Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase

Rodjana Opassiri¹, Busarakum Pomthong¹, Tassanee Onkoksoong¹, Takashi Akiyama², Asim Esen³ and James R Ketudat Cairns*¹

Address: ¹Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand, ²Department of Low-Temperature Science, National Agricultural Research Center for Hokkaido Region, Sapporo 062-8555, Japan and ³Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA

Email: Rodjana Opassiri - opassiri@hotmail.com; Busarakum Pomthong - busarakum.p@yahoo.com; Tassanee Onkoksoong - onkoksoong@yahoo.com; Takashi Akiyama - takiyama@affrc.go.jp; Asim Esen - aevatan@vt.edu; James R Ketudat Cairns* - cairns@sut.ac.th

* Corresponding author

Abstract

Background: Glycosyl hydrolase family 1 (GH1) β-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1 β-glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GH1 members, their expression and the activity of one of them, to begin to decipher their roles in rice.

Results: Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3–6 glucose residues and laminaribiose.

Conclusion: Careful analysis of the database sequences produced more reliable rice GH1 gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only a few of their functions could be implied from those of GH1 enzymes from Arabidopsis and other dicots. This implies that analysis of GH1 enzymes in monocots is necessary to understand their function in the major grain crops. To begin this analysis, Os4bglu12 β-glucosidase was characterized and found to have high exoglucanase activity, consistent with a role in cell wall metabolism.
Background

β-glucosidases (3.2.1.21) are glycosyl hydrolases that hydrolyze the β-O-glycosidic bond at the anomeric carbon of a glucose moiety at the nonreducing end of a carbohydrate or glycoside molecule. These enzymes are found essentially in all living organisms and have been implicated in a diversity of roles, such as biomass conversion in microorganisms [1] and activation of defense compounds [2,3], phytohormones [4,5], lignin precursors [6], aromatic volatiles [7], and metabolic intermediates by releasing glucose blocking groups from the inactive glucosides in plants [8]. To achieve specificity for these various functions, β-glucosidases must bind to a wide variety of aglycones, in addition to the glucose of the substrate.

The β-glucosidases that have been characterized to date fall predominantly in glycosyl hydrolase families 1 and 3 [9], with family 1 enzymes being more numerous in plants. Glycosyl hydrolase family 1 (GH1) contains a wide range of β-glycosidases, including β-galactosidases, β-mannosidases, phospho-β-galactosidases, phospho-β-glucosidases, and thioglucosidases, in addition to β-glucosidases. The plant enzymes in this family generally fall in a closely related subfamily, but, despite their high sequence similarity, display a wide range of activities. Besides β-glucosidases with diverse specificities, these plant enzymes include thio-β-glucosidases or myrosinases, β-mannosidases, disaccharidases, such as primervosidase and furcatin hydrolase, and hydroxysorurate hydrolase, which hydrolyzes an internal bond in a purine ring, rather than a glycosidic linkage [7,9-11]. In addition, many enzymes in this group are capable of releasing multiple kinds of sugars from aglycones, such as isoflavonoid β-glucosidases, which can release the disaccharide acuminose and malonyl glucose, in addition to glucose itself, from isoflavonoids [12,13]. Other β-glucosidases in this subfamily may have high specificity for glucosides or glucosides and fucosides, or may hydrolyze other glycosides, such as β-galactosides, β-mannosides, and β-xylolides, as well. Primervosidase has high specificity for primervosides, with no hydrolysis of glucosides [7], while furcatin hydrolase can hydrolyze glucosides as well as disaccharide glycosides [10]. Clearly, plant family 1 glycosyl hydrolases show a range of sugar specificities.

Plant family 1 glycosyl hydrolases tend to show high specificity for their aglycones, though many hydrolyze synthetic, nonphysiological substrates, like ρ-nitrophenol (pNP)-β-glucosides [14]. The aglycones span a wide range of structures, including sugars [15-17], hydroxamic acids [18], isoflavonoids [12,13], rotenoids [19], alkaloids [20,21] hydroxyquinones [3], cyanogenic nitriles [2], etc. It is the specificity for these aglycones which is thought to specify the function of most of these enzymes [14]. Since many β-glucosidases function in plants, it is important that these enzymes specifically hydrolyze their own substrates and not other substrates with which they may come into contact. It seems evident that the substrate specificity, localization of the enzymes with respect to potential substrates, and the activities of the substrates and hydrolysis products will determine the roles of these enzymes.

Xu et al. [22] described 47 GH1 genes in the Arabidopsis genome, including 7 apparent thioglucosidases, and one enzyme that had high β-mannosidase activity, in agreement with the prediction from its similarity to tomato β-mannosidase. With the completion of high quality drafts of the rice genome, a thorough analysis of GH1 can be conducted in rice. To date, only a few rice β-glucosidase isoforms have been functionally characterized, with the activities described being hydrolysis of gibberellin glucosides, pyridoxine glucosides and oligosaccharides [16,17,23,24].

To assess the functions of GH1 in rice, genes homologous to GH1 β-glucosidase genes have been identified from the rice genome, and their structures, predicted protein products and evidence of expression evaluated. In addition, we have cloned a β-glucosidase from germinating rice based on genomic data, and assessed its biochemical properties after expression in E. coli.

Results and discussion

Glycosyl hydrolase family 1 β-glucosidase family

The completion of the Oryza sativa L. spp. japonica Rice Genome Project and the complementary indica rice (O. sativa L. spp. indica) genome project by the Beijing Genomic Institute (BGI) has allowed genome-wide analysis of gene families in this important crop [25,26]. The sequence and mapping information provided to the public databases by these projects enabled us to identify the genes for glycosyl hydrolase family 1 members (putative β-glucosidases) in rice, determine their gene structures and genomic organization, and model their protein products and phylogenetic relationships. In this study, we used the DNA sequences of japonica rice in the Monsanto Rice Genome Sequencing Project, the Torrey Mesa Research Institute and GenBank at NCBI and the indica rice sequences of the BGI as the starting point to examine the sequences homologous to GH1 members by manual annotation. By examination of the gene structures and prediction based on the knowledge of other plant GH1 genes, we rectified any errors in gene structures from the automatic annotation by the Rice Genome Sequencing Project contigs. Thereafter, the GH1 members of indica rice were compared with those of japonica rice to identify which genes are orthologues (see Table 1). Finally, all con-
tig sequences were searched against the completed sequences of the 12 rice chromosomes in GenBank to map each contig position on the chromosomes and identify the new GH1 members that were not present in the other databases. A new systematic code for the genes based on their chromosome location was devised with the chromosome number followed by a bglu number counting from the top of chromosome 1 through the bottom of chromosome 12 (Table 1). To avoid confusion, previously published synonyms for all family members are provided in Table 1. The retrieved gene sequences were searched against the dbEST and japonica rice full-length cDNA databases to determine the mRNA expression patterns of each gene in rice.

Forty β-glucosidase genes, including 34 full-length genes, 2 pseudogenes, 2 gene fragments, and 2 intronless genes, were identified, as listed in Table 1. Thirty-six out of 40 genes are found in both japonica and indica rice with 98–100% sequence identity. The Os11bglu35 gene was present only in japonica rice sequences, while Os11bglu37, Osbglu39 and Osbglu40 were only found in indica rice. The thirty-eight mapped GH1 genes are distributed over all chromosomes, except chromosome 2 (Table 1). The Osbglu39 and Osbglu40 sequences have not been mapped to any chromosome, and it is possible they represent contamination of endophytic genes remaining in the indica genome draft. Twenty-two out of 40 gene sequences are derived from the automated annotation in the public databases and 18 genes are derived from manual annotation. We corrected 4 of 22 automated annotation contigs that had misassigned one or more intron-exon boundaries. Os11bglu35 and Os11bglu37 appear to be pseudogenes, since they have premature stop codons and cannot produce full-length proteins.

The size of rice GH1 is not unexpected, since a search of the Arabidopsis thaliana genome identified 47 glycosyl hydrolase family 1 homologues, including 8 probable pseudogenes and 3 intronless genes, which are distributed throughout all five chromosomes [22]. The slightly larger size of the family in Arabidopsis may be due to the presence of myrosinas, which are not found in rice, and a larger number of pseudogenes. The large size of both rice and Arabidopsis GH1 may reflect different substrate specificity and expression patterns in rice tissues and/or in response to environmental conditions among the GH1 members.

