Universidade Federal de Minas Gerais
Instituto de Ciências Biológicas - ICB

Breno Soares Miguel

DIABETES MELLITUS E SEUS MODELOS EXPERIMENTAIS

Belo Horizonte
2017
Breno Soares Miguel

DIABETES MELLITUS E SEUS MODELOS EXPERIMENTAIS

Trabalho de Conclusão de Curso apresentado ao curso de Pós-Graduação Latu Sensu em Farmacologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais - Belo Horizonte, como requisito parcial para obtenção do título de Especialista em Farmacologia.

Orientadora: Dra. Andrea de Castro Perez.

Belo Horizonte

2017
AGRADECIMENTOS

Primeiramente gostaria de agradecer a Deus, por iluminar o meu caminho, me dando coragem, garra e determinação, para que eu pudesse concluir mais esta etapa da minha vida.

A toda minha família pelo incentivo e doação, me ofertando sempre carinho e coragem.

Agradeço ainda à minha orientadora, Dra. Andrea de Castro Perez, pela oportunidade e os ensinamentos, para que construíssemos este trabalho juntos.

A mestranda Mariana Nathuê Lobo Prata pela disponibilidade e solicitude em sanar minhas dúvidas.

A todos os professores por me proporcionar conhecimentos não apenas racional, mas de caráter e afetividade da educação no processo de formação profissional.

A Universidade Federal de Minas pela oportunidade de fazer o curso.

A todos que, direta ou indiretamente, fizeram parte da minha formação, demonstrando amor e atenção, o meu muito obrigado.
“Não tenha medo da vida, tenha medo de não vivê-la. Não há céu sem tempestades, nem caminhos sem acidentes.”

Augusto Cury.
RESUMO

O Diabetes Mellitus (DM) é uma doença crônica caracterizada pela elevação da glicemia (hiperglicemia), devido a alterações ou ausência da secreção ou na ação da insulina, a qual é produzida nas células beta do pâncreas. A OMS classifica o DM em quatro classes clínicas, sendo: Diabetes Mellitus tipo 1, Diabetes Mellitus tipo 2, Diabetes Mellitus Gestacional e ainda outros tipos específicos de Diabetes Mellitus; existindo também a glicemia de jejum alterada e tolerância à glicose diminuída, as quais são categorizadas como pré-diabetes. O tratamento geral do DM busca a atenuação dos sintomas oriundos da hiperglycemia, como a fadiga, poliúria, emagrecimento, má cicatrização, problemas sexuais, fome, visão turva, formigamento, sede, infecções vaginais e ainda a prevenção e ou redução das complicações agudas e crônicas do diabetes. O tratamento farmacológico para o DM consiste da utilização de insulina, o uso de hipoglicemiantes orais, que podem diminuir a velocidade com que a glicose é absorvida no intestino, e potencializar a secreção de insulina pelas células beta pancreáticas, bem como elevar a sensibilidade nos tecidos-alvos à insulina. Antes de se testar fármacos em seres humanos, estes são investigados em animais de experimentação, onde se avalia os potenciais riscos, quanto a sua toxicidade geral, carcinogenicidade, genotoxicidade e toxicidade reprodutiva; posterior a isso, e após aprovação dos órgãos reguladores, os ensaios clínicos (em humanos) se iniciam. Os modelos experimentais para indução do diabetes são instrumentos relevantes na busca e compreensão do DM, os quais previnem estudos desordenados em seres humanos. Para se ter resultados de qualidade no método de indução de diabetes, é necessário a escolha de um modelo animal que represente a potogenia, o histórico do DM, e ainda, através da indução, reproduza o desenvolvimento de complicações, oriundas do DM, similares aos seres humanos. Apesar dos avanços na ciência e tecnologia, o DM continua apresentando altas taxas de prevalência, gerando assim, a necessidade de busca no entendimento de modelos experimentais sobre o Diabetes, para que possamos aprimorar ao máximo o tratamento clínico em humanos. Portanto, o objetivo macro deste estudo é realizar uma revisão bibliográfica dos principais métodos experimentais para indução do Diabetes Mellitus. Tendo-se ainda, como objetivos específicos: revisar o Diabetes Mellitus e os modelos para indução desta doença. A base de dados utilizada foi o PUBMED, PORTAL CAPES e o SCIELO, optando-se
por artigos originais e revisões, que fizeram uso de estudos in vivo (modelos animais), no idioma inglês e português. Foram utilizados ainda livros de Farmacologia básica, clínica e terapêutica.

Palavras-chave: Modelos Experimentais, Indução, Diabetes, Métodos e Estudo.
ABSTRACT

Diabetes Mellitus (DM) is a chronic disease characterized by elevated glycemia (hyperglycemia) due to changes or absence of secretion or the action of insulin, which is produced in beta cells of the pancreas. The WHO classifies DM in four clinical classes: Diabetes Mellitus type 1, Diabetes Mellitus type 2, Gestational Diabetes Mellitus and other specific types of Diabetes Mellitus; there is also altered fasting glucose and impaired glucose tolerance, which are categorized as pre-diabetes. The general treatment of DM seeks to attenuate the symptoms of hyperglycemia, such as fatigue, polyuria, weight loss, poor healing, sexual problems, hunger, blurred vision, tingling, thirst, vaginal infections and the prevention and reduction of acute complications and chronic diseases of diabetes. Pharmacological treatment for DM consists of the use of insulin, the use of oral hypoglycemic agents, which can slow the rate at which glucose is absorbed in the intestine, and potentiate insulin secretion by pancreatic beta cells, as well as increase tissue sensitivity Insulin addicts. Before testing for drugs in humans, these are investigated in experimental animals, where the potential risks are assessed for their general toxicity, carcinogenicity, genotoxicity and reproductive toxicity; After this, and after approval by regulatory agencies, clinical trials (in humans) begin. The experimental models for induction of diabetes are relevant tools in the search and understanding of DM, which prevent disordered studies in humans. In order to have quality results in the diabetes induction method, it is necessary to choose an animal model that represents the pathogeny, the history of the DM, and also, through induction, reproduce the development of complications, originating from the DM, similar to the human beings. Despite the advances in science and technology, DM continues to present high prevalence rates, thus generating a need to seek to understand experimental models about Diabetes so that we can maximize clinical treatment in humans. Therefore, the macro objective of this study is to perform a bibliographic review of the main experimental methods for induction of Diabetes Mellitus. The specific objectives are: to review Diabetes Mellitus and the models for induction of this disease. The database used was PUBMED, PORTAL CAPES and SCIELO, opting for original articles and reviews, which made use of in vivo studies (animal models) in English and Portuguese. We also used basic pharmacology, clinical and therapeutic books. Keywords: Experimental Models, Induction, Diabetes, Methods and Study.
LISTA DE FIGURAS

Figura 1. Processo Homeostático de Regulação da Glicose ..18
Figura 2. Arranjo Estrutural da Proinsulina Humana ..18
Figura 3. Modelo de Controle da Liberação de Insulina da Célula β19
Figura 4. Sinalização da Insulina...20
Figura 5. Fatores de Risco para o Diabetes Mellitus Gestacional27
Figura 6. Aloxana – Molécula e suas Propriedades ...37
Figura 7. Estreptozotocina – Molécula e suas Propriedades38
LISTA DE TABELAS

Tabela 1. Células das ilhotas de Langerhans, seus Produtos e Ações.........................16
Tabela 2. Transportadores de Glicose ..21
Tabela 3. Valores de Glicemia (mg/dl) para Diagnóstico do Diabetes Mellitus25
Tabela 4. Outros Tipos Específicos de Diabetes Mellitus ..28
Tabela 5. Agentes Utilizados no Tratamento do DM...30
Tabela 6. Testes de Segurança ...31
Tabela 7. Modelos Experimentais para Indução do DM..49
Acrônimo	Significado
ADA	Associação Americana de Diabetes
AKT/PKB	Proteína Quinase B
Anti-GAD	Antidescarboxilase do Ácido Glutâmico
ANVISA	Agência Nacional de Vigilância Sanitária
ATP	Trifosfato de Adenosina
BB	**Biobreading**
Ca²⁺	Íon de Cálcio
CAD	Cetoacidose Diabética
DALA	Diabetes Imune Latente do Adulto
DM	Diabetes Mellitus
DM1	Diabetes Mellitus tipo 1
DM2	Diabetes Mellitus tipo 2
DMG	Diabetes Mellitus Gestacional
EXP	Exposição
GLUT	Transportadores de Glicose
HAS	Hipertensão Arterial Sistêmica
HPF	Horas Pós Fertilização
IDBC	Injeção Direta na Barbatana Caudal
IDDM	Insulin Dependent Diabetes Mellitus
INL	**Internal Nuclear Layer**
IP	Intraperitoneal
Abbreviation	Definition
--------------	------------
IPL	*Internal Plexiform Layer*
IRS	Substrato do Receptor de Insulina
IV	Intravenosa
K_{ATP}	Canal de K⁺ sensível ao ATP
MHC	Complexo de histocompatibilidade
MS	Ministério da Saúde
NIDDM	Non Insulin Dependent diabetes mellitus
NO	Óxido Nítrico
NOD	*Non Obese Diabetic*
OMS	Organização Mundial de Saúde
PP	Polipeptídeo Pancreático
PI 3-quinase	Fosfatidilinositol-3quinase
PKC	Proteína C quinase
REBEC	Registro Brasileiro de Ensaios Clínicos
ROS	Espécies Reativas de Oxigênio
SBD	Sociedade Brasileira de Diabetes
SC	Subcutânea
SNS	Sistema Nervoso Simpático
STZ	Estreptozotocina
TCR	Receptores de Células T
TGI	Trato Gastrointestinal
t^½	Tempo de Meia Vida
TOTG	Teste Oral de Tolerância à Glicose
Abreviação	Descrição
------------	-----------
TSH	Hormônio Estimulante da Tireóide
VIGITEL	Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico
VEGF	Fator de Crescimento Endotelial Vascular
VO	Via Oral
SUMÁRIO

AGRADECIMENTOS .. 3

ABSTRACT ... 7

LISTA DE FIGURAS .. 8

LISTA DE TABELAS .. 9

LISTA DE ABREVIATURAS E SIGLAS ... 10

1. INTRODUÇÃO .. 15

2. METODOLOGIA .. 17

3. FISIOLOGIA DA REGULAÇÃO DA GLICEMIA .. 17

 3.1. Anatomia do Pâncreas .. 17

 3.2. Regulação da Glicemia .. 18

 3.3. Insulina ... 20

 3.3.1. Bioquímica ... 20

 3.3.2. Regulação da Secreção de Insulina pela Célula β ... 21

 3.3.3. Vias de Sinalização da Insulina .. 22

 3.4. Glucagon .. 24

 3.5. Somatostatina ... 24

 3.6. Polipeptídeo Amiloide ... 25

4. DIABETES MELLITUS ... 25

 4.1. Definição e Epidemiologia do Diabetes Mellitus ... 25

 4.2. Fisiopatologia do Diabetes Mellitus .. 26

 4.2.1. Diabetes Mellitus tipo 1 ... 27

 3.2.2. Diabetes Mellitus tipo 2 .. 28

 4.2.3. Diabetes Mellitus Gestacional ... 29

 4.2.4. Outros tipos específicos do Diabetes Mellitus .. 30

 4.5. Tratamento do Diabetes Mellitus .. 31

5. Estudos Pré-Clinicos .. 33

6. Estudos Clínicos .. 33
1. INTRODUÇÃO

A alimentação rica em gorduras saturadas, bem como o uso excessivo de carboidratos simples, como açúcares, seguido pela não prática de atividade física, desencadeia em resistência à insulina, originando diversos transtornos de metabolismo, como por exemplo, o DM (KIMURA, 2016).

O Diabetes Mellitus (DM) é uma patologia crônica ocasionada quando o pâncreas se torna incapaz de produzir insulina, podendo esta produção ser insuficiente ou quando o organismo não faz o bom uso da insulina (FIOCRUZ, 2015).

Basicamente, existem três tipos de DM: tipo 1 (DM1), tipo 2 (DM2) e por fim a Diabetes Gestacional. O DM1 não possui causa conhecida, se manifesta de forma autoimune com anticorpos induzindo a morte das células beta pancreáticas. Sendo assim os pacientes que possuem tal doença necessitam de administração diária de insulina, para manterem a vida. Já o DM2 abrange a grande maioria, provavelmente sendo o resultado do consumo exagerado de calorias, excesso de peso e/ou da falta de exercícios físicos. Por fim, o Diabetes Gestacional é uma doença temporária, caracterizada por altos níveis de glicose no sangue da mãe que leva glicose adicional ao bebê, que pode ganhar peso extra, dificultando o parto, além das complicações induzidas por esta alta de glicemia na mãe e no bebê que ocorre quando os índices glicêmicos se tornam aumentados, porém abaixo dos demais diagnósticos de diabetes (UNA-SUS, 2016).

O DM na maior parte dos casos apresenta sintomas clássicos, tais como: poliúria, polidipsia, polifagia e perda de peso involuntária. Podemos citar ainda outros sintomas que dão indícios de suspeita clínica da doença, como: fadiga, fraqueza, letargia, prurido cutâneo e vulvar, balanopostite, infecções de repetição, má cicatrização, problemas sexuais, visão turva e formigamento. O diagnóstico pode ser feito ainda a partir de algumas complicações crônicas como neuropatia, retinopatia ou doença cardiovascular aterosclerótica (BRASIL, 2006).

No ano de 2014, estimou-se que 422 milhões de indivíduos adultos no mundo possuíam diabetes, em oposição aos 108 milhões em 1980. A prevalência global desta patologia saltou, desde 1980, de 4,7% para 8,5% da população adulta, refletindo assim em um crescimento nos fatores de risco relacionados ao ganho de
peso e/ou obesidade. Na última década a prevalência do DM teve um acréscimo maior em países de baixa e média renda, em relação aos países de renda alta, ocasionando assim 1,5 milhões de mortes em 2012 (OMS, 2016).

O diagnóstico de brasileiros portadores de DM cresceu 61,8% na última década, transpondo de 5,5% da população no ano de 2006 para 8,9% em 2016. Segundo uma pesquisa da Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico (VIGITEL), ligada ao Ministério da Saúde (MS), as mulheres possuem maior incidência desta doença, com números que saltaram de 6,3% da população em 2006 para 9,9% no ano de 2016, enquanto que no sexo masculino foi de 4,6% para 7,8% (LABOISSIÈRE, 2017).

