Osteoarticular manifestations of human brucellosis: A review

Seyed Mokhtar Esmaeilnejad-Ganji, Seyed Mohammad Reza Esmaeilnejad-Ganji

ORCID number: Seyed Mokhtar Esmaeilnejad-Ganji (0000-0001-7562-0835); Seyed Mohammad Reza Esmaeilnejad-Ganji (0000-0003-4152-5324).

Author contributions: Esmaeilnejad-Ganji SM contributed to study design; Esmaeilnejad-Ganji SM and Esmaeilnejad-Ganji SMR contributed to data collection and writing the draft; Esmaeilnejad-Ganji SM contributed to manuscript revision; all authors approved the final version of the manuscript.

Conflict-of-interest statement: No potential conflicts of interest. No financial support.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: November 14, 2018
Peer-review started: November 15, 2018
First decision: November 29, 2018
Revised: November 30, 2018
Accepted: December 17, 2018
Article in press: December 17, 2018
Published online: February 18, 2019

Abstract

Brucellosis is a common global zoonotic disease, which is responsible for a range of clinical manifestations. Fever, sweating and musculoskeletal pains are observed in most patients. The most frequent complication of brucellosis is osteoarticular involvement, with 10% to 85% of patients affected. The sacroiliac (up to 80%) and spinal joints (up to 54%) are the most common affected sites. Spondylitis and spondylodiscitis are the most frequent complications of brucellar spinal involvement. Peripheral arthritis, osteomyelitis, discitis, bursitis and tenosynovitis are other osteoarticular manifestations, but with a lower prevalence. Spinal brucellosis has two forms: focal and diffuse. Epidural abscess is a rare complication of spinal brucellosis but can lead to permanent neurological deficits or even death if not treated promptly. Spondylodiscitis is the most severe form of osteoarticular involvement by brucellosis, and can have single- or multifocal involvement. Early and appropriate diagnosis and treatment of the disease is important in order to have a successful management of the patients with osteoarticular brucellosis. Brucellosis should be considered as a differential diagnosis for sciatic and back pain, especially in endemic regions. Patients with septic arthritis living in endemic areas also need to be evaluated in terms of brucellosis. Physical examination, laboratory tests and imaging techniques are needed to diagnose the disease. Radiography, computed tomography, magnetic resonance imaging (MRI) and bone scintigraphy are imaging techniques for the diagnosis of osteoarticular brucellosis. MRI is helpful to differentiate between pyogenic spondylitis and brucellar spondylitis. Drug medications (antibiotics) and surgery are the only two options for the treatment and cure of osteoarticular
brucellosis.

Key words: Brucellosis; Brucella; Osteoarticular manifestations; Musculoskeletal pain; Bone; Joint

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The most frequent complication of brucellosis is osteoarticular involvement, with a rate of 10%-85%. Sacroiliac and spinal joints are the most common affected sites. Spondylitis and spondylodiscitis are the most frequent complications of brucellar spinal involvement. Peripheral arthritis, osteomyelitis, discitis, bursitis and tenosynovitis are other osteoarticular manifestations. Epidural abscess is a rare complication of spinal brucellosis but can lead to permanent neurological deficits or even death if not treated promptly. Spondylodiscitis is the most severe form of osteoarticular involvement by brucellosis. Brucellosis should be considered as a differential diagnosis for sciatica, back pain and septic arthritis in endemic regions.

Citation: Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. Osteoarticular manifestations of human brucellosis: A review. *World J Orthop* 2019; 10(2): 54-62

URL: https://www.wjgnet.com/2218-5836/full/v10/i2/54.htm

DOI: https://dx.doi.org/10.5312/wjo.v10.i2.54

INTRODUCTION

Brucellosis is the most common microbial zoonotic disease in the world and found endemically in most developed and developing countries. Brucella, an intracellular bacterium, causes brucellosis and *Brucella melitensis* spp. is the most common of the *Brucella* species[1-3]. This disease was first diagnosed in the Mediterranean area, where it received its initial name “Malta fever”[4]. Thousands of new cases of brucellosis are reported annually worldwide: its annual incidence per million population was reported to be 238.6 in Iran, 262.2 in Turkey, 214.4 in Saudi Arabia and 278.4 in Iraq[5].

Humans can acquire the infection mainly through occupational contact (e.g., veterinary, butcher, animal husbandry) or consumption of contaminated dairy products, especially milk, butter and cheese[6-8].

Brucellosis can involve the human body systemically. The most common clinical presentations of human brucellosis are fever, sweating, musculoskeletal pains, lymphadenopathy or hepatosplenomegaly[9,10]. The musculoskeletal system is particularly involved. Presentations of brucellosis are variable, deceptive and often non-specific, and they can mimic other infectious and non-infectious diseases[11-13].

For the diagnosis of brucellosis, after primary physical examination, serological tests [the Wright and 2-Mercaptoethanol (2-ME) tests], cultural and imaging methods (radiography, computed tomography, magnetic resonance imaging (MRI) and bone scintigraphy) should be helpful[14,15]. To definitely diagnose brucellosis, the organism needs to be isolated from blood, bone marrow, wounds, purulent discharge or other body tissues and fluids, with culture or molecular/histological assessment[16-18]. In the present review, we have examined the literature concerning the osteoarticular manifestations of brucellosis, aiming to help physicians and orthopedic surgeons to provide better clinical management for these patients.

