Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review

Lianhua Zhang 1,2, Fei Gao 1,2,3, Junwei Ge 1,2,4, Hui Li 1,2, Fei Xia 1,2, Hongtong Bai 1,2, Xiangshu Piao 5 and Lei Shi 1,2,*

1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
2 China National Botanical Garden, Beijing 100093, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
5 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
* Correspondence: shilei@ibcas.ac.cn

Abstract: Antibiotic resistance has become a severe public threat to human health worldwide. Supple- menting antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.

Keywords: essential oils; antibacterial property; foodborne bacteria; antibiotic resistance; animal production

1. Introduction

Today, the world produces more than three times the quantity of meat as it did 50 years ago. In 2018, meat production was around 340 million tons [1]. By 2050, a 102% increase in the food supply will be necessary to meet the demand [2]. However, in livestock and poultry production, animals usually face various stressors, such as oxidative processes, nutritional imbalances, allergens, pathogenic bacteria, etc., which could result in diarrhea, growth retardation, and high morbidity and mortality. The conventional way to maintain or improve yield in animal products was to use antibiotic growth promoters (AGPs) at subtherapeutic levels. Unfortunately, exposure to AGPs in the early stages of life adversely affects the development of the immune function and intestinal bacteria and ultimately results in increased susceptibility to infections and diseases in livestock [3]. Antibiotic abuse in food-producing animals is a primary reason for the selectivity and diffusion of antibiotic resistance and disease outbreaks induced by resistant foodborne bacteria, which could
create foodborne risks to human health [4]. Although the addition of AGPs to diets has been forbidden in some countries to promote the growth performance of food-producing animals, antibiotic resistance is still widespread in the world [5]. As animal production is one of the main sources of antibiotic resistance genes due to the selective pressure that occurs in this environment, the presence of mobile genetic elements in the intestinal bacteria could spread antibiotic resistance [6]. Animal-derived foods contaminated with resistant bacteria can lead to serious infections and diseases that are difficult to treat. Globally, an estimated 2 million people receive treatment for resistant infections each year, with approximately 700,000 deaths and treatment costs exceeding 100,000 million dollars [1]. Such data demonstrate the economic and social consequences of the emergence of resistant foodborne pathogens—an aftereffect of the misuse of antibiotics in animal production. It is necessary to seek novel feed additives for maintaining the efficiency of livestock production and reducing the spread of drug-resistant pathogens, which is beneficial to human health and the sustainable development of animal husbandry.

Essential oils (EOs) are becoming potential antibiotic alternatives due to their natural origin, low toxicity, and free of residues [7]. EOs are a mixture of various volatile compounds extracted from aromatic plants (flowers, fruits, seeds, stems, leaves, etc.) [8]. Lamiaceae are one of the most important families of plant EOs with antibacterial effects, among which oregano, thyme, and rosemary have been widely used in the food industry [9–11]. Several in vivo studies indicated that EOs increased Lactobacillus abundance and decreased Escherichia coli or total coliforms in piglets [12–14]. These results were similar to those of several studies of poultry supplemented with EOs [15–17], suggesting that EOs resulted in some fundamental changes within the gut microbiota, primarily the observed numbers of Lactobacillus species. In addition to the antibacterial property, EOs also exhibit other biological activities, including anti-inflammatory, antioxidant, anti-tumor, and immune-regulating properties [1], suggesting that EOs could improve production performance in animals. Franz et al. [18] and Windisch et al. [19] reviewed that the average improvement in weight gain, feed intake, and feed conversion caused by EOs was 2.0, 0.9, and 3.0% for piglets and 0.5, 1.6, and −2.6% for poultry, respectively. However, the use of aromatic plant-derived EOs in grower–finisher pigs appears unsuccessful. Janz et al. [20] and Yan et al. [21] did not observe any improvement in the growth performance induced by EOs in finisher pigs. The different results may be caused by different digestive physiology, sources of aromatic plant EOs, the quantity used in the diet, and the environmental conditions used in the experiments.

The indiscriminate use of antibiotics in animal production plays an important role in the antibiotic resistance crisis and foodborne disease outbreaks. Since antibiotic resistance remains a major threat to public health, most research has focused on the causes, threats, and management strategies related to human health, leaving aside aspects of animal production. This paper collects the research progress of the use of EOs in animal production to control foodborne pathogens, summarizes their molecular modes of action with respect to antibiotic resistance, and provides a promising role for the application of nanoencapsulated EOs in animal production to more effectively control bacterial infections and overcome antibiotic resistance.

2. Foodborne Pathogenic Bacteria and Antibiotic Resistance

Undoubtedly, the discovery of AGPs is one of the greatest inventions of the 20th century, as they could improve growth performance and combat infectious diseases in livestock. Globally, the total consumption of antimicrobials in animal production, including pigs, chickens, and cattle was 93,309 tons in 2017 and is expected to grow by 11.5% to 104,079 tons by 2030 [22]. With the excessive use and abuse of AGPs or antibiotics used to treat infections in humans and food-producing animals worldwide, there is a greater chance for bacteria to develop complicated resistances against antibiotics [23]. Antibiotic resistance is defined as a natural process of selecting resistant microorganisms that could thrive in the environment and multiply and perpetuate resistance characteristics [24]. Moreover,
Antibiotic resistance could spread from food-producing animals to humans by eating meat, milk, and their products [25,26]. Therefore, animal-derived foods contaminated with drug-resistant pathogens could result in severe infections and untreatable diseases in humans. If no action is taken, antibiotic resistance is expected to cause more deaths than cancer by 2050, which could be a massive threat to human health [27]. Increased emergence of E. coli infection has been shown to result in higher morbidity and mortality in weaned pigs [28]. According to an estimate, 80 species of bacteria, including E. coli and Salmonella, could pose a severe threat to poultry production [29]. Mastitis, induced by Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, Streptococcus iberis, Streptococcus dysgalactiae, E. coli, Serratia marcescens and Proteus mirabilis in dairy cows, has been an economic welfare problem for dairy farms [30–32]. To date, many studies have reported main antibiotic resistant bacteria from different animal-derived foods in some countries, including E. coli (Table 1), Salmonella spp. (Table 2), Staphylococcus spp. (Table 3), and Listeria spp. (Table 4). These data denote that foodborne antibiotic resistance is a widespread problem worldwide—result of the abuse of AGPs in animals. To ensure human health and animal food safety, new and multidimensional approaches are needed to control bacterial infections for animal production. Here, we discuss the trend and development of EOs and their individual compounds as alternatives to antibiotics to address antibiotic resistance.

Table 1. Escherichia coli isolated from animal-derived foods and their resistance to antibiotics.

Country	Sources	Antibiotic Resistance	References
Australia	Dairy cows	Amoxicillin-clavulanate, ceftiofur, cefoxitin, gentamicin	[33]
Brazil	Chicken carcass	Aminoglycosides, colistin, β-lactams, macrolides, quinolones, sulfonamides, tetracyclines, trimethoprim	[34]
Cambodia	Broiler carcass and pig carcass	Ampicillin, cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, streptomycin, tetracyclines, trimethoprim	[35]
China	Retail chicken and pork	Ampicillin/sulbactam, aztreonam, cefepime, cefotaxime, ciprofloxacin, colistin, doxycycline, gentamicin, levofoxacin, minocycline, pipercillin/tazobactam constant 4, polymyxin B, tigecycline, trimethoprim/sulfamethoxazole	[36]
Denmark	Pig carcass	Ampicillin, chloramphenicol, gentamicin, streptomycin, trimethoprim	[37]
Egypt	Raw dromedary camel milk	Cefotaxime, erythromycin, novobiocin, pipercillin, rifampicin, rifamycine, streptomycin	[38]
Ethiopia	Chicken, goat, and beef meat	Ampicillin, chloramphenicol, erythromycin, gentamycin, streptomycin, tetracyclines, trimethoprim/sulfamethoxazole	[39]
Germany	Retail chicken meat	Ampicillin, cefalosporin, ciprofloxacin, nalidixic acid, streptomycin, tetracyclines, trimethoprim	[40]
Italy	Pig carcass	Ampicillin, chloramphenicol, gentamicin, streptomycin, tetracyclines, trimethoprim	[37]
South Africa	Raw meat	Ampicillin, ceftazidime, streptomycin, sulphafurazole, tetracyclines	[41]
Thailand	Broiler carcass and pig carcass	Ampicillin, cefpodoxime, ceftazidime, ciprofloxacin, gentamicin, sulfaethoxazole, tetracyclines, trimethoprim	[35]
United States	Dairy cattle	Azithromycin, ciprofloxacin, gamithromycin, tulathromycin	[42]
Vietnam	Retail raw foods (chicken, pork, fish, and shrimp)	Chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, tetracyclines, trimethoprim/sulfamethoxazole	[43]
Table 2. *Salmonella* spp. isolated from animal-derived foods and their resistance to antibiotics.

Country	Sources	Antibiotic Resistance	References
Brazil	Fresh tilapia fillets	amoxicillin/clavulanic acid, chloramphenicol, sulfonamide, tetracyclines	[44]
Cambodia	Retail poultry	Amoxicillin, cefalotin, chloramphenicol, cotrimoxazole, nalidixic acid, streptomycin, tetracyclines, ticarcillin	[45]
Cambodia	Pork, chicken, duck, and fish	Ampicillin, streptomycin, tetracyclines	[46]
Egypt	Chicken meat	Amoxicillin, ampicillin, erythromycin, nalidixic acid, oxytetracyclines, penicillin, sulfamethoxazole, florfenicol, flumequine, lincomycin/spectinomycin, penicillin, tetracyclines, tiamulin, trimethoprim/sulfamethoxazole, tylosin amoxicillin-clavulanic acid, carbenicillin, ticarcillin	[47]
Iran	Chicken meat	Difloxacin, erythromycin, florfenicol, flumequine, lincomycin/spectinomycin, penicillin, tetracyclines, tiamulin, trimethoprim/sulfamethoxazole, tylosin amoxicillin-clavulanic acid, carbenicillin, ticarcillin	[48]
Mexico	Ground beef	chloramphenicol, tetracyclines, trimethoprim-sulfamethoxazole	[49]
Thailand	Retail pork	Ampicillin, streptomycin, tetracyclines	[50]
United States	Retail meat	Amoxicillin-clavulanate, ampicillin, cefotiofur, ceftriaxone, tetracyclines, gentamicin, streptomycin	[51]

Table 3. *Staphylococcus* spp. isolated from animal-derived foods and their resistance to antibiotics.

Species	Country	Sources	Antibiotic Resistance	References
Staphylococcus aureus	Brazil	Cow milk	ampicillin, cefoxitin, cefotiofur, clindamycin, erythromycin, oxacillin, penicillin, streptomycin, tetracyclines, teicoplanin	[52]
	China	Raw cow milk	Clindamycin/norfloxacin, erythromycin, gentamicin, tetracyclines,	[53]
	Japan	Raw cow milk	Ampicillin, oxacillin, cefazolin, enrofloxacin, gentamicin, kanamycin	[54]
	South Africa	Raw meat	Erythromycin, oxacillin/cefoxitin, penicillin, tetracyclines	[41]
	Thailand	Fresh meat	Ampicillin, tetracyclines, vancomycin	[55]
	United States	Pork, beef, turkey, and chicken	Clindamycin, dalfopristin/quinupristin, erythromycin, gentamicin, levofoxacin, mupirocin, oxacillin, penicillin, tetracyclines	[56]
Methicillin-resistant	Brazil	Cow milk	Ampicillin, erythromycin, oxacillin, penicillin, tetracyclines	[57]
S. aureus (MRSA)	China	Bovine milk	Amoxicillin, ampicillin, cefotiofur, cefuroxime, ciprofloxacin, clarithromycin, clindamycin, penicillin, sulfadiazine sodium	[58]
	Denmark	Retail food products	Macrolides, penicillin, tetracyclines	[59]
	Egypt	Retail chicken	Amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, cloxacillin, erythromycin, gentamicin, netilmicin, penicillin, rifampicin, streptomycin, sulfamethoxazole-trimethoprim, tetracyclines, vancomycin	[60]
	Iran	Raw meat (beef, sheep, and goat)	Amoxicillin-clavulanic acid, ampicillin, azithromycin, ceftriaxone, clindamycin, cotrimoxazole, erythromycin, gatifloxacin, lincomycin, minocycline, oxacillin, penicillin G, tetracyclines	[61]
	United States	Pork, beef, turkey, and chicken	Cefoxitin, clindamycin, dalfopristin/quinupristin, erythromycin, gentamicin, levofoxacin, oxacillin, penicillin, tetracyclines	[56]
S. aureus and MRSA	China	Retail yak butter	amoxicillin/clavulanic acid, ampicillin, cefoperazone, cefotiofur, erythromycin, gentamicin, oxacillin, penicillin, sulfamethoxazole, tetracyclines, trimethoprim	[62]
Table 4. *Listeria* spp. isolated from animal-derived foods and their resistance to antibiotics.

