Molecular identification and population genetic study of *Elaeidobius kamerunicus* Faust. (Coleoptera: Curculionidae) from Indonesia, Malaysia and Cameroon based on mitochondrial gene

INTRODUCTION

The oil palm weevil pollinator *E. kamerunicus* in Indonesia was originated from Cameroon (Africa). Based on the history of its introduction, *E. kamerunicus* in Indonesia was introduced from Malaysia on July 16, 1982, in collaboration with the Marihat Research Center and PT. London Sumatra, led by an entomologist R. A. Syed. Furthermore, with the permission of the Indonesian Minister of Agriculture, as many as 4623 pupae that later developed into 508 adults of *E. kamerunicus* were officially released in March 1983 (Lubis 1992). Currently, the population of *E. kamerunicus* has spread in oil palm plantations in various islands in Indonesia (Bakara 2019). This population is thought to originate from the initial population that was first released in 1983 in Siantar (North Sumatra, Indonesia).

The existence of geographical isolations in a species’ population can cause intraspecific genetic diversity of this species (Schmitt and Haubrich 2008; Cox et al. 2016). This had also been demonstrated by research in genetic diversity study of *E. kamerunicus* in Indonesia using simple sequence repeat (SSR) marker (Bakara 2019).

Cytochrome c oxidase I (COI) gene markers are common to genetic diversity and phylogenetic studies in animals (Ursing and Arnason 1998). The importance in using COI in animal studies is based on several premises (i) Mitochondrial DNA is abundant in the cell, so it is easy to get the genes in the mitochondria (Crozier and Crozier 1993); (ii) Mitochondrial DNA has a high mutation rate and is inherited maternally; (iii) Mitochondrial DNA does not undergo recombination, so genetic diversification occurs only through mutation (Smith 1991; Hoy 2003); (iv) The differences among nucleotide bases using mitochondrial DNA markers are few so they are expected to be able to identify species accurately (Zein and Pradireda 2003; Huguet et al. 2016).

In this study, the origin and genetic differentiation of *E. kamerunicus* will be assessed, 30 years after its
introduction to Malaysia and Indonesia. Genetic information about *E. kamerunicus* population in Indonesia, Malaysia and Cameroon have never been reported. The purpose of this study was to examine the effectiveness of using mitochondrial DNA barcoding technology in the identification of genetic diversity and population origin in the oil palm pollinating weevil *E. kamerunicus*.

MATERIALS AND METHODS

Specimen collection and morphological identification

This research was carried out from December 2018 to July 2019. The insect samples were taken from oil palm plantations at 6 different locations (Table 1). Three male and female samples for each location were observed, in this study. All individuals were identified to a species level based on morphological characteristics and taxonomic keys under a light microscope. Molecular characterization was carried out at the Biotechnology Laboratory, Astra Agro Lestari, Pangkalan Lada, Central Kalimantan, Indonesia.

DNA extraction, PCR amplification and sequencing

DNA was isolated from each individual of the weevil imago (Table 1). The DNA isolation process was begun by crushing the weevil's body with a micro-pestle. DNA was isolated using the GS 100-Genaid gSYNCTM DNA Extraction Kit and the process was carried out in accordance with the manufacturer's instructions. The quality and quantity of the isolated DNA were measured using NanoDrop 2000-Thermo Scientific Spectrophotometer. A target 700-bp fragment of COI was amplified by polymerase chain reaction (PCR) using a Veriti Thermal Cycler (Applied Biosystem, USA) with the following primers: E.kam F primer forward (5’-TTGAGGATTTGGGAATTTGAC-3’) and E.kam R primer reverse (5’-TTGCTGAATAAAAATGTGGCCGT-3’). This primer is specifically designed for *E. kamerunicus* DNA based on laboratory optimization. PCR was performed in 50 μl reaction volume containing 5 μl genomic DNA, 1 μl each forward and reverse primer (20 mM), 25 μl of MyTaqTM HS Red Mix 2X (Bioline, UK), and 18 μl nuclease-free water. The PCR thermal profile was as follows: initial denaturation at 95°C for 3 min; 35 cycles of 95°C for 15 s, 55°C for 15 s, and 72°C for 15 s, a final extension at 72°C for 5 min and storage at 4°C. The PCR products were visualized by 1% agarose gel electrophoresis stained with GelRed (Biotium). Sequencing was done at First Base, Malaysia using automated DNA sequencing with ABI 3730 XL (Applied Biosystems, USA). The sequencing chromatograms data of ABI file were assembled and trimmed using Geneious software. Sequences obtained in this study were finally deposited in GenBank with the accession numbers (MN548049-MN548084) and shown in Table 2.

