Atmospheric Evolution of Emissions from a Boreal Forest Fire: The Formation of Highly-Functionalized Oxygen-, Nitrogen-, and Sulfur-Containing Compounds

Jenna C. Ditto¹, Megan He¹, Tori N. Hass-Mitchell¹, Samar G. Moussa², Katherine Hayden², Shao-Meng Li², John Liggio², Amy Leithead², Patrick Lee², Michael J. Wheeler², Jeremy J.B. Wenztell², Drew R. Gentner¹,³,*

¹ Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA; ² Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada; ³ Solutions for Energy, Air, Climate and Health (SEARCH), School of the Environment, Yale University, New Haven CT 0651, USA

* Correspondence to: drew.gentner@yale.edu

Abstract

Forest fires are major contributors of reactive gas- and particle-phase organic compounds to the atmosphere. We used offline high resolution tandem mass spectrometry to perform a molecular-level speciation of evolving gas- and particle-phase compounds sampled via aircraft from a boreal forest fire in Saskatchewan, Canada. We observed diverse multifunctional compounds containing oxygen, nitrogen, and sulfur (CHONS), whose structure, formation, and impacts are understudied. The abundance of particle-phase CHONS species increased with plume age, from 19% to 40% of the relative abundance of observed functionalized OA over the first 4 hours of downwind transport. The relative contribution of particle-phase sulfide functional
groups increased with age from 4% to 40% of observed OA abundance, and were present in up to 75% of CHONS compounds. The increases in sulfides were accompanied by increases in ring-bound nitrogen, and both increased together with CHONS prevalence. A complex mixture of intermediate- and semi-volatile gas-phase organic sulfur species was emitted from the fire and depleted downwind, representing potential precursors to particle-phase CHONS compounds. These results demonstrate CHONS formation from nitrogen/oxygen-containing biomass burning emissions in the presence of reduced sulfur species, and highlight chemical pathways that may also be relevant in situations with elevated levels of nitrogen and sulfur emissions from residential biomass burning and fossil fuel use (e.g. coal), respectively.

1 Introduction

Forest fires are predicted to become increasingly prevalent and severe with climate change (Abatzoglou and Williams, 2016; Barbero et al., 2015; Jolly et al., 2015). These fires are an important and uncontrolled source of gas- and particle-phase compounds to the atmosphere, including a complex mixture of gas-phase reactive organic carbon, primary organic aerosol (POA), carbon monoxide, carbon dioxide, methane, ammonia, nitrogen oxides, and black carbon (Akagi et al., 2011; Gilman et al., 2015; Hatch et al., 2015, 2018; Koss et al., 2018; Vicente et al., 2013; Yokelson et al., 2013). Many of these emitted compounds are precursors to downwind ozone and secondary organic aerosol (SOA) production (Ahern et al., 2019; Buysse et al., 2019; Gilman et al., 2015; Hennigan et al., 2011; Lim et al., 2019).

Primary and secondary pollutants from biomass burning have important effects on air quality locally, regionally, and continentally (Burgos et al., 2018; Colarco et al., 2004; Cottle et al., 2014; Dreessen et al., 2016; Forster et al., 2001; Rogers et al., 2020; Val Martín et al., 2006),
and their impacts on human health and climate (e.g. via light absorbing brown and black carbon) have been well documented (Forrister et al., 2015; Jiang et al., 2019; Liu et al., 2017; Di Lorenzo et al., 2018; Reid et al., 2016; Sengupta et al., 2018; Wong et al., 2019). These health and climate effects are sensitive to the elemental and structural composition of gas- and particle-phase emissions and transformation products (Ditto et al., 2019; Hallquist et al., 2009; Nozière et al., 2015). As a result, past studies have used online and offline mass spectrometry techniques to characterize the chemical composition of fresh and aged biomass burning smoke and have revealed a wide array of emitted hydrocarbons and oxygen-, nitrogen-, or sulfur-containing functionalized species (Ahern et al., 2019; Bertrand et al., 2018; Gilman et al., 2015; Hatch et al., 2015, 2018, 2019; Inuma et al., 2010; Koss et al., 2018; Laskin et al., 2009; Yokelson et al., 2013). However, the emissions and chemical transformations occurring in ambient biomass burning plumes are extremely complex and despite previous measurements remain poorly understood at the molecular-level.

In this study, we used an aircraft sampling system developed to collect offline gas- and particle-phase organic compounds from a boreal forest fire. We examined the molecular-level emissions and evolution of the forest fire plume with an unprecedented analysis of offline aircraft samples using gas and liquid chromatography (GC/LC) with high resolution mass spectrometry (MS), including tandem mass spectrometry (MS/MS). This degree of detailed chemical speciation is important to advance knowledge of in-plume chemical pathways and reaction products, long-distance transport, and fate of biomass burning products—all of which will improve modeling capabilities and our understanding of the health and environmental impacts of biomass burning smoke.
Specifically, the goals of this study were: (1) to perform a detailed speciation of gas- and particle-phase organic compounds derived from the boreal forest fire in terms of elemental and functional group composition, to assess changes in plume composition at the molecular-level as the plume aged; and (2) to examine the evolution of oxygen-, nitrogen-, and sulfur-containing (CHONS) compounds. These CHONS compounds made up 19-40% of functionalized organic aerosol here and have been observed at other ambient sites (e.g. 9-11% (Ditto et al., 2018)), though little is known about their structures or formation mechanisms. Using our observations of gas-phase sulfur species, we also identified possible precursors and reaction pathways involved in the formation of these CHONS compounds.

2 Materials and Methods

On June 25th, 2018, two aircraft research flights were conducted by Environment and Climate Change Canada as part of their Air Pollution research program. These flights sampled two boreal forest wildfire smoke plumes originating near Lac LaLoche in northern Saskatchewan, Canada (Figure S1). The region is dominated by pine and spruce trees (Canada's National Forest Inventory, 2020). Gas- and particle-phase samples were collected from the National Research Council of Canada’s Convair-580 research aircraft for analysis with offline high resolution mass spectrometry, alongside many other measurements (Supporting Information S1-S2). The aircraft flew the same straight line tracks at multiple altitudes through the smoke plumes, which when stacked created a virtual screen intercepting the plumes, at each of five downwind locations (flight design similar to those previously reported (Li et al., 2017; Liggio et al., 2016)); screen 1 was ~10 km from the fire with screens 2-4 following the plumes downwind, and screen 5 intercepting the plumes after they had passed over several major surface and in-situ
mining oil sands facilities (Figure S1). The samples discussed here were collected across both plumes to ensure that enough mass was present to surpass the mass spectrometer’s detection limit. Based on satellite information and aircraft measurements at the start of sampling (i.e. screen 1), the fire was a low-intensity surface fire with smoldering conditions; aircraft measurements indicated a modified combustion efficiency of 0.90±0.40 for both plumes.

