ABUNDANT NOVEL SOLUTIONS OF THE CONFORMABLE LAKSHMANAN-PORSEZIAN-DANIEL MODEL

HAJAR FARHAN ISMAEL1,3,*
1Department of Mathematics, Faculty of Science
University of Zakho
Zakho, Iraq

HACI MEHMET BASKONUS2
2Department of Mathematics and Science Education, Harran University
Sanliurfa, Turkey

HASAN BULUT3
3Department of Mathematics, Faculty of Science, Firat University
Elazig, Turkey

Abstract. In this paper, three images of nonlinearity to the fractional Lakshmanan Porsezian Daniel model in birefringent fibers are investigated. The new bright, periodic wave and singular optical soliton solutions are constructed via the \((m+G'/G)\) expansion method, which are applicable to the dynamics within the optical fibers. All solutions are novel compared with solutions obtained via different methods. All solutions verify the conformable Lakshmanan-Porsezian-Daniel model and also, for the existence the constraint conditions are utilized. Moreover, 2D and 3D for all solutions are plotted to more understand its physical characteristics.

1. Introduction. Progress in the formation of solitons and its application in differential equations has been noticeable. Analyses, discussion, and modeling of solitary energy propagating on behalf of a chain of other biological molecules have pulled forward interesting. The physical phenomena of nonlinear partial differential equations (NLPDEs) can connect to a lot of areas of sciences, for example, plasma physics, optical fibers, nonlinear optics, fluid mechanics, chemistry, biology, geochemistry, and engineering sciences [32].

Scientists were used and improved many methods to obtain exact and numerical solution of (NLPDEs), such as sine-Gordon expansion method [3,24,36], a functional variable method [29], the degenerate Darboux transformation [44], the extended sinh-Gordon expansion method [18,19,51], the Lie symmetries along with \((G'/G)\)-expansion method [39], the inverse mapping method [21], the Riccati-Bernoulli sub-ODE method [55], the extended trial equation method [11,46], the modified simple equation method [37,41], the couple of integration schemes [13], the undetermined coefficients method [53], the modified auxiliary expansion method [26], the Riccati differential equation method [42,56], the simple equation method [20], Lie group

2020 Mathematics Subject Classification. Primary: 35Q60, 35C07, 35R11; Secondary: 35C08.

Key words and phrases. Fractional Lakshmanan-Porsezian-Daniel model, bright, periodic and singular solutions.

* Corresponding author: Hajar Farhan Ismael.
approach [40], the tan(ϕ(ξ)/2)-expansion method [30, 45, 47], the Hirota bilinear method [43], the decomposition-Sumudu-like-integral-transform method [59], the Jacobi elliptic function method [25], the modified exponential function method and the extended sinh-Gordon method [27], the modified exp(−φ(ξ))-expansion method [17, 28], the tanh function method [38], the shooting method [1, 2, 33, 35, 63], the Haar wavelet method [48], the homotopy perturbation method [57, 62], the finite forward difference method [52, 61], the Adomian decomposition method [34], the Adams-Bashforth-Moulton method [9], homotopy perturbation Sumudu transform method [8] and the improved Adams-Bashforth algorithm [7,10,49].

The fractional Lakshmanan-Porsezian-Daniel (LPD) model [58] is written as:

\[iD^\alpha_t u + aD^2_x u + bD^\alpha_x D^\alpha_t u + cF \left(|u|^2 \right) u = \sigma D^4_x u + \vartheta D^2_x u^* + \rho |D^3_x u|^2 u + \gamma |u|^2 D^2_x u + \varpi u^2 D^2_x u^* + \delta |u|^4 u \]

(1)

In Eq. (1) \(u(x,t) \) depict the complex-valued wave function. The first expression on the left-hand side depicts the temporal evolution of the optical pulse, also the coefficients \(a, b \) represent the group-speed dispersion (GDV) and the spatial-temporal dispersion (STD), respectively. A real-valued algebraic function represents the nonlinearity that \(F \left(|u|^2 \right) u : C \rightarrow C \), in more detail, this function \(F \left(|u|^2 \right) u \) is \(p \)-times continuously differentiable, so that

\[F \left(|u|^2 \right) u \in \bigcup_{m, n=1}^{\infty} CP \left((-s,s) \times (-r,r) : R^2 \right) \]

(2)

On the right-hand side of Eq. (1), represents the coefficient of fourth-order dispersion and symbolizes two-photon absorption. The coefficients of \(\vartheta, \rho, \gamma \) and \(\varpi \) depicts the perturbation terms include nonlinear forms of dispersion.

In the field of nonlinear fiber optics, optical solitons are one of the most important research fields. In this instance, the LPD model, which drives the dynamics of pulse transmission with optical fibers has become quite popular lately. Different methods are utilized to retrieve the optical soliton solutions of the LPD model. In Ref. [5], the Riccati equation method has been applied to extract dark, singular and bright-singular combo soliton solutions of Eq. (1) include Kerr law nonlinearity. In Ref. [50], the sine-Gordon expansion method has been used to retrieve analytical solutions of the LPD model includes three nonlinearity laws. The extended Jacobi’s elliptic function expansion method has been applied on LPD model and periodic solutions, singular solitons, dark solitons were obtained [22]. The extended trial function method has been utilized on LPD model includes Kerr and power laws to retrieve bright solitons, dark solitons and periodic solitary waves [12]. The singular and dark soliton solutions to the model have been constructed by using the modified simple equation method [16]. In Ref. [15], singular, bright and dark soliton solutions via the trial equation method have been obtained. The undetermined coefficients method [54], the semi-inverse variational principle [4], a multipliers method [14], the modified extended direct algebraic method [31] and exp (−ϕ(ξ))-expansion method [6] have been used to reveal soliton solutions of the LPD model. The modified simple equation method has been implemented to build dark and singular soliton solutions, but the method fails to gain a bright soliton solution for the model [23].
Moreover, in Ref. [60], fractional LPD model that contains M-derivative is studied via the Jacobi elliptic function anz"at"z method. In this manuscript, we use \(\left(m + \frac{C'}{\alpha} \right) \) expansion method on the conformable LPD model in birefringent fibers include three images of nonlinearity to obtain novel optical soliton solutions in terms of bright-singular soliton, singular soliton, bright soliton and periodic wave solutions.

2. The conformable fractional derivative. The conformable derivative has the following definitions, properties and theorems:

Definition 2.1. Suppose that \(f(t) \) be a conformable fractional derivative of order \(\alpha \) and defines as \(f : (0, \infty) \rightarrow \mathbb{R} \) then
\[
D_\alpha^t f(t) = \lim_{\varepsilon \to 0} \frac{f(t+\varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}, \quad \forall \ t > 0, \ 0 < \alpha \leq 1.
\]

Definition 2.2. Suppose that \(f(t) \) be a function defined on \((a, t] \) and \(\alpha \in \mathbb{R} \), then, the \(\alpha \)-fractional integral of the function \(f(t) \) can be stated as
\[
iD_\alpha^a f(t) = \frac{\alpha}{\gamma} \int_a^t f(\xi) d\xi, \quad \text{where} \ a \geq 0 \ \text{and} \ t \geq a,
\]
Providing that the Riemann improper integral exists.

