Microstructure and sintering behavior of low temperature cofired Li$_{4/5}$Mg$_{4/5}$Ti$_{7/5}$O$_4$ ceramics containing BaCu(B$_2$O$_5$) and TiO$_2$ and their compatibility with a silver electrode†

Huanfu Zhou, * Xianghu Tan, Kangguo Wang, Wendong Sun, Hong Ruan and Xiuli Chen

Li$_{4/5}$Mg$_{4/5}$Ti$_{7/5}$O$_4$ (LMT) ceramics were prepared via a solid-state reaction method. The LMT ceramics, sintered at 1100 °C, presented good microwave dielectric properties with $\varepsilon_r = 22.8$, $Q \times f = 100$ 000 GHz and $\tau_f = -15.0$ ppm \degree^{-1}. BaCu(B$_2$O$_5$) (BCB) was added to lower the sintering temperature of the ceramics. The addition of BCB reduced the sintering temperature, but slightly degraded the microwave dielectric properties of the LMT ceramics. The 0.97LMT−0.03BCB ceramic showed a low sintering temperature of 900 °C and good microwave dielectric properties with an appropriate ε_r of 20.9, high $Q \times f$ of 42 104 GHz and negative τ_f of −24.0 ppm \degree^{-1}. TiO$_2$ was added to improve the ε_r and adjust the τ_f value. The 0.85(0.97LMT−0.03BCB)−0.15TiO$_2$ ceramic, sintered at 875 °C, showed good dielectric properties, with a high $Q \times f$ of 37 700 GHz, appropriate ε_r of 23.1 and near-zero τ_f of −5.9 ppm \degree^{-1}. Obviously, the 0.85(0.97LMT−0.03BCB)−0.15TiO$_2$ ceramic is a good candidate for low temperature co-fired ceramic devices.

1. Introduction

Recently, low temperature co-fired ceramic (LTCC) technology has been widely used in the large-scale integration of microwave dielectric devices. In LTCCs, the microwave dielectric materials must be sintered at a temperature below the melting point of Ag (961 °C). Furthermore, the materials should have excellent microwave dielectric properties (a high quality factor, an appropriate permittivity and a near-zero temperature coefficient of resonant frequency) and good chemical compatibility with Ag. A huge number of ceramics with the AB$_2$O$_4$ spinel structure have been reported to exhibit good microwave dielectric properties, such as Li$_2$MgTi$_3$O$_8$, Mg$_2$TiO$_4$ and Li$_2$MgTiO$_4$. However, their high sintering temperatures have limited their further application to LTCC devices. Therefore, many researchers are trying to lower the sintering temperatures of microwave dielectric ceramics. Sintering aids, super-fine powders and low melting point materials have all been used to realize low temperature sintering of ceramics. The addition of sintering aids can degrade the microwave dielectric properties of the ceramics, but do not increase their production cost. Using super-fine powders increases the production cost, but does not decrease the performance. It is difficult to find a new low melting point material.

In this paper, Li$_{4/5}$Mg$_{4/5}$Ti$_{7/5}$O$_4$ (LMT) spinel ceramics were designed to obtain new microwave dielectric materials with good properties. The phase composition, microstructure and microwave dielectric properties of Li$_{4/5}$Mg$_{4/5}$Ti$_{7/5}$O$_4$ (LMT) spinel ceramics were studied. LMT ceramics exhibit high sintering temperatures, which restrict their further application. In order to control the production cost, the method of adding sintering aids has been widely adopted to lower the sintering temperature of LMT ceramics. Zhou et al. reported that the addition of BaCu(B$_2$O$_5$) (BCB) could lower the sintering temperature of ceramics. Their Ba$_3$Ti$_5$Nb$_6$O$_{28}$ ceramic, containing 5.0 wt% BCB and sintered at 925 °C, exhibited good microwave dielectric properties of $Q \times f = 19$ 191 GHz, $\varepsilon_r = 38.2$ and $\tau_f = 12$ ppm \degree^{-1}. Therefore, in this study, BCB was added to LMT ceramics to lower their sintering temperatures, and the effects of BCB on the sintering temperature and microwave dielectric properties of the ceramics are discussed herein. Furthermore, TiO$_2$ was added to the LMT ceramics to improve their permittivity and adjust the temperature coefficient of resonant frequency to near-zero. The effects of TiO$_2$ addition on the phase composition and microwave dielectric properties of the LMT + BCB ceramics were also examined.
2. Experimental procedure