Species	Country	Sources	Antibiotic Resistance	References
Listeria spp.	Iran	Raw milk and traditional dairy products	Amoxicillin/clavulanic acid, chloramphenicol, penicillin, tetracyclines	[63]
Listeria monocytogenes	Spain	Meat and dairy products	Ciprofloxacin, clindamycin, tetracyclines	[64]
Listeria spp.	China	Pork, fish, sheep casing, chicken, and beef	Chloramphenicol, clindamycin, oxacillin, tetracyclines	[65]
Listeria spp.	Indonesia	Chicken carcass	Ampicillin, erythromycin, penicillin	[66]
Listeria spp.	Japan	Chicken meat	Cefoxitin, clindamycin, flomoxef, fosfomycin, linezolid, oxacillin	[67]
Listeria spp.	Poland	Ready-to-eat food (heat-treated sausages and delicatessen), raw meat, raw sausages, and seafood (Fish and shrimp).	Ceftriaxone, ciprofloxacin, clindamycin, gatifloxacin, gentamycin, linezolid, oxacillin, tetracyclines	[68]
Listeria spp.	Romania	Ready-to-eat food (sausages and ham), minced pork, and cheeses	Benzylpenicillin, ciprofloxacin, clindamycin, fosfomycin, fusidic acid, imipenem, oxacillin, rifampin, tetracyclines, trimethoprim-sulfamethoxazole	[69]
Listeria spp.	Turkey	Chicken meat and beef	Ampicillin, ceftriaxone, clindamycin, fusidic acid, penicillin	[70]

3. EOs and Their Individual Compounds Derived from Common Aromatic Plants and Their Antibacterial Actions

It has been reported that there are 3000 species of aromatic plants widely distributed in European countries along the Mediterranean coast, as well as in China, India, Central Asia, and South America [71], which are mainly concentrated in Apiaceae, Asteraceae, Lamiaceae, Lauraceae, Myrtaceae, Poaceae, Rutaceae, and Zingiberaceae. The most well-known species are from the genera *Origanum*, *Rosmarinus*, *Thymus*, and *Ocimum*, and all belong to the family Lamiaceae. These species are most commonly used to produce EOs due to the high content of aromatic compounds, where variable chemical compositions are divided into mainly three categories, namely terpenes, terpenoids, and phenylpropenes (Figure 1). The changes in various active ingredients and their content in EOs are mainly related to the raw materials of the plants and the extraction process (Figure 2). In general, two or three active ingredients in EOs have relatively high proportions, ranging from 20% to 70%, which contribute to the primary property of the mixture [8]. The utilization of EOs and their individual compounds in livestock production is considered a promising alternative to antibiotics for bacterial control. In the antibacterial evaluation system, the minimum inhibitory concentration (MIC) is an essential indicator for evaluating the antibacterial properties of EOs and their individual compounds. Briefly, EOs were dissolved at two-fold serial dilutions and the MIC was considered as the lowest concentration of EOs at which no visible bacterial growth was observed. Numerous in vitro studies have reported the antimicrobial properties of EOs and their individual compounds against common pathogens in animal product processing environments, including *E. coli*, *Salmonella* spp., *Staphylococcus* spp., and *Listeria* spp. Tables 5 and 6 summarize the antimicrobial activity of EOs and their active components from aromatic plants according to the MIC values.
phenylpropenes (Figure 1). The changes in various active ingredients and their content in EOs are mainly related to the raw materials of the plants and the extraction process (Figure 2). In general, two or three active ingredients in EOs have relatively high proportions, ranging from 20% to 70%, which contribute to the primary property of the mixture [8].

The utilization of EOs and their individual compounds in livestock production is considered a promising alternative to antibiotics for bacterial control. In the antibacterial evaluation system, the minimum inhibitory concentration (MIC) is an essential indicator for evaluating the antibacterial properties of EOs and their individual compounds. Briefly, EOs were dissolved at two-fold serial dilutions and the MIC was considered as the lowest concentration of EOs at which no visible bacterial growth was observed. Numerous in vitro studies have reported the antimicrobial properties of EOs and their individual compounds against common pathogens in animal product processing environments, including *E. coli*, *Salmonella* spp., *Staphylococcus* spp., and *Listeria* spp. Tables 5 and 6 summarize the antimicrobial activity of EOs and their active components from aromatic plants according to the MIC values.

Figure 1. Chemical structures of major components in aromatic plant-derived EOs.

Figure 2. The extraction process of aromatic plant-derived EOs (adapted from [72]).
Family	Latin Name	Part Used	Extraction Method	Location	Main Constituents	Target Bacteria	Doses	MIC	References
Apiaceae	Carum carvi L.	Seeds	Hydro-distillation	Kelibia	γ-terpinene (31.03%), β-pinene (18.77%), p-cymene (17.16)	E. coli, S. aureus, S. Typhimurium, Listeria monocytogenes	0.469 mg/mL (E. coli, L. monocytogenes), 0.117 mg/mL (S. aureus), 0.234 mg/mL (S. Typhimurium)	[73]	
	Coriandrum sativum L.	Seeds	Hydro-distillation	Kelibia	Linalool (76.41), γ-terpinene (5.35%), α-pinene (4.44%)	E. coli, S. aureus, S. Typhimurium, L. monocytogenes	-	0.938 mg/mL (E. coli, L. monocytogenes, S. Typhimurium), 0.234 mg/mL (S. aureus)	[73]
	Foeniculum vulgare Mill.	Seeds	Hydro-distillation	India	trans-anethole (50.4%), methyl chavicol (22.4%), limonene (11.4%)	E. coli, S. aureus, S. Typhimurium	0.0075–2.0% (v/v)	0.062% (E. coli), 0.031% (S. Typhimurium) (v/v)	[74]
Asteraceae	Achillea millefolium L.	Inflorescence, leaves, whole aerial parts	Hydro-distillation	India	Borneol (4.7–24.9%), sabine (4.0–38.9%), germacrene D (1.1–46.6%)	S. aureus, S. epidermidis, Klebsiella pneumoniae	-	125–500 µg/mL	[75]
	Helichrysum italicum (Roth) G. Don	Inflorescence	Hydro-distillation	Central Europe	Neryl acetate (16.38%), nerol (15.73%), geraniol (6.32%)	E. coli, S. aureus, Pseudomonas aeruginosa	-	64 mg/mL (E. coli, P. aeruginosa), 1 mg/mL (S. aureus)	[76]
	Helichrysum microphyllum subsp. thyrrenicum	-	Hydro-distillation	Iglesias	γ-curcumene (28.94%), linalool (14.21%), 5-eudesmen-11-ol (9.81%)	E. coli, S. aureus, P. aeruginosa	0.063–4 mg/mL	>4 mg/mL (E. coli, P. aeruginosa), 2 mg/mL (S. aureus)	[77]
	Origanum vulgare L. spp.	O. vulgare L. ssp. virgens	n-Hexane hydrodistillation	Southern Italy	Carvacrol (63.8%), γ-terpinene (7.4%), p-cymene (6.7%)	E. coli, S. aureus, S. Typhi	0.8–100 µg/mL	50 µg/mL (E. coli, S. aureus), 100 µg/mL (S. Typhi)	[78]
Lamiaceae	Rosmarinus officinalis L.	Air-dried leaves	Steam distillation	Taizhou, Zhejiang	1,8-Cineole (26.54%), α-pinene (20.14%), camphor (12.88%), camphene (11.88%)	S. aureus, S. epidermidis, Bacillus subtilis	0.2–4% (v/v)	0.03–1.0% (v/v)	[79]
	Thymus vulgaris	Dried leaves	Hydro-distillation	North Yemen	Thymol (51.34%), p-cymene (18.35%), carophyllene (4.42%), α-pinene (2.95%)	E. coli, S. aureus, B. subtilis, Mycobacterium smegmatis	0.01–30 mg/mL	0.075–1.1 mg/mL	[80]
	Mentha pulegium L.	Air-dried leaves	Steam distillation	Algerian	Pulegone (70.66%), neo-menthol (11.21%), menthone (2.63%)	E. coli, S. aureus, B. subtilis	0.3–20 µL/mL	1.25–10 µL/mL	[81]
Table 5. Cont.

Family	Latin Name	Part Used	Extraction Method	Location	Main Constituents	Target Bacteria	Doses	MIC	References
Lauraceae	Cinnamomum cassia Blume	-	Hydro-distillation	China	Cinnamaldehyde (85.06%)	E. coli, S. aureus, P. aeruginosa, Proteus vulgaris, Enterobacter aerogenes, Vibrio parahaemolyticus, V. cholerae	-	75–600 µg/mL	[85]
	Cinnamomum camphora var. linalofera Fujita	-	-	Guangzhou	Linalool (69.94%), camphor (10.90%), nerolidol (10.92%), safrole (8.24%)	E. coli	-	0.2 µL/mL	[86]
Myrtaceae	Eucalyptus globulus L. Aerial parts	Hydro-distillation	Takelsa	MRSA	0.125–4 mg/mL	0.5 mg/mL			[88]
	Syzygium aromaticum Fresh leaves	Steam distillation	Nitra, Slovakia	S. aureus	0.2–400 µL/mL	93.35 µL/mL			[89]
Poaceae	Cymbopogon nardus Leaves	Cleavege hydro-distillation	Ceara', Brazil	S. aureus, E. coli	0.125–8 mg/mL	0.5 mg/mL (S. aureus), >8 mg/mL (E. coli)			[90]
Table 5. Cont.

Family	Latin Name	Part Used	Extraction Method	Location	Main Constituents	Target Bacteria	Doses	MIC	References
Rutaceae	*Citrus limon* L. Burm.	Peels	-	Sichuan Province	Limonene (48.48%), β-terpinene (17.08%), 4-carene (8.46%)	*S. mutans*	2.25–9 mg/mL	4.5 mg/mL	[91]
Zingiberaceae	*Alpinia pahangensis* Ridl.	Rhizomes	Hydro-distillation	Pahang, Peninsular Malaysia	γ-selinene (11.60%), β-pinene (10.87%), (E,E)-farnesyl acetate (8.65%), α-terpineol (6.38%)	*S. aureus*	0.039–5 mg/mL	<0.31 mg/mL	[92]
Table 6. Individual compounds of common EOs and their antibacterial properties according to their MIC values.