Theorem 2.3. Suppose that \(f(t) \) and \(g(t) \) be \(\alpha \)-conformable differentiable at a point \(t > 0 \), such that \(\alpha \in (0, 1] \), then
1. \(D_\alpha^t (a f(t) + b g(t)) = a D_\alpha^t f(t) + b D_\alpha^t g(t) \), \quad \text{for all} \ a, b \in \mathbb{R}.
2. \(D_\alpha^t (t^\mu) = \mu t^{\mu-\alpha}, \quad \text{for all} \ \mu \in \mathbb{R} \).
3. \(D_\alpha^t (f(t) g(t)) = g(t) D_\alpha^t (f(t)) + f(t) D_\alpha^t (g(t)) \).
4. \(D_\alpha^t \left(\frac{f(t)}{g(t)} \right) = \frac{g(t) D_\alpha^t (f(t)) - f(t) D_\alpha^t (g(t))}{g(t)^2} \).

In addition, if the function \(f(t) \) is a differentiable function, then
\[
D_\alpha^t (f(t)) = t^{1-\alpha} \frac{df(t)}{dt}.
\]
The chain rule for conformable fractional derivatives is set out in the following theorem [64].

Theorem 2.4. Suppose that \(f(0, \infty) \rightarrow R \) be both a \(\alpha \)-conformable differentiable function and classic differentiable function. Assume that \(g(t) \) be a classic differentiable function defined in the range of \(f(t) \), then
\[
D_\alpha^t (f g)(t) = t^{1-\alpha} g(t)^{\alpha-1} g_t(t) D_\alpha^t (f(t))_{t=g(t)}.
\]

3. General form of \(\left(m + \frac{C'}{\alpha} \right) \) method. The mainly modified steps of this technique can be taken as follows:

Step 1. Assuming a NLPDE as follows:
\[
(D_\alpha^\beta u, D_\alpha^\alpha u, D_\alpha D_\alpha^\beta u, D_\alpha^2 u, \ldots) = 0,
\]
and utilizing the traveling wave transformation,
\[
u(x, y, t) = U(\xi), \ \xi = \frac{x^\beta}{\beta} - \nu \frac{t^\alpha}{\alpha}.
\]
Inserting Eq. (4) to Eq. (3) yields:
\[
N(U, U', U'' , \ldots) = 0.
\]
Step 2. Take trial equation of solution for Eq. (4) as following:

\[U(\xi) = \sum_{i=-n}^{n} a_i (m + F)^i = a_{-n} (m + F)^{-n} + \ldots + a_1 (m + F) + \ldots + a_n (m + F)^n, \]

where \(a_n, n = 0, 1, \ldots, n \) and \(m \) are nonzero constants. According to the principles of balance, we find the value of \(n \). In this manuscript, we define a function \(F \) as:

\[F = \frac{G'(\xi)}{G(\xi)}, \]

where \(G(\xi) \) satisfy

\[G'' + (\lambda + 2m) G' + \mu G = 0. \]

Step 3. Putting the Eq. (6) to Eq. (5) and using (7), then collect all terms with the same order of the \((m + F)^n\), we get the system of algebraic equations for \(\nu, a_n, n = 0, 1, \ldots, n, \lambda \) and \(\mu \).

Step 4. As a result, solving the obtained system and substitute \(\nu, a_n, n = 0, 1, \ldots, n \) and the obtained solution of Eq. (6) to Eq. (5), we get the analytic solutions of Eq. (3).

4. Application on \((m + G')\) method. To solve Eq. (1), via the scheme mentioned above, we define the transformation as

\[u(x,t) = U(\xi)e^{i\theta}, \quad \xi = \frac{\alpha}{\beta}x - \nu \frac{t}{\alpha}, \quad \theta = -\frac{\kappa}{\beta}x + \omega \frac{t}{\alpha} + \epsilon. \]

In the above equation, \(\theta(x,t) \) symbolize the phase component of the soliton, \(\kappa \) represent the soliton frequency, while \(\omega \) denoting the wave number, \(\epsilon \) symbolize the phase constant and \(\nu \) symbolize the velocity of the soliton. Substituting wave transformation into Eq. (1) and then splitting the outcomes equations into real and imaginary parts. We can write the real part

\[\sigma U''' - (6\kappa^2\sigma - b\nu + a) U'' - (b\kappa \omega - \kappa^4 \sigma - a\kappa^2 - \omega) U - cFU^2U' + \sigma U^5 \]

\[- \kappa^2 (\varpi - \beta + \gamma + \vartheta) U + (\vartheta + \beta) U(U')^2 + (\varpi + \gamma) U^2U'' = 0, \]

and the imaginary part can be written as

\[(b\kappa \nu - \nu + b\omega - 2a\kappa - 4\kappa^3 \sigma) U' + 2\kappa(\gamma + \vartheta - \varpi) U^2U' + 4\kappa \sigma U''' = 0. \]

In real and complex parts, if we set the coefficients of the linearly independent functions to zero, we obtain:

\[\vartheta + \rho = 0, \quad \varpi + \gamma = 0, \quad \sigma = 0, \quad \gamma + \vartheta - \varpi = 0, \]

and therefore, the velocity of the soliton can be rewritten as

\[\nu = \frac{b\omega - 2a\kappa}{1 - b\kappa}, \quad b\kappa \neq 1. \]

Hence, the real part Eq. (9) can be rewritten as

\[(a - b\nu) U'' + (b\kappa \omega - a\kappa^2 - \omega) U + (cF - 4\gamma \kappa^2) U^3 - \delta U^5 = 0. \]
4.1. Kerr law. Suppose that \(F(u) = u \), then Eq. (1) can be rewrite

\[
iD_t^\alpha u + aD_x^\beta u + bD_x^\alpha D_t^\gamma u + c \left(|u|^2 \right) u = \sigma D_x^{4\beta} u + \vartheta (D_x^{\beta} u)^2 u^* + \rho |D_x^\beta u|^2 u + \gamma |u|^2 D_x^{2\beta} u + \omega u^2 D_x^{2\beta} u^* + \delta |u|^4 u
\] \tag{12}

so, Eq. (11) becomes

\[
(a - bv) U'' + (bk\omega - a\kappa^2 - \omega) U + (c - 4\gamma\kappa^2) U^3 - \delta U^5 = 0.
\] \tag{13}

Defining \(U = V^{1/2} \), Eq. (13) yields

\[
(a - bv) \left(2VV'' - (V')^2 + 4(bk\omega - a\kappa^2 - \omega) V^2 + 4(c - 4\gamma\kappa^2) V^3 - 4\delta V^4 \right) = 0.
\] \tag{14}

Using the balance method between and , we get . Therefore, Eq. (6) becomes

\[
U(\xi) = \sum_{i=-1}^1 a_i(m + F)^i = a_{-1}(m + F)^{-1} + m a_0 + a_1 (m + F).
\] \tag{15}

By taking every summation of the coefficients of the polynomial identities of the same power to be zero, one can conclude the following optical soliton solutions. We notice that the value of all square roots is defined more than zero and \(\Delta = (2m + \lambda)^2 - 4\mu \).

Case 1. When \(a_{-1} = \frac{\sqrt[3]{3(m\lambda + m\lambda) - \mu}}{2\sqrt{3}}, a_0 = \frac{\sqrt[3]{3\lambda\sqrt{a - bv}}}{2\sqrt{3}}, a_1 = \frac{\sqrt[3]{3\sqrt{a - bv}}}{2\sqrt{3}}, \)

\(c = 4\gamma\kappa^2 \mp \frac{2\sqrt{3}\lambda\sqrt{a - bv}}{\sqrt{3}}, \omega = -\frac{a((2m + \lambda)^2 - a(k^2 + \mu)) + b((2m + \lambda)^2 - 4\mu)^2}{-4 + 4bk\omega} \), we conclude the following solution sets:

Set 1. In case \(\Delta > 0 \), we have a hyperbolic function solution:

\[
u(x, t) = \frac{3^{1/4}}{2\sqrt{2}} e^{i\theta} \left(\frac{(A_1^2 - A_2^2)}{\sqrt{3}} \left(A_2 \cosh \left(\frac{\sqrt{3}\xi}{2} \right) + A_1 \sinh \left(\frac{\sqrt{3}\xi}{2} \right) \right) \right)^{1/4} \left(-A_1 \sqrt{\Delta} + A_2 \lambda \right) \cosh \left(\frac{\sqrt{3}\xi}{2} \right) + \left(-A_2 \sqrt{\Delta} + A_1 \lambda \right) \sinh \left(\frac{\sqrt{3}\xi}{2} \right),
\] \tag{16}

where \(A_1 \) & \(A_2 \) are numbers, \(\xi = \frac{\beta}{\sigma} - \nu \frac{\alpha}{\tau} \) and \(\theta = -\kappa \frac{\beta}{\sigma} + \omega \frac{\alpha}{\tau} + \epsilon \).

