Mycobiota Associated with the Vascular Wilt of Poplar

Hanna Kwaśna 1*, Wojciech Szewczyk 1, Marlena Baranowska 2, Ewa Gallas 1, Milena Wiśniewska 1 and Jolanta Behnke-Borowczyk 1

Abstract: In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiotia were analysed using Illumina sequencing. A total of 69,467 and 70,218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiales and Chytridiales occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.

Keywords: fungi; pathogens; plantation; poplar hybrids; vascular wilt

1. Introduction

Populus is a genus of deciduous trees in the family Salicaceae, native to most of the Northern Hemisphere. They are among the fastest-growing trees, and the most efficient in terms of sustainability. Poplar is significant because of: (i) its rapid production of wood (in Europe, 1 m³ of lumber can be produced on average in 15 years, six times faster than with oak); (ii) its very versatile wood, with an excellent ratio between specific weight and mechanical features, making it suitable for furniture, plywood and the paper industry; (iii) its excellent capacity for purifying the air by capturing CO₂ and storing it in the biomass (1 ha can capture 11 t CO₂/year); (iv) its capacity for purifying water while acting as a green filter, absorbing nitrates and sediments; (v) its potential for biofuel production using the coppicing method; (vi) the possibility for its cultivation on abandoned and degraded land, thus optimizing land use.

Poplar is an important source of wood for pulp and paper products, but mostly paper, for which worldwide production reaches 420 Mt, including 5 Mt in Poland [1]. Its
wood is also suitable for use as a renewable energy source. The development of renewable sources for energy purposes has been substantially supported and promoted by a European Union Directive. Poland is obliged to obtain at least 30% of its energy from renewable sources by 2030 (Directive (EU) 2018/2001). Wood that is suitable for renewable energy includes that derived from trees grown in short- and medium-rotation plantations, often on agricultural land or non-forested areas. Plantations based on varieties of *Acacia* and *Eucalyptus* have been particularly effective in tropical countries with favourable climate and soil conditions for faster growth; *Eucalyptus* has produced 25 m³ of wood per ha annually, compared with 7–8 m³ in the temperate climate zone (1). Plantations of fast-growing trees are now also being established in the temperate zone. The most promising genus in Poland is poplar (*Populus* spp.), with plantations usually in short- (up to 10 years) or medium-rotation (up to 15–25 years) coppice systems [2–4].

Hybrid poplar trees are often the progeny of crosses between cottonwood (*Populus deltoides* W. Bartram ex Marshall) and black poplar (*Populus nigra* L. ‘Italica’). They have the advantages of: (i) rapid growth (1.5–2.5 m per year), (ii) a large range of hardiness zones (3–9), (iii) high productivity resulting from a prolonged vegetation period, and (iv) better resistance to pests and diseases [5].

Poplars are frequently attacked by microorganisms that cause discolorations, necrosis, depressions, deformations (thickening of the trunk and branches, the abnormal proliferation of the underlying phloem, the formation of the corky ridges or woody galls). Stresses predispose trees to infection by phytopathogens. Attacks on the trunk and branches of younger trees often kill the main shoot.

The bark necrosis of poplars can be caused by *Discosporium populeum* (Sacc.) B. Sutton (=*Chondroplea populea* (Sacc.) Kleb. =*Dothichiza populea* Sacc. Sacc. & Briard, anamorph of *Cryptodiaporthe populea* (Sacc.) Butin). Necrosis and cankers are often caused by *Cystospora* spp. (*C. populina* (Pers.) Rabenh. =*C. ambiens* Sacc., teleomorph *Valsa ambiens* (Pers.) Fr., and *C. nivea* Fuckel, teleomorph *V. nivea* (Hoffm.) Fr.). Cankers can be caused by *Entoleuca mammata* (Wahlenb.) Rogers and Ju (=*Hypoxylon mammatum* (Wahl.: Fr.) Karst.). Sooty-bark canker is caused by *Seleroncola pruinosa* (Ellis and Everh.) PärTel and Baral (=*Enocidium pruinosa* (Ell. and Ev.) Torkelsen and Eckblad). Black or target canker can be caused by *Ceratocystis fimbriata* Ellis and Halst. Other agents of necrosis and cankers or wood rots and bark alterations, of which the incidence is more local and/or secondary, include *Boeremia populii* (Gruyter and Scheer) Jayawardena, Jayasiri and Hyde (=*Phoma exigua* var. *populi* Gruyter and Scheer), *Botryodiplodia* populea Zhong, *Diplodia tumefaciens* (Shear) Zalasky (the anamorph of *Keissleriella emergens* (Karst.) Bose), *Fusarium* spp., *Neofusicoccum ribis* (Slippers, Crous and M.J. Wingf.) Crous, Slippers and Phillips (=*Dothiorella gregaria* Sacc., the anamorph of *Botryosphaeria dothidea* (Moug.) Ces. and De Not), *Neonectria ditissima* (Tul. and C. Tul.) Samuels and Rossman (with anamorph *Cylindrocarpon mali* (Allesch.) Wollenw.), *Phomopsis* spp., *Rhytidella moriformis* Zalasky, *Rhytidella baranyai* Funk and Zalasky, and basidiomycetous *Erythricium salmonicolor* (Berk. and Broome) Burds. (=*Corticium salmonicolor* Berk. and Broome). Damage to heartwood can be caused by bacteria (*Erwinia nimipressuralis*). Disease of the leaves are usually caused by *Melampsora medusae* Thüm. (rust), *Venturia tremulae* Aderh. (scab, shoot blight), *Sphaerulina musiva* (Peck) QuaeDvl., Verkle and Crous (=*Septoria musiva* Peck), and *Marssonina* spp. Most infections of woody tissues are initiated by wind-borne ascospores, which are forcibly ejected from perithecia during periods of damp weather. Fungi infect trees through wounds and invade the inner bark and cambium.

In 2017, a 560 ha plantation of hybrid poplar (*P. deltoides × P. nigra*) in northern Poland showed symptoms of tree decline. The leaves of the diseased trees appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died without definite cankers. The bark of the entire trunk was sunken and discolored, often loosened and split. It often fell off, exposing wet wood. The trunks decayed from the base. The phloem showed brown necrosis. Ten percent of the trees died in 1–2 months
(in June) after the first appearance of the symptoms. None of the observed symptoms were typical for known poplar diseases.

The objectives of the study on the structure of the fungal communities present in the rotten wood of poplar trunks and in the soil were to: (i) determine the abundance and diversity of pathogens and other fungi; (ii) identify interactions among fungi that may contribute to the disease progress; (iii) assess associations between the disease and global warming, with consequences for host and pathogen physiology, reproduction, survival, spatial and temporal distribution, resource availability and competition.

2. Materials and Methods
2.1. Site and Sampling

The study was carried out in the Łoża, Czarne District, Człuchów County, Pomeranian Voivodeship, northern Poland (53°41′29″ N 17°04′19″ E), in a 560 ha plantation of 5–6-year-old hybrid poplar (P. deltoides × P. nigra, cultivar AF2, from Italy) showing symptoms of crown decline, trunk-base decay (520 ha) and tree death (40 ha) (Figures 1 and 2). The plantation was so intensively affected that the inclusion of a control (healthy plantation) from the same area with the same conditions of climate and soil was impossible.

![Figure 1. Poplar plantation with diseased trees.](image)

The trees were grown at a density of 425 trees/ha (4 m × 4m spacing), and had a mean diameter of 9–10 cm at breast height. The post-agricultural soil was sandy loam, consisting of sand (60%), silt (20%) and clay (20%), with a low humus level. The former crop was rye (Secale cereale L.). The average temperature is 7.9 °C and the rainfall is 680 mm.

The understorey vegetation included Achillea millefolium L., Agrostis stolonifera L., Artemisia absinthium L., Artemisia vulgaris L., Cichorium intybus L., Elymus repens (L.) Gould, Lamium purpureum L., Lolium perenne L., Papaver rhoeas L., Poa annua L., Poa pratensis L., Poa trivialis L., Polygonum aviculare L., Polypodium vulgare L., Polytrichum commune Hedw., Stellaria media Hist. Pl. Dauphiné, Taraxacum officinale F.H. Wigg., and Trifolium arvense L.

Five wood cores; 10 cm long and 3 cm in diam., each including bark, phloem and xylem, were sampled from the bases of the necrotic trunks of five symptomatic trees, 0 cm and 50 cm above the ground, with a Pressler borer. The core samples were surface-sterilized and ground to sawdust with a cordless SPARKY BUR2 15E drill.
Additionally, five subsamples of soil were taken as cylindrical cores, 10 cm long and 5 cm in diam., from the surroundings of roots of five symptomatic trees. They were placed in sterile glass containers and refrigerated for 48 h.

Figure 2. Necrosis and decay at the base of the trunk of a diseased poplar.

2.2. DNA Extraction, Amplification and Illumina Sequencing

Five samples of sawdust were prepared from five wood cores in the SPEX™ SamplePrep™ Freezer/Mill™ cryogenic mill. The wood’s genomic DNA was extracted from each of five 30 mg heavy sawdust samples using a Plant Genomic DNA Purification Kit (Thermo Scientific, Carlsbad, California, USA). The soil’s genomic DNA was extracted from each 300 mg soil subsample using a Power Soil™ DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA).

The rDNA was amplified with fungi specific primers ITS1 FI2 (5′-GAACCWGGGARGGATCA-3′) [6] and 5.8S (5′-CGCTGCGTT CTTCATCG-3′) [7].

The PCR reaction mixture consisted of 12.5 μL of 2 × Mix PCR (A & A Biotechnology, Gdansk, Poland), 0.2 μM of each primer, 1.5 μL purified and diluted DNA, and 10.6 μL water. The DNA amplification was performed under the following conditions: denaturation at 94 °C for 5 min followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, elongation at 72 °C for 30 s, and a final elongation at 72 °C for 7 min. The visualization of 5-μL amplicons was performed in 1% agarose gel dyed with Midori Green Advance DNA (Genetics). The pooled PCR products were purified using a MinElute PCR Purification Kit (Qiagen, Hilden, Germany). The concentration of PCR products was quantified using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), and an equimolar mix of PCR products from each sample was prepared. The amplicons were sequenced using the Illumina system in the Genomic Laboratory, DNA Research Center, Rubież 46, Poznań, Poland.
2.3. Bioinformatics Analysis

A table of Operational Taxonomic Units (OTUs) was prepared by PIPITS, version 1.2.0 [8]. The read-pairs were joined with PEAR, version 0.9.6 [9], filtered with a quality threshold of $q = 30$ by FASTX-toolkit, version 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/index.html, accessed on 26-April-2012) converted to the Fasta format, and merged into a single file. The prepared sequences were de-replicated, and subregions of ITS were selected with the use of ITSx, version 1.0.11 [10]. Unique sequences and those shorter than 100 bp were removed. The remaining sequences were clustered with 97% sequence identity. The resulting representative sequences for each cluster were subjected to chimera detection and removal using the UNITE UCHIME reference dataset, version 6.0 (https://unite.ut.ee/index.php (accessed on 26-April-2012)). The input sequences were then mapped onto the representative sequences, and taxonomy was assigned using RDP Classifier, version 2.10.2 [11] against the UNITE fungal ITS reference database, version 11.2 [12]. This process resulted in the creation of a table of OTUs. The sequences were identified by comparison with reference sequences from the National Center for Biotechnology Information (NCBI) database.

The abundance of fungi was defined as the average number of OTUs from five subsamples. The frequency of an individual taxon was defined as the percentage (%) of OTUs in the total number of OTUs. The similarity and relationships between the fungal communities from the soil and wood is shown by a heat map.

2.4. Statistical Analyses

The differences in the abundance of microfungi in the soil and wood were analysed with chi-squared tests (χ^2). The diversity between the communities of microfungi was compared with Margalef’s diversity index (D_{Marg}), Shannon’s diversity index (H), Simpson’s diversity index (D), Shannon’s evenness index (E) and Berger–Parker’s index (d) [13].

3. Results

Totals of 69,467 and 70,218 OTUs were obtained, respectively, from the soil and wood of the *Populus* hybrid using the Illumina sequencing technique (Table 1, Figure 3). Of these, 44,506 (64%) and 53,592 (76%) were of fungi known from culture, and 24,961 (36%) and 16,628 (24%) were unidentified fungi and other organisms. Fungi from Blastocladiomycota, Chytridiomycota, Glomeromycota, Zygomycota, Ascomycota and Basidiomycota were detected. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies of 0.005% and 0.008%. Two taxa of Glomeromycota with a frequency of 0.001% occurred in the wood. The frequencies of Zygomycota in the soil and wood were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. The samples were colonized by at least 400 taxa of fungi. Identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in the soil, and 73 occurred only in the wood.
No.	Taxon	Chromista	Order	Soil	Wood	Trophic Group
1	*Aphanomyces* spp.	Oomycota	Saprolegniales	0.042		Pathogens
2	*Elongisporangium ananandum* (Drechsler) Uzuhashi, Tojo & Kakish	Oomycota	Peronosporales	0.004		Pathogen
	Globisporangium apicalatum (B. Paul) Uzuhashi, Tojo & Kakish	Oomycota	Peronosporales	0.101	0.001	Pathogens
	+ *G. heterothalicum* W.A. Campb. & F.F. Hendrix + *G. intermedium* (de Bary) Uzuhashi, Tojo & Kakish + *G. macrosporum* (Vaartaja & Plaats-Nitt) Uzuhashi, Tojo & Kakish + *G. mamillatum* (Meurs) Uzuhashi, Tojo & Kakish + *G. perlopticum* (Takesi hō) Uzuhashi, Tojo & Kakish. + *G. sylvaticum* (W.A. Campb. & F.F. Hendrix) Uzuhashi, Tojo & Kakish. + *G. ultimum* (Trow) Uzuhashi, Tojo & Kakish					
4	*Hyaloperonospora cockleariae* (Gäum.) Göker, Riethm., Voglmayr, Weiss & Oberw	Oomycota	Peronosporales	0.017		Pathogen
5	*Isochrysis intermedia* (Coker & J.V. Harv.) Coker	Oomycota	Saprolegniales	0.007		Saprotroph
6	*Mycosporangium sp.*	Oomycota	Peronosporales	0.005		Nematopathogenic
7	*Pythium conidosporum* Jokl. + *P. oligandrum* Drechsler + *P. pachycaule* Ali-Shtayev + *P. selbii* M.L. Ellis, Broders & Dorrance + *P. vanterpoolii* V. Kouyeas & H. Kouyeas + *P. volatum* Vanterp. & Truscott + *Pythium* sp.	Oomycota	Peronosporales	0.053	0.001	Pathogens
9	*Thraustotheca clavata* (de Bary) Humphrey	Oomycota	Saprolegniales	0.021		Saprotroph

