Coherent emission from surface Josephson plasmons in striped cuprates

D. Nicoletti1,2, M. Buzzia, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri

The interplay between charge order and superconductivity remains one of the central themes of research in quantum materials. In the case of cuprates, the coupling between striped charge fluctuations and local electromagnetic fields is especially important, as it affects transport properties, coherence, and dimensionality of superconducting correlations. Here, we study the emission of coherent terahertz radiation in single-layer cuprates of the La2−xBaxCuO4 family, for which this effect is expected to be forbidden by symmetry. We find that emission vanishes for compounds in which the stripes are quasi-static but is activated when a-axis inversion symmetry is broken by incommensurate or fluctuating charge stripes, such as in La1.905Ba0.095CuO4 and in La1.845Ba0.155CuO4. In this case, terahertz radiation is emitted by surface Josephson plasmons, which are generally dark modes, but couple to free space electromagnetic radiation because of the stripe modulation.

Significance

We observe anomalous terahertz emission in photo-excited high-TEX cuprates with coexisting superconductivity and charge-stripe order, in absence of any external magnetic field or current bias. Because this phenomenon should be forbidden by symmetry, our observation indicates a symmetry breaking in the stripe phase. The emission spectrum reveals the excitation of surface Josephson plasmons, which are generally dark modes but become coupled to the electromagnetic continuum in these materials by the presence of stripes. The study of coherent anomalous terahertz emission emerges as a sensitive tool to probe the symmetry of superconductors in the presence of frustrated couplings, which is a key topic in the physics of these materials.

Author affiliations: 1Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany; 2Department of Physics, Harvard University, Cambridge, MA 02138; 3Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland; 4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, and Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

Author contributions: D.N., M.B., E.D., and A.C. designed research; D.N., M.B., M.F., P.E.D., M.H.M., J.B.C., E.D., G.D.G., and A.C. performed research; D.N. and M.B. analyzed data; and D.N., M.B., and A.C. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.

Downloaded from https://www.pnas.org/ by 77.8.194.181 on September 21, 2022 from IP address 77.8.194.181.

Published September 20, 2022.
La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), for which superconductivity coexists with charge stripes (27). We focused on three LBCO compounds: La$_{1.885}$Ba$_{0.115}$CuO$_4$ (LBCO 11.5%, $T_C = 13$ K), where the superconducting transition is highly depleted by a robust stripe phase below the charge ordering temperature $T_{CO} = 53$ K, La$_{1.845}$Ba$_{0.155}$CuO$_4$ (LBCO 15.5%, $T_C = 30$ K, $T_{CO} = 40$ K), placed at the nominal optimal doping and characterized by weak, highly fluctuating stripes (27), and La$_{1.905}$Ba$_{0.095}$CuO$_4$ (LBCO 9.5%, $T_C = T_{CO} = 33$ K), for which the stripes have an intermediate intensity and correlation length compared with the other two compounds (27), but in contrast to them are here highly incommensurate (33, 34). The location of the three samples in the LBCO phase diagram is shown in Fig. 1 B–D.

We note that LBCO is the same cuprate in which signatures of optically enhanced superconductivity have been measured (35–38) and attributed to the ultrafast perturbation of the stripe order (39, 40). In addition, a number of nonlinear optical effects, such as THz parametric amplification (41) and third-harmonic generation (2), related to the resonant driving of Josephson plasma waves, have also been measured.

The main result of our experiment is summarized in Fig. 1 E–L, where the measured THz emission traces are reported for the four investigated compounds for selected temperatures, at a constant pump fluence of 2.5 mJ/cm2. The experimental geometry is shown in the insets of the lower panels. We used the output of an amplified Ti:Sa laser as pump pulses, with a duration of 100 fs and photon energy of 1.55 eV (800 nm wavelength). These were focused at normal incidence onto an ac-oriented sample surface, with polarization parallel to the c axis. As a result of photoexcitation, c-polarized THz radiation is emitted. Ampl., amplitude.

