Obesity and response to neoadjuvant chemotherapy in breast cancer: implication of the apelinergic system.

Florian Gourgue1-2*, Françoise Derouane3*, Cedric van Marcke3, Elodie Villar4, Helene Dano5, Lieven Desmet6, Caroline Bouzin7, Francois P. Duhoux3**, Patrice D. Cani2**, Bénédicte F. Jordan1**

*,** these authors contributed equally to this work

1 Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
2 Metabolism & Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), UCLouvain, Université catholique de Louvain, Brussels, Belgium
3 Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
4 Breast Clinic, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Brussels, Belgium
5 Cliniques Universitaires St Luc, Departement of Pathology, Brussels, Belgium
6 Statistical Methodology and Computing Service, LIDAM, Université catholique de Louvain, Brussels, Belgium
7 Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium

Corresponding authors:
Benedicte F. Jordan benedicte.jordan@uclouvain.be
Patrice D. Cani patrice.cani@uclouvain.be
François P. Duhoux francois.duhoux@uclouvain.be

Abstract

Obese subjects present higher risk of developing mammary tumors, worse disease free survival and altered response to neoadjuvant chemotherapy (NAC). The circulating levels of the apelin adipokines are increased in obese subjects and are associated with poorer prognosis in cancer patients. In this study, we showed that obesity and tumoral apelin expression are two factors associated with incomplete response to NAC in breast cancer patients.

Keywords:
Obesity-cancer link, apelin, neoadjuvant chemotherapy
Introduction

Breast cancer (BC) is the most common cancer and the leading cause of cancer death among women (1). It is now recognized that obesity, a condition that has reached pandemic proportions, is a risk factor for BC (2). Several potential mechanisms linking obesity and cancer have been identified, including the altered adipokines secretion (3, 4). Obese patients have increased circulating levels of the adipokine apelin (5, 6). We recently demonstrated in an *in vivo* study that this adipokine is implicated in the relation between obesity and BC (7). Reproducing obesity-related levels of apelin is sufficient to promote BC growth and metastatization (7). Besides promoting BC, recent data showed that obesity affects response to neoadjuvant or adjuvant chemotherapy for BC patients (8). As tumor apelin expression or its receptor APJ have been associated with poor survival in humans (9), we hypothesized that the apelinergic system could also be implicated in the adverse relation between obesity and pathological complete response (pCR) to NAC in BC patients.

Patients and methods

Patients

We retrospectively collected a series of 62 patients with early BC, treated with NAC at Cliniques universitaires Saint-Luc (a tertiary care center in Brussels, Belgium) between 2012 and 2020. Patients had received the same chemotherapy regimen and had remaining pre-treatment tumor samples available. Baseline information at diagnosis included anthropometric measurements, menopausal and diabetic status.

Tumors biopsies

Patients underwent biopsy at diagnosis. Hormone receptor status (estrogen receptor alpha and progesterone receptor) was evaluated by immunohistochemistry (IHC) and reported with the Allred score. Human epidermal growth factor receptor 2 (HER2) gene amplification status was determined by IHC and considered as positive for a staining superior to 10%. Subtypes are categorized as following: hormone receptor positive (HR+), HR+ HER2+, HER2+ and triple negative. Histological grade was assessed by the Nottingham scoring system. High Ki-67 index was determined for IHC staining above 15%. Nodes involvement at diagnosis was assessed by clinical evaluation or by cytopunction.

Neo-adjuvant regimen

Patients underwent neo-adjuvant regimen including combination of anthracycline and taxanes. Depending on the recommendations at the time of diagnosis, patients have received either: 4 cycles
of 5-fluorouracile (500mg/m²), epirubicin (100mg/m²), cyclophosphamide (500mg/m²) followed by 4 cycles of docetaxel (100mg/m²) or 4 cycles of epirubicin (90mg/m²) and cyclophosphamide (600mg/m²) followed by 12 cycles of paclitaxel (80mg/m²). Trastuzumab (6mg/m²) was administered if case of HER2 positive status.

