Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element

Kinjal Majumder
Washington University School of Medicine in St. Louis

Olivia I. Koues
Washington University School of Medicine in St. Louis

Elizabeth A. W. Chan
Duke University Medical Center

Katherine E. Kyle
Washington University School of Medicine in St. Louis

Julie E. Horowitz
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Majumder, Kinjal; Koues, Olivia I.; Chan, Elizabeth A. W.; Kyle, Katherine E.; Horowitz, Julie E.; Yang-Iott, Katherine; Bassing, Craig H.; Taniuchi, Ichiro; Krangel, Michael S.; and Oltz, Eugene M., "Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element." The Journal of Experimental Medicine. 212,1. 107-20. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/3681
Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element

Kinjal Majumder,1 Olivia I. Koues,1 Elizabeth A.W. Chan,2 Katherine E. Kyle,1 Julie E. Horowitz,3 Katherine Yang-Iott,3 Craig H. Bassing,3 Ichiro Taniuchi,4 Michael S. Krangel,2 and Eugene M. Oltz1

1Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
2Department of Immunology, Duke University Medical Center, Durham, NC 27710
3Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
4Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan

Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DJβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(DJ) recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.

The packaging of mammalian genomes into chromatin and its folding into discrete topological domains can be altered dynamically to regulate gene expression. In many cases, these processes are linked mechanistically. For example, conversion of repressive to active chromatin is usually preceded by changes in locus topology that facilitate long-range contacts between gene promoters and their regulatory elements, including transcriptional enhancers (Sanyal et al., 2012; de Laat and Duboule, 2013). Deciphering the regulatory logic that sets active and inactive conformations within a genomic space to control expression of its composite genes remains an important goal.

In this regard, antigen receptor (AgR) loci serve as models to study the relationships between regulatory elements and developmental alterations of chromatin, three-dimensional (3D) conformation, and gene activity (Cobb et al., 2006; Jackson and Krangel, 2006; Jhunjhunwala et al., 2008; Steinel et al., 2010). In precursor lymphocytes, specific regions within AgR loci are activated and then repressed at distinct stages of development (Osipovich and Oltz, 2010). Dynamic changes in chromatin and locus topology direct the ordered assembly of immunoglobulin (Ig) and T cell receptor (Tcr) genes from large arrays of variable (V), diversity (D), and joining
tracts, bringing distal

Upon commitment to the T cell lineage, the entire locus con-

tracts RAG-1/2 binding and mediates D and DJ clusters is an initial activation event at all AgR loci, which
generates a focal zone of RAG binding, termed the recombi-

nation center (RC; Schatz and Ji, 2011). At

Once activated, Eβ interacts with promoters flanking two clus-
ters of DJβ gene segments, forming stable loops and trig-
gering transcription of the unarranged segments (Oestreich

The general architecture of AgR loci and the mechanisms

used to control their assembly share many similarities (Shih and Krangel, 2013). As an example, thymocytes first activate

an enhancer, termed Eβ, situated at the 3’ terminus of the

700-kb Tcrb locus (Bories et al., 1996; Bouvier et al., 1996).

In developing lymphocytes, ablation of CTCF, a critical cohesin subunit, impairs promoter-enhancer interactions and perturbs the repertoire of distant V segments used in long-range V(D)J recombination (Ribeiro de Almeida et al., 2011; Seitan et al., 2011). In addition to its structural role, CTCF regulates AgR assembly via its insulator function, forming boundaries between active and repressive chromatin domains. At both Igk and Igk, CTCF-bound insulators prevent the spread of active chromatin from the RC to the most proximal V gene segments (Guo et al., 2011b; Xiang et al., 2013). Inactivating mutation of these elements aug-
mens germline transcription and recombination of the most

RESULTS

RC activation is dispensable for its long-range interactions with Tbrb

The molecular determinants for spatial apposition of distal Tbrb segments with their DJβ targets remain unknown. A key RC feature is its robust, Eβ-dependent transcriptional activity, which decorates the DJβ clusters with H3K4me3 and RAG-1/2 (Ji et al., 2010a,b). As proposed by others, this molecular land-
scape may be a prerequisite for capturing distant Tbrb segments into a transcription factory occupied by the highly expressed R.C, forming long-range Tbrb loops (Verma-Gaur et al., 2012).

Accordingly, inactivation of the RC should exclude it from transcription factories and disrupt long-range V-DJ inter-

actions. Prior studies at Igk and Igk suggest that distant V-RC interactions are enhancer independent (Hewitt et al., 2008; Medvedovic et al., 2013), but these conclusions are complic-
ated by residual RC transcription and potential redundancies between multiple enhancers. In contrast, deletion of Eκ crip-

ples transcription of the Tκu-RC and perturbs its interactions with proximal Tκu segments (Shih et al., 2012). As such, the validity of the transcription factory co-occupancy model re-