LMT ceramics were prepared via a conventional solid-state reaction method using high purity powers of Li$_2$CO$_3$ (\equiv99%), MgO (\equiv99%) and TiO$_2$ (\equiv99%). The raw materials were stoichiometrically weighed and ball milled with zirconia balls in alcohol medium for 4 h. The mixtures were then rapidly dried and calcined at 900 °C for 4 h. The high purity powders (\equiv99%) of Ba(OH)$_2$, 8H$_2$O, CuO and H$_3$BO$_3$ were used to prepare the BCB powders. The powders were stoichiometrically weighed, mixed, dried and calcined at 800 °C for 4 h. The LMT powders were mixed with different amounts of BCB for 4 h, and then part of the 0.97LMT–0.03BCB powders were mixed with different levels of TiO$_2$ for 4 h. The (1 – x)LMT–xBaCu(0 ≤ x ≤ 0.04) and (1 – y)[0.97LMT–0.03BCB]–yTiO$_2$ (0.05 ≤ y ≤ 0.20) powders were granulated with 5 wt% polyvinyl alcohol (PVA) and pressed into disks of 12 mm in diameter and 6 mm in thickness using a uniaxial pressure of ~200 MPa. Finally, the disks were sintered in the temperature range of 825–1025 °C for 4 h.

The crystalline phases of the samples were identified using X-ray diffraction (XRD) with Cu Kα radiation generated at 40 kV and 40 mA (Model X’Pert PRO, PANalytical, Almelo, Holland). The surface morphology of the ceramics was studied using scanning electron microscopy (SEM) (Model JSM6380-LV SEM, Jeol, Tokyo, Japan). The bulk density of the sintered ceramics was tested using the Archimedes method. Dielectric behaviors at microwave frequencies were measured using the TE$_{010}$ shielded cavity method on a Network Analyzer (Model N5230A, Agilent Co., CA, 10 MHz to 40 GHz). The temperature coefficients of resonant frequency (τ_f) were measured using the open cavity method with an invar cavity in a temperature chamber (DELTAG939, Delta Design, USA). The τ_f values were calculated using the following formula:

$$\tau_f = \frac{f_T - f_0}{f_0(T - T_0)}$$ \hspace{1cm} (1)

where f_T and f_0 are the resonant frequencies at temperatures T (85 °C) and T_0 (25 °C), respectively.

3. Results and discussion

3.1 Phase structure and microwave dielectric properties of LMT ceramics

Fig. 1 presents the XRD patterns of the LMT ceramics sintered at different temperatures. It can be seen that all the observed peaks were indexed according to Li$_4$MgTi$_3$O$_8$ (PDF: 00-048-0263). The reasons for this phenomenon are as follows. Firstly, LiMg$_{1/2}$Ti$_{3/2}$O$_4$ and Mg$_2$TiO$_4$ might be formed according to the following reaction mechanism: 0.4Li$_2$CO$_3 + 0.8$MgO + 1.4TiO$_2 \rightarrow 0.8$LiMg$_{1/2}$Ti$_{3/2}$O$_4 + 0.4$CO$_2 + 0.2$Mg$_2$TiO$_4$. It is worth noting that the cation sizes of LiMg$_{1/2}$Ti$_{3/2}$O$_4$ and Mg$_2$TiO$_4$ are similar, and the mismatch (Vr) was calculated as 1.2% (~15%). Furthermore, LiMg$_{1/2}$Ti$_{3/2}$O$_4$ and Mg$_2$TiO$_4$ had a similar structure (spinel structure). Therefore, 1/2Li$_2$Mg$_{1/2}$Mg$_{1/4}$Ti$_{3/4}$TiO$_4$ could be replaced with Mg, and LMT solid solution might be formed according to the following reaction mechanism: 0.8LiMg$_{1/2}$Ti$_{3/2} + 0.2$Mg$_2$TiO$_4 \rightarrow$Li$_{4/5}$Mg$_{4/5}$Ti$_7$O$_{16}$. The SEM micrographs of the LMT ceramics are shown in Fig. S1.† With increasing the sintering temperature from 1050 °C to 1100 °C, the merging of the small grains gave rise to larger grains and eliminated the pores, leading to an increased average grain size and decreased porosity. By further increasing the sintering temperature, the average grain size increased, because grains continued to arise. On the other hand, the velocity of the grain boundary was too fast when the sintering temperature was too high, making the elimination of pores difficult, so the porosity increased. The change in porosity resulted in a change of the bulk density.

