Identification of Suitable Reference Genes for Gene Expression Studies of Shoulder Instability

Mariana Ferreira Leal¹,², Paulo Santoro Belangero¹, Carina Cohen¹, Eduardo Antônio Figueiredo¹, Leonor Casilla Loyola¹,², Alberto Castro Pochini¹, Marília Cardoso Smith², Carlos Vicente Andreoli¹, Síntia Iole Belangero²,³, Benno Ejnisman¹, Moises Cohen¹

¹ Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil, ² Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil, ³ Laboratório Interdisciplinar de Neurociência Clínica, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil

Abstract

Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC) in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially HPRT1 and B2M, is a reliable method for evaluating gene expression by RT-qPCR.

Citation: Leal MF, Belangero PS, Cohen C, Figueiredo EA, Loyola LC, et al. (2014) Identification of Suitable Reference Genes for Gene Expression Studies of Shoulder Instability. PLoS ONE 9(8): e105002. doi:10.1371/journal.pone.0105002

Editor: Tim Douglas Aumann, Florey Institute of Neuroscience & Mental Health, Australia

Received May 8, 2014; Accepted July 15, 2014; Published August 14, 2014

Copyright: © 2014 Leal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; MC and MACS) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; MFL and MC) as grants and fellowship awards. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: mariana.morf@epm.br

Introduction

Shoulder dislocation occurs in 1 to 2% of the population [1], and traumatic injuries account for 95% of shoulder dislocation episodes [2]. These shoulder injuries are frequently observed in young athletes that are involved in competitive sports [3], and shoulder instability (SI) is often observed after the initial episode of shoulder dislocation, with a recurrence rate of up to 100% in young athletes [4,5].

After episodes of shoulder dislocation, SI patients present plastic deformation of the glenohumeral capsule [6,7]. Although the antero-inferior (AI) region of the capsule is the most frequently injured site [7,8], previous macroscopic analysis of the collagen fiber bundle architecture in the AI region of the glenohumeral capsule revealed that a system of bundles spirally crossing one another permits the entire capsule to resist tensile and shear loads [9]. As a result, there is a reciprocal load-sharing relationship within the capsule whereby tensile load in either the anterior or superior structures is concomitant with laxity in the posterior (P) or inferior portion, respectively [7], suggesting that different portions of the capsule may be modified in traumatic anterior SI cases.

Currently, little is known about capsule biology, especially in patients with SI. An improved understanding of the underlying biology will be important for guiding patient management and development of new therapeutic options that will be complementary to surgery. Our group recently began investigating alterations in gene expression in SI, as gene expression analysis has previously been used to increase understanding of the molecular events involved in other traumatic sport injuries such as ligament [10,11] and tendon injuries (for a review, see [12]).

As a result of its accuracy, sensitivity and capacity for high throughput analysis, reverse-transcription quantitative polymerase
Reference Genes for Gene Expression Studies of Shoulder Instability

Materials and Methods

Patients
We tested tissue samples from 13 patients with traumatic anterior SI from São Paulo Hospital of the Federal University of São Paulo (UNIFESP), Brazil. All of the patients were treated with shoulder immobilization for a minimum of 2 weeks following the first episode of shoulder dislocation and underwent arthroscopic surgical treatment for SI. Additionally, 5 patients who underwent arthroscopically assisted treatment for acromioclavicular dislocation were included in this study as a control group. These patients did not present with any history of SI or signs of SI injury under anesthesia; furthermore, we did not find any radiological indications of glenohumeral capsule alterations. All control patients were physically active. Table 1 displays the main clinical outcomes of the studied cases and controls.

The study was approved by the ethics committee of the UNIFESP. Written informed consent with approval of the ethics committee was obtained from all patients prior to specimen collection.

Tissue samples

During the arthroscopic procedures, tissue samples were obtained from the AI, AS and P sites of the glenohumeral capsule of each patient. Biopsy samples from the AI and AS sites were obtained using the scope in the posterior portal and the basket grasper in the anterior portal. The AI specimen was taken from the most inferior region of the glenohumeral capsule next to the inferior glenohumeral ligament, while the AS specimen was taken in the direction of the anterior portal below the biceps tendon, in the rotator interval area. The P specimen was taken in the direction of the posterior portal during evaluation of the posterior capsulolabral complex with the scope in the anterior portal and the basket grasper in the posterior portal.

