Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies

Xu Zhang†, Tongtong Zhang†, Xiaohan Ren†, Xinglin Chen†, ShangQian Wang* and Chao Qin*

The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.

Keywords: pyrethroids, meta-analysis, sperm performance, fertility, male reproduction

INTRODUCTION

Synthetic pyrethroids (SPs) are among the most extensively used pesticides worldwide. They are derived from pyrethrins, which are found in the flowers of Chrysanthemum cinerariaefolium (1). In 1949, allethrin was identified as the first pyrethroid pesticide (2). With the continuous progress of science and technology, the number of SPs that have been developed has increased, some of which...
include: cypermethrin, deltamethrin, fenvalerate, permethrin, pyrethrin, resmethrin, and sumithrin (3). Pyrethroids are endocrine-disrupting chemicals (EDCs) that are responsible for male reproductive impairment (4). According to their chemical structure, pyrethroids consist of two types. Type I pyrethroids do not have a cyano moiety at the α-position (e.g., permethrin and allethrin), whereas Type II pyrethroids, such as cypermethrin, have α-cyano moiety (5). With the phasing out of the varieties of organochlorine and organophosphorus pesticides, pyrethroids have been widely applied to agricultural production, household use, and public health places (6). Pyrethroids often show more advantages than traditional insecticides due to their increased environmental stability and toxicity toward insects (7).

In the past two decades, people have been increasingly exposed to SPs in the environment and homes and through their diet due to the extensive use of these SPs. Acute toxic doses of type I pyrethroids can cause hyperexcitation, ataxia, tremor, and paralysis, whereas type II pyrethroids can lead to hypersensitivity, salivation, and choreoathetosis (8). In recent years, especially since pyrethroids have been listed as direct or indirect endocrine disruptors, an increasing number of studies have focused on their reproductive and endocrine risks. A variety of pyrethroids and their metabolites may disrupt hormone receptors and further interfere with the endocrine reproductive system (9, 10). A recent study showed that workers exposed to pyrethroids had poor semen quality (11).

Many studies have been conducted on mammals. Exposure to cypermethrin was associated with decreased levels of endocrine hormones, such as testosterone, luteinizing hormone, and follicle-stimulating hormone, as well as the testis and epididymis weights of rats (12). E. Kilian et al. focused on the effect of deltamethrin and phytoestrogens on rat reproductive parameters, and the results suggested that they both influenced sperm count and testis mass; the authors hypothesized that deltamethrin may have estrogenic effects (13, 14).

We conducted a systematic review and aggregated the available published data on the effect of SPs on semen parameters using a meta-analysis. Our study aims to determine the influence of SPs on the reproductive parameters of humans and rats and potential toxic effects on offspring.

MATERIALS AND METHODS

Search Strategy

On March 24, 2021, we conducted systematic searches in PubMed, EMBASE, and Web of Science to identify all relevant studies published from 1990 to March 2021 using the following search terms: (((((((((((((((((((pyrethrin) OR pyrethroid*) OR allethrin stereoisomers) OR bifenthrin) OR beta-cyfluthrin) OR cyfluthrin) OR cyphenothrin) OR deltamethrin) OR esfenvalerate) OR etofenprox) OR fenpropatrin) OR taufluvalinate) OR lambda cyhalothrin) OR gamma cyhalothrin) OR imiprothrin) OR 1RS cispermethrin) OR permethrin) OR prallethrin) OR resmethrin) OR sumithrin) OR d-phenthothin) OR tefluthrin) OR tralomethrin) OR zeta-cypermethrin) OR cypermethrin) OR tetramethrin) AND ((((((((sperm count) OR (sperm concentration)) OR (sperm morphology)) OR (sperm motility)) OR (sperm energy metabolism)) OR (sperm viability)) OR (sperm fertilization capacity)) OR (sperm capacitation reaction)) OR (sperm acrosome reaction)) OR (follicle stimulating hormone)) OR (luteinizing hormone)) OR (testosterone, estrogen)) OR (testis size)) OR (testis weight)) OR (sexual drive). A total of 307, 146, and 337 results were respectively retrieved in PubMed, EMBASE, and Web of Science. After removing duplicates, we were left with 509 potentially relevant articles.

The retrieved titles and abstracts were initially screened. Full texts of selected abstracts matching the inclusion criteria were obtained.

Study Selection and Eligibility Criteria

We included animal and human studies from which primary data were gathered. The titles and abstracts of retrieved articles were independently screened by at least three of the authors (XZ, TZ, and XR). Articles deemed potentially eligible by either reviewer were retrieved for full-text review. The following inclusion and exclusion criteria were used for the meta-analysis. (1) The article should have been published between January 1990 and June 2020. (2) Pyrethroid pesticide should be the only insecticide used in the experiment, which did not include other insecticides, such as dichlorodiphenyltrichloroethane (DDT) and parathion. (3) Animal studies that involved mice or rats were included. (4) Studies involving the combination of pyrethroid pesticide and other insecticide were also excluded. (5) The paper should report the reproductive parameters, such as sperm count, sperm motility, sperm morphology, or serum testosterone. (6) Appropriate result data must be included, and the mean values and standard deviation (Mean ± SD) were used to perform quantitative analysis (standard error is transformed into standard deviation). We identified 57 studies that met our inclusion criteria (15–71).

