Supplement of

Potential new tracers and their mass fraction in the emitted PM$_{10}$ from the burning of household waste in stoves

András Hoffer et al.

Correspondence to: András Hoffer (hoffera@almos.uni-pannon.hu)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. The retention indices of the identified tracer compounds.

Compound	Retention time	Kovats RI	Lee RI	Kovats RI	Lee RI	References
o-Terphenyl (o-TPH)	27.86	1888.3	316.5			317.42 (Marynowski et al. 2004), 317.9 (Li et al. 2016)
m-Terphenyl (m-TPH)	32.15	2157.7	357.6			356.74 (Marynowski et al. 2004), 356.95 (Li et al. 2016)
p-Terphenyl (p-TPH)*	32.74	2196.3	363.2			362.4 (Marynowski et al. 2004), 362.8 (Li et al. 2016)
1,3,5-Triphenylbenzene (135-TPB)*	42.32	2944.4	463.7			3007 (Simoneit et al., 2005), 2630 (Simoneit et al., 2005), 2741, estimated with error: 55 (http://www.chemspider.com/Chemical-Structure.452244.html (ref. to NIST))
1,2,4-Triphenylbenzene (124-TPB)*	39.38	2691.9	431.1			463.4 (Li et al. 2016)
m,p-Quaterphenyl (m,p-QTPH)	43.48	3049.3	476.5			476.3 (https://pubchem.ncbi.nlm.nih.gov/compound/1166-19-4)
p-Quaterphenyl (p-QTPH)*	43.99	3095.7	482.2			482.98 (Li et al. 2016)
2-(Benzoyloxy)ethyl vinyl terephthalate (2-BEVT)	38.43	2615.7	420.6			2636 (Tsuge et al. 2011)
2,4,6-Triphenyl-1-hexen (SSS)*	36.21	2444.0	396.5			2484 (Tsuge et al. 2011)
2-Methylene-4-phenylethanedinitrile (ASA)	26.72	1822.6	305.6			1843 (Tsuge et al. 2011)
2-Methylene-4,6-diphenylhexanenitrile (ASS)	31.31	2101.5	349.6			2129 (Tsuge et al. 2011)
4,6-Diphenyleth-6-enenitrile (SSA)	31.95	2144.7	355.7			2175 (Tsuge et al. 2011)
2-Phenethyl-4-phenylpenta-4-enenitrile (SAS)	32.35	2171.0	359.5			2200 (Tsuge et al. 2011)

* The retention behaviour was studied with authentic standards

References

Li, M. J., Wang, H., Shi, S. B., Fang, R. H., Tang, Q., and Wang, D. W.: The occurrence and distribution of phenylnaphtalenes, terphenyls and quaterphenyls in selected lacustrine shales and related oils in China, Organic Geochemistry, 95, 55-70, 10.1016/j.orggeochem.2016.02.010, 2016.

Marynowski, L., Pieta, M., and Janeczek, J.: Composition and source of polycyclic aromatic compounds in deposited dust from selected sites around the Upper Silesia, Poland, Geological Quarterly, 48, 169-179, 2004.

Simoneit, B. R. T., Medeiros, P. M., and Didyk, B. M.: Combustion products of plastics as indicators for refuse burning in the atmosphere, Environmental Science & Technology, 39, 6961-6970, 10.1021/es050767x, 2005.

Tsuge, S., H. Ohtani and C. Watanabe.: Pyrolysis-GC/MS data book of synthetic polymers: pyrograms, thermograms and MS of pyrolyzates, Elsevier, available at: https://www.elsevier.com/books/pyrolysis-gc-ms-data-book-of-synthetic-polymers/tsuge/978-0-444-53892-5 (last access: 22 November 2021), 2011.
Table S2. The absolute emission factors (mg kg\(^{-1}\)) and the mass fraction (µg g\(^{-1}\) PM) of the identified tracer compound for waste burning. The values in parentheses are the relative standard deviation (%) obtained for a given type of waste under different burning conditions.

Emission Factor (mg kg\(^{-1}\))	ABS 2.1 (75)	LDF 0.060 (111)	OSB <LOQ	PAP 0.16 (75)	PE 0.026 (175)	PP 0.026 (175)	PS 40 (175)	PU <LOQ	PVC 0.17 (105)	RAG 0.13 (51)	TIRE <LOQ	WOOD <LOQ	
Mass fraction (µg g\(^{-1}\) PM)	135-TBP 2.41 (41)	o-TBP 1.9 (224)	m-TBP 11 (14)	p-TBP 3.2 (35)	<LOQ	<LOQ	2.2 (105)	<LOQ	<LOQ	10.0 (90)	2.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	m,p-QTBP 8.2 (44)	p-QTBP 0.7 (27)	2-BEVT 1.0 (52)	124-TBP 9.3 (76)	<LOQ	<LOQ	5.0 (150)	<LOQ	<LOQ	19.0 (51)	3.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	15-TPB 2.41 (41)	o-TBP 1.9 (224)	m-TBP 11 (14)	p-TBP 3.2 (35)	<LOQ	<LOQ	2.2 (105)	<LOQ	<LOQ	10.0 (90)	2.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	m,p-QTBP 8.2 (44)	p-QTBP 0.7 (27)	2-BEVT 1.0 (52)	124-TBP 9.3 (76)	<LOQ	<LOQ	5.0 (150)	<LOQ	<LOQ	19.0 (51)	3.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	15-TPB 2.41 (41)	o-TBP 1.9 (224)	m-TBP 11 (14)	p-TBP 3.2 (35)	<LOQ	<LOQ	2.2 (105)	<LOQ	<LOQ	10.0 (90)	2.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	m,p-QTBP 8.2 (44)	p-QTBP 0.7 (27)	2-BEVT 1.0 (52)	124-TBP 9.3 (76)	<LOQ	<LOQ	5.0 (150)	<LOQ	<LOQ	19.0 (51)	3.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	15-TPB 2.41 (41)	o-TBP 1.9 (224)	m-TBP 11 (14)	p-TBP 3.2 (35)	<LOQ	<LOQ	2.2 (105)	<LOQ	<LOQ	10.0 (90)	2.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	m,p-QTBP 8.2 (44)	p-QTBP 0.7 (27)	2-BEVT 1.0 (52)	124-TBP 9.3 (76)	<LOQ	<LOQ	5.0 (150)	<LOQ	<LOQ	19.0 (51)	3.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	15-TPB 2.41 (41)	o-TBP 1.9 (224)	m-TBP 11 (14)	p-TBP 3.2 (35)	<LOQ	<LOQ	2.2 (105)	<LOQ	<LOQ	10.0 (90)	2.0 (35)	<LOQ	<LOQ
Mass fraction (µg g\(^{-1}\) PM)	m,p-QTBP 8.2 (44)	p-QTBP 0.7 (27)	2-BEVT 1.0 (52)	124-TBP 9.3 (76)	<LOQ	<LOQ	5.0 (150)	<LOQ	<LOQ	19.0 (51)	3.0 (35)	<LOQ	<LOQ

* Possible contamination