Molecular Detection of *Echinococcus granulosis* from Visceral Organs of Cattle Abattoirs-Kerbala Province

Rana A. Jawad, Ihsan M. Sulbi, Yasser J. Jameel and Hayder A. Muhammid

College of Veterinary Medicine, University of Kerbala, Karbala, Iraq.

http://dx.doi.org/10.22207/JPAM.12.2.29

(Received: 06 March 2018; accepted: 29 April 2018)

The aim of this study was to choose the optimal PCR technique with specific designing primer design of cystic fluid of *Echinococcus granulosus* hydatid cyst in cattle have slaughtered in kerbala abattoirs / kerbala governorate, the techniques have allowed to reduce the time consumption .Nucleotide sequences of *Echinococcus granulosus* in Iraq cattle was obtained from NCBI websites with other researchers concerned in this topic, numerous visceral organs Livers , lungs and liver with lung suspected have hydatid cysts were isolated from 35 cows’s slaughter, In PCR the highest number of positive results have 22(62.8%) were detected as *Echinococcus granulosus* hydatid cyst, on the other organs, the parasite isolation ratio was calculated from internal organs the percentage of hydatid cysts were significant increases as 12 (63.6%), 6 (27.2%)and 2(18.1%) for Liver, lung and liver with lung, respectively.

Keywords: *Echinococcus granulosus*, Hydatid cyst in cow and PCR.

Echinococcosis is a zoonotic disease of man and domestic animals with worldwide importance of *Echinococcus granulosus*, the common site for infections are liver, lung and other organs.

The life cycle of this parasite is indirect, it has dogs and other canids as a final host and Omnivorus with harbivorus as intermediate host.

The disease transmission, when food or water that contains the eggs of parasite is eaten or close contact with infected.

Animals, in the human and intermediate host via infected handling soil or dirt animal hair with eggs, but there are not biological or mechanical vectors for larval stage except birds and arthropods can act a mechanical vectors for eggs. The disease occur without symptoms and signs but these appear deponot the cyst’s size and location, the disease has in both human and animals health considerable impact with economic loss in animal production.

There are ten genotypes of *E. granulosns* (G1-G10), (G1) in sheep, (G2 – G3) in buffalo, (G4) in aquine, (G5) in cattle, (G6) in camel, (G7) in pigs and (G8 – G10) are cervid strains with different in regions distribution and the pathological identification is difficult in the case of aberrant forms also different in host specificity, pathogenicity life cycle pattern, transmission and rates of development finally response to the chemotherapeutic drugs.

Polymerase chain reaction (PCR) based other methods has been vastly used for genotyping of *E. granulosis* now the clinical sample are taken biopsy to PCR for amplified fragments of mitochondrial and nucleus DNA are subsequently sequenced.

The aim of the study

The aim of this study were to choose the optimal PCR technique with specific designing primer for cystic fluid to detect *Echinococcus*
JAWAD et al.: MOLECULAR DETECTION OF *Echinococcus granulosus*

MATERIALS AND METHODS

An internal organ of cow which includes Liver, lung and liver with lung were sent to parasitological laboratory in the kerbala Veterinary Medicine for parasite testing. For this, all cysts with organs were cut into one centimeter pieces and left in warm water for 20 minutes. Then, removed by compression, and the sediments were obtained. DNA extraction were used for all cystic fluid and pieces by Tissue/Blood DNA Mini Kit (Geneaid, Korea), by following of manufacturer’s instructions. The primer pair was used to amplify the partial mitochondrial NADH dehydrogenase subunit I (ND1) gene of *Echinococcus granulosus*, The sequence used in this study was from the National Center for Biotechnology (http://www.ncbi.nlm.nih.gov/) websites have accession numbers as (AY386216.1, KY766890.1, AF297617.1 and KX039956.1) the primer was designed from Primer3 plus (http://primer3.wi.19.edu/) website, The sequence of the primers are designed for the following. PCR amplification was completed using conventional PCR conditions in a final volume of twenty five microns: five microns of DNAtemplate (20 ng/µl), 12¼l MilliQ water and 1.5µl for both primer forward and reverse primer (10 µM), all mixer were collected on each PCR tubes containing 5µl of AccuPower® ProFiTaq PCR PreMix (Bioneer, Korea). The PCR reactivity was hold out in a Techne TC-512 thermocycler with the following cycling conditions: initial denaturation(95 °C, 15 min), succeed by 35 cycles of denaturation (95 °C, for thirty seconds), annealing (56 °C, 40 s) and sixty second for extension have (72 °C), and a last extension step (72 °C, 10 min). All the amplification of single fragment of the expected size was establish by gel electrophoresison a 1.5 % agarose gel (TBE, 1 %) stained with ethidium bromide. followed by 30 cycles using 1 min denaturation at 94°C, 1 min annealing at 55°C and 2 min extension at 72°C, PCR reactions were assayed on 1.5% agarose gels in the presence of 5 g/ml ethidium bromide.

