Identification of tumor microenvironment-associated immunological genes as potent prognostic markers in the cancer genome analysis project HOPE

RYOTA KONDOU1*, YASUTO AKIYAMA1*, AKIRA IIZUKA1, HARUO MIYATA1, CHIE MAEDA1, AKARI KANEMATSU1, KYOKO WATANABE1, TADASHI ASHIZAWA1, TAKESHI NAGASHIMA2,3, KENICHI URAKAMI2, YUI SHIMODA2,3, KEIICHI OHSHIMA4, AKI SHIOMI5, YASUHISA OHDE6, MASANORI TERASHIMA7, KATSUHIKO UESAKA8, TETSURO ONITSUKA9, YASUYUKI HIRASHIMA11, NAKAMASA HAYASHI12, YOSHIKAZU KIKUCHI13, YASUYASU SHIBUYA14, HIROHSI KURODA15, MASASHI NIWA16, KAORU TAKAHASHI17, HIROYA KASHIWAGI18, MASASHI NAKAGAWA19, YUJI ISHIDA20, TAKASHI SUGINO21, AKIFUMI NOTSU22, KEITA MORI22, MITSURO TAKAHASHI15, HIROMI KOSUGI23 and KEN YAMAGUCHI24

Divisions of 1Immunotherapy and 2Cancer Diagnostics Research, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777; 3Special Reference Laboratory, Tokyo 191-0002; 4Medical Genetics Division, Shizuoka Cancer Center Research Institute; Divisions of 5Colon and Rectal Surgery, 6Thoracic Surgery, 7Gastric Surgery, 8Hepato-Biliary-Pancreatic Surgery, 9Head and Neck Surgery, 10Breast Surgery, 11Gynecology, 12Neurosurgery, 13Dermatology, 14Esophageal Surgery, 15Orthopedic Oncology, 16Urology, 17Breast Oncology Center, 18Ophthalmology, 19Plastic and Reconstructive Surgery, 20Pediatrics and 21Pathology; 22Clinical Trial Coordination Office; 23Division of Thoracic Oncology, Shizuoka Cancer Center Hospital; 24Shizuoka Cancer Center, Shizuoka 411-8777, Japan

Received February 16, 2021; Accepted August 5, 2021

DOI: 10.3892/mco.2021.2395

*Contributed equally

Correspondence to: Dr Yasuto Akiyama, Division of Immunotherapy, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan E-mail: y.akiyama@scchr.jp

Abstract. Project High-tech Omics-based Patient Evaluation (HOPE), which used whole-exome sequencing and gene expression profiling, was launched in 2014. A total of ~2,000 patients were enrolled until March 2016, and the survival time was observed up to July 2019. In our previous study, a tumor microenvironment immune type classification based on the expression levels of the programmed death-ligand 1 (PD-L1) and CD8B genes was performed based on four types: A, adaptive immune resistance; B, intrinsic induction; C, immunological ignorance; and D, tolerance. Type A (PD-L1+ and CD8B+) exhibited upregulated features of T helper 1 antitumor responses. In the present study, survival time analysis at 5 years revealed that patients in type A had a better prognosis than those in other categories [5 year survival rate (%); A (80.5) vs. B (73.9), C (73.4) and D (72.6), P=0.0005]. Based on the expression data of 293 immune response-associated genes, 62 specific genes were upregulated in the type A group. Among these genes, 18 specific genes, such as activated effector T-cell markers (CD8/CD40LG/GZMB), effector memory T-cell markers (PD-1/CD27/ICOS), chemokine markers (CXCL9/CXCL10) and activated dendritic cell markers (CD80/CD274/SLAMF1), were significantly associated with a good prognosis using overall survival time analysis. Finally, multivariate Cox proportional hazard regression analyses of overall survival demonstrated that four genes (GZMB, HAVCR2, CXCL9 and CD40LG) were independent prognostic markers, and GZMB, CXCL9 and CD40LG may contribute to the survival benefit of patients in the immune type A group.

