Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs

Vik. S. Kulikov

Abstract. In the paper “On rigid germs of finite morphisms of smooth surfaces” (Sb. Math., 211:10 (2020), 1354–1381), we defined a map $\beta: R \to Bel$ from the set R of equivalence classes of rigid germs of finite morphisms branched in germs of curves having ADE singularity types onto the set Bel of rational Belyi pairs $f: \mathbb{P}^1 \to \mathbb{P}^1$, considered up to the action of $\text{PGL}(2, \mathbb{C})$. In this article the inverse images of this map are investigated in terms of monodromies of Belyi pairs.

Bibliography: 7 titles.

Keywords: rigid germs of finite covers, Belyi pairs.

Introduction

In this article we continue our investigation of the properties of germs $F: (U, o') \to (V, o)$ of finite morphisms of smooth surfaces (in what follows, for short, the germs of covers) begun in [3] and [4]. In [3], the notion of deformation equivalence of germs of covers was introduced. A germ of cover $F: (U, o') \to (V, o)$ is called rigid if any germ of cover $F_1: (U_1, o'_1) \to (V, o)$ which is deformation equivalent to F is equivalent to it, that is, in short, the covers F and F_1 are different from each other by changes of coordinates in (U, o') and (V, o). In [4] it was proved that if the germ $(B, o) \subset (V, o)$ of the branch curve of a germ of cover $F: (U, o') \to (V, o)$ has one of the ADE singularity types, then F is a rigid germ.

Let $R = \bigcup_{n \geq 1} R_{A_n} \cup \bigcup_{n \geq 4} R_{D_n} \cup \bigcup_{n \in \{6, 7, 8\}} R_{E_n}$ denote the set of rigid germs of covers branched in curve germs having the singularity types A_n, $n \geq 1$, D_n, $n \geq 4$, and E_6, E_7, E_8, respectively.

A germ of cover F of degree $\deg F = d$ defines a homomorphism $F_*: \pi_1(V \setminus B, p) \to S_d$ (the monodromy of the germ F), where S_d is the symmetric group acting on the fibre $F^{-1}(p)$. The group $G_F = \text{im} F_* \subset S_d$ is called the (local) monodromy group of F. Note that G_F is a transitive subgroup of S_d. By the Grauert-Remmert-Riemann-Stein Theorem (see [7]), the monodromy homomorphism F_* defines the cover F uniquely up to equivalence.

Denote the set of rational Belyi pairs considered up to the action of the group $\text{PGL}(2, \mathbb{C})$ on \mathbb{P}^1 by Bel. A cover $f: \mathbb{P}^1 \to \mathbb{P}^1$, defined over the algebraic closure $\overline{\mathbb{Q}}$ of the field of rational numbers \mathbb{Q}, is called a Belyi pair if it is branched in at most

This work was supported by the Russian Science Foundation under grant no. 19-11-00237.

AMS 2020 Mathematics Subject Classification. Primary 14B05.

© 2021 Russian Academy of Sciences (DoM) and London Mathematical Society
three points, $\text{Bel} = \text{Bel}_2 \cup \text{Bel}_3$, where Bel_2 is the set of Belyi pairs branched in at most two points and the Belyi pairs $f \in \text{Bel}_3$ are branched in three points. We will assume below that $f \in \text{Bel}_2$ is given in nonhomogeneous coordinates by functions $z = ax^n, n \geq 1$, and its branch locus is $B_f = \{0, \infty\}$ (if $n \geq 2$), and the branch locus of $f \in \text{Bel}_3$ is $B_f = \{0, 1, \infty\}$.

In [4] a map $\beta: \mathcal{R} \to \text{Bel}$ was defined as follows. Let $F: (U, o') \to (V, o)$ be a germ of cover branched in a germ $(B, o) \subset (V, o)$ having one of the ADE singularity types and let $\sigma: \tilde{V} \to V$ be a minimal sequence of σ-processes with centres at points such that $\sigma^{-1}(B)$ is a divisor with normal crossings (but if the singularity type of B is A_0 or A_1, then σ is the single σ-process with centre at o). Denote the exceptional curve of the last σ-process by $E \subset \tilde{V}$ and let $\tilde{F}: \tilde{U} \to \tilde{V}$ and $\tau: \tilde{U} \to U$ denote the two natural holomorphic maps from the normalization of the fibre product $\tilde{U} = U \times_V \tilde{V}$ of the holomorphic maps $F: (U, o') \to (V, o)$ and $\sigma: \tilde{V} \to (V, o)$. It is easy to show that $C = \tilde{F}^{-1}(E)$ is an irreducible rational curve and its restriction $f = \tilde{F}|_C: C \to \tilde{E}$ is branched in at most three points. By definition, the map β sends $F \in \mathcal{R}$ to $f \in \text{Bel}$.

Similarly to the two-dimensional case, a cover $f \in \text{Bel}$ defines a homomorphism $f_*: \pi_1(\mathbb{P}^1 \setminus B_f, p) \to S_n$ (the monodromy of f), where $n = \deg f$. The image $G_f = \text{im } f_* \subset S_n$ is called the monodromy group of f. If $f \in \text{Bel}_2$, then $G_f = \mu_n \subset S_n$ is a cyclic group of order n.

The group $\pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}, p)$ is the free group generated by two simple loops γ_0 and γ_1 around the points 0 and 1 such that the loop $\gamma_\infty = \gamma_0 \gamma_1$ is the trivial element of $\pi_1(\mathbb{P}^1 \setminus \{0, 1\}, p)$. For $f \in \text{Bel}_3$ let

$$T_c(f) = \{c_i = (m_{1,i}, \ldots, m_{k,i}) \mid m_{1,i} + \ldots + m_{k,i} = \deg f, i \in \{0,1,\infty\}\}$$

denote the set of cycle types of permutations $f_*(\gamma_i)$. Then, by Hurwitz’s formula connecting the degree of $f: \mathbb{P}^1 \to \mathbb{P}^1$ and the orders of ramification at critical points of f, we have the following equality:

$$n + 2 = k_0 + k_1 + k_\infty.$$ \hspace{1cm} (1)

Conversely, if a transitive group $G \subset S_n$ is generated by two permutations σ_0 and σ_1 such that their cycle types and the cycle type of $\sigma_\infty = \sigma_0 \sigma_1$ satisfy (1) then there is a rational Belyi pair f such that $f_*(\gamma_i) = \sigma_i$.

In [4] it was shown that for $F \in \mathcal{R}$ the covers \tilde{F} and F can be represented as compositions of two finite maps (see diagram (*) in § 2.1), $\tilde{F} = \tilde{H}_2 \circ \tilde{H}_1$ and $F = H_2 \circ H_1$, where $\tilde{H}_1: \tilde{U} \to \tilde{W}$ and $H_1: U \to W$ are cyclic covers (here \tilde{W} and W are normal surfaces) such that $H_1|_C: C \to \tilde{H}_1(C)$ is an isomorphism, and
Let $p_1 = (0, 1)$ and $p_2 = (1, 0)$ be two points such that \(\{ f(p_1), f(p_2) \} \cup B_f = \{0, 1, \infty\} \). Then a cover \(F: (U, o') \to (V, o) \) given by the functions
\[
u = h_1(z^{m_1}, w^{m_2}) \quad \text{and} \quad v = h_2(z^{m_1}, w^{m_2}),
\]
where \(m_1, m_2 \in \mathbb{N} \) are such that \(\gcd(m_1, m_2) = 1 \) and where \(m_1 > 1 \) and \(f(p_1) = 1 \) if \(f \in \text{Bel}_2 \), belongs to \(\mathcal{R}_{D_4} \).

Conversely, any \(F \in \mathcal{R}_{D_4} \) is equivalent to a cover given by functions of the form (2) and its image \(\beta(F) \) is \(f: (x_1, x_2) \mapsto (h(x_1, x_2) : h_2(x_2, x_2)) \).

A complete description of the sets \(\mathcal{R}_T \cap \beta^{-1}(\text{Bel}_2) \) is given in the following theorem.

Theorem 2. If \(F \in (\bigcup_{k=1}^{\infty} \mathcal{R}_{A_{2k}}) \cup \mathcal{R}_{E_6} \cup \mathcal{R}_{E_8} \), then \(\beta(F) \in \text{Bel}_3 \).

If \(\beta(F) = f \in \text{Bel}_2 \), where \(\deg f = n \), for \(F \in \mathcal{R} \setminus (\bigcup_{k=1}^{\infty} \mathcal{R}_{A_{2k}}) \cup \mathcal{R}_{E_6} \cup \mathcal{R}_{E_8} \), then \(F \) is equivalent to one of the following covers:

- \(F \in \mathcal{R}_{A_0} \): \(u = z^m, v = w, \) where \(m \geq 1 \) and \(n = 1 \);
- \(F \in \mathcal{R}_{A_1} \): \(u = z^{nm_1}, v = w^{nm_2}, \) where \(n \geq 1 \) and \(m_1 \geq m_2 \geq 1 \);
- \(F \in \mathcal{R}_{A_{2k+1}}, k \geq 1 \): \(u = (z^m + w^{m_0})^n, v = w, \) where \(n, m, m_0 > 1 \) and \(k + 1 = nm_0 \);
- \(F \in \mathcal{R}_{A_{2k+1}}, k \geq 1 \): \(u = z^{nm_1}, v = z^{m_1} + w^{m_2}, \) where \(m_1 \geq 1 \) and \(n, m_2 > 1 \);
- \(F \in \mathcal{R}_{D_{2k+3}}, k \geq 1 \): \(u = z^{m_1}, v = z^{m_1(2k+1)} + w^{m_2}, \) where \(m_1 \geq 1 \), \(m_2 > 1 \) and \(\gcd(2k + 1, m_2) = 1 \);
- \(F \in \mathcal{R}_{D_{2k+2}}, k \geq 2 \): \(u = z^{m_1}, v = (z^{m_1k_2} + w^{m_2})^n, \) where \(k = k_1k_2, n = n_1k_1 \geq 2, m_1, m_2 \geq 1 \) and \(\gcd(nm_2, k_2) = 1 \);
- \(F \in \mathcal{R}_{D_{2k+2}}, k \geq 2 \): \(u = (z^{m_1} - w^{m_2})^n, v = (z^{m_1} - \omega_j w^{m_2})^n, \) where \(n = n_1k_1 \geq 2, m_1, m_2 \geq 1 \) and \(\omega_j = \exp(2\pi ji/n) \) for \(j = 1, \ldots, n - 1 \);
- \(F \in \mathcal{R}_{D_4} : u = z^{m_1}, v = (z^{m_1} + w^{m_2})^n, \) where \(n \geq 2 \) and \(m_1, m_2 \geq 1 \);
- \(F \in \mathcal{R}_{D_4} : u = (z^{m_1} - w^{m_2})^n, v = (z^{m_1} - \omega_j w^{m_2})^n, \) where \(n \geq 2, m_1, m_2 \geq 1 \) and \(\omega_j = \exp(2\pi ji/n) \) for \(1 \leq j \leq n - 1 \);
- \(F \in \mathcal{R}_{E_2} : u = z^{m_1}, v = z^{m_1} + w^{m_2}, \) where \(m_1 \geq 1 \) and \(m_2 > 1 \).

In all cases \(\gcd(m_1, m_2) = 1 \).

The proof of Theorem 2 is given in §4.
§ 1. Preliminary results

1.1. The fundamental groups. Let \((X, o)\) denote a germ of a normal surface and \((B, o) = \bigcup_{j=1}^{m} B_j\) a union of \(m \geq 0\) irreducible curve germs \((B_j, o) \subset (X, o)\).

Let \(\sigma : \tilde{X} \to (X, o)\) be the minimal resolution of the singularity of the pair \((X, B, o)\), that is, \(\tilde{X}\) is smooth and \(\tilde{B} = \sigma^{-1}(B)\) is a divisor with normal crossings in which each \((-1)\)-curve intersects at least three irreducible components of \(\sigma^{-1}(B)\). Below we assume that \(\sigma^{-1}(o) = \bigcup_{j=1}^{k} E_j\) is a union of rational curves and the dual graph of \(\sigma^{-1}(o)\) is a tree. Also, if this does not lead to misunderstanding, the proper inverse images \(\sigma^{-1}(B_j)\) of the irreducible curve germs \(B_j\) of \((B, o)\) will be marked with the same letter \(B_j\).

The dual weighted graph \(\Gamma(\tilde{B})\) of \(\tilde{B}\) is a tree having \(m + k\) vertices \(v_j\). The vertices \(v_j, j = 1, \ldots, m\), correspond to the curve germs \(B_j\) and their weights are \(w_j = 0\), the vertices \(v_{m+j}, j = 1, \ldots, k\), correspond to the curves \(E_j\) and their weights are \(w_{m+j} = -(E_j^2)\). For each pair of vertices \(v_i, v_j\) of \(\Gamma(\tilde{B})\) we define

\[
\delta_{i,j} = \begin{cases}
1 & \text{if } v_i \text{ and } v_j \text{ are connected by an edge in } \Gamma(\tilde{B}), \\
0 & \text{if } v_i \text{ and } v_j \text{ are not connected by an edge in } \Gamma(\tilde{B}), \\
0 & \text{if } i = j.
\end{cases}
\]

Theorem 3, which follows, allows us to obtain a presentation of the fundamental group \(\pi_1(\tilde{X} \setminus \tilde{B})\) in terms of the graph \(\Gamma(\tilde{B})\). The proof of this theorem coincides almost word-for-word with the proof of a similar statement in [6] (see also [4]) and therefore we omit it.

Theorem 3. The group \(\pi_1(\tilde{X} \setminus \tilde{B})\) is generated by \(m + k\) elements of which \(b_1, \ldots, b_m\) are in one-to-one correspondence with the vertices \(v_1, \ldots, v_m\) of \(\Gamma(\tilde{B})\), and \(e_{m+1}, \ldots, e_{m+k}\) are in one-to-one correspondence with the vertices \(v_{m+1}, \ldots, v_{m+k}\), and that are subject to the following defining relations:

\[
e^{-w_{m+i}} b_1^{\delta_{1,m+i}} \ldots b_m^{\delta_{m,m+i}} e_{m+1}^{\delta_{m+1,m+i}} \ldots e_{m+k}^{\delta_{m+k,m+i}} = 1 \quad \text{for } i = 1, \ldots, k,
\]

\[
[b_j, e_{m+i}] = 1 \quad \text{if } \delta_{j,m+i} = 1,
\]

\[
[e_{m+i_1}, e_{m+i_2}] = 1 \quad \text{if } \delta_{m+i_1,m+i_2} = 1.
\]

Remark 1. The generators \(b_1, \ldots, b_m\) and \(e_{m+1}, \ldots, e_{m+k}\) of \(\pi_1(\tilde{X} \setminus \tilde{B})\) in Theorem 3 are presented by some simple loops around the curves corresponding to them (see [4]).