Item	Individual Compounds	Chemical Structures	Target Bacteria	Doses	MIC	References
Terpenes	**β-Caryophyllene**	![β-Caryophyllene](image)	E. coli, S. aureus	0.1–4 mg/mL	>4 mg/mL	[93]
	Limonene	![Limonene](image)	E. coli, S. aureus, S. Typhimurium, B. cereus	0.002–0.25 mg/mL	0.25 mg/mL (E. coli, S. aureus, B. cereus), 0.06 mg/mL (S. Typhimurium)	[94]
	Borneol	![Borneol](image)	E. coli, S. Typhimurium, S. aureus, B. cereus	0.002–0.25 mg/mL	0.25 mg/mL (E. coli, S. Typhimurium), 0.03 mg/mL (S. aureus), 0.12 mg/mL (B. cereus, S. Typhimurium)	[94]
	Camphor	![Camphor](image)	E. coli, S. Typhimurium, S. aureus, B. cereus	0.002–0.25 mg/mL	0.25 mg/mL (E. coli, S. Typhimurium, B. cereus), 0.015 mg/mL (S. aureus)	[94]
Terpenoids	Carvacrol	![Carvacrol](image)	E. coli, MRSA, S. mutans, Aggregatibacter actinomycetemcomitans	-	-	[95]
			E. coli, Salmonella spp., Clostridium perfringens	0.075–2 mg/mL	>0.6 mg/mL	[96]
			S. aureus	0.05–3.2 mg/mL	>0.4 mg/mL	[97]
	Citral	![Citral](image)	E. coli, S. Typhimurium, S. aureus, B. cereus	0.002–0.25 mg/mL	0.06 mg/mL (E. coli, S. aureus, B. cereus), 0.07 mg/mL (S. Typhimurium)	[94]
	Citronellal	![Citronellal](image)	E. coli, S. aureus	-	-	[98]
	Citronellol	![Citronellol](image)	E. coli, S. aureus	-	-	[96]
	Farnesol	![Farnesol](image)	Cutibacterium acnes	0.004–0.576 μmol/mL	0.14 μmol/mL	[99]
	trans-Geraniol	![trans-Geraniol](image)	E. coli, S. aureus, S. Typhimurium, B. cereus	0.002–0.25 mg/mL	0.06 mg/mL (E. coli, S. aureus, B. cereus), 0.03 mg/mL (S. aureus, S. Typhimurium), 0.07 mg/mL (B. cereus)	[94]
	Linalool	![Linalool](image)	E. coli, S. aureus, S. Typhimurium, B. cereus	0.002–0.25 mg/mL	0.25 mg/mL	[94]
	Menthone	![Menthone](image)	K. pneumoniae	-	224 mg/mL	[100]
	Nerolidol	![Nerolidol](image)	S. aureus, K. pneumonia, P. aeruginosa	-	2 mg/mL (S. aureus), 0.5 mg/mL (K. pneumonia, P. aeruginosa)	[101]
The unique antimicrobial effects of plant EOs depend on their active components and are associated with the functional groups and structural arrangement of their active molecules, while different chemical components often have a synergistic antibacterial effect. Among the main components of EOs, phenols and aldehydes have the most potent antimicrobial activity, followed by alcohols, ketones, esters, and hydrocarbons [104]. Previous studies have shown that lipophilicity and the existence of phenolic hydroxyl, methoxy, and olefin bonds play a vital role in the antibacterial ability of active compounds in EOs, because these functional groups could consume proton motive force, affect intracellular pH value, and disrupt the oxidative phosphorylation of bacteria [105]. Many individual components of EOs with the essential functional groups mentioned above, including carvacrol, eugenol, thymol, cinnamaldehyde, and eugenol have significant bactericidal activity. Therefore, EOs derived from aromatic plants, including oregano, thyme, cinnamon, and clove have potent antibacterial activity due to their high content of these compounds.

EOs have different actions against bacteria. Most EOs target bacterial cell walls, which also explains that EOs have a better ability to suppress gram-positive bacteria compared to gram-negative bacteria [106,107]. EOs and their components also change the fatty acid profile of the cell membrane, damage the cytoplasmic membrane, consume the proton motive force, reduce the synthesis of adenosine triphosphate (ATP) and increase ATP hydrolysis, and decrease membrane potential [108–113]. The hydrophobicity of EOs could increase membrane permeability, which further results in the leakage of bacterial cell content, including potassium ions and genetic materials [114,115]. For example, Origanum compactum EO (mainly carvacrol, thymol, and p-cymene) could alter the integrity of the cell membrane and increase the permeability of the membrane, leading to the leakage of genetic materials in Bacillus subtilis [114]. In some instances, EOs could also alter membrane permeability by disrupting electron transport systems [116]. Some EOs, especially those rich in phenolic compounds, can enter the phospholipid bilayer of cell membranes and interact with membrane proteins to disrupt the normal physiological activities of bacteria [108]. Alterations in membrane permeability and the disruption of molecular and ion transportation leads to imbalances within bacterial cells, which could induce the denaturation of cellular enzymes and proteins, leakage of ions and metabolites, and the solidification of the cytoplasm [117]. ATP is important for bacterial respiration and metabolism, and could be influenced by EOs and their components. For example, cinnamon oil and its

Table 6. Cont.

Item	Individual Compounds	Chemical Structures	Target Bacteria	Doses	MIC	References
Thymol	E. coli, MRSA, A. actinomycetemcomitans, S. mutans	![Thymol structure](image)	0.2 mg/mL (E. coli, MRSA, S. mutans), 0.1 mg/mL (A. actinomycetemcomitans)	-	[95]	
	E. coli, C. perfringens, Salmonella spp.	![Cinnamaldehyde structure](image)	0.075–2 mg/mL	>1.2 μL/mL	[96]	
	S. aureus	![Phenylpropanoids](image)	0.05–3.2 mg/mL	>0.8 mg/mL	[97]	
Cinnamaldehyde	E. coli, S. aureus, B. cereus, Yersinia enterocolitica	![Cinnamaldehyde structure](image)	5 mg/mL (E. coli), 1.875 mg/mL (S. aureus), 2 mg/mL (B. cereus), 5 mg/mL (Yersinia enterocolitica)	-	[102]	
Phenylpropanoids	E. coli, C. perfringens, Salmonella spp.	![Eugenol structure](image)	0.075–2 mg/mL	>0.6 μL/mL (E. coli, Salmonella spp.), >0.3 μL/mL (C. perfringens)	[96]	
Eugenol	E. coli, S. aureus	![Eugenol structure](image)	0.1–4 mg/mL	0.4 mg/mL (E. coli), 1.3 mg/mL (S. aureus)	[93]	
	Campylobacter spp.	-	0.5 mg/mL	-	[103]	
active compound, cinnamaldehyde, decrease intracellular ATP levels in *Mycobacterium avium* subsp. *paratuberculosis* [118]. Quorum sensing (QS) is an intercellular communication system that allows bacteria to secrete and detect external signaling molecules, which could promote the development of virulence factors and biofilms and the production of secondary metabolites. Gram-positive bacteria use auto-inducing peptides (AIPs) for signaling, whereas gram-negative bacteria use N-acyl-homoserine lactones (AHLs). Terpenes and phenylpropenes such as carvacrol, thymol, eugenol, and cinnamaldehyde have anti-biofilm and anti-QS properties against bacteria [119]. Carvacrol and thymol have been shown to inhibit new and existing biofilms of pathogenic bacteria, such as *L. monocytogenes* and *Pseudomonas aeruginosa* [120,121]. Cinnamaldehyde could suppress biofilm formation in pathogenic bacteria, including *Staphylococcus epidermidis*, *L. monocytogenes*, and *Cronobacter sakazakii* [121–123]. Eugenol could suppress the production of QS-regulated violacein in *Chromobacterium violaceum* and virulence factors in *P. aeruginosa* [124]. Several aromatic plant-derived EO components have specific anti-QS strategies through binding to LuxR-type AHL receptor proteins and LuxI-type AHL synthases, which are present in terpenes and phenylpropenes, including carvacrol, thymol, cinnamaldehyde, and eugenol [125]. Collectively, the antibacterial activity of EOs may not rely on a single mechanism due to the complexity of the active components, so pathogenic bacteria are less likely to develop resistance to EOs.

Given the above antibacterial mechanisms, EOs have the potential to replace AGPs in animal production. Interestingly, several studies have shown that EOs and their components have synergistic effects on controlling resistant bacteria when combined with antibiotics. *Origanum vulgare* EO (mainly carvacrol, β-caryophyllene, and γ-terpinene) has synergistic effects against multidrug-resistant *Acinetobacter baumannii* when combined with polymyxin B [126]. *Thymus zygis* EO (mainly thymol, carvacrol, and p-cymene) has synergistic effects with ciprofloxacin, ampicillin, or vancomycin against *S. aureus*, and could change the phenotype from antibiotic resistance to antibiotic susceptibility [127]. Carvacrol, thymol, eugenol, and α-pinene have shown synergistic interactions with tetracyclines and gentamicin against pathogenic bacteria, including *E. coli*, methicillin-resistant *S. aureus*, and *P. aeruginosa* [128]. Moreover, carvacrol has synergistic effects on suppressing erythromycin-resistant Group A Streptococci when combined with erythromycin [129]. Cinnamaldehyde synergistically increases the antibiotic susceptibility of *E. coli* to tetracyclines and erythromycin [130]. Therefore, in addition to being used as antibiotic alternatives to boost animal production, EOs could prevent the development of bacterial resistance, which has important implications for animal production and human health. In the following content, this review summarizes antibiotic resistance genes (ARGs) and the effects of EOs and their components on antibiotic resistance.

4. Antibiotic Resistance Genes and the Impact of EOs and Their Individual Compounds on Antibiotic Resistance

Food-producing animals are a major source of ARGs. ARGs can be transferred to humans primarily through the ingestion of animal-derived foods [131]. Many genes associated with bacterial resistance are present in chromosomes and certain plasmids [132]. Numerous studies reported ARGs of foodborne pathogens, such as *E. coli*, *Salmonella* spp., *Staphylococcus* spp., and *Listeria* spp. ARGs and their resistance to the AGPs of *E. coli*, *Salmonella* spp., *Staphylococcus* spp., and *Listeria* spp. are shown in Table 7 [31,35,38,60,133–144]. According to the data, different species have their own ARGs. Notably, shared genes between different species may result from interspecific communication of ARGs among bacteria [145].
Table 7. Summary of antibiotic resistance genes and corresponding resistance phenotype in *E. coli*, *Salmonella* spp., *Staphylococcus* spp., and *Listeria* spp.

Species	Resistance Genes and Types of Antibiotics or Antimicrobial Groups	References
E. coli	*bla*TEM, *bla*OXA-1: ampicillin, cefotaxime; *cat1, cat2, cmlA*: chloramphenicol; *sul1, sul2, folP*: sulfonamides; *tet(A), tet(B)*: tetracyclines; *aphA1, aphA2*: kanamycin; *aadA1*: streptomycin; *aac(3)-IV*: gentamicin; *gyrA*: *Asp87Asn*, *Asp87Asn*; *gyrB*: (Asp426Asn), *parC*: (Ser80Ile), *purE*: (Leu445His); *quinolone*; *pmrA* (Arg81His, Glu106Ala), *pmrB* (Gly206Arg, Tyr222His): colistin; *rpoB* (Ile572Phe): rifamycin; *sul*1: macrolides; 16S *rrsB*: gentamicin, spectinomycin, tetracyclines; 16S *rrsH*: spectinomycin	[31,35,38,133,134]
Salmonella spp.	*bla*TEM-1, *bla*TEM-135, *bla*CTX-M-9, *bla*CTX-M-55, *bla*CYM-2: β-lactams; *gyrA* (Ser83Tyr, Asp87Asn), *gyrB* (Tyr420Cys), *parC* (Ser80Arg); *parE* (Ser458Pro): quinolone; *pmrB* (Val1164Met, Arg92Pro): colistin; *sul1, sul2, sul3*: sulfonamides; *tet(A), tet(B), tet(C), tet(G), tet(M), tet(R)*: tetracyclines; *dfrA1, dfrA12*: trimethoprim; *folR*: cmlAI1: chloramphenicol; *aac(6′)-I*: gentamicin, *sul*3: sulfonamides; *aphA1* (B): tetracyclines; *sul1* (Val164Met, Arg92Pro): macrolides; 16S *rrsB*: gentamicin, spectinomycin	[135–138]
Staphylococcus spp.	*blaZ, mecA, mecC*: β-lactams; *erm(A), erm(C)*: erythromycin, clindamycin; *mpc*: erythromycin; *clindamycin; aac(A)-aphD*: gentamicin; *aadD*: tobramycin; *fusB*: fusidic acid; *tet(K)*: tetracyclines; *fexA*: chloramphenicol; *fosB*: fosfomycin; *luxA*: lincomycin; *vanA*: vancomycin; *msr(A)*: macrolides, lincosamides, streptogramins	[60,139–141]
Listeria spp.	*bla*TEM, *bla*CTX-M-9: β-lactams; *tet(A), tet(B), tet(C), tet(M), tet(O), tet(S)*: tetracyclines; *strA, aadA, aabB, ant6*: aminoglycosides; *dfrD*: trimethoprim; *sul1, sul2*: sulfonamides; *erm(B)*: macrolides; *fosX*, *vga(D)*: lincosamides	[142–144]