Fungi

Frequency Oomycota	1.199	0.002
Number of taxa Oomycota	26	2

Blastocladiomycota

Frequency Blastocladiomycota	0.005
Number of taxa Blastocladiomycota	1

Chytridiomycota

Frequency Chytridiomycota	0.008
Number of taxa Chytridiomycota	2

Glomeromycota

Frequency Glomeromycota	0.001
Number of taxa Glomeromycota	2

Zygomycota

Frequency Zygomycota	3.631	0.006
Number of taxa Zygomycota	18	3

Ascomycota

Frequency Ascomycota	0.004
Number of taxa Ascomycota	2

Table 1. Microbiota present in the soil and wood of the diseased poplar.
No.	Genus and Species	Family	Order	Saprotroph	Mycoparasite	Parasite	Human Pathogen	Animal Pathogen																	
7.	*Amesia nigricolor* (L.M. Ames) X. Wei Wang & Samson	Sordariales	0.001																						
8.	*Angustimassarina acerina* Jayasiri, Thambug., R.K. Schumach. & K.D. Hyde + *A. populi* Thambug. & K.D. Hyde	Pleosporales	0.354																						
9.	*Arthronymycetes*																								
10.	*Ascobolus* sp.	Pezizales	0.005																						
11.	*Ascochyta skagayensis* (R. Sprague) Punith.	Pleosporales	0.001																						
12.	*Ascomyces*																								
13.	*Ascomycota*																								
14.	*Aspergillus conicus* Blochwitz + *A. niger* Tiegh. + *A. penicillioides* Spel. + *A. versicolor* (Vuill.) Tirab.	Eurotiales	0.008																						
15.	*Atrocalyx lignicola* (Ying Zhang, J. Fourn. & K.D. Hyde) A. Hashim. & Kaz. Tanaka	Pleosporales	0.009																						
16.	*Aureobasidium melanogenum* (Herm.-Nijh.) Zalar, Gostinčar & Gunde-Cim. + *A. pullulans* (de Bary & Löwenthal) G. Arnaud + *Aureobasidium* sp.	Dothideales	0.003																						
17.	*Bacillus* sp.	Lecanorales	0.018																						
18.	*Beauveria bassiana* (Bals.-Criv.) Vuill. + *Beauveria* sp.	Hypocreales	0.049																						
19.	*Blastobotrys malaysiensis* Kurtzman + *Blastobotrys* sp.	Saccharomycetales	0.009																						
20.	*Boeremia exigua* (Desm.) Aveskamp, Gruyer & Verkley + *B. nozakiana* (Allesch.) Gruyer & Verkley	Pleosporales	0.006																						
21.	*Cadophora luteo-olivacea* (J.F.H. Beyma) T.C. Harr. & McNew + *C. spadics* Travadon, D.P. Lawr., Roon-Lath., Gubler, W.F. Wilcox, Rolsh. & K. Baumgartner + *Cadophora* sp.	Helotiales	0.114	1.435																					
22.	*Candida sake* (Saito & M. Ota) Uden & H.R. Buckley ex S.A. Mey. & Abeer + *C. subrasa* M. Groenew., Sigler & S.E. Richardson + *C. variaeurae* (Cap.) Uden & H.R. Buckley + *Candida* sp.	Saccharomycetales	0.093	0.012																					
23.	*Capnobotryrella renispora* Sugiy	Capnodiaceae	0.005																						
24.	*Capnodiaceae*	Capnodiaceae	0.017																						
25.	*Ceroascus geophilum* Fr.	Myceliaceae	0.039																						
26.	*Cephalothecaceae*	Sordariales	0.003																						
27.	*Ceratostomataceae*	Melanosporales	0.004																						
28.	*Cercophora* sp.	Sordariales	0.014																						
29.	*Cercosporella beticola* Sacc.	Capnodiaceae	0.012																						
30.	*Chaetomiaceae*	Sordariales	0.085																						
31.	*Chaetomium globosum* Kunze + *Ch. piliferum* J. Daniels + *Chaetomium* sp.	Sordariales	0.062	0.002																					
32.	*Chaetosphaeria vernicularioides* (Sacc. & Roum.) W. Gams & Hol.-Jech.	Chaetosphaeriaceae	0.005																						
33.	*Chaetothyriales*	Chaetothyriales	0.104																						
34.	*Chalara micropora* (Corda) S. Hughes + *Chalara* sp.	Helotiales	0.007	0.001																					
35.	*Chloridium paucisporum* C.J.K. Wang & H.E. Wilcox	Helotiales	0.001																						
36.	*Chrysosporium pseudomeridarium* Oorschot	Onygenales	0.004																						
37.	*Cistella albidolata* (Feltgen) Baral	Helotiales	0.003																						
38.	*Cladosiphophora minutissima* M.L. Davey & Currah + *Cladosiphophora* sp.	Chaetothyriales	0.002																						
39.	*Cladorrhinum flexuosum* Madrid, Cans, Genè & Guarro	Sordariales	0.008																						
40.	*Cladosporium alatum* (Fr.) Bensch, U. Braun & Crous + *C. cladosporioides* (Fresen.) G.A. de Vries + *C. colosacas* Sawada	Capnodiaceae	0.096	0.015																					
41.	*Clonostachys divergens* Schroers + *C. parva* (Schroers) Rossman, L. Lombard & Crous + *C. rosea* (Link) Schroers, Samuels + *Clonostachys* sp.	Hypocreales	0.187	0.033																					
42.	*Coleophoma cylindrospora* (Desm.) Höhn	Helotiales	0.010																						
43.	*Collophorina* sp.	Leotiales	0.001																						
No.	Genus and Species	Class	Order	Pathogens	Saprotrophs	Mycoparasite	Endophytes	Coprophilous																	
-----	-------------------	-------	-------	-----------	-------------	--------------	------------	-------------																	
44.	Coniochaeta sp.	Coniochaetales	0.015	0.002	Pathogens, saprotrophs, endophytes, coprophilous, mycoparasite, human pathogens																				
45.	Cordyceps bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan + C. bronniaria Shimazu	Hypocreales	0.047	Entomopathogenic, mycoparasite																					
46.	Cosmospora berkeleyana (P. Karst.) Gräfenhan, Seifert & Schroers	Hypocreales	0.027	Saprotroph, pathogen, mycoparasite																					
47.	Crocierea sp.	Helotiales	0.005	Saprotrophs																					
48.	Cucurbitariaceae	Pleosporales	0.076	Saprotrophs, pathogens,																					
49.	Cadoniella indica	Helotiales	0.002	Saprotroph																					
50.	Cytidium cyathoideum (Bull.) Thüm.	Helotiales	0.006	Saprotrophs																					
51.	Cypellocyphora sessilis (de Hoog) Riebövá & Unter	Chaetothyriales	0.001	Pathogen																					
52.	Cytospora davidiana Y.L. Wang & X.Y. Zhang + C. licostoma (Pers.) Sacc. + C. pararubescens Norphanph., Bulgakov, T.C. Wen & K.D. Hyde + Cytospora sp.	Diaporthales	0.012	Pathogens																					
53.	Dactylaria donophilosa Veene & Rijks	Helotiales	0.016	Saprotroph																					
54.	Dactylonectria borealis (A. Cabral, Rego & Crous) L. Lombard & Crous	Hypocreales	0.008	Pathogen																					
55.	Debaryomyces hansenii (Zopf) Lodder & Kreger-van Rij	Saccharomycetales	0.023	Pathogen																					
56.	Dendryphon eurasiaticum Crous & R.K. Schumach. + D. narum (Nees) S. Hughes	Pleosporales	0.268	Saprotroph																					
57.	Dermatocaeae	Helotiales	0.002																						
58.	Desmazierella acicola Lib.	Poziases	0.001	Saprotroph																					
59.	Diaporth Myrocoelum	Diaporthales	0.017	Pathogens, endophytes																					
60.	Didymella macrostoma (Mont.) Qian Chen & L. C. + D. pedeiace	Pleosporales	0.039	Pathogens																					
61.	Didymosphaeria futilis (Berk. & Broome) Rehm	Pleosporales	0.005	Saprotroph																					
62.	Dissoconium ecuvalyi Crous & Carnegie	Capnodiales	0.001	Commensalist, mycoparasite																					
63.	Dothideomycetes																								
64.	Emericellopsis glabra (J.F.H. Beyma) Backus & Orpurt + E. minima Stolk	Hypocreales	0.179	Endophytes																					
65.	Endoplasma elongata Tsuneda & M.L. Dave	Incertae sedis	0.005																						
66.	Epicoccum nigrum Link	Pleosporales	0.002	Endophyte, saprotroph, pathogen																					
67.	Erythothalma cerasi	Eurotiiales	0.001																						
68.	Eurotheciales	Eurotheciales	0.002	Saprotrophs, human pathogens																					
69.	Exophiala capsiphilus Crous + E. equina (Pollacci) de Hoog, V.A. Vicente, Najafz., Harrak, Badali & Seyedm. + E. opportunitas de Hoog, V.A. Vicente, Najafz., Harrak, Badali & Seyedm. + Exophiala sp.	Chaetothyriales	0.129	Saprotrophs, human pathogens																					
70.	Fusarium oxysporum (Fr.) Sacc. + F. equiseti (Corda) Sacc. + F. fujikuroi Nirenberg + F. oxysporum Schldl. + F. petrieliae L. Lombard + F. redolens Wollenw. + F. solani (Mart.) Sacc. + F. torulosum (Berk. & M.A. Curtis) Gruyer & J.H.M. Schneid. + Fusarium sp. + Neocosmospora solani (Mart.) L. Lombard & Crous	Hypocreales	0.890	Pathogens																					
71.	Fusinia aquacutum (Radl. & Raben.) Gräfenhan, Seifert & Schroers + F. merismsoides (Corda) Gräfenhan, Seifert & Schroers	Hypocreales	0.096	Pathogens																					
72.	Gibelulopsis nigrescens (Pethybr.) Zare, W. Gams & Summerb	Glomerellales	0.009	Saprotroph																					
73.	Glomaxia murrorum var. furina (Marchal) S. Hughes	Hypocreales	0.023	Saprotroph																					
No.	Genus	Species	Orders	Ranges	Comments																				
-----	-------	---------	--------	--------	----------																				
74.	Graphium basitruncatum	(Matsush.) Seifert & G.Okada + G. penicillioides Corda	Microascales	0.007	2.451	Saprotrophs, plant and human pathogens																			
75.	Gaphostroma platystemum	(Schwein.) Piroz.	Xylariales	0.004		Saprotroph																			
76.	Halenospora varia	(Anastasiou) E.B.G. Jones + Halenospora sp.	Helotiales	0.443		Saprotrophs, aquatic																			
77.	Halokirschsteiniothelia maritima	(Linder) Boonmee & K.D. Hyde	Myxillidales	0.023		Saprotroph																			
78.	Halosphaeria quadri-remis	(Höhnl.) Kohlm	Microascales	0.007		Saprotroph																			
79.	Halosphaeriaceae		Microascales	0.008																					
80.	Harzia acronionides	(Harz) Costantin + H. sphaerospora	Melanosporales	0.028		Saprotrophs																			
81.	Helicodendron lutoalbum	Glen Bott + H. westerdijkiae Beverw	Helotiales	0.009		Saprotrophs																			
82.	Helicosporium sp.		Tubeufiales	0.006		Saprotrophs																			
83.	Heliotiaceae		Helotiales	0.005																					
84.	Heliotiales		Helotiales	3.087	4.565																				
85.	Hemibeltrania sp.					Pathogen																			
86.	Herpotrichia pinetorum	(Fuckel) G. Winter + Herpotrichia sp.	Pleosporales	0.183	0.002	Pathogens																			
87.	Herpotrichiellaceae				0.004																				
88.	Hyalodendriella betulae	Crous	Helotiales	0.012	0.001	Saprotroph, pathogen																			
89.	Hyalopectiza sp.		Helotiales	0.014		Saprotroph																			
90.	Hyaloscypha bicolor	(Hambl. & Sigler) Vohnik, Fehrér & Réblová	Helotiales	0.012		Endophyte, saprotroph																			
91.	Hyaloscyphaceae		Helotiales	0.003	0.040																				
92.	Hymenoscyphus caudatus	(F. Karst.) Dennis + H. imberbis	Helotiales	0.007	0.017	Pathogens, saprotrophs																			
93.	Hypocreales		Helotiales	2.979																					
94.	Hypoxylon fragiforme	(Pers.) J. Kickx f.																							
95.	Hymenosticta crassa	(Wollenw.) A. Cabral & Crous + I. cyclaminicola A. Cabral + Crous + I. destruens (Zinssm.) Rossman, L. Lombard & Crous + I. europeas A. Cabral, Rego & Crous + I. mors-pacinas (A.A. Hildebr.) A. Cabral & Crous + I. robusta (A.A. Hildebr.) A. Cabral & Crous + Ilynotectria sp. + Cylindrocarpon sp.	Hypocreales	2.031	6.710	Saprotrophs, pathogens																			
96.	Infulichalara microchona	(W. Gams) Réblová & W. Gams + I. minuta Koukol	Helotiales	0.014	0.001	Saprotrophs, pathogens, mycoparasitic																			
97.	Juttae taediosa	(Sacc.) Réblová & Jaklitsch	Calosphaeriales	0.005		Endophyte																			
98.	Juxtapithema eurypha Sacc.		Pleosporales	0.001		Pathogen																			
99.	Knufia cryptophila (L.J. Hutchison & Unter.) + K. peltigerae (Fuckel) Réblová & Unter	Incertae sedis		0.006	0.015	Pathogens, lichenicolous																			
100.	Lambertella tubulosa	Abdullah & J. Webster	Helotiales	1.445		Saprotroph																			
101.	Lasiosphaeriaceae		Sordariales	0.095	0.005																				
102.	Lecania cyrtella	(Ach.) Th. Fr. + L. nagelii (Hepp) Diederich & van den Boom	Lecanorales	0.001	0.034	Lichenicolous																			
103.	Lecanorales		Lecanorales	0.001																					
104.	Lecanorales		Lecanorales	0.001																					
105.	Lecanorales		Lecanorales	0.002																					
106.	Leotiomycetes		Leotiomycetes	0.003	0.876																				
107.	Leptaria caesiella	R.C. Harris	Lecanorales	0.002		Lichenicolous																			
108.	Leptodontidium sp.		Helotiales	0.011	0.254	Endophyte, mycorrhizal																			
109.	Leptosphaeriaceae				0.023																				
110.	Leptosphaerulina australis	McAlpine	Pleosporales	0.014		Endophyte																			
111.	Lophiodermum corticola	(Fuckel) E.C.Y. Liew, Aproot & K.D. Hyde + Lophiodermum sp.	Pleosporales	0.788		Pathogens																			
112.	Lophodermum pinastri (Schrad.) Chevall. + L. seditiosum	Minter, Staley & Millar + Lophodermium sp.	Rhytismatales	0.107	0.003	Pathogens																			
113.	Lophotrichus sp.		Microascales	0.017		Pathogen																			
No.	Genus and Species	Class	Order	Genus	Family	Saprotroph, coprophilous, endophytic, mycoparasitic, pathogenic																			
-----	------------------	-------	-------	-------	--------	---																			
114	Macroconia sphaerias (Fuckel) Gräfenhan & Schroers	Hypocreales	0.013	Hypocreales	Saprotroph, mycoparasitic																				
152	Magnatothecospora fuscospora (Linder) R.F. Castañeda, Hern.-Restr. & Gené	Incertae sedis	0.269		Saprotroph																				
