Let R be a commutative (Noetherian) local ring of prime characteristic p that is F-pure. This paper is concerned with comparison of three finite sets of radical ideals of R, one of which is only defined in the case when R is F-finite (that is, is finitely generated when viewed as a module over itself via the Frobenius homomorphism). Two of the afore-mentioned three sets have links to tight closure, via test ideals. Among the aims of the paper are a proof that two of the sets are equal, and a proposal for a generalization of I. M. Aberbach’s and F. Enescu’s splitting prime.

0. Introduction

Throughout the paper, let (R, \mathfrak{m}) be a commutative (Noetherian) local ring of prime characteristic p having maximal ideal \mathfrak{m}. In recent years, the study of R-modules with a Frobenius action has assisted in the development of the theory of tight closure over R. An R-module with a Frobenius action can be viewed as a left module over the Frobenius skew polynomial ring over R, and such left modules will play a central role in this paper.

The Frobenius skew polynomial ring over R is described as follows. Throughout, $f : R \to R$ denotes the Frobenius ring homomorphism, for which $f(r) = r^p$ for all $r \in R$. The Frobenius skew polynomial ring over R is the skew polynomial ring $R[x,f]$ associated to R and f in the indeterminate x; as a left R-module, $R[x,f]$ is freely generated by $(x^i)_{i \geq 0}$, and so consists of all polynomials $\sum_{i=0}^{n} r_i x^i$, where $n \geq 0$ and $r_0, \ldots, r_n \in R$; however, its multiplication is subject to the rule $xr = f(r)x = r^px$ for all $r \in R$.

We can think of $R[x,f]$ as a positively-graded ring $R[x,f] = \bigoplus_{n=0}^{\infty} R[x,f]_n$, where $R[x,f]_n = Rx^n$ for $n \geq 0$. The graded annihilator of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H; it is denoted by $\text{gr-ann}_{R[x,f]} H$.

Let G be a left $R[x,f]$-module that is x-torsion-free in the sense that $xg = 0$, for $g \in G$, only when $g = 0$. Then $\text{gr-ann}_{R[x,f]} G = bR[x,f]$, where $b = (0 :_R G)$ is a radical ideal. See [11, Lemma 1.9]. We shall use $\mathcal{I}(G)$ (or $\mathcal{I}_R(G)$) to denote the set of R-annihilators of the $R[x,f]$-submodules of G; we shall refer to the members of $\mathcal{I}(G)$
as the \(G\)-special \(R\)-ideals. For a graded two-sided ideal \(\mathfrak{B}\) of \(R[x, f]\), we denote by \(\text{ann}_G(\mathfrak{B})\) or \(\text{ann}_G\mathfrak{B}\) the \(R[x, f]\)-submodule of \(G\) consisting of all elements of \(G\) that are annihilated by \(\mathfrak{B}\). Also, we shall use \(\mathcal{A}(G)\) to denote the set of special annihilator submodules of \(G\), that is, the set of \(R[x, f]\)-submodules of \(G\) of the form \(\text{ann}_G(\mathfrak{B})\), where \(\mathfrak{B}\) is a graded two-sided ideal of \(R[x, f]\). In [11 §1], the present author showed that there is a sort of ‘Galois’ correspondence between \(\mathcal{I}(G)\) and \(\mathcal{A}(G)\). In more detail, there is an order-reversing bijection, \(\Delta : \mathcal{A}(G) \rightarrow \mathcal{I}(G)\) given by

\[
\Delta : N \mapsto (\text{gr-ann}_{R[x, f]} N) \cap R = (0 :_R N).
\]

The inverse bijection, \(\Delta^{-1} : \mathcal{I}(G) \rightarrow \mathcal{A}(G)\), also order-reversing, is given by

\[
\Delta^{-1} : b \mapsto \text{ann}_G(\mathfrak{b}R[x, f]).
\]

We shall be mainly concerned in this paper with the situation where \(R\) is \(F\)-pure. We remind the reader what this means. For \(j \in \mathbb{N}\) (the set of positive integers) and an \(R\)-module \(M\), let \(M^{(j)}\) denote \(M\) considered as a left \(R\)-module in the natural way and as a right \(R\)-module via \(f^j\), the \(j\)th iterate of the Frobenius ring homomorphism. Then \(R\) is \(F\)-pure if, for every \(R\)-module \(M\), the natural map \(M \rightarrow R^{(1)} \otimes_R M\) (which maps \(m \in M\) to \(1 \otimes m\)) is injective.

Note that \(R^{(j)} \cong Rx^j\) as \((R, R)\)-bimodules. Let \(i \in \mathbb{N}_0\), the set of non-negative integers. When we endow \(Rx^i\) and \(Rx^j\) with their natural structures as \((R, R)\)-bimodules (inherited from their being graded components of \(R[x, f]\)), there is an isomorphism of \((\text{left})\) \(R\)-modules \(\phi : Rx^{i+j} \otimes_R M \xrightarrow{\cong} Rx^i \otimes_R (Rx^j \otimes_R M)\) for which \(\phi(rx^{i+j} \otimes m) = rx^i \otimes (x^j \otimes m)\) for all \(r \in R\) and \(m \in M\). It follows that \(R\) is \(F\)-pure if and only if the left \(R[x, f]\)-module \(R[x, f] \otimes_R M\) is \(x\)-torsion-free for every \(R\)-module \(M\). This means that, when \(R\) is \(F\)-pure, there is a good supply of natural \(x\)-torsion-free left \(R[x, f]\)-modules.

In fact, we shall use \(\Phi\) (or \(\Phi_R\) when it is desirable to specify which ring is being considered) to denote the functor \(R[x, f] \otimes_R \bullet\) from the category of \(R\)-modules (and all \(R\)-homomorphisms) to the category of all \(\mathbb{N}_0\)-graded \(R[x, f]\)-modules (and all homogeneous \(R[x, f]\)-homomorphisms). For an \(R\)-module \(M\), we shall identify \(\Phi(M)\) with \(\bigoplus_{n\in\mathbb{N}_0} Rx^n \otimes_R M\), and (usually) identify its 0th component \(R \otimes_R M\) with \(M\), in the obvious ways.

Let \(E\) be the injective envelope of the simple \(R\)-module \(R/\mathfrak{m}\). We shall be concerned with \(\Phi(E)\), the \(\mathbb{N}_0\)-graded left \(R[x, f]\)-module \(\bigoplus_{n\in\mathbb{N}_0} Rx^n \otimes_R E\). Assume now that \(R\) is \(F\)-pure. In [12, Corollary 4.11], the present author proved that the set \(\mathcal{I}(\Phi(E))\) is a finite set of radical ideals of \(R\); in [11 Theorem 3.6 and Corollary 3.7], he proved that \(\mathcal{I}(\Phi(E))\) is closed under taking primary (prime in this case) components; and in [14, Corollary 2.8], he proved that the big test ideal \(\overline{\tau}(R)\) of \(R\) (for tight closure) is equal to the smallest member of \(\mathcal{I}(\Phi(E))\) that meets \(R^e\), the complement in \(R\) of the union of the minimal prime ideals of \(R\).

Let \(a \in \mathcal{I}(\Phi(E))\) (with \(a \neq R\)), still in the \(F\)-pure case. The special annihilator submodule \(\text{ann}_R(\mathfrak{a}\Phi(E)) \cap \mathfrak{a}R[x, f]\) of \(\Phi(E)\) corresponding to \(a\) inherits a natural structure as a graded left module over the Frobenius skew polynomial ring \((R/\mathfrak{a})[x, f]\), and its 0th component is contained in \((0 :_E \mathfrak{a})\). As \(R/\mathfrak{a}\)-module, the latter is isomorphic to the injective envelope of the simple \(R/\mathfrak{a}\)-module. Motivated by results in [14 §3] in the case where \(R\) is complete, and by work of K. Schwede in [10 §5] in the \(F\)-finite
case, we say that a is fully $\Phi(E)$-special if (it is $\Phi(E)$-special and) its 0th component is exactly $(0 :_E a)$. The main result of this paper is that a $\Phi(E)$-special ideal of R is always fully $\Phi(E)$-special provided that R is an (F-pure) homomorphic image of an excellent regular local ring of characteristic p. When R satisfies this condition, corollaries can be drawn from that main result: we shall establish an analogue of [14, Theorem 3.1] and, in particular, show that R/a is F-pure whenever a is a proper $\Phi(E)$-special ideal of R.

