On the Structure of the Square of a $C_0(1)$ Operator*

Ronald G. Douglas and Ciprian Foias

Dedicated to I.B. Simonenko on his seventieth birthday

0

While the model theory for contraction operators (cf. [4]) is always a useful tool, it is particularly powerful when dealing with $C_0(1)$ operators. Recall that an operator T on a Hilbert space H is a $C_0(N)$-operator ($N = 1, 2, \ldots$) if $\|T\| \leq 1$, $T^n \to 0$ and, $T^n \to 0$ (strongly) when $n \to \infty$ and rank$(1 - T^*T) = N$. In particular, a $C_0(1)$ operator is unitarily equivalent to the compression of the unilateral shift operator S on the Hardy space H^2 to a subspace $H^2 \ominus mH^2$ for some inner function m in H^∞.

In this note we use the structure theory to determine when the lattices of invariant and hyperinvariant subspaces differ for the square T^2 of a $C_0(1)$ operator and the relationship of that to the reducibility of T^2. To accomplish this task we first determine very explicitly the characteristic operator function for T^2 and use the representation obtained to determine when the operator is irreducible. While every operator T in $C_0(1)$ is irreducible, it does not follow that T^2 is necessarily irreducible, that is, has no reducing subspaces. In particular, we characterize those T in $C_0(1)$ for which T^2 is irreducible but for which the lattices of invariant and hyperinvariant subspaces for T^2 are distinct.

Finally, we provide an example of an operator X on a four dimensional Hilbert space for which the two lattices are distinct but X is irreducible, and show that such an example is not possible on a three dimensional space.

This work was prompted by a question to the first author from Ken Dykema (Sect. 2, [2]) concerning hyperinvariant subspaces in von Neumann algebras. He asked whether the lattices of invariant and hyperinvariant subspaces for an irreducible matrix must coincide. He provides an

*2000 AMS Classification: 47A15, 47A45.

Keywords: C_0 operators, invariant subspace lattice.
example in [2] on a six-dimensional Hilbert space showing that this is not the case.

We assume that the reader is familiar with the concepts and notation in [1] and [4].

1

Let $T \in C_0(1)$ on H, dim $H \geq 2$. WLOG we can assume

\[(1.1) \quad T = P_H S|_H, \text{ where } H = H^2 \oplus mH^2, (S h) z = z h(z)(z \in D, h \in H^2), m \in H^\infty, m \text{ inner.}\]

Define

\[(1.2) \quad \Theta(\lambda) = \frac{1}{2} \begin{bmatrix} b(\lambda) & \lambda d(\lambda) \\ d(\lambda) & b(\lambda) \end{bmatrix} \quad (\lambda \in D), \]

where

\[(1.3a) \quad b(\lambda) = m(\sqrt{\lambda}) + m(-\sqrt{\lambda}) \quad (\lambda \in \mathbb{D}) \quad \text{and} \quad d(\lambda) = \frac{m(\sqrt{\lambda}) - m(-\sqrt{\lambda})}{\sqrt{\lambda}} \quad (0 \neq \lambda \in \mathbb{D}) \]

\[(1.3b) \quad d(0) = 2m'(0). \]

Lemma 1. The matrix function $\Theta(\cdot)$ is inner, pure and (up to a coincidence) the characteristic operator function of T^2.

Proof. For $h \in H^2$ write

\[(1.4a) \quad h(\lambda) = h_0(\lambda^2) + \lambda h_1(\lambda^2) \quad (\lambda \in \mathbb{D}). \]

Clearly $h_0(\cdot), h_1(\cdot) (= h_0(\lambda), h_1(\lambda), \lambda \in \mathbb{D})$ belong to H^2. Define $W: H^2 \mapsto H^2 \oplus H^2 (= H^2(\mathbb{C}^2))$ by

\[(1.4b) \quad Wh = h_0 \oplus h_1, \text{ where } h \text{ is given by } (1.4a). \]

Then W is unitary and

\[(1.5) \quad WS^2 = (S \oplus S)W. \]

