Nonlocal solitons supported by non-parity-time-symmetric complex potentials

Xing Zhu, Xi Peng, Yunli Qiu, Hongcheng Wang and Yingji He

1 School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, People’s Republic of China
2 School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, People’s Republic of China

E-mail: heyingji8@126.com

Keywords: non-PT-symmetric complex potentials, nonlocal nonlinearity, phase transition

Abstract

We report on the existence and stability of fundamental and out-of-phase dipole solitons in nonlocal focusing Kerr media supported by one-dimensional non-parity-time (PT)-symmetric complex potentials. These fundamental and dipole solitons bifurcate from different discrete eigenvalues in the linear spectra. Below the phase transition of the non-PT-symmetric complex potentials, these solitons are stable in the low power region. While above the phase transition, they are stable in the moderate power region. The eigenvalues in linear-stability spectra of solitons appear as conjugation pairs \((\delta, \delta^*)\). The transverse power flow and the nonlinear contribution to refractive index are asymmetric functions. Moreover, the degree of nonlocality can also influence the stability of these solitons.

1. Introduction

The concept of parity-time (PT) symmetry comes from quantum mechanics, where a Hamiltonian with a complex potential can also have completely real spectrum [1, 2]. The one-dimensional (1D) PT-symmetric complex potential satisfies the condition: \(V(x) = V^*(-x)\). Here, the superscript * is the complex conjugation and \(x\) is the normalized transverse coordinate, respectively. In the last decades, the studies of the PT symmetry [3–10] and solitons in PT-symmetric potentials [11–23] have attracted much attention.

The non-PT-symmetric complex potentials which follow the relation \(V(x) \neq V^*(-x)\) can also have entirely real spectra [24–28] and support continuous families of solitons [29, 30]. The method that can construct non-PT-symmetric complex potentials with completely real spectra was introduced [27]. Above phase transition, the unique feature of spectra of new classes of non-PT-symmetric complex potentials was also reported [28]. Continuous families of fundamental solitons can be stable in the 1D non-PT-symmetric single-hump complex potential [29]. The reasons why continuous families of solitons can exist in non-PT-symmetric complex potentials were explained [30]. The non-PT-symmetric double-hump complex potential with focusing and defocusing Kerr nonlinearities can also support stable continuous families of solitons. Moreover, the form \(V(x) = g(x) + ig_0(x)\) (This potential was introduced by Wadati [31], the constant-intensity wave solutions and their modulation instability in such potential have also been investigated theoretically [32]) is proved to be the only 1D non-PT-symmetric complex potential to support continuous families of solitons [33]. Stable continuous families of fundamental solitons can also exist in \(\chi^{(2)}\) media with non-PT-symmetric complex potentials [34]. The eigenvalues of linear-stability spectra of solitons in non-PT-symmetric complex potentials with local focusing Kerr nonlinearity appear in quartets \((\lambda, -\lambda, \lambda^*, -\lambda^*)\) [35]. Moreover, below the phase transition of the non-PT-symmetric complex potentials, fundamental solitons are stable in their existence domain and dipole solitons are stable in the low power region. Above the phase transition, fundamental solitons are stable in the high power region but are unstable in the low power region. Recently, vector solitons in 1D non-PT-symmetric complex potentials were reported [36]. We found that the vector solitons with the first component is fundamental mode and the second component is dipole mode can be stable below and above the phase transition.
Fundamental [37–40] and dipole solitons [37] in PT-symmetric optical lattices (periodic potentials) with nonlocal nonlinearity were investigated. However, these nonlocal solitons in non-PT-symmetric complex potentials have not been studied yet. In this article, we demonstrate that continuous families of nonlocal fundamental and dipole solitons can be stable in 1D non-PT-symmetric complex potentials. They are stable in the low power region below the phase transition and are stable in the moderate power region above the phase transition. The eigenvalues in linear-stability spectra of these solitons appear in conjugation pairs \((\delta, \delta^*)\).

Moreover, the shapes of the nonlinear contribution to refractive index and the transverse power flow exhibit the asymmetry and the degree of nonlocality can affect the stability of these nonlocal solitons.

