On Regularity and Flatness

Nazar H. Shuker
nazarh_2013@yahoo.com
Dept. of Mathematics
College of Computer Sciences and Mathematics
University of Mosul, Iraq

Received on: 19/2/2002 Accepted on: 02/06/2002

ABSTRACT
A ring \(R \) is called a right SF-ring if all its simple right \(R \)-modules are flat. It is well known that Von Neumann regular rings are right and left SF-rings. In this paper we study conditions under which SF-rings are strongly regular. Finally, some new characteristic properties of right SF-rings are given.

Keywords: modules, flat, Von Neumann regular rings.

حوَل الانتظام والتَسْطِح

نَزار حمدون شكر
قسم الرياضيات
كلية علوم الحاسوب والرياضيات، جامعة الموصل

تاريخ الاقبول: 19/2/2002

الملخص
يدعى الحلقة \(R \) بالنمط ايمني SF- بأنه كل مقاس بسيط ايمن
فيها مسطحاً، إذا كان كل حلقة منتظمة بمفهوم فون نيومان تكون حلقة من
النمط ايمني واليسرى. في هذه البحث أعطينا شروطاً أخرى لكي تكون كل
حلقة من النمط SF- اليمنى حلقة منتظمة بقوة. ومن النتائج الأخرى التي حصلنا
عليها هي خواص أخرى جديدة للحلقات من النمط SF- اليمنى.

الكلمات المفتاحية: المقاسات، المسطحة، حلقة منتظمة بمفهوم فون نيومان.
1. INTRODUCTION

In this paper all rings are assumed to be associative with identity, and all modules are unital right R-modules.

Following [2], a ring R is called a right (left) SF-ring if all of its simple right (left) R-modules are flat. It is well known that a ring R is Von Neumann regular if and only if every right (left) R-module is flat [3]. Ramamurthi in [8] asked whether left and right SF-ring is Von Neumann regular. Many authors have given various conditions for SF-rings to be regular (see, e.g. Chen [1], Ming [4], Rege [9] and Xu-[10]). In this paper, to the list of equivalent conditions, we shall add several news. We recall that:

1. A ring R is called reduced if R contains no non-zero nilpotent elements.
2. R is said to be Von Neumann regular (or just regular) if $a \in aRa$ for every $a \in R$, and R is called strongly regular if $a \in a^2R$. Clearly, every strongly regular ring is a regular reduced ring.
3. R is said to be right duo-ring if every right ideal is a two-sided ideal.
4. $r(a)$ and $L(a)$ will denote right and left annihilator of a respectively.
5. Following [9], for any ideal I of R, R/I is flat if and only if for each $a \in I$, there exists $b \in I$ such that $a=ba$.
6. Y and J will stand for the right singular ideal and Jacobson radical of R.

2. RINGS WHOSE SIMPLE MODULES ARE FLAT

Following [7], a ring R is called ERT-ring if every essential right ideal of R is a two-sided ideal.

Ming [6] proved the following:

Proposition 2.1. If R is a right duo-ring then R/Y is a reduced ring.

We use a similar method of proof in Prop.2.1 to establish the following lemma.
Lemma 2.2: If R is an ERT-ring, then R/Y is a reduced ring.

Proof. Suppose that R/Y is not reduced, then there exists an element
Y \neq a + Y \in R/Y, a \in R, such that \((a+Y)^2 = Y\). This implies that
\(a \notin Y\) and \(a^2 \in Y\). So \(r(a^2)\) is essential right ideal of R. Since R is
ERT, then \(r(a^2)\) is a two-sided ideal. Let I be any subideal of \(r(a^2)\)
Such that\(I\) is essential in \((a)I\), this means that \(r \cap (a)r \subseteq Ia\), then \((a)r \subseteq r(a^2)\) and hence in R, this contradicts \(a \notin Y\).

The following theorem gives the condition of being right
SF-rings are strongly regular.

Theorem 2.3: Let R be a ring. Then the following are equivalent.
(1) R is strongly regular.
(2) R is a right SF- and ERT ring.

Proof. (1) \implies (2) is obvious.
(2) \implies (1) By Lemma 2.2, R/Y is a reduced ring. We
claim that \(Y = 0\). Suppose that \(Y \neq 0\) then by [5], there
exists 0 \neq y \in Y such that \(y^2 = 0\).

Let M be a maximal right ideal containing \(r(y)\). Since \(r(y)\)
is an essential two-sided ideal of R, then M must be an essential
two-sided ideal of R. On the other hand, since R/M is flat
module, and since \(y \in M\), there exists \(c \in M\) such that \(y = yc\),
whence \(1-c \in r(y) \subseteq M\), yielding \(1 \in M\) which contradicts \(M \neq R\).
This proves that R is a reduced ring. In order to show that R is
regular we need to prove that \(aR + r(a) = R\) for any \(a \in R\).
Suppose that \(aR + r(a) \neq R\), then there exists a maximal right ideal \(L\)
containing \(aR + r(a)\). But \(a \in L\) and R/M is flat, there
exists \(b \in L\) such that \(a = ba\), whence \(1-b \in L(a) = r(a) \subseteq M\).
Yielding \(1 \in M\) which contradicts \(L \neq R\). In particular \(ar + d = 1\),
for some \(r \in R \) and \(d \in t(a) \), whence \(a^2r = a \). This proves that \(R \) is a strongly regular ring.