Combined gas- and particle-phase samples were collected onto custom adsorbent tubes packed with high-purity quartz wool, glass beads, Tenax TA, and Carbopack X (Sheu et al., 2018). Samples were collected along screens 1-4 in Figure S1 (no adsorbent tubes collected at screen 5) via an external pod mounted under the wing of the aircraft which included remote switching between adsorbent tubes at various transect altitudes and online measurements of temperature, pressure, and flow (Supporting Information S1, Figure S2). While particles were not explicitly filtered out (to reduce losses of lower volatility gases onto upstream surfaces), we assumed that the compounds measured in the adsorbent tubes below C_{22}-C_{23} were primarily in the gas-phase based on (1) significant undersampling for particles at the adsorbent tube inlet, since the adsorbent tube sampling flow rate was a factor of ~4 lower than its corresponding isokinetic flow rate, resulting in a significant divergence of particles away from the inlet during sampling; (2) partitioning theory and average in-plume organic aerosol (OA) concentrations of 18-22 μg/m³ across adsorbent tube sampling periods for screens 1-4 (concurrently measured by an aerosol mass spectrometer (AMS) onboard the aircraft, Supporting Information S1, S3, Table S2). As such, we limited the following adsorbent tube data analysis to compounds in the C_{10}-C_{25} range to focus on intermediate-volatility and semivolatile (I/SVOCs) compounds predominantly in the gas-phase.
Dedicated particle-phase samples were collected on 47 mm PTFE filters (2.0 μm pore; Pall Corporation) from a sampling manifold in the cabin containing six independent anodized aluminum filter holders. The filters were sampled behind an isokinetic inlet with a size cutoff of approximately 2.5 μm. One filter sample was collected per screen for screens 1-5 shown in Figure S1.

All adsorbent tubes were analyzed using a GERSTEL Thermal Desorber TD 3.5+ with gas chromatography (Agilent 7890B GC), atmospheric pressure chemical ionization (APCI), and quadrupole time-of-flight mass spectrometry (Agilent 6550 Q-TOF), similar to past work (Khare et al., 2019). For adsorbent tubes, the APCI was operated in positive ionization mode. The Q-TOF was operated in MS mode (i.e. TOF data collection, hereafter “GC-APCI-MS”). Adsorbent tube data were processed primarily via a targeted approach for CₓHᵧ, CₓHᵧO₁, and CₓHᵧS₁ compounds using custom Igor Pro code (Supporting Information S2-S3).

Filter samples were extracted in methanol (Ditto et al., 2018). Samples were analyzed via liquid chromatography (Agilent 1260 LC) with electrospray ionization (ESI) and the same Q-TOF. For filters, the ESI source was operated in both positive and negative ionization mode, and the Q-TOF was operated in both MS mode (i.e. TOF data collection, “LC-ESI-MS”) and MS/MS mode (i.e. tandem mass spectral data collection, “LC-ESI-MS/MS”) (Ditto et al., 2018, 2020).

Filter extracts were also analyzed using GC-APCI-MS in positive ionization mode. Filter data from LC-ESI-MS, LC-ESI-MS/MS, and GC-APCI-MS were analyzed with a non-targeted approach, using Agilent Mass Hunter, SIRIUS with CSI:FingerID, and custom R code (Supporting Information S2-S3) (Ditto et al., 2018, 2020). All peaks that passed strict QC/QA were assigned molecular formulas, with candidate formulas limited to 20 oxygen, 3 nitrogen, and/or 1 sulfur atom(s). Note that these compound classes are discussed here without subscripts.
Additional details on these methods, including an analysis of total mass analyzed from filters and adsorbent tubes, are discussed in Supporting Information S1-S5, with a methods summary in Figure S3.

3 Results and Discussion

3.1 Evolution of organic aerosol elemental composition and functionality with plume age

Our analysis of functionalized OA showed several compositional trends in the evolving boreal forest fire smoke plume (screens 1-4) and exhibited marked changes after emissions from the oil sands facilities were mixed with the forest fire plume (screen 5). Here, we focused on the forest fire plume in screens 1-4. We observed a diverse elemental composition in functionalized OA across oxygen-, nitrogen-, and/or sulfur-containing compound classes (Figure 1A-1B, Figure S5). This included compounds containing oxygen (CHO), such as common biomass burning tracers and their isomers (e.g. levoglucosan, Supporting Information S2); as well as oxygen- and nitrogen- containing compounds (CHON); oxygen- and sulfur-containing compounds (CHOS); reduced nitrogen-containing compounds (CHN); reduced nitrogen- and sulfur-containing compounds (CHNS); as well as compounds containing oxygen, nitrogen, and sulfur (CHONS).

There was a continual decrease in the relative abundance of particle-phase CHO compounds in measured functionalized OA across screens 1-4, accompanied by a consistent relative increase in CHON and CHONS compounds (Figure 1B). Notably, the relative abundance of CHONS compounds increased from 19 to 40% of measured functionalized OA abundance from screens 1-4. These trends were similar in the carbon monoxide-normalized abundance of these compound classes (Figure S5C), where CHO generally decreased from screens 1-4, while CHONS and CHON generally increased, suggesting that CHONS compounds were possibly
formed from CHO, CHN, and/or CHON precursors existing across both gas- and particle-phases in the plume (proposed chemistry discussed in Section 3.5). From MS/MS, these evolving CHO, CHN, CHON, and CHONS compounds were often comprised of variable combinations of hydroxyls, ethers (e.g. primary emissions from forest fires like methoxyphenols and similar structures), amines, imines, cyclic nitrogen features (consistent with past laboratory observations of biomass burning emissions (Laskin et al., 2009; Lin et al., 2018; Liu et al., 2015; Updyke et al., 2012)), and sulfides.

3.2 Detailed speciation of CHONS compounds in functionalized OA

While some individual CHONS functional groups contained grouped oxygen, nitrogen, and sulfur atoms (e.g. sulfonamides), the majority of CHONS compounds had a combination of multiple separate oxygen-, nitrogen-, and/or sulfur-containing functional groups (Figure 2A-2B). Sulfide groups were important contributors to CHONS compounds (Figure 2B) and showed a notable increase in relative contribution to the overall functional group distribution, from 4-40% of measured compound abundance across screens 1-4 (Figure 1C). Their increasing relative contribution to CHONS compounds with plume evolution was even more pronounced—by screen 4, the sulfide functional group was present in 75% of detected CHONS compound abundance (Figure S7A). Here, we focused on the presence of sulfides in CHONS compounds because most of the observed particle-phase sulfides occurred as part of CHONS species (71%), while a smaller fraction occurred as CHOS (21%) or CHNS (8%) (Figure 3A).

To explore possible precursors and formation pathways for these particle-phase sulfide-containing CHONS species, we used MS/MS to identify nitrogen-containing functional groups that co-occurred with sulfides. In CHONS compounds, most sulfides co-occurred with cyclic
nitrogen (36%), amine (32%), or imine features (43%) (Figure 3B). The prevalence of sulfide and cyclic nitrogen features in the measured functionalized OA increased together screen-to-screen, and increased together with the rising proportion of CHONS compounds (Figure 3C). While sulfides often co-occurred with amines or imines and while amines and imines were prevalent in all 4 screens (Figure 1C), there was no relationship between amines or imines and the increasing contribution of CHONS compounds to measured functionalized OA (Figure S7B).

The sulfide substructures observed via MS/MS often contained linear carbon chains or phenyl groups bonded to the sulfur atom (Figure 3C inset). Thus, we hypothesize that precursors with similar reduced sulfur-containing structures reacted with cyclic nitrogen-containing species to form the observed sulfide-containing CHONS compounds, which increased in prevalence with plume age (precursors discussed in Section 3.3, potential chemical pathways discussed in Section 3.5).