All tissue specimens were immediately immersed in RNAlater solution (Qiagen, Germany) and stored at -20°C until RNA extraction.

RNA extraction and cDNA synthesis

Total RNA was extracted using an RNeasy mini kit (Qiagen, Germany) according to the manufacturer’s protocol. RNA concentration and quality were determined using a Nanodrop ND-1000 (Thermo Scientific, USA) and the integrity of the RNA was verified by gel electrophoresis on a 1% agarose gel. cDNA was synthesized from 60-100 ng of RNA using a High-Capacity cDNA Archive kit (Life Technologies, USA) according to the manufacturer’s protocol.

RT-qPCR

To detect the range of expression of the six candidate reference genes, reactions were performed in triplicate using TaqMan inventoried Assays-on-Demand probes (Life Technologies, USA) and the Applied Biosystems 7500 fast-real time PCR system. To identify the best combination of reference genes, we also quantified the mRNA expression of a target gene, COL1A1 using the candidate reference genes for normalization. COL1A1 was selected as a target gene since it codifies the 1 chain of human procollagen type I, which is the most prominent protein of the capsule [23]. In addition, upregulation of COL1A1, as well as other collagen genes and their protein products, has been reported in several joint injuries, including injured Achilles tendon[12,24], anterior cruciate ligament[25,26,27] and rotator cuff tear[11,28].

For each sample, candidate reference and target genes were run on the same plate to exclude technical variations. The 6 reference genes and target gene are summarized in Table 2.

Table 1. Distribution of the clinical outcomes of shoulder instability patients and controls.

Variable	Cases	Controls
Age at surgery, years (mean ± SD)	28.42±6.21	30.35±14.36
Gender (% of male)	92.3%	100%
Age of onset, years (mean ± SD)	25.83±7.38	
Duration of condition, years (mean ± SD)	2.7±3.03	
Duration of condition (% of >1 year)	84.6%	
Number of injuries (% of >1 dislocation episode)	69.2%	

doi:10.1371/journal.pone.0105002.t001
The expression of COL1A1 across the samples was calculated using the equation $2^{-\Delta\Delta Ct}$, in which ΔCt (cycle threshold) = target gene (collagen) Ct – geometric mean of reference genes Ct).

Analysis of reference gene expression stability

We categorized the tissue samples into the following 12 groups: 1) AI samples from cases (SI patients); 2) AS samples from cases; 3) P samples from cases; 4) all tissue samples from cases; 5) AI samples from controls; 6) AS samples from controls; 7) P samples from controls; 8) all tissue samples from controls; 9) all AI samples; 10) all AS samples; 11) all P samples; and 12) all tissue samples.

For comparisons of candidate reference gene stability we used NormFinder (http://www.mdl.dk/publications/normfinder.htm), geNorm (http://medgen.ugent.be/~jvdesomp/genorm/index.php), BestKeeper1 (http://www.gene-quantification.de/bestkeeper.html) and DataAssist (http://www.lifetechnologies.com/us/en/home/technical-resources/software-downloads/dataassist-software.html) software programs according to the recommendations of the software guides. NormFinder accounts for both intra- and inter-group variations when evaluating the stability of each single reference gene and assigns lower stability values to the genes that are most stably expressed [29]. geNorm calculates the expression stability value (M) for each gene based on the average pairwise expression ratio between a particular gene and all other reference genes. The most stably expressed gene yields the lowest M value, and then the two most stable reference genes are determined by stepwise exclusion of the least stable gene [15]. Bestkeeper was used to rank the 6 reference genes based on the standard deviation (SD) and coefficient of variance (CV) expressed as a percentage of the cycle threshold (Ct) level [30]. Lastly, DataAssist software provided a metric to measure reference gene stability based on the geNorm algorithm. In contrast to the other programs, DataAssist uses RQ to calculate the stability value of individual candidate reference genes.

GenEx software (http://genex.gene-quantification.info/) was used to determine the optimal number of reference genes by calculating the accumulated standard deviation (Acc.SD).

