Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

J. L. Gross, M. Thoennessen

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Abstract

Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.
1. Introduction

The discovery of gallium, germanium, lutetium, and hafnium isotopes is discussed as part of the series summarizing the discovery of isotopes, beginning with the cerium isotopes in 2009 [1]. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adopted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case we credited the authors with the discovery in spite of the inaccurate half-life.

The first criterion is not clear cut and in many instances debatable. Within the scope of the present project it is not possible to scrutinize each paper for the accuracy of the experimental data as is done for the discovery of elements [4]. In some cases an initial tentative assignment is not specifically confirmed in later papers and the first assignment is tacitly accepted by the community. The readers are encouraged to contact the authors if they disagree with an assignment because they are aware of an earlier paper or if they found evidence that the data of the chosen paper were incorrect. Measurements of half-lives of a given element without mass identification are not accepted. This affects mostly isotopes first observed in fission where decay curves of chemically separated elements were measured without the capability to determine their mass. Also the four-parameter measurements (see, for example, Ref. [5]) were, in general, not considered because the mass identification was only ± 1 mass unit.

The initial literature search was performed using the databases ENSDF [3] and NSR [6] of the National Nuclear Data Center at Brookhaven National Laboratory. These databases are complete and reliable back to the early 1960’s. For
earlier references, several editions of the Table of Isotopes were used [7–12]. A good reference for the discovery of the stable isotopes was the second edition of Aston’s book “Mass Spectra and Isotopes” [13].

2. Discovery of $^{60-87}$Ga

Twenty-eight gallium isotopes from $A = 60–87$ have been discovered so far; these include 2 stable (69Ga and 71Ga), 10 neutron-deficient and 16 neutron-rich isotopes. According to the HFB-14 model [14], 102Ga should be the last odd-odd particle stable neutron-rich nucleus while the odd-even particle stable neutron-rich nuclei should continue through 107Ga. The proton dripline has most likely been reached at 60Ga from the non-observance of 59Ga [15]. About 18 isotopes have yet to be discovered corresponding to 39% of all possible gallium isotopes.

Figure 1 summarizes the year of first discovery for all gallium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive gallium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), neutron induced fission (NF), neutron-capture reactions (NC), spallation reactions (SP), photo-nuclear reactions (PN) and projectile fragmentation or fission (PF). The stable isotopes were identified using mass spectroscopy (MS). In the following, the discovery of each gallium isotope is discussed in detail and a summary is presented in Table 1.

Stable isotopes 69Ga and 71Ga

In 1923, Aston reported the discovery of stable 69Ga and 71Ga in “Further determinations of the constitution of the elements by the method of accelerated anode rays” [16]. Gallium fluoride was used in the Cavendish mass spectrometer. “Gallium fluoride made from a specimen of the hydrate kindly provided by Prof. Richards, of Harvard University, also gave satisfactory results. Gallium consists of two isotopes, 69 and 71.”

60Ga

In the 1995 article “New isotopes from 78Kr fragmentation and the ending point of the astrophysical rapid-proton-capture process” Blank et al. reported the discovery of 60Ga [17]. A 73 MeV/nucleon 78Kr beam bombarded a nickel target [17] at GANIL. 60Ga was produced via projectile fragmentation and identified with the SISSI/LISE facility by measuring the time-of-flight through the separator and the ΔE-E in a silicon detector telescope. A lower limit for the half-life was established, “We find clear evidence for 60Ga, 64As, 69,70Kr, and 74Sr.”

61Ga

In “Beta-delayed proton decay of 61Ge” Hotchkis et al. reported the observation of a proton-unbound state of 61Ga in 1987 [18]. A 24Mg beam of 77–120 MeV energy from the Berkeley 88-in. cyclotron bombarded a calcium target. Beta-delayed protons were measured with a silicon telescope in connection with a pulsed beam technique and a helium-jet transport system. “The 3.11 MeV peak is attributed to the decay of 61Ge, since its yield is a maximum at 90 MeV, as expected from the ALICE calculations. This peak is identified as the transition from the isobaric analog state in 61Ga, fed by the superallowed beta decay of 61Ge, to the ground state of 60Zn.” The ground state of 61Ga was observed four years later [19].
Fig. 1: Gallium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. The black solid circle indicates the discovery year of the ground state in the case where the first observation was an excited state.
Chiba et al. identified 62Ga in their 1978 paper, “Superallowed fermi beta transitions of 62Ga” [20]. 36–52 MeV protons from the Tokyo synchrocyclotron bombarded a natural zinc target. 62Ga was produced in the reaction 64Zn(p,3n) and β-activities were measured with a plastic scintillator. The obtained data points were analyzed with a least squares fitting program by taking into account the following three components: a 20-msec 12B, an unknown 62Ga, and a constant long lived background activity. The resulting decay curve is shown in [the figure], and a value of $T_{1/2} = 116.4\pm1.5$ msec was obtained for the half-life of 62Ga.” This half-life agrees with the currently accepted value of 116.12(23) ms.

63Ga

The first observation of 63Ga was published by Nurmia and Fink in 1965 in “A new short-lived isotope of gallium” [21]. The Argonne 66-in. cyclotron was used to bombard nickel targets with a 66 MeV 6Li beam and 63Ga was formed in the reactions 58Ni(6Li,n) and 60Ni(6Li,3n). Beta-ray decay curves were measured with an end-window proportional counter following chemical separation. The half-life is 33 ± 4 s, and its assignment to Ga63 has been established by radiochemical separations, including isolation of the 38.3 m Zn63 daughter activity, and by cross bombardments.” This half-life agrees with the presently adopted value of 32.4(5) s.

64Ga

“Gallium-64” by Cohen was the first report of 64Ga in 1953 [22]. Protons from the Oak Ridge 86-in. cyclotron bombarded enriched 64Zn targets and 64Ga was produced in the (p,n) charge exchange reaction. Gamma-ray spectra were measured with a NaI scintillation spectrometer following chemical separation. A new isotope, 2.5-minute Ga64, was produced by the (p,n) reaction on Zn64 and identified by measurement of the excitation function, by bombardment of separated isotopes, and by chemical separation.” This half-life agrees with the currently accepted value of 2.627(12) m. Less than a month later, Crasemann independently reported a half-life of 2.6(1) min for 64Ga [23]. An earlier 48(2) min half-life measurement [24] had been refuted by [25].

65Ga

In 1938, 65Ga was reported in “The capture of orbital electrons by nuclei” by Alvarez [26]. Zinc samples were bombarded with fast deuterons and subsequent emission of X-rays and electrons were measured. Evidence for 65Ga was given in a footnote: “The shortest of these four periods in unseparated, activated zinc was a new electron emitting isotope with a half-life of 15 minutes. The X-rays are definitely Zn K-radiation, and since this period is unknown, it might be due to Ga65 capturing electrons.” This half-life agrees with the presently accepted value of 15.2(2) m. No other measurements of 65Ga were published until 13 years later when Aten et al. credited Alvarez for the first observation of 65Ga [27].

66Ga

Mann identified 66Ga in the 1937 paper “Nuclear transformations produced in copper by alpha-particle bombardment” [28]. The Berkeley cyclotron was used to bombard copper targets with 11 MeV $^\alpha$-particles. Resulting activities were measured with a quartz fiber electroscope and positrons tracks in a cloud chamber were photographed. “Activities having half-lives of 1.10±0.05 hours and 9.2±0.2 hours have been found to belong, respectively, to the radioactive isotopes of gallium Ga68 and Ga66.” This 66Ga half-life agrees with the currently accepted value of 9.49(3) h.
The first identification of 67Ga was reported by Alvarez in “Electron capture and internal conversion of gallium 67” in 1938 [29]. Deuterons bombarded zinc targets and X-rays, γ rays, and electrons were measured following chemical separation. “The activity, of 83 hours half-life, has the chemical properties of Ga, as shown by the solubility of its chloride in ether. It has been assigned to Ga67 by Mann, who bombarded Zn with alpha-particles, and separated Ga by chemical means.” This half-life is close to the presently adopted value of 3.2617(5) d. The reference to Mann mentioned in the quote reported a 55 h half-life in a conference abstract [30]. Mann later corrected this value to 79 h [31].

68,70Ga

Bothe and Gentner observed 68Ga and 70Ga in 1937 in “Weitere Atomumwandlungen durch γ-Strahlen” [32]. Lithium-γ-rays irradiated gallium targets producing 68Ga and 70Ga in photo-nuclear reactions. “Gallium: $T_1 = 20$ min; $T_2 = 60$ min. T_1 wird auch bei Anlagerung von Neutronen erhalten, gehört also zu Ga70, weil dieses zwischen den beiden stabilen Isotopen des Ga liegt. Dann muß T_2 zu dem neuen Isotop Ga68 gehören.” [Gallium: $T_1 = 20$ min; $T_2 = 60$ min. T_1 can also be produced by neutron capture and thus corresponds to Ga70 because it is located between the two stable Ga isotopes. Then T_2 must be due to the new isotope Ga68]. The half-lives of 60 min for 68Ga and 20 min for 70Ga agree with the currently adopted values of 67.71(9) min and 21.14(3) min, respectively. A 20-min half-life had previously been observed without a mass assignment [33].

72Ga

Sagane identified 72Ga in 1939 as reported in “Radioactive isotopes of Cu, Zn, Ga and Ge” [34]. Metallic gallium targets were irradiated by slow and fast neutrons produced by deuteron bombardments of lithium and beryllium from the Berkeley cyclotron. 72Ga was produced by neutron capture reactions and the resulting activities were measured with a Lauritsen-type quartz fiber electroscope. “As shown in [the figure] the decay curves obtained with slow neutron bombardments gave only two periods; the well-known 20-min. period and a new 14-hr. period. No trace of the 23-hr. period reported by Fermi and others or by the Michigan group was found... These two points support very well the conclusion that this 14-hr. period should be caused by Ga$^{72+}$ The reported half-life of 14.1(2) h is included in the calculation of the current value of 14.10(2) h. Earlier, Amaldi et al. reported a 23 h half-life without a mass assignment [33]. Subsequently, without measuring it themselves Bothe and Gentner, as well as Mann assigned this activity to 72Ga [28, 35]. Only a few month later Pool et al. measured a 22 h period assigning it to 72Ga [36]. In the following year, Livingston reported a 14 h half-life, however, he did not explicitly assigned it to 72Ga [37].

73Ga

The identification of 73Ga was reported by Perlman in the 1949 paper “Yield of some photo-nuclear reactions” [38]. A pure germanium oxide target was irradiated with 50 MeV and 100 MeV X-rays and 73Ga was formed in the photo-nuclear reaction 74Ge(γ,p). Decay curves and β-ray spectra were measured following chemical separation. The results were summarized in a table where a half-life of 5 h was listed for 73Ga. This half-life agrees with the presently adopted value of 4.86(3) h. A 5.0(5) h half-life had tentatively been assigned to 73Ga by Siegel and Glendenin in 1945 as part of the Plutonium Project which was published in the open literature only in 1951 [39].
^{74}Ga

^{74}Ga was discovered by Morinaga as reported in “Radioactive isotopes Cl40 and Ga74” in 1956 [40]. Germanium targets were irradiated with fast neutrons produced by bombarding a beryllium target with 10 MeV deuterons from the Purdue cyclotron. Gamma- and beta-rays were measured with a NaI scintillator and GM counter, respectively. “Very many gamma rays with various half-lives were observed after the bombardment, but all could be assigned to some known isotopes produced by fast neutrons on Ge, except for three distinct gamma rays with energies 0.58, 2.3, and 2.6 Mev which decayed with a half-life of about 8 min... Therefore this activity is assigned to Ga74.” This half-life is consistent with the currently adopted value of 8.12(12) m. Earlier measurements incorrectly assigned half-lives of 6(1) d [34] and 9 d [41] to ^{74}Ga.

^{75}Ga

Morinaga et al. discovered ^{75}Ga in 1960 as reported in “Three new isotopes, ^{63}Co, ^{75}Ga, ^{81}As” [42]. Metallic germanium was irradiated with 25 MeV bremsstrahlung from the Tohoku betatron and ^{75}Ga was produced in the photo-nuclear reaction $^{76}\text{Ge}(\gamma,p)$. Gamma- and beta-radiation were measured with scintillation spectrometers following chemical separation. “Besides all the known activities a component which decayed with a half-life of approximately 2 minutes was observed.” The reported half-life of 2.0(1) min agrees with the presently accepted value of 126(2) s.

^{76}Ga

The observation of ^{76}Ga was described by Takashi et al. in the 1961 paper “Some new activities produced by fast neutron bombardments” [43]. Fast neutrons produced by bombarding graphite targets with 20 MeV deuterons from the Tokyo 160 cm variable energy cyclotron irradiated a metallic germanium sample. Gamma- and beta-ray spectra were measured with NaI(Tl) and plastic scintillators, respectively. “Since no other product of fast neutron reaction on Ge can give such a high energy electron radiation and the cross section to produce the activity is equal in order of magnitude to that of Ge$^{74}(n,p)\text{Ga}^{74}$ reaction, the activity is safely assigned to ^{74}Ga.” The reported half-life of 32(3) s agrees with the presently adopted value of 32.6(6) s.

^{77}Ga

Wish reported the observation of ^{77}Ga in “Thermal neutron fission of ^{235}U: Identification and functional chain yield of 17-sec ^{77}Ga.” [44]. Thermal neutrons from the Vallecitos Nuclear Test Reactor irradiated a solution of enriched ^{235}U and Ga(III) carrier in hydrochloric acid. The resulting β-ray activity was measured with a gas-flow proportional counter following chemical separation. “The results indicate the presence of ^{77}Ga and ^{78}Ga in the fission-product mixture. A plot of the 11.3-h ^{77}Ge β-ray activity versus the time of the Ga separation after irradiation is shown in [the figure]. A least-squares fit of the data gave a half-life of 17.1±1.5 sec for ^{77}Ga.” This half-life is close to the presently accepted value of 13.2(2) s.

^{78}Ga

In the 1972 paper “Identification of new germanium isotopes in fission: Decay properties and nuclear charge distribution in the A = 78 to 84 mass region” del Marmol and Fettweis identified ^{78}Ga [45]. A uranyl nitrate solution of ^{235}U was irradiated with neutrons from the Mol BRI graphite reactor. Gamma-ray spectra were recorded with a
Ge(Li) detector following chemical separation. “By using this method a half-life of 4.8 ± 1.3 s is found for ^{79}Ga; it specifies the estimated value of ≈ 4 s by Wish who counted a ^{78}Ge-^{78}As mixture formed from fission produced gallium, separated different times after the end of irradiation and it confirms the element assignment of a 4.9 ± 0.2 s half-life obtained through mass separation by the Osiris collaboration.” This half-life agrees with the currently accepted value of 5.09(5) s. As stated in the quote, previously Wish only estimated a value for the half-life [44], while the measurement by the Osiris collaboration was only published in a conference proceeding [46].

$^{79,80}\text{Ga}$

^{79}Ga and ^{80}Ga were observed by Grapengiesser et al. in the 1974 paper “Survey of short-lived fission products obtained using the Isotope-Separator-On-Line Facility at Studsvik” in 1974 [47]. The gallium isotopes were produced by neutron induced fission and identified at the OSIRIS isotope-separator online facility. In the first long table, the half-life of ^{79}Ga is quoted as $3.00(9)$ s, which agrees with the currently accepted value of $2.847(3)$ s. The authors reference an internal report [48] as the source of a half-life of $1.7(2)$ s for ^{80}Ga, which is included in calculating the currently accepted average value of 1.676(14) s.

