Additive manufacturing of multi-functional biomaterials for bioimplants: a review

Shubhadip Paul1, Ananya Nath1 and Shibendu Shekhar Roy1

1National Institute of Technology Durgapur, India.
E-mail: shibendu.roy@me.nitdgp.ac.in

Abstract. Additive manufacturing (AM) has been emerged recently as a promising technique to manufacture biomaterials for bioimplants creating a high impact in the field of medical science and research. AM technologies facilitate fabrication of the micro- as well as macro-architectural framework of orthopaedic bioimplants both internally and externally with higher precision and flexibility. The topological as well as geometrical porous nature of metallic biomaterials by means of controlled AM processes for fabrication of bioimplants can be adapted with high precision, leading to the upgradation of mechanical properties for bone-mimicking with improved biodegradation features. The increasing demand for the application of multi-functional biomaterials to manufacture metallic bioimplant as substitute of bonefronts the current additive manufacturing technologies. In this paper, recent technological advancement in the manufacturing of Ti-, Mg- and Fe-based biomaterials utilizing multi-material AM technologies is being reviewed for identifying the knowledge gaps and come up with the directions of further researches leading to the progress of multi-material based additive manufacturing technologies to fabricate metallic bioimplants by virtue of multi-functional biomaterials.

Keywords: Additive manufacturing, bioimplants, multi functional bio material

1. Introduction
In the past three decades, Additive Manufacturing (AM) has shown great impact in biomedical applications. Since the following mechanisms like solidification process with architectural blue-print followed by post-treatment activities and its effective implementations are fully material dependent, it can be said that Additive Manufacturing is a materials-based manufacturing technology. Bioimplants are implants that are used for medical therapeutic applications as prosthetics, wearable biosensors, porous bone implants and drug delivery systems. In the present scenario, the market requirement for bioimplants has shown accelerated growth because of aging population [1] and also due to the scarcity of donor organs for the treatment of patients [2]. Advanced level of researches and experimental study in the field of biomaterials [3] has paved the way for the development of several implants, such as implants used in dentistry [4], bioimplants employed in cartilage and bone repairing [5], brain implants [6] and so on. But the major challenging issues related with bioimplants are: Right selection of biomaterials [7], Strategies of manufacturing [7], surface-treating [8] as well as biological assessments [4–7]. Thus, AM technologies, that involve mechanisms of materials addition against substrate without any materials removal as performed in conventional manufacturing processes[2],
shows more opportunities for the manufacturing of highly efficient implants with custom stipulations by virtue of complex geometry.

2. Biomaterials and fabrication technologies

Over the last few decades, the emergence of a variety of fabrication techniques has revealed enormous developments of bioimplants. Conventional forming methods have shown sustainable development in the fabrication of bioimplants which includes casting, sintering and compression moulding establishing milestone in the field of medical science for highly efficient as well as decent characteristics of the implants. Presently, commercial metallic orthopaedic prosthetic products are manufactured mainly from either wrought or cast bar stock [9]. If Titanium and its alloys are taken into account, around seventy percent of the market is covered by wrought products [10]. At the outset of 21st century, there was an emergence of wrought Co-Ni-Cr-Mo alloys. It is reported that wrought and casted Co alloys are highly corrosion resistant with the property of having identical abrasive wear resistance [11]. Moreover, various experimental studies have shown that, the casted Ti-6Al-4V alloys with post-investigations has shown improved crack propagation resistance if compared to wrought ones [12]. According to Jovanovic’ et al.[13], under controlled cooling rates and annealing temperatures, it is possible to increase the tensile stress and hardness of casted Ti alloys. Lin et al. [14] showed that in Ti alloys, the most fundamental reason of the fatigue cracks is due to the existence of the casting induced surface pores. The experimental study of Dewidar et al.[15] revealed that the human bones have almost similar mechanical properties as compared to Powder metallurgy manufactured porous 316L stainless steel. But, the major disadvantage of Powder Metallurgy stainless steel is that the porosity can pave the way in the decrease of corrosion resistance property for the increment in the reaction area [16, 17]. Ning and Zhou [18] also exercised Powder Metallurgy for the bioimplants manufacturing from titanium and hydroxyapatite powders. In 1980s, after the advent of materializing the technology, Additive manufacturing (AM) has become an area of research in the domain of fabrication technology [19].