A principal causa de morbimortalidade dos pacientes diabéticos é ocasionada pela cronificação do DM. Cita-se, como a principal causa de morte em pacientes diabéticos do tipo 2, as doenças cardiovasculares (52%). Os fatores de risco, passíveis de intervenção, estão relacionados ao aumento na implicação cardiovascular destes pacientes, dentre eles a presença de nefropatia diabética e Hipertensão Arterial Sistêmica (HAS); revisado por GROSS et al., 1999.

Atualmente, podemos citar várias alternativas terapêuticas para promoção do controle do DM, dentre as quais podemos destacar os fármacos hipoglicemiantes orais e as insulinas, com inúmeros arranjos posológicos (RIBEIRO, 2012).

Os altos custos do diabetes não oneram somente o paciente diabético, mas também os sistemas de saúde. A cronicidade e as complicações originadas pelo DM são as principais despesas em saúde do diabetes. A maioria dos indivíduos, portadores do DM2, também chamada de adquirida, recebem diagnósticos tardios, no momento em que já manifestam complicações. O diagnóstico precoce evita o desenvolvimento de doenças relacionadas a outros níveis de atenção à saúde, patologias estas com maior custo (ANNUAL REPORT, 2016).

Embora os principais fatores de custo com o Diabetes sejam nos âmbitos hospitalares e ambulatoriais, um fator relevante é o aumento do custo em relação à prescrição de insulinas análogas, que são cada vez mais prescritas, ainda que existam poucos indícios de que esta tipologia farmacológica forneça mais benefícios em relação às insulinas humanas mais baratas (OMS, 2016).
Os modelos experimentais em animais para estudo do diabetes são usados em larga escala com o intuito de se conhecer mais sobre esta doença. Tais modelos auxiliam como base de informação para o desenvolvimento de novos tratamentos em humanos, bem como a criação de técnicas modernas de transplante de pâncreas (revisado por KIRSTEN; SESTERHEIM; SAITOVITCH, 2010).

Apesar dos inúmeros avanços na ciência e tecnologia, o Diabetes Mellitus continua apresentado altas taxas de prevalência, colocando o aprimoramento dos modelos experimentais em evidência como parte importante do desenvolvimento dos conhecimentos sobre DM. Portanto, o objetivo geral deste estudo é realizar uma revisão bibliográfica dos principais modelos experimentais para indução do Diabetes Mellitus em diferentes espécies animais. Tendo-se ainda, como objetivos específicos: revisar o Diabetes Mellitus e o tratamento em humanos, e compreender os modelos experimentais que são base para pesquisas de novos medicamentos para o DM.

2. METODOLOGIA
Realizou-se revisão bibliográfica a respeito dos modelos experimentais para indução do Diabetes Mellitus. A base de dados utilizada foi o PUBMED, PORTAL CAPES e o SCIELO, optando-se por artigos originais e revisões, que fizeram uso de estudos in vivo (modelos animais), no idioma inglês e português. Foram utilizados ainda livros de Farmacologia básica, clínica e terapêutica. As palavras-chave empregadas para pesquisa e seleção dos artigos foram: Experimental Model, Induction, Diabetes, Methods, Study.

3. FISIOLOGIA DA REGULAÇÃO DA GLICEMIA
3.1. Anatomia do Pâncreas
O pâncreas é um órgão glandular constituido de tecidos exócrinos, que representam 99% de toda a massa pancreática (responsável pela secreção de bicarbonato e enzimas digestivas no Trato Gastrointestinal – TGI), e endócrinos, representado pelas ilhas de tecido endócrino, também chamado de Ilhotas de Langerhans (GOLAN; TASHJIAN; ARMSTRONG, 2008). Na parte interior destas ilhotas, existem diferentes células secretoras de hormônios (quadro 1), dentre os
quais podemos citar quatro tipos principais: células β, responsáveis pela secreção de insulina, as células α, secretoras de glucagon, as células δ que liberam somatostatina e gastrina, e as células denominada PP que secretam polipeptídio pancreático, com função ainda desconhecida (RANG et al., 2012).

Tabela 1: Células das Ilhotas de Langerhans, seus produtos e ações.

Tipos de Células	Porcentagem aproximada de massas das ilhotas	Produtos	Ação
Células α	20	Glucagon, Proglucagon	Promove a glicogenólise e a gliconeogênese no fígado
Células β	75	Insulina, Peptídeo C, Proinsulina, Amilina	Promove captação de glicose, de aminoácidos e de ácidos graxos do sangue para o interior das células, onde são armazenados na forma de glicogênio, proteínas e triglicerídeos
Células δ	3 e 5	Somatostatina, Gastrina	Diminui a liberação de insulina e de glucagon
Células PP	1	Polipeptídeo Pancreático (PP)	Modula o apetite, o esvaziamento gástrico e a secreção de glucagon e insulina

Fonte: Adaptado de Katzung (2012, p. 744) e Golan; Tashjian; Armstrong (2008, p. 494).

3.2. Regulação da Glicemia

A glicose é a principal fonte de energia para o organismo, em que a alimentação proporciona quantidades extras de combustíveis, e o excesso de calorias adquiridas é estocado no formato de glicogênio ou gordura. No processo de jejum, tais reservas devem ser metabolizadas, e o principal hormônio capaz de regular os níveis glicêmicos é a insulina (RANG et al., 2012). Ainda que os níveis de glicemia sejam moderados pela ação da insulina, outros canais de interface via hormônios, entre órgãos, fatores locais, substratos e nervos, merecem atenção (BRUNTON; CHABNER; KNOLLMAN, 2012).
A insulina e o glucagon são hormônios que estão envolvidos no controle do processo de metabolização dos nutrientes, que vão desde a captação, passando pela utilização, armazenamento e liberação dos nutrientes. Mais especificamente, a insulina propicia a captação e o armazenamento de glicose e demais moléculas que liberam energia. Já os ditos hormônios contra-reguladores, por exemplo: glucagon, catecolaminas, glicocorticóides e o hormônio do crescimento promovem processos antagônicos à ação da insulina, favorecendo assim à liberação de nutrientes, (GOLAN; TASHJIAN; ARMSTRONG, 2008).

No processo de não absorção de nutrientes, via TGI, a glicemia é mantida essencialmente pelo fígado, com os ácidos graxos, supridos pelos adipócitos. Durante este processo de abstenção alimentar, os níveis de glicemia encontram-se relativamente baixos, diferente dos níveis de glucagon, que estão em níveis elevados, favorecendo assim a degradação dos estoques de glicogênio (glicogenólise), bem como formação de novos açúcares, através da neoglicogênese hepática, promovendo ainda o processo de lipogênese (BRUNTON; CHABNER; KNOLLMAN, 2012).

Após a alimentação, carboidratos complexos são degradados em monossacarídeos na luz do TGI, e estes são transportados por processos ativos e passivos, via membrana apical das células epiteliais gastrointestinais. A absorção destes nutrientes promove o aumento da glicose no plasma, desencadeando a liberação de incretinas no intestino e secreção de insulina. O fígado, e demais tecidos de armazenamento, como o músculo esquelético e o tecido adiposo, são os principais captadores ativos de glicose, captação esta, induzida pela insulina (revisado por GOLAN; TASHJIAN; ARMSTRONG, 2008; BRUNTON; CHABNER; KNOLLMAN, 2012).
3.3. Insulina

3.3.1. Bioquímica

A insulina foi a primeira proteína a ter sua sequência de aminoácidos descodificada, realizada pelo instituto Sanger, da Universidade de Cambridge – Reino Unido, em 1995. Esta proteína consiste de 2 cadeias peptídicas (A e B), contendo uma delas 21 resíduos de aminoácidos, e a outra 30 (RANG et al., 2012). A Proinsulina (figura 2) é uma molécula protéica de cadeia longa e simples, que é processada e armazenada no complexo de golgi das células β, a qual sofre processo de hidrólise, sendo clivada em insulina mais peptídeo C (KATZUNG, 2012).
3.3.2. Regulação da Secreção de Insulina pela Célula β

A regulação da insulina, estimulada pela presença de glicose, inicia-se com este monossacarídeo sendo transportado, para o interior das células β pancreáticas, via transportador facilitador de glicose, denominados GLUT₁ nos seres humanos, e GLUT₂ nos roedores. Para que isso ocorra, a célula β tem que estar em seu estado de repouso. Posterior a isso, a glicose sofre metabolização, pela glicocinase, sendo convertida em glicose-6-fosfato, elevando os níveis de ATP. Tais níveis elevados inibem o canal para K⁺ sensível ao ATP, denominado K_{ATP}, ocasionando assim, despolarização da membrana. Esta despolarização desencadeia a abertura de canais para Ca²⁺ sensíveis a voltagem, aumento nos níveis de Ca²⁺ no interior da célula, desencadeando desta forma exocitose das vesículas de insulina (figura 3) (BRUNTON; CHABNER; KNOLLMAN, 2012).
3.3.3. Vias de Sinalização da Insulina

Na corrente sanguínea, a insulina, liga-se a um receptor de membrana específico, caracterizado como uma proteína heterotetramérica, constituída de duas subunidades alfa, sítio extracelular de reconhecimento, e duas betas, a qual se projeta pela membrana. Com a ligação da insulina mais especificamente na porção da subunidade α deste receptor, ocorrem alterações conformacionais, promovendo assim encurtamento das alças da subunidade β e consequentemente ativação da tirosinacina, ocasionando assim fosforilação da tirosina e substratos específicos, principalmente proteínas do Substrato do Receptor de Insulina – IRS. Logo após a está fosforilação, as moléculas de IRS ligam-se a outros tipos de cinases, em particular a fosfatidilinositol-3quinase (PI 3-quinase), regulando assim a localidade e atividade de algumas cinases, como Akt ou PKC, promovendo translocação de transportadores de glicose, como por exemplo, GLUT 4, desencadeando assim um aumento na captação de glicose, como observado na figura 4 (CARVALHEIRA; ZECCHIN; SAAD, 2002; KATZUNG, 2012).
A sequência de fosforilações, desencadeadas no interior da célula, é caracterizado como 2º mensageiro da insulina. As translocações de transportadores de insulina, mais especificamente o GLUT4 (que é encontrado em tecidos que possuem resposta direta a insulina, como observado na tabela 2, promovem a facilitação do transporte interno de glicose e ainda a síntese e armazenamento de glicogênio, triglicerídeos e proteínas em tecidos-alvos, como o fígado, tecido adiposo e muscular (KATZUNG, 2012).

Tabela 2: Transportadores da Glicose

Transportador	Tecidos	Função
GLUT 1	Todos os tecidos, particularmente os eritrócitos e o cérebro	Captação basal de glicose; transporte através da barreira hematoencefálica
GLUT 2	Células β do pâncreas; fígado; rins; intestino	Regulação da liberação de insulina, outros aspectos da homeostasia da glicose
GLUT 3	Cérebro, placenta	Captação em neurônios, outros tecidos
GLUT 4	Músculo, tecido adiposo	Captação da glicose mediada pela insulina
GLUT 5	Intestino, rim	Absorção de frutose

Fonte: Adaptado de Katzung (2012, p. 746).
3.4. Glucagon

O glucagon é um peptídeo, sintetizado pelas células alfa das ilhotas de Langerhans (encontrado em todos os mamíferos), composto de uma cadeia simples de 29 aminoácidos. A Glicentina é um dos precursores intermediários do glucagon, a qual é composta de 69 aminoácidos (KATZUNG, 2012).

Um dos fatores principais para a secreção do glucagon é a concentração de aminoácidos no plasma, principalmente a L-arginina. Em conseqüência a isso, uma alimentação abundante em proteínas desencadeia um aumento nos níveis de sua secreção. A secreção de glucagon é induzida por baixas concentrações de glicose e ácidos graxos no plasma sanguíneo, e coibida por concentrações altas dos mesmos (RANG et al., 2012). Temos ainda, como estímulo para secreção de glucagon: a atividade do Sistema Nervoso Simpático (SNS), níveis de estresse e atividade física. O fígado é o principal local de ação do glucagon, onde acontece a glicogenólise e gliconeogênese, e lipólise no tecido adiposo. Os órgãos responsáveis pela degradação do glucagon são o fígado e os rins. O tempo de meia vida do glucagon gira em torno de 6 minutos, tempo este parecido com o t½ da insulina (GOLAN; TASHJIAN; ARMSTRONG, 2008).

O uso do glucagon se dá no tratamento de hipoglicemias graves, principalmente em pacientes com DM1, proibidos de fazerem o uso seguro de glicose oral, bem quando não se tem disponível a glicose intravenosa (BRUNTON; CHABNER; KNOLLMAN, 2012; KATZUNG, 2012).

3.5. Somatostatina

A somatostatina é um peptídeo composto por 14 aminoácidos, produzida em vários locais, principalmente pelas células δ das ilhotas de Langerhans, TGI e hipotálamo. A somatostatina exerce alguns efeitos inibitórios, tais como: diminuição da secreção tanto de insulina quanto de glucagon, inibição da motilidade do TGI e bloqueio da secreção dos hormônios: estimulante da tireóide (TSH), do crescimento e diversos hormônios gastrointestinais. Sendo estímulo para sua liberação, níveis plasmáticos elevados de glicose, aminoácidos e ácidos graxos (GOLAN; TASHJIAN; ARMSTRONG, 2008).
Um análogo da somatostatina, a Octreotida, é utilizada clinicamente para alívio de sintomas de diferentes tumores endócrinos gastroenteropancreáticos incomuns e para o tratamento de acromegalia – disfunção endócrina causada por um tumor das células secretoras do hormônio da adeno-hipófise (RANG *et al*., 2012).

3.6. Polipeptídeo Amiloide

O polipeptídeo amilóide ou amilina é o componente principal do amilóide pancreático. É um peptídeo composto por 37 resíduos de aminoácidos, e é armazenado no interior dos grânulos secretores das células β, e cossecretado com a insulina, em resposta a estímulos secretores fisiológicos, com proporção de secreção de 1 molécula de amilina para cada 10 de insulina; sendo ainda secretado pelos rins. A amilina é encontrada em dois formatos, forma glicosilada (ativa) e não glicosilada (inativa). Fisiologicamente, o efeito da amilina baseia-se no controle da liberação de insulina, atuando como retroalimentador negativo sobre a secreção da insulina. Farmacologicamente, a amilina diminui a secreção de glucagon, promove o retardo do esvaziamento gástrico e redução do apetite (KATZUNG, 2012; RANG *et al*., 2012).

