Self-adjusting differential rotary feeding system of the drilling rig

A M Busygin
NUST ‘MISIS’, Moscow, Russian Federation

Abstract. The article discusses in detail all existing types of self-adjusting rotary feeding systems (RFS) of drilling rigs, analyses their advantages and disadvantages. A kinematic diagram of a self-adjusting RFS of a differential drilling rig is shown, which significantly eliminates the drawbacks of the self-adjusting RFS of drilling rigs discussed above.

1. Introduction
The most important aspect of technical progress in the field of underground and open mining of mineral deposits with high hardness is an expensive and laborious drilling process.

Various drilling rigs are used for drilling, which, according to the method of rock destruction, are divided into two types - physical and mechanical. The first type of drilling machines includes machines for blasting, thermal, hydraulic, electro-hydraulic and ultrasonic drilling, which act on the destroyed rock through a liquid and gaseous medium. Despite the variety of physical and combined drilling methods, mechanical drilling remains the most important.

Significant progress in drilling operations is possible only with the help of the drilling process automation, where the main object of automation is a rotary feeding system (RFS) of the drilling rig, the functional purpose of which is to create the feed force, tool rotation frequency and other parameters, so that in the end, to get the optimum drilling mode, leading to the maximum productivity of the rig. Therefore, automation of the drilling process in the development of modern technologies and equipment [1-39] is the most urgent task.

The systems for controlling the drilling mode parameters can be divided into three groups: software-controlled, search engine and combined. These groups are considered in detail in [40]. Search engine and hybrid control systems have two significant drawbacks that minimize the appropriateness of their use. The first drawback is that the optimum drilling parameters can be determined in a very short period of time, i.e. by the current values, and not by the cumulative criteria, such as productivity and drilling costs. The second drawback is that the time to reach the optimum mode is significant (due to an overabundance of options analysis for finding the optimum control mode) and, ultimately, the drilling mode will never be optimum.

Thus, the most optimum way to regulate the drilling mode parameters is a method using software-controlled systems, which, according to the implementation principle, can be divided into open-loop systems, systems with self-regulation of drilling mode parameters and a feedback system that takes into account the properties of the drilled rock at this particular moment.
2. Main section
Let us consider the most common designs of drilling machines that implement software-controlled drilling mode control systems with self-regulation, the so-called ‘self-adjusting drilling machines’ [40].

Fig. 1 shows a drilling machine with a differential screw developed by A.P. Moskalev [40].

![Diagram of a drilling machine with a differential screw developed by A.P. Moskalev](image)

Figure 1. Diagram of a drilling machine with a differential screw developed by A.P. Moskalev
1 – rotator; 2 – pneumatic motor; 3 – carriage; 4 – guide frame; 5 – control device; 6 – spur gear speed reducer; 7 – propeller bolt (screw); 8 – gear nut; 9 – control panel

The drilling machine includes rotator 1 driven by pneumatic motor 2, which has a rigid connection with carriage 3, covering guide frame 4 and freely moving along it, control device 5 connected through spur gear speed reducer 6 with screw 7 forming a kinematic pair with gear nut 8, located in the rotator body and kinematically connected with the spindle of the drilling machine, as well as control panel 9.

The relative rotational speed of the gear nut and the screw, depending on the value of the axial pressure and the moment of resistance, determines the drilling speed. It should be noted that the axial pressure and the moment of resistance depend on drilling conditions and physical and mechanical properties of the drilled rocks.

Fig. 2 shows a diagram of the automatic control of a birotary engine.

![Diagram of an automatic control of birotary engine](image)

Figure 2. Diagram of an automatic control of birotary engine

Diagram labelling: \(P_1 \) – speed (gear) reducer; \(P_2 \) – speed (gear) reducer; \(D_1, D_2 \) – birotary engine; \(TЭ \) – brakes (braking system)
The lead screw, fixed in the bed, is driven through P_1 reducer and a bushing with keyed projections by the rotor of D_1D_2 birotary electric motor, and the feed nut is driven through P_2 reducer by the counter rotor. The feed force on the cutting tool is perceived by the braking element, which has a connection with the counter rotor. A decrease in the rotational speed of the cutting tool due to an increase in the moment of resistance, due to an increase in the strength and viscosity of the material being destroyed, entails a decrease in the rotational speed of the lead screw and an increase in the rotational speed of the feed nut. As a result, the feed rate of the tool tends to the value at which the initial ratios of the rotation moments on the cutting tool and the feed nut, predetermined by the kinematic and design features of the machine, are provided.

