Minireview

Anaerobic benzene degradation by bacteria

Carsten Vogt,1* Sabine Kleinsteuber2 and Hans-Hermann Richnow1
Departments of 1 Isotope Biogeochemistry and 2 Environmental Microbiology, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany.

Summary
Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen-dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene-degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation.

Introduction
Benzene is a common component of fuels, particularly gasoline, and an important raw chemical used as solvent or chemical intermediate. Due to its extensive use, benzene is a widespread anthropogenic contaminant in aqueous environments. Compared with other hydrocarbons, benzene is highly water-soluble (saturation: 24 mM at 25°C) and toxic; the US Environmental Protection Agency has classified benzene as a Group A human carcinogen. Chemically, benzene is stable under typical environmental conditions, as the compound is stabilized by the aromatic ring system (π-electron system) without any potentially reactive substituent.

The persistence of benzene in aqueous environments seems to be primarily controlled by the abundance of oxygen as benzene is often persistent under anoxic conditions. Aerobic benzene-degrading microorganisms are ubiquitous and have been known for a long time – the first report in regard to aerobic benzene-degrading microorganisms dates almost 100 years back (Söhngen, 1913). Benzene-degrading organisms contain mono- or dioxygenases which activate the aromatic nucleus by introducing molecular oxygen to yield phenol or cis-benzene dihydrodiol, compounds that are further oxidized to catechol (Gibson and Parales, 2000; Tao et al., 2004). The aromatic ring of catechol is finally cleaved by further dioxygenases in ortho- or meta-position (Vaillancourt et al., 2006).

Contaminant plumes in aquifers usually become anoxic due to the low solubility and rapid microbial consumption of oxygen. Therefore, knowledge about anaerobic benzene degradation is highly relevant to understand the fate of benzene in the environment. Until the beginning of 1980, aromatic hydrocarbons were thought to be generally recalcitrant under anoxic conditions (Atlas, 1981). In the last 25 years, it was realized that many hydrocarbons including aromatics are biodegradable under several electron-accepting conditions (for a review see Foght, 2008). However, anaerobic benzene degradation is usually slow and associated with long lag-times. Benzene is considered to be more persistent under anoxic conditions than its alkylated derivatives toluene, ethylbenzene and xylene isomers and the reasons for the recalcitrance of benzene are not yet clear. Co-contaminants have been shown to inhibit anaerobic benzene degradation (Edwards et al., 1992; Cunningham et al., 2001; Ruiz-Aguilar et al., 2003; Da Silva and Alvarez, 2007) – and other studies suggest that anaerobic benzene degraders...
Anaerobic benzene degradation by bacteria

Benze degradation in laboratory microcosms – electron acceptors and ‘key players’

Benzene-mineralizing laboratory microcosms have been established under several electron-acceptor conditions; in most cases, successful enrichments of anaerobic benzene degraders were established by using anoxic sediment or soil taken from petroleum contaminated sites (for an overview see Table 1). The major part of microorganisms living in the subsurface are attached to sediment or soil particles (Harvey et al., 1984; Kölbl-Boelke et al., 1988; Hazen et al., 1991; Alfreider et al., 1997; Griebler et al., 2002; Anneser et al., 2010). Correspondingly, microcosms prepared from sediment usually show higher degradation rates and shorter lag-phases compared with microcosms prepared from groundwater (Holm et al., 1992). For most of the enrichment cultures, however, long lag-phases (sometimes more than 100 days) were observed before anaerobic benzene degradation was detectable. Initial degradation rates were low, indicating that the specific rate of anaerobic benzene degradation is generally rather low. Nevertheless, long lag-phases and low degradation rates seem to be not the only reasons for the limited number of anaerobic benzene-degrading cultures successfully enriched so far. On the one hand, several authors observed that anaerobic benzene degraders could not be detected at all at distinct sites (e.g. Langenhoff et al., 1996; Kazumi et al., 1997; Nales et al., 1998; Weiner and Lovley, 1998a; Phelps and Young, 1999), indicating that anaerobic benzene degraders may not be ubiquitous. On the other hand, it has been shown that the majority of bacteria cannot be cultured in the laboratory yet (Rappe and Giovannoni, 2003; Keller and Zengler, 2004). These yet uncultured organisms might include anaerobic benzene degraders. Possibly, ‘not detected’ means ‘beyond the detection limit’ in some cases. In our laboratory, we have set up anaerobic enrichment cultures from different contaminated sites with 13C-labelled benzene as substrate, and observed in some (but not all) cultures a small but continuous release of 13C-CO2, demonstrating that benzene is mineralized in those cultures, but for long incubation times only detectable for highly sensitive gas chromatographic isotope ratio mass spectrometers (Carsten Vogt, unpubl. results). Similar results were obtained by Morasch and colleagues (2007).

Interestingly, the growth behaviour of benzene-degrading cultures seems to be not correlated to the amount of potential energy available by the electron acceptor. The biomass yields of benzene-degrading nitrate-reducing pure and enrichment cultures were reported to be low and comparable to the yield of methanogenic benzene-degrading enrichment cultures (Coates et al., 2001; Ulrich and Edwards, 2003). This is surprising as the standard free energy for benzene mineralization with nitrate or ferric iron as electron acceptor is more than an order of magnitude higher compared with the acceptors sulfate and carbon dioxide (Table 2).

At some sites, enrichment cultures could be established using different electron acceptors [e.g. Ponca City, USA: ferric iron (Caldwell et al., 1999; Caldwell and Suflita, 2000), sulfate (Anderson and Lovley, 2000), carbon dioxide (Weiner and Lovley, 1998a); Toronto Gas Station: nitrate, sulfate, carbon dioxide (Nales et al., 1998; Ulrich and Edwards, 2003)]. A few cultures were also described to switch from sulfate to carbon dioxide as electron acceptor and vice versa (Ulrich and Edwards, 2003). The latter examples support the hypothesis of syntrophic processes governing anaerobic benzene degradation, which are discussed in more detail below.

Benze degradation under methanogenic conditions

Benzene degradation under methanogenic conditions was occasionally observed in laboratory microcosms (Wilson et al., 1986; Grbic-Galic and Vogel, 1987; Kazumi
Table 1. Overview about anaerobic benzene-degrading microcosms described so far: sources, microcosm preparation, dominant organisms and putative degradation pathway.