The presence of many GH1 genes in rice suggests they may hydrolyze an array of possible substrates, depending on their substrate specificity and localization with respect to the substrates. Although a number of glycosides that could serve as potential substrates for rice GH1 β-glucosidases have been purified from rice tissues, there have been few reports about the hydrolysis of these substrates by the enzymes. The major glycosides found in various tissues of rice include glycosylsterols, flavonoid glucosides, hormone glucosides, a vitamin glucoside, and pantonic acid glucoside. Glycosylsterols found in rice are glycosyl-sitosterol, -campesterol and -stigmasterol in rice bran [27] and β-sitosterol-3-O-β-D-glucoside in rice hulls [28]. The major flavonoid glucosides present in rice include 1) anthocyanins, such as cyanidin-3-O-β-D-glucoside and peonidin-3-O-β-D-glucoside, in black rice [29,30]; 2) tricin-O-glucoside in rice hulls, bran, leaf and stem [28,31]; and 3) hydroxycinnamate sucrose esters, such as 6′-O-feruloylsucrose and 6′-O-sinapoylsucrose in germinated brown rice [32]. Hormone glucosides found in rice include gibberellin glucosides in ungerminated seeds and anther [23,33], salicylic glucoside [34] and indole-3-acetic acid (IAA)-glucoside [35]. Pyridoxine-β-D-glucoside was found in rice bran, callus and seedling [36-38]. Another glucoside, namely R(-) pantoyllactone-β-D-glucoside, was found in the shoots but not the roots of rice seedlings [39].

Many compounds (including glycosides) have been found in rice tissues in response to environmental stresses and in transgenic rice plants. Recently, it was found that there is a high accumulation of IAA-glucoside in IAA-overproducing and salicylic glucoside in rice overproducing NH1, a key regulator of salicylic acid mediated systemic acquired resistance, in transgenic rice [34]. The level of pyridoxine glucoside was reported to be increased by the application of pyridoxine to rice callus and germinating seeds [37,38]. Markham et al. [40] reported that exposing UV-tolerant rice to high UV-B levels increased the levels of flavone glucosides. These results may indicate that the presence of high amounts of some metabolic compounds is corrected by converting them to the glucoside-conjugated forms. It still needs to be shown whether or not these compounds are later reactivated by β-glucosidases.

Protein sequence alignment and phylogenetic analysis

The open reading frames (ORFs) of thirty-seven gene-derived cDNAs (excluding Os11bglu36, Osbglu39 and Osbglu40, which are more closely related to bacterial GH1 genes) showed a high level of shared deduced amino acid sequence identity to each other and other known plant β-glucosidase sequences. All deduced β-glucosidase protein sequences contain the putative catalytic acid/base and nucleophilic glutamate residues, except Os4bglu14 and Os9bglu33, in which the acid/base glutamate is replaced with glutamine, as seen in thioglucosidases. The catalytic acid/base and nucleophile consensus sequences are: W-X-T/I-F/L/I/V/S/M-N/A/L/I/D/G-E/Q-P/I/Q and V/I/L-X-E-N-G, respectively, with relative frequencies of amino acids at each position shown in Figure 1. These sequences are similar to the consensus sequences previously derived from known GH1 β-glucosidase sequences [41,42]. The
Gene name	BG ID (AAAA..)	RGP GenBank ID	Gene locus ID/position-Chr	Gene pattern	Corresponding cDNAst	Number ESTs	Tissue libraries	Comment
Os1bglu1	02002143 (F)	AP003217 (f)	AP008207 (F)		1	13	sh, pn, wh-TL, 2 wk If-ABF3	
	02002142 (aa 110–189)							
Os1bglu2	02004130 (aa 1–105)	AP003570 (F)	AP008207 (F)		1	4	pn-FW, wh-TL, 35 d If-Ifr, 3 wk If-Bl	
	02004127 (aa 134–288)							
Os1bglu3	02004668 (aa 1–414)	AP003349 (F)	(BA082183) AP006928 (F)		1	9	sh, pn, FW, pn-FW-Dr, 3 wk If-Bl	
	02004670 (aa 426–479)							
Os1bglu4	02006419 (F)	AP003277 (F)	AP004430 (F)		1	23	sh, sc-IM, pn, pn-FW, wh-TL, wh-BT, wh-TF, 2 wk If-AtjMT, Ifr-Dr, 3 wk If-Ls	
	02006112 (aa 184–306)							
Os1bglu5	02008013 (F)	AC146612 (F)	AP008092 (F)		1	14	sh, pn-FW, cl-Co, 3 wk If-Bl	
	02008015 (F)							
Os1bglu6	02008017 (F)	AC091670 (F)	(AAAS7552) AP008209 (F)		2	326	cl, sh, rt-SD, sc-IM, pn, pn-FW, wh-TL, cl-ABA, cl-NAA, cl-BAP, cl-Cd, cl-heat, cl-Co, sh-Lv, sh-Co, 35 d If-Dr, 3–4 wk rt-Sa, 2 wk If-ABF3, 2 wk cl-HDAC1, 3 wk If-Bl, H-M-BI	
	02008019 (F)							
Os1bglu7	02008021 (F)	AC133334 (F)	AP008209 (F)		2	77	sh, pn, pn-FW, wh-TL, cl-BAP, sh-Co, 2 wk If ABF3	
	02008023 (F)							
Os1bglu8	02008025 (F)	AC091670 (F)	(AAAS75520) AP008209 (F)		2	77	sh, pn, pn-FW, wh-TL, cl-BAP, sh-Co, 2 wk If ABF3	
	02008027 (F)							
Os4bglu9	02004146 (F)	AL731582 (F)	AP008210 (F)		1	11	sh, If-IM, 3–4 wk rt-Sa	
	02004154 (aa 465–520)							
Os4bglu10	02004151 (F)	AL731582 (F)	(CA05481) AP008210 (F)		1	17	sh, If-M, wh-TL, 2 wk If-ABF3, 2 wk If-AtjMT, 3 wk If-Bl	
	02004153 (F)							
Os4bglu11	02004151 (F)	AL731582 (F)	(CA05482) AP008210 (F)		1	4	sh-Co	
	02004152 (F)							
Os4bglu12	02004151 (F)	AL731582 (F)	(CA05483) AP008210 (F)		1	30	sh, 2 wk If and rt, sp, wh-TL, wh-TF, 1 wk rt-Sa, sd-Co, pn-FW-Dr, 2 wk cl-HDAC1, 2 wk sd-Ph, 3 wk If-Bl, If-Bl-Bl, If-Bl-Bl	
	02004153 (F)							
Os4bglu13	02004151 (F)	AL731582 (F)	(CA05485) AP008210 (F)		1	22	sh, pn, pn-FW, wh-TL, 3 wk If-Wd, 3 wk If-Bl, If-M-Bi	
	02004154 (aa 465–520)							
Os4bglu14	02004154 (F)	AL666722 (F)	(CA03197) AP008210 (F)		3	1	sh	
	02004155 (aa 465–520)							
Os4bglu15	02004155 (F)	AL666722 (n)	(CA03197) AP008210 (n)		-	0	Gene fragment, lacks exon 1–8	
	02004156 (aa 465–520)							
Os4bglu16	02004156 (aa 1–69)	AL666722 (n)	(CA03197) AP008210 (n)		-	14	rt-SD, sh, pn, pn-FW, wh-TL, cl-Co, 3 wk rt-Sa, 3 wk If-Bl, If-M-Bi	
	02004157 (aa 1–69)							
Os4bglu17	02004158 (F)	AL666722 (n)	(CA03197) AP008210 (n)		-	10	sh, pn-FW, 3 wk If-Bl	
	02004159 (aa 465–520)							
Os5bglu9	020017035 (F)	AC121366 (F)	(AAAS7538) AC135927 (F)		1	5	pn-FW, pn-FW-Dr, 2 wk If-AtjMT, 3 wk If-Wd	
	020017036 (F)							
Os5bglu20	020016859 (F)	AC121366 (F)	AC137618 (F) AP008211 (F)		1	0	sh, If-M, pn-FW, cl-BAP, cl-NAA, 3 wk If-Ls, 3 wk If-Bl, If-M-Bi	
	020017035 (F)							
Os5bglu21	020016862 (F)	AC121366 (F)	AC137618 (F) AP008211 (F)		1	0	sh, If-M, pn-FW, cl-BAP, cl-NAA, 3 wk If-Ls, 3 wk If-Bl, If-M-Bi	
	020017036 (F)							
Os5bglu22	020016869 (F)	AC121366 (F)	AC137618 (F) (AAAS7538) AP008210 (F)		1	39	sh, If-M, pn-FW, cl-BAP, cl-NAA, 3 wk If-Ls, 3 wk If-Bl, If-M-Bi	
	020016867 (F)							

http://www.biomedcentral.com/1471-2229/6/33
Table 1: Summary of identified genes homologous to glycosyl hydrolase family 1 glucosidase (Continued)

