Data in Brief

Transcriptional profiling of apoptosis-deficient Drosophila mutants

Fumiaki Otaba, Katsura Tomioka, Masayuki Miura

Data for searching transcriptional alterations in Drosophila apoptosis-deficient mutants.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Direct link to deposited data.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47853.

Experimental design, materials and methods

Drosophila preparation

Flies were maintained on a standard diet containing 4% yeast, 4% cornmeal, 10% glucose and propionic acid. All flies were kept in 25 °C with 60% humidity in the alternate 12 h light and dark cycle. As a model of apoptosis-deficient mutant, we utilized a hypomorphic allele of Drosophila apaf1 ortholog, darkcd4 mutants, in which both developmental and stress-induced apoptosis were remarkably diminished [2,3]. For the precise control of genetic background, we have backcrossed darkcd4 mutants six generations into w1118 control strains.

RNA extraction, purification, and quality verification

All flies were collected within one day after adult eclosion and incubated for five days for adult maturation with free access to food and mating. Five male flies were collected in one sampling tube and immediately frozen in liquid nitrogen. Flies were homogenized in TRIzol reagent (Invitrogen) by Multi-Beads Shocker (Yasui Kikai) set to 1500 rpm, 15 s × 3 cycles, and total RNA was extracted as reported [4].

Total RNA was then purified using RNeasy Plus Micro Kit (Qiagen), and cRNA yield (more than 0.825 μg) and labeling efficiency (6 pmol/μg) were validated by NanoDrop spectrophotometer (Thermo Fisher Scientific). Four independent RNA samples of high quality, which had two sharp peaks of 18S and 28S ribosomal RNA [5] were subjected to microarray analysis (Fig. 1).

Experimental procedures for microarray analysis

Cyanine-3 (Cy3)-labeled cRNA was prepared from 50 ng of total RNA by Low Input Quick Amp Labeling Kit, One-Color (Agilent Technologies) according to the manufacturer’s instruction. cRNA was purified by RNeasy Mini Kit (Qiagen), and cRNA yield (more than 0.825 μg) and labeling efficiency (6 pmol/μg) were validated by NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific). 600 ng of Cy3-labeled cRNA was then fragmented in a 30-minute incubation at 60 °C.
Fig. 1. An example of RNA quality validation by Agilent 2100 Bioanalyzer. Drosophila total RNA contains two main peaks, 18S and 28S ribosomal RNA.

Table 1
List of differentially expressed entities in darkcd4 (up-regulated, fold change > 1.5, p < 0.05).

Probe name	Gene symbol	p-Value	Corrected p-value	Fold change	Entrez gene ID
A_09_P137560	CG6484	1.21E−07	7.59E−04	826.2603	36994
A_09_P077411	CG3397	3.84E−07	0.001204653	36632	41454
A_09_P057606	CG30091	3.29E−06	0.005706159	259.83295	36806
A_09_P023946	CG6639	7.32E−06	0.009384108	54.593582	41454
A_09_P012361	Dro	9.64E−06	0.010505327	84.814806	36635
A_09_P164825	CG3397	5.14E−05	0.020792374	54.593582	41454
A_09_P109390	CecC	2.58E−04	0.04110067	50.98296	43599
A_09_P205050	Atta	3.83E−05	0.017613623	45.11442	36636
A_09_P029291	CG18563	1.37E−04	0.036148455	44.8299	36636
A_09_P057606	CG30091	1.37E−04	0.036148455	44.8299	36636
A_09_P022946	CG6639	7.32E−06	0.009384108	54.593582	41454
A_09_P012361	Dro	9.64E−06	0.010505327	84.814806	36635
A_09_P164825	CG3397	5.14E−05	0.020792374	54.593582	41454

(continued on next page)
Table 1 (continued)

