The application of the electrodynamics of Born to
the theory of the propagation of light in
electromagnetic fields [Engl. transl. of kand. diss.
(Ph.D. thesis), 1936]

Adrian Anatol’evich Smirnov [16.11.(O.S. 3.11.)1908-6.12.1992]
Ural Physico-Technical Institute, Sverdlovsk

Full source details:
Адриан Анатольевич Смирнов [Adrian Anatol’evich Smirnov]: Применение электродинамики Борна к теории распространения света в электромагнитных полях [Primenenie elektrodinamiki Borna k teorii rasprostraneniya sveta v elektromagnitnykh polyakh]/[The application of the electrodynamics of Born to the theory of the propagation of light in electromagnetic fields]. Кандидатская диссертация [Kandidat-skaya dissertatsiya]/[Ph.D. thesis], Московский государственный университет [Moskovskii gosudarstvennyi universitet]/[Moscow State University], Moscow, 1936, 67 pp.. [in Russian]

Translator:
K. Scharnhorst (E-mail: k.scharnhorst@vu.nl,
ORCID: http://orcid.org/0000-0003-3355-9663),
Vrije Universiteit Amsterdam, Faculty of Sciences, Department of Physics and Astronomy, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
Contents

English translation of the thesis
- Contents of the English translation of the thesis .. P-4
- Text [pp. T-1 - T-67 (= P-5 - P-71)] .. T-1

Supplementary information
- Translator’s notes .. P-73
- Noticed misprints .. P-73
- Acknowledgements .. P-74
- Literature .. P-75
 - Full details of the cited literature ... P-75
 - Further references .. P-76

Original Russian text of the thesis
- Contents of the thesis ... P-80
- Text [pp. 1-67 (= P-81 - P-147)] ... 1

Facsimile of the original thesis
- P-149
Adrian Anatol’evich Smirnov
[16.11.(O.S. 3.11.)1908-6.12.1992] [1, 2]

The application of the electrodynamics of Born to the theory of the propagation of light in electromagnetic fields

English translation of:
Применение электродинамики Борна к теории распространения света в электромагнитных полях [Primenenie èlektrodinamiki Borna k teorii rasprostraneniya sveta v èlektromagnitnykh polyakh].

Кандидатская диссертация
[Kandidat-skaya dissertatsiya]/[Ph.D. thesis], Московский государственный университет [Moskovskii gosudarstvennyi universitet]/[Moscow State University], Moscow, 1936, 67 pp.. [in Russian]

Thesis advisor: С. П. Шубин [S. P. Shubin] [31.7.(O.S. 18.7.)1908-20.11.1938] [3, 4].

Thesis defense: 28.6.1936 (approved: 17.2.1937), Moscow State University (source: [5], p. 120, item 656).
Contents of the English translation of the thesis

First page T-1

Chapter I T-2

§ 1 ... T-2
§ 2 ... T-6
§ 3 ... T-10
§ 4 ... T-13
§ 5 ... T-18
§ 6 ... T-21
§ 7 ... T-24
§ 8 ... T-25

Chapter II T-31

§ 1. Introduction T-31
§ 2. A plane wave of light in a homogeneous electrostatic field T-33
§ 3. "Scattering" of light off the constant field of a plane capacitor T-48
§ 4. A plane wave of light in a homogeneous magnetic field T-55
§ 5. Two plane waves in vacuo T-59

Note T-67
THE APPLICATION OF THE ELECTRODYNAMICS OF BORN TO THE THEORY OF THE PROPAGATION OF LIGHT IN ELECTROMAGNETIC FIELDS.

A.A. Smirnov.

The subject of the present dissertation consists in the consideration of some problems of the theory of the electromagnetic field proposed recently by Born and Infeld¹. We will pursue these considerations exclusively within the classical /not the quantum/ variant of the theory; the question how the set-up of the problems studied changes in course of the quantization of the field is not discussed by us. The dissertation is split into two parts. In the first part, we give a general review of the current state of the Born theory hereby not dwelling on certain particularities of the calculations, but trying to reveal the basic course of thought, only. In particular, we are trying to find out which general questions should be clarified yet in order to obtain a better understanding of the value of the theory and its further perspectives – hereby, of course, by far not aiming at giving an answer onto these questions within the present dissertation.

The second part contains details of the solution of three examples for the application of the electrodynamics of Born

¹/ M. Born. Proc. Roy. Soc. 143. 1934. 410
 M. Born and L. Infeld. Proc. Roy. Soc. 144. 1934. 425
 " " " 147. 1934. 522
 " " " 150. 1935. 141
 E. Schrödinger Proc. Roy. Soc. 150. 1935. 465
onto the theory of the propagation of light in electromagnetic fields. In these examples, the specific deviations from the laws of Maxwell electrodynamics, predicted by the Born theory, show up in a particularly clear way, deviations of a completely different nature than those that are related to the well-known quantum effects.

Chapter I

§ 1. For the first time, the works of Born and Infeld gave a solution of a problem having occupied much the minds of theoreticians in the first twenty years of the XX century - the problem, within the framework of classical electrodynamics, of constructing a so-called "classical/or unitary/ theory of field and matter" 1/.

The basic idea of an unitary theory - in its most radical/partially even deliberately overstretched/ understanding - consists therein that the existence of any electrically charged particle can completely be described as a special state of the electromagnetic field. The standard scheme, more or less uniquely dictated, for the construction of such a theory looks, in the most general terms, - the following way.

1/ We are applying here the terminology established among physicists according to which "field" and "matter" are contrasted. From out a general philosophical point of view, such a terminology, of course, does not withstand a critique because the electromagnetic field itself is also matter, as any reality, existing objectively outside of consciousness.
The laws of the electromagnetic field, best expressed in the form of a variational principle, are taken at the foundation. As usual, the field is described by two vectors - an electric and a magnetic one; its Lagrangian is a function of these quantities. From the variational principle, as Euler-Lagrange equations, the so-called field equations derive whereby, in performing the variation, usually the additional assumption of the existence of a four-dimensional vector potential is introduced whose components also serve as variable functions/. These equations immediately allow to obtain the conservation laws for the electromagnetic field by introducing the concept of the electromagnetic energy and the electromagnetic force of motion /momentum/.

The decisive step - the inclusion of matter into the theory is done the following way. A certain class of solutions of the field equations is being considered, and in particular such solutions for which in some chosen coordinate system the magnetic vector is equal to zero and the electric vector - relatively symmetric. Due to the very structure of the field equations these two conditions are sufficient to determine the type of the solution completely*); just one constant factor remains arbitrary. The physical state described by some solution of this class is interpreted as a state corresponding to the presence of an electrically charged material particle at rest at the origin of the chosen reference system. The remaining arbitrary factor determines, as is being said, the total charge of our particle; this quantity is absolutely not fixed by the theory.

*) Recently, a new variant of an unitary theory has been proposed by Infeld where this uniqueness does not occur (cf. the example at the end).
The concrete meaning of the phrase: "the given state is being interpreted as a state corresponding to the presence of a particle" mainly consists therein that the coordinates of the particle /or, its "center"/ are defined in terms of the coordinates of the "special point" of the solution and the mechanical energy and the mechanical momentum of the particle are defined in terms of the total energy and the total momentum corresponding to the considered state of the field, respectively. The meaning of these quantities of course depends on the choice of the reference system; in particular, in the initial system, i.e. in the system relative to which the particle is at rest, the total momentum is zero /without this fact the mechanical interpretation would of course be impossible/, the total energy just represents the relativistic rest energy of the considered particle.

After the basic concepts of mechanics have been introduced this way, it is necessary to establish its laws /of mechanics/ in order to have a complete theory. Within the given framework, one can obviously demand an answer from these laws on one question only: How do the energy and the momentum of the particle, or, more generally the state of the field characterising the presence of a particle change under the influence of external electromagnetic fields?

In such a limited set-up of the problem, the laws of mechanics can be obtained, at least in principle, as a special case of the variational principle of electromagnetism established at the very beginning as starting point, and this way the theory can be considered complete.

Such a kind of framework, if used in a sensible manner, is "ideal" in that sense that only quantities characterizing the field are playing the role of the basic quantities introduced into the theory from the very beginning.
As within the framework of Maxwell electrodynamics, the realization of this scheme has been impossible for well-known reasons, besides it also other schemes of constructing an unitary theory have been considered which one could call more "compromising", in a well-known relative sense. In particular, the theories of Abraham and Lorentz laid out in many textbooks are constructed on the basis of such "compromising" schemes. These theories deviate from the sketched programme in that sense that, from the very beginning, besides the concepts of electric and magnetic vectors concepts characterizing charges — of course only covering their electric properties — and, foremost, the concept of the charge density have been introduced. Instead of more abstract concepts of particles as special states of a field, Abraham and Lorentz held ideas that were more descriptive at first sight: A particle was considered as a "charged ball", i.e. as being characterized by a certain electric density distribution in a relatively small volume /whereby the size of its "radius" has been determined by means of the well-known relation \(r_0 \sim \frac{e^2}{mc^2} / \). Hereby, in difference to an "ideal" scheme a well-known ambiguity entered into the theory because even under the assumption of a radial symmetry of the particle the charge distribution "inside" of it could exhibit a most diverse character. Of course, this additional freedom has been watered down by the fact that different hypotheses on the internal "structure" of particles did not have any influence on the principle side of the conclusions drawn from the theory.
As is well-known, the development of the ideas of Abraham and Lorentz has led to a number of difficulties later on /s. § 3 of this chapter/ and the only successful unitary theory existent so far - Born-Infeld theory - is just built on the basis of an "ideal scheme". We have recalled here the "compromising" theories mainly for the purpose of emphasizing that also in these theories the introduction of the basic concepts of mechanics has been carried out based on exactly the same foundation just mentioned, namely, by means of the identification of the energy and momentum of the electromagnetic field of a particle with its mechanical energy and mechanical momentum. This way, just this identification should be considered as the central point of any unitary theory. For this reason, a unified theory of matter and field is often called a "theory of electromagnetic mass".

§ 2. To which extent can the guiding idea of an unitary theory be considered to be physically justified?

Within the framework of classical physics, the answer onto this question seems to be more or less clear. The fact that any electric charge has an electromagnetic energy and an electromagnetic momentum, which necessarily have to be taken into account in writing down the conservation laws for any system this charge belongs to, is for a classical theory completely indisputable.
Indeed, it derives from the most fundamental foundations of Maxwell electrodynamics. From this, however, it does by far not follow that the whole mass of any charged particle is of a purely electromagnetic origin as an unitary theory maintains. Indeed, experience shows that no material particle exists all whose properties are exhausted by the fact that these particles are electrical charges. Even putting aside gravitation /in general, in this dissertation, problems of gravitational actions are absolutely not considered/, we know for sure that besides electromagnetism and gravity another completely different type of force exists which binds the atomic nucleus together. Incidentally, the classical theory asserts that the "source" of the mass of a material particle is not only the electromagnetic field but also any force field created by it (gravity, as said further above, is excluded).

This way, in the radical form spelled out by us in § 1 an unitary theory does certainly not correspond to physical reality. Irrespective of this, its study nevertheless is useful taking into account the following considerations. First, it exists such a type of material particles - electrons /and positrons/ which, as much as presently is known to us, are a source of only two types of force fields: electromagnetic and gravitational. Hereby, there are all reasons to assume that the gravitational field created by the electron exerts a comparatively small influence on the laws governing the behaviour of it. Therefore, an unitary theory basically has to be considered to be applicable to electrons; in any case, it is completely natural to try to construct such a theory for electrons. It is not strange that the, in essence, completely obvious fact that any
unitary, purely electromagnetic theory, in particular also Born-Infeld theory, is the "largest" theory of the electron is being disputed in the literature up to now\(^1\). Second, an unitary theory has besides a direct physical also a deep methodological significance. In fact, the whole development of theoretical physics allows to believe that the construction of a theory for different force fields can be performed by means of methods basically analogous to each other. Therefore, the theory of "pure electricity", i.e. imagined particles which are only electrical charges, can be considered as a prototype of a theory of real particles serving as sources of highly diverse fields. Presently, the conviction rules among theoreticians that this assertion is applicable in general also to those recently discovered forces acting between heavy particles - protons and neutrons and which are responsible for the stability of the atomic nucleus.\(^2\) With respect to the latter generalization one has to mention, of course, that the proton-neutron interaction can apparently, in general, be expressed in terms of a field theory using the quantum language only. We will not dwell on the analysis of this question here because it does not have any direct relation to our subject; we only mention that the comment made just serves as a reminder of the basic fact that the true laws of the microworld are not

\(^1\) See the comment by Born and Schrödinger in Nature 1935.
\(^2\) See, e.g. the article of W. Heisenberg in the Zeeman Festschrift, 1935.
classical but quantum laws, a fact which plays a decisive role in all these questions discussed here also without any mention of it. Therefore, any theory dealing with the behaviour of the elementary particles of matter and not taking into account these laws can at best be considered as something temporary, i.e. as a transitory stage to another, more correct theory.

Today, a relativistic quantum electrodynamics does not exist yet. It is well-known that the basic difficulty standing in the way of its development - the so-called "infinite self-energy problem" - is the analogue of that difficulty that up to the works of Born classical physics could not, at least not in any satisfactory manner, overcome in attempting the construction of an unitary theory of field and matter. A priori, two points of view are possible on the approach by means of which this difficulty is being resolved in the following. One can hold to the point of view that first a correct theory of the electromagnetic mass should be built within the framework of classical ideas whose translation to the quantum language performed by means of recipes analogous to the well-known recipes of "quantization" also will yield the true relativistic micro-electrodynamics. From this point of view, the study of the construction of Born is of fundamental interest for all the further development of science. However, one also may apply that point of view according to which the path of the classical analogue, however fruitful it has been during all the preceding period of the quantum theory, has fundamentally exhausted itself and the removal of the difficulties standing in the way
of the further development of this theory should and will be achieved along certain new, on principle, paths. From out this point of view, the study of the theory of Born can be considered more of less decidedly as a waste of time. Presently, we do not have any clear criterion which would allow us to decide which of these two mentioned points of view is closer to the truth. In any case, there are good reasons to first explore the known path of the analogy with classical physics - either this leads to success, or in the lesser case, will help to clarify at which point this path ceases to be reliable.

§ 3. After this small excursion we return directly to our subject again.

In § 1, we have sketched the "ideal" scheme for constructing an unitary theory of matter and field. According to this scheme, the only freedom which remains in the hands of a theoretician trying to construct an unitary theory consists in the choice of the Lagrangian of the field. Hereafter, once this choice has been made, everything else already follows more or less automatically /if one assumes the existence of a four-dimensional vector potential, in order to not depart too much from the Maxwellian scheme/. In this context, it is naturally to ask oneself: Which requirements should the Lagrangian of the theory fulfill in order to in fact realize the programme sketched further above? Essentially, this question has
to be answered first in critically studying the theory. It would mean pedantry attempting to list all these requirements; it is more useful to mainly concentrate onto those which really significantly constrain the class of admissible Lagrangians. One can list at least six of them. We will number them by means of Latin letters.

/a/. The theory should be relativistically and gauge invariant. The first half of the requirement does not need any comments. The second half of it means that the four-dimensional vector-potential should play a purely auxiliary role in the theory. The existence of this potential should be considered as an abbreviated notation of certain properties inherent to the electromagnetic field /concretely - to the first group of the Maxwell equations/.

/b/ The equations should allow such solutions as mentioned in § 1, namely, if the magnetic field is equal to zero the electric field is radially symmetric and the solution contains one arbitrary constant which can be identified with the charge. Without this it would be extremely difficult to introduce charged particles into the theory in a natural manner.

/c/ In the coordinate system in which the condition /b/ is fulfilled the total angular momentum should be equal to zero and the total energy should be finite. As is well-known, the Maxwell theory did not fulfill the second condition. The Abraham-Lorentz theories
being based on an artificially introduced concept of the "radius of the electron" fulfilled it. But, on the other hand they were bad in that they did not fulfill the following fourth requirement without whose applicability, again, the theory cannot be constructed. This fourth requirement reads: /d/. The identification of the electromagnetic quantities with the mechanical angular momentum and energy should have a relativistically invariant character.

As we will see further below, this condition whose necessity is obvious is by far not fulfilled automatically. Its violation leads to a violation of the relativistic invariance of the theory in its mechanical part what occurred, as is well-known, within the theory of Lorentz. If these four conditions are fulfilled an unitary theory can, in principle, be constructed. However, in order to give it a physical meaning it is necessary that those basic equations of electromagnetism and mechanics which it leads to, in any case, approach the Maxwell-Lorentz and Einstein equations, respectively, in the known limit. Hereby, the limit, of course, is not determined by quantum arguments /which are absolutely not discussed here/ but by certain other considerations. We will, therefore, demand the following yet: /e/ If, in constructing the theory, one has to modify the
Maxwell equations these equations should, despite this, remain correct in the known limit, i.e. classical electrodynamics should this or that way be contained in the new theory. An analogous condition should apply also with respect to the new equations of mechanics: In a certain limit they should go over into the equations of relativistic mechanics of Einstein.

§ 4. Born and Infeld succeeded in constructing a Lagrange function fulfilling all six requirements listed above. We will try to briefly recall their line of thought. The variational principle serving, as always, as starting point of the theory has the form

$$\delta \int L \, d\tau = 0 ,$$

where $$d\tau = dx^1 dx^2 dx^3 dx^4$$.

In order to fulfill the first half of the requirement /a/ the quantity $$L \, d\tau$$ should be an invariant in the sense of the general theory of relativity. Consequently, we should have

$$L \, d\tau = \text{Inv} .$$

How should $$L$$ transform to achieve this? The well-known answer to this
reads: L should transform as an expression of the form

$$\sqrt{|a_{ik}|}$$

where $|a_{ik}|$ is the determinant constructed from the covariant components of an arbitrary 2nd rank tensor.

According to the basic idea of the theory /see § 1/, the Lagrange function should depend on the components of the field tensor f_{ik} 1/ and, obviously, on the components of the metric tensor g_{ik} because the theory is constructed within the framework of the general principle of relativity. Taking this into account it is natural to search L among the expressions of the type

$$\sum_A \mathit{A}_\alpha \sqrt{\sum_B \mathit{B}_{\alpha\beta} |a_{ik}^{(\alpha\beta)}|},$$

where A_α and $B_{\alpha\beta}$ are invariants, and $a_{ik}^{(\alpha\beta)}$ are tensor components somehow depending on f_{ik} and g_{ik}.

Born and Infeld give two expressions of the type /4/ which, standing at the foundation of the theory, fulfill all six requirements laid out above, namely:

1/ Other quantities characterizing the electromagnetic field, e.g. the components of the vector-potential, cannot enter for the requirement of gauge invariance which, this way, is fulfilled in this theory automatically.
\[L_1 = \sqrt{-|g_{ik} + f_{ik}|} - \sqrt{-|g_{ik}|} \]
(5)

\[L_2 = \sqrt{-|g_{ik} + f_{ik}| + |f_{ik}|} - \sqrt{-|g_{ik}|} \]
(6)

or

\[L_1 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + F^2 - G^2 - 1} \right) \]
(7)

\[L_2 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + F^2 - 1} \right), \]
(8)

where

\[F = \frac{1}{2} f_{ik} f^{ik} \]
(9)

\[G = (f_{23} f_{14} + f_{31} f_{24} + f_{12} f_{34}) \frac{1}{\sqrt{-|g_{ik}|}} \]
(10)

also are spatial invariants.

In these formulas the fields are, of course, expressed in relative units. For the transition to the usual units, we should introduce into the formulas a factor "b" having the dimension of a field strength. Then, for example, the formula /8/ assumes the form

\[L_2 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + \frac{f_{ik} f^{ik}}{2b^2} - 1} \right). \]
(11)

Also the formula /7/ can be rewritten in an analogous manner. In the following, it turns out that the constant "b" plays the role of a "critical" field, in a sense in an analogous manner as the velocity of light plays the role of a critical velocity in relativity theory. The order of magnitude of "b"
turns out to be extremely large - of the order of magnitude of 10^{16} abs. units.

One easily sees that for fields small in comparison with the "critical" field b both Lagrange functions of the theory of Born go over into the Lagrange function of Maxwell, i.e. the requirement /e/ is fulfilled. We recall that in the Maxwell theory the Lagrangian assumes the form:

$$
\frac{1}{4} \sqrt{-|g_{ik}|} \ f_{ik} f^{ik}
$$

which is also in accord with the general formula /4/. The principle difference between this formula /12/ and /5/ and /6/ consists in the fact that for Maxwell in /12/ under the root only the metric tensor remains while the components of the field tensor enter one of the invariants A_{α} only. In the theory of Born, as is visible from the formulas /5/ and /6/, quantities characterising the field and the metric as well are standing under the root and the invariants A_{α} and $B_{\alpha\beta}$ turn out to be simple numbers. As will become clear in the following, this fact essentially impacts the shape of the new field equations making them nonlinear in the fields in difference to the Maxwell equations.

To which extent is the choice of the functions /5/ and /6/ unique and how, at all, can the question concerning the uniqueness be posed in the present case?

It is completely clear that just the requirement of the relativistic invariance of the action integral is by far not sufficient to choose uniquely even the type of the Lagrangian.¹

¹ The comment by Born, that the usual choice of the Lagrangian in the form $\text{Inv} \cdot \sqrt{-|g_{ik}|}$ where Inv only depends on f_{ik} is "formal", hardly is important because even the criterion of "formality" is fairly unclear. We just mention that one of the expressions recommended by Born himself - namely the expression /6/ - also belongs to the type criticised by him as is particularly clearly visible from /8/.
If we supplement it by the requirement of the limiting transition to the Maxwell theory yet this already considerably narrows the class of admissible Lagrangians. However, also this does not yield, of course, a complete uniqueness of the choice: It is sufficient just to mention the existence of the three functions /7/, /8/, and /12/.

It would be interesting to find out whether it would be sufficient to add to these two requirements the requirement of the finiteness of the energy of a particle yet in order to fix the general type of the Lagrange function at least. More narrowly, this question can be put as follows: Do such Lagrangians exist which obey all the six requirements given in § 3 and which, at the same time, differ essentially from the expressions /5/ and /6/.* We note that the expressions /5/ and /6/ are essentially of the same type and lead, in a number of cases, even to completely identical results. Indeed, this is the case in the elementary static problem. Also, in all the cases of weak fields which we will be interested in in the second chapter the difference between these results is apparently inessential. Only for strong fields /near charged particles/ the results which both Lagrangians lead us to are essentially different and the question, which of these functions one has to prefer, can only be solved by means of a comparison of the consequences of the theory with the experimental facts. In the following, we will exclusively use the function /8/.

*) See the comment at the end.
§ 5. And now, the Lagrange function is chosen. In the Descartes coordinate system of special relativity it has the form:

\[L = \sqrt{1 + F} - 1. \]

(13)

The further development of the theory proceeds according to the "ideal" scheme explained in § 1. The existence of a four-vector-potential \(\phi_i \) is postulated obeying the condition:

\[f_{ik} = \frac{\partial \phi_k}{\partial x^i} - \frac{\partial \phi_i}{\partial x^k}. \]

(14)

This is equivalent to establishing the first system of field equations:

\[\frac{\partial f_{ik}}{\partial x^l} + \frac{\partial f_{kl}}{\partial x^i} + \frac{\partial f_{li}}{\partial x^k} = 0. \]

(15)

The Euler equations for the variational principle \(\delta \int L \, d\tau = 0 \) yield the second group of field equations:

\[\frac{\partial}{\partial x^k} \frac{\partial L}{\partial f_{ik}} = 0, \]

(16)

which are, as mentioned, nonlinear in the fields in view of the fact that \(L \) is not a quadratic function of the fields as this is the case in the Maxwell theory. Introducing the induction tensor

\[P_{ik} = \frac{\partial L}{\partial f_{ik}}, \]

(17)

we can rewrite the second group of field equations in the form

\[\frac{\partial P_{ik}}{\partial x^k} = 0. \]

(18)
One can construct the energy-momentum tensor T_{ik} starting from the field equations /15/ and /16/ by means of exactly the same method as in the classical electrodynamics of Maxwell-Lenard and, by means of it, obtain the conservation laws:

$$\frac{\partial T^l_i}{\partial x^l} = 0 \quad ,$$

where

$$T^l_i = \delta^l_i L - f_{ik}P^l_k .$$

We find now the field equations and the conservation laws in vector form. We denote the spatial vectors characterizing the electromagnetic field in the usual Heaviside units by B, E, D and H *). We set:

$$\begin{align*}
 f_{23}, f_{31}, f_{12} & \rightarrow B \\
 f_{14}, f_{24}, f_{34} & \rightarrow E \\
 P_{23}, P_{31}, P_{12} & \rightarrow H \\
 P_{14}, P_{24}, P_{34} & \rightarrow D
\end{align*}$$

Then,

$$L = \sqrt{1 + F} - 1 \quad ,$$

where

$$F = \frac{1}{b^2} (B^2 - E^2) .$$

Furthermore,

$$\begin{align*}
 H &= b^2 \frac{\partial L}{\partial B} = \frac{B}{\sqrt{1 + F}} \\
 D &= - b^2 \frac{\partial L}{\partial E} = \frac{E}{\sqrt{1 + F}}
\end{align*}$$

*) For the vector quantities, here and in the following no special notation is introduced.
and the field equations assume the form of the Maxwell equations in a medium, however, without charges and currents:

\[
\begin{align*}
\text{rot} \, E + \frac{1}{c} \dot{B} &= 0 \\
\text{div} \, B &= 0 \\
\text{rot} \, H - \frac{1}{c} \dot{D} &= 0 \\
\text{div} \, D &= 0
\end{align*}
\] (24)

or, if in the two latter equations, instead of \(H\) and \(D\), their expressions /23/ in terms of \(B\) and \(E\) are inserted, finally the system of field equations assumes the form:

\[
\begin{align*}
\text{rot} \, E + \frac{1}{c} \dot{B} &= 0 \\
\text{div} \, B &= 0 \\
\text{rot} \, B - \frac{1}{c} \dot{E} &= \frac{1}{2} \frac{1}{1+F} \left\{ [\text{grad} \, F, B] - \frac{1}{c} F E \right\} \\
\text{div} \, E &= \frac{1}{2} \frac{1}{1+F} \left(\text{grad} \, F, E \right)
\end{align*}
\] (25)

For the energy-momentum tensor, we obtain the table of components

\[
T^{i\ell} = \begin{bmatrix}
X_x & X_y & X_z & cG_x \\
Y_x & Y_y & Y_z & cG_y \\
Z_x & Z_y & Z_z & cG_z \\
\frac{1}{c} S_x & \frac{1}{c} S_y & \frac{1}{c} S_z & U
\end{bmatrix},
\] (26)

where

\[
\begin{align*}
X_x &= H_y B_y + H_z B_z - D_x E_x - b^2 L \\
Y_x &= X_y = -H_y B_x - D_x E_y \\
\frac{1}{c} S_x &= cG_z = D_y B_z - D_z B_y \\
U &= D E + b^2 L
\end{align*}
\] (27)
Hereby, the conservation laws assume the form:

\[
\begin{align*}
\text{div } X &= - \frac{1}{c^2} \frac{\partial S_x}{\partial t} \\
\text{div } S &= - \frac{\partial U}{\partial t}
\end{align*}
\]

(28)

As Born emphasizes, any pair of the four field vectors E, B, H and D can of course be chosen as independent variables. In dependence on this choice, we can obtain apparently different formulations of the theory with different Lagrangians which, however, of course lead in essence to one and the same field equations. Clearly, 4 of such formulations are possible. In the following, the most convenient formulation of the theory for us is that which we have also considered so far /i.e. where E and B are selected as independent vectors/, although also for any other choice the calculations would only become insignificantly more involved.

We note that for the construction of the quantum theory the choice of D and B as independent vectors turns out to be more convenient. Hereby, the role of the Lagrange function is played by the energy density \(U\) which according to the last formula /27/ is equal to:

\[
U = b^2 \left(\sqrt{\left(1 + \frac{D^2}{b^2}\right) \left(1 + \frac{B^2}{b^2}\right)} - 1 \right).
\]

(29)

§ 6. By means of the recipe laid out in § 1, we will find the solution of the field equations corresponding to the existence of a charged particle at rest at the origin of the coordinates.

According to what has been said in § 1, here we shall primarily set

\[
B = H = 0.
\]
By virtue of (24), this yields
\[\text{rot } E = 0 \quad ; \quad \text{div } D = 0 \] \quad (30)

whereby \(D \) and, consequently, also \(E \) do not depend on time.

We are looking for a radially symmetric solution of these equations, i.e. for such a solution for which both vectors \(E \) and \(D \) are directed radially and for which their value depends on \(r \) only.

The second of the equations (30) reads in spherical coordinates
\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 D_r \right) = 0 \]. \quad (31)

From it, completely uniquely, we obtain
\[D_r = \frac{e}{r^2} \], \quad (32)

where \(e \) is the only integration constant identified with the charge. This solution has a singularity at \(r=0 \). We also interpret the state of the field described by it as corresponding to the existence of a particle at the origin of coordinates.

The whole course of reasoning shows us that the condition (b) is fulfilled in the Born theory as it is in the Maxwell theory. Calculating the field \(E \) we find
\[E_r = \frac{e}{\sqrt{r^4 + r_0^4}}, \] \quad (33)

where
\[r_0 = \sqrt{\frac{e}{b}} \] \quad (34)

also represents a constant with the dimension of a length which, as becomes clear further below, will be, in a well-known sense, analogous to the electron radius in the Lorentz theory.
From equation (33), we see that the field E does not have any singularities. However, just the fact of the finiteness of E by far does not mean that there are no divergencies in the theory. In order to check whether for our solution the condition $/c/$ is fulfilled, one has to turn to direct calculations on the basis of the formulas $/27/$.

It is easy to see, and here we have a strong success in principle of the theory, that in the present case this condition is fulfilled. Indeed, in our case the momentum vanishes by virtue of $B=0$; the finiteness of the total energy $W=\int UdV$ is confirmed by direct calculations yielding for W the value:

$$W = 1,2361 \frac{e^2}{r_0}.$$ \hfill (35)

As said, this point is fairly essential. It shows that Born, staying within the frame of classical ideas, succeeded in overcoming the difficulty of the infinite self-energy of the electron hereby not relying on any artificial ideas about its "structure". Knowing the charge and the mass of the electron we can calculate the numerical value of the constant r_0:

$$r_0 = 1,2361 \frac{e^2}{m_0c^2} = 2,28 \cdot 10^{-13} \text{ cm.}$$ \hfill (36)

and, consequently, the numerical value of the "critical" field $"b"$:

$$b = \frac{e}{r_0^2} = 9,18 \cdot 10^{15} \text{ abs. units.}$$ \hfill (37)

From these formulas, it is clear that in the terminology of Lorentz we can interprete the quantity r_0 as the "radius"
of the electron, and the "critical" field "b" as the electrical field strength at its "surface". The value of this "critical field" is clearly an universal constant of the theory not depending on the charge e which, as already mentioned, is not fixed by any theory. Consequently, for any fixed e we obtain a completely determined r_0, and by virtue of /36/, a completely determined mass m_0. This remark convinces us that for a given charge e the theory of Born leads to one value of the mass m_0 only, i.e. it is a theory of only one sort of electron-particles. As is visible from this, to obtain a proton theory turns out to be impossible within the framework of the above considerations.

§ 7. We will now consider somewhat more closely the question dealt with in the formulation of the condition /d/, namely the question as how the electromagnetic quantities can be related to mechanical ones in a relativistically invariant manner.

As we have clarified already, for the construction of the mechanics in an unitary theory we need to identify, for the given type of the states of the field, the volume integral of the electromagnetic angular momentum, i.e. cG_x, cG_y, and cG_z, with the mechanical angular momentum of particles, and the energy density U with the total energy of the particles. In order to guarantee that such an identification was relativistically invariant it is necessary that these integrals would transform as components of a four-dimensional vector under Lorentz transformations. One can easily convince oneself that a necessary condition
for this consists in the vanishing of the volume integrals of the diagonal components X_x, Y_y, and Z_z, of the Maxwell stress tensor in a coordinate system at rest relative to the particles, i.e. one has the condition

$$\int X_x dV = \int Y_y dV = \int Z_z dV = 0 .$$ \hspace{1cm} (38)

In the Abraham - Lorentz theory, this condition was not fulfilled and the difficulty of constructing a relativistically invariant mechanics consisted, again, herein. The necessity of introducing forces of non-electric origin holding together the electron have been connected with just this problem because the resulting Maxwell stresses were different from zero.

The Born-Infeld theory is free of such difficulties. Directly inserting the solution /32/-/38/ into /27/ shows that the condition /38/ is fulfilled for this solution and, consequently, we can construct a relativistically invariant mechanics. In other words, there is no need of introducing forces holding together the electron because the resulting Maxwell stresses vanish. This way, in the electrodynamics of Born also the last condition imposed on an unitary theory is fulfilled on which even the best of the previous theories - the theory of Lorentz - showed its inconsistency.

§ 8. We sketch now the way by means of which one can obtain the laws of mechanics within the Born-Infeld theory. For this purpose, we clearly should consider the question how the solutions of

1) The integrals of the non-diagonal components of the tensor of the Maxwell stresses vanish in the theory of Lorentz as well as in the theory of Born.
the field equations interpreted by us in terms of the presence of an electron behave under the influence of an external field. We know that the equations of Born allow solutions corresponding to an electron at rest. Performing a Lorentz transformation of the coordinate system, we can obtain solutions corresponding to an electron moving rectilinearly and uniformly. Right, for the mechanics it would be desirable to know also such solutions which correspond to an acceleratedly moving electron, because such a motion is namely performed by the electron under the influence of external electromagnetic fields. In principle, one could construct a perturbation theory by taking the solution corresponding to a uniform and rectilinear motion as zeroth approximation and consider the influence of the acceleration as a small perturbation. However, it is well-known that taking into account the acceleration is important for the consideration of the radiation reaction of the own radiation of the electron only. If one is not interested in this effect it is completely sufficient to consider the solution corresponding to a vanishing acceleration. This is what we also will do. Clearly, such solutions of the equations of Born should serve as starting point of the theory which correspond to the simultaneous presence of an electron and an external field. Right, we have seen further above that in an unitary theory only certain solutions, which do not entail the presence of an additional external field, can be viewed as entailing the existence of a particle. This somehow changes our solution /32/ and /33/ (or those obtained from it by means of a Lorentz transformation) and it is a priori unclear of whether one can continue to speak of the presence of a particle at all. In other words, in the theory of Born such a case is conceivable in principle where the electron would apparently lose its
individuality under the influence of a field, where, completely roughly speaking, it would apparently be "destroyed". It is clear physically, however, that this sort of things can only happen in very strong fields (comparable to b), or – both are connected to each other, of course – for large accelerations of the electron. For small fields and accelerations, basically the influence of the field can apparently be described in classical terms, i.e. simply as "bringing the electron into movement". The mentioned difficulty is expressed in mathematical terms as follows. Let D_0 and B_0 \(^1\) be solutions of the equations of Born corresponding to the presence of an electron moving uniformly and rectilinearly along some world trajectory (The quantities characterizing the form of this trajectory play the role of parameters in the following considerations.). Let further D_{ext} and B_{ext} be a solution of these equations corresponding to an external field. Then in general, the sum of the form D_0+D_{ext} and B_0+B_{ext} does not represent any solution of the equations of Born – in view of their nonlinearity – for any choice of the world trajectory. Here, the effect of the distortion of the properties of the electron by the external field, specific to the theory of Born and alien to the classic theory, makes its appearance. If D_{ext} and B_{ext} are comparable to b – for example, if at a distance from our electron comparable to r_0 another electron is located –

\(^1\) It turns out that for doing the calculations it is here perhaps most convenient to use that formulation of the theory where D and B are chosen as independent variables and where the role of the Lagrangian is played by the energy density U.
this distortion effect plays a fundamental role in all phenomena, and it is not clear, a priori, how to perform any calculations. If D_{ext} and B_{ext} are small in comparison with b one can obviously put

$$D = D_0 + D_{ed} + D'; \quad B = B_0 + B_{\text{ext}} + B'$$

and search for D' and B' in terms of small corrections to the initial fields. The effect of distortion will be there, but it will be small. This is the simplest case considered by I.E. Tamm\(^1\) when the solution D_0 and B_0 corresponds to an electron at rest, and the solution D_{ext} and B_{ext} to a constant homogeneous electrostatic field. In this case $B = 0$; for the correction D' fairly simple equations are obtained which show that this correction is really small in a well-known sense: Namely, while at the center of the electron it is becoming infinite it remains much smaller than D_0 all the time; for large distances from the center holds $D' \ll D_{\text{ext}}$. Of course, for $b \to \infty$, D' approaches zero. It is important to have in mind that the solution of the type /39/ apparently exists for any world trajectory and the appearance of the corrections D' and B' does not have any direct connection to the fact that the electron gets into motion. Here from follows that starting with the field equations only, in general one cannot obtain the laws of the mechanics of the electron. Particularly clearly this is visible just from the example elaborated by Tamm which shows that the equations of Born also admit such solutions for which the electron is at rest irrespectively of the presence of the external field. This fact just in itself does not represent anything strange

\[\text{------------------------}\]

\(^1\) As I learned from a kind communication by him.
- in fact, it is physically completely conceivable to imagine such a case where the electron is kept on its place by certain forces of non-electric origin. Obviously, the existence of such forces cannot be taken into account in the very field equations which, in general, determine all electromagnetically possible states of the field and cannot, of course, say anything about under which conditions this or that of these states is realizable mechanically. This situation, however, by far does not mean that for obtaining the laws of mechanics it would be necessary to introduce into the theory certain independent new principles. As has been pointed out repeatedly in the course of the whole exposition, the explanation is that the basic foundation of the theory of Born is not represented by the field equations but by the variational principle. The content of this principle is by far not exhausted by the field equations; the latter determine the whole ensemble of extrema of the variational integral, but this integral does by far not have the same value for all extrema. Just thanks to this circumstance the variational principle is sufficient to not only obtain the laws of electrodynamics but also the laws of mechanics.

Concretely, one has obviously to proceed as follows: Insert the solution /39/ into the Lagrangian /7/ and /8/ and find out for which of these solutions the variational integral has an extremal value. The role of the parameters on the basis of which the variation is performed is played by the quantities characterizing the shape of the world line of the electron on which the expressions /39/ depend. It is clear that the equation obtained as result of this variational method is indeed analogous in type to the usual variational principle of mechanics. It is also clear that one can, in principle, also take into account the action of non-electric forces on the charge by adding corresponding terms to the Lagrangian. If one is only interested in the "zeroth approximation", i.e. in those cases when one can expect the applicability of the usual laws of mechanics − one can clearly omit the corrections D' and B' and put
the sum of the field of the electron and the external field directly into the variational integral. Born and Infeld have shown that, by proceeding along the path just detailed, one can indeed obtain a variational principle analogous to the mechanical one which - under the assumption that the external field changes slowly on distances of the order of r_0 - goes over into the usual variational principle of relativistic mechanics. Herewith, the task of constructing a mechanics within the framework of an unitary theory can be considered as solved, at least in general.

Of most interest, however, would of course be the study of those deviations from the usual form of the mechanical equations which shall emerge from the theory of Born once more exact calculations are performed. Unfortunately, the approximations one should get rid of apparently depend on each other - if the gradient of the external field on distances of the order of r_0 is not small the corrections D' and B' as well as the impact of the radiation reaction on the electron are also hardly small. However, if one takes into account all these effects in the first approximation the calculations can still be performed in principle although they become fairly involved then.
§ 1. Introduction

Thus, shortly summarizing the content of chapter I one may say that Born succeeded in constructing an unitary theory of field and matter by giving up the Maxwell equations and introducing new field equations in their place /formulas /24/ or /25// whose characteristic feature is their nonlinearity. In the transition from the Maxwell equations to the equations of Born, this way, the "mechanical" results of the theory essentially change: The energy of a point charge becomes finite etc.. However, one easily recognizes that simultaneously with this also a number of other results of the usual electrodynamics cease to be correct which, on first sight, are not connected with the difficulties of constructing an unitary theory at all. But just because the theory becomes nonlinear, as we already mentioned in passing in § 8 of the I-st chapter, the superposition principle playing such an important role in all of the Maxwell electrodynamics no longer applies.