Data Extraction and Quality Assessment

To minimize bias and improve reliability, three researchers (XZ, TZ, and XR) independently extracted the data and resolved disagreements by discussion. In addition to the data on the means and standard deviations of relative sperm and testis parameters with and without pyrethroid pesticide exposure, the following data were also extracted: first author, dates of publication, the country of publication, published year, strains of rats, exposure periods, and dose. We used Engauge Digitizer to extract information from figures if no other statistical estimates were available. After the extraction of data, they were checked by the authors for discrepancies to minimize the possibility of errors.

Data Synthesis and Analysis

All statistical analyses were carried out in R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org). Pooled standardized mean difference (SMD) between comparison groups were calculated to determine the effect size. Both fixed effects models and random effects models (REMs) were fitted to assess the model types that were most suited to the data. Heterogeneity was evaluated using the Q test and the I² statistic. Statistical significance was set at a p value <0.05. Publication bias was assessed using funnel plots for direct
comparisons with 10 or more studies (Appendix B in Supplementary Material). Sensitivity analysis was conducted to evaluate the influence of individual studies on the summary effect estimate.

RESULTS

Study Base
A total of 57 studies were included in the meta-analysis, including 20 rat studies and 37 mice studies. The number of studies included in each meta-analysis varied according to the sperm parameters reported, as follows: 31 studies provided data on sperm count; 25 studies provided data on motility; 28 studies provided data on morphology; 21 provided data on testis weight; 22 provided data on epididymis weight; and 22 provided data on serum testosterone. In the following sections, we first present the results of the quantitative meta-analysis. Next, we review papers that did not report results.

Global Assessment: Reproductive Toxicity of All Pyrethroid Insecticides in Rats and Mice
The meta-analysis gives equal weight to each of the xenobiotic exposure indicators, including allethrin, bifenthrin, cypermethrin, deltamethrin, fenvalerate, lambda-cyhalothrin, and permethrin. Statistics were obtained, and analysis was performed on rats and mice, respectively (Tables 1 and 2). Pooled results indicated that sperm count was lower in pyrethroid exposure groups (REM SMD = -2.0424; 95% CI, -2.4699 to -1.6149; p<0.0001). In the works involving mice, 13 studies demonstrated the effects of pyrethroids on sperm count. Sperm count was significantly affected by pyrethroids (REM SMD = -1.836; 95% CI, -2.4656 to -1.2064; p<0.0001). Both sensitivity analyses demonstrated that the observed pooled effect size was not affected by the removal of any of the studies.

| TABLE 1 | The effect of pyrethroid exposure on rats. |
exposure	outcome	N studies	N estimates (min-max per study)	SMD	95% CI	I^2	
all	sperm count	18	44	-2.0424	-2.4699	-1.6149	83.40%
all	sperm motility	12	23	-3.606	-4.5172	-2.6948	87.70%
all	sperm morphology	9	9	2.686	1.9744	3.3976	77.80%
all	testis weight	13	29	-1.1591	-1.6145	-0.7038	81.20%
all	epididymis weight	14	5	-1.1576	-1.7455	-0.5657	74.90%
all	Serum testosterone	15	30	-1.9194	-2.4589	-1.3798	81.50%
Allethrin	sperm count	1	4	-1.2696	-2.2407	-0.2984	39.40%
Allethrin	testis weight	1	4	-0.1667	-0.5693	0.236	0.00%
Cypermethrin	sperm count	4	12	-2.4081	-3.2379	-1.5783	76.50%
Cypermethrin	sperm motility	4	6	-5.9463	-8.4215	-3.4712	76.50%
Cypermethrin	sperm morphology	3	3	2.9312	1.7422	4.1202	16.90%
Cypermethrin	testis weight	5	9	-0.5881	-1.3006	0.1244	75.80%
Cypermethrin	epididymis weight	4	7	-0.647	-1.4221	0.1282	74.50%
Cypermethrin	Serum testosterone	7	12	-2.4153	-3.3608	-1.4687	80.70%
Deltamethrin	sperm count	3	5	-1.3389	-1.9301	-0.7437	58.80%
Deltamethrin	sperm motility	5	9	-4.1547	-6.7526	-2.5567	90.10%
Deltamethrin	sperm morphology	3	5	1.9273	0.9292	2.9254	82.30%
Deltamethrin	testis weight	4	8	-1.4087	-2.203	-0.6143	79.50%
Deltamethrin	epididymis weight	2	5	-1.419	-2.0986	-0.7393	28.40%
Deltamethrin	Serum testosterone	5	9	-2.0261	-3.0314	-1.0209	86.10%
Fenvalerate	sperm count	4	15	-1.859	-2.6511	-1.0668	89.80%
Fenvalerate	sperm motility	1	4	-0.8359	-1.3942	-0.2775	29.30%
Fenvalerate	testis weight	2	5	-1.3504	-2.4833	-0.2374	81.20%
Fenvalerate	epididymis weight	1	2	-0.9784	-1.702	-0.2508	0.00%
Fenvalerate	Serum testosterone	3	7	-1.2312	-2.1237	-0.3387	71.80%
Lambda-cyhalothrin	sperm count	1	2	-1.676	-2.5584	-0.7935	23.40%
Lambda-cyhalothrin	sperm motility	1	2	-2.9581	-3.911	-2.0052	0.00%
Lambda-cyhalothrin	sperm morphology	1	1	5.0385	2.8016	7.2753	0.00%
Permethrin	sperm count	2	2	-2.7997	7.6751	2.0756	89.90%
Permethrin	serum testosterone	2	2	-7.7276	-10.5124	-4.9427	0.00%

