Measurement of charged jet production cross sections and nuclear modification in p–Pb collisions at √sNN=5.02 TeV

ALICE Collaboration; Chang, BeomSu; Kim, Dong Jo; Kral, Jiri; Rak, Jan; Räsänen, Sami; Slupecki, Maciej; Snellman, Tomas; Trzaska, Wladyslaw; Vargyas, Márton; Viinikainen, Jussi

2015

Please cite the original version:
ALICE Collaboration. (2015). Measurement of charged jet production cross sections and nuclear modification in p–Pb collisions at √sNN=5.02 TeV. Physics Letters B, 749, 68-81. doi:10.1016/j.physletb.2015.07.054 Retrieved from http://arxiv.org/abs/1503.00681

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Measurement of charged jet production cross sections and nuclear modification in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

1. Introduction

Jets are the observable final state of a fragmenting parton produced, e.g., in scattering of partons in nuclei with a large momentum transfer, Q^2. At sufficiently large Q^2, the jet production cross section is computable since it can be factorized into the non-perturbative parton distribution and fragmentation functions and the cross section of partonic scatterings, which is calculable in perturbative QCD (pQCD) [1]. Jet measurements in p–Pb and their comparison to pp provide a tool to better constrain effects of (cold) nuclear matter on these factors. In particular, they can be used to examine the role of a modification of the initial distribution of quarks and gluons, e.g., shadowing effects and gluon saturation [2,3], and the impact of multiple scatterings and hadronic re-interactions in the initial and final state [4,5].

In central heavy-ion collisions, the production of jets and high-p_T particles is strongly modified: in Pb–Pb collisions at the LHC, the observed hadron yields are suppressed by up to a factor of seven compared to pp collisions, approaching a factor of two suppression at high p_T [6–8]. A similar suppression is also observed for reconstructed jets in central Pb–Pb [9–13]. This phenomenon, referred to as jet quenching, has also been observed previously in high-p_T particle production in central Au–Au collisions at RHIC [14–19]. It is attributed to the creation of a quark–gluon plasma (QGP) in the final state, where hard scattered partons radiate gluons in strong interactions with the medium as first predicted in [20,21]. This results in a radiative energy loss of the leading parton and a modified fragmentation pattern.

Initially, p–Pb collisions have been seen as the testing ground for isolated cold nuclear matter effects, without the formation of a hot and dense medium. However, recent results on low-p_T particle production and long range correlations in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [22–25] exhibit features of collective behavior, similar to those found in Pb–Pb collisions, where they are attributed to the creation of a QGP. At high p_T, results on the production of unidentified charged particles [26–29] and jets [30,31] in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are consistent with the absence of a strong final state suppression. The question to what extent other nuclear effects lead to an enhancement of particle production at high p_T is still open, a possible enhancement in p–Pb collisions has been reported for single charged hadrons [28].

The measurement of jets in p–Pb collisions compared to single hadrons tests the parton fragmentation beyond the leading particle with the inclusion of low-p_T and large-angle fragments.

A jet is defined experimentally by the algorithm that combines the measured detector information such as tracks and/or calorimeter cells into jet objects and by the parameters of the algorithm. The desired properties of such algorithms in pp(p) collisions and in the corresponding theoretical framework have been discussed e.g. in [32]. In general, jet algorithms aim to reconstruct the kinematic properties of the initial parton with as little dependence on the details of its fragmentation process as possible, i.e. the algorithms

* E-mail address: alice-publications@cern.ch.
should yield consistent results when applied in a theoretical calculation at any stage of a parton shower and at final state particle level. A particularly well suited class of algorithms in this context are those using sequential recombination schemes, which are infrared and collinear safe, in contrast to many conceptually simpler cone algorithms. The computationally optimized implementation of sequential recombination algorithms in the Fastjet package [33] facilitates their applicability also in collision systems with high multiplicity and thereby the comparison of results obtained with the same jet algorithms in pp, p–Pb, and Pb–Pb collisions. An additional complication in the context of jet reconstruction in high-multiplicity events arises from the large background particle density, i.e. particles in the same aperture as the jet that are not related to the initial hard scattering. This background can be subtracted on an event-by-event basis and the impact on the reconstructed jet observable needs to be evaluated carefully [12,34,35].

In this paper, jets reconstructed from charged particles (charged jets) with the anti-kt algorithm measured with the ALICE detector in p–Pb collisions at √sNN = 5.02 TeV are reported for different resolution parameters, R. Section 2 describes in detail the correction steps needed in the analysis, including the effect of the event background and its fluctuations on the jet observables and the unfolding procedure to account for background as well as detector effects. The results are presented and discussed in Section 3.

2. Data analysis

2.1. Event and track selection

The data used for this analysis were taken with the ALICE detector [36] during the p–Pb run of the LHC at √sNN = 5.02 TeV at the beginning of 2013. Minimum bias events have been selected requiring at least one hit in both of the scintillator trigger detectors (VOA and V0C) covering the pseudorapidity 2.8 < ηlab < 5.1 and −3.7 < ηlab < −1.7, respectively [37]. Here and in the following, ηlab denotes the pseudorapidity in the ALICE laboratory frame. Compared to this frame (with positive η in the direction of the V0A), the nucleon–nucleon center-of-mass system moves in rapidity by γn = −0.465 in the direction of the proton beam [38].

The event sample used in the analyses presented in this manuscript was collected exclusively for the beam configuration where the proton travels from V0A to V0C (clockwise). A van der Meer scan was used to measure the visible cross section σV0 = 2.09 ± 0.07 b for this case [39]. Monte Carlo studies show that the sample consists mainly of non-single diffractive (NSD) interactions and a negligible contribution from single diffractive and electromagnetic interactions (for more details see [38,40]). The trigger is not fully efficient for NSD events. This inefficiency affects only events without a reconstructed vertex, i.e. with no particles reconstructed within the acceptance of the SPD. The loss of efficiency is estimated to be 2.3% with a large systematic uncertainty of 31% [38]. In this paper, the normalization to NSD events is only used for the construction of the nuclear modification factor.

