Effects of glutathione depletion on the cytotoxicity of agents toward a human colonic tumour cell line

J. Jordan, M. d'Arcy Doherty & G.M. Cohen

Toxicology Unit, Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.

Summary Levels of glutathione (GSH) in tumour tissue may be important in determining the clinical response to certain anticancer agents. Recent reports have suggested that D,L-buthionine-S,R-sulphoximine (BSO), a specific inhibitor of GSH synthesis, may be used to deplete tumour cell GSH and thus increase the therapeutic ratio of these agents. We have previously shown that 1-naphthol is a potent antitumour agent, and that its possible metabolite 1,4-naphthoquinone is thiol reactive and capable of redox cycling. It was therefore of interest to investigate the effect of pretreatment with BSO, on the toxicity of these agents, to tumour cells. For comparison we included three other cytotoxic agents, melphanal, helenalin and menadione, the toxicities of which are reported to be modulated by intracellular GSH. Depletion of GSH using BSO did not effect the toxicity of 1-naphthol, or 1,4-NQ but did produce slight potentiation of the cytotoxicities of menadione, helenalin and melphanal. The lack of effect of BSO on 1-naphthol and 1,4-NQ is not easily explained but if one also considers the modest potentiation of cytotoxicity achieved with the other agents studied, the potential use of BSO in combined chemotherapy is at best rather modest.

Based on our findings that 1-naphthol is selectively toxic to short term organ cultures of human colonic tumour tissue compared to normal colonic tissue from the same patients, we suggested the potential use of 1-naphthol or related compounds in cancer chemotherapy (Cohen et al., 1983; Wilson et al., 1985). Recently we have also shown an antitumour activity of 1-naphthol against Ehrlich ascites tumour cells (Jones et al., 1987) and it therefore is of interest to elucidate its mechanism of toxicity and formation of possible reactive metabolites. 1-Naphthol may be metabolised by a microsomal mixed function oxidase to cytotoxic naphthoquinones, primarily 1,4-naphthoquinone (d'Arcy Doherty et al., 1984a,b, 1985). The toxicity of both 1-naphthol and its possible metabolites 1,2-naphthoquinone and 1,4-naphthoquinone, to isolated hepatocytes, is preceeded by a rapid depletion of intracellular glutathione (GSH) (d'Arcy Doherty et al., 1984b).

GSH is the major nonprotein thiol in the cell and plays a critical role in cellular defences against oxidative stress, free radicals and alkylating agents (Meister & Anderson, 1979). One of the problems associated with chemotherapy is the wide range of sensitivities to treatment with any or one agent, which is thought to be, in part, due to the differences in sulphydryl levels in tumours. Several recent reports, have therefore considered the potential of modulating intracellular GSH levels in order to increase the chemotherapeutic efficacy of certain antitumour agents, whose toxicity is modulated by GSH (Akman et al., 1985; Arrick et al., 1983; Capranico et al., 1986; Hamilton et al., 1985; Russo et al., 1986; Suzukake et al., 1982, 1983).

The cytotoxic and antitumour effects of certain quinones e.g. adriamycin and menadione, are thought to be related to oxidative stress which arises through the capacity of those compounds to redox cycle (Kappus & Sies, 1981; Thor et al., 1982). Flavoenzymes catalyze a one electron reduction of naphthoquinones to form semiquinone radicals which can readily autoxidise in the presence of molecular oxygen (O₂), forming large amounts of the superoxide anion radical (O₂⁻). which may then in turn spontaneously, or in a reaction catalysed by superoxide dismutase, dismutate to produce hydrogen peroxide (H₂O₂) which in turn may undergo hydroperoxidase or hydroperoxide radical (OH⁻), an extremely powerful oxidant (Bachur et al., 1978; Thor et al., 1982; Wendel et al., 1981; Powis et al., 1981).

