Intra-specific diversity of *Serratia marcescens* in *Anopheles* mosquito midgut defines *Plasmodium* transmission capacity

Hironori Bando¹,², Kiyoshi Okado¹,², Wamdaogo M. Guelbeogo³, Athanase Badolo³,⁴, Hiroka Aonuma¹,², Bryce Nelson⁵, Shinya Fukumoto⁶, Xuenan Xuan⁶, N’Fale Sagnon³ & Hirotaka Kanuka¹,²

¹Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan, ²National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan, ³Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso, ⁴Université de Ouagadougou, Burkina Faso, ⁵Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada.

A critical stage in malaria transmission occurs in the *Anopheles* mosquito midgut, when the malaria parasite, *Plasmodium*, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against *Plasmodium*, we focus on a midgut bacteria species’ intra-specific variation that confers diversity to the mosquito’s competency for malaria transmission. *Serratia marcescens* isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit *Plasmodium* development within the mosquito midgut. Furthermore, this anti-*Plasmodium* function conferred by *Serratia marcescens* requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, *flhDC*. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito.

The transmission cycle of the malaria parasite in vector *Anopheles* mosquitoes begins with ingestion of a blood meal containing infective *Plasmodium* gametocytes. The malaria parasite undergoes substantial stage-specific losses during development within the midgut, to a level whereby in some cases complete refractoriness by the mosquito against the malaria parasites can be seen. Indeed, despite a large number of gametocytes transferred into the mosquito midgut via the blood meal, typically only a few ookinetes (<5) survive to produce oocysts after traversing the midgut wall. Accordingly, several trials of mosquito-based malaria control have been to interfere with parasite transmission mechanisms within mosquitoes¹. While previous reports have demonstrated applicability of using genetic transformation to develop *Anopheles* mosquitoes impaired in parasite transmission²–⁴, previous findings showing decreased genetic fitness of transgenic mosquitoes points to difficulties in fixing transgenes in populations⁵. Consequently, interest has turned to the use of microorganisms as biological control agents for vector mosquitoes⁶–⁷.

Vector competence for the development of *Plasmodium* parasites within the mosquito midgut is affected by a variety of intrinsic factors⁸–¹⁰; in particular, the midgut microbiota have been reported to be important in modulating *Plasmodium* infection¹¹–¹². A particular species of Gram-negative bacteria suppressed *P. falciparum* oocyst formation more effectively than Gram-positive bacteria in the major African and Asian malaria vectors, *An. gambiae*, *An. stephensi*¹²–¹³. The mosquito’s innate immune and other cellular responses to the *Plasmodium* parasite was revealed to be mediated by such microbiota by inter-species comparisons of each bacteria’s ability to inhibit *Plasmodium* development¹⁴–¹⁸.

Bacterial colonization of the intestine is achieved upon indefinite persistence of a population, without re-introduction of the bacterium in vertebrates. On the other hand, bacterial colonization of the mosquito midgut relies on the mosquito habitat and its feeding preference due to its holometabolous nature. The dramatic difference in habitats between larval and adult stages coupled with the inefficient transmission of bacteria from the larva to the adult stages results in a highly diverse microbiotic content¹⁹, leading to the notion that each
bacteria species present within the mosquito midgut likely contains high phenotypic plasticity. Whether the resulting intra-species variation can influence malaria transmission through the mosquito midgut remains unknown. Here we focus on the intra-specific diversity of the midgut bacterial species *Serratia marcescens* and showed that phenotypic diversity of this bacteria’s cellular and structural features was regulated by *flhDC* operon and correlated with its ability to modulate the *Anopheles* mosquito’s vector competency for *Plasmodium* parasite transmission.

Results

Serratia marcescens reduces the *Plasmodium* parasite load in *Anopheles* mosquitoes. In nature, the mosquito midgut contains diverse communities of commensal microorganisms. To develop a microbiota-resource to understand bacterial diversity within the mosquito midgut, the bacteria isolated from the midguts of laboratory-reared, adult *An. stephensi* were identified by 16S ribosomal RNA (rRNA) sequencing. Of the isolated bacteria, *Serratia marcescens* (strain HB3) appeared to be the primary species (Tables S1, S2). It was not surprising considering that bacteria of the genus *Serratia* are ubiquitous in nature including inside of disease vector species.