Zhang et al. Pyrethroids Toxicity to Male Reproduction

Frontiers in Endocrinology | www.frontiersin.org
May 2021 | Volume 12 | Article 656106
Sperm Morphology

Nine rat studies and eleven mice studies observed an abnormal rate in sperm morphology (Tables 1 and 2). The pooled results indicated that pyrethroid exposure was a risk factor of impaired morphology, and the SMD by REM was 2.686 (95% CI, 1.9744 to 3.3976; p < 0.0001) and 2.6804 (95% CI, 2.0889 to 3.2719; p < 0.0001) in rat and mice studies, respectively. Each sensitivity analysis was not affected by the removal of any of the studies.
Testis Weight and Epididymal Weight
In the studies of rats, the pooled SMD by REM of testis weight was -1.1591 (95% CI, -1.6145 to -0.7038; p < 0.0001), and the epididymal weight was also lower in the pyrethroid exposure groups than in the control groups. The pooled SMD by REM was -1.1576 (95% CI, -1.7455 to -0.5697; p = 0.0001). Similarly, in studies on mice, the pooled SMDs by REM of testis and epididymal weight were -1.0407 (95% CI, -1.6251 to -0.4563; p = 0.0005) and -0.3717 (95% CI, -0.7020 to -0.0414; p = 0.0274), respectively. Overall, pyrethroids were a risk factor for reduced testis weight and epididymal weight. In the studies on mice epididymal weight, sensitivity analyses indicated that the paper of Jing-Yi Hu et al. showed a slight increase in the SMD to -1.07 (Tables 1 and 2).

Serum Testosterone
Fifteen and seven studies detected the content of serum testosterone in pyrethroid exposure and control groups of rats and mice, respectively (Tables 1 and 2). Overall, the serum testosterone level was significantly affected by pyrethroids, and the pooled SMDs by REM were -1.5716 (95% CI, -2.2832 to -0.8599; p < 0.0001) and -0.516 (95% CI, -0.9315 to 0.1919; p = 0.2007).

Subgroup Analysis for the Effect of Different Pyrethroids on Reproductive Parameters
Data were available for substance-specific analyses of any of the reproductive parameters for the most frequently examined pyrethroids (allethrin, bifenthrin, cypermethrin, deltamethrin, fenvalerate, lambda-cyhalothrin, and permethrin). The results are summarized in Tables 1 and 2. Figures 2 and 3 show the forest plot.

Effects of Pyrethroid Exposure on Gestational and Lactational Aspects of Reproductive System
Eight studies that included 410 rats were included in this analysis (Figure 4). The studies reported various parameters, including sperm count, sperm motility, serum testosterone, testis weight, and epididymal weight, which were affected by gestational and lactational exposure to pyrethroids. In general, gestational and lactational pyrethroid exposure and F1 reproductive system were related, and the meta-analysis showed that the sperm count of F1 rats or mice decreased in the exposed groups (the pooled SMDs by REM were -1.8469; 95% CI, -2.9010 to -0.7927; p = 0.0006). Two studies examined the F1 sperm motility after gestational and lactational exposure to pyrethroids, and the SMD by REM was -0.6639 (95% CI, -1.0473 to 0.1145; p < 0.0001). Moreover, the epididymal weight showed a decreasing trend (REM SMD: -0.6639; 95% CI, -0.9544 to -0.3733; p < 0.0001). However, the changes of serum testosterone were not significant (REM SMD: -0.3608; 95% CI, -0.9315 to 0.1919; p = 0.2007).

Pyrethroids Oxidative Stress Induction on Rats and Mice
Nine studies reported the presence of changes in the level of MDA, which is a product of lipid peroxidation, and testicular enzymatic activities (glutathione, GSH; superoxide dismutase, SOD; and catalase, CAT) of both the control and treated animals (Figure 5). Pyrethroids exposure significantly decreased the SOD, CAT, and GSH activities in the testis of treated animals compared with those of control animals, and the SMDs by REM were -2.4856 (95% CI...
-3.9612 to -1.0100), -2.7564 (95% CI -3.9788 to -1.5340), and -2.075 (95% CI -3.0651 to -1.0848), respectively. The MDA level increased compared with control animals, and the SMD by REM was 3.3451 (95% CI 1.9914 to 4.6988) (Figure 5).

Human Research on the Effect of SPs About the Male Reproductive System

A total of 17 human studies were included in the analysis (Table 3), among which 15 studies evaluated the effect of pyrethroids on sperm quality. The details of these 17 studies are summarized in Table 3. Some urinary pyrethroid metabolites are 3-phenoxybenzoic acid (3-PBA) and cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CDCCA and TDCCA). 3-PBA is common in several pyrethroids, including cyhalothrin, cypermethrin, deltamethrin, fenvalerate, and permethrin, whereas CDCCA and TDCCA are metabolites of cis-permethrin and trans-permethrin, respectively.

