Use of statins in lower extremity artery disease: a review

Giuseppe Gargiulo¹, Giuseppe Giugliano¹, Linda Brevetti¹, Anna Sannino¹, Gabriele Giacomo Schiattarella¹, Federica Serino¹, Andreina Carbone¹, Fernando Scudiero¹, Marco Ferrone¹, Roberto Corrado¹, Raffaele Izzo¹, Lorenzo Chiariotti², Cinzia Perrino¹, Bruno Amato², Bruno Trimarco¹, Giovanni Esposito¹*

From XXV National Congress of the Italian Society of Geriatric Surgery
Padova, Italy. 10-11 May 2012

Abstract

Background: Lower extremity artery disease (LE-PAD) is one of the most common manifestations of atherosclerosis, particularly in elderly patients, and it is related to a high cardiovascular risk.

Description: It is well established that statin therapy is characterized by crucial benefits on cardiovascular system by limiting atherosclerotic progression and reducing cardiovascular events and mortality. A growing body of evidence support efficacy of statins in LE-PAD due to the ability of both reducing cardiovascular risk and improving walking distance and, hence, quality of life. Consequently, statin therapy should be considered in all LE-PAD patients and new LDL-cholesterol targets should be reached.

Conclusions: Our opinion is that statin therapy remains still underutilized or with inadequate dosage, so therapy of LE-PAD patients should be improved to obtain all the demonstrated benefits of statins.

Background

Lower extremity artery disease (LE-PAD) is one of the most common manifestations of atherosclerosis and its frequency is strongly related to age: uncommon before 50 years, rising steeply at older ages. A substantial percentage of patients with chronic coronary artery disease (CAD) have associated cerebrovascular disease, LE-PAD, or both. Consequently, LE-PAD represents a marker of diffuse atherosclerosis implying a high cardiovascular risk [1-3] and, in symptomatic patients, it is also an important cause of disability. Secondary prevention of cardiovascular risk factors is mandatory in all LE-PAD patients to improve cardiovascular prognosis, while revascularization should be restricted to symptomatic patients. In order to improve symptoms and walking distance capacity conservator or invasive approaches (endovascular or surgical revascularization) can be undertaken. The conservative strategy is effective and based on pharmacologic agents (anti-platelet, lipid-lowering, antihypertensive; cilostazol; naftidrofuryl; pentoxifylline; carnitine; buflomedil) and exercise therapy, whose beneficial effects on LE-PAD and the cardiovascular system are well established [1,4]. While revascularization is recommended in patients with critical limb ischemia (CLI), the evidence of any long-term benefit of endovascular treatment over supervised exercise and best medical treatment is inconclusive, particularly in patients with mild to moderate claudication. However, advances in the endovascular treatment of LE-PAD have prompted many physicians to consider more liberal indications for percutaneous intervention. Endovascular revascularization is also indicated in patients with lifestyle-limiting claudication when clinical features suggest a reasonable likelihood of symptomatic improvement and there has been an inadequate response to conservative therapy. In aorto-iliac lesions, endovascular revascularization can be considered without initial extensive conservative treatment. Endovascular revascularization for the treatment of patients with LE-PAD has developed rapidly during the past decade, and a great number of patients can now be offered the less invasive treatment option.
Despite numerous advantages, the major drawback of endovascular interventions, compared with surgery, is the lower long-term patency, mainly due to restenosis [5-9]. However, an increasing number of centres favour an endovascular approach first, due to reduced morbidity and mortality, compared with vascular surgery, while preserving the surgical option in case of failure.

