Parasitic wasps related to Prays oleae (Bernard, 1788) (Lepidoptera, Praydidae) in olive orchards in Greece

Eleftherios Alissandrakis¹, Panagiota Psirofonia¹, Nickolas G. Kavallieratos², Saša S. Stanković³, Vladimir Žikić³

¹ Laboratory of Entomology and Pesticide Science, Department of Agriculture, Technological Educational Institute of Crete, P.O. Box 1939, 71004, Heraklion, Greece ² Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece ³ Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia

Corresponding author: Nickolas G. Kavallieratos (nick_kaval@aua.gr)

Abstract

The olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae) is categorised among the most devastating insect pests of olives, whose anthophagous and carpophagous generations can cause yield loss up to 581 and 846 kg of fruit per ha, respectively. In this study, results of the captured parasitoids in olive tree (Olea europaea Linnaeus, 1753) orchards, or infested olive plant material in Crete, Greece, is presented. Five of the six identified species captured in trap devices are related to Prays oleae, i.e., Chelonus elaeaphilus Silvestri, 1908, Chelonus pellucens (Nees, 1816), Apanteles xanthostigma (Haliday, 1834), Diadegma armillatum (Gravenhorst, 1829), and Exochus lentipes Gravenhorst, 1829. The species Eupelmus urozonus Dalman, 1820 and Pnigalio mediterraneus Ferrière & Delucchi, 1957 were reared from infested Prays oleae leaves. Chelonus pellucens is reported for the first time from Greece. According to the international literature, 59 hymenopterous and dipterous parasitoid species are associated with Prays oleae in Europe.

Keywords

Diptera, Greece, Hymenoptera, parasitoids, Prays oleae

Citation: Alissandrakis E, Psirofonia P, Kavallieratos NG, Stanković SS, Žikić V (2018) Parasitic wasps related to Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae) in olive orchards in Greece. ZooKeys 773: 143–154. https://doi.org/10.3897/zookeys.773.25402
Introduction

Olive trees growing has been traditionally localised in the Mediterranean Basin for thousands of years, where almost 97.9% of the cultivated areas are located (Rallo et al. 2018). The list of potentially harmful organisms includes more than 255 species and the losses due to insect pests alone are estimated to be approximately 15% of production (Haniotakis 2003). Among them, the most common species are the olive fruit fly, Bactrocera oleae (Rossi, 1790) (Diptera: Tephritidae), the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and the Mediterranean black scale, Saissetia oleae (Olivier, 1791) (Hemiptera: Coccidae) (Haniotakis 2003).

Prays oleae is one of the main pests infesting olives of commercial production, since larvae of the first, second, and third generations attack flowers, fruits, and leaves, respectively (Kavallieratos et al. 2005; Nave et al. 2017). The anthophagous generation can cause yield losses up to 581 kg of fruit per ha and the corresponding carpophasous up to 846 kg per ha, an issue that justifies the imposed control measures (Bento et al. 2001). In recent years, high socioeconomic pressures have forced olive growers to develop alternative control strategies in an effort to mitigate the undesirable side effects of pesticides on trophic chains and biological balances (Nave et al. 2017). In this sense, not only the economic losses due to the pest should be evaluated, but also the possible secondary effects that such control measures can have on beneficial fauna (Ramos et al. 1998).

Previous research has revealed a wide parasitoid spectrum that is related to P. oleae, resulting to biological control efforts against this pest. The first parasitoid used in biocontrol program was Trichogramma embryophagum (Hartig, 1838) (Hymenoptera: Trichogrammatidae) in former Yugoslavia (Brnetić 1988). In Spain, three species have been released against P. oleae with various levels of success; i.e., Chelonus elaeaphilus Silvestri, 1908 (Hymenoptera: Braconidae), the specialised Ageniaspis fuscicollis (Dalman, 1820) var. praysincola Silvestri, 1907 (Hymenoptera: Encyrtidae) and T. embryophagum (Civantos and Caballero 1993). Trichogramma cacaeciae Marchal, 1927 (Hymenoptera: Trichogrammatidae) has been utilised in Portugal (Bento et al. 1998) and Trichogramma evanescens Westwood, 1833 in Egypt (Agamy 2010).

