ARITHMETIC DERIVATIVES THROUGH GEOMETRY OF NUMBERS

HECTOR PASTEN

Abstract. We define certain arithmetic derivatives on \mathbb{Z} that respect the Leibniz rule, are additive for a chosen equation $a+b=c$, and satisfy a suitable non-degeneracy condition. Using Geometry of Numbers, we unconditionally show their existence with controlled size. We prove that any powersaving improvement on our size bounds would give a version of the abc Conjecture. In fact, we show that the existence of sufficiently small arithmetic derivatives in our sense is equivalent to the abc Conjecture. Our results give an explicit manifestation of an analogy suggested by Vojta in the eighties, relating Geometry of Numbers in arithmetic to derivatives in function fields and Nevanlinna theory. In addition, our construction formalizes the widespread intuition that the abc Conjecture should be related to arithmetic derivatives of some sort.

Contents

1. Introduction 1
2. Derivations and arithmetic derivatives 3
3. An abc bound and the problem of small arithmetic derivatives 6
4. Small arithmetic derivatives are equivalent to the abc Conjecture 9
5. Differentials of rings over monoids 12
6. Acknowledgments 13
References 13

1. INTRODUCTION

1.1. A map satisfying the Leibniz rule. There is great interest in constructing derivatives on \mathbb{Z} behaving like derivatives on function fields, as they are expected to have remarkable applications. For instance, the arithmetic analogue of the Mason-Stothers theorem is the abc Conjecture, but the proof for polynomials heavily uses derivatives and it is unclear how to adapt it to \mathbb{Z}.

Let us discuss a first attempt by focusing only on the Leibniz rule. For each prime p let v_p denote the p-adic valuation on \mathbb{Q} and let ξ_p be a variable. Let Ω be the free \mathbb{Z}-module generated by the variables ξ_p. Let $d : \mathbb{Z} \to \Omega$ be the map defined by $d0 = 0$ and by

$$
dn = n \sum_{p|n} \frac{v_p(n)}{p} \cdot \xi_p
$$

for $n \neq 0$, where p varies over the different prime divisors of n. (A version of $d : \mathbb{Z} \to \Omega$ and generalizations can be found in [6].) Note that $n \cdot v_p(n)/p \in \mathbb{Z}$ when $p|n$, so $dn \in \Omega$ for all $n \in \mathbb{Z}$. In particular, when p is prime we get $dp = \xi_p$. One immediately checks

Lemma 1.1 (Leibniz rule for d). For all $a, b \in \mathbb{Z}$ we have $d(ab) = adb + bda$.
In fact, there is a sense in which \(d : \mathbb{Z} \to \Omega \) is the universal map on \(\mathbb{Z} \) satisfying the Leibniz rule, see Section 5. Unfortunately, this map \(d \) is not a good analogue of a derivative because it is not additive: For instance, \(d(1) = 0, d(2) = \xi_2, \) and \(d(3) = \xi_3 \) but we certainly have \(0 + \xi_2 \neq \xi_3 \).

1.2. Arithmetic derivatives. The starting point of our work is the following suggestion due to Thanases Pheidas: When derivatives are applied in function field arithmetic, it is often the case that additivity is only needed finitely many times. Thus, one might still assign values to the variables \(\xi_p \) in order to make \(d \) additive in the finitely many needed cases. For instance, in our previous example we may replace \(\xi_2 \) and \(\xi_3 \) by 1 to get \(0 + 1 = 1 \) from the equation \(1 + 2 = 3 \).

Our aim is to investigate this construction in the simplest non-trivial case: When exactly one additive condition is imposed. For this, it is convenient to give an algebraic formulation of Pheidas’s suggestion.

Consider a group morphism \(\psi : \Omega \to \mathbb{Z} \). The arithmetic derivative \(d^\psi \) attached to \(\psi \) is simply defined as \(d^\psi = \psi \circ d : Z \to \mathbb{Z} \). Note that \(d^\psi : \mathbb{Z} \to \mathbb{Z} \) still respects the Leibniz rule.

Given coprime positive integers \(a, b, c \) with \(a+b = c \), the condition \(d^\psi(a) + d^\psi(b) = d^\psi(c) \) imposes a linear equation on the values \(\psi(\xi_p) \). When \(c > 2 \), the set of all such maps \(\psi \) satisfying \(\psi(\xi_p) = 0 \) whenever \(p | abc \), turns out to be a non-trivial free abelian group, cf. Lemma 2.4. We denote this group by \(\mathcal{T}(a, b) \). With this notation, one can ask to what extent an arithmetic derivative \(d^\psi \) for \(\psi \in \mathcal{T}(a, b) \) can be used to mimic arguments from function field arithmetic.

1.3. The Small Derivatives Conjecture. Let us focus our attention on a particular kind of morphism \(\psi : \Omega \to \mathbb{Z} \). For us, a derivation is a group morphism \(\psi : \Omega \to \mathbb{Z} \) satisfying that its norm \(\| \psi \| : = \sup_p |\psi(\xi_p)| \) is finite. The set of all such maps is a \(\mathbb{Z} \)-module denoted by \(\mathcal{T} \) which comes equipped with the norm \(\| − \| \). The previously defined groups \(\mathcal{T}(a, b) \) are contained in \(\mathcal{T} \).

Besides these definitions, we also introduce the notion of \(\psi \)-independence for a pair of integers \((a, b) \) and a derivation \(\psi \), by requiring that the arithmetic Wronskian \(W^\psi(a, b) = a d^\psi b - b d^\psi a \) is non-zero. Our study focuses on the question of existence of small (in the sense of \(\| − \| \)) derivations \(\psi \in \mathcal{T}(a, b) \) satisfying that \(a, b \) are \(\psi \)-independent. We propose the following

Conjecture 1.2 (Small Derivatives Conjecture, cf. Conjecture 3.9). There is an absolute constant \(0 < \eta < 1 \) such that for all but finitely many triples of coprime positive integers \((a, b, c) \) satisfying \(a + b = c \) and not of the form \((1, N, q) \) with \(q \) prime (up to order), the following holds: There is \(\psi \in \mathcal{T}(a, b) \) such that \(a, b \) are \(\psi \)-independent and \(\| \psi \| < c^\eta \).

This conjecture seems to catch the usefulness of derivatives in function field arithmetic in the sense that it allows one to translate arguments from function fields to \(\mathbb{Z} \), provided that additivity of derivatives is used just once. In order to clarify how to use our arithmetic derivatives together with the Small Derivatives Conjecture to perform such a translation, in Section 3.4, we give a short proof of the analogue of Fermat’s Last Theorem for \(\mathbb{C}[x] \) based on derivatives without using the Mason-Stothers theorem or radicals, and then we translate the argument to \(\mathbb{Z} \). We conclude that the Small Derivatives Conjecture implies the asymptotic form of Fermat’s Last Theorem.

The connection with Fermat’s Last Theorem is of course just an example to clarify the analogy between our arithmetic derivatives and the usual function field derivatives. Actually, our main goal is to show that the Small Derivatives Conjecture is equivalent to the \(abc \) Conjecture (with a suitable choice of exponents). Let us give a brief outline of the main results.

1.4. Main results. In Theorem 2.6, we will use geometry of numbers to show that \(\mathcal{T}(a, b) \) admits a full set of linearly independent derivations with controlled norm. In Theorem 3.3, we prove an unconditional \(abc \)-type bound which explicitly includes a contribution coming from the norm of arithmetic derivatives. This motivates the problem of producing \(\psi \in \mathcal{T}(a, b) \) for a given pair of coprime positive integers \((a, b) \) such that \(\| \psi \| \) is small and \(a, b \) are \(\psi \)-independent. We prove such a
result in Lemma 3.5 but unfortunately it is insufficient to prove the abc Conjecture. Nevertheless, this analysis motivates a heuristic (cf. Section 3.3) leading to the formulation of the Small Derivatives Conjecture discussed above. As for evidence, besides Lemma 3.5 and the heuristic in Section 3.3, we prove a version of the Small Derivatives Conjecture with exponent η = 1/2 + ε, provided that the ψ-independence condition is replaced by a somewhat weaker non-degeneracy condition, see Theorem 2.8.

