Isoquercitrin inhibits Wnt/β-catenin signaling.

Nathália G. Amado, Danilo Predes, Barbara F. Fonseca, Débora M. Cerqueira, Alice H. Reis, Ana C. Dudenhoeffer, Helena L. Borges, Fábio A. Mendes and Jose G. Abreu.

Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil

*Running title: Isoquercitrin inhibits Wnt/β-catenin signaling.

Address for correspondence: Jose Garcia Abreu, Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco F2 sala 15, Rio de Janeiro, RJ, 21949-590, Brazil. Phone: +55 021 2562-6486; e-mail: garciajr@icb.ufrj.br.

Keywords: Flavonoid, Xenopus, colon cancer, β-catenin, Wnt signaling, quercetin.

Background: Flavonoids are natural compounds capable of modulating signaling pathways in a variety of biological processes.

Results: Isoquercitrin inhibits canonical Wnt signaling in Xenopus embryos downstream of β-catenin and impairs the growth in colon cancer cells in vitro, without cytotoxic effects.

Conclusion: Isoquercitrin inhibits Wnt/β-catenin pathway and the growth of colon cancer cells in vitro.

Significance: Potential anti-tumoral agent targeting Wnt/β-catenin signaling.

ABSTRACT

Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including antioxidative, anti-inflammatory, antiviral, and anti-tumoral. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1 and HCT116), while exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.

INTRODUCTION

Flavonoids are plant-derived polyphenolic molecules. They have potential biological effects including antioxidative, anti-inflammatory, antiviral, and anti-tumoral, in addition to prevention of cardiovascular diseases (1). Flavonoids are modulators of several cellular signaling pathways such as the Wnt/β-catenin pathway (canonical Wnt signaling) (2,3). This signaling pathway controls many aspects of embryonic development, as it plays a major role in embryonic axis determination and tissue maintenance (4-6).

In the absence of the Wnt ligand, cytoplasmic β-catenin is targeted for destruction via phosphorylation and proteasomal degradation (7). β-catenin is a key component of the canonical Wnt signaling pathway. Activation of frizzled receptors and the co-receptor low-density lipoprotein-related receptor 5/6 (LRP5/6) by Wnt ligands disrupts this
Isoquercitrin inhibits Wnt/β-catenin signaling.

destruction complex. In this situation, β-catenin is translocated to the nucleus, where it associates with the T-cell factor/lymphoid enhancer factor (TCF/LEF) to activate specific Wnt target genes (7,8).

Wnt signaling deregulation leads to several developmental defects and has been linked to many types of cancer in humans (9,10). In the last decade, effects of flavonoids on modulation of Wnt/β-catenin signaling have been the focus of many studies. These molecules act on different components of the Wnt signaling pathway, such as Dkk1 (11), Gsk3β (12), Dsh (13) and β-catenin/TCF/LEF (3,14,15). Recently, we characterized in vivo effects of the flavonoid quercetin as a negative modulator of the Wnt/β-catenin signaling pathway in Xenopus embryos (15). We also observed that quercetin shows high and non-specific toxicity.

Our previous data have shown that isoquercitrin, which is derived from quercetin, affects the proliferation of glioblastoma cells, with lower toxicity (16). These anti-proliferative effects were accompanied by changes in β-catenin cellular localization, suggesting that Wnt/β-catenin signaling might be altered by this flavonoid (16).

Hence, we conducted a series of in vivo assays in Xenopus embryos to investigate whether isoquercitrin has an effect on Wnt/β-catenin signaling. The use of Xenopus allows a fast and clear functional reading on the role of small molecules in this signaling pathway (11,15,16). In addition, we monitored cell growth, death, migration and toxicity of colon cancer cells upon isoquercitrin treatment. Taken together, our data indicate that isoquercitrin acts as an inhibitor of Wnt/β-catenin in Xenopus embryo experiments (in vivo) and in vitro and thus should be further investigated as a potential anti-tumoral agent.

EXPERIMENTAL PROCEDURES

Embryo manipulations- Adult frogs (Nasco Inc., WI, USA) were stimulated with 1000 UI human chorionic gonadotropin (Ferring Pharmaceuticals, Kiel, Germany). Xenopus embryos were obtained by in vitro fertilization and staged according to Nieuwkoop and Farber (1956) (17). We treated the embryos with flavonoids and performed the embryo manipulations according to Amado et al. (2012) (15).

Histological analysis- For histological staining, Xenopus embryos were fixed in Bouin's Fixative (Sigma Aldrich), dehydrated, embedded in Paraplast Plus (Sigma Aldrich), sectioned at 7 micrometers, dewaxed, and stained with Hematoxylin and Eosin as described by Reis et al. (2012) (18).

