that include de-escalation, intensification of treatment, alternative therapy, dose optimization, order clarification, stop date/duration, additional monitoring, education, restiction enforcement, consult, IV to PO conversion, rejection of recommendation, and total monitored interventions requiring no changes.

Results. Pharmacists tracked between 150 and 200 interventions monthly through the EHR system, reflecting both self-stewardship and during rounds with ID physician. Figures 2–8: Charts display the number of patient-days of therapy per 1000 days at risk and yearly SVMH Antibacterial Utilization Rates compared nationally to other Teaching and Nonteaching hospitals. Below each graph exhibits yearly Drug Spend per patient-days of Therapy.

Conclusion. Overall, the antibiotic utilization rates decreased over 4 years, particularly with aztreonam, meropenem, and levofloxacin. The formalization of an antimicrobial stewardship partnership between ID physician and pharmacy team led to increases in pharmacist-recommended interventions, streamlining of antimicrobial therapy, as well as decreases in antimicrobial purchasing costs. Proactively working in conjunction with hospitalists allows the pharmacists to play a critical role in sustaining a robust ASP service at our community hospital. The ASP at SVMH can serve as a model for other community hospitals with similar resources.

Implemention of an Antimicrobial Stewardship Program (ASP) Model managed by an Infectious Disease Physician and Pharmacists in a Rounds with a Community Hospital

Disclosures. All authors: No reported disclosures.

1069. Implementation and Results of a Health-System Antimicrobial Stewardship (AMS) Program

Dayla Boldt, PharmD; Jennifer Anthone, PharmD; Bryan Alexander, PharmD; Sumaya J. Aeed, PharmD, BCPS; Cassara Carroll, PharmD; David Schmidt, PharmD; Christopher I. Destache, PharmD; Renuga Vivekanandan, MD, MPH; CHI Health, Omaha, Nebraska; CHI Health Creighton University Medical Center-Bergan Mercy, Omaha, Nebraska; MDPharmacist, Ballwin, Missouri; Creighton University Sch of Pharm and Allied Health Prof, Omaha, Nebraska

Session: 132. Antibiotic Stewardship: Program Evaluation

Background. AMS expansion initiative was implemented in fiscal year 18 (FY18) across a 14-member health system (~1,000 average daily census combined) consisting of 8 community hospitals, 5 rural critical access hospitals and 1 academic medical center.

Methods. The expansion initiative included a 0.5 full-time equivalent (FTE) infectious diseases (ID) physician and 2.5 FTE ID-trained clinical pharmacists to support daily AMS activities. Clinical decision support software (Theradoc) had previously been implemented across the health system. Here we report our continuation results for the first 9 months of year 2 (FYTD19) of the expansion initiative.

Results. AMS personnel documented an average of 319.8 and 313.2 interventions per month in FY18 vs. FYTD19, respectively. Mean acceptance rate of AMS interventions by providers was 87.9% and 89.4% in FY18 vs. FYTD19. Provider groups with the highest acceptance rate were Hospital Medicine, Pulmonary, Critical Care and Infectious Disease. Highest interventions in FYTD19 included recommending other diagnostic testing (17%) followed by de-escalating/targeting therapy based on culture results and recommending alternative therapy (both at 11%). Most common disease states AMS intervened included bacteremia (29%), pneumonias (ventilator-associated or community-acquired) 13% each, and UTIs 13%. AMS interventions generated 168 ID consults in FYTD19. The financial impact of AMS across the health system was a cumulative saving in antimicrobial purchases of $1.29 million and $1.27 million in FY18 and FYTD19, respectively.

Conclusion. The ability to review offsite electronic medical records daily for antimicrobial optimization with ID pharmacist and physician support, identify facility-specific needs and opportunities, and collect available data endpoints to determine program effectiveness has helped to ensure program success.

Disclosures. All authors: No reported disclosures.

1070. Handshake Antimicrobial Stewardship as a Model to Prevent Patient Safety Incidents and Recognize Diagnostic Errors

Justin B. Searns, MD; Manon Williams, MA; Christine MacBryne, PharmD, MSCS; Ann Wirtz, PharmD; Sarah Parker, MD; Joseph A. Grubenhof, MD, MSCS; Children’s Hospital Colorado, University of Colorado, Aurora, Colorado; Children’s Hospital Colorado, Aurora, Colorado;1 Children’s Mercy Hospital, Kansas City, Missouri; 2 Division of Emergency Medicine, Aurora, Colorado

Session: 132. Antibiotic Stewardship: Program Evaluation

Background. Patient safety incidents (PSIs), such as diagnostic errors, are common events that may lead to significant patient harm. Few studies describe the impact that antimicrobial stewardship programs (ASPs) have in preventing PSIs and recognizing diagnostic errors. Handshake Stewardship has emerged as a specific ASP model that involves prospective review of hospital-wide antimicrobial ordering with a compressed “second look” of relevant clinical and historical patient data. In person recommendations are then provided directly to the medical team. The objective of this project was to evaluate the potential impact that Handshake Stewardship has on preventing PSIs and recognizing diagnostic errors.