The following lemma is well known (see [5], for example).

Lemma 1. Let \((Y, o)\) be a germ of a smooth surface, \(\sigma : X \to (Y, o)\) the \(\sigma\)-process with centre at \(o\), and let \((C_1, o)\) and \((C_2, o)\) be two smooth curve germs in \((Y, o)\) meeting transversally at \(o\). Then \(\gamma_E = \gamma_1 \gamma_2\) in

\[
\pi_1(Y \setminus (C_1 \cup C_2)) \simeq \pi_1(X \setminus \sigma^{-1}(C_1 \cup C_2)),
\]

where \(\gamma_E\) is the element of \(\pi_1(X \setminus \sigma^{-1}(C_1 \cup C_2))\) represented by a simple loop around the exceptional curve \(E = \sigma^{-1}(o)\) and \(\gamma_j, j = 1, 2\), are the elements represented by simple loops around \(C_j\).
1.2. Graphs of resolution of singularities of ADE singularity types. Recall that curve germs \((B, o)\) having one of the ADE singularity types have the following equations (see [1]):

\[
\begin{align*}
\mathbf{A}_n & : \quad u^2 - v^{n+1} = 0, \ n \geq 0; \\
\mathbf{D}_n & : \quad v(u^2 - v^{n-2}) = 0, \ n \geq 4; \\
\mathbf{E}_6 & : \quad u^3 - v^4 = 0; \\
\mathbf{E}_7 & : \quad u(u^2 - v^3) = 0; \\
\mathbf{E}_8 & : \quad u^3 - v^5 = 0.
\end{align*}
\]

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{A}_{2k+1}, \ k \geq 0\), is depicted in Figure 1 (if \(k = 0\) then the weight of the vertex \(e_3\) is equal to \(-1\)).

\[\text{Figure 1}\]

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{A}_{2k}, \ k \geq 1\), is depicted in Figure 2.

\[\text{Figure 2}\]

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{D}_{2k+2}, \ k \geq 1\), is depicted in Figure 3.

\[\text{Figure 3}\]

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{D}_{2k+3}, \ k \geq 1\), is depicted in Figure 4.

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{E}_6\) is depicted in Figure 5.

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{E}_7\) is depicted in Figure 6.

The graph \(\Gamma(B)\) of the curve germ \((B, o)\) of singularity type \(\mathbf{E}_8\) is depicted in Figure 7.
Remark 2. Note that in all graphs \(\Gamma(\tilde{B}) \) of a curve germ \((B, o)\) of ADE singularity type (apart from the singularity types \(A_0\) and \(A_1\)) there is a single vertex \(e\) of valency 3 (we denote the corresponding curve by \(E\)) and this vertex has weight \(w = -1\).

Proposition 1 (see [4], Corollary 1). Let \((B, o)\) be a curve germ having one of the ADE singularity types, let \(E \subset \sigma^{-1}(o) \subset \tilde{V}\) be the exceptional curve of the last blowup in the sequence of blowups \(\sigma: \tilde{V} \to V\) resolving the singular point of \((B, o)\), and let \(e\) be an element in \(\pi_{1}^{\text{loc}}(B, o)\) represented by a simple loop around \(E\). Then \(e\) belongs to the centre of \(\pi_{1}^{\text{loc}}(B, o) = \pi_1(V \setminus B) \simeq \pi_1(\tilde{V} \setminus \tilde{B})\).

Proposition 2 (see [4], Proposition 1). Let \((B, o)\) be a curve germ having one of the ADE singularity types. If the singularity type of \((B, o)\) is not \(A_0\) or \(A_1\), then \(\pi_{1}^{\text{loc}}(B, o)\) is generated by \(e\) and the elements \(\gamma_1, \gamma_2, \gamma_3\) corresponding to the vertices of \(\Gamma(\tilde{B})\) connected by an edge to the vertex \(e\) (if the singularity type of \((B, o)\) is \(A_1\), then \(\pi_{1}^{\text{loc}}(B, o)\) is generated by \(b_1, b_2\) and \(e\)).

Below, if the singularity type of \((B, o)\) is \(A_{2n+1}\) or \(D_{2n+2}\), then we identify the element \(\gamma_1\) with \(e_{n+2}\) (see Figures 1 and 3); if the singularity type is \(A_{2n}\), then we identify \(\gamma_1\) with \(e_{n+1}\) and \(\gamma_2\) with \(e_{n+3}\) (see Figure 2); if the singularity type is \(D_{2n+3}\), then we identify \(\gamma_1\) with \(e_{n+2}\) and \(\gamma_2\) with \(e_{n+4}\) (see Figure 4); if the singularity type is \(E_6\), then we identify \(\gamma_1\) with \(e_2\) and \(\gamma_2\) with \(e_4\) (see Figure 5); if the singularity type is \(E_7\), then we identify \(\gamma_1\) with \(e_5\) and \(\gamma_2\) with \(e_3\) (see Figure 6); and if the singularity type is \(E_8\), then we identify \(\gamma_1\) with \(e_5\) and \(\gamma_2\) with \(e_3\) (see Figure 7).
Let \(\overline{B \setminus E} \) be the closure of \(\tilde{B} \setminus E \) in \(\tilde{V} \).

Definition 1. If the singularity type of \((B, o)\) is not \(A_0\) or \(A_1\), then \(\overline{B \setminus E} \) is a disjoint union of three chains of curves which we call *trails* of \(B \). Let \(B_j, j = 1, 2, 3 \), denote the trail containing the curve for which \(\gamma_j \) is represented by a loop around this curve. A trail is *exceptional* (completely exceptional) if it contains an exceptional curve of \(\sigma \), that is, one contracted by the map (if it contains only exceptional curves, respectively).

Let \(Z_e \) denote the subgroup of \(\pi^\text{loc}_1(B, o) \) generated by \(e \). The imbedding \(i_1: \tilde{V} \setminus \tilde{B} \hookrightarrow \tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3) \) induces an epimorphism \(i^*_1: \pi_1(\tilde{V} \setminus \tilde{B}) \rightarrow \pi_1(\tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3)) \) whose kernel is \(Z_e \). It easily follows from Theorem 3 that \(e = \gamma_1\gamma_2\gamma_3 \) and

\[
\pi_1(\tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3)) \simeq (\langle \tilde{\gamma}_1 \rangle * \langle \tilde{\gamma}_2 \rangle * \langle \tilde{\gamma}_3 \rangle) / (\tilde{\gamma}_1\tilde{\gamma}_2\tilde{\gamma}_3)
\]

is a quotient group of the free product of three cyclic groups \(\langle \tilde{\gamma}_j \rangle \), \(j = 1, 2, 3 \), by the normal closure \(\langle \langle \tilde{\gamma}_1\tilde{\gamma}_2\tilde{\gamma}_3 \rangle \rangle \) of the cyclic subgroup generated by the product \(\tilde{\gamma}_1\tilde{\gamma}_2\tilde{\gamma}_3 \), where \(\tilde{\gamma}_j = i^*_1(\gamma_j) \). It follows from Theorem 3 that the group \(\langle \tilde{\gamma}_j \rangle \) is finite if and only if \(B_j \) is a union of exceptional trails \(E_l \).

It is easy to see that the imbedding \(i_2: E \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3) \hookrightarrow \tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3) \) induces an epimorphism

\[i^*_2: \pi_1(E \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3), p) \rightarrow \pi_1(\tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3), p) \]

(4)

(here we assume that \(p \in E \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3) \)).

Remark 3. Note that if the singularity type of \((B, o)\) is \(D_4 \) then \(i^*_2 \) is an isomorphism. Therefore, in this case we identify the groups \(\pi_1(E \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3), p) \) and \(\pi_1(\tilde{V} \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3), p) \).

Set \(P_j = E \cap \tilde{B}_j \) and let \(\overline{\gamma}_j \in \pi_1(E \setminus (\tilde{B}_1 \cup \tilde{B}_2 \cup \tilde{B}_3), p) \) denote a loop around \(P_j \) such that \(i^*_2(\overline{\gamma}_j) = \overline{\gamma}_j \).

Definition 2. If \(B_j \) is an exceptional trail, denote the *union of the exceptional curves* contained in \(B_j \) by \(\tilde{B}_j^0 \) and set \(\overline{\pi}_j := \pi_1(N_T \setminus \tilde{B}_j) \) and \(\overline{\pi}_j^0 := \pi_1(N_T \setminus \tilde{B}_j^0) \), where \(N_T \) is a sufficiently small tubular neighbourhood of \(\tilde{B}_j \).

Remark 4. It follows from Theorem 3 that \(\overline{\pi}_j \) and \(\overline{\pi}_j^0 \) are cyclic groups.

1.3. Cyclic quotients.

Let the cyclic group \(\mu_m \simeq \mathbb{Z}_m \) of order \(m \) act on a germ of a smooth surface \((U, o')\). Let \((W, o_1) \rightarrow (U, o')/\mu_m \) denote the quotient space and \(\xi: (U, o') \rightarrow (W, o_1) \) the quotient map. By Cartan’s lemma we can assume that \((U, o')\) is biholomorphic to the ball \(\mathbb{B}_2 = \{ (u_1, u_2) \in \mathbb{C}^2 \mid |u_1|^2 + |u_2|^2 < 1 \} \) and the action of a generator \(g \) of \(\mu_m \) is given by

\[g: (u_1, u_2) \mapsto \left(\exp \left(\frac{2\pi p_1 i}{m} \right) u_1, \exp \left(\frac{2\pi p_2 i}{m} \right) u_2 \right), \]

where \(p_j, j = 1, 2 \), are some integers, \(1 \leq p_j \leq m \), and \(\text{GCD}(m, p_1, p_2) = 1 \). Let \(m = m_1m_2m_0 \), \(p_1 = m_1t_1s \) and \(p_2 = m_2t_2s \), where

\[\text{GCD}(m_1t_1, m_2t_2) = \text{GCD}(st_1, m_0) = \text{GCD}(st_2, m_0) = 1. \]
Then

\[g^{m_1m_0} : (u_1, u_2) \mapsto \left(\exp \left(\frac{2\pi p_1 i}{m_2} \right) u_1, u_2 \right) \]
and

\[g^{m_2m_0} : (u_1, u_2) \mapsto \left(u_1, \exp \left(\frac{2\pi p_2 i}{m_1} \right) u_2 \right) \]

and the subgroup \(\mu_{m_1m_2} \subset \mu_m \), generated by \(g^{m_1m_0} \) and \(g^{m_2m_0} \) is a cyclic group of order \(m_1m_2 \). The map \(\xi \) can be decomposed into a composition of two maps, \(\xi = \varphi \circ \vartheta_{m_1m_2} \), where \(\vartheta_{m_1m_2} : (U, o') \rightarrow (X, \tilde{\varnothing}) \) is the quotient map defined by the action of \(\mu_{m_1m_2} \) on \((U, o') \) and \(\varphi : (X, \tilde{\varnothing}) \rightarrow (W, o_1) \) is the quotient map defined by the action of the quotient group \(\mu_m/\mu_{m_1m_2} \cong \mu_{m_0} \) of order \(m_0 \) on \((X, \tilde{\varnothing}) \).

It is easy to see that \((X, \tilde{\varnothing}) \) is a germ of a smooth surface,

\[(X, \tilde{\varnothing}) \cong \mathbb{B}_2 = \{(x_1, x_2) \in \mathbb{C}^2 \mid |x_1|^2 + |x_2|^2 < 1 \}, \]

and the map \(\vartheta_{m_1m_2} \) is given by \(x_1 = u_1^{m_2} \) and \(x_2 = u_2^{m_1} \). The image \(\overline{g} \) in \(\mu_{m_0} \) of the generator \(g \in \mu_m \) acts on \((X, \tilde{\varnothing}) \) as follows:

\[\overline{g} : (x_1, x_2) \mapsto \left(\exp \left(\frac{2\pi st_1 i}{m_0} \right) x_1, \exp \left(\frac{2\pi st_2 i}{m_0} \right) x_2 \right). \]

There is an integer \(r \) such that \(rst_2 \equiv 1 \) mod \(m_0 \) and \(rst_1 \equiv q \) mod \(m_0 \), where \(1 \leq m_0 \), since \(\gcd(st_j, m_0) = 1 \) for \(j = 1, 2 \). Therefore,

\[\overline{g}^r : (x_1, x_2) \mapsto \left(\exp \left(\frac{2\pi qi}{m_0} \right) x_1, \exp \left(\frac{2\pi i}{m_0} \right) x_2 \right), \]

and it is easy to show that \((W, o_1) \) is the normalization of the germ of singularity in \(\mathbb{B}_3 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid |z_1|^2 + |z_2|^2 + |z_3|^2 < 1 \} \) given by \(z_3^n = z_1 z_2^{n-q} \), where \(z_3 = x_1 x_2^{n-q} \), \(z_1 = x_1^{m_0} \) and \(x_2 = x_2^{m_0} \), that is, the germ \((W, o_1) \) has the so-called Hirzebruch-Jung singularity type \(A_{m_0,q} \).

The map \(\vartheta_{m_1m_2} \) is branched in \(L_1 = \{x_1 = 0\} \) (if \(m_2 > 0 \)) and \(L_2 = \{x_2 = 0\} \) (if \(m_1 > 0 \)), and \(\varphi \) is unramified outside \(o_1 \) (in what follows we denote the map \(\varphi \) by \(\theta_{m_0,q} \)). Therefore, \(\pi_1(W \setminus o_1) \cong \mu_{m_0} \) and \(\theta_{m_0,q} : X \setminus \tilde{\varnothing} \rightarrow W \setminus o_1 \) is the universal unramified cover.