3. Application of additive manufacturing technologies for bioimplant

The layer-by-layer fabrication technology has emerged a new era in the field of medical science and technology with the advent of additive manufacturing which provided the opportunity for manufacturing bioimplants in contrast with the physiological as well as anatomical needs of patient by virtue of proper geometric data from 3D Computer-aided design. It can also be performed by Computed tomography derived models. Thus, any complex shaped objects or implants can be manufactured. Using 3D scanning of a particular patient specific bone, the cloud data is generated through which a patient specific implant can also be formed using additive manufacturing. However, joint arthroplasty, pelvis rebuild, maxillofacial reconstruction and many more disease are cured in last few decades using bio implants. The acceptance of AM applications for the fabrication of implants is increasing at a tremendous rate for product developments in medical science-based industries. In the Table 1, various categorisation of additive manufacturing has been done with various process methodologies. Also, the ink used for different methodologies are mentioned with some of their advantages. In the last few decades, various AM technologies have been flourished [20].

4. Multi-functional biomaterials for additive manufacturing of bioimplants

In terms of substitution of bone, an ideal metallic biomaterial fabricated should not only possess biocompatibility but also have good mechanical as well as biological functional properties by fulfilling the design requirements for better sustainability for replacement and regeneration of bone. The idea of synthesising and processing of multi-material having upgraded physical characteristics, mechanical performance and chemical composition can be achieved by virtue of powder metallurgy. The cell attachment by the surface modification, has shown the pathway for developing multimaterial AM based products with higher technologies.
Methodology	Process technology	Energy source	Material used	Merits
VAT polymerization	Stereolithography (SLA)	Laser and Ultraviolet	Metal powder, Ceramic powder, (Resin, Plaster)	High part resolution, costly supply materials, over curing in nature, high building speed
Material Extrusion	Contour crafting	Thermal energy	Metal pastes, Ceramic slurries, Thermoplastics,	Limited part resolution, multi-material printing, inexpensive extrusion machine, Low material, low process cost, high surface finish
Material Extrusion	Contour crafting	Thermal energy	Metal pastes, Ceramic slurries, Thermoplastics,	Limited part resolution, multi-material printing, inexpensive extrusion machine, Low material, low process cost, high surface finish
Sheet lamination process	Laminated object manufacturing (LOM)	Laser beam	Ceramic tape, metallic sheet, Plastic film	Limited part resolution, multi-material printing, inexpensive extrusion machine, Low material, low process cost, high surface finish
Material Jetting process	Poly-jet/Inkjet printing	Thermal energy and UV light	Ceramic tape, metallic sheet, Plastic film	Limited part resolution, multi-material printing, inexpensive extrusion machine, Low material, low process cost, high surface finish
Binder Jetting Process	Indirect inkjet printing (binder 3D Printing)	Thermal Energy	Metal powder, Ceramic powder, Polymer powder (Resin, Plaster)	Limited part resolution, multi-material printing, inexpensive extrusion machine, Low material, low process cost, high surface finish
Powdered bed fusion	Selective LASER sintering (SLS)	LASER Beam with high power	Polyamides/Polymers	Powder handling and recycling, high specific strengths and stiffness, high density parts, high detailed accuracy
Directed Energy Deposition Technique	Wire Arc Additive Manufacturing, Laser Engineered Net Shaping, Rapid Plasma Deposition	Electron beams or LASERS or plasma arcs	Molten metal powder	Functionally graded material printing, repair of damaged/worn parts
Additive Manufacturing

Thus, the technological advancement in the development of Ti-, Mg, Fe- and Bioceramics-based biomaterials for bone substitutes, has established the milestone for the advancement in multi-material-based AM technologies.