Molecular identification and phylogenetic analysis

The sequences were imported into the Barcode of Life Database (BoLD) System (www.barcodinglife.org) website (Ratnasingham and Hebert 2007) and GenBank database (www.ncbi.nlm.nih.gov) website (Benson et al. 2012) to determine the similarity of the samples with current databases. The sequences of the closest relatives to *E. kamerunicus* from those databases were used as comparisons (Table 3). All of the sequences were aligned using Clustal W (Larkin et al. 2007) with default parameters. A distance-based and a phylogenetic tree-based approach of species discrimination were used for molecular identification or barcoding analysis. For the distance-based method, the genetic pairwise divergences based on the broadly used Kimura-2-parameter model (K2P) were used as implemented in MEGA X (Kumar et al. 2018). For the tree-based approach, a simplified neighbor-joining (NJ) tree was constructed using MEGA X based on Kimura 2-parameter (K2P) distances of COI, with 1000 bootstrap replicates (Kumar et al. 2018). Species delimitation plugin (Rosenberg, 2007; Masters et al. 2011) inside Geneious software was used to determine monophyletic species from the tree.

Population genetic analysis

DnaSP 6 (Rozas et al. 2017) was performed to calculate number of polymorphic sites (S), number of haplotypes (H), haplotype diversity (Hd), nucleotide diversity (Pi). Neutrality tests (Tajima’s D and Fu’s Fs) were performed in Arlequin version 3.51 (Tajima 1989; Fu 1997; Excoffier and Lischer 2010). In addition, haplotype network analysis was performed using the Minimum Spanning Network (MSN) (Bandelt et al. 1999). Clustal W aligned sequences from MEGA X in the previous section were used to create haplotype network. MSN reconstruction was carried out using POPART software (Leigh and Bryant 2015). Geographical structuring of mtDNA variation was examined by a hierarchical analysis of molecular variance (AMOVA) and population pairwise FST values between populations were calculated in ARLEQUIN version 3.51 using the method of (Weir and Cockerham 1984). Fixation indices significantly different from zero were identified by comparison with the results of 10,000 data permutations.

Table 1. Sampling location and number of samples used in this study

Code	Country	Province	City	Geographic location	Number of samples
CD	Cameroon	Littoral Region	Douala	Latitude: 4.600548	Male: 3
MD	Malaysia	Selangor	Dengkil	Longitude: 90.77712	Female: 3
IS	Indonesia	North Sumatra	Siantar		
IB	Indonesia	West Java	Bogor		
IT	Indonesia	South Kalimantan	Tapin		
IM	Indonesia	Central Sulawesi	Morowali		
Table 2. COI sequence obtained in this study

