Naloxone, but Not Valsartan, Preserves Responses to Hypoglycemia After Antecedent Hypoglycemia

Role of Metabolic Reprogramming in Counterregulatory Failure

Michal M. Poplawski,1 Jason W. Mastaitis,2 and Charles V. Mobbs1

OBJECTIVE—Hypoglycemia-associated autonomic failure (HAAF) constitutes one of the main clinical obstacles to optimum treatment of type 1 diabetes. Neurons in the ventromedial hypothalamus are thought to mediate counterregulatory responses to hypoglycemia. We have previously hypothesized that hypoglycemia-induced hypothalamic angiotensin might contribute to HAAF, suggesting that the angiotensin blocker valsartan might prevent HAAF. On the other hand, clinical studies have demonstrated that the opioid receptor blocker naloxone ameliorates HAAF. The goal of this study was to generate novel hypothalamic markers of hypoglycemia and use them to assess mechanisms mediating HAAF and its reversal.

RESEARCH DESIGN AND METHODS—Quantitative PCR was used to validate a novel panel of hypothalamic genes regulated by hypoglycemia. Mice were exposed to one or five episodes of insulin-induced hypoglycemia, with or without concurrent exposure to valsartan or naloxone. Corticosterone, glucagon, epinephrine, and hypothalamic gene expression were assessed after the final episode of hypoglycemia.

RESULTS—A subset of hypothalamic genes regulated acutely by hypoglycemia failed to respond after repetitive hypoglycemia. Responsiveness of a subset of these genes was preserved by naloxone but not valsartan. Notably, hypothalamic expression of four genes, including pyruvate dehydrogenase kinase 4 and glycerol 3-phosphate dehydrogenase 1, was acutely induced by a single episode of hypoglycemia, but not after antecedent hypoglycemia; naloxone treatment prevented this failure. Similarly, carnitine palmitoyltransferase-1 was inhibited after repetitive hypoglycemia, and this inhibition was prevented by naloxone. Repetitive hypoglycemia also caused a loss of hypoglycemia-induced elevation of glucocorticoid secretion, a failure prevented by naloxone but not valsartan.

CONCLUSIONS—Based on these observations we speculate that acute hypoglycemia induces reprogramming of hypothalamic metabolism away from glycolysis toward β-oxidation, HAAF is associated with a reversal of this reprogramming, and naloxone preserves some responses to hypoglycemia by preventing this reversal. Diabetes 60:39–46, 2011
Blood glucose was additionally measured over 240 min, at which time the hypoglycemia groups. On the final day of hypoglycemia, animals were randomly assigned to one of seven groups (n = 10), designated in Figure 1: Eu (saline-injected euglycemic), 1XH (acute insulin-induced hypoglycemia without antecedent hypoglycemia), 5XH (acute hypoglycemia with four antecedent days of hypoglycemia), Eu-V (euglycemic group with oral valsartan 40 mg/kg/day), 1XH-V (acute hypoglycemia with oral valsartan), 5XH-V (acute hypoglycemia with four antecedent days of hypoglycemia maintained on oral valsartan), 5XH-N (acute hypoglycemia with four antecedent days of hypoglycemia with 2 mg/kg naloxone injected intraperitoneally 15 min before every insulin injection). Antecedent hypoglycemia (5XH) consisted of four consecutive days of insulin-induced hypoglycemia (3 h), followed on the 5th day with the final episode of acute hypoglycemia and the animals killed 4 h after insulin injection. The group exposed to acute insulin-induced hypoglycemia without antecedent hypoglycemia (1XH) received physiological saline injections for 4 days, followed by acute hypoglycemia on the 5th day. The euglycemic group (Eu) received saline injections for five consecutive days. The valsartan groups (1XH-V, 5XH-V) ingested 40 mg/kg/day oral valsartan starting 5 days prior to commencing the 5-day injection protocol and continued on oral valsartan throughout the study. Before the 40-mg/kg/day dose, the valsartan groups received a 20-mg/kg/day dose for a 2-day adjustment period. The naloxone group (5XH-N) received an injection of naloxone (2 mg/kg, intraperitoneally) 15 min before every insulin injection. Therefore, the 5XH-N group received a total of 5 days of insulin injections preceded on each day by an injection of naloxone. In all cases, mice were killed 4 h after the injection of insulin (or saline for euglycemic mice). Mice were killed following a balanced design at the start of the light period (10:00 A.M. to 2:00 P.M.). Mice were killed by decapitation after a brief exposure to carbon dioxide. Hypothalamic and cortical areas, along with peripheral tissues, were quickly removed, frozen on dry ice, and stored at −70°C until extraction of RNA. Trunk blood was collected for analysis of corticosterone levels.