Consequently,

\[(1.6) \quad WT^2 = WP_H S^2 = P_W H WS^2 = P_W (S \oplus S)W; \]
Moreover, since $S^2mH^2 \subset mH^2$ we also have

$$(S \oplus S)WmH^2 = WS^2mH^2 \subset WmH^2$$

and therefore

$$P_{WH}(S \oplus S) = P_{WH}(S \oplus SP_{WH}) = WP_HW^*(S \oplus S)P_{WH} =$$

$$= WP_HS^2W^*P_{WH} = WT^2P_HW^* =$$

$$= |H|T^2(W|H|^*).$$

These relationships show that $S \oplus S$ is an isometric lifting of $T_0 = P_{WH}(S \oplus S)|WH$ and that this operator is unitarily equivalent to T^2. Moreover, since

$$\int_0^\infty (S \oplus S)^nWH = H^2 \oplus H^2$$

is obvious, $S \oplus S$ is the minimal isometric lifting of $T = |H|T^2(W|H|^*)$.

Further,

$$WmH^2 = \{W(m_0(\lambda^2) + \lambda m_1(\lambda^2))(h_0(\lambda^2) + \lambda h_1(\lambda^2)): \ h \in H^2\}$$

$$= \{W[(m_0 h_0)(\lambda^2) + \lambda^2(m_1 h_1)(\lambda^2) + \lambda(m_0 h_1 + m_1 h_0)(\lambda^2)): \ h \in H^2\} =$$

$$= \{(m_0 h_0)(\lambda) + \lambda(m_1 h_1)(\lambda) \oplus (m_0 h_1 + m_1 h_0)(\lambda): \ h \in H^2\} =$$

$$= \left\{ \begin{bmatrix} m_0 & \lambda m_1 \\ m_1 & m_0 \end{bmatrix} (h_0 \oplus h_1): \ h \in H^2 \right\} = \begin{bmatrix} m_0 & \lambda m_1 \\ m_1 & m_0 \end{bmatrix} H^2 \oplus H^2.$$

Note that the above computations also prove that

$$(1.8) \quad (Wm(S)W^*)(h_0 \oplus h_1) = \begin{bmatrix} m_0 & \lambda m_1 \\ m_1 & m_0 \end{bmatrix} h_0 \oplus h_1 \quad (h_0 \oplus h_1 \in H^2 \oplus H^2).$$

Since $m(S)$ is isometric, so is $Wm(S)W^*$, that is,

$$(1.9) \quad M(\lambda) \equiv \begin{bmatrix} m_0(\lambda) & \lambda m_1(\lambda) \\ m_1(\lambda) & m_0(\lambda) \end{bmatrix} \text{ is inner.}$$

Consequently, T_0 is the compression of $S \oplus S$ to

$$(1.10) \quad WH = (H^2 \oplus H^2) \ominus M(H^2 \oplus H^2).$$

Moreover, it is clear that

$$m_0(\lambda) = \frac{1}{2} b(\lambda), \quad m_1(\lambda) = \frac{1}{2} d(\lambda) \quad (\lambda \in \mathbb{D})$$

3
so that the matrix \(M(\cdot) \) defined by (1.9) is identical to the matrix \(\Theta(\cdot) \) defined by (1.2).

Note that
\[
\Theta(0) = \begin{bmatrix} m(0) & 0 \\ m'(0) & m(0) \end{bmatrix}
\]
and
\[
\Theta(0)^*\Theta(0) = \begin{bmatrix} |m(0)|^2 + |m'(0)|^2 & \overline{m'(0)}m(0) \\ \overline{m(0)}m'(0) & |m(0)|^2 \end{bmatrix}.
\]
If \(\Theta(0) \) were not pure, then \(\Theta(0)^*\Theta(0) \) would have the eigenvalue 1 and therefore the other eigenvalue must be \(|m(0)|^4 \). Taking traces we have
\[
2|m(0)|^2 + |m'(0)|^2 = 1 + |m(0)|^4.
\]
This implies that the modulus of the analytic function \(\tilde{m}(\lambda) \) defined by
\[
\lambda\tilde{m}(\lambda) = \frac{m(\lambda) - m(0)}{1 - \overline{m(0)}m(\lambda)} \quad (\lambda \in \mathbb{D}, \lambda \neq 0)
\]
and
\[
\tilde{m}(0) = \frac{m'(0)}{1 - |m(0)|^2}
\]
attains its maximum (= 1) at \(\lambda = 0 \). By virtue of the maximum principle, \(\tilde{m}(\lambda) = c = \text{constant, } |c| = 1 \). Thus
\[
m(\lambda) \equiv c \left(\frac{\lambda + \tilde{m}(0)}{1 + \lambda\tilde{m}(0)} \right) \quad (\lambda \in \mathbb{D})
\]
and
\[
2 \leq \dim H = \dim(H^2 \ominus mH^2) = 1,
\]
which is a contradiction.

