Orthostatic hypotension is associated with new-onset atrial fibrillation: Systemic review and meta-analysis

Narut Prasitlumkum a, *, Jakrin Kewcharoen a, Natthapon Angsubhakorn b, Pakawat Chongsathidkiet c, Pattara Rattanawong a, d

a University of Hawaii Internal Medicine Residency Program, Honolulu, HI, USA
b Department of Medicine, University of Minnesota, Minneapolis, MN, USA
c Department of Pathology, Duke University Medical Center, Durham, NC, USA
d Department of Internal Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

A R T I C L E I N F O
Article history:
Received 13 December 2018
Accepted 24 July 2019
Available online 14 August 2019

Keywords:
Atrial fibrillation
Orthostatic hypotension

A B S T R A C T

Introduction: Orthostatic hypotension (OH) is common among elderly patients. Its presence may herald severe underlying comorbidities and be associated with a higher risk of mortality. Interestingly, recent studies suggest that OH is associated with new-onset atrial fibrillation (AF). However, a systematic review and meta-analysis of the literature has not been performed. We assessed the association between AF and OH through a systematic review of the literature and a meta-analysis.

Methods: We comprehensively searched the databases of MEDLINE and EMBASE from inception to November 2018. Published prospective or retrospective cohort studies that compared new-onset AF between male patients with and without OH were included. Data from each study were combined using the random-effects, generic inverse-variance method of DerSimonian and Laird to calculate risk ratios and 95% confidence intervals.

Results: Four studies from October 2010 to March 2018 were included in the meta-analysis involving 76,963 subjects (of which 3318 were diagnosed with OH). The presence of OH was associated with new-onset AF (pooled risk ratio 1.48; 95% confidence interval [1.21, 1.81], \(p < 0.001 \); \(I^2 = 69.4\% \)). In hypertensive patients, analysis revealed an association between OH and the occurrence of new-onset AF (OR 1.46; 95% CI [1.27, 1.68], \(p < 0.001 \) with \(I^2 = 0\)).

Conclusions: OH was associated with new-onset AF up to 1.5-fold compared with those subjects without OH. The interplay between OH and AF is likely bidirectional.

© 2019 Cardiological Society of India. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Orthostatic hypotension (OH) is a condition reflecting the impaired capability of the autonomic nervous system (ANS) to maintain blood pressure in an upright position. It is defined as a supine-to-standing drop in systolic blood pressure (SBP) by more than 20 mmHg or in diastolic blood pressure (DBP) by more than 10 mmHg.1 Patients with OH have a significantly increased stroke risk of over two-fold2,3 and a 50–100% increased mortality rate comparing with those without OH.4−5 The presence of OH is also linked to higher incidence of coronary heart disease and heart failure.6 The prevalence of OH is estimated to be up to 18.2% in patients over 65 years of age.7 There is a higher prevalence among patients with diabetes.7

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with significantly increased morbidity and mortality.8 The prevalence of AF is estimated to be 6.1% in patients over 65 years of age.9 Several mechanisms play a role in the pathogenesis, including ANS dysregulation,10 altered autonomic tone in patients with obstructive sleep apnea,11 and hypertension.12 Hypertension, in particular, was found to be related to the occurrence of AF, suggesting a relationship between the ANS and AF. We hypothesized that individuals who have OH may be at an increased risk of AF. We performed a meta-analysis of observational studies reporting on the association between OH and AF.
2. Methods

2.1. Search strategy

Two investigators (J.K. and N.A.) independently searched for published studies indexed in MEDLINE and EMBASE databases from inception to November 2018 using a search strategy (Fig. 1) that included the terms ‘atrial fibrillation’, ‘orthostatic hypotension’, ‘postural hypotension’, and ‘orthostatic intolerance.’ Only English language publications were included. A manual search for additional pertinent studies and review articles using references from retrieved articles was also completed.

