Sequence analysis

bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and *Escherichia coli*

Ilham Ayub Shahmuradov*, Rozaimi Mohamad Razali, Salim Bougouffa, Aleksandar Radovanovic and Vladimir B. Bajic*

Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on July 21, 2016; revised on September 7, 2016; accepted on September 27, 2016

Abstract

Motivation: The computational search for promoters in prokaryotes remains an attractive problem in bioinformatics. Despite the attention it has received for many years, the problem has not been addressed satisfactorily. In any bacterial genome, the transcription start site is chosen mostly by the sigma (σ) factor proteins, which control the gene activation. The majority of published bacterial promoter prediction tools target σ^70 promoters in *Escherichia coli*. Moreover, no σ-specific classification of promoters is available for prokaryotes other than for *E. coli*.

Results: Here, we introduce bTSSfinder, a novel tool that predicts putative promoters for five classes of σ factors in Cyanobacteria (σ^A, σ^C, σ^H, σ^G and σ^F) and for five classes of sigma factors in *E. coli* (σ^70, σ^38, σ^32, σ^28 and σ^24). Comparing to currently available tools, bTSSfinder achieves higher accuracy (MCC = 0.86, F1-score = 0.93) compared to the next best tool with MCC = 0.59, F1-score = 0.79) and covers multiple classes of promoters.

Availability and Implementation: bTSSfinder is available standalone and online at http://www.cbrc.kaust.edu.sa/btssfinder.

Contacts: ilham.shahmuradov@kaust.edu.sa or vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at *Bioinformatics* online.

1 Introduction

The promoter is a chromosome region that determines where and affects how the transcription of a particular transcript is initiated. Promoter recognition is important in defining the transcription units responsible for specific pathways and gene regulation. Initiation of transcription is a dynamic partnership between RNA polymerase (RNAP) and promoter. In contrast to archaea and eukarya, bacteria have a single form of the RNAP core enzyme (E) (Schneider and Hasekorn, 1988). However, RNAP alone is not able to recognize and bind to promoters to initialize transcription. Different regulatory proteins called σ-factors are required that temporarily bind the RNAP core enzyme forming a holoenzyme (Eσ). The holoenzyme determines the RNAP-promoter binding specificity and transcription initiation site (TSS), depending on nutritional or environmental conditions or developmental stage (for reviews see: Campagne et al., 2014; de Avila et al., 2011; Feklistov, 2013; Gruber and Gross, 2003; Imamura and Asayama, 2009; Ruff et al., 2015).

Bacterial σ factors are classified into two families with distinct structure and function, termed as σ^70 and σ^54 in *Escherichia coli*. While most bacteria possess multiple members of the σ^70 family, they contain a single representative of the σ^54 family, which is involved in nitrogen metabolism. Surprisingly, cyanobacteria lack any σ^54-like factors despite the majority of them having nitrogen fixation system. The number of σ^70 family members can vary significantly between different species (from 1 to over 60). *E. coli*, for example, has seven σ factors (Gruber and Gross, 2003; Imamura and Asayama, 2009; Studholme and Buck, 2000; Wosten, 1998). In this study we focus on *E. coli* and three species of Cyanobacteria.
The most detailed promoter information for the *E. coli* genome is available in RegulonDB (Salgado et al., 2013) and EcoCyc database (Karp et al., 2002). RegulonDB holds 10,293 mapped TSSs (Release 8.8, 2015). For Cyanobacteria, the genome-wide promoter map for 3 species was identified: 12,797 for *Nostoc* 7120 (Mitschke et al., 2011a,b), 1,471 for *Synechococcus elongatus* (Vijayan et al., 2011) and 351 for *Synechocystis* (Mitschke et al., 2011a,b). Interestingly, most of the TSSs in cyanobacteria are mapped to the non-coding RNA transcription units, rather than to protein-coding genes.

