Equilibrium between Yttrium and Oxygen in Liquid Iron and Nickel

Fujio Ishii and Shiro Ban-Ya

Synopsis: In order to investigate the equilibrium between yttrium and oxygen in liquid iron and nickel, the deoxidation of yttrium in liquid iron and nickel saturated with yttria has been measured at the temperature ranges from 1600°C to 1700°C using the sampling technique.

The effect of temperature on the equilibrium constant of the deoxidation reaction in liquid iron was found to be:

log $K_{\text{Y(Fe)}} = \frac{\alpha Y \cdot \alpha O}{\%Y \cdot \%O}$

while the deoxidation product of iron, log $K_{\text{Y(Fe)}}$, was expressed as follows:

$log K_{\text{Y(Fe)}} = log K_{\text{Y(Fe)}} - (17350/T + 3.14) \%Y + 11.1 \%O$ $0.02 < \%Y < 0.11$

by the use of the interaction parameter, $e_{YO(Fe)} = -17350/T + 3.14$.

The temperature dependence of the equilibrium constant for the deoxidation of nickel, log $K_{\text{Y(Ni)}}$, was given by the expression:

$log K_{\text{Y(Ni)}} = -36250/T + 6.36$

Besides, the deoxidation product of nickel was represented to be:

$log K_{\text{Y(Ni)}} = log K_{\text{Y(Ni)}} + 0.47(\%Y + 11.1 \%O)$ $0.01 < \%Y < 0.11$

with the interaction parameter, $e_{YO(Ni)} = -6.47$.

Key words: deoxidation equilibrium; yttrium; iron; nickel; deoxidation product; interaction parameter; superalloy.

1. 緒言

近年開発された改良一方向凝固用Ni基超合金では、微量成分としてB, Zrなどに加えて, HFやYが添加されている。
これら合金の耐食性などに関する研究によれば(1)-(4), HFやYは粒界析出による析出強化のほか, 高温環境において生成した酸化物膜のcracking及びspallingの抑制などを著しく改善する, あるいは流放の固定など, すなわち, Ni基超合金の高温における材料特性に重要な役割を担っている元素である。

しかしながら, これらの元素については, 最適の添加量が部分的に明らかにされつつあり, その一例として0.02~0.08mass%との報告(5)もあるが, 一般には公表されにくい研究分野でもあり詳細は不明である。

しかしながら, 例えばCoにYを添加するとCo合金は著しく強度の劣化をきたす, また, 0.13mass%以上を含有する鉄でも同様な事実を本研究においても確認している。したがって, 高温特性改善のためHFやYを添加するには, 合金溶製時に希望する最適の添加量を得ること, さらに, これから元素による非金属介在物の発生量を低く抑えるためにも, 溶融Ni中のYと酸素の挙動を明らかにしておく必要がある。

溶融鉄中のYに関する研究は, 従来, 硫化物の形態制御の研究(6)-(10)においてRare Earth Metalの一部として利用されようであるが, 酸素との関係としては耐食性(11)-(12)など材料特性に関するものが主体であり, 被密に関するものは僅かにBuzekの報告(13)があるのみである。

著者らはNi基超合金の製造に関する基礎的な研究の一として脱酸平衡を取り上げ, 溶融NiおよびNi合金について一連の研究結果を報告(14)-(21)した。本研究は溶融鉄およびNi中のY-酸素間の平衡関係を明らかにすることを目的として, Y_2O_3調和におけるYによる脱酸平衡を測定したものであり, 前報のHF(11)および本研究のYについては, 研究当初より計画していた目的の元素である。

2. 実験方法

本研究で使用した実験装置および方法は前報(21)と同様であるので, その概要を述べる。

2・1 実験装置と使用材料

平成5年12月2日受理 平成6年2月4日受理 (Received on Dec. 2, 1993; Accepted on Feb. 4, 1994)

* 東北大学工学部 (Faculty of Engineering, Tohoku University, Aza-Aoba Aramaki Aoba-ku Sendai 980)
*2 東北大学工学部（現: 秋田工業高等専門学校）(Faculty of Engineering, Tohoku University, now Akita National College of Technology)
実験結果および考察

3-1 イットリウムによる脱酸平衡式
溶融金属のYによる脱酸の反応式は、脱酸生成物がY₂O₃ (S) であるので (1) 式、その平衡定数は (2) 式で表される。

\[Y_2O_3(s) = 2Y + 3O \quad \text{(1)} \]
\[K_{YOM} = \frac{a_Y^2}{a_{Y_2O_3}} \quad \text{(2)} \]

上式中、Yと酸素の活量 \(a_Y \) 、 \(a_O \) は濃度をmass%で表し、活量の基準を無希薄性に取れ、活量 \(a_{Y_2O_3} \) は固体Y₂O₃を基準とする。本研究では \(a_{Y_2O_3} \approx 1 \) とみなせるので、\(K_{YOM} \) は活量係数を用いる (2) 式と淵する。また、脱酸の混度 \(K_{YOM} \) は (3) 式で示されるので、(2) 式に組み合わせ、\(e_Y^f = M_Y/M_O = 5.55 \) を代入して整理すると、\(\log K_{YOM} \) は (4) 式で示される。

\[\log K_{YOM} = \log K_{YOM} - 2 \log f_O - 3 \log f_Y = \log K_{YOM} - (2e_Y^f + 3e_O^f) [\% O] - (2e_Y^f + 3e_O^f) [\% O] \quad \text{(3)} \]
\[\log K_{YOM} = \log K_{YOM} - (2e_Y^f + 3e_O^f) [\% O] \quad \text{(4)} \]