2.2. Study eligibility criteria

Two main criteria were assessed for the inclusion of studies. The first criterion was a reported incidence of AF in patients with or without OH. The second was a reported relative risk, hazard ratio, odds ratio (OR), incidence ratio, and/or standardized incidence ratio with 95% confidence intervals (CIs) (or sufficient data for the calculation to be performed by a third party). Patients without OH were used as controls. Study eligibility was independently determined by two investigators (J.K. and N.A.). Differences were resolved by mutual consensus. The Newcastle–Ottawa quality assessment scale was used to evaluate each study in three domains: (1) recruitment and selection of the participants, (2) similarity and comparability between the groups, and (3) ascertainment of the outcome of interest among cohort studies.

2.3. Definitions

OH was defined slightly differently between studies regarding the timing between repeat blood pressure measurements (Table 1), but all were in agreement regarding change in SBP or DBP. AF was also defined slightly differently among studies but all involved an ICD code or Electrocardiogram (ECG) interpretation (Table 1).

Fig. 1. Search methodology and selection process.
2.4. Data extraction

A standardized data abstraction form was used to obtain information from each study, these included the title, name of the first author, year of study, year of publication, country of origin, number of participants, demographic data of participants, method used to identify cases and controls, method used to diagnose the outcomes of interest (AF), average duration of follow-up, adjusted and unadjusted risk ratios and their corresponding 95% CI, and list of confounders that were adjusted for in the multivariate analysis. To ensure accuracy, all investigators independently performed this data abstraction process. Any discrepancies were resolved by referring back to the original articles.

2.5. Statistical analysis

Meta-analysis of the combined data was performed using a random-effects, generic inverse-variance method of DerSimonian and Laird. The heterogeneity of effect size estimates across these studies was quantified using the I² statistic and Q statistic. For the Q statistic, substantial heterogeneity was defined as p < 0.10. The I² statistic ranges in value from 0 to 100% (I² < 25% is interpreted as low heterogeneity; I² = 25%–50%, moderate heterogeneity; and I² > 50%, substantial heterogeneity). A sequential exclusion strategy, as described by Patsopoulos et al., was used to examine whether overall estimates were influenced by the substantial heterogeneity observed. We sequentially and cumulatively excluded studies that accounted for the largest share of heterogeneity until I² was less than 50%. We then examined whether relative risk estimates were consistent. In accordance with Cochrane, publication bias was assessed using funnel plot analysis. Funnel plot asymmetry was to be further confirmed with Egger's test if there were more than 10 available studies. All analyses were performed using Review manager version 5.3 and STATA version 14.1 (College Station, TX).

First author	Year	Country	Study type	Participant description	Exclusion criteria	Participants, N	Mean age (years)	Gender (male), N (%)	Follow-up time (years)	AF diagnosis	Participants developing AF, N (%)	Conclusion by author
Agarwal	2013	USA	Prospective cohort	Men and women aged 45–64 years from the Atherosclerosis Risk in Communities (ARIC) study	- Missing or poor quality of BP data	12,071	54.1 ± 5.7	5431 (45%)	Mean of 18	ICD-9 code 427.31, 427.32, 427.3	OH predicts incidence of AF	
Ko	2018	USA	Prospective cohort	Men and women from Malmo, Sweden	- Prevalent AF	32,628	45.6 ± 7.4	21,958 (67.3%)	Mean of 24	ICD-9 code 427.3	OH is associated with higher AF incidence	
Yasa	2018	Sweden	Retrospective cohort	Participants from the Framingham Heart Study Original cohort	- History of heart failure	1736	71.7 ± 6.5	690 (39.8%)	Mean of 48	ECG from routine examination	Patients with OH or syncope show higher incidence of CVS disease and mortality	
			Prospective cohort	Men and women born between 1923 and 1945, 1950 respectively	- Prevalent MI	30,528	58 ± 8	12,221 (40%)	Median of 15 ± 4	ICD-8 code 427.92, ICD-9 code 427D, ICD-10 code 148		