This may lead to conditions of oxidative stress, lipid peroxidation, damage to DNA and other vital cellular constituents (Smith et al., 1985). GSH may protect against naphthoquinone mediated oxidative stress in several ways, including direct reaction with the parent naphthoquinone or its semi-quinone radicals, or by removing with glutathione peroxidase either H₂O₂ formed or hydroperoxides produced as a result of lipid peroxidation (Nickerson et al., 1963; Wendel et al., 1981). It seems reasonable therefore, to suggest that GSH may play a role in the protection of tumour cells against 1-naphthol or its possible metabolite, 1,4-naphthoquinone. In this study, intracellular GSH was depleted in LoVo cells, a human colonic adenocarcinoma cell line (Drewinko et al., 1976), using DL-buthionine-S-R sulphoxime (BSO), a specific inhibitor of γ-glutamyl cysteine synthetase, the rate limiting enzyme in GSH synthesis (Griffith & Meister, 1979), and the effect on the toxicity of 1-naphthol and its possible metabolite 1,4-naphthoquinone were studied. For comparison, we included menadione (2-methyl-1,4-naphthoquinone) and two alkylating agents, melphanal and helenalin. The chemosensitivity of melphanal and helenalin has previously been shown to be increased in the presence of BSO. Tumour cell lines resistant to the alkylating agent melphanal were found to have elevated GSH and GSH S-transferase levels and sensitivity was restored using BSO, to deplete GSH, in such cell lines (Green et al., 1984; Hamilton et al., 1985). BSO has also been shown to augment the lysis of tumour cells by helenalin, therefore this agent was included as a positive control (Arrick et al., 1983). Menadione, a derivative of vitamin K has been extensively studied, with regard to quinone toxicity and its reactions with GSH (Thor et al., 1982) and is currently undergoing clinical trial with the antimetabolite 5-fluorouracil (Chlebowsk et al., 1983).

Depletion of GSH using BSO did not effect the toxicity of 1-naphthol or 1,4-naphthoquinone, as assessed by two end points of toxicity. However moderate potentiation was observed with helenalin, melphanal and menadione. As the effect of BSO on the cytotoxicity of all these agents was not dramatic – the potential use of BSO in combined therapy in the clinic may be limited.

Materials and methods

Cell Culture

LoVo human carcinoma cells (Drewinko et al., 1976)
supplied by Dr Bridget Hill, ICRF London, were grown in monolayer culture in Hams F-12 medium supplemented with 10% foetal calf serum (Flow Labs), 1 mM L-glutamine, penicillin 100 units ml⁻¹ and streptomycin 100 μg ml⁻¹ (Gibco). The cells were maintained at 37°C in a humidified atmosphere of 5% CO₂ and routinely subcultured each week. Cells in exponential growth phase were used in all experiments.

Drug exposure and cytotoxicity

For assay of protein synthesis inhibition, 200 μl aliquots of a cell suspension of density 5 x 10⁴ cells ml⁻¹, were seeded into 96 wells of a flat-bottomed microtitre plate. The ability of agents to inhibit ³H-leucine incorporation into protein was carried out as previously described (Wilson et al., 1985).

For cell growth determinations, 1.5 ml of a 1.4 x 10⁴ cells ml⁻¹ suspension of cells were seeded into 3 cm diameter petriplates. After incubation overnight at 37°C, 5% CO₂, the medium was removed and replaced with complete drug-free medium or medium containing 0.2 mM BSO and again incubated overnight (18 h). Cells were then exposed for 5 h to the cytotoxic agents in fresh medium in the presence or absence of 0.2 mM BSO, as before. After 5 h the medium was then removed by aspiration, replaced with fresh medium and incubated for a further 48 h at 37°C, 5% CO₂, and the cell number estimated by counting an aliquot of trypan stained cells with a Coulter Counter. All experiments were repeated 3–6 times and standard errors calculated.

GSH determination

In cultured cells Monolayer cultures in 3 cm dishes were washed twice with 0.9% saline and the GSH extracted with 6.5% TCA at 4°C for 10 min. GSH was assayed by the method of Hissin and Hilf (1976) using o-phthalaldehyde (o-PT) and results expressed as nmol GSH 10⁻⁶ cells.