Gene ID	Description	Contig	Chromosome	Location	Identity	Sequence	Stage	Treatment
Os9bg23	Apo03543 (F) (Bad61620) Apo08212 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg24	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg25	Apo03976 (F) Apo04757 (F) Apo08212 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg26	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg27	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg28	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg29	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg30	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg31	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg32	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os9bg33	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os10bg34	Apo03543 (F) (Aak9358) Apo01659 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os11bg35	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os11bg36	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os11bg37	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Os12bg38	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Osbg39	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				
Osbg40	Apo03543 (F)	Apo08212/12285539 bp-12280797 bp/chr 6	1	sh, pn-FW, 3 wk if-Bi				

a contig number in Beijing Genome Institute (the number start with 'AAAA').
b means the length of gene where its CDS covers the given range of amino acid residues.
GenBank accession number. F means full length gene/cDNA, n is not.
c chromosome location was determined by mapping of corresponding gene on the 12 rice chromosomes in GenBank.
d Chr means the number of the chromosome on which the gene is located.
e the full-length cDNA clones of japonica rice databases (Kikuchi et al. [50])
f EST number means number of ESTs that match each gene. EST sequences were retrieved from the de EST section of NCBI GenBank by BLASTn search with gene sequences. They were inspected to ensure they matched the gene-coding region and their full files retrieved to determine cDNA library source tissue and clone number when necessary. The ESTs assigned to each gene had greater than 97% identity and no higher similarity with another gene.

j The type of library where the corresponding ESTs were found. Tissues: cl: callus, isd: immature seed, lf: leaf, pn: panicle or flower, rt: root, sc: suspension culture, sh: shoot, sp: spikelet before heading, st: stem, wh: whole plant. Stages (capital letters): BT: booting, FW: flowering, IM: 3–5 leaf stage or immature stage, M: mature, RP: ripening, SD: seedling, TF: trefoil, TL: tillering, 1 w: 1 week-old, 2 wk: 2 week-old, 3 wk: 3 week-old, 3–4 wk: 3–4 week-old, 35 d: 35 day-old Growth or stress conditions: Cd: Cadmium, Co: cold, Dr: drought, heat, heat, Sa: salt, UV: UV light, Wd: wound, ABA: abscissic acid, BAP: benzyl amino purine, NAA: naphthaleneacetic acid, Bi: blast infected, Ls: lesion mimics, Ph: brown plant hopper infected, Xa: Xanthomonas oryzae induced, Ac: Acidovorax avenae infected, ABF3: ABA-responsive element binding TF3 overexpression, AtjMT: Arabidopsis jasmonate carboxyl methyltransferase overexpression, HDAC1: histone deacetylase overexpression.

i Opassi et al. [24]
presence of the appropriate active site glutamic acids in the consensus sequences motifs suggests that all the genes identified in the rice genome database, except Os4bglu14 and Os9bglu33, at least have the potential to produce catalytically active β-glucosidases. β-glucosidases with Q instead of E at the acid/base position have been shown to be effective transferases in the presence of a good leaving group aglycone and a nucleophilic acceptor [43], therefore even Os4bglu14 and Os9bglu33 might be active if such glucosyl transfer reactions are catalyzed in vivo. Additionally, as seen in multiple sequence alignment (Additional Files 1, 2, 3), the amino acids identified by Czjzek et al. [41] as critical for glucose binding (Q38, H142, E191, E406, E464 and W465 in maize Bglu1) are generally well conserved in these predicted sequences. Only the predicted Os1bglu5 has Q instead of H142 in maize, whereas maize W465 is replaced by F in Os8bglu28, Os9bglu32 and Os9bglu33, Y in Os1bglu5 and Os9bglu31, I in Os1bglu2, Os1bglu3, Os5bglu21, Os5bglu22 and Os5bglu23, M in Os5bglu19, I in Os5bglu20 and S in Osbglu39. The residues that line the active site cleft and interact with the substrate aglycone of Os5bglu20 and S in Osbglu39. The residues that line the active site cleft and interact with the substrate aglycone of maize [41] are indeed quite variable in the predicted rice β-glucosidases, as would be expected for β-glucosidases with different substrate specificities.

Amino acid sequence alignment and phylogenetic analysis of 36 members including 34 full-length genes and 2 pseudogenes, but not including the intronless bacteria-like enzyme genes Osbglu39 and Osbglu40, and gene fragments, Os4bglu15 and Os4bglu17, showed that the sequences share a common evolutionary origin (Figure 2). Interestingly, many members that contain closely related sequences and cluster together are located on the same chromosome, such as the members in chromosomes 1, 4, 5, 8, 9 and 11, indicating localized (intrachromosomal) duplication events. Some of the closely related GH1 members of Arabidopsis also cluster on the same chromosome [22]. Comparison between rice and Arabidopsis GH1 members revealed that 7 clearly distinct clusters of plant-like GH1 genes (marked 1 to 7 in Figure 2) contain both Arabidopsis and rice genes that are clearly more closely related to each other than to other GH1 genes within their own species. In addition, the Arabidopsis SFR2 gene (not shown) forms another interspecies cluster with its rice homologue, Os11bglu36, which is marked (8) in Figure 2. Thus, it appears the ancestor of rice and Arabidopsis had at least 8 GH1 genes. However, 22 out of 40 Arabidopsis genes group in two large clusters without rice gene members (marked AtI and AtII in Figure 2), which incorporate several of the subfamilies defined by Xu et al. [22], and appear to have diverged before the rice and Arabidopsis. These include the myrosinases, which are not known to occur in rice, but also many apparent β-glucosidases. Similarly, some rice genes appear to have diverged from their cluster of Arabidopsis and rice genes before the other Arabidopsis and rice genes diverged. These include the Os3bglu7 and Os3bglu8 genes, which diverged from the lineage containing the Arabidopsis β-mannosidase genes before those genes diverged from Os1bglu1 and Os7bglu26. This suggests that the closest homologue of Os3bglu7 and Os3bglu8, which represent the most highly expressed GH1 genes in rice based on EST analysis, was lost from Arabidopsis. Thus, genes found in the common ancestor, including two that were duplicated into most of the Arabidopsis GH1 repertoire, appear to have been lost in the other plant’s lineage. However, it is possible that rapid evolution of these genes caused them to be misplaced by the phylogenetic analysis, so care must be taken in interpreting these analyses. This analysis suggests that the common ancestor of monocots and dicots had at least 11–13 GH1 genes, 8 of which are represented by common lineages in modern rice and Arabidopsis.

Taken together, the great divergence of rice and Arabidopsis genes after the divergence of the species and the loss of important lineages from either rice or Arabidopsis suggest that much of the functional divergence of GH1 may have occurred after the monocot-dicot divergence. Therefore, it may be difficult to extrapolate functions found in Arabidopsis to those in rice and vice-versa, except in a few cases (such as AtBGLU41 and Os6bglu25, which have not duplicated since the divergence of the species).

Phylogenetic analysis of rice GH1 members with other plant enzymes also led to several interesting observations (Figure 3). Some rice and Arabidopsis members that are clustered in the same groups were found to be closely related to β-glucosidases from other plants. For example, Os4bglu14, Os4bglu16 and Os4bglu18, which cluster with Arabidopsis BGLU45, 46 and 47, are grouped with Pinus contorta coniferin/syringin β-glucosidase (PC AAC69619) [6], suggesting that they may be involved in lignification. In fact, recombinantly expressed Arabidopsis BGLU45 and BGLU46 have recently been shown to hydrolyze lignin precursors [44]. Although Arabidopsis BGLU11 and rice enzymes (Os1bglu2, Os1bglu3, Os1bglu5, and Os5bglu19 through Os5bglu23) have sequences closely related to Glycine max hydroxyisourate hydrolase (GM AAL92115) [11] and cluster into the same large group, they do not have HENG catalytic nucleophile motif found in hydroxyisourate hydrolase, whereas the somewhat more distantly related Os9bglu31, Os9bglu32, and Os9bglu33 do. However, the rice enzymes generally still contain the conserved glucose binding residues lost from the G. max hydroxyisourate hydrolase, so they may still act as glycosyl hydrolases, rather than as other kinds of hydrolases.
Os1bglu1, Os3bglu7, Os3bglu8, Os7bglu26 and Os12bglu38 β-glucosidases clearly grouped with barley BGQ60 β-glucosidase/β-mannosidase [15,45]. Kinetic analysis showed that the hydrolytic activity of Os3bglu7 (rice BGlu1 in Opassiri et al. [24]) toward β-linked glucose oligosaccharides is similar to that of the barley enzyme [17]. Barley BGQ60 also shares high sequence identity and similar gene organization with Arabidopsis BGLU44 and tomato β-mannosidase. Recombinant AtBGLU44 protein shows a preference for β-mannoside and β-mannan oligosaccharides [22], as does barley BGQ60 [46,47], while Os3bglu7 prefers glucoside 10-fold over mannoside [17]. Thus, within this cluster of closely related genes, both exo-β-glucanase and β-mannosidase (exo-β-mannanase) activities are found.