Introduction

Since the development of immune checkpoint blockade cancer therapy, many clinical trials of immune checkpoint therapy combined with conventional targeted therapy against
solid cancers have been performed, and this treatment has achieved great success in the cancer treatment field as a novel immunotherapy (1-3). With advances in clinical cancer immunotherapeutic regimens, closely associated tumor-related parameters have been intensively investigated. These parameters are thought to be linked to the efficacy of immune checkpoint blockade therapy and the prognosis of cancer patients (4-7). However, in the tumor microenvironment, there are many factors, such as genetic, immunological (cellular or humoral), and metabolic factors, that have been demonstrated to be involved in the immunosuppressive mechanism. For example, as cellular factors, regulatory effector T cells, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have been reported to exhibit protumor immunosuppressive actions (8-10).

Moreover, immune-type classifications that can contribute to the prediction of immune checkpoint blockade efficacy and the prognosis of cancer patients have been performed by several researchers using three main types of immunological features: PD-L1 expression level, tumor-infiltrating lymphocyte (TIL) status and tumor mutational burden (TMB) (11-16). PD-L1 is a major immune checkpoint molecule that is expressed on tumor cells or associated macrophages and is supposed to inhibit activated T cell function via PD-1/PD-L1 binding (17,18). Meanwhile, some researchers have demonstrated that the simple combination of PD-L1+ and TIL+ (CD8+) may predict a good response to immune checkpoint blockade (11,12). Others have reported that TMB is a genuine biomarker for the prediction of immune checkpoint blockade efficacy (14).

Previously, our group performed an immunological classification based on PD-L1 and CD8B gene expression levels and demonstrated that the PD-L1+ and CD8B+ groups were associated with the upregulation of cytotoxic T lymphocyte (CTL) killing-associated genes, T cell activation genes, antigen-presentation genes and dendritic cell (DC) maturation genes, and promoted T helper 1 (Th1) antitumor responses (19). However, there are few immune-type classification studies that directly evaluated cancer patient prognosis.

In the present study, we verified that the PD-L1+CD8B+ group (type A) was associated with a better prognosis [5-year overall survival time (OST)] than the other types. In addition, we identified prognostic factors responsible for the survival benefit of patients in type A based on 293 immune response-associated gene expression datasets.

### Materials and methods

**Patient characteristics and study design.** The Shizuoka Cancer Center launched Project HOPE in 2014 using multomics analyses including whole exome sequencing (WES) and gene expression profiling (GEP). Ethical approval for the HOPE study was obtained from the Institutional Review Board of Shizuoka Cancer Center (authorization no. 25-33). In total, 1,763 patients with tumors were enrolled until March 2016 and the survival time was observed up to July 2019.

**Clinical specimens.** Tumor tissue samples weighing more than 0.1 g and with a tumor content greater than 50% were dissected along with surrounding normal tissue samples by pathologists.

**GEP and WES analysis.** DNA and RNA isolation and the GEP and WES analyses were performed as described previously (20). RNA samples with an RNA integrity number ≥6.0 were used for microarray analysis. Labeled samples were hybridized to the SurePrint G3 Human Gene Expression 8x60 K v2 Microarray (Agilent Technologies). Microarray analysis was performed in accordance with the MIAME guidelines. For DNA data analysis, somatic mutations were identified by comparing data from tumor and corresponding blood samples. Mutations in 138 known driver genes were defined as those identified as pathogenic in the ClinVar database. Vogelstein et al (21) demonstrated that 138 genes, when altered by intragenic mutations, can promote or drive tumorigenesis. A most of tumors including colorectal cancers contain two to eight of these ‘driver gene’ mutations and the remaining mutations are passengers that do not contribute to tumorigenesis directly. Thus, these 138 driver mutations are accepted as relevant genes to the tumorigenesis (21). Single nucleotide variants (SNVs) of the total exonic mutations for each sequenced tumor included nonsynonymous, synonymous, and indel/frameshift mutations.