![Figure 8](image-url)

Let \(\tau : \widetilde{W} \rightarrow (W, o_1) \) be the minimal resolution of the singular point \(o_1 \subset W \). Let \(B_j = \tau^{-1}(\theta_{m_0,q}(L_j)) \), \(j = 1, 2 \), denote the proper inverse image of \(\theta_{m_0,q}(L_j) \) and let \(\tau^{-1}(o_1) = \bigcup_{j=1}^k E_j \). It is well known (for example, see [2], Ch. III, §5) that the \(E_j \) are rational curves and, up to renumbering the \(E_j \), the dual weighted graph \(\Gamma(\tilde{B}) \) of the curve \(\tilde{B} = (B_1 \cup B_2) \cup \bigcup_{j=1}^k E_j \) is a chain, that is, it has the form...
shown in Figure 8, where the \(\omega_j = -(E_j^2)_{\tilde{W}} \) satisfy the following equality:

\[
\frac{m_0}{q} = \omega_1 - \frac{1}{\omega_2} - \frac{1}{\omega_3} - \cdots - \frac{1}{\omega_k},
\]

\(\omega_j = \frac{[w_1, w_2, \ldots, w_k]}{\omega_k} \) \(\text{def} \) (5).

Conversely, if \(\tau: \tilde{W} \to (W, o_1) \) is the minimal resolution of a normal singularity such that \(\tau^{-1}(o_1) = \bigcup_{j=1}^{k} E_j \) is a chain of rational curves (see Figure 8), then \((W, o_1)\) is a Hirzebruch-Jung singularity of type \(A_{m_0, q} \), where \(m_0 \) and \(q \) can be found using (5).

Remark 5. A representation of the singularity \((W, o_1)\) of type \(A_{m_0, q} \) as a cyclic quotient singularity is uniquely defined by the choice of the divisors \(B_1 \) and \(B_2 \) (see Figure 8) in \(\tilde{W} \) ([2], Ch. III, §5).

Note that if we renumber the curves \(E_j \) and the weights \(\omega_j \) as follows: \(E_j' := E_{k-j+1} \) and \(\omega_j' := \omega_{k-j+1} \), and substitute the new \(\omega_j' \) for the old \(\omega_j \) on the right-hand side of (5) then we obtain \(m_0/q' \) on the left-hand side of (5) with \(q' \) such that \(qq' \equiv 1 \) mod \(m_0 \) (see [2], Ch. III, §5). In particular, the singularity types \(A_{m_0, q} \) and \(A_{m_0, q'} \) are the same.

Remark 6. In the notation used in Theorem 1, it easily follows from Theorem 3 that the group \(\pi_1(\tilde{W} \setminus (B_1 \cup B_2 \cup (\bigcup_{j=1}^{k} E_j))) \) is generated by the elements \(b_1 \) and \(e_1 \), and \(\pi_1(\tilde{W} \setminus (B_2 \cup (\bigcup_{j=1}^{k} E_j))) \) is the free group \(\mathbb{F}_1 \) generated by \(e_1 \).

For a singularity \((W, o_1)\) of type \(A_{m_0, q} \) we have

\[
\pi_1(W \setminus \{o_1\}) = \pi_1(\tilde{W} \setminus \left(\bigcup_{j=1}^{k} E_j \right)) \simeq \mu_{m_0},
\]

since \(\theta_{m_0, q}: X \setminus \{\tilde{o}\} \to W \setminus \{o_1\} \) is the universal cover.

Lemma 2. If \([\omega_1, \omega_2, \ldots, \omega_k] = [2, \ldots, 2], k \geq 1, \) then \((W, o_1)\) has the singularity type \(A_{k+1, k} \) and, in particular, \(\pi_1(W \setminus \{o_1\}) \simeq \mu_{k+1} \).

Proof. We have

\[
[2; 2, \ldots, 2] = \frac{k + 1}{k}.
\]

Note that the singularity types \(A_k \) and \(A_{k+1, k} \) are the same. The lemma is proved.

Lemma 3. If \([\omega_1, \omega_2, \ldots, \omega_{k+1}] = [n, 2, \ldots, 2], k \geq 0, \) then \((W, o_1)\) has the singularity type \(A_{n(k+1) - k, k+1} \) and, in particular, \(\pi_1(W \setminus \{o_1\}) \simeq \mu_{n(k+1) - k} \).

Proof. We have

\[
[\omega_1; \omega_2, \ldots, \omega_{k+1}] = \omega_1 - \frac{1}{[\omega_2; \ldots, \omega_{k+1}]}.
\]

Therefore, \([n; 2, \ldots, 2] = n - \frac{k}{k + 1} = \frac{n(k + 1) - k}{k + 1} \). The lemma is proved.
Let \(D_{r_1,r_2}^2 = \{(y_1,y_2) \in \mathbb{C}^2 \mid |y_1| < r_1, |y_2| < r_2\} \) denote a bidisc in \(\mathbb{C}^2 \), where \((r_1,r_2) \in \mathbb{R}_+^2 \). Let \(L_{y_j} = \{y_j = 0\} \subset D_{r_1,r_2}^2, j = 1,2, \) be the coordinate axes in \(D_{r_1,r_2}^2 \).

The following Lemma is a direct consequence of Theorem 5.1 in [2], Ch. III.

Lemma 4. Let \(Z \) be an irreducible germ of normal surface and let \(\xi: Z \rightarrow D_{(r_1,r_2)}^2(y_1,y_2) \) be a cyclic cover of degree \(n \) branched in \(L_{y_1} \cup L_{y_2} \). Then \(n = n_{12} n_3 \) for some \(n_1 \geq 1, n_2 \geq 1 \) and \(n_3 \geq 1 \) such that \(\text{GCD}(n_1,n_2) = 1 \) and \(\xi \) is ramified over \(L_j \) with multiplicity \(n_j n_3, j = 1,2, \) and if \(n_3 > 1 \) then the singularity type of \(Z \) over the origin \((0,0) \in D_{r_1,r_2}^2 \) is \(A_{n_3,q} \) for some \(q \), where \(\text{GCD}(n_3,q) = 1 \), and \(Z \) is a germ of a smooth surface if \(n_3 = 1 \).

Let a germ \((W,o_1)\) of normal surface have the singularity type \(A_{n,q} \), let \(\tau: \widetilde{W} \rightarrow (W,o_1) \) be the minimal resolution of the singular point \(o_1 \in W \), let \(\tau^{-1}(o_1) = \bigcup_{j=1}^k E_j \) be a chain of rational curves, \((E_j)^2 = -\omega_j \), and let \(\widetilde{B} \subset \widetilde{W} \) be a curve whose dual graph \(\Gamma(\widetilde{B}) \) is shown in Figure 8.

Let \(m \) be a divisor of \(n \), \(n = mk \). Let \(\varphi_m: (X_m,\tilde{o}) \rightarrow (W,o_1) \) denote the cyclic cover of degree \(m \) defined by the natural epimorphism \(\varphi_m^*: \pi_1(W \setminus \{o_1\}) \cong \mu_n \rightarrow \mu_m \). The cover \(\varphi_m \) is unramified outside \(\tilde{o} \) and \((X_m,\tilde{o})\) is a normal variety having the singularity of type \(A_{k,q'} \) for some \(q' \) if \(k > 1 \), and \((X_m,\tilde{o})\) is a germ of a smooth surface if \(k = 1 \).

Consider the commutative diagram

\[
\begin{array}{ccc}
X_m & \xrightarrow{\varphi} & \widetilde{X}_m \\
\downarrow{\varphi_m} & & \downarrow{\varphi_m} \\
\widetilde{W} & \xrightarrow{\tau} & (W,o_1)
\end{array}
\]

in which \(\widetilde{X}_m \) is the normalization of the fibre product \(\widetilde{W} \times_{(W,o_1)} (X_m,\tilde{o}) \) and \(\varphi: \widetilde{X}_m \rightarrow \widetilde{X}_m \) is the minimal resolution of the singular points of \(\widetilde{X}_m \). It follows from Lemma 4 that \(\widetilde{X}_m \) can have singular points (and their singularity types are \(A_{m',q'} \) for some divisors \(m' \) of \(m \)) only over points of intersection of neighbouring exceptional curves \(E_j \) and \(E_{j+1} \) of \(\tau \).

Denote the composition of the maps \(\rho \) and \(\varphi \) by \(\psi := \rho \circ \varphi \). Note that \(\psi \) is a resolution of the singular point \(\tilde{o} \in X_m \). The map \(\psi \) can be decomposed into a composition of two maps, \(\psi = \varsigma \circ \sigma \), where \(\varsigma: \widetilde{X}_{m,\text{min}} \rightarrow (X_m,\tilde{o}) \) is the minimal resolution of the singular point \(\tilde{o} \) if \(m < n \) and \(\sigma: \widetilde{X}_m \rightarrow \widetilde{X}_{m,\text{min}} \) is a composition of \(\sigma \)-processes, \(\sigma = \sigma_1 \circ \cdots \circ \sigma_1 \) (\(\psi = \sigma \) if \(m = n \)).

Let \(\widetilde{B} = B_1 \cup B_2 \cup \bigcup_{j=1}^k E_j \subset \widetilde{W} \) be the union of curves and curve germs whose dual weighted graph is shown in Figure 8. We use the same letter \(C_j \) to denote the proper inverse image \((\tau \circ \tilde{\varphi}_m)^{-1}(B_j) \) of the germ \(B_j, j = 1,2, \) and the proper inverse images \((\sigma_1 \circ \cdots \circ \sigma_{l-s})^{-1}(C_j) \) for \(1 \leq s \leq l \). Let \(\Delta_m(n,q) \) denote the number of \(\sigma \)-processes from the set \(\{\sigma_1, \ldots, \sigma_l\} \) which blowup a point in \(C_1 \); we call it the \(m \)th supplement for the singularity type \(A_{n,q} \).
Lemma 5. Let a germ \((W, o_1)\) have the singularity type \(A_{n,n-1}\), \(n = mk\), and let \(\varphi_m: (Z_m, \tilde{o}) \rightarrow (W, o_1)\) be the cyclic cover of degree \(m\) defined by the natural epimorphism \(\varphi_m*: \pi_1(W \setminus \{o_1\}) \approx \mu_m \rightarrow \mu_m\). Then

(i) the singularity type\(^1\) of \((Z_m, \tilde{o})\) is \(A_{k,k-1}\);

(ii) \(\Delta_m(n, n - 1) = m - 1\).

Proof. To prove (ii), consider the quadric \(Q = \mathbb{P}^1 \times \mathbb{P}^1\) and let \(S_1\) and \(S_2\) be two fibres of the projection \(\pi_2: Q \rightarrow \mathbb{P}^1\) onto the second factor and \(L\) a fibre of the projection \(\pi_1: Q \rightarrow \mathbb{P}^1\) onto the first factor. Consider the following diagram

\[
\begin{array}{ccc}
\bar{X}_m & \xrightarrow{\varrho} & \bar{X}_m \\
\varphi_m \downarrow & & \varphi_m \downarrow \\
\bar{Q} & \xrightarrow{\tau} & Q
\end{array}
\]

in which

1) \(\varphi_m\) is defined by the epimorphism \(\varphi_m*: \pi_1(Q \setminus (S_1 \cup S_2)) \approx \mathbb{Z} \rightarrow \mu_m \subset \mathbb{S}_m\);
2) \(\tau = \tau_1 \circ \cdots \circ \tau_n\) is the composition of \(n\) blowups of the point \(p = S_1 \cap L \in S_1\);
3) \(\bar{X}_m\) is the normalization of the fibre product \(\bar{Q} \times_Q X_m\);
4) \(\varrho\): \(\bar{X}_m \rightarrow \bar{X}_m\) is the minimal resolution of the singular points of \(\bar{X}_m\).

Let \(E_j \subset \bar{Q}, j = 1, \ldots, n - 1\), denote the proper inverse image of the exceptional curve of blowup \(\tau_j\), let \(B_1 \subset \bar{Q}\) be the proper inverse image of the fibre \(L\), and \(B_2 \subset \bar{Q}\) the exceptional curve of the blowup \(\tau_n\). We have

\[(B_1^2)_{\bar{Q}} = (B_2^2)_{\bar{Q}} = -1 \quad \text{and} \quad (E_j^2)_{\bar{Q}} = -2 \quad \text{for} \quad j = 1, \ldots, n - 1;\]

and the dual graph \(\Gamma(\tilde{B})\) of \(\tilde{B} = B_1 \cup B_2 \cup (\bigcup_{j=1}^{n-1} E_j)\) is shown in Figure 8 (in it, \(\omega_j = -2\) for \(j = 1, \ldots, n - 1\)). Therefore we can identify \(\bar{W}\) with a tubular neighbourhood of \(\bigcup_{j=1}^{n-1} E_j\) and \(\tilde{Z}_m\) with \(\varphi_m(\bar{W})\). Note that the dual weighted graph \(\Gamma(\bigcup_{j=1}^{n-1} E_j)\) of the curve \(\bigcup_{j=1}^{n-1} E_j\) is a central-symmetric graph, that is, the weights \(\omega_j\) of the vertices \(e_j\) satisfy the relation \(\omega_j = \omega_{n-j}\).

It is obvious that \(X_m \approx \mathbb{P}^1 \times \mathbb{P}^1\), where \(\varphi_m^{-1}(S_1)\) and \(\varphi_m^{-1}(S_2)\) are two fibres of the projection \(\pi_2: X_m \rightarrow \mathbb{P}^1\) onto the second factor and \(\varphi_m^{-1}(L) = F\) is a fibre of the projection \(\pi_1: X_m \rightarrow \mathbb{P}^1\) onto the first factor.

