Chronotype Differences in Body Composition, Dietary Intake and Eating Behavior Outcomes: A Scoping Systematic Review

Carlien van der Merwe,1 Mirjam Münch,2,3 and Rozanne Kruger1
1School of Sport, Exercise and Nutrition, Massey University East Precinct, Albany, Auckland, New Zealand; 2Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland; and 3Research Centre for Hauora and Health, Massey University, Wellington, New Zealand

ABSTRACT

The timing and nutritional composition of food intake are important zeitgebers for the biological clocks in humans. Thus, eating at an inappropriate time (e.g., during the night) may have a desynchronizing effect on the biological clocks and, in the long term, may result in adverse health outcomes (e.g., weight gain, obesity, and poor metabolic function). Being a very late or early chronotype not only determines preferred sleep and wake times but may also influence subsequent mealtimes, which may affect the circadian timing system. In recent years, an increased number of studies have examined the relation between chronotype and health outcomes, with a main focus on absolute food intake and metabolic markers and, to a lesser extent, on dietary intake distribution and eating behavior. Therefore, this review aimed to systematically determine whether chronotype indirectly affects eating behaviors, dietary intake (timing, choice, nutrients), and biomarkers leading to body composition outcomes in healthy adults. A systematic literature search on electronic databases (PubMed, CINAHL, MEDLINE, SCOPUS, Cochrane library) was performed (International Prospective Register of Systematic Reviews number: CRD42020219754). Only studies that included healthy adults (aged >18 y), classified according to chronotype and body composition profiles, using outcomes of dietary intake, eating behavior, and/or biomarkers, were considered. Of 4404 articles, 24 met the inclusion criteria. The results revealed that late [evening type (ET)] compared with early [morning type (MT)] chronotypes were more likely to be overweight/obese with poorer metabolic health. Both MT and ET had similar energy and macronutrient intakes, consuming food during their preferred sleep–wake timing: later for ET than MT. Most of the energy and macronutrient intakes were distributed toward nighttime for ET and exacerbated by unhealthy eating behaviors and unfavorable dietary intakes. These findings from our systematic review give further insight why higher rates of overweight/obesity and unhealthier metabolic biomarkers are more likely to occur in ET. Adv Nutr 2022;13:2357–2405.

Statement of significance: This systematic review exemplifies differences in food choice, timing and distribution during the day, nutritional quality, and eating behaviors between chronotypes. To our knowledge, this is the first systematic review that comprehensively compares not only dietary patterns and food composition but also eating behavior and metabolic outcome markers between morning and evening types. Our findings highlight that it might be important for long-term metabolic health to include someone’s chronotype when tailoring meal and food plans for healthy cohorts but also for patients.

Keywords: morning type, evening type, circadian, meal timing, nutritional intake, eating habits

Introduction

Most organisms, including humans, have evolved an internal timekeeping system that generates circadian rhythms of metabolism, gene expression, and behaviors (1–5). The circadian rhythms of clocks in each cell are controlled by the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus of the brain (6). In turn, the SCN is entrained to the earth’s 24-h light/dark cycle (7) as it receives external light input via the eyes and optic nerve and synchronizes the downstream peripheral cell and tissue clocks (8, 9). Environmental light is the primary zeitgeber (time cue) for the central circadian clock, but other external cues, such as food intake, including the timing and composition of food intake, are capable of setting the rhythms in the peripheral clocks as well as the clock-controlled genes in the body tissues and organs (5, 10, 11).
These clock genes in turn influence the timing of digestion, nutrient uptake and metabolism, metabolite and hormonal regulation, food intake, behavior, and appetite (5, 11). Timing of food intake, as well as composition of food intake (particularly macronutrients), is therefore an important zeitgeber for the circadian timing system (12).

Humans are physiologically suited to spend about two-thirds of their 24-h day awake, being active and eating and storing energy. They usually spend one-third of their time asleep, being in a fasting state at nighttime (13). During the day, ingested food provides energy to support metabolic processes, whereas during the night, when sleep usually occurs, stored energy is mobilized to maintain homeostasis (14, 15). Thus, eating at an inappropriate time can have a desynchronizing effect on the biological circadian clocks, resulting in adverse health outcomes, including weight gain, obesity, and poor metabolic health outcomes (16–18). Studies not considering different chronotypes have shown that a higher energy intake during the biological night (the normal resting and fasting cycles) results in enhanced fat storage and ultimately obesity (19, 20). This is further supported by McHill et al. (20), who showed that obese individuals typically consume most of their energy an hour closer to the melatonin secretion onset time (circadian phase marker, which usually occurs 2–4 h before sleep onset) in comparison to lean individuals. In addition, eating later in the day is associated with an increased risk for type 2 diabetes mellitus (21), as well as metabolic alterations, including impairment of lipid profiles, daily cortisol concentrations, and glucose tolerance (22–26).

Evidence from shift work studies has further accentuated that incorrect timing of food intake in combination with other dietary factors, such as poor food choices, eating behaviors, and meal and snack frequency, plays a role in the adverse health outcomes seen in individuals (27–29). An eating pattern that is high in energy-dense foods, such as sugar-sweetened beverages, fast foods, and fatty foods, and low in micronutrient-rich foods, such as fruit, vegetables, and fiber, is associated with weight gain (30) and an increased risk of metabolic syndrome and diabetes (31, 32). Furthermore, disinhibited or restrained eating behaviors are known to affect energy intake by influencing the types and amounts of foods eaten, the timing of food intake, and the eating occasion or where food intake occurs (33). This ultimately leads to increases in BMI and body fat percentage (34), as well as subsequent detrimental metabolic health outcomes such as poor glycemic control (35). These findings can be explained by the various metabolic processes and hormones involved in energy expenditure that are governed in precise timed relations to each other across a 24-h day (14, 15).

The altered timing of food intake, poor food choices, and behaviors are influenced by various other factors, such as work schedules and social events, but likely also by individual chronotypes. The term chronotype (36) is widely used to describe the preferred sleep–wake timing of an individual relative to the light/dark cycle that influences the timing of their diurnal preferences and the modulation of physiologic functions and behavior. Intrinsic sleep–wake time preferences in humans can be classified as early [morning type (MT)], intermediate [intermediate type (IT)], or late [evening type (ET)] chronotypes (37–39). The MTs habitually prefer an early bedtime and early morning rise time (37–39). On the other hand, ETs prefer a later bedtime and a late morning rise time (37–39). Morning and evening types have also been shown to exhibit genetic differences in allele frequencies (40, 41) and different intrinsic period length of the circadian clocks (42), as well as different phase angles of entrainment (e.g., between circadian phase of the melatonin rhythms and sleep–wake times) (43). Chronotype may therefore drive not only sleep and wake time (43) but also the timing of food intake (fasting or eating).

Assessment of a person’s chronotype can thus be used as a proxy for the phase of entrainment between the external 24-h cycle and the internal circadian phase of sleep and wakefulness. Hence, some of the assessment instruments [e.g., the Munich Chronotype Questionnaire (MCTQ)] use midsleep as proxy for chronotype (which is the midpoint of the sleep episode after habitual sleep-onset and wakeup times on free and workdays). Such differences in sleep–wake timing consequently lead to differences in food intake (44). However, not only the shift in mealtimes seems to be different between chronotypes, but also nutrient and food choices, behaviors, and consequently biomarkers may also be important (44–46). There appears to be a difference in inherent eating patterns displayed between MTs and ETs (44, 47), although the number of studies is limited. One study, for example, has shown that normal-weight MTs consume more energy earlier during the day, whereas normal-weight ETs consume food later during the day (44), and another study has found no association between chronotype and BMI (47). One study has found that ETs have a poorer lipid profile in comparison with MTs (44), but this has not been extensively studied yet in a healthy population. Furthermore, the ETs tend to display unhealthy eating behaviors, leading to less control over their dietary intake, which may favor a dietary pattern that results in weight gain and obesity (45, 46), although the effect on body composition has not been explored.

A limited number of systematic reviews have been conducted regarding chronotype and diet (48–51). Most of these reviews had a specific focus on disease conditions (48,
or included unhealthy (type 2 diabetes mellitus) individuals, specific populations (e.g., post–bariatric surgery), or nightshift workers (49) or investigated eating patterns including behavior related to temporal eating patterns (meal frequency and skipping) and energy intake (51). The number of studies investigating the potential link between different chronotypes and the diet has grown in the past 10 y. This systematic review identified as a gap that the associations with individual dietary aspects and health outcomes have not been explored extensively, nor does a comprehensive framework exist that presents the dietary components beyond energy intakes together with eating behaviors as a whole. Therefore, the aim of this systematic review was to determine whether chronotype indirectly affects eating behavior, dietary intake (timing, choice, nutrients), and biomarkers leading to body composition outcomes in healthy adults.

Methods

Study design

This review was designed as a systematic review without meta-analysis. It was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (52). The main research question that was aimed to be answered was the following: “Is body composition, dietary intake, eating behavior, and biomarker outcomes in healthy adults dependent on chronotype?” The systematic review protocol was registered prospectively in the International Prospective Register of Systematic Reviews (CRD42020219754) and can be accessed at https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=219754.

Search strategy and eligibility criteria

A systematic literature search was conducted in May 2020, followed by a rerun in November–December 2020. The following electronic databases were searched: PubMed, CINAHL, MEDLINE, SCOPUS, and Cochrane library. The search was limited to articles published in English, published within the past 10 y reflecting the surge of chronotype research, and including studies with participants older than 18 y. The search strategy was based on the following categor-ical keywords and their synonyms: adults, chronotype, body composition, dietary intake, eating behavior, and biomarkers (see Supplemental Table 1 for the full list of search terms). All relevant study designs except for conference proceedings, editorial letters, review articles, and pharmacologic studies were included. Studies that determined BMI and used this anthropometrical measurement as a comparator were included. Studies that recruited adults aged <18 y, pregnant and lactating women, nightshift workers (these individuals already exhibit altered sleep–wakefulness and fasting–feeding cycles due to work obligations and not necessarily because of their chronotype), and participants with diagnosed acute, preexisting, and chronic conditions that may influence sleep–wake timings (e.g., eating disorders, bariatric patients, mental illness, sleep disorders, diabetes) were excluded.

Study selection

In order to answer the research question (see above) the Population, Intervention, Comparison, Outcomes, and Study (PICOS) criteria (52) were used from primarily retrieved publications:

- **Population**: adults
- **Intervention**: chronotype assessment
- **Comparisons**: body composition measures including BMI (in kg/m²) and body fat percentage categories, waist circumference, and weight change
- **Outcomes**: dietary intake, eating behavior, and biomarkers
- **Study design**: all relevant designs except for conference proceedings, editorial letters, review articles, and pharmacologic studies (see Supplemental Table 1)

All records retrieved from the databases were exported using the Endnote X9 citation management software (Clarivate Analytics) (53). Duplicates were removed using Endnote, and the remaining references were exported into Rayyan QCRI (54). Two authors (CvdM, RK) independently screened the titles, abstracts, and full text for eligibility using the PICOS criteria before final inclusion in the review (CvdM, RK). In the case of conflicting decisions, a third reviewer (MM) participated. Studies were included if participants were classified according to chronotypes and their body composition profiles were compared. Studies were included if they reported at least 1 variable from the following 4 outcomes:

1. Dietary intake: diet composition (energy, macro- and micronutrients); food groups or food and drink categories (e.g., fruit and vegetables, sugar, fiber, alcohol, starch, meat, and dairy), and portion sizes
2. Eating occasions: meal timing, frequency, or skipping
3. Eating behavior: dietary restraint (conscious restriction of food intake to control body weight and shape), disinhibition (loss of control of food intake that leads to overconsumption), binge eating, and perceived hunger
4. Biomarkers: glucose, insulin, lipid profiles, and blood pressure and genetic profiles (such as genotyping of the PERIOD3 clock gene)

Studies were excluded if they did not include at least 1 of the predefined outcomes, were not designed to compare body composition profiles, or did not analyze nightshift workers separately from day workers.

Detailed reasons for exclusion of studies are reported in the PRISMA guidelines, and a PRISMA flow diagram outlines the study selection for this review (Figure 1) (52).

Data extraction

Data were extracted by CvdM in table format with the following variables: authors, publication year, country, study design, number of participants, type of participants, age, body composition, method of chronotype classification, and distribution of chronotype. The study had the following
Studies identified through database searching (n = 4404)
- Pubmed (n = 244)
- CINAHL (n = 293)
- SCOPUS (n = 3638)
- Cochrane library (n = 79)
- MEDLINE (n = 150)

Studies after duplicates removed (n = 3954)

Studies screened for title & abstract (n = 3954)

Studies excluded after title & abstract screening (n = 3848)

Full-text articles excluded, with reasons (n = 82)
- Participants < 18 years (n = 3)
- Included night shift workers (n = 6)
- Diagnosed diseases & surgery (n = 27)
 - Wrong comparator (n = 7)
 - Wrong intervention (n = 20)
- Unpublished results/ ongoing trial/ protocol (n = 3)
- Wrong publication type (n = 16)

Full-text articles assessed for eligibility (n = 106)

Quality assessment of each study (n = 24)

Studies included in systematic review (n = 24)

Studies excluded after quality assessment (n = 0)

FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for search strategy and study selection.

outcomes: dietary intake, eating behaviors, and biomarkers. The information in the tables was organized into the specific outcome categories and then presented according to the differences between chronotypes. Additional analysis, such as correlation analysis, was also reported next to each outcome category. A second researcher (RK) reviewed the extracted data for accuracy by using the full-text articles.

The quality of each study was assessed using the appropriate Joanna Briggs Institute (JBI) checklists for analytical cross-sectional studies, cohort studies, and randomized controlled trials (55). Each study was assessed independently by 2 authors (CvdM, RK) using the appropriate checklist for each study design assessing issues of bias, data collection, analysis, and reporting. Studies were allocated a score according to the number of JBI checklist criteria that were met (55) (Supplemental Table 2, Supplemental Table 3, and Supplemental Table 4).
Only statistically significant differences between chronotypes derived from the included articles and statistically significant associations (correlations), including significant linear relations (P-trend analyses), are reported in the text, but all P values and additional analysis are reported in the tables. If the mean differences (absolute or in percentage; e.g., calories of energy intake per chronotype group) were not directly available for this systematic review, they were calculated based on information from the tables or figures in the original journal papers (marked with ‡ in the text).

Results
A total of 4404 articles were initially identified, of which 339 were duplicates. After screening the remaining ones (title and abstract), 106 full-text articles were assessed by applying the eligibility criteria. Finally, 24 full-text articles were eligible for inclusion in this review. The main reasons for exclusion of studies were that participants with acute, preexisting, and chronic diseases were included (n = 27) and/or incorrect intervention (n = 20) and/or incorrect publication type (n = 16) was used (Figure 1), based on predefined exclusion criteria.

Study and participant characteristics
The sample size of the 24 studies varied between 44 and 3304 participants (men and women), of which 3 studies recruited women only (56–58). Most of the included studies (n = 20) had a cross-sectional design (56, 58–76). The remaining studies included 1 randomized controlled trial (57), 2 cohort studies (77, 78), and 1 population-based study (79) (Table 1).

The included studies assessed chronotypes using 1 of 2 validated questionnaires: the Morningness–Eveningness Questionnaire (MEQ) (39) or the MCTQ (80). Some of the studies used a mixed methodology by calculating midsleep from rest–activity recordings or using sleep and wake timings (from sleep logs) to create MT and ET categories. Most of the studies (n = 18) included in this review determined chronotype using the MEQ (57–59, 61–63, 65–67, 69, 70, 72–74, 76, 78, 79), 1 study used the MCTQ (77), 4 studies used calculations of the midpoint of sleep from rest–activity recordings (56, 60, 68, 75), and 1 used sleep and wake timings to create 4 categories (58) (Table 1). Therefore, there was some heterogeneity among the classification of the different chronotypes.