**Renewal of the immune response-associated gene panel.** The immune response-associated gene panel was described previously (22). In the present study, the gene panel was renewed by adding 119 immunological genes (293-gene panel) as shown in Table I. The panel consisted of 114 antigen-presenting cell (APC), T cell and natural killer cell receptor (NKR) genes; 48 cytokine signal and metabolic genes; 48 tumor necrosis factor (TNF) and TNF receptor superfamily genes; 23 regulatory T cell-associated genes; and 60 IFN-g pathway genes.

**Statistical analysis.** Based on the expression levels of the PD-L1 and CD8B genes, we classified all 1,763 tumors enrolled in the HOPE project into 4 immune types: type A, PD-L1+CD8B+; type B, PD-L1+CD8B−; type C, PD-L1−CD8B+; and type D, PD-L1−CD8B− as described previously. A comparative analysis of the survival times between group A and the other groups was performed using the Kaplan-Meier method and Cox proportional hazards regression model. The upregulated genes derived from the 293-immune response-associated gene panel between tumor microenvironment (TME) immune type A and other types were identified using the volcano plot method with Benjamini-Hochberg correction. Upreregulated immune response-associated genes with >2-fold expression differences (P<0.05) were identified. The heatmap expression data of upregulated genes in the immune type A group were investigated using GeneSpring GX software version 13.1.1 (Agilent Technologies). The association of upregulated gene expression levels with the OST was examined using the Kaplan-Meier method. A comparative analysis of the survival times between patients with low expression (less than the median) and patients with high expression (more than the median) of the identified genes in high type A (referred as to group A) was performed by the log-rank test using EZR software and Microsoft Excel. Regarding probable prognosis-associated genes identified in group A, the significance of these genes was analyzed using a multivariate Cox proportional hazards regression model with EZR software (23). Values of P<0.05 denoted statistically significant differences.
Table I. Immune response-associated genes list.

