A comparative study of model ingredients:
Fragmentation in heavy-ion collisions using quantum molecular dynamics model

SANJEEV KUMAR and SUNEEL KUMAR*
School of Physics and Material Science, Thapar University, Patiala 147 004, India
*Corresponding author. E-mail: suneel.kumar@thapar.edu

MS received 26 November 2009; revised 23 December 2009; accepted 7 January 2010

Abstract. We aim to understand the role of NN cross-sections, equation of state as well as different model ingredients such as width of Gaussian, clusterization range and different clusterization algorithms in multifragmentation using quantum molecular dynamics model. We notice that all model ingredients have sizable effect on the fragment pattern.

Keywords. Cross-section; model ingredients; quantum molecular dynamics; intermediate mass fragments; multifragmentation.

PACS Nos 25.70.Pq; 25.70.-z; 24.10.Lx

1. Introduction

The study of heavy-ion collisions at intermediate energies (50 ≤ E ≤ 1000 MeV/nucleon) provides a rich source of information for many rare phenomena such as multifragmentation, collective flow, particle production etc. [1,2]. One can also shed light on the mechanism behind the fragmentation in highly excited nuclear systems. In this energy region, multifragmentation appears to be a dominant de-excitation channel apart from the other less populated channels of manifestation of liquid gas phase transition in finite nuclear systems [1,3,4]. In the literature, multifragmentation has also been considered as a gateway to nuclear equation of state [5,6]. Numerous investigations are cited in the literature which handle the de-excitation of nuclear system in multifragmentation [7–13].

The experimental analysis of the emission of intermediate mass fragments (IMFs), (5 ≤ A ≤ A_{tot}/6), has yielded several interesting observations: De Souza et al [10] observed a linear increase in the multiplicity of IMFs with incident energies for central collisions. In this study, incident energy was varied between 35 and 110 MeV/nucleon. On the other hand, Tsang et al [11] reported a rise and fall in the production of IMFs. The maximal value of the IMFs shifts from nearly central to peripheral collisions with the increase in the incident energy. More refined results
Sanjeev Kumar and Suneel Kumar

were reported by Peaslee et al [12] for the reaction of $^{36}\text{Kr}^{84} + ^{79}\text{Au}^{197}$ for incident energy between 35 and 400 MeV/nucleon. Their analysis revealed that multiplicity of the IMFs first increases up to 100 MeV/nucleon and then decreases slowly. These findings pose a stringent test for any theoretical model designed for the study of multifragmentation.

Theoretically, multifragmentation can be studied by statistical [2] as well as semiclassical [5] models. The relation between multifragmentation process and nuclear equation of state was extensively studied by several authors within the statistical approach for intermediate energy heavy-ion collisions [2,4,6]. On the other hand, semiclassical dynamical models [5] are very useful for studying the reaction from the start to final state where matter is fragmented and cold. In addition, these models also give a possibility to extract the information about the nuclear equation of state [13] and NN cross-section [1,5,14]. The interaction among nucleons (in a heavy-ion reaction) can be studied within the G-matrix, with its real part representing the mean field and complex part denoting the NN cross-section [1,5,14]. Note that the contribution of imaginary part of the interaction is nearly absent in the low-energy process such as fusion, fission and radioactivity [15]. One often uses a parametrized form for the real and imaginary parts of the G-matrix. It is well accepted to use a density-dependent Skyrme-type interaction for the real part of the G-matrix. However, heavy-ion dynamics depends not only on the density but also on the entire momentum plane [7]. Therefore, it is advisable to use momentum-dependent interactions additionally.

The exact nature of NN cross-section, on the other hand, is still an open question [7,14]. A large number of calculations exist in the literature suggesting different strength and forms of the NN cross-sections [14,16]. In a simple assumption of hard core radius of NN potential, one has often used a constant and isotropic cross-section of 40 mb. In other calculations, a constant and isotropic cross-section with magnitude between 20 and 55 mb is also used [14]. The most sensitive observable to pin down the NN cross-section is the collective flow. Recent calculations advocated its strength between 35 and 40 mb [14]. We shall concentrate here on multifragmentation. Our present study will be based on the semiclassical model, namely, quantum molecular dynamics (QMD). In semiclassical model, one has to face the problem of the stability of nuclei. Several model ingredients such as width of the Gaussian (L), have been used as free parameters. It varies between 4.33 fm2 to 8.66 fm2 [5]. At the same time, one needs to identify the clusters with the help of clusterization algorithm. Different cluster identifier algorithms can also influence the fragmentation. Our present interest is to perform a comparative study of different model ingredients along with different NN cross-sections and to see whether it is possible to pin down the strength of NN cross-sections by QMD model or not.