Lagging behind the explosion in genome/gene sequences and due to experimental costs, promoters and TSSs are mostly predicted computationally. In the last two decades, several computational tools were developed to identify bacterial promoters. The first attempt to predict bacterial promoters was by position weight matrices (PWM), which relied on the conservation of the -35 and the -10 elements for σ^70^, combined with the distribution of the distance between them (Hertz and Stormo, 1996; Huerta and Collado-Vides, 2003; Stormo, 2000). Tools developed using this approach have relatively low accuracy. Applying machine-learning approaches, e.g. support vector machines (SVM) and artificial neural networks (ANNs), increased accuracy. A method based on Sequence Alignment Kernel that achieved 17% average error rate on true and false promoter data was developed in (Gordon et al., 2003). In Gordon et al. (2006), a method was reported that employs an ensemble of SVMs with a variant of the mismatch string kernel in combination with a PWM and a model of the distribution of distances from TSS to gene start. The authors reported an average error rate of 11.6%, which they claim is ~5% lower than the method reported in Gordon et al. (2003).

More complex algorithms were developed that incorporate series of ANNs (Knudsen, 1999) and interactive optimization of nodes (Jihoon et al., 1999). Ma et al. (2001) applied a procedure of pre-processing promoter sequences during training to extract features. Using a time-delay neural network, Reese (2001) developed NNPP2.2, a tool with high sensitivity, but poor specificity. Later, the distance between the TSS and the translation start site (TLS) was used as an additional feature for promoter recognition (TLS–NNPP) (Burden et al., 2003). This tool, although reduced the false positive rate, is only applicable to protein coding genes. Using some conserved hexamer motifs as promoter recognition features, Li and Lin (2006) developed a tool with the overall prediction sensitivity and specificity of 91% and 81%, respectively. Mann et al. (2007) reported that a combination of ANNs and hidden Markov models (HMMs) significantly increases the bacterial promoter prediction accuracy. Later, Rani and Bapi (2009) developed a tool where k-mers \(k = 2, 3, 4, 5 \) are used as discriminative features. This tool was reported to have much higher prediction accuracy. The PromPredict tool, based on the relative stability of DNA as a generic criterion for promoter prediction, was reported to achieve 58% precision in *E. coli* (Rangaman and Bansal, 2009). de Avila et al. (2011) published BacPP, which is designed to predict promoters of different σ classes from *E. coli* (more on this in the discussion section). Solovyev and Salamov (2011) developed BROMP for the recognition of *E. coli* σ^70^ promoters. This tool, based on the linear discriminant function (LDF) combines characteristics describing functional motifs and oligonucleotide composition and shows about 80% prediction accuracy. Song (2012) reported a variable-window Z-curve method based on the distribution of purine/pyrimidine, the distribution of amino/keto and the distribution of strong/weak hydrogen bonds. Depending on the false promoter sets for learning and testing, the accuracy of the method was reported to vary around 90–96% and 95–99% for *E. coli* and *Bacillus subtilis*, respectively.

Despite these efforts, all these tools tend to produce many false positives or show poor sensitivity, particularly when they are applied to long sequences or whole genomes. Therefore, most of the tools were only tested on short promoter segments of 50–70 bp surrounding known TSSs. Such tests are insufficient to adequately evaluate their prediction accuracy. Another significant restriction of these tools is that they are limited to the prediction of σ^70^ promoters in the model organism *E. coli*, and very rarely can extend to other bacterial species. Therefore, novel, more accurate and efficient tools are required for the computational recognition of different classes of promoters in a broader taxonomical scope.

In this study, we present a novel method for predicting TSSs in *E. coli* and three cyanobacterial species. We characterized promoters of *E. coli* for σ^70^, σ^38^, σ^32^, σ^28^ and σ^54^ factors, and Cyanobacteria for σ^H^, σ^F^, σ^R^, σ^O^ and σ^D^ factors, and we developed promoter prediction models using this characterization. The prediction models are implemented in a tool, bTSSFinder, which is available as a stand-alone program as well as a web application.

