Title
MiR-22 as a metabolic silencer and liver tumor suppressor.

Permalink
https://escholarship.org/uc/item/6jn2b8z9

Journal
Liver research, 4(2)

ISSN
2096-2878

Authors
Wang, Lijun
Wang, Yu-Shiuan
Mugiyanto, Eko
et al.

Publication Date
2020-06-09

DOI
10.1016/j.livres.2020.06.001

Peer reviewed
MiR-22 as a metabolic silencer and liver tumor suppressor

Lijun Wang a, b, Yu-Shiuan Wang c, Eko Mugiyanto c, Wei-Chiao Chang c, d, Yu-Jui Yvonne Wan a, *

a Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
b The College of Life Science, Yangtze University, Jingzhou, Hubei
c PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
d Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei

A R T I C L E I N F O

Article history:
Received 1 April 2020
Received in revised form 21 May 2020
Accepted 1 June 2020

Keywords:
MicroRNA-22 (miR-22)
Cancer
Liver
Metabolism
Steatosis
Non-alcoholic steatohepatitis
Hepatitis

A B S T R A C T

With obesity rate consistently increasing, a strong relationship between obesity and fatty liver disease has been discovered. More than 90% of bariatric surgery patients also have non-alcoholic fatty liver diseases (NAFLDs). NAFLD and non-alcoholic steatohepatitis (NASH), which are the hepatic manifestations of metabolic syndrome, can lead to liver carcinogenesis. Unfortunately, there is no effective medicine that can be used to treat NASH or liver cancer. Thus, it is critically important to understand the mechanism underlying the development of these diseases. Extensive evidence suggests that microRNA 22 (miR-22) can be a diagnostic marker for liver diseases as well as a treatment target. This review paper focuses on the roles of miR-22 in metabolism, steatosis, and liver carcinogenesis. Literature search is limited based on the publications included in the PubMed database in the recent 10 years.

© 2020 The Third Affiliated Hospital of Sun Yat-sen University. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

MicroRNA 22 (miR-22) is highly conserved across vertebrate species and its expression is ubiquitously expressed in various organs.1–3 The miR-22 gene is located on chromosome 17p13, its cDNA catalyzed by RNA polymerase II is ~1.3 kb. In addition, its transcription start site lacks TATA box.4 Many studies have revealed that miR-22 is implicated in the development of various types of cancer including liver, colon, prostatic, breast cancer, gastric cancers, and many others. In general, miR-22 is considered as a metabolic silencer and a tumor-suppressor. However, its oncogenic effect has been documented as well. Furthermore, miR-22 has many biological functions including inflammatory and immune regulation; arterial smooth muscle cell proliferation and migration regulation; and cardiac and vascular remodeling.5–9 In this review paper, we summarize the role of miR-22 in liver disease development.

2. MiR-22 as a metabolic silencer

MiR-22 is an important regulator of dyslipidemia. It has been shown that miR-22 deficiency prevents high-fat diet (HFD)-induced dyslipidemia by inhibiting the expression of genes (sterol regulatory element binding protein-1 (Srebp-1), CC motif chemokine ligand 2 (Ccl2), interleukin 6 (Il-6), and interferon gamma (Ifng). Thus, miR-22 promotes lipogenesis and inflammation.10 MiR-22 along with miR-34a are up-regulated in the liver of diabetic db/db mice. miR-22 reduces the levels of E1A binding protein p300 (Ep300) as well as transcription factor 7 (Tcf7), and miR-34a decreases the protein level of its target gene Wnt Family Member 1 (Wnt1). Overexpression of miR-22 and miR-34a inhibits Wnt signaling, which leads to increased lipid accumulation in HepG2 cells.11