In other words, according to the theory of Born the deviations from the usual laws of electrodynamics should show up not only in the "mechanical" phenomena but also in the effects of the "mutual distortion" of two /or more/ electromagnetic fields. The most interesting of these effects is perhaps the distortion effect of the field of a light wave by other external fields. As can directly be recognized from the equations /24/, in connection with /22/ and /23/, in the theory of Born the plane and spherical electromagnetic waves are two exact solutions of the field equations / This also applies to the second variant of the theory dealing with a different Lagrange function. One can convince oneself of this
by recalling that for fields of the wave zone both spatial
invariants F and G vanish identically. This way, as long
as this type of waves are concerned the electromagnetic the-
ory of light is formulated according to Born exactly the same
way as according to Maxwell. However, matters essentially
start to change as soon as we go over to somewhat more in-
volved situations, in particular to those when besides the
field, say, of a plane wave of light, also some other elec-
tromagnetic field exists, just the electrostatic field of a
plane capacitor, or the field of another wave of light. Ac-
cording to Maxwell, the presence of the second field does not
exert any influence whatsoever on the properties of the ini-
tial wave while at the same time, according to Born, such an
influence of course exists in general because, for example,
the sum of two electromagnetic fields of two plane waves is
no longer a solution of the field equations of Born. So far,
as long as all fields we are dealing with here are weak in
comparison with the "critical" field b the impact of the
nonlinearity should apparently be weak, and it makes sense
to say that in the presence of a background field we still
have just a plane wave, some somewhat distorted only.
This chapter is just concerned with the study of three ex-
amples of such a distortion.
It should be mentioned that a remarkable analogy between the
electrodynamics of Born and a theory built on apparently com-
pletely different physical foundations, namely - the theory
of the positron of Dirac, makes it appearance here. Indeed,
as has been first pointed out by Halpern
and Debye\(^1\), a mutual distortion effect between two waves of light and, as one can convince oneself, also a number of other distortion effects analogous to those of Born should occur according to the latter theory too. Moreover, Euler and Kockel, students of Heisenberg, have shown\(^2\) that this analogy has also a quantitative character in a well-know sense: "The scattering of light by light" calculated according to Dirac turns out to be the same in general terms as one would expect it to be according to the quantized electrodynamics of Born. In connection with the existence of this analogy a number of interesting questions arise which, however, we will not consider here because they are all essentially connected with the transition to the field quantization which lies beyond the framework of the present dissertation (and, even further, because a detailed analysis of the results by Euler and Kockel is not possible so far because their calculations are not published yet). In any case, the very existence of the analogy between the results of Born and Dirac, also in the domain of nonlinear effects, makes the investigation of this side of the electrodynamics of Born particularly interesting also from out the classical point of view.

\[\text{§ 2.}^3\] A plane wave of light in a homogeneous electrostatic field

As first example, we consider the problem of the propagation of a plane wave of light in a homogeneous electrostatic field - say in the field of a plane capacitor.

\[^1\] cf. Heisenberg, Z. f. Phys. 90. 1934. 209.
\[^2\] Naturwiss. 23. 1935. 246.
\[^3\] The results of this paragraph are published in an article by S. Shubin and A. Smirnov. DAN 1936.
We consider this problem, as most simple and typical, in particular detail. Let us consider, initially, a plane wave of light whose electromagnetic field is determined by the equations:

\[
\begin{align*}
 E &= D = E_0 \cos \omega (t - \frac{rn}{c}) \\
 B &= H = B_0 \cos \omega (t - \frac{rn}{c})
\end{align*}
\]

(40)

where, as usual

\[
E_0 = [n, B_0] ; \quad B_0 = [E_0, n] .
\]

(41)

As just mentioned, the expression /40/ is an exact solution of the equations of Born. According to this theory, the wave represented by this solution can, in general, propagate in vacuum only, i.e. in the absence of any other fields. In particular, if in the parts of the space considered by us we switch on the field of a plane capacitor \(N \) then the expression of the type

\[
\begin{align*}
 E &= E_0 \cos \omega (t - \frac{rn}{c}) + N \\
 B &= B_0 \cos \omega (t - \frac{rn}{c})
\end{align*}
\]

(42)

does no longer represent a possible state of the field. It is clear, however, that as long as \(N \ll b \) applies solutions will exist which in any case are close to /42/. We are putting to ourselves the task of finding these solutions, or, at least a sufficiently large class.
of them\(^1\).

Hereby, we initially do not touch the question under which conditions one or another of these solutions is in fact realized; we defer the consideration of this more concrete task to § 3.

Relying on the inequality \(N \ll b\) which is, as already said, essential we will discard in course of the calculations all powers of the quantity \(\frac{N}{b}\) except the lowest one. As becomes clear in the following, this lowest power is the second one.

This way, all expressions having \(b^4\), \(b^6\) etc. in the denominator will have to be crossed out by us.\(^2\)

1/ Of course, one could start, instead of with the vectors \(E\) and \(B\), with some other pair of vectors, \(D\) and \(H\) for example, and put the task this way: Find the solution close to

\[
\begin{align*}
D &= D_0 \cos \omega (t - \frac{r_n}{c}) + N \\
H &= H_0 \cos \omega (t - \frac{r_n}{c})
\end{align*}
\]

It is clear that the final results must be the same in both settings of the problem.

We will convince ourselves in the next paragraph that this is indeed the case.

2/ If we encounter expressions of the type \(\frac{E_0^4}{b^4}\), or \(\frac{E_0^2N^2}{b^4}\), in the following, we obviously can also neglect them.
It is clear that in this approximation the difference between the first and the second variant of the theory of Born disappears because the Lagrange function /7/ goes over into /8/. On first sight, it might seem most natural so search the solution of the equations of Born /25/ in the form

\[
\begin{align*}
E &= E_0 \cos \omega \left(t - \frac{r n}{c}\right) + N + E' \\
B &= B_0 \cos \omega \left(t - \frac{r n}{c}\right) + B'
\end{align*}
\]

considering \(E'\) and \(B'\) as small quantities approaching zero at \(N \to 0\). However, inserting the expression /43/ into the equation /25/ it turns out that for \(E'\) and \(B'\) equations are obtained which do not have any solutions that are finite everywhere. Namely, the calculations show that \(E'\) and \(B'\) contain terms proportional to the quantity \(t + \frac{r n}{c}\), i.e. becoming \(\infty\) for \(r = \infty\) and \(t = \infty\).

The failure of this calculation necessarily leads to the conclusion that such solutions of the equations of Born which would be close to the corresponding Maxwell solutions /42/ for all \(r\) and \(t\) do not exist. In other words, for the given class of problems the usually applied perturbative method (the unknown quantity is searched for as known quantity + small addition) is not applicable in this form.

It is worth noting that we have a similar situation also in some nonlinear problems of classical mechanics. Let us consider, for example, the equation of motion of an anharmonic oscillator under a force containing terms proportional to \(x\) and \(x^3\):

\[
\ddot{x} + \omega^2 x = \kappa x^3 ,
\]

and we are trying to find its solution in the form

\[
x = A \cos \omega t + x' .
\]
Considering \(\kappa \) and \(x' \) as small quantities we obtain for \(x' \) the equation

\[
\ddot{x}' + \omega^2 x' = \kappa \ A^3 \cos^2 \omega t = \kappa \ A^3 \frac{3 \cos \omega t + \cos 3 \omega t}{4} .
\] (46)

This equation can formally be viewed as an equation of forced oscillations under a force containing terms with exactly the same frequency that the proper oscillations have. As a result, a "resonance" is found, i.e. \(x' \) turns out to be proportional to \(t \) and for \(t \to \infty \) we obtain a diverging solution not having any physical meaning and indicating that one cannot search for \(x \) in the form \(/45/ \).

In the present case, it is well-known how one has to change the method of solving the equation \(/44/ \). Namely, one has to change the zeroth approximation itself and to search the solution in the form

\[
x = A \cos \nu t + x'
\] (47)

where \(\nu \) differs (if little) from \(\omega \) and it should be chosen such a way that in the equation for \(x' \) the term yielding the "resonance" disappears. As is not difficult to see, for this purpose one has to put in 1st approximation

\[
\nu = \omega \left(1 - \frac{3 \kappa A^2}{8 \omega^2}\right) .
\] (48)

If \(\nu \) is chosen this way the equation for \(x' \) will then have a solution which remains in fact small all the time. This simple example provides us with the key for the solution of our problem. We will search the solution of the equations of Born not in the form \(/43/ \), but we will try to somehow deform the zeroth approximation itself, i.e. we will assume that the presence of the constant electric field somehow changes the properties of the initial plane wave itself. It is most natural to assume that this field exhibits a certain anisotropy in space and to try to satisfy the equations of Born by means of expressions that are analogous to the solutions of the Maxwell equations for light propagating in an uniaxial crystal.
We choose as direction of the wave vector the o_x-axis and as the plane spanned by this vector and the vector of the external field N the plane xy.

We denote the angle between these vectors by α. Concerning the field components of the wave we assume so far only that they are periodic functions of x and t, i.e. we will search the solution of the equations /25/ in the form

$$
\begin{align*}
E_x &= E^0_x \cos \omega_1 \left(t - \frac{x}{v_1} + \varphi_1 \right) + N \cos \alpha = E^0_x \cos \gamma_1 + N \cos \alpha \\
E_y &= E^0_y \cos \omega_2 \left(t - \frac{x}{v_2} + \varphi_2 \right) + N \sin \alpha = E^0_y \cos \gamma_2 + N \sin \alpha \\
E_z &= E^0_z \cos \omega_3 \left(t - \frac{x}{v_3} + \varphi_3 \right) = E^0_z \cos \gamma_3 \\
B_x &= B^0_x \cos \nu_1 \left(t - \frac{x}{w_1} + \theta_1 \right) = B^0_x \cos \gamma_4 \\
B_y &= B^0_y \cos \nu_2 \left(t - \frac{x}{w_2} + \theta_2 \right) = B^0_y \cos \gamma_5 \\
B_z &= B^0_z \cos \nu_3 \left(t - \frac{x}{w_3} + \theta_3 \right) = B^0_z \cos \gamma_6
\end{align*}
$$

where φ and θ are constant phases.

This way, we assume in advance that different field components of the wave may have different amplitudes, frequencies, velocities, and initial phases.

We see that the equations of Born can be satisfied by solutions of the type /49/ if one takes care of the parameters entering it in an appropriate way; as it turns out, here we cannot supplement them by additive corrections E_x', E_y' etc..
We insert /49/ into /25/ and performing the calculations with a precision up to the lowest power of the small quantities we determine the ratios between the amplitudes, the ratios between the frequencies and velocities entering /49/. Here, we note that we can consider all quantities of the type $\frac{v_1 - c}{c}$, $\sqrt{E_0^2 y + E_0^2 z}$ etc. as small, as in general all constant quantities characterizing the deviations of our solution from the Maxwellian one.

We rewrite, in our approximation, the equations of Born /25/:

\[
\begin{align*}
\operatorname{rot} E + \frac{1}{c} \dot{B} &= 0 ; \quad \operatorname{div} B = 0 \quad (50) \\
\operatorname{rot} B - \frac{1}{c} \dot{E} &= \frac{1}{2} \left\{ \left[\nabla F, B \right] - \frac{1}{2} \dot{F} E \right\} \\
\operatorname{div} E &= \frac{1}{2} \left(\nabla F \cdot E \right), \quad (51)
\end{align*}
\]

where

\[F = \frac{B^2 - E^2}{b^2} \quad (52)\]

The equation $\operatorname{div} B = 0$ gives us

\[B^0_x = 0. \quad (53)\]

We are inserting now /49/ into the remaining equations /50/. The first of them:

\[
\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} + \frac{1}{c} \dot{B}_x = 0
\]

is satisfied automatically.

The second:

\[
\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} + \frac{1}{c} \dot{B}_y = 0
\]

yields

\[- \frac{\omega_3}{v_3} E_0^z \sin \gamma_3 - \frac{\nu_2}{c} B_0^y \sin \gamma_5 = 0 .\]
It follows:

\[\begin{align*}
\nu_2 &= \omega_3 ; \quad w_2 = v_3 ; \quad \theta_2 = \varphi_3 \\
B_0^y &= -\frac{c}{v_3} E_z^0
\end{align*} \] \quad \text{(54)}

The third:

\[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} + \frac{1}{c} B_z = 0 \]

yields

\[\frac{\omega_2}{v_2} E_y^0 \sin \gamma_2 - \frac{\nu_3}{c} B_z^0 \sin \gamma_6 = 0 . \]

It follows

\[\begin{align*}
\nu_3 &= \omega_2 ; \quad w_3 = v_2 ; \quad \theta_3 = \varphi_2 \\
B_0^z &= -\frac{c}{v_2} E_y^0
\end{align*} \] \quad \text{(55)}

Taking into account /53/, /54/, and /55/, we can rewrite /49/ in the form

\[\begin{align*}
E_x &= p \cos \nu \left(t - \frac{x}{v} + \varphi_1 \right) + N \cos \alpha = p \cos \gamma_1 + N \cos \alpha \\
E_y &= L \cos \omega \left(t - \frac{x}{v} + \varphi_2 \right) + N \sin \alpha = L \cos \gamma_2 + N \sin \alpha \\
E_z &= L' \cos \omega' \left(t - \frac{x}{v'} + \varphi_3 \right) = L' \cos \gamma_3 \\
B_x &= 0 \\
B_y &= M' \cos \gamma_3 \\
B_z &= M \cos \gamma_2
\end{align*} \] \quad \text{(56)}

where the notations:

1/ Some letters here have been used for other quantities in chap. I already. However, this, of course, will not lead to any confusion.
have been introduced. Here,

\[M = \frac{c}{v} L \quad ; \quad M' = -\frac{c}{v'} L' \quad . \]

(57)

We are inserting /56/ into the second system of the equations of Born /51/. Within the framework of our approximation, we first calculate the right-hand sides of the equations. We find

\[F = \frac{B^2 - E^2}{b^2} \quad . \]

In calculating \(F \), we can put

\[p = 0 \quad , \quad M = L \quad , \quad M' = -L' \]

because \(F \) contains in the denominator \(b^2 \), i.e. a large quantity.

Then

\[F = -\frac{1}{b^2} \left(2LN \sin \alpha \cos \gamma_2 + N^2 \right) \quad . \]

(58)

We find the components of \(\text{grad} \ F \):

\[
\begin{align*}
\frac{\partial F}{\partial x} &= -2 \frac{\omega}{v} L \frac{N}{b^2} \sin \alpha \sin \gamma_2 \\
\frac{\partial F}{\partial y} &= 0 \\
\frac{\partial F}{\partial z} &= 0
\end{align*}
\]

(59)

and, finally, we determine \(\dot{F} \):

\[\dot{F} = 2\omega \frac{LN}{b^2} \sin \alpha \sin \gamma_2 \quad . \]

(60)

We formally denote the right-hand sides of the equations /51/ by \(\frac{1}{c} j \) and \(\rho \). Then

\[
\begin{align*}
\frac{1}{c} j_x &= -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2 \\
\frac{1}{c} j_y &= -\frac{\omega}{c} L \frac{N^2}{b^2} \sin^2 \alpha \sin \gamma_2 \\
\frac{1}{c} j_z &= 0
\end{align*}
\]

(61)
\[\rho = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2. \]

(61a)

The first of the equations /51/

\[\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} - \frac{1}{c} \dot{E}_x = \frac{1}{c} j_x \]

yields

\[\frac{\nu}{c} p \sin \gamma_1 = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2. \]

It follows

\[
\begin{align*}
\nu &= \omega; \quad w = v; \quad \varphi_1 = \varphi_2 \\
p &= -L \frac{N^2}{b^2} \sin \alpha \cos \alpha
\end{align*}
\]

(62)

This way, the perpendicular component of the electric field of the wave is found to be different from zero.

The second equation

\[\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = \frac{1}{c} j_y \]

yields

\[-\frac{\omega}{v} M \sin \gamma_2 + \frac{\omega}{c} L \sin \gamma_2 = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin^2 \alpha \sin \gamma_2 \]

where from we determine \(v \):

\[\frac{v^2}{c^2} = 1 - \frac{N^2}{b^2} \sin^2 \alpha. \]

(63)

The third equation

\[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{1}{c} \dot{E}_z = 0 \]

yields

\[\frac{\omega'}{v'} M' \sin \gamma_3 + \frac{\omega'}{c} L' \sin \gamma_3 = 0 \]

where from, taking into account /57/, we obtain:

\[v' = c. \]

(64)
The last equation \(\text{div} \ E = \rho \) yields:

\[
\frac{\nu}{w} \ p \ \sin \gamma_1 = - \frac{\omega}{c} \ L \ \frac{N^2}{b^2} \ \sin \alpha \ \cos \alpha \ \sin \gamma_2,
\]

which is automatically satisfied by virtue of /62/. Thus, taking into account /62/, /63/, and /64/, we finally obtain the following solution of the equations of Born:

\[
\begin{align*}
E_x &= p \ \cos \omega \left(t - \frac{x}{b} + \varphi \right) + N \ \cos \alpha \\
E_y &= L \ \cos \omega \left(t - \frac{x}{b} + \varphi \right) + N \ \sin \alpha \\
E_z &= L' \ \cos \omega' \left(t - \frac{x}{c} + \varphi' \right) \\
B_x &= 0 \\
B_y &= -L' \ \cos \omega' \left(t - \frac{x}{c} + \varphi' \right) \\
B_z &= M \ \cos \omega \left(t - \frac{x}{b} + \varphi \right)
\end{align*}
\]

(65)

where

\[
\begin{align*}
M &= \frac{c}{b} \ L \\
\frac{v^2}{c^2} &= 1 - \frac{N^2}{b^2} \ \sin^2 \alpha \\
p &= -L \ \frac{N^2}{b^2} \ \sin \alpha \ \cos \alpha
\end{align*}
\]

(66)

whereby \(L, \ L', \ \omega, \ \omega', \ \varphi \) and \(\varphi' \) remain arbitrary.

Comparing these formulas with the known formulas of electromagnetic crystal optics allows us to express their content in the following illustrative way: In the presence of a homogeneous electrostatic field of strength \(N \), the vectors \(E \) and \(B \) of a plane wave of light behave the same way, in first approximation, as they would behave in an uniaxial crystal the optical axis of which would be directed along \(N \) and the main dielectric constants would be equal to

\[
\epsilon = 1 + \frac{N^2}{b^2}
\]

(67)

and 1, respectively.
Indeed, one can understand the solution /65/ as consisting of the "ordinary" ray:

\[
\begin{align*}
E_x &= 0 & B_x &= 0 \\
E_y &= 0 & B_x &= -L' \cos \omega' \left(t - \frac{x}{c} + \varphi'\right) \\
E_z &= L' \cos \omega' \left(t - \frac{x}{c} + \varphi'\right) & B_z &= 0
\end{align*}
\]

and the "extraordinary" one:

\[
\begin{align*}
E_x &= p \cos \omega \left(t - \frac{x}{v} + \varphi\right) & B_x &= 0 \\
E_y &= L \cos \omega \left(t - \frac{x}{v} + \varphi\right) & B_y &= 0 \\
E_z &= 0 & B_z &= M \cos \omega \left(t - \frac{x}{v} + \varphi\right),
\end{align*}
\]

propagating in the field of the plane capacitor.

Incidentally speaking, from the formulas /65/ obtained by us it can be seen that between the \(x\) and \(y\) components of the electric field of the ray of light passing through the capacitor of length \(l\) the well-known phase difference equal to (putting \(\varphi = \varphi'\), for simplicity)

\[
\Delta \varphi = \omega l \left(\frac{1}{v} - \frac{1}{c}\right) = \omega l \frac{c - v}{cv}
\]

is accumulating.

Noting that \(\frac{v}{c} = 1 - \frac{N^2}{2b^2}\), we obtain (for the case, when the light is propagating perpendicularly to the field of the capacitor):

\[
c - v = c \frac{N^2}{2b^2}
\]

and

\[
\Delta \varphi = \frac{\omega}{c} l \frac{N^2}{2b^2} = \pi \left(\frac{N}{b}\right)^2 \frac{l}{\lambda}.
\]

In other words, if the ray entering the capacitor is linearly polarized it should exit from it elliptically polarized. A factical check of this insight, however, can of course not be done because \(\equiv 10^{16}\) CGSE and the effect
is by far too small for all practically realizable fields. Irrespective of this, from out a purely theoretical point of view the effect expressed by formula /69/ is, without any doubt, interesting because it gives an example for a completely peculiar deviation from the laws of Maxwell electrodynamics: The deviation does not appear on atomic scales and not for strong fields but in the comparison of observations performed at large distances from each other. In fact, for sufficiently large l the quantity $\Delta \varphi$ can be arbitrarily large for arbitrarily small N/b. This feature of the theory is in essence connected with its nonlinearity: The corrections introduced by small nonlinear terms can have a very different character than small linear corrections.

Departing from the formula /65/, it is not difficult to calculate for our solution also the second pair of Born vectors D and H. For this purpose one has to use the formulas

$$D = \frac{E}{\sqrt{1 + F}} ; \quad H = \frac{B}{\sqrt{1 + F}} . \quad (23)$$

For simplicity, we put $\omega = \omega'$ and $\varphi = \varphi' = 0$.

We have:

$$\frac{1}{\sqrt{1 + F}} = 1 - \frac{1}{2} F = 1 + \frac{LN}{b^2} \sin \alpha \cos \omega \left(t - \frac{x}{v} \right) + \frac{N}{2b^2} . \quad (70)$$

Inserting /65/ into /23/ we obtain:

$$D_x = \frac{E_x}{\sqrt{1 + F}} = \left(p + LN \frac{N}{b^2} \sin \alpha \cos \omega \right) \cos \omega \left(t - \frac{x}{v} \right) + N \cos \alpha \cdot \left(1 + \frac{N^2}{2b^2} \right) . \quad (71)$$

Taking into account /62/, we find the following expression for D_x

$$D_x = N \left(1 + \frac{N^2}{2b^2} \right) \cos \alpha . \quad (72)$$

Analogously,

$$D_y = \frac{E_y}{\sqrt{1 + F}} = N \left(1 + \frac{N^2}{2b^2} \right) \sin \alpha + L \left(1 + \frac{N^2}{2b^2} \right) \cos \omega \left(t - \frac{x}{v} \right) +$$

$$+ N \frac{L^2}{b^2} \sin \alpha \frac{1 + \cos 2 \omega \left(t - \frac{x}{v} \right)}{2} + L \frac{N^2}{b^2} \sin^2 \alpha \cos \omega \left(t - \frac{x}{v} \right) . \quad (73)$$
Furthermore,\[D_z = \frac{E_z}{\sqrt{1 + F}} = L' \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{c}\right) + \]
\[+ N \frac{LL'}{b^2} \sin \alpha \frac{\cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v}\right)\right] + \cos \omega x \left(\frac{1}{c} - \frac{1}{v}\right)}{2} \] (74)

Exactly the same way, one can show that\[H_x = 0 \] (75)
\[H_y = -L' \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{c}\right) - \]
\[-N \frac{LL'}{b^2} \sin \alpha \frac{\cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v}\right)\right] + \cos \omega x \left(\frac{1}{c} - \frac{1}{v}\right)}{2} \] (76)
\[H_z = \frac{c}{v} L \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{v}\right) + N \frac{L^2}{b^2} \sin \alpha \frac{1 + \cos 2\omega \left(t - \frac{x}{v}\right)}{2} \] (77)

From the obtained formulas /72/-/77/, we see that the perpendicular components of both the vectors D_x and H_x of our wave turn out to be equal to zero\(^1\). Indeed, one easily sees that the formula /72/ yields the quantity D_x determined by the field of the capacitor $E_x = N \cos \alpha$ alone because in this case\[D_x = \frac{N \cos \alpha}{\sqrt{1 + F}} = \frac{N \cos \alpha}{\sqrt{1 - N^2/b^2}} = N \left(1 + \frac{N^2}{2b^2}\right) \cos \alpha \]

This fact shows that, in difference to crystal optics, in the present case the direction of the Poynting vector of the wave - recalling that in the theory of Born the Poynting vector is determined by the product $[D \times B]$ - coincides with the direction of the wave vector.

Furthermore, the vectors D and H differ from E and B \---------------

\(^1\) Which, incidentally speaking, one could have said in advance on the basis of the equation $\text{div } D = 0$.

by the presence of small additive contributions, which constant terms as well as terms periodic in x and t belong to, whereby also terms with doubled frequency exist among the latter. Here from it can be shown that in the present case no solution of the equations of Born exists at all for which, instead of the components E and B, the components D and H could be represented in the form of plane waves of the form /65/. On first sight, this situation seems to be somewhat strange because (as has been said already in a comment at the beginning of this §) we could construct the whole theory in general, instead of on the basis of the vectors E and B, on the basis of the vectors D and H whereby, in particular for our problem, all calculations would differ very little from the calculations presented above. However, in order to understand the situation one has to take into account the following.

Imagine that we found some solution of the equations of Born that is valid within the well-known approximation, for example, similarly as our solution /65/, valid up to terms having in the denominator b^2. Let this solution be determined by the vectors E^0 and B^0 or, in the induction vector representation, by the vectors D^0, H^0. Furthermore, E_1 and B_1 are any electromagnetic field having the following properties:

1/ Both vectors E_1 and B_1 are small in size, i.e. they have in the denominator b^2 and, consequently, in our approximation $D_1 = E_1$, and $H_1 = B_1$; 2/ this field is in our approximation a solution of the Maxwell equations, i.e. the quantities

$$\text{rot } E_1 + \frac{1}{c} \dot{B}_1 \quad ; \quad \text{rot } B_1 - \frac{1}{c} \dot{E}_1 \quad \text{etc.}$$

are quantities of higher order (They have in the denominator b^4 or b^6 etc..). Then, it is clear that the sum of both of these fields, i.e. the field represented by the vectors E and B as

$$E_0 + E_1 \quad \text{and} \quad B_0 + B_1,$$

and by the vectors D and H (in our approximation) as
$D^0 + E_1$ and $H^0 + B_1$

will also be a solution of the equations of Born (irrespective of their nonlinearity) up to terms of higher order. This assertion is so obvious that it does not make any sense to specifically be concerned with its proof. This way, one can convince oneself easily that the mentioned "additions" to our fields D and H determined by the formulas /72/-/77/ belong to the type of fields E_1 and B_1 again we just have discussed. Indeed, let us consider the field

\[
E_{1z} = D_{1z} = \frac{LL'}{2b^2} N \sin \alpha \cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v} \right) \right] \]
\[
B_{1y} = H_{1y} = -\frac{LL'}{2b^2} N \sin \alpha \cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v} \right) \right] \]

The amplitude itself of this wave is a quantity of first order in size; furthermore, it clearly satisfies the Maxwell equations with an accuracy up to second order terms (i.e. terms having b^4 in the denominator). Consequently, in accordance with the remarks just made, we can safely deduct from /65/ the expression /78/; as result, we obtain an expression which will also be a solution of the equations of Born with the same accuracy as /65/. It is clear, that this way one can construct, in particular, also a solution for which the variable components of D and N would be represented in the form of simple harmonic functions of x and t.

§ 3. "Scattering" of light off the constant field of a plane capacitor.

Up to now, we have set ourselves the task of simply finding a known class of solutions of the field equations hereby not clarifying under which conditions this or that of these solutions is in fact realized. We now set the task somewhat more concretely. We imagine that in the space between the plates of the plane capacitor
a light ray is allowed into. What does then happen? The an-
swer on this question should obviously be given on the ba-
sis of the boundary conditions for the electromagnetic field.
First, we formulate what these boundary conditions should con-
sist in. As we saw, the equations of Born have a form anal-
ogous to the Maxwell equations in a medium with a dielectric
constant and a magnetic permeability different from unity,
but in the absence of charges and currents, i.e.
\[
\begin{align*}
\text{rot } E + \frac{1}{c} \dot{B} &= 0 \\
\text{div } B &= 0 \\
\text{rot } H - \frac{1}{c} \dot{D} &= 0 \\
\text{div } D &= 0 .
\end{align*}
\]

Here from, in analogy with ordinary electrodynamics, one can
immediately conclude that the boundary conditions must have
the form:
\[
\begin{align*}
E_t &= E_t \\
B_n &= B_n \\
H_t &= H_t \\
D_n &= D_n
\end{align*}
\]

where the labels \(t \) and \(n \) indicate the tangential and normal
components of the vectors relative to the interface of our
two "media" - vacuum and the field of the capacitor.
We will apply the boundary conditions (79) in answering the
question asked. For simplicity, we assume that the light ray
propagates perpendicularly to the field lines of the capac-
itor. Then, our coordinate trihedron is given in the form

![Fig. 1.](image-url)

As the normal components of the fields \(B \) and \(D \) are absent here
the boundary conditions /79/ are transformed into

\[
\begin{align*}
E_y^1 &= E_y^2 & H_y^1 &= H_y^2 \\
E_z^1 &= E_z^2 & H_z^1 &= H_z^2
\end{align*}
\]

where the label 1 corresponds to the field in vacuum and the label 2 - in the capacitor.

The first of these conditions entails the requirement that the electrostatic field of the capacitor itself is not cut off immediately but "approaches zero" gradually as it would happen also in the usual electrodynamics. As the calculation of this fall-off of the field is not of any interest to us we will impose the boundary conditions on the field of the light wave only not taking into account hereby the field of the capacitor. Then, the calculations can be performed without any difficulties.

We choose an arbitrary wave from the two waves representing our solution, for example, that one corresponding to the "extraordinary" ray in crystal optics. The boundary conditions /80/ for it will have the form:

\[
E_y^1 = E_y^2; \quad H_z^1 = H_z^2.
\]

Let in vacuum be

\[
\begin{align*}
E_y^1 &= A \cos \omega \left(t - \frac{x}{v} \right) \\
H_z^1 &= A \cos \omega \left(t - \frac{x}{v} \right)
\end{align*}
\]

We know that in the capacitor the field of the wave is characterized by the quantities

\[
\begin{align*}
E_y^2 &= L \cos \omega \left(t - \frac{x}{v} \right) \\
H_z^2 &= \frac{c}{v} L \left(1 + \frac{N^2}{2b^2} \right) \cos \omega \left(t - \frac{x}{v} \right) + N \frac{L^2}{2b^2} \cos 2\omega \left(t - \frac{x}{v} \right) + N \frac{L^2}{2b^2} \right) \}.
\end{align*}
\]
We have seen further above that it makes sense to write down solutions of the equations of Born up to small fields only that are, in our approximation, solutions of the Maxwell equations in vacuo. In particular, we can, therefore, in /83/ discard the last, constant term because it is small and it is an exact solution of the Maxwell equations. Obviously, we cannot simply discard also the second term in the expression for H_{2z} because the "purely magnetic" wave, varying in x and t, is not a solution of the Maxwell equations. On a first, superficial glance, this fact fairly complicates the construction of a solution satisfying the boundary conditions. In reality, however, such a solution can be constructed in a fairly simple manner by means of the following ansatz. We add to the solution /83/ the following additional field obeying both conditions written down at the end of § 2:

\[
\begin{align*}
E_{y2}^* &= - N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v} \right) \\
H_{z2}^* &= - N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v} \right)
\end{align*}
\]

(84)

Then, we obtain the following solution.

\[
\begin{align*}
E_{y2} &= L \cos \omega \left(t - \frac{x}{v} \right) - N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v} \right) \\
H_{z2} &= \frac{c}{v} L \left(1 + N^2 \frac{2\omega}{2\omega} \right) \cos \omega \left(t - \frac{x}{v} \right) + N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v} \right)
\end{align*}
\]

(85)

We now demand that for $x = 0$ the solution in vacuo should agree with the solution /85/ in the capacitor. For this, it is sufficient to introduce two reflected waves: one with frequency ω and one with doubled frequency 2ω. Instead of /82/, the solution in vacuo will be
\[E_{y1} = A \cos \omega (t - \frac{x}{c}) - m \cos \omega (t + \frac{x}{c}) - N \frac{L^2}{4b^2} \cos 2\omega (t + \frac{x}{c}) \]

\[H_{z1} = A \cos \omega (t - \frac{x}{c}) + m \cos \omega (t + \frac{x}{c}) + N \frac{L^2}{4b^2} \cos 2\omega (t + \frac{x}{c}) \]
(86)

Setting /85/ and /86/ equal to each other, we find furthermore:

\[A - m = L \]

\[A + m = \frac{c}{v} L \left(1 + \frac{N^2}{2b^2} \right) \]

and noting that

\[\frac{c}{v} = 1 + \frac{N^2}{2b^2} \]

finally we find

\[L = A \left(1 - \frac{N^2}{2b^2} \right) \]

\[m = A \frac{N^2}{2b^2} \]
(87)

This way, knowing the amplitude of the wave in vacuo and the field strength of the capacitor we can determine the amplitudes of the "incoming" wave and the wave "reflected" by this field. The problem is solved.

The obtained expressions show that according to the theory of Born, besides the distortion effect described in § 2 for the wave propagating through the capacitor, also a completely peculiar physical phenomenon occurs which can be characterized as a scattering of light off the constant field of the capacitor. In fact, we found that the wave of light with frequency \(\omega \) and amplitude \(A \) incoming to this field sets off two propagating waves: one with frequency \(\omega \) and an amplitude almost equal to \(A \) and a second - with frequency \(2\omega \) and a small amplitude (having \(b^2 \) in the denominator) and in addition two small reflected waves with frequencies \(\omega \) and \(2\omega \). In principle, these waves could be observed.
The very course of the performed calculations shows that this indeterminacy of the solution of the field equations met in
the preceding paragraph and consisting in a tolerance of sol-
utions of the equations of Born against adding small expres-
sions of a special type completely vanishes in course of the
concrete setting of the problem we are dealing with. In any
case, on the basis of the boundary conditions we can completely
uniquely say which of the expressions of the mentioned type
have to be added to the initial solution1/

The question of the uniqueness of the solutions obtained here
can be asked more broadly, however, - namely, one can ask how
unique the choice of the zeroth approximation in the form /49/
is, i.e. does one have to assume that the components of the
"large" propagating wave are harmonic functions of the co-
ordinates and time. We do not attempt here to give a math-
ematically strict solution of this problem and present few
consideration of a purely physical character only which, in-
cidentally, in essence completely solve, as seems to us, the
problem.

Let the field components \(E_y \) and \(B_z \) of the incoming wave
in vacuo have the form

\[
A \cos \omega \left(t - \frac{x}{c} \right) = A \cos \omega t \cos \frac{\omega x}{c} + A \sin \omega t \sin \frac{\omega x}{c}.
\]

It is clear that the dependence of the components of the
"large" propagating wave on time must of course have the same
character, otherwise it is impossible to satisfy the bound-
ary conditions. Just on the basis of these boundary condi-
tions only, nothing can be said about the character of the
dependence of these components on the coordinates. This way,
the most general ansatz for these quantities has the form

\[\frac{\omega}{c} \]

1/ We incidentally note that the precise value of the prop-
agation velocity of all of these small waves can obviously
perhaps be obtained in considering the second approximation.
\[
\begin{align*}
E_y &= F_1(x) \cos \omega t + F_2(x) \sin \omega t \\
B_z &= \Phi_1(x) \cos \omega t + \Phi_2(x) \sin \omega t
\end{align*}
\] (89)

We will denote the maximal values of the functions \(F(x) \) and \(\Phi(x) \) by \(F \) and \(\Phi \). Then, we can obviously represent (89) in the form:

\[
\begin{align*}
E_y &= F_1 \cos f_1(x) \cos \omega t + F_2 \sin f_2(x) \sin \omega t \\
B_z &= \Phi_1 \cos \varphi_1(x) \cos \omega t + \Phi_2 \sin \varphi_2(x) \sin \omega t
\end{align*}
\]

where \(f_1(x), f_2(x), \varphi_1(x) \) and \(\varphi_2(x) \) are certain new functions of \(x \) chosen in an appropriate manner.

We now make the following completely natural assumption that for the propagation along the \(ox \)-axis the electromagnetic energy of our wave does not concentrate and scatter, i.e. the flow of the Poynting vector through a unit surface placed perpendicularly on an arbitrary point on the \(ox \)-axis does not depend on \(x \) in the temporal average.

In other words, operating with the zeroth approximation all the time we demand that the temporal average of the product \(E_y B_z \) did not depend on \(x \), i.e. that

\[
\overline{E_y B_z}^t = \frac{1}{2} (F_1 \Phi_1 \cos f_1(x) \cos \varphi_1 + F_2 \Phi_2 \sin f_2(x) \sin \varphi_2) = \text{const}.
\]

Obviously, this can apply only if

\[
F_1 \Phi_1 = F_2 \Phi_2
\]

and

\[
f_1(x) = f_2(x) = \varphi_1(x) = \varphi_2(x) = f(x).
\]

This way

\[
\begin{align*}
E_y &= F_1(x) \cos f(x) \cos \omega t + F_2(x) \sin f(x) \sin \omega t \\
B_z &= \Phi_1(x) \cos f(x) \cos \omega t + \Phi_2(x) \sin f(x) \sin \omega t
\end{align*}
\] (90)

Inserting (90) into the first equation of Born

\[
\frac{\partial E_y}{\partial x} + \frac{1}{c} \dot{B}_z = 0
\]
we find that

\[f'(x) = \text{const}, \]

i.e. that \(f(x) \) is a linear function of \(x \). This way we immediately arrive at the solution of the type \(/49/ \).

§ 4. A plane wave of light in a homogeneous magnetic field.

We consider here a problem analogous to that studied in § 2 with one difference only that, instead of an electric field, we will be dealing with a homogeneous magnetic field filling the whole space; as also considered earlier, a plane wave of light is propagating in this space. As the method of solving this problem as well as the obtained results will be very similar to the exposition in the preceding paragraphs we will not rest for their detailed discussion and will give the results only.

Thus, we have to find the solutions of the equations \(/50/ \) and \(/51/ \) for our problem.

We choose, as done earlier, the direction of the wave vector along the \(ox \)-axis and the \(xy \)-plane as the plane spanned by this vector and the external field \(h \). The angle between these vectors is denoted by \(\alpha \).

We will search for the solution of the equations of Born \(/50/ \) and \(/51/ \) in the form

\[
\begin{align*}
E_x &= E_x^0 \cos \omega_1 \left(t - \frac{x}{v_1} \right) \\
B_x &= B_x^0 \cos \nu_1 \left(t - \frac{x}{w_1} \right) + h \cos \alpha \\
E_y &= E_y^0 \cos \omega_2 \left(t - \frac{x}{v_2} \right) \\
B_y &= B_y^0 \cos \nu_2 \left(t - \frac{x}{w_2} \right) + h \sin \alpha \\
E_z &= E_z^0 \cos \omega_3 \left(t - \frac{x}{v_3} \right) \\
B_z &= B_z^0 \cos \nu_3 \left(t - \frac{x}{w_3} \right)
\end{align*}
\]

\((91) \)
where, for brevity, the initial phases are omitted. We insert /91/ into /50/.

The equation \(\text{div} \ B = 0 \) gives us

\[
B_0^x = 0.
\] (92)

The equation \(\text{rot} \ E + \frac{1}{c} \dot{B} \) gives

\[
\begin{align*}
\nu_2 &= \omega_3 ; & w_2 &= v_3 ; & B_0^0 &= -\frac{c}{v_3} E_0^0 \\
\nu_3 &= \omega_2 ; & w_3 &= v_2 ; & B_0^0 &= \frac{c}{v_2} E_0^0
\end{align*}
\] (93)

Taking into account /92/ and /93/ and introducing a notation analogous to that applied in the formulas /56/, we obtain instead of /91/

\[
\begin{aligned}
E_x &= p \cos \nu \left(t - \frac{x}{v}\right) & B_x &= h \cos \alpha \\
E_y &= L \cos \omega \left(t - \frac{x}{v}\right) & B_y &= M' \cos \omega' \left(t - \frac{x}{v'}\right) + h \sin \alpha \\
E_z &= L' \cos \omega' \left(t - \frac{x}{v'}\right) & B_z &= M \cos \omega \left(t - \frac{x}{v}\right)
\end{aligned}
\] (94)

where

\[
M = \frac{c}{v} L \quad \text{and} \quad M' = -\frac{c}{v'} L'.
\] (95)

We insert now /94/ into /51/. For this purpose, we first find \(F \):

\[
F = \frac{1}{b^2} \left(B^2 - E^2 \right) = \frac{1}{b^2} \left\{ 2h \ M' \cos \omega' \left(t - \frac{x}{v'}\right) \cdot \sin \alpha + h^2 \right\}.
\] (96)

Then

\[
\dot{F} = -\frac{2h \ M' \omega' \sin \alpha}{b^2} \sin \omega' \left(t - \frac{x}{v'}\right)
\] (97)

and

\[
\frac{\partial F}{\partial x} = -\frac{1}{v'} \dot{F} = -\frac{1}{c} \dot{F}
\] (98)

i.e. on the r.h.s. of the equations /51/ we can put (in expressions not standing in the \(\cos \) or \(\sin \) symbols) \(v' = c \).