Our main results concerning the arithmetic relevance of these notions are Lemma 4.1 and Theorem 4.5; see also Corollary 4.6. These results show that the Small Derivatives Conjecture is equivalent to the abc-conjecture, with a precise dependence of exponents.

1.5. Some algebraic context. In Section 5 we include a discussion on a generalization of the constructions Ω and ℱ from an algebraic point of view. Consider a commutative monoid R, a commutative unitary ring A, and a morphism of monoids α : R → A where A is taken as a multiplicative monoid. For an A-module U, we say that a map D : R → U is an α-derivation (with values in U) if D(α(r)) = 0 for every r ∈ R and D(ab) = aD(b) + bD(a) for all a, b ∈ A.

We will construct a universal α-derivation dα : A → Ω(A,α) and compute it in some examples. One of these examples shows that our map d : Z → Ω is precisely the universal α-derivation on Z for the inclusion map α : {−1,1} → Z. So, in this sense, the map d : Z → Ω is not artificial.

Our notion of α-derivations is very similar to the theory of absolute derivations from [6], except that we keep track of the additional data of a morphism of monoids α : R → A—in fact, when R = {1} we recover the absolute derivations from [6]. The additional data of a morphism of monoids is natural from various points of view. First, in our arithmetic applications it corresponds to restricting the support of the derivations ψ ∈ ℱ, which was necessary in the definition of ℱ(a,b). Secondly, one can check compatibility with localization of our α-derivations, leading to sheaves of α-derivations on pre-log schemes (although we do not pursue this direction in this work). From this point of view, our modules ℱ(a,b) give normed sheaves on Spec(Z) endowed with a suitable pre-log structure. Finally, monoids are often considered as the most basic “ground field” in the general F1 philosophy, which motivates the construction of derivatives on Z by requiring compatibility with monoids rather than requiring linearity.

1.6. Remarks on arithmetic derivatives. In summary, this work formalizes the widespread intuition that some sort of arithmetic derivative on Z should be closely related to the abc Conjecture. Our results are in line with Vojta’s proposed analogy comparing Geometry of Numbers in arithmetic to derivations in the setting of function fields and Nevanlinna theory; see Chapter 6 in [11]. We stress the fact that—despite the close relation with more sophisticated concepts such as “geometry over F1”—our constructions only involve classical tools.

It is worth pointing out that Vojta has a different proposal for arithmetic derivatives in terms of the existence of small rational points in the total space of certain projective bundles (the Tautological Conjecture, cf. Section 30 in [12]). Also, Faltings [5] investigated yet another possible notion of arithmetic derivative in terms of certain axiomatically defined arithmetic analogue of the Kodaira-Spencer class for fibrations, showing that such an object cannot exist.

Finally, we mention that Buium (see [3] and the references therein) developed a theory of p-derivations, which affords some analogies between differential calculus and the arithmetic of local fields. Buium’s p-derivations, however, are purely local and they do not seem to be related to the global notion of arithmetic derivative in the present work.

2. Derivations and arithmetic derivatives

2.1. The module ℱ and arithmetic derivatives. Recall (from the Introduction) that Ω is the free Z-module generated by the variables ξp for p varying over prime numbers. For a Z-linear map
Lemma 2.3. We have \(|\psi| = \sup_p |\psi(\xi_p)| \). We will often use the observation that if \(\psi \neq 0\) then \(|\psi| \geq 1\). Let \(\mathcal{T} = \{\psi \in \text{Hom}_Z(\Omega, Z) : ||\psi|| \text{ is finite}\}\). Elements of \(\mathcal{T}\) will be called derivations and \(\| - \|\) is a norm on the \(Z\)-module \(\mathcal{T}\).

Given a derivation \(\psi \in \mathcal{T}\) we define the arithmetic derivative attached to \(\psi\) as the map
\[
d^\psi : Z \to Z \quad \text{defined by} \quad d^\psi := \psi \circ d.
\]

For example, the classical “arithmetic derivative” that one encounters in elementary number theory \([9, 1]\) is precisely \(d^\sigma\) where \(\sigma(\sum_p a_p \xi_p) = \sum_p a_p\) —note that \(\|\sigma\| = 1\) so \(\sigma \in \mathcal{T}\).

Returning to the general case, observe that upon composing with \(\psi \in \mathcal{T}\), Lemma [1.1] gives

Lemma 2.1 (Leibniz rule for arithmetic derivatives). Let \(\psi \in \mathcal{T}\). For every \(a, b \in Z\) we have \(d^\psi(ab) = ad^\psi b + bd^\psi a\). Thus, for all integers \(n \geq 1\) and all \(a \in Z\) we have \(d^\psi(a^n) = na^{n-1}d^\psi a\).

Concerning norms, the following estimates are useful.

Lemma 2.2. For every positive integer \(n\) we have \(\sum_p v_p(n)/p \leq (2 \log 2)^{-1} \log n\). In particular, if \(n \geq 2\) and \(\psi \in \mathcal{T}\), then \(|d^\psi(n)| < \|\psi\| \cdot n \log n\).

Proof. We can assume \(n \geq 2\). Then we get
\[
\sum_{p|n} \frac{v_p(n)}{p} = \sum_{p|n} v_p(n) \log p \cdot \frac{1}{p \log p} \leq \left(\max_{p|n} \frac{1}{p \log p}\right) \log n \leq \frac{\log n}{2 \log 2}.
\]
The last claim is immediate from \(d^\psi(n) = n \sum_{p|n} v_p(n)p^{-1}(\xi_p)\). \(\square\)

2.2. The modules \(\mathcal{T}(a, b)\). The support of \(\psi \in \mathcal{T}\) is the set of primes supp(\(\psi\)) = \(\{p : \psi(\xi_p) \neq 0\}\). The support of a non-zero integer \(n\) is supp(\(n\)) = \(\{p : p|n\}\) and the number of different prime factors is \(\omega(n) = \#\text{supp}(n)\). We recall the following elementary fact:

Lemma 2.3. We have \(\omega(n) = O(\log(n)/\log \log n)\). In particular, for each \(\epsilon > 0\) we have the bound \(\omega(n) < \epsilon \log n\) for all but finitely many positive integers \(n\).

For a pair of positive integers \(a, b\) we define
\[
\mathcal{T}(a, b) = \{\psi \in \mathcal{T} : \text{supp}(\psi) \subseteq \text{supp}(ab(a+b))\} \text{ and } d^\psi(ab(a+b)) = d^\psi a + d^\psi b
\]
(since \(a\) and \(b\) are positive, supp(\(ab(a+b)\)) is a finite set.) Thus, for \(\psi \in \mathcal{T}(a, b)\) we have that the arithmetic derivative \(d^\psi\) not only satisfies the Leibniz rule, but also, it satisfies \(d^\psi(ab(a+b)) = d^\psi a + d^\psi b\) for the chosen integers \(a\) and \(b\).

Explicitly, the condition \(d^\psi(ab(a+b)) = d^\psi a + d^\psi b\) is
\[
a \sum_{p|a} \frac{v_p(a)}{p} \cdot \psi(\xi_p) + b \sum_{p|b} \frac{v_p(b)}{p} \cdot \psi(\xi_p) = (a+b) \sum_{p|(a+b)} \frac{v_p(a+b)}{p} \cdot \psi(\xi_p)
\]
which is a homogeneous linear equation on the unknowns \(\psi(\xi_p)\) for \(p \in \text{supp}(ab(a+b))\). Hence:

Lemma 2.4 (Basic existence lemma). Let \(a\) and \(b\) be positive integers. Then \(\mathcal{T}(a, b)\) is a saturated \(Z\)-submodule of \(\mathcal{T}\) of rank \(\omega(ab(a+b)) - 1\).