166	Massarina sp.	Pleosporales	0.002		Saprotroph																				
178	Megacapitula villosa J.L. Chen & Tzean	Incertae sedis	0.001		Saprotroph																				
180	Melanospora kussanoviciana (Beliakova) Czerepan	Melanosporales	0.009		Saprotroph, mycoparasitic																				
190	Metarhizium marquandii (Massee) Kepler, S.A. Rehner & Humber	Hypocreales	0.495		Endophyte																				
929	Meyeroyzna guillermondii (Wick.) Kurtzman & M. Suzuki	Saccharomycetales	0.003		Coprophilous, human pathogen																				
121	Micarea adnata Coppins	Lecanorales	0.006		Lichenicolous																				
123	Microsaccaceae	Microascales	0.002																						
127	Microlochium sp.	Amphisphaeriales	0.063		Pathogen																				
134	Microtheicum fusicola (E.C. Hansen) Y. Marin, Stichigl, Guarro & Cano	Melanosporales	0.012		Saprotrophs																				
136	Minutisphaera parafimbriatisspora Raja, Oberlies, Shearer & A.N. Mill	Minutisphaeraceae	0.017		Saprotroph, aquatic																				
138	Mollisia sp.	Helotiales	0.021		Saprotroph																				
139	Monographella nivealis (Schaffnit) E. Müll	Amphisphaeriales	0.004		Pathogen																				
141	Montagnulaceae	Pleosporales	0.005		Saprotrophs, endophytes, pathogens																				
142	Mycofalcella calcarata Marvanová, Om-Kalth. & J. Webster	Helotiales	0.002		Saprotroph, aquatic																				
143	Mycosphaerella tassiana (De Not.) Johanson	Capnodiales	0.008		Pathogen, saprotroph																				
145	Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams & Crous	Myrmecridiales	0.010																						
148	Naevola perexigua (Koberge ex Desm.) K. Holm & L. Holm	Helotiales	0.001		Saprotroph																				
150	Nakazawaea anatomiae (Zwillenh.) Kurtzman & Robnett + N. populi (Hagler, Mend.-Hagler & Phaff) Kurtzman & Robnett	Saccharomycetales	0.016		Saprotrophs																				
152	Nectria sp.	Hypocreales	0.032		Pathogens, saprotrophs																				
154	Nectriaceae	Hypocreales	0.432																						
156	Neoschochyna exitialis (Morini) Qian Chen & L. Cai	Pleosporales	0.012		Pathogen																				
158	Neobulgaria pannophila Roll-Hansen & H. Roll-Hansen + N. pura (Pers.) Petr. + Neobulgaria sp.	Helotiales	0.684		Saprotrophs																				
160	Neocatenuulospora germanicum (Crous & U. Braun) Quaedvliet & Crouss	Capnodiales	0.001		Pathogen																				
162	Neocucurbitaria cava (Schulzer) Gruyter, Aveskamp & Verkley	Pleosporales	0.002		Saprotroph																				
164	Neofabreae perennis Kiernholz	Helotiales	0.009		Pathogen																				
166	Neoleptosphaeria rubefaciens (Togliani) Gruyter, Aveskamp & Verkley	Pleosporales	0.003		Pathogen																				
168	Neonecrotica candida (Ehrenb.) Rossman, L. Lombard & Crous + Neocinectria sp.	Hypocreales	0.560		Pathogen																				
170	Neopyrenochaeta acicola (Mouëg. & Lév.) Valenz.-Lopez, Crous, Stichigl, Guarro & Cano + N. inflorescentiae (Crous, Marin. & M.J. Wingl.) Valenz.-Lopez, Crous, Stichigl, Guarro & Cano	Pleosporales	0.014		Pathogens, saprotrophs																				
172	Neosetophilina clemtidis Wijayaw., Camporesi & K.D. Hyde	Pleosporales	0.046		Saprotroph																				
174	Neurospora terricola Goch. & Backus	Sordariales	0.004		Saprotroph																				
180	Nesiella muscida (W. Gams) W. Gams & Stielow	Hypocreales	0.004		Saprotroph																				
182	Nigrograna mycophila Jaklitsch, Friebes & Voglmayr	Pleosporales	0.007		Saprotroph, mycoparasitic																				
184	Nigrospora oryzae (Berk. & Broome) Petch	Incertae sedis	0.535		Saprotroph, pathogen																				
186	Ochrocladosporium elatum (Harz) Crous & U. Braun	Pleosporales	0.022		Endophyte																				
188	Oedoccephalum nauroense Ts. Watan	Pezizales	0.049		Saprotroph																				
190	Onygenales	Onygenales	0.005																						
152.	Ophiostomataceae	Ophiostomatales	0.790	Pathogens																					
153.	Orbilia auricolor (A. Bloxam) Sac.	Orbiliales	0.026	Saprotrophs, pathogens																					
154.	Orbiliae	Orbiliales	0.006																						
155.	Pachyramichloridium pisii (de Hoog & Rahman) C. Nakash., Videira & Crous	Cynodiales	0.017	Pathogen																					
156.	Papulaspora pisicola J.F.H. Beyma	Incertae sedis	0.019	Saprotrophs																					
157.	Paraphoma chrysanthemicola (Hollós) Gruyter, Aveskamp & Verkley + P. radicina (McAlpine) Morgan-Jones & J.F. White + Paraphoma sp.	Pleosporales	4.852	Saprotrophs, pathogens																					
158.	Penicillium citrinum (Dierckx + P. citrosulfuratum Biourge + P. georgenae S.W. Peterson & B.W. Horn + P. glandicola (Oudem.) Seifert & Samson + P. halotolerans Frisvad, Houbraken & Samson + P. lapisosum Raper & Fennell + P. nothofagi Houbraken, Frisvad & Samson + P. raphiae Houbraken, Frisvad & Samson + P. roseomaculatum Biourge + P. sacculum E. Dale + P. unicum Tzean, J.L. Chen & Shiu + P. virgatum Nirenberg & Kwaśn + Pencillium sp. + Talaromyces luteus C.R. Benj.	Eurotiales	0.295	0.001	Saprotrophs																				
159.	Penicillium sp.	Pleosporales	0.012	Endophyte																					
160.	Petriella sordida (Zakal) G.L. Barron & J.C. Gilman	Microascales	0.001	Coprophilous																					
161.	Phacidium lacerum Fr. + Phacidium sp.	Phacidiales	0.027	Saprotrophs																					
162.	Phaeosclereosporium cinereum Graz. & Moham.	Togniniales	0.044	Pathogens																					
163.	Phaeosclereosporium constrictum Croux & R.K. Schumach. + P. sparsa B. Sutton	Xylariales	0.347	Saprotrophs, coprophilous																					
164.	Phaeosclereosporium sp.	Phaeosclereosporiales	0.001																						
165.	Phaeosclereosporium sp.	Phaeosclereosporiales	0.007																						
166.	Phaeosclereosporium sp.	Phaeosclereosporiales	0.013																						
167.	Phaeosclereosporium sp.	Pleosporales	0.032	Pathogens, saprotrophs																					
168.	Phialocephala sp.	Helotiales	0.004	Saprotrophs																					
169.	Phialocephala sp.	Chaetothyriales	10.291	Saprotrophs, pathogens																					
170.	Phoma boeremae Gruyter + Phoma sp.	Pleosporales	0.010	0.007	Saprotrophs, pathogens																				
171.	Phomopsis phaseoli (Derm.) Sac. + P. velata (Sacc.) Traverso + Phomopsis sp.	Diaporthales	1.186	Pathogens, saprotrophs, endophytes																					
172.	Physcia tenella (Scop.) DC.	Caliciales	0.001	Lichenicolous																					
173.	Pilophorus straminificus Nyl. ex Cromb	Lecanorales	0.001	Lichenicolous																					
174.	Plagiosoma jonesii Senan. & K.D. Hyde	Diaporthales	0.031	Saprotroph, endophyte																					
175.	Plectsphalerella cucumerina (Linfd.) W. Gams + P. niemeyeri Croux, Lombard	Glomerellales	0.140	0.014	Pathogens																				
176.	Pleosporaceae	Pleosporales	0.003																						
177.	Pleosporales	Pleosporales	0.161	0.504																					
178.	Plethaxia aurantia (Corda) Henn.-Resstr., R.F. Cañada & Gené	Pleosporales	0.307	0.013	Saprotroph, aquatic																				
179.	Pleurophoma bassiana Crous, Krawczyński & H.-G. Wagner + Pleurophoma sp.	Xylariales	0.016	0.005	Saprotroph																				
180.	Podospora appendiculata (Auerw. ex Niessl) Niessl + P. bulbillosa (W. Gams & Mouch.) X. Wei Wang & Houbraken. + P. lopinorina (Cain) Cain + Podospora sp.	Sordariales	0.074	Saprotroph, coprophilous																					
181.	Prussia flanaganii Boylan + P. typharum (Sacc.) Cain	Pleosporales	0.058																						
182.	Pseudotreutrium hygrophilum (Sogonov, W. Gams, Summer & Schroers) Minnis & D.L. Lindner + P. ovale Stolk + P. zonatum J.F.H. Beyma	Thelebolales	0.804	Saprotrophs, human pathogens																					
183.	Pseudocercospora angolensis (T. Carvalho & O. Mendes) Croux & U. Braun	Mycosphaerellales	0.004	Pathogen																					
184.	Pseudocercospora pannorum (Link) Minnis & D.L. Lindner + P.	Thelebolales	0.068	Saprotrophs																					
No.	Species/Subspecies	Genus	Family	Order	Class	Subclass	Phylum	Kingdom	Pathogens	Saprotrophs	Endophytes	Coprophilous	Mycoparasitic	Aquatic	Saprotrophs, Endophytes	Saprotrophs, Pathogen, Acquatic	Saprotrophs, Pathogens	Saprotrophs, Pathogens, Endophytes	Saprotrophs, Pathogens, Mycoparasitic						
-----	-------------------	-------	--------	-------	-------	----------	--------	---------	-----------	-------------	-------------	-------------	-------------	-------------	-----------	---------------------	----------------------	---------------------	----------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------
185	Pyrenochaetopsis leptospora (Sacc. & Briard) Gruyter, Aveskamp & Verkley + P. microspora (Gruyter & Boerema) Gruyter, Aveskamp & Verkley	Pyrenochaetopsis	Pleosporales	0.007	0.001	Saprotrophs, Pathogens, Endophytes																			
186	Pyrenomataceae	Pezizales	0.081																						
187	Saccharomyces cerevisiae (Desm.) Meyen	Saccharomycetales	0.001			Saprotroph																			
188	Schizothecium glutinans (Cain) N. Lundq	Sordariales	0.015			Saprotroph, Coprophilous																			
189	Sceletosporium constrictum E.V. Abbott + S. umbrinum (Ach.) Arnold	Incertae sedis	0.016	0.002	Saprotrophs, Endophytes																				
190	Sclerotinia scitellata (L.) Lambotte	Pezizales	0.005			Saprotroph																			
191	Scytalidium lignicola Pesante + S. multisepatum Hol.-Jech	Helotiales	0.055	0.001	Saprotrophs, Pathogens, Mycoparasitic																				
192	Sordariales	0.008																							
193	Sordariomycetes	0.211	0.003																						
194	Sphaeropsis sapinea (Fr.) Dyko & B. Sutton	Botryosphaeriales	0.003			Pathogen																			
195	Sporormiaceae	Pleosporales	0.003																						
196	Sporothrix dentifunda Aghayeva & M.J. Wingf. + S. stenoceras (Robak) Z.W. de Beer, T.A. Duong & M.J. Wingf. + S. narsissi (Limb) Z.W. de Beer, T.A. Duong & M.J. Wingf	Ophiostomatales	0.161	0.001	Pathogens, Saprotrophs																				
197	Stemphylium herbarum E.G. Simmons + S. majusculum E.G. Simmons + S. vesicarium (Wallr.) E.G. Simmons	Pleosporales	0.027			Pathogens																			
198	Subramaniula fascipila X. Wei Wang & Samson	Sordariales	0.014			Saprotroph																			
199	Sydowiopsis polyoma (Bref. & Tavel) E. Müll	Dothideales	0.004	1.028	Pathogens, Endophyte, Saprotroph																				
200	Tetracadium furcatum Descals + T. setigerum (Grove) Ingold + Tetracadium sp.	Helotiales	1.171	0.862	Saprotrophs																				
201	Theloneuria blackeriella + T. olida (Wollenw.) Wollenw. + T. nodosa Salgado & P. Chavero	Hypocreales	0.012	0.006	Pathogens																				
202	Tricharina sp.	Pezizales	1.55		Saprotrophs																				
203	Trichocladium asperum Harz + T. griseum (Traen) X. Wei Wang & Houbraken	Sordariales	0.593		Saprotrophs																				
204	Trichoderma aeruginose Jaklitsch + T. hamatum (Bonord.) Bainier + T. koningiopodis Samuels, Carm. Suarez & H.C. Evans + T. martiae Samuels + T. nookonii Samuels & Soberanis + T. piliferum J. Webster & Rifai + T. Polysporum (Link) Rifai + T. pulvescens Bissett + T. stibiophyzi I Samuels & Schroers + T. viziride Pers. + Trichoderma sp.	Hypocreales	19.464	0.001	Saprotrophs																				
205	Trichoderma splendens Ingold	Helotiales	0.040	0.057	Saprotroph, Aquatic																				
206	Truncatella angustata (Pers.) S. Hughes + T. restionacearum S.J. Lee & Crous	Amphylales	0.003	0.001	Pathogens																				
207	Valsa malicola Z. Urb. + V. sordida Sacc. + V. leucostoma (Pers.) Fr.	Diaporthales	0.012	0.214	Pathogens																				
208	Valsaeeae	Diaporthales	0.003																						
209	Venturia hystrioides (Dugan, R.G. Roberts & Hanlin) Crous & U. Braun	Venturiales	0.018		Pathogen																				
210	Venturiales	0.001																							
211	Xanthoparmelia subalpinaeizes (Hale) G. Amo, A. Crespo, Elix & Lumbsch	Lecanorales	0.005		Lichenicolous																				
212	Xenocallarum sp.	Helotiales	0.033		Saprotroph																				
213	Xenopolluxalum pilosum Crous + X. polypodium sp.	Helotiales	0.001	0.001	Saprotrophs																				
214	Xeromplastaria arxii Videira, Crous & U. Braun	Capnodiales	0.001		Pathogen																				
215	Xylariales	Xylariales	0.061																						
Number	Species Description	Class	Frequency	Morphological Description																					
--------	---------------------	-------	-----------	---------------------------																					
219.	*Yamadazyma mexicana* (M. Miranda, Holzschu, Phaff & Starmer) Billon-Grand	Saccharomycetales	0.039	Saprotroph																					
220.	*Yarrowia lipolytica* (Wick., Kurtzman & Herman) Van der Walt & Arx	Saccharomycetales	0.001	Saprotroph																					
221.	*Zalerion* sp.	Lulworthiales	0.001	Saprotroph, aquatic																					
222.	*Zopfia marina* Furuya & Udagawa + *Z. pilifera* Udagawa & Furuya	Sordariales	0.027	Saprotrophs, aquatic																					