Along the way, we shall show that, in the case where R is F-finite as well as F-pure, the set $\mathcal{I}(\Phi(E))$ of $\Phi(E)$-special ideals of R is equal to the set of uniformly F-compatible ideals of R, introduced by K. Schwede in [10, §3]. An ideal b of R is said to be uniformly F-compatible if, for every $j > 0$ and every $\phi \in \text{Hom}_R(R^{(j)}, R)$, we have $\phi(b^{(j)}) \subseteq b$. In [10, Corollary 5.3 and Corollary 3.3], Schwede proved that there are only finitely many uniformly F-compatible ideals of R and that they are all radical; in [10, Proposition 4.7 and Corollary 4.8], he proved that the set of uniformly F-compatible ideals is closed under taking primary (prime in this case) components; in [10, Theorem 6.3], Schwede proved that the big test ideal $\bar{\tau}(R)$ of R is equal to the smallest uniformly F-compatible ideal of R that meets R^c; and in [10, Remark 4.4 and Proposition 4.7], he proved that there is a unique largest proper uniformly F-compatible ideal of R, and that that is prime and equal to the splitting prime of R discovered and defined by I. M. Aberbach and F. Enescu [11, §3].

Thus, in the F-finite F-pure case, the set of uniformly F-compatible ideals of R has properties similar to some properties of $\mathcal{I}(\Phi(E))$. Are the two sets the same? We shall, during the course of the paper, show that the answer is ‘yes’. It should be emphasized, however, that Schwede only defined uniformly F-compatible ideals in the F-finite case, whereas the majority of this paper is devoted to the study of fully $\Phi(E)$-special ideals in the (F-pure but) not necessarily F-finite case.

We shall use the notation of this Introduction throughout the remainder of the paper. In particular, R will denote a local ring of prime characteristic p having maximal ideal m. We shall sometimes use the notation (R, m) just to remind the reader that R is local. The completion of R will be denoted by \widehat{R}. We shall only assume that R is reduced, or F-pure, or F-finite, when there is an explicit statement to that effect; also E will continue to denote $E_R(R/m)$. We continue to use \mathbb{N}, respectively \mathbb{N}_0, to denote the set of all positive, respectively non-negative, integers.

For $j \in \mathbb{N}_0$, the jth component of an \mathbb{N}_0-graded left $R[x,f]$-module G will be denoted by G_j.

1. Fully $\Phi(E)$-special ideals

We remind the reader that we usually identify the 0th component of $\Phi(E) = \bigoplus_{a \in \mathbb{N}_0} R a^n \otimes_R E$ with E in the obvious natural way. For an ideal a of R, we have, with this convention, that the 0th component of $\text{ann}_{\Phi(E)}(aR[x,f])$ is contained in $(0 :_E a)$.

1.1. Lemma. Assume that (R, m) is F-pure; let a be an ideal of R. Then the 0th component $(\text{ann}_{\Phi(E)}(aR[x,f]))_0$ of $\text{ann}_{\Phi(E)}(aR[x,f])$ contains $(0 :_E a)$ if and only if a is $\Phi(E)$-special and $(\text{ann}_{\Phi(E)}(aR[x,f]))_0 = (0 :_E a)$.

Proof. Only the implication ‘\Rightarrow’ needs proof.
Assume that \((0 :_E a) \subseteq (\ann_{\Phi(E)}(aR[x,f]))_0\). Since \(\ann_{\Phi(E)}(aR[x,f])\) is an \(R[x,f]\)-submodule of \(\Phi(E)\), it follows that \(\ann_{\Phi(E)}(aR[x,f])\) contains the image \(J\) of the map

\[
\Phi((0 :_E a)) = R[x,f] \otimes_R (0 :_E a) \longrightarrow R[x,f] \otimes_R E = \Phi(E)
\]
induced by inclusion. Let \(b\) be the radical ideal of \(R\) for which \(\gr-\ann_{R[x,f]} J = bR[x,f]\), so that \(b = (0 :_R J)\). As \(J \subseteq \ann_{\Phi(E)}(aR[x,f])\), we must have \(a \subseteq b\). Furthermore, \(b\) annihilates \((0 :_E a) \cong \text{Hom}_R(R/a, E)\), and since an \(R\)-module and its Matlis dual have the same annihilator, we also have \(b \subseteq a\). Thus \(a = b\) is the \(R\)-annihilator of an \(R[x,f]\)-submodule of \(\Phi(E)\), and so \(a \in \mathcal{I}(\Phi(E))\).

Finally, note that an \(e \in (\ann_{\Phi(E)}(aR[x,f]))_0\) must be annihilated by \(a\), and so lies in \((0 :_E a)\). \(\square\)

1.2. Definition. Assume that \((R, m)\) is \(F\)-pure; let \(a\) be an ideal of \(R\). We say that \(a\) is fully \(\Phi(E)\)-special if the equivalent conditions of Lemma 1.1 are satisfied.

Thus \(a\) is fully \(\Phi(E)\)-special if and only if \((0 :_E a) \subseteq (\ann_{\Phi(E)}(aR[x,f]))_0\), and, then, \(a\) is \(\Phi(E)\)-special and we have the equality \((0 :_E a) = (\ann_{\Phi(E)}(aR[x,f]))_0\).

To facilitate the presentation of some examples of \(\Phi(E)\)-special ideals that are fully \(\Phi(E)\)-special, we review next the theory of \(S\)-tight closure, where \(S\) is a multiplicatively closed subset of \(R\). This theory was developed in [14]. The special case of the theory in which \(S = R^\circ\) is the ‘classical’ tight closure theory of M. Hochster and C. Huneke [2].

1.3. Reminders. Let \(H\) be a left \(R[x,f]\)-module and let \(S\) be a multiplicatively closed subset of \(R\).

(i) We define the internal \(S\)-tight closure of zero in \(H\), denoted \(\Delta^S(H)\), to be the \(R[x,f]\)-submodule of \(H\) given by

\[
\Delta^S(H) = \{ h \in H : \text{there exists } s \in S \text{ with } sx^nh = 0 \text{ for all } n \gg 0 \}.
\]

When \(M\) is an \(R\)-module and we take the graded left \(R[x,f]\)-module \(\Phi(M) = R[x,f] \otimes_R M\) for \(H\), the \(R[x,f]\)-submodule \(\Delta^S(\Phi(M))\) of \(\Phi(M)\) is graded, and we refer to its 0th component as the \(S\)-tight closure of 0 in \(M\), or the tight closure with respect to \(S\) of 0 in \(M\), and denote it by \(0^*_M S\). See [14] §1.

(ii) By [14] Example 1.3(ii)], we have, for an \(R\)-module \(M\),

\[
\Delta^S(R[x,f] \otimes_R M) = 0^*_M \oplus 0^*_{R \otimes_R M} \oplus \cdots \oplus 0^*_{R^e \otimes_R M} \oplus \cdots.
\]

(iii) Recall that an \(S\)-test element for \(R\) is an element \(s \in S\) such that, for every \(R\)-module \(M\) and every \(j \in \mathbb{N}_0\), the element \(sx^j\) annihilates \(1 \otimes m \in (\Phi(M))_0\) for every \(m \in 0^*_M S\). The ideal of \(R\) generated by all the \(S\)-test elements for \(R\) is called the \(S\)-test ideal of \(R\), and denoted by \(\tau^S(R)\).

1.4. Reminders. Suppose that \((R, m)\) is \(F\)-pure. Let \(S\) be a multiplicatively closed subset of \(R\). Recall that the set \(\mathcal{I}(\Phi(E))\) of \(\Phi(E)\)-special \(R\)-ideals is finite; let \(b^{S, \Phi(E)}\) denote the intersection of all the minimal members of the set

\[
\{ p \in \text{Spec}(R) \cap \mathcal{I}(\Phi(E)) : p \cap S \neq \emptyset \}.
\]

Thus \(b^{S, \Phi(E)}\) is the smallest member of \(\mathcal{I}(\Phi(E))\) that meets \(S\).
(i) By [14, Theorem 2.6], the set \(S \cap b^{s,\Phi(E)} \) is (non-empty and) equal to the set of \(S \)-test elements for \(R \).

(ii) Thus there exists an \(S \)-test element for \(R \).

(iii) Furthermore, \(\Delta^S(\Phi(E)) = \text{ann}_{\Phi(E)}(b^{s,\Phi(E)}R[x,f] \cap (0 :_R \Delta^S(\Phi(E))) = b^{s,\Phi(E)} \), by [14, Proposition 1.5].

(iv) By [14, Proposition 2.10(v)], we have \(b^{s,\Phi(E)} = (0 :_R 0^{*s}_E) \).