We calculate the r.h.s. of the equations /51/ in the first approximation:

\[
\frac{1}{c} j_x = -\frac{1}{2c} \dot{F} E_x = 0
\] (99)
\[\frac{1}{c} \dot{j}_y = - \frac{1}{2} \left(\frac{\partial F}{\partial x} B_z + \frac{1}{c} \dot{F} E_y \right) = 0 \]
(100)

\[\frac{1}{c} \dot{j}_z = \frac{1}{2} \left(\frac{\partial F}{\partial x} B_y - \frac{1}{c} \dot{F} E_z \right) = - \frac{1}{2c} \dot{F} h \sin \alpha = \frac{\omega' h^2}{c b^2} M' \sin^2 \alpha \sin \omega' \left(t - \frac{x}{v} \right) \]
(101)

\[\rho = \frac{1}{2c} \dot{F} E_y = 0 \]
(102)

We consider the first of the equations /51/. It yields

\[- \frac{1}{c} \dot{E}_x = 0 . \]

Obviously, this equation is satisfied if we put:

\[p = 0 . \]
(103)

The second equation

\[- \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = 0 \]
gives

\[\frac{M}{v} \sin \omega \left(t - \frac{x}{v} \right) = \frac{1}{c} L \sin \omega \left(t - \frac{x}{v} \right) , \]

where from, in view of /95/, we find

\[v = c ; \quad M = L . \]
(104)

The third equation

\[\frac{\partial B_y}{\partial x} - \frac{1}{c} \dot{E}_z = \frac{1}{c} j_z \]
gives
\[
\frac{M'}{v'} + \frac{L'}{c} = \frac{h^2}{c} \frac{M' \sin^2 \alpha}{b^2},
\]
or, taking into account /95/,
\[
\frac{v'}{c}^2 = 1 - \frac{h^2}{b^2} \sin^2 \alpha. \tag{105}
\]
The equation \(\text{div} \ E = \rho \) gives
\[
\frac{\partial E_\alpha}{\partial x} = 0,
\]
which is automatically fulfilled because we have put \(p = 0 \).
The formulas /103/, /104/, and /105/ finally allow to rewrite the solution of the equations /50/ and /51/ for our problem in the following way:
\[
\begin{align*}
E_x &= 0 & B_x &= h \cos \alpha \\
E_y &= L \cos \omega \left(t - \frac{x}{c} \right) & B_y &= M' \cos \omega' \left(t - \frac{x}{v'} \right) + h \sin \alpha \\
E_z &= L' \cos \omega' \left(t - \frac{x}{v'} \right) & B_z &= L \cos \omega \left(t - \frac{x}{c} \right)
\end{align*}
\tag{106}
\]
where
\[
\begin{align*}
M' &= -\frac{c}{v'} L' \\
\text{and} \quad \frac{v'^2}{c^2} &= 1 - \frac{h^2}{b^2} \sin^2 \alpha \tag{107}
\end{align*}
\]
whereby, as earlier, \(L, L', \omega \) and \(\omega' \) remain arbitrary. The discussion of the formulas /106/ and /107/ can be performed in complete analogy to the discussion corresponding to the formulas of the preceding paragraphs.
§ 5. Two plane waves in vacuo.

We now go over to the consideration of a more involved problem of finding such solutions of the equations of Born which in the zeroth approximation would correspond to two plane waves in vacuo, i.e. we will assume that a plane wave does not propagate in a constant electric of magnetic field but in the electric and magnetic field, periodic in r and t, of another plane wave. We will solve this problem for that particular case only that the wave vectors of both of the plane waves do have opposite directions, their electric vectors, in zeroth approximation, do have the same direction, and the magnetic - the opposite one. We choose these three directions as the coordinate axes. More precisely, we take the direction of the wave vector of the first wave as o_x-axis, the direction of the electric vectors for the o_y-axis, and the direction of the magnetic vector of the first wave - for o_z. /Fig.2/.

![Fig 2.](image)

We are trying to find the solution of the equations of Born for this case by means of a method analogous to that considered in the preceding paragraphs, however, taking into account the possible appearance of small additive terms yet playing the role of x' in formula /47/. Specifically, we will search the solution of the equations /50/ and /51/ in the form

\[
\begin{align*}
E_x &= 0; \quad E_y = Q \cos \Omega \left(t - \frac{x}{v} \right) + q \cos \omega \left(t + \frac{x}{v} \right) + E'; \\
E_z &= 0 \\
B_x &= 0; \quad B_y = 0; \quad B_z = \frac{c}{v} Q \cos \Omega \left(t - \frac{x}{v} \right) - \frac{c}{v} q \cos \omega \left(t + \frac{x}{v} \right) + B'.
\end{align*}
\] (108)
Such a manner of notation\(^\dagger\), firstly, introduces the assumption that as in the unperturbed problem too, independently of the "interaction" of our waves the quantities \(E_x, E_z, B_x\) and \(B_y\) can be considered to be equal to zero.

This assumption is completely natural for symmetry reasons; a strict proof of its validity will rely on the fact that, by means of the expressions /108/, the Born equations can indeed be satisfied as we will see further below. Secondly, we have assumed earlier that the connection between the amplitudes \(E_y\) and \(B_z\) has the usual form - which, of course, also has its perfect reason - because this connection derives from the first group of field equations which has the same form for all the problems. Incidentally, one could instead of /108/ also write down more general formulas of the type /49/, considering the field components \(E\) and \(B\) as arbitrary harmonic functions of the coordinates and time, but it is not difficult to convince oneself that such a more involved formulation would not give anything essentially new, at least within our setting of the problem.

Thus, we insert /108/ into /50/. The equation \(\text{div } B = 0\) is satisfied if

\[
\text{div } B' = 0 ,
\]

or

\[
\frac{\partial B'}{\partial z} = 0 .
\] (109)

The equation \(\text{rot } E + \frac{1}{c} \dot{B}\) is satisfied if

\[
\frac{\partial E'}{\partial z} = 0
\] (110)

\(^\dagger\) For simplicity, the initial phases of the waves are put equal to zero again.
and
\[\frac{\partial E'}{\partial x} + \frac{1}{c} \dot{B} = 0 . \] \hfill (111)

We insert now /108/ into /51/. For doing so, we first calculate the quantity \(F \) in first approximation:
\[F = - \frac{4}{b^2} Q q \cos \Gamma \cos \gamma , \] \hfill (112)
where
\[\Gamma = \Omega \left(t - \frac{x}{V} \right) \] \hfill (113)
\[\gamma = \omega \left(t + \frac{x}{V} \right) \] \hfill (113)

We find \(\dot{F} \) and \(\frac{\partial F}{\partial x} \):
\[\dot{F} = \frac{4}{b^2} Q q \left(\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \] \hfill (114)
\[\frac{\partial F}{\partial x} = \frac{1}{c} \frac{4}{b^2} Q q \left(-\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) . \] \hfill (115)

We calculate the r.h.s. of the equations /51/
\[\frac{1}{c} j_x = \frac{1}{2c} \dot{F} \quad E_x = 0 \] \hfill (116)
\[\frac{1}{c} j_y = - \frac{4}{c b^2} Q q \left(\Omega q \sin \Gamma \cos^2 \gamma + \omega Q \sin \gamma \cos^2 \Gamma \right) . \] \hfill (117)

Noting that
\[\sin \Gamma \cos^2 \gamma = \frac{1}{2} \left[\sin \Gamma + \frac{1}{2} \sin (\Gamma + 2\gamma) + \frac{1}{2} \sin (\Gamma - 2\gamma) \right] \] \hfill and
\[\sin \gamma \cos^2 \Gamma = \frac{1}{2} \left[\sin \gamma + \frac{1}{2} \sin (\gamma + 2\Gamma) + \frac{1}{2} \sin (\gamma - 2\Gamma) \right] \]
we find
\[\frac{1}{c} j_y = - \frac{2}{c b^2} Q q \left\{ q \Omega \left[\sin \Gamma + \frac{1}{2} \sin (\Gamma + 2\gamma) + \frac{1}{2} \sin (\Gamma - 2\gamma) \right] + \right. \right. \]
\[+ Q \omega \left[\sin \gamma + \frac{1}{2} \sin (\gamma + 2\Gamma) + \frac{1}{2} \sin (\gamma - 2\Gamma) \right] \} . \] \hfill (118)

Furthermore,
\[\frac{1}{c} j_z = 0 \] \hfill (119)
and finally

\[\rho = \frac{1}{2} \frac{\partial F}{\partial x} E_x = 0 \, . \] (120)

From eq. /123/, we recognize that in difference to the problems considered earlier in the present problem on the r.h.s. of the equations appear not only terms containing \(\sin \Gamma \) and \(\sin \gamma \), which are analogous to the \(\cos \omega t \) term in equation /46/, yielding a "resonance", but also terms with different frequencies. They also occur just at the r.h.s. of the equations for determining \(\dot{E}' \) and \(\dot{B}' \). With the knowledge of the r.h.s., just calculated, of the equations, we can insert /108/ into /51/. The first of the equations /51/

\[\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} - \frac{1}{c} \dot{E}_x = 0 \] (121)

is satisfied if it is put

\[\frac{\partial B'}{\partial y} = 0 \, . \] (121)

The second equation

\[\frac{\partial B_z}{\partial z} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = - \frac{2}{c b^2} Q q \left\{ q \Omega \left[\sin \Gamma + \frac{1}{2} \sin (\Gamma + 2\gamma) + \frac{1}{2} \sin (\Gamma - 2\gamma) \right] + Q \omega \left[\sin \gamma + \frac{1}{2} \sin (\gamma + 2\Gamma) + \frac{1}{2} \sin (\gamma - 2\Gamma) \right] \right\} \]

is satisfied if

\[- \frac{c \Omega}{V^2} Q \sin \Gamma - \frac{c \omega}{v^2} \sin \gamma + \frac{1}{c} Q \Omega \sin \Gamma + \frac{1}{c} q \omega \sin \gamma = - \frac{2}{c b^2} Q q \left(q \Omega \sin \Gamma + Q \omega \sin \gamma \right) \] (122)

and

\[\frac{\partial B'}{\partial x} + \frac{1}{c} \dot{E}' = \frac{1}{c b^2} Q q \left\{ q \Omega \left[\sin (\Gamma + 2\gamma) + \sin (\Gamma - 2\gamma) \right] + Q \omega \left[\sin (\gamma + 2\Gamma) + \sin (\gamma - 2\Gamma) \right] \right\} \, . \] (123)
The equation /122/ gives us

\[\begin{align*}
1 - \frac{c^2}{V^2} &= -\frac{2}{b^2} q^2 \\
1 - \frac{c^2}{v^2} &= -\frac{2}{b^2} Q^2
\end{align*} \] . \quad (124)

The third equation

\[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{1}{c} \dot{E}_z = 0 \]

is satisfied automatically.

Finally, the last equation \(\text{div } E = \rho \) gives us

\[\frac{\partial E'}{\partial y} = 0 \] . \quad (125)

For the final solution of the problem, we need to find the additive terms \(E' \) and \(B' \) yet. For their calculation, we have obtained the equations /109/, /110/, /111/, /121/, /123/, and /125/.

We will search the solution of these equations in the form

\[\begin{align*}
E' &= a_1 \cos (\Gamma + 2\gamma) + a_2 \cos (\Gamma - 2\gamma) + a_3 \cos (\gamma + 2\Gamma) + a_4 \cos (\gamma - 2\Gamma) \\
B' &= d_1 \cos (\Gamma + 2\gamma) + d_2 \cos (\Gamma - 2\gamma) + d_3 \cos (\gamma + 2\Gamma) + d_4 \cos (\gamma - 2\Gamma)
\end{align*} \] , \quad (126)

whereby \(a_1 \ldots d_4 \) are constant coefficients.

Here, the equations /109/, /110/, /121/, and /125/ are satisfied automatically, and the equations /111/ and /123/ provide us with the possibility to determine the coefficients in /126/.

The first of these equations give us
\[a_1 = \frac{\Omega + 2\omega}{\Omega - 2\omega} d_1 \quad ; \quad a_2 = \frac{\Omega - 2\omega}{\Omega + 2\omega} d_2 \quad ; \quad a_3 = -\frac{\omega + 2\Omega}{\omega - 2\Omega} d_3 \quad ; \quad a_4 = -\frac{\omega - 2\Omega}{\omega + 2\Omega} d_4 \] (127)

and the second
\[a_1 = \frac{\Omega - 2\omega}{\Omega + 2\omega} d_1 - \frac{1}{b^2} Q q^2 \frac{\Omega}{\Omega + 2\omega} \quad ; \quad a_2 = \frac{\Omega + 2\omega}{\Omega - 2\omega} d_2 - \frac{1}{b^2} Q q^2 \frac{\Omega}{\Omega - 2\omega} \quad ; \quad a_3 = -\frac{\omega - 2\Omega}{\omega + 2\Omega} d_3 - \frac{1}{b^2} q Q^2 \frac{\omega}{\omega + 2\Omega} \quad ; \quad a_4 = -\frac{\omega + 2\Omega}{\omega - 2\Omega} d_4 - \frac{1}{b^2} q Q^2 \frac{\omega}{\omega - 2\Omega} \] (128)

This way, we have obtained a system of eight equations /127/ and /128/ for determining \(a_1, \ldots, a_4, d_1, \ldots, d_4 \).

Solving this system of equations, we obtain
\[a_1 = -\frac{Qq^2}{8b^2} \frac{\Omega + 2\omega}{\omega} \quad ; \quad d_1 = -\frac{Qq^2}{8b^2} \frac{\Omega - 2\omega}{\omega} \quad ; \quad a_2 = \frac{Qq^2}{8b^2} \frac{\Omega - 2\omega}{\omega} \quad ; \quad d_2 = \frac{Qq^2}{8b^2} \frac{\Omega + 2\omega}{\omega} \quad ; \quad a_3 = -\frac{qQ^2}{8b^2} \frac{\omega + 2\Omega}{\Omega} \quad ; \quad d_3 = \frac{qQ^2}{8b^2} \frac{\omega - 2\Omega}{\Omega} \quad ; \quad a_4 = \frac{qQ^2}{8b^2} \frac{\omega - 2\Omega}{\Omega} \quad ; \quad d_4 = -\frac{qQ^2}{8b^2} \frac{\omega + 2\Omega}{\Omega} \] (129)
We now have got a complete solution of our problem which has the form /108/, whereby V and v are determined by means of the formula /124/ and E' and B' can be found from formula /126/ with the coefficients /129/.

As in the Maxwell theory, the quantities Q, q, Ω and ω remain arbitrary.

The solution obtained by us can be characterized the following way: If, in empty space, two electromagnetic waves with arbitrarily given amplitudes and frequencies propagate in opposite directions, whereby in zeroth approximation their electric and magnetic vectors are oriented as indicated in Fig. 2, the difference from the field which exists in this space according to the theory of Born to that one obtained from the Maxwell theory is characterized by two moments:

1/ by the change in propagation velocity of these waves, and also by the appearance of a difference of the sizes of the electric and magnetic vectors of each wave.

This effect is completely analogous to the "distortion" phenomenon of waves of light we have obtained in the preceding paragraphs.

2/ by the appearance of four small "scattered" waves with different frequencies and propagation velocities, strongly differing from the Maxwellian ones in general.

This effect is specific for the latter problem and, in a well-known sense, can be characterized as "scattering of light by light".

However, it is essential to note that the "interaction" of two waves of light calculated according to the theory of Born
can by far not be identified with that "scattering of light by light" repeatedly mentioned in the literature - namely, in view of the existence of the first type of effects mentioned above; in fact, each wave acquires peculiar properties because it propagates in a medium "polarized" under the influence of the other wave.

Finally, I would like to express my deep gratitude to Prof. S. P. Shubin for the guidance of this dissertation and also for a number of highly valuable recommendations and comments.

February 1936
Note:

After the present dissertation had been finished (i.e. after February 1936), in the literature appeared a number of works connected with some problems studied here.

Some of the results of these works will be studied in an addendum to the dissertation which presently is under preparation.
Supplementary information

Translator’s notes:

1. Concerning the Russian original of the thesis: A copy of the thesis is filed at the Institute of Archival Studies (Інститут архівознавства [Інститут архівознавства]) of the National Library of Ukraine (Національна бібліотека України імені В.І. Вернадського [Національна бібліотека України імені В.І. Вернадського]) archival collection (архівні фонд [архівні фонд]) no. 167, section (росділ [росділ]) 1, item no. 3 (see http://irbis-nbuv.gov.ua/fond/ia/ires/OPYS/167_1.pdf). The available copy of the original thesis has turned out not to be suited for easy reading due to its poor quality ((copy of a) carbon copy; cf. the attached facsimile of the original thesis, p. P-149, which we have appended here for archival reasons). Therefore, the original Russian text has been rekeyed (without any correction) as LaTeX file whereby, as far as possible, the original graphical layout (including the page numbering) has been preserved. In rekeying the original thesis, the interpunctuation has also been preserved and not been corrected (for example, missing hyphens have not been added in general). However, in the English translation of the thesis, interpunctuation has been added in a number of cases (in a mild manner, not always). Handwritten equations and other handwritten pieces of text are displayed in the rekeyed Russian text in blue colour (exceptions are minor legibility corrections to typewriter letters done in the original which are not indicated in the rekeyed text) while in the English translation no colour coding for handwritten items has been applied. Also, for handwritten text the font type ‘italic’ has been chosen. Hyperlinking for sections and equations has been introduced (coloured mahogany). If necessary for improving printout quality, the colours can easily be set to ‘black’ in the preamble of the LaTeX file. Full details of the cited literature can be found in a separately added list on p. P-75 of the present translation.

2. Note: On p. 50 of the original Russian text, first row below from eq. (80), the index 1 reads in the original thesis I. This change has been made to let the index conform to the index display in the LaTeX equations.

3. The results presented in the thesis in § 5 of chap. 2 have later been published in [6, 7].

4. The English translation preserves, as far as possible, the page structure of the original Russian thesis. For example, the page number T-7 of the English translation corresponds to the page number 7 of the original Russian thesis.
Noticed misprints

The following misprints have been noticed (but not corrected) in the original Russian text:

- p. 2, 6. row: крантовым, should read correctly: квантовым

- p. 11, 11. row from below: также, should read correctly: такие

- p. 17, 2. row: то это, should read correctly: то это

- p. 22, 2. row below from eq. (34): выясниться, should read correctly: выяснится

- p. 25, 12. row below from eq. (38): содержащих, should read correctly: сдерживающих

- p. 26, 6./7. row: промолинено, should read correctly: промолинейно

- p. 28, 1. row: искажение, should read correctly: искажения

- p. 29, 10. row from below: производится, should read correctly: производиться

- p. 30, 6. row: расстояниях, should read correctly: расстояниях

- p. 40, bottom row: вне сет, should read correctly: внесет

- p. 46, 3./2. row from below: кристаллоптики, should read correctly: кристаллооптики

- p. 48, 7. row below from eq. (78): той же, should read correctly: той же

- p. 53, 8. row from below: носит, should read correctly: носить

- p. 53, 5. row from below: нельзя, should read correctly: нельзя

Acknowledgements

I am grateful to the daughter of A. A. Smirnov, Irina Adrianovna Smirnova (Kiev), for her kind permission to make the Ph.D. thesis of her father publicly available on the arXiv, and to the grandson of A. A. Smirnov, Sergei Valentinovich Smirnov (Helsinki), for his help in obtaining a copy of the thesis and a careful reading of the rekeyed version of it. I am indebted to A. P. Nosov of the Institute of Metal Physics, Ekaterinburg, for providing me with a copy of [3]. Kind hospitality at the Theoretical Particle Physics Group of the Vrije Universiteit Amsterdam is also gratefully acknowledged.
Literature

[For references in Cyrillic letters, we apply the (new) Mathematical Reviews transliteration (transcription) scheme (to be found at the end of index issues of Mathematical Reviews).]

Full details of the cited literature (ordered alphabetically by author names):

M. Born: On the quantum theory of the electromagnetic field. *Proceedings of the Royal Society of London. Series A, Containing Papers of Mathematical and Physical Character* **143**:849(1934)410-437 (DOI: 10.1098/rspa.1934.0010, stable JSTOR URL: http://www.jstor.org/stable/96101). Reprinted in: [8], item 73, pp. 486-513.

M. Born, L. Infeld: Foundations of the new field theory. *Proceedings of the Royal Society of London. Series A, Containing Papers of Mathematical and Physical Character* **144**:852(1934)425-451 (DOI: 10.1098/rspa.1934.0059, stable JSTOR URL: http://www.jstor.org/stable/2935568). Reprinted in: 1. [8], item 74, pp. 514-540. 2. [9], pp. 55-78. For the annotation of some misprints see E. Schrödinger. *Proc. Roy. Soc. London Ser. A* **150**(1935)465, footnote on p. 472.

M. Born, L. Infeld: On the quantization of the new field equations. I. *Proceedings of the Royal Society of London. Series A, Containing Papers of Mathematical and Physical Character* **147**:862(1934)522-546 (DOI: 10.1098/rspa.1934.0234, stable JSTOR URL: http://www.jstor.org/stable/96309). Reprinted in: 1. [8], item 75, pp. 541-565. 2. [9], pp. 79-100.

M. Born, L. Infeld: On the quantization of the new field equations. II. *Proceedings of the Royal Society of London. Series A, Containing Papers of Mathematical and Physical Character* **150**:869(1935)141-166 (DOI: 10.1098/rspa.1935.0093, stable JSTOR URL: http://www.jstor.org/stable/96328). Reprinted in: [9], pp. 101-122.

M. Born, E. Schrödinger: The absolute field constant in the new field theory. *Nature* **135**:3409(1935)342 (DOI: 10.1038/135342a0). Reprinted in: [10], p. 195.

H. Euler, B. Kockel: Über die Streuung von Licht an Licht nach der Diracschen Theorie. *Die Naturwissenschaften* **23**:15(1935)246-247 (DOI: 10.1007/BF01493898). [in German] English translation (by D. H. Delphenich): *The scattering of light by light in Dirac’s theory* (The translation is freely available at the URL: http://neo-classical-physics.info/uploads/3/0/6/5/3065888/euler-koeckel_-_scattering_of_light_by_light.pdf).

W. Heisenberg: Bemerkungen zur Diracschen Theorie des Positrons. *Zeitschrift für Physik* **90**:3(1934)209-231 (DOI: 10.1007/BF0133516), erratum *ibid.* **92**:9(1934)692.
(DOI: 10.1007/BF01340782). [in German] Reprint of the original article in: [11], pp. 132-154, erratum p. 161. English transl. (by D. H. Delphenich): Remarks on the Dirac theory of positron (The translation is freely available at the URL: http://neo-classical-physics.info/uploads/3/0/6/5/3065888/heisenberg-_remarks_on_the_dirac_theory_of_positrons.pdf).

W. Heisenberg: Bemerkungen zur Theorie des Atomkerns [Remarks concerning the theory of the atomic nucleus]. In: Pieter Zeeman, 1865 – 25 Mei – 1935: Verhandelingen op 25 Mei 1935 aangeboden aan Prof. Dr. P. Zeeman. Martinus Nijhoff, The Hague, 1935, pp. 108-116. [in German] Reprinted in: [12], pp. 238-246. Russian transl.: В. Гейзенберг [V. Geizenberg]: Замечания к теории атомного ядра [Замечаний к теории атомного ядра]. Успехи Физических Наук [Uspekhi Fizicheskikh Nauk] 16:1(1936)1-7 (The translation is freely available online at the journal website given by the DOI: 10.3367/UFNr.0016.193601a.0001).

E. Schrödinger: Contributions to Born’s new theory of the electromagnetic field. Proceedings of the Royal Society of London. Series A, Containing Papers of Mathematical and Physical Character 150:870(1935)465-477 (DOI:10.1098/rspa.1935.0116, stable JSTOR URL: http://www.jstor.org/stable/96399). Reprinted in: [10], pp. 196-208.

С. Шубин [S. Shubin], А. Смирнов [A. Smirnov]: Простой пример из электродинамики Борна [Prosto primer iz elektródinamiki Borna]/[A simple example from the electrodynamics of Born]. Доклады Академии Наук СССР, Новая Серия /Doklady Akademii Nauk SSSR, Novaia Seriya/ 1 (X):2(79)(1936)65-68. [in Russian] Reprinted in: [3], pp. 243-246. German transl.: S. Šubin (Schubin), A. Smirnov: Ein einfaches Beispiel aus der Bornschen Elektrodynamik. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS, Nouvelle Série 1 (X):2(79) (1936)69-72.

Further references:

[1] Adrián Anatol’evich Smirnov [Adrian Anatolyevich Smirnov]. Биобиблиография ученых Украинской ССР [Biobibliografiya uchenykh Ukrainskoi SSR]. Сост. [Sost.]/[Compil.] М. Н. Верещак [M. N. Vereshchak], авт. вступ. ст. [avt. vstup. st.] /[auth. of the introd. art.] V. Г. Барьяхтар [V. G. Bar’jakhtar], отв. ред. [otv. red.]/[main red.] В. Б. Молодкин [V. B. Molodkin]. Наукова думка [Naukova dumka], Kiev, 1988.

[2] Е. С. Юшкова-Смирнова [E. S. Yushkova-Smirnova]: Adrián Anatol’evich Smirnov. Биографический очерк. [Adrian Anatolyevich Smirnov. Biograficheskii ocherk]. Preprint ИМФ НАНУ [IMF NANU], № 1.1996. Институт металлолюзки [Institut metalofiziki]/[Institute of Metal Physics], Національн-
на Академію наук України [Natsional’naya Akademiya nauk Ukrainy]/[National Academy of Sciences of the Ukraine], Kiev, 1996.

[3] С. П. Шубин [S. P. Shubin]: Избранные труды по теоретической физике. Очерки жизни. Воспоминания. Статьи [Izbrannye trudy po teoreticheskoj fizike. Ocherki zhizni. Vospominaniya. Stat’i]. Edited by С. В. Вонсовский [S. V. Vonsovskii], М. И. Кацнельсон [M. I. Katsnel’son]. Институт физики металлов [Institut fiziki metallov]/[Institute of Metal Physics], Уральское отделение Академии наук СССР [Ural’skoe otdelenie Akademii nauk SSSR]/[Ural Branch of the Academy of Sciences of the USSR], Sverdlovsk, 1991.

[4] С. В. Вонсовский [S. V. Vonsovskii], М. А. Леонтович [M. A. Leontovich], И. Е. Тамм [I. E. Tamm]: Семен Петрович Шубин (К пятидесятилетию со дня рождения и двадцатилетию со дня смерти) [Semen Petrovich Shubin (K pyatidesyatiletiyu so dnya rozhdeniya i dvadtsatiletiyu so dnya smerti)]/[On the occasion of the 50th birthday and the 20th day of death]. Успехи Физических Наук [Uspekhi Fizicheskih Nauk] 65:4(1958)733-737 (The article is freely available online at the journal website given by the DOI: 10.3367/UFNr.0065.195808h.0733 .). [in Russian]

[5] П. А. Зайончковского [P. A. Zaionchkovskogo], Э. А. Нерсесовой [È. A. Nersesovoi], К. Р. Симона [K. R. Simona] (Ред. [Red.]/[Eds.]): Докторские и кандидатские диссертации защищенные в Московском государственном университете с 1934 по 1954 г.. Библиографический указатель. [Doktorskie i kandidat’skie dissertatsii zashchishchennye v Moskovskom gosudarstvennom universitete s 1934 po 1954 g.. Bibliograficheskii ukazatel’/]. 3 Vols.. Vol. 1: Выпуск первый: Факультеты: Механико-математический, физический, химический [Vypusk pervy˘ ı: Fakul’tety: Mekhaniko-matematicheski˘ ı, fizich-eski˘ ı, khimicheski˘ ı]. Izdatel’stvo Moskovskogo universiteta, Moscow, 1956.

[6] А. А. Смирнов: The problem of two plane waves in classical non-linear electrodynamics. Journal of Physics (Academy of Sciences of the USSR)/Физический Журнал (Академия Наук Союза ССР) [Fizicheskii Zhurnal (Akademiya Nauk Soyuza SSR)]/3:6(1940)447-453 (The article is a slightly revised English version of [7].).

[7] А. А. Смирнов [A. A. Smirnov]: Задача двух плоских волн в классической нелинейной электродинамике [Zadacha dvuh ploskih voln v klassicheskoj nelineinoy elektrodinamike]/[The problem of two plane waves in classical non-linear electrodynamics]. Ученые Записки Свердловского Государственного Университета им. А. М. Горького [Uchenye Zapiski Sverdlovskogo Gosudarstvennogo Universiteta im. A. M. Gor’kogo] No. 3 (1941)44-56 (A slightly revised English translation of the article is printed in [6]). [in Russian]

[8] М. Born: Ausgewählte Abhandlungen. Mit einem Verzeichnis der wissenschaftlichen Schriften. Zweiter Band. Vandenhoeck & Ruprecht, Göttingen, 1963.
[9] E. Infeld, I. Bialynicki-Birula, A. Trautman (Eds.): *Leopold Infeld, his Life and Scientific Work*. Polish Men of Science. Polish Scientific Publishers, Warszaw, 1978.

[10] E. Schrödinger: *Collected Papers/Gesammelte Abhandlungen. Volume 2: Contributions to Field Theory/Band 2: Beiträge zur Feldtheorie*. Verlag der Österreichischen Akademie der Wissenschaften, Friedrich Vieweg & Sohn Braunschweig/Wiesbaden, Wien, 1984.

[11] W. Blum, H.-P. Dürr, H. Rechenberg (Eds.): *Werner Heisenberg – Gesammelte Werke/Collected Works, Series A/Part II: Original Scientific Papers – Wissenschaftliche Originalarbeiten*. Springer-Verlag, Berlin, 1989 (DOI: 10.1007/978-3-642-70078-1).

[12] W. Blum, H.-P. Dürr, H. Rechenberg (Eds.): *Werner Heisenberg – Gesammelte Werke/Collected Works, Series B: Scientific Review Papers, Talks, and Books – Wissenschaftliche Übersichtsartikel, Vorträge und Bücher*. Springer-Verlag, Berlin, 1984 (DOI: 10.1007/978-3-642-61742-3).
Primenenie elektródinamiki Borna k teorii rasprostraneniya sveta v elektromagnitnykh polyah

[The application of the electrodynamics of Born to the theory of the propagation of light in electromagnetic fields].

Thesis advisor: С. П. Шубин [S. P. Shubin] [31.7.(O.S. 18.7.)1908-20.11.1938] [3, 4].

Thesis defense: 28.6.1936 (approved: 17.2.1937), Moscow State University
(source: [5], p. 120, item 656).
Contents of the thesis / Содержание диссертации

Первая страница 1

Глава I 2
§ 1 ... 2
§ 2 ... 6
§ 3 ... 10
§ 4 ... 13
§ 5 ... 18
§ 6 ... 21
§ 7 ... 24
§ 8 ... 25

Глава II 31
§ 1. Введение 31
§ 2. Плоская световая волна в однородном электростатическом поле 33
§ 3. "Рассеяние" света на постоянном поле плоского конденсатора 48
§ 4. Плоская световая волна в однородном магнитном поле 55
§ 5. Две плоские волны в вакууме 59

Примечание 67
Приложение электродинамики Борна к теории распространения света в электромагнитных полях.

А.А. Смирнов.

Предметом настоящей диссертации является рассмотрение некоторых проблем теории электромагнитного поля, предложенной недавно Борном и Инфельдом. Эти рассмотрения мы будем вести исключительно в рамках классического / не квантового / варианта теории; вопрос о том, как видоизменится постановка разобранных здесь проблем при введении квантования поля, нами не обсуждается.

Диссертация делится на две части. В первой части мы даем общий обзор современного состояния Борновской теории не останавливаясь, при этом, на отдельных частностях вычислений, а стремясь выявить только основной ход мысли. В частности, мы пытаемся установить, какие общие вопросы следовало бы еще выяснить для того чтобы получить лучшее представление о ценности теории и ее дальнейших перспективах - разумеется, отнюдь не ставя себе целью дать ответ на эти вопросы в рамках настоящей диссертации. Вторая часть представляет собою изложение решения трех примеров на применение электродинамики.

I/ М. Борн. Proc. Roy. Soc. I43. 1934. 410
M. Born and L. Infeld. Proc. Roy. Soc. I44. 1934. 425
" " "
" " "
E. Schrödinger Proc. Roy. Soc. I50. 1935. 141
Борна к теории распространения света в электромагнитных полях. В этих примерах особенно ярко проявляются предсказываемые теорией Борна своеобразные отклонения от законов электродинамики Максвелла, отклонения совсем иного характера чем те, которые связаны с хорошо известными крантовыми эффектами.

Г л а в а I.

§ I. Работы Борна и Инфельда впервые дали решение задачи, много занимавшей умы теоретиков в первое двадцатилетие XX века - задачи построения, в рамках классической электродинамики, так называемой "единой / или унитарной / теории поля и материи" I/.

Основная идея унитарной теории - при наиболее радикальном / отчасти даже сознательно утрированном / ее толковании - заключается в том, что существование всякой электрически заряженной частицы может быть полностью описано, как особое состояние электромагнитного поля. Стандартная схема, которая более или менее однозначно диктуется для построения такой теории, выглядит, в самых общих чертах, - так.

I/ Мы пользуемся здесь установившейся среди физиков терминологией, согласно которой "поле" и "материя" противопоставляются друг другу. С точки зрения общефилософской, такая терминология, разумеется, не выдерживает критики, так как само электромагнитное поле тоже-есть материя, как и всякая реальность, существующая объективно вне нашего сознания.
В основу кладутся законы электромагнитного поля, выраженные лучше всего, в виде вариационного принципа. Поле, как обычно, описывается двумя векторами — электрическим и магнетным; его лагранжиан представляет собой функцию от этих величин. Из вариационного принципа вытекают, в качестве уравнений Эйлера — Лагранжа, так называемые уравнения поля /причем, при проведении вариации, вводится, обычно, добавочное предположение о существовании четырехмерного вектор — потенциала, компоненты которого и служат варьируемыми функциями/. Эти уравнения позволяют сразу же получить законы сохранения для электромагнитного поля, вводя понятие электромагнитной энергии и электромагнитного количества движения /импульса/. Решающий шаг — включение в теорию материи производится следующим образом. Рассматривается определенный класс решений уравнений поля, а именно такие решения, для которых, в какой-то выбранной системе координат, магнитный вектор равен нулю, а электрический — сравнительно симметричен. В силу самой структуры уравнений поля, эти два требования достаточно для того, чтобы определить тип решения полностью*); произвольным остается лишь один постоянный фактор. Физическое состояние, изображенное каким-нибудь решением этого класса интерпретируется, как состояние, соответствующее наличию электрически заряженной материальной частицы, покоящейся в начале координат выбранной системы отсчета. Оставшийся произвольный фактор определяет, как говорят, полный заряд нашей частицы; эта величина никак не фиксируется теорией.

*) Недавно Инфельдом был предложен новый вариант унитарной теории в которой эта однозначность не имеет места (см. пример в конце).
Конкретное содержание фразы: "данное состояние интерпретируется, как состояние, соответствующее наличию частицы" заключается, прежде всего, в том, что координаты "особой точки" решения толкуются как координаты частицы /или ее "центра"/ а соответствующие рассматриваемому состоянию поля полная энергия и полный импульс толкуются, соответственно, как механическая энергия и механический импульс частицы. Значение этих величин зависит, конечно, от выбора системы отсчета; в частности в исходной системе, т.е., в той, относительно которой частица покоятся, полный импульс равен нулю без чего механическая интерпретация была бы, разумеется, невозможной/, полная же энергия представляет собою релятивистскую энергию покоя рассматриваемой частицы.
После того, как таким образом введены основные понятия механики, необходимо, для того, чтобы теория была полной, установить основные ее /механики/ законы. В рамках рассматриваемой схемы от этих законов можно, очевидно, требовать ответа только на один вопрос: как меняются энергия и импульс частицы или, общее, характеризующее наличие частицы состояние поля, под влиянием внешних электромагнитных полей.
При такой ограниченной постановке задачи, законы механики, по крайней мере принципиально, могут быть получены, как частный случай выставленного в самом начале, как исходный пункт, вариационного принципа электромагнетизма и, тем самым теория может считаться завершенной. Такого рода схема является "идеальной" в том смысле, что при последовательном ее проведении, роль основных величин, вводимых в теорию с самого начала играют только
величины, характеризующие поле. Так как осуществление этой схемы в рамках Максвелловской электродинамики было, по хорошо известным причинам, невозможным, то наряду с нею рассматривались и другие схемы построения унитарной теории, которые можно в известном условном смысле назвать более "компромиссными". По таким "компромиссным" схемам построены, в частности, излагаемые во многих учебниках теории Абрагама и Лоренца, отклоняющиеся от указанной программы в том отношении, что в них с самого начала, наряду с понятиями электрического и магнитного векторов, вводились понятия, характеризующие заряды и - правда, только со стороны их электрических свойств, а именно, в первую очередь, понятие плотности заряда. Место несколько абстрактного представления о частице, как об особом состоянии поля, занимали у Абрагама и Лоренца преставления, по внешности более наглядные: частица рассматривалась как "заряженный шарик", т.е. характеризовалась определенным распределением плотности электричества в относительно небольшом объеме /причем порядок величины "радиуса" частицы определялся из ее заряда и массы по хорошо известному соотношению

\[r_0 \sim \frac{e^2}{mc^2} \].

При этом, в отличие от "идеальной" схемы, в теорию входила известная неоднозначность, т.к. даже в предположении о радиальной симметрии частицы, распределение заряда "внутри" ее могло носить еще самый разнообразный характер. Правда, этот добавочный произвол значительно смягчался тем, что различные гипотезы о внутреннем "строении" частицы совсем не влияли на принципиальную сторону выводов теории.
Как хорошо известно, развитие идеи Абрагама и Лоренца встретило в свою очередь ряд затруднений /см. § 3 этой главы/ и единственная удачная из всех доселе существующих унитарных теорий - теория Борна - Инфельда - построена как раз на основе "идеальной схемы". Мы упомянули здесь о "компромиссных" теориях главным образом для того, чтобы подчеркнуть, что введение основных понятий механики производилось и в этих теориях совершенно по такому-же приему, каковой был только что указан, а именно, путем отождествления энергии и импульса электромагнитного поля частицы с ее механической энергией и механическим импульсом. Таким образом, именно это отождествление должно быть рассматриваемо как центральный пункт всякой унитарной теории. По этой причине единую теорию материи и поля часто называют "теорией электромагнитной массы".

§ 2. В какой мере руководящая идея унитарной теории может считаться физически оправданной?

В рамках классической физики, ответ на этот вопрос представляется более или менее ясным. Тот факт, что всякий электрический заряд обладает электромагнитной энергией и электромагнитным импульсом, которые обязательно должны учитываться при написании законов сохранения для любой системы, в состав которой этот заряд входит, является для классической теории совершенно бесспорным.
В самом деле, он вытекает из наиболее фундаментальных положений электродинамики Максвелла. Отсюда, однако, еще отнюдь не следует, что, как это утверждает унитарная теория, вся масса каждой заряженной частицы имеет чисто электромагнитное происхождение. В самом деле, опыт показывает, что не существует таких материальных частиц, все свойства которых исчерпывались бы тем, что эти частицы являются электрическими зарядами. Если даже оставить в стороне тяготение /вопросы гравитационных действий в этой диссертации вообще совершенно не рассматриваются/, то мы знаем наверное, что кроме электромагнетизма и гравитации безусловно существует совершенно особый тип сил, сдерживающих атомное ядро. Между тем, классическая теория утверждает, что "источником" массы материальной частицы является не только электромагнитное, но и всякое создаваемое ею силовое поле (гравитация, как сказано выше, исключается).