To investigate potential influence of *S. marcescens* on *Plasmodium* development within the mosquito, we prepared aseptic mosquitoes through antibiotics delivered during sugar feeding (Fig. S1B). Upon challenge with *P. berghei* these aseptic mosquitoes were found to be more susceptible to *P. berghei* infection compared to naïve mosquitoes (Fig. 1A and data not shown). When *S. marcescens* HB3, transformed with a streptomycin-resistance plasmid, was reintroduced into the aseptic mosquitoes through feeding, this bacteria was cleared quickly from the mosquito to such a degree whereby no mosquitoes contained detectable *S. marcescens* HB3 in the midgut 3 days after bacterial feeding (Fig. S1A). Thus, in the following infection studies, mosquitoes were allowed to feed continuously on a solution containing *S. marcescens* HB3 (Fig. S1B, C). Consistent with a previously reported negative influence of Gram-negative bacteria on *Plasmodium* development, *S. marcescens* HB3 inhibited *P. berghei* oocyst formation in *An. stephensi* (Fig. 1A); nearly 10-fold more oocysts developed in aseptic mosquitoes than those containing live mosquitoes.

![Figure 1](https://www.nature.com/scientificreports/)

Figure 1 | Serratia marcescens reduces the Plasmodium parasite load in Anopheles mosquitoes. (A) *P. berghei* oocyst counts in the midgut 8 days after *An. stephensi* mosquitoes were fed on a *P. berghei*-infected mouse. Circles (red) represent the number of parasites from an individual mosquito, and horizontal lines indicate the median. ***p < 0.001, Mann-Whitney test. (n = 100/group). (B and C) *P. berghei* ookinete counts in the midgut lumen 16 and 20 hours (B) and midgut epithelium 20 and 24 hours (C) after mosquitoes were fed on a *P. berghei*-infected mouse. Error bars show standard deviation. ***p < 0.001; n.s., not significant, unpaired t-test. (n = 50/group). (D) Effect of heat-inactivated *S. marcescens* HB3 on *P. berghei* load in *An. stephensi* mosquitoes. Oocyst numbers were determined as in (A). ***p < 0.001; n.s., not significant, Mann-Whitney test. (n = 50/group). anti-, antibiotics treatment; HB3, *S. marcescens* HB3 treatment; HIA-HB3, heat-inactivated *S. marcescens* HB3. The experiments in (A) to (D) were performed more than once with similar results.
S. marcescens HB3 ($p < 0.001$) compared to aseptic control mosquitoes, suggesting that Serratia species in the midgut lumen exert anti-Plasmodium effects.

Serratia marcescens influence on mosquito susceptibility to Plasmodium parasites occurs during ookinite invasion. Two well-known population bottlenecks in Plasmodium-infected mosquitoes involve ookinite invasion of the midgut and sporozoite invasion of the salivary glands25. To investigate the timing of the observed parasite inhibition, we monitored the development of Plasmodium ookinetes in the presence of S. marcescens HB3. No difference in numbers of ookinetes in the midgut lumen could be seen between aseptic and S. marcescens HB3 containing mosquitoes 16 hours after blood ingestion (Fig. 1B). Interestingly, 20 hours after blood feeding, 5-fold more ookinetes remained in the midgut lumen compared to control mosquitoes ($p < 0.001$) (Fig. 1B). The morphology of ookinetes was similar in each cohort (data not shown). In contrast, the number of ookinetes observed within the midgut epithelium was approximately 8-fold higher in aseptic mosquitoes ($p < 0.001$), compared to the bacteria-containing cohort (Fig. 1C). Taken together, these results suggest that S. marcescens exerts its influence on Plasmodium development during ookinite invasion of the mosquito midgut.