We now consider another condition for right SF-ring to be strongly regular.

Theorem 2.4: Let \(R \) be a right SF-ring with every nilpotent element of \(R \) is central. Then \(R \) is strongly regular.

Proof. Let \(a \) be a non-zero element in \(R \) with \(a^2 = 0 \), and let \(M \) be a maximal right ideal containing \(t(a) \). Since \(a \in t(a) \subseteq M \), and since \(R/M \) is flat, there exists \(b \in M \) such that \(a = ba \). This implies that \(1 - b \in L(a) \). But every nilpotent is central gives \(t(a) = L(a) \). Whence \(1 - b \in t(a) \subseteq M \), yielding \(1 \in M \), and this contradicts \(M \neq R \). Therefore, \(R \) is a reduced ring. By a similar method of proof used in Theorem 2.3, \(R \) is strongly regular.

3. BASIC PROPERTIES

Recall that a ring \(R \) is a right uniform if every right ideal of \(R \) is essential.

We are now in a position to give new characteristic properties of a right SF-ring.

Theorem 3.1: If \(R \) is a right SF-ring, then

1. If \(L(a) = 0 \), then \(a \) is a right invertible.
2. Every reduced ideal of \(R \) is strongly regular.
3. If \(J \) is reduced, then \(J = 0 \).
4. If \(R \) is a right uniform ring, then \(R \) is a division ring.

Proof.

(1) Let \(a \in R \) with \(L(a) = 0 \). If \(a \in R \), there exists a maximal right ideal \(M \) containing \(aR \). Since \(a \in M \) and \(R/M \) is flat, there exists \(b \in M \), such that \(a = ba \). Whence \(1 - b \in L(a) = 0 \), yielding \(L \in M \), which contradicts \(M \neq R \). Therefore \(aR = R \).

(2) Follows from Theorem 2.3.
(3) Let $a \in J$, then by (2) J is strongly regular, and hence there exists $b \in J$ such that $a = a^2 b$. But $a \in J$ gives $(1-ab) u = 1$ for some $u \in R$, this implies that $(a-a^2 b) u = a$. Thus $a = 0$, consequently, $J = 0$.

(4) Suppose that $Y \neq 0$, then there exists a maximal right ideal M containing Y. For any $0 \neq y \in Y$, gives $y \in M$, but R/M is flat, then there exists $x \in M$ such that $y = xy$, whence $y \in r(1-x)$. On the other hand, since R is a right uniform, then $r(1-x)$ is an essential right ideal of R. Thus $1-x \in Y \subseteq M$, this implies that $1 \in M$, contradicting $M \neq R$. Therefore, $Y = 0$. On the other hand, since R is uniform, then for every $a \in R$, $r(a) = 0$, then by (1), R is a division ring.

Before closing this section, we present the following result.

Proposition 3.2: Let R be a reduced right SF-ring, for any $a, b \in R$ with $a b = 0$, then $r(a) + r(b) = R$.

Proof. Suppose that $a b = 0$ and $r(a) + r(b) \neq R$. Then there exists a maximal right ideal M containing $r(a) + r(b)$. Since $a \in r(b) \subseteq M$, and since R/M is flat, there exists $c \in M$ such that $a = ca$, whence $1-c \in L(a) = r(a) \subseteq M$, yielding $L \subseteq M$, which contradicts $M \neq R$.

Therefore $r(a) + r(b) = R$.

\[\text{15} \]
REFERENCES

[1] J. Chen (1991), On Von Neumann regular ring and SF-rings, Math. Japon 36, pp. 1123-1127.
[2] Y. Hirano (1994), On rings whose simple modules are flat, Canad Math. Bull., 37 (3), pp. 361-364.
[3] J. Lambek (1966), Lectures on rings and modules, Blaisdell, Waltham, Massachusetts.
[4] R. Y. C. Ming (1980), On V-rings and prime rings, J. Algebra, 62, pp. 13-20.
[5] R. Y. C. Ming (1983), On quasi-injectivity and Von Neumann regularity, Monatshefte für Math. 95, pp. 25-32.
[6] R. Y. C. Ming (1987), On injectivity and p-injectivity, J Math kyoto univ. 27 (3), pp. 439-452.
[7] R. Y. C. Ming (1998), A note on regular rings III. Riv. Math. Univ. Parma, 6(1), pp. 71-80.
[8] V. S. Ramamurthi (1975), On injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48, pp. 21-25.
[9] M. B. Rege (1986), On Von Neumann regular rings and SF-rings, Math. Japonica, 31 (6), pp. 927-936.
[10] J. Xu (1991), Flatness and injectivity of simple modules over commutative ring, Comm. Algebra, 19, pp. 535-537.