$^{81-83}\text{Ga}$

Rudstam and Lund reported the observation of ^{81}Ga, ^{82}Ga and ^{83}Ga in “Delayed-neutron activities produced in fission: mass range 79-98” in 1976 [49]. ^{235}U targets were irradiated with neutrons from the Studsvik R2-0 reactor. Fission fragments were separated with the OSIRIS isotope separator and half-lives were measured with 20 ^{3}He neutron counters. “Mass number 81: The only activity at this mass can be assigned to gallium for the same reasons as in the case of mass 80... Mass number 82: One activity can be found, and again, gallium seems to be the most probable element assignment... Mass number 83: ...We have found only one activity of half-life 0.31±0.01 s. This activity can be assigned to gallium, as ^{83}Ge is reported to be a precursor with half-life of 1.9 ± 0.4 s.” The reported half-lives of $1.23(1)$ s (^{81}Ga), $0.60(1)$ s (^{82}Ga), and $0.31(1)$ s (^{83}Ga) agree with the currently accepted values of $1.217(5)$ s, $599(2)$ ms, and $308.1(10)$ ms, respectively. Rudstam and Lund did not comment on the 2.2 s half-life for ^{81}Ga [50] reported by the OSIRIS collaboration less than three month earlier.

^{84}Ga

The discovery of ^{84}Ga was reported by Kratz et al. in “Neutron-rich isotopes around the r-process ‘waiting-point’ nuclei ^{77}Cu, ^{80}Zn, and ^{84}Ga; the latter two lying even ‘beyond’ the r-process path...” The reported half-life of $85(10)$ ms is the currently accepted value.

$^{85,86}\text{Ga}$

Bernas et al. observed ^{85}Ga and ^{86}Ga for the first time in 1997 as reported in their paper “Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750-A MeV ^{238}U” [52]. Uranium ions were accelerated to 750 A-MeV by the GSI UNILAC/SIS accelerator facility and bombarded a beryllium target. The isotopes produced in the projectile-fission reaction were separated using the fragment separator FRS and the nuclear charge Z for each
was determined by the energy loss measurement in an ionization chamber. “The mass identification was carried out by measuring the time of flight (TOF) and the magnetic rigidity Bρ with an accuracy of 10\(^{-4}\).” 61 and 4 counts of \(^{85}\)Ga and \(^{86}\)Ga were observed, respectively.

\(^{87}\)Ga

The discovery of \(^{87}\)Ga was reported in the 2010 article “Identification of 45 new neutron-rich isotopes produced by in-flight fission of a \(^{238}\)U Beam at 345 MeV/nucleon,” by Ohnishi et al. [53]. The experiment was performed at the RI Beam Factory at RIKEN, where the new isotopes were created by in-flight fission of a 345 MeV/nucleon \(^{238}\)U beam on a beryllium target. \(^{87}\)Ga was separated and identified with the BigRIPS superconducting in-flight separator. The results for the new isotopes discovered in this study were summarized in a table. Ten counts were recorded for \(^{87}\)Ga.

3. Discovery of \(^{60–90}\)Ge

Thirty-one germanium isotopes from A = 60–90 have been discovered so far; these include 5 stable (\(^{70}\)Ge, \(^{72–74}\)Ge, and \(^{76}\)Ge), 11 neutron-deficient and 15 neutron-rich isotopes. According to the HFB-14 model [14], \(^{105}\)Ge should be the last odd-even particle stable neutron-rich nucleus while the even-even particle stable neutron-rich nuclei should continue through \(^{110}\)Ge. At the proton dripline two more isotopes (\(^{59}\)Ge and \(^{58}\)Ge) should be particle stable and in addition \(^{57}\)Ge could have a half-life longer than \(10^{-21}\) s [54]. Thus, about 21 isotopes have yet to be discovered corresponding to 40% of all possible germanium isotopes.

Figure 2 summarizes the year of first discovery for all germanium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive germanium isotopes were produced using fusion-evaporation reactions (FE), light-particle reactions (LP), neutron capture reactions (NC), and projectile fragmentation or projectile fission (PF). The stable isotopes were identified using mass spectroscopy (MS). In the following the discovery of each germanium isotope is discussed in detail and a summary is presented in Table 1.

Stable isotopes \(^{70}\)Ge, \(^{72–74}\)Ge, and \(^{76}\)Ge

In 1923 Aston reported the discovery of stable \(^{70}\)Ge, \(^{72}\)Ge, and \(^{74}\)Ge in “The isotopes of germanium” [55]. A pure germanium oxide sample was transformed into a fluorine compound and used in the Cavendish mass spectrograph. “The effects are somewhat feeble, but satisfactory evidence of the three isotopes has been obtained. Their mass-lines are at 70, 72, 74, and appear to be whole numbers though the accuracy of measurements is not so high as usual.”

In the 1933 paper “The masses of atoms and the structure of atomic nuclei” Bainbridge identified stable \(^{73}\)Ge and \(^{76}\)Ge [56]. \(^{73}\)Ge was observed with a magnetic spectrograph at the Bartol Research Foundation of the Franklin Institute. In a microphotometer record the germanium isotopes 70, 72, 73, 74, and 76 are clearly visible. The previous observation of \(^{73}\)Ge by Aston [57] was not considered as a discovery because Aston also incorrectly reported the existence of \(^{71}\)Ge, \(^{75}\)Ge, and \(^{77}\)Ge. Bainbridge stated in a conference abstract [58]: “Lines of mass 71, 75 and 77 attributed to Ge\(^{73}\), Ge\(^{75}\), and Ge\(^{77}\) by Aston are mainly if not entirely hydrides of Ge\(^{70}\), Ge\(^{74}\), and Ge\(^{76}\).”
Fig. 2: Germanium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue square corresponds to an unbound isotope predicted to have a half-life larger than $\sim 10^{-9}$ s. The black solid circle indicates the discovery year of the ground state in the case where the first observation was an isomeric state.
In the 2005 paper “First observation of 60Ge and 64Se” Stolz et al. identified 60Ge [15]. 60Ge was produced in the projectile fragmentation reaction of a 140 MeV/nucleon 78Kr beam on a beryllium target at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University. The projectile fragments were identified with the A1900 fragment separator. “Three events of 60Ge were unambiguously identified during 60 hours of beam on target with an average primary beam current of 3.6 pnA.”

In “Beta-delayed proton decay of 61Ge” Hotchkis et al. reported the observation of 61Ge in 1987 [18]. The Berkeley 88-in. cyclotron was used to bombard calcium targets with 77−120 MeV 24Mg beams and 61Ge was produced in the 40Ca(24Mg,3n) fusion-evaporation reaction. Beta-delayed protons were measured with a silicon telescope in connection with a pulsed beam technique and a helium-jet transport system. “A peak is observed at $E_{lab} = 3.10 \pm 0.07$ MeV, which can be attributed to the decay of 61Ge. At 78 MeV this peak is also evident, with a yield two-thirds of that at 85 MeV. Its half-life was deduced to be 40±15 ms using data from both bombardments.” This half-life is included in the average accepted value of 44(6) ms.

Mohar et al. first observed 62Ge and 63Ge in the 1991 paper “Identification of new nuclei near the proton-drip line for 31≤Z≤38” [19]. A 65 A-MeV 78Kr beam produced by the Michigan State K1200 cyclotron reacted with an enriched 58Ni target. 62Ge and 63Ge were identified by measuring the rigidity, ΔE, E_{total}, and velocity in the A1200 fragment separator. “Several new isotopes at or near the proton-drip line are indicated in the mass spectra: 61Ga, 62Ge, 63Ge, 65As, 69Br, and 75Sr.”

64,65Ge

64Ge and 65Ge were first reported by Robertson and Austin in their 1972 paper, “Germanium-64” [59]. Enriched 64Zn was irradiated with a 50 MeV 3He beam from the Michigan State University cyclotron. Gamma-rays were measured with a Ge(Li) detector following chemical separation. “The strongest lines decay with a short half-life (30±2 sec) and are attributed to 65Ge (despite large disagreement with the previous half-life), on the basis of the rapid growth of the 65Ga daughter and good energy fit with levels observed in 64Zn(3He,d)65Ga. Other lines, at 128.2±0.2, 384.1±0.3, 427.0±0.3, 667.1±0.3, and 774.5±0.3 decay with a (weighted average) half-life of 62.3±2.0 sec and are assigned to the decay of the new isotope 64Ge.” These half-lives agree with the presently adopted values of 63.7(25) s and 30.9(5) s for 64Ge and 65Ge, respectively. The previously reported half-life of 65Ge mentioned in the quote (1.5(2) min) was evidently incorrect [60] and an earlier attempt to observe 64Ge was unsuccessful [61].

In the 1950 paper “Spallation products of arsenic with 190 MeV deuterons” Hopkins identified 66Ge and 67Ge [62]. A pure 75As target was bombarded with 190 MeV deuterons from the Berkeley 184-inch cyclotron. X-rays and β-rays were recorded following chemical separation. “The use of improved chemical separations and counting techniques has enabled the identification of 38 nuclear species among the elements from chromium through selenium.” The half-lives
of \sim 150 \text{ min} \ (^{66}\text{Ge}) \text{ and } 21 \text{ min} \ (^{67}\text{Ge}) \text{ were listed in a table and are in agreement with the presently adopted values of } 2.26(5) \text{ h} \text{ and } 18.9(3) \text{ min}, \text{ respectively. The nominal half-lives listed in the table were quoted from the 1948 Table of Isotopes [9] which referred to unpublished data by Hopkins. A previously reported half-life of 195 \text{ d} \text{ tentatively assigned to } ^{67}\text{Ge} \ [31] \text{ was evidently incorrect.}

^{68}\text{Ge}

Hopkins et al. reported the observation of \(^{68}\text{Ge}\) in the 1948 paper “Nuclear reactions of arsenic with 190-Mev deuterons” [63]. A pure \(^{75}\text{As}\) target was bombarded with 190 MeV deuterons from the Berkeley 184-inch cyclotron. The resulting activities were measured with an argon-filled Geiger-Müller counter following chemical separation. The observed half-life of 250 \text{ d} \text{ listed in a table agrees with the presently adopted value of } 270.95(16) \text{ d}. \text{ The } 195 \text{ d} \text{ half-life from the literature listed in the table were quoted from the 1944 Table of Isotopes [8] which had assigned this half-life to } ^{69}\text{Ge} \text{ based on a measurement by Mann who had tentatively assigned it to } ^{67}\text{Ge} \ [31].

^{69}\text{Ge}

The first identification of \(^{69}\text{Ge}\) was made by Mann in 1938, titled “Nuclear transformations produced in zinc by alpha-particle bombardment” [31]. A zinc target was irradiated with 17 MeV \(\alpha\)-particles from the Berkeley cyclotron. Decay curves and absorption spectra were recorded with two electroscopes following chemical separation. “The 37-hour activity is probably to be identified with that of 26 hours reported by Sagane for \(^{69}\text{Ge}\). While the possibility of isomorphism cannot be overlooked, the identification of \(^{69}\text{Ge}\) seems reasonable.” The reported half-life agrees with the currently accepted value of 39.05(10) \text{ h}. \text{ No reference to the 26 \text{ h} half-life reported by Sagane was given in the paper, but it probably refers to reference [64]. However, in that paper, Sagane assigned this half-life to } ^{71}\text{Ge}, \text{ reporting a half-life of } 30 \text{ min} \text{ for } ^{69}\text{Ge}. \text{ In 1941, Seaborg et al. reassigned a 195-d half-life originally assigned to } ^{67}\text{Ge} \ [31] \text{ incorrectly to } ^{69}\text{Ge} \ [65].

^{71}\text{Ge}

Seaborg et al. correctly identified \(^{71}\text{Ge}\) in the 1941 paper, “Radioactive isotopes of germanium” [65]. Gallium and germanium targets were bombarded with 8 MeV and 16 MeV deuterons, respectively. Decay curves and absorption spectra were measured. “Bombarding gallium with 8-Mev deuterons we found in the germanium fraction a 40\pm 2-hour positron-emitter and an 11-day activity. These are almost certainly due to \(^{69}\text{Ge}\) or \(^{71}\text{Ge}\), produced by the d,2n reaction from the only stable gallium isotopes, \(^{69}\text{Ga}\) and \(^{71}\text{Ga}\) (d,n reactions would lead to stable germanium isotopes). But since the bombardment of germanium with 16-Mev deuterons also produces a 40\pm 2-hour and an 11-day germanium period, both periods must be assigned to \(^{71}\text{Ge}\), formed by the d,p reaction from \(^{70}\text{Ge}\).” The 11 \text{ d} activity agrees with the currently accepted value of 11.43(3) \text{ d}. Seaborg et al. also extracted an 11 \text{ d} half-life from a figure in a paper by Mann [31] who had not mentioned it. The 40(2) \text{ h} activity, however, most likely corresponds to the half-life of \(^{69}\text{Ge}\). A previously assigned half-life of 26(3) \text{ h} [34] \text{ was evidently incorrect. Also Aston had incorrectly reported } ^{75}\text{Ge} \text{ to be stable [57].}
Sagane identified ^{75}Ge and ^{77}Ge in 1939 as reported in “Radioactive isotopes of Cu, Zn, Ga and Ge” [34]. Metallic germanium targets were irradiated by slow and fast neutrons produced by deuteron bombardments of lithium and beryllium from the Berkeley cyclotron. ^{75}Ge and ^{77}Ge were produced by neutron capture reactions and the resulting activities were measured with a Lauritsen-type quartz fiber electroscope. “The 81-min. period was formed in strong intensity in each bombardment. This isotope emits negative electrons and is sensitive to slow neutrons. Because of the relative abundance of Ge74 (37 percent) and Ge76 (6.5 percent), the isotope in question is probably Ge75... The 8-hr. period was obtained appreciably only in slow neutron bombardments. With fast neutrons only a trace of this period was noticed, indicating very clearly that this period is very sensitive to slow neutrons. There remains only one possibility for this kind of negative electron active period, that is Ge77.” The reported half-lives of 81(3) min for ^{75}Ge and 8(1) h for ^{77}Ge are close to the currently accepted values of 82.78(4) min and 11.30(1) h, respectively. Previously, Aston had incorrectly reported ^{75}Ge and ^{77}Ge to be stable [57].

^{78}Ge

^{78}Ge was reported in 1953 by Sugarman in “Genetics of the Ge78–As78 fission chain” [66]. Uranyl nitrate was irradiated with thermal neutrons at the Los Alamos Homogenous Reactor. Activities were measured with a methane-flow proportional counter following chemical separation. “The half-life of Ge78 thus found in the two experiments is 86.5 min and 85.3 min. The half-life accepted is 86.0±1.0 min, if account is taken both of the spread of the data and possible systematic errors... The previously reported value for the half-life of Ge78 of 2.1 hr (126 min), as determined directly on a sample of germanium in which arsenic activity was growing, is probably in error because of the difficulty in determining the parent half-life in a mixed sample when the parent and daughter have very nearly the same half-life.” The reported half-life agrees with the currently accepted value of 88.0(10) m. The incorrect half-life measurement of 2.1 h had been reported as part of the Plutonium Project [67].

^{79}Ge

The identification of ^{79}Ge was reported by Karras et al. in “Radioactive nucleides ^{79}Ge and ^{82}As” in 1969 [68]. The Arkansas 400 kV Cockcroft-Walton linear accelerator was used to produce 14.7 MeV neutrons by the $^3\text{H}(^2\text{H},n)^4\text{He}$ reaction. The neutrons irradiated enriched ^{82}Se samples and γ- and β-rays were measured with Ge(Li) and NaI(Tl) detectors, respectively. “The 42 sec activity with β-rays of 4.3 and 4.0 and the coincident γ-ray of 230 keV can be assigned to ^{79}Ge based on the following: (i) the β-decay Q-value of 4.3 ± 0.2 MeV is in agreement with the estimated value of 4.0 MeV for ^{79}Ge. ^{82}As is estimated to have a Q_β ≈ 7.4 MeV; (ii) the 42 sec activity was found to be considerably enhanced when enriched ^{82}Se was bombarded and analyzed; and (iii) the 42 sec 230 keV γ-ray was observed to follow the Ge fraction separated from irradiated natural Se.” The reported half-life of 42(2) s agrees with the currently adopted value of 39.0(10) s for an isomer. The ground-state of ^{29}Ge was first observed in 1974 [47].