Blood chemistry. Blood chemistry was carried out in all mice (n = 10, 7 groups). Blood glucose was measured by a Contour glucose meter (Bayer, Mountain View, CA). Blood glucagon was measured using an ELISA from Rocky Mountain Diagnostics (Colorado Springs, CO). Blood corticosterone levels were measured using an enzyme-linked immunosorbent assay (ELISA) from Wako Chemicals USA (Richmond, VA), and epinephrine was measured using an ELISA from Dynatech Laboratories (Chantilly, VA). Blood glucagon was measured using an ELISA from Wako Chemicals USA (Richmond, VA), and epinephrine was measured using an ELISA from Rocky Mountain Diagnostics (Colorado Springs, CO).

Extraction of hypothalamic RNA and cdNA synthesis. Gene expression was assessed for six mice per group based on the qualified RNA. To obtain the RNA for gene expression analysis by real-time RT-PCR, hypothalamic tissue was homogenized in tubes containing RLT buffer (Qiagen, Valencia, CA) supplemented with 2-5ME, and total RNA was extracted using the RNeasy Mini Kit (Qiagen). The quality of the total RNA was assessed using the Biophotometer (Eppendorf, Hauppauge, NY). Due to the capacity limitations of the PCR array plates, six out of ten samples from each experimental group were selected (based on superior RNA quality) and were RNA-RNA exchange RNeasy Mini Kit (Qiagen). From these microarrays, a set of genes was chosen to discover genes that are regulated by hypoglycemia and fasting. From these microarrays, a set of genes was chosen to discover genes that are regulated by hypoglycemia and fasting. The expression of a subset of these genes was assessed in the present study using a custom-designed qPCR array (SABiosciences). The genes were chosen based on prior DNA microarray studies as described in the RESULTS section. The qPCR reactions were carried out using an ABI Prism 7900 thermocycler. Six of the seven housekeeping genes on the array were used to normalize the gene expression by the ΔΔCt method. Data were analyzed using a web-based software program provided by the manufacturer with additional analysis using GraphPad Prism 4 for Macintosh.

RESULTS

Novel hypothalamic hypoglycemia–induced genes. As shown in Fig. 1, similar levels of hypoglycemia were achieved in all insulin-injected groups.

One purpose of this study was to expand the panel of hypothalamic genes regulated by hypoglycemia (7) to facilitate assessing mechanisms of HAAF. Toward this end, a series of DNA microarray studies were undertaken to discover genes that are regulated by hypoglycemia and fasting. From these microarrays, a set of genes was chosen that were significantly (by uncorrected t test) regulated in the same direction by both hypoglycemia and fasting. The expression of a subset of these genes was assessed in the present study using a custom-designed qPCR array (SABiosciences). This array is now commercially available from SABiosciences and constitutes a powerful resource for the scientific community. After qPCR, expression of these genes was statistically assessed by one-way ANOVA followed by Dunnett post hoc test. Only genes for which the overall ANOVA was significant (P < 0.05) and an effect...
of either acute or repetitive hypoglycemia was significant by post hoc test, which were also significantly regulated by fasting in a separate study, are presented in this article (Table 1).

