Research Article

Establishment and Validation for Predicting the Death of Multiple Myeloma among Whites

Jian Tao, Ling Wang, Liyu Zhang, Zheyun Gu, and Xiaodan Zhou

Department of Hematology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China

Correspondence should be addressed to Jian Tao; taojian0224@outlook.com

Received 7 July 2022; Revised 16 July 2022; Accepted 25 July 2022; Published 13 August 2022

Academic Editor: Bo Li

Copyright © 2022 Jian Tao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The prognosis of multiple myeloma (MM) patients was poor in white-American patients as compared to black-American patients. This study aimed to predict the death of MM patients in whites based on the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database. A total of 28,912 white MM patients were included in this study. Data were randomly divided into a training set and a test set (7:3). The random forest and 5-fold cross-validation were used for developing a prediction model. The performance of the model was determined by calculating the area under the curve (AUC) with 95% confidence interval (CI). MM patients in the death group had older age, higher proportion of tumor distant metastasis, bone marrow as the disease site, receiving radiotherapy, and lower proportion of receiving chemotherapy than that in the survival group (all \(P < 0.001 \)). The AUC of the random forest model in the training set and testing set was 0.741 (95% CI, 0.740–0.741) and 0.703 (95% CI, 0.703–0.704), respectively. In addition, the AUC of the age-based model was 0.688 (95% CI, 0.688–0.689) in the testing set. The results of the DeLong test indicated that the random forest model had better predictive effect than the age-based model (\(Z = 7.023, P < 0.001 \)). Further validation was performed based on age and marital status. The results presented that the random forest model was robust in different age and marital status. The random forest model had a good performance to predict the death risk of MM patients in whites.

1. Introduction

Multiple myeloma (MM) is a plasma cell dyscrasia and accounts for 10% of all hematological malignancies [1, 2]. The global age-standardized incidence rate of MM was 2.1 per 100,000 people in 2016 [3]. In the US, the age-standardized incidence rate of MM during the same period was higher than that in the global rate with 7.1 per 100,000 people [4], and incidence rate is gradually increasing [5]. In 2021, 34,920 new cases of MM were diagnosed, and approximately 15,600 patients died from the disease [6]. MM has caused a significant burden of disease worldwide [3]. Therefore, accurately predicting the death risk of MM patients can help physicians to intervene in advance to improve the prognosis of patients.

Many factors including age, gender, family history, radiation exposure, racial, and biomarkers have an important impact on the incidence and prognosis of patients with MM [7–10]. Previous studies found that the prognosis and prevalence of MM patients are different between white-Americans and black-Americans [11, 12]. Waxman et al. indicated that white-Americans with MM had a poorer survival as compared to black-Americans [13]. However, the risk of death in white MM patients has not received widespread attention. Establishing a prognostic tool in white patients with MM may help clinicians identify patients at risk of death in advance and intervene early to improve patient survival. Perrot et al. used a prognostic index based on six cytogenetic markers to identify the risk of death in patients with MM [14]. Zhou et al. used long noncoding RNA signatures of four biomarkers to predict overall survival in patients with MM [15]. However, these prognostic tools for overall MM patients were based on complex biological markers or small sample sizes [14–16]. In clinical practice, a simple and applicable prediction tool for predicting the death risk of MM patients based on large sample size is needed.

Herein, this study aimed to develop a model to predict the death of MM patients in whites. This prediction model
was established based on the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database with a large sample size.

2. Methods

2.1. Study Design and Population. All data were extracted from the original 18 registries of the SEER database (https://seer.cancer.gov/), which contains data from 18 geographically diverse populations representing rural, urban, and regional populations. SEER 18 database includes approximately 27.8% of the US population. Cases were diagnosed from 2007 to 2016, and MM was defined by the International Classification of Diseases for Oncology, Third Edition (ICD-O-3) (histology code: 9731, 9732, 9734) [17]. Inclusion criteria were as follows: (1) age ≥ 18 years; (2) whites; (3) patients who were diagnosed with MM. Excluded criteria were as follows: (1) various types of tumors; (2) non-primary MM; (3) patients with incomplete data. Because the data used in this study were accessed from the SEER 18 database (a publicly available database), the Institutional Review Board of The First People’s Hospital of Nantong was not required.

2.2. Data Collection. Demographic and clinical data of MM patients were collected from the SEER database including age, gender (male and female), marital status (married, single, widowed, and others), number of malignant tumors in situ, number of benign tumors (≥0 and >0), metastasis (distant and others), disease site (bone marrow and others), chemotherapy (yes or no), radiotherapy (yes or no), and
survival state (alive and dead). The death of patients was the outcome indicator. Patients were divided into the survival group and death group according to their survival status at the end of follow-up.