In situ hybridization- Xenopus embryos were fixed in MEMFA at 4 °C overnight, and then dehydrated in a methanol series (25, 50, 75 and 100%). Whole-mount in situ hybridization was performed according to Abreu et al. (2002) (19) with modifications suggested by Reversade and De Robertis (2005) (20) for Xenopus. Next, Xenopus embryos were treated with a bleaching solution (2.5% 20× SSC, 5% formamide, 4% H2O2 in H2O).

Luciferase assay- Four-cell-stage embryos were injected into the ventral or dorsal marginal zone with 300 pg of luciferase reporter plasmid (S012343Luc) and 50 pg of TK- Renilla, alone or in combination with 10 pg of xWnt8, 500 pg of LRP6, 200 pg of β-catenin WT, 50 pg of β-catenin S33A, and 500 pg Lef1 ΔN VP16 mRNA. After microinjection, embryos were treated with flavonoids until sibling control embryos reached stage 10.5. Triplicates of four embryos were lysed according to the manufacturer’s protocol (Dual-Luciferase Reporter System, Promega) and 20 µl of embryo lysate was used for luciferase detection.

LiCl treatment- Dorsalized embryos were obtained by LiCl treatment as described previously by Kao et al. (1986) (21). Four-cell-stage embryos were treated with flavonoids at 75 and 150 µM whereas controls were treated with 1% DMSO. When embryos reached the 32-cell stage, they were treated with 0.3 M LiCl in 0.1X Barth for 15 min and then thoroughly washed in 0.1X Barth. After LiCl treatment, embryos were treated again with flavonoids and the control embryos were treated with 1% DMSO. When embryos reached the 32-cell stage, they were treated with 0.3 M LiCl in 0.1X Barth for 15 min and then thoroughly washed in 0.1X Barth. After LiCl treatment, embryos were treated again with flavonoids and the control embryos were treated with 1% DMSO until stage 10.5. Then the flavonoids or DMSO were removed and the embryos were cultured until stage 32. Axis phenotypes were scored by the Dorsal-anterior index (DAI) (21).

Western Blotting analysis- Lysate samples from flavonoid HCT-116-treated cells at 75 and 150 µM were harvested in a sample
Isoquercitrin inhibits Wnt/β-catenin signaling.

Specific secondary antibodies conjugated with Cy3 fluorochrome and FITC fluorochrome (1:10,000, Invitrogen, CA, USA) were incubated for 1 h at room temperature. After PBS washes, slides were mounted and observed in a Nikon TE 2000 inverted microscope (Melville, NY, USA). Images were captured using a CoolSNAP-Pro (Media Cybernetics, Bethesda, MD, USA) digital camera.

Flavonoid treatment of cells- In this study, we used human colon cancer HCT-116, SW480, DLD-1 and non-tumor cell IEC-18. Low-passage cells were cultured in Dulbecco’s until 70% confluence was reached. HCT-116 cells were treated with Flavonoid Isoquercitrin for 24 h at concentrations of 75 and 150 µM. DMSO (used as a vehicle to solubilize the flavonoids) was added to control cultures at 1% v/v. To stimulate the Wnt pathway, cells were treated with Wnt3a-conditioned medium (CM) for 6 h at 25% of conditioned medium. Cells were co-treated with Wnt3a-CM and isoquercitrin for 6 h at 75 or 150 µM.

Proliferation assay- In this study, we used human colon cancer HCT-116, SW480, DLD-1 and non-tumor cell IEC-18. (ATCC). Low-passage cells were cultured in Dulbecco’s until 70% confluence was reached. For proliferation assay HCT3116 cells were treated with isoquercitrin for 24 h at 150µM and Click-it Edu (Life Sciences) assay was performed according to manufacturer’s protocol. DMSO was used as a vehicle to solubilize the flavonoids and was added to control cultures at 1,5% v/v.

Scratch assays- Confluent SW480, HCT116, DLD-1 and IEC-18 cell cultures in 12-well plates were treated with 150 µM of isoquercitrin. A line down the center of each well was scraped with a p200 pipette tip, followed by a wash to remove debris. Images were taken at 0 h, scratch widths were measured, and wound closure was calculated by dividing widths measured after 18 h of incubation by the initial scraped width. Each experiment was carried out in triplicate, and three fields were counted per well by scorers blinded to experimental conditions.