Although there are previous records concerning the occurrence of P. oleae parasitoids in Greece, there are no data available from the island of Crete, the most important olive production area with almost 200,000 ha cultivated with olive trees (i.e., nearly 25% of the total island area is covered with olive plantations; Hellenic Statistical Authority 2014). Given that the knowledge of the beneficial entomofauna of the olive crop is clearly linked with the biological control of pests infesting this crop and that indigenous strains of parasitoids occurring in olive groves can be more effective against certain olive pests than the commercially available parasitoids (Herz and Hassan 2006), the objective of this study was to further investigate the parasitoid complex that is associated with P. oleae in the overlooked area of Crete by using trap devices and collecting plant material.
Materials and methods

All parasitoids were collected in olive orchards from the island of Crete, Greece from June to October 2017. A part of the material was captured in five glass McPhail trap devices, installed from June to October in an olive orchard at Messara (Crete) that covers an area of approx. 0.5 ha baited with 200 ml aqueous solution of 2% hydrolysed protein (Entomela 75 SL, 25% w/w urea; BASF Hellas, Amaroussion, Greece). Each trap device was placed with its lower part at a height of 2 m from the ground. The distances among trap devices were approx. 100 m. The solution was replaced every week. Additional specimens were reared from *P. oleae* infested plant material (*O. europaea* var. *koroneiki*). Infested leaves by *P. oleae* larvae were collected from olive trees, separately transferred into plastic vials covered with mesh, and transferred to the laboratory. Vials were maintained at 25 °C and 60% relative humidity and inspected daily for emergence of parasitoids. All parasitoid individuals, either from trap devices or plant material, were preserved in 96% alcohol. Specimens were dissected and slide mounted in Berlese medium. The identification of the captured and reared specimens was conducted under a Nikon SM2 745T binocular stereomicroscope (Nikon CEE GmbH, Wien, Austria) or an Olympus SZX9 (Olympus Corporation, Tokyo, Japan) using appropriate keys (Tobias et al. 1986; Askew and Nieves Aldrey 2000; Tolkanitz 2007; Broad 2011). Part of the specimens was deposited in the insect collection of the Laboratory of Agricultural Zoology of Entomology, Agricultural University of Athens, Greece, and a part was deposited in the insect collection of the Faculty of Sciences and Mathematics, Department of Biology and Ecology, University of Niš, Serbia.

Additional to field research, we critically reviewed all recorded parasitoids of *P. oleae* in Greece and Europe indicating the pest’s stage they attack. The synonymy among taxa was checked and adopted according to online databases (van Achterberg 2013; Fernandez Triana and Ward 2015; Noyes 2017; Tschorsnig 2017), and the database provided by Yu et al. (2012).

Results

In total, five out of six species captured in McPhail trap devices are related to *P. oleae*, i.e., *C. elaeaphilus*, *Chelonus pellucens* (Nees, 1816) (Hymenoptera: Braconidae), *Apaneles xanthostigma* (Haliday, 1834) (Hymenoptera: Braconidae), *Diadegma armillatum* (Gravenhorst, 1829) (Hymenoptera: Ichneumonidae), and *Exochus lentipes* Gravenhorst, 1829 (Hymenoptera: Ichneumonidae), while two species were reared from *P. oleae* infested olive leaves.

The exhaustive investigation of the international literature revealed 59 hymenopterous and dipterous parasitoid species that attack *P. oleae* in Europe; 14 Braconidae, 2 Chalcididae, 1 Encyrtidae, 20 Eulophidae, 1 Eupelmidae, 7 Ichneumonidae, 1 Platygastridae, 3 Pteromalidae, 2 Tachinidae, and 8 Trichogrammatidae (Table 1). Thirty-one out of
Table 1. Parasitoids of *Prays olete* recorded in Europe and their presence in Greece: (+) recorded, (-) not recorded.