Methods
Pleiotropic effects and cardiovascular benefits of statin therapy are well-established [10-14], in particular their beneficial effects on atherosclerosis (reduction of cholesterol levels, inhibition of inflammation and plaque stabilization). In addition, statins reduce the risk of mortality, cardiovascular events, and stroke in patients with LE-PAD with and without coronary artery disease (CAD) [10,11]. According to these considerations, LE-PAD treatment has two main objectives: 1) to reduce cardiovascular risk, 2) to improve walking distance and, hence, quality of life. A large body of evidence demonstrates that statins exert positive effects on both. In a retrospective trial, Aronow and Ahn [15] observed a significant reduction of coronary events in 318 LE-PAD patients treated with statins related to 342 untreated patients. Shillinger et al. [16], in a prospective non-randomized trial, described that LE-PAD patients treated with statins had a halved risk of death and myocardial infarction. This latter result was considered predominantly due to the anti-inflammatory effects of statins, since patients with low levels of C-Reactive Protein (CRP) did not evidence a significant benefit from this therapy. Feringa et al. [17], in a 8-years perspective trial, demonstrated that the use of statins was associated to a reduced incidence of death (HR = 0.46, 95% CI 0.58-0.80, p<0.001). In the REGRESS trial [18], designed in order to demonstrate benefits of statins. This article has been published as part of BMC Surgery Volume 12 Supplement 1, 2012: Selected articles from the XXV National Congress of the Italian Society of Geriatric Surgery. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsurg/supplements/12/S1.

Our opinion is that statin therapy remains still underutilized or with inadequate dosage, so therapy of LE-PAD patients should be improved to obtain all the demonstrated benefits of statins.

Conclusions
Our opinion is that statin therapy remains still underutilized or with inadequate dosage, so therapy of LE-PAD patients should be improved to obtain all the demonstrated benefits of statins.

Competing interest
The authors declare that they have no competing interests.

List of abbreviations
CAD: Coronary artery disease; CLI: Critical limb ischemia; CRP: C-Reactive Protein; LDL: Low density lipoprotein; LE-PAD: Lower extremity artery disease.

Acknowledgements
This article has been published as part of BMC Surgery Volume 12 Supplement 1, 2012. Selected articles from the XXV National Congress of the Italian Society of Geriatric Surgery. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsurg/supplements/12/S1.

Authors' contribution
GC, GG: conception and design, drafting the manuscript, given final approval of the version to be published; LB, AS, GGS, FS, AC, FS, MF, RC, RI; LC: acquisition of data, drafting the manuscript; CP, BA, BT: critical revision, given final approval of the version to be published; GE: conception and design, critical revision, given final approval of the version to be published.

Published: 15 November 2012

References
1. Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, Collet JP, Cremonesi A, De Carlo M, Ebel R, Foxnes FG, et al: ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral,
Feringa HH, van Waning VH, Bax JJ, Elhendy A, Boersma E, Schouten O, Frequency of new coronary events in older persons. *Int J Cardiol* 2012.

Schiano V, Sirico G, Giugliano G, Laurenzano E, Cassese S, De Laurentis M, Sciattiarella GG, Brevetti L, Sannino A, et al. Effects of successful percutaneous lower extremity revascularization on cardiovascular outcome in patients with peripheral arterial disease. *Int J Cardiol* 2012.

Indolfi C, Gargiulo G, Pironti G, Franzone A, Scudiero L, De Laurentis M, Magliulo F, Iraldi F, Carotenuto G, Sciattiarella GG, et al. Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings. *Am J Physiol Heart Circ Physiol* 2011; 300(6):H1983-1989.

Indolfi C, Avvedimento EV, Rapacciuolo A, Di Lorenzo E, Esposito G, Stabile E, Felicello A, Mele E, Giuliano P, Conodenni G, et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. *Nat Med* 1995; 1(6):S41-S45.

Indolfi C, Avvedimento EV, Di Lorenzo E, Esposito G, Rapacciuolo A, Giuliano F, Greco D, Cavuto L, Stringone AM, Ciullo I, et al. Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. *Nat Med* 1997; 3(7):775-779.

Indolfi C, Stabile E, Perrino C, Chiariello M. Mechanisms of restenosis after angioplasty and approach to therapy. *Rev Int J Mol Med* 1998; 2(2):143-148.

Iaconetti C, Polimeni A, Sorentino S, Sabatino J, Pironti G, Esposito G, Curcio A, Indolfi C. Inhibition of mir-192a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. *Basic Res Cardiol* 2012; 107(5):296.

Indolfi C, Torella D, Cavuto L, Davalli AM, Coppola C, Esposito G, Carriero MV, Rapacciuolo A, Di Lorenzo E, Stabile E, et al. Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats. *Circulation* 2001; 103(24):2980-2986.

MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. *Lancet* 2002; 360(9326):7-22.

Knopp RH, d’Emden M, Smilde JG, Pocock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN). *Diabetes Care* 2006; 29(7):1478-1485.

Indolfi C, Coppa A, Stabile E, Di Lorenzo E, Esposito G, Pisani A, Leccia P, Cavuto L, Stringone AM, Chieffo A, et al. Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. *J Am Coll Cardiol* 2000; 35(1):214-221.

Indolfi C, Di Lorenzo E, Perrino C, Stringone AM, Curcio A, Torella D, Cittadini A, Carbone L, Coppola C, Cavuto L, et al. Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. *Circulation* 2002; 106(16):2118-2124.

Perrino C, Sciattiarella GG, Magliulo F, Iraldi F, Carotenuto G, Gargiulo G, Serino F, Ferrone M, Scudiero F, Carbone A, et al. Cardiac Side Effects of Chemotherapy: State of Art and Strategies for a Correct Management. *Curr Vasc Pharmacol* 2012.

Aronow WS, Ahn C. Frequency of new coronary events in older persons with peripheral arterial disease and serum low-density lipoprotein cholesterol > or = 125 mg/dl treated with statins versus no lipid-lowering drug. *Am J Cardiol* 2002; 90(7):789-791.

Schilling MR, Enzer M, Melkus W, Amighi J, Sabeti S, Mueller M, Rumpold H, Wagner D, Minor E. Statin therapy improves cardiovascular outcome of patients with peripheral arterial disease. *Eur Heart J* 2004; 25(9):742-748.

Feringa HH, van Waning VH, Bax JJ, Ehendy A, Boersma E, Schouten O, Galal V, Vidakovic RV, Tangeland MJ, Poldermans D. Cardioprotective medication is associated with improved survival in patients with peripheral arterial disease. *J Am Coll Cardiol* 2006; 47(6):1182-1187.

de Groot E, Jukema JW, van Boven AJ, Reiber JH, Zwinderman AH, Lie KI, Ackerstaff RA, Bruschke AV. Effect of pravastatin on progression and regression of coronary atherosclerosis and vessel wall changes in carotid and femoral arteries: a report from the Regression Growth Evaluation Statin Study. *Am J Cardiol* 1995; 76(9):40C-46C.

Momsen AH, Jensen MB, Norager CB, Madsen MR, Vestergaard-Andersen T, Lindholt JS. Drug therapy for improving walking distance in intermittent claudication: a systematic review and meta-analysis of robust randomised controlled studies. *Eur J Vasc Endovasc Surg* 2009; 38(4):463-474.

Erez G, Leitersdorf E. The rationale for using HMGC-CoA reductase inhibitors (‘statins’) in peripheral arterial disease. *Eur J Vasc Endovasc Surg* 2007; 33(2):192-201.

Pedersen TR, Kjaekhus J, Pynoøa K, Olsson AG, Cook TJ, Musliner TA, Tøbert JA, Haghfelt F. Effect of simvastatin on ischemic signs and symptoms in the Scandinavian simvastatin survival study (4S). *Am J Cardiol* 1998; 81(3):333-335.

Viduolo H, Tian L, Liu K, Cricil MI, Ferrucci L, Guralnik JM, Green D, Ridker P, McDermott MM. Comparison of effects of statin use on mortality in patients with peripheral arterial disease with versus without elevated C-reactive protein and d-dimer levels. *Am J Cardiol* 2010; 105(8):1348-1352.

Mondillo S, Balio P, Barbati R, Guerini F, Annunzio T, Agricola E, Pastore M, Bornello F, Belcastro M, Pichi A, et al. Effects of simvastatin on walking performance and symptoms of intermittent claudication in hypercholesterolemic patients with peripheral vascular disease. *Am J Med* 2003; 114(5):359-364.

Mohler ER 3rd, Hatt WR, Geager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. *Circulation* 2003; 108(12):1481-1486.

Cite this article as: Gargiulo et al. Use of statins in lower extremity artery disease: a review. *BMC Surgery* 2012; 12(Suppl 1):S15.