Fig. 2 illustrates the bulk density (ρ), permittivity (ε_r) and quality factor ($Q \times f$) of the LMT ceramics sintered at different temperatures. The ρ of the LMT ceramics firstly increased and then decreased with increasing the sintering temperature. The change of the ε_r and $Q \times f$ of the LMT ceramics as a function of the sintering temperature showed a trend similar to that of the ρ, showing that the relative density had a crucial effect on the ε_r and $Q \times f$. The LMT ceramics sintered at 1100 °C possessed good microwave dielectric properties with a high $Q \times f$ of 100 000 GHz, an appropriate ε_r of 22.8 and a negative τ_f of ~15 ppm °C$^{-1}$. The high sintering temperature limited the further application of LMT in LTCC devices, so BaCu(B$_2$O$_5$)$_3$ (BCB) was chosen to reduce the sintering temperature of the ceramics.

![Fig. 2](image-url)
3.2 The effects of BCB addition on the sintering temperature and microwave dielectric properties of LMT ceramics

Fig. S2† shows the room-temperature XRD patterns of the \((1 - x)\)LMT\(-x\)BCB \((0.01 \leq x \leq 0.04)\) ceramics. The XRD patterns of all components were similar to that of LMT, and all observed peaks of \((1 - x)\)LMT\(-x\)BCB were indexed according to Li2MgTi3O8 (PDF: 00-048-0263). Due to the low content of BCB in the \((1 - x)\)LMT\(-x\)BCB ceramics, it could not be detected using XRD. Fig. S3† presents the SEM micrographs of the \((1 - x)\)LMT\(-x\)BCB ceramics. The porosity increased and the average grain size decreased with increasing BCB content, which illustrates that the addition of BCB played a key role in changing the microstructure of the \((1 - x)\)LMT\(-x\)BCB ceramics.

The \(\rho\), \(\varepsilon\), and \(Q \times f\) of the \((1 - x)\)LMT\(-x\)BCB ceramics as a function of the sintering temperature are illustrated in Fig. 3. The \(\rho\), \(\varepsilon\), and \(Q \times f\) of the \((1 - x)\)LMT\(-x\)BCB ceramics first increased and then decreased with increasing sintering temperature. With increasing the BCB content, the sintering temperature of the \((1 - x)\)LMT\(-x\)BCB ceramics gradually decreased, because BCB has a low sintering temperature (~810 °C). With increasing the BCB content, \(\rho\) of the \((1 - x)\)LMT\(-x\)BCB ceramics slowly decreased, because the porosity of the \((1 - x)\)LMT\(-x\)BCB ceramics increased. The phase composition has a great effect on the microwave dielectric properties of multiphase systems.20,21 Compared with LMT, BCB has relatively poor microwave dielectric properties, with \(\varepsilon\) of 7.4, \(Q \times f\) of 50 000 GHz and \(\tau_f\) of ~32 ppm °C\(^{-1}\). Therefore, the \(\varepsilon\) decreased from 21.1 to 20.9 and \(Q \times f\) decreased from 58 807 GHz to 30 405 GHz. Table 1 shows that the \(\tau_f\) decreased from 28.5 ppm °C\(^{-1}\) to 24.0 ppm °C\(^{-1}\) with increasing BCB content. The addition of BCB lowered the sintering temperature but also deteriorated the microwave dielectric properties of the ceramics. In particular, the 0.97LMT\(-0.03\)BCB ceramics showed a low sintering temperature of 900 °C and good microwave dielectric properties with an appropriate \(\varepsilon\) of 20.9, a high \(Q \times f\) of 42 104 GHz and a more negative \(\tau_f\) of ~24.0 ppm °C\(^{-1}\).

