Congruences involving alternating multiple harmonic sum

ROBERTO TAURASO
Dipartimento di Matematica
Università di Roma “Tor Vergata”, Italy
tauraso@mat.uniroma2.it
http://www.mat.uniroma2.it/~tauraso

Abstract

We show that for any prime prime \(p \neq 2 \)
\[
\sum_{k=1}^{p-1} \left(-\frac{1}{k} \right)^\frac{p-1}{2} \equiv - \sum_{k=1}^{(p-1)/2} \frac{1}{k} \pmod{p^3}
\]
by expressing the l.h.s. as a combination of alternating multiple harmonic sums.

1 Introduction

In [8] Van Hamme presented several results and conjectures concerning a curious analogy between the values of certain hypergeometric series and the congruences of some of their partial sums modulo power of prime. In this paper we would like to discuss a new example of this analogy. Let us consider

\[
\sum_{k=1}^{\infty} \left(-\frac{1}{k} \right)^k \left(-\frac{1}{k} \right) = \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \cdot \frac{3}{4} \right) + \frac{1}{3} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \right) + \frac{1}{4} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \right) + \cdots
\]

\[
= \int_0^{-1} - \frac{1}{x} \left(\frac{1}{\sqrt{1+x}} - 1 \right) \, dx = -2 \left[\log \left(\frac{1 + \sqrt{1+x}}{2} \right) \right]_0^{-1} = 2 \log 2.
\]

Let \(p \) be a prime number, what’s the \(p \)-adic analogue of the above result? The real case suggests to replace the logarithm with some \(p \)-adic function which behaves in a similar way. It turns out that the right choice is the Fermat quotient

\[
q_p(x) = \frac{x^{p-1} - 1}{p}
\]

(which is fine since \(q_p(x \cdot y) \equiv q_p(x) + q_p(y) \pmod{p} \)), and, as shown in [7], the following congruence holds for any prime \(p \neq 2 \)

\[
\sum_{k=1}^{p-1} \left(-\frac{1}{k} \right)^k \left(-\frac{1}{k} \right) \equiv 2 q_p(2) \pmod{p}.
\]

Here we improve this result to the following statement.
Theorem 1.1. For any prime $p > 3$

$$
\sum_{k=1}^{p-1} \frac{(-1)^k}{k} \left(\frac{-\frac{1}{2}}{k} \right) \equiv 2q_p(2) - pq_p(2)^2 + \frac{2}{3}p^2q_p(2)^3 + \frac{7}{12}p^2B_{p-3}
$$

$$
\equiv \frac{(p-1)^2}{k} \pmod{p^3}
$$

where B_n is the n-th Bernoulli number.

In the proof we will employ some new congruences for alternating multiple harmonic sums which are interesting in themselves such as

$$
H(-1, -2; p - 1) = \sum_{0 < i < j < p} \frac{(-1)^{i+j}}{ij^2} \equiv -\frac{3}{4}B_{p-3} \pmod{p},
$$

$$
H(-1, -1, 1; p - 1) = \sum_{0 < i < j < k < p} \frac{(-1)^{i+j}}{ijk} \equiv q_p(2)^3 + \frac{7}{8}B_{p-3} \pmod{p}.
$$

2 Alternating multiple harmonic sums

Let $r > 0$ and let $(a_1, a_2, \ldots, a_r) \in (\mathbb{Z}^*)^r$. For any $n \geq r$, we define the alternating multiple harmonic sum as

$$
H(a_1, a_2, \ldots, a_r; n) = \sum_{1 \leq k_1 < k_2 < \cdots < k_r \leq n} \prod_{i=1}^r \frac{\text{sign}(a_i)^{k_i}}{k_i^{a_i}}.
$$

The integers r and $\sum_{i=1}^r |a_i|$ are respectively the depth and the weight of the harmonic sum.

From the definition one derives easily the shuffle relations:

$$
H(a; n) \cdot H(b; n) = H(a, b; n) + H(b, a; n) + H(a \oplus b; n),
$$

$$
H(a, b; n) \cdot H(c; n) = H(c, a, b; n) + H(a, c, b; n) + H(a, b, c; n) + H(a \oplus b, c; n) + H(a, b \oplus c; n)
$$

where $a \oplus b = \text{sign}(ab)(|a| + |b|)$.