Country	Province	City	Sex	Sample name	GenBank accession number
Cameroon	Littoral Region	Douala	Female	Douala Female 1	MN548084
Cameroon	Littoral Region	Douala	Female	Douala Female 2	MN548049
Cameroon	Littoral Region	Douala	Female	Douala Female 3	MN548050
Cameroon	Littoral Region	Douala	Male	Douala Male 1	MN548051
Cameroon	Littoral Region	Douala	Male	Douala Male 2	MN548052
Cameroon	Littoral Region	Douala	Male	Douala Male 3	MN548053
Indonesia	West Java	Bogor	Female	Dramaga Female 1	MN548054
Indonesia	West Java	Bogor	Female	Dramaga Female 2	MN548055
Indonesia	West Java	Bogor	Female	Dramaga Female 3	MN548056
Indonesia	West Java	Bogor	Male	Dramaga Male 1	MN548057
Indonesia	West Java	Bogor	Male	Dramaga Male 2	MN548058
Indonesia	South Kalimantan	Tapin	Female	Tapin Female 1	MN548060
Indonesia	South Kalimantan	Tapin	Female	Tapin Female 2	MN548061
Indonesia	South Kalimantan	Tapin	Female	Tapin Female 3	MN548062
Indonesia	South Kalimantan	Tapin	Male	Tapin Male 1	MN548063
Indonesia	South Kalimantan	Tapin	Male	Tapin Male 2	MN548064
Indonesia	South Kalimantan	Tapin	Male	Tapin Male 3	MN548065
Indonesia	Central Sulawesi	Morowali	Female	Morowali Female 1	MN548066
Indonesia	Central Sulawesi	Morowali	Female	Morowali Female 2	MN548067
Indonesia	Central Sulawesi	Morowali	Male	Morowali Male 1	MN548068
Indonesia	Central Sulawesi	Morowali	Male	Morowali Male 2	MN548069
Indonesia	Central Sulawesi	Morowali	Male	Morowali Male 3	MN548070
Indonesia	North Sumatra	Siantar	Female	Siantar Female 1	MN548071
Indonesia	North Sumatra	Siantar	Female	Siantar Female 2	MN548073
Indonesia	North Sumatra	Siantar	Female	Siantar Female 3	MN548074
Indonesia	North Sumatra	Siantar	Male	Siantar Male 1	MN548075
Indonesia	North Sumatra	Siantar	Male	Siantar Male 2	MN548076
Indonesia	North Sumatra	Siantar	Male	Siantar Male 3	MN548077
Malaysia	Selangor	Dengkil	Female	Dengkil Female 1	MN548078
Malaysia	Selangor	Dengkil	Female	Dengkil Female 2	MN548079
Malaysia	Selangor	Dengkil	Female	Dengkil Female 3	MN548080
Malaysia	Selangor	Dengkil	Male	Dengkil Male 1	MN548081
Malaysia	Selangor	Dengkil	Male	Dengkil Male 2	MN548082
Malaysia	Selangor	Dengkil	Male	Dengkil Male 3	MN548083

Table 3. Outgroup COI sequence used in this study

Sample name	Family	Species	GenBank accession number
Araucarius major (AY040285)	Curculionidae	Araucarius major	AY040285
Abantiadinus nodipennis (KX191194)	Curculionidae	Abantiadinus nodipennis	KX191194
Amorphocerus talpa (EU310754)	Curculionidae	Amorphocerus talpa	EU310754
Sphenophorus sp. (GU176342)	Curculionidae	Sphenophorus sp.	GU176342
Naupactus xanthographus (GU176345)	Curculionidae	Naupactus xanthographus	GU176345
Hylobotulus xiaoi (JX847496)	Curculionidae	Hylobotulus xiaoi	JX847496
Curculionidae sp. (KM244695)	Curculionidae	Curculionidae sp.	KM244695
Eucryptorrhynchus chinensis (KP410324)	Curculionidae	Eucryptorrhynchus chinensis	KP410324
Eucryptorrhynchus brandti (KP455482)	Curculionidae	Eucryptorrhynchus brandti	KP455482
Sphenophorus sp. (NC_018351)	Curculionidae	Sphenophorus sp.	NC_018351
Rhynchophorus ferrugineus (NC_028535)	Curculionidae	Rhynchophorus ferrugineus	NC_028535
Aegorhinus superciliosus (NC_027577)	Curculionidae	Aegorhinus superciliosus	NC_027577
Hylobotulus xiaoi (NC_022680)	Curculionidae	Hylobotulus xiaoi	NC_022680
Naupactus xanthographus (NC_018354)	Curculionidae	Naupactus xanthographus	NC_018354
Apodrosus epipoileatus (HQ891423)	Curculionidae	Apodrosus epipoileatus	HQ891423
Laemophloeus fasciatus (KP134161)	Curculionidae	Laemophloeus fasciatus	KP134161
Exophthalmus pictus (KT350641)	Curculionidae	Exophthalmus pictus	KT350641
Exophthalmus pictus (KT350642)	Curculionidae	Exophthalmus pictus	KT350642
Scepticus tigrinus (LC108870)	Curculionidae	Scepticus tigrinus	LC108870
Scepticus uniformis (LC108925)	Curculionidae	Scepticus uniformis	LC108925
Meotiorhynchus querendus (LC108949)	Curculionidae	Meotiorhynchus querendus	LC108949
RESULTS AND DISCUSSION