Immunohistochemistry

Biopsies were fixed in 4% paraformaldehyde for 24h at room temperature before processing for paraffin embedding. Sections of 5µm were submitted to endogenous peroxidases inhibition. Sections were then subjected to antigen retrieval in 10 mM citrate buffer pH 5.7 and to blocking of aspecific antigen binding sites (TBS containing 5% BSA and 0.05% Triton). Anti-apelin and anti-APJ primary antibody (Apelin: Abcam59469, APJ: Abcam214369) were incubated in TBS containing 1% BSA and 0.05% Triton and detected with anti-rabbit horseradish peroxidase-conjugated polymer secondary antibodies (Agilent) overnight at 4°C. HRP was then visualized by DAB (Agilent). Cell nuclei were counterstained with hematoxylin. Stained slides were then digitalized using a SCN400 slide scanner (Leica Biosystems) at 40× magnification and tumor area were detected by a Pathologist. Percentage of stained tissue was analyzed using Visiopharm software.

Statistical methods

Statistical analyses were performed using Graphpad Prism 8.0. For descriptive analyses, categorical parameters were presented as distribution of frequencies and continuous parameters as mean +/- standard deviation. Descriptive analyses were performed using Chi-square test for categorical parameters and one-way ANOVA for continuous parameters. Factor associations with pathological complete response were tested by univariate and multivariate logistic regression. A p-value of ≤ .05 was considered significant.

RESULTS

Patients’ characteristics

Body mass index (BMI) at diagnosis was used to classify the 62 patients into three categories: normal weight (BMI < 25 kg/m²), overweight (BMI 25-30 kg/m²) and obese (BMI > 30 kg/m²) (Table 1). Thirty-five percent of patients were of normal weight, 40% were overweight and 25% were obese. The average age of patients at diagnosis was 52.6 ± 12.4 years, (range 33 to 75 years old). There was a trend towards overrepresentation of older patients in the overweight group (56.8 years ± 9.96) as compared to the normal weight group (49.1 years ± 13.73). This tendency was not observed in the obese category (50.5 years ± 12.86). Altogether, age did not correlate with BMI in this cohort (Figure 1). The overweight group was enriched in post-menopausal women, compared to normal weight and obese patients (72%
- 41% - 40% respectively, p=0.01). Two obese patients (3%) were diabetic. The majority of BC cases in the normal weight and obese groups were luminal. BC subtype was not significantly different between the subgroups. However, the overweight BC group was numerically enriched in triple negative BC cases, compared to normal weight and obese patients (36% - 18% - 7% respectively). Tumor size and cell proliferation were not significantly different among the three BMI categories. The majority of BC were of grade III. Nevertheless, tumor grade significantly diverged between the three subgroups, with a lower proportion of high-grade tumors in the obese patients (60%). Node infiltration did not differ between the subgroups.

The pCR rate was significantly different between the three subgroups, with a trend towards decreased efficacy of chemotherapy with increasing BMI category.

Insertion TABLE 1

![Age - BMI](image)

Figure 1: Correlation between age and BMI of patients (N=62).

BMI and tumor apelin are independently associated with NAC pCR in BC

We investigated the link between pCR after NAC and BMI by univariate and multivariate logistic regression, accounting for several parameters known to potentially affect pCR. These parameters were BMI, menopausal status, tumor grade, tumor size, nodal involvement and hormone receptor expression (Table 2). Moreover, we analyzed tumoral expression of the adipokine apelin and its receptor APJ, as our team recently highlighted in mouse models that obesity promotes tumor apelin expression and that high circulating apelin favors BC aggressiveness(7). Interestingly, only BMI (Odds ratio (OR) of 0.86, 95% confidence interval (CI) 0.74-0.99) and tumor apelin expression (OR of 0.90, 95% CI 0.83-0.97) were significantly associated with pCR in the multivariate analysis. No other factor
was significantly associated with pCR. Tumor apelin did not correlate with BMI (Figure 2), suggesting these two parameters might affect pCR independently.

	Univariate analysis	Multivariate analysis		
	Odds ratio (95% CI)	p-value	Odds ratio (95% CI)	p-value
BMI	0.88 (0.78 - 0.99)	0.03	0.86 (0.74 – 0.99)	0.04
Postmenopausal	1.21 (0.44 - 3.39)	0.72	0.85 (0.23 – 2.98)	0.80
High grade (III)	2.72 (0.73 - 13.2)	0.14	2.49 (0.47 – 15.67)	0.30
Size > 2cm	1.71 (0.56 – 5.67)	0.35	1.52 (0.36 – 6.73)	0.57
Node	1.02 (0.35 – 3.10)	0.97	1.73 (0.42 – 7.76)	0.46
HR+	0.59 (0.21 – 1.66)	0.31	0.51 (0.13 – 1.90)	0.32
Apelin tumoral	0.95 (0.88 – 1.00)	0.06	0.90 (0.83 – 0.97)	0.01
APIJ tumoral	1.02 (0.96 – 1.07)	0.59	1.04 (0.98 – 1.13)	0.22

Table 2: Univariate and multivariate logistic regression of clinical factors and odds ratio of pathological complete response (N=62). BMI: Body mass index, HR+: hormone receptor positive, APIJ: apelin receptor.

