On the Randic and Sum-Connectivity Index of Nanotubes

Mohammad Reza Farahani

Abstract. Milan Randić proposed in 1975 a structural descriptor called the branching index that later became the well-known Randić connectivity index; it is defined on the ground of vertex degrees $\chi(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$. In 2008, B. Zhou and N. Trinajstić proposed another connectivity index, named the Sum-connectivity index $X(G)$. In this paper, we focus on the structure of $G = V C_5 C_7[p, q]$ and $H = H C_5 C_7[p, q]$ nanotubes and counting Randić index $\chi(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$ and sum-connectivity index $X(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u + d_v}}$ of these nanotubes.

AMS Subject Classification (2010). Primary 05C12; secondary 05A15

Keywords. Nanotubes; Randić index; Sum-Connectivity index.

1 Introduction

Let $G = (V; E)$ be a simple connected graph. The sets of vertices and edges of G are denoted by $V = V(G)$ and $E = E(G)$, respectively. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds.

In graph theory, we have many different connectivity topological index of an arbitrary graph G. A topological index is a numeric quantity from the structural graph of a molecule which is invariant under graph automorphisms.
The simplest topological indices are the number of vertices, the number of edges and degree of a vertex v of the graph G and we denoted by n, e and d_v, respectively. The degree of a vertex is equal to the number of its first neighbors. Also, $\forall u, v \in V(G)$, the distance $d(u, v)$ between u and v is defined as the length of any shortest path in G connecting u and v.

The connectivity index introduced in 1975 by Milan Randić [12], who has shown this index to reflect molecular branching. Randić index (First connectivity index) was defined as follows

$$\chi(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$$

(1)

In general, the m-connectivity index of a graph G is defined as

$$m\chi(G) = \sum_{v_1v_2...v_{m+1}} \frac{1}{\sqrt{d_{i_1}d_{i_2}...d_{i_{m+1}}}},$$

where $v_{i_1}v_{i_2}...v_{i_{m+1}}$ runs over all paths of length m in G.

Recently, a closely related variant of the Randić connectivity index called the sum-connectivity index was introduced by B. Zhou and N. Trinajstić [13, 16] in 2008. For a connected graph G, its sum-connectivity index $X(G)$ is defined as the sum over all edges of the graph of the terms $\frac{1}{\sqrt{d_u + d_v}}$, that is,

$$X(G) = \sum_{uv} \frac{1}{\sqrt{d_u + d_v}}$$

(2)

where d_u and d_v are the degrees of the vertices u and v, respectively.

In this paper, we focus on the above connectivity indices “Randić” and “sum-connectivity” index and compute two indices for two types of nanotubes (“$G = V C_5 C_7[p, q]$” and “$H = H C_5 C_7[p, q]$”). Our notation is standard and for more information and background biography, refer to paper series [1-18].

2 Main Result

The aim of this section is to compute the Randić connectivity index and sum-connectivity index of $G = V C_5 C_7[p, q]$ and $H = H C_5 C_7[p, q]$ nanotubes. The structure of these nanotubes are consist of cycles with length five and seven (or $C_5 C_7$ net) by different compound. A $C_5 C_7$ net is a trivalent decoration made by alternating C_5 and C_7. It can cover either a cylinder or a torus. For a review, historical details and further bibliography see the 3-dimensional
lattice of $VC_5C_7[p, q]$ and $HC_5C_7[p, q]$ nanotubes in Figure 1 and their 2-dimensional lattice in Figure 2 and Figure 3, respectively.

Before presenting the main results, let us introduce some definitions. First, let us denote the number of pentagons in the first row of the 2D-lattice of G (Figure 2) and H (Figure 3) by p. In these nanotubes, the four first rows of vertices and edges are repeated alternatively, we denote the number of this repetition by q. \(\forall p, q \in \mathbb{N} \) in each period of $G = VC_5C_7[p, q]$, there are 16p vertices and 6p vertices which are joined to the end of the graph. Thus the number of vertices in G is equal to

$$n = |V(VC_5C_7[p, q])| = 16pq + 6p.$$

Since $3p + 3p$ vertices have degree two and other have degree three ($16pq$), thus the number of edges in this nanotube is equal to