Family	Species	Source of host record	Host stage attacked	Recorded or not in Greece
Braconidae	*Aleiodes circumscriptus* (Nees, 1834)	Beyarslan (2015)	larva	+
	Aleiodes gastritor (Thunberg, 1822)	Halperin (1986)	larva	+
	Apanteles sambustigmina (Haliday, 1834)	Nave et al. (2016)	larva	+
	Bracon hebetor Say, 1836	Aubert (1966)	larva	+
	Bracon laetus (Wesmael, 1838)	Falcó et al. (1993)	larva	+
	Bracon crassicornis Thomson, 1892	Silvestri (1906)	larva	+
	Chelonus (Microchelonus) *elaephila* Silvestri, 1908	Nave et al. (2016)	larva	+
	Chelonus (Microchelonus) *silvestrii* (Papp, 1999)	Papp (1999)	larva	-
	Chelonus (Parachelonus) pellucens (Nees, 1816)	Testeira et al. (2000)	larva	-
	Clinocentrus testaceus (Kriechbaumer, 1894)	Testeira et al. (2000)	larva	-
	Dolichogenidea dilecta (Haliday, 1983)	Télenda (1955)	larva	-
	Dolichogenidea ultor (Reinhard, 1880)	Arambourg (1969)	larva	-
	Meteorus rubens (Nees, 1811)	Testeira et al. (2000)	larva	+
	Phanerotoma dentata (Panzer, 1805)	Testeira et al. (2000)	larva	+
Chalcididae	*Hockeria bifasciata* Walker, 1834	Madl (2008)	larva	-
	Hockeria unicolor Walker, 1834	Stavraki (1977)	larva	+
Encyrtidae	*Ageniaspis fuscicolli* (Dalman, 1820) var. *praysincola* Silvestri, 1907	Nave et al. (2016)	larva	+
Eulophidae	*Ascodes exrias* (Walker, 1848)	Silvestri (1908)	larva	+
	Baryscapus nigroviolaceus (Nees, 1834)	Noyes (2017)	larva	-
	Chrysocharis gemma (Walker, 1839)	Noyes (2017)	larva	+
	Chrysocharis nipherus (Walker, 1839)	Noyes (2017)	larva	+
	Cirrhipus elongatus Boucek, 1959	Noyes (2017)	larva	-
	Dicadocerus westwoodii Westwood, 1832	Ramos and Panis (1975)	larva	+
	Elasmus arenatus Ferrière, 1947	Ferrière (1947)	larva	-
	Elasmus flabellatus (Fonscolombes, 1832)	Nave et al. (2016)	larva	+
	Elasmus macii Ferrière, 1929	Anonymous (2006)	larva	-
	Elasmus nudus (Nees, 1834)	Ramos and Panis (1975)	larva	-
	Elasmus steffeni Viggiani, 1967	Redolfi and Campos (2010)	larva	+
	Elasmus westwoodii Giraud, 1856	Noyes (2017)	larva	+
	Euderus albitarsis (Zetterstedt, 1838)	Nave et al. (2016)	larva	-
	Hemiptarsenus unguicellus (Zetterstedt, 1838)	Noyes (2017)	larva	-
	Pedobius bruchicida (Rondani, 1872)	Bouček (1974)	larva/pupa	+
	Prionigel aequalis (Walker, 1839)	Nave et al. (2016)	larva/pupa	+
	Prionigel epilobi Bouchek, 1966	Stavraki (1970)	larva/pupa	+
	Prionigel longulus (Zetterstedt, 1838)	Stavraki (1970)	larva/pupa	+
	Prionigel mediterraneus Ferrière & Delucchi, 1957	Stavraki (1970)	larva/pupa	+
	Prionigel pectinicornis (Linnæus, 1758)	Ramos and Panis (1975)	larva/pupa	+
Eupelmidae	*Eupelminus sozonos* Dalman, 1820	Noyes (2017)	larva	+
Ichneumonidae	*Diadegona armillatum* (Gravenhorst, 1829)	Bento et al. (1998)	larva/pupa	+
Parasitic wasps related to Prays oleae (Bernard, 1788) in olive orchards in Greece

Family	Species	Source of host record	Host stage attacked	Recorded or not in Greece
Ichneumonidae	*Diadegma semiclausum* (Hellén, 1949)	Torres (2010)	larva/pupa	+
	Exoxus lentipes Geavenhorst, 1829	Texeira et al. (2000)	larva	-
	Himetotoma superbus Schmiedeknecht, 1900	Vidal (1997)	larva/pupa	-
	Itoplectus alternans (Geavenhorst, 1829)	Silvestri (1908)	larva/pupa	-
	Listonota superbator Aubert, 1967	Aubert (1969)	larva	+
	Scambus elegans (Woldstedt, 1877)	Nave et al. (2017)	larva	-
Platygastridae	*Platygaster apicalis* Thomson, 1859	Stavraki (1970)	larva	+
Pteromalidae	*Mesopolobus mediterraneus* (Mayr, 1903)	Bozbuğa and Elekçiçölğuler (2008)	pupa	-
	Pteromalus chrysos Walker, 1836	Noyes (2017)	pupa	-
	Pteromalus seminatus Walker, 1834	Noyes (2017)	pupa	-
Tachinidae	*Phytomyza nigra* (Meigen, 1824)	Kara and Tschorsnig (2003)	larva	-
	Phytomyza vaccinii Sintenis, 1897	Tschorsnig (2017)	larva	-
Trichogrammatida	*Trichogramma boumanarachae* Pintureau & Babault, 1988	Polaszek (2009)	egg	-
	Trichogramma kriisiceae Bezdenko, 1968	Polaszek (2009)	egg	-
	Trichogramma cordubensis Vargas & Cabello, 1985	Jardak (1980)	egg	-
	Trichogramma dendriformi Matsunuma, 1926	Polaszek (2009)	egg	-
	Trichogramma euprotidis (Girault, 1911)	Pereira et al. (2004)	egg	+
	Trichogramma minutum Riley, 1871	Stavraki (1985)	egg	-
	Trichogramma oleae Voegele & Pointel, 1979	Polaszek (2009)	egg	+
	Trichogramma pretiosum Riley, 1879	Polaszek (2009)	egg	-

these 59 parasitoid species have been recorded in Greece: 9 Braconidae, 1 Chalcididae, 1 Encyrtidae, 13 Eulophidae, 1 Eupelmidae, 3 Ichneumonidae, 1 Platygastridae, and 2 Trichogrammatidae. All Braconidae, Chalcididae, Encyrtidae, Eupelmidae, Platygastridae, and Tachinidae which are parasitoids of *P. oleae* attack only larvae. All eulophids parasitise larvae of *P. oleae* while some of them attack both larvae and pupae. Three ichneumonids parasitise larvae exclusively and four both larvae and pupae. All pteromalids are pupal parasitoids whilst all trichogrammatids are egg parasitoids.