Results

Reference gene expression levels

The distribution of Ct values for each of the 6 candidate reference genes is shown in Figure 1. These genes displayed a wide range of expression levels. ACTB (mean Ct value ± SD = 21.91±2.327) followed by B2M (22.08±2.436) presented the highest expression levels. In contrast, TFRC (30.11±2.125) and

Table 2. Summary of six reference genes and a target gene.
Gene symbol

ACTB
B2M
GAPDH
HPRT1
TBP
TFRC
COL1A1

*TaqMan probes were purchased as assays-on-demand products for gene expression (Life Technologies, USA).

Figure 1. RT-qPCR detection of the expression levels of six reference genes. A lower cycle threshold value (Ct) indicates higher gene expression. AI: antero-inferior region of the glenohumeral capsule; AS: antero-superior region of the glenohumeral capsule; P: posterior region of the glenohumeral capsule.
doi:10.1371/journal.pone.0105002.g001
Table 3. Ranking of the candidate single reference genes by each software package used.

NormFinder	geNorm	BestKeeper	DataAssist				
Stability value*	Ranking	M value*	Ranking	CV*	Ranking	Score*	Ranking
AI samples of cases							
0.193	HPRT1	0.419	TFRC	4.59	TFRC	0.782	GAPDH
0.350	ACTB	0.419	GAPDH	5.55	TBP	0.814	HPRT1
0.414	TFRC	0.488	HPRT1	5.57	GAPDH	0.8355	ACTB
0.435	GAPDH	0.503	ACTB	6.15	HPRT1	1.055	TBP
0.599	B2M	0.572	B2M	7.16	ACTB	1.131	TFRC
0.607	TBP	0.624	TBP	9.13	B2M	1.467	B2M
AS samples of cases							
0.276	HPRT1	0.246	HPRT1	4.10	TFRC	0.768	GAPDH
0.293	GAPDH	0.246	B2M	4.43	TBP	0.823	HPRT1
0.463	TBP	0.444	GAPDH	4.72	HPRT1	0.869	ACTB
0.478	B2M	0.528	TBP	5.06	GAPDH	0.923	TFRC
0.486	TFRC	0.562	TFRC	5.18	ACTB	0.933	TBP
0.593	ACTB	0.611	ACTB	6.39	B2M	1.611	B2M
P samples of cases							
0.179	HPRT1	0.337	B2M	4.41	TFRC	0.861	HPRT1
0.468	B2M	0.337	ACTB	5.39	HPRT1	0.987	TBP
0.520	ACTB	0.359	HPRT1	5.91	TBP	1.087	GAPDH
0.521	TBP	0.488	TBP	6.76	GAPDH	1.101	ACTB
0.610	TFRC	0.619	TFRC	7.70	ACTB	1.193	TFRC
0.933	GAPDH	0.752	GAPDH	7.88	B2M	1.462	B2M
All samples of cases							
0.134	HPRT1	0.377	HPRT1	4.36	TFRC	0.836	HPRT1
0.224	B2M	0.377	B2M	5.36	TBP	0.913	GAPDH
0.246	TBP	0.523	ACTB	5.50	HPRT1	0.958	ACTB
0.254	ACTB	0.599	TBP	5.87	GAPDH	1.012	TBP
0.251	GAPDH	0.666	TFRC	6.83	ACTB	1.091	TFRC
0.275	TFRC	0.705	GAPDH	7.92	B2M	1.493	B2M
AI samples of controls							
0.021	TBP	0.215	TBP	7.10	TBP	0.787	HPRT1
0.204	HPRT1	0.215	HPRT1	7.44	TFRC	0.798	ACTB
0.279	ACTB	0.321	ACTB	7.61	HPRT1	0.943	TBP
0.353	B2M	0.389	B2M	8.15	GAPDH	0.953	GAPDH
0.447	GAPDH	0.410	GAPDH	8.58	ACTB	1.110	TFRC
0.556	TFRC	0.471	TFRC	9.70	B2M	2.036	B2M
AS samples of controls							
0.265	B2M	0.221	HPRT1	4.85	TFRC	1.063	HPRT1
0.358	HPRT1	0.221	B2M	4.79	TBP	1.144	GAPDH
0.402	TBP	0.364	TBP	6.13	HPRT1	1.180	ACTB
0.436	ACTB	0.470	GAPDH	6.92	GAPDH	1.199	TFRC
0.458	GAPDH	0.530	ACTB	7.23	B2M	1.249	TBP
0.491	TFRC	0.561	TFRC	7.94	ACTB	1.4613	B2M
P samples of controls							
0.263	TBP	0.617	TFRC	3.85	HPRT1	1.301	TBP
0.303	TFRC	0.617	TBP	4.69	TFRC	1.351	HPRT1
0.574	HPRT1	0.685	HPRT1	4.73	TBP	1.582	ACTB
0.876	B2M	0.801	B2M	5.20	ACTB	1.639	GAPDH
0.946	ACTB	0.893	ACTB	5.66	GAPDH	1.702	TFRC
1.335	GAPDH	1.064	GAPDH	7.06	B2M	1.887	B2M
TBP (29.95±2.358) presented the lowest expression levels in glenohumeral capsule samples.