Most studies (n = 15) used the MEQ cutoff values to classify chronotypes (57, 61–64, 66, 67, 69, 70, 72–74, 76, 78, 79). However, Xiao et al. (77) and Vera et al. (71) classified participants as ET and MT based on the median chronotype score instead of using the cutoff values from the MEQ (i.e., IT = scores 42–58, MT = scores >58, or ET = scores <42) or the short version of the MEQ (see supplement) and the MCTQ (i.e., midsleep time <3 = MT; midsleep time 3–5 = IT; midsleep >5 = ET). Two studies used tertiles of chronotype scores using the MEQ (59, 65). For a detailed overview of the chronotype assessment methods used in each publication and thresholds of scores, see Supplemental Table 5 as well as Table 1.

Differences between chronotype and body composition or biomarkers
From the 24 included studies, 21 found significant differences between body composition outcomes and the different chronotypes (Table 2).

BMI, weight, and height.
In comparison with other chronotypes, 2 studies reported a higher BMI in ET (64, 77), 1 study reported that ET compared with MT women had a greater increase in BMI (0.7 compared with −0.1, P = 0.024) (78), 1 study reported a linear relation toward a higher BMI in ET (MT: 30.99; ET: 31.3) (71), and 2 studies reported a correlation between ET and a higher BMI, ranging between 26.0 and 32.6 (70, 75). Three studies showed that being an ET was associated with an increase in BMI points of 0.50–1.25 (62, 72, 78). In contrast to these findings, 4 studies reported a higher BMI in MT than other chronotypes (58, 65, 69, 74).

Weight loss/gain.
Four studies reported on weight gain/loss over time between ET and MT (57, 63, 67, 78), of which only 1 study by Maukonen et al. (78) reported that ET compared with MT women had a greater mean weight gain (+2.4 kg compared with +0.3 kg, P = 0.016) over a 7-y follow-up period.

Biomarkers.
Only 4 studies investigated chronotype differences/associations with biomarkers (57, 62, 71, 73) (Table 2). Investigating the differences in lipid profile and glucose homeostasis, Vera et al. (71) found that ETs compared with MTs had higher concentrations of triglycerides (105 ± 1.79 mg/dL compared with 101 ± 1.71 mg/dL, P = 0.009) and lower HDL (55.6 ± 0.48 mg/dL compared with 57.1 ± 0.46 mg/dL, P = 0.026). The ETs had higher fasting blood insulin (7.62 ± 0.23 μIU/mL compared with 7.40 ± 0.22 μIU/mL, P < 0.001) and HOMA-IR scores (1.68 ± 0.06 compared with 1.61 ± 0.05) than MTs. Vera et al. (71) also calculated the metabolic syndrome score, which was higher for ETs compared with MTs (2.16 ± 0.04 compared with 2.06 ± 0.04, P = 0.011). Lucassen et al. (62) investigated resting heart rate, epinephrine, and morning plasma adrenocorticotropic hormone concentrations and found this to be higher in ETs (P = 0.007, P = 0.039, and P = 0.019, respectively) compared with ITs/MTs.

Differences between chronotype and dietary intake
Total daily energy intake.
Fifteen studies reported total energy intake among chronotypes (56–59, 62, 63, 65, 66, 68, 69, 71, 75, 77–79) (Table 3). Only 1 study (63) found that chronotype scores (toward ETs) were negatively associated with energy intake/day, thus ET consuming significantly more energy than MTs.
Author, year, country	Study population, N	Sex, n (%)	Age, y	Chronotype assessment method	Chronotype distribution, n (%)
Author, year, country	**Study population, N**	**Sex, n (%)**	**Age, y**	**Chronotype assessment method**	**Chronotype distribution, n (%)**
Author, year, country	**Study population, N**	**Sex, n (%)**	**Age, y**	**Chronotype assessment method**	**Chronotype distribution, n (%)**
Xie et al., 2019	Middle-aged adults	872	443 (51) 429 (49)	MT: 62.3 ± 6.0 ET: 63.8 ± 5.7	MCTQ 4362 — 4367
United States	Dietetic students	3304	3304 (100)	Range: 18–20 18.1 ± 0.3 40.5 ± 12.4	Midpoint of sleep quintiles MEQ 1098 (5.16) — 1028 (48.4)
Sato-Mito et al., 2011	Overweight and obese adults	2126	1722 (81) 404 (19)	20.2 ± 1.8	MEQ 56 (8.7) 452 (70.2) 132 (20.5)
Japan	Adult university students	644	453 (70.3) 190 (29.5)	Range: 20–35	MEQ and the total score and the single question from the MCTQ referring to self-assessed chronotype MEQ 208 (31) 227 (34) 228 (34)
Vera et al., 2018	Healthy adults	675	262 (38.8) 413 (61.2)	Range: 20–35 26.1 ± 4.0	MEQ 336 (31.9) 359 (33) 400 (37.1)
Spain	Nurses	2559	1095 (100)	Range: 20–59 41.2 ± 94	MEQ 336 (31.9) 359 (33) 400 (37.1)
Silva et al., 2016	University students	204	112 (55) 92 (45)	Range: 18–39 21.6 ± 39	MSFsc —
Brazil	Tertiary students	1118	632 (56.5) 486 (43.5)	Range: 18–27 20.1 ± 1.53	MEQ — 2 (0.2) 1116 (99.8)
Lai and Say, 2013	Overweight and obese adults	200	102 (100)	Range: 18–65	MEQ 61 (60) — 41 (40)
Malaysia	Chrono-group	102	92 (77.3) 27 (22.7)	Range: 18–50	MEQ 80 (67) — 39 (33)
Muñoz, 2020	Obese men and premenopausal women	119	52 (72.2) 20 (27.8)	29.2 ± 20	MEQ 26 (36) 36 (50) 10 (14)
Spain	Healthy university medical residents	72	137 (25.7) 397 (74.3)	Range: 18–25 21.5 ± 3.0	MEQ 91 (17.0) 333 (62.4) 110 (20.6)
Lucassen et al., 2013	University students	534	137 (25.7) 397 (74.3)	Range: 18–25 21.5 ± 3.0	MEQ 91 (17.0) 333 (62.4) 110 (20.6)
United States	Obese men and premenopausal women	119	52 (72.2) 20 (27.8)	29.2 ± 20	MEQ 26 (36) 36 (50) 10 (14)
Mota et al., 2016	Healthy university medical residents	72	137 (25.7) 397 (74.3)	Range: 18–25 21.5 ± 3.0	MEQ 91 (17.0) 333 (62.4) 110 (20.6)
Brazil	University students	534	137 (25.7) 397 (74.3)	Range: 18–25 21.5 ± 3.0	MEQ 91 (17.0) 333 (62.4) 110 (20.6)
Spain	Adults	1097	619 (56.4) 478 (43.6)	Range: 25–74	MEQ 552 (50.3) 433 (39.5) 112 (10.2)

(Continued)
Author, year, country	Study population, N	Sex, n (%)	Age, y	Chronotype assessment method	Chronotype distribution, n (%)			
		Women	Men		MT	IT	ET	
Maukonen et al., 2017	Adults 1854	1003 (54.1)	851 (45.9)	MEQ	904 (49)	726 (39)	224 (12)	
Finland								
Maukonen et al., 2016	Adults 4421	2408 (54.5)	2013 (45.5)	MEQ	1655 (37)	1529 (35)	1237 (28)	
Finland								
Teixeira et al., 2018	Undergraduate students 721	488 (67.7)	233 (32.3)	MEQ	151 (21)	446 (62)	124 (17)	
Brazil								
Li et al., 2018	Undergraduate students 788	517 (65.6)	271 (34.4)	MEQ	172 (21.8)	495 (62.8)	121 (15.45)	
China								
De Amicis et al., 2020	Adults 416	289 (69.5)	127 (30.5)	MEQ	135 (32.5)	243 (58.1)	38 (9.1)	
Italy								
Cutin et al., 2013	University undergraduates 135	79 (58)	56 (40.9)	MEQ	7 (5)	65 (48)	64 (47)	
United States								
Baron et al., 2011	Adult, volunteers 52	25 (48)	27 (52)	Midpoint of sleep	—	28 (54)	23 (44)	
United States								
Baron et al., 2013	Adults 52	25 (48)	27 (52)	Midpoint of sleep	—	28 (54)	23 (44)	
United States								
Beaulieu et al., 2020	Adults 44	28 (63.6)	16 (36.4)	MEQ	22 (50)	—	22 (50)	
England								
Muscogiuri et al., 2020	Middle-aged adults 172	123 (71.5)	49 (28.5)	MEQ	100 (58.1)	50 (29.2)	22 (12.8)	
Italy, Naples								
Zeron-Rugerio et al., 2020	Undergraduate students 133	133 (100)	—	Range: 18–25	Median splits of the time in which each participant went to bed and woke up	34 (25.6)	66 (49.6)	33 (24.8)

1. ET, evening type; IT, intermediate type; MCTQ, Munich Chronotype Questionnaire; MEQ, Morning–Eveningness Questionnaire; MSFsc, midsleep corrected for sleep duration on free days; MT, morning type.
2. Early chronotype was defined as a chronotype earlier than the median (03:04 h).
3. Late chronotype was defined as a chronotype later than the median (03:04 h).
4. Based on earliest midpoint of sleep quintiles.
5. Based on midpoint of sleep quintile 2.
6. Based on midpoint of sleep quintile 3.
7. Based on midpoint of sleep quintile 4.
8. Based on latest midpoint of sleep quintiles.
9. Based on MEQ score tertile 1: 34–53.
10. Based on MEQ score tertile 2: 54–59.
11. Based on MEQ score tertile 3: 60–76.
12. Based on normal sleep timing (midpoint 04:08 h).
13. Based on latest midpoint of sleep quintile 4.
14. Based on sleep duration (midpoint 07:15 h).
15. Based on wake time <07:52 h and early bedtime: <23:48 h and defined as early bedtime/early rise (EE).
16. Based on late bedtime (≥23:48 h) and wake up time (<07:52 h) and defined as late bedtime/early rise (LE).
17. Based on latest midpoint of sleep quintile 4.
TABLE 2 Differences between Chronotype and Body Composition or Biomarkers

Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis
BMI, weight, and height			
Xiao et al., 2019 (77)	Normal BMI:	Overweight (3.1 ± 1.0 h) and obese (3.2 ± 1.1 h) participants had on average a later	$P < 0.007$
	Women: 65.5% Men: 34.5%	midpoint of time in bed during weekends (3.6 ± 1.0 h) in comparison with those with a	
	Overweight BMI:	normal BMI (3.3 ± 1.0) 3	
	Women: 40.1% Men: 59.9%		
	Obese BMI:		
	Women: 52.8% Men: 47.2%		
	—		
Sato-Mito et al., 2011 (56)	Height: 158 ± 5.3 cm	Overweight (3.5 ± 0.9) obese (3.6 ± 0.9) had a later midpoint of time in bed during	$P < 0.001$
	Weight: 52.2 ± 7.6 kg	weekends (3.6 ± 1.0 h) in comparison with those with a normal BMI (3.3 ± 1.0) 3	
	BMI: 20.9 ± 2.8		P-trend = 0.30
	—		
Vera et al., 2018 (71)	BMI: 31.3 ± 5.41	Overweight and obese: 7.0%	
	40.0 ± 0.16		
Najem et al., 2020 (76)	BMI: 22.3 ± 3.61		
	Range: 15.6–38.6	Other analysis: No correlation ($r = 0.025$, $P = 0.54$) between BMI and ME scores	

Continued
Reference	Body composition distribution	Differences between types	MT	IT	ET	P value (ET vs. IT/MT) and other analysis	
Lázár et al., 2012 (73)	BMI: 23.7 ± 2.8		—	—	—	—	
	Range: 18–30						
Yoshizaki et al., 2018 (59)	BMI day workers: 21.2 ± 2.7		21.2 ± 2.7	21.2 ± 2.6	21.1 ± 2.8	P-trend = 0.33	
			—	—	—		
Silva et al., 2016 (60)	BMI: 22.8 ± 3.2		—	—	—		
	Overweight and obese: n = 47					Other analysis: BMI not correlated (r = 0.04, P = 0.15) with MES scores	
	(2.3%)						
Lai et al., 2013 (74)	BMI:		—	—	—		
	Underweight: n = 270						
	Normal: n = 585						
	Overweight: n = 181						
	Obese: n = 82						
Muñoz, 2020 (57)	Range: BMI > 25		—	—	—		
	Chrono group: 30.37 ± 256		BMI changes: −3.4 ± 1.0	—	BMI changes: −2.9 ± 0.6	P = 0.219	
Lucassen et al., 2013 (62)	BMI: 38.5 ± 6.4		38.2 ± 6.3	—	39.1 ± 6.6	P = 0.047	Other analysis: Scores toward ET were associated with an increase in BMI (P = 0.05, R² = 0.06) Effect size: 10-unit change in chronotype score was associated with a change of 1.2 in BMI
	Range: 30–55						
Mota et al., 2016 (63)	BMI: 22.9 ± 3.4					Chronotype scores not associated with BMI (β-coefficient = −0.01)	
Zerón-Rugerio et al., 2019 (64)	BMI ≥ 25: 33.4%		—	—	—	ET had a higher BMI (β-coefficient = −0.03)	
	BMI: n = 217 (3.1%)					P = 0.04	
	Underweight: n = 54						
	(10.1%)						
	Normal: n = 413						
	(77.3%)						
	Overweight: n = 56						
	(10.5%)						
	Obese: n = 11						
	(2.1%)						
Maukonen et al., 2019 (78)	BMI:	No increase in BMI over 7-y follow-up period	—	—	—	Mean increase in BMI over 7-year follow-up period: 0.04 (0.2)	
	MT: 26.5 (0.2)					P = 0.23	
	IT: 26.6 (0.2)						
	ET: 26.7 (0.4)						
	Proportion of subjects with BMI increases of ≥5% over the 7-y follow-up period: 22%	—	—	—	Higher proportion of subjects (33%) with BMI increases of ≥5% over the 7-y follow-up period		
						P > 0.05	(Continued)
Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis				
-----------	-------------------------------	---------------------------	---				
		MT	IT	ET			
Maukonen et al., 2017 (79)	Obese at end of the follow-up: 17% of subjects	—	Obese at end of the follow-up: 26% of subjects		P = 0.0061		
	Increase in BMI of MT women: —0.1	—	—	ET women had a greater increase in BMI (0.7) than MT women	P = 0.0024		
Maukonen et al., 2016 (65)	BMI: MT: 27.2 (SE 0.13) IT: 27.1 (SE 0.09) ET: 26.9 (SE 0.16)	27.1 ± 0.2	26.7 ± 0.2	27.6 ± 0.3	P = 0.044		
			Not associated with chronotype score				
			No difference in both sexes				
Teixeira et al., 2018 (66)	—	22.6 ± 3.2	22.3 ± 3.8	22.2 ± 3.6	P = 0.071		
			Overweight: n = 146 (22%)	Overweight: n = 188 (84%)			
			(22%)	(84%)			
Li et al, 2018 (74)	Weight: Underweight: n = 158 (20.1%)	—	—	—	P = 0.41		
	Normal: n = 585 (74.2%) Overweight: n = 32 (41%) Obese: n = 13 (1.6%)	—	—	—			
De Amicis et al, 2020 (67)	—	29.7 ± 5.6	29.1 ± 6.1	29.4 ± 6.1	P > 0.05		
Culnan et al, 2013 (72)	Weight—baseline: 139 ± 28.8 kg Weight—follow-up: 143 ± 29.5 kg BMI—baseline: 22.0 ± 3.26 BMI—follow-up: 22.9 ± 3.41	29.7 ± 5.6	29.1 ± 6.1	29.4 ± 6.1	P > 0.05		
		Baseline: Chronotype not associated with weight (unstandardized β = -1.70)	Baseline: Chronotype not associated with BMI (unstandardized β = -0.26)				
Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis				
---------------------------------	--------------------------------	---------------------------	--				
Bodyfat percentage, abdominal, visceral, and subcutaneous adipose tissue							
Vera et al., 2018 (71)	BF%: 37.2 ± 6.71	BF%: 37.0 (0.19)	BF%: 370 (0.19)	$P = 0.85$			
Muñoz et al., 2020 (57)	—	BF% changes between baseline and end point: — 4.2 ± 2.3	BF% changes between baseline and end point: — 3.2 ± 2.1	$P = 0.02$			
Maukonen et al., 2016 (65)	—	BF%: 35.2 (0.23)	BF%: 35.2 (0.15)	$P = 0.02$			
Chronotype Differences in Body Composition and Diet							
Baron et al., 2011 (75)	MT: 23.7 ± 3.2, ET: 26.0 ± 6.9	— 2 of 27 ITs 12 reported BMI ≥ 30	6 of 22 ETs 13 reported BMI ≥ 30	$P = 0.015$			
Baron et al., 2013 (68)	MT: 23.7 ± 3.2, ET: 26.0 ± 6.9	—	—	$P = 0.001$			
Beaulieu et al., 2020 (69)	MT: 24.5 ± 3.2	24.1 ± 2.7	24.9 ± 3.6	$P = 0.03$			
Muscogiuri et al., 2020 (70)	Weight: 72.9 ± 11.4 kg	73.4 ± 10.3 kg	72.4 ± 12.7 kg	$P = 0.02$			
Acosta et al., 2020 (56)	BMI: 32.1 ± 6.3	31.4 ± 5.8	32.6 ± 5.5	$P > 0.05$			
Zerón-Rugerio et al., 2020 (58)	Weight: 23.7 ± 4.0	82.9 ± 19.0 kg	83.7 ± 12.5 kg	$P = 0.02$			
Maukonen et al., 2016 (65)	BF%: 35.2 ± 0.23	BF%: 35.2 ± 0.15	BF%: 35.3 ± 0.24	$P = 0.02$			
Maukonen et al., 2016 (65)	BF%: 35.2 ± 0.23	BF%: 35.2 ± 0.15	BF%: 35.3 ± 0.24	$P = 0.02$			