Hypoglycemia-induced elevation of plasma corticosterone fails after antecedent hypoglycemia: prevention of failure by naloxone, but not valsartan. In the present study, mice were killed 4 h after insulin injection to allow examination of hypothalamic molecular responses to gene expression (7). However, this time point is not optimum for the assessment of the failure of hormonal responses, which in mice are usually measured 120 min after the induction of hypoglycemia (19,20), similar to studies in rats (4,21) and humans (22). Thus, although we measured all three counterregulatory hormones, any conclusions based on hormone levels at this late time point must be interpreted with caution. As observed in humans (23), a single acute exposure to hypoglycemia caused a significant elevation of plasma corticosterone, a response completely prevented by antecedent hypoglycemia (Fig. 2A). This counterregulatory failure was not prevented by treatment with valsartan, but was completely prevented by treatment with naloxone. Similarly, a single exposure to hypoglycemia caused a significant elevation of plasma glucagon, and this induction was completely prevented by antecedent hypoglycemia (Fig. 2B). Furthermore, the failure of glucagon to respond to hypoglycemia was not rescued by either drug treatment (Fig. 2B). Finally, plasma epinephrine was also induced by a single episode of hypoglycemia, but this induction was not blocked at this time point by antecedent hypoglycemia (Fig. 2C). However, the induction appears to have been attenuated by valsartan and naloxone (Fig. 2C). Subject to the caveat concerning the late time point, these results do not support that valsartan will prevent counterregulatory failure and may in fact worsen failure. Furthermore, naloxone, while possibly protective for activation of the hypothalamic-adrenal-pituitary axis, may not protect against failure in glucagon and epinephrine secretion after antecedent hypoglycemia.

Hif3α, S3-12, and GLUT1 are induced after acute and repetitive hypoglycemia. As shown in Table 1 and Fig. 3, Hif3α (hypoxia-induced factor 3α), S3-12 (perilipin 4), and GLUT1 (facilitative GLUT isoform 1) were induced by acute hypoglycemia. Induction by hypoglycemia was not influenced by antecedent hypoglycemia, valsartan, or naloxone. Thus, the induction of these genes did not correlate with HAAF or its reversal by naloxone. Furthermore, the induction of these genes appears not to be dependent on hypoglycemia-induced angiotensin since valsartan did not influence the expression of these genes. It should be noted that in this study the induction of angiotensin by hypoglycemia did not reach statistical significance, so these results are not presented here.

Induction of Pdk4, Gpd1, Angptl4, and Cdkn1a by acute hypoglycemia fails after antecedent hypoglycemia: prevention of failure by naloxone, but not valsartan. Another set of genes was induced by acute hypoglycemia but not after antecedent hypoglycemia: Pdk4 (pyruvate dehydrogenase kinase 4), Gpd1 (glycerol 3-phosphate dehydrogenase isoform 1), Angptl4 (also known as fasting-induced adipose factor), and Cdkn1a (also known as p21) (Fig. 4). The failure of these genes to respond to hypoglycemia after antecedent hypoglycemia was prevented by treatment with naloxone, but not by treatment with valsartan (Fig. 4).

Naloxone prevents the regulation of Gpd2, Cxxl14, and Sox17 by hypoglycemia. A different pattern of expression was observed for the genes in Fig. 5; the regulation of these genes by hypoglycemia was not impaired by antecedent hypoglycemia but was prevented by naloxone, though not by valsartan. In contrast to Gpd2 (glycerol 3-phosphate dehydrogenase isoform 2) and Cxxl14 (chemokine [C-X-C] motif ligand 14), which were inhibited by hypoglycemia, Sox17 (SRY-box containing gene 17) was induced by hypoglycemia.

Naloxone prevents the inhibition of Cpt1a by repetitive hypoglycemia. The only gene in our panel that was significantly regulated by repetitive hypoglycemia but not acute hypoglycemia was Cpt1a. This inhibition was prevented by naloxone (Fig. 6).

Induction of Ucp2 and Pnpla2 by acute hypoglycemia fails after repetitive hypoglycemia, and failure is not reversed by naloxone or valsartan. Finally, Fig. 7 depicts the genes whose induction by acute hypoglycemia failed after antecedent hypoglycemia and whose failure was not prevented by naloxone. These genes were Ucp2 (Uncoupling Protein 2) and Pnpla2 (also known as adipose triglyceride lipase).