RESULTS AND DISCUSSION

Echinococcosis in Iraqi is major endem disease and enzootic, a total number of 35 slaughtered cattle were inspected in this study. The overall prevalence of hydatidosis in slaughtered livestock was 22 (62.8%). In total, 12 (63.6%), 6 (27.2%) and 2 (18.1%) Liver, lung and liver with lung, were condemned in slaughterhouses due to *E. granulosus* hydatid cysts in cattle, respectively. Additionally, PCR technique were used to detect these parasites in hydatid cysts in both organs. Figure 1.

Name of primers	sequences	Base pair	Melting temperature	G-C contents
Cox1F	5'-CGAACACGTGGTAATGTGC-3'	20 bp	59.83 °C	50.0%
Cox1R	5'-TCCGTGGTTGTTGTTTGGC-3'	20 bp	59.91 °C	50.0%

1 to 74.4 % in dogs and sheep, respectively, 3.5 to 38.3 % in cattle 1.7 to 20 Vorin. L goats, (Estatim—and Hosseint1998; Ahmacti 2005; AnsarirLari_2 05; gsakiaL20_091 Shahb-azi—eral72171:4).

The application of polymerase chain reaction (PCR) is based on studies involved large number of *Echinococcus granulosus* were limited due to cumbersome methods access to the genomes of these parasities (@) lytic Enzymes and protein
Extraction to purified DNA parasities in particular *Echinococcus granulosus* involve weakening of the membrane of hydatid cyst by the presence of followed by enzymatic treatment and ionic detergents.

As detergents such as (sodium dodecyl sulfate) SDS have a deleterious effect on the protein denaturation of membrane of hydty cysts (@) it was necessary to modify a designing primer such procedures to use in PCR, the selection of appropriate primers for maximal specificity and efficiency. Primer specificity was affected by a number of factors, including sequence, primer location and the PCR system used. General primer– designing rules for polymerase chain reaction were also applicable in PCR to avoid primer– dimer mismparing formation.

CONCLUSION

There are many studies reviewed the importance of echinococosis but the program control against hydatid cyst cannot be successful unless the farmers education, charged people about this disease and controlled slaughters of livestock must be effective.