Statistics- The figures show the mean of n=3 replicates; standard error and significance (P value) were determined by paired Mann-
Isoquercitrin inhibits Wnt/β-catenin signaling. Our previous study suggested that isoquercitrin changes β-catenin cellular localization (16). To test this hypothesis we conducted a siamois-reporter assay (S01234-Lux) for the Wnt/β-catenin pathway in Xenopus embryos (23). To induce canonical Wnt signaling, xWnt8 mRNA was injected and showed almost 10.0-fold induction of luciferase siamois-reporter activity (Fig. 2A). The induction of the gene reporter was reduced after treatment with isoquercitrin, reaching 5.0-fold less than the control (Fig. 2A). Similar experiments were performed by using RKO-BAR/Renilla cells. These cells were incubated with Wnt3a-CM and treated with increasing concentrations of isoquercitrin (12.5, 25, 50, 75, 150, 200 µM). The treatment significantly inhibited gene reporter activity in a concentration-dependent manner, reaching 70% reduction in activity when cells were treated with 200 µM of the flavonoid (Fig. 2B). Isoquercitrin also significantly decreased the endogenous expression of xnr3, a specific target of Wnt/β-catenin signaling. However, isoquercitrin was not able to affect expression of xbra, a pan-mesodermal marker which is a nodal target gene (24) (Fig. 2C). These data reinforce the idea that the flavonoid isoquercitrin acts as an inhibitor of Wnt/β-catenin signaling.

Isoquercitrin inhibits ectopic axis formation and rescues Lithium Chloride-dorsalized embryos- The ventral injection of xWnt8 mRNA in Xenopus embryos induced 94% secondary axis formation (Fig. 3A-C). With this in mind, we analyzed the capability of isoquercitrin to affect the ectopic axis formation induced by xWnt8. In fact, the presence of isoquercitrin reduced secondary axis formation (Fig. 3A-C). As shown in Figure 3D, 55% of embryos displayed an ectopic axis and only 17% displayed a complete double axis. Consistently, RT-PCR analysis of animal cap explants revealed that isoquercitrin treatment reduced the xnr3 mRNA induction by activators of Wnt (Fig. 3E). To substantiate our results, we used another standard method to analyze the canonical Wnt signaling pathway in Xenopus embryos, the LiCl assay. LiCl is an inhibitor of GSK3-β, a key kinase involved in phosphorylation of β-catenin. As a consequence of LiCl treatment, embryos...
Isoquercitrin inhibits Wnt/β-catenin signaling.

 Isoquercitrin inhibits Wnt/β3catenin signaling. The LiCl assay was performed in embryos and scored according to the dorsoanterior index (DAI) (21). Isoquercitrin was able to counteract the LiCl-dorsalized-embryos phenotype and showed a DAI close to 5 (Fig. 3G-J) whereas LiCl-treated embryos showed a DAI close to 7.4 (Fig. 3G and 3J). These data suggest that isoquercitrin is able to inhibit in vivo canonical Wnt signaling stimulation as well as LiCl-induced dorsalization in Xenopus embryos.

Isoquercitrin affects canonical Wnt signaling downstream of β-catenin nucleus translocation - Knowing that isoquercitrin inhibits the in vivo and in vitro Wnt/β-catenin signaling pathway, we asked where in the canonical Wnt pathway the flavonoid exerts its effect. To answer this question, we performed an epistasis analysis using specific activators of different points in the Wnt/β-catenin pathway. A Wnt/β-catenin specific siamois-reporter was co-injected with Wnt activators, followed by isoquercitrin treatment. Treatment with isoquercitrin was able to reduce signaling activation induced by Wnt8, LRP6, β-catenin WT and β-catenin S33A mRNA, a stabilized form of β-catenin which is constantly translocated to the nuclei (Fig. 4) (25). However, when embryos were injected with a constitutive active Lef1 form (26), Lef1 ∆N VP16 mRNA, isoquercitrin was not able to inhibit Wnt pathway stimulation (Fig. 4). These data suggest that isoquercitrin acts downstream of the β-catenin nuclear translocation.

Isoquercitrin affects β-catenin phosphorylation in colon cancer cells - The Wnt/β-catenin pathway is constitutively activated in more than 80% of human colon cancers (27). As isoquercitrin inhibited canonical Wnt signaling in the Xenopus experiments, we asked whether it could change the phosphorylation status of β-catenin in colon cancer cells. Isoquercitrin treatment of colon cancer cell lines DLD-1, HCT116 and SW480 increased the level of phosphorylated β-catenin (Fig. 5A), while total β-catenin was less reduced in HCT116 and SW480 or unaffected in DLD-1 (Fig. 5B). Consistently, when we analyzed the ratio of phosphorylated-β-catenin to total β-catenin in each colon cancer cell line, we found that isoquercitrin caused a significant increase in levels of phosphorylated-β-catenin (Fig. 5D). Since the effect on HCT116 cells was remarkable, we used this cell line to analyze β-catenin localization and levels of Cyclin D1, a Wnt/β-catenin target gene in HCT116 (29) (Fig. 6). We showed that isoquercitrin affects β-catenin localization, inducing accumulation of large amounts in the cytoplasm while decreasing β-catenin in the nucleus (Fig. 6A). In addition, isoquercitrin also reduces the levels of Cyclin D1 in HCT116 cells (Fig. 6B). Consistently, in the HCT116 cell line, the PCNA level was decreased after isoquercitrin treatment in a dose-dependent manner (Fig. 6C-D). These data support an inhibitory effect of isoquercitrin on Wnt/β-catenin signaling in colon cancer cell lines.