1.5. Lemma ([Sharp 14 Corollary 2.8]). Suppose that \((R, m)\) is \(F \)-pure. Let \(S \) be the complement in \(R \) of the union of finitely many prime ideals. Then the \(S \)-test ideal \(\tau^S(R) \) is equal to \(b^{s,\Phi(E)} \), the smallest member of the finite set \(\mathcal{I}(\Phi(E)) \) that meets \(S \).

We shall also use the following result from [14].

1.6. Theorem ([Sharp 14, Theorem 2.12]). Suppose that \((R, m)\) is \(F \)-pure. Let \(\mathfrak{a} \in \mathcal{I}(\Phi(E)) \). Then there exists a multiplicatively closed subset \(S \) of \(R \) such that \(\mathfrak{a} \) is the \(S \)-test ideal of \(R \). Moreover, \(S \) can be taken to be the complement in \(R \) of the union of finitely many prime ideals.

We are now able to give examples of fully \(\Phi(E) \)-special ideals, because the next result shows that, when \((R, m)\) is complete and \(F \)-pure, every \(\Phi(E) \)-special ideal of \(R \) is automatically fully \(\Phi(E) \)-special.

1.7. Proposition. Suppose that \((R, m)\) is complete and \(F \)-pure. Then every \(\Phi(E) \)-special ideal of \(R \) is fully \(\Phi(E) \)-special.

Proof. Let \(\mathfrak{a} \) be a \(\Phi(E) \)-special ideal of \(R \). If \(\mathfrak{a} = R \), then

\[
(0 :_E \mathfrak{a}) = 0 \subseteq \text{ann}_{\Phi(E)}(\mathfrak{a}R[x,f])
\]

and \(\mathfrak{a} \) is fully \(\Phi(E) \)-special. We therefore assume that \(\mathfrak{a} \) is proper.

By Theorem [13] and [14] Corollary 2.8, there exist finitely many prime ideals \(p_1, \ldots, p_n \) of \(R \) such that, if we set \(S := R \setminus \bigcup_{i=1}^n p_i \), then \(\mathfrak{a} \) is the \(S \)-test ideal of \(R \), that is \(\mathfrak{a} = \tau^S(R) = b^{s,\Phi(E)} \), where the notation is as in [13] and [14]. Therefore, by [13](ii) and [14](iii),

\[
0^{*s}_E \oplus 0^{*s}_{Rx \oplus R} \oplus \cdots \oplus 0^{*s}_{Rx \oplus R} \oplus \cdots = \Delta^S(\Phi(E)) = \text{ann}_{\Phi(E)}(b^{s,\Phi(E)}R[x,f]).
\]

Now we know that \(b^{s,\Phi(E)} = (0 :_R 0^{*s}_E) \), by [14](iv). Since \(R \) is complete, it follows from Matlis duality (see, for example, [15, p. 154]) that \(0^{*s}_E = (0 :_E b^{s,\Phi(E)} \). We have thus shown that \((0 :_E \mathfrak{a}) = R \oplus (0 :_E \mathfrak{a}) \subseteq (\text{ann}_{\Phi(E)}(\mathfrak{a}R[x,f]))_0 \). Thus \(\mathfrak{a} \) is fully \(\Phi(E) \)-special.

Next, we develop some theory for fully \(\Phi(E) \)-special ideals.

1.8. Lemma. Suppose that \((R, m)\) is \(F \)-pure, and let \(\mathfrak{a} \) be a fully \(\Phi(E) \)-special ideal of \(R \). Then \(\mathfrak{a} \) is radical and every associated prime of \(\mathfrak{a} \) is also fully \(\Phi(E) \)-special.

Proof. We can assume that \(\mathfrak{a} \) is proper. Since \(\mathfrak{a} \) is \(\Phi(E) \)-special, it must be radical. Let \(\mathfrak{a} = p_1 \cap \cdots \cap p_t \) be the minimal primary (prime in this case) decomposition of \(\mathfrak{a} \), and let \(i \in \{1, \ldots, t\} \).
Since \(a \) is fully \(\Phi(E) \)-special, we have \((0 :_E a) \subseteq (\operatorname{ann}_{\Phi(E)}(aR[x,f]))_0\). Let \(e \in (0 :_E p_i) \) and let \(r \in p_i \). We show that \(rx^n \) annihilates the element \(1 \otimes e \) of the 0th component of \(\Phi(E) \). There exists
\[
a \in \bigcap_{j=1 \atop j \ne i}^t p_j \setminus p_i.
\]
Now \((0 :_E p_i) = a(0 :_E p_i)\), because multiplication by \(a \) provides a monomorphism of \(R/p_i \) into itself and \(E \) is injective. Therefore \(e = ae' \) for some \(e' \in (0 :_E p_i) \). Therefore \(rx^n \otimes e = rx^n \otimes ae' = ra^{p^n} x^n \otimes e' = 0 \) since \(ra^{p^n} \in a \) and
\[
(0 :_E p_i) \subseteq (0 :_E a) \subseteq \operatorname{ann}_{\Phi(E)}(aR[x,f]).
\]
Therefore \((0 :_E p_i) \subseteq (\operatorname{ann}_{\Phi(E)}(p_iR[x,f]))_0\) and \(p_i \) is fully \(\Phi(E) \)-special.

1.9. Proposition. Suppose that \((R, \mathfrak{m})\) is \(F \)-pure. Let \((a_\lambda)_{\lambda \in \Lambda} \) be a non-empty family of fully \(\Phi(E) \)-special ideals of \(R \). Then \(\sum_{\lambda \in \Lambda} a_\lambda \) is again fully \(\Phi(E) \)-special.

Proof. Set \(a := \sum_{\lambda \in \Lambda} a_\lambda \), and observe that \(aR[x,f] = \sum_{\lambda \in \Lambda} (a_\lambda R[x,f]) \). By assumption, we have \((0 :_E a) \subseteq \operatorname{ann}_{\Phi(E)}(a_\lambda R[x,f]) \) for all \(\lambda \in \Lambda \). It follows that
\[
(0 :_E a) = (0 :_E \sum_{\lambda \in \Lambda} a_\lambda) = \bigcap_{\lambda \in \Lambda} (0 :_E a_\lambda) \\
\subseteq \bigcap_{\lambda \in \Lambda} (\operatorname{ann}_{\Phi(E)}(a_\lambda R[x,f]))_0 \\
= (\operatorname{ann}_{\Phi(E)}(\sum_{\lambda \in \Lambda} (a_\lambda R[x,f])))_0 = (\operatorname{ann}_{\Phi(E)}(aR[x,f]))_0.
\]

Therefore \(a := \sum_{\lambda \in \Lambda} a_\lambda \) is fully \(\Phi(E) \)-special.

1.10. Corollary. Suppose that \((R, \mathfrak{m})\) is \(F \)-pure. Then \(R \) has a unique largest fully \(\Phi(E) \)-special proper ideal, and this is prime.

Proof. The zero ideal is fully \(\Phi(E) \)-special, and so it follows from Proposition 1.9 that the sum \(\mathfrak{b} \) of all the fully \(\Phi(E) \)-special proper ideals of \(R \) is fully \(\Phi(E) \)-special (and contained in \(\mathfrak{m} \)), and so is the unique largest fully \(\Phi(E) \)-special proper ideal of \(R \). Also \(\mathfrak{b} \) must be prime, since all the associated primes of \(\mathfrak{b} \) are fully \(\Phi(E) \)-special, by Lemma 1.8.

In what follows, we shall have cause to pass between \(R \) and its completion. Note that if \(R \) is \(F \)-pure, then so too is \(\hat{R} \), by Hochster and Roberts [3] Corollary 6.13. The following technical lemma will be helpful.

1.11. Lemma. (See [13] Lemma 4.3.) There is a unique way of extending the \(R \)-module structure on \(E := E_R(R/\mathfrak{m}) \) to an \(\hat{R} \)-module structure. Recall that, as an \(\hat{R} \)-module, \(E \cong E_{\hat{R}}(\hat{R}/\hat{\mathfrak{m}}) \).

Since each element of \(\Phi_R(E) = R[x,f] \otimes_R E \) is annihilated by some power of \(\mathfrak{m} \), the left \(R[x,f] \)-module structure on \(\Phi_R(E) \) can be extended in a unique way to a left \(\hat{R}[x,f] \)-module structure.

