Site-selective 63Cu NMR study of the vortex cores of Tl$_2$Ba$_2$CuO$_{6+\delta}$

Y. Itoha C. Michiokaa K. Yoshimuraa A. Hayashib,1 Y. Uedab

aDepartment of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

bInstitute for Solid State Physics, University of Tokyo, 5-1-15 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Abstract

We report site-selective 63Cu NMR studies of the vortex core states of an overdoped Tl$_2$Ba$_2$CuO$_{6+\delta}$ with $T_c = 85$ K. We observed a relatively high density of low-energy quasi-particle excitations at the vortex cores in a magnetic field of 7.4847 T along the c axis, in contrast to YBa$_2$Cu$_3$O$_{7-\delta}$.

Key words: A. oxides, A. superconductors, D. nuclear magnetic resonance (NMR), D. superconductivity

1. Introduction

The vortex core magnetism of high-T_c cuprate superconductors has attracted great interests. This is the first report of site-selective 63Cu NMR study for the vortex core states of an overdoped Tl$_2$Ba$_2$CuO$_{6+\delta}$ (TL2201) with $T_c = 85$ K. Although a quadrupole Cu nuclear is coupled by an electric field gradient in TL2201, we noticed that the central transition line ($I_z = 1/2 \leftrightarrow -1/2$) of the Cu (spin $I = 3/2$) NMR at a magnetic field H along the maximal principal axis (c axis) of the electric field gradient tensor is purely magnetic. As to YBa$_2$Cu$_3$O$_{7-\delta}$ (Y1237) with $T_c = 92$ K, both 17O and 63Cu nuclear spin-lattice relaxation rates $1/T_1$ inside the vortex cores are reported to be enhanced more largely than those outside the cores only below about 20 K [1,2,3]. For TL2201, we observed that the 63Cu NMR $1/T_1$ near the vortex cores is enhanced more largely than that away from the cores just at T_c and shows a Korringa-like behavior from T_c to 10 K.

2. Experiments

A powder sample was magnetically aligned along the c axis and was characterized more than ten years ago [4] and recently [5].

Magnetization M was measured by a superconducting quantum interference device (SQUID) magnetometer. The irreversible temperature T_{irr} was defined as a bifurcation temperature of M/H after cooled at a zero magnetic field (ZFC) and at finite magnetic fields of $H = 10$ mT − 5.0 T (FC). Typical magnetic susceptibility M/H at 10 mT and 2.0 T is shown in Fig. 1(a). The T_{irr} was found to be quickly suppressed as the magnetic field H was increased. The irreversible line of TL2201 in Fig. 1(b) is similar to that of Bi$_2$Sr$_2$CaCu$_2$O$_8$ (Bi2212). The anomaly observed in TI NMR at 20 K and at 2.0 T is associated with a vortex freezing effect across the irreversible line [5].

Site-selective 63Cu NMR experiments were performed by a phase-coherent-type pulsed spectrometer while cooling in a magnetic field of $H = 7.4847$ T. The 63Cu NMR frequency spectra were measured with quadrature detection. The nuclear spin-echoes were recorded as functions of frequency ν while ν was changed point by point. The 63Cu nuclear spin-
the coexistence of vortex solid and liquid, similarly to
K shift is due to a superconducting diamagnetic shift
a reduced Knight shift composed of two spectra with a finite spin shift and
T Below
Fig. 1. (a) Magnetic susceptibility M/H after cooled at a zero magnetic field (ZFC) and at finite magnetic fields of $H = 10$ mT and 2 T (FC) along the c axis. (b) A magnetic phase diagram on an irreversible line along the c axis. Open circles are the irreversible temperatures at the fixed fields. Closed circles are the irreversible fields at the fixed temperatures.

lattice relaxation curves $^{63}p(t) \equiv 1 - M(t)/M(\infty)$ (recovery curves) of the nuclear spin-echo amplitude $M(t)$ were measured by an inversion recovery technique, as functions of time t after an inversion pulse.

