These standards are recommended for anesthesia professionals throughout the world. They are intended to provide guidance and assistance to anesthesia professionals, their professional societies, hospital and facility administrators, and governments for improving and maintaining the quality and safety of anesthesia care. They were adopted by the World Federation of Societies of Anaesthesiologists on the 13th June 1992, and revisions were ratified on 5th March 2008 and on 19th March 2010.

For some anesthesia services, groups, and departments these standards will represent a future goal, while for others they may already have been implemented and be regarded as mandatory. It is recognized that in some settings facing challenges in resources and organization, not even those standards regarded as mandatory are met at present. The provision of anesthesia under such circumstances should be restricted to procedures which are absolutely essential for the urgent or emergency saving of life or limb, and every effort should be made by those responsible for the provision of healthcare in these areas and settings to ensure that the standards are met. Provision of anesthesia care at standards lower than those outlined as mandatory for anesthesia for elective surgical procedures simply cannot be construed as safe acceptable practice. The most important standards relate to individual anesthesia professionals. Monitoring devices play an important part in safe anesthesia as extensions of human senses and clinical skills rather than their replacement.

Adopting the standardized language of the World Health Organization, minimum standards that would be expected in all anesthesia care for elective surgical procedures are

This article is reproduced with permission from the World Federation of Societies of Anaesthesiologists (WFSA) and appeared previously on the WFSA website (http://www.anaesthesiologists.org/).

A.F. Merry, J.B. Cooper, O. Soyannwo, I.H. Wilson, J.H. Eichhorn, these authors are in the Safe Anesthesia Working Group of the World Health Organization’s Safe Surgery Saves Lives Global Challenge A.F. Merry is Chair of the Quality and Safety Committee and I.H. Wilson is Chair of the Publications Committee of the World Federation of Societies of Anaesthesiologists.

A. F. Merry, FANZCA
Department of Anaesthesiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
E-mail: a.merry@auckland.ac.nz

J. B. Cooper, PhD
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA

O. Soyannwo, MMed
Department of Anaesthesia, University of Ibadan College of Medicine/University College Hospital, Ibadan, Nigeria

I. H. Wilson, FRCA
Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK

J. H. Eichhorn, MD
Department of Anesthesiology, University of Kentucky College of Medicine and Medical Center, Lexington, KY, USA

^ For the genesis and evolution of these standards, please see the accompanying article: Merry AF, Cooper JB, Soyannwo O, Wilson IH, Eichhorn JH. An iterative process of global quality improvement: the International Standards for a Safe Practice of Anesthesia 2010. Canadian Journal of Anesthesia 2010;57(11).
Anesthesia standards (in order of adoption)	Setting	Infrastructure
HIGHLY RECOMMENDED | Level 1 | Basic
HIGHLY RECOMMENDED + RECOMMENDED | Level 2 | Intermediate
HIGHLY RECOMMENDED + RECOMMENDED + Suggested | Level 3 | Optimal

See Table 1 for a detailed outline of the integration of the practice standards with the levels of facilities/infrastructure. The goal always in any setting is to practice to the highest possible standards, specifically exceeding those prescribed if that can be accomplished. In spite of some facilities’ limitations, it may be possible to implement elements of the RECOMMENDED standards even in a “basic” setting and, likewise, to implement elements of the Suggested standards even in an “intermediate” setting. The goal is always the best care possible and ongoing improvement by meeting and exceeding the standards for safe practice of anesthesia, starting with all providers meeting the HIGHLY RECOMMENDED standards and striving to meet as many of the RECOMMENDED and Suggested standards as well.