ains unresolved.
Figure 1. Long-range Tcrb-RC interactions are Eb independent. (A) Schematic depiction of the entire mouse Tcrb locus (top) and a magnified version of 30 kb spanning the RC (bottom). Promoter deletions (ΔPDb1 and ΔminPDb1) and enhancer mutations (mEb) are shown at the bottom. Viewpoints used in 3C assays are designated as anchor symbols. (B) Germline transcription was measured relative to Actb in RAG-deficient thymocytes (WT, mEb, or ΔEb alleles) and pro-B cells (B220+ cells from RAG1−/− bone marrow) as described previously (Osipovich et al., 2007). (C) H3K4me3 deposition was measured by ChIP at PDb1 and PDb2 in RAG-deficient thymocytes (WT, mEb, or ΔEb alleles). ChIP using a nonspecific isotype control is shown (IgG). (D) 3C analysis was performed to test the cross-linking between Eb and Db1 (left) or Db2 (right) in RAG-deficient thymocytes (WT, mEb, or ΔEb alleles) and pro-B cells (background levels). (E) Long-range interactions were tested by 3C using the Eb viewpoint (anchor symbol). Relative cross-linking between HindIII fragments spanning Eb and each indicated gene segment was calculated as described previously (Gopalakrishnan et al., 2013). The data are summarized as a cartoon in the top. Green shading indicates whether cross-linking in mEb relative to WT alleles is unchanged (darkest green), reduced significantly (lighter green), or reduced to background levels in pro-B cells (white). (F) 3C assays were performed with the Eb viewpoint (anchor) in DN thymocytes and pro-B cells from RAG-deficient mice, either lacking or expressing a D708A RAG transgene (Ji et al., 2010b). (G) 3C assays were performed with the Db1 viewpoint (anchor) in DN thymocytes (WT, Eb, or ΔEb alleles) and pro-B cell controls. Results are summarized in the schematic on top as described in E. (H) 3C interactions were monitored using the Db2 viewpoint (anchor). Data are presented as mean values from at least three independent experiments (±SEM). Thymocytes were pooled from 5–10 mice per experiment. Each panel shows data from independent experiments performed in triplicate. Significant differences between WT and mEb samples are denoted as *, P < 0.05 (Student’s t test).
Mouse Tcrb harbors a single known enhancer that is essential for transcription and recombination of its RC in double-negative (DN) thymocytes (Bories et al., 1996; Bouvier et al., 1996). When transcriptionally active, the Tcrb-RC samples VB segments by adopting a thymocyte-specific conformation, in which these distal elements are brought into spatial proximity (Gopalakrishnan et al., 2013). To directly test causal relationships between RC activation and Tcrb-DJββ associations, we measured their spatial proximity in DN thymocytes containing transcriptionally active or inactive versions of DJββ clusters. Thymocytes with a transcriptionally inactive RC derive from mice in which two critical Runx-binding sites in Eβ were destroyed by targeted mutagenesis (Fig. 1 A, mEβ). The mutant Eβ maintains linear spacing within the RC but recapitulates all aspects of Tcrb inactivation observed with a complete Eβ deletion, termed ΔEβ (Mathieu et al., 2000). The defects resulting from enhancer inactivation include ablation of germline DJββ transcription (Fig. 1 B), diminished levels of H3K4me3 deposition (Fig. 1 C), and loss of looping between the enhancer region and both DJβ-associated promoters (Fig. 1 D). Unless indicated otherwise, DN thymocytes for all experiments were from mice bred into a RAG1-deficient background (C57BL/6) to preclude Tcrb rearrangements, which would confound interpretation of looping data.

We measured Tcrb-RC association in WT versus mEβ alleles using chromosome conformation capture (3C), which quantifies cross-linking efficiency of a given genomic viewpoint with other restriction fragments (Dekker et al., 2002). As shown in Fig. 1 E, the Eβ region associates more efficiently with Tcrb segments in DN thymocytes compared with pro-B cells, confirming its cell type–specific interactome (Gopalakrishnan et al., 2013). No significant differences are observed for long-range Tcrb interactions in DN thymocytes from RAG1-deficient mice compared with those expressing a catalytically inactive, but binding-competent version of RAG1 (D708A; Fig. 1 F; Ji et al., 2010b). Thus, DN-specific looping between the VB cluster and Tcrb-RC is independent of RAG1 binding.

Interactions between the enhancer region and Tcrb segments are mostly diminished in DN thymocytes from mEβ animals (Fig. 1 E). However, the inactive Eβ maintains a subset of contacts with the central Tbr12–Tbr16 cluster (see Discussion). Surprisingly, associations between Tbr1 segments and both DJββ clusters within the RC are unaffected by deletion or mutational inactivation of the enhancer when monitored from either DJβ viewpoint (Fig. 1, G and H). Thus, when Eβ is functional, it interacts with RC promoters and incorporates into the Tbr1–DJ interactome; but when this enhancer is disabled, it separates from the thymocyte–specific aggregation of VDJ gene segments. We conclude that Tbr1 adopts a thymocyte-specific conformation, which facilitates long-range Tbr1–DJ interactions, independent of Eβ function, RC transcription, and RAG deposition. Importantly, these findings formally preclude the transcription factory co-occupancy model for Tbr1 looping.

Tbr topology and transcription is largely Eβ independent

By comparison with cells from other lineages, the Tbr1 cluster adopts a more compact conformation in DN thymocytes (Skok et al., 2007), which likely facilitates sampling of Tbr1 segments by the RC and diversifies their usage in the primary TCRβ repertoire. However, recombination of Tbr1 segments is not completely normalized; instead, it is influenced significantly by relative levels of VB germline transcription (Gopalakrishnan et al., 2013). Thus, the primary TCRβ repertoire is determined by both topological and transcriptional properties of the Tbr1 cluster.

To assess whether Eβ is required for these repertoire-sculpting features, we measured intra-VB association using 3C. When examined from viewpoints in either the distal (Tbr15) or proximal (Tbr23) portion of the cluster, intra-Tbr1 cross-linking is unaffected by the mEβ mutation (Fig. 2, A and B). However, in keeping with data presented in Fig. 1, long-range association of Tbr15 and Tbr23 with the enhancer is reduced. In mEβ thymocytes, both CTCF and RAD21 remain bound to sites within Tbr1 at levels well above background; their binding differed statistically at only one tested viewpoint in the Tbr1 cluster, Tbr10, where CTCF decreased moderately (Fig. 2, C and D). However, inactivation of Eβ diminished transcription at a subset of Tbr1 segments that are most highly expressed in DN thymocytes (Fig. 2 E). Attenuated expression of these germline segments may reflect either a requirement for association with a transcriptionally active RC or with the functional Eβ element (see Discussion). We conclude that Eβ is dispensable for compaction of the Tbr1 cluster but augments the transcriptional activity of specific VB segments, which could influence the primary Tbr1 repertoire. A definitive test is precluded because Eβ is essential for DJββ recombination, a prerequisite for subsequent rearrangement of Tbr1 segments.

