Effective Context and Fragment Feature Usage for Named Entity Recognition

Nargiza Nosirova, Mingbin Xu, Hui Jiang
Department of Electrical Engineering and Computer Science
Lassonde School of Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada
{nana, xmb, hj}@cse.yorku.ca

Abstract
In this paper, we explore a new approach to named entity recognition (NER) with the goal of learning from context and fragment features more effectively, contributing to the improvement of overall recognition performance. We use the recent fixed-size ordinally forgetting encoding (FOFE) method to fully encode each sentence fragment and its left/right contexts into a fixed-size representation. Next, we organize the context and fragment features into groups, and feed each feature group to dedicated fully-connected layers. Finally, we merge each group’s final dedicated layers and add a shared layer leading to a single output. The outcome of our experiments show that, given only tokenized text and trained word embeddings, our system outperforms our baseline models, and is competitive to the state-of-the-arts of various well-known NER tasks.

1 Introduction
Named entity recognition is the task of identifying proper nouns in a given text, and categorizing them into various types of entities. It is a fundamental problem in NLP, and its usefulness extends to tasks such as summarization and question answering (Aramaki et al., 2009; Ravichandran and Hovy, 2002). Traditional NER methods involve using hand-crafted features, such as conditional random fields (CRFs). For example, McCallum and Li (2003) use a CRF model with a web-based lexicon as a feature enhancement, while Che et al. (2013) and Krishnan and Manning (2006) show the benefits of using non-local features. Over the recent years, researchers have turned to neural network architectures using non hand-crafted features. For example, Collobert et al. (2011) proposed a neural architecture that learns from word embeddings and requires little feature engineering. However, in his use of feed-forward neural networks (FFNNs), the context used around a word is restricted to a fixed-size window, which could result in the loss of potentially relevant information between words that are further apart.

Xu et al. (2017) has recently proposed a non-sequence labelling method for NER with FOFE features, which can encode any variable-length sequence of words into a fixed-size representation. This method alleviates the limitations of Collobert’s (2011) FFNN model, since the encoding uses the whole context around a word within the sentence, without settling for a fixed-size window. Our main contribution lies in extending the model suggested by Xu et al. (2017). In this paper, we propose a FOFE-based neural network model dedicating separate initial layers for fragment and context features and merging them into a shared layer to perform a unified prediction. Experimental results have shown that this method yields competitive results compared to the state-of-the-arts while increasing recall compared to our baseline models.

2 Model
Our neural network model is inspired by the work of Xu et al. (2017), where we use a local detection approach relying on the FOFE method to fully encode each sentence fragment and its contexts. Instead of using consecutive fully-connected layers that handle both context and fragment features, we propose to dedicate the initial fully-connected layers of the network to each feature kind, and subsequently combine the layers into a single shared layer that leads to a single output.

2.1 Fixed-Size Ordinally Forgetting Encoding (FOFE)
In this section, we describe the FOFE method. Given a vocabulary V, each word can be represented by a 1-of-$|V|$ one-hot vector. FOFE mimics bag-of-words but incorporates a forgetting factor.
to capture positional information. It encodes any
variable length sequence composed of words in \(V \). Let \(S = w_1 \cdots w_N \) denote a sequence of \(N \) words
from \(V \), and denote \(e_n \) to be the one-hot vector
of the \(n \)-th word in \(S \), where \(1 \leq n \leq N \). Assuming \(z_0 = 0 \), FOFE generates the code using a
simple recursive formula from word \(w_1 \) to \(w_n \) of
the sequence as follows:

\[
z_n = \alpha \cdot z_{n-1} + e_n
\]

where \(\alpha \) is a constant forgetting factor. Hence, \(z_n \)
can be viewed as a fixed-size representation of the
subsequence \(\{ w_1, w_2, \cdots, w_n \} \).

The theoretical properties that show FOFE code
uniqueness are as follows:

Theorem 1. If the forgetting factor \(\alpha \) satisfies
\(0 < \alpha \leq 0.5 \), FOFE is unique for any countable
vocabulary \(V \) and any finite value \(N \).

Theorem 2. For \(0.5 < \alpha < 1 \), given any finite
value \(N \) and any countable vocabulary \(V \), FOFE
is almost unique everywhere, except only a finite
set of countable choices of \(\alpha \).