Reference gene expression stability

Table 3 displays the stability value ranking of the single candidate reference genes as determined by the different software packages. In our analysis, all reference genes for all analysis groups presented M values less than the geNorm threshold of 1.5 that is recognized as stable.

For most of the analysis groups, the various software packages suggested different single best reference genes, and all four software packages generated different rankings of reference gene stability for each analysis group.

Typically, gene expression studies compare transcript levels between case (i.e., the injured tissue) and control samples. When considering the AI samples, no single gene was repeatedly identified as being the best reference gene by the various software packages. In contrast, NormFinder, geNorm and DataAssist each identified HPRT1 as the most stable gene in AS samples, and NormFinder and BestKeeper both identified TFRC as the most stable gene in P samples.

In some studies, researchers have investigated a possible association between gene expression and clinical variables. In Table 3.

NormFinder	geNorm	BestKeeper	DataAssist					
Stability value*	Ranking	M value*	Ranking	CV*	Ranking	Score*	Ranking	
All samples of controls	0.264	HPRT1	0.460	TBP	5.44	TBP	1.164	TBP
0.345	TFRC	0.460	B2M	5.62	TBP	1.190	HPRT1	
0.370	TBP	0.573	ACTB	5.77	HPRT1	1.244	ACTB	
0.422	ACTB	0.637	HPRT1	7.25	ACTB	1.457	GAPDH	
0.457	B2M	0.667	TFRC	7.27	GAPDH	1.599	TFRC	
0.731	GAPDH	0.843	GAPDH	7.86	B2M	1.812	B2M	
All AI samples	0.169	TBP	0.467	GAPDH	5.33	TFRC	0.833	HPRT1
0.207	HPRT1	0.467	ACTB	6.70	TBP	0.880	GAPDH	
0.244	ACTB	0.541	HPRT1	6.99	HPRT1	0.852	ACTB	
0.250	B2M	0.577	TBP	7.64	GAPDH	1.044	TBP	
0.388	GAPDH	0.608	B2M	8.91	ACTB	1.161	TFRC	
0.400	TFRC	0.631	TFRC	9.90	B2M	1.658	B2M	
All AS samples	0.118	HPRT1	0.270	HPRT1	5.02	TBP	0.891	HPRT1
0.125	B2M	0.270	B2M	5.19	HPRT1	0.932	GAPDH	
0.143	GAPDH	0.460	GAPDH	5.93	HPRT1	0.998	ACTB	
0.154	TBP	0.517	TBP	6.24	GAPDH	1.045	TBP	
0.177	TFRC	0.555	TFRC	6.93	ACTB	1.046	TFRC	
0.180	ACTB	0.598	ACTB	7.62	B2M	1.549	B2M	
All P samples	0.183	TFRC	0.489	B2M	5.45	TFRC	1.000	HPRT1
0.191	HPRT1	0.489	ACTB	5.94	HPRT1	1.075	TBP	
0.222	TBP	0.611	HPRT1	6.48	TBP	1.244	ACTB	
0.294	B2M	0.633	TBP	6.59	GAPDH	1.27	GAPDH	
0.328	ACTB	0.710	TFRC	8.54	B2M	1.322	TFRC	
0.471	GAPDH	0.864	GAPDH	8.61	ACTB	1.546	B2M	
All samples	0.056	HPRT1	0.494	HPRT1	5.31	TFRC	0.926	HPRT1
0.094	TBP	0.494	B2M	6.12	TBP	1.079	ACTB	
0.098	TFRC	0.594	TBP	6.25	HPRT1	1.087	TBP	
0.119	ACTB	0.626	ACTB	6.88	GAPDH	1.114	GAPDH	
0.119	B2M	0.678	TFRC	8.13	ACTB	1.1927	TFRC	
0.199	GAPDH	0.756	GAPDH	8.68	B2M	1.586	B2M	