Serratia marcescens exerts non-immune anti-Plasmodium activity. In Drosophila, the NF-kB-related transcription factors Relish and Dif are involved in immune signaling through transcriptional activation of immune related genes including those encoding the antimicrobial peptides (AMPs)26. The Toll and IMD signaling pathways activate distinct members of the NF-kB family for combating infections by fungi and bacteria27,28. Previous reports also indicate that vector mosquitoes rely on NF-kB-mediated immunity to regulate both bacterial and Plasmodium infections18. As previously reported, Gram-negative bacteria activated IMD pathway and heat-inactivated (HIA) Gram-negative bacteria inhibited Plasmodium oocyst formation in mosquitoes29,30. Surprisingly, neither mosquitoes challenged with HIA S. marcescens HB3 or bacterial supernatant showed resistance to Plasmodium development (antibiotics vs. HIA-HB3, $p = 0.063$ and HB3 vs. HIA-HB3, $p < 0.001$) (Fig. 1D and data not shown), suggesting bacteria are conferring resistance to Plasmodium development by means not involving the innate immune response. In addition, no significant induction of the AMPs As defensin and As ceporin A was observed in S. marcescens HB3, HB18, or HB3 flagella-fed mosquitoes (Fig. S5). Although still another possibility is that innate immunity could serve for attacking these parasites within microenvironments such as insect gut surface with complex structure, it suggests that S. marcescens HB3 may confer resistance to Plasmodium development through means unrelated to the innate immune response.

Phenotypic variation of Serratia marcescens affects Plasmodium inhibition. After observing rapid clearance of S. marcescens HB3 from the mosquito midgut (Fig. S1A) we sought to create a new S. marcescens strain with cellular phenotypes that might affect both bacterial clearance rates as well as Plasmodium load. A previous report indicates that midgut microbiota has an important role to digestion, nutrition, and development of mosquito31. In the case of using an experimental procedure that compares aseptic and S. marcescens HB3-exposed mosquitoes, gut nutritional status modulated by microbe vital activity might influence Plasmodium development. To isolate a S. marcescens strain adapted to the mosquito midgut, unlike the rapidly eliminated HB3 (Fig. S1A), bacteria recovered from the midgut 3 days after feeding with HB3 were subjected to multiple rounds of selection in vivo (Fig. S2A). Accordingly, a S. marcescens strain, HB18, which survived in the mosquito midgut up to 18 days, was isolated (Fig. S2B-D). We next examined the capacity of S. marcescens HB18 to influence Plasmodium development and found that HB18 completely lost the ability to inhibit Plasmodium development (antibiotics vs. HB18, $p = 0.105$) (Fig. 2A). Considering S. marcescens HB18 is derived from S. marcescens HB3, this result suggests that phenotypic diversity likely plays a role in S. marcescens’ influence on Plasmodium development.

S. marcescens HB18 phenotypic diversity related to flhDC operon. Since the S. marcescens strain HB18 appeared to be retained within the mosquito midgut upon introduction we investigated the mechanisms behind its ability to establish a stable population. Thus we examined the cellular properties of S. marcescens HB18 in relation to its colonization of the midgut environment. Swarming motility is a social form of migration that, like swimming motility, is driven by rotating flagella that results in rapid movement. Swimming on a surface occurs when the fluid film is sufficiently thick and the cells move individually and randomly. On the other hands, Swarming is continuous and regularly follows the long axis of the cells, which are predominantly aggregated in bundles during their movement31. S. marcescens HB3 showed high swimming and swimming motility, whereas, HB18, an efficient midgut colonizer, was completely immobile (Fig. S3A, B). Consistent with previous findings showing that swarming cells have dramatically increased numbers of flagella on their larger overall cell surface than their swimming counterparts32. S. marcescens HB3 exhibited large cell size variation with many flagella, while HB18 appeared subglobular and non-flagellar (Figs. 2B, C ($p < 0.001$), 3C).

Establishment and maintenance of the commensal microflora is a complex and multi-factorial process and some reports indicate a reciprocal interaction between the flhDC operon-regulated bacterial phenotypes and colonization ability of the bacteria in the intestine33–35. Enterobacteriaceae including the Serratia genus are generally motile and produce flagella, with over 50 genes involved in the process including cell division, cell differentiation, swimming/swimming motility, and virulence genes36–41. The single class 1 operon comprised of the flhDC genes, a master operon of the flagellar transcriptional cascade42. Mutations and deletions of flhDC operon are found in some types of non-motile bacteria lacking flagella, such as Shigella43, therefore we examined the transcriptional level of flhDC in S. marcescens HB18. Indeed, expression of flhDC was found to be dramatically lower in the non-motile, non-flagellar S. marcescens HB18 strain (Fig. 2D). Comparison between the HB3 and HB18 strains revealed identical coding regions (data not shown). However, a single nucleotide substitution and two insertion mutations within the −35 consensus promoter element of flhDC of S. marcescens HB18 were found, likely explaining the loss of transcription seen in this strain (Fig. 3A). This data points to a genetic mechanism behind intra-specific diversity that directly influences colonization ability of a vector midgut species.