The fundamental group \(\pi_1(Q \setminus (S_1 \cup S_2)) \approx \pi_1(\bar{Q} \setminus (\tau^{-1}(S_1 \cup S_2) \cup B_2 \cup (\bigcup_{j=1}^{n-1} E_j)))\) is generated by the element \(\gamma\) represented by a simple loop around the curve \(S_1\). Denote the elements of \(\pi_1(\bar{Q} \setminus (\tau^{-1}(S_1 \cup S_2) \cup B_2 \cup (\bigcup_{j=1}^{n-1} E_j)))\) represented by simple loops around the \(E_j\) and \(B_2\) by \(e_j, j = 1, \ldots, n - 1, \text{and} b_2\), respectively. It follows from Lemma 1 that

\[e_j = \gamma^j \quad \text{for} \quad j = 1, \ldots, n - 1 \quad \text{and} \quad b_2 = \gamma^n.\]

(10)

First, we consider the case \(m = n\). The element \(g_1 = \varphi_n*(\gamma)\) is a generator of \(\mu_n \subset \mathbb{S}_n\) and

\[\varphi_n*(e_j) = g_1^j.\]

(11)

\(^1\)By definition, if \(k = 1\) and \((Z_m, \tilde{o})\) has the singularity type \(A_{1,0}\), then \(\tilde{o}\) is a smooth point of \(Z_m\).
in particular, \(\varphi_{n*}(e_{n-1}) = g_1^{n-1} := g_2 \) is a generator of \(\mu_n \) and \(\varphi_{n*}(b_2) = g_1^n = \text{id} \). Therefore \(\varphi_n \) is not branched in \(B_2 \) and \(\tilde{X}_n \) is smooth in a neighbourhood of \(\varphi^{-1}_n(B_1) \) and \(\varphi^{-1}_n(B_2) \). The restriction of \(\tilde{\varphi}_n \) to \(\tilde{Z}_n \subset \tilde{X}_n \) is defined by the monodromy homomorphism \(\varphi_{n*}: \pi_1(W \setminus (\bigcup_{j=1}^{n-1} E_j)) \to \mu_n \subset S_n \) sending \(e_j \) to \(g_1^j \).

It easily follows from Theorem 3 that \(\pi_1(W \setminus (\bigcup_{j=1}^{n-1} E_j)) \) is generated by \(e_{n-1} \) and the \(e_j = e_{n-j} \). Therefore, if we set \(e'_j = e_{n-j} \) then

\[
\varphi_{n*}(e_j') = g_j^2. \tag{12}
\]

The inverse image \((\varphi_n \circ g)^{-1}(\bigcup_{j=1}^{n-1} E_j) = \bigcup_{j=1}^{N} E_j \subset \tilde{X}_n \) is a chain of rational curves which can be contracted to a smooth point, the curves \(B_j = (\varphi_n \circ g)^{-1}(B_j) \), \(j = 1, 2 \), are rational curves,

\[
(\tilde{B}_j^2)_{\tilde{X}_n} = \deg \tilde{\varphi}_n \cdot (B_j^2)_{\tilde{X}_n} = -n \quad \text{and} \quad (\tilde{B}_1, \tilde{E}_1)_{\tilde{X}_n} = (\tilde{B}_2, \tilde{E}_N)_{\tilde{X}_n} = 1,
\]

and \((\varphi_n \circ \rho \circ g)^{-1}(L) = \overline{B}_1 \cup \overline{B}_2 \cup (\bigcup_{j=1}^{N} E_j) \) is a fibre of the ruled surface \(X_n \).

Using the central symmetry of the graph \(\Gamma(\bigcup_{j=1}^{n-1} E_j) \), and (11) and (12), it follows that the dual weighted graph \(\Gamma(\bigcup_{j=1}^{N} E_j) \) is also central-symmetric. Therefore, if \(\overline{E}_j \) is a \((-1)\)-curve, then \(\overline{E}_{N-j+1} \) is also a \((-1)\)-curve and the curves \(\overline{E}_j, \overline{E}_{N-j+1} \) can be simultaneously contracted to points. After successive contractions of all such pairs of \((-1)\)-curves and the contraction of the curve \(\overline{E}_{K+1} \) in the last step (it is easy to see that \(N = 2K + 1 \) must be an odd integer and the central curve \(\overline{E}_{K+1} \) is contracted in the last step of the contractions) we find that the images of \(\overline{B}_1 \) and \(\overline{B}_2 \) are \((-1)\)-curves, since the union of these images is a fibre of ruled structure. Therefore, \(\Delta_n(n, n-1) = n-1 \), since \((B_1^2)_{X_n} = (B_2^2)_{X_n} = -n \).

Consider the case when \(m < n \). The element \(g_1 = \varphi_{m*}(\gamma) \) is a generator of \(\mu_m \subset S_m \). It follows from (10) that \(\varphi_{m*}(e_{j+lm}) = g_1^j \) for \(j = 1, \ldots, m-1, l = 0, \ldots, k-1 \) and \(\varphi_{m*}(e_{lm}) = \varphi_{m*}(b_2) = \text{id} \) for \(l = 1, \ldots, k-1 \). Therefore, \(\tilde{\varphi}_m \) is not branched in \(E_{lm} \), \(l = 1, \ldots, k-1 \), nor in \(B_1 \) and \(B_2 \). Hence \(\tilde{X}_m \) is smooth in a neighbourhood of \(\tilde{\varphi}_m^{-1}(B_1 \cup B_2 \cup (\bigcup_{l=1}^{k-1} E_{lm})) \) and

\[
(\tilde{\varphi}_m^{-1}(E_{lm}), \tilde{\varphi}_m^{-1}(E_{lm}))_{\tilde{X}_m} = -2m \quad \text{and} \quad (\tilde{\varphi}_m^{-1}(B_j), \tilde{\varphi}_m^{-1}(B_j))_{\tilde{X}_m} = -m
\]

for \(l = 1, \ldots, k-1 \) and \(j = 1, 2 \).

For each \(l = 0, \ldots, k-1 \) the union \(\bigcup_{j=1}^{m-1} \tilde{\varphi}_m^{-1}(E_{j+lm}) \) can be contracted to a smooth point and similarly to the case \(m = n \) it is easy to see that, first \(\Delta_m(n, n-1) = \Delta_m(m, m-1) = m-1 \) and, second, that after the contraction of the curves \(\bigcup_{j=0}^{k-1} \bigcup_{j=1}^{m-1} \tilde{\varphi}_m^{-1}(E_{j+lm}) \) the images of the curves \(\tilde{\varphi}_m^{-1}(E_{lm}) \) form a chain of \(k-1 \) \((-2)\)-curves, that is, the singularity type of \((Z_m, \tilde{\varnothing}) \) is \(A_{k,k-1} \).

Lemma 5 is proved.

\[\text{§ 2. A description of } \beta^{-1}(f): \text{ the general case} \]

2.1. Necessary conditions. In this section we use the notation from § 1.

Consider a rigid germ of cover \(F: (U, o') \to (V, o) \) branched in a germ \((B, o)\) having one of the ADE singularity types at the point \(o \), where \(\deg F = d \), and let
\[F_*: \pi_1^{\text{loc}}(B, o) = \pi_1(V \setminus B, p) \to G_F \subset \mathbb{S}_d \] is its monodromy homomorphism. Recall that the symmetric group \(\mathbb{S}_d \) acts (from the right) on the fibre \(F^{-1}(p) = \{q_1, \ldots, q_d\} \) and the monodromy group \(G_F \) is a transitive subgroup of \(\mathbb{S}_d \). We let \(G^*_F \) denote the subgroup of \(G_F \) leaving the point \(q_1 \) fixed. Then the action of \(G_F \) on \(F^{-1}(p) \) can be identified with the action of \(G_F \) on the set of right cosets of the subgroup \(G^*_F \).

By Proposition 1 the cyclic group \(F_*(Z_e) \subset G_F \), generated by \(F_*(e) \), is a central subgroup of \(G_F \) and by Proposition 13 in [4] the group \(F_*(Z_e) \) acts on \((U, o') \). Let \(H_1: (U, o') \to (W, o_1) = (U, o') / F_*(Z_e) \) denote the quotient map, \(\deg H_1 = m = |F_*(Z_e)| \), where \((W, o_1) \) is a germ of a normal surface. By Proposition 13 in [4], there is a finite map \(H_2: (W, o_1) \to (V, o) \) such that \(F = H_2 \circ H_1 \), \(\deg H_2 = n = d/m \). The monodromy group \(G_{H_1} \subset \mathbb{S}_m \) of \(H_1 \) is isomorphic to \(F_*(Z_e) \) and by Remark 2 in [4] the monodromy group \(G_{H_2} \subset \mathbb{S}_n \) of \(H_2 \) is isomorphic to \(G_F / N \), where \(N \) is the maximal normal subgroup of \(G_F \) contained in \(G^*_F \times F_*(Z_e) \subset G_F \).

Let \(\tilde{W} \) denote the normalization of the fibre product \(\tilde{V} \times_{(V, o)} (W, o_1) \), where \(\sigma: \tilde{V} \to (V, o) \) is the minimal resolution of the singular point \(o \in V \) of the curve germ \((B, o) \) (if \((B, o) \) has a singularity of type \(A_0 \) or \(A_1 \) then \(\sigma \) consists of the single blowup) and let \(\tilde{H}_2: \tilde{W} \to \tilde{V} \) and \(\zeta: \tilde{W} \to (W, o_1) \) be the projections onto the factors. In addition, let \(\tilde{U} \) denote the normalization of the fibre product \(\tilde{W} \times_{(W, o_1)} (U, o') \) and let \(\tilde{H}_1: \tilde{U} \to \tilde{W} \) and \(\tau: \tilde{U} \to (U, o') \) be the projections onto the factors. The group \(G_{H_1} \) acts on \(\tilde{U} \), and \(\tilde{H}_1 \) is also the quotient map.

Let \(C = \tilde{H}_2^{-1}(E) \) denote the proper inverse image of the exceptional curve \(E \) of the last \(\sigma \)-process and let \(f: C \to E \), \(\deg f = \deg \tilde{H}_2 = n \), be the restriction of \(\tilde{H}_2 \) to \(C \) (by definition, \(f = \beta(F) \)). The group \(F_*(Z_e) \) acts on \(\tilde{U} \) and it is easy to see that \(\tilde{H}_1^{-1}(C) \) is an irreducible curve. Therefore, the curve \(C \) is contained in the branch locus of \(\tilde{H}_1 \) and \(\tilde{H}_1 \) is branched in \(C \) with multiplicity \(m = \deg \tilde{H}_1 \). For the same reason the branch locus of \(\tilde{H}_2 \) is contained in \(\tilde{B} \setminus E \), where \(\tilde{B} = \sigma^{-1}(B) \) is the inverse image of the germ \((B, o)\). The dual graph of \(\tilde{B} \) is depicted in one of Figures 1–7.

Let \(\tilde{B}^0 = \sigma^{-1}(o) \) and let \(\tilde{B}_j \subset \tilde{B} \), \(j = 1, 2, 3 \), be the trails of \(\tilde{B} \) (see Definition 1). It follows from Remark 4 and Lemma 4 that \(\tilde{W} \) can only have singular points (and they have singularity types \(A_{k', q'} \) for some divisors \(k' \) of \(n \)) over points of intersection of neighbouring irreducible components of trails of \(\tilde{B} \), since \(\tilde{H}_2 \) is not branched in \(E \). Let \(\varsigma_r: \tilde{W} \to \tilde{W} \) denote a resolution of the singular points of \(\tilde{W} \). Then \(\varsigma \circ \varsigma_r: \tilde{W} \to (W, o_1) \) is a resolution of the singular point \(o_1 \) of \((W, o_1) \).

Let \(\varsigma_1: \tilde{W} \to \tilde{W}_m \) denote a holomorphic bimeromorphic map, where \(\tilde{W}_m \) is a smooth surface and \(\varsigma_1 \) contracts the maximum number of irreducible components belonging to \((\tilde{H}_1 \circ \varsigma_r)^{-1}(\cup_{j=1}^3 \tilde{B}_j) \) to points. Then \(\varsigma \circ \varsigma_r = \varsigma_m \circ \varsigma_1 \), where \(\varsigma_m: \tilde{W}_m \to (W, o_1) \) is also a resolution of the singular point \(o_1 \) of \((W, o_1) \).

Set \(\tilde{B}^0 = \varsigma_m^{-1}(o_1) \). The composition \(\tilde{H}_1 = \varsigma_m^{-1} \circ H_1: (U, o') \to \tilde{W}_m \) is a meromorphic map such that the finite cover \(\tilde{H}_1: U \setminus \{o'\} \to \tilde{W}_m \setminus \tilde{B}^0 \) is naturally isomorphic to the cover \(H_1: U \setminus \{o'\} \to W \setminus \{o_1\} \). Note that \(\overline{C} = \varsigma_1 \circ \varsigma_r^{-1}(C) \) is a component of \(\overline{B}^0 \).

The cover \(H_1 \) is branched in at most two irreducible curve germs in \((W, o_1)\) (see §1.3). Let \(\overline{B} = \overline{B}_1 \cup \overline{B}_2 \cup \overline{B}^0 \subset \tilde{W}_m \) denote the inverse image of these germs
(of course, one of the \overline{B}_j or both can be empty). The dual graph of \overline{B} is a chain similar to the one in Figure 8.

As a result, we have the following commutative diagram:

$$
\begin{array}{ccccccc}
\mathbb{P}^1 & \simeq & C & \subset & \tilde{W} & \xrightarrow{\varsigma} & \tilde{W}_m \\
\downarrow{f} & & \downarrow{\sigma} & & \downarrow{\varsigma} & & \downarrow{\varsigma_r} \\
\mathbb{P}^1 & \simeq & E & \subset & \tilde{V} & & V \\
\end{array}
$$

The maps \tilde{H}_1 and H_1 in diagram (*) are the quotient maps under the action of a cyclic group. Therefore, H_1 is a composition of two maps, $H_1 = \theta_{n',q} \circ \vartheta_{m_1,m_2}$ (see §1.3), where $m = n'm_1m_2$ and $\text{GCD}(m_1,m_2) = 1$, and hence we obtain the following commutative diagram

$$
\begin{array}{ccccccc}
\tilde{U} & \xrightarrow{\tau} & U \ni o' \\
\downarrow{\tilde{H}_1} & & \downarrow{\Pi_1} & & \downarrow{H_1} & & \\
W & \xrightarrow{\varsigma_1} & \tilde{W}_m \\
\downarrow{\varsigma} & & \downarrow{\varsigma_m} & & \downarrow{\varsigma} & & \\
W \ni o_1 & & & & & & W \ni o \\
\end{array}
$$

(13)

The monodromy homomorphism f_* is the composition of two homomorphisms, $f_* = H_{2*} \circ i_{2*}$ (see (3) and (4)).

