Vehicular Analysis of a Bridge Structure Considering IRC Loading Condition using Sap 2000

Nikhil Kumar Singh
M.Tech. Scholar
Sarvepalli Radhakrishnan University
Bhopal, Madhya Pradesh, India
alphanick98@gmail.com

Jyoti Yadav
Assistant Professor
Sarvepalli Radhakrishnan University
Bhopal, Madhya Pradesh, India
jyoti.y2308@gmail.com

Abstract: A beam bridge is a bridge that uses struts as a method of supporting the deck. A bridge consists of three sections: the foundation consisting of protrusions and supports and the substructure consisting of protrusions and quay and the superstructure (bracing, cantilever or curve) and the deck. A beam bridge is probably the most manufactured and used bridge on the planet. Its basic plant, at its best, can be likened to a tree trunk extending to one side to alternate across a stream or river. All decks consist of two main parts: the substructure and the superstructure. The superstructure is everything from the support cushions to - it's the thing that supports the posts and it's the most distinctive part of the deck. The substructure is the device that exchanges the poles of the superstructure on the ground. The two sections must work together to form a strong and durable bridge. Prestressed concrete is essentially concrete in which the internal concerns are sufficiently concentrated and the expansion pressure due to external stresses is concentrated to the desired extent.

II. Literature review

Gaurav Somani et al. [1] Concrete slabs and T-pillar bridges are the prevailing bridges in India. Lately, specifically, a ton of street works have been in progress, some are under development and some street projects are anticipated what's to come. As the undertaking develops, it is important to further develop the plan technique consistently and make it more effective.

K. Hemalatha et al. [2] A bridge is a design that permits you to cross a hindrance without shutting the way underneath. The necessary crossing point can be a street, a rail line, a passerby, a waterway or a line. There are many sorts of areas for bridge development, among which bridges with T-pillars and box radiates have been chosen. T-pillar bridges are projected set up concrete bridges, famous for limited abilities to focus cheap. Additionally, the summed up caisson bridge was picked, which is practical for huge ranges, which can be single-stage or multi-stage radiates. In the current examination, a two path single help RCC-T pillar and a prestressed concrete box bar bridge for dead burden and moving burdens IRC were dissected and planned, the moving burden viewed as the class AA caterpillar vehicle. Courbon's technique for investigation and plan. Dead burden and payload estimations were performed physically.

Meghana K V et al. [3] A bridge is a construction worked over a street, stream, or railroad track to make it simpler for individuals and vehicles to cross from one side to the next. Determination of the most reasonable segment in bridges of various ranges, similar investigations are completed. The
The principle objective of the work is to consider the impacts of T-bars and box bridges of various ranges under moving burdens utilizing programming and manual strategies.

Manohar R et al. [4] T-beam deck section bridges are the essential sort of cast set up concrete bridges and comprise of fundamental pillars, cross bars that confer parallel firmness to the deck chunk, and a cover piece that sits set up. 'expands consistently between the T-radiates.

There are numerous techniques that have been utilized for the examination of bridges with T-radiates, these are traditional strategies like the Courbon strategy, the Guyon-Massonet technique, the Hendry strategy Jaegar for radiates and the Pigeaud coefficient strategy for cover plates and limited components. The strategy is an overall technique for primary investigation which is drawn closer by examining a bunch of limited components which are associated together in a limited number of hubs and which address the arrangement space of the issue.

III. OBJECTIVES

- Study of existing design of Deck Bridge.
- Study of bridge design using SAP 2000 based on F.E.M.
- Study on suitability of different materials for bridge design.
- Techno economic analysis of materials selected for bridge constructs.

IV. METHODOLOGY

4.1 General

In this research work our motive is to justify the variation in strength and cost of four cases of bridges for same loading and hydraulic conditions to carry out the best of them.

In this study, I am focusing the analysis using finite element method using analysis tool SAP 2000, which is capable of applying all conditions and methods with respect to preferred standard code.

4.2 Methodology

Following steps are required in a sequence for proper completion:

Step-1 Determine the site condition and position for casting bridge.

Step-2 Hydraulic design to determine required Bridge length and profile grade.

Step-3 Preparation of geometry of Bridge in SAP 2000
Fig 3: Pre-stressed Deck Modeling

Step-4 Assigning of Loads and section properties with support conditions.

Fig 4: Sectional Properties

Step-5 Assigning hydraulic load and vehicle load as per I.R.C.