Following chemical reactions of test agents with GSH Various concentrations of the chemicals were incubated at 37°C in HEPES (10 mM) (pH 7.5) with 100 μM GSH and the GSH remaining determined using o-P as before.

Results

Effect of BSO on tumour cell GSH

BSO (0.05–0.2 mM) caused a time dependent depletion of GSH (Figure 1) from a starting level of 6.6 ± 0.7 nmol GSH 10⁻⁶ cells present in control cells. After 24 h exposure to BSO (0.2 mM), a maximum depletion to 12% of control was obtained with viabilities of 98% ± 2.1 and 95.4 ± 8.9% as assessed by protein synthesis inhibition and cell numbers, respectively. A concentration of BSO (0.2 mM) was therefore chosen for overnight incubation (18 h) to deplete GSH.

Effect of GSH modulation on the cytotoxicity of the chemicals to LoVo cells

After exposure of LoVo cells to 1-naphthol for 5 h, protein synthesis inhibition was a more sensitive indicator of cytotoxicity than cell numbers, 48 h after exposure (Table I). The opposite effect was observed with melphalan, when the IC₅₀ values obtained using cell numbers was one fifth that determined by protein synthesis inhibition (Table I). For all

Table 1 Effect of BSO on the cytotoxicity of the chemicals to LoVo cells

Chemical	IC₅₀ μM (using ³H-leucine)	IC₅₀ μM (using Cell Number)
	−BSO (+BSO) DMF*	+BSO −BSO DMF*
1-Naphthol	543 ± 34 540 ± 41 1	950 ± 134 960 ± 154 1
1,4-NQ	13 ± 1.5 13 ± 1.5 1	25.5 ± 6.2 24.5 ± 6.3 1
Menadione	30.4 ± 3.3 23.8 ± 4.8 1.27*	24.6 ± 6.2 19.5 ± 5.6 1.8*
Helenalin	3.80 ± 0.2 1.53 ± 0.7 2.48*	2.6 ± 0.9 1.07 ± 0.6 2.4*
Melphalan	57.8 ± 5.6 43 ± 11 1.38*	12.7 ± 3.8 6.7 ± 1.7 1.9

*DMF = Dose modification factor; *Significant difference (P<0.05) between IC₅₀ values ± BSO, using a paired t-test; **Significant difference (P<0.05) between IC₅₀ values determined by the two criteria of assessing cytotoxicity, using a paired t-test. Each experiment was repeated at least three times and a minimum of four wells per concentration was used in every experiment.
other agents used in this study i.e. menadione, helenalin, and 1,4-NQ, no significant difference in the IC50 values, as assessed by either criteria were observed (Table I).

Depletion of GSH using BSO, did not effect the cytotoxicity of 1-naphthol, or 1,4-naphthoquinone as assessed by either method of toxicity, whereas the cytotoxicities as assessed by inhibition of protein synthesis, of menadione, helenalin and melphalan were significantly potentiated due to pretreatment and incubation with BSO (Table I). BSO treatment also potentiated the cytotoxicity of menadione and helenalin, as assessed by cell numbers. A small but not significant effect was observed with melphalan. The maximum modification of an IC50 value in the presence of BSO was a 2.5 fold decrease in the helenalin IC50 value (Figure 2), all other effects were less than 2 fold.

Effects of chemicals on tumour cell GSH
LoVo cells were incubated with equitoxic concentrations (as assessed by protein synthesis inhibition after 3h exposure) and the GSH levels determined over a 2h exposure (Figure 3). Within 30 min, 1,4-NQ caused over 95% depletion of GSH in LoVo cells and this level was maintained over the 2h exposure. Menadione also caused an extensive but insignificant, depletion due to the large variation in the response. Melphalan and 1-naphthol did not deplete GSH, however helenalin actually caused a small but not significant increase in GSH above control value at 30 min which returned to normal at 60 and 120 min (results not shown).