| Groups                                      | Genes                                                                 | No. of genes |
|---------------------------------------------|-----------------------------------------------------------------------|--------------|
| APC, T cell and NKR genes                   | CD80, CD86, CD274 (PD-L1), PDCD1LG2 (PD-L2), ICOSLG, CD276, VTCN-1, C10orf54, B7H6, HHLA2, LGALS9, SIRPB1, TREM1, CLEC5A, SIGLEC14, CD68, CD204(MSR1), HLA-DPA, HLA-DQA, HLA-DRA, HLA-DRB1, HLA-DQA2, CD19, CD20, CD38, CD138, CD28, CTLA4, CD279 (PD-1), ICOS, BTLA, SLAMF1, HAVCR1, HAVCR2, TIMD4, TREML2, LAG3, CD247 (CD3zeta), CD4, CD8A, CD8B, CD25, FOXP3, CCR4, CD56 (NCAM1), CD3D, CD3G, CD3E, HLA-A, HLA-B, HLA-C, HLA-E, MICA, MICB, ULBP1, ULBP2, RAET1E, NKp44L, CLEC2C, CLEC12B, CD1H, CDH2, CDH3, CDH4, CD83, CD11b, CD11c, CD209, TIGIT, CD155, CD200, CD200R, GZMB, PRF1, CD44, CD45, CD62L, CCR7, CXCR3, CXCR4, CD69, BCL2, CD122, CD127, CD16, CD314 (NKG2D), CD335 (NCR1), TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, DDX58, IFIHI1, DHX58, NOD1, NOD2, CLEC4E, CLEC6A, CLEC7A, STING, TOX, TCF7, B2MG, TAPI, TAP2, NTSE (CD73), ADRA2A | 114 |
| Cytokine signal and metabolic genes         | TGFB1, TGFB2, TGFB3, TGFB1R1, TGFB2R2, VEGFA, IFNA1, IFNA2, IFNB1, IL2, IL4, IL6, IFNG, IL10, IL12A, IL17A, IL23A, IDO1, ARG1, NOS2, PTGS2, AHR, TDO2, JAK2, STAT1, STAT3, STAT4, STAT5, STAT6, SOCS1, VCAM1, CCL2, CCL3, CCL4, CCL5, CCL19, CCL21, CCL22, CXCL5, CXCL10, CXCL12, CXCR2, CSF1, CSF2, CSF3, CSF1R | 48 |
| TNFSF and TNFRSF                              | TNFSF1 (LTA), TNFSF2 (TNF), TNFSF3 (LTB), TNFSF4, TNFSF5 (CD40LG), TNFSF6 (FASLG), EDN, TNFSF7 (CD70), TNFSF8, TNFSF9, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TNFSF18, TNFSF19, EDAR, TNFSF3 (LTBR), TNFSF4, TNFSF5 (CD40), TNFSF6 (FAS), TNFSF9, TNFSF10A, TNFSF10B, TNFSF10C, TNFSF11D, TNFRSF11B, TNFSF12A, TNFSF12B, TNFRSF13B, TNFRSF13C, TNFRSF14, TNFRSF16 (NGFR), TNFRSF17, TNFRSF18, TNFRSF19, TNFRSF19L (RELT), TNFRSF21, TNFRSF25, TNFRSF27 (EDA2R) | 48 |
| Regulatory T cell-associated genes           | SEMA3G, LGALS3, ENTPD1 (CD39), CCR6, CCL20, IL22B2, CCR10, ANXA2, IL17RB, ADAM12, TMEG45A, LRRC32, LOXL1, GREB1, HRH4, CCR5, BMPR1B, SFRP1, LAMA2, ITGB1, CPE, MKI67, CDCA3 | 23 |
| IFN-γ pathway genes                          | IFIT1B, IFNA21, IFNW1, IFNA4, IFNA4, IFNA5, IFNA6, IFNA6, IFNE, IFIT1, IFNK, CNTFR, IFIT2, IFIT3, IL10RA, IL11RA, IL20RA, CREB3, IL2B, IL31RA, IL7R, IFI30, IFNG1R, IFRD1, IFRD2, IFR2A2, IL5RA, IF1, IF8, IRGM, JAK1, MX1, OAS1, PK3CA, PRKCD, PYHIN1, PIAS4, EB13, IFI27, IFNAR1, IFNAR2, IFNGR2, IL10RB, IL21R, IL28A, IL28RA, IL29, IL4R, IL6R, IF2BP1, IRF3, IRF4, IRF5, LEPR, MPL, S100A8, STAT2, TBX21, TYK2, SOCS3 | 60 |
| Total                                        |                                                                        | 293          |

APC, antigen-presenting cell; NKR, natural killer cell receptor; TNFSF, TNF super-family; TNFRSF, TNF receptor super-family.
Results

Association of the overall survival time with immune types. The 1,763 pairs of tumors and adjacent normal tissues derived from different cancer types were classified into 4 immune types based on the expression levels of the PD-L1 and CD8B genes. The patient numbers with different cancer types were described previously (17). The proportions of TME immune types A, B, C and D were 39.3, 26.5, 19.1 and 15.1%, respectively. Survival time analysis at 5 years revealed that group A had a better prognosis than the other groups [5 year survival rate (%); A (80.5) vs. B (73.9), C (73.4) and D (72.6), P=0.0005] (Fig. 1).

Association of genetic mutations and immunological surface markers with overall survival. The characteristics of genetic mutations, including Vogelstein driver mutations and SNVs, and gene amplification were described previously (19). The association of the genetic mutation status of driver gene mutations, such as TP53, KRAS, EGFR, PIK3CA and BRAF mutations, or gene amplification with the OST was investigated using the log-rank test. There was no significant association of genetic parameters with the OST (Table II).

