Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

Kyu Kwang Kim¹, Thilo S Lange¹²†, Rakesh K Singh¹, Laurent Brard¹*

Abstract

Background: Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).

Methods: Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS).

Results: HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTNh2H/315, HNI/311; IC50 0.8-6 μM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels.

Conclusions: The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.

Background

The current treatment of a variety of tumors, including ovarian cancer, relies on organometallic platinum compounds. Ovarian cancer is the leading cause of death from gynecologic malignancies and ranks second among newly diagnosed gynecological cancers in the United States [1,2]. Although most women will initially respond to cytoreductive surgery and adjuvant paclitaxel-based and platinum-based chemotherapy, the majority will experience disease recurrence. While re-treatment with a platinum-based agent is possible for some women, overall response rates to second line chemotherapeutic agents are 15-30% and treatment of recurrent ovarian carcinoma is mainly directed at palliation [3-6]. Treatment strategies against tumors that developed resistance to standard chemotherapeutic agents, most notably platinum analogs, include non-platinum drugs with increased activity and response rates. Chelating drugs and chelator metal complexes are used for the prevention, diagnosis and treatment of cancer and chelating compounds with high affinity for iron or copper have been suggested as potential anti-tumor agents [7]. In previous studies the effects of chelating drugs were often linked solely to their capacity to complex iron while the potential complexation of other trace metals was not discussed or analyzed. One rationale for the anti-tumor activity of chelators is a higher Fe utilization.
by cancer cells and often elevated concentrations of trace metals, particularly of copper, in tumor patients [8-10].

Copper chelators such as D-penicillamine, trientine, tetrahydroxymolate are currently being used in the treatment of copper-overload disorders such as Wilson’s disease. Copper complexes such as 8-hydroxyquinoline derivatives, pyrroline dithiocarbamate and cliquonol have been reported to be cytotoxic against cancer cells [11,12]. Copper is an essential cofactor for several extra-cellular and a multitude of intracellular enzymes and plays a pivotal role in cellular metabolism including energy production (cytochrome c oxidase), intracellular metal detoxification (Cu(I)-glutathione-complex mediated metallothionein activity), iron detoxification (via ceruloplasmin), connective tissue formation (lysyl oxidase), and antioxidant defense system [Cu/Zn superoxide dismutase (SOD)] against ROS [13,14]. ROS are tightly regulated in balance with cellular defensive antioxidants, such as catalase and SOD, and can participate in a multitude of cellular functions (e.g., signal transduction, platelet aggregation, immune system control, regulation of energy, phagocytosis, regulation of cellular growth, metabolism of xenobiotics) [15]. When generated excessively or when antioxidant function is disturbed, ROS can be cytotoxic through the oxidation of biomolecules (e.g., membranes, enzymes, carbohydrates, DNA). ROS have been implicated in cancer initiation, promotion and progression [16,17]. Cancer cells, presumably through mitochondria dysfunction and increased metabolism, generate a relatively high level of ROS and modulation of cellular ROS has been suggested as a strategy to selectively target cancer cells over normal cells [18,19].

Iron chelators suggested as potential anti-tumor agents include deferoxamine (DFO) [20], deferiprone and deferasirox [21], tachpyridine [22], triapine [23] and O-trensox [24]. Iron is an essential component of many biological molecules including hemoglobin, myoglobin, ribonucleotide reductase (RR), cyclooxygenases, lipoygenases, iron-sulfur proteins and hydroxylyating enzymes [22,25]. An elevated level of iron has been linked to tumor risk [26] and the growth of neoplastic cells due to iron’s catalytic effect on the formation of hydroxyl radicals and the suppression of host defense cell activity [27]. Neoplastic cells display an elevated expression of transferrin and its receptor as well as a high rate of iron internalization thereby justifying the development of chelating compounds for cancer therapy [28,29]. Accordingly, cancer cell death can be induced by depleting the intracellular iron pool as shown by H-ferritin expression in ovarian cancer cells [30]. Targeting tumors with chelating agents in an attempt to alter cellular iron homeostasis or metabolism is a promising treatment approach [31].

The objective of the present study was to investigate the cytotoxic potential of 6- lipophilic arylhydrazone chelators (AHCs) in ovarian cancer cell lines. The present report suggests that newly designed compound HNTMB displays cytotoxic properties superior to other AHCs and to iron-chelator deferoxamine (included as control [20]). The mode of action in SKOV-3 ovarian cancer cells relies on the generation of ROS, caspase activation, Bcl-2 reduction, DNA degradation and G2/M phase cell cycle block. HNTMB when complexed with copper (I) or (II) but not with Fe(II) or (III) generates ROS and is highly cytotoxic. In summary, HNTMB may serve as a potential therapeutic drug and an alternative to platinum drugs in the treatment of ovarian cancer.

Methods

Synthesis and Materials

Deferoxamine mesylate (DFO) was purchased from Sigma-Aldrich (St. Louis, MO). AHC compounds oVtBBH [32], HNtBBH [33], StBBH/206, HNTTh2H/315 and HNI/311 [34,35] have been described previously. All AHCs were synthesized as follows using the Schiff base condensation method. Briefly, each aldehyde was combined with an equimolar amount of the corresponding hydrazide in ethanol, stirred and refluxed. The resultant materials were collected by filtration to afford the desired product and were further purified by re-crystallization (HNI, StBBH and oVtBBH). The compounds were characterized by 1H nuclear magnetic resonance spectroscopy (1H NMR) and mass spectrometry. Salicylaldehyde-4-t-butylbenzoyl hydrazone (StBBH/206): yield 92%. Analytical data; 1H NMR (DMSO-d6, δ) 12.0 (1H), 11.3 (1H), 8.6 (1H), 7.9 (2H), 7.5 (3H), 7.3 (1H), 6.9 (2H), 1.3 (9H). FAB-MS m/z (nitrobenzyl alcohol/NaI matrix) calculated for C21H20N2O5, 380.14 [M +Na]+. 2-hydroxy-1-naphthylaldehyde-4-t-butylbenzoyl hydrazone (HNtBBH): yield 71%. Analytical data; 1H NMR (DMSO-d6, δ) 12.8 (1H), 12.1 (1H), 9.5 (1H), 8.2 (1H), 7.9 (4H), 7.6 (3H), 7.4 (1H), 7.2 (1H), 1.3 (9H). FAB-MS m/z (nitrobenzyl alcohol/Nal matrix) calculated for C22H22N2O2, 346.2 [M+Na]+, found 346.2 [M +Na]+. 3-Methoxysaliclyaldehyde-4-t-butylbenzoyl hydrazone (oVtBBH): yield 69%. Analytical data; 1H NMR (DMSO-d6, δ) 12.0 (1H), 11.09 (1H), 8.6 (1H), 7.9 (2H), 7.5 (2H), 7.1 (1H), 7.0 (1H), 6.8 (1H), 3.8 (3H) 1.3 (9H). FAB-MS m/z (nitrobenzyl alcohol/Nal matrix) calculated for C23H23N2O3, 326.2 [M]+, found 349.1 [M+Na]+. 2-hydroxy-1-naphthylaldehyde 3,4,5-trimethoxy-benzoyl hydrazone (HNTMB): yield 67%. 1H NMR (DMSO-d6, δ) 12.8 (1H), 12.1 (1H), 9.5 (1H), 8.3 (1H), 7.9 (2H), 7.6 (1H), 7.3 (4H), 3.9 (6H), 3.8 (3H). FAB-MS m/z (nitrobenzyl alcohol/Nal matrix) calculated for C24H24N2O5, 380.14 [M]+, found 403.3 [M+Na]+. 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (HNI/311):
58% yielded. Analytical data; 1H NMR (DMSO-$_d_6$) δ 12.5 (1H), 12.4 (1H), 9.5 (1H), 8.8 (2H), 8.3 (1H), 7.9 (4H), 7.6 (1H) 7.4 (1H) 7.2 (1H). ES-MS calc for C$_{17}$H$_{13}$N$_3$O$_2$, 296.06 [M$^+$], found 292.3 [M$+1$]. 2-Hydroxy-1-naphthaldehyde 2-thiophencarboxy hydrazone (HNTh2H) was screened through the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) 60 human cancer cell line panel under the In Vitro Cell Line screening Project (IVCLSP). Briefly, cells (5,000 to 40,000 cells/well depending on the cell line studied) were inoculated into 96 well microtiter plates in 100 μl complete RPMI1640 medium (5% FBS and 2 mM L-glutamine) and incubated 24 h prior to addition of HNTMB. HNTMB was added and the plates were incubated at 37°C, 5% CO$_2$, 95% air, and 100% relative humidity for an additional 48 h. Upon the addition of 50 μl of cold TCA (10% TCA) the assay was terminated and incubated for 60 min at 4°C to fix the cells. The supernatant was discarded, and the plates washed five times with water and air dried. Sulfhorodamine B solution (100 μl) at 0.4% (v/v) in 1% acetic acid was added to each well, and plates incubated for 10 min at room temperature. After staining, unbound dye was removed by washing five times with 1% acetic acid and the plates were air dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance was read on an automated plate reader at a wavelength of 515 nm. Using absorbance measurements [time zero (Tz), control growth (C), and test growth in the presence of drug at the drug concentration (Ti)], the percentage growth was calculated. Percentage growth inhibition was calculated as: [(Ti-Tz)/(C-Tz)] × 100 for concentrations for which Ti >/= Tz, [(Ti-Tz)/Tz] × 100 for concentrations for which Ti < Tz.