The map \(\beta : \Phi_R(E) = R[x,f] \otimes_R E \to \hat{R}[x,f] \otimes_{\hat{R}} E = \Phi_{\hat{R}}(E) \) for which
\[
\beta(rx^ih) = rx^ih \quad \text{for all } r \in R, \ i \in \mathbb{N}_0 \text{ and } h \in E
\]
is a homogeneous \(\hat{R}[x,f] \)-isomorphism.
Since each element of $\Phi_R(E)$ is annihilated by some power of m, it follows that a subset of $\Phi_R(E)$ is an $R[x, f]$-submodule if and only if it is an $\hat{R}[x, f]$-submodule. Consequently,

$$\mathcal{I}_R(\Phi_R(E)) = \{B \cap R : B \in \mathcal{I}_{\hat{R}}(\Phi_{\hat{R}}(E))\}.$$

1.12. **Lemma.** Suppose that (R, m) is F-pure, and let a be an ideal of R. Then $a\hat{R}$ is a fully $\Phi_{\hat{R}}(E)$-special ideal of \hat{R} if and only if a is a fully $\Phi_R(E)$-special ideal of R.

Proof. By Lemma 1.11 when we extend the left $R[x, f]$-module structure on $\Phi_R(E)$, in the unique way possible, to a left $\hat{R}[x, f]$-module structure, $E \cong E_{\hat{R}}(\hat{R}/\hat{m})$ as \hat{R}-modules and $\Phi_R(E) \cong \Phi_{\hat{R}}(E)$ as left $\hat{R}[x, f]$-modules. The claim therefore follows from the facts that

$$\text{ann}_{\Phi_R(E)}(aR[x, f]) = \text{ann}_{\Phi_{\hat{R}}(E)}((a\hat{R})\hat{R}[x, f])$$

and $(0 :_E a) = (0 :_{\hat{R}} a\hat{R})$. \hfill \Box

2. **The case where R is an F-pure homomorphic image of an excellent regular local ring of characteristic p**

The main aim of this section is to prove that, when R is an F-pure homomorphic image of an excellent regular local ring of characteristic p, every $\Phi(E)$-special ideal of R is fully $\Phi(E)$-special ideal. This will enable us to extend some results obtained in [14, §3] about an F-pure complete local ring to an F-pure homomorphic image of an excellent regular local ring of characteristic p. We begin the section with a lemma that is derived from a result of G. Lyubeznik [5, Lemma 4.1].

2.1. **Lemma.** Let (S, \mathfrak{M}) be a complete regular local ring of characteristic p, and let \mathfrak{B} be a proper, non-zero ideal of S. Denote $E_S(S/\mathfrak{M})$ by E_S, and let $S[x, f]$ denote the Frobenius skew polynomial ring over S. Let $n \in \mathbb{N}$.

Since S is regular, $S^{(n)}$ is faithfully flat over S, and we identify $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$ as an S-submodule of $Sx^n \otimes_S E_S$ in the natural way. Let a_1, \ldots, a_d be a regular system of parameters for S. Consider the S-isomorphism $\delta_n : Sx^n \otimes_S E_S \xrightarrow{\cong} E_S$ of [11, 4.2(iii)], for which (with the notation used in the statement of that result)

$$\delta_n \left(bx^n \otimes \left[\frac{s}{(a_1 \ldots a_d)^j} \right] \right) = \left[\frac{bs^{p^n}}{(a_1 \ldots a_d)^{jp^n}} \right]$$

for all $b, s \in S$ and $j \in \mathbb{N}_0$.

The isomorphism δ_n maps

(i) $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$ onto $(0 :_{E_S} \mathfrak{B}^{[p^n]})$, and
(ii) $\mathfrak{B}(Sx^n \otimes_S (0 :_{E_S} \mathfrak{B}))$ onto $(0 :_{E_S} (\mathfrak{B}^{[p^n]} : \mathfrak{B}))$.

Proof. (i) Use of the analogue of Lyubeznik [5] Lemma 4.1 for the functor $Sx^n \otimes_S \mathfrak{B}$. It shows that the Matlis dual of $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$ is S-isomorphic to $Sx^n \otimes_S (S/\mathfrak{B}^{[p^n]})$. Since each S-module has the same annihilator as its Matlis dual, we thus see that $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$ has annihilator $\mathfrak{B}^{[p^n]}$. Since S is complete, we have $T = (0 :_{E_S} (0 : S) T)$ for each submodule T of E_S, by Matlis duality (see, for example, [15, p. 154]). It therefore follows that

$$\delta_n(Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})) = (0 :_{E_S} \mathfrak{B}^{[p^n]}).$$
(ii) Set $N := Sx^n \otimes_S (0 :_{ES} \mathfrak{B})$. Similar reasoning shows that
$$\delta_n(\mathfrak{B}N) = (0 :_{ES} (0 : S \mathfrak{B}N)) = (0 :_{ES} ((0 : S N) : \mathfrak{B})) = (0 :_{ES} (\mathfrak{B}[p^n] : \mathfrak{B})).$$

\[\square\]

2.2. Proposition. Suppose that $R = S/\mathfrak{A}$, where (S, \mathfrak{M}) is a regular local ring of characteristic p, and \mathfrak{A} is a proper ideal of S. Assume also that R is F-pure. Let \mathfrak{b} be a proper ideal of R; let \mathfrak{B} be the unique ideal of S that contains \mathfrak{A} and is such that $\mathfrak{B}/\mathfrak{A} = \mathfrak{b}$.

Then \mathfrak{b} is fully $\Phi(E)$-special if and only if $(\mathfrak{A}[p^n] : \mathfrak{A}) \subseteq (\mathfrak{B}[p^n] : \mathfrak{B})$ for all $n \in \mathbb{N}$.

Note. In the F-finite case, this result is already known and due to K. Schwede [10, Proposition 3.11 and Lemma 5.1].

Proof. If $\mathfrak{A} = 0$, then R is regular, so that its big test ideal is R itself (by [6, Theorem 8.8], for example) and the only proper $\Phi(E)$-special ideal of R is 0; also, $(0 :_{ES} 0) = S$, and the only proper ideal \mathfrak{B} of S satisfying $(0 :_{ES} 0) \subseteq (\mathfrak{B}[p^n] : \mathfrak{B})$ for all $n \in \mathbb{N}$ is the zero ideal. Thus the result is true when $\mathfrak{A} = 0$; we therefore assume for the remainder of this proof that $\mathfrak{A} \neq 0$.

Note that $\hat{R} = \hat{S}/\mathfrak{A}\hat{S}$ is again F-pure and that \hat{S} is an excellent complete regular local ring of characteristic p, with maximal ideal $\mathfrak{M}\hat{S}$.

We also note that \mathfrak{b} is a fully $\Phi_{\hat{R}}(E)$-special ideal of \hat{R} if and only if $\mathfrak{b}\hat{R}$ is a fully $\Phi_{\hat{R}}(E)$-special ideal of \hat{R}, by Lemma [1.12]. Furthermore, by the faithful flatness of \hat{S} over S, we have, for $n \in \mathbb{N}$,
$$(\mathfrak{A}\hat{S})[p^n] : \mathfrak{A}\hat{S}) = (\mathfrak{A}[p^n] : \mathfrak{A})\hat{S} \subseteq (\mathfrak{B}[p^n] : \mathfrak{B})\hat{S} = (\mathfrak{B}\hat{S})[p^n] : \mathfrak{B}\hat{S})$$
if and only if $(\mathfrak{A}[p^n] : \mathfrak{A}) \subseteq (\mathfrak{B}[p^n] : \mathfrak{B})$. Therefore, we can, and do, assume henceforth in this proof that S is complete.

Let $E_S := E_S(S/\mathfrak{M})$. Now $(0 :_{ES} \mathfrak{A}) = E := E_R(R/\mathfrak{m})$ and $(0 :_{ES} \mathfrak{B}) = (0 :_E \mathfrak{b})$. Note that \mathfrak{b} is fully $\Phi_R(E)$-special if and only if, for each $n \in \mathbb{N}$ and each $r \in \mathfrak{b}$, the element $rx^n \in Rx^n$ annihilates the R-submodule $(0 :_E \mathfrak{b})$ of the 0th component E of $\Phi_R(E)$.

Let $n \in \mathbb{N}$. There is an exact sequence of (S,S)-bimodules
$$0 \rightarrow \mathfrak{A}Sx^n \xrightarrow{\subseteq} Sx^n \xrightarrow{\nu} Rx^n \rightarrow 0,$$
where $\nu(sx^n) = (s + \mathfrak{A})x^n$ for all $s \in S$. The map
$$Sx^n \otimes_S (0 :_{ES} \mathfrak{A}) \rightarrow Rx^n \otimes_S (0 :_{ES} \mathfrak{A}) = Rx^n \otimes_R (0 :_{ES} \mathfrak{A}) = Rx^n \otimes_R E$$
induced by ν therefore has kernel $\mathfrak{A}(Sx^n \otimes_S (0 :_{ES} \mathfrak{A}))$.