In order to adjust the \(\tau_f\) of the 0.97LMT\(-0.03\)BCB ceramic, \((1 - y)\)0.97LMT\(-0.03\)BCB\(-y\)TiO\(_2\) \((y = 0.05, 0.10, 0.15, 0.20)\) systems were designed.

3.3 The effects of TiO\(_2\) addition on the sintering temperature and microwave dielectric properties of LMT + BCB ceramics

The room-temperature XRD patterns of the \((1 - y)\)0.97LMT\(-0.03\)BCB\(-y\)TiO\(_2\) \((y = 0.05, 0.10, 0.15, 0.20)\) ceramics are shown in Fig. 4(a). When \(y = 0.05\)–0.15, all XRD patterns agreed well with those of Li2MgTi3O8 (PDF: 00-048-0263) and MgTiO3 (PDF: 01-079-0831), and no other phases could be detected. When \(y = 0.05\), the composition was \((1 - 2)\)LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\)–2MgTiO\(_4\) as a solid solution and MgTiO\(_3\) might be formed according to the following reaction mechanism: Mg\(_2\)TiO\(_4\) + TiO\(_2\) \(\rightarrow\) 2MgTiO\(_3\). When \(y = 0.10\) or 0.15, Mg\(_2\)TiO\(_4\) disappeared and Li\(_{4/3}\)Ti\(_{5/3}\)O\(_4\) appeared. LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\) and Li\(_{4/3}\)Ti\(_{5/3}\)O\(_4\) had similar crystal structures and ionic radii, so these compounds could form solid solutions. The composition was \((1 - m)\)LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\)–\(m\)Li\(_{4/3}\)Ti\(_{5/3}\)O\(_4\) as a solid solution. When \(y = 0.20\), the diffraction peak of the MgTiO\(_3\) (PDF: 00-020-0694) phase at lower angle regions of 20–30° was observed, due to the addition of excessive TiO\(_2\). MgTiO\(_3\) may be formed according to the following reaction mechanism: MgTiO\(_3\) + TiO\(_2\) \(\rightarrow\) MgTiO\(_2\).

Fig. 4(b) and (c) show the ternary phase diagrams of the Li2O–MgO–TiO\(_2\) systems and the enlarged patterns of the Mg\(_2\)TiO\(_4\)–Mg\(_2\)Ti\(_2\)O\(_5\)–Li\(_{4/3}\)Ti\(_{5/3}\)O\(_4\) concentration triangle, respectively. The ternary phase diagrams were used to identify the change in phase composition. The group point moved along the red line, dashed to the TiO\(_2\) point with increasing TiO\(_2\) content. When \(y = 0\) or 0.05, the group point was located in the Mg\(_2\)TiO\(_4\)–LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\)–Mg\(_2\)Ti\(_2\)O\(_5\) concentration triangle. With increasing \(y\) value, the group point is far away from the Mg\(_2\)TiO\(_4\) and LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\) points but closer to the Mg\(_2\)Ti\(_2\)O\(_5\) point, indicating that the relative content of Mg\(_2\)TiO\(_4\) and LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\) decreased, but the relative content of Mg\(_2\)Ti\(_2\)O\(_5\) increased. Furthermore, compared with the Mg\(_2\)TiO\(_4\) point, the group point was closer to the Mg\(_2\)Ti\(_2\)O\(_5\) point, which indicates that the relative content of Mg\(_2\)TiO\(_4\) decreased in \((1 - 2)\)LiMg\(_{1/2}\)Ti\(_{3/2}\)O\(_4\)-2MgTiO\(_4\). Because the relative content of Mg\(_2\)TiO\(_4\), with a large ionic

![Fig. 3](https://example.com/image3.png)

Fig. 3 The bulk density (\(\rho\)), permittivity (\(\varepsilon\)), and \(Q \times f\) of the \((1 - x)\)LMT\(-x\)BCB ceramics as a function of their sintering temperatures.