Methods. Following Children’s Hospital Colorado (CHCO) ASP’s implementation of the Handshake Stewardship model in October 2013, the CHCO ASP team began prospectively self-labeling interventions as “Great Catches” (GCs). These GCs were defined as any ASP intervention that “notably changed the trajectory of patient care.” Patient charts for all GCs from October 2014 through May 2018 were retrospectively reviewed and each intervention was assigned one or more descriptive category labels including: administration error, de-escalation/escalation of therapy, drug-dose mismatch, inappropriate dose/duration, potential adverse effect, alternative diagnostic, additional testing, prevent hospital admission, and epidemiology alerts. In addition, each intervention was scored using the previously validated “Safer Dx Instrument” to determine which GCs intervened in a potential diagnostic error.

Results. From October 2014 through May 2018 there were 87,322 admissions to CHCO. Our ASP team intervened on 6,735/87,322 (7.7%) of these admissions. Of these, 174/6,735 (2.6%) were prospectively labeled by ASP providers as GCs, of which 44/174 (25%) resulted in new infectious disease consultations.

Conclusion. Given the frequency and significance of PSIs including diagnostic error, systems are needed to help recognize and prevent patient harm. The Handshake Stewardship model may help prevent PSIs and recognize diagnostic errors among hospitalized children.

Disclosures. All authors: No reported disclosures.

Table 1: Representative Great Catch Examples

Description of Case	ASP Recommendation	Impact on Care
1°-year-old with headache and fever, found to have mild UTI with leukocytosis, MTPC was negative. Diagnosed with viral meningitis and discharged home.	Provided therapy for suspected pyogenic meningitis.	Patient underwent CT scan which led to additional therapy.
3°-year-old with GBS sepsis and societal trends, treated for 9 days, intervention date 8/26/19.	Provided provider with therapy directed toward reduction of duration and antibiotics for GBS.	Team held on 9/26/19 Intensive Care Team meeting which focused on patient safety, best practice recommendations and unnecessary use of resources.
4°-year-old with GBS sepsis and hospital-acquired infection, treated for 11 days, intervention date 8/26/19.	Provided therapy for streptococcal infection, provided therapy directed toward reduction of duration and antibiotics for GBS.	Team held on 9/26/19 Intensive Care Team meeting which focused on patient safety, best practice recommendations and unnecessary use of resources.
5°-year-old with GBS sepsis and patient with diabetes, treated for 11 days, intervention date 8/26/19.	Provided therapy for streptococcal infection, provided therapy directed toward reduction of duration and antibiotics for GBS.	Team held on 9/26/19 Intensive Care Team meeting which focused on patient safety, best practice recommendations and unnecessary use of resources.

1071. Implementation and Impact of an Antimicrobial Tier Structure Along with Prospective Audit and Feedback at a Large Health System: Collaborations for Care Transformation

Sarah Brooks Minor, PharmD, BCPS-AQ ID; Kelly D. Rafferty, PharmD, BCPS; Julia Rutkowski, PharmD, BCPS; Steven Allison, PharmD; Victor Herrera, MD; AdventHealth Orlando, Winter Springs, Florida

Session: 132. Antibiotic Stewardship: Program Evaluation

Background. Antibiotic overuse continues to be a challenge in the acute care setting. At AdventHealth Orlando (AHO), pharmacy-led prospective audit with feedback (PAAF) has been the primary stewardship tool. Despite PAAF and criteria for use, overall utilization of high-cost, broad-spectrum agents continues to increase. Recently, the Antimicrobial Stewardship Awareness Program (ASAP) employed transformational interventions to assist the medical and pharmacy teams in identifying infectious diseases requiring change. ASAP used an antibiotics tier model for intervention and engaged local and national education to assist with awareness and change. ASAP also engaged with the pharmacy’s EMR system, reflecting both self-stewardship and during rounds with ID physician.

Methods. The expansion initiative included a 0.5 full-time equivalent (FTE) infectious diseases (ID) physician and 2.5 FTE ID-trained clinical pharmacists to support daily AMS activities. Clinical decision support software (Theradoc) had previously been implemented across the health system. Here we report our results for the first 9 months of year 2 (FYTD19) of the expansion initiative.

Results. AMS expansion initiative was implemented in fiscal year 18 (FY18) across a 14-member health system (~1,000 average daily census combined) consisting of 8 community hospitals, 5 rural critical access hospitals and 1 academic medical center.

Conclusion. The ability to review offsite electronic medical records daily for antimicrobial optimization with ID pharmacist and physician support, identify facility-specific needs and opportunities, and collect available data endpoints to determine program effectiveness has helped to ensure program success.

Disclosures. All authors: No reported disclosures.