CHONS compounds were predominantly SVOCs in screens 1-4 (i.e. 89% of CHONS ion abundance, Figure 2C, Figure S8), suggesting that these compounds were formed from lighter gas-phase species. In contrast, with the influence of the oil sands facilities in screen 5, 68% of CHONS compounds were extremely low volatility organic compounds (ELVOCs), though CHONS made up only 2% of functionalized OA at screen 5. CO-normalized abundances of functionalized OA in each particle-phase volatility bin (i.e. IVOC, SVOC, LVOC, ELVOC, computed using LC-derived molecular formulas with the Li et al. parameterization (Li et al., 2016)) increased with plume age, but the relative contribution of SVOCs increased from 37% to 58% while the relative contribution of IVOCs dropped from 38% to 20%, potentially due to oxidation reactions that formed SVOCs and/or due to evaporation (Figure S9). These particle-phase IVOCs consisted predominantly of CHO, CHN, and CHON (O/N < 3) compounds, which
are possible non-sulfur containing precursors to the observed CHONS species. Fragmentation of particle-phase L/ELVOC compounds also could have contributed to some of the observed SVOC mass, but the increasing total abundance across all volatility bins with plume age supports the idea that these compounds were predominantly formed from more volatile precursors (e.g. I/SVOCs).

3.3 Targeted search for CHONS precursors in the gas-phase

To investigate possible gas-phase I/SVOC precursors to the observed sulfide-containing CHONS compounds, we performed a targeted search for each adsorbent tube sample across all C$_{10}$-C$_{25}$ C$_x$H$_y$S$_1$ species with the equivalent of 0-15 double bonds and/or rings (i.e. C$_x$H$_{2x+2}$S$_1$- C$_x$H$_{3x-28}$S$_1$, Figure 4A, Figure S10). We observed a distribution of C$_x$H$_y$S$_1$ compounds and their isomers; based on the high mass resolution and high mass accuracy molecular formulas from targeted GC-APCI-MS analysis, 27% of C$_x$H$_y$S$_1$ compounds were fully saturated (i.e. C$_x$H$_{2x+2}$S$_1$) and 25% contained the equivalent of 4-6 double bonds and/or rings (i.e. C$_x$H$_{2x-6}$S$_1$- C$_x$H$_{2x-10}$S$_1$), which included single ring aromatics. We focused on these sulfur-containing gases as candidate precursors to the observed sulfide-containing CHONS compounds as they contained sulfur substructures with linear carbon chains or phenyl groups, similar to those observed on CHONS compounds via MS/MS OA analysis (Figure 3C inset, Figures S10-S11). However, we also observed contributions from other sulfur-containing structures (e.g. with the equivalent of 1-3 double bonds and/or rings, in Figure 4A), which could also be involved as precursors.

The observed gas-phase C$_{10}$-C$_{25}$ C$_x$H$_y$S$_1$ compounds were emitted by the fire and likely also evaporated from the particle-phase during early plume dilution. Gas-phase C$_{10}$-C$_{25}$ C$_x$H$_y$S$_1$ concentrations increased relative to carbon monoxide from screen 1 to 2, then steadily decreased.
with plume age (Figure 4B, Figure S12A). This suggests the emission and/or evaporation of

C$_x$H$_y$S$_1$ compounds between screens 1 and 2, and subsequent participation in plume chemistry

from screens 2 to 4.

Similar OA evaporation with plume dilution has been observed in many past studies
(Ahern et al., 2019; Garofalo et al., 2019; Hennigan et al., 2011; Lim et al., 2019). However, to
better understand the dynamics of these sulfur-containing compounds, we compared their
concentrations to concentrations from a targeted search of adsorbent tube gas-phase compounds
that included C$_{10}$-C$_{25}$ aliphatic and aromatic C$_x$H$_y$ and C$_x$H$_y$O$_1$ species. Overall, C$_x$H$_y$ and C$_x$H$_y$O$_1$
compound classes dominated the observed C$_{10}$-C$_{25}$ compounds (Figure 4B, Figure S12B), with
61% C$_x$H$_y$, 36% C$_x$H$_y$O$_1$, and just 3% C$_x$H$_y$S$_1$ on average. C$_x$H$_y$ and C$_x$H$_y$O$_1$ concentrations
generally increased with plume age (Figure 4B) and included many known compound types (e.g.
monoterpenes, aromatics, hydroxyls, carbonyls (Akagi et al., 2011; Andreae, 2019; Gilman et al.,
2015; Hatch et al., 2015, 2019; Koss et al., 2018)). This suggests the direct emission of these
gas-phase compounds from the fire (observed at screen 1) and evaporation from the particle-
phase as the plume evolved, as well as formation of C$_x$H$_y$O$_1$ via oxidation of C$_x$H$_y$ compounds.

AMS measurements of total OA concentrations provided supporting evidence of OA
evaporation; the ratio of AMS OA concentration to CO decreased by 7% from screen 1 to 2
(corresponding to an AMS OA/CO ratio of -0.0044 or a decrease in OA concentration of -2.3
µg/m3), while the ratio of total gas-phase C$_x$H$_y$, C$_x$H$_y$O$_1$, and C$_x$H$_y$S$_1$ concentration to CO
increased by 55% (corresponding to a total gas-phase concentration/CO ratio of 0.022 or an
increase in gas-phase concentration of 7.0 µg/m3, Table S3). While not the focus of the analytical
approaches applied in this study, to further substantiate the observation of OA evaporation, we
performed the same targeted analysis of C$_{10}$-C$_{25}$ C$_x$H$_y$, C$_x$H$_y$O$_1$, and C$_x$H$_y$S$_1$ compounds in the
particle-phase filter sample extracts analyzed via GC-APCI-MS and observed a similar decrease in concentration from screen 1 to 2. However, these filter measurements (even with APCI ionization) were not geared towards C$_x$H$_y$ and C$_x$H$_y$S$_1$ measurements due to possible solubility limitations in the extraction solvent (Supporting Information S4). Direct thermal desorption of adsorbent tubes or filters with APCI ionization would be better suited for these C$_x$H$_y$ and C$_x$H$_y$S$_1$ measurements (as performed in this study with adsorbent tubes).

Also, as discussed in Materials and Methods, the observed semivolatile compounds below ~C$_{22}$-C$_{23}$ existed primarily in the gas-phase, while larger compounds actively partitioned to and equilibrated with the particle-phase, further corroborating the possibility of contributions from both direct gas-phase emissions and gases from OA evaporation (Supporting Information S3, Table S2). In contrast to C$_x$H$_y$ concentrations, C$_x$H$_y$S$_1$ concentrations dropped markedly after screen 2 despite similarities in the volatility distribution of C$_x$H$_y$ and C$_x$H$_y$S$_1$ I/SVOCs in their respective complex mixtures (Figure 4A, Figures S10 and S13). This difference shows that the observed C$_x$H$_y$S$_1$ I/SVOCs were removed (possibly by chemical reactivity) relatively more rapidly than C$_x$H$_y$, thus supporting their potential contribution to CHONS formation.