4.1. Ti-based biomaterials

Titanium and its alloys for long-term replacement of bone act as optimistic biomaterials due to their promising features of compactness, lightness, higher mechanical strength with its resistance to corrosion. In order to use for permanent replacement of bones, titanium and its alloys must have bone-mimicking characteristics that can be achieved by using AM technology and indicated by the geometry of a porous structure [24 - 30]. In orthopedic and craniofacial applications, the patient-friendly routes of using AM Ti-based bioimplants have shown significant improvement than other substitute approaches as they are fabricated to heal the defects of bone. In case of orthopedic executions, based bioimplants by virtue of AM have been reported to be patient-specific without causing any impairment to the bone tissue, in which the distal tibia bone deformity is replaced by multiple cracks in the talus as well as foot [31]. Hence, AM-specific projects have upgraded the stable nature of Titanium installation equipment. The incorporation of phosphorus and calcium compounds as well as the intervention of nanoparticles onto the surface of Ti-6Al-4V bioimplants has been shown for inducing AM biomaterials having antimicrobial characteristics against *Staphylococcus aureus* (MRSA) which is methicillin-resistant [32]. In *in situ* Ti-CaP and Ti-6Al-4V-HA composites, various compounds like Ca₃(PO₄)₂ and CaTiO₃ have been formed, forming a tribological layer that protects the surface of the biomaterial [33, 34]. In addition to the hardness as well as durability of the coating, the in-situ development of β-phase Titanium alloys is also required for the improvement in the similarity between the expandable Titanium-based biomaterial module with the bone. AM Titanium-based alloys have demonstrated promising solutions for treating of complex deformities in bone. Most of the experiments on the Ti-based products by virtue of AM is focused on the micro structural development as well as mechanical properties, thus, considering a large space for biocompatibility compliance.

4.2. Mg-based biomaterials

Magnesium and its alloys though experimental procedures has paved the way for the development of prosthetic orthopedic implants and has shown profound impact in low load-bearing areas with high potential [35]. Magnesium, due to its low elastic modulus, helps to resist any type of mechanical failure. The degradation of Magnesium is very fast leading to the release of hydrogen which can be a problematic issue in case of bone replacement. Because, during bone healing, the excessive release of hydrogen may give rise to mechanical disturbances. Coating Magnesium alloys with Si [36] and Ca-P [37, 38] serves as protective layers that may decrease corrosion levels and prevent from any primary mechanical losses. To decrease the rate of biodegradation, the magnesium of the magnesium-based biomaterial has to make an alloy with the rare earth (RE) elements. Thus, to improve the corrosion resistant property by virtue of conventional powder metallurgy processes, the inclusion of RE elements, such as Y [39, 40], Nd [41], Gd [42] and Dy [43] to magnesium should be done. In Present days, in the market three types of bone screws based on magnesium are found made from pure Mg [44], Mg-Ca-Zn [45] and Mg-Y-RE-Zr [46]. Recent technological advancement of solvent capillary-derived process by manipulating binder jetting has paved the way in the reduction of the metallurgical complications entailed in the AM of Magnesium alloys [47]. Besides, using SLM technology, various studies are done on *in situ* Additive Manufacturing of Mg-based biomaterials by powder getting blended to control biodegradation by enhancing the antimicrobial property with increased mechanical strength [48]. Several studies have been conducted focusing on the decay behavior of biomaterials based on Mg. Clinical evaluation of Mg-based orthopedic screws has removed the rust-resistant paradise to a new concept of temporary bone grafting.
4.3 Fe-based biomaterials

Till date, the research has been done on Iron and its alloys which has reflected that it can used for transitional load-bearing replacements of bone due to their higher ductility and mechanical strength [49].

Table 2: Outline of the use of 3D printed bioceramics in Bone tissue engineering [50].