A double differential drive received great advancement after the development of hydro- and electric machine differentials (HMD and EMD), where two fixed hydraulic motors and two DC and AC electric motors are used. Fig. 3 shows a diagram of a drilling rig with a hydraulic machine differential. A two-motor hydraulic drive acquires the properties of a differential if hydraulic motors GD_1 and GD_2 are connected in parallel.

![Figure 3. Diagram of a drilling rig with a hydraulic differential](image)

Diagram labelling: P_1 – speed (gear) reducer; P_2 – speed (gear) reducer; GD_1 – hydro motor; GD_2 – hydro motor

Fig. 4 shows a diagram of a drilling rig with HMD and a piston hydraulic feed, implemented in a drilling rig for drilling with a diamond disk tool.

![Figure 4. Diagram of a drilling rig with a hydraulic differential and a hydraulic piston feed](image)

Diagram labelling: D_1 – electromotor; K – spur gear differential carrier; P_1 – gear reducer; H – pump; GD_1 – hydro motor; GD_2 – hydro motor

In the diagram, the disk tool is rotated relative to its axis by D_1 electric motor, and relative to the well axis - by the carrier of gear differential K through P_1 reducer. From P_1 reducer, power is taken to pump H of the piston feeders, which synchronize the feed with the tool rotation frequency relative to the well axis. The properties of automatic regulation of the operating mode depending on the drilling conditions (up to the retraction of the tool) are characteristic of all drilling machines with a double differential drive.

Fig. 5 shows a kinematic diagram of a differential type rotary feeding system of a drilling rig.
Figure 5. Kinematic diagram of a differential type rotary feeding system of a drilling rig.
1 – drilling assembly; 2 – rotary drive; 3 – feed drive; 4 – common motor D_1;
5 – cone differential; 6 – control motor D_2

This diagram makes it possible to automatically control the force and feed rate due to the feedback between drilling assembly 1, rotary drive 2 and feed drive 3, using common motor 4. The said feedback is carried out through cone differential 5. Control motor 6 allows to determine the range of variation of the controlled parameters above. The presented scheme contributes to a significant reduction in dynamic system overloads, vibrations and other negative effects.

3. Results

The above diagrams of self-adjusting drilling machines basically include all the diagrams that were used in the development of drilling machines of this type. These diagrams, in addition to advantages, also have disadvantages. Thus, machines with a differential screw, due to the complexity and high cost of manufacturing the screw, have a small feed stroke, as well as the transmitted power through the drilling assembly is relatively small, the low efficiency of the screw drive should be noted.

Drilling machines with a birotary engine have a common disadvantage - the ability to automatically change only the feed rate with a limited range of tool rotation speed control.

Hydraulic self-adjusting drilling machines, for example, machines with HMD, along with the main advantage - a deep change in controlled parameters during implementation of significant capacities, have the main disadvantage - unproductive energy losses characteristic of the throttling control method.

The most complete compliance with the optimum criteria that determine the positive ratio of the complexity of self-adjusting drilling machines’ design and the level of their maintenance at mining enterprises, as well as a very high cost of manufacturing the machines, to the advantages that the automation of the drilling process with these machines provides, is inherent in the differential type RFS (Fig. 5). However, this diagram also has some disadvantages:

1) a self-braking worm gear, the functional purpose of which is to exclude the possibility of a power flow transition from the system to the control motor, has a low efficiency ($\eta < 0.5$);
2) a large mass of moving parts of the worm gear increases the inertia of the system, which increases the response time of the system to signals received from the working body of the machine; 3) high cost and complexity of manufacturing of a worm gear pair.

Below is a kinematic diagram where these disadvantages are absent.

Fig. 6 shows a kinematic diagram of a self-adjusting rotary feeding system of a drilling rig.