Our article is organized as follows: we discuss the model briefly in §2. Our results and discussions are given in §3 and we summarize the results in §4.

2. Quantum molecular dynamics (QMD) model

The QMD model [1,5,7,14,17] is based on time-dependent N-body theory which simulates the time evolution of heavy-ion reactions on an event-by-event basis. It is
A comparative study of model ingredients

based on the generalized variational principle. As with every variational approach, it requires the choice of a test wave function Φ. In the QMD approach, this is an N-body wave function with $6N$ time-dependent parameters if nuclear system contains N nucleons.

The basic assumption of QMD model is that each nucleon is represented by coherent states of the form (we set $\hbar, c = 1$) which are characterized by six time-dependent parameters, \vec{r}_i and \vec{p}_i, respectively.

$$
\phi_i(\vec{r}, t) = \left(\frac{2}{L\pi}\right)^{3/4} e^{-\frac{(\vec{r} - \vec{r}_i(t))^2}{L^2}} e^{i(\vec{p} \cdot \vec{r}_i(t))}.
$$

(1)

Here L is the width of the Gaussian distribution. This width varies between 4.33 and 8.66 fm2 in [5]. The total N-body wave function is assumed to be a direct product of the coherent states

$$
\Phi = \Pi_{i=1}^{A_{T}+A_{P}} \phi_i(\vec{r}_i, \vec{p}_i, t).
$$

(2)

To calculate the time evolution of a system, we start out from the action

$$
S = \int_{t_1}^{t_2} \mathcal{L}[\Phi, \Phi^*]dt
$$

(3)

with the Lagrange functional

$$
\mathcal{L} = \left\langle \Phi|\hbar \frac{d}{dt} - H|\Phi \right\rangle.
$$

(4)

The total time derivative includes the derivation with respect to parameters. The time evolution of the parameters is obtained by the requirement that the action is stationary under the allowed variation of wave function. This leads to a Euler–Lagrange equation for each time-dependent parameter.

Thus, the variational principle reduces the time evolution of N-body Schrödinger equation to the time evolution equations of $6(A_T + A_P)$ parameters to which a physical meaning can be attributed. The equations of motion for the parameters \vec{p}_i and \vec{r}_i read as

$$
\frac{d\vec{r}_i}{dt} = \frac{\partial (H)}{\partial \vec{p}_i}; \quad \frac{d\vec{p}_i}{dt} = -\frac{\partial (H)}{\partial \vec{r}_i}.
$$

(5)

If $\langle H \rangle$ has no explicit time dependence, QMD conserves the energy and momentum by construction.

The nuclear dynamics of the QMD model can also be translated into a semiclassical scheme. The Wigner distribution function f_i of the ith nucleon can be easily derived from the test wave functions

$$
f_i(\vec{r}, \vec{p}, t) = \frac{1}{(\pi\hbar)^3} e^{-\frac{(\vec{r} - \vec{r}_i(t))^2}{2L}} e^{-\frac{(\vec{p} - \vec{p}_i(t))^2}{2\hbar^2}}.
$$