Probe name	Gene symbol	p-Value	Corrected p-value	Fold change	Entrez gene ID
A_09_P052476	ple	1.31E – 04	0.03720452	2.1828754	38746
A_09_P074666	CG8449	2.99E – 04	0.04508278	2.1645174	41628
A_09_P030576	Fer1HCH	3.29E – 04	0.04758134	2.0818182	40415
A_09_P017531	Spz2	2.59E – 04	0.04411067	2.0289657	2768666
A_09_P033336	Prs2	1.37E – 04	0.03614845	1.9307616	36705
A_09_P218510	pot	1.75E – 04	0.03921483	1.8158448	31254
A_09_P074856	CG9312	4.37E – 04	0.01565035	1.7286412	41686
A_09_P112520	CG31664	3.71E – 04	0.04772616	1.7204942	33359
A_09_P064416	yellow-c	3.59E – 04	0.04295666	1.7025788	34879
A_09_P079531	CG1927	4.83E – 05	0.02035598	1.7006992	38262
A_09_P171400	CG9760	1.11E – 05	0.01031309	1.7006477	39388
A_09_P030571	Fer2LCH	4.83E – 05	0.02035598	1.6878323	44965
A_09_P078611	Idg4	1.69E – 04	0.03921483	1.6784037	31926
A_09_P121595	Wnt2	2.12E – 04	0.04714648	1.6761436	35975
A_09_P079536	CG14787	1.32E – 04	0.03614845	1.6502483	31096
A_09_P145165	CG9284	7.03E – 05	0.02556935	1.6346469	50130
A_09_P054936	CG10646	7.53E – 05	0.02636249	1.6294572	39424
A_09_P032636	Spred	1.96E – 04	0.04165185	1.5928276	36643
A_09_P154000	Idg4	3.09E – 04	0.04593384	1.5830332	31926
A_09_P020526	spz3	2.86E – 04	0.04534591	1.5688794	34077
A_09_P027505	CG9449	3.00E – 04	0.04582735	1.5068132	40117
A_09_P025405	Fer2LCH	2.94E – 04	0.04582735	1.5040354	44965
in a reaction mixture containing 1 × Agilent fragmentation buffer and 2 × Agilent GE blocking agent. After fragmentation, 2 × Agilent GE hybridization buffer HI-RPM was added to the sample and then hybridized to SurePrint G3 custom microarray 8 × 60K (G4102A#040871) for 17 h at 65 °C in a rotating Agilent hybridization oven (Agilent Technologies). Slides were scanned after washing on the SureScan Microarray Scanner using AgilentG3_GX_1Color_HighSensitivity (Agilent Technologies). Feature Extraction Software 10.7.3.1 (Agilent Technologies) was used with default parameters (protocol GE1_107_Sep09 and Grid: 040871_D_F_20120511) to obtain background-subtracted and spatially-detrended Processed Signal intensities. Data quality was evaluated by Evaluation Metrics for GE1_QCMT_Sep09 in the QC Report.

Data processing and analysis

Extracted text data were processed using GeneSpring GX12.1 (Agilent Technologies). Non-uniform or saturated probes as well as population outliers were compromised and quantile normalization was applied to each data set as the following setting: Threshold raw signal 1.0, Algorithm, Percentile Shift, Percentile Target, 75. Baseline was corrected by the median of all samples. Probes from all samples with intensity less than 20% were filtered out, resulting in 25,083 validated entities. These data from four independent samples for wild type and darkcd4 flies were subjected to statistical analysis by unpaired student’s t-test with Benjamini Hochberg FDR correction. We obtained differentially expressed 188 (p < 0.05) or 481 entities (p < 0.1), and subsequent cut-off by fold change > 1.5 yielded 149 (Tables 1, 2) or 321 entities, respectively. GO analysis of these entities clearly demonstrated that immune-related genes were drastically elevated in darkcd4 mutants, while no GO term was enriched significantly for down-regulated genes. dFoxO target genes such as thor or lip3 were also significantly induced in darkcd4 mutants (Table 1). Reduction in dark expression was confirmed as three entities corresponding to dark were downregulated 6.0-, 4.5- and 3.5-fold compared to control (Table 2). Drosophila gnmt, the gene of our interest from metabolome analysis [1], was also included in the list of upregulated genes (p < 0.1), as two probes indicated 3.1- and 3.2-fold increase in darkcd4 mutants.

Discussion

Here we described a transcriptomic profiling of Drosophila apoptosis-deficient mutants, darkcd4. As reported recently, necrotic wing cells triggered spontaneous immune response in apoptosis-deficient mutants at this stage. Our well-controlled microarray data delineated the phenotypes observed in darkcd4 mutants and helped us clarify the systemic responses against necrotic cells. As far as we know, this is the first microarray analysis to describe transcriptional changes in apoptosis-deficient mutants in Drosophila. It is interesting that many other genes are also down- or up-regulated in these mutants, and this dataset may be useful for revealing novel and unexpected phenotypes triggered in response to necrosis or other functions of Dark/caspase.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgments

We thank J. M. Abrams for providing darkcd4 mutants. We thank K. Takenaga and L. Ando for technical assistance and proofreading of the article, respectively. This work was supported by grants from the Japanese Ministry of Education, Science, Sports, Culture, and Technology (23229002).

References

[1] F. Obata, et al., Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep. 7 (3) (2014) 821–833.
[2] A. Rodriguez, et al., Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, dark. EMBO J. 21 (9) (2002) 2189–2197.
[3] A. Rodriguez, et al., Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat. Cell Biol. 1 (5) (1999) 272–279.
[4] M. Ming, et al., Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J. Biol. Chem. 289 (11) (2014) 7558–7568.
[5] C.J. Mee, Microarray methods in Drosophila neurobiology. Invert. Neurosci. 5 (3–4) (2005) 189–195.