Isoquercitrin showed no toxic effects on colon cancer cells - As we observed an inhibition of Wnt/β-catenin in colon cancer cell lines, we next asked what would be the effects of this inhibition on colon cancer cells and on the non-tumoral colon cell line IEC-18. First, we performed immunocytochemistry against α-tubulin and performed an MTT assay to evaluate the morphology and viability, respectively, of these cells after isoquercitrin treatment (Fig. 7). Isoquercitrin did not affect the cell morphology in all cell lines analyzed (Fig. 7A-H) or cell viability after 24 h to 72 h of isoquercitrin treatment (Fig. 7I-L). We compared the effects of isoquercitrin, quercetin and rutin on HCT116 cells. Quercetin is a well-known flavonoid with a number of biological effects that have been well described (15,28). Rutin is a flavonoid that has little effect on tumor cells (3,16). Quercetin impaired cell viability after 12 h of treatment (Fig. 7M) and dramatically decreased the number of cells in culture after 24 h (Fig 7N). However, neither isoquercitrin nor rutin affected cell viability after 48 h of treatment (Fig. 7M). The cytotoxic effect of quercetin was accompanied by changes in cell morphology in HCT116, SW480 and DLD-1 (Not shown).

These data show that exposure of colon cancer cells to isoquercitrin did not show any apparent toxic effect, according to the tests we applied.
Isoquercitrin inhibits cell migration in colon cancer cells- As isoquercitrin inhibited cell growth of colon cancer cell lines, we asked whether cell migration, another fundamental process deregulated in cancer cells, could be affected by the flavonoid treatment. To do this, DLD-1, HCT116, SW480 and IEC-18 cells were treated with isoquercitrin during a scratch assay (Fig. 9). At 18 h post-scratch, in DMSO-treated cells the migration rates were 14%, 13%, 22% and 25% in SW480, DLD-1, HCT116 and IEC-18, respectively (Fig. 9A-H). When these cells were treated with isoquercitrin the migration was significantly reduced, to 8%, 7% and 8% in SW480, DLD-1 and HCT116 respectively (Fig. 9I-K and 9M-O). However, migration of IEC-18 cells was not affected after isoquercitrin treatment (Fig. 9L and 9P). These data indicate that isoquercitrin inhibited migration in these colon cancer cell lines, but had no apparent effect on the non-tumor colon cells.

DISCUSSION

In this study, we used in vivo and in vitro models to characterize isoquercitrin as an inhibitor of the Wnt/β-catenin signaling pathway, acting downstream of β-catenin translocation to nuclei. Isoquercitrin treatment affected Xenopus axial patterning, reversed the Wnt8-induced double axis and the LiCl hyperdorsalization phenotype, reduced expression of the Wnt8 direct target gene, Xnr3, and increased β-catenin phosphorylation levels in cancer cells. In addition, this flavonoid impaired growth of colon cancer cells (DLD-1, HCT116 and SW480 cell lines) by inhibiting proliferation and migration with no apparent cytotoxic effect. These effects were not observed in non-tumor colon cell line IEC-18.

In the last 10 years, several studies have reported that the anti-tumoral effects of flavonoids are related to their ability to modulate signaling pathways, including canonical Wnt signaling (2). In fact, we observed that isoquercitrin was able to affect axis establishment (Fig. 1) and to rescue the ectopic axis formation induced by xwnt8 (Fig. 3), which are Xenopus phenotypes associated with canonical Wnt signaling modulation (4,15). These findings are in agreement with an inhibitory action of isoquercitrin on Wnt/β-catenin and provide evidence of an isoquercitrin effect in vivo.

Most colorectal carcinomas harbor genetic alterations that result in stabilization of β-catenin, leading to abnormal stimulation of canonical Wnt signaling (30,31). We used HCT-116, DLD-1 and SW480 cells that have mutations in components of Wnt/β-catenin to investigate the cell growth inhibitory effects of isoquercitrin. We observed that isoquercitrin reduced cell proliferation and cell migration in all tumor cells tested. However no effect was observed in non-tumor cells (Figs. 8 and 9). In addition, these effects were not accompanied by changes in cell morphology, and showed lower toxicity (Fig. 7).

Isoquercitrin and quercetin share the same structural skeleton and are able to inhibit in vitro Wnt/β-catenin signaling, and both have cell proliferation inhibition effects (15,16). However, quercetin induces high non-specific toxicity in these cells (32,33).
Isoquercitrin inhibits Wnt/β-catenin signaling.