OSTEOARTICULAR MANIFESTATIONS

Osteoarticular involvement is the most frequent complication of brucellosis and can occur in 10% to 85% of the patients infected with the disease[19]. It is usually seen as sacroiliitis, spondylitis, osteomyelitis, peripheral arthritis, bursitis and tenosynovitis[15,20]. The type of skeletal involvement mainly depends on a patient’s age. This range of manifestations can lead patients to initially visit general practitioners, and ultimately orthopedic and rheumatology specialists. Variable clinical features and lack of specific symptoms often cause a delay in diagnosis of osteoarticular brucellosis.
Spondylitis
Spondylitis or vertebral osteomyelitis is inflammation and infection of vertebrae which has a prevalence rate of 2%-60% and mostly observed in men aged >40 years old[32,39]. Lumbar (60%), sacral (19%) and cervical (12%) vertebrae were the most common affected sites, respectively, in a survey by Bozgeyik et al[39]. There are two types of spinal brucellosis, focal and diffuse. In focal involvement, osteomyelitis is localized in the anterior aspect of an endplate at the discovertebral junction, but in the diffuse type, osteomyelitis affects the entire vertebral endplate or the whole vertebral body[30,31]. Spondylitis is the dangerous complication of brucellosis due to its association with epidural, paravertebral and psoas abscess and potential resultant nerve compression. In one report, rapidly progressive spinal epidural abscess was observed following brucellar spondylitis, which was primarily misdiagnosed as a lumbar disc herniation[33]; delay in diagnosis and treatment were responsible for rapid progression of the disease. Another study reported a seronegative patient who developed a psoas abscess following brucellar spondylitis[34]. The basis of spondylitis diagnosis is microbiological or histopathological assessment of the tissue obtained by biopsy using a needle with computed tomography guidance. Epidural abscess is a rare complication of spondylitis and its diagnosis is difficult due to non-specific symptoms. Among the serological tests and radiological techniques, MRI is the most valuable method to diagnose spinal brucellosis or spinal epidural abscess[34,35]. MRI is also helpful to differentiate between pyogenic spondylitis and brucellar spondylodiscitis[36].

Spondylodiscitis
This is simultaneous inflammation of vertebrae and disc, and usually occurs via hematogenous spread. It is the most severe form of osteoarticular involvement of brucellosis, because it makes a high rate of skeletal and neurological sequels despite therapy[12,13,14]. It is stated that 6%-85% of brucellosis osteoarticular involvements are related to brucellar spondylodiscitis. Lumbar (60%-69%), thoracic (19%) and cervical segments (6%-12%) are reported to be more involved in the spinal area[36-41]. Spondylodiscitis can be seen as single-focal and/or contiguous or non-contiguous multi-focal involvements. Multi-focal skeletal involvement in the spinal system was seen in 3%-14% of patients[41,44]. Radionuclide bone scintigraphy is an important technique in determination of musculoskeletal region of brucellosis. Increased uptake of the involved region on bone scintigraphy is more in favor of brucellar spondylodiscitis than tuberculous spondylodiscitis[45,46]. MRI is the choice for diagnosis of spondylodiscitis, epidural abscess and cord or root compression relevant to brucellosis[45,46,47]. In MRI, the lesion is found as destructive appearance (Pedro Pons’ sign) at antero-superior corner of vertebrae accompanied by prominent osteosclerosis, which is a pathognomonic finding[47,48]. Back pain is the main symptom of spondylodiscitis, however, it is not a specific symptom and usually leads to a delay in diagnosis and late treatment. Therefore, in the endemic regions, it is necessary to consider spondylodiscitis as a differential diagnosis for long-term cervical, lumbar and sacral pain (especially among elderly patients) and perform screening serological tests to achieve early diagnosis and prevent its late complications[49,50].

Discitis
The intervertebral disc can be infected without spondylitis, which is named discitis. In addition to back pain, disc herniation and sciatica can be described by the patient with discitis[32,33]; therefore, this disease should be considered in the differential diagnosis of those symptoms. It was observed that the simultaneous existence of spondylodiscitis
and spondylolisthesis with brucellar discitis caused misdiagnosis[65].

Sacroilitis

Large joints, like sacroiliac, are the most common regions of musculoskeletal involvement of brucellosis[61]. Sacroilitis, or inflammation of sacroiliac joint, has been observed in nearly 80% of patients with focal complications and more frequently in adults[62,64]. Its clinical symptoms (septic or reactive forms) mimic acute low back pain or lumbar disc herniation and the back pain may radiate into the tight, however, chronic sacroilitis is associated with chronic back pain[62,63]. Although low back pain is the important symptom, 24% of the patients were asymptomatic in a study[64]. It is reported that the rate of sacroilitis is high in those patients who are infected with B. melitensis spp.[63,65]. Both of unilateral and bilateral forms of brucellar sacroilitis have been reported[66,67]. Sacroilitis was also simultaneously seen with dactylitis, olecranon bursitis, humerus osteomyelitis and iliac muscle abscess, and with other systemic diseases, like endocarditis, pyelonephritis and thyroiditis[68-70]. A study showed that high-resolution MRI has a higher sensitivity than scintigraphy in the diagnosis of brucellar sacroilitis[68].