It is anticipated that these standards and the setting/infrastructure specifications will be revised as practice and technology evolve.
Table 1 Guide to Infrastructure, Supplies and Anesthesia Standards at Three Levels of Health Care Facility Infrastructure and Supplies

Level 1 (Should meet at least HIGHLY RECOMMENDED anesthesia standards)	Level 2 (Should meet at least HIGHLY RECOMMENDED and RECOMMENDED anesthesia standards) District/provincial hospital	Level 3 (Should meet at least HIGHLY RECOMMENDED, RECOMMENDED and SUGGESTED anesthesia standards) Referral hospital
Small hospital / health centre	District or provincial hospital (e.g. with 100–300 beds) and adequately equipped major and minor operating rooms	A referral hospital of 300–1000 or more beds with basic intensive care facilities.
Rural hospital or health centre with a small number of beds (or urban location in an extremely disadvantaged area); sparsely equipped operating room (OR) for “minor” procedures	Short term treatment of 95–99% of the major life threatening conditions	Treatment aims are the same as for Level 2, with the addition of: Ventilation in OR and ICU
Provides emergency measures in the treatment of 90–95% of trauma and obstetrical cases (excluding cesarean section)	Prolonged endotracheal intubation	Prolonged endotracheal intubation
Referral of other patients (for example, obstructed labour, bowel obstruction) for further management at a higher level	Thoracic trauma care	Thoracic trauma care
Essential Procedures	**Essential Procedures**	**Essential Procedures**
Normal delivery	Same as Level 1 with the following additions: Cesarean section	Same as Level 2 with the following additions:
Uterine evacuation	Laparotomy (usually not for bowel obstruction)	Facial and intracranial surgery
Circumcision	Amputation	Bowel surgery
Hydrocele reduction, incision and drainage	Hernia repair	Pediatric and neonatal surgery
Wound suturing	Tubal ligation	Thoracic surgery
Control of hemorrhage with pressure dressings	Closed fracture treatment and application of plaster of Paris	Major eye surgery
Debridement and dressing of wounds	Acute open orthopedic surgery: e.g internal fixation of fractures	Major gynecological surgery, e.g. vesico-vaginal repair
Temporary reduction of fractures	Eye operations, including cataract extraction	
Cleaning or stabilization of open and closed fractures	Removal of foreign bodies: e.g. in the airway	
Chest drainage (possibly) Abscess drainage	Emergency ventilation and airway management for referred patients such as those with chest and head injuries	
Personnel	**Personnel**	**Personnel**
Paramedical staff/anesthetic officer (including on-the-job training) who may have other duties as well	One or more trained anesthesia professionals District medical officers, senior clinical officers, nurses, midwives	Clinical officers and specialists in anesthesia and surgery
Nurse-midwife	Visiting specialists or resident surgeon and/or obstetrician/ gynecologist	
Drugs	**Drugs**	**Drugs**
Ketamine 50 mg/ml injection	Same as Level 1, but also: Thiopental 500 mg/1 g powder or propofol. Suxamethonium bromide 500 mg powder	Same as Level 2 with these additions: Propofol
Lidocaine 1% or 2%	Pancuronium	Nitrous oxide
Diazepam 5 mg/ml injection, 2 ml or midazolam 1 mg/ml injection, 5 ml	Neostigmine 2.5 mg injection	Various modern neuromuscular blocking agents
Pethidine 50 mg/ml injection, 2 ml	Ether, halothane or other inhalation anesthetics	Various modern inhalation anesthetics
Morphine 10 mg/ml, 1 ml	Lidocaine 5% heavy spinal solution, 2 ml	Various inotropic agents
Epinephrine (Adrenaline) 1 mg	Bupivacaine 0.5% heavy or plain, 4 ml	Various intravenous antiarrhythmic agents
Atropine 0.6 mg/ml	Hydralazine 20 mg injection	Nitroglycerine for infusion
Appropriate inhalation anesthetic if vaporizer available		Calcium chloride 10% 10 im injection
Level 1 (Should meet at least HIGHLY RECOMMENDED anesthesia standards) Small hospital / health centre	Level 2 (Should meet at least HIGHLY RECOMMENDED and RECOMMENDED anesthesia standards) District/provincial hospital	Level 3 (Should meet at least HIGHLY RECOMMENDED, RECOMMENDED and SUGGESTED anesthesia standards) Referral hospital
---	---	---
Furosemide 20 mg injection	Potassium chloride 20% 10 ml injection for infusion	
Dextrose 50% 20 ml injection		
Aminophylline 250 mg injection		
Ephedrine 30/50 mg ampoules		
Hydrocortisone		
Nitrous oxide		
Equipment: capital outlay	Equipment: capital outlay	Equipment: capital outlay
Adult and pediatric self-inflating breathing bags with masks	Complete anesthesia, resuscitation and airway management systems including:	Same as Level 2 with these additions (per operating room or per ICU bed, except where stated):
Foot-powered suction	Vaporizer(s)	ECG (electrocardiograph) monitor*
Stethoscope, sphygmomanometer, thermometer	Hoses and valves	Anesthesia ventilator, reliable electric power source with manual override
Pulse oximeter	Bellows or bag to inflate lungs	Infusion pumps (2 per bed)
Oxygen concentrator or tank oxygen and a draw-over vaporizer with hoses	Face masks (sizes 00–5)	Pressure bag for IV infusion
Laryngoscopes, bougies	Work surface and storage	Electric or pneumatic suction
	Pediatric anesthesia system	Oxygen analyzer*
	Oxygen supply failure alarm; oxygen analyzer	
		Electric warming blanket
		Infant incubator
		Laryngeal mask airways sizes 2, 3, 4 (3 sets per O.R)
		Intubating bougies, adult and child (1 set per O.R)
		Anesthetic agent (gas and vapour) analyser
		Depth of anesthesia monitors are being increasingly recommended for cases at high risk of awareness but are not standard monitoring in many countries.
Equipment: disposable	Equipment: disposable	Equipment: disposable
Examination gloves	ECG electrodes	Same as Level 2 with these additions:
IV infusion/drug injection equipment	IV equipment (minimum fluids: normal saline, Ringer’s lactate and dextrose 5%)	Ventilator circuits
Suction catheters size 16 FG	Pediatric giving sets	Yankauer suckers
Airway support equipment, including airways and tracheal tubes	Suction catheters size 16 FG	Giving sets for IV infusion pumps
	Sterile gloves sizes 6–8	Disposables for suction machines
should be instituted. Regular confidential discussion of appropriate topics and cases with multidisciplinary professional colleagues should take place. Protocols should be developed to ensure that deficiencies in individual and collective practice are identified and rectified. An anonymous incident reporting system with case analysis and resulting suggested remedies is RECOMMENDED.