RC promoter deletion reveals two Tbr1 interaction domains

In addition to Eβ, transcription and rearrangement of the RC is controlled by two promoters, termed PDb1 and PDb2, situated within their respective DJββ clusters (Fig. 1 A; Sikes et al., 1998, 2002). Activation of the DJβ1β, but not DJβ2β, cluster is crippled in thymocytes harboring a 3.5-kb deletion spanning PDb1 (ΔPDb1 allele; Fig. 1 A; Whitehurst et al., 1999). To test whether activities associated with the promoter region contribute to folding of Tbr1 into its active conformation, we performed 3C analyses on DN thymocytes from ΔPDb1/Rag1−/− mice. Because ΔPDb1 removes one relevant restriction site near DJβ1, we focused RC interactome experiments on DJβ2 and Eβ. As shown in Fig. 3 A (top), DJβ2 interactions with the most proximal portion of the Tbr1 cluster are unaffected by the ΔPDb1 mutation (Tbr16-30). However, we observe a significant reduction in DJβ2 cross-linking with distal portions of the Tbr1 array (Tbr1-14). Precisely the same bifurcation in long-range interactions is observed when Eβ is used as the 3C viewpoint (Fig. 3 B). The ΔPDb1 mutation also reduced CTCF levels at sites in the distal Tbr1 array (Fig. 3 C), which may be a consequence of disrupting their
association with CTCF-rich elements near the RC (see Discussion). However, RAD21 binding and germline T(b)h transcription throughout Tcrb are unaffected in ΔPDB1 thymocytes (Fig. 3, D and E).

To gain more insight into its putative bidomainal structure, we probed interactomes of the T(b)h array using a distal and a proximal Vβ segment as viewpoints. The distal T(b)h5 segment exhibits tissue-specific, enhancer-independent association with other gene segments in the T(b)h array, as well as a robust interaction with the RC (Fig. 3 A, bottom). Cross-linking of this region with other distal Vβ segments is unaffected by the ΔPDB1 deletion. However, its associations with the proximal half of T(b)h and with the RC are significantly diminished in ΔPDB1 thymocytes. Thus, the more distal T(b)h segments form a higher-order structure independent of PDB1 but require this promoter region for its interaction with the 3' half of the T(b)h cluster. Conversely, the more proximal T(b)h23 region associates with the RC and another 3' segment, T(b)h29, independent of PDB1 but requires this promoter region for its association with more distal T(b)h segments (Fig. 3 F).

A primary function of the region deleted from ΔPDB1 alleles is promoter activity, which drives transcription and remodels the Dβ1Jβ chromatin landscape (Whitehurst et al., 1999). To explore whether promoter function is the primary determinant of long-range interactions between distal T(b)h segments and the RC, we revived a mouse strain that harbors a deletion spanning only the minimal promoter upstream of Dβ1 (AminPDB1; Whitehurst et al., 2000). Only residual levels of germline Dβ1 transcription are detected in thymocytes.
Figure 3. Deletion of the 5' RC flank resolves two Trbv interaction domains. (A and B) 3C analysis of RAG-deficient thymocytes (WT, ΔPDβ1, or mβ alleles) and pro-B cells using the Dβ2 (A, top), Trbv5 (A, bottom), and Eβ (B) viewpoints (anchors). Individual HindIII fragments are represented by alternating white and gray bars. Bold black bars indicate viewpoint locations. Schematics of Tcrb are shown on top and below primary 3C data, which are presented as mean values (±SEM) from at least three independent experiments. Thymocytes were pooled from 5–10 mice per 3C experiment. Significant differences between WT and ΔPDβ1 samples are denoted as *, P < 0.05 (Student's t test). See Fig. 1 for details of cartoon data summaries. Here, red shading indicates that Trbv-Dβ2 cross-linking in ΔPDβ1 relative to WT alleles was unchanged (darkest red) or reduced to background levels in pro-B cells (white). (C and D) ChIP-qPCR assay for CTCF (C) and RAD21 (D) binding at sites near the indicated Trbv segments. Refer to Fig. 2 C for details. Data are presented as mean percent input (±SEM) with thymocytes pooled from at least 5–10 mice per experiment. (E) Trbv germline transcription was quantified relative to Actb by qRT-PCR from at least three independent experiments (involving one to three mice per experiment). Data are presented as mean relative expression (±SEM). Statistically significant differences are denoted as *, P < 0.05 (Student's t test). (F) 3C assays were performed with the Trbv23 viewpoint (anchor). Schematic of Tcrb is shown on top. Data are presented as mean relative cross-linking (±SEM). Statistically significant differences between WT and ΔPDβ1 are denoted as *, P < 0.05 (Student's t test).
from ΔminPDβ1/Rag1−/− mice (Fig. 4 A; Whitehurst et al., 2000). Despite this dramatic transcriptional defect, long-range Tcrb-RC interactions are unaffected by the ΔminPDβ1 deletion (Fig. 4, B and C).

Together, these data indicate that the Tcrb array is topologically divided into two domains. The more proximal half of Tcrb, which still lies >250 kb upstream of the Dββ clusters, associates with the RAG in thymocytes via mechanisms that are independent of PDβ1 and Eβ. The distal half of Tcrb forms tissue-specific contacts with both the RAG and the proximal Tcrb domain. Although these interactions are independent of PDβ1 promoter activity, they require a 3-kb region upstream of this minimal control element. Importantly, we find that the most distal Tcrb segments are significantly underutilized in Vβ-Dββ rearrangements when comparing ΔPDβ1 with ΔminPDβ1 thymocytes on RAG-sufficient backgrounds (Fig. 4 D). In contrast, Tcrb segments in the proximal domain are used at comparable or higher frequencies in ΔPDβ1 thymocytes. Thus, mechanisms that ensure tethering of distal Tcrb domains are important for generating maximal diversity in the TCRβ repertoire.

Tcrb contraction is PDβ1 dependent but Eβ independent

Tcrb undergoes a large-scale spatial reconfiguration, termed contraction, upon differentiation of progenitors into DN thymocytes (Skok et al., 2007). As monitored by 3D fluorescent in situ hybridization (FISH), contraction brings opposing termini of Tcrb, the distal 5′ Tcrb region and RAG, into proximity, to facilitate long-range V-DJ recombination. Upon assembly of a productive Tcrb allele and transition to the double-positive (DP) stage of development, locus contraction is reversed, segregating the Tcrb and DJ clusters, presumably enforcing allelic exclusion (Skok et al., 2007). However, functional relationships between AgR locus contraction and long-range V-RC looping remain unclear.