*A lower value indicates higher stability in gene expression. AI: antero-inferior region of the glenohumeral capsule; AS: antero-superior region of the glenohumeral capsule; P: posterior region of the glenohumeral capsule.

doi:10.1371/journal.pone.0105002.t003
Table 4. Best pair of reference genes according to each software for each group of sample.

Samples	Best pair of reference genes by software	NormFinder	geNorm	BestKeeper	DataAssist
AI samples of cases	HPRT1 + ACTB	HPRT1 + B2M	HPRT1 + B2M		
AS samples of cases	HPRT1 + GAPDH	HPRT1 + B2M	HPRT1 + B2M		
P samples of cases	HPRT1 + B2M	ACTB + B2M	HPRT1 + B2M		
All samples of cases	HPRT1 + B2M	ACTB + B2M	HPRT1 + B2M		
AI samples of controls	HPRT1 + TBP	HPRT1 + TBP	TBP + ACTB		
AS samples of controls	HPRT1 + B2M	HPRT1 + B2M	TBP + ACTB		
P samples of controls	TBP + TFRC	TBP + TFRC	TBP + TFRC/TBP + B2M		
All samples of controls	HPRT1 + TFRC	TBP + B2M	TBP + B2M	HPRT1 + TBP	
All AI samples	HPRT1 + TBP	GAPDH + ACTB	HPRT1 + B2M		
All AS samples	HPRT1 + B2M	HPRT1 + B2M	GAPDH + ACTB		
All P samples	HPRT1 + TFRC	ACTB + B2M	ACTB + B2M	TBP + TFRC	
All samples	HPRT1 + TBP	HPRT1 + B2M	HPRT1 + B2M		

AI: antero-inferior region of the glenohumeral capsule; AS: antero-superior region of the glenohumeral capsule; P: posterior region of the glenohumeral capsule.

The present study, HPRT1, followed by B2M was the most suitable reference gene for the different tissue categories from cases. For the tissue categories from controls, TBP and HPRT1 were the most stable reference genes.

When all 54 samples were considered, HPRT1 and B2M (M value = 0.494) were identified as the most stably expressed reference genes by geNorm, and HPRT1 was also identified as the most stable reference gene by the NormFinder and DataAssist software. Moreover, HPRT1 was the gene most frequently identified as a suitable reference gene when considering all the analysis groups.

Table 4 displays the best combinations of reference genes as suggested by the 4 software packages. Overall, HPRT1 and B2M were the most suitable reference genes, and this pair of genes was the most frequently identified when evaluating all cases or all samples, as well as when evaluating only AS samples. In contrast, GAPDH and ACTB was the most frequently identified pair from the analysis of AI samples; ACTB and B2M was the most frequently identified pair from the analysis of P samples; and TBP and B2M was the most frequently identified pair of reference genes when all controls were evaluated simultaneously.

The 4 software packages only indicated up to 2 genes as the best combination of reference genes. We used the GenEx software package to determine if reliable normalization would require more than 2 reference genes. In this analysis the optimal number of reference genes is indicated by the lowest SD, and with the exception of the analysis of P site samples from controls, the Acc.SD of 2 reference genes did not differ more than 0.1 from the observed metric when using more than 2 genes (Figure 2).

Effects of reference gene choice

To validate the selection of the appropriate reference genes for normalization, an expression analysis was performed comparing data from samples of patients with shoulder instability to controls.