$^{80–84}\text{Ge}$

In the 1972 paper “Identification of new germanium isotopes in fission: Decay properties and nuclear charge distribution in the A = 78 to 84 mass region” del Marmol and Fettweis identified ^{80}Ge, ^{81}Ge, ^{82}Ge, ^{83}Ge, and ^{84}Ge [45].
uranyl nitrate solution of 235U was irradiated with neutrons from the Mol BR1 graphite reactor. Gamma-ray spectra were recorded with a Ge(Li) detector following chemical separation. “By combining the three methods (the 666.2 keV growth and decay measurement, the ‘milking’ and decay of the 265.6 keV γ-ray) an average half-life of 24.5±1.0 s was chosen for 80Ge, which confirms the assignment of the Osiris group... From the results of both β- and γ-ray measurements an average half-life of 10.1±0.8 s was chosen for 81Ge... By applying the ‘milking’ method to this same γ-ray, a half-life of 4.60±0.35 s was found for 82Ge as shown in [the figure]... A half-life of 1.9±0.4 s was determined for 83Ge by applying the ‘milking’ method to the 356 keV γ-ray from 22.6 min 83mSe after complete decay of its predecessors and of 70 s 83mSe... In the present case the ‘milking’ method was applied to the 881.6 keV γ-ray from 84Br to obtain the half-life of 84Ge; even with a counting time of 1 h, the statistics of this 50% intensity transition were very low.” The reported half-lives of 24.5(10) s (80Ge), 10.1(8) s (81Ge), 4.60(35) s (82Ge), 1.9(4) s (83Ge), and 1.2(3) s (84Ge) are consistent with the presently adopted values of 29.5(4) s, 7.6(6) s, 4.55(5) s, 1.85(6) s and 0.954(14) s, respectively. The 82Ge half-life is included in the calculation of the average accepted value. The previous assignment of 80Ge by the OSIRIS group mentioned in the quote was only published in a conference proceeding [46].

85Ge

In 1991 Omtvedt et al. described the observation of 85Ge in “Gamma-ray and delayed neutron branching data for the new or little known isotopes 84,85Ge and 84,85As” [69]. Fission fragments were measured with the OSIRIS facility in Studsvik. Beta- and gamma-ray spectra were recorded of the mass-separated fragments. “The branchings of γ-rays following the decay of 84,85Ge and 84,85As have been determined using mass-separated samples. Our results include the first identification of 85Ge and the first γ-ray data for 84Ge.” The reported half-life of 0.58(5) s agrees with the currently accepted value of 535(47) ms.

86Ge

Bernas et al. discovered 86Ge in 1994 as reported in “Projectile fission at relativistic velocities: A novel and powerful source of neutron-rich isotopes well suited for in-flight isotopic separation” [70]. The isotopes were produced using projectile fission of 238U at 750 MeV/nucleon on a lead target. “Forward emitted fragments from 80Zn up to 155Ce were analyzed with the Fragment Separator (FRS) and unambiguously identified by their energy-loss and time-of-flight.” The experiment yielded ten individual counts of 86Ge.

87–89Ge

Bernas et al. observed 87Ge, 88Ge, and 89Ge for the first time in 1997 as reported in their paper “Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750-A MeV 238U” [52]. Uranium ions were accelerated to 750 A-MeV by the GSI UNILAC/SIS accelerator facility and bombarded a beryllium target. The isotopes produced in the projectile-fission reaction were separated using the fragment separator FRS and the nuclear charge Z for each was determined by the energy loss measurement in an ionization chamber. “The mass identification was carried out by measuring the time of flight (TOF) and the magnetic rigidity $B\rho$ with an accuracy of $10^{-4}.$” 583, 67 and 11 counts were observed for 87Ge, 88Ge, and 89Ge, respectively.
The discovery of 90Ga was reported in the 2010 article “Identification of 45 new neutron-rich isotopes produced by in-flight fission of a 238U Beam at 345 MeV/nucleon,” by Ohnishi et al. [53]. The experiment was performed at the RI Beam Factory at RIKEN, where the new isotopes were created by in-flight fission of a 345 MeV/nucleon 238U beam on a beryllium target. 90Ge was separated and identified with the BigRIPS superconducting in-flight separator. The results for the new isotopes discovered in this study were summarized in a table. Three counts were recorded for 90Ge.

4. Discovery of $^{150−184}$Lu

Thirty five lutetium isotopes from $A = 150−184$ have been discovered so far; these include 1 stable (175Lu), 25 proton-rich and 9 neutron-rich isotopes. According to the HFB-14 model [14], 234Lu should be the last odd-odd particle stable neutron-rich nucleus while the even-odd particle stable neutron-rich nuclei should continue at least through 241Lu. The proton dripline has been crossed with the observation of proton emission of 150Lu and 151Lu. However, six more isotopes ($^{144−149}$Lu) could possibly still have half-lives longer than 10^{-9} ns [54]. Thus, about 60 isotopes have yet to be discovered corresponding to 63% of all possible lutetium isotopes.

The naming of the element lutetium has been controversial for a long time [71]. Urbain and Auer von Welsbach claimed the discovery almost simultaneously in 1907/1908. While Urbain named the new element lutécium [72], Auer von Welsbach requested the name cassiopeium [73]. The international commission on atomic weights - which Urbain was a member of - recommended the name lutetium in 1909 [74]. Auer von Welsbach [75] and Urbain [76] continued to argue about the naming rights in the subsequent years and the name cassiopeium was used in the german scientific literature for several decades (for example [77]). In 1949, at the 15th Conference of the International Union of Chemistry it was decided that the spelling should be lutetium rather than lutecium [78].

Figure 3 summarizes the year of first discovery for all lutetium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive lutetium isotopes were produced using fusion-evaporation reactions (FE), photo-nuclear reactions (PN), neutron capture reactions (NC), light-particle reactions (LP), spallation (SP), and deep inelastic (DI). The stable isotope was identified using mass spectroscopy (MS). In the following, the discovery of each lutetium isotope is discussed in detail and a summary is presented in Table 1.

Stable isotope 175Lu

Aston discovered 175Lu in the 1934 paper “Constitution of dysprosium, holmium, erbium, thulium, ytterbium and lutecium” [79]. Rare earth elements were measured with the Cavendish mass spectrograph: “Lutecium (71) is simple 175.”

150Lu

150Lu was first identified by Sellin et al. in their paper “Proton spectroscopy beyond the drip line near A=150” in 1993 [80]. An isotopically enriched 96Ru target was bombarded with 300 and 311 MeV 58Ni beams and 150Lu was populated in (p3n) fusion evaporation reactions. Recoil products were separated with the Daresbury recoil separator and implanted in a double-sided silicon strip detector where subsequent α-particle and proton-decays were measured. “The
Fig. 3: Lutetium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s. The black solid circles indicate the discovery year of the ground states in the case where the first observation was an excited state.
assignment of this proton transition to the p3n evaporation channel from 154Hf* is also consistent with the observed yield and we therefore identify the 1.26-MeV peak as proton emission from 150Lu.” The reported half-life of 35(10) ms is included in the calculation of the currently accepted value of 46(6) ms. Earlier reports of a half-life of \leq10 ms [81] and a proton decay energy of 1262.7(36) keV [82] were only reported in conference proceedings.

151Lu

Hoffmann et al. discovered 151Lu as reported in the 1981 paper “Proton radioactivity of 151Lu” [83]. The GSI UNILAC accelerator was used to bombard enriched 90Ru targets with 261−302 MeV 58Ni beams to produce 151Lu in (p2n) fusion-evaporation reactions. Reaction products were separated with the SHIP velocity separator onto position sensitive surface barrier detectors for energy and time measurements as well as subsequent particle decays. “We conclude that, barring any effects not foreseen both by the systematics and by theory, the observed Q_P value is highly compatible with emissions from the 151Lu ground state or an isomeric state very close to it.” The observed half life of 85(10) ms is included in the calculation of the presently accepted value of 80.6(20) ms.

152Lu

The identification of 152Lu was reported by Toth et al. in 1986 in “Investigation of A = 152 radioactivities with mass-separated sources: Identification of 152Lu” [84]. An enriched 90Ru target was bombarded with 354 MeV 58Ni ions from the Berkeley SuperHILAC and 152Lu was formed in the (pn) fusion evaporation reaction. The products were separated by the OASIS isotope separator which delivered the isotopes to a ΔE − E telescope, Ge detectors, and a plastic scintillator with a tape system. “Three weak γ rays, 312.6, 358.7, and 1531.4 keV, known to deexcite 152Yb levels, were seen in our spectra to decay with a (0.7±0.1)-s half-life, one that had previously not been observed in the A = 152 isobaric chain. We therefore attribute them to the β decay of the new isotope 152Lu.” This half-life corresponds to the currently adopted value.

153Lu

153Lu was observed by Nitschke et al. in their 1989 paper “Identification of 152Lu β decay” [85]. A 284 MeV 64Zn beam from the Berkeley SuperHILAC bombarded an enriched 92Mo target populating 153Lu in the (p2n) fusion-evaporation reaction. The online isotope separator OASIS was used to separate the reaction products which were then transported by a cycling tape system to a detection system consisting of a silicon ΔE − E telescope, a plastic scintillator, a planar hyperpure Ge detector and two n-type Ge detectors. “Gating on the 566.5-keV γ ray revealed coincident Yb K x rays indicating that we had observed the β decay of 153Lu.” The reported half-life of 0.9(2) s corresponds to the presently adopted value. In an earlier report the existence of 153Lu was inferred from α-correlation measurements: “Further, correlations were measured between the α lines of 157Ta−153Tm and 156Hf−152Er that prove a β-decay of the new isotopes 153Lu, 152Yb, and 152Tm.” [86]. However, no properties of 153Lu or its decay were measured.

154Lu

In the 1981 paper “New neutron deficient isotopes in the range of elements Tm to Pt” Hofmann et al. reported the first observation of 154Lu [86]. Neutron deficient isotopes of elements from molybdenum to tin and vanadium to nickel targets were bombarded with 58Ni and 107Ag at the GSI linear accelerator UNILAC. Reaction products were separated
by the SHIP velocity filter and implanted into silicon detectors. “Here, the intensity of the 154Yb α line first increases corresponding to its own half-life of 410 ms followed by a decrease with $T_{1/2} = 960$ ms corresponding to the half-life of the β emitter 154Lu.” The reported half life of 960(100) ms is included in the calculation of the currently accepted value of 1.12(8) s.

155,156Lu

Macfarlane discovered 155Lu and 156Lu in 1963 as reported in “Alpha-decay properties of some lutetium and hafnium isotopes near the 82-neutron closed shell” [87]. An enriched 144Sm target was bombarded with 19F at the Berkeley heavy-ion linear accelerator and 155Lu and 156Lu were produced in (8n) and (7n) fusion evaporation reactions, respectively. Excitation functions and α-particles spectra were measured. “However, the excitation function for the 5.63 MeV alpha group which we suspected to be due to Lu155 peaks ≈ 6 MeV lower than this, at a value half-way between the (H.I.,8n) and (H.I.,7n) energies. We did observe an activity, however, which was assigned to the (F19,7n) reaction so that the only plausible mass assignment for this activity is Lu155. . . . The peak of the excitation function falls at an excitation energy of 103 MeV which is in good agreement with the values previously observed for (H.I.,7n) reactions. (See the above discussion of the Lu155 results.) The mass assignment of this activity must, therefore, be Lu156.?” The measured half life of 0.07(2) s for 155Lu is used for the calculation of the presently adopted value of 68(1) ms. Half lives of ≈ 0.5 s and 0.23(3) s were reported for the ground state and a high spin state of 156Lu, which agree with the accepted values of 494(12) ms and 198(2) ms, respectively.

157Lu

The observation of 157Lu was reported by Hagberg et al. in the 1977 paper “Alpha decay of neutron-deficient ytterbium isotopes and their daughters” [88]. The CERN synchro-cyclotron was used to bombard tantalum with 600 MeV protons. 157Lu was separated with the ISOLDE on-line mass separator facility and α particles were measured with two silicon surface-barrier detectors. “At this mass number, we have also observed two short-lived activities with α-energies 4.98±0.02 MeV and 5.11±0.02 MeV. The latter corresponds well to the known α-decay energy of 153Tm and thus we assign the 4.98 MeV activity to its α-decay parent 157Lu.” Hagberg et al. mention that their result differs significantly from a previous measurement referring to a conference abstract [89].

158Lu

Alkhazov et al. identified 158Lu in the 1979 paper “New neutron deficient lutetium isotopes” [90]. Tungsten and tantalum targets were bombarded with 1 GeV protons from the Leningrad synchrocyclotron and 158Lu was produced in spallation reactions. It was separated with the IRIS mass separator and subsequent decays were measured with a surface-barrier detector as well as X- and γ-ray detectors. “On the basis of the parent-daughter relationship the $E_\alpha = 4.665$ MeV line $T_{1/2} = 10.4\pm1.0$ s has been assigned to the new 158Lu.” This half-life is included in the calculation of the presently adopted value of 10.6(3) s.

159Lu

159Lu was observed by Alkhazov et al. as described in “New isotope 159Lu and decay of 158Lu, 159,158Yb isotopes” [91]. Tungsten targets were bombarded with 1 GeV protons from the Leningrad synchrocyclotron and 159Lu was produced
in spallation reactions. It was separated with the IRIS mass separator and subsequent decays were measured with a surface-barrier and Ge(Li) detectors. “The half-life of the new isotope ^{159}Lu was determined from X-ray, γ-ray and α particle measurement. [The figure] shows the Roentgen spectrum obtained at this isobar and the decay data for K_α, Yb. To confirm our earlier preliminary assignment of 4.43 MeV α line ($T_{1/2} \approx 20$ s) to ^{159}Lu we remeasured the α spectrum for this mass with higher statistics. From the present experiment we obtained $E_\alpha = 4.420 \pm 0.010$ MeV for the energy of this new α line. The measured half-life $T_{1/2} = 12.0 \pm 1.5$ s is in good agreement with the value obtained by X-ray and γ-ray spectroscopy.” This half-life is included in the calculation of the presently accepted value of 12.1(10) s. The preliminary assignment was published a year earlier [90].

^{160}Lu

Alkhazov et al. identified ^{160}Lu in the 1979 paper “New neutron deficient lutetium isotopes” [90]. Tungsten and tantalum targets were bombarded with 1 GeV protons from the Leningrad synchrocyclotron and ^{160}Lu was produced in spallation reactions. It was separated with the IRIS mass separator and subsequent decays were measured with a surface-barrier detector as well as X- and γ-ray detectors. “Isotopes $^{158,160,161,163}\text{Lu}$ have been identified for the first time... The identification of the new isotopes is based on the analysis of the characteristic K_α and K_β lines in the X-ray spectra, and the genetic relationship to the decay of the daughter well known nuclei, in addition to the unambiguous mass determination after mass separations.” The measured half-life (34.5(15) s) listed only in a table is included in the calculation of the presently adopted value of 36.1(3) s.