Materials Used	Method	Model (In Vitro / In Vivo)	Summary	Reference
Photopolymer + liquid sodium polyacrylate + HA	Use of a ball crusher was seen for milling all the materials for 12 hrs. for making a slurry having the content of solid of 10–60 wt%. Fabrication of Ceramic scaffold was performed with the help of digital light processing (DLP) technique.	In the condition of α-Minimum Essential Medium (4% penicillin-streptomycin, 10% fetal bovine serum), Mouse osteoblast precursor cells were cultured.	3D printed scaffold revealed higher biocompatibility and also be able to assist proliferation of osteoblast	[51]
Polyethyleneimine + biphasic calcium phosphate (HA/β-TCP = 60:40) + ZrO$_2$	With printing speed of 100 mm/min, extruded at pressure of 600 kPa. At 1100 °C, Constructs were sintered.	Investigation was done on osteoblast like sarcoma cells due to cytotoxic behaviour and in case of differentiation potential of scaffolds, Human mesenchymal stem cells cells were used.	Scaffolds having improved mechanical properties at 10% (w/w) of ZrO$_2$ was noticed with upgraded BMP-2 expression.	[52]
β−TCP/polycaprolactone	β−TCP powder having particle size of 550 nm were used to makecylindrical scaffolds having 350 μm pore size.	Using human fetal osteoblast cells, the Composite scaffolds were examined for 3, 7 and 11 days of incubation period	Improved early bone formation having effectiveness for precisely regulated release of alendronate	[53]
β−TCP/sphingosine 1-phosphate	The scaffolds were printed in different sizes into 4 layers to suit in 6-well and 12-well plates. Sintering of Printed scaffolds were then done for 3 hrs at 1100 °C.	Investigation of potential of Immuno regulation on macrophages was done and the osteogenic ability was analysed on stromal cells of rat bone marrow of the	Advanced bone tissue regeneration, highly biocompatibility	[54]
scaffolds which are coated.

If any comparison is done with magnesium-based biomaterials, it is observed that the Fe-based materials significantly possesses advantageous property of not freeing up hydrogen due to their feature of degradation. Various methods thus obtained which includes powder metallurgy techniques encompassing Mn alloying or involvement of noble metals which by fortifying with bioceramics has shown profound acceleration in biodegradation rate by undergoing various investigations with the diminish in the magnetic effects of iron [55]. Trace of manganese exhibits a vital role in bone resorption as well as osteogenesis [56]. In addition to Mn, the use of various noble metals, for example Pt, Pd, Au and Ag [57-59] leads to the generation of secondary phases in alloys based on Fe such as, Fe-Pt, Fe-Pd, Fe-Au and Fe-Ag. It may help in micro-galvanic mixing to boost up the biodegradation of Fe without causing any injury to the neighbouring tissue [60]. Generally, during the degradation of Fe-Mn-Si alloy, normal blood homeostasis is seen. Technological advancement in AM has opened up the space for developing biodegradation portrayal of Fe-based biomaterials by multi-material designs through porous topology. Anti-ferromagnetic characteristics are seen in phases ε and γ - Fe - Mn [61]. Researches are going on for the implementation of AM for porous Fe-based biomaterials not only in the upgradeation of biodegradation features but also to recognise the cause of biodegradation which affects strongly the biocompatible behaviour of Fe-based biomaterials.

4.4. Bioceramic based materials

Bioceramic based materials can also be used for the bone tissue engineering if undergone through selective processes in additive manufacturing. According to the researchers, the non-invasive observation of pure iron and iron fortified with mainly Tricalcium phosphate (TCP), Biphasic calcium phosphate (BCP), Hydroxyapatite(HA) inserted in sheep forelegs for a period of sixty days has exhibited trivial decrease in the biomaterial’s sizes [62- 64]. The overview of the functionalities of bioceramics for the purpose of bone tissue engineering by virtue of additive manufacturing are shown in the table 2.

5. Conclusion

Noticeably, Additive Manufacturing based technologies congenitally furnish the potential for multi-material production which still not have been considerably investigated by experiments for bone implant purposes leading to the advancement in medical science. The probability of high-perfection in manufacturing of porous biomaterials having complexity in micro- and macro-architecture by means of the AM technologies directly links for the fabrication of bone implants to the metallic biomaterials at future destiny. Researches are going on for the development of the metallic biomaterials through AM which would be extrusion of multi-material leading to the enhancement in abilities for introducing materials of varying compositions typically within the structure at a few micrometre scales. Hence, Additive Manufacturing technologies extrusion of multi-material significantly promises in the advancement of state of the art for the development of alternative metallic multi-functional biomaterials for repairing bone with the enhanced biocompatibility.

References

[1] Kang CW, Fang FZ. 2018 State of the art of bioimplants manufacturing: part I. Adv Manuf 6(1):20– 40.
[2] Ho CMB, Ng SH, Yoon YJ. 2015 A review on 3D printed bioimplants. Int J Precis Eng Manuf 16(5):1035–46.
[3] Gilbert F. 2015 A threat to autonomy? The intrusion of predictive brain implants. AJOB Neurosci 6(4):4–11.
[4] Lee DJ, Lee JM, Kim EJ, Takata T, Abiko Y, Okano T, et al. 2017 Bio-implant as a novel restoration for tooth loss. *Sci Rep* 7:7414.