Remark 7. In view of Remark 3 we will identify the monodromy homomorphism \tilde{H}_{2*} with the monodromy homomorphism $\beta(F)_* = f_*$ in the case when (B,o) has the singularity type D_4.

The monodromy group G_f of the Belyi pair f is isomorphic to $G_{H_2} = G_F/N \subset S_n$, generated by $f_*(\gamma_j) \in S_n$, $j = 1, 2, 3$, where $\gamma_j \in \pi_1(E \setminus (\overline{B}_1 \cup \overline{B}_2 \cup \overline{B}_3), p)$ are the elements defined in §1.2. Let

$$_n^{T_c(H_2)} = T_c(f) = \{c_1,c_2,c_3\}, \quad c_j = (n_{j,1}, \ldots, n_{j,k_j}), \quad n = \sum_{i=1}^{k_j} n_{j,i},$$

be the set of cycle types of the permutations $\tilde{H}_{2*}(\tilde{\gamma}_j) = f_*(\gamma_j)$. For each $j = 1, 2, 3$ the inverse image $\tilde{H}_2^{-1}(\overline{B}_j)$ of a trail \overline{B}_j is the disjoint union of k_j connected components, $\tilde{H}_2^{-1}(\overline{B}_j) = \bigsqcup_{l=1}^{k_j} \overline{B}_{j,l}$. The properties of cyclic covers described in §1.3 imply the following contractibility condition:
\[\bar{B}_{j,l} \cap \bar{H}^{-1}_2(\bar{B}_j^0) \text{ in } \bar{W} \text{ can be contracted to a nonsingular point if and only if the order } |\bar{\pi}_j^0| \text{ of the group } \bar{\pi}_j^0 \text{ is a divisor of } n_{j,l} \text{ when } \bar{B}_j \text{ is an exceptional trail, and } |\bar{\pi}_j^0| = n_{j,l} \text{ when } \bar{B}_j \text{ is a completely exceptional trail,} \]

since \(\bar{B}_j^0 \) can be contracted to a point of singularity type \(A_{|\bar{\pi}_j^0|,q} \). Note that, for the same reason, the \(n_{j,l} \) are divisors of \(|\bar{\pi}_j^0| \) if \(\bar{B}_j \) is a completely exceptional trail.

Let \(r_j(H_{2*}) \) denote the number of cycles in the permutation \(f_*(\gamma_j) \) whose lengths do not satisfy the contractibility condition if \(\bar{B}_j \) is an exceptional trail and set \(r_j(H_{2*}) = 0 \) if \(\bar{B}_j \) is not an exceptional trail. Then we obtain

\[
 r_1(\bar{H}_{2*}) + r_2(\bar{H}_{2*}) + r_3(\bar{H}_{2*}) \leq 2, \tag{14}
\]

since the dual graph of \(\bar{B} \) is a chain.

2.2. Sufficient conditions. Let a rational Belyi pair \(f: C \simeq \mathbb{P}^1 \to \mathbb{P}^1 \) of degree \(n \) branched at \(B_f \subset \{0,1,\infty\} \) be fixed, such that the cycle type of its monodromy is \(T(f) = \{c_1,c_2,c_3\} \). Recall that the set of rational Belyi pairs is considered up to actions of \(\text{PGL}(2,\mathbb{C}) \) on \(C \) and \(\mathbb{P}^1 \), and the ordered cycle type \(T(f) = \{c_1,c_2,c_3\} \) of \(f \) depends on the choice of the base in \(\pi_1(\mathbb{P}^1 \setminus \{0,1,\infty\}) \). Therefore we can arrange the cycle type \(T(f) \) so that the cycle type of \(f_*(\gamma_0) \) is \(c_1 \), the cycle type of \(f_*(\gamma_\infty) \) is \(c_2 \) and the cycle type of \(f_*(\gamma_1) \) is \(c_3 \), where \(\gamma_0,\gamma_1 \) and \(\gamma_\infty \) are elements of \(\pi_1(\mathbb{P}^1 \setminus \{0,1,\infty\}) \) represented by simple loops around \(0,1 \) and \(\infty \), respectively, and such that \(\gamma_0^2 \gamma_1 \gamma_\infty = \text{id} \) in \(\pi_1(\mathbb{P}^1 \setminus \{0,1,\infty\}) \).

Definition 3. We say that a rational Belyi pair \(f \) has type:

- \(A_{2k+1}, k \geq 1 \text{, if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are equal to } k+1 \text{, } r_1 \leq 2, \text{ and the remaining } r_1 \text{ lengths are divisors of } k+1; \)

- \(A_{2k}, k \geq 1 \text{, if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are equal to } 2k+1, \text{ and the remaining } r_1 \text{ lengths are divisors of } 2k+1, (k_2-r_2) \text{ lengths } n_{2,j} \text{ in the cycle type } c_2 = (n_{2,1}, \ldots, n_{2,k_2}) \text{ are equal to } 2 \text{ and the remaining } r_2 \text{ lengths are equal to } 1, \text{ and } r_1 + r_2 \leq 2; \)

- \(D_{2k+2}, k \geq 2 \text{, if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are multiples of } k, r_1 \leq 2; \)

- \(D_{2k+3}, k \geq 1 \text{, if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are multiples of } 2k+1, (k_2-r_2) \text{ lengths } n_{2,j} \text{ in the cycle type } c_2 = (n_{2,1}, \ldots, n_{2,k_2}) \text{ are equal to } 2 \text{ and the remaining } r_2 \text{ lengths are equal to } 1 \text{ and } r_1 + r_2 \leq 2; \)

- \(E_6 \text{ if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are equal to } 4 \text{ and the remaining } r_1 \text{ lengths are equal to } 2 \text{ or } 1, (k_2-r_2) \text{ lengths } n_{2,j} \text{ in the cycle type } c_2 = (n_{2,1}, \ldots, n_{2,k_2}) \text{ are equal to } 3, \text{ the remaining } r_2 \text{ lengths are equal to } 1 \text{ and } r_1 + r_2 \leq 2; \)

- \(E_7 \text{ if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are even, } (k_2-r_2) \text{ lengths } n_{2,j} \text{ in the cycle type } c_2 = (n_{2,1}, \ldots, n_{2,k_2}) \text{ are equal to } 3, \text{ the remaining } r_2 \text{ lengths are equal to } 1 \text{ and } r_1 + r_2 \leq 2; \)

- \(E_8 \text{ if } (k_1-r_1) \text{ lengths } n_{1,j} \text{ in the cycle type } c_1 = (n_{1,1}, \ldots, n_{1,k_1}) \text{ are equal to } 3 \text{ and the remaining } r_1 \text{ lengths are equal to } 1, (k_2-r_2) \text{ lengths } n_{2,j} \text{ in the cycle type } c_2 = (n_{2,1}, \ldots, n_{2,k_2}) \text{ are equal to } 5, \text{ the remaining } r_2 \text{ lengths are equal to } 1 \text{ and } r_1 + r_2 \leq 2. \)
Remark 8. Note that a rational Belyi pair f can have several ADE types. For example, if f has type A_{2k+1}, $k \geq 1$, then it also has type D_{2k+4}. In addition, we will assume that any $f \in \text{Bel}$ has type D_{4}.

It follows from Lemmas 2 and 3, the contractibility condition and inequality (14) that a necessary condition for the branch curve (B, o) of a cover $F \in \mathcal{R}_T \subset \mathcal{R} \setminus (\mathcal{R}_{\text{A}_0} \cup \mathcal{R}_{\text{A}_1})$ to belong to $\beta^{-1}(f), \deg f = n$, is that f has type T.

If this necessary condition is met, then we can consider a monodromy homomorphism $H_{2*}: \pi^\text{loc}_1(B, o) \simeq \pi_1(\tilde{V} \setminus \tilde{B}) \to \mathcal{S}_n$ sending γ_1 to $f_*(\gamma_0)$, γ_2 to $f_*(\gamma_\infty)$, γ_3 to $f_*(\gamma_1)$ and e to id. The homomorphism H_{2*} defines finite coverings $H_2: (W, o_1) \to (V, o)$ and $\tilde{H}_2: \tilde{W} \to \tilde{V}$, where $\sigma: \tilde{V} \to (V, o)$ is the minimal resolution of the singular point of (B, o). To the maps H_2, \tilde{H}_2, σ, and $\varsigma: \tilde{W} \to (W, o_1)$ we can add the bimeromorphic maps $\varsigma_r: \tilde{W} \to \tilde{W}, \varsigma_1: \tilde{W} \to W_m$ and $\varsigma_m: \tilde{W}_m \to (W, o_1)$.

As a result, we obtain the lower part of the diagram (*). Again, we let $C = \tilde{H}_2^{-1}(E)$ denote the proper inverse image of the exceptional curve E of the last σ-process. The restriction of \tilde{H}_2 to C obviously coincides with a Belyi pair $f: C \to E$, $\deg f = \deg \tilde{H}_2 = n$.

As above, m_0 denotes the order of the fundamental group $\pi_1 = \pi_1(W \setminus \{o_1\}) \simeq \pi_1(W_m \setminus \tilde{B}^0)$, where $\tilde{B}^0 = \varsigma_1^{-1}(o_1)$. We obtain the following commutative diagram

\[
\begin{array}{ccc}
\mathcal{U}_{f,\text{min}T} & \xrightarrow{\varsigma} & (U_{f,\text{min}T}, o_2) \\
\pi_f \downarrow & & \downarrow H_f \\
\mathcal{W}_m & \xrightarrow{\varsigma_m} & (W, o_1)
\end{array}
\]

in which $\overline{H}_f: \mathcal{U}_{f,\text{min}T} \to \mathcal{W}_m$ and $H_f: (U_{f,\text{min}T}, o_2) \to (W, o_1)$ are cyclic covers of degree m_0. $H_f: U_{f,\text{min}T} \setminus \{o_2\} \to W \setminus \{o_1\}$ is the universal cover, \overline{H}_f is branched in \overline{B}^0, $\mathcal{U}_{f,\text{min}T}$ is a normal surface and $(U_{f,\text{min}T}, o_2)$ is a germ of a smooth surface, and ς is a bimeromorphic holomorphic map.

Let $\gamma_C \in \pi_1$ be the element represented by a simple loop around $\overline{C} = \varsigma_1 \circ \varsigma_1^{-1}(C)$. We call the condition:

the dual graph of \overline{B}^0 is a chain and γ_C generates the group π_1,

the second necessary condition. If f has type T and the second necessary conditions is met for the germ (B, o) having singularity type T, then \overline{H}_f is branched in \overline{C} with multiplicity m_0 and it is easy to see that the cover $F_{f,\text{min}T} := \overline{H}_f \circ \overline{H}_f: (U_{f,\text{min}T}, o_2) \to (V, o)$ of degree nm_0 belongs to $\beta^{-1}(f)$. The cover $F_{f,\text{min}T} \in \mathcal{R}_T$ will be called the minimal cover in $\beta^{-1}(f)$ of the rational Belyi pair f of type T.

Let $\chi: \mathcal{U} \to U_{f,\text{min}T}$ denote the minimal resolution of the singular points of $U_{f,\text{min}T}$. Then $\varsigma \circ \chi: \mathcal{U} \to U_{f,\text{min}T}$ is a composition of σ-processes with centres at nonsingular points. Note that $(\varsigma \circ \chi)^{-1}(o_2)$ is a chain of exceptional curves of $\varsigma \circ \chi$. We let $\overline{C}_r = \chi^{-1}(C)$ denote the proper inverse image of \overline{C}.

Consider the curve germ B as a divisor in (V, o) and let $F_{f,\text{min}T}^*(B) = \sum r_j R_j$ be the inverse image of B, where the R_j are its irreducible components. We let S_1 denote the set of pairs (R_j, r_j) in which R_j is a smooth germ for each j and
where \(\gamma \overline{C} = \gamma_j^{a_j}\),

\[\gamma \overline{C} = \gamma_j^{a_j}, \quad (16) \]

where \(\gamma \overline{C}\) is an element represented by a simple loop around \(\overline{C}\), and \(a_j\) can be computed using Lemma 1 step by step.

Set \(M_j = \{m \in \mathbb{N} \mid \text{GCD}(m, a_j) = 1\}\) for \((R_j, r_j) \in S_1\) and

\[M_{j_1,j_2} = \{(m_1, m_2) \in \mathbb{N}^2 \mid \text{GCD}(m_1 m_2, m_1 a_{j_1} + m_2 a_{j_2}) = 1\} \]

for \((R_{j_1}, r_{j_1}), (R_{j_2}, r_{j_2})\) \in S_2\) and the \(a_j\) defined in (16) (note that if \((m_1, m_2) \in M_2\) then \(\text{GCD}(m_1, m_2) = 1\).

For \((R_{j_1}, r_{j_1}), (R_{j_2}, r_{j_2})\) \in S_2\) and \((R_{j_1}, r_{j_1}) \in S_1\) we choose coordinates \((y_1, y_2)\) in \(U_{f, \text{min}\{T\}}\) such that \(R_{j_1}\) is given by the equation \(y_l = 0\) for \(l = 1, 2\) (if \((R_{j_1}, r_{j_1}) \in S_1\) then \(R_{j_2}\) is any smooth curve germ meeting \(R_{j_1}\) transversally) and for each \((m_1, m_2) \in M_{j_1,j_2}\) (for each \(m_1 \in M_{j_1}\), and \(m_2 = 1\), respectively) consider the cyclic cover \(\vartheta_{m_1,m_2} : (U, o') \to (U_{f, \text{min}\{T\}}, o_2)\) given by \(x_1^{m_1} = y_1, x_2^{m_2} = y_2\). It is easy to see that \(F_{R_1,R_2,m_1,m_2} := F_f \circ \vartheta_{m_1,m_2} : (U, o') \to (V, o)\) of degree \(\deg F_{R_1,R_2,m_1,m_2} = n m_0 m_1 m_2\) also belongs to \(\beta^{-1}(f)\).

Let \(\text{Aut}(V, B, o) = \{g \in \text{Aut}(V) \mid g(B) = B, g(o) = o\}\) be the automorphism group of the triple \((V, B, o)\) and \(\text{Gal}(F_f) = \{g \in \text{Aut}(U_{f, \text{min}\{T\}}, o_2) \mid F_f \circ g = F_f\}\), the automorphism group of \((U_{f, \text{min}\{T\}}, o_2)\) over \((V, o)\). The group \(\text{Aut}(V, B, o) \times \text{Gal}(F_f)\) acts on the sets \(S_1\) and \(S_2\). Let \(\text{orb}_j(f)\) denote the number of orbits of the action of the group \(\text{Aut}(V, B, o) \times \text{Gal}(F_f)\) on \(S_j, j = 1, 2\).