To test whether known REs contribute to Tcrb contraction, we performed 3D-FISH analyses on thymocytes from RAG-deficient mice harboring WT, mEβ, and ΔPDβ1 alleles. RAG1−/−:D708A thymocytes were also assayed to test whether the deposition of RAG1 influences Tcrb contraction. Representative primary data for FISH experiments are shown in Fig. 5 A. As expected, distances between the V1 and tryptosinogen probes (Fig. 5 B, top) are significantly greater in Rag1−/− DP versus DN thymocytes, reflecting the contracted nature of Tcrb in the latter (Fig. 5 B, bottom). Tcrb contraction is unaffected in DN thymocytes upon inactivation of the RAG (mEβ and ΔEβ thymocytes), RAG1:D708A binding, or loss of the minimal Δβ1 promoter (Fig. 5 B). In contrast, the locus adopts an intermediate conformation in ΔPDβ1/Rag1−/− thymocytes, significantly more extended than in DN cells harboring a WT-Tcrb but significantly more contracted than in their DP counterparts.

These conclusions are supported by FISH data using two additional probe sets that measure distances between the RAG and either the most distal Tcrb segment (Tcrb1; Fig. 5 C) or the main portion of the distal domain (Tcrb2-12; Fig. 5 D). Thus, consistent with 3C data, folding of the most distal Tcrb portion into the RAG-3′ Tcrb aggregate is independent of transcriptional activity at Dββ clusters. Instead, full contraction of the locus requires a region directly upstream of the RAG, which includes PDβ1.

A CTCF-binding region serves as the focal point for distal Tcrb-RC interactions

In an attempt to understand how the region upstream of minPDβ1 impacts long-range Tcrb looping, we surveyed its
An RC barrier element is required for long-range Trbv looping to 5′PC

Although 5′PC tethers the distal Trbv domain, the mechanisms by which ΔPDB1, but not ΔminPDB1, disrupts thymocyte-specific contacts were unclear. In this regard, the 5′PC region remains completely intact on ΔPDB1 alleles; deleted sequences are restricted to a region at least 20 kb downstream (Fig. 6 A, bottom). Furthermore, chromatin immunoprecipitation (ChIP) experiments reveal no significant differences in CTCF or RAD21 binding at 5′PC when comparing WT and ΔPDB1 alleles (Fig. 6 F). These findings imply that an activity associated with the 3-kb region upstream of minPDB1 impacts the ability of 5′PC to form long-range interactions with distal portions of Trbv.

Figure 5. Partial decontraction of the Tcrb locus in ΔPDB1 thymocytes. (A) Representative confocal 3D-FISH images of Tcrb locus contraction for the V1 (red) and trypsinogen region BAC probes (green) quantified in B. Blue corresponds to DAPI staining. Nuclear delimitation is indicated with dashed white lines. Bar, 1 µm. (B–D) Distances between the indicated regions of Tcrb were measured from 3D-FISH images as in A using BAC probes spanning Trbv1 (red) and trypsinogen (green; B), Trbv1 and the RC (green; C), and Trbv2-12 (red) and the RC (green; D). Contraction was measured in RAG-deficient DN thymocytes (shown as black dots) for the indicated Tcrb genotypes or in DP thymocytes (blue dots). Results are presented as scatter plots of distances between probe foci for each Tcrb allele and represent total data from at least three independent preparations of slides. Thymocytes were pooled from 5–10 mice for each slide preparation. Statistical analyses revealed no significant differences between independent experiments performed on the same genotype or cell type. Median values are indicated by red horizontal lines. N represents the total number of foci analyzed by 3D-FISH for each genotype and probe set. Significant differences are denoted as *, P ≤ 0.05; and ****, P ≤ 0.0001 (one-way ANOVA, Tukey’s post hoc test).
In keeping with this possibility, a gene situated upstream of the putative chromatin barrier, Prss2, is transcriptionally active in PD1 thymocytes but is completely silent in the context of WT, ΔPDβ1, or mEβ alleles (Fig. 7 A). Prss2 activation in PD1 thymocytes is on February 4, 2015jem.rupress.orgDownloaded from Published December 15, 2014

The region of interest has several distinguishing characteristics, including a repetitive tract at its 5’ end and a pair of low-intensity CTCF/RAD21-binding sites (Fig. 6 A, bottom). These features are reminiscent of insulators that form boundaries between active and repressive chromatin domains (Wendt et al., 2008). In keeping with this possibility, a gene situated upstream of the putative chromatin barrier, Prss2, is transcriptionally active in ΔPDβ1 thymocytes but is completely silent in the context of WT, ΔminPDβ1, or mEβ alleles (Fig. 7 A). Prss2 activation in ΔPDβ1 thymocytes is

Figure 6. Identification of a Trbv tethering point in the RC flank. (A–E) 3C data for Trbv5 (A; the bottom shows ChIP-seq track for CTCF in DN thymocytes [Shih et al., 2012] as well as locations of repetitive elements), 5’PC (B; schematic shown on top for 5’S viewpoint; see Fig. 1 E), Trbv3 (C), Trbv12-2 (D), and Trbv23 (E) viewpoints (anchors) in RAG-deficient DN thymocytes (WT, ΔPDβ1, or ΔminPDβ1 mice) or pro-B cells (see Fig. 1 A for details). (F) ChIP-qPCR for CTCF and RAD21 at 5’PC in the indicated cell types. All data are represented as means (±SEM) of three independent experiments. Thymocytes were pooled from 5–10 mice for each 3C or ChIP assay. Significant differences are denoted as * P ≤ 0.05 (Student’s t test between WT and ΔPDβ1 genotypes).
mirrored by an acquisition of H3K4me3 at its promoter region (Fig. 7 B).

To further define how the ΔPDβ1 deletion impacts neighboring chromatin domains, we performed ChIP experiments for activating histone modifications within and upstream of the Tcrb-RC. As shown in Fig. 7 C (bottom), the H3K4me2 mark for accessible chromatin spreads throughout the RC in DN thymocytes, continuing to a CTCF site upstream of minPDβ1, after which it drops dramatically (Carabana et al., 2011). As expected, this modification is nearly absent in mEβ thymocytes, which harbor inactive Torb-RCs. Strikingly, H3K4me2 spreads much further upstream in thymocytes from the ΔPDβ1, but not ΔminPDβ1 mice, indicating disruption of a chromatin boundary in the former. Instead, a new chromatin boundary is established at or near 5’PC in the ΔPDβ1 thymocytes. A similar profile is observed for a second active chromatin mark, H3ac (Fig. 7 C, top).