Association of the upregulated gene expression level with the overall survival time. The association of 62 upregulated genes in group A with the OST was analyzed by the log-rank test using EZR software. Ultimately, 18 genes were found to be significantly associated with prognosis (Table III). Memory T cell markers such as PD-1, CD27 and ICOS, as well as activated effector T cell genes (GZMB, CXCL10 and CD40LG) and mature DC marker genes (CD80 and SLAMF1), were selected as prognostic factors. Interestingly, immune checkpoint marker genes, such as HAVCR2 and TIGIT, were also verified as prognostic markers; however, the HAVCR2 gene was demonstrated to be a poor prognostic marker, although it was upregulated in group A.

Identification of probable prognostic genes using multivariate Cox hazards regression analysis. To evaluate the prognostic value of the genes, 18 probable prognostic genes identified using the Kaplan-Meier method from 62 upregulated genes in group A were analyzed by the Cox proportional hazards regression model. In particular, the multivariate analysis demonstrated that four upregulated genes, namely, GZMB, HAVCR2, CXCL9 and CD40LG, maintained their significance (P<0.05), as shown in Table IV. The survival curves of these four significant genes were drawn with the Kaplan-Meier method, and the OST was compared between the group that was higher-than-the-median-level and the group that was lower-than-the-median-level.

Table II. Association of immunological and genetic features with overall survival.

| Group          | Cohort (case no./5yrOS) | P-value |
|----------------|-------------------------|---------|
| Genetic mutations |                         |         |
| Vogelstein     | MT (1084/77.3%) vs. WT (679/74.6%) | 0.184   |
| TP53           | MT (729/74.5%) vs. WT (1034/77.4%) | 0.206   |
| KRAS           | MT (299/77.7%) vs. WT (1464/73.9%) | 0.431   |
| EGFR           | MT (107/73.7%) vs. WT (1656/76.3%) | 0.215   |
| PIK3CA         | MT (169/80.5%) vs. WT (1594/75.9%) | 0.625   |
| BRAF           | MT (64/77.1%) vs. WT (1699/76.2%) | 0.912   |
| TMB number     | >20 (83/81.7%) vs. <20 (1679/76.0%) | 0.512   |
| Gene amplification*a |                 |         |
| All 64 genes*b | Yes (575/75.9%) vs. No (833/75.9%) | 0.858   |
| EGFR           | Yes (61/71.5%) vs. No (1347/75.9%) | 0.746   |
| HER2           | Yes (33/71.3%) vs. No (1375/76.0%) | 0.530   |

*aGene amplification, fold-change in expression ≥5 and copy number ≥6. *64 amplified gene list was reported previously (20). Comparison of MST between cohorts was performed using the log-rank test. P<0.05 denote statistically significant differences. 5yrOS, 5-year overall survival rate; MT, mutated; WT, wild-type; TMB, tumor mutation burden number.
that was lower-than-the median-level, as shown in Fig. 5. The upregulation of GZMB, CXCL9 and CD40LG gene expression might be linked to better prognosis in group A patients.

**Discussion**

With advances in genome analysis technologies such as NGS and single-cell RNA sequencing, probable immunological factors belonging to the TME and associated with prognosis have been more intensively, specifically and accurately investigated (24-26). Beyond the already-known TME factors that might be responsible for the efficacy of cancer immunotherapy, such as positive PD-L1 expression, a high mutational burden and an advanced TIL status, more specific and dynamic biomarkers associated with the immune response have been reported (27-29). Recently, Kumagai et al demonstrated using cytometry by time of flight (CyTOF) analysis based on single-cell RNA-seq that a balance between...
PD-1⁺CD8⁺ T cells and PD-1⁺CD4⁺FoxP3⁺ Treg cells is a critical determinant of the response to anti-PD-1/PD-L1 blockade therapy (29).

Previously, we reported an efficient immunological classification based on PD-L1 and CD8B gene expression levels and demonstrated that immune type A (PD-L1⁺CD8B⁺) was associated with the Th1 T cell and NK cell activation pathways, dendritic cell maturation and cancer-apoptosis activation signals and showed the highest score in immune-activation signaling pathways by means of Ingenuity Pathways Analysis (IPA) software (19). Similar studies have been conducted that showed antitumor immunological features in PD-L1⁺CD8⁺ cohort (11,12).