Reactivity of chemicals with GSH in solution
The chemicals were incubated with GSH in buffered solution (Figure 4). 1-Naphthol (100 μM–1 mM) did not react with GSH in solution whereas 1,4-NQ was highly reactive. After 15 min incubation with 100 μM 1,4-NQ, less than 10% of the GSH present at the start of the incubation (100 μM) remained (Figure 4). Overall reactivity of the chemicals with GSH in solution followed the order 1,4-NQ > menadione > melphalan > helenalin > 1-naphthol.

Discussion
Our results demonstrate that GSH depletion, using BSO to inhibit GSH synthesis, may affect the cytotoxicity of selected agents to LoVo cells growing in vitro (Table I). Cytotoxicity was assessed by inhibition of both protein synthesis and cell numbers. In a previous study with LoVo cells, little difference was observed in the toxicity of 1-naphthol or 1,4-NQ, when assessed either by inhibition of protein synthesis or by a clonogenic assay (Wilson et al., 1985). The possibility that BSO or the drug treatments altered the uptake of [3H]-leucine or its pool sizes cannot be excluded. However in a similar study with human lung tumour cells, BSO did not affect the uptake of [14C]-leucine (Brodie & Reed, 1985). The cytotoxicity of 1-naphthol assessed by protein synthesis inhibition or cell number determination after 24h, was not affected by BSO, indicating that GSH may not be involved in protecting LoVo cells from the toxicity of 1-naphthol. In addition, BSO did not affect the cytotoxicity of 1,4-NQ, a possible metabolite of 1-naphthol. Based on these results, the possible involvement of 1,4-NQ in

Figure 2 Effect of BSO on the toxicity of helenalin to LoVo cells. (a) Protein synthesis was assessed by incorporation of [3H]-leucine and (b) cells numbers were determined 48 h after drug exposure. *Significant at P < 0.05 paired t-test.

Figure 3 Effect of equitoxic concentrations of cytotoxic chemicals on tumour cell GSH. The GSH levels after 30 min exposure are shown and the results are expressed as percentage GSH present in untreated cells. The concentrations of 1-naphthol, 1,4-NQ, menadione, melphalan and helenalin were 250, 10, 20, 20 and 1 μM respectively. *Significant P < 0.05 unpaired t-test.

Figure 4 Chemical interaction of agents with GSH in solution. Results are expressed as percentage GSH remaining after 15 min incubation at 37°C. *Significant at P < 0.05 unpaired t-test.
the toxicity of 1-naphthol cannot be excluded. The lack of effect of BSO on the toxicity of both 1-naphthol and 1,4-NQ was rather surprising, as with isolated hepatocytes both these compounds caused a depletion of intracellular GSH prior to cell death (d’Arcy Doherty et al., 1984b). However with LoVo cells, 1,4-NQ but not 1-naphthol, caused a depletion in GSH (Figure 2). This may be due to differences in the ability of these different cell types to activate these compounds or to deal with the accompanying oxidative stress.

It was of interest that under the same conditions, BSO caused a small but significant potentiation of menadione cytotoxicity but had no effect on the structurally related 1,4-NQ (Table I). One possible explanation for this difference is that the two quinones may exert their toxicity by different mechanisms due to the higher chemical reactivity of 1,4-NQ (Figure 4).

The cytotoxicities of the two alkylating agents in the study, helenalin and melphalan, were potentiated in the presence of BSO (Table I) in agreement with other studies (Arrick et al., 1983; Green et al., 1984; Hamilton et al., 1985; Suzukake et al., 1982). Of the four chemicals used in this study the greatest potentiation of cytotoxicity in the presence of BSO was exhibited by helenalin (Table I and Figure 2). GSH may protect against helenalin cytotoxicity by conjugation, prior to alkylation of target molecules, prevent cross linking or restore critical sulphhydryl groups (Hall et al., 1977, 1978). It is of interest to note that in the presence of helenalin (1–10 μM), LoVo cell GSH was not depleted, suggesting that modulation of GSH may be of importance in determining the toxicity of agents that do not deplete GSH. Recently a number of studies have investigated the possibility of relationship between resistance to melphalan (L-PAM mustard), a bifunctional alkylating agent and thiol status of the cells (Suzukake et al., 1983). In this study, a modest potentiation of melphalan toxicity, to LoVo cells was observed in the presence of BSO suggesting a protective role for GSH against the cytotoxic action of melphalan, probably via conjugation reactions. This potentiation of melphalan toxicity was less than that observed by others (Table II) and may be due to a number of possibilities such as the different measures of cytotoxicity used or to lower intracellular levels of GSH in the LoVo cells.