Moreover, if p is a prime, by replacing k_i with $p - k_i$ we get the reversal relations:

$$
H(a, b; p - 1) \equiv H(b, a; p - 1)(-1)^{a+b}\text{sign}(ab) \pmod{p},
$$

$$
H(a, b, c; p - 1) \equiv H(c, b, a; p - 1)(-1)^{a+b+c}\text{sign}(abc) \pmod{p}.
$$

The values of several non-alternating (i.e. when all the indices are positive) harmonic sums modulo a power of prime are well known:

(i). ([4], [11]) for $a, r > 0$ and for any prime $p > ar + 2$

$$
H(\{a\}^r; p - 1) \equiv \begin{cases}
(-1)^r \frac{a^{(ar+1)}}{2^{(ar+2)}} p^2 B_{p-ar-2} & \text{if } ar \text{ is odd} \\
(-1)^{r-1} \frac{a}{ar+2} p B_{p-ar-1} & \text{if } ar \text{ is even}
\end{cases} \pmod{p^3};
$$
Theorem 2.1. Let H of depth $\leq H$. Moreover, by decomposing the sum p values of multiple harmonic sums of depth ≤ 2 when the indices are all negative.

The following result will allow us to compute the mod p values of multiple harmonic sums

\begin{align*}
\text{(ii). (II) for any prime } p > 3 & \quad
H \left(1; \frac{p-1}{2} \right) = -2q_p(2) + p q_p(2)^2 - \frac{2}{3} p^2 q_p(2)^3 - \frac{7}{12} p^2 B_{p-3} \quad \text{(mod } p^3) \end{align*}

and for $a > 1$ and for any prime $p > a+1$

\begin{align*}
H \left(a; \frac{p-1}{2} \right) = \begin{cases}
\frac{-2a^2-2}{a} B_{p-a} & \text{if } a \text{ is odd} \\
\frac{a(2a+1)}{2(a+1)} p B_{p-a-1} & \text{if } a \text{ is even}
\end{cases} \quad \text{(mod } p^2)
\end{align*}

\begin{align*}
\text{(iii). (II, II) for } a, b > 0 \text{ and for any prime } p > a+b+1 & \quad
H(a, b; p-1) = \frac{(-1)^b}{a+b} \left(a \frac{b}{a} \right) B_{p-a-b} \quad \text{(mod } p)
\end{align*}

(note that $B_{2n+1} = 0$ for $n > 0$).

The following result will allow us to compute the mod p values of multiple harmonic sums of depth ≤ 2 when the indices are all negative.

Theorem 2.1. Let $a, b > 0$ then for any prime $p \neq 2$

\begin{align*}
H(-a; p-1) = -H(a; p-1) + \frac{1}{2a-1} H \left(a; \frac{p-1}{2} \right), \\
2H(-a, -a; p-1) = H(-a; p-1)^2 - H(2a; p-1),
\end{align*}

and

\begin{align*}
H(-a, -b; p-1) = -H(a, b; p-1) + \frac{2}{2a+b} \left(H \left(a, b; \frac{p-1}{2} \right) + (-1)^{a+b} H \left(b, a; \frac{p-1}{2} \right) \right).
\end{align*}

Proof. The shuffling relation given by $H(-a; p-1)^2$ yields the second equation. As regards the first equation we simply observe that $(-1)^i/i^a$ is positive if and only if i is even. We use a similar argument for the congruence: since $(-1)^i/(i^a j^b)$ is positive if and only if i and j are both even or if $(p-i)$ and $(p-j)$ are both even then

\begin{align*}
H(-a, -b; p-1) = -H(a, b; p-1) + \frac{2}{2a+b} \left(H \left(a, b; \frac{p-1}{2} \right) + (-1)^{a+b} H \left(b, a; \frac{p-1}{2} \right) \right).
\end{align*}

Moreover, by decomposing the sum $H(a, b; p-1)$ we obtain

\begin{align*}
H(a, b; p-1) = H \left(a, b; \frac{p-1}{2} \right) + H \left(a; \frac{p-1}{2} \right) (-1)^b H \left(b, \frac{p-1}{2} \right) + (-1)^{a+b} H \left(b, a; \frac{p-1}{2} \right).
\end{align*}

that is

\begin{align*}
H \left(a, b; \frac{p-1}{2} \right) + (-1)^{a+b} H \left(b, a; \frac{p-1}{2} \right) \equiv H(a, b; p-1) - H \left(a; \frac{p-1}{2} \right) (-1)^b H \left(b, \frac{p-1}{2} \right).
\end{align*}