4. DIABETES MELLITUS

4.1. Definição e Epidemiologia do Diabetes Mellitus

De acordo com Golan (2008, p. 499), no ano 200 d.C., o médico grego Areteu nomeou de “diabetes” os pacientes que tinham sede inextinguível e micção excessiva, cuja origem grega é “sifão” ou “que passa através de”; e anos mais tarde, após verificarem que a urina destes pacientes era doce, foi adicionado a este nome, a palavra “*mellitus*” (do latim “melado, doce”).

O DM é caracterizado como um distúrbio metabólico crônico, com níveis elevados de glicemia, oriundo da deficiência e ou resistência de insulina (KATZUNG, 2012). Refere-se ainda como um transtorno metabólico de origens diversas, com distúrbios no metabolismo de carboidratos, gorduras e proteínas, geralmente associado à dislipidemia, Hipertensão Arterial Sistêmica (HAS) e disfunção endotelial (BRASIL, 2013).
O DM não tratado pode ocasionar, em casos mais severos, disfunção e falência de vários órgãos, como os rins, olhos, nervos, coração e vasos sanguíneos (com complicações micro e macrovasculares), bem como ainda, complicações neuropáticas. Tal patologia é considerada ainda como causas de cegueiras, insuficiências renais, amputações de membros (principalmente membros inferiores). Tais complicações podem ser diferenciadas em agudas (as quais incluem: hipoglicemia, cetoacidose e coma hiperglicêmico) e crônicas (definidas por: retinopatia, nefropatia e neuropatia diabética) (BRASIL, 2013).

Os altos índices de pacientes diabéticos se dão em virtude do crescimento da população, bem como o envelhecimento desta, em decorrência ainda da obesidade, movimento migratório de urbanização, sedentarismo e o prolongamento de vida dos pacientes acometidos por esta patologia. Em 2011, as taxas de mortalidade por DM, a cada cem mil habitantes, eram de 30,1 para a população como um todo, 27,2 para o sexo masculino e 32,9 para o sexo feminino, com variações de acordo com o aumento da idade, indo de 0,5 para pessoas de idade entre 0 e 29 anos a 223,8 para pessoas com 60 anos ou mais (SBD, 2014).

No ano de 2010, foram gastos, mundialmente, com o diabetes cerca de 11,6% do total de gastos com a saúde; números estes semelhantes aos gastos do Brasil com este tipo de doença. Os custos voltados para o diabetes chegam a ser de duas a três vezes maiores em relação aos concedidos a pacientes não portadores deste distúrbio (BRASIL, 2013).

No ano de 2013 o Brasil obteve a quarta colocação entre os países com maiores números de pessoas diabéticas, o que representou 11,9 milhões de casos diagnosticados em indivíduos adultos, com faixa etária de idade entre os 20 e 79 anos (FLOR; CAMPOS, 2017).

4.2. Fisiopatologia do Diabetes Mellitus

Para a Sociedade Brasileira de Diabetes (SBD), a classificação atual do DM deve ser embasada em sua etiologia, e não na tipologia de tratamento, devendo assim, ser evitado o uso das nomenclaturas do tipo: “Diabetes Mellitus insulinodependente” e “Diabetes Mellitus insulinoindipendente”. A Organização
Mundial de Saúde (OMS), Associação Americana de Diabetes (ADA) e a SBD classificam o diabetes em quatro diferentes classes clínicas, sendo:

- Diabetes Mellitus tipo 1;
- Diabetes Mellitus tipo 2;
- Diabetes Mellitus Gestacional;
- Outros tipos específicos de Diabetes Mellitus.

Existindo ainda a glicemia de jejum alterada e tolerância à glicose diminuída, as quais são categorizadas como pré-diabetes, não sendo, portanto classificadas clinicamente como tipos de diabetes, mas sim como fatores primordiais para o desenvolvimento de DM e doenças cardiovasculares (SBD, 2014).

Os valores utilizados para diagnóstico do DM estão descritos na tabela 3.

Tabela 3: Valores de glicemia (mg/dl) para diagnóstico do Diabetes Mellitus

Categoria	Jejum	2 h após 75 g de Glicose	Casual
Glicemia normal	< 100	< 140	
Tolerância à glicose diminuída	> 100 a < 126	≥ 200	≥ 200 (com sintomas clássicos)
Diabetes Mellitus	≥ 126	≥ 200	

Fonte: SBD (2014, p. 9).

4.2.1. Diabetes Mellitus tipo 1

O DM1 é resultado da destruição das células β pancreática, geralmente devido a um processo autoimune (denominada tipo 1A autoimune ou tipo 1A), podendo ser diagnosticada pela dosagem de autoanticorpos circulantes, como por exemplo: o antidescarboxilase do ácido glutâmico (Anti-GAD), Anti-ilhotas e anti-insulina (SBD, 2014-2015). Já a forma idiopática do DM1, também conhecida como tipo 1B, é qualificada pela inexistência tanto de insulite quanto de anticorpos relativo ao DM auto-imune (GROSS et al., 2012).

Com a destruição das células beta, não ocorre síntese e nem liberação de insulina, consequentemente os níveis circulantes encontram-se próximos de zero; o que desencadeia ausência de captação e armazenamento de glicose, aminoácidos e lípides pelos tecidos sensíveis à insulina. Entretanto, a degradação de glicogênio e
a formação de novos açúcares continuam sem controle no fígado, liberando assim glicose na corrente sanguínea, mesmo com a glicemia elevada. Tal destruição desencadeia ainda a degradação de proteínas e liberação de aminoácidos pelo tecido muscular; degradação e liberação de triglicerídeos, pelo tecido adiposo; e degradação de ácidos graxos, pelo fígado, para serem usados como substâncias gliconeogênicas e exportação de corpos cetônicos, que poderão ser utilizados pelo cérebro como fonte de energia. Altas concentrações destas cetonas podem causar esgotamento do bicarbonato sérico, desencadeando uma condição de acidose metabólica, conhecida como cetoacidose diabética (CAD); patologia esta grave e relativamente mortal, que exige tratamento imediato (GOLAN; TASHJIAN; ARMSTRONG, 2008).

3.2.2. Diabetes Mellitus tipo 2

O DM2 é a forma mais comum do diabetes mellitus, representa cerca de 90 a 95% dos casos e é caracterizado por resistência dos tecidos à ação da insulina com relativa insuficiência na secreção deste hormônio (SBD, 2014).

O DM2 ocorre essencialmente, quando o funcionamento da insulina se torna insuficiente para que possam ser mantidos os níveis de glicose dentro do normal. O funcionamento da insulina refere-se ao conjunto de suas concentrações plasmáticas (regulada pelas células beta das ilhotas pancreáticas) mais a sensibilização dos tecidos alvo à insulina (fígado, músculo esquelético e tecido adiposo), locais estes onde a ação da insulina esta comprometida nos indivíduos diabéticos tipo 2 (BRUNTON; CHABNER; KNOLLMAN, 2012).

A maior parte dos pacientes DM2 estão acima do peso ou sofrem de obesidade, porém a cetoacidose desencadeia-se somente quando associada a outras patologias, como por exemplo infecções. Esta forma do diabetes pode afetar qualquer faixa etária, entretanto, é comum o aparecimento após os 40 anos de idade (SBD, 2014).

Pacientes DM2 geralmente não necessitam de insulina para sua sobreviva, entretanto, cerca de 30% destes fazem uso da insulinoterapia para manutenção dos níveis normais de glicemia. Calcula-se, que aproximadamente 10 a 20% dos indivíduos diagnosticados com o DM2 possuem as duas formas desta doença (tipo 1
e 2), ou portadores do tipo 1, com progressão gradativa, o qual se denomina Diabetes Imune Latente do Adulto (DALA), em que se é exigido reposição integral de insulina (KATZUNG, 2012).

4.2.3. Diabetes Mellitus Gestacional

O diabetes mellitus gestacional (DMG) caracteriza-se como a redução da tolerância aos carboidratos, em variados níveis de intensidade, o qual é diagnosticado pela primeira vez durante o período de gravidez (GROSS et al., 2012). Durante o período gestacional, cria-se resistência à insulina, pela placenta e os hormônios placentários, que se torna mais marcante nos três meses finais da gravidez (KATZUNG, 2012).

Podemos descrever as seguintes condições de risco para o desenvolvimento do DMG:

Fatores de Risco para o Diabetes Mellitus Gestacional
Idade superior a 25 anos de idade
Obesidade ou ganho excessivo de peso na gravidez
Deposição central excessiva de gordura corporal
Histórico familiar de diabetes em parentes de primeiro grau
Baixa estatura (menor que 1,50 m)
Crescimento fetal excessivo, excesso de líquido amniótico (polidrâmnio)
Hipertensão ou pré-eclâmpsia na gravidez atual
Antecedentes obstétricos de morte fetal ou neonatal, de macrosomia ou de diabetes gestacional

Figura 5: Fatores de risco para o Diabetes Mellitus Gestacional. Fonte: Sociedade Brasileira de Diabetes. Disponível em http://www.diabetes.org.br/ebook/component/k2/item/59-tratamento-do-diabetes-gestacional-e-da-gestante-com-diabetes. Acesso em 9/07/2017

A rastreabilidade desta tipologia de diabetes é feita a partir da primeira consulta pré-natal, utilizando as medidas de glicemia em jejum como parâmetro, objetivando a detecção do diabetes pré-existentente. Ao se iniciar a 20ª semana de gravidez, deverá ser realizada outra aferição dos níveis sorológicos de glicose (através do exame de Teste Oral de Tolerância à Glicose – TOTG), com o intuito de detectar o diabetes gestacional (GROSS et al., 2012).
Pacientes diabéticos gestacionais devem ser reavaliados entre 4 e 6 semanas após o parto, classificando-as da seguinte forma: apresentando diabetes mellitus, glicemia de jejum alterada, tolerância à glicose diminuída ou normoglicemia. Na maior parte dos casos de DMG consegue-se reverter esta disfunção, entretanto, o risco de desenvolvimento de DM2, dentro de cinco a 16 anos após o parto, varia de 10 a 63% de chance (SBD, 2014).

O diabetes gestacional pode levar a complicações graves, uma vez que seus efeitos se iniciam na fertilização e implantação, afetando ainda a organogênese. Esse fato faz aumentar o risco de aborto precoce, deformações congênitas graves e retardo no crescimento fetal, sobretudo em situações em que o tratamento seja feito de maneira inadequada. Além das complicações no conceito, outras manifestações maternas também são relevantes, como a retinopatia, neuropatia, nefropatia e vasculopatia (SBD, 2014).

4.2.4. Outros tipos específicos do Diabetes Mellitus

A designação de outros tipos específicos de DM refere-se aos formatos menos comuns de elevação da glicemia. Novas categorias vêm sendo adicionadas a este grupo específico de diabetes, os quais podemos incluir: genes defeituosos das células beta do pâncreas e da ação da insulina, doenças prejudiciais ao pâncreas, desenvolvimento de diabetes devido a outras alterações endócrinas, terapia farmacológica e demais alterações descritas na tabela 4 (SBD, 2014; GROSS et al., 2012).

Tabela 4: Outros Tipos Específicos de Diabetes Mellitus

Defeitos genéticos na função das células Beta	Induzido por medicamentos ou agentes químicos
MODY 1 (defeitos no gene HNF4A)	Determinadas toxinas
MODY 2 (defeitos no gene GCK)	Pentamidina
MODY 3 (defeitos no gene HNF1A)	Ácido nicotínico
MODY 4 (defeitos no gene IPF1)	Glicocorticoides
MODY 5 (defeitos no gene HNF1B)	Hormônio tireoidiano
MODY 6 (defeitos no gene NEUROD1)	Diazóxido
Diabetes Neonatal Transitorio	Agonistas beta-adrenérgicos
Diabetes Neonatal Permanente	Tiazídicos
DM mitocondrial	Interferon
Outros	Outros
Defeitos genéticos na ação da	Infecções
insulina
- Resistência à insulina do tipo A
- Leprechaunismo
- Síndrome de Rabson-Mendenhall
- DM lipoatrófico
- Outros

Doenças do pâncreas exócrino
- Pancreatite
- Pancreatectomia ou trauma
- Neoplasia
- Fibrose cística
- Pancreatopatia fibrocalculosa
- Outros

Endocrinopatias
- Acromegalia
- Síndrome de Cushing
- Endocrinopatias
- Glucagonoma
- Feocromocitoma
- Somatostinoma
- Aldosteronoma
- Outros

Fonte: SBD (2014, p. 6).

4.5. Tratamento do Diabetes Mellitus

O intuito em se tratar o DM está diretamente relacionado com a atenuação dos sintomas oriundos da hiperglicemia, como a fadiga, poliúria e etc, bem como a prevenção e ou redução das complicações agudas e crônicas do diabetes. Para isso, é necessário que o paciente diabético tenha participação ativa no cuidado do DM (BRUNTON; CHABNER; KNOLLMAN, 2012).

A terapêutica do DM possui intervenções cruciais para a melhora dos resultados na qualidade de vida dos pacientes diagnosticados com tal patologia, dentre elas podemos destacar: controle da glicemia sanguínea, através de dieta alimentar balanceada, prática de atividades físicas, administração de medicamentos, controle da pressão arterial e dos níveis lipídicos na corrente sanguínea, objetivando a redução de riscos cardiovasculares e o aparecimento de outras complicações ocasionadas pelo DM (ANNUAL REPORT, 2016).
No DM1 tem-se como plano terapêutico o controle dos níveis glicêmicos e a prevenção ativa da cronificação das complicações decorrentes desta patologia. Para tanto, a estratégia de tratamento do DM1 não poderá ser somente veiculada ao tratamento farmacológico, mas também em critérios que alterem o estilo de vida, com melhorias nutricionais e prática de atividades físicas. Vale ressaltar ainda que a insulina é necessária no tratamento deste tipo de diabetes, e seu uso deverá ser iniciado assim que constatado o diagnóstico. Atualmente existem diversos tipos de insulinas, dentre elas estão: Insulina de ação intermediária/longa (isófana ou NPH), de ação rápida (regular), e ainda as análogas: de ação rápida (asparte, lispro e glulisina), ação longa (detemir e glargina) e ainda associações entre estas, denominadas pré-misturas (BRASIL, 2013).

O tratamento farmacológico para o DM abrange medicamentos disponibilizados por via oral que diminuem a velocidade com que a glicose é absorvida no intestino, fármacos que potencializam a secreção de insulina pelas células beta pancreáticas, bem como agentes que elevam a sensibilidade nos tecidos-alvos à insulina (GOLAN; TASHJIAN; ARMSTRONG, 2008).