(Continued)
Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis
Teixeira et al., 2018 (66)	—	Inadequate abdominal fat: n = 17.9 (2.7%)	P = 0.24
De Amicis et al., 2020 (67)	—	SAT: 2.6 ± 1.3 cm	P > 0.05
		VAT: 5.1 ± 2.3 cm	P > 0.05
		Lower abdominal VAT for every 1 point of rMEQ score	P < 0.05
		MTs were associated with lower VAT of −0.06 (−0.11, −0.01) cm	
Beaulieu et al., 2020 (69)	BF%: 27.7 ± 8.3	BF%: 27.3 ± 8.4	P > 0.05
Zerón-Rugério et al., 2020	—	Fat mass, %: 32.2 ± 7.4^14	P = 0.39
(58)			
Waist circumference			
Silva et al., 2020 (60)	Abdominal obesity: 31 (15%)		
Muñoz et al., 2020 (57)	—	Changes between end point and baseline: −98 ± 2.7 cm	P = 0.44
		113 ± 13.6 cm	
Lucassen et al., 2013 (62)	—	Chronic type scores were not associated with WC (β-coefficient = 0.09)	P = 0.41
Mota et al., 2016 (63)	WC > 94 cm in males and > 30 cm in females: 33.3%		
Maukonen et al., 2019 (78)	MT: 89.8 (SE 0.5) cm	Mean increase: 2.2 cm for both types over the 7-year follow-up period	P = 100
	IT: 90.8 (SE 0.6) cm		
	ET: 92.3 (SE 1.1) cm		
Maukonen et al., 2016 (65)	MT: 86 (SE 0.42) cm	Proportion of subjects whose WC increased by ≥5% over 7-year follow-up period: 33%	P > 0.05
	IT: 86.5 (SE 0.27) cm		
	ET: 86.9 (SE 0.43) cm		
Teixeira et al., 2018 (66)	—	Proportion of subjects whose WC increased by ≥5% over 7-year follow-up period: 39%	P > 0.05
De Amicis et al., 2020 (67)	—	No difference in both sexes	P > 0.05
	—		
Beaulieu et al., 2020 (69)	84.3 ± 7.9 cm	84.2 ± 6.2	P > 0.05

(Continued)
Reference	Body composition distribution	MT	IT	ET	P value (ET vs. IT/MT) and other analysis
Muscogiuri et al., 2020 (70)	—	103 ± 16.4 cm	103 ± 17.3 cm	105 ± 11.8 cm	P = 0.89
					Other analysis: Chronotype not correlated with WC (r = −0.04, P = 0.57)
Zerón-Rugiero et al., 2020 (58)	—	98.4 ± 6.9 cm	76.2 ± 9.7 cm	72.8 ± 7.4 cm	P = 0.06
			74.9 ± 8.4 cm		P-trend = 0.01
					P-trend < 0.05
	Hip circumference				
Beaulieu et al., 2020 (69)	98.4 ± 6.9 cm	99.2 ± 4.8 cm	97.3 ± 10.7 cm	97.6 ± 8.6 cm	P > 0.05
Zerón-Rugiero et al., 2020 (58)	—		99.5 ± 7.7 cm	96.3 ± 6.8 cm	P = 0.19
					P-trend = 0.03
	Weight-to-hip ratio				
Beaulieu et al., 2020 (69)	0.86 ± 0.06	0.85 ± 0.07	—	0.86 ± 0.06	P = 0.05
Lucassen et al, 2013 (62)	—	38.8 ± 3.8 cm	—	39.6 ± 3.8 cm	
	Neck circumference				
Weight loss/gain		Total weight loss, %: 10.2 ± 2.6	—	Total weight loss, %: 9.6 ± 1.8	P = 0.52
Muñoz et al., 2020 (57)	—				Chronotype scores (MT, IT, ET) not associated with weight gain after the beginning of residency (β-coefficient = −0.10)
Mata et al., 2016 (63)	—	—	—	—	P = 0.48
Maukonen et al., 2019 (78)	—	Mean weight gain: 0.6 kg	—	Mean weight gain: 1.4 kg	P = 0.035
		Proportion of subjects who gained weight of ≥5% over the 7-y follow-up period: 22%	—	Proportion of subjects who gained weight of ≥5% over the 7-y follow-up period: 37%	P > 0.05

(Continued)
Table 2 (Continued)

Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis
Culnan et al., 2013 (72)	—	Weight gain in MT women over the 7-y follow-up period: 0.3 kg	—
	—	—	P = 0.02
	—	Weight gain in ET women over the 7-y follow-up period: 2.4 kg	—
	—	8-wk follow-up: weight gain of 2.35 pounds (1.07 kg) (unstandardized β = 2.35 pounds; 95% CI: −162, 4.87)	P = 0.07
Culnan et al., 2013 (72)	Fasting glucose: glucose oxidase method	—	P = 0.001
	Triglycerides and HDL cholesterol: commercial kits	Triglyceride concentrations: 101 ± 1.71 mg/dL	P = 0.001
	MetS score: IDF criteria; summing MetS components	MetS scores: 2.06 ± 0.04	P = 0.001
	Arterial pressure: mercury sphygmomanometer	HDL cholesterol concentrations: 57.1 ± 0.46 mg/dL	P = 0.001
	Fasting insulin: solid-phase, 2-site chemiluminescent immunometric assay	Insulin concentrations: 7.40 ± 0.22 μU/mL	P = 0.001
	Insulin resistance: (HOMA-IR; fasting glucose x fasting insulin/22.5)	HOMA-IR concentrations: 1.61 ± 0.05	P = 0.001
	Blood samples via standard procedures: DNA isolation and genotyping and GRS	Not reported	P = 0.001
	—	Higher evening genetic risk score	P = 0.001
Vera et al., 2018 (71)	Fasting glucose: glucose oxidase method	—	P = 0.001
	Triglycerides and HDL cholesterol: commercial kits	Triglyceride concentrations: 105 ± 1.79 mg/dL	P = 0.01
	MetS score: IDF criteria; summing MetS components	MetS scores: 2.16 ± 0.04	P = 0.003
	Arterial pressure: mercury sphygmomanometer	HDL cholesterol concentrations: 55.6 ± 0.48 mg/dL	P = 0.03
	Fasting insulin: solid-phase, 2-site chemiluminescent immunometric assay	Insulin concentrations: 7.62 ± 0.23 μU/mL	P = 0.04
	Insulin resistance: (HOMA-IR; fasting glucose x fasting insulin/22.5)	HOMA-IR concentrations: 1.68 ± 0.06	P = 0.04
	Blood samples via standard procedures: DNA isolation and genotyping and GRS	—	—
	—	Higher evening genetic risk score	P = 0.001
Lázár et al., 2012 (73)	Genotyping of the PER3 VNTR was performed according to standard procedure	Frequency of PER3^{5/5} genotype: 15.4%	P = 0.01
	—	Frequency of PER3^{5/5} genotype: 7.5%	P = 0.006

Genotype: effect on diurnal preference measured by MEQ (F_{1,619} = 4.43)
P = 0.01
Genotype: marginal effect on diurnal preference measured by MCTQ
P = 0.006
The main effect of genotype was significant for MEQ (F_{2,616} = 5.97)
P = 0.003
The main effect of genotype was significant for the self-assessment question from the MCTQ (F_{2,642} = 4.12)
P = 0.002
Reference	Body composition distribution	Differences between types	P value (ET vs. IT/MT) and other analysis
Lucassen et al, 2013 (62)	24-h urinary epinephrine concentrations 3 (2–5) μg/24 h	24-h urinary epinephrine concentrations: 4 (3–7) μg/24 h; 0–30% higher	P = 0.04
	—	—	—
	HDL cholesterol: 48 (42–58) mg/dL	—	—
	—	—	—
	Resting heart rates: 68.4 ± 10.1 beats/min	—	—
	—	—	—
	Plasma ACTH: 17 (12–24) pg/mL	—	—
	—	—	—
	24-h urinary norepinephrine: 3 (28–56) μg/24 h	—	—
	—	—	—

1Values are reported as mean ± SD unless stated otherwise. BMI is reported in kg/m² with the following categories: underweight, < 18.5; normal, 18.5 to < 25; overweight and obese, ≥ 25. OR (95% CI), P trend refers to the continuous association between the MEQ or MCTQ score and exposures of interest. ACTH, adrenocorticotropin hormone; BF%, body fat percentage; ET, evening type; GRS, genetic risk score; IDF, International Diabetes Federation; IT, intermediate type; MCTQ, Munich Chronotype Questionnaire; MEQ, Morning–Eveningness Questionnaire; MES, Morningness-Eveningness Scale; MetS, metabolic syndrome; MT, morning type; NC, neck circumference; PER3, PERIOD3 clock gene; rMEQ, reduced Morning-Eveningness Questionnaire; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; VNTR, variable number tandem repeat; WC, waist circumference.

2Early chronotype was defined as midsleep earlier than the median midsleep (03:04 h).
3Later chronotype was defined as midsleep later than the median midsleep (03:04 h).
4Based on earliest midpoint of sleep quintiles.
5Based on midpoint of sleep quartile 2.
6Based on midpoint of sleep quintile 3.
7Based on midpoint of sleep quintile 4.
8Based on latest midpoint of sleep quintiles.
9Based on MEQ score tertile 1: 34–53.
10Based on MEQ score tertile 2: 54–59.
11Based on MEQ score tertile 3: 60–76.
12Based on normal sleep timing (midpoint 04:08 h).
13Based on late sleep timing (midpoint of sleep 07:15 h).
14Based on wake time < 07:52 h and early bedtime < 23:48 h and defined as early bedtime/early rise (EE).
15Based on early bedtime (< 23:48 h) and late rise (wake time ≥ 07:12 h) and defined as early bedtime/late rise (EL).
16Based on late bedtime (≥ 23:48 h) and wake time (< 07:52 h) and defined as late bedtime/early rise (LE).
17Based on late bedtime (≥ 23:48 h) and late rise (wake time ≥ 07:12 h) and defined as late bedtime/late rise (LL).
TABLE 3 Differences between Chronotype and Dietary Intake

Reference	Method of assessment	Differences between types	MT	IT	ET	P value (ET vs. IT/MT) and other analysis
Total daily energy intake						
Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool		2114.5 ± 634 kcal/d²	—	2147.4 ± 588 kcal/d³	P-trend = 0.33
Sato-Mito et al., 2011 (56)	Dietary history questionnaire		1836 ± 20 kcal/d⁴	1776 ± 16 kcal/d⁶	1768 ± 18 kcal/d⁸	P-trend = 0.10
Vera et al., 2018 (71)	Single 24-h recalls		1972.8 ± 23.8 kcal/d	—	1918.6 ± 24.6 kcal/d	P = 0.12 P-trend = 0.094
Yoshizaki et al., 2018 (59)	A semiquantitative FFQ		1854 ± 29 kcal/d⁹	1853 ± 27 kcal/d¹⁰	1825 ± 26 kcal/d¹¹	P = 0.37 P-trend = 0.047
Lucasen et al., 2013 (62)	3-d food recall diary		Working day: 2129 ± 631 kcal	—	Working day: 2276 ± 815 kcal	P = 0.92
			Nonworking day: 2383 ± 928 kcal	—	Nonworking day: 2378 ± 883 kcal	
Mota et al., 2016 (63)	3-d self-administered food diary		—	—	—	P = 0.02
Maukonen et al., 2019 (78)	48-h dietary recalls over 2 previous consecutive days		7709 (SEM 97) kJ	—	7679 (SEM 215) kJ	P = 1.00
Maukonen et al., 2017 (79)	48-h dietary recalls		7808 (SEM 170) kJ on weekdays	7960 (SEM 171) kJ on weekdays	7881 (SEM 210) kJ on weekdays	P = 1.00
			7841 (SEM 283) kJ on weekends	7871 (SEM 283) kJ on weekends	7992 (SEM 367) kJ on weekends	P = 1.00
Maukonen et al., 2016 (65)	FFQ, Baltic Sea diet score		Men: 11,597 (SEM 130) kJ/d	Men: 11,676 (SEM 90) kJ/d	Men: 11,776 (SE 159) kJ/d	P-trend = 0.43 P-trend = 0.54
			Women: 9489 (SEM 103) kJ/d	Women: 9433 (SEM 64) kJ/d	Women: 9389 (SE 105) kJ/d	
Teixeira et al., 2018 (66)	24-h recall		1552.8 [1233.4–2090.6] kcal/d	—	1734.2 [1356.3–2218.3] kcal/d	P = 0.07 P < 0.001
			Breakfast skippers were negatively associated with energy intake (kcal/d)	ET breakfast skippers had higher intake β = −0.25		
Baron et al., 2011 (75)	7-d food logs		—	1905 ± 526 kcal/d¹²	2153 ± 524 kcal/d¹³	P = 0.10

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis			
Baron et al., 2013 (68)	7-d food logs					
Beaulieu et al., 2020 (69)	24-h dietary record tool (myfood24)	MT: 1843 ± 681 kcal/d	IT: 1905 ± 526 kcal/d	ET: 2153 ± 524 kcal/d	p > 0.05	
Zerón-Rugiero et al., 2020 (58)	6-d food logs	MT: 1517 ± 404 kcal/d	IT: 1596 ± 425 kcal/d	ET: 1676 ± 420 kcal/d	p > 0.05	
	Total daily carbohydrate intake					
Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool	Carbohydrate: 240.5 ± 79.0 g/d	—	Carbohydrate: 244.9 ± 72.3 g/d	P-trend = 0.27	
		Sugar: 103 ± 46.6 g/d	—	Sugar: 109 ± 43.9 g/d	P-trend = 0.02	
		Fiber: 19.9 ± 8.1 g/d	—	Fiber: 19.8 ± 7.7 g/d	P-trend = 0.096	
					P-trend < 0.01	
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	MT: 56.3 ± 0.3 E%	IT: 55.9 ± 0.2 E%	ET: 55.1 ± 0.3 E%	P-trend < 0.01	
Vera et al., 2018 (71)	Single 24-h recalls	MT: 205 ± 3.07 g/d	—	IT: 194 ± 3.18 g/d	P = 0.02	
Yoshizaki et al., 2018 (59)	A semiquantitative FFQ	MT: 235 ± 4.30 g/d	—	IT: 237 ± 4.0 g/d	P-trend = 0.067	
Lucassen et al., 2013 (62)	3-d food recall diary	No significant differences in total intakes before and after 20:00 h				
Mota et al., 2016 (63)	3-d self-administered food diary	MT: 56.3 ± 0.3 E%	IT: 55.9 ± 0.2 E%	ET: 55.1 ± 0.3 E%	P-trend = 0.03	
		MT: 55.5 ± 0.3 E%	—	IT: 55.5 ± 0.3 E%		
		MT: 55.4 ± 0.2 E%	—	IT: 55.4 ± 0.2 E%		
Maukonen et al., 2017 (79)	48-h dietary recalls	MT: 235 ± 4.30 g/d	—	IT: 237 ± 4.0 g/d	P-trend = 0.067	
		MT: 235 ± 4.30 g/d	—	IT: 237 ± 4.0 g/d		
ME score was positively associated with carbohydrate intakes on weekends	MTs were associated with higher intake on weekends	Fiber: 5.5 (0.1) E% on weekdays	Fiber: 2.4 (0.1) E% on weekdays	Fiber: 2.5 (0.1) E% on weekdays	P = 1.00	
		ME score was positively associated with carbohydrate intakes on weekends	MTs were associated with higher intake on weekends	Fiber: 5.5 (0.1) E% on weekdays	P = 1.00	
					P-trend = 0.04	