In addition to the trigger selection, timing and vertex-quality cuts are used to suppress pile-up and bad quality events. The analysis requires a reconstructed vertex, which is the case for 98.2% of the events selected by the trigger. In addition, events with a reconstructed vertex |z| > 10 cm along the beam axis are rejected. In total, about 96M events are used for the analysis.

Charged particles are reconstructed as tracks in the Inner Tracking System (ITS) [41] and the Time Projection Chamber (TPC) which cover the full azimuth and |ηlab| < 0.9 [42]. For tracks with reconstructed track points close to the vertex (from the two inner Silicon Pixel Detector (SPD) layers of the ITS), a momentum resolution of 0.8% (3.8%) for pT = 1 GeV/c (50 GeV/c) is reached [36]. The azimuthal distribution of these high quality tracks is not completely uniform due to inefficient regions in the SPD. This can be compensated by considering in addition tracks without reconstructed track points in the SPD. For those tracks, the primary vertex is used as an additional constraint in the track fitting to improve the momentum resolution. This approach yields a very uniform tracking efficiency within the acceptance, which is needed to avoid geometrical biases of the jet reconstruction algorithm caused by a non-uniform density of reconstructed tracks. The procedure is described in detail in the context of jet reconstruction with ALICE in Pb–Pb events [12]. For the analyzed data, the additional tracks (without SPD track points) constitute approximately 4.3% of the used track sample. Tracks with pT > 0.15 GeV/c and within a pseudorapidity interval |ηlab| < 0.9 are used as input to the jet reconstruction. The overall efficiency for charged particle detection, including the effect of tracking efficiency as well as the geometrical acceptance, is 70% at pT = 0.15 GeV/c and increases to 85% at pT = 1 GeV/c and above.

2.2. Jet reconstruction and background corrections

For the present analysis, the anti-kt algorithm from the Fastjet package [43] has been used to reconstruct jets from measured tracks with resolution parameters of R = 0.2 and R = 0.4. In general, jets are only considered for further analysis if the jet-axis is separated from the edge of the track acceptance in ηlab by at least the resolution parameter R used in the jet finding, e.g. jets reconstructed with R = 0.4 are accepted within |ηjet, lab| < 0.9 − 0.4 = 0.5. The jet transverse momentum is calculated by Fastjet using the pT reconstruction scheme. To enable background corrections, the area A for each jet is determined internally by distributing ghost particles into the area that is clustered [44]. Ghost particles have vanishing momentum and therefore do not influence the jet finding procedure. By construction, the number of ghost particles in a jet is a direct measure for the jet area. A ghost particle density of 200 per unit area (0.005 area per ghost particle) was used to obtain a good area resolution with a reasonable computing time.

In Pb–Pb collisions, the background from particles not from the same hard scattering as the jet has a significant impact on the reconstructed jet momentum [12,35]. The transverse momentum density of this background is estimated with a statistically robust method by using the median of all jet pT, jet per area within one event for jets reconstructed with the kt algorithm. In p–Pb collisions, the multiplicity density is two orders of magnitude smaller than in central Pb–Pb collisions [40], so a corresponding reduction of the jet background is expected. To obtain a reliable estimate for the more sparse environment of p–Pb events a modified version of the approach described in [45] for pp collisions is employed. It uses the same method as in Pb–Pb, but contains an additional correction factor, C, to account for regions without particles, which otherwise would not contribute to the overall area estimate. The background density for each event is then given by

\[\rho_{ch} = \text{median} \left\{ \frac{p_{T,i}}{A_i} \right\} \cdot C, \]

(1)

where i runs over all reconstructed \(k_T \) jets in the event with momentum \(p_{T,i} \) and area \(A_i \). C is defined by

\[C = \frac{\sum A_i k_T}{A_{acc}}. \]

(2)

Here, the numerator is the area of all \(k_T \) jets containing tracks and the denominator, \(A_{acc} \), is the acceptance in which charged particles are considered as input to the jet finding (2 \(\times 0.9 \times 2\pi \)). The probability distribution for the background density in this method,
with the same track selection criteria as the signal jet reconstruction and a radius of 0.4, is shown in Fig. 1 (left). The background density obtained with \(R = 0.4 \) is used both for the correction of signal jets with \(R = 0.4 \) and \(R = 0.2 \) to avoid event-by-event fluctuations in the difference of the momenta for the two radii.

The probability distribution of \(\rho_{\text{ch}} \) decreases approximately exponentially. It is smaller than 4 GeV/c for 98.6\% of all events. The mean background density and its variance for all events is \(\langle \rho_{\text{ch}} \rangle = 1.02 \text{ GeV/c} \) (with negligible statistical uncertainty) and \(\sigma(\rho_{\text{ch}}) = 0.91 \pm 0.01 \text{ GeV/c} \). For events containing a jet with uncorrected transverse momentum \(p_T, \text{ch jet} > 20 \text{ GeV/c} \), it is \(\langle \rho_{\text{ch}} \rangle = 2.2 \pm 0.01 \text{ GeV/c} \) and \(\sigma(\rho_{\text{ch}}) = 1.47 \pm 0.09 \text{ GeV/c} \), respectively. The observed increase of the underlying event activity for events that contain a high-\(p_T \) jet is expected. This increase is already present in pp collisions and has been quantified in detail and with more differential observables than the background density, e.g. in [46].

