A Computational Treatment of Korean Temporal Markers,

OE and DONGAN

Hyunjung Son
EHtESS
54, Boulevard Raspail
75006 Paris France
hyunjung_son@hotmail.com

Abstract

In this paper, we elucidate how Korean temporal markers, OE and DONGAN contribute to specifying the event time and formalize it in terms of typed lambda calculus. We also present a computational method for constructing temporal representation of Korean sentences on the basis of G grammar proposed by [Renaud, 1992;1996].

1 Introduction

Associated to a NP, Korean temporal markers OE and DONGAN build time adverbials.

(1) ach’im ilgopshiOE
 morning/seven o’clock-OE
 at seven o’clock in the morning

(2) han shigan DONGAN
 one/hour/DONGAN
 for an hour

As it is widely known, time adverbials play important roles in sentence meaning processing. Meanwhile, there is a significant divergence in opinions whether time adverbials or tense/aspect is a more efficient indicator leading to a correct temporal representation of sentences. To some [Kim, 1981], [Jo, 2000], [Vet, 1980], [Verkyul, 1989], tense or aspect is the only credible index to consult in establishing temporal interpretation, and the time adverbials are complementary. To others [Renaud, 1996], [Vlach, 1993], time adverbials are regarded as much more reliable than tense/aspect which is too ambiguous to provide coherent instructions about how to locate the event in time. We agree with the second point of view, as we observed that Korean tense markers fail to provide a solid and coherent way to capture the relevant time span. For example, the verbal infix ‘-at’- generally considered as a typical past tense marker in Korean, brings about several time interpretation possibilities such as simple past (3), completion (4), resultant state (5) and progressiveness (6).

(3) shiwaiga eenselyiOE shich’ongul
durlôssatta
demonstrators-NOM/yesterday/one o’clock-OE/the city hall-ACC/surround-PA-DEC
The demonstrators surrounded the city hall at one o’clock yesterday.

(4) shiwaiga mach’imnae shich’ongul
durlôssatta
demonstrators-NOM/at last/the city hall-ACC/surround-PA-DEC
At last, the demonstrators surrounded (succeeded in surrounding) the city hall.

(5) shiwaiga harudongan shich’ongul
durlôssatta
demonstrators-NOM/one day-DUR/the city hall-ACC/surround-PA-DEC
The demonstrators have surrounded the city hall for one day.

We used the McCune-Reischauer system to transcribe the Korean data. For glossing grammatical morphemes, we use the following abbreviations:

ACC: accusative, AS: attributive suffix, CIRCUM: circumstantial, CL: classifier, DEC: declarative, DUR: durative, INT: interrogative, LOC: locative, NOM: nominative, NS: nominal suffix, PA: past, TOP:topic.
(6) ônjebutô shiwaidega shich’ôngul dulrǒsattsumnikka?
since when/ demonstrators-NOM/ the city hall-
ACC/ surround-PA-INT
Since when have the demonstrators been
surrounding the city hall?

Moreover, what triggers these interpretation
possibilities is still being discussed among Korean
linguists\(^2\).

In the following, we attempt to show how
time adverbials can remedy this shortcoming and
specify the event time.

2 Semantic description
The assumption underlying our temporal
description is that the linguistic time is ordered,
discrete, infinite and consisting of instants
Corresponding to the natural numbers. The
Linguistic time can be expressed with one of these
Three notions: instant, extended interval and
duration. Instants are unitary constituents of
Linguistic time and noted by a quintuplet of natural
Numbers \([x_1,x_2,x_3,x_4,x_5]\) of which \(x_1\) stands for
Year, \(x_2\) for month, \(x_3\) for day, \(x_4\) for hour and \(x_5\)
for minute.

\((\text{ex})\) at 3 o’clock on April 5th 2003: instant
\([2003,4,5,3,0]\)

An extended interval is a set of consecutive
Instants determined by a beginning instant and an
Ending instant.