A tabela 5 evidencia as classes de medicamentos utilizados no tratamento do diabetes:

Agentes Orais	Biguanidas	Diminui produção hepática de glicose
	Inibidores da α-glicosidase	Diminui absorção Gastro Intestinal de glicose
	Inibidores da dipeptidil peptidase-4	Aumenta ação do GLP-1 endógeno
Secretagogos da insulina - Sulfonylureias	Aumenta secreção de insulina	
Secretagogos da insulina - Não Sulfonylureias	Aumenta secreção de insulina	
Tiazolidinedionas	Diminui resistência a insulina	
Seqüestradores de Ác. Biliares	Ligação aos ácidos biliares	

Agentes Parenterais	Insulina	Aumenta uso da glicose
		Diminui produção hepática de glicose
		Diminui outras ações anabólicas
	Agonistas do GLP-1	Aumenta insulina
		Diminui glucagon, esvaziamento gástrico lento, saciedade
	Agonistas da amilina	Esvaziamento gástrico lento
		Diminui glucagon

Fonte: Adaptado de Brunton; Chabner; Knollman (2012, p. 1268-1269).
5. Estudos Pré-Clínicos

Antes dos fármacos serem testados em seres humanos, eles são investigados em espécies animais de experimentação, avaliando minuciosamente os potenciais riscos, quanto a sua toxicidade geral, carcinogenicidade, genotoxicidade e toxicidade reprodutiva; posterior a isso, e após aprovação dos órgãos reguladores, os ensaios clínicos se iniciam (BRUNTON; CHABNER; KNOLLMAN, 2012).

Os testes pré-clínicos de toxicidade podem ser descritos da seguinte forma, conforme tabela 6:

Tabela 6: Testes de segurança
Toxicidade aguda
Toxicidade subaguda ou crônica
Toxicidade crônica
Efeito sobre o desempenho produtivo
Potencial carcinogênico
Potencial mutagênico

Fonte: Adaptado de Katzung (2012, p. 71).

6. Estudos Clínicos

Os objetivos dos ensaios clínicos em humanos estão relacionados com as propriedades farmacocinéticas e farmacodinâmicas de um possível fármaco a ser aprovado. Tais ensaios avaliam a segurança do fármaco, eficácia terapêutica,
tolerância e efeitos adversos. Nos EUA, o US National Institute of Health exige condições éticas severas para iniciar os ensaios clínicos, como: valor social, validade científica, seleção justa e objetiva na escolha das pessoas que irão participar dos testes, consentimento do indivíduo, relação favorável entre os riscos e benefícios dos ensaios, participação de comitê revisor independente e ética aos integrantes da pesquisa. Os ensaios clínicos são divididos em quatro fases, sendo que os 3 primeiros têm a funcionalidade em estabelecer segurança e eficácia, enquanto o de fase IV (pós-comercialização) projeta informações relacionadas à indicações, riscos, doses e esquemas de administração (BRUNTON; CHABNER; KNOLLMAN, 2012).

No Brasil, segundo o Registro Brasileiro de Ensaios Clínicos (ReBEC), todos os estudos clínicos de fase I a IV são regulamentados pelas Resoluções da Agência Nacional de Vigilância Sanitária - ANVISA, através da RDC 36/2012 e 39/2008, as quais regulamentam a realização de pesquisa clínica no território nacional.

7. Modelos Experimentais

Em 1976, Wessler S. definiu o modelo animal como: "um organismo vivo com um processo patológico herdado, naturalmente adquirido ou induzido que em um ou mais aspectos se parece muito com o mesmo fenômeno que ocorre no homem" (revisado por SIEBER; TRAYSTMAN, 1993)

Os modelos experimentais para investigação do diabetes são instrumentos relevantes na busca e compreensão do DM, os quais previnem estudos desordenados em seres humanos. Para se ter resultados de qualidade no método de indução de diabetes, é necessário a escolha de um modelo animal que represente a patogenia, o histórico do DM, e ainda, através da indução, reproduza o desenvolvimento de complicações específicas, relacionadas ao diabetes (RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).

Existem diferentes modelos experimentais para indução do diabetes, os quais se podem citar: a) modelos genéticos, comumente chamados de modelo experimental espontâneo (animais onde houve uma mutação gênica), animais transgênicos ou naqueles onde se produziu knock-out de um ou mais genes; b) aqueles nos quais a resistência à insulina é secundária a uma condição patológica
ou, c) aqueles nos quais a resistência à insulina é induzida através da administração de drogas ou dietas ricas em açúcares e gorduras (CESARETTI; KOHLMANN JUNIOR, 2006; KIRSTEN; SESTERHEIM; SAITOVITCH, 2010).

7.1. Modelo Experimental do Diabetes Espontâneo

O DM que se desenvolve espontaneamente em modelos animais, é estudado em dois fatores patogênicos, defeitos imunológicos e predisposição genética. O DM1 é bem representado por duas espécies animais para o diabetes espontâneo, sendo: camundongos *Non Obese Diabetic - NOD* e ratos *Biobreading – BB* (revisado por KIRSTEN; SESTERHEIM; SAITOVITCH, 2010).

A espécie de camundongos *NOD*, derivadas de uma sub-linhanagem Jc1 – ICR *outbred* a qual desenvolvia catarata (ATKINSON; LEITER, 1999), foi descoberta no ano de 1974, no laboratório de Investigações Shinogui – Osaka, no Japão (HERNANDOREN et al., 2001).

Nos camundongos NOD, o início do diabetes se dá através de infiltração celular progressiva das ilhotas de Langerhans, entre a 3ª e 4ª semana de idade, entretanto nos machos, ocorre um pouco mais tarde. Os principais mediadores da destruição de células β são: células T CD4+ e CD8+, entretanto podem ser encontrados ainda nos infiltrados mononucleares das ilhotas, células Natural Killer, linfócitos B, células dendríticas e macrófagos (ANDERSON; BLUESTONE, 2005). Este modelo possui um genoma bem definido, possuindo um número maior de reagentes monoclonais na análise de componentes do sistema imune e ainda um custo relativamente baixo, comparado com a utilização de ratos. Esta linhagem de camundongos manifesta autoimunidade espontânea, causando assim diabetes, devido à destruição das células beta pancreáticas, produtoras de insulina, assim como ocorre nos seres humanos (revisado por KIRSTEN; SESTERHEIM; SAITOVITCH, 2010).

Diferentes locais controlam a susceptibilidade genética do diabetes neste modelo animal. Os camundongos *NOD* possuem um grande haplótipo de complexo de histocompatibilidade (MHC), locus genético onde encontram-se genes extremamente importantes para o sistema imune e para a auto-imunidade, nomeado de H-2g7, o qual é o maior contribuinte genético para a susceptibilidade a doenças
WICKER; A TODD; PETERSON, 1995). Tal haplótipo MHC não expressa a molécula I-E, por causa de um *locus* Eα defeituoso. Além disso, a molécula única de I-A contém uma substituição de ácido não-aspartico na posição 57 da cadeia beta que altera substancialmente o repertório de péptidos de ligação ao MHC apresentados por este alelo (ACHA-ORBEA; MCDEVITT, 1986). Tal substituição também é observada em humanos DM1, local de susceptibilidade de MHC na cadeia beta DQ (JA; JI; HO, 1987).

A nomenclatura, ratos *BioBreeding* (BB), se dá devido a sua descoberta no laboratório BioBreeding, localizado na capital do Canadá (Ottawa); os sintomas diabetogênicos se manifestam em torno do 3° mês de vida, tendo como manifestações clínicas: hipoinsulinemia, hiperglycemia (360 a 540 mg/dl), glicosúria, perda de peso, politipsia, poliúria e cetoacidose (revisado por KIRSTEN; SESTERHEIM; SAITO VITCH, 2010).

Nos ratos de *BioBreeding* propensos ao diabetes (DP-BB) do tipo 1, as respostas aos linfócitos Th1 e Th17 são dominantes, possuindo ainda, receptores de células T (TCR) diminuído, devido a linfocitopenia-T, o que leva o início do DM. O haplótipo RT1u é uma mutação no gene Gimap5 (fator genético envolvido no início do diabetes em ratos). O Gimap5 desempenha um papel fundamental na antiapoptose e na sinalização do cálcio nas células T. A disfunção de Gimap5 induz linfopenia e inibe a acumulação de um grupo de células T normais, incluindo subconjuntos regulatórios. Tal linfopenia é considerada causa de uma reação auto-imune em ratos DP-BB. Por outro lado, os ratos resistentes ao diabetes *BB* (DR-BB) têm um gene Gimap5 normal. Recentemente, a inibição da sinalização coestimuladora para a ativação de células T ou o transplante de células T reguladoras mostraram prevenir o aparecimento de DM usando ratos DP-BB (TAKEDA *et al*., 2017).

Ainda existem muitas dúvidas em relação à predisposição à resistência à insulina nos seres humanos, ocasionado pelas variabilidades do conjunto genético humano. Devido à necessidade de respostas frente à genética do distúrbio das células β e o entendimento da resistência à insulina, foram criados por pesquisadores, ratos transgênicos ou *knockout*, os quais são detentores de mutações nos genes voltados para a ação e secreção da insulina (NANDI, 2004).
Neste modelo, os animais heterozigotos tinham apenas 50% dos receptores de insulina, ao contrário dos animais homozigóticos, que não possuíam este receptor. A ausência do receptor de insulina promovia cetoacidose diabética nos animais e os levavam a óbito após uma semana de nascimento, enquanto que os heterozigotos eram capazes de sobreviver na ausência de 50% destes receptores (ACCILI et al., 1996).

No modelo transgênico, ocorre o aumento da expressão do gene, consequentemente, seu efeito fisiológico/fisiopatológico se torna aumentado, denominando-o assim de adição gênica. Enquanto que no modelo knockout, retira-se o gene do gênoma do animal, promovendo assim o silenciamento gênico (ORTIZ, 2003).

Alguns modelos experimentais de resistência à insulina avaliam a sinalização intracelular deste hormônio, a partir da ligação da insulina ao seu receptor. Estudos produzidos com camundongos, onde foram removidos complexos de sinalização intracelular (Insulin Receptor Substrate) IRS-1, IRS-2 e IRS-3 comprovaram o papel do IRS-1 em mediar os efeitos fisiológicos da insulina no músculo esquelético e do IRS-2 no fígado, músculo, tecido adiposo, células β pancreáticas e no aparelho reprodutor (CESARETTI; KOHLMANN JUNIOR, 2006).

A deleção do Substrato de Receptor de Insulina do tipo IRS-2 também limita o crescimento e promove a redução de células pancreáticas, contrário com o ocorrido na deleção do IRS-1, em que ocorre o aparecimento de diabetes por volta da 10ª semana de vida. Entretanto, ambos os substratos estão envolvidos no crescimento e exercem atividade primordial no metabolismo de carboidratos. O substrato IRS-2 também opera no desenvolvimento das células β e no papel hipoglicemiante periférico mediado pela insulina. O IRS-3 é evidenciado quando se realiza um duplo knock-out do IRS-1 e IRS-3, ocorrendo assim, hiperglicemia e hiperisulinemia, lipoatrofia com diminuição das concentrações de leptina, logo diminuição da resposta anorexígena mediada por este peptídeo (NANDI, 2004; BIRNBAUM, 2001).
7.2. **Modelo Experimental de Indução do Diabetes Secundário a uma Condição Patológica**

O desenvolvimento da hipertensão arterial está associado a outros fatores de risco, como a hipertrofia ventricular esquerda, resistência à insulina, hipertrigliceridemia e intolerância à glicose (revisado por CESARETTI; KOHLMANN JUNIOR, 2006).

O modelo animal de rato espontaneamente hipertenso constitui um modelo de obesidade visceral, tipo este que mais se associa à resistência à insulina. A resistência à insulina destes animais está relacionada a uma mutação no cromossomo 4, o qual promove a redução da expressão do gene CD36, relacionado ao transporte de ácidos graxos (N et al., 2002; SONE et al., 2001).

Mutações espontâneas do gene da leptina na linhagem C57BL/J6, em camundongos Ob/Ob, promovem obesidade e hiperglicemia com aumento da resistência à insulina. A deficiência de leptina ou a resistência à leptina resultam em obesidade nesta linhagem de camundongos, promovendo efeitos como hipertrofia e hiperplasia nas ilhotas de Langerhans. A resistência à insulina desenvolvida nesta espécie de camundongo é ocasionada pela diminuição da autofosforilação do receptor de insulina, diminuição da transdução de sinal de tirosina quinase do receptor de insulina e redução da ligação de insulina ao seu receptor; o que explica a obesidade destes camundongos, bem como a hiperinsulinemia e resistência à insulina (revisado ASRAFUZZAMAN et al., 2017).

Tais mutações na leptina e ou nos genes receptores deste hormônio peptídico ocasionam obesidade mórbida, infertilidade e ainda resistência à insulina tanto em roedores, como em seres humanos (HOUSEKNECHT et al., 2017).

7.3. **Modelo Químico de Indução do Diabetes**

Apesar da diversidade de modelos experimentais para indução do diabetes, o mais comumente utilizado é o modelo experimental induzido quimicamente, onde ocorre a destruição química seletiva das células beta pancreáticas, tendo-se como substâncias mais usadas a Aloxana e a Estreptozotocina - STZ (DELFINOA et al., 2002; KIRSTEN; SESTERHEIM; SAITO VITCH, 2010). O produto químico exógeno
administrado no animal desencadeia alterações diretas no metabolismo basal, promovendo assim sintomas diabetogênicos (SILVA, 2007)

Os modelos animais de diabetes também são classificados com base na tipologia do DM que eles podem manifestar. Tanto a Aloxana quanto a estreptozotocina podem ser utilizados para indução de diabetes tipo 1 e tipo 2. Ainda assim, esses produtos químicos são mais comumente usados para indução de diabetes tipo 1 (DA; JC, 2004; M; M; M, 2015).

7.3.1. Propriedades básicas e mecanismo de ação da Aloxana

Em 1818, o químico italiano Brugnatelli descreveu pela 1ª vez a Aloxana (2, 4, 5, 6-tetraoxipirimidina, 5, 6-dioxuracilo), a qual teve a caracterização de sua síntese por oxidação do ácido úrico, descrita por Wöhler e Liebig. Entretanto, somente em 1943, Dunn, Sheehan e McLethie explanaram as propriedades diabetogênicas desta droga, constatando necrose nas ilhotas pancreáticas de coelhos testados (T, 2001).