[5] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. 2016 Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. *Biomaterials* 83:127–41.

[6] Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. 2017 Biodegradable materials and metallic implants—a review. *J Funct Biomater* 8(4):44.

[7] Kang C, Fang F. 2018 State of the art of bioimplants manufacturing: part II. *Adv Manuf* 6(2):137–54.

[8] Kurella A, Dahotre NB. 2005 Review paper: surface modification for bioimplants: the role of laser surface engineering. *J Biomater Appl* 20(1):5–50.

[9] Long M, Rack H 1998 Titanium alloys in total joint replacement—a materials science perspective. *Biomaterials* 19(18):1621–1639

[10] Lampman S. 1990 Wrought titanium and titanium alloys. *ASM Int Metals Handb Tenth Edn* 2:592–633

[11] Alvarado J, Maldonado R, Marxuach J et al 2003 Biomechanics of hip and knee prostheses. *Appl Eng Mech Med GED– University of Puerto Rico Mayaguez*

[12] Murr L, Quinones S, Gaytan S et al 2009 Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. *J Mech Behav Biomed Mater* 2(1):20–32

[13] Jovanovic’ M, Tadic’ S, Zec S et al 2006 The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy. *Mater Des* 27(3):192–199

[14] Lin CW, Ju CP, Lin JH 2005 A comparison of the fatigue behavior of cast Ti-7.5 Mo with c.p. titanium, Ti-6Al-4V and Ti13Nb-13Zr alloys. *Biomaterials* 26(16):2899–2907

[15] Dewidar MM, Khalil KA, Lim J 2007 Processing and mechanical properties of porous 316L stainless steel for biomedical applications. *Trans Nonferr Metals Soc China* 17(3):468–473

[16] Seah K, Thampuran R, Teoh S 1998 The influence of pore morphology on corrosion. *Corros Sci* 40(4–5):547–556

[17] Ryan G, Pandit A, Apatsidis DP 2006 Fabrication methods of porous metals for use in orthopaedic applications. *Biomaterials* 27(13):2651–2670

[18] Ning C, Zhou Y 2002 In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. *Biomaterials* 23(14):2909–2915

[19] Bartolo P, Kruth JP, Silva J et al 2012 Biomedical production of implants by additive electrochemical and physical processes. *CIRP Ann Manuf Technol* 61(2):635–655

[20] ASTM F2792-12, 2012 Standard Terminology for Additive Manufacturing Technologies, *ASTM Int.*

[21] CagriOztan, Victoria Coverstone, 2021 Utilization of additive manufacturing in hybrid rocket technology: A review, *Acta Astronautica*, 180, 130-140

[22] Rakesh Kumar, Manoj Kumar, Jasgurpreet Singh Chohan, 2021 The role of additive manufacturing for biomedical applications: A critical review, *Journal of Manufacturing Processes*, 64, 828-850

[23] J.P.M. Pragana et al., 2021 Hybrid metal additive manufacturing: A state-of-the-art review, *Advances in Industrial and Manufacturing Engineering*, 2, 1-21.

[24] F. Li, J. Li, H. Kou, G. Xu, T. Li, L. Zhou, 2014 Anisotropic porous titanium with superior mechanical compatibility in the range of physiological strain rate for trabecular bone implant applications, *Mater. Lett.* 137 424–427.
[25] R. Wauthle, S.M. Ahmadi, S. Amin Yavari, M. Mulier, A.A. Zadpoor, H. Weinans, J. Van Humbeeck, J.P. Kruth, J. Schrooten, 2015 Revival of pure titanium for dynamically loaded porous implants using additive manufacturing, Mater. Sci. Eng. C 54; 94–100.

[26] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, 2015 Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater. 85; 74–84.

[27] F. Li, J. Li, H. Kou, L. Zhou, 2016 Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications, Mater. Sci. Eng. C 60; 485–488.

[28] F. Li, J. Li, T. Huang, H. Kou, L. Zhou, 2017 Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications, J. Mech. Behav. Biomed. Mater. 65; 814–823.