Set 2. In case \(\Delta < 0 \), we have trigonometric function solutions

\[
u(x, t) = \frac{3^{1/4}}{2\sqrt{2}} e^{i\theta} \left(\frac{(A_1^2 + A_2^2)}{\sqrt{3}} \left(4m^2 + 4m\lambda + \lambda^2 - 4\mu \right) \sqrt{a - bv} \right)^{1/4} \left(-A_1 \sqrt{\Delta} + A_2 \lambda \right) \cos \left(\frac{\sqrt{3}\xi}{2} \right) + \left(A_2 \sqrt{\Delta} + A_1 \lambda \right) \sin \left(\frac{\sqrt{3}\xi}{2} \right),
\] \tag{17}

where \(A_1 \) & \(A_2 \) are numbers, \(\xi = \frac{\beta}{\sigma} - \nu \frac{\alpha}{\tau} \) and \(\theta = -\kappa \frac{\beta}{\sigma} + \omega \frac{\alpha}{\tau} + \epsilon \).
Figure 1. 3D graphic of Eq. (16) when $\alpha = 0.9, A_1 = 3, A_2 = 2, a = 0.4, b = 0.1, \delta = 0.2, \nu = 0.2, \kappa = 0.1, \epsilon = 0.4, \beta = 0.9, \lambda = 1, m = 1, \mu = -1$ and $t = -2$ for 2D.

Figure 2. 3D figure of Eq. (17), when $\alpha = 0.8, A_1 = 3, A_2 = 2, a = 0.4, b = 0.1, \delta = 0.2, \nu = -0.2, \kappa = 0.1, \epsilon = 0.4, \beta = 0.8, \lambda = -1, m = 1, \mu = 1$ and $t = 2$ for 2D.

Set 3. In case $\Delta = 0$, we have rational function solutions as:

$$u(x,t) = \sqrt{3} e^{i \left(\frac{\alpha \beta \sqrt{a^2 - b^2}}{\sqrt{a^2 - b^2}} \right)} \frac{\sqrt{A_2^2 \alpha^2 \beta^2 \sqrt{a - b} \nu}}{\sqrt{\sqrt{5} (A_1^2 \alpha^2 \beta^2 + A_1 A_2 \alpha \beta (2x^3 \alpha + \Gamma) + A_2^2 (x^2 \beta \alpha^2 + x^3 \alpha \Gamma + t^2 \beta \nu \Gamma))}}$$

(18)
where A_1 & A_2 are numbers and $\Gamma = \beta (\alpha - 2t^\alpha \nu)$.

Figure 3. 3D figure of Eq. (18) when $\alpha = 0.5$, $A_1 = -3$, $A_2 = 0.2$, $a = 0.4$, $b = 0.1$, $\delta = 0.2$, $\nu = -0.2$, $\kappa = 0.5$, $\epsilon = 0.1$, $\beta = 0.5$, $\lambda = -2$, $m = 2$, $\mu = 1$ and $t = 2$ for 2D.

Case 2. When $a_{-1} = \frac{\sqrt{3}(m(m+\lambda)-\mu)\sqrt{a-b\nu}}{2\sqrt{\delta}}$, $a_0 = \frac{i\sqrt{3}m(m+\lambda)-3\mu\sqrt{a-b\nu}}{\sqrt{3}}$, $a_1 = -\frac{\sqrt{3}\sqrt{a-b\nu}}{2\sqrt{\delta}}$, $\omega = \frac{(a-b\nu)(20m^2+4\nu^2+20m\lambda-\lambda^2+12\lambda\sqrt{m(m+\lambda)-\mu}-20\mu)}{-4+4\nu\varepsilon}$, and $c = \frac{4\gamma\kappa^2}{\sqrt{3}}$, we conclude the following solution sets:

Set 1. In case $\Delta > 0$, we have hyperbolic function solutions:

$$u(x,t) = \frac{\sqrt{3}e^{i\theta}}{\sqrt{\delta\sqrt{2}}} - \frac{2(m(m+\lambda)-\mu)}{A_1\sqrt{\Delta} + A_2\lambda} \left(A_2 \cosh \left(\frac{\sqrt{\Delta}}{2} \right) + A_1 \sinh \left(\frac{\sqrt{\Delta}}{2} \right) \right) + \left(-A_1\sqrt{\Delta} + A_2\lambda \right) \cosh \left(\frac{\sqrt{\Delta}}{2} \right) + \left(-A_2\sqrt{\Delta} + A_1\lambda \right) \sinh \left(\frac{\sqrt{\Delta}}{2} \right) + \frac{2 \left(A_2 \cosh \left(\frac{\sqrt{\Delta}}{2} \right) + A_1 \sinh \left(\frac{\sqrt{\Delta}}{2} \right) \right) - m - 2i\sqrt{m(m+\lambda)-\mu}}{A_1(2m+\lambda)} \cosh \left(\frac{\sqrt{\Delta}}{2} \right) + \left(-A_2\sqrt{\Delta} + A_1\lambda \right) \sinh \left(\frac{\sqrt{\Delta}}{2} \right) \right)$$ (19)

where A_1 & A_2 are numbers, $\xi = \frac{x^\beta}{\sqrt{\nu}} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{\sqrt{\nu}} + \omega \frac{t^\alpha}{\alpha} + \epsilon$.
Figure 4. 3D graphic of Eq. (19) when $\alpha = 0.5, A_1 = -3, A_2 = 1, a = 0.3, b = -2, \delta = 0.2, \nu = 0.2, \kappa = 0.1, \epsilon = 2, \beta = 0.5, \lambda = 1, m = 1, \mu = -1$ and $t = -2$ for 2D.

Set 2. In case $\Delta < 0$, we have trigonometric function solutions

$$u(x,t) = \frac{\sqrt{3}(a - b\nu)e^{i\theta}}{\sqrt{\delta \sqrt{2}}}$$

$$- \frac{2(m^2 + m\lambda - \mu)(A_2 \cos \left(\frac{\sqrt{-\Delta} + \xi}{2}\right) + A_1 \sin \left(\frac{\sqrt{-\Delta} + \xi}{2}\right))}{(-A_1\sqrt{-\Delta} + A_2\lambda) \cos \left(\frac{\sqrt{-\Delta} + \xi}{2}\right) + (A_2\sqrt{-\Delta} + A_1\lambda) \sin \left(\frac{\sqrt{-\Delta} + \xi}{2}\right)} +$$

$$\left(\frac{-A_1\sqrt{-\Delta} + A_2(2m + \lambda)}{A_2\sqrt{-\Delta} + A_1(2m + \lambda)}\right) \cos \left(\frac{\sqrt{-\Delta} + \xi}{2}\right) + \left(\frac{-A_1\sqrt{-\Delta} + A_2(2m + \lambda)}{A_2\sqrt{-\Delta} + A_1(2m + \lambda)}\right) \sin \left(\frac{\sqrt{-\Delta} + \xi}{2}\right)$$

$$\sqrt{-m^2 + 2m\lambda - \mu, \epsilon.}$$

where A_1 & A_2 are numbers, $\xi = \frac{x^\beta}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{\xi^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon$.