Molecular identification

In this study, the power of COI sequence as a DNA barcode was tested for identifying the *E. kamerunicus* species using distance-based and tree-based methods. The species identification using distance-based (pairwise K2P) is considered success when the barcoding gap between intraspecific and interspecific distance-based was detected. In this study, the intraspecific distribution means that the pairwise K2P distance between *E. kamerunicus* individuals from all locations. Meanwhile, the interspecific distribution showed the pairwise K2P distance between *E. kamerunicus* individual with the close relatives species or outgroup. The result of intraspecific and interspecific distance based on COI gene can be seen in Figure 1. The frequency distribution between intraspecific and interspecific distances of pairwise K2P can be differentiated in this study. Based on pairwise K2P, it was inferred that there is a clearly big gap between intraspecific and interspecific distance. Thus, the identification of *E. kamerunicus* has been successfully demonstrated using this approach.

Another approach using tree-based analysis was conducted to differentiate *E. kamerunicus* from its closely related taxa (Figure 2). Reconstruction of the phylogeny tree of COI markers was carried out by the Neighbor-joining method with K2P distance-based method and bootstrap 1.000. The discrimination performance was assessed by evaluating the proportion of the monophyletic clusters for individuals belonging to the same species in the neighbor-joining tree. The results showed that *E. kamerunicus* samples from all locations were in one big group in the phylogeny tree while outgroups from other nearby genera formed different groups. Based on these results it can be shown that the COI gene can be used to distinguish *E. kamerunicus* from its closely related taxa (Bakara et al. 2020).

A neighbor-joining tree based on K2P distances also uncovered that the *E. kamerunicus* populations formed three haplogroups (Figure 2), and was used to assess the distinctiveness of the haplogroups with the Species Delimitation Plugin in Geneious software. Within each of the three haplogroups, intergroup distances were significantly bigger than intraclade distances (Table 4). Rosenberg’s P_{AB} 1.50E-07, 1.40E-05, 1.40E-05, for clades 1, 2, and 3, respectively, strongly supported that the three haplogroups were reciprocal monophyly (Table 4). All three haplogroups are clearly differentiated from the closest taxon *Amorphocerus tarpa* and *Araucarius major* (Figure 2).

Table 4. Species delimitation result

Haplogroup	Haplogroup I	Haplogroup II	Haplogroup III
Closest Haplogroup	II	III	II
Intra Dist	0.002	0.001	0.001
Inter Dist-Closest	0.041	0.012	0.012
Intra/Inter	0.05	0.09	0.09
P_{ID}(Strict)	0.90 (0.78, 1.0)	0.73 (0.56, 0.91)	0.96 (0.91, 1.0)
P_{ID}(Liberal)	0.97 (0.87, 1.0)	0.96 (0.81, 1.0)	0.99 (0.96, 1.0)
Av(MRCA-tips)	0.0024	6.98E-04	8.49E-04
Pr(Randomly Distinct)	0.05	0.05	0.05
Rosenberg's P_{AB}	1.50E-07	1.40E-05	1.40E-05

![Figure 1](image-url). The intra-and inter-specific comparisons of COI gene for oil palm pollination weevil species.
Genetic diversity

A total of 36 mitochondrial COI sequences of 684 bp length were analyzed to evaluate the genetic diversity of *E. kamerunicus* populations from 6 different locations. Three types of basic descriptive indices, namely number of polymorphism site (S), haplotype diversity (Hd), and nucleotide diversity (Pi) were calculated to measure genetic diversity within populations (Table 5). The number of polymorphism sites (S) ranged from 3 to 37. The number of haplotypes per population ranged from 4 to 6. Polymorphisms were found in 6 populations that ranged from 0.8 to 1 and nucleotide diversity ranged from 0.00146 to 0.02914. This study showed that there were genetic variations among *E. kamerunicus* populations from Indonesia, Malaysia, and Cameroon. Among them, CD population showed the highest haplotype diversity and IB population showed the lowest haplotype diversity. The highest nucleotide diversity was found in MD population and the lowest nucleotide diversity was found in IB population.

Table 5. Genetic diversity of *E. kamerunicus* population from Cameroon, Malaysia, and Indonesia.