Таким образом, в этой радикальной форме, в какой она была нами высказана в § 1, унитарная теория наверняка не отвечает физической реальности. Тем не менее, рассмотрение ее все же является полезным, исходя из следующих соображений. Во первых, существует такой тип материальных частиц - электроны / и позитроны/, которые насколько нам сегодня известно, являются источниками только двух видов силовых полей: электромагнитного и гравитационного. При этом, есть все основания полагать, что на законы, управляющие поведением электрона, создаваемое им самим гравитационное поле оказывает сравнительно небольшое влияние. Поэтому к электрону унитарную теорию нужно считать в основном применимой; во всяком случае, совершенно естественно попытаться построить для электрона такую теорию. Как это ни странно, но тот по существу совершенно очевидный, факт, что всякая
унитарная чисто электромагнитная теория, в том числе и теория Борна–Инфельда, является "самое большое" теорией электрона, до сих пор еще оспаривается в литературеІ/

Во вторых, унитарная теория, помимо непосредственно-физического, имеет и глубокое методологическое значение. В самом деле, все развитие теоретической физики позволяет думать, что построение теории различного вида силовых полей может быть проведено методами, в основном аналогичными друг другу. Поэтому, теория "чистого электричества", т.е. воображаемых частиц, являющихся только электрическими зарядами, может рассматриваться, как прообраз теории реальных частиц, служащих источниками самых разнообразных полей. В настоящее время среди теоретиков господствует убеждение о том, что это утверждение в общем применимо и к тем недавно открытым силам, которые действуют между тяжелыми частицами - протонами и нейтронами и являются ответственными за устойчивость атомного ядра.2/

По поводу этого последнего обобщения можно, правда, заметить, что протонно-нейтронное взаимодействие может быть выражено в терминах теории поля, вообще, повидимому, уже только на квантовом языке. Мы не будем здесь останавливаться на анализе этого вопроса, поскольку он не имеет непосредственного отношения к нашей теме; укажем лишь, что сделанное замечание есть только лишнее напоминание о том основном факте, который и помимо него играет решающую роль во всем разбираемом здесь круге вопросов, а

I/ См. хотя бы заметку Борна и Шредингера в Nature 1935.
2/ См. напр. статью В.Гейзенберга в Zeeman Festschrift, 1935.
именно о том, что истинными законами микромира являются все же не классические, а квантовые законы. Поэтому вся-
кая теория, говорящая о поведении элементарных частиц ма-
tерии и не учитывая эти законов, может рассматриваться, в лучшем случае, как нечто временное, т.е. как пере-
ходный этап к другой, более правильной, теории.

Релятивистской квантовой электродинамики сегодня еще не существует. Известно, что основная, стоящая на
пути ее развития трудность - так называемая трудность "бесконечной собственной энергии" - представляет собою
непосредственную аналогию той трудности, которую до по-
явления работ Борна не могла, сколько нибудь удовлетвори-
tельно, преодолеть классическая физика, стремясь построить
унитарную теорию поля и материи. А priori возможно
dве точки зрения на тот способ, которым будет в дальней-
сchem разрешена эта трудность. Можно стоять на той точке
зрения, что сперва должна быть построена правильная тео-
рия электромагнитной массы в рамках классических идей,
перевод которой на квантовый язык, произведенный по рецеп-
tам, аналогичными известным рецептам "квантования" и даст
истинную релятивистскую микро- электродинамику. С этой
точки зрения, исследование Борновских построений пред-
ставляет исключительный интерес для всего дальнейшего
развития науки. Но можно стать и на ту точку зрения,
что путь аналогии с классикой, столь плодотворный и для все-
го предшествующего этапа квантовой теории, в основном
уже себя исчерпал и преодоление трудностей, стоящих на
пути дальнейшего развития этой теории должно быть и будет получено на каких то принципиально новых путях. С этой точки зрения занятия теорией Борна можно, с большей или меньшей степенью решительности, считать напрасно потерей времени.

В настоящее время у нас нет однозначного критерия, который позволил бы решить, какая из двух названных точек зрения более близка к истине. Во всяком случае, есть все основания сначала испробовать уже изведанный путь аналогии с классической физикой - это либо приведет к успеху, ибо, на худой конец, поможет выяснить, в каком пункте этот путь перестает быть надежным.

§ 3. После этого небольшого оступления, возвращаемся снова непосредственно к нашей теме.

В § 1 мы набросали "идеальную" схему построения унитарной теории материи и поля. Согласно этой схеме, единственная свобода, которая остается в руках теоретика, пытающегося построить унитарную теорию, заключается в выборе лагранжиана поля. После того, как этот выбор сделан, все остальное идет уже более или менее автоматически /если, для того, чтобы не очень удаляться от Максвелловой схемы, принять существование четырехмерного вектор потенциала/.

В связи с этим, естественно спросить себя: каким требованиям должен удовлетворять лагранжиан теории для того, чтобы набросанная выше программа могла быть фактически осуществлена. По сути дела, этот вопрос является первым,
на который нужно ответить при критическом изучении теории. Было бы педакством стремиться перечислить все эти требования; полезнее остановиться главным образом на тех из них, которые действительно существенно сужают класс допустимых лагранжианов. Таких требований можно насчитать по меньшей мере шесть. Мы будем нумеровать их латинскими буквами.

/а/. Теория должна быть релятивистски инвариантной и эйнштейновской.

Первая половина этого требования не нуждается в комментариях. Вторая половина его означает, что четырехмерный вектор-потенциал должен играть в теории только чисто вспомогательную роль. Существование этого потенциала должно рассматриваться лишь как сокращенная запись некоторых свойств, присущих электромагнитному полю/конкретно - первой группы уравнений Максвелла/.

/в/. Уравнения поля должны допускать решения, упомянутые в § 1, а именно также, когда магнитное поле равно нулю, электрическое радиально симметрично и решение содержит одну произвольную константу, которую можно отождествить с зарядом. Без этого весьма трудно было бы ввести естественным образом в теорию заряженные частицы.

/с/. В той системе координат, в которой выполняется требование /в/, полное количество движения должно равняться нулю, а полная энергия должна быть конечной. Как известно, теория Максвелла не удовлетворяла второй части этого требования. Теории Абрагама-Лоренца,
базировавшиеся на искусственно вводимом представлении о "радиусе электрона", удовлетворяли ему. Но они, со своей стороны были плохи тем, что не удовлетворяли следующему четвертому требованию, без выполнения которого теория опять таки не может быть построена. Это четвертое требование гласит:

\[d \]

Приравнивание электромагнитных величин механическому количеству движения и энергии должно носить релятивистски инвариантный характер.

Как мы увидим несколько ниже, это условие, необходимость которого очевидна, отнюдь не выполняется автоматически. Нарушение его приводит к нарушению релятивистской инвариантности теории в ее механической части, что, как известно и произошло с теорией Лоренца. Если эти четыре требования выполнены, то унитарная теория принципиально, может быть построена. Но для того, чтобы она имела физическое значение нужно, чтобы те основные уравнения электродинамики и механики, к которым она приводит, во всяком случае, в известном пределе переходили соответственно в уравнения Максвелла-Лоренца и Эйнштейна. Причем этот предел должен определяться конечно не квантовыми / о коих здесь речь вообще не идет/, а какими то другими соображениями. Мы должны, следовательно потребовать еще следующее:

\[e \]

Если, при построении теории, придется видеоизменить
уравнения Максвелла, то эти уравнения все-же должны оставаться справедливыми в известном предельном случае, т.е. классическая электродинамика должна так или иначе содержаться в новой теории.

/\f/. Аналогичное условие должно иметь место и по отношению к новым уравнениям механики: в определенном пределе они должны переходить в уравнения релятивистской механики Эйнштейна.

§ 4. Борну и Инфельду удалось построить Лагранже-ву функцию, удовлетворяющую всем перечисленным выше шести требованиям. Постараемся кратко воспроизвести ход их мысли. Вариационный принцип, служащий, как всегда, исходным пунктом теории, имеет вид

\[\delta \int L \, d\tau = 0 , \]
(1)

где

\[d\tau = dx^1 dx^2 dx^3 dx^4 \]

Для того, чтобы удовлетворить первой половине требования /а/, величина \(L \, d\tau \) должна быть инвариантом в смысле общей теории относительности. Мы должны, следовательно, иметь

\[L \, d\tau = Inv \]
(2)

Как должно преобразовываться \(L \) для того, чтобы это имело место? Хорошо известный ответ на этот вопрос
гласит: \(L \) должно преобразовываться как выражение вида

\[
\sqrt{|a_{ik}|}
\]

(3)

где \(|a_{ik}| \) - детерминант, образованный из ковариантных компонент любого тензора 2-го ранга.

По основной идее теории /см. § 1/, Лагранжева функция должна зависеть от компонент тензора поля \(f_{ik} \) и, очевидно, поскольку теория строится в рамках общего принципа относительности от компонент метрического тензора \(g_{ik} \). Принимая это во внимание, естественно искать \(L \) среди выражений типа

\[
\sum_{\alpha} A_{\alpha} \sqrt{\sum_{\beta} B_{\alpha\beta} |a_{ik}^{(\alpha\beta)}|}
\]

(4)

где \(A_{\alpha} \) и \(B_{\alpha\beta} \) - инварианты, а \(a_{ik}^{(\alpha\beta)} \) - компоненты тензоров, как-то зависящие от \(f_{ik} \) и \(g_{ik} \).

Борн и Инфельд указывают два выражения типа /4/, которые будучи положены в основу теории, удовлетворяют всем, выставленным выше шести требованиям, а именно:

\----------

I/ Другие величины, характеризующие электromагнитное поле, напр. слагающие вектора-потенциала, не могут входить изза требования эйнштейновой инвариантности, которое, таким образом, в этой теории оказывается автоматически выполненным.
\[L_1 = \sqrt{-|g_{ik} + f_{ik}|} - \sqrt{-|g_{ik}|} \] \hspace{1cm} (5) \\
\[L_2 = \sqrt{-|g_{ik} + F_{ik}| + |f_{ik}|} - \sqrt{-|g_{ik}|} \] \hspace{1cm} (6) \\
или
\[L_1 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + F^2 - G^2} - 1 \right) \] \hspace{1cm} (7) \\
\[L_2 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + F^2} - 1 \right) \] \hspace{1cm} (8) \\
где
\[F = \frac{1}{2} f_{ik} f^{ik} \] \hspace{1cm} (9) \\
\[G = (f_{23} f_{14} + f_{31} f_{24} + f_{12} f_{34}) \frac{1}{\sqrt{-|g_{ik}|}} \] \hspace{1cm} (10) \\

и представляет собою пространственные инварианты.

В этих формулах поля выражены, конечно, в условных единицах. При переходе к обычным единицам, мы должны ввести в формулу фактор \(b \), имеющий размерность напряженности поля. Тогда, напр., формула \(8 \) примет вид
\[L_2 = \sqrt{-|g_{ik}|} \left(\sqrt{1 + \frac{f_{ik} f^{ik}}{2b^2}} - 1 \right) \] \hspace{1cm} (11)

Аналогичным образом может быть переписана и формула \(7 \). В дальнейшем оказывается, что константа \(b \) играет в теории роль "критического" поля, в известном смысле аналогично тому, как скорость света в теории относительности играет роль критической скорости. Величина \(b \) оказы-
вается весьма большой - порядка 10^{16} абс. ed]

Легко видеть, что для полей, малых по сравнению с "критическим" полем b, обе Лагранжевы функции теории Борна переходят в Лагранжеву функцию Максвелла, т.е. требование $/e/$ оказывается выполненным. Напомним, что в теории Максвелла, Лагранжиан имеет вид:

$$
\frac{1}{4} \sqrt{-|g_{ik}|} f_{ik} f^{ik}
$$

который тоже подходит под общую формулу $/4/$.

Принципиальное отличие этой формулы $/12/$ от $/5/$ и $/6/$ заключается в том, что в $/12/$ у Максвелла под корнем остается только метрический тензор, тогда как компоненты тензора поля входят лишь в один из инвариантов A_{α}.

В теории же Борна, как это видно из формул $/5/$ и $/6/$, величины, характеризующие и поле и метрику стоят под корнем, а инварианты A_{α} и $B_{\alpha\beta}$ оказываются простыми числами. Как выяснится из дальнейшего, этот факт существенно влияет на вид новых уравнений поля, делая их, в отличие от уравнений Максвелла, нелинейными в полях.

В какой мере выбор функции $/5/$ и $/6/$ является одноначальным и как вообще можно ставить вопрос об однозначности в данном случае?

Совершенно очевидно, что одного требования релятивистской инвариантности интеграла действия далеко не достаточно для того, чтобы однозначно выбрать даже тип Лагранжиана $/1/$

1) Замечание Борна о том, что обычный выбор Лагранжиана в виде $Inv \cdot \sqrt{-|g_{ik}|}$ /где Inv зависит только от f_{ik}/ является "формальным", вряд ли является существенным, так как сам критерий "формальности" весьма неясен. Любопытно, что одно из рекомендуемых самым Борном выражений - а именно выражение $/6/$ - тоже принадлежит, как это особенно ясно видно из $/8/$, к критикуемому им типу.
Но если прибавить к нему еще требование предельного перехода к теории Максвелла, то это уже значительно сужит класс допустимых Лагранжианов. Полной однозначности выбора все же и это, конечно, не дает: достаточно указать хотя бы на существование трех функций /7/, /8/ и /12/.

Интересно было бы выяснить, достаточно ли добавить к этим двум требованиям еще требование конечности энергии частицы, для того, чтобы определился хотя бы общий тип Лагранжевых функций. Более узко этот вопрос можно поставить так: существуют ли такие Лагранжианы, которые удовлетворяют всем шести требованиям выставленным в § 3 и, вместе с тем, существенно отличаются от выражений /5/ и /6/.* Заметим, что эта последняя неоднозначность не является опасной, так как выражения /5/ и /6/ по сути однотипны и в целом ряде случаев приводят, даже к полностью одинаковым результатам.

Именно, так обстоит дело в основной статической задаче. Так же во всех случаях малых полей, которые только и различие между этими результатами, повидимому несущественно будут интересовать нас во второй главе. Только для сильных полей /вблизи заряженных частиц/ результаты, к которым приводят нас оба Лагранжиана существенно различны и вопрос о том какую из этих функций нужно в этой области предпочтеть может быть решен лишь путем сравнения выводов теории с опытными фактами.

В дальнейшем, мы будем пользоваться исключительно функцией /8/.

*) См. прим. в конце.
§ 5. Итак, Лагранжева функция выбрана.
В декартовой системе координат специальной теории относительности она имеет вид:

\[L = \sqrt{1 + F} - 1 \] \hspace{1cm} (13)

Дальнейшее развитие теории происходит по "идеальной" схеме, изложенной в § 1.
Постулируется существование четырехмерного вектор-потенциала \(\varphi \) удовлетворяющего условию:

\[f_{ik} = \frac{\partial \varphi_k}{\partial x^i} - \frac{\partial \varphi_i}{\partial x^k} , \] \hspace{1cm} (14)

что эквивалентно установлению первой системы уравнений поля:

\[\frac{\partial f_{ik}}{\partial x^l} + \frac{\partial f_{kl}}{\partial x^i} + \frac{\partial f_{li}}{\partial x^k} = 0 \] \hspace{1cm} (15)

Уравнения Эйлера для вариационного принципа \(\delta \int L \, d\tau = 0 \)
дают вторую группу уравнений поля:

\[\frac{\partial}{\partial x^k} \frac{\partial L}{\partial f_{ik}} = 0 \] \hspace{1cm} (16)

которые, как было уже указано, нелинейны в полях в силу того, что \(L \) не является вадратичной функцией полей, как это имеет место в теории Максвелла. Вводя тензор индукции

\[P_{ik} = \frac{\partial L}{\partial f_{ik}} , \] \hspace{1cm} (17)

мы можем переписать вторую группу уравнений поля в виде

\[\frac{\partial P_{ik}}{\partial x^k} = 0 \] \hspace{1cm} (18)
Совершенно таким же методом, как в классической электродинамике Максвелла – Ленарда, можно, исходя из уравнений поля /15/ и /16/, построить тензор энергии – импульса T_{ik}, и получить законы сохранения:

$$ \frac{\partial T_{ik}}{\partial x^l} = 0, \quad (19) $$

где

$$ T_{ik} = \delta^i_l L - f_{ik}P^{lk} \quad (20) $$

Получим теперь уравнения поля и законы сохранения в векторной форме. Обозначим через B, E, D и H *) пространственные векторы, характеризующие электромагнитное поле в обычных Хевисайдовых единицах. Именно, положим:

$$
\begin{align*}
& f_{23}, f_{31}, f_{12} \rightarrow B \\
& f_{14}, f_{24}, f_{34} \rightarrow E \\
& P_{23}, P_{31}, P_{12} \rightarrow H \\
& P_{14}, P_{24}, P_{34} \rightarrow D
\end{align*}
\quad (21)
$$

Тогда

$$ L = \sqrt{1 + F} - 1, $$

где

$$ F = \frac{1}{b^2} (B^2 - E^2). \quad (22) $$

Далее

$$
\begin{align*}
& H = b^2 \frac{\partial L}{\partial B} = \frac{B}{\sqrt{1 + F}} \\
& D = - b^2 \frac{\partial L}{\partial E} = \frac{E}{\sqrt{1 + F}}
\end{align*}
\quad (23)
$$

*) Для векторных величин здесь и ниже не вводится специальных обозначений.
и уравнения поля принимают вид уравнений Максвелла для среды, но без зарядов и токов:

\[
\begin{align*}
\n\n\text{rot } E + \frac{1}{c} \dot{B} &= 0 \\
\text{div } B &= 0 \\
\text{rot } H - \frac{1}{c} \dot{D} &= 0 \\
\text{div } D &= 0
\end{align*}
\]

(24)

или, если в последние два уравнения подставить вместо \(\mathbf{H} \) и \(\mathbf{D} \) их значение /23/ через \(\mathbf{B} \) и \(\mathbf{E} \), то, окончательно, система уравнений поля будет иметь вид:

\[
\begin{align*}
\n\n\text{rot } E + \frac{1}{c} \dot{B} &= 0 \\
\text{div } B &= 0 \\
\text{rot } B - \frac{1}{c} \dot{E} &= \frac{1}{2} \frac{1}{1 + F} \left\{ \text{grad } F, B \right\} - \frac{1}{c} \dot{F} E \\
\text{div } E &= \frac{1}{2} \frac{1}{1 + F} \left(\text{grad } F, E \right)
\end{align*}
\]

(25)

Для тензора энергии и импульса мы получаем таблицу компонент

\[
\mathbf{T}^{il} = \begin{bmatrix}
X_x & X_y & X_z & cG_x \\
Y_x & Y_y & Y_z & cG_y \\
Z_x & Z_y & Z_z & cG_z \\
\frac{1}{c} S_x & \frac{1}{c} S_y & \frac{1}{c} S_z & U
\end{bmatrix}
\]

(26)

где

\[
\begin{align*}
X_x &= H_y B_y + H_z B_z - D_x E_x - b^2 L \\
Y_x &= X_y = -H_y B_x - D_x E_y \\
\frac{1}{c} S_x &= cG_z = D_y B_z - D_z B_y \\
U &= DE + b^2 L
\end{align*}
\]

(27)
При этом законы сохранения принимают вид:

\[
\begin{align*}
\text{div } X &= - \frac{1}{c^2} \frac{\partial S_x}{\partial t} \\
\text{div } S &= - \frac{\partial U}{\partial t}
\end{align*}
\]

(28)

Как подчеркивает Борн, за независимые переменные можно выбрать, конечно, любую пару из четырёх векторов поля E, B, H и D. В зависимости от этого выбора мы можем получать внешне различные формулировки теории с различными Лагранжианами, но, разумеется, приводящие к одним и тем же, по существу, уравнениям поля. Очевидно, возможны 4 таких формулировки. Наиболее удобной для нас в дальнейшем формулировкой теории будет та, которую мы до сих пор и рассматривали /т.е., при которой за независимые векторы выбраны E и B/, хотя и при любом другом выборе вычисления усложнились бы лишь очень незначительно.

Отметим, что для построения квантовой теории оказывается более удобным выбрать за независимые векторы D и B. При этом роль Лагранжевой функции играет плотность энергии \(U \), равная по последней формуле /27/:

\[
U = b^2 \left(\sqrt{\left(1 + \frac{D^2}{b^2} \right) \left(1 + \frac{B^2}{b^2} \right)} - 1 \right)
\]

(29)

§ 6. Найдем, по указанному в § 1 рецепту, решение уравнений поля, соответствующее наличию покоящейся заряженной частицы в начале координат. Согласно сказанному в § 1, мы при этом должны, прежде всего, положить

\[
B = H = 0
\]
В силу /24/, это дает

\[\text{rot } E = 0 \quad ; \quad \text{div } D = 0 \]

(30)

причем \(D /a, \) следовательно, и \(E/ \) не зависит от времени. Ищем радиально симметричное решение этих уравнений, т.е. такое решение, для которого оба вектора \(E \) и \(D \) радиальные по направлению и по величине зависят только от \(r. \)

Второе из уравнений /30/ в сферических координатах дает

\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 D_r \right) = 0 \]

(31)

Откуда совершенно однозначно получаем

\[D_r = \frac{e}{r^2} \]

(32)

где \(e - \) единственная константа интеграции, отождествляемая с зарядом. Это решение имеет особую точку при \(r=0. \)

Описываемое им состояние поля имеет особую точку при \(r=0. \)

Вычисляя поле \(E, \) находим

\[E_r = \frac{e}{\sqrt{r^4 + r_0^4}} \]

(33)

где

\[r_0 = \sqrt{\frac{e}{b}} \]

(34)

и представляет собой константу, имеющую размерность длины, которая, как ниже выясниться, будет в известной мере аналогична "радиусу" электрона в теории Лоренца.
Из формулы (33) мы видим, что поле E не имеет особых точек. Однако сам по себе факт конечности E еще отнюдь не означает, что в теории нет расходимостей. Для того, чтобы проверить, удовлетворяется ли для нашего решения условие /c/, необходимо обратиться к непосредственным вычислениям по формулам / 27/

Легко видеть, и здесь мы имеем крупный принципиальный успех теории, что в данном случае это условие удовлетворяется. В самом деле, импульс в нашем случае обращается в нуль в силу того, что $B = 0$; конечность же полной энергии $W = \int UdV$ подтверждается непосредственными вычислениями, дающими для W значение:

$$W = 1,2361 \frac{e^2}{r_0}$$ \hspace{1cm} (35)

Этот пункт является, как сказано, весьма существенным. Он показывает, что Борну удалось, оставаясь в рамках классических идей устранить трудность бесконечной собственной энергии электрона, не прибегая при этом, ни к каким искусственным представлениям о его "структурае".

Зная заряд и массу электрона, мы можем найти численное значение константы r_0:

$$r_0 = 1,2361 \frac{e^2}{m_0c^2} = 2,28 \cdot 10^{-13} \text{ см.}$$ \hspace{1cm} (36)

и, следовательно, численное значение "критического" поля "b":

$$b = \frac{e}{r_0^2} = 9,18 \cdot 10^{15} \text{ абс. ед.}$$ \hspace{1cm} (37)

Из этих формул видно, что мы можем, в терминологии теории Лоренца, величину r_0 интерпретировать как "радиус"
электрона, а "критическое" поле "\(b \)" - как напряженность электрического поля на его "поверхности". Величина этого "критического" поля, очевидно, является универсальной константой теории, независящей от заряда \(e \), который, как уже упоминалось, никак теорией не фиксируется. Следовательно, при выбранном \(e \), мы получаем вполне определенное \(r_0 \) и, в силу /36/, вполне определенную массу \(m_0 \). Это замечание убеждает нас в том, что при данном заряде \(e \), теория Борна приводит только к одному значению для массы \(m_0 \), т.е. является теорией только одного сорта частиц-электронов. Получить теорию протона, как видно отсюда, в рамках вышеизложенных соображений, оказывается невозможным.

§ 7. Рассмотрим теперь несколько подробнее вопрос, затронутый при формулировке требования /\(d \)/, а именно вопрос о релятивистском приравнивании электромагнитных величин механическим.

Как мы уже выяснили, для построения механики в унитарной теории, мы должны отождествить интегралы по объему от электромагнитного количества движения т.е., от \(cG_x \), \(cG_y \), \(cG_z \), для указанного типа состояний поля с механическим количеством движения частицы и интеграл от плотности энергии \(U \) с полной энергией частицы. Для того, чтобы такое отождествление было релятивистски инвариантно, нужно, чтобы эти интегралы, при преобразовании Лоренца, преобразовались как компоненты четырехмерного вектора. Легко убедиться в том, что необходимым условием этого является равенство нулю, в покоящейся относительно частицы системе
координат, объемных интегралов от диагональных компонент тензора Максвелловых напряжений X_x, Y_y и Z_z,
t.е. условие:

$$\int X_x dV = \int Y_y dV = \int Z_z dV = 0 \quad (38)$$

В теории Абрагама - Лоренца это условие не выполнялось в этом, как раз, заключалась вышеуказанная трудность построения релятивистски инвариантной механики. С этим-же была связана необходимость введения сил незлектрического происхождения, сдерживающих электрон, т.к. результирующие Максвелловы напряжения были отличны от нуля 1/.

Теория Борна - Инфельда свободна от этой трудности. Непосредственная подстановка решения /32/-/38/ в /27/ показывает, что условие /38/ для решения выполняется и, следовательно, мы можем построить релятивистски инвариантную механику. Иначе говоря, здесь нет необходимости введения сил, содержащих электрон, т.к. результирующие Максвелловы напряжения обращаются в нуль. Таким образом, в электродинамике Борна удовлетворяется и последнее требование пред"являемое к унитарной теории, на котором показала свою несостоятельность лучшая из прежних теорий - теория Лоренца.

§ 8. Наметить теперь путь, при помощи которого можно получать в теории Борна - Инфельда законы механики. Для этого мы очевидно должны рассмотреть вопрос о том, каким образом будут вести себя решения уравнений поля

1) Интегралы от недиагональных компонент тензора Максвелловых напряжений обращаются в нуль и в теории Лоренца, и в теории Борна.
интерпретируемые нами как наличие электрона, под влиянием внешнего поля.
Мы знаем, что уравнения Борна допускают решения, соответствующие покоящемуся электрону. Совершая преобразование Лоренца над координатной системой, мы можем получить решения, соответствующие прямолинейно и равномерно движущемуся электрону. Правда, для механики желательно было бы знать и такие решения, которые соответствуют ускоренно движущемуся электрону, ибо иначе такое движение будет иметь электрон под влиянием внешних электромагнитных полей. Принципиально, можно было бы построить теорию возмущений, беря решение, соответствующее равномерному и прямолинейному движению за нулевое приближение и рассматривая влияние ускорения, как малое возмущение. Но хорошо известно, что учет ускорения, вообще, важен только при рассмотрении эффекта реакции собственного излучения на электрон. Если этим эффектом не интересоваться, то вполне достаточно рассматривать решение, соответствующее ускорению равному нулю, что мы и будем делать. Исходным пунктом теории должен быть, очевидно, служить такие решения уравнений Борна, которые соответствуют одновременному существованию электрона и внешнего поля. Правда, мы выше видели, что в унитарной теории можно практиковать как наличие частицы, только некоторые, вполне определенные решения, не предусматривающие присутствия еще внешнего поля. Это последнее как-то изменит наше решение "/32/ и "/33/ или полученное из него преобразование м Лоренца/ и a priori неясно можно ли будет вообще при этом продолжать говорить о наличии частицы. Иначе говоря, в теории Борна принципиально мыслим такой случай, когда под влиянием поля электрон теряет как бы свою
индивидуальность, совсем грубо говоря, как бы"разрушается". Физически, однако, ясно, что такое положение вещей может иметь место только при очень сильных полях/сравнимых с \(b/ \), или - одно, конечно, связано с другим - при больших ускорениях электрона. При малых же полях и малых ускорениях, влияние поля в основном, очевидно, может быть описано в классических терминах, т. е. просто как "приведение электрона в движение". В математической форме, указанное осложняющее обстоятельство выражается так. Пусть \(D_0 \) и \(B_0 \) 1) есть решение уравнений Борна, соответствующее наличию электрона, движущегося равномерно и прямолинейно по какой-то мировой траектории/величине, характеризующие вид этой траектории играют в нижеследующих рассуждениях роль параметров./. Пусть далее \(D_{\text{вн}} \) и \(B_{\text{вн}} \) есть решение этих уравнений, соответствующее внешнему полю. Тогда сумма вида \(D_0 + D_{\text{вн}} \) и \(B_0 + B_{\text{вн}} \) как правило, не будет представлять собой решения уравнений Борна - в силу их нелинейности - ни при каком выборе мировой траектории. В этом и проявляется специфический для теории Борна и чуждый классике эффект искажения свойств электрона внешним полем.
Если \(D_{\text{вн}} \) и \(B_{\text{вн}} \) сравнимы с \(b \) - напр. если на расстоянии сравнимом с \(r_0 \) от нашего электрона находится другой электрон

1) Оказывается, что для проведения вычислений здесь, пожалуй, удобнее всего пользоваться той формулировкой теории, где за независимые переменные выбрали \(D \) и \(B \) и роль Лагранжиана играет плотность энергии \(U \).
то этот эффект искажение играет основную роль во всем явлению и a priori не ясно как нужно тогда вести вычисления. Если же $D_{\text{ан}}$ и $B_{\text{ан}}$ малы по сравнению с b, то можно, очевидно, положить

$$D = D_0 + D_{\text{ан}} + D'; \quad B = B_0 + B_{\text{ан}} + B'$$ (39)

и искать D' и B' в виде малых поправок к исходным полям. Эффект искажения будет, но он будет мал. Конкретный пример такого вычисления был дан проф. И.Е. Таммом рассмотревшим тот простейший случай когда решение D_0 и B_0 соответствует покоящемуся электрону, а решение $D_{\text{ан}}$ и $B_{\text{ан}}$ - постоянному однородному электростатическому полю. В этом случае $B = 0$; для поправки же D' получаются довольно простые уравнения, которые показывают, что эта поправка в известном смысле действительно мала: а именно, хотя в центре электрона она идет в бесконечность, но все время остается гораздо меньше чем D_0; на больших же расстояниях от этого центра $D' \ll D_{\text{ан}}$. Разумеется при $b \to \infty$, D' уходит в нуль.

Существенно иметь в виду, что решения типа существуют очевидно при любом виде мировой траектории и появление поправок D' и B' никакого непосредственного отношения к тому факту, что электрон приходит в движение не имеет.

Отсюда вытекает, что исходя из одних только уравнений поля, законов механики электрона вообще получить нельзя. Особенно ярко это видно хотя бы из примера разобранного Таммом, который показывает, что уравнения Борна допускают и такие решения при которых несмотря на наличие внешнего поля электрон покоятся. В этом факте в самом по себе нет ничего странного.

1/ Как я узнал из его любезного сообщения.
в самом деле физически вполне возможно представить себе такой случай когда электрон удерживается на месте какими нибудь силами не электрического происхождения. Наличие таких сил, очевидно, ни как не может учтено в самих уравнениях поля, которые определяют вообще все электродинамически возможные состояния поля и конечно, ничего не могут сказать о том в каких условиях то или иное из этих состояний осуществимо механически.

Это обстоятельство, однако, отнюдь не означает, что для получения законов механики необходимо ввести в теорию какие то новые самостоятельные принципы. Дело в том, что, как неоднократно подчеркивалось в ходе всего изложения, основным утверждением теории Борна является не уравнения поля, а вариационный принцип. Содержание же этого принципа отнюдь не исчерпывается уравнениями поля; последние определяют собою всю совокупность экстремалей вариационного интеграла, но ведь отнюдь не для всех экстремалей этот интеграл имеет одинаковое значение. Именно благодаря этому обстоятельству вариационный принцип оказывается достаточным для получения не только законов электродинамики, но и законов механики.

Конкретно нужно очевидно поступить так: подставить решение в Лагранжинан и искать для какого из этих решений вариационный интеграл имеет экстремальное значение. Роль параметров, по которым при этом должна производится вариация, играют величины характеризующие вид мировой линии электрона, от которого зависят выражения. Ясно, что получающееся в результате такого метода варьирования уравнение действительно по типу аналогично обычному вариационному принципу механики. Ясно, далее, что добавление соответствующих членов к Лагранжинану, можно, принципиально, учесть и действие на заряд не электрических сил.

Если интересоваться только "нулевым приближением" т.е. теми случаями когда можно ожидать применимости обычных законов механики - то можно, очевидно, отбросить поправки и встав-
лять в вариационный интеграл непосредственно сумму поля электрона и внешнего поля. Борн и Инфельд показали, что идя по только что указанному пути можно действительно получить вариационный принцип, аналогичный механическому, который — в предположении, что внешнее поле мало меняется на расстояниях порядка r_0 — переходит в обычный вариационный принцип релятивистской механики. Тем самым задача построения механики в рамках унитарной теории, может считаться, по крайней мере в общих чертах, разрешенной.

Наиболее интересным было бы, конечно, исследование тех отклонений от обычного вида механических уравнений, которые должны появиться в теории Борна при более точном проведении вычислений. К сожалению те приближения, от которых нужно при этом освободиться повидимому связаны друг с другом— если градиент внешнего поля на расстояниях порядка r_0 не мал, то вряд ли мало и поправки D' и B', а также вряд ли мала и реакция собственного излучения на электрон. Впрочем, если учитывать все эти эффекты только в первом приближении, то вычисления остаются принципиально выполненными хотя и делаются весьма громоздкими.
ГЛАВА П.

§ I. Введение

Итак, коротко резюмируя содержание главы 1, можно сказать, что Борну удалось построить унитарную теорию поля и материи за счет отказа от Максвелловых уравнений и введения в замену их новых уравнений поля/формулы (24)/ или (25)/, основной характерной чертой которых является их нелинейность. При переходе от уравнений Максвелла к уравнениям Борна "механические" результаты теории, таким образом, существенно меняются: энергия точечного заряда получается конечной и т.д. Но нетрудно видеть, что одновременно с этим перестает быть справедливым и ряд других результатов обычной электродинамики, на первый взгляд никак не связанных с трудностями построения унитарной теории. А именно поскольку теория становится нелинейной, как мы уже вскользь указывали в § 1-ой главы, теряет силу принцип суперпозиции, играющий столь важную роль во всей Максвелловой электродинамике. Иначе говоря, согласно теории Борна, отклонения от обычных законов электродинамики должны проявляться не только в "механических" явлениях, но и в эффектах "взаимного искажения" двух /или нескольких/ электромагнитных полей.

Наиболее интересным из этих эффектов является, пожалуй, эффект искажения поля световой волны другими внешними полями. Как непосредственно видно из уравнений (24)/, в сочетании с (22)/ и (23)/, в теории Борна плоская и шаровая электромагнитная волна представляют собою два точных решения уравнений поля / Это имеет место также и для второго варианта теории, имеющего дело с другой Лангранжевой функцией. Проще всего в этом можно убедиться, если
вспомнить, что для поля волновой зоны оба пространственных инварианта F и G обращаются в нуль. Таким образом, пока речь идет о такого типа волнах, электромагнитная теория света формулируется по Борну точно так же как и по Максвеллу. Но дело начинает обстоять существенно иначе, как только мы переходим к нескольким усложненным случаям, а именно к таким, когда наряду с полем, скажем, плоской световой волны, имеется в наличии еще какое нибудь другое электромагнитное поле, хотя бы электростатическое поле плоского конденсатора или поле другой световой волны. По Максвеллу, наличие этого второго поля не оказывает никакого влияния на свойства исходной волны, в то время как по Борну такое влияние, вообще говоря, наверно имеет место, т.к. напр. сумма электромагнитных полей двух плоских волн уже не представляет собой решение уравнений Борна. До тех пор, пока все поля, с которыми мы здесь имеем дело, слабы по сравнению с "критическим" полем "$b\$, влияние нелинейности должно, очевидно, быть слабым и имеет смысл говорить о том, что в присутствии постороннего поля мы все же имеем плоскую волну, несколько только искаженную. Разбор трех примеров такого типа искажения и составляет предмет этой главы.

Необходимо отметить, что как раз в этом пункте проявляется замечательная аналогия между электродинамикой Борна и теорией, построенной, казалось бы, на совершенно других физических основах, а именно — теорией позитрона Дирака. В самом деле, как указали впервые Гальперн...
и Дебаин, согласно этой последней теории тоже должен иметь место эффект взаимного искажения двух световых волн и так-же, как нетрудно убедиться, ряд других, аналогичных Борновским, эффектов искажения. Более того, ученики Гейзенберга Эйлер и Коккель показали, что эта аналогия имеет, в известной мере и количественный характер: "рассеяние света на свете" вычисленное по Дираку, оказывается в общих чертах так-же, какого следовало бы ожидать по проквантованной электродинамике Борна. В связи с существованием этой аналогии встаёт ряд интересных вопросов, которые мы, однако, здесь, не будем обсуждать, поскольку все они существенно связаны с переходом к квантованию поля, лежащим вне рамок настоящей диссертации/тем более, что детальный анализ результатов Эйлера и Коккеля пока невозможен, поскольку их вычисления еще неопубликованы/ Во всяком случае само существование аналогии между результатами Борна и Дирака, как раз в области нелинейных эффектов, делает исследование именно этой стороны Борновской электродинамики особенно интересным и c классической точки зрения.

§ 2.3/ Плоская световая волна в однородном электростатическом поле

В качестве первого примера, мы рассмотрим задачу о распространении плоской световой волны в однородном электростатическом поле - скажем в поле плоского конденсатора-

1/ см. Heisenberg, Z. f. Phys. 90. 1934. 209.
2/ Naturwiss. 23. 1935. 246.
3/ Результаты этого параграфа опубликованы в статье С.Шубина и А.Смирнова. ДАН 1936.
ра. Эту задачу мы разберем особенно подробно, как простейшую и типичную.
Представим себе, сначала, плоскую световую волну, электромагнитное поле которой определяется равенствами:

\[
\begin{align*}
E &= D = E_0 \cos \omega (t - \frac{r_n}{c}) \\
B &= H = B_0 \cos \omega (t - \frac{r_n}{c})
\end{align*}
\tag{40}
\]

где, как обычно

\[
E_0 = [n, B_0] ; \quad B_0 = [E_0, n]
\tag{41}
\]

Выражение /40/, как было только что указано, представляет собой точное решение уравнений Борна.
Согласно этой теории, изображаемая этим решением волна может, как правило, распространяться только в вакууме, т.е. в отсутствии всех других полей. В частности, если включить в рассматриваемые нами части пространства еще поле плоского конденсатора \(N\), то выражение вида

\[
\begin{align*}
E &= E_0 \cos \omega (t - \frac{r_n}{c}) + N \\
B &= B_0 \cos \omega (t - \frac{r_n}{c})
\end{align*}
\tag{42}
\]

уже не будет представлять собой возможного состояния поля. Ясно, однако, что до тех пор пока \(N \ll b\) будут существовать решения, во всяком случае по типу близкие к /42/. Эти решения, или, во всяком случае, некоторый достаточно широкий класс их мы и ставим себе зада-
чей найти I/.
При этом, мы сначала не касаемся вопроса о том, в каких условиях то или иное из этих решений осуществляется фактически; обсуждение этой более конкретной задачи мы отодвигаем до § 3.

Опираясь на неравенство $N \ll b$ которое является, как уже сказано, существенным, мы будем в ходе вычислений отбрасывать все степени величины $\frac{N}{b}$ кроме наивысшей. Как выяснится в дальнейшем, этой наивысшей степенью является вторая. Таким образом, все выражения, имеющие в знаменателе b^4, b^6 и т.д. будут нами в дальнейшем зачеркиваться. 2/

I/ Конечно, можно было бы исходить не из векторов Е и В, а из какой-нибудь другой пары векторов, например, D и N и поставить задачу так: найти решение, близкое к

$$
\begin{align*}
D &= D_0 \cos \omega (t - \frac{r_n}{c}) + N \\
H &= H_0 \cos \omega (t - \frac{r_n}{c})
\end{align*}
$$

Разумеется, окончательные результаты должны быть при обоих постановках вопроса по существу одинаковы.