In addition to the C$_{10}$-C$_{25}$ C$_x$H$_y$S$_1$ compounds measured in the adsorbent tubes, smaller sulfur-containing compounds could have also acted as CHONS precursors, like those identified by the onboard proton transfer reaction-mass spectrometer (PTR-ToF-MS). While dimethyl sulfide (DMS, previously observed in biomass burning smoke (Andreae, 2019)) was often below its instrument limit of detection, both dimethyl and diethyl sulfide showed good correlation with acetonitrile, a well-known biomass burning product (Andreae, 2019), in the smoke plume during screen 1 ($r \sim 0.95$, Figure S12C). This suggests that these compounds were co-emitted by the fire (Akagi et al., 2011; Andreae, 2019; Hatch et al., 2015; Koss et al., 2018).
3.4 Investigating possible origins of gas-phase sulfur compounds

The gas-phase sulfur-containing compounds observed in the plume were emitted from the smoldering fire. However, their origins are uncertain, since the broader range of sulfur species found here (Figure 4A, Figures S10-11) has not yet been reported; many of the compounds in the complex sulfur-containing mixture measured here were outside the detection range or measurement capability of previously employed methods (Hatch et al., 2015; Khare et al., 2019; Koss et al., 2018; Sekimoto et al., 2018). Here, we explore two potential origins of these gas-phase sulfur-containing precursors to the observed particle-phase CHONS compounds: the biomass fuel itself and the deposition of sulfur species from anthropogenic/industrial operations.

Fuel: In past studies, emissions of sulfur-containing organic compounds were typically minor compared to oxygen- or nitrogen-containing compounds, and the relative balance of oxygen-, nitrogen-, or sulfur-containing compound emissions was typically proportional to fuel content (Hatch et al., 2015; Ward, 1990). The estimated N:S ratio for boreal forest fuel near the fire was ~10:1 (Huang and Schoenau, 1996), which was similar to the average N:S ratio from a non-targeted search for nitrogen- and sulfur-containing I/SVOCs from the adsorbent tube samples in this study of (8.1 ± 4.8):1. Sulfur is an essential nutrient in plants, and can be taken up from soil (as sulfate) or from the atmosphere via deposition (as SO$_2$ and sulfate) (Aas et al., 2019; Gahan and Schmalenberger, 2014; Leustek, 2002). Both SO$_2$ and sulfate are metabolized in plants to yield a variety of compounds critical to plant functions including cysteine and a range of other sulfur- (and oxygen- and nitrogen-) containing compounds (Leustek, 2002). In addition, disulfide bonds contribute to plant protein structure, and these bonds are known to cleave and form thiols (Gahan and Schmalenberger, 2014; Leustek, 2002; Onda, 2013). Sulfur-containing compounds like these may have been emitted during the fire, along with other known
Deposition: While sulfur can be naturally occurring (e.g. Leustek, 2002), it is also associated with anthropogenic activities (e.g. transportation, power generation, industry, etc.). This implies that a portion of the sulfur in the forest fire emissions could have originated from sulfur deposited via such anthropogenic activities. The closest large anthropogenic sulfur source to the fire location was the oil sands mining region north of Fort McMurray, Alberta, which was approximately 150 km away and which contained known SO$_2$ emitters (Liglio et al., 2017; McLinden et al., 2016). Regional concentrations of SO$_2$ or other sulfur species from these nearby industrial activities could have led to accumulated deposition of inorganic and/or organic sulfur compounds over time, though it is uncertain how much of this deposited sulfur would have been taken up and transformed by vegetation (vs. accumulated) due to sulfur uptake and assimilation regulatory pathways in plants (Davidian and Kopriva, 2010). This possible accumulated deposition may have acted as a reservoir of sulfur to be emitted during fires via the re-volatilization of deposited compounds, in addition to the evaporation of typical sulfur metabolites or the formation of sulfur-containing combustion by-products. This hypothesis is consistent with recent deposition measurement and modelling results for the region, which indicated that sulfur deposition from the oil sands potentially impacted areas downwind, including the region where this fire occurred (Makar et al., 2018). Interestingly, lichen and spruce trees, which are prominent in the region of the fire discussed here, have been reported to accumulate sulfur from SO$_2$ in regions near large industrial SO$_2$ sources (Meng et al., 1995; Nyborg et al., 1991). Also, past studies have reported enhancements in sulfate (as well as nitrate and ammonium) aerosols from biomass burning in areas with urban influence (Fenn et al., 2015;
Hecobian et al., 2011; Hegg et al., 1987). Inorganic aerosol components from both urban (e.g.: Edmonton, Alberta) and industrial (e.g. oil sands) sources could deposit in the area surrounding the emissions source along with an organic phase, which we postulate could contain a range of sulfur-containing species including the CₓHₓS₁ compounds shown here. However, further work is needed to disentangle the contribution of natural vs. anthropogenic sulfur to functionalized OA from biomass burning.

3.5 Potential reaction pathways leading to sulfides in CHONS from sulfur precursors

A number of potential reactions involving sulfur-containing precursors, often thiols (R-SH), may have contributed to the formation of the observed sulfide functional groups in particle-phase CHONS compounds (Figure S14). On average, our gas-phase measurements showed a 27% contribution of fully saturated sulfur-containing hydrocarbons (i.e. CₓH₂ₓ+₂S₁, Figures S10-11). It is likely that some fraction of the sulfur compounds observed in the gas-phase adsorbent tube measurements (e.g. the compounds identified as CₓH₂ₓ+₂S₁) and in PTR-ToF-MS measurements (e.g. dimethyl sulfide, diethyl sulfide) were thiols, but the distinction between sulfide and thiol isomers was challenging without specific internal standards.

In some of the following possible reactions, a thiol interacts with a non-sulfur precursor to yield a sulfide-containing compound. The non-sulfur precursor (in the gas- or particle-phase) may have contained O and N atoms, thus yielding a CHONS compound immediately after participating in one of the proposed reactions. Alternatively, the newly formed sulfide-containing compound may have undergone subsequent, separate reactions with CHO, CHN, and/or CHON compounds (in the gas- or particle-phase) to form the observed sulfide-containing CHONS species. Here, we focused on possible reactions that could have contributed the sulfide group to
these oxygen- and/or nitrogen-containing compounds (known emissions from forest fires, as discussed above). Earlier, we postulated that because most of the observed CHONS compounds were SVOCs, these compounds were predominantly formed by reactions of more volatile gas-phase I/SVOCs, and thus we examined potential gas-phase precursors in the C$_{10}$-C$_{25}$ range. However, it is uncertain whether these sulfide-forming and CHONS-forming reactions occurred in the gas-phase with subsequent partitioning to the particle-phase, heterogeneously, or in a combination of separate gas- and particle-phase chemistry. We suggest some possible sulfide-forming reactions here, yet we note that these proposed reactions are likely not comprehensive. Further work to elucidate the chemistry driving this sulfide and CHON formation is needed. Some possible reactions include: (1) thiol-ene reactions, where a thiol reacts with an alkene (or alkyne), which can form carbon-sulfur bonds (Lowe, 2010). Alkenes are known to be prominent in emissions from boreal fires (Gilman et al., 2015; Hatch et al., 2015), and we observed similar structures in our gas-phase samples that likely included alkenes, cyclic alkanes, and/or monoterpenes (Figure S13). (2) Thiol reactions with carbonyls, which can form hemithioacetals that subsequently dehydrate in the atmosphere to yield sulfides (Jencks and Lienhard, 1966). This reaction is similar to the formation of enamines from carbonyls and dimethyl amine via the formation and subsequent dehydration of a carbinolamine, which has been shown to occur in ambient conditions (Duporté et al., 2016, 2017). (3) Thiol reactions with alcohols, which can form sulfides. These reaction rates are low in the absence of catalysts and require relatively high temperature to occur (i.e. 200-450°C; temperatures that are relevant very close to the fire but unlikely in the rapidly cooling plume (Mashkina, 1991)). (4) Another possibility is that a radical intermediate product formed during atmospheric oxidation of DMS (e.g. the methylthiomethyl radical (CH$_3$SCH$_2$•) from OH•-driven hydrogen abstraction of DMS
(Barnes et al., 2006)) interacted with CHN and CHON precursors to yield the observed sulfide-containing CHONS products. However, the concentrations of the methylthiomethyl radical and similar radicals from other small sulfide precursors would likely be lower than those of other major drivers of in-plume radical chemistry (e.g. O₂, NOₓ, etc.), thus making this reaction pathway less likely to contribute.