Fig. 1. (A–D) Temperature-doping phase diagrams of the four compounds investigated in the present study. T_{CO}, T_{SO}, and T_C stand for the charge ordering, the spin ordering, and the superconducting critical temperature, respectively. (E–H) Time-dependent THz emission traces taken for a pump fluence of 2.5 mJ/cm2 at the temperatures indicated by full circles in (A–D). Solid lines represent multicomponent fits to the data (SI Appendix). The vertical scales in the three panels are mutually calibrated. (I–L) Fourier transforms (circles) of selected time-domain traces in (E–H). Solid lines are multi-Gaussian fits. Insets: Experimental geometry. Near-infrared (NIR) pump pulses are shone at normal incidence onto an ac-oriented sample surface, with polarization parallel to the c axis. As a result of photoexcitation, c-polarized THz radiation is emitted. Ampl., amplitude.
a “single-cycle” pulse at early times, which was absent at the lowest fluences and grew quadratically with irradiation, and a quasi-monochromatic, long-lived oscillation, which grew linearly up to about 1 mJ/cm² and tended to saturate for higher excitation fluence (Fig. 2B). This linear trend of the main oscillation is compatible with the impulsive excitation of a coherent mode. In the fluence-dependent behavior of lifetime and oscillation frequency (Fig. 2 C and D), we identify a linear excitation regime where these quantities are weakly dependent on fluence and seem to stabilize at constant values of ~4 ps and ~0.45 THz, respectively. In this weak excitation regime, the driven mode parameters are well determined.

In Fig. 3, we report the temperature dependence of this effect. We show a comparison between the oscillation frequency in the THz emission signal in LBCO 9.5%, and the bulk Josephson plasma resonance measured at equilibrium with time-resolved THz spectroscopy in the same sample. In the inset of Fig. 3A, we show the experimental geometry in which we illuminated the sample with weak broadband THz pulses (generated in a 200-μm-thick GaP), polarized along the out-of-plane direction, that were then detected in another 200-μm-thick GaP crystal via electro-optic sampling after being reflected from the sample surface.

Fig. 3A displays examples of reflectivity ratios at two temperatures below T_C, normalized by the same quantity measured in the normal state. These curves evidence a Josephson plasma resonance, the exact frequency of which was determined by fitting the experimental data with a Josephson plasma model (solid lines) (35, 38). The key result of this analysis is displayed in Fig. 3B, in which we show a comparison of the temperature dependence of the Josephson plasma frequency at equilibrium (gray) with the frequency of the emitted oscillations for two pump fluences. Notably, the emitted mode frequency hardens with decreasing fluence and approaches the equilibrium plasma frequency measured at the corresponding base temperature.

In interpreting our results, we first note that in a centrosymmetric cuprate, impulsive excitation of Josephson plasmons is forbidden by symmetry. Josephson plasma modes are in fact symmetry-odd (infrared-active), while impulsive photoexcitation couples only to totally symmetric modes (42). As discussed in a related theory work (43), a prerequisite for the excitation of these modes is that charge order breaks inversion symmetry. However, this does not happen for commensurate quasi-static stripes as

Fig. 2. Pump fluence-dependent THz emission in La$_{1.905}$Ba$_{0.095}$CuO$_4$ at $T = 7$ K. (A) Experimental traces taken for different pump fluences (full circles). Solid lines are multicomponent fits to the data, which include a quasi-monochromatic, long-lived oscillation and a “single-cycle” component around time 0 (SI Appendix). (B-D) Fluence-dependent parameters of the quasi-monochromatic oscillation extracted from the fits in (A). Ampl., amplitude; Freq., frequency.

The THz emission in the superconducting state acquired an appreciable amplitude, with oscillations at a frequency of ~600 GHz (depending on temperature). In the compound with incommensurate, relatively strong stripes, i.e., LBCO 9.5%, the THz emission amplitude was even higher than LBCO 15.5% and greater by a factor of ~5–10 compared with LSCO and LBCO 11.5%. Coherent multicycle oscillations were observed (Fig. 1D). The frequency of these oscillations shifted to the red with increasing temperature, while also reducing in amplitude and disappearing at T_C.