Source of microorganisms	Electron acceptor	Set-up of laboratory microcosmsa	Dominant phylotypes in enrichment culture	Suggested degradation pathway	Reference
Cartwright gasoline station (Toronto, Canada)	NO3− (nitrate reduction to nitrite)	Soil + anoxic mineral salt medium; pre-enrichment in sand-filled columns percolated with anoxic groundwater	Betaproteobacteria (Azoarcus/Dechloromonas), Chlorobi	Methylation (metabolite study; compound-specific isotope analysis)	Nales et al. (1998); Burland and Edwards (1999); Mancini et al. (2003)
Non-contaminated swamp (Ontario, Canada)	NO3−	Soil + anoxic mineral salt medium	Pelotomaculum, Chlorobi, Betaproteobacteria	Methylation (compound-specific isotope analysis)	Ulrich and Edwards (2003); Ulrich et al. (2005); Mancini et al. (2008)
Petroleum-contaminated aquifer (Bemidji, USA)	Fe3+	Sediment + anoxic groundwater	Geobacteraceae (Geobacter sp.)	n.d.	Baedecker et al. (1993); Cozzarelli et al. (1994); Anderson et al. (1998); Anderson and Lovley (2000); Rooney-Varga et al. (1999)
Petroleum refinery site (Ponca City, USA)	Fe3+	Sediment	n.d.	Phenol and benzoate as metabolites	Caldwell et al. (1999); Caldwell and Suflita (2000)
Landfill site (the Netherlands)	Fe3+	Sediment + anoxic mineral salt medium or groundwater + anoxic mineral salt medium	Geobacteraceae; syntrophy assumed	Phenol and benzoate as metabolites	Botton and Parsons (2006; 2007); Botton et al. (2007)
Coal gasification site (Gliwice, Poland)	Fe3+	Soil + anoxic mineral salt medium	Peptococcaceae, Desulfobulbaceae, Actinobacteria; syntrophy assumed	Carboxylation (metabolite study; proteomic analysis)	Kunapuli et al. (2007; 2008); Laban et al. (2010)
San Diego Bay (San Diego, USA)	SO42−	Sediment + mineral salt medium	n.d.	No metabolites detected	Lovley et al. (1995)
National park (Empire, USA)	SO42−	Sediment + groundwater or mineral salt medium	n.d.	Phenol and benzoate as metabolites	Kazumi et al. (1997); Caldwell and Suflita (2000)
Guaymas Basin (Gulf of Mexico)	SO42−	Sediment + mineral salt medium	Different phylotypes; Desulfobacterium (Desulfobacteraceae) assimilates benzene	Conversion to benzoate (no clear evidence for carboxylation with HCO3−)	Phelps et al. (1996; 1998; 2001); Oka et al. (2008)
Marine sediment	SO42−	Sediment + synthetic seawater	Delta proteobacterium (Desulfobacteraceae)	Conversion to benzoate (activity tests in dense cell suspensions)	Musat and Widdel (2008)
Coal gasification site (Gliwice, Poland)	SO42−	Sediment + mineral salt medium	Pelotomaculum-related	Benzoate, phenol, 4-hydroxybenzoate as intermediates; hydroxylated aromatics probably abiotically produced	Laban et al. (2009)
Benzene contaminated aquifer (Zeitz, Germany)	SO42−	Coarse sand + groundwater or mineral salt medium; pre-enrichment in sand-filled columns percolated with anoxic groundwater	Different phylotypes; phylotypes belonging to the Peptococcaceae and Desulfobacterium assimilated benzene; syntrophy assumed	Analogous activation mechanisms as described for other methanogenic or sulfate-reducing enrichment cultures (compound-specific isotope analysis)	Vogt et al. (2007); Fischer et al. (2008; 2009); Herrmann et al. (2010); Kleinsteuber et al. (2008)
Table 1. cont

Source of microorganisms	Electron acceptor	Set-up of laboratory microcosms^a	Dominant phylotypes in enrichment culture	Suggested degradation pathway	Reference
Deep aquifer formation (France)	SO₄²⁻	Filtered biomass from groundwater + mineral salt medium			
Repeated benzene degradation	Pelobacter-related Thermotogales	n.d.	Berlendis et al. (2010)		
Sewage sludge	HCO₃-	Ferulic acid-degrading methanogenic consortia (enriched for 5 years) as starting material	n.d.	Hydroxylation from water	Vogel and Grbic-Galic (1986)
Grbic-Galic and Vogel (1987)					
National park (Empire, USA)	HCO₃-	Aquifer sediment + groundwater or mineral salt medium			
Enrichment culture established	n.d.	Benzene and phenol as metabolites	Kazumi et al. (1997)		
Caldwell and Sufita (2000)					
Gasoline station (Toronto, Canada)	HCO₃-	Soil + anoxic mineral salt medium			
Enrichment culture established	Desulfobacterium, unclassified phylotype, Desulfotomaculum, Thiothrix	n.d.	Nales et al. (1998)		
Ulrich and Edwards (2003)					
Mancini et al. (2008)					
Oil refinery site (Oklahoma, USA)	HCO₃- (first SO₄²⁻)	Soil + anoxic mineral salt medium			
Enrichment culture established	Desulfosporosinus, Desulfobacteraceae, Methanosarcinales, Methanocellales, Methanobacteriales	Benzoate, toluene and phenol as metabolites	Nales et al. (1998)		
Ulrich and Edwards (2003)					
Da Silva and Alvarez (2007)					
Mancini et al. (2008)					
Petroleum refinery site (Ponca City, USA)	HCO₃-	Sediment + anoxic groundwater	n.d.	Phenol, propionate and acetate putative intermediates (inhibition study)	Weiner and Lovley (1998b)
Baltimore harbour (Baltimore, USA)	HCO₃-	Sediment + anoxic mineral salt medium			
Repeated benzene degradation	Several phylotypes	n.d.	Chang et al. (2005)		
Lotus field	HCO₃-	Soil + distilled water			
Enrichment culture established	Deltaproteobacterium assimilated benzene (SIP), Firmicutes, Methanosarcinales, Methanocellales; syntrophy assumed	n.d.	Sakai et al. (2009)		
Coal-tar waste-contaminated site (Glens Falls, USA)	Unknown	Surface sediments + anoxic mineral salt medium, SO₄²⁻- or NO₃--amended	Pelomonas, Ralstonia, Pseudomonas, Propionibacterium	n.d.	Liou et al. (2008)

^a The microcosms were incubated with benzene as sole source of carbon and energy.
methanogens have a narrow organic substrate spectrum degrading cultures under methanogenic conditions, as degraded by a consortium of fermenters, aceticlastic The authors concluded that benzene was sequentially ing to the enrichment culture was dominated by phylotypes belong-

2009). The archaeal clone library constructed from this bic benzene degradation in a methanogenic enrichment was identified by stable isotope probing of DNA (DNA-SIP) and real-time PCR as a key player of anaero-

phaceae
deltaproteobacterium distantly related to the Syntro-
Silva and Alvarez, 2007; Mancini incubation with benzene (Ulrich and Edwards, 2003; Da as well as aceticlastic methanogens were identified nated to the genera Methanosarcinales and Methanomicrobiales. The authors concluded that benzene was sequentially degraded by a consortium of fermenters, aceticlastic methanogens and hydrogenotrophic methanogens. Such syntrophic relationships likely exist in all benzene-degrading cultures under methanogenic conditions, as methanogens have a narrow organic substrate spectrum restricted to simple low-molecular-weight organic compounds, and are not known for degrading aromatic compounds. Thus, methanogens are assumed to consume hydrogen, acetate or other small molecules released by fermenting organisms. Such syntrophic relationships were also described for the degradation of long-chain alkanes under methanogenic conditions (Zengler et al., 1999).