Fig 5: Load Cases

Step-6 Analysis (finite element)

Fig 6: Finite Element Analysis on bridge

Step-7 Assigning Pre-stressed deck

Fig 7 Assigning Pre-stressed deck

4.3 Methodology of this research and analysis is shown with the help of flowchart of Activities in figure 8

Fig 8 Flow Chart of Activities
4.4 Problem statement

This chapter deals with loading calculation of the critical load placing over the considered culverts applying I.R.C. loading and hydraulic calculation using finite element method.

In this research work, we have used SAP-2000 software which is based on the application of Finite Element Method. This software is a widely used in the field of structural design and analysis. Now a day this software is very much friendly for the analysis of different type of structures and to calculate the result at every node &element wise. Analysis for the bridge, prepared the conceptual dimension geometry of the superstructure which are shown in figure 9 –

Fig: 9 Structural Modelling

Here bridge frame is modeled using analysis tool SAP-2000 in which vehicle load is applied. Than it is analyzed and optimized and I.R.C. loading is considered as class A vehicle loading, dead load as per 875 part-1 and superimposed live load as per 875 part-2 is calculated and applied.

4.4.1 Hydraulic calculation

In the table 1 below details of hydraulic data and constants are described briefly:

Table 1: Hydraulic calculation
Description

Area of Catchment (A):
Dickens Constant, C_D (for Central India):
Discharge = C_D x (A)^0.5
Discharge Through the Stream
Regime width = 4.8 x (Q)²/³

4.4.2 Geometric properties

For the sake of study, sample data of Bhopal area kamla park bridge (kamla park to professor colony) was taken into consideration.

Table 2: Geometric Properties of Structure
s. no

1
2
3
4
5
6
7
8
9

4.4.3 Material properties

In the table 3 below, description of material and their specifications are mentioned.

Table 3: Material Properties
s. no

1
4.4.4 Selection of the Load Condition

In the table 4 below, load combinations as per IS 875-I for bridge is provided.

S. No.	Loading Type	Standard
1	Dead Load	I.S. 875-I
2	Live Load	I.S. 875-II
3	Vehicle Load	I.R.C. 70R Class Loading
4	Combination 1	1.5 DL + LL
5	Combination 2	1.2 DL + LL + Vehicular load
6	Combination 3	0.9 DL+1.2 LL+1.2 Vehicular load

Steps for loading condition:

The load condition has to be defined as per requirement of the analysis.

As we know the model is R.C.C. structure of the bridge in which vehicle load has to be apply in different patterns. There are the different type of load has to be calculate and apply with the help of software and load are as under -Dead load –

The self load is the weight of the frame structure and any permanent load fixed there-on. The self-weight is initially assumed and checked when design is finished.

Live load –

Extension structure guidelines indicate the plan loads, which are intended to mirror the most noticeably bad stacking that can be caused on the scaffold by traffic, allowed and expected to disregard it. In India, the Highway Board indicates the standard plan loadings for extensions in scaffold rules.

For the interstate scaffolds, the Indian Road Congress has indicated standard plan loadings in IRC area II. The accompanying couple of pages brief about the loadings to be considered. For more subtleties, the peruser is alluded to the specific standard.
V. RESULTS & DISCUSSION

5.1 Finite element results

![FEM](image)

Fig 14: FEM

5.1.1 Maximum Bending Moment

Max. bending moment in Pier	Deck Bridge (RCC)	Deck Bridge (Foam Concrete)	Prestressed deck bridge	Pre-stressed deck bridge (Foam Concrete)
387.98	382.54	367.09	359.09	

Table 5: Maximum Bending Moment

![Graph](image)

Fig 15: Maximum Bending Moment

(a) Casting framework

(b) Prestressing of Deck

(c) Assigning Pre-stressed deck girders

Fig 13: Site working
Inferences: It is observed in above figure that Pre-stressed foam deck bridge is observing minimum value of bending moment thus require minimum reinforcement.

5.1.2 Maximum Shear Force

Table 6: Maximum Shear Force

Max. Shear Force in Pier	Deck Bridge (RCC)	Deck Bridge (Foam Concrete)	Prestressed deck bridge (Foam Concrete)
543.23	501.34	520.34	500.21

Fig 16: Shear force

Inferences: As shown in figure it is clearly observed that unbalance forces are minimum in Pre-stressed foam bridge type whereas maximum in Deck bridge R.C.C.

5.1.3 Axial Force

Table 7: Max. Axial Force

Max. Axial Force	Deck Bridge (RCC)	Deck Bridge (Foam Concrete)	Prestressed deck bridge (Foam Concrete)
2033.09	1896.38	1804.45	1609.65

Fig 17: Axial force

Inferences: Here it is clearly observed that Vertical forces are distributed uniformly in Pre-stressed deck bridge (foam) whereas worst in Deck bridge R.C.C. case.