The rest of the analysis in this paper is focused on LBCO 9.5%, which yielded the largest signal and highest coherence. We report the single components in the SI Appendix. These include
those expected for dopings \(x \approx 1/8 \) (33, 34), which exhibit a twofold screw axis along the out-of-plane direction (see Fig. 4A) (44). A symmetry breaking is expected instead for incommensurate or highly fluctuating stripes, as in the case of LBCO 9.5% and LBCO 15.5%. Here, the charge order correlation length along the out-of-plane direction is of the order of one unit cell (27), resulting in a loss of the phase relation between stripes in next-nearest-neighboring planes (Fig. 4B).

Once inversion symmetry is broken, electromagnetic emission at a frequency \(\omega \ll \omega_{pump} \) can result from rectification of the optical pulse. We associate the optically rectified drive for plasma oscillations with the excitation of a shift current (43, 44) at the sample surface. This is expected to interact with modes at \(\omega \approx \omega_{ph} \), of which one finds at least two: 1) a bulk Josephson plasma polaron, sustained by tunneling supercurrents oriented in the \(z \) (out-of-plane) direction and propagating along the \(x \) (in-plane) direction; and 2) a surface Josephson plasmon, also sustained by plasma oscillations in the \(z \) direction, but localized at the surface of the material and propagating along \(z \). The dispersion relations for these two modes are shown in Fig. 4C and D, respectively (45).

Radiation from bulk plasma polaritons (Fig. 4C), excited over a depth between \(\sim 200 \) nm (skin depth of the pump) and \(\sim 1 \) \(\mu m \) (46), would be expected to be broad in frequency and overdamped. This is because excitation by the near-infrared pump covers a wide range of in-plane momenta, \(q_x \), which, in the first instance, is limited only by the envelope bandwidth of the pump pulse (gray shading in Fig. 4C). The spectrum of Josephson plasmons would, in this case, also be independent of the details of the stripe order and of its correlation lengths, as is instead observed. Moreover, one would expect radiation at frequencies \(\omega \gg \omega_{ph} \), in contrast to the experimental observation of a slightly redshifted emission with respect to the plasma frequency (Fig. 3B).

Coherent narrowband emission by surface Josephson plasmons is instead more likely. Although the dispersion of these modes lies below the light cone and, hence, they are not expected to radiate into vacuum (Fig. 4D), we argue here that Bragg scattering off the stripe order induces a backfolding, defined by the stripe wave vector, into a reduced Brillouin zone (dashed horizontal line in Fig. 4D). For this reason, these surface modes can radiate, much like a situation in which a fabricated corrugation would be used to achieve the coupling (47–50).

In the right panel of Fig. 4D, we report the emission spectrum calculated for a striped superconductor through the excitation of surface Josephson plasmons. As extensively discussed in our related theory work (43,44), in the presence of stripes, the pump pulse is expected to give origin to an Umklapp shift current, \(j_z \cos(Q_{stripes}z) \), that is modulated in space by the stripe wave vector, \(Q_{stripes} \). This naturally drives high-momenta surface plasmons, which can radiate out due to the aforementioned backfolding mechanism.

In summary, we have reported the observation of coherent THz emission just below the Josephson plasma frequency in cuprates for which the superconducting state coexists with stripes. We assigned this effect to the excitation of surface Josephson plasmons, which become Raman active due to the breaking of inversion symmetry induced by the stripes and can radiate out thanks to the backfolding of their dispersion curve onto the light cone. Based on these findings, the characterization of coherent THz emission emerges as a sensitive method to unveil broken symmetry states, which may not be detectable with other conventional techniques. Moreover, the absence of THz emission in LBCO 11.5%, where the stripes are more robust and quasi-static, may suggest a qualitative difference in the nature of charge and spin order between compounds that are in the vicinity of the commensurate 1/8 doping and those that are far from it.