Based on our observations of these sulfide-containing products across flight screens, the overall timescales for these sulfide-forming reactions was likely approximately 1 hour (or less). For the literature reactions referenced above, reaction timescales ranged from minutes to hours in laboratory experiments, but extrapolation to timescales in an ambient smoke plume is uncertain. Specifically, it is challenging to compare to predicted timescales for the proposed reactions without knowing the exact structure/identities of the reactants or the possible role of other key modifying factors in the smoke plume (e.g. aerosol pH, presence of water).

4 Implications & Conclusions

In this work, we performed the first high resolution tandem mass spectrometry analysis of an evolving smoke plume from a smoldering boreal forest fire. The results show clear evidence of gas-phase sulfur-containing emissions from the fire, and an increasing contribution from particle-phase CHONS compounds with sulfide functional groups as the plume evolved. Together, these results suggest the emission of gas-phase sulfur-containing compounds from the fire and subsequent gas- and/or particle-phase chemistry that produced multifunctional sulfide-containing CHONS compounds.

Sulfide functional groups in air have been reported at a range of U.S. locations from urban inland (1-7% sulfides), urban coastal (5-12% sulfides), and remote forested (7% sulfides),
and on average, sulfides comprised 28\% of sulfur-containing functional groups at these sites (Ditto et al., 2020). However, in past work, 53\% of these sulfides were present in CHOS compounds, while 34\% were CHONS, and 13\% were CHNS (in contrast to 21\%, 71\%, and 8\% in this study, respectively). Notably, at a Northeastern U.S. coastal site where there were several pollution events linked to long distance transport of biomass burning smoke during field sampling (Rogers et al., 2020), 70-90\% of sulfides were present in CHONS compounds (Ditto et al., 2020), similar to the distribution of sulfides discussed here (Figure 3A).

These results, along with past observations, highlight that this type of chemistry and these types of reaction products may be relevant to other regions where concentrations of nitrogen and sulfur-containing precursors are high, such as in developing regions, emerging economies, or megacities where residential biomass burning is common and coincident with extensive use of sulfur-containing fossil fuels (e.g. coal). CHONS compounds have been reported in similar regions in past studies (Lin et al., 2012; Pan et al., 2013; Song et al., 2019; Wang et al., 2017a, 2016, 2017b). Their formation is potentially important since the presence of sulfur (including in sulfide functional groups), oxygen, and nitrogen can affect the glass transition temperature and thus the phase state (e.g. solid, semi-solid, liquid), as well as the mixing state (e.g. well-mixed, phase-separated) of particles (DeRieux et al., 2018; Ditto et al., 2019; Van Krevelen and Te Nijenhuis, 2009). These physical properties may influence particles’ chemical reactivity and thus persistence in the atmosphere, along with their transport and deposition, all of which contribute to the health and environmental impacts that communities and ecosystems experience from OA exposure. Future work to identify prominent functional groups in CHONS species in regions with high CHONS concentrations will help elucidate the formation chemistry of these functionalized compounds, and understand and mitigate their associated impacts.
Acknowledgments

The authors acknowledge GERSTEL for their collaboration with the TDU 3.5+, used to run the adsorbent tubes discussed in this study. We thank Environment and Climate Change Canada and National Research Council technical teams for their help in the construction and maintenance of cartridge sampling systems, specifically Tak Chan (Environment and Climate Change Canada) for help collecting samples. We also thank Jo Machesky (Yale) for help running adsorbent tube samples, Joe Lybik (Yale) for help packing adsorbent tubes, and Daniel Thompson (Natural Resources Canada) for informative discussion. J.C.D., M.H., T.H-M., and D.R.G. acknowledge support from National Science Foundation grant AWD0001666. We also acknowledge funding from the Air Pollution (AP) program of Environment and Climate Change Canada. The flights discussed in this study were embedded within a 2018 oil sands monitoring intensive campaign, and the oil sands monitoring program is acknowledged for enabling the flights.

Author Contributions

J.C.D. ran samples, processed filter data, compiled and interpreted results. M.H. processed adsorbent tube data. T.H-M. contributed to MS/MS analysis. S.G.M., K.H., J.L., and D.R.G. collaborated on data interpretation. K.H. collected and processed AMS data. A.L. collected and processed PTR-ToF-MS data. S.-M.L. designed the aircraft adsorbent tube collection system. P.L. and J.J.B.W. implemented the wing pod design. P.L. prepared the wing pods for collection and J.J.B.W. and J.L. collected the adsorbent tube samples. M.J.W. and J.L. designed the filter collection system. M.J.W. and K.H collected filter samples. S.-M.L., K.H., and J.L. designed the aircraft sampling study. J.C.D. and D.R.G. wrote the manuscript, with input from all co-authors.
Competing Interests

The authors declare that they have no conflict of interest.

Code and Data Availability

Code and data are available upon request.

References

Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R. and Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep., 9(1), 1–11, doi:10.1038/s41598-018-37304-0, 2019.

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, Proc. Natl. Acad. Sci. U. S. A., 113(42), 11770–11775, doi:10.1073/pnas.1607171113, 2016.

Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E., Barsanti, K. C., Stockwell, C. E., Yokelson, R. J., Presto, A. A., Robinson, A. L., Sullivan, R. C. and Donahue, N. M.: Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors, J. Geophys. Res. Atmos., 124(6), 3583–3606, doi:10.1029/2018JD029068, 2019.

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D. and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11(9), 4039–4072, doi:10.5194/acp-11-
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – An updated assessment, Atmos. Chem. Phys., 1–27, doi:10.5194/acp-2019-303, 2019.

Canada’s National Forest Inventory, [online] Available from: https://nfi.nfis.org/en/ (Accessed 18 February 2020), 2020.

Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. and Stocks, B.: Climate change presents increased potential for very large fires in the contiguous United States, Int. J. Wildl. Fire, 24(7), 892–899, doi:10.1071/WF15083, 2015.