Conversely, the repressive modifications H3K9me2 and H3K27me3, drop significantly near the boundary upstream of the RC in DN thymocytes with either WT or ΔminPDβ1 alleles (Fig. 7 D). When enhancer function is disrupted (mEβ), the H3K9me2 and H3K27me3 marks also cover the inactivated RC, as expected. When the border region is removed (ΔPDβ1), there is a modest, but significant loss of these modifications directly upstream, likely reflecting the invasion of active chromatin into this normally repressed region. Similarly, there is a modest invasion of the two repressive marks into the most proximal end of the RC. Thus, the most significant impact of removing the 5’PDβ1 boundary region is the invasion of active chromatin (H3K4me2 and
H3ac) for a substantial distance upstream of the R.C, resulting in the transcriptional activation of Prss2.

Collectively, our results demonstrate that the region upstream of PDβ1 serves as a chromatin barrier, which is required to preserve the function of 5’PC as a tether for distal regions of the Trbv cluster. When the normal boundary separating active from inactive chromatin is disrupted by the ΔPDβ1 deletion, a barrier function for 5’PC is unmasked, impairing its ability to maintain distal Trbv-RC contacts.

DISCUSSION

Lineage- and stage-specific assembly of AgR genes requires whole-scale changes in locus structure and extensive revisions to their chromatin landscapes, which are largely directed by regulatory elements flanking RCs. Here, we shed light on the complex function of these regulatory elements in both aspects of Trbv assembly. As discussed below, our findings have implications not only for regulatory strategies used by other AgR loci, but also for the spatial mechanisms that control gene expression programs.

Trbv adopts a thymocyte-specific conformation that, surprisingly, is independent of RC activity, including its transcription and binding of RAG proteins. Instead, the fully active Trbv conformation requires a region directly flanking the R.C, which functions as a barrier element to block the spread of active RC chromatin into a repressive upstream region. Disruption of the barrier relocates the active–inactive chromatin boundary to the nearest upstream CTCF site (5’PC), which normally serves as a major tethering point for distal Trbv segments. Our findings suggest that forcing 5’PC to become an insulator decommisions its tethering function, partially unspools the active Trbv conformation, and skews the primary repertoire to favor more proximal Trbv segments.

Although Eβ function is essential for R.C activation, it is dispensable for long-range association between Trbv segments and the two Dββ clusters. Similarly, Trbv contraction is Eβ independent, an observation which is consistent with data from other AgR loci harboring enhancer deletions (Shih and Krangel, 2013). These findings preclude several proposed mechanisms for the folding of AgR loci, or at least Trbv, into their active conformations, including (a) a requirement for accessible RC chromatin, (b) RAG-mediated interactions between RC and V domains, and (c) co-occupancy of the RC and distal V segments in a transcription factory. Instead, we find that the crippled enhancer either protrudes from the Vβ-Dββ interactome or is potentially sequestered into the central Trbv12-16 gene cluster, resulting in transcriptional attenuation of the most active Trbv segments. Suppression of these Trbv segments is unlikely to result directly from loss of enhancer contact, but rather is an indirect effect of their continued association with a repressed R.C. In support of this possibility, contacts between many of these Vβ segments and the R.C are disrupted on the ΔDββ allele, which retains robust expression of the Dββ cluster, as well as a normal level of germline Vβ transcription. Likely, germline transcription of the Trbv segments is mostly caused by the activity of their associated promoters, but when juxtaposed with a repressive chromatin environment in the mEβ alleles, the promoters are silenced.

The general relevance of enhancer-independent V-RC association at other AgR loci is uncertain given available data, in part because Ig loci, unlike Trbv, are decorated with multiple enhancers that form interaction networks and could have redundant functions in generating an active conformation (Degner-Leioso and Feeney, 2010). Of equal importance, many of the prior studies have probed locus–wide interactions only from the enhancer perspective, but based on our findings, viewpoints within the (D)β cluster itself may yield more relevant data for long-range V-RC interactions (Guo et al., 2011a; Medvedovic et al., 2013). At Tcr, a single enhancer (Eα) is tethered to the Jα germline promoter (TEA), generating an active chromatin hub for tertiary interactions with proximal Tαα segments (Shih et al., 2012). Deletion of either Eα or TEA perturbs the proximal Vα to Jα contacts or redistributes enhancer interactions to include the intervening Tεαd locus. Thus, in contrast to Trbv, interactions between proximal V segments and their RC targets are enhancer dependent at Tcr, suggesting that certain aspects of topological control are AgR loci specific. Conformational requirements likely are tailored to the unique architectures of Ig and Trbv loci and may reflect the broad range of spatial mechanisms that can be used to control gene expression in eukaryotes.

A surprising aspect of our study was that removal of the 5’RC flank, which includes PDβ1, disrupts long-range Trbv interactions, resolving the Trbv cluster into distal and proximal domains, each with unique spatial determinants. The bidomainal architecture of Trbv is apparent from effects of the ΔPDβ1 deletion on long-range associations in a cell population (3C assays) or by probing locus contraction in single cells (3D-FISH). The protrusion of distal Trbv segments from the Vβ-Dββ interactome is independent of promoter function because a more specific disruption of the core PDβ1 element has no impact on distal Trbv-R.C juxtaposition. Based on our extensive 3C data, we map the approximate border between proximal and distal Vβ interaction domains to within the Trbv14-16 region, a 16-kb stretch. Although precise border mapping and underlying mechanisms for its establishment remain to be resolved, we point out that the boundary coincides well with a transition between robust CTCF binding within the distal Trbv portion and more modest binding of these structural factors in the proximal domain (Fig. 2 C; Shih et al., 2012). We have been unable to identify other distinguishing characteristics of this region, including unique chromatin landscapes or predicted transcription factor sites. In what may be a related issue, determinants for tethering the proximal Trbv domain to its RC target, 250 kb away, remain unknown. Like the distal domain, proximal Trbv segments form major contacts with 5’PC; however, these interactions are unaffected by the ΔPDβ1 deletion. In contrast with the distal domain, proximal Trbv segments generally form equally robust associations with 5’PC and the R.C. Based on these observations, we propose that the distal Trbv cluster relies on CTCF-dominant contacts with 5’PC to bring it into proximity with
the R.C. Disruption of these contacts may also explain the partial loss of CTCF binding near distal *Tibv* segments in ΔPDβ1 thyromyces. In contrast, the proximal region of *Tibv* could also bridge to the R.C by CTCF-independent mechanisms, which may be analogous to transcription factor-mediated looping at *Igh* (Medvedovic et al., 2013).