flhDC-regulated bacterial phenotypes correlate with anti-Plasmodium function. In order to verify that mutations identified in the promoter region of HB18 were responsible for observed reduced expression of flhDC, the flhDC coding region behind control of the HB3 promoter sequenced was expressed in S. marcescens HB18. Together with the increased flhDC mRNA expression (Fig. 3B), we also observed a restoration of cell length indicating the observed phenotypic diversity was caused by lowered flhDC expression (Fig. 3C–E).

Since the HB3 length phenotype was rescued upon flhDC expression, we examined if the HB3-conferring anti-Plasmodium activity was also restored. Indeed, S. marcescens HB18 transformed with flhDC plasmid recovered its ability to inhibit Plasmodium oocyst formation (Fig. 3F); 3.9-fold fewer oocysts developed in mosquitoes fed on S. marcescens HB18 (flhDC+) ($p < 0.001$) compared to the HB18-infected mosquitoes. Additionally, the S. marcescens HB18 (flhDC+) also reverted to the wild type phenotype in other properties that included ability to colonize the mosquito midgut and effect on
Intra-species variation of *S. marcescens* is associated with vectorial competency in a malaria endemic area. To explore whether intra-specific diversity of *S. marcescens* is associated with vectorial competency of *Plasmodium*-transmitting mosquitoes in malaria endemic areas, we analyzed the microbiota in the midgut of wild mosquitoes (*An. gambiae*) collected in Burkina Faso, a country with frequent outbreaks of malaria (Table S3). Among seven Gram-negative bacterial species isolated, six strains of *S. marcescens* were identified based on their 16S rRNA sequence and conventional phenotypic identification by Gram staining, culture, and biochemical methods (Table S3). Diversity in cell length could be seen from bacteria taken from midguts of wild mosquitoes with Gd-17 length approaching that of HB3 (Fig. 4A–C). On the other hand, there was a similar bias toward shorter cells that we observed in *S. marcescens* HB18 for a subpopulation of strains (Gu-11, Gd-6, and Gd-9). In addition, the cell size of *S. marcescens* HB18 compared to HB3, **16S rRNA**

Figure 2 | Serratia marcescens without phenotypic diversity loses its *Plasmodium* inhibitory ability. (A) *P. berghei* oocyst counts on the *An. stephensi* midgut 8 days after mosquitoes fed on *P. berghei*-infected mice. Circles (red) represent the number of parasites from an individual mosquito, and horizontal lines indicate the median.

Discussion

Effective malaria control strategies targeting vector mosquitoes currently include insecticide treatment delivered through spraying of houses or insecticide-impregnated mosquito nets. While these methods are effective at decreasing mosquito numbers, they also contribute to the rise of insecticide-resistance vector species. An alternative strategy involves inhibition of *Plasmodium* development within the mosquito. One such strategy involves release of transgenic mosquitoes resistant to *Plasmodium* that could compete with wild populations, however, transgenes have proven difficult to fix in populations. In response to this problem, symbiotic bacteria have been proposed as paratransgenic tools for control of malaria that act mainly by killing *Plasmodium* ookinetes/oocysts in the mosquito midgut. However, new problems associated with resistance of *Plasmodium* parasite may easily emerge during the paratransgenesis of the mosquito since the principal mode of action is to attack/kill the pathogen between cell length and oocyst number could be seen (Fig. 4D, E); five different strains significantly inhibited *P. berghei* oocyst development in *An. stephensi* (78.3% (Gu-1), 48.9% (Gu-11), 58.4% (Gd-6), 80.6% (Gd-17), and 67.4% (Ku-3) fewer oocysts than that of HB18) (**0.01**). Significant positive correlations were found between the average number of oocysts in the midgut and the cell size diversity index (**0.7449**, **p < 0.01** or the average length of cells (**0.7142**, **p < 0.01**), indicating that longer cells exhibit a more potent inhibitory effect on *Plasmodium* development. Despite the natural variation of cell length, it appears that cells tending to be longer, even in nature, exhibit potent inhibitory effects on *Plasmodium* development.