and the congruence follows immediately. \qed
Corollary 2.2. For any prime \(p > 3 \)
\[
H(-1; p - 1) = -2q_p(2) + pq_p(2)^2 - \frac{2}{3}p^2q_p(2)^3 - \frac{1}{4}p^2 B_{p-3} \quad (\text{mod } p^3),
\]
\[
H(-1, -1; p - 1) = 2q_p(2)^2 - 2pq_p(2)^3 - \frac{1}{3}p B_{p-3} \quad (\text{mod } p^2).
\]
Moreover for \(a > 1 \) and for any prime \(p > a + 1 \)
\[
H(-a; p - 1) \equiv -\frac{2^a - 2}{a^2 - 1} B_{p-a} \quad (\text{mod } p).
\]

Proof. The proof is straightforward: apply Theorem 2.1 (i), (ii), and (iii).

The following theorem is a variation of a result presented in [9].

Theorem 2.3. Let \(r > 0 \) then for any prime \(p > r + 1 \)
\[
H(\{1\}^{r-1}, -1; p - 1) \equiv (-1)^{r-1} \sum_{k=1}^{p-1} \frac{2^k}{k^r} \quad (\text{mod } p).
\]

Proof. For \(r \geq 1 \), let
\[
F_r(x) = \sum_{0<k_1<\cdots<k_r<p} \frac{x^{k_r}}{k_1 \cdots k_r} \in \mathbb{Z}_p[x] \quad \text{and} \quad f_r(x) = \sum_{0<k<p} \frac{x^k}{k^r} \in \mathbb{Z}_p[x].
\]

We show by induction that
\[
F_r(x) \equiv (-1)^{r-1} f_r(1 - x) \quad (\text{mod } p)
\]
then our congruence follows by taking \(x = -1 \).

For \(r = 1 \), since \(\binom{p}{k} = (-1)^{k-1} \frac{p^k}{k!} \) (mod \(p^2 \)) for \(0 < k < p \) then
\[
f_1(x) = \frac{1}{p} \sum_{k=1}^{p-1} (-1)^{k-1} \binom{p}{k} x^k = -\frac{1}{p} \sum_{k=1}^{p-1} \binom{p}{k} (-x)^k = 1 - (1 - x)^p - x^p \quad (\text{mod } p).
\]

Hence \(F_1(x) = f_1(x) \equiv f_1(1 - x) \quad (\text{mod } p) \).

Assume that \(r > 1 \), then the formal derivative yields
\[
\frac{d}{dx} F_r(x) = \sum_{0<k_1<\cdots<k_r<p} \frac{k_r x^{k_r-1}}{k_1 \cdots k_r} = \sum_{0<k_1<\cdots<k_{r-1}<p} \frac{1}{k_1 \cdots k_{r-1}} \sum_{k_r=k_{r-1}+1}^{p-1} x^{k_r-1}
\]
\[
= \sum_{0<k_1<\cdots<k_{r-1}<p} \frac{1}{k_1 \cdots k_{r-1}} \cdot \frac{x^{p-1} - x^{k_{r-1}}}{x - 1}
\]
\[
= \frac{x^{p-1}}{x - 1} H(\{1\}^{r-1}; p - 1) - \frac{1}{x - 1} F_{r-1}(x) \equiv \frac{F_{r-1}(x)}{1 - x} \quad (\text{mod } p).
\]

Moreover
\[
\frac{d}{dx} f_r(1 - x) = - \sum_{0<k<p} \frac{(1 - x)^{k-1}}{k^{r-1}} = - \frac{f_{r-1}(1 - x)}{1 - x}
\]

Hence, by the induction hypothesis

\[(1 - x) \frac{d}{dx} (F_r(x) + (-1)^r f_r(1 - x)) \equiv F_{r-1}(x) + (-1)^{r-1} f_{r-1}(1 - x) \equiv 0 \pmod{p}.
\]

Thus \(F_r(x) + (-1)^r f_r(1 - x) \equiv c_1 \pmod{p}\) for some constant \(c_1\) since this polynomial has degree < \(p\). Substituting in \(x = 0\) we find that by (i)

\[F_r(x) + (-1)^r f_r(1 - x) \equiv c_1 \equiv F_r(0) + (-1)^r f_r(1) = (-1)^r H(r; p - 1) \equiv 0 \pmod{p}.
\]

With the next two corollaries we have a complete list of the mod \(p\) values of the alternating multiple harmonic sums of depth and weight \(\leq 3\).