AF, atrial fibrillation; BP, blood pressure; BMI, body mass index; CHD, coronary heart disease; CVS, cardiovascular; DBP, diastolic blood pressure; DM, diabetes mellitus; HR, hazard ratio; MI, myocardial infarction; OH, orthostatic hypotension; SBP, systolic blood pressure; CI, confidence interval; OR, odds ratio.
Fig. 2. a) Forest plot of studies comparing new-onset AF in patients with and without OH. Horizontal lines represent the 95% CIs with marker size reflecting the statistical weight of the study using the random effects model. A diamond data marker represents the overall adjusted OR and 95% CI for the outcome of interest. (b) Forest plot of subgroup studies categorized by age (more than or less than 55 years old), comparing the occurrence of new-onset AF in patients with and without OH. Horizontal lines represent the 95% CIs with marker size reflecting the statistical weight of the study using the random effects model. A diamond data marker represents the overall adjusted OR and 95% CI for the outcome of interest. (c) Forest plot of subgroup studies categorized by sex, comparing the occurrence of new-onset AF in patients with and without OH. Horizontal lines represent the 95% CIs with marker size reflecting the statistical weight of the study using the random effects model. A diamond data marker represents the overall adjusted OR and 95% CI for the outcome of interest. (d) Forest plot of subgroup studies categorized as hypertensive or normotensive, comparing the occurrence of new-onset AF in patients with and without OH. Horizontal lines represent the 95% CIs with marker size reflecting the statistical weight of the study using the random-effects model. A diamond data marker represents the overall adjusted OR and 95% CI for the outcome of interest. AF, atrial fibrillation; OH, orthostatic hypotension; CI, confidence interval; OR, odds ratio.
3. Results

3.1. Description of included studies

Our search strategy yielded 31 potentially relevant articles (19 articles from EMBASE and 12 articles from MEDLINE). After the exclusion of 10 duplicate articles, 21 articles underwent title and abstract review. Four studies were excluded at this stage because they were review articles (two) or case reports (two), leaving 17 articles for full-length article review. Ten studies were excluded as there was no outcome of interest. One study was excluded because analysis was performed only in a ‘postprandial hypotension’ group. One study examined the incidence of AF in the presence of OH only without a control group and was, therefore, eliminated. Finally, one study did not exclude patients with previously diagnosed AF from the cohort. In summary, three prospective cohort studies and one retrospective cohort study with and without OH patients were included in this meta-analysis. The clinical characteristics are described in Table 1.

3.2. Quality assessment of included studies

The Newcastle–Ottawa scale (0–9) was used to evaluate included studies in 3 domains: (1) selection, (2) comparability, and (3) outcomes. Higher scores represent higher study quality. All studies received a score of 7–8, which reflect the inclusion of high quality studies. Detailed evaluation of each study is presented in a supplementary table (Table S1).
with OH are susceptible to adverse cardiac events.4,5,23–27 It was also associated with a higher risk of falls, especially in elderly patients.7,28,29 Additionally, OH is associated with new-onset AF, one of the most common cardiac arrhythmias3 contributing to adverse outcomes.30–32

Our meta-analysis demonstrated that the presence of OH was associated with new-onset AF up to 1.5-fold. In addition, our subgroup analyses all consistently correlated OH with AF. The prevalence of OH in our study ranged from 1.6 to 12.9%, due to lower mean subject age. However, the incidence of AF approached those older than 65 years of age.

Considering methodological aspects, despite similar OH definitions among studies, the interval between blood pressure recordings after position changes was divergent, likely confounding overall results in this analysis. In addition, the inclusion and exclusion criteria, demographic data, comorbidity, and mean duration of follow-up were totally different. These factors might explain the higher rate of new-onset AF in the female sex subgroup and the lower prevalence of OH than that previously reported in those older than 65 years of age.

4. Discussion

OH is notoriously associated with higher morbidity and mortality. Several observational studies have suggested that patients...
known AF risk factors. Thus, the presence of OH may serve to raise the suspicion for these underlying comorbidities which are often related to AF. Of note, abnormal diurnal BP variation as well as supine hypertension, commonly found in OH patients, may instigate periodic increases in afterload leading to end-organ damage such as left ventricular hypertrophy and renal impairment. As a result, either MI or CHF may develop and AF may follow given the high risk of these conditions. In other words, OH may indirectly induce AF through other related processes.