TABLE 2	The effect of pyrethroid exposure on mice.					
exposure	outcome	N studies	N estimates (min-max per study)	SMD	95% CI	I²
all	sperm count	13	20	-1.836	-2.466 to -1.2064	82.00%
	sperm motility	13	26	-2.636	-3.4075 to -1.8658	86.60%
	sperm morphology	11		2.6804	2.0889 to 3.2719	81.30%
	testis weight	8	13	-1.0407	-1.6251 to -0.4563	75.80%
	epididymis weight	8	5	-0.3717	-0.702 to -0.0414	0.00%
cypermethrin	sperm count	3	5	-0.6905	-1.1433 to -0.2377	20.10%
	sperm motility	3		-0.6646	-1.1916 to -0.1376	0
	sperm morphology	1	6	2.1365	1.3652 to 2.9079	85.50%
	testis weight	2	4	-1.7379	-3.3954 to -0.0805	89.20%
	epididymis weight	1	3	-0.0957	-0.6022 to 0.4108	0
	Serum testosterone	3	6	-1.1214	-1.9308 to -0.3121	76.70%
deltamethrin	sperm count	1	1	-0.642	-1.4665 to 0.1824	0
	sperm motility	5	5	-7.9005	-12.2823 to -3.5186	93.90%
	sperm morphology	6	8	4.3989	2.7453 to 6.0344	82.40%
	testis weight	1	1	-2.1879	-2.9873 to -1.3884	0
	epididymis weight	3	5	-0.6766	-1.1582 to -0.195	47.60%
	Serum testosterone	1	1	-4.3819	-6.5644 to -2.1993	0
Fenvalerate	sperm count	1	4	-2.1858	-3.7627 to -0.6089	81.30%
	sperm motility	1	4	-0.509	-0.9572 to -0.0609	0
	sperm morphology	1	4	1.6064	1.0044 to 2.2124	23.80%
	testis weight	1	1	0	-0.8002 to 0.8002	0
	epididymis weight	1	1	-0.5517	-1.3899 to 0.2664	0
	Serum testosterone	1	1	-0.8284	-1.6864 to 0.0136	0
lambda cyhalothrin	sperm count	1	3	-2.2729	-3.2037 to -1.3421	0
	sperm motility	1	3	-5.6613	-10.9837 to -0.3389	88.10%
	sperm morphology	1	3	8.1474	4.2507 to 12.044	58.90%
	testis weight	2	4	-1.1035	-1.7082 to -0.4988	0
	epididymis weight	1	1	-1.0152	-2.0756 to 0.0452	0
permethrin	sperm count	1	4	-2.1858	-3.7627 to -0.6089	81.30%
	sperm motility	3	5	-3.9623	-5.9841 to -1.9406	85.30%
	testis weight	1	2	-0.0676	-0.7617 to 0.6264	0
	epididymis weight	1	2	-0.1152	-0.809 to 0.5786	0
	Serum testosterone	2	4	-2.122	-3.9711 to -0.2729	87.20%
Bifenthrin	sperm count	1	1	-0.6748	-1.6911 to 0.3415	0
	sperm motility	1	1	-0.8792	-1.9189 to 0.1626	0
	sperm morphology	1	1	0.9363	-0.1125 to 1.9861	0
	testis weight	1	1	-0.6947	-1.7132 to 0.3237	0
	epididymis weight	1	1	-1.3229	-2.436 to -0.2097	0

FIGURE 4 | Forest plot showing the effect of pyrethroid exposure on the F1 offspring of rats and mice.

Zhang et al. Pyrethroids Toxicity to Male Reproduction

Frontiers in Endocrinology | www.frontiersin.org May 2021 | Volume 12 | Article 6561066
Several studies evaluated the relationship between the urinary pyrethroid metabolites and semen quality. John D. Meeker et al. (72) studied the relationship between urinary pyrethroid metabolites and semen quality, sperm motion parameters, and sperm DNA damage in 207 men. The results showed the association between urinary metabolites of pyrethroid insecticides and the decrease in semen quality. In another article, Michal Radwan et al. (73) showed the significant associations between urinary pyrethroid metabolite levels and the decrease in sperm concentration, the level of testosterone, and the semen parameters, as determined by computer-aided analysis. In contrast, J. Yoshinaga (74) conducted an experiment involving 322 male university students and showed that no associations existed between urinary 3-PBA and serum hormone levels. A study of the relationship between the urinary metabolite of pyrethroid insecticides and semen quality conducted on 376 healthy participants focused on sperm quality (volume, motility, number of spermatozoa, and concentration), and results showed the association between urinary metabolite of pyrethroid insecticides and sperm quality (75). Furthermore, a high level of the urinary metabolite of pyrethroid was related to the increase in gonadotropin levels and decrease in androgen and inhibin B levels (76). A recent cross-sectional study of 346 men conducted by Yi Hu et al. (77) showed that the urinary metabolite of pyrethroids was negatively associated with sperm morphology, sperm count, and semen quality.

Only one study focused on pyrethroid exposure and the levels of reproductive hormones. Ramison Santos (78) assessed the association of short-term and long-term exposure to pesticides with circulating levels of reproductive hormones in an agricultural population in the South of Brazil. They found that recent use of lambda-cyhalothrin was associated with increased male luteinizing hormone (LH) levels.