The results obtained above finally give the following.

Theorem 4. Let \(T\) be one of the ADE singularity types, let the curve germ \((B, o)\) have the singularity of type \(T\) at \(o\), and let \(f \in \text{Bel}, \deg f = n\). Then the intersection \(R_T \cap \beta^{-1}(f)\) is nonempty if and only if \(f\) has the type \(T\) and \((B, o)\) satisfies the second necessary condition.

If \(R_T \cap \beta^{-1}(f) \neq \emptyset\) then \(R_T \cap \beta^{-1}(f)\) consists of the minimal cover \(F_{f, \text{min}\{T\}} : (U_{f, \text{min}\{T\}}, o_2) \to (V, o)\) of degree \(n m_0\) and of \((\text{orb}_1(f) + \text{orb}_2(f))\) infinite series of covers \(F_{R_1,R_2,m_1,m_2} : \deg F_{R_1,R_2,m_1,m_2} = n m_0 m_1 m_2\).

§ 3. Proof of Theorem 1

Lemma 6. Let \(f : C = \mathbb{P}^1 \to \mathbb{P}^1, \deg f = n > 1,\) be a morphism given by \(y_1 = h_1(x_1, x_2)\) and \(y_2 = h_2(x_2, x_2)\), where \(h_1(x_1, x_2)\) and \(h_2(x_2, x_2)\) are two coprime forms which are homogeneous in the variables \(x_1\) and \(x_2\). Then the ramification divisor \(R_f\) of \(f\) is given by the equation

\[J_f(x_1, x_2) := \det \begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{pmatrix} = 0. \quad (17) \]
Proof. The projective line C is covered by the four neighbourhoods

$$U_{i,j} = \{(x_1 : x_2) \in C \mid x_i \neq 0, h_j(x_1, x_2) \neq 0\}, \quad 1 \leq i, j \leq 2,$$

and $\tilde{x}_i = x_i/x^i$ is a coordinate in $U_{i,j}$, where $\{i, \tilde{i}\} = \{1, 2\}$. Similarly, \mathbb{P}^1 is covered by two affine lines $V_j = \{(y_1 : y_2) \in \mathbb{P}^1 \mid y_j \neq 0\}$, $j = 1, 2$, and $\tilde{y}_j = y_j/y^j$ is a coordinate in V_j. The morphism f defines four rational functions $\tilde{y}_j = f_{i,j}(\tilde{x}_i)$ and it is obvious that the restriction of R_f to $U_{i,j}$ is the sum of the critical points of $f_{i,j}$ counted with multiplicities. In particular, if $i = 2$ and $j = 2$ (the other cases are similar), then R_f in $U_{2,2}$ is given by the equation $d\tilde{y}_1/d\tilde{x}_1 = 0$, where $\tilde{y}_1 = f_{2,2}(\tilde{x}_1) = h_1(\tilde{x}_1, 1)/h_2(\tilde{x}_1, 1)$. Therefore,

$$\frac{d\tilde{y}_1}{d\tilde{x}_1} = \frac{h'_{1x_1}(\tilde{x}_1, 1)h_2(\tilde{x}_1, 1) - h_1(\tilde{x}_1, 1)h'_{2x_1}(\tilde{x}_1, 1)}{h_2(\tilde{x}_1, 1)^2}. \quad (18)$$

It follows from Euler’s formula, $nh(x_1, x_2) = x_1h'_{x_1}(x_1, x_2) + x_2h'_{x_2}(x_1, x_2)$ for homogeneous forms $h(x_1, x_2)$ of degree n, that

$$h_i(\tilde{x}_1, 1) = \frac{1}{n}[\tilde{x}_1 h'_{i x_1}(\tilde{x}_1, 1) + h'_{i x_2}(\tilde{x}_1, 1)], \quad (19)$$

and applying (19) we see that the numerator on the right-hand side of (18) coincides with $\frac{1}{n}J_f(\tilde{x}_1, 1)$.

The lemma is proved.

Using direct calculations in nonhomogeneous coordinates defining the σ-processes with centres at points, it is easy to prove the following lemma.

Lemma 7. Let $F: (U, o') \rightarrow (V, o)$ be a finite cover given by

$$y_j = h_j(x_1, x_2) + \sum_{k=n_j+1}^{\infty} \sum_{m=0}^{k} a_{j,m} x_1^m x_2^{k-m}, \quad j = 1, 2, \quad (20)$$

where $h_j(x_1, x_2)$ are homogeneous forms of degree n_j in the variables x_1 and x_2, and let $\tau: \tilde{U} \rightarrow U$ and $\sigma: \tilde{V} \rightarrow V$ be σ-processes with centres at o' and o, $\tau^{-1}(o') = \tilde{E}$ and $\sigma^{-1}(o) = E$. Then

(i) $\sigma^{-1} \circ F \circ \tau: \tilde{U} \rightarrow \tilde{V}$ is a holomorphic map if and only if $h_1(x_1, x_2)$ and $h_2(x_1, x_2)$ are coprime forms;

(ii) $\sigma^{-1} \circ F \circ \tau(\tilde{E}) = E$ if and only if $n_1 = n_2$, and the forms $h_1(x_1, x_2)$ and $h_2(x_1, x_2)$ are linearly independent;

(iii) if $n_1 = n_2 := n$, and $h_1(x_1, x_2)$ and $h_2(x_1, x_2)$ are coprime forms, then

(iii) $\sigma^{-1} \circ F \circ \tau(\tilde{E}) = E$ of $\sigma^{-1} \circ F \circ \tau$ to \tilde{E} is given by $y_1 = h_1(x_1, x_2)$ and $y_2 = h_2(x_1, x_2)$,

(iii) $\deg F = n^2$ and $\deg f = n$.

To prove Theorem 1 we use the definitions and notation introduced in the previous sections. We assume that the branch locus (B, o) of a cover $F: (U, o') \rightarrow (V, o)$ is given by the equation $uw(u-v) = 0$. The cover \tilde{H}_2 (see diagram (2)) is branched only in the disjoint union $B_1 \sqcup B_2 \sqcup B_3$ of three smooth curves, the proper inverse
images of the irreducible branches of the curve B. Therefore, \tilde{W} is a smooth surface (that is, $\tilde{W} = \tilde{W}_m$) and the restriction of \tilde{H}_2 to $C = \tilde{H}_2^{\perp}(E)$ is $\beta(F)$, where $\deg \beta(F) = \deg \tilde{H}_2 := n'$. Hence $(C^2)_{\tilde{W}} = -n'$ and $\varsigma: \tilde{W} \to (W, o_1)$ is the minimal resolution of the singular point $o_1 \in W$ of singularity type $\tilde{A}_{n',1}$ (that is, $q = 1$). In addition, in diagram (13) the map γ is the blowup of the point \tilde{o}, $\sigma^{-1}(\tilde{o}) = \tilde{D}_{n,1}(C) = \tilde{E}$ and $(\tilde{E}^2)_X = -1$; τ is the blowup of the point o_1, $\tau^{-1}(o') = \tilde{D}_{m,1,2}(\tilde{E}) = \tilde{E}$ and $(\tilde{E}^2)_{\tilde{U}} = -1$. In particular, all the maps in (13) are holomorphic. Note also that the restriction of $\tilde{D}_{n,1}$ to \tilde{E} is an isomorphism between \tilde{E} and C. Therefore, we can identify the restriction of $F_{f,\min} := \tilde{H}_2 \circ \tilde{D}_{n,1}$ to \tilde{E} with $\beta(F)$.

Let $F_{f,\min}: (X, \tilde{o}) \to (V, o)$ be given by equations (20). Then, by Lemma 7, $f = \beta(F)$ is given by homogeneous forms $y_1 = h_1(x_1, x_2)$ and $y_2 = h_2(x_2, x_2)$ of degree n. Therefore, $n' = n$. In addition, according to Remark 7 we can identify the monodromy homomorphism \tilde{H}_{2*} with monodromy homomorphism f_*.

If $F: (U, o') \to (V, o)$ is given by (2), then $F_{f,\min}$ is given by the homogeneous forms $y_1 = h_1(x_1, x_2)$ and $y_2 = h_2(x_2, x_2)$. Therefore, first, we can regard $F_{f,\min}$ as the restriction to $\mathbb{B}_2 \subset \mathbb{C}^2$ of the morphism $F_{f,\min}: \mathbb{C}^2 \to \mathbb{C}^2$ defined by the same functions. Second, we can identify $C \simeq \mathbb{P}^1$ in the rational Belyi pair $f: C \to \mathbb{P}^1$ with the quotient space $\mathbb{C}^2/\{(x_1, x_2) \sim (\lambda x_1, \lambda x_2) \quad \text{for} \quad \lambda \neq 0\}$ and the line \mathbb{P}^1 with $\mathbb{C}^2/\{(y_1, y_2) \sim (\lambda y_1, \lambda y_2) \quad \text{for} \quad \lambda \neq 0\}$. The ramification divisor $R_{f,\min}$ of $F_{f,\min}$ is given by (17). Therefore, $R_{f,\min}$ is a sum of lines passing through the origin such that

$$R_{f,\min} = \{(x_1, x_2) \sim (\lambda x_1, \lambda x_2) \quad \text{for} \quad \lambda \neq 0\} = R_f,$$

and it follows from Lemma 6 that the branch locus $B_{f,\min}$ of $F_{f,\min}$ is given by the equation $uv(u - v) = 0$ if $f \in Bel_3$. Therefore the singularity type of $B_{f,\min}$ is D_4. If $f \in Bel_2$ then the branch locus $B_{f,\min}$ of $F_{f,\min}$ is given by equation $uv = 0$ and therefore the singularity type of $B_{f,\min}$ is A_1. But, in both cases the branch locus B_F of F is given by the equation $uv(u - v) = 0$, since the branch curve of $\vartheta_{m,1,2}$ is contained in the union of the two lines given by $x_1 = 0$ and $x_2 = 0$ and $\{f(p_1), f(p_2)\} \subset B_F = \{0, 1, \infty\}$ for $p_1 = (0, 1)$ and $p_2 = (1, 0) \subset C$.

Conversely, if $F \in \mathcal{R}_{D_4}$ is given by equations (20), then it follows from the above considerations that $f = \beta(F)$ is given by homogeneous forms $y_1 = h_1(x_1, x_2)$ and $y_2 = h_2(x_2, x_2)$. Consider a cover $F_{f,\min}': (X', \tilde{o}) \to (V, o)$ given by the same homogeneous forms $u = h_1(x_1, x_2)$ and $v = h_2(x_2, x_2)$ and consider diagram (13) for $F_{f,\min}$ in which $\vartheta_{m,1,2} = \vartheta_{1,1}$ and we denote the germs of surfaces W, \tilde{W}, \tilde{X} and the maps H_2, \tilde{H}_2 and so on by the same letters with primes (W', \tilde{H}_2' and so on). Then, by Lemmas 6 and 7, $f' = \beta(F_{f,\min}')$: $C' \to E$ is given by the same homogeneous forms $y_1 = h_1(x_1, x_2)$ and $y_2 = h_2(x_2, x_2)$.

According to Remark 7, the covers \tilde{H}_2 and \tilde{H}_2' have the same monodromy homomorphism $f_* = f'_*$. Therefore, by the Grauert-Remmert-Riemann-Stein Theorem, there exist biholomorphic isomorphisms $\varphi: \tilde{W} \to \tilde{W}'$ and $\psi: W \to W'$ such that $\tilde{H}_2 = \tilde{H}_2' \circ \varphi$ and $H_2 = H_2' \circ \psi$, and we can identify \tilde{W} with \tilde{W}' and W with W' with the help of these isomorphisms. Therefore there are biholomorphic isomorphisms $\varphibar: \tilde{X} \to \tilde{X}'$ and $\psi: X \to X'$ such that $\varphi \circ \vartheta_{n,1} = \varphibar_{n,1} \circ \varphibar$ and
\[\psi \circ \theta_{n,1} = \theta'_{n,1} \circ \widetilde{\psi}, \] since \(\tilde{\theta}_{n,1} = \theta_{n,1} : \tilde{X} \setminus \tilde{E} = X \setminus \tilde{o} \to \tilde{W} \setminus C = W \setminus o_1 \) and \(\tilde{\theta}'_{n,1} = \theta'_{n,1} : \tilde{X}' \setminus \tilde{E}' = X' \setminus \tilde{o}' \to \tilde{W}' \setminus C' = W' \setminus o'_1 \) are the universal unramified covers. Hence we can identify \(\tilde{X} \) with \(\tilde{X}' \) and \(X \) with \(X' \). As a result, we see that the covers \(F_{f,\text{min}} : X \to W \) and \(F'_{f,\text{min}} : X' \to W' \) are equivalent.

If, in \(\vartheta_{m_1,m_2} : (U,o') \to (X,\tilde{o}) \), either \(m_1 \) or \(m_2 \), or both, are greater than 1, then we can obtain the cyclic cover \(\vartheta'_{m_1,m_2} : (U',o'') \to (X',\tilde{o}') \) branched in the images of the branch curves of \(\vartheta_{m_1,m_2} \), under the holomorphic isomorphism \(\tilde{\psi} \). The covers \(\vartheta_{m_1,m_2} \) and \(\vartheta'_{m_1,m_2} \) are obviously equivalent. Therefore the compositions \(F = F_{f,\text{min}} \circ \vartheta_{m_1,m_2} \) and \(F' = F'_{f,\text{min}} \circ \vartheta'_{m_1,m_2} \) of equivalent covers are equivalent and it is easy to see that there is a coordinate change in \((U',o'') \) such that the cover \(F' \) is given by equations (2).