Several GH1 enzymes associated with defense do not have clear orthologues in either rice or Arabidopsis (Figure 3 and [22]). No rice GH1 members cluster with the monocot chloroplast targeted enzymes, such as maize Bglu1 and sorghum dhurrinase, while the 2 groups cluster loosely with the dicot defense enzymes, such as white clover and cassava linamarinases. The chromosome 4 cluster of Os4bglu9-12 and Os6bglu24 form one group embedded within the dicot defense enzymes, while Os8bglu27, Os8bglu28, Os9bglu29, Os9bglu30, Os11bglu35, and Os11bglu37 form another cluster within this group. The association of these genes with the defense enzymes was seen in both distance-based and sequence-based phylogenetic analysis, but they were not strongly supported by bootstrap analysis in either case. As noted by Henrissat and Davies [48], it is not generally possible to assign glycosyl hydrolase function based on sequence similarity scores alone, and the high divergence between the rice and defense-related β-glucosidases makes it unclear which, if any, play a role in defense.

Figure 1
Sequence Logos for the residues surrounding the catalytic acid/base (A) and catalytic nucleophile (B) in rice GH1 genes. The logos show the size of the different amino acids at each position in proportion to their relative abundance within the 40 rice Glycosyl Hydrolase 1 gene protein sequences. The logos were drawn with the weblogo facility [73].
Figure 2
Phylogenetic tree of predicted protein sequences of rice and Arabidopsis Glycosyl Hydrolase Family 1 genes. The tree was derived by the Neighbor-joining method from the protein sequence alignment in the Supplementary Data Additional File 2 made with Clustalx with default settings, followed by manual adjustment. Large gap regions were removed for the tree calculation. The tree is drawn as an unrooted tree, but is rooted by the outgroup, Os11bglu36, for the other sequences. The bootstrap values are shown at the nodes. The clusters supported by a maximum parsimony analysis are shown as bold lines, and the loss and gain of introns are shown as open and closed diamonds, respectively. The 7 clusters that contain both Arabidopsis and rice sequences that are clearly more closely related to each other than to other Arabidopsis or rice sequences outside the cluster are numbered 1–7, while the outgroup cluster for which the Arabidopsis orthologue is not shown in numbered (8). Two Arabidopsis clusters that are more distantly diverged from the clusters containing both rice and Arabidopsis are numbered At I and At II, while rice genes and groups of genes that appear to have diverged before subclusters containing both rice and Arabidopsis are marked with stars.
Figure 3
Relationship between rice and other plant GH1 protein sequences described by a phylogenetic tree rooted by Os11bglu36.

The sequences were aligned with ClustalX, then manually adjusted, followed by removal of N-terminal, C-terminal and large gap regions to build the data model. The tree was produced by the neighbor joining method and analyzed with 1000 bootstrap replicates. The internal branches supported by a maximum parsimony tree made from the same sequences are shown as bold lines. The sequences other than rice include: ME AAB71381, Manihot esculenta linamarase; RSMyr BAB17226, Raphanus sativus myrosinase; BJMyr AAG54074, Brassica juncea myrosinase; BN CAA57913, Brassica napus zeatin-O-glucoside-degrading β-glucosidase; HB AAO49267, Hevea brasiliensis rubber tree β-glucosidase; CS BAA11821, Costus speciosus furostanol glycoside 26-O-β-glucosidase; PS AAL39079, Prunus serotina prunasin hydrolase isoform PH B precursor; PA AAA91166, Prunus avium ripening fruit β-glucosidase; TR CAA40057, Trifolium repens white clover linamarase; CA CAC08209, Cicer arietinum epicotyl β-glucosidase with expression modified by osmotic stress; DC AAF04007, Dalbergia cochinichensis dalcochinin 8'-O-β-glucosidase; PT BAA78708, Polygonum tinctorum β-glucosidase; DL CAB38854, Digitalis lanata cardenolide 16-O-β-glucosidase; OE AAL93619, Olea europea subsp. europaea β-glucosidase; CR AAF28800, Catharanthus roseus strictosidine β-glucosidase; RS AAF03675, Rauwolfia serpentina raucaffricine-O-β-D-glucosidase; CP AAG25897, Cucurbita pepo silverleaf whitefly-induced protein 3; AS CAA55196, Avena sativa β-glucosidase; SC AAG00614, Secale cereale β-glucosidase; ZM AAD09850, Zea mays cytokinin β-glucosidase; ZM AAD09850, Zea mays β-glucosidase; SB AAC49177, Sorghum bicolor dhurrinase; LE AAL37714, Lycopersicon esculentum β-mannosidase; HV AAB7339, barley BQ60 β-glucosidase; HB AAP51059, Hevea brasiliensis latex cyanogenic β-glucosidase; PC AAC69619, Pinus contorta coniferin β-glucosidase; GM AAL92115, Glycine max hydroxysourate hydrolase; CS BAC78656, Camellia sinensis β-primeverosidase.
Gene organization

Gene structural analysis of the β-glucosidases showed intron-exon boundaries and intron numbers are highly conserved among rice and other plant β-glucosidase genes. Intron sizes in these genes, however, are highly variable. In most cases, very long introns contained retrotransposon-like sequences, while the orthologous short introns did not. Five patterns of gene structures are distinguished by the number of exons and introns, which are 13, 12, 11, or 9 exons, and intronless (Figure 4). However in each case, existent introns maintained the same splice sites. It was found that Arabidopsis also has several GH1 gene organization patterns, though some are different from rice [22]. Arabidopsis GH1 genes exhibit 10 distinct exon-intron organization patterns and 3 members exhibit a new intron that is not found in rice and is inserted into exon 13 to yield two novel exons. Only gene structure patterns 1, 3 and 5 of rice GH1 are found in Arabidopsis. Similar to Arabidopsis, the most common gene pattern, found in 22 rice genes, is pattern 1, in which there are 13 exons separated by 12 introns (Table 1). The results from deduced amino acid sequence alignment and phylogenetic analysis (Figure 2) showed that the sequences in intron-exon pattern groups 2, 3, 4 and 5 are usually more closely related to each other within their groups than to the other groups.

Expression of rice β-glucosidase genes

In order to begin to analyze the tissue specific expression of the β-glucosidase genes in rice, a search for ESTs corresponding to each of the 40 different predicted genes was performed in dbEST and the full-length cDNA clones of japonica rice databases [50]. As shown in Table 1, an initial homology search with β-glucosidase sequences identified 823 ESTs and 55 "full" cDNAs, which are derived from 31 GH1 genes. The Os3bglu7 is most highly represented in the dbEST database, with 326 ESTs. Os3bglu8 is the second highest abundance of ESTs with 77 ESTs. Other GH1 genes with a relatively large numbers of ESTs are Os4bglu12, Os5bglu22, Os7bglu26, Os9bglu30, Os9bglu31, and Os9bglu32 (Table 1). However, the high abundance of
ESTs for some rice genes might not reflect the relative expression levels in particular tissues, because of bias in selecting plant parts and developmental stages for production of EST cDNA libraries [22]. It should be noted that Os4bglu14 and Os9bglu33, which lack the catalytic acid/base, both have transcripts in the database, which indicates that they are transcriptionally active although the protein product may not have hydrolase activity. Several genes are not represented in the EST/full-length cDNA databases (i.e., the full-length genes: Os5bglu21, Os5bglu23, and Os6bglu24; pseudogenes: Os11bglu35 and Os11bglu37, gene fragments: Os4bglu15 and Os4bglu17; and intronless genes: Osbglu39 and Osbglu40). So, whether and where the full-length gene members are expressed remains unclear. It is possible that the expression levels of these genes are very low, or their expression may be induced by particular environmental conditions.

The source libraries for rice GH1 gene ESTs include callus, seedling (shoot and root), immature plant parts (stem, root, leaf), mature plant (leaf), panicle at flowering and ripening stage, and immature seeds. Some rice β-glucosidase genes have ESTs from stressed plant tissue libraries, such as salt (i.e. Os3bglu7, Os4bglu12), drought (i.e. Os1bglu2, Os1bglu4, Os4bglu12), cold (i.e. Os3bglu6, Os3bglu7), heat (i.e. Os3bglu7) and fungus infection (i.e. Os1bglu2, Os1bglu3, Os1bglu4) (see Table 1). In addition, some genes (i.e. Os1bglu1, Os1bglu3, Os3bglu7, Os3bglu8) are also expressed in transgenic rice, such as in the leaf of rice overexpressing ABA-responsive element binding transcription factor 3 (TF3). These EST/cDNA sequences were used to identify the 3’UTR sequence for each gene and it was found that all cDNAs contain unique 3’UTR sequences, which may therefore be used as unique probes for each gene. The occurrence of the ESTs/cDNAs of β-glucosidase genes in tissues may correlate with growth and development. As mentioned by Xu et al. [22], the members of a given subfamily may have the same biochemical function and may be expressed in different cells, tissues, or organs and may be expressed in response to different environmental conditions and stresses. However, the multiple forms of rice β-glucosidases may also represent functional redundancy and be expressed in the same tissues.