Fibroblast growth factor 21 (FGF21) is a master metabolic regulator that has a remarkable ability to reverse diabetes and obesity. In addition, FGF21 has regenerative capability and repairs injured tissue. Activation of FGF21 leads to AMPK and ERK1/2 activation. Given the role of FGF21 in metabolism and proliferation, its functions require regulation to avoid metabolism-driven overgrowth, which can be tumorigenic. A recent study has established the relationship between miR-22 and FGF21 and its receptor...
fibroblast growth factor receptor 1 (FGFR1) expression. The levels of miR-22 and FGFR21, FGFR1, as well as peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) were inversely correlated in human and mouse fatty livers, suggesting that hepatic miR-22 acts as a metabolic silencer. Further mechanistic analysis revealed that miR-22 directly targeted FGFR1. However, miR-22 decreased FGFR21 by reducing the occupancy of transcriptional factors peroxisome proliferator-activated receptor α (PPARα) and PGC1α to their binding motifs. Thus, miR-22 can be considered as a metabolic silencer by inhibiting the expression of FGFR21 and its receptor. The genes regulated by miR-22 to reduce metabolism are summarized in Table 1.

3. MiR-22 in hepatic steatosis and fibrosis

In consistency with the negative role of miR-22 in regulating hepatic lipid metabolism, miR-22 is increased in various drug-induced steatosis including drugs like valproate, doxycycline, cyclosporin A, and tamoxifen. miR-22 is a potential biomarker for drug-induced steatosis and can be used to predict the effect of a drug on steatosis development. Hepatic miR-22 overexpression also enhances diet and alcohol-induced steatosis. In contrast, reducing miR-22 level up-regulates hepatic FGFR21 and FGFR1, leading to AMPK and ERK1/2 activation, which effectively improve alcoholic steatosis in mouse models. Furthermore, miR-22 levels are inversely correlated with the bone morphogenetic protein 7 (BMP7) levels in human livers. BMP7 inhibits the progress of liver cirrhosis by inhibiting the expression of transforming growth factor beta 1 (TGF-β1), blocking the nuclear accumulation of SMAD family member 2/3 (Smad2/3), or increasing BMP7 levels in human liver biopsy samples. BMP7 also inhibits galectin-1 and 9, which are implicated in the progression and poor prognosis of patients with HCC. Galectin-9 is known as a marker of cancer progression and poor prognosis of patients with HCC.

A combination of serum miR-22 and miR-210, which distinguish F0 fibrosis from any fibrosis, can be noninvasive diagnostic biomarkers to detect the presence of liver fibrosis in children with cystic fibrosis. Furthermore, miR-22 levels are inversely correlated with the levels of liver fibrosis, portal hypertension, as well as sodium retention caused, possibly by upregulation of BMP7. Thus, increased miR-22 promotes liver cirrhosis through directly targeting BMP7. In consistency, microarray screening study showed that “mumu_circ_34116/miR-22-3P/BMP7” signal axis might be involved in the activation of hepatic stellated cells. Furthermore, transfection experiment validated that the expression of alpha-smooth muscle actin (α-SMA) is significantly elevated because of inhibitory expression of mumu_circ_34116.

However, miR-22 inhibits galectin-1 and 9, which are implicated in the development of hepatic fibrosis. Down-regulation of galectin-1 can improve liver fibrosis by reducing α-SMA, desmin, alamine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin. Serum galectin-9 levels are positive correlation with liver fibrosis. Thus, the role of miR-22 in liver diseases can be complicated. Whether miR-22 via reducing galectins can treat hepatic fibrosis remains to be studied.

4. MiR-22 and viral hepatitis

Serum miR-22 and miR-1275 are up-regulated in hepatitis B virus (HBV) patients. The level of those miRNAs are positively correlated with the serum γ-glutamyl transpeptidase levels. In consistency, serum level of miR-22 and miR-122 are increased in chronic HBV patients. Additionally, their expression levels are positively associated with hepatitis B surface antigen (HBsAg) levels and ALT levels. Similarly, elevated circulating miR-22 is found in human immunodeficiency virus (HIV)/hepatitis C virus (HCV) patients and is involved in the etiology of liver injury in HIV patients. Further, elevated circulating miR-22 and miR-122 indicates viral replication and liver injury in HBV patients.