REFERENCES

1. A.R.Satoskar, G.L.Simon, P.J.Hotoz and M.Tusji “medical parasitology lardes Bioscience”, Taxas, 2009.
2. M.Jawetz and adelberg’s “medical microbiology ”, 24 Edn. The McGraw – Hill companies, Inc, New York, 2007.
3. Latif .A.A, Yanveer , A , maqbool,A. Siddigmi ,N, Kyaw – Tanner ,M and Traub, R.J – Morphological and molecular – characterization of E. granulosus in livestock & human in Punjab, Piskistan, *Vet. Parasitol*, 2010; **170**: 44 – 49.
4. World health Organization “Echinococcosis fact sheet No. 377 ” March, 2014)
5. Eekert , J. and Deplazes .p. “ Biological , epidemiological and clinical aspects of echinococcosis , azoonosis of increasing concern ” *clin.microbile rev*. 2004; **17**(1): 107 – 135.
6. “Echinococcus granulosus” material safety Data sheets (MSDs) public healthy agency of Canada, 2001.
7. Connolly stephaine . “ Echinococcosis “, 2006.
8. Torgerson , P.R “ Economic effects of echinococcosis “. *Acta Trop*. 2003; **85**: 113 – 118.
9. Nakao , m, Lavikainen , A , Yanagida , T and Akira , I “ phylogenetic systematics of the genus Echinococcus (Gestoda Taeniidae) ” *Int. J paradi tol*. 2013; **43**: 117 – 1029.
10. Romig , T , Ebi , D. and Wassermannk, M “ toxonomy and molecular epidemiology of E. granulosus , sensu lato “ *veto parasitol*. 2015; **213**: 76 – 84.
11. E. Sanchez, G. Caceres, C. Naguiret D., Garcia , G. patino , H, silvia , A,C, voloteno and O. Fernandez. “ Molecular characterization of E. granulosus from peru by Eqmenencing of the mitochondriol Cytochromec oxidase subunit 1 gene “ memories do instituto Oswalado cruz, 2010; **105**(6): pp. 806 – 801.
12. McManns, Dp “ Current status of the genetics and molecular taxonomy ofechinococcus spp. *Parasitology*, 2013; **140**: 1617 – 1623.
13. Nakao ,m , Tetsuya , Y ,A , Munehiro , O,R , Jenny , k ,A , Agathe , N ,A yashinto , S.A and Akira , J .A “, state of – the Art echinococcus and taenia : phylogenetic tape morms and its application to moleculair diagnosis infection , *Genetics and evolution*, 2010; **10**(4): Pp: 444 – 452.
14. Sharafi , S.M , Rstami – Nejad , M. Mozaeni , m. Yousefi , M , saneie , B., Hosseini – Safe , A “ echinocosus granulosus genotypes in Iran , Gastroenterol hepatoal the etiological diagnosis of suspected hydatid cyst” *J.Parasit Dis*, 2004; **28**(2): 8 – 64.
15. McManus, Dp. Zhang , W , Li , J and Bartley , P.B “ *Echinococosus Lancet*, 2003; **362**: 1295 – 1304.
16. Kagenda , D. Magambo , J., Agola E.L et.al “ A survey for Echinococcus spp. Of carnivores in six wild life conservation area in Kenya parasitol Int. 2014; **63**(4): 604 – 11.
17. Moghaddas , E., Borji , H., Naghibi , A , shayan , P and Razmi , G.R “ Moolecualr gentyping of Echinoococcus granulosus from dromedairs in eastern Iran *J. Helminthol*: 2013; 1-5.
18. Untergasser, A. cutululache , I Koressaar, T , J. , faircolthes , Be remm , M and Rozan m Sc primer , new capabilities and interfaces *Nucleic acids Res* 2012, 140(15): e 115.
19. Koressaar, T abd Romm , M Enhancements and modification of primer design program primer 3 , *bioinformatics* **23**(10): 1290 – 91.
20. Al-Mounasi , Ms. “ Epidemiological and Serommunological studies on Hudatid disease in Basrah (southern Iraq) PhD thesis biology department education college university of Basrah Iraq. 1998.
21. Babero , B.B and Al-Dabbagh , M.A the zoonosis of animal parasite in Iraqi *J.Fac med Baghdad* 1963; **5**: 79 – 84.
22. N. Ahmadi and A.m Dalimi “molecular characterization of E. granulosus isolate from sheep, human and female in Iran, B.v. 2006; 6: 85 – 90.

23. Rokni, M. “Echinococcosis / Hydatidosis in Iran parasitol 4: 1-16. 2009. Eslami, A and Hosseini, S.H.” Echinococo granulosus infection of farm dogs of Iran. Parasitology research, 1998; 84: 205-207.

24. Hakialilo, E., Fasihi, Harandi, M., sharbatkhori, M., Mirhendi, H and Rostami, S. “Genetic characterization of E.granulosus in camels, cattle and sheep from the south east of Iran indicates the G3 genotype. T Helminthe, 2012; 86 – 263 – 270.

25. Fasihi Haranmdi, M, Budke, Cm. and Rostami, S. “The monetary burden of cystic echinococcosis in Iran plosnegl trop. Dis, 2012; 6: 38.