As mentioned earlier, EOs and their components have synergistic effects against resistant bacteria when combined with antibiotics, indicating that EOs and their individual compounds may increase antibiotic susceptibility of drug-resistant bacteria. The determinant of multidrug resistance is through the increased expression of the efflux pump genes, which could lead to a decrease in the antibiotic concentration of bacteria and an increase in the MIC values of antibiotics [146]. The efflux pump is a transport protein associated with intercellular communication and biofilm formation, which could protect bacteria by pumping large amounts of AGPs out of cells [147]. Recently, several studies have reported that EOs and their individual compounds could suppress the activities of bacterial efflux pumps [148]. For example, *Origanum vulgare* EO (pulegone, 1,8-cineole, and borneol) and *Thymus daenensis* EO (borneol) and *Cuminum cyminum* (α-cymene, and ascaridole) have the potential to suppress the MepA, NorA, and QacC efflux pumps of *S. aureus* multiderug-resistant and spathulenol) has the potential to suppress the MepA, NorA, and QacC efflux pumps of *S. epidermidis*. The EO (mainly caryophyllene oxide, δ-cadinene, and borneol) and *Cuminum cyminum* (α-cymene, and ascaridole) have the potential to suppress the MepA, NorA, and QacC efflux pumps of *S. epidermidis*. Similarly, *Salvia fruticosa* EO could markedly inhibit the activity of the TetK efflux pump in tetracyclines-resistant *S. epidermidis* [153]. *Piper caldense* EO (mainly carophyllene oxide, δ-cadinene, and spathulenol) has the potential to suppress the MepA, NorA, and QacC efflux pumps of multidrug-resistant *S. aureus* [154]. The EtBr efflux inhibition analysis has been used to evaluate the inhibitory activity of EOs and their components in efflux pumps. The EtBr efflux inhibition assay showed that *Cuminum cyminum* EO (mainly cumicin aldehyde, γ-terpinene, α,β-dihydroxyethylbenzene, 2-carene-10-al, and β-pinene) could significantly inhibit the activity of the NorA efflux pump in *S. aureus* [155]. For the main active components of EOs,
carvacrol, thymol, and eugenol could inhibit EtBr efflux through active pumps from *E. coli*, *S. Typhimurium*, *S. Enteritidis*, and *S. aureus* [156].

In addition to inhibiting the activities of efflux pumps in bacteria, some EOs and their components could inhibit gene expressions related to virulence factors and have anti-plasmid conjugation potential for bacteria. *Cinnamomum camphora* EO (mainly linalool, cineole, and sabenene) could inhibit the expressions of QS-regulated virulence genes such as *lasA*, *lasB*, *pilE3*, *vioA*, *vioB*, *vioC*, *vioD*, *vioE*, and *hmsHNFR* in *Chromobacterium violaceum* [157]. Lemongrass EO (mainly geranial, neral, limonene, and geraniol) could down-regulate the expression of genes related to virulence factors such as *hly*, *inlB*, *inlC*, *inlJ*, *plcA*, *plcB*, and *lmo2470* in *L. monocytogenes* [158]. Carvacrol, an important component of *Origanum vulgare* EO, has been shown to down-regulate the expression of genes related to virulence factors such as *ctxB*, *hlyA*, *tcpA*, and *toxT* in *Vibrio cholerae* [159]. Eugenol could decrease the content of virulence factors, including rhamnolipid and pyocyanin, and inhibit related gene expression such as *rhlA* in *P. aeruginosa* [160]. Moreover, the single constituents of *Thymus vulgaris* EO, including thymol, linalool, R-carvone, eugenol, eucalyptol, S-carvone, and borneol, have anti-plasmid conjugation potential such as decreasing the transfer of plasmid pKM101, which could reduce virulence and spread of resistance in *E. coli* [161].

Given that animal-derived foods are one of the main sources of ARGs, some EOs and their components could not only replace antibiotics to improve animal performance and gut health, but may also have great potential to alleviate the widespread problem of antibiotic resistance in animal production. However, much research is needed in the future to study and elucidate this strategy.

5. Nanoencapsulated EOs as a Promising Option for Animal Production against Antibiotic Resistance

Most bacteria grow as single planktonic cells or communities within the biofilm. As the main form of bacterial survival, the biofilm is a bacterial community encased in a self-generated extracellular polymer matrix that provides the community with a variety of competitive advantages, including increased resistance to various stress stimuli [162]. Moreover, bacterial biofilms facilitate horizontal gene transfer through the exchange of genome fragments and mobile genetic elements in bacteria, which could contribute to the spread of ARGs [163]. The extreme tolerance of bacterial biofilms to antibiotics is particularly problematic because it makes it more challenging to fight antibiotic-resistant bacteria. Mixed bacterial biofilms have been observed in intestinal diseases, most of which are pathogenic. Biofilm-related pathogens have become a severe problem not only in humans but also in animal production. In host-microbiota interactions, bowel biofilms play a critical role in the pathogenesis of inflammatory bowel disease (IBD) and other infectious diseases in humans [164]. An invasive biofilm, which harbors the opportunistic pathogen *Bacteroides fragilis* as a crucial species, has been shown to be detected in patients with IBD [165]. Biofilm formations have also been observed in common antibiotic-resistant foodborne bacteria such as *E. coli*, *S. aureus*, *S. Typhimurium*, and *L. monocytogenes* [166,167]. The SslE protein, secreted by *E. coli*, degrades intestinal mucins, including MUC2, MUC3, and MUC5AC and accelerates biofilm maturation, which is a significant factor in the infection process of highly virulent species [167]. Enterotoxigenic *E. coli*, a virulent strain, causes severe infections and diarrheal diseases in animals, including weaned pigs, and is closely related to increased mortality and severe impairments in production [20]. *S. Typhimurium* could decrease the expressions of Occludin and Claudin-1 and subsequently disrupt the intestinal epithelial barrier in broiler chickens [168]. Peptidoglycan from *S. aureus* induces intestin inflammation and disrupts intestinal barrier functions through TLR2-regulated activation of the NF-κB pathway in porcine jejunal epithelial cells [169]. During foodborne infection, *L. monocytogenes* cross the intestinal mucosal barrier via *Listeria* adhesion protein, which could break down the epithelial tight junction barrier for bacteria to enter the lamina propria [170]. The loss of a critical protective barrier facilitates the migration of pathogenic bacteria across the epithelial barrier and biofilm information [171].
Furthermore, biofilms provide a favorable environment for pathogens to escape host defenses, further promoting the occurrence and progression of intestinal diseases [172]. Collectively, bowel biofilms dominated by antibiotic-resistant foodborne bacteria are of great significance in the development of intestinal disorders and the transition to the pathogenic microbiota, which could further induce food safety problems of animal origin and harm public health.

Concerns about the potential for antibiotic resistance to transfer from animal intestinal bacteria to humans through the consumption of animal-derived foods calls for alternatives to antibiotics in animal production. This review focuses on the advance of novel antibacterial agents, particularly those effective against the strong resistance of bacterial biofilms. EOs and their individual compounds are effective against resistant bacterial infections and are expected to decrease the selection and spread of AGRs [173]. As the main form of bacterial survival, bacterial biofilm information could increase antibiotic resistance by 10–1000 than their planktonic counterpart, which is the main cause of bacterial resistance [174,175]. However, the lipophilic properties of EOs and their individual compounds generally severely limit their applications due to their low permeability and poor absorption under aqueous biological and non-biological conditions such as biofilm matrices [176]. Therefore, the regular applications of EOs and their individual compounds may be ineffective against resistant bacterial infections because of their poor permeability to the biofilm matrix and extracellular polymer materials. The limitation could be overcome by developing nanoencapsulation methods, including polymeric nanocapsules, nanostructured lipid particles, liposomes and nanoemulsions, and other nanosystems [176]. Biomolecule-based nanoencapsulation can be designed and engineered for antimicrobial agents to surmount current and classical challenges, including the emergence of multidrug-resistant bacteria, the inefficiency and applicability limitations of existing antimicrobial agents, and biofilm formation [177]. Nanoencapsulated EOs and their individual components could make the whole formation water-soluble, allowing nanosystems to easily penetrate water-filled channels and the cavities of bacterial biofilms [178]. In addition, nanodelivery systems could sustain and control EO release at the site of action and mask unpleasant tastes or odors of EOs to minimize unacceptable organoleptic effects [178,179]. Numerous studies have reported different nanocarrier systems with encapsulated common EOs and their individual components, including oregano oil, cinnamon oil, thyme oil, carvacrol, cinnamaldehyde, thymol, and eugenol (Table 8). These in vitro results summarize that nanodelivery systems containing EOs and their components as novel antibacterial agents could suppress biofilm formation and combat bacteria within mature biofilms on biotic and abiotic surfaces, indicating that nanoencapsulated EOs may be a prospective approach for controlling resistant bacterial biofilm-related infections and overcoming existing antibiotic resistance in animal production.

Table 8. Nanoencapsulated EOs and individual compounds with anti-biofilm activity.

Essential Oils or Components	Emulsifier/Carrier System	Target Bacteria	Antibacterial Effects	References
Carvacrol	Polylactic acid nanoemulsions	*E. coli*, MRSA, *Acinetobacter baumannii*	Biofilm eradication	[180]
Cinnamon oil	Liposomes (average particle size: 144.3 nm)	MRSA	Biofilm eradication	[181]
Cinnamon oil, eucalyptus oil, orange oil	Mesoporous silica nanoparticles	*S. aureus*, *E. coli*	Inhibition of biofilm formation	[175]
Citral	Nanoemulsions (tween 80)	*L. monocytogenes*	Inhibition of biofilm formation	[182]
Eucalyptus oil	Silica nanoparticles	*E. coli*	Biofilm eradication	[164]
Eugenol	Nanoemulsions (tween 80, medium-chain triglyceride)	*P. aeruginosa*	Inhibition of biofilm formation	[45]
Table 8. Cont.