We conclude that \(\Theta(\cdot) \) is pure and, by virtue of (1.10) (recall \(\Theta(\lambda) \equiv M(\lambda) \)), that \(\Theta(\cdot) \) is the characteristic operator function of \(T_0 \) and hence (up to a coincidence) also the characteristic operator function of \(T^2 \). This concludes the proof of the lemma. \(\square \)

Note that the preceding result also shows that \(T^2 \) is a \(C_0(2) \) operator.

Our next step is to characterize in terms of \(\Theta(\lambda) \) the reducibility of \(T^2 \).
Lemma 2. The operator T^2 is reducible if and only if there exist $Q_i = Q_i^* = Q_i^2$, $Q_i \in \mathcal{L}(\mathbb{C}^2)$ ($i = 1, 2$) so that

\begin{equation}
\Theta(\lambda)Q_2 = Q_1\Theta(\lambda) \quad (\lambda \in \mathbb{D})
\end{equation}

and $0 \neq Q_i \neq I_{\mathbb{C}^2}$ ($i = 1, 2$).

Proof. If Q_1, Q_2 as above exist, then (since rank $Q_1 = 1 = \text{rank } Q_2$) there exist unitary operators in $\mathcal{L}(\mathbb{C}^2)$ so that

\begin{equation}
W_1\Theta(\lambda)W_2 = \begin{bmatrix}
\theta_1(\lambda) & 0 \\
0 & \theta_2(\lambda)
\end{bmatrix} \quad (\lambda \in \mathbb{D})
\end{equation}

for functions $\theta_1(\cdot), \theta_2(\cdot)$.

Indeed, if W_1 and W_2 are unitary operators in $\mathcal{L}(\mathbb{C}^2)$ such that

\begin{equation}
Q_1\mathbb{C}^2 = W_1^*(\mathbb{C} \oplus \{0\}), \quad Q_2\mathbb{C}^2 = W_2(\mathbb{C} \oplus \{0\}),
\end{equation}

then

\begin{align*}
W_1\Theta(\lambda)W_2 & = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Theta(\lambda)W_2 \\
& = W_1 \left\{ \Theta(\lambda)W_2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Theta(\lambda) \right\} W_2 \\
& = W_1(\Theta(\lambda)Q_2 - Q_1\Theta(\lambda)) = 0.
\end{align*}

Thus $\mathbb{C} \oplus \{0\}$ (and hence also $\{0\} \oplus \mathbb{C}$) reduces $W_1\Theta(\lambda)W_2$ and consequently this operator has the form (2.2).

Clearly the θ_1, θ_2 in (2.2) are inner (and non-constant). Let

\begin{equation}
T_i = P_{H_i}S|_{H_i}, \quad \text{where } H_i = H^2 \ominus \theta_iH^2 \quad (i = 1, 2).
\end{equation}

Then the characteristic operator function of $T_1 \oplus T_2$ is the right hand side of (2.2) which coincides with $\Theta(\lambda)$. Thus T^2 and $T_1 \oplus T_2$ are unitarily equivalent.

Conversely, if T^2 is reducible then T^2 is unitarily equivalent to the direct sum $T_1' \oplus T_2'$, where $T_i' = T^2|_{H_i}$ ($i = 1, 2$), H_1, H_2 are reducing subspaces for T^2, and $H = H_1 \oplus H_2$. Clearly each $T_i' \in \mathcal{C}_{00}$ and since the defect indices of the T_i's sum up to 2, it follows that each $T_i' \in \mathcal{C}_{0}(1)$. Thus the characteristic operator function of $T_1' \oplus T_2'$ coincides with

\begin{equation}
\begin{bmatrix}
\theta_1(\lambda) & 0 \\
0 & \theta_2(\lambda)
\end{bmatrix},
\end{equation}
where θ_i is the characteristic function of $T_i' \ (i = 1, 2)$. Again $\Theta(\lambda)$ is connected to (2.4) by a relation of the form (2.2), that is,

$$\Theta(\lambda) \equiv W_1^* \begin{bmatrix} \theta_1(\lambda) & 0 \\ 0 & \theta_2(\lambda) \end{bmatrix} W_2^*,$$

where W_1, W_2 are again unitary. Then

$$Q_1 = W_1^* \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} W_1, \quad Q_2 = W_2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} W_2^*$$

satisfy (2.1).