In addition, ANS dysregulation may result in arterial stiffness which may consequently lead to both OH and AF. One study showed that restoration of sinus rhythm from AF improved baroreceptor reflex impairment, a proposed mechanism for the pathogenesis of OH. This finding further supports the association between AF and OH and suggests that the interplay between AF and OH may be bidirectional.

4.1. Limitations

There are a number of limitations with our meta-analysis. First, there is substantial heterogeneity in our study which is a major limitation. This is likely due to the included studies which were all observational in nature, with different methodologies, demographic data, and heterogeneous comorbidities. Hence, the influence of residual confounders could not be completely excluded. Second, it is possible that AF was underdetected given the methods used to detect the incidence of AF in each study. For instance, paroxysmal AF could be easily missed. Third, we did not perform subgroup analyses of OH subcategories including initial OH and delayed OH because of insufficient data. In addition, the subtype of OH such as neurogenic OH was not separately investigated. Each OH subtype may produce different conditional probabilities and posterior probabilities for AF. Fourth, OH documentation in all studies was determined at the first visit leading to a possible underestimation of the prevalence. Finally, only four studies were included in our analysis. Despite a seemingly symmetrical funnel plot, the possibility of false negative test could not be excluded as a small number of studies were included, resulting in reduced sensitivity of such an analysis. Nevertheless, we believe the number of recruited participants were substantial enough to yield meaningful results.

5. Conclusion

In summary, the presence of OH is associated with new-onset AF. Our meta-analysis revealed a clear association between OH and AF as evidenced by ORs of up to 1.5. The association appears to be bidirectional, given multiple proposed mechanisms and supporting evidence from other studies involving dysregulation of the ANS, baroreceptor impairment in AF, and comorbidities such as CHF and MI which may themselves be a result of OH. However, our results favor OH as a predisposing risk factor for the development of AF. Thus, addressing autonomic instability may serve to reduce the prevalence and incidence of OH as well as the incidence of AF. Certainly, further studies are warranted in the future clarifying the relationship between OH and AF and determining causation.

Author contribution

Narut Prasitlumkum contributed in design conception and data interpretation, drafted the manuscript, and is the corresponding author. Jakrin Kewchaoren contributed in data acquisition and drafted the manuscript. Nathapon Angusbhakorn contributed in data acquisition and data interpretation. Pakawat Chongsathidkiet contributed in data acquisition. Pattara Ratanawong contributed in data interpretation and statistical analysis.

Financial support

None.

Conflict of interest

All authors have none to declare.

Acknowledgment

The authors are grateful for the support extended by Clement S. Sun, MD, PhD, MS in proofreading this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ihj.2019.07.009.