§ 4. The proof of Theorem 2

4.1. Let \(f = \beta(F) \in \mathcal{B}cl_2 \), deg \(f = n \), for \(F \) branched in \((B,o) \) and having one of the \(ADE \) singularity types. Without loss of generality we can assume that \(f \) is given by \(y = x^n \) in nonhomogeneous coordinates and its branch locus is \(B_f = \{ 0, \infty \} \subset \{ 0, 1, \infty \} \). Then in the general case, \(\tilde{H}_2 : \tilde{W} \to \tilde{V} \) is a cyclic cover branched in two of the three trails of \(B \), deg \(\tilde{H}_2 = n \), the cover \(\tilde{H}_1 = \tilde{\theta}_{n,q} \circ \tilde{\vartheta}_{m_1,m_2} : \tilde{U} \to \tilde{W} \) is also a cyclic cover, and \(\tilde{\vartheta}_{m_1,m_2} \) must be branched in at least one of the irreducible components of the inverse image of the third trail.

4.2. The cases \(\mathcal{R}_{A_0} \) and \(\mathcal{R}_{A_1} \). It is easy to show that if \(F \in (\mathcal{R}_{A_0} \cup \mathcal{R}_{A_1}) \cap \beta^{-1}(\mathcal{B}cl) \), deg \(\beta(F) = n \), then \(F \) is equivalent to one of the following germs of covers of degree \(n^2m_1m_2 \) given by \(u = z^{nm_1} \) and \(v = w^{nm_2} \) for some \(m_1 \geq m_2 \geq 1 \), GCD \((m_1, m_2) = 1 \) (if \(F \in \mathcal{R}_{A_0} \), then \(n = m_2 = 1 \)).

4.3. The case \(\mathcal{R}_{A_{2k+1}} \), \(k \geq 1 \). Without loss of generality we can assume that \((B,o) \) is given by the equation \(u(u - v^{k+1}) = 0 \) and \(u = 0 \) is the equation of the irreducible component \(B_1 \) of \(B \). The graph \(\Gamma(\tilde{B}) \) of the curve germ \((B,o) \) of singularity type \(A_{2k+1} \), \(k \geq 1 \), is shown in Figure 1 (in this case \(E = E_{k+3} \)). We number the trails of \(B \) as follows: \(\tilde{B}_1 = B_1, \tilde{B}_2 = B_2, \) and \(\tilde{B}_3 = B_3 \). Then \(\tilde{H}_2 \) is branched in either \(B_1 \cup B_2 \) or \(B_1 \cup (\bigcup_{j=3}^{k+2} E_j) \), where \(l = 1 \) or 2.

We show that the first case is impossible. In fact, if \(\tilde{H}_2 \) is branched in \(B_1 \cup B_2 \), then \(n \) must be equal to 2, since \(\tilde{H}_2^{-1}(\bigcup_{j=3}^{k+2} E_j) \) must be a chain of rational curves satisfying the second necessary condition. But if \(n = 2 \) then \(\tilde{H}_1 \) must be branched only in \(\tilde{H}_2^{-1}(\bigcup_{j=3}^{k+2} E_j) = \bigcup_{j=1}^{k+2} \tilde{E}_j \), where \(\tilde{E}_{k+1} = \tilde{E}_{k+2}^{-1}(E_{k+3}) = C \). In this case \(\tilde{W} \) is a smooth surface and \((\tilde{E}_j)^2_{\tilde{W}} = -2 \) for all \(j \). Therefore, by Lemma 2 the group \(\pi_1(N_T \setminus (\bigcup_{j=1}^{k+1} \tilde{E}_j)) \simeq \mu_{2k+2} \), where \(N_T \) is a small tubular neighbourhood of \(\bigcup_{j=1}^{k+1} \tilde{E}_j \). It follows from Theorem 3 that the group \(\pi_1(N_T \setminus (\bigcup_{j=1}^{k+1} \tilde{E}_j)) \) is generated by an element \(\gamma_{\tilde{E}_1} \) represented by a simple loop around \(\tilde{E}_1 \) and \(\gamma_C = \gamma_{\tilde{E}_1}^{k+1} \), where \(\gamma_C \) is an element represented by a simple loop around \(\tilde{E}_{k+1} \). Therefore, in this case the second necessary condition is not satisfied, since \(\gamma_C = \gamma_{\tilde{E}_1}^{k+1} \) does not generate the group \(\mu_{2k+2} \).
In the second case we can assume without loss of generality that \tilde{H}_2 is branched in $\tilde{B}_1 = B_1$ and $\tilde{B}_3 = \bigcup_{j=3}^{k+2} E_j$, and, in addition, that $n = \deg \tilde{H}_2$ is a divisor of $k + 1$, $k + 1 = nm_0$, since $\pi_3^0 \simeq \mu_{k+1}$.

Consider the surface \tilde{W}_m and the curve $\tilde{B} \subset \tilde{W}_m$ (see diagram (*)). The inverse image $(H_2 \circ \varsigma_m)^{-1}(B_2) = \bigcup_{j=1}^n \tilde{B}_{2,j}$ is the disjoint union of n curve germs each of which intersects \tilde{C} transversally and $(H_2 \circ \varsigma_m)^{-1}(B_1) = B_{1,1}$ is an irreducible curve germ. By Lemma 5, there are three possibilities for the curve $\tilde{B}^0 \subset \tilde{W}_m$ (see the notation introduced in § 2.1). The first (when $m_0 > 1$) is when $\tilde{B}^0 = \tilde{C} \cup (\bigcup_{j=1}^{m_0-1} \tilde{E}_j)$, the curve \tilde{B}_1 is one of the irreducible components of $\tilde{B}^0 \circ \varsigma_m^{-1}(B_2)$ (say $\tilde{B}_{2,1}$), and $\tilde{B}_2 = \emptyset$. In this case we have $(\tilde{E}_j^2)_{\tilde{W}_m} = -2$ and $(\tilde{C}^2)_{\tilde{W}_m} = -1$. In the second case (when $m_0 = 1$) $\tilde{B}_1 = \tilde{B}_{1,1}$, \tilde{B}_2 is one of the irreducible components of $(H_2 \circ \varsigma_m)^{-1}(B_2)$, and $\tilde{B}^0 = \tilde{C}$ and $(\tilde{C}^2)_{\tilde{W}_m} = -1$. In the third case (when $m_0 = 1$) \tilde{B}_1 and \tilde{B}_2 are two of the irreducible components of $(H_2 \circ \varsigma_m)^{-1}(B_2)$, and $\tilde{B}^0 = \tilde{C}$ and $(\tilde{C}^2)_{\tilde{W}_m} = -1$.

In all these cases, (W, o_1) is a germ of smooth surface and H_2 is given by $u = y_1^n$ and $v = y_2$, where y_1 and y_2 are coordinates in (W, o_1). We have $H_2^{-1}(B_2) = \bigcup_{j=1}^n B_{2,j}$, where the $B_{2,j}$ are given by the equations $y_1 - \omega_3 y_2^{m_0} = 0$, $\omega_3 = \exp(2\pi ji/n)$. Making scalar coordinate changes in (V, o) and (W, o_1) if necessary, we can assume that one of irreducible components of $H_2^{-1}(B_2)$ included in the branch curve of H_1 is given by the equation $y_1 - y_2^{m_0} = 0$.

In the first case set $x_1 = y_1 - y_2^{m_0}$ and $x_2 = y_2$. Then it is easy to see that $H_1: (U, o') \rightarrow (W, o_1)$ is given by the functions $z^m = x_1$ and $w = x_2$, where z, w are coordinates in (U, o') and $m > 1$. In view of Lemma 1, the second necessary condition entails the equality $\gcd(m_0, m) = 1$. Therefore, $F: (U, o') \rightarrow (V, o)$ is given by $u = (z^m + w^{m_0})^n$ and $v = w$, where $n, m, m_0 > 1$ and $\gcd(m_0, m) = 1$.

In the second case set $x_1 = y_1$ and $x_2 = y_2 - y_1$. Then it is easy to see that $H_1: (U, o') \rightarrow (W, o_1)$ is given by the functions $z^{m_1} = x_1$ and $w^{m_2} = x_2$, where z and w are coordinates in (U, o'), $m_1 > 1, m_2 > 1$ and $\gcd(m_1, m_2) = 1$. Therefore, $F: (U, o') \rightarrow (V, o)$ is given by $u = z^{m_1}$ and $v = z^{m_1} + w^{m_2}$, where $m_1 > 1, n, m_2 > 1$ and $\gcd(m_1, m_2) = 1$.

In the third case the cover $H_1: (U, o') \rightarrow (W, o_1)$ is branched in the two curves given by $y_1 - y_2 = 0$ and $y_1 - \omega_j y_2 = 0$ for some j, $1 \leq j \leq n - 1$. We put $x_1 = (\omega_j - 1)^{-1}(y_1 - y_2)$ and $x_2 = (\omega_j - 1)^{-1}(y_1 - \omega_j y_2)$. Then $H_1: (W, o_1) \rightarrow (V, o)$ is given by the functions $z^{m_1} = x_1$ and $w^{m_2} = x_2$, where z and w are coordinates in (U, o'), $m_1, m_2 > 1$ and $\gcd(m_1, m_2) = 1$. Therefore, $F: (U, o') \rightarrow (V, o)$ is given by $u = (\omega_j z^{m_1} - w^{m_2})^n$ and $v = z^{m_1} - w^{m_2}$, where $n, m_1, m_2 > 1$, $\gcd(m_1, m_2) = 1$ and $\omega_j = \exp(2\pi ji/n)$, $1 \leq j \leq n - 1$.

4.4. The case $\mathcal{R}_{A_{2k}}, k \geq 1$. The graph $\Gamma(\tilde{B})$ of the curve germ (B, o) of singularity type $A_{2k}, k \geq 1$, is shown in Figure 2 (in this case $E = E_{k+2}$). We show that in this case $(\bigcup_{k=1}^{\infty} \mathcal{R}_{A_{2k}}) \cap \beta^{-1}(\text{Bel}_2) = \emptyset$. Indeed, assume that there is $F \in \mathcal{R}_{A_{2k}} \cap \beta^{-1}(\text{Bel}_2)$ for some $k \geq 1$. Then (see diagram (\star)) \tilde{H}_2 can be branched in either $\tilde{B}_1 \cup \tilde{B}_2$, or $\tilde{B}_1 \cup \tilde{B}_3$, or $\tilde{B}_2 \cup \tilde{B}_3$, where $\tilde{B}_1 = E_{k+3}$, $\tilde{B}_2 = E_{2k+1} \cup \cdots \cup E_{k+1}$ and $\tilde{B}_3 = B_1$.

By Lemmas 2 and 3, $\tilde{\pi}_1^0 \simeq \mu_2$ and $\tilde{\pi}_2 \simeq \mu_{2k+1}$. Therefore, \tilde{H}_2 cannot be branched in $\tilde{B}_1 \cup \tilde{B}_2$ since $\text{GCD}(2, 2k + 1) = 1$.

Assume that \tilde{H}_2 is branched in $\tilde{B}_2 \cup \tilde{B}_3$. Then $\deg \tilde{H}_2$ is a divisor of $2k + 1$ and hence the dual graph of $\tilde{H}_2^{-1}(E_{k+2} \cup E_{k+3})$ is not a tree, that is, the second necessary condition is not satisfied.

Assume that \tilde{H}_2 is branched in $\tilde{B}_1 \cup \tilde{B}_3$. Then $\deg \tilde{H}_2 = 2$ and the dual graph of $\tilde{H}_2^{-1}(\tilde{B}_2 \cup E_{k+2}) = \bigcup_{j=1}^{2k+1} \tilde{E}_j$ (here $\tilde{E}_{k+1} = \tilde{H}_2^{-1}(E) = C$) is a tree with weights $[2, \ldots, 2, 3, 2, 3, 2, \ldots, 2]$. Therefore $\overline{B}^0 = \bigcup_{j=1}^{2k+1} \tilde{E}_j \subset \overline{W}_m$ is a tree with the weights $[2, \ldots, 2, 3, 2, \ldots, 2]$, since $(\tilde{H}_2^{-1}(E_{k+2}), \tilde{H}_2^{-1}(E_{k+3}))_{\overline{W}} = -1$. It follows from Theorem 3 that $\gamma_{\overline{W}} = 1$ in $\pi_1(\overline{W}_m \setminus \overline{B}^0)$, that is, the second necessary condition is not satisfied in this case.

4.5. The case $\mathcal{R}_{D_{2k+3}}, k \geq 1$. The graph $\Gamma(\tilde{B})$ of the curve germ (B, o) of singularity type $D_{2k+3}, k \geq 1$, is shown in Figure 4 (in this case $E = E_{k+3}$).

We can assume that (B, o) is given by the equation $u(v^2 - u^{2k+1}) = 0$. The cyclic cover $\tilde{H}_2: \tilde{W} \rightarrow \tilde{V}$ (see diagram (\star)) can be branched in either $\tilde{B}_1 \cup \tilde{B}_2$, $\tilde{B}_1 \cup \tilde{B}_3$ or $\tilde{B}_2 \cup \tilde{B}_3$, where $\tilde{B}_1 = B_1 \cup E_3 \cup \cdots \cup E_{k+2}$, $\tilde{B}_2 = E_{k+4}$ and $\tilde{B}_3 = B_2$, but using the same arguments as in § 4.4 it is easy to show that \tilde{H}_2 cannot be branched in either $\tilde{B}_1 \cup \tilde{B}_3$ or $\tilde{B}_2 \cup \tilde{B}_3$.