The background density estimate provides an event-by-event correction for each jet with reconstructed transverse momentum \(p_{T, \text{ch jet}} \) and jet area \(A_{\text{ch jet}} \):

\[
p_{T, \text{ch jet}} = p_{T, \text{ch jet}}^{\text{raw}} - A_{\text{ch jet}} \cdot \rho_{\text{ch}}.
\]

However, this approach neglects that the background for a given event is not uniformly distributed in the \(\eta_{\text{lab}}, \phi \)-plane but fluctuates from region to region. These fluctuations are mainly Poissonian, but also encode correlated region-to-region variations of the particle multiplicity and the mean \(p_T \) [35]. The effect of these fluctuations can be accounted for on a statistical basis in the unfolding of the measured jet \(p_{T, \text{ch jet}} \)-distributions. The distribution of region-to-region density fluctuations around the event-wise background density estimate can be evaluated for the full event sample by a Random Cone (RC) approach as described in [35]. Cones with a radius \(R \) corresponding to the resolution parameter of the jet finding algorithm are placed randomly in the \(\eta_{\text{lab}}, \phi \)-jet-acceptance and the transverse momenta for all tracks (charged particles) falling into this cone are summed and compared to the background estimate:

\[
\delta p_{T, \text{ch}} = \sum_{i} p_{T, i} - \rho_{\text{ch}} A, \quad A = \pi R^2.
\]

The distribution of the residuals, \(\delta p_{T, \text{ch}} \), as shown in Fig. 1 (right) for \(R = 0.4 \), is a direct measure for all intra-event fluctuations of the background and can be used directly in the unfolding procedure. In Fig. 1 (right), a clear asymmetry of the distribution is visible. It is caused by the fact that the \(\delta p_{T, \text{ch}} \) distribution of single particles sampled in the cone is asymmetric. Since the number of particles within a cone increases with its size, statistical fluctuations of the background estimate also increase [see also [35]].

Furthermore, the randomly placed cones can also overlap with jets. In \(p\text{-Pb} \) collisions, there is the possibility for multiple hard collisions within one \(p\text{-Pb} \) event, so a jet can also be the background to a jet from another hard collision and contribute as an upward fluctuation. Therefore, an overlap of random cones with possible signal jets should not be \textit{a priori} excluded in the fluctuation estimate, but is part of its systematic uncertainty.

2.3. Detector effects and unfolding

The main detector-related effects on the reconstructed jet are the reconstruction efficiency and the momentum resolution for single charged particles. To determine the correction for these, a full detector simulation of pp jet events generated with PYTHIA6 (Perugia 2011, version 6.425) [47] and GEANT3 particle transport [48] is performed. In the simulation, two jet collections are matched geometrically (closeness in \(\eta_{\text{lab}}, \phi \)-plane) with a one-to-one correspondence [12]; jets reconstructed at the charged particle level \(\text{(part)} \) without detector effects and jets reconstructed from tracks after particle transport through the ALICE detector \(\text{(det)} \). In the simulation, the particle level reconstruction includes charged primary particles produced in the collision with \(p_T > 0.15 \text{ GeV/c} \). Charged decay products from primary particle decays, excluding those from weak decays of strange particles, are included with the same \(p_T \) threshold. The response matrix is populated with matched particle- and detector-level jets. It relates the particle-level to the detector-level charged jet momentum and encodes the effects of single-particle momentum resolution and reconstruction efficiency on the reconstructed jet momentum. A correction for the missing energy of neutral jet-constituents is not applied. The response is shown on a logarithmic scale in Fig. 2 (left) for charged jets with \(R = 0.4 \) and particle-level momentum between \(45 < p_T < 50 \text{ GeV/c} \). It can be seen that the most probable value for the reconstructed momentum is the particle-level momentum, but the distribution has large tails to the left and right. It is more probable that jets are reconstructed with a lower momentum than the truth, which is due to the dominating effect of the single-particle reconstruction efficiency that reduces the number of reconstructed particles in a jet. The tail to the right-hand side is mainly due to the single-particle momentum resolution, where a fraction of tracks is reconstructed with higher momentum than the truth, causing an upward shift of the jet momentum.

In addition, Fig. 2 (left) shows the effect of the background fluctuations on the reconstructed jet momentum and the combination of detector effects and background fluctuations. Even though the background fluctuations show a strong tail to the right-hand side, it is seen that in the combined unfolding matrix the effects...
of single-particle momentum resolution play the dominant role in reconstructing a jet with momentum higher than the truth. The default algorithm for the unfolding of the measured jet spectrum is based on the Singular Value Decomposition (SVD) approach [49] as implemented in the RooUnfold package [50]. The default prior in the unfolding procedure is a smoothed version of the uncorrected jet spectrum itself. In addition to the SVD unfolding approach, Bayesian [51,52] and χ^2 [53] unfolding have been used for systematic comparisons and validity checks. The unfolded spectrum is also corrected for unmatched jets using a jet reconstruction efficiency obtained from generated–reconstructed comparison. This jet reconstruction efficiency is larger than 96% in the considered momentum range.

The influence of these detector effects and background fluctuations on the jet momentum is shown for three transverse momentum intervals in Fig. 2 (right) via the probability distribution of the relative difference of the detector-level and particle-level charged jet transverse momentum. For all momentum bins the distribution is asymmetric. The most probable response was determined using Gaussian fits to the peak region. It can be seen in Table 1 that it is close to zero ($\pm 1\%$) with a mild p_T dependence. To further quantify the distributions, numerical values for their mean and width are also given in Table 1. Since the width is not a well-defined measure of the jet momentum resolution for these asymmetric distributions, the quartiles of the distribution are provided in addition. Approximately, 25% of the jets have a larger momentum than the generated. The 50% (median) correction is only 5% for $p_T, \text{ch jet} = 20–25$ GeV/c and increases towards larger jet momenta.