Essential Oils or Components	Emulsifier/Carrier System	Target Bacteria	Antibacterial Effects	References
Lemongrass oil	Nanoemulsions (tween 80)	*Enterococcus faecalis*	Inhibition of biofilm formation	[183]
Limonene	Nanoemulsions (tween 80, propylene glycol)	MRSA	Reduction in biofilm persistence	[184]
Mandarin oil	Chitosan nanoparticles	*S. aureus, E. coli*	Inhibition of biofilm formation	[185]
Oregano oil	Biological silver nanoparticles	*S. aureus*	Decrease in cell density and inhibition of biofilm formation	[186]
Peppermint oil, cinnamaldehyde	Silica nanocapsules	*E. coli, S. aureus, P. aeruginosa*	Biofilm eradication	[187]
Tea tree oil	Nanostructured lipids carriers (average particle size: 166 nm)	*P. aeruginosa*	Decrease in adhesion and inhibition of biofilm formation	[188]
	Nanoarchaeosomes (made by soybean phosphatidylcholine, total polar archaeolipids and polysorbate 80), nanoliposomes (made by soybean phosphatidylcholine and polysorbate 80)	*S. aureus*	Biofilm eradication, inhibition of biofilm formation	[189]
Thyme oil	Chitosan nanoemulsions	*S. aureus, E. coli*	Inhibition of biofilm formation	[190]

In animal-derived foods, chitosan nanoparticles containing mandarin EO could inhibit biofilm formation and destroy mature biofilms of *E. coli* and *S. aureus*, as well as have great potential for pork preservation [185]. Moreover, nanoencapsulated EOs used directly in animal food have been shown to be effective in reducing the rate of foodborne bacterial infections in animals. For in vivo studies, thymol nanoemulsion has been shown to upregulate the gene expression of *IgA*, *MUC2*, *IL-10*, and *FABP2*, and downregulate the gene expression of the vital virulence gene *invA* in a broiler chicken after a *S. Typhimurium* infection [191]. Chitosan nanoencapsulated thyme and cinnamon EOs could more effectively improve breast percentage, increase serum IgM and IgY contents, and improve intestinal *Lactobacillus* spp. abundances in broiler chickens compared with free EOs [17], with chitosan having its own benefits on growth rate due to its antioxidant and antibacterial properties and increased ileal digestibility of dry matter [192]. Chitosan nanoencapsulated garlic EO enhanced more evaluated parameters, including body weight gain, feed conversion ratio, intestinal *MUC2* gene expression, and the *Lactobacilli* population in broilers compared with free garlic EO [193]. Thyme EO loaded in chitosan nanoparticles could more effectively improve the feed conversion ratio and decrease the number of coliform and total aerobic bacteria in broilers compared to unencapsulated thyme EO [194]. Cumin EO in chitosan nanoparticles could more effectively improve growth performance, *MUC2* gene expression and sustain broiler immune responses compared with free-form cumin EO [195]. Together, EOs and plant extracts are mainly encapsulated bioactive substances and phytochemicals used in animal diets, and chitosan was found to be the most effective nanocarrier to load EOs and plant extracts [196]. Nanoparticles and nanocapsules are frequently studied nanocarriers, most of which are processed by the ionotropic/ionic gelation. However, nanofibers, nanohydrogels, and nanoemulsions have not been found yet for their application in feed bioactive substances. These nanocarriers have improved protection, stability, and controlled release of feed bioactive substances, which provides additional nutrition for the growth performance of livestock regardless of the low stability and water solubility of bioactive substances. However, like other emerging technologies, nanocarriers may threaten the health of animals and, ultimately, human consumers. The physicochemical properties of nanocarriers allow them to penetrate the physical barriers of
enterocytes and put the animal at risk of gastrointestinal disease. At the same time, we lack a fundamental understanding of the behavior of nanocarriers in the biological system in terms of in vivo distribution at the cellular and organ levels. In addition, one of the biggest obstacles to commercializing nanoencapsulation technology in animal feed is legislation. Despite promising, more quantitative and in vivo studies should be performed before the commercial application of nanoencapsulated EOs as antibiotic alternatives.

6. Conclusions

Although dietary supplementation with AGPs at sub-therapeutic levels is an effective way to improve performance and prevent bacterial infections in animals, the abuse of AGPs could induce public risks, environmental contamination, and the diffusion of antibiotic-resistant bacteria. The prohibition of AGPs in feed is associated with many challenges in animal production, such as poor growth performance and severe intestinal diseases. Due to their powerful antibacterial properties, EOs and their individual compounds have emerged as novel antibiotic alternatives to combat bacterial infections. The successful application of EOs and their individual compounds is based on whether our understanding of how EOs work is based on sufficient research. As shown in Figure 3, this article reviews foodborne pathogenic bacteria and antibiotic resistance, and the impacts of EOs and their individual compounds on foodborne pathogenic bacteria and ARGs. In addition, nanotechnology provides a promising tool for the delivery of EOs and their individual compounds to the gut and for enhancing the effectiveness of EOs and their components in animal production. It should be noted that evidence for a link between EOs and antibiotic-resistant foodborne bacteria in animal production is incomplete, as in vitro studies could not directly demonstrate the impact of EOs and their individual compounds on alleviating antibiotic resistance in livestock production. Therefore, it is necessary to establish and strengthen extensive cooperation between academic research and the livestock industry, to meet the needs of experimental research, and to clarify the precise application mode and benefits of EOs and their individual compounds in animal production in a timely manner.

Figure 3. Summary of the potential of aromatic plant-derived EOs as antibacterial agents in animal production against antibiotic resistance.
Author Contributions: L.Z. wrote the manuscript. F.G., J.G., H.L., F.X., H.B., X.P. and L.S. revised and finalized the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the National Key R&D Program of China (2019YFD1002701) and the Key Research Program of the Chinese Academy of Sciences (Grant NO. KFZD-SW-113).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the data is contained within the article.

Conflicts of Interest: We declare that we have no conflict of interest.

References
1. Evangelista, A.G.; Corrêa, J.A.F.; Pinto, A.C.S.M.; Luciano, F.B. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5267–5283. [CrossRef] [PubMed]
2. Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [CrossRef]
3. Schokker, D.; Zhang, J.; Vastenhouw, S.A.; Heilig, H.G.; Smidt, H.; Rebel, J.M.; Smits, M.A. Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs. PLoS ONE 2015, 10, e0116523. [CrossRef] [PubMed]
4. Roskam, J.L.; Lansink, A.G.J.M.O.; Saatkamp, H.W. The technical and economic impact of veterinary interventions aimed at reducing antimicrobial use on broiler farms. Poult. Sci. 2019, 98, 6644–6658. [CrossRef] [PubMed]
5. Rudi, K.; Zhao, L. Grand challenges in understanding gut microbes. Front. Microbiol. 2021, 12, 752829. [CrossRef] [PubMed]
6. Hagbo, M.; Ravi, A.; Angell, I.L.; Sunde, M.; Ludvigsen, J.; Diep, D.B.; Foley, S.L.; Vento, M.; Collado, M.C.; Perez-Martinez, G.; et al. Experimental support for multidrug resistance transfer potential in the preterm infant gut microbiota. Pediatr. Res. 2020, 88, 57–65. [CrossRef]
7. Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [CrossRef]
8. Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J. Anim. Sci. Biotechnol. 2021, 12, 72. [CrossRef]
9. Zhong, X.; Wang, X.; Zhou, N.; Li, J.; Liu, J.; Yue, J.; Hao, X.; Gan, M.; Lin, P.; Shang, X. Chemical characterization of the polar antibacterial fraction of the ethanol extract from Rosmarinus officinalis. Food Chem. 2021, 344, 128674. [CrossRef]
10. Hao, Y.; Kang, J.; Yang, R.; Li, H.; Cui, H.; Bat, H.; Tsitsilin, A.; Li, J.; Shi, L. Multidimensional exploration of essential oils generated via eight oregano cultivars: Compositions, chemodiversities, and antibacterial capacities. Food Chem. 2022, 374, 131629. [CrossRef]
11. Nounou, A.; Chouaib, M.; Koubai, H.B.H.; Bouzouita, N. Encapsulation of Tunisian thyme essential oil in O/W nanoemulsions: Application for meat preservation. Meat Sci. 2022, 188, 108785. [CrossRef]
12. Li, P.; Piao, X.; Ru, Y.; Han, X.; Xue, L.; Zhang, H. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australas. J. Anim. Sci. 2012, 25, 1617–1626. [CrossRef] [PubMed]
13. Zeng, Z.; Xu, X.; Zhang, Q.; Li, P.; Zhao, P.; Li, Q.; Liu, J.; Piao, X. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 2015, 86, 279–285. [CrossRef] [PubMed]
14. Wei, H.K.; Xue, H.X.; Zhou, Z.X.; Peng, J. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal 2017, 11, 193–201. [CrossRef] [PubMed]
15. Tiitinen, K.; Kettunen, H.; Bento, M.H.; Saarinen, M.; Lahtinen, S.; Ouwehand, A.C.; Schulze, H.; Rautonen, N. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 2010, 51, 381–392. [CrossRef]
16. Cetin, E.; Yibar, A.; Yesilbag, D.; Cetin, I.; Cengiz, S.S. The effect of volatile oil mixtures on the performance and ilio-caecal microflora of broiler chickens. Br. Poult. Sci. 2016, 57, 780–787. [CrossRef]
17. Nouri, A. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils on pig performance and pork quality. Br. Poult. Sci. 2007, 75, 350–355. [CrossRef]
21. Yan, L.; Wang, J.P.; Kim, H.J.; Meng, Q.W.; Ao, X.; Hong, S.M.; Kim, I.H. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower-finisher pigs. Livest. Sci. 2010, 128, 115–122. [CrossRef]

22. Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [CrossRef] [PubMed]

23. Abushaheen, M.A.; Muzahedd; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jiugroo, C.; et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. 2020, 66, 100971. [CrossRef]

24. Woolhouse, M.E.; Ward, M.J. Sources of antimicrobial resistance. Science 2013, 341, 1460–1461. [CrossRef]

25. Rahman, M.; Fliss, I; Biron, E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 2022, 11, 766. [CrossRef] [PubMed]

26. Koch, B.J.; Hungate, B.A.; Price, L.B. Food-animal production and the spread of antibiotic resistance: The role of ecology. Front. Ecol. Environ. 2017, 15, 309–318. [CrossRef] [PubMed]

27. de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [CrossRef]

28. Xu, Y.; Lahaye, L.; He, Z.; Zhang, J.; Yang, C.; Piao, X. Micro-encapsulated essential oils and organic acids combination improves intestinal barrier function, inflammatory responses and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88+). Anim. Nutr. 2020, 6, 269–277. [CrossRef]

29. Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [CrossRef]

30. Heikkläd, A.M.; Nousiainen, J.I.; Pyörälä, S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012, 85, 139–150. [CrossRef]

31. Cheng, Z.; Palma-Vera, S.; Buggiotti, L.; Salavati, M.; Becker, F.; Werling, D.; Wathes, D.C.; GplusE Consortium. Transcriptomic analysis of circulating leukocytes obtained during the recovery from clinical mastitis caused by Escherichia coli in Holstein dairy cows. Animals 2022, 12, 2146. [CrossRef]

32. Tomanic, D.; Božin, B.; Kladar, N.; Stanoević, J.; Cabarkapa, I.; Stilinović, N.; Apić, J.; Božić, D.D.; Kovačević, Z. Environmetal bovine mastitis pathogens: Prevalence, antimicrobial susceptibility, and sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. essential oils. Antibiotics 2022, 11, 1077. [CrossRef]

33. Ludbey, P.A.; Sahibzada, S.; Annandale, C.H.; Robertson, I.D.; Waichigo, F.K.; Tufail, M.S.; Valenzuela, J.L.; Aleri, J.W. A pilot study on bacterial isolates associated with purulent vaginal discharge in dairy cows in the south-west region of Western Australia. Aust. Vet. J. 2022, 100, 205–212. [CrossRef] [PubMed]

34. Vasconcelos, P.C.; Leite, E.L.; Araújo, W.J.; Silva, N.; Saraiva, M.; Filho, L.S.; Neto, O.C.F.; Givisiez, P.; Oliveira, C. Draft genome sequence of mcr-1-mediated colistin-resistant Escherichia coli ST359 from chicken carcasses in Northeastern Brazil. J. Glob. Antimicrob. Resist. 2020, 23, 135–136. [CrossRef]

35. Trongjit, S.; Angkittithakul, S.; Chuanuchuen, R. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol. Immunol. 2016, 60, 575–585. [CrossRef] [PubMed]

36. Li, H.; Liu, Y.; Yang, L.; Wu, X.; Wu, Y.; Shao, B. Prevalence of Escherichia coli and antibiotic resistance in animal-derived food samples—Six districts, Beijing, China. 2020. China CDC Wkly. 2021, 3, 999–1004. [CrossRef] [PubMed]

37. Østerberg, J.; Wingstrand, A.; Jensen, A.N.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four European countries. PLoS ONE 2016, 11, e0157049. [CrossRef] [PubMed]

38. Saeed, E.; Amer, A.A.E.; Keshha, H.G.; Hafez, E.E.; Sultan, R.M.S.; Khalifa, E. Prevalence, antibiotic sensitivity profile, and phylogenetic analysis of Escherichia coli isolated from raw dromedary camel milk in Matrouh Governorate, Egypt. J. Adv. Vet. Anim. Res. 2022, 9, 138–143. [CrossRef] [PubMed]

39. Messele, Y.E.; Abdí, R.D.; Yalew, S.T.; Tegegne, D.T.; Emeru, B.A.; Werid, G.M. Molecular determination of antimicrobial resistance in Escherichia coli isolated from raw meat in Addis Ababa and Bishoftu, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 55. [CrossRef]

