Supplemental Material

A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens

Stephanie Kim, Eric Reed, Stefano Monti, and Jennifer J. Schlezinger

Table of Contents

Table S1. Chemical information.

Table S2. Mouse (M) and human (H) primer sequences for reverse transcription qPCR.

Table S3. Metabolic parameters included and excluded in human transcriptome analysis.

Excel File 1. Detailed results from random forest classification.

Excel File 2. Detailed annotation of clustering results for individual modules.

Excel File 3. Supporting numerical data from all cell culture experiments.

Excel File 4. Detailed results of partial correlation analysis of clinical measurements and projections of chemical taxonomy gene signatures onto human adipose gene expression.

Figure S1. Differentiation and dosing protocols for 3T3-L1 cells (A) and primary human preadipocytes (B). DM, Differentiation medium; MM, Maintenance medium; AM, Adipocyte medium.

Figure S2. Correlation of lipid accumulation with Cidec, Fabp4, and Plin1 expression in differentiated and treated 3T3-L1 pre-adipocytes.

Figure S3. Lipid accumulation in differentiated and treated 3T3-L1 pre-adipocytes in the absence of dexamethasone.
Figure S4. Lipid accumulation in differentiated and treated OP9 pre-adipocytes.

Figure S5. Performance comparison of random forest methods.

Figure S6. Classification Results (Distributions of individual genes).

Figure S7. Cell number analyses in the differentiated and treated 3T3-L1s.

Figure S8. White and brite gene expression in 3T3-L1 adipocytes differentiated with 250 nM dexamethasone and treated with potential adipogens.

Figure S9. Spearman correlation analysis of lipid accumulation (Nile Red) and gene expression.

Figure S10. Cell number analyses in the differentiated and quinoxyfen and tonalide treated 3T3-L1s and human primary preadipocytes.