Limbs

Brucellosis with peripheral skeleton involvement is less prevalent compared with vertebral features. It can manifest as arthralgia, enthesopathy, osteomyelitis, arthritis, bursitis, tendonitis and tenosynovitis[64,66]. Arthritis occurs in 14%-26% of the patients suffering from acute, sub-acute or chronic brucellosis[68,69]. Knee, hip and ankle joints are among the most common peripheral regions affected by brucellosis and these patients present with arthritis[68,69]. Shoulders, wrists, elbows, interphalangeal and sternoclavicular joints may also be involved[68,69,70]. Chronic knee arthritis along with osteomyelitis have also been reported[71,72]. Multiple joint arthritis caused by brucellosis was reported in 17% of patients in a study[73]. In children, monoarthritis is the most common type of musculoskeletal brucellosis that mostly involves hip and knee joints, but adjacent bone osteomyelitis may also exist simultaneously[71,72,73]. Brucellosis can involve the peripheral joints through septic (with presence of pathogen) and reactive (lack of the pathogen) mechanisms[74].

Septic arthritis caused by brucellosis has been reported in the literature and it has been recommended that patients with septic arthritis living in the endemic areas, be examined in terms of brucellosis[68,74,75]. Septic arthritis in brucellosis progresses slowly and starts with small pericapsular erosions. Blood culture is positive in 20%-70% of such patients. Although synovial fluid assessment is the most useful diagnostic method, the isolation of the pathogen from synovial fluid is not easy[76]. In relation to the diagnosis of purulent arthritis, it may be necessary to rely on bone marrow culture in those patients with negative serology[77-79].

Knee arthritis has obvious symptoms and is less difficult to diagnose and treat due to easy access. However, the diagnosis and treatment of hip arthritis is more difficult and delay in diagnosis and treatment may lead to serious and irreparable complications, such as dislocation and necrosis of the femoral head[73,80]. Brucellosis should be considered in the differential diagnosis for a patient presenting with knee or hip arthritis symptoms in endemic regions to prevent misdiagnosis and serious complications. For example, misdiagnosis due to serological false negative test and improper interference in surgery was reported about brucellar arthritis of hip[81]. Almajid reported a rare case of brucellar olecranon bursitis whose serology was negative, but the blood and aspirate cultures were positive[82]. Brucellar arthritis following implantation of artificial knee and hip joints has been reported, which the medications may not be enough and removing the prosthesis might be needed[83-85]. Due to the synovial involvement of the disease, pathological evidence may not be found on radiograph in the early phase of infection.

Other manifestations

Spondyloarthritis following brucellosis was reported[77]. Sternal osteomyelitis caused by B. melitensis was observed following median sternotomy[86]. In a study by Ebrahimpour et al[87], brucellosis was attributed to sternoclavicular (4.5%), wrist (2.4%), elbow (1.07%) and shoulder (0.6%) arthritis. Delay in the diagnosis of brucellosis results in prolong disease duration which can lead to osteoarticular or osteolytic lesions. Brucellar osteomyelitis has been observed in closed femur fracture and a pathologic humerus fracture[68,80]. It was also seen in association with prosthetic extra-articular hardware[89]. We reported the first case of brucellar osteomyelitis of pubic symphysis, who was symptom free within two-year follow-up despite inappropriate initial antibiotic therapy[89].
LABORATORY INVESTIGATIONS

Laboratory tests following physical examinations are essential in order to diagnose brucellosis. Serology is often positive in the patients. In the acute infection, immunoglobulin M (IgM) antibody firstly appears, followed by immunoglobulin G (IgG) and immunoglobulin A (IgA)\(^{14,94,95}\). The Wright test, which is a standard agglutination test (SAT), measures the total amount of IgM and IgG antibodies, and the 2-ME test measures IgG antibody. In the endemic regions, a SAT titer ≥ 1:160 and 2-ME titer ≥ 1:80 is in favor of brucellosis diagnosis\(^{94,96,97}\). Enzyme-Linked Immunosorbent Assay (ELISA) is another type of serological test, but has less sensitivity and specificity\(^98\). Polymerase chain reaction (PCR) is a molecular method which can be very useful due to its quick procedure and high sensitivity and specificity, if it is available\(^99\).

TREATMENT

The main purpose of antimicrobial medications in brucellosis is to treat the disease and its symptoms and signs, and to prevent the relapse. Combinations of doxycycline, streptomycin, gentamicin, ciprofloxacin, ofloxacin, co-trimoxazole (trimethoprim plus sulfamethoxazole) and rifampicin are used for antibiotic therapy\(^{100-102}\). No standard therapy exists for osteoarticular brucellosis and physicians prescribe drugs based on their experiences and conditions of the disease (the involved site, and being complicated/uncomplicated). Triple regimen containing streptomycin (1 g daily) plus doxycycline (100 mg twice daily) plus rifampin (15 mg/kg daily) over 6 months had 100% efficacy on brucellar spondylitis\(^{21}\). Similar results were found using this regimen\(^{103,104}\). In contrast, double therapy with doxycycline and rifampin was associated with relapses\(^{19,104}\). With respect to brucellar spondylitis, patients need a long-term anti-bacterial medication (usually at least three months), mainly aiming to prevent relapses. Those patients who failed antibiotic therapy or presented with progressive neurological deficit, need surgical intervention\(^{104,106}\). The rate of surgical drainage in spinal brucellosis was reported in the range of 7.6%-33%\(^{107}\). In case of abscess in those patients with spondylodiscitis, treatment duration will be prolonged and surgery may be needed\(^{107}\).