Barnes, I., Hjorth, J. and Mihalapoulos, N.: Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere, Chem. Rev., 106(3), 940–975, doi:10.1021/cr020529+, 2006.

Bertrand, A., Stefenelli, G., Jen, C. N., Pieber, S. M., Bruns, E. A., Ni, H., Temime-Roussel, B., Slowik, J. G., Goldstein, A. H., Haddad, I. El, Baltensperger, U., Prévôt, A. S. H., Wortham, H. and Marchand, N.: Evolution of the chemical fingerprint of biomass burning organic aerosol during aging, Atmos. Chem. Phys., 18(10), 7607–7624, doi:10.5194/acp-18-7607-2018, 2018.

Burgos, M. A., Mateos, D., Cachorro, V. E., Toledano, C., de Frutos, A. M., Calle, A., Herguedas, A. and Marcos, J. L.: An analysis of high fine aerosol loading episodes in north-central Spain in the summer 2013 - Impact of Canadian biomass burning episode and local emissions, Atmos. Environ., doi:10.1016/j.atmosenv.2018.04.024, 2018.

Buysse, C. E., Kaulfus, A., Nair, U. and Jaffe, D. A.: Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US, Environ. Sci. Technol., 53(21), 12519–12528, doi:10.1021/acs.est.9b05241, 2019.
Colarco, P. R., Schoeberl, M. R., Doddridge, B. G., Marufu, L. T., Torres, O. and Welton, E. J.: Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties, J. Geophys. Res. D Atmos., 109(6), 1–12, doi:10.1029/2003JD004248, 2004.

Cottle, P., Strawbridge, K. and McKendry, I.: Long-range transport of Siberian wildfire smoke to British Columbia: Lidar observations and air quality impacts, Atmos. Environ., doi:10.1016/j.atmosenv.2014.03.005, 2014.

Davidian, J.-C. and Kopriva, S.: Regulation of Sulfate Uptake and Assimilation—the Same or Not the Same?, Mol. Plant, 3(2), 314–325, doi:10.1093/MP/SSQ001, 2010.

DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A. and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, Atmos. Chem. Phys., 18(9), 6331–6351, doi:10.5194/acp-18-6331-2018, 2018.

Ditto, J. C., Barnes, E. B., Khare, P., Takeuchi, M., Joo, T., Bui, A. A. T., Lee-Taylor, J., Eris, G., Chen, Y., Aumont, B., Jimenez, J. L., Ng, N. L., Griffin, R. J. and Gentner, D. R.: An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol, Commun. Chem., 1(1), 75, doi:10.1038/s42004-018-0074-3, 2018.

Ditto, J. C., Joo, T., Khare, P., Sheu, R., Takeuchi, M., Chen, Y., Xu, W., Bui, A. A. T., Sun, Y., Ng, N. L. and Gentner, D. R.: Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and Thermodynamic Mixing Behavior, Environ. Sci. Technol., 53, 13009–13018, doi:10.1021/acs.est.9b02664, 2019.

Ditto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L. and Gentner, D. R.: Nontargeted
Tandem Mass Spectrometry Analysis Reveals Diversity and Variability in Aerosol Functional Groups across Multiple Sites, Seasons, and Times of Day, Environ. Sci. Technol. Lett., 7(2), 60–69, doi:10.1021/acs.estlett.9b00702, 2020.

Donahue, N. M., Epstein, S. A., Pandis, S. N. and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11(7), 3303–3318, doi:10.5194/acp-11-3303-2011, 2011.

Dreessen, J., Sullivan, J. and Delgado, R.: Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015, J. Air Waste Manag. Assoc., 66(9), 842–862, doi:10.1080/10962247.2016.1161674, 2016.

Duporté, G., Parshintsev, J., Barreira, L. M. F., Hartonen, K., Kulmala, M. and Riekkola, M. L.: Nitrogen-Containing Low Volatile Compounds from Pinaldehyde-Dimethylamine Reaction in the Atmosphere: A Laboratory and Field Study, Environ. Sci. Technol., 50(9), 4693–4700, doi:10.1021/acs.est.6b00270, 2016.

Duporté, G., Riva, M., Parshintsev, J., Heikkinen, E., Barreira, L. M. F., Myllys, N., Heikkinen, L., Hartonen, K., Kulmala, M., Ehn, M. and Riekkola, M. L.: Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of Dimethylamine, Environ. Sci. Technol., 51(10), 5602–5610, doi:10.1021/acs.est.6b06231, 2017.

Fenn, M. E., Bytnerowicz, A., Schilling, S. L. and Ross, C. S.: Atmospheric deposition of nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region, Alberta, Canada, Environ. Pollut., 196, 497–510, doi:10.1016/j.envpol.2014.08.023, 2015.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L., Anderson, B., Diskin, G., Perring, A. E., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Palm, B. P., Jimenez, J. L., Nenes, A. and Weber, R. J.: Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623–4630, 2015.

Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D., Simmonds, P., O’Doherty, S., Jennings, S. G., Kleefeld, C., Schneider, J., Trickl, T., Kreipl, S., Jäger, H. and Stohl, A.: Transport of boreal forest fire emissions from Canada to Europe, J. Geophys. Res. Atmos., 106(D19), 22887–22906, doi:10.1029/2001JD900115, 2001.

Gahan, J. and Schmalechner, A.: The role of bacteria and mycorrhiza in plant sulfur supply, Front. Plant Sci., 5(DEC), 1–7, doi:10.3389/fpls.2014.00723, 2014.

Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M. and Farmer, D. K.: Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States, ACS Earth Sp. Chem., 3(7), 1237–1247, doi:10.1021/acsearthspacechem.9b00125, 2019.

Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., De Gouw, J. A., Burling, I. R. and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15(24), 13915–13938, doi:10.5194/acp-15-13915-2015, 2015.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Inumia, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J.
H., Surratt, J. D., Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9(14), 5155–5236, doi:10.5194/acp-9-5155-2009, 2009.

Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E. and Barsanti, K. C.: Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry, Atmos. Chem. Phys., 15(4), 1865–1899, doi:10.5194/acp-15-1865-2015, 2015.

Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H. and Barsanti, K. C.: Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography, Atmos. Chem. Phys., 18(24), 17801–17817, doi:10.5194/acp-18-17801-2018, 2018.

Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., York, R. A., Foster, D., Stephens, S. L., Goldstein, A. H. and Barsanti, K. C.: Highly Speciated Measurements of Terpenoids Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires, Environ. Sci. Technol., 53(16), 9418–9428, doi:10.1021/acs.est.9b02612, 2019.

Hecobian, A., Liu, Z., Hennigan, C. J., Huey, L. G., Jimenez, J. L., Cubison, M. J., Vay, S., Diskin, G. S., Sachse, G. W., Wisthaler, A., Mikoviny, T., Weinheimer, A. J., Liao, J., Knapp, D. J., Wennberg, P. O., Kürten, A., Crounse, J. D., St. Clair, J., Wang, Y. and Weber, R. J.: Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign, Atmos. Chem. Phys., 11(24), 13325–13337, doi:10.5194/acp-11-13325-2011, 2011.
Hegg, D. A., Radke, L. F., Hobbs, P. V. and Brock, C. A.: Nitrogen and Sulfur Emissions From The Burning of Forest Products Near Large Urban Areas, J. Geophys. Res., 92, 701–714, 1987.

Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W. M., Gilman, J. B., Kuster, W. C., De Gouw, J., Schichtel, B. A., Collett, J. L., Kreidenweis, S. M. and Robinson, A. L.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys., 11(15), 7669–7686, doi:10.5194/acp-11-7669-2011, 2011.

Huang, W. Z. and Schoenau, J. J.: Forms, amounts and distribution of carbon, nitrogen, phosphorus and sulfur in a boreal aspen forest soil, Can. J. Soil Sci., 76(3), 373–385, doi:10.4141/cjss96-045, 1996.

Iinuma, Y., Böge, O. and Herrmann, H.: Methyl-nitrocatechols: Atmospheric tracer compounds for biomass burning secondary organic aerosols, Environ. Sci. Technol., 44(22), 8453–8459, doi:10.1021/es102938a, 2010.

Jencks, W. P. and Lienhard, G. E.: Thiol Addition to the Carbonyl Group. Equilibria and Kinetics, J. Am. Chem. Soc., 88(17), 3982–3995, doi:10.1021/ja00969a017, 1966.

Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R. and Lin, Y. H.: Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds, Environ. Sci. Technol. Lett., 6(3), 184–190, doi:10.1021/acs.estlett.9b00017, 2019.

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J. and Bowman, D. M. J. S.: Climate-induced variations in global wildfire danger from
Khare, P., Marcotte, A., Sheu, R., Walsh, A. N., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for trace measurements of complex organic compound mixtures via soft ionization and high-resolution tandem mass spectrometry, J. Chromatogr. A, 1598, 163–174, doi:10.1016/j.chroma.2019.03.037, 2019.

Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J. and De Gouw, J.: Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18(5), 3299–3319, doi:10.5194/acp-18-3299-2018, 2018.

Van Krevelen, D. W. and Te Nijenhuis, K.: Properties of Polymers, 4th ed., Elsevier, Amsterdam., 2009.

Landis, M. S., Edgerton, E. S., White, E. M., Wentworth, G. R., Sullivan, A. P. and Dillner, A. M.: The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada, Sci. Total Environ., 618, 1665–1676, doi:10.1016/j.scitotenv.2017.10.008, 2018.

Laskin, A., Smith, J. S. and Laskin, J.: Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry, Environ. Sci. Technol., 43(10), 3764–3771, doi:10.1021/es803456n, 2009.

Leustek, T.: Sulfate Metabolism, Arab. B., 1(e0017), 1–16, doi:10.1199/tab.0017, 2002.

Li, S. M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D., Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud, C. A., McLaren, R., Liu,
P. S. K., O’Brien, J., Mittermeier, R. L., Zhang, J., Marson, G., Cober, S. G., Wolde, M.
and Wentzell, J. J. B.: Differences between measured and reported volatile organic
compound emissions from oil sands facilities in Alberta, Canada, Proc. Natl. Acad. Sci.
U. S. A., 114(19), E3756–E3765, doi:10.1073/pnas.1617862114, 2017.

Li, Y., Pöschl, U. and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in
the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16(5), 3327–3344,
doi:10.5194/acp-16-3327-2016, 2016.

Liggio, J., Li, S.-M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A., Drollette, B. D.,
Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G., Wang, D., O’Brien, J.,
Mittermeier, R. L., Brook, J. R., Lu, G., Staebler, R. M., Han, Y., Tokarek, T. W.,
Osthoff, H. D., Makar, P. A., Zhang, J., Plata, D. L. and Gentner, D. R.: Oil sands
operations as a large source of secondary organic aerosols, Nature, 534,
doi:10.1038/nature17646, 2016.

Liggio, J., Moussa, S. G., Wentzell, J., Darlington, A., Liu, P., Leithead, A., Hayden, K.,
O’Brien, J., Mittermeier, R. L., Staebler, R., Wolde, M. and Li, S.-M.: Understanding the
primary emissions and secondary formation of gaseous organic acids in the oil sands
region of Alberta, Canada, Atmos. Chem. Phys., 17(13), 8411–8427, doi:10.5194/acp-17-
8411-2017, 2017.

Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., De Gouw, J., Warneke,
C., Cappa, C. D. and Kroll, J. H.: Secondary organic aerosol formation from the
laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19(19), 12797–
12809, doi:10.5194/acp-19-12797-2019, 2019.

Lin, P., Yu, J. Z., Engling, G. and Kalberer, M.: Organosulfates in humic-like substance fraction
isolated from aerosols at seven locations in East Asia: A study by ultra-high-resolution mass spectrometry, Environ. Sci. Technol., 46(24), 13118–13127, doi:10.1021/es303570v, 2012.

Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J. and Laskin, A.: Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization, Anal. Chem., 90(21), 12493–12502, doi:10.1021/acs.analchem.8b02177, 2018.

Liu, J. C., Wilson, A., Mickley, L. J., Dominici, F., Ebisu, K., Wang, Y., Sulprizio, M. P., Peng, R. D., Yue, X., Son, J.-Y., Anderson, G. B. and Bell, M. L.: Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties, Epidemiology, 28(1), 77–85, doi:10.1111/mec.13536. Application, 2017.

Liu, Y., Liggio, J. and Staebler, R.: Reactive uptake of ammonia to secondary organic aerosols: Kinetics of organonitrogen formation, Atmos. Chem. Phys., 15(23), 13569–13584, doi:10.5194/acp-15-13569-2015, 2015.

Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C. and Young, C. J.: Composition of Size-Resolved Aged Boreal Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced Nitrogen, ACS Earth Sp. Chem., 2(3), 278–285, doi:10.1021/acsearthspacechem.7b00137, 2018.

Lowe, A. B.: Thiol-ene “click” reactions and recent applications in polymer and materials synthesis, Polym. Chem., 1(1), 17–36, doi:10.1039/b9py00216b, 2010.

Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y. A., Zhang, J., Wong, I., Hayden, K., Li, S. M., Kirk, J., Scott, K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah, P., Pabla, B., Cheung, P., Zheng, Q. and Jeffries, D. S.: Estimates of
exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan,

Atmos. Chem. Phys., 18(13), 9897–9927, doi:10.5194/acp-18-9897-2018, 2018.

Mashkina, A. V.: Catalytic Synthesis Of Sulfides Sulfoxides and Sulfones, Sulfur reports, 10(4), 279–388, doi:10.1080/01961779108048759, 1991.

McLinden, C. A., Fioletov, V., Krotkov, N. A., Li, C., Boersma, K. F. and Adams, C.: A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space, Environ. Sci. Technol., 50(1), 331–337, doi:10.1021/acs.est.5b04985, 2016.

Meng, F. R., Bourque, C. P. A., Belczewski, R. F., Whitney, N. J. and Arp, P. A.: Foliage responses of spruce trees to long-term low-grade sulfur dioxide deposition, Environ. Pollut., 90(2), 143–152, doi:10.1016/0269-7491(94)00101-I, 1995.

Nozière, B., Kalberer, M., Claeys, M., Allan, J., D’Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgić, I., Hamilton, J. F., Hoffmann, T., Jinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R. and Wisthaler, A.: The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115(10), 3919–3983, doi:10.1021/cr5003485, 2015.