Remark. Note that in (2.1), the orthogonal projections Q_1, Q_2 are of rank one. Such a projection Q is of the form

$$Q = f \otimes f = \begin{bmatrix} |f_1|^2 & f_1 \bar{f}_2 \\ f_2 \bar{f}_1 & |f_2|^2 \end{bmatrix},$$

where

$$f = f_1 \oplus f_2 \in \mathbb{C}^2, \quad \|f\| = 1.$$

Thus

$$Q = \begin{bmatrix} q & r \bar{\theta} \\ r \theta & 1 - q \end{bmatrix}, \text{ where } 0 \leq q \leq 1, |\theta| = 1, r = (q(1 - q))^{1/2}.$$

3

In this paragraph we study the relation (2.1) using the representation (2.6) for $Q = Q_i \ (i = 1, 2)$ and the form (1.2) of $\Theta(\lambda)$. Thus we have

$$\begin{bmatrix} b(\lambda) & \lambda d(\lambda) \\ d(\lambda) & b(\lambda) \end{bmatrix} \begin{bmatrix} q_2 & r_2 \bar{\theta}_2 \\ r_2 \theta_2 & 1 - q_2 \end{bmatrix} = \begin{bmatrix} q_1 & r_1 \bar{\theta}_1 \\ r_1 \theta_1 & 1 - q_1 \end{bmatrix} \begin{bmatrix} b(\lambda) & \lambda d(\lambda) \\ d(\lambda) & b(\lambda) \end{bmatrix},$$

where

$$0 \leq q_1, q_2 \leq 1, |\theta_1| = |\theta_2| = 1, r_i = (q_i(1 - q_i))^{1/2} \ (i = 1, 2).$$

We begin by noting that

$$|b(\lambda)|^2 + |d(\lambda)|^2 \neq 0 \quad (\lambda \in \mathbb{D}),$$

since otherwise we would have $m(\lambda) \equiv 0$. In discussing (3.1) we will consider several cases:
Case I. If \(b(\lambda) \equiv 0 \ (\lambda \in \mathbb{D}) \), then \((3.1)\) becomes:

\[
\begin{bmatrix}
\lambda d(\lambda) r_2 \theta_2 & \lambda d(\lambda)(1 - q_2) \\
d(\lambda) q_2 & d(\lambda) r_2 \bar{\theta}_2
\end{bmatrix} = \begin{bmatrix}
r_1 \bar{\theta}_1 d(\lambda) & \lambda q_1 d(\lambda) \\
(1 - q_1) d(\lambda) & r_1 \theta_1 d(\lambda)
\end{bmatrix}
\]

which is possible if and only if \(r_1 = 0 = r_2 \) and \(q_1 = 1 - q_2 \). In this case \(T^2 \) is reducible.

Case II. If \(d(\lambda) \equiv 0 \ (\lambda \in \mathbb{D}) \), then

\[
Q_2 = Q_1 = \text{any } Q = Q^* = Q^2 \text{ with rank } Q = 1
\]

and again \(T^2 \) is reducible.

Case III. If \(b(\lambda) \neq 0, d(\lambda) \neq 0 \ (\lambda \in \mathbb{D}) \), then \((3.1)\) is equivalent to the equations

\[
\begin{align*}
b(q_2 - q_1) &= d(r_1 \bar{\theta}_1 - \lambda r_2 \theta_2), & b(r_2 \bar{\theta}_2 - r_1 \bar{\theta}_1) &= \lambda d(q_1 + q_2 - 1) \\
d(q_1 + q_2 - 1) &= b(r_1 \theta_1 - r_2 \theta_2), & b(q_2 - q_1) &= d(r_2 \bar{\theta}_2 - \lambda r_1 \theta_1),
\end{align*}
\]

which in turn are equivalent to

\[
\begin{cases}
r_1 \theta_1 = r_2 \theta_2, & q_2 + q_1 = 1 \\
(3.4) & b(\lambda)(1 - 2q_1) \equiv d(\lambda)(\bar{\theta}_1 - \lambda \theta_1)r_1 \ (\lambda \in \mathbb{D}).
\end{cases}
\]