Effective malaria control strategies targeting vector mosquitoes currently include insecticide treatment delivered through spraying of houses or insecticide-impregnated mosquito nets. While these methods are effective at decreasing mosquito numbers, they also contribute to the rise of insecticide-resistance vector species. An alternative strategy involves inhibition of *Plasmodium* development within the mosquito. One such strategy involves release of transgenic mosquitoes resistant to *Plasmodium* that could compete with wild populations, however, transgenes have proven difficult to fix in populations. In response to this problem, symbiotic bacteria have been proposed as paratransgenic tools for control of malaria that act mainly by killing *Plasmodium* ookinetes/oocysts in the mosquito midgut. However, new problems associated with resistance of *Plasmodium* parasite may easily emerge during the paratransgenesis of the mosquito since the principal mode of action is to attack/kill the pathogen.
itself. In this study, we showed that *S. marcescens* HB3 interrupted ookinete invasion through the midgut rather than by killing *Plasmodium* parasites (Fig. 1A–C) suggesting that parasite entry into the mosquito midgut epithelial cells might be an effective target stage for blocking *Plasmodium* development that can be used in combination with complementary malaria control strategies.

Toward the development of a novel paratransgenic strategy, symbiotic bacteria should possess two sustained abilities: to inhibit *Plasmodium* development and to survive within the mosquito midgut for long periods after a single introduction. Bacteria living in nature are constantly subjected to stress and respond to them phenotypically by modulating their gene expression profile. In this report, we showed that a bacterial species inhabiting a constrained environment—the mosquito midgut—exhibited intra-specific variations including conferred resistance to resist *Plasmodium* infection by the host. Because the mosquito is a holometabolous insect, bacterial colonization of its midgut is an opportunistic event, thus, diversity of *S. marcescens* phenotypes inside the mosquito may depend greatly on intrinsic stresses of the enclosed environment. In fact, the anti-*Plasmodium* strain *S. marcescens* HB3 needs to be continuously introduced to the vector to exert this ability, suggesting that exclusion mechanisms in the mosquito, including its innate immunity, constrict these "prominent" bacteria populations. To obtain midgut bacteria that retain anti-*Plasmodium* function and the ability to colonize the mosquito midgut under such stress conditions, comparison analyses to determine the intra-species diversity of ubiquitous bacterial genus in nature may be an efficient method for uncovering useful...
candidate genes, molecules, or mechanisms (e.g., ROS) for *Plasmodium* inhibition.

In this study the *flhDC* locus was found to be central to both colonization ability and anti-*Plasmodium* activity in a converse relationship; lowered colonization ability was inversely related to anti-*Plasmodium* activity. It remains to be determined if these two processes can be separated in attempt to find strains able to colonize mosquito midguts in a single infection that would confer anti-*Plasmodium* activity to its host. The finding of a central role for the *flhDC* locus suggests molecular mechanisms that could be manipulated in attempt to discover or make strains of commensal bacteria as effective adjuncts to current methods of malaria prevention and treatment.

Methods

Ethics statement. This study was carried out in strict accordance with the recommendations in the Guide for the Laboratory Animals of the Obihiro University...
and streptomycin (0.1 mg/ml)). Overnight and mixed in 10% sucrose containing antibiotics (penicillin (100 units/ml) and dry forest in Burkina Faso in November 2008. The mosquitos were collected from three different villages (Goundry, Goden, Koubri) within the Sudan–Sahelian ecological zone of tropical shrubland and dry forest in Burkina Faso in November 2008. The mosquitos were collected indoors using an aspirator to avoid damaging the bacterial flora in the mosquito midgut, as previously described. Blood-fed female An. gambiae mosquitos were identified by their morphological characteristics. The laboratory-reared mosquitos (An. stephensi) were collected from the breeding cage using an aspirator. Individual mosquitos (An. gambiae or An. stephensi) were surface-sterilized in 70% ethanol for 5–10 min, and rinsed three times in sterile phosphate-buffered saline (PBS). The midgut was isolated and homogenized in 200 μl sterile PBS. The midgut homogenate was spread on Trypticase soy agar (TSA) supplemented with 5% sheep blood, as a nonspecific medium for isolating midgut bacteria, and incubated at 37°C under aerobic conditions for 24 hours. Individual bacterial colonies with distinct morphologies were subcultured for species identification both by standard biochemistry analysis and by polymerase chain reaction (PCR) amplifying the variable region of the 16S ribosomal RNA gene using universal bacterial primers 27F and 1492R. All isolates were analyzed with the STORM Bioimager (Amersham) and quantified with the ImageJ software (NIH).

