Eigenvalues of symmetric tridiagonal interval matrices revisited

Milan Hladík

April 13, 2017

Abstract

In this short note, we present a novel method for computing exact lower and upper bounds of a symmetric tridiagonal interval matrix. Compared to the known methods, our approach is fast, simple to present and to implement, and avoids any assumptions. Our construction explicitly yields those matrices for which particular lower and upper bounds are attained.

Keywords: Eigenvalue; Tridiagonal matrix; Interval matrix.

1 Introduction

Consider a tridiagonal symmetric matrix of size n

$$
A = \begin{pmatrix}
 a_1 & b_2 & 0 & \ldots & 0 \\
 b_2 & a_2 & b_3 & \ddots & \vdots \\
 0 & b_3 & a_3 & \ddots & 0 \\
 \vdots & \ddots & \ddots & \ddots & b_n \\
 0 & \ldots & 0 & b_n & a_n
\end{pmatrix}.
$$

and denote by $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$ its eigenvalues. Assume that the entries of A are not known precisely and the only information that we have is that a_i comes from a given interval $a_i = [a_{i\underline{}}, a_{i\overline{}}]$, $i = 1, \ldots, n$, and b_i comes from a given interval $b_i = [b_{i\underline{}}, b_{i\overline{}}]$, $i = 2, \ldots, n$.

By $A = [\underline{\Delta}, \overline{\Delta}]$ we denote the corresponding interval matrix, that is, the set of all matrices when $a_i \in a_i$ and $b_i \in b_i$. Next,

$$
\lambda_i = \{\lambda_i(A) ; A \in A\}
$$

stands for the corresponding eigenvalue sets. It was shown in [8] that they form real compact intervals. The problem investigated in this paper is to determine their endpoints. We focus on the upper endpoints λs since the lower ones can be determined analogously by the reduction $A \mapsto -A$.

*Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranské nám. 25, 11800, Prague, Czech Republic, e-mail: milan.hladik@matfyz.cz
Characterization of the extremal eigenvalues λ_1 and λ_n of a general symmetric interval matrix is due to Hertz [9] by a formula involving computation of 2^n matrices. A partial characterization of the intermediate eigenvalue intervals was done in [2, 5]. Due to NP-hardness of computing or even tightly approximating the eigenvalue sets [7, 10, 11, 12, 14, 16], there were developed various outer and inner approximation methods [8, 9, 1, 10, 11]. The tridiagonal case was particularly investigated by Commerçon [3], who proposed a method for calculating the exact eigenvalue bounds. This method, however, suffers from simplicity, time complexity analysis and generality. In what follows, we overcome all these drawbacks.

2 Our method

Proposition 1. Without loss of generality, we can assume that $A \geq 0$.

Proof. The transformation $A \mapsto A + \alpha I_n$ increases all eigenvalues of A by the amount of α. So for any $\alpha \geq \max_i \{-a_i\}$ this transformation yields a matrix with a nonnegative diagonal. Thus, we can assume that $a_i \geq 0$ for every i.

Suppose now there is i such that $b_i < 0$. Let λ be any eigenvalue of A and x a corresponding eigenvector, that is, $Ax = \lambda x$. Let A' be the matrix resulting from A by putting $b'_i = -b_i$, and let $x' = (-x_1, \ldots, -x_{i-1}, x_i, \ldots, x_n)^T$. Then for $k > i$ we have

$$(A'x')_k = (Ax)_k = (\lambda x)_k = (\lambda x')_k.$$

For $k < i-1$ we have

$$(A'x')_k = (-Ax)_k = (-\lambda x)_k = (\lambda x')_k.$$

The remaining two cases are:

$$A'x'_{i-1} = b'_i x'_{i-2} + a'_i x'_{i-1} + b'_i x'_i = -b_i - 1 x_{i-2} - a_i x_{i-1} - b_i x_i = -\lambda x_{i-1} = \lambda x'_i,$$

and

$$A'x'_i = b'_i x'_{i-1} + a'_i x'_i + b'_i x'_{i+1} = b_i x_{i-1} + a_i x_i + b_i x_{i+1} = \lambda x_i = \lambda x'_i.$$

Thus, A' has the same eigenvalues as A, and the eigenvectors of A can easily be derived from those of A'. By repeating this process, we obtain all b_i's nonnegative. \qed

We can therefore assume that $A \geq 0$ for the interval matrix A. Nonnegativity of the diagonal can be achieved by the transformation $a_i \mapsto a_i + \alpha$ with $\alpha := \max_i \{-a_i\}$, and nonnegativity of the remaining entries by the transformation

$$b_i \mapsto \begin{cases} b_i, & \text{if } b_i \geq 0, \\ -b_i, & \text{if } \overline{b}_i \leq 0, \\ [0, \max \{-\underline{b}_i, \overline{b}_i\}], & \text{otherwise.} \end{cases}$$

Suppose $\overline{b}_i > 0$ for all $i = 2, \ldots, n$, otherwise we split the problem into the sub-problems corresponding to the diagonal blocks of A.

Suppose now that $\underline{b}_i > 0$ for all $i = 2, \ldots, n$.

2
Let $\lambda(A)$ be an eigenvalue of A and $x(A)$ a corresponding eigenvector. They can be chosen in such a way that they constitute continuous mappings with respect to $A \in A$. We say that the eigenvectors of A are **sign invariant** [4] if $x_i(A) \neq 0$ for all $A \in A$ and all is. By other words, either $x_i(A) > 0$ for every $A \in A$, or $x_i(A) < 0$ for every $A \in A$.

Proposition 2. Suppose that $b_i > 0$ for all is. Then all eigenvalues of every $A \in A$ are simple and the eigenvectors are sign invariant.

Proof. The first part is obvious since it is known that a symmetric diagonal matrix has simple eigenvalues provided off-diagonal elements are nonzero [13].

For the second part, suppose to the contrary that there is $A \in A$ such that its eigenvector x has some zero entries. Let λ be the corresponding eigenvalue. Without loss of generality assume that x has the form of

$$x^T = (0, \ldots, 0, y_1, \ldots, y_k),$$

where $y_i \neq 0$ for all $i = 1, \ldots, k$. Decompose A into blocks accordingly

$$A = \begin{pmatrix} B & C \\ C^T & D \end{pmatrix},$$

where $B \in \mathbb{R}^{(n-k) \times (n-k)}$, $C \in \mathbb{R}^{(n-k) \times k}$ and $D \in \mathbb{R}^{k \times k}$. The equality $Ax = \lambda x$ implies $B0 + Cy = \lambda 0$, whence $Cy = 0$. Since

$$C = \begin{pmatrix} \vdots & \vdots \\ 0 & \ldots & 0 \\ b_{n-k+1} & 0 & \ldots & 0 \end{pmatrix},$$

and by the definition of y, we have $b_{n-k+1} = 0$. A contradiction. \(\square\)

The method

The derivative of a simple eigenvalue λ of a symmetric A according to a_{ij} is equal to x_ix_j, where $x, \|x\|_2 = 1$, is the corresponding eigenvector. The derivative is nonnegative with respect to the diagonal entries of A, so the largest eigenvalues of A are attained for $a_i := \overline{a}_i$. Due to sign invariancy of eigenvectors, we can easily determine also b_i-s. Let λ_k be the kth largest eigenvalue of A_c and x the corresponding eigenvector. Define

$$b_i := \begin{cases} \overline{a}_i & \text{if } x_ix_{i+1} > 0, \\ \underline{a}_i & \text{otherwise.} \end{cases}$$

Then \overline{a}_k is attained as the kth eigenvalue of the matrix in this setting.

In particular, from the Perron theory and properties of nonnegative matrices, we have that λ_1 is attained for $A := \overline{A}$.

Suppose now the general case, that is, there might be some i such that $\underline{a}_i = 0$. Consider the matrix A_{ϵ} such that $b_i = [\epsilon, \overline{a}_i]$ for all such is and $\epsilon > 0$ sufficiently small. This matrix A_{ϵ} satisfies the above assumptions, so we can determine the eigenvalues sets accordingly. From the continuity reasons, as $\epsilon \to 0$, the matrix A_{ϵ} converges to A. Therefore, the above procedure can be applied even in the general case. The sign invariancy then holds in a weaker sense that some entries of eigenvectors may vanish, but do not change their sign.

As a side effect, we have the following interesting property.
Proposition 3. $\overline{\lambda}_k$ is attained for $a_i := \overline{a}_i$ and $b_i \in \{b_i, \overline{b}_i\}$ such that the cardinality of
\[
\{i; b_i = \overline{b}_i\}
\]
is $n - k$.

Proof. Let $A \in \mathcal{A}$, let λ_k be its kth eigenvalue and v a corresponding eigenvector. By [13], the sign of v_j is equal to the sign of
\[
\chi_{j-1}(\lambda_k)b_{j+1} \ldots b_n,
\]
where χ_{j-1} is the characteristic polynomial of the (top left) principal leading submatrix of A of size $j - 1$, and $\chi_0 \equiv 1$. Since $b \geq 0$, the signs of v_j and $\chi_{j-1}(\lambda_k)$ coincide. The number of sign agreements between consecutive terms in the Sturm sequence $\{ \chi_i(\lambda_k); i = 0, 1, \ldots, n \}$ gives the number of roots of χ_n which are less than λ_k, that is $n - k$. Therefore, by the analysis of our method, $n - k$ is equal to the number of b_is that we set to the right end-point.

As a simple corollary we get that $\overline{\lambda}_1$ is attained for $b := \overline{b}$ and $\overline{\lambda}_n$ is attained for $b := \underline{b}$.

An interval matrix A is called regular if every $A \in \mathcal{A}$ is nonsingular; see [17]. Since we can determine the eigenvalue sets exactly, we can also decide whether 0 is an eigenvalue of some matrix. Therefore, we have that checking regularity of a tridiagonal symmetric interval matrix is a polynomial problem, which is a symmetric analogy of the results from [2].

Time complexity of our algorithm is the following. We need computation of eigenvalues of the midpoint matrix A_c, then $2n$-times computation of a certain eigenvalue of a matrix in A. The preprocessing requires only linear time. Provided we employ a standard method for computation of eigenvalues of a real symmetric diagonal matrix running in $O(n^2)$, the overall complexity is $O(n^3)$.

As a consequence, we have a quadratic time method for testing the following properties of a symmetric tridiagonal interval matrix A:

- positive (semi)-definiteness, i.e., whether each $A \in \mathcal{A}$ is positive (semi)-definite;
- Schur or Hurwitz stability, i.e., whether each $A \in \mathcal{A}$ is stable;
- spectral radius, i.e., the largest spectral radius over $A \in \mathcal{A}$.

Example 1. Consider the example from [8, 10, 12, 14]:
\[
A = \begin{pmatrix}
[2975, 3025] & [-2015, -1985] & 0 & 0 \\
[-2015, -1985] & [4965, 5035] & [-3020, -2980] & 0 \\
0 & [-3020, -2980] & [6955, 7045] & [-4025, -3975] \\
0 & 0 & [-4025, -3975] & [8945, 9055]
\end{pmatrix}.
\]
First, we transform the matrix into a nonnegative one
\[
A = \begin{pmatrix}
[2975, 3025] & [1985, 2015] & 0 & 0 \\
[1985, 2015] & [4965, 5035] & [2980, 3020] & 0 \\
0 & [2980, 3020] & [6955, 7045] & [3975, 4025] \\
0 & 0 & [3975, 4025] & [8945, 9055]
\end{pmatrix}.
\]
The eigenvalues of the midpoint matrix are $\lambda_1 = 12641$, $\lambda_2 = 7064.5$, $\lambda_3 = 3389.9$, $\lambda_4 = 905.17$, and the corresponding eigenvectors are

$$v_1 = (0.05575, 0.26874, 0.64725, 0.71116)^T, \quad v_2 = (-0.3546, -0.7206, -0.2595, 0.5363)^T,$$

$$v_3 = (0.71884, 0.14012, -0.55442, 0.39531)^T, \quad v_4 = (0.59535, -0.62357, 0.45425, -0.22446)^T.$$

Based on the signs of the entries of these vectors we can directly conclude that λ_1 is attained for A, and similarly λ_2, λ_3, λ_4 are attained as the corresponding eigenvalues of the matrices

$$\begin{pmatrix} 3025 & 2015 & 0 & 0 \\ 2015 & 5035 & 3020 & 0 \\ 0 & 3020 & 7045 & 3975 \\ 0 & 0 & 3975 & 9055 \end{pmatrix}, \quad \begin{pmatrix} 3025 & 2015 & 0 & 0 \\ 2015 & 5035 & 2980 & 0 \\ 0 & 2980 & 7045 & 3975 \\ 0 & 0 & 3975 & 9055 \end{pmatrix}, \quad \begin{pmatrix} 3025 & 1985 & 0 & 0 \\ 1985 & 5035 & 2980 & 0 \\ 0 & 2980 & 7045 & 3975 \\ 0 & 0 & 3975 & 9055 \end{pmatrix},$$

respectively. Similarly we proceed for calculating the lower end-points of the eigenvalue sets. Eventually, we obtain the following exact eigenvalue sets (by using outward rounding)

$$\lambda_1 = [12560.8377, 12720.2273], \quad \lambda_2 = [7002.2827, 7126.8283],$$

$$\lambda_3 = [3337.0784, 3443.3128], \quad \lambda_4 = [842.9250, 967.1083],$$

3 Conclusion

We presented a simple and fast algorithm for computing the eigenvalue ranges of interval symmetric matrices. Impreciseness of measurement and other kinds of uncertainty are often represented in the form of intervals. Therefore, checking various kinds of stability of uncertain systems naturally leads to the problem of determining eigenvalues of interval matrices. In this short note, we improved the time complexity and the overall exposition of the known method for the tridiagonal matrix case.

References

[1] H.-S. Ahn, K. L. Moore, and Y. Chen. Monotonic convergent iterative learning controller design based on interval model conversion. *IEEE Trans. Autom. Control*, 51(2):366–371, 2006.

[2] I. Bar-On, B. Codenotti, and M. Leoncini. Checking robust nonsingularity of tridiagonal matrices in linear time. *BIT*, 36(2):206–220, 1996.

[3] J. C. Commerçon. Eigenvalues of tridiagonal symmetric interval matrices. *IEEE Trans. Autom. Control*, 39(2):377–379, 1994.

[4] A. Deif and J. Rohn. On the invariance of the sign pattern of matrix eigenvectors under perturbation. *Linear Algebra Appl.*, 196:63–70, 1994.

[5] A. S. Deif. The interval eigenvalue problem. *ZAMM, Z. Angew. Math. Mech.*, 71(1):61–64, 1991.
[6] D. Hertz. The extreme eigenvalues and stability of real symmetric interval matrices. *IEEE Trans. Autom. Control*, 37(4):532–535, 1992.

[7] M. Hladík. Complexity issues for the symmetric interval eigenvalue problem. *Open Math.*, 13(1):157–164, 2015.

[8] M. Hladík, D. Daney, and E. Tsigaridas. Bounds on real eigenvalues and singular values of interval matrices. *SIAM J. Matrix Anal. Appl.*, 31(4):2116–2129, 2010.

[9] M. Hladík, D. Daney, and E. P. Tsigaridas. Characterizing and approximating eigenvalue sets of symmetric interval matrices. *Comput. Math. Appl.*, 62(8):3152–3163, 2011.

[10] M. Hladík, D. Daney, and E. P. Tsigaridas. A filtering method for the interval eigenvalue problem. *Appl. Math. Comput.*, 217(12):5236–5242, 2011.

[11] L. V. Kolev. Eigenvalue range determination for interval and parametric matrices. *Int. J. Circuit Theory Appl.*, 38(10):1027–1061, 2010.

[12] H. Leng. Real eigenvalue bounds of standard and generalized real interval eigenvalue problems. *Appl. Math. Comput.*, 232:164–171, 2014.

[13] B. N. Parlett. *The symmetric eigenvalue problem*. SIAM, Philadelphia, unabridged, corrected republication of 1980 edition, 1998.

[14] Z. Qiu, S. Chen, and I. Elishakoff. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters. *Chaos Soliton. Fract.*, 7(3):425–434, 1996.

[15] J. Rohn. Checking positive definiteness or stability of symmetric interval matrices is NP-hard. *Commentat. Math. Univ. Carol.*, 35(4):795–797, 1994.

[16] J. Rohn. An algorithm for checking stability of symmetric interval matrices. *IEEE Trans. Autom. Control*, 41(1):133–136, 1996.

[17] J. Rohn. Forty necessary and sufficient conditions for regularity of interval matrices: A survey. *Electron. J. Linear Algebra*, 18:500–512, 2009.