Rationale

The main goal of this study was to develop a tool that predicts promoters for the different sigma classes in Cyanobacteria and *E. coli*. Success of any promoter prediction tool depends mainly on: (i) the features used to distinguish promoters from non-promoters, (ii) the size and diversity of the positive and negative datasets used for learning and (iii) the quality of both the positive and the negative datasets. Unfortunately, most studied characteristic features are not consistent within the same promoter class. Therefore, different studies have applied various combinations of features to improve the recognition of promoters. Furthermore, most of the reported tools were trained and tested on relatively small datasets, due to the lack of genome-wide TSSs maps with experimental validation. As for the quality of the datasets, here we face two problems: (i) the accuracy of experimental data on real TSSs varies significantly depending on the experimental method applied; (ii) the choice of the negative set (non-promoters) could have significant ramifications on the predictive power of the model, as it is a great challenge to define DNA regions that never serve as promoters.

To address these challenges: (i) we analyzed as many promoter sequences with experimentally validated TSS as available; (ii) from the whole pool of initially extracted negative samples (see below), we use different subsets of randomly chosen negative samples in both training and testing procedures and (iii) we checked different features that may allow a DNA region to serve as a potential promoter. We compare bTSSFinder with other available methods.

A note

Boundaries of promoter regions remain unclearly defined. The minimum promoter region that can initiate basal transcription spans ~60 to +40 bp relative to the transcription start site (TSS, +1) is called the core promoter, whereas proximal promoters extend further upstream (Roy and Singer, 2015; Shahnuradov et al., 2003). In this study we consider a promoter region relative to the TSS location as a region spanning [-200,+51], where +1 position corresponds to the location of the TSS. When we predict such a promoter, we also predict the corresponding TSS at position +1, which makes prediction of TSSs and promoters in our case equivalent. We also considered wider promoters spanning regions [-1000,+101] relative to TSS located at position +1.
2 Methods

2.1 Materials

2.1.1 Collecting data
RegulonDB, version v8.0 contains 3597 experimentally validated TSSs for E. coli K12 MG1655 (accession NC_000913.2). Of them, 2979 TSSs were classified into seven σ classes: 1787 as σ^70, 85 as σ^54, 152 as σ^38, 298 as σ^32, 141 as σ^28, 515 as σ^24 and one as σ^19. Due to their limited counts, σ^54 and σ^19 were excluded from further analysis.

For the non-marine cyanobacterium Nostoc sp. PCC 7120 (accession BA000019, referred to as Nostoc hereforth), Mitsuhashi et al. (2011a,b) experimentally mapped 12 797 TSSs. The authors classified these promoters into four classes: 3953 gene TSSs (gTSS), 3854 antisense TSSs (aTSS), 3722 intergenic TSSs (iTSS) and 1266 non-coding DNA TSSs (nTSS). As for the freshwater cyanobacterium Synechocystis sp. PCC 6803 (accession NC_000911.1, referred to as Synechocystis hereforth), data for 351 TSSs were extracted from the Supplementary material of the respective article (Mitsuhashi et al., 2011a,b). The data contained 172 gTSSs, 56 nTSSs and 123 aTSSs. For the freshwater cyanobacterium S. elongatus PCC 6301 (accession CP000100), we collected 1471 TSSs (Vijayan et al., 2011).

2.1.2 Preparing the positive set
Our preliminary assessment of the experimental sets revealed that some TSSs are located close to each other (a few nucleotides apart). To remove redundancy, intra-species pairwise comparison of all TSS positions was performed. For every TSS, starting from the 5’ end, we identified and discarded neighboring TSSs that were within 35 bp. The distance of 35 bp was chosen under the assumption that most signals involved in determining transcription start points are located in the short region between the -35 and the -10 boxes. After redundancy removal, the final TSS count was as follows: (i) E. coli: 1544 for σ^70, 140 for σ^38, 237 for σ^32, 135 for σ^28, 412 for σ^24; (ii) Nostoc: 11 386, (iii) S. elongatus: 1471 and (iv) Synechocystis: 343.

Using the publicly available genomes (accessions above) and the above TSS annotation, we created two types of promoter sets: 251 bp promoters (200 bp upstream of TSS and 51 bp downstream) and 1101 bp promoters (1000 bp upstream and 101 bp downstream). Promoter sequences that do not satisfy the upstream length requirement for either set are excluded.

2.1.3 Preparing the negative set
To train and test the promoter prediction models, we generated two negative datasets with sequences of length 251 bp: one based on E. coli and another based on the three cyanobacterial species. The protocol for the generation of negative sets is described in the Supplementary material. The final counts for the negative sets were 8346 and 32 418 for E. coli and the three combined Cyanobacteria species, respectively.