In Table 1 the values for the respective distributions without background fluctuations are also given (not shown in Fig. 2). Clearly, the instrumental response dominates the jet response as already seen in Fig. 2 (left). The main effect of the background fluctuations is a broadening of the jet response and an upward shift of the average reconstructed energy due to the asymmetric shape of the fluctuations as seen in Fig. 1 (right). The most probable value remains unaffected within the uncertainties when background fluctuations are included.

2.4. Nuclear modification factor

The nuclear modification factor compares a p_T–differential yield in p–Pb collisions to the differential production cross section in pp collisions at the same $\sqrt{s_{\text{NN}}}$ to quantify nuclear effects:

$$R_{ppb} = \frac{d^2N_{ppb}}{d\eta dp_T} \frac{d^2\sigma_{pp}}{d\eta dp_T}.$$ \hspace{1cm} (5)

Here, $\langle p_T \rangle_{\text{ppb}}$ is the nuclear overlap function which accounts for the increased parton flux in p–Pb compared to pp collisions. It is related to the number of binary nucleon–nucleon collisions via $\langle p_T \rangle_{\text{ppb}} = (N_{\text{coll}}) / \sigma_{\text{pp INEL}}$ and has been calculated in a Glauber Monte Carlo, as described in [38]. Here, $\sigma_{\text{pp INEL}}$ represents the total inelastic cross section in pp collisions. For minimum bias p–Pb collisions, the nuclear overlap function is $\langle p_T \rangle_{\text{ppb}} = (0.0983 \pm 0.0034)$ mb$^{-1}$ and $N_{\text{coll}} = 6.87 \pm 0.56$. In this paper, the reference differential production cross section in pp is constructed from the ALICE charged jet measurement at 7 TeV [54] by a pQCD based scaling. In the nuclear modification factor, the invariant yield for NDS events in p–Pb is compared to inelastic pp collisions. Hence, the additional correction of (2.3 ± 3.1)% is applied as discussed above.

2.5. NLO calculations and pp reference

Perturbative QCD calculations are used for two purposes in this paper: for comparison to the measurement of jet production in p–Pb, and as additional input to the construction of the pp reference. The calculations have been performed within the POWHEG box framework [55,56], which facilitates next-to-leading order (NLO) precision in calculating parton scattering cross sections in an event-by-event Monte Carlo. Event-by-event the outgoing partons from POWHEG are passed to PYTHIA8 [57] where the subsequent parton shower is handled. For this, a POWHEG version matched to the PYTHIA8 fragmentation is used to avoid double counting of NLO effects already considered in the PYTHIA8 code. The Monte Carlo approach has the advantage that the same
Table 2
Summary of systematic uncertainties on the fully corrected jet spectrum, the corresponding nuclear modification factor, and the jet production cross section ratio for the resolution parameters \(R = 0.2 \) and \(R = 0.4 \). The percentages are given for the whole shown transverse momentum range 20–120 GeV/c.

Observable	Jet cross section \(\times 10^{-3} \)	\(R_{ppb} \)	\(\mathcal{R} \)		
	\(R = 0.2 \)	\(R = 0.2 \)	\(R = 0.4 \)	\(0.2/0.4 \)	
Uncertainty source					
Single-particle efficiency (%)	7.9–12.8	10.2–14.2	4.1–5.9	4.9–6.3	2.1–2.1
Unfolding (%)	2.2	1.7	2.8	2.2	1.5
Unfolding prior steepness (%)	1.4–4.8	0.5–4.0	2.9–8.0	0.9–4.4	1.1–1.5
Regularization strength (%)	3.1–3.9	2.3–4.4	3.6–5.8	2.3–5.6	1.1–4.7
Minimum \(\pt \) cut-off (%)	1.1–0.3	2.3–0.1	1.3–1.4	2.8–4.1	1–2.4
Background estimate (%)	1.8–0.6	3.1–1.5	1.8–0.6	3.7–1.5	2.0–0.9
\(\Delta \pt,_{ch} \) estimate (%)	0.0–0.0	0.1–0.0	0.0–0.0	0.1–0.0	0.1–0.0
Combined uncertainty (%)	9.2–14.4	11.5–15.5	7.1–11.9	7.5–10.7	3.8–5.7
\(\{T_{ppb}\} \) (%)	–	–	3.4	3.4	–
pp cross section (%)	–	–	3.5	3.5	–
Reference scaling pp 7 TeV (%)	–	–	10.0	10.0	–
NSD selection efficiency p-Pb (%)	–	–	3.1	3.1	–
Combined scaling uncertainty (%)	–	–	11.6	11.6	–

2.6. Jet production cross section ratio

The broadening or narrowing of the parton shower with respect to the original parton direction can have a direct impact on the jet production cross section reconstructed with different resolution parameters. This can be tested via the ratio of yields or cross sections in common rapidity interval, here \(|\eta_{lab}| < 0.5 \) for \(R = 0.2 \) and \(R = 0.4 \):

\[
\mathcal{R}(0.2, 0.4) = \frac{d\sigma_{ppb, R=0.2}/d\pt}{d\sigma_{ppb, R=0.4}/d\pt}.
\]

Considering the extreme scenario that all fragments are already contained within \(R = 0.2 \) this ratio is unity. In this case, also the statistical uncertainties between \(R = 0.2 \) and \(R = 0.4 \) are fully correlated and cancel completely in the ratio, when the jets are reconstructed from the same data set. In the case the jets are less collimated, the ratio decreases and the statistical uncertainties only cancel partially. For the analysis presented in this paper, the conditional probability for reconstructing an \(R = 0.2 \) jet in the same \(\pt \)-bin as a geometrically close \(R = 0.4 \) jet is 25–50%, which leads to a reduction of the statistical uncertainty of the ratio of 5–10% compared to the case of no correlation.