2. Model

In nonlocal focusing Kerr media, the normalized nonlinear Schrödinger-like equations to describe beam propagation in 1D non-PT-symmetric complex potentials are [29, 30, 37, 39]

\[
\begin{align*}
\frac{\partial U}{\partial z} + \frac{\partial^2 U}{\partial x^2} + V(x)U + nU &= 0, \quad (1a) \\
 d \frac{\partial^2 n}{\partial x^2} - n + |U|^2 &= 0. \quad (1b)
\end{align*}
\]

where \(U\) is the complex light field amplitude, \(z\) is the longitudinal coordinate, \(d\) is the degree of nonlocality, and \(n\) is the nonlinear contribution to refractive index. The non-PT-symmetric complex potentials is represented by \(V(x)\) and the form is [27, 35]

\[V(x) = g^2(x) + 2g(x) + ig_x(x).\] (2)

Here \(c\) is a real constant and \(g(x)\) is a real function. We choose

\[g(x) = \tanh^2(x + 2.6) - \tanh(x - 2.6).\] (3)

The linear spectra of non-PT-symmetric complex potentials can be obtained by using the Fourier collocation method [41]. For \(c = 0.25, c = 0,\) and \(c = -0.25,\) the linear spectra of the non-PT-symmetric complex potentials are depicted in figures 1(d)–(f), respectively. The critical threshold is \(c_{th} = -0.2205.\) When \(c \leq c_{th},\) a phase transition will occur and the spectrum becomes partially complex. For \(c > c_{th},\) the spectrum is entirely real.

We assume that the stationary soliton solutions of equation (1) are the form of \(U(x, z) = q(x)e^{i\mu z},\) where \(q\) is a complex function and \(\mu\) is the real propagation constant. By substituting above relation into equation (1), we can get

![Figure 1. (a)–(c) Are the non-PT-symmetric complex potentials for \(c = 0.25, c = 0,\) and \(c = -0.25,\) respectively. The blue and red lines are real and imaginary parts, respectively. (d)–(f) are the corresponding linear spectra.](image-url)
Equation (4) can be numerically solved by a method that is developed from the modified squared-operator iteration method [42]. In addition, equation (4) can also be numerically solved by the spectral renormalization method [43]. We define the power of a soliton as

\[P = \int_{-\infty}^{\infty} |q|^2 \, dx. \]

To confirm the stability of these nonlocal solitons, we perform stability analyses for them. The perturbations \(f(x) \) and \(t(x) \) are added into solitons [16]:

\[U(x, z) = e^{i\delta z}[q(x) + f(x)e^{i\xi} + t^*e^{-i\xi}], \]

where \(\delta \) is the growth rate and \(|f|, |t| \ll |q| \). By taking equation (5) into equation (1) and linearizing, we can also get coupled eigenvalue equations

\[
\begin{align*}
\delta f &= i \left[-\mu + \frac{\partial^2}{\partial x^2} + V + n \right] f + \Delta n q,
\delta t &= i \left[-\mu + \frac{\partial^2}{\partial x^2} - V^* - n \right] t - \Delta n q^*.
\end{align*}
\]

Here \(n = \int_{-\infty}^{\infty} h(x-k)|q(k)|^2 \, dk \), \(h(x) = 1/(2d^{1/2}) \exp (|x|/d^{1/2}) \), and \(\Delta n = \int_{-\infty}^{\infty} h(x-k)|q^*(k)f(k) + q(k)t(k)| \, dk \).
Equation (6) can be solved numerically. If there are complex eigenvalues with $\text{Re}(\delta) > 0$, solitons are linearly unstable; otherwise, solitons are stable.