References

1. Freeman R, Wieling W, Axelrod FB, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res : off J Clin Auton Res Soc. 2011;21(2):69–72.
2. Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D. Orthostatic hypotension as a risk factor for stroke: the atherosclerosis risk in communities (ARIC) study. Stroke. 2000;31(10):2307–2313.
3. Ricci F, Fedorowski A, Radico F, et al. Cardiovascular morbidity and mortality related to orthostatic hypotension: a meta-analysis of prospective observational studies. Eur Heart J. 2015;36(25):1609–1617.
4. Rose KM, Eigenbrodt ML, Biga RL, et al. Orthostatic hypotension predicts mortality in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2006;114(7):630–636.
5. Masaki KH, Schatz IJ, Burchfiel CM, et al. Orthostatic hypotension predicts mortality in elderly men: the Honolulu Heart Program. Circulation. 1998;98(21):2290–2295.
6. Rutan GH, Herrmann B, Bide DE, Kitter SJ, LaBaw F, Tell GS. Orthostatic hypotension in older adults. The cardiovascular health study. CHS collaborative research group. Hypertension. 1992;19(6 Pt 1):508–519. Dallas, Tex: 1979.
7. van Hateren KJ, Kleefstra N, Blanket MH, et al. Orthostatic hypotension, diabetes, and falling in older patients: a cross-sectional study. Br J Gen Pract. 2012;62(603):696–702.
8. Kirchhof P, Bax J, Blomstrom-Lundquist C, et al. Early and comprehensive management of atrial fibrillation: executive summary of the proceedings from the 2nd AFNET- EHRA consensus conference ‘research perspectives in AF’. Eur Heart J. 2000;21(24):2969–2977.
9. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–2375.
10. Avra R. Recent insights into the role of the autonomic nervous system in the creation of substrate for atrial fibrillation: implications for therapies targeting the atrial autonomic nervous system. Circ Arrhythm Electrophysiol. 2012;5(4):830–839.
11. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500–1515.
12. Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49(5):565–571.
13. Okin PM, Wachtell K, Kjeldsen SE, et al. Incidence of atrial fibrillation: implications for therapies targeting the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500–1515.
14. Forrester DM, Mower MM, Hurd SE, et al. Influence of atrial fibrillation on heart rate variability and blood pressure in patients with chronic atrial fibrillation. J Am Coll Cardiol. 1997;30(24):2969–2974.
15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605.
16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Contr Clin Trials. 1986;7(3):177–188.
17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
19. Yasa E, Ricci F, Magnussen M, et al. Cardiovascular risk after hospitalisation for unexplained syncope and orthostatic hypotension. Heart (British Cardiac Society). 2018;104(6):487–493.
20. Ko D, Preis SR, Lubitz SA, et al. Relation of orthostatic hypotension with new-onset atrial fibrillation (from the framingham heart study). Am J Cardiol. 2018;121(5):693–698.
21. Angelousi A, Girerd N, Benetos A, et al. Association between orthostatic hypotension and cardiovascular risk, cerebrovascular risk, cognitive decline and overall mortality: a systematic review and meta-analysis. J Hypertens Suppl: Off J Int Soc Hypertens. 2003;21(6):S17–S23.
22. Fedorowski A, Stavenow L, Hedblad B, Melander O. Orthostatic hypotension predicts incidence of heart failure: the Malmo preventive project. Am J Hypertens. 2010;23(11):1209–1215.
23. Luukinen H, Koski K, Laippala P, Kivela SL. Prognosis of diastolic and systolic orthostatic hypotension in older persons. Arch Intern Med. 1999;159(3):273–280.
24. Vervoort GC, Mattace-Raso FU, Hofman A, et al. Orthostatic hypotension and risk of cardiovascular disease in elderly people: the Rotterdam study. J Am Geriatr Soc. 2008;56(10):1816–1820.
25. Luukinen H, Koski K, Laippala P, Airaksinen KE. Orthostatic hypotension and the risk of myocardial infarction in the home-dwelling elderly. J Intern Med. 2004;255(4):486–493.
26. Fedorowski A, Stavenow L, Hedblad B, Nilsson PM, Melander O. Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmo Preventive Project). Eur Heart J. 2010;31(1):85–91.
27. Angelousi A, Gireoud N, Benetos A, et al. Association between orthostatic hypotension and cardiovascular risk, cerebrovascular risk, cognitive decline and falls as well as overall mortality: a systematic review and meta-analysis. J Hypertens. 2014;32(8):1562–1571, discussion 1571.