In our quest to decipher how the 5′R.C flank impacts its association with distal *Tibv* segments, we found that the ΔPDβ1 deletion disrupts a chromatin boundary. As a result, hyperactive R.C. chromatin spreads upstream, leading to inappropriate expression of the silent *Prss2* gene. Although the deleted region exhibits two modest peaks of CTCF–RAD21 association with distal *Igh*, the precise determinants of its insulator function remain unclear. In this regard, the region between PDβ1 and *Prss2* is repetitive and contains a viral LTR element that is expressed at low levels in DN thyromyces and has insulator properties (Carabana et al., 2011). A closer inspection of chromatin data for this region suggests that it contains a bimodal insulator consisting of the LTR, which blocks the spread of repressive chromatin downstream into the RC (Carabana et al., 2011), and the PDβ1–associated CTCF sites, which prevents the spread of hyperactive R.C. chromatin upstream into the *Prss2* region (shown here).

Notwithstanding these mechanistic uncertainties, deletion of the 5′R.C flank disrupts an active chromatin barrier, which allows it to spread upstream until reaching the next CTCF region, 5′PC. When 5′PC becomes the dominant R.C chromatin barrier, it is decommissioned as a long-range tether for distal *Tibv* segments. Several potential underlying mechanisms for this functional switch can be envisioned, including the major revision of local epigenetic landscapes when the R.C-flanking insulator is disarmed. In this regard, cohesin mediates long-range chromatin looping not only through its association with CTCF, but also when it is recruited to the transcriptional mediator complex (Kagey et al., 2010). Emerging studies indicate that CTCF–cohesin bridges are predominantly structural in nature, similar to distal *Tibv*-5′PC interactions, whereas cohesin-mediator largely bridges loops between regulatory elements (Kagey et al., 2010). Perhaps the activation of transcription near 5′PC converts it into a region that favors participation in regulatory, rather than structural loops.

Our finding that distal *Tibv*-RC interactions depend on a bifunctional insulator–tethering element upstream of the RC is likely relevant to the architectural determinants of other AgR loci. For example, *Igh* enhancers interact with a CTCF-rich region, called the IGCR, which clearly serves as a chromatin boundary between its R.C and proximal *Ighv* segments (Guo et al., 2011b). Similarly, two CTCF regions in *Ikg* termed Cer and Sis, contribute to the insulation of proximal *Ikgv* segments from the enhancer-rich *Ikgk* cluster (Xiang et al., 2011, 2013). Based on our discovery of a bifunctional element in the *Tibv*-RC flank, we would hypothesize that at *Ig* loci, the most R.C-proximal CTCF site or sites serve as an insulator (e.g., CBE2 in IGCR; Sis at *Igk*) to protect the tethering function of the more distant CTCF site or sites (e.g., CBE1 in IGCR; Cer at *Ikgk*). Resolution of these issues in the topological regulation of AgR loci will lend important insights into the menu of mechanisms that can be deployed to control gene expression programs in response to developmental cues or physiological agonists.

MATERIALS AND METHODS

Mouse strains. ΔPDβ1, ΔEβ, and AminPDβ1 mice were maintained on a Rag1^{−/−}/C57BL/6 background (Bories et al., 1996; Whitehurst et al., 2000). Distal thyromyces were generated in Rag1^{−/−} mice by anti-CD3ε injections as described previously (Shih and Krangel, 2010). The mEβ mouse, which harbors crippling mutations at both Runx-binding sites in Eβ, was generated by homologous recombination in embryonic stem cells. In brief, the endogenous Runx-binding sequences TGTGGTT and TGGCACA in Eβ were mutated to TGTCGC and TTTGAGA, respectively. The mEβ allele was backcrossed onto the Rag1^{−/−}/C57BL/6 background. D708A mice were obtained from the Schatz laboratory (Ji et al., 2010b). Rag1^{−/−}/C57BL/6 mice were used as positive control for 3C, ChIP, and germline transcription assays and are labeled as WT in the figures. Developmental stages in RAG-deficient thyromyces harboring different *Tob* genotypes were assessed by CD44:CD25 staining. The majority (>94%) of cells were DN in each of the genotypes, as expected (Yannoutos et al., 2001). All animal procedures were approved by the Institutional Animal Care and Use Committee of Washington University School of Medicine in St. Louis.

Tissue isolation and cell sorting. Single cell suspensions of thyromyces from Rag1^{−/−} mice of various *Tob* genotypes were used for 3C, ChIP, expression, and 3D-FISH experiments. CD19 microbeads (Miltenyi Biotec) were used to isolate pro-B cells from the bone marrow of Rag1^{−/−} mice using an autoMACS Pro Separator (Miltenyi Biotec).

3C assays. 3C assays were performed and analyzed as described previously (Hagège et al., 2007; Gopalakrishnan et al., 2013). Refer to Tables S1 and S2 for primer and probe combinations.

ChIP. ChIP assays were performed as described previously (Gopalakrishnan et al., 2013). The following antibodies were used: CTCF (Rockland), Rad21 (Abcam), H3ac (EMD Millipore), H3K4me2 (Abcam), H3K4me3 (Abcam), H3K9me2 (Abcam), H3K27me3 (Abcam), and IgG (Santa Cruz Biotechnology, Inc.). ChIPs were analyzed by qPCR using SYBR Green and primer combinations shown in Table S3. The LTR region between *Prss2* and *Tibv*-RC was assayed with primers 7.4 UDB and 5.5 UDB published previously (Carabana et al., 2011).

