Sample-size determination and adherence in randomised controlled trials published in anaesthetic journals

M Nontshe1, S Khan1, T Mandebvua1, B Merrifield2 and RN Rodseth3,4

1Metropolitan Department of Anaesthetics, Critical Care and Pain Management, University of KwaZulu-Natal, Pietermaritzburg, South Africa
2Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
3Corresponding author, email: rodsethr@ukzn.ac.za

Background: Sample-size calculations are critical to ensure that randomised control trials return robust and reliable results. The estimated treatment effects used in these calculations is often significantly different from the actual treatment effect and can dramatically impact trial validity.

Methods: This study examined sample-size calculations in randomised controlled trials designed to show superiority between two-arm parallel groups with a single primary outcome that were published in the top five anaesthetic journals for 2014 (as per Thomson Reuters impact factors). In particular, it sought to determine treatment effect estimations used in a priori sample-size calculations and compare them with actual treatment effects.

Results: A PubMed search identified 209 possible articles; 52 were drawn for full text review; and 28 were included in the final analysis. The relative difference between expected and actual event rates was greater than 20% in 80% of trials and greater than 50% in 44% of trials.

Conclusions: Unrealistic assumptions of treatment effects in randomised controlled trials published in anaesthesia journals are common. Trial sample sizes should be calculated thoughtfully and realistically and should be fully reported in both trial protocols and publications. Researchers should be aware of the opportunity cost as well as the possible dangers to patients when unrealistic assumptions are made. Where possible researchers should collaborate to achieve meaningful trial sample sizes to ensure robust clinical findings.

Keywords: anaesthesia, clinical trial, power calculations, sample size, treatment effect, type II error

Introduction

Sample-size calculations are critical to ensure that randomised control trials return robust and reliable results. According to the CONSORT statement for the reporting of parallel-group randomised trials, these calculations should be reported and justified in the methods section.1 Sample-size calculations establish the patient numbers required to detect clinically relevant differences between interventions. Where trials are underpowered they run the risk of failing to identify a true difference between groups, and increase the likelihood of false-negative trials—particularly when the null hypothesis is true.2 In contradistinction, excessively large sample sizes run the risk of unnecessarily exposing trial subjects to risk of a new intervention.3

The primary parameters used in calculating samples sizes are: (1) the threshold chosen for the type I error (also call the level of significance or the p-value—commonly set at 5%); (2) the study power (commonly set at 80% or 90%); (3) the assumed event rate in the control group, together with some assumed standard deviation; and (4) the expected treatment effect. Assumed event rate and its standard deviation are commonly based on previously reported results, while expected treatment effect should be based on what a clinically meaningful treatment effect would be considering the clinical study environment. These assumptions are often significantly different from actual trial findings and can dramatically impact the intended power of a trial.4

In this study we aimed to examine sample-size calculations in randomised controlled trials designed to show superiority between two-arm parallel groups with a single primary outcome that were published in the top five anaesthetic journals for 2014 (as per Thomson Reuters impact factors). In particular, we sought to determine treatment effect estimations used in a priori sample-size calculations and compare them with the actual treatment effects identified by the trial.

Methodology

We systematically reviewed PubMed using the search terms ‘randomized controlled trials’ and ‘randomised controlled trials’ to identify all 2014 clinical randomised controlled trials published in the five anaesthetic journals with the highest impact factor as reported by Thomson Reuters. Pain-specific journals were excluded. MN screened titles and abstracts to identify candidate articles. Articles were excluded if they were not randomised, were cluster trials, included a factorial design, were non-inferiority trials, were pilot trials, made use of more than two trial arms, or reported more than one primary outcome. Articles were selected for full text review if either screener deemed them possibly eligible. Chance corrected inter-observer agreement for trial eligibility was tested using the kappa statistic.

A full text review of all candidate articles was conducted to identify eligible trials. From these eligible trials we systematically extracted the following data using a standardised data-collection sheet: author, year of publication, journal, p-value, power, expected control event rate, expected treatment effect, required sample size, actual number of recruited participants, actual control event rate, actual treatment effect, and intention-to-treat analysis. Full text screening and data extraction was conducted in duplicate by two teams, MN, SK and TM, BM, with the final data
being checked by RR. As no meta-analysis of study data was planned we did not assess trial quality or risk of bias.