Table 1

Gene symbol	Gene name	Reference sequence no.	Fold change (mean ± SE)	P
Angptl4	Angiopoietin-like 4	NM_025581	2.13 ± 0.15	0.00003
Cdkn1a	Cyclin-dependent kinase inhibitor 1A (p21)	NM_007669	5.67 ± 0.44	0.000001
Cpt1a	Carnitine palmitoyltransferase 1a	NM_013495	1.10 ± 0.11	0.53285
Cxxl14	Chemokine (C-X-C motif) ligand 14	NM_019568	0.82 ± 0.03	0.00133
GLUT1	facilitated glucose transporter, member 1	NM_011400	1.91 ± 0.32	0.01853
Gpd1	Glycerol 3-phosphate dehydrogenase 1 (soluble)	NM_010271	1.67 ± 0.16	0.00708
Gpd2	Glycerol 3-phosphate dehydrogenase 2 (mitochondrial)	NM_010274	0.94 ± 0.01	0.03812
Hif3a	Hypoxia inducible factor 3, α subunit	NM_016868	2.06 ± 0.27	0.00575
Pdk4	Pyruvate dehydrogenase kinase, isoenzyme 4	NM_013743	1.77 ± 0.23	0.01009
Pnpla2	Patatin-like phospholipase domain containing 2	NM_025802	1.64 ± 0.13	0.00084
S3-12	Perilipin 4	NM_020568	3.04 ± 0.21	0.00007
Sox17	SRY-box containing gene 17	NM_011441	1.46 ± 0.12	0.00565
Ucp2	Uncoupling protein 2	NM_011671	1.98 ± 0.28	0.01186
In these studies, we observed that 4 days of antecedent hypoglycemia in mice completely prevented the elevation of corticosterone produced by acute hypoglycemia (Fig. 2A) and glucagon (Fig. 2B) but not epinephrine (Fig. 2C) when measured 240 min after the injection of insulin. The counterregulatory failure to increase corticosterone was prevented by naloxone, but not valsartan, and the counterregulatory failure of glucagon was not prevented by either treatment.

The pattern of gene expression in these studies suggests a metabolic basis for HAAF and its prevention by naloxone. (We conclude that the effects of insulin-induced hypoglycemia on gene expression are due to hypoglycemia, not insulin, since in every case the effects of insulin-induced hypoglycemia were in the same direction as produced by fasting, a condition characterized by reduced glucose and reduced insulin.) First, it should be noted that acute hypoglycemia–induced Pdk4 (Fig. 4), which inhibits pyruvate dehydrogenase, constitutes a classic mechanism to shift metabolic economy away from glycolysis and toward β-oxidation (24). Such a shift would be expected to
enhance sensitivity to hypoglycemia by reducing glucose metabolism. However, the induction of Pdk4 was reversed after antecedent hypoglycemia and was prevented by valsartan. Relative expression levels of (A) Gpd2 (glycerol 3-phosphate dehydrogenase 2, mitochondrial), (B) Cxcl14, and (C) Sox17 were assessed using custom PCR arrays from SABiosciences in the same groups described in Fig. 1. Animals were killed 4 h after the final insulin or saline injection. Data for each gene were normalized to a panel of housekeeping transcripts and expressed as fold change compared with the saline-injected (euglycemic) group. Data are means ± SE (n = 6 for all groups). *P < 0.05 as compared with the euglycemic group (Dunnett test).
NALOXONE, NOT VALSARTAN, PREVENTS HAAF IN MICE

FIG. 6. Hypothalamic expression of Cpt1a was significantly regulated by repetitive hypoglycemia but not acute hypoglycemia, and this inhibition was prevented by naloxone. Relative expression level of Cpt1a (carnitine palmitoyltransferase 1a, liver) was assessed with custom PCR arrays from SABiosciences in the same groups described in Fig. 1. Animals were killed 4 h after the final insulin or saline injection. Data for each gene were normalized to a panel of housekeeping transcripts and expressed as fold change compared with the saline-injected (euglycemic) group. Data are means ± SE (n = 6 for all groups), *P < 0.05 as compared with the euglycemic group (Dunnett test).

tracers that recurrent antecedent hypoglycemia caused a robust increase in neuronal, but not glial, pyruvate dehydrogenase activity in association with counterregulatory failure, consistent with a decrease in Pdk4 activity. This set of observations suggests that HAAF is caused by a failure to maintain the shift away from glycolysis toward alternate fuel use in neurons, and that naloxone prevents HAAF by maintaining this shift.