2.1.4 Transcription factor binding sites (TFBSs)
Data on TFBSs were obtained from three sources: 2953 sites for E. coli from RegulonDB, 30 cyanobacterial sites from CollecTF (Kilic et al., 2014) and 63 sites from the literature. Due to the limited number of TFBSs for Cyanobacteria, we used both cyanobacterial and E. coli sites to compute the TFBS density in promoter regions.

2.2 Methodology

2.2.1 Computing PWMs
To build our PWMs for E. coli, we extracted initial PWMs from the literature for the -10, -35 elements for σ^70, σ^24, σ^28, σ^32 promoters and -15 and the AT-rich upstream elements (UP elements) for the σ^70 promoters (Barnett et al., 2012; Dartigalongue et al., 2001; Djordjevic, 2011; Estrem et al., 1998; Huerta and Collado-Vides, 2003; Song et al., 2007). To create the PWMs for the -15 and the UP elements for σ^24, σ^28 and σ^32 factors, we used the same initial PWMs of σ^70. To the best of our knowledge, no σ^38-promoter-specific PWM is available in published literature. However, it has been shown that most σ^38 promoters are recognized by σ^70 and vice versa (de Avila et al., 2011). Hence, we used the same initial PWMs as for σ^70. Furthermore, by profiling the neighboring regions to known σ^70 TSSs [TSS-6bp, TSS + 6bp], we discovered a new motif with the consensus AYYTNA (we named it TSS-motif). We propose that this new motif is another descriptive element for the recognition of promoters (see Supplementary material for PWMs and coverage).

As for the cyanobacterial species, there are no published PWMs to use as initial matrices. To overcome this limitation, we determined the orthology between the σ factors in E. coli and the σ factors in three cyanobacterial species using the BLAST software (Altschul et al., 1997). Where significant alignments are found, the initial PWMs from the respective σ factor in E. coli are used for the orthologous counterpart in the cyanobacterial species. The final PWMs, for all promoter elements for all σ factors in the four species, were computed using the Expectation Maximization (EM) algorithm (Cardon and Stormo, 1992) (see Supplementary material).

2.2.2 Classifying cyanobacterial promoters
EM was also used to classify the cyanobacterial promoters into different classes. Using the PWM for the σ^70 -10 box in E. coli, we applied EM to the final set of cyanobacterial promoters (13 200 sequences, see the Materials section) with experimentally validated TSSs to obtain a subset that we denote as σ^70 promoters. Following the same approach, we used PWMs for E. coli’s σ^24, σ^28, σ^32 and σ^38 to assign the unassigned cyanobacterial promoters to σ^38, σ^28, σ^32 and σ^38 classes, respectively. It should be noted that each round of classification is applied only to the sequences unassigned in the previous step.

2.2.3 Compiling and selecting features
Oligomer frequencies (triplets, tetramers, pentamers and hexamers) were used to calculate scores as described in Rani and Bapi (2009). We also used four physico-chemical properties of DNA: free energy, base stacking, melting temperature and entropy, as additional features to describe true and false promoter regions (see Supplementary material). We evaluated the predictive power of these features as well as the aforementioned promoter elements using Mahalanobis distance (D2), which we calculated based on the approach described by Afifi and Azen (2014). Based on these distances we selected the final set of features for use in the predictive model, as described in Section 3.2.

2.2.4 Building and testing the models
To obtain the model parameters in order to accomplish the best separation of promoter from non-promoter sequences, we applied Neural Network techniques using the VISAN tool (http://www.softberry.com/softberry.html?topic=fdp.htm&no_menu=on). We estimated
Based on the inter-phyla orthology as revealed by the BLAST comparison (Supplementary Table S1), we propose the classification for cyanobacterial promoters into five classes: σ^7 (analogous to σ^{70}), σ^C (analogous to σ^{38}), σ^F (analogous to σ^{28}), σ^G (analogous to σ^{24}) and σ^H (analogous to σ^{32}).