References

Additional File- Excel Documents
Chemical Name	Abbr.	CAS #	Supplier	Catalog #	Max. Conc. Tested [M]	Max. Non-Toxic Conc. [M]*	PPARγ Ligand or Modifier	Purity	Reference		
15-deoxy-Δ12,14-prostaglandin J2	15dPGJ	87893-55-8	Cayman Chemical Ultra Scientific	18570	1x10-6	1x10-6	Yes PPARγ ligand	> 95%	(Forman et al. 1995)		
2,2',4,4',5,5'-Hexachloro-1,1'-biphenyl	PCB153	35065-27-1	Tetrabromobenzotriazole	RPC-047	1x10-5	1x10-5	No evidence	NA*	---		
2,2',5,5'-Diphenyltrichloroethane	PCB52	35693-99-3	Sigma Aldrich	35599	1x10-5	1x10-5	No evidence	> 98%	---		
2,4,6-Tris(tert-butyl)phenol	TTBP	732-26-3	Sigma Aldrich	T49409	2x10-5	2x10-5	Potential	98%	(Auerbach et al. 2016)		
2-ethylhexanol	EthHex	104-76-7	Sigma Aldrich	W315109	1x10-5	1x10-5	No evidence	> 99%	---		
3,3',4,4',5-Pentachloro-1,1'-biphenyl	PCB126	57465-28-8	Ultra Scientific	RPC-102	1x10-8	1x10-8	No AhR^b ligand, Reduces adipogenesis	NA	(Gadupudi et al. 2015)		
3,3',5,5'-Tetrabromobisphenol A	TBBPA	79-94-7	Sigma Aldrich	330396	1x10-5	2x10-5	Yes PPARγ ligand	97%	(Riu et al. 2016)		
4,4'-Dichlorodiphenyldichloroethylene	DDE	72-55-9	Sigma Aldrich	48679	1x10-5	1x10-5	No ER ligand	NA	(Kim et al. 2016)		
4,4',5,6,7-Tetrabromobenzotriazol	DDT	50-29-3	Sigma Aldrich	40124	1x10-5	1x10-5	No ER ligand	NA	---		
9-cis-retinoic acid	9cRA	5300-03-8	Sigma Aldrich	R4643	1x10-6	1x10-6	Yes Activates PPARγ through RXR	> 98%	(Szeles et al. 2010)		
All-trans retinoic acid	ATRA	302-79-4	Sigma Aldrich	R2625	2x10-6	2x10-6	No RAR ligand, Reduces adipogenesis	> 98%	(Schwarz et al. 1997)		
Benzyl butyl phthalate	BBzP	85-68-7	Sigma Aldrich	36927	1x10-5	1x10-5	Induces PPARγ target genes and 3T3 L1 adipogenesis	98%	(Yin et al. 2016)		
Bisphenol A	BPA	80-05-7	Sigma Aldrich	239658	1x10-5	1x10-5	No ER ligand	> 99%	(Molina-Molina et al., 2013)		
Bisphenol A diglycidyl ether	BADGE	1675-54-3	Sigma Aldrich	D3415	1x10-5	1x10-5	Yes Induces PPARγ target genes and 3T3 L1 and	NA	(Chamorro-Garcia et al. 2012)		
Compound	Formulation	Source	Catalog Number	Concentration	Adipogenesis	ER Ligand	PPARγ Ligand	β3 Agonist	GR Ligand	Potential Adipogenesis	Reference
--------------------------------	-------------	---------------------	----------------	---------------	--------------	-----------	--------------	------------	-----------	------------------------	----------------------------------
Bisphenol S	BPS	Sigma Aldrich	43034	1x10-5	1x10-5	No	Yes	No		No	(Molina-Molina et al., 2013)
Candesartan	Cande	Sigma Aldrich	SML0245	2x10-5	4x10-6	Yes		No		Yes	(Erbe et al. 2006)
CL 316,243	CL316	Sigma Aldrich	C5976	5x10-6	5x10-6	Yes		No		Yes	(Erbe et al. 2006)
Corticosterone	Corti	Sigma Aldrich	27840	2x10-6	2x10-6	Yes		No		Yes	(Auerbach et al. 2016)
Cyazofamid	Cyazo	Sigma Aldrich	33874	4x10-5	2x10-5	Potential		NA		No	(Auerbach et al. 2016)
d-cis,trans-Allethrin	Allet	Sigma Aldrich	33396	2x10-5	1x10-5	Potential		NA		No	(Auerbach et al. 2016)
Dexamethasone	Dex-SP	Sigma Aldrich	D1159	2x10-7	2x10-7	No		No		No	(Feige et al. 2007)
Di(2-ethylhexyl) phthalate	DEHP	Sigma Aldrich	36735	1x10-5	1x10-5	Yes		No		Yes	Hiromori et al., 2009
Dibutyltin	DBT	Sigma Aldrich	205494	2x10-7	2x10-7	Yes		No		Yes	(Zhang et al., 2019)
Diisononyl phthalate	DINP	Sigma Aldrich	376663	1*10-5	1*10-5	Yes		No		Yes	(Temkin et al. 2016)
Dioctyl sulfosuccinate sodium	DOSS	Sigma Aldrich	323586	5x10-6	5x10-6	Potential		No		Yes	(Cano-Sancho et al. 2017)
Diphenyl phosphate	DiPhPho	Sigma Aldrich	850608	1x10-5	1x10-5	Potential		No		Yes	(Auerbach et al. 2016)
Ethylene brassylate	EtBra	Sigma Aldrich	W354309	1x10-5	1x10-5	No		No		Yes	(Auerbach et al. 2016)
Fenthion	Fenth	Sigma Aldrich	36552	4x10-5	4x10-5	Potential		No		Yes	(Auerbach et al. 2016)
Firemaster 550	FM550	Gift from Heather Stapleton, Duke	10 ug/ml	10 ug/ml		Yes				Yes	(Pillai et al. 2014)
Fludioxonil	Fludi	Sigma Aldrich	46102	2x10-5	2x10-6	Potential				Yes	(Auerbach et al. 2016)
Honokiol	Honok	Sigma Aldrich	H4914	2x10-5	4x10-6	Yes		No		Yes	(Atanasov et al. 2013)
LG100268	LG268	Sigma Aldrich	SML0279	1x10-7	1x10-7	Activates PPARγ through RXR			Yes	(Cesario et al. 2001)	
LG100754	LG754	Tocris	3831	2x10-7	2x10-7	Yes				Yes	(Cesario et al. 2001)
Name	Abbreviation	CAS Number	Supplier	IC50 (M)	Effect	Notes					
--	--------------	----------------	----------------	-------------	-------------------------------	--					
Magnolol	Magno	528-43-8	Sigma Aldrich	M3445	2x10-5 2x10-5	Activates PPARγ through RXR					
MCC-555	MCC555	161600-01-7	Sigma Aldrich	SML0896	5x10-6 5x10-6	Yes PPARγ ligand					
Melengestrol acetate	Melen	2919-66-6	Sigma Aldrich	73248	2x10-5 2x10-5	Yes PPARγ ligand					
Mono-(2-ethyhexyl) tetrabromophthalate	METBP	Synthesized by Asis Chemical		1x10-5 1x10-5	Activates PPARγ reporter and induces adipogenesis in multipotent stromal cells	95% (Fakhurudin et al., 2010)					
Mono(2-ethylhexyl) phthalate	MEHP	4376-20-9	Sigma Aldrich	CDS01060 8	1x10-5 1x10-5	Yes PPARγ ligand					
Monobenzyl phthalate	MBzP	2528-16-7	Sigma Aldrich	89505	1x10-5 1x10-5	Yes PPARγ reporter					
Mono-n-butyl phthalate	MBuP	131-70-4	Sigma Aldrich	30751	2x10-5 2x10-5	Yes PPARγ reporter and induces 3T3 L1 adipogenesis	95% (Watt and Schlezinger 2015)				
n-Butylparaben	BuPara	94-26-8	Sigma Aldrich	54680	2x10-5 2x10-5	Activates PPARγ reporter and induces 3T3 L1 adipogenesis	> 98% (Hurst and Waxman 2003)				
N-nitro-2-imidazolidinimine	Imida	138261-41-3	Sigma Aldrich	37894	1x10-5 1x10-5	No evidence					
nTZDpa	nTZDpa	118414-59-8	Sigma Aldrich	SML0616	1x10-6 1x10-6	Yes PPARγ ligand					
Perfluorooctanesulfonic acid	PFOS	2795-39-3	Sigma Aldrich	77282	4x10-5 4x10-5	Potential NA					
Perfluorooctanoic acid	PFOA	335-67-1	Sigma Aldrich	33824	1x10-5 1x10-5	Potential					
Pioglitazone hydrochloride	Piogl	112529-15-4	Sigma Aldrich	E6910	1x10-5 1x10-5	Yes PPARγ ligand					
Prallethin	Prall	23031-36-9	Sigma Aldrich	32917	1x10-5 1x10-5	Potential					
Pregnenolone 16α-carbonitrile	Pregn	1434-54-4	Sigma Aldrich	P0543	1x10-5 1x10-5	No PXR ligand					
Propylparaben	ProPara	94-13-3	Sigma Aldrich	P53357	1x10-5 1x10-5	Activates PPARγ reporter and					