5. Long non-coding RNA (lncRNA) MiR22HG as a tumor suppressor for hepatocellular carcinoma (HCC)

Based on genome-wide lncRNA expression profiles in HCC tissues and paired adjacent non-tumor tissues, lncRNA NR_028502.1 located in 17p13.3, a chromosomal region that is frequently deleted or hypermethylated in liver cancer, is down-regulated in HCC. In consistency, serum level of miR-22 and miR-122 are increased in chronic HBV patients. MiR22HG overexpression inhibits proliferation, invasion, and metastasis in HCC cells. In part, lncRNA MiR22HG acts a tumor suppressor for HCC through deriving miR-22-3p to target high mobility group box 1 (HMGB1), thereby inactivating HMGB1 downstream pathways.

6. MiR-22 as a tumor suppressor

MiR-22 expression levels were analyzed in different types of cancer using information available from the TCGA Data Portal. The studies that have normal specimen number greater than 15 were included in the analysis. The data showed that in comparison with normal specimens, miR-22 levels were differentially expressed based on cancer types. In comparison with normal specimens, its level was reduced in HCC, breast invasive carcinoma, and lung squamous cell carcinoma (Fig. 1A and B).

We further analyzed the relationships between miR-22 levels and HCC clinical features. The data showed that the level of miR-22 was inversely associated with the depth of HCC invasion. T3 and T4 cancers had lower miR-22 level compared with T1 and T2 (Fig. 2A and E). In addition, HCC patients at stage III or IV had lower miR-22 level than those at stages I and II (Fig. 2B and E). Furthermore, miR-22 expression level was positively correlated with overall survival and disease-free survival (Fig. 2C–E). Thus, miR-22 can be considered as tumor suppressor for HCC.

It has been shown that low expression of miR-22 is associated with poor prognosis in hepatoma patients. In addition, reduced hepatic or serum miR-22 is shown in HBV-associated HCC patients. However, no significant difference of serum miR-22 levels was found between benign liver disease and non-HBV-related HCC patients. In consistency with our data analysis, miR-22 levels were negatively correlated with tumor size, lymph node metastasis, TNM

Table 1	MiR-22 as a metabolic silencer.	
Regulated genes	Function	Refs.
Sreb1, Cc2, Il-6, Ifng	Lack of miR-22 prohibits fat mass formation and dyslipidemia caused by a high-fat diet	10
Ep300, Tcf7	MiR-22 inhibits Wnt signaling leading to increased lipid accumulation in HepG2 cells	11
FGFR1, FGFR2	Increased hepatic miR-22 and reduced PGE2 are found in hepatic steatosis	12

Abbreviations: miR-22, microRNA 22; Sreb-1, sterol regulatory element binding protein-1; Cc2, CC motif chemokine ligand 2; Il-6, interleukin 6; Ifng, interferon gamma; Ep300, E1A binding protein p300; Tcf7, transcription factor 7; FGFR1, fibroblast growth factor receptor 1; FGFR2, fibroblast growth factor factor 2.

Please cite this article as: Wang L et al., MiR-22 as a metabolic silencer and liver tumor suppressor, Liver Research, https://doi.org/10.1016/j.livres.2020.06.001
stage, pathological type, differentiation grade, liver cirrhosis, serum alpha-fetoprotein (AFP) and HBV DNA copy number. Moreover, another study also shows that serum miR-22 and miR-199a-3p combined with AFP have a high accuracy in early detection of HCC in patients with chronic hepatitis C (Table 2).33

Fig. 1. MiR-22 expression level in different cancers. The miR-22 expression level (log2) was analyzed using TCGA Data Portal and data are shown as box plot (white box: normal specimens; gravy box: cancer specimens).

Fig. 2. The associations between miR-22 levels and HCC clinical features. The correlation between miR-22 expression level (log2) and (A) the depth of tumor invasion and (B) tumor stages. Kaplan-Meier curves showed the relationships between miR-22 levels and (C) overall survival and (D) disease-free survival. P values were calculated by the log-rank test. Clinical features and P values are summarized in (E).

Table 2
MiR-22 as a liver cancer diagnostic marker.