Morphological Studies

To assess morphological changes and chromatin condensation of SKOV-3 cells undergoing apoptosis following treatment with an iron-chelator, cells were stained with 4',6-diamidino-2-phenylindole (DAPI) and examined by fluorescence microscopy. Cells were seeded into compartments of 8-well Lab-Tek$^\text{TM}$ II chamber slide (Nalge Nunc International, Naperville, IL), allowed to attach onto the slide and deprived of serum for 18 h prior to the incubation with 0.2 μM HNTMB for 24 h. The cells were then washed with 1×PBS with Calcium/Magnesium (Invitrogen, Carlsbad, CA), fixed and permeabilized by 2% paraformaldehyde solution with 0.2% Triton-X-100 in 1×PBS for 30 min at room temperature. The fixed cells were washed with 1×PBS. After removal of the upper chamber and silicone lining the
cells were stained and mounted at room temperature with Vectashield® Mounting Medium for Fluorescence with DAPI (Vector Laboratories). Once the excess amount of mounting medium was removed, the slide was examined under the fluorescence microscope (ECLIPSE TE 2000-E, Nikon Inc.).

TUNEL Assay
DNA fragmentation was detected using the DeadEndTM Fluorometric TUNEL System assay (Promega, Madison, WI) according to the manufacturer’s recommendations. Cells (4 × 10⁵/well) were seeded into 8-well Lab-Tek® 11 chamber slide (Nalge Nunc International, Naperville, IL), treated with 0.2 μM HNTMB and the assay carried out as described previously [38]. Fluorescence of apoptotic cells (green; labeling of DNA nicks by fluorescein-12-dUTP) and of chromatin (red; staining of chromatin with propidium iodide) was detected by fluorescence microscopy with an inverted microscope (Nikon Eclipse TE2000-E) and a 20× objective. Four randomly chosen microscopic fields were captured.

Western Blot Analysis
SKOV-3 cells (1.5 × 10⁶ per dish) were seeded into 100 mm cell culture dishes allowed to attach overnight and serum-deprived for 18 h prior to the treatment under the condition as mentioned. Following treatment, cells were processed as described previously [39] in Cell Extraction Buffer (BioSource International, Inc., CA) supplemented with protease inhibitor cocktail and phenylmethylsulfonyl fluoride (Sigma-Aldrich) according to the manufacturers’ recommendations. Lysates were incubated at 4°C for 30 min, sonicated (10 pulses 5 sec), centrifuged at 14,000 g for 10 min, and the protein concentration of the supernatant quantified (BioRad Protein Assay, Hercules, CA). Protein electrophoresis was performed by using the NuPAGE® Gel system (Invitrogen, Carlsbad, CA). Briefly, each lysate sample was mixed with LDS sample buffer and sample reducing buffer, incubated at 70°C for 10 min, loaded (50 μg/sample) and separated by using Xcell SureLockTM mini-cell electrophoresis system (Invitrogen, Carlsbad, CA) on NuPAGE® 4-12% Bis-Tris Gel in NuPAGE® MES SDS running buffer, transferred onto a PVDF membrane, blocked with 5% nonfat dry milk in PBS-Tween and probed against various primary antibodies (dilution 1:1000, all from rabbit; PARP #9541, XIAP #2045, caspase-3 #9661, caspase-7 #9491, caspase-9 #9501 (Asp330/37 kD fragment) or #9505 (Asp315/35 kD fragment), caspase-8 #9496, Bcl-xl #2762, Bid #2002; Cell Signaling Technologies, Danvers, MA), Bcl-2 #551107 (BD Biosciences, San Jose, CA) or mouse beta-actin #sc-47778 or GAPDH #sc-47724 antibody (Santa Cruz Biotechnology, Santa Cruz, CA; dilution 1:2000). The bands were visualized using horseradish peroxidase-conjugated secondary antibody (Amersham-Pharmacia Biotech, Piscataway, NJ), followed by enhanced chemiluminescence (Upstate, Waltham, MA) and documented by autoradiography (F-Bx810 Film, Phenix, Hayward, CA).

Cell cycle analysis
Cell cycle analysis and quantification of apoptosis was carried out by flow cytometry. SKOV-3 (1.0 × 10⁶) cells were seeded into 100 mm cell culture dishes, allowed to attach overnight and treated for 48 h. At the end of the incubation period, cells were scraped off and transferred into 15 mL polypropylene centrifuge tubes along with the medium. Culture dishes were then washed once with 1× PBS, combined in the same tube. After centrifugation (250 g, 5 min) cells were fixed by adding the ice-cold 70% ethanol solution gradually. The cells were stained in the buffer containing propidium iodide (100 μg/ml), sodium citrate (1 mg/ml) and Triton-X-100 (3 μL/ml) for 30 min at 37°C in the dark. Data was acquired on a BD FACSort flow cytometer using CellQuest software (BD Immunocytometry Systems, San Jose, CA) and analyzed by using ModFit LT software (Verity Software House, Inc., Topsham, ME). Ten thousand events were analyzed for each sample. Appropriate gating was used to select the single cell population SKOV-3 cells. The same gate was used on all samples, ensuring that measurements were conducted on a standardized cell population.

Detection of intracellular Reactive Oxygen Species (ROS)
Detection of intracellular ROS after SKOV-3 treatment with non-complexed or complexed HNTMB (see Viability assay section) was measured by flow cytometry using carboxy-H2DCFDA dye (Invitrogen, Carlsbad, CA) as a probe. Carboxy-H2DCFDA is the acetylated form of a reduced fluorescein derivative that is cell-permeable and non-fluorescent. Once the acetate groups are cleaved by intracellular esterase activities, this compound becomes charged and better retained within the cell as compared to its lipophilic parent compound. In the presence of a cellular oxidant, the compound is oxidized and produces green-fluorescence that is detected by flow cytometry. This dye detects the following ROS: hydrogen peroxide (H₂O₂), hydroxyl radical (HO•), and peroxy radical (ROO•). SKOV-3 (1.0 × 10⁶) cells were seeded into 100 mm cell culture dishes, allowed to attach overnight and treated under the condition as indicated. Following treatment, cells were further incubated with 25 μM of carboxy-H2DCFDA for 30 min at 37°C with 5% CO₂ in a humified incubator. Cells were harvested by trypsinization, centrifuged, then washed once with PBS and suspended in PBS. Data was acquired on a BD FACSort flow cytometer using
CellQuest software (BD Immunocytometry Systems, San Jose, CA) and analyzed by using ModFit LT software (Verity Software House, Inc., Topsham, ME).

Data Analysis
Mean and standard deviation (SD) were calculated. Mean differences were determined by Student’s t-test or determined by one-way ANOVA, using the Newman–Keuls test to account for multiple comparisons in post hoc analyses, except were indicated. Software used for these analyses was STATA 9.0 (StataCorp, College Station, TX).

Results

Cytotoxic effect of aroylhydrazone chelators on ovarian cancer cell lines

In an initial approach to analyze the potential of a variety of lipophilic iron-chelators of the AHC class as anticancer drugs we performed viability assays employing two human platinum-resistant ovarian cancer cell lines (SKOV-3 and OVCAR-3) a rat ovarian cancer cell line (NUTU-19). The cytotoxic activity of each compound was measured by a colorimetric MTS assay (see Material and Methods), based on the reduction of a tetrazolium compound in active cell metabolism. DFO was included as a control compound. After cell treatment for 72 h all six AHC tested showed more potent cytotoxic effects (Fig. 1) than DFO (IC_{50} of 25 μM for SKOV-3, 12 μM for OVCAR-3 and NUTU-19) in all tested ovarian cancer cell lines. Novel compound HTMB (Fig. 2), displayed superior cytotoxicity (72 h treatment, IC_{50} of 200 nM for SKOV-3, 400 nM for OVCAR-3 and NUTU-19) (Fig. 1) when compared to all other 5 AHC tested (oVtBBH, HNTBBH, StBBH/206, HNTHh2H/315, HNI/311) which were highly cytotoxic only at higher drug concentrations with IC_{50} values between 800 nM and 6 μM depending on the cell line or compound studied.