Family Braconidae

Apanteles xanthostigma (Haliday, 1834)

Material examined: 11 ♀, Messara (Crete) (35°2′20″N, 24°50′54″E), 16–23.06.2017, captured in McPhail trap device.

Chelonus (Microchelonus) elaeaphilus (Silvestri, 1907)

Material examined: 4 ♀, 4 ♂, Messara (Crete) (35°2′20″N, 24°50′54″E), 09–16.06.2017, captured in McPhail trap device.
Chelonus (Parachelonus) pellucens (Nees, 1816)

Material examined: 6 ♀, Messara (Crete) (35°2'20"N, 24°50'54"E), 09–16.06.2017, captured in McPhail trap device.

Glyptapanteles vitripennis (Curtis, 1830)

Material examined: 2 ♀, 7 ♂, Messara (Crete) (35°2'20"N, 24°50'54"E), 23–30.06.2017, captured in McPhail trap device.

Family Eulophidae

Pnigalio mediterraneus Ferrière & Delucchi, 1957

Material examined: 12 ♂, Heraklion, Voutes, (Crete) (35°15'54"N, 25°03'26"E), 15.03.2017 (date of host collection). Host: *Prays oleae* on *Olea europaea* var. *koroneiki*.

Family Eupelmidae

Eupelmus urozonus Dalman, 1820

Material examined: 8 ♀, 12 ♂, Heraklion, Voutes, (Crete) (35°15'54"N, 25°03'26"E), 15.03.2017 (date of host collection). Host: *Prays oleae* on *Olea europaea* var. *koroneiki*.

Family Ichneumonidae

Diadegma armillatum (Gravenhorst, 1829)

Material examined: 3 ♀, 5 ♂, Messara (Crete) (35°2'20"N, 24°50'54"E), 16–23.08.2017, captured in McPhail trap device.

Exochus lentipes Gravenhorst, 1829

Material examined: 6 ♀, 8 ♂, Messara (Crete) (35°2'20"N, 24°50'54"E), 16–23.09.2017, captured in McPhail trap device.

Discussion

Microgastrinae is one of the largest subfamilies of Braconidae with about 2,000 described species worldwide (Pérez Rodríguez et al. 2013). Very recently, the hymenopteran parasitoid complex of *P. oleae* was studied in Portugal where, among the 22 recorded parasitoid taxa, *A. xanthostigma* was the major natural enemy (Nave et al. 2017). Furthermore, in Egypt *A. xanthostigma* was found to parasitise the larval stage of *P. oleae* at a rate of more than 50% (Herz et al. 2005). Apart from *P. oleae*, this parasitoid species parasitises a high number of microlepidopterous species, mainly Tortricidae, Gracillariidae, and Yponomeutidae, particularly the genera *Paraswammerdamia* Friese, 1960 and *Swammerdamia* Hübner, 1825 (Yu et al. 2012). *Glyptapanteles* Ash-
Parasitic wasps related to Prays oleae (Bernard, 1788) in olive orchards in Greece

Glyptapanteles vitripennis was first reported in southern Greece in 1978 (Papp 2007) without further records since then. This parasitoid species was the second most abundant recovered from Malaise traps placed in the Artikutza forest of Pyrenees (Spain) (Pérez Rodríguez et al. 2013) while it is also known that it attacks Yponomeuta malinellus (Zeller, 1838) (Lepidoptera: Yponomeutidae) (Velcheva et al. 2012). Given that this species parasitises numerous other lepidopterous species belonging to Geometridae, Noctuidae, Plutellidae, and Tortricidae (Nixon 1973), it could be a good candidate for biological control purposes. Whether G. vitripennis parasitises P. oleae, it remains to be confirmed with additional field efforts.

The subfamily Cheloninae is formed by more than 1,300 species belonging to 15 genera, thus constituting a quite large part of Braconidae (Kittel and Austin 2014). They oviposit into eggs and larvae of various lepidopterous species, a fact that makes them valuable potential biocontrol agents (Inayatullah and Naeem 2004; Walker and Huddleston 1987; Edmardash et al. 2011). The subgenus Microchelonus Szepligeti, 1908 is even considered as a valid genus, following the standpoints of Papp (2014a, b). The genus Chelonus Panzer, 1806 counts 601 species in the Holarctic region (Papp 2014c) with M. elaeaphilus being known in the Mediterranean region, either as M. elaeaphilus or C. elaeaphilus (Papp 2012; Nave et al. 2017). This species has been introduced and established in Greece from France (Yamvrias 1998). On the other hand, C. pellucens has a wider European distribution than M. elaeaphilus (van Achterberg 2013). Chelonus pellucens is reported for the first time from Greece and although C. elaeaphilus parasitises P. oleae (Bento et al. 1998), there are no relevant records for C. pellucens, an issue that merits further investigation.