^{161}Lu

In 1973 the identification of ^{161}Lu was reported in “A 7.3 ms isomer of ^{161}Lu” by Anholt et al. [92]. An enriched ^{148}Sm target was bombarded with 110–150 MeV ^{19}F ions from the Yale heavy ion accelerator and ^{161}Lu was formed in the (6n) fusion evaporation reaction. Decay curves and γ-ray spectra of the subsequent activities were measured with a Ge(Li) detector. “The mass number of the decay chain to which this activity belongs has been established as 161 by observing the excitation function for this line and comparing it to those of γ-ray peaks associated with radioactive decay products of $^{160}\text{Lu}, ^{161}\text{Lu}$ and ^{162}Lu.” The reported half-life of 7.3(4) ms corresponds to an isomeric state and is the currently adopted value. Six years later Alkhazov et al. claimed the discovery of ^{161}Lu by reporting the measurement of the ground state [90].

^{162}Lu

In “Decay of $^{162,164,165}\text{Lu}$ isotopes” Burman et al. reported the discovery of ^{162}Lu in 1978 [93]. A ~ 105 MeV ^{16}O beam from the Yale heavy ion accelerator bombarded enriched $^{151}\text{Eu}_2\text{O}_3$ powder to produce ^{162}Lu in the reaction $^{151}\text{Eu}(^{16}\text{O},5n)$. Decay curves, γ-ray singles spectra and $\gamma - \gamma$ coincidence spectra were recorded using multiple Ge(Li) detectors. “Only two γ rays at 167.0 and 320.3 keV have been observed in the decay of ^{162}Lu to the levels of ^{162}Yb. The half-life of ^{162}Lu (1.40±0.15 min) has been verified in the present work. No gamma rays have been reported earlier from the decay of ^{162}Lu isotope.” The currently accepted half-life of 1.37(2) min was calculated by including this reported half-life. Previous measurements were only published in an internal report [94] and a conference proceeding [95].
Alkhazov et al. identified $^{163}{\text{Lu}}$ in the 1979 paper “New neutron deficient lutetium isotopes” [90]. Tungsten and tantalum targets were bombarded with 1 GeV protons from the Leningrad synchrocyclotron and $^{163}{\text{Lu}}$ was produced in spallation reactions. It was separated with the IRIS mass separator and subsequent decays were measured with a surface-barrier detector as well as X- and γ-ray detectors. “Isotopes $^{158,160,161,163}{\text{Lu}}$ have been identified for the first time... The identification of the new isotopes is based on the analysis of the characteristic K$_{\alpha}$ and K$_{\beta}$ lines in the X-ray spectra, and the genetic relationship to the decay of the daughter well known nuclei, in addition to the unambiguous mass determination after mass separations.” The measured half-life $(246(12) \text{ s})$ listed only in a table is included in the calculation of the presently adopted value of $3.97(13) \text{ min}$.

$^{164}{\text{Lu}}$

$^{164}{\text{Lu}}$ was observed by Hunter et al. in 1977 as described in “Levels in $^{164}{\text{Yb}}$ from $^{164}{\text{Lu}}$ decay” [96]. A 79 MeV $^{14}{\text{N}}$ beam from the Oak Ridge isochronous cyclotron irradiated gadolinium oxide enriched in $^{155}{\text{Gd}}$. Two Ge(Li) detectors were used to record single and coincidence γ-ray spectra. “The best value of the half-life of the dominant $^{164}{\text{Lu}}$ decay appears to be $3.17\pm0.004 \text{ min}$, obtained from the 123.8-keV peak.” The reported half-life is included in the calculations of the currently accepted half-life of $3.14(3) \text{ m}$. Hunter et al. mentioned a previously reported 3.1 min half-life which was only published as an internal report [94].

$^{165}{\text{Lu}}$

The first identification of $^{165}{\text{Lu}}$ was reported in “Gamma rays from 11.8 min $^{165}{\text{Lu}}$, a new isotope” by Meijer et al. in 1973 [97]. Thulium foils were bombarded with 50, 60, 70 and 80 MeV $^{3}{\text{He}}$ beams from the Amsterdam synchrocyclotron. A Ge(Li) anti-compton spectrometer and a Ge(Li) surface barrier detector were used to measure the γ-ray spectra. “In experiments with 70 or 80 MeV bombarding energy we observed several strong lines decaying with $11.9\pm0.5 \text{ min}$. The highest production of this activity was at 80 MeV irradiation energy, corresponding to the maximum of the $(^{3}{\text{He}},7\text{n})$ reaction. Further evidence for the assignment to $^{165}{\text{Lu}}$ is provided by the fact that we observed the strongest lines in the $^{165}{\text{Yb}}$ daughter decay growing in with about 9 minutes and decaying with 11.8 minutes.” This half-life agrees with the currently accepted value of $10.74(10) \text{ min}$.

$^{166}{\text{Lu}}$

$^{166}{\text{Lu}}$ was observed by Arlt et al. as reported in the 1970 paper “The new neutron-deficient isotopes $^{169}{\text{Hf}},^{167}{\text{Hf}},^{166}{\text{Hf}},$ and $^{166}{\text{Lu}}$ and the decay scheme of $^{169}{\text{Hf}}$” [98]. Protons were accelerated to 660 MeV by the Dubna synchrocyclotron and bombarded Ta$_2$O$_5$ targets to form hafnium isotopes in the Ta(p,2pxn) reaction which subsequently decayed to lutetium isotopes. Gamma-ray spectra were measured with NaI(Tl) and Ge(Li) detectors in singles and coincidences following chemical separation. “The 102, 228, and 338 keV γ rays decayed with a $3.3\pm0.2 \text{ min}$ half-life. This activity is derived from the activity decaying with $T=5.8\pm0.2 \text{ min}$, i.e. from $^{166}{\text{Hf}}$, so we may suppose that it arises from the decay of $^{166}{\text{Lu}}$. This half-life is close to the currently accepted value of $2.65(10) \text{ min}$.
Aron et al. discovered ^{167}Lu in “New neutron-deficient rare earth isotopes. Lutetium isotope with mass number 167” in 1958 [99]. Tantalum was bombarded with 660 MeV protons from the Dubna synchrocyclotron. A scintillation γ-spectrometer was used to measure γ-ray spectra following chemical separation. “In the spectrum of the thulium fraction separated simultaneously with the ytterbium from the lutetium fraction we observed the γ-lines characteristic of Tm167. The intensity of the bright 207 kev γ-line fell off with a period of ≈ 10 days (the tabular value for the period of Tm167 is 9.6 days). Thus we have unquestionable evidence of the existence of a hitherto unknown lutetium isotope, namely Lu167. ” The reported half-life of 55(3) min agrees with the presently adopted value of 51.5(10) min. In the following year a 54 min half-life was reported independently [100].

^{168}Lu

^{168}Lu was reported in “Radioactive decay of Lu168” by Wilson and Pool in 1959 [101]. Ytterbium oxide targets enriched in ^{168}Yb were bombarded with 6 MeV protons and ^{168}Lu was produced in the (p,n) charge exchange reaction. Decay curves, γ-ray and K X-ray spectra were measured. “The initially resulting activity is assigned to Lu168 by the identification of the ytterbium K x ray and by comparison with the activities produced by similar proton irradiations of each of the other enriched isotopes of ytterbium.” The reported half-life of 7.1(2) min is included in the calculation of the currently accepted value of 6.7(4) min for an isomeric state. The ground-state of ^{168}Lu was first observed in 1972 [102].

^{169}Lu

Nervik and Seaborg reported the discovery of ^{169}Lu in 1954 in “Tantalum spallation and fission induced by 340-MeV protons” [103]. Tantalum metal was bombarded with 340-MeV protons from the Berkeley 184-inch cyclotron. Decay curves were measured with a Geiger-Müller counter following chemical separation. “It seems more probable that 32-day Yb169 is growing into the lutetium fraction as a daughter activity of Lu169. From the relative magnitude of the 32-day and 1.7-day activities, the 1.7-day activity could be the Lu169 parent.” This half-life is close to the accepted value of 34.06(5) h.

$^{170−174}\text{Lu}$

In “Radioactive isotopes of lutetium and hafnium” Wilkinson and Hicks described the identification of ^{170}Lu, ^{171}Lu, ^{172}Lu, ^{173}Lu, and ^{174}Lu in 1950 [104]. Targets of rare earth elements were irradiated with various light particles produced with the Berkeley 60-in. cyclotron and the linear accelerator. ^{170}Lu, ^{171}Lu, and ^{172}Lu were primarily produced by bombarding thulium targets with 15–38 MeV α particles, ^{173}Lu with 30–40 MeV protons on lutetium, and ^{174}Lu with 10 MeV protons, 19 MeV deuterons and fast neutrons on lutetium. Decay curves, absorption curves, and electron spectra were measured following chemical separation. “1.7±0.1-day Lu170 — This activity was observed in bombardments of thulium with alpha-particles of energy greater than about 30 Mev. It was also found in the decay of a short-lived hafnium parent (112-min Hf170). Allocation to mass 170 thus seems fairly certain... 8.5±0.2-day Lu171 — Growth of the 1.7 day-Lu170 together with growth of the 8.5-day species was observed only in hafnium activities produced by 60 to 75-Mev protons on lutetium and hence, in view of the production of both isotopes in alpha particle bombardments of thulium,
allocation of the 8.5-day activity is made to mass 171... 6.70±0.05 day Lu\(^{172}\) — The hafnium activity of about five years half-life allocated to mass 172 has been found to have a lutetium daughter, the decay of which has been followed through over ten half-lives. The radiation characteristics agree well with those obtained for the activity produced in low energy alpha-particle bombardments of thulium, and it is fairly certain that the activities are due to the same isotope... ~500-day Lu\(^{173}\) — The quantity of residual lutetium activity formed in decay of a sample of pure 23.6-hour Hf\(^{173}\) made by the \((p,3n)\) reaction in the bombardment of lutetium with 25-Mev protons in the linear accelerator, together with the estimated counting efficiencies, gives a half-life of 400 to 600 days for this isotope. The direct decay has been followed only through two years as yet, yielding a value ~500 days... 165±5-day Lu\(^{174}\) — This activity was found in the lutetium fraction from bombardments of lutetium with fast neutrons, 10-Mev protons, and 19-Mev deuterons; it has also been found together with the well known 6.7-day Lu\(^{177}\) in the bombardment of hafnium with 19-Mev deuterons. Allocation to mass 174 can be made with certainty on the basis of formation by \((n,2n)\), \((p,pn)\), and \((d,p2n)\) reactions in lutetium and the \((d,\alpha)\) reaction in hafnium.” These half-lives are in reasonable agreements with the currently adopted values of 2.012(20) d \((^{170}\text{Lu})\), 8.24(3) d \((^{171}\text{Lu})\), 6.70(3) d \((^{172}\text{Lu})\), 1.37(1) y \((^{173}\text{Lu})\), and 142(2) d \((^{174}\text{Lu})\). The value for \(^{174}\text{Lu}\) corresponds to an isomer. The ground-state of \(^{174}\text{Lu}\) was first observed in 1962 [105].

\(^{176}\text{Lu}\)

\(^{176}\text{Lu}\) was identified by Marsh and Sugden and published in the 1935 paper “Artificial radioactivity of the rare earth elements” [106]. Ytterbium and lutetium oxides were irradiated with neutrons from a 400 mCi radon source in contact with powdered beryllium. “We have now examined a specimen of ytterbia separated from lutecia and other earths by the electrolytic method as insoluble YbSO\(_4\). It gives a very feeble activity which is indistinguishable in period from that of lutecium and is probably due to residual traces of that element. The residual earths after the separation of ytterbium consisted chiefly of lutecia and gave a strong activity identical in period with that found for Prof. Urbain’s specimen of lutecia.” The reported half-life of 4.0(1) h is close to the accepted half-life of 3.664(19) h. This corresponds to an isomeric state. \(^{176}\text{Lu}\) can be considered stable with a half-life of 38.5(7) Gy. The ground-state of \(^{176}\text{Lu}\) was first observed in 1939 [107].

\(^{177}\text{Lu}\)

The identification of \(^{177}\text{Lu}\) was reported by Atterling et al. in 1944 in “Neutron-induced radioactivity in lutecium and ytterbium” [108]. Lu\(_2\)O\(_3\) samples were bombarded with fast and slow neutrons produced by bombarding LiOH with 6 MeV deuterons and beryllium with 6.5 MeV deuterons from the Stockholm cyclotron, respectively. The resulting activities were measured with a Wulf string electrometer and a Geiger-Müller counter. “We find two periods in lutecium, 3.67 h. and 6.6 d. With slow neutrons both periods are activated strongly, the 6.6 d. period being the stronger as regards the saturation activity. With fast neutrons, however, the 3.67 h. period is much more strongly activated than the long-lived activity... As will be seen from the isotope-diagram in [the figure], the above mentioned variation in the activities of the two periods caused by the different methods of activation very strongly indicates that the 6.6 d. period should be assigned to Lu\(^{177}\).” The reported half-life of 6.6(1) d agrees with the currently accepted value of 6.647(4) d. Previously a 5 d activity was measured without a specific mass assignment [109] and 6 d [110] and 6−7 d [111] were assigned to \(^{176}\text{Lu}\). Flammersfeld and Bothe assigned a 6.6 d activity to \(^{176}\text{Lu}\) and a 3.4 h activity to \(^{177}\text{Lu}\) [112].
In 1957, Stribel described the discovery of 178Lu in “Massenzuordnung und γ-Spektrum des 22 min-Lutetium” [113]. A metallic tantalum target was irradiated with fast neutrons produced by bombarding deuterons on lithium and 178Lu was produced in \((n,\alpha)\) reactions. The resulting activity was measured with a NaI scintillation spectrometer.

“Bei Diskriminierung auf γ-Energien über 250 keV fanden wir einen zeitlichen Abfall von etwa 20 min Halbwertszeit. Eine chemische Abtrennung wurde nicht durchgeführt. Da jedoch andere Aktivitäten ähnlicher Periode mit schnellen Neutronen nicht entstehen können, dürfte diese γ-Aktivität mit dem 22 min. Lutetium identisch sein, dem danach die Massenzahl 178 zuzuordnen wäre.” [When gating on γ-ray energies larger than 250 keV, we found a decay with a half-life of about 20 min. No chemical separation was performed. However, because no other activities with similar lifetime can be produced with fast neutrons this γ-activity has to be identical with the 22-min lutetium and assigned to mass 178.]

Previously, half-lives of 22 min and 8 h were assigned to either 178Lu or 179Lu [114].

179Lu

Kuroyanagi et al. observed 179Lu in 1961 as reported in “New activities in rare earth region produced by the \((γ,p)\) reactions” [115]. Hafnium oxide powder was irradiated with γ-rays at the Tohoku 25 MeV betatron. Decay curves were measured with a β-ray analyser or an end-window G-M counter and β-ray spectra were recorded with a plastic scintillator. “Several new activities in the rare earth region were identified and also the decay characteristics of some previously reported activities in this region were studied more in detail. They were produced by the \((γ,p)\) reactions and measurement was made with the aid of the scintillation spectrometers. Results were as follows: ... Lu179: 7.5±0.5 h (half-lives), 1.35±0.05 meV (beta rays), 90, 215 keV (gamma rays).” This half-life is in reasonable agreement with the presently adopted value of 4.59(6) h. A year later Stensland and Voigt confirmed the results except for the 90 keV γ-ray and attributed the longer half-life to possible impurities [116]. Previously, half-lives of 22 min and 8 h were assigned to either 178Lu or 179Lu [114] and a ∼5 h half-life was reported without a mass assignment [117].

