Electron neutrino appearance in the NOvA experiment

E Catano-Mur, for the NOvA Collaboration
Department of Physics and Astronomy, Iowa State University, Ames IA 50010, USA
E-mail: ecatano@iastate.edu

Abstract. NOvA is an off-axis, two-detector experiment studying neutrino oscillations with the ν_μ beam from Fermilab. This paper describes the ν_e appearance analysis, including data-driven constraints from Near Detector measurements. The data set corresponds to an exposure equivalent to 6.05×10^{20} protons-on-target in the Far Detector. We observed 33 ν_e candidates with a predicted background of 8.2 ± 0.8 (syst.), for a significance of appearance higher than 8σ. Preliminary results for the allowed values of δ_{CP} and θ_{23} in both hierarchies are presented.

1. Introduction
NOvA is a long-baseline accelerator neutrino experiment using the NuMI muon neutrino beam. The NuMI beam is produced by directing 120 GeV proton spills onto a graphite target [1]. The resulting hadrons are focused by two magnetic horns, and decay into neutrinos and other particles inside a long pipe. The neutrinos are observed by two detectors, Near (ND) and Far (FD), located 1 and 810 km away from the target and 14 mrad off the beam axis. The beam spectrum is narrowly peaked around 2 GeV, optimal to observe $\nu_\mu \to \nu_e$ transitions. This allows NOvA to draw conclusions about the neutrino mass hierarchy, the θ_{23} octant and δ_{CP}. In Sec.2, we explain data-driven methods that improve the prediction from the simulation. In Sec.3, we compare the final prediction with the FD data and highlight some results. Further details about the experiment and ν_e event classification (CVN), are discussed elsewhere in these Proceedings.

2. Far Detector prediction using data-driven constraints
2.1. Signal prediction using ND ν_μ data
The prediction of the $\nu_\mu \to \nu_e$ signal in the FD is constrained using the observed ν_μ spectrum in the ND. Discrepancies between ν_μ data and simulation are interpreted as an inexact modeling of the underlying true energy spectrum [2]. The ν_e spectrum in the FD is adjusted accordingly. The exact distribution of the predicted ν_e signal will further depend on the oscillation parameters. The signal expectation varies between 11 and 28 total events for fixed $\sin^2 \theta_{23} = 0.5$, corresponding to (IH, $\delta_{CP} = \pi/2$) and (NH, $\delta_{CP} = 3\pi/2$) respectively.

2.2. Beam background prediction using ND ν_μ and ν_e data
Three types of beam-related backgrounds are estimated using the ND: neutral currents (NC), ν_μ charged currents (CC), and the intrinsic ν_e component in the NuMI beam (beam ν_e CC). Since each one propagates differently to the FD, we use a combination of data-driven techniques to correct their relative proportions from the simulation.
Muon neutrinos that contribute to the 2 GeV peak mainly result from the decay $\pi^+ \rightarrow \nu_\mu + \mu^+$. A few anti-muons that subsequently decay as $\mu^+ \rightarrow \bar{\nu}_\mu + e^+ + \nu_e$ give rise to the intrinsic ν_e component. At higher energies, the majority of ν_μ and ν_e originate in kaon decays. We use ν_μ events selected in the ND to constrain the pion and kaon yields, and consequently the beam ν_e component. Figure 1(a) compares the spectra of contained ν_μ events in data and simulation; most events have a pion ancestor. After subtracting the background, the differences between data and the simulated sample are translated into weights as function of pion forward (p_T) momenta, and then applied to the ν_e CC from pions. Similarly, uncontained ν_μ events with energies above 4.5 GeV predominantly have kaon ancestors, as seen in Figure 1(c). Any data/MC discrepancy is used to correct the kaon yield. The result of both corrections is a 2% decrease for ν_e CC from pions, and a 17% increase for ν_μ CC from kaons.