2.7. Systematic uncertainties

The various sources of systematic uncertainties are listed in Table 2 for the full \(\pt \)-range of the three observables presented in this paper: jet production cross section, nuclear modification factor, and cross section ratio. The most important sources will be discussed in the following.

The dominant source of uncertainty for the \(\pt \)-differential jet production cross section is the imperfect knowledge of the single-particle tracking efficiency that has a direct impact on the correction of the jet momentum in the unfolding, as discussed above. In p–Pb collisions, the single-particle efficiency is known with a relative accuracy of 4%, which is equivalent to a 4% uncertainty on the jet momentum scale. To estimate the impact of the tracking efficiency uncertainty on the jet yield, the tracking efficiency is artificially lowered by randomly discarding a certain fraction (4%) in p–Pb) of tracks used as input for the jet finding. Depending on the shape of the spectrum, the uncertainty on the single particle efficiency (jet momentum scale) translates into an uncertainty of 8 to 15% on the yield.

To estimate the uncertainty on the p–Pb nuclear modification factor, the uncertainty on the single-particle tracking efficiency
in the two collision systems (pp and p–Pb) has to be evaluated. This uncertainty on the efficiency is correlated between the data sets, since the correction is determined with the same underlying Monte Carlo description of the ALICE detector and for similar track quality cuts. Only variations of detector conditions between run periods may reduce the degree of correlation. The uncorrelated uncertainty has been estimated to be 2%, and the uncertainty for the nuclear modification factor has been determined by artificially introducing such a difference in the tracking efficiency between the two collision systems.

The uncertainty on the spectra induced by the underlying event subtraction has been estimated by comparing the results with various methods for background subtraction; ranging from purely track-based to jet-based density estimates, including an η_{lab}-dependent correction. As seen in Fig. 1, a typical correction $\pi R^2 \rho_{lab}$ for a jet with $R = 0.4$ is about 1 GeV/c. The uncertainty on this correction can be treated similar to an uncertainty on the jet momentum scale. For the final spectrum, the uncertainty on the yields from the background correction method is approximately 2%.

In the determination of the fluctuations of the underlying event, the main uncertainty is given by the exclusion of reconstructed jets in the random cone sampling of the event. The probability for a random cone to overlap with reconstructed jets is higher than for the jets itself. On average, a jet can overlap with $N_{coll} - 1$ jets in one event. The random cone can overlap with N_{coll} Jets. To account for this, the $\delta p_T, ch$ calculation can be modified to discard on a statistical basis random cones that overlap with signal jets. This lowers the average overlap probability. However, since this modified $\delta p_T, ch$ calculation strongly depends on the signal jet definition and also on how an overlap is defined, it is not used by default but considered for systematic uncertainties. The effect of this partial signal exclusion approach on the fully corrected jet yields is of the order of 0.1%.

The uncertainty of the scaling procedure to obtain the reference spectrum is estimated by determining the scaling factors $F(p_T)$ after varying the scales μ_R and μ_F in the POWHEG NLO generation, and by using different tunes in the outgoing fragmentation handled by PYTHIA8. Furthermore, standalone calculations with PYTHIA6 and PYTHIA8 using different generator tunes and with HERWIG at the two energies have been performed to obtain scaling factors according to Eq. (6). A general uncertainty for how well LO generators and NLO calculations can describe the \sqrt{s}-dependence of particle production is also considered: in ALICE measurements of the π^0 production in pp collisions, it has been observed that pQCD calculations predict a stronger increase of the production cross section when going from 0.9 to 7 TeV than supported by the data [60]. A similar effect is also seen in unidentified charged hadrons measured with ALICE at 0.9, 2.76, and 7 TeV [61]. Furthermore, the \sqrt{s}-dependence of the jet production cross section has been cross checked internally with an interpolation between 7 and 2.76 TeV, using preliminary ALICE results on charged jets at $\sqrt{s} = 2.76$ TeV. In total, these studies yield an additional uncertainty on the pp reference of 10% for the extrapolation from 7 to 5.02 TeV. It is reported as an independent normalization uncertainty, similar to the uncertainty on the nuclear overlap function.

3. Results

The p_T-differential production cross sections for jets reconstructed from charged particles in minimum bias p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are shown in Figs. 3 and 4 for the resolution parameters $R = 0.4$ and $R = 0.2$. The spectra are found to agree well with scaled NLO pQCD calculations (POWHEG + PYTHIA8) using nuclear PDFs (CTEQ6.6 + EPS09) as seen best in the ratio data over calculation in the lower panels. However, the effect of the nuclear PDFs on the jet production in the reported kinematic regime is almost negligible, as seen in the comparison to calculations with only proton PDFs (CTEQ6.6).

Fig. 4 also shows the jet spectra for $-0.65 < \eta_{lab} < -0.25$ and $0.25 < \eta_{lab} < 0.65$ compared to the results from the symmetric selection $|\eta_{lab}| < 0.5$. Here, η_{lab} denotes the pseudorapidity of the jet axis. The first selection roughly corresponds to a small window around mid-rapidity for the nucleon-nucleon center-of-mass

![Fig. 3. (Color online.) Top panel: p_T-differential production cross section of charged jet production in p–Pb collisions at 5.02 TeV for $R = 0.4$. Bottom panel: Ratio of data and NLO pQCD calculations. The global uncertainty from the measurement of the visible cross section of 3.5% is not shown. The uncertainties on the pQCD calculation are only shown in the ratio plot as dashed lines. The pQCD calculations take into account the rapidity shift of the nucleon–nucleon center-of-mass system in p–Pb with a boosted parton system.](image-url)