However, there have been few studies that have performed a long-term follow-up of overall survival in cancer patients belonging to the immune type classifications described above. Ock et al classified similarly solid tumors into specific immune types based on PD-L1 and CD8 gene expression data derived from The Cancer Genome Atlas (TCGA) database and compared the survival time between

Figure 3. Hierarchical clustering analysis of 62 upregulated genes in each immune group. Each row in the matrix represents the expression level of a gene feature in an individual group. The red and blue colors in the panel reflect the relative expression level of the gene, as indicated in the color scale (log₂-transformed scale). Group A (n=692), group B (n=467), group C (n=337) and group D (n=267).

Figure 4. Comparison of the expression levels of 62 upregulated genes between alive and deceased patients with cancer. The two cohorts of patients were divided into 4 immune groups, and classified into 13 histological types. The data are presented in matrix format, where each row represents an individual case, and each column represents a gene. Each cell in the matrix represents the expression level of a gene in an individual case. The red and green colors reflect the gene expression levels, as indicated in the color scale (log₂-transformed scale) in the bottom right corner. B, breast; CR, colorectal; D, skin; E, esophageal; G, stomach; Gy, uterine and ovarian; BP, bile duct and pancreatic; HN, head and neck; L, liver; N, brain; O, bone; T, lung; and U, kidney.
immune types; however, the temporary difference in 3-year survival time in type A finally disappeared in the 5-year comparison (12).

In the current study, we followed 1,763 patients with tumors up to 70 months after registration in the project HOPE study. Survival time analysis at 5 years revealed that group A had a better prognosis than the other groups, as shown in Fig. 1. There are some concerns regarding the temporary results of the present survival analysis: i) Miscellaneous cancer patients across various histology groups were included, and ii) there were various clinical courses, including different types of therapies and response statuses. However, despite different clinical courses in individual patients, the immunological status at cancer diagnosis can be determined temporarily in terms of the OST, and could be a reference parameter for therapeutic design because some immunological mechanisms are involved in tumor regression after or even during chemo- and radiation therapy (30-33).

In the present study, the impressive findings were that memory T cell markers (central ~ effector memory), such as PD-1, CD27 and ICOS, were selected as prognostic factors. In addition to effector-activated CTLs and NK cells, memory marker+ T cells should be considered crucial factors because i) PD-1+ T cells can achieve a good balance between good and poor responses by immune checkpoint blockade (27), and ii) effector memory T cells that proliferate by the stimulation of antigen-presenting cells, can be differentiated into activated effector CTLs (34). Another important observation was that T cell exhaustion marker genes such as HAVCR2 and TIGIT were included as prognostic markers. However, HAVCR2 was found to be a negative prognostic marker, suggesting that it did not contribute to the good prognosis of patients in immune type A. Very recently, Simon et al demonstrated that a high frequency of the PD-1+ TIGIT+ (double-positive) CD8+ T cell subset in peripheral blood can be a good predictive marker for a good response to anti-PD-1 therapy (35). Therefore, these cells should be prolonged by anti-PD-1/PD-L1 blockade to maintain the antitumor effect, which could contribute to the good prognosis in cancer patients belonging to immune type A.

Additionally, based on prognostic factor profiling in immune group A, the upregulation of the CD80, CD274 and SLAMF1 (36) genes might suggest the presence of mature dendritic cells in the TME. Interestingly, Schetters et al demonstrated that anti-PD-1 immune checkpoint blockade induced mature monocyte-derived