2.3. Bounding the norm. We aim for a more precise version of Lemma 2.4. First, we note that for all \(m, n, k \in Z\) we have
\[
d(km + kn) - d(km) - d(kn) = k \cdot (d(m + n) - dm - dn)
\]
and similarly for \(d^\psi\) for any \(\psi \in \mathcal{T}\). Hence, the question of existence of arithmetic derivatives respecting additivity for a chosen pair of numbers can be reduced to the coprime case.

We will need the following version of Siegel’s lemma which builds on Minkowski’s second theorem in Geometry of Numbers, see Theorem 2 in [2].
Theorem 2.5 (Siegel’s lemma). Let \(a_1, ..., a_N \in \mathbb{Z} \). The equation \(a_1X_1 + ... + a_NX_N = 0 \) has linearly independent solutions \(x_i = (x_{i1}, ..., x_{iN}) \in \mathbb{Z}^N \) for \(1 \leq i \leq N - 1 \) satisfying
\[
\prod_{i=1}^{N-1} \max_{1 \leq j \leq N} |x_{ij}| \leq N \cdot \max_{1 \leq j \leq N} |a_j|.
\]

With this at hand, we can prove a more precise version of Lemma 2.4, which we state in the case of positive integers for the sake of simplicity.

Theorem 2.6 (Existence of arithmetic derivatives of controlled size). Suppose that \(a, b \) are coprime positive integers with \(c := a + b > 2 \), i.e., \((a, b) \neq (1, 1) \). Then \(\mathcal{T}(a, b) \) has rank \(r := \omega(abc) - 1 \geq 1 \) and there are \(\mathbb{Z} \)-linearly independent derivations \(\psi_1, ..., \psi_r \in \mathcal{T}(a, b) \) satisfying
\[
\prod_{i=1}^r \|\psi_i\| \leq \frac{\omega(abc)}{2\log 2} \cdot c \log c.
\]

Proof. As in (2.1), the condition \(d^\psi a + d^\psi b = d^\psi c \) defining \(\mathcal{T}(a, b) \) becomes
\[
a \sum_{p|a} \frac{v_p(a)}{p} \cdot \psi(\xi_p) + b \sum_{p|b} \frac{v_p(b)}{p} \cdot \psi(\xi_p) = c \sum_{p|c} \frac{v_p(c)}{p} \cdot \psi(\xi_p)
\]
Since \((a, b) \neq (1, 1) \) we have \(r \geq 1 \). Treating \(\psi(\xi_p) \) as unknowns and using the fact that \(a, b, c \) are pairwise coprime, the coefficients of the previous equation are positive integers bounded by \(c \log_2(c)/2 \) where \(\log_2 \) is the base 2 logarithm. The result follows by Theorem 2.5.

Choosing the smallest derivation provided by the previous theorem one deduces:

Corollary 2.7 (Existence of a small derivative). Let \(\epsilon > 0 \). For all but finitely many triples of coprime integers \(a, b, c \) with \(c > 2 \) and satisfying \(a + b = c \), there is a non-zero \(\psi \in \mathcal{T}(a, b) \) with \(\|\psi\| < c^{\frac{1}{2} + \epsilon} \), where \(r = \omega(abc) - 1 \).

However, Corollary 2.7 does not ensure any sort of non-degeneracy for the arithmetic derivative it provides. For instance, although \(\psi \) is not zero, it can occur that \(d^\psi(a) = d^\psi(b) = d^\psi(c) = 0 \). The following result remedies this situation.

Theorem 2.8 (Small non-trivial derivatives). Let \(\epsilon > 0 \). For all but finitely many triples of coprime integers \(a, b, c \) larger than 1 that satisfy \(a + b = c \), there is \(\psi \in \mathcal{T}(a, b) \) with \(\|\psi\| < c^{\frac{1}{2} + \epsilon} \) such that not all the integers \(d^\psi(a), d^\psi(b), d^\psi(c) \) are zero.

Proof. Since \(a, b, c \) are larger than 1, each one of them has prime divisors. Thus, the conditions (2.1), \(d^\psi(a) = 0 \), and \(d^\psi(b) = 0 \) are linearly independent when we consider the terms \(\psi(\xi_p) \) as unknowns. Let \(\mathcal{X}(a, b) \subseteq \mathcal{T}(a, b) \) be the subgroup defined by these conditions and note that \(\text{rk} \mathcal{X}(a, b) = r - 2 \) where \(r = \text{rk} \mathcal{T}(a, b) = \omega(abc) - 1 \), see Lemma 2.4.

Let \(\psi_1, ..., \psi_r \in \mathcal{T}(a, b) \) be as provided by Theorem 2.6 and assume that they are labeled in such a way that \(\|\psi_1\| \leq \|\psi_2\| \leq ... \leq \|\psi_r\| \). Since the \(\psi_i \) are linearly independent, there are indices \(i_1 < i_2 \) such that \(\psi_{i_1} \) and \(\psi_{i_2} \) are not in \(\mathcal{X}(a, b) \). Then we have
\[
\|\psi_1\| \leq \|\psi_{i_1}\| \cdot \|\psi_{i_2}\| \leq \prod_{i=1}^r \|\psi_i\| \leq \frac{\omega(abc)}{2\log 2} \cdot c \log c.
\]
and we conclude by Lemma 2.3.

We will be interested in a more delicate notion of non-degeneracy for a derivation \(\psi \in \mathcal{T}(a, b) \), for which we need to introduce certain arithmetic Wronskians.
2.4. Independence. One might be tempted to explore analogues of various notions from differential calculus using the functions $d^\psi : \mathbb{Z} \to \mathbb{Z}$ instead of an actual derivative. Rather than giving a lengthy list of such definitions, let us simply mention here a notion that will be useful for us. Given $\psi \in \mathcal{T}$, the ψ-Wronskian of two integers a, b is defined by

$$W^\psi (a, b) = \text{det} \begin{bmatrix} a & b \\ d^\psi a & d^\psi b \end{bmatrix} = ad^\psi b - bd^\psi a \in \mathbb{Z}.$$

Let us also note the formula

$$W^\psi (a, b) = ab \cdot \left(\sum_{p \mid b} \frac{v_p(b)}{p} \psi(\xi_p) - \sum_{p \mid a} \frac{v_p(a)}{p} \psi(\xi_p) \right).$$

We say that a, b are ψ-dependent if $W^\psi (a, b) = 0$. Otherwise, they are ψ-independent. From (2.2) we deduce that a, b are ψ-dependent if and only if

$$\sum_{p \mid a} \frac{v_p(a)}{p} \psi(\xi_p) = \sum_{p \mid b} \frac{v_p(b)}{p} \psi(\xi_p).$$

Given positive integers a and b we define

$$\mathcal{T}^0(a, b) = \{ \psi \in \mathcal{T}(a, b) : a, b \text{ are } \psi\text{-dependent} \}.$$

Lemma 2.9. Let a, b be coprime positive integers with $(a, b) \neq (1, 1)$. The set $\mathcal{T}^0(a, b)$ is a saturated \mathbb{Z}-submodule of $\mathcal{T}(a, b)$ with $\text{rk} \mathcal{T}^0(a, b) = \text{rk} \mathcal{T}(a, b) - 1 = \omega(ab(a + b)) - 2$. In particular, $\mathcal{T}^0(a, b)$ is properly contained in $\mathcal{T}(a, b)$.