It follows that \mathfrak{b} is fully $\Phi_R(E)$-special if and only if, for all $n \in \mathbb{N}$, $s \in \mathfrak{B}$ and $g \in (0 :_{ES} \mathfrak{B}) = (0 :_E \mathfrak{b})$, the element $sx^n \otimes g$ of $Sx^n \otimes_S (0 :_{ES} \mathfrak{A})$ lies in
$$\mathfrak{A}(Sx^n \otimes_S (0 :_{ES} \mathfrak{A})).$$
In other words, \mathfrak{b} is fully $\Phi_R(E)$-special if and only if, for all $n \in \mathbb{N}$, we have
$$\mathfrak{B}(Sx^n \otimes_S (0 :_{ES} \mathfrak{B})) \subseteq \mathfrak{A}(Sx^n \otimes_S (0 :_{ES} \mathfrak{A})).$$
(We are here identifying $Sx^n \otimes_S (0 :_{ES} \mathfrak{B})$ and $Sx^n \otimes_S (0 :_{ES} \mathfrak{A})$ with submodules of $Sx^n \otimes_S E_S$ in the obvious ways, using the faithful flatness of $S^{(n)}$ over S.)
By [11, 4.2(iii)], we have \(Sx^n \otimes S E_S \cong E_S \). Since \(S \) is complete, each submodule of \(E_S \) satisfies \(T = (0 : E_S (0 : S T)) \). Set \(N : = Sx^n \otimes S E_S \). Thus

\[\mathcal{A}(Sx^n \otimes S (0 : E_S \mathcal{A})) = (0 : N (0 : S (\mathcal{A}(Sx^n \otimes S (0 : E_S \mathcal{A})))) = (0 : N (\mathcal{A}^{[n]} : \mathcal{A})), \]

by Lemma [2, 1]. Similarly, \(\mathcal{B}(Sx^n \otimes S (0 : E_S \mathcal{B})) = (0 : N (\mathcal{B}^{[n]} : \mathcal{B})) \). It follows that \(b \) is fully \(\Phi_R(E) \)-special if and only if

\[(0 : N (\mathcal{B}^{[n]} : \mathcal{B})) \subseteq (0 : N (\mathcal{A}^{[n]} : \mathcal{A})) \text{ for all } n \in \mathbb{N}, \]

that is (since \(N \cong E_S \)), if and only if \((\mathcal{A}^{[n]} : \mathcal{A}) \subseteq (\mathcal{B}^{[n]} : \mathcal{B}) \) for all \(n \in \mathbb{N} \).

\[\square \]

2.3. **Theorem.** Suppose that \(R = S/\mathfrak{A} \) is a homomorphic image of an excellent regular local ring \((S, \mathfrak{M})\) of characteristic \(p \), modulo a proper ideal \(\mathfrak{A} \). Assume that \(R \) is \(F \)-pure.

Then each \(\Phi(E) \)-special ideal of \(R \) is fully \(\Phi(E) \)-special.

Proof. Once again, the claim is easy to prove if \(\mathfrak{A} = 0 \), and so we assume henceforth in this proof that \(\mathfrak{A} \neq 0 \).

Note that \(\hat{R} = \hat{S}/\mathfrak{A}\hat{S} \) is again \(F \)-pure and that \(\hat{S} \) is an excellent complete regular local ring of characteristic \(p \), with maximal ideal \(\hat{\mathfrak{M}} \).

Let \(b \) be a \(\Phi(E) \)-special \(R \)-ideal with \(b \neq R \). Then \(b = c \cap R \) for some \(\Phi_R(E) \)-special \(\hat{R} \)-ideal \(c \). (We have used Lemma [11] here.) Let \(\mathcal{C} \) be the unique ideal of \(\hat{S} \) that contains \(\mathfrak{A}\hat{S} \) and is such that \(\mathcal{C}/\mathfrak{A}\hat{S} = c \). By Proposition [2, 7] the ideal \(c \) of \(\hat{R} \) is fully \(\Phi_{\hat{R}}(E) \)-special, and so, by Proposition 2.2, we have

\[(\mathcal{A}^{[n]} : \mathcal{A})\hat{S} = \left((\mathcal{A}\hat{S})^{[n]} : \mathcal{A}\hat{S} \right) \subseteq (\mathcal{C}^{[0]} : \mathcal{C}) \]

for all \(n \in \mathbb{N} \).

Set \(\mathcal{C} \cap S : = \mathcal{B} \), so that \(\mathcal{B}/\mathcal{A} = \mathcal{B} \).

Let \(n \in \mathbb{N} \) and \(s \in (\mathcal{A}^{[n]} : \mathcal{A}) \). Therefore \(s \in (\mathcal{C}^{[n]} : \mathcal{C}) \). It follows from G. Lyubeznik and K. E. Smith [6, Lemma 6.6] that \(\mathcal{C}^{[n]} \cap S = (\mathcal{C} \cap S)^{[n]} \). (Lyubeznik’s and Smith’s proof of this result uses work of N. Radu [7, Corollary 5], which, in turn, uses D. Popescu’s general Néron desingularization [7, 8].) We can now deduce that

\[s(\mathcal{C} \cap S) \subseteq s\mathcal{C} \cap S \subseteq (\mathcal{C}^{[n]} : \mathcal{C}) \cap S = (\mathcal{C} \cap S)^{[n]}, \]

so that \(s \in ((\mathcal{C} \cap S)^{[n]} : \mathcal{C} \cap S) = (\mathcal{B}^{[n]} : \mathcal{B}) \).

We have thus shown that \((\mathcal{A}^{[n]} : \mathcal{A}) \subseteq (\mathcal{B}^{[n]} : \mathcal{B}) \) for all \(n \in \mathbb{N} \), so that \(b = \mathcal{B}/\mathcal{A} \) is fully \(\Phi(E) \)-special by Proposition 2.2.

\[\square \]

In the case where \(R \) is an \(F \)-pure homomorphic image of an excellent regular local ring of characteristic \(p \), the characterization of \(\mathcal{I}(\Phi(E)) \) afforded by Proposition 2.2 and Theorem 2.3 enables us to see that \(\mathcal{I}(\Phi(E)) \) is fully \(\Phi(E) \)-special. The ideals in \(\mathcal{I}(\Phi(E)) \) are precisely those that can be expressed as intersections of finitely many prime members of \(\mathcal{I}(\Phi(E)) \), it is of interest to examine the behaviour of \(\mathcal{I}(\Phi(E)) \cap \text{Spec}(R) \) under localization. The next proposition, which is an extension of part of [12, Proposition 2.8], is in preparation for this investigation.

2.4. **Proposition.** Let \(S \) be a regular local ring of characteristic \(p \), and let \(n \in \mathbb{N} \). Let \(\mathfrak{A}, \mathfrak{B}_1, \ldots, \mathfrak{B}_t, \mathcal{C} \) be ideals of \(S \) with \(0 \neq \mathfrak{A} \neq S \), and let \(\mathfrak{A} = \mathfrak{A}_1 \cap \ldots \cap \mathfrak{A}_t \) be a minimal primary decomposition of \(\mathfrak{A} \).

(i) We have \((\mathfrak{B}_1 \cap \ldots \cap \mathfrak{B}_t)^{[n]} = \mathfrak{B}_1^{[n]} \cap \ldots \cap \mathfrak{B}_t^{[n]} \).
(ii) If \mathfrak{N} is a \mathfrak{P}-primary ideal of S, then $\mathfrak{N}^{[p^n]}$ is also \mathfrak{P}-primary.

(iii) The equation $\mathfrak{A}^{[p^n]} = \mathfrak{N}_1^{[p^n]} \cap \cdots \cap \mathfrak{N}_t^{[p^n]}$ provides a minimal primary decomposition of $\mathfrak{A}^{[p^n]}$.

(iv) We have $(\mathfrak{A} : \mathfrak{C})^{[p^n]} = (\mathfrak{A}^{[p^n]} : \mathfrak{C}^{[p^n]})$ and $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{A} : \mathfrak{C})^{[p^n]} : (\mathfrak{A} : \mathfrak{C})$.

(v) If \mathfrak{P} is an associated prime ideal of \mathfrak{A}, then $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{P}^{[p^n]} : \mathfrak{P})$.