By Remark 6 and Lemmas 2 and 3, $\tilde{\pi}_1$ is the infinite cyclic group generated by e_{k+2} and $\tilde{\pi}_1^0 \simeq \mu_{2k+1}$, $\tilde{\pi}_2 \simeq \mu_2$. Therefore, if \tilde{H}_2 is branched in $\tilde{B}_1 \cup \tilde{B}_2$, then $\deg \tilde{H}_2 = 2$ and $\tilde{H}_2(e_{k+2})$ generates the monodromy group $G_{\tilde{H}_2} \simeq \mu_2$. Applying the representation of the group $\tilde{\pi}_1$ obtained with the help of Theorem 3, it is not difficult to show that \overline{W} has singular points of type A_1 over points of intersection of the irreducible components of \overline{B} and $\overline{B}^0 \subset \overline{W}_m$ is a chain of rational curves, $\overline{B}^0 = C \cup \bigcup_{j=1}^{2k} \tilde{E}_j$, and the weights of its dual graph are $[2, \ldots, 2, 1]$. Therefore (W, o_1) is a germ of a smooth surface and $H_2: (W, o_1) \rightarrow (V, o)$ is given by the functions $y_1^2 = u$ and $y_2 = v$, where y_1 and y_2 are some coordinates in (W, o_1). The inverse image $H_2^{-1}(B_2) = B_{2,1} \cup B_{2,2}$ is the union of two branches given by the equations $y_2 - y_1^{2k+1} = 0$ and $y_2 + y_1^{2k+1} = 0$. The cyclic cover $H_2: (U, o') \rightarrow (W, o_1)$ is branched in $H_2^{-1}(B_1)$, given by $y_1 = 0$ with multiplicity m_1, and in one of the irreducible components of $H_2^{-1}(B_2)$ with multiplicity m_2. Without loss of generality we can assume that H_1 is branched in $B_{2,1}$. Set $x_1 = y_1$ and $x_2 = y_2 - y_1^{2k+1}$. Then H_1 is given by the functions $z^{m_1} = x_1$ and $w^{m_2} = x_2$. Therefore, $F: (U, o') \rightarrow (V, o)$
is given by the functions
\[u = z^{2m_1} \quad \text{and} \quad v = z^{m_1(2k+1)} + w^{m_2}, \]
where \(k, m_1 \geq 1, m_2 > 1 \) and \(\gcd(m_1, m_2) = 1 \). Note that \(\zeta_m : W_m \to (W, o_1) \) is a composition of \(2k + 1 \) \(\sigma \)-processes blowing up the point \(o_1 \) and points lying in the proper inverse images of \(B_{2,2} \) and such that \(\overline{C} \) is the exceptional curve of the last blowup. Therefore, by Lemma 1 it follows from the second necessary condition that \(\gcd(m_2, 2k + 1) = 1 \).

4.6. The cases \(\mathcal{R}_{\mathbf{E}_6} \) and \(\mathcal{R}_{\mathbf{E}_8} \). The graphs \(\Gamma(\tilde{B}) \) of the curve germs \((B, o)\) of singularity types \(\mathbf{E}_6 \) and \(\mathbf{E}_8 \) are shown in Figures 5 and 7. We show that \(\mathcal{R}_{\mathbf{E}_6} \cap \beta^{-1}(\mathcal{B}l_{2}) = \emptyset \) (the proof that \(\mathcal{R}_{\mathbf{E}_8} \cap \beta^{-1}(\mathcal{B}l_{2}) = \emptyset \) is similar and therefore is omitted). Assume that there exists \(F \in \mathcal{R}_{\mathbf{E}_6} \cap \beta^{-1}(\mathcal{B}l_{2}) \). Then (see diagram (*)\) \(\tilde{H}_2 \) can be branched either in \(\tilde{B}_1 \cup \tilde{B}_2, \tilde{B}_1 \cup \tilde{B}_3 \) or \(\tilde{B}_2 \cup \tilde{B}_3 \), where \(\tilde{B}_1 = E_2, \tilde{B}_2 = E_4 \cup E_5, \) and \(\tilde{B}_3 = B_1 \).

It follows from Theorem 3 that \(\tilde{\pi}_1^{\mathbf{E}_6} \simeq \mu_4 \) and \(\tilde{\pi}_2 \simeq \mu_3 \). Therefore, \(\tilde{H}_2 \) cannot be branched in \(\tilde{B}_1 \cup \tilde{B}_2 \) since \(\gcd(4, 3) = 1 \).

If \(\tilde{H}_2 \) is branched in \(\tilde{B}_1 \cup \tilde{B}_3 \) or in \(\tilde{B}_2 \cup \tilde{B}_3 \), then it is easy to see that the dual graph of \(\overline{B}^0 \subset W_m \) is not a tree, that is, the second necessary condition is not satisfied.

4.7. The case \(\mathcal{R}_{\mathbf{E}_7} \). The graph \(\Gamma(\tilde{B}) \) of the curve germ \((B, o)\) of singularity type \(\mathbf{E}_7 \) given by \(u(v^2 - u^3) = 0 \) is shown in Figure 6 (in this case \(E = E_4 \)). We number the trails of \(\tilde{B} \) as follows: \(\tilde{B}_1 = B_1 \cup E_5 \), where \(B_1 \) is given by the equation \(u = 0, \tilde{B}_2 = E_3, \) and \(\tilde{B}_3 = B_2 \). Similarly to the cases considered above, it is easy to see that \(\tilde{H}_2 \) must be branched in \(B_1 \cup B_2 \) and \(\deg \tilde{H}_2 = 3 \), and then \((W, o_1) \) is a germ of smooth surface and \(H_2 \) is given by \(u = y_1^3 \) and \(v = y_2 \). Then \(H_2^{-1}(B_2) = B_{2,1} \cup B_{2,2} \cup B_{2,3} \), where the \(B_{2,j} \subset W \) are given in coordinates \(y_1, y_2 \) in \((W, o_1)\) by the equations \(y_1 - \omega_j y_2^2 = 0, \omega_j = \exp(2\pi ji/3), j = 1, 2, 3 \). The cover \(H_1: (U, o') \to (W, o_1) \) is branched in one of the irreducible components of \(H_2^{-1}(B_2) \) with multiplicity \(m_2 > 1 \) and possibly also in \(H_2^{-1}(B_1) \). As above, without loss of generality we can assume that \(H_1: (U, o') \to (W, o_1) \) is branched in \(B_{2,3} \). Set \(x_1 = y_1 \) and \(x_2 = y_2 - y_1^2 \). Then \(H_1 \) is given by the functions \(z^{m_1} = x_1 \) and \(w^{m_2} = x_2 \), where \(z \) and \(w \) are coordinates in \((U, o')\) and \(\gcd(m_1, m_2) = 1 \). Therefore, \(F: (U, o') \to (V, o) \) is given by
\[u = z^{3m_1} \quad \text{and} \quad v = z^{2m_1} + w^{m_2}, \]
where \(m_1 \geq 1, m_2 > 1, \) and \(\gcd(m_1, m_2) = 1 \).

4.8. The case \(\mathcal{R}_{\mathbf{D}_4} \). It easily follows from the proof of Theorem 1 that a germ of cover \(F \in \mathcal{R}_{\mathbf{D}_4} \cap \beta^{-1}(\mathcal{B}l_{2}) \) is equivalent to a cover given by one of the following pairs of functions:
\[u = z^{m_1 n} \quad \text{and} \quad v = (z^{m_1} + w^{m_2})^n \quad (21) \]
or
\[u = (z^{m_1} - w^{m_2})^n \quad \text{and} \quad v = (z^{m_1} - \omega_j w^{m_2})^n, \quad (22) \]
where \(n \geq 2, m_1, m_2 \geq 1, \) \(\gcd(m_1, m_2) = 1 \) and \(\omega_j = \exp(2\pi ji/n), 1 \leq j \leq n - 1 \).
4.9. The case $\mathcal{R}_{D_{2k+2}}$, $k \geq 2$. Without loss of generality we can assume that
(B, o) is given by the equation $uv(v - u^k) = 0$, where $u = 0$ is the equation of
the irreducible component B_1 of B and $v = 0$ is the equation of the irreducible
component B_2. The graph $\Gamma(B)$ of the curve germ (B, o) of singularity type D_{2k+2},
k ≥ 2, is shown in Figure 3 (in this case $E = E_{k+3}$). We number the trails of B
as follows: $\tilde{B}_1 = B_1 \cup E_4 \cup \cdots \cup E_{k+2}, \tilde{B}_2 = B_2$ and $\tilde{B}_3 = B_3$. The cyclic cover
$\tilde{H}_2: \tilde{W} \to \tilde{V}$ is branched either in $\tilde{B}_1 \cup \tilde{B}_2$ or $\tilde{B}_2 \cup \tilde{B}_3$ (the case when \tilde{H}_2 is
branched in $\tilde{B}_1 \cup \tilde{B}_3$ is the same as when \tilde{H}_2 is branched in $\tilde{B}_1 \cup \tilde{B}_2$, since we can
make a coordinate change in (V, o)).

As in §4.3, it is easy to show that the case when \tilde{H}_2 is branched in $\tilde{B}_2 \cup \tilde{B}_3$ is
impossible.

Consider the case when the cyclic cover $\tilde{H}_2: \tilde{W} \to \tilde{V}$ (see diagram (*)) is
branched in $\tilde{B}_1 \cup \tilde{B}_2$, $\deg \tilde{H}_2 = n$. Let $n = n_1 k_1$ and $k = k_1 k_2$, where $k_1 =
\gcd(n, k)$ and $\gcd(n, k_2) = 1$. The group π_1 is generated by the element $\gamma_{E_{k+2}}$
represented by a simple loop around the curve E_{k+2}. It follows from Theorem 3 that
$\gamma_{B_1} = \gamma_{E_{k+2}}^{k_1}$, where γ_{B_1} is an element in $\tilde{\pi}_1$ represented by a simple loop around
the germ B_1. The monodromy group $G_{\tilde{H}_2} \simeq \mu_n \subset \mathbb{S}_n$ is generated by the element
g = $\tilde{H}_2*(\gamma_{E_{k+2}})$. The element $\tilde{H}_2*(\gamma_{B_1}) = g^{-1}$ is also a generator of the group μ_n,
where γ_{B_2} is an element in $\tilde{\pi}_1$ represented by a simple loop around the germ B_2,
and $\tilde{H}_2*(\gamma_{B_1}) = g^k$ is an element of order n_1, Therefore \tilde{H}_2 is branched in B_1 with
multiplicity n_1 and in B_2 with multiplicity n. As a result, we see that H_2 is also
only branched in B_1 with multiplicity n_1 and in B_2 with multiplicity n.

In diagram (13) the cover $\theta_{n', q}: (X, o) \to (W, o_1)$ is branched only at the
point o_1. Therefore, in some coordinates (x_1, x_2) in (X, o) the map $F_{f, \min} =
H_2 \circ \theta_{n', q}$; $(X, o) \to (V, o)$ is given by the functions

$$u = x_1^{n_1} \quad \text{and} \quad v = x_2^n,$$

since (X, o) is a germ of a smooth surface and $H_2 \circ \theta_{n', q}$ is branched in the
divisor with normal crossing $B_1 \cup B_2$. The inverse image $F_{f, \min}^{-1}(B_3) \cup \mathbb{S}_n$ is the
union of n smooth curves given by the equation $x_2^n - x_1^{n_1 k} = \prod_{j=1}^{n} (x_2 - \omega_j x_1^{k_2}) = 0$,
where $\omega_j = \exp(2\pi ij/n)$, $j = 1, \ldots, n$.

The map $\vartheta_{m_1, m_2}:(U, o') \to (X, o)$ is branched in at most two irreducible curves,
one of which belongs to $F_{f, \min}^{-1}(B_3)$. Without loss of generality we can assume that
it is given by $y_2 := x_2 - x_1^{k_2} = 0$. If the branch locus of ϑ_{m_1, m_2} consists of two
irreducible components, then the other is an irreducible component of the inverse
image of either B_1, B_2 or B_3. Therefore we have three possibilities: the second
irreducible component is either given by the equation $y_1 := x_1 = 0$ or $y_1 := x_2 = 0$
(if $k_2 = 1$), or $y_1 := x_2 - \omega_j x_1^{k_2} = 0$ for some $j = 1, \ldots, n - 1$ (if $k_2 = 1$), and
ϑ_{m_1, m_2} is given by functions $y_1 = z^{m_1}$ and $y_2 = w^{m_2}$. Applying Lemma 1, the
second necessary condition is equivalent to the condition that $\gcd(m_1, m_2) = \gcd(m_2, k_2) = 1$ in the first case, and $\gcd(m_1, m_2) = 1$ in the second and third cases. As a result, $F: (U, o') \to (V, o)$ is equivalent to one of the following covers
given by the functions

$$u = z^{m_1 k_1} \quad \text{and} \quad v = (z^{m_1 k_2} + w^{m_2})^{n_1 k_1}.$$
in the first case;
\[u = (z^{m_1} - w^{m_2})^{n_1} \quad \text{and} \quad v = z^{m_1 n_1 k_1} \]
in the second case;
\[u = (z^{m_1} - w^{m_2})^{n_1} \quad \text{and} \quad v = (z^{m_1} - \omega_j w^{m_2})^{n_1 k_1} \]
in the third case, where \(k_1 k_2 \geq 2, \ n_1 k_1 \geq 2, \ m_1, m_2 \geq 1, \ GCD(m_1, m_2) = GCD(n m_2, k_2) = 1, \) and \(\omega_j = \exp(2\pi ji/n_1k_1), j = 1, \ldots, n_1 k_1 - 1. \)

Bibliography

[1] V.I. Arnol’d, “Normal forms for functions near degenerate critical points, the Weyl groups of \(A_k, D_k, E_k \) and Lagrangian singularities”, Funktsional. Anal. i Prilozhen. 6:4 (1972), 3–25; English transl. in Funct. Anal. Appl. 6:4 (1972), 254–272.

[2] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), vol. 4, Springer-Verlag, Berlin 1984, x+304 pp.

[3] Vik. S. Kulikov, “On germs of finite morphisms of smooth surfaces”, Algebra, number theory, and algebraic geometry, Tr. Mat. Inst. Steklov., vol. 307, Steklov Mathematical Institute of RAS, Moscow 2019, pp. 100–131; English transl. in Proc. Steklov Inst. Math. 307 (2019), 85–114.

[4] Vik. S. Kulikov, “On rigid germs of finite morphisms of smooth surfaces”, Mat. Sb. 211:10 (2020), 3–31; English transl. in Sb. Math. 211:10 (2020), 1354–1381.

[5] Vik. S. Kulikov and E.I. Shustin, “On \(G \)-rigid surfaces”, Complex analysis and its applications, Tr. Mat. Inst. Steklov., vol. 298, MAIK “Nauka/Interperiodica”, Moscow 2017, pp. 144–164; English transl. in Proc. Steklov Inst. Math. 298 (2017), 133–151.

[6] D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22.

[7] K. Stein, “Analytische Zerlegungen komplexer Räume”, Math. Ann. 132 (1956), 63–93.

Viktor S. Kulikov
Steklov Mathematical Institute
of Russian Academy of Sciences,
Moscow, Russia
E-mail: kulikov@mi-ras.ru

Received 28/MAY/20
Translated by Vik. KULIKOV