Set 3. In case $\Delta = 0$, we have fractional function solutions as:

$$u(x,t) = \frac{\sqrt{3}(a - b\nu)e^{i\theta}}{\sqrt{\delta \sqrt{2}}}$$

$$\left(\frac{-m^2 + m\lambda - \mu + \sqrt{\mu} - \frac{A_2}{A_1 + A_2\xi}}{(m + \lambda - \mu)(A_1 + A_2\xi)}\right) \sqrt{A_2 + A_1 (m - \sqrt{\mu}) + A_2 (m - \sqrt{\mu}) \xi}, \epsilon.$$

where A_1 & A_2 are numbers, $\xi = \frac{x^\beta}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{\xi^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon$.
Figure 5. 3D figure of Eq. (20) when $\alpha = 0.5, A_1 = 3, A_2 = 1, a = 0.3, b = 0.2, \delta = 0.2, \nu = -0.2, \kappa = 0.1, \epsilon = 2, \beta = 0.5, \lambda = -1, m = 1, \mu = 1$ and $t = 2$ for 2D.

Figure 6. 3D figure of Eq. (21) when $\alpha = 0.5, A_1 = 3, A_2 = 1, a = 0.3, b = 0.2, \delta = 0.2, \nu = -0.2, \kappa = 0.1, \epsilon = 2, \beta = 0.5, \lambda = -2, m = 2, \mu = 1$ and $t = 2$ for 2D.

4.2. Parabolic law. Suppose that $F(u) = c_1 u + c_2 u^2$, then Eq. (1) can be rewritten

$$iD_t^\alpha u + aD_x^{2\beta} u + bD_x^\beta D_t^\alpha u + \left(c_1 |u|^2 + c_2 |u|^4\right) u = \sigma D_x^{4\beta} u + \vartheta (D_x^\beta u)^2 u^* + \rho |D_x^\beta u|^{2} u + \gamma |u|^2 D_x^{2\beta} u + \omega u^2 D_x^{2\beta} u^* + \delta |u|^4 u,$$

(22)
so, Eq. (11) becomes

\[(a - bv)U'' + (b\omega - a\kappa^2 - \omega)U + (c_1 - 4\gamma\kappa^2)U^3 + (c_2 - \delta)U^5 = 0.\] \hspace{1cm} (23)

Defining \(U = V^{1/2}\), Eq. (23) yields

\[(a - bv)\left(-V'' + 2VV''\right) + 4\left(b\omega - a\kappa^2 - \omega\right)V^2 + 4\left(c_1 - 4\gamma\kappa^2\right)V^3\]

\[+ 4(c_2 - \delta)V^4 = 0.\] \hspace{1cm} (24)

Using the balance method between \(V''\) and \(V^4\), we get \(n = 1\). Therefore, Eq. (6) becomes

\[U(\xi) = \sum_{i=-1}^{1} a_i(m + F)^i = a_{-1}(m + F)^{-1} + ma_0 + a_1(m + F).\] \hspace{1cm} (25)

By taking every summation of the coefficients of the polynomial identities of the same power to be zero, we conclude the following soliton solutions. We notice that the value of all square roots is more than zero and \(\Delta = (2m + \lambda)^2 - 4\mu\).

Case 3. When \(a_{-1} = -(m(m + \lambda) - \mu)\), \(a_0 = \lambda a_1\), \(c_1 = 4\gamma\kappa^2 + \frac{\lambda(a-bv)}{a_1}\), \(c_2 = \delta - \frac{(a-bv)}{m\lambda}\), \(\omega = \frac{-a((2m + \lambda)^2 - 4(\kappa^2 + \mu)) + b((2m + \lambda)^2 - 4\mu)\nu}{4 + 4\kappa}\), we conclude the following solution sets:

Set 1. In case \(\Delta > 0\), we have a hyperbolic function solutions:

\[u(x, t) = \frac{1}{2}e^{i\theta} \sqrt{\frac{(A_1^2 - A_2^2)(2m + \lambda)^2 - 4\mu a_1}{A_2 \cosh \left(\frac{\sqrt{\Delta}}{2}\right) + A_1 \sinh \left(\frac{\sqrt{\Delta}}{2}\right)}} \]

\[\times \frac{1}{\sqrt{-A_1\sqrt{\Delta} + A_2\lambda} \cosh \left(\frac{\sqrt{\Delta}}{2}\right) + (-A_2\sqrt{\Delta} + A_1\lambda) \sinh \left(\frac{\sqrt{\Delta}}{2}\right)},\]

where \(A_1\) & \(A_2\) are numbers, \(\xi = \frac{a^{\alpha}}{a} - \nu \frac{\lambda}{\nu}\) and \(\theta = -\kappa \frac{a^{\beta}}{a} + \omega \frac{\kappa}{\omega} + \epsilon\).

Set 2. In case \(\Delta < 0\), we have a trigonometric function solutions

\[u(x, t) = \frac{e^{i\theta}}{2} \sqrt{\frac{(A_1^2 + A_2^2)(4m^2 + 4m\lambda + \lambda^2 - 4\mu) a_1}{A_2 \cos \left(\frac{\sqrt{-\Delta}}{2}\right) + A_1 \sin \left(\frac{\sqrt{-\Delta}}{2}\right)}} \]

\[\times \frac{1}{\sqrt{(A_2\lambda - A_1\sqrt{-\Delta}) \cos \left(\frac{\sqrt{-\Delta}}{2}\right) + (A_1\lambda + A_2\sqrt{-\Delta}) \sin \left(\frac{\sqrt{-\Delta}}{2}\right)}},\]

where \(A_1\) & \(A_2\) are numbers, \(\xi = \frac{a^{\alpha}}{a} - \nu \frac{\lambda}{\nu}\) and \(\theta = -\kappa \frac{a^{\beta}}{a} + \omega \frac{\kappa}{\omega} + \epsilon\).

Set 3. In case \(\Delta = 0\), we have a fractional function solutions as:

\[u(x, t) = \sqrt{A_1}e^{i\theta} \sqrt{\frac{m + \lambda + \frac{A_2 - A_1\sqrt{\mu} - A_2\sqrt{\mu}\xi}{A_1 + A_2\xi}}{A_2 + A_1m - A_1\sqrt{\mu} + A_2m\xi - A_2\sqrt{\mu}\xi}},\] \hspace{1cm} (28)

where \(A_1\) & \(A_2\) are numbers, \(\xi = \frac{a^{\alpha}}{a} - \nu \frac{\lambda}{\nu}\) and \(\theta = -\kappa \frac{a^{\beta}}{a} + \omega \frac{\kappa}{\omega} + \epsilon\).
ABUNDANT NOVEL SOLUTIONS OF THE CONFORMABLE LPD MODEL

Figure 7. 3D figure of Eq. (26) when $\alpha = 0.9, A_1 = 1, A_2 = 3, a = 0.3, b = 0.2, \delta = 0.2, \nu = 0.1, \kappa = 2, \epsilon = 0.2, a_1 = 2, \beta = 0.9, \lambda = 1, m = 1, \mu = -1$ and $t = -2$ for 2D.

Figure 8. 3D figure of Eq. (27) when $\alpha = 0.9, A_1 = 1, A_2 = 3, a = 0.3, b = 0.2, \delta = 0.2, \nu = -0.1, \kappa = 2, \epsilon = 0.2, a_1 = -2, \beta = 0.9, \lambda = -1, m = 1, \mu = 1$ and $t = 2$ for 2D.