(Continued)
Reference	Method of assessment	MT	IT	ET	Differences between types	P value (ET vs. IT/MT) and other analysis
Teixeira et al., 2018 (66)	24-h food recall	Sucrose: 9.5 (0.4) E% on weekdays	Sucrose: 9.4 (0.4) E% on weekdays	Sucrose: 10.1 (0.5) E% on weekdays		
		Carbohydrate: 198.6 [155.6–275.1] g/d	Carbohydrate: 226.4 [169.2–295.5] g/d	Carbohydrate: 225.3 [169.9–293.2] g/d	Breakfast skippers were negatively associated with carbohydrate intake (g/d)	
Baron et al., 2011 (75)	7-d food logs	Fiber: 16.0 [10.2–21.8] g/d	—	49 ± 7.9 E%	—	P = 0.93
Baron et al., 2013 (68)	7-d food logs	Fiber: 15.8 [10.9–22.1] g/d	—	237 ± 81 g/d	49 ± 7.9 E%	P > 0.05
Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool	Carbohydrate: 198.6 [155.6–275.1] g/d	—	87.7 ± 27.6 g/d	—	P = 0.97
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Fiber: 15.6 [10.6–21.1] g/d	—	49 ± 7.8 E%		
		—	—	260 ± 72 g/d	49 ± 7.8 E%	P > 0.05
		87.4 ± 27.1 g/d	—	—	—	P-trend = 0.02
Vera et al., 2018 (71)	Single 24-h recalls	—	82.34 ± 1.15 g/d	63.4 ± 1.0 g/d	64.1 ± 1.1 g/d	P = 0.04
Yoshizaki et al., 2018 (59)	A semiquantitative FFQ	66.0 ± 1.2 g/d	—	63.4 ± 1.0 g/d	No significant difference in total intakes before and after 20:00 h	P-trend = 0.08
Lucassen et al., 2013 (62)	3-d self-administered food diary	—	—	—	Chronotype score was negatively associated with protein intake (g/kg/d)	P = 0.68
Mota et al., 2016 (63)	3-d food recall diary	—	—	—		
Maukonen et al., 2017 (79)	48-h dietary recalls	17.3 (0.3) E% on weekdays	17.4 (0.3) E% on weekdays	—	No significant difference in total intakes before and after 20:00 h	P = 0.02
		16.4 E% (0.3) on weekdays				
Teixeira et al., 2018 (66)	24-h food recall	71.9 [55.0–97.2] g/d	79.3 [60.0–100.2] g/d	75.6 [57.3–105.8] g/d	ETs had a higher intake (β-coefficient = —0.23)	
Baron et al., 2011 (75)	7-d food logs	—	14 ± 2.7 E%	15 ± 2.0 E%	84 ± 26 g/d	P > 0.05
Baron et al., 2013 (68)	7-d food logs	—	69 ± 21 g/d (14%)	84 ± 26 g/d (15%)	71.9 [55.0–97.2] g/d	
TABLE 3 (Continued)

Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
Total daily fat intake				
Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool	Fat: 844 ± 31.6 g/d2	Fat: 856 ± 30.0 g/d3	P-trend = 0.43
		Saturated fat: 28.2 ± 11.3 g/d2	Saturated fat: 28.8 ± 11.3 g/d3	P-trend = 0.50
		Polyunsaturated fat: 18.5 ± 7.7 g/d2	Polyunsaturated fat: 18.5 ± 7.3 g/d3	P-trend = 0.85
		Monounsaturated fat: 30.4 ± 12.3 g/d2	Monounsaturated fat: 31.0 ± 11.3 g/d3	P-trend = 0.24
		Cholesterol: 304.3 ± 139.6 g/d2	Cholesterol: 308.0 ± 147.9 g/d3	P-trend = 0.73
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Fat: 289 ± 0.2 E%4	Fat: 301 ± 0.2 E%8	P-trend < 0.01
		29.7 ± 0.2 E%5	30.2 ± 0.2 E%7	P-trend < 0.05
		Cholesterol: 168 ± 3 mg/1000 kcal4	Cholesterol: 169 ± 3 mg/1000 kcal6	P-trend = 0.73
		165 ± 2 mg/1000 kcal3	168 ± 2 mg/1000 kcal7	P-trend = 0.49
Vera et al., 2018 (71)	Single 24-h recalls	93.79 ± 1.500 g/d	93.03 ± 1.54 g/d	P-trend = 0.73
Lucasen et al., 2013 (62)	A semiquantitative FFQ	65.8 ± 1.3 g/d9		P-trend = 0.88
Mota et al., 2016 (63)	3-d food recall diary	No significant differences in total intakes before and after 20:00 h	Chronotype score was negatively associated with cholesterol intake (mg/d)	P = 0.14
		66.0 ± 1.2 g/d10		P = 0.04
Maukonen et al., 2017 (79)	48-h dietary recalls	Fat: 317 (06) E% on weekdays	Fat: 311 (07) E% on weekends	Fat: 321 (06) E% on weekdays
		Fat: 320 (07) % on weekdays		Fat: 321 (07) E% on weekends
		Fat: Inversely associated Higher intake on weekends		Fat: Inversely associated Higher intake on weekends
		SFAs: 11.6 (0.3) E% on weekdays	SFAs: 11.9 (0.3) E% on weekends	SFAs: 11.8 (0.3) E% on weekdays
		SFAs: 12.2 (0.5) E% on weekends	SFAs: 11.7 (0.4) E% on weekends	SFAs: 11.6 (0.3) E% on weekdays
		ME score was inversely associated on weekends	ME score was inversely associated on weekends	P-trend < 0.05

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
Maukonen et al., 2016 (65)	FFQ, Baltic Sea diet score	Fat: 32 E% in men	Fat: 32 E% in men	P-trend = 0.67
		Fat: 30 E% in women	Fat: 31 E% in women	P-trend = 0.02
Teixeira et al., 2018 (66)	24-h food recall	Fat: 45.2 [33.9–69.2] g/d	Fat: 53.7 [38.6–69.8] g/d	$P = 0.10$
		Breakfast skippers were negatively associated with fat intake (g/d)	ET breakfast skippers had higher intake (β-coefficient $= -0.18$)	$P < 0.05$
Teixeira et al., 2018 (66)		Cholesterol: 1805 [102.7–278.9] mg/d	Cholesterol: 2080 [142.1–296.6] mg/d	$P = 0.18$
		Cholesterol: 1935 [127.6–297] mg/d	$P > 0.05$	
Baron et al., 2011 (75)	7-d food logs	23 ± 7.2 E%12	35 ± 7.7 E%13	$P > 0.05$
Baron et al., 2013 (68)	7-d food logs	78 ± 23 g/d (8.9%)12	82 ± 24 g/d (3.5%)13	$P > 0.05$
Total daily micronutrient intake				
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Potassium: 1094 ± 12 mg/1000 kcal4	Potassium: 1101 ± 10 mg/1000 kcal5	P-trend < 0.05
		Potassium: 1084 ± 11 mg/1000 kcal6	Potassium: 1101 ± 10 mg/1000 kcal7	P-trend < 0.05
		Magnesium: 120 ± 1 mg/1000 kcal4	Magnesium: 115 ± 1 mg/1000 kcal8	P-trend < 0.05
		Magnesium: 120 ± 1 mg/1000 kcal5	Magnesium: 119 ± 1 mg/1000 kcal6	P-trend < 0.05
		Iron: 3.73 ± 0.04 mg/1000 kcal6	Iron: 3.72 ± 0.03 mg/1000 kcal7	P-trend < 0.05
		3.70 ± 0.03 mg/1000 kcal6	3.67 ± 0.02 mg/1000 kcal7	P-trend < 0.05
		Zinc: 4.12 ± 0.02 mg/1000 kcal4	Zinc: 4.04 ± 0.02 mg/1000 kcal8	P-trend < 0.05
		4.11 ± 0.02 mg/1000 kcal5	4.07 ± 0.02 mg/1000 kcal6	P-trend < 0.05
		Vitamin A: 308 ± 10 μg/1000 kcal6	Vitamin A: 271 ± 10 μg/1000 kcal8	P-trend < 0.05
		287 ± 9 μg/1000 kcal7	297 ± 9 μg/1000 kcal8	P-trend < 0.05
		Vitamin D: 3.7 ± 0.1 μg/1000 kcal4	Vitamin D: 3.4 ± 0.1 μg/1000 kcal8	P-trend < 0.01
		3.6 ± 0.1 μg/1000 kcal5	3.5 ± 0.1 μg/1000 kcal6	P-trend < 0.01
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
-----------	----------------------	---------------------------	--	
Sato-Mito et al., 2011	Dietary history questionnaire			
	Total daily intake of food groups			
	Pyridoxine: 0.53 ± 0.01 mg/1000 kcal	Pyridoxine: 0.53 ± 0.01 mg/1000 kcal	P-trend < 0.01	
	Pyridoxine: 0.52 ± 0.01 mg/1000 kcal			
	Riboflavin: 0.70 ± 0.01 mg/1000 kcal	Riboflavin: 0.69 ± 0.01 mg/1000 kcal	P-trend < 0.01	
	Riboflavin: 0.69 ± 0.01 mg/1000 kcal			
	Thiamine: 0.41 ± 0.003 mg/1000 kcal	Thiamine: 0.41 ± 0.003 mg/1000 kcal	P-trend < 0.01	
	Thiamine: 0.41 ± 0.003 mg/1000 kcal			
	Folate: 156 ± 2 μg/1000 kcal	Folate: 155 ± 2 μg/1000 kcal	P-trend < 0.01	
	Folate: 153 ± 2 μg/1000 kcal			
	Calcium: 275 ± 4 mg/1000 kcal	Calcium: 273 ± 4 mg/1000 kcal	P-trend < 0.001	
	Calcium: 269 ± 4 mg/1000 kcal			
	Alcohol: 0.19 ± 0.05 E%	Alcohol: 0.13 ± 0.04 E%	P-trend < 0.01	
	Alcohol: 0.24 ± 0.05 E%			
	Rice: 171.4 ± 2.9 g/1000 kcal	Rice: 167.7 ± 2.5 g/1000 kcal	P-trend < 0.001	
	Rice: 158.0 ± 2.6 g/1000 kcal			
	Vegetables: 126.7 ± 3.1 g/1000 kcal	Vegetables: 127.5 ± 2.6 g/1000 kcal	P-trend < 0.001	
	Vegetables: 121.9 ± 2.8 g/1000 kcal			
	Pulses: 26.6 ± 0.8 g/1000 kcal	Pulses: 25.8 ± 0.7 g/1000 kcal	P-trend < 0.001	
	Pulses: 25.7 ± 0.7 g/1000 kcal			
	Eggs: 19.3 ± 0.6 g/1000 kcal	Eggs: 19.4 ± 0.5 g/1000 kcal	P-trend < 0.001	
	Eggs: 18.1 ± 0.5 g/1000 kcal			

(Continued)
Reference	Method of assessment	MT	IT	ET	\(P \) value (ET vs. IT/MT) and other analysis
Noodles: 28.8 ± 1.4 g/1000 kcal\(^4\)	Noodles: 33.6 ± 1.2 g/1000 kcal\(^5\)	Noodles: 46.4 ± 1.3 g/1000 kcal\(^8\)	\(P \text{-trend} < 0.001 \)		
Dairy: 77.4 ± 3.1 g/1000 kcal\(^4\)	Dairy: 76.5 ± 2.6 g/1000 kcal\(^5\)	Dairy: 65.6 ± 2.9 g/1000 kcal\(^8\)	\(P \text{-trend} < 0.05 \)		
Confections: 42.5 ± 1.0 g/1000 kcal\(^4\)	Confections: 41.8 ± 0.8 g/1000 kcal\(^5\)	Confections: 46.7 ± 1.0 g/1000 kcal\(^8\)	\(P \text{-trend} < 0.05 \)		
Meat: 33.1 ± 0.7 g/1000 kcal\(^4\)	Meat: 34.0 ± 0.6 g/1000 kcal\(^5\)	Meat: 35.7 ± 0.7 g/1000 kcal\(^8\)	\(P \text{-trend} < 0.05 \)		
Vera et al, 2018 (71)	Single 24-h recalls	—	—	Lower intake of cereals	\(P < 0.05 \)
Najem et al, 2020 (76)	Yale Food Addiction Scale (YFAS)	—	—	—	Other analysis: ETs have 1.3 times higher odds for alcohol (OR 1.52; 95% CI: 1.25, 1.86, \(P < 0.001 \))
Lázár et al, 2012 (73)	Medical Questionnaire	Alcohol reported lower intake	—	—	\(P < 0.001 \)
Yoshizaki et al, 2018 (59)	A semiquantitative FFQ	Potatoes and starches intake: higher intake of 36.4 ± 1.7 g/d\(^9\)	Potatoes and starches: 32.7 ± 1.6 g/d\(^5\)	Potatoes and starches: 30.9 ± 1.5 g/d\(^1\)	\(P \text{-trend} = 0.04 \)

(Continued)
Reference Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis		
Green/yellow vegetables	MT: 76.2 ± 2.2 g/d⁹	IT: 67.1 ± 2.1 g/d¹⁰	ET: 65.4 ± 2.0 g/d¹¹	P-trend < 0.001
	P-value (ET vs. IT/MT)	Other analysis: MT⁹ were associated with a higher intake (β = 0.15, P < 0.001)		
White vegetables: higher intake of 123 ± 3.7 g/d⁹	MT: 112 ± 3.4 g/d¹⁰	IT: 112 ± 3.3 g/d¹¹	Other analysis: White vegetables: associated with high chronotype score MT⁹ were associated with a higher intake (β = 0.11, P < 0.001)	
Fruit: higher intake of 81.9 ± 3.8 g/d⁹	MT: 72.7 ± 3.5 g/d¹⁰	IT: 59.9 ± 3.4 g/d¹¹	Other analysis: Fruit: associated with high chronotype score	
Algae: higher intake of 46 ± 0.2 g/d⁹	MT: 4.3 ± 0.2 g/d¹⁰	IT: 4.1 ± 0.2 g/d¹¹	Other analysis: Algae: associated with high chronotype score MT⁹ were associated with a higher intake (β = 0.11, P < 0.001)	
Confectioneries/savory snacks: 80.7 ± 2.9 g/d⁹	MT: 89.2 ± 2.7 g/d¹⁰	IT: 94.9 ± 2.6 g/d¹¹	Other analysis: Confectioneries/savory snacks: negatively associated with high chronotype score ETs¹¹ were associated with a higher intake (β = -0.10, P < 0.001)	