One question of interest was why the chloroplast β-glucosidases seemed most predominant in maize, oat, sorghum and wheat, while such genes have lower expression in rice. A comparison of ESTs from several grain species showed that the chloroplast β-glucosidases of other cereals have the most EST hits of GH1 genes, while in rice and barley, the rice BGluc/1/barley BQG60-like genes were more predominant (Additional File 4). However, since the genome and transcriptome analysis of these grasses is not completed, some bias may have been introduced in

the selection of the tissues studied. Given the large number of ESTs in maize and rice, it seems likely to be a reasonable comparison, despite these limitations. If so, it may be that the defense function of the chloroplast iso-

zymes in maize and other grasses, has been replaced by other defenses or by the abundance of Os3bglu7, which might be found in a separate compartment from defensive substrates, as well. Though Os3bglu7 is thought to func-

tion in hydrolysis of oligosaccharides released from the cell wall [24], it might be possible for it to fulfill more than one role. Recently, barley β-glucosidase, which is thought to help in hydrolysis of cell wall oligosaccharides during germination, has been found to hydrolyze cyanogenic glycosides from barley leaves [51], giving support to the possibility of one enzyme playing roles in both the cell wall and defense.

A few reports described the expression patterns of β-glucosidases in rice plants. Based on enzyme activity, gibberellic acid glucoside and pyridoxine glucoside β-glucosidases are found in rice bran [23,52], and the cell wall-bound enzyme is found in seedlings [16]. Northern blot analysis showed that Os3bglu7 and Os9bglu30 (rice bgl2 in Opasiri et al. [24]) β-glucosidase genes are highly expressed in seedling shoots, but only Os3bglu7 is expressed in flowers [24]. Microarray analysis indicated that the transcripts of the ESTs BE607353 and BG101702, whose sequences are homologous to Os3bglu7 and Os4bglu12 β-glucosidase genes, respectively, are upregulated in response to high salinity stress in salt-tolerant rice (var Pokkali), but not in the salt-sensitive cultivar IR29 [53]. Subtractive hybridization cDNA library screening indicated that the transcript level of the EST contig BPH1w028, homologous to Os4bglu12, is upregulated in response to brown planthopper [54]. The presence of tricin-O-glucoside, a probing stimulant for planthopper [31], suggests that the role of this enzyme is to release an active flavonol for defense. However, these studies did not show the specific roles of these enzymes in rice cells in response to such stresses. Therefore, identification of natural substrates for the enzymes is needed to understand the functions of these enzymes.

Properties of predicted proteins

The deduced precursor proteins were analyzed for potential signal sequences using SignalP, and cellular location by PSORT. Almost all β-glucosidase ORFs, except Os1bglu4 and Osbgglu40, were predicted to have signal peptides ranging in length from 18 to 44 amino acids, which would target them to the secretory pathway (Table 2). Three Arabidopsis GH1 members, AtBGLU26, 27, and 42 were predicted to not have signal peptides [22]. In Arabidopsis, putative signal peptides were predicted to range in length from 19–38 aa. The predicted cellular locations for rice GH1 proteins included the cell exterior, cyto-

plasm, peroxisome, vacuole, ER lumen, ER membrane, plasma membrane, and mitochondrial matrix, which are similar to Arabidopsis proteins. Though assignment of cellular location was generally unclear using the PSORT program, Os1bglu2 and Os11bglu36 (Arabidopsis SER2 homolog) are predicted to localize to the chloroplast, like maize, sorghum, wheat and oat β-glucosidases, though they are not closely related phylogenetically. However, none of the Arabidopsis β-glucosidases seemed to be targeted to plastids, except possibly SER2 (which is closely related to Os11bglu36 and gave a weak prediction of this localization). The deduced proteins were also analyzed for predicted molecular mass, pl, and potential N-linked glycosylation sites (Table 2). Predicted precursor protein lengths vary from 458–647 amino acids, which correspond to protein molecular weights of 55.3 to 73.2 kD. Mature polypeptide lengths vary from 474–592 amino acids, corresponding to MW 53.8–70.8 kD. All but Os1bglu4 contain one to six N-linked glycosylation sites. Isoelectric points (pl) of predicted proteins are divided into 3 groups, acidic (4.96–6.66), neutral (6.99–7.78), and basic (8.36–8.96), and 21 of 35 of these proteins are in the acidic group. Predicted protein properties of rice GH1 members are similar to Arabidopsis GH1 proteins, which have predicted MW of precursor proteins and mature proteins in the range of 56–70.1 and 53–68 kD, respectively, and contain one to five N-glycosylation sites [22]. Similar to Os1bglu4, AtBGLU25 and 27 do not contain N glycosylation sites. The number of likely isozymes complicates the interpretation of results from traditional

Table 2: Predicted rice GH family I β-glucosidase protein properties and locations.

Gene name	Gene ID	Pre-protein	Mature protein
Os1bglu1	AP003217 (BAD73293)	58.0 516 21–22	55.9 495 7.78 5
Os1bglu2	AP003570	62.4 561 44–45	57.6 517 5.21 3
Os1bglu3	AP003570	57.5 514 22–23	55.3 492 7.29 3
Os1bglu4	AP003149 (BAD82183)	55.3 483	5.16 0
Os1bglu5	AP003272 (BAD87323)	57.4 513 26–27	54.9 487 5.31 3
Os1bglu6	ACG46619	58.5 521 31–32	55.4 490 6.36 3
Os2bglu7	ACG01670	56.9 504 26–27	54.3 478 8.96 3
Os2bglu8	AAAA02010831	63.1 568 33–34	59.7 535 6.21 3
Os4bglu9	AAAA02014146	58.3 514 28–29	55.6 486 7.73 4
Os4bglu10	AL713182 (CAE05481)	58.1 510 23–24	55.8 487 8.07 4
Os4bglu11	AL713182 (CAE05482)	59.8 530 25–26	57.4 505 7.29 4
Os4bglu12	AAAA02014151	57.5 510 24–25	55.3 486 8.85 6
Os4bglu13	AL713182 (CAE05485)	57.1 506 25–26	54.8 481 6.66 6
Os4bglu14	AL606622 (CAE03397)	58.8 516 23–24	56.4 493 7.69 6
Os4bglu15	AL606622 (CAE03399)	- - -	- - -
Os4bglu16	AL606622 (CAE54544)	58.6 516 27–28	56.0 489 6.13 4
Os4bglu17	AL606622	- - -	- - -
Os4bglu18	AL606459 (CAE54546)	57.6 505 26–27	55.0 479 5.3 1
Os5bglu9	AC121366 (AA579738)	59.8 530 31–32	56.2 499 5.05 6
Os5bglu10	AAAA02016859	58.6 520 30–31	55.1 490 5.23 5
Os5bglu21	AAAA02016862	59.2 526 34–35	55.3 492 5.67 4
Os5bglu22	AC137618 (AV31338)	59.5 533 24–25	57.1 509 4.96 5
Os5bglu23	AAAA02016873	58.5 523 27–28	55.8 496 5.19 3
Os5bglu24	AP003543 (BAD61620)	57.8 504 18–19	55.8 486 7.78 5
Os6bglu25	AP003746	57.2 501 19–20	55.2 482 5.51 2
Os7bglu26	AP005182	58.5 510 27–28	55.6 483 6.49 6
Os8bglu27	AAAA02025912	56.8 499 19–20	54.8 480 8.36 5
Os8bglu28	AP006049 (BACS7391)	56.6 500 24–25	53.9 476 8.4 6
Os9bglu29	AC108758	57.7 508 28–29	54.8 480 8.76 4
Os9bglu30	AC108758	57.4 500 25–26	54.6 475 6.99 6
Os9bglu31	AC137594	58.4 523 22–23	56.3 501 5.32 2
Os9bglu32	AAAA02027816	57.1 510 30–31	54.1 480 5.51 2
Os10bglu33	AC137594	56.8 503 30–31	53.8 473 5.62 2
Os11bglu34	AAAA02028915	58.0 510 26–27	55.3 484 6.34 5
Os11bglu35	AC133047	- - -	- - -
Os11bglu36	AC135190	73.2 647 26–27	70.8 621 6.1 1
Os11bglu37	AAAA02030890	- - -	- - -
Os12bglu28	AL731785	57.0 492 21–22	54.8 471 7.44 5
Os13bglu39	AAAA02042985	53.0 458	- - 5.91
Os14bglu40	AAAA02043807	- - -	- - -

* determined by ProtParam, AA means number of amino acids, p predicted by SignalP, *p predicted by NetNGlyc at the Expasy proteomics server [69], *cellular locations predicted by PSORT. Chl: chloroplast; cyt: cytoplasm; ERm: endoplasmic reticulum membrane; ERl: endoplasmic reticulum lumen; m inn: mitochondria inner membrane, intermembrane space, matrix, outer membrane, respectively; per: peroxisome; plas: plasma membrane; vac: vacuole.
biochemical approaches, such as measuring enzyme activities in tissue extracts. Protein purification may also be difficult due to the similar sizes and pI of several predicted isozymes, as seen in Table 2.