2.3. Statistical Analysis. All statistical analyses were the two-side test, and \(P < 0.05 \) was considered statistical difference. The software SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and Python 3.8 (Python Software Foundation, Delaware, USA) was used for statistical analysis. Continuous variables with normal distribution were expressed as mean ± standard deviation (SD), and the \(t \)-test was used for comparison between groups; nonnormal variables were expressed as a median and interquartile range (M (Q1, Q3)), the Mann–Whitney U rank-sum test was used for comparison between groups. Categorical variables were expressed as numbers and percentages (n (%)), and the Chi-square test (\(\chi^2 \)) or the Fisher’s test was used for comparison between groups.

The random forest was used to develop a prediction model. All data were randomly divided into the training set, and the test set is set with a ratio of 7:3. The training set data were used for model development, and the test set data were used for internal validation. The method of randomization was performed using SAS 9.4 software. According to the number of patients included in the study, serial numbers were generated after setting random seeds in SAS. The first 70% of the serial numbers were divided into the training set, and the last 30% were divided into the test set. The 5-fold cross-validation was performed, which is currently a common technique in data mining. The model performance was quantified by calculating the area under the curve (AUC) with 95% confidence interval (CI), as well as accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The selection of the optimal was based on the AUC value of the model, and the parameter corresponding to the maximum AUC value is the optimal model parameter. The parameter range of the random forest model was the number of decision trees (500) and the depth of decision tree (10).

3. Results

3.1. Baseline Characteristics of Study Population. A total of 28,912 white patients with MM were included in this study (Figure 1). Of these patients, 20,238 (70%) were divided into the training set, with mean age of 67.28 ± 12.05 years and 11,598 (57.31%) cases were males. Among these patients in the training set, 12,878 (63.63%) were married, 2,420 (11.96%) were single, and 2,950 (14.58%) were widowed. The mean number of malignant tumors in situ was 1.08 ± 0.30, and the median overall survival was 28.00 (11.00, 55.00) months. In total, the disease site of 19,001 (93.89%) patients was bone marrow, 19,155 (94.65%) patients were...
had distant metastases, 12,183 (60.20%) patients received chemotherapy, and 15,826 (78.20%) received radiotherapy. At the end of the follow-up, 9,437 (46.63%) patients were alive, and 10,801 (53.37%) patients died. Detailed characteristics of the study population are shown in Table 1.

3.2. Comparison of Differences between the Training Set and Test Set. A total of 28,912 white patients were randomly divided into the training set and the test set with a ratio of 7:3. The difference analysis showed that no statistical difference was observed in all characteristics between the training set data and the test set data (Supplement Table 1). These results indicated that the data of the training set and the test set were balanced, and the data of the test set can be used to test the model of the training set.

3.3. Comparison of Characteristics between the Survival Group and the Death Group. Univariate analysis showed that age ($t = -50.310, P < 0.001$), the proportion of tumor distant metastasis ($\chi^2 = 172.869, P < 0.001$), bone marrow as the disease site ($\chi^2 = 149.955, P < 0.001$), and receiving radiotherapy ($\chi^2 = 16.682, P < 0.001$) were higher in the death group than in the survival group. Compared with the survival group, the proportion of receiving chemotherapy was lower in the death group ($\chi^2 = 63.150, P < 0.001$). There was a statistical difference in marital status ($\chi^2 = 632.686, P < 0.001$) between the two groups (Table 2).

3.4. Establishment and Validation of the Model. The random forest was used to develop the prediction model. The important variables for the random forest model were age,
marital status, metastasis, disease site, etc.; especially, age was the most important variable in the random forest model (Figure 2).

The performances of the all-variable model and age-based model in the training set and testing set are displayed in Table 3. The AUC of the all-variable model in the training set and the testing set was 0.741 (95% CI, 0.740–0.741) and 0.703 (95% CI, 0.703–0.704), respectively. The accuracy and specificity of the all-variable model in the testing set were 0.641 (95% CI, 0.631–0.651) and 0.700 (95% CI, 0.686–0.714), respectively. Furthermore, the AUC of the age-based model in the training set and testing set was 0.697 (95% CI, 0.697–0.698) and 0.688 (95% CI, 0.688–0.689), respectively. The results of the DeLong test indicated that the random forest model had a better predictive effect than the age-based model ($Z = 7.023, P < 0.001$). The ROC curves and calibration curves were displayed in Figure 3.

Figure 3: Performance and evaluation of random forest model in the training set. (a) Receiver operator characteristic (ROC) curves; (b) calibration curves.