For each trial the following were reported: sample-size calculation, power, alpha, two-sided testing assumption, calculated sample size, number of patients randomised, number of patients analysed, significance of trial findings, expected treatment effect, actual treatment effect, and the percentage relative difference between the estimated and actual event rates (estimated event rate minus actual event rate divided by estimated event rate). Where required, expected treatment effects reported in trial measurement units were converted to a percentage to facilitate comparison.

Results
In 2014 the five anaesthetic journals with the highest impact factor for 2014 were Anesthesiology, Anesthesia and Analgesia, British Journal of Anaesthesia, Anaesthesia, and the Canadian Journal of Anaesthesia. The PubMed search identified 209 possible articles from which 52 were drawn for full paper review. Chance corrected inter-observer agreement for trial eligibility was excellent (kappa = 0.82). Twenty-four trials were subsequently excluded for the following reasons: Not randomized (2), pilot trial (4), cross-over trial (2), factorial (2), multiple outcomes (5), secondary analysis (4), using dynamic sample size calculations (1), non-inferiority trial (2), and trial stopped early (2). Trial selection process is shown in Figure 1, and a comparison of expected and actual treatment effects are provided in Table 2.

All trials reported a sample size calculation. Two trials explicitly used one-sided assumptions when calculating the sample size, while 13 trials did not explicitly report two-sided assumptions. All studies (for brevity hereafter name of first author only given) made use of an alpha of 0.05 and power of 80%, except for Capenellei, Cheung and Yates, who used 90% power, and Liu who used 95% power and an alpha of 0.001. Three trials did not achieve their planned sample size. Of note Saporito, Stein, and Cheung recruited between 50% and 100% more patients than required by their sample-size calculations. In addition, Saporito et al. powered their trial to show superiority between two interventions but conducted a non-inferiority trial.

All trials except for Ju reported an expected treatment effect; in addition Ju did not use the outcome that the trial was powered on as the primary reported trial outcome. Justification for the expected treatment effect was provided for 16 trials (57%); 12 from prior trials; 2 from pilot studies; 1 from observational data; 1 from clinical relevance. For the remaining 12 trials (43%) no justification was provided.

The relative difference between the expected and actual event rates was greater than 20% in 80% of trials and greater than 50% in 44% of trials. In six trials the actual treatment effect was in the opposite direction to that expected, of which one trial had explicitly made use of a one-sided power calculation. Eleven trials were designed using expected treatment effects greater than 20% of actual reported non-significant results, of which seven used expected treatment results greater than 50% of actual reported.

Discussion
Sample-size calculations form the basis of robust evidence-based medicine. Randomised controlled trials need to be of high quality and so require, among other things, a published a priori sample size and power calculation. This allows the trial to be reproduced and explains the researchers’ underlying assumptions in designing the trial. An appropriate sample size is determined by the following design parameters: minimum expected difference (also known as the effect size), estimated measurement variability, desired statistical power, significance criterion (p-value), and whether a one- or two-tailed statistical analysis is planned. Factors resulting in the need for a large sample size are: the desire for a highly powered study, small treatment effect, smaller p-values, the desire for narrower confidence intervals, two-tailed design of the study and increasing variability/standard difference.

Several studies in the recent past have examined power and sample-size calculations and have noted that a large percentage of randomised controlled trials are either underpowered or have no record of an a priori sample-size calculation. Many trials were found to have low statistical power thereby increasing the probability of a type II error. Christley et al., in a review of the surgical literature, noted that of 127 randomised controlled trials only half were sufficiently powered to detect large differences between treatment groups. These underpowered studies may even have affected meta-analyses where low-powered studies with significant results have been included, especially when they have negative results. Muncer et al. note that by ignoring power the single-study researcher makes it
difficult to get negative results published and therefore affects meta-analysis through publication bias. In this analysis more than 80% of trials overestimated the treatment effect by more than 20% and 44% of trials by more than 50%. Similarly, in an analysis of internal medicine trials Charles et al. found significant discrepancies between expected and observed treatment effects. The reason for these findings is unclear. It may possibly be due to overzealous estimation of the estimated parameters with a desire to lower the required sample size. This is done by first choosing a convenient study period (e.g. six months) or attainable study sample size (e.g. 100/200/300 etc. participants) and then plugging in a treatment effect that provides the desired sample size. While it is not formally necessary that the actual treatment effect should resemble the estimated treatment effect, studies designed using unrealistic treatment effects expose patients to trial risks and waste resources without the benefit of achieving a meaningful result.