3. Numerical results

For $c = 0.25$, there are four discrete eigenvalues in the linear spectrum, as shown in figure 1(d). The largest and second largest eigenvalues are $\lambda_1 = 4.4742$ and $\lambda_2 = 3.2437$, respectively. Fundamental solitons can bifurcate from these. These fundamental solitons are stable in the low power region. With an increase of the degree of nonlocality d, the stability region shrinks. The stability domains of fundamental solitons for $d = 1$ and $\mu = 6$, the stable propagation of the perturbed soliton (the direct simulations of equation (1a) are added random noises with 5% soliton amplitude) is depicted in figure 2(f). By solving equation (6), the linear-stability spectra of solitons can be obtained. From figure 2(e), all the real parts of the eigenvalues in the linear-stability spectrum of the soliton are less than or equal to 0. It confirms that the soliton is stable. We also introduce the parameter $S = (i/2)(qq^* - q^*q)$ associated with the transverse power flow density [11]. As indicated in figure 2(d), S is negative everywhere, the power flow from gain toward loss regions in one direction (from right to left). As the unstable case, figure 2(g) shows the profiles of the soliton and refractive index for $d = 5$ and $\mu = 6$. The corresponding unstable propagation of the perturbed soliton is shown in figure 2(i). The linear-stability spectrum of the soliton also demonstrates that the soliton is unstable. There are eigenvalues with real part greater than 0, as exhibited in figure 2(h).

The out-of-phase dipole solitons can bifurcate from λ_2. They are also stable in the low power region. On the contrary, the stability domain of dipole solitons widens with the increase of the degree of nonlocality. The stability domains of dipole solitons for $d = 1$, $d = 3$, and $d = 5$ are $3.244 \leq \mu \leq 3.344$, $3.244 \leq \mu \leq 3.364$, and $3.244 \leq \mu \leq 3.384$, respectively. As a stable example, figure 3(i) depicts the stable propagation of the perturbed...
dipole soliton with \(d = 5 \) and \(\mu = 3.3 \). In local focusing Kerr media, the eigenvalues of linear-stability of solitons in non-PT-symmetric complex potentials appear in quartets [35]. Much different with that, these eigenvalues in linear-stability spectra of solitons in non-PT-symmetric complex potentials with nonlocal focusing Kerr nonlinearity appear as conjugation pairs, which are clearly shown in figures 2(e), (b), 3(e), and (h). In PT-symmetric optical lattices [11, 37–40], the refractive index and the transverse power flow are even functions. However, as exhibited in figures 2(c), (d), 3(c), and (d), these are asymmetric in non-PT-symmetric complex potentials.

For \(\epsilon = 0 \), the linear spectrum is shown in figure 1(c). There are three discrete eigenvalues and the largest and second largest eigenvalues are \(\lambda_1 = 3.4929 \) and \(\lambda_2 = 2.3089 \). The fundamental and out-of-phase dipole solitons also bifurcate from \(\lambda_1 \) and \(\lambda_2 \), respectively. Both the fundamental and dipole solitons are stable in the low power regions. When the degree of nonlocality increases, the stability region of the fundamental solitons shrinks but the stability domain of dipole solitons widens. The existence and stability of the fundamental and dipole solitons are similar to \(\epsilon = 0.25 \).

Above phase transition, fundamental solitons are unstable in the low power region but are stable in the high power region in non-PT-symmetric complex potentials with local focusing Kerr nonlinearity [35]. However, nonlocal fundamental solitons are stable in the moderate power region but are unstable in the low and high power regions in non-PT-symmetric complex potentials. For \(\epsilon = -0.25 \), there are two discrete eigenvalues \(\lambda_1 = 2.5118 \) and \(\lambda_2 = 1.3755 \) in the linear spectrum, as shown in figure 1(f). Nonlocal fundamental solitons can also bifurcate from \(\lambda_1 \). The stability domain also shrinks with the increase of the degree of nonlocality. The three stability regions for \(d = 1 \), \(d = 3 \), and \(d = 5 \) are \(2.969 \leq \mu \leq 4.180 \), \(2.991 \leq \mu \leq 3.598 \), and \(2.998 \leq \mu \leq 3.185 \), respectively. As two stable cases for above phase transition (\(\epsilon = -0.25 \)), figures 4(f) and (i) depict the stable propagations of the two perturbed solitons for \(d = 3 (\mu = 3.25) \) and \(d = 5 (\mu = 3.05) \), respectively.

