense sp. nov., a novel slowly growing scotochromogenic species from human clinical isolates related to Mycobacterium interjectum and AccuProbe-positive for Mycobacterium avium complex. *Int J Syst Evol Microbiol*. May 2004;54(Pt 3):659-667. doi:10.1099/ijs.0.02739-0

23. Poonawala H, Piscitelli VE, Ladutko L, Campbell S. Misidentification of Mycobacterium paraense as Mycobacterium avium Complex by Accuprobe. *J Clin Microbiol*. Jul 2017;55(7):2283-2284. doi:10.1128/JCM.00663-17

24. van den Broek T, Janssen NG, Hetem DJ, et al. INNO-LiPA DNA line probe assay misidentification of M. smegmatis as Mycobacterium fortuitum complex. *Diagnostic microbiology and infectious disease*. Nov 2019;95(3):114858. doi:10.1016/j.diagmicrobio.2019.06.010

25. Grottola A, Roversi P, Fabio A, et al. Pulmonary Disease Caused by Mycobacterium marseillense, /em>Italy. *Emerging Infectious Disease journal*. 2014;20(10):1769. doi:10.3201/eid2010.140309

26. Tortoli E, Pecorari M, Fabio G, Messino M, Fabio A. Commercial DNA probes for mycobacteria incorrectly identify a number of less frequently encountered species. *J Clin Microbiol*. Jan 2010;48(1):307-10. doi:10.1128/JCM.01536-09

27. Mok S, Rogers TR, Fitzgibbon M. Evaluation of GenoType NTM-DR Assay for Identification of Mycobacterium chimaera. *J Clin Microbiol*. Jun 2017;55(6):1821-1826. doi:10.1128/JCM.00009-17

28. Quezel-Guerraz NM, Arriaza MM, Ávila JAC, Sánchez-Yebra Romera WE, Martínez-Lirola MJ. Evaluation of the Speed-oligo® Mycobacteria assay for identification of
Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. *Diagnostic microbiology and infectious disease*. 2010/10/01/ 2010;68(2):123-131. doi:https://doi.org/10.1016/j.diagmicrobio.2010.06.006

29. Hofmann-Thiel S, Turaev L, Alnour T, Drath L, Mullerova M, Hoffmann H. Multi-centre evaluation of the speed-oligo Mycobacteria assay for differentiation of Mycobacterium spp. in clinical isolates. *BMC infectious diseases*. Dec 19 2011;11:353. doi:10.1186/1471-2334-11-353

30. Ramis IB, Cnockaert M, Von Groll A, et al. Evaluation of the Speed-Oligo Mycobacteria assay for the identification of nontuberculous mycobacteria. *Journal of medical microbiology*. Mar 2015;64(Pt 3):283-287. doi:10.1099/jmm.0.000025
Figure/Table legends:

Figure 1: a) The patient’s left lower limb at approximately two weeks after the onset of cellulitis symptoms. b) The left lower limb approximately two weeks after figure 1a.

Figure 2: a) Ziehl–Neelsen stain of skin pathology specimen (Objective, x40). b) Ziehl–Neelsen stain of pulverized tissue for culture (Objective, x100).

Figure 3: False positive signals on polymerase chain reaction amplification curves for *M. intracellulare* (COBAS TaqMan MAI, Roche, Switzerland; Pos: positive control, Neg: negative control, Pt: patient specimen).
Table 1: A literature review of case reports with false-positive results from various rapid diagnostic tests for NTM. ITS: Internal transcribed spacer, MALDI-TOF: matrix-assisted laser desorption/ionization mass spectrometry; NA: No Answer; a Roche, Switzerland; b Hologic, USA; c Innogenetics, Belgium; d Hain Lifesciences, Germany.

Test	Country	Year	Number of Patient/Total	Misidentified as	Confirmed as	Confirmed by	Ref.
COBAS AMPLICOR M. intracellulare testa	Germany	2005	2/2	M. intracellulare	M. leprae	16S rRNA	17
						M. leprae-specific proline-rich-antigen gene	
COBAS TaqMan MAI	Japan	2018	1/1	M. intracellulare	M. haemophilum	16s rRNA, rpoB, hsp65	20
COBAS TaqMan MAI	Japan	2021	1/1	M. intracellulare	M. haemophilum	16s rRNA, rpoB, hsp65	Our
COBAS TaqMan MAI +	Japan	2018	1/1	M. intracellulare	M. marseillense	rpoB, hsp65	21
Accuprobeb	Japan	2018	1/1	M. avium complex		MALDI-TOF	
Accuprobe	USA	2004	1/1	M. avium complex	M. saskatchewanense sp. nov.	16s rRNA/rDNA, ITS, hsp65	22
Method	Country	Year	Category	Species	Assay/Markers	Page	
----------------------------	--------------	------	-------------------	------------------	--	------	
Accuprobe	USA	2017	1/1	M. avium complex	M. paraense	23	
					16s rDNA, subculture characteristics on solid media		
INNO LiPA Mycobacteria	Netherlands	2019	1/1	M. fortuitum complex	M. smegmatis	24	
					16s rRNA, ITS, hsp65, MALDI-TOF		
Genotype Mycobacterium	Italy	2005	1/1	M. intracellulare	M. marseillense	25	
					rpoB, ITS		
Figure 3

CH1: Target Cycle#: - Neg
CH2: Target Cycle#: 31.7 Pos
CH4: QS/IC Cycle#: 36.4 Pt

Fluorescence Intensity

0 5 10 15 20 25 30 35 40 45
0 4 8 12 16 20 24 28 32 36
Cycle

Pos
Pt
Neg

normalized