Benzene degradation under sulfate-reducing conditions
Sulfate-dependent benzene mineralization was demonstrated for the first time in sediment microcosms from freshwater and marine origin (Lovley et al., 1995; Phelps et al., 1996). These studies verified a previous observation of benzene mineralization where the electron acceptor was assumed to be sulfate (Edwards et al., 1992); actually, this study was the first stating ‘complete’ anaerobic mineralization of benzene. In situ anaerobic benzene degradation at the Ponca City site (USA) could be stimulated by adding sulfate (Anderson and Lovley, 2000), indicating its preferred use as electron acceptor for anaerobic benzene degradation at this site. Sediment laboratory microcosms from this site degraded benzene also with carbon dioxide or ferric iron as electron acceptor (Weiner and Lovley, 1998a; Caldwell et al., 1999).

In the last 15 years, several cultures degrading benzene under sulfate-reducing conditions were enriched and the dominant organisms were described. The marine culture enriched by Phelps and colleagues (1996) contained 12 different phylotypes after incubation for 3 years with benzene as sole source of carbon and energy (Phelps et al., 1998). Four clones belonged to the Desulfobacteraceae, the other phylotypes were affiliated to Thiomicrospira (Gammaproteobacteria), Sulfurovum (Epsilonproteobacteria), Bellilinea (Chloroflexi), Exiguo bacterium (Bacilli) as well as several members of the Clostridia and Bacteroidetes (according to the RDP Classifier; Wang et al., 2007). After more than 10 years of incubation, a phylotype belonging to the Desulfobacteraceae (‘clone SB-21’) was identified by DNA-SIP for

a. Burland and Edwards (1999).
b. Kleinsteuber and colleagues (2008).
c. Weelink and colleagues (2007).

Electron acceptors (oxidized/reduced)	Stoichiometric equation	ΔG°′ (kJ mol⁻¹)
CO₂ + CH₄	C₃H₄ + 6.75 H₂O → 2.25 HCO₃⁻ + 3.75 CH₄ + 2.25 H⁺	-116⁴
SO₄²⁻ + H₂S	C₃H₄ + 3 H₂O + 3.75 SO₄²⁻ → 6 HCO₃⁻ + 1.875 H₂S + 1.875 HS⁻ + 0.375 H⁺	-185⁴
Fe⁶⁺/Fe⁴⁺	C₃H₄ + 18 H₂O + 30 Fe⁴⁺ → 6 HCO₃⁻ + 30 Fe⁶⁺ + 36 H⁺	-307⁰
NO₃⁻/N₂	C₃H₄ + 6 NO₃⁻ → 6 HCO₃⁻ + 3 N₂	-297⁸
NO₂⁻/NO	C₃H₄ + 15 NO₂⁻ + 3 H₂O → 6 HCO₃⁻ + 15 NO₂⁻ + 6 H⁺	-206¹
ClO₃⁻/Cl⁻	C₃H₄ + 5 ClO₃⁻ + 3 H₂O → 6 HCO₃⁻ + 5 Cl⁻ + 6 H⁺	-381³
O₂/H₂O	C₃H₄ + 7.5 O₂ + 3 H₂O → 6 HCO₃⁻ + 6 H⁺	-317³

714 C. Vogt, S. Kleinsteuber and H.-H. Richnow

Table 2. Stoichiometric equations and standard free energy changes (ΔG°′) for benzene oxidation with different electron acceptors.

© 2011 The Authors
Journal compilation © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 4, 710–724
assimilating benzene in this culture (Oka et al., 2008). Notably, a phylotype closely related to clone SB-21 was found to be the dominant organism in a benzene-mineralizing sulfate-reducing culture enriched also from marine sediment (Musat and Widdel, 2008). Furthermore, phylotypes related to the Desulfobacteraceae were detected in higher abundances in two benzene-degrading freshwater enrichments able to use sulfate or carbon dioxide as electron acceptor (Ulrich and Edwards, 2003; Mancini et al., 2008). These observations suggest that members of the Desulfobacteraceae are key players of benzene degradation under sulfate-reducing conditions. However, despite enrichment with benzene for several years, all of these cultures contained still other phylotypes, and a single benzene-degrading Desulfobacteraceae-like organism could not be isolated from any of the described cultures. Therefore, it is possible that benzene is mineralized in these cultures by synergetic or syntrophic relationships of Desulfobacteraceae and other organisms; this can be at least assumed for the enrichment cultures which can use both sulfate and carbon dioxide as electron acceptors.