180Lu

The identification of 180Lu was described by Gujrathi and D’Auria in 1970 in “The decay of 180Lu to the levels of 180Hf” [118]. Natural hafnium metal and hafnium oxide enriched in 180Hf were irradiated with 14.8 MeV neutrons from a Texas Nuclear Corp. Model 9400 neutron generator. Subsequent radiation was measured with a γ-ray spectrometer, an X-ray spectrometer and an anthracene crystal. “The remaining resolved photopeaks are found to decay with a composite half-life of 5.3±0.3 min and are assigned to the decay of a beta unstable level in 180Lu.” This half-life is included in the calculation of the currently accepted half-life of 5.7(1) min. Previously a 4.5(1) min half-life was assigned to either 178mLu or 180Lu [119] and a 2.5 min half-life [43] was evidently incorrect. It is interesting to note that less than three month later Swindle et al. reported the discovery of the “New iso­tope 180Lu” [120] quoting the uncertain mass assignment of Aten and Funke-Klopper [119], but then retracted the discovery claim [121] stating that it had been brought their attention that Aten and Funke-Klopper had discovered 180Lu quoting the same paper [119].

181,182Lu

181Lu and 182Lu were discovered by Kirchner et al. in 1981 and reported in “New neutron-rich 179Yb and 181,182Lu isotopes produced in reactions of 9 MeV/u 136Xe ions on tantalum and tungsten targets” [122]. A 9 MeV/u 146Xe beam
from the GSI UNILAC accelerator bombarded tungsten and tantalum targets. ^{181}Lu and ^{182}Lu were identified with an online-mass separator and β-, γ-, and X-ray decay spectroscopy. “The half-life of 3.5±0.3 min for ^{181}Lu resulted from the analysis of the decay curves of β-rays, hafnium K X-rays and the γ-transitions with energies of 205.9 and 652.4 keV... The ^{182}Lu half-life of 2.0±0.2 min was obtained from the analysis of the decay-curves of β-rays, hafnium K X-rays and the γ-transitions with energies of 97.8 and 720.8 keV.” These half-lives correspond to the currently accepted values.

^{183}Lu

Rykaczewski et al. reported the discovery of ^{183}Lu in the 1982 paper “The new neutron-rich isotope ^{183}Lu” [123]. The GSI UNILAC accelerator was used to bombard a tungsten/tantalum target with a 11.7 MeV/u ^{136}Xe beam. A plastic scintillator and two Ge(Li) detectors were used to measure β and γ spectra, respectively, following on-line mass separation. “The observed coincidence of hafnium K X-rays with the 168, 249, and 1057 keV γ-lines allows, together with β – γ coincidence relationships, to assign these γ-lines to the decay of ^{183}Lu.” The reported half-life of 58(4) s is the currently accepted half-life.

^{184}Lu

^{184}Lu was identified by Rykaczewski et al. as reported in “Investigation of neutron-rich rare-earth nuclei including the new isotopes ^{177}Tm and ^{184}Lu” in 1989 [124]. A stack of tungsten and tantalum foils were bombarded with 9-15 MeV/u ^{136}Xe, ^{186}W, and ^{238}U beams from the GSI UNILAC accelerator. Plastic scintillators and Ge(Li) detectors were used to measure β- and γ-ray spectra, respectively following on-line mass separation. “No coincidences of 107 keV γ-rays with γ-lines other than 368 and 243 keV were found. Thereby, a direct feeding of the 2$^+$ level in β-decay of a low-spin ground or isomeric state of ^{184}Lu is very likely. This was confirmed in an additional measurement with a 0.7 mm thick aluminium foil in front of the β-detector to absorb β-rays with energies ≤0.45 MeV. With these high-energy β-rays, 107 keV γ-rays and Hf K X-rays were measured in coincidence, which represents clear evidence for β-decay of a low-spin ^{184}Lu state to the 107 keV, 2$^+$ level in ^{184}Hf.” The reported half-life of ∼18 s agrees with the presently adopted value of 19(2) s.

5. Discovery of $^{154−189}\text{Hf}$

Thirty six hafnium isotopes from A = 154−189 have been discovered so far; these include 6 stable (^{174}Hf and $^{176−180}\text{Hf}$), 21 proton-rich and 9 neutron-rich isotopes. According to the HFB-14 model [14], ^{235}Hf should be the last odd-even particle stable neutron-rich nucleus while the even-even particle stable neutron-rich nuclei should continue at least through ^{240}Hf. The discovery of ^{151}Hf had been reported in a conference proceeding [125] but never in a refereed publication. At the proton dripline at least four more particle stable hafnium isotopes are predicted ($^{150−153}\text{Hf}$) and in addition seven more isotopes ($^{143−149}\text{Hf}$) could possibly still have half-lives longer than 10$^{-9}$ s [54]. Thus, about 60 isotopes have yet to be discovered corresponding to 63% of all possible hafnium isotopes.

Figure 4 summarizes the year of first discovery for all hafnium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive hafnium isotopes were produced using fusion-evaporation reactions (FE), neutron capture reactions (NC), light-particle reactions (LP), spallation (SP), projectile fragmentation or fission (PF), and heavy-ion transfer reactions (TR). The stable isotopes were
identified using mass spectroscopy (MS). In the following, the discovery of each hafnium isotope is discussed in detail and a summary is presented in Table 1.

Stable isotopes $^{174,176-180}\text{Hf}$

Dempster described the discovery of ^{174}Hf in the 1939 paper “Isotopic constitution of hafnium, yttrium, lutetium and tantalum” [126]. Hafnium in the form of doubly charged ions was studied with the Chicago mass spectrometer. “In addition to the five isotopes reported by Aston, at 180, 179, 178, 177, and 176, a new isotope was found at 174 on six photographs.”

^{176}Hf, ^{177}Hf, ^{178}Hf, ^{179}Hf, and ^{180}Hf were discovered by Aston in “Constitution of hafnium and other elements” in 1934 [127]. The stable isotopes were identified with an anode discharge tube installed at the Cavendish Laboratory mass spectrograph. “Hafnium gives a mass-spectrum indicating five isotopes, a weak line at 176 and four strong ones, 177, 178, 179, 180, of which the even numbers are rather more abundant.”

$^{154,155}\text{Hf}$

In the 1981 paper “New neutron deficient isotopes in the range of elements Tm to Pt” Hofmann et al. reported the first observation of ^{154}Hf and ^{155}Hf [86]. Neutron deficient isotopes of elements from molybdenum to tin and vanadium to nickel targets were bombarded with ^{58}Ni and ^{107}Ag at the GSI linear accelerator UNILAC. Reaction products were separated by the SHIP velocity filter and implanted into silicon detectors. “The time distances between parent and daughter of the 5 correlated events are between 2.0 s and 4.5 s. We explain these observations by the decay chain $^{158}\text{W} \xrightarrow{\alpha} ^{154}\text{Hf} \xrightarrow{\beta} ^{154}\text{Lu} \xrightarrow{\beta} ^{154}\text{Yb} \xrightarrow{\alpha} ^{150}\text{Er}$. A half-life of (2 ± 1) s can be deduced for the isotope ^{154}Hf. A correlation showed as daughter activity an α line at 5656 keV decaying with $T_{1/2} = 890$ ms. At this energy no other α line is known in this area except that of ^{155}Lu with $T_{1/2} = 70$ ms. This is short compared to the measured 890 ms decay. Therefore, our observations can easily be described within the frame of the decay chain $^{159}\text{W} \xrightarrow{\alpha} ^{155}\text{Hf} \xrightarrow{\beta} ^{155}\text{Lu} \xrightarrow{\alpha} ^{151}\text{Tm}$. These half-lives correspond to the presently adopted values for ^{154}Hf and ^{155}Hf.

^{156}Hf

“Alpha decay studies of very neutron deficient isotopes of Hf, Ta, W, and Re” was published in 1979 by Hofmann et al. describing the observation of ^{156}Hf [128]. Targets of ^{103}Rh, $^{108,110}\text{Pd}$, and $^{107,109}\text{Ag}$ were bombarded with beams of ^{58}Ni from the GSI UNILAC linear accelerator. Evaporation residues were separated with the high-velocity SHIP separator. “The correlation method gave a half-life of (25 ± 4) ms for ^{156}Hf and an alpha branching ratio of 100% (>81%).” This half-life agrees with the currently accepted value of 23(1) ms. Previously only an upper limit of 30 ms was reported for the half-life of ^{156}Hf [87].

$^{157,158}\text{Hf}$

Macfarlan discovered ^{157}Hf and ^{158}Hf in 1963 as reported in “Alpha-decay properties of some lutetium and hafnium isotopes near the 82-neutron closed shell” [87]. An enriched ^{144}Sm target was bombarded with ^{20}Ne at the Berkeley heavy-ion linear accelerator and ^{157}Hf and ^{158}Hf were produced in (7n) and (6n) fusion evaporation reactions, respectively. Excitation functions and α-particles spectra were measured. “One of the Hf alpha groups was observed at an alpha particle energy of 5.68 MeV and was found to decay with a half-life of 0.12±0.03 sec. This group can be seen in the
Fig. 4: Hafnium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
The spectra shown in [the figures]. The excitation function for the production of this activity by the reaction \(\text{Sm}^{144} + \text{Ne}^{20} \), has a peak cross section of 0.2 mb at an excitation energy of 106 MeV. This energy agrees closely with values observed for (H.I.,7n) reactions, which means that this activity is due to \(\text{Hf}^{157} \). The second Hf alpha group has an alpha-particle energy of 5.27 MeV and decays with a half-life of 3±0.5 sec... The results obtained above, therefore, are consistent with the mass assignment of \(\text{Hf}^{158} \) to this activity.” These half-lives agree with the presently adopted values of 115(1) ms and 2.84(7) s for \(\text{Hf}^{157} \) and \(\text{Hf}^{158} \), respectively.

\(^{159-161}\text{Hf} \)

The first observation of \(\text{Hf}^{159} \), \(\text{Hf}^{160} \), and \(\text{Hf}^{161} \) were reported in the 1973 paper “Study of hafnium alpha emitters: New isotopes \(\text{Hf}^{159} \), \(\text{Hf}^{160} \), and \(\text{Hf}^{161} \)” by Toth et al. [129]. Enriched \(\text{Sm}^{144} \) and \(\text{Sm}^{147} \) targets were bombarded with 80–153 MeV and 121–153 MeV \(\text{Ne}^{20} \) beams from the Oak Ridge isochronous cyclotron, respectively. Recoil products were swept into a collecting surface with helium gas where alpha particles were measured with a Si(Au) detector. “The decay characteristics and mass assignments (made on the basis of yield curve measurements, cross bombardments, and parent-daughter relationships) of the three new alpha emitters are as follows: (1) \(\text{Hf}^{159} \), \(E_{\alpha} = 5.09 \pm 0.01 \) MeV, \(T_{1/2} = 5.6 \pm 0.5 \) sec; (2) \(\text{Hf}^{160} \), \(E_{\alpha} = 4.77 \pm 0.02 \) MeV, \(T_{1/2} \sim 12 \) sec; and (3) \(\text{Hf}^{161} \), \(E_{\alpha} = 4.60 \pm 0.01 \) MeV, \(T_{1/2} = 17 \pm 2 \) sec.” These half-lives agree with the currently adopted values of 5.20(10) s, 13.6(2) s, and 18.2(5) s, respectively.

\(^{162,163}\text{Hf} \)

In 1982 \(\text{Hf}^{162} \) and \(\text{Hf}^{163} \) were discovered by Schrewe et al. in “Decay studies of the new isotopes \(\text{Hf}^{162,163} \)” [130]. \(\text{Mg} \) beams accelerated to 105–133 MeV by the Chalk River MP tandem accelerator bombarded enriched \(\text{Nd}^{142} \) targets and \(\text{Hf}^{162} \) and \(\text{Hf}^{163} \) were produced in (4n) and (3n) evaporation reactions, respectively. Recoils were transported to a measuring station with a He-jet and \(\beta \)-delayed \(\gamma \)-spectra were measured with intrinsic Ge and Ge(Li) detectors. “The 71 keV line was therefore assigned to the decay of \(\text{Hf}^{163} \), the 174 keV line to the decay of \(\text{Hf}^{162} \). In addition to these two lines, further \(\gamma \)-ray lines from \(\text{Hf}^{163,162} \) decays are summarized in [the tables]. Half-life determination was possible for most of these \(\gamma \) rays, and yielded a mean half-life of \(T_{1/2} = (37.6 \pm 0.8) \) s for \(\text{Hf}^{162} \) and \(T_{1/2} = (40.0 \pm 0.6) \) s for \(\text{Hf}^{163} \).” The half-life for \(\text{Hf}^{162} \) is included in the calculation of the presently adopted value and the half-life of \(\text{Hf}^{163} \) corresponds to the current value.

\(^{164,165}\text{Hf} \)

Bruchertseifer and Eichler reported the observation of \(\text{Hf}^{164} \) and \(\text{Hf}^{165} \) in the 1981 paper “Untersuchung der Produkte der Reaktion \(\text{Sm}^{147} + \text{Ne}^{22} \)” [131]. Enriched \(\text{Sm}^{147} \) targets were bombarded with 110 MeV and 136 MeV \(\text{Ne}^{22} \) beams from the Dubna U300 accelerator and \(\text{Hf}^{164} \) and \(\text{Hf}^{165} \) were produced in (5n) and (4n) fusion-evaporation reactions, respectively. X-ray and \(\gamma \)-ray spectra were measured following chemical separation. “Das Auftreten von \(\text{Lu}^{165} \) sowie \(\text{Lu}^{164} \) neben bekannten Hafniumisotopen nach der hocheffektiven Abtrennung (Trenneffekt \(\geq 10^3 \)) der Lanthanide belegt, dass die Hafniumfraktion die Isotope \(\text{Hf}^{164} \) und \(\text{Hf}^{165} \) enthält.” [The appearance of \(\text{Lu}^{165} \) as well as \(\text{Lu}^{164} \) next to known hafnium isotopes following the highly effective separation (separation efficiency \(\geq 10^3 \)) of the lanthanides proves that the hafnium fraction contains the isotopes \(\text{Hf}^{164} \) and \(\text{Hf}^{165} \).] The reported half-lives of 2.8(2) min (\(\text{Hf}^{164} \)) and 1.7(1) min (\(\text{Hf}^{165} \)) are within a factor of two of the presently adopted values of 111(8) s and 76(4) s, respectively.
In the 1965 paper “Rotational states produced in heavy-ion nuclear reactions” Stephens et al. described the observation of 166Hf [132]. The Berkeley Hilac accelerator was used to bombard self-supporting 159Tb targets with 117 MeV 14N beams and 166Hf was populated in the (7n) evaporation reaction. Conversion electron spectra were measured with a single wedge-gap electron spectrometer and γ-ray spectra with NaI(Tl) and Ge detectors. “The de-excitation of the ground state rotational band in nine deformed even nuclei has been observed following heavy-ion nuclear reactions. The transitions from the states up to spin 16 (on the average) were observed and their energies were measured with an accuracy of $\pm 0.3\%$. ” The rotational band in 166Hf was measured up to spin 14. Four years later Arlt et al. reported the first observation of the 166Hf ground state [98].

167Hf was observed by Arlt et al. as reported in the 1969 paper “The new neutron-deficient isotopes 169Hf, 167Hf, 166Hf, and 166Lu and the decay scheme of 169Hf” [98]. Protons were accelerated to 660 MeV by the Dubna JINR synchrocyclotron and bombarded Ta$_2$O$_5$ targets to form hafnium isotopes in the Ta(p,2pxn) reaction which subsequently decayed to lutetium isotopes. Gamma-ray spectra were measured with NaI(Tl) and Ge(Li) detectors in singles and coincidences following chemical separation. “The half-life was evaluated more accurately by extrapolating the decay curves isolated after equal accumulation intervals. The best conditions were provided by a 3-min irradiation, an accumulation time of 2 min, and separation of four Lu sources. The resulting half-life for 167Hf was 1.9±0.2 min.” This half-life agrees with the currently accepted value of 2.05(5) min. A previously reported half-life of \sim10 min [133] was evidently incorrect.