3. 63Cu NMR Results and Discussion

Fig. 2 shows temperature dependence of the central transition line ($I_z = 1/2 \leftrightarrow -1/2$) of the 63Cu NMR while cooling at $H = 7.4847$ T along the c axis below 96 K. In the normal state, the positive Knight shift K_c of the observed sharp line is the sum of an orbital shift $K_{c,\text{orb}}$ and a spin shift $K_{c,\text{spin}}$ [4]. Below T_c down to 22 K, the 63Cu NMR spectra are composed of two spectra with a finite spin shift and a reduced Knight shift $K_c < K_{c,\text{orb}}$. The reduced shift is due to a superconducting diamagnetic shift $K_{c,\text{dia}}$ in a vortex lattice. These spectra indicate the coexistence of vortex solid and liquid, similarly to the 205TI NMR spectra at 2.0 T [5]. Below 22 K, the

Fig. 2 shows temperature dependence of the frequency distribution of the 63Cu NMR recovery curves $^{63}p(t)$ at 86 and 10 K. In the normal state at 86 K, a slight frequency distribution was observed, similarly to 17O NMR for YBa$_2$Cu$_4$O$_8$ [8], maybe due to slight misorientation of the powder grains. At 10 K, the relaxation is slower away from the vortex cores. The solid curves are the least-squares fits by theoretical functions of $p(t)=p(0)[0.1\exp(-t/T_1)+0.9\exp(-6t/T_1)]$ for a magnetic transition of $I_z = 1/2 \leftrightarrow -1/2$. Although the fits were not so satisfactory at 10 K, the relaxation rates $1/T_1$ were tentatively estimated from these fits.

Fig. 3 shows temperature dependence of frequency distribution of the estimated $1/T_1$. With cooling down, a larger frequency distribution of $1/T_1$ was observed. In contrast to the 205TI NMR [5], no clear effect of the vortex freezing was observed.

Fig. 4 shows temperature dependence of frequency distribution of $1/T_1$ at 85.68 MHz near the vortex cores and at 85.40 MHz
away from the cores. At \(T_c \), \(1/^{63}T_1 \) away from the cores quickly decreases in a function of \(T^3 \). Below 20 K, it approaches a \(T \)-linear function. From \(T_c \) to 10 K, \(1/^{63}T_1 \) near the cores shows a Korringa-like \(T \)-linear behavior. These results are different from those for Y1237 [1,2,3] but similar to the theoretical \(1/^{63}T_1 \) due to the spatial distribution of a local density of electron states [9] and also to the Zn-induced effect on Y1237 [10]. The theory does not include antiferromagnetic correlation. Although \(1/^{63}T_1 \) between \(T_c \) and 43 K might be affected by a direct process of overdamped motion of pancake vortices [11], the Korringa-like \(1/^{63}T_1 \) in a vortex lattice below 32.5 K indicates a relatively high density of normal quasi-particle excitations inside the vortex cores in TL2201.

Fig. 6 shows the \(^{63} \)Cu nuclear spin-lattice relaxation rate divided by temperature, \(1/^{63}T_1 T \), for Y1237 reproduced from Ref. [3] and for TL2201. The difference in \(1/^{63}T_1 T \) inside and outside the vortex cores is larger in TL2201 than in Y1237.

Scanning tunneling spectroscopy (STS) studies for Y1237 indicate the split of a zero-bias peak in the conductance spectra near the vortex cores at a

Fig. 4. Temperature dependence of frequency distribution of \(^{63} \)Cu nuclear spin-lattice relaxation rate \(1/^{63}T_1 \) (the right axis).

Fig. 5. Log-log plots of \(^{63} \)Cu nuclear spin-lattice relaxation rate \(1/^{63}T_1 \) as a function of temperature at 85.68 MHz around the vortex cores and at 85.40 MHz away from the vortex cores.
magnetic field [12]. The impurity Zn-substitution effects are known to induce the zero-bias conductance peak in the STS spectra near the Zn impurity [13] and the difference in $1/T_1$ near and away from the Zn just below T_c [10]. Thus, the STS conductance spectrum for TL2201 might indicate the zero-bias conductance peak near the vortex cores, which is illustrated in the inset of Fig. 6(b). The nature of Andreev bound states at the vortex cores, e.g., the degree of the split of the zero-bias conductance peak near the vortex cores might depend on the degree of enhancement of underlying antiferromagnetic correlation.

4. Conclusion

We report for the first time the site-selective 63Cu NMR studies of the vortex core magnetism for TL2201 with $T_c = 85$ K at about 7.5 T along the c axis. The difference in 63Cu nuclear spin-lattice relaxation rate $1/T_1$ inside and outside the vortex cores was observed in TL2201 just below $T_c = 85$ K, in contrast to that in $1/T_1$ in Y1237 below about 20 K. The Korringa-like behavior of $1/T_1$ near the vortex cores indicates a high density of the normal quasi-particle excitations inside the vortex cores in TL2201.

