Bacteremia due to Bifidobacterium, Eubacterium or Lactobacillus; Twenty-one Cases and Review of the Literature

KATHLEEN A. BOURNE, JAMES L. BEEBE, YVONNE A. LUE, AND PAUL D. ELLNER

Columbia University College of Physicians & Surgeons
New York, New York

Received April 17, 1978

Twenty-one cases of bacteremia due to Bifidobacterium, Eubacterium and Lactobacillus are described. Transient bacteremic episodes with these organisms may follow trauma to the mouth, intestine, or vagina. The majority of the patients were female and most had an underlying condition that may have predisposed to bacteremia. Ten of the patients died despite antibiotic treatment.

INTRODUCTION

Bifidobacterium, Eubacterium, and Lactobacillus species are all non-sporeforming gram-positive rods that are classified as anaerobes. Species vary from strictly anaerobic to aerotolerant. These genera are taxonomically unrelated, but they are all non-motile and lack catalase. Their microscopic morphology includes straight or curved rods (Lactobacillus), pleomorphic rods (Eubacterium), and branched or bifurcated forms (Bifidobacterium).

Species of all three genera are found among the commensal flora of man. Since these organisms are usually recovered together with other commensals, little is known of their pathogenic potential.

The present paper describes the recovery of these species, usually in pure culture, from the blood of patients with a variety of clinical problems.

METHODS

Subjects

Blood cultures were obtained from adult patients at the Columbia-Presbyterian Medical Center during the period 1972 to 1977. In every case, the blood was drawn the same day on which the provocative signs or symptoms occurred, usually within a few hours after a temperature rise.

Blood Sampling Procedure

The patient's antecubital fossa was prepared with either 2% tincture of iodine or PVP-Iodine (Betadine solution, Purdue-Frederick Co.) and approximately 17 ml of
blood was collected into Vacutainer tubes containing sodium polyanethol sulfonate (Becton-Dickinson).

Laboratory Procedures

The blood was distributed between two bottles, one of which contained modified Columbia broth [1,2]. This bottle was vented to provide aerobic conditions. The second bottle contained modified Columbia broth made hypertonic with 10% sucrose [3]. This bottle remained unvented to maintain anaerobic conditions. Aerobic bottles were subcultured to chocolate agar at 10 hours and at 5 days; anaerobic bottles were subcultured to anaerobic blood agar at 5 days [3]. Gram stains were performed on all isolates, and gram-positive isolates were tested for catalase production. Anaerobic or microaerophilic non-sporeforming gram-positive rods were identified by fermentation in prerduced media (Scott Labs) or with the Minitek System (Bioquest) and with gas liquid chromatography according to the criteria of the Virginia Polytechnic Institute [4].

Data Analysis

Patients' charts were reviewed to determine the history, presence of underlying disease, and other pertinent clinical information.

RESULTS

During the 6-year period of this study, 91,493 blood cultures were received. More than 9,000 isolates were recovered, 10% of which were anaerobes. Ten Bifidobacterium species, 8 Eubacterium species, and 4 Lactobacillus species were recovered among these approximately 900 anaerobic isolates. Blood cultures became positive 3–5 days after incubation. These organisms were not recovered from any other site or specimen.

Ten Bifidobacterium isolates were obtained from 9 patients. Blood from 2 of the patients (Nos. 5 and 6) grew out a second organism: Bacteroides fragilis and Peptostreptococcus species. The patients ranged in age from 21 to 60 years. Five of these patients had complications associated with pregnancy; 2 patients had gastrointestinal disorders; and 2 patients had systemic lupus erythematosus, one of whom developed peritonitis. Two of the patients died (Table 1).

Nine Eubacterium isolates were obtained from 8 patients. The same blood culture from 2 of the patients (Nos. 10 and 12) grew out a second organism: Klebsiella pneumoniae and Bacteroides species. Other blood cultures from patient No. 10 grew out Arizona, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacteroides fragilis. Separate blood cultures from patient No. 13 grew out Proteus vulgaris and Nocardia asteroides. A single blood culture from patient No. 14 grew out E. coli. The patients ranged in age from 19 to 70 years. Seven of these patients had gastrointestinal disorders and 1 patient developed fever following caesarean section. Six of the patients died (Table 2).

Seven Lactobacillus isolates were obtained from 4 patients, all in pure culture. A separate blood culture from patient No. 18 grew out Bacteroides fragilis. The patients ranged in age from 47 to 71 years. Two of the patients had gastrointestinal disease, 1 patient had endocarditis, and the remaining patient developed postoperative fever. Two of the patients recovered (Table 3).