168Hf

The first observation of 168Hf was described by Merz and Caretto in “Neutron-deficient nuclides of hafnium and lutetium” in 1961 [133]. Tantalum, tungsten and Lu$_2$O$_3$ targets were irradiated with 300-400 MeV protons from the Carnegie Institute of Technology synchrocyclotron. After chemical separation γ-rays and positrons were measured with a NaI crystal and a magnetic spectrometer with an anthracene crystal, respectively. “The third hafnium isotope reported 168Hf has a half-life of (22±2) min, measured directly and indirectly by milking its 7.0-min lutetium daughter at intervals of 30 min.” This half-life agrees with the presently adopted value of 25.95(20) min.

169Hf

169Hf was observed by Arlt et al. as reported in the 1969 paper “The new neutron-deficient isotopes 169Hf, 167Hf, 166Hf, and 166Lu and the decay scheme of 169Hf” [98]. Protons were accelerated to 660 MeV by the Dubna JINR synchrocyclotron and bombarded Ta$_2$O$_5$ targets to form hafnium isotopes in the Ta(p,2pxn) reaction. Gamma-ray spectra were measured with NaI(Tl) and Ge(Li) detectors in singles and coincidences following chemical separation. “To clear up the discrepancies in the data on the A = 169 chain we examined the accumulation of 169Lu after 6 min in the Hf fraction isolated from a Ta target 4 min after the end of the 20 min irradiation. [The Figure] shows the decay curve of the parent as plotted from the intensities of the 191 and 96.2 keV γ rays of 169Lu, and the 198 keV γ ray of 169Yb in Lu preparations separated at 6 min from the Hf fraction. Three runs gave $T = 5 \pm 0.5$ min for the parent isobar. We
have assigned this half-life to 169Hf on the assumption that the Hf fraction did not contain any other elements." This half-life is close to the presently adopted value of 3.24(4) min. A previously reported half-life of 1.5 h [133] was evidently incorrect. An unsuccessful search for the 1.5 h half-life determined an upper limit of 8 min [134].

170Hf

The first identification of 170Hf was described by Merz and Caretto in “Neutron-deficient nuclides of hafnium and lutetium” in 1961 [133]. Tantalum, tungsten and Lu$_2$O$_3$ targets were irradiated with 300–400 MeV protons from the Carnegie Institute of Technology synchrocyclotron. After chemical separation γ-rays and positrons were measured with a NaI crystal and a magnetic spectrometer with an anthracene crystal, respectively. “A previously unreported activity with a half-life of (9±2) hr was observed in the hafnium fraction, which cannot result from the reported 12- or 16-hr activities for Hf171, because the half-life reported in this work was derived from milking a 1.9-day lutetium activity from the hafnium fraction. The 1.9-day lutetium activity is Lu170.” This half-life is within a factor of two of the presently adopted value of 16.01(13) h.

$^{171–173}$Hf

In “Radioactive isotopes of lutetium and hafnium” Wilkinson and Hicks described the identification of 171Hf, 172Hf, and 173Hf in 1951 [104]. Ytterbium was irradiated with 20 and 38 MeV α-particles from the Berkeley 60-in. cyclotron and lutetium was irradiated with 15 to 75 MeV protons from the linear accelerator. Decay curves, absorption curves, and electron spectra were measured following chemical separation. “16.0±0.5 hour Hf171 — Successive chemical separations of lutetium showed that the decay of the 16-hour activity formed the 8.5-day Lu171... ~5 year Hf171 [This is apparently a typo and should read Hf172] — The decay has been followed for over two years, and the half-life appears to be about five years. The activity is the parent of a 6.70-day lutetium daughter; both the decay of the separated daughter and its growth in purified hafnium have been studied... 23.6±0.1 hour Hf173 — In the bombardments of ytterbium with 20-Mev alpha-particles and of lutetium with 18- to 32-Mev protons from the linear accelerator, an activity of 23.6 hours half-life was obtained; the radiation characteristics were identical in both cases.” While the 171Hf half-life agrees with the currently adopted value of 12.1(4) h, the 172Hf was not well determined and differs from the accepted value of 1.87(3) y; these observations were accepted because of the correct identification of the daughter activities. The observed half-life for 173Hf of 23.6(1) h corresponds to the presently adopted value.

175Hf

The first observation of 175Hf was reported by Wilkinson and Hicks in 1949 in “Hf175, a new radioactive isotope of hafnium” [135]. Lutetium oxide was bombarded with 19 MeV deuterons and 10 MeV protons from the Berkeley 60-in. cyclotron. Decay curves and absorption spectra were measured with mica window counters following chemical separations. “The chemically separated hafnium has been found to contain a single radioactivity, emitting electrons and γ-radiations, which decays with a half-life of 70±2 days... The new isotope is allocated to mass 175.” This half-life corresponds to the currently adopted value.
181 Hf

In 1935 Hevesy identified 181 Hf in “Radiopotassium and other artificial radio-elements” [136]. Hafnium was irradiated with neutrons from a beryllium-radium source and 181 Hf was formed in the reaction 180 Hf(n,γ). Beta-rays were measured following chemical separation. “The disintegration of the active hafnium is much slower than that of zirconium, half of the activity acquired being lost only after the lapse of a few months.” Hevesy published a more accurate value of 55(10) d later [137]. This half-life is consistent with the currently accepted value of 42.39(6) d.

182 Hf

In the 1961 paper “The nuclide 182 Hf”, Hutchin and Lindner reported the first observation of 182 Hf [138]. A hafnium oxide target was irradiated with thermal neutron at the Idaho Falls Materials Testing Reactor. Gamma-ray spectra were recorded with a Na(Tl) scintillation detector and mass spectra were measured following chemical separation. “A small specimen of the hafnium was analysed in the two-stage mass spectrometer at the Vallecitos Laboratory of the General Electric Company and found to contain 0.0088 atom per cent abundance at the mass 182 position. A small background correction was applied by a similar analysis of unirradiated hafnium. On the basis of the atomic abundance and the specific activity of the sample, a half-life of 8.5×10^6 years was calculated for 181 Hf.” This half-life agrees with the currently accepted value of 9(2) My. Two weeks later the observation of 182 Hf was independently reported by Naumann and Michel [139].

183 Hf

183 Hf was discovered by Gatti and Flegenheimer in “Ein neues Hf-Isotop (Hf-183)” in 1956 [140]. Tungsten targets were irradiated with fast neutrons which were produced by bombarding beryllium targets with 28 MeV deuterons from the Buenos Aires synchrocyclotron. Decay curves, absorption and β-ray spectra were measured following chemical separation. “Auf Grund der Kernreaktion, die zur Bildung des 64-min-Hf führt (n,α) und seinem Qβ−-Wert von 2.2 MeV wird die Massenzahl 183 für das 64-min-Hf vorgeschlagen.” [Because of the nuclear reaction that leads to the formation of the 64-min Hf (n,α) and its Qβ− value, the mass number 183 is recommended for this 64-min Hf.] This half-life agrees with the presently adopted value of 1.067(17) h.

184 Hf

Ward et al. reported the first observation of 184 Hf in the 1973 paper “Identification of 184 Hf” [141]. Natural tungsten and enriched 186 WO3 targets were bombarded with 92 MeV and 200 MeV protons, respectively, and 184 Hf was produced in the reaction 186 W(p,3p). Gamma- and beta-ray spectra were measured following chemical and mass separation. “Well-known γ-ray lines due to 184 Ta can be seen in [the figure]. These were observed to grow and decay as expected for a 4.12-h parent feeding an 8.55-h daughter. Lines at 139.1, 181.0, and 344.9 keV decayed with a half-life of 4.12±0.05 h and we assign these γ rays to 184 Hf.” This half-life of 4.12(5) h corresponds to the presently adopted value. A previously reported 2.2(1) h half-life was only reported in an unpublished report [142] which subsequently was referred to by a cross section measurement of the reactions 186 W(p,3p) and 187 Re(p,4p) [143]. This latter reference did not contain any information about properties of 184 Hf.
\(^{185}\text{Hf}\)

\(^{185}\text{Hf}\) was discovered by Yuan et al. in “New neutron-rich nuclide \(^{185}\text{Hf}\)” in 1993 [144]. Natural tungsten targets were irradiated with 14 MeV neutrons produced by bombarding a TiT target with deuterons from the Lanzhou 300-KV Cockroft-Walton accelerator. \(^{185}\text{Hf}\) was produced in the reaction \(^{186}\text{W}(n,2p)\) and identified by measuring \(\gamma\)-ray spectra with a HPGe detector following chemical separation. “A radioactive-series decay analyzing program was applied resulting in the half-lives of 3.5\(\pm\)0.6 min and 48.6\(\pm\)5.6 min, for \(^{185}\text{Hf}\) and \(^{185}\text{Ta}\), respectively.” This half-life corresponds to the currently accepted value.

\(^{186}\text{Hf}\)

In the 1998 paper “Production and identification of a new heavy neutron-rich isotope \(^{186}\text{Hf}\)” Yuan et al. reported the observation of \(^{186}\text{Hf}\) [145]. A 60 MeV/nucleon \(^{18}\text{O}\) beam bombarded a natural tungsten target and \(^{186}\text{Hf}\) was produced in multi-nucleon transfer reactions. Gamma-ray spectra were measured with a GMX HPGe detector following chemical separation. “The assignment of the new nuclide \(^{186}\text{Hf}\) was primarily based on the time variation of the \(\gamma\) rays of its daughter \(^{186}\text{Ta}\).” The reported half-life of 2.6(12) min corresponds to the currently adopted value.

\(^{187},^{188}\text{Hf}\)

Benlliure et al. published the discovery of \(^{187}\text{Hf}\) and \(^{188}\text{Hf}\) in the 1999 paper entitled “Production of neutron-rich isotopes by cold fragmentation in the reaction \(^{197}\text{Au} + \text{Be} \rightarrow \text{nat} \text{Au} + \text{MeV}” [146]. A 950 A-MeV \(^{197}\text{Au}\) beam from the SIS synchrotron of GSI was incident on a beryllium target and \(^{187}\text{Hf}\) and \(^{188}\text{Hf}\) were produced in projectile fragmentation reactions. The FRS fragment separator was used to select isotopes with a specific mass-to-charge ratio. “In the right part of [the figure] the projected A/Z distributions are shown for the different elements transmitted in this setting of the FRS. In this setting the isotopes \(^{193}\text{Re}, \(^{194}\text{Re}, \(^{191}\text{W}, \(^{192}\text{W}, \(^{189}\text{Ta}, \(^{187}\text{Hf}\) and \(^{188}\text{Hf}\) were clearly identified for the first time. Only isotopes with a yield higher than 15 counts were considered as unambiguously identified.”

\(^{189}\text{Hf}\)

Alkhomashi et al. observed \(^{189}\text{Hf}\) in the 2009 paper “\(\beta^-\)delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes” [147]. A beryllium target was bombarded with a 1 GeV/nucleon \(^{208}\text{Pb}\) beam from the SIS-18 heavy-ion synchrotron at GSI, Germany. Projectile-like fragments were separated with the FRS and implanted in a series of double-sided silicon strip detectors where correlated \(\beta\)-decay was measured in coincidence with \(\gamma\)-rays in the \(\gamma\)-ray spectrometer RISING. Although not specifically mentioned in the text, evidence for \(^{189}\text{Hf}\) is clearly visible in the two-dimensional particle identification plot.

6. Summary

The discoveries of the known gallium, germanium, lutetium, and hafnium isotopes have been compiled and the methods of their production discussed.

While in gallium only \(^{64}\text{Ga}\) and \(^{74}\text{Ga}\) were at first incorrectly identified, five germanium isotopes were initially incorrectly assigned (\(^{65}\text{Ge}, \(^{67}\text{Ge}, \(^{69}\text{Ge}, \(^{71}\text{Ge},\) and \(^{78}\text{Ge}\)). In addition, the half-lives of \(^{70}\text{Ga}\) and \(^{72}\text{Ga}\) were first observed without a mass assignment and \(^{71}\text{Ge}, \(^{75}\text{Ge},\) and \(^{77}\text{Ge}\) were incorrectly reported to be stable.
The discovery of the two heavier elements was fairly straightforward; only 177Lu, 180Lu, 167Hf, and 169Hf were initially identified incorrectly and the half-lives of the four lutetium isotopes 177Lu, 178Lu, 179Lu, and 180Lu were at first reported without a mass assignment.

Acknowledgments

This work was supported by the National Science Foundation under grant No. PHY06-06007.

References

[1] G. Q. Ginepro, J. Snyder, M. Thoennessen, At. Data Nucl. Data Tables 95 (2009) 805.
[2] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 729 (2003) 3.
[3] http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
[4] IUPAC Transfermium Working Group, Pure Appl. Chem. 63 (1991) 879.
[5] W. John, F. W. Guy, J. J. Wesolowski, Phys. Rev. C 2 (1970) 1451.
[6] http://www.nndc.bnl.gov/nsr/ NSR, Nuclear Science References, maintained by the National Nuclear Data Center at Brookhaven National Laboratory.
[7] J. J. Livingood, G. T. Seaborg, Rev. Mod. Phys. 12 (1940) 30.
[8] G. T. Seaborg, Rev. Mod. Phys. 16 (1944) 1.
[9] G. Seaborg, I. Perlman, Rev. Mod. Phys. 20 (1948) 585.
[10] J. M. Hollander, I. Perlman, G. T. Seaborg, Rev. Mod. Phys. 25 (1953) 469.
[11] D. Strominger, J. M. Hollander, G. T. Seaborg, Rev. Mod. Phys. 30 (1958) 585.
[12] C. M. Lederer, J. M. Hollander, I. Perlman, Table of Isotopes, 6th Edition, John Wiley & Sons 1967.
[13] F. W. Aston, Mass Spectra and Isotopes, 2nd Edition, Longmans, Green & Co., New York 1942.
[14] S. Goriely, M. Samyn, J. M. Pearson, Phys. Rev. C 75 (2007) 064312.
[15] A. Stolz, T. Baumann, N. Frank, T. N. Ginter, G. W. Hitt, E. Kwan, M. Mocko, W. A. Peters, A. Schiller, C. S. Sumithrarachchi, M. Thoennessen, Phys. Lett. B 627 (2005) 32.
[16] F. W. Aston, Nature 112 (1923) 449.
[17] B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, J. P. Dufour, A. Fleury, A. Musquere, M. S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfützner, A. Grewe, A. Heinz, A. R. Junghans, M. Lewitowicz, J.-E. Sauvestre, C. Donzaud, Phys. Rev. Lett. 74 (1995) 4611.
[18] M. A. C. Hotchkis, J. E. Reiff, D. J. Vieira, F. Blomningen, T. F. Lang, D. M. Moltz, X. Xu, J. Cerny, Phys. Rev. C 35 (1987) 315.
[19] M. F. Mohar, D. Bazin, W. Benenson, D. J. Morrissey, N. A. Orr, B. M. Sherrill, D. Swan, J. A. Winger, A. C. Mueller, D. Guillemaud-Mueller, Phys. Rev. Lett. 66 (1991) 1571.

[20] R. Chiba, S. Shibasaki, T. Numao, H. Yokota, S. Yamada, K. Kotajima, S. Itagaki, S. Iwasaki, T. Takeda, T. Shinozuka, Phys. Rev. C 17 (1978) 2219.

[21] M. J. Nurmia, R. W. Fink, Phys. Lett. 14 (1965) 136.

[22] B. L. Cohen, Phys. Rev. 91 (1953) 74.