$$e = |E(VC_5C_7[p, q])| = \frac{2(6p) + 3(16pq)}{2} = 24pq + 6p.$$

Also, in each period of $H = HC_5C_7[p, q]$, there are 8p vertices. Hence

$$n = |V(HC_5C_7[p, q])| = 8pq + 5p,$$

5p vertices which are joined to the end of H. And in each period there are 12p edges and we have q repetition and 5p addition edges, thus the number of edges in this nanotube is equal to $e = |E(HC_5C_7[p, q])| = 12pq + 5p$, \(\forall p, q \in \mathbb{N} \). On the other hands $2p + 3p$ vertices have degree two and $8pq$ other vertices have degree three, and alternatively

$$e = \frac{2(5p) + 3(8pq)}{2} = 12pq + 5p.$$

Definition 2.1. Let $G = (V; E)$ be a simple connected graph and d_v is degree of vertex $v \in V(G)$. (Obviously $1 \leq \delta \leq d_v \leq \Delta \leq n - 1$, such that
\[\delta = \text{Min}\{d_v | v \in V(G)\} \text{ and } \Delta = \text{Max}\{d_v | v \in V(G)\} \]. We divide edge set \(E(G)\) and vertex set \(V(G)\) of graph \(G\) to several partitions, as follow:

\[\forall i, \, 2\delta \leq i \leq 2\Delta, \, E_i = \{e = uv \in E(G) | d_v + d_u = i\}, \]

\[\forall j, \, \delta^2 \leq j \leq \Delta^2, \, E_j^* = \{e = uv \in E(G) | d_v \times d_u = j\} \]

and

\[\forall k, \, \delta \leq k \leq \Delta, \, V_k = \{v \in V(G) | d_v = k\}. \]

Obviously, in nano science an atom (or a vertex \(v\)) of a nano structure \(G\) have at most four adjacent. In other words, \(d_v\) is equal to 1, 2, 3 and 4. Therefore, we have two partitions

- \(V_3 = \{v \in V(G) | d_v = 3\}\)
- \(V_2 = \{v \in V(G) | d_v = 2\}\).

Note that hydrogen and single carbon atoms are often omitted. Also, the edge set of a molecular graph \(G\) can be dividing to three partitions, e.g. \(E_4\), \(E_5\) and \(E_6\). In other words,

- For every \(e = uv\) belong to \(E_4\), \(d_u = d_v = 2\).
- Similarly, for every \(e = uv\) belong to \(E_6\), \(d_u = d_v = 3\).
- Finally, for every \(e = uv\) belong to \(E_5\), then \(d_u = 2\) and \(d_v = 3\).

Now, we have following theorems.

Theorem 2.2. Let \(G\) be \(VC_5C_7[p, q]\) nanotubes. Then:

- Randić connectivity index of \(G\) is equal to

 \[\chi(VC_5C_7[p, q]) = 8pq + 2(\sqrt{6} - 1)p. \] (3)

- Sum-connectivity index of \(G\) is equal to

 \[X(VC_5C_7[p, q]) = 4\sqrt{6}pq + \left(\frac{12\sqrt{5}}{5} - \sqrt{6}\right)p. \] (4)

Proof. \(\forall p, q \in \mathbb{N}\) consider nanotubes \(G = VC_5C_7[p, q]\) with \(16pq + 6p\) vertices and \(24pq + 6p\) edges, such that \(|V_2| = 6p\) and \(|V_3| = 16pq\). So, we mark the edges of \(E_5\), \(E^*_6\) by red color and the edges of \(E_6\), \(E^*_9\) by black color (Figure 2). Thus, we have

- \(|E_5| = |E^*_6| = 6p + 6p\)
- \(|E_6| = |E^*_9| = 24pq - 6p.\)
Now, by according to definition of Randić connectivity index

\[1 \chi(VC_5C_7[p, q]) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u d_v}} = \sum_{e=uv \in E_6} \frac{1}{\sqrt{d_u d_v}} + \sum_{e=uv \in E_5} \frac{1}{\sqrt{d_u d_v}} \]

\[= \frac{|E_6^*|}{\sqrt{9}} + \frac{|E_5^*|}{\sqrt{6}} \]

\[= \frac{24pq - 6p}{\sqrt{9}} + \frac{12p}{\sqrt{6}} \]

\[= 8pq + 2(\sqrt{6} - 1)p. \quad (5) \]