В том, что действительно так, мы убедимся в следующем параграфе.

2/ Если мы встретим, в дальнейшем выражения типа $\frac{E_0^4}{b^4}$ или $\frac{E_0^2 N^2}{b^4}$, то ими, очевидно, также сможем пренебречь.
Ясно, что в таком приближении, различие между первым и вторым вариантом теории Борна пропадает, т.к. Лагранжева функция /7/ переходит в /8/.

Наиболее естественным казалось бы на первый взгляд искать решение уравнений Борна /25/ в виде

\[
\begin{align*}
E &= E_0 \cos \omega \left(t - \frac{r_n}{c} \right) + N + E' \\
B &= B_0 \cos \omega \left(t - \frac{r_n}{c} \right) + B'
\end{align*}
\]

(43)

считая \(E'\) и \(B'\) малыми величинами, стремящимися к нулю при \(N_b \to 0\). Однако, если подставить выражения /43/ в уравнения /25/, то оказывается, что для \(E'\) и \(B'\) получаются уравнения, которые не имеют повсюду конечных решений. Иначе, вычисления показывают, что \(E'\) и \(B'\) содержат члены, пропорциональные величине \(t + \frac{r_n}{c}\), т.е. обращающиеся в \(\infty\) при \(r = \infty\) и \(t = \infty\).

Неудача этого вычисления с необходимостью приводит к тому выводу, что не существует таких решений уравнений Борна; которые при всех \(r\) и \(t\) были бы близки к соответствующим Максвелловским решениям /42/. Иначе говоря, для данного класса задач, применяемый обычно метод возмущений /неизвестная величина + мала добавка/ в таком виде не применим.

Любопытно, что аналогичное положение вещей мы имеем и в некоторых нелинейных задачах классической механики. Рассмотрим, напр., уравнение движения ангармонического осциллятора с силой, содержащей члены, пропорциональные \(x\) и \(x^3\):

\[
\ddot{x} + \omega^2 x = \kappa x^3
\]

(44)

и попытаемся искать его решение в виде

\[
x = A \cos \omega t + x'
\]

(45)
Считая $\kappa u x'$ малыми величинами, мы для x' получим уравнение

$$\ddot{x}' + \omega^2 x' = \kappa A^3 \cos^3 \omega t = \kappa A^3 \frac{3 \cos \omega t + \cos 3 \omega t}{4}$$ \hspace{1cm} (46)$$

Это уравнение можно формально рассматривать как уравнение вынужденных колебаний с силой, содержащей член с той же частотой какую имеют собственные колебания. В результате получается "резонанс", т.е. x' оказывается пропорциональным t и при $t \to \infty$ мы получаем расходящееся решение, не имеющее физического смысла и указывающее, что искать x в виде /45/ нельзя.

В данном случае хорошо известно, каким образом нужно изменить метод решения уравнения /44/. А именно нужно изменить само нулевое приближение и искать решение в виде

$$x = A \cos \nu t + x'$$ \hspace{1cm} (47)$$

где ν отличается /хотя и мало/ от ω и должно быть подобрано так, чтобы в уравнении для x' член, дающий "резонанс", пропадал. Как нетрудно видеть, для этого нужно, в I-м приближении положить

$$\nu = \omega \left(1 - \frac{3 \kappa A^2}{8 \omega^2}\right)$$ \hspace{1cm} (48)$$

Если ν выбрано так, то уравнение для x' будет при этом иметь решение, все время фактически остающееся малым.

Этот простой пример дает ключ для решения нашей задачи. Будем искать решение уравнений Борна не в виде /43/, а попробуем как то видоизменить само нулевое приближение, т.е. предположим, что присутствие постоянного электрического поля как-то изменяет свойства самой исходной плоской волны. Естественнее всего считать, что это поле вносит некоторую анизотропию в пространство и попытаться удовлетворить уравнениям Борна выражениями, аналогичными решениям уравнений Максвелла для света, распространяю-
щегося в одноосном кристалле.
Выберем направление волнового вектора за ось \(ox \), а плоскость, образованную этим вектором и вектором внешнего поля \(N \) за плоскость \(xy \).
Обозначим через \(\alpha \) угол между этими векторами. Относительно компонент поля волны предположим пока только, что они являются периодическими функциями \(x \) и \(t \), т.е. будем искать решение уравнений \(/25/ \) в виде

\[
\begin{align*}
E_x &= E^0_x \cos \omega_1 \left(t - \frac{x}{v_1} + \varphi_1\right) + N \cos \alpha = E^0_x \cos \gamma_1 + N \cos \alpha \\
E_y &= E^0_y \cos \omega_2 \left(t - \frac{x}{v_2} + \varphi_2\right) + N \sin \alpha = E^0_y \cos \gamma_2 + N \sin \alpha \\
E_z &= E^0_z \cos \omega_3 \left(t - \frac{x}{v_3} + \varphi_3\right) = E^0_z \cos \gamma_3 \\
B_x &= B^0_x \cos \nu_1 \left(t - \frac{x}{w_1} + \theta_1\right) = B^0_x \cos \gamma_4 \\
B_y &= B^0_y \cos \nu_2 \left(t - \frac{x}{w_2} + \theta_2\right) = B^0_y \cos \gamma_5 \\
B_z &= B^0_z \cos \nu_3 \left(t - \frac{x}{w_3} + \theta_3\right) = B^0_z \cos \gamma_6
\end{align*}
\]

где \(\varphi \) и \(\theta \) постоянные фазы.
Таким образом, мы предполагаем заранее, что разные компоненты поля волны могут иметь различные амплитуды, частоты, скорости и начальные фазы.
Мы увидим, что уравнениями Борна можно удовлетворить решениями типа \(/49/ \) если распорядиться соответствующим образом входящими туда параметрами; при этом, как окажется, мы можем не добавлять к ним еще аддитивных поправок \(E'_x, E'_y \) и т.д. .
Подставим /49/ в /25/ и, производя вычисления с точностью до низшей степени малых величин, определим соотношения между амплитудами, соотношения между частотами и скорости, входящие в /49/. Заметим, при этом, что мы можем считать малыми все величины типа $\frac{v_1-c}{c}$, $\frac{E_x^0}{\sqrt{E_y^0 + E_z^0}}$ и т.д., вообще все постоянные величины, характеризующие отклонения нашего решения от Максвелловского.

Перепишем, в нашем приближении, уравнения Борна /25/:

\[
\begin{align*}
\text{rot } E + \frac{1}{c} \dot{B} &= 0 \quad ; \quad \text{div } B = 0 \quad (50) \\
\text{rot } B - \frac{1}{c} \dot{E} &= \frac{1}{2} \left\{ [\text{grad } F, B] - \frac{1}{2} \dot{F} E \right\} \\
\text{div } E &= \frac{1}{2} (\text{grad } F \cdot E) \quad (51)
\end{align*}
\]

где

\[
F = \frac{B^2 - E^2}{b^2} \quad (52)
\]

Уравнение $\text{div } B = 0$ дает нам

\[
B_x^0 = 0 \quad (53)
\]

Подставляем теперь /49/ в оставшиеся уравнения /50/:

Первое из них:

\[
\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} + \frac{1}{c} \dot{B}_x = 0
\]

удовлетворяется автоматически.

Второе:

\[
\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} + \frac{1}{c} \dot{B}_y = 0
\]

дает

\[
- \frac{\omega_3}{v_3} E_z^0 \sin \gamma_3 - \frac{v_2}{c} B_y^0 \sin \gamma_5 = 0
\]
Откуда

\[
\begin{align*}
\nu_2 &= \omega_3 ; \quad w_2 = v_3 ; \quad \theta_2 = \varphi_3 \\
B^0_y &= - \frac{c}{v_3} E^0_z
\end{align*}
\]

(54)

Третье:

\[
\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} + \frac{1}{c} \frac{\partial B_z}{\partial x} = 0
\]

dает

\[
\frac{\omega_2}{v_2} E^0_y \sin \gamma_2 - \frac{\nu_3}{c} B^0_z \sin \gamma_6 = 0
\]

Откуда

\[
\begin{align*}
\nu_3 &= \omega_2 ; \quad w_3 = v_2 ; \quad \theta_3 = \varphi_2 \\
B^0_z &= - \frac{c}{v_2} E^0_y
\end{align*}
\]

(55)

Принимая во внимание /53/, /54/ и /55/, мы можем переписать /49/ в виде

\[
\begin{align*}
E_x &= p \cos \nu \left(t - \frac{v}{\nu} + \varphi_1 \right) + N \cos \alpha = p \cos \gamma_1 + N \cos \alpha \\
E_y &= L \cos \omega \left(t - \frac{v}{\omega} + \varphi_2 \right) + N \sin \alpha = L \cos \gamma_2 + N \sin \alpha \\
E_z &= L' \cos \omega' \left(t - \frac{v}{\nu} + \varphi_3 \right) = L' \cos \gamma_3 \\
B_x &= 0 \\
B_y &= M' \cos \gamma_3 \\
B_z &= M \cos \gamma_2
\end{align*}
\]

(56)

где введены обозначения:

I/ Некоторые буквы здесь употреблялись уже для других величин в гл. 1. Однако, это, конечно, не вне сет путаницы.
\[E_0^x = p \quad , \quad \omega_1 = \nu \quad u \ m.d. \]
При этом
\[M = \frac{c}{v} L \quad ; \quad M' = -\frac{c}{v'} L' \quad (57) \]
Подставим /56/ во вторую систему уравнений Борна /51/. Вычислим сначала, в рамках нашего приближения, правые части уравнений. Найдем
\[F = \frac{B^2 - E^2}{b^2} \]
Т.к. \(F \) содержит в знаменателе \(b^2 \) т.е. большую величину, то мы можем, вычисляя \(F \) положить
\[p = 0 \quad , \quad M = L \quad , \quad M' = -L' \]
Тогда
\[F = -\frac{1}{b^2} \left(2LN \sin \alpha \cos \gamma_2 + N^2 \right) \quad (58) \]
Найдем составляющие \(grad F \):
\[\begin{aligned}
\frac{\partial F}{\partial x} &= -2 \frac{\omega}{v} \frac{LN}{b^2} \sin \alpha \sin \gamma_2 \\
\frac{\partial F}{\partial y} &= \frac{\partial F}{\partial z} = 0
\end{aligned} \quad (59) \]
и наконец, определим \(\dot{F} \):
\[\dot{F} = 2\omega \frac{LN}{b^2} \sin \alpha \sin \gamma_2 \quad (60) \]
Обозначим правые части уравнений /51/ формально через \(\frac{1}{c} j \) \(u \) \(\rho \). Тогда
\[\begin{aligned}
\frac{1}{c} j_x &= -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2 \\
\frac{1}{c} j_y &= -\frac{\omega}{c} L \frac{N^2}{b^2} \sin^2 \alpha \sin \gamma_2 \\
\frac{1}{c} j_z &= 0
\end{aligned} \quad (61) \]
\[\rho = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2 \]

(61a)

Первое из уравнений /51/

\[\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} - \frac{1}{c} \dot{E}_x = \frac{1}{c} j_x \]

дает

\[\frac{\nu}{c} p \sin \gamma_1 = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin \alpha \cos \alpha \sin \gamma_2 \]

Откуда

\[\nu = \omega ; \quad w = v ; \quad \varphi_1 = \varphi_2 \]

(62)

Таким образом продольная компонента электрического поля волны получается отличной от нуля.

Второе уравнение

\[\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = \frac{1}{c} j_y \]

дает

\[-\frac{\omega}{v} M \sin \gamma_2 + \frac{\omega}{c} L \sin \gamma_2 = -\frac{\omega}{c} L \frac{N^2}{b^2} \sin^2 \alpha \sin \gamma_2 \]

откуда определим \(v \):

\[\frac{v^2}{c^2} = 1 - \frac{N^2}{b^2} \sin^2 \alpha \]

(63)

Третье уравнение

\[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{1}{c} \dot{E}_z = 0 \]

дает

\[\frac{\omega'}{v'} M' \sin \gamma_3 + \frac{\omega'}{c} L' \sin \gamma_3 = 0 \]

откуда, принимая во внимание /57/ получим

\[v' = c \]

(64)
Последнее уравнение \(\text{div} \ E = \rho \) дает:

\[
\frac{\nu}{w} \ p \ \sin \gamma_1 = - \frac{\omega}{c} \ L \ \frac{N^2}{b^2} \ \sin \alpha \ \cos \alpha \ \sin \gamma_2 ,
\]

что автоматически удовлетворяется, в силу /62/.

Итак, принимая во внимание /62/, /63/ и /64/, мы окончательно получаем следующее решение уравнений Борна:

\[
\begin{align*}
E_x &= p \ \cos \omega \left(t - \frac{x}{\nu} + \varphi \right) + N \ \cos \alpha \\
E_y &= L \ \cos \omega \left(t - \frac{x}{\nu} + \varphi \right) + N \ \sin \alpha \\
E_z &= L' \ \cos \omega' \left(t - \frac{x}{\nu} + \varphi' \right) \\
B_x &= 0 \\
B_y &= -L' \ \cos \omega' \left(t - \frac{x}{\nu} + \varphi' \right) \\
B_z &= M \ \cos \omega \left(t - \frac{x}{\nu} + \varphi \right)
\end{align*}
\]

где

\[
\begin{align*}
M &= \frac{\nu}{\nu} \ L \\
\frac{\nu^2}{c^2} &= 1 - \frac{N^2}{b^2} \ \sin^2 \alpha \\
p &= -L \ \frac{N^2}{b^2} \ \sin \alpha \ \cos \alpha
\end{align*}
\]

причем \(L, L', \ \omega, \ \omega', \ \varphi \) и \(\varphi' \) оставляются произвольными.

Сравнение этих формул с известными формулами электромагнитной кристаллооптики дает возможность выразить их содержание следующим наглядным образом: в присутствии однородного электростатического поля силы \(N \) векторы \(E \) и \(B \) плоской световой волны ведут себя, в первом приближении, так же как они вели бы себя в одноосном кристалле, оптическая ось которого была бы направлена по \(N \) а главное диэлектрические постоянные равнялись бы соответственно

\[
\epsilon = 1 + \frac{N^2}{b^2}
\]

и единице.
В самом деле, решение /65/ можно представить себе состоящим из поля "обыкновенного" луча:

\[
\begin{align*}
E_x &= 0 & B_x &= 0 \\
E_y &= 0 & B_x &= -L' \cos \omega' \left(t - \frac{x}{c} + \varphi' \right) \\
E_z &= L' \cos \omega' \left(t - \frac{x}{c} + \varphi' \right) & B_z &= 0
\end{align*}
\]

и "необыкновенного"

\[
\begin{align*}
E_x &= p \cos \omega \left(t - \frac{x}{v} + \varphi \right) & B_x &= 0 \\
E_y &= L \cos \omega \left(t - \frac{x}{v} + \varphi \right) & B_y &= 0 \\
E_z &= 0 & B_z &= M \cos \omega \left(t - \frac{x}{v} + \varphi \right)
\end{align*}
\]

проходящих в поле плоского конденсатора.
Из полученных нами формул /65/ видно, между прочим, что при прохождении светового луча через конденсатор длины \(l\) между \(y\) и \(z\) компонентами электрического поля этого луча накапливается известная разность фаз, равная

\[
\Delta \varphi = \omega l \left(\frac{1}{v} - \frac{1}{c} \right) = \omega l \frac{c - v}{cv}
\]

/где читаем, для простоты \(\varphi = \varphi'/\).
Замечая, что \(\frac{v}{c} = 1 - N^2/2b^2\), / в случае, если свет распространяется перпендикулярно к полю конденсатора/ мы получим:

\[
c - v = c \frac{N^2}{2b^2}
\]

и

\[
\Delta \varphi = \frac{\omega}{c} l \frac{N^2}{2b^2} = \pi \left(\frac{N}{b} \right)^2 \frac{l}{\lambda}
\]

(69)

Иначе говоря, если луч, входя в конденсатор, является линейно поляризованным, то он должен выйти из него поляризованным эллиптическим. О фактической проверке этого утверждения, конечно, не может быть и речи, т.к. \(b \equiv 10^{16} \text{ CGSE} \) и эффект
слишком мал во всех практически осуществимых полях. Тем не
менее, с чисто теоретической точки зрения, эффект, выражаемый
формулой /69/, представляется безусловно интересным потому,
что он дает пример совершенно своеобразного отклонения от зако-
нов Максвелловской электродинамики: отклонение проявляется не
в атомных масштабах и не при сильных полях, а при сравнении на-
блудений, произведенных на больших расстояниях друг от друга.

В самом деле, при достаточно большом \(l \) величина \(\Delta \varphi \)
может быть сколь угодно велика при сколь угодно малом \(N/b \). Эта
черта теории существенно связана с ее нелинейностью: поправки,
вносимые малыми нелинейными членами могут носить существенно
иной характер, чем малые линейные поправки.

Исходя из формулы /65/, нетрудно вычислить для нашего реше-
ния и вторую пару векторов Борна \(D \) и \(H \). Для этого нужно
воспользоваться формулами
\[
D = \frac{E}{\sqrt{1+F}} \quad ; \quad H = \frac{B}{\sqrt{1+F}} \quad . \quad (23)
\]

Положим для простоты \(\omega = \omega' \) и \(\varphi = \varphi' = 0 \).

Имеем
\[
\frac{1}{\sqrt{1+F}} = 1 - \frac{1}{2} F = 1 + \frac{LN}{b^2} \sin \alpha \cos \omega \left(t - \frac{x}{v} \right) + \frac{N}{2b^2} \quad (70)
\]

Подставляя /65/ в /23/, мы получим
\[
D_x = \frac{E_x}{\sqrt{1+F}} = \left(p + L \frac{N}{b^2} \sin \alpha \cos \alpha \right) \cos \omega \left(t - \frac{x}{v} \right) + N \cos \alpha \cdot \left(1 + \frac{N^2}{2b^2} \right) \quad (71)
\]

Принимая во внимание /62/, найдем для \(D_x \) следующее выра-
жение
\[
D_x = N \left(1 + \frac{N^2}{2b^2} \right) \cos \alpha \quad (72)
\]

Аналогично
\[
D_y = \frac{E_y}{\sqrt{1+F}} = N \left(1 + \frac{N^2}{2b^2} \right) \sin \alpha + L \left(1 + \frac{N^2}{2b^2} \right) \cos \omega \left(t - \frac{x}{v} \right) + \frac{N}{b^2} \sin \alpha \left(1 + \cos 2\omega \left(t - \frac{x}{v} \right) \right) + L \frac{N^2}{b^2} \sin \alpha \cos \omega \left(t - \frac{x}{v} \right) \quad (73)
\]
Далее

\[D_z = \frac{E_z}{\sqrt{1 + F}} = L' \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{c}\right) + \]
\[+ N \frac{LL'}{b^2} \sin \alpha \frac{\cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v}\right)\right] + \cos \omega x \left(\frac{1}{c} - \frac{1}{v}\right)}{2} \]

(74)

Точно так же можно показать, что

\[H_x = 0 \]

(75)

\[H_y = -L' \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{c}\right) - \]
\[- N \frac{LL'}{b^2} \sin \alpha \frac{\cos 2\omega \left[t - \frac{x}{2} \left(\frac{1}{c} + \frac{1}{v}\right)\right] + \cos \omega x \left(\frac{1}{c} - \frac{1}{v}\right)}{2} \]

(76)

\[H_z = \frac{c}{v} L \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{v}\right) + N \frac{L^2}{b^2} \sin \alpha \frac{1 + \cos 2\omega \left(t - \frac{x}{v}\right)}{2} \]

(77)

Из полученных формул /72/-/77/ мы видим, что продольные компоненты обоих векторов \(D_x \) и \(H_x \) нашей волны оказываются равными нулю\(^1\)/. В самом деле, легко видеть, что формула /72/ дает величину \(D_x \) обусловленную только полем конденсатора \(E_x = N \cos \alpha \), т.к. в этом случае

\[D_x = \frac{N \cos \alpha}{\sqrt{1 + F}} = \frac{N \cos \alpha}{\sqrt{1 - N^2/b^2}} = N \left(1 + \frac{N^2}{2b^2}\right) \cos \alpha . \]

Этот факт показывает, что направление вектора Пойнтинга волны-напомним, что в теории Борна вектор Пойнтинга определяется произведением \([D \times B]\) - в данном случае, в отличие от кристаллооптики, совпадает с направлением волнового вектора. Кроме этого, векторы \(D \) и \(H \) отличаются от \(E \) у \(B \).

\(^1\) Что, впрочем, можно было сказать и заранее исходя из равенства \(\text{div} D = 0 \)

наличием небольших аддитивных добавок, в которых есть как посто-
янная, так и периодические в \(x \) \(u \) \(t \) члены, причем среди этих по-
следних имеются \(u \) члены с удвоенной частотой. Отсюда может
показаться, что в данном случае вообще не существует таких ре-
шений уравнений Борна, для которых не компоненты \(E \) \(u \) \(B \), а ком-
поненты \(D \) \(u \) \(H \) представлялись бы в виде плоских волн вида /65/.
Это обстоятельство представляется на первый взгляд несколько
странным, поскольку /как уже было указано в примечании в начале
этих §/ мы могли бы вообще строить всю теорию на основе
векторов \(E \) \(u \) \(B \), а на основе векторов \(D \) \(u \) \(H \), причем, в частности
для нашей задачи, все вычисления при этом весьма мало чем от-
личались бы от вышеизложенных. Для того, чтобы разобраться в
этом вопросе, необходимо, однако, учесть следующее.
Представим себе, что мы нашли какое нибудь решение уравнений
Борна, справедливое в известном приближении, например, подобно
нашему решению/65/, справедливое с точностью до членов, имею-
щих в знаменателе \(b^2 \). Пусть это решение определяется векторами
\(E^0 \) \(u \) \(B^0 \) или, в представлении векторов индукции, вектора-
ми \(D^0 \), \(H^0 \). Пусть, далее \(E_1 \) \(u \) \(B_1 \) есть любое электромагнитное
поле, обладающее следующими свойствами: /1/ оба вектора \(E_1 \) \(u \) \(B_1
по величине мало, т.е. имеют в знаменателе \(b^2 \) и, следовательно,
в нашем приближении \(D_1 = E_1 \), и \(H_1 = B_1 \) ; /2/ это поле в
нашем приближении является решением уравнений Максвелла, т.е.
величины

\[\text{rot } E_1 + \frac{1}{c} \dot{B}_1 \quad ; \quad \text{rot } B_1 - \frac{1}{c} \dot{E}_1 \quad u \quad m. \quad d. \]

сусть величины, высшего порядка малости /имеют в знаменателе \(b^4 \\
или \(b^6 \) и т.д./ Тогда ясно, что сумма обоих этих полей, т.е.
поле, изображаемое в векторах \(E \) \(u \) \(B \) как

\[E_0 + E_1 \quad u \quad B_0 + B_1 \],

а в векторах \(D \) \(u \) \(H \) / в нашем приближении/ как
То есть будет, с точностью до величин высших порядков, решением уравнений Борна /несмотря на их нелинейность/. Это утверждение настолько очевидно, что не имеет смысла специально останавливаться на его доказательстве.

Так вот, нелестно убедиться, что упомянутые "добавки" к нашим полям D и H, определяемые формулами /72/-/77/, как раз принадлежат к типу полей E_1 и B_1, о которых только что шла речь.

В самом деле, рассмотрим хотя бы поле $E_{1z} = D_{1z} = \frac{LL'}{2b^2} \cdot N \cdot \sin \alpha \cdot \cos 2\omega \left[t - \frac{c}{2} \left(\frac{1}{c} + \frac{1}{v} \right) \right] \quad \left\{\begin{array}{c} E_{1z} \\ B_{1y} \end{array} \right. = H_{1y} = -\frac{LL'}{2b^2} \cdot N \cdot \sin \alpha \cdot \cos 2\omega \left[t - \frac{c}{2} \left(\frac{1}{c} + \frac{1}{v} \right) \right] \quad \text{(78)}

Амплитуда этой волны сама по себе есть величина первого порядка малости; далее, оно, очевидно удовлетворяет /Максвелла с точностью до величины второго порядка малости /т.е. величина, имеющая в знаменателе b^4/. Следовательно, согласно только что сказанному, мы можем спокойно вычесть из /65/ выражение /78/; в результате получим выражение, которое тоже будет решением уравнений Борна с той же степенью точности, что и /65/. Ясно, что таким путем можно, в частности, построить и такое решение, в котором переменные компоненты D и H представлялись бы в виде простых гармонических функций x, u и t.

§ 3. "Рассеяние" света на постоянном поле плоского конденсатора.

До сих пор мы ставили себе задачей просто нахождение известного класса решений уравнений поля, не выясняя, в каких условиях то или иное из этих решений осуществляется фактически. По ставим теперь вопрос более конкретно. Представим себе, что в пространстве между обкладками плоского...
конденсатора пускают световой луч. Что при этом произойдет?
Ответ на этот вопрос должен быть, очевидно, дан na основе границных условий электромагнитного поля.
Сформулируем, прежде всего, в чем должны заключаться эти границные условия.
Уравнения Борна, как мы видели, имеют вид, аналогичный уравнениям Максвелла для среды с диэлектрической постоянной и магнитной проницаемостью отличными от единицы, но в отсутствии зарядов и токов, т.е.

\[
\begin{align*}
\text{rot } E + \frac{1}{c} \frac{\partial B}{\partial t} &= 0 \\
\text{div } B &= 0 \\
\text{rot } H - \frac{1}{c} \frac{\partial D}{\partial t} &= 0 \\
\text{div } D &= 0
\end{align*}
\]

Отсюда, по аналогии с обычной электродинамикой, можно сразу заключить, что граничные условия должны иметь вид:

\[
\begin{align*}
E_{t1} &= E_{t2} \\
B_{n1} &= B_{n2} \\
H_{t1} &= H_{t2} \\
D_{n1} &= D_{n2}
\end{align*}
\]

(79)

где значения \(t \) и \(n \) указывают тангенциальные и нормальные компоненты векторов к поверхности раздела наших двух "сред"—вакуума и поля конденсатора.

Применим граничные условия /79/ для ответа на поставленный вопрос. Предположим, для простоты, что луч света падает перпендикулярно к силовым линиям поля конденсатора. Тогда наш координатный трехгранник представится в виде

Рис 1.

Так как нормальные слагающие полей \(B \) и \(D \) при этом отсутствуют,
то граничные условия /79/ сведутся к

\[
\begin{align*}
E_{y1} &= E_{y2} \\
E_{z1} &= E_{z2} \\
H_{y1} &= H_{y2} \\
H_{z1} &= H_{z2}
\end{align*}
\] (80)

где значок 1 соответствует полю в вакууме, а значок 2 - в конденсаторе.

Первое из этих условий включает в себя, в частности требование того, чтобы электростатическое поле самого конденсатора не обрывалось сразу, а "сходило на нуль" постепенно, как это должно быть и в обычной электростатике. Т.к. вычисление этого спадания поля не представляет для нас никакого интереса, то мы будем выставлять граничные условия только для поля световой волны, не учитывая при этом поля конденсатора. Тогда вычисления могут быть проведены без всяких трудностей.

Выберем какую-нибудь одну из двух волн, образующих наше решение, например, соответствующую "необыкновенному" лучу в кристаллооптике. Граничные условия /80/ для нее будут иметь вид

\[
\begin{align*}
E_{y1} &= E_{y2} \\
H_{z1} &= H_{z2}
\end{align*}
\] (81)

Пусть в вакууме

\[
\begin{align*}
E_{y1} &= A \cos \omega (t - \frac{x}{c}) \\
H_{z1} &= A \cos \omega (t - \frac{x}{c})
\end{align*}
\] (82)

Мы знаем, что в конденсаторе поле волны характеризуется величинами

\[
\begin{align*}
E_{y2} &= L \cos \omega \left(t - \frac{x}{v} \right) \\
H_{z2} &= \frac{c}{v} L \left(1 + \frac{N^2}{2b^2} \right) \cos \omega \left(t - \frac{x}{v} \right) + N \frac{L^2}{2b^2} \cos 2\omega \left(t - \frac{x}{v} \right) + N \frac{L^2}{2b^2}
\end{align*}
\] (83)
Выше мы видели, что решения уравнений Борна имеет смысл писать только с точностью до малых полей, являющихся, в нашем приближении, решениями уравнений Максвелла для пустоты.

В частности, мы можем, поэтому, в (82) отбросить последний постоянный член, т.к. он мал и является точным решением уравнений Максвелла. Просто отбросить и второй член в выражении для H_{2z} мы, очевидно, не можем, т.к. переменная в x и t "чисто магнитная" волна не является решением Максвелловых уравнений. Это обстоятельство, на первый поверхностный взгляд, весьма затрудняет построение решения, удовлетворяющего краевым условиям. В действительности, однако, такое решение можно построить весьма просто посредством следующего приема.

Прибавим к решению (83) следующее добавочное поле, удовлетворяющее обоим выставленным в конце § 2 условиям:

$$
\begin{align*}
E_{y2}^* &= -N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v}\right) \\
H_{z2}^* &= -N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v}\right)
\end{align*}
$$

Тогда мы получим следующее решение.

$$
\begin{align*}
E_{y2} &= L \cos \omega \left(t - \frac{x}{v}\right) - N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v}\right) \\
H_{z2} &= \frac{v}{\omega} L \left(1 + \frac{N^2}{2b^2}\right) \cos \omega \left(t - \frac{x}{v}\right) + N \frac{L^2}{4b^2} \cos 2\omega \left(t - \frac{x}{v}\right)
\end{align*}
$$

Потребуем, теперь чтобы при $x = 0$ решение в вакууме совпадало с решением (85) в конденсаторе. Для этого достаточно ввести две малых отражённых волны: одну с частотой ω и вторую с удвоенной частотой 2ω. Решение в вакууме тогда, вместо (82) будет
Если приравнять выражения (85) и (86), мы получим, далее
\[A - m = L \]
\[A + m = \frac{c}{v} L \left(1 + \frac{N^2}{2b^2} \right) \]
но заметив, что
\[\frac{c}{v} = 1 + \frac{N^2}{2b^2} \]
окончательно найдем
\[L = A \left(1 - \frac{N^2}{2b^2} \right) \]
\[m = A \frac{N^2}{2b^2} \]
Таким образом, зная амплитуды волны в вакууме и напряжение поля конденсатора, мы можем определить амплитуды "проходящих" и "отраженных" от этого поля волн. Задача решена. Полученные выражения показывают, что согласно теории Борна помимо указанного в § 2 эффекта искажения поля волны, проходящей через конденсатор, должно иметь место также совершенно своеобразное физическое явление, которое может быть охарактеризовано, как рассеяние света на постоянном поле конденсатора. В самом деле, мы пришли к тому, что падающая на это поле световая волна с частотой \(\omega \) и амплитудой \(A \) дает начало двум проходящим волнам: одному с частотой \(\omega \) и амплитудой, почти равной \(A \) и второй — с частотой \(2\omega \) и малой амплитудой "имеющей \(b^2 \) в знаменателе/ и кроме того двум малым отраженным волнам с частотами \(\omega \) и \(2\omega \). Принципиально, эти волны тоже могли бы быть наблюдены.
Сам ход приведенных вычислений показывает, что та неоднозначность решения уравнений поля, с которой мы встретились в предыдущем параграфе, и которая заключается в том, что решения уравнений Борна имело смысл писать лишь с точностью до малых выражений особого типа, совершенно исчезает при той конкретной постановке задачи, с которой мы имеем здесь дело. В каждом частном случае мы можем, исходя из граничных условий совершенно однозначно сказать, какое из выражений указанного типа нужно прибавить к исходному решению.I/

Вопрос об однозначности полученных здесь решений можно, однако, поставить более широко - а именно, спросить насколько однозначен сам выбор нулевого приближения в виде /49/, т.е. обязательно ли считать компоненты поля "большой" проходящей волны гармоническими функциями координат и времени. Мы не беремся здесь дать математически строго решения этого вопроса и приведем лишь несколько соображений чисто физического характера, которые, впрочем, как нам кажется, по существу полностью решают вопрос.

Пусть компоненты поля E_y и B_z падающей волны в вакууме имеют вид

$$A \cos \omega \left(t - \frac{x}{c}\right) = A \cos \omega t \cos \frac{\omega x}{c} + A \sin \omega t \sin \frac{\omega x}{c}$$

Ясно, что зависимость компонент "большой" проходящей волны от времени наверное должна носит такой же самый характер, иначе никак нельзя будет удовлетворить краевым условиям. О характере же зависимости этих компонент от координат на основе этих только краевых условий ничего сказать нельзя. Наиболее общий Ansatz для этих величин имеет, таким образом, вид

I/ Заметим, между прочим, что точное значение скорости распространения каждой такой и малой волны, может быть, очевидно, получено только из рассмотрения второго приближения.
Обозначим через \(F \) и \(\Phi \) максимальные значения функций \(F(x) \) и \(\Phi(x) \). Тогда, очевидно, мы можем представить (89) в виде:

\[
E_y = F_1 \cos \omega t + F_2 \sin \omega t
\]

\[
B_z = \Phi_1 \cos \omega t + \Phi_2 \sin \omega t
\]

(89)

где \(f_1(x), f_2(x), \varphi_1(x) \) и \(\varphi_2(x) \) - некие, подобраны соответствующим образом, новые функции \(x \).

Сделаем теперь следующее весьма естественное предположение: что при распространении вдоль оси \(ox \), электромагнитная энергия нашей волны нигде не концентрируется и не рассеивается, т.е. что поток вектора Пойнтинга через единичную поверхность, поставленную в любом месте оси \(ox \), перпендикулярно к ней, в среднем по времени не зависит от \(x \).

Иными словами, оперируя все время с нулевым приближением, потребуем, чтобы среднее по времени от произведения \(E_yB_z \) не зависело бы и от \(x \), т.е. чтобы

\[
\overline{E_yB_z} = \frac{1}{2} (F_1 \Phi_1 \cos f_1(x) \cos \varphi_1 + F_2 \Phi_2 \sin f_2(x) \sin \varphi_2) = \text{const}
\]

Очевидно это может иметь место только при

\[
F_1 \Phi_1 = F_2 \Phi_2
\]

\[
u f_1(x) = f_2(x) = \varphi_1(x) = \varphi_2(x) = f(x)
\]

Таким образом

\[
E_y = F_1(x) \cos f(x) \cos \omega t + F_2(x) \sin f(x) \sin \omega t
\]

\[
B_z = \Phi_1(x) \cos f(x) \cos \omega t + \Phi_2(x) \sin f(x) \sin \omega t
\]

(90)

Подставляя (90) в первое уравнение Борна \(\frac{\partial E_y}{\partial x} + \frac{1}{c} B_z = 0 \)
мы найдем, что

\[f'(x) = \text{const} \]

t.е. что \(f(x) \) есть линейная функция \(x \).

Тем самым сразу же приходит к решению типа /49/.

§ 4. Плоская световая волна в однородном магнитном поле.

Рассмотрим здесь задачу, аналогичную той, которая была разобрана в § 2, с той лишь разницей, что вместо электрического, будем иметь дело с однородным магнитным полем заполняющим все пространство; в этом пространстве, так же как и раньше, пусть распространяется плоская световая волна.

Т.к. метод решения этой задачи, а так же полученные результаты будут очень сходны с изложениями в предыдущих параграфах, то мы не будем останавливаться на их подробной дискуссии и приведем лишь вычисления.

Итак, нам нужно найти решения уравнений /50/ и /51/ для нашей задачи.

Выбираем, как и раньше, направление волнового вектора за ос \(x \) и плоскость, образованную этим вектором и внешним полем \(h \) за плоскость \(xy \). Угол между этими векторами обозначаем через \(\alpha \).

Будем искать решение уравнений Борна /50/ и /51/ в виде:

\[
\begin{align*}
E_x &= E_x^0 \cos \omega_1 \left(t - \frac{x}{v_1} \right) \\
B_x &= B_x^0 \cos \nu_1 \left(t - \frac{x}{w_1} \right) + h \cos \alpha \\
E_y &= E_y^0 \cos \omega_2 \left(t - \frac{x}{v_2} \right) \\
B_y &= B_y^0 \cos \nu_2 \left(t - \frac{x}{w_2} \right) + h \sin \alpha \\
E_z &= E_z^0 \cos \omega_3 \left(t - \frac{x}{v_3} \right) \\
B_z &= B_z^0 \cos \nu_3 \left(t - \frac{x}{w_3} \right)
\end{align*}
\]

(91)
где, для краткости, отброшены начальные фазы.
Подставим /91/ в /50/.
Уравнение $\nabla \cdot B = 0$ дает нам

$$B^0_z = 0 \quad (92)$$

Уравнение $\nabla \times E + \frac{1}{c} \dot{B}$ дает

$$\begin{align*}
\nu_2 &= \omega_3 \quad ; \quad w_2 = v_3 \quad ; \quad B^0_y = -\frac{c}{v_3} E^0_z \\
\nu_3 &= \omega_2 \quad ; \quad w_3 = v_2 \quad ; \quad B^0_z = \frac{c}{v_2} E^0_y
\end{align*} \quad (93)$$

Принимая во внимание /92/ и /93/ и вводя обозначения, аналогичные принятым в формулах /56/, мы, вместо /91/ получим

$$\begin{align*}
E_x &= p \cos \nu \left(t - \frac{x}{v} \right) \quad B_x = h \cos \alpha \\
E_y &= L \cos \omega \left(t - \frac{x}{v} \right) \quad B_y = M' \cos \omega' \left(t - \frac{x}{v'} \right) + h \sin \alpha \\
E_z &= L' \cos \omega' \left(t - \frac{x}{v'} \right) \quad B_z = M \cos \omega \left(t - \frac{x}{v} \right)
\end{align*} \quad (94)$$

где

$$M = \frac{c}{v} L \quad u \quad M' = -\frac{c}{v'} L' \quad (95)$$

Подставим теперь /94/ в /51/. Для этого найдем сначала F

$$F = \frac{1}{b^2} \left(B^2 - E^2 \right) = \frac{1}{b^2} \left\{ 2h \quad M' \cos \omega' \left(t - \frac{x}{v'} \right) \cdot \sin \alpha + h^2 \right\} \quad (96)$$

Тогда

$$\dot{F} = -\frac{2h}{v'} M' \omega' \sin \alpha \sin \omega' \left(t - \frac{x}{v'} \right) \quad (97)$$

и

$$\frac{\partial F}{\partial x} = -\frac{1}{v'} \dot{F} = -\frac{1}{c} \dot{F} \quad , \quad (98)$$

т.к. в правых частях уравнений /51/ можно положить c в выражениях не стоящих под знаком $\cos u$ и $\sin u \quad v' = c$.

Вычисляем правые части уравнений /51/ в первом приближении:

$$\frac{1}{c} \dot{j}_x = -\frac{1}{2c} \dot{F} E_x = 0 \quad (99)$$
\[
\frac{1}{c} j_y = -\frac{1}{2} \left(\frac{\partial F}{\partial x} B_z + \frac{1}{c} \dot{F} E_y \right) = 0 \\
\frac{1}{c} j_z = \frac{1}{2} \left(\frac{\partial F}{\partial x} B_y - \frac{1}{c} \dot{F} E_z \right) = -\frac{1}{2c} \dot{F} h \sin \alpha = \\
\frac{\omega' h^2}{c b^2} M' \sin^2 \alpha \sin \omega' \left(t - \frac{x}{v'}\right) \\
\rho = -\frac{1}{2c} \dot{F} E_y = 0.
\]

Рассмотрим первое из уравнений /51/. Оно дает

\[-\frac{1}{c} \dot{E}_x = 0\]

Очевидно, это уравнение удовлетворяется, если положить

\[p = 0\] (103)

Второе уравнение

\[- \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = 0 \]

dает

\[\frac{M}{v} \sin \omega \left(t - \frac{x}{v}\right) = \frac{1}{c} L \sin \omega \left(t - \frac{x}{v}\right) \]

откуда, в силу /95/, находим

\[v = c; \quad M = L \] (104)

Третье уравнение

\[\frac{\partial B_y}{\partial x} - \frac{1}{c} \dot{E}_z = \frac{1}{c} j_z \]
дает

\[\frac{M'}{v'} + \frac{L'}{c} = \frac{h^2}{c} \frac{M' \sin^2 \alpha}{b^2} \]

или, принимая во внимание /95/

\[\frac{v'^2}{c^2} = 1 - \frac{h^2}{b^2} \sin^2 \alpha \]

Уравнение \(\text{div} \ E = \rho \) дает

\[\frac{\partial E_\alpha}{\partial x} = 0 \]

что автоматически удовлетворяется, т.к. мы приняли \(p = 0 \).