When \(0.5 < \alpha < 1 \), uniqueness is not guaran-
teed. However, the odds of ending up with such
scenarios is small. Furthermore, it is rare to have
a word reappear many times within a near context.
Thus, we can say that FOFE can uniquely encode
any sequence of variable length, providing a fixed-
size lossless representation for any sequence. The
proof for those theorems can be found in Zhang
et al. (2015).

2.2 FOFE Context & Fragment Features

Fragment Features At word level, we extract
the bag-of-words of the sentence fragment in both
cased and uncased forms. Since we can view the
fragment as a cased character sequence, it can
be encoded with FOFE. We encode the sequence
from left to right as well as from right to left. The
encodings are then projected into a trainable char-
acter embedding matrix. For a fair comparison,
we also use character CNNs to generate additional
character-level features (Kim et al., 2015).

Context Features We convert the contexts
of the fragment within the sentence to FOFE
codes at word-level in cased and uncased forms,
once containing the fragment, and once with-
out. Those codes are then projected to lower-
dimensional dense vectors using projection matri-
ces. Those projection matrices are pre-trained us-
ing word2vec (Mikolov et al., 2013) and allowed
to be modified during training.

2.3 Effective Context & Fragment Feature
Usage for NER

We aim to consider influences between contexts
and their corresponding fragments. If the con-
text of a named entity fragment is not indica-
tive of the fragment as being such, we can re-
sort to learning the morphology of the fragment
itself and grasp patterns that could lead us to be-
lieve that the fragment is indeed a named entity.
By dedicating layers to each feature kind, we en-
sure that the context-based layer signals are tuned
to identify entities based on the surrounding con-
text, while the fragment-based layer signals iden-
tify them based on the morphology of the fragment
itself. Since the layers merge into a shared layer,
this permits the model to have a higher chance of
predicting entities that would be hard to recognize
based on the context, but self-evident based on the
fragment. Furthermore, our model structure pro-
vides the flexibility of modeling information based
on multiple sources of knowledge. Figure 1 illus-
trates an example of our neural architecture:

1. The context and fragment features are ex-
ttracted from the text based on section 2.2 and
concatenated within their categories resulting in
\(h_0^w \ | \ w \in \{ f, c \} \).

2. Two hidden layers \(h_1^f \) and \(h_1^c \) are fully con-
ected to each category’s embedding layer
3. A shared hidden layer h_3 is fully connected to each h_2.

4. The final layer is a softmax layer which outputs the probability distribution over classes, $p(y)$.

Each layer $h_{j,j>0}$ consists of ReLUs (Nair and Hinton, 2010) and are initialized based on a uniform distribution following Glorot et al. (2011).

Training At each training step, we randomly choose a training sample represented as a one of the feature forms and forward pass. Next, we backpropagate the loss of the current instance through the shared and feature dedicated layers and update the model parameters. For predicting models relative to the ground truth, we use categorical cross entropy loss. For optimization, we use mini-batch SGD with momentum of 0.9 (Bottou, 2010) and learning rates decaying exponentially by a factor of 1/16. The mini-batch size is set to 128 for all experiments. Grid search is used for the other hyper-parameters, tuned against the task’s development set with early stopping. The FOFE forgetting factor for all models are set to $\alpha_w = 0.5$ for words, and $\alpha_c = 0.8$ for characters. We apply dropout (Srivastava et al., 2014) to all layers with 0.5 probability. The same post-processing and decoding steps are followed as in Xu et al. (2017). Detailed hyper-parameter settings used in our experiments are given in Appendix A.

3 Experiments

We experiment with four diverse NER tasks of different languages: CoNLL-2003 English, OntoNotes 5.0 English and Chinese, trilingual KBP 2016 (English, Chinese and Spanish), and CoNLL-2002 Spanish. For the CoNLL-2003 task, we use cased and uncased word embeddings of size 256 trained on the Reuters RCV1 corpus. The remaining tasks use cased and uncased word embeddings of size 256 trained on the English (Parker et al., 2011), Spanish (Mendonca et al., 2009) and Chinese (Graff and Chen, 2005) Gigaword for the corresponding models evaluated in that language.