3D-FISH. Hybridizations were performed with bacterial artificial chromosome (BACs) that recognize the *Thr1* (RP23-75PS), *Thr2-Thr6* (RP23-306O13), trypsinogen region (RP23-200H8), and the *Tob*-RC (RP23-421M9). To generate probes, BACs were nick translated with biotin and digoxigenin using Roche kits. The FISH probes were hybridized to slides of fixed, permeabilized thyromyces and then incubated with anti-biotin (Jackson ImmunoResearch Laboratories, Inc.), anti-digoxigenin, and DAPI (Invitrogen) stains. Hybridized slides were imaged on an A1 confocal microscope using 100× objective with 2× digital zoom (Nikon) and analyzed using ImageJ (National Institutes of Health) to measure 3D distances between foci as described previously (Shah and Kranzkg, 2010).

Germline *Tob* transcription. cDNA generated from 2 µg total thyromyces or pro-B cell RNA (Scripto supermix; Bio-Rad Laboratories) was analyzed by qPCR using the primer combinations provided in Table S3.

Recombination assays. Genomic DNA was extracted from 10⁷ total thyromyces using the DNeasy Blood and Tissue kit (QIAGEN). TaqMan qPCR assays to measure Jβ2 rearrangement frequencies were performed as described previously (Gopalakrishnan et al., 2013).

Online supplemental material. Tables S1 and S2 show TaqMan probes and primers used for 3C-qPCR analysis, and Table S3 shows primers used.
for ChIP and gene expression analysis by qPCR. Primers and probes were obtained from Sigma-Aldrich. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20141479/DC1.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

This research was supported by National Institutes of Health grants AI 079732 and AI 081224 to E.M. Oltz, AI 49334 to M.S. Krangel, AI 112621 to C.H. Bassing, and CA177086 to J.E. Horowitz, as well as a Leukemia and Lymphoma Society Scholar Award to C.H. Bassing. The authors declare no competing financial interests.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.

Submitted: 4 August 2014
Accepted: 20 November 2014

REFERENCES

Bories, J.C., J. Demengeot, L. Davidson, and F.W. Alt. 1996. Gene-targeted RAG D708A mice were kindly provided by Dr. David Schatz.

We would like to thank Drs. B. Sleckman and T. Egawa for their valuable comments. RAG D708A mice were kindly provided by Dr. David Schatz.
enhancer- and CTCF-dependent chromatin hub. Proc. Natl. Acad. Sci. USA. 109:E3493–E3502. http://dx.doi.org/10.1073/pnas.1214131109

Shinkai, Y., and F.W. Alt. 1994. CD3 epsilon-mediated signals rescue the development of CD4+CD8− thymocytes in RAG-2−/− mice in the absence of TCR β chain expression. Int. Immunol. 6:995–1001. http://dx.doi.org/10.1093/intimm/6.7.995

Sikes, M.L., R.J. Gomez, J. Song, and E.M. Oltz. 1998. A developmental stage-specific promoter directs germline transcription of D beta J beta gene segments in precursor T lymphocytes. J. Immunol. 161:1399–1405.

Sikes, M.L., A. Meade, R. Tripathi, M.S. Krangel, and E.M. Oltz. 2002. Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. USA. 99:12309–12314. http://dx.doi.org/10.1073/pnas.182166699

Skok, J.A., R. Gui, M. Novatchkova, D. Farner, W. de Laat, and M. Busslinger. 2007. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat. Immunol. 8:378–387. http://dx.doi.org/10.1038/ni1448

Steinel, N.C., B.L. Brady, A.C. Carpenter, K.S. Yang-lott, and C.H. Bassing. 2010. Posttranscriptional silencing of VβDJβCβ genes contributes to TCRβ allelic exclusion in malignant lymphocytes. J. Immunol. 185:1055–1062. http://dx.doi.org/10.4049/jimmunol.0903099

Verma-Gaur, J., A. Torkamani, L. Schaffer, S.R. Head, N.J. Schork, and A.J. Feeney. 2012. Noncoding transcription within the Igκ distal V(κ) region at PAIR. elements affects the 3D structure of the Igκ locus in pro-B cells.

Direct links to original sources are available through the hyperlinked text provided.
Table S1. TaqMan bait primers and probes for 3C

Region	Primer (5’FAM and 3’TAMRA)	Primer (5’-GGAATTCCTCGGTTTGC-3’)
Eβ	5’-CATAAGCATTGTGTTTGTGACA-3’	5’-GGAATTCCTCGGTTTGC-3’
Dβ1	5’-AAGGATGGGCTGATATGGCTTCTT-3’	5’-TGAAATTTTCTGGCAAGAGAC-3’
Dβ2	5’-AAATGCTGGGCCTCTGTAGA-3’	5’-GGCGAGATCCAAGAAGCTCA-3’
5’PC	5’-CAGTGGGGAATCAGACTTTCA-3’	5’-TGTGATTGGATTTGGGTGA-3’
V3	5’-CCATGCCCTAATTAACATATTCTTCAGA-3’	5’-CCAGATCTTTAGATTCTGGCAAC-3’
V5	5’-CACGATTTGTGATTGCTTCTTCTG-3’	5’-TCCCTCAGCCTTGATAGTC-3’
V12-2	5’-TGGGTAGATGAGAATTTCTGGCCAAC-3’	5’-TGCTGAAATACCCCTATATCCATTG-3’
V23	5’-TACACCGCCAGAGAGACT-3’	5’-GGCTTCTGTGTAACCTGAGCAT-3’
ERCC3	5’-AAAGCTTGCACCCCTGTGGG-3’	5’-GCCCTCCCCGAAATAAGGA-3’