Although the occurrence of a number of glycosides in rice is known, few rice β-glucosidases have been studied and none of them has been tested for activity on most of the known natural glycosides. The first report of rice β-glucosidase activity against the synthetic substrate pNP-β-D-glucoside (pNPG) was by Palmiano and Juliano [55]. Partially purified β-glucosidases from rice have been described that hydrolyze gibberellin glucosides and pyridoxine glucosides [23,52]. Analysis of thoroughly purified rice β-glucosidases has been described for a β-glucosidase from a cell wall-bound fraction (possibly Os4bglu12) and Os3bglu7 cloned from rice seedlings [16,17,24]. Both enzymes showed high hydrolytic activity against cello- and laminari-oligosaccharides. In order to better characterize the function of the GH1 multi-enzyme family in rice, recombinant expression of these genes or their cDNAs to produce the enzymes is necessary. The recombinant production and characterization of Os4bglu12 is presented below as a first step in establishing the biochemical function of the rice GH1 enzymes.

Os4bglu12 β-glucosidase cDNAs cloning and sequence analysis

The protein product for Os4bglu12 gene has highest sequence similarity to the previously described cell wall-bound β-glucosidase purified from rice seedlings [16]. Therefore, it was chosen for expression to test if the protein would have the expected activity. The sequence of the Os4bglu12 β-glucosidase mRNA from rice was confirmed by RT-PCR cloning and sequencing, using rice cultivar KDML105 cDNA as the template. A specific PCR product of 1635 bp was produced, and its sequence overlapped that of the indica rice contig AAAA02014151.

The reconstructed cDNA sequence of Os4bglu12 included a 1530-nucleotide long open reading frame encoding a 510 amino acid long precursor protein. The Signal P program predicted the protein to contain a 24 amino acid signal sequence and a 486 amino acid mature protein (Table 2). The deduced Os4bglu12 N-terminal amino acid sequence was identical to the N-terminal amino acid sequence of the previously purified cell wall-bound rice β-glucosidase at 40 of 44 residues [16].

Functional expression of recombinant Os4bglu12

The Os4bglu12 cDNA CDS including the stop codon was inserted into pET32a(+)DEST. The construct was used to transform *OrigamiB* (DE3) *E. coli*. Comparison of the protein profile of induced cultures with the Os4bglu12 insert with those of empty plasmid controls by SDS-PAGE showed the thioredoxin-Os4bglu12 fusion protein as an intense band at 69 kDa on SDS-PAGE. The fusion protein was purified by IMAC, and a band corresponding to 69 kDa was observed in SDS-PAGE (Figure 5). The enzyme was found to hydrolyze pNPG with optimal activity at pH 5.0 and 37°C. The enzyme activity with pNPG at 70°C and 80°C drops about 17% and 39%, respectively, from the optimal activity at 37°C in a 10 min assay. It was stable at 4°C for several months.

Os4bglu12 substrate specificity

The activity of the purified rice Os4bglu12 β-glucosidase towards natural and artificial glycosides is summarized in Table 3. The Os4bglu12 hydrolyzed the β-1,3-linked glucose disaccharide laminaribiose, but not cellobiose (β-1,4) or gentiobiose (β-1,6). It showed high hydrolytic efficiency at different rates with β-(1,4)-linked oligosaccharides with degree of polymerization (DP) of 3–6. Hydrolysis of β-(1,3)-linked oligosaccharides with DP > 2, laminarin and barley 1,3, 1,4-β-glucans by this enzyme could not be detected. The rate of hydrolysis of oligomeric substrates tended to remain approximately constant with increasing DP, which is a characteristic often observed with β-glucosidases [56]. On the TLC, Os4bglu12 showed hydrolytic activity towards 5 mM laminaribiose and cello-
oligosaccharides, but no measurable transglycosylation activity (Figure 6).

Hydrolysis of pNP-glycosides with different glycone moieties was used to assess glycone specificity of Os4bglu12. It hydrolyzed pNPG and pNP-β-D-fucoside with 2–3 fold lower efficiency than oligosaccharides. It also hydrolyzed pNP-β-D-galactoside, pNP-β-D-xylloside, and pNP-α-L-arabinoside, at 45%, 45% and 26% the rate of pNPG, respectively. Hydrolysis of pNP-β-D-mannoside, pNP-β-D-cellobioside, pNP-α-D-glucoside, and pNP-β-L-fucoside was not detectable. High hydrolysis of β-xyloside is similar to white clover β-glucosidase, but otherwise rare in GH1 enzymes that have been characterized to date [57].

Rice Os4bglu12, Os3bglu7 [24], and cell wall-bound β-glucosidases [16] and barley βII β-glucosidase [45] are enzymes that hydrolyze β-linked glucose oligosaccharides, but not polysaccharides. However, the specificity for glycones and substrate chain lengths of these enzymes are different. In contrast to barley and rice cell wall-bound enzyme, Os4bglu12 did not hydrolyze β-(1,3)-linked oligosaccharides longer than laminaribiose, but hydrolyzed various pNP-derivatives of monosaccharides. This substrate preference was not expected, since it was initially expected that Os4bglu12 was the gene for the cell wall-bound β-glucosidase, and the sequence differences might be due to cultivar differences or sequencing errors. The substrate preference of Os4bglu12 is somewhat similar to Os3bglu7, in that they both show slightly faster hydrolysis of pNP-β-D-fucoside than pNPG and hydrolyze laminaribiose and cello-oligosaccharides. However, there were many differences between these enzymes. For example, in contrast to rice Os3bglu7, Os4bglu12 hydrolyzed β-(1,4)-linked oligosaccharides and laminaribiose at higher rates than pNPG, and did not hydrolyze celllobiose, gentiobiose, pNP-β-D-mannoside, and pNP-β-D-cellobioside.

Table 3: Substrate specificity of the purified rice Os4bglu12

Substrate	Relative activitya(%)
Laminaribioseb	238
Laminariotriose	0
Laminaritetraose	0
Laminaripentaose	0
Cellbiose	0
Cellotrioseb	231
Cellotetraoseb	301
Cellopentaoseb	279
Cellohexaoseb	295
Gentiobiose	0
Laminarin	0
Barley 1,3, 1,4-β-glucans	0
pNP-β-D-glucoside	100
pNP-β-D-fucoside	118
pNP-β-D-galactoside	45
pNP-β-D-xylloside	45
pNP-α-L-arabinoside	26
pNP-β-D-mannoside	0
pNP-β-D-cellobioside	0
pNP-α-D-glucoside	0
pNP-β-L-fucoside	0

aPercent activity relative to glucose or pNP released from pNP-β-D-glucoside. The assay contained 1 mM substrate in 50 mM sodium acetate (pH 5.0) buffer at 37°C. bNote that the values for oligosaccharides are in terms of total glucose released.
In summary, forty genes encoding GH1 β-glucosidases have been identified from the rice genome databases. Gene-derived cDNAs were predicted and compared to experimentally derived cDNA in the database. Intron-exon boundaries and intron numbers are highly conserved among rice and other plant β-glucosidase genes. At least 31 rice β-glucosidase genes have corresponding ESTs, indicating their transcription, and these ESTs come from many tissues, indicating their temporal and spatial regulation and importance for the rice plant. Most of these genes appear to have diverged from each other after the divergence of rice and Arabidopsis from their common ancestor, implying that their functions may not be easily defined by studies in Arabidopsis and other dicots. To begin a functional analysis of rice GH1 enzymes, the Os4bglu12 cDNA encoding the protein with the amino acid sequence that was most similar to the previously purified and characterized cell wall-bound β-glucosidase was cloned by RT-PCR and expressed in E. coli. Recombinant Os4bglu12 protein hydrolyzed β-linked oligosaccharides and pNP-glycosides. The specificity of Os4bglu12 for oligosaccharides and pNP-glycosides was different from the previously characterized GH1 β-glucosidases/exoglucanases, cell wall-bound rice β-glucosidase, Os3bglu7, and barley β-II β-glucosidase. This work represents a start toward determining the roles of the GH1 β-glucosidases in rice, which provides an opportunity to investigate the molecular basis for differences in substrate specificity and the evolution of enzyme functions.