In this analysis 11 trials with estimated treatment effects greater than 20% of actual reported non-significant results, of which seven used expected treatment results greater than 50% of actual. One of these trials assumed a 66% reduction in the composite of death and prolonged ICU stay but reported a 13% increase in the primary outcome, while a second assumed a 60% decrease in the incidence of gastrointestinal morbidity but reported a 7% increase. We would argue that the treatment effects assumed in many of these trials are unrealistic, especially considering the nature of some of the outcomes being studied. Many of these trials are therefore practically underpowered and would likely necessitate a second larger trial. It is worth noting that Yates et al. made use of one-sided assumptions when calculating their sample size, but found a treatment effect in the opposite direction than expected. This highlights the danger of using one-sided sample-size assumptions in clinical research.

Trial designers do not only err by making sample sizes too small. In this analysis Saporito and Cheung doubled their sample size, and Stein recruited 68% more patients than required without providing a clear motivation for doing so. While it is appropriate to increase sample size to account for patient dropout these considerations should be made explicit in the trial protocol. Recruiting excessive patients without a reasoned rational unnecessarily exposes them to possible harm.

Table 1: Sample-size calculation characteristics of included trials

| Author     | Sample size calculation | Power | Alpha | Two-sided? | Sample size | Calculated | Randomised | Analysed | Sample size achieved? |
|------------|-------------------------|-------|-------|------------|-------------|------------|------------|----------|----------------------|
| Arab       | Yes                     | 80%   | 5%    | Yes        | 96          | 96         | 96         | Yes      |
| Cappelleri | Yes                     | 90%   | 5%    | Yes        | 76          | 90         | 83         | Yes      |
| Cheung     | Yes                     | 90%   | 5%    | Yes        | 50          | 100        | 96         | Yes      |
| Cho        | Yes                     | 80%   | 5%    | Yes        | 78          | 78         | 78         | Yes      |
| Ferrando   | Yes                     | 80%   | 5%    | NS         | 30          | 30         | 30         | Yes      |
| Kuruba     | Yes                     | 80%   | 5%    | Yes        | 54          | 54         | 51         | Yes      |
| Horn       | Yes                     | 80%   | 5%    | NS         | 40          | 40         | 40         | Yes      |
| Hwang      | Yes                     | 80%   | 5%    | One-sided  | 62          | 68         | 66         | Yes      |
| Ilyas      | Yes                     | 80%   | 5%    | NS         | 128         | 128        | 128        | Yes      |
| Ju         | Yes                     | 80%   | 5%    | NS         | 84          | 100        | 84         | Yes      |
| Kim        | Yes                     | 80%   | 5%    | NS         | 166         | 184        | 181        | Yes      |
| Kim        | Yes                     | 80%   | 5%    | Yes        | 46          | 55         | 53         | No       |
| Landoni    | Yes                     | 80%   | 5%    | Yes        | 186         | 200        | 200        | Yes      |
| Lim        | Yes                     | 80%   | 5%    | NS         | 56          | 62         | 60         | Yes      |
| Liu        | Yes                     | 95%   | 1%    | Yes        | 288         | 680        | 601        | Yes      |
| Murphy     | Yes                     | 80%   | 5%    | Yes        | 62          | 70         | 70         | Yes      |
| Paul       | Yes                     | NR    | 5%    | NR         | NR          | 40         | 40         | NA       |
| Saporito   | Yes                     | 80%   | 5%    | NS         | 60          | 122        | 120        | Yes      |
| Sharma     | Yes                     | 80%   | 5%    | Yes        | 400         | 400        | 302        | Yes      |
| Sng        | Yes                     | 80%   | 5%    | NS         | 216         | 216        | 213        | No       |
| Stein      | Yes                     | 80%   | 5%    | NS         | 86          | 116        | 109        | Yes      |
| Ueki       | Yes                     | 80%   | 5%    | NS         | 34          | 42         | 37         | Yes      |
| van Loon   | Yes                     | 80%   | 5%    | NS         | 440         | 427        | 415        | No       |
| Westergaard| No                      | NR    | NR    | NS         | 52          | 60         | 59         | Yes      |
| Yamamoto   | Yes                     | 80%   | 5%    | NS         | 78          | 90         | 86         | Yes      |
| Yates      | Yes                     | 90%   | 5%    | One-sided  | 202         | 206        | 202        | Yes      |
| Yoshida    | Yes                     | 80%   | 5%    | Yes        | 44          | 60         | 54         | Yes      |
| Zhang      | Yes                     | 80%   | 5%    | Yes        | 46          | 72         | 65         | Yes      |