\((\text{ex})\) on April 5th, 2003: interval
\([\text{[2003, 4,5,0,0], [2003,4,23,59]]}\]

A duration refers to a temporal distance between
two distinct instants.

\((\text{ex})\) for 5 years: duration \([5,\ldots,\ldots,\ldots,\ldots]\]

For the purpose of temporal description of a
Sentential event, we defined the following types
And functional terms on the basis of typed lambda
calculus\(^3\). The symbol \(\lambda\) stands for abstraction and
\(\bullet\) stands for application\(^4\).

Definitions of types
\(i\) : type symbol denoting the type of individuals
\(p\) : type symbol denoting the type of propositions
\(e\) : type symbol denoting the type of events
\(\text{ent}\) : type symbol denoting the type of natural
Numbers
\(\text{inst}\) : type symbol denoting the type of instants
\(\text{inter}\) : type symbol denoting the type of extended
Intervals
\(\text{dur}\) : type symbol denoting the type of durations

Type symbols may be omitted when no ambiguity
Is introduced.

Definitions of functional terms
\((\lambda e. \text{moment}\bullet e)\) : \(e\rightarrow\text{inst}\)
Applying this function to any argument of type \(e\),
we obtain the moment of \(e\) of type \(\text{inst}\).

\((\lambda e. \text{interv}\bullet e)\) : \(e\rightarrow\text{inter}\)
Applying this function to any argument of type \(e\),
we obtain the interval of \(e\) of type \(\text{inter}\).

\((\lambda x. \text{beginning}\bullet x)\) : \(e\rightarrow\text{inst}\)
\((\lambda x. \text{ending}\bullet x)\) : \(e\rightarrow\text{inst}\)
Applying these functions to any argument \(x\) of
type \(e\), we obtain the beginning/ending instant of \(x\)
of type \(\text{inst}\).

\((\lambda x. \text{duration}\bullet x)\) : \(e\rightarrow\text{dur}\)
Applying this function to any argument \(x\) of type
\(e\), we obtain the duration of \(x\) of type \(\text{dur}\).

\((\lambda x. \text{beg}\bullet x)\) : \(\text{inter}\rightarrow\text{inst}\)
\((\lambda x. \text{end}\bullet x)\) : \(\text{inter}\rightarrow\text{inst}\)
Applying this function to any argument \(x\) of type
\(\text{inter}\), we obtain the beginning/ending instant of \(x\)
of type \(\text{inst}\). By definition, \(\text{beg}\bullet [A,B] = A\) and
\(\text{end}\bullet [A,B] = B\)

\(^3\) [Andrews, 1986 ; 2002], [Hindley et al., 1986] and
[Reinaud, 1996].
\(^4\) If \(M\) and \(N\) are lambda-terms, then \(M\bullet N\) is a lambda-

\(^2\) See [Jo, 2000], [Lee, Ch., 1987], [Lee, H., 1993] and
[Lee, J., 1982] for more detailed discussion.
\(\lambda x. \text{length} \cdot x\): \text{inter} \rightarrow \text{dur}

Applying this function to any argument \(x\) of type \text{inter}, we obtain the length of \(x\) of type \text{dur}. By definition, \(\text{length} \cdot [A,B] = |B - A|\)

\(\lambda x\lambda y. \ x <_{st} y\): \text{inst} \rightarrow \text{inst} \rightarrow \text{p}

It denotes that \(x\) of type \text{inst} is anterior to \(y\) of the same type. When no ambiguity is introduced, \(<_{st}\) will be omitted.

\(\lambda x\lambda y. \ x =_{st} y\): \text{inst} \rightarrow \text{inst} \rightarrow \text{p}

It denotes that \(x\) and \(y\) of type \text{inst} are simultaneous.