In addition to phylotypes belonging to the Gram-negative Desulfobacteraceae, Gram-positive members of the family Peptococcaceae seem to be key players of sulfate-dependent anaerobic benzene degradation. The enrichment culture of Laban and colleagues (2009) was dominated by a phylotype related to the genus Pelotomaculum; the authors assumed that this organism may assimilate benzene solely using sulfate as electron acceptor. In our own culture enriched from groundwater-percolated sand columns at the field site Zeitz (Vogt et al., 2007), a phylotype affiliated to the Cryptanaerobacter/Pelotomaculum group within the Desulfotomaculum subcluster Ic of the Peptococcaceae (Imachi et al., 2006) was shown to be crucial for sulfate-dependent benzene mineralization, as T-RFLP peak abundances of this organism increased after prolonged incubation with benzene and decreased during growth on other substrates (Kleinsteuber et al., 2008). Moreover, this phylotype and also an Epsilonproteobacterium distantly related to the genus Sulfitobacter assimilated carbon from 13C-labelled benzene in a subsequent DNA-SIP experiment (Herrmann et al., 2010). In this experiment, small amounts of 13C-labelled benzene were converted to 13C-labelled methane, and members of the aceticlastic Methanosaetaceae were detected in an archaeal 16S rRNA gene clone library. In addition, several sulfate-reducing Deltaproteobacteria were detected but not found to be 13C-labelled in spite of prolonged incubation with benzene (Kleinsteuber et al., 2008; Herrmann et al., 2010). It was further shown that benzene mineralization could be reversibly inhibited by addition of hydrogen or low amounts of acetate (0.3 mM), indicating that both compounds are intermediates during anaerobic benzene fermentation (Rakoczy et al., unpubl. data). It was therefore suggested that benzene is mineralized by a consortium consisting of syntrophic fermenters, hydrogenotrophic sulfate reducers, aceticlastic methanogens and other acetate-consuming bacteria (Fig. 1). Contaminated aquifers might be a specific ecological niche for syntrophic benzene degradation, as syntrophs are versatile regarding the terminal electron acceptor and specifically adapted to a life at the thermodynamic limit. At the Zeitz site, anaerobic benzene degradation, likely with sulfate as electron acceptor, has been verified also in the flow path of the benzene plume by compound-specific stable isotope analysis (CSIA) (Fischer et al., 2007; 2009). This method, which is explained in more detail below, has generally great potential to verify anaerobic benzene degradation in
contaminated aquifers due to the strong hydrogen isotope fractionation linked to anaerobic benzene degradation. Recently, a sulfate-reducing benzene-degrading culture was enriched from groundwater sampled from an underground gas storage area (Berlendis et al., 2010). The abundant phylotypes in this enrichment culture were distantly related to *Pelobacter*, *Thermotogales* and *Methanololus*, indicating that benzene is syntrophically degraded.

Benzene degradation under iron-reducing conditions

Several benzene-mineralizing iron-reducing cultures were successfully established using amorphous iron hydroxide ([Fe(OH)]₃ as electron acceptor (Kazumi et al., 1997; Villatoro-Monzon et al., 2003; Jahn et al., 2005; Botton and Parsons, 2006; Kunapuli et al., 2007). Iron-dependent benzene mineralization could also be stimulated by adding nitric acid (NTA) or other iron-chelating compounds (Lovley et al., 1994; 1996; Caldwell et al., 1999). Presumably one of the best-investigated aquifers in which iron-driven benzene degradation takes place is the Bemidji site in Minnesota (USA), where a crude oil pipeline ruptured in 1979 and contaminated the adjacent aquifer (Essaid et al., 2011). Benzene degradation or mineralization in anaerobic microcosms prepared with sediment and groundwater from the iron-reducing zone of this aquifer was repeatedly reported (Baedecker et al., 1993; Cozzarelli et al., 1994; Anderson et al., 1998). Recently, benzene degradation was also verified directly in the anoxic iron-reducing zone of the plume by an *in situ* microcosms approach (Cozzarelli et al., 2010). Rooney-Varga and colleagues (1999) investigated the community structure of iron-reducing benzene-mineralizing enrichment cultures and sediment samples of the Bemidji site. MPN-PCR revealed an increase of *Geobacter*-related 16S rRNA gene copies in benzene-mineralizing sediments and enrichment cultures, indicating an involvement of *Geobacteraceae* in benzene mineralization under iron-reducing conditions.

Geobacteraceae were also dominant in iron-reducing benzene-degrading enrichment cultures set up from a landfill site in the Netherlands (Botton and Parsons, 2007). In contrast, no *Geobacteraceae* were identified in a highly iron-reducing culture originating from a contaminated site in Poland (Kunapuli et al., 2007; Laban et al., 2010). Here, a phylotype affiliated to the *Peptococcaceae* was most abundant and assimilated ¹³C-benzene in a DNA-SIP experiment (Kunapuli et al., 2007). Phylogenotypes affiliated to the *Desulfobulbaceae* and members of the *Actinobacteria* were also prominent. The authors suggested that benzene is syntrophically mineralized in this culture, with the *Peptococcaceae* phylotype as the primary benzene oxidizer.

Benzene degradation under nitrate-reducing conditions

Major and colleagues (1988) demonstrated first benzene degradation dependent on nitrate as electron acceptor, using microcosms set up from hydrocarbon-contaminated sediments and anoxic groundwater. Nitrate was shown to be reduced to dinitrogen during benzene degradation; the electron balance of reduced nitrate and degraded benzene indicated that benzene was mineralized, although carbon dioxide production from benzene was not experimentally confirmed. Benzene degradation under nitrate-reducing conditions was later observed in microcosms made of soil and anoxic groundwater taken from three different sites (Nales et al., 1998). Afterwards, stable benzene-degrading enrichment cultures were established and further examined. As demonstrated for one culture in experiments with ¹⁴C-labelled benzene, more than 90% of the benzene's carbon was released as CO₂; benzene degradation appeared to be coupled to nitrate reduction to nitrite (Burland and Edwards, 1999). Notably, the biomass yield of the nitrate-reducing cultures was in the range observed for sulfate-reducing or methanogenic benzene-degrading enrichments (Ulrich and Edwards, 2003), despite the high redox potential of the nitrate/nitrite couple (Table 2). Dominant phylotypes in the cultures, determined after being incubated for several years in the laboratory, belonged to the *Betaproteobacteria* (genera *Azoarcus* and *Dechloromonas*), the *Peptococcaceae* (genus *Pelotomaculum*) and *Chlorobi* (Ulrich and Edwards, 2003; Mancini et al., 2008). Analogously to cultures enriched with ferric iron, sulfate or carbon dioxide as electron acceptor, it was apparently not possible to isolate a single benzene degrader out of these cultures, despite the long laboratory incubation time.

Benzene degradation with electron acceptors other than nitrate, sulfate, ferric iron or carbon dioxide

Manganese(IV) was shown to be used as electron acceptor for anaerobic benzene degradation in sediment microcosms and columns. The benzene degradation rates were significantly higher for manganese(IV) compared with ferric iron, indicating that this process is relevant in the environment (Villatoro-Monzon et al., 2003; 2008). Recently, Zhang and colleagues (2010) showed that benzene was mineralized by sediment microorganisms using a graphite anode as electron acceptor.

Pure cultures of anaerobic benzene degraders

Notably, the only pure cultures described to mineralize benzene using nitrate as electron acceptor were not isolated by the ‘classical approach’ from benzene-degrading enrichment cultures. The strains JJ and RCB, belonging
to the genus *Dechloromonas*, were originally isolated using humic substances and nitrate (JJ), or chlorobenzoate and chlorate (RCB) as electron donors and acceptors respectively (Coates *et al.*, 2001). Kasai and colleagues (2006) identified a phylotype affiliated to the genus *Azoarcus* for assimilation of benzene with nitrate as electron acceptor in an RNA-SIP experiment targeting gasoline-contaminated groundwater. The authors than isolated several pure strains out of the groundwater using a non-selective medium and were able to identify two *Azoarcus* strains as nitrate-reducing benzene degraders in subsequent experiments with 14C-labelled benzene (Kasai *et al.*, 2006).