![Figure 2](https://example.com/figure2.png)
for the three capsule sites. This analysis was performed using \(\text{COL1A1} \) as a target gene in all the analyses. As reference genes, we used the most frequently identified pairs described above. We also performed the \(\text{COL1A1} \) expression analysis using 3 reference genes (\(\text{HPRT1} + \text{B2M} + \text{ACTB} \)) and 4 reference genes (\(\text{HPRT1} + \text{B2M} + \text{ACTB} + \text{TBP} \)).

Although the normalized expression quantities differed between the various combinations of reference genes, the distributions of \(\text{COL1A1} \) expression in the studied samples were similar (Figure 3). Moreover, \(\text{COL1A1} \) expression was significantly increased in the AS and P sites of the glenohumeral capsule of cases compared to the controls using all the reference genes combinations described above (\(p < 0.05 \) for all analyses using the Mann-Whitney test; Table 5). Regardless of the reference gene combination used, \(\text{COL1A1} \) expression in the capsule AI site did not differ between cases and controls (\(p > 0.05 \) using the Mann-Whitney test for all analyses; Table 5).

Discussion

Our group recently began investigating the molecular alterations involved in shoulder instability and other orthopedic lesions. We hypothesized that misregulated expression of several genes may have a role in the capsular deformation observed in SI patients and that such molecular alterations may explain the high rate of shoulder dislocation recurrence after the first episode of traumatic dislocation. Additionally, an increased understanding of gene expression modification in response to injury may aid in determination of patient prognosis and in the development of new treatment strategies.

RT-qPCR is one of the most commonly utilized approaches in functional genomics research, and its use in gene expression analysis may become routine. However, many authors do not critically evaluate their RT-qPCR experiments, and as a result, the experiments are improperly designed and difficult to repeat due to insufficient data quality [31]. To minimize the influence of differences between samples in the extraction of mRNA, reverse transcription and PCR [17], it is necessary to normalize target gene expression by a known factor. Consequently, the use of suitable reference genes with stable expression in the studied tissue (normal and/or injured) is essential for effective data normalization and the acquisition of accurate and meaningful biological data.

Reference genes have been described for RT-qPCR studies in several diseases and tissues [20,21,22,32,33,34,35], and our group recently identified the most stable reference genes in gastric neoplastic and non-neoplastic samples, as well as in gastric cancer cell lines [36]. To the best of our knowledge, no prior study has sought to identify suitable reference genes for gene expression analysis in the glenohumeral capsule.

In the present study, we used 4 software packages (NormFinder, geNorm, BestKeeper, and DataAssist) to evaluate the stability of reference gene expression. Each software package uses distinct algorithms, and as a result, different results can be expected. Therefore, it is important to use more than one software package.
Table 5. COL1A1 expression normalized by different combinations of reference genes in the glenohumeral capsule of patients with shoulder instability and controls.

Reference genes	COL1A1 expression			
		AI (median ± IQR)	Controls (median ± IQR)	p-value
HPRT1 + B2M	10.79 ± 3.35	2.13 ± 2.72	0.173	
		8.47 ± 1.34	1.81 ± 1.92	0.001*
		10.77 ± 1.50	1.86 ± 1.30	0.07*
ACTB + GAPDH	2.45 ± 0.65	0.65 ± 0.49	0.208	
		2.20 ± 0.42	0.42 ± 0.53	0.003*
		2.33 ± 0.69	0.33 ± 0.29	0.002*
TBP + B2M	18.39 ± 4.65	3.95 ± 4.62	0.143	
		11.99 ± 2.97	3.10 ± 3.02	0.001*
		18.32 ± 19.27	3.24 ± 3.86	0.014*
ACTB + B2M	1.09 ± 2.23	0.25 ± 0.36	0.153	
		1.06 ± 0.71	0.19 ± 0.18	0.002*
		1.08 ± 0.91	0.22 ± 0.17	0.014*
HPRT1 + B2M + ACTB	4.91 ± 1.10	1.04 ± 1.10	0.173	
		4.57 ± 0.72	0.82 ± 0.86	0.001*
		4.81 ± 0.74	0.91 ± 0.44	0.007*
HPRT1 + ACTB + B2M + TBP	14.12 ± 29.27	2.9 ± 31.30	0.143	
		10.29 ± 20.54	2.35 ± 2.35	0.001*
		14.71 ± 16.46	2.48 ± 1.47	0.010*