5.1.4 Maximum Deflection

Table 8: Deflection

Max. Deflection	Deck Bridge (RCC)	Deck Bridge (Foam Concrete)	Prestressed deck bridge (Foam Concrete)
25.67	24.34	20.09	16.54

Fig 18: Axial force

Inferences: Here result shows that due to the effect of pre-tensioning member deflection is minimum in Pre-stressed cases also due to introduction of foam concrete it is further improved.
5.2 Deck analysis

Table 9: Reactions at Node of RCC deck type bridge

Output Case	Global FX	Global FY	Global FZ	Global MX	Global MY	Global MZ
Unit	KN	KN	KN	KN	KN-m	KN-m
NODAL	122.54	26.56	8.7607	-15.123	2.45	44.45
NODAL	119.05	27.09	0.033	-17.54	2.87	38.09
NODAL	115.56	28.09	-1.5491	28.65	3.29	26.61
NODAL	112.07	24.98	-9.561	54.357	3.71	24.56
NODAL	108.58	21.87	-339.06	25.7	4.13	22.51
NODAL	105.09	18.76	2.082	-12.54	4.55	20.46
NODAL	101.6	15.65	-0.011	18.34	4.97	18.41
NODAL	98.11	12.54	1742.26	13.2	5.39	16.36
NODAL	94.62	10.45	-34.765	-26.87	5.81	14.31
NODAL	91.13	9.45	-279	-20.98	6.23	12.26
NODAL	87.64	8.45	0.00178	43.33	6.65	10.21
NODAL	84.15	7.45	-59621	-44.32	7.07	8.16

Table 10: Reactions at Node of Foam Concrete deck type bridge

Output Case	Global FX	Global FY	Global FZ	Global MX	Global MY	Global MZ
Unit	KN	KN	KN	KN	KN-m	KN-m
NODAL	102.76	27.97	8.7607	15.123	3.2006	36.066
NODAL	112.54	22.65	0.033	-17.54	3.56	33.55
NODAL	121.8	17.33	-1.5491	28.65	3.9194	42.34
NODAL	116.98	12.01	-9.561	54.357	4.2788	32.05
NODAL	122.4	26.54	-339.06	25.7	4.6382	39.09
NODAL	112.43	24.43	2.082	-12.54	4.9976	32
NODAL	109.76	22.32	-0.011	18.34	5.357	24.91
NODAL	107.09	20.21	1742.26	13.2	5.7164	17.82
NODAL	104.42	18.1	-34.765	-26.87	6.0758	10.73
-------	--------	------	----------	--------	--------	-------
NODAL	101.75	15.99	-279	-20.98	6.4352	14.99
NODAL	99.08	13.88	0.00178	43.33	6.7946	13.87
NODAL	96.41	11.77	-59621	-44.32	7.154	20.07

Table 11: Reactions at Node of RCC (Pre-stressed) deck type bridge

Output Case	Global FX	Global FY	Global FZ	Global MX	Global MY	Global MZ
Unit	KN	KN	KN	KN-m	KN-m	
NODAL	20.04	21.54	9.07	-15.123	3.2006	22.32
NODAL	19.05	25.06	-4.54	-17.54	3.56	21.09
NODAL	118.75	22.05	1.65	28.65	3.9194	19.86
NODAL	102.354	19.04	9.765	54.357	4.2788	18.63
NODAL	85.958	16.03	-7.87	25.7	4.6382	17.4
NODAL	69.562	13.02	2.082	-12.54	4.9976	16.17
NODAL	53.166	10.01	-0.011	18.34	5.357	14.94
NODAL	66.43	13.54	10.99	13.2	5.7164	18.09
NODAL	63.23	17.07	-21.07	-26.87	6.0758	41.56
NODAL	75.65	20.6	-2.08	-20.98	6.4352	40.87
NODAL	88.095	14.55	0.56	43.33	6.7946	38.66
NODAL	90.66	18.76	-5.76	-44.32	7.154	3.23