Tan and colleagues (2006) and Weelink and colleagues (2007) enriched a chlorate-reducing benzene-degrading culture. Later, a strain belonging to *Alicycliphilus denitrificans* was isolated that was able to mineralize benzene with nitrate as electron acceptor (Weelink *et al.*, 2008). However, in the last step of the chlorate reduction pathway, chlorite dismutates to oxygen and chloride. Biochemical and physiological data suggest that this bacterium uses the oxygen released during chlorate reduction as a co-substrate for the initial attack and ring cleavage of benzene; thus it cannot be regarded as a true anaerobic benzene degrader. Benzene degradation by chlorate reduction is excellently and extensively described in the recent review of Weelink and colleagues (2010).

Mechanisms of anaerobic benzene activation

The question how benzene is activated in the absence of oxygen is still not convincingly answered, although several attempts have been made since the end of the 1980s to elucidate the activation mechanism. In principle, the benzene molecule is thermodynamically very stable due to the symmetric π-electron system of the aromatic ring and the lack of potentially destabilizing or reactive substituents.

Many alkylated aromatic hydrocarbons, e.g. toluene and xylene, are activated under anoxic conditions by a reaction sequence in which fumarate is added to the alkyl side-chain of the aromatic ring (for a review see Heider, 2007). In the first step of this reaction, a relatively stable benzyl radical is thought to be formed. One might suggest that benzene is activated by a similar mechanism; however, the formation of a phenyl radical as a reactive intermediate for a subsequent methylation or other reaction is rather unlikely for energetic reasons. The abstraction of a hydrogen atom from benzene would need an activation energy of more than 460 kJ mol\(^{-1}\) which is roughly 100 kJ mol\(^{-1}\) more compared with the formation of a benzyl radical from alkylated benzene derivatives (Widdel and Rabus, 2001; Musat and Widdel, 2008).

Thus, three other activation mechanisms have been intensively discussed: (i) an anaerobic hydroxylation of benzene yielding phenol, (ii) a Friedel-Crafts-type methylation of benzene yielding toluene and (iii) a carboxylation of benzene yielding benzoate (Fig. 2). We will discuss the pros and cons for all three possible activation reactions. Generally, isotope-based methods have been used to elucidate the reaction mechanism, either by CSIA, or by detection of 13C- or 14C-labelled metabolites which are formed during transformation of 13C- or 14C-labelled benzene. Due to the lack of pure cultures, most studies aiming to elucidate the reaction mechanism were performed with enrichment cultures.

Benzene hydroxylation

Benzene hydroxylation by hydroxyl ions stemming from water is an attractive model for benzene activation as the redox potential for this reaction is comparably low (E° = –0.09 V; Musat and Widdel, 2008) and hence likely possible even under sulfate-reducing or methanogenic conditions. Phenol itself has been shown to be mineralized by facultative and strictly anaerobic bacteria; the
degradation pathway proceeds via a carbon dioxide-dependent carboxylation of the aromatic ring to 4-hydroxybenzoate and further transformation to benzoyl-CoA (Bak and Widdel, 1986; Knoll and Winter, 1987; Tschech and Fuchs, 1987; Lovley and Lonergan, 1990; Zhang and Wiegel, 1994; Qiu et al., 2008; Schleinitz et al., 2009).

Hydroxylation of benzene had been already suggested as an initial reaction mechanism for benzene activation in one of the first reports regarding anaerobic benzene degradation (Vogel and Grbic-Galic, 1986). Addition of 18O-labelled water resulted in the formation of 18O-labelled phenol, indicating that the introduced hydroxyl group originated from water. In subsequent reports, phenol was often detected in enrichments as metabolite of benzene degradation under different electron acceptor conditions: in iron-reducing cultures (Caldwell and Sufita, 2000; Botton and Parsons, 2007; Kunapuli et al., 2008), sulfate-reducing cultures (Caldwell and Sufita, 2000; Laban et al., 2009) and methanogenic cultures (Weiner and Lovley, 1998b; Caldwell and Sufita, 2000; Ulrich et al., 2005). In some studies, benzoate was concomitantly detected with phenol (Caldwell and Sufita, 2000; Ulrich et al., 2005; Kunapuli et al., 2008).

It is noteworthy that it has recently been observed that phenol can be abiotically formed from benzene in culture media from iron and sulfate reducers by contact with air after sampling (Kunapuli et al., 2008). Hydroxyl radicals were likely generated by oxidation of iron in the sample during work up, which then reacted rapidly with benzene producing small amounts of phenol before sample analysis. The formation of 2-hydroxybenzoate and 4-hydroxybenzoate from benzoate was also explained by these mechanisms (Laban et al., 2009). These results indicate that it is generally problematic to distinguish between biotic and abiotic phenol formation in strongly reduced culture samples, probably preventing any clear evidence for benzene hydroxylation under strictly anoxic conditions by means of metabolite analysis. Hence, other methodological approaches are needed in addition. Substrate consumption tests with two highly enriched sulfate-reducing benzene-degrading cultures revealed that phenol is either not consumed (Laban et al., 2009) or only consumed after a certain lag-phase (Musat and Widdel, 2008), strongly indicating that phenol is unlikely to be an intermediate during benzene degradation in these cultures.