![Fig. 4. (Color online.) Top panel: p_T-differential production cross section of charged jet production in p–Pb collisions at 5.02 TeV for $R = 0.2$. Bottom panel: Ratio of data and NLO pQCD calculations. The global uncertainty from the measurement of the visible cross section of 3.5% is not shown. The uncertainties on the pQCD calculation are only shown in the ratio plot as dashed lines. The pQCD calculations take into account the rapidity shift of the nucleon–nucleon center-of-mass system in p–Pb with a boosted parton system.](image-url)
system, while the second is separated from it by about one unit in rapidity. No significant change of the jet spectra is observed for these two \(\eta_{\text{lab}} \) regions centered at \(-0.45\) and \(0.45\). Thus, the jet measurement has no strong sensitivity to the rapidity shift and the pseudorapidity dependent variation of the multiplicity (underlying event) within the statistical and systematic uncertainties of the measurement.

The nuclear modification factor \(R_{p\text{b}} \) is constructed based on the \(p_T \)-differential yields and the extrapolated pp production cross section at \(5.02 \text{ TeV} \) for \(R = 0.2 \) and \(0.4 \). It is shown in the left and right panel of Fig. 5, respectively. In the reported \(p_T \)-range, it is consistent with unity, indicating the absence of a large modification of the initial parton distributions or a strong final state effect on jet production. Before comparing these results to the measured single-particle results for \(R_{p\text{b}} \), one has to consider that the same reconstructed \(p_T \) corresponds to a different underlying parton transverse momentum. Assuming that all spectra should obey the same power law behavior at high \(p_T \), an effective conversion between the spectra can be derived at a given energy via the POWHEG + PYTHIA8 simulations described above. To match the single charged particle spectra in the simulation to charged jets with \(R = 0.4 \), a transformation \(p_T^p \rightarrow 2.28 p_T^p \) is needed. Thus, the reported nuclear modification factor for charged jets probes roughly the same parton \(p_T \)-region as the ALICE measurement of single charged particles that shows a nuclear modification factor in agreement with unity in the measured high-\(p_T \) range up to \(50 \text{ GeV}/c \) \cite{27}.

Since the jet measurements integrate the final state particles, they have a smaller sensitivity to the fragmentation pattern of partons than single particles. Differences between the nuclear modification factor for jets and single high-\(p_T \) particles, as suggested by measurements in \cite{28,29}, could point to a modified fragmentation pattern or differently biased jet selection in \(p\text{-Pb} \) collisions.

A modified fragmentation pattern may also be reflected in the collimation or transverse structure of jets. The first step in testing possible cold nuclear matter effects on the jet structure is the ratio of jet production cross sections for two different resolution parameters. It is shown for \(R = 0.2 \) and \(R = 0.4 \) in \(p\text{-Pb} \) in Fig. 6 and compared to PYTHIA6 (Tune Perugia 2011) and POWHEG + PYTHIA8 at \(\sqrt{s} = 7 \text{ TeV} \) \cite{54}. All data show the expected increase of the ratio from the increasing collimation of jets for higher transverse momentum and agree well within the uncertainties. No significant energy dependence or change with collision species is observed. The data for \(p\text{-Pb} \) collisions is well described by the NLO calculation as well as by the simulation of pp collisions with PYTHIA6 at the same energy. It should be noted that the ratio for charged jets is, in general, above the ratio obtained for fully reconstructed jets, containing charged and neutral constituents. This can be understood from the contribution from neutral pions that decay already at the collision vertex and lead to an effective broadening of the jet profile when including the neutral component in the jet reconstruction, mainly in the form of decay photons. For the same reason, the inclusion of the hadronization in the NLO pQCD calculation is essential to describe the ratio of jet production cross section as also discussed in \cite{62}.

4. Summary

In this paper, \(p_T \)-differential charged jet production cross sections in \(p\text{-Pb} \) collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \) have been shown up to \(p_T, c_{\text{ch jet}} \) of \(120 \text{ GeV}/c \) for resolution parameters \(R = 0.2 \) and \(R = 0.4 \). The charged jet production is found to be compatible with scaled pQCD calculations at the same energy using nuclear PDFs. At the same time, the nuclear modification factor \(R_{p\text{b}} \) (using a scaled measurement of jets in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \) as a reference) does not show strong nuclear effects on jet production and is consistent with unity for \(R = 0.4 \) and \(R = 0.2 \) in the measured \(p_T \)-range between \(20 \) and \(120 \text{ GeV}/c \). The jet cross section ratio of \(R = 0.2/0.4 \) is compatible with \(7 \text{ TeV} \) pp data and also with the predictions from PYTHIA6 Perugia 2011 and POWHEG + PYTHIA8 calculations at \(5.02 \text{ TeV} \). No indication of a strong nuclear modification of the jet radial profile is observed, comparing jets with different resolution parameters \(R = 0.2 \) and \(R = 0.4 \).
Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Funds Kidigian, Armenia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of the People’s Republic of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Országos Tudományos Kutatási Alapgyaromok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección General de Asuntos del Personal Académico (DGAPA), México; Amerique Latine Formation académique–European Commission (ALÉ–EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NRF); National Science Centre of Poland; Ministry of National Education/Institute for Atomic Physics and Consilium Naństional al Cercetării Științifice–Executive Agency for Higher Education Research Development and Innovation Funding (CNCS–UEFISCDI) – Romania; Ministry of Education and Science of the Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energéticas, Medioambientales y Tecno logicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubagua, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India.