Proof. Since $(a, b) \neq (1, 1)$ there is some prime $q \mid ab$. Hence, the Equation (2.2) defining $\mathcal{T}^0(a, b)$ is non-trivial. Furthermore, no term corresponding to primes $p \mid c$ contributes to (2.2), while they appear in the Equation (2.1) defining $\mathcal{T}(a, b)$. This proves that, considering the values $\psi(\xi_p)$ as variables, the Equations (2.1) and (2.3) are linearly independent. We conclude by Lemma 2.4. \qed

3. An abc bound and the problem of small arithmetic derivatives

3.1. The abc Conjecture. The radical of a positive integer n, denoted by rad(n), is the product without repetitions of the different primes dividing n. The celebrated abc Conjecture is

Conjecture 3.1 (The Masser-Oesterlé abc Conjecture). Given $\epsilon > 0$, there is a constant $\kappa_\epsilon > 0$ such that for all coprime positive integers a, b, c with $a + b = c$ we have $c < \kappa_\epsilon \cdot \text{rad}(abc)^{1+\epsilon}$.

For many applications even the following weaker version would suffice:

Conjecture 3.2 (Oesterlé’s abc Conjecture). There is an absolute constant M such that for all coprime positive integers a, b, c with $c = a + b$ we have $c < \text{rad}(abc)^M$.

Oesterlé’s version of the abc Conjecture was proposed first in 1985, and it was later refined into the Masser-Oesterlé abc Conjecture by Masser. See [7] for a historical account of how these conjectures were formulated. To the best of the author’s knowledge, they remain open.

3.2. An abc bound using arithmetic derivatives. The notion of derivation considered in the previous section is enough to get an estimate in the spirit of the abc Conjecture, with a proof analogous to Snyder’s proof of Mason’s Theorem in the function field setting (see [10]) or to the proof of the Second Main Theorem in Nevanlinna theory using Wronskians or logarithmic derivatives.

Theorem 3.3 (An abc estimate). Let a, b be coprime positive integers with $(a, b) \neq (1, 1)$ and let $\psi \in \mathcal{T}(a, b)$. Suppose that a and b are ψ-independent. Writing $c = a + b$, we have

$$\frac{c}{\log c} \leq \text{rad}(abc) \cdot \frac{\|\psi\|}{\log 2}.$$
For the proof, we need a simple observation.

Lemma 3.4. For any positive integer n and any $\psi \in \mathcal{T}$, we have that n divides $\gcd(n, d^\psi n) \cdot \operatorname{rad}(n)$.

Proof. n divides $n \cdot \operatorname{rad}(n)$. From the definition of d^ψ, we see that n divides $(d^\psi n) \cdot \operatorname{rad}(n)$.

Proof of Theorem 3.3. The equation $d^\psi a + d^\psi b = d^\psi c$ gives

$$W := W^\psi(a, b) = W^\psi(a, c) = W^\psi(c, b)$$

which is non-zero because a, b are ψ-independent. By Lemma 3.4, we see that $a/rad(a)$ divides $W = W^\psi(a, b)$, and similarly for b and c. By coprimality of $a, b,$ and c we get that abc divides $W \cdot \operatorname{rad}(abc)$. Since $W \neq 0$, we conclude $abc \leq |W| \cdot \operatorname{rad}(abc)$. From (2.2) we deduce

$$\frac{abc}{\operatorname{rad}(abc)} \leq |W| = ab \left| \sum_p v_p(a) \psi(\xi_p) - \sum_p v_p(b) \psi(\xi_p) \right| \leq ab\|\psi\| \sum_{p|ab} v_p(ab) \frac{\log(ab)}{2 \log 2}$$

where the last bound is by Lemma 2.2. The result follows from $\log(ab) \leq 2 \log c$.

3.3 Small arithmetic derivatives.

In view of Theorem 3.3, we cannot avoid the question of existence of small derivations $\psi \in \mathcal{T}(a, b)$ subject to the condition that a, b be ψ-independent. A first result is directly deduced from Lemma 2.9 and Theorem 2.6.

Lemma 3.5. (Small arithmetic derivatives satisfying independence). Let a, b be coprime positive integers with $(a, b) \neq (1, 1)$ and let $c = a + b$. Let $r = \omega(abc) - 1$ and note that $r \geq 1$. For any list of linearly independent derivations $\psi_1, ..., \psi_r \in \mathcal{T}(a, b)$ there is at least one index $1 \leq i_0 \leq r$ such that a, b are ψ_{i_0}-independent. Furthermore, choosing $\psi_1, ..., \psi_r$ as in Theorem 2.6 we get

$$\|\psi_{i_0}\| \leq \frac{\omega(abc)}{2 \log 2} \cdot c \log c.$$

Example 3.6. Let $q = 2^n - 1$ be a Mersenne prime and take $a = 1, b = q, c = 2^n$. Then $\mathcal{T}(1, q) = \mathbb{Z} \cdot \psi_1$ where the $\psi_1(\xi_2) = 1, \psi_1(\xi_q) = n \cdot 2^{n-1},$ and $\psi_1(p) = 0$ for all $p \neq 2, q$. Thus, in this example the bound given by Lemma 3.5 is sharp up to a factor of 2, because we actually have:

$$\|\psi_1\| = n \cdot 2^{n-1} = \frac{\omega(abc)}{4 \log 2} \cdot c \log c.$$

Unfortunately, Lemma 3.5 combined with Theorem 3.3 falls short of proving the abc Conjecture. Nevertheless, it clarifies the fact that in order to prove the abc Conjecture one must get a power-saving improvement over the bound in Lemma 3.5.

Optimistically, we may expect that in Theorem 2.6 one can choose the ψ_i such that all the $\log \|\psi_i\|$ have roughly the same size. Proceeding as in Lemma 3.5 if $\omega(abc) \geq 3$ (i.e. $r \geq 2$) this would give the desired power-saving improvement. Regarding the condition $\omega(abc) \geq 3$, we have:

Lemma 3.7. Up to order, the only triples of coprime positive integers a, b, c with $a + b = c$ having $\omega(abc) \leq 2$ are the following: $(1, 1, 2), (1, 8, 9),$ and $(1, 2^n, q)$ with q prime and $n \geq 1$.

This follows from Mihăilescu’s theorem [8]. Of course, it is not known whether there are infinitely many primes of the form $q = 2^n + 1$ (Fermat primes) or $q = 2^n - 1$ (Mersenne primes).

There is, however, an additional caveat in the previous heuristic. If a, b, c are, up to order, $1, q, N$ for some prime q, then from the defining equations (2.1) and (2.3) we see that every $\psi \in \mathcal{T}(a, b)$ satisfies the unexpected condition $\psi(\xi_q) = 0$. If in addition N is the product of powers of small primes, then it can happen that $\mathcal{T}(a, b)$ is generated by unusually small derivations, in which case our heuristic justification on how to get a power-saving improvement over Lemma 3.5 fails.
Example 3.8. Consider $a = 1$, $b = 108 = 2^2 \cdot 3^3$, and $c = q = 109$. Then $r = 2$ and the group $\mathcal{T}^0(1,108) \simeq \mathbb{Z}$ is generated by the derivation ψ_1 determined by $(\psi_1(2),\psi_2(3),\psi_3(109)) = (1,-1,0)$. On the other hand, any derivation $\psi_2 \in \mathcal{T}(1,108)$ which is linearly independent from ψ_1 satisfies $\|\psi_2\| \geq 108$, with equality achieved (for instance) at $(\psi_2(2),\psi_2(3),\psi_2(109)) = (2,-1,108)$.

The previous considerations motivate our main conjecture:

Conjecture 3.9 (Small Derivatives Conjecture). There is a positive integer $n < n^+$ such that for all but finitely many triples of coprime integers a,b,c satisfying $a + b = c$ and not of the form $(1,N,q)$ with q prime (up to order), the following holds: There is $\psi \in \mathcal{T}(a,b)$ such that a,b are ψ-independent and $\|\psi\| < c^q$.