\(\lambda x\lambda y. \ x \leq_{st} y\): \text{inst} \rightarrow \text{inst} \rightarrow \text{p}

It denotes that \(\lambda x\lambda y. \ (x <_{st} y \lor x =_{st} y)\).

\(\lambda x\lambda y. \ x \in_{st} y\): \text{inst} \rightarrow \text{inter} \rightarrow \text{p}

It denotes that \(x\) of type \text{inst} is a member of \(y\) of the same type. By definition, \(\lambda x\lambda y. \ (\text{beg} \cdot y \leq x \leq \text{end} \cdot y)\)

\(\lambda x\lambda y. \ x \subset_{st} y\): \text{inter} \rightarrow \text{inter} \rightarrow \text{p}

It denotes that \(\lambda x\lambda y. \ (\text{beg} \cdot y < \text{beg} \cdot x \land \text{end} \cdot x < \text{end} \cdot y)\).

\(\lambda x\lambda y. \ x =_{st} y\): \text{inter} \rightarrow \text{inter} \rightarrow \text{p}

\(x\) and \(y\) of type \text{inter} are simultaneous. By definition, \(\lambda x\lambda y. \ (\text{beg} \cdot y = \text{beg} \cdot x \land \text{end} \cdot x = \text{end} \cdot y)\).

\(\lambda x\lambda y. \ x \subset_{st} y\): \text{inter} \rightarrow \text{inter} \rightarrow \text{p}

It denotes that \(\lambda x\lambda y. \ (\text{beg} \cdot y \leq \text{beg} \cdot x \land \text{end} \cdot x \leq \text{end} \cdot y)\).

The temporal adverbials with \text{OE} or \text{DONGAN} do not bring the same semantic constraints in all the sentences. It can be illustrated by the following examples of \text{OE} (7-10) and \text{DONGAN} (11-14).

(7) \text{ach’im ilgopshiOE nurongoi}ga chugôta.
The morning /seven o’clock-\text{OE} / Nurongoi-NOM /die-PA-DEC At seven o’clock in the morning, Nurongoi died.

The \text{OE} adverbial of this example indicates the moment when the event described by the nuclear sentence\(^5\) happened.

\((sr\ 7) \exists x \exists I \text{die} \cdot e \cdot \text{nurongoi}^6 \land \text{moment} \cdot e < \text{pt} \cdot \text{speech} \land I=(7 \text{o’clock}) \land \text{moment} \cdot e = I\)

But in (8) and (9), \text{OE} adverbials indicate an interval of which an instant is identified with the moment of the event.

(8) \text{samwol shiboirOE nurongoi}ga chugôta.
March/the fifteenth-\text{OE} /Nurongoi-NOM/die-PA-DEC

\text{On the fifteenth of March, Nurongoi died.}

(9) \text{chinan yórumOE nurongoi}ga chugôta
the last summer-\text{OE} /Nurongoi-NOM/die-PA-DEC

\text{Last summer, Nurongoi died.}

Moreover, \text{OE} adverbials can introduce a period of recurrent events as in (10).

(10) \text{iljuirOE so dasóit mariga chugôta}
a week-\text{OE}/cow/five/classifier-NOM/die-PA-DEC
Five cows died \text{every week.}

(10) \text{iljuirOE so dasóit mariga chugôta}
a week-\text{OE}/cow/five/classifier-NOM/die-PA-DEC
Five cows died \text{every week.}

\((sr\ 9) \exists x \exists I \text{die} \cdot e \cdot \text{nurongi} \land \text{moment} \cdot e < \text{pt} \cdot \text{speech} \land \text{interval} \cdot I \land \text{summer} \cdot I \land \text{moment} \cdot e = I\)

\((sr\ 10) \exists x \exists I \text{interval} \cdot I \land \text{length} \cdot I=(7 \text{days}) \land \exists J \text{interval} \cdot J \land \exists P (\text{equi-partition} \cdot D \cdot P \cdot N \equiv (\text{N} = (\cup \cdot P) \land P \cdot K \ni \forall K (P \cdot K \ni \exists x \cdot \text{cow} \cdot x \land \exists \text{moment} \cdot e < \text{pt} \cdot \text{speech} \land \text{interval} \cdot I \land \text{summer} \cdot I \land \text{moment} \cdot e = I)\)

\(^5\) We call the independent sentences without modifiers such as temporal adverbials ‘nuclear sentence’.