Note: NR—not reported; NS—not specified.
| Author | Primary outcome used for sample size calculation | Estimated | Estimate justification | Actual | Relative difference | Significant finding? |
|--------|--------------------------------------------------|-----------|------------------------|--------|--------------------|---------------------|
| Arab   | Proportion of satisfactory sensory block         | 50%       | Pilot study            | 36%    | 28%                | Yes                 |
| Cappelleri | Duration of sciatic nerve block                  | 12.5%     | NR                     | 2%     | 84%                | No                  |
| Cheung | Change in pain score (area under the curve)     | 30%       | Previous trial         | 17%    | 43%                | Yes                 |
| Cho    | Forced expiratory volume on the third postoperative day | 10%      | Previous trial         | 7.5%   | 25%                | No                  |
| Ferrando | Oxygenation at the end of one-lung ventilation period | 10%      | Previous trial         | 18%    | −80%               | Yes                 |
| Kuruba | Morphine consumption in the first 24 h after surgery | 2.7%    | Observational data     | 2.3%   | 15%                | No                  |
| Horn   | Neonatal core temperature                        | 1.6%      | Previous trial         | 3.9%   | −16%               | Yes                 |
| Hwang  | Incidence of spinal hypotension                  | 35%       | Previous trial         | 43%    | −23%               | Yes                 |
| Ilyas  | Time taken for successful intubation             | 20%       | Previous trial         | 65%    | −22%               | Yes                 |
| Ju     | Oxygen index 30 min after one lung ventilation   | NR        | Pilot study            | NR     | NR                 | Yes                 |
| Kim    | First-attempt l-gel insertion success rate       | 15%       | Previous trial         | 13%    | 13%                | Yes                 |
| Kim    | Oropharyngeal leak pressure                      | 20%       | Previous trial         | 5%     | 75%                | No                  |
| Landoni| Composite of death and prolonged ICU stay        | 66%       | NR                     | 13%    | 80%                | No                  |
| Lim    | Incidence of improper placement of tracheal tube | 40%       | Previous trial         | 45%    | −13%               | Yes                 |
| Liu    | Propofol or remifentanil consumption             | 20%       | NR                     | 6%     | 70%                | No                  |
| Murphy | Cerebral tissues oxygenation                     | 4.5%      | Previous trial         | 5.3%   | −18%               | Yes                 |
| Paul   | Depth of bougie insertion                        | NR        | NR                     | NR     | NR                 | Yes                 |
| Saporito | Incidence of unscheduled outpatient visits or readmissions | NA      | NA                     | NA     | NA                 | No                  |
| Sharma | Incidence of intrapartum fever                   | 50%       | NR                     | 5%     | 90%                | No                  |
| Sng    | Incidence of reactive hypertension               | 20%       | Previous trial         | 5%     | −19%               | Yes                 |
| Stein  | Incidence of post-dural puncture headache        | 57%       | NR                     | 7%     | −35%               | Yes                 |
| Ueko   | Plasma HbA1 level                                | 30%       | NR                     | 35%    | −17%               | Yes                 |
| van Loon| Incidence of hypoxemia                           | 50%       | NR                     | 0.8%   | 98%                | No                  |
| Westergaard | Two-point difference in average pain score over 24 h | 60%     | NR                     | 40%    | 33%                | No                  |
| Yamamoto| Complete sensory block of all sciatic nerve components | 62%     | Previous trial         | 69%    | −11%               | Yes                 |
| Yates  | Gastrointestinal morbidity                       | 60%       | NR                     | 7%     | 88%                | No                  |
| Yoshida| Number of anaesthetic dermatomes 24 h after surgery | 30%      | Clinical relevance     | 0%     | 100%               | No                  |
| Zhang  | Length of recovery room stay                     | 30%       | NR                     | 20%    | 3%                 | Yes                 |