(Continued)
Reference	Method of assessment	Differences between types			
		MT	IT	ET	P-value (ET vs. IT/MT) and other analysis
		Sugar-sweetened beverages	Sugar-sweetened beverages	Sugar-sweetened beverages	
		$42.7 \pm 5.4 \text{ g/d}$	$43.8 \pm 5.0 \text{ g/d}^{9}$	$60.8 \pm 4.9 \text{ g/d}^{11}$	P-trend $= 0.01$ Other analysis Sugar-sweetened beverages negatively associated with high chronotype score ETS11 were associated with a higher intake ($\beta = -0.13$, $P < 0.001$)
Silva et al., 2016 (60)	FFQ	—	—	—	
Mota et al., 2016 (63)	3-d self-administered food diary	—	—	—	Meat: ET associated with a higher intake ($\beta = 0.21$) $P = 0.003$
			Chronotype score was negatively associated with:		$P = 0.03$
			Intake of sweets (servings/d)		
			ETS had a higher intake (β-coefficient $= -0.27$)		
			Vegetable intake (servings/d)		
			ETS had a higher intake (β-coefficient $= -0.26$)		
			Chronotype score was positively associated with oil and fat intake (servings/d)		$P = 0.03$
			MTs had a higher intake (β-coefficient $= 0.27$)		
Maukonen et al., 2017 (79)	48-h dietary recalls	Alcohol: $4.6 (1.3) \text{ g on weekdays}$	Alcohol: $4.3 (1.5) \text{ g on weekdays}$	Alcohol: $9.7 (1.9) \text{ g on weekdays}$	$P = 0.57$ P-trend $= 0.04$ Alcohol Intakes increased with lower ME scores (ET) on weekdays

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis
Maukonen et al., 2016	FFQ, Baltic Sea diet score	Cereals: women 85 g/d and men 89 g/d Fish: men 55 g/d	P-trend < 0.001
(65)		Alcohol: women 36 g/d and men 10.6 g/d	
		Cereals: women 79 g/d and men 84 g/d Fish: men 53 g/d	P-trend < 0.05
		Alcohol: women 4.4 g/d and men 11.8 g/d	
Li, Wu et al., 2018	Sugary beverage consumption: number of bottles or tins consumed per day last week		
(74)			
Culnan et al., 2013	Gray–Donald Eating Patterns Questionnaire	Alcoholic: Baseline: No difference in alcohol intake	
(72)		Coffee: No difference between chronotypes at baseline	
		At follow-up: More ETs reported drinking alcohol [χ²(1, n = 54) = 5.94]	
		At follow-up: ETs not more likely to change alcohol drinking status throughout study [χ²(1, n = 54) = 3.19]	
Baron et al., 2011	7-d food logs	Fruit and vegetables: 3.4 ± 1.8 servings/d	P < 0.01
(75)		Fast-food meals: 3.0 ± 1.8 servings/wk	
		Full-calorie sodas: 1.3 ± 2.5 servings/wk	
		Caffeinated drinks: 7.3 ± 6.5 servings/wk	
Reference	Method of assessment	Differences between types	
---------------------------------	-------------------------------	--	
Muscogiuri et al., 2020 (70)	PREDIMED questionnaire	Other analysis:	
		Food intake negatively associated with chronotype score. ETs associated with a higher OR for:	
		Red/processed meat < 1/d (OR: 1.05; 95% CI: 1.02, 1.08; P < 0.001); butter, cream, margarine < 1/d (OR: 1.05; 95% CI: 1.02, 1.08; P = 0.001)	
		Commercial sweets/confectionary ≤ 2/wk (OR: 1.04; 95% CI: 1.01, 1.06; P = 0.007)	
		Soda drinks < 1/d (OR: 1.04; 95% CI: 1.01, 1.07; P = 0.001)	
		Food intake positively associated with chronotype score. MTs were associated with a higher OR for:	
		EVOO > 4 tbs (OR: 1.03; 95% CI: 1.00, 1.06; P = 0.001)	
		Vegetables ≥ 2 servings/d (OR: 1.05; 95% CI: 1.02, 1.07; P < 0.001)	
		Fruit ≥ 3 servings/d (OR: 1.07; 95% CI: 1.04, 1.10; P < 0.001)	
		Fish/seafood ≥ 3/wk (OR: 1.037; 95% CI: 1.00, 1.06; P = 0.02)	
		Poultry more than red meats (OR: 1.05; 95% CI: 1.03, 1.08; P < 0.001)	
		Tree nuts ≥ 3/wk (OR: 1.03; 95% CI: 1.00, 1.06; P = 0.001)	
		Wine (glasses) ≥ 7/wk (OR: 1.05; 95% CI: 1.01, 1.09; P = 0.004)	
		Most predictive factor of chronotype score among single contributing PREDIMED food items and score:	
		Both MTs (R² = 0.18, P < 0.001)	

(Continued)
Reference	Method of assessment	Differences between types					
		MT	IT	ET	MT vs. IT/MT and other analysis		
Maukonen et al., 2017 (79)	48-h dietary recalls	Alcohol: 1.8 (0.7) g after 20:00 on weekdays	Alcohol: 1.9 (0.7) g after 20:00 on weekdays				
					Alcohol: 4.0 (0.9) g after 20:00 on weekdays		
					Alcohol: Intake increased with lower ME score values (ET) after 20:00 on weekdays		
					and ETs (R² = 0.23, P = 0.02) most influenced by PREDIMED score and IT most influenced by butter, cream, and margarine < 1/d (R² = 0.09, P = 0.04)		
					P = 0.09		
					P-trend < 0.05		
Daily energy distribution	24-Hour Dietary Assessment Tool						
Xiao et al., 2019 (77)					Higher energy intake in morning window (within 2 h after getting out of bed) associated with lower OR for overweight/obese in MT² (OR: 0.32; 95% CI: 0.16, 0.66; P-trend = 0.0006)		
					Higher energy intake at nighttime window (within 2 h before bedtime), associated with higher OR for overweight/obese in ETs³ (OR: 4.94; 95% CI: 1.61, 15.1; P-trend = 0.001)		
Muñoz et al., 2020 (57)	Hypocaloric dietary treatment according to the Spanish Federation of Nutrition, Food and Dietetics guidelines	Breakfast 30%, midmorning 10%, lunch 35%, midafternoon 5%, and dinner 20%	Breakfast 20%, midmorning 5%, lunch 35%, midafternoon 10% and dinner 30%				
Maukonen et al., 2017 (79)	48-h dietary recalls	99% of MTs had energy intake > 0 kJ on weekday mornings by 1000	80% of ETs had energy intake > 0 kJ on weekday mornings by 10.00				
					Weekday mornings: 350 kJ (4% TEI) lower energy intake as compared with MTs		
					P < 0.001		
Reference	Method of assessment	MT	IT	ET	Differences between types	P value (ET vs. IT/MT) and other analysis	
-----------	---------------------	----	----	----	----------------------------	--	
Maukonen et al., 2019 (78) (78)	48-h dietary recalls covering 2 previous consecutive days	—	—	—	Weekend mornings by 10:00: 380 kJ lower energy than MTs	—	
		81% of MTs had energy intake >0 kJ on weekday evenings by 20:00	—	—	—	Weekend evenings by 20:00: 430 kJ (6% TEI) more energy than MTs	P < 0.001
		—	—	—	Weekend evenings by 20:00: 590 kJ (7% TEI) more energy than MTs	P < 0.001	
		—	—	—	Cumulative energy intake of ET. Weekdays: lower from the beginning of the day until 22:00 Weekends: lower from the beginning of the day until 01:00	—	
		—	—	—	Weekends: 3 peaks of energy intake of the same height at 08:00, 12:00, and 17:00	—	
		—	—	—	Weekends: energy intake peaks on weekdays are an hour later than MTs Weekends: 6 peaks of energy intake Highest peak at 19:00	—	
		—	—	—	Sucrose: 12.5 (1.2) E% after 20:00 on weekdays Sucrose: 13.4 (1.2) E% after 20:00 on weekdays Sucrose: 1.1 E% units more after 20:00 on weekdays 13.6 (1.5) E%	P < 0.05	
		—	—	—	Sucrose: 10.2 (1.9) E% after 20:00 on weekends Sucrose: 13.8 (1.9) after 20:00 on weekends Sucrose: 3.1 E% units more by 20:00 on weekends 13.3 (2.5) E%	P < 0.05	
		1596 (41%) kJ in the morning	—	—	—	340 kJ less energy in the morning—1252 (90%) kJ	P < 0.01
		953 (43%) kJ in the evening	—	—	—	450 kJ more in the evening—1402 (97%) kJ	P < 0.001

Other analysis:
% TEI in the morning and obesity risk had a significant interaction between % TEI in the morning and chronotype on increase in weight (≥5%) (P = 0.025) and increase in BMI (≥5%) (P = 0.012)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
Baron et al., 2011 (75)	7-d food logs			
		Caloric intake after 20:00: 376 ± 237 kcal/d	Caloric intake after 20:00: 754 ± 373 kcal/d	\(P < 0.001 \)
		Caloric intake at breakfast: 355 ± 133 kcal/d	Caloric intake at breakfast: 285 ± 143 kcal/d	\(P > 0.05 \)
		Caloric intake at lunch: 528 ± 188 kcal/d	Caloric intake at lunch: 503 ± 378 kcal/d	\(P > 0.05 \)
		Caloric intake for snacks: 405 ± 284 kcal/d	Caloric intake for snacks: 536 ± 323 kcal/d	\(P > 0.05 \)
		Caloric intake at dinner: 630 ± 196 kcal/d	Caloric intake at dinner: 825 ± 352 kcal/d	\(P < 0.05 \)
		Caloric intake after dinner: 150 ± 151 kcal/d	Cumulative energy intake across the day; 1-h increments	\(P < 0.001 \)
		Fewer calories at 9:00	Fewer calories at 10:00, 11:00, and 12:00	\(P = 0.001 \)
		Afternoon: intake increased steeply, and caloric intake matched and began to exceed normal sleepers around average dinner time		
		ITs reached a plateau as early as 21:00	Caloric intake of late sleepers continued to rise after 23:00	
Lucassen et al, 2013 (62)	3-d food recall	Working days: 299 ± 354 kcal after 20:00	Consumed more calories after 20:00 on working days 677 ± 460 kcal	\(P < 0.001 \)
		Nonworking days: 327 ± 354 kcal after 20:00	Consumed more calories after 20:00 on nonworking days 537 ± 480 kcal	\(P = 0.03 \)
Zerón-Ruigerio et al., 2020 (58)	6-d food logs and Quality Index Food Consumption Pattern	Breakfast: 24.8 (10.4) % of kcal	Breakfast: 26.9 (10.4) % of kcal	\(P = 0.26 \)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
-----------------------------------	----------------------	---------------------------	--	
	MT	IT	ET	
Lunch:	31.3 (7.5) % of kcal	29.5 (10.2) % of kcal	30.9 (9.6) % of kcal	
Dinner:	18.0 (10.4) % of kcal	18.6 (9.8) % of kcal	23.5 (11.3) % of kcal	

Other analysis:

In MTs,² the highest quintile of % carbohydrate intake in the morning (within 2 h after getting out of bed) is associated with an 80% decrease in risk for being overweight/obese (OR: 0.2; 95% CI: 0.10, 0.42; P-trend < 0.0001).

In ETs,³ the highest quintile of % carbohydrate intake during the evening (within 2 h before bedtime) is associated with an increase in OR for being overweight/obese (OR: 4.48; 95% CI: 1.64, 12.2; P-trend = 0.01).

In ETs,³ the highest quintile of % sugar intake at night (within 2 h before bedtime) is associated with a 3-fold increase in OR for being overweight/obese (OR: 3.11; 95% CI: 1.17, 8.22; P-trend = 0.02).

In MTs,² the highest quintile of % sugar intake during the morning (within 2 h after getting out of bed) (OR: 0.23; 95% CI: 0.11, 0.49; P-trend = 0.0003), % fiber (OR: 0.31; 95% CI: 0.15, 0.65; P-trend = 0.0008) was associated with a decrease in OR for being overweight/obese.
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis
Maukonen et al., 2017 (79)	48-h dietary recalls	Intake by 10:00 on weekdays: 52.8 (1.3) E%	\(p < 0.001 \) \(P\text{-trend} < 0.001 \) \(P\text{-trend} = 0.01 \)
		Intake after 20:00: 48.8 (2.0) E% on weekdays	\(P\text{-trend} < 0.05 \)
		Intake by 10:00 on weekends: 52.6 (2.6) E%	\(P\text{-trend} = 0.003 \)
		Intake after 20:00: 46.3 (3.4) on weekends	\(P = 1.00 \)
		Intake by 10:00 on weekdays: 50.5 (1.3) E%	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		Intake after 20:00: 51.3 (2.0) E% on weekdays	\(P\text{-trend} = 0.03 \)
		Intake by 10:00 on weekends: 48.3 (2.4) E%	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		Intake after 20:00: 50.3 (3.4) on weekends	\(P\text{-trend} = 0.03 \)
		After 20:00: 47 ± 31 g (19%)\(^{12} \)	\(P = 1.00 \)
		Intake after 20:00: 49.8 (4.4) on weekends	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		After 20:00: higher intake 87 ± 39 g (33%)\(^{13} \)	\(P\text{-trend} = 0.03 \)
Baron et al., 2013 (68)	7-d food logs	Intake by 10:00 on weekends: 52.6 (2.6) E%	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		Intake after 20:00: 46.3 (3.4) on weekends	\(P\text{-trend} = 0.03 \)
		After 20:00: 47 ± 31 g (19%)\(^{12} \)	\(P = 1.00 \)
		Intake after 20:00: 49.8 (4.4) on weekends	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		After 20:00: higher intake 87 ± 39 g (33%)\(^{13} \)	\(P\text{-trend} = 0.03 \)
Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool	Intake by 10:00 on weekdays: 52.6 (2.6) E%	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		Intake after 20:00: 46.3 (3.4) on weekends	\(P\text{-trend} = 0.03 \)
		After 20:00: 47 ± 31 g (19%)\(^{12} \)	\(P = 1.00 \)
		Intake after 20:00: 49.8 (4.4) on weekends	\(P < 0.01 \) \(P\text{-trend} = 0.03 \)
		After 20:00: higher intake 87 ± 39 g (33%)\(^{13} \)	\(P\text{-trend} = 0.03 \)