Формулы /103/, /104/ и /105/ позволяют окончательно пере-писать решение уравнений /50/ и /51/ для нашей задачи в следующем виде:

\[
\begin{align*}
E_x &= 0 \\
B_x &= h \cos \alpha \\
E_y &= L \cos \omega (t - \frac{x}{v'}) \\
B_y &= M' \cos \omega' (t - \frac{x}{v'}) + h \sin \alpha \\
E_z &= L' \cos \omega' (t - \frac{x}{v'}) \\
B_z &= L \cos \omega' (t - \frac{x}{c})
\end{align*}
\]

где

\[
\begin{align*}
M' &= -\frac{c}{v'} L' \\
u &= \frac{v'^2}{c^2} = 1 - \frac{h^2}{b^2} \sin^2 \alpha
\end{align*}
\]

причем \(L, L', \omega \) и \(\omega' \) остаются, как и раньше произвольными.

Дискуссия формул /106/ и /107/ может быть проведена совершенно аналогично дискуссии соответствующих формул предыдущих параграфов.
§ 5. Две плоские волны в вакууме.

Перейдем теперь к рассмотрению более сложной задачи нахождения таких решений уравнений Борна, которые соответствовали бы в нулевом приближении двум плоским волнам в вакууме, т.е. будем считать, что одна плоская волна распространяется не в постоянном электрическом или магнитном поле, а в периодическом с r и t электрическим и магнитном поле другой плоской волны.
Мы решим эту задачу только для того частного случая, когда волновые векторы обоих плоских волн имеют противоположные направления, электрические векторы их в нулевом приближении имеют одинаковое направление, а магнитные- противоположное. Эти три направления выберем за оси координат. Именно, возьмем направление волнового вектора первой волны за ось ox, направление электрических векторов за ось oy и направление магнитного вектора первой волны-за oz. /Рис.2/.

Попытаемся найти решение уравнений Борна для такого случая методом, аналогичным рассмотренному в предыдущих параграфах, учитывая, однако еще возможность появления малых аддитивных добавок, играющих роль x' в формуле /47/. А именно, будем искать решение уравнений /50/ и /51/ в виде

\[
\begin{align*}
E_x &= 0; \quad E_y = Q \cos \Omega \left(t - \frac{x}{V} \right) + q \cos \omega \left(t + \frac{y}{V} \right) + E'; \\
E_z &= 0; \\
B_x &= 0; \quad B_y = 0; \quad B_z = \frac{c}{V} Q \cos \Omega \left(t - \frac{x}{V} \right) - \frac{c}{V} q \cos \omega \left(t + \frac{y}{V} \right) + B'.
\end{align*}
\]

(108)
При таком расписании введенное, во первых, то предложение, что несмотря на "взаимодействие" наших волн, слагающие E_x, E_z, B_x и B_y можно считать равными нулю, как и в невозмущенной задаче. Это предположение представляется вполне естественным из соображений симметрии; строгое доказательство его законности будет заключаться в том, что выражениями (108) можно, как то видим ниже, фактически удовлетворить уравнениям Борна. Во вторых, мы заранее предположили, что связь между амплитудами E_y и B_z имеет обычный вид - что тоже, конечно, совершенно законно: поскольку эта связь определяется из первой группы уравнений поля, которая во всех задачах имеет одинаковый вид. Можно было бы, впрочем, писать вместо (108) и более общие формулы типа (49), считая компоненты полей E и B любыми гармоническими функциями координат и времени, но не трудно убедиться, что такое усложнение написания не дало бы — по крайней мере в нашей постановке вопроса — ничего по существу нового.

Итак, подставим (108) в (50). Уравнение $\nabla \cdot B = 0$

удовлетворяется, если

$$\nabla \cdot B' = 0$$

или

$$\frac{\partial B'}{\partial z} = 0 \quad (109)$$

Уравнение $rot E + \frac{1}{c} \dot{B}$ удовлетворится, если

$$\frac{\partial E'}{\partial z} = 0 \quad (110)$$

I/ Начальные фазы волн опять для простоты положены равными нулю.
и

$$\frac{\partial E'}{\partial x} + \frac{1}{c} \dot{B} = 0 \quad (111)$$

Подставим теперь /108/ в /51/.

Для этого вычислим сначала величину F в первом приближении:

$$F = -\frac{4}{b^2} Q q \cos \Gamma \cos \gamma \quad , \quad (112)$$

где

$$\Gamma = \Omega \left(t - \frac{x}{v} \right) \right \}
\gamma = \omega \left(t + \frac{x}{v} \right) \right \}$$

Найдем \dot{F} и $\frac{\partial F}{\partial x}$:

$$\dot{F} = \frac{4}{b^2} Q q \left(\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \quad (114)$$

$$\frac{\partial F}{\partial x} = \frac{1}{c} \frac{4}{b^2} Q q \left(-\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \quad (115)$$

Вычислим правые части уравнений /51/:

$$\frac{1}{c} j_x = \frac{1}{2c} \dot{F} E_x = 0 \quad (116)$$

$$\frac{1}{c} j_y = -\frac{4}{c b^2} Q q \left(\Omega \sin \Gamma \cos^2 \gamma + \omega Q \sin \gamma \cos^2 \Gamma \right) \quad (117)$$

Замечая, что

$$\sin \Gamma \cos^2 \gamma = \frac{1}{2} \left[\sin \Gamma + \frac{1}{2} \sin (\Gamma + 2\gamma) + \frac{1}{2} \sin (\Gamma - 2\gamma) \right]$$

$$u \sin \gamma \cos^2 \Gamma = \frac{1}{2} \left[\sin \gamma + \frac{1}{2} \sin (\gamma + 2\Gamma) + \frac{1}{2} \sin (\gamma - 2\Gamma) \right]$$

мы найдем

$$\frac{1}{c} j_y = -\frac{2}{c b^2} Q q \left\{ q \Omega \left[\sin \Gamma + \frac{1}{2} \sin (\Gamma + 2\gamma) + \frac{1}{2} \sin (\Gamma - 2\gamma) \right] + \right.$$
$$+Q \omega \left[\sin \gamma + \frac{1}{2} \sin (\gamma + 2\Gamma) + \frac{1}{2} \sin (\gamma - 2\Gamma) \right] \right\} \quad (118)$$

Далее

$$\frac{1}{c} j_z = 0 \quad (119)$$
и наконец,

\[
\rho = \frac{1}{2} \frac{\partial F}{\partial x} E_x = 0
\]

(120)

Из формулы /123/ мы видим, что в этой задаче, в отличие от задач, рассмотренных ранее, в правых частях уравнений появляются не только члены, содержащие \(\sin \Gamma \) \(\sin \gamma\), которые аналогичны члену с \(\cos \omega t\) в формуле /46/, дающему "резонанс", но и члены с другими частотами. Они как-раз , и образуют правые части уравнений для определения \(E'\) и \(B'\).

Зная вычисленные здесь правые части уравнений, мы можем теперь подставить /108/ в /51/. Первое из уравнений /51/

\[
\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} - \frac{1}{c} \dot{E}_x = 0
\]

удовлетворяется, если положить

\[
\frac{\partial B'}{\partial y} = 0
\]

(121)

Второе уравнение

\[
\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \dot{E}_y = - \frac{2}{c b^2} Q q \left\{ q \Omega \left[\frac{\sin \Gamma}{2} + \frac{\sin (2\gamma)}{2} \right] + \right.
\]

\[
+ Q \omega \left[\frac{\sin \gamma}{2} + \frac{\sin (2\gamma)}{2} \right] \left. \right\}
\]

удовлетворяется если

\[
- \frac{c \Omega}{V^2} Q \sin \Gamma - \frac{c \omega}{v^2} \sin \gamma + \frac{1}{c} Q \Omega \sin \Gamma + \frac{1}{c} q \omega \sin \gamma =
\]

\[
= - \frac{2}{c b^2} Q q \left(q \Omega \sin \Gamma + Q \omega \sin \gamma \right)
\]

(122)

и

\[
\frac{\partial B'}{\partial x} + \frac{1}{c} \dot{E}' = \frac{1}{c b^2} Q q \left\{ q \Omega \left[\sin (\Gamma + 2\gamma) + \sin (\Gamma - 2\gamma) \right] + \right.
\]

\[
+ Q \omega \left[\sin (\gamma + 2\Gamma) + \sin (\gamma - 2\Gamma) \right] \left. \right\}
\]

(123)
Уравнение /122/ дает нам

\[
\begin{align*}
1 - \frac{c^2}{V^2} &= - \frac{2}{b^2} q^2 \\
1 - \frac{c^2}{v^2} &= - \frac{2}{b^2} Q^2
\end{align*}
\] (124)

Третье уравнение

\[
\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{1}{c} \dot{E}_z = 0
\]

удовлетворяется автоматически.

Наконец, последнее уравнение \(\text{div } E = \rho \) дает нам

\[
\frac{\partial E'}{\partial y} = 0
\] (125)

Для окончательного решения задачи, нам осталось еще найти аддитивные добавки \(E' \) и \(B' \). Для их определения мы получили систему уравнений /109/, /110/, /111/, /121/, /123/ и /125/.

Будем искать решение этих уравнений в виде

\[
\begin{align*}
E' &= a_1 \cos (\Gamma + 2\gamma) + a_2 \cos (\Gamma - 2\gamma) + a_3 \cos (\gamma + 2\Gamma) + a_4 \cos (\gamma - 2\Gamma) \\
B' &= d_1 \cos (\Gamma + 2\gamma) + d_2 \cos (\Gamma - 2\gamma) + d_3 \cos (\gamma + 2\Gamma) + d_4 \cos (\gamma - 2\Gamma)
\end{align*}
\] (126)

где \(a_1 \ldots d_4 \) – постоянные коэффициенты.

При этом, уравнения /109/, /110/, /121/ и /125/ удовлетворяются автоматически, а уравнения /111/ и /123/ дадут нам возможность определить коэффициенты в /126/.

Первое из этих уравнений дает нам
И второе

\[
\begin{align*}
a_1 &= \frac{\Omega - 2\omega}{\Omega - 2\omega} d_1 - \frac{1}{b^2} Q q^2 \frac{\Omega}{\Omega + 2\omega} \\
a_2 &= \frac{\Omega + 2\omega}{\Omega + 2\omega} d_2 - \frac{1}{b^2} Q q^2 \frac{\Omega}{\Omega - 2\omega} \\
a_3 &= -\frac{\omega - 2\Omega}{\omega + 2\Omega} d_3 - \frac{1}{b^2} q Q^2 \frac{\omega}{\omega + 2\Omega} \\
a_4 &= -\frac{\omega + 2\Omega}{\omega - 2\Omega} d_4 - \frac{1}{b^2} q Q^2 \frac{\omega}{\omega - 2\Omega}
\end{align*}
\] (128)

Му получил эти таким образом, систему восьми уравнений /127/ и /128/ для определения \(a_1, \ldots, a_4, d_1, \ldots, d_4\).

Решая эту систему уравнений, мы получим

\[
\begin{align*}
a_1 &= -\frac{Q q^2}{8b^2} \frac{\Omega + 2\omega}{\omega} \quad ; \quad d_1 = -\frac{Q q^2}{8b^2} \frac{\Omega - 2\omega}{\omega} \\
a_2 &= \frac{Q q^2}{8b^2} \frac{\Omega - 2\omega}{\omega} \quad ; \quad d_2 = \frac{Q q^2}{8b^2} \frac{\Omega + 2\omega}{\omega} \\
a_3 &= -\frac{q Q^2}{8b^2} \frac{\omega + 2\Omega}{\Omega} \quad ; \quad d_3 = \frac{q Q^2}{8b^2} \frac{\omega - 2\Omega}{\Omega} \\
a_4 &= \frac{q Q^2}{8b^2} \frac{\omega - 2\Omega}{\Omega} \quad ; \quad d_4 = -\frac{q Q^2}{8b^2} \frac{\omega + 2\Omega}{\Omega}
\end{align*}
\] (129)
Мы имеем теперь полное решение нашей задачи, которое имеет вид /108/, причем V и v определяются из формул /124/, а E' и B' могут быть найдены из формул /126/ с коэффициентами /129/.
Величины Q, q, Ω и ω, как и в теории Максвелла, остаются произвольными.
Полученное нами решение может быть охарактеризовано следующим образом: если в пустом пространстве распространяются навстречу друг другу две плоские электромагнитные волны с произвольно заданными амплитудами и частотами, причем их электрические и магнитные вектора в нулевом приближении ориентированы так, как указано на рис. 2., то отличие того поля, которое при этом будет в пространстве по теории Борна от того, которое получается из теории Максвелла, сводится к двум моментам:

1/ к изменению скорости распространения этих волн, а также к появлению разности амплитуд электрического и магнитного вектора каждой волны.
Этот эффект вполне аналогичен тому явлению "искажения" световой волны, которое было получено нами в предыдущих параграфах.

2/ К появлению четырех малых "рассеянных" волн с другими частотами и скоростями распространения, вообще говоря сильно отличающимися от Максвелловских.
Этот эффект является специфическим для последней задачи и в известном смысле может быть охарактеризован, как "рассеяние света на свете".
Однако, существенно отметить, что "взаимодействие" двух световых волн, высчитанное по теории Борна, отнюдь не может
быть сведено к тому "рассеянию света на свете", о котором неоднократно упоминалось в литературе - именно, в силу существования эффектов первого из указанных выше типов; в самом деле каждая волна приобретает своеобразные свойства потому, что распространяется в среде "поляризованной" под влиянием другой волны.

В заключение, я хочу выразить глубокую благодарность проф. С.П.Шубину за руководство настоящей диссертацией, а так же за ряд весьма ценных советов и замечаний.

Февраль 1936 г.
ПРИМЕЧАНИЕ:

После того как настоящая диссертация была уже закончена /т.е. после февраля 1936 года/ в печати появился ряд работ, связанных с некоторыми разбираемыми здесь вопросами.

Некоторые результаты этих работ будут мною разобраны в дополнении к диссертации, которое в настоящее время составляется.
A. A. Смирнов [A. A. Smirnov]; Применение электродинамики Борна к теории распространения света в электромагнитных полях [Primenenie èlektrodinamiki Borna k teorii rasprostraneniya sveta v èlektromagnitnykh polyakh]/[The application of the electrodynamics of Born to the theory of the propagation of light in electromagnetic fields]. Кандидатская диссертация [Kandidat-skaya dissertatsiya]/[Ph.D. thesis], Московский государственный университет [Moskovskii gosudarstvennyi universitet]/[Moscow State University], Moscow, 1936, 67 pp.. [in Russian]
Предметом настоящей диссертации является рассмотрение некоторых проблем теории электромагнитного поля, предложенной недавно Горном и Инфельдом. Эти рассмотрения мы будем вести исключительно в рамках классического варианта теории, вопрос о том, как вдохновляется постановка рассмотренных здесь правил при введении квантования поля, мы не обсуждаем.

Диссертация делится на две части. В первой части мы даем общие обзор современного состояния Горновской теории, не останавливаясь при этом на отдельных частностях, а стремясь вынудить только общие идеи. В частности, мы пытаемся установить, какие общие вопросы слегка важно определить, некоторые из них, чтобы получать даже предельный вид теории и ее дальнейших перспектив, - разумеется, всегда не ставя себе целью дать ответ на эти вопросы в рамках настоящей диссертации. Вторая часть представляет собой изложение решения трех примеров на применение электромагнитики.

1. M. Born, Proc. Roy. Soc. 147, 1924, 120.
2. M. Born and L. Infeld, Proc. Roy. Soc. 144, 1924, 35.
3. " " 147, 1924, 235.
4. " " 150, 1925, 141.
5. E. Schrödinger, Proc. Roy. Soc. 156, 1925, 164.
Борна к теории распространения света в электромагнитных полях, в этих примерах особенно ярко проявляется предположение, что в теориях электродинамики Эйнштейна, отклонения совсем иного характера чем те, которые связывали с хорошо известными коротковолновыми эффектами.

Глава I.

§ 1. Работы Борна и Гейзенберга первоначально для решения задачи, которую занимали их теоретики в первоначальные времена XX века - задачи построения — в рамках классической электродинамики, как называемой "единой или унитарной теории поля и материи".

Основная идея унитарной теории — при наиболее широком отчасти даже создательно употребляемом в толковании — заключается в том, что существование каждой электрически заряженной частицы можно быть полностью описано, как особое состояние электромагнитного поля. Стандартная схема, которая более или менее однообразно диктуется для построения такой теории, выглядит, в самых обших чертах, так...

§ 2. Мы пользуемся здесь установленными среди различных терминологий, согласно которой "поле" и "материя" противопоставляются друг другу. С точки зрения обеих поля и материя, равно идентична "материи", так как само электромагнитное поле есть материя, как и всякая реальность, существует объективно вне нашего сознания.
В основе лежат основы электромагнитного поля, выраженные, лучше всего, в виде вариационного принципа.

Поле, как обычно, описывается двумя векторами — электрическим и магнитным; его лагранжян представляет собой функцию от этих величин. Из вариационного принципа вытекает, в качестве уравнений Эйлера — Лагранжа, так называемые уравнения поля /приведет при проведении вариации, поскольку обычно, добавочное предположение о существовании четверных электропотенциала, компоненты которого и служит виртуальным полем/.

Эти уравнения позволяют сразу же получить законы сохранения для электромагнитного поля, вводя понятие электромагнитной энергии и электромагнитного контура, имеющего видульсона.

Рассматриваемые в теории поля, тетрады электрического поля, представляя собой условное описание, для которых в рамках теории поля координаты, составляющие вектор — компоненты в электромагнитной теории, формирующей структуру поля/ уже, естественно, содержит какое-то количество для того, чтобы определить поле. Поле, таким образом, определено лишь в общий постановки, фактор физического состояния, измеряемого определенными величинами класса интерпретации, как состояния, составляющее некий элемент электрических напряженных и магнитных, включает в себя настройку выбранной системы отсчета, определяемой принципиальным фактор оконечности. Как процесс, который происходит в цепи, например, в нити, так и в чистом виде, отсутствует никаких зависимостей.
Конкретное содержание здесь: "дадное состояние интерпретируется, как состояние, соответствующее наличию частиц" заключается, прежде всего, в том, что координаты "особой точки" решения толкуются как координаты частицы /или ее "центра"/ и соответствующее рассмотреваемому состоянию поля полная энергия и потенциальный момент толкуются, соответственно, как механическая энергия и механический момент частицы. Значение этих величин зависит, конечно, от выбора системы отсчета; в частности, в исходной системе, т.е. в той, относительно которой частица покоятся, полный момент равен пуле /без чего механическая интерпретация была бы, раунается, невозможной/, полная же энергия представляет собой релативистскую энергию покоя рассматриваемой частицы.
После того, как таким образом введены основные понятия механики, необходимо, для того, чтобы теория была полной, установить основные ее /механич/ законы. В рамках рассматриваемой схемы от этих законов можно, очевидно, требовать ответа только на один вопрос: как меняется энергия и момент частицы или, вообще, характеризующее наличие частицы состояние полей, под влиянием внешних электромагнитных полей.
При такой ограниченной постановке задачи, законы механики, по крайней мере принципиально, могут быть получены, как частный случай известного в самом начале, как исходный пункт, вариационного принципа электромагнетизма и, тем самым, теория может считаться завершенной такого рода схема тяготеет "наивной" в том смысле, что при последовательном ее проведении, роль основных величин, неявных в теории с самого начала, играют только
величины, характеризующие поле. Так как осуществление
эту схему в рамках Маковского электролита было,
по хорошо известным причинам, невозможным, то наряду с
ней рассматривались и другие схемы построения унитарной
теории, которые можно в названном условном смысле назвать
более "компромиссными". По таким "компромиссным" схемам
построения, в частности, излагаемые во многих учебниках
теории Абрама и Доренса, отклоняемые от указанной
программы в том отношении, что в них с самого начала,
наряду с понятиями электрического и магнитного векторов,
вводились понятия, характеризующие заряды - правда,
только со стороны их электрических /свойств, а именно, в первую очередь, понятие плотности заряда. Место несколько абстрактного представления о
частице, как об особом состоянии поля, занимали у Абрама
и Доренса, представления, по идее более адекватные;
частица рассматривалась как "зараженный заряд", т.е. характеризовалась определенным распределением плотности электрического в относительно небольшом объеме
/причем порядок величин "радиуса" частицы определялся
из ее заряда и массы по хорошо известному соотношению
р. = \frac{e}{2mc^2} / . При этом, в отличие от "идеальной"
схемы, в теории входила известная неопределенность, т.к.
даже в предположении о радиальной симметрии частицы,
распределение заряда "внутри" ее может носить еще более
разнообразный характер. Правда, этот добавочный произ-
вод значительно сужает тем, что различные гипотезы
о внутреннем "строении" частицы совсем не влияют на
принципиальную сторону выводов теории.
Как хорошо известно, развитие идей Абрагама и Торенца встретило в свою очередь ряд затруднений (см. § 2 этой главы) и единственная удачная из всех до сих пор существующих унитарных теорий — теория Германа — Юнкельда — построена как раз на основе "идеальной схемы". Мы упомянули здесь о "компромиссных" теориях главным образом для того, чтобы подчеркнуть, что введение основных понятий механики производилось и в этих теориях совершенно по-иному-точно, какой был только что указан, а именно, путем отождествления энергии и импульса электромагнитного поля частицы с ее механической энергией и механическим импульсом. Таким образом, именно это отождествление должно быть рассматриваемо как центральный пункт всей унитарной теории. По этой причине единую теорию материи и поля часто называют "теорией электромагнитной массы".

§ 2. В какой мере руководящая идея унитарной теории может считаться физически оправданной?

В рамках классической физики, ответ на этот вопрос представляется более или менее ясным.

Тот факт, что великий электрический заряд обладает электромагнитной энергией и электромагнитным импульсом, которые обязательно должны учитываться при написании законов сохранения для любой системы, в состав которой этот заряд входит, является для классической теории совершенно бесспорным.
В самом деле, он вытекает из наиболее фундаментальных положений электродинамики Максвэа.

Следова, однако, еще отнюдь не следует, что, как это утверждает унитарная теория, вся масса каждой заряженной частицы имеет что-то электромагнитное происхождение. В самом деле, опыт показывает, что не существует таких материальных частиц, все свойства которых исчерпывались бы тем, что эти частицы являются электрическими зарядами.

Тем не менее, остается в стороне вопрос о проблемах гравитационных явлений в этой линии мыслей совершенно не рассматривается, то есть, как это кажется, что кроме электромагнитных сил, существуют силы, которые не связаны с электромагнитными явлениями. Между тем, классическая теория утверждает, что "источник" массы материальной частицы является не только электромагнитное, но и возможно создаваемое ею силовое поле (действительно, как считается, электромагнитное). Таким образом, в этой реальной форме, в какой она была нами высказана в § 1, упомянутая теория наверняка не отвечает физической реальности. Тем не менее, рассмотрение ее все же является полезным, исходя из следующих соображений.

Во-первых, существует такой тип материальных частиц електрона и поситрона, которые, как нам известно, являются источниками только двух видов силовых полей: электромагнитного и гравитационного. При этом, есть все основания полагать, что эти законы, управляющие поведением электрона, создаваемое им силовое поле, оказывает сравнительно небольшое влияние. Поэтому к электрону упомянутую теорию нужно считать в основном применяемой;

во-вторых, совершенно естественно попытаться построить для электрона такую теорию, как это ни странно, но есть, по существу, совершенно очевидны, так, что кажется
единственная чисто электромагнитная теория, в том числе и теория Корна-Гибельда, т.е. "самое большое" теорий электрона, до сих пор еще оспаривается в литературе.

1/ Второй, единственный теория, полностью непосредственно-математического, имеет глубокое методическое значение. В самом деле, все развитие теоретической физики позволяет даже, что построение теории различного вида силовых полей может быть проведено методами, в основном аналогичными друг другу. Поэтому, теория "чистого электричества", т.е. воображаемых частиц, являющихся только электрическими зарядами, может рассматриваться, как преобразование реальной частицы, служащей источником своих разнообразных полей. В настоящее время среди теоретиков господствует убеждение в том, что это утверждение в общем применительно к тем недавно открытые силы, которые действуют между тяжелыми частицами - протонами и нейтронами и являются ответственными за устойчивость ядер. Но по поводу этого последнего обобщения можно, вполне, заметить, что протонно-нейтронное взаимодействие может быть выражено в терминах теории полей, вообще, повсюду, уже только на квантовом плане. Мы не будем здесь останавливаться на анализе этого вопроса, поскольку он не имеет непосредственного отношения к нашей теме, укажем лишь, что сделанное замечание есть только лишнее напоминание о том основном факте, который и поныне играет решающую роль во всех разбираемых здесь кругах вопросов, а

1/ См. хотя бы заметку Горна и Гризнера в Nature 1935.

2/ См. напр., статью З. Рейзенберга в Zeeman Forschung, 1935.
иначе о том, что истинными законами микромира являются все же не классические, а квантовые законы. Поэтому всякая теория, говорящая о поведении элементарных частиц материи и не учитывающая этих законов, может рассматриваться, в лучшем случае, как нечто временное, т.е. как переходный этап к другой, более правильной, теории.

Релятивистской квантовой электродинамики сегодня еще не существует. Известно, что основания, стоящие на пути ее развития, трудность — так называемая трудность "бесконечно собственной энергии" — представляет собой непосредственную аналогию этой трудности, которую до появления работ Гёделя не могла, сколько ни была удовлетворительно, преодолеть классическая физика, стремясь построить унитарную теорию полета материи. В ряду возможных две точки зрения на тот способ, которым будет в дальнейшем разрешена эта трудность. Можно стоять на той точке зрения, что сперва должна быть построена правильная теория электромагнитной космоса в рамках классических идей, перевод которой на квантовый уровень, производимый по рецептам, аналитическим и известным рецептам "квантования" даст истинную релятивистскую микродинамику. С этой точки зрения, исследование корневых построений представляет исключительный интерес для всего дальнейшего развития физики. Но можно стоять и на той точке зрения, что путь аналогии с классической, столь удовлетворительный для всего протекающего этапа квантовой теории, однако, уже себя исчерпал в преодоление трудностей, стоящих на
пути дальнейшего развития этой теории должно быть и будет получено на каких то принципиально новых уровнях. С этой точки зрения вантач теории Горна можно, с большим или меньшей степенью решительности, считать направленной потерей времени.

В настоящее время у нас нет однозначного критерия, который позволил бы решить, какая из двух названных точек зрения более близка к истины. Во всяком случае, есть все основания сначала подробно уделить исследованию пути аналогии с классической физикой - это либо приведет к успеху, либо, на худой конец, поможет выяснить, в каком пункте этот путь перестает быть надежным.

§ 6. После всего небольшого отступления, возвращаемых снова непосредственно к нашей теме.

В § 1 мы натолкнулись на идеальный сбор построения единичной теории материи и пола. Согласно этой схеме, единственная задача, которая остается в рамках теоретика, пытающегося построить единичную теорию, заключается в выборе Lagrangiana пола. После того, как этот выбор сделан, все остальное идет уже более или менее автоматически. И если, для того, чтобы не очень удаляться от упомянутой схемы, принять существование четырехмерного вектора потенциала.

В связи с этим, естественно спросить себя: каким требованиям должен удовлетворять Lagrang Ian теории для того, чтобы непрерывная выше программа могла быть фактически осуществлена. По сути дела, этот вопрос является первым,
на который нужно ответить при критическом изучении теории.

Было бы попытаться перечислить все эти требования; полнее остановиться главным образом на тех из них, которые действительно существенно служат класс допустимых напряженности. Таких требований можно насчитать по меньшей мере шесть. Мы будем нумеровать их латинскими буквами.

/а/. Теория должна быть релятивистски инвариантной и айтинвариантной.

Первая половина этого требования не нуждается в комментариях. Вторая половина его означает, что четырехмерный вектор-потенциал должен играть в теории только частично вспомогательную роль. Существование этого потенциала должно рассматриваться лишь как сокращение запись некоторых свойств, присущих электромагнитному полю /конкретно — первой группе уравнений Максвелла/.

/в/. Уравнения пода должны допускать решения, уподобляющие в 0 1, а именно такие, когда магнитное поле равно нулю, электрическое радиально симметрично и решение содержит одну произвольную константу, которую можно отождествить с зарядом. Но этого вольная формула было бы ввести существенным образом в теории заряженных частиц.

/с/. В той системе координат, в которой выполняется требование /в/, полное количество движения должно равняться нулю, а полная энергия должна быть конечной.

Так наконец, теория Максвелла не удовлетворяет второой части этого требования. Теория Абрамана-Гордана,
базировавшиеся на искусственно вводимом представлении о "радиусе электрона", удовлетворяли ему. Но они, со своей стороны были плохи тем, что не удовлетворяли следующему четвертому требованию, без выполнения которого теория опять таки не может быть построена. Это четвертое требование гласит:

/а/ Приравнивание электромагнитных величин механическому количеству движения и энергии должно носить релятивистски инвариантный характер.

Как мы увидим несколько ниже, это условие, необходимости которого очевидна, отнюдь не выполняется автоматически. Нарушение его приводит к нарушению релятивистской инвариантности теории в ее механической части, что, как известно, произошло с теорией Лоренца. Если эти четыре требования выполнены, то унитарная теория принципиально, может быть построена. Но для того, чтобы она имела физическое значение нужно, чтобы те основные уравнения электродинамики и механики, к которым она приводит, во всяком случае, в известном пределе переходили соответственно уравнения Мак-Белла-Лоренца и Эйнштейна. / Примечание этот предел должен определяться конечно по квантовым / о коих здесь речь вообще не идет/, а какими то другими соображениями. Мы должны, следовательно, потребовать еще следующее:

/б/ Если при построении теории, придется видоизменить
уравнения Маквелла, то эти уравнения все-же должны оставаться справедливыми в известном предельном случае, т.е. классическая электродинамика должна, как или иначе содержаться в новой теории.

Δ f Δ. Аналогичное условие должно иметь место и по отношению к новым уравнениям механики: в определенном пределе они должны подходить к уравнениям релятивистской механики Эйнштейна.

§ 4. Борну и Уилльсу удалось построить Лагранжеву функцию, удовлетворяющую всем перечисленным выше условиям требованиям.

Постарайтесь кратко воспроизвести ход их мысли. Вариационный принцип, служащий, как всегда, исходным пунктом теории, имеет вид

$$\delta \int L \, dt = 0 \quad (1)$$

где

$$L \, dt = \partial \mathbf{x} / \partial x^4 \, dx^4 \, dx^4 \, dy^4$$

Для того, чтобы удовлетворить первой половине требования /a/, величина \(L \, dt \) должна быть инвариантом в смысле общей теории относительности. Мы должны, следовательно, иметь

$$L \, dt = T \nu \quad (2)$$

Как должно преобразовываться \(L \) для того, чтобы это имело место? Хорошо известный ответ на этот вопрос
гласит: \(L \) должно преобразовываться как выражение вида

\[
\sqrt{|a_{ik}|} \quad (3)
\]

где \(|a_{ik}| \) — детерминант, образованный из ковариантных компонент любого тензора 2-го ранга.

По основной идее теории /см. § 1/, Лагранжева функция должна зависеть от компонент тензора поля \(f_{ik} \) и, очевидно, поскольку теория строится в рамках общего принципа относительности, от компонент метрического тензора \(g_{ik} \). Принимая это во внимание, естественно искать \(L \) среди выражений типа

\[
\sum_{\alpha} a_{\alpha} \sqrt{\sum_{\beta} b_{\alpha\beta} |a^{(\alpha\beta)}_{ik}|} \quad (4)
\]

где \(a_{\alpha} \) и \(b_{\alpha\beta} \) — инварианты, а \(a^{(\alpha\beta)}_{ik} \) — компоненты тензоров, как-то зависящие от \(f_{ik} \) и \(g_{ik} \).

Вори и Ундильд указывают два выражения типа /4/, которые будучи положены в основу теории, удовлетворяют всем выявленным выше шести требованиям, а именно:

1/ Другие величины, характеризующие электромагнитное поле, напр. схематичные векторы-последовательности, не могут входить из-за требования эйнштейновской инвариантности, которое, таким образом, в этой теории оказывается автоматически выполненным.
\[L_1 = \sqrt{-1g_{12} + f_{12}} - \sqrt{-1g_{12}} \]
\[L_2 = \sqrt{-1g_{12} + f_{12} + f_{12}} - \sqrt{-1g_{12}} \]

где
\[f^2 = \frac{1}{2} f_{12} f_{12} \]
\[G = \left(f_{13} f_{14} + f_{23} f_{24} + f_{31} f_{32} \right) \frac{1}{\sqrt{-1g_{12}}} \]

и представляют собой пространственные инварианты.

В этих формулах поля выражены, конечно, в условиях единицах. При переходе к обычным единицам, мы должны ввести в формулы фактор перехода \(k \), имеющий размерность напряженности поля. Тогда, напр., формула (9) примет вид
\[L_2 = \sqrt{-1g_{12}} \left(\sqrt{1 + \frac{f_{12} f_{12}}{1g_{12}}} - 1 \right) \]

Аналогичным образом может быть переписана и формула (17). В дальнейшем оказывается, что константа \(k \) играет в теории роль "критического" поля, в известном смысле аналогично тому, как скорость света в теории относительности играет роль критической скорости. Значение \(k \) окан-
Ясно видеть, что для полей, наих по сравнению с "критическим" полем \(\theta \), обе Лагранжевые функции теории Горна переходят в Лагранжеву функцию Максвелла, т.е. требования \(/a/ \) оказываются выполненными. Напомним, что в теории Максвелла, Лагранжев мимет вид:

\[
\frac{1}{4} \sqrt{-19n!} \sin^2 \alpha \tag{12}
\]

который тоже подходит под обную формулу \(/a/ \).

Принципиальное отличие этой формулы \(/12/ \) от \(/5/ \) и \(/15/ \)
заключается в том, что в \(/12/ \) у Максвелла под корнем остается только метрический тензор, тогда как компоненты тензора поля входят лишь в один из инвариантов \(A_\mu \).

З теории же Горна, как это видно из формул \(/5/ \) и \(/15/ \)
величины, характеризующие поле и метрику стоят под корнем, а инварианты \(A_2 \) и \(B_{\alpha \rho} \) оказываются простыми числами.

Как вычислить из дальнейшего, этот факт существенен значится в вид новых выражений поля, делать их, в отличие от выражения Максвелла," неполярными в полях.

В какой мере выбор функции \(/5/ \) или \(/15/ \) является одно-
значным и как вообще можно ставить вопрос об однозначности в данном случае?

Совершенно очевидно, что одного требования релятивистской
инвариантности интеграла действия далеко не достаточно
для того, чтобы однозначно выбрать даже тип Лагранжана

\[m \cdot \sqrt{-19n!} \]

где \(m \) является "формальным", идя ли оно является существенным, так как сам критерий "формальности" весьма подобен. Любопытно, что одно из рекомендуемых самим Горном выражений - а именно выражение \(/a/ \) - тоже приводят, как это особенно ясно видно из \(/8/ \), к критической ни тупу.
Но если прибавить к нему еще требование однородного перехода к теории Навоиева, то это уже значительно сужает класс допустимых Лагранжевов.

Полную однозначность выбора все же и это, конечно, не дает: достаточно указывать хотя бы на существование трех функций f_1, f_2 и f_3.

Интересно было бы выяснить, достаточно ли добавить к этим двум требованиям еще требование конечности энергии частицы, для того, чтобы определиться хотя бы общий вид Лагранжевых функций. В этом случае этот вопрос можно поставить так: существуют ли такие Лагранжевы, которые удовлетворяют всем шести требованиям, выставленным в § 3 и, вместе с тем, существенно отличаются от выражений f_5 и f_6? Иначе, что же отличает неопределенность не только описательной, но и выражения f_5 и f_6 по существу. Действительно, в целом ряде случаев приводят, даже к полному однозначному результату.

Именно, так обстоит дело в основной статической задаче.

Таким образом, все случаи, из которых только и

различим между этими результатами, невидимы, как и следовало бы интерпретировать нас во второй главе, только эти отличия

неких неких /более переменных частей/ результаты, и

которые приводят нас оба Лагранжев существенно различны и вопрос о том какую из этих функций нужно в этой области предпочесть может быть решен лишь путем сравнения выводов теории с определенными фактаами.

В дальнейшем, мы будем пользоваться исключительно функцией f_3.

* См. прям. в тексте.
Как известно, Лагранжева функция выбрана.

В декартовой системе координат специальной теории относительности она имеет вид:

\[L = \sqrt{1 + v^2/c^2} - 1 \] \hspace{1cm} (11)

Дальнейшее развитие теории происходит по "идеальной" схеме, изложенной в § 1.

Постановляется существоование четверехмерного вектор-потенциала \(\Phi \) удовлетворяющего условию

\[f_{ik} = \frac{\partial \Phi_k}{\partial x^i} - \frac{\partial \Phi_i}{\partial x^k} \] \hspace{1cm} (12)

что эквивалентно уравнению первой системы уравнений полей:

\[\frac{\partial^2 \Phi_k}{\partial x^i \partial x^k} + \frac{\partial^2 \Phi_i}{\partial x^k \partial x^k} + \frac{\partial \Phi_i}{\partial x^k} = 0 \] \hspace{1cm} (13)

Уравнения Малера для вариационного принципа \(\delta \int L \, dt = 0 \)

дают вторую группу уравнений полей:

\[\frac{\partial}{\partial x^k} \frac{\partial \Phi}{\partial x^k} = 0 \] \hspace{1cm} (14)

которые, как было сказано, потенциальны в полях в силу того, что \(L \) не зависит квадратичной функцией полей. Как это имеет место в теории Ньютона. Используя индукцию

\[p_{ik} = \frac{\partial \Phi_k}{\partial x^i} \] \hspace{1cm} (15)

именно переписать вторую группу уравнений поля в виде

\[\frac{\partial p_{ik}}{\partial x^k} = 0 \] \hspace{1cm} (16)
Современно также за методом, как в классической электродинамике Максвелла — Лоренца, можно, исходя из уравнений поля (25) и (18), построить тензор энергии — винчелла T_{ik} и получить закон сохранения:

$$\frac{\partial T_{ik}}{\partial x^k} = 0$$

(19)

где

$$T_{ik} = \delta_{ik} \rho_{ik}^e - P_{ik}$$

(20)

Получим теперь уравнения поля и законы сохранения в векторной форме. Обозначим через B, E, D и H пространственные векторы, характеризующие электромагнитное поле в обычных электромагнитных единицах. Имеем, похоже:

$$
\begin{align*}
\frac{\partial B^i}{\partial t} + \frac{\partial E^i}{\partial x^j} = & 0 \\
\frac{\partial E^i}{\partial t} - \frac{\partial B^i}{\partial x^j} = & 0
\end{align*}
$$

(21)

Тогда

$$L = \sqrt{1+F} - 1$$

где

$$F = \frac{1}{b^2} \left(B^2 - E^2 \right)$$

(22)

Также

$$
\begin{align*}
H = b^2 \frac{\partial E}{\partial x} - \frac{B}{\sqrt{1+F}} \\
D = -b^2 \frac{\partial B}{\partial x} - \frac{E}{\sqrt{1+F}}
\end{align*}
$$

(23)

Для векторных величин B, E и их производных используются обозначения.
и уравнения могут принимать форму, если подставить вместо их уравнений Фульшера
другие уравнения, в которых нет зарядов и токов:

\[
\begin{align*}
\nabla \cdot \mathbf{E} + i \mathbf{B} &= 0, \\
\n\nabla \cdot \mathbf{H} - i \mathbf{D} &= 0
\end{align*}
\]

или, если в последнее два уравнения подставить вместо \(\Phi \) и \(\mathbf{B} \) их значение через \(\Phi \) и \(\mathbf{G} \), то, окончательно, система уравнений поля будет иметь вид:

\[
\begin{align*}
\nabla \cdot \mathbf{E} + i \mathbf{B} &= 0, \\
\n\nabla \cdot \mathbf{B} &= 0, \\
\n\nabla \times \mathbf{E} &= \frac{1}{2} \frac{1}{1+\mu} \left\{ [\mathbf{grad} \Phi, \mathbf{B}] - i \mathbf{F} \mathbf{E} \right\}, \\
\n\n\nabla \times \mathbf{B} &= \frac{1}{2} \frac{1}{1+\mu} \left[\mathbf{grad} \Phi, \mathbf{E} \right]
\end{align*}
\]

Для тензора энергии и напряжений можно получить выражение:

\[
\mathbf{T} = \begin{bmatrix}
X_x & Y_x & Z_x & c \mathbf{G}_x \\
Y_x & Y_y & Y_z & c \mathbf{G}_y \\
Z_x & Z_y & Z_z & c \mathbf{G}_z \\
\frac{1}{c} S_x & \frac{1}{c} S_y & \frac{1}{c} S_z & U
\end{bmatrix}
\]

где

\[
\begin{align*}
X_x &= H_y B_z + H_z B_y - D_x E_x - \nu \zeta \\
Y_x &= X_y = - H_y B_x - D_x E_y \\
Z_x &= \frac{1}{c} S_x = c \mathbf{G}_x = D_y B_z - D_z B_y \\
U &= D_x E + \nu \zeta \zeta \zeta
\end{align*}
\]
Как подчеркивалось ранее, за независимые переменные можно выбрать, конечно, любую пару из четырех векторов поля \(\mathbf{E}, \mathbf{B}, \mathbf{H} \) и \(\mathbf{A} \). В зависимости от этого выбора мы можем получать весьма различные формулировки теории с равнозначными Гамильтонианами, но, разумеется, приводящими к одним и тем же, но существующим уравнениям поля. Очевидно, возможны 4 таких формулировки. Наименьше удобной для нас в дальнейшем формулировкой теории будет та, которую мы до сих пор и рассматривали \(/27/ \), при которой за независимые векторы выбраны \(\mathbf{E} \) и \(\mathbf{P} \), хотя и при любом другом выборе выражения устойчивость может быть лишь очень незначительная.