Corollary 2.4. The following congruences mod \(p\) hold for any prime \(p > 3\)

\[
\begin{align*}
H(1, -1; p - 1) &\equiv -H(-1, 1; p - 1) \equiv q_p(2)^2, \\
H(-1, 2; p - 1) &\equiv H(1, -2; p - 1) \equiv H(2, -1; p - 1) \equiv H(-2, 1; p - 1) \equiv \frac{1}{4} B_{p-3}, \\
H(-1, -2; p - 1) &\equiv -H(-2, -1; p - 1) \equiv -\frac{3}{4} B_{p-3}.
\end{align*}
\]

Proof. By Theorem 2.6 and by 2

\[H(1, -1; p - 1) \equiv -\sum_{k=1}^{p-1} \frac{q_k^2}{k^2} \equiv q_p(2)^2 \pmod{p}.
\]

By (i) and by the shuffling relation given by the product \(H(-1; p - 1)H(2; p - 1)\) we get

\[H(-1, 2; p - 1) = \frac{1}{2} H(-1; p - 1)H(2; p - 1) - \frac{1}{2} H(-3; p - 1) \equiv \frac{1}{4} B_{p-3} \pmod{p}.
\]

By (ii) and by Theorem 2.1

\[H(-1, -2; p - 1) \equiv -\frac{3}{4} H(1, 2; p - 1) - \frac{1}{4} H \left(1; \frac{p - 1}{2}\right) H \left(2; \frac{p - 1}{2}\right) \equiv -\frac{3}{4} B_{p-3} \pmod{p}.
\]

The remaining congruences follow by applying the reversal relation of depth 2.

Corollary 2.5. The following congruences mod \(p\) hold for any prime \(p > 3\)

\[
\begin{align*}
H(-1, 1, -1; p - 1) &\equiv 0, \\
H(1, 1, -1; p - 1) &\equiv H(-1, 1, 1; p - 1) \equiv -\frac{1}{3} q_p(2)^3 - \frac{7}{24} B_{p-3}, \\
H(-1, -1, 1; p - 1) &\equiv -H(1, -1, 1; p - 1) \equiv q_p(2)^3 + \frac{7}{8} B_{p-3}, \\
H(1, -1, 1; p - 1) &\equiv \frac{2}{3} q_p(2)^3 + \frac{1}{12} B_{p-3}, \\
H(-1, -1, -1; p - 1) &\equiv -\frac{4}{3} q_p(2)^3 - \frac{1}{6} B_{p-3}.
\end{align*}
\]
Proof. By the reversal relation of depth 3, \(H(-1, 1, -1; p - 1) \equiv -H(-1, 1, -1; p - 1) \equiv 0 \).
By Theorem 3.1 and by \(B_d \)
\[
H(1, 1, -1; p - 1) \equiv \sum_{k=1}^{p-1} \frac{2^k}{k^3} \equiv -\frac{1}{3} q_p(2)^3 + \frac{7}{12} H(-3, p - 1) \equiv -\frac{1}{3} q_p(2)^3 - \frac{7}{24} B_{p-3} \pmod{p}.
\]
By the shuffling relations given by the products
\[
H(1, -1; p - 1) H(-1; p - 1), \ H(1, -1; p - 1) H(1; p - 1), \text{ and } H(-1, -1; p - 1) H(-1; p - 1)
\]
we respectively find that
\[
2H(1, -1; p - 1) \equiv H(1, -1; p - 1) H(-1; p - 1) - H(1, 2; p - 1) - H(-2, -1; p - 1),
\]
\[
H(1, -1; p - 1) \equiv -2H(1, 1, -1; p - 1) - 2H(2, -1; p - 1),
\]
\[
3H(-1, -1, -1; p - 1) \equiv H(-1, -1; p - 1) H(-1; p - 1) - 2H(2, -1; p - 1).
\]
The remaining congruences follow by applying the reversal relation of depth 3. \(\Box \)

3 Proof of Theorem 1.1

The following useful identity appears in \(B_d \). Here we give an alternate proof by using
Riordan’s array method (see \(B_d \) for more examples of this technique).