Although Eupelmidae is a relatively small family with approximately 1000 species, the genus Eupelmus Dalman, 1820 is a large taxon containing more than 300 species (Gibson and Fusu 2016) whilst Eulophidae is one of the largest families within chalcidoid wasps, with almost 5,000 species (Aguiar et al. 2013). The genus Pnigalio Schrank, 1802 is comprised by 61 valid species (Li et al. 2017). Several hosts of Pnigalio mediterraneus Ferrière & Delucchi, 1957 (Hymenoptera: Eulophidae) are major pests of plants of ornamental and agricultural importance belonging to different orders, such as B. oleae, Phyllocnistis citrella Stainton, 1856 (Lepidoptera: Gracillariidae), and Cameraria obridella Deschka & Dimić, 1986 (Lepidoptera: Gracillariidae) (Gebiola et al. 2009). Both Eupelmus urozonus Dalman, 1820 (Hymenoptera: Eupelmidae) and P. mediterraneus were found in the Greek island of Corfu as primary parasitoids of B. oleae (Kapatos and Fletcher 1986). Based on our results, these species are also parasitoids of P. oleae that occur in Greece since they were recorded from infested olive leaves.

The genus Diadegma Förster, 1869 constitutes a large group of Ichneumonid wasps with more than 200 known species worldwide (Wagener et al. 2006). Diadegma armillatum is a known parasitoid of various lepidopterous species (Velcheva et al. 2012; Fernandez Triana et al. 2014) that has been recently recorded attacking P. oleae larvae (Nave et al. 2017). The genus Exochus Gravenhorst, 1829 is the largest group of
Metopiinae including the widely distributed in Europe, *E. lentipes* that attacks various Tortricidae and Gelechiidae larvae (Yu et al. 2012).

Our original findings on associated parasitoids of *P. oleae* and the compiled information revealed could trigger further studies that deal with the management of this noxious insect species in the target area from a biological control point of view. The identified parasitoid spectrum was broad, despite the short interval of obtaining the data, indicating a potential positive impact of natural enemies to *P. oleae*, an issue however that merits further field efforts. Last but not least, given that *C. pellucens* is identified as a new member of the entomofauna of Greece during the present first attempt to record the beneficial parasitoids in olive orchards in Crete, we may expect that additional parasitoid species may occur in this agroecosystem.

Acknowledgments

We thank Martin Schwarz (Biologiezentrum, Linz, Austria) for consultation on the identification of *Diadegma* specimens.

References

Agamy E (2010) Field evaluation of the egg parasitoid, *Trichogramma evanescens* West. against the olive moth *Prays oleae* (Bern.) in Egypt. Journal of Pest Science 83: 53–58. https://doi.org/10.1007/s10340-009-0273-x

Aguiar AP, Deans AR, Engel MS, Forshage M, Huber JT, Jennings JT, Johnson NF, Lelej AS, Longino JT, Lohrmann V, Mikó I, Ohl M, Rasmussen C, Taeger A, Yu DSK (2013) Order Hymenoptera. Zootaxa 3703: 51–62. https://doi.org/10.11646/zootaxa.3703.1.12

Anonymous (2006) *Prays del olivo* (*Prays oleae*). Boletín Phytosanitario 6: 1–16.

Arambourg Y (1969) Inventaire de la biocœnose parasitaire de *Prays oleae* dans le bassin méditerranéen. Entomophaga 14: 185–194. https://doi.org/10.1007/BF02371159

Askew RR, Nieves Aldrey JL (2000) The genus *Eupelmus* Dalman, 1820 (Hymenoptera: Chalcidoidea: Eupelmidae) in peninsular Spain and the Canary Islands, with taxonomic notes and descriptions of new species. Graellsia 56: 49–61. https://doi.org/10.3989/graellsia.2000.v56.i0.309

Aubert JF (1966) Liste d’identification No. 6 (présentée par le service d’identification des Entomophages). Entomophaga 11: 115–134. https://doi.org/10.1007/BF02371463

Aubert JF (1969) Les Ichneumonides ouest-paléarctiques et leurs hôtes, Volume I Pimplinae, Xoridinae, Acaenitinae. Éditions Quatrefeuilles, Paris, 302 pp.

Bento A, Torres LM, Lopes J (2001) Avaliação de prejuízos causados pela traça da oliveira, *Prays oleae* (Bern.) em Trás-os-Montes. Revista de Ciências Agrárias 24: 89–96.