Diagnostic indicator	Disease	Refs.
Reduced expression of miR-22	Poor prognosis in hepatoma in patients	31
Reduced hepatic or serum miR-22	HBV-associated HCC patients.	32
Serum miR-22 and miR-199a-3p in combination with AFP	Early phase of HCC in patients with chronic HCV	33

Abbreviations: miR, microRNA; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; AFP, alpha-fetoprotein.
7. The mechanism by which miR-22 acts as a tumor suppressor

Several mechanisms by which miR-22 acts as a liver cancer suppressor have been uncovered. miR-22 inhibits the development of HCC through directly targeting lncRNA NEAT1 and AKT serine/threonine kinase 2 (AKT2), which are overexpressed in human HCC specimens in comparison with adjacent normal tissue. Both NEAT1 and AKT2 are implicated in the development of HCC by increasing proliferation and invasion while inhibiting apoptosis in HCC cells.1,2

MiR-22 can also directly target the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), a potential diagnostic marker for HBV-related HCC.3 As an oncogene, HNRNPA1 promotes HBV-related HCC via the EGFR signaling pathway. Additionally, HNRNPA1 is negatively correlated with the overall survival of HCC patients.

MiR-22 is reduced in folate deficiency-conditioned HCC cell lines including SK-Hep1 and Mahlavu.4 MiR-22 overexpression reduces the number of spheres in both liver cancer Sk-Hep1 and Mahlavu (MDA-MB-453) cells, and the opposite is observed by inhibiting miR-22. It has been shown that reduced miR-22 causes folate deficiency-induced cancer stem-like phenotypes via increasing histone deacetylase 4 (HDAC4), zinc finger E-box binding homeobox 2 (ZEB2), and octamer-binding transcription factor 4 (OCT4), but decreasing paired related homeobox 1 (PRRX1).5

MiR-22 also silences galectin-1 and 9, which specifically bind to β-galactoside sugars. Galectin-1 is overexpressed in HCC and promotes HCC progression.6-8 The expression of miR-22 is negatively correlated with the expression of galectin-1. The expression of galectin-1 is increased in hepatic stellate cells (HSCs) isolated from HCC tissues. MiR-22 inhibits the HSC-induced T cell apoptosis and cytokine production promoted by HSC-derived galectin-1 in HCC.9 Moreover, elevated galectin-1 and low CD3 expression levels is associated with poor prognosis in HCC patients. Further, Galectin-9 is increased while miR-22 is decreased in human liver cancer tissues and cell lines. MiR-22 inhibits lymphocyte apoptosis and tumor cell proliferation in HCC cells via silencing galectin-9.10

MiR-22 can directly target cell cycle gene expression.11 Cyclin A2 (CCNA2) is a direct miR-22 target gene in both liver and colon cancer cells.12 MiR-22 overexpression as well as chemicals that induce miR-22 expression can reduce CCNA2 protein and increase the number of G0/G1 in human liver cancer Huh7 and colon cancer HCT116 cells.13

Silencing multiple protein deacetylases is another mechanism by which miR-22 has anti-cancer effects. HDAC1 is a novel miR-22 target recently uncovered by our group using colon cancer cells.14 In a miR-22-dependent manner, histone deacetylase (HDAC) inhibitors reduce HDAC1, HDAC4, and sirtuin 1 (SIRT1), which are highly expressed in the liver and colon cancer specimens. Upon miR-22 induction, reduced HDAC1, HDAC4, and SIRT1 occupied the transcriptional regulatory region of the retinoic acid receptor beta (RARβ) and nuclear receptor subfamily 4 group A member 1 (NURR77) genes leads to increased H3K9 acetylation of the RARβ and NURR77 genes. Therefore, miR-22-reduced protein deacetylases simultaneously induce NURR77 and RARβ expression, as well as, their nuclear export converting their transcriptional effect into apoptotic effect.15

Nuclear factor κB (NF-κB) regulates many biological processes including liver tumorigenesis.16 MiR-22 inhibits NF-κB activity through targeting NF-κB coactivator 1 (NCOA1).17 The mechanisms by which miR-22 functions as a HCC suppressor is summarized in Table 3 and Fig. 3.