Also, by according to the definition of sum-connectivity index, we have following equations:

\[1 X(VC_5C_7[p, q]) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u + d_v}} = \sum_{e=uv \in E_6} \frac{1}{\sqrt{d_u + d_v}} + \sum_{e=uv \in E_5} \frac{1}{\sqrt{d_u + d_v}} \]

\[= \frac{|E_6|}{\sqrt{6}} + \frac{|E_5|}{\sqrt{5}} \]

\[= \frac{24pq - 6p}{\sqrt{6}} + \frac{12p}{\sqrt{5}} \]

\[= 4\sqrt{6}pq + \left(\frac{12\sqrt{5}}{5} - \sqrt{6} \right)p. \quad (6) \]

Figure 2: 2-Dimensional Lattice of \(G = VC_5C_7[m, n] \).

Here, we complete the proof of Theorem 2.2. \(\square \)
Theorem 2.3. $\forall p, q \in \mathbb{N}$

- Randić connectivity index of $HC_5C_7[p, q]$ nanotube is equal to

$$\chi(HC_5C_7[p, q]) = 4pq + \left(\frac{8\sqrt{6} - 5}{6} \right)p.$$ \hspace{1cm} (7)

- Sum-connectivity index of $HC_5C_7[p, q]$ nanotube is equal to

$$X(HC_5C_7[p, q]) = 2\sqrt{6}pq + \left(\frac{8\sqrt{5}}{5} - \frac{2\sqrt{6}}{3} + \frac{1}{2} \right)p.$$ \hspace{1cm} (8)

Proof. Consider nanotube $H = HC_5C_7[p, q]$, $\forall p, q \in \mathbb{N}$. Similar to $VC_5C_7[p, q]$ nanotube, H consists of heptagon and pentagon nets. But, in this nanotube there are $8pq + 5p$ atoms (vertices) and $12pq + 5p$ bonds (edges). Such that $|V_2| = 5p$ and $|V_3| = 8pq$, and alternatively

- $|E_4| = |E_4^*| = 4p + 4p$
- $|E_5| = |E_5^*| = 4p + 4p$
- $|E_6| = |E_6^*| = 12pq - 4p$.

We mark all edge E_4, E_5 and E_6 by yellow, red and black color in Figure 3, respectively.
Thus, we have following equations for its connectivity indices.

\[1\chi(HC_5C_7[p, q]) = \sum_{e=uv \in E(H)} \frac{1}{\sqrt{d_u d_v}} \]

\[= \sum_{e=uv \in E^*_6} \frac{1}{\sqrt{d_u d_v}} + \sum_{e=uv \in E^*_5} \frac{1}{\sqrt{d_u d_v}} + \sum_{e=uv \in E^*_4} \frac{1}{\sqrt{d_u d_v}} \]

\[= \frac{|E^*_6|}{\sqrt{6}} + \frac{|E^*_5|}{\sqrt{5}} + \frac{|E^*_4|}{\sqrt{4}} = \frac{12pq - 4p}{3} + \frac{8\sqrt{6}p}{6} + \frac{p}{2} \]

\[= 4pq + \left(\frac{8\sqrt{6} - 5}{6}\right)p. \quad (9) \]

\[1X(HC_5C_7[p, q]) = \sum_{e=uv \in E(H)} \frac{1}{\sqrt{d_u d_v}} \]

\[= \sum_{e=uv \in E^*_6} \frac{1}{\sqrt{d_u d_v}} + \sum_{e=uv \in E^*_5} \frac{1}{\sqrt{d_u d_v}} + \sum_{e=uv \in E^*_4} \frac{1}{\sqrt{d_u d_v}} \]

\[= \frac{|E^*_6|}{\sqrt{6}} + \frac{|E^*_5|}{\sqrt{5}} + \frac{|E^*_4|}{\sqrt{4}} = \frac{12pq - 4p}{\sqrt{6}} + \frac{8p}{\sqrt{5}} + \frac{p}{2} \]

\[= 2\sqrt{6}pq + \left(\frac{8\sqrt{5}}{5} - \frac{2\sqrt{6}}{3} + \frac{1}{2}\right)p. \quad (10) \]