### Table III. Probable prognostic genes identified from 62 upregulated genes.

| Probe name | Fold-change | Gene symbol | 5yrOS (%)\(^a\) Positive. vs. Negative Log-rank P-value |
|------------|-------------|-------------|---------------------------------------------------------|
| A_23_P117602 | 4.401 | GZMB | 80.7 vs. 71.7 | 1.44x10\(^{-4}\) |
| A_24_P411561 | 2.005 | HAVCR2 | 74.1 vs. 78.3 | 2.03x10\(^{-3}\) |
| A_23_P371215 | 4.31 | ICOS | 80.5 vs. 71.9 | 2.14x10\(^{-3}\) |
| A_23_P18452 | 5.751 | CXCL9 | 80.5 vs. 71.8 | 3.06x10\(^{-3}\) |
| A_23_P420196 | 2.024 | SOCS1 | 79.6 vs. 72.8 | 3.44x10\(^{-3}\) |
| A_23_P136405 | 2.388 | PDCD1 | 80.3 vs. 72.1 | 3.6x10\(^{-3}\) |
| A_24_P303091 | 4.874 | CXCL10 | 80.5 vs. 71.9 | 4.76x10\(^{-3}\) |
| A_23_P98410 | 3.159 | CD3G | 79.8 vs. 72.7 | 1.47x10\(^{-2}\) |
| A_23_P420863 | 2.004 | NOD2 | 79.1 vs. 73.3 | 1.82x10\(^{-2}\) |
| A_33_P3250680 | 2.608 | CD40LG | 78.6 vs. 74.0 | 2.52x10\(^{-2}\) |
| A_33_P3735541 | 3.117 | CD3D | 79.7 vs. 72.7 | 2.6x10\(^{-2}\) |
| A_23_P62647 | 2.012 | SLAMF1 | 79.7 vs. 72.6 | 2.6x10\(^{-2}\) |
| A_24_P320033 | 2.167 | CD80 | 79.2 vs. 73.2 | 2.96x10\(^{-2}\) |
| A_23_P48088 | 2.628 | CD27 | 79.9 vs. 72.7 | 3.31x10\(^{-2}\) |
| A_23_P416747 | 2.052 | CD3E | 78.9 vs. 73.6 | 3.64x10\(^{-2}\) |
| A_33_P3342056 | 4.335 | TIGIT | 79.3 vs. 73.2 | 4.16x10\(^{-2}\) |
| A_23_P338479 | 3.96 | CD274 | 78.6 vs. 73.8 | 4.33x10\(^{-2}\) |
| A_23_P41765 | 2.526 | IRF1 | 79.2 vs. 73.0 | 4.53x10\(^{-2}\) |

\(^a\)The 5yrOS between positive (higher expression than the median level) and negative (lower expression than the median level) groups were compared using the log-rank test using EZR software. Ultimately, 18 genes were found to be significantly associated with prognosis of patients with cancer. Only the HAVCR2 gene demonstrated a negative association with prognosis. 5yrOS, 5-year overall survival.

### Table IV. Cox proportional hazards regression analysis of overall survival in upregulated genes.

| Variable | Hazard ratio (95% CI) | P-value |
|----------|------------------------|---------|
| GZMB | 0.628 (0.496-0.795) | 1.11x10\(^{-4}\) |
| HAVCR2 | 1.848 (1.479-2.309) | 6.63x10\(^{-8}\) |
| CXCL9 | 0.778 (0.613-0.988) | 0.0393 |
| CD40LG | 0.792 (0.642-0.977) | 0.0292 |

From probable prognosis-associated genes identified in group A, the significance of those genes was analyzed using multivariate Cox proportional hazards regression model in the EZR software. P<0.05 denoted statistically significant differences.
dendritic cells in the TME (37), which means that the presence of mature dendritic cells in the tumor site could be a key factor in the prediction of ICB efficacy.

Considering that immunological conditions are varied and complicated in the TME, the status of patients with cancer is volatile and undetermined before the start of treatment. Most likely, immune type group A (PD-L1$^+$ CD8$^+$) could be a good candidate to elicit neoantigen-specific T cell reactions and result in an improved prognosis in cancer patients. Efficient combination therapy with chemo- and radiation therapy should be explored for these types of cancer cohorts in the future.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and materials
The datasets generated and/or analyzed during the current study are available in the National Bioscience Database Center repository (accession no. hum0127; https://humanbds.biosciencedbc.jp/en/).