40. Roth, N.; Kásbohrer, A.; Mayrholer, Z.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [CrossRef]

41. van den Honert, M.S.; Gouws, P.A.; Hoffman, L.C. A preliminary study: Antibiotic resistance of Escherichia coli and Staphylococcus aureus from the meat and feces of various South African wildlife species. Food Sci. Anim. Resour. 2021, 41, 135–144. [CrossRef]

42. Taylor, E.A.; Ossa-Trujillo, C.; Vinasco, J.; Jordan, E.R.; Buitrago, J.A.G.; Hagevoort, R.; Norman, K.N.; Lawhon, S.D.; Piñeiro, J.M.; Levent, G.; et al. Use of critically important antimicrobial classes early in life may adversely impact bacterial resistance profiles during adult years: Potential co-selection for plasmid-borne fluoroquinolone and macrolide resistance via extended-spectrum beta-lactam use in dairy cattle. Lett. Appl. Microbiol. 2021, 72, 220–224. [CrossRef] [PubMed]

43. Le, P.Q.; Awasthi, S.P.; Hatanaka, N.; Hinenoya, A.; Hassan, J.; Obarak, R.A.; Iguchi, A.; Tran, N.; Dao, K.; Vien, M.Q.; et al. Prevalence of mobile colistin resistance (mcr) genes in extended-spectrum β-lactamase-producing Escherichia coli isolated from retail raw foods in Nha Trang, Vietnam. Int. J. Food Microbiol. 2021, 346, 109164. [CrossRef]
44. Ferreira, A.; Pavelquesi, S.; Monteiro, E.; Rodrigues, L.; Silva, C.; Silva, I.; Orsi, D.C. Prevalence and antimicrobial resistance of Salmonella spp. in aquacultured Nile Tilapia (Oreochromis niloticus) commercialized in Federal District, Brazil. Foodborne Pathog. Dis. 2021, 18, 778–783. [CrossRef]

45. Lay, K.S.; Vuthy, V.; Song, P.; Phol, K.; Sarthou, J.L. Prevalence, numbers and antimicrobial susceptibilities of Salmonella serovars and Campylobacter spp. in retail poultry in Phnom Penh, Cambodia. J. Vet. Med. Sci. 2011, 73, 325–329. [CrossRef] [PubMed]

46. Yang, X.; Huang, J.; Wu, Q.; Zhang, J.; Liu, S.; Guo, W.; Cai, S.; Yu, S. Prevalence, Antimicrobial resistance and genetic diversity of Salmonella isolated from retail ready-to-eat foods in China. Food Control 2016, 60, 50–56. [CrossRef]

47. Abd-Elghany, S.M.; Sallam, K.I.; Abd-Elkhalek, A.; Tamura, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated in raw milk from cows in Hokkaido, Japan. Trop. Anim. Health Prod. 2018, 52, 1631–1637. [CrossRef] [PubMed]

48. Mir, R.; Salari, S.; Najimi, M.; Rashki, A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Vet. Med. Sci. 2022, 8, 229–236. [CrossRef] [PubMed]

49. Delgado-Suárez, E.J.; Palós-Gutiérrez, T.; Ruiz-López, F.A.; Pérez, C.F.H.; Ballesteros-Nova, N.E.; Soberanis-Ramos, O.; Méndez-Medina, R.D.; Allard, M.W.; Rubio-Lozano, M.S. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS ONE 2021, 16, e0243681. [CrossRef]

50. Patchanee, P.; Tansiricharoenkul, K.; Buawiratlert, T.; Wiratsudakul, A.; Angchokchatchawal, K.; Yamsakul, P.; Yano, T.; Boonkhot, P.; Rojanasatien, S.; Tadee, P. Salmonella in pork retail outlets and dissemination of its pulsotypes through pig production chain in Chiang Mai and surrounding areas, Thailand. Prev. Vet. Med. 2016, 130, 99–105. [CrossRef]

51. McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in non-typhoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [CrossRef] [PubMed]

52. Kroning, I.S.; Iglesias, M.A.; Mendonça, K.S.; Lopes, G.V.; Silva, W.P. Presence of classical enterotoxin genes, agr typing, antimicrobial resistance, and genetic diversity of Staphylococcus aureus from milk of cows with mastitis in southern Brazil. J. Food Prot. 2018, 81, 738–742. [CrossRef] [PubMed]

53. Liao, G.; Wu, Z.; Lv, J.; Ren, Q.; Shen, J.; Zhang, G.; Yang, J.; Zhao, L.; Jiang, Y.; Guo, D.; Wang, X.; Zhi, S.; Xu, X.; Dong, Q.; et al. Prevalence, antibiotic susceptibility, and virulence genes of multidrug-resistant Staphylococcus aureus isolated from chicken meat and giblets. Front. Microbiol. 2019, 10, 2681. [CrossRef]

54. Thongratsakul, S.; Usui, M.; Higuchi, H.; Takahashi, T.; Sato, T.; Poolkhet, C.; Tamura, Y. Prevalence and characterization of Staphylococcus aureus isolated from raw meat from cows in Hokkaido, Japan. J. Dairy Sci. 2020, 81, 78–89. [CrossRef] [PubMed]

55. Ge, B.; Mukherjee, S.; Hsu, C.H.; Davis, J.A.; Tran, T.; Yang, Q.; Abbott, J.W.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in non-typhoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [CrossRef] [PubMed]

56. Oliveira, C.J.; Tiao, N.; de Sousa, F.G.; de Moura, J.F.; Filho, L.S.; Gebreyes, W.A. Methicillin-resistant Staphylococcus aureus isolated from ready-to-eat products of animal origin in Spain. Front. Microbiol. 2016, 7, 726. [CrossRef] [PubMed]

57. Liston, D.; Alavi, I.; Ghasemi, E.; Rabiei-Faradonbeh, M. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus isolated from raw meat. Trop. Biomed. 2017, 34, 396–404. [PubMed]

58. Sugiri, Y.D.; Gölz, G.; Meeyan, T.; Baumann, M.P.; Kleer, J.; Chaisowwong, W.; Alter, T. Prevalence and antimicrobial susceptibility of Listeria monocytogenes on chicken carcasses in Bandung, Indonesia. J. Food Prot. 2014, 77, 1407–1410. [CrossRef]

59. Akrami-Mohajeri, F.; Derakhshan, Z.; Ferrante, M.; Hamidiyan, N.; Soleymani, M.; Conti, G.O.; Tafti, R.D. The prevalence and antimicrobial resistance of Listeria spp in raw milk and traditional dairy products delivered in Yazd, central Iran (2016). Food Chem. Toxicol. 2018, 114, 141–144. [CrossRef]

60. Escolar, C.; Gómez, D.; García, M.D.C.R.; Conchello, P.; Herrera, A. Antimicrobial resistance profiles of Listeria monocytogenes and Listeria innocua isolated from ready-to-eat products of animal origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [CrossRef]

61. Shen, J.; Zhang, G.; Yang, J.; Zhao, L.; Jiang, Y.; Guo, D.; Wang, X.; Zhi, S.; Xu, X.; Dong, Q.; et al. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020. Int. J. Food Microbiol. 2022, 382, 109916. [CrossRef]

62. Sallam, K.I.; Abd-Elghany, S.M.; Elhadi, M.; Tamura, T. Molecular characterization and antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus in retail chicken. J. Food Prot. 2015, 78, 1879–1884. [CrossRef]

63. Hasanpour Dekhordi, A.; Khaji, L.; Sakhaei Shahrera, M.H.; Mashak, Z.; Safarpour Dekhordi, F.; Safae, Y.; Hosseinzadeh, A.; Alavi, I.; Ghasemi, E.; Rabiei-Faradonbeh, M. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus recovered from raw meat. Trop. Biomed. 2017, 34, 396–404. [PubMed]

64. Zhang, P.; Liu, X.; Zhang, J.; Fu, X.; Wan, Y.; Pan, H.; Wu, C.; Wang, X. Prevalence and characterization of methicillin-resistance and methicillin-resistant Staphylococcus aureus isolated from retail yak butter in Tibet, China. Food Control 2018, 81, 141–148. [PubMed]

65. Liston, D.; Alavi, I.; Ghasemi, E.; Rabiei-Faradonbeh, M. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus recovered from raw meat. Trop. Biomed. 2017, 34, 396–404. [PubMed]

66. Sugiri, Y.D.; Gölz, G.; Meeyan, T.; Baumann, M.P.; Kleer, J.; Chaisowwong, W.; Alter, T. Prevalence and antimicrobial susceptibility of Listeria monocytogenes on chicken carcasses in Bandung, Indonesia. J. Food Prot. 2014, 77, 1407–1410. [CrossRef] [PubMed]
68. Sosnowski, M.; Lachtara, B.; Wieczorek, K.; Osek, J. Antimicrobial resistance and genotypic characteristics of *Listeria monocytogenes* isolated from food in Poland. *Int. J. Food Microbiol.* 2019, 289, 1–6. [CrossRef]

69. Tirziu, E.; Herman, V.; Nichita, I.; Morar, A.; Imre, M.; Ban-Cucerzan, A.; Bucur, I.; Tirziu, A.; Mateiu-Petreoc, O.C.; Imre, K. Diversity and antibiotic resistance profiles of *Listeria monocytogenes* serogroups in different food products from the Transylvania region of central Romania. *J. Food Prot.* 2022, 85, 54–59. [CrossRef]

70. Arslan, S.; Baytur, S. Prevalence and antimicrobial resistance of *Listeria* species and subtyping and virulence factors of *Listeria monocytogenes* from retail meat. *J. Food Saf.* 2019, 39, e12578. [CrossRef]

71. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. *Food Chem. Toxicol.* 2008, 46, 446–475. [CrossRef] [PubMed]

72. El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batih, G.E.; Khafaga, A.F.; Elwan, H.A.M.; Elnesr, S.S.; El-Hack, M.E.A. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. *Saudi J. Biol. Sci.* 2021, 28, 5145–5156. [CrossRef]

73. Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aoudi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of *Curum carvi* L. and *Coriandrum sativum* L. essential oils alone and in combination. *Molecules* 2021, 26, 3625. [CrossRef]

74. Bisht, D.S.; Menon, K.R.K.; Singhal, M.K. Comparative antimicrobial activity of essential oils of *Cuminum cyminum* L. and *Foeniculum vulgare* Mill. seeds against *Salmonella typhimurium* and *Escherichia coli*. *J. Essent. Oil Bear. Plants* 2014, 17, 617–622. [CrossRef]

75. Verma, R.S.; Joshi, N.; Padalia, R.C.; Goswami, P.; Singh, V.R.; Chauhan, A.; Verma, S.K.; Iqbal, H.; Verma, R.K.; Chanda, D.; et al. Chemical composition and allelopathic, antibacterial, antifungal, and in vitro acetylcholinesterase inhibitory activities of yarrow (*Achillea millefolium*) native to India. *Ind. Crop. Prod.* 2017, 104, 144–155. [CrossRef]

76. Węglarz, Z.; Kosakowska, O.; Pióro-Jabrucka, E.; Przybył, J.L.; Gniewosz, M.; Kraśniewska, K.; Szynel, M.S.; Costa, R.; Bączek, K.B. Antioxidant and antibacterial activity of *Helichrysum italicum* (Roth) G. Don. from central Europe. *Pharmaceuticals* 2022, 15, 735. [CrossRef] [PubMed]

77. Juliano, C.; Marchetti, M.; Campagna, P.; Usai, M. Antimicrobial activity and chemical composition of essential oil from *Helichrysum microphyllum* Cambess. subsp. *tyrrhenicum* L. *Pharm. Biol.* 2016, 54, 863–867. [CrossRef] [PubMed]

78. de Falco, E.; Rospigno, G.; Landolfi, S.; Scandolera, E.; Senatore, F. Growth, essential oil characterization, and antimicrobial activity of three wild biotypes of oregano under cultivation condition in Southern Italy. *Ind. Crop. Prod.* 2014, 62, 242–249. [CrossRef]

79. Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of *Cinnamomum camphora* L. *Phytomolecules* 2015, 10, 467–476. [CrossRef] [PubMed]