The pattern of expression of other genes supports this metabolic shift hypothesis. For example, like Pdk4, the induction of Angptl4 by hypoglycemia fails after antecedent hypoglycemia, and this failure is prevented by naloxone. Angptl4 stimulates β-oxidation and uncoupling (29), directly supporting that acute hypoglycemia reprograms hypothalamic metabolism away from glycolysis and toward alternate fuel use (β-oxidation), that HAAF is associated with the failure of this reprogramming, and that naloxone prevents HAAF by preventing this failure. Similarly, hypothalamic Ucp2 has recently been shown to mediate an induction of β-oxidation (23). Similarly, repetitive hypoglycemia inhibited Cpt1a (Fig. 6), an effect prevented by naloxone. β-Oxidation mediated by Cpt1 constitutes a key element by which hypothalamic neurons sense nutritional state, plausibly by reducing nutrient flux through pathways that metabolize glucose (23,30). Therefore the reduction in β-oxidation produced by repetitive hypoglycemia would be expected to increase nutrient flux through pathways that metabolize glucose, thus increasing sensitivity to glucose and reducing sensitivity to hypoglycemia. The prevention of this effect by naloxone also supports that HAAF is caused by the failure to produce alternative metabolic pathways to glucose utilization.

Furthermore, the induction of Gpd1 by hypoglycemia (Fig. 4) fails after antecedent hypoglycemia, a failure prevented by naloxone but not valsartan. Gpd1 catalyzes the interconversion of glycerol and dihydroxyacetone (DHA). DHA is converted to glycerol as part of the glycerol NADH shuttle mechanism. However, this shuttle requires the activity of Gpd2, and in this study we observed that hypoglycemia inhibited Gpd2 (Fig. 5), an effect that was prevented by naloxone but not valsartan. Thus, inhibition of the glycerol shuttle activity (which is active during glycolysis) correlated with the failure of the counterregulatory elevation of corticosterone. This suggests that the key metabolic effect of Gpd1 induction by hypoglycemia is to catalyze conversion of glycerol to DHA, providing an alternative to glucose for fuel; that failure in this conversion is associated with counterregulatory failure; and that naloxone prevents counterregulatory failure by maintaining this alternative metabolic pathway.

The other gene most prominently implicated in HAAF and its reversal by naloxone is Cdkn1a, more commonly known as p21, a major inhibitor of cell division. However, the functional significance of Cdkn1a in counterregulation and its failure is unclear. It is plausible that Cdkn1a expression is a reflection, rather than a cause, of counterregulatory failure since this gene is induced by glucocorticoids (31). Interestingly, Cxc114 appears to produce insulin resistance (32), so its inhibition by hypoglycemia might enhance the inhibitory effect of insulin on the counterregulatory response (33), and reversal of this inhibition might mediate part of the reversal of impairments by naloxone. Finally, Sox17 is the canonical inhibitor of the Wnt signaling pathway (34), and some evidence suggests that the Wnt pathway promotes glycolysis at the expense of β-oxidation (35). Thus, Sox17 may contribute
to the apparent switch away from glycolysis produced by hypoglycemia as indicated above, but since the induction continues even after antecedent hypoglycemia, counter-regulatory failure is probably not attributable to the Sox17/Wnt pathway.

It should also be noted that many of the genes associated here with impaired counterregulatory elevation of corticosterone are induced by the metabolic transcription factor Ppar-α, including Pdk4, Cpt1α, Ucp2 (36), and Gpd1 (36,37). Indeed, a major function of Ppar-α is to activate the uptake and oxidation of free fatty acids (36) and glycerol metabolism (37). Furthermore, Ppar-α knockout exhibits hypoglycemia during fasting (38), a phenomenon plausibly similar to HAAF. Of particular interest, whole-body glucose use is reduced by infusing an activator of Ppar-α into the third ventricle (38). We therefore speculate that counterregulatory responses are enhanced by hypothalamic activation of Ppar-α, that this action fails after repetitive hypoglycemia, that this failure is reversed by naloxone, and that Ppar-α activators such as WY13643 might also be useful in reversing counterregulatory failure. It must be emphasized however that this speculation has not been directly tested.