Case 4. When $a_{-1} = -\frac{\lambda((m+\lambda)-\mu)(a-b\nu)}{c_1-4\gamma\kappa^2}, a_0 = \frac{\lambda^2(a-b\nu)}{c_1-4\gamma\kappa^2}, a_1 = \frac{\lambda(a-b\nu)}{c_1-4\gamma\kappa^2}, c_2 = \delta \frac{3(c_1-4\gamma\kappa^2)^2}{4\lambda^2(a-b\nu)}$, $\omega = \frac{-a((2m+\lambda)^2-4(\kappa^2+\mu))+b((2m+\lambda)^2-4\mu)\nu}{-4+4bc}$, we conclude the following solution sets:

Set 1. In case $\Delta > 0$, we have hyperbolic function solutions:

$$ u(x,t) = \frac{e^{i\theta}}{\sqrt{2}} \left(\frac{(A_1^2 - A_2^2) \lambda (2m + \lambda)^2 - 4\mu (a - b\nu)}{(c_1 - 4\gamma\kappa^2) \left(A_2 \cosh \left(\frac{\sqrt{\Delta} \xi}{2} \right) + A_1 \sinh \left(\frac{\sqrt{\Delta} \xi}{2} \right) \right)} \right) $$
Figure 9. 3D figure of Eq. (28) when $\alpha = 0.5, A_1 = 3, A_2 = 2, a = 2, b = 0.1, \delta = 0.2, \nu = 0.2, \kappa = 1, \epsilon = 0.2, a_1 = 2, \beta = 0.5, \lambda = -2, m = 2, \mu = 1$ and $t = 2$ for 2D.

\[
\frac{1}{\sqrt{\left((A_2 \lambda - A_1 \sqrt{\Delta}) \cosh \left(\frac{\sqrt{\Delta} \xi}{2}\right) + (A_1 \lambda - A_2 \sqrt{\Delta}) \sinh \left(\frac{\sqrt{\Delta} \xi}{2}\right)\right)}}
\] \hspace{1cm} (29)

where A_1 & A_2 are numbers, $\xi = \frac{\pi^\beta}{\beta} - \nu \frac{\omega}{\alpha}$ and $\theta = -\kappa \frac{\pi^\beta}{\beta} + \omega \frac{\mu}{\alpha} + \epsilon$.

Figure 10. 3D figure of Eq. (29) when $\alpha = 0.5, A_1 = 2, A_2 = 3, a = 0.2, b = 0.2, \delta = 0.2, \nu = -0.2, \kappa = 1, \epsilon = 2, c_1 = 1, \beta = 0.5, \gamma = -1, \lambda = 1, m = 1, \mu = -1$ and $t = 2$ for 2D.
Set 2. In case $\Delta < 0$, we have a trigonometric function solution

$$u(x,t) = \frac{e^{i\theta}}{2} \sqrt{\left(\frac{(A_1^2 + A_2^2) \lambda (4m^2 + 4m\lambda + \lambda^2 - 4\mu) (a - b\nu)}{(c_1 - 4\gamma\kappa^2)} \left(A_2 \cos \left(\frac{\sqrt{-\Delta} \xi}{2} \right) + A_1 \sin \left(\frac{\sqrt{-\Delta} \xi}{2} \right) \right) \right)} \sqrt{\left((-A_1\sqrt{-\Delta} + A_2\lambda) \cos \left(\frac{\sqrt{-\Delta} \xi}{2} \right) + (A_2\sqrt{-\Delta} + A_1\lambda) \sin \left(\frac{\sqrt{-\Delta} \xi}{2} \right) \right)}.$$

where A_1 & A_2 are numbers, $\xi = \frac{x^\alpha}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon$.

![Figure 11. 3D figure of Eq. (30) when $\alpha = 0.9, A_1 = 2, A_2 = 3, a = 3, b = -2, \delta = 0.2, \nu = 0.1, \kappa = 2, \epsilon = 0.2, c_1 = 1, \beta = 0.9, \gamma = 1, \lambda = -1, m = 1, \mu = 1$ and $t = 2$ for 2D.](image)

Set 3. In case $\Delta = 0$, we have fractional function solutions as:

$$u(x,t) = \frac{\lambda (a - b\nu)}{c_1 - 4\gamma\kappa^2} e^{i\theta} \sqrt{\frac{m + \lambda - \sqrt{\mu}}{A_1 + A_2 \xi} - \frac{(m (m + \lambda) - \mu) (A_1 + A_2 \xi)}{A_2 + A_1 (m - \sqrt{\mu}) + A_2 (m - \sqrt{\mu}) \xi}},$$

where A_1 & A_2 are numbers, $\xi = \frac{x^\alpha}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon$.

4.3. Anti-cubic law. Suppose that $F(s) = c_1 \frac{s}{s^2} + c_2 s + c_3 s^2$, then Eq. (1) can be rewritten

$$iD_t^\alpha u + aD_x^\beta u + bD_x^\alpha D_t^\alpha u + \left(c_1 |u|^{-4} + c_2 |u|^2 + c_3 |u|^4 \right) u = \sigma D_x^\beta u + \nu \left(D_x^\alpha u \right)^2 u^* + \gamma |u|^2 D_x^2 u + \varepsilon |u|^2 D_x^\beta u + \delta |u|^4 u,$$

so, Eq. (11) becomes

$$(a - b\nu) U'' + (b\kappa \omega - a\kappa^2 - \omega) U + c_1 U^{-3} + (c_2 - 4\gamma\kappa^2) U^3 + (c_3 - \delta) U^5 = 0.$$

(33)
Figure 12. 3D figure of Eq. (31) when $\alpha = 0.9, A_1 = -3, A_2 = 2, a = 2, b = 0.1, \delta = 0.2, \nu = 0.2, \kappa = 1, \epsilon = 0.2, c_1 = 1, \beta = 0.9, \gamma = -2, \lambda = -2, m = 2, \mu = 1$ and $t = 2$ for 2D.

Defining $U = V^{\frac{1}{2}}$, Eq. (33) yields

$$
(a - b\nu) \left(-\left(\frac{V'}{V}\right)^2 + 2VV''\right) + 4 \left(bk\omega - a\kappa^2 - \omega\right) V^2 + 4c_1 + 4 \left(c_2 - 4\gamma\kappa\right) V^3 + 4 \left(c_3 - \delta\right) V^4 = 0.
$$ (34)

Using the balance method between VV'' and V^4, we get $n = 1$. Therefore, Eq. (6) becomes

$$
U(\xi) = \sum_{i=-1}^{1} a_i (m + F)^i = a_{-1} (m + F)^{-1} + m a_0 + a_1 (m + F).
$$ (35)

By taking every summation of the coefficients of the polynomial identities of the same power to be zero, we conclude the following soliton solutions. We notice that the value of all square roots is defined more than zero and $\Delta = (2m + \lambda)^2 - 4\mu$.