(Activates PPARγ reporter and induces 3T3 L1 adipogenesis)
Chemical	Chemical Source	CAS No.	T0070907 (ppm)	T0901317 (ppm)	T1317 (ppm)	Tungs (ppm)	Resolvin-E1 (ppm)	TBT (ppm)	Protectin D1	Quinoxyfen	Resolvin	Rosiglitazone	Sodium tungstate	Sodium arsenite	SR1664	Telmisartan	Tonalide	Tributyl phosphate	Tributyltin
Tributyl phosphate	Aldrich	126-73-8	2x10^-5	2x10^-5	2x10^-5	8x10^-8	8x10^-8	PPARγ/RXR ligand	Yes	Quinoxyfen	124495-18-7	Sodium tungstate	7784-46-5	122320-73-4	S26948	T0901317	T0070907		
Sodium tungstate	Aldrich	10213-10-2	2x10^-5	2x10^-5	2x10^-5	2x10^-5	4x10^-5	8x10^-6	Yes				Sodium arsenite	Tungs (ppm)	SR1664	T0901317	T0070907	Tributyl phosphate	
Sodium arsenite	Aldrich	7784-46-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	No										
SR1664	Aldrich	1338259-05-4	1x10^-6	1x10^-6	1x10^-6	1x10^-6	1x10^-6	1x10^-6	Yes										
T0901317	Aldrich	293754-55-9	1x10^-6	1x10^-6	1x10^-6	2x10^-6	2x10^-6	2x10^-6	No										
T0070907	Aldrich	313516-66-4	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	8x10^-6	Yes										
Tebuconazole	Aldrich	107534-96-3	2x10^-5	2x10^-5	2x10^-5	2x10^-5	8x10^-6	8x10^-6	No										
Telmisartan	Aldrich	144701-48-4	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	Yes										
Tesaglitazar	Aldrich	251565-85-2	5x10^-6	5x10^-6	5x10^-6	5x10^-6	5x10^-6	5x10^-6	Yes										
Tolyfluanid	Aldrich	731-27-1	2x10^-7	2x10^-7	2x10^-7	2x10^-7	2x10^-7	2x10^-7	No										
Teralide	Aldrich	21145-77-7	4x10^-6	4x10^-6	4x10^-6	4x10^-6	4x10^-6	4x10^-6	Potential										
Tributyl phosphate	Aldrich	126-73-8	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	2x10^-5	Yes										
Tributyltin	Aldrich	1461-22-9	8x10^-8	8x10^-8	8x10^-8	8x10^-8	8x10^-8	PPARγ/RXR ligand	96%										
Chemical Name	CAS Number	Supplier	Sigma Aldrich	Concentration	Maximal Concentration	PPARγ Activity													
---------------	------------	----------	---------------	---------------	-----------------------	----------------													
Triflumizole	68694-11-1	Sigma Aldrich	32611	2x10-5	2x10-5	Yes Activates PPARγ reporter and induces 3T3 L1 adipogenesis													
Triphenyl phosphate	TPhP	Sigma Aldrich	241288	2x10-5	1x10-5	Yes PPARγ ligand	> 99%												
Triphenyl phosphate	TPhPhi	Sigma Aldrich	T84654	1x10-5	1x10-5	Potential	97%												
Triphenylphosphine oxide	TPhPhOx	Sigma Aldrich	T84603	1x10-5	1x10-5	Potential	98%												
Triphenyltin	TPhT	Sigma Aldrich	245712	8x10-8	8x10-8	Yes PPARγ/RXR ligand	98%												
Tris(1,3-dichloro-2-propyl) phosphate	TDCPP	Sigma Aldrich	32951	2x10-5	2x10-5	Potential	NA												
Tris(1-chloro-2-propyl) phosphate	TCCP	Sigma Aldrich	32952	1x10-5	1x10-5	Potential	NA												
Troglitazone	Trogl	Sigma Aldrich	T2573	5x10-6	5x10-6	Yes PPARγ ligand	> 98%												