Notes: NA—not applicable; NR—not reported.
*Direction of treatment effect opposite of expected.
Traditionally sample-size calculations are performed during the design phase of a trial and are rarely revisited. A trial excluded initially assumed a 35% event rate in the approach. Mercier et al. introduced a 35% event rate in the baseline group with a 20% treatment effect. The authors planned a sample-size recalculation once 50% of patients had been randomised to ensure that adequate power was achieved—the trial p-value was adjusted to correct for multiple testing. Adopting this model of trial design ensures that the trial is adequately powered and provides reliable results.

Clinical medicine faces the challenge of dealing with a flood of inconclusive research and questions being asked of how we go about improving the reliability of our research. Locally, South African clinicaltrainees are producing a multitude of small underpowered studies in an attempt to fulfill regulator training requirements. To address these problems researchers should be aware of the opportunity cost as well as the possible dangers to patients when robust research methodology is not followed. Trial sample sizes should be calculated thoughtfully and realistically and should be fully reported in both trial protocols and publications. Where possible researchers should aim to collaborate so as to achieve meaningful trial sample sizes and so ensure robust clinical findings.

**Disclosure statement** – No potential conflict of interest was reported by the authors.

**ORCID**

M Nontshe [http://orcid.org/0000-0003-0879-3722]

RN Rodseth [http://orcid.org/0000-0002-3779-7805]

**References**

1. Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340 (mar23 1c):c323–c322. [https://doi.org/10.1136/bmj.c332]

2. Christley RM. Power and error: increased risk of false positive results in underpowered studies. The Open Epidemiology Journal. 2010;3(1):16–9. [https://doi.org/10.2174/1874297101003010106]

3. Altman DG. Statistics and ethics in medical research: Ill how large a sample? Br Med J. 1980;281 (6251):6–8. [https://doi.org/10.1136/bmj.281.6251.1336]

4. Schulz KF, Grimes DA. Sample size calculations in randomised trials: mandatory and mystical. Lancet. 2005;366(9547):1348–53. [https://doi.org/10.1016/S0140-6736(05)61034-3]

5. Zeidan AM, Salem MR, Mazoit JX, et al. The effectiveness of cricoid pressure for occluding the esophageal entrance in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg. 2014;118(5):981–6. [https://doi.org/10.1213/ANE.0000000000000209]

6. MacDonald N, Ahmad T, Mohr O, et al. Dynamic preload measurement therapy on non-surgical site pain after breast reconstructive surgery: a preliminary study. Anaesthesia. 2014;69(8):872–7. [https://doi.org/10.1111/anae.12729]

7. Bendtsen TF, Pedersen EM, Haroutounian S, et al. The suprascalar parallel shift vs lumbar plexus blockade with ultrasound guidance in healthy volunteers—a randomised controlled trial. Anaesthesia. 2014;69(11):1227–40. [https://doi.org/10.1111/anae.12753]

8. Hashimoto Y, Asai T, Aral T, et al. Effect of cricoid pressure on placement of the i-gel™, a randomised study. Anaesthesia. 2014;69(8):878–82. [https://doi.org/10.1111/anae.12731]

9. Lindholm EE, Aune E, Froland G, et al. Analysis of transthoracic echocardiographic data in major vascular surgery from a prospective randomised trial comparing sevoflurane and fentanyl with propofol and remifentanil anaesthesia. Anaesthesia. 2014;69(9):578–82. [https://doi.org/10.1111/anae.12604]