Population	n	S	h	Hd	Pi
CD	6	37	6	1	0.0269
MD	6	36	5	0.93333	0.02914
IS	6	3	5	0.93333	0.00224
ID	6	3	4	0.8	0.00146
IT	6	3	4	0.86667	0.00175
IM	6	11	4	0.86667	0.00575

Notes. n, number of individuals; S, number of polymorphic sites; h, number of haplotypes; Hd, haplotype diversity; Pi, nucleotide diversity.

Haplotype network

Relationships among COI haplotypes were inferred using a haplotype network. The haplotype network was constructed using the Minimum Spanning Network (MSN) analysis (Figure 3). MSN constructed from 14 haplotypes demonstrated that several haplotypes were highly common and shared by many locations.

Neutrality test

For all sites, Tajima’s D and Fu’s Fs test did not reveal any significant departure from neutrality (Table 6), which may indicate population expansion or purifying selection. The only exception was that Fu's FS revealed significant departure from neutrality for population from Indonesia, North Sumatra, Siantar (IS). Significant negative results of neutrality tests indicated an excess number of alleles. This is an indication of population expansion and genetic hitchhiking.

Distribution of individuals in haplogroup

As shown in Figure 2, *E. kamerunicus* population taken from 6 different locations representing 3 countries formed 3 haplogroups. Haplogroup I is *E. kamerunicus* from CD and MD. Haplogroup II is *E. kamerunicus* from CD, MD, and IM. Whereas Haplogroup III is *E. kamerunicus* population from all sampling locations.

The distribution of individuals in haplogroups can be seen in Table 7. It can be seen that the Haplogroups differed in their geographic distribution. Most of the individuals from every 6 populations were in haplogroup III. Only, individuals from Indonesia, Central Sulawesi (IM) were in haplogroup II and the rest is from Malaysia (MD) and Cameroon (CD). Interestingly there is no individual from Indonesia in haplogroup I. This means that the haplogroup I was specific only to populations from Malaysia (MD) and Cameroon (CD).

Figure 3. Haplotypes relationships using Minimum Spanning Network, size of nodes and pie segments were proportional to haplotype frequency
Figure 2. Phylogenetic relationship of *E. kamerunicus* based on partial COI sequences. Neighbor-joining tree using Kimura-2-Parameter (K2P) with 1000 Bootstrap.

Genetic differentiation

Analysis of pairwise FST and AMOVA gave first insight to genetic differentiation between populations. FST and AMOVA results showed significant genetic structure between population, with ~21% of the variation among populations and ~78% of the variation within populations (Table 8). This means that there is significant genetic differentiation among populations tested in this study.

The values of pairwise FST range from 0 to 0.39. From 21 comparisons, two showed significantly high genetic differentiation. Referring to the criterion for genetic differentiation by (Wright 1984), genetic differentiation was defined as low for FST<0.05, moderate for 0.05<FST<0.15, high for 0.15<FST<0.25, and very high for FST>0.25 (Figure 4).

The pairwise FST values between Indonesia populations were less than 0.12, indicating low to moderate genetic differentiation. The pairwise FST values between the populations from Cameroon (CD) and Malaysia (MD) were 0, indicating a low genetic differentiation. FST values between populations from Cameroon and Indonesia range from 0.12 to 0.2, suggesting a relatively moderate to high genetic differentiation. Interestingly, the values of pairwise genetic distance between Malaysia and Indonesia population range from 0.31 to 0.39, indicating very high genetic differentiation. However, based on statistical significance at p-value <0.05, the only significant differences were observed between populations from IT and MD and between population from IB and MD.
Table 6. Neutrality Test. Fu’s Fs: Statistical significance: Not significant, P>0.01. Tajima’s D: Statistical significance: Not significant, P>0.01.

Population	Tajima’s D p-value	FS p-value
CD	0.86293	0.08
		-0.09971
		0.316
MD	1.68211	0.803
		0.803
		0.775
IS	-1.23311	0.09
		0.09
		0.016
ID	-0.44736	0.315
		0.315
		0.049
IT	-1.11	0.166
		0.166
		0.63

Table 7. Distribution of individuals in haplogroups. Number of individuals falling in haplogroups 1, 2, and 3 for each sampling location.

Population	Haplogroup I	Haplogroup II	Haplogroup III
CD	2	1	3
MD	3	1	2
IS	0	0	6
ID	0	0	6
IT	0	0	6
IM	0	1	5

Table 8. Analysis of Molecular Variation (AMOVA). *Statistical significance: Significant at P<0.01.