To the extent that naloxone prevented the loss of responsiveness to hypoglycemia by antecedent hypoglycemia (e.g., corticosterone, Pdk4, Angpt14, and Cdkn1a/p21), the precise mechanism mediating these effects remains unclear. It seems very likely that these effects of naloxone are mediated by blockade of µ-opioid receptors since these are the main known mechanisms of action of naloxone (39). One of the most prominent responses to hypoglycemia is the release of the natural µ-opioid agonist β-endorphin into the plasma from the anterior pituitary (40). Conversely, infusion of β-endorphin into the hypothalamus inhibits some hypothalamic responses to hypoglycemia (41), which would have the effect of amplifying glucocorticoid responses to hypoglycemia as observed in this study. However, it remains to be determined if β-endorphin released from the pituitary exerts these effects in the hypothalamus or if other sources of opioids within the central nervous system mediate these effects.

Several major caveats apply to the present studies. Firstly, the counterregulatory hormones were measured 240 min after insulin injection, well after the more typical time point of around 120 min (19,20). Since those studies demonstrated counterregulatory failure of epinephrine after only a single antecedent exposure to hypoglycemia, which is similar to the results in humans (42), further analysis will be required to determine if the protocol used in the present studies is in fact an adequate model for human HAAF. Replicating these studies with glucose clamps and sampling blood earlier will clarify this issue, and the use of different doses of insulin could improve the similarity to human HAAF. Secondly, drug levels were not measured, so failure to produce protective effects could be due to low drug levels in the blood. However, the doses of valsartan were chosen based on previous doses that produced neuroprotection without reducing blood pressure (18). Thirdly, valsartan did in fact appear to impair several responses to hypoglycemia, including glucagon and Pdk4, suggesting that the drug was in fact having effects at the dose used. Similarly naloxone clearly produced several effects on hormonal and molecular responses to hypoglycemia. Whether other doses would have produced a better outcome remains to be determined. Another concern is that the magnitudes of the effects on gene expression were rather small. However the results were reliable because in most cases they were observed in more than one condition, and we have corroborated that fasting similarly and significantly regulates every gene described in this study. A more telling concern is whether the effects observed here could functionally account for counterregulation or its failure given the small magnitude of the effects. With respect to this concern, we anticipate that the most important mode of regulation of these gene products is at the allosteric level (e.g., of Cpt1α by malonyl-CoA) and that the regulation of expression functions mainly as a clue to which gene products are involved in various processes. Nevertheless, as always with studies of gene expression, any conclusions must be considered provisional until corroborated by more direct assessment of function; in this case by analysis of metabolic fluxes.

In conclusion we describe here that naloxone, but not valsartan, prevents counterregulatory failure after antecedent hypoglycemia in mice as in humans (11,12). Preservation of counterregulatory responses was associated with the preservation of responsiveness to hypoglycemia of a subset of hypoglycemia-regulated genes reported here for the first time. The pattern of responses of these genes in relation to counterregulatory failure and its prevention by naloxone suggests that naloxone preserves counter-regulatory responses by maintaining a metabolic profile in which alternate fuels are used instead of glucose. Nevertheless, since this study did not include groups in which naloxone was only given once or not on the last day, it remains to be determined if the effect of naloxone was to prevent the failure of hypoglycemia-induced responses or to directly induce corticosterone secretion and related changes in hypothalamic gene expression. In contrast, valsartan did not prevent or reverse loss of responsiveness to hypoglycemia of these genes. Nevertheless, the dose of valsartan used is neuroprotective (18) and did block some responses to hypoglycemia, suggesting that the hypothesis that elevated angiotensin produces HAAF is probably incorrect. Further analysis with mice in which either the AT1 or the AT2 receptor has been ablated may clarify this issue. Taken together, these studies suggest that manipulations causing reprogramming of hypothalamic metabolic processes away from glycolysis and toward alternate fuel use might be useful in preventing or reversing HAAF.

ACKNOWLEDGMENTS

These studies were supported by the Juvenile Diabetes Research Foundation.