Analysis of bacterial phenotypes. Bacterial cell sizes were compared by microscopic analysis of gram-stained cell smears. In addition, flagella formation was examined using transmission electron microscopy (TEM) and cell length was examined using scanning electron microscopy (SEM). To measure the motility of S. marcescens, a swimming motility assay was performed on motility agar (LB medium solidified with 0.35% agar) by sterile needle inoculation from an overnight culture of S. marcescens into the center of an agar plate surface, followed by incubation at 30°C. The swarming motility was assayed on swarming agar plates (LB medium solidified with 0.8% agar) by inoculating 3 μl of an overnight broth culture of S. marcescens onto the center of the agar plate surface and incubating at 30°C. The motility and migration distances were recorded hourly. To rescue the flhDC expression of S. marcescens HB18, a plasmid pGFPuvsm (flhDC+) was constructed as follows. A fragment (1590 bp) from the S. marcescens HB3 flhDC gene containing both the proximal promoter and the coding region was amplified using the primer pair 5′-CTT CAG AAC TGG GCA-3′ and 5′-TTG CAG CAT CAG GCC-3′. The fragment was inserted into the SfiI/BglII site of pGFPuv to generate pGFPuvsm (flhDC+), which was electroporated into S. marcescens HB18 using a BioRad Gene Pulser (25 μF, 2.5 kV, and 200 Ω).

Invasive challenge of mosquito with bacteria. Microbial challenge was performed as previously described. Before injection, the S. marcescens-containing medium was adjusted to the appropriate concentration (0.01 OD for mosquito) with culture medium using Gene Quant pro (Amersham). Female An. stephensi were anesthetized with CO2 and injected with each strain of bacteria in 65 nl of medium. Injection was carried out using an individually calibrated pulled glass needle attached to an IM-300 microinjector (Narishige). Mosquitoes were injected in the abdomen, close to the junction with the thorax and just ventral to the junction between the dorsal and ventral cuticles. After injection, the insects were transferred to fresh cages.

Northern blot analysis. Two different probes corresponding to flhDC were generated by PCR using primers (flhD-PF and flhD-PR for flhDC) (Table S4) and used for Northern analysis to target the flhDC mRNA molecules. Total RNAs were isolated from S. marcescens, using Max Bacterial Enhancement Reagent (Invitrogen). Northern blotting was performed as previously described. The flhDC expression was analyzed with the STORM Bioimager (Amersham) and quantified with the ImageJ software (NIH).