Source of variation	d.f.	Sum of squares	Variance components	Percentage of variation
Among populations	5	51.139	1.06574 Va	21.75
Within populations	30	115	3.83333 Vb	78.25
Total	35	166.139	4.89907	
Fixation Index	FST	0.21754*		

Figure 4. Pairwise Fst between E. kamerunicus population. Negative values converted to 0. Significance level at p < 0.05

Discussion

The use of the COI gene as a genetic marker in the identification of E. kamerunicus has been successfully demonstrated in this study. This is proven by the existence of a barcode gap that distinguishes between intraspecific and interspecific and it is clearly visible on the K2P histogram and phylogenetic tree. The species identification is considered success when the barcoding gap was detected (Meyer and Paulay 2005; Meier et al. 2008). This method also successfully assessed the power of COI as DNA barcoding marker in another insect species such as ladybird beetles (Coleoptera: Coccinellidae) (Wang et al. 2019), fish species (Intiaz et al. 2017; Bramandito et al. 2018), coffee pollinator insects (Sitompul et al. 2018), Xyleborus sp. (Coleoptera: Scolytinae) (Chang et al. 2014) or even a general soil insect (Nyamwasa et al. 2017).

Based on these two approaches, the COI sequences are strongly recommended to be used as DNA barcoding for molecular identification of E. kamerunicus species. The sequences obtained in this study were neither found nor had any high similarity in both BoLD and NCBI databases. This means that there is no E. kamerunicus COI that has been deposited in these databases before. Therefore, this research is the first study that used COI in E. kamerunicus population for molecular identification.

The results of this study also showed that the COI gene of E. kamerunicus from Cameroon is still carried in the population of Indonesia and Malaysia. This means that it is consistent with the history of the introduction of E. kamerunicus in Malaysia and Indonesia, where the population of E. kamerunicus in Malaysia and Indonesia started from Cameroon population. Phylogenetic trees constructed using the COI gene indicate the presence of 3 haplogroups, while E. kamerunicus from Indonesia only have 2 of them. After 30 years of introduced in Indonesia and Malaysia, the genetic diversity of E. kamerunicus populations from Cameroon was different from population from Indonesia and Malaysia. The samples from Indonesia and Malaysia possess a reduction in genetic diversity based on COI gene in comparison to Cameroon population.

This study shows a decrease in the genetic diversity of E. kamerunicus populations in Indonesia and Malaysia. One factor that causes a decrease in genetic variation is population size. This has been proven before by Soule (1976) and Furlan et al. (2011) who conducted research on...
Ornithorhynchus anatinus and lizard. The results of his research showed intraspecific genetic variation was positively correlated with population size. So, the decline in genetic variations that occur in E. kamerunicus population in Indonesia and Malaysia can be accepted, given the population of E. kamerunicus in Indonesia comes from 508 individuals who were introduced 30 years ago.

However, based on current data, we cannot conclude the global dispersion and distribution pattern of E.kamerunicus populations. We would need more loci and more samples in order to clearly elucidate the demographic history and the major dispersal routes of E.kamerunicus into Indonesia from Cameroon.

ACKNOWLEDGEMENTS

We thank to management of PT. Astra Agro Lestari, Tbk. especially Santosa (CEO) and M. Hadi Sugeng (R&D Director) for all of the supports. We also thank Dr. Vengeta Rao and the Indonesian Oil Palm Research Institute (IOPRI) team for sample collection.

REFERENCES

Bakara RD. 2019. Morfometri dan Karakter Molekular Elaeodobius kamerunicus FAUST. (Coleoptera: Curculionidae) di Indonesia. [Thesis]. IPB University, Bogor. [Indonesian]

Bakara RD, Tambunan V, Apriyanto A, Kusumah YM, Sahari B, Buchori D. 2020. Genetic diversity and population structure in Elaeodobius kamerunicus (Coleoptera: Curculionidae) inferred from mtDNA COI and microsatellite markers. Proceedings of International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Atlantis Press, Paris.

Benson D, Karsch-Mizrachi I, Clark K, Lipman D, Ostell J, Sayers E. 2012. GenBank. Nucleic Acids Res 40: 48-53.

Bramandito A, Subhan B, Prartono T, Anggraini NP, Januar HI, Bakara R (IOPRI) team for sample collection.