Chakraborty and Coates (2005) suggested that Dechloromonas strain RCB hydroxylated benzene to phenol, which was subsequently transformed to benzoate; the reaction was dependent on the presence of nitrate as electron acceptor. Here, the authors did not report phenol formation or benzene degradation in anoxic, nitrate-free control cultures amended with benzene. The origin of the introduced hydroxyl group could not be identified. When cells degraded benzene in H2-18O-enriched mineral salt medium, the formed phenol was only slightly enriched with 18O, suggesting that the hydroxyl group did not originate from water. On the other hand, hydroxyl free radical scavengers strongly inhibited benzene degradation and phenol formation, indicating that hydroxyl radicals were the source of the hydroxyl group in phenol. In an additional study, Chakraborty and colleagues (2005) showed that strain RCB could degrade benzene and several other aromatic hydrocarbons with nitrate, chlorate or oxygen as electron acceptor. Surprisingly, none of the known genes for anaerobic degradation of aromatic compounds could be found in the genome of strain RCB, which was recently sequenced (Salinero et al., 2009). Due to the lack of these genes, anaerobic benzene degradation in strain RCB ‘remains enigmatic’ (Salinero et al., 2009). On the other hand, strain RCB encodes several aerobic pathways for aromatics degradation. In the presence of chlorate, this organism releases oxygen during chloride respiration allowing aromatics degradation by means of oxygenases even in the initial absence of oxygen in the culture medium, as shown also for the chlorate-reducing benzene degrader Alicyclobulius denitrificans (Weelink et al., 2008). Interestingly, it has been recently demonstrated that oxygen can be released during reduction of nitric oxide (NO) (Ettwig et al., 2010), an intermediate of the classical nitrate reduction pathway to dinitrogen. As also suggested by Weelink and colleagues (2010), strain RCB may contain this enzyme, allowing the use of oxygen for the initial attack of benzene and other aromatics even under nitrate-reducing conditions, explaining the apparently inconsistent physiological and genetic data. Unfortunately, the oxygen-releasing enzyme has not been characterized and can therefore not yet be identified in the genome of strain RCB. The genome of strain RCB contains the genes for the classical nitrate reduction to dinitrogen pathway, including those for nitric oxide reductase which catalyses nitric oxide reduction to nitrous oxide (N2O) (Salinero et al., 2009).

Benzene methylation

Benzene methylation via Friedel-Crafts-type reaction is exergonic using the unique biological methyl donors S-adenosyl-methionine or methyl-tetrahydrofolate (Coates et al., 2002), which open the doors for another hypothesis for anaerobic benzene activation. Actually, S-adenosyl-methione-dependent alkylation of benzene (and substituted aromatics) has been observed in bone marrow (Flesher and Myers, 1991). Methylation has been also proposed for the anaerobic activation of the non-substituted aromatic hydrocarbon naphthalene (Safinowski and Meckenstock, 2006). If benzene is methylated
by anaerobes, the reaction product toluene could be further activated by addition of fumarate to the methyl group of toluene catalysed by the enzyme benzylsuccinate synthase (BSS), leading to the characteristic compound benzylsuccinate as intermediate. BSS has been detected in several anaerobic toluene-degrading pure and mixed cultures, and fumarate addition seems to be a unique activation mechanism for anaerobic toluene degradation (for an overview see Heider, 2007). PCR primers for the gene encoding the protein subunit which contains the reactive centre, bssA, have been also developed (Winderl et al., 2007). Thus, reasonable strategies for verifying benzene activation by methylation are detecting the intermediates toluene and benzylsuccinate or detecting the presence or expression of bssA-like genes or the induction or activity of BSS.

Ulrich and colleagues (2005) detected \(\text{ring}^{-13}\text{C}\)-labelled toluene and \(\text{ring}^{-13}\text{C}\)-labelled benzene as intermediates in \(\text{[13C6]}\)-benzene-spiked nitrate-reducing and methanogenic enrichment cultures. The formation of \(\text{[13C6]}\)-phenol was observed only in the methanogenic culture. The nitrate-reducing culture degraded toluene rapidly and at higher rates than benzene, supporting the hypothesis that toluene might be an intermediate during benzene degradation in this culture. In contrast, toluene was only slightly degraded by the methanogenic culture. The authors concluded that two degradation pathways exist: (i) a methylation pathway leading to toluene with subsequent transformation to benzene operating in the nitrate-reducing and methanogenic culture, and (ii) a hydroxylation pathway leading to phenol with subsequent formation of benzene operating only in the methanogenic culture. This hypothesis was supported by studies in which CSIA was used for characterizing the initial step of benzene activation in different cultures (Mancini et al., 2003; 2008; Fischer et al., 2008). Mancini and colleagues (2008) showed that the ratio of hydrogen isotope fractionation (\(\Delta\delta^2\text{H}\)) versus carbon isotope fractionation (\(\Delta\delta^{13}\text{C}\)) – a value defined as lambda: \(\Lambda = \Delta\delta^2\text{H}/\Delta\delta^{13}\text{C} \) (Fischer et al., 2008) – for anaerobic benzene degradation was significantly higher for the methanogenic culture (\(\Lambda = 39 \pm 5 \)) compared with the nitrate-reducing enrichment culture (\(\Lambda = 16 \pm 2 \)) investigated by Ulrich and colleagues (2005). Simplified, the lambda value can be seen as a biochemical fingerprint of a given biochemical reaction. Concordantly, other nitrate-reducing cultures showed lambda values in the range between 8 and 19, whereas for other methanogenic or sulfate-reducing cultures lambda values between 28 and 31 were determined (Mancini et al., 2003; 2008; Fischer et al., 2008). Thus, the CSIA data indicate that benzene activation under nitrate-reducing conditions is different from benzene activation under sulfate-reducing and methanogenic conditions. Nevertheless, ‘different reaction mechanism’ means that either the reactions are truly different (different products are formed), or the reactions are similar on paper (same products are formed) but proceed via different reaction mechanisms catalysed by different enzymes or cofactors leading to different fractionation patterns; the latter has been recently shown for toluene activation by benzylsuccinate synthase (Vogt et al., 2008; Herrmann et al., 2009). Hence, further research is needed to conclusively demonstrate that benzene can be methylated under nitrate-reducing conditions. Some highly enriched strictly anaerobic benzene-degrading cultures cannot degrade toluene (Kunapuli et al., 2008; Musat and Widdel, 2008; Laban et al., 2009), probably excluding biomethylation of benzene to form toluene as activation mechanism.