(vi) Since $0 \neq \mathfrak{A} \neq S$, we have $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \neq S$. If $\mathfrak{P}_1 := \sqrt{\mathfrak{P}_1}$ is a minimal prime ideal of \mathfrak{A}, then \mathfrak{P}_1 is a minimal prime ideal of $(\mathfrak{A}^{[p^n]} : \mathfrak{A})$ and the unique \mathfrak{P}_1-primary component of $(\mathfrak{A}^{[p^n]} : \mathfrak{A})$ is $(\mathfrak{A}_1^{[p^n]} : \mathfrak{P}_1)$.

Proof. Parts (i), (ii) and (iii) were essentially proved in [12, Proposition 2.8], while parts (iv), (v) and (vi) can be proved by obvious modifications of the arguments used to prove the corresponding parts of [12, Proposition 2.8].

2.5. Corollary. Suppose that R is F-pure and a homomorphic image of an excellent regular local ring S of characteristic p modulo a proper ideal \mathfrak{A}. Let $\mathfrak{p} \in \text{Spec}(R)$. Then

$$\mathcal{I}_{R_p}(\Phi_{R_p}(E_{R_p}(R_p/pR_p))) \cap \text{Spec}(R_p) = \{qR_p : q \in \mathcal{I}(\Phi(E)) \cap \text{Spec}(R) \text{ and } q \subseteq \mathfrak{p}\}.$$

Proof. Note that, by M. Hochster and J. L. Roberts [3, Lemma 6.2], the localization R_p is again F-pure. The claim is easy to prove when $\mathfrak{A} = 0$, and so we assume that $\mathfrak{A} \neq 0$.

For each lower case fraktur letter that denotes an ideal of R, let the corresponding upper case fraktur letter denote the unique ideal of S that contains \mathfrak{A} and has quotient modulo \mathfrak{A} equal to the specified ideal of R. For example, \mathfrak{P} denotes the unique ideal of S that contains \mathfrak{A} and is such that $\mathfrak{P}/\mathfrak{A} = \mathfrak{p}$.

Note that $R_p \cong S_p/\mathfrak{A}S_p$ is again a homomorphic image of an excellent regular local ring S of characteristic p. Let $q \in \text{Spec}(R)$ with $q \subseteq \mathfrak{p}$.

Suppose first that $q \in \mathcal{I}(\Phi(E)) \cap \text{Spec}(R)$. By Theorem 2.3, we see that q is fully $\Phi(E)$-special; use of Proposition 2.2 shows that $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{N}^{[p^n]} : \mathfrak{N})$ for all $n \in \mathbb{N}$. Therefore

$$(\mathfrak{A}S_p)^{[p^n]} : \mathfrak{A}S_p \subseteq (\mathfrak{N}S_p)^{[p^n]} : \mathfrak{N}S_p$$

for all $n \in \mathbb{N}$.

Since the standard isomorphism $S_p/\mathfrak{A}S_p \cong R_p$ maps $\mathfrak{N}S_p/\mathfrak{A}S_p$ onto qR_p, it follows from Proposition 2.2 that qR_p is fully $\Phi_{R_p}(E_{R_p}(R_p/pR_p))$-special.

Conversely, suppose that qR_p is $\Phi_{R_p}(E_{R_p}(R_p/pR_p))$-special, so that, by Theorem 2.3, it is fully $\Phi_{R_p}(E_{R_p}(R_p/pR_p))$-special. By Proposition 2.2 this means that

$$(\mathfrak{A}S_p)^{[p^n]} : \mathfrak{A}S_p \subseteq (\mathfrak{N}S_p)^{[p^n]} : \mathfrak{N}S_p$$

for all $n \in \mathbb{N}$.

Let e and c denote extension and contraction of ideals under the natural ring homomorphism $S \rightarrow S_p$. Contract the last displayed inclusion relations back to S to see that

$$(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{A}^{[p^n]} : \mathfrak{A})^e \subseteq (\mathfrak{N}^{[p^n]} : \mathfrak{N})^e = (\mathfrak{N}^{[p^n]} : \mathfrak{N})$$

for all $n \in \mathbb{N}$ because $(\mathfrak{N}^{[p^n]} : \mathfrak{N})$ is \mathfrak{N}-primary (for all $n \in \mathbb{N}$), by Proposition 2.4(vi). It follows from Proposition 2.2 that $\mathfrak{N}/\mathfrak{A} = q$ is fully $\Phi(E)$-special.

We can now recover a special case of a result of Lyubeznik and Smith.
2.6. Corollary (G. Lyubeznik and K. E. Smith [6, Theorem 7.1]). Suppose that \(R \) is \(F \)-pure and a homomorphic image of an excellent regular local ring \(S \) of characteristic \(p \) modulo a proper ideal \(\mathfrak{A} \). Let \(\mathfrak{p} \in \text{Spec}(R) \). Then the big test ideal of \(R_\mathfrak{p} \) is the extension to \(R_\mathfrak{p} \) of the big test ideal of \(R \). In symbols, \(\tilde{\tau}(R_\mathfrak{p}) = \tilde{\tau}(R)R_\mathfrak{p} \).

Proof. The big test ideal \(\tilde{\tau}(R) \) of \(R \) is equal to the intersection of the (finitely many) members of \(\mathcal{I}(\Phi(E)) \cap \text{Spec}(R) \) of positive height, and a similar statement holds for \(R_\mathfrak{p} \). The claim therefore follows from Corollary 2.5. \(\square \)

Some results were obtained in [14, Theorem 3.1] for an \(F \)-pure complete local ring of characteristic \(p \). We can now use Theorem 2.3 to establish analogous results for an \(F \)-pure homomorphic image of an excellent regular local ring of characteristic \(p \).

2.7. Theorem. Suppose \((R, \mathfrak{m}) \) is \(F \)-pure and that every \(\Phi(E) \)-special ideal of \(R \) is fully \(\Phi(E) \)-special. (For example, by Theorem 2.3, this would be the case if \(R \) were a homomorphic image of an excellent regular local ring of characteristic \(p \).) Let \(\mathfrak{c} \) be a proper ideal of \(R \) that is \(\Phi(E) \)-special. In the light of Theorem 1.6 let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_m \) be prime ideals of \(R \) for which the multiplicatively closed subset \(S \) of \(R \) of \(c \)-special, we have \(\mathfrak{J}_0 \subseteq (0 :_E \mathfrak{c}) \); as \(V/E \)-module, this is isomorphic to \(E_{R/\mathfrak{c}}/(R/\mathfrak{c}) \).

(iii) The 0th component \(J_0 \) of \(J \) is \((0 :_E \mathfrak{c}) \); as \(V/E \)-module, this is isomorphic to \(E_{R/\mathfrak{c}}/(R/\mathfrak{c}) \).
(iv) The ring \(R/\mathfrak{c} \) is \(F \)-pure.
(v) We have \(\mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0 \subseteq \mathcal{I}(R/\mathfrak{c}) \), so that

\[\{ \mathfrak{d} : \mathfrak{d} \text{ is an ideal of } R \text{ with } \mathfrak{d} \supseteq \mathfrak{c} \text{ and } \mathfrak{d}/\mathfrak{c} \in \mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0) \subseteq \mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0)) \subseteq \mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0)) \} \subseteq \mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0)). \]

Proof. Since the \(\Phi(E) \)-special ideal \(\mathfrak{c} \) is fully \(\Phi(E) \)-special, we have \(J_0 = (0 :_E \mathfrak{c}) \). Given this observation, one can now use the arguments employed in the proof of [14, Theorem 3.1] to furnish a proof of this theorem. \(\square \)

The next corollary follows from Theorem 2.7 just as in [14], Corollary 3.2 follows from Theorem 3.1.

2.8. Corollary. Suppose that \((R, \mathfrak{m}) \) is local, \(F \)-pure and that every \(\Phi(E) \)-special ideal of \(R \) is fully \(\Phi(E) \)-special. (For example, by Theorem 2.3, this would be the case if \(R \) were a homomorphic image of an excellent regular local ring of characteristic \(p \).) Let \(\mathfrak{c} \) be a proper ideal of \(R \) that is \(\Phi(E) \)-special. Denote \(R/\mathfrak{c} \) by \(\overline{R} \), and note that \(\overline{R} \) is \(F \)-pure, by Theorem 2.7(iv). Let \(T \) be a multiplicatively closed subset of \(\overline{R} \) which is the complement in \(\overline{R} \) of the union of finitely many prime ideals. The finitistic \(T \)-test ideal \(\tau_{fg,T}(\overline{R}) \) of \(\overline{R} \) is defined to be \(\bigcap_L(0 :_{\overline{R}} 0_{\overline{R}}) \), where the intersection is taken over all finitely generated \(\overline{R} \)-modules \(L \).