*NA = Not Available

a Toxicity was assessed by microscopic inspection. The concentration was reduced by two fold until a non-toxic, maximal concentration was identified. Maximal concentrations were determined in an N=4.

b “Yes” indicates there is experimental evidence of modification of PPARγ activity, including PPARγ binding assays, coactivator recruitment or computational modeling (definitive ligands), PPARγ-driven reporter assays (at least 25% of the rosiglitazone-induced maximum), expression of PPARγ target genes and/or differentiation of 3T3 L1 or multipotent stromal cells into adipocytes in the absence of a known PPARγ ligand. Chemicals that changed the expression of PPARγ (e.g., PCB126 and DDE) were not considered to be ligands or modifiers. “No” indicates that the chemical was chosen based on the fact that it is known to be a specific ligand of another receptor. “No evidence” indicates that this chemical has not been tested for PPARγ activation but is structurally dissimilar to known classes of PPARγ ligands. “Potential” indicates that the chemical was identified in other screening approaches or by the ToxPi designed to identify chemicals in the ToxCast dataset that have potential to be PPARγ ligands/modifiers.

c Abbreviations: AhR, aryl hydrocarbon receptor; ER, estrogen receptor; GR, glucocorticoid receptor; PR, progesterone receptor; PXR, pregnane X receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor
Table S2. Mouse (M) and human (H) primer sequences for reverse transcription qPCR.

GENE	SYMBOL	FORWARD	REVERSE	ANNEALING TEMP. °C
M-Rn18s	GTAACCGTTGAACCCCATATT	CCATCCACATCGTAGTCG	55	
M-B2m	CTGCTACGTAACAGTTCCACC	CATGATGCTGATCATGTCGG	55	
M-Cidec	AGGCCCTGTCGTGTAACGTCA	CAGTAGCTGCGACCTACT	55	
M-Cidea	TGCTCTCTCTGTATCGCCCAGT	GCCGTGAGAATCTCAGTC	55	
M-Elovl3	TCGCGTTCTCATGAGTCTT	GACCTGATGCAACCCTATGA	55	
M-Fabp4	AGGCGCACCACATGACATCAG	TTTCATACCACTTCAGAC	55	
M-Plin1	GGGACCTGATGAGTCTTCC	GTATTGAAGGCGGATCTTTE	55	
M-Pgc1a	AACAAGCAGCTGGTCGTACCTC	TTACTGAAGGTGCACATT	55	
M-Pperg2	TGGGTGAAACTCTTGGAGATTC	AATTTCTTGTGAAGTGTCA	55	
M-Rip140	AGAACGCACACAGGTGCACT	GCAGTAGCTGAGAACCTT	55	
M-Adipoq	GCCGCTGCTGCCCACCATCAG	TTTCATACCACTTCAGAC	55	
M-Ucp1	ACTGCGCACTCCCTCCATT	CTTTCATACCACTTCAGAC	55	
M-Aca2	TAACGGGCTGCGCTACTTCA	AGGGGATGAACTTTGCTT	55	
H-RPL27	GTGAAATGTCCTGATACATCACC	TCAACTGACTTGACCGCC	58	
H-B2M	GCTATCCAGCCTAGCTCAGA	CACAGGCAGCCAGCTACT	58	
H-CIDEA	GGGATAAGGCTGGTCCTGATT	TCAATTCCCTTGCCAGGGTT	55	
H-CIDEA	GGGACCTGTTAAGGTCTTCC	GTATTGAAGGCCGGAATCTTTE	55	

Table S3. Metabolic parameters included and excluded in human transcriptome analysis.

PARAMETERS INCLUDED	PARAMETERS EXCLUDED
Fat free mass %	Body mass index (kg/m2)
Fasting Plasma parameters	Waist-to-hip ratio
Free fatty acid (mmol/l)	Waist circumference (cm)
Total triglycerides (mmol/l)	Hip circumference (cm)
LDL cholesterol (mmol/l)	Plasma total fatty acids (mmol/l)
HDL cholesterol (mmol/l)	Plasma total cholesterol (mmol/l)
Adiponectin (ug/ml)	Matsuda composite insulin sensitivity index
Glucose (mmol/l)	HOMA-IR
Insulin (mU/l)	Systolic blood pressure (mm Hg)
Proinsulin (pmol/l)	Diastolic blood pressure (mm Hg)
Glycated HbA1c (%)	Glomerular filtration rate
High sensitivity C-reactive protein (mg/l)	
Interleukin-1 receptor antagonist (pg/ml)	
Excel File 1. Detailed results from random forest classification.