CONCLUSION

Brucellosis has variable clinical features and osteoarticular manifestations are the most common. Sacroiliac and spinal joints are the most frequently involved regions. Monoarthritis (knee/hip), sacroilitis and spondylitis predominate in children, adults and the elderly, respectively. In order to diagnose the disease, physical examinations, laboratory tests and imaging techniques are needed. Brucellosis should be considered as a differential diagnosis for sciatic and back pain, especially in the endemic regions. Radiological assessments would be very helpful in such cases. Patients whose big joints, bone and artificial joints are involved, may be referred to a rheumatology center. Considering that these patients usually need orthopedic evaluation and treatment, it is recommended to refer them to an orthopedic center in order to prevent adverse effects caused by delay in the treatment. Early and appropriate diagnosis and treatment of the disease is the key of success in management of the patients with the osteoarticular manifestation of brucellosis. This is feasible by an early collaboration of orthopedic surgeon with a specialist in infectious diseases.

REFERENCES

1. Dean AS, Crump L, Greter H, Schelling E, Zinsstag J. Global burden of human brucellosis: a systematic review of disease frequency. PLoS Negl Trop Dis 2012; 6: e1865 [PMID: 23145195 DOI: 10.1371/journal.pntd.0001865]
2. Roushan MR, Alhamdi SA, Gangi SM, Jannmohammadi N, Amiriz MJ. Childhood brucellosis in Babol, Iran. Trop Doct 2005; 35: 229-231 [PMID: 1654479 DOI: 10.1258/004947505774938693]
3. Seleem MN, Boyle SM, Smailnejad Gangi SM, Soleimani Amiri MJ, Hajiahmadi M. Epidemiological features and clinical manifestations in 469 adult patients with brucellosis in Babol, WJO https://www.wjgnet.com February 18, 2019 Volume 10 Issue 2 [PMID: 19604656 DOI: 10.1016/j.vetmic.2009.06.021]
4. Papathanassiou BT, Papachristou G, Hartofilakidis-Garofalid. Brucellar spondylitis. Report of 6 cases. Acta Orthop Scand 1972; 43: 384-391 [PMID: 4651059 DOI: 10.3109/1745367720899955]
5. Al-Tawfiq JA. Therapeutic options for human brucellosis. Expert Rev Anti Infect Ther 2008; 6: 109-120 [PMID: 18251668 DOI: 10.1586/14787210.6.1.109]
6. Hasanjani Roushan MR, Mohrez M, Smailnejad Gangi SM, Soleimani Amiriz MJ, Hajiahmadi M. Epidemiological features and clinical manifestations in 469 adult patients with brucellosis in Babol, WJO https://www.wjgnet.com February 18, 2019 Volume 10 Issue 2 [PMID: 19604656 DOI: 10.1016/j.vetmic.2009.06.021]
Value of MRI in Brucella Spondylitis With Comparison to Clinical and Laboratory Findings.

Acta Inform Med, Ahmadi K, Chokan NM, Abbasi B, Akhavan R, Bolvardi E, Soroureddin S. The Diagnostic Value of MRI in Brucella Spondylitis. *J Microbiol* 2016; 39: e33765 [PMID: 27284398 DOI: 10.5812/jm.33765]

Adesokan HK, Ogbuehi IC, Ogbuehi C, Ogbuehi C, Ogbuehi C. Clinical presentation and diagnosis of brucellosis. *Recent Pat Anticancer Drug Discov* 2013; 8: 34-41 [PMID: 22873352 DOI: 10.2174/1574891113801010007]

Dean AS, Crump L, Grether H, Hattendorf J, Schelling E, Zmistaj G. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. *PLoS Negl Trop Dis* 2012; 6: e1929 [PMID: 2236528 DOI: 10.1371/journal.pntd.0001929]

Galińska EM, Zagórski J. Brucellosis in humans—etiology, diagnostics, clinical forms. *Ann Agric Environ Med* 2013; 20: 233-238 [PMID: 23772567 DOI: 10.2166/wst.2013.207]

Sanaei Dashti A, Karimi A. Skeletal Involvement of Brucella melitensis in Children: A Systematic Review. *Iran J Med Sci* 2013; 38: 286-292 [PMID: 24293781]

Christopher S, Umnapathy BL, Ravikumar KL. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. *J Lab Physicians* 2010; 2: 55-60 [PMID: 21346896 DOI: 10.1176/jlm.v2.n1.13]

Traxler RM, Lehman MW, Bosserman EA, Guerra MA, Smith TL. A literature review of laboratory-acquired brucellosis. *J Clin Microbiol* 2013; 51: 3055-3062 [PMID: 23824774 DOI: 10.1128/JCM.00135-13]

Aragi GF. Update on laboratory diagnosis of human brucellosis. *J Antimicrob Agents* 2010; 36 Suppl 1: S12-S17 [PMID: 20692128 DOI: 10.1016/j.jima.2010.06.014]

Ulu-Kılıç A, Karan N, Ulu-Kılıç A, Karan N, Ulu-Kılıç A. Brucellosis: a systematic review and meta-analysis. *Clin Rheumatol* 2014; 33: 654-659 [PMID: 23000864 DOI: 10.1007/s10067-013-2361-z]

Lim KB, Kwak YG, Kim DY, Kim YS, Kim JA. Back pain secondary to brucellar spondylitis in the lumbar region. *Ann Rehabil Med* 2012; 36: 282-286 [PMID: 22893976 DOI: 10.5535/arm.2012.36.2.282]

Yukkel KZ, Senoglu M, Yuksel M. Brucellar spondylo-discitis with rapidly progressive spinal epidural abscess presenting with sciatica. *Spinal Cord* 2006; 44: 805-808 [PMID: 16683007 DOI: 10.1038/sj.sc.3101938]