An in vitro study (79) assessed the potential effect of cypermethrin on human spermatozoa and the possible ameliorative effects of vitamins C and E. Semen samples of 20 healthy normozoospermic men were used, and the results indicated that in vitro cypermethrin can alter sperm function and induce DNA damage in spermatozoa, which improved after the administration of vitamins C and E and was maximal when both vitamins were used together.

Several studies have reported the relationship between pyrethroids exposure and genetic or chromosome damage. A study focused on sperm DNA integrity; 240 healthy participants were recruited. Results showed a significant positive correlation between urinary 3-PBA level and sperm DNA fragmentation (80). A study by Yankai Xia et al. (81) investigated the possible association between fenvalerate and spermatozoa DNA damage. Nineteen fenvalerate-exposed workers and 23 non-exposed workers were included. Sperm DNA strands were found to have breaks in fenvalerate-exposed workers using the Comet and TUNEL assays. Another study aimed to assess the relationship between pyrethroid exposure and sperm DNA damage (82). Compared with the reference quartile, the level of 3-PBA in >50th percentile of urine was positively related to the percentage of high DNA fragmentation index. Also, a positive association was observed between the CDCCA 4th percentile and the percentage of medium DNA fragmentation index and the percentage of immature sperms. Only one study particularly focused on sperm aneuploidy. Michal Radwan et al. (83) examined the relationship between exposure to pyrethroids and sperm aneuploidy. With regard to the urinary metabolite of pyrethroids, the levels of TDCCA and CDCCD in urine of the >50th percentile were related to XY disomy and chromosome 18 disomy, respectively. One study focused on the relationship between human sperm sex ratio and environmental endocrine. Joanna Jurewicz et al. (84, 85) found that the level of urinary pyrethroid metabolites was negatively related to Y:X sperm chromosome ratio.

Three studies focused on fecundability after pyrethroid exposure. In the study by Markku Salmén (86) involving 578 greenhouses workers and their wives, individuals who were exposed to pyrethroids showed decreased fecundability. The exposure to pyrethroids of men working in greenhouses may be associated with reduced fertility. Tan Lifeng et al. (87) conducted a study involving 32 male workers and 22 male administrators. The results showed that high exposure of fenvalerate was associated with the abnormality in sperm quality. Similarity, Hiroki Toshima (88) conducted a study involving 42 Japanese male partners in couples who underwent infertility consultation. A positive association was observed between pyrethroid exposure level and poor semen quality.

DISCUSSION

Various recent studies assessed the influence of pyrethroid exposure on the male reproductive system. To our knowledge, this is the first systematic review with a meta-analysis that rigorously evaluated the relationship between pyrethroid exposure and male reproductive disorders. Our meta-analysis has an advantage in comparison with narrative reviews. In this study, we conducted rat and mice meta-analyses, including the effects of gestational and lactational exposure to pyrethroids on F1 offspring and the effects of direct exposure on...
Author	Year	Country	Mean age	Population	Exposure	Outcome	Conclusion
John D. Meeker	2008	America	35.7	207 Americans	Pyrethroids	Morphology concentration motility	Reduced semen quality and increased sperm DNA damage concerning urinary metabolites of pyrethroid insecticides
Michal Radwan Ramison Santos	2014	Poland	32.2	334 men	Pyrethroids	Morphology concentration motility	Environmental pyrethroid exposure may affect semen quality and the level of reproductive hormones
Q Bian	2008	China	32.2	334 men	Pyrethroids	MORPHOLGY concentration motility	Increase in male testosterone appeared to be the most significant effect of long-term pesticide exposure
Ramison Santos	2019	Brazil	45.6	75 men	Pyrethroids	FSH testosterone	Results indicated that occupational exposure to FE induced a significant increase in sperm DNA damage. FE exposure and percentage DNA in the tail, and positive sperm damage
A. Zalata	2013	Egypt	32.2	75 men	Pyrethroids	FSH, testosterone, LH	There were no associations between urinary 3-PBA and serum hormone levels
Yankai Xia	2008	China	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Vitamins C and E are useful in improving the toxic effects of cypermethrin on spermatogenesis
Tan Lifeng	2008	China	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Fenvalerate hurt male workers’ semen quality in the study
Melissa J. Perry	2007	America	32.2	75 men	Pyrethroids	FSH, testosterone, LH	High prevalence of exposure to PYR pesticides and our preliminary analyses provided some suggestion that the higher exposure group had a lower sperm concentration
Yankai Xia	2008	China	32.2	75 men	Pyrethroids	FSH, testosterone, LH	These observed associations between 3-PBA levels and some altered semen quality indicated the reproductive effects of pyrethroid exposure on adult men
John D	2009	America	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Found evidence for increased gonadotropin levels, and decreased androgen and inhibit B levels
Guixiang Ji	2011	China	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Found evidence for both increased sperm DNA fragmentation and decreased sperm concentration, concerning the urinary concentration of 3-PBA among men from a clinical infertile population
Hiroki Toshima	2012	Japan	32.2	75 men	Pyrethroids	FSH, testosterone, LH	This pilot study suggested the pyrethroid exposure level as a significant contributor to poorer semen quality
Joanna Jurewicz	2015	Poland	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Results suggest that environmental pyrethroid exposure may affect sperm, DNA damage measures index indicated the reproductive effects of pyrethroid exposure on adult men
Michal Radwan	2016	Poland	32.2	75 men	Pyrethroids	FSH, testosterone, LH	The results reported here found that pyrethroids may be a sperm aneugen
Joanna Jurewicz	2016	Poland	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Observed effects of a lower Y:X sperm chromosome ratio among men with concentrations of metabolites of synthetic pyrethroids in urine
Yi Hu	2020	China	32.2	75 men	Pyrethroids	FSH, testosterone, LH	Environmental PYRs exposure might adversely affect semen quality in reproductive-age men
the male reproductive system. Next, we observed a significant decrease in sperm motility, sperm count, serum testosterone, testis weight, and epididymal weight with the exposure of pyrethroid in rats and mice. Interestingly, gestational and lactational exposure of pyrethroids demonstrated similar damage to the male reproductive system.