Excel File 2. Detailed annotation of clustering results for individual modules.

Excel File 3. Supporting numerical data from all cell culture experiments.

Excel File 4. Detailed results of partial correlation analysis of clinical measurements and projections of chemical taxonomy gene signatures onto human adipose gene expression.
Figure S1. Differentiation and dosing protocols for 3T3-L1 cells (A) and primary human preadipocytes (B). DM, Differentiation medium; MM, Maintenance medium; AM, Adipocyte medium.
Figure S2. Correlation of lipid accumulation with Cidec, Fabp4, and Plin1 expression in differentiated and treated 3T3-L1 pre-adipocytes. Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 days. During differentiation, cells were treated with vehicle (Vh, 0.1% DMSO, final concentration) or test chemical (Table S1). On days 3, 5, and 7 of differentiation, the medium was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, cells were analyzed for lipid accumulation by Nile Red staining (Data are from Figure 1) and gene expression by 3’DGE. Each point represents the mean data for each chemical, (n=2-4). The least squares linear model estimate is shown in blue.
Figure S3. Lipid accumulation in differentiated and treated 3T3-L1 pre-adipocytes in the absence of dexamethasone.

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 days, with the exception of using no dexamethasone. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final concentration), rosiglitazone (positive control, 100 nM) or test chemical (Table S1). On days 3, 5, and 7 of differentiation, the medium was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, cells were analyzed for lipid accumulation by Nile Red staining. A) Nile Red
staining induced by individual chemicals. Nile Red fluorescence was normalized by subtracting the fluorescence measured in naïve pre-adipocyte cultures within each experiment and reported as “Naïve Corrected RFU.” Data are presented as mean ± SE (n=4). Statistically different from Vh-treated (highlighted in green) (*p<0.05, ANOVA, Dunnett’s).

B) Correlation between lipid accumulation induced in 3T3 L1 cells differentiated in the presence (data are from Figure 1) and absence of dexamethasone. Numerical data are provided in **Excel File 3**. Pearson’s r = 0.5429 (p<0.0001).
Figure S4. Lipid accumulation in differentiated and treated OP9 pre-adipocytes.

Confluent OP9 cells were differentiated using a standard hormone cocktail for 10 days, with the exception of using 125 nM dexamethasone. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final concentration), rosiglitazone (positive
control, 100 nM) or test chemical (Table S1). On days 3, 5, and 7 of differentiation, the medium was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, cells were analyzed for lipid accumulation by Nile Red staining. **A)** Nile Red staining induced by individual chemicals. Nile Red fluorescence was normalized by subtracting the fluorescence measured in naïve pre-adipocyte cultures within each experiment and reported as “Naïve Corrected RFU.” Data are presented as mean ± SE (n=4). Statistically different from Vh-treated (highlighted in green) (*p<0.05, ANOVA, Dunnett’s).