Benzene carboxylation

Similar to hydroxylation or methylation of benzene, benzene carboxylation is slightly exergonic or close to the thermodynamic equilibrium depending on the carboxyl donor and thus feasible even in sulfate-reducing or methanogenic cultures (Musat and Widdel, 2008). Additionally, for some non-substituted aromatic compounds, e.g. naphthalene (Zhang and Young, 1997; Musat et al., 2009; DiDonato et al., 2010) or phenanthrene (Zhang and Young, 1997; Davidova et al., 2007), a carboxylation reaction was suggested for ring activation, indicating that carboxylation might be an important activation principle for the degradation of non-substituted aromatic compounds in nature. Indeed, benzoate has been detected as intermediate of anaerobic benzene degradation in sulfate-reducing (Caldwell and Suflita, 2000; Phelps et al., 2001; Laban et al., 2009), iron-reducing (Caldwell and Suflita, 2000; Kunapuli et al., 2008), nitrate-reducing (Ulrich et al., 2005) or methanogenic (Caldwell and Suflita, 2000; Ulrich et al., 2005) enrichment cultures, concomitantly with the intermediates phenol (Caldwell and Suflita, 2000; Ulrich et al., 2005; Kunapuli et al., 2008; Laban et al., 2009) or toluene (Ulrich et al., 2005). Phelps and colleagues (2001) found deuterated benzene (D5) as sole intermediate of deuterated benzene (D6) degradation in their highly enriched marine sulfate-reducing culture. Interestingly, incubation in the presence of a \(^{13}\text{C} \)-labelled bicarbonate buffer system did not lead to \(^{13}\text{C} \) incorporation in the carboxyl group of the benzene intermediate, indicating that the introduced carboxyl group did not originate from carbon dioxide. This was in accordance with results presented by Caldwell and Suflita (2000) for their benzene-degrading sulfate-reducing freshwater culture. Here, fully \(\text{[13C6]} \)-labelled benzoate was formed when the culture was spiked with fully \(\text{[13C6]} \)-labelled benzene, showing that the carboxyl group of benzoate was stemming from transformation products of \(\text{[13C6]} \)-benzene itself, but not from the non-labelled bicarbonate buffer.
system. In contrast, Kunapuli and colleagues (2008) found both [13C\textsubscript{6}]-benzoate and [13C\textsubscript{7}]-benzoate in their iron-reducing enrichment culture during incubation with fully labelled [13C\textsubscript{6}]-benzene. Furthermore, the authors detected 13C-carboxy group-labelled benzoate if cells were incubated in medium prepared with non-labelled benzene and 13C-labelled bicarbonate buffer, favouring the hypothesis that the bicarbonate buffer was the carboxyl group donor for benzoate formation.

However, it is generally difficult to interpret all these observations since benzoyl-CoA, the activated form of benzoate, is a common intermediate within the anaerobic degradation pathways of several aromatic compounds including toluene and phenol (for an overview see Carmona et al., 2009; see also Fig. 2); in addition, benzoate has been reported as an excreted intermediate during phenol degradation under methanogenic conditions (Knoll and Winter, 1987; Kobayashi et al., 1989; Bechard et al., 1990; Karlsson et al., 2000). Hence, the metabolite benzoate might be formed directly from benzene by a carboxylation step, but could be formed as well in later steps during anaerobic benzene degradation pathways starting, e.g. with a methylation or hydroxylation step.

Lately, Laban and colleagues (2010) investigated their highly enriched iron-reducing benzene-degrading culture using an approach combining metagenomics and metaproteomics. Subcultures were grown with benzene, phenol or benzoate as sole substrates, and peptide sequences were subsequently identified based on the metagenome which had been sequenced before. Proteins similar to the phenylphosphate carboxylase subunits PpcA and PpcD of Azotobacter sp. strain EbN1 and to the benzoyl-CoA ligase of Geobacter metallireducens were specifically expressed during anaerobic benzene degradation. Based on these results, the authors suggested that benzene is directly carboxylated by a putative anaerobic benzene carboxylase. The formed benzoate might be further activated by a benzoyl-CoA ligase to benzoyl-CoA. However, an enzyme activity test for the putative anaerobic benzene carboxylase, ultimately proving this hypothesis, could not be established yet.

Outlook – what is needed for a better understanding of the mechanisms of anaerobic benzene degradation?

Isolating strictly anaerobic benzene-degrading bacteria is still important for a better understanding of anaerobic benzene degradation. Sequencing the genome of such an organism may allow revealing the upper and lower degradation pathway; also more controlled physiological experiments would be possible for elucidating the anaerobic benzene activation mechanism. However, the gene encoding the responsible enzyme might be not yet detectable within the genome due to the unknown enzyme properties. Establishing any *in vitro* or *in vivo* assay undoubtedly proving a specific activation mechanism is clearly needed.

For highly enriched benzene-degrading cultures, sequencing of the metagenome might be very helpful to clarify syntrophic or cooperative relationships, as, for example, recently shown for anaerobic methane oxidation (Meyerdiers et al., 2010). If a metagenome is available, mRNA expression or proteomic studies may follow for further functional characterization (Ram et al., 2005; Meyerdiers et al., 2010).

Acknowledgements

This work is integrated into the internal research and development programme of the UFZ as well as the SAFIRA project. We acknowledge funding also from the German Research Foundation, Priority Program 1319.

References

Alfreider, A., Krossbacher, M., and Psenner, R. (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. *Water Res* 31: 832–840.

Anderson, R.T., and Lovley, D.R. (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. *Environ Sci Technol* 34: 2261–2266.

Anderson, R.T., Rooney-Varga, J.N., Gaw, C.V., and Lovley, D.R. (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. *Environ Sci Technol* 32: 1222–1229.

Anneser, B., Pilloni, G., Bayer, A., Lueders, T., Grieblcr, C., Einsiedl, F., and Richters, L. (2010) High resolution analysis of contaminated aquifer sediments and groundwater: what can be learned in terms of Natural Attenuation? *Geomicrobiol J* 27: 130–142.

Atlas, R.M. (1981) Microbial degradation of petroleum hydrocarbons – an environmental perspective. *Microbiol Rev* 45: 180–209.

Baedecker, M.J., Cozzarelli, I.M., Eganhouse, R.P., Siegel, D.I., and Bennett, P.C. (1993) Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modelling in anoxic groundwater. *Appl Geochem* 8: 569–586.

Bak, F., and Widdel, F. (1986) Anaerobic degradation of phenol and phenol derivatives by *Desulfobacterium phenolicum* sp. nov. *Arch Microbiol* 146: 177–180.

Bechard, G., Bisaillon, J.G., Beaudet, R., and Sylvestre, M. (1990) Degradation of phenol by a bacterial consortium under methanogenic conditions. *Can J Microbiol* 36: 579–578.

Berlendis, S., Lascourreges, J.F., Schraauwers, B., Sivadon, P., and Magot, M. (2010) Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer. *Environ Sci Technol* 44: 3621–3628.
Anaerobic benzene degradation by bacteria

Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. *Environ Microbiol* 12: 422–439.

Morasch, B., Hohener, P., and Hunkeler, D. (2007) Evidence for *in situ* degradation of mono- and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with C-13-labeled contaminants. *Environ Pollut* 148: 739–748.

Musat, F., Widdel, F. (2008) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phytophage. *Environ Microbiol* 10: 10–19.

Musat, F., Galushko, A., Jacob, J., Widdel, F., Kube, M., Reinhardt, R., et al. (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. *Environ Microbiol* 11: 209–219.

Nales, M., Butler, B.J., and Edwards, E.A. (1998) Anaerobic benzene biodegradation: a microcosm survey. *Bioremediat J* 2: 125–144.