[29] F.S.L. Bobbert, A.A. Zadpoor, 2017 Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone, J. Mater. Chem. B 5; 6175–6192

[30] X.Y. Zhang, G. Fang, S. Leeflang, A.A. Zadpoor, J. Zhou, 2018 Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials, Acta Biomater. 84; 437–452.

[31] K.S. Hamid, S.G. Parekh, S.B. Adams, 2016 Salvage of severe foot and ankle trauma with a 3D printed scaffold, Foot Ankle Int. 37; 433–439.

[32] I.A.J. van Hengel, M. Riool, L.E. Fratila-Apachitei, J. Witte-Bouma, E. Farrell, A.A. Zadpoor, S.A. J. Zaai, I. Apachitei, 2017 Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant staphylococcus aureus, Biomaterials 140; 1–15.

[33] H. Sahasrabudhe, A. Bandyopadhyay, 2018 In situ reactive multi-material Ti6Al4V- calcium phosphate-nitride coatings for bio-tribological applications, J. Mech. Behav. Biomed. Mater. 85; 1–11.

[34] A. Bandyopadhyay, S. Dittrick, T. Guilletiere, J. Wu, S. Bose, 2016 Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants, J. Mech. Behav. Biomed. Mater. 57; 280–288.

[35] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, 2017 Current status on clinical ap- plications of magnesium-based orthopaedic implants : a review from clinical translational perspective, Biomaterials 112; 287–302.

[36] L. Tan, Q. Wang, X. Lin, P. Wan, G. Zhang, Q. Zhang, K. Yang, 2014 Loss of mechanical properties in vivo and boneimplant interface strength of AZ31B magnesium alloy screws with Si-containing coating, Acta Biomater. 10; 2333–2340.

[37] Q. Wang, L. Tan, W. Xu, B. Zhang, K. Yang, 2011 Dynamic behaviours of a Ca–P coated AZ31B magnesium alloy during in vitro and in vivo degradations, Mater. Sci. Eng. B 176; 1718–1726.

[38] J. Gan, L. Tan, K. Yang, Z. Hu, Q. Zhang, X. Fan, Y. Li, W. Li, 2013 Bioactive Ca–P coating with self-sealing structure on pure magnesium, J. Mater. Sci. Mater. Med. 24; 889–901.

[39] D. Chou, D. Hong, S. Oksuz, R. Schweizer, A. Roy, B. Lee, P. Shridhar, V. Gorantla, P.N. Kumta, 2019 Corrosion and bone healing of Mg–Y–Zn–Zr–Ca alloy implants: comparative in vivo study in a non-immobilized rat femoral fracture model, J. Biomater. Appl. 1–17.

[40] T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, A.M. Weinberg, 2012 Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater. 8; 1230–1238.
[41] J. Niu, M. Xiong, X. Guan, J. Zhang, H. Huang, J. Pei, G. Yuan, 2016 The in vivo degradation and bone-implant interface of Mg–Nd–Zn–Zr alloy screws: 18 months post-operation results, Corros. Sci. 113; 183–187.

[42] H. Miao, D. Zhang, C. Chen, L. Zhang, J. Pei, Y. Su, H. Huang, Z. Wang, B. Kang, W. Ding, H. Zeng, G. Yuan, 2019 Research on biodegradable Mg–Zn–Gd alloys for potential orthopedic implants: in vitro and in vivo evaluations, ACS Biomater. Sci. Eng. 5; 1623–1634.

[43] L. Yang, N. Hort, D. Laipple, D. Höche, Y. Huang, K.U. Kainer, R. Willumeit, F. Feyerabend, 2013 Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation, Acta Biomater. 9; 8475–8487.

[44] D. Zhao, S. Huang, F. Lu, B. Wang, L. Yang, L. Qin, K. Yang, Y. Li, W. Li, W. Wang, S. Tian, X. Zhang, W. Gao, Z. Wang, X. Zhang, X. Xie, J. Wang, J. Li, 2016 Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head, Biomaterials 81; 84–92.

[45] J.W. Lee, H.S. Han, K.J. Han, J. Park, H. Jeon, M.R. Ok, H.K. Seok, J.P. Ahn, K.E. Lee, D.H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H.L. Han, H.J. Rho, K.S. Lee, Y.C Kim, D. Mantovani, 2016 Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proc. Natl. Acad. Sci. 113; 716–721.