6. Workload

A sufficient number of trained anesthesia professionals should be available so that individuals may practice to a high standard without undue fatigue or physical demands. Time should be allocated for education, professional development, administration, research, and teaching.

7. Personnel

An anesthesia professional should be dedicated to each patient and be immediately present throughout each anesthetic (general, regional, or monitored sedation), and should be responsible for the transport of the patient to the post-anesthesia recovery facility and the transfer of care to appropriately trained personnel. An anesthesia professional should retain overall responsibility for the patient during the recovery period and should be readily available for consultation until the patient has made an adequate recovery. If responsibility for care is transferred from one anesthesia professional to another, a “handover protocol” should be followed, during which all relevant information about the patient’s history, medical condition, anesthetic status, and plan should be communicated. An anesthesia professional should ensure, if aspects of direct care are delegated before, during, or after an anesthetic, that the person to whom responsibility is delegated is both suitably qualified and conversant with relevant information regarding the anesthetic and the patient. Where it is impossible for this standard to be attained and the surgeon or other individual assumes responsibility for the anesthetic, these arrangements should be reviewed and audited by an appropriately trained anesthesia professional.

8. Facilities, equipment, and medications

Appropriate equipment and facilities, adequate both in quantity and quality, should be present wherever anesthesia and recovery from it is undertaken, including outside traditional hospital operating room suites, such as procedure or imaging suites and outpatient facilities or offices. In-service training and verification of an individual’s ability to use a specific piece of equipment correctly and safely is required. Formal certification as documentation of this process is Suggested. A list of facilities, infrastructure elements and supplies at the three levels and suggestions as to the order in which additions should be made when possible as resources permit is presented in Table 1. Anesthesia equipment should conform to relevant national and international standards. Appropriate anesthetic, resuscitative, and adjuvant medications are required at each level.

9. World Health Organization 2009 Safe Surgery Checklist

The 2009 Safe Surgery Checklist (http://www.who.int/patientsafety/information_centre/documents/en/index.html) consists of evidence based vital checks in 3 phases: before starting anesthesia, before starting surgery and at the end of surgery. The use of the checklist (locally modified if
appropriate) in anesthesia care is HIGHLY RECOMMENDED.