Antimicrobial susceptibility studies were not performed on any of the isolates.
Table 1

Patients from whom *Bifidobacterium* Isolates Were Obtained

Patient	Age	Sex	Organism	Clinical Problem	Signs and Symptoms Prompting Blood Culture	WBC (per cmm)	Treatment	Outcome
1	24	F	*Bifidobacterium* species	Delivery	Fever to 101°F	17,400	None	Recovered
2	58	M	*Bifidobacterium* species	Bowel obstruction due to rectal cancer	Shaking chills	10,000	Ampicillin kanamycin cephalothin	Died
3	39	F	*Bifidobacterium* eriksonii	Fever 1 day post cholecystectomy	Fever to 102°F	15,600	None	Recovered
4	35	F	*Bifidobacterium* eriksonii	Fever 2 days post c section —uterine fibroids	Fever to 100°F	20,100	Ampicillin	Recovered
5	29	F	*Bifidobacterium* eriksonii	Septic shock 5 days postpartum	Chills, fever to 104°F	13,700	Ampicillin kanamycin	Recovered
6	21	F	*Bifidobacterium* eriksonii	Septic pregnancy	Chills, fever to 102°F	18,200	Ampicillin kanamycin	Recovered
7	31	F	*Bifidobacterium* species	Fever 2 days postpartum	Fever to 101.8°F	16,500	Ampicillin gentamicin	Recovered
8	34	F	*Bifidobacterium* species	Multiple Staph. abscesses (systemic lupus erythematosis)	Rule out Staph. Subacute bacterial endocarditis	6,800	Oxacillin	Recovered
9	60	F	*Bifidobacterium* adolescentis × 2	Peritonitis due to diverticulosis (systemic lupus erythematosis)	Fever to 100°F	3,100	Ampicillin gentamicin cephalothin	Died
TABLE 2
Patients from whom *Eubacterium* Isolates Were Obtained

Patient	Age	Sex	Organism	Clinical Problem	Signs and Symptoms Prompting Blood Culture	WBC (per cmm)	Treatment	Outcome
10	32	F	*Eubacterium nitrogenes*	Rectal fistula (acute lymphocytic leukemia)	Chills, fever to 102°F	49,000	Cephalothin tobramycin ticarcillin	Died
11	39	M	*Eubacterium* species	Ileal perforation, Crohn's disease, stage IV Hodgkins	?	8,900	Ampicillin gentamicin oxacillin	Died
12	70	F	*Eubacterium* species	Bowel perforation due to fecal impaction	Shock, fever to 102°F	12,900	Chloramphenicol gentamicin oxacillin	Died
13	61	F	*Eubacterium* alactolyticum	Colon diverticulosis, pneumonia	Septic shock	11,600	Ampicillin gentamicin cephalothin	Recovered
14	57	F	*Eubacterium* species	Chronic liver disease, diverticulosis	?	17,800	Ampicillin	Died
15	66	M	*Eubacterium* species	Metastatic cancer—stomach, liver, kidney, spleen, pancreas	Chills, fever to 104°F	10,000	Chloramphenicol cephalothin tetracycline	Died
16	37	M	*Eubacterium lentum* × 2	GI hemorrhage, lung abscess, peritonitis	Chills, fever to 102.8°F	13,500	Penicillin gentamicin clindamycin	Died
17	19	F	*Eubacterium lentum*	Fever 1 day post c section	Fever to 101.6°F	14,800	Gentamicin cephalothin clindamycin	Recovered
TABLE 3

Patient	Age	Sex	Organism	Clinical Problem	Signs and Symptoms Prompting Blood Culture	Treatment	WBC (per cmm.)	Outcome
18	47	F	*Lactobacillus* species	Colitis, agranulocytosis, pulmonary emboli, thrombosis, diabetes	Fever to 104°F	Gentamicin cephalothin	1,000	Died
19	71	F	*Lactobacillus* species	Peritonitis, vixus perforation, diabetes	Fever to 101°F	Chloramphenicol	10,400	Died
20	53	F	*Lactobacillus* species x 4	Subacute bacterial endocarditis	Shaking chills, fever to 101°F	Cefazolin	9,300	Recovered
21	50	F	*Lactobacillus* species	Fever 1 day post thyroidectomy		Penicillin	12,800	Recovered
DISCUSSION

Species of *Bifidobacterium*, *Eubacterium*, and *Lactobacillus* are members of the commensal flora of the mouth, vagina, and gastrointestinal tract [5]. *Eubacterium* species have also been recovered from skin and the upper respiratory tract. Species of *Bifidobacterium* and *Lactobacillus* have been isolated from normal appendices [6] and bifidobacteria have been found in the urine of 2 patients with indwelling catheters [7].

All 3 genera have been implicated in obstetric and gynecologic infections [8–11] and recovered from intraabdominal abscesses [10,12,13]. *Bifidobacterium* and *Eubacterium* species have also been involved in pleuropulmonary infections [5,14–20].