PROPRIEDADES
Fórmula molecular
Massa molar
Aparência
Densidade
Ponto de Fusão
Solubilidade em água

Figura 6: Aloxana – Molécula e suas propriedades. Disponível em: http://www.wikiwand.com/pt/Aloxana. Acesso em 10/8/17

A Aloxana é um composto químico hidrofílico bastante instável, com uma estrutura muito parecida à glicose, a qual lhe confere o desenvolvimento de diabetes. A característica hidrofílica da Aloxana impede que a mesma transponha a bicamada lipídica da membrana plasmática, por outro lado, a estrutura semelhante a glicose favorece a entrada dela nas células beta pancreáticas. O grupo central de 5-carbonilo que compõe a estrutura da Aloxana, importante para o desenvolvimento do diabetes, atua reagindo com grupos tiol de diferentes enzimas, especialmente a
glucoquinase (hexocinase IV), que é conhecida como a enzima tiol mais sensível em células beta (revisado por RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).

A similaridade molecular da aloxana favorece com que o transportador de glicose-GLUT2, situado no plasma da membrana da célula β, aceite a molécula da droga, transportando-a para o citosol, consequentemente a sua entrada para o interior da célula. A Aloxana não inibe a função do transportador, e pode seletivamente entrar nas células β de forma restritiva, portanto não é tóxica para as células produtoras de insulina que não expressam esse transportador (LENZEN, 2008 apud SILVA; NOGUEIRA, 2014).

O uso da Aloxana desencadeia a liberação densa de insulina, devido ao influxo de cálcio no citosol das células β pancreáticas, entretanto esta liberação é de curta duração, prosseguida por completa supressão da resposta das ilhotas pancreáticas à glicose, em decorrência de necrose das células β. Anteriormente à ação da Aloxana no pâncreas, ocorre a sua rápida absorção e acúmulo nas células beta, atribuída a uma elevada taxa de capitativa da droga por essa célula, via transportador de glicose GLUT2. Logo, os efeitos patológicos da Aloxana estão relacionados às suas propriedades químicas, a absorção seletiva celular e seu acúmulo as células β (revisado por SILVA; NOGUEIRA, 2014).

A Aloxana é considerada um bom modelo experimental para indução do DM, porém, alguns pesquisadores relatam dificuldades em conseguir induzir o diabetes, devido à instabilidade química desta droga, metabolismo rápido e fatores como dieta e idade, o que torna quase impossível estabelecer uma relação clara entre as doses de Aloxana e sua concentração efetiva no pâncreas (FEDERIUK et al., 2004; Ribeiro et al., 2007; NEGRI, 2005 apud SILVA; NOGUEIRA, 2014).

7.3.2. Propriedades básicas e mecanismo de ação da Estreptozotocina

A Estreptozotocina – STZ (2-deoxy-2-(3-(metil-3-nitrosourea)-D-glicopiranose) é um fármaco sintetizado pelo fungo Streptomyces achromogenes, e é utilizada na indução do DM insulinê dependente e não insulinê dependente, IDDM e NIDDM, respectivamente (RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).
A STZ tem propriedades químicas semelhantes as da Aloxana, refletindo assim, no fato de que ambos os compostos são hidrofílicos e podem ser classificados como análogos de glicose, tóxicos em células beta pancreáticas, que podem passar pela membrana celular através de transportadores de GLUT2. Ao contrário da Aloxana, a Estreptozotocina é relativamente estável a pH 7,4 e temperatura de 37 °C, durante pelo menos 1 h (SZKUDELSKI et al, 1998; revisado por RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).

O tipo de diabetes insulinodependente, induzido pela STZ, pode ser desenvolvido por três diferentes mecanismos de ações (LENZEN, 2008). Tais mecanismos patológicos têm como princípio o dano no ácido desoxirribonucléico (DNA). O primeiro mecanismo, e o mais provável de indução de diabetes por Estreptozotocina, é a alquilação do DNA. Já o segundo, refere-se ao resíduo da estrutura química da STZ, a qual contém um grupo nitroso, podendo liberar o óxido nítrico (NO) durante sua ação. Entretanto, esta liberação intracelular de óxido nítrico é considerada como um mecanismo alternativo ou adicional de sua ação. Por último, o terceiro mecanismo refere-se à formação de Espécies Reativas de Oxigênio (ROS), o qual contribui para os efeitos diabetogênicos da estreptozotocina (RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).

A administração de STZ injetável ocasiona alterações nas concentrações de insulina e glicose no sangue, a hiperglicemia é detectada em consequência a uma queda concomitante de insulina no sangue. Observa-se ainda uma hipoglicemia com altos níveis de insulina circulante. Por último, desenvolve-se hiperglicemia e os níveis de insulina no sangue diminuem. Essas mudanças nas concentrações de glicose no sangue e insulina refletem anormalidades na função das células beta. A STZ prejudica a oxidação da glicose e diminui a biossíntese e secreção de insulina. Sendo assim, inicialmente a STZ anula a resposta das células β à glicose, promovendo, posteriormente, um retorno temporário da capacidade de resposta.

Figura 7: Estreptozotocina – Molécula e suas propriedades. Disponível em: https://www.agscientific.com/streptozotocin.html. Acesso em 10/08/17

Propriedades:*

Propriedade	Valor
Fórmula molecular	C₉H₁₅N₃O₇
Massa molar	265.2 g/mol
Aparência	Sólido
Ponto de Fusão	121 °C
Solubilidade	Solúvel em água
seguido por morte progressiva das células beta pancreáticas (revisado por SZKUDELSKI et al., 1998).

7.4. Modelos Experimentais de Diabetes Induzidos por Dieta

Atualmente vivemos em um mundo globalizado, onde o excessivo consumo de carboidratos refinados, bem como a ingesta de gorduras saturadas são as principais causas de resistência à insulina, a qual aumenta substancialmente a incidência de síndrome metabólica, desenvolvimento do diabetes mellitus tipo 2 e patologias cardiovasculares (KENDALL et al., 2010).

Dietas com elevado teor de lipídios e carboidratos, associadas ou não, têm um papel relevante nas alterações metabólicas voltadas para o desenvolvimento do DM tipo 2, entretanto as especificidades dos fatores dietéticos não estão totalmente definidos, devido às controvérsias em relação ao risco do DM, a quantidade e os tipos de lipídios e de carboidratos que devem existir numa dieta adequada, uma vez que os lipídios e os carboidratos não são moléculas homogêneas, portanto diferentes tipos de lipídios e carboidratos têm efeitos diferenciados sobre a homeostase da glicose e a sensibilidade à insulina (CAMARGO, 2009).

Assim, quantidades elevadas de sacarose e frutose têm sido usadas em modelos animais para induzir alterações metabólicas observadas na Síndrome Metabólica, uma desordem caracterizada por resistência à insulina, hipertensão, dislipidemia e alta incidência de doenças cardiovasculares (Reaven, G. M., 1988).

Fatores de risco referente ao estilo de vida aumentam a incidência do diabetes mellitus: a obesidade e o ganho de peso elevam tais riscos no desenvolvimento desta doença, bem como a falta de atividade física, a qual também eleva estes riscos, independentemente da obesidade. Cita-se ainda, os altos índices glicêmicos em dietas pobres em fibras, como um dos fatores de aumento na ocorrência desta patologia (revisado por SILVA, L. F., 2012).

A inserção de dietas hiperlipídicas tem sido muito utilizada como um modelo de indução de obesidade em animais de laboratório. Este modelo é extremamente útil nas pesquisas com obesidade em animais devido à sua semelhança com a gênese e com as respostas metabólicas decorrentes da obesidade em humanos, ou seja, a obesidade é a conseqüência de um balanço energético positivo gerado por
fatores ambientais, como o consumo em excesso de alimentos altamente calóricos e o sedentarismo (TSCHÖP M.; HEIMAN M. L., 2001).

Um estudo demonstrou que os ácidos graxos saturados de cadeia longa, encontrados principalmente em carnes vermelhas, são os lipídeos mais nocivos quando se trata de acúmulo de massa adiposa (MILANSKI et al., 2009). No referido estudo verificaram que tais moléculas ligam-se aos receptores do tipo Toll (TLR2 e TLR4) das micróglia (células protetoras do hipotálamo) estimulando a produção de citosinas pró-inflamatórias (do tipo: TNF-a, IL-1β e IL-6) e, consequentemente, a destruição dos neurônios responsáveis pelo controle do apetite e da termogênese. O acúmulo de gordura corporal favorece a secreção aumentada, pelos adipócitos, de concentrações de TNF-α e IL-6, que antagonizam a ação da insulina; promovendo ainda maior secreção de leptina, resistina e o inibidor-1 da ativação do plasminogênio (PAI-1), que causam o quadro de resistência à insulina (CAMPOS et al, 2006).

De modo semelhante às dietas hipergrasíferas, as dietas com elevadas quantidades de lipídeos vêm sendo muito utilizadas para estudos que envolvem a resistência à insulina e também para a investigação terapêutica dos efeitos anti-obesidade e anti-diabetogênicos de determinadas drogas (revisado por CAMARGO, 2009).

O uso de dietas para animais, ricas em alimentos palatáveis, comumente utilizados por seres humanos, também vem sendo empregada em muitas pesquisas voltadas para a obesidade e distúrbios metabólicos, devido ao fato de se assemelhar a forma como a obesidade é adquirida pela população humana, reproduzindo assim suas causas e conseqüências (NASCIMENTO et al, 2008).

Em modelo experimental, a dieta de cafeteria se dá em oferecer aos animais um aporte calórico elevado, bem como pela elevação de carboidratos e lipídeos presentes na alimentação. Assim, os estudos com dieta de cafeteria em modelagem experimental mostram que esta alimentação induz uma hipergia persistente e o aumento da ingestão de energia, estimulado pela variedade de alimentos ofertados. Esse padrão de alimentação se assemelha aos observados na população humana quando em meio a hábitos alimentares não saudáveis, reforçando assim a
legitimidade da utilização desse modelo para indução da obesidade (CASTRO et al, 2015).

8. Análise dos Artigos

Os modelos animais de diabetes têm sido usados extensivamente na obtenção do esclarecimento sobre a patologia do DM. Portanto, foi realizada revisão bibliográfica, e selecionados 19 artigos sobre os principais modelos experimentais para o estudo de indução do Diabetes Mellitus, em diferentes espécies, concentrações do agente indutor e vias de administração, com destaque para os modelos induzidos quimicamente por Aloxana e Estreptozotocina, associados ou não a esquemas dietéticos hipercaleóricos, haja vista uma maior frequência de empregabilidade destes agentes químicos em estudos de indução de diabetes, além de seu baixo custo, e também por ser uma das técnicas mais antigas empregadas..

Dordevic e seus colaboradores (2017) realizaram estudo de indução do diabetes, com ratos Wistar albinos, pesando entre 220 e 250 g, através de injeção intraperitoneal de STZ a uma dose de 40 mg/kg, durante 5 dias consecutivos de indução. Os ratos foram considerados diabéticos no 5º dia de indução, quando a glicemia de jejun excedeu 360 mg/dl. O processo de indução do DM realizado por Eleazu e seus colaboradores (2017) utilizou também ratos albinos, de ambos os sexos, com idade aproximada de 8 semanas de vida. A STZ foi o indutor do diabetes de escolha, o qual foi injetado intraperitonealmente 65 mg/kg deste agente, durante sete dias de administração do fármaco. A indução foi diagnosticada no 7º dia, e os ratos considerados hipercaleômicos possuíam glicemia igual ou maior a 200 mg/dl.

Ambos os autores foram condizentes em relação à via de administração de escolha (Intraperitoneal), bem como as doses de STZ utilizadas, através da estratégia de indução não-dose única, uma vez que as dozes para indução de DM por STZ podem variar de 35 mg/kg a 80 mg/kg; no entanto, observa-se uma certa frequência, na literatura, de doses únicas intraperitoneais significativamente maiores, indo de 150 mg/kg a 200 mg/kg, embora o caminho da administração de estreptozotocina deva ser feito em várias injeções intraperitoneais com menor dose de estreptozotocina, conforme executado pelos autores mencionados acima, para
que seja mimetizado os efeitos adversos em relação à concentração do agente indutor (revisado por RADENKOVIĆ; STOJANOVIĆ; PROSTRAN, 2015).

Em revisão dos artigos elaborados por Pipkin e colaboradores (2017), Nazratun e seus colaboradores (2017) e Gite e colaboradores (2017) pode-se observar o uso da STZ em doses que variaram entre 45 e 50 mg/kg, induzidas também em ratos, através de injeção sub-cutânea no primeiro, e intravenosa nos dois últimos artigos, entretanto, devido às baixas doses utilizadas de STZ, o método de indução normalmente se daria em diferentes dias, conforme citado por Radenkovic e colaboradores (2015), o que não ocorreu nos métodos descritos por estes autores, já que os mesmos optaram pela indução por dose única do agente indutor. Em contraponto, as doses utilizadas, bem como injeções únicas de STZ, manuseadas pelos referidos autores, estes obtiveram excelentes resultados no que tange aos índices de hiperglycemia atingidos, os quais, ratos considerados hiperglycêmicos atingiram índices de glicemia maiores que 250 mg/dl, 288 mg/dl e 200 mg/dl, respectivamente, apresentando assim, após 72 hs, sinais de poliúria e demais sintomas característicos do DM, sendo portanto, considerados diabéticos insulinodependentes.

Nos estudos realizados por Chen e Yang e colaboradores (2017), bem como por Eddouks e seus colaboradores (2017), os quais, ambos recorreram ao uso de camundongos, evidencia-se a utilização, via método de indução por STZ, das vias de administrações intraperitoneais, com ressalva para as diferenças entre ambos, nos quesitos: dose do agente químico e números de injeções, 30 mg/dl e 80 mg/dl, injeção única e quatro dias consecutivos de administrações, respectivamente. Há de se levar em conta, ainda, a pouca variância entre as concentrações de glicemia pós indução, sendo que no primeiro modelo, os camundongos considerados hiperglycêmicos obtiveram glicemia maior ou igual a 250 mg/dl, enquanto que no segundo estudo, tais camundongos apresentaram índices maiores que 288 mg/dl. Evidenciando assim, que em doses sub-diabetogênicas a STZ também pode provocar insulite pancreática, seguida de morte sucessiva das células β pancreáticas, levando ainda ao desenvolvimento do DM (RAYAT et al., 2000).