Combining E. coli's -10 box PWMs for the different σ factors with the EM algorithm (see Methods), we classified the 13 200 experimentally validated cyanobacterial promoters into 9895 σ^F promoters, 928 σ^C promoters, 686 σ^G promoters, 220 σ^H promoters, 355 σ^F promoters and 1116 unclassified (Supplementary Table S2). These significantly larger datasets than in previous studies (Imamura and Asayama, 2009) enabled us to update the models of the -35 and the -10 promoter elements of σ^F, σ^C and σ^G in cyanobacteria. The training and the test sets for each σ factor promoter class were generated accordingly (Supplementary Table S2, see Supplementary material for consensus and PWMs).

3.2 Features used for the prediction of promoters

We identified over 30 prospective features that may exert specificity for the different promoter classes. To cull the feature space to those with the highest predictive power, we calculated Mahalanobis distances for each feature and reduced the number to 19–21 features depending on the promoter class (Supplementary Table S3). To the best our knowledge, this is the first time a wide feature base was used for this type of problem. We group these selected features into the following:

1. **Promoter elements:** -10, -35, -15 and AT-rich UP elements, as well as the new TSSmotif proposed by us (see: Materials and Methods). UP-elements (length of 17 bp) are searched for upstream of the -35 box up to a distance of 130 bp.
2. **Distances (d) between promoter elements:** $d(-10/-35)$ and $d(-10/TSS)$ were used in other methods. In this study, we introduce a novel feature $d(-15/-10)$. For all promoter classes, it is thought that the distance between the -10 box and the TSS varies from 3 to 12 bp; while the distance between the -15 and the -10 boxes varies between 0 and 10 bp. However, the variation in the distance between the -10 and the -35 boxes depends on promoter class (σ^{70}: 15–22 bp, σ^{24}: 12–19 bp, σ^{28}: 10–12 bp, σ^{32}: 13–15 bp).
3. **Oligomer scores:** Seven features were formulated based on the calculated scores for 3-mers, 4-mers, 5-mers and 6-mers in different segments of the promoter sequences (see Methods): (i) 3-mers in region [-20:+21], (ii) 4-mers/1 in [-100:+21], (iii) 4-mers/2 in [-100:+21], (iv) 5-mers/1 in [-100:+21], (v) 5-mers/2 in [-100:+21], (vi) 6-mers/1 in [-200:+1] and (vii) 6-mers/2 in [-100:+21].
4. **Density of TFBSs:** This group contains two features. TFBS density1, which is on the sense strand only, is calculated within the interval [-200:+51]; and TFBS density2 which is calculated within the interval [-200:-1] on both strands.
5. **Physico-chemical properties of the promoter sequences:** Four features were chosen in the feature selection process: free energy, base stacking, entropy and melting temperature. All of which were computed in the region [-200:+20].

3.3 bTSSfinder: the bacterial promoter prediction tool

Using a combination of features for each promoter class (as outlined in Supplementary Table S3), we built 10 NN classifiers, one for each promoter class in E. coli and in cyanobacteria. Then, we implemented these models into the bTSSfinder program. bTSSfinder workflow is outlined in Figure 1. The program slides a window of...
3.5 Comparing btSSfinder to other tools

We could only evaluate btSSfinder against previously published promoter prediction tools for σ^7 promoter class in *E. coli*. For fairness, we assessed all tools on a single testing dataset. The following promoter prediction tools were available for comparison: BPROM (Solovyev and Salamov, 2011), NNPP2 (Reese, 2001) and PromPredict (Rangannan and Bansal, 2009). All other promoter prediction tools that we checked were no longer available. A major drawback for these tools is that they were designed specifically for σ^7 promoters. BPROM and NNPP2 were optimized for *E. coli*, while PromPredict was optimized for both *E. coli* and *B. subtilis*. We also tried to test BacPP, which is the first tool that attempted to predict the complete range of sigma promoters in *E. coli* (de Avila et al., 2011). The authors reported high prediction accuracy for BacPP, but these results were obtained from a small training and testing sets. Furthermore, this tool calculates the probabilities that a sigma factor might bind to every 80 bp window of the query and does not confer any predictions on the TSS. Given that we would have to make an educated guess as to where the TSS locations are as well as the shear number of promoters it predicts, we excluded this tool from our comparison. Results of the comparison for short (251 bp) sequences are presented in Table 2. Our comparison clearly indicates that btSSfinder has significantly higher prediction accuracy.