Frequency of Ascomycota: 45.299 68.697

Number of taxa Ascomycota: 263 178

Basidiomycota

1. *Acisporium* sp. | Pucciniales | 0.034 | Pathogen |
2. *Amitella* sp. | Pucciniales | 0.054 | Pathogen |
3. *Amanita* sp. | Pucciniales | 0.008 | Pathogen |
4. *Amanita* sp. | Pucciniales | 0.001 | Pathogen |
5. *Apiotrichum dulcitum* (Berkhout) Yurkov & Boekhout + *A. gracile* (Weigmann & A. Wolff) Yurkov & Boekhout | Trichosporonales | 0.047 | Saprotrophs |
6. *Armillaria mellea* (Vahl) P. Kumm | Agaricales | 0.025 | Pathogen |
7. *Athelia acrospora* Jülich | Atheliaceae | 0.001 | Saprotroph |
8. *Athelia* sp. | Atheliaceae | 0.023 | Saprotroph |
9. *Aurantia* sp. | Polyporales | 0.002 | Saprotroph, pathogen |
10. *Bjerkandera adusta* (Wild.) P. Karst | Polyporales | 0.002 | Saprotroph, pathogen |
11. *Bucklezyupa aurantiaca* (Saito) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | Bucklezyupa | 0.048 | Saprotroph |
12. *Bullera crocata* Butz & Hugliar | Tremellales | 0.008 | Saprotroph |
13. *Bulleromyces albicans* Boekhout & A. Forseea | Tremellales | 0.001 | Saprotroph |
14. *Burgau anemona* (Hotson) Goid | Canthareliales | 0.009 | Saprotroph |
15. *Camarophyllus* sp. | Agaricostilbales | 0.001 | Mycorrhizal |
16. *Cantharellus* sp. | Canthareliales | 0.002 | Saprotroph |
17. *Cantharellus* sp. | Canthareliales | 0.001 | Mycorrhizal |
18. *Chondrostereum purpureum* (Pers.) Pouzar | Agaricales | 0.018 | Pathogen, saprotroph |
19. *Coprinellus disseminatus* (Pers.) J.E. Lange | Agaricales | 0.230 | Saprotroph |
20. *Cryptococcus tephrinis* Vishniac + *Cryptococcus* sp. | Tremellales | 0.220 | Saprotrophs, endophytes |
21. *Curvibasidium pallidicoralinum* Golubev, Fell & N.W. Golubev | Incertae sedis | 0.001 | Mycocinogenic |
22. *Cystobasidium pinicola* (F. Bai, L.D. Guo & J.H. Zhao) Yurkov, Kachalkin, H.M. Daniel, M. Groenew., Libkind, V. de Garcia, Zalar, Gouliam., Boekhout & Begerow + *C. pseudopurpuratum* A.M. Yurkov, Kachalkin, H.M. Daniel, M. Groenew., Libkind, V. de Garcia, Zalar, Gouliamova, Boekhout & Begerow | Cystobasidiales | 0.002 | Saprotrophs, mycoparasitic |
23. *Cystobasidium persoonii* | Cystobasidiales | 0.004 | Saprotrophs, aquatic |
24. *Cystofilobasidium* inomotii (Fell, I.L. Hunter & Tallman) Hamam., Sugiy. & Koma | Cystofilobasidiales | 0.012 | Saprotrophs, aquatic |
25. *Daedaleopsis confragosa* (Bolton) J. Schröd | Polyporales | 0.001 | Saprotroph |
26. *Efiobasidium sp.* | Sebacinales | 0.020 | Mycorrhizal |
27. *Entyloma gaillardii* Vánky & *E. polyporum* (Peck) Farl. | Entomatales | 0.044 | Pathogens |
28. *Erythrobasidium* sp. | Erythrobasidiales | 0.001 | Saprotroph |
29. *Erythrobasidium* baequae (Y. Yamada & Komag.) Hamam., Sugiy. & Komag. | Erythrobasidiales | 0.008 | Saprotroph |
30. *Erythrobasidium* sp. | Auriculariales | 0.001 | Saprotroph |
31. *Exobasidium arescens* Nannf. + *Exobasidium* sp. | Exobasidiales | 0.001 | Pathogen |
32. *Exobasidium* sp. | Exobasidiales | 0.001 | Pathogen |
33. *Fellonula* sp. | Tremellales | 0.001 | Saprotroph |
34. *Fellozyma inositophila* (Nakase & M. Suzuki) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | Incertae sedis | 0.007 | Saprotroph |
35. *Fibulobasidium inopinicum* Bandoni | Tremellales | 0.004 | Saprotroph |
36. *Filobasidium wieieringae* (A. Forseea, Scozzetti & Fell) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | Filobasidiales | 0.008 | Saprotroph |
| No. | Taxon Name | Class | Mycelial Type | Notes | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 39. | *Fomitopsis pinicola* (Sw.) P. Karst | Polyporales | Saprotroph | Pathogen, mycoparasitic |
| 40. | *Geotrichopsis mycopharica* Tzcan & Estey | Incertae sedis | Saprotroph | Mycoparasitic |
| 41. | *Gymnopus androsaceus* (L.) Della Magg. & Trassin | Agaricales | Saprotroph | Mycoparasitic |
| 42. | *Hannaella zae* (O. Molnár & Prillinger) F.Y. Bai & Q.M. Wang | Tremellales | Saprotroph | Endophyte |
| 43. | *Helotoma mesophaeum* (Pers.) Quel | Agaricales | Saprotroph | Mycorrhizal |
| 44. | *Hydnaceae* | Cantharellales | Saprotroph | |
| 45. | *Hygrophoraceae* | Agaricales | Saprotroph | |
| 46. | *Hymenogaster arenarius* Tul. & C. Tul. | Agaricales | Saprotroph | Ectomycorrhizal |
| 47. | *Hypodenderia pallida* (Bres.) J. Erikss | Hymenocheetales | Saprotroph | |
| 48. | *Hypochlactia undulata* (Bourdot) J. Erikss | Polyporales | Saprotroph | |
| 49. | *Inocybe curvipes* P. Karst | Agaricales | Saprotroph | Ectomycorrhizal |
| 50. | *Irsenonila perplexans* Derx | Cystofilobasidiales | Saprotroph | Pathogen |
| 51. | *Kockovaella machilophila* Cañ.-Gib., M. Takash., Sugita & Nakase | Tremellales | Saprotroph | |
| 52. | *Kondoia yuccicola* (Nakase & M. Suzuki) Q.M. Wang, M. Groenew., F.Y. Bai & Boekhout | Agaricostibiales | Saprotroph | |
| 53. | *Kvoniella neuropsychiae* K. Sylvester, Q.M. Wang & Hittinger + *K. pini* (Golubev & I. Pfeiff.) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | Tremellales | Saprotroph | Entomopathogenic |
| 54. | *Laccaria* sp. | Agaricales | Saprotroph | Ectomycorrhizal |
| 55. | *Lachnellia albiovlosencs* (Alb. & Schwein.) Fr. | Agaricales | Saprotroph | |
| 56. | *Leptosporonemes galzini* (Bourdot) Jülich | Atheliales | Saprotroph | |
| 57. | *Leucosporidiales* | Leucosporidiales | Saprotroph | |
| 58. | *Malassezia globosa* Midgley, E. Guelho & J. Guillot + *M. restricta* E. Guelho, J. Guillot & Midgley + | Malasseziales | Saprotroph | Human pathogens |
| 59. | *Marasmius coharenens* (Pers.) Cooke & Quel | Agaricales | Saprotroph | |
| 60. | *Microbotrymycetes* | Agaricales | Saprotroph | |
| 61. | *Minimelusa polypora* (Hotson) Weresub & P.M. LeClair | Cantharellales | Saprotroph | Mycosphaeridic |
| 62. | *Mrakia frigida* (Fell, Statzell, I.L. Hunter & Phaff) Y. Yamada & Komag. + *Mrakia* sp. | Cystofilobasidiales | Saprotroph | |
| 63. | *Mycesa aurantiomarginata* (Fr.) Quel. + *M. galariculata* (Scop.) Gray | Agaricales | Saprotroph | |
| 64. | *Naganishia cornalis* (Passoth, A.-C. Andersson, Olstorpe, Theelen, Boekhout & Schnûrer) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout + *N. diffusus* (Zach) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | Tremellales | Saprotroph | |
| 65. | *Oberwinklerzyma silvestris* Golubev & Scorzzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | Incertae sedis | Saprotroph | |
| 66. | *Oliveonia* sp. | Auriculaires | Saprotroph | |
| 67. | *Piniophora* sp. | Russulales | Saprotroph | Pathogen, saprotroph |
| 68. | *Phaolomella frondosa* (Fr.) Spirit & V. Malysheva + *P. roseolecta* (Lloyd) V. Malysheva | Tremellales | Saprotroph | Mycoparasites |
| 69. | *Phleomurus speira* (Fr.) Redhead | Agaricales | Saprotroph | Aquatic, saprotroph |
| 70. | *Piskarozyma* sp. | Filobasidiales | Saprotroph | |
| 71. | *Psathyrella squamosa* (P. Karst.) A.H. Sm. | Agaricales | Saprotroph | |
| 72. | *Rhodotorus glutinis* (Fesen.) F.C. Harrison + *Rhodotorus* sp. | Sporidiobolales | Saprotroph | Sporotrophs |
| 73. | *Saitozyma podzolica* (Babeva & Reshetova) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | Tremellales | Saprotroph | |
| 74. | *Sakaguchia lamellibrachiae* (Nagah., Hamam., Nakase & Horikoshi) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | Sakaguchiales | Saprotroph | |
| 75. | *Sebacinales* | Sebacinales | Saprotroph | Endophyte, mycorrhizal |
| 76. | *Serenidina vermisfera* Oberw. | Sebacinales | Saprotroph | |
| 77. | *Serpula himantioides* (Fr.) P. Karst | Boletales | Saprotroph | Pathogen |
| 78. | *Sirotrema translucens* (H.D. Gordon) Bandoni | Tremellales | Saprotroph | |
| 79. | *Sirotremastrum* sp. | Tremioporasales | Saprotroph | |
| 80. | *Slofia pilati* (F.H. Jacob, Faure-Reayn. & Berton) Q.M. Wang, | Incertae sedis | Saprotroph | |
| Plant Name | Authors | Kingdom | Filobasidiales Frequency | Saprotrophs Frequency | Basidiomycota Frequency | Oomycota Frequency | Culturable fungi Frequency | Non-culturable fungi Frequency | Other Kingdoms Frequency | No sequence in NCBI database Frequency |
|---|---|------------------------|--------------------------|------------------------|-------------------------|----------------------|-----------------------------|---------------------------------|-------------------------------|--------------------------------------|
| Soricocyzyga fuscescens (Golubev) Yurkov + S. phenolica (Å.) | Yurkov + S. terre (Di Menna) A.M. Yurkov + S. terricola (T.A. Pedersen) Yurkov | Saprotrophs | 2.451 | 0.004 | 4.119 | 2.076 | 53.062 | 17.435 | 11.728 | 0.055 |
| Sporobolomyces roseus Kluyver & C.B. Nielsen + Sporobolomyces sp. | F.Y. Bai, M. Groenew. & Boekhout | Saprotrophs | 0.008 | 0.001 | 81 | 59 | 474 | 208 | 15 | 0.055 |
| Symmetrospora coprosnae (Hamam. & Nakase) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | Incertae sedis | Saprotrophs | 0.005 | 0.001 | 82 | 82 | 81 | 59 | 15 | 0.055 |
| Tausonia pullulans (Lindner) Xin Zhan Liu, F.Y. Bai, J.Z. Groenew. & Boekhout | Cystofilobasidiales | Saprotrophs | 0.094 | 0.012 | 83 | 83 | 82 | 82 | 15 | 0.055 |
| Thelephoraceae | Thelephorales | Pathogens | 0.014 | 0.001 | 84 | 84 | 83 | 83 | 15 | 0.055 |
| Tremella incarnata Lasch | Agaricales | Pathogen | 0.004 | 0.001 | 85 | 85 | 84 | 84 | 15 | 0.055 |
| Tricholomataceae | Agaricales | Saprotrophs | 0.003 | 0.001 | 86 | 86 | 85 | 85 | 15 | 0.055 |
| Trichosporon stelae Sugita, Takushima & Kikuchi | Trichosporonales | Human pathogen | 0.003 | 0.001 | 87 | 87 | 86 | 86 | 15 | 0.055 |
| Tulasnelliaceae | Cantharellales | Ectomycorrhizal | 0.006 | 0.001 | 88 | 88 | 87 | 87 | 15 | 0.055 |
| Tephiula incarnata Lasch | Agaricales | Pathogen | 0.004 | 0.001 | 89 | 89 | 88 | 88 | 15 | 0.055 |
| Pappia fissilis (Berk. & M.A. Curtis) Zmitr | Polyporales | Saprotrophs | 0.004 | 0.001 | 90 | 90 | 89 | 89 | 15 | 0.055 |
| Vishniacozyma carinacens (Verona & Luchetti) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | Tremellales | Pathogens, saprotrophs | 0.007 | 0.005 | 91 | 91 | 90 | 90 | 15 | 0.055 |

Margalef’s diversity index—DMg
Shannon’s diversity index—H
Simpson’s diversity index—D
Shannon’s evenness index—E
Berger-Parker’s dominance index—d

Percentage of variation. Pathogens are in bold. * Indicates a statistically significant difference according to a χ²-test, p < 0.001.
Saprotrophs were the most abundant (Figure 4). In the soil, their frequency exceeded 80%. In the soil, the most common (with frequency > 0.1%) were species of Mortierella (Zygomycota), Alatospora, Clonostachys, Dendryphion, Emericelopsis, Exophiala, Halenospora, Lambertella, Leptodontidium, Magnohelicospora, Metarhizium, Neobulgaria, Nigrospora, Penicillum, Petriella, Pleotrichocladium, Pseudeurotium, Tetracladium, Tricharina and Trichoderma (Ascomycota), Coprinellus, Cryptococcus, Fibulobasidium, Phaeotremella and Solicoccozyma (Basidiomycota).
Figure 4. Frequency of the fungi in specific trophic groups.

Individual taxa of obligate or facultative phytopathogens were more or less frequent.

The root pathogens included species of *Aphanomyces, Globisporangium, Phytophthora* and *Pythium* (Oomycota: 1.17%), and *Trunctella* (Ascomycota: 0.003% in the soil, 0.001% in the wood).

Vascular pathogens included species of *Cadophora, Dactylonectria, Debaryomyces, Fusarium, Fusicola, Graphium, Hymenoscyphus, Ilyonectria, Microdochium, Neonectria*, *Ophiostomataceae, Phaeoacremonium, Phaeomoniella, Phialophora, Sporothrix, Thelonectria* and *Verticillium* (Ascomycota: 4.783% in soil, 21.831% in the wood).

The parenchymal pathogens included species of *Alternaria, Boeremia, Cladosporium, Coniochaeta, Cosmospora, Cytospora, Diaporthe, Didymella, Epicoccum, Herpotrichia, Hypoxylon, Lophiostoma, Mycosphaerella, Neascchohyta, Neocatenulostroma, Neofabraea, Neoleptosphaeria, Neopyrenochaeta, Paraphoma, Phacoisaria, Phaeosphaeria, Phaeosphaeriopsis, Phoma, Phomopsis, Plectosphaerella, Pseudocercospora, Pyrenochaeta, Pyrenochaetopsis, Scytalidium, Sphaeropsis, Stemphylium, Sydowia, Valsa, Volutella and Xenoramularia* (Ascomycota: 1.647% in the soil, 11.645% in the wood), and *Armillaria, Aurantiporus, Chondrostereum, Fomitopsis, Peniophora* and *Serpula* (Basidiomycota: 0.026% in the soil, 0.618% in the wood).

The soft-rot fungi included species of *Alatospora, Alternaria, Cadophora, Chaetomium, Cladosporium, Clonostachys, Exophiala, Halenospora, Leptodontium, Neosetophoma, Orbilia, Phialophora, Plagiostoma, Sydowia* and *Tricladium* (Ascomycota: 0.821% in the soil, 13.757% in the wood).

The wood-decay Basidiomycota included the white rot fungi *Armillaria mellea, Aurantiporus fissilis, Bjerkandera adusta, Chondrostereum purpureum, Hyphodontia pallidula*.
and *Peniophora*, and the brown rot fungus *Fomitopsis piniola*. They occurred with frequencies of 0.028% in the soil and 0.62% in the wood.

The mycorrhiza-forming fungi present in the soil and wood included 12 taxa: arbuscular *Entrophospora* (Glomeromycota: 0.001% in the wood); ectomycorrhizal *Cenococcum geophilum* (Ascomycota: 0.039% in the soil), *Hymenogaster arenarius*, *Inocybe curvipes*, *Laccaria* sp., *Serendipita vermisfera* and *Tomentella* (Basidiomycota: 0.048% in the soil, 0.019% in the wood); ectendomycorrhizal *Cladophialophora* spp., *Fellomyces* spp., *Fibulobasidium* spp., *Filobasidium* spp., *Geotrichopsis* sp., *Knufia* spp., *Kwoniella* spp., *Laccaria* sp., *Ledermucor* spp., *Lophotrichus* ssp., *Mycophila* spp., *Nakazawaea* spp., *Saccharomyces cerevisiae*, *Yamadazyma mexicana*, *Yarrowia lipolytica* and *Xanthoparmelia subchalybaeans* (Ascomycota: 0.296% in the soil, 13.072% in the wood); *Aiptotrichum dulcitum*, *Bensingtonia* ssp., *Buckleyzyma aurantiaca*, *Bullera croce*, *Bulleromyces albus*, *Cryptococcus* spp., *Curvibasidium pallidicorallinum*, *Cystobasidium* spp., *Erythrobasidium hasegawanum*, *Fellomyces* spp., *Fellozyma inositolaphila*, *Fibulobasidium inconspicuum*, *Filobasidium wieringae*, *Hannaella zaee*, *Itersonia perplexans*, *Kockovaella machilophila*, *Kondoayuccicola*, *Kwoniiella newnhampshireensis*, *Malassezia* spp., *Mtrakia frigida*, *Naqanishia cerealis*, *Phaeotremella* spp., *Piskurozyma* sp., *Rhodotorula* spp., *Saitozyma podzolica*, *Sakaguchia lamellibrachiae*, *Sirotrema translucens*, *Slooffia pilatii*, *Solicoccozyma* spp., *Sporobolomyces* spp., *Symmetrospora coprosmae*, *Tausonia pullulans*, *Tremella encephala*, *Trichosporon oatei* and *Vishniacozyma barnesica* (Basidiomycota: 3.061% in the soil, 1.017% in the wood).