References

[1] J.C. Collins, et al., Factorization for short distance hadron–hadron scattering, Nucl. Phys. B 261 (1985) 104.
[2] L.D. McLerran, The color glass condensate and small x physics: four lectures, Lect. Notes Phys. 583 (2002) 291–334, arXiv:hep-ph/0104285.
[3] C. Salgado, et al., Proton-nucleus collisions at the LHC: scientific opportunities and requirements, J. Phys. G 39 (2012) 015010, arXiv:1105.3919 [hep-ph].
[4] A. Krzywicki, J. Engels, B. Petersson, U. Suhnhammer, Does a nucleus act like a gluon filter?, Phys. Lett. B 85 (1979) 407.
[5] A. Accardi, Final state interactions and hadron quenching in cold nuclear matter, Phys. Rev. C 76 (2007) 034902, arXiv:0706.3227 [nucl-th].
[6] ALICE Collaboration, K. Aamodt, et al., Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 698 (2011) 30–39, arXiv:1012.1004 [nucl-ex].
[7] ALICE Collaboration, K. Aamodt, et al., Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 108 (2012) 092301, arXiv:1110.0121 [nucl-ex].
[8] CMS Collaboration, S. Chatrchyan, et al., Study of high-pT charged particle suppression in PbPb compared to pp collisions at √sNN = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945, arXiv:1202.2554 [nucl-ex].
[9] ATLAS Collaboration, G. Aad, et al., Observation of a centrality-dependent dijet asymmetry in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303, arXiv:1001.6182 [hep-ex].
[10] CMS Collaboration, S. Chatrchyan, et al., Jet momentum dependence of jet quenching in PbPb collisions at √sNN = 2.76 TeV, Phys. Lett. B 712 (2012) 176–197, arXiv:1202.5022 [nucl-ex].
[11] ATLAS Collaboration, G. Aad, et al., Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220–241, arXiv:1208.1967 [hep-ex].
[12] ALICE Collaboration, B. Abelev, et al., Measurement of charged jet suppression in Pb–Pb collisions at √sNN = 2.76 TeV with the ATLAS detector, arXiv:1411.2357 [hep-ex].
[13] PHENIX Collaboration, K. Adcox, et al., Suppression of hadrons with large transverse momentum in central Au + Au collisions at √s = 130 GeV, Phys. Rev. Lett. 88 (2002) 022301, arXiv:nucl-ex/0109003.
[14] PHENIX Collaboration, S.S. Adler, et al., Suppressed π0 production at large transverse momentum in central Au + Au collisions at √sNN = 200 GeV, Phys. Rev. Lett. 91 (2003) 072301, arXiv:nucl-ex/0304022.
[15] STAR Collaboration, J. Adams, et al., Transverse momentum and collision energy dependence of high pT hadron suppression in Au + Au collisions at ultrarelativistic energies, Phys. Rev. Lett. 91 (2003) 172302, arXiv:nucl-ex/0305015.
[16] STAR Collaboration, J. Adams, et al., Evidence from d + Au measurements for final-state suppression of high pT hadrons in Au + Au collisions at RHIC, Phys. Rev. Lett. 91 (2003) 072304, arXiv:nucl-ex/0306024.
[17] BRAHMS Collaboration, I. Arsene, et al., Transverse momentum spectra in Au + Au and d + Au collisions at √sNN = 200 GeV and the pseudorapidity dependence of high pT suppression, Phys. Rev. Lett. 91 (2003) 072305, arXiv:nucl-ex/0306703.
[18] PHOBOS Collaboration, B.B. Back, et al., Charged hadron transverse momentum distributions in Au + Au collisions at √sNN = 200 GeV, Phys. Lett. B 578 (2004) 297–303, arXiv:nucl-ex/0302015.
[19] M. Gyulassy, M. Plumer, Jet quenching in dense matter, Phys. Lett. B 243 (1990) 432–438.
[20] R. Baier, et al., Induced gluon radiation in a qcd medium, Phys. Lett. B 345 (1995) 277–286, arXiv:hep-ph/9411409.
[21] CMS Collaboration, S. Chatrchyan, et al., Observation of long-range near-side angular correlations in proton–lead collisions at the LHC, Phys. Lett. B 718 (2013) 795–814, arXiv:1210.5482 [nucl-ex].
[22] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations on the near and away side in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 719 (2013) 29–41, arXiv:1212.2001 [nucl-ex].
[23] ATLAS Collaboration, G. Aad, et al., Measurement with the ATLAS detector of multi-particle azimuthal correlations in p + p collisions at √s = 5.02 TeV, Phys. Lett. B 725 (2013) 60–78, arXiv:1303.2084 [hep-ex].
[24] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations of pi, k and p in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 726 (2013) 164–177, arXiv:1307.2337 [nucl-ex].
[25] ALICE Collaboration, B. Abelev, et al., Transverse momentum distribution and nuclear modification factor of charged particles in p–Pb collisions at √s = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 082302, arXiv:1210.4520 [nucl-ex].
[26] ALICE Collaboration, B. Abelev, et al., Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at √sNN = 5.02 TeV, Eur. Phys. J. C 74 (2014) 3054, arXiv:1405.2737 [nucl-ex].
T. Sinha 100, B. Sitar 38, M. Sitta 32, T.B. Skaali 22, M. Slupecki 121, N. Smirnov 135, R.J.M. Snellings 56, T.W. Snellman 121, C. Sogaard 34, R. Soltz 74, J. Song 95, M. Song 136, Z. Song 7, F. Soramel 30, S. Sorenson 123, M. Spacek 39, E. Spírity 71, I. Sputowska 115, M. Spyropoulou-Stassinaki 87, B.K. Srivastava 94, J. Stachel 82, I. Stan 61, G. Stefanek 76, M. Steinpreis 20, E. Stenlund 34, G. Steyn 64, J.H. Stiller 92, D. Stocco 112, P. Strmen 30, A.A.P. Suaitde 118, T. Sugitate 46, C. Suire 30, M. Suleymanov 16, R. Sultanov 57, M. Sumbera 82, T.J.M. Symons 73, A. Szabo 38, A. Szanto de Toledo 118, I. Szarka 38, A. Szczepankiewicz 36, M. Szymanski 132, J. Takahashi 119, N. Tanaka 126, M.A. Tangaro 33, J.D. Tapia Takaki 50, A. Tarantola Peloni 52, M. Tario 19, M.G. Tarzila 77, A. Tauro 36, G. Tejeda Muñoz 2, A. Telesca 36, K. Terasaki 125, C. Terrevoli 30, B. Teysnier 128, J. Thäder 96, D. Thomas 116, R. Tieulent 128, A.R. Timmins 120, A. Toia 52, S. Trogolo 110, V. Trubnikov 3, W.H. Trzaska 121, T. Tsuji 125, A. Tukmin 98, R. Turrisi 107, T.S. Tweter 22, K. Ullaland 18, A. Usai 23, A. Utrobić 127, M. Vajzer 82, M. Vala 58, L. Valencia Palomo 65, S. Vallero 27, J. Van Der Maarel 36, J.W. Van Hoorne 36, M. van Leeuwen 56, T. Vana 82, P. Vande Vyvre 36, D. Varga 134, A. Vargas 2, M. Vargyas 121, R. Varma 47, M. Vasileiou 87, A. Vasiliev 99, A. Vauthier 70, V. Vechernin 129, A.M. Veen 56, M. Veldhoen 56, A. Velure 16, M. Venaruzzo 72, E. Vercellin 27, S. Vergara Limón 2, R. Vernet 8, M. Verweij 33, L. Víckovic 114, G. Viesti 30, J. Viinikainen 121, Z. Vilakazi 124, O. Villalobos Bailie 101, A. Vinogradov 99, L. Vinogradov 129, Y. Vinogradov 98, T. Virgili 31, V. Vislavicius 34, Y.P. Viyogi 130, A. Vodopyanov 65, M.A. Völkl 92, K. Voloshin 57, S.A. Voloshin 133, G. Volpe 36, B. von Halle 36, I. Vorobyev 91, D. Vranic 96, J. Vrhlovka 40, B. Vulpecu 69, A. Vyushin 98, B. Wagner 18, J. Wagner 96, H. Wang 56, M. Wang 7, 112, Y. Wang 92, D. Watanabe 126, M. Weber 36, S.G. Weber 96, J.P. Wessels 53, U. Westerhoff 53, J. Wiechula 35, J. Wikne 22, M. Wilde 53, G. Wilk 76, J. Wilkinson 92, M.C.S. Williams 104, B. Windelband 92, M. Winn 92, C.G. Yaldo 133, Y. Yamaguchi 123, H. Yang 36, P. Yang 7, S. Yano 46, Z. Yin 7, H. Yokoyama 126, I.-K. Yoo 95, V. Yurchenko 3, I. Yushmanov 99, A. Zaborovskiy 129, V. Zacclo 79, A. Zaman 16, C. Zampolli 104, H.J.C. Zanoli 118, S. Zaporozhets 55, A. Zarochentsev 129, P. Závada 59, N. Zaviyalov 98, H. Zbroszczyk 132, I.S. Zgura 61, M. Zhalov 84, H. Zhang 7, X. Zhang 73, Y. Zhang 7, C. Zhao 22, N. Zhigareva 57, D. Zhou 7, Y. Zhou 56, Z. Zhou 18, H. Zhu 7, J. Zhu 112, X. Zhu 7, A. Zichichi 12, A. Zimmermann 92, M.B. Zimmermann 53, G. Zinovjev 3, M. Zyuk 42