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis							
MT	**IT**	**ET**								
Protein intake after 20:00 on weekends: 11.6 (1.3) E% Intake by 10:00 on week days: 14.8 (0.9) E% Intake by 10:00 on weekends: 14.8 (0.9) E% 	Protein intake after 20:00 on weekends: 12.7 (1.3) E% Intake by 10:00 on week days: 13.6 (0.9) E% Intake by 10:00 on weekends: 13.6 (0.9) E% After 20:00: 15 ± 12 g (21)%	Protein intake after 20:00 on weekends: 14.2 (1.7) E% Intake by 10:00 on week days: 13.6 (0.9) E% Intake by 10:00 on weekends: 11.4 (1.2) E% More protein at dinner	$P = 0.25$							
After 20:00: 32 ± 16 g (37)%	 	$P < 0.001$	$P < 0.003$	$P < 0.001$	$P < 0.01$					
Baron et al., 2013 (68)	7-d food logs	 	 	 	 	 	 			
Daily fat distribution	Xiao et al., 2019 (77)	24-Hour Dietary Assessment Tool	No association between timing of fat intake and BMI	$P > 0.01$	Other analysis: After 20:00: Moderate positive correlation with midpoint of sleep ETs were associated with higher intake ($r = 0.53 P < 0.001$)	$P = 0.47$, cholesterol (P-trend = 0.35), saturated fat (P-trend = 0.90), and monounsaturated fat (P-trend = 0.42) and OR of being overweight/obese in MTs	$P = 0.06$, cholesterol (P-trend = 0.06), saturated fat (P-trend = 0.34), monounsaturated fat (P-trend = 0.31), and polyunsaturated fat (P-trend = 0.08) and OR of being overweight/obese in ETs	$P = 0.008$		
Maukonen et al., 2017 (79)	48-h dietary recalls	Fat: 23.8 (10) E% by 10:00 on weekdays Fat: 22.6 (16) E% by 10:00 on weekends	Fat: 23.3 (10) E% by 10:00 on weekdays Fat: 20.3 (15) E% by 10:00 on weekends	Fat: 19.6 (12) E% by 10:00 on weekdays Fat: 18.8 (20) E% by 10:00 on weekends	$P < 0.001$	P-trend = 0.002	P-trend = 0.001	$P = 0.47$, cholesterol (P-trend = 0.35), saturated fat (P-trend = 0.90), and monounsaturated fat (P-trend = 0.42) and OR of being overweight/obese in MTs	$P = 0.06$, cholesterol (P-trend = 0.06), saturated fat (P-trend = 0.34), monounsaturated fat (P-trend = 0.31), and polyunsaturated fat (P-trend = 0.08) and OR of being overweight/obese in ETs	$P = 0.008$
Reference	Method of assessment	MT	IT	ET	Differences between types					
----------------------------	--------------------------------	---------------------	---------------------	---------------------	--					
Fat:		Fat: 21.5 (1.2) % E% after 20:00 on weekdays	Fat: 23.4 (1.2) % E% after 20:00 on weekdays	Fat: 26.1 % E% after 20:00 on weekdays	$P = 0.0025$					
		Fat: 17.3 (2.0) % E% after 20:00 on weekends	Fat: 20.0 (2.0) % E% after 20:00 on weekends	Fat: on weekends after 20:00	$P < 0.001$					
		SFAs: 9.0 (0.5) % E% by 10:00 on weekdays	SFAs: 9.5 (0.5) % E% by 10:00 on weekdays	SFAs: 7.3 (0.6) % E% by 10:00 on weekdays	$P = 0.002$					
		SFAs: 8.3 (0.7) % E% by 10:00 on weekdays	SFAs: 7.1 (0.7) % E% by 10:00 on weekdays	SFAs: 6.4 (0.9) % E% by 10:00 on weekdays	$P < 0.05$					
		SFAs: 8.8 (0.6) % after 20:00 on weekdays	SFAs: 9.7 (0.6) % after 20:00 on weekdays	SFAs: 10.3 (0.7) % after 20:00 on weekdays	$P < 0.03$					
		SFAs: 6.8 (1.0) % after 20:00 on weekdays		SFAs: 7.9 (1.0) % after 20:00 on weekdays	$P < 0.003$					
		—	After 20:00: 16 ± 12 g (19%)	After 20:00: 30 ± 17 g (35%)	$P < 0.01$					
		—	4 h before sleep: 11 ± 9 g (16%)	Consumed less fat in the 4 h before sleep 10 ± 12 g (12%)	$P < 0.05$					
		—	—	—	Other analysis: After 20:00. Moderate positive correlation with midpoint of sleep	$P < 0.05$				
		—	—	—	ETS3 were associated with higher intake ($r = 0.48, P < 0.01$)	$P = 0.10$				
Adherence to guidelines		—	—	—	Chronotype scores were negatively correlated with YFAS scores ($r = -0.10$)	$P = 0.06$				
Najem et al., 2020 (76)	YFAS	—	—	—	ETS were associated with a higher YFAS score	$P = 0.06$				
Zeron-Rugerio et al., 2019 (64)	MD Quality Index for Children and Adolescents	—	—	—	Lower adherence to the MD ($\beta = 0.019$)	$P = 0.06$				
Maukonen et al., 2016 (65)	FFQ and Baltic Sea diet score	—	—	—	Lower adherence to the Baltic Sea diet score	$P = 0.06$				
De Amicis et al., 2020 (67)	14-item adherence to traditional MD questionnaire	Higher adherence (7 ± 2)	—	—	Lower adherence (6 ± 2)	$P < 0.05$				
Culnan et al., 2013 (72)	Gray–Donald Eating Patterns Questionnaire	—	—	—	Junk food consumption did not vary by chronotype at baseline	$P > 0.05$				
		—	—	—	After 8-wk, chronotype was not associated with change in scores on the Junk Food subscale	$P > 0.05$				
TABLE 3 (Continued)

Reference	Method of assessment	Differences between types	\(P \) value (ET vs. IT/MT) and other analysis		
Muscogiuri et al., 2020 (70)	PREDIMED (Prevención con Dieta Mediterránea) questionnaire	PREDIMED score: 8.8 ± 1.9	PREDIMED score: 7.0 ± 1.5	PREDIMED score: 5.1 ± 1.8 (lowest score)	\(P < 0.001 \)
Zerón-Rugiero et al., 2020 (58)	6-d food logs and Quality Index Food Consumption Pattern	Low adherence to MD: 3 (3.0%) subjects	Low adherence to MD: 6 (12.0%) subjects	Low adherence to MD: 12 (54.5%) subjects	\(P < 0.001 \)
		Average adherence to MD: 58 (58.0%) subjects	Average adherence to MD: 42 (84.0%) subjects	Average adherence to MD: 10 (45.5%) subjects	\(P = 0.001 \)
		High adherence to MD: 9 (39.0%) subjects	High adherence to MD: 2 (4.0%) subjects	High adherence to MD: 0 (0%)	\(P < 0.001 \)
		Diet quality: 57.9 ± 6.81^11	Diet quality: 60.7 ± 8.115	Diet quality: 67.3 ± 9.417	\(P < 0.001 \) or \(P\)-trend < 0.001

1Values reported as mean \(\pm \) SD unless stated otherwise. \(P\)-trend refers to the continuous association between the Morning–Eveningness Questionnaire (MEQ) or Munich Chronotype Questionnaire (MCTQ) score and exposures of interest. CHO, carbohydrate; E%, Percentage of energy intake; ET, evening type; EVOO, Extra-virgin olive oil; IT, intermediate type; PREDIMED, Prevención con Dieta Mediterránea; MD, Mediterranean diet; ME, morning-eveningness; MT, morning type; NS, XXX; TEI, Total energy intake; YFAS, Yale Food Addiction Scale.

2Earlier chronotype was defined as a chronotype earlier than the median (03:04 h).

3Later chronotype was defined as a chronotype later than the median (03:04 h).

4Based on earliest midpoint of sleep quintiles.

5Based on midpoint of sleep quintile 2.

6Based on midpoint of sleep quintile 3.

7Based on midpoint of sleep quintile 4.

8Based on latest midpoint of sleep quintiles.

9Based on MEQ score tertile 1: 34–53.

10Based on MEQ score tertile 2: 54–59.

11Based on MEQ score tertile 3: 60–76.

12Based on normal sleep timing (midpoint 04:08 h).

13Based on late sleep timing (midpoint 07:15 h).

14Based on wake up \(< 07:52 \) h and early bedtime \(< 23:48 \) h and defined as early bed/early rise (EE).

15Based on early bedtime (\(< 23:48 \) h) and late rise (wake up \(> 07:12 \) h) and defined as early bedtime/late rise (EL).

16Based on late bedtime (\(\geq 23:48 \) h) and wake up (\(< 07:52 \) h) and defined as late bedtime/early rise (LE).

17Based on late bedtime (\(\geq 23:48 \) h) and late rise (wake up \(> 07:12 \) h) and defined as late bedtime/late rise (LL).
(P = 0.02). However, across the other 14 studies, there were no differences in energy intakes between chronotypes (56–59, 62, 65, 66, 68, 69, 71, 75, 77–79). Furthermore, Teixeira et al. (66) found that if ETs also skipped breakfast, they would have a higher total energy intake per day.

Energy distribution.

Calculated across studies, ETs consumed an overall mean intake of 6–90 kcal less during the morning/at breakfast by 10:00 (clock hour) (58, 75, 78, 79) and a total mean intake of 102–378 kcal more energy during the evening/after dinner/after 20:00 than MTs (58, 62, 75, 78, 79) (Table 3). Xiao et al. (77) showed a significant linear association between energy distribution and being an ET and the likelihood of being overweight or obese. The MTs consumed more energy in the morning (within 2 h after waking up) and were less likely to be overweight or obese (OR: 0.32; 95% CI: 0.16, 0.66; P = 0.0006). The ETs consumed more energy in the evening (within 2 h before bedtime) and were 4.94 times more likely to be overweight or obese than MTs (OR: 4.94; 95% CI: 1.61, 15.1; P-trend = 0.01) (77).

Total daily carbohydrate, protein, and fat intake.

Eight (57, 59, 62, 66, 68, 71, 77, 79) of 11 studies (56, 57, 59, 62, 66, 68, 71, 75, 79) reported macronutrient intakes but found no differences/associations between chronotypes. Three studies (56, 71, 79) reported significantly higher carbohydrate intakes in MTs (230 g/d) compared with ETs (217 g/d), 2 studies (63, 66) reported that ETs had a higher carbohydrate intake, and 1 study reported this was found only in ETs who also skipped breakfast regularly (P < 0.05) (66). Maukonen et al. (79) also found that sucrose intakes increased for ETs on weekdays (P = 0.020) in comparison with other chronotypes.

Two studies reported that MTs had a significantly higher daily intake of 4 g/d of total protein (56, 63) than ITs and ETs. Another study reported a higher intake of 3 g/d only over the weekend in MTs in comparison with ITs and ETs (79).

Two studies reported that ETs compared with MTs were significantly associated with a higher total fat intake of 1 g/d (56, 65), although Maukonen et al. (65) reported this linear association in ET women (compared with MT and IT women) only (31 of energy intake (%)) compared with 30 E%; P-trend = 0.018. Teixeira et al. (66) reported a higher total fat intake in ETs who regularly skip breakfast, whereas Maukonen et al. (79) reported an inverse association between total fat intake over weekends and ETs in comparison with MTs and ITs (P < 0.05).

Daily carbohydrate, protein, and fat distribution.

Only 3 studies investigated the distribution of macronutrient intakes between chronotypes throughout the day (68, 77, 79). Both carbohydrate and protein intakes after 20:00 were higher in ETs than in MTs (68, 79). Maukonen et al. (79) found that ETs consumed more fat after 20:00 on both weekdays (10 g more) and weekends (19 g more) compared with other types. They also showed that ETs compared with other types consumed more SFAs on both weekdays (3.4 g) and weekends (8 g) after 20:00 (79). Similarly, Baron et al. (68) found that being an ET compared with an IT was associated with a higher fat intake (14 g) after 20:00 (68). Interestingly in the morning, ETs compared with other types consumed 3.5 g less fat on weekends by 10:00 (79) and 1 g less in the 4 h before habitual bedtime (68).

Xiao et al. (77) also demonstrated that MTs who consumed more carbohydrates and protein during the morning (within 2 h after getting out of bed) were 80% (P-trend < 0.0001) and 61% (P-trend = 0.03) less likely to be overweight or obese than ETs (77). Conversely, ETs who consumed more carbohydrates and protein in the evening (2 h before bedtime) were respectively 4.5 (OR: 4.48; 95% CI: 1.64, 12.2; P-trend = 0.009) and 3.7 times (OR: 3.74; 95% CI: 1.33, 10.5; P-trend = 0.02) more likely to be overweight or obese (77) (Table 3).

Total daily micronutrient intake.

Only 1 study by Sato-Mito et al. (56) reported on micronutrient intakes. Being an ET was associated with significantly lower potassium, calcium, magnesium, iron, zinc, vitamin A, thiamine, riboflavin, pyridoxine, folate, and vitamin D intakes compared with being an MT (P-trend < 0.05, Table 3).

Total daily food group intake.

Thirteen of the included studies reported on total food group intake (56, 59, 60, 63, 65, 70–76, 79). The ETs consumed larger quantities of energy-dense foods such as confectionary and sweets (56, 59, 63, 70, 79), sugar-sweetened beverages (59, 70, 74, 75), butter, cream, margarine (70), cholesterol-rich foods (63), meat (56, 60, 70), fast foods (75), caffeine (73, 76), and alcohol (56, 65, 71–73, 79) in comparison with other chronotypes. Four studies reported that ETs consumed fewer healthy foods such as fish (6 g/d less, P-trend < 0.05) (79), cereals (65, 71), and vegetables (17 g/1000 kcal, P < 0.001) (56) in comparison with other chronotypes. Similarly, Baron et al. (75) reported that ETs consumed only 1.9 servings/wk of fruit and vegetables compared with 3.4 servings/wk in ITs (75). The MTs consumed more nutrient-dense foods such rice and potatoes (56, 59), fiber (79), vegetables (56, 59), pulses (56), eggs (56), dairy (56), fruit and algae (P-trend < 0.05) (59), and wine (70) than ETs.

Differences between chronotype and eating behavior.

The eating behaviors most investigated among chronotypes were meal timing (clock hours for meals), meal skipping, and portion sizes (Table 4).

Meal timing, skipping, and intervals between meals and bedtime.

Compared with other types, ETs were more likely to display undesirable eating behavior, for example, reporting later clock times for main meals (56, 60, 62, 66, 71, 75, 77). As to be expected, the ETs had later clock times for breakfast than MTs (56, 60, 62, 66, 71, 75, 77) or even skipped breakfast altogether
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis		
		MT	IT	ET	
Meal timing					
Xiao et al., 2019 (77)	Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24)	Breakfast: 7.6 ± 1.0 h²	—	86 ± 0.9 h³	P-trend < 0.001
		Lunch: 12.6 ± 1.1 h²	—	12.8 ± 1.3 h³	P < 0.004
		Dinner: 18.2 ± 0.8 h²	—	18.5 ± 1.1 h³	P-trend < 0.001
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Breakfast: 6.35 ± 0.002 h:min⁴	7:01 ± 0.02 h:min⁵	Breakfast: 9:19 ± 0.02 h:min⁸	P-trend < 0.0001
		Lunch: 12:20 ± 0.02 h:min⁴	12:20 ± 0.02 h:min⁵	Lunch: 12:42 ± 0.02 h:min⁸	P < 0.0001
		Dinner: 18:51 ± 0.06 h:min⁴	18:55 ± 0.05 h:min⁵	Dinner: 19:19 ± 0.05 h:min⁸	P < 0.0001
Vera et al., 2018 (71)	Single 24-h recalls	Breakfast: 8.34 ± 0.03 h	—	Breakfast: 8.65 ± 0.035 h	P < 0.05
		Lunch: 14.55 ± 0.02 h	—	Lunch: 14.59 ± 0.02 h	
		Dinner: 21.08 ± 0.06 h	—	Dinner: 21.39 ± 0.67 h	
Silva et al., 2016 (60)	Preliminary questionnaire	Midpoint of food intake: 14.80 ± 0.02 h	—	Later midpoint of food intake: 15.06 ± 0.02 h	P < 0.001

Other analysis:
Weak positive correlations between MSF score and breakfast time (r = 0.24, P < 0.001); ETs were associated with a later breakfast time.
Weak positive correlations between MSF score and lunch time; ETs were associated with later lunch times (r = 0.19, P < 0.01)

(Continued)
Reference	Method of assessment	Differences between types	\(P \) value (ET vs. IT/MT) and other analysis
Lucassen et al., 2013 (62)	3-d food records	Breakfast on working days: 1 h and 20 min earlier than ET: 7:17 ± 1.31 h:min	\(P < 0.001 \)
Teixeira et al., 2018 (66)	24-h food recall (24h-FR) and questionnaire	Breakfast: 07:20 h:min Breakfast: 07:45 h:min Breakfast: 08:00 h:min	\(P < 0.001 \)
Baron et al., 2011 (75)	7-d food logs	Lunch: 12:13 h:min Breakfast: 9:07 h:12 Lunch: 12:39 h:min Lunch: 12:39 h:12 Dinner: 19:07 h:12 Lunch: 12:39 h:12 Last meal/snack of the day: 20:25 h:12 Lunch: 12:39 h:12 Dinner: 20:13 h:12 Last meal/snack of the day: 22:17 h:12	\(P = 0.02 \) \(P < 0.01 \) \(P < 0.01 \) \(P < 0.05 \) \(P < 0.001 \)
Xiao et al., 2019 (77)	Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24)	Duration between dinner and bedtime: 258 ± 58.6 min:12 Duration between dinner and bedtime: 313 ± 70.7 min:13	\(P < 0.001 \)
Baron et al., 2011 (75)	7-d food logs	Time between breakfast and lunch: 4:01 h:min:12 Time between last meal or snack and sleep onset: 3:53 h:min:12	\(P < 0.01 \) \(P < 0.05 \)
Zerón-Ruciero et al., 2020 (58)	6-d food logs and Quality Index Food Consumption Pattern	— Had on average the shortest time between dinner and the midpoint of sleep [5.8 (0.9) h]:17	\(P > 0.001 \)
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Breakfast: 17.38 ± 0.21 min:4 Breakfast: 17.11 ± 0.17 min:5 Breakfast: 17.19 ± 0.19 min:6 Breakfast: 16.38 ± 0.20 min:7 Breakfast: 17.38 ± 0.21 min:4 Lunch: 21.50 ± 0.23 min:4 Lunch: 22.07 ± 0.19 min:5 Lunch: 23.21 ± 0.20 min:5 Lunch: 22.41 ± 0.22 min:5 Dinner: 28.45 ± 0.31 min:4 Dinner: 29.26 ± 0.26 min:5 Dinner: 30.20 ± 0.28 min:5 Dinner: 29.36 ± 0.30 min:5 Breakfast: 19.03 ± 0.18 min:8 Lunch: 25.29 ± 0.19 min:6 Lunch: 25.36 ± 0.20 min:6 Lunch: 25.37 ± 0.21 min:6 Lunch: 25.41 ± 0.22 min:6 Dinner: 32.29 ± 0.26 min:8	\(P < 0.001 \)