The lichenicolous fungi present in the soil and wood included eight taxa: *Bacidina* sp., *Knufia peltigerae*, *Lecaria cyrtella*, *Lepraria caesia*, *Mycarea agrata*, *Physcia tenella*, *Pilophorus strumaticus* and *Xanthoparmelia subchalybaeans* (Ascomycota: 0.02% in the soil, 0.068% in the wood).

The coprophilous fungi present in the soil and wood included 10 taxa: *Ascobolus* sp., *Cercophora* sp., *Coniochaeta* sp., *Lophotrichus* sp., *Meyeroyzma guilliermondii*, *Petriella sordida*, *Phacoisaria*, *Podospora appendiculata* (forest specific), *Preussia* spp. and *Schizotheccium glutinans* (Ascomycota: 0.548% in the soil, 0.002% in the wood). The entomopathogenic fungi present in the soil and wood included three taxa: *Beauveria bassiana* and *Cordyceps* spp. (Ascomycota: 0.096% in the soil, 0.023% in the wood), and *Kwoniiella* spp. (Basidiomycota: 0.016% in the soil, 0.003% in the wood).

The nematocarcinogenic fungi included one species, *Myzocyttopus* sp. (Oomycota: 0.005% in the soil).

The mycorrhizal fungi present in the soil and wood included 18 taxa: *Syncephalis* sp. (*Zygomyca*: 0.107% in the soil), *Angustimassarina* spp., *Cladosporium* spp., *Clonostachys* spp., *Coniochaeta* sp., *Cordyceps* spp., *Cosmospora* sp., *Dissoconium eucalypti*, *Infundibulencera microchona*, *Macroconia spheraeae*, *Melanospora kurssanoviana*, *Nigrograna mycophila* and *Scytalidium lignicola* (Ascomycota: 1.063% in the soil, 0.056% in the wood), *Cystobasidium* spp., *Geotrichopsis mycopharatica*, *Gymnopus androsaceus*, *Minimedusa polyspora* and *Phaeotremella frondosa* (Basidiomycota: 0.16% in the soil, 0.139% in the wood).

The animal and human pathogens included *Coniochaeta*, *Exophila*, *Graphium* spp., *Lophotrichus* sp., *Meyeroyzma guilliermondii* and *Pseudoptotium ovale* (Ascomycota: 0.975% in the soil, 2.504% in the wood), and *Malassezia* spp. (Basidiomycota: 0.16% in the soil, 0.001% in the wood).

The aquatic fungi present in the soil and wood included 11 taxa: *Aureobasidium melanogenum*, *Halospora* spp., *Lemonniera terrestris*, *Minutisphaera parafimbriatispora*, *Mycocelula calcarea*, *Pleurotrichodium opacum*, *Trichladium splendens*, *Zalerion* spp. and *Zopfiella* spp. (Ascomycota: 0.041% in the soil, 0.527% in the wood), *Cystofilobasidium* spp. and *Phloeomana speirea* (Basidiomycota: 0.012% in the soil, 0.025% in the wood).
The rock-inhabiting fungi included one taxon, *Capnobotryella renispora* (Ascomycota: 0.005% in the soil).

The individual fungi often belonged to more than one trophic group. Margalef's index (D_{mb}), Shannon's diversity index (H) and Simpson's diversity index (D) indicated greater diversity in the soil than in the wood. Shannon's evenness index (E) showed more evenness in the soil and, conversely, Berger-Parker's dominance index (d) showed more dominance of individual taxa in the wood.

4. Discussion

4.1. Disease Characteristics

The vascular wilt of hybrid poplar appeared locally in Poland in 2017. The symptoms appeared suddenly in 5-6-year-old trees, and the disease developed very quickly, in less than 2 months. The activity of the pathogens, either already known or previously unrecognized, apparently circumvented any resistance in the host and led to the failure of the plantations. The disease was asymptomatic in its initial stage. Diagnosis at the final stage was not possible because of either: (i) the immaturity of the pathogen, or (ii) the absence of the distinctive morphological elements essential for the identification of causal fungi. Poplar diseases have a serious economic impact on wood production worldwide, and so the development of effective management strategies depends on the clear identification of the pathogens involved. The affected tissues were therefore analyzed by DNA sequencing.

The symptomatology of poplar wilt can be compared with that of some grapevine diseases, notably grapevine trunk diseases (GTD), including the esca and black foot diseases, and Petri disease [14,15]. Grapevine trunk disease symptoms include the sectorial and/or central necrosis of the trunk wood, brown streaking of the wood, cankers, and the discoloration and wilting of the foliage, which can occur suddenly [15,16]. Petri disease is a vascular disease associated with the decline and dieback of young grapevines. Typical black foot disease symptoms include stunted growth, reduced vigour, retarded or absent sprouting, sparse and chlorotic foliage with necrotic margins, wilting, dieback and death. Characteristic sunken necrotic root lesions with a reduction in root biomass and root hairs may also occur.

Grapevine trunk disease is caused by fungi in the Botryosphaeriaceae [17,18], *Phomopsis viticola* [17,19], *Euypa lata* [20] and *Truncatella* [21]. Petri disease and esca are caused by six species of Cadophora, including *C. luteo-olivacea*, 29 species of *Phaeoacremonium* (particularly *P. cinereum*), *Phaeonomiella chlamydospora* (Gams, Crous, Wingf. and Mugnai) Crous and Gams, *Pleurostoma richardiae* (Nannf.) Rěblová and Jaklitsch (=*Phialophora richardiae* (Nannf.) Conant), and basidiomycetous *Fomitiporia mediterranea* (Fisch.) and *Stereum hirsutum* (Willd.) Pers. [15,22–25]. Black foot disease is caused by species of *Campylacarpon*, *Cylindrocladiella*, *Dactylonectria*, *Ilyonectria*, *Neonecricia* and *Thelonecricia* [26]. The fungal species associated with grapevine diseases, mentioned above, have also been reported from a broad range of woody and herbaceous host plants [23,27–30]. In Italy, *Cadophora, Coniochaeta* (in its *Lecythophora* anamorphic stage) and *Phaeoacremonium* have been isolated from the wood of kiwifruit plants suffering from elephantiasis, which had trunk necrosis, hypertrophy and longitudinal bark cracks [31].

4.2. Pathogens in Diseased Poplar Trunk

According to EN 350:2016, poplar wood is non-durable, and some studies have shown that it is highly susceptible to wood-rotting fungi [32,33].

The dominant taxonomic group of poplar-associated fungi was Ascomycota. Those fungi are often cosmopolitan species known from the above- and below-ground parts of *Populus* species. Many species found in the wood of diseased trees are, however, known from diseased grapevine: Botryosphaeriaceae, *C. luteo-olivacea*, *Dactylonectria* spp., *Ilyonecricia* spp., *Neonecricia* spp., *P. cinereum*, *Phaeonomiella* spp., *Phialophora* spp., *Phomopsis*
spp., Thelonectria spp. and Truncatella spp. Other vascular and parenchymal fungi, frequently necrotrophic species, were also found: Angustimassarina, Aureobasidium, Boeremia, Chaetomium, Chaetosphaeria, Cyathicula, Cudoniella, Dendryphion, Didymella, Fusarium, Graphium, Helicodendron, Helicosporium, Hymenoscyphus, Hypoxylon, Knufia, Leptodontidium, Leptosphaeria, Lophiostoma, Massarina, Megacapitula, Mollisia, Neocatenulostroma, Neoleptosphaeria, Neosetophoma, Niesslia, Ophiostomataceae (with its anamorphs), Phoma, Plagiostoma, Pleurophoma, Podospora, Pyrenochaeta, Scutellinia, Scythalidium, Sporothrix, Tricharina, Xenopolyscytalum, Verticillium, and basidiomycetous Burgoa. These fungi were also often in the surrounding soil. Some of them seem likely to have contributed to the disease-causing species complex. The fungi associated with the diseased poplars, and which had been found previously in the wood of poplar or other deciduous trees, included: Angustimassarina on the wood of grapevine and poplar [34], Chaetosphaeria on the necrotic wood of Prunus [35], Graphium penicillioides in a wood core of Populus nigra in the Czech Republic 200 years ago [36], Graphostroma platystomum on the bark of oak [37], Helicodendron lutealbum on poplar roots [38], Helicosporium on a wilted chestnut tree [39], and Hymenoscyphus caudatus on the rotten leaves of Populus nigra [40]. The last species is related to Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz and Hosoya, which causes a very destructive wilt disease of ash, ash dieback - with similar trunk symptoms to those observed in the hybrid poplar [41,42]. Infundichalara microchona occurred in conifers [43,44]; Knufia in black galls on the stems and branches of Populus tremuloides Michx. in Canada [45]; Leptodontidium on the roots of healthy Populus deltoides [46]; Lophiostoma corticola on the above-ground organs of dying oaks in Poland [47]; Megacapitula on fallen, decaying petioles of broad-leaves trees [48]. Mollisia occurred on decaying plant tissues throughout the Northern Hemisphere; Neocatenulostroma germanicum in oak-wood debris [49]; Neoleptosphaeria rubefaciens on the wood, bark and fruits of herbaceous or woody plants in terrestrial habitats [50–52]. Neosetophoma clematidis occurred on the branches of Clematis vitalba L. [53] and Niesslia mucida on the bark of diverse plants, especially conifers [54]. Ophiostomataceae have been associated with wounds on hardwood trees in Poland [55]. Phaeoacremonium species occurred on European olive, quince and willow [27]; Phialocephala on rotten deciduous wood [56]; Phoma on the decaying wood of oak and pine [57]; Plagiostoma in the stems, twigs, and branches of woody and herbaceous plants from a wide range of plants in temperate regions of the Northern Hemisphere [58,59]. Pleurophoma ossicola occurred in Scots pine [60], and Pyrenochaeta occurred in oak [57]. Scythalidium lignicola causes diseases in Citrus and Manihot [58,61,62]. Sporothrix occurred in eucalyptus, pine and rosebush [63], and Xenopolyscytalum pinea in pine stumps [64].

Basidiomycetous Burgoa anomala was found in pine wood and litter [65].

Some of the fungi are, surprisingly, often common on wood in water, including sea-waters. This group includes Didymosphaeria guttata, Halenospora varia, Halosphaeria quadriennis, Paraphoma radicina, Trichocladium and basidiomycetous Cystobasidium [66–72]. Fusarium spp. were not abundant in the poplar wood, but occurred frequently in the soil. Various Fusarium spp. have been reported in Poland as causing swellings, necrosis, bark-fray, reddish-purple discoloration, and ultimately the characteristic cankers in poplar [73]. Fusarium avenaceum is perhaps the most important species, first reported in the 1950s on Euramerician poplar clones in France. Since then it has spread in Europe, from central and eastern areas with a continental climate to sub-mediterranean areas, and recently to Portugal, with its oceanic climate. Neocosmospora solani (=Fusarium solani (Mart.) Sacc. (found mostly on Algeiros and Tacamahaca poplars and intersectional hybrids) seemed to be confined to North America until it was reported in Poland [74]. Species with sporadic occurrence and of limited importance include F. lateritium Nees, observed in France and in the USA on Populus trichocarpa Torr. and A. Gray, and F. sporotrichoides Sherb., observed in eastern Europe and central Italy on Populus × euramericana. Fusarium spp., constituting a threat to young trees. Colonized trunks are susceptible to breakage, and to attacks by other bark parasites which are also active during a plantation’s early
years. The symptoms are not immediately visible, and mostly take the form of the disorganization of the cortical tissues in part of the trunk.

Fungi which are more frequent and perhaps more significant than *Fusarium* spp. in diseased poplar wood include *Cytopsora*, *Diaporthe* (with its *Phomopsis* anamorph), *Graphium*, *Hydnocercia*, *Paraphoma*, *Phaeoisaria* and *Phialophora*.

Cytopsora species are cosmopolitan, facultative parasites, and appear in tree stands subjected to some form or stress, with poor agronomic management or infected by other pathogens. Infection occurs in late autumn or winter, when the host is dormant, usually behaving as a distinctly secondary parasite. The initial symptoms include brown-blackish discolorations, necrosis, depressions in the bark and underlying wood, callus production and withering. Older, sturdier tissues may develop resistance to further invasion. The disease then appears as small brown depressions bounded by distinct calluses. In the advanced stage, the bark tissues may peel away to reveal underlying stained wood [75]. *Cytopsora ambiens*, *C. chrysosperma* and *C. nivea* (Hoffm.) Sacc., which are usually present on/in poplar wood worldwide, with their highest incidence in central and southern Italy, eastern Europe, the Near East, northern India, southern Africa (mainly in plantations) and the west-central USA (especially in Colorado), were not detected in the diseased hybrid poplars.

Species of *Diaporthe* and its *Phomopsis* anamorph comprise a phytopathologically important group, with diverse host associations and worldwide distribution. They cause leaf spots, blights, decay, wilt, root rots, dieback and cankers. *Phomopsis* pathogens are hemibiotrophs, i.e., first latent endophytes requiring living plants as a nutrient source, then sometimes becoming necrotrophic in the latent phase of colonization, or saprotrophic, their nutrients provided by tissue they have killed [76,77]. They occur in both temperate and tropical regions, and are especially common in the sapwood of angiosperms [78–92]. Endophytic and saprotrophic strains of *Phomopsis* produce similar degrading enzymes, supporting the thesis that endophytes become saprotrophs at the plant’s senescence [87,93]. *Graphium basistruncatum* has been reported from the gallery of the ambrosia beetle in poplar in South America [94]. *Graphium penicillioides* has been detected in the fully functional, wet sapwood of poplars [36]. Although the teleomorph of *G. penicillioides* is unknown, the genus is believed to have ophiostomatoid affinities [95–97].

Paraphoma is root-associated on *Populus*, although *P. chrysanthemicola* has so far been reported only from *Juniperus, Malus* and herbaceous plants [97,98]. The fungus can infect the leaves of certain plant species and provoke disease [99]. On poplar, it caused foliar blight [100]. The fungus can also live benignly in asymptomatic plant tissues, and has been detected or isolated from the roots of healthy plants [101].

Phaeoisaria loranthacearum has so far been reported from twigs of *Loranthus europaeus* in Germany [102].

Phialophora species, found very abundantly, may include *P. richardiae*, a serious pathogen implicated in the Petri disease of grapevine. The significance of other *Phialophora* spp. potentially occurring in the diseased poplar wood should also be emphasized. They are mostly saprotrophic and common in soil and wood, in which they cause soft rot. Growth at the hyphal tip and the secretion of lignolytic enzymes (pectinase, amylase, xylanase, cellulase and mannanase) causes widened cavities in sapwood and the degradation of the wood [103,104]. They can also cause cavities in the wood and plants via an erosion-type attack [105]. The degradation of *Populus tremuloides* wood has been known to affect sales of commercial aspen timber. The blue staining of wood by *Phialophora* has also been reported [106]. The fungus is psychrotolerant (able to grow at a low temperature).