The crucial aspects of Conjecture 3.9 are that the exponent η is strictly less than 1 and that a,b must be ψ-independent. Some of our results provide unconditional evidence:

- Corollary 2.7 shows that if we completely drop the ψ-independence condition, then the desired bound holds for any $\eta > 0$, for those triples a,b,c satisfying $\omega(abc) > 1 + 1/\eta$.
- Theorem 2.8 shows that if we replace the ψ-independence condition by the weaker requirement that $d(\psi)(a)$ or $d(\psi)(b)$ be non-zero, then one can indeed achieve a bound with exponent $\eta < 1$ —in fact, any $\eta > 1/2$ works. (Note that if $\psi \in \mathcal{T}(a,b)$ and a,b are ψ-independent, then necessarily $d(\psi)(a)$ or $d(\psi)(b)$ is non-zero.)
- Lemma 3.5 shows that if we keep the ψ-independence condition, then a version of the Small Derivatives Conjecture holds with exponent $\eta = 1 + \epsilon$ rather than the sought $\eta < 1$.

3.4. **Proof of concept: Fermat’s Last Theorem.** As it is well-known, the analogue of Fermat’s Last Theorem (FLT) over polynomials can be deduced from the Mason-Stothers theorem, and the same argument over \mathbb{Z} shows that the abc Conjecture implies the “asymptotic” FLT, meaning FLT up to finitely many exponents (of course, FLT was proved by Wiles [14], while the abc Conjecture remains open.) Let us give a direct proof of FLT for the polynomial ring $\mathbb{C}[x]$ without using the Mason-Stothers theorem or radicals. Recall that the Wronskian of $f,g \in \mathbb{C}[x]$ is $W(f,g) = fg' - f'g$.

Proposition 3.10 (FLT for polynomials). Let $n \geq 3$. Let $f,g,h \in \mathbb{C}[x]$ be coprime non-zero polynomials with at least one of them non-constant. Then $f^n + g^n \neq h^n$.

Proof. For the sake of contradiction, suppose that $f^n + g^n = h^n$. Without loss of generality, assume that h has the largest degree among f,g,h. Note that $W(f,h) \neq 0$, for otherwise we would have $f = \lambda h$ and $g = (1-\lambda)h$ for some $\lambda \in \mathbb{C}$, which is not possible.

Taking derivatives and multiplying by f we find $f^n f' + fg^{n-1}g' = fh^{n-1}h'$. Using $f^n f' = (h^n - g^n) f'$ we get $g^{n-1}W(f,g) = h^{n-1}W(f,h)$. Since $W(f,h) \neq 0$ and g,h are coprime, we find

$$(n-1) \deg(h) \leq \deg W(f,g) \leq \deg(fg) - 1 < 2 \deg(h)$$

which implies $n < 3$; contradiction. \qed

Our theory of arithmetic derivatives affords a smooth translation of the previous proof into the setting of integers, conditional on the Small Derivatives Conjecture 3.9.

Proposition 3.11 (Asymptotic FLT conditional on the Small Derivatives Conjecture). Assume Conjecture 3.9. There is a positive integer n_0 such that for all $n \geq n_0$ the following holds: If a,b,c are coprime positive integers, then $a^n + b^n \neq c^n$.

Proof. Assume Conjecture 3.9 with some exponent $\eta < 1$ and let $n \geq 2$ be a positive integer. Thus, for all but finitely many triples of coprime integers a,b,c with $a^n + b^n = c^n$ there is $\psi \in \mathcal{T}(a^n,b^n)$ (with $\psi \neq \psi_1$) such that a,b are ψ-independent and $\|\psi\| < c^\eta$. It is impossible that

\[a^n + b^n = c^n\]

for all but finitely many triples of coprime integers a,b,c with $a^n + b^n = c^n$. \qed

1. We make no claim of originality on this argument, although we could not find it in the literature.
such that $\|\psi\| < c^{n-\eta}$ and $W^\psi(a^n, b^n) \neq 0$ (a^n, b^n, c^n are not prime). Note that $d^\psi(a^n) = na^{n-1}d^\psi a$ by Lemma 2.1 and similarly for b, so $W^\psi(a^n, b^n) = n(ab)^{n-1}W^\psi(a, b)$, concluding $W^\psi(a, b) \neq 0$.

Starting from $a^n + b^n = c^n$ we repeat the computation from the polynomial case using Lemma 2.1 and the fact that $\psi \in J(a^n, b^n)$. We get $b^{n-1}W^\psi(a, b) = c^{n-1}W^\psi(a, c)$. Since $W^\psi(a, b) \neq 0$ and b, c are coprime, Lemma 2.2 yields

$$c^{n-1} \leq |W^\psi(a, b)| = |ad^\psi b - bd^\psi a| < \|\psi\| \cdot 2c^2 \log c < 2c^{2+n-\eta} \log c$$

Up to finitely many triples (a, b, c) this shows $n \leq 3/(1-\eta)$, which suffices to prove the result. \hfill \Box

In Section 4 we will show that the Small Derivatives Conjecture is equivalent to the abc Conjecture and, in this way, one can prove Proposition 3.11 by using the abc Conjecture as an intermediate step. Nevertheless, the previous proof gives an example of how to use our arithmetic derivatives to directly translate arguments from function field arithmetic to the integers.

4. Small arithmetic derivatives are equivalent to the abc Conjecture

4.1. The Small Derivatives Conjecture implies the abc Conjecture.

Lemma 4.1. If the Small Derivative Conjecture holds for some value of η, then Oesterlé’s abc Conjecture holds for every $M > 1/(1-\eta)$.

Proof. Assume Conjecture 3.9 for some exponent $0 < \eta < 1$. If up to order we have $(a, b, c) = (1, N, q)$ with q prime and $N \geq 2$, then $\rad(abc) \geq 2q > q + 1 \geq c$, hence, the abc Conjecture holds in such cases. So, we may assume we are not in the previous case. For all but finitely many triples of coprime positive integers a, b, c with $a + b = c$ we have

$$\frac{c}{\log c} < \rad(abc) \cdot \frac{c^n}{\log 2}$$

where we applied Theorem 3.3 and Conjecture 3.9. The result follows. \hfill \Box

It turns out that the converse is also true (cf. Theorem 4.5), but the proof is more delicate.

4.2. Preliminary lemmas.

Lemma 4.2. Let K be a field and let $m < n$ be positive integers. Let $v_i = (v_{i,1}, ..., v_{i,n}) \in K^n$ for $1 \leq i \leq m$ be linearly independent over K. Let j_0 be such that $v_{i,j_0} \neq 0$ for some i. There is an injective function $\tau : \{1, ..., m\} \to \{1, ..., n\}$ such that j_0 is in the image of τ and for each $1 \leq i \leq m$ we have $v_{i,\tau(i)} \neq 0$.

Proof. Let $I = \{1, ..., m\}$ and $J = \{1, ..., n\}$. Let $A = [v_{i,j}]_{i\in I, j\in J}$ and note that this matrix has rank m by linear independence of its rows. The j_0-th column is not the zero vector, so we may choose $J' \subseteq J$ with $#J' = m$ such that the square matrix $A' = [v_{i,j}]_{i\in I, j\in J'}$ still has rank m. In particular, $\det(A') \neq 0$. Writing $\det(A') = \sum_v \pm \prod_i v_{i,\sigma(i)}$ where σ varies over bijective functions $I \to J'$ (with suitable choice of signs) we see that for some bijective $\tau : I \to J'$ we have $\prod_i v_{i,\tau(i)} \neq 0$. \hfill \Box

Lemma 4.3. Let $\epsilon > 0$. For all but finitely many positive integers n we have $\prod_{p|n} v_p(n) < n^\epsilon$.