Oka, A.R., Phelps, C.D., McGuinness, L.M., Mumford, A., Young, L.Y., and Kerkhof, L.J. (2008) Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. *Appl Environ Microbiol* 74: 6476–6480.

Phelps, C.D., and Young, L.Y. (1999) Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. *Biodegradation* 10: 15–25.

Phelps, C.D., Kazumi, J., and Young, L.Y. (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. *FEMS Microbiol Lett* 145: 433–437.

Phelps, C.D., Kerkhof, L.J., and Young, L.Y. (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. *FEMS Microbiol Ecol* 27: 269–279.

Phelps, C.D., Zhang, Z.M., and Young, L.Y. (2001) Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. *Environ Microbiol* 3: 600–603.

Qiu, Y.L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y., and Sekiguchi, Y. (2008) *Syntrophorhabdus aromatisivorans* gen. nov., sp nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. *Appl Environ Microbiol* 74: 2051–2058.

Ram, R.J., VerBerkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake, R.C., et al. (2005) Community proteomics of a natural microbial biofilm. *Science* 306: 1915–1920.

Rappe, M.S., and Giovannoni, S.J. (2003) The uncultured microbial majority. *Annu Rev Microbiol* 57: 369–394.

Reinhard, M., Hopkins, G.D., Steinle-Darling, E., and LeBrón, C.A. (2005) *In situ* biotransformation of BTEX compounds under methanogenic conditions. *Ground Water Monit Remediat* 25: 50–59.

Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D., and Lovley, D.R. (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. *Appl Environ Microbiol* 65: 3056–3063.

Ruiz-Agullar, G.M.L., O’Reilly, K., and Alvarez, P.J.J. (2003) A comparison of benzene and toluene plume lengths for sites contaminated with regular vs. ethanol-amended gasoline. *Ground Water Monit Remediat* 23: 48–53.

Safinowski, M., and Meckenstock, R.U. (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. *Environ Microbiol* 8: 347–352.

Sakai, N., Kurisu, F., Yagi, O., Nakajima, F., and Yamamoto, K. (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. *J Biosci Bioeng* 108: 501–507.

Salinero, K.K., Keller, K., Feil, W.S., Feil, H., Trong, S., Di Bartolo, G., and Lapidus, A. (2009) Metabolic analysis of the soil microbe *Dechloromonas aromatica* str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. *BMC Genomics* 10: 23.

Schleinitz, K.M., Schmeling, S., Jehmlich, N., von Bergen, M., Harms, H., Kleinsteuber, S., et al. (2009) Phenol degradation in the strictly anaerobic iron-reducing bacterium *Geobacter metallireducens* GS-15. *Appl Environ Microbiol* 75: 3912–3919.

Söhngen, N.L. (1913) Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequellen für Mikroben. *Centr Bakteriol Parasitenk Abt II* 37: 595–609.

Tan, N.C.G., van Doesburg, W., Langenhoff, A.A.M., and Stams, A.J.M. (2006) Benzene degradation coupled with chloride reduction in a soil column study. *Biodegradation* 17: 11–17.

Tao, Y., Fishman, A., Bentley, W.E., and Wood, T.K. (2004) Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monoxygenase of *Pseudomonas mendocina* KR1 and toluene 3-monoxygenase of *Ralstonia pickettii* PKO1. *Appl Environ Microbiol* 70: 3814–3820.

Tschech, A., and Fuchs, G. (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying *Pseudomonads*. *Arch Microbiol* 148: 213–217.

Ulrich, A.C., and Edwards, E.A. (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. *Environ Microbiol* 5: 92–102.

Ulrich, A.C., Beller, H.R., and Edwards, E.A. (2005) Metabolites detected during biodegradation of C-13-(6)-benzene in nitrate-reducing and methanogenic enrichment cultures. *Environ Sci Technol* 39: 6681–6691.

Vallancourt, F.H., Bolin, J.T., and Elts, L.D. (2006) The ins and outs of ring-cleaving dioxygenases. *Crit Rev Biochem Mol Biol* 41: 241–267.

Villatoro-Monzon, W.R., Mesta-Howard, A.M., and Razo-Flores, E. (2003) Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. *Water Sci Technol* 48: 125–131.

Villatoro-Monzon, W.R., Morales-Ibarria, M.G., Velazquez, E.K., Ramirez-Saad, H., and Razo-Flores, E. (2008) Benzene biodegradation under anaerobic conditions coupled with metal oxides reduction. *Water Air Soil Pollut* 192: 165–172.

Vogel, T.M., and Grbic-Galic, D. (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. *Appl Environ Microbiol* 52: 200–202.

Vogt, C., Godeke, S., Treutler, H.C., Weiss, H., Schirmer, M., and Richnow, H.H. (2007) Benzene oxidation under
sulfate-reducing conditions in columns simulating in situ conditions. Biodegradation 18: 625–636.
Vogt, C., Cyrus, E., Herklotz, I., Schlosser, D., Bahr, A., Herrmann, S., et al. (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42: 7793–7800.
Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267.
Weelink, S.A.B., Tan, N.C.G., ten Broeke, H., van Doesburg, W., Langenhoff, A.A.M., Gerritse, J., and Stams, A.J.M. (2007) Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community. FEMS Microbiol Ecol 60: 312–321.
Weelink, S.A.B., Tan, N.C.G., ten Broeke, H., van den Kieboom, C., van Doesburg, W., Langenhoff, A.A.M., et al. (2008) Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74: 6672–6681.
Weelink, S.A.B., van Eekert, M.H.A., and Stams, A.J.M. (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Bio/Technol 9: 359–385.
Weiner, J.M., and Lovley, D.R. (1998a) Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl Environ Microbiol 64: 775–778.
Weiner, J.M., and Lovley, D.R. (1998b) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64: 1937–1939.
Widdel, F., and Rabus, R. (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12: 259–276.
Wilson, B.H., Smith, G.B., and Rees, J.F. (1986) Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material – a microcosm study. Environ Sci Technol 20: 997–1002.
Winderl, C., Schaefer, S., and Lueders, T. (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9: 1035–1046.
Zengler, K., Richnow, H.H., Rossello-Mora, R., Michaelis, W., and Widdel, F. (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269.
Zhang, X.M., and Wiegel, J. (1994) Reversible conversion of 4-hydroxybenzoate and phenol by Clostridium hydroxybenzoicum. Appl Environ Microbiol 60: 4182–4185.
Zhang, X.M., and Young, L.Y. (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63: 4759–4764.
Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E., and Lovley, D.R. (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12: 1011–1020.