Table S2. TaqMan 3C-capture primers

Region	Primer (5’-GGAATTCCTCGGTTTGC-3’)
V1	5’-ACCCATGTCCTCAGGGTTTC-3’
V2-3	5’-TTTCATTCACAGCCGACCAG-3’
V4-5	5’-AGCTGCGACAGAAGACGGTT-3’
V10	5’-GTGCCTGTACCATGCTGTGG-3’
V12-13	5’-CCATCTGCATGAACACCTTCTT-3’
V14	5’-CAGGCTTCTTCTGAGTCCATGT-3’
V16	5’-TACATCCGCACCAGCTTCTT-3’
V20	5’-TGGGTAGATCGTGTGATTCTCTG-3’
V23	5’-TACACCGCCAGAGAGACT-3’
V29	5’-TCCCTAATCCCGCTCGTCAT-3’
Dβ1	5’-AAAGCTTGCACCCCTGTGGG-3’
Dβ2	5’-TGGGGCCCTCACCTTTCTTA-3’
5’PC	5’-CCAATCTGCCAGGCTGACCTC-3’
u/s of 5’PC (1XH3)	5’-TCACGCCAAAAATACCTGTGA-3’
u/s of 5’PC (2XH3)	5’-GACAGAACATGGTTAGACTGAA-3’
u/s of 5’PC (3XH3)	5’-TTTTGTGTTACCTCTTCTGTTA-3’
d/s of 5’PC (1XH3)	5’-TGGGAATGACATACATTCTGTCAAA-3’
u/s Prc2 (2XH3)	5’-CCTTCTAGGAGAATTTTCC-3’
u/s Prc2 (1XH3)	5’-GAACAGGAAACGTCGAGCAC-3’
w/ Prc2 promoter	5’-AAATGACCCCTGCATGTCACC-3’
Prc2 exon2	5’-CAGGACCTCCTGAGCAACGA-3’
Prc2 exon3	5’-GATGGCAGATGGTCCTCCA-3’
d/s Prc2 exon4	5’-GTCGCCAGCCCTCTCTCTGAT-3’
LTR region	5’-AGGCTCATTGGTGTTTGA-3’
Table S3. ChIP- and RT-qPCR primers

Region	Primer
J1 GLT (F)	5′-GAACACAGACTCTACAGTTGTAGAGG-3′
Cβ1 GLT (R)	5′-GCTTCTCTGTGAGGCCTGAGA-3′
J2 GLT (F)	5′-ACGACTACCTCCCTCCTAGAG-3′
Cβ2 GLT (R)	5′-CATCTCCACCCACCTGAC-3′
V1 (F)	5′-CTGACAGCTCAAACCTGCGTCAG-3′
V2 (F)	5′-AAATGACACTGCCCTCAGCGCTC-3′
V2 (R)	5′-GTGGCACTGCAATTCTGAGG-3′
V3 (F)	5′-AGACACAGAAGTACGTTCCTG-3′
V3 (R)	5′-AACGCTTGCGACAGAATGAC-3′
V5 (F)	5′-TGGAATGAGCAACATCTGGCAG-3′
V5 (R)	5′-GGGCACCGTCTTATTTCGAAATCA-3′
V10 (F)	5′-CTCTGTATCACAAGATGATCACGGG-3′
V10 (R)	5′-AGTTGTGACATTCTGCTGACT-3′
V12-2 (F)	5′-CTCTGACCTTGATATCAACAGACT-3′
V12-2 (R)	5′-GAATCTGCTGCGGACGTTTCTG-3′
V14 (F)	5′-TCTCATACAGGAAAGCAGCTGTT-3′
V14 (R)	5′-ATGCTTGGATGACATCTGGACT-3′
V16 (F)	5′-TGTCCTGTACATTCAAACACTTAG-3′
V16 (R)	5′-TTGGCCATCTGAGCTGAGAATCTG-3′
V23 (F)	5′-AAGGAGAGATCTCAGCTGTCG-3′
V23 (R)	5′-TGACTGCTGAGAACACTGACATG-3′
V29 (F)	5′-TGCTGGAAATGTGGAACAGACAGA-3′
V29 (R)	5′-AGGGATGATCTCAGCTGTCG-3′
Ptcra (F)	5′-GTCAGAGACACATCGACAGAGA-3′
Ptcra (R)	5′-CACACCTGTGTAGATGGAAGGC-3′
Pss2 (exon1)	5′-ACATGAGTGCCATCTTCCTGATCC-3′
Pss2 (exon 2)	5′-GGCAGGTGTATACCTCTCAACAA-3′
Actb (F)	5′-GGGTATTTGTCCCTCCTCATGC-3′
Actb (R)	5′-CCATGGTGAAACATGCATGCTG-3′
V1 CTCF (F)	5′-AGGAAGATTGTGGGGAAGCTG-3′
V1 CTCF (R)	5′-AACCAAATAAGCGGCAACAGCA-3′
V6 CTCF (R)	5′-GCCACTGCAATCTCCTGAC-3′
V5 CTCF (R)	5′-CATTTTTTTTCCCAGTTTCTC-3′
V12-1 CTCF (F)	5′-CAGGCGGAAAATTTGAGAT-3′
V12-1 CTCF (R)	5′-CTGCTCTGCTCTGTGTGTCTC-3′
V12-2 CTCF (F)	5′-CCCCAGAACCTTATCTTTCTA-3′
V12-2 CTCF (R)	5′-CGGTCCTGATATCACAAGAC-3′
V14 CTCF (F)	5′-TACCTATGGCCTCTTGGTC-3′
V14 CTCF (R)	5′-CCTGTGGCGAACTCACTCTAGG-3′
V29 CTCF (F)	5′-AACCCCTCATGCCCTTCTCCT-3′
V29 CTCF (R)	5′-CTGGGCTGTTTCTAATGCGG-3′
5′PC (F)	5′-CAGTGGTTTGGCCAGACGCTT-3′
5′PC (R)	5′-CAGGCGGCGGATGTTTACTC-3′
u/s 5′PC (F)	5′-CATGAAAGGTGGGTAGTCTG-3′
u/s 5′PC (R)	5′-CATACCCACATGTCACCAC-3′
d/s 5′PC (F)	5′-GTGTTAGTGGGGGTTTGTG-3′
d/s 5′PC (R)	5′-GGCCCTAAGTGTTTGTGGTCT-3′
u/s Pss2 pro (F)	5′-GGGGGAAGACAGAAGAAAAGG-3′