Over the past decades, male infertility has received an increasing amount of attention worldwide (89). In the past 50 years, evidence of the decreased sperm concentration in European and African males had been explored (90, 91). There were many reasons that accounted for male infertility. For example, alcohol, endocrine disruptors, and environmental pollutants may play an important role in the decline in sperm concentration. The damage caused by the increasing exposure of endocrine disruptors, organic pollutants, heavy metals, and pesticides in daily life on the human body has been increasingly studied. One cohort study (92) showed that exposure to BPA was associated with abnormal sperm tail morphology. Recently, SPs have been widely used all over the world due to their highly toxic effects on insects and are presented in numerous commercial insecticide formulations. As one of the most frequently applied EDCs, pyrethroids primarily entered the body through skin contact, inhalation, or food/water ingestion. And the metabolites of pyrethroids have frequently been detected in urine samples collected from the general population (15).

Through systematic review and meta-analysis of the literature, we have explored the damage to the male reproductive system by seven pyrethroids, including allethrin, bifenthrin, cypermethrin, deltamethrin, fenvalerate, lambda-cyhalothrin, and permethrin. Our results suggested that all seven pyrethroids had an overall negative effect on semen parameters. Each of them demonstrated a negative effect on sperm count, sperm motility, sperm morphology, testis weight, epididymal weight, and serum testosterone. Besides, we also found evidence that gestational and lactational pyrethroids exposure can lead to male reproductive damage in F1 offspring. By conducting a subgroup analysis, we received a more in-depth view. Considering each group individually, different and interesting results can be observed. When comparing the rat and mice groups, we found that pyrethroids had a stronger effect on sperm and serum testosterone in rat groups. When considering the results for different pyrethroids, we found that all pyrethroid types damaged the male reproductive system. Further subgroup analysis demonstrated that sperm count, sperm motility, sperm morphology, testis weight epididymis weight, and serum testosterone showed a consistent trend with SP exposure. A low amount of data was found in some subgroups, and some results were not statistically significant. Next, we also performed a systematic review of human research on the effect of SPs about the male reproductive system. Interestingly, the metabolites of SPs can be detected in the urine of almost everyone. Further studies demonstrated that high-risk groups, such as workers who have been exposed to SPs for a long time, were found to have more SPs metabolites in their urine. Besides, the concentration of SPs metabolites in urine was often negatively correlated with sperm quality.

The mechanisms underlying the male reproductive toxicity of pyrethroids are still being explored. One research demonstrated that bifenthrin reduced sperm motility and kinematic parameters by reducing intracellular ATP level (68). Long term exposure to pyrethroid interferes with the expression of genes that govern spermatogenesis, steroidogenesis, apoptosis, and genetic reprogramming of male gametes (69). To further explore the potential associations between SPs and oxidative stress, we evaluated oxidative stress induction on rats and mice exposed to pyrethroids. The results showed that some pyrethroids, such as lambda-cyhalothrin, deltamethrin, cypermethrin, and bifenthrin can increase the level of MDA oxide in testes and reduce the activities of GSH, SOD, and CAT. And the concentration changes of MDA, GSH, SOD, and CAT were observed in parallel to the reduction in the sperm count. Nano selenium, as a potent antioxidant, had been reported to minimize reproductive toxic effects of SPs by decreasing the concentration of MDA (70). Spirulina, which is a microalga rich in antioxidant compounds, had been found to reverse deleterious effects of the reproductive system caused by bifenthrin. Our assessment provided valuable information for exploring the cause of fertile men. And we hope that our research can provide better understanding for male infertility patients.

CONCLUSION

In this study, we provided interesting results from rodent studies regarding the influence of pyrethroids on male reproduction. Based on the aforementioned data, all seven SPs demonstrated toxicity to the male reproductive system. SP exposure during pregnancy and adolescence can cause damage to male F1 offspring or the male reproductive system. Oxidative stress may be essential in the damage of the male reproductive system. Finally, due to the wide use of SPs, humans will inevitably be widely exposed to SPs. And SP exposure was closely associated with human sperm quality.

AUTHOR CONTRIBUTIONS

XZ, XC and TZ collected the data and performed the meta-analysis. XR and XZ wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81972386, 81672531 to CQ).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2021.656106/full#supplementary-material
Reproductive Toxicity. *Arch Toxicol* (2012) 86(9):1443–51. doi: 10.1007/s00204-012-0882-3

41. Li X, Cai YF. [Single and Combined Toxic Effects of di-2-ethylhexyl Phthalate and Cypermethrin on Fertility and Development in the te Prepubertal Male Rats]. *Wei Sheng Yan Jiu i Bio Hygiene Res* (2012) 41(5):710–6.