Figure 4: Performance and evaluation of random forest model in the testing set. (a) Receiver operator characteristic (ROC) curves; (b) calibration curves.
calibration curve of the model in the training set and testing set are presented in Figures 3 and 4.

Subgroup	Parameter (95% CI) All-variable models
Age ≥65 years	
AUC	0.681 (0.681–0.682)
Accuracy	0.647 (0.634–0.660)
Sensitivity	0.725 (0.710–0.741)
Specificity	0.511 (0.489–0.533)
PPV	0.721 (0.705–0.736)
NPV	0.517 (0.495–0.540)
Age <65 years	
AUC	0.614 (0.613–0.614)
Accuracy	0.621 (0.604–0.637)
Sensitivity	0.030 (0.021–0.039)
Specificity	0.986 (0.981–0.991)
PPV	0.565 (0.448–0.682)
NPV	0.622 (0.605–0.638)
Single marital status	
AUC	0.662 (0.661–0.663)
Accuracy	0.583 (0.553–0.613)
Sensitivity	0.367 (0.326–0.408)
Specificity	0.817 (0.783–0.851)
PPV	0.684 (0.630–0.738)
NPV	0.544 (0.508–0.580)
Widowed marital status	
AUC	0.693 (0.693–0.693)
Accuracy	0.636 (0.623–0.648)
Sensitivity	0.461 (0.442–0.480)
Specificity	0.807 (0.793–0.822)
PPV	0.701 (0.680–0.723)
NPV	0.604 (0.588–0.620)
Others marital status	
AUC	0.695 (0.694–0.696)
Accuracy	0.724 (0.699–0.748)
Sensitivity	0.886 (0.865–0.907)
Specificity	0.305 (0.257–0.353)
PPV	0.767 (0.741–0.792)
NPV	0.509 (0.442–0.577)
Married marital status	
AUC	0.642 (0.641–0.644)
Accuracy	0.583 (0.550–0.615)
Sensitivity	0.433 (0.389–0.477)
Specificity	0.756 (0.715–0.797)
PPV	0.673 (0.621–0.725)
NPV	0.535 (0.494–0.575)

3.5. Further Validation Based on Age and Marital Status. Age and marital status were important variables for the random forest model, and further validation was performed based on age and marital status. Table 4 demonstrates the performance of the random forest models in age and marital status subgroups. The AUC of the model in patients aged ≥65 years, <65 years, single, widowed, married, and others marital status was 0.681 (95% CI, 0.681–0.682), 0.614 (95% CI, 0.613–0.614), 0.662 (95% CI, 0.661–0.663), 0.693 (95% CI, 0.693–0.693), 0.642 (95% CI, 0.641–0.644), and 0.695 (95% CI, 0.694–0.696), respectively. The prediction effect of the random forest model was robust in different ages and marital statuses.

4. Discussion

In this study, a random forest model was established to predict the death risk of MM patients among whites. The important variables of the model were age, marital status, metastasis, disease site, etc., and age was the most important variable in the model. The AUC of the random forest model in the training set and test set were 0.741 and 0.703, respectively. This indicated that our random forest model had good predictive ability for death risk in white MM patients, and the model was robust. The AUC of the age-based model was 0.688, suggesting that age may be an important predictor of death risk in white patients with MM. The results of the DeLong test indicated that the random forest model had better predictive effect than the age-based model. Further validation showed that the prediction effect of the random forest model was robust in different age and marital status.

The prognosis of MM is widely heterogeneous, patients survive for more than 10 years after diagnosis, while others died within a few months [14]. Furthermore, the incidence and prognosis of MM have race differences. It was reported that the incidence rates of MM among black-American patients are about twice that of white-American patients [18, 19], but black-American patients with MM had better survival as compared to white-American patients [13]. This study developed a random forest model to predict the death of MM among whites. The AUC of the model in the training set and test set were 0.741 and 0.703, respectively, indicating the model had good performance in predicting the death of MM patients among whites. Hájek et al. conducted a novel risk stratification algorithm to estimate the risk of death in patients with relapsed MM patients, and the C-index of their model was 0.715 [20]. The study of Terebelo et al. established a prediction matrix to predict the early mortality of MM patients [16]. Perrot et al. developed a prognostic model of newly diagnosed MM patients based on six cytogenetic abnormalities, and their results showed that a higher prognostic index was consistently associated with a poor survival outcome [14]. However, few studies have predicted the death of MM patients in whites. Our study provided a random forest model to predict the death risk of MM patients among whites, which may help clinicians make early interventions to improve the prognosis of patients.