Samin I, Gharazedeh M, Khajavi M, Samini M. The etiologies of low back pain in patients with lumbar disk herniation. *Iran Red Crescent Med J* 2014; 16: 15670 [PMID: 22583196 DOI: 10.5812/rcmj.15670]

Hartvigsen J, Hancock MJ, Kongstedt K, Lawniczuk P, Ferreira ML, Genevay S, Hoy D, Kampert J, Pransky G, Siemer J, Smeets RJ, Underwood M; Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. *Lancet* 2018; 391: 2356-2367 [PMID: 29573870 DOI: 10.1016/S0140-6736(18)30480-X]

Andriopoulos P, Tsrioni M, Delfoura S, Aaespos A, Assimakopoulos G. Acute brucellosis: presentation, diagnosis, and treatment of 144 cases. *Int J Infect Dis* 2007; 11: 52-57 [PMID: 1665108 DOI: 10.1016/j.ijid.2005.10.011]

Bosljikovski M, Krteva L, Caparoska S, Dimzova M. Osteoarticular involvement in brucellosis: study of 196 cases in the Republic of Macedonia. *Croat Med J* 2004; 45: 727-733 [PMID: 15578807 DOI: 10.1016/S0016-2295(04)01200-1]

Bosljikovski M, Zezsocki M, Siskova D, Miskova S, Kotovska V, Labacevski N. Clinical characteristics of human brucellosis in patients with various monoarticular involvements. *Clin Rheumatol* 2016; 35: 2579-2584 [PMID: 26861030 DOI: 10.1007/s10067-016-3207-z]

Nickerson EK, Srinha R. Vertebral osteomyelitis in adults: an update. *Br Med Bull* 2016; 117: 121-138 [PMID: 26872859 DOI: 10.1093/bmb/lsw003]

Bozgeyik Z, Gögür H. Cauda equina syndrome. *Clin Rheumatol* 2014; 33: 719-723 [PMID: 24849195 DOI: 10.1007/s10067-014-0047-0]

Arunkumar R, Mete BD. Musculoskeletal brucellosis. *Semin Musculoskelet Radiol* 2011; 15: 470-479 [PMID: 22861828 DOI: 10.1055/s-0031-1293493]

Hu T, Wang J, Zheng C, Wu D. Brucellar spondylodiscitis with rapidly progressive spinal epidural abscess showing cauda equina syndrome. *Spinal Cord Ser Cases* 2016; 2: 15030 [PMID: 28053732 DOI: 10.1038/scarcane.2015.30]

Bozbaş GT, Ünboğaz A, Gürer G. Seregnegative brucellosis of the spine: A case of poas abscess secondary to brucellar spondylodiscitis. *Eur J Rheumatol* 2016; 3: 185-187 [PMID: 28149665 DOI: 10.1155/ejrheum.2015.15082]

Reşorlu H, Sarac S, Incce B, Akbal A, Gökmen F, Zateri C, Savay Y. Cervical Spondylitis and Epidural Abscess Caused by Brucellosis: a Case Report and Literature Review. *Folia Med (Plovdiv)* 2018; 58: 289-292 [PMID: 28086278 DOI: 10.1515/fomedi-2018-0035]

Bagheri AB, Ahmadi K, Chokan NM, Abbasi B, Akhavan R, Bolvardi E, Soroushreza D, The Diagnostic Value of MRI in Brucella Spondylitis With Comparison to Clinical and Laboratory Findings. *Acta Inform Med*
Esmaeilnejad-Ganjii SM et al. Osteoarticular manifestations of brucellosis

Med 2016; 24: 107-110 [PMID: 27147801 DOI: 10.5455/aim.2016.24.107-110]

Li T, Li W, Du Y, Gao M, Liu X, Wang G, Cui H, Jiang Z, Cui X, Sun J. Discrimination of pyogenic spondylodiscitis from brucellar spondylitis on MRI. Medicine (Baltimore) 2018; 97: e11195 [PMID: 29952971 DOI: 10.1097/MD.00000000000011957]

Erdem H, Elalid N, Batirel A, Aliyu S, Sengoz G, Pehlivanoglu F, Ramosaco E, Gulsun S, Tekin R, Mete B, Balkan II, Sevgi DY, Giannistiotis E, Fragou A, Kaya S, Cetin B, Oktenoglu T, DoganCelik A, Karaca B, Horasan ES, Ulug M, Inan A, Kaya S, Arsalanpap E, Ates-Guler S, Wilke A, Senol S, Inan D, Guelu E, Tuncer-Ertem G, Mete-Koc M, Taabukar M, Senbayrak S, Cicek-Senturk G, Sirmatel F, Ocal G, Kocagöz S, Kassogha H, Guven T, Baran AL, Dedeh B, Yilmaz-Karadag F, Kose S, Yilmaz H, Aslan G, AlGallad DA, Cesar S, El-Sokkary R, Bekiroglu N, Vahaboglu H. Comparison of brucellar and tuberculous spondylodiscitis patients: results of the multicenter "Backbone-1 Study". Spine J 2015; 15: 2509-2517 [PMID: 26386176 DOI: 10.1016/j.spinee.2015.09.024]

Mantar BG, Amanath SK, Shinde RS. Review of clinical and laboratory features of human brucellosis. Indian J Med Microbiol 2007; 25: 188-202 [PMID: 17901634 DOI: 10.4103/0255-0857.34758]

Tekaya R, Tayeb MH, El Amri N, Sahli H, Saidane O, Mahmoud I, Abdelloua L. ThU.0027 Brucella Spondylodiscitis: A Study of Nineteen Cases. Ann Rheum Dis 2015; 74: 290 [DOI: 10.1136/annrheumdis-2015-208083]