10. Bidd H, Dulai R, Edelman N, et al. The effect of intra-operative passive movement therapy on non-surgical site pain after breast reconstructive surgery: a preliminary study. Anaesthesia. 2014;69(8):872–7. [https://doi.org/10.1111/anae.12729]

11. Bendtsen TF, Pedersen EM, Haroutounian S, et al. The suprascalar parallel shift vs lumbar plexus blockade with ultrasound guidance in healthy volunteers—a randomised controlled trial. Anaesthesia. 2014;69(11):1227–40. [https://doi.org/10.1111/anae.12753]

12. Hashimoto Y, Asai T, Aral T, et al. Effect of cricoid pressure on placement of the i-gel™, a randomised study. Anaesthesia. 2014;69(8):878–82. [https://doi.org/10.1111/anae.12731]

13. Lindholm EE, Aune E, Froland G, et al. Analysis of transthoracic echocardiographic data in major vascular surgery from a prospective randomized trial comparing sevoflurane and fentanyl with propofol and remifentanil anaesthesia. Anaesthesia. 2014;69(9):578–82. [https://doi.org/10.1111/anae.12604]

14. Sohn LE, Jagannathan N, Sequera-Ramos L, et al. A randomised comparison of free-hand vs air-Q blood-sparing fiberoptic-guided tracheal intubation in children < 2 years of age. Anaesthesia. 2014;69(7):723–8. [https://doi.org/10.1111/anae.1469.14.7]

15. de Man FR, Ertweman M, van Groeningen D, et al. The effect of audible alarms on anaesthesiologists’ response times to adverse events in a simulated anaesthesia environment: a randomised trial. Anaesthesia. 2014;69(6):596–603. [https://doi.org/10.1111/anae.12640]

16. Adelborg K, Al-Mashhadi RH, Nielsen LH, et al. A randomised crossover comparison of manikin ventilation through Soft Seal(R), i-gel and AuraOnce supraglottic airway devices by surf lifeguards. Anaesthesia. 2014;69(4):343–7. [https://doi.org/10.1111/anae.12545]

17. Yin J, Wang SL, Liu XB. The effects of general anaesthesia on memory in children: a comparison between propofol and sevoflurane. Anaesthesia. 2014;69(2):118–23. [https://doi.org/10.1111/anae.13922]

18. Engelsberger L, Dietrich W, Eyerle B, et al. A novel blood-sparing agent in cardiac surgery? First in patient experience with the synthetic serine protease inhibitor MDCO-210: a phase II, randomised, double-blind, placebo-controlled study in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg. 2014;119(1):16–25. [https://doi.org/10.1213/ANE.0000000000000218]

19. Kancir AS, Plekattiene L, Hansen TB, et al. Lack of nephrotoxicity by 6% hydroxyethyl starch 130/0.4 during hip arthroplasty: a randomized controlled trial. Anesthesiology. 2014;121(5):394–8. [https://doi.org/10.1097/ALN.00000000000000143]

20. Brown CH, Azman AS, Gottschalk A, et al. Sedation depth during spinal anaesthesia and survival in elderly patients undergoing hip fracture repair. Anesth Analg. 2014;118(5):977–80. [https://doi.org/10.1213/ANE.0000000000000157]

21. Meyhoff CS, Jorgensen LN, Wetterles J, et al. Risk of new or recurrent cancer after a high perioperative inspiratory oxygen fraction during abdominal surgery. Br J Anaesth. 2014;113(Suppl 1):i74–81. [https://doi.org/10.1093/bja/aue110]

22. Singh PP, Lemauw DP, Taylor MH, et al. Association between preoperative glucocorticoids and long-term survival and cancer recurrence after colectomy: follow-up analysis of a previous randomized controlled trial. Br J Anaesth. 2014;113(Suppl 1):i68–73. [https://doi.org/10.1093/bja/aet577]

23. Whitlock EL, Torres BA, Lin N, et al. Postoperative delirium in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg. 2014;118(4):598–604. [https://doi.org/10.1213/ANE.0000000000000068]