HTMB displays differential effects on the growth of various human cancer cell lines

The NCI-DTP performed a screen on HTMB as a growth suppressor against a panel of 60 human cancer cell lines. The HTMB concentrations representing 50% growth inhibition (GI_{50}, Fig. 3A) were determined by using the dose-response growth curves of OVCAR ovarian cancer cell lines and other cancer cells (colon, lung, melanoma, leukemia, renal, prostate, central nervous system) against HTMB concentrations ranging from 10 nM to 100 μM (Fig. 3A, B). HTMB exhibited growth inhibitory effects against all cell lines tested with remarkable differences in specificity in a 240 fold range of GI_{50} values (between 10 nM and 2.4 μM depending on the cell line studied). HCC-2998 (colon) and MDA-MB-468 (breast) cancer cell lines appeared to be the most sensitive toward the HTMB treatments (GI_{50} ≤ 10 nM).

Relatively strong growth inhibitory effects (with GI_{50} values less than 50 nM) of HTMB were observed in 5 out of 6 leukemia cells (CCRF-CEM, HL-60(TB), K-562, RPMI-8226 and SR), 3 out of 9 non-small cell lung cancer cells (HOP-62, NCI-H460 and NCI-H522), 6 out of 7 colon cancer cells (HCC-2998, HCT-116, HCT-15, HT29, KM12 and SW-620), 2 out of 6 CNS cancer cells (SF-295 and SF-539), 4 out of 8 renal cancer cells (786-O, A498, CAKI-1 and RXF 393), 2 out of 2 prostate cancer (PC-3 and DU-145) and 5 out of 8 breast cancer cells (MCF-7, NCI/ADR-RES, HS 578T, MDA-MB-435 and MDA-MB-468). Among ovarian cancer OVCAR-3 (GI_{50} = 38 nM) displayed the highest sensitivity when compared to OVCAR-4, -5, and -8 (Fig. 3C).

Morphological changes, DNA fragmentation in SKOV-3 ovarian cancer cells after HTMB treatment

Cells undergoing apoptosis display characteristic changes in their morphology including plasma membrane blebbing, cell shrinkage, condensation and fragmentation of the nucleus and the formation of apoptotic bodies. In order to distinguish whether cell death in ovarian cancer cells upon HTMB treatment is due to apoptosis, we first examined the morphologic changes of SKOV-3 cells after drug treatment. Nuclear staining using 4’,6-diamidino-2-phenylindole (DAPI), a fluorescent DNA-binding dye, revealed that ~40% of SKOV-3 cells treated with HTMB exhibited apparent nucleus condensation and fragmentation upon HTMB treatment (0.2 μM, 24 h) whereas the untreated control cells were not affected (Fig. 4A).

Another hallmark feature of cells undergoing apoptosis is often characterized by chromatin fragmentation e. g. cleavage of genomic DNA to 180-200 bp fragments. This event within individual cells can be analyzed by terminal deoxynucleotidyl transferase-mediated dUTP (conjugated to fluorescein) nick end labeling (TUNEL) [40]. SKOV-3 cells were treated with HTMB and DNA fragmentation was visualized by fluorescence microscopy (Fig. 4B). To identify the entire population of SKOV-3 cells, the nuclei of cells were counterstained with propidium iodide (PI), a red fluorescence DNA intercalating dye. Treatment of SKOV-3 cells with 0.2 μM HTMB for 24 h revealed an apoptotic population of ~40% of cells with TUNEL positive nuclei (red/green channel overlay resulting in yellow color) whereas the untreated control cells were TUNEL-negative (Fig 4B).

Induction of apoptosis in ovarian cancer cells after HTMB treatment

To define the cellular response of SKOV-3 cells upon HTMB treatment we analyzed the activation of apoptotic markers by immunoblotting. Following HTMB treatment for 24 h Western blotting confirmed the
Figure 1 Cytotoxic effect of aroylhydrazone chelators (AHC) in comparison to DFO in ovarian cancer cells. The cytotoxicity of chelators on human ovarian cancer cells (SKOV-3, OVCAR-3) and a rat ovarian cancer cells (NUTU-19) was evaluated by using the MTS viability assay as described (Materials and Methods). The cells were treated for 72 h with varying concentrations of various AHCs or DFO as control. HNTMB displayed the highest cytotoxicity (IC50 = 0.2-0.8 μM depending on the cell line studied). Experiments were performed in triplicates; data are expressed as the mean of the triplicate determinations (X ± SD) of a representative experiment in % cell viability of untreated cells [100%].

Figure 2 Structure of HNTMB. Synthetic scheme (Schiff base condensation method; for synthesis details see Materials and Methods) and structure of HNTMB.
Figure 3 Cell growth after HNTMB treatment in NCI60 cancer cell line screen. Cells were treated in 96 well plates with HNTMB or vehicle and cell growth of the TCA fixed treated and untreated cells assessed (Material and Methods) after 48 h with Sulphorhodamine-B (SRB) solution and absorbance read at 515 nm.

Table: Cell growth after HNTMB treatment

Panel/Cancer Type	Panel/Cancer Type	Percent Growth	GI50 [M]
Leukemia	CCRF-CEM	59.8 ± 27.4	4.73E-8
	HL-60/BS	87.3 ± 31.5	3.49E-8
	K-562	51.2 ± 13.5	3.55E-8
	MOLT-4	7.6 ± 56.7	1.31E-7
	RPMI-8226	35.4 ± 19.6	3.37E-8
	SR	42.1 ± 18.9	1.88E-8
Non-Small Cell Lung Cancer	A549/ATCC	10.5 ± 59.8	6.16E-7
	EKX-12	22.9 ± 87.6	5.72E-7
	HOP-42	55.7 ± 13.8	2.99E-8
	NCI-H262	58.9 ± 79.2	3.25E-7
	NCI-H23	12.3 ± 56.7	1.70E-7
	NCI-H222M	45.1 ± 56.4	1.86E-7
	NCI-H460	42.3 ± 10.5	4.50E-8
	NCI-H522	40.2 ± 8.4	2.75E-8
Colon Cancer	COLO 205	38.2 ± 8.4	7.31E-8
	Colo20	52.0 ± 10.0	1.00E-8
	HCT-116	25.0 ± 9.0	2.97E-8
	HCT-15	12.6 ± 8.6	3.75E-8
	HT29	39.2 ± 22.1	4.29E-8
	KM12	46.4 ± 27.6	4.58E-8
	SW-620	28.1 ± 14.6	3.83E-8
CNS Cancer	SF-295	25.0 ± 41.2	9.35E-8
	SF-539	45.7 ± 6.0	2.84E-8
	SNB-19	4.0 ± 84.4	4.65E-8
	SNB-75	4.0 ± 78.5	1.77E-6
	U251	10.3 ± 47.2	3.84E-8
Melanoma	LOX IMVI	17.5 ± 43.4	7.30E-8
	MALME-3M	23.7 ± 44.4	7.99E-8
	M14	35.4 ± 90.6	5.12E-8
	SK-MEL-2	34.1 ± 60.6	1.63E-7
	SK-MEL-29	46.1 ± 52.2	2.43E-6
	UACC-257	30.2 ± 10.5	5.35E-8
	UACC-62	51.1 ± 34.5	4.56E-8
Ovarian Cancer	OVCAR-3	48.7 ± 11.1	3.78E-8
	OVCAR-4	48.7 ± 11.1	1.39E-7
	OVCAR-5	48.7 ± 11.1	3.53E-7
	OVCAR-8	48.7 ± 11.1	1.22E-7
Renal Cancer	TUM-3	32.4 ± 88.6	4.14E-8
	A498	48.7 ± 11.1	4.67E-8
	ACHN	48.7 ± 11.1	8.79E-8
	CAKI-1	48.7 ± 11.1	3.95E-8
	RXF 393	48.7 ± 11.1	1.81E-8
	SN12C	13.3 ± 47.2	2.43E-7
	TK-10	20.5 ± 59.7	2.45E-7
	UO-31	57.6 ± 45.5	7.31E-8
Prostate Cancer	PC-3	48.7 ± 11.1	4.04E-8
	DU-145	24.0 ± 10.5	4.03E-8
Breast Cancer	MCF7	29.1 ± 13.7	3.22E-8
	NCIADR-RES	28.6 ± 12.6	4.10E-8
	MDA-MB-231/ATCC	17.5 ± 59.9	2.07E-7
	HS 578T	25.0 ± 78.5	4.81E-8
	MDA-MB-435	20.5 ± 14.3	2.50E-8
	BT-549	21.4 ± 13.8	1.41E-7
	T-47D	13.8 ± 57.6	1.75E-7
	MDA-MB-468	45.5 ± 8.4	1.00E-8

Figure 3 Cell growth after HNTMB treatment in NCI60 cancer cell line screen. Cells were treated in 96 well plates with HNTMB or vehicle and cell growth of the TCA fixed treated and untreated cells assessed (Material and Methods) after 48 h with Sulphorhodamine-B (SRB) solution and absorbance read at 515 nm.
activation of effector caspase-3, -7 and inactivation of PARP-1 (involved in DNA repair) in SKOV-3 cells (Fig. 5A). The cleavage of PARP is thought to represent the irreversible stage of cellular process in apoptosis events. In addition the expression of pro-survival marker XIAP, a direct inhibitor of executioner caspases such as caspase-3, was gradually down-regulated within 9 to 48 h following the HNTMB treatment (Fig. 5A).

Moreover, it was apparent that HNTMB induced both major signaling pathways (intrinsic, extrinsic) described for programmed cell death. A prominent marker for the extrinsic pathway is activation of caspase-8 which occurred following SKOV-3 treatment with HNTMB for 24 h (Fig. 5A). Features of the intrinsic pathway include the activation of pro-apoptotic members of the Bcl-2 family and/or down-regulation of anti-apoptotic Bcl-2 family members and cleavage/activation of caspase-9 which also occurred in SKOV-3 following 24 h of HNTMB treatment (Fig. 5A). Caspase-9 was activated by a feedback mechanism through cleavage (at Asp330) via caspase-3 yielding a large fragment, p37, (Fig. 5A) and through apoptosome-dependent self-cleavage (at Asp315) yielding fragment p35 (data not shown). Interestingly, down-regulation of anti-apoptotic Bcl-2 but not Bcl-xL was observed (Fig. 5B). In addition, no change in the expression of full-length Bid (22 kD) or truncated-Bid (also known to trigger mitochondrial signaling) was observed (Fig. 5B).

HNTMB treatment induces SKOV-3 cell cycle arrest in G2/M phase
As described in the previous sections, HNTMB is a cytotoxic agent which activates apoptotic processes in SKOV-3 ovarian cancer cells. To investigate if HNTMB...
affects the proliferation of SKOV-3 cells (particularly at drug concentrations when viability is only partially reduced) we analyzed the cell cycle distribution of SKOV-3 cells in response to HNTMB treatment by FACS.

While only 4.4% of untreated cells were present in the G2/M sub-population, HNTMB treatment for 48 h led to a dose-dependent G2/M phase arrest (Fig. 6A) with 23.8% cells (at 0.3 μM drug concentration) and 67.3% cells (at 0.6 μM) in G2/M (Fig. 6B). Accordingly, the cell sub-population in G0/G1 phase, when compared to untreated cells (78.7%), was reduced to 42.7% (0.3 μM HNTMB) and 8.2% (0.6 μM HNTMB), respectively. In addition, FACS analysis after HNTMB treatment revealed an increase in the count of apoptotic sub-diploidal/2n cells (sub-G0/G1, Fig. 6B) in a dose-dependent manner. Treatment of this unsynchronized cell culture led to a delayed progression of cells through S-phase (16.9% in untreated SKOV-3) which was apparent at 0.3 μM HNTMB (33.5% in S-phase). At the highly cytotoxic concentration of 0.6 μM drug we observed a loss of cells in culture due to cell shrinkage and disintegration, an increase of apoptotic sub-diploidal/2n cells (34.3%) while 24.5% of the cells were in S-phase.

HNTMB/Copper complexes but not HNTMB/Iron complexes mediate cytotoxicity and ROS generation HNTMB as a chelator has the potential to bind various trace metals present in human tissues, cancer, serum, plasma and cell lines, such as iron, copper, zinc, magnesium, cadmium. In a viability assay we determined the cytotoxicity of HNTMB when complexed with Fe(II), Fe(III), Cu(I) or Cu(II). Complexes were formed by combining stock solutions of HNTMB and respective metal salts (FeCl2, FeCl3, CuCl or CuCl2) to 1000× the desired final assay concentration in DMSO, followed by incubation at 37°C for 30 min before further dilution in complete medium for cell treatment.

The IC_{50} following 48 h treatment of SKOV-3 with non-complexed HNTMB is approximately 0.4 μM. Fig. 7A shows that at this drug concentration cell viability was reduced to 54.8% of the untreated controls. Previously, in a publication on the chemotherapeutic activity of Salophene complexes we showed that Fe[III] alone does not display significant cytotoxic effects in SKOV-3

![Figure 5 Expression of apoptotic markers in SKOV-3 cells after HNTMB chelator treatment](image-url)
cells at or below the concentrations of 60 μM, whereas Cu[II] displays partial cytotoxicity (33% of cells) at a concentration of 60 μM but not ≤30 μM [41]. Accordingly, treatment of SKOV-3 cells with FeCl₂, FeCl₃, CuCl or CuCl₂ at concentrations of 1.6 μM did not affect cell viability nor did 0.4 μM HNTMB when complexed with Fe(II) or Fe(III). In contrast, 0.4 μM HNTMB when complexed with Cu(I) or Cu(II) was highly cytotoxic to the cells (Fig. 7A). When HNTMB was chelated with Cu(II) (at 1000x the desired assay concentration and prior to 1000 fold dilution in complete medium for treatment), cell viability was reduced 2-fold (26.4%; Cu(II)/HNTMB 1.6/0.4 μM) as compared to non-complexed HNTMB (54.8%). Using a Cu(I)/HNTMB complex (1.6/0.4 μM) viability was reduced to 31.9%. When chelation was carried out in the presence of Cu salts cytotoxicity was still higher (43.3% for Cu(II)/HNTMB 0.8/0.4 μM and 40.7% for Cu(I)/HNTMB 1.6/0.4 μM) compared to non-complexed HNTMB. These results indicated that (i) we efficiently achieved HNTMB-metal complexation under the experimental conditions described (Material and Methods), (ii) HNTMB pre-chelated with iron did not exert cytotoxic effects in SKOV-3 cells, (iii) no significant dissociation of these pre-formed complexes occurred under our experimental conditions because measured cytotoxicities were, for example, less than [in the case of Fe (II or III)] that for non-complexed HNTMB, and iv). Pre-Cu chelated HNTMB was more cytotoxic than non-complexed HNTMB.

Next, we carried out HNTMB complex formation under competing conditions for Fe and Cu-salts (Fig. 7B; group 1) prior to performing cell viability assays or we combined pre-formed Fe/- and Cu/HNTMB complexes and measured their effects in the viability assay (Fig. 7B; group 2.). When Fe(II)- and Cu(II)-salts were incubated together with HNTMB prior to treatment (Fig. 7B, group 1), cell viability was reduced to 71.3% (Fe(II)/Cu(II)/HNTMB 1.6/0.4 μM) compared to 104.4% for Fe(II)/HNTMB, 43.3% for Cu(II)/HNTMB and 54.8% for non-complexed HNTMB (Fig. 7A). These data suggest that HNTMB, under our experimental conditions, had a similar affinity for Fe salts and Cu salts. Accordingly, when Fe(III) and Cu(II) were incubated together with HNTMB prior to treatment viability was reduced to 68.8% for Fe(III)/Cu(II)/HNTMB compared to 96.9%
Figure 7 Effect of iron/HNTMB and copper/HNTMB complexes on viability, ROS generation, and induction of apoptosis. (A) Cytotoxicity of HNTMB in SKOV-3 cells when complexed with Fe(II), Fe(III), Cu(I) or Cu(II). Complexes were formed by combining HNTMB and respective metal salts to 1000× [0.4 mM HNTMB; 1.6 or 0.8 mM Fe(II), Fe(III), Cu(I) or Cu(II)] the assay concentration before addition (diluted 1:1000) to the cells (48 h treatment). As controls served cells left untreated, incubated with metal salts (1.6 μM) or non-complexed HNTMB (at IC50 concentration, 0.4 μM). Data are expressed as mean of triplicate determinations (X ± SD) in % cell viability of untreated cells [100%]. (B) Combinational effect of HNTMB iron- and copper-complexes on cell viability in SKOV-3 cells. Group 1: HNTMB complex formation was performed under competing conditions for Fe and Cu-chelation at 1000× the desired assay concentration before addition of this mixture (diluted 1:1000) to the cells (48 h treatment). Group 2: Stock solutions (1000×) of pre-formed complexes of Fe(II) or Fe(III)- and Cu(II)/HNTNB were individually diluted before simultaneous addition to the cells (48 h treatment). (C) Detection of intracellular ROS in SKOV-3 cells. Generation of ROS following treatment with non-complexed or complexed HNTMB was measured by flow cytometry. Data are presented as relative-fluorescence-intensity in a 2-dimensional FACS profile (standardized gating; 10,000 events). (D) Effect of HNTMB complexation with Fe(III) or Cu(II) on the viability of various ovarian cancer cell lines SKOV-3, OVCAR-3 or NUTU-19 cells were treated with 0.4 μM non-complexed or complexed (Cu(II)-upper panel; Fe(III)-lower panel) HNTMB for 48 h and the assay carried out. (E) Effect of HNTMB complexation with Fe(III) or Cu(II) on expression of apoptotic markers in various ovarian cancer cell lines SKOV-3, OVCAR-3 or NUTU-19 cells were treated with 0.4 μM non-complexed or complexed HNTMB for 48 h. Western blot analysis of cell lysates was carried with primary antibodies against PARP-1, caspase-7 and GAPDH (control).
for Fe(III)/HNTMB, 43.3% for Cu(II)/HNTMB and 54.8% for non-complexed HNTMB (Fig. 7A).