Koubaa M, Maaloul I, Marrakchi C, Lahiani D, Hammami B, Mznf Z, Ben Mahmoud K, Hammami A, Ben Jemaa M. Spinal brucellosis in South of Tunisia: review of 32 cases. Spine J 2014; 14: 1538-1544 [PMID: 24331843 DOI: 10.1016/j.spinee.2013.09.027]

Chelli Bouaziz M, Laled MF, Chakroun M, Chaabane S. Spinal brucellosis: a review. Skelet Radiol 2008; 37: 785-790 [PMID: 17962938 DOI: 10.1007/s00256-007-0371-x]

Mrabet D, Mizouni R, Khari H, Rekkik S, Chouar E, Meddeb N, Mznf E, Mrabet AB, Sarris HS, Sellami S. Brucellar spondylodiscitis affecting non-contiguous spine levels. BMJ Case Rep 2011; 2011: pii: bcror0120113788 [PMID: 22700744 DOI: 10.1136/bcr.01.2011.3788]

Colmenero JD, Ruiz-Mesa JD, Plata A, Bermúdez P, Martín-Rico P, Queipo-Ortuño M, Reguera JM. Clinical findings, therapeutic approach, and outcome of brucellar vertebral osteomyelitis. Clin Infect Dis 2008; 46: 426-433 [PMID: 18181740 DOI: 10.1086/525266]

Bouaziz MC, Bougami I, Kaffel D, Hamdi W, Ghannouchi M, Kchir MM. Noncontiguous multifocal spondylodiscitis: an exceptional presentation of spinal brucellosis. Tunis Med 2010; 88: 280-284 [PMID: 20446265]

Yang X, Zhang Q, Guo X. Value of magnetic resonance imaging in brucellar spondylodiscitis. Radiol Med 2011; 114: 928-933 [PMID: 23482632 DOI: 10.1007/s00715-014-0416-x]

Bozgeyik Z, Ozdemir H, Demirdag K, Ozdem M, Sonmezoglu F, Ozcgonen S. Clinical and MRI findings of brucellar spondylodiscitis. Eur J Radiol 2008; 67: 153-158 [PMID: 17709606 DOI: 10.1016/j.ejrad.2007.07.002]

Mehanie S, Balije R, Molabideh V, Huric-Juhasi I, Pinjo F, Topaloglu-Cetkovic J, Hadziosmanovic V. Osteoarticular manifestations of brucellosis. Med Arch 2012; 66: 24-26 [PMID: 22937660 DOI: 10.5455/medarch.2012.66.s24-26]

Demiri I. Brucella diakits mimicking herniation without spondylodiscitis; MRI findings. Zentralbl Neurochir 2003; 64: 178-181 [PMID: 14634883 DOI: 10.1055/s-2003-636462]

Yilmaz C, Akar A, Civelek E, Koksay B, Kabatas S, Mznf E, Mrabet AB, Sarris HS, Sellami S. Brucellar spondylodiscitis: a case of lumbar disc herniation. Clin Rheumatol 2010; 44: 516-519 [PMID: 21082497 DOI: 10.1007/s00256-010-0419-1]

Guglielmino A, Yanfajy Z, Ozdemin H, Dimirdag K, Ozdem M, Sonmezoglu F, Ozcgonen S. Clinical and MRI findings of brucellar spondylodiscitis. Eur J Radiol 2008; 67: 153-158 [PMID: 17709606 DOI: 10.1016/j.ejrad.2007.07.002]

Ozturk M, Yavuz F, Altun D, Ulubay M, Firatligil FB. Postpartum Bilateral Sacroiliitis caused by Brucella melitensis in an adolescent. Z Rheumatol 2015; 74: 742-745 [PMID: 26386176 DOI: 10.1016/j.sero.2015.09.024]

Turhan H, Serenhanoglu K, Karadeli E, Timurkaynak F, Arslan H. A case of brucellosis with abscess of the iliacus muscle, olecranon bursitis, and sacroiliitis. Int J Infect Dis 2009; 13: e485-e487 [PMID: 19398360 DOI: 10.1016/j.ijid.2009.02.017]

Acar A, Turhan V, Diktaş H, Oncüöz C, Cavuşlu S. A case of brucellosis complicated with endocarditis, pyelonephritis, sacroilitis and thyroiditis. Mikrobiyol Bul 2009; 43: 141-145 [PMID: 19334911 DOI: 10.3906/bto.2008.015]

Batmaz IB, Teken R, Siraydilıe MA, Deveci O, Cevik R. A Case of Brucellosis with simultaneous dactylositis and sacroilitis. Journal of Medical Cases 2012; 3: 304-307 [DOI: 10.4021/jmc701w]

Bilguturk A, Gul HC, Karakas A, Mert G, Artuk C, Eyigun CP. Can imaging modalities be used as
follow-up criteria after brucellar sacroiliitis treatment? J Infect Dev Ctries 2017; 11: 123-128 [PMID: 28248672 DOI: 10.1058/jtcd.6599]

64 Kazak E, Akhanli Y, Yilmaz E, Heper Y, Mıstık R, Suntaş M, Özkazan C, Göral G, Helvacı S. Brucellosis: a retrospective evaluation of 164 cases. Singapore Med J 2016; 57: 624-629 [PMID: 26768963 DOI: 10.11622/smedj.2015163]