Authors' contributions
RK and YA participated equally in the design of the study and drafting of the manuscript, and were responsible for completing the study. AS, YO, MTe, KUe, TO, SN, YH, NH, YK, YT, HKat, MNi, KT, HKas, MNa and YI were responsible for the clinical work, including the collection of clinical samples. TN, YS, KUr, KO, AI, HM, CM, AK, KW and TA participated in the design of the experiments and performed the genetic analysis. TS contributed to the pathological diagnosis. AN and KM contributed to data analysis and interpretation and confirmed the authenticity of all the raw data. MTa, HKe and KY designed the current study, revised the manuscript critically for important intellectual content and gave final approval of the version to be published by taking responsibility for the content. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The Shizuoka Cancer Center launched Project HOPE based on multiomics analyses, including WES and GEP. Ethics approval for the HOPE study was obtained from the institutional review board at the Shizuoka Cancer Center (authorization no. 25-33). Written informed consent was obtained from all patients enrolled in the study.
Patient consent for publication
Written informed consent was obtained from all patients for the publication of any associated data and accompanying images.

Competing interests
The authors declare that they have no competing interests.

References
1. Weber JS, O'Day S, Urba W, Powderly J, Nichol G, Yellin M, Snively J and Hersh E: Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26: 5950-5956, 2008.
2. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti- PD-1 antibody in cancer. N Engl J Med 366: 2455-2454, 2012.
3. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odemski K, et al: Safety and activity of anti PD-L1 antibody in patients with advanced cancer. N Engl J Med 366: 2455-2465, 2012.
4. Ascierto PA, Capone M, Urba WJ, Bifulco CB, Botti G, Lugli A, Marincola FM, Clíliberto G, Galon J and Fox BA: The additional facet of immunoscore: Immunoprototyping as a possible predictive tool for cancer treatment. J Transl Med 11: 54, 2013.
5. Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, Hakansson LG, Hanks BA, Karanikas V, Khleif SN, et al: Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 5: 44, 2017.
6. Johnson DB, Frampton GM, Ritho MJ, Yusko E, Xu Y, Guo X, Enns RC, Fabrizio D, Chalmers ZR, Greenbowe J, et al: Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4: 959-967, 2016.
7. Dudley JC, Lin MT, Le DT and Eshleman JR: Microsatellite instability as a biomarker for PD-1 blockade. Cancer Clin Case Rep 22: 813-820, 2016.
8. Yarchoan M, Johnson BA III, Lutz ER, Laheru DA and Jaffe EM: Targeting neoantigen to augment antitumor immunity. Nat Rev Cancer 17: 209-222, 2017.
9. Lin Y, Xu J and Han H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol 8: 76, 2016.
10. Fleming B, Hu X, Weber R, Nagibin V, Groth C, Artevogt P, Fleming B, Hu X, Weber R, Nagibin V, Groth C, Artevogt P, et al: Cytotoxic chemotherapy as an immune stimulus: A molecular perspective on turning up the immunological heat on cancer. Front Immunol 9: 1726556, 2020.
11. Yu WD, Sun G, Li J, Xu J and Wang X: Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett 452-458, 2013.
12. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC and Demaria S: Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol 39: 644-655, 2018.
13. Doaz  LA Jr and Kinzler KW: Cancer genome landscapes. Science 339: 1546-1558, 2013.
14. Simon S, Voillet V, Vignard V, Wu Z, Dabrowski C, Jouand N, and Demaria S: Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol 39: 644-655, 2018.
15. Breharski JR, Niazi KR, Sieling PA, Cheng G and Modlin RL: Signaling lymphocytic activation molecule is expressed on CD8+ T cells and identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy. J Immunother Cancer 8: e001631, 2020.
16. Cytotoxic chemotherapy as an immune stimulus: A molecular perspective on turning up the immunological heat on cancer. Front Immunol 9: 1726556, 2020.