No potential conflicts of interest relevant to this article were reported.

M.M.P. designed the studies, carried out the animal work and the qPCR and hormone analysis, and wrote the manuscript. J.W.M. carried out the microarray studies and reviewed the manuscript. C.V.M. conceived the studies and wrote the manuscript.

REFERENCES

1. Cryer PE. Hypoglycemia-associated autonomic failure in diabetes. Am J Physiol Endocrinol Metab 2001;281:E1115–E1121
2. Borg MA, Tamborlane WV, Shulman GI, Sherwin RS. Local lactate perfusion of the ventromedial hypothalamus suppresses hypoglycemic counter-regulation. Diabetes 2003;52:663–666
3. Borg MA, Borg WP, Tamborlane WV, Brines ML, Shulman GI, Sherwin RS. Chronic hypoglycemia and diabetes impair counterregulation induced by
localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. Diabetes 1999;48:584–587
4. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during insulin-induced hypoglycemia in awake rats. J Clin Invest 1997;99:361–365
5. Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 1995;44:180–184
6. Borg WP, During MJ, Sherwin RS, Borg MA, Brines ML, Shulman GI. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest 1994;93:1677–1682
7. Mastaatis JW, Wurmback E, Cheng H, Sealton SC, Mobbs CV. Acute induction of gene expression in brain and liver by insulin-induced hyperglycemia. Diabetes 2005;54:952–958
8. Pedersen-Bjergaard U, Agerholm-Larsen B, Pramming S, Hougaard P, Thorsteinsson B. Prediction of severe hypoglycemia by angiotensin-converting enzyme activity and genotype in type 1 diabetes. Diabetologia 2003;46:29–96
9. Pedersen-Bjergaard U, Agerholm-Larsen B, Pramming S, Hougaard P, Thorsteinsson B. Activity of angiotensin-converting enzyme and risk of severe hypoglycemia in type 1 diabetes mellitus. Lancet 2001;357:1248–1253
10. Deininger E, Oltmanns KM, Wellhoener P, Fnehwald-Schultes B, Kern W, Heuer B, Dominia P, Born J, Fehlin HJ, Peters A. Losartan attenuates symptomatic and hormonal responses to hypoglycemia in humans. Clin Pharmacol Ther 2001;70:362–369
11. Caprio S, Cui MH, Shamoon H, Gabrielli I. Hypoglycemia-associated autonomic failure is prevented by opioid receptor blockade. J Clin Endocrinol Metab 2009;94:3272–3280
12. Madsen BK, Holmer P, Ibsen H, Christensen NJ. The influence of captopril on the epinephrine response to insulin-induced hypoglycemia in humans. The interaction between the renin-angiotensin system and the sympathetic nervous system. Am J Hypertens 1992;5:361–365
13. Worck RH, Frandsen E, Ibsen H, Petersen JS. AT1 and AT2 receptor blockade and epinephrine release during insulin-induced hypoglycemia. Hypertension 1998;31:384–390
14. Li XC, Widdop RE. AT2 receptor-mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br J Pharmacol 2004;142:821–830
15. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000;52:415–472
16. Han JJ, Heo JS, Lee YJ. ANG II increases 2-deoxyglucose uptake in mouse embryonic stem cells. Life Sci 2005;77:1916–1933
17. Wang J, Ho LC, Chen L, Zhao Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, Pasinetti GM. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 2007;117:3393–3402
18. Jacobson L, Ansari T, Potts J, McGuinness OP. Glucocorticoid-deficient corticotropin-releasing hormone knockout mice maintain glucose homeostasis in mice. Diabetes 1995;44:180–184
19. Kerr D, Sherwin RS, Pavalkis F, Fayaad PB, Sikorski L, Rife F, Tamborlane WV, During MJ. Effect of caffeine on the recognition of and responses to hypoglycemia in humans. Ann Intern Med 1993;119:799–804
20. Andrews ZB, Liu ZW, Wallingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 2008;454:846–851