Theorem 3.1. Let \(n \geq d > 0 \)
\[
d \sum_{k=1}^{n} \left(\frac{2k}{k+d} \right) \frac{x^{n-k}}{k} = \sum_{k=0}^{n-d} \left(\frac{2n}{n+d+k} \right) v_k - \left(\frac{2n}{n+d} \right)
\]
where \(v_0 = 2, v_1 = x - 2 \) and \(v_{k+1} = (x - 2)v_k - v_{k-1} \) for \(k \geq 1 \).

Proof. We first note that
\[
\left(\frac{2k}{k+d} \right) = \left(\frac{2k}{k-d} \right) = (-1)^{k-d} \frac{-k-d-1}{k-d} = \left[z^{k-d} \right] \frac{1}{(1-z)^{k+d+1}} = \left[z^{-1} \right] \frac{z^{d-1}}{(1-z)^{d+1}} \cdot \left(\frac{1}{z(1-z)} \right)^k.
\]
Since the residue of a derivative is zero then
\[
d \sum_{k=1}^{n} \left(\frac{2k}{k+d} \right) \frac{x^{n-k}}{k} = \left[z^{-1} \right] x^n \frac{dz^{d-1}}{(1-z)^{d+1}} G \left(\frac{1}{xz(1-z)} \right)
\]
\[
= -\left[z^{-1} \right] x^n \frac{dz^d}{(1-z)^d} G' \left(\frac{1}{xz(1-z)} \right) \cdot \left(\frac{1}{xz(1-z)} \right)'
\]
\[
= \left[z^{-1} \right] \frac{z^{d-1}}{(1-z)^{n+d+1}} \frac{1 - x^n z^n (1-z)^n}{1 - xz + x^2 z^2} \cdot (1 - 2z)
\]
\[
= \left[z^{-1} \right] \frac{z^{d-1}}{(1-z)^{n+d+1}} \frac{1 - 2z}{1 - xz + x^2 z^2}.
\]
Letting $F(z) = \sum_{k=0}^\infty v_k z^k$ and $G'(z) = \sum_{k=1}^n z^{k-1} = \frac{1-z^n}{1-z}$. Moreover
\[
\left(\frac{2n}{n+d+k} \right) = \left(\frac{2n}{n-d-k} \right) = (-1)^{n-d-k} \left(\frac{-n-d-k-1}{n-d-k} \right)
\]
\[
= [z^{n-d-k}] \frac{1}{(1-z)^{n+d+k+1}} = [z^{-1}] \frac{z^{d-n-1}}{(1-z)^{n+d+1}} \cdot \left(\frac{z}{1-z} \right)^k
\]
Letting $F(z) = \sum_{k=0}^\infty v_k z^k = \frac{2-(x-2)z}{1-(x-2)z+z^2}$ then
\[
\sum_{k=0}^{n-d} \left(\frac{2n}{n+d+k} \right) v_k - \left(\frac{2n}{n+d} \right) = [z^{-1}] \frac{z^{d-n-1}}{(1-z)^{n+d+1}} \cdot F \left(\frac{z}{1-z} \right) - [z^{-1}] \frac{z^{d-n-1}}{(1-z)^{n+d+1}}
\]
\[
= [z^{-1}] \frac{z^{d-n-1}}{(1-z)^{n+d+1}} \left(\frac{(2 - xz)(1-z)}{1-xz + xz^2} - 1 \right)
\]
\[
= [z^{-1}] \frac{z^{d-n-1}}{(1-z)^{n+d+1}} \frac{1 - 2z}{1-xz + xz^2}.
\]

\[\square\]

Corollary 3.2. For any $n > 0$
\[
4^n \sum_{k=1}^{n} \left(\frac{-1}{k} \right)^k \frac{(-1)^k}{k} = -4(-1)^n \sum_{d=0}^{n} \frac{(-1)^d}{n-d} \sum_{j=0}^{d-1} \frac{(2n)}{j} - 2(-1)^n \sum_{d=0}^{n} \frac{(-1)^d}{n-d} \frac{(2n)}{d}.
\]