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis			
Skipped meals		MT	IT	ET		
Sato-Mito et al., 2011 (56)	Dietary history questionnaire	Less skipped breakfast 0.66 ± 0.07 per week⁴	Breakfast: 0.57 ± 0.06 times/wk³	More skipped breakfast: 1.91 ± 0.07 per week⁸	P-trend < 0.001	
		Lunch 0.15 ± 0.03 times/wk⁴	Lunch: 0.16 ± 0.03 times/wk⁶	Lunch: 0.29 ± 0.03 times/wk⁶	P-trend = 0.0002	
		Dinner: 0.26 ± 0.05 times/wk⁴	Dinner: 0.29 ± 0.04 times/wk⁵	Dinner: 0.42 ± 0.04 times/wk⁶	P-trend = 0.01	
Silva et al., 2016 (60)	Preliminary questionnaire	MSF: 5.28	MSF: 6.19		P = 0.02	
				Breakfast skippers had higher MSF values (toward ETs)		
Teixeira et al., 2018 (66)	24-h food recall (24h-FR) and questionnaire	Frequency of breakfast skippers: 10.0 (15%)	Frequency of breakfast skippers: 14.1 (63%)	Frequency of breakfast skippers: 21.8 (7.7%)	P = 0.02	
				1.7 times more likely to skip breakfast (OR: 1.7; 95% CI: 1.1, 2.9)		
				Breakfast skippers (ETs) were associated with later lunch time (β = −0.23, r² = 0.06)		
				Breakfast skippers (ETs) were associated with later dinner time (β = −0.17, r² = 0.04)		
TV watching during meals		Frequency per week during breakfast: 3.27 ± 0.08⁴	Frequency per week during breakfast: 3.52 ± 0.07³	Frequency per week during breakfast: 3.55 ± 0.07⁸	P-trend = 0.03	P < 0.05
Sato-Mito et al., 2011 (56)	Dietary history questionnaire					

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis	
		MT	IT	ET
		Frequency per week during lunch: 1.25 ± 0.08⁴	Frequency per week during lunch: 1.50 ± 0.07⁵	Frequency/wk during lunch: 3.24 ± 0.07⁶
		Frequency per week during dinner: 3.63 ± 0.07⁴	Frequency/wk during dinner: 3.87 ± 0.06⁵	Frequency/wk during dinner: 3.90 ± 0.06⁶
Vera et al., 2018⁷¹	Barriers to Weight-Loss Checklist, Emotional Eating Questionnaire, and a 24-h recall	—	—	—
				P = 0.07
				Other analysis: 1.2 times more likely (OR: 1.23, 95% CI: 0.99, 1.52)
Eating behavior score and subcategories				
Vera et al., 2018⁷¹	Barriers to Weight-Loss Checklist, Emotional Eating Questionnaire, and a 24-h recall	Total eating behavior score: 0.01 ± 0.23	Total eating behavior score: 1.93 ± 0.26	P < 0.001
Lázár et al., 2012⁷³	English version of the Dutch Eating Behavior Questionnaire	Reported better restrained eating	—	—
				P < 0.044
		Reported better external eating behavior	—	—
				P < 0.001
Beaulieu et al., 2020⁶⁹	TFEQ	Chronotype score not associated with TFEQ	—	—
	Stress-related eating, control over intake, food cravings			P ≥ 0.117
Vera et al., 2018⁷¹	Barriers to Weight-Loss checklist, Emotional Eating Questionnaire, and single 24-h recall	Lower emotional eating score: 11.85 ± 0.19	—	Higher emotional eating score: 12.40 ± 0.19
				P = 0.046
				Other analysis: Prone to stress-related eating (OR: 1.27, 95% CI: 1.04, 1.55; P = 0.02)

(Continued)
Reference	Method of assessment	MT	IT	ET	P value (ET vs. IT/MT) and other analysis
Lázár et al., 2012 (73)	English version of the Dutch Eating Behavior Questionnaire	—	—	—	Problems controlling amounts of certain types of food (OR: 1.31; 95% CI: 1.08, 1.58; P = 0.01)
					Feel less in control over diet when tired (OR: 1.33; 95% CI: 1.10, 1.60; P = 0.003)
					Experience specific food cravings (OR: 1.20; 95% CI: 0.99, 1.45; P = 0.06)
					P = 0.05
Lai et al., 2013 (61)	Craving of high-calorie foods questionnaire	—	—	—	Other analysis:
					High-calorie food craving was not correlated with ME score (r = 0.003; P = 0.92)
Portion sizes, number of servings, number of eating occasions	Barriers to Weight-Loss checklist, Emotional Eating Questionnaire, and single 24-h recall	—	—	—	Other analysis:
Vera et al., 2018 (71)					1.4 times more likely to have larger portion sizesportion sizes (OR: 144; 95% CI: 1.18, 1.77; P < 0.001)
					1.3 times more likely to have second servings (OR: 1.27; 95% CI: 1.04, 1.56; P < 0.019)
Lucassen et al., 2013 (62)	Eat more frequently during working days (4.9 ± 1.5 occasions)	—	—	—	P = 0.18
	Number of eating occasions during nonworking days (42 ± 1.2 occasions)	—	—	—	
	Portion sizes during working days (461 ± 177 kcal)	—	—	—	
	Portion sizes during nonworking days (599 ± 273 kcal)	—	—	—	

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis
Teixeira et al., 2018 (66)	24-h food recall (24h-FR) and questionnaire	Lower food intake after 20:00 on working days: 299 ± 354 kcal (50% fewer calories in fewer eating occasions than ETs)	
		Higher food intake after 20:00 on working days: 677 ± 460 kcal	P < 0.001
		Food intake after 20:00 on nonworking days: 327 ± 354 kcal	
		4.7 ± 1.2 meals/d	
		4.5 ± 1.1 meals/d	
		46 ± 1.1 meals/d	
		4.6 ± 1.1 meals/d	
			P = 0.44
Vera et al., 2018 (71)	Barriers to Weight-Loss Checklist, Emotional Eating Questionnaire, and single 24-h recall	No differences between chronotypes with regards to liking for high-fat relative to low-fat foods	
		No interaction between chronicotype and meal timing (AM vs. PM) with regards to liking for high-fat relative to low-fat foods	P > 0.05
		No interaction between MEQ score and liking for high-fat food (r = −0.15, P > 0.05)	
Beaulieu et al., 2020 (69)	Appetite ratings and food reward (validated diurnal Leeds Food Preference Questionnaire) were measured in response to a standardized test meal	No differences between chronotypes with regards to wanting/desire for high-fat relative to low-fat foods	
		No relation between MEQ score and desire for high-fat food	
		ETs were associated with greater wanting/desire	P = 0.01, r = −0.42
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis
-------------------------	---	--	--
Other			
Vera et al., 2018 (71)	Barriers to Weight-Loss Checklist, Emotional Eating Questionnaire, and single 24-h recall	—	No differences between chronotype with regards to desire for high-fat relative to low-fat foods ($P > 0.05$)
			Other analysis: No interaction between chronotype and meal timing regarding desire for high-fat relative to low-fat foods
Beaulieu et al., 2020 (69)	Appetite ratings and food reward (validated diurnal Leeds Food Preference Questionnaire) were measured in response to a standardized test meal	No differences in ratings of sweetness or pleasantness between the different meal timings (AM vs. PM) and chronotype ($P > 0.157$)	No differences between chronotype and prospective test meal consumption ($P > 0.05$)

(Continued)
Reference	Method of assessment	Differences between types	P value (ET vs. IT/MT) and other analysis		
		MT	IT	ET	
					P ≥ 0.26
					Other analysis:
					No interactions among meal timing (AM vs. PM), appetite ratings, chronotype, and time point for test meal
					P > 0.05
					Other analysis:
					No interaction between meal timing (AM vs. PM), chronotype, and perceived test meal fillingness
					P ≤ 0.004

1 Values reported as mean ± SD unless stated otherwise. P trend refers to the continuous association between the Morning–Eveningness Questionnaire (MEQ) or Munich Chronotype Questionnaire (MCTQ) score and exposures of interest. ET, evening type; IT, intermediate type; MSFsC, midsleep corrected for sleep duration on free days; MT, morning type; MSF, mid-sleep time on free days.
2 Earlier chronotype was defined as a chronotype earlier than the median (03:04 h).
3 Later chronotype was defined as a chronotype later than the median (03:04 h).
4 Based on earliest midpoint of sleep quintiles.
5 Based on midpoint of sleep quintile 2.
6 Based on midpoint of sleep quintile 3.
7 Based on midpoint of sleep quintile 4.
8 Based on latest midpoint of sleep quintiles.
9 Based on MEQ score tertile 1: 34–53.
10 Based on normal sleep timing (midpoint 04:08 h).
11 Based on late sleep timing (midpoint of sleep 07:15 h).
12 Based on late bedtime (≥ 23:48 h) and late rise (wakeup time ≥ 07:12 h) and defined as late bedtime/late rise (LL).
Based on their individual preferences, ETs also had later habitual clock times for lunch (56, 60, 66, 71, 75, 77) and dinner (56, 71, 75, 77) than MTs. Across the studies, ETs had breakfast from 14 min to 2 h 44 min later, lunch from 2 min to 1 h and 23 min later, and dinner from 3 min to 1 h later (56, 62, 66, 71, 77). Interestingly, ETs had a longer time interval between the last meal or snack of the day (dinner) and bedtime (average of 316 min) compared with ITs/MTs (average of 231 min) (75, 77).

Portion sizes, number of servings, and eating occasions.
ETs were 1.4 times (OR: 1.44; 95% CI: 1.16, 1.78; \(P = 0.001 \)) more likely to consume larger portion sizes and 1.3 times (OR: 1.27; 95% CI: 1.04, 1.56; \(P < 0.019 \)) more likely to have second servings (71), as well as to watch television while eating (56), compared with MTs and ITs. There were no differences or associations between the number of eating occasions per day (62, 66).

Eating behavior scores.
Four studies (61, 69, 71, 73) investigated the associations and differences between chronotypes and the Three-Factor Eating Questionnaire (TFEQ) scores (restraint, which is the conscious restriction of food intake to control body weight and shape; disinhibition, which is the loss of control of food intake that leads to overconsumption of food; and hunger, which is feelings and subjective perceptions of hunger that lead to food intake) (81) and their subcategories (flexible and rigid control; habitual, emotional, and situational disinhibition; internal and external locus for hunger). A higher score indicates a higher level of these eating behaviors. Vera et al. (71) observed that ETs had a higher total eating behavior score (1.93 ± 0.26) (higher scores = more deleterious eating behaviors) and emotional eating score (12.40 ± 0.19) (<12, nonemotional; ≥12, emotional) than the MTs with scores of 0.01 ± 0.25 and 11.85 ± 0.19, respectively (\(P < 0.001 \) and \(P < 0.046 \), respectively). The ETs also felt less in control over their diet (OR: 1.33; 95% CI: 1.10, 1.60; \(P = 0.003 \)), experienced more stress-related eating (OR: 1.27; 95% CI: 1.04, 1.55; \(P = 0.019 \)) and food cravings (OR: 1.20; 95% CI: 0.99, 1.45; \(P = 0.063 \)), and had greater problems controlling the amount of food consumed (OR: 1.31; 95% CI: 1.03, 1.58; \(P = 0.006 \)) (71).

Discussion
The aim of this project was to systematically review the existing evidence that chronotype affects body composition and biomarker outcomes by also considering behavioral factors such dietary intake and eating habits/behavior in healthy adults. In this systematic review, we consistently found that ETs compared with MTs were more likely to be overweight/obese. This finding may be linked to their irregular eating patterns and unhealthy eating behaviors that could lead to circadian misalignment. Both MTs and ETs had very similar dietary intakes (energy and macronutrients), but clear differences were apparent regarding the distribution of food intake throughout the 24-h day, skipping and timing of meals, and diet quality (micronutrients, food groups, and types), which may lead to body composition changes. Furthermore, ETs displayed a higher risk of metabolic disease (see Figure 2 depicting the main outcomes).

Most of the studies that explored meal timing found that individuals tend to consume food based on preferences according to their chronotype (48, 49, 51, 71). In ETs, most of their energy and macronutrient intake were distributed toward the biological night (82), and clock times for meals were later than those of MTs. The mechanisms of this chronotype–body composition relation are yet to be fully explained; however, it may be hypothesized and in part supported from data of this systematic review that several interconnected mechanisms, including mistimed food intake, lower diet quality, and eating behaviors that favor weight gain and metabolic alterations, have an influence.

Meal skipping, especially breakfast skipping, was also prevalent in ETs. These irregular eating patterns, including later timing of food intake and skipping of meals, seen in ETs may be explained by their later preferred sleep and wake timing (44, 56, 75, 83, 84) and are often in conflict with work time obligations or social demands (85). Those extreme ETs may experience significant misalignment between their internal circadian rhythms and their work hours as well as social demands. For example, during the week, ETs have to wake up early for work and subsequently go to sleep earlier, in contrast with their internal timing, but during the weekends, they stay up longer and wake up later. This difference between sleep and wake times during the week and the weekend has been termed “social jetlag” (86) and may result in adverse health outcomes such as greater risks for obesity and adverse metabolic health outcomes (87).

Such results are exacerbated by too short sleep durations during the week, as often occurs in ETs, because they are more prone to accumulate sleep debt throughout their workweek and consequently attempt to resolve this by altering their sleep schedules over the weekend, resulting in a higher social jetlag and altered circadian rhythms (86, 88). Forced early wake times (for school or work), as often found in ETs, especially in teenagers and young adults, may then lead to redistribution or “catchup” of the skipped meals to later in the day, because “normal” breakfast times would still be closer to their biological night, which is supported similar to the findings from this review. This may support the popular breakfast skipping theory, which poses that those individuals who omit breakfast tend to be hungrier later in the day, leading to an overcompensation of energy intake, especially during the evening (89). This occurs despite ETs and MTs still consuming the same amount of food within 24 h (46, 85). According to Manoogian and Panda (12), the external cues of feeding and fasting can affect metabolic processes. If these cues are disrupted, it can lead to increased risk of disease. Since ETs eat closer to their bedtime, and they wake up late, their fasting period is shortened, which may be more detrimental to their health, potentially delaying digestion. In time-restricted eating (TRE) studies, it was
demonstrated that longer fasting periods are more beneficial for health than shorter ones (12). However, this review found that ET had a longer time interval between the last snack/meal of the day and sleep onset in comparison with IT (75).

Metabolically, ingested calories are optimally used during the morning, possibly due to the higher thermic effect of food in comparison with the evening. When healthy individuals omit breakfast, they are in a fasted state at the beginning of their biological day (90). Consequently, the overnight fasting period is prolonged and an increase in postprandial insulin concentrations and fat oxidation is seen (91). Ultimately, low-grade inflammation and impaired glucose metabolism may result in the development of metabolic inflexibility and weight gain (91). This review found that MTs were more likely to have more regular eating patterns, and this has been linked by another researcher to higher postprandial thermogenesis and lower fasting and total LDL cholesterol (92). This highlights the endogenous circadian control of metabolic responses and the importance of meal timing. Glucose tolerance changes during the day, peaking during the daylight hours when food is normally eaten, and troughs during the night when fasting occurs. Therefore, if ETs shift their eating to later in the day than MTs, they may develop poor glycemic control (93). In comparison, this review found that ETs were at higher risk of adverse metabolic health, as shown by their lower HDL cholesterol and higher triglyceride concentrations, higher metabolic syndrome scores (71), urinary epinephrine concentrations (62, 71), insulin concentrations and HOMA-IR (73), similar to the findings of Lotti et al. (48). Other studies have also linked hormonal alterations and altered glucose metabolism, in conjunction with misaligned eating, as further mechanisms by which ETs are more likely to become overweight/obese and are also at higher risk for preclinical states of diabetes (45, 94–96).