Case 5. When $a_{-1} = \frac{(m(m+\lambda) - \mu)\sqrt{-3a + 3b\nu}}{2\sqrt{c_3 - \delta}}, a_1 = -\frac{\sqrt{-3a + 3b\nu}}{2\sqrt{c_3 - \delta}}, c_2 = \frac{2}{3} (6\gamma\kappa^2 - \sqrt{3} - \delta) \left(a - b\nu\right) + (c_3 - \delta) a_0^2,$

$$
\omega = \frac{-a \left((2m + \lambda)^2 - 4\left(\kappa^2 + \mu\right)\right) + b \left((2m + \lambda)^2 - 4\mu\right) \nu}{-4 + 4b\kappa} + \frac{4\sqrt{3}c_3 - \delta\lambda\sqrt{-a + b\nu a_0 + 8 (c_3 - \delta) a_0^2}}{-4 + 4b\kappa},
$$

$$
c_1 = \frac{-\left(3(m + \lambda) - \mu\right) (a - b\nu) + (-c_3 + \delta) a_0^2}{12(c_3 - \delta)^{3/2}} \times \left(3\sqrt{c_3 - \delta}\lambda^2 (a - b\nu) - 4 (c_3 - \delta) a_0 \left(\lambda\sqrt{-3a + 3b\nu + \sqrt{c_3 - \delta} a_0}\right)\right),
$$
we conclude the following solution sets:

Set 1. In case $\Delta > 0$, we have hyperbolic function solutions:

$$u(x, t) = 4\sqrt{-3a + 3b\nu e^{i\theta}}$$

$$\frac{\sqrt{c_3 - \delta} \left(S_2 \cosh \left(\frac{\sqrt{-\Delta} \xi}{2}\right) + S_1 \sinh \left(\frac{\sqrt{-\Delta} \xi}{2}\right)\right) + a_0}{\sqrt{c_3 - \delta} \left(A_2 \cosh \left(\frac{\sqrt{-\Delta} \xi}{2}\right) + A_1 \sinh \left(\frac{\sqrt{-\Delta} \xi}{2}\right)\right)}$$

where A_1, A_2 are numbers, $S_1 = -A_1\sqrt{-\Delta} + A_2\lambda$, $S_2 = -A_2\sqrt{-\Delta} + A_1\lambda$, $\xi = \frac{x^\alpha}{\beta} - \nu \frac{\omega^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\alpha}{\beta} + \omega \frac{\omega^\alpha}{\alpha} + \epsilon$.

![3D figure of Eq. (36) when $\alpha = 1/2, A_1 = 0.2, A_2 = 0.3, a = -0.2, b = 1, \delta = -0.2, \nu = 0.2, \kappa = 0.1, \epsilon = 0.2, c_1 = 2, \gamma = 0.1, a_0 = 0.1, c_3 = 0.1, \beta = 1/2, \lambda = 1, m = 1, \mu = -1$ and $t = -2$ for 2D.](image)

Set 2. In case $\Delta < 0$, we have trigonometric function solutions

$$u(x, t) = 4\sqrt{-3a + 3b\nu e^{i\theta}}$$

$$\frac{\sqrt{c_3 - \delta} \left(S_2 \cos \left(\frac{\sqrt{-\Delta} \xi}{2}\right) + S_4 \sin \left(\frac{\sqrt{-\Delta} \xi}{2}\right)\right) + a_0}{\sqrt{c_3 - \delta} \left(A_2 \cos \left(\frac{\sqrt{-\Delta} \xi}{2}\right) + A_1 \sin \left(\frac{\sqrt{-\Delta} \xi}{2}\right)\right)}$$

where A_1, A_2 are numbers, $S_3 = -A_1\sqrt{-\Delta} + A_2\lambda$, $S_4 = -A_2\sqrt{-\Delta} + A_1\lambda$, $\xi = \frac{x^\alpha}{\beta} - \nu \frac{\omega^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\alpha}{\beta} + \omega \frac{\omega^\alpha}{\alpha} + \epsilon$.
Figure 14. 3D figure of Eq. (37) when $\alpha = 0.5, A_1 = 1, A_2 = 3, a = -0.2, b = 2, \delta = -0.2, \nu = 0.2, \kappa = 1, \epsilon = 2, c_1 = 1, \gamma = 1, a_0 = 5, c_3 = 1, \beta = 0.5, \lambda = -1, m = 1, \mu = 1$ and $t = -2$ for 2D.

Set 3. In case $\Delta = 0$, we have fractional function solutions as:

\[
\mathfrak{u}(x,t) = e^{i\theta} \left(\frac{(m(m + \lambda) - \mu) \sqrt{-3a + 3b\nu (A_1 + A_2 \xi)}}{2\sqrt{c_3 - \delta \left(A_2 + A_1 (m - \sqrt{\mu}) + A_2 (m - \sqrt{\mu}) \xi \right)}} - \frac{\sqrt{-\alpha - 3b\nu \left(A_2 + A_1 (m - \sqrt{\mu}) + A_2 (m - \sqrt{\mu}) \xi \right)}}{2\sqrt{c_3 - \delta \left(A_1 + A_2 \xi \right)}} + a_0, \right)
\]

where $A_1 \& A_2$ are numbers, $\xi = \frac{\alpha}{\beta} - \nu \frac{\omega}{\alpha}$ and $\theta = -\kappa \frac{\epsilon}{\beta} + \omega \frac{a_1}{\alpha} + \epsilon$.

Case 6. When $\nu = -(m(m + \lambda) - \mu) a_1, c_3 = \delta - \frac{3(a - b\nu)}{4a_1^2},$

\[
a_0 = \frac{\lambda a_1}{2} \pm \left(\frac{(b\nu - a)}{2}\right) \left(\frac{a(8m^2 + 8m\lambda - \lambda^2 - 8(\kappa^2 + \mu)) + b(-8m^2 - 8m\lambda + \lambda^2 + 8\mu) \nu + 8(-1 + b\kappa)\omega}{2\sqrt{3(a - b\nu)}} \right) a_1^2.
\]

\[
c_1 = \left(\frac{a_1^2 \alpha^2}{144(a - b\nu)} - \frac{2a_1^2 b\nu}{144(a - b\nu)} + \frac{a_1^2 \beta^2 \nu^2}{144(a - b\nu)} \right) \left(-80m^4 - 160m^3\lambda + (-4\kappa^2 + \lambda^2)^2 - 8(8\kappa^2 + 7\lambda^2)\mu \right)
\]

\[
-80\mu^2 + 8m^2 \left(8\kappa^2 - 3\lambda^2 + 20\mu \right) + 8m\lambda \left(8\kappa^2 + 7\lambda^2 + 20\mu \right) - \left(\frac{8\omega(-1 + b\kappa)a_1^2}{144(a - b\nu)} + \frac{8b(-1 + b\kappa)a_1^2 \nu \omega}{144(a - b\nu)} \right) \left(\frac{8m^2 + 4\kappa^2}{8m\lambda - \lambda^2 - 8\mu} \right) + \frac{16(-1 + b\kappa)^2 \omega^2 a_1^2}{144(a - b\nu)} \pm \lambda (m(m + \lambda) - \mu) a_1 \times
\]
where Δ. In case Δ we conclude the following solution sets:

$$x_{\beta, t} > \alpha$$

$$\alpha = 1, \beta = 0.5, \lambda = -2, m = 2, \mu = 1 \text{ and } t = 2 \text{ for 2D.}$$

$$\sqrt{(a-b\nu) \left(\frac{8m^2 + 8m\lambda - \lambda^2}{8a} - \frac{8a}{8a} \right)} \frac{a^2_1}{2\sqrt{3}},$$

$$c_2 = 4\gamma\kappa^2 \pm \sqrt{\frac{-(a-b\nu) a^2_1 \left(\frac{(a-b\nu) (8m^2 + 8m\lambda - \lambda^2)}{-8a (\kappa^2 + \mu)} + 8b\nu\mu + 8(-1 + b\kappa) \omega} \right)} \frac{a^2_1}{\sqrt{3a^2_1}},$$

we conclude the following solution sets:

Set 1. In case $\Delta > 0$, we have hyperbolic function solutions:

$$u(x, t) = e^{i\theta} \left[\lambda a_1 + \frac{(K_1 \cosh \frac{\sqrt{\xi}}{2} + K_2 \sinh \frac{\sqrt{\xi}}{2}) a_1}{2 \left(A_2 \cosh \frac{\sqrt{\xi}}{2} + A_1 \sinh \frac{\sqrt{\xi}}{2} \right)} + \frac{2(m (m + \lambda) - \mu) \left(A_2 \cosh \frac{\sqrt{\xi}}{2} + A_1 \sinh \frac{\sqrt{\xi}}{2} \right)}{-K_1 \cosh \frac{\sqrt{\xi}}{2} - K_2 \sinh \frac{\sqrt{\xi}}{2}} \right],$$

where A_1 & A_2 are numbers, $K_1 = A_1 \sqrt{\Delta} - A_2 \lambda, K_2 = A_2 \sqrt{\Delta} - A_1 \lambda, \xi = \frac{x^\beta}{r} - \nu \frac{c}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{r} + \omega \frac{c}{\alpha} + \epsilon.$
Figure 16. 3D figure of Eq. (39) when $\alpha = 0.5, A_1 = 0.2, A_2 = 0.3, b = -0.2, \delta = 0.2, \nu = 0.2, \kappa = 1, \epsilon = 2, c_1 = 0.2, \gamma = 1, c_3 = 1, \beta = 0.5, a_1 = 1, \omega = 1, a = 0.2, \lambda = 1, m = 1, \mu = -1$ and $t = -2$ for 2D.

Set 2. In case $\Delta < 0$, we have trigonometric function solutions

$$u(x,t) = e^{i\theta} \frac{2 \left(m^2 + m\lambda - \mu \right) \left(A_2 \cos \left(\frac{\sqrt{-\Delta}}{2} \right) + A_1 \sin \left(\frac{\sqrt{-\Delta}}{2} \right) \right) a_1}{\lambda a_1 - \frac{2 \left(K_3 \cos \left(\frac{\sqrt{-\Delta}}{2} \right) + K_4 \sin \left(\frac{\sqrt{-\Delta}}{2} \right) \right) a_1}{2 \left(A_2 \cos \left(\frac{\sqrt{-\Delta}}{2} \right) + A_1 \sin \left(\frac{\sqrt{-\Delta}}{2} \right) \right) + \lambda a_1} + \frac{\left(a - b\nu \right) \left(8m^2 + 8m\lambda - \lambda^2 - 8\mu \right)}{2\sqrt{3} (a - b\nu)} \left(\frac{-8\kappa^2 + 8 \left(1 + b\kappa \right) \omega}{-8\kappa^2 + 8 \left(-1 + b\kappa \right) \omega} \right) a_1^2}$$

(40)

where A_1 & A_2 are numbers, $K_3 = A_2 \lambda - A_1 \sqrt{-\Delta}$, $K_4 = A_2 \sqrt{-\Delta} + A_1 \lambda$, $\xi = \frac{x^\beta}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon$. **Set 3.** In case $\Delta = 0$, we have fractional function solutions as:

$$u(x,t) = e^{i\theta} \frac{\lambda a_1}{2 \lambda a_1 - \frac{\left(A_2 + A_1 \left(m - \sqrt{\mu} \right) + A_2 \left(m - \sqrt{\mu} \right) \right) \xi}{\lambda a_1 + A_2 \xi} \left(A_2 + A_1 \left(m - \sqrt{\mu} \right) + A_2 \left(m - \sqrt{\mu} \right) \right) a_1}{\lambda a_1 - \frac{\left(a - b\nu \right) \left(8m^2 + 8m\lambda - \lambda^2 - 8\mu \right)}{2\sqrt{3} (a - b\nu)} \left(\frac{-8\kappa^2 + 8 \left(1 + b\kappa \right) \omega}{-8\kappa^2 + 8 \left(-1 + b\kappa \right) \omega} \right) a_1^2}$$

(41)

where A_1 & A_2 are numbers, $\xi = \frac{x^\beta}{\beta} - \nu \frac{t^\alpha}{\alpha}$ and $\theta = -\kappa \frac{x^\beta}{\beta} + \omega \frac{t^\alpha}{\alpha} + \epsilon.$
Figure 17. 3D figure of Eq. (40) when $\alpha = 0.9, A_1 = 0.4, A_2 = 2, b = -0.2, \delta = 0.2, \nu = 0.2, \kappa = 1, \epsilon = 2, c_1 = 1, \gamma = 1, c_3 = 1, \beta = 0.9, a_1 = 0.1, \omega = 1, a = 0.2, \lambda = -1, m = 1, \mu = 1$ and $t = 2$ for 2D.

Figure 18. 3D figure of Eq. (41) when $\alpha = 0.9, A_1 = 0.4, A_2 = 2, b = -0.2, \delta = 0.2, \nu = 0.2, \kappa = 1, \epsilon = 2, c_1 = 1, \gamma = 1, c_3 = 1, \beta = 0.9, a_1 = 0.1, \omega = 1, a = 0.2, \lambda = -2, m = 2, \mu = 1$ and $t = 2$ for 2D.
5. Conclusion. In this article, some new exact bright, periodic wave, bright-singular and singular optical soliton solutions of fractional Lakshmanan-Porsezian-Daniel model are constructed via the \((m + \frac{G'}{G})\) expansion method. We investigated three images of nonlinearity named the parabolic law, Kerr law and anti-cubic law nonlinearity. By using this method with computer-based symbolic computation, we construct broad classes such as hyperbolic, trigonometric and fractional solutions of nonlinear differential equations that arise in applied physics. Comparing our gained solutions with the other solutions obtained in Refs. [4–6, 12, 14–16, 22, 23, 31, 50, 54, 60], we conclude that our obtained soliton solutions are novel. Our resultant may appreciate in the telecommunication area and photonics study.

REFERENCES

[1] K. K. Ali, H. F. Ismael, B. A. Mahmood and M. A. Yousif, MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate, Int. J. Adv. Appl. Sci., 4 (2017), 55–58.
[2] K. K. Ali and A. Varol, Weissenberg and Williamson MHD flow over a stretching surface with thermal radiation and chemical reaction, JP J. Heat Mass Transf., 18 (2019), 57–71.
[3] K. K. Ali, R. Yilmazer, A. Yokus and H. Bulut, Analytical solutions for the \((3+1)\)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics, Physica A: Statistical Mechanics and its Applications, 548 (2020), 124327.
[4] R. T. Alqahtani, M. M. Babatin and A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109–114.
[5] A. A. AlQarni et al., Optical solitons for Lakshmanan–Porsezian–Daniel model by Riccati equation approach, Optik, 182 (2019), 922–929.
[6] S. Arshed, A. Biswas, F. B. Majid, Q. Zhou, S. P. Moshokoa and M. Belic, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using \(\exp(-\phi(\xi))\)-expansion method, Optik, 172 (2018), 651–656.
[7] A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2008), 21 pp.
[8] A. Atangana and A. Kılıçman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, Abstr. Appl. Anal., 2013 (2013), Art. ID 737481, 12 pp.
[9] H. M. Baskonus and H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 547–556.
[10] H. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771–5783.
[11] A. Biswas, M. Ekici, A. Sonmezoglu and R. T. Alqahtani, Optical solitons with differential group delay for coupled Fokas–Lenells equation by extended trial function scheme, Optik, 165 (2018), 102–110.
[12] A. Biswas, M. Ekici, A. Sonmezoglu and M. M. Babatin, Optical solitons with differential group delay and dual-dispersion for Lakshmanan–Porsezian–Daniel model by extended trial function method, Optik, 170 (2018), 512–519.
[13] A. Biswas et al, Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes, Optikt, 158 (2018), 705–711.
[14] A. Biswas, A. H. Kara, R. T. Alqahtani, M. Z. Ullah, H. Triki and M. Belic, Conservation laws for optical solitons of Lakshmanan-Porsezian-Daniel model, Proc. Rom. Acad. Ser. A - Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 39–44.
[15] A. Biswas, Y. Yildrim, E. Yaar and R. T. Alqahtani, Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method, Optik, 168 (2018), 432–439.
[16] A. Biswas, Y. Yıldırım, E. Yasar, Q. Zhou, S. P. Moshokoa and M. Belic, Optical solitons for Lakshmanan-Porsezian–Daniel model by modified simple equation method, Optik, 160 (2018), 24–32.
[17] C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, Solitons in an inhomogeneous Murnaghans rod, Eur. Phys. J. Plus, 133 (2018), 228.
[18] H. Bulut, T. A. Sulaiman and H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1–7.