65 Ismayılova R, Nasirova E, Hanou C, Rivard BG, Bautista CT. Patterns of brucellosis infection symptoms in azerbaijan: a latent class cluster analysis. J Trop Med 2014; 2014: 593873 [PMID: 25580137 DOI: 10.1155/2014/593873]

66 Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007; 7: 775-786 [PMID: 18045560 DOI: 10.1016/S1473-3099(07)70286-4]

67 Tekin R, Ceylan Tekin F, Ceylan Tekin R, Cevik R. Brucellosis as a primary cause of tenosynovitis of the extensor muscle of the arm. Infez Med 2015; 23: 257-260 [PMID: 26397296]

68 Wong TM, Lou N, Jin W, Leung F, To M, Leung F. Septic arthritis caused by Brucella melitensis in urban Shenzhen, China: a case report. J Med Case Rep 2014; 8: 367 [PMID: 25394560 DOI: 10.1186/1752-4453-8-367]

69 Ebrahimpour S, Bayani M, Moulana Z, Hasanjani Roushan MR. Skeletal complications of brucellosis: A study of 464 cases in Babol, Iran. Caspian J Intern Med 2017; 8: 44-48 [PMID: 28503282]

70 Geyik MF, Gür A, Nus K, Cevik R, Sarac J, Dikici B, Ayaz C. Musculoskeletal involvement of brucellosis in different age groups: a study of 195 cases. Swiss Med Wkly 2002; 132: 98-105 [PMID: 11971204]

71 MOUSA AR, Muhtaseb SA, Almudallal DS, Khodeir SM, Marafie AA. Osteoarticular complications of brucellosis: a study of 169 cases. Rev Infect Dis 1987; 9: 531-543 [PMID: 3496650 DOI: 10.1097/clinids.9.3.531]

72 Wernaers P, Handelberg F. Brucellar arthritis of the knee: a case report with delayed diagnosis. Acta Orthop Belg 2007; 73: 795-798 [PMID: 18260497 DOI: 10.1080/17453670701014671]

73 Ayasılıoğlu E, Ozišık O, Kiliç D, Kaygusuz S, Sara S, Aydın G, Çoka F, Tekeli E. A case of brucellar septic arthritis of the knee with a prolonged clinical course. Rheumatol Int 2005; 25: 69-71 [PMID: 15806723 DOI: 10.1007/s00296-004-0453-1]

74 Charalambides C, Papademetriou K, Sgouros S, Sakas D. Brucellosis of the spine affecting multiple non-contiguous levels. Br J Neurosurg 2010; 24: 589-591 [PMID: 20707678 DOI: 10.1093/bjneurol/bqj095]

75 Fruchtman Y, Segev RW, Golan AA, Dalem Y, Tainak MA, Novak V, Peled N, Craiu M, Leibovitz E. Epidemiological, diagnostic, clinical, and therapeutic aspects of Brucella bacteremia in children in southern Israel: a 7-year retrospective study (2005-2011). Vector Borne Zoonotic Dis 2015; 15: 195-201 [PMID: 25793475 DOI: 10.1089/vbz.2014.1726]

76 Alshaalain MA, Alalota SA, Alhumoud MA, Albayyoun EA, Balhhy HH, AlShahranah DA, Allojhan S. Brucellosis in children: Prevention, diagnosis and management guidelines for general pediatricians endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). JLPAM 2014; 1: 40-46 [DOI: 10.1016/j.jpam.2014.09.004]

77 Gotuzzo E, Alarcon GS, Bocanegra TS, Carrillo C, Guerra JC, Rolando I, Espinoza LR. Articular involvement in human brucellosis: a retrospective analysis of 304 cases. Semin Arthritis Rheum 1982; 12: 245-255 [PMID: 610126 DOI: 10.1016/s0049-4538(17)30550-3]

78 Elzein FE, Sherbeeni N. Brucella Septic Arthritis: Case Reports and Review of the Literature. Case Rep Infect Dis 2016; 2016: 4687840 [PMID: 27200196 DOI: 10.1155/2016/4687840]

79 Hasanoglu I, Guven T, Maras Y, Guner R, Tasyaran MA, Alarcón GS, Bocanegra TS, Carrillo C, Guerra JC, Rolando I, Espinoza LR. Arthrosis of the spine affecting multiple non-contiguous levels. Trop Doct 2009; 39: 106-112 [PMID: 18692340 DOI: 10.1016/S1473-3099(07)70286-4]

80 Lee KH, Kang H, Kim T, Choi S. A case of unusual septic knee arthritis with Brucella abortus after arthroscopic meniscus surgery. Acta Orthop Traumatol Turc 2016; 50: 385-387 [PMID: 2731040 DOI: 10.1016/j.aott.2015.02.054]

81 Cerit ET, Aydin M, Azap A. A case of brucellar monoarthritis and review of the literature. Rheumatol Int 2012; 32: 1465-1468 [PMID: 22161352 DOI: 10.1007/s00296-012-1946-0]

82 Jannamohammadi N, Roushan MR. False negative serological tests may lead to misdiagnosis and mismanagement in osteoarticular brucellosis. Trop Doct 2009, 39: 88-90 [PMID: 19292920 DOI: 10.1258/td.2009.080042]

83 Almajid FM. A Rare Form of Brucella Bursitis with Negative Serology: A Case Report and Literature Review. Case Rep Infect Dis 2017; 2017: 29802532 [PMID: 28337351 DOI: 10.1155/2017/29802532]

