New Insight into Antiproton Production and Reabsorption Using Proton-Nucleus Collisions at the AGS

Saskia Mioduszewski for the E910 Collaboration*

Department of Physics, Building 510C, Brookhaven National Laboratory, Upton, NY 11973, USA

Antiproton (\bar{p}) yields are presented for proton-nucleus collisions, with targets Be, Cu, and Au, at beam momenta of 12.3 and 17.5 GeV/c. In addition to target size and beam momentum, the number of projectile collisions ν, as derived from the number of “grey” tracks (slow protons and deuterons), is used to disentangle the \bar{p} reabsorption from the production. By quantifying the amount of reabsorption of the \bar{p} within the nucleus as a function of ν, the annihilation within the nucleus is estimated and compared to the free annihilation cross section. Preliminary results on antilambda ($\bar{\Lambda}$) production as a function of ν are also presented for comparison.

1. Introduction

Sub-threshold \bar{p} production as well as an apparently reduced $p - \bar{p}$ annihilation cross section in the nucleus have been under debate since the discovery of the \bar{p} and until recently [1–8]. The observation of enhanced antimatter production has been proposed as a signature of the Quark Gluon Plasma [9]. Due to the annihilation of antibaryons in baryon-rich nuclear matter, it has also been proposed to use \bar{p} yields as a measure of the baryon density in heavy ion collisions [10]. These interesting prospects for using antibaryons to help determine the properties of the hot, dense phase in a heavy ion collision require a deeper understanding of both the production and reabsorption of the \bar{p} within the nucleus. Proton-nucleus collisions provide a cleaner environment for testing \bar{p} production and reabsorption within the nucleus than heavy ion collisions. In this paper, we present measurements of \bar{p} production in $p + A$ collisions at the AGS that may help address the questions of production and reabsorption in the nucleus.

2. Data Reduction

The E910 apparatus has been described elsewhere [11]. The time-of-flight (TOF) wall, used to identify the \bar{p}, is located approximately 8 m from the target and covers approximately 5×2 m2. Using the measured times of flight to identify particles, the \bar{p} band is

*supported by US-DOE under contracts with BNL (DE-AC02-98CH10886), Columbia (DE-FG02-86ER40281), ISU (DE-FG02-92ER4069), KSU (DE-FG02-89ER40531), LBNL (DE-AC03-76F00098), LLNL (W-7405-ENG-48), ORNL (DE-AC05-96OR22464), and UT (DE-FG02-96ER40982) and NSF under contract with FSU (PHY-9523974).
well separated from the pions and kaons up to 3.5 GeV/c. Momentum dependent cuts on the number of standard deviations of the measured TOF from the expected TOF of a proton are applied. To reduce background in the identified \(\bar{p} \) sample, we apply cuts on the particle’s ionization energy loss in the TPC and the measured photoelectrons in the Cerenkov detector. Quality cuts on the hits on the TOF include a cut on the difference in horizontal position between a projected track and the center of the hit TOF slat and a cut on the energy deposited on the TOF slat. Tracks are matched to the TOF wall with a 90±5% efficiency. We estimate and subtract a momentum-dependent background of approximately 5%. Feeddown from \(\bar{\Lambda} \) in our \(\bar{p} \) sample is estimated to be less than 5%. The data have been acceptance corrected within our \(y \) coverage, and corrected for the efficiencies of the cuts mentioned above. All results are shown within our \(y \) coverage, \(y = (1, 2) \) and \(p_T = (10, 800) \) MeV/c.

3. Measured Antiproton Yields

The \(\bar{p} \) yields are shown in Fig. 1. We observe a strong increase in \(p+Au \) \(\bar{p} \) yields from beam momentum 12.3 to 17.5 GeV/c as expected, since production of \(\bar{p} \) near threshold should depend sensitively on the available phase space. Although the likelihood of producing a \(\bar{p} \) may be greater in a larger nucleus [12], the likelihood of reabsorption is also greater in the presence of more baryons. These two countervailing effects can be studied by investigating the target dependence of \(\bar{p} \) yields. Results for Be, Cu, and Au at beam momentum 12.3 GeV/c are also shown in Fig. 1.

![Figure 1](image1.png)

Figure 1. Beam momentum and target dependence of rapidity densities (left) and transverse mass densities (right). The open squares are 17.5 GeV/c \(p+Au \) yields, solid squares are 12.3 GeV/c \(p+Au \), solid triangles are 12.3 GeV/c \(p+Cu \), and solid circles are 12.3 GeV/c \(p+Be \).

![Figure 2](image2.png)

Figure 2. Integrated rapidity density as a function of target A. The triangles are yields from 12.3 GeV/c beam momentum, and the open square is 17.5 GeV/c.