At: antero-inferior region of the glenohumeral capsule; AS: antero-superior region of the glenohumeral capsule; P: posterior region of the glenohumeral capsule; IQR: interquartile range. *p < 0.05 by Man-Whitney test.
when new cohorts of tissue samples are used, we suggest performing specific gene expression studies, in order to identify the most stable reference genes to be used for normalization. However, it is important to highlight that our results may be relevant to the study of SI, as well as to the study of the normal glenohumeral capsule.

Conclusions

In the present study, we evaluated the suitability of reference genes using samples of glenohumeral capsules from individuals with and without history of shoulder dislocation episodes. Examining the different analysis groups, HPRT1 appears to be the most suitable reference gene. We observed that 2 reference genes, especially HPRT1 and B2M, might be used in combination for accurate normalization of RT-qPCR data in studies of molecular alterations in the glenohumeral capsule of SI patients. The results of this work may benefit future studies of the glenohumeral capsule that require more accurate gene expression quantification in this tissue.

Author Contributions

Conceived and designed the experiments: MFL. MC. Performed the experiments: MFL LCL. PSB CC EAF. Analyzed the data: MFL SIB MCS. Contributed reagents/materials/analysis tools: PSB BE ACP CVA CC EAF. Contributed to the writing of the manuscript: MFL. Literature search: MFL PSB BE ACP CVA. Contributed to all drafts of the manuscript and approved the final manuscript: MFL PSB CC EAF LCL ACP MCS CVA SIB BE MC.