84 Mortazavi SMJ, Sobhan MR, Mazoochy H. Brucella Arthritis Following Total Knee Arthroplasty in a Patient with Hemophilia: A Case Report. Arch Bone Jt Surg 2017; 5: 342-346 [PMID: 29222608]

85 Lewis JM, Folb J, Kalra S, Squire SB, Taegtmeyer M, Beeching NJ. Brucella melitensis prosthetic joint infection in a traveller returning to the UK from Thailand: Case report and review of the literature. Travel Med Infect Dis 2016; 14: 444-450 [PMID: 27591088 DOI: 10.1016/j.jtmid.2016.08.010]

86 Kasim RA, Araj GF, Afiche NE, Tabbahar ZA. Brucella infection in total hip replacement: case report and review of the literature. Scand J Infect Dis 2004; 36: 65-67 [PMID: 15006565 DOI: 10.1080/036550304100017456]

87 Chin YT, Kristman M, Burns P, Qamaruddin A, Hasan R, Dodgson AR. Brucella melitensis sternal osteomyelitis following median sternotomy. J Infect Chemother 2014; 20: 574-576 [PMID: 24910374 DOI: 10.1016/j.jiac.2014.04.011]

88 Abrahams MA, Tylkowski CM. Brucella osteomyelitis of a closed femur fracture. Clin Orthop Relat Res 1985; 194-196 [PMID: 3919964 DOI: 10.1097/00003086-198510000-00021]

89 Luc M, Armentie T, Pham T, Legré V, Lafforgue P. Chronic Brucella infection of the humerus diagnosed after a spontaneous fracture. Joint Bone Spine 2008; 75: 229-231 [PMID: 17977771 DOI: 10.1016/j.jbspin.2007.04.024]

90 Navarro V, Solera J, Martínez-Alfaro E, Sáez L, Escobar E, Pérez-Flores JC. Brucella osteomyelitis involving prostatic extra-articular hardware. J Infect 1997; 35: 192-194 [PMID: 9512344 DOI: 10.1016/s0163-4453(97)71941-7]

91 Mannozi D, Gangi EN, Touzet P. [Brucellosis of the pubic symphysis. Apropos of a case. Review of the
literature]. Rev Chir Orthop Reparatrice Appar Mot 1996; 82: 753-756 [PMID: 9097862]
94 Pabuccuoglu O, Ecezim T, El S, Coskun A, Akcali S, Sanlidag T. Evaluation of serological tests for
diagnosis of brucellosis. Jpn J Infect Dis 2011; 64: 833-845 [PMID: 21810055 DOI: 10.1586/eri.11.55]
95 Roushan MR, Afamiri MJ, Laya A, Mostafazadeh A, Bijani A. Follow-up standard agglutination and 2-
mercaptoethanol tests in 175 clinically cured cases of human brucellosis. Int J Infect Dis 2010; 14: e250-
e253 [PMID: 19648045 DOI: 10.1016/j.ijid.2009.05.008]
96 Nielsen K, Yu WL. Serological diagnosis of brucellosis. Prilozi 2010; 31: 65-89 [PMID: 20703184 DOI:
10.1080/00480169.1969.33804]
97 Sanaei Dashti A, Karimi A, Javad V, Shiva F, Fallah F, Alaei MR, Pournasiri Z. ELISA Cut-off Point for the Diagnosis of Human Brucellosis; a Comparison with Serum Agglutination Test. Iran J Infect Dis 2010; 12: 37: 9-14 [PMID: 23115423]
98 Wang Y, Wang Z, Zhang Y, Bai L, Zhao Y, Liu C, Ma A, Yu H. Polymerase chain reaction-based assays for the diagnosis of human brucellosis. Ann Clin Microbiol Antimicrob 2014; 13: 31 [PMID: 25085266 DOI: 10.1186/s12941-014-0031-7]
99 Bayindir Y, Sonmez E, Aladag A, Buyukberber N. Comparison of five antimicrobial regimens for the treatment of brucellar spondylitis: a prospective, randomized study. J Chemother 2003; 15: 466-471 [PMID: 14598939 DOI: 10.1179/joc.2003.15.5.466]
100 Solera J, Lozano E, Martinez-Alfarro E, Espinosa A, Castillejos ML, Abad L. Brucellar spondylodiscitis: review of 35 cases and literature survey. Clin Infect Dis 1999; 29: 1440-1449 [PMID: 10585793 DOI: 10.1086/313524]
101 Solera J, Lozano E, Martinez-Alfarro E, Espinosa A, Castillejos ML, Abad L. Brucellar spondylodiscitis: review of 35 cases and literature survey. Clin Infect Dis 1999; 29: 1440-1449 [PMID: 10585793 DOI: 10.1086/313524]
102 Solera J, Lozano E, Martinez-Alfarro E, Espinosa A, Castillejos ML, Abad L. Brucellar spondylodiscitis: review of 35 cases and literature survey. Clin Infect Dis 1999; 29: 1440-1449 [PMID: 10585793 DOI: 10.1086/313524]
103 Alp E, Doganay M. Current therapeutic strategy in spinal brucellosis. Int J Infect Dis 2008; 12: 573-577 [PMID: 18539496 DOI: 10.1016/j.ijid.2008.03.014]
104 Kaptan F, Gulduren HM, Sarılmaz A, Suci HK, Ural S, Vardar I, Coskun NA. Brucellar spondylodiscitis: comparison of patients with and without abscesses. Rheumatol Int 2013; 33: 985-992 [PMID: 22842981 DOI: 10.1007/s00296-012-2491-4]