\(^6\) ‘\text{die} \cdot e \cdot \text{nurongoi}’ is equivalent to \text{die}(e, nurongoi) in predicate logic.

\cite{Renaud, 2002} defines the equi-partition function as:
\[
\text{equi-partition} \cdot D \cdot P \cdot N \equiv (\text{N} = (\cup \cdot P) \land P \cdot K \ni \forall K (P \cdot K \ni \exists x \cdot \text{cow} \cdot x \land \exists \text{moment} \cdot e < \text{pt} \cdot \text{speech} \land \text{interval} \cdot I \land \text{summer} \cdot I \land \text{moment} \cdot e = I))
\]

\[
\text{where } \cup \cdot R \equiv \lambda x. \exists R (R \cdot P \land P \cdot x)
\]
As for DONGAN adverbials, they present the maximal duration of the described event as in (11).

(11) *hanshigan* DONGAN kwanghoe bihaenggiga naratta an hour /DONGAN /of Kwangho /airplane-NOM /fly-PA-DEC Kwangho’s airplane flew for an hour.

In (12), the interval denoted by the DONGAN adverbial is included by that of the sentential event. In other words, it is not clear, for the moment, whether the described event reached its end or not.

(12) kyŏul banghak DONGAN ukyunun mokgongsoesô ilhaetta winter vacation /DONGAN /Ukyu-TOP/ carpenter’s shop-LOC/work-PA-DEC During the winter vacation, Ukyu worked at the carpenter’s shop.

(13) kyŏul banghak DONGAN nanun shine daehae saenggak’agi chijak’aetta winter vacation /DONGAN /I-TOP/ about God/think /begin-PA-DEC During the winter vacation, I began to think about God.

The following example (14) denotes that fishing of Yunsŏk has been repeated in a regular way during the interval indicated by the DONGAN adverbial.

(14) shimnyŏn DONGAN yunsŏkun mŏn badaesŏ kokijabirul haetta

Yunsŏk fished in the far ocean. For ten years, Yunsŏk had fished in the far ocean three times.

Such a distributional pattern of events disappears when the nuclear sentence is modified by quantification, which is illustrated by (15).

(15) shimnyŏn DONGAN yunsŏkun mŏn badaesŏ kokijabirul se bôn haetta For ten years, Yunsŏk fished in the far ocean three times.

To find a strategy to solve such a multiple ambiguity, we investigated three thousand sentences for each temporal marker and discovered the following facts:

1. The semantic and syntactic properties of the phrase accompanying the temporal markers play an important role to locate the event in time.
2. It is necessary to distinguish mono-occurrence sentences concerning a single event from multi-occurrence sentences concerning a set of different events. The multi-occurrence nature is very often

8 [Renaud, 2002] defines the function used in this formula as follows:

\[
\text{int}_\text{ref} \equiv \text{interval of reference}
\]

\[
[\cup \cdot I] \equiv [\text{inferior}(\cup \cdot I), \text{superior}(\cup \cdot I)]
\]

where the brackets denote an interval.

\[
\text{max} \cdot E \cdot M \equiv (E \cdot M \land \neg N(M \subset N \land E \cdot N))
\]

9 We took the sentences from Yonsei malmunchi corpus built by Yonsei Center for Linguistic Information.

10 [Renaud, 2002].
signaled by bare plurals in nominal phrases, adverb like ch’arerо ‘in turn’, and quantification modifiers.