And these complete the proof of Theorem 2.3. \(\square \)

References

[1] J. Chen and S. Li, On the sum-connectivity index of unicyclic graphs with k pendent vertices, \(\text{Math. Commun.} \), 16, (2011), 359-368

[2] Z. Du, B. Zhou, and N. Trinajstić, Minimum sum-connectivity indices of trees and uni-cyclic graphs of a given matching number, \(\text{J. Math. Chem.} \), 47, (2010), 842-855

[3] Z. Du and B. Zhou, On sum-connectivity index of bicyclic graphs, \(\text{Bull. Malays. Math. Sci. Soc.} \), 35 (1), (2012), 101-117

[4] Z. Du, B. Zhou, and N. Trinajstić, A note on generalized sum-connectivity index, \(\text{Appl. Math. Lett.} \), 24, (2010), 402-405

[5] M.R. Farahani, Computing Randic, Geometric-Arithmetic and Atom-Bond Connectivity indices of Circumcoronene Series of Benzenoid, \(\text{Int. J. Chem. Model.} \), 5 (4), (2013)
[6] **M.R. Farahani**, Some Connectivity Indices and Zagreb Index of Polyhex Nanotubes, *Acta Chim. Slov.*, **59**, (2012), 779-783

[7] **M.R. Farahani**, Third-Connectivity and Third-sum-Connectivity Indices of Circumcoronene Series of Benzenoid H_k, *Acta Chim. Slov.*, **60**, (2013), 198-202

[8] **M.R. Farahani**, Second-sum-connectivity index of Capra-designed planar Benzenoid series $Ca_n(C_6)$, *Polymers Research Journal*, **7** (3), (2013)

[9] **M.R. Farahani**, Computing some connectivity indices, Zagreb index and Zagreb polynomial of $VC_5C_7[p,q]$ and $HC_5C_7[p,q]$ nanotubes, *Chemical Physics Research Journal*, **6** (1), (2013)

[10] **M.R. Farahani**, Computing First-, Second -Connectivity index and First-, Second- Sum-Connectivity index of Circumcoronene series of benzenoid, *Submitted for publication*, (2013)

[11] **B. Lucic**, **S. Nikolic**, **N. Trinajstić**, **B. Zhou**, and **S. Ivanis Turk**, Sum-Connectivity Index, (2010), 101-136

[12] **M. Randić**, *On characterization of molecular branching*, *J. Amer. Chem. Soc.*, **97**, (1975), 6099

[13] **D. Vukićević** and **B. Furtula**, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, *J. Math. Chem.*, **46**, (2009), 1369

[14] **D. Vukicevic**, **N. Trinajstić**, **S. Nikolic**, **B. Lucic**, and **B. Zhou**, Master Connectivity Index and Master Connectivity Polynomial, *Current Computer-Aided Drug Design*, **6** (1), (2010), 235-239

[15] **R. Xing**, **B. Zhou**, and **N. Trinajstić**, Sum-connectivity index of molecular trees, *J. Math. Chem.*, **48**, (2001), 583-591

[16] **B. Zhou** and **N. Trinajstić**, On a novel connectivity index, *J. Math. Chem.*, **46**, (2009), 1252-1270

[17] **B. Zhou** and **N. Trinajstić**, On General Sum-Connectivity Index, *J. Math. Chem.*, **47**, (2010), 210-218

[18] **B. Zhou** and **N. Trinajstić**, Minimum General Sum-Connectivity Index of Unicyclic Graphs, *J. Math. Chem.*, **48**, (2010), 697-703

Mohammad Reza Farahani
Department of Applied Mathematics,
Iran University of Science and Technology (IUST),
Narmak, Tehran 16844, Iran
E-mail: MR_Farahani@mathdep.iust.ac.ir & MRFarahani88@gmail.com

Received: 12.07.2013
Accepted: 2.10.2013
Revised: 1.11.2013