Supporting information

Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore

Arijit Sarkar¹,²,³, Anna Adamska-Bartłomiejczyk³, Justyna Piekielna-Ciesielska³, Karol Wtorek³, Alicja Kluczyk⁴, Attila Borics¹,² and Anna Janecka³,*

¹ Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Szeged, 62. Temesvári krt., H-6726 Szeged, Hungary; sarkar.arajit@brc.hu (A.S.); borics.attila@brc.hu (A.B.)
² Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
³ Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; anna.adamska-bartłomiejczyk@umed.lodz.pl (A.A.-B.); justyna.piekielna-ciesielska@umed.lodz.pl (J.P.-C.); karol.wtorek@umed.lodz.pl (K.W.)
⁴ Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; alicja.kluczyk@chem.uni.wroc.pl
* Correspondence: anna.janecka@umed.lodz.pl; Tel.: +4842 272 57 06
† These authors contributed equally to this work.

Contents

Figure S1-S6. Analytical HPLC chromatograms of analogs 1-6 .. pS2
Table 1. Physicochemical data of analogs 1-6... pS4
Figure S6-S12. High resolution MS spectra of analogs 1-6 pS5

Figure S1. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Lys-Phe-Phe-Asp]NH₂ (1).
Figure S2. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Lys-Phe-D-2NaL-Asp]NH₂ (2).

Figure S3. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Lys-Phe-2,4F₂-Phe-Asp]NH₂ (3).

Figure S4. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Dap-Phe-Phe-Asp]NH₂ (4).
Figure S5. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Lys-Phe-Asp]NH₂ (5).

Figure S6. Analytical HPLC chromatogram of peptide Dmt-Tic-c[D-Lys-Phe-Asp]-Tic-Dmt-NH₂ (6).

Table S1. Physicochemical data of analogs 1-6.

No.	Sequence	Formula	m/z [M + H]⁺⁺	HPLC tᵣ [min]	
			Calcd	Obsd	
1	Dmt-Tic-c[D-Lys-Phe-Asp]NH₂	C₄₀H₅₉N₃₀O₈	887.4450	887.4418	17.04
2	Dmt-Tic-c[D-Lys-Phe-D-2Nal-Asp]NH₂	C₅₃H₆₀N₄₀O₂	937.4606	937.4567	18.16
3	Dmt-Tic-c[D-Lys-Phe-2,4F₂-Phe-Asp]NH₂	C₄₉H₅₆F₂N₈O₈	923.4262	923.4244	17.21
4	Dmt-Tic-c[D-Dap-Phe-Phe-Asp]NH₂	C₄₆H₅₂N₃₀O₂	845.3981	845.3997	17.55
5	Dmt-Tic-c[D-Lys-Phe-Asp]NH₂	C₄₀H₅₀N₀O₂	740.3766	740.3760	16.87
Dmt-Tic-[D-Lys-Phe-Asp]-Tic-Dmt-NH₂ C₆₅H₇₁N₉O₁₀ 1090.5396 1090.5345 17.86

ₐ Observed by ESI MS⁺ ionization.

ₜ Retention time on a Vydac C₁₈ column (4.6 x 250 mm, 5 μm,) using the solvent system of 0.1% TFA in water (A) and 80% acetonitrile in water containing 0.1% TFA (B) and a linear gradient of 0–100% solvent B over 50 min, with a flow rate of 1 mL/min.

High resolution mass spectra were recorded using Shimadzu IT-TOF (ion trap – time-of-flight) mass spectrometer equipped with standard ESI source (Shimadzu, Japan). For CID (collision-induced dissociation) experiments, the singly protonated precursor ions [M+H]⁺ were selected. The collision energy was adjusted to obtain the optimal fragmentation pattern. Argon was used as a collision gas. The obtained fragments were registered as an MS/MS (tandem mass spectrometry) spectrum.
Figure S7. Top panel: High resolution MS spectrum of peptide Dmt-Tic-c[D-Lys-Phe-Phe-Asp]NH₂ (1). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.
Figure S8. Top panel: High resolution MS spectrum of peptide Dmt-Tic-c[D-Lys-Phe-D-2Nal-Asp]NH₂ (2). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.
Figure S9. Top panel: High resolution MS spectrum of peptide Dmt-Tic-[D-Lys-Phe-2,4F₂Phe-Asp]NH₂ (3). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.
Figure S10. Top panel: High resolution MS spectrum of peptide Dmt-Tic-c[D-Dap-Phe-Phe-Asp]NH2Dmt-(4). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.
Figure S11. Top panel: High resolution MS spectrum of peptide Dmt-Tic-c[D-Lys-Phe-Asp]NH₂ (5). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.
Figure S12. Top panel: High resolution MS spectrum of peptide Dmt-Tic-c[D-Lys-Phe-Asp]-Tic-Dmt-NH₂ (6). Bottom panel: High resolution MS/MS spectrum for the [M+H]+ ion. In inset, the fragmentation scheme corresponding to MS/MS spectrum is proposed.