24. Kok WF, van Harten AE, Keone BM, et al. A pilot study of a prospective, randomized, double-blind trial of the influence of anesthetic depth on long-term outcome. Anaesthesiol. 2014;118(5):981–6. [https://doi.org/10.1213/ANE.0000000000000209]

25. Wijeysundera DN, Choi PT, Badner NH, et al. Randomized feasibility trial of clonidine to reduce perioperative cardiac risk in patients on chronic beta-blockade: the EPIC study. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 2014;61(11):995–1003. [https://doi.org/10.1007/s12630-014-0225-6]
26. Yang CW, Jung SM, Kwon HU, et al. A comparison of posterior and medial cord stimulation for neurostimulation-guided vertical infracarvical block: a randomized noninferiority clinical trial. Anesth Analg. 2014;118(4):874–8. https://doi.org/10.1213/ANE.00000000000143

27. Silbert BS, Evered LA, Scott DA. Incidence of postoperative cognitive dysfunction after general or spinal anaesthesia for extracorporeal shock wave lithotripsy. Br J Anaesth. 2014;113(5):784–91. https://doi.org/10.1093/bja/aeu163

28. Wadhwa A, Kaban B, Fleischmann E, et al. Supplemental postoperative oxygen does not reduce surgical site infection and major healing-related complications from bariatric surgery in morbidly obese patients: a randomized, blinded trial. Anesth Analg. 2014;119(2):57–65. https://doi.org/10.1213/ANE.0000000000000318

29. Arab SA, Alharbi MK, Nada EM, et al. Ultrasound-guided supraclavicular brachial plexus block: single versus triple injection technique for upper limb arteriovenous access surgery. Anesth Analg. 2014;118(5):1120–5. https://doi.org/10.1213/ANE.0000000000000155

30. Cappellari G, Ambrosoli AL, Turconi S, et al. Effect of local anesthetic dilution on the onset time and duration of double-injection sciatic nerve block: a prospective, randomized, blinded evaluation. Anesth Analg. 2014;119(2):489–93. https://doi.org/10.1213/ANE.0000000000000293

31. Cheung CW, Qiu Q, Ying AC, et al. The effects of intra-operative dexmedetomidine on postoperative pain, side-effects and recovery in colorectal surgery. Anaesthesia. 2014;69(11):1214–21. https://doi.org/10.1111/anae.12529

32. Cho YJ, Ryu H, Lee J, et al. A randomized controlled trial comparing incentive spirometry with the Acapella(R) device for physiotherapy after thoracoscopic lung resection surgery. Anaesthesia. 2014;69(8):891–8. https://doi.org/10.1111/anae.12750

33. Ferrando C, Mugarra A, Gutierrez A, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanical changes during one-lung ventilation. Anesth Analg. 2014;118(3):657–65. https://doi.org/10.1213/ANE.0000000000000105

34. Gulyam Kuruba SM, Mukhtar K, Singh SK. A randomised controlled trial of ultrasound-guided transversus abdominis plane block for renal transplantation. Anaesthesia. 2014;69(11):1222–6. https://doi.org/10.1111/anae.12704

35. Horn EP, Bein B, Steinfath M, et al. The incidence and prevention of hypothermia using lung mechanical devices during one-lung ventilation. Anesth Analg. 2014;118(5):997–1002. https://doi.org/10.1213/ANE.0000000000000160

36. Hwang J, Min S, Kim C, et al. Prophylactic glycopyrrolate reduces hypotensive responses in elderly patients during spinal anaesthesia: a randomized controlled trial. Anesth Analg. 2014;118(5):997–1002. https://doi.org/10.1213/ANE.0000000000000160

37. Ilyas S, Symons J, Bradley WP, et al. A prospective randomised controlled trial of ultrasound-guided transversus abdominis plane block on unplanned postoperative visits and readmissions after foot surgery—a randomised, controlled study comparing day-care and inpatient management. Anaesthesia. 2014;69(11):1197–205. https://doi.org/10.1111/anae.12710