Bento A, Ilideo J, Campos M, Torres L (1998) Parasitismo associado à traça da oliveira *Prays oleae* Bern. em Trás-os-Montes (Nordeste de Portugal). Boletín de Sanidad Vegetal Plagas 24: 949–954.
Parasitic wasps related to Prays oleae (Bernard, 1788) in olive orchards in Greece

Beyarslan A (2015) Taxonomic survey on the Rogadinae Förster, 1862 (Hymenoptera: Braconidae) in the northeastern Anatolian region, Turkey. Turkish Journal of Zoology 39: 811–819. https://10.3906/zoo-1407-35

Bouček Z (1974) On the Chalcidoidea (Hymenoptera) described by C. Rondani. Redia 55: 241–285.

Bozbuğa R, Elekcióglü Z (2008) Pests and natural enemies determined in olive orchards in Turkey. Türk Bilimsel Derlemeler Dergisi 1: 87–97.

Brnetić D (1988) Biological control of the olive pests in the Yugoslav littoral. Olea 19: 92–93.

Broad G (2011) Identification key to the subfamilies of Ichneumonidae (Hymenoptera). Natural History Museum, London, 40 pp.

Civantos M, Caballero JM (1993) Integrated pest management in olive in the Mediterranean area. EPPO Bulletin 23: 367–375. https://doi.org/10.1111/j.1365-2338.1993.tb01338.x

Edmardash YAE, Abdel Dayem MS, Gadallah NS (2011) The subfamily Cheloninae (Hymenoptera: Braconidae) from Egypt, with the description of two new species. ZooKeys 115: 85–102. https://doi.org/10.3897/zookeys.115.1186

Falcó JV, Monero J, Jiménez R (1993) Datos sobre Ciclostominos ibéricos. I. Braconinae (Hymenoptera: Braconidae). Boletín de la Asociacion Espanola de Entomologia 17: 71–90.

Fernandez Triana J, Ward D (2015) Microgastrinae wasps of the world. http://microgastrinae.myspecies.info/ [accessed on 3 January 2018]

Fernandez Triana J, Shaw MR, Cardinal S, Mason PG (2014) Contributions to the study of the Holarctic fauna of Microgastrinae (Hymenoptera: Braconidae). I. Introduction and first results of transatlantic comparisons. Journal of Hymenoptera Research 37: 61–76. https://doi.org/10.3897/jhr.37.7186

Ferrière C (1947) Les espèces européennes du genre Elasmus Westw. (Hym. Chalc.). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 20: 565–580.

Gebiola M, Bernardo U, Monti MM, Navone P, Viggiani G (2009) Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): two closely related valid species. Journal of Natural History 43: 2465–2480. https://doi.org/10.1080/00222930903105088

Gibson GAP, Fusu L (2016) Revision of the Palearctic species of Eupelmus (Eupelmus) Dalman (Hymenoptera: Chalcidoidea: Eupelmidae). Zootaxa 4081: 1–331. https://doi.org/10.11646/zootaxa.4081.1.1

Halperin J (1986) Braconidae (Hymenoptera) associated with forest and ornamental trees and shrubs in Israel. Phytoparasitica 14: 119–135. https://doi.org/10.1007/BF02980898

Haniotakis GE (2003) Olive pest control: present status and prospects. IOBC Bulletin 28: 1–9.

Hellenic Statistical Authority (2014) Hellenic Statistical Authority. http://www.statistics.gr/en/home/ [accessed on 26 March 2018]

Herz A, Hassan SA (2006) Are indigenous strains of Trichogramma sp. (Hymenoptera: Trichogrammatidae) better candidates for biological control of lepidopterous pests of the olive tree? Biocontrol Science and Technology 16: 841–857. https://doi.org/10.1080/09583150600827751

Herz A, Hassan SA, Hegazi E, Khafagi WE, Nasr FN, Youssef AA, Agamy E, Jardak T, Ksantini M, Mazomenos BE, Konstantopoulou MA, Torres L, Gonçalves F, Bento A, Pereira JA
Inayatullah M, Naeeem M (2004) An identification key to genera of Cheloninae (Braconidae: Hymenoptera) in the NWFP with new distributional records and taxonomic notes. Sarhad Journal of Agriculture 20: 143–147.

Jardak T (1980) Etudes bioécologiques de Prays oleae BERN (Lepidoptera: Hyponomeutidae) et de ses parasites oophages du genre Trichogramma (Hymenoptera: Trichogrammatidae): essais d’utilisation en lutte biologique. Thèse de 3ème cycle, Université d’Aix Marseille, Marseille, 42 pp.