Using short sequences to predict TSSs is not sufficient in evaluating the accuracy and efficiency (especially the real false positive rate) of a prediction tool. It should also be tested on longer sequences. In fact, an ideal test should be genome-wide. Nonetheless, genome-wide TSS maps are scarce which renders the task of assessing such predictions unfeasible. First, we ran the four programs on longer DNA sequences to search for putative σ^7 TSSs in 200 test sequences of 1101 bp from *E. coli* (Table 3).

Our results highlight the scale of the problem that researchers encounter when they analyze long sequences. Specifically, the existence of multiple experimentally mapped TSSs (TSSmap), which are often in close proximity to each other, makes predicting the TSS (TSSpr) difficult. In previous studies, a TSSpr is considered a true positive if it was detected 500 bp or less away from a TSSmap. For example, the authors of PromPredict, a recent tool, considered a TSSpr as a true positive if it was within a distance of ± 500 bp from a TSSmap. In this comparative analysis, a true positive is defined as a TSSpr that is within 50 bp away from a TSSmap (upstream or downstream). As presented in Table 3, btSSfinder produced the best performance ($Sn = 72\%$, $F1 = 52\%$), followed by BPROM ($Sn = 65\%$, $F1 = 34\%$) and NNPP2 ($Sn = 54\%$, $F1 = 33\%$). Surprisingly, PromPredict failed to produce a single true positive prediction ($Se = 0$, $F1 = 0$).

We also investigate if models optimized for *E. coli* can be used for Cyanobacteria and vice versa in btSSfinder. We used a positive test set of 251 bp sequences from *E. coli* and searched for TSSs using the corresponding model for the cyanobacteria for a given σ class, and vice versa. Results of these cross-phylum experiment are

Table 1. Testing results for five sigma classes of *E. coli* and cyanobacteria

σ class	TP	FN	TN	FP	Sn, %	Sp, %	P1, %	P2, %	F1, %
σ^{30}	180	20	277	23	90.0	91.3	94.0	90.4	92.9
σ^{18}	37	3	75	5	92.5	93.8	93.7	92.6	93.1
σ^{12}	46	4	95	5	92.0	95.0	94.9	92.2	93.4
σ^{28}	31	4	69	1	88.6	98.6	98.4	89.6	93.2
σ^{24}	86	14	193	7	86.0	96.5	96.1	87.3	90.7
σ^A	921	79	1921	79	92.1	96.1	95.9	92.4	94.0
σ^C	34	14	96	4	72	94.7	75.0	81.8	
σ^F	80	20	193	7	80.0	96.5	95.8	82.8	87.2
σ^G	72	28	188	12	94.0	92.3	77.1	80.9	
σ^H	38	12	92	8	76	90.5	74.2	82.6	

Table 2. Comparison of available promoter prediction programs tested on *E. coli*’s experimentally validated σ^{30} promoter sequences and a negative dataset of 251 bp sequences.

Promoter prediction tool	Genes with \geq1 TSSpr	Total number of TSSpr	TP	FP	TN	FN	Sn, %	P1, %	F1, %
btSSfinder	197	355	143	212	57	71.5	40.3	51.5	
BPROM	200	569	130	439	70	65.0	22.9	33.8	
NNPP2	175	460	109	351	91	54.5	23.7	33.0	
PromPredict	74	149	0	149	200	0	0.0	0.0	

1Prediction is true, if the annotated TSS is exactly predicted.
2Prediction is true, if distance between annotated and predicted TSSs is 50 bp or less. TSSpr: predicted TSS.
Table 4. Result of cross-phylum application of bTSSfinder on the positive dataset. Bold refers to sensitivity of the models applied to their intended species.