Condition	The optimum sintering temperature (°C)	\(\tau_f\) (ppm °C\(^{-1}\))	
\((1 - x)\)LMT\(-x\)BCB	\(x = 0\)	1100	-15.0
	\(x = 0.01\)	1000	-17.3
	\(x = 0.02\)	975	-20.5
	\(x = 0.03\)	900	-24.0
	\(x = 0.04\)	900	-28.5
\((1 - y)\)0.97LMT\(-0.03\)BCB\(-y\)TiO\(_2\)	\(y = 0.05\)	875	-21.1
	\(y = 0.10\)	875	-9.6
	\(y = 0.15\)	875	-5.9
	\(y = 0.20\)	900	-15.0
radius, decreased in \((1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4\), the unit cell parameters of \((1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4\) decreased. When \(y = 0.10\) and 0.15, the group point was located in the \(\text{MgTi}_2\text{O}_5 - \text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - \text{Li}_4\text{Ti}_5\text{O}_4\) concentration triangle. With increasing \(y\) value, the group point is far away from the \(\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4\) point but closer to the \(\text{Li}_4\text{Ti}_5\text{O}_4\) point and \(\text{MgTi}_2\text{O}_5\) point, indicating that the relative content of \(\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4\) decreased, but the relative content of \(\text{MgTi}_2\text{O}_5\) and \(\text{Li}_4\text{Ti}_5\text{O}_4\) increased. Compared with the \(\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4\) point, the group point was closer to the \(\text{Li}_4\text{Ti}_5\text{O}_4\) point when \(y = 0.20\), the group point was located in the \(\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - \text{Li}_4\text{Ti}_5\text{O}_4 - \text{MgTi}_2\text{O}_5\) concentration quadrilateral, implying the formation of \(\text{MgTi}_2\text{O}_5\). Furthermore, the group point continued to approach the \(\text{Li}_4\text{Ti}_5\text{O}_4\) point for the \(\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4\) and \(\text{MgTi}_2\text{O}_5\) points, which means that the formation of \(\text{MgTi}_2\text{O}_5\) increased.

The SEM micrographs of the \((1 - y)[0.97\text{LMT} - 0.03\text{BCB}] - y\text{TiO}_2\) \((y = 0.05, 0.10, 0.15, 0.20)\) ceramics are given in Fig. S4†. Compared with the undoped-TiO\(_2\) \(0.97\text{LMT} - 0.03\text{BCB}\) ceramic, the average grain size of the \(0.95[0.97\text{LMT} - 0.03\text{BCB}] - 0.05\text{TiO}_2\) ceramic was decreased, because the phase composition had changed as follows: \(\text{BCB} \text{ and LMT solid solutions, } y = 0 \rightarrow \text{BCB, } (1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4 \text{ solid solution and } \text{MgTi}_2\text{O}_5, y = 0.05\). With increasing the amount of \(\text{TiO}_2\) added from 0.05 to 0.20, the phase composition changed as follows: \(\text{BCB, } (1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4 \text{ solid solution and } \text{MgTi}_2\text{O}_5, y = 0.05 \rightarrow \text{BCB, } (1 - m)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - m\text{Li}_4\text{Ti}_5\text{O}_4 \text{ solid solution and } \text{MgTi}_2\text{O}_5, y = 0.10 \rightarrow \text{BCB, } (1 - m)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - m\text{Li}_4\text{Ti}_5\text{O}_4 \text{ solid solution, } \text{MgTi}_2\text{O}_5, y = 0.20\). The average grain size of \((1 - y)[0.97\text{LMT} - 0.03\text{BCB}] - y\text{TiO}_2\) gradually increased, but the porosity of the ceramics first decreased and then increased. Overall, the density of the ceramics increased first and then decreased. Furthermore, the EDS analysis of the 0.85[0.97\text{LMT} - 0.03\text{BCB}] - 0.15\text{TiO}_2 \text{ ceramic is inserted in Fig. S4.†}

Fig. 4 (a) Room-temperature XRD patterns of \((1 - y)[0.97\text{LMT} - 0.03\text{BCB}] - y\text{TiO}_2\) \((y = 0.05, 0.10, 0.15, 0.20)\) ceramics. (b) Ternary phase diagrams of \(\text{Li}_2\text{O} - \text{MgO} - \text{TiO}_2\) systems. (c) Enlarged patterns of the \(\text{Mg}_2\text{TiO}_4 - \text{MgTi}_2\text{O}_5 - \text{Li}_4\text{Ti}_5\text{O}_4\) concentration triangle.