In vitro studies with tumour cells in this laboratory have investigated the involvement of GSH in protection against a range of cytotoxic agents. We observed that the cytotoxicities of menadione, helenalin and melphalan were potentiated due to GSH depletion by BSO, however the effects of BSO were relatively modest (Table I). It is of particular interest to compare these results with other studies in the literature to assess the potential use of BSO in chemosensitising tumour cells (Table II). BSO has been reported to increase drug toxicity, sensitise drug resistant cell lines and also reduce drug toxicity. The majority of effects are clearly very modest and some results actually conflict, possibly due to different effects in different cell lines. Under in vitro conditions, it is possible to choose a concentration

Table II Effects of glutathione depletion on the cytotoxicity of antitumour agents

Treatment	Cell line	Measurement of toxicity	Effect	DMF* (if given)	Ref.
Helenalin	P815	51 Cr	potentiating	4.7	Arrick et al. (1983)
Jatrophosphate	P815	51 Cr	potentiating	21.3	Arrick et al. (1983)
Adriamycin	P815	51 Cr	none	4-10.5	Russo et al. (1986)
	ADR resistant	V79	clonogenic	sensitisation	Hamilton et al. (1985)
		A549	clonogenic	potentiating	Russo et al. (1986)
Daunorubicin	P388	cell number	none	3.4	Romine & Kessel (1986)
	P388/ADR resistant	cell number	potentiating	1.4	Romine & Kessel (1986)
Bisthiosemi-carbozone	P388	cell number	potentiating	none	Arrick et al. (1982)
B2344		cell number	potentiating	none	Tann et al. (1985)
H$_2$O$_2$—preformed	P815	endothelial	none	0.99	Arrick et al. (1982)
		51 Cr	none	3.5	Arrick et al. (1982)
		51 Cr	none	3.5–10	Green et al. (1984)
Melphan (L-PAM)	A1847 L-PAM resistant	clonogenic	sensitisation	none	Somfai-Rele et al. (1984)
	L120	L-PAM resistant	clonogenic	sensitisation	
BCNUb	P815	51 Cr	none	0.99	Arrick et al. (1982)
Vinblastine	51 Cr	none	1.17		
Cytosine	51 Cr	none	0.74		
Arabinoside (Arac)	51 Cr	none	0.71		
Maytansine	51 Cr	none	0.91		
Irradiation (DTNB)c	lymphoid	trypan blue exclusion	potentiating	none	Dethmers & Meister (1981)
5-Fluourouracil	51 Cr	none	none		
Vincristine	51 Cr	none	none		
Necarizino-statin	V79	clonogenic	protection	0.8	DeGraff et al. (1985)
	CCL-210 (normal)	clonogenic	none		Russo et al. (1986)

*Dose modifying factor; b1,3-bis[2-chloroethyl]-1-nitrosourea; c5,5-dithiobioc(2-nitrobenzoic acid).
and time period of BSO exposure which would cause optimal GSH depletion, prior to incubation with the cytotoxic chemicals. If, under such optimum conditions, only a slight potentiation of toxicity is observed, it is difficult to envisage any great potentiation of toxicity to the tumour tissues occurring in vivo, especially as it will be necessary to consider other important factors such as the pharmacokinetics of BSO and the antitumour agent. Furthermore GSH depletion in vivo due to administration of BSO will not be confined to tumour tissue therefore potentiation of toxicity to normal tissue may be a limiting factor as was recently observed with the enhanced nephrotoxicity of rats treated with BSO (Kramer et al., 1985).