In our model, age played the most important role in predicting the death of MM patients among whites. The AUC of the single variable age model was 0.688 in our study. Aging is related to the reduction of reparative and regenerative potential in tissues and organs [21, 22]. These changes affect the pharmacokinetics and pharmacodynamics of drugs, increase toxicity, and reduce clinical efficacy and treatment tolerance [23]. It was reported that the incidence of MM is higher in older patients, with 63% of patients aged 65 years and over, and only 0.02–0.3% of patients under 30...
years [24]. The study of Augustson et al. indicated that 60% of MM patients who died within 2 months of starting treatment were over 65 years [25]. In further validation, 65 years was chosen as the threshold, and the random forest model was performed to predict the death of MM patients among different age populations. The results found that the prediction effect of the model was better for the population ≥65 years than of the population <65 years, but the prediction effects of these two models were not as good as the model of the overall population model.

Our results indicated that marital status also was associated with the death of MM patients. An extensive analysis of more common cancers based on the SEER database showed that unmarried patients, including those who are widowed, are more likely to suffer from metastatic cancer, undertreatment, and death from cancer than married patients [26]. The study of Costa et al. found that, among MM patients, being single, widowed, or divorced led to a higher risk of death [27]. A possible explanation is that, after being diagnosed with cancer, married patients displayed less distress, depression, and anxiety than unmarried patients because their partners can share emotions and provide social support [28]. In clinical practice, special attention should be paid to widowed, divorced, or single MM patients and beware of death.

To the best of our knowledge, this study was the first to predict the death risk of MM patients in whites. We established a random forest model using simple clinical characteristics of MM patients. This model may help clinicians predict the death of MM patients in whites and make early interventions to improve the prognosis of patients. However, this study has some limitations. First, this prediction model was developed based on the US SEER database and may not be suitable for all whites. Second, the internal validation results showed that the model fit well, but external validation of the prediction models was necessary when it was used in clinical practice. Third, some clinical biochemical indicators such as serum creatinine and β2-microglobulin may be associated with the prognosis of patients with MM [29, 30], but these biochemical indicators were not included in our model due to the lack of these data in the database.

5. Conclusions

A random forest model was established to predict the death of MM patients in whites based on the SEER database. Age and marital status were the important variables for predicting the death of MM patients in whites. Further validation indicated that the prediction effect of the random forest model was robust in different age and marital status. Our model may provide a tool to predict the death risk of MM patients in whites, which may help clinicians with early intervention to improve patient outcomes.

Data Availability

Data used and analyzed in this study are available from SEER database (https://seer.cancer.gov/).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this article.

Acknowledgments

This study was supported by the Science and Technology Project of Nantong (no. JCZ20083).

Supplementary Materials

Supplement Table 1: comparison between the training set and testing set. (Supplementary Materials)

References

[1] P. Moreau, J. San Miguel, P. Sonneveld et al., “Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 24, no. 6, pp. vi133–7, 2013.
[2] E. Terpos, E. Zamagni, S. Lentzsch et al., “Treatment of multiple myeloma-related bone disease: recommendations from the bone working group of the international myeloma working group,” The Lancet Oncology, vol. 22, pp. e119–30, 2021.
[3] A. J. Cowan, C. Allen, A. Barac et al., “Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016,” JAMA Oncology, vol. 4, no. 9, pp. 1221–1227, 2018.
[4] N. A. Howlader and A. M. Noone, SEER Cancer Statistics Review, National Cancer Institute, Bethesda, MA, USA, 2017.
[5] S. J. Henley, E. M. Ward, S. Scott et al., “Annual report to the nation on the status of cancer, part I: National cancer statistics,” Cancer, vol. 126, no. 10, pp. 2225–2249, 2020.
[6] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2021,” Ca-a Cancer Journal for Clinicians, vol. 71, no. 1, pp. 7–33, 2021.
[7] D. D. Alexander, P. J. Mink, H. O. Adami et al., “Multiple myeloma: a review of the epidemiologic literature,” International Journal of Cancer, vol. 120, no. S12, pp. 40–61, 2007.
[8] C. T. Wallington-Beddoe and R. L. Mynott, “Prognostic and predictive biomarker developments in multiple myeloma,” Journal of Hematology & Oncology, vol. 14, no. 1, p. 151, 2021.
[9] A. Levin, P. Hari, and B. Dhalak, “Novel biomarkers in multiple myeloma,” Translational Research, vol. 201, pp. 49–59, 2018.
[10] O. Landgren and S. V. Rajkumar, “New developments in diagnosis, prognosis, and assessment of response in multiple myeloma,” Clinical Cancer Research, vol. 22, pp. 5428–5433, 2016.
[11] A. Baker, E. Braggio, S. Jacobus et al., “Uncovering the biology of multiple myeloma among African Americans: a comprehensive genomics approach,” Blood, vol. 121, no. 16, pp. 3147–3152, 2013.
[12] A. J. Greenberg, C. M. Vachon, and S. V. Rajkumar, “Disparities in the prevalence, pathogenesis and progression of monoclonal gamopathy of undetermined significance and multiple myeloma between blacks and whites,” Leukemia, vol. 26, no. 4, pp. 609–614, 2012.
[13] A. J. Waxman, P. J. Mink, S. S. Devesa et al., “Racial disparities in incidence and outcome in multiple myeloma: a population-based study,” Blood, vol. 116, no. 25, pp. 5501–5506, 2010.
A. Perrot, V. Lauwers-Cances, E. Tournay et al., "Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma," *Journal of Clinical Oncology*, vol. 37, no. 19, pp. 1657–1665, 2019.