When Fe or Cu complexes were pre-formed (0.8 μM metal, 0.4 μM HNTMB) and added individually to the cells (Fig. 7B, group 2), cell viability was 40.9% for Fe (III)/HNTMB + Cu(II)/HNTMB and 44.8% for Fe(II)/HNTMB + Cu(II)/HNTMB instead of 43.3% viability when the same concentration of Cu(II)/HNTMB alone was used (Fig. 7B, arrow). This suggested that the cytotoxicity exerted by a copper/HNTMB complex was not altered and that no additional cytotoxic effect through co-treatment with an iron/HNTMB complex was achieved.

One potential strategy suggested to treat cancer is to generate an excess amount of ROS in tumor tissue to induce necrosis and/or apoptosis. We determined if SKOV-3 following treatment with non-complexed HNTMB or Cu/Fe complexed-HNTMB lead to the generation of ROS. These species were detected via Carboxy-H2DCFDA, which is a fluorescein derivative that is cell-permeable and non-fluorescent. In the presence of a cellular oxidant, the molecule is oxidized and produces green-fluorescence that is detected by flow cytometry. As shown in Fig. 7C, ROS generation in SKOV-3 cells remained unchanged as compared to untreated controls when either Fe(III)/HNTMB complex (0.8/0.4 μM) or FeCl₃ and CuCl₂ metal salts (0.8 μM) were used. However, ROS generation increased (shift in relative fluorescence intensity, Fig. 7C) following treatment of cells for 20 h with either 0.4 μM non-complexed HNTMB (upper panel) or Cu(II)/HNTMB (0.8/0.4 μM; lower panel) which correlated with a reduction in cell viability by these compounds at the same concentration (Fig. 7A).

To rule out that the effects of HNTMB complexation are cell type specific we compared the cytotoxic effects (Fig. 7D) and induction of apoptotic markers (Fig. 7E) by HNTMB when complexed with Fe(III) or Cu(II) in three different ovarian cancer cell lines.

Human platinum resistant OVCAR-3 cells as well as rat NUTU-19 displayed a similar response profile as SKOV-3 and treatment of these cell lines with CuCl₂ at concentrations of 0.8 μM did not affect cell viability. In contrast, 0.4 μM HNTMB when complexed with Cu(II) was highly cytotoxic to the cells and exceeded toxicity of non-complexed HNTMB (Fig. 7D, top panel). Remarkably, complexation of HNTMB with Fe(III) fully prevented cytotoxicity of the compound. The viability of SKOV-3, OVCAR-3 and NUTU-19 compared to that of untreated controls or cells treated with the respective Fe (III) salt (Fig. 7D, bottom panel).

Following HNTMB treatment Western blotting confirmed the activation of effector caspase-7 and inactivation of PARP-1 (involved in DNA repair) in all three cell lines by 0.4 μM of either non-complexed HNTMB or when complexed with Cu(II) (Fig. 7E). Apoptosis was not induced through HNTMB when complexed with Fe (III) and expression levels of activated caspase-7 and inactivated PARP-1 were similar to the controls (untreated cells or cells treated with FeCl₃ or CuCl₂) (Fig. 7E). Apoptosis was induced more rapidly by the copper-complex as compared to treatment with non-complexed HNTMB with a higher number of cells showing degradation (data not shown). In line with the kinetic study on the expression of apoptotic markers peaking at 24 h (Fig. 5) activation of caspase-7 or inactivation of PARP-1 at 48 h treatment with Cu(II)/HNTMB when compared to treatment with non-complexed HNTMB was past the peak and less pronounced. However, the 48 h incubation was chosen to perform the Western Blotting analysis (Fig. 7E) in conjunction with our standardized Viability assay (48 h incubation; Fig. 7A, B, D) and ROS detection assay (Fig. 7C) all reveal that complexation of HNTMB with copper but not with iron results in a potent drug to treat ovarian cancer cells.

Discussion

Chelators in cancer treatment

A low overall survival for advanced stages of ovarian cancer is related to the appearance of drug resistance to standard agents, notably organometallic platinum compounds. Research has been directed at the discovery of non-platinum chemotherapeutics with increased activity and response rates and among them chelating drugs and chelator metal complexes [7,41-44]. In addition, the efficacy of current anti-cancer drugs may be increased by combinational treatment with chelating drugs which have been shown to affect the metabolism and toxicity of anti-cancer compounds such as Adriamycin, mitozantrone, bleomycin and hydroxyurea (HU) [7].

The objective of the present study was to investigate the potential of six different lipophilic aroylhydrazone chelators (AHC) including novel compound HNTMB as anti-tumor drugs and to analyze modes of action leading to cell death of ovarian cancer cells following HNTNB treatment. As a model system we choose OVCAR-3 cells resistant to clinically relevant concentrations of Adriamycin, melphalan and cisplatin and SKOV-3 cells resistant to several cytotoxic drugs including cisplatin and Adriamycin (see ATCC, Manassas, VA; http://www.atcc.org). To set the stage for potential future in vivo experiments using chelators in a syngenic rat tumor model [41] we included rat ovarian NUTU-19 cancer cell line in a screen for cytotoxicity by the various AHC tested here.

Efficacy of aroylhydrazone chelators in cancer cells

Previous work showed that AHCs (often referred to as iron-chelators due to initial studies on high Fe chelation
efficacy in cell lines and in vivo models) [45] exert anti-
proliferative and/or cytotoxic effects in neoplastic cells
including cell lines derived from bladder carcinoma, rat
hepatoma, T-cell leukemia, neuroblastoma, melanoma
and leukemia [34,35,45-47]. To date no studies on the
effect of AHC compounds in ovarian cancer models,
nor in vitro nor in vivo, have been published, and their
mechanism of action leading to cell death remains
unknown.