[23] B. Crasemann, Phys. Rev. 90 (1953) 995.

[24] J. H. Buck, Phys. Rev. 54 (1938) 1025.

[25] A. Mukerji, P. Preiswerk, Helv. Phys. Acta 25 (1952) 387.

[26] L. W. Alvarez, Phys. Rev. 54 (1938) 486.

[27] A. H. W. Aten Jr., H. Cerfontain, W. Dzubas, T. Hamerling, Physica 18 (1952) 1032.

[28] W. B. Mann, Phys. Rev. 52 (1937) 405.

[29] L. W. Alvarez, Phys. Rev. 53 (1938) 606.

[30] W. B. Mann, Phys. Rev. 53 (1938) 212.

[31] W. B. Mann, Phys. Rev. 54 (1938) 649.

[32] W. Bothe, W. Gentner, Naturwiss. 25 (1937) 191.

[33] E. Amaldi, O. D’Agostino, F. Rasetti, E. Segre, Proc. Roy. Soc. A 149 (1935) 522.

[34] R. Sagane, Phys. Rev. 55 (1939) 31.

[35] W. Bothe, W. Gentner, Z. Phys. 106 (1937) 236.

[36] M. L. Pool, J. M. Cork, R. L. Thornton, Phys. Rev. 52 (1937) 239.

[37] J. J. Livingood, G. T. Seaborg, Phys. Rev. 54 (1938) 51.

[38] M. L. Perlman, Phys. Rev. 75 (1949) 988.

[39] J. M. Siegel, L. E. Glendenin, Radiochemical Studies: The Fission Products, Paper 53, p. 549, National Nuclear Energy Series IV, 9, McGraw-Hill, New York, 1951.

[40] H. Morinaga, Phys. Rev. 103 (1956) 504.

[41] R. Sagane, G. Miyamoto, M. Ikawa, Phys. Rev. 59 (1941) 904.

[42] H. Morinaga, T. Kuroyanagi, H. Mitsui, K. Shoda, J. Phys. Soc. Japan 15 (1960) 213.

[43] K. Takahashi, T. Kuroyanagi, H. Yuta, K. Kotajima, K. Nagatani, H. Morinaga, J. Phys. Soc. Japan 16 (1961) 1664.

[44] L. Wish, Phys. Rev. 172 (1968) 1262.

[45] P. del Marmol, P. Fettweis, Nucl. Phys. A 194 (1972) 140.

[46] The Osiris Collaboration, B. Grappengiesser, E. Lund and G. Rudstam, Proc. of the Int. Conf. on the properties
of elements far from the region of β-stability, CERN report 70-30, 1093 (1970).

[47] B. Grapengiesser, E. Lund, G. Rudstam, J. Inorg. Nucl. Chem. 36 (1974) 2409.

[48] G. Rudstam, B. Grapengiesser and E. Lund, Contribution to the IAEA Panel on Fission Product Nuclear Data, Bologna 26-30 November 1973.

[49] G. Rudstam, E. Lund, Phys. Rev. C 13 (1976) 321.

[50] K. Aleklett, G. Nyman, G. Rudstam, Nucl. Phys. A 246 (1975) 425.

[51] K.-L. Kratz, H. Gabel, M. Möller, B. Pfeiffer, H. L. Ravn, A. Wöhr, the ISOLDE Collaboration, Z. Phys. A 340 (1991) 419.

[52] M. Bernas, C. Engelmann, P. Armbruster, S. Czajkowski, F. Ameil, C. Böckstiegel, P. Dessagne, C. Donzand, H. Geissel, A. Heinz, Z. Janas, C. Kozhuhar, C. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümerer, L. Tassan-Got, B. Voss, Phys. Lett. B 415 (1997) 111.

[53] T. Ohnishi, T. Kubo, K. Kusaka, A. Yoshita, K. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, D. Kameda, K. Tanaka, N. Inabe, Y. Yanagisawa, Y. Gono, H. Watanabe, H. Otsu, H. Baba, T. Ichihara, Y. Yamaguchi, M. Takechi, S. Nishimura, H. Ueno, A. Yoshihi, H. Sakurai, T. Motobayashi, T. Nakao, Y. Mizoi, M. Matsushita, K. Ieki, N. Kobayashi, K. Tanaka, Y. Kawada, N. Tanaka, S. Deguchi, Y. Satou, Y. Kondo, T. Nakamura, K. Yoshinaga, C. Ishii, H. Yoshii, Y. Miyashita, N. Uematsu, Y. Shiraki, T. Sumikama, J. Chiba, E. Ideguchi, A. Saito, T. Yamaguchi, I. Hachiuna, T. Suzuki, T. Moriguchi, A. Ozawa, T. Ohtsubo, M. A. Famiano, H. Geissel, A. S. Nettleton, O. B. Tarasov, D. Bazin, B. M. Sherrill, S. L. Mannikonda, J. A. Nolen, J. Phys. Soc. Japan 79 (2010) 073201.

[54] M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187.

[55] F. W. Aston, Nature 111 (1923) 771.

[56] K. T. Bainbridge, J. Frank. Inst. 215 (1933) 509.

[57] F. W. Aston, Nature 122 (1928) 167.

[58] K. T. Bainbridge, Phys. Rev. 43 (1933) 1056.

[59] R. G. H. Robertson, S. M. Austin, Phys. Rev. Lett. 29 (1972) 130.

[60] N. T. Temple, Phys. Rev. 112 (1958) 1954.

[61] A. S. M. de Jesus, R. D. Neirinckx, Nucl. Phys. A 188 (1972) 161.

[62] H. H. Hopkins Jr., Phys. Rev. 77 (1950) 717.

[63] H. H. Hopkins Jr., B. B. Cunningham, Phys. Rev. 73 (1948) 1406.

[64] R. Sagane, S. Kojima, G. Miyamoto, M. Ikawa, Phys. Rev. 54 (1938) 542.

[65] G. T. Seaborg, J. J. Livingood, G. Friedlander, Phys. Rev. 59 (1941) 320.

[66] N. Sugarman, Phys. Rev. 89 (1953) 570.

[67] E. P. Steinberg, D. Engelkemeir, Radiochemical Studies: The Fission Products, Paper 54, p. 566, National Nuclear
Energy Series IV, 9, McGraw-Hill, New York, 1951.

[68] M. Karras, T. E. Ward, H. Ihochi, Nucl. Phys. A 147 (1970) 120.

[69] J. P. Omtvedt, P. Hoff, M. Hellström, L. Spanier, B. Fogelberg, Z. Phys. A 338 (1991) 241.

[70] M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, P. Dessagne, C. Donzaud, H. R. Faust, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, C. Miché, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümmener, L. Tassan-Got, B. Voss, Phys. Lett. B 331 (1994) 19.

[71] http://en.wikipedia.org/wiki/Lutetium .

[72] G. Urbain, Compt. Rend. Acad. Sci. 145 (1907) 759.

[73] C. Auer v. Welsbach, Monatshefte der Chemie 29 (1908) 181.

[74] F. W. Clarke, W. Ostwald, T. E. Thorpe, G. Urbain, Ber. Deuts. Chem. Ges. 42 (1909) 11.

[75] C. Auer v. Welsbach, Monatshefte der Chemie 30 (1909) 695.

[76] G. Urbain, Monatshefte der Chemie 31 (1910) I.

[77] W. Bothe, Z. Naturforsch. 1 (1946) 173.

[78] International Union of Chemistry, Chem. Eng. News 27 (1949) 2996.

[79] F. W. Aston, Nature 133 (1934) 327.

[80] P. J. Sellin, P. J. Woods, T. Davinson, N. J. Davis, K. Livingston, R. D. Page, A. C. Shotter, S. Hofmann, A. N. James, Phys. Rev. C 47 (1993) 1933.

[81] S. Hoffmann, Y. K. Agarwal, P. Armbruster, F. P. Hessberger, P. O. Larsson, G. Münzenberg, K. Poppensieker, W. Reisdorf, J. R. H. Schneider, and H. J. Schött, in Proceedings of the 7th International Conference on Atomic Masses and Fundamental Constants, AMCO-7 Darmstadt, 1984, edited by O. Klepper (THD, Schriftenreihe Wissenschaft und Technik, Darmstadt, 1984), Vol. 26, p. 184 .

[82] S. Hofmann, in Particle Emission from Nuclei, edited by M. Ivascu and D. N. Poenaru (CRC, Boca Raton, Florida, 1989) .

[83] S. Hofmann, W. Reisdorf, G. Münzenberg, F. P. Heßberger, J. R. H. Schneider, P. Armbruster, Z. Phys. A 305 (1982) 111.

[84] K. S. Toth, D. C. Sousa, J. M. Nitschke, P. A. Wilmarth, Phys. Rev. C 35 (1987) 310.

[85] J. M. Nitschke, K. S. Toth, K. S. Vierinen, P. A. Wilmarth, R. M. Chasteler, Z. Phys. A 334 (1989) 111.

[86] S. Hofmann, G. Münzenberg, F. P. Heßberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A 299 (1981) 281.

[87] R. D. Macfarlane, Phys. Rev. 137 (1965) B1448.

[88] E. Hagberg, P. G. Hansen, J. C. Hardy, P. Hornshoj, B. Jonson, S. Mattsson, P. Tidemand-Petersson, the ISOLDE Collaboration, Nucl. Phys. A 293 (1977) 1.

[89] H. Gauvin, Y. Le Heyec and N. T. Porile, abstract submitted to the European Conf. on nuclear physics, Aix-en-Provence, 1972 .
[90] G. D. Alkhazov, L. K. Batist, E. Y. Berlovich, Y. S. Blinnikov, Y. V. Yelkin, K. A. Mezilev, Y. N. Novikov, V. N. Panteleyev, A. G. Polyakov, N. D. Shchigolev, V. N. Tarasov, V. P. Afanasyev, K. Y. Gromov, M. Jachim, M. Janicki, V. G. Kalinnikov, J. Kormicki, A. Potempa, E. Rurarz, F. Tarkanyi, Y. V. Yushkevich, Z. Phys. A 291 (1979) 397.

[91] G. D. Alkhazov, E. Y. Berlovich, K. A. Mezilev, Y. N. Novikov, V. N. Panteleyev, A. G. Polyakov, K. Y. Gromov, V. G. Kalinnikov, J. Kormicki, A. Potempa, E. Rurarz, F. Tarkanyi, Z. Phys. A 295 (1980) 305.

[92] R. Anholt, J. O. Rasmussen, I. Rezanka, Nucl. Phys. A 209 (1973) 72.

[93] C. Burman, P. Sen, H. Bakhru, Can. J. Phys. 56 (1978) 786.

[94] M. Neiman, D. Ward, LBL Report No. UCRL-18667, 1968 (unpublished) p. 59.

[95] J. Ernst, R. Ibowski, H. Machner, T. Mayer-Kuckuk, U. Seeberger, Proc. Intern. Conf. Selected Topics in Nucl. Struct., Dubna (1976), Vol.1, p.83 (1976).

[96] R. C. Hunter, L. L. Riedinger, D. L. Hillis, C. R. Bingham, K. S. Toth, Phys. Rev. C 16 (1977) 384.

[97] B. J. Meijer, F. W. N. de Boer, P. F. A. Goudsmit, Radiochim. Acta 19 (1973) 150.

[98] R. Arlt, Z. Malek, G. Musiol, G. Pfrepper, H. Strusny, Bull. Acad. Sci. USSR Phys. Ser. 33 (1969) 1133.

[99] P. M. Aron, A. V. Kalyamin, A. N. Murin, V. A. Iakovlev, Bull. Acad. Sci. USSR Phys. Ser. 22 (1958) 811.

[100] B. Harmatz, T. H. Handley, J. W. Mihelich, Phys. Rev. 114 (1959), 1082.

[101] R. G. Wilson, M. L. Pool, Phys. Rev. 118 (1960) 227.

[102] A. Charvet, R. Chery, D. H. Phuoc, R. Duffait, A. Emsallem, G. Marguier, Nucl. Phys. A 197 (1972) 490.

[103] W. E. Nervik, G. T. Seaborg, Phys. Rev. 97 (1955) 1092.

[104] G. Wilkinson, H. G. Hicks, Phys. Rev. 81 (1951) 540.

[105] N. A. Bonner, W. Goishi, W. H. Hutchin, G. M. Iddings, H. A. Tewes, Phys. Rev. 127 (1962) 217.

[106] J. K. Marsh, S. Sugden, Nature 136 (1935) 102.

[107] W. F. Libby, Phys. Rev. 56 (1939) 21.

[108] H. Atterling, E. Bohr, T. Sigurjarson, Arkiv Mat. Astron. Fysik 32A (1945) No. 2.

[109] G. Hevesy, H. Levi, Nature 136 (1935) 103.

[110] M. L. Pool, L. L. Quill, Phys. Rev. 53 (1938) 437.

[111] G. Hevesy, H. Levi, Det Kgl. Danske Vid. Selskab., Math.-fys. Med. XIV (1936) No. 5.

[112] A. Flammersfeld, J. Mattauch, Naturwiss. 31 (1943) 66.

[113] T. Stribel, Z. Naturforsch. 12a (1957) 519.

[114] F. D. S. Butement, Nature 165 (1950) 149.

[115] T. Kuroyanagi, H. Yuta, K. Takahashi, H. Morinaga, J. Phys. Soc. Japan 16 (1961) 2393.

[116] W. A. Stensland, A. F. Voigt, Nucl. Phys. A 41 (1963) 524.
[117] F. D. S. Butement, Proc. Phys. Soc. A 64 (1951) 395.
[118] S. C. Gujrathi, J. M. D’Auria, Nucl. Phys. A 161 (1971) 410.
[119] A. H. W. Aten Jr., A. G. Funke-Klopper, Physica 26 (1960) 79.
[120] D. L. Swindle, T. E. Ward, P. K. Kuroda, Phys. Rev. 3 (1971) 259.
[121] D. L. Swindle, T. E. Ward, P. K. Kuroda, Phys. Rev. 4 (1971) 1972.
[122] R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, E. F. Zganjar, E. Runte, W.-D. Schmidt-Ott, P. TidemandPetersson, N. Kaffrell, P. Peuser, K. Rykaczewski, Nucl. Phys. A 378 (1982) 549.
[123] K. Rykaczewski, R. Kirchner, W. Kurcewicz, D. Schardt, N. Kaffrell, P. Peuser, E. Runte, W.-D. Schmidt-Ott, P. Tidemand-Petersson, K.-L. Gippert, Z. Phys. A 309 (1983) 273.
[124] K. Rykaczewski, K.-L. Gippert, N. Kaffrell, R. Kirchner, O. Klepper, V. T. Koslowsky, W. Kurcewicz, W. Nazarewicz, E. Roeckl, E. Runte, D. Schardt, W.-D. Schmidt-ott, P. Tidemand-Petersson, Nucl. Phys. A 499 (1989) 529.
[125] G. A. Souliotis, Physica Scripta T88 (2000) 153.
[126] A. J. Dempster, Phys. Rev. 55 (1939) 794.
[127] F. W. Aston, Nature 133 (1934) 684.
[128] S. Hofmann, W. Faust, G. Münzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A 291 (1979) 53.
[129] K. S. Toth, R. L. Hahn, C. R. Bingham, M. A. Ijaz, R. F. Walker Jr., Phys. Rev. C 7 (1973) 2010.
[130] U. J. Schrewe, E. Hagberg, H. Schneing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, E. T. H. Clifford, Phys. Rev. C 25 (1982) 3091.
[131] H. Bruchertseifer, B. Eichler, Radiochem. Radioanal. Lett. 48 (1981) 391.
[132] F. S. Stephens, N. L. Lark, R. M. Diamond, Nucl. Phys. 63 (1965) 82.
[133] E. R. Merz, A. A. Caretto Jr., Phys. Rev. 122 (1961) 1558.
[134] J. C. Hardy, D. J. Skyrme, I. S. Towner, Phys. Lett. 23 (1966) 487.
[135] G. Wilkinson, H. G. Hicks, Phys. Rev. 75 (1949) 696.
[136] G. Hevesy, Nature 135 (1935) 580.
[137] G. Hevesy, H. Levi, Det Kgl. Danske Vid. Selskab., Math.-fys. Med. XV (1938) No. 11.
[138] W. H. Hutchin, M. Lindner, J. Inorg. Nucl. Chem. 16 (1961) 369.
[139] R. A. Naumann, M. C. Michel, J. Inorg. Nucl. Chem. 17 (1961) 189.
[140] O. O. Gatti, J. Flegenheimer, Z. Naturforsch. 11a (1956) 679.
[141] T. E. Ward, Y. Y. Chu, J. B. Cumming, Phys. Rev. C 8 (1973) 340.
[142] E. R. Merz, Carnegie Institute of Technology Annual Progress Report, 1961 (unpublished), p. 44.
[143] D. L. Morrison, A. A. Caretto Jr., Phys. Rev. 127 (1962) 1731.