A indução do DM descrita por Adefegha e seus colaboradores (2000), utilizou o método de associação entre dieta hiperlipídica indutora de obesidade, comumente
chamada de HFD (High-Fat Diet), por 14 dias consecutivos, e injeção dose única de STZ intraperitoneal (35 mg/kg). Indução esta constatada após 72 h da administração de STZ, os quais os ratos (machos, com peso corporal entre 175 e 203 g), com índices glicêmicos iguais ou maiores a 200 mg/dl, foram considerados diabéticos.

Este tipo de modelo utilizando STZ e alimentação HFD foi desenvolvido para imitar a progressão natural e possíveis mudanças que ocorrem gradativamente em humanos com DM2, como o desenvolvimento de obesidade, hiperinsulininemia e resistência à insulina, causados pela ingestão abundante de alimentos hiperlipídicos. Promovendo assim, uma combinação de resistência à insulina, seguido pela deficiência deste hormônio (lesão das células beta pancreáticas), ocasionados, respectivamente, pela introdução da dieta hiperlipídica, seguida pela injeção de STZ (RADENKOVIC; STOJANOVIĆ; PROSTRAN, 2015. MANCO; CALVANI; MINGRONE, 2004).

O camundongo, por representar a segunda espécie animal com maior uso em indução de DM por STZ, ficando atrás somente dos ratos, injeções tanto intravenosas quanto intraperitoneais de STZ geram semelhanças entre ambos os métodos, justificando assim, sua descrição por diversos autores, tanto em ratos quanto em camundongos (BASHA; SANKARANARAYANAN, 2014).

Apesar dos roedores serem a ordem mais utilizada para o estudo do DM, outra espécie utilizada para indução desta doença por STZ, é o macaco, Park e Shin e seus colaboradores (2017) utilizaram em seus estudos, macacos cinomolgos e rhesus, administrando por via intraperitoneal e intravenosa 60 mg/kg e 110-120 mg/kg de STZ, respectivamente, ambos em dose única. No estudo de Park e colaboradores (2017), foram considerados hiperglicêmicos, os macacos que obtiveram glicemia maior que 250 mg/dl, parâmetros estes não disponibilizados no estudo de Shin e colaboradores (2015).

Conforme observado por Park e colaboradores (2017), uma dose menor de STZ pode ser usada em macacos para induzir Diabetes Mellitus Insulino Dependente – IDDM, desde que este método de indução seja realizado concomitantemente com Pancreatectomia subtotal, evitando assim o uso de altas doses de STZ, consequentemente, livrando o animal de desenvolver efeitos
adversos severos, tais como hepatotoxicidade e nefrotoxicidade. Efeitos adversos estes evidenciados no estudo de Shin e seus colaboradores (2015), os quais fizeram o uso de um analgésico opióide (Butorfanol), para redução dos efeitos nefrotóxicos, além de um fármaco antiemético (Metoclopramida) para evitar vômitos. Todos os sintomas apresentados foram justificados pelo próprio autor, devido ao uso de altas doses de STZ, 110-120 mg/dl.

Outros estudos envolvendo indução por STZ foram conduzidos por Hiridis (2016) e Pepper (2013) e seus colaboradores, os quais utilizaram modelos animais em porcos, administrando via intravenosa 120 e 150 mg/kg de STZ, respectivamente.

Segundo Hiridis e seus colaboradores (2016), a seleção de porcos para indução de DM, por SZT, justifica-se devido à sua maior semelhança com a fisiologia humana, anatomia, estrutura gastrointestinal e metabolismo. Tal semelhança também é enfatizada por Pepper e seus colaboradores (2013), o qual vislumbra a semelhança dos fatores fisiológicos e fisiopatológicos entre porcos e humanos, além de semelhança anatômica do pâncreas, ilhotas de Langerhans, seqüenciamento quase completo de insulina, e ainda homeostase semelhante à glicose.

Apesar de poucos relatos literários sobre a indução por STZ em porcos, o DM induzido neste modelo animal é eficaz, porém altamente tóxico; mesmo se tratando de um produto químico de baixo custo, de fácil disponibilidade de mercado e seletividade por células beta, o dano tóxico não seletivo ao rim e ao fígado são fatores indesejáveis em relação à STZ (HIRIDIS et al., 2016).

Após realização de estudos, foi evidenciado que as condições diabéticas humanas são similares à espécie de peixes-zebra ou zebrafish (Danio rerio). Em cima desta conclusão, pode-se afirmar que, em comparação com o genoma do ser humano, aproximadamente 70% dos genes humanos têm ao menos uma homologia óbvia aos genes do Zebrafish (HOWE et al., 2013).

Com base na similaridade genética entre humanos e o Zebrafish, Leontovich e seus colaboradores (2016) induziram o diabetes, nesta espécie, através de injeções de STZ diretas na barbatana caudal, numa dose de 350 mg/kg,
estabelecendo como índice de corte para peixes hiperglicêmicos, os peixes que alcançaram glicemia maior que 315 mg/dl.

No referido estudo, descobriu-se ainda que os estados de DM do Zebráfish estejam relacionados às alterações no processo de replicação e metabolismo do DNA (Leontovich et al., 2016), bem como reduções nas regiões de metilação do DNA, as quais são encontradas nos genomas humanos diabéticos. Destacando ainda a hipometilação na região promotora do gene do Fator de Crescimento do Tecido Conjuntivo (CTGF) em pacientes DM2. O CTGF regula a proliferação celular no processo de angiogênese, o qual está vinculado aos mecanismos de replicação e reparação do DNA (Zhang et al., 2013)

Leontovich e seus colaboradores (2016) demonstraram ainda que a retirada da STZ leva à regeneração das células beta pancreáticas, bem como a volta de peixes hiperglicêmicos a seu estado fisiológico normal de glicemia, dentro de 2 semanas. Ao contrário do retorno dos níveis glicêmicos ao seu estado normal, os prejuízos nos tecidos associados à hiperglicemia permanecem, com comprometimentos na angiogênese, na cura de tecidos de revestimento e na regeneração dos membros; no caso dos peixes zebra, objeto deste estudo, a deficiência foi detectada na regeneração da barbatana, ocasionada pela diminuição na proliferação celular dos tecidos deste membro.

A alta fecundidade, o curto período de fecundação, baixo custo de habitação, facilidade na manipulação de gene e fisiologia celular similar aos vertebrados levaram Intine e seus colaboradores (2013) a também realizarem um estudo experimental de indução do DM em peixes-zebra. STZ foi administrado intraperitonealmente, a uma concentração de 350 mg/dl; estipulando como peixes hiperglicêmicos, os que atingiram glicemia maior que 310 mg/dl. Neste estudo, ficou evidenciado que ao se utilizar uma única dose de STZ, a taxa de sucesso em gerar peixes diabéticos era em torno de 40% dos peixes, e quando utilizado três injeções, esta taxa tem êxito de 95%.

Intine e seus colaboradores (2013) mostraram também, assim como Leontovich e seus colaboradores (2016), que o Zebráfish hiperglicêmico, além de exibir complicações secundárias oriundas do DM, conhecidas nos seres humanos,
retoma seu estado de euglicemia no intervalo de 2 semanas após a retirada do agente indutor, ocasionado pela regeneração das células beta pancreáticas, bem como retomada na produção do hormônio insulínico endógeno; em contraponto, a regeneração dos membros deste peixe permanece afetada, assim como no estado diabético agudo, indicando complicação resistente e susceptível à memória metabólica.

No modelo experimental de indução do DM proposto por Erekat e colaboradores (2014), foi utilizado como agente químico indutor, um análogo tóxico da glicose (Aloxana), a qual foi administrada pela via intraperitoneal de ratos, em uma concentração de 120 mg/kg, em três dias consecutivos; obtendo ratos hiperiglicêmicos, com níveis de glicemia acima de 250 mg/dl.

Erekat e seus colaboradores (2014) avaliaram neste estudo a desregulação, no coração de ratos, do Fator de Crescimento Endotelial Vascular – VEGF (fator regulador essencial no desenvolvimento vascular, através da vasculogênese), associada ao DM induzido por Aloxana. Concluindo que tais fatores sofreram diminuições mútuas devido à hiperglicemia induzida por Aloxana, reforçando assim à desregulação de VEGF em ratos hiperiglicêmicos, induzidos por STZ. Inseriram ainda neste trabalho o teste de treinamento de marcha na esteira (Treadmill), para avaliação de ratos hiperiglicêmicos, em relação aos níveis de VEGF; concluindo assim que, houve um expressivo aumento nos níveis de VEGF com a introdução de exercícios de resistência, explicado pela melhora da vasodilatação do endotélio no coração de ratos diabéticos, induzidos tanto por Aloxana, quanto por STZ.

Trevino e seus colaboradores (2016) também utilizaram ratos para indução do DM, por Aloxana via intraperitoneal, a uma dosagem de 150 mg/kg em dose única, e obtiveram ratos hiperiglicêmicos com níveis de glicemia superior a 300 mg/dl. Foi diagnosticado, por estes pesquisadores, que após a indução por Aloxana, os ratos hiperiglicêmicos apresentaram uma diminuição nos níveis de insulina em cerca de 86%, bem como aumento nos níveis de uréia e creatinina em 25% e 86%, respectivamente. Os níveis de sódio e potássio diminuíram aproximadamente em 9% e 25%, em relação ao grupo de animais controle, estabelecendo assim uma hipótese de sinais de função renal alterada (característica de rim diabético), uma vez que o rim é um dos órgãos envolvidos no processo de desintoxicação e homeostase.
hidroeletrolítica. Destaca-se ainda, observações feitas neste estudo em relação ao aumento das Transaminases hepáticas (Gamaglutamiltranspeptidase – γGT e Fosfatase Alcalina – ALP), bem como o aumento na dosagem de bilirrubina, os quais foram interpretados pelos autores como uma inflamação hepática pós- indução por Aloxana, com achados de alterações no fígado que variaram de uma degeneração gordurosa das células hepáticas, com evolução para esteatohepatite e fibrose periportal. Tais alterações, ligadas às lesões morfológicas e ultraestruturais no fígado destes ratos, se assemelham em sua maioria à doença hepática crônica em seres humanos diabéticos (TREVINO et al., 2016).

Liang e seus colaboradores (2010) basearam seus estudos nos defeitos cardíacos de embriões de Zebrafish hiperglicêmicos, induzidos pela exposição em ambiente de glicose elevada, D-glicose e L-glicose, ambas em concentrações de 450 mg/l, dissolvidos na água que continham o ovo. Os embriões utilizados estavam em estágios de desenvolvimento que variavam entre 6 e 30 horas pós-fertilização. Os estágios selecionados retratam o período de gastrulação precoce, montagem do tubo cardíaco e looping cardíaco (estágio de pré-formação da alça cardíaca) no zebrafish (ACKERMANN; PAW, 2003); período este que corresponde entre a 3ª e 4ª semanas de gravidez em humanos (FISHMAN; CHIEN, 1997). O referido estudo evidenciou que o excesso de glicose seja responsável por defeitos de loop cardíaco (localização de ventrículos); sendo este apontado como o principal processo na morfogênese cardíaca. Predizendo assim, que os diversos tipos de anomalias cardíacas em lactentes de mães diabéticas sejam devidos as deformidades de looping.

Liang e colaboradores (2010) demonstraram ainda que níveis elevados de glicose nos embriões submetidos à D-glicose e L-glicose apresentaram malformações graduais como: edema do pericárdio seguido de coração não ligado (válvula que separa as câmaras superior e inferior do lado esquerdo do coração não fecha corretamente), podendo apresentar ou não regurgitação, fusão anormal ou inadequada das almofadas superior e inferior do endocárdio e ainda, obstrução parcial ou completa do trato de saída do ventrículo.

Portanto, os resultados da pesquisa realizada por Liang e seus colaboradores (2010) são de extrema importância na elaboração de estratégias preventivas e
terapêuticas focadas na redução de ocorrências de defeitos congênito-cardíacos na gestação do paciente diabético, desde que associados a outras pesquisas, com diferentes espécies.

Gleeson e seus colaboradores (2007) utilizaram como metodologia de indução do DM no *zebrafish*, o método de indução por imersão em solução de glicose a 2% e 0%, durante 32 dias de estudo, alternando entre as duas soluções a cada 24 h, e dosando os níveis de glicemia a cada 3 dias até o final do estudo. Os peixes foram considerados hiper-glicêmicos após a exposição a 2% de glicose, quando atingiram o triplo do nível de glicose no sangue normal (índices de glicemia maior que 200 mg/dl).

O objetivo principal de Gleeson e seus colaboradores (2007) foi desenvolver amostras de *zebrafish* como modelo de estudo de retinopatia diabética, através de alterações morfológicas na retina dos peixes induzidamente hiper-glicêmicos. Assim, mediram a espessura das camadas da retina proximal, tanto dos peixes hiper-glicêmicos, quanto dos peixes controle, obtendo como resultado uma diminuição de aproximadamente 60% na camada plexiforme interna – IPL, bem como na camada nuclear interna – INL, dos peixes induzidos com glicose.

Portanto, Gleeson e seus colaboradores (2007) indicam que os *zebrafish* induzidos a hiper-glicemia, representam bem os casos de hiper-glicemia crônica com desgaste expressivo de IPL e INL, assim como demonstrado em outros estudos de modelos de retinopatia diabética. Evidenciando assim, o peixe zebra, como um excelente modelo de estudo dos mecanismos e tratamentos farmacológicos da retinopatia diabética, por serem, de simples criação, e semelhantes funcionalmente e morfologicamente aos seres humanos.

Assim como Gleeson e colaboradores (2007), Arenal e seus colaboradores (2012) também realizaram um estudo em que a indução do DM foi através da adição de glicose no tanque de peixes. Entretanto, Arenal e colaboradores (2012) escolheram a tilápia do Nilo (*Oreochromis niloticus*), como espécie de peixe para indução de hiper-glicemia. No referido estudo, foram selecionados dois grupos com 45 animais cada, um controle (sem adição de glicose no tanque) e no outro, a hiper-glicemia foi induzida com glicose a 50 g/l, durante 30 minutos. Os autores deste
artigo testaram ainda a indução do DM com a adição de glicose a 25 g/l na água dos tanques dos peixes, e observaram que nesta concentração de glicose, a glicemia das tilápias aumentaram em 27% em comparação ao grupo controle; resultado este inferior ao encontrado nas tilápias, que foram induzidas com glicose a 50 g/l, as quais obtiveram um aumento médio de 50% na concentração da glicemia.

Foram relatados ainda por Arenal e seus colaboradores (2012) que passados 90 minutos após a indução, os níveis glicêmicos se mantiveram maiores que o grupo controle e que os maiores índices de glicemia dos peixes foram detectados após 15 minutos de indução; passados 2 horas após hiperglicemia induzida, a glicemia das tilápias reduziu-se a valores semelhantes aos do controle.

Existem inúmeros modelos para indução do DM em modelos animais, conforme descritos acima. A sua grande maioria faz o uso de ratos, camundongos, primatas, entre outros, nos quais o DM possa ser induzido quimicamente (SUGANYA et al., 2012). A utilização de indutores químicos do DM produz efeitos colaterais, como: tumores renais, pulmonares e hepáticos, causados pela STZ e ainda necrose hepática e renal, devido ao uso de Aloxana, demonstrando assim a baixa especificidade destes agentes (LENZEN, 2008). O uso de adição de glicose na água dos tanques com peixes, realizado por Gleeson e colaboradores (2007), justifica-se pela necessidade de evitar o aparecimento de tais efeitos colaterais em seus modelos experimentais, além de não observarem morte de peixes. Por último, os autores enalteceram a homologia entre as insulinas destes peixes em relação à insulina humana, uma vez que a diminuição de glicemia sérica, também foi observada em tilápias, após administração de insulina humana.

Na planilha abaixo (tabela 7), relata-se as características principais dos 19 artigos analisados, em relação aos diferentes tipos de modelos experimentais para indução do DM:

Tabela 7: Modelos Experimentais para Indução do DM

Espécie	Sexo	Peso (g)	Idade (semanas)	Via Adm	Agent. Ind.	Dose	Tempo Adm.	Hiperglicemia	Glicemia	Referência
Ratos Wistar albinos	M	220-250	8 a 20	IP	STZ	40 mg/kg	5 dias	5 dias	> 360 mg/dl	(DORDEVIC et al., 2017)
Espécie	Sexo	Peso (g)	Idade (semanas)	Via Adm.	Agent. Ind.	Dose	Tempo Adm.	Hiperglicemia	Glicemia	Referência
------------------------------	------	----------	-----------------	----------	-------------	--------	------------	---------------	----------	-----------------------------------
Ratos albinos	A	-	8	IP	STZ	65 mg/kg	7 dias	≥ 200 mg/dl		(ELEAZU et al., 2017)
Ratos Wistar	M	250-300	7 a 8	SC	STZ	45 mg/kg	1 dia	3 - 5 dias	> 250 mg/dl	(PIPKIN et al., 2017)
Ratos Sprague-Dawley	M	230-240	8	IV	STZ	45 mg/kg	1 dia	3 dias	> 288 mg/dl	(NAZRATUN et al., 2017)
Ratos Wistar albinos	-	327,6±30,5	-	IV	STZ	50 mg/kg	1 dia	3 dias	> 200 mg/dl	(GITE et al., 2017)
Ratos Wistar	M	175-203	-	VO+IP	Dieta+SSTZ	35 mg/kg	14 dias (HFD) + 1 dia STZ	14 dias (HFD) + 3 dias (STZ)	≥ 200 mg/dl	(ADEFEGH A et al., 2016)
Camundongos ICR	M	-	12	IP	STZ	30 mg/kg	1 dia	7 dias	≥ 250 mg	(CHEN. D. L; YANG, K. Y, 2017)
Camundongos C57BL / 6J	M	30±5	11	IP	STZ	80 mg/kg	4 dias	-	> 288 mg/dl	(MOHAMED et al., 2017)
Zebra Fish selvagem (WT)	-	-	16 a 28	IDBC	STZ	350 mg/kg	-	-	> 315 mg/dl	(LEONTOVICH et al., 2016)
Zebra Fish (Danio rerio)	-	-	-	IP	STZ	350 mg/kg	1 dia	1 dia	> 310 mg/dl	(INTINE et al., 2013)
Macacos cynomolgus (Macaca fascicularis)	-	-	-	IP	STZ	60 mg/kg	-	-	> 250 mg	(PARK et al., 2017)
Macacos rhesus (Macaca mulatta)	-	-	144 a 192	IV	STZ	110-120 mg/kg	1 dia	1 dia	-	(SHIN et al., 2015)
Porcos	F	26.00-35.00	12 a 24	IV	STZ	120 mg/kg	1	1 dia	-	(HIRIDIS et al., 2016)
Espécie	Sexo	Peso (g)	Idade (semanas)	Via Adm.	Agent. Ind.	Dose	Tempo Adm.	Hiperglicemia	Glicemia	Referência
---------------------------------	------	----------	-----------------	----------	-------------	----------	------------	---------------	----------	-----------------------
Porcos Yorkshire-Landrace	-	2.300	12 a 16	IV	STZ	150 mg/kg	-	-	-	(PEPPER et al., 2013)
Ratos Sprague-Dawley	-	-	-	IP	ALX	120 mg/kg	3 dias	3 dias	> 250 mg/dl	(EREKAT et al. 2014)
Ratos Wistar	M	300-320	-	IP	ALX	150 mg/kg	1 dia	3 dias	> 300 mg/dl	(TREVINO et al., 2016)
Zebra Fish tipo selvagem (AB)	-	-	-	EXP	D/L-glicose	450,4 mg/l	-	-	-	(LIANG et al., 2010)
Zebrafish AB e Selvagem	-	-	-	EXP	Glicose	20 mg/l (2%)	32 dias	-	> 200 mg/dl	(GLEESON et al., 2007)
Tilapia O. niloticus	-	46,6±4,8 g	-	-	Glicose	50 g/l	30´	-	-	(ARENAL et al., 2012)

9. Considerações Finais

O DM é considerado um distúrbio metabólico de proporções mundiais, que acomete milhões de pessoas, trazendo prejuízos médicos, sociais e econômicos à população mundial.

Modelos experimentais para indução do DM auxiliam na pesquisa do diabetes, evitando estudos mais caros e eticamente proibidos nos humanos. Apesar da existência de diferentes modelos que induzem o diabetes, os métodos químicos, induzidos por agentes como a Aloxana e STZ, são disparadamente os mais utilizados e indicados para a indução desta patologia.

Entretanto, torna-se necessário o desenvolvimento de mais pesquisas aplicadas no âmbito do diabetes, para que possamos adquirir cada vez mais conhecimentos, em prol da redução de danos ocasionados por esta patologia, através de novos conhecimentos sobre os mecanismos de complexidade do DM, além da necessidade de descoberta de novos fármacos, mais efetivos e que causem menos efeitos adversos aos seres humanos.
Logo, o objetivo deste trabalho foi revisar os conhecimentos atuais relacionados aos modelos experimentais para indução do DM, expondo informações sobre o mecanismo de ação e metodologias usadas, bem como debater ainda as principais limitações ligadas a cada método, não deixando de evidenciar também os pontos positivos.
10. Referências Bibliográficas

ACCILI, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. *Nature Genetics*. Bethesda, p. 1-4. Jan. 1996. Disponível em: https://www.nature.com/ng/journal/v12/n1/abs/ng0196-106.html. Acesso em: 31 jul. 2017.

ACHA-ORBEA, H.; MCDEVITT, H. O. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. *Pnas*. Stanford, p. 1-5. Dez. 1986. Disponível em: http://www.pnas.org/content/84/8/2435.long. Acesso em: 29 Jul. 2017.

ACKERMANN, G. E.; PAW, B. H. Zebrafish: A Genetic Model for Vertebrate Organogenesis and Human Disorders. *Frontiers in Bioscience*. Boston, p. 1-47. Set. 2003. Disponível em: https://www.bioscience.org/2003/v8/d/1092/fulltext.htm. Acesso em: 21 ago. 2017.

ANDERSON, M. S.; BLUESTONE, J. A. THE NOD MOUSE: A Model of Immune Dysregulation. *Annual Review of Immunology*, [s.l.], v. 23, n. 1, p.447-485, abr. 2005. Annual Reviews. http://dx.doi.org/10.1146/annurev.immunol.23.021704.115643.

ANNUAL REPORT, 2016. *Diabetes*. Bruxelas: Idf, 2016. Pág. 32.

ARENAL, Amilcar et al. Aqueous extract of Ocimum tenuiflorum decreases levels of blood glucose in induced hyperglycemic tilapia (Oreochromis niloticus). *Asian Pacific Journal of Tropical Medicine*. Camagüey, p. 1-4. 20 ago. 2012. Acesso em: 21 ago. 2017.

ASRAFUZZAMAN, M. et al. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. *Biomedicine & Pharmacotherapy*. Brisbane, p. 1-10. Mar. 2017.

BASHA, R. H.; SANKARANARAYANAN, C. -Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. *Elsevier*. Annamalainagar, p. 1-11. Out. 2014. Acesso em: 14 ago. 2017.
BBRUNTON, L.; CHABNER, B. A.; KNOLLMAN, B. C. As Bases Farmacológicas da Terapêutica de Goodman & Gilman. 12. ed. Porto Alegre: Amgh, 2012. 2080 p.

BIRNBAUM, M. J. Turning down insulin signaling. The Journal of Clinical Investigation. Filadélfia, p. 1-5. Set. 2001. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC209386/pdf/JCI0113714.pdf. Acesso em: 31 jul. 2017.

BRASIL. Ministério da Saúde. Cadernos de Atenção Básica: Estratégias para o Cuidado da Pessoa com Doença Crônica - Diabetes Mellitus. Brasília: Ministério da Saúde, 2013. 162 p. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf. Acesso em: 05 jul. 2017.

BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Diabetes: Cadernos de Atenção Básica. Brasília: MS, 2006. 64 p. Diabetes.

BRASIL. Ministério da Saúde. Insulinas análogas para diabetes mellitus tipo I: relatório de recomendações da comissão nacional de incorporação de tecnologias no SUS - conitec. Brasília, 2013.

BRASIL. Ministério da Saúde. Registro brasileiro de ensaios clínicos. Disponível em: http://www.ensaiosclinicos.gov.br/about/. Acesso em: 22 jul. 2017.

CAMARGO, M. C. P. R. Alterações Metabólicas induzidas Pelo Consumo de Dietas Hiperlipídicas ou Hiperglicídicas Associadas à Hidroclorotiazida: Possível Papel Protetor do Disseleneto de Difenila em Ratos. 2009. 156 f. Tese (Doutorado) - Curso de Ciências Biológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.

CAMPOS, K. E. et al. Obesidade e Resistência à insulina. FEMINA. Vol. 34, nº 9, setembro, 2006.

CARVALHEIRA, J. B. C.; ZECCHIN, H. G.; SAAD, M. J. A. Vias de Sinalização da Insulina. Arquivos Brasileiros de Endocrinologia & Metabologia, [s.l.], v. 46, n. 4, p.419-425, ago. 2002. FapUNIFESP (SciELO). Disponível em: http://dx.doi.org/10.1590/s0004-27302002000400013. Acesso em: 04 jul. 2017.
CASTRO, H et al. Cafeteria diet over feeding in Young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight. International Journal of Obesity. p. 430-437, 2015.

CAZAROLLI, L. H. Estudo da Atividade de Flavonóides e de Complexos de Vanádio na Glicemia de Ratos Diabéticos Induzidos com Aloxana. 2004. 146 f. Tese (Doutorado) – Curso de Farmácia, Universidade Federal de Santa Catarina, Florianópolis. 2004. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/87466/214405.pdf?sequence=1&isAllowed=y. Acesso em: 29 Jul. 2017.

CHEN, D. L.; YANG, K. Y. Berberine Alleviates Oxidative Stress in Islets of Diabetic Mice by Inhibiting miR-106b Expression and Up-Regulating SIRT1. Journal of Cellular Biochemistry. Kaifeng, p. 1-8. 22 jun. 2017.

DELFINOA, V. et al. Diabetes mellitus induzido por estreptozotocina: comparação em longo prazo entre duas vias de administração. Brazilian Journal of Nephrology. Campinas, p. 1-6. jun. 2002.

DORDEVIC, M. et al. Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats. Journal Of Ethnopharmacology. Belgrado, p. 1-34. 12 mar. 2017. Disponível em: http://sci-hub.io/http://dx.doi.org/10.1016/j.jep.2017.03.016. Acesso em: 14 ago. 2017.

ELEAZU, C. et al. Dietary intake of boiled breadfruit (treculia africana) seeds did not improve hyperglycemia in streptozotocini induced diabetic rats: effect on the oral glucose tolerance of normoglycemic rats. Acta Sci. Pol. Technol. Aliment. Abakalik, p. 1-9. 13 fev. 2017. Disponível em: https://www.researchgate.net/publication/315716163_Dietary_intake_of_boiled_breadfruit_Treculia_africana_seeds_did_not_improve_hyperglycemia_in_streptozotocin_induced_diabetic_rats_Effect_on_the_oral_glucose_tolerance_of_normoglycemic_rats. Acesso em: 14 ago. 2017.

EREKAT, N. S.; AL-JARRAH, M. D.; KHATIB, A. J. Al. Treadmill Exercise Training Improves Vascular Endothelial Growth Factor Expression in the Cardiac Muscle of Type I Diabetic Rats. Cardiology Research. Irbid, p. 1-7. 27 fev. 2014. Disponível
em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358275/pdf/cr-05-023.pdf. Acesso em: 20 ago. 2017.

FEDERIUK, I.F. et al. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp. Med. 2004;54(3):252-7. RIBEIRO C, et. al. Exercício e prevenção do diabetes mellitus: importância do modelo experimental utilizando ratos. Motriz. 2007;13(1):72-7. NEGRI G. Diabetes melito: plantas e princípios ativos naturais hipoglicemiantes. Rev. Bras. Cienc Farm. 2005;41(2):121-42 apud SILVA, Valter Dias da; NOGUEIRA, Rosa Maria Barilli. Diabetes mellitus experimental induzido com aloxana em ratos Wistar. Revista de Ciências Farmacêutica Básica e Aplicada: Journal of Basic and Applied Pharmaceutical Sciences. Presidente Prudente, p. 1-8. Fev. 2014. Disponível em: http://seer.fcfar.unesp.br/rcfba/index.php/rcfba/article/viewFile/201/109. Acesso em: 10 ago. 2017.

FIOCRUZ. Diabetes: o que é? 2015. Renata Augusta. Disponível em: https://portal.fiocruz.br/pt-br/content/diabetes-o-que-e. Acesso em: 16 Nov. 2015.

FISHMAN, M. C.; CHIEN, K. R. Fashioning the vertebrate heart: earliest embryonic decisions. The Company of Biologists. Boston, p. 1-19. jun. 1997. Disponível em: http://dev.biologists.org/content/develop/124/11/2099.full.pdf. Acesso em: 21 ago. 2017.