Figure 6. Kinematic diagram of a self-adjusting rotary feeding system of a drilling rig

1 – drive; 2, 3, 4, 5, 6, 7 – gear wheel system; 8 – gear reducer; 9 – assembly; 10 – control system drive; 11 – freewheel clutch; 12 – cone differential; 13, 14 – conical gear wheels (bevels); 15 – carrier; 16, 17 – conical gear wheels (bevels); 18, 19 – conical gear wheels (bevels); 20, 21 – drive shafts; 22 – gear wheel; 23 – gear rack

Diagram labelling:

M_{D1}, M_{D2}, M_{C} - moment of force of rotary drives, control drives and resistance drives to the rotating assembly;

M_{15}, M_{20}, M_{21} – moment of force;

F_O, F_C – driving force and resistance force of the assembly movement in the massive rocks;

$V_R, \omega_C, \omega_{D1}, \omega_{D2}, \omega_{15}, \omega_{20}, \omega_{21}$ – feed speed and angular velocity of the assembly, motors D_1, D_2, carrier 15, drive shafts 20 and 21 of the differential.

The difference from the diagram shown in Fig. 5 consists in the fact that instead of a massive, expensive worm gear, the functional purpose of which is to exclude the possibility of a power flow transition from the system to the control motor, a light oversized flyback clutch is used, which performs the same functional purpose.
The mechanism works as follows. Motor 1 rotates drilling assembly 9 through the system of gears 2, 3 and 4, 5, as well as the left axle shaft of differential 21 and the output link of feed mechanism 22 through conical pair of wheels 13-14, carrier 15, conical pair of wheels 16-19. The gear wheel 22, rotating with an angular velocity ω'_{22}, moves the entire mechanism located on carriage 25 along the guides of frame 24 towards the rock mass - creates an axial force F_0. When control motor 10 is off, the right semi-axle 20 of the differential and wheels 18 are stationary, rotation from motor 1 to semi-axle 20 is not transmitted, since the functional purpose of the overrunning clutch 11 and the worm gearbox are the same, as we have already mentioned above. The movement from control engine 10 through overrunning clutch 11, differential 12 is transmitted to the left axle shaft 21 and output link 22 of the feed mechanism, the angular velocity of which is ω''_{22}. In this case, the gear wheel 22, rotating at an angular velocity ω''_{22}, moves the mechanism away from the array. The resulting movement of output link 22 of the feed mechanism is determined by the difference $\omega_{22} = \omega'_{22} - \omega''_{22}$.

4. Conclusions
The article discusses the existing systems for controlling drilling parameters. It is determined that the most widely used at the moment are machines that implement software-controlled systems for controlling the parameters of the drilling mode.

The diagrams of self-adjusting drilling machines are considered, which cover the whole range of machines of this type. It is determined that the most optimum for a drilling rig is a differential type rotary feeding system.

The diagram of the self-adjusting rotary-feeding system of the drilling rig is proposed, the design and the principle of its operation are considered.