3. When it comes to the multi-occurrent sentences, DONGAN adverbials impose constraints on the distribution of events in some cases (see (14)).

4. The quantification negates the distributional meaning brought by DONGAN adverbials and gets them to indicate the temporal scope of this semantic operation (see (14) and (15)).

5. As for the verbal infix ‘-at’, its common semantic value is to denote the fact that the beginning of the event is anterior to the point of speech \(^{11}\); \(\lambda e.\) beginning\(\cdot e < pt_speech\).

6. The information relevant to the time interpretation is scattered over the whole sentence; in the verbal phrase, quantification modifiers ranging over individuals or events, determiners in the nominal phrases and time adverbials. Therefore, the temporal interpretation of a sentence should be constructed in a compositional way.

7. For the same reason, the aspectual value should be attributed to the nuclear sentence and not to the verbal phrase.

3 Computational implementation

We discovered that Renaud’s G Grammar is suitable for the purpose of computational implementation of these facts. This grammar loads information on word definitions as little as possible and charges the rules with detailed description. This principle contributes to gathering the pieces of information scattered throughout a sentence and to establishing a semantic representation of the sentence in a compositional way. Moreover, it enables us to deal with all the other linguistic phenomena in the same way as with the temporal problems. This grammar has been applied to French [Renaud, 1996; 2000; 2002] and Japanese [Blin, 1997] as well.

This grammar is divided into word definitions called ‘dico’ and composition rules. Each of them consists of syntactic constraint, unification-based feature constraint and semantic constraint written in lambda-terms.

% dico example
dongan(dg_dur, qu:no&multiocc:no, \(\lambda i\lambda e.\) duration\(\cdot e = i\))

% rule example
adv_DG \(\rightarrow\) dur, dg_dur
U0::(U1\&U2),
S0 \(\ll\) \(\lambda e.\) (S2*S1*e \& ending\(\cdot e < pt_speech()\)).

Figure 1. Dico and rules

In composition rules, the symbol ‘\(\rightarrow\)’ stands for syntactic rewriting and ‘\(\ll\)’ stands for \(\beta\)-reduction.

We present here an example process establishing the temporal interpretation of a Korean sentence extended by a DONGAN adverbial.

(11) hanshigan DONGAN kwanghoe bihaenggiga naratta

an hour DONGAN/ of Kwangho/ airplane-NOM/ fly-PA-DEC

Kwangho’s airplane flew for an hour.

We determine the semantic term of a DO N G A N adverbial, according to the semantic and syntactic properties of the phrase preceding the temporal marker.

Figure 2. Processing of DONGAN adverbials

\(^{11}\) [Reichenbach, 1966].
The time adverbial *hanshigan DONGAN* in (11) includes a NP denoting duration and conforms to the syntactic condition E\(^{12}\). Thus, the semantic term of type t5 is assigned to this time adverbial.

We also calculate the semantic term of the nuclear sentence relying on criteria such as quantification modification, mono/multi-occurrence and aspect\(^{13}\), which get involved in the feature constraint at the levels of both dico and of rules. Since the nuclear sentence of (11) is not modified by quantification, and since it concerns a single event of activity, it receives a semantic term of type c3 in the following figure.

\(^{12}\) *DONGAN* accepts seven different syntactic structures:
A. Interval Noun + *DONGAN* (ex: summer vacations)
B. Interval NP + Duration NP + *DONGAN*
C. Deictic/anaphoric determiner + Duration NP + *DONGAN*
D. Attributive Clause + Duration NP + *DONGAN*
E. Duration NP + *DONGAN*
F. Attributive Clause + *DONGAN*
G. Anaphoric determiner + *DONGAN*

We excluded the last structure from our research because of its highly context dependent meaning.

\(^{13}\) Aspectual classification is done by the following method; first, we observed the compatibilities of nuclear sentences with linguistic expressions such as *-go innun chungida, mane* and *dongan*. And then we investigated whether *mane* indicates the preparatory stage of the concerned event and whether *dongan* marks the resultant state of the event. As a result, we obtained seven distinct combinations as follows.