Proof. Note that $\prod_{p|n} v_p(n) \leq \sigma_0(n)$ where $\sigma_0(n)$ is the number of positive divisors of n. Thus, the result follows from standard bounds on $\sigma_0(n)$. \hfill \Box

We remark that a much more precise version of Lemma 4.3 is due to de Weger [13].

The following result limits how small $\|\psi\|$ can be when a, b are ψ-dependent. Note that the condition that a, b, c are not of the form $1, N, q$ with q prime (up to order) from our heuristic in Section 3.3, naturally appears here again.
Lemma 4.4. Let a, b, c be coprime positive integers with $a + b = c$, not of the form $(1, 8, 9)$ or $(1, N, q)$ with q prime (up to order). Define $r = \omega(abc) - 1$. Let $\psi_1, ..., \psi_{r-1} \in \mathcal{T}^0(a, b)$ be linearly independent derivations; in particular, a and b are ψ_i-dependent for each i. Suppose that there is some number M satisfying $1 < M < 2$ and $c < \text{rad}(abc)^M$, and let $\mu = (2 - M)/(4M)$. Then

$$\prod_{i=1}^{r-1} ||\psi_i|| \geq \frac{c^{\mu}}{\prod_{p|abc} v_p(abc)}.$$

Proof. Recall that $\mathcal{T}^0(a, b)$ is defined by the conditions (2.1) and (2.3). Together they give

$$\sum_{p|a} \frac{v_p(a)}{p} \psi_p(\xi_p) = \sum_{p|b} \frac{v_p(b)}{p} \psi_p(\xi_p) = \sum_{p|c} \frac{v_p(c)}{p} \psi_p(\xi_p)$$

which holds for every $\psi \in \mathcal{T}^0(a, b)$, in particular for each ψ_i. In fact, (2.1) and (2.3) together are equivalent to (4.1), so,

$$\mathcal{T}^0(a, b) = \{ \psi \in \mathcal{T} : \text{supp}(\psi) \subseteq \text{supp}(abc) \text{ and } (4.1) \text{ holds} \}.$$

We distinguish three cases (Lemma 3.7 and our assumptions imply that there is no other case):

(i) Both ab and c have at least 2 different prime factors each.
(ii) Up to order, we have $(a, b, c) = (1, q^s, N)$ for a prime q and some integer $s \geq 2$ and N with at least two prime factors.
(iii) $(a, b, c) = (q_1^{r_1}, q_2^{r_2}, q_3^{r_3})$ where q_1, q_2, q_3 are different primes and $s_i \geq 1$ for each i.

Let us first deal with cases (i) and (ii).

In case (i), suppose that there is some prime $q|abc$ such that $\psi_i(\xi_q) = 0$ for each i. Then every $\psi \in \mathcal{T}^0(a, b)$ would satisfy $\psi(\xi_q) = 0$, because the derivations $\psi_1, ..., \psi_{r-1}$ generate a finite index subgroup of $\mathcal{T}^0(a, b)$ (cf. Lemma 2.3). This is not possible, since the condition $\psi(\xi_q) = 0$ is linearly independent from the two equations in (4.1) that define $\mathcal{T}^0(a, b)$. This proves that in case (i), for each prime $p|abc$ we have $(\psi_1(\xi_p), \cdots 0)$. Also, (4.1) is 0 $= s\psi(\xi_q)/q$, which is equivalent to $\psi(\xi_q) = 0$. Therefore, $\mathcal{T}^0(a, b)$ is defined by $\psi(\xi_q) = 0$ and $\sum_{p|N} v_p(N) \psi_p(\xi_q)/p = 0$. This last equation is linearly independent from any condition of the form $\psi(\xi_p) = 0$ with $p \neq q$ because N has at least two prime factors. This proves that in case (ii), for each $p|abc$ with $p \neq q$ we have $(\psi_1(\xi_p), \cdots, 0)
eq (0, \cdots, 0)$.

Let q' be the largest prime factor of abc in case (i), and let it be the largest prime factor of abc subject to the condition $q' \neq q$ in case (ii). In either case, $(\psi_1(\xi_p), \cdots 0)$. Let $I = \{1, ..., r - 1\}$ and $J = \{p : p|abc\}$, so that $\#I = r - 1 < \#J = r + 1$. Choosing the vectors $v_i = (\psi_i(\xi_p))_{p \in I}$ for $i \in I$, Lemma 4.2 gives an injective function $\tau : I \to J$ having q' in its image such that for every $i \in I$ we have $\psi_i(\xi_{p_i}) \neq 0$ where $p_i := \tau(i)$.

By coprimality of a, b, c and considering the denominators in (4.1), we see that for each $p|abc$ and each i we have that p divides $v_p(abc)\psi_i(\xi_p)$. Together with the previous non-vanishing, for each $i = 1, ..., r - 1$ we find $v_p(abc)||\psi_i|| \geq p_i$. This gives

$$\prod_{p|abc} v_p(abc) \cdot \prod_{i=1}^{r-1} ||\psi_i|| \geq \prod_{i=1}^{r-1} (v_{p_i}(abc)||\psi_i||) \geq \prod_{i=1}^{r-1} p_i = Pq'$$

where P is the product of the primes $p_i \neq q'$. Let $\ell_1, \ell_2 \in J$ be the two primes not in the image of τ. Then rad(abc) = $P\ell_1\ell_2 q'$. In case (i) we have $\ell_1, \ell_2 < q'$ so, rad(abc) = $P\ell_1\ell_2 q' < P \cdot (q')^3 \leq (Pq')^3$. This proves $\prod_{i=1}^{r-1} p_i \geq \text{rad}(abc)^{1/3} \geq c^{1/(3M)}$, which concludes the proof in case (i).
In case (ii) notice that \(q = \ell_j \) for \(j = 1 \) or \(j = 2 \). Let us assume \(q = \ell_1 \), in particular, \(\ell_2 < q' \).
Observe that \(\ell_1^2 = q^2 \leq q^s \leq c \), so \(\ell_1 \leq c^{1/2} \). Then we get
\[
c^{1/M} \leq \text{rad}(abc) = P\ell_1\ell_2q' \leq P(q')^2c^{1/2} \leq (Pq')^2c^{1/2}.
\]
This proves \(\prod_{i=1}^{r-1} p_i \geq c^{(2-M)/(4M)} \), which concludes the proof in case (ii).

Finally, let us consider case (iii). Naturally, one of the primes \(q_i \) is 2 but this will not be relevant.
Note that \(r = 2 \), so we need a lower bound for \(\|\psi_1\| \). By (4.1) we find \(s_1\psi_1(\xi_{q_1})/q_1 = s_2\psi_1(\xi_{q_2})/q_2 = s_3\psi_1(\xi_{q_3})/q_3 \) and it follows that \(\text{rad}(abc) = q_1q_2q_3 \) divides \(s_1s_2s_3\psi_1(\xi_{q_1})\psi_1(\xi_{q_2})\psi_1(\xi_{q_3}) \).
In particular
\[
\|\psi_1\|^3 \cdot \prod_{p\mid abc} v_p(abc)^3 \geq \|\psi_1\|^3 \cdot \prod_{p\mid abc} v_p(abc) \geq \text{rad}(abc) > c^{1/M}
\]
which gives the result in case (iii).

4.3. The \textit{abc} Conjecture implies the Small Derivatives Conjecture.

Theorem 4.5. If Oesterlé’s \textit{abc} Conjecture \textit{3.2} holds with some exponent \(1 < M < 2 \), then the Small Derivatives Conjecture \textit{3.9} holds for each exponent \(\eta > 1 - (2 - M)/(4M) \).