21. Mobbs CV, Mastaatis JW, Zhang M, Isoda F, Cheng H, Yen K. Secrets of the lac operon. Glucose homostasis as a mechanism in dietary restriction, aging and disease. Interdisip Top Gerontol 2007;35:39–68
22. Sandoval DA, Erti AC, Richardson MA, Tate DB, Davis SN. Estrogen blunts neuroendocrine and metabolic responses to hypoglycemia. Diabetes 2003;52:1749–1755
23. Adams JM, Legan SJ, Ott CE, Jackson BA. Modulation of hypoglycemia-induced increases in plasma epinephrine by estrogen in the female rat. J Neurosci Res 2005;79:360–367
24. Cheng H, Isoda F, Mobbs CV. Estradiol impairs hypothalamic molecular responses to hypoglycemia. Brain Res 2009;1280:77–83
25. Jiang L, Herzog RI, Mason GF, de Graaf RA, Rothman DL, Sherwin RS, Behar KL. Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo. Diabetes 2009;58:1266–1274
26. Mandard S, Zandbergen F, van Straten E, Waßl W, Kuipers F, Møller M, Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 2006;281:931–944
27. Poci A, Lam TK, Oliari S, Gutierrez—Juez R, Mese ED, Arhunia A, Rossetti L. Restoration of hypothalamic lipolytic sensitivity normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 2006;116:1081–1091
28. Harms C, Albrecht K, Harms U, Seidel K, Hauck L, Baldinger T, Hübner D, Kronenberg G, An J, Ruscher K, Meisel A, Dirmag U, van Harskove R, Endres M, Hörtgall H. Phosphatidylcholine 1-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by estrogen. J Neurosci 2007;27:4752–4771
29. Hara T, Nakayama Y. CYCLIN A and insulin action. Vitam Horm 2009;80:107–123
30. Paranjape SA, Chan O, Zhu W, Horblitt AM, McNay EC, Cresswell JA, Bogan JS, McCormillin RJ, Sherwin RS. Influence of insulin in the ventromedial hypothalamic nucleus on pancreatic glucagon secretion in vivo. Diabetes 2010;59:1521–1527
31. Heuer B, Dominiak P, Born J, Fehm HL, Peters A. Losartan attenuates sympathetic and hormonal responses during repeated hypoglycemia. Am J Physiol 1998;31:384–390
32. Chafey P, Fuini L, Boisgard R, Caizac M, Clary G, Broussard C, Pégorier J, Guillonneau F, Mayeux P, Campion L, Tavrtian B, Colsot N, Perret C. Proteomic analysis of beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics 2009;9:3889–3900
33. Mandard S, Møller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 2004;61:393–416
34. Potsouis D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM, Koening W, Marc W, Tafuri S, Walli W, Møller M, Kersten S. PPARalpha governs glycerol metabolism. J Clin Invest 2004;114:94–103
35. Knauf C, Biesse J, Foretz M, Cunl FD, Uldrey M, Yabukawa M, Martinez E, Brindisi M, Waget A, Kersten S, Desvergne B, Gruenlich S, Walli W, Seydoux J, Delzenne NM, Thorens B, Burcelin R. Peroxisome proliferator-activated receptor-alpha null mice have increased white adipose tissue glucose utilization, GLUT4, and fat mass: role in liver and brain. Endocrinology 2006;147:4067–4078
36. Goodman AJ, Le Bourdonnec B, Dolle RE. Mu opioid receptor antagonists: recent developments. Chem Biol 2007;2:1552–1570
37. Nakao K, Nakai T, Jingami H, Oki S, Fukuoka J, Imura H. Substantial rise of plasma beta-endorphin levels after insulin-induced hypoglycemia in humans. J Clin Endocrinol Metab 1979;49:838–841
38. Naka S, Tato Y, Simitomo T, Nakano Y, Tozawa F, Iwai I, Yamada M, Demura H. Beta-endorphin inhibits hypoglycemia-induced gene expression of corticotropin-releasing factor in the rat hypothalamus. Endocrinology 1992;130:1325–1330
39. Hvidberg A, Faneli CG, Horshey T, Terkamp C, Craft S, Cryer PE. Impact of recent antecedent hypoglycemia on hypoglycemic cognitive dysfunction in nondiabetic humans. Diabetes 1996;45:1030–1036