Conclusion

In summary, forty genes encoding GH1 β-glucosidases have been identified from the rice genome databases. Gene-derived cDNAs were predicted and compared to experimentally derived cDNA in the database. Intron-exon boundaries and intron numbers are highly conserved among rice and other plant β-glucosidase genes. At least 31 rice β-glucosidase genes have corresponding ESTs, indicating their transcription, and these ESTs come from many tissues, indicating their temporal and spatial regulation and importance for the rice plant. Most of these genes appear to have diverged from each other after the divergence of rice and Arabidopsis from their common ancestor, implying that their functions may not be easily defined by studies in Arabidopsis and other dicots. To begin a functional analysis of rice GH1 enzymes, the Os4bglu12 cDNA encoding the protein with the amino acid sequence that was most similar to the previously purified and characterized cell wall-bound β-glucosidase was cloned by RT-PCR and expressed in E. coli. Recombinant Os4bglu12 protein hydrolyzed β-linked oligosaccharides and pNP-glycosides. The specificity of Os4bglu12 for oligosaccharides and pNP-glycosides was different from the previously characterized GH1 β-glucosidases/exoglucanases, cell wall-bound rice β-glucosidase, Os3bglu7, and barley β-II β-glucosidase. This work represents a start toward determining the roles of the GH1 β-glucosidases in rice, which provides an opportunity to investigate the molecular basis for differences in substrate specificity and the evolution of enzyme functions.

Methods

Plant materials and growth conditions

Rice (Oryza sativa L. spp. indica cv. KDML105) seeds were germinated in the dark from day 0 to day 3 and in 12 h light-12 h dark from day 4 to day 6 at 28°C on germinating paper moistened with sterile distilled water. The whole seedlings were harvested and kept at -70°C.

Database searching and sequence analysis

Identification of rice genes homologous to GH1 β-glucosidase genes was done using the BLAST suite of programs [58] in 4 databases: GenBank at NCBI [59], the Monsanto Rice Genome Draft Database [60], the Beijing Genomic Institute, BGI [26] and the Syngenta Torrey Mesa Research Institute database [61]. Because all genes could be found in the GenBank japonica and BGI indica sequences, the other databases were not included. Identification of homologous genes and cDNA was done using tBLASTn with known β-glucosidase protein sequences from GenBank: rice bglu1 (AC U28047) maize bglu1 (AC U33816), barley BGQ60 (AC L41869), and Arabidopsis psr3.2 (AC U72155), as queries, while BLASTn was used to identify sequences from the same gene. Coding regions of genes were identified by BLASTx searches against the NCBI nr protein database. Exact splice sites were predicted by identification of splice site consensus sequences near the ends of identified coding regions, which maintained the correct reading frame. When available, full-length cDNA and expressed sequence tag (EST) sequences were used to confirm the gene predictions. Translation of gene sequences was done using the 6-frame translation facility at the Baylor College of Medicine (BCM) search launcher site [62,63]. The ClustalX implementation of ClustalW was used for protein sequence alignments [64,65] and phylogenetic analyses done by the built in NJ-tree facility of this program with bootstrapping (1000 iterations), after manual adjustment of the alignment with the GeneDoc program. Bootstrapped neighbor joining and maximum parsimony trees with and without gap sequences were also developed with the PHYLIP suite [66], and the results were compared to those generated with ClustalX. The rice SFR2 homologue, Os11bglu36, was used as the outgroup in these analyses, since it is derived from a distinct lineage within GH1.

The organization of the genes was diagramed and categorized from the conservation of introns and exons in rice β-glucosidase gene structures. The sequence and gene struc-
tural analyses were correlated to describe the evolutionary relationships among the genes. Each β-glucosidase gene sequence was searched against the GenBank at NCBI using BLASTn to identify the chromosomal locations. Cellular locations of predicted proteins were predicted by PSORT [67], signal sequences were predicted by SignalP [68], N-glycosylation sites were predicted by NetNGlyc, and the molecular weights (MW) and isoelectric points (pI) of the proteins were predicted by ProtParam at the Expasy proteomics server [69].

In order to determine the relative abundance of mRNAs of each GH1 gene in rice, a BLASTn search with the derived cDNA sequence for each predicted gene was performed in dbEST and the japonica rice full-length cDNA clones [50]. All EST/cDNA clone IDs were retrieved and collected in the catalog to compare gene expression in various library sources. In addition, rice-specific tBLASTn searches using known β-glucosidase protein sequences were performed in the dbEST to identify all ESTs/cDNAs encoding β-glucosidase proteins from rice, as described for gene identification. Final EST/cDNA collections for each gene were compared with the Unigene facility of the NCBI GenBank database.

Cloning of rice Os4bglu12 β-glucosidase cDNA

Total RNA was isolated from 100 mg 5-6-d-old rice seedlings using Trizol Reagent (Invitrogen, Carlsbad, CA). The total RNA (5 µg) was used as the template to synthesize the first-strand cDNA with SuperScript II reverse transcriptase according to the manufacturer’s protocol (Invitrogen). Primers for amplifying the full-length coding sequence (CDS) cDNA (designated Os4bglu12) and a cDNA encoding the mature protein of rice Os4bglu12 β-glucosidase were designed from the GenBank indica rice genome contig number AAAA0214151 and the AK100820 and AK105375 cDNA sequences [50]. A 5’ sense primer, Os4bglu12_fullf (5’-TGTCCATGGCGGCACGAG-3’), and the antisense primer, Os4bglu12_3’UTr (5’-AACTGGATTACCTCCATCTC-3’), were used to amplify the full-length cDNA. The amplification was done with 30 cycles of 94°C, 30 s, 55°C 30 s and 72°C 4 min, and Pfu DNA polymerase (Promega, Madison, WI). A full-length product was cloned into the EcoRV site of pBlueScript II SK+ (Stratagene, La Jolla, CA), and sequenced.

Protein expression in Escherichia coli

The cDNA encoding the mature protein of rice Os4bglu12 β-glucosidase was cloned by RT-PCR and inserted into pENTR-D/TOPO Gateway entry vector and transferred to the pET32a (+)/DEST Gateway expression vector for expression. The Gateway Conversion cassette A was ligated into the EcoRV site of pET32a (+) (Novagen, Madison, WI) according to the Invitrogen Gateway Conver-
polysaccharides. In the assay, 1–5 μg enzyme was incubated separately with 0.5% (w/v) laminarin and barley β-glucans in 50 mM sodium acetate (pH 5.0) at 37°C for 30–60 min. The reaction was stopped by the addition of p-hydroxybenzoic acid hydroxide reagent as described by [72], and the increase in reducing sugars was measured colorimetrically.

The glycon specificity of recombinant Os4bglu12 β-glucosidase was tested against synthetic substrates, pNP-glycosides. In a 100 μL reaction, 0.05 μg (0.72 pmol) enzyme was incubated with 1 mM pNP-glycoside substrate in 50 mM sodium acetate buffer, pH 5.0, for 5 min at 37°C. Then, 70 μL of 0.4 M sodium carbonate was added to stop the reaction, and the absorbance of the liberated pNP was measured at 405 nm. One unit of β-glucosidase activity was defined as the amount of enzyme that produced 1 μmol of product per min. Protein assays were performed by the Bio-Rad protein assay kit (Bio-Rad, Richmond, CA) using bovine serum albumin as a standard.

The pH optimum was determined by measuring the release of pNP from pNP-g in different 50 mM buffers ranging in pH from 3.5 to 10 in 0.5 pH unit increments for 10 min (formate, pH 3.5–4.5; sodium acetate, pH 4.0–5.5; sodium phosphate, pH 5.5–8; Tris, pH 7.5–9.0; CAPS, pH 9.0–10). To find the temperature optimum, pNP hydrolysis was measured in 50 mM sodium acetate (pH 5.0) at temperatures ranging from 5°C to 90°C in 5°C increments for 10 min.

Abbreviations

BGI, Beijing Genomic Institute; CDS, coding sequence; DP, degree of polymerization; EST, expressed sequence tag; GH1, glycosyl hydrolase family 1; IAA, indole-3-acetic acid; IMAC, immobilized metal affinity chromatography; pI, isoelectric points; MW, molecular weights; ORFs, open reading frames; pNP, p-nitrophenol; pNP-g, p-nitrophenyl-β-D-glucoside; PGO, peroxidase/glucose oxidase.

Authors’ contributions

RO carried out the sequence analysis, participated in recombinant protein production and enzyme assay, and drafted the manuscript. BP carried out the enzyme assay. TO carried out cDNA cloning and recombinant protein production. TA participated and advised in enzyme assays and manuscript development. AE advised in sequence analysis and manuscript correction. JKC carried out sequence analysis, phylogenetic analysis, and drafted the manuscript. All authors read and approved the final submission.