In \((3.4)\), \(q_1 = 1/2 \), if and only if \(r_1 = 0 \), i.e. \(q_1 = 0 \) or \(1 \), a contradiction. Thus we can divide by \(1 - 2q_1 \) and \((3.4)\) implies (with \(\theta = \theta_1 \))

\[
\begin{cases}
\begin{align*}
b(\lambda) &\equiv d(\lambda)(\bar{\theta} - \lambda \theta)\rho \quad (\lambda \in \mathbb{D}) \\
&\text{for some } \rho \in \mathbb{R}, \rho \neq 0.
\end{align*}
\end{cases} \tag{3.5}
\]

Conversely, if \((3.5)\) holds, then setting

\[
q_1 = \frac{1}{2} \pm \frac{1}{2} \frac{1}{(4\rho^2 + 1)^{1/2}} \quad \text{(according to whether } \rho \lesssim 0),
\]

and \(q_2 = 1 - q_1, \theta_2 = \theta_1 = \theta \), we obtain \((3.4)\).

We now summarize our discussion in terms of \(m(\cdot) \) (see \((1.3a), (1.3b)\)), instead of \(b(\cdot) \) and \(d(\cdot) \), obtaining the following:

Lemma 3. The operator \(T^2 \) is reducible if and only if one of the following conditions holds:

\[
\begin{align*}
(3.6) & \quad m(-\lambda) \equiv -m(\lambda) \quad (\forall \lambda \in \mathbb{D}) \quad \text{(Case I above)}; \\
(3.7) & \quad m(-\lambda) \equiv m(\lambda) \quad (\forall \lambda \in \mathbb{D}) \quad \text{(Case II above)};
\end{align*}
\]

7
or there exist \(\rho \in \mathbb{R}, \rho \neq 0 \) and \(\theta \in \mathbb{C}, |\theta| = 1 \), such that the function

\[
(3.8a) \quad n(\lambda) \equiv m(\lambda)(\rho \theta \lambda^2 + \lambda - \rho \bar{\theta}) \quad (\lambda \in \mathbb{D})
\]

satisfies

\[
(3.8b) \quad n(\lambda) \equiv n(-\lambda) \quad (\lambda \in \mathbb{D}) \quad (\text{Case III above}).
\]

4

We shall now give a more transparent form to conditions (3.8a), (3.8b) above. To this end note that

\[
\rho \theta \lambda^2 + \lambda - \rho \bar{\theta} \equiv \rho \theta (\lambda - \delta_+ \bar{\theta})(\lambda - \delta_- \bar{\theta}),
\]

where

\[
(4.1) \quad \delta_\pm = \frac{-1 \pm \sqrt{4\rho^2 + 1}}{2\rho}.
\]

Thus (with \(\mu = \bar{\theta} \delta_\pm \)), we have

\[
(4.2) \quad \rho \theta \lambda^2 + \lambda - \rho \bar{\theta} = -\rho \delta_- (\lambda - \mu)(1 + \bar{\mu} \lambda).
\]

Using this representation in (3.8a), condition (3.8b) becomes

\[
m(\lambda)(\lambda - \mu)(1 + \bar{\mu} \lambda) \equiv m(-\lambda)(-\lambda - \mu)(1 - \bar{\mu} \lambda) \quad (\lambda \in \mathbb{D}),
\]

which can be written (since \(0 < |\mu| < 1 \)) as

\[
(4.3) \quad m(\lambda) \frac{\lambda - \mu}{1 - \bar{\mu} \lambda} \equiv m(-\lambda) \frac{(-\lambda) - \mu}{1 - \bar{\mu}(-\lambda)} \quad (\lambda \in \mathbb{D}).
\]

Thus \(m(-\mu) = 0 \) and therefore

\[
(4.4) \quad m(\lambda) = p(\lambda) \frac{\lambda + \mu}{1 + \bar{\mu} \lambda} \quad (\lambda \in \mathbb{D}),
\]

where \(p(\cdot) \in H^\infty \) is an (other) inner function. Obviously (4.3) is equivalent to

\[
(4.5) \quad p(\lambda) \equiv p(-\lambda) \quad (\lambda \in \mathbb{D}).
\]

This discussion together with Lemma 3 readily yields the following
Theorem 1. The operator T^2 is reducible iff either

(4.6) $m(\lambda) = m(-\lambda)$ \hspace{1em} (\lambda \in \mathbb{D})

or there exists a $\mu \in \mathbb{D}$ such that

(4.7) $m(\lambda) \equiv p(\lambda) \frac{\lambda + \mu}{1 + \bar{\mu}\lambda}$ \hspace{1em} (\lambda \in \mathbb{D}),

where $p(\cdot) \in H^\infty$ satisfies

(4.8) $p(\lambda) \equiv p(-\lambda)$ \hspace{1em} (\lambda \in \mathbb{D}).