Peri-anesthetic care and monitoring standards

The first and most important component of peri-anesthetic care, including monitoring of the anesthesia delivery system and the patient, is the continuous presence of a vigilant anesthesia professional during anesthesia. In addition to use of monitoring technology, careful continuous clinical observation is required because equipment may not detect clinical deterioration as rapidly as the skilled professional. If an emergency requires the brief temporary absence of the primary anesthesia professional, judgment must be exercised comparing the emergency with the anesthetized patient’s condition and in the selection of the person left responsible for the anesthetic during the temporary absence.

1. Pre-anesthetic care

The patient must be evaluated by an anesthesia professional prior to administration of anesthesia and an appropriate anesthetic plan formulated. The anesthesia professional must ensure that all necessary equipment is present and functions correctly prior to initiation of anesthesia care. The anesthesia professional should ensure that assistance is available as needed and that the assistant is competent at, or has been instructed in, the necessary tasks. The development of protocols and check-lists to facilitate such verification is RECOMMENDED.

2. Pre-anesthesia checks

A. An appropriate “pre-list check,” which has been established in each health care institution providing anesthesia services, of the anesthesia system, facilities, equipment, and supplies should be performed prior to the start of each operating list.

B. The relevant components of the World Health Organization Safe Surgery Checklist should be performed.

C. An appropriate “pre-patient check” (such as presented in the attached Pre-anesthetic check list) which has been established in each health care institution providing anesthesia services, of the anesthesia system and anesthetizing location should be executed prior to each anesthetic.

3. Monitoring during anesthesia

A. Oxygenation

(i) Oxygen supply

Supplemental oxygen is HIGHLY RECOMMENDED for all patients undergoing general anesthesia. The anesthesia professional should verify the integrity of the oxygen supply. It is RECOMMENDED that the inspired oxygen concentration be monitored throughout each anesthetic with an instrument fitted with a low oxygen concentration alarm. An oxygen supply failure alarm and a device protecting against the delivery of an hypoxic gas mixture are RECOMMENDED. Systems with interlocks (tank yokes, hose connections, etc.) should be used to prevent misconnection of gas sources.

(ii) Oxygenation of the patient

Tissue oxygenation should be monitored continuously. For visual examination, adequate illumination and exposure of the patient should be ensured whenever practicable. Continuous use of pulse oximetry is HIGHLY RECOMMENDED.

B. Airway and ventilation

The adequacy of the airway and ventilation should be continuously monitored at least by observation and auscultation whenever practicable. Where a breathing circuit is used, the reservoir bag should be observed. Continuous monitoring with a precordial, pretracheal, or oesophageal stethoscope is RECOMMENDED. Confirmation of the correct placement of an endotracheal tube and also the adequacy of ventilation by continuous measurement and display of the expired carbon dioxide waveform and concentration (capnography) is RECOMMENDED. When mechanical ventilation is employed, a “disconnect alarm” should be used throughout the period of mechanical ventilation. Continuous measurement of the inspiratory and/or expired gas volumes, and of the concentration of volatile agents, is Suggested.

C. Circulation

(i) Cardiac rate and rhythm

The circulation should be monitored continuously. Palpation or display of the pulse and/or auscultation of the heart sounds should be continuous. Continuous monitoring and display of the heart rate with a pulse oximeter is HIGHLY RECOMMENDED; an
electrocardiograph is RECOMMENDED. The availability of a defibrillator is RECOMMENDED.

(ii) Tissue perfusion

The adequacy of tissue perfusion should be monitored continually by clinical examination. Continuous monitoring with a pulse oximeter is HIGHLY RECOMMENDED; continuous monitoring with a capnograph is RECOMMENDED.

(iii) Blood pressure

Arterial blood pressure should be determined at appropriate intervals (usually at least every 5 minutes and more frequently if indicated by clinical circumstances). Automated non-invasive blood pressure measurements have many advantages in anesthesia; continuous measurement and display of arterial pressure is Suggested in appropriate cases.