Proof. Since
\[
0 = \sum_{d=-k}^{k} (-1)^d \left(\frac{2k}{k+d} \right) = \left(\frac{2k}{k} \right) + 2 \sum_{d=1}^{k} (-1)^d \left(\frac{2k}{k+d} \right)
\]
then for any $n \geq k$
\[
(-1)^k \left(\frac{-1}{k} \right)^k = 4^{-k} \left(\frac{2k}{k} \right) = -2 \cdot 4^{-k} \sum_{d=1}^{n} (-1)^d \left(\frac{2k}{k+d} \right).
\]
For $x = 4$ then $v_k = 2$ for all $k \geq 0$ and by Theorem 3.1
\[
4^n \sum_{k=1}^{n} \frac{(-1)^k}{k} \left(\frac{-1}{k} \right)^k = -2 \sum_{d=1}^{n} \frac{4^{n-k}}{k} \sum_{k=1}^{n} (-1)^d \left(\frac{2k}{k+d} \right) = -2 \sum_{d=1}^{n} (-1)^d \sum_{k=1}^{n} \frac{4^{n-k}}{k} \left(\frac{2k}{k+d} \right)
\]
\[
= -4 \sum_{d=1}^{n} (-1)^d \sum_{k=0}^{n-d} \left(\frac{2n}{n+d+k} \right) + 2 \sum_{d=1}^{n} (-1)^d \left(\frac{2n}{n+d} \right)
\]
\[
= -4 \sum_{d=1}^{n} (-1)^d \sum_{k=1}^{n-d} \left(\frac{2n}{n-d-k} \right) - 2 \sum_{d=1}^{n} (-1)^d \left(\frac{2n}{n-d} \right)
\]
\[
= -4(-1)^n \sum_{d=0}^{n-1} \frac{(-1)^d}{n-d} \sum_{j=0}^{d-1} \left(\frac{2n}{j} \right) - 2(-1)^n \sum_{d=0}^{n-1} \frac{(-1)^d}{n-d} \left(\frac{2n}{d} \right).
\]

\[\square\]

We will make use of the following lemma.
Lemma 3.3. For any prime \(p \neq 2 \) and for \(0 < j < p \)
\[
\binom{2p}{j} \equiv -2p \frac{(-1)^j}{j} + 4p^2 \frac{(-1)^j}{j} H(1; j - 1) \pmod{p^3}
\]
and
\[
\binom{2p}{p} \equiv 2 - \frac{4}{3} p^3 B_{p-3} \pmod{p^4}.
\]

Proof. It suffices to expand the binomial coefficient in this way
\[
\binom{2p}{j} = -2p \frac{(-1)^j}{j} \prod_{k=1}^{j-1} \left(1 - \frac{2p}{k} \right) = \frac{(-1)^j}{j} \sum_{k=1}^{j-1} (-2p)^k H(\{1\}^{k-1}; j - 1).
\]
and apply (i).

Proof of Theorem 1.1. Letting \(n = p \) in the identity given by Corollary 3.2 we obtain
\[
4p \sum_{k=1}^{p} \frac{(-1)^k}{k} \left(\frac{-1}{k} \right) = 4 \sum_{0 \leq j < d < p} \frac{(-1)^d}{p - d} \left(\frac{2p}{j} \right) + 2 \sum_{0 \leq d < p} \frac{(-1)^d}{p - d} \left(\frac{2p}{d} \right).
\]
that is
\[
4p^{-1} \sum_{k=1}^{p-1} \frac{(-1)^k}{k} \left(\frac{-1}{k} \right) = \frac{2 - \binom{2p}{p}}{4p} - \sum_{0 < d < p} \frac{(-1)^d}{d} + \sum_{0 < j < d < p} \frac{(-1)^d}{p - d} \left(\frac{2p}{j} \right) + \frac{1}{2} \sum_{0 < d < p} \frac{(-1)^d}{p - d} \left(\frac{2p}{d} \right).
\]
Now we consider each term of the r.h.s. separately. By Lemma 3.3
\[
\frac{2 - \binom{2p}{p}}{4p} \equiv \frac{1}{3} p^2 B_{p-3} \pmod{p^3}.
\]
By (ii)
\[
\sum_{0 < d < p} \frac{(-1)^d}{d} = H(-1; p - 1) = -2q_p(2) + p q_p(2)^2 - \frac{2}{3} p^2 q_p(2)^3 - \frac{1}{4} p^2 B_{p-3} \pmod{p^3}.
\]
Since for \(0 < d < p \)
\[
\frac{1}{p - d} = -\frac{1}{d(1 - \frac{d}{p})} \equiv -\frac{1}{d} - \frac{p}{d^2} \pmod{p^2}
\]
then by Lemma 3.3 (i), and (iii) we have that
\[
\sum_{0 < d < p} \frac{(-1)^d}{d} \left(\frac{2p}{d} \right) \equiv \sum_{0 < d < p} \left(-\frac{(-1)^d}{d} - p \frac{(-1)^d}{d^2} \right) \left(-2p \frac{(-1)^d}{d} + 4p^2 \frac{(-1)^d}{d^3} H(1; d - 1) \right)
\]
\[
\equiv 2p H(2; p - 1) + 2p^2 H(3; p - 1) - 4p^2 H(1, 2; p - 1)
\]
\[
\equiv -\frac{8}{3} p^2 B_{p-3} \pmod{p^3}.
\]
In a similar way, by Lemma 3.3 and Corollaries 2.4 and 2.5 we get
\[
\sum_{0 < j < d < p} \frac{(-1)^d}{d} \left(\frac{2p}{j} \right) \equiv \sum_{0 < j < d < p} \left(-\frac{(-1)^d}{d} - p \frac{(-1)^d}{d^2} \right) \left(-2p \frac{(-1)^d}{j} + 4p^2 \frac{(-1)^d}{j^2} H(1; j - 1) \right)
\]
\[
\equiv 2p H(-1, -1; p - 1) + 2p^2 H(-1, -2; p - 1) - 4p^2 H(1, -1, -1; p - 1)
\]
\[
\equiv 4pq_p(2)^2 + \frac{4}{3} p^2 B_{p-3} \pmod{p^3}.
\]
Thus