Quantitative real-time PCR. Mosquito samples were prepared by the same methods for experimental challenge of mosquito with bacteria. Total RNA was extracted from 70–80 dissected mosquito midguts. DNA removal and total RNA isolation was performed with the TRizol® (Life Technologies) as per manufacturer’s instructions. Reverse transcription and PCR reactions were performed on an ABI StepOnePlus (Applied Biosystems) using the Taqman RNA-to-CT 1-Step Kit (Applied Biosystems), following the manufacturer’s instructions and with the following cycle conditions: 48°C–13 min, 95°C–10 min; 40 cycles of 95°C–15 s, 60°C–1 min. Primers were as follows: 5′-CTT CAG AAC TGG GCA-3′ and 5′-TTG CAG CAT CAG GCC-3′, 5′-TTC GAG A3-3′, TaqMan probe 5′-CTC TCC CGG TGG CAG G-3′, reverse 5′-TCT CTT CAT CAC AGA GCC TGG TCC-3′, as defense, forward 5′-GTC GGC AGC AGC CTT TGT-3′, TaqMan probe 5′-CCG GGC ATT CCA TGG CTC G-3′, reverse 5′-TTC GAG TAT CCG CCA CCA CAG T-3′. Real-time PCR was monitored and analyzed with StepOne Software version 2.1 (Applied Biosystems). Results of single quantitations were assigned based on a standard curve generated by serial dilution of RNA from S. marcescens HB3-injected mosquitoes. All samples were run in quadruplicate and AMP relative quantitations were standardized to amount of total RNA.
Analysis of microbiota from the mosquito midgut. DNA extraction and clone library construction were carried out as previously described with the following modifications. Briefly, DNA was extracted from 20 dissected midguts in laboratory-reared mosquitoes using the DNeasy Blood & Tissue kit (Qiagen) and 16S rRNA genes were amplified using primers 8F and 1490R (Table S4). PCR amplicons were purified with a QIAEX II gel extraction kit (Qiagen) and then used in a second PCR reaction employing primers 8F and 530R (Table S4). PCR products were then cloned into E. coli DH5α using pGEM-T Easy Vectors (Promega) and 107 clones were picked for sequencing. Clones were sequenced and blasted against 16S ribosomal RNA sequences database to verify the species.