Our data indicate that isoquercitrin is an inhibitor of canonical Wnt signaling, and for the first time we showed at which level in the Wnt pathway the flavonoid exerts its effect. The epistasis analysis showed that isoquercitrin inhibits the signaling downstream of β-catenin nuclear translocation as isoquercitrin reverses the effect of β-catenin S33A, which cannot be phosphorylated and avoids degradation. In that case, β-catenin S33A is constantly translocated to the nuclei, thereby activating the pathway (25). The β-catenin S33A activation was inhibited by isoquercitrin, but not by Lef1ANVP16 which activated the pathway independently of β-catenin (26) (Fig. 4). Additionally, isoquercitrin also affected β-catenin phosphorylation in colon cancer cells (Fig. 5). These data reinforce the supposition that the effect on the Wnt/β-catenin signaling pathway was specific, since our antibody recognizes two β-catenin phosphorylation sites (S33 and S37) specific for GSK3 phosphorylation (7). Interestingly, previous studies showed that quercetin is also able to negatively modulate canonical Wnt signaling downstream of β-catenin, by blocking its association with Tcf-4 (34). Thus, isoquercitrin and quercetin might share the same mechanism for canonical Wnt signaling inhibition, despite the toxic effects of quercetin. This toxic effect was reconfirmed by the cell morphology and MTT data obtained in this study. Glycosylated flavonoids are known to be less toxic than their aglycone counterparts (36). One possible reason for this lower toxicity is the different absorption and bioavailability of glycosylated flavonoids, as the structure of the flavonoid seems to affect its absorption rate (35-37).

However, the mechanisms involved in this absorption are still poorly understood and should be investigated. Currently, there is an active search for new modulators of the Wnt pathway, which may have a broad impact on biology and medicine. In this study, we observed that isoquercitrin combines two interesting aspects for anti-tumoral research. First, the flavonoid blocks the Wnt signaling, most likely at the nuclear complex, between β-catenin and TCF, which supports its potential to interfere with tumor growth in other cell types, as most colon tumors accumulate β-catenin in the nucleus (27,30,31). Second, isoquercitrin shows lower toxicity than quercetin, a known Wnt inhibitor already tested in clinical trials (38-40). These two main aspects provide strong support for further investigation of isoquercitrin as a potential novel anti-tumoral flavonoid.

In summary, our study dissected possible specific targets of isoquercitrin in Wnt/β-catenin signaling. It thus supported the tumor cell growth effect in vitro of this glycosylated flavonoid. Additionally, this investigation added to the understanding of the Wnt/β-catenin signaling pathway, which is known to be deregulated in many types of human cancer. Further investigation should be undertaken to understand the role of flavonoids, as a potential novel class of anti-tumoral growth agents.

REFERENCES

1. Sies, H. (2010) Polyphenols and health: update and perspectives. Arch. Biochem. Biophys. 501, 2-5
2. Sarkar, F. H., Li, Y., Wang, Z., and Kong, D. (2009) Cellular signaling perturbation by natural products. Cell. Signal. 21, 1541-1547
3. Amado, N. G., Fonseca, B. F., Cerqueira, D. M., Neto, V. M., and Abreu, J. G. (2011) Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci. 89, 545-554
4. McMahon, A. P., and Moon, R. T. (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075-1084
Isoquercitrin inhibits Wnt/β-catenin signaling.