80. Al Maqtari, M.A.A.; Alghalibi, S.M.; Alhamzy, E.H. Chemical composition and antimicrobial activity of essential oil of *Lavandula x intermedia* E. L. leaves essential oil: Chemical composition, in vitro and in situ antimicrobial and antibiofilm activities of *Cinnamomum cassia* Blume. *Ind. Crop. Prod.* 2018, 112, 617–622. [CrossRef]

81. Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian *Menitia pulegium* L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. *Ind. Crop. Prod.* 2016, 94, 197–205. [CrossRef]

82. Silva, V.A.; da Sousa, J.P.; de Luna Freire Pessôa, H.; de Freitas, A.F.R.; Coutinho, H.D.M.; Alves, L.B.N.; Lima, E.O.; Costa, R.; Bączek, K.B. Antioxidant and antibacterial activity of *Helichrysum italicum* (Roth) G. Don. from central Europe. *Pharmaceuticals* 2022, 15, 735. [CrossRef] [PubMed]

83. Garzoli, S.; Petralito, S.; Ovidi, E.; Turchetti, G.; Masci, V.L.; Tiezzi, A.; Trillia, J.; Cesa, S.; Casadei, M.A.; Giacomello, P.; et al. *Lavandula x intermedia* essential oil and hydrolate: Evaluation of chemical composition and antioxidant activity before and after formulation in nanoemulsion. *Ind. Crop. Prod.* 2020, 145, 112068. [CrossRef]

84. de Morais Oliveira-Tintino, C.D.; Tintino, S.R.; Linaverde, P.W.; Figueiredo, F.G.; Campina, F.F.; de Cunha, F.; de Costa, R.; Pereira, P.S.; Lima, L.F.; de Matos, Y.; et al. Inhibition of the essential oil from *Cinnamomum ambrosioides* L. and α-terpinene from the NorA efflux-pump of *Staphylococcus aureus*. *Food Chem.* 2018, 262, 72–77. [CrossRef]

85. Ooi, L.S.; Li, Y.; Kam, S.L.; Wang, H.; Wong, E.Y.; Ooi, V.E. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb *Cinnamomum cassia* Blume. *Am. J. Chin. Med.* 2006, 34, 511–522. [CrossRef]

86. Wu, K.; Lin, Y.; Chai, X.; Duan, X.; Zhao, X.; Chun, C. Mechanisms of vapor-phase antibacterial action of essential oil from *Cinnamomum camphora* var. *Sinocamphora* Fujita against *Escherichia coli*. *Food Sci. Nutr.* 2019, 7, 2546–2555. [CrossRef]

87. Hu, W.; Li, C.Z.; Dai, J.M.; Cui, H.Y.; Lin, L. Antibacterial activity and mechanism of *Litsea cubeba* essential oil against methicillin-resistant *Staphylococcus aureus* (MRS). *Ind. Crop. Prod.* 2019, 130, 34–41. [CrossRef]

88. Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Ferré, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S.; et al. Variation in chemical composition of *Eucalyptus globulus* essential oil under phenological stages and evidence synergism with antimicrobial standards. *Ind. Crop. Prod.* 2018, 124, 115–125. [CrossRef]

89. Kačáňová, M.; Galovičová, L.; Borotová, P.; Valková, V.; Đuráňová, H.; Kowalczewski, P.L.; Said-Al Ahl, H.; Hikal, W.M.; Vukic, M.; Savitskaya, T.; et al. Chemical composition, in vitro and in situ antimicrobial and biofilm activities of *Syzygium aromaticum* (Clove) essential oil. *Plants* 2021, 10, 2185. [CrossRef]
114. Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J. Pharm. Anal. 2019, 9, 301–311. [CrossRef] [PubMed]
115. Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Alqubaisy, M.; AlAli, M.; Molouki, A.; Ong-Abdullah, J.; Abushelebi, A.; Lai, K.S.; Lim, S.E. An overview of the potential therapeutic applications of essential oils. Molecules 2021, 26, 628. [CrossRef]
116. Tassou, C.; Koutsoumanis, K.; Nychas, G.J.E. Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Res. Int. 2000, 33, 273–280. [CrossRef]
117. Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [CrossRef]
118. Nowotarska, S.W.; Nowotarski, K.; Grant, I.R.; Elliott, C.T.; Friedman, M.; Sitiu, C. Mechanisms of antimicrobial action of cinnamon oills, cinnamonaldehyde, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods 2017, 6, 72. [CrossRef]
119. Ta, C.A.; Arnason, J.T. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015, 21, E29. [CrossRef]
120. Soumya, E.A.; Saad, I.K.; Hassan, L.; Ghizlane, Z.; Hind, M.; Adnanne, R. Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr. J. Microbiol. Res. 2011, 5, 3229–3232.
121. Upadhyaya, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytoogenes. Food Microbiol. 2013, 36, 79–89. [CrossRef] [PubMed]
122. Amalaradjou, M.A.; Venkitanarayanan, K. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J. Food Prot. 2011, 74, 200–208. [CrossRef]
123. Sharma, G.; Raturi, K.; Dang, S.; Gupta, S.; Gabrani, R. Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J. Asian Nat. Prod. Res. 2014, 16, 535–541. [CrossRef] [PubMed]
124. Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 2013, 35, 631–637. [CrossRef] [PubMed]
125. Deryabin, D.; Galadzhieva, A.; Kosyan, D.; Duskaev, G. Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: Modes of action. Int. J. Mol. Sci. 2019, 20, 5588. [CrossRef]
126. Amaral, S.C.; Pruski, B.B.; de Freitas, S.B.; Allend, S.O.; Ferreira, M.; Moreira, C., Jr.; Pereira, D.; Junior, A.; Hartwig, D.D. Origanum vulgare essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant Acinetobacter baumannii. Mol. Biol. Rep. 2020, 47, 9615–9625. [CrossRef]
127. Coimbra, A.; Miguel, S.; Ribeiro, M.; Coutinho, P.; Silva, L.; Duarte, A.P.; Ferreira, S. Thymus zygis essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics 2022, 11, 48. [CrossRef]
128. Özel, Y.; Yılmaz, U.; Ünlü, M.; Ünlü, G.V. Antibacterial activity and synergistic interaction of various essential oil components and antibiotics. Mikrobiol. Bul. 2022, 56, 95–102. [CrossRef]
129. Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front. Microbiol. 2015, 6, 165. [CrossRef]
130. Visvalingam, J.; Palaniappan, K.; Holley, R.A. In vitro enhancement of antibiotic susceptibility of drug resistant Escherichia coli by cinnamaldehyde. Food Control 2017, 79, 288–291. [CrossRef]
131. Rodrigues, I.D.A.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Antimicrobial resistance genes in bacteria from animal-based foods. Adv. Appl. Microbiol. 2020, 112, 143–183.
132. Rozwandowicz, M.; Brouwer, M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Horidi, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [CrossRef]
133. Nawaz, M.; Sung, K.; Kweon, O.; Khan, S.; Nawaz, S.; Steele, R. Characterisation of novel mutations involved in quinolone resistance in Escherichia coli isolated from imported shrimp. Int. J. Antimicrob. Agents 2015, 45, 471–476. [CrossRef] [PubMed]
134. Quesada, A.; Porro, M.C.; Téllez, S.; Palomo, G.; García, M.; Domínguez, L. Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. J. Antimicrob. Chemother. 2015, 70, 71–74. [CrossRef]
135. Ahmed, H.A.; El-Holy, F.I.; Shafik, S.M.; Abdelrahman, M.A.; Elsaid, G.A. Characterization of virulence-associated genes, antimicrobial resistance genes, and class 1 integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog. Dis. 2016, 13, 281–288. [CrossRef]
136. Neuer, S.; Nair, S.; Day, M.R.; Doumith, M.; Ashton, P.M.; Mellor, K.C.; Jenkins, C.; Hopkins, K.L.; Woodford, N.; de Pinna, E.; et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front. Microbiol. 2018, 9, 592. [CrossRef]
137. McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antibacterial activity of essential oils, cassiteres, and plasmids present in Salmonella enterica associated with United States food animals. Front. Microbiol. 2019, 10, 832. [CrossRef] [PubMed]
138. Lauteri, C.; Maggio, F.; Serio, A.; Festino, A.R.; Paparella, A.; Vergara, A. Overcoming multidrug resistance in Salmonella spp. isolates obtained from the swine food chain by using essential oils: An in vitro study. Front. Microbiol. 2022, 12, 80826. [CrossRef]
139. Nobrega, D.B.; Naushad, S.; Naqvi, S.A.; Condas, L.; Saini, V.; Kastelic, J.P.; Luby, C.; De Buck, J.; Barkema, H.W. Prevalence and genetic basis of antimicrobial resistance in non-aureus Staphylococci isolated from Canadian Dairy herds. Front. Microbiol. 2018, 9, 256. [CrossRef]

140. Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureus isolated from retail meat and meat products in China: antibiotic resistance and genetic diversity. Front. Microbiol. 2018, 9, 2767. [CrossRef]

141. Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [CrossRef] [PubMed]

142. Urban-Chmiele, R.; Marek, A.; Stepień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria- A review. Antibiotics 2022, 11, 1079. [CrossRef] [PubMed]

143. Srinivasan, S.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [CrossRef]

144. Kayode, A.; Semerjian, L.; Ousali, T.; Olapade, O.; Okoh, A. Occurrence of multidrug-resistant Listeria monocytogenes in environmental samples: A menace of environmental and public health concern. Front. Environ. Sci. 2021, 12, 373. [CrossRef]

145. Yin, Z.; Zhou, X.; Kang, J.; Pei, F.; Du, R.; Ye, Z.; Ding, H.; Ping, W.; Ge, J. Intraspecific and interspecific quorum sensing of bacterial community affects the fate of antibiotic resistance genes during chicken manure composting under penicillin G stress. Bioreour. Technol. 2022, 347, 126732. [CrossRef]

146. Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.; Chong, C.M.; Chong, C.W.; Abushelaiha, A.; Lim, S.E.; Lai, K.S. Terpene derivatives as a potential agent against antibiotic resistance (AMR) pathogens. Molecules 2019, 24, 2631. [CrossRef]

147. Moo, C.L.; Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaiha, A.; Lim, S.H.; Lai, K.S. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr. Drug Discov. Technol. 2020, 17, 430–447. [CrossRef]

148. Mikulášová, M.; Chovanová, R.; Vaverková, S. Synergism between antibiotics and plant extracts or essential oils with efflux pump inhibitory activity in coping with multidrug-resistant Staphylococcus. Phytochem. Rev. 2016, 15, 651–662. [CrossRef]

149. Ghafari, O.; Sharifi, A.; Ahmadi, A.; Faseae, B.N. Antibacterial and anti-PmrA activity of plant essential oils against fluoroquinolone-resistant Streptococcus pneumoniae clinical isolates. Lett. Appl. Microbiol. 2018, 67, 564–569. [CrossRef]

150. Islamieh, D.I.; Goudarzi, H.; Khaledi, A.; Asghar, D.; Esmaeili, D. Reduced efflux pumps expression of Pseudomonas aeruginosa with Satureja khuzistanica essential oil. Iran. J. Med. Sci. 2020, 45, 463–468. [CrossRef]

151. Savic, C.; Gheorghe, I.; Coban, S.; Drumea, V.; Chiùriuc, M.C.; Otilia, B.; Banu, O.; Bezirtzoglou, E.; Laz, V. Rosmarinus officinalis essential oil and eucalyptol act as efflux pumps inhibitors and increase ciprofloxacin efficiency against Pseudomonas aeruginosa and Acinetobacter baumannii MDR Strains. Rom. Biotech. Lett. 2016, 21, 11796–11804. [CrossRef]

152. Limaverde, P.W.; Campina, F.F.; da Cunha, F.P.; Crispim, F.D.; Figueredo, F.G.; Lima, L.F.; Oliveira-Tintino, C.D.D.M.; de Matos, Y.; Morais-Braga, M.; Menezes, I.; et al. Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-terpinene against Staphylococcus aureus IS-58. Food Chem. Toxicol. 2017, 109, 957–961. [CrossRef] [PubMed]