The present study shows that novel compound
HNTMB in its cytotoxic capacity (IC50 between 200-400
nM depending on the ovarian cancer cell line) is superior
to other AHC compounds (oVtBBH, HNTBBH, SttBBH/206, HNTHh2H/315 and HNI/311 and HNTMB)
(IC50 0.8-6 \mu M) as well as to deferoxamine (DFO) (IC50
12-25 \mu M) which was included as a reference. SttBBH/206,
HNTHh2H/315 and HNI/311 in previous studies
displayed anti-proliferative effects in neuroblastoma cell
lines (IC50 = 0.2-1.2 \mu M), melanoma cells (IC50 0.8-1.0
\mu M) and leukemia cells (IC50 0.4-1.3 \mu M) [34,35]. Two
of the three AHC (HNTHh2H/315 and HNI/311) and
HNTMB possess a 2-hydroxy-1-naphthylaldehyde moiety.
The high lipophilicity of this aldehydic moiety when
compared to AHC compounds with a less lipophilic pyrdal-
doxal or salicylaldehyde group is correlated to increased
anti-proliferative effects in neuroblastoma cell
lines (IC50 = 2-12 \mu M), melanoma cells (IC50 0.8-1.0
\mu M) and leukemia cells (IC50 0.4-1.3 \mu M) [34,35]. Two
of the three AHC (HNTHh2H/315 and HNI/311) and
HNTMB may be associated with the further improvement of its cytotoxicity in com-
parison to the structurally-related chelators without
such a functional group. However, further studies must
be conducted to prove whether this moiety is directly
responsible for the high degree of cytotoxicity produced
by HNTMB. The control compound DFO, structurally
unrelated to AHCs, is a naturally occurring hexadentate
iron-chelator that has been used as a therapeutic agent
against ovarian [20] and other cancer cells [48-53].
However, the hydrophilic property of DFO limits its
membrane-permeability and efficacy to target the intra-
cellular trace metal pool including iron [54] or affect
other intracellular processes. In contrast to DFO, com-
ounds such as HNTMB display a greater potency
because of their better membrane-permeability profiles.
The observation to cytotoxic effects of HNTMB on
SKOV-3, OVCAR-3 and NUTU-19 ovarian cancer cells
led to a screen performed by the NCI-DTP against a
panel of cell lines http://dtp.nci.nih.gov/screening.html
derived from human tumors of different origin. It became
apparent that HNTMB displayed potent cell line-specific
but not tumor type-specific cytotoxicity with GI50 values
in a 240-fold range (between 10 nM and 2.4 \mu M depend-
ing on the cell line studied). Thus, cell death, depending
on the target tumor or cancer cell line, can be induced by
HNTMB at concentrations in the nanomolar range. At
these concentrations AHCs may not exert their effects by
critical depletion of the pool of intracellular iron but by
binding to other trace metals such as copper (see discus-
sion below). In vivo experiments have shown that effective
treatment of tumors with related thiosemicarbazone
Dp44mT, which reduced growth in melanoma xenografts
in nude mice by 92%, required low doses that did not
cause iron depletion [55]. It is noteworthy that no direct
correlation between the anti-proliferative activity of
AHCs with their abilities to prevent iron-uptake or mobi-
lization in neuroblastoma cells was reported [34] suggest-
ing that interference with iron metabolism may not be
responsible for the effect of AHCs on cell viability. Early
studies examined the use of copper complexes of aroyl-
hydrazone derivatives as therapeutic agents; Cu(II)
complexation of SBH not only increased the compounds
cytotoxicity but administration of this complex in mice
was well tolerated [46]. The present study revealed that
HNTMB at 400 nM when complexed with Cu(I) or Cu
(II) displayed a high cytotoxicity correlated with massive
generation of ROS. In contrast, HNTMB complexed with
Fe(II) or Fe(III) lost its cytotoxicity and did not alter
basal levels of ROS in SKOV-3 cells. Non-complexed
HNTMB displayed partial cytotoxicity and by binding to
various trace metals is likely to disturb a multitude of
functions important for cell proliferation and survival.
HNTMB, as a tridentate coordinating ligand, has the
ability to bind copper or iron in a stochiometric ratio of
1:1. Its IC50 determined for ovarian cancer cell lines is
200-400 nM (75-150 \mu g/L) and the assay concentration
of non-complexed HNTMB that we used was 150 \mu g/L
which is a fraction of the total iron or copper content
of cells. Ovarian cancer tissues contain 0.3-0.7 mg/kg cop-
per and 15-17 mg/kg iron content [10]. By binding intra-
cellular copper HNTMB can create a toxic ROS-
generating complex, while intracellular iron-chelation by
HNTMB depending on its concentration may lead to a
variety of cellular consequences previously described
for aroylhydrazone chelators [31]. These include ribonucleo-
tide-reductase/RR inhibition, redox-activity leading to
the hydroxylation of benzoate and the degradation of
DNA in the presence of Fe(II) and H2O2, down-regula-
tion of cell cycle regulators, and activation of WAF (medi-
ator of p53 tumor suppression) among other genes.

Response mechanism of cancer cells to HNTMB treatment

Through various experimental approaches the present
study suggests that the mode of action of HNTMB in

Kim et al. BMC Cancer 2010, 10:72
http://www.biomedcentral.com/1471-2407/10/72
SKOV-3 cells relies on a variety of inter-dependent processes such as generation of ROS, DNA degradation, induction of apoptosis, and arrest of cell cycle progression through G2/M phase. ROS are generated in SKOV-3 when treated with a copper/HNTMB complex but not when an iron/HNTMB complex was used. Thus, ROS generation observed after treatment with non-complexed HNTMB is, at least, partially due to the drug binding intracellular copper (possibly by binding to other trace metals with a similar result). Production of ROS results in apoptosis and/or necrosis and can be used for selective targeting of tumor cells which possess higher oxidative stress level and display alteration of antioxidant enzymes (catalase, SOD) as compared to normal cells. Apparently, the Cu/HNTMB complex, as suggested for other chemotherapeutic drugs, may be used in oxidation therapy by elevating H2O2 and superoxide radical in tumor cells above the survival/death threshold (see introduction) [17,56]. Even though excess copper is known to be a potent oxidant causing the generation of ROS, we ruled out that unbound copper present in the sample of the Cu/HNTMB complex could be responsible for ROS generation. In controls, neither Cu(I) nor Cu(II) alone, at concentrations of 1.6 μM, resulted in cytotoxicity or ROS production during treatment. Previously, we determined that treatment with non-chelated copper does not affect the viability of ovarian cancer cell at or below a concentration of 30 μM [41]. Therefore, we suggest that future studies should focus on the mechanistic responses of tumor cells to treatment with copper/AHCs complexes in general and specifically with a Cu/HNTMB complex in ovarian cancer models. The mechanism(s) by which the copper-HNTMB complex generates elevated ROS levels remains under investigation but may include targeting of cellular thiol-containing anti-oxidant molecules such as glutathione (GSH) as this has been shown for other copper complexes such as CuNG [57]. Even upon treatment with non-complexed HNTMB intracellular copper-chelation by HNTMB might selectively be used to cause ROS-mediated cell death in certain tumors because a higher copper level is apparent both in serum and tumors of cancer patients including those suffering from breast and ovarian cancer [8-10]. Reference values determined by Yaman et al. [10] showed an average copper content in malignant ovarian tissue of 0.7 mg/kg copper versus 0.3 mg/kg in benign ovarian tissue. Interestingly, these tissues the iron content for cancerous and non-cancerous conditions is comparable (15-17 mg/kg) [10]. Thus, the iron/copper ratio decreases by a factor of 2 from benign to malignant ovarian tissues and may represent a target for chelation therapy.

In the present study, apart from ROS generation by ovarian cancer cells upon treatment with HNTMB, we observed other cellular responses of SKOV-3 cells to this chelator such as DNA degradation, arrest of cell cycle progression in G2/M phase and activation of apoptotic signaling. Cell cycle regulation is known to be a target of chelating agents and has been attributed to the depletion of intracellular iron. Chelators of the AHC class can regulate the expression of various proteins involved in cell-cycle control such as CDK2, cyclins A, B1, D1, D2, D3, WAF1 (inhibitor of CDKs) as shown for HNI/311 in neuroblastoma and an erythroleukemia cell line. While chelators such as HNI/311 or DFO generally block G1/S phase transition, effects on the G2/M transition during the cell cycle has also been implicated [58,59]. For DFO and a 3-hydroxy pyridin-4-one iron-chelator, it has been shown in K562 erythroleukemia cells that at higher concentrations these cells undergo arrest in G1/S while at lower drug concentrations they accumulated in G2 and M phase without an effect on DNA synthesis [60]. Thus, cell cycle regulation through iron-chelators may depend on the dose and the cell line studied. HNTMB at 600 nM lead to an accumulation of SKOV-3 primarily in G2/M phase. Future studies, beyond the scope of the present work, could focus on cell cycle checkpoints affected by HNTMB treatment in synchronized cancer cells and verify the general concept that iron-chelation (and not depletion of other intracellular metals) is responsible for these effects. Generally, targeting cell cycle key regulators has been suggested as a supplemental approach to anti-cancer therapies [61-64]. In addition, it is noteworthy that cells are most radiosensitive in the G2/M phase [65]. Based on this and our findings, HNTMB could be used as a radiosensitizer.