Test sets	Sensitivity1	
	bTSSfinder models for E. coli2	bTSSfinder models for cyanobacteria2
σ^{70}	89.5%	66%
σ^{A}	87.5%	92.3%
σ^{18}	90%	35%
σ^{C}	68%	72%
σ^{24}	92%	54%
σ^{H}	58%	74%
σ^{28}	88.6%	42.6%
σ^{F}	37%	81%
σ^{24}	86%	31%
σ^{G}	15.8%	72.0%

1Sensitivity values obtained with the species-specific bTSSfinder parameters are given in bold.

presented in Table 4. For the cyanobacterial σ^{A} and σ^{C} test sets, applying E. coli’s σ^{70} and σ^{18} models reduced sensitivity but not significantly (92.3% using σ^{A} model versus 87.5% using σ^{70} model, 72% using σ^{C} model versus 68% using σ^{18} model). However, the opposite scenario had a significant impact on sensitivity (Table 4). Cross assessment of the models for the other sigma factors failed to reproduce the sensitivity achieved for their intended species. This perhaps can be explained by: (i) significant structural differences between promoters in E. coli (gammaproteobacteria) and the studied cyanobacterial species; (ii) biological differences in how transcription initiation points are detected in different bacterial phyla. In fact, we tested bTSSfinder and the other three tools on ten other bacterial species belonging to five different phyla: three Firmicutes, four Proteobacteria, one Spirochetes, Chlamydia and one CFB group. bTSSfinder consistently outperformed the other tools for each species albeit with sensitivity values averaging 59% (BPROM was next best with a sensitivity average of 49%). For details of this comparison consult the supplementary material (Supplementary Table S4).

We observed that some experimentally verified promoters did not pass the prediction thresholds. It has been reported that computational prediction tools have succeeded in predicting no more than 20% of known promoters (Hertz and Stormo, 1996). A later study that analyzed 599 σ^{70} promoters from E. coli showed that in over 50% of the cases, the true promoters do not produce the highest score, especially since true promoters are commonly found in TSS-dense regions (Huerta and Collado-Vides, 2003). To investigate this phenomenon, we analyzed the region ±300bp around experimental TSSs. For every base the NN score is calculated (using bTSSfinder) and those that satisfy the species and σ class-specific threshold were assessed against the experimentally mapped TSSs. In 90% of the test cases (425 in E. coli and 1300 in the cyanobacterial species), the TSSmap had higher score than threshold but only 10% passed filtering criteria to make it to the final predicted set due to the presence of a neighboring TSSpr that had higher NN score (Fig. 2; Fig S1). This may warrant an alternative approach to search for transcription start regions (TSRs) rather than points.

3.6 Concluding remarks
The promoter prediction problem in prokaryotes is an old problem that has yet to achieve an adequate solution. Available tools tend to produce many false positives or have poor sensitivity, especially when applied to long sequences or whole genomes. These limitations are probably due to the following challenges:

1. Some in-vitro-strong promoters that are predicted computationally with high score are in fact not used in vivo at all, perhaps due to unknown repression mechanisms (Hertz and Stormo, 1996; Huerta and Collado-Vides, 2003).

2. Real TSSs tend to fall in promoter dense regions (Panyukov and Ozoline, 2013) with neighboring predicted TSSs that may produce higher prediction scores.

3. Some predicted TSSs may be evaluated as false positives due to the lack of experimentally-verified, comprehensive and precise TSS maps.

4. Scarcity of experimental data also means that training models using features extracted from the limited available data would naturally restrict their predictive power.

5. All methods, as far as we know, depend on promoter architecture and other physico-chemical properties in their model building. Yet, there are likely other ‘players’ that contribute to the transcription initiation process.

6. The choice of a negative dataset can be detrimental for the trained model since one cannot be certain about the total absence of TSSs in the negative dataset.

We believe that bTSSfinder is the first tool that can recognize promoters of different sigma classes from two bacterial phyla (Proteobacteria’s E. coli and Cyanobacteria). Nonetheless, promoter prediction, especially at the whole genome level, remains unresolved and this warrants further investigations in this field.

Acknowledgements
The authors thank Mohamad Jaber for some of the helpful discussions and feedback. We would also like to thank Ramzan Umurov for his help to use VISAN. All computational work in this study has been made using KAUST CBRC Dragon and Snapdragon compute cluster.

Funding
This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Awards No URF/1/1976-02 and FCS/1/2448-01.

Conflict of Interest: none declared.