These findings align well with previous studies (not chronotype focused) that have linked aspects of mistimed food intake in humans such as breakfast skipping, late lunch eating, and higher energy intake at dinner with indicators of obesity (97–101).

Energy requirements and the oxidation of macronutrients vary across the 24-h light/dark cycle (102); consequently, the timing of food intake has different effects on energy utilization and as a result may change weight-loss effectiveness and body composition (103, 104). In this systematic review, only 1 study found that consuming a higher amount of energy and proportion of carbohydrates and protein in the morning and during the early part of the day seemed to be protective against developing obesity in MTs. Consuming more energy, protein, and carbohydrates toward the evening in ETs was found to favor weight gain and obesity (77). This reinforced previous studies that showed the detrimental effect of late eating (103). Generally, it seems that the timing of eating in alignment with one’s chronotype could be an important and beneficial factor when considering body composition outcomes (57). When
Eating behaviors may alter energy intake by influencing the types and amounts of foods eaten, timing of food intake, and where food intake occurs, ultimately affecting body weight (33). The ETs often displayed unhealthy eating behaviors such as consuming larger portion sizes, second servings, experiencing more food cravings, emotional- and stress-related eating, and presenting TFEQ scores that reflect unhealthy eating behaviors (71, 73). Studies have found that emotional eaters consumed snacks more often than nonemotional eaters. This suggests that there is a link between diet and body weight that may be mediated in part by dieting behavior. In comparison, MTs showed greater control of their eating behaviors (73). MTs had higher restraint scores (73), which have been linked by other researchers to a higher consumption of “healthy food” such as green vegetables and fewer energy-dense foods such as fats (106), which was also seen in this review.

Other studies showed that insufficient sleep (shorter sleep duration) and being an ET impaired the appetite-regulating hormone leptin (107), as well as increased insulin concentrations (108), which may lead to insulin resistance. Therefore, chronic misalignment of the circadian clocks leads to elevated leptin concentrations during the day and night, possibly due to oversecretion and leptin resistance, which is a vicious circle because, in turn, it can contribute again to overeating (108). These often unhealthy eating behaviors among ETs are further exaggerated by the higher intake of unhealthy, stimulating, and energy-dense foods (56, 59, 63, 70–77, 79). Exploring food group intake differences between chronotypes gives an idea of the micronutrient intakes. The fruit and vegetables intakes of ETs found in this review are far below the World Health Organization guidelines of 5 servings per day (109) and may account for the lower micronutrient intake reported by Sato-Mito et al. (56). The ETs also consumed more caffeine and alcohol. The stimulating effects of these items may account for the higher intake (110). In comparison, MTs reported healthier, nutrient-dense food choices (56, 59, 79). They also displayed more control over their eating behavior, which may account for the higher prevalence of a normal BMI in MTs.

Strengths and Limitations

To our knowledge, this is the most comprehensive review of different dietary elements, including nutrients and energy, but also taking into account food intake, eating patterns, and timing and composition of meals that compare extreme chronotypes with different body compositions. This systematic review has several strengths: first, we included not only dietary intake (energy and macronutrient intakes) and body composition profiles but also eating and behavioral aspects and biomarkers as outcomes for different chronotypes. Second, the formatting of the data tables to compare the different chronotypes allowed a more comprehensive review of the literature, rather than only listing the specific outcomes. Another strength of this systematic review is that it did not include studies that recruited participants with acute, preexisting, and chronic diseases, which may have influenced chronotype.

One limitation of this systematic review was that included studies varied considerably in their classification method of chronotypes, the statistical analysis approach, and study design, which made comparisons between chronotypes challenging. Another limitation was that not all the included studies were designed to assess differences between body composition groups as their main comparator.

Recommendations for Research

Further studies are needed to explore interindividual and personalized optimal meal timing and the distribution of macronutrients at eating occasions with regard to weight management. Such optimization could be alleviated by assessment of the person’s chronotype. In the same vein, the pathogenesis of obesity is not yet fully understood despite decades of research dedicated to the investigation of the underlying mechanisms and the development of successful interventions and treatments. Thus, it is crucial to add emerging evidence that consideration of extreme chronotypes and circadian misalignment is a contributing factor. More research is required to establish whether food intake that is in “misalignment with one’s chronotype” is an important factor to consider (and to potentially address) in weight management. It should also be explored whether food intake should be adapted to chronotype-related wake and sleep–wake timing or whether food intake should simply be prioritized to “day” hours and limited during “night” hours.

In conclusion, this systematic review showed that ETs were more likely to be overweight/obese and have poorer metabolic health in comparison with MTs (and ITs). It also highlighted key areas for clarification; first, this review found limited evidence of detailed assessment of diet quality, micronutrient intakes, food choices, and quantities consumed between chronotypes, as well as an inadequate focus on timing of intake or investigating both in conjunction with eating and other eating behaviors. Such data could inform strategies (e.g., eating in alignment with internal body clocks, improvement of sleep timing and quality, adjusting mealtimes to improve the eating and fasting windows, e.g., TRE) around healthy weight management in the future. This systematic review supports the assumptions that chronotype have an impact on body composition through interconnected
mechanisms, including mistimed food intake, eating behaviors and food choices that favor weight gain, and metabolic alterations.

Acknowledgments
The authors’ responsibilities were as follows—CvdM and RK: designed the research and performed the quality assessment; CvdM: conducted the systematic literature search, performed the data extraction, and wrote the first draft of the paper; CvdM, RK, and MM: were involved in data collection; and all authors: contributed to writing and reviewing the manuscript and read and approved the final manuscript.

References
1. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010;330(6009):1349–54.
2. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest 2011;121(6):2313–41.
3. Garault M, Madrid JA. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 2010;62(9–10):967–78.
4. Caroline Ko, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006;15(Suppl 2):R271–77.
5. Bass J. Circadian topology of metabolism. Nature 2012;491(7424):348–56.
6. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol 1972;146(1):1–14.
7. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, et al. Positional cloning of the mouse circadian clock gene. Cell 1997;89(4):641–53.
8. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999;284(5423):2177–81.
9. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010;72(1):517–49.
10. Youngstedt SD, Kline CE, Elliott JA, Zelinski MR, Devlin TM, Moore TA. Circadian phase-shifting effects of bright light, exercise, and bright light-exercise. J Circadian Rhythms 2016;14:2.
11. Jiang PT, Turek FW. Timing of meals: when is as critical as what and how much. Am J Physiol Endocrinol Metab 2017;325(1):E369–E80.
12. Manoogian EN, Panda S. Circadian rhythms, time-restricted feeding, energetic metabolism, and obesity: a review. J Pineal Res 2014;56(4):371–81.
13. Damiola F, Le Minh N, Prettmann N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000;14(23):2950–61.
14. Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 2010;151(3):1019–29.
15. Challet E. The circadian regulation of food intake. Nat Rev Endocrinol 2019;15(7):393–405.
16. Nelson RJ, Cibbeir S. Dark matters: effects of light at night on metabolism. Proc Nutr Soc 2018;77(3):223–29.
17. Fong M, Caterson ID, Madigan CD. Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br J Nutr 2017;118(8):616–28.
18. McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, Barger LK, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr 2017;106(5):1213–9.
19. St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 2017;135(9):e96–121.
20. Scheer F, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci 2010;107(47):20541–46.
21. Grimaldi D, Carter JR, Van Cauter E, Leproult R. Adverse impact of sleep restriction and circadian misalignment on autonomic function in young healthy adults. Hypertension 2016;68(1):243–50.
22. Morris CJ, Purvis TE, Hu K, Scheer F AJL. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Nat Acad Sci U S A 2016;113:E1402–E11.
23. Depner CM, Melanson EL, McHill AW, Wright KP. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Nat Acad Sci U S A 2018;115(23):E5390–9.
24. Collado MC, Engen PA, Bandin C, Cabrera-Rubio R, Voigt RM, Green SJ, et al. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study. FASEB J 2018;32(4):2060–72.
25. Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. In: Kramer M Merrow Circadian clocks. Heidelberg:Springer; 2013. p. 311–31.
26. Antunes L, Levandovski R, Dantas G, Hidalgo MP. Obesity and shift work: chronobiological aspects. Nutr Rev 2010;23(1):155–68.
27. Morikawa Y, Miura K, Sasaki S, Yohsihita K, Yoneyama S, Sakurai M, et al. Evaluation of the effects of shift work on nutrient intake: a cross-sectional study. J Occup Health 2008;50:270–278.
28. Rouhani HR, Haghhiatdoost F, Surkan PJ, Azadbakht L. Associations between dietary energy density and obesity: a systematic review and meta-analysis of observational studies. Nutrition 2016;32(10):1037–47.
29. Wang J, Luken R, Khat K-T, Bingham S, Wareham NJ, Forouhi NG. Dietary energy density predicts the risk of incident type 2 diabetes: the European Prospective Investigation of Cancer (EPIC)-Norfolk study. Diabetes Care 2008;31(11):2120–25.
30. Esmaillzadeh A, Azadbakht L. Dietary energy density and the metabolic syndrome among Iranian women. Eur J Clin Nutr 2011;65(5):598–605.
31. French SA, Epstein LJ, Jeffery RW, Blundell JE, Wardle J. Eating behavior dimensions. Associations with energy intake and body weight. A review. Appetite 2012;59(2):541–49.
32. Kruger R, De Bray JG, Bock KL, Conlon CA, Stonehouse W. Exploring the relationship between body composition and eating behavior using the Three Factor Eating Questionnaire (TFEQ) in young New Zealand women. Nutrients 2016;8(7):386.
33. Martyn-Nemeth P, Quinn L, Hacker E, Park H, Kujath AS. Diabetes distress may adversely affect the eating styles of women with type 1 diabetes. Acta Diabetol 2014;51(4):683–86.
34. Roenneberg T, Wirz-Justice A. Morningness-eveningness in human circadian rhythms. Int J Chronobiol 2003;18(1):80–90.
35. Adan A, Archer SN, Hidalgo MP, Di Milia L, Natale V, Randler C. Circadian typology: a comprehensive review. Chronobiol Int 2012;29(9):1153–73.
36. Ehret CP. The sense of time: evidence for its molecular basis in the eukaryotic gene-action system. Adv Biol Med Phys 1974;15:47–77.
37. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 1976;4:97–110.
40. Chang A-M, Duffy JF, Ruxton OM, Lane JM, Aeschbach D, Anderson C, et al. Chronotype genetic variant in PER2 is associated with intrinsic circadian period in humans. Sci Rep 2019;9(1):1–10.

41. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, et al. A length polymorphism in the circadian clock gene per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 2003;26(4):413–15.

42. Brown SA, Kunzel D, Dumas A, Westermarck PO, Vanselow K, Tilmann-Wahnschaße A, et al. Molecular insights into human daily behavior. Proc Natl Acad Sci 2008;105(5):1602–1607.

43. Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness—eveningness, usual wake time, and circadian phase. Behav Neurosci 2001;115(4):899–99.

44. Muñoz JSG, Cahavate R, Hernández CM, Cara-Salmerón V, Morante JH. The association among chronotype, timing of food intake and food preferences depends on body mass status. Eur J Clin Nutr 2017;71(6):736–42.

45. Schubert E, Randler C. Association between chronotype and the constructs of the Three-Factor-Eating-Questionnaire. Appetite 2008;51(3):501–505.

46. Meule A, Roeser K, Randler C, Kübler A. Skipping breakfast: morningness—eveningness preference is differentially related to state and trait food cravings. Eat Weight Disord 2012;17(4):e304–e8.

47. Kanerva N, Kronholm E, Partonen T, Ovaskaïnen ML, Kaartinen NE, Konttinen H, et al. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol Int 2012;29(7):920–27.

48. Lotti S, Pagliai G, Colombini B, Sofi F, Dinu M. Chronotype differences in energy intake, cardiometabolic risk parameters, cancer, and depression: a systematic review with meta-analysis of observational studies. Adv Nutr 2022;13(1):269–81.

49. Mazri FH, Manaf ZA, Shahar S, Mat Ludin AF. The association between chronotype and dietary pattern among adults: a scoping review. Int J Environ Res Public Health 2020;17(1):68.

50. Almoosawi S, Vingeliene S, Gachon F, Voortman T, Palla L, Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, et al. Association of habitual dietary intake with morningness—eveningness preference, and obesity. Chronobiol Int 2016;33(8):972–81.

51. Teixeira GP, Mota MC, Crispim CA. Eveningness is associated with skipping breakfast and poor nutritional intake in Brazilian undergraduate students. Chronobiol Int 2018;35(3):358–67.

52. De Amics R, Galasso I, Leone A, Vignati L, De Carlo G, Foppiani A, et al. Is abdominal fat distribution associated with chronotype in adults independently of lifestyle factors? Nutrients 2020;12(3):592.

53. Baron KG, Reid KJ, Horn LV, Zee PC. Contribution of evening macronutrient intake to total caloric intake and body mass index. Appetite 2013;60(1):246–51.

54. Beaulieu K, Ouistre P, Alkahtani S, Alhussain M, Pedersen H, Quist JS, et al. Impact of meal timing and chronotype on food reward and appetite control in young adults. Nutrients, 2020;12(5):1506.

55. Muscogiuri G, Barrea L, Aprano S, Frondoni L, Di Matteo R, Laudisio D, et al. Chronotype and adherence to the Mediterranean diet in obesity: results from the Opera Prevention Project. Nutrients 2020;12(5):1354.

56. Vera B, Dashki HS, Gómez-Abellán P, Hernández-Martínez AM, Esteban A, Scheer FA, et al. 1 – 11 Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes. Sci Rep 2018;8(1).

57. Culnan E, Kloss JD, Grandner M. A prospective study of weight gain associated with chronotype among college freshmen. Chronobiol Int 2013;30(5):682–90.

58. Lázár AS, Slak A, Lo JC-Y, Santhi N, Von Schantz M, Archer SN, et al. Sleep, diurnal preference, health, and psychological well-being: a prospective single-allele-variation study. Chronobiol Int 2012;29(2):131–46.

59. Li W, Wu M, Yuan F, Zhang H. Sugar beverage consumption mediates the relationship between late chronotype, sleep duration, and weight increase among undergraduates: a cross-sectional study. Environ Health Prev Med 2018;23(1):63.

60. Baron KG, Reid KJ, Knight H, Konttinen H, Wennman H, et al. The associations between chronotype, a healthy diet and obesity. Chronobiol Int 2016;33(8):972–81.
81. Stunkard AJ, Messick S. The Three-Factor Eating Questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985;29(1):71–83.
82. Qin LQ, Li J, Wang Y, Wang J, Xu JY, Kaneko T. The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci 2003;73(19):2467–75.
83. Kanerva N, Kronholm E, Partonen T, Ovaskainen ML, Kaartinen NE, Konttinen H, et al. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol Int 2014;31(1):64–71.
84. Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovás JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr 2015;6(6):648–59.
85. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int 2006;23(1–2):497–509.
86. Covassin N, Singh P, Somers VK. Keeping up with the clock. Hypertension 2016;68(5):1081–90.
87. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 2014;31(1):64–71.
88. Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovás JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr 2015;6(6):648–59.
89. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int 2006;23(1–2):497–509.
90. Covassin N, Singh P, Somers VK. Keeping up with the clock. Hypertension 2016;68(5):1081–90.
91. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 2014;31(1):64–71.
92. Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovás JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr 2015;6(6):648–59.
93. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int 2006;23(1–2):497–509.
94. Covassin N, Singh P, Somers VK. Keeping up with the clock. Hypertension 2016;68(5):1081–90.
95. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 2014;31(1):64–71.