	(1)	(2)	(3)
Verbo*go innun chungida* (progressive verbal form)	-	+	+
Durative NP + *mane*	+/-	+	+
preparatory stage	+	+	-
Durative NP + *dongan*	-	-	-
Resultant state	-	-	-
ACH1	ACH2	ACC	

	(4)	(5)	(6)	(7)
Verbo*go innun chungida* (progressive verbal form)	+	-	+	+
Durative NP + *mane*	-	-	+	+
preparatory stage	+	+	+/-	+
Durative NP + *dongan*	+	+	+	+
Resultant state	-	-	-	+
ACT	State	ACT_ACC	Ch_of_state	

\(^{14}\) ‘/’ stands for disjunction.
‘\(\lambda x. \text{proj} \bullet x \bullet y\)’ returns the member occurring in the \(x\)th place in the list \(y\).
\(^{15}\) Our Korean parser is built in LPI Prolog. In Figure 6, ‘lb’ stands for \(\lambda\)-abstraction and ‘*’ stands for \(\lambda\)-application.
Figure 5. Parsing tree of the example (11)

(sr1) [0,0,0,2,0]
(sr2) lb(_24864,duration * _24864 = [0,0,0,2,0] & ending * _24864 < [2003,2,14,19,32])
(sr3) lb(_16476,lb(_15622,of * kwangho * _15622 & _16476 * _15622))
(sr4) lb(_18330,exist * y * (of * kwangho * y & airplane * y & _18330 * y))
(sr5) lb(_18330,exist * y * (of * kwangho * y & airplane * y & _18330 * y))
(sr6) lb(_1682,lb(_1720,exist * e * (fly * e * _1720 & beginning * e < [2003,2,14,19,5] & _1682 * e)))
(sr7) lb(_4814,exist * y * (of * kwangho * y & airplane * y & exist * e * (fly * e * y & beginning * e < [2003,2,14,19,7] & _4814 * e)))
(sr8) lb(_25184,exist * y * (of * kwangho * y & airplane * y & exist * e * (fly * e * y & beginning * e < [2003,2,14,19,33] & (duration* e = [0,0,0,2,0] & ending * e < [2003,2,14,19,33] & _25184 * e))))

Figure 6. List of semantic representations presented in Figure 5.

The sentences extended by an OE adverbial are represented in the same way as those by a DONGAN adverbial, as will be seen in the following.

(8) samwol shiboirOE nurèngoi chugôtta.
March/the fifteenth-OE /Nurôngoi-NOM/die-DEC
On the fifteenth of March, Nurôngoi died.

Relying on the semantic and syntactic constraints of the phrase preceding OE at the same time, we determine the semantic term of the OE adverbial.

Figure 7. Processing of OE adverbials

Since samwol shiboirOE of (8) denotes an extended interval and it conforms to the syntactic condition C, this adverbial is attributed the semantic term of type t3.

The semantic representation of the nuclear sentence of (8) is established in the same way as explained above in Figure 3. At last, taking the semantic terms of the OE adverbial and of the nuclear sentence, the following rule serves to construct the final representation of the whole sentence.\(^{17}\)

16 OE adverbials take the following syntactic structures:
A. Instant NP +OE
B. Interval Noun + OE
C. Interval NP + OE
D. Attributive Clause + Interval NP + OE
E. Attributive Clause + Interval Noun + OE
F. Deictic/anaphoric determiner + Interval NP +OE
G. Deictic/anaphoric determiner + Interval Noun + OE
H. Duration NP + OE