Our results and those of others suggest that great caution should be exercised in the potential use of BSO in the chemosensitisation of tumours in man.

This work was supported in part by the Cancer Research Campaign of Great Britain. We are grateful to Dr B. Drewinko for permission to utilise the LoVo cells, kindly supplied by Dr B. Hill (Imperial Cancer Research Fund). We thank Mrs M. Fagg for the typing of the manuscript and Mr D. King for the preparation of figures.

References

AKMAN, S.A., DIETRICH, M., CHLEBOWSKI, R., LIMBERG, P. & BLOCK, J.B. (1985). Modulation of cytotoxicity of menadione sodium bisulfite versus Leukaemia L1210 by the acid soluble thiol pool. Cancer Res., 45, 5257.

ARRICK, B.A., NATHAN, C.F. & COHN, Z.A. (1983). Inhibition of glutathione synthesis augments the lysis of murine tumour cells by sulphhydryl-reactive antineoplastics. J. Clin. Invest., 71, 258.

ARRICK, B.A., NATHAN, C.F., GRIFFITH, O.N. & COHN, Z.A. (1982). Glutathione depletion sensitises tumour cells to oxidative cytotoxicity. Cancer Res., 42, 1231.

BACHUR, N., GORDON, S.L. & GEE, M.W. (1978). General mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res., 38, 1745.

BRODIE, A.E. & REED, D.J. (1985). Buthionine sulfoximine inhibition of coline uptake and glutathione biosynthesis in human lung carcinoma cells. Toxicol. Appl. Pharmac., 77, 381.

CAPRANICO, G., BABUDRI, D'ARCY & DEGRAFF, D. (1985). Buthionine sulfoximine on glutathione synthesis and subsequent differential sensitivity to Adriamycin, doxorubicin and mitomycin C in isolated human colonic carcinoma cells. Biochem. Pharmacol., 33, 543.

DOHERTY, M. & COHEN, G.M. (1984a). Metabolic activation of 1-naphthol by rat liver microsomes to 1,4-naphthoquinone and covalent binding species. Biochem. Pharmacol., 33, 543.

DOHERTY, M., COHEN, G.M. & SMITH, M.T. (1984b). Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol. Biochem. Pharmacol., 33, 543.

DOHERTY, M., MAKOWSKI, R., GIBSON, G.G. & COHEN, G.M. (1985). Cytochrome P-450 dependent metabolic activation of 1-naphthol to naphthoquinones and covalent binding species. Biochem. Pharmacol., 24, 2261.

GRAFF, W.G., RUSSO, A. & MITCHELL, J.B. (1985). Glutathione depletion greatly reduces NCS cytotoxicity in Chinese hamster V79 cells. J. Biol. Chem., 260, 8512.

DETHMERS, J.K. & MEISTER, A. (1981). Glutathione export by human lymphoid cells: Depletion of GSH by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl Acad. Sci. USA, 78, 7492.

DREWINKO, B., ROMSDAHL, M.M., YANG, L.-Y., AHEARN, M.J. & TRUJILLO, J.M. (1976). Establishment of a human carcinoma antigen producing colonic adenocarcinoma cell line. Cancer Res., 3, 467.

GREEN, J.A., VISTICA, D.T., YOUNG, R.C., HAMILTON, T.C., ROGAN, A.M. & OZOLS, R.F. (1984). Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res., 44, 5427.

GRIFFITH, O.W. & MEISTER, A. (1979). Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-RButyl Homocysteine Sulphoximine). J. Biol. Chem., 254, 7558.

HALL, I.H., LEE, K.H. & EIGEBALLY, S.A. (1977). Effects of helanalin on anaerobic and aerobic metabolism of Ehrlich ascites tumour cells. J. Pharm. Sci., 67, 553.

HALL, I.H., LEE, K.H., MAR, E.C. & STARNES, O.C. (1977). A proposed mechanism for inhibition of cancer growth by tenulin and helanalin and related cyclopentenones. J. Med. Chem., 20, 333.