(6)

and the total Wigner density is the sum of all those nucleons. Hence the expectation value of total Hamiltonian reads as
\[\langle H \rangle = \langle T \rangle + \langle V \rangle \]
\[= \sum_i \frac{p_i^2}{2m_i} + \sum_i \sum_{j > i} \int f_i(\vec{r}, \vec{p}, t)V^{ij}(\vec{r}', \vec{r}) \]
\[\times f_j(\vec{r}'', \vec{p}'', t) d\vec{r} d\vec{r}' d\vec{p} d\vec{p}'', \]
where \(V^{ij} \) is given as
\[V^{ij}(\vec{r}', \vec{r}) = V^{ij}_{\text{Skyrme}} + V^{ij}_{\text{Yukawa}} + V^{ij}_{\text{Coul}} + V^{ij}_{\text{MDI}} \]
\[= \left[t_1 \delta(\vec{r}' - \vec{r}) + t_2 \delta(\vec{r}' - \vec{r}) \rho^{\gamma-1} \left(\frac{\vec{r}' + \vec{r}}{2} \right) \right] \]
\[+ t_3 \frac{\exp(-|\vec{r}' - \vec{r}|/\mu)}{(|\vec{r}' - \vec{r}|/\mu)} + \rho_0 e_0 \frac{Z_i Z_j \rho_0}{|\vec{r}' - \vec{r}|} \]
\[+ t_4 \ln^2\left(\frac{|\vec{p}'_i - \vec{p}_i|^2 + 1}{|\vec{p}'_j - \vec{p}_j|} \right) \]
which consists of Skyrme, Yukawa, Coulomb and momentum-dependent parts of the interaction and \(Z_i, Z_j \) are the charges of the \(i \)th and \(j \)th baryons.

Further, potential part resulting from the convolution of the distribution function \(f_i \) and \(f_j \) with the Skyrme interactions \(V_{\text{Skyrme}} \) reads as
\[V_{\text{Skyrme}} = \alpha \left(\frac{\rho_0}{\rho_0} \right) + \beta \left(\frac{\rho_0}{\rho_0} \right)^\gamma. \]
Two of the three parameters of the equation of state are determined by demanding that at normal nuclear matter density, the binding energy should be equal to 16 MeV. The third parameter \(\gamma \) is usually treated as a free parameter. Its value is given in terms of the compressibility:
\[\kappa = 9\rho^2 \frac{\partial^2}{\partial \rho^2} \left(\frac{E}{A} \right). \]
Different values of compressibility give rise to soft and hard equations of state.

The momentum dependence \(V_{\text{MDI}} \) of NN interaction, which may optionally be used in the model, is fitted to experimental data [5] on the real part of the nucleon optical potential. This yields
\[V_{\text{MDI}} = \delta \cdot \ln^2(\varepsilon \cdot (\Delta p)^2 + 1) \cdot \left(\frac{\rho_0}{\rho_0} \right). \]
The potential part of the equation of state resulting from the convolution of distribution functions \(f_i \) and \(f_j \) with Skyrme and momentum-dependent interactions, reads as
\[U = \alpha \left(\frac{\rho_0}{\rho_0} \right) + \beta \left(\frac{\rho_0}{\rho_0} \right)^\gamma \]
\[+ \delta \cdot \ln^2(\varepsilon \cdot (\Delta p)^2 + 1) \cdot \left(\frac{\rho_0}{\rho_0} \right). \]
A comparative study of model ingredients

For the value of constants and details, reader is referred to ref. [5]. The inclusion of MDI is labelled as soft momentum-dependent (SMD) and hard momentum-dependent (HMD) equations of state. In recent studies, momentum-dependent forces are found to be essential part of dynamics.

During the propagation, two nucleons can collide if they satisfy the condition \(|\vec{r}_i - \vec{r}_j| \leq \sqrt{\sigma/\pi} \). In this procedure, a binary collision is blocked if the final state phase space is already occupied. The Pauli principle of the final state reduces the free cross-section to effective levels. Here we take different forms of NN cross-sections [\(\sigma \)] to understand the influence on fragment production. We shall use here an energy-dependent cross-section due to Cugnon and also different constant cross-sections ranging between 20 and 55 mb [5,7]. The nature and strength of the cross-section \(\sigma \) is depicted as superscript to \(\sigma \).

3. Results and discussion

Here, we simulate the symmetric reactions of \(\text{79}\text{Au}^{197} + \text{79}\text{Au}^{197} \) at incident energies of 100, 400, 600 and 1000 MeV/nucleon and over complete range of the impact parameter. The system size and asymmetry effects will be analysed by further studying the reactions of \(\text{10}\text{Ne}^{20} + \text{13}\text{Al}^{27}, \text{18}\text{Ar}^{40} + \text{21}\text{Sc}^{45}, \text{36}\text{Kr}^{84} + \text{41}\text{Nb}^{93}, \text{54}\text{Xe}^{131} + \text{57}\text{La}^{139} \) at energies between 20 and 150 MeV/nucleon. The clusterization at first instance is made using the minimum spanning tree (MST) method, in which, nucleons are bound if \(R_{\text{clus}} = |\vec{r}_1 - \vec{r}_2| \leq 4 \text{ fm} \) [1,5].

In figure 1, we display the multiplicity of intermediate mass fragments (IMFs) as a function of the impact parameter for the reaction of \(\text{79}\text{Au}^{197} + \text{79}\text{Au}^{197} \) at incident energies 100, 400, 600 and 1000 MeV/nucleon. Here soft momentum-dependent interaction (SMD) is used with different cross-sections. From the figure, the multiplicity of IMFs is maximal at 100 MeV/nucleon for smaller impact parameters, which decreases with the increase in the impact parameter. On the other hand, one sees a rise and fall in the multiplicity of the IMFs at higher incident energies. The dynamics at 100 MeV/nucleon, is mainly governed by the mean field or by the density of the reaction as compared to other higher incident beam energies under consideration (e.g. 400, 600 and 1000 MeV/nucleon). The incident energy of 30 MeV/nucleon is the lowest limit for any semiclassical model, where the effect of Pauli blocking is \(\approx \)90%. Below this incident energy, quantum effects as well as Pauli blocking need to be redefined. There are no visible effects of different cross-sections at 100 MeV/nucleon. Due to the low excitation energy, central collisions generate better repulsion and break the colliding nuclei into IMF, whereas for the peripheral collisions, the size of the fragment is close to the size of the reacting nuclei, and therefore, one sees a very few IMFs. On the contrary, a rise and fall can be seen at other higher incident energies. For the central collisions, the frequent NN collisions occurring at these energies do not allow any IMFs production, whereas, at peripheral collisions the energy transfer from the participating matter to spectator matter is minimum, and therefore, very few IMFs are seen.

In all the cases, some effects of different NN cross-sections are visible at higher incident energies. The use of the momentum-dependent interaction yields better comparison with ALADIN set-up [18] for \(\sigma = 55 \text{ mb} \). This finding is in agreement...
Sanjeev Kumar and Suneel Kumar

Figure 1. Comparison of average multiplicity of intermediate mass fragments (IMFs) with ALADIN data at incident energies of 100, 400 MeV/nucleon (top panel) and 600, 1000 MeV/nucleon (bottom panel) as a function of impact parameter. The results are displayed using soft momentum-dependent (SMD) interactions.

with the results reported in ref. [1], where it was found that NN cross-section has sizable effect on reaction dynamics. Note that in these studies, static equation of state was used.

Let us now analyse the above effects in asymmetric reactions. In figure 2, asymmetric reactions of \(^{10}\text{Ne}^{20} + ^{13}\text{Al}^{27}, \ ^{\text{18}}\text{Ar}^{40} + ^{21}\text{Sc}^{45}, \ ^{36}\text{Kr}^{84} + ^{41}\text{Nb}^{93} \) and \(^{54}\text{Xe}^{131} + ^{57}\text{La}^{139} \) are displayed as a function of beam energy at scaled impact parameter \(\hat{b} = 0.3 \) (semicentral collisions) using different cross-sections. Final results are also compared with the NSCL experimental data [19]. Due to the lack of access to filters, no direct comparison with data could be made. These comparisons just indicate the trend within theoretical framework. From the figure, it is clear that the trends of our calculations with soft momentum-dependent (SMD) interactions are in good agreement with experimental data. Again different NN cross-sections fail to make any significant impact on the cluster dynamics.

One further sees that the multiplicity of IMFs in \(^{10}\text{Ne}^{20} + ^{13}\text{Al}^{27} \) decreases with increase in the beam energies. For the reaction of \(^{18}\text{Ar}^{40} + ^{21}\text{Sc}^{45} \), similar trends emerge above 55 MeV/nucleon, as in the case of \(^{10}\text{Ne}^{20} + ^{13}\text{Al}^{27} \). For energies below 55 MeV/nucleon, we see dominant role of mean field and hence
A comparative study of model ingredients

Figure 2. The average multiplicity of IMFs vs. beam energy in the reactions of 10Ne$^{20} + ^{13}$Al27, 18Ar$^{40} + ^{21}$Sc45, 36Kr$^{84} + ^{41}$Nb93 and 54Xe$^{129} + ^{57}$La139. The symbols represent the NSCL experimental results, while lines represent the results obtained within QMD model using different cross-sections σ^{55}, σ^{40} and σ^{Cug}.

increase in the intermediate mass fragments. For the rest of the reactions, namely, 36Kr$^{84} + ^{41}$Nb93 and 54Xe$^{129} + ^{57}$La139, the multiplicity of IMFs increases with the increase in the beam energy and cross-section. One should note that in the first two reactions, incident energy is much higher compared to the last two reactions.

Let us now understand how other technical parameters affect the fragmentation. In figure 3, we display in the upper part, the effect of the width of Gaussian wave packet. We display the results with narrow width ($L = 4.33$ fm2) and broad width ($L = 8.66$ fm2). We see that the variation of the width has sizable effect on clusterization. A broader Gaussian results in extended interaction radius, thereby binding more nucleons into a fragment. As a result, the fragment turns much heavier than the upper limit of IMFs (i.e. 65 for (Au+Au) reaction) and hence there is a net reduction in the production of IMFs. This result is in agreement with the findings in ref. [1]. One should also note that larger Gaussian width will also result in more attractive nuclear flow and hence will push the energy of vanishing flow towards higher incident energies. In the middle panel, we display the effect of
Figure 3. A comparison of multiplicity of IMFs by employing different model ingredients like Gaussian width (upper panel), clusterization cut-off distance R_{clus} (middle) and equation of state (bottom). These results are displayed using soft (upper, middle, bottom) and hard (bottom) equation of state with σ^{55}.

To further analyse the results, we display in figure 4, the maximal number of intermediate mass fragments (N_{IMF}) as well as the corresponding impact parameter as a function of the incident energy for the reaction of $^{79}\text{Au}^{197} + ^{79}\text{Au}^{197}$. Here apart from the different Gaussian widths and clusterization distance, we also display the results with different clusterization algorithms. Here we also use simulated annealing clusterization algorithm (SACA) [1] to clusterize the phase space. In SACA approach [1], a group of nucleons can form a fragment if the total fragment energy/nucleon ζ is below a minimum binding energy:

$$\zeta = \sum_{i=1}^{N_{f}} \left[\sqrt{\left(\mathbf{p}_i - \mathbf{p}_{\text{c.m.}}^{(N/1)} \right)^2 + m_i^2} - m_i + \frac{1}{2} \sum_{j \neq i}^{N_{f}} V^{ij}(\mathbf{r}_i, \mathbf{r}_j) \right]$$

$$< L_{\text{be}} \times N_{f}, \quad (13)$$
A comparative study of model ingredients

Figure 4. The peak value of IMFs and the corresponding impact parameter as a function of beam energy is compared with ALADIN data in the upper and bottom panels, respectively.

with $L_{be} = -4.0$ MeV if $N^f \geq 3$ and $L_{be} = 0$ otherwise. In this equation, N^f is the number of nucleons in a fragment, $P_{cm}^{N^f}$ is the centre-of-mass momentum of the fragment. The requirement of a minimum binding energy excludes the loosely bound fragments which will decay after a while. To find the most bound configuration among the huge number of possible fragmentation patterns, we proceed as follows: we start from a random configuration which is chosen by dividing the whole system into few fragments. The energy of the individual cluster is calculated by summing over all nucleons present in that cluster using eq. (13). Note that as we neglect the interaction between fragments, the total energy calculated in this way differs from the total energy of the system. If the difference between the old and new energy is negative, the new configuration is accepted. If not, the new configuration may nevertheless be accepted with a probability of $\exp(-\Delta E/c)$, where c is the control parameter. This procedure is known as the Metropolis algorithm. The control parameter is decreased in small steps. This algorithm will yield eventually the most bound configuration. The identification of fragments using SACA is very time-consuming. The algorithm searches the most bound configuration out of several millions of different possibilities. The major outcome of this method is that we can recognize the fragments at a relative high density.

From the figure, we see that different cross-sections yield quite similar trend. The absolute value varies with NN cross-sections as well as with other model ingredients.
Sanjeev Kumar and Suneel Kumar

For example, we see that at 600 MeV/nucleon, the SACA method with 20 mb yields results close to the MST method with 55 mb. A broader Gaussian scales down the number and so is the case with reduced cut-off distance. From this discussion, it is clear that the effect of larger cross-section (i.e. between 20 and 55 mb) is as large as the effect of other model ingredients. Even a change of the clusterization algorithm affect the outcome sizeably. From this analysis, one conclude that it may not be possible to pin down the magnitude of cross-section from multifragmentation since other technical parameters such as width of the Gaussian, clusterization range or even the change of the clusterization algorithm alter the results in similar fashion when semiclassical model such as quantum molecular dynamics model is used.

4. Summary

In the present study, we focussed on the comparative study of different model ingredients with semiclassical model, namely, quantum molecular dynamics (QMD) model. For this study, a hunt was made to compare our theoretical results of different cross-sections with experimental data. We also analysed the results with model ingredients such as width of the Gaussian, clusterization range and different clusterization algorithms. We found that the effect of different cross-sections is of the order of the one obtained from the model ingredients. All model ingredients affect the fragmentation pattern in a similar fashion.

Acknowledgement

This work has been supported by the Grant No. 03(1062)06/EMR-II, from the Council of Scientific and Industrial Research (CSIR), New Delhi, Govt. of India.

References

[1] R K Puri, C Hartnack and J Aichelin, Phys. Rev. C54, R28 (1996)
P B Gassiaux et al, Nucl. Phys. A619, 379 (1997)
R K Puri and J Aichelin, J. Comp. Phys. 162, 245 (2000)
Y K Verma, S Goyal and R K Puri, J. Phys. G: Nucl. Part. 36, 105103 (2009)
Y K Verma and R K Puri, Eur. Phys. Lett. 85, 62001 (2009)

[2] J P Bondorf et al, Phys. Rep. 257, 133 (1995)
J P Bondorf et al, Nucl. Phys. A443, 321 (1985); Nucl. Phys. A444, 460 (1985)
A S Botvina et al, Nucl. Phys. A584, 737 (1995)
A S Botvina and I N Mishustin, Eur. Phys. J. A30, 121 (2006)
A S Botvina et al, Phys. Lett. B668, 414 (2008)
G Casini et al, nucl-ex/0905.4703 (2005)
S Pal, S K Samadder and J N De, Nucl. Phys. A608, 49 (1996)
D K Srivastava et al, nucl-th/0506075 (2005)
I Satpathy, M Mishra, A Das and M Satpathy, Phys. Lett. B237, 181 (1990)
C B Das, A Das, L Satpathy and M Satpathy, Phys. Rev. C53, 1833 (1996)
A comparative study of model ingredients

[3] J B Elliott et al, Phys. Rev. C49, 3185 (1994)
J A Hauger et al, Phys. Rev. C62, 024616 (2000)
P F Mastinu et al, Phys. Rev. Lett. 76, 2646 (1996)
A Bonsera et al, Rivista del Nuovo Cimento 23, 1 (2000)
M D’Agostino et al, Phys. Lett. B473, 219 (2000)

[4] I N Mishustin, Nucl. Phys. A630, 111 (1998)
M Mishra, M Satpathy and L Satpathy, J. Phys. G: Nucl. Part. 14, 1115 (1988)

[5] C Hartnack et al, Eur. Phys. J. A1, 151 (1998)
D T Khoa et al, Nucl. Phys. A548, 102 (1992)
E Lehmann, R K Puri, A Faessler, G Batko and S W Huang, Phys. Rev. C51, 2113 (1995)
R K Puri et al, Nucl. Phys. A575, 733 (1994)
C Fuchs et al, J. Phys. G: Nucl. Part. 22, 131 (1996)
E Lehmann et al, Prog. Part. Nucl. Phys. 30, 219 (1993)
E Lehmann et al, Z. Phys. A355, 55 (1996)

[6] S Pal, S K Samaddar, J N de and B Djerroud, Phys. Rev. C57, 3246 (1998)
EOS Collaboration: B K Srivastava et al, Phys. Rev. C65, 054617 (2002)
A Das, M Mishra, M Satpathy and L Satpathy, J. Phys. G: Nucl. Part. 19, 319 (1993)

[7] J Singh, S Kumar and R K Puri, Phys. Rev. C62, 044617 (2000)
S Kumar and R K Puri, ibid. 58, 1618 (1998)
Y K Vermani, S Goyal and R K Puri, ibid. 79, 064613 (2009)

[8] P M Milazzo et al, Phys. Rev. C66, 021601(R) (2002)

[9] C A Ogilvie et al, Phys. Rev. Lett. 67, 1214 (1991)
N T B Stone et al, ibid. 78, 2084 (1997)
A H Raduta and A R Raduta, Phys. Rev. C65, 054610 (2002)

[10] R T de Souza et al, Phys. Lett. B268, 6 (1991)

[11] M B Tsang et al, Phys. Rev. Lett. 71, 1502 (1993)
M B Tsang et al, ibid. 102, 122701 (2009)

[12] G F Peaslee et al, Phys. Rev. C49, R2271 (1994)

[13] Q Li, Z Li, S Soff, M Bleicher and H Stöcker, J. Phys. G: Nucl. Part. Phys. 32, 151 (2006)

[14] A D Sood and R K Puri, Phys. Rev. C70, 034611 (2004)
S Kumar, M K Sharma and R K Puri, ibid. 58, 3494 (1998)
A D Sood, R K Puri and J Aichelin, Phys. Lett. B594, 260 (2004)
P Danielewicz et al, Science 298, 1592 (2002)

[15] R K Gupta, S Singh, R K Puri and W Scheid, Phys. Rev. C47, 561 (1993)
R K Gupta et al, J. Phys. G: Nucl. Part. Phys. 18, 1533 (1992)
S S Malik, S Singh, R K Puri, S Kumar and R K Gupta, Pramana – J. Phys. 32, 419 (1989)
R K Puri, S S Malik and R K Gupta, Eur. Phys. Lett. 9, 767 (1989)
R K Puri and R K Gupta, J. Phys. G: Nucl. Part. 18, 903 (1992)
R K Puri, M K Sharma and R K Gupta, Eur. Phys. J. A3, 277 (1998)
R Arora, R K Puri and R K Gupta, Eur. Phys. J. A8, 103 (2000)
R K Puri and R K Gupta, Phys. Rev. C45, 1837 (1992)
R K Puri, P Chattopadhyay and R K Gupta, ibid. 43, 315 (1991)
R K Puri et al, Eur. Phys. J. A23, 429 (2005)

[16] G Q Li and R Machleidt, Phys. Rev. C48, 1702 (1993)
T Alm, G Ropke, W Bauer, F Daffin and M Schmidt, Nucl. Phys. A587, 815 (1995)
Sanjeev Kumar and Suneel Kumar

Y M Zhang, C M Ko, B A Li and B Zhang, Phys. Rev. Lett. 83, 2534 (1999)
Q Li, Z Li and G Mao, Phys. Rev. C62, 014606 (2000)
Q Li, Z Li and E Zhao, ibid. 69, 017601 (2004)
T Gaitanos, C Fuchs and H H Wolter, Prog. Part. Nucl. Phys. 53, 45 (2004)
Y Zhang, Z Li and P Danielewicz, Phys. Rev. C75, 034615 (2007)
[17] S W Huang et al, Phys. Lett. B298, 41 (1993)
G Batko, A Faessler, S W Huang, E Lehmann and R K Puri, J. Phys. G: Nucl. Part. 20, 461 (1994)
S W Huang et al, Prog. Part. Nucl. Phys. 30, 105 (1993)
[18] A Schüttauf et al, Nucl. Phys. A607, 457 (1996)
[19] W J Llope et al, Phys. Rev. C51, 1325 (1995)