Dataset Description CoNLL-2003 ENG: The CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) dataset consists of newswire data from the Reuters RCV1 corpus. It has four entity types: person, location, organization and miscellaneous. OntoNotes 5.0 ENG and ZH: The OntoNotes dataset is built from sources such as broadcast conversation and news, newswire, telephone conversation, magazine and web text. It is tagged with eighteen entity types, some of which are: person, facility, organization, product and so forth. The dataset was assembled by Pradhan et al. (2013) for the CoNLL-2012 shared task, and specifies a standard train, validation, and test split followed in our evaluation.

KBP 2016: The KBP 2016 trilingual EDL task (Ji and Nothman, 2016) consists of identifying named entities (including nested) from a collection of recent news article and discussion forum documents in three languages, and their classification to the following named and nominal entity types: person, geo-political entity, organization, location and facility. We use an in-house dataset that consists of 10k English and Chinese documents labelled manually using KBP 2016 format. Since KBP 2016 does not contain any training and development data, we use our in-house data as training and validation data with a 90:10 split. We also make use of the KBP 2015 dataset as additional data for training.

CoNLL-2002 SPA: The CoNLL-2002 (Tjong Kim Sang, 2002) named entity data is tagged similarly to CoNLL-2003. We only make use of Spanish files for our experiments.

Baselines Our baseline models are from Xu et al. (2017). We use the author’s findings for CoNLL-2003 and KBP 2016, and apply the implementation released by the author to train the model with OntoNotes 5.0 and CoNLL-2002 tasks.

4 Results and Discussion

The results for the trilingual KBP 2016 task are presented in Table 1, where our system outperforms the baseline by 3.2 F_1 points for English and 4.3 F_1 points for Chinese. It also outperforms the best KBP 2016 English system by 1 F_1 point. It is worth considering that the best 2016 system uses 5-fold cross-validation. The CoNLL-2003 results in Table 2 show that our model is nearly on par with the state-of-the-arts compared to both models that used the dev-set to train the model, and to those who used training data only. The OntoNotes English and Chinese task results are presented in Tables 3 and 4, and the CoNLL-2002 results in Table 5. We do not observe significant improvement.
Table 1: Comparison of our model to the baseline models in Xu et al. (2017) as well as to the best system for the KBP 2016 task.

LANG	Xu et al. (2017)	Our model	2016 Best
ENG	0.836 0.680 0.750	0.812 0.756 0.782	0.846 0.710 0.772
CMN	0.789 0.625 0.698	0.797 0.693 0.741	0.789 0.737 0.762
SPA	0.835 0.602 0.700	0.848 0.608 0.708	0.839 0.656 0.736
ALL	0.819 0.639 0.718	0.815 0.693 0.749	0.802 0.704 0.756

Table 2: Results on the CoNLL-2003 ENG evaluation task. The three sections, in order, are models: trained with training set only, trained with both training and dev set, our baselines and our models.

Model	P	R	F1
Collobert et al. (2011)	–	–	89.59
Huang et al. (2015)	–	–	90.10
Strubell et al. (2017)	–	–	90.54
Yang et al. (2016)	–	–	90.94
Luo et al. (2015)	91.50	91.40	91.27
Lample et al. (2016)	–	–	90.94
Chiu and Nichols (2016)	91.39	91.85	91.62
Xu et al. (2017)	93.29	88.27	90.71
Xu et al. (2017) + dev set + 5-fold	92.58	89.31	90.92
Our model	91.81	89.85	90.82
Our model + dev set	92.02	90.30	91.15

Table 3: A comparison with the state-of-the-art results for the OntoNotes 5.0 ENG evaluation task.

Model	P	R	F1
Strubell et al. (2017)	–	–	86.84
Chiu and Nichols (2016)	86.04	86.53	86.28
Durrett and Klein (2014)	85.22	82.89	84.04
Xu et al. (2017)	86.84	84.94	85.88
Our model	86.95	85.44	86.19

Table 4: A comparison with published results for the OntoNotes 5.0 ZH evaluation task.