![Apelin - BMI](image)

Figure 2: Correlation between tumor apelin expression and BMI of patients (N=62).

Discussion

In this study, we retrospectively assessed the efficacy of anthracycline and taxanes-based NAC in 62 early BC patients. We explored whether weight status was associated with pCR rate. BMI was significantly associated with a poorer response to NAC in this cohort. We also observed numerical but not statistically significant trends towards higher pCR rate in high-grade tumors, and lower pCR rate in luminal tumors.
To further explore this association, we measured the tumoral expression of apelin and APJ. Interestingly, we discovered that high tumor apelin expression was significantly associated with a lower rate of pCR in these patients. This finding is a novel factor adding to the growing list of evidence that this adipokine has a detrimental role in cancer. Indeed, several preclinical and clinical studies have shown that apelin correlates with metastatization and poor overall survival (9, 10). Here, our clinical exploratory study suggests that tumor expression of apelin in BC is also associated with a poor response to NAC, a factor associated with worse disease-free survival (11).

In our previous preclinical study, we found that BC tumors developing in obese mice display an increased tumoral apelin expression. In the current cohort, BMI and tumor apelin did not correlate, suggesting these two parameters might affect pCR independently. This should be interpreted cautiously, as only 3% of patients were diabetic in our cohort, whereas the mice we used in preclinical studies were diabetic. Indeed, insulin is the main inducer of apelin expression (12) and could explain why obese subjects have increased apelin expression levels.

The small sample size and retrospective nature of our study are other limitations. These findings are thus hypothesis generating and must be validated in an independent, prospective cohort. In addition, a new study would allow us to refine our model by including other obesity-related parameters such as insulin sensitivity and circulating levels of apelin expression. Indeed, in a retrospective study, circulating levels of apelin were directly correlated with cancer stage in several different forms of tumors, including BC (13). Moreover, even if the use of BMI as a parameter for obesity is used in daily clinical practice, the use of waist-to-hip ratio as parameter for central obesity could be more appropriate to study the implication of obesity and apelin in response to NAC in BC patients.

In conclusion, in this retrospective exploratory study on 62 early BC patients treated with taxane and anthracycline-based NAC, BMI and tumor apelin expression were significantly and independently associated with poorer pCR rates. This observation supports the notion that besides their role in development of BC, both obesity and specific adipokines could play a role in the response to chemotherapy.
Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Cliniques universitaires Saint-Luc (2017/25JUL/376).

Fundings

BJ is research director and PDC is a senior research associate at FRS-FNRS (Fonds de la Recherche Scientifique), Belgium. This work was supported by the Fonds de la Recherche Scientifique (FNRS FRFS-WELBIO) under the grants WELBIO-CR-2019C-02R. PDC is a recipient of the Funds Baillet Latour (Grant for Medical Research 2015). F.P. Duhoux received a postdoctoral clinical mandate (2017-034) from the not-for-profit organization ‘Foundation Against Cancer’ (Brussels, Belgium). Florian Gourgue is a FRIA grant holder of the FRS-FNSR, Belgium. F. Derouane received a doctoral mandate from the Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc. CVM received a post-doctoral clinician-researcher FRC mandate from the Cliniques universitaires Saint-Luc.

Authors’ contributions

FG, FD, FPD, PDC, BFJ conceived and designed the study. FG, FD, CVM, EV, HD, CB developed the methodology. FG, FD, CVM, LD analyzed and interpreted the data. FG, FD, CVM, FDP, PDC, BFJ wrote, reviewed, and/or revised the manuscript. All authors have read and approved the manuscript.

Acknowledgments

We thank Michele de Beukelaer from the 2IP imaging platform of UCLouvain for technical assistance.

Abbreviation

Abbreviation	Description
APJ	Apelin receptor
BC	Breast Cancer
BMI	Body mass index
HER2	Human epidermal growth factor receptor 2
HR	Hormone receptor
IHC	Immunohistochemistry
NAC	Neoadjuvant chemotherapy
pCR	Pathological complete response

Consent for publication

Not applicable.
Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data that support the findings of this study are available from the corresponding authors upon request.