The \(\rho, \varepsilon_r\) and \(Q\) of the \((1 - y)[0.97\text{LMT} - 0.03\text{BCB}] - y\text{TiO}_2\) ceramic as a function of the sintering temperature are demonstrated in Fig. 5. With increasing the sintering temperature, the \(\rho, \varepsilon_r\) and \(Q\) of the \((1 - y)[0.97\text{LMT} - 0.03\text{BCB}] - y\text{TiO}_2\) ceramic presented a similar trend. When the \(\text{TiO}_2\) content was increased from 0 to 0.05, the phase composition changed from BCB and LMT solid solution to a BCB, \((1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4\) solid solution and \(\text{MgTi}_2\text{O}_5\), and the bulk density and microwave dielectric properties of ceramics changed as follows: \((\rho \sim 3.39 \text{ g cm}^{-3}, Q \times f \sim 42 104 \text{ GHz}, \varepsilon_r \sim 20.9, \text{ and } t_f \sim 24.0 \text{ ppm C}^{-1}) \rightarrow (\rho \sim 3.41 \text{ g cm}^{-3}, Q \times f \sim 35 300 \text{ GHz}, \varepsilon_r \sim 21.9, \text{ and } t_f \sim 21.1 \text{ ppm C}^{-1})\). When the amount of \(\text{TiO}_2\) added was increased from 0.05 to 0.15, \(\rho\) and \(Q \times f\) increased because the porosity decreased. By further increasing the amount of \(\text{TiO}_2\) added to 0.20, \(\rho\) and \(Q \times f\) decreased due to the existence of \(\text{MgTi}_2\text{O}_5\) and the increase in porosity.

The \(\varepsilon_r\) of the multiphase system was related to the phase composition. However, the polarizability also played an important role in the \(\varepsilon_r\) of each phase. The polarizability \((\alpha_{BCB})\) of \((1 - z)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - 2\text{Mg}_2\text{TiO}_4\) \((z\text{ decreased from 0.2 to 0.0})\) and \((1 - m)\text{LiMg}_{1/2}\text{Ti}_{3/2}\text{O}_4 - m\text{Li}_4\text{Ti}_5\text{O}_4\) \((m\text{ increased from 0 to positive value})\) was calculated as follows:
\[\alpha = \chi_{Li^+} + \alpha_{Li^+} + \chi_{Mg^{2+}} + \alpha_{Mg^{2+}} + \chi_{Ti^{4+}} + \alpha_{Ti^{4+}} + \chi_{O^{2-}} + \alpha_{O^{2-}} \]

(2)

where \(x_{Li^+} \), \(x_{Mg^{2+}} \), \(x_{Ti^{4+}} \) and \(x_{O^{2-}} \) are the mole numbers of \(Li^+ \), \(Mg^{2+} \), \(Ti^{4+} \) and \(O^{2-} \), respectively. \(\alpha_{Li^+} (1.20) \), \(\alpha_{Mg^{2+}} (1.32) \), \(\alpha_{Ti^{4+}} (2.93) \) and \(\alpha_{O^{2-}} (2.01) \) are the ion dielectric polarizability values of \(Li^+ \), \(Mg^{2+} \), \(Ti^{4+} \) and \(O^{2-} \), respectively.\(^{21,24}\)

The polarizability values of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) and \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \) could be expressed as: \(\alpha_z = 14.30 - 0.69z \) and \(\alpha_m = 14.30 + 0.23m \). \(\alpha_z \) increased with decreasing \(z \) value and \(\alpha_m \) increased with increasing \(m \) value. The permittivity \((\varepsilon_r) \) of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) and \((1-m) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \) could be calculated as follows:

\[\varepsilon_r = \frac{3V_f + 8\alpha_z}{3\varepsilon_r - 4\pi\alpha_z} = 1 + \frac{12\pi}{\varepsilon_r - 4\pi} \]