[46] H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-colsman, H. Waizy, 2013 Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online 12; 1–10.

[47] M. Salehi, S. Maleksaeedi, S.M.L. Nai, G.K. Meenashisundaram, M.H. Goh, M. Gupta, 2019 A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging, Acta Mater. 165; 294–306.

[48] K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, X. Yuan, 2019 Selective laser melting of Mg–Zn binary alloys: effects of Zn content on densification behav- ior, microstructure, and mechanical property, Mater. Sci. Eng. A 756; 226–236.

[49] R. Gorejová, L. Haverová, R. Ori ´naková, A. Ori ´nak, M. Ori ´nak, 2019 Recent advancements in Fe-based biodegradable materials for bone repair, J. Mater. Sci. 54; 1913–1947.

[50] Zafar, M.J.; Zhu, D.; Zhang, Z. 2019 3D Printing of Bioceramics for Bone Tissue Engineering. Materials12, 3361

[51] Liu, Z.; Liang, H.; Shi, T.; Xie, D.; Chen, R.; Han, X.; Shen, L.; Wang, C.; Tian, Z. 2019 Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro light curing, Ceram. Int. 45; 11079–11086.

[52] Wang, Y.; Wang, K.; Li, X.; Wei, Q.; Chai, W.; Wang, S.; Che, Y.; Lu, T.; Zhang, B. 2017 3D fabrication and characterization of phosphoric acid scaffold with a HA/beta-TCP weight ratio of 60:40 for bone tissue engineering applications. PLoS One 12(4), e0174870

[53] Taranida, S.; Bose, S. 2014 Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis. ACS Appl. Mater. Interfaces 6, 9955–9965.

[54] Cao, Y.; Xiao, L.; Cao, Y.; Nanda, A.; Xu, C.; Ye, Q. 2019 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochem. Biophys. Res. Commun. 512, 889–895.

[55] J. He, F.L. He, D.W. Li, Y.L. Liu, Y.Y. Liu, Y.J. Ye, D.C. Yin, 2016 Advances in Fe-based biodegradable metallic materials, RSC Adv. 6; 112819–112838

[56] J.H. Beattie, A. Avenell 1992 Trace element nutrition and bone metabolism, Nutr. Res. Rev. 5; 167–188.
[57] J. Čapek, K. Stehlíková, A. Michalcová, Š. Msallamová, et al. 2016 Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X = Pd, Ag and C) alloys, Mater. Chem. Phys. 181; 501–511.

[58] T. Huang, J. Cheng, D. Bian, Y. Zheng, 2015 Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials, J. Biomed. Mater. Res.- Part B Appl. Biomater. 104; 225–240.

[59] T. Huang, J. Cheng, Y.F. Zheng, 2014 In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering, Mater. Sci. Eng. C 35; 43–53

[60] T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, P.J. Uggowitzer, J.F. Löffler, A. Weinberg, 2014 Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks Acta Biomater. 10; 3346–3353

[61] Y.P. Feng, A. Blanquer, J. Fornell, H. Zhang, P. Solsona, M.D. Baró, S. Suriñach, E. Ibáñez, E. García-Lecina, X. Wei, R. Li, L. Barrios, E. Pellicer, C. Nogues, J. Sort, 2016 Novel Fe-Mn-Si-Pd alloys, Insights into mechanical, magnetic, corrosion resistance and biocompatibility performances, R. Soc. Chem. 4 (2016) 6402–6412.

[62] Ulum MF, Nasution AK, Yusop AH, Arafat A, Kadir MRA, Juniantito V, Noviana D, Hermawan H. 2015 Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. J Biomed Mater Res Part B 103B:1354–1365.

[63] Subhadip Basu; Bikramjit Basu 2019 Doped biphasic calcium phosphate: synthesis and structure, Journal of Asian Ceramic Societies 7:3, 265-283

[64] D. Noviana, S. Estuningsih, D. Paramitha, M. FakhrulUlum, H. Hermawan, 2015 In-vitro cytotoxicity and in-vivo tissue response study of foreign bodies iron-based materials. Adv. Mater. Res. 1112, 449–452.