Additional material

Additional File 1

Alignment of full-length derived sequences of rice and Arabidopsis showing full predicted sequences. All the full-length predicted proteins from rice GH1 genes, including Os11bglu36, which is from a distinct GH1 lineage, but not its Arabidopsis homologue and the possible endopeptide genes Osbglu39 and Osbglu40, were aligned with ClustalX and the alignment adjusted and shaded with GeneDoc, as described in the methods. Darkest shading represents highest conservation, and the consensus for highly conserved regions is shown below the alignment. The file was exported as a rich text (.rtf) document for this picture.

Click here for file
http://www.biomedcentral.com/content/supplementary/1471-2229-6-33-S1.doc

Additional File 2

Alignment of derived sequences of rice and Arabidopsis after removal of end regions and large gaps for use in phylogenetic tree generation. The alignment in Additional file 1 was edited in GeneDoc to remove the nonconserved N-terminal and C-terminal sequences and most of the large gap regions. This adjusted alignment was used for generation of the phylogenetic trees shown in Figure 2. Darkest shading represents highest conservation, and the consensus for highly conserved regions is shown below the alignment. The file was exported as a rich text (.rtf) document for this picture.

Click here for file
http://www.biomedcentral.com/content/supplementary/1471-2229-6-33-S2.doc

Additional File 3

Alignment of full-length derived sequences of rice and other plant GH1 enzymes. All the full-length predicted proteins from rice GH1 genes, including Os11bglu36, which is from a distinct GH1 lineage, but not the possible endopeptide genes Osbglu39 and Osbglu40, were aligned the related sequences defined in Figure 3 using ClustalX. The alignment was edited and shaded with GeneDoc, as described in the methods. Darkest shading represents highest conservation, and the consensus for highly conserved regions is shown below the alignment. The file was exported as a rich text (.rtf) document for this picture.

Click here for file
http://www.biomedcentral.com/content/supplementary/1471-2229-6-33-S3.doc

Additional File 4

Supplementary Table 1: Most predominant genes in terms of EST numbers in cereals.

Click here for file
http://www.biomedcentral.com/content/supplementary/1471-2229-6-33-S4.doc

Acknowledgements

Prof. Jisnuson Svasti is thanked for helpful advice and discussions. Mariena Ketudat-Cairs is thanked for advice throughout the project. This work was supported by grant BT-B-06-RG-19-4608 from the National Science and Technology Development Agency of Thailand, Natio...
References

1. Fowler T: Deletion of the Trichoderma reesei β-glucosidase gene, bgl1. In β-glucosidases: Biochemistry and Molecular Biology Edited by: Esen A, Wadhik, Jin DC; American Chemical Society; 1993:56-65. [ACS Symposium Series 533]

2. Poulton JE: Cyanogenesis in plants. Plant Physiol 1990, 94:401-405.

3. Duroux L, Delmotte F, Lancelin J-M, Keravis G, Jay-Allaend C: Insight into naphthoquinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojugone-β-D-glucopyranoside. Biochimie 1990, 39, 1067-273-283.

4. Brzobohaty B, Moore I, Kristoffer sen P, Bako L, Campos N, Schell J, Palke K: Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 1993, 262:1051-1054.

5. Falk A, Rask L: Expression of a β-glucosidase from lodgepole pine specific for the lignin precursor coniferyl. Plant Physiol 1995, 107:331-339.

6. Bluzutski G, Wainahski H, Emaj, M, S, Noguchi E, Inohara-Ochi M, Fukuchi-Mizutani M, Nakao M, Sakata K: Cloning of β-pri
erosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

7. Barleben L, Ma X, Koepke J, Peng G, Michel H, Stöckigt J, Henrissat B: A classification of glyc osyl hydrolases based on sequence similarities. Biochimie 1997, 79:1309-316.

8. A. Oku, T. : Expression of a zeatin-O-glucoside-degrading β-glucosidase in Brassica napus. Plant Physiol 1995, 108:1369-1377.

9. Dharmawardhana DP, Ellis BE, Carlsson JE: A β-glucosidase from glycosyl hydrolase family 1.

10. Raychaudhuri A, Tipon PA: Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

11. Barleben L, Ma X, Koepke J, Peng G, Michel H, Stöckigt J: Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to a unique diversity of indole alkaloid skeletons. Biochim Biophys Acta 2003, 1747:89-92.

12. Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochimie 1997, 79:1309-316.

13. M. : Purification of an isoflavonoid 7-O-glucoside-specific-β
glucosidase from Avena sativa L. Phytochemistry 1998, 7:245-264.

14. A. : Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

15. A. : Purification of an isoflavonoid 7-O-glucoside-specific-β
glucosidase from Avena sativa L. Phytochemistry 1998, 7:245-264.

16. M. : Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

17. M. : Purification of an isoflavonoid 7-O-glucoside-specific-β
glucosidase from Avena sativa L. Phytochemistry 1998, 7:245-264.

18. M. : Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

19. M. : Purification of an isoflavonoid 7-O-glucoside-specific-β
glucosidase from Avena sativa L. Phytochemistry 1998, 7:245-264.

20. M. : Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.

21. M. : Purification of an isoflavonoid 7-O-glucoside-specific-β
glucosidase from Avena sativa L. Phytochemistry 1998, 7:245-264.

22. M. : Cloning and expression of the gene for soybean hydrolase in tea leaves. A key enzyme in tea aroma formation. Plant Physiol 2002, 130:2164-2176.
in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci USA 2000, 97:15555-15560.

42. Hoffman K, Bacher P, Falquet L, Bairoch A: The PROSITE database, its status in 1999. Nucleic Acids Research 1999, 27:215-219.

43. Müllegger J, Jahn J, Chen H-M, Warren RAJ, Withers SG: Engineering of a thioglycoligase: randomized mutagenesis of the acid-base residue leads to the identification of improved catalysts. Protein Engineer Design Select 2005, 18:833-40.

44. Escamilla-Treviño LL, Chen W, Card ML, Shih M-C, Cheng CL, Poulton JE: Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 2006, 67:1651-1658.

45. Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB: Substrate binding and catalytic mechanism of a barley β-D-glucosidase (1,4)-β-D-glucan exohydrolase. J Biol Chem 1998, 273:11134-11143.

46. Hrmova M, Burton RA, Biely P, Lahnstein J, Fincher GB: Hydrolysis of (1,4)-β-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-D-mannan exohydrolase and β-D-mannanase. Biochemical Journal 2006, 399:77-90.

47. Henriass B, Davies Cj: Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 2000, 124:1515-1519.

48. Thorby G, Fournier NJ, Warren H, Gruning B. The sensitive to freezing2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a β-glucosidase. Plant Cell 2004, 16:2192-2203.

49. Kikuchi S, Satoh K, Nagata T, Kawai S, Sugiyama A, Misuzono K, Yokomizo S, Niikura J, Ikeda R, Ishibiki T, Ohneda E, Yahagi W, Suzuki K, Li C, Ohtsuki K, Shishiki T, Otomo M, Inoue M, Endo Y, Tanno Y, Takeda T, Ito T, Koyama E, Doi K, Kishimoto N, Kusumegi T, Oka M, Ryu R, Nakai K, Horton P: PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 1999, 24:34-35.

50. Nielsen JD, Nielsen N, Winslow H, Heine G, Brun S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.

51. Nielsen KA, Hrmova M, Nielsen JN, Forslund K, Ebert S, Olsen CE, Fincher GB, Lindberg Moller B: Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta 2003, 223:1010-1023.

52. Iwami K, Yasumoto K: Synthesis of pyridoxine β-glucosidase and its in situ absorption in rat small intestine. Nutr Res 1986, 6:407-414.

53. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazzile S, Kawai K, Galbraith D, Bohnert Hj: Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 2001, 13:889-905.

54. Wang X, He R, He G: Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. J Plant Physiol 2005, 162:1254-1262.

55. Palmino EP, Juliano BO: Changes in the activity of some hydrolases, peroxidase and catalase in rice seed during germination. Plant Physiol 1973, 52:274-277.

56. Reese ET, Maguire AH, Parrish FW: Glucosidases and exo-glucanases. Can J Biochem 1968, 46:25-34.

57. Marana SR: Molecular basis of substrate specificity in family 1 glycoside hydrolases. IUBMB Life 2006, 58:61-73.

58. Autschbach SF, Madden TL, Schaffer AA, Zhang J, Zhang Y, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.

59. National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov].

60. Barry GF: The use of the Monsanto draft rice genome sequence in research. Plant Physiol 2001, 125:1164-1165.

61. Goff SA, Ricke D, Lan T, Presting G, Wang R, Dunn M, Glazebrook J,Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Mouhamer T, Xia Y, Budworth P, Zhong J, Miguel T, Pazkowskii U, Zhang S, Colbert M, Sun W, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zhrakhik A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gustin A, Pruss D, Reid J, Tavirajian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar A, Adey N, Rubano T, Tsunee M, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296:92-100.