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemerita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, CA, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13 Chicago State University, Chicago, IL, United States
14 China Institute of Atomic Energy, Beijing, China
15 Commissariat à l’Énergie Atomique, IBFU, Saclay, France
16 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17 Departamento de Física de Partículas y ICFAS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
18 Department of Physics and Technology, University of Bergen, Bergen, Norway
19 Department of Physics, Aligarh Muslim University, Aligarh, India
20 Department of Physics, Ohio State University, Columbus, OH, United States
21 Department of Physics, Sejong University, Seoul, South Korea
22 Department of Physics, University of Oslo, Oslo, Norway
23 Dipartimento di Elettrotecnica ed Elettronica del Politecnico, Bari, Italy
24 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
27 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
30 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
31 Dipartimento di Fisica ‘E.R. Caianiello’ and Sezione INFN, Salerno, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35 Eberhard Karls Universität Tübingen, Tübingen, Germany
36 European Organization for Nuclear Research (CERN), Geneva, Switzerland
37 Faculty of Engineering, Bergen University College, Bergen, Norway
Universidad Autónoma de Sinaloa, Culiacán, Mexico
118 Universidade de São Paulo (USP), São Paulo, Brazil
119 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
120 University of Houston, Houston, TX, United States
121 University of Jyväskylä, Jyväskylä, Finland
122 University of Liverpool, Liverpool, United Kingdom
123 University of Tennessee, Knoxville, TN, United States
124 University of the Witwatersrand, Johannesburg, South Africa
125 University of Tokyo, Tokyo, Japan
126 University of Tsukuba, Tsukuba, Japan
127 University of Zagreb, Zagreb, Croatia
128 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
129 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
130 Variable Energy Cyclotron Centre, Kolkata, India
131 Vinča Institute of Nuclear Sciences, Belgrade, Serbia
132 Warsaw University of Technology, Warsaw, Poland
133 Wayne State University, Detroit, MI, United States
134 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
135 Yale University, New Haven, CT, United States
136 Yonsei University, Seoul, South Korea
137 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

1 Deceased.
2 Also at: University of Kansas, Lawrence, Kansas, United States.