1. Atkinson, P. W. & Michel, K. What’s buzzing? Mosquito genomics and transgenic mosquitoes. *Genesis* 32, 42–48 (2002).
2. Grossman, G. L. et al. Germline transformation of the malaria vector, *Anopheles gambiae*, with the piggyBac transposable element. *Insect Mol Biol* 10, 597–604 (2001).
3. Catteruccia, F. et al. Stable germline transformation of the malaria mosquito *Anopheles stephensi*. *Nature* 405, 596–920 (2000).
4. Ito, J., Ghosh, A., Moreira, A. L., Wimmer, E. A. & Jacobs-Lorena, M. Transgenic *Aedes aegypti* using pGEM-T Easy Vectors (Promega) (2008).
5. Bruce, T. SCIENTIFIC library construction were carried out as previously described with the following modifications. DNA extraction and clone library construction were carried out as previously described with the following modifications. Briefly, DNA was extracted from 20 dissected midguts in laboratory-reared mosquitoes using the DNeasy Blood & Tissue kit (Qiagen) and 16S rRNA genes were amplified using primers 8F and 1490R (Table S4). PCR amplicons were purified with a QIAEX II gel extraction kit (Qiagen) and then used in a second PCR reaction employing primers 8F and 530R (Table S4). PCR products were then cloned into E. coli DH5α using pGEM-T Easy Vectors (Promega) and 107 clones were picked for sequencing. Clones were sequenced and blasted against 16S ribosomal RNA sequences database to verify the species.
6. Riehle, M. A., Moreira, C. K., Lampe, D., Lauzon, C. & Jacobs-Lorena, M. Using *Aedes aegypti* as a model system to understand midgut symbionts (2006).
7. Riehle, M. A., Moreira, C. K., Lampe, D., Lauzon, C. & Jacobs-Lorena, M. Using *Aedes aegypti* as a model system to understand midgut symbionts (2006).
8. Vlachou, D., Schlegelmilch, T., Christophides, G. K. & Kafatos, F. C. Functional genomic analysis of midgut epithelial responses in *Anopheles* during Plasmodium invasion. *Curr Biol* 15, 1185–1195 (2005).
9. Meister, S. et al. Anopheles gambiae PGPR-L-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites. *PLoS Pathog* 5, e1000542 (2009).
10. Gonzalez-Ceron, I., Santillan, F., Rodriguez, M. H., Mendez, D. & Hernandez-Raygoza, A. B. Microbial diversity of Anopheles albimanus blood meal: Plasmodium vivax sporogonic development. *J Med Entomol* 40, 371–374 (2003).
11. Cimrnoch, C. M. et al. Natural Microbe-Mediated Refractoriness to Plasmodium Infection in *Anopheles gambiae*. *Science* 332, 855–858 (2011).
12. Pumpuni, C. B., Beier, M. S., Nataro, J. P., Guers, L. D. & Davis, J. R. Plasmodium *falciparum* sporogonic development. *J Med Entomol* 40, 371–374 (2003).
13. Boissière, A. & dimopoulos, g. Implication of the mosquito midgut microbiota in infections with human malaria parasites. *Nat Rev Microbiol* 16, 1135–1138 (2016).
14. Tominga, A., Lan, R. & Reeves, P. R. Evolutionary changes of the *ffhDC* flagellar master operon in *Shigella* strains. *J Bacteriol* 187, 4295–302 (2005).
15. Riehle, M. A. & dimopoulos, g. A cryptic subgroup of *Anopheles gambiae* is highly susceptible to human malaria parasites. *Science* 331, 596–598 (2011).
16. Smits, W. K., Kuipers, O. P. & Veenings, J. W. Phenotypic variation in bacteria: the role of regulation feedback. *Nat Rev Microbiol* 4, 259–271 (2006).
17. Ishino, T., Orito, Y., Chinezy, Y. & Yuda, M. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. *PLoS Microbiol* 6, e1000542 (2009).
18. Verstraeten, N. et al. Living on a surface: swimming and biofilm formation. *Trends Microbiol* 16, 496–506 (2008).
19. Suzuki, H. et al. Culture-dependent and culture-independent characterization of *Anopheles gambiae* midgut microbiota. *PLoS Pathog* 7, 596–598 (2011).
20. Henrichsen, J. Bacterial surface translocation: a survey and a classification. *FEMS Microbiol Rev* (Musca domestica L.).
21. Bruce, T. SCIENTIFIC library construction were carried out as previously described with the following modifications. DNA extraction and clone library construction were carried out as previously described with the following modifications. Briefly, DNA was extracted from 20 dissected midguts in laboratory-reared mosquitoes using the DNeasy Blood & Tissue kit (Qiagen) and 16S rRNA genes were amplified using primers 8F and 1490R (Table S4). PCR amplicons were purified with a QIAEX II gel extraction kit (Qiagen) and then used in a second PCR reaction employing primers 8F and 530R (Table S4). PCR products were then cloned into E. coli DH5α using pGEM-T Easy Vectors (Promega) and 107 clones were picked for sequencing. Clones were sequenced and blasted against 16S ribosomal RNA sequences database to verify the species.
22. Chavshin, A. R. et al. Identification of bacterial flora midgut in the midgut of the larvae and adult of wild caught *Anopheles stephensi*: a step toward finding suitable para-transgenesis candidates. *Acta Trop* 121, 129–134 (2012).
23. Koo, S. Y. & Cho, K. S. Isolation and characterization of a plant growth-promoting rhizobacterium, *Serratia* sp. SVS, *J Microbiol Biotechnol* 19, 1431–1438 (2009).
24. Bruce, T. et al. Bacterial community diversity in the Brazilian Atlantic forest soils. *Microb Ecol* 60, 840–849 (2010).
25. Geiger, A., Fardeau, M. L., Falsen, E., Ollivier, B. & Cuny, G. Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. *Int J Syst Evol Microbiol* 51, 1261–1265 (2001).
26. Azambuja, P., Fedor, D. & Garcia, E. S. Isolation of *Serratia marcescens* in the midgut of *Rhodinus prolixus*: impact on the establishment of the parasite *Trypanosoma cruzi* in the vector. *Exp Parasitol* 107, 89–96 (2004).
27. Gusmão, D. S. et al. Culture-dependent and culture-independent characterization of microorganisms associated with *Aedes aegypti* (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the *Aedes aegypti* midgut. *Acta Trop* 115, 275–281 (2010).
28. Sinden, R. E. & Billingsley, P. F. Plasmodium invasion of mosquito cells: hawk or dove? *Trends Parasitol* 17, 209–211 (2001).
29. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. *Nat Immunol* 3, 121–126 (2002).
A.B., S.F. and N.F.S. contributed to the field work in Burkina Faso, data analysis, and discussion. K.O. performed the molecular and genetic experiments. H.B., B.N., H.A. and H.K. wrote the manuscript that was edited by all other co-authors. X.X. and H.K. supervised the study.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Bando, H. et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci. Rep. 3, 1641; DOI:10.1038/srep01641 (2013).