Remark. Case (3.6) is contained in the second alternative above when $\mu = 0.$

5

In order to study the lattices $\text{Lat}\{T^2\}$ and $\text{Lat}\{T^2\}'$ we first bring together the following characterization of the $C_0(N)$ operators that are multiplicity free.

Proposition 1. Let \tilde{T} be a $C_0(N)$ operator. Then the following statements are equivalent.

1. \tilde{T} is multiplicity free (that is, \tilde{T} has a cyclic vector).
2. $\text{Lat}\{\tilde{T}\} = \text{Lat}\{\tilde{T}\}'.
3. The minors of the characteristic matrix function of order $N - 1$ have no common inner divisor.

Proof. The equivalence of (1) and (3) is contained in the equivalence of (i) and (ii) in Theorem 2 in [3]. The implication (1) implies (2) is an easy corollary of the implication (i) implies (vi) of the same theorem and is contained in Corollary 2.14 in Chapter 3 of [1]. Finally, implication (3) implies (1) proceeds from the following lemma.

Lemma 4. Let T be an C_0 operator on the Hilbert space \mathcal{H} and f a maximal vector for $T.$ Then f is cyclic for $\{T\}'.$

Proof. Let \mathcal{M} be the cyclic subspace for $\{T\}'$ generated by f and write $T \sim (T^* X \ T')$ for the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp.$ Since \mathcal{M} is hyperinvariant for T, it follows from Corollary 2.15 in Chapter 4 of [1], that the minimal functions satisfy $m_T = m_{T'} \cdot m_{T''}.$ However, f maximal for T implies that $m_{T'} = m_T$ and hence $m_{T''} = 1.$ Therefore, $\mathcal{M}^\perp = (0)$ or $\mathcal{M} = \mathcal{H}$ which completes the proof.
Our next aim is to characterize the case when the operator T^2 is multiplicity free. According to Proposition 1, that happens if and only if

$$b(\lambda), d(\lambda) \text{ and } \lambda d(\lambda)$$

have no common nontrivial inner divisor. Let $q(\lambda)$ be an inner divisor of $b(\lambda)$ and $d(\lambda)$, that is,

(6.1a) \hspace{1cm} m(\sqrt{\lambda}) + m(-\sqrt{\lambda}) \equiv q(\lambda)r(\lambda) \quad (\lambda \in \mathbb{D})

(6.1b) \hspace{1cm} m(\sqrt{\lambda}) - m(-\sqrt{\lambda}) \equiv q(\lambda)\lambda s(\lambda)

for some $r, s \in H^\infty$. It follows that

(6.2) \hspace{1cm} m(\lambda) \equiv q(\lambda^2)(r(\lambda^2) - \lambda s(\lambda^2)),$$

that is, $m(\lambda)$ has an even inner divisor.

Conversely, if $m(\cdot)$ has an inner divisor (in H^∞) $p(\cdot)$ satisfying

(6.3) \hspace{1cm} p(\lambda) \equiv p(-\lambda),

then $q(\lambda) = p(\sqrt{\lambda}) = p(-\sqrt{\lambda})$ is in H^∞ and inner. Thus $m(\lambda)$ can be represented as in (6.2) and clearly (6.2) implies (6.1a), (6.1b). Thus we obtained the following:

Theorem 2. The operator T^2 is multiplicity free iff the characteristic function $m(\lambda)$ for T has no nontrivial inner divisor $p(\lambda)$ in H^∞ such that (see (6.3))

$$p(\lambda) \equiv p(-\lambda) \quad (\forall \lambda \in \mathbb{D}).$$

7

Our main result is now a direct consequence of Theorems 1 and 2 and Proposition 1, namely

Theorem 3. Let $T \in C_0(1)$ satisfy:

(A) \hspace{1cm} m_T(\lambda) \neq m_T(-\lambda)

(B) \hspace{1cm} For $m_T(\lambda_0) = 0$, $\lambda_0 \in \mathbb{D}$, the function

$$m_{T,\lambda_0}(\lambda) = m_T(\lambda) / \frac{\lambda - \lambda_0}{1 - \lambda_0 \lambda} \quad (\lambda \in \mathbb{D})$$
is not even, that is,
\[m_{T,\lambda_0}(\lambda) \not\equiv m_{T,\lambda_0}(-\lambda). \]

(C) There exists a nontrivial inner divisor \(p(\lambda) \) (in \(H^\infty \)) of \(m_T(\lambda) \) such that
\[p(\lambda) \equiv p(-\lambda). \]

Then

(D) \(T^2 \) is irreducible, and

(E) \(\text{Lat} \ T^2 \not= \text{Lat}\{T^2\} \).

8

Remarks

a) Let

\[m_T(\lambda) = \frac{\lambda - \lambda_1}{1 - \lambda \lambda_2} \frac{\lambda - \lambda_2}{1 - \lambda_2 \lambda} \frac{\lambda - \lambda_3}{1 - \lambda_3 \lambda} \quad (\lambda \in \mathbb{D}), \]

where \(\lambda_1, \lambda_2, \lambda_3 \in \mathbb{D}, \lambda_2^2 \neq \lambda_1 \). Then \(m \) fulfills the solutions (A), (B), (C) in Theorem 3, \(T^2 \) satisfies (D) and (E) above and hence \(\text{dim} H = 4 \).

b) If \(\text{dim} H = 3 \) then

\[m_T(\lambda) = \frac{\lambda - \lambda_1}{1 - \lambda \lambda_2} \frac{\lambda - \lambda_2}{1 - \lambda_2 \lambda} \frac{\lambda - \lambda_3}{1 - \lambda_3 \lambda} \quad (\lambda \in \mathbb{D}) \]

with some \(\lambda_1, \lambda_2, \lambda_3 \in \mathbb{D} \). If \(m_T \) satisfies (C) then \((\lambda_1 + \lambda_2)(\lambda_2 + \lambda_3)(\lambda_3 + \lambda_1) = 0 \) and \(m_T(\lambda) \) has the form (upon relabelling the \(\lambda_i \)'s)

\[m_T(\lambda) = \frac{\lambda^2 - \lambda_1^2}{1 - \lambda^2 \lambda_2^2} \frac{\lambda - \lambda_2}{1 - \lambda_2 \lambda} \quad (\lambda \in \mathbb{D}). \]

Consequently \(m_T \) does not satisfy (B). Thus for Theorem 3 to hold it is necessary that \(\text{dim} H \geq 4 \).

3) Let \(m_T \) be singular, that is,

\[m_T(\lambda) = \exp \left[-\frac{1}{2\pi} \int_0^\pi \frac{e^{it} + \lambda}{e^{it} - \lambda} d\mu(e^{it}) \right] \]

with \(\mu \) a singular measure on \(\partial \mathbb{D} = \{e^{it}: 0 \leq t < 2\pi\} \). Assume that there exists a Borel set \(\Omega \subset \partial \mathbb{D} \) so that

\[\mu(\Omega) = \mu(\partial \mathbb{D}), \quad \mu(\{\lambda: \lambda \in \Omega\}) = 0. \]
(e.g. $\mu = \delta_1$, the point mass at 1). Then

\begin{equation}
\text{Lat}\{T^2\} = \text{Lat}\{T^2\}' = \text{Lat}\{T\}.
\end{equation}

Indeed, in this case (C) above does not hold.

References

[1] Hari Bercovici, *Operator Theory and Arithmetic in H^{∞}*, Amer. Math. Soc., Providence, RI., 1988.

[2] Ken Dykema, Hyperinvariant subspaces for some B-circular operators, Math. Ann. (to appear).

[3] Bela Sz.-Nagy and Ciprian Foias, Opérateurs sans multiplicité, Acta Sci. Math. (Szeged) 30 (1969), 1–18.

[4] Bela Sz.-Nagy and Ciprian Foias, *Harmonic Analysis of Operators on Hilbert Space*, North Holland, 1970.

Department of Mathematics
Texas A&M University
rdouglas@math.tamu.edu