(i) If \(\mathfrak{h} \) denotes the unique ideal of \(R \) that contains \(\mathfrak{c} \) and is such that \(\mathfrak{h}/\mathfrak{c} = \tau_{fg,T}(\overline{R}) \), the finitistic \(T \)-test ideal of \(\overline{R} \), then \(\mathfrak{h} \in \mathcal{I}(\Phi(E)) \).

(ii) In particular, if \(\mathfrak{h}' \) denotes the unique ideal of \(R \) that contains \(\mathfrak{c} \) and is such that \(\mathfrak{h}'/\mathfrak{c} = \tau(\overline{R}) \), the test ideal of \(\overline{R} \), then \(\mathfrak{h}' \in \mathcal{I}(\Phi(E)) \).
(iii) If \(g \) denotes the unique ideal of \(R \) that contains \(c \) and is such that \(g/c = \tau_T(\overline{R}) \), the \(T \)-test ideal of \(\overline{R} \), then \(g \in \mathcal{I}(\Phi(E)) \).

(iv) In particular, if \(g' \) denotes the unique ideal of \(R \) that contains \(c \) and is such that \(g'/c = \tau(\overline{R}) \), the big test ideal of \(\overline{R} \), then \(g' \in \mathcal{I}(\Phi(E)) \).

Proof. Straightforward modifications of the arguments given in the proof of [14, Corollary 3.2] will provide a proof for this. \(\square \)

2.9. Lemma. Assume that \((R, m)\) is local, \(F \)-pure and a homomorphic image of an excellent regular local ring of characteristic \(p \).

(i) There is a strictly ascending chain \(0 = \tau_0 \subset \tau_1 \subset \cdots \subset \tau_t = R \) of radical ideals of \(R \) such that, for each \(i = 0, \ldots, t \), the reduced local ring \(R/\tau_i \) is \(F \)-pure and its test ideal is \(\tau_{i+1}/\tau_i \). We call this the test ideal chain of \(R \). All of \(\tau_0 = 0, \tau_1, \ldots, \tau_t \), and all their associated primes, belong to \(\mathcal{I}(\Phi(E)) \).

(ii) There is a strictly ascending chain \(0 = \tilde{\tau}_0 \subset \tilde{\tau}_1 \subset \cdots \subset \tilde{\tau}_w \subset \tilde{\tau}_{w+1} = R \) of radical ideals in \(\mathcal{I}(\Phi(E)) \) such that, for each \(i = 0, \ldots, w \), the reduced local ring \(R/\tilde{\tau}_i \) is \(F \)-pure and its big test ideal is \(\tilde{\tau}_{i+1}/\tilde{\tau}_i \). We call this the big test ideal chain of \(R \). All of \(\tilde{\tau}_0 = 0, \tilde{\tau}_1, \ldots, \tilde{\tau}_w \), and all their associated primes, belong to \(\mathcal{I}(\Phi(E)) \).

Note. In the case when \(R \) is an \((F \text{-pure})\) homomorphic image of an \(F \)-finite regular local ring, part (i) of this result is known and due to Janet Cowden Vassilev [16, §3].

Proof. (i) Set \(\tau_1 := \tau(R) \), and note that \(\tau(R) \in \mathcal{I}(\Phi(E)) \). If \(\tau_1 \neq R \), apply Theorem 2.7 with the choice \(c = \tau(R) = \tau_1 \). That shows that \(R/\tau_1 \) is \(F \)-pure. Now argue by induction on \(\dim R \), noting that \(R/\tau_1 \) is a homomorphic image of an excellent regular local ring of characteristic \(p \). Use Theorem 2.7(v) to show that all of \(\tau_0, \tau_1, \ldots, \tau_t \) belong to \(\mathcal{I}(\Phi(E)) \).

(ii) This is proved similarly. \(\square \)

3. The \(F \)-finite case

In the \(F \)-finite case, the results above have strong connections with work of K. Schwede in [10], and the purpose of this section is to explore some of those connections. The introduction contains a description of certain properties of the set of all uniformly \(F \)-compatible ideals in an \(F \)-finite, \(F \)-pure local ring \(R \), and some of these are similar to properties of the set of all fully \(\Phi(E) \)-special ideals of \(R \): we shall show in this section that, in this special case, an ideal of \(R \) is uniformly \(F \)-compatible if and only if it is \(\Phi(E) \)-special, and that this is the case if and only if it is fully \(\Phi(E) \)-special.

3.1. Definition. Suppose that \(R \) is \(F \)-finite; let \(b \) be an ideal of \(R \). Then \(b \) is said to be \textit{uniformly \(F \)-compatible} if, for every \(n > 0 \) and every \(\phi \in \text{Hom}_R(R^n, R) \), we have \(\phi(b^{(n)}) \subseteq b \).

3.2. Proposition (Schwede [10, Lemma 5.1]). Suppose that \((R, m)\) is \(F \)-finite; let \(b \) be an ideal of \(R \). Then \(b \) is uniformly \(F \)-compatible if and only if \((0 :_E b) \subseteq (\text{ann}_{\Phi(E)}(bR[x, f]))_0 \).

Thus when \(R \) is \(F \)-finite and \(F \)-pure, \(b \) is uniformly \(F \)-compatible if and only if it is fully \(\Phi(E) \)-special.
Proposition 3.3. Let $n \in \mathbb{N}$ and $r \in R$. Multiplication by r yields an R-homomorphism of $R^{(n)}$, which, strictly speaking, we should denote by $r \text{Id}_{R^{(n)}}$. Also $f^n : R \to R^{(n)}$ is an R-homomorphism. Thus we can consider the composition of R-homomorphisms $R \xrightarrow{f^n} R^{(n)} \xrightarrow{r} R^{(n)}$.

Application of the functor $\cdot \otimes_R E$ yields a composition of R-homomorphisms

$$ R \otimes_R E \to R^{(n)} \otimes_R E \xrightarrow{r} R^{(n)} \otimes_R E, $$

where the ‘r’ over the second arrow is an abbreviation for $r \text{Id}_{R^{(n)} \otimes_R E}$. But $R^{(n)} \cong Rx^n$ as (R, R)-bimodules; furthermore, $(0 : E b) \cong \text{Hom}_R(R/b, E)$. It follows that $(0 : E b) \subseteq (\text{ann}_{\Phi(E)}(bR[x, f]))_0$ if and only if, for all $n \in \mathbb{N}$ and all $r \in \mathfrak{b}$, the composition

$$ (0 : E b) \xrightarrow{\cong} E \xrightarrow{\cong} R \otimes_R E \to R^{(n)} \otimes_R E \xrightarrow{r} R^{(n)} \otimes_R E $$

(in which the second map is the natural isomorphism) is zero.

Let M be an R-module. Recall that there is an R-homomorphism

$$ \xi_M : M \otimes_R E \to \text{Hom}_R(\text{Hom}_R(M, R), E) $$

such that, for $m \in M$, $e \in E$ and $g \in \text{Hom}_R(M, R)$, we have $(\xi_M(m \otimes e))(g) = g(m)e$. Furthermore, as M varies, the ξ_M constitute a natural transformation of functors; also ξ_M is an isomorphism whenever M is finitely generated. We shall use D to denote the functor $\text{Hom}_R(\cdot, E)$.

Since $R^{(n)}$ is a finitely generated R-module, $(0 : E b) \subseteq (\text{ann}_{\Phi(E)}(bR[x, f]))_0$ if and only if, for all $n \in \mathbb{N}$ and all $r \in \mathfrak{b}$, the composition

$$ D(R/b) \to D(R) \xrightarrow{\cong} D(\text{Hom}_R(R, R)) \to D(\text{Hom}_R(R^{(n)}, R)) \xrightarrow{r} D(\text{Hom}_R(R^{(n)}, R)) $$

is zero. (Here, the first map is induced from the natural epimorphism $R \to R/b$, the second map is the natural isomorphism, and the sequence from the middle term rightwards is the result of application of the functor $\text{Hom}_R(\cdot, R)$ to the composition $R \xrightarrow{f^n} R^{(n)} \xrightarrow{r} R^{(n)}$ described at the beginning of the proof.)