It is interesting to note that the potential tumor-promoting effect of miR-22 has also been revealed in an animal model. MiR-22 inhibits the expression of methionine adenosyltransferase 1A (Mat1a) and methylenetetrahydrofolate reductase (Mthfr) in early preneoplastic livers of rats treated by 2-acetylaminofluorene. The reduced expression of Mat1a and Mthfr genes by miR-22 and miR-29b is a main driver to promote liver carcinogenesis in the studied model.18

8. The mechanisms by which the expression of miR-22 is regulated

Knockout hepatic nuclear respiratory factor 1 (Nrf1a) causes oncogenic activation of NF-E2-related factor 2 (Nrf2) and leads to the development of NASH and hepatoma. Thus, Nrf1a functions as a dominant tumor suppressor. It has been shown that both Nrf1α and Nrf2 regulate miR-22 expression via binding to the antioxidant response element (ARE) site of the miR-22 promoter.19

There are several chemicals that can induce the expression of miR-22 including catalpol, an iridoid glucoside. Catalpol induces miR-22 and reduces cell proliferation, invasion, and migration. Catalpol also increases apoptotic rates and G0/G1 phase of Huh7 and HCLMM2 cells. Catalpol exerts anti-tumor effects through up-regulating miR-22-3p, which reduces the metastasis associated 1 family member 3 (MTA3) expression by directly targeting MTA3.20 MiR-22 is induced in human liver cancer Huh7 cells treated with sodium butyrate21,22 Sodium butyrate treatment or forced miR-22 overexpression increases the ROS production and reduces SIRT1 expression. Down-regulation of miR-22 counteracts the effects of butyrate in Huh7 cells including the induction of apoptosis via ROS production, cytochrome c release, and activation of caspase-3. Furthermore, anti-miR-22 also reverses the inhibition of cell growth and proliferation mediated by sodium butyrate.23

In addition to butyrate, other short-chain fatty acids (SCFAs) that have histone deacetylase (HDAC) inhibitory property such as propionate and valerate as well as synthetic HDAC inhibitor suberanilohydroxamic acid (SAHA) can also induce miR-22 as demonstrated using colon cancer cells.24 In contrast, SCFAs that lack HDAC inhibitory effect such as formate and acetate do not have an effect in inducing miR-22.25 Additionally, retinoic acid (RA), which is produced by butyrate-induced aldehyde dehydrogenase 1 family member A1(ALDH1A1), also induces miR-22. Furthermore, when HDAC inhibitors are used in combination with RA, the induction of miR-22 reaches to a higher level than a single chemical treatment. Such induction is mediated via retinoic acid receptor β (RARβ) binding to a direct repeat 5 (DR5) motif found in the regulatory region of the miR-22.26

Bile acids via its receptor farnesoid X receptor (FXR) induces miR-22 by direct binding to an invert repeat 1 (IR-1) motif located in the regulatory region of the miR-22.27 Both endogenous FXR ligand chenodeoxycholic acid and synthetic FXR ligand GW4064 increase miR-22 in Huh7 liver and HCT116 colon cells.28 In addition, semi-synthetic bile acid, obeticholic acid, which is in clinical trials to treat NASH, also increases miR-22 expression in Huh7 liver cells.29 Furthermore, by inducing FGF21 signaling, miR-22 inhibitors can improve the effect of obeticholic acid in improving insulin sensitivity as demonstrated in Western diet-induced obese mice.30 The liver is a testosterone-responsive organ. Testosterone regulates liver metabolism, inhibits hepatic immune responses and even promotes liver carcinogenesis.31-33 Testosterone treatment of female mice induces hepatic miR-22, miR-690, miR-122, let-7A, miR-30D, and let-7D. An androgen response element (ARE) has been found in the miR-122 promoter, but not in the other five induced miRNAs. Therefore, the mechanism by which testosterone induces miR-22 remains to be uncovered. The induction of miR-22 leads to reduced expression of estrogen receptor α and aromatase, thus resulting in estrogen signal inhibition.34

Please cite this article as: Wang L et al., MiR-22 as a metabolic silencer and liver tumor suppressor, Liver Research, https://doi.org/10.1016/j.jliverres.2020.06.001
The chemicals that have anti-cancer effects and can increase the expression level of miR-22 are summarized in Table 4 and Fig. 3. It is interesting to note that most of those miR-22 inducers have metabolic stimulating effects, and yet miR-22 functions as a metabolic silencer.