[144] S. Yuan, T. Zhang, Q. Pan, X. Zhang, S. Xu, Z. Phys. A 344 (1993) 355.

[145] S. Yuan, W. Yang, Z. Li, J. He, T. Ma, K. Fang, S. Shen, Z. Gan, Q. Pan, Z. Chen, T. Guo, W. Mou, D. Su, Y. Xu, J. Guo, H. Liu, L. Shi, Z. Zhao, H. Ma, Phys. Rev. C 57 (1998) 1506.

[146] J. Benlliure, K.-H. Schmidt, D. Cortina-Gil, T. Enqvist, F. Farget, A. Heinz, A. R. Junghans, J. Pereira, J. Taieb, Nucl. Phys. A 660 (1999) 87.

[147] N. Alkhomashi, P. H. Regan, Z. Podolyak, S. Pietri, A. B. Garnsworthy, S. J. Steer, J. Benlliure, E. Caserejos, R. F. Casten, J. Gerl, H. J. Wollersheim, J. Grebosz, G. Farrelly, M. Gorska, I. Kojouharov, H. Schaffner, A. Algora, G. Benzonon, A. Blazhev, P. Boutachkov, A. M. Bruce, A. M. D. Bacelar, I. J. Cullen, L. Caceres, P. Doornenbal, M. E. Estevez, Y. Fujita, W. Gelletly, R. Hoischen, R. Kumar, N. Kurz, S. Lalkovski, Z. Liu, C. Mihai, F. Molina, A. I. Morales, D. Mucher, W. Prokopowicz, B. Rubio, Y. Shi, A. Tamii, S. Tashenov, J. J. Valiente-Dobon, P. M. Walker, P. J. Woods, F. R. Xu, Phys. Rev. C 80 (2009) 064308.
7. Table 1. Discovery of gallium, germanium, lutetium, and hafnium isotopes

Isotope	Gallium, germanium, lutetium, and hafnium isotope						
First author	First author of refereed publication						
Journal	Journal of publication						
Ref.	Reference						
Method	Production method used in the discovery:						
	FE: fusion evaporation						
	NC: Neutron capture reactions						
	PN: photo-nuclear reactions						
	LP: light-particle reactions (including neutrons)						
	MS: mass spectroscopy						
	TR: heavy-ion transfer reactions						
	NF: neutron induced fission						
	DI: deep inelastic reaction						
	SP: spallation reactions						
	PF: projectile fragmentation of fission						
Laboratory	Laboratory where the experiment was performed						
Country	Country of laboratory						
Year	Year of discovery						
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------------	---------	------	--------	------------	---------	------
60Ga	B. Blank	Phys. Rev. Lett.	17	PF	GANIL	France	1995
61Ga	M.A.C. Hotchkins	Phys. Rev. C	18	FE	Berkeley	USA	1987
62Ga	R. Chiba	Phys. Rev. C	29	LP	Tokyo	Japan	1978
63Ga	M. Nurmia	Phys. Lett.	21	FE	Argonne	USA	1965
64Ga	B.L. Cohen	Phys. Rev.	22	LP	Oak Ridge	USA	1953
65Ga	L.W. Alvarez	Phys. Rev.	26	LP	Berkeley	USA	1938
66Ga	W.B. Mann	Phys. Rev.	28	LP	Berkeley	USA	1937
67Ga	L.W. Alvarez	Phys. Rev.	29	LP	Berkeley	USA	1938
68Ga	W. Bothe	Naturwiss.	32	PN	Heidelberg	Germany	1937
69Ga	F.W. Aston	Nature	16	MS	Cambridge	UK	1923
70Ga	W. Bothe	Naturwiss.	32	PN	Heidelberg	Germany	1937
71Ga	F.W. Aston	Nature	16	MS	Cambridge	UK	1923
72Ga	R. Sagane	Phys. Rev.	34	NC	Berkeley	USA	1939
73Ga	M.L. Perlman	Phys. Rev.	38	PN	General Electric Research Laboratory	USA	1949
74Ga	H. Morinaga	Phys. Rev.	40	LP	Purdue	USA	1956
75Ga	H. Morinaga	J. Phys. Soc. Japan	42	PN	Tohoku	Japan	1960
76Ga	K. Takahashi	J. Phys. Soc. Japan	43	LP	Tokyo	Japan	1961
77Ga	L. Wish	Phys. Rev.	44	NF	Naval Radiological Defense Laboratory	USA	1968
78Ga	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
79Ga	B. Grapengiesser	J. Inorg. Nucl. Chem.	47	NF	Studsvik	Sweden	1974
80Ga	B. Grapengiesser	J. Inorg. Nucl. Chem.	47	NF	Studsvik	Sweden	1974
81Ga	G. Rudstam	Phys. Rev. C	49	NF	Studsvik	Sweden	1976
82Ga	G. Rudstam	Phys. Rev. C	49	NF	Studsvik	Sweden	1976
83Ga	G. Rudstam	Phys. Rev. C	49	NF	Studsvik	Sweden	1976
84Ga	K.-L. Kratz	Z. Phys. A	51	SP	CERN	Switzerland	1991
85Ga	M. Bernas	Phys. Lett. B	52	PF	Darmstadt	Germany	1997
86Ga	M. Bernas	Phys. Lett. B	52	PF	Darmstadt	Germany	1997
87Ga	T. Ohnishi	J. Phys. Soc. Japan	53	PF	RIKEN	Japan	2010

60Ge	A. Stolz	Phys. Lett. B	15	PF	Michigan State	USA	2005
61Ge	M.A.C. Hotchkins	Phys. Rev. C	18	FE	Berkeley	USA	1987
62Ge	M.F. Mohar	Phys. Rev. Lett.	19	PF	Michigan State	USA	1991
63Ge	M.F. Mohar	Phys. Rev. Lett.	19	PF	Michigan State	USA	1991
64Ge	R.G.H. Robertson	Phys. Rev. Lett.	59	LP	Michigan State	USA	1972
65Ge	R.G.H. Robertson	Phys. Rev. Lett.	59	LP	Michigan State	USA	1972
66Ge	H.H. Hopkins Jr.	Phys. Rev.	62	LP	Berkeley	USA	1950
67Ge	H.H. Hopkins Jr.	Phys. Rev.	62	LP	Berkeley	USA	1950
68Ge	H.H. Hopkins Jr.	Phys. Rev.	63	LP	Berkeley	USA	1948
69Ge	W.B. Mann	Phys. Rev.	31	LP	Berkeley	USA	1938
70Ge	F.W. Aston	Nature	55	MS	Cambridge	UK	1923
71Ge	G.T. Seaborg	Phys. Rev.	65	LP	Berkeley	USA	1941
72Ge	F.W. Aston	Nature	55	MS	Cambridge	UK	1923
73Ge	K.T. Bainbridge	J. Frank. Inst.	56	MS	Bartol Research Foundation	USA	1933
74Ge	F.W. Aston	Nature	55	MS	Cambridge	UK	1923
75Ge	R. Sagane	Phys. Rev.	34	PN	Berkeley	USA	1939
76Ge	K.T. Bainbridge	J. Frank. Inst.	56	MS	Bartol Research Foundation	USA	1933
77Ge	R. Sagane	Phys. Rev.	34	LP	Berkeley	USA	1939
78Ge	N. Sugarman	Phys. Rev.	66	NF	Los Alamos	USA	1953
79Ge	M. Karras	Nucl. Phys. A	68	LP	Arkansas	USA	1970
80Ge	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
81Ge	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
82Ge	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
83Ge	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
84Ge	P. del Marmol	Nucl. Phys. A	45	NF	Mol	Belgium	1972
85Ge	J.P. Omvedt	Z. Phys. A	69	NF	Studsvik	Sweden	1991
86Ge	M. Bernas	Phys. Lett. B	70	PF	Darmstadt	Germany	1994
87Ge	M. Bernas	Phys. Lett. B	52	PF	Darmstadt	Germany	1997
88Ge	M. Bernas	Phys. Lett. B	52	PF	Darmstadt	Germany	1997
89Ge	M. Bernas	Phys. Lett. B	52	PF	Darmstadt	Germany	1997
90Ge	T. Ohnishi	J. Phys. Soc. Japan	53	PF	RIKEN	Japan	2010

150Lu	P.J. Sellin	Phys. Rev. C	80	FE	Daresbury	UK	1993
151Lu	S. Hofmann	Z. Phys. A	83	FE	Darmstadt	Germany	1982
152Lu	K.S. Toth	Phys. Rev. C	84	FE	Berkeley	USA	1987
153Lu	J.M. Nitschke	Z. Phys. A	85	FE	Berkeley	USA	1989
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
154Lu	S. Hofmann	Z. Phys. A	86FE	FE	Darmstadt	Germany	1981
155Lu	R.D. Macfarlane	Phys. Rev.	87FE	FE	Berkeley	USA	1965
156Lu	E. Hagberg	Nucl. Phys. A	88SP	CERN	Switzerland	1977	
157Lu	G.D. Alkhazov	Z. Phys. A	90SP	Dubna	Russia	1979	
159Lu	G.D. Alkhazov	Z. Phys. A	91SP	Dubna	Russia	1980	
160Lu	G.D. Alkhazov	Z. Phys. A	90SP	Dubna	Russia	1979	
161Lu	R. Anholt	Nucl. Phys. A	92FE	Yale	USA	1973	
162Lu	C. Burman	Can. J. Phys.	93FE	Yale	USA	1978	
163Lu	G.D. Alkhazov	Z. Phys. A	90SP	Dubna	Russia	1979	
164Lu	R.C. Hunter	Phys. Rev. C	96FE	Oak Ridge	USA	1977	
165Lu	B.J. Meijer	Radiochim. Acta	97LP	Amsterdam	Netherlands	1973	
166Lu	R. Arit	Bull. Acad. Sci. USSR	98SP	Dubna	Russia	1969	
167Lu	F.M. Aron	Bull. Acad. Sci. USSR	99SP	Dubna	Russia	1958	
169Lu	W.E. Nervik	Phys. Rev.	103SP	Berkeley	USA	1955	
177Lu	G. Wilkinson	Phys. Rev.	104LP	Berkeley	USA	1951	
178Lu	G. Wilkinson	Phys. Rev.	104LP	Berkeley	USA	1951	
179Lu	G. Wilkinson	Phys. Rev.	104LP	Berkeley	USA	1951	
180Lu	F.W. Aston	Nature	79MS	Cambridge	UK	1934	
181Lu	J. K. Marsh	Nature	106NC	Oxford	UK	1935	
182Lu	H. Atterling	Arkiv Mat. Astron. Fysik	108NC	Stockholm	Sweden	1945	
183Lu	T. Stribel	Z. Naturforsch.	113LP	Frankfurt	Germany	1957	
184Lu	T. Kuroyanagi	J. Phys. Soc. Japan	115PN	Tohoku	Japan	1961	
185Lu	S.C. Gujathii	Nucl. Phys. A	118LP	Simon Fraser	Canada	1971	
186Lu	R. Kirchner	Nucl. Phys. A	122DI	Darmstadt	Germany	1982	
187Lu	R. Kirchner	Nucl. Phys. A	122DI	Darmstadt	Germany	1982	
188Lu	K. Rykaczewski	Z. Phys. A	123DI	Darmstadt	Germany	1983	
189Lu	K. Rykaczewski	Nucl. Phys. A	124DI	Darmstadt	Germany	1989	

154Hf	S. Hofmann	Z. Phys. A	86FE	FE	Darmstadt	Germany	1981
155Hf	S. Hofmann	Z. Phys. A	86FE	FE	Darmstadt	Germany	1981
156Hf	S. Hofmann	Z. Phys. A	128FE	FE	Darmstadt	Germany	1979
157Hf	R.D. Macfarlane	Phys. Rev.	87FE	FE	Berkeley	USA	1965
158Hf	R.D. Macfarlane	Phys. Rev.	87FE	FE	Berkeley	USA	1965
159Hf	K.S. Toth	Phys. Rev. C	129FE	Oak Ridge	USA	1973	
160Hf	K.S. Toth	Phys. Rev. C	129FE	Oak Ridge	USA	1973	
161Hf	K.S. Toth	Phys. Rev. C	129FE	Oak Ridge	USA	1973	
162Hf	U.J. Schrawe	Phys. Rev. C	130FE	Oak Ridge	USA	1973	
163Hf	U.J. Schrawe	Phys. Rev. C	130FE	Oak Ridge	USA	1973	
164Hf	H. Bruchertseifer	Radiochem. Radioanal. Lett.	131FE	Oak Ridge	USA	1981	
165Hf	H. Bruchertseifer	Radiochem. Radioanal. Lett.	131FE	Oak Ridge	USA	1981	
166Hf	F.S. Stephens	Nucl. Phys.	132FE	Berkeley	USA	1981	
167Hf	R. Arit	Bull. Acad. Sci. USSR	98SP	Dubna	Russia	1969	
168Hf	E.R. Merz	Phys. Rev.	133SP	Pittsburgh	USA	1961	
169Hf	E.R. Merz	Phys. Rev.	133SP	Pittsburgh	USA	1961	
170Hf	G. Wilkinson	Phys. Rev.	104LP	Berkeley	USA	1951	
171Hf	G. Wilkinson	Phys. Rev.	104LP	Berkeley	USA	1951	
172Hf	A.J. Dempster	Phys. Rev.	126MS	Chicago	USA	1939	
173Hf	G. Wilkinson	Phys. Rev.	135LP	Berkeley	USA	1949	
174Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
175Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
176Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
177Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
178Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
179Hf	F.W. Aston	Nature	127MS	Cambridge	UK	1934	
180Hf	G. Hevesy	Nature	136NC	Copenhagen	Denmark	1935	
181Hf	W.H. Hutchin	J. Inorg. Nucl. Chem.	138NC	Livermore	USA	1961	
182Hf	O.O. Gatti	Z. Naturforsch.	140LP	Buenos Aires	Argentina	1956	
183Hf	T.E. Ward	Phys. Rev. C	141LP	Brookhaven	USA	1941	
184Hf	S. Yuan	Phys. Rev. C	145TR	Lanzhou	China	1993	
185Hf	J. Benlliure	Nucl. Phys. A	146PF	Darmstadt	Germany	1999	
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
188Hf	J. Benlliure	Nucl. Phys. A	[146]	PF	Darmstadt	Germany	1999
189Hf	N. Alkhomashi	Phys. Rev. C	[147]	PF	Darmstadt	Germany	2009