153. Chovanová, R.; Mezovská, J.; Vaverková, Š.; Mikulášová, M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett. Appl. Microbiol. 2015, 61, 58–62. [CrossRef] [PubMed]

154. Leal, A.; Bezerra, C.F.; Confortin, C.; da Silva, L.E.; Marinho, E.M.; Marinho, M.M.; Vasconcelos, M.A.; da Silva, T.G.; Marinho, E.S.; Teixeira, A.; et al. Chemical composition and potentiating action of Norfloxacin mediated by the essential oil of Piper caii caii C.D.C. against Staphylococcus aureus strains overexpressing efflux pump genes. Arch. Microbiol. 2021, 203, 4727–4736. [CrossRef] [PubMed]

155. Sharifi, A.; Mohammadzadeh, A.; Salehi, T.Z.; Mahmoodi, P.; Nourian, A. Cuminum cyminum L. essential oil: A promising antibacterial and antivirulence agent against multidrug-resistant Staphylococcus aureus. Front. Microbiol. 2021, 12, 667833. [CrossRef]

156. Miladi, H.; Zmantar, T.; Koudibi, H.; Chaabouni, Y.; Mahdouani, K.; Bakhrouf, A.; Chaieb, K. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of multidrug-resistant Staphylococcus aureus. Int. J. Mol. Sci. 2017, 18, 24, 56–63. [CrossRef] [PubMed]

157. Wang, W.; Li, D.; Huang, X.; Yang, H.; Qiu, Z.; Zou, L.; Liang, Q.; Shi, Y.; Wu, Y.; Wu, S.; et al. Study on antibacterial and quorum-sensing inhibition activities of Cinnamomum camphora leaf essential oil. Molecules 2019, 24, 3792. [CrossRef]

158. Hadjilouka, A.; Mavrogiannis, G.; Mallouchos, A.; Paramithiotis, S.; Mataragas, M.; Drosinos, E.H. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. LWT 2017, 77, 510–516. [CrossRef]

159. Das, S.; Chourashi, R.; Mukherjee, P.; Kundu, S.; Koley, H.; Dutta, M.; Mukhopadhyay, A.K.; Okamoto, K.; Chatterjee, N.S. Inhibition of growth and virulence of Vibrio cholerae by carvacrol, an essential oil component of Origanum spp. J. Appl. Microbiol. 2021, 131, 1147–1161. [CrossRef]

160. Lou, Z.; Letsididi, K.S.; Yu, F.; Pei, Z.; Wang, H.; Letsididi, R. Inhibitive effect of eugenol and its nanoemulsion on quorum sensing-mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. J. Food Prot. 2019, 82, 379–389. [CrossRef]

161. Skalicza-Woźniak, K.; Walasek, M.; Aljarba, T.M.; Stapleton, P.; Gibbons, S.; Xiao, J.; Łuszczki, J.J. The anticonvulsant and anti-plasmid conjugation potential of Thymus vulgaris chemistry: An in vivo murine and in vitro study. Food Chem. Toxicol. 2018, 120, 472–478. [CrossRef] [PubMed]

162. Otto, M. Physical stress and bacterial colonization. FEMS Microbiol. Rev. 2014, 38, 1250–1270. [CrossRef] [PubMed]
163. Balcázar, J.L.; Subirats, J.; Borrego, C.M. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 2015, 6, 1216. [CrossRef] [PubMed]

164. Tytgat, H.L.P.; Nobrega, E.L.; van der Oost, J.; de Vos, W.M. Bowel biofilms: Tipping points between a healthy and compromised gut? Trends Microbiol. 2019, 27, 17–25. [CrossRef] [PubMed]

165. Swidsinski, A.; Weber, J.; Loening-Baucke, V.; Hale, L.P.; Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 2005, 43, 3380–3389. [CrossRef]

166. Harrell, J.E.; Hahn, M.M.; D’Souza, S.J.; Vasićek, E.M.; Sandala, J.L.; Gunn, J.S.; McLachlan, J.B. Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. Front. Cell. Infect. Microbiol. 2021, 10, 624622. [CrossRef]

167. Corsini, P.M.; Wang, S.; Rehan, S.; Fenn, K.; Sagar, A.; Sirovića, S.; Cleaver, L.; Edwards-Gayle, C.; Mastroianni, G.; Dorgan, B.; et al. Molecular and cellular insight into Escherichia coli Sse and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022, 8, 9. [CrossRef]

168. Zhang, B.; Shao, Y.; Liu, D.; Yin, P.; Guo, Y.; Yuan, J. Zinc prevents Salmonella enterica serovar Typhimurium-induced loss of intestinal mucus barrier function in broiler chickens. Avian. Pathol. 2012, 41, 361–367. [CrossRef]

169. Li, Q.; Yu, C.; Chen, Y.; Liu, S.; Azevedo, P.; Gong, J. O., K.; Yang, C. Citral alleviates peptidoglycan-induced inflammation and disruption of barrier functions in porcine intestinal epithelial cells. J. Cell Physiol. 2022, 237, 1768–1779. [CrossRef]

170. Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria adhesion protein induces intestinal epithelial barrier dysfunction for bacterial translocation. Cell Host Microbe 2018, 23, 470–484.e7. [CrossRef]

171. Johansson, M.E.; Gustafsson, J.K.; Holmen-Larssen, J.; Jabbar, K.S.; Xia, L.; Xu, H.; Ghishan, F.K.; Carvalho, F.A.; Gewirtz, A.T.; Sjovall, H.; et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014, 63, 281–291. [CrossRef] [PubMed]

172. Hoarau, G.; Mukherjee, P.K.; Gower-Rousseau, C.; Hager, C.; Retuerto, M.A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J.F.; et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial crohn’s disease. mBio 2016, 7, e01250-16. [CrossRef] [PubMed]

173. Balaure, P.C.; Boarca, B.; Popescu, R.C.; Savu, D.; Trusca, R.; Vasile, B.S.; Grumezescu, A.M.; Holban, A.M.; Bolocan, A.; Andronescu, E. Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. Int. J. Pharm. 2017, 531, 35–46. [CrossRef] [PubMed]

174. Dohare, S.; Dubey, S.D.; Kalia, M.; Verma, P.; Pandey, H.; Singh, N.K.; Agarwal, V. Anti-biofilm activity of Eucalyptus globulus oil encapsulated silica nanoparticles against E. coli biofilm. Int. J. Pharm. Sci. Res. 2014, 5, 5013–5018.

175. Ju, X.; Li, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhu, X.; Bie, X. Effect of the lacS gene on biofilm formation and antibiotic resistance by Salmonella serovar Dublin. Food Res. Int. 2018, 107, 385–393. [CrossRef]

176. Reichling, J. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Med. 2020, 86, 520–537. [CrossRef]

177. Vidallon, M.L.P.; Teo, B.M. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chem. Commun. 2015, 51, 13907–13917. [CrossRef]

178. Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med. 2014, 2014, 651593. [CrossRef]

179. Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr. Opin. Food Sci. 2019, 26, 47–56. [CrossRef]

180. Oz, Y.; Nabawy, A.; Fedeli, S.; Gupta, A.; Huang, R.; Sanyal, A.; Rotello, V.M. Biodegradable poly (lactic acid) stabilized nanoemulsions for the treatment of multidrug-resistant bacterial biofilms. ACS Appl. Mater. Interfaces 2021, 13, 40325–40331. [CrossRef]

181. Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofuelling 2016, 32, 215–225. [CrossRef] [PubMed]

182. Prakash, A.; Vadivel, V. Citral and linalool nanoemulsions: Impact of synergism and ripening inhibitors on the stability and antibacterial activity against Listeria monocytogenes. J. Food Sci. Technol. 2020, 57, 1495–1504. [CrossRef] [PubMed]

183. Marinković, J.; Nikolić, B.; Marković, T.; Radunović, M.; Ilić, J.; Bošković, M.; Ćirić, A.; Marković, D. Cymbopogon citratus essential oil: An active principle of nanoemulsion against Enterococcus faecalis root canal biofilm. Future Microbiol. 2021, 16, 907–918. [CrossRef] [PubMed]

184. Mehanna, M.M.; Mneimeh, A.T.; El Jalil, K.A. Levofloxacin-loaded naturally occurring monoterpane-based nanoemulgel: A feasible efficient system to circumvent MRSA ocular infections. Drug Dev. Ind. Pharm. 2020, 46, 1787–1799. [CrossRef]

185. Song, X.; Wang, L.; Liu, T.; Liu, Y.; Wu, X.; Liu, L. Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: Characterization, anti-biofilm properties and application inork preservation. Int. J. Biol. Macromol. 2021, 185, 620–628. [CrossRef]

186. Scandoriero, S.; de Camargo, L.C.; Lancheros, C.A.; Yamada-Ogatta, S.F.; Nakamura, C.V.; de Oliveira, A.G.; Andrade, C.G.; Duran, N.; Nakazato, G.; Kobayashi, R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016, 7, 760. [CrossRef]

187. Duncan, B.; Li, X.; Landis, R.F.; Kim, S.T.; Gupta, A.; Wang, L.S.; Ramanathan, R.; Tang, R.; Boerth, J.A.; Rotello, V.M. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 2015, 9, 7775–7782. [CrossRef]
188. Comin, V.M.; Lopes, L.Q.; Quatrin, P.M.; de Souza, M.E.; Bonez, P.C.; Pintos, F.G.; Raffin, R.P.; Vaucher, R.; Martinez, D.S.; Santos, R.C. Influence of *Melaleuca alternifolia* oil nanoparticles on aspects of *Pseudomonas aeruginosa* biofilm. *Microb. Pathog.* 2016, 93, 120–125. [CrossRef]

189. Perez, A.P.; Perez, N.; Lozano, C.; Altube, M.J.; de Farias, M.A.; Portugal, R.V.; Buzzola, F.; Morilla, M.J.; Romero, E.L. The anti MRSA biofilm activity of *Thymus vulgaris* essential oil in nanovesicles. *Phytomedicine* 2019, 57, 339–351. [CrossRef]

190. Liu, T.; Liu, L. Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. *Int. J. Biol. Macromol.* 2020, 162, 1509–1515. [CrossRef]

191. Ibrahim, D.; Abdelfattah-Hassan, A.; Badawi, M.; Ismail, T.A.; Bendary, M.M.; Abdelaziz, A.M.; Mosbah, R.A.; Mohamed, D.I.; Arisha, A.H.; El-Hamid, M. Thymol nanoemulsion promoted broiler chicken’s growth, gastrointestinal barrier and bacterial community and conferred protection against *Salmonella Typhimurium*. *Sci. Rep.* 2021, 11, 7742. [CrossRef]

192. Lim, H.S.; Paik, I.K.; Sohn, T.; Kim, W.Y. Effects of supplementary copper chelates in the form of methionine, chitosan and yeast on the performance of broilers. *Asian-Australas. J. Anim. Sci.* 2006, 19, 1322–1327. [CrossRef]

193. Amiri, N.; Afsharmanesh, M.; Salarmoini, M.; Meimandipour, A.; Hosseini, S.A.; Ebrahimnejad, H. Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. *Animal* 2021, 15, 100022. [CrossRef] [PubMed]

194. Hosseini, S.A.; Meimandipour, A. Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: An efficient strategy for successful delivery. *Br. Poult. Sci.* 2018, 59, 669–678. [CrossRef] [PubMed]

195. Amiri, N.; Afsharmanesh, M.; Salarmoini, M.; Meimandipour, A.; Hosseini, S.A.; Ebrahimnejad, H. Effects of nanoencapsulated cumin essential oil as an alternative to the antibiotic growth promoter in broiler diets. *J. Appl. Poult. Res.* 2020, 29, 875–885. [CrossRef]

196. Siddiqui, S.A.; Bahmid, N.A.; Taha, A.; Abdel-Moneim, A.E.; Shehata, A.M.; Tan, C.; Kharazmi, M.S.; Li, Y.; Assadpour, E.; Castro-Muñoz, R.; et al. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. *Adv. Colloid Interface Sci.* 2022, 308, 102772. [CrossRef]