9. Conclusion

The level of miR-22 rises in hepatic steatosis and declines in liver cancer. Thus, miR-22 inhibition can treat NAFLD, and yet miR-22 inducers or mimics can be useful treating liver cancer. Indeed, the cancer treatment effects of miR-22 inducers includes catalpol, butyrate, retinoic acid, and HDAC inhibitors have been revealed.

Metabolism driven by FGF21 leads to AMPK and ERK1/2 activation thereby supporting growth and cell proliferation. Surprisingly, metabolism enhancers such as bile acids, testosterone, and retinoic acid induce the expression of miR-22, which silences FGF21 and its receptor. The simultaneous induction of miR-22 as well as FGF21 signaling likely maintain FGF21 homeostasis and restrict persistent ERK1/2 activation. In other words, concomitant induction of FGF21 and miR-22 can be a way to maintain FGF21 homeostasis and thus insulin sensitivity. However, the reduction of

Table 3
The mechanisms by which miR-22 acts as a liver cancer suppressor.

Cancer models	Target genes	Function of the target genes	Refs.
Human HCC	NEAT1, AKT2	Promote proliferation and invasion, inhibit Apoptosis	54-56
HBV-related HCC	HNRNPA1, HDAC4, ZEB2, OCT4, PRKX1	Regulates EGF receptor signaling, Regulate gene expression	37,38
Folate deficiency-conditioned HCC cells	Galectin-1, Galectin-9	Promote T cell apoptosis and cytokine production	39-41
Human HCC	CCNA2	Regulates cell cycle	42
Huh7 and HCT116 cells	HDAC1, HDAC4, SIRT1, NUR77, RARβ	Epigenetic and transcriptional regulation leading to apoptosis of cancer cell	43
HCT16 and DLD-1 cell	NCOA1, NF-κB	Transcriptional regulation	44
Huh7 cell			

Abbreviations: miR-22, microRNA 22; HCC, hepatocellular carcinoma; AKT2, AKT serine/threonine kinase 2; HBV, hepatitis B virus; HNRNPA1, heterogeneous nuclear Ribonucleoprotein A1; HDAC, histone deacetylase; ZEB2, Zinc finger E-box binding homeobox 2; OCT4, octamer-binding transcription factor 4; PRKX1, decreased paired related homeobox 1; CCNA2, cyclin A2; SIRT1, siruin 1; NUR77, nuclear receptor subfamily 4 group A member 1; RARβ, retinoic acid receptor beta; NCOA1, nuclear receptor coactivator 1; NF-κB, nuclear factor kappa B.

Table 4
MiR-22 inducers.

MiR-22 inducers	Refs.
Catalpol	47
Bile acids, Chenodeoxycholic acid, GW4064, Obeticholic acid	12,42
Retinoic acid	43
HDAC inhibitors: butyrate, propionate, valerate, suberanilohydroxamic acid	42,43,48
Testosterone	55

Abbreviations: miR-22, microRNA 22; HDAC, histone deacetylase.
miR-22 may improve the efficacy of AMPK activators by increasing hepatic FGFR2. The expression level of miR-22 changes in a dynamic way as liver disease progresses. To use miR-22 as a drug target, the status of miR-22 needs to be monitored. To target delivery of miR-22 inducer or silencer should be considered to avoid unwanted effects.

Author's contributions

L. Wang reviewed literature and wrote the article. Y.-S. Wang contributed in data analysis and writing. E.M. contributed in data analysis. W.-C. Chang contributed in data analysis and writing. Y.-J. Wan reviewed literature and wrote the article.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Acknowledgements

This study was supported by grants funded by the National Institutes of Health U01CA179582 and R01CA222490, UC Davis Comprehensive Cancer Center seed grant, and UC Davis Global Affairs seed grant. The authors thank Ying Hu, Mindy Huynh, and Xingru Zhu for editing the manuscript.