For \(\epsilon = -0.25 \), nonlocal dipole solitons cannot be stable with \(d = 1 \), \(d = 3 \), and \(d = 5 \). When increase \(\epsilon \) to \(-0.221 \) (still above phase transition), dipole solitons can also stable in the moderate power region. There are also two discrete eigenvalues in the linear spectrum of the non-PT-symmetric complex potentials with \(\epsilon = -0.221 \).
They are $\lambda_1 = 2.6256$ and $\lambda_2 = 1.4839$. Nonlocal dipole solitons can also bifurcate from λ_2. For $d = 1, d = 3$, and $d = 5$, the stability domains are $1.486 \leq \mu \leq 1.511$, $1.487 \leq \mu \leq 1.570$, and $1.487 \leq \mu \leq 1.585$, respectively. In the three stability regions, figures 5(c), (f) and (i) show the stable propagations of three perturbed dipole solitons.

This non-PT-symmetric complex potentials (equations (2) and (3)) cannot support continuous families of solitons in the nonlocal PT-symmetric nonlinear Schrödinger equation (NLSE) [44]. Whether there are continuous families of solitons in this nonlocal PT-symmetric NLSE with other non-PT-symmetric complex potentials or not needs further study.

For a PT-symmetric single-hump potential, the profiles of the fundamental and out-of-phase dipole solitons, the refractive index, and the transverse power flow are all symmetric. However, they are all asymmetric in this non-PT-symmetric complex potential. Moreover, the complex eigenvalues in linear-stability spectra of solitons in a PT-symmetric single-hump potential cannot appear as conjugation pairs (δ,δ^*). This article shows.

4. Conclusions

In conclusion, we have investigated the existence and stability of nonlocal fundamental and out-of-phase dipole solitons in 1D non-PT-symmetric complex potentials. Below the phase transition, fundamental and dipole solitons are stable in the low power region. While above the phase transition, these solitons are stable in the moderate power region. The eigenvalues in the linear-stability spectra of these solitons appear in conjugation pairs (δ,δ^*). The nonlinear contribution to refractive index and transverse power flow show asymmetry in the non-PT-symmetric complex potentials. Moreover, the degree of nonlocality can also affect the stability of these solitons.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11774068 and 61675001), the Guangdong Province Nature Science Foundation of China (Grant No. 2017A030311025), the Guangdong Science and Technology Planning Program (Grant No. 2017A010102019) and the Guangdong Province Education Department Foundation of China (Grant No. 2018KZDXM044).

ORCID iDs

Xing Zhu https://orcid.org/0000-0002-3218-8381
Xi Peng https://orcid.org/0000-0002-8958-9899