![Figure 1](image1.png)

Figure 1. (a) Contained and (c) uncontained ν_μ events in the ND used to correct the beam ν_e from pions and kaons. (b) Pion weights from ν_μ as function of the pion momentum (p_T), overlaid with the ν_e CC distribution (boxes).

The ν_μ CC and NC components are corrected using the number of Michel Electrons (ME) in data and MC (Figure 2). On average, ν_μ CC interactions have one more ME than NC or beam ν_e, resulting from the decay of the muon. Combining the beam ν_e estimation above and a fit to the number of ME in ND data, all three components are constrained. On average, the beam ν_e component is scaled up by 4%, NC up by 10% and ν_μ CC up by 17%. The corrections obtained with the ND data are translated to FD background expectations using Far/Near ratios. Unlike the signal prediction, these have small variations with the oscillation parameters. An additional background component, ν_e CC, is read directly from the simulation. The expected background counts in the FD are 3.7 NC, 3.1 beam ν_e, 0.7 ν_μ CC and 0.1 ν_τ CC.

2.3. Cosmic background prediction using FD data

The NOvA FD is on the surface and thus susceptible to cosmogenic background. A rejection of 1 part in 10^8 cosmic ray interactions is achieved using the time structure of the NuMI beam, event topologies, and particle identification; analysis cuts are optimized for higher signal efficiency, and tuned using an independent sample. Using FD ν_e candidates outside of the beam time window, we estimate a total of 0.53 cosmic events that could coincide with the appearance signal.

2.4. Systematic uncertainties

The two-detector technique described mitigates the impact of many sources of systematic uncertainty. Residual effects are assessed via variations in the simulation. These can be classified as: normalization, flux, calibration, cross section, and detector response. The overall effect in the FD event count is 5% for signal and 10% for background. In the binned fit, systematic uncertainties are included as nuisance parameters.
3. Results

33 electron neutrino candidates were observed. With an expected background of 8.2±0.8 events, the significance of νe appearance is greater than 8σ. A comparison between the FD data and the final prediction is presented in Figure 3; the reconstructed energy spectra are split in three ranges of the event classifier (CVN). A combination of the NOvA νe measurement with global θ13 and Δm23 constraints gives best fit values for NH, δCP = 1.59π, and sin2 θ23 = 0.45. The preference for these parameters has low statistical significance: several values are compatible with the data, both in NH and IH. The fit was also run using NOvA’s νμ disappearance results, in the form of a constraint for sin2 θ23 and Δm23. This is a preliminary combination; a joint fit including correlations of systematic uncertainties and Feldman-Cousin corrections is in progress. The resulting two-dimensional contours using Gaussian limits are presented in Figure 4. The global best fit occurs at NH, δCP = 1.49π, and sin2 θ23 = 0.40. Both octants and hierarchies are allowed at the 1σ level. In inverted hierarchy, there is some rejection of the lower octant for all values of δCP; the region around δCP = π/2 is excluded at the 3σ level.

![Figure 3. Reconstructed energy spectrum of νe events in the FD, split in three ranges of the event classifier. Data (circles) are compared to the final prediction (red) for NH, δCP = 1.49π, and sin2 θ23 = 0.40.](image1)

![Figure 4. Allowed values of δCP and sin2 θ23 from the preliminary combination of νe appearance and νμ disappearance data, for both hierarchies.](image2)

Acknowledgments

This work was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, Czech Republic; the RAS, RMES, and RFBR, Russia; CNPq and FAPEG, Brazil; and the State and University of Minnesota. We are grateful for the contributions of the staff at the University of Minnesota module assembly facility and Ash River Laboratory, at the Argonne National Laboratory, and at Fermilab. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. De-AC02-07CH11359 with the U.S. DOE. E. Catano-Mur was partially supported by the Brown Graduate Fellowship at Iowa State University.

References

[1] Adamson P et al. 2016 Nucl. Instrum. Meth. A806 279
[2] Adamson P et al. 2016 Phys. Rev. Lett. 116 151806