17 See [Son, 2002] for more detailed description of OE.
ph1 → adv OE, ph
U1::tps2:int & U2:(qu:no & multioc:no)
S0 <= cond([U2::asp:ach1/ach2, λQ. S2•(λE. (proj1•S1)•E ∧ Q•E)],
[U2::asp:acc, λQ. S2•(λE. (proj2•S1)•E ∧ Q•E)],
[U2::asp:act/stat/act_acc/ch_of_state, λQ. S2•(λE. (proj3•S1)•E ∧ Q•E)])

Figure 8. OE sentence construction rule

4 Conclusion

In this paper, we showed how OE adverbials and DONGAN adverbials contribute to constructing the temporal interpretation of Korean sentences. We also formalized the semantic properties of these temporal markers with typed lambda calculus before we integrated them into the Korean parser that we built on the basis of Renaud’s G Grammar. We showed the effectiveness of this grammar in representing compositionally semantic interpretations of Korean sentences.

In the future, we will study the Korean time adverbials with MANE and zero particle. The first temporal marker is believed to signal the telicity of the event and the second appears very frequently in informal discourses.

Acknowledgement

We are deeply grateful to Francis Renaud and Irène Tamba, without whom this work would not have happened.

This research is supported by the Pasteur scholarship from the French government.

References

[Andrews, 1986] Andrews P.B., 1986, An Introduction to Mathematical Logic and Type Theory, Orlando: Academic Press Inc.

[Andrews, 2002] Andrews, P.B., 2002 An Introduction to Mathematical Logic and Type Theory, Dordrecht: Kluwer Academic Press.

[Blin, 1997] Blin, R., 1997, Interrogation sur la manière en japonais: Une approche formelle, Paris: EHESS Dissertation.

[Hindley at al., 1986] Hindley, J. & Seldin, J.P., 1986, Introduction to Combinators and λ-Calculus, Cambridge: Cambridge Univ. Press.

[Jo, 2000] Jo, M.J., 2000, A Study on the Aspect of Korean (in Korean), Seoul: Yonsei Univ. Dissertation.

[Kim, 1981] Kim, S.-D., 1981, ‘Aspect of Korean’ (in Korean), Aesan Hakbo 1, Aesan Hakhoe.

[Lee, Ch., 1982] Lee, Ch., 1982, ‘Aspects of Aspect in Korean’, Language 7, Korean linguistic Society.

[Lee, Ch., 1987] Lee, Ch., 1987, ‘Temporal Expressions in Korean’, in Bertucelli-Papi Verschueren, J. et al.(eds.), Amsterdam: John Benjamins.

[Lee, H., 1993] Lee, H. S., 1993, ‘Tense or aspect : The speaker’s communicative goals and concerns as determinant, with reference to the Anterior –ôss- in Korean’, Journal of Pragmatics 20.

[Reichenbach, 1966] Reichenbach, H., 1966, The Elements of Symbolic Logic, New York: The Free Press.

[Renaud, 1992] Renaud, F., 1992, ‘Générateurs automatiques d’analyseurs linguistiques’, Intellectica 13-14.

[Renaud, 1996] Renaud, F., 1996, Sémantique du temps et lambda-calcul, Paris: puf.

[Renaud, 2000] Renaud, F., 2000, ‘Adverbes itératives et quantification’, Revue de Sémantique et Pragmatique 8.

[Renaud, 2002] Renaud, F., 2002, ‘Durativité et Négation’, ms.

[Son, 2002] Son, H., 2002, ‘Formal Description of ‘NP+OE’ with Lambda-Calculus and Unification Mechanism’ (in Korean), Annual Meeting of Korean Society for Language and Information.

[Verkuyl, 1989] Verkuyl, H.J., 1989, ‘Aspectual Classes and Aspectual Composition’, Linguistics and Philosophy 12.

[Vet, 1980] Vet, C., 1980, Temps, aspect et adverbes de temps en français contemporain, Genève: Librairie Droz.

[Vlach, 1993] Vlach, F., 1993, ‘Temporal Adverbials, Tense and the Perfect’, Linguistics and Philosophy 16.