References

1. Chen B, Tang H, Liu X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Conc Lett. 2015;356:410–417.
2. Huang ZP, Wang DZ. miR-22 in cardiac remodeling and disease. Trends Cardiovasc Med. 2014;24:267–272.
3. Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targetlng Mecp2 via miR-22. PloS One. 2014;9:e88685.
4. Shi C, Xu X. MicroRNA-22 is down-regulated in hepatitis B virus-related hepatic carcinoma. Biomed Pharmacother. 2013;67:375–380.
5. Wang J, Li Y, Ding M, Zhang H, Xu X, Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer [Review]. Int J Oncol. 2017;50:345–355.
6. Bai N, Dikstein R. miR-22 forms a regulatory loop in PTE/NK/PKT pathway and modulates signaling kinetis. PloS One. 2010;5:e10859.
7. Wang B, Yao Q, Xu D, Zhang JA. MicroRNA-22-3p as a novel regulator and therapeutic target for autoimmune diseases. Int Rev Immunol. 2017;36:176–181.
8. Huang SC, Wang M, Wu WB, et al. MiR-22-3p inhibits arterial smooth muscle cell proliferation and migration and neointimal hyperplasia by targeting HMGB1 in arteriosclerosis obliterans. Cellular Physiol Biochem. 2017;42:2492–2506.
9. Huang ZP, Wang DZ. miR-22 in smooth muscle cells: a potential therapy for cardiovascular disease. Circulation. 2018;117:1842–1845.
10. Diniz GP, Huang ZP, Liu J, et al. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clin Sci. 2017;131:2885–2900.
11. Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M. Comprehensive miRNA and in silico analyses Identify the Wnt signaling pathway to be altered in the diabetic liver. Mol Biosyst. 2011;7:3234–3248.
12. Hu Y, Liu HX, Jena PK, Sheng L, Ali MR, Wan YJ. miR-22 inhibition reduces hepatic steatosis via FGFR2 and FGFR1 induction. JHEP Rep. 2020;2(2), 100093. https://doi.org/10.1007/s40544-020-00093-0.
13. Lopez-Bierria M, Conde I, Tolosa L, et al. New microRNA biomarkers for drug-induced steatoasis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front Pharmacol. 2017;8:3.
14. Cook NL, Pereira TN, Lewindon PJ, Shepherd RW, Rammy GA. Circulating microRNA-2 as noninvasive diagnostic biomarkers of liver disease in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2015;60:247–254.
15. Yang T, Chen SL, Lu XJ, Shen CY, Liu Y, Chen YP. Bone morphogenetic protein 7 suppresses the progression of hepatic fibrosis and regulates the expression of grelin and transforming growth factor beta1. Mol Med Rep. 2012;6:246–252.
16. Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C. The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci. 2013;10:441–450.
46. Qiu L, Wang M, Hu S, et al. Oncogenic activation of Nrf2, though as a master antioxidant transcription factor, liberated by specific knockout of the full-length Nrf1alpha that acts as a dominant tumor repressor. Cancers. 2018;10.

47. Zhao L, Wang Y, Liu Q. Catalpol inhibits cell proliferation, invasion and migration through regulating miR-22-3p/MTA3 signalling in hepatocellular carcinoma. Exp Mol Pathol. 2019;109:51–60.

48. Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 2017;12:340–349.

49. Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol. 2006;20:1333–1351.

50. Krucken J, Dkhil MA, Braun JV, et al. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun. 2005;73:436–443.

51. Wunderlich F, Dkhil MA, Mehnert LI, et al. Testosterone responsiveness of spleen and liver in female lymphotxin beta receptor-deficient mice resistant to blood-stage malaria. Microb Infect. 2005;7:399–409.

52. Drinkwater NR, Hanigan MH, Kemp CJ. Genetic and epigenetic promotion of murine hepatocarcinogenesis. Prog Clin Biol Res. 1990;331:163–176.

53. Kemp CJ, Drinkwater NR. The androgen receptor and liver tumor development in mice. Prog Clin Biol Res. 1990;331:203–214.

54. Nagasue NK, H. Hepatocellular carcinoma and sex hormones. HPB Surg. 1992;6:1–6.

55. Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of mRNAs in the female mouse liver. Steroids. 2010;75:998–1004.

56. Ren Q, Huang Y, He Y, Wang W, Zhang X. A white spot syndrome virus microRNA promotes the virus infection by targeting the host STAT. Sci Rep. 2015;5:18384.

57. Liang X, Liu Y, Mei S, et al. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38. PLoS One. 2015;10, e0121510.