Model	P	R	F1
Che et al. (2013)	74.38	65.78	69.82
Pappu et al. (2017)	–	–	67.2
Xu et al. (2017)	72.91	70.78	71.83
Our model	76.20	68.96	72.40

Table 5: A comparison with the state-of-the-arts results for the CoNLL-2002 SPA evaluation task.
References

Eiji Aramaki, Yasuhide Miura, Masatsugu Tonoike, Tomoko Ohkuma, Hiroshi Mushiauchi, and Kazuhiko Ohe. 2009. Text2table: Medical text summarization system based on named entity recognition and modality identification. In Proceedings of the BioNLP 2009 Workshop, pages 185–192. Association for Computational Linguistics.

Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010, pages 177–186, Heidelberg. Physica-Verlag HD.

Wanxiang Che, Mengqiu Wang, Christopher D. Manning, and Ting Liu. 2013. Named entity recognition with bilingual constraints. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 52–62, Atlanta, Georgia. Association for Computational Linguistics.

Jason Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional lstm-cnns. Transactions of the Association for Computational Linguistics, 4:357–370.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537.

Greg Durrett and Dan Klein. 2014. A joint model for entity analysis: Coreference, typing, and linking. Transactions of the Association for Computational Linguistics, 2:477–490.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. 2016. Multilingual language processing from bytes. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1296–1306, San Diego, California. Association for Computational Linguistics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA. PMLR.

David Graff and Ke Chen. 2005. Chinese gigaword. LDC Catalog No.: LDC2003T09, ISBN, 1:58563–58230.

Ziheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for sequence tagging. CoRR, abs/1508.01991.

Heng Ji and Joel Nothman. 2016. Overview of tac-kbp2016 tri-lingual edl and its impact on end-to-end cold-start kbp. In Proceedings of the Ninth Text Analysis Conference (TAC2016).

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2015. Character-aware neural language models. CoRR, abs/1508.06615.

Vijay Krishnan and Christopher D. Manning. 2006. An effective two-stage model for exploiting non-local dependencies in named entity recognition. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, ACL-44, pages 1121–1128, Stroudsburg, PA, USA. Association for Computational Linguistics.

Jasper Kuperus, Cor J. Veenman, and Maurice van Keulen. 2013. Increasing ner recall with minimal precision loss. In Proceedings of EISIC, pages 106–111.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270. Association for Computational Linguistics.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. 2015. Joint entity recognition and disambiguation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 879–888. Association for Computational Linguistics.

Xinnian Mao, Xu Wei, Yuan Dong, He Saike, and Haila Wang. 2007. Using non-local features to improve named entity recognition recall. In Proceedings of the 21st Pacific Asia Conference on Language, Information and Computation, pages 303–310.

Andrew McCallum and Wei Li. 2003. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 188–191, Stroudsburg, PA, USA. Association for Computational Linguistics.

Angelo Mendonca, David Andrew Graff, and Denise DiPersio. 2009. Spanish gigaword second edition. Linguistic Data Consortium.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning. ACM.
Aasish Pappu, Roi Blanco, Yashar Mehdad, Amanda Stent, and Kapil Thadani. 2017. Lightweight multi-lingual entity extraction and linking. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM ’17, pages 365–374, New York, NY, USA. ACM.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. 2011. English gigaword. Linguistic Data Consortium.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Bjerkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards robust linguistic analysis using ontonotes. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages 143–152, Sofia, Bulgaria. Association for Computational Linguistics.

Deepak Ravichandran and Eduard Hovy. 2002. Learning surface text patterns for a question answering system. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, pages 41–47, Stroudsburg, PA, USA. Association for Computational Linguistics.

Cícero Nogueira dos Santos and Victor Guimarães. 2015. Boosting named entity recognition with neural character embeddings. CoRR, abs/1505.05008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958.

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017. Fast and accurate entity recognition with iterated dilated convolutions. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages 2670–2680.

Erik F. Tjong Kim Sang. 2002. Introduction to the conll-2002 shared task: Language-independent named entity recognition. In Proceedings of the 6th Conference on Natural Language Learning - Volume 20, COLING-02, pages 1–4, Stroudsburg, PA, USA. Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAAACL 2003 - Volume 4, CONLL ’03, pages 142–147, Stroudsburg, PA, USA. Association for Computational Linguistics.

Mingbin Xu, Hui Jiang, and Sedtawut Watcharawit-tayakul. 2017. A local detection approach for named entity recognition and mention detection. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1237–1247, Vancouver, Canada. Association for Computational Linguistics.