(3)

where \(V_f \) is the molar volume of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) or \((1-m) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \). For the unit cell parameters of the ceramics, \(V_f \) decreased with increasing TiO_2 content. The formula (3) shows that the \(\varepsilon_r \) of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) increased with increasing \(\alpha_z \) (or \(\alpha_m \)) and decreasing \(V_f \). The increase of the \(\varepsilon_r \) of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) (or \((1-m) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \)) improved the \(\varepsilon_r \) of \((1-y)[0.97LMT - 0.03BCB] - y TiO_2 \). So, the \(\varepsilon_r \) increased from 21.9 to 23.1 with increasing the TiO_2 content from 0.05 to 0.15. When the TiO_2 content increased to 0.20, the \(\varepsilon_r \) decreased to 22.0, due to the existence of MgTi_2O_5.

The phase composition is the key factor affecting the \(\tau_f \) in multiphase systems. The \(\tau_f \) of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) increased with a decrease in the \(z \) value and the \(\tau_f \) of \((1-m) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \) increased with an increase in the \(m \) value, because Li_3Ti_5O_4 exhibited a positive \(\tau_f \) (15 ppm °C⁻¹), LiMg_{1/2}Ti_{3/2}O_4 showed a near-zero \(\tau_f \) (3.2 ppm °C⁻¹) and Mg_2TiO_4 presented a negative \(\tau_f \) (−50 ppm °C⁻¹).\(^{27,28}\)

With increasing the \(y \) value from 0.05 to 0.15, the \(\tau_f \) increased from −21.1 ppm °C⁻¹ to −5.9 ppm °C⁻¹, because the \(\tau_f \) of \((1-z) LiMg_{1/2}Ti_{3/2}O_4 - z Mg_2TiO_4 \) and \((1-m) LiMg_{1/2}Ti_{3/2}O_4 - m Li_4Ti_5O_{12} \) Ti_5O_4 increased. However, the \(\tau_f \) decreased to −15 ppm °C⁻¹ due to the existence of MgTi_2O_5, which had a negative \(\tau_f \) when \(y \) was increased to 0.20.\(^{29}\)

The 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic sintered at 875 °C exhibited good properties with a small \(\rho \) of 3.42 g cm⁻³, high \(Q \times f \) of 37 700 GHz, moderate \(\varepsilon_r \) of 23.1 and near-zero \(\tau_f \) of −5.9 ppm °C⁻¹, satisfying the requirements of microwave devices, such as a light weight, low loss, miniaturization and high stability. To identify whether the 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic could be used in LTCC, the chemical compatibility between the 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic and Ag powders was investigated. An XRD pattern and a backscatter electron image of 0.85[0.97LMT–0.03BCB]–0.15TiO_2 with 20 wt% Ag powder sintered at 875 °C are displayed in Fig. 6. The results show that the 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic did not react with the Ag powder. The 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic showed good chemical compatibility with Ag. The results indicate that the 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic is a good commercial LTCC material.

4. Conclusion

LMT ceramics have been prepared using a solid-state reaction method and excellent microwave dielectric properties were obtained in ceramics sintered at 1100 °C. The addition of BCB could reduce the sintering temperature of the ceramics to 900 °C, TiO_2 was introduced to improve the \(\varepsilon_r \) and \(\tau_f \) values. The \(Q \times f \), \(\varepsilon_r \) and \(\tau_f \) values firstly increased and then decreased with increasing the TiO_2 content. The 0.85[0.97LMT–0.03BCB]–0.15TiO_2 ceramic exhibited a low sintering temperature (~875 °C), good microwave dielectric properties (\(Q \times f \) = 37 700 GHz, \(\varepsilon_r = 23.1 \) and \(\tau_f = -5.9 \) ppm °C⁻¹) and chemical

Fig. 5 The bulk density (\(\rho \)), permittivity (\(\varepsilon_r \)) and \(Q \times f \) values of the \((1-y)[0.97LMT–0.03BCB]–y TiO_2 \) (\(y = 0.05, 0.10, 0.15, 0.20 \)) ceramics as a function of their sintering temperatures.