[19] C. Cattani, T. A. Sulaiman and H. M. Baskonus, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfeld-Sokolov systems, Opt. Quantum Electron, 50 (2018), 138.

[20] L. D. Moleleki, T. Motsepa and C. M. Khalique, Solutions and conservation laws of a generalized second extended (3 + 1)-dimensional Jimbo-Miwa equation, Appl. Math. Nonlinear Sci., 3 (2018), 459–474.

[21] M. Dewasurendra and K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1–14.

[22] M. Ekici, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobis elliptic function expansion scheme, Optik, 172 (2018), 651–656.

[23] M. M. A. El-Sheikh, et al., Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by modified simple equation, Optik, 192 (2019), 162899.

[24] E. İ. Esiktçaoglu, M. B. Aktaş and H. M. Baskonus, New complex and hyperbolic forms for Ablowitz–Kaup–Newell–Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105–112.

[25] E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383–392.

[26] W. Gao and H. F. Ismael, H. Bulut and H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 95 (2020), 035207.

[27] W. Gao, H. F. Ismael, S. A. Mohammed, H. M. Baskonus and H. Bulut, Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 197.

[28] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut and H. M. Baskonus, Optical soliton solutions of the Cubic-Quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law, Appl. Sci., 10 (2020), 219.

[29] Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal— MESA, 5 (2014), 489–498.

[30] Z. Hammouch, T. Mekkaoui and P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 248.

[31] M. B. Hubert, et al., Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method, Optik, 162 (2018), 228–236.

[32] O. A. Ilhan, A. Esen, H. Bulut and H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712–1715.

[33] H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci., 4 (2017), 11–15.

[34] H. F. Ismael and K. K. Ali, MHD casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533–541.

[35] H. F. Ismael and N. M. Arifin, Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation, JP J. Heat Mass Transf., 15 (2018), 847–866.

[36] H. F. Ismael, H. Bulut and H. M. Baskonus, Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and $(m + (G'/G))$-expansion method, Pramana, 94 (2020), 35.

[37] A. Javid and N. Raza, Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model, Optik, 171 (2018), 120–129.

[38] A. J. M. Jawad, M. J. Abu-AlShaeer, A. Biswas, Q. Zhou, S. Moshokoa and M. Belić, Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms, Optik, 160 (2018), 197–202.

[39] C. M. Khalique and I. E. Mhlanga, Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241–253.

[40] C. M. Khalique and L. D. Moleleki, A (3 + 1)-dimensional generalized BKP-Boussinesq equation: Lie group approach, Results Phys., 13 (2019), 102239.
[41] K. Khan and M. Ali Akbar, Traveling wave solutions of the (2 + 1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method, *Ain Shams Eng. J.*, 5 (2014), 247–256.

[42] S. Koonprasert, S. Sirisubtawee and S. Ampun, More explicit solitary solutions of the space-time fractional fifth order nonlinear Sawada-Kotera equation via the improved generalized Riccati equation mapping method, *Comput. Math. with Appl.*, 13 (2017), 2629–2658.

[43] C.-K. Kuo and B. Ghanbari, Resonant multi-soliton solutions to new (3 + 1)-dimensional Jimbo–Miwa equations by applying the linear superposition principle, *Nonlinear Dyn.*, 96 (2019), 459–464.

[44] W. Liu, D.-Q. Qiu, Z.-W. Wu and J.-S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan - Porsezian - Daniel equation, *Commun. Theor. Phys.*, 65 (2016), 671–676.

[45] J. Manafian and M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, *Eur. Phys. J. Plus*, 131 (2016), 97.

[46] J. Manafian, M. Foroutan and A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, *Eur. Phys. J. Plus*, 132 (2017), 494.

[47] J. Manafian, M. Lakestani and A. Bekir, Study of the analytical treatment of the (2 + 1)-Dimensional Zoomeron, the duffing and the SRLW equations via a new analytical approach, *Int. J. Appl. Comput. Math.*, 2 (2016), 243–268.

[48] Ö. Oruç, F. Bulut and A. Esen, Numerical solution of the KdV equation by Haar wavelet method, *Pramana*, 87 (2016), 94.

[49] K. M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, *Chaos*, 29 (2019), 023111, 12pp.

[50] H. Rezazadeh, M. Mirzazadeh, S. M. Mirhosseini-Alizamini, A. Neirameh, M. Eslami and Q. Zhou, Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities, *Optik*, 164 (2018), 414–423.

[51] A. R. Seadawy, D. Kumar and A. K. Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method, *Eur. Phys. J. Plus*, 133 (2018), 182.

[52] T. A. Sulaiman, H. Bulut, A. Yokus and H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, *Indian J. Phys.*, 93 (2019), 647–656.

[53] J. Vega-Guzman, A. Biswas, M. F. Mahmood, Q. Zhou, S. P. Moshokoa and M. Belic, Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients, *Optik*, 171 (2018), 114–119.

[54] J. Vega-Guzman et al., Optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion using the method of undetermined coefficients, *Optik*, 144 (2017), 115–123.

[55] X.-F. Yang, Z.-C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, *Adv. Difference Equ.*, 2015 (2015), 117.

[56] X.-J. Yang, F. Gao and H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, *Comput. Math. Appl.*, 73 (2017), 203–210.

[57] X.-J. Yang, H. M. Srivastava and C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, *Rom. Reports Phys.*, 67 (2015), 752–761.

[58] Y. Yang, Z. Yan and B. A. Malomed, Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation, *Chaos*, 25 (2015), 103112, 9pp.

[59] X. Yang, Y. Yang, C. Cattani and M. Zhu, A new technique for solving the 1-D Burgers equation, *Therm. Sci.*, 21 (2017), 129–136.

[60] H. Yepes-Martínez and J. F. Gómez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical fibers, *Optical and Quantum Electronics*, 51 (2019), 31.

[61] A. Yokus, H. M. Baskonus, T. A. Sulaiman and H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionary system, *Numer. Methods Partial Differ. Equ.*, 34 (2018), 211–227.
[62] M. A. Yousif, B. A. Mahmood, K. K. Ali and H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, *Int. J. Pure Appl. Math.*, **107** (2016), 289–300.

[63] A. Zeeshan, H. F. Ismael, M. A. Yousif, T. Mahmood and S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, *J. Magn.*, **23** (2018), 491–498.

[64] Z. Zheng, W. Zhao and H. Dai, A new definition of fractional derivative, *Int. J. Non. Linear. Mech.*, **108** (2019), 1–6.

Received July 2019; revised November 2019.

E-mail address: hajar.ismael@uoz.edu.krd
E-mail address: hmbaskonus@gmail.com
E-mail address: hbulut@firat.edu.tr