38. Sharma SK, Rogers BB, Alexander JM, et al. A randomized trial of the effects of antibiotic prophylaxis on epidural-related fever in labor. Anaesth Analg. 2014;118(3):604–10. https://doi.org/10.1213/ANE.0b013e3182a5d539

39. Sng BL, Tan HS, Sia AT. Closed-loop double-vasopressor automated system vs manual bolus vasoressor to treat hypotension during spinal anaesthesia for caesarean section: a randomised controlled trial. Anaesthesia. 2014;69(1):37–45. https://doi.org/10.1093/anae/44.1.37

40. Stein MH, Cohen S, Mohiuddin MA, et al. Prophylactic vs therapeutic blood patch for obstetric patients with accidental dural puncture—a randomised controlled trial. Anaesthesia. 2014;69(4):320–6. https://doi.org/10.1093/anae/44.4.320

41. Ueki M, Kawasaki T, Habe K, et al. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693–700. https://doi.org/10.1093/anae/44.7.693

42. van Loon K, van Rheineck Leyssius AT, van Zaane B, et al. Capnography during deep sedation with propofol by nonanesthesiologists: a randomized controlled trial. Anaesth Analg. 2014;119(1):49–55. https://doi.org/10.1213/ANE.0b013e3182af8a2

43. Westergaard B, Jensen K, Lenz K, et al. A randomized controlled trial of ultrasound-guided blockade of the saphenous nerve and the posterior branch of the obturator nerve for postoperative analgesia after day-case knee arthroscopy. Anaesthesia. 2014;69(12):1337–44. https://doi.org/10.1111/anae.13047

44. Yamamoto H, Sakura S, Wada M, et al. A prospective, randomized comparison between single- and multiple-injection techniques for ultrasound-guided subgluteal sciatic nerve block. Anesth Analg. 2014;119(6):1442–8. https://doi.org/10.1213/ANE.0000000000000462

45. Yates DR, Davies SJ, Milner HE, et al. Crystalloid or colloidal fluid therapy in colorectal surgery. Br J Anaesth. 2014;112(2):281–9. https://doi.org/10.1093/bja/aeu087

46. Yoshida T, Fujiwara T, Furutani K, et al. Effects of ropivacaine concentration on the spread of sensory block produced by continuous thoracic paravertebral block: a prospective, randomised, controlled, double-blind study. Anaesthesia. 2014;69(3):231–9. https://doi.org/10.1111/anae.12531

47. Zhang Q, Gao Z, Wang H, et al. The effect of pre-treatment with transcatheter electrical acrossentorim injection on the quality of recovery after ambulatory breast surgery: a prospective, randomised controlled trial. Anaesthesia. 2014;69(8):832–9. https://doi.org/10.1111/anae.12639

48. Charles P, Giradeau B, Dechartres A, et al. Reporting of sample size calculation in randomised controlled trials: review. BMJ. 2009;338(may12 1):b1732–b1732. https://doi.org/10.1136/bmj.b1732

49. Eng J. Sample size determination and adherence in randomised controlled trials published in anaesthesia journals. 2002;38(3):274–80. https://doi.org/10.1046/j.1365-2648.2002.02177.x
60. Bosomprah S. Sample size calculation for multicentre efficacy trials of blood-stage malaria antigens. Malar J. 2013;12:253. https://doi.org/10.1186/1475-2875-12-253
61. Altman DG. Statistics and ethics in medical research. BMJ. 1980;281(6521):1336–8. https://doi.org/10.1136/bmj.281.6251.1336
62. Caplan AL. The problem of publication-pollution denialism. Mayo Clin Proc. 2015;90(5):565–6. https://doi.org/10.1016/j.mayocp.2015.02.017
63. Horton R. Offline: what is medicine’s 5 sigma. Lancet. 2015;385(9976):1380. https://doi.org/10.1016/S0140-6736(15)60696-1
64. Biccard BM, Dyer RA, Swanevelder JL, et al. Is the HPCSA requirement for a research dissertation for specialist registration the best option? Southern African Journal of Anaesthesia and Analgesia. 2017;23(4):4–6.

Received: 17-11-2017 Accepted: 07-02-2018