5. Niehrs, C. (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845-857
6. Zhang, X., Abreu, J. G., Yokota, C., MacDonald, B. T., Singh, S., Coburn, K. L. A., Cheong, S.-M., Zhang, M. M., Ye, Q.-Z., and Hang, H. C. (2012) Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149, 1565-1577
7. Kim, S.-E., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semenov, M. V., MacDonald, B. T., Zhang, X., Abreu, J. G., and Peng, L. (2013) Wnt Stabilization of β-Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies. Science 340, 867-870
8. Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destree, O., and Clevers, H. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391-399
9. Logan, C. Y., and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781-810
10. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480
11. Tarapore, R. S., Siddiqui, I. A., and Mukhtar, H. (2012) Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis 33, 483-491
12. Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004) Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727-747
13. Hallett, R. M., Kondratyev, M. K., Giacomelli, A. O., Nixon, A. M., Girgis-Gabardo, A., Ilieva, D., and Hassell, J. A. (2012) Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PloS One 7, e33976
14. Lee, J., Lee, J., Jung, E., Hwang, W., Kim, Y.-S., and Park, D. (2010) Isohamnetin-induced anti-adipogenesis is mediated by stabilization of β-catenin protein. Life Sci. 86, 416-423
15. Amado, N. G., Fonseca, B. F., Cerqueira, D. M., Reis, A. H., Simas, A. B., Kuster, R. M., Mendes, F. A., and Abreu, J. G. (2012) Effects of natural compounds on Xenopus embryogenesis: a potential read out for functional drug discovery targeting Wnt/beta-catenin signaling. Curr. Top. Med. Chem. 12, 2103-2113
16. Amado, N. G., Cerqueira, D. M., Menezes, F. S., da Silva, J. F., Neto, V. M., and Abreu, J. G. (2009) Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes beta-catenin cellular localization. Anticancer Drugs 20, 543-552
17. Nieuwkoop, P. D., and Faber, J. (1956) Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. 22
18. Reis, A. H., Almeida-Coburn, K. L., Louza, M. P., Cerqueira, D. M., Aguiar, D. P., Silva-Cordoso, L., Mendes, F. A., Andrade, L. R., Einicker-Lamas, M., and Atella, G. C. (2012) Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. Dev. Biol. 365, 350-362
19. Abreu, J. G., Ketpura, N. I., Reversade, B., and De Robertis, E. (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nature Cell Biol. 4, 599-604
20. Reversade, B., and De Robertis, E. (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123, 1147-1160
21. Kao, K. R., Masui, Y., and Elinson, R. P. (1986) Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 322, 371-373
22. Garcia-Abreu, J., Neto, V. M., Carvalho, S., and Cavalcante, L. (1995) Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. *J. Neurosci. Res.* **40**, 471-477
23. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T., and Kimelman, D. (1997) A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. *Genes Dev.* **11**, 2359-2370
24. Haramoto, Y., Takahashi, S., and Asashima, M. (2007) Monomeric mature protein of Nodal-related 3 activates Xbra expression. *Dev. Genes Evol.* **217**, 29-37
25. Huang, P., Senga, T., and Hamaguchi, M. (2007) A novel role of phospho-β-catenin in microtubule regrowth at centrosome. *Oncogene* **26**, 4357-4371
26. Aoki, M., Hecht, A., Kruse, U., Kemler, R., and Vogt, P. K. (1999) Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. *Proc. Natl. Acad. Sci. USA* **96**, 139-144
27. Vermeulen, L., Felipe De Sousa, E. M., van der Heijden, M., Cameron, K., de Jong, J. H., Borovsky, T., Tuynman, J. B., Todaro, M., Merz, C., and Rodermond, H. (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. *Nature Cell Biol.* **12**, 468-476
28. Dajas, F. (2012) Life or death: neuroprotective and anticancer effects of quercetin. *J. Ethnopharmacol.* **143**, 383-396
29. Tetsu, O., and McCormick, F. (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. *Nature* **398**, 422-426
30. De Sousa e Melo, F., Wang, X., Jansen, M., Fessler, E., Trinh, A., de Rooij, L. P. M. H., de Jong, J. H., de Boer, O. J., van Leersum, R., and Bijlsma, M. F. (2013) Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. *Nature Med.* **19**, 614-618
31. Markowitz, S. D., and Bertagnolli, M. M. (2009) Molecular basis of colorectal cancer. *New Engl. J. Med.* **361**, 2449-2460
32. Russo, G. L. (2007) Ins and outs of dietary phytochemicals in cancer chemoprevention. *Biochem. Pharmacol.* **74**, 533-544
33. Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., and Haenen, G. R. (2007) The quercetin paradox. *Toxicol. Applied Pharmacol.* **222**, 89-96
34. Park, C. H., Chang, J. Y., Haehm, E. R., Park, S., Kim, H.-K., and Yang, C. H. (2005) Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. *Biochem. Biophys. Res. Comm.* **328**, 227-234
35. Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., and van Leeuwen, P. A. (2001) Flavonoids: a review of probable mechanisms of action and potential applications. *Am. J. Clin. Nutr.* **74**, 418-425
36. Pietta, P.-G. (2000) Flavonoids as antioxidants. *J. Nat. Prod.* **63**, 1035-1042
37. Tapiero, H., Tew, K., Nguyen Ba, G., and Mathe, G. (2002) Polyphenols: do they play a role in the prevention of human pathologies? *Biomed. Pharmacother.* **56**, 200-207
38. Cialdella-Kam, L., Nieman, D. C., Sha, W., Meaney, M. P., Knab, A. M., and Shanel, R. A. (2013) Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. *Br. J. Nutr.* **109**, 1923-1933
39. Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., Anderson, D., Baker, J., and Kerr, D. (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. *Clin. Cancer Res.* **2**, 659-668
40. Okamoto, T. (2005) Safety of quercetin for clinical application (Review). *Int. J. Mol. Med.* **16**, 275-278
Isoquercitrin inhibits Wnt/β-catenin signaling.

Acknowledgments—We are grateful to Professor Xi He from the Boston Children’s Hospital, Harvard Medical School, and Professor Eddy De Robertis from the Department of Biological Chemistry, UCLA for generously providing plasmids. We thank Fabio Zuim and Fernando Lourenço Dutra for providing technical assistance and Simone Rodrigues for care of the frog colony. The authors declare no conflict of interest.