Kapatos ET, Fletcher BS (1986) Mortality factors and life-budgets for immature stages of the olive fly, Dacus oleae (Gmel.) (Diptera: Tephritidae), in Corfu. Journal of Applied Entomology 102: 326–342. https://doi.org/10.1111/j.1439-0418.1986.tb00931.x

Kara K, Tschorsnig HP (2003) Host catalogue for the Turkish Tachinidae (Diptera). Journal of Applied Entomology 127: 465–476. https://doi.org/10.1046/j.1093-2048.2003.00786.x

Kavallieratos NG, Athanassiu, CG, Balotis GN, Tatsi GTh, Mazomenos BE (2005) Factors affecting male Prays oleae (Lepidoptera: Yponomeutidae) captures in pheromone-baited traps in olive orchards. Journal of Economic Entomology 98: 1499–1505. https://doi.org/10.1603/0022-0493-98.5.1499

Kittel RN, Austin AD (2014) Synopsis of Australian chelonine wasps (Hymenoptera: Braconidae: Cheloninae) with description of two new genera. Austral Entomology 53: 183–202. https://doi.org/10.1111/aen.12070

Li T, Yang ZQ, Sun SP, Wang R (2017) A new species of Pnigalio (Hymenoptera: Eulophidae) parasitizing Eriocrana semipurpurea alpina (Lepidoptera: Eriocraniidae) in China, with its biology and a key to Chinese known species. ZooKeys 687: 149–159. https://doi.org/10.3897/zookeys.687.14903

Madl M (2008) Zur Kenntnis der Familie Chalcididae (Hymenoptera: Chalcidoidea) in Österreich. Entomofauna 29: 69–80.

Nave A, Gonçalves F, Crespi AL, Campos M, Torres L (2016) Evaluation of native plant flower characteristics for conservation biological control of Prays oleae. Bulletin of Entomological Research 106: 249–257. https://doi.org/10.1017/S0007485315001091

Nave A, Gonçalves F, Teixeira R, Amaro Costa C, Campos M, Torres L (2017) Hymenoptera parasitoid complex of Prays oleae (Bernard) (Lepidoptera: Praydidae) in Portugal. Turkish Journal of Zoology 41: 502–512. https://doi.org/10.3906/zoo-1603-50

Nixon GE (1973) A revision of the north-western European species of the vitripennis, pallipes, octonarius, triangulator, formosus, parasitellae, matacarpalis and circumscriptus-groups of Apanteles Förster (Hymenoptera: Braconidae). Bulletin of Entomological Research 63: 169–228. https://doi.org/10.1017/S0007485300039006

Noyes JS (2017) Universal Chalcidoidea database. http://www.nhm.ac.uk/our-science/data/chalcidooids/introduction.html/ [accessed on 3 January 2018]

Papp J (1999) Redescription of F. Silvestri’s two chelonine species (Hymenoptera: Braconidae: Cheloninae). Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 55: 15–44.
Parasitic wasps related to Prays oleae (Bernard, 1788) in olive orchards in Greece

Papp J (2007) Braconidae (Hymenoptera) from Greece, 6. Notes fauniques de Gembloux 60: 99–127.

Papp J (2012) A contribution to the braconid fauna of Israel (Hymenoptera: Braconidae), 3. Israel Journal of Entomology 41–42: 165–219.

Papp J (2014a) Faunistic contributions to the Microchelonus Szépligeti species of the Palaearctic region, with descriptions of two new species (Hymenoptera: Braconidae: Cheloniinae). Acta Zoologica Hungaricae 60: 325–358. https://real.mtak.hu/id/eprint/24326

Papp J (2014b) First survey of the Neotropical species of Microchelonus Szépligeti with descriptions of twenty-five new species (Hymenoptera: Braconidae: Cheloniinae). Acta Zoologica Academiae Scientiarum Hungaricae 62: 217–344. https://dx.doi.org/10.17109/AZH.62.3.217.2016

Papp J (2014c) Microchelonus deplanus sp. n. from Canada and checklists of the Nearctic and Palaearctic species of the genus Microchelonus Szépligeti, 1908 (Hymenoptera: Braconidae: Cheloniinae). Natura Somogyiensis 25: 115–140.

Penteado Dias AM, Fernandes LBR, Lemma LGR, Dias MM (2011) First occurrence of Protapanteles (Protapanteles) enephes (Nixon, 1965) (Hymenoptera: Braconidae: Microgastrinae) in Brazil and new biological data. Brazilian Journal of Biology 71: 735–738. http://dx.doi.org/10.1590/S1519-69842011000400019

Pereira JA, Bento A, Cabanas JE, Torres LM, Herz A, Hassan SA (2004) Ants as predators of the egg parasitoid Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) applied for biological control of the olive moth, Prays oleae (Lepidoptera: Plutellidae) in Portugal. Biocontrol Science and Technology 14: 653–664. https://doi.org/10.1080/09583150410001682386

Pérez Rodríguez J, Oltra Moscardó T, Peris Felipo FJ, Jiménez Peydró R (2013) Microgastrinae (Hymenoptera: Braconidae) in the forest state of Artikutza (Navarra: Spain): diversity and community structure. Insects 4: 493–505. http://doi.org/10.3390/insects4030493