The most common anaerobic gram-positive non-sporeforming rod recovered from blood cultures is *Propionibacterium acnes*. In most cases the presence of this organism represents contamination from the skin flora. A positive catalase reaction serves to differentiate *P. acnes* from *Bifidobacterium*, *Eubacterium*, and *Lactobacillus*.

The recovery of anaerobic gram-positive non-sporeforming rods other than *P. acnes* from blood cultures is rare. Our low rate of recovery—1 per 3,500 blood cultures—is comparable to the infrequent isolations reported by others [21–25]. The explanation for the rarity of these organisms in bacteremia is far from clear. Possible partial explanations include the failure to adequately culture blood for anaerobic organisms, or the misidentification of isolates as *P. acnes*. One cannot relate the infrequent recovery of these genera from blood to their numbers in the gastrointestinal tract or other body sites, since all 3 genera are present in high concentrations. *Bifidobacterium* species are numerically second only to *Bacteroides* in the gastrointestinal tract and are more numerous than *Clostridium* or anaerobic cocci [5] which are recovered with considerably greater frequency. Similarly, *Eubacterium* species are at least as abundant as clostridia or peptostreptococci. It would appear that bifidobacteria, eubacteria, and lactobacilli are low in those virulence factors that permit organisms to invade and multiply at sites other than their normal habitat.

Wilson [25] reported the recovery of a *Bifidobacterium* and a *Eubacterium* from a patient with peritonitis. Lactobacilli [26–36] and eubacteria [37,38] have been shown to be the etiologic agents of subacute bacterial endocarditis. Transient bacteremias have also been reported with all 3 genera; bifidobacteria have been isolated following genitourinary manipulation [39], eubacteria after oral prophylaxis [40], and lactobacilli following a suction abortion [41].

It would appear that transient bacteremias due to these organisms may occur following some disturbance of their ecologic niche; mouth, intestine, vagina. Trauma may be associated with dental procedures; parturition or alteration in the integrity of intestinal mucosa associated with diverticulosis, neoplasia, or perforation. None of the infections was considered to be hospital-acquired.

Seventeen of the 21 patients in our series were female.

Almost all of the patients had some underlying condition that may have predisposed to their bacteremia. Five of the patients with *Bifidobacterium* and 1 patient with *Eubacterium* had complications associated with pregnancy; 12 of the patients had gastrointestinal disease, 2 patients had systemic lupus erythematosus, and 1 patient had pre-existing valvular disease.

Bifidobacterium, *Eubacterium*, and *Lactobacillus* species are generally susceptible *in vitro* to clinically achievable levels of antibiotics such as penicillin, clindamycin,
chloramphenicol, and tetracycline which are commonly employed in treating anaerobic infections. All of the patients were treated before the results of the blood culture were reported.

Ten of the 21 patients died despite antibiotic treatment. However, the bacteremia was considered to be the terminal event in only one patient (No. 16) who developed disseminated septic emboli and microabscesses.