Let us remark that for \(1 < M < 2 \) the quantity \(\mu = (2 - M)/(4M) \) satisfies \(3/4 < 1 - \mu < 1 \). We see that any exponent \(\eta > 1 - \mu \) sufficiently close to \(1 - \mu \) satisfies \(\eta < 1 \), hence, it is admissible for the Small Derivatives Conjecture \textit{3.9}.

Proof of Theorem 4.5. We assume that Oesterlé’s \textit{abc} Conjecture \textit{3.2} holds for some exponent \(M \) with \(1 < M < 2 \). Let us fix \(\epsilon > 0 \). In the argument below, we may need to implicitly discard finitely many triples \((a, b, c) \) for some inequalities to hold, which we indicate by writing “\(\leq_s \)” instead of “\(\leq \)”. The finitely many discarded triples will only depend on \(M \) and \(\epsilon \).

Let \(\psi_1, \ldots, \psi_r \in \mathcal{T}(a, b) \) be as provided by Theorem 2.6 and label these derivations in such a way that \(\|\psi_1\| \leq \|\psi_2\| \leq \ldots \leq \|\psi_r\| \). Let \(i_0 \in \{1, 2, \ldots, r\} \) be the least index such that \(\psi_{i_0} \notin \mathcal{T}^0(a, b) \), which exists by Lemma 2.9. We distinguish two cases:

(a) \(i_0 < r \). In this case, using Lemma 2.3 we get \(\|\psi_{i_0}\| \leq \epsilon \) because
\[
\|\psi_{i_0}\|^2 \leq \prod_{i=0}^{r} \|\psi_i\| \leq \frac{\omega(abc)}{2 \log 2} c \log c \leq \epsilon^{1+\epsilon}.
\]
(b) \(i_0 = r \). In this case we have \(\psi_1, \ldots, \psi_{r-1} \in \mathcal{T}^0(a, b) \) and we can apply Lemma 4.4 because we are assuming Conjecture 3.2 for some exponent \(1 < M < 2 \). Let us define \(\mu = (2 - M)/(4M) \). Lemmas 2.3 and 4.3 give \(\|\psi_r\| \leq \epsilon^{1-\mu+\epsilon} \) because
\[
c^{\mu-\epsilon/2} \cdot \|\psi_r\| \leq \prod_{p\mid abc} v_p(abc)^\mu \cdot \|\psi_r\| \leq \prod_{i=1}^{r} \|\psi_i\| \leq \frac{\omega(abc)}{2 \log 2} c \log c \leq \epsilon^{1+\epsilon}.
\]
The second case is the one giving the worst bound, hence the result.

In particular, Lemma 4.1 and Theorem 4.3 give:

Corollary 4.6. The Masser-Oesterlé \textit{abc} Conjecture \textit{3.7} implies the Small Derivative Conjecture \textit{3.9}. Conversely, the Small Derivative Conjecture \textit{3.9} implies Oesterlé’s \textit{abc} Conjecture 3.3.
5. Differentials of rings over monoids

5.1. Definitions. Let \(A \) be a commutative unitary ring, let \(R \) be a commutative monoid, and let \(\alpha : R \to A \) be a morphism of monoids with \(A \) taken as a multiplicative monoid. Given an \(A \)-module \(U \), a \(U \)-valued \(\alpha \)-derivation on \(A \) is a function \(D : A \to U \) satisfying

(Dif1) \(R \)-triviality: \(D(\alpha(r)) = 0 \) for all \(r \in R \)

(Dif2) Leibniz rule: \(D(ab) = aD(b) + bD(a) \) for all \(a, b \in A \).

A differential \((A, \alpha)\)-module is a pair \((U, D)\) where \(U \) is an \(A \)-module and \(D \) is a \(U \)-valued \(\alpha \)-derivation on \(A \).

Naturally, these definitions can also be formulated when \(A \) is just assumed to be a commutative monoid, which is perhaps better suited for the theory of monoid schemes (“geometry over \(\mathbb{F}_1 \)”, cf. [4]). However, we keep the assumption that \(A \) be a ring to simplify the exposition and because this is the case of interest for us. Another observation is that when \(R = \{1\} \) we recover the notion of absolute derivation from [6] and, in fact, most of that theory can be generalized to our setting.

One directly checks

Lemma 5.1. Let \((U, D)\) be a differential \((A, \alpha)\)-module. We have:

(i) \(D(0) = D(1) = 0 \).

(ii) For all \(r \in R \) and \(b \in A \) we have \(D(\alpha(r)b) = \alpha(r)D(b) \).

(iii) Given \(a \in A \) and a positive integer \(n \), we have \(D(a^n) = na^{n-1}D(a) \).

(iv) Given \(u \in A^* \) and a positive integer \(n \), we have \(D(u^{-n}) = -nu^{-(n+1)}D(u) \).

Given differential \((A, \alpha)\)-modules \((U, D)\) and \((V, E)\), a morphism of differential \((A, \alpha)\)-modules is a morphism of \(A \)-modules \(f : U \to V \) that satisfies \(E = f \circ D \). We obtain a category of differential \((A, \alpha)\)-modules which we denote by \(\Phi_{(A, \alpha)} \).

For an \(A \)-module \(U \), let \(\text{Der}_{(A, \alpha)}(U) = \{ D : A \to U : (U, D) \in \text{Ob}(\Phi_{(A, \alpha)}) \} \). This is an \(A \)-module with the structure induced by \(U \). Given \(A \)-modules \(U \) and \(V \) and a morphism \(f \in \text{Hom}_A(U, V) \), we define \(\text{Der}_{(A, \alpha)}(f) : \text{Der}_{(A, \alpha)}(U) \to \text{Der}_{(A, \alpha)}(V) \) by \(\text{Der}_{(A, \alpha)}(f)(D) = f \circ D \).

Lemma 5.2. The rule \(\text{Der}_{(A, \alpha)} \) defines a functor \(A \text{-Mod} \to A \text{-Mod} \).

5.2. Universal object. Consider \(\alpha : R \to A \) as before. Let \(X_A \) be the free \(A \)-module on the generators \(e_a \) for \(a \in A \). Let \(M_{(A, \alpha)} \subseteq X_A \) be the sub \(A \)-module generated by the elements \(e_{\alpha(r)} \) for \(r \in R \) and \(e_{ab} - e_{\alpha(ab)} - e_{\alpha(a)}e_b \) for \(a, b \in A \). We consider the quotient \(A \)-module \(\Omega_{(A, \alpha)} = X_A/M_{(A, \alpha)} \) and define \(d_{(A, \alpha)} : A \to \Omega_{(A, \alpha)} \) by \(d_{(A, \alpha)}(a) = e_a \mod M_{(A, \alpha)} \). By construction, \((\Omega_{(A, \alpha)}, d_{(A, \alpha)}) \) is a differential \((A, \alpha)\)-module. If there is no risk of confusion, we will simply write \(d \) instead of \(d_{(A, \alpha)} \).

Lemma 5.3 (Universal property of \(\Omega_{(A, \alpha)} \)). For each \(A \)-module \(U \), the rule \(\psi \mapsto \psi \circ d \) defines a functorial isomorphism of \(A \)-modules \(\eta_U : \text{Hom}_A(\Omega_{(A, \alpha)}, U) \to \text{Der}_{(A, \alpha)}(U) \). Thus, \(\Omega_{(A, \alpha)} \) represents the functor \(\text{Der}_{(A, \alpha)} \). In particular, \((\Omega_{(A, \alpha)}, d) \) is an initial object in the category \(\Phi_{(A, \alpha)} \).

Proof. Functoriality on \(U \) and \(A \)-linearity are immediate. Let us check that \(\eta_U \) is an isomorphism.