Однако, что для построения квантовой теории оказывается более удобным выбрать за независимые векторы \(\mathbf{A} \) и \(\mathbf{B} \). При этом роль Гамильтониана должна играть постоянство энергии \(\mathcal{U} \), равная по последней формуле \(/27/ \):

\[
\mathcal{U} = b^2 \left(\sqrt{1 + \frac{b^2}{c^2}} - 1 \right)
\]

(28)

§ 2. Найдем, по указанному в \(/1/ \) разделу, решение уравнений поля, соответствующие нулевым покоящимся заряженным частицам в начале координат.

Согласно сказанному в \(/1/ \), мы при этом должны, прежде всего, положить

\[
\mathbf{E} = \mathbf{P} = 0
\]
в силу (34), это дает

\[
\nabla E = 0 ; \quad \Delta V = 0
\]

причем \(\Phi /a \), следовательно, и \(\gamma / \) не зависит от времени.

Решение радиально симметричное решение этих уравнений, т.е. такое решение, для которого оба вектора \(\mathbf{U} \) и \(\mathbf{V} \) радиально по направлению и по величине зависят только от \(\Phi \).

Второе из уравнений (30) в сферических координатах дает

\[
\frac{1}{r^2} \frac{d}{dt} \left(r^2 \Phi \right) = 0
\]

откуда совершенно очевидно получим

\[
\Phi = \frac{e}{r^n}
\]

где \(e \) — единственная константа интегрирования, о которой сказано в начале. Это решение имеет особую точку при \(r = 0 \).

Описанное исчезает по мере \(r \to 0 \) и интерпретируется, как соответствующее наличию частиц в начале координат.

Несколько рассуждений показывают нам, что условие /a/ и теория Борна, как и у Максвелла, выполнено.

Вычислив поле \(E \), находим

\[
E_r = \frac{e}{\sqrt{2^\gamma + 2^\gamma}}
\]

где

\[
2^\gamma = \sqrt{\frac{e}{\varphi}}
\]

и представляет собой критерий, ненулевую разность длины, которая, как уже выясняется, будет в ладонь мао аналогична "радиусу" атома в теории Ферми.
Однако, сам по себе факт конечности E еще огню не означает, что и теория нет расходящихся. Для того, чтобы проверить, удовлетворяется ли для нашего решения условия $|c|$, необходимо обратиться к непосредственным вычислениям по формулам γ_0.

Легко видеть, и здесь мы имеем крупный принципальный успех теории, что в данном случае это условие удовлетворяется. В самом деле, идем в нашу формулу гармоники в нуль в силу того, что $\gamma = 0$; конечность же полной энергии $W = \sum w$ подтверждается непосредственным вычислениами, даваемыми для W значение:

$$W = 1.2361 \frac{e^2}{\gamma_0}$$

(35)

Этот пункт "вплетен" как сказано, весьма существенным. Он показывает, что теорию удалось, оставшись в рамках классических идей устранить трудность бесконечной собственной энергии электрона, не прибегая к приложению, ни к каким искусственным выражениям о его "структурах".

На азарт и массу электрона, мы можем найти численное значение константы γ_0:

$$\gamma_0 = 1.2361 \frac{e^2}{m_0 c^2} = 2.28 \cdot 10^{-8} \text{ см.}$$

(36)

и, следовательно, численное значение "критического" поля γ:

$$\gamma = \frac{e}{\gamma_0 c} = 9.18 \cdot 10^{15} \text{ абс. един.}$$

(37)

Из этих формул видно, что мы можем, в терминологии теории Джордан, величину γ_0 интерпретировать как "радиус
электрона, а "критическое" поле E_c – как напряженность электрического поля на его "поверхности". Величина этого "критического" поля, очевидно, является универсальной константой теории, независящей от заряда e, которой, как уже упоминалось, никакой теорией не задается. Следовательно, при выбранном e, мы получаем вполне определенное E_c, в силу (36), вполне определенную массу m_0. Это замечание убедит нас в том, что при данном заряде e, теория приводит только к одному значению для массы m_0, т.е. является теорией только одного типа частиц - электронов. Получить теорию протона, как видно отсюда, в рамках вышеназванных соображений, оказывается невозможным.

§ 7. Рассмотрим теперь несколько подробнее вопрос, затронутый при формулировке требования (I), а именно, вопрос о замкнутости инвариантной приращении электромагнитных величин механики.

Как мы уже указали, для построения ионной и унитарной теории, мы должны отождествить интегралы по об"екту от электромагнитного количества движения \mathbf{eG} от \mathbf{cG}, от $\mathbf{cG_y}$ и от $\mathbf{cG_z}$ для указанного типа состояний поля с механическим количеством движения частицы и интеграл от плотности энергии U с полной энергией частицы. Для того, чтобы такое отождествление было рентгеновой инвариантно, нужно, чтобы эти интегралы, при преобразовании вектора, преобразовывались как компоненты четырехмерного вектора. Если удается в том, что условием условия этого является равенство нулю, в понимается относительно частиц системы
координат обобщенных интегралов от диагональных компонент тензора инвариантных напряжений \(X, Y, \) и \(Z \), т.е. условие:

\[
\int X \, d\nu = \int Y \, d\nu = \int Z \, d\nu = 0
\]

В теории держана это условие не выполняется, в этом, как раз, заключалась главная причина трудностей построения относительной инвариантной механики. С этой же была связана необходимость введения сил неэлектростатического происхождения, одержиающих электрон, т.к. результирующие максвелловские напряжения были отклонены от нуля.

Теория Гюйгенса - предельная свободна от этой угрозы. Преосредственная подстановка решения (33)/(35)/(37)/показывает, что условие (16) для тороидов выполняется и, следовательно, мы можем построить относительную инвариантную механику. Итак, говорит, здесь нет необходимости введения сил, содержащих электрон, т.к. результирующие махновые напряжения обращаются в нуль, Таким образом, в электроинерционной тензión удовлетворяется в последнее требование, предъявленное к универсальной теории, на котором основана сама несовместимость и лучший из всех теорий - теория Доренца.

§ 3. Путем теперь путь, по которому можно получить в теории Гюйгенса - упомянутые законы механики. Для этого мы, очевидно, должны рассмотреть вопрос о том, каким образом будем делать это решение уравнений пос,
интерпретируемые они как наличие электрона, под влиянием внешнего поля.

Наиже, что уравнения Борна допускают решение, соответствующее движущемуся электрону.

Соответствующее преобразование Герца или координатной системы, мы можем получить решение, соответствующие приближе
пально и равномерно движущемуся электрону. Правда, для наглахие нелепительно было бы найти такие решения, которые
соответствуют ускорению движущемуся электрону, ибо конечное такое движение будет иметь электрон под влиянием внешних электромагнитных полей. Принципиально, можно было бы построить теорию возникновения, броне решение, соответствующее равномерному и приближённому движению за нулевое при
ближение и рассматривать влияние ускорения, как малое возмущение. Но хорошо известно, что учет ускорения, вообще, не
тано только при рассмотрении эффекта реакции собственного
излучения на электрон. Если эти эффекты на интересовать
ся, то вполне достаточно рассматривать решение, соответствующее ускорению равному нулю, что ни в будущем делать.

Исходя пунктом теории динамики, следует такое решение уравнений Борна, которое соответствует одновременному существованию электрона и внешнего поля. Правда, мы выше видели, что в унитарной теории можно
надач на наличие частиц только некоторые, вполне определенные решения, не предусматривающие присутствия вне
внешнего поля. Это последнее как-то изменит наши реше
ние /32/ и /33/ или полученное из него преобразование Герца/ и априори невозможно никаких общих при этом продолжать говорить о наличии частиц. Ниже говорим, в теории Борна принципиально мыслим так, как будто электрон всегда движется под влиянием поля, подобно тому как бы в своег
Индивидуальность, совсем грубо говоря, как бы "разрушается", физически, однако, ясно, что такое понятие может иметь место только при очень сильных полях/скоростях в \(\mathbf{V} \), или — однако, конечно, связано с другими — при больших ускорениях электрона. При малых же полях и малых ускорениях, наличие поля в основном, очевидно, может быть записано в классических терминах, т.е. просто как "приведение электрона в движение". В математической форме, указанное осложняющее обстоятельство выражается так. Пусть \(D_0 \) и \(B_0 \) — решение уравнений Борна, соответствующее наличию электрона, движущегося равномерно и прямолинейно по какой-то мировой траектории/величине, характеризующей вид этой траектории играет в низоскоростных рассуждениях роль параметров. Пусть далее \(D_e \) и \(B_e \) — решение этих уравнений, соответствующее внешнему полю. Тогда сумма вида \(D_0 + D_e \) и \(B_0 + B_e \), как правило, не будет представлять собой решение уравнений Борна — в силу их нелинейности — ни при каком выборе мировой траектории. В этом и проявляется специфический для теории Борна и чуждый классике эффект искажения свойств электрона/внешним полем.

Если \(D_e \) и \(B_e \) сравнимы с \(\mathbf{V} \) — напр., если на расстоянии, сравнимом с \(r \), от каждого электрона находится другой электрон —

1) Оказывается, что для проведения вычислений здесь, накладывается удобное всего пользоваться той формулой теории, где независимые переменные выбраны \(\Phi \) и \(Z \) и роль Лагранжанна играет плотность энергии \(\mathcal{U} \).
то этот эффект искажение играет основную роль во всех явлениях и не иск. как нужно тогда вести вычисления. Если же φ и β малы по сравнению с ϵ, то можно, очевидно, добавить

$$
\varphi = \varphi_0 + \varphi_\alpha + \varphi' \quad \beta = \beta_0 + \beta_\alpha + \beta'
$$

и искать φ' и β' в виде малых поправок к исходным полям. Эффект искажения будет, но он будет мал. Конкретный пример такого вычисления был дан проф. Л. В. Тамним рассмотрении его простейший случай когда решение $\varphi_0 = \beta_0$ соответствует покояющемуся электрону, а решение $\varphi_\alpha = \beta_\alpha$ — постоянному однородному электростатическому полю. В этом случае $\beta = 0$ и для поправки φ' получается довольно простое уравнение, которое показывает, что эта поправка в известном смысле действительно мала: а именно, хотя в центре электрона она идет в бесконечность, но вовремя остается гораздо меньше чем φ_0; на больших же расстояниях от этого центра $\varphi' \ll \varphi_0$. Разумноется при $\beta \rightarrow \infty$, φ' уходит в нуль.

Существенно иметь в виду, что решения типа \(39 \) существуют очевидно при любом β' в виде мировой траектории и поправки поправок φ' и β' никакого непосредственного отношения к тому факту, что электрон приходит в движение не имеет. Отсюда вытекает, что исходя из одних только уравнений поля, законов механики электрона вообще получить нельзя. Особенно ярко это видно хотя бы из примера разобранного выше, который показывает, что уравнения β, горяя допускают и такие решения при которых несмотря на наличие внешнего поля электрон покоятся. В этом случае β сам по себе нет ничего странным

1/ Как я узнал из его любезного сообщения.
- в самом деле физически вполне возможно представить себе такой случай, когда электрон удерживается на месте каким-нибудь силами не электрического происхождения. Наличие таких сил, очевидно, не может учесть в самих уравнениях поля, которые определяют вообще все электродинамические возможные состояния поля и конечно, ничего не могут сказать о том в каких условиях то или иное из этих состояний осуществлено механически.

Это обстоятельство, однако, отнюдь не означает, что для получения законов механики необходимо ввести в теорию какие-то новые самостоятельные принципы. Дело в том, что, как неоднократно подчеркивалось в ходе всего изложения, основным утверждением теории Борна является не уравнение поля, а вариационный принцип. Содержание же этого принципа отнюдь не исчерпывается уравнением поля; последнее определяет собой всю совокупность экстремальных вариационных интегралов, но ведь отнюдь не для всех экстремалей этот интеграл имеет однозначное значение. Именно благодаря этому обстоятельству вариационный принцип оказывается достаточным для получения не только законов электродинамики, но и законов механики.

Конкретно нужно очевидно поступить так: подставить решение \(139\) в Лагранжан \(17\) и \(36\) и искать для какого из этих решений вариационный интеграл имеет экстремальное значение. Роль параметров, во множестве которых при этом должна производится вариация, играет величины характерные для ядерной линии электрона, от которого зависит выражение \(139\). Ясно, что получившееся в результате такого метода нахождения уравнение действительно по типу аналого обычного вариационному принципу механики. Ясно, далее, что добавление соответствующих членов к Лагранжану, можно, принципиально, учесть в действии заряда не электрических сил.

Если интересоваться только "нулевым приближением" т.е. теми случаями когда можно ожидать применимости обычных законов механики - то можно, очевидно, отбросить поправки \(D = B\) и встав...
лять в вариационный интеграл непосредственно сумму поля электрона и внешнего поля. Герн и Кифельд показали, что идя по только что указанному пути можно действительно получить вариационный принцип, аналогичный механическому, который — в предположении, что внешнее поле мало меняется на расстояниях порядка \(z_0 \) — переходит в обычный вариационный принцип релятивистской механики. Тем самым задача построения механики в рамках унитарной теории может считаться, по крайней мере в общих чертах, разрешенной.

Найболее интересным было бы, конечно, исследование тех отклонений от обычного вида механических уравнений, которые должны появиться в теории Герна при более точном проведении вычислений. К сожалению те приближения, от которых нужно при этом освободиться повидимому связаны друг с другом — если градиент внешнего поля на расстояниях порядка \(z_0 \) не мал, то вряд ли малы и поправки \(\delta' \) и \(\beta' \), а также вряд ли мал и реакция собственного излучения на электрон. Впрочем, если учитывать все эти эффекты только в первом приближении, то вычисления остаются принципиально выполненными хотя и делаются весьма громоздкими.
Глава II.

§ 1. Введение

Как, коротко размывая содержание главы I, можно сказать, что Берна удалось построить единую теорию поля и материи за счет отказа от Максвелловых уравнений и введения в их число новых уравнений поля /формы/ 1/24/, или 1/25/, основной характерной чертой которых является их нелинейность. При переходе от уравнений Максвелла к уравнениям Горна "механические" результаты теории, таким образом, существенно меняются: энергия точечного заряда получается конечной и т.д. Но не трудно видеть, что одновременно с этим перестает быть справедливым ряд других результатов обычной электродинамики, на первый взгляд никак не связанных с трудностями построения единой теории. А именно, поскольку теория становится нелинейной, как уже неоднократно указывалось в § 8 главы I, гораздо сложнее принцип суперпозиции, играющий столь важную роль во всех Максвелловской электродинамики.

Иначе говоря, согласно теории Горна, отклонения от обычных законов электродинамики должны проявляться не только в "механических" явления, но и в эффектах "взаимного влияния" двух /или нескольких/ электромагнитных полей.

Наиболее интересным из этих эффектов является, пожалуй, эффект искажения поля световой волны другими волны. Как непосредственно видно из уравнений 1/24/, в сочетании с 1/22/ и 1/23/, в теории Горна плоская и нарастающая электромагнитная волна представляет собой два точных решения уравнений поля /это имеет место также и для второго варианта теории/, являющего дело с другой Лагранжевой функцией. Примо всего в этом можно убедиться, если
вспомнить, что для поля волновой волны оба пространственных инварианта \(k \) и \(G \) обращаются в нуль. Таким образом, пока речь идет о таком типа волн, электромагнитная теория света формулируется по Гюйгенсу точно так же как и по Максвеллу. Но дело иначе, как только мы переходим к нескольким особым случаям, а именно и таким, когда волны с полем, скажем, плоской световой волны, имеется в наличии еще какое-нибудь другое электромагнитное поле, хотя бы электростатическое поле плоского конденсатора или поле другой световой волны. По Максвеллу, наличие этого второго поле не оказывает никакого влияния на свойства исходной волны, в то время как по Гюйгенсу такое влияние, вообще говоря, наверное имеет место, т.к. напр. сумма электромагнитных полей двух плоских волн уже не представляет собой решения уравнений Гюйгенса. Но тех пор, пока все поля, с которыми мы здесь имеем дело, слабы по сравнению с "критическим" полем \(k \), влияние непостоянности должно быть слабым и может ощутимо говорить о том, что и в присутствии второго поля мы все же имеем плоскую волну, несколько только искаженную.

Разбор трех примеров такого типа искажения и составляет предмет этой главы.

Необходима отметить, что как раз в этом пункте проявляется замечательная аналогия между электродинамикой Гюйгенса и теорией, построенной, казалось бы, на совершенно других физических основах, а именно - теорией Фарадея, Дирака. В самом деле, как указали впоследствии Радон и
и Дебая, согласно этой последней теории тоже должен иметь место эффект ваннингсного излучения двух световых волн и, также, как нетрудно убедиться, ряд других, аналогичных Гюйгенсовским, эффектов излучения. Следовательно, ученые Гейзенберга, Эйдера и Коккеля показали, что эта аналогия имеет, в известной мере и количественный характер: "развещение света на свете" вызванное по Гюйгенсу, оказывается в общих чертах таким же, какого следовало бы ожидать по квантованной электротермодинамике Горна.

В сущности существование этой аналогии ведет ряд интересных вопросов, которые мы, однако, здесь не будем обсуждать, поскольку все они существенно связаны с переходом к квантованию поля, лежащем вне рамок настоящей диссертации и тем более, что детальный анализ результатов Эйдера и Коккеля пока невозможен, поскольку их вычисления еще не опубликованы.

3/ Важно подчеркнуть, что само существование аналогии между результатами Горна и Дирахера, как раз в области низкочастотных эффектов, делает исследование именно этой стороны Горнанской электродинамики особенно интересным и в классической точке зрения.

Ф 2.3/ Плоская световая волна в однородном электростатическом поле.

В качестве первого примера, мы рассмотрим задачу о распространении плоской световой волны в однородном электростатическом поле - скажем, в поле плоского конденсатора.

1/ См. W. Heisenberg. Z. f. Phys. 90. 1934. 208.
2/ M. L. W. L. W. 26. 1935. 246.
3/ Результаты этого параграфа опубликованы в статье С. Нобина и А. Смирнова. ДАН. 1936.
ра. Эту задачу мы разберем особенно подробно, как простейшую и типичную.
Представим себе, сначала, плоскую электромагнитную волну, электромагнитное поле которой определяется равенствами:

\[
\begin{align*}
E &= \mathcal{E} = E_0 \cos \omega \left(t - \frac{nt}{c} \right) \\
\mathcal{H} &= \mathcal{H} = B_0 \cos \omega \left(t - \frac{nt}{c} \right)
\end{align*}
\] (40)

где, как обычно

\[
\begin{align*}
E_0 &= \begin{bmatrix} \mathcal{E} \\ B_0 \end{bmatrix} & B_0 &= \begin{bmatrix} E_0 \\ \mathcal{H} \end{bmatrix}
\end{align*}
\] (41)

Выражение (40), как было только что указано, представляет собой точное решение уравнений Максвелла.

Согласно этой теории, изображаемая этим решением волна может, однако, как правило, распространяться только в вакууме, т.е. в отсутствии всех других полей. В частности, если включить в рассмотрение какие-либо части пространства, еще поле плоского конденсатора \(N \), то выражение вида

\[
\begin{align*}
E &= E_0 \cos \omega \left(t - \frac{nt}{c} \right) + N \\
\mathcal{H} &= B_0 \cos \omega \left(t - \frac{nt}{c} \right)
\end{align*}
\] (42)

уже не будет представлять собой возможного состояния поля. Тем не менее, даже и в этом случае, когда \(N \) и \(\mathcal{H} \) будут существовать решения, во всяком случае до тех пор пока \(N \) и \(\mathcal{H} \) будучи малыми в сравнении с \(1 \), эти решения, или, во всяком случае, некоторые из них, достаточно широкий класс ях мы в состоянии себе зада-
чей найти 1/.

При этом, им сначала не касается вопроса о том, в каких условиях то или иное из этих решений осуществляется фактически; обсуждение этой более конкретной задачи мы отодвигаем до 2/.

Опираясь на неравенство \(N < b \), которое является, как уже сказано, существенным, мы будем в ходе включений отображать все степени величин \(\frac{N}{b} \) кроме наименьшей. Как выяснилось в дальнейшем, эта наименьшая степень является второй. Таким образом, все выражения, имеющие в знаменателе \(b^2 \), \(b^6 \) и т.д., будут нами в дальнейшем замечиваться.

1/ Конечно, можно было бы исходить не из векторов E и Z, а из какой-нибудь другой пары векторов, например, D и Ω и поставить задачу так: найти решение, связанное к

\[
\begin{align*}
D &= \Phi_0 \cos \omega \left(t - \frac{\pi}{2} \right) + \Phi_1 \\
K &= \Phi_0 \cos \omega \left(t - \frac{\pi}{2} \right)
\end{align*}
\]

Разумеется, окончательные результаты должны быть при обоих постановках вопроса по существу одинаковы.

2/ Если мы встречаем в дальнейшем выражение типа \(\frac{E_0}{b^4} \) или \(\frac{E_0}{b^x} \), то им, очевидно, также можно подобрать...
Если, что в таком приближении, различие между первым и вторым вариантами теории Борна пропадает, т.к. гармоническая функция \sqrt{x} переходит в $\sqrt{\omega}$. Намболее вероятным оказалось бы на первых вариантах искать решение уравнения Борна $125/1$ в виде

$$
\begin{align*}
E &= E_0 \cos \omega (t - \frac{\omega t}{c}) + \omega^2 + E' \\
\beta &= \beta_0 \cos \omega (t - \frac{\omega t}{c}) + \beta'
\end{align*}
$$

(43)

считая E' и β' малыми величинами, стремящимися к нулю при $\frac{\omega t}{c} \to 0$. Однако, если подставить выражение $143/1$ в уравнение $125/1$, то оказывается, что для E' и β' получаются уравнения, которые не имеют подходящие количественных решений. Дополнительно, вычисления показывают, что E' и β' содержат члены, пропорциональные величине $\frac{t + \frac{\omega t}{c}}{\sqrt{\omega}}$, т.е. обращается в ∞ при $t = \infty$ и $\omega = 0$.

Недаром этого вычисления с необходимостью приводят к тому выводу, что не существует таких решений уравнений Борна, которые при всех $t < \infty$ были бы близки к соответствующим Гауссуновым решениям $127/1$. Иногда говорят, что для данного класса задач, применяют обычный метод возвышения. Неизвестная величина является как известная + малая добавка, и таким образом, в таком виде не применяется.

Любопытно, что аналитическое положение вещей имеет и в некоторых других задачах классической механики. Рассмотрим, например, уравнение динамики анизотропического осциллятора с силой, содержащей члены, пропорциональные x и x^3:

$$
\ddot{x} + \omega^2 x = k x^3
$$

(44)

и попытаемся искать его решение в виде

$$
x = A \cos \omega t + x'
$$

(45)
Считая \(x' \) малыми величинами, мы для \(x' \) получим уравнение:

\[
\ddot{x}' + \omega^2 x' = k A^3 \cos^2 \omega t = k A^3 \frac{3 \cos \omega t + \cos 3\omega t}{4}
\]

(46)

Это уравнение можно формально рассматривать как уравнение вынужденных колебаний с силой, содержащей член с той же частотой какую имеет собственные колебания. В результате получается "резонанс", т.е. \(x' \) оказывается пропорциональным \(t \) и при \(t \to \infty \) мы получаем расходящееся решение, не имеющее физического смысла и указывающее, что искать \(x \) в виде \(\frac{45}{5} \) нельзя.

В данном случае хорошо известно, каким образом нужно изменить метод решения уравнения \(\frac{47}{5} \). А именно, нужно изменить само нулевое приближение и искать решение в виде:

\[
x = A \cos \omega t + x'
\]

(47)

где \(\nu \) отличается (хотя и мало) от \(\omega \) и должно быть подобрано так, чтобы в уравнении для \(x' \) не был "резонанс", пропадал. Как нетрудно видеть, для этого нужно, а 1-м приближении положить:

\[
\nu = \omega \left(1 - \frac{3}{8} \frac{k A^2}{\omega^2}\right)
\]

(48)

Если \(\nu \) выбрано так, то уравнение для \(x' \) будет при этом иметь решение, все время действительно оставшееся малым.

Этот простой пример дает ключ для решения нашей задачи. Будем искать решение уравнений Борна в виде \(\frac{43}{5} \), а попробуем как-то включить само нулевое приближение, т.е. предположим, что присутствие постоянного электрического поля как-то изменяет свойства самой исходной плоской волны. Рассмотрев это всего считать, что это поле вносит некоторую анизотропию в пространстве и пытаться удовлетворить уравнениям Борна выражениями, аналогичными решениям уравнений Максвелла для света, распространяющи-
щерося в одноосном кристалле.
Выберем направление волнового вектора за ось 0Х, а плоскость, образованную этим вектором и вектором внешнего поля N за плоскость УУ.
Обозначим через θ угол между этими векторами. Относительно компонент поля волн предположим пока только, что они являются периодическими функциями х = t, т.е. будем искать решение уравнений (23) в виде

\[\begin{align*}
E_x &= E_0^x \cos \omega_1 \left(t - \frac{x}{v_1} + \phi_1 \right) + N \sin \omega_1 = E_0^x \cos \gamma_1 + N \sin \omega_1 \\
E_y &= E_0^y \cos \omega_2 \left(t - \frac{x}{v_2} + \phi_2 \right) + N \sin \omega_2 = E_0^y \cos \gamma_2 + N \sin \omega_2 \\
E_z &= E_0^z \cos \omega_3 \left(t - \frac{x}{v_3} + \phi_3 \right) = E_0^z \cos \gamma_3 \\
B_x &= B_0^x \cos \nu_1 \left(t - \frac{x}{\nu_1} + \Theta_1 \right) = B_0^x \cos \nu_1 \\
B_y &= B_0^y \cos \nu_2 \left(t - \frac{x}{\nu_2} + \Theta_2 \right) = B_0^y \cos \nu_2 \\
B_z &= B_0^z \cos \nu_3 \left(t - \frac{x}{\nu_3} + \Theta_3 \right) = B_0^z \cos \nu_3
\end{align*}\]

где \(\phi \) и \(\Theta \) постоянные фазы.
Таким образом, мы предполагаем заранее, что разные компоненты поля волны могут иметь различные амплитуды, частоты, скорости и начальные фазы.
Итак, увидим, что уравнения Борна можно удовлетворить решениями типа (23), если распорядиться соответствующим образом входящими туда параметрами; при этом, как оказалось, мы можем не добавлять к ним еще аддитивных поправок \(E_x', E_y', \) и т.д.
Подставим (49) и (25) и, проводя вычисления с точностью до
навязшей степени малых величин, определим соотношения между ампли-
tудами, соотношения между частотами и скорости, входящие в
(49). Заметим, что мы можем считать малыми все величи-
in типа
\[\frac{v_i - c}{c}, \quad \frac{E_x}{\sqrt{E_y^2 + E_z^2}} \]

и т.д.,

вообще все постоянные величины, характеризующие отклонения
нашего решения от Марвелловского.

Перепишем, в нашем приближении, уравнения Борна (25):

\[\begin{align*}
\text{розт } E + \frac{i}{c} B &= 0 \quad \text{j. div } B = 0 \\
\text{розт } B - \frac{i}{c} E &= \frac{1}{2} \left\{ \left[\text{grad } F, B \right] - \frac{1}{c} \hat{F} E \right\} \\
div E &= \frac{i}{c} \left(\text{grad } F \cdot E \right)
\end{align*} \]

где

\[\hat{F} = \frac{B^* - E^*}{c^2} \]

Уравнение \(div B = 0 \) дает най

\[B_x^0 = 0 \]

Подставим теперь (49) в оставшиеся уравнения (50).

Первое из них:

\[\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} + \frac{1}{c} \dot{B}_x = 0 \]

удовлетворяется автоматически.

Второе:

\[\frac{\partial E_x}{\partial t} - \frac{\partial E_y}{\partial x} + \frac{1}{c} \dot{B}_y = 0 \]

dает

\[-\frac{\omega_3}{\omega_3} E_x^0 \cos \theta_3 - \frac{v_0}{c} B_y^0 \sin \theta_3 \theta_3 = 0 \]
Откуда
\[v_2 = \omega_3, \quad w_2 = u_3, \quad \theta_2 = \varphi_3, \quad E_2 = E_3 \]
\[B_2^0 = \frac{c}{v_3} E_2^0 \]
Третье:
\[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} + \frac{1}{c} B_z = 0 \]
дает
\[\frac{\omega_3}{w_2} E_2^0 \sin \varphi_3 - \frac{v_2}{c} B_2^0 \sin \varphi_6 = 0 \]
Откуда
\[\nu_3 = \omega_2, \quad \nu_3 = u_2, \quad \theta_3 = \varphi_2 \]
\[B_3^0 = \frac{c}{v_2} E_3^0 \]
Принимая во внимание /53/, /34/ и /55/, мы можем переписать /49/ в виде
\[E_x = p \cos \omega (t - \frac{x}{w} + \varphi_1) + \nu \cos \alpha = p \cos \omega \gamma_1 + \nu \cos \alpha \]
\[E_y = L \cos \omega (t - \frac{x}{w} + \varphi_2) + \nu \sin \alpha = L \cos \omega \gamma_2 + \nu \sin \alpha \]
\[E_z = L' \cos \omega' (t - \frac{x}{u} + \varphi_3) = L' \cos \omega \gamma_3 \]
\[B_x = 0 \]
\[B_y = m' \cos \gamma_3 \]
\[B_z = m \cos \gamma_2 \]
где введенные обозначения:

1/ Некоторые буквы здесь употреблялись уже для других величин и гл. 1. Однако это, конечно, не вносит путаницы.
\(F_x^0 = p \), \(\omega_1 = \nu \) \nrightarrow \nrightarrow \nrightarrow \nrightarrow \nrightarrow

При этом
\[m = \frac{c}{v} \lambda \quad \text{и} \quad m' = -\frac{c}{v'} \lambda' \]
(52)

Подставим (50) во вторую систему уравнений Бернардо (51). Вычислим сначала, в рамках нашего предположения, правые части этих уравнений. Найдем
\[F^0 = \frac{p^2}{\epsilon^2} - \frac{E^2}{\epsilon^2} \]

Т.к. \(F \) содержат в знаменателе \(\epsilon^2 \) т.е. большее величина, то «в бокове» вычисляя \(F^0 \) полагать
\[p = 0 \quad \text{и} \quad m = 0 \quad \text{и} \quad m' = -\lambda' \]

Тогда
\[F^0 = -\frac{4}{\epsilon^2} \left(\frac{2v_1 \sin \omega_1 \cos \gamma_2 + v_1 v' \sin \omega_1 \cos \gamma_2}{\epsilon^2} \right) \]
(53)

Найдем составляющие \(\text{grad} F \):
\[
\begin{align*}
\frac{\partial F}{\partial x} & = -2 \frac{\omega_1}{\nu} \frac{2v_1 \sin \omega_1 \cos \gamma_2}{\epsilon^2} \\
\frac{\partial F}{\partial y} & = 0 \\
\frac{\partial F}{\partial z} & = 0
\end{align*}
\]
(54)

и на основании определения
\[F^0 = 2v_1 \frac{2v_1 \sin \omega_1 \cos \gamma_2}{\epsilon^2} \]
(55)

Обозначим правые части уравнений (51) формально через \(\frac{1}{\epsilon^2} \omega_0 \).

Тогда
\[
\begin{align*}
\frac{1}{\epsilon} l_x & = -\frac{\omega_1}{\epsilon} \frac{2v_1 \sin \omega_1 \cos \gamma_2}{\epsilon^2} \\
\frac{1}{\epsilon} l_y & = -\frac{\omega_1}{\epsilon} \frac{2v_1 \sin \omega_1 \cos \gamma_2}{\epsilon^2} \\
\frac{1}{\epsilon} l_z & = 0
\end{align*}
\]
(56)
Первое из уравнений (51)
\[\frac{\partial B_y}{\partial t} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \frac{\partial E}{\partial y} = \frac{1}{c} J_x \]
дает
\[\frac{\nu_p}{c} |m_y| - \frac{\nu_p}{c} \frac{\partial}{\partial y} |m_x| + \frac{1}{c} \frac{\partial}{\partial x} |m_z| \]
откуда получается
\[V = \omega \cdot j \quad \nu_p = \nu_p' \quad \nu_p'' = \nu_p''' \]
откуда
\[J = -\frac{\nu_p' B_z}{c} \sin \varphi \cos \varphi \]
Таким образом, предельная компонента электрического поля волны получается отличной от нуля.
Еще одно уравнение
\[\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} - \frac{1}{c} \frac{\partial E}{\partial z} = \frac{1}{c} J_y \]
дает
\[-\frac{\nu_p}{c} |m_z| \sin \varphi |m_x| + \frac{\nu_p}{c} \frac{\partial}{\partial x} |m_z| |m_y| = -\frac{\nu_p}{c} \frac{N^2}{\gamma^2} \sin^2 \varphi \sin \varphi |m_z| \]
откуда определяется
\[\frac{\nu_p^2}{c^2} = 1 - \frac{\nu_p'^2}{c^2} \sin^2 \varphi \]
Третье уравнение
\[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{1}{c} \frac{\partial E}{\partial x} = 0 \]
дает
\[\frac{\omega'}{\nu'} |m'_z| \sin \varphi |m'_x| + \frac{\omega'}{c} \frac{\partial}{\partial x} |m'_z| |m'_y| = 0 \]
откуда, приравнивая по значению (57) получим
\[\nu'' = c \]
Последнее уравнение \(\frac{\partial}{\partial t} E = \sigma \) дает

\[
\frac{\partial}{\partial t} p \sin \gamma_1 = -\frac{w}{c} \int \frac{N}{b^2} \sin \phi \cos \phi \sin \gamma_2,
\]

что автоматически удовлетворяется, в силу (62).

К так, приняв во внимание (62) и (63) в (64), мы окончательно получаем следующее решение уравнений в виде:

\[
\begin{align*}
E_x &= p \cos \omega (t - \frac{x}{c} + \xi) + N \cos \alpha \\
E_y &= L \cos \omega (t - \frac{y}{c} + \xi) + N \sin \alpha \\
E_z &= L' \cos \omega (t - \frac{z}{c} + \xi) \\
\rho_x &= 0 \\
\rho_y &= -L' \cos \omega (t - \frac{x}{c} + \xi) \\
\rho_z &= M \cos \omega (t - \frac{y}{c} + \xi)
\end{align*}
\]

где

\[
\begin{align*}
M &= \frac{c}{b} L \\
\frac{v^2}{c^2} &= 1 - \frac{N^2}{b^2} \sin^2 \alpha \\
p &= -L' \frac{N^2}{b^2} \sin \phi \cos \phi
\end{align*}
\]

причем \(L, L', \omega, \omega', \phi, \xi, \xi' \) остаются переменными.

Сравнение этих формул с известными формулами электромагнитной кристаллооптики дает возможность выразить их содержание следующим наглядным образом: в присутствии однородного электростатического поля силы \(N \) векторы \(E \) и \(B \) плоской световой волны входят в себя, в первом приближении, так же как они взаимодействуют в однородном кристалле, оптическая ось которого была бы направлена по \(N \) а главное диэлектрическое постоянное равно бы соответственно

\[
\varepsilon = 1 + \frac{N^2}{b^2}
\]

и

В самом деле, решение (65) можно представить себе состоящим из поля "обыкновенного" лука:

- $E_x = 0$
- $E_y = 0$
- $E_z = L' \cos \omega \left(t - \frac{x}{c} + \varphi \right)$

и "необыкновенного":

- $E_x = \frac{p}{c} \cos \omega \left(t - \frac{x}{c} + \varphi \right)$
- $E_y = L \cos \omega \left(t - \frac{x}{c} + \varphi \right)$
- $E_z = 0$

и $\varphi_1 = \varphi_2 = \mu \cos \omega \left(t - \frac{x}{c} + \varphi \right)$

и перемещаться в поле постоянного конденсатора.

Уже полученных нами формул (65) видим, между прочим, что при перемещении светового луча через конденсатор длины L между y и z компонентами электрического поля этого луча также является известная разность фаз, равная

\[\Delta \varphi = \omega L \left(\frac{1}{c} - \frac{1}{c} \right) = \omega L \frac{c - v}{c} \]

где считаем, для простоты, $y = y'$.

Заменив, что $\frac{c}{L} = 1 - \frac{N^2}{2\varepsilon}$, \[\frac{c - v}{c} = \frac{N^2}{2\varepsilon} \]

в случае, если свет распространяется перпендикулярно к полю конденсатора, мы получим:

\[c - v = \frac{c}{L} = \frac{N^2}{2\varepsilon} \]

и

\[\Delta \varphi = \omega L \frac{N^2}{2\varepsilon} = \pi \left(\frac{N}{\varepsilon} \right)^2 \frac{L}{\lambda} \]

(69)

Глаза ровны, если луч, входя в конденсатор, является линейно поляризованным, то он должен выйти из него поляризованным, а при такой проверке этого утверждения, конечно, не может быть и речи. т.е. CASE в эффект
Однако если вдоль всех прямых в бесконечных полях, т. е. на
нейтрал, а также теоретически точка зрения, экспериментального
формулой /3g/, представляется бесконечно интересным потому,
что он даёт пример совершенно необъясняемого отклонения от зако-
нов классической электродинамики: например, при взаимодейс
виях атомных масштабов и в атомных полях, а при сравнении на-
ближений, произошедших в больших расстояниях друг от друга.

В самом деле, при достаточно больших значениях длина, длина
может быть сколь угодно велика, а сколь угодно малым. И эта
часть теории существенно связана с ее двумерностью; поэтому,
числительные значения, вычисленные численно, могут показать существенно
в иной характер, чем численные попытки;

Исходя из формулы /36/, интегрируя знаменатели для целого решения
в двух числе векторов Бернардо - и . Для этого нужно
применять следующие формулы

\[P = \frac{E}{\sqrt{1+F}} \quad ; \quad H = \frac{B}{\sqrt{1+F}} \]

Подставим для простоты \(\omega = \omega' \quad ; \quad \phi = \phi' = 0 \).