REFERENCES

1. Ellner PD: System for inoculation of blood in the laboratory. Appl Microbiol 16:1892-1894, 1968
2. Morello JA, Ellner PD: New medium for blood cultures. Appl Microbiol 17:68-70, 1969
3. Ellner PD, Kiehn TE, Beebe JL, et al: Critical analysis of hypertonic medium and agitation in detection of bacteremia. J Clin Microbiol 4:216-224, 1976
4. Holdeman LV, Moore WEC: Anaerobe Laboratory Manual. Blacksburg: Virginia Polytechnic Institute, 1975, pp 39-66
5. Finegold SM: Anaerobic Bacteria in Human Disease. New York: Academic Press, 1977
6. Werner H, Seelig HPR: Kulturelle Untersuchungen über den Keimgehalt der Appendix unter besonderer Berücksichtigung der Anaerobier. Zent Bakt Parasit Infect Hyg Abt I Orig 188:345-364, 1963
7. Sapico FL, Wideman PA, Finegold SM: Aerobic and anaerobic flora in bladder urine of patients with indwelling urethral catheters. Urol 7:382-384, 1976
8. Ledger WJ: Anaerobic infections. Amer J Obst Gynec 123:111-118, 1975
9. Gorbach SL, Thadepalli H: Clindamycin in pure and mixed anaerobic infections. Arch Int Med 134:87-92, 1974
10. Finegold SM, Bartlett JG, Chow AW, et al: Management of anaerobic infections. Ann Int Med 83:375-389, 1975
11. Swenson RM: Anaerobic bacteria in infections of the female genital tract. In Anaerobic Bacteria Role in Disease. Edited by A Balows. Springfield, Illinois: CC Thomas, 1974, pp 379-384
12. Gorbach SL, Thadepalli H, Norsen J: Anaerobic microorganisms in intraabdominal infections. In Anaerobic Bacteria Role in Disease. Edited by A Balows. Springfield, Illinois: CC Thomas, 1974, pp 399-407
13. Moore WEC, Cato EP, Holdeman LV: Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis 119:641-649, 1969
14. Gorbach SL, Bartlett JG: Anaerobic infections. N Engl J Med 290:1237-1245, 1974
15. Bartlett JG, Finegold SM: Anaerobic pleuropulmonary infections. Med 51:413-450, 1972
16. Georg LK, Roberstad GW, Brinkman SA, et al: A new pathogenic anaerobic Actinomyces species. J Infect Dis 115:88-99, 1965
17. Thomas AV, Sodeman TH, Bentz RR: Bifidobacterium (Actinomyces) eriksonii infection. Amer Rev Resp Dis 110:663-668, 1974
18. Sodeman T, Schafer K, Bentz RR, et al: Infection due to Bifidobacterium eriksonii. Am J Clin Path 59:143, 1973
19. Allin CL, Blackman JF: Treatment of lung abscess with report of 100 consecutive cases. J Thorac Surg 6:156, 1936
20. Green SL: Case report fatal anaerobic pulmonary infection due to Bifidobacterium eriksonii. Postgrad Med 63:187-189, 1978
21. Washington JA: Comparison of two commercially available media for detection of bacteremia. Appl Microbiol 22:604-607, 1971
22. Washington JA: Evaluation of two commercially available media for detection of bacteremia. Appl Microbiol 22:956-959, 1972
23. Blazevic DJ, Stemper JE, Matsen JM: Effect of aerobic and anaerobic atmospheres on isolation of organisms from blood cultures. J Clin Microbiol 1:154-156, 1975
24. Harkness JL, Hall M, Ilstrup DM, et al: Effects of atmosphere of incubation and of routine subcultures on detection of bacteremia in vacuum blood culture bottles. J Clin Microbiol 2:296-299, 1975
25. Wilson RW, Martin WJ, Wilkowske CJ, et al: Anaerobic bacteremia. Mayo Clin Proc 47:639-646, 1972
26. Marshall F: Der Döderleinsche Bacillus vaginalis als Endokarditiserreger. Zent Bakt Parasitkde 1 Abt Orig 141:153-159, 1938
27. Biocca E, Seppilli A: Human infections caused by lactobacilli. J Infect Dis 81:112-115, 1947
28. Biocca E, Reitano D: Endocardite mortal no homen produzida por um lactobacilo. Arq Biol (Sao Paulo) 27:114-120, 1943
29. Dietzsch HJ: Subakute bakterielle Endokarditis durch Lactobacillen beim Kinde. Monatsschr Kinderheilkd 103:240-243, 1955
30. Horeau J, Nicolas G, Courtoieux A, et al: A propos d'un cas d'endocardite due a un lactobacillus. Ann Med Intern 120:125-129, 1969
31. Tenenbaum MJ, Warner JF: Lactobacillus casei endocarditis. Ann Int Med 82:539, 1975
32. Sharpe ME, Hill LR, Lapage SP: Pathogenic lactobacilli. J Med Microbiol 6:281-286, 1973
33. Berger U, Lutz P, Sievers C, et al: Endocarditis lenta durch Lactobacillus salivarius subsp. salicinicus. Dtsch Med Wschr 101:1349–1350, 1976
34. Isenberg D: Lactobacillus infective endocarditis. Proc Roy Soc Med 70:278–281, 1977
35. Axelrod J, Keusch GT, Bottone E, et al: Endocarditis caused by Lactobacillus plantarum. Ann Int Med 78:33–37, 1973
36. Jeandet JC: A Propos d’un cas de malade d’Osler du au Lactobacillus. These pour le Doctorat en Médecine. Paris: Editions AGEMP, 1963
37. Watanabe Y, Ueno K: Subacute bacterial endocarditis due to Eubacterium ventriosum: Report of a case. J Jap Assoc Infect Dis 42:78–83, 1972
38. Sans MD, Crowder JG: Subacute bacterial endocarditis caused by Eubacterium aerofaciens: Report of a case. Amer J Clin Path 59:576–580, 1973
39. Sullivan NM, Sutter VL, Mims MM, et al: Clinical aspects of bacteremia after manipulation of the genitourinary tracts. J Infect Dis 127:49–55, 1973
40. Deleo AA, Schoenknecht FD, Anderson MW, et al: The incidence of bacteremia following oral prophylaxis on pediatric patients. Oral Surg Oral Med Oral Path 37:36–45, 1974
41. Ritvo R, Monroe P, Andriole VT: Transient bacteremia due to suction abortion: Implications for sbe antibiotic prophylaxis. Yale J Biol Med 50:471–479, 1977