Nyborg, M., Solberg, E. D., Malhi, S. S., Takyi, S., Yeung, P. and Chaudhry, M.: Deposition of anthropogenic sulphur dioxide on soils and resulting soil acidification, Plant-Soil Interact. Low pH, 147–156, doi:10.1007/978-94-011-3438-5_16, 1991.

Onda, Y.: Oxidative protein-folding systems in plant cells, Int. J. Cell Biol., 2013, doi:10.1155/2013/585431, 2013.

Pan, Y. P., Wang, Y. S., Tang, G. Q. and Wu, D.: Spatial distribution and temporal variations of atmospheric sulfur deposition in Northern China: Insights into the potential acidification
risks, Atmos. Chem. Phys., 13(3), 1675–1688, doi:10.5194/acp-13-1675-2013, 2013.

Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R. and Elliott, C. T.: Critical review of health impacts of wildfire smoke exposure, Environ. Health Perspect., 124(9), 1334–1343, doi:10.1289/ehp.1409277, 2016.

Rogers, H. M., Ditto, J. C. and Gentner, D. R.: Evidence for impacts on surface-level air quality in the northeastern US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018, Atmos. Chem. Phys., 20(2), 671–682, doi:10.5194/acp-20-671-2020, 2020.

Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M. and De Gouw, J.: High-and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18(13), 9263–9281, doi:10.5194/acp-18-9263-2018, 2018.

Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts, A., Moosmüller, H. and Khlystov, A.: Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion, Atmos. Chem. Phys., 18(15), 10849–10867, doi:10.5194/acp-18-10849-2018, 2018.

Sheu, R., Marcotte, A., Khare, P., Charan, S., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for chemically speciated measurements of trace gas-phase organic compounds via adsorbent tubes in an integrated sampling-to-analysis system, J. Chromatogr. A, 1575, 80–90, doi:10.1016/j.chroma.2018.09.014, 2018.

Song, J., Li, M., Fan, X., Zou, C., Zhu, M., Jiang, B., Yu, Z., Jia, W., Liao, Y. and Peng, P.: Molecular Characterization of Water- And Methanol-Soluble Organic Compounds
Emitted from Residential Coal Combustion Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 53(23), 13607–13617, doi:10.1021/acs.est.9b04331, 2019.

Updyke, K. M., Nguyen, T. B. and Nizkorodov, S. A.: Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos. Environ., 63, 22–31, doi:10.1016/j.atmosenv.2012.09.012, 2012.

Val Martín, M., Honrath, R. E., Owen, R. C., Pfister, G., Fialho, P. and Barata, F.: Significant enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting from North American boreal wildfires, J. Geophys. Res. Atmos., 111(23), 1–17, doi:10.1029/2006JD007530, 2006.

Vicente, A., Alves, C., Calvo, A. I., Fernandes, A. P., Nunes, T., Monteiro, C., Almeida, S. M. and Pio, C.: Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season, Atmos. Environ., doi:10.1016/j.atmosenv.2013.01.062, 2013.

Wang, X., Wang, H., Jing, H., Wang, W. N., Cui, W., Williams, B. J. and Biswas, P.: Formation of Nitrogen-Containing Organic Aerosol during Combustion of High-Sulfur-Content Coal, Energy and Fuels, 31(12), 14161–14168, doi:10.1021/acs.energyfuels.7b02273, 2017a.

Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C. and Wang, L.: Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River, Atmos. Chem. Phys., 16(4), 2285–2298, doi:10.5194/acp-16-2285-2016, 2016.

Wang, X. K., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C., Emmelin, C., Chen, J., George, C. and Wang, L.: Chemical Characteristics of Organic Aerosols in Shanghai:
A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry, J. Geophys. Res. Atmos., 122(21), 11,703-11,722, doi:10.1002/2017JD026930, 2017b.

Ward, D. E.: Factors Influencing the Emissions of Gases and Particulate Matter from Biomass Burning, in Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, pp. 418–436., 1990.

Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M., Sciare, J., Nenes, A. and Weber, R. J.: Effects of Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic Aerosols, Environ. Sci. Technol., 53(12), 6747–6756, doi:10.1021/acs.est.9b01034, 2019.

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., De Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker, D. R., Jung, H. and Weise, D. R.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13(1), 89–116, doi:10.5194/acp-13-89-2013, 2013.
Figure 1. (A) The compound class distribution of functionalized OA (from non-targeted LC-ESI-MS) weighted by ion abundance, shown as percent contribution of each compound class to the total compound abundance measured by LC-ESI-MS. (B) Percent contribution of CHO, CHON, and CHONS compound classes in functionalized OA as a function of plume age. CHON compounds in panel B are summed across all O/N ratios. (C) Functional groups and structural features present in measured functionalized OA (from non-targeted LC-ESI-MS/MS). The sulfide functional group is shown here for emphasis, and will be the subject of subsequent analyses. For panels A-C, results tabulated by occurrence and absolute ion abundance are shown in Figure S5-S6, and functional group tallying methods are discussed in Supporting Information S3.
Figure 2. (A) The observed particle-phase CHONS compounds included cyclic nitrogen and a range of N-containing functional groups (organonitrates are excluded here due to challenges with their identification using SIRIUS with CSI:FingerID, but contributed minimally to CHONS, Supporting Information S3). (B) These CHONS compounds showed a variety of S-containing functional groups with sulfides being the most prominent. For panels A-B, data are averaged across screens 1-4, with individual screens shown in Figure S7A. (C) The particle-phase CHONS compounds formed in the forest fire plume were mostly SVOCs. These volatility data were averaged across screens 1-4, and individual screens are shown in Figure S8. Volatility was estimated with the parameterization in Li et al. (Li et al., 2016) and grouped according to volatility bins in Donahue et al. (Donahue et al., 2011).
Figure 3. (A) 71% of sulfide functional groups observed (weighted by ion abundance) were present in CHONS compounds. (B) Sulfides were often paired with amines, imines, and cyclic nitrogen features. Data shown in panels A-B are cumulative across compounds in screens 1-4. (C) The relative contribution of sulfides and cyclic nitrogen groups to all functionalized OA increased together with the increasing contribution of CHONS compounds. The other functional groups shown in panel B showed no relationship with the increase in CHONS (Figure S7B). Structures represent examples of commonly observed sulfide and cyclic nitrogen substructures from SIRIUS and CSI:FingerID (Supporting Information S3), where ring structures associated with nitrogen heteroatoms were free standing, adjacent to other rings, and/or contained additional attached functional groups.
Figure 4. (A) The average \(\text{C}_x\text{H}_y\text{S}_1 \) distribution from targeted GC-APCI-MS across all samples from screens 1-4 (see Figure S10 for individual \(\text{C}_x\text{H}_y\text{S}_1 \) screens, and Figure S13 for \(\text{C}_x\text{H}_y \)). (B) Concentrations of gas-phase \(\text{C}_x\text{H}_y, \text{C}_x\text{H}_y\text{O}_1, \text{C}_x\text{H}_y\text{S}_1 \) from targeted GC-APCI-MS, and total OA from AMS, all normalized by carbon monoxide concentration across screens 1-4 (see Figure S12A for non-normalized concentrations). Data in panel B are averaged over low and high altitude adsorbent tube samples.