B) Correlation between lipid accumulation induced in 3T3 L1 cells differentiated in the presence of dexamethasone (data are from Figure 1) and in OP9 cells. Numerical data are provided in **Excel File 3**. Pearson’s r = 0.5768 (p<0.0001).
Figure S5. Performance comparison of random forest methods.
Boxplots of performance estimates for repeated 10-fold cross validation for each of the four random forest methods considered for classifying PPARγ activity modifying compounds from high-throughput gene expression profiles of chemically treated 3T3 L1 cells. Abbreviated metrics shown include: area-under the curve (AUC), balanced accuracy (Bal. Acc.), F1-score (F1). Besides AUC, for all performance metrics besides, an appropriate classification threshold for predicting PPARγ activity modifying compound labels in each test set was estimated based on out-of-bag voting of their corresponding training set. Sensitivity and specificity are the proportions of identified known PPARγ activity modifying compounds and known non-PPARγ activity modifying compounds, respectively, out of the total number of each label in the data. Bal. Acc. is the mean of sensitivity and specificity. Precision is the proportion of accurately identified known PPARγ activity modifying compounds out of all predicted PPARγ activity modifying compounds. F1 is the harmonic mean of sensitivity and precision. Finally, AUC is the integral of sensitivity and specificity across every possible classification threshold. The distribution of each method/metric combination is based on 10 repetitions of cross validation (i.e. N=10). The full set of performance estimates for each repetition, performance metric, and classification procedure considered are shown in Excel File 1 (Performance Comparison). The midline, box limits, and whiskers show the median, upper/lower quartile, and minimum/maximum of each distribution cutoff at a distance of 1.5 * the interquartile range from their closest box limit, respectively. Individual points indicate values which extend beyond the whisker limits. The horizontal gap in each plot indicates that, while the range of possible estimates for each performance metric is between 0.0 and 1.0, all estimates fell between 0.45 and 1.0.
Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 days. During differentiation, cells were treated with 0.1% DMSO, final concentration (vehicle), test chemical, or were untreated.
naive). On days 3, 5, and 7 of differentiation, the medium was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, cells were analyzed for gene expression by 3’DGE. The labels, “Yes”, “No”, and “Potential”, indicate test chemicals predetermined to be known PPARγ activity modifying compounds, known non-PPARγ activity modifying compounds, and Potential PPARγ activity modifying compounds, respectively, based on previous studies (See Table S1). *Rpl13* and *Cidec* demonstrated the greatest predictive value for classifying PPARγ activity modifying compounds based on their Gini importance estimates from random forest modeling (Breiman 2001). Each point indicates sample-specific expression values, normalized by batch correction and Trimmed Mean of M-values (TMM) transformation, performed in R (v 3.4.3) using *ComBat* (v 3.26.0) (Leek et al. 2012) and *limma* (v 3.34.9) (Ritchie et al. 2015), respectively. The range and mean expression of the biological replicates of each treatment is indicated by a vertical and short horizontal line, respectively. Mean expression across all vehicle samples is shown as a horizontal line spanning the plot. Exposures which have statistically significant different means from vehicle (F statistic, FDR Q-value < 0.05) are highlighted with an asterisk. For test chemicals sample sizes range from N=2-4. For vehicle and naive sample sizes are N=25 and N=15, respectively.
Figure S7. Cell number analyses in the differentiated and treated 3T3-L1s. Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail with 1 nM dexamethasone (A) and 250 nM dexamethasone (B) for 10 days. During differentiation, cells were treated with Vh (0.1% DMSO, final concentration), rosiglitazone (Rosig, 200 nM (A), 1 μM (B)), roscovitine (Rosco, 4 μM), 15dPGJ2 (500 nM (A), 1 μM (B)), TBBPA (20 μM) and TPhP (10 μM). On days 3, 5, and 7 of differentiation, the adipocyte maintenance medium was replaced and the cultures re-dosed. Cells were incubated for a total of 10 days of differentiation. To assess cell number, cells were stained with Janus green stain. Absorbance in experimental wells was normalized by dividing by the absorbance measured in naïve pre-adipocyte cultures within the experiment and reported as “Relative Cell Density.” Numerical data are provided in Excel File 3. Data are presented as means ± SE (n=8). Statistically different from Vh-treated (**p<0.01, ANOVA, Dunnett’s).
Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail with 250 nM dexamethasone for 10 days. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final concentration), rosiglitazone (Rosig, 200 nM), roscovitine (Rosco, 4 μM), 15dPGJ2 (500 nM), TBBPA (20 μM), TPhP (10 μM) and quinoxyfen (10 μM). On days 3, 5,
and 7 of differentiation, the adipocyte maintenance medium was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, cells were analyzed for gene expression by RT-qPCR. (A) Genes related to white adipogenesis. (B) Genes related to brite adipogenesis. Gene expression levels were normalized to the geometric mean of the expression levels of $B2m$ and $Rn18s$ and expressed as "Relative Expression" in comparison to naïve, pre-adipocyte cultures using the Pfaffl method. Numerical data are provided in Excel File 3. Data are presented as mean ± SE of n=6 independent experiments. Statistically different from Vh-treated (highlighted in green) (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ANOVA, Dunnett’s).
Figure S9. Spearman correlation analysis of lipid accumulation (Nile Red) and gene expression. Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail with 1 nM dexamethasone for 10 days and analyzed for adipocyte differentiation by staining for lipids with Nile Red (shown in Figures 6 and 11) and gene expression (shown in Figures 7 and 11).
Figure S10. Cell number analyses in the differentiated and quinoxyfen and tonalide treated 3T3-L1s and human primary preadipocytes. (A) Confluent 3T3 L1 cells were differentiated using a standard human adipocyte hormone cocktail for 10 days. During differentiation, cells were treated with Vh (0.1% DMSO, final concentration), rosiglitazone (Rosig, 200 nM), quinoxyfen (Quino, 10 μM) or tonalide (Tonal, 4 μM). On days 3, 5, and 7 of differentiation, the adipocyte maintenance medium was replaced and the cultures re-dosed. Cells were incubated for a total of 10 days of differentiation. Data are presented as means ± SE (n=8). (B) Confluent primary human preadipocytes were differentiated using a standard hormone cocktail for 14 days. During differentiation, cells were treated with Vh (0.1% DMSO, final concentration), rosiglitazone (Rosig, 4 μM), quinoxyfen (Quino, 4 μM) or tonalide (4 μM). On days 3, 5, 7, 10, and 12 of differentiation, the medium was replaced and the cultures re-dosed. Following 14 days of differentiation and dosing, cultures were analyzed for relative cell density using JANUS Green staining. Absorbance in experimental wells was normalized by dividing by the absorbance measured in naïve pre-adipocyte cultures within the experiment and reported as “Relative Cell Density.” Data are presented as mean ± SE (n=3, each n is from adipocytes from an individual). Statistically different from Vh-treated (**p<0.01, ANOVA, Dunnett’s).
References:

Ahmed S, Atlas E. 2016. Bisphenol s- and bisphenol a-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferator-activated receptor gamma activation. International journal of obesity (2005) 40:1566-1573.

Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, et al. 2013. Honokiol: A non-adipogenic ppargamma agonist from nature. Biochimica et biophysica acta 1830:4813-4819.

Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, et al. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: A screening approach using toxcast high-throughput data. Environ Health Perspect 124:1141-1154.

Berger JP, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K, et al. 2003. Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 17:662-676.

Breiman L. 2001. Random forests. Machine Learning 45:https://doi.org/10.1023/A:1010933404324.

Cano-Sancho G, Smith A, La Merrill MA. 2017. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms. Toxicol In Vitro 40:280-288.

Carmona MC, Louche K, Lefebvre B, Pilon A, Hennuyer N, Audinot-Bouchez V, et al. 2007. S 26948: A new specific peroxisome proliferator activated receptor gamma modulator with potent antidiabetes and antiatherogenic effects. Diabetes 56:2797-2808.

Carmona MC, Amigo M, Barcelo-Batlori S, Julia M, Esteban Y, Moreno S, et al. 2009. Dual effects of sodium tungstate on adipocyte biology: Inhibition of adipogenesis and stimulation of cellular oxygen consumption. International journal of obesity (2005) 33:534-540.

Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, et al. 2001. The retinoid lg100754 is a novel rrx:Ppargamma agonist and decreases glucose levels in vivo. Mol Endocrinol 15:1360-1369.

Chamorro-Garcia R, Kirchner S, Li X, Janesick A, Casey SC, Chow C, et al. 2012. Bisphenol a diglycidyl ether induce adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism. Environ Health Perspect 120:984-989.

Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, et al. 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of ppargamma by cdk5. Nature 466:451-456.

Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, et al. 2011. Antidiabetic actions of a non-agonist ppargamma ligand blocking cdk5-mediated phosphorylation. Nature 477:477-481.

Erbe DV, Gartrell K, Zhang YL, Suri V, Kirincich SJ, Will S, et al. 2006. Molecular activation of ppargamma by angiotensin ii type 1-receptor antagonists. Vascul Pharmacol 45:154-162.

Fang M, Webster TF, Ferguson PL, Stapleton HM. 2015a. Characterizing the peroxisome proliferator-activated receptor (ppargamma) ligand binding potential of several major flame
retardants, their metabolites, and chemical mixtures in house dust. Environ Health Perspect 123:166-172.

Fang M, Webster TF, Stapleton HM. 2015b. Effect-directed analysis of human peroxisome proliferator-activated nuclear receptors (ppargamma1) ligands in indoor dust. Environ Sci Technol 49:10065-10073.

Feige JN, Gelman L, Rossi D, Zote V, Metivier R, Tudor C, et al. 2007. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 282:19152-19166.

Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 1995. 15-deoxy-d12,14-prostaglandin j2 is a ligand for the adipocyte determination factor ppar. Cell 83:803-812.

Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ. 2015. Pcb126 inhibits adipogenesis of human preadipocytes. Toxicol In Vitro 29:132-141.

Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliwer SA, et al. 1996. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087-1094.

Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, et al. 2006. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 20:2141-2155.

Hiromori Y, Nishikawa J-i, Yoshida I, Nagase H, Nakanishi T. 2009. Structure dependent activation of peroxisome proliferator activated receptor (PPAR) gamma by organotin compounds. Chem Biol Interact 180: 238-244.

Hiromori Y, Ido A, Aoki A, Kimura T, Nagase H, Nakanishi T. 2016. Ligand activity of group 15 compounds possessing triphenyl substituent for the rxr and ppargamma nuclear receptors. Biol Pharm Bull 39:1596-1603.

Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, et al. 2013. Effects of parabens on adipocyte differentiation. Toxicol Sci 131:56-70.

Hurst CH, Waxon DJ. 2003. Activation of ppara and pparg by environmental phthalate monoesters. Toxicol Appl Pharmacol.

Kim J, Sun Q, Yue Y, Yoon KS, Whang KY, Marshall Clark J, et al. 2016. 4,4'-dichlorodiphenyltrichloroethane (ddt) and 4,4'-dichlorodiphenyldichloroethylene (dde) promote adipogenesis in 3t3-l1 adipocyte cell culture. Pestic Biochem Physiol 131:40-45.