Drug treatment leading to programmed cell death (Apoptosis) results in the activation of initiator caspases which upon activation subsequently activate downstream effector caspases that are responsible for the cleavage of many intracellular proteins, leading to the morphological and biochemical changes associated with apoptosis [66,67]. HNTMB treatment of SKOV-3 cells resulted in strong activation/cleavage of initiator caspase-8 and -9 and of effector caspase-3 and -7, while PARP-1 (involved in DNA repair) [68] was inactivated/cleaved following drug treatment. It is noteworthy that HNTMB down-regulated expression of the X-linked inhibitor of apoptosis (XIAP). Down-regulation of XIAP expression in ovarian cancer cells results in apoptosis in vitro and prolonged survival of ovarian cancer-bearing mice, which indicate that XIAP may be a valuable therapeutic target in ovarian cancers [69]. Interestingly, cisplatin-resistance in human ovarian surface epithelial (hOSE) cancer cells is correlated with the inability of cisplatin to down-regulate XIAP expression [70]. HNTMB may be an alternative apoptosis inducing drug in certain
platinum-resistant cancers via XIAP reduction as shown to occur in SKOV-3 ovarian cancer cells used in the present study.

HNTMB induced both major signaling pathways (intrinsic, extrinsic) as evidenced by the activation of initiator caspases similar to the effect of other iron chelators such as tachpyridine, DFO, and dipryridyl [71]. Intrinsic pathway activation may have mitochondrial damage as a pre-requisite, leading to the activation of pro-apoptotic members of the Bcl-2 family and/or inactivation of anti-apoptotic Bcl-2 and results in the mitochondrial release of cytochrome C which in turn activates initiator caspase-9 [72] as seen in SKOV-3 cells following HNTMB treatment. It has previously been suggested that the mitochondrial pathway takes a center-role in iron chelator-mediated cell death since over-expression of anti-apoptotic Bcl-2 and Bcl-XL promotes cell (in HeLa cervix carcinoma cells) survival and chelator-mediated cell death can be blocked by a dominant-negative caspase 9 and Bcl-XL over-expression [71]. We show here that the exclusive down-regulation of Bcl-2 expression (in contrast to unmodified Bcl-XL or Bid) takes a center role in the pro-apoptotic response of SKOV-3 cells to treatment with HNTMB. Similarly, other AHC compounds and their iron complexes cause apoptosis via the mitochondrial pathway (in Jurkat T cells and K562 leukemia) which could be counteracted by Bcl-2 overexpression [73]. Because anti-apoptotic Bcl-2 is highly expressed in various human cancers, this feature of HNTMB increases its potential as an alternative anti-tumor drug. Bcl-2 also mediates the resistance of cancers to conventional therapies such as radio- and chemo-therapy. Thus, the blockage of Bcl-2 protein expression by HNTMB treatment could be useful to sensitize cancer cells to conventional therapies [74]. A COMPARE analysis using the NCI’s antitumor drug screen database suggested the involvement of Bcl-2 protein as a putative target of HNTMB, in its mechanism of action. The COMPARE computer program utilizes cytotoxicity data derived from screening compounds against 60 human cancer cell lines to calculate the Pearson correlation coefficient (positive correlation of 0.45 for HNTMB), between the data for the seed compound and those for past agents in the database to identify similar molecular targets or similar mechanisms of resistance [75-79].

Induction of apoptosis by chelating agents, including representatives of AHCs, has been primarily associated to their capability to bind/deplete intracellular iron [73]. These properties may be especially relevant for cancer treatment because (i) the intracellular concentration of iron is generally higher than that of copper and (ii) it can be significantly elevated in both serum and tumor tissue of cancer patients with endometrial or breast cancer [9,10]. The pro-apoptotic effects of non-complexed HNTMB at higher concentrations may be partially linked to its capacity to bind/deplete intracellular iron. However, it is apparent that a copper/HNTMB complex at a concentration of 0.4 μl strongly induces apoptosis, while an iron/HNTMB complex has no such effects. Observations related to the role of organocopper complexes in apoptotic events include disruption of the peroxide and thiol metabolism with subsequent up-regulation of pro-apoptotic Bcl-2 family members (Bak/Bax in melanoma and epithelial carcinoma cells) [80]. Previous studies have revealed that in the presence of complexed copper (Cu-NTA) the expression of anti-apoptotic Bcl-2 and Bcl-XL can be down-regulated (HL-60 cells) [81]. Accordingly, the pro-apoptotic activity of HNTMB may include direct effects on Bcl-2 regulation when complexed with copper in contrast to the postulated indirect pro-apoptotic effects linked to intracellular iron depletion. We conclude that non-complexed HNTMB exerts cytotoxicity on ovarian cancer cells in a dual function by binding copper [Cu(I) and Cu(II)] present in the human body [82] and the intracellular iron present in the Fe(II) and Fe(III) states [31].

Conclusions
The present report suggests that HNTMB displays properties akin to an anti-cancer drug and could be an alternative to platinum derivatives in the treatment of ovarian cancer and other solid tumors. HNTMB can chelate iron and copper of different oxidation states and possess anti-cancer drug attributes via its properties as a chelator of intracellular trace-metals or, alternatively, as a cytotxic organic metal- (e.g., copper) complex. HNTMB and other chelating drugs of the lipophilic arylyhydrazone class may prove to be superior to other chelators or metal complexes already in use for the treatment of cancer. Experimental approaches using the ovarian cancer cell line SKOV-3 as a model system suggest various modes of action exerted by HNTMB based on the generation of ROS, caspase activation, Bcl-2 down-regulation, DNA degradation and G2/M phase cell cycle arrest.

List of abbreviations used
AHC: aroylhydrazone chelators; DAPI: 4',6-diamidino-2-phenylindole; DFO: deferoxamine; DMEM: Dulbecco’s Modified Eagle’s Medium; DMSO: dimethyl sulfoxide; FACS: fluorescence activated cell sorter; FL: fluororescin; H2DCFDA: 2’,7’-dichlorodihydrofluorescein diacetate; MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium; NMR: nuclear magnetic resonance; PBS: phosphate buffered saline; ROS: reactive oxygen species; RR: ribonucleotide reductase; SOD: superoxide dismutase; TCA: trichloroacetic
acid; TUNEL: terminal deoxynucleotidyl transferase
dUTP nick end labeling.

Acknowledgements
This work was supported by an Ovarian Cancer Research Fund, Inc. (OCRF).
Grant to Dr. Brad. The authors thank NIH COBRE Grant 1-P20RR018728 for
providing instrumentation support.

Author details
1Molecular Therapeutics Laboratory, Program in Women’s Oncology,
Department of Obstetrics and Gynecology, Women and Infants’ Hospital of
RI, Alpert Medical School of Brown University, Providence, RI 02905, USA.
2Division of Biology and Medicine, Brown University, Providence, RI 02912,
USA.

Authors’ contributions
KK and RKS performed the experimental procedures with support from TSL.
KK, TSL, and LB were responsible for experimental design, interpretation of
the results and writing the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 27 August 2009
Accepted: 25 February 2010
Published: 25 February 2010

References
1. Heintz APM, Odicino F, Maisonneuve P, Beller U, Benedet J, Creaman WT:
International federation of gynecology and obstetrics 25th annual report.
carcinoma of the ovary. Int J Gyn Obst 2003, 83:135-137.
2. American Cancer Society. Cancer Facts and Figures 2008. http://www.
cancer.org.
3. McGuire WP, Hoskins WP, Kucera PR, Partridge EE, Look KY,
Clarke-Pearson DL, Davidson M. Cyclophosphamide and cisplatin
compared with paclitaxel and cisplatin in patients with stage III a
and stage IV ovarian cancer. N Engl J Med 1996, 334:1-6.
4. Picart MJ, Bentsen K, James K, Cassidy J, Mangioni C, Simonsson E,
Stuart G, Kaye S, Vergote I, Blom R, Grimbizis G, Atkinson RJ, Swenerton KD,
Trope C, Nardi M, Kaem J, Tumolo S, Timmers P, Roy JA, Lhoas F, Lindvall B,
Bacon M, Birt A, Andersen JE, Zee B, Paul J, Baron B, Pecorelli S,
Venkatraman E, Spriggs DR: 91
5. Leitao MM Jr, Hummer A, Dizon DS, Aghajanian C, Herson M, Sabattini P,
Venkatraman E, Srigg JS. Platinum-retreatment of platinum-resistant ovarian
ca ncer after nonplatinum therapy. Gynecol Oncol 2003,
91:123-129.
6. Lamert H, Gregory WM, Nielstrop AE, Rustin GJ: Long-term survival in
463 women treated with platinum analogs for advanced epithelial
carcinoma of the ovary: life expectancy compared to women of an age-
matched normal population. Int J Gynecol Cancer 2004, 14:772-778.
7. Kontogiorghes GJ, Efstratiou A, Ioannou Loucaides S, Kohagou A.
Chelators controlling metal metabolism and toxicity pathways:
applications in cancer prevention, diagnosis and treatment. Hemoglobin
2008, 32:217-227.
8. Chan A, Wong F, Arumayamag M. Serum ultrafiltrable copper, total
copper and ceruloplasmin concentrations in gynecological carcinoma.
Ann Clin Biochem 1993, 30:545-549.
9. Kuo KW, Chen S, Wu CC, Chen DR, Lee JH: Serum and tissue trace
elements in patients with breast cancer in Taiwan. Biol Trace Elem Res
2002, 89:1-11.
10. Yaman M, Kaya G, Simsek M. Comparison of trace element concentrations
in cancerous and non cancerous human endometrial and ovary tissues.
Int J Gynecol Cancer 2007, 17:220-223.
11. Daniel KG, Chen D, Orlu S, Cui Q, Miller FR, Dou QP: Clioquinol and
pyrrolidine dithiocarbamate complex with copper to form proteasome
inhibitors and apoptosis inducers in human breast cancer cells. Breast
Cancer Res 2005, 7R9:R908.
36. Rose GS, Tocco LM, Grange GA, DiSaia PJ, Hamilton TC, Santin AD, Hiserodt JC. Development and characterization of a clinically useful animal model of epithelial ovarian cancer in the Fischer 344 rat. Am J Obstet Gynecol 1996, 175:593-599.