M. Zhou, H. Zhao, Z. Wang et al., "Identification and validation of potential prognostic IncRNA biomarkers for predicting survival in patients with multiple myeloma," *Journal of Experimental & Clinical Cancer Research*, vol. 34, no. 1, p. 102, 2015.

H. Terebelo, S. Srinivasan, M. Narang et al., "Recognition of early mortality in multiple myeloma by a prediction matrix," *American Journal of Hematology*, vol. 92, no. 9, pp. 915–923, 2017.

WHO, *The International Classification of Diseases for Oncology*, WHO, Geneva, Switzerland, 2022.

N. Duma, T. Azam, I. B. Riaz, M. Gonzalez-Velez, S. Ailawadhi, and R. Go, "Representation of minorities and elderly patients in multiple myeloma clinical trials," *The Oncologist*, vol. 23, no. 9, pp. 1076–1078, 2018.

C. J. Smith, S. Ambas, and O. Landgren, "Biological determinants of health disparities in multiple myeloma," *Blood Cancer Journal*, vol. 8, no. 9, p. 85, 2018.

R. Hájek, S. Gonzalez-McQuire, Z. Szabo et al., "Novel risk stratification algorithm for estimating the risk of death in patients with relapsed multiple myeloma: external validation in a retrospective chart review," *BMJ Open*, vol. 10, no. 7, Article ID e034209, 2020.

S. S. Khan, B. D. Singer, and D. E. Vaughan, "Molecular and physiological manifestations and measurement of aging in humans," *Aging Cell*, vol. 16, no. 4, pp. 624–633, 2017.

C. Jackaman, F. Tomay, L. Duong et al., "Aging and cancer: the role of macrophages and neutrophils," *Aging Research Reviews*, vol. 36, pp. 105–116, 2017.

S. Bringhen, M. V. Mateos, S. Zweegman et al., "Age and organ damage correlate with poor survival in myeloma patients: meta-analysis of 1435 individual patient data from 4 randomized trials," *Haematologica*, vol. 98, no. 6, pp. 980–987, 2013.

D. Kazandjian, "Multiple myeloma epidemiology and survival: a unique malignancy," *Seminars in Oncology*, vol. 43, no. 6, pp. 676–681, 2016.

B. M. Augustsson, G. Begum, J. A. Dunn et al., "Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom medical research council trials between 1980 and 2002--medical research council adult leukaemia working party," *Journal of Clinical Oncology*, vol. 23, no. 36, pp. 9219–9226, 2005.

A. A. Aizer, M. H. Chen, E. P. McCarthy et al., "Marital status and survival in patients with cancer," *Journal of Clinical Oncology*, vol. 31, pp. 3869–3876, 2013.

L. J. Costa, I. K. Brill, and E. E. Brown, "Impact of marital status, insurance status, income, and race/ethnicity on the survival of younger patients diagnosed with multiple myeloma in the United States," *Cancer*, vol. 122, no. 20, pp. 3183–3190, 2016.

G. Goldzweig, E. Andritsch, A. Hubert et al., "Psychological distress among male patients and male spouses: what do oncologists need to know?" *Annals of Oncology*, vol. 21, no. 4, pp. 877–883, 2010.

H. R. Terebelo, R. Abonour, C. J. Gasparetto et al., "Development of a prognostic model for overall survival in multiple myeloma using the Connect® MM Patient Registry," *British Journal of Haematology*, vol. 187, no. 5, pp. 602–614, 2019.

M. Kim, Y. S. Ju, E. J. Lee et al., "Abnormalities in chromosomes 1q and 13 independently correlate with factors of poor prognosis in multiple myeloma," *Annals of Laboratory Medicine*, vol. 36, no. 6, pp. 573–582, 2016.