28. Gangavati A, Hajjar I, Quach L, et al. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: the maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J Am Geriatr Soc. 2011;59(3):383–389.
29. Ooi WL, Hossain M, Lipsitz LA. The association between orthostatic hypotension and recurrent falls in nursing home residents. Am J Med. 2000;108(2):106–111.
30. Oduyato A, Wong CK, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and 20 underlying conditions. BMJ. 2016;354:i4482.
31. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation and its association with sudden cardiac death. Circ J: Off J Jpn Circ Soc. 2014;78(11):2588–2593.
32. Chen LY, Benditt DG, Alonso A. Atrial fibrillation and its association with sudden cardiac death. Circ J: Off J Jpn Circ Soc. 2014;78(11):2588–2593.
33. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med. 1995;155(5):469–473.
34. Chugh SS, Blackshear JL, Shen WK, Hammill SC, Gersh BJ. Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol. 2001;37(2):371–378.
35. Heeringa J, van der Kuip DA, Hofman A, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J. 2006;27(8):949–953.
36. Ricci F, De Caterina R, Fedorowski A. Orthostatic hypotension: epidemiology, diagnosis, and treatment. J Am Coll Cardiol. 2015;66(7):848–860.
37. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105(23):2753–2759.
38. Krummen DE, Narayan SM. Mechanisms for the initiation of human atrial fibrillation. Heart Rhythm. 2009;6(8 Suppl):S12–S16.
39. Tonkin AL, Wing LM. Effects of age and isolated systolic hypertension on cardiovascular reflexes. J Hypertens. 1994;12(9):1083–1088.
40. Huang CC, Sandroni P, Setten DM, Weigand SD, Low PA. Effect of age on adrenergic and vagal baroreflex sensitivity in normal subjects. Muscle Nerve. 2007;36(5):637–642.
41. Taneja I, Marney A, Robertson D. Aortic stenosis and autonomic dysfunction: co-conspirators in syncope. Am J Med Sci. 2004;327(5):281–285.
42. Krolewski AS, Warram JH, Cupples A, Gorman CK, Szabo AJ, Christlieb AR. Hypertension, orthostatic hypotension and the microvascular complications of diabetes. J Chronic Dis. 1983;38(4):319–326.
43. Strogatz DS, Keenan NL, Barnett EM, Wagner EH. Correlates of postural hypotension in a community sample of elderly blacks and whites. J Am Geriatr Soc. 1991;39(6):562–566.
44. Shin C, Abbott RD, Lee H, Kim J, Kimm K. Prevalence and correlates of orthostatic hypotension in middle-aged men and women in Korea: the Korean Health and Genome Study. J Hum Hypertens. 2004;18(10):717–723.
45. Voichanski S, Grossman C, Lebowitz A, et al. Orthostatic hypotension is associated with nocturnal change in systolic blood pressure. Am J Hypertens. 2012;25(2):159–164.
46. Ejaz AA, Haley WE, Wasislu A, Meschia JF, Fitzpatrick PM. Characteristics of 100 consecutive patients presenting with orthostatic hypotension. Mayo Clin Proc. 2004;79(7):890–894.
47. Mancia G, Parati G. The role of blood pressure variability in end-organ damage. J Hypertens Suppl: Off J Int Soc Hypertens. 2003;21(6):517–523.
48. Shibao C, Baggiolini I. Orthostatic hypotension and cardiovascular risk. Hypertension. 2010;56(6):1042–1044.
49. Vagoesncu TD, Saadia D, Tuhrim S, Phillips RA, Kaufmann H. Hypertensive cardiovascular damage in patients with primary autonomic failure. Lancet. 2000;355(9205):725–726.
50. Luft FC, Mervaala E, Muller DN, et al. Hypertension-induced end-organ damage: a new transgenic approach to an old problem. Hypertension. 1999;33(1 Pt 2):212–218.
51. Wong CK, White HD, Wilcox RG, et al. New atrial fibrillation after acute myocardial infarction independently predicts death: the GUSTO-III experience. Am Heart J. 2000;140(6):878–885.
52. Libershon RR, Salisbury KW, Hutter Jr AM, DeSanctis RW. Atrial tachyarrhythmias in acute myocardial infarction. Am J Med. 1976;60(7):956–960.
53. Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133(5):484–492.
54. Milazzo V, Maule S, Di Stefano C, et al. Cardiac organ damage and arterial stiffness in autonomic failure: comparison with essential hypertension. Hypertension. 2015;66(6):1168–1175.
55. Shen MJ, Choi EK, Tan AJ, et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2011;8(1):30–39.
56. Tan AJ, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118(9):916–925.

N. Prasitlumkum et al. / Indian Heart Journal 71 (2019) 320–327
327