Fig. 6 XRD pattern and backscatter electron image of 0.85[0.97LMT–0.03BCB]–0.15TiO_2 with 20 wt% Ag powder sintered at 875 °C.
compatibility with silver powder, indicating that it is a promising candidate material for LTCC devices.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 11464009, 61764008 and 11364012), Natural Science Foundation of Guangxi (No. 2015GXNSFDA139033), and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

References

1. D. Zhou, W. B. Li, H. H. Xi, L. X. Pang and G. S. Pang, *J. Mater. Chem. C*, 2015, 3, 2582.
2. K. C. Li, H. Wang and H. F. Zhou, *Int. J. Appl. Ceram. Technol.*, 2010, 7, E144.
3. W. Lei, W. Z. Lu and X. C. Wang, *Ceram. Int.*, 2012, 38, 99.
4. H. L. Pan, Q. Q. Liu, Y. H. Zhang and H. T. Wu, *RSC Adv.*, 2016, 6, 86889.
5. H. Wu and E. S. Kim, *RSC Adv.*, 2016, 6, 47443.
6. J. R. Kim, D. W. Kim, H. S. Jung and K. S. Hong, *J. Eur. Ceram. Soc.*, 2006, 26, 2105.
7. Y. G. Zhao and P. Zhang, *RSC Adv.*, 2015, 5, 97746.
8. X. Y. Du, H. Su, H. W. Zhang, X. T. Liu and X. L. Tang, *RSC Adv.*, 2017, 7, 27415.
9. G. G. Yao, P. Liu and H. W. Zhang, *J. Mater. Sci.: Mater. Electron.*, 2013, 24, 1128.
10. C. L. Huang and S. S. Liu, *J. Alloys Compd.*, 2009, 471, L9.
11. C. Pei, G. Yao, P. Liu and J. Zhou, *Mater. Lett.*, 2016, 184, 57.
12. Z. Zhou, H. Su, X. Tang and H. Zhang, *Ceram. Int.*, 2016, 42, 11161.
13. Z. H. Yao, H. X. Liu and Z. Y. Shen, *Mater. Res. Bull.*, 2006, 41, 1972.
14. J. J. Bian, Q. Yu and J. J. He, *J. Eur. Ceram. Soc.*, 2017, 37, 647.
15. H. F. Zhou, H. Wang, Y. H. Chen, K. C. Li and X. Yao, *Mater. Chem. Phys.*, 2009, 113, 1.
16. J. B. Lim, K. H. Cho and S. Nahm, *Mater. Res. Bull.*, 2006, 41, 1868.
17. X. Tang, H. Yang, Q. L. Zhang and J. H. Zhou, *Ceram. Int.*, 2014, 40, 12875.
18. Z. Q. Yuan, B. Liu, X. Q. Liu and X. M. Chen, *RSC Adv.*, 2016, 6, 96229.
19. X. W. Jiang, L. Fang, H. C. Xiang and H. H. Guo, *Ceram. Int.*, 2015, 41, 13878.
20. J. J. Bian, K. Yan and H. B. Gao, *Mater. Chem. Phys.*, 2006, 96, 349.
21. S. Wu, K. Song, P. Liu, H. Lin and F. Zhang, *J. Am. Ceram. Soc.*, 2015, 98, 1842.
22. M. H. Kim, J. B. Lim, J. C. Kim and S. Nahm, *J. Am. Ceram. Soc.*, 2006, 89, 3124.
23. H. I. Hsiang and S. H. Chung, *J. Alloys Compd.*, 2008, 465, 356.
24. R. D. Shannon, *J. Appl. Phys.*, 1993, 73, 348.
25. Y. C. Chen, H. M. You and K. C. Chang, *Ceram. Int.*, 2014, 41, 5257.
26. H. L. Pan, Q. Q. Liu, Y. H. Zhang and H. T. Wu, *RSC Adv.*, 2016, 6, 86889.
27. R. K. Bhuyan, T. S. Kumar and D. Goswami, *Mater. Sci. Eng., B*, 2013, 178, 471.
28. W. Li, *J. Alloys Compd.*, 2017, 701, 295.
29. V. M. Ferreira, F. Azough and R. Freer, *J. Mater. Res.*, 1997, 12, 3293.