Fu Y, Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: A software for population genetics' data analysis and simulations. Molecular Ecology Notes, 10 (3): 564-567. DOI: 10.1111/j.1471-8286.2010.02847.x

Furlan E, Stoklosa J, Griffiths, Gust N, Ellis R, Huguin RM, Weeks AR. 2011. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol 2 (4): 844-857. DOI: 10.1002/ece3.195.

Hebert PD, Cywinska A, Ball SL, Dewaard JR. 2003. Biological identifications through DNA barcode. Proc R Soc London Ser B Biol Sci 270 (1512): 313-321. DOI: 10.1098/rspb.2002.2218.

Hebert PD, Ratnasingham S, Zakharov EV, Teller AC, Levesque-Beaudin V, Milton MA, Pedersen S, Jannotta P, deWarda JR. 2016. Counting animal species with DNA barcodes: Canadian insects. Phil Trans R Soc B Biol Sci 371 (1702): 20150333. DOI: 10.1098/rstb.2015.0333.

Hoy MA. 2003. Insect molecular genetics: An Introduction to Principles and Applications. Elsevier, Amsterdam.

Imtaz A, Nor SAM, Naim DM. 2017. Review: Progress and potential of DNA barcoding for species identification of fish species. Biodiversitas 18 (4): 1394-1405. DOI: 10.13057/biodiv/180435.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35 (6): 1547-1549.

Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace DM, Wilm A, Lopez R. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23 (21): 2947-2948.

Leigh JW, Bryant D. 2015. Popart: Full-feature software for haplotype network construction. Methods Ecol Evol 6 (9): 1110-1116. DOI: 10.1111/2041-210X.12410.

Lubs AU. 1992. Kelapa sawit (Elaeis guineensis jaq.) di Indonesia. Pusat Penelitian Perkebunan Marhat, Medan. [Indonesian]

Meier R, Zhang G, Ali F. 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57 (5): 809-813. DOI: 10.1080/10635150802406343.

Meyer CP, Paulay G. 2005. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol 3 (12): e422. DOI: 10.1371/journal.pbio.0030422.

Nyamwasia I, Li K, Yin J, Zhang S, Jaguda J, Hatengekima A, Waweru B, Li H. 2017. Occurrence of soil insect pests: Insight from classical identification supplemented with DNA barcoding. Int J Pest Manag 63 (1): 18-29. DOI: 10.1080/09767087.2016.1217771.

Ratnasingham S, Hebert PD. 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes 7 (3): 355-364.

Rozas J, Ferrer-Mata A, Sánchez-DeBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DNA SP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34 (12): 3299-3302. DOI: 10.1093/molbev/msx248.

Schmitt T, Haubrich K. 2008. The genetic structure of the mountain forest butterfly Euebia curvale unearls the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol Ecol 17 (9): 2194-2207. DOI: 10.1111/j.1365-294X.2007.03687.x.

Sitompul AF, Siregar EH, Roesma DI, Dahelma, Prasetya E. 2018. Molecular identification of coffee (Coffeea arabica) pollinator insects in North Sumatra, Indonesia based on designed COI primers. Biodiversitas 19 (5): 1877-1883. DOI: 10.13057/biodiv/190539.

Soule ME. 1976. Allozyme variation, its determinants in space and time. In: Ayala FJ (ed.). Molecular Evolution. Sinauer, Sunderland, MA.

Smith DR. 1991. Mitochondrial DNA and honey bee biogeography. Diversity in The Genus Apis 131-176. Westview press, Colorado.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (3): 585-595.

Ursing BM, Arrasuo U. 1998. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47 (3): 302-306.

Wang Z-L, Wang T-Z, Zhu HF, Wang Z-Y, Yu X-P. 2019. DNA barcoding evaluation and implications for phylogenetic relationships in ladybird beetles (Coleoptera: Coccinellidae). Mitochondrial DNA Part A 30 (1): 1-8. DOI: 10.1080/24701394.2018.1446950.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 (6): 1358-1370.

Wright S. 1984. Evolution and The Genetics of Populations, Volume 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago, IL.

Zein MSA, Pratwiradiaga DM. 2013. DNA Barcode Fauna Indonesia. Prenada Media, Jakarta.

21 (7): 3263-3270, July 2020