FOOTNOTES

* This work was supported by CNPq (National Council of Technological and Scientific Development), FAPERJ (Rio de Janeiro State Foundation for Research and Development), and CAPES (Federal Agency for Higher Education).
1Address for correspondence: Jose Garcia Abreu, Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco F2 sala 15, Rio de Janeiro, RJ, 21949-590, Brazil. Phone: +55 021 2562-6486; e-mail: garciajr@icb.ufrj.br.

FIGURE LEGENDS

TABLE 1: Quantification of phenotypes of Untreated, DMSO and isoquercitrin treated embryos.

TABLE 2: Quantification of in situ hybridization of Untreated, DMSO and isoquercitrin treated embryos. The reduction of rx2, krox20, n-tubulin and hox-B9 genes was evaluated.

FIGURE 1: Isoquercitrin induces axial defects in *Xenopus* embryos. (A) Molecular structure of isoquercitrin. (B) Quantification of the phenotypes obtained by isoquercitrin at 150 µM treatment and control (DMSO). (C) Control embryo. Isoquercitrin leads to reduced eyes (D), microcephalic (E) or acephalic phenotypes (F). (G, H) Histological sections show lack of dorsal structures after isoquercitrin treatment. *In situ* hybridization reveals disturbance in expression domain of *bf1* (I, M), *krox20/rx2* (J, N) and *hoxB9* (K, O). (L, P) Schematic representation of the alterations in the gene expression of anterior region of the embryo. (Q) PCR reveals reduced expression of anterior markers chordin and otx2, whereas xvent-1 is unaffected after isoquercitrin treatment (lane 3). Efl-α was used as loading control.

FIGURE 2: Isoquercitrin inhibits Wnt/β-catenin. (A) Embryos were injected with Renilla + S01234 reporter, xwnt8 (10 pg), followed by DMSO or isoquercitrin treatment (150 µM). The activation of the gene reporter was counteracted by the treatment with isoquercitrin, reaching 5.0-fold less than the control. (B) RKO-BAR/Renilla cells incubated with Wnt-3a conditioned media (Wnt3a-CM) and treated with 12.5, 25, 50, 100, and 200 µM of isoquercitrin, showing that reduction of gene reporter activity is concentration-dependent. (C) Whole-embryos PCR showing endogenous expression of *xnr3*, Wnt target gene, and *xbra*, Nodal target gene. **p<0.01

FIGURE 3: Isoquercitrin inhibits ectopic axis formation and rescues Lithium Chloride-dorsalized embryos. (A-C) Phenotypes of axis patterning induced by ventral xwnt8 injection. Note that embryos display one axis, or an incomplete or complete secondary axis. (D) Isoquercitrin treatment reduced ectopic axis formation. (E) Isoquercitrin-treated or untreated animal cap explants were injected with xWnt8, LRP6 or β-catenin. mRNA levels of *xnr3* and the loading ef1α were analyzed by RT-PCR(F-J) LiCl assay phenotypes. (I) Graph displays a DAI index after LiCl and isoquercitrin treatment. Note that isoquercitrin reduces DAI of Lithium Chloride-dorsalized embryos from 7.4 to 5, approximately.
Isoquercitrin inhibits Wnt/β-catenin signaling.

FIGURE 4: Isoquercitrin affects canonical Wnt signaling downstream to β-catenin nucleus translocation. Isoquercitrin interfered with Wnt signaling activation when Xenopus embryos were injected with siamois-reporter gene S01234 and co-injected with Wnt8, LRP6, β-catenin WT, and β-catenin S33A but not with Lef1 ΔN VP16. *p<0.05; **p<0.01; ***p<0.001

FIGURE 5: Isoquercitrin affects β-catenin phosphorylation in colon cancer cells. Phosphorylation of β-catenin was analyzed after 24 h of isoquercitrin treatment. (A) In all colon cancer cell lines, p-β-catenin levels increased. (B) Total β-catenin levels are not significantly affected in colon cancer cell lines. (C) α-tubulin was used as loading control. (D) Protein level Graphs of p-β-catenin, β-catenin and the ratio between p-β-catenin and total β-catenin. Note that p-b-catenin increased after isoquercitrin treatment. *p<0.05; **p<0.01

FIGURE 6: Isoquercitrin affects β-catenin cell localization and Wnt target expressions and suppresses cell proliferation in HCT-116 colon cancer cells. (A) β-catenin level is increased in the cytoplasm after isoquercitrin treatment in a dose-dependent manner while it is decreased in the nucleus in the same condition. α-tubulin and lamin were used as cytoplasm and nucleus loading controls, respectively. The Wnt signaling pathway was stimulated with Wnt3a conditioned media (Wnt3a-CM). Quercetin was used as a known flavonoid able to inhibit the Wnt signaling pathway. (B) Cyclin D1 expression was decreased after isoquercitrin treatment in a dose-dependent manner. DMSO was used as control. (C) Western Blotting analysis PCNA expression. α-tubulin was used as loading control. (D) Protein levels graph of PCNA. *p<0.05; ***p<0.001