Table 12: Reactions at Node of Foam concrete (Pre-stressed) deck type bridge

Output Case	Global FX	Global FY	Global FZ	Global MX	Global MY	Global MZ
Unit	KN	KN	KN	KN-m	KN-m	
NODAL	119.76	25.05	8.7607	-15.123	2.45	40.66
NODAL	116	26.44	0.033	-17.54	2.87	42.1
NODAL	120.02	22.65	-1.5491	28.65	3.29	37.65
NODAL	116.87	18.86	-9.561	54.357	3.71	33.2
NODAL	112.05	15.07	-339.06	25.7	4.13	28.75
NODAL	107.23	11.28	2.082	-12.54	4.55	24.3
NODAL	102.41	15.65	-0.011	18.34	4.97	19.85
NODAL	97.59	13.76	1742.26	13.2	5.39	15.4
NODAL	92.77	20.05	-34.765	-26.87	5.81	14.31
NODAL	87.95	21.76	-279	-20.98	6.23	12.26
Table 13: Deck analysis for different parameters (Top Deck Slab)

Parameters	Deck Bridge (RCC)	Deck Bridge (Foam Concrete)	Pre-stressed deck bridge	Pre-stressed deck bridge (Foam Concrete)
B.M. (KN-m)	44.45	42.34	42.1	41.56
S.F. (KN)	28.09	27.97	26.44	25.06
A.F. (KN)	122.54	122.4	120.02	118.75
Deflection (mm)	45.65	44.34	42.35	40.15

5.3 Economic Analysis

Table 14: Economic Analysis

Type	concrete (cu.m)	Rebar (kg)	S.O.R. rate concrete	S.O.R. rate rebar	total concrete	total rebar
Deck Bridge (RCC)	352.75	2215.05	4500	56	1587375	124042.8
Deck Bridge (Foam Concrete)	302.98	2096.45	4500	56	1363410	117401.2
Pre-stressed deck bridge	290.76	2103	4500	56	1308420	117768
Pre-stressed deck bridge (Foam Concrete)	220.76	1800	4500	56	993420	100800

Summarized Results:

As per quantity analysis and cost estimation using S.O.R. 2020, it is determined that Pre-stressed deck type bridge using foam concrete is comparatively best in terms of resisting forces and cost economical. Whereas Deck type R.C.C. bridge shows worst result.

VI. CONCLUSIONS

Findings of the project can be concluded as below:

- In this comparative analysis it is clearly stated that Pre-stressed bridge (Foam concrete) is more stable in resisting load.
In this study Hydraulic calculation is determined using topography sheet available as per Indian standard using dickens formulae.

In this study we manually calculate the total discharge and assigned it in software.

It is concluded that in terms of cost Deck type bridge R.C.C. is comparatively more costlier than Pre-stressed bridge.

I.R.C. loading is applied for justification of vehicular load analysis.

VII. FUTURE SCOPE

Following future aspects can be consider are as follows:

- Cable suspension bridge or any other type can be consider.
- Seismic analysis can be proceed.
- AASHTO specification can be preferred instead of I.R.C.
- Midas Bridge designer can be used for analysis in future.

REFERENCES

[1] Gaurav Somani, “A Comparative Study on T Girder Bridge Deck using Grillage Analogy and Finite Element Method”, international journal of engineering research & technology (IJERT), Volume 10, Issue 06 (June 2021).

[2] K. Hemalatha, Chippymol James, L. Natrayan “Analysis of RCC T-beam and prestressed concrete box girder bridge superstructure under different span conditions”, Materials Today, 2 July 2020.

[3] Meghana K V, G V Sowjanya “Review Paper on Comparative Analysis of T-Beam Bridge and Box Girder Bridge”, International Journal of Engineering Research & Technology (IJERT), Special Issue – 2020.

[4] Manohar R, B Suresh Chandra “Finite Element Analysis of slabs, cross girders and main girders in RC T-Beam Deck Slab Bridge”, International Research Journal of Engineering and Technology (IRJET), Vol 5, Issue 08, 2018.

[5] Tangupalli Mahesh Kumar and J Sudhamani, “Analysis of T-Beam Deck Slab Bridge in Different Methods”, International Journal for Technological Research in Engineering. (IJTRE), Vol 4, Issue 12, Aug 2017.

[6] Abrar Ahmed, Prof. R.B. Lokhande “Comparative Analysis and Design of T-beam and box girders”, International Research Journal of Engineering and Technology (IRJET), Vol 4, July 2017.

[7] Y Yadupriya and T Sujatha , “Comparative Analysis of Post Tensioned T-Beam Bridge Deck by Rational Method and Finite Element Method”, International Journal of Research in IT, Management and Engineering, Vol 6, Issue 7, Sept 2016.

[8] Omkar Velhal, J.P. Patankar “Study of R.C.C. T-Beam Bridge with Skew Angle”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 6, June 2016.