References
[1] Alimov O.D., Dvornikov A.T. (1976) Drilling Machines. Mashinostroyeniye, Moscow, 295 p
[2] Ivanov KI, Latyshev VA, Andreyev VD (1987) Technics of Drilling at Developing Mineral Deposits. 3rd ed., revised and updated. Nedra, Moscow, 131 p
[3] Busygin A.M. Kinematic analysis of a differential rotational-feed system/ Dmitriev V. N., Busygin A.M. // Sourcebook: Problems of mechanization and electrification of mining operations– M.,MSMU, 1991. – p. 160 – 164.
[4] Lemeshko MA, Volkov RVu (2015) Rotating Drilling Analysis. Young Scientist 21:179–185
[5] Regotunov AS, Antonov VA (2015) Experimental Research of Rock Percussive Drilling Modes. News of HEIs. Mining Journal 8:61–69
[6] Pashkov E. n Analysis of the effectiveness of the hydroimpulse mechanism of drilling machines / E. N. Pashkov, G. R. Ziyakaev M. V. Tsygankova A.V. Ponomarev // Mining information and analytical Bulletin (scientific and technical journal) – 2016. no. 7. Pp. 84-92.
[7] Repin A. A., Timonin V. V., Alekseev S. E., Kokoulin D. I., Popelyukh A. I. Increasing the capacity of small-sized submersible airstrike // Physical and technical problems of mining. 2016, №6.
[8] Shigina A.A., Shigin A.O., Stupina A.A., Kurchin G.S., Kirsanov A.K. Model of rock drilling process in terms of roller cone bit remaining life // International Journal of Applied Engineering Research.– 2016. – Vol. 11, Issue 19. – P. 9792-9799.
[9] Kurchin G.S., Vokhmin S.A., Kirsanov A.K., Shigin A.O., Shigina A.A Calculation methodology of blasting and explosion operations’ parameters for construction of horizontal and inclined excavations // International Journal of Applied Engineering Research. – 2015. – Vol. 10, Issue 15. – P. 35897-35906.
[10] Cai L., Polak M.A. A theoretical solution to predict pulling forces in horizontal directional drilling installations // Tunneling and Underground Space Technology. – 2019. – V. 83. – P. 313–323.
[11] A.O.Shigin, A.A.Shigina, A.A.Stupina, G.S.Kurchin, A.K.Kirsanov Model of Rock Drilling Process in Terms of Roller Cone Bit Remaning Life. International Journal of Applied Engineering Research (IJAER), ISSN 0973-4562 vol.11 No.19 (2016) pp.9792-9799
[12] Rakhtin, M.G. Ways to improve assessment methods of the main characteristics of grinding balls / Rakhtin M.G., Boyko P.F. // Ugol'. 2017. - № 12 (1101). – pp. 49-53
[13] A. Keropyan, S. Gorbatyuk, A. Gerasimova. Tribotechnical aspects of wheel-rail system interaction. International Conference on Industrial Engineering, ICIE 2017, Procedia Engineering, 206 (2017), pp. 564–569.
[14] 14. Yu. Albagachiev, A. M. Keropyan, A. A. Gerasimova, O. A. Kobelev DETERMINATION OF RATIONAL FRICTION TEMPERATURE IN LENGTHWISE ROLLING CIS Iron and Steel Review — Vol. 19 (2020), pp. 33–36. DOI: 10.17580/cisisr.2020.01.07
[15] Burkov P. V., Burkov V. P., Timofeev V. Yu., Shchadrina A. V., Saruev L. A., Burkova S. P. Mathematical modeling of Electromechanical systems of machines for drilling wells with various types of drives // Mining equipment and electromechanics. 2018. No. 5(139). Pp. 3-11.
[16] Regotun A. S. Automated device to study the properties of rocks during drilling blast holes in quarries / A. S. Negaturov, R. I. Sukhov // Fundamental and applied problems of mining Sciences. Novosibirsk, 2018. Vol. 5. No. 2. Pp. 46-56.
[17] Sekretov, M.V. Prospects for the use of stone shock-sawing machine to handle strong stones / Sekretov M.V., Rakhtin M.G., Gubanov S.G. // Gornyi Zhurnal. 2019. - №8. – pp. 65-69
[18] Rajib Ghosh. Monitoring of drill system behavior for water-powered In-The-Hole (ITH) drilling // Hakan Schunnesson, Anna Gustafson // Minerals. – 2017. – Vol. 7, Issue 7, 121, DOI: 10.3390/min7070121.
[19] Abu Bakar, M. Z. Penetration Rate and Specific Energy Prediction of Rotary–Percussive Drills Using Drill Cutdings and Engineering Properties of Selected Rock Units / M. Z Abu Bakar, I. A. Butt, Y. Majeed // Journal of Mining Science, 2018, Vol. 54, No. 2. P. 270–284.
[20] Li, J.-G. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment / Li, J.-G., Zhan, K. // Engineering, Volume 4, Issue 3, June 2018, – P. 381–391.
[21] Cao, P. Optimal Design of Novel Drill Bit to Control Dust in Down-the-Hole Hammer Reverse Circulation Drilling / Cao, P., Chen, Y., Liu, M., Chen, B. // Arabian Journal for Science and Engineering, Volume 43, Issue 3, March 2018, P.1313–1324.
[22] Bratan, S., Kolesov, A., Roshchupkin, S., Stadnik, T. Theoretical-probabilistic model of the rotary belt grinding process (2017) MATEC Web of Conferences, 129, article № 01078. DOI: 10.1051/matecconf/201712901078
[23] Bratan, S., Roshchupkin, S. Synthesis of lunberger stochastic observer for estimation of the grinding operation state (2018) MATEC Web of Conferences, 224, article № 01133. DOI: 10.1051/matecconf/201822401133
[24] Efremov, D.B., Gerasimova, A.A., Gorbatyuk, S.M., Chichenev, N.A. Study of kinematics of elastic-plastic deformation for hollow steel shapes used in energy absorption devices (2019) CIS Iron and Steel Review, 18, Pp. 30-34.
[25] N. A. Chichenev, S. M. Gorbatyuk, M. G. Naumova, I. G. Morozova USING THE SIMILARITY THEORY FOR DESCRIPTION OF LASER HARDENING PROCESSES CIS Iron and Steel Review — Vol. 19 (2020), pp. 44–47. DOI: 10.17580/cisisr.2020.01.09
[26] Chichenev, N.A. Reengineering of the Slab-Centering Unit of a Roughing Mill Stand 2018) Metallurgist, 62 (7-8), pp. 701-706. DOI: 10.1007/s11015-018-0711-1
[27] Gorbatyuk, S.M., Romanov, S.P., Morozova, I.G. Computer Simulation of the Cooling System for Rollers of the Finishing Stand of a Wide-Strip Hot-Rolling Mill and the Development of a New Scheme of Cooling (2019) Metallurgist, 63 (7-8), pp. 836-840. DOI: 10.1007/s11015-019-00897-6
[28] Naumova, M.G., Morozova, I.G., Borisov, P.V. Investigating the features of color laser marking process of galvanic chrome plating in order to create a controlled color image formation at given marking (2019) Materials Today: Proceedings, 19, pp. 2405-2408. DOI: 10.1016/j.matpr.2019.08.044