Many of the taxa recorded, especially in the soil, may not be poplar-specific. They would originate from nearby vegetation, litter and decaying organic matter. Ascomycetous *Boeremia* spp., *Desmazerella acicola*, *Dissocionium eucalypti*, *Entyloma gaillardianum*, *Lambertella tubulosa*, *Leptosphaerulina australis*, *Microdochium* sp.,
Monographella nivalis, Neosetophoma clematidis, Periconia sp., Phacidium spp., Phaeosphaeria sp., Phaeospheriaeopsis sp., Phialocephala sp., Pyrenochaetopsis spp., Schizothecium glutinans, Xenochalara sp., Xenopolyscytalum spp., Xenorandumaria arxii, and basidiomycetous Aecidium sp., Entyloma spp. and Itersonilia perplexans possibly spread from weeds, grass roots, leaf litter and woody debris [107–121]. Neocatenulaostroma germanicum, recently found in Europe, seems to spread from pine needles or oak wood debris [49,122].

The cosmopolitan Cenococcum geophilum, one of the most frequently encountered ectomycorrhizal fungi in nature, is well recognized for its extremely wide host and habitat range [123].

Fungi of the genera Alternaria, Epicoccum, Fusarium, Cladosporium, Penicillium and Trichoderma are highly robust and ubiquitous, with an almost global distribution, occurring in the Americas, Asia, and Europe [103]. Their spores have been found in a variety of habitats, predominantly in soil of various types and in sand, often in extreme conditions. Epicoccum can grow on leaves submerged in water, even at 0 °C; hyphal growth can resume within an hour of exposure to water [104,124].

Some fungi were recorded for the first time on wood, or have been found rarely on wood. Ascomycetous Neocatenulaostroma germanicum is known from pine needles, and is known to cause needle blight on Pinus mugho Turra, P. nigra Arn. ssp. pallassiana and P. sylvestris L. in Lithuania, Poland and Ukraine [44,122], but has also occurred in the soil in Poland [125]. Sydowiella polypora is so far known from the foliage of Abies spp., Pinus spp. and Pseudotsuga menziesii (Mirb.), and litter [126]. Research suggests that some of these hosts can be primary inoculum sources when located near poplar plantations [127].

Some more- or less-frequent colonizers are untypical and dubious. Acaulium retardatum has so far been recorded from rice-field soil [128], Acrornium crateriforme from trap-liquid of pitcher plant Nepenthes khasiana Hook f. A.L.P.P. de Candolle, Prodr. in India [129], Alatospora has been recorded from aquatic habitats [130], Amnesia nigricolor has been recorded from an indoor habitat in India [131], Cercospora beticola from sugar beet leaves, Desmozierella acicola from pine needle litter [132,133], Dissoconium eucalypti from Eucalyptus leaf [134], Halokirschsteiniothelium maritima from decaying wood in Thailand [135], Nigrospora oryzae from tropical plants [136], Pleurophoma ossicola from bone [102], Pseudocercospora angolensis from leaf spot on Citrus in Africa [137], Sakaguchia lamellibrachiae (Nagah., Hamam., Nakase and Horikoshi) Wang, Bai, Groenew. and Boekhout from a deep-sea tubeworm in Japan [138], and the basidiomycetous yeast Erythrobasidium hasegawianum has been recorded from old beer yeast culture in USA [139].

Some can occur at the extreme of their host ranges. Graphium basitruncatum has been isolated from wood and soil, even in the Solomon Islands and Japan, and from a leukemic patient [140,141]. Scytalidium lignicola and Sporothrix are recognized as saprotrophic opportunists of which the lifestyle can change from plant to human or animal pathogenicity.

Oomycota with eight species of Globisporangium, two species of Phytophthora and eight species of Pythium were mostly in the soil, and were not very common. Their contribution to the development of the disease cannot be excluded. All of them are plant pathogens, which cause root rot and damping off in a multitude of species. Phytophthora plurivora Jung and Burgess, followed by P. pini Leonian., P. polonica Belbahri, E. Moralejo, Calmin and Oszako, P. lacustris Brasier, Cacciola, Nechw., Jung and Bakonyi, P. cactorum (Lebert and Cohn) Schrüt, and P. gonapodyides (Petersen) Buisman. were common in three declining and three healthy poplar plantations in Serbia [142].

4.3. Yeasts in Diseased Poplar Trunks

Yeasts are now identified and classified almost exclusively by DNA sequence analysis, which has resulted in the discovery of many new species and taxonomic revisions.
Filamentous fungi have a key role in the decomposition of plant material because of their ability to produce a wide range of extracellular enzymes that efficiently attack the recalcitrant lignocellulose matrix. However, the presence of yeasts during the different stages of wood breakdown highlights the ecological role of these microorganisms. Yeasts have been found to produce enzymes acting on cellulose, hemicelluloses and pectin [143]. They can therefore degrade plant material. They can also be transient fungi, using products released during decomposition by other organisms. Many yeast species found in live or decaying plant parts are associated with insects that also use these habitats as feeding or breeding sites.

The general opinion is that the most abundant yeast taxa associated with decayed wood are basidiomycetous (Agaricomycotina) and xylose-assimilating species. The present data do not support this thesis. Some ascomycetous yeasts were particularly abundant in the wood, where basidiomycetous yeasts were much less frequent.

Ascomycetous *Aureobasidium pullulans* and *Candida* spp., and basidiomycetous species of *Apiotrichum*, *Cystofilobasidium*, *Naganishia*, *Saitozyma*, *Solicoccozyma*, *Tausonia*, *Tremella*, *Trichosporon* and *Vishniacozyma* are frequently found in decaying plant material [143]. However, variations in their abundance and diversity reflect the environment, and also correlate with the natural abundance and distribution of basidiomycetous fungi in the study areas [144]. *Apiotrichum*, for example, was reported as being abundant in wood decayed by *Armillaria*. The abundance of ascomycetous yeasts in the wood resulted from the high frequency of *Nakazawaiella* spp., especially *N. populi*, which was previously found in exudates of *Populus* species [145].

4.4. Mycorrhiza-Forming Fungi

Mycorrhiza-forming fungi were rare, especially in the soil. Basidiomycetous species occurred, surprisingly, more often in the wood, probably as: (i) facultative biotrophic encounters that either formed mycorrhizal structures or colonized the tissues as endophytes (i.e., grew within living plant tissues, without apparent infection, but not forming true mycorrhizae or causing any disease symptoms), or (ii) saprotrophs. Transition from saprotrophy to mycorrhizal status is common in fungal development [146], and other unexpected trophic conversions within the mycobiota may be possible.

4.5. The Endophytic State/Habit/Lifestyle of Fungi

As with grapevine diseases, it is assumed that the causal fungi are endophytic, living for a time asymptomatically in the plant. Then, at some point, in association with plant stress, they modify their behaviour and become pathogenic, which leads to the expression of disease symptoms [147]. As endophytes, they would often have key positive roles in plant function and fitness [148,149]. As parasites, they are cryptic, often opportunistic pathogens, which in special conditions induce disease [150]. Their virulence may be dictated by multi-partner interactions and environmental conditions. The most favoured conditions include: (i) the presence of very vigorous plants with succulent tissues; (ii) prolonged periods of damp and wet weather; (iii) free-standing water on the leaves; (iv) injuries such as pruning and leaf wounds; (v) the presence of senescent tissues, especially older, lower leaves; (vi) frost damage; and (vii) excessive crowding. Tissues are invaded by enzyme action, and roots and stems are gradually enveloped until the vessels are eventually reached, and wilting and desiccation occur. Different lifestyles and functions may occur depending on the situation. *Phoma* may at first be a plant-growth-promoting fungus [151]. The lifestyles of *Phaeoisaria* and *Pyrenochaetopsis* depend on secreted peptidases [121,152]. *Plectosphaerella* (mostly *P. populi*) damages poplar stems [102,152], but simultaneously induces the formation of antifungal phenolic metabolites that protect poplar against foliar pathogens [153]. Some, such as *Pyrenochaeta*, are weak pathogens [154], but their adaptability to different climates allows them to infect many hosts and to survive in a broad range of pH, temperature and aeration conditions and soil types. Fungi such as *Ilyonectria* may survive
in the roots of apparently healthy (asymptomatic) poplars, where they may suppress other fungal root pathogens and help maintain tree health [27,30]. These examples show that caution is necessary in classifying fungi according to function. There is no indication that other species, uncommon on Populus or so far not detected, might be pathogenic.

4.6. Interactions among Fungi

Trichoderma spp. occurred at a high natural frequency in the plantation soil. They are well known for their antagonistic activity, hyperparasitism and ability to induce defensive systems in plants to other microorganisms (specifically soil microorganisms). They are used in the biological control of several pathogens. *Trichoderma harzianum* Rifai and *T. atroviride* Karst. have shown promise in controlling Botryosphaeria dieback and esca disease in vineyards and other common trunk diseases [155]. *Trichoderma* significantly improved grapevine root growth and decreased the incidence of fungi involved in diseases when tested *in vitro* or in nurseries [24,156]. Grapevine defence systems have also been induced by Oomycota. The necrosis of root systems of vine cuttings was reduced by 50% after colonization by *Pythium oligandrum* [157–159]. Other biological control agents (*Aureobasidium pullulans, Cladosporium herbarum, Fusarium lateritium* and *Rhodotorula rubra*) have been reported to be effective against grapevine trunk disease pathogens, alone or in combination with fungicides, although some were tested only *in vitro* or in nurseries [160]. Arbuscular mycorrhizal fungi have been shown to increase the tolerance of grapevine rootstocks to *Ilonectria* spp. [161]; *Glomus intraradices* was the most effective [162]. *Aureobasidium pullulans, P. oligandrum, Trichoderma* spp. and two species of Glomeromycota, present in the poplar plantation soil, may naturally decrease the incidence of pathogens involved in disease. *Mortierella elongata*, also detected, has been found to manipulate poplar defenses while promoting plant growth [30]. This response was particularly beneficial because it was independent of cultivars.

4.7. Soil and Planting Material as the Source of the Inoculum

The soil origin was shown to be a significant factor affecting the composition of the fungal communities and networks in *Populus* [149,163]. The soil was here shown to be a natural source of many vascular and parenchymal pathogens found in the affected hybrid poplars, i.e., species of ascomycetous *Alternaria, Cadophora, Cladosporium, Fusarium, Ilonectria, Nectria, Neocentra, Neopyrenochna Ophiostomataceae, Phoma, Pyrenochaeta, Sporothrix, Thelonecpta and Verticillium*, and of basidiomycetous *Armillaria* and *Entyloma*. Their presence in the soil has been associated with their occurrence on plant debris and plant roots [164]. Soil was also the main source of pathogenic Oomycota (*Aphanomyces, Elongisporangium, Globisporangium, Phytophthora* and *Pythium*), which can, generally, cause extensive and devastating root rot. The destruction of roots can lead to minor or severe wilting caused by impeded root functioning or further biotrophic infections that can become necrotrophic in response to infection pressure or environmental stress. Oomycota tend to be very generalistic and non-specific, with a wide range of susceptible host roots, including poplar [142]. The wilt results from root degradation by Oomycota and a lack of oxygen, followed by disrupted water transport. A moist habitat and low pH in forest soils favour the growth, propagation, and dispersal of Oomycota spores. At optimal temperatures (28–30 °C), some species of *Globisporangium* grow very fast, i.e., 2.7 cm in 24-h.

Fungi such as *Collophorina, Hyalodendriella* and *Hyaloscypha bicolor*, which occurred sporadically in the soil, whilst being biotrophic parasites, may contribute to the final wilt [165,166].

The planting material may, however, already have been infected, either systemically from infected mother poplars or by contamination during the propagation process.
4.8. Colonization

As in grapevine disease, poplar wilt may be a complex disease in which symptoms result from the concomitant action of several factors.

The initial stage of the disease seems to be accomplished by highly specialized vascular fungi in the plant’s phloem. Their presence in the soil suggests that the infection can be soil-borne. Hyphae from established mycelia, and germ tubes developing from spores, perceive signals from root exudates. The hyphae secrete cell-wall-degrading enzymes and enter roots through wounds, at branching points, or directly through root tips. The mycelium spreads between root cortex cells to reach phloem and xylem vessels, from which the fungus travels as conidia in the sap stream, mostly upwards. The phloem and xylem become obstructed by mycelium and spores, and by plant-produced gels, gums and tyloses. Water transport to the leaves fails, and the plant wilts and dies. The fungus then invades all of the plant tissues and obtains nutrition by decomposing them. The response to the degradation of hemicellulose or lignin by the pathogen is usually the accumulation of tylose, polysaccharides and phenolic compounds (gummosis), tannins and phytoalexins. It is likely that at least a part of the external and internal symptoms are caused by phytotoxic fungal metabolites produced in decayed wood, or by the oxidation of some host-response substances. Some chemicals produced in grapevine in response to fungal infection are toxic, notably α-glucans and two naphthalenone pentaketides, scytalone and isosclerone [22]. A similar situation may be expected in poplar.

The final stage of the disease is apparently accomplished by parenchymal fungi. The spores released from reproductive structures produced in dead wood in the presence of water are dispersed by wind, potentially infecting fresh new wounds. Among the parenchymal fungi, bracket fungi (Polyporales, Basidiomycota) were, surprisingly, found only sporadically; they usually dominate communities of wood-rotting organisms. In grapevine, the phytoalexin resveratrol showed a direct antifungal effect, inhibiting the in vitro growth of two bracket species, Fomitiporia mediterranea and Stereum hirsutum. It is possible that the accumulation of certain compounds produced by poplar suppresses the colonization of wood by bracket fungi.

4.9. Effects of Climate

Up to 133 fungal species of 34 genera have so far been associated with grapevine trunk diseases worldwide [127]. The incidence of particular taxa differs between regions. All known grapevine trunk pathogens have been encountered in all grape-cultivation regions, mainly between latitudes of 30° to 50°, where annual mean temperatures are generally 10–20 °C [127,167]. There are conflicting reports on the effects of temperature and water stress on the incidence of grapevine trunk disease [127]. Therefore, it is not possible to assume a straightforward relationship between poplar disease and climatic conditions, particularly concerning water stress. Water stress is likely, however, to increase susceptibility. In recent years, precipitation in central Europe has often been characterized by extreme events (fog, hailstorms, thunderhails, heat waves, heavy rains, floods, winds), followed by drought. Increased humidity favours disease development. Infection by ascospores or conidia released from perithecia or pycnidia embedded in the bark or wood will be promoted by high humidity, often associated with higher temperatures; such conditions encourage the release and spread of spores, and favour spore germination [168–171]. The inoculum potential is consequently increased.

An extremely hot and dry summer (particularly August and September) occurred across Poland in 2015. The climate projections for Poland and central Europe predict further warming and the continuation of the changes already observed, including decreased precipitation and drought, especially in summer [172]. Such conditions may be expected to affect the health of poplar and other trees.
4.10. Control and Mitigation

Fungicides such as sodium arsenite or 8-hydroxyquinoline, used against esca and with the potential to control the wilt of poplar, are banned in Europe. No other highly effective treatments are available. Other chemical products and biological stimulators used in vineyards are not curative, and so only preventive methods are available in poplar plantations. Infections in grapevine from propagating materials can increase from 40% before cuttings are taken up to 70% after nursery processing [172]. Detection prior to planting is therefore critical to assure the longevity of newly established plantations [173]. A healthy poplar at planting is fundamental to the establishment and sustainability of a plantation. Good hygiene and wound protection are of the utmost importance. The disinfection of propagating materials with fungicides or hot water treatment (50 °C for 30 min), applied correctly to avoid plant stress and death, is advisable. Where soil constitutes the main source of the inoculum, disease management practices based on soil disinfection and amendments, plant-based resistance to infection, and prophylactic cultural practices should be applied. Infected plant parts and infected dead wood on the soil should be removed, pruning wounds should be chemically protected, and the elimination of plant-stress factors should be taken into account.