FIGURE 7: Isoquercitrin shows no toxic effects on colon cancer cells and non-tumor colon cells (A-H) Immunocytochemistry against α-tubulin to analyze cell morphology. Cell morphology was not affected by isoquercitrin treatment. (I-L) MTT assay measured at 0, 24, 48 and 72 h showed lower toxicity of isoquercitrin. (M) MTT assay on HCT116 measured at 0h, 6h, 12h, 24, and 48 h showed lower toxicity of isoquercitrin or rutin treatment, while quercetin treatment was toxic. (N) Total cell counts were reduced by isoquercitrin and quercetin treatments but were not affected by rutin treatment. *p<0.05; ***p<0.001.

FIGURE 8: Isoquercitrin suppresses cell proliferation in colon cancer cells but does not affect non-tumoral colon cells. Colon cancer cells were analyzed by Click-it EdU assay to measure proliferation. (A-D) SW480, (G-J) HCT116, (M-P) DLD and (S-V) IEC-18 Click-it EdU immunocytochemistry. Isoquercitrin treatment significantly reduced cell proliferation in all colon cancer cell lines analyzed, but did not affect cell proliferation in non-tumor cell line IEC-18. (E) In SW480 the proliferation ratio decreased nearly to 24%. (K) In HCT116 the proliferation ratio decreased nearly to 18%. (Q) In DLD-1 the proliferation ratio decreased nearly to 17%. (F,L,R) Total number of cells in SW480, HCT116 and DLD-1 also decreased nearly to 50%. (W) In IEC18 the proliferation ratio was not affected and (X) the total number of cells was unaffected by isoquercitrin treatment. *p<0.05; **p<0.01

FIGURE 9: Isoquercitrin inhibits cell migration in colon cancer cells but does not affect non-tumoral colon cells. Colon cancer cells were investigated for potential to migrate into a cell-free scratch region. (A-D) SW480, DLD-1, HCT116 and IEC-18 at 0 h of scratch assay. (E-H) SW480, DLD-1, HCT116 and IEC-18 after DMSO treatment for 18 h of scratch assay. (I-L) SW480, DLD-1, HCT116 and IEC-18 after isoquercitrin treatment for 18 h of scratch assay. Note that migration was inhibited by isoquercitrin in all colon cancer cell lines used. No effect was observed in non-tumor IEC-18 cells. (M-P) Graphs representing the cell migration distance from the scratch border after 18 h of treatment. ***p<0.001
Isoquercitrin inhibits Wnt/β-catenin signaling.

TABLE 1

Phenotype	n	Unaffected	Reduced Eyes	Microcephaly	A cephaly
Untreated	116	116	0	0	0
DMSO	113	91	8	10	4
Isoquercitrin	142	37	47	33	25
Isoquercitrin inhibits Wnt/β-catenin signaling.

TABLE 2

Gene	n	Unaffected	Reduced									
n2	23	100	0	29	99	11	28	75	25	28	12,5	87,5
krox20	23	100	0	29	99	11	28	75	25	28	12,5	87,5
α-tubulin	25	100	0	31	94	9	31	60	40	28	44	86
hox-B9	24	100	0	31	100	0	27	100	0	24	100	0
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin inhibits Wnt/β-catenin signaling.

FIGURE 3

A. One axis
B. Incomplete Secondary axis
C. Complete Secondary axis

D. DAI

E. Xnr3 and eff-α expression

F. Untreated/DMSO
G. LIC/ LIC + DMSO
H. LIC/ Isoquercitrin
I. LIC/ Isoquercitrin

J. DAI
Isoquercitrin inhibits Wnt/β-catenin signaling.

FIGURE 4

S01234+Tk-renilla	+	+	+	+	+	+	+	+	+
xWnt8	+	+							
xLRP6			+	+					
β-cat WT			+	+					
β-cat S33A			+	+					
Left ΔN VP16					+	+	+	+	+

| DMSO | | | | | | | | | |
| Isoquercitrin | | | | | | | | | |

Luc/Ren (AU)
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin inhibits Wnt/β-catenin signaling.

FIGURE 8
Isoquercitrin inhibits Wnt/β-catenin signaling.
Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway
Nathália G. Amado, Danilo Predes, Barbara F. Fonseca, Débora M. Cerqueira, Alice H. Reis, Ana C. Dudenhoeffer, Helena L. Borges, Fábio A. Mendes and Jose G. Abreu

J. Biol. Chem. published online October 30, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.621599

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts