Polaron Absorption in a Perovskite Manganite \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3 \)

K. H. Kim, J. H. Jung, and T. W. Noh

Department of Physics, Seoul National University, Seoul 151-742, Korea

Temperature dependent optical conductivity spectra of a \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3 \) (LCMO) sample were measured. In the metallic regime at very low temperatures, they clearly showed two types of absorption features, i.e., a sharp Drude peak and a broad mid-infrared absorption band, which could be explained as coherent and incoherent bands of a large lattice polaron. This elementary excitation in LCMO was found to be in a strong coupling regime and to have interactions with the spin degree of freedom.

PACS number: 72.15.Gd, 75.50.Cc, 75.30.Kz, 78.20.Ci

The recent discovery of colossal magnetoresistance phenomena in doped perovskite manganites, \(\text{La}_{1-x}\text{A}_x\text{MnO}_3 \) \((A=\text{Sr},\text{Ca})\) has generated considerable interests. For doping concentrations with \(0.2 \leq x \leq 0.5 \), the materials show a transition from a paramagnetic insulator to a ferromagnetic metal upon cooling near the Curie temperature \(T_C \). The correlation between metalliclicity and ferromagnetism has been explained by the Hund coupling between \(t_{2g} \) and \(e_g \) electrons [14].

In addition to the coupling between the charge and the spin degrees of freedom, many theoretical [14] and experimental [15] works have shown that a coupling between the charge and the lattice degrees of freedom is quite significant. Especially, giant oxygen isotope shifts in electronic screening during a crossover from a localized polaron regime above \(T_C \) to a delocalized one below \(T_C \) has been found to play an important role near and above \(T_C \) in the manganites.

Some experimental works demonstrated that local lattice distortions could exist even in the metallic phase [16]. Recently, we observed that the internal phonon modes of \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3 \) (LCMO) show significant frequency shifts, which were explained in terms of changes in electronic screening during a crossover from a localized polaron regime above \(T_C \) to a delocalized one below \(T_C \). For the low temperature \(T \) state, there are numerous theoretical predictions based on a large polaron coherent motion [17], a small polaron tunneling [18], and a formation of orbital liquid states [19]. However, at this moment, the exact nature of the low \(T \) metallic states is not clearly understood.

In this letter, we will address polaron absorption features, especially a very unusual polaron state at low \(T \), in LCMO. Optical conductivity spectra at the metallic region showed two types of absorption features, i.e., a sharp Drude peak and a broad mid-infrared (IR) absorption band. Detailed characteristics of the polaron absorption at low \(T \) could be explained in terms of the large lattice polaron picture by Emin [14]. Moreover, an analysis of the electrodynamics suggested that the large polaron in LCMO should be in a strong coupling regime, as far as we know, which has not been realized in other physical systems before.

A polycrystalline LCMO sample was prepared by a standard solid-state reaction method [15]. Near normal incidence reflectivity spectra, \(R(\omega) \), were measured between 0.01 and 30 eV. A Fourier transform spectrophotometer was used for 0.01 ~ 2.5 eV and a grating type monochromator was used between 0.4 and 7.0 eV. Above 6.0 eV, the synchrotron radiation source from the Normal Incidence Monochromator beam line at Pohang Light Source (PLS) was used. To measure \(T \)-dependent \(R(\omega) \) below 2.5 eV, a liquid He-cooled cryostat was used.

Optical conductivity spectra, \(\sigma(\omega) \), were obtained using the Kramers-Kronig transformation. For this analysis, \(R(\omega) \) below 0.01 eV were extrapolated with the Hagen-Rubens relation [17]. For a high frequency region, reflectivity, \(R \), at 30 eV was extended up to 40 eV, above which \(\omega^{-4} \) dependence was assumed. We found that there were less than 2.0 % changes of \(R \) with \(T \) in a frequency region between 2.0 and 2.5 eV, so we attached low temperature \(R \) data below 2.5 eV smoothly with room temperature data above it. The errors due to such an extrapolation were estimated to be about 10 % in \(\sigma(\omega) \) around 2.5 eV and smaller below 2.0 eV.

Fig. 1 (a) shows that there are significant spectral weight (SW) transfers from high to low energies with decreasing \(T \). A crossover energy is about 0.5 eV. It is noted that the spectra below 0.5 eV, shown in Fig. 1 (b), can be characterized by two types of responses, i.e., a sharp Drude peak in a far-IR region and a broad absorption band in a mid-IR region. So, a corresponding conductivity spectrum can be written as a sum of the two contributions: \(\sigma(\omega)=\sigma_{\text{Drude}}(\omega)+\sigma_{\text{MIR}}(\omega) \). A more clear picture on the development of the far-IR Drude peak is also shown in the inset of Fig. 1 (b). As \(T \) decreases, \(\sigma_{\text{MIR}}(\omega) \) increases initially but becomes saturated around 120 K. However, \(\sigma_{\text{Drude}}(\omega) \) increases continuously without any saturation. The behaviors of \(\sigma(\omega) \) in LCMO are quite different from those in a \(\text{Nd}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \) film [15], which...
showed no Drude peak and a strong and quite symmetric mid-IR band. On the other hand, the general behaviors of $\sigma(\omega)$ in LCMO are somewhat similar to those in a $\text{La}_0.7\text{Sr}_0.3\text{MnO}_3$ single crystal [18]. However, for $\text{La}_0.7\text{Sr}_0.3\text{MnO}_3$, quantitative information of both $\sigma_{\text{Drude}}(\omega)$ and $\sigma_{\text{MIR}}(\omega)$ was still lacking, and the origin of the mid-IR band has not been clearly explained yet [18].

Above T_C, i.e., in the insulating regime, it is widely accepted that a small polaron, called the “Holstein polaron”, plays an important role. And, $\sigma_{\text{MIR}}(\omega)$ below 0.8 eV at 260 K can be fitted reasonably well with the small polaron model [13][20], just like the case of $(\text{La,Sr})_2\text{NiO}_4$+$\delta$ [21]. However, below T_C, it is not known clearly whether a large polaron coherent motion or small polaron tunneling [12] will be the origin of the metallic behavior in LCMO.

Emin investigated frequency responses of the large and the small polaron absorption [14]. A coherent band of the large polaron should show up only at lower frequencies below characteristic phonon modes and become more significant as T decreases. And, a photoionization of the large polaron should bring out an incoherent mid-IR band which is very asymmetric and shows a long tail above its peak position. On the other hand, the coherent band of small polaron, i.e., polaron tunneling band, should occur at an energy region much lower than the characteristic phonon modes. Behaviors of both $\sigma_{\text{Drude}}(\omega)$ and $\sigma_{\text{MIR}}(\omega)$ at $T \leq 120$ K, shown in Fig. 1, are quite consistent with the large polaron absorption features, predicted by Emin. As shown in the inset, the Drude peak becomes evident below the bending phonon mode frequency, i.e., ~ 330 cm$^{-1}$, and its width does not change too much. Moreover, $\sigma_{\text{MIR}}(\omega)$ near 20 K is quite asymmetric and shows a long tail above its peak position. From this observation, $\sigma_{\text{Drude}}(\omega)$ at $T \leq 120$ K can be attributed to a coherent motion of a large polaron, and $\sigma_{\text{MIR}}(\omega)$ can be attributed to its incoherent absorption band [22].

To get quantitative information on the electrodynamic responses of the large polaron in LCMO, we looked into the real part of the dielectric function, ε_1. Figure 2 shows T-dependent ε_1 spectra. At a low frequency ε_1 becomes negative, indicating that LCMO becomes metallic. In a simple Drude model, the complex dielectric function $\tilde{\varepsilon}(\omega)$ can be written as

$$\tilde{\varepsilon}(\omega) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 + i\omega/\tau},$$

where ω_p and τ are the bare plasma frequency and the relaxation time of free carriers, respectively. And, ε_{∞} is the dielectric constant at a high frequency. If $\omega \gg 1/\tau$, $\tilde{\varepsilon}(\omega) \approx \varepsilon_{\infty} - \omega_p^2/\omega^2$. In a real metallic sample, however, mid-IR and interband absorptions also contribute to $\tilde{\varepsilon}(\omega)$. If their contributions to $\tilde{\varepsilon}(\omega)$ vary slowly in ω, ε_1 can be approximated as $\varepsilon_{\text{h}} - \omega_p^2/\omega^2$, where ε_{h} represents a “background” dielectric constant at a high frequency determined by ε_{∞}, and contributions from the interband and the mid-IR absorptions. Then, the slope in a ε_1 vs ω^{-2} plot will provide the value of ω_p^2 for the coherent band. The inset of Fig. 2 shows the ε_1 vs ω^{-2} plot. [ε_{h} was estimated to be about 4.9.] The solid and dotted lines are experimental data and linear guide lines, respectively. Except phonon frequency regions, the ε_1 vs ω^{-2} plots are quite linear.

The experimental values of ω_p^2 are plotted in Fig. 3 (a). Interestingly, ω_p^2 is approximately proportional to (T_C-T). The increase of ω_p^2 upon cooling is in good agreement with the photoemission data that density of states at Fermi energy increases progressively below T_C [23]. Note that $\omega_p^2 = 4\pi ne^2/m^*$, where n and m^* represent a density and an effective mass of the free carriers, respectively. In the large lattice polaron picture, $m^* = m_0 + M_p$, where m_0 is the band mass of the carriers and M_p represents the atomic contribution due to the shift of the equilibrium position of each atom when the polaron moves by a lattice constant [14][24].

To get a further insight on the coherent polaron motion in LCMO, we need information on its dc resistivity, ρ. Since the ρ data for a LCMO single crystal are not available, they were estimated from the R data using the Hagen-Rubens relation [17][25]. As shown in Fig. 3 (b), ρ increases rapidly above 150 K. Using a relation such that $\rho = m^*/n\tau$, the scattering rate $1/\tau$ for the Drude peak was estimated and plotted in Fig. 3 (c). Another interesting physical quantity related to the coherent polaron motion is its mean free path, $l = \tau h (3\pi^2 n)^{1/3}/m^*$. If we assume that n is equal to 0.3 hole per Mn at 20 K, the ω_p^2 value predicts m^* as 13m_0. Using the experimental values of τ, l could be estimated. At 20 K, $l \sim 25$ Å which is much larger than the lattice constant of about 3.9 Å. However, as T increases, l becomes smaller and approaches the lattice constant value near T_C: $l \sim 4.2$ Å at 240 K. Note that this result is consistent with the Ioffe-Regel criterion for metal-insulator transitions, i.e. $l \sim$ (lattice constant) [24].

The solid rectangles and the solid circles in Fig. 4 represent the spectral weights of the Drude peak and the mid-IR band, respectively. [The open diamonds represent the total SW.] The Drude weight (DW) of the coherent polaron motion was evaluated using $(2m_e/\pi\epsilon^2 N)(\omega_p^2/8)$, where m_e is an electron mass and N is the number of Mn atoms per unit volume. Then, total effective carriers below a cut-off energy, $N_{\text{eff}}(\omega_c)$, can be estimated from

$$N_{\text{eff}}(\omega_c) = \frac{2m_e}{\pi\epsilon^2 N} \int_0^{\omega_c} \sigma(\omega)d\omega .$$

We chose the cut-off energy ω_c as 0.5 eV. By subtracting the DW from $N_{\text{eff}}(\omega_c)$, the spectral weight of the mid-IR band (SWMB) was obtained. As T decreases, the SWMB increases but saturates at low temperatures. On
the other hand, the DW can be scaled with \((T_{C\,-\,T})\). The DW comprises a small portion of \(N_{eff}(\omega_c)\) below \(T_c\): at 240K, DW\(\approx 0.07N_{eff}(\omega_c)\) and even at 20 K, DW\(\approx 0.33N_{eff}(\omega_c)\). The values of the DW are very small at overall temperatures, compared with the doped carrier density, i. e. 0.3 hole per Mn. The small values of the DW might come from the large effective mass of the coherent polaron motion especially at low \(T\). In case of a strongly coupled large polaron, \(M_p \approx 0.02m_0\alpha^2\), where \(\alpha\) represents the Fröhlich coupling constant \([4]\). If we assume \(m_e=m_c\), \(\alpha\) is estimated to about 5, which suggests that the large polaron in LCMO should remain in a strong coupling regime.

In literature, the realization of the strongly coupled large polaron was questioned due to its screening effect arising from dense carrier concentrations \([5]\). In \(La_0.7Ca_{0.3}MnO_3\), there are lots of Mn\(^{3+}\) sites which are susceptible to the local Jahn-Teller distortion, so screening effect could be very important. However, in the DE model, a motion of a carrier at the metallic regime can be affected by the spin ordering \([7]\). Therefore, the lattice at low \(T\) can be also influenced by the long range spin ordering \([5]\). Under this influence, the coupling between the electron and the lattice in LCMO could be extended beyond a single lattice site. A recent pulsed neutron diffraction study also shows that the large polaron becomes more extended at low \(T\) \([11]\).

Our experimental data also clearly indicate that the lattice polaron state in LCMO is also coupled with the spin degree of freedom. According to the large lattice polaron theory by Emin \([14]\), \(1/\tau\) should be linearly proportional to \(T\). Fig. 3 (c) shows that \(1/\tau\) for the coherent polaron band remains nearly constant below 120 K and starts to increase above 160 K. In the DE picture, as \(T\) approaches to \(T_C\), the free carriers are more likely to be scattered by the spin fluctuation. In the mean field limit, such a spin alignment effect could be represented by \(\gamma_{DE}(T) \equiv <\cos(\theta/2)>\), which is a thermodynamic average of \(\cos(\theta)\), where \(\theta\) is an angle between nearest neighbor spins \([2]\). Shown as a solid line in Fig. 3 (c), \(1/\tau\) can be approximately scaled with \(1/\gamma_{DE}(T)\). Moreover, it is very interesting to see that the \(T\)-dependence of the SWMB is quite close to \(\gamma_{DE}(T)\), shown as the solid line in Fig. 4. Therefore, it is highly likely that both the coherent and the incoherent polaron bands are related to the spin degree of freedom. Note that a similar coupling existed in the phonon frequency renormalization \([3]\) through \(\tilde{\omega}_0 \approx \omega_0(1 - \beta/\gamma_{DE}(T))^{1/2}\).

In summary, we investigated the optical responses of a perovskite manganite \(La_0.7Ca_{0.3}MnO_3\). They showed the Drude peak and the broad mid-infrared absorption band. At low temperature, these absorption features were interpreted as coherent and incoherent bands of a large lattice polaron. The electrolytic analysis showed that the polaron was in a strong coupling regime, which is quite unique in this manganite. Moreover, the coherent and incoherent bands seem to have strong correlations with the spin degree of freedom.

We thank for useful discussions with Prof. E. J. Choi, Prof. J. Yu, Prof. B. I. Min, and Prof. H. Y. Choi. This work was financially supported by the Ministry of Education through the Basic Science Research Institute program BSR-97-2416, and by KOSEF through grant No. 96-0702-02-01-3. Experiments at PLS were supported by MOST and POSCO.

† Also at LG Corporate Institute of Technology

[1] C. Zener, Phys. Rev. 82, 403 (1951); P. W. Anderson and H. Hasegawa, ibid. 100, 675 (1955); P. G. de Gennes, ibid. 118, 141 (1960).
[2] K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).
[3] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 77, 175 (1996); A. J. Millis, Phys. Rev. B 54, 5389 (1996).
[4] H. Röder, J. Zhang, and A. R. Bishop, Phys. Rev. Lett. 76, 4987 (1996).
[5] K. H. Kim et al., Phys. Rev. Lett. 77, 1877 (1996).
[6] J. M. De Teresa et al., Nature 386, 256 (1997); M. R. Ibarra et al., Phys. Rev. Lett. 77, 715 (1996).
[7] S. J. L. Billinge et al., Phys. Rev. Lett. 77, 715 (1996).
[8] M. Jaime et al., Phys. Rev. Lett. 78, 951 (1996).
[9] S. G. Kaplan et al., Phys. Rev. Lett. 77, 2081 (1996).
[10] G. Zhao et al., Nature 381, 676 (1996).
[11] D. Louca et al., Phys. Rev. B 56, R8476 (1997); for a related work, see also, J. -S. Zhou et al., Phys. Rev. Lett. 79, 3234 (1997).
[12] J. D. Lee and B. I. Min, Phys. Rev. B 55, 12 454 (1997).
[13] S. Ishihara, M. Yamanaka, and N. Nagaosa, Phys. Rev. B 56, 686 (1997).
[14] E. D. Emin, Phys. Rev. B 48, 13 691 (1993) and references therein.
[15] Structure of LCMO is pseudo-cubic with very small orthorhombic distortions at overall temperatures. Therefore, anisotropy effects on the spectral response as well as transport can be neglected. See, P. G. Radaelli et al., Phys. Rev. B 56, 8625 (1997).
[16] J. H. Jung et al., Phys. Rev. B 55, 15 489 (1997).
[17] K. H. Kim et al., Phys. Rev. B 55, 4023 (1997).
[18] Y. Okimoto et al., Phys. Rev. Lett. 77, 109 (1995); Y. Okimoto et al., Phys. Rev. B 55, 4206 (1997).
[19] H. G. Reik, E. Kaner, and P. Gerthsen, Phys. Lett. 8, 29 (1964).
[20] See for example, A. S. Alexandrov and N. F. Mott, Polaron and bipolarons (World Scientific, Singapore, 1995), chap. 1 and chap. 8.
[21] X.-X. Bi and P. C. Eklund, Phys. Rev. Lett. 70, 2625 (1993).
[22] This assignment of the large polaron is in good agreement with the neutron PDF study (Ref. [7]). However, the work also showed that local lattice distortions, indicating small polaron states, can exist well below \(T_C\) down.
to ~ 160 K. Therefore, in the crossover regime, some carriers might remain in a small polaron state.

[23] J. H. Park et al., Phys. Rev. Lett. 76, 4215 (1996).

[24] G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990), chap. 4 and chap. 6.

[25] Sum rule analyses by $2\pi^{2}/\rho = \int_{0}^{\infty}(\varepsilon_{\infty} - \varepsilon(\omega))d\omega$ gave the nearly the same values of ρ below 200 K. Refer to Handbook of Optical Properties of Solids, edited by E. D. Palik (Academic Press, New York, 1985), chap. 3.

[26] The metallic and nonmetallic states of matter, edited by P. P. Edwards and C. N. R. Rao (Taylor & Francis, London, 1985), chap. 1.

[27] Neglecting the lattice distortion effects, such a coupling between electron and spin degrees of freedom can result in an elementary excitation, called a “spin polaron”.

FIG. 1. (a) Optical conductivity spectra below 2 eV. (b) Optical conductivity spectra below 0.5 eV. Temperature ranges are the same as those in (a). Inset shows detailed optical conductivity spectra in a far-IR region.

FIG. 2. The real part of the complex dielectric function, ε_1, spectra. Inset shows the ε_1 vs ω^{-2} plots at various temperatures. Temperature ranges are the same with those shown in the inset except 260 K.

FIG. 3. (a) Values of ω_p^2 determined from the ε_1 vs ω^{-2} plots. The dotted line is a linear guide one. (b) Resistivity values determined from the Hagen-Rubens relation. (c) Scattering rates of the free carriers determined from (a) and (b). The behavior of $1/\gamma_{DE}(T)$ is overlapped as a solid line.

FIG. 4. T-dependence of N_{eff} (0.5 eV) (open diamonds), Drude weight (solid rectangles), and spectral weight of the mid-IR band (solid circles) in $La_{0.7}Ca_{0.3}MnO_3$. A solid line represents the behavior of $\gamma_{DE}(T)$. A dotted line is a linear guide one.