5. Conclusions

1. *Populus* hybrids may be subjected to various, thus far unidentified pathogenic agents.
2. New diseases may be asymptomatic, at least in the initial phase.
3. The indigenous microbiota can be involved in the development of the disease, but can also have an important role in limiting or preventing the development of pathogens.
4. The development of new diseases is related to climate change. It can lead to the near-total disappearance of some diseases, the sudden emergence of a new pathogens, or to the fungi already present becoming pathogenic.
5. Poplar wilt symptoms may be a consequence of various factors, the most important being climate and its effects on fungal development and the host–pathogen relationship.
6. Fungal diseases can spread from the soil or from introduced plant material, with the latter potentially introducing them into new areas.

Author Contributions: Conceptualization, W.S. and J.B.-B.; methodology, J.B.-B.; formal analysis, E.G. and M.W.; investigation, M.B.; resources, W.S.; writing H.K., writing, review and editing, H.K., visualization, J.B.-B. and H.K., supervision, J.B.-B.; project administration, W.S., funding acquisition, J.B.-B.; M.B.; W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research did not obtain any external funding.

Institutional Review Board Statement. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board and Ethics Committee of Poznan University of Life Sciences.

Informed Consent Statement: Informed Consent Statement was obtained from all subjects involved in the study.

Data Availability Statement: Data supporting reported results can be found at https://figshare.com/s/2c89719675a6859ee8a6 (accessed on 11 April 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.
28. Spies, C.; Moyo, P.; Halleen, F.; Mostert, L. *Phaeoacremonium* species diversity on woody hosts in the Western Cape Province of South Africa. *Persoonia* 2018, 40, 26–62, doi:10.3767/persoonia.2018.40.02.

29. Cabral, A.; Groeneveld, J.Z.; Rego, C.; Oliveira, H.; Crous, P.W. *Cylindrocarpon* root rot: Multi-gene analysis reveals novel species within the *Ilyonectria radicicola* species complex. *Mycol. Prog.* 2011, 11, 655–688, doi:10.1007/s11557-011-0777-7.

30. Liao, H.–L.; Bonito, G.; Rojas, J.A.; Hameed, K.; Wu, S.; Schadt, C.W.; Labbé, J.; Tuskan, G.A.; Martin, F.; Grigoriev, I.V.; et al. Fungal endophytes of *Populus trichocarpa* alter host phenotype, gene expression, and rhizobium composition. *Plant Microbe Interact.* 2019, 32, 853–864, doi:10.1094/pmatmi-05-18-0133-r.

31. Prodi, A.; Sandalo, S.; Tonti, S.; Pisi, A. *Phialophora*-like fungi associated with kiwi fruit elephantiasis. *J. Plan. Pathol.* 2008, 90, 487–494.

32. Diaz, B.; Murace, M.; Peri, P.; Keil, G.; Luna, I.; Oñaño, M.Y. Natural and preservative-treated durability of *Populus nigra* cv Italica timber grown in Santa Cruz Province, Argentina. *Int. Biodeterior. Biodegr.* 2003, 52, 43–47, doi:10.1016/s0169-5347(03)00034-9.

33. Xing, J.-Q.; Ikuo, M.; Wakako, O. Natural resistance of two plantation woods *Populus × canadensis* cv. and *Cunninghamia lanceolata* to decay fungi and termites. *For. Stud. China* 2005, 7, 36–39, doi:10.1007/s11632-005-0055-3.

34. Del Frari, G.; Gobbi, A.; Aggerbeck, M.R.; Oliveira, H.; Hansen, L.H.; Ferreira, R.B. Characterization of the wood mycobionte of *Vitis vinifera* in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. *Front. Plant Sci.* 2019, 10, 910, doi:10.3389/fpls.2019.00910.

35. Réblová, M.; Seifert, K.A. A new species of *Chaetosphaeria* with *Menispora ciliata* and *phialophora*-like anamorphs. *Fungal Divers.* 2008, 29, 99–105.

36. Corda, A.K.J. Leones fungorum hucusque cognitorum. *Praga Tomus* 1837, 1, 1–32.

37. Pirzynska, K.A. Xenotypy Petrak and *Graphostroma* gen. nov., segregates from Diatrypaceae. *Can. J. Bot.* 1974, 52, 2129–2135, doi:10.1139/b74-274.

38. Zhao, G.; Liu, X.; Wu, W. *Helicosporous hyphomycetes* from China. *Fungal Divers.* 2007, 26, 313–524.

39. Choi, Y.W. A Novel *Helicoperidion* isolate and its antimicrobial and cytotoxic pigment. *J. Microbiol. Biotechnol.* 2012, 22, 1214–1217, doi:10.4014/jmb.1204.04063.

40. Hengstenberg, J. Notes on *Hymenoscyphus*—II. On three non-fruitingcous species of the ‘fructi-genus-group’ with croziers. *Persoonia* 1996, 16, 191–207.

41. Kowalski, T. *Chalara fraxinea* sp. nov. associated with dieback of ash (*Fraxinus excelsior*) in Poland. *For. Pathol.* 2006, 36, 264–270, doi:10.1111/j.1365-2724.2006.00453.x.

42. Kowalski, T.; Holdenrieder, O. The teleomorph of *Chalara fraxinea*, the causal agent of ash dieback. *For. Pathol.* 2009, 39, 304–308, doi:10.1111/j.1365-2724.2008.00889.x.

43. Réblová, M.; Gams, W.; Štěpánek, V. The new hyphomycete genera *Brachylagula* and *Infundichalara*, the similar *Exochalara* and species of *Phialophora* sect. *Catenulatae* (Leotiomycetes). *Fungal Divers.* 2011, 46, 67–86, doi:10.1007/s13225-010-0077-6.

44. Behnke-Borowczyk, J.; Kwasna, H.; Kulawinek, B. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. *Fungal Pathol.* 2019, 49, e12487, doi:10.1111/fep.12487.

45. Hutchison, L.J.; Untereiner, W.A.; Hiratsuka, Y. *Krusta cryptophiloidica* gen. et sp. nov., a Dematiaceous Hyphomycete isolated from black galls of trembling aspen (*Populus tremulae*). *Mycolologia* 1995, 87, 902, doi:10.2307/370688.

46. Fernando, A.; Currah, R. A comparative study of the effects of the root endophytes *Leptolentinium orchi-dicola* and *Phialocephala fortinii* (Fungi Imperfecti) on the growth of some subalpine. *Can. J. Bot.* 1996, 74, 1071–1078.

47. Wit, M.; Sierota, Z.; Osako, T.; Mirzwa–Mróz, W.; Wakulierski, W. *Fusarium* spp. on nadzdmiennych organach zamierających dóbów—Nowe zagrozenie? (Fusarium spp. on the above-ground organs of dying—A new threat?). *Sylwan* 2015, 159, 403–410.

48. Chen, J.L.; Tzean, S.S. *Megacapitula villosa* gen. et sp. nov. from Taiwan. *Mycol. Res.* 1993, 97, 347–350.

49. Behnke-Borowczyk, J.; Kwasna, H.; Kokot, K.; Haußczak, M.; Łakomy, P. Abundance and diversity of fungi in oak wood. *Dendrobiology* 2018, 80, 143–160.

50. Rooney, S.N.; Eskalen, A.; Gabler, W.D. Recovery of *Phaeoanellia chlamydospora* and *Phaeoacremonium* in-flatipes from soil and grapevine tissues. *Phytopathol. Medit.* 2001, 40, S53–S56.

51. Ariyawansa, H.A.; Phukhamsakda, C.; Thambugala, K.M.; Bulgakov, T.S.; Wanasinghe, D.N.; Perera, R.H.; Mapook, A.; Camporesi, E.; Kang, J-C.; Jones, E.B.G.; et al. Revision and phylogeny of Leptosphaeriaceae. *Fungal Divers.* 2015, 74, 19–51, doi:10.1007/s13225-015-0349-2.

52. El-Demerdash, A.; El-Demerdash, A. Chemical diversity and biological activities of *Phaoospheria* fungi genus: A systematic review. *J. Fungi* 2018, 4, 130, doi:10.3390/jof40140130.

53. Liu, J.K.; Hyde, K.D.; Jones, E.B.G.; Ariyawansa, H.A.; Bhat, D.J.; Boomme, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110, Taxonomic and phylogenetic contributions to fungal species. *Fungal Divers.* 2015, 72, 1–197, doi:10.1007/s13225-015-0324-y.

54. Gams, W.; Stielow, B.; Gräfenhan, T.; Schroers, H-J. The ascomycete genus *Niesslia* and associated *Monocillium*-like anamorphs. *Mycol. Prog.* 2019, 18, 5–76, doi:10.1007/s11557-018-1459-5.

55. Jankowiak, R.; Bilański, P.; Ostafińska, A.; Linnakoski, R. Ophiostomatales associated with wounds on hardwood trees in Poland. *Plant Pathol.* 2019, 68, 1407–1424, doi:10.1111/ppa.13061.

56. Kendrick, W.B. *The Leptographium complex. Phialocephala* gen. nov. *Can. J. Bot.* 1961, 39, 1079–1085.
57. Kwaśna, H.; Mazur, A.; Łabędzki, A.; Kuźmiński, R.; Łakomy, P. Zbiorowiska grzybów w rozkładającej się drewno dębu i sosny (Communities of fungi in decomposed wood of oak and pine). *For. Res. Pap.* 2016, 77, 261–275.

58. Sogonov, M.V.; Castlebury, L.A.; Rossman, A.Y.; Mejia, L.C.; White, J.F., Jr. Leaf-inhabiting genera of the Gnomoniaceae, Diaphoretaphs. *Stud. Mycol.* 2008, 62, 1–79.

59. Tanney, J.; Seifert, K. Mollisiaeae: An overlooked lineage of diverse endophytes. *Stud. Mycol.* 2020, 95, 293–380, doi:10.1016/j.simyc.2020.02.005.

60. Behnke-Borowczyk, J.; Kwaśna, H.; Kartawik, N.; Sjika, B.; Belka, M.; Łakomy, P. Effect of management on fungal communities in dead wood of Scots pine. *For. Ecol. Manag.* 2021, 479, 118528, doi:10.1016/j.foreco.2020.118528.

61. Oren, Y.; Sadowsky, A.; Gegen, D.; Solez, Z.; Kinmy, M. Scytalidium wilt of citrus. *Eur. J. Plant Pathol.* 2001, 107, 467–470, doi:10.1023/a:1011283316617.

62. Machado, A.R.; Pinho, D.B.; De Oliveira, S.A.S.; Pereira, O.L. New occurrences of Botryosphaeriaceae causing black root rot of cassava in Brazil. *Trop. Plant Pathol.* 2019, 40, 464–470, doi:10.1590/s0104-5762201900600088.

63. De Meyer, E.M.; De Beer, Z.W.; Summerbell, R.C.; Moharram, A.; De Hoog, G.S.; Vismen, H.F.; Wingfield, M.J. Taxonomy and phylogeny of new wood- and soil-inhabiting *Sporothrix* species in the *Ophiostoma stenoceras-Sporothrix schenckii* complex. *Mycologia* 2008, 100, 647–661, doi:10.3852/07-157r.

64. Wrzonek, M.; Sierota, Z.; Sikora, K.; Malecka, M.; Pawłowska, J. Bogaectro grzybów zasiedlających drewno pniaków świerkowych po roku od sztucznego zakażenia *Phlebiopsis gigantea*. (The diversity of fungi present in the wood of spruce stumps one year after artificial infection by *Phlebiopsis gigantea*. *Stud. Mater.* CEPL Rogowiec. R. 2014, 16, 202–211.

65. Koukol, O.; Kubátová, A. New European records of basidiomycete *Burgaon anomalum* from coniferous litter and sediment in underground tunnel. *Czech Mycol.* 2015, 67, 241–247, doi:10.33585/cmy.67207.

66. Goh, T.K.; Hyde, K.D. A synopsis of *Trichocladium* species, based on the literature. *Fungal Divers.* 1999, 2, 101–118.

67. Nagahama, T. Yeast biodiversity in freshwater, marine and deep-sea environments. In *Biodiversity and ecophysiology of yeasts. The Yeast Handbook*; Rosa, C.A., Peter, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 241–263.

68. Alias, S.A.; Jones, E.B.G. Marine Fungi from Mangroves of Malaysia; Institute Ocean and Earth Sciences, University of Malaya: Kuala Lumpur, Malaysia, 2007, pp. 1–108.

69. Pang, K.L.; Jheng, J.S.; Jones, E.B.G. Marine Mangrove Fungi of Taiwan; National Taiwan Ocean University Press: Keelung, Taiwan, 2011; pp. 1–131.

70. El-Elmat, T.; Raja, H.A.; Figueroa, M.; Falkinham, J.O.; Oberlies, N.H. Isocromenones, izosenozfurane, and tetrahydronaphthalenes produced by *Paraphoma radicina*, a fungus isolated from a freshwater habitat. *Phytochemistry* 2014, 104, 114–120, doi:10.1016/j.phytochem.2014.04.006.

71. Hafeliner, J. Distributional and other data for some species of *Didymocyrtis* (Dothideomycetes, Pleo-sporeales, Phaeosphaeriaceae), including their *Phoma*-type anamorphs. *Frischiana* 2015, 80, 43–88.

72. Tibell, S.; Tibell, L.; Pang, K.-L.; Jones, E.G. A conspectus of the filamentous marine fungi of Sweden. *Bot. Mar.* 2019, 63, 141–153, doi:10.1515/bot-2018-0114.

73. Kwaśna, H. Zdrowotność topoli na plantacjach w strefach ochronnych hut miedzi Legnica i Głogów. (Health of poplars in plantations in the sanitary protection zones of Legnica and Głogów copper mills). *Sylwan* 2017, 161, 639–647.

74. Cellerino, G.P. Review of Fungal Diseases in Poplar; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999.

75. Kepley, J.B.; Jacob, W.R. Pathogenicity of *Cytopora* fungi on six hardwood species. *J. Arboric.* 2000, 26, 326–332.

76. Rosskopf, E.N.; Charudattan, R.; DeValerio, J.T.; Stall, W.M. Field evaluation of *Phomopsis amaranthica*, a biological control agent of *Amaranthus* spp. *Plant Dis.* 2000, 84, 1225–1230, doi:10.1094/pdis.2000.84.11.1225.

77. van Kan, J.A.L. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. *Trends Plant Sci.* 2006, 11, 247–253, doi:10.1016/j.tplants.2006.03.005.

78. Bussaban, B.; Lumyong, L.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D. Endophytic fungi from *Amomum siamense*. *Can. J. Microbiol.* 2001, 47, 943–948.

79. Kumaresan, V.; Suryanarayanan, T.S. Endophyte assemblages in young, mature and senescent leaves of *Rhizophora apiculata*: Evidence for the role of endophytes in mangrove litter degradation. *Fungal Divers.* 2002, 9, 81–91.

80. Osono, T.; Takeda, H. Comparison of litter decomposing ability among diverse fungi in cool temperate deciduous forest in Japan. *Mycologia* 2002, 94, 421–427.

81. Suryanarayanan, T.S.; Murali, T.S.; Venkatesan, G. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. *Can. J. Bot.* 2002, 80, 818–826, doi:10.1139/b02-069.

82. Yanna Ho, W.H.; Hyde, K.D. Fungal succession on fronds of *Phoenix hanceana* in Hong Kong. *Fungal Divers.* 2002, 10, 185–211.

83. Tomita, F. Endophytes in Southeast Asia and Japan: Their taxonomic diversity and potential applications. *Fungal Divers.* 2003, 14, 187–204.

84. Murali, T.S.; Suryanarayanan, T.S.; Geeta, R. Endophytic *Phomopsis* species: Host range and implications for diversity estimates. *Can. J. Microbiol.* 2006, 52, 673–680, doi:10.1139/w06-020.

85. Hyde, K.D.; Bussaban, B.; Paulus, B.; Crous, P.W.; Lee, S.; McKenzie, E.H.C.; Phottita, W.; Lumyong, S. Biodiversity of saprobic fungi. *Biodivers. Conserv.* 2007, 16, 17–35.

86. Rossman, A.Y.; Farr, D.F.; Castlebury, L.A. A review of the phylogeny and biology of the Diaphoretaphs. *Mycoscience* 2007, 48, 135–144, doi:10.1007/s10267-007-0347-7.
87. Promputtha, I.; Hyde, K.D.; McKenzie, E.H.C.; Peberdy, J.F.; Lumyong, S. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? *Fungal Divers.* **2010**, *41*, 89–99, doi:10.1007/s13225-010-0024-6.

88. Promputtha, I.; Lumyong, S.; Vijaykrishna, D.; McKenzie, E.H.C.; Hyde, K.D.; Jeewon, R. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. *Microb. Ecol.* **2007**, *53*, 579.

89. Kodueb, R.; McKenzie, E.H.C.; Lumyong, S.; Hyde, K.D. Diversity of saprobiic fungi on Magnoliaceae. *Fungal Divers.* **2008**, *30*, 37–53.

90. Kodueb, R.; McKenzie, E.H.C.; Lumyong, S.; Hyde, K.D. Fungal succession on woody litter of *Magnolia iliiiflora* (Magnoliaceae). *Fungal Divers.* **2008**, *30*, 55–72.

91. Botella, L.; Diez, J.J. Phylogenetic diversity of fungal endophytes in Spanish stands of *Pinus halepensis*. *Fungal Divers.* **2010**, *47*, 9–18, doi:10.1007/s13225-010-0061-1.

92. González, V.; Tello, M.L. The endophytic mycota associated with *Vitis vinifera* in central Spain. *Fungal Divers.* **2011**, *47*, 29–42, doi:10.1007/s13225-010-0073-x.

93. Dai, C.C.; Chen, Y.; Tian, L.; Sh. Y. Correlation between invasion by endophytic fungus *Phomopsis* sp. and enzyme production. *Afr. J. Agric. Res.* **2010**, *5*, 1324–1340.

94. Ceriani-Nakamura, K.; Słodowicz, M.; Gonzalez-Audino, P.; Dolinko, A.; Carmarán, C. Mycobiota associated with the ambrosia beetle *Megaplatyptus mutatus*: Threat to poplar plantations. *Forests* **2016**, *8*, 191–200, doi:10.1007/s12533-016-0313-0.

95. Goidanich, G. Schema di una classificazione delle Stilbaceae che erano riunite fin’ora nel genere *Graphium* Corda. *Ann. Bot.* **1935**, *21*, 40–50.

96. Upadhyay, H.P. *A monograph of Ceratocystis and Ceratocystiopsis*; University of Georgia Press: Athens, GA, USA, 1981, pp. 1–176.

97. Seifert, K.A.; Okada, G. *Graphium* anamorphs of *Ophiostoma* species and similar anamorphs of other as-comycetes. *In Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathology*; Wingfield, M.J., Seifert, K.A., Webber, J.F., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 1993; pp. 27–41.

98. De Gryter, J.; Woudenberg, J.H.; Aveskamp, M.M.; Verkley, G.J.; Groenewald, J.Z.; Crous, P.W. Systematic reappraisal of species in *Phoma section Paraphoma, Pyrenochaeta and Pleurophoma*. *Mycologia* **2010**, *102*, 1066–1081, doi:10.3852/09-240.

99. Ge, X.; Zhou, R.; Yuan, Y.; Xu, H.; Fu, J.; Li, H. Identification and characterization of *Paraphoma chrysanthemica* causing leaf spot disease on *Atractyloides japonica* in China. *J. Phytopathol.* **2016**, *164*, 372–377, doi:10.1111/jph.12463.

100. Dhillon, G.; Sandhu, J.S.; Singh, P. Variation among poplar (*Populus deltoides* Bttr.) clones for growth, wood traits and tolerance to leaf spot diseases. *Curr. Agric. Res. J.* **2020**, *8*, 128–136, doi:10.12944/carj.8.2.08.

101. Yokoya, K.; Postel, S.; Fang, R.; Sarasen, V. Endophytic fungal diversity of *Fragaria vesca*, a crop wild relative of strawberry, along environmental gradients within a small geographical area. *PeerJ* **2017**, *5*, e2860, doi:10.7717/peerj.2860.

102. Crous, P.W.; Schumacher, R.K.; Wingfield, M.J.; Lombard, L.; Giraldo, A.; Christensen, M.; Gardiennet, A.; Nakashima, C.; Pereira, O.; Smith, A.J.; et al. Fungal systematics and evolution: FUSE I. *Sydowia* **2015**, *67*, 81–118.

103. Domsch, K.H.; Gams, W.; Anderson, T.-H. *Compendium of Soil Fungi*. *TAXON* **1982**, *31*, 600, doi:10.2307/1220704.

104. Hale, M.D.; Eaton, R.A. Oscillatory growth of fungal hyphae in wood cell walls. *Trans. Br. Mycol. Soc.* **1985**, *84*, 277–288, doi:10.1016/s0007-5385(85)80079-6.

105. Nilsson, T. Microscopic studies on the degradation of cellophane and various cellulosic fibres by wood-attacking microfungi. *Stud. For. Suec.* **1947**, *117*, 1–27.

106. Hallaksela, A.M.; Niemistö, P. Stem discoloration of planted silver birch. *Scand. J. For. Res.* **2008**, *13*, 169–176.

107. Coetsee, C.; Wingfield, M.J.; Crous, P.W.; Wingfield, B.D. *Xenochalara*, a new genus of dematiaceous hyphomycetes for *Chalara*-like fungi with apical wall conidiominal development. *S. Afr. J. Bot.* **2000**, *66*, 99–103.

108. Fonseca, A.; Scorzetzi, G.; Fell, J.W. Diversity in the yeast *Cryptococcus albidus* and related species as re-vealed by ribosomal DNA sequence analysis. *Can. J. Microbiol.* **2006**, *46*, 7–27.

109. Cai, L.; Jeewon, R.; Hyde, K.; Hyde, R. Phylogenetic evaluation and taxonomic revision of *Schizothecium* based on ribosomal DNA and protein coding genes. *Fungal Divers.* **2005**, *19*, 1–21.

110. Arenz, B.E.; Held, B.W.; Jürgens, J.A.; Farrell, R.L.; Blanchette, R.A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. *Soil Biol. Biochem.* **2008**, *40*, 3057–3064, doi:10.1016/j.soilbio.2006.01.016.

111. McGovern, R.J.; Horita, H.; Stiles, C.M.; Seijo, T.E. Host range of *Iternospora perplexa* and management of *Iternospora* petal blight of China Aster. *Plant Health Prog.* **2006**, *7*, 7, doi:10.1094/php-2006-1018-02-rs.

112. Aveskamp, M.M.; de Gryter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise *Phoma* and related pleosporalean genera. Stud Mycol **2010**, *65*, 1–60.

113. Branda, E.; Turchetti, B.; Diolaiuti, G.; Pecchi, M.; Smiraglia, C.; Buzzini, P. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). *FEMS Microbiol. Ecol.* **2010**, *72*, 354–369, doi:10.1111/j.1574-6941.2010.01864.x.

114. Crous, P.W.; Groenewald, J.Z.; Diederich, P. *Xenopascalegium pinae*. Fungal Planet **55**. *Persoonia* **2010**, *5*, 130–131.

115. Kowalski, T.; Kehr, R.D. Two new species of *Phialocephala* occurring on *Pinus* and *Alnus*. *Can. J. Bot.* **1995**, *73*, 26–32, doi:10.1139/b95-004.

116. Markovskaja, S. Aero-aquatic fungi colonizing decaying leaves in woodland swampy pools of Aukštadvaris Regional Park (Lithuania). *Bot. Lithuanica* **2012**, *18*, 123–132.

117. Savchenko, K.G.; Heluta, V.P. Smut fungi of Ukraine, a checklist. *Sydowia* **2012**, *64*, 281–300.
145. Hagler, A.N.; Mendonca-Hagler, L.C.; Phaff, H.J. C. *populi*, a new species of yeast occurring in exudates of *Populus* and *Betula* species. Int. J. Syst. Bacteriol. 1989, 39, 97–99.

146. Selosse, M.A.; Martos, F.; Perry, B.; Maj, P.; Roy, M.; Pailler, T. Saprotrophic fungal symbionts in tropical achlorophyllous orchids. *Plant Signal. Behav.* 2010, 5, 349–353, doi:10.4161/psb.5.4.10791.

147. Hofstetter, V.; Buyck, B.; Croll, D.; Viret, O.; Coulous, A.; Gindro, K. What if esca disease of grapevine were not a fungal disease? *Fungal Divers.* 2012, 54, 51–67, doi:10.1007/s12225-012-0171-z.

148. Shakya, M.; Gottel, N.; Castro, H.; Yang, Z.K.; Gunter, L.; Labbe, J.; Muchero, W.; Bonito, G.; Vilgalys, R.; Tuskan, G.; et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature *Populus deltoides* trees. *PLoS ONE* 2013, 8, e67382, doi:10.1371/journal.pone.0076382.

149. Cregger, M.A.; Veach, A.M.; Yang, Z.K.; Crouch, M.J.; Vilgalys, R.; Tuskan, G.A.; Schadt, C.W. The *Populus* holobiont: Dissecting the effects of plant niches and genotype on the microbiome. *Microbiome* 2018, 6, 31.

150. Ridout, M.; Newcombe, G. *Sylviaea polyspora* is both a foliar endophyte and a pre-emergent seed pathogen in *Pinus ponderosa*. *Plant Dis.* 2018, 102, 640–644.

151. Hamayun, M.; Khan, S.A.; Khan, A.L.; Rehman, G.; Sohn, E.-Y.; Shah, A.A.; Kim, S.-K.; Joo, G.-J.; Lee, I.-J. *Phoma herbarum* as a new gibberellin-producing and plant growth-promoting fungus. *J. Microbiol. Biotechnol.* 2009, 19, 1244–1249.

152. Da Silva, R.R.; Da Rosa, N.G.; De Oliveira, L.C.G.; Juliano, M.A.; Juliano, L.; Rosa, J.C.; Cabral, H. Biochemical properties and catalytic specificity of a novel neutral serine peptidase secreted by fungus *Pyrenochaetopsis* sp. *Appl. Biochem. Biotechnol.* 2018, 187, 1158–1172, doi:10.1007/s12010-018-2875-3.

153. Ullah, C.; Unsicker, S.B.; Reichelt, M.; Gershenzon, J.; Hammerbacher, A. Accumulation of catechin and proanthocyanidins in black poplar stems after infection by *Plactosphaerella populi*: hormonal regulation, biosynthesis and antifungal activity. *Front. Plant Sci.* 2019, 10, 1441, doi:10.3389/fpls.2019.01441.

154. Schwartz, H.F.; Mohan, S.K. *Compendium of Onion and Garlic Diseases and Pests*, 2nd ed. The American Phytopathological Society 2016, pp. 8–86, doi:10.1094/978090545003.002.

155. Larignon, P. Réflexions sur l’esca: Ce que l’on sait déjà montre qu’il en reste beaucoup à apprendre: Vigne. Phytoma-La Défense des Végétaux 2004, 576, 28–31.

156. Fourie, P.H.; Halleen, F.; van der Vyver, J.; Schreuder, W. Effects of *Trichoderma* treatments on the occurrence of decline pathogens in the roots and rootstock of nursery grapevines. *Phytopathol. Medit.* 2001, 40, 473–478.

157. Gerbore, J. Lutte Biologique Contre un Champignon Pathogène Impliqué dans L’esca de la Vigne, par Utilisation de L’oomycte *Pythium oligandrum*. Ph.D. Dissertation, Punjab Agricultural University, Punjab, India, 2013, pp. 1–270.

158. Yacoub, A.; Gerbore, J.; Magnin, N.; Chambon, P.; Dufour, M.C.; Corio-Costet, M.F.; Guyonened, R.; Rey, P. Ability of *Pythium oligandrum* strains to protect *Vitis vinifera* against *Plactosphaerella chlamydospora*, a pathogen involved in Esca, by inducing plant resistance. *Biol. Control* 2016, 92, 7–16.

159. Yacoub, A.; Gerbore, J.; Magnin, N.; Vaillance, J.; Grizard, D.; Guyonened, R.; Rey, P. Induction of grapevine defence systems using the oomycete *Pythium oligandrum* against a pathogenic fungus involved in Esca. *Phytopathol. Mediterr.* 2014, 53, 574–575.

160. Bertsch, C.; Ramírez-Suero, M.; Magninrobert, M.; Larignon, P.; Chong, J.; Aboumansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. *Plant Pathol.* 2012, 62, 243–265, doi:10.1111/j.1365-3059.2012.02674.x.

161. Jones, E.E.; Hammond, S.; Blond, C.; Brown, D.S.; Ridgway, H.J. Interaction between arbuscular mycorrhizal fungi and rootstock cultivar on the susceptibility to infection by *Ilyonectria* species. *Phytopathol. Mediterr.* 2014, 53, 582–583.

162. Petit, E.; Gubler, W.D. Influence of *Gnomus intraradices* on black foot disease caused by *Cylindrocarpon macrodiidum* on *Vitis rapiestris* under controlled conditions. *Plant Dis.* 2006, 90, 1481–1484, doi:10.1094/pd-90-1481.

163. Bonito, G.; Reynolds, H.; Robeson, M.S.; Nelson, J.; Hodkinson, B.P.; Tuskan, G.; Schadt, C.W.; Vilgalys, R. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. *Mol. Ecol.* 2014, 23, 3356–3370, doi:10.1111/mec.12821.

164. Zhu, Y.J.; Yu, X.Y.; Wang, B.T.; Jin, L.; Jin, F.J. Description of *Fusarium solani* isolated from the soil of a poplar plantation in China. *Int. J. Agric. Biol.* 2020, 24, 663–670.

165. Crous, P.; Braun, U.; Schubert, K.; Groenewald, J. Delimiting *Cladosporium* from morphologically similar genera. *Stud. Mycol.* 2007, 58, 33–56, doi:10.3111/sim.2007.58.02.

166. Baral, H.-O.; De Sloover, J.R.; Huhtinen, S.; Laukka, T.; Stenroos, S. An emendation of the genus *Hyaloscypha* to include *Fuscoscypha* (Hyaloscyphaceae, Helotiales, Ascomycotina). *Karstenia* 2009, 49, 1–17.

167. van Niekerk, J.M.; Bester, W.; Halleen, F.; Crous, P.W.; Fourie, P.H. The distribution and symptomatology of grapevine trunk disease pathogens are influenced by climate. *Phytopathol. Mediterr.* 2011, 50, 98–111.

168. Úrbez-Torres, J.; Battany, M.; Bettiga, L.; Gispert, C.; McGourty, G.; Roncoroni, J.; Smith, R.J.; Verdegaal, P.; Gubler, W.D. Botryosphaeriaceae species spore-trapping studies in California vineyards. *Plant Dis.* 2010, 94, 717–724.

169. Úrbez-Torres, J.; Bruez, E.; Hurtado, J.; Gubler, W.D. Effect of temperature on conidial germination of Botryosphaeriaceae species infecting grapevines. *Plant Dis.* 2010, 94, 1476–1484.

170. van Niekerk, J.M.; Calitz, F.J.; Halleen, F.; Fourie, P.H. Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. *Eur. J. Plant Pathol.* 2010, 127, 375–390.
171. Szwed, M. Variability of precipitation in Poland under climate change. *Theor. Appl. Clim.* **2018**, *135*, 1003–1015, doi:10.1007/s00704-018-2408-6.

172. Gramaje, D.; Armengol, J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. *Plant Dis.* **2011**, *95*, 1040–1055.

173. Úrbez-Torres, J.R.; Haag, P.; Bowen, P.; Lowery, T.; O’Gorman, D. Development of a DNA macroarray for the detection and identification of fungal pathogens causing decline of young grapevines. *Phytopathology* **2015**, *105*, 1373–1388.