References

[1] Bender C M and Boettcher, S 1998 Real spectra in non-Hermitian Hamiltonians having PT symmetry Phys. Rev. Lett. 80 5243
[2] Bender, C M 2007 Making sense of non-Hermitian Hamiltonians Rep. Prog. Phys. 70 947
[3] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Beam dynamics in PT symmetric optical lattices Phys. Rev. Lett. 100 103904
[4] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Observation of parity-time symmetry in optics Nat. Phys. 6 192
[5] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Parity-time synthetic photonic lattices Nature 488 167
[6] Feng L, Wang Z J, Ma R M, Wang Y and Zhang X 2014 Single-mode laser by parity-time symmetry breaking Science 346 972
[7] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Parity-time-symmetric microring lasers Science 346 975
[8] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Non-Hermitian physics and PT symmetry Nat. Phys. 14 11
[9] Miri M A and Ali A 2019 Exceptional points in optics and photonics Science 363 aea7709
[10] ozdemi r S K, Rotter S, Nori F and Yang L 2019 Parity-time symmetry and exceptional points in photonics Nat. Mater. 18 783
[11] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Optical solitons in PT periodic potentials Phys. Rev. Lett. 100 030402
[12] Abdullaev F K, Kartashov Y V, Konotop V V and Zeyzulin D A 2011 Solitons in PT-symmetric nonlinear lattices Phys. Rev. A 83 014105(R)
[13] Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Gap solitons in parity-time complex periodic optical lattices with the real part of superlattices Opt. Lett. 36 2680
[14] Driben R and Malomed B A 2011 Stability of solitons in parity-time-symmetric couplers Opt. Lett. 36 4323
[15] He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Lattices solitons in PT-symmetric mixed linear–nonlinear optical lattices Phys. Rev. A 85 013831
[16] Nixon S, Ge L and Yang L 2012 Stability analysis for solitons in PT-symmetric optical lattices Phys. Rev. A 85 023822
[17] Zeyzulin D A and Konotop V V 2012 Nonlinear modes in finite-dimensional PT-symmetric systems Phys. Rev. Lett. 108 213906
[18] Alexeeva N V, Barashenkov I V, Sukhorukov A A and Kivshar Y S 2012 Optical solitons in PT-symmetric nonlinear couplers with gain and loss Phys. Rev. A 85 063837
[19] Achilleos V, Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2012 Dark solitons and vortices in PT-symmetric nonlinear media from spontaneous symmetry breaking to nonlinear PT phase transitions Phys. Rev. A 86 013808
[20] kartashov Y V 2013 Vector solitons in parity-time-symmetric photonic lattices Opt. Lett. 38 2600
[21] Wimmer M, Regensburger A, Miri M A, Bersch C, Christodoulides D N and Peschel U 2015 Observation of optical solitons in PT-symmetric lattices Nat. Commun. 6 7782
[22] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Nonlinear switching and solitons in PT-symmetric photonic systems Laser Photton. Rev. 10 177
[23] Xie J, Zhu X and He Y 2019 Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices Nonlinear Dyn. 97 1287
[24] Cannata F, Junker G and Trost J 1998 Schrödinger operators with complex potential but real spectrum Phys. Lett. A 246 219
[25] Miri M A, Heinrich M and Christodoulides D N 2013 Supersymmetry-generated complex optical potentials with real spectra Phys. Rev. A 87 043819
[26] Konotop V V, Yang L and Zeyzulin D A 2016 Nonlinear waves in PT-symmetric systems Rev. Mod. Phys. 88 035002
[27] Nixon S and Yang J 2016 All-real spectra in optical systems with arbitrary gain- and loss distributions Phys. Rev. A 93 013802(R)
[28] Yang J 2017 Classes of non-parity-time-symmetric optical potentials with exceptional-–point free phase transitions Opt. Lett. 42 4067
[29] Tsoy E N, Alayyarov I M and Abdullaev F K 2014 Stable localized modes in asymmetric waveguides with gain and loss Opt. Lett. 39 4215
[30] Konotop V V and Zeyzulin D A 2014 Families of stationary modes in complex potentials Opt. Lett. 39 3535
[31] Wadati M 2008 Construction of parity-time-symmetric potential through the soliton theory J. Phys. Soc. Japan. 77 074005
[32] Makris K G, Musslimani Z H, Christodoulides D N and Rotter S 2015 Constant-intensity waves and their modulation instability in non-Hermitian potentials Nat. Commun. 6 7257
[33] Nixon S D and Yang J 2016 Bifurcation of soliton families from linear modes in non-PT-symmetric complex potentials Stud. Appl. Math. 136 459
[34] Moreira F C and Cavalcanti S B 2016 Localized modes in \(\chi^{(2)} \) media with non-PT-symmetric complex localized potentials Phys. Rev. A 94 043818
[35] Yang J and Nixon S 2016 Stability of soliton families in nonlinear Schrödinger equations with non-parity-time-symmetric complex potentials Phys. Lett. A 380 3803
[36] Zhu X and He Y 2018 Vector solitons in non-parity-time-symmetric complex potentials Opt. Express 26 26511
[37] Hu S, Ma X, Lu D, Zheng Y and Hu W 2012 Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity Phys. Rev. A 85 043826
[38] Yin C, He Y, Li H and Xie J 2012 Solitons in parity-time symmetric potentials with spatially modulated nonlocal nonlinearity Opt. Express 20 19355
[39] Li H, Jiang X, Zhu X and Shi Z 2012 Nonlocal solitons in dual-periodic PT-symmetric optical lattices Phys. Rev. A 86 023840
[40] Jisha C P, Alberucci A, Brazhnyi V A and Assanto G 2014 Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity Phys. Rev. A 89 013812
[41] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[42] Yang J and Lakoba T I 2007 Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations Stud. Appl. Math. 118 153
[43] Ablowitz M J and Musslimani Z H 2005 Spectral renormalization method for computing self-localized solutions to nonlinear systems Opt. Lett. 30 2140
[44] Ablowitz M J and Musslimani Z H 2013 Integrable nonlocal nonlinear Schrödinger equation Phys. Rev. Lett. 110 064105