37. Malich G, Markovic B, Wind C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol 1997, 124:179-192.

38. Singh RK, Lange TS, Shaw SK, Kim KK, Brand L. A novel indole Ethyl Isothiocyanate (7Me-IEC) with anti-proliferative and pro-apoptotic effects on platinum-resistant human ovarian cancer cells. Gynecol Oncol 2001, 80:240-249.

39. Lange TS, Singh RK, Kim KK, Zou Y, Shollter GL, Swamy N, Brand L. Anti-proliferative and pro-apoptotic properties of 3- bromoacetoxycalcidiol (BCSD) in high-risk neuroblastoma. Chem Biol Drug Design 2007, 70:302-310.

40. Gorgzycza W, Gog, J. Darszykiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 1993, 53:1945-1951.

41. Lange TS, Carolyn McCourt C, Singh RK, Singh AP, Luis BS, Strongin RM, Brand L. Apoptotic and chemotherapeutic properties of iron (III) salophene in an ovarian cancer animal model. Drug Design, Development and Therapy 2008, 3:17-26.

42. Ott I, Gust R. Non platinum metal complexes as anti cancer drugs. Arch Pharm 2007, 340:117-126.

43. Huang R, Wallquist A, Covell DG. Anticancer metal compounds in NCI s tumor screening database: putative mode of action. Biochem Pharmacol 2005, 69:1009-1039.

44. Lange TS, Kim KK, Singh RK, Strongin RM, McCourt CK, Brard L. Iron(III)-salophene: An metallo-organic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells. PLOS One 2008, 3:e20331-10.

45. Richardson DR, Bernhardt PV. Crystal and molecular structure of 2 hydroxy 1 naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron (III) complexes: an iron chelator with anti-tumour activity. J Biol Inorg Chem 1999, 4:266-273.

46. Johnson DK, Murphy TB, Rose NJ. Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by AHCs and by a copper(II) complex of salicylaldehyde benzoyl hydrazone. Inorganica Chim Acta 1982, 67:159-165.

47. Koha LL, Kondi CL, Loha KW, Longa YC, Ranforda JD, Tjana YY. Complexes of salicylaldehyde acylhydrazones: Cytotoxicity, OSAR and crystal structure of the sterically hindered t butyl dimer. J Inorg Biochem 1998, 72:155-162.

48. Haq RU, Wereley JP, Chitambar CR. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol 1997, 124:179-192.

49. Hatschek T, Stitely S, Renschler MF. The potential of iron chelators of the pyridoxal isocitronoyl hydrazone class as effective antiproliferative agents, IV. The mechanisms involved in inhibiting cell-cycle progression. Blood 2001, 98:842-850.

50. Hoyes RP, Hider RC, Porter JB. Cell cycle synchronization and growth inhibition by 3 hydroxypropidin 4 one iron chelators in leukemia cell lines. Cancer Res 1992, 52:4991-4599.

51. Hartwell LH, Kastan MB. Cell-cycle control and cancer. Science 1994, 266:1821-1828.

52. Gaddaden AB, Diehl JA. Cell cycle progression without cyclin E/CDK2: breaking down the walls of dogma. Cancer Cell 2003, 4:160-162.

53. Shapiro G, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 1999, 104:1645-1653.

54. Mazumder S, Dupree EL, Alasman A. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets 2004, 6:465-75.

55. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004, 59:928-942.

56. Saliesen GS, Abrams JP. Caspase activation stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 2004, 23:2774-27784.

57. Thombery NA, Lazenby Y. Caspases: enemies within. Science, 1998, 281:1312-1316.

58. Oliver FI, de la Rubia G, Rolli V, Ruiz Ruiz MC, de Murcia G, Murcia JM. Importance of poly(ADP ribose) polymerase and its cleavage in apoptosis. Lessons from an unconvertible mutant. J Biol Chem 1998, 73:35353-35359.

59. Shaw TJ, Lacasse EC, Durkin JP, Vanderheyden BC. Downregulation of XIAP expression in ovarian cancer cells induces cell death in vitro and in vivo. Int J Cancer 2000, 122:1430-1434.

60. Lj J, Feng Q, Kim JM, Scheniderman D, Liston P, Li M, Vanderheyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 2001, 142:370-380.

61. Greene BT, Thorburn J, Willingham MC, Thorburn A, Planap RP, Brechbiel MW, Jennings GG, K, Willson J, Torn FM, Torn SV. Activation of caspase pathways during iron chelator mediated apoptosis. J Biol Chem 2002, 277:25568-25575.

62. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Bio 2002, 157:441-453.

63. Busa JL, Nezlin J, Gelinet N, Weber C, Ponka P. Pyridoxal isocitronoyl hydrazone analogs induce apoptosis in hematopoietic cells due to their iron-chelating properties. Biochem Pharmacol 2003, 65:161-172.

64. Huang Z. Bel 2 family proteins as targets for anticancer drug design. Oncogene 2000, 19:6627-6631.

65. Paul KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinlin, L. Plowman J, Boyd MR. Display and analysis of pattern of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989, 81:1086-1092.

66. Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinstein LV, Weinstein JN, Myers TG, O' Brien PC, B, Johnson KB, Ruskin NA, Oldfield E, G, Li M, Vanderheyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 2001, 142:370-380.

67. Greene BT, Thorburn J, Willingham MC, Thorburn A, Planap RP, Brechbiel MW, Jennings GG, K, Willson J, Torn FM, Torn SV. Activation of caspase pathways during iron chelator mediated apoptosis. J Biol Chem 2002, 277:25568-25575.

68. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Bio 2002, 157:441-453.

69. Paul KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinlin, L. Plowman J, Boyd MR. Display and analysis of pattern of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989, 81:1086-1092.

70. Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinlin, L, Monks A, Scudiero DA, Welch L, Koutoukous KD, Chiusa AJ. Neural computing in cancer drug development: predicting mechanism of action. Science 1992, 258:847-854.

71. Boyd MR, Paul KD. Some practical considerations and applications of the National Cancer Institute in vivo anticancer drug discovery screen. Drug Dev Res 1995, 34:191-109.

72. Bates SE, Fojo AT, Weinstein JN, Myers TG, Alvarez M, Pauli KD, Chadner BA. Molecular targets in the National Cancer Institute drug screen. J Cancer Res Clin Oncol 1995, 121:493-500.

73. Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace A Jr, Kohn KW, Fojo T, Bates SE, Rubinlin LV, Anderson NL, Budalamin JK, van Osdol WW, Monks A, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Widdis RE, Paul KD. An information intensive approach to the molecular pharmacology of cancer. Science 1997, 275:343-349.
80. Viola Rhenals M, Reber MS, Reber M. Role of peroxidases, thiols and Bak/Bax in tumor cell susceptibility to Cu[DETC]2. Biochem Pharmacol 2007, 74:841-850.
81. Ma Y, Cao L, Kawabata T, Yoshino T, Yang BB, Okada S. Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med 1998, 25:568-575.
82. Harris ZH, Gitlin JD. Genetic and molecular basis of copper toxicity. Am J Clin Nutr 1996, 63:836S-841S.

Pre-publication history
The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2407/10/72/prepub

doi:10.1186/1471-2407-10-72
Cite this article as: Kim et al. Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells. BMC Cancer 2010 10:72.