Table 1: Clinical characteristics of patients based on BMI category (N=62)

	Normal Weight (BMI 18.5-24.9)	Overweight (BMI 25-29.9)	Obese (BMI ≥ 30)	Total (N=62)	p-value
BMI repartition	22 (35%)	25 (42%)	15 (22%)	02 (100%)	
Mean age (year) + SD	46.1 ±13.74	56.8 ±9.96	50.5 ±12.86	52.6 ±12.43	0.16
Menopausal status	Premenopausal 13 (59%)	7 (28%)	9 (60%)	29 (47%)	0.01
	Postmenopausal 9 (41%)	18 (72%)	6 (40%)	33 (53%)	
Type II diabetic	Yes 0 (0%)	0 (0%)	2 (13%)	2 (3%)	*
	No 22 (100%)	25 (100%)	13 (87%)	60 (97%)	
Molecular subtype	HR+ 9 (41%)	7 (28%)	10 (60%)	26 (42%)	0.18
	HR+ HER2+ 5 (23%)	5 (23%)	1 (7%)	11 (18%)	
	HER2+ 4 (18%)	4 (19%)	3 (20%)	11 (18%)	
	TNBC 4 (18%)	9 (39%)	1 (7%)	14 (22%)	
High Tumor size ≥2cm	Yes 17 (77%)	18 (72%)	8 (53%)	43 (69%)	0.28
	No 5 (23%)	7 (28%)	7 (47%)	19 (31%)	
Tumor grade	I-II 1 (5%)	6 (24%)	6 (40%)	13 (21%)	0.03
	III 21 (65%)	19 (76%)	9 (60%)	49 (79%)	
High Ki67 ≥15%	Yes 26 (81%)	13 (57%)	15 (100%)	58 (94%)	0.49
	No 2 (6%)	2 (8%)	0 (0%)	4 (6%)	
Nodal infiltration	Yes 14 (64%)	16 (64%)	12 (80%)	42 (68%)	0.51
	No 8 (36%)	9 (36%)	3 (20%)	20 (32%)	
pCR	Yes 12 (55%)	11 (44%)	2 (13%)	25 (40%)	0.03
	No 10 (45%)	14 (56%)	13 (87%)	33 (50%)	

BMI: Body-mass index, SD: standard deviation, pCR: pathological complete response, HR: hormone receptor, TNBC: triple negative breast cancer. Anova one-way analysis for mean age, Chi square test for other parameters. P-values are annotated.

* Too few parameters to perform a Chi-square analysis.
References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
2. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625-38.
3. Niu J, Jiang L, Guo W, Shao L, Liu Y, Wang L. The Association between Leptin Level and Breast Cancer: A Meta-Analysis. PLoS One. 2013;8(6):e67349.
4. Gu L, Cao C, Fu J, Li Q, Li DH, Chen MY. Serum adiponectin in breast cancer: A meta-analysis. Medicine (Baltimore). 2018;97(29):e11433.
5. Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146(4):1764-71.
6. Krist J, Wieder K, Klöting N, Oberbach A, Kralisch S, Wiesner T, et al. Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes Facts. 2013;6(1):57-69.
7. Gourgue F, Mignon L, Van Hul M, Dehaen N, Bastien E, Payen V, et al. Obesity and triple-negative-breast-cancer: Is apelin a new key target? J Cell Mol Med. 2020.
8. Desmedt C, Fornili M, Clatot F, Demicheli R, De Bortoli D, Di Leo A, et al. Differential Benefit of Adjuvant Docetaxel-Based Chemotherapy in Patients With Early Breast Cancer According to Baseline Body Mass Index. J Clin Oncol. 2020;38(25):2883-91.
9. Feng M, Yao G, Yu H, Qing Y, Wang K. Tumor apelin, not serum apelin, is associated with the clinical features and prognosis of gastric cancer. BMC Cancer. 2016;16(1):794.
10. Uribesalgo I, Hoffmann D, Zhang Y, Kavirayani A, Lazovic J, Berta J, et al. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med. 2019;11(8):e9266.
11. Spring LM, Fell G, Arfe A, Sharma C, Greenup R, Reynolds KL, et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin Cancer Res. 2020;26(12):2838-48.
12. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008;8(5):437-45.
13. Lacquaniti A, Altavilla G, Picone A, Donato V, Chirico V, Mondello P, et al. Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med. 2015;15(1):97-105.