42. Oda SS, El-Maddawy Z. Protective Effect of Vitamin E and Selenium Combination on Deltamethrin-Induced Reproductive Toxicity in Male Rats. *Exp Toxicologic Pathol Off J Gesellschaft fur Toxikologische Pathologie* (2012) 64(7–8):813–9. doi: 10.1016/j.exptip.2011.03.001

43. Sakr SA, Al-Amoudi WM. Effect of Ginger Extract on Deltamethrin Induced Histomorphological and Immunohistochemical Changes in Testes of Albino Rats. *Life Sci Journal-Acta Zhengzhou Univ Overseas Edition* (2012) 9(1):71–8.

44. Wang D, Kamijima M, Okamura A, Ito Y, Yanagiba Y, X-F J, et al. Evidence for Diazinon-Mediated Inhibition of Cis-Permethrin Metabolism and Its Effects on Reproductive Toxicity in Adult Male Mice. *Reprod Toxicol* (2012) 34(4):489–97. doi: 10.1016/j.reprotox.2012.07.007

45. Ben Abdallah F, Fetoui H, Zribi N, Fakhfakh F, Keskes L. Quercetin Attenuates Lambda Cyhalothrin-Induced Reproductive Toxicity in Male Rats. *Environ Toxicol* (2013) 28(12):673–80. doi: 10.1002/tox.20762

46. Ben Slama A, Ali MB, Barkallah M, Traore AL, Boudawara T, Alouche N, et al. Antioxidant Properties of Pelargonium graveolens L. Her Essential Oil on the Reproductive Damage Induced by Deltamethrin in Mice as Compared to Alpha-Tocopherol. *Lipids Health Dis* (2013) 12:320. doi: 10.1186/1476-511X-12-30

47. Hu JX, Li YF, Li J, Pan C, He Z, Dong HV, et al. Toxic Effects of Cypermethrin on the Male Reproductive System: With Emphasis on the Androgen Receptor. *J Appl Toxicol JAT* (2013) 33(7):576–85. doi: 10.1002/jat.1769

48. Li Yan F, Pan C, Hu Jin X, Li J, Xu Li C. Effects of Cypermethrin on Male Reproductive System in Adult Rats. *Biomed Environ Sci (Beijing)* (2013) 26(3):201–8. doi: 10.3967/0895-3988.2013.03.007

49. Sharma P, Huq AU, Singh R. Cypermethrin Induced Reproductive Toxicity in Male Wistar Rats: Protective Role of Tribulus terrestris. *J Environ Biol* (2013) 34(5):857–62.

50. Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI, Al-Ghothemi M. Protective Effects of Oat Oil on Deltamethrin-Induced Reprotoxicity in Male Rats. *Int J Exp Pathol* (2013) 94(2):111–7.

51. Ben Halima N, Ben Slima A, Moalla I, Fetoui H, Pichon C, Gdoura R, et al. Protective Effect of Naringenin Against Permethrin-Induced Testicular Toxicity in Male Rats via Modulating Oxidative Stress. *Andrologia* (2019) 51(3):e13214. doi: 10.1111/and.13214

52. Barkallah M, Slima AB, Elleuch F, Fendri I, Pichon C, Abdelkafi S, et al. Protective Role of Spirulina platensis Against Bifenthrin-Induced Reprotoxicity in Adult Male Mice by Reversing Expression of Altered Histological, Biochemical, and Molecular Markers Including Micrornas. *Biomolecules* (2020) 10(5). doi: 10.3390/biom10050753

53. Maksoud HA, Mahfouz M, Soliman M, Elharrif MG, Abbass M, El-Badry M. Harmful Effects of Pyrethroid Ester Insecticide on the Male Reproductive System Mainly Through Affecting Testicular Function and Inflammatory Markers. *Biol Cell* (2020) 4(4):111–5. doi: 10.2600/bioCEL.2020.08399

54. Sharma P, Aslam Khan I, Singh R. Curcumin and Quercetin Ameliorated Cypermethrin and Deltamethrin-Induced Reproductive System Impairment in Male Wistar Rats by Upregulating the Activity of Pituitary-Gonadal Hormones and Steriodogenic Enzymes. *Int J Fertility Sterility* (2018) 12(1):72–80. doi: 10.1055/s-0038-1382471

55. Zhang J, Hu Y, Guo J, Pan R, Shi R, Tian Y, et al. Fenvlarate Decreases Semen Quality in Puberty Rat Through Germ Cell Apoptosis. *Andrologia* (2018) 50(9):e13079. doi: 10.1111/and.13079

56. Bagherpour H, Karimpour Malekshah A, Talebpor Amiri F, Azadbaht M. Protective Effect of Green Tea Extract on the Deltamethrin-Induced Toxicity in Mice Testis: An Experimental Study. *Int J Reprod Biomed (Yazd Iran)* (2019) 17(5):337–48. doi: 10.18502/ijrbi.v17i5.4601

57. Hong T, Li R, Sun L-L, Xu J, He M-T, Wang W, et al. Role of the Gene Phhld1 in Fenvalerate-Induced Apoptosis and Testicular Damage in Sprague-Dawley Rats. *J Toxicol Environ Health Part A-Current Issues* (2019) 82(15):870–8. doi: 10.1080/10730538.2019.1664584