References

1. Kazar B, Belowska Y (1969) Prognosis of primary dislocation of the shoulder. Acta Orthop Scand 40: 216–224.
2. Hayes K, Callanan M, Walton J, Paxinos A, Murrell GA (2002) Shouldar instability: management and rehabilitation. J Orthop Sports Phys Ther 32: 497–509.
3. Buss DD, Lynch GP, Meyer CP, Huber SM, Freehill MQ (2004) Nonoperative management for in-season athletes with anterior shoulder instability. Am J Sports Med 32: 1430–1433.
4. Larrain MV, Botto GJ, Montenegro HJ, Mauas DM (2001) Arthroscopic repair of acute traumatic anterior shoulder dislocation in young athletes. Arthroscopy 17: 373–377.
5. te Slaa RL, Wijffels MF, Brand R, Marti RK (2004) The prognosis following acute primary glenohumeral dislocation. J Bone Joint Surg Br 86: 56–64.
6. Hovelius L, Eriksson K, Fredin H, Hagberg G, Hussenius A, et al. (1983) Recurrences after initial dislocation of the shoulder. Results of a prospective study of treatment. J Bone Joint Surg Am 65: 343–349.
7. Wang VM, Flatow EL (2005) Pathomechanics of acquired shoulder instability: a basic science perspective. J Shoulder Elbow Surg 14: 28–118.
8. Burkart AC, Delbski RE (2002) Anatomy and function of the glenohumeral ligaments in anterior shoulder instability. Clin Orthop Relat Res: 32–39.
9. Grolhke F, Essigkug F, Schmitz F (1994) The pattern of the collagen fiber bundles of the capsule of the glenohumeral joint. J Shoulder Elbow Surg 3: 111–126.
10. Lo IK, Marchuk LL, Hart DA, Frank CB (1998) Comparison of mRNA levels for matrix molecules in normal and disrupted human anterior cruciate ligaments using reverse transcription-polymerase chain reaction. J Orthop Res 16: 421–428.
11. Shirachi I, Gotoh M, Misui Y, Yamada T, Nakama K, et al. (2011) Collagen production at the edge of ruptured rotator cuff tendon is correlated with postoperative cuff integrity. Arthroscopy 27: 1173–1179.
12. Xu Y, Murrell GA (2008) The basic science of tendinopathy. Clin Orthop Relat Res: 32–39.
13. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene identification of reliable and condition specific reference genes for RT-qPCR and its potential use in clinical diagnosis. Clin Sci (Lond) 109: 365–379.
14. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54: 391–406.
15. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
16. Li YL, Ye F, Hu Y, Lu WG, Xie X (2009) Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time quantitative reverse transcription-PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. BMC Mol Biol 9: 17.
17. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6: 279–294.
18. Bustin SA, Moreau L, Todd A, Poon W, Costello B, et al. (2002) Genome-wide analysis of the human transcriptome using real-time quantitative reverse transcription PCR. Genome Res 12: 1109–1118.
19. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, et al. (2012) Stability of reference genes for normalization of quantitative real-time PCR data in ovarian tissues. Acta Biochim Biophys Sin (Shanghai) 44: 568–574.
20. Shigemoto M, Kameyama M, Kurosaka M, Washida T, Inoue M, et al. (2009) The pattern of the collagen fiber bundles of the capsule of the glenohumeral joint. J Shoulder Elbow Surg 3: 111–126.
21. Zhou ZJ, Zhang NF, Xia P, Wang JY, Chen S, et al. (2014) Selection of suitable reference genes for normalization of quantitative real-time polymerase chain reaction in human cartilage endplate of the lumbar spine. PLoS One 9: e88892.
22. Yuzbashoglu A, Onbasilar I, Kocaeli C, Ozgucl M (2010) Assessment of housekeeping genes for use in normalization of real time PCR in skeletal muscle with chronic degenerative changes. Exp Mol Pathol 88: 326–329.
23. Kaltsas DS (1983) Comparative study of the properties of the shoulder joint capsule with those of other joint capsules. Clin Orthop Relat Res: 20–26.
24. Eriksen HA, Pajala A, Leppaluk J, Ristel J (2002) Increased content of type III collagen at the rupture site of human Achilles tendon. J Orthop Res 20: 1532–1537.
25. Clemens DN, Carter SD, Innes JF, Ollier WE, Day PJ (2008) Gene expression profiling of normal and ruptured canine anterior cruciate ligaments. Osteoarthritis Cartilage 16: 193–203.
26. Bramono DS, Richmond JC, Weitzel PP, Chernoff H, Martin I, et al. (2005) Characterization of transcript levels for matrix molecules and proteases in ruptured human anterior cruciate ligaments. Connect Tissue Res 46: 53–65.
27. Lo IK, Marchuk L, Hart DA, Frank CB (2003) Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments. Clin Orthop Relat Res: 249–259.
28. Lo IK, Boorman R, Marchuk L, Hollinshead R, Hart DA, et al. (2005) Matrix molecule mRNA levels in the bursa and rotator cuff of patients with full-thickness rotator cuff tears. Arthroscopy 21: 645–651.
29. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250.
30. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity. BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 599–615.
31. Bustin SA (2010) Why the need for qPCR data analysis guidelines?– The case for MIQE. Methods 50: 217–226.
32. Lyning MB, Larenholm AV, Pallisgaard N, Ditzel JH (2008) Identification of genes for normalization of real-time RT-PCR data in breast carcinomas: BMC Cancer 8: 20.
33. Ruhie C, Kempf K, Hans J, Su T, Itoin B, et al. (2005) Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 19: 101–109.
34. Fu J, Bian L, Zhao L, Dong Z, Gao X, et al. (2010) Identification of genes for normalization of quantitative real-time RT-PCR data in ovarian tissues. Acta Biochim Biophys Sin (Shanghai) 42: 568–574.
35. Wang Q, Ishikawa T, Michiue T, Zhao BL, Guan DW, et al. (2012) Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int J Legal Med 126: 943–952.
36. Wisniewski F, Calcagno DQ, Linh MD, dos Santos LC, Gigek Cde O, et al. (2013) Reference genes for quantitative RT-PCR data in gastric tissues and cell lines. World J Gastroenterol 19: 7121–7128.
37. de Jonge HJ, Feinmann RN, de Bom ES, Hobrit MA, Gerkens F, et al. (2007) Evidence based selection of housekeeping genes. PLoS One 2: e898.