FLOR, L. S.; CAMPOS, M. R. Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: evidências de um inquérito de base populacional. Revista Brasileira de Epidemiologia, [s.l.], v. 20, n. 1, p.16-29, mar. 2017. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1980-5497201700010002.

GITE, S. S. et al. Functional food supplements to ameliorate the secondary complications in high fructose fed diabetic rats. Food and Function. Pune, p. 1-10. Maio 2017.

GLEESON, M.; CONNAUGHTON, V.; ARNESON, L. S. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol. Washington, p. 1-7. 9 mar. 2007. Acesso em: 21 ago. 2017.
GOLAN, D. E.; TASHJIAN, A. H.; ARMSTRONG, E. J. *Princípio de farmacologia: a base fisiopatológica da farmacoterapia*. 2. ed. Rio de Janeiro: Guanabara, 2008. P. 952.

GROSS, J. L.; NEHME, M. Detecção e tratamento das complicações crônicas do diabetes melito: Consenso da Sociedade Brasileira de Diabetes e Conselho Brasileiro de Oftalmologia. *Revista da Associação Médica Brasileira*, [s.l.], v. 45, n. 3, p.279-284, jul. 1999. Elsevier BV. http://dx.doi.org/10.1590/s0104-42301999000300014.

GROSS, J. L. *et al*. Diabetes Melito: Diagnóstico, Classificação e Avaliação do Controle Glicêmico. *Arquivo Brasileiro de Endocrinologia e Metabolismo*, São Paulo , v. 46, n. 1, p. 16-26, Fev. 2002. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302002000100004&lng=en&nrm=iso. Acesso em: 07 Jul. 2017.

HIRIDIS, S. *et al*. Preliminary Results of the Influence of Duodenojejunal Bypass in a Porcine Model of Streptozotocin-Induced Diabetes Mellitus. *The Journal of Metabolic Surgery and Allied Care*. Atenas, p. 1-9. 3 fev. 2016. Acesso em: 15 ago. 2017.

HOUSEKNECHT, K L *et al*. The biology of leptin: a review. *Journal Of Animal Science*. West Lafayette, p. 1-16. mai. 1998.

HOWE, K. *et al*. The zebrafish reference genome sequence and its relationship to the human genome. *Nature*. Hinxton, p. 1-14. Abr. 2013. Acesso em: 15 ago. 2017.

INTINE, R. V.; OLSSEN, A. S.; SARRAS, M. P. A Zebrafish Model of Diabetes Mellitus and Metabolic Memory. *Journal of Visualized Experiments*. Chicago, p. 1-7. 28 fev. 2013. Acesso em: 15 ago. 2017.

KENDALL, Cyril W. C. *et al*. Nuts, metabolic syndrome and diabetes. *British Journal Of Nutrition*. Toronto, p. 1-9. 5 maio 2010.

KIMURA, N. Diabetes Mellitus Induces Alzheimer’s Disease Pathology: Histopathological Evidence from Animal Models. *International Journal of Molecular Sciences*. Japão, p. 1-11. 5 abr. 2016. Disponível em:
KIRSTEN, V. R.; SESTERHEIM, P.; SAITOVICE, D. Modelos e Modelos experimentais para o estudo do diabetes tipo 1. Revista da Faculdade de Medicina de Ribeirão Preto e do Hospital das Clínicas da Fmrp, Ribeirão Preto, p.1-8, 2010. Disponível em: http://revista.fmrp.usp.br/2010/vol43n1/REV_Modelos%20experimentais%20para%20o%20estudo%20do%20diabetes%20tipo%201.pdf. Acesso em: 18 abr. 2017.

LABOISSIÈRE, P. Pesquisa revela que diabetes no Brasil cresceu 61,8% em dez anos. 2017. Disponível em: http://agenciabrasil.ebc.com.br/geral/noticia/2017-04/pesquisa-revela-que-diabetes-no-brasil-cresceu-618-em-dez-anos. Acesso em: 17 abr. 2017.

LENZEN, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008; 51(2):216-26 apud SILVA, Valter Dias da; NOGUEIRA, Rosa Maria Barilli. Diabetes mellitus experimental induzido com aloxana em ratos Wistar. Revista de Ciências Farmacêutica Básica e Aplicada: Journal of Basic and Applied Pharmaceutical Sciences. Presidente Prudente, p. 1-8. Fev. 2014. Disponível em: http://seer.fcfar.unesp.br/rcfba/index.php/rcfba/article/viewFile/201/109. Acesso em: 10 ago. 2017.

LEONTOVICH, A. A.; INTINE, R. V.; SARRAS, J.; Michael, P. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes. Journal of Diabetes Research. Rochester, p. 1-10. 14 fev. 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769771/pdf/JDR2016-2860780.pdf. Acesso em: 15 ago. 2017.

LIANG, J. et al. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. Clinical and Molecular Teratology. Shanghai, p. 1-7. 6 Jan. 2010. Acesso em: 21 ago. 2017.
MANCO, M.; CALVANI, M.; MINGRONE, G. Effects of dietary fatty acids on insulin sensitivity and secretion. *Diabetes, Obesity And Metabolism.* Roma, p. 1-12. 8 out. 2004. Acesso em: 14 ago. 2017.

MILANSKI, M et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. *The Journal of Neuroscience.* Campinas, p. 1-12. 14 Jan. 2009.

MOHAMED, E. *et al.* Capparis spinosa L. aqueous extract evokes antidiabetic effect in streptozotocin-induced diabetic mice. *Avicenna Journal of Phytomedicine.* Errachidia, p. 1-8. 16 jun. 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355824/pdf/AJP-7-191.pdf. Acesso em: 14 ago. 2017.

NANDI, A. Mouse Models of Insulin Resistance. *Physiological Reviews,* [s.l.], v. 84, n. 2, p.623-647, 1 abr. 2004. American Physiological Society. http://dx.doi.org/10.1152/physrev.00032.2003. Acesso em: 31 Jul. 2017.

NASCIMENTO, C. M. O. et al. Efeitos do exercício crônico sobre a concentração circulante da leptina e grelina em ratos com obesidade induzida por dieta. *Revista Brasileira de Medicina do Esporte.* V. 14, n. 3, p. 182-187, 2008.

NAZRATUN, N. A. *et al.* Aqueous calyxes extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced diabetic rats. *Arab Journal Of Gastroenterology.* Kuala Lumpur, p. 1-8. 11 fev. 2017. Disponível em: http://ac.els-cdn.com/S1687197917300084/1-s2.0-S1687197917300084-main.pdf?_tid=59bd9672-86cf-11e7-9f48-00000a0b0f01&acdnat=1503361258_a714119f8037d306cab8dd362672f5b7. Acesso em: 14 ago. 2017.

OMS. *Global report on diabetes.* Genebra: Design And Layout: Meo Design & Communication, Meomeo.ch, 2016. 88 p.

ORTIZ, L. C. A produção brasileira de camundongos transgênicos favorece a pesquisa. *Cienc. Cult.*, São Paulo, v. 55, n. 3, p. 09-10, set. 2003. Disponível em:
PARK, H. et al. Simultaneous Subtotal Pancreatectomy and Streptozotocin Injection for Diabetes Modeling in Cynomolgus Monkeys. *Transplantation Proceedings*. Seoul, p. 1-8. Jun. 2017. Acesso em: 14 ago. 2017.

PEPPER, A. et al. Establishment of a stringent large animal model of insulin-dependent diabetes for islet autotransplantation: combination of pancreatectomy and streptozotocin. *Ovid Technologies*. Ontário, p. 1-10. 2 mar. 2013. Acesso em: 15 ago. 2017.

PIPKIN, J. A. et al. Both nicotine reward and withdrawal are enhanced in a rodent model of diabetes. *Psychopharmacology*. El Paso, p. 1-8. 7 mar. 2017. Acesso em: 14 ago. 2017.

QI, N. et al. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. *Journal of Biological Chemistry*. São Francisco, p. 1-8. Out. 2002. Acesso em: 03 ago. 2017.

RADENKOVIĆ, M.; STOJANOVIĆ, M.; PROSTRAN, M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. *Journal of Pharmacological and Toxicological Methods*. Belgrado, p. 1-59. 15 Nov. 2015. Acesso em: 29 Jul. 2017.

RANG, H P et al. *Rang & Dale: Farmacologia*. 7. ed. Rio de Janeiro: Elsevier, 2012. 768 p.

RAYAT, G. R. et al. Single Injection of Insulin Delays The Recurrence of Diabetes in Syngenic Islet-Transplanted Diabetic NOD Mice. *Transplantation! Brief Communications*. Alberta, p. 1-5. Set. 2000. Disponível em: file:///C:/Users/BRENO/Desktop/Insulin syngenic graft survival.pdf. Acesso em: 14 ago. 2017.

REAVEN, G. M. Role of Insulin Resistance in Human. *American Diabetes Association*. Palo Alto, California, p. 1-13. Dez. 1988.
RIBEIRO, G. S. G. *Custo do diabetes mellitus no sistema público de saúde brasileiro: Uma análise de políticas públicas de prevenção, educação e controle*. 2012. 37 f. TCC (Graduação) - Curso de Gestão de Políticas Públicas, Universidade de São Paulo, São Paulo, 2012. Disponível em: http://www.each.usp.br/flamori/images/TCC_Glaucia_2012.pdf. Acesso em: 17 abr. 2017.

SHIN, J. S. *et al.* Long-Term Control of Diabetes in Immunosuppressed Nonhuman Primates (NHP) by the Transplantation of Adult Porcine Islets. *American Journal of Transplantation*. Seoul, p. 1-14. Nov. 2015. Acesso em: 14 ago. 2017.

SIEBER, F. E.; TRAYSTMAN, Richard J. Ethical Issues Involved in the Development of Animal Models for Type I Diabetes. *Ilar Journal*. Baltimore, p. 1-4. 01 jan. 1993. Acesso em: 10 ago. 2017.

SILVA, L. F. *Efeito da Ingestão Aguda de Cafeína na Resposta Glicêmica e Insulínica em Ratos Diabéticos*. 2012. 79 f. Dissertação (Mestrado) - Curso de Ciências Farmacêuticas, Universidade Estadual do Centro-oeste, Guarapuava, 2012.

SILVA, M. C. *Análise histológica e radiográfica das alterações periodontais provocadas pela indução do diabetes em ratos*. 2007. 141 f. Dissertação (Mestrado) - Curso de Odontologia, Universidade de São Paulo, Bauru, 2007.

SILVA, V. D.; NOGUEIRA, R. M. B. Diabetes mellitus experimental induzido com aloxana em ratos Wistar. *Revista de Ciências Farmacêuticas Básica e Aplicada: Journal of Basic and Applied Pharmaceutical Sciences*. Presidente Prudente, p. 1-8. Fev. 2014. Disponível em: http://seer.fcfar.unesp.br/rcfba/index.php/rcfba/article/viewFile/201/109. Acesso em: 10 ago. 2017.

SOCIEDADE BRASILEIRA DE DIABETES. *Diretrizes da Sociedade Brasileira de Diabetes 2014-2015*: Diretrizes da Sociedade Brasileira de Diabetes 2014-2015. 2014-2015 ed. Rio de Janeiro: Grupo Editorial Nacional, 2014-2015. 390 p. Disponível em: file:///C:/Users/BRENO/Desktop/DIABETES diretrizes-sbd-2015.pdf. Acesso em: 05 Jul. 2017.
SONE, H. et al. Disease model: hyperinsulinemia and insulin resistance. Trends in Molecular Medicine, [s.l.], v. 7, n. 7, p.320-322, Jul. 2001. Elsevier BV. Disponível em: http://dx.doi.org/10.1016/s1471-4914(01)02041-x. Acesso em: 03 ago. 2017.

SUGANYA, S. et al. Hypoglycemic effect of Costus pictus D. Don on alloxan induced type 2 diabetes mellitus in albino rats. Asian Pacific Journal of Tropical Disease. Coimbatore, p. 1-6. Abr. 2012.

SZKUDELSKI, T.; KANDULSKA, K.; OKULICZ, M. Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiological Research. Praga, p. 1-4. jun. 1998. Disponível em: http://www.biomed.cas.cz/physiolres/pdf/47/47_343.pdf. Acesso em: 10 ago. 2017.

T, S. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. Praga, p. 1-10. Mar. 2001. Disponível em: http://www.biomed.cas.cz/physiolres/pdf/50/50_537.pdf. Acesso em: 10 ago. 2017.

TAKEDA, Y. et al. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. Journal of Diabetes Research. Nishinomiya, p. 1-9. 19 fev. 2017. Disponível em: https://www-ncbi-nlm-nih-gov.ez27.periodicos.capes.gov.br/pmc/articles/PMC5337356/. Acesso em: 29 Jul. 2017.

TKINSON, M. A.; LEITER, E. H. The NOD mouse model of type 1 diabetes: As good as, it gets? Nature Medicine, [s.l.], v. 5, n. 6, p.601-604, 1 jun. 1999. Springer Nature. http://dx.doi.org/10.1038/9442. Acesso em: 29 Jul. 2017.

TODD, J. A.; BELL, J. I.; MCDEVITT, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. Stanford, p. 1-6. Out. 1987. Acesso em: 29 Jul. 2017.

TREVINO, S. et al. Metforminum Decavanadate as a Potential Metallopharmaceutical Drug for the Treatment of Diabetes Mellitus. Oxidative Medicine and Cellular Longevity. Puebla, p. 1-14. 23 fev. 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826921/pdf/OMCL2016-6058705.pdf. Acesso em: 20 ago. 2017.
TSCHÖP M., HEIMAN M. L. Rodent obesity models: An overview. *Experimental And Clinical Endocrinology & Diabetes*, [s.l.], v. 109, n. 06, p.307-319, 19 set. 2001. Georg Thieme Verlag KG.

UNA-SUS. *Diabetes*. 2016. Disponível em: https://www.unasus.gov.br/noticia/no-dia-mundial-da-saude-2016-oms-lanca-seu-primeiro-relatorio-global-sobre-diabetes. Acesso em: 06 abr. 2016.

WICKER, L. S.; TODD, A.; PETERSON, L. B. Genetic Control of Autoimmune Diabetes in the Nod Mouse. *Annual Review of Immunology*, [s.l.], v. 13, n. 1, p.179-200, abr. 1995. Annual Reviews. http://dx.doi.org/10.1146/annurev.iy.13.040195.001143.

ZHANG, H. *et al*. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy. *Molecular Medicine Reports*. Guangzhou, p. 1-7. 17 jul. 2013. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055476/pdf/mmr-09-06-2138.pdf. Acesso em: 15 ago. 2017.