HAMiLTON, T.C., WINTER, M.A., LOUIE, K.J. & 7 others (1985). Augmentation of Adriamycin, melphalan and cis-platin cytotoxicity in drug resistant and sensitive human ovarian carcinoma cell lines by BSO mediated GSH depletion. Biochem. Pharmacol., 34, 2583.

HINSS, P.J. & HILF, R. (1976). A fluorometric method for determination of oxidised and reduced glutathione in tissues. Anal. Biochem., 74, 214.

JONES, M., DOHERTY, M., OARCY & COHEN, G.M. (1987). Antitumour activity of 1-naphthol against L1210 leukaemia in vivo and Ehrlich ascites tumour cells in vivo and in vitro. Cancer Lett., 33, 347.

KAPPUS, H. & SIES, H. (1981). Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation. Experim., 31, 223.

KRAMER, R.A., SCHULLER, H.M., SMITH, A.C. & BOYD, M.R. (1985). Effects of buthionine sulfoximine on the nephrotoxicity of 1-(2-chloethoxy)-3-(Trans-4-methylcyclohexyl)-1-introsurose (MeCCNU). J. Pharmacol. Exp. Ther., 234, 498.

MEISTER, A. & ANDERSON, M. (1979). Glutathione. Ann. Rev. Biochem., 52, 711.

NICKERSON, W.J., FALCONE, G. & STRAUSS, G. (1963). Studies on quinone thiocarboxyls I. Mechanism of formation and properties of thiodione. Biochemistry, 2, 537.

POWIS, G., SVINGEN, B.A. & APPEL, P. (1981). Quinone stimulated superoxide formation by subcellular fractions in isolated hepatocytes and other cells. Mol. Pharmacol., 20, 387.

ROMINE, M.T. & KESSEL, D. (1986). Intracellular glutathione as a determinant of responsiveness to antitumour drugs. Biochem. Pharmacol., 35, 3323.

RUSSO, A., GRAY, W., FRIEDMANN, N. & MITCHELL, J.B. (1986). Selective modification of GSH levels in normal human versus tumour cells and subsequent differential response to chemotherapy. Cancer Res., 46, 2845.

SMITH, M.T., EVANS, C.G., THOR, H. & ORRENUIS, S. (1983). Quinone induced oxidative injury to cells and tissues. In Oxidative Stress, Sies, H. (ed.) p. 91. Academic Press: New York.

SOMPAEL-RELLE, S., SUZUKAKE, K., VISTICA, B.P. & VISTICA, D.T. (1984). Reduction in cellular glutathione by BSO and sensitization of murine tumour cells resistant to L-phenylalanine mustard. Biochem. Pharmacol., 33, 485.

SUZUKAKE, K., PETRO, B.J. & VISTICA, D.T. (1982). Reduction in GSH content of L-PAM resistant L1210 cells confers drug sensitivity. Biochem. Pharmacol., 31, 121.

SUZUKAKE, K., VISTICA, B.P. & VISTICA, D.T. (1983). Decloration of L-PAM by sensitive and resistant tumour cells and its relationship to intracellular GSH content. Biochem. Pharmacol., 32, 165.

THOR, H., SMITH, M.T., HARTZELL, P., BELLOMO, G., JEWELL, S.A. & ORRENUIS, S. (1982). Metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. J. Biol. Chem., 257, 12419.

TSAN, M.F., DANIS, E.H., DEL VECCHIO, P.J. & ROSONO, C.L. (1985). Enhancement of intracellular glutathione protects endothelial cells from peroxynitrous acid damage. Biochem. Biophys. Res. Commun., 127, 270.

WENDEL, A. (1981). Glutathione peroxidase, In Enzymatic Basis of Detoxification, Jakoby, W.B. (ed) p. 325. Academic Press: New York.

WILSON, G.D., OARCY DOHERTY, M. & COHEN, G.M. (1985). Selective toxicity of 1-naphthol to human colorectal tumour tissue. Br. J. Cancer, 51, 853.