Polaszek A (2009) Species diversity and host associations of Trichogramma in Eurasia. In: Consoli FL, Parra JRP, Zucchi RA (Eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Dordrecht, 237–266. https://doi.org/10.1007/978-1-4020-9110-0_9

Rallo L, Díez CM, Morales Sillero A, Miho H, Priego Capote F, Rallo P (2018) Quality of olives: A focus on agricultural preharvest factors. Scientia Horticulturae 233: 491–509. http://doi.org/10.1016/j.scienta.2017.12.034

Ramos P, Panis A (1975) Les chalcidiens parasites de Prays oleae (Lepidoptera: Plutellidae) en Andalousie. Entomophaga 20: 225–227. https://doi.org/10.1007/BF02371946

Ramos P, Campos M, Ramos JM (1998) Long-term study on the evaluation of yield and economic losses caused by Prays oleae Bern. in the olive crop of Granada (southern Spain). Crop Protection 17: 645–647. http://doi.org/10.1016/S0261-2194(98)00065-9

Redolfi I, Campos M (2010) Developmental and reproductive biology of the ectoparasitoid, Elasmus steffani, in a substitute host, Ephestia kuehniella. Journal of Insect Science 10: 119. https://doi.org/10.1673/031.010.11901

Silvestri F (1908) La tignola dell’olivo (Prays oleellus Fabr.). Bollettino del Laboratorio di Zoolgia Generale 2: 83–184.
Stavraki H (1970) Contribution a l’inventaire du complexe parasitaire de quelques insectes nuisibles a l’olivier en Grèce. Entomophaga 15: 225–231. https://doi.org/10.1007/BF02371000

Stavraki HG (1977) Results obtained from released of the oophagous parasites Trichogramma spp. against Prays oleae Bern. (Lepidoptera: Hyponomeutidae) over a four year period in Greece. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 42:1361–1371.

Stavraki HG (1985) Use of Trichogramma spp. against the carpophagous generation of Prays oleae (Bern.) in Greece. In: Cavalloro R, Crovetti A (Eds) Proceedings of the CEC/FAO/IOBC international joint meeting, integrated pest control in olive-groves, Pisa (Italy), 3–6 April 1984, AA Balkema, Rotterdam, 242–246.

Telenga NA (1955) Braconidae, subfamily Microgasterinae, subfamily Agathinae. Fauna USSR, Hymenoptera 5: 311.

Texeira R, Bento A, Gonçalves M (2000) Avaliacao da fauna auxiliar associada ao olival em producao biologica em Trás-os-Montes. Boletín de Sanidad Vegetal. Plagas 26: 629–636.

Tobias VI, Belokobylskij SA, Kotenko AG, Medvedev G (1986) Family Braconidae. Keys to the insects of the European part of the USSR, Volume III. Part 5. Nauka Publisher, Leningrad, 500 pp.

Tolkanitz VI (2007) Ichneumon flies of the genus Exochus Gravenhorst (Hymenoptera: Ichneumonidae: Metopiinae) of the fauna of Palaearctic region. Russian Entomological Journal 16: 339–358.

Torres MR (2010) Parasitoides de plagas identificados en la provincia de Jaén (España). Boletín de la Sociedad Entomológica Aragonesa 46: 597–601.

Tschorsnig HP (2017) Preliminary host catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Cat_Pal_tach_hosts_Ver1.pdf [accessed on 12 June 2018]

van Achterberg K (2013) Fauna Europaea: Hymenoptera, Braconidae. Fauna Europaea version 2.6.2. http://faunaeur.org/ [accessed on 3 January 2018]

Velcheva N, Atanassov A, Karadjova O, Hubenov Z (2012) Parasitoid assemblages isolated from externally feeding lepidopterans and codling moth (Cydia pomonella L., Tortricidae) in a young apple orchard in West Bulgaria. Bulgarian Journal of Agricultural Science 18: 675–681.

Vidal S (1997) Determination list of entomophagous insects. No. 13. OILB, Avignon, 53 pp.

Wagener B, Reineke A, Löhr B, Zebitz CPW (2006) Phylogenetic study of Diadegma species (Hymenoptera: Ichneumonidae) inferred from analysis of mitochondrial and nuclear DNA sequences. Biological Control 37: 131–140. http://doi.org/10.1016/j.bopcontrol.2006.01.004

Walker AK, Huddleston T (1987) New Zealand chelonine braconid wasps (Hymenoptera). Journal of Natural History 21: 339–361. http://doi.org/10.1080/00222938700771061

Yamvrias C (1998) Insect pests of olives. Stamoulis, Athens, 126 pp.

Yu DS, van Achterberg C, Horstmann K (2012) Taxapad 2012, Ichneumonoidea 2011. Database on flash-drive. Ottawa, Ontario.