58. Osama E, Galal AAA, Abdalla H, El-Sheik SMA. Chlorella vulgaris Ameliorates Testicular Toxicity Induced by Deltamethrin in Male Rats Via Histomorphological and Immunohistochemical Changes in the Testis of Adult Male Rats. *Toxicol (Elmsford NY)* (2020) 109(3):235–42. doi: 10.1080/15569543.2016.1235582

59. Sharma P, Asham Khan I, Singh R. Curcumin and Quercetin Ameliorated Cypermethrin and Deltamethrin-Induced Reproductive System Impairment in Male Wistar Rats by Upregulating the Activity of Pituitary-Gonadal Hormones and Steroidogenic Enzymes. *Int J Fertility Sterility* (2018) 12(1):72–80. doi: 10.1055/s-0038-1382471

60. Madhubabu G, Yenugu S. Allethrin Toxicity Causes Reproductive Dysfunction in Male Rats. *Environ Toxicol* (2017) 32(6):1701–10. doi: 10.1002/tox.22394
79. Zalata A, Elhanbly S, Abdalla H, Serria MS, Aziz A, El-Dakrooy SA, et al. In Vitro Study of Cypermethrin on Human Spermatozoa and the Possible Protective Role of Vitamins C, and XXXE. Andrologia (2014) 46(10):1141–7. doi: 10.1111/and.12206
80. Ji G, Xia Y, Gu A, Shi X, Long Y, Song L, et al. Effects of non-Occupational Environmental Exposure to Pyrethroids on Semen Quality and Sperm DNA Integrity in Chinese Men. Reprod Toxicol (Elmsford NY) (2011) 31(2):171–6. doi: 10.1016/j.reprotox.2010.10.005
81. Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, et al. Genotoxic Effects on Human Spermatozoa Among Pesticide Factory Workers Exposed to Fenvalerate. Toxicology (2004) 203(1–3):49–60. doi: 10.1016/j.tox.2004.05.018
82. Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, et al. Study on the Relation Between Occupational Fenvalerate Exposure and Spermatozoa DNA Damage of Pesticide Factory Workers. Occup Environ Med (2004) 61(12):999–1005. doi: 10.1136/oem.2004.014597
83. Radwan M, Jurewicz J, Wielgomas B, Piskunowicz M, Sobala W, Radwan P, et al. The Association Between Environmental Exposure to Pyrethroids and Sperm Aneuploidy. Chemosphere (2015) 128:42–8. doi: 10.1016/j.chemosphere.2014.12.077
84. Jurewicz J, Radwan M, Sobala W, Radwan P, Jakubowski L, Wielgomas B, et al. Exposure, to Widespread Environmental Endocrine Disrupting Chemicals and Human Sperm Sex Ratio. Environ Pollution (2016) 213:732–40. doi: 10.1016/j.envpol.2016.02.008
85. Jurewicz J, Radwan M, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, et al. The Effect of Environmental Exposure to Pyrethroids and DNA Damage in Human Sperm. Syst Biol Reprod Med (2015) 61(1):37–43. doi: 10.3109/19396368.2014.981886
86. Sallmén M, Liesivuo J, Taskinen H, Lindbohm ML, Anttila A, Aalto I, et al. Time to Pregnancy Among the Wives of Finnish Greenhouse Workers. Scandinavian J Work Environ Health (2003) 29(2):85–93. doi: 10.5271/sjweh.709
87. Lifeng T, Shoulin W, Junmin J, Xuezhaor S, Yannan L, Qianli W, et al. Effects of Fenvalerate Exposure on Semen Quality Among Occupational Workers. Contraception (2006) 73(1):92–6. doi: 10.1016/j.contraception.2005.06.007
88. Toshima H, Suzuki Y, Imai K, Yoshimaga J, Shirishi H, Mizumoto Y, et al. Endocrine Disrupting Chemicals in Urine of Japanese Male Partners of Subfertile Couples: A Pilot Study on Exposure and Semen Quality. Int J Hygiene Environ Health (2012) 215(5):302–6. doi: 10.1016/j.ijheh.2011.09.005
89. Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent Age-Dependent Declines in Human Semen Quality: A Systematic Review and Meta-Analysis. Ageing Res Rev (2015) 19:22–33. doi: 10.1016/j.arr.2014.10.007
90. Sengupta P, Borges E, Dutta S, Krajevska-Kulak E. Decline in Sperm Count in European Men During the Past 50 Years. Hum Exp Toxicol (2017) 37(3):247–55. doi: 10.1177/0960327117703690
91. Sengupta P, Nwagha U, Dutta S, Krajevska-Kulak E, Izuka E. Evidence for Decreasing Sperm Count in African Population From 1965 to 2015. Afr Health Sci (2017) 17(2):418–27. doi: 10.4314/ahs.v17i2.16
92. Pollard SH, Cox KJ, Blackburn BE, Wilkins DG, Carrell DT, Stanford JB, et al. Male Exposure to Bisphenol A (BPA) and Semen Quality in the Home Observation of Periconceptional Exposures (HOPE) Cohort. Reprod Toxicol (Elmsford NY) (2019) 90:82–7. doi: 10.1016/j.reprotox.2019.08.014

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Zhang, Ren, Chen, Wang and Qin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.