3-2 鉄-イットリウム-酸素系
Yによる溶融鉄の脱酸平衡式は (4) 式より (5) 式で表される。

\[e_Y^f = -1750/T + 0.76 \quad \text{(6)} \]

本研究の測定温度範囲では酸素濃度が[\% O] < 0.05mass%
3

Fig. 2. Plot of log \(K_{X(Fe)} \) vs. (3 [%Y] + 11.1 [%O]) in liquid iron.

Fig. 3. Temperature dependence of log \(K_X(Fe) \).

Fig. 4. Relation of log \(K_{Y(Fe)} \)-log \(K'_{Y(Fe)} \) against 3 [%Y] + 11.1 [%O] in liquid iron.
Table 1. Interaction parameters in liquid iron at 1600°C.

	Conc. range (mass%)	Temp. dependence [Temp. range(°C)]	Investigators	
e_{Si}	-1.17	0.002-0.08	Kohde et al.²⁴	
e_{Al}	-0.66	<3	Matoba et al.²⁴	
e_{Y}	-1.12	<1	Fruehan²⁴	
e_{Zr}	-2.1	<0.2	Kitamura et al.²⁴	
e_{Cr}	-0.28	0.07-1.2	Buzek²⁴	
e_{Fe}	-5.85	0.01-0.1	1600-1700	Ban-ya et al.²⁴
e_{Y}	-0.14	<12	-1050/T+0.42	
e_{Si}	-0.12	<3	-3440/T+1.717	
e_{Al}	-0.1	<2	-1830/T+0.874	
e_{Zr}	-1.3	Buzek²⁴		
e_{Cr}	-1.5	0.01-1.85	17250/T+3.144	
e_{Fe}	-6.12	0.02-0.11	1600-1700	This work

Fig. 5. Equilibration between Y and O in liquid iron.

公式を示す。

Table 1. Interaction parameters in liquid iron at 1600°C.

	Conc. range (mass%)	Temp. dependence [Temp. range(°C)]	Investigators	
e_{Si}	-1.17	0.002-0.08	Kohde et al.²⁴	
e_{Al}	-0.66	<3	Matoba et al.²⁴	
e_{Y}	-1.12	<1	Fruehan²⁴	
e_{Zr}	-2.1	<0.2	Kitamura et al.²⁴	
e_{Cr}	-0.28	0.07-1.2	Buzek²⁴	
e_{Fe}	-5.85	0.01-0.1	1600-1700	Ban-ya et al.²⁴
e_{Y}	-0.14	<12	-1050/T+0.42	
e_{Si}	-0.12	<3	-3440/T+1.717	
e_{Al}	-0.1	<2	-1830/T+0.874	
e_{Zr}	-1.3	Buzek²⁴		
e_{Cr}	-1.5	0.01-1.85	17250/T+3.144	
e_{Fe}	-6.12	0.02-0.11	1600-1700	This work

Fig. 6. Deoxidation equilibria with various elements in liquid iron.

Fig. 7. Plot of log K$_{Y(\text{O})}$ vs. (3[%Y]+11.1[%O]) in liquid nickel.
Fig. 8. Temperature dependence of log $K_{X(Ni)}$.

$$
\log K_{Ni(Ni)} = -15680/T + 1.83^{(14)} \quad (14)
$$
$$
\log K_{Al(Ni)} = -28770/T + 1.67^{(28)} \quad (15)
$$
$$
\log K_{Y(Ni)} = -33800/T + 8.40^{(21)} \quad (16)
$$

すなわち、鉄の場合と同じようにAlの結果に近い値である。Fig. 7の直線の勾配は相互作用係数$e_{X^{2}}$の値を示し、(12)式にしたがって、$\log K_{X(Ni)}$−$\log K_{Y(Ni)}$で整理するとFig. 9となる。最小自乗法により各温度の傾きとして、-6.45−-6.50の範囲であったので、本研究の温度範囲では-6.47と

Fig. 9. Relation of $\log K_{Y(Ni)}$−$\log K_{X(Ni)}$ against $3[\% Y]+11.1[\% O]$ in liquid nickel.

Fig. 10. Equilibration between Y and O in liquid nickel.

Fig. 11. Deoxidation equilibria with various elements in liquid nickel.

イオン	Concentration range (mass%)	Temperature range (°C)	Researchers
Y^2	0.01−1.2	1550−1700	Ishii et al. $^{(28)}$
Al^3	0.01−2.0	1500−1650	Ishii et al. $^{(14), (13), (28)}$
Y^+	0.01−0.1	1600−1750	Ban-ya et al. $^{(21)}$
O	0.01−0.11	1600−1700	This work

Fig. 11 is the equilibration between Y and O in liquid nickel.