Data, Materials, and Software Availability. All study data are included in the article and/or SI Appendix.
ACKNOWLEDGMENTS. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft (German Research Foundation) via the excellence cluster “CUI: Advanced Imaging of Matter” (EXC 2056, project ID 390715994) and the priority program SFB925 (project ID 170620586). E.D. acknowledges support from AFOSR-MURI: Photonic Quantum Matter award FA95501610323, DARPA DRINOS, the ARO et al. 23. Y. Tominari et al. 24. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, S. Urido, Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995). 25. E. Berg et al., Dynamical layer decoupling in a stripe-ordered high- TCu superconductor. Phys. Rev. Lett. 99, 127003 (2007). 26. E. Berg, E. Fra dział, S. A. Kivelson, J. M. Tranquada, Striped superconductors: How spin, charge and superconducting orders interwane in the cuprates. New J. Phys. 11, 115004 (2009). 27. S. Badou et al., Critical doping for the onset of fermi-surface reconstruction by charge-density-wave order in the cuprate superconductor La2-xSrxCuO4. Phys. Rev. X 6, 021004 (2016). 28. J.-J. Wen et al., Observation of two types of charge-density-wave orders in superconducting La2-xSrxCuO4. Nat. Commun. 10, 3269 (2019). 29. J. Lorenzoen, S. Seibold, Metallic mean-field stripes, incommensurability, and chemical potential in cuprates. Phys. Rev. Lett. 89, 136401 (2002). 30. H. Xiao et al., Formation of incommensurate charge density waves in cuprates. Phys. Rev. X 9, 031042 (2019). 31. D. Nocetti et al., Opticaly induced superconductivity in striped La2–xSrxCuO4 by polarization-selective excitation in the near infrared. Phys. Rev. B 90, 100503(R) (2014). 32. E. Casandruc et al., Wavelength-dependent optical enhancement of superconducting interlayer coupling in La1.868Sr0.132CuO4. Phys. Rev. B 89, 174502 (2015). 33. K. A. Cremin et al., Photoluminescence of stripe-ordered cuprate La2-xSrxCuO4 by anisotropic electrodynamics in stripe-ordered cuprate La2-xSrxCuO4. Nat. Nanotechnol. 10, 363 (2015). 34. D. Nocetti et al., Magnetic-field tuning of light-induced superconductivity in striped La2–xSrxCuO4. Phys. Rev. Lett. 121, 267003 (2018). 35. F. Först et al., Melting of charge stripes in vibrationally driven La2–xSrxCuO4. Phys. Rev. X 9, 031042 (2019). 36. V. Khanm et al., Restoring interlayer Josephson coupling in La2–xSrxCuO4 by charge transfer melting of stripe order. Phys. Rev. B 93, 224522 (2016). 37. E. Rajasekaran et al., Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016). 38. L. Dhar, J. A. Rogers, K. A. Nelson, Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994). 39. P. E. Dolgirev et al., Theory for anomalous terahertz emission in striped cuprate superconductors. arXiv:2112.05772 (2021). 40. P. E. Dolgirev et al., Optically induced Umklapp shift currents in striped cuprates. arXiv:2203.04867 (2022). 41. H. T. Stinson et al., Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Phys. Rev. B 90, 014502 (2014). 42. H. Noda et al., Light-induced nonequilibrium response of the superconducting cuprate La2–xSrxCuO4. Phys. Rev. B 100, 104507 (2019). 43. F. J. Dunmore et al., Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films. Phys. Rev. B 52, R731–R734 (1995). 44. D. Schumacher, C. Rea, D. Heitmann, K. Scharnberg, Surface plasmons and Sommerfeld-Zenneck waves on corrugated surfaces: Application to high-Tc superconductors. Surf. Sci. 408, 203–211 (1998). 45. A. Taitumas et al., Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett. 97, 111906 (2010). 46. A. Taitumas, V. A. Fedotov, F. J. G. de Abajo, N. I. Zheludev, Low-loss terahertz superconducting plasmonics. New J. Phys. 14, 115006 (2012).