D. Temperature

A means of measuring the temperature should be available and should be used at frequent intervals where clinically indicated (e.g. prolonged or complex anesthetics, young children). The continual measurement of temperature in patients in whom a change is anticipated, intended, or suspected is RECOMMENDED. The availability and use of continuous electronic temperature measurement is Recommended.

The integrity of a circle system and its valves should be checked by placing one breathing bag in the correct place for ventilating a patient and another breathing bag on the patient limb of the Y-piece (i.e. in place of the patient) and ventilating the system manually using an appropriate fresh gas flow and squeezing the primary and secondary bags alternatively, so that gas passes around the circle from one to the other. Inflation and deflation of the breathing bag, movement of any visible unidirectional valves, and the resistance and compliance of the system should all be assessed as “normal”. The function of the adjustable pressure limiting valve should also be checked by spilling some of the gas when both bags are compressed. This “two bag check” is a reliable way of detecting expiratory limb obstruction which is readily missed when less systematic checks of the integrity of the circuit are carried out.
E. Neuromuscular function

When neuromuscular blocking drugs are given, the use of a peripheral nerve stimulator is **RECOMMENDED**.

F. Depth of anesthesia

The depth of anesthesia (degree of unconsciousness) **should be regularly assessed by clinical observation**. The continuous measurement of inspired and expired concentrations of anesthetic gases and volatile agents is **Suggested**. The application of an electronic device intended to measure brain function (consciousness), while controversial and not universally recommended, should be considered, particularly in cases with high risk of awareness under general anesthesia.

G. Audible signals and alarms

Available audible signals (such as the variable pitch pulse tone of the pulse oximeter) and audible alarms (with appropriately set limit values) should be activated at all times and loud enough to be heard throughout the operating room.

4. Post-anesthesia care

A. Facilities and personnel

All patients who have had an anesthetic affecting central nervous system function and/or a loss of protective reflexes should remain where anesthetized until recovered or be transported safely (with care and monitoring as indicated) to a specifically designated recovery location for post-anesthesia recovery. See General Standards, Section 7, for delegation of responsibilities to dedicated qualified recovery personnel.

B. Monitoring

All patients should be observed and monitored in a manner appropriate to the state of their nervous system function, vital signs, and medical condition with emphasis on the adequacy of oxygenation, ventilation, circulation, and temperature. Supplementation of clinical monitoring with quantitative methods analogous to intra-anesthetic patient care described above is **RECOMMENDED**. Specifically, pulse oximetry is **HIGHLY RECOMMENDED** until consciousness has recovered (i.e., the patient is no longer anesthetized).

C. Pain relief

All patients are entitled to appropriate efforts to prevent and alleviate postoperative pain employing available appropriate medications and modalities; these efforts are therefore **HIGHLY RECOMMENDED**. Usually, the involved anesthesia professional assumes initial responsibility for this.

Permissions and acknowledgements

With permission from the Department of Knowledge Management and Sharing of the World Health Organization, these Standards incorporate and elaborate upon components of: WHO Guidelines for Safe Surgery. Safe Surgery Saves Lives. WHO Press: World Health Organization, Geneva, 2009. http://whqlibdoc.who.int/publications/2009/9789241598552_eng.pdf (accessed 25th June 2010).

The Preanesthetic Checklist is an exact reproduction of Figure 2.1 of this publication.

The Table has been adapted from: Surgical Care at the District Hospital. World Health Organization, Geneva, 2003 http://whqlibdoc.who.int/publications/2003/9241545755.pdf (accessed 25th June 2010), and from: International Taskforce on Anaesthesia Safety. International standards for a safe practice of anaesthesia. European Journal of Anaesthesiology 1993; 10 (Suppl 7): 12–15.

The Authors thank Dr M.N. Cherian for her invaluable contribution as a member of the Safe Anesthesia Working Group to the development of the Standards. The authors gratefully acknowledge the support and input of Dr. Atul Gawande and the other leaders of the WHO “Safe Surgery Saves Lives” program (notably Drs G. Dziekan, W.R. Berry, T.G. Weiser and A.B. Haynes), as well as the constant encouragement and facilitation by the WFSAl leadership, particularly current WFSAl President Dr. Angela Enright.

Conflicts of interest

A. F. Merry has financial interests in Safer Sleep LLC.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.