\[4^{p-1} \sum_{k=1}^{p-1} \left(\frac{-1}{k} \right) \left(\frac{-1/2}{k} \right) = 2q_p(2) + 3pq_p(2)^2 + \frac{2}{3} p^2 q_p(2)^3 + \frac{7}{12} p^2 B_{p-3} \quad (\text{mod } p^3). \]

Since \(4^{p-1} = (q_p(2)p + 1)^2 = 1 + 2q_p(2)p + q_p(2)^2 p^2 \) then

\[4^{-(p-1)} = (1 + 2q_p(2)p + q_p(2)^2 p^2)^{-1} \equiv 1 - 2q_p(2)p + 3q_p(2)^2 p^2 \quad (\text{mod } p^3). \]

Finally

\[\sum_{k=1}^{p-1} \frac{\left(\frac{-1}{k} \right) \left(\frac{-1/2}{k} \right)}{k} \equiv (1 - 2q_p(2)p + 3q_p(2)^2 p^2) \left(2q_p(2) + 3pq_p(2)^2 + \frac{2}{3} p^2 q_p(2)^3 + \frac{7}{12} p^2 B_{p-3} \right) \]

\[\equiv 2q_p(2) - pq_p(2)^2 + \frac{2}{3} p^2 q_p(2)^3 + \frac{7}{12} p^2 B_{p-3} \quad (\text{mod } p^3). \]

Note that by (ii) the r.h.s. is just \(-H(1, (p - 1)/2) = - \sum_{k=1}^{(p-1)/2} \frac{1}{k} \).

References

[1] J. W. L. Glaisher, *On the residues of the sums of products of the first \(p - 1 \) numbers, and their powers, to modulus \(p^2 \) and \(p^3 \)*, Quart. J. Math. 31 (1900), 321–353.

[2] A. Granville, *The square of the Fermat quotient*, Integers 4 (2004), #A22.

[3] K. Dilcher and L. Skula, *The cube of the Fermat quotient*, Integers 6 (2006), #A24.

[4] M. E. Hoffman, *Quasi-symmetric functions and mod \(p \) multiple harmonic sums*, preprint [arXiv:math.NT/0401319v2] (2007).

[5] R. Sprugnoli, *Riordan arrays and combinatorial sums*, Discrete Mathematics, 132 (1994), 267–290.

[6] Z. H. Sun, *Congruences concerning Bernoulli numbers and Bernoulli polynomials*, Discrete Appl. Math. 105 (2000), 193–223.

[7] Z. W. Sun and R. Tauraso, *New congruences for central binomial coefficients*, preprint [arXiv:0805.0563v2 [math.NT]] (2009).

[8] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, Lecture Notes in Pure and Appl. Math., 192 (1997), 223–236.

[9] L. L. Zhao and Z. W. Sun, *Some curious congruences modulo primes*, preprint [arXiv:0904.1162v1 [math.NT]] (2009).

[10] J. Zhao, *Wolstenholme type theorem for multiple harmonic sums*, International J. of Number Theory 4 (2008), 73–106.

[11] X. Zhou and T Cai, *A generalization of a curious congruence on harmonic sums*, Proc. Amer. Math. Soc. 135 (2007), 1329–1333.