Получим:

\[\frac{1}{\sqrt{1+F}} = \left(1 - \frac{1}{2} \frac{1}{\sqrt{1+F}} \right) = \left(1 + \frac{1}{2} \frac{1}{\sqrt{1+F}} \right) \]

Подставляя \(/36/ \) и \(/32/ \), мы получим:

\[\mathbf{D}_x = \frac{E_x}{\sqrt{1+F}} = \left(P + \frac{1}{2} \chi^2 \right) \sin \alpha \cos \omega \left(\frac{1}{2} \right) + M \cos \omega \left(1 + \frac{1}{2} \right) \]

Принимая во внимание \(/31/ \), найдем для \(\mathbf{D}_x \) следующее выражение

\[\mathbf{D}_x = \left(P + \frac{1}{2} \chi^2 \right) \cos \alpha \]

Аналогично:

\[\mathbf{D}_y = \frac{E_y}{\sqrt{1+F}} = \left(M + \frac{1}{2} \chi^2 \right) \sin \alpha \cos \omega \left(\frac{1}{2} \right) + \right]

\[+ \left(\frac{1}{2} \chi^2 \right) \sin \alpha \cos \omega \left(\frac{1}{2} \right) \]

\[+ \left(\frac{1}{2} \chi^2 \right) \sin \alpha \cos \omega \left(\frac{1}{2} \right) \]
Далее

\[\mathbf{D}(x) = \frac{\mathbf{E}(x)}{\sqrt{1 + 2s^2}} = \mathbf{L}' \left(1 + \frac{n^2}{2\varepsilon^2} \right) \cos \omega \left(t - \frac{x}{c} \right) + \right. \\
+ \left. \frac{n}{\varepsilon} \frac{\mathbf{L}'}{\varepsilon} \sin \omega \left[\varepsilon - \frac{\varepsilon}{\varepsilon} \left(\frac{x}{c} + \frac{\varepsilon}{\varepsilon} \right) \right] + \cos \omega x \left(\frac{x}{c} - \frac{\varepsilon}{\varepsilon} \right) \right] \\
(74) \\

Точно так же можно показать, что

\[\mathbf{H}(x) = 0 \] \\
(75) \\

\[\mathbf{H}(x) = -\mathbf{L}' \left(1 + \frac{n^2}{2\varepsilon^2} \right) \cos \omega \left(t - \frac{x}{c} \right) - \right. \\
- \left. \frac{n}{\varepsilon} \frac{\mathbf{L}'}{\varepsilon} \sin \omega \left[\varepsilon - \frac{\varepsilon}{\varepsilon} \left(\frac{x}{c} + \frac{\varepsilon}{\varepsilon} \right) \right] + \cos \omega x \left(\frac{x}{c} - \frac{\varepsilon}{\varepsilon} \right) \right] \\
(76) \\

\[\mathbf{H}(x) = \frac{\mathbf{L}}{\varepsilon} \left(1 + \frac{n^2}{2\varepsilon^2} \right) \cos \omega \left(t - \frac{x}{c} \right) + \frac{n^2}{\varepsilon^2} \sin \omega \left[\varepsilon + \cos \omega \left(\frac{x}{c} - \frac{\varepsilon}{\varepsilon} \right) \right] \right] \\
(77) \\

В полученных формулах \(72/77\) мы видим, что продольные компоненты обоих векторов \(\mathbf{D}\) и \(\mathbf{H}\) заняты плюсом оказываются равными нулю. В самом деле, легко видеть, что формула \(72/77\) дает величину \(\mathbf{D}\) обусловленную только полем конденсатора.

\[\mathbf{D}(x) = \frac{\mathbf{E}(x)}{\sqrt{1 + 2s^2}} = \frac{n \cos \omega}{\sqrt{1 - n^2}} = \mathbf{L} \left(1 + \frac{n^2}{2\varepsilon^2} \right) \cos \omega \mathbf{d}. \]

Это же показывает, что направление вектора поляризации волн равно конечное, что в теории формы вектор Пойнтинга определяется произведением \(\mathbf{d} \times \mathbf{B}\) в данном случае, в отличие от кристаллиты, совпадает с направлением вектора. Кроме того, векторы \(\mathbf{d}\) и \(\mathbf{H}\) отличаются от \(\mathbf{E}\) и \(\mathbf{B}\).

\[\mathbf{d} \] что, впрочем, можно было сказать в варианте исход на равенство \(\mathbf{d} = \mathbf{0}\).
валежом небольших аддитивных добавок, в которых есть как постоянная, так и периодические в \(\lambda \) члены, причем среди этих последних имеется \(\phi \) члены с удвоенной частотой. Следует заметить, что в данном случае вообще не существует таких решений уравнений Борна, для которых \(E = \mathcal{B} \), а компоненты \(\mathcal{D} \) в \(\Pi \) представлялись бы в виде плоских волн вида \(/66/ \).

Это обстоятельство представляется на первый взгляд несколько странным, поскольку / как уже было указано в начале этого \(\phi / \) мы могли бы вообще строить всю теорию не на основе векторов \(E = \mathcal{B} \), а на основе векторов \(\mathcal{D} \) и \(\Pi \), причем, в частности, для нашей задачи, все вычисления при этом не сильно отличались бы от вычисленных. Для того, чтобы разобраться в этом вопросе, необходимо, однако, учесть следующее.

Представим себе, что мы нашли какую-нибудь решение уравнений Борна, справедливое в известном приближении, например, подобное данному решению \(/66/ \), справедливое с точностью до членов, имеющих в знаменателе \(\phi^2 \). Пусть это решение определяется векторами \(\mathcal{E}_0 \) и \(\mathcal{B}_0 \), а в приближении векторов индукции, векторами \(\mathcal{D}_0 \) и \(\Pi_0 \). Пусть, далее \(E = \mathcal{B} \), есть либо электромагнитное поле, образующее следующие свойства: \(/1/ \) оба вектора \(E \) и \(\mathcal{B} \), по величине малы, т.е. влияют в знаменателе \(\phi^2 \) и, следовательно, в заданном приближении \(\mathcal{D}_0 = E_s \) и \(\Pi_0 = \mathcal{B}_0 \); \(/2/ \) это поле в данном приближении является решением уравнений Максвелла, т.е.

в \(\text{rot} E + \frac{i}{c} \mathcal{D}, \quad \text{rot} \mathcal{B} - \frac{i}{c} \mathcal{E}, \quad \text{в т.ч.} \)

суть величины, вида порядка малости в знаменателе \(\phi^2 \) или \(\phi^6 \) и т.д. \(/2/ \) Тогда ясно, что сумма обеих этих полей, т.е. поле, изображающее в векторах \(E + \mathcal{B} \) как

\[\mathcal{E}_0 + E, \quad \mathcal{B}_0 + \mathcal{B}, \]

а в \(\mathcal{D} \) и \(\Pi \), в нашем приближении, как
\[\mathcal{D}^\omega + \varepsilon, \quad \text{и} \quad \mathcal{H}^\omega + \varepsilon, \]

так и будем, с точностью до величины высших порядков, решая уравнения типа /некоторые из них велики и непосредственно нет возможности их учесть./ Это утверждение настолько очевидно, что не имеет смысла специально останавливаться на его доказательстве.

Так что, наглядно убеждаемся, что упомянутое "дополнение" к нашим позициям II и IV, определения формул /72/, /77/, как раз принадлежат к типу подых \(E_i \) и \(B_i \), о которых только что и шло речь.

Здесь же, рассмотрим хотя бы поле

\[
\begin{align*}
E_{i \phi} &= \mathcal{D}_{i \phi} = \frac{\mathcal{L}i}{26} N \sin \omega t \cos 2\omega \left[t - \frac{\sigma}{2} \left(\frac{\omega}{2} + \frac{1}{\omega} \right) \right] \\
B_{i \phi} &= \mathcal{H}_{i \phi} = -\frac{\mathcal{L}i}{26} N \sin \omega t \cos 2\omega \left[t - \frac{\sigma}{2} \left(\frac{1}{\omega} + \frac{1}{\omega} \right) \right]
\end{align*}
\]

и вдруг, вот в этом месте из себя есть величина первого порядка напряжённости: далее, она, очевидно удовлетворяет нашим, с точностью до величины второго порядка напряжённости /т.е. величины, изначально в знаменателе /65/. Следовательно, согласно только что сказанному, мы можем спокойно ввести их /65/ в выражение /73/, в результате получим выражение, которое тоже будет решать уравнений типа с той же степенью точности, что и /65/. Оно, что таки пути можно, в частности, построить и такое решение, в котором переменные компоненты \(\mathcal{D} \) и \(\mathcal{H} \) представляются в виде простых гармонических функций \(\chi = \varepsilon \).

§ 3. "Рассеяние" света на постоянном поде плоского кондуктора.

До сих пор мы ставили себе задачей просто нахождение известного класса решений уравнений поля, не выясняя, в каких условиях на каком из этих решений осуществляется фактически. Поставим теперь вопрос более конкретно.

Представим себе, что в пространстве между обкладками плоского
конденсатора пускают световой луч, что при этом происходит? Ответ на этот вопрос должен быть, очевидно, данным о пра-
ничных условиях электромагнитного поля.
Сформулируем, прежде всего, в чем должны заключаться эти
граничные условия.
Уравнения Гамильтона, как мы видели, имеют вид, анало-
гичный урав-
нениям Максвелла для сред с диэлектрической постоянной и маг-
нитной проницаемостью отличными от единицы, но в отсутствии
зарядов и токов, т. е.
\[\nabla \cdot \mathbf{E} + \frac{1}{c^2} \frac{\partial \mathbf{B}}{\partial t} = 0 \]
\[\nabla \cdot \mathbf{H} = 0 \]
\[\nabla \times \mathbf{E} = 0 \]
\[\nabla \times \mathbf{D} = 0 \]
Следовательно, по аналогии с обычной электродинамики, можно сразу
заключить, что граничные условия должны иметь вид:

\[
\begin{align*}
E_{t_1} &= E_{t_2} \\
B_{n_1} &= B_{n_2} \\
H_{t_1} &= H_{t_2} \\
D_{n_1} &= D_{n_2}
\end{align*}
\]

где значения \(t \) и \(n \) указывают так называемые и нормальные
коэффициенты векторов к поверхности раздела наших двух "сред"-
вакуум и поле конденсатора.
Приемлем границные условия /79/ для ответа на поставленный во-
прос. Предположим, для простоты, что луч света падает перпен-
dиккулярно к силовым линиям поля конденсатора. Тогда наш коор-
dинатный трехгранник представляется в виде

![Рис. 1.](image)

Так как направление силовых полей в \(E \) и \(D \) при этом будет так,
то граничные условия /78/ сводятся к
\[
\begin{align*}
E_{y1} &= E_{y2} & K_{y1} &= K_{y2} \\
E_{z1} &= E_{z2} & K_{z1} &= K_{z2}
\end{align*}
\]
где индекс 1 соответствует полю в вакууме, а индекс 2 — в конденсаторе.

Первое из этих условий включает в себя, в частности требование того, чтобы электростатическое поле самого конденсатора не орбивалось сразу, а "сходило на нуль" постепенно, как это должно быть и в обычной электростатике.

Т.к. написание этого следствия поле не представляет для нас интереса, то мы будем выставлять граничные условия только для поля светодвойной волны, не учитывая при этом поля конденсатора. Тогда значения могут быть проведены без всяких трудностей.

Выборем какую-нибудь одну из двух волн, образующих наше решение, например, соответствующую "необыкновенной" лучу в кристаллооптике. Граничные условия /78/ для нее будут иметь вид:
\[
\begin{align*}
E_{y1} &= E_{y2} & j & K_{z1} &= K_{z2}
\end{align*}
\]
Пусть в вакууме
\[
\begin{align*}
E_{y1} &= A \cos \omega (t-\frac{x}{c}) \\
K_{z1} &= A \cos \omega (t-\frac{x}{c})
\end{align*}
\]
мы знаем, что в конденсаторе поле волны характеризуется выражением
\[
\begin{align*}
E_{y2} &= \frac{c}{v} L \cos \omega (t-\frac{x}{c}) \\
K_{z2} &= \frac{c}{v} L \left(1+ \frac{N^2}{2S^2}\right) \cos \omega (t-\frac{x}{c}) + N \frac{L^2}{2S^2} \cos 2\omega (t-\frac{x}{c}) + N \frac{L^2}{2S^2}
\end{align*}
\]
Заметим, что решение уравнений Гюйгенс имеет смысл писать только с точностью до малих полей, являющихся в нашем приближении, решениям уравнений Максвелла для пустого.

В частности, мы можем поэтому, в /83/, отбросить последний постоянный член, т.к. он мал и является точным решением уравнений Максвелла. Просто отбросим и второй член в выражении для

И м., очевидно, на волнах, т.к. переменная в \(k \times \frac{2}{v} \) "часто магнитная" волна не является решением Максвелловских уравнений.

Это обстоятельство, на первый поверхностный взгляд, весьма затрудняет построение решения, удовлетворяющего краевым условиям в действительности, однако, такое решение можно построить весьма просто посредством следующего приема.

Приближенно решение /82/ следующее добавочное поле, удовлетворяющее общим выставлённым в конце /2/ условиям:

\[
\begin{align*}
E^{k}_{y} &= -\mathcal{N} \frac{L}{\gamma b^{2}} \cos 2 \omega \left(t - \frac{k}{v} \right) \\
H^{k}_{2} &= -\mathcal{N} \frac{L}{\gamma b^{2}} \cos 2 \omega \left(t - \frac{k}{v} \right)
\end{align*}
\]

(84)

Тогда мы получаем следующее решение:

\[
\begin{align*}
E_{y} &= L \cos \omega \left(t - \frac{k}{v} \right) - \mathcal{N} \frac{L^{2}}{\gamma b^{2}} \cos 2 \omega \left(t - \frac{k}{v} \right) \\
H_{2} &= \frac{c}{v} L \left(1 + \frac{\omega^{2}c^{2}}{2d^{2}} \right) \cos \omega \left(t - \frac{k}{v} \right) + \mathcal{N} \frac{L^{2}}{\gamma b^{2}} \cos 2 \omega \left(t - \frac{k}{v} \right)
\end{align*}
\]

(85)

Потребуем, теперь чтобы при \(k = 0 \) решение в вакууме совпадало с решением /83/ в конденсаторе. Для этого достаточно ввести две малих отраженных волны: одну с частотой \(\omega \) и вторую с удвоенной частотой \(2 \omega \). Решение в вакууме тогда, вместо /82/ будет
\[E_y = A \cos \omega \left(t - \frac{L}{c}\right) - m \cos \omega \left(t + \frac{L}{c}\right) - N \frac{E^2}{8 \varepsilon_0} \cos 2\omega \left(t + \frac{L}{c}\right)\]
\[K_y = A \cos \omega \left(t - \frac{L}{c}\right) + m \cos \omega \left(t + \frac{L}{c}\right) + N \frac{E^2}{8 \varepsilon_0} \cos 2\omega \left(t + \frac{L}{c}\right)\]

Приравнивая выражения /83/ и /86/, мы получим, далее
\[A - m = \frac{c}{v} L\]
\[A + m = \frac{c}{v} L \left(1 + \frac{N^2}{28^2}\right)\]

и, замечая что
\[\frac{c}{v} = 1 + \frac{N^2}{28^2}\]

окончательно найдем
\[L = A \left(1 - \frac{N^2}{28^2}\right)\]
\[m = A \frac{N^2}{28^2}\]

Таким образом, зная амплитуду волны в вакууме и направление поля конденсатора, мы можем определить амплитуды "проходящих" и "отраженных" от этого поля волн. Задача решена.

Полученные выражения показывают, что согласно теории Борна изменение знака указанного в § 2 эффект от межимпульсия поля волн, проходящей через конденсатор, должно иметь место также совершенно своеобразное динамическое явление, которое может быть охарактеризовано как рассеяние света на постоянном поле конденсатора. В самом деле, мы пришли к тому, что подавляя на это поле световую волну с частотой \(\omega\) и амплитудой \(A\) даёт начало двум проходящим волнам: одной с частотной \(\omega\) и амплитудой, почти равной \(\lambda\) и второй — с частотой \(2\omega\) и малой амплитудой \(N^2\), имеющей \(28^2\) в знаменателе, и кроме того двум отраженным волнам с частотами \(\omega\) и \(2\omega\). Принципиально, эти волны тоже могли бы быть наблюдены.
Сам ход проведенных вычислений показывает, что та неизвестная решетка уравнений поля, с которой мы встречались в предыдущем параграфе, и которую заключается в том, что решения уравнений формуально всегда писать лишь с точностью до множества конечного, совершенно неясно при той конкретной постановке задачи, с которой мы вышли здесь дело. В каждом частном случае мы можем исходить из граничных условий совершенно однозначно сказать, какое из выражений указанного типа нужно прибавить к исходному решению.

Вопрос об однозначности полученных здесь решений можно, однако, поставить более широко - а именно, спросить несколько однозначен сам выбор нульового приближения в виде \(f(0) \), т.е. обязательно ли считать компоненты поля "большой" проходящей волны гармоническими формулями координат и времени, что не беремся здесь дать математически строго решения этого вопроса и говорим лишь несколько соображений чисто физического характера, которые, впрочем, как иначе могут, по существу, полностью решать вопрос.

Пусть компоненты поля \(E_y \) и \(B_z \) падающей волны в вакууме имеют вид

\[
A \cos \omega \left(t - \frac{x}{c} \right) = A \cos \omega t \cos \frac{\omega x}{c} + A \sin \omega t \sin \frac{\omega x}{c}
\]

Так, что зависимость компонент "большой" проходящей волны от времени не может быть такой же, как у их характерной иначе никак нельзя будет удовлетворить краевым условия. С характером на зависимости этих компонент от координат на основе одного только краевых условий ничего сказать нельзя. Наиболее общая

\[
\text{надо добавить для этих величин хост, таким образом, вид}
\]

I/ Заметим, между прочим, что точное значение скорости распространения каждой такой малой волны, может быть, очевидно, получено только на рассмотрении второго приближения.
\[E_y = F_1(x) \cos \omega t + F_2 \sin \phi_2(x) \sin \omega t \]
\[B_2 = \phi_1(x) \cos \omega t + \phi_2(x) \sin \omega t \]

Обозначим через \(F \) и \(\phi \) максимальные значения функций \(f(x) \) и \(\phi(x) \). Тогда, очевидно, мы можем представить /69/ в виде:

\[E_y = F_1 \cos \frac{f_1(x)}{2} \cos \omega t + F_2 \sin \frac{f_2(x)}{2} \sin \omega t \]
\[B_2 = \phi_1 \cos \frac{\phi_1(x)}{2} \cos \omega t + \phi_2 \sin \frac{\phi_2(x)}{2} \sin \omega t \]

где \(f_1(x) \), \(f_2(x) \), \(\phi_1(x) \) и \(\phi_2(x) \) — какие-либо подобраные состоящие образом, новые функции \(x \).

Сделаем теперь следующее весьма естественное предположение, что при распространении вдоль оси \(x \), электромагнитная энергия нашей волны когда-то концентрируется и не рассеивается, т.е. что поток вектора \(E \times B \) через единичную поверхность, поставленную в любом месте оси \(x \), перпендикулярно \(x \) и \(y \), в среднем по времени не зависит от \(x \).

Иными словами, оперируя всеми вариятивным приближением, потребуем, чтобы среднее по времени от произведения \(E_y B_2 \) не зависело бы и от \(x \), т.е. чтобы

\[\overline{E_y B_2} = \frac{1}{2} \left(F_1 \phi_1 \cos f_1(x) \cos \phi_2(x) + F_2 \phi_2 \sin f_2(x) \sin \phi_2(x) \right) \cos \omega t \]

Очевидно это имеет место только при

\[F_1 \phi_1 = F_2 \phi_2 \]

и

\[f_1(x) = f_2(x) = \phi_1(x) = \phi_2(x) = f(x) \]

Таким образом

\[E_y = F_1 \cos \frac{f(x)}{2} \cos \omega t + F_2 \sin \frac{f(x)}{2} \sin \omega t \]
\[B_2 = \phi_1 \cos \frac{\phi_1(x)}{2} \cos \omega t + \phi_2 \sin \frac{\phi_2(x)}{2} \sin \omega t \]

Подставляя /69/ в первое уравнение горда

\[\frac{DE_y}{Dx} + \frac{1}{c} \frac{DB_2}{Dx} = 0 \]
мы найдем, что

\[f'(x) = \text{const} \]

т.е. что \(f(x) \) есть линейная функция \(x \). Тем самым мы сразу же приходим к решению типа /49/.

\[\phi \quad \text{4. Плоская световая волна в однородном магнитном поле.} \]

Рассмотрим здесь задачу, аналогичную той, которая была разобрана в \(\phi \quad 2 \), с той лишь разницей, что вместо электрического, будем иметь дело с однородным магнитным полем, расположенным вдоль пространства; в этом случае, так же как и раньше, пусть распространяется плоская световая волна.

Т.к. метод решения этой задачи, а также полученные результаты будут очень сходны с изложенным в предыдущем параграфе, то мы не будем останавливаться на их подробной дискуссии и приведем лишь выводы.

Так, нам нужно найти решение уравнений /50/ и /51/ для нашей задачи.

Забравшись, как и раньше, направление волнового вектора длиной \(\omega \), плоскость, образованную этим вектором и внешним полем \(\mathbf{H} \), плоскость \(XY \). Угол между этими векторами обозначаем через \(\alpha \).

В виде

\[
\begin{align*}
E_x &= E_x^0 \cos \omega_z (t - \frac{X}{v_x}) \\
E_y &= E_y^0 \cos \omega_z (t - \frac{X}{v_y}) \\
E_z &= E_z^0 \cos \omega_z (t - \frac{X}{v_z}) \\
B_x &= B_x^0 \cos \omega_z (t - \frac{X}{v_x}) + \mu_0 \mu_0 \left(\frac{X}{v_x} \right)^2 \\
B_y &= B_y^0 \cos \omega_z (t - \frac{X}{v_y}) + \mu_0 \mu_0 \left(\frac{X}{v_y} \right)^2 \\
B_z &= B_z^0 \cos \omega_z (t - \frac{X}{v_z})
\end{align*}
\]

(31)
и если, для краткости, отбросить начальные фазы.
Подставив /91/ в /56/.
Уравнение \(\text{div} \ B = 0 \) дает нам
\[B^0_x = 0 \]
(92)
Уравнение \(\text{rot} \ E + \frac{1}{c} \frac{\partial B}{\partial t} = 0 \) дает
\[\begin{align*}
\nu_2 = & \omega_2 \\
\nu_2 = & \omega_2 \\
\nu_3 = & \omega_3 \\
\nu_3 = & \omega_3 \\
\psi^0 = & \frac{c}{\nu_2} E^0 \\
\psi^0 = & \frac{c}{\nu_3} E^0
\end{align*} \]
(93)
Принимая во внимание /92/ и /93/ и вводя обозначения, аналогичные принятые в формулах /56/, мы, вместо /91/ получаем
\[\begin{align*}
E_x = & \rho \cos \omega \left(t - \frac{x}{v} \right) \\
E_y = & \mu' \cos \omega \left(t - \frac{x}{v} \right) \\
E_z = & \mu' \cos \omega \left(t - \frac{x}{v} \right)
\end{align*} \]
(94)
где
\[\mu = \frac{c}{\nu}, \quad \mu' = \frac{c}{\nu}, \quad L' \]
(95)
Подставим теперь /94/ в /51/. Для этого найдем сначала \(\bar{F} \):
\[\bar{F} = \frac{c}{\psi} \left(B^2 - E^2 \right) = \frac{1}{8} \left\{ 2 \bar{F} - \frac{\mu' \cos \omega \left(t - \frac{x}{v} \right)}{\sin \omega (t - \frac{x}{v})} - v \right\} \]
(96)
Тогда
\[\bar{F} = - \frac{\mu' \cos \omega \left(t - \frac{x}{v} \right)}{\sin \omega (t - \frac{x}{v})} \]
(97)
а
\[\frac{\partial F}{\partial x} = - \frac{4}{v''} \frac{\partial \bar{F}}{\partial x} = - \frac{1}{2} \frac{\partial \bar{F}}{\partial x} \]
(98)
т.к. в притягательных частях уравнений /51/ можно поднять в выражениях, не отсекаях под знаком \(\cos \omega \) или \(\sin \omega \) \(\psi = c \) .
Вычислим правую часть уравнений /51/ в первом приближении:
\[\frac{1}{c} \bar{F} = \frac{1}{2c} \bar{F} E_x = 0 \]
(99)
\[\frac{1}{c} \dot{j}_y = -\frac{1}{2} \left(\frac{\partial F}{\partial x} R_x + \frac{1}{c} \dot{\mathbf{F}} E_y \right) = 0 \]
(100)

\[\frac{1}{c} \dot{j}_z = \frac{1}{2} \left(\frac{\partial F}{\partial x} R_y - \frac{1}{c} \dot{\mathbf{F}} E_z \right) = -\frac{1}{2c} \dot{\mathbf{F}} k \sin \omega = \right.
\left. = \frac{\omega k^2}{c^2} \mu' \sin \omega \left(t - \frac{x}{v} \right) \right.
\]
(101)

\[\ddot{F} = -\frac{1}{2c} \dot{\mathbf{F}} E_x = 0 \]
(102)

Рассмотрим первое из уравнений \(j_1 \). Оно дает:

\[-\frac{1}{c} \dot{j}_x = 0 \]

(103)

Очевидно, это уравнение удовлетворяется, если положить:

\[j = 0 \]

Записываем уравнение:

\[\frac{\partial B_x}{\partial x} - \frac{1}{c} \dot{E}_y = 0 \]

dает:

\[\frac{\mu}{v} \sin \omega \left(t - \frac{x}{v} \right) = \frac{4}{c} L \sin \omega \left(t - \frac{x}{v} \right) \]

откуда, в силу \(|95| \), находим:

\[\nu = c \quad j \quad \mu = 4 \]

(104)

Третье уравнение:

\[\frac{\partial B_y}{\partial x} - \frac{1}{c} \dot{E}_x = \frac{1}{c} \dot{j}_x \]
дает
\[
\frac{M'}{v'} + \frac{L^2}{c^2} = \frac{\hbar^2 M' \sin^2 \alpha}{c \beta^2}
\]
или, принимая во внимание (95)/
\[
\frac{v'^2}{c^2} = 1 - \frac{\hbar^2}{\beta^2} \sin^2 \alpha
\]
(105)

Уравнение \(d\bar{z} E = 0 \) дает
\[
\frac{dE_x}{dx} = 0
\]
что автоматически удовлетворяется, т.к. \(p = 0 \).

Формулы (103), (104) и (105) позволяют окончательно переписать решение уравнений (150) и (151) для нашей задачи в следующем виде:

\[
\begin{aligned}
E_x &= 0 \\
E_y &= L' \cos \omega \left(t - \frac{\chi}{v'} \right) \\
E_z &= L' \cos \omega \left(t - \frac{\chi}{v'} \right)
\end{aligned}
\]
(106)

где
\[
\begin{aligned}
M' &= -\frac{\xi}{v'} L' \\
\frac{v'^2}{c^2} &= 1 - \frac{\hbar^2}{\beta^2} \sin^2 \alpha
\end{aligned}
\]
(107)

причем \(L, L', \omega, \mu, \omega' \) остаются, как и раньше, постоянными.

Дискуссия формул (106) и (107) может быть проведена совершенно аналогично дискуссии соответствующих формул предыдущих параграфов.
3.5. Две плоские волны в вакууме.

Перейдем теперь к рассмотрению более сложной задачи исходя из двух решений уравнений Борна, которые соответствуют волнах прямолинейных в вакууме, т.е. будем считать, что одна плоская волна распространяется в постоянном электрическом и магнитном поле, а в периодическом с ω и t электрическим и магнитным поле другой плоской волны.

Для решения этой задачи, когда волновые векторы двух плоских волн имеют противоположные направления, электрические векторы их в вакууме прямолинейны имеют одинаковое направление, а магнитные — противоположное. Эти три направления выберем за оси координат. Укажем, волновой вектор волнового вектора первой волны за ось Ox, направление электрических векторов за ось Oy и направление магнитного вектора первой волны — за OZ /рис. 2/.

Попытаемся найти решение уравнений Борна для такого случая методом, аналогичным рассмотренному в предыдущих параграфах, учитывая, однако еще возможность появления малых аддитивных добавок, играющих роль \(x' \) в формуле /17/. А именно, будем искать решение уравнений /50/ и /51/ в виде

\[
E_x = 0 \quad E_y = \omega \cos \Omega (t - \frac{x}{v}) + q \cos \omega (t + \frac{x}{v}) + E' \quad E_z = 0
\]

\[
B_x = 0 \quad B_y = 0 \quad B_z = \frac{\omega}{v} q \sin \Omega (t - \frac{x}{v}) - \frac{\omega}{v} q \sin \omega (t + \frac{x}{v}) + B'
\]

(103)
При таком написании введено, по-первых, то предложение, что
посмотря "взаимодействие" наших волн, считающие E_x, E_y, B_x, B_y
можно считать равными нулю, как и в невозмущенной задаче. Это
предположение представляется вполне оставшимся из соображе-
ний симметрии. строгое доказательство этого закона будет
заключаться в том, что выражаемое /108/ можно-как мы уже-
дем немногим фактически удовлетворить уравнением /109/. Во вторых,
мы заранее предположили, что связь между амплитудами E_y и B_y
имеет общий вид - что то же, конечно, совершенно законно -
поскольку это связь определяется из первой группы уравнений
полей, которые во всех задачах имеет одинаковый вид. Однако вые,
впрочем, писать /168/ и более общие формулы типа /110/. считая компоненты полей E_x, B_x любыми
гармоническими функциями координат и времени, но не-трудно
убедиться, что такое усвоение написания не дало бы - во
крайней мере в нашей постановке вопроса - ничего но существу
нового.

Так, подставим /108/ в /109/, уравнение $\text{div} B = 0$
удовлетворяется, если

$$\text{div} B' = 0$$

или

$$\frac{\partial B'}{\partial x} = 0$$

(109)

Уравнение $\omega t E + \frac{1}{c} \frac{\partial E}{\partial t} = 0$ удовлетворяется, если

$$\frac{\partial E'}{\partial x} = 0$$

(110)

1/ Идемные фазы волн опять для простоты положены равными
нулю.
и
\[\frac{\partial E'}{\partial x} + \frac{1}{c^2} B' = 0 \] (114)

Подставим теперь (108) в (51).

Для этого вычислим сначала величину \(F \) в первом приближении:

\[F = -\frac{q}{\varepsilon_0} Q \cos \Gamma \cos \gamma \] (115)

где
\[\Gamma = \Omega \left(t - \frac{x}{v} \right) \]
\[\gamma = \omega \left(t + \frac{x}{v} \right) \] (116)

Найдем
\[\frac{dF}{dx} = \frac{\partial F}{\partial x} : \]
\[\frac{dF}{dx} = \frac{q}{\varepsilon_0} Q \left(\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \] (117)

\[\frac{d^2 F}{dx^2} = \frac{1}{c^2} \frac{q}{\varepsilon_0} Q \left(-\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \] (118)

Вычислим правую часть уравнения (51):
\[\frac{1}{c^2} \int E_x = -\frac{1}{c^2} \int F E_x = 0 \] (119)

\[\frac{1}{c^2} \int E_y = \frac{q}{\varepsilon_0} \left(\Omega \sin \Gamma \cos \gamma + \omega \cos \Gamma \sin \gamma \right) \] (120)

Замечая, что
\[\sin \Gamma \cos^2 \gamma = \frac{1}{2} \left[\sin \Gamma + \frac{1}{2} \sin \left(\Gamma + \pi \gamma \right) + \frac{1}{2} \sin \left(\Gamma - \pi \gamma \right) \right] \] (121)

и
\[\sin \gamma \cos \Gamma = \frac{1}{2} \left[\sin \Gamma + \frac{1}{2} \sin \left(\Gamma + \gamma \right) + \frac{1}{2} \sin \left(\Gamma - \gamma \right) \right] \] (122)

им найдем
\[\int E_y = \frac{1}{2} Q \left\{ q \left[\sin \Gamma + \frac{1}{2} \sin \left(\Gamma + \pi \gamma \right) + \frac{1}{2} \sin \left(\Gamma - \pi \gamma \right) \right] + \right. \]
\[+ \left. \Omega \omega \left[\sin \Gamma + \frac{1}{2} \sin \left(\Gamma + \gamma \right) + \frac{1}{2} \sin \left(\Gamma - \gamma \right) \right] \right\} \] (123)

далее
\[\frac{1}{c^2} \delta E = 0 \] (124)
в наконец,

\[\rho = \frac{1}{2} \iiint \mathbf{E} \cdot \mathbf{E} \mathbf{E}_{x} = \rho \]

(120)

Ее формулы / 128/ мы видим, что в этой задаче, в отличие от задач, рассмотренных ранее, в правых частях уравнений появляется не только члены, содержащие \(\sin \Gamma \) и \(\sin \Psi \) , которые аналогичны члену с \(\cos \omega t \) в формуле /16/, дающему
"резонанс", но и члены с другими частотами. Они появляются, образуя правые части уравнений для определения \(E' \) и \(B' \).

Зная вычисленные здесь правые части уравнений, мы можем теперь подставить /108/ в /51/. Первое из уравнений /51/

\[\frac{\partial E'}{\partial t} - \frac{\partial B'}{\partial z} - \frac{1}{c} \frac{\partial E}{\partial z} = 0 \]

удовлетворяется, если положить

\[\frac{\partial B'}{\partial y} = 0 \]

(121)

Второе уравнение

\[\frac{\partial B'}{\partial t} - \frac{\partial E'}{\partial z} - \frac{1}{c} \frac{\partial E}{\partial z} = - \frac{1}{c_0^2} \frac{\partial}{\partial x} \left(\mathbf{E} \right) \cdot \mathbf{B} + \frac{r}{c} \left(\mathbf{q} \cdot \mathbf{B} \right) = 0 \]

удовлетворяется, если

\[\frac{c_0}{V^2} Q \sin \Gamma, - \frac{c_1}{V^2} \sin \Psi + \frac{1}{c} Q \Omega \sin \Gamma + \frac{1}{c} q \omega \sin \Psi = \right. \]

\[= - \frac{1}{c_0^2} \frac{Q q}{r} \left(\mathbf{q} \cdot \mathbf{E} \right) \cdot \mathbf{B} \right. \]

(122)

\[\frac{\partial B'}{\partial x} + \frac{1}{c} \frac{\partial E'}{\partial z} = \frac{1}{c_0^2} \frac{Q q}{r} \left(\mathbf{q} \cdot \mathbf{E} \right) \cdot \mathbf{B} \right. \]

(123)
Уравнение /122/ даёт нам
\[1 - \frac{c^2}{v^2} = -\frac{\alpha}{\beta^2} \varphi^2 \]
\[1 - \frac{c^2}{v^2} = -\frac{\alpha}{\beta^2} \varphi^2 \]
(124)

Третье уравнение
\[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} - \frac{4}{c} E_x = 0 \]
удовлетворяется автоматически.

Наконец, последнее уравнение \(\partial E_x \partial y = 0 \)
даем нам
(125)

для окончательного решения задачи, нам осталось еще найти
аддитивные добавки \(E' \) и \(B' \).

Для их определения мы
получили систему уравнений /109/, /110/, /111/, /121/, /123/ и /125/.

Будем искать решение этих уравнений в виде
\[E' = a_1 \cos (\varphi + 2\varphi') + a_2 \cos (\varphi - 2\varphi') + a_3 \cos (\varphi + 2\varphi'') + a_4 \cos (\varphi - 2\varphi'') \]
\[B' = b_1 \cos (\varphi + 2\varphi') + b_2 \cos (\varphi - 2\varphi') + b_3 \cos (\varphi + 2\varphi'') + b_4 \cos (\varphi - 2\varphi'') \]
(126)

где \(a_1, \ldots, a_4 \) — постоянные коэффициенты.

При этом, уравнения /109/, /110/, /121/ и /123/ удовлетворяются автоматически, а уравнения /111/ и /125/ дадут нам возможные определить коэффициенты в /126/.

Первое из этих уравнений даёт нам
\[a_1 = \frac{\Omega + 2\omega}{\Omega - 2\omega} d_1 \quad \text{и} \quad a_2 = \frac{\omega - 2\omega}{\omega + 2\omega} d_2 \]

и второе:
\[a_3 = \frac{\Omega - 2\omega}{\Omega + 2\omega} d_3 \quad \text{и} \quad a_4 = \frac{\omega - 2\omega}{\omega + 2\omega} d_4 \]

получаем таким образом систему восьми уравнений. /127/ и /128/ для определения \(a_1, \ldots, a_4, d_1, \ldots, d_4 \).

Решив эту систему уравнений, мы получим:
\[a_1 = -\frac{\Omega q^2}{8\varepsilon^2} \frac{\Omega + 2\omega}{\omega} \quad \text{и} \quad d_1 = -\frac{\Omega q^2}{8\varepsilon^2} \frac{\omega - 2\omega}{\omega} \]

\[a_2 = \frac{\Omega q^2}{8\varepsilon^2} \frac{\Omega - 2\omega}{\omega} \quad \text{и} \quad d_2 = \frac{\Omega q^2}{8\varepsilon^2} \frac{\omega + 2\omega}{\omega} \]

\[a_3 = -\frac{\omega q^2}{8\varepsilon^2} \frac{\omega + 2\omega}{\omega} \quad \text{и} \quad d_3 = \frac{\omega q^2}{8\varepsilon^2} \frac{\omega - 2\omega}{\omega} \]

\[a_4 = \frac{\omega q^2}{8\varepsilon^2} \frac{\omega - 2\omega}{\omega} \quad \text{и} \quad d_4 = -\frac{\omega q^2}{8\varepsilon^2} \frac{\omega + 2\omega}{\omega} \]

(129)
из немногого теперь полного решения нашей задачи, которое имеет вид /108/, причем \(V \) и \(U \) определяются из формул /124/, а \(E' \) и \(B' \) могут быть найдены из формул /126/ с коэффициентами /129/.

Значения \(q, q', \alpha, \xi \), как и в теории Максвелла, остаются произвольными.

Полученное нами решение может быть охарактеризовано следующим образом: если в пустом пространстве распространяется взаимно друг другу две плоские электромагнитные волны произвольно заданными амплитудами и частотами, причем их электрические и магнитные векторы в пучковом приближении ориентированы так, как указано на рис. 2., то отличие того поля, которое при этом будет в пространстве по теории Борна от того, которое получается из теории Максвелла, сводится к двум моментам:

1) к изменению скорости распространения этих волн, а именно к появлению разности амплитуд электрического и магнитного векторов каждой волны.

Этот эффект вполне аналогичен тому явлению "искажения" световой волны, которое было получено нами в предыдущих параграфах.

2) к появлению четырех малых "рассеянных" волн с другими частотами и скоростями распространения, вообще говоря сильно отличающихся от Максвелловских.

Этот эффект "является специфическим для последней задачи" и известен смысля может быть охарактеризован, как "рассеяние света в свете".

Однако, существенно отметить, что "взаимодействие" двух световых волн, вычисленное по теории Борна, отнюдь не сводит
бить сведено к тому "рассеяния света на свете", о котором неоднократно упоминалось в литературе - именно, в силу существования эффектов первого же указанных выше типов; в самом деле каждая волна приобретает своеобразные свойства потому, что распространяется в среде "поляризованной" под влиянием другой волны.

В заключение, я хочу выразить глубокую благодарность проф. С.Н. Рубену за руководство настоящей диссертацией, а также за ряд весьма ценных советов и замечаний.

Приложения:

После того как настоящая диссертация была уже закончена, т.е. после февраля 1925 года, я начал полагать ряд работ, связанных с некоторыми разработками здесь вопросами.

Некоторые результаты этих работ будут обложены в дополнение диссертации, которое в настоящее время составляет...