Acknowledgements We thank Professor N. Nishida for fruitful discussion. This study was supported by a Grant-in-Aid for Science Research on Priority Area, “Invention of anomalous quantum materials” from the Ministry of Education, Science, Sports and Culture of Japan (Grant No. 16076210).

References

[1] N. J. Curro, C. Milling, J. Haase, C. P. Slichter, Local-field dependence of the 17O spin-lattice relaxation and echo decay rates in the mixed state of YBa$_2$Cu$_3$O$_7$, Phys. Rev. B 62 (2000), 3473–3479.
[2] V. F. Mitrović, E. E. Sigmund, W. P. Halperin, A. P. Reyes, P. Kuhs, W. G. Moulton, Antiferromagnetism in the vortex cores of YBa$_2$Cu$_3$O$_{7-\delta}$, Phys. Rev. B 67 (2003), 220503(R).
[3] Y. Itoh, C. Michioka, K. Yoshimura, and Y. Ueda, Zeeman-Perturbed 63Cu Nuclear Quadrupole Resonance Study of Vortex State of YBa$_2$Cu$_3$O$_{7-\delta}$, J. Phys. Soc. Jpn. 75 (2006), 013711.
[4] S. Kambe, H. Yasuoka, A. Hayashi, Y. Ueda, NMR study of the spin dynamics in Tl$_2$Ba$_2$CuO$_{y}$ ($T_c=85$ K), Phys. Rev. B 47 (1993), 2825–2834.
[5] Y. Itoh, C. Michioka, K. Yoshimura, A. Hayashi, Y. Ueda, Vortex States of Tl$_2$Ba$_2$CuO$_{6+\delta}$ Studied via 205Tl NMR at 2 Tesla, J. Phys. Soc. Jpn. 74 (2005), 2404–2407.
[6] K. Ishida, Y. Kitaoka, K. Asayama, K. Kadowaki, T. Mochiku, Cu NMR Study in Single Crystal Bi$_2$Sr$_2$CaCu$_2$O$_{8-\delta}$ Observation of Gapless Superconductivity–, J. Phys. Soc. Jpn. 63 (1994), 1104–1113.
[7] Y. Itoh, T. Machi, S. Adachi, A. Fukuoka, K. Tanabe, H. Yasuoka, Pseudo Spin-Gap Spectrum in the Monolayer HgBa$_2$CuO$_{4+\delta}$, J. Phys. Soc. Jpn. 67 (1998), 312–317.
[8] K. Kakuyanagi, K. Kamagai, Y. Matsuda, Quasiparticle excitation in and around the vortex core of underdoped...
YBa$_2$Cu$_4$O$_8$ studied by site-selective NMR, Phys. Rev. B 65 (2003), 060503.

[9] M. Takigawa, M. Ichioka, K. Machida, Site-Selective Nuclear Magnetic Relaxation Time in a Superconducting Vortex State, J. Phys. Soc. Jpn. 69 (2000), 3943–3954.

[10] Y. Itoh, T. Machi, C. Kasai, S. Adachi, N. Watanabe, N. Koshizuka, M. Murakami, Zn-neighbor Cu NQR in Zn-substituted YBa$_2$Cu$_3$O$_{7-\delta}$ and YBa$_2$Cu$_4$O$_8$, Phys. Rev. B 67 (2003), 064516.

[11] L. N. Bulaevskii, N. N. Kolesnikov, I. F. Schegolev, O. M. Vyaselev, Effect of vortex fluctuations on 205Tl spin-lattice relaxation in the mixed state of Tl$_2$Ba$_2$CuO$_6$, Phys. Rev. Lett. 71 (1993), 1891–1894.

[12] I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, Ø. Fischer, Direct Vortex Lattice Imaging and Tunneling Spectroscopy of Flux Lines on YBa$_2$Cu$_3$O$_{7-\delta}$, Phys. Rev. Lett. 75 (1995), 2754–2757.

[13] S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, J. C. Davis, Imaging the effects of individual zinc impurity atoms on superconductivity in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$, Nature 403 (2000), 746–750.