Figure 2 shows the integrated rapidity densities for all four data sets. The yields decrease from \(p+Be \) to \(p+Au \) collisions by 34 ± 22%.
4. Reabsorption of the Antiprotons

By characterizing collision “centrality,” E910 can provide new insight into \bar{p} absorption. Events are characterized by the mean number of collisions ν that the projectile undergoes within the nucleus (as determined by the number of “grey” tracks N_g) \cite{11}. The ν dependence of the mean \bar{p} multiplicity in 17.5 GeV/c $p+Au$ collisions is shown in Fig. 3. A preliminary measurement of the mean $\bar{\Lambda}$ multiplicity as a function of ν is also shown in Fig. 4. The mean multiplicity of both tends to decrease as ν increases. Although not convincingly significant, the increase from $N_g = 0$ to $N_g = 1$ in the mean \bar{p} yield may be evident of a contribution to production beyond the first $p+N$ collision. The increase is more pronounced in the mean $\bar{\Lambda}$ yield versus ν and thus strengthens the evidence for production beyond a first collision model. With the following assumptions, we quantify the “effective” absorption cross section in the nucleus and show that it is greatly reduced relative to the free $p-\bar{p}$ annihilation cross section. The first assumption is that the \bar{p} is predominantly produced in the first $p+N$ collision. Since the beam energy is near the production threshold, this is generally assumed to be true at AGS energies \cite{13}. If there are contributions to production beyond $\nu = 1$, as we have conjectured, they are not large enough to change our conclusion dramatically. The second assumption is that the \bar{p} follows the path of the projectile through the nuclear matter. This is also a reasonable assumption because we observe strongly forward-peaked angular distributions for the \bar{p}. Then the survival probability of the \bar{p} can be described by the following equation (although one should note that a formation time is not taken into account by this description),

$$
\sigma(pA \rightarrow \bar{p}X) = \sigma(pp \rightarrow \bar{p}X)e^{-\frac{\sigma_{abs}}{\sigma_{pN}}(\nu-1)}.
$$

(1)

Since the value ν plotted on the x-axis of Figs. 3 and 4 is simply an average value, $\bar{\nu}(N_g)$, and each value of N_g actually has a distribution of ν values associated with it, $P_{N_g}(\nu)$, we fold the above exponential with $P_{N_g}(\nu)$. We determine σ_{abs} by fitting with,

$$
\sigma(pA \rightarrow \bar{p}X) = \sigma(pp \rightarrow \bar{p}X)P_{N_g}(\nu)e^{-\frac{\sigma_{abs}}{\sigma_{pN}}(\nu-1)}.
$$

(2)

In one fit, the first data point is not included (because of the initial increase in yield from $N_g = 0$ to $N_g = 1$), and in the second fit, the $N_g = 0$ point is included. The parameter, σ_{abs}/σ_{pN}, resulting from the fit is 0.23 \pm 0.09 when neglecting the first data point in the fit, and 0.13 \pm 0.05 when including it. Taking the more conservative estimate of 0.23 and assuming σ_{pN} to be 30 mb, one obtains an absorption cross section, σ_{abs}, of 6.9 \pm 2.7 mb. At $p = 2.5$ GeV/c, the mean measured momentum of the \bar{p} sample we detect, this is approximately 1/5 of the free annihilation cross section \cite{12}, σ_{ann}. The large discrepancy between σ_{abs}, as derived from our model, and σ_{ann} suggests a modification of the $p-\bar{p}$ annihilation cross section within the nuclear medium. Figure 4 shows a very similar dependence of the mean $\bar{\Lambda}$ yield on ν. Fitting with the same function that was used for the \bar{p} yields, the extracted fit parameter is 0.22 \pm 0.04. The effective absorption cross section is thus the same (within errors) for $\bar{\Lambda}$ as for \bar{p}. This suggests an intermediate state that emerges from the nuclear medium as a \bar{p} or a $\bar{\Lambda}$.
5. Conclusions

We have found that, at AGS energies, the \bar{p} yields dramatically increase with beam momentum and moderately decrease with increasing target size. We have found evidence that even at these beam momenta, near the production threshold of the \bar{p} and the $\bar{\Lambda}$, there is production beyond the first $p+N$ collision for the $\bar{\Lambda}$, and a similar behavior for the \bar{p} is not excluded. Finally, the “effective” absorption cross section, calculated within the context of a simple model, is significantly reduced relative to the free $p-\bar{p}$ annihilation cross section. The similarity between the calculated absorption cross sections for \bar{p} and $\bar{\Lambda}$ may indicate the presence of a single intermediate state which leads to both final states.

REFERENCES

1. O. Chamberlain et al., Il Nuovo Cimento 3 (1956) 447.
2. T. Elioff et al., Phys. Rev. 128 (1962) 869.
3. D. E. Dorfan et al., Phys. Rev. Lett. 14 (1965) 995.
4. V. Koch, G.E. Brown and C.M. Ko, Phys. Lett. B 265 (1991) 29.
5. C. Spieles et al., Phys. Rev. C 53 (1996) 2011.
6. Y. Pang et al., Phys. Rev. Lett. 78 (1997) 3418.
7. M. Bleicher et al., Phys. Lett. B 485 (2000) 133.
8. R. Rapp and E.V. Shuryak, hep-ph/0008326 and Phys. Rev. Lett. 86 (2001) 2980.
9. U. Heinz et al., J. Phys. G: Nucl. Phys. 12 (1986) 1237.
10. S. Gavin et al., Phys. Lett. B 234 (1990) 175.
11. I. Chemakin et al., BNL E910 Collab., Phys. Rev. C 60 (1999) 024902.
12. P. Koch and C.B. Dover, Phys. Rev. C 40 (1989) 145.
13. H. Sako, E802 Collab., Nucl. Phys. A 638 (1998) 427c.