Fig. 10 is the temperature dependence of log $K_{X(Ni)}$.

Table 2. Interaction parameters in liquid nickel at 1600°C.

Fig. 11. Deoxidation equilibria with various elements in liquid nickel.

5.
\[
\begin{align*}
\log K_{Y(0)} &= -36160/T + 7.33 \\
\log K_{Y(0)} &= \log K_{Y(0)} - (17350/T + 3.14) \\
&= 3[\%Y] + 11.1[\%O] \\
&< 0.02 < \text{mass}\%Y < 0.11
\end{align*}
\]

2) 溶融Niでは脱酸の平均定数および濃度積は次式で示される。

\[
\begin{align*}
\log K_{Y(0)} &= -36250/T + 6.36 \\
\log K_{Y(0)} &= \log K_{Y(0)} + 6.47(3[\%Y] + 11.1[\%O]) \\
&< 0.01 < \text{mass}\%Y < 0.11
\end{align*}
\]

終わりに当たり、Y₂O₃を提供下さった三井造船（株）・出川通博士、吉澤石灰工業（株）の関係各位、ならびに純金属を提供下さったIHIII（株）・松田謙治氏に御礼申し上げます。酸化生成物の同定に御援助いただいた東北大学素材研究所・早稲田研究室の方々、ならびに東北大学材料加工学科・マイクロアナライザー室の田中泰三氏に感謝いたします。また、研究遂行に当時学部学生として御協力いただいた国鳥孝之（日新製鋼（株））および水口智司（日鉄共石（株））の両氏に感謝いたします。試料の化学分析および本稿の作成に御協力いただいた東北大学工学部技官・本津正氏に感謝いたします。

文 献
1) J.M.N’G. Muamba, R. Streiff and D.H. Boone : Mater. Sci. Eng., 88 (1987), p.11
2) A.W. Funkenbusch, J.G. Smeggil and N.S. Bornstein : Metall. Trans. A, 16A (1985), p.1164
3) J.G. Smeggil, A.W. Funkenbusch and N.S. Bornstein : Metall. Trans. A, 17A (1986), p.923
4) J. Jedlinski, K. Godlewski and S. Mrowec : 2nd Intern. Symp. on High Temp. Corr. of Advanced Materials and Coatings, II, Les Embiez, France, (1989), p.22
5) G.H. Meier and F.S. Pettit : 10th Intern. Conf. on Metall. Coatings, San Diego, California, (1989), p.17
6) S.O. Mancuso, F.E. Sczerzenie and G.E. Mavrer : Superalloys, 1988, Pennsylvania, USA, (1988), p.18
7) S.B. Maslenkov, N.N. Burova and V.V. Xangulov : Metall. Alloys Term Obrab. Met., 4 (1980), p.45
8) 松田謙治：私信
9) L. Wang and T. Du : Iron Steel, 20 (1985), p.9
10) A.V. Senin and G.G. Mikhailov : Izv. V. U. Z Chernaya Metall, (1986), p.4
11) T. Dan and K. Gunji : Trans. Nat. Res. Inst. Met. (Jpn), 26 (1984), p.188
12) M.B. Movchan : Adv. Spec. Electrometall., 3 (1987), p.249-252
13) Z. Buzek : Proc. Intern. Symp. of Metall. Chem., ISI, London (1971), p.173
14) 石井不二夫，篠谷志郎：鋼と鍛，75 (1989), p.2188
15) F. Ishii and S. Ban-ya : ISIJ International, 32 (1992), p.1091
16) 石井不二夫，篠谷志郎：鍛と鍛，77 (1991), p.384
17) F. Ishii and S. Ban-ya : ISIJ International, 33 (1993), p.245
18) 石井不二夫，篠谷志郎：鍛と鍛，77 (1991), p.1274
19) F. Ishii and S. Ban-ya : ISIJ International, 32 (1992), p.1097
20) F. Ishii and S. Ban-ya : The P.E. Queneau International Symp., Proce., Vol. I, Fundamental Aspects, Ed. by R.G. Reddy and R.N. Weizenbach, (1993), p.59
21) 篠谷志郎，石井不二夫，大塚大悟郎：78 (1992), p.1449
22) T. B. Massalski : Binary Alloy Phase Diagrams, Vol.2, 2nd ed., (1990), p.2832, p.2885, p.2937 [ASM Intern.]
23) 製鉄鉄反応の推定値 改訂版（日本鋼学振興会製鉄第19委員会編），(1984), p.106, p.262
24) 製鉄反応の推定値 改訂版（日本鋼学振興会製鉄第19委員会編），(1984), p.259
25) H.A. Wriedt and J. Chipman : J. Metall. Trans., 8 (1956), p.1195
26) E.S. Tankins, N.A. Gokcen and G.R. Belton : Trans. Metall. Soc. AIME, 230 (1964), p.820
27) J.E. Bowers : J. Inst. Met., 90 (1961/62), p.321
28) 石井不二夫，篠谷志郎：材料とプロセス，2 (1989), p.145