Lambe KG, Tugwood JD. 1996. A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur J Biochem 239:1-7.

Lee G, Elwood F, McNally J, Weiszmann J, Lindstrom M, Amaral K, et al. 2002. T0070907, a selective ligand for peroxisome proliferator-activated receptor gamma, functions as an antagonist of biochemical and cellular activities. J Biol Chem 277:19649-19657.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28:882-883.
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliwer SA. 1995. An antidiabetic thiazoladinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (ppar-gamma). J Biol Chem 270:12953-12956.

Li X, Pham HT, Janesick AS, Blumberg B. 2012. Triflumizole is an obesogen in mice that acts through peroxisome proliferator activated receptor gamma (ppargamma). Environ Health Perspect 120:1720-1726.

Ljung B, Bamberg K, Dahllof B, Kjellstedt A, Oakes ND, Ostling J, et al. 2002. Az 242, a novel pparalpha/gamma agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese zucker rats. Journal of lipid research 43:1855-1863.

Molina-Molina J-M, Amaya E, Grimaldi M, Saenz J-M, Real M, Fernandez MF, et al. 2013. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272:127-136.

Muralikumar S, Vetrivel U, Narayanasamy A, U ND. 2017. Probing the intermolecular interactions of ppargamma-lbd with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Lipids Health Dis 16:17.

Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TL, Jorens PG, Blust R, et al. 2013. Evaluation of a screening system for obesogenic compounds: Screening of endocrine disrupting compounds and evaluation of the ppar dependency of the effect. PloS one 8:e77481.

Pillai HK, Fang M, Beglov D, Kozakov D, Vajda S, Stapleton HM, et al. 2014. Ligand binding and activation of ppargamma by firemaster(r) 550: Effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect 122:1225-1232.

Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, et al. 2018. Plasticizers used in food-contact materials affect adipogenesis in 3t3-l1 cells. The Journal of steroid biochemistry and molecular biology 178:322-332.

Regnato MJ, Bailey ST, Krakow SL, Minami C, Ishii S, Tanaka H, et al. 1998. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma-activating properties. J Biol Chem 273:32679-32684.

Regnier SM, Kirkley AG, Ye H, El-Hashani E, Zhang X, Neel BA, et al. 2015. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice. Endocrinology 156:896-910.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. 2015. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic acids research 43:e47.

Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahouf A, et al. 2011. Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol a. Environ Health Perspect 119:1227-1232.

Schwarz EJ, Regnato MJ, Shao D, Krakow SL, Lazar MA. 1997. Retinoic acid blocks adipogenesis by inhibiting c/ebpbeta-mediated transcription. Mol Cell Biol 17:1552-1561.

Szeles L, Poliska S, Nagy G, Szatmari I, Szanto A, Pap A, et al. 2010. Research resource: Transcriptome profiling of genes regulated by rrx and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol Endocrinol 24:2218-2231.
Takacs ML, Abbott BD. 2007. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95:108-117.

Temkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, et al. 2016. Effects of crude oil/dispersant mixture and dispersant components on ppargamma activity in vitro and in vivo: Identification of dioctyl sodium sulfosuccinate (doss; cas #577-11-7) as a probable obesogen. Environ Health Perspect 124:112-119.

Wang H, Liu L, Lin JZ, Aprahamian TR, Farmer SR. 2016. Browning of white adipose tissue with roscovitine induces a distinct population of ucp1+ adipocytes. Cell metabolism 24:835-847.

Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, et al. 2014. Natural product agonists of peroxisome proliferator-activated receptor gamma (ppargamma): A review. Biochem Pharmacol 92:73-89.

Watt J, Schlezinger JJ. 2015. Structurally-diverse, ppargamma-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology 331:66-77.

Wauson EM, Langan AS, Vorce RL. 2002. Sodium arsenite inhibits and reverses expression of adipogenic and fat cell-specific genes during in vitro adipogenesis. Toxicol Sci 65:211-219.

Yamagishi S, Takeuchi M. 2005. Telmisartan is a promising cardiometabolic sartan due to its unique ppar-gamma-inducing property. Med Hypotheses 64:476-478.

Yanik SC, Baker AH, Mann KK, Schlezinger JJ. 2011. Organotins are potent activators of ppar{gamma} and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells. Toxicol Sci 122:476-488.

Yin L, Yu KS, Lu K, Yu X. 2016. Benzyl butyl phthalate promotes adipogenesis in 3t3-l1 preadipocytes: A high content cellomics and metabolomic analysis. Toxicol In Vitro 32:297-309.

Zhang L, Sun W, Duan X, Sun H. 2019. Promoting differentiation and lipid metabolism are the primary effects for DINP exposure on 3T3-L1 preadipocytes. Environ Pollut. 255(Pt 1):113154.