[29] Kryukov, I.Y., Gorbatyuk, S.M., Naumova, M.G. Mathematical model of the crystallizing blank's thermal state at the horizontal continuous casting machine (2017) MATEC Web of Conferences, 129, статья № 02010, DOI: 10.1051/matecconf/201712902010

[30] Keropyan, A.M. Features of interaction of traction wheels of an electric locomotive and a diesel locomotive with rails in the conditions of open mountain works (2016) Journal of Friction and Wear, 37 (1), pp. 78-82. DOI: 10.3103/S1068366616010074

[31] Bardovsky, A.D., Gerasimova, A.A., Basyrov, I.I. Study of oscillating process of harp screens (2019) Lecture Notes in Mechanical Engineering, 0 (9783319956299), pp. 133-139. Цитировано 2 раз. DOI: 10.1007/978-3-319-95630-5_14

[32] Basyrov, I.I., Bardovsky, A.D. Innovative crushing technique and vertical roll crusher design (2020) Mining Informational and Analytical Bulletin, 2020 (2), pp. 121-129. DOI: 10.25018/0236-1493-2020-2-0-121-129

[33] Gorbatyuk, S., Kondratenko, V., Sedykh, L. Tool stability analysis for deep hole drilling (2018) MATEC Web of Conferences, 224, статья № 01035, . DOI: 10.1051/matecconf/201822401035

[34] Gorbatyuk, S., Kondratenko, V., Sedykh, L. Investigation of the Deep Hole Drill Stability When Using a Steady Rest (2019) Materials Today: Proceedings, 11, pp. 258-264. DOI: 10.1016/j.matpr.2018.12.140

[35] Gorbatyuk, S., Kondratenko, V., Sedykh, L. Influence of critical speed when working shafts with symmetrically located monolithic weighting on the accuracy of work surfaces (2019) Materials Today: Proceedings, 19, pp. 2361-2364. DOI: 10.1016/j.matpr.2019.07.695

[36] Gorbatyuk, S.M., Shapoval, A.A., Mos’pan, D.V., Dragobetskii, V.V. Production of periodic bars by vibrational drawing (2016) Steel in Translation, 46 (7), pp. 474-478. DOI: 10.3103/S096709121607007X

[37] Bast, J., Gorbatyuk, S.M., Kryukov, I.Yu. Horizontal hcc-12000 unit for the continuous casting of semifinished products (2011) Metallurgist, 55 (1-2), pp. 116-118. DOI: 10.1007/s11015-011-9399-1

[38] Gerasimova, A., Gorbatyuk, S., Devyatiarova, V. Application of gas-thermal coatings on low-alloyed steel surfaces (2018) Solid State Phenomena, 284 SSP, pp. 1284-1290. DOI: 10.4028/www.scientific.net/SSP.284.1284

[39] Eron’ko, S.P., Gorbatyuk, S.M., Tkachev, M.Y., Oshovskaya, E.V. Improving the Gas-Exhaust System at Foundry Electrofurnaces (2019) Steel in Translation, 49 (1), pp. 7-12. DOI: 10.3103/S0967091219010066

[40] Busygin A.M. Justification and choice of differential rotational-feed system parameters of a drilling machine: Candidate of technical Sciences dissertation synopsis. – M.: MSMU, 1994. – 203p.