Let \(\psi \in \text{Hom}_A(\Omega_{(A, \alpha)}, U) \) with \(\eta_U(\psi) = 0 \). This means that \(\psi \circ d : A \to U \) is the zero map. The set \(d(A) \) generates \(\Omega_{(A, \alpha)} \) as an \(A \)-module, so \(\psi = 0 \) because it vanishes on a generating set of \(\Omega_{(A, \alpha)} \). Thus, \(\eta_U \) is injective.

Let \(D \in \text{Der}_{(A, \alpha)}(U) \). Let \(\theta : X_A \to U \) be the \(A \)-module map determined by \(\theta(e_a) = D(a) \) on the standard basis \(\{e_a\}_{a \in A} \) of the free \(A \)-module \(X_A \). Let \(\tilde{d} : A \to X_A \) be the function \(\tilde{d}(a) = e_a \) and let \(\pi : X_A \to X_A/M_{(A, \alpha)} = \Omega_{(A, \alpha)} \) be the quotient map. Note that \(\theta \circ \tilde{d} = D \) and \(\tilde{d} = \pi \circ \tilde{d} \). Since \(D \) satisfies (Dif1) and (Dif2), we have that a generating set for \(M_{(A, \alpha)} \) is contained in \(\ker(\theta) \), and since \(\theta \) is \(A \)-linear we get \(M_{(A, \alpha)} \subseteq \ker(\theta) \). Thus, there is an \(A \)-module map \(\psi : \Omega_{(A, \alpha)} \to U \) with \(\theta = \psi \circ \pi \). Therefore, \(D = \theta \circ \tilde{d} = \psi \circ \pi \circ \tilde{d} = \psi \circ d = \eta_U(\psi) \), proving that \(\eta_U \) is surjective.

We call \((\Omega_{(A, \alpha)}, d)\) the universal differential \((A, \alpha)\)-module.
5.3. Examples. We conclude by discussing some concrete examples.

Example 5.4. Let $A = \mathbb{F}_q$ be a finite field with q elements and $\alpha : R \to \mathbb{F}_q$ be arbitrary. The elements $d(x)$ for $x \in \mathbb{F}_q$ generate $\Omega_{(R,\alpha)}$, and $d(x) = d(x^q) = qx^{q-1}d(x) = 0$. Therefore, $\Omega_{(R,\alpha)} = (0)$.

Example 5.5. Let $A = \mathbb{Z}/4\mathbb{Z}$ and let $\alpha : \{1\} \to \mathbb{Z}/4\mathbb{Z}$ be the inclusion. In this case it is not so lengthy to directly compute $M_{(A,\alpha)} \subseteq X_A = (\mathbb{Z}/4\mathbb{Z})^4$. One finds that the universal α-derivation is $d : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ defined by $d(0) = d(1) = (0, 0)$, $d(2) = (1, 0)$, and $d(3) = (0, 1)$. Note that $d(1) + d(2) = (1, 0) \neq (0, 1) = d(3)$, so, d is not additive. Nevertheless, let $\sigma : (\mathbb{Z}/2\mathbb{Z})^2 \to \mathbb{Z}/2\mathbb{Z}$ be $\sigma(x, y) = x + y$. Then the α-derivation $\sigma \circ d : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ respects the equation $1 + 2 = 3$.

Example 5.6. Let A be a UFD and let T be a set of pairwise non-associated irreducible elements. Let $R = A - \bigcup_{t \in T} \{t\}$, let $\alpha : R \to A$ be the inclusion, and let $U = \bigoplus_{t \in T} A$. Define $D : A \to U$ by $D(a) = (v_t(a) \cdot at^{-1})_{t \in T}$ where v_t is the t-adic valuation. Then $D : A \to U$ is an α-derivation and we claim it is the universal one. Indeed, given $a = rt_1^{n_1} \cdots t_k^{n_k} \in A$ with $r \in R$, $n_j \geq 1$, and $t_j \in T$ different, the map $d = d_{(A,\alpha)}$ satisfies $d(a) = \sum_{j=1}^k n_j t_j^{-1}d(t_j)$. Since U is free, there is an A-module map $\phi : U \to \Omega_{(A,\alpha)}$ satisfying $d = \phi \circ D$. We conclude by universality of $\Omega_{(A,\alpha)}$.

Example 5.7. In the previous example, consider the special case $A = \mathbb{Z}$ and T the set of all prime numbers, so that $R = \{-1, 1\}$. Then $D : A \to U$ turns out to be our map $d : \mathbb{Z} \to \Omega$. So, the latter is the universal α-derivation when $\alpha : \{-1, 1\} \to \mathbb{Z}$ is the inclusion. Thus, $\text{Hom}_\mathbb{Z}(\Omega, \mathbb{Z}) \simeq \text{Der}_{(\mathbb{Z},\alpha)}(\mathbb{Z})$ is the module of all α-derivations $D : \mathbb{Z} \to \mathbb{Z}$. Our \mathbb{Z}-module \mathcal{F} is a metrized version of this.

6. Acknowledgments

This research was supported by ANID (ex CONICYT) FONDECYT Regular grant 1190442 from Chile.

The initial motivation for this project was a conversation with Thanases Pheidas that took place at the 2016 Oberwolfach workshop Definability and Decidability Problems in Number Theory. I heartily thank the MFO for their support and hospitality, as well as T. Pheidas for bringing the topic of arithmetic derivatives to my attention.

Comments by Jerson Caro and Natalia García-Fritz on a first version of this manuscript are gratefully acknowledged. I also thank the referee for carefully reading this article and for valuable suggestions and corrections.

REFERENCES

[1] E. Barbeau, Remarks on an arithmetic derivative. Canadian Mathematical Bulletin. 4 (2): 117-122 (1961).
[2] E. Bombieri, J. Vaaler, On Siegel’s lemma. Invent. Math. 73 (1983), no. 1, 11-32.
[3] A. Buium, Arithmetic differential equations. Mathematical Surveys and Monographs, 118. American Mathematical Society, Providence, RI, 2005. xxxii+310 pp. ISBN: 0-8218-3862-8
[4] A. Deitmar, Schemes over \mathbb{F}_1. Number fields and function fields—two parallel worlds, 87-100, Progr. Math., 239, Birkhäuser Boston, Boston, MA, 2005.
[5] G. Faltings, Does there exist an arithmetic Kodaira-Spencer class? Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 141-146, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999.
[6] N. Kurokawa, H. Ochiai, M. Wakayama, Absolute derivations and Zeta functions. Kazuya Kato’s fiftieth birthday. Doc. Math. 2003, Extra Vol., 565-584.
[7] D. Masser, Abecolological anecdotes. Mathematika 63 (2017), no. 3, 713-714.
[8] P. Mihailescu, Primary cyclotomic units and a proof of Catalan’s conjecture. (English summary) J. Reine Angew. Math. 572 (2004), 167-195.
[9] J. Mingot Shelly, Una cuestión de la teoría de los números. Asociación Esp. Granada: 1-12 (1911).
[10] N. Snyder, An alternate proof of Mason’s theorem. Elem. Math. 55 (2000), no. 3, 93-94.
[11] P. Vojta, Diophantine Approximations and Value Distribution Theory. Lecture Notes in Math., vol. 1239, Springer-Verlag, Berlin, 1987.
[12] P. Vojta, *Diophantine approximation and Nevanlinna theory*. Arithmetic geometry, 111-224, Lecture Notes in Math., 2009, Springer, Berlin, 2011.

[13] B. de Weger, *A + B = C and big III’s*. Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 193, 105-128.

[14] A. Wiles, *Modular elliptic curves and Fermat’s last theorem*. Ann. of Math. (2) 141 (1995), no. 3, 443-551.

Departamento de Matemáticas, Pontificia Universidad Católica de Chile. Facultad de Matemáticas, 4860 Av. Vicuña Mackenna, Macul, RM, Chile

Email address, H. Pasten: hpasten@gmail.com