Since D is a faithful functor (because E is an injective cogenerator for R), we can deduce that $(0 : E b) \subseteq (\text{ann}_{\Phi(E)}(bR[x, f]))_0$ if and only if, for all $n \in \mathbb{N}$ and all $r \in \mathfrak{b}$, the composition

$$ \text{Hom}_R(R^{(n)}, R) \xrightarrow{r} \text{Hom}_R(R^{(n)}, R) \to \text{Hom}_R(R, R) \xrightarrow{\cong} R \to R/b $$

is zero, that is, if and only if \mathfrak{b} is uniformly F-compatible.

3.3. Proposition (Schwede [10]). Suppose that (R, \mathfrak{m}) is F-finite, and let \mathfrak{a} be an ideal of R. Note that the completion \hat{R} of R is again F-finite.

(i) If \mathfrak{a} is a uniformly F-compatible ideal of R, then $\mathfrak{a}R$ is a uniformly F-compatible ideal of \hat{R}. See Schwede [10] Lemma 3.9].

(ii) If \mathfrak{c} is a uniformly F-compatible ideal of \hat{R}, then $\mathfrak{c} \cap R$ is a uniformly F-compatible ideal of R. See Schwede [10] Lemma 3.8].

Proof. For a finitely generated R-module M, we identify \hat{M} with $M \otimes_R \hat{R}$ in the usual way, and we note that there is a natural \hat{R}-isomorphism $\psi_M : \text{Hom}_R(M, R) \otimes_R \hat{R} \xrightarrow{\cong} \text{Hom}_{\hat{R}}(M \otimes_R \hat{R}, R \otimes_R \hat{R})$ for which $\psi_M(g \otimes \hat{r}) = \hat{r}(g \otimes \text{Id}_R)$ for all $g \in \text{Hom}_R(M, R)$.
and $\hat{r} \in \hat{R}$. Let $n \in \mathbb{N}$. Consideration of Cauchy sequences shows that $\widehat{M(n)} = \widehat{M(n)}$.

In particular, $\widehat{R(n)} = \widehat{R(n)}$ and $\widehat{a}(n) = (\widehat{a}(\hat{a})(n) = (\hat{a})(\hat{a})(n)$.

There is an \hat{R}-isomorphism $\gamma : R(n) \otimes_R \hat{R} \xrightarrow{\cong} \hat{R}(n)$ which maps $a(n) \otimes_R \hat{R}$ onto $(\hat{a}(\hat{a})(n))$. Also, the natural \hat{R}-isomorphism $\delta : R \otimes_R \hat{R} \xrightarrow{\cong} \hat{R}$ maps $a \otimes_R \hat{R}$ onto $a(\hat{a})$.

(i) Let $\theta \in \text{Hom}_R(R(n) \otimes_R \hat{R}, R \otimes_R \hat{R})$. By the above, there exist $\phi_1, \ldots, \phi_t \in \text{Hom}_R(R(n), R)$ and $\hat{r}_1, \ldots, \hat{r}_t \in \hat{R}$ such that $\theta = \hat{r}_1(\phi_1 \otimes \text{Id}_R) + \cdots + \hat{r}_t(\phi_t \otimes \text{Id}_R)$. Since $\phi_i(a(n)) \subseteq a$ for all $n \in \mathbb{N}$ and $i = 1, \ldots, t$, we see that $\theta(a(n) \otimes_R \hat{R}) \subseteq a \otimes_R \hat{R}$ for all $n \in \mathbb{N}$. Use of the above-mentioned isomorphisms γ and δ now enables us to conclude that $a(\hat{R})$ is a uniformly F-compatible ideal of \hat{R}.

(ii) Let $\phi \in \text{Hom}_R(R(n), R)$, and set $\mathfrak{c} := \mathfrak{c} \cap R$. Then

$$\phi \otimes \text{Id}_R \in \text{Hom}_R(R(n) \otimes_R \hat{R}, R \otimes_R \hat{R})$$

and $\delta \circ (\phi \otimes \text{Id}_R) \circ \gamma^{-1}$ maps $\mathfrak{c}(n)$ into \mathfrak{c}, and therefore maps $(\mathfrak{c}(\mathfrak{c})(n) \otimes_R \hat{R})$ into \mathfrak{c}. Therefore $\delta \circ (\phi \otimes \text{Id}_R) \otimes R$ maps $\mathfrak{c}(n) \otimes_R \hat{R}$ into \mathfrak{c}, so that $\phi(a) \in \mathfrak{c} \cap R = \mathfrak{c}$ for all $a \in \mathfrak{c}(n)$. Therefore \mathfrak{c} is a uniformly F-compatible ideal of R. \hfill \square

3.4. Theorem. Suppose that (R, m) is F-pure and F-finite. Then each $\Phi(E)$-special ideal a of R is automatically fully $\Phi(E)$-special.

Proof. Note that \hat{R} is also F-pure, by Hochster and Roberts [3 Corollary 6.13]. Also, \hat{R} is F-finite, because the completion of the finitely generated R-module $R^{(1)}$ is $\hat{R}^{(1)}$.

Thus, by definition, a is the R-annihilator of an $R[x, f]$-submodule of $\Phi(E)$. It follows from Lemma 1.11 that $a = \mathfrak{a} \cap R$ for some ideal \mathfrak{a} of \hat{R} that is the \hat{R}-annihilator of an $\hat{R}[x, f]$-submodule of $\Phi(R(E))$. Thus \mathfrak{a} is $\Phi(R(E))$-special. It follows from Proposition 1.7 that \mathfrak{a} is a fully $\Phi(R(E))$-special ideal of \hat{R}, and so is uniformly F-compatible, by Proposition 3.2 Therefore, by Proposition 3.3(ii), the contraction $\mathfrak{a} \cap R = a$ is a uniformly F-compatible ideal of R, and is therefore fully $\Phi(E)$-special, by Proposition 3.2 again. \hfill \square

3.5. Corollary. Suppose that (R, m) is F-pure and F-finite; let a be an ideal of R. Then the following statements are equivalent:

(i) a is uniformly F-compatible;
(ii) a is $\Phi(E)$-special;
(iii) a is fully $\Phi(E)$-special.

Proof. This is now immediate from Proposition 3.2 and Theorem 3.4 \hfill \square

3.6. Question. Suppose that (R, m) is F-pure.

We have seen that each $\Phi(E)$-special ideal of R is fully $\Phi(E)$-special if R is complete (by Proposition 1.7) or if R is a homomorphic image of an excellent regular local ring of characteristic p (by Theorem 2.3) or if R is F-finite (by Theorem 3.4).

Note that each complete local ring is excellent, and that each F-finite local ring of characteristic p is excellent (by E. Kunz [1 Theorem 2.5]). The above results raise the following question. If the F-pure local ring R is excellent, is it the case that every $\Phi(E)$-special ideal of R is fully $\Phi(E)$-special?
4. A generalization of Aberbach’s and Enescu’s splitting prime

Recall from [3] Remark 2.8 and Proposition 2.9 that G. Lyubeznik and K. E. Smith defined \((R, \mathfrak{m})\) to be strongly \(F\)-regular (even in the case where \(R\) is not \(F\)-finite) precisely when the zero submodule of \(E\) is tightly closed in \(E\). See M. Hochster and C. Huneke [2, §8].

4.1. Theorem. Suppose that \((R, \mathfrak{m})\) is \(F\)-pure and that every \(\Phi(E)\)-special ideal of \(R\) is fully \(\Phi(E)\)-special. (For example, by Theorem 2.3 this would be the case if \(R\) were a homomorphic image of an excellent regular local ring of characteristic \(p\); it would also be the case if \(R\) were \(F\)-finite, by Theorem 3.4)

(i) There exists a unique largest \(\Phi(E)\)-special proper ideal, \(\mathfrak{c}\) say, of \(R\) and this is prime. Furthermore, \(R/\mathfrak{c}\) is strongly \(F\)-regular.

(ii) Let \(T\) be the \(R[x,f]\)-submodule of \(\Phi(E)\) generated by \((0 :_E \mathfrak{m}) \subseteq R \otimes_R E\). Then \(\text{gr-ann}_{R[x,f]} T = \mathfrak{c} R[x,f]\).

Proof. (i) By Corollary 1.10 there is a unique largest \(\Phi(E)\)-special proper ideal \(\mathfrak{c}\) of \(R\), and this is prime. By Corollary 2.3(iv), the big test ideal of \(R/\mathfrak{c}\) is \(R/\mathfrak{c}\) itself, so that \(1_{R/\mathfrak{c}}\) is a big test element for \(R/\mathfrak{c}\). Therefore the zero submodule of \(E_{R/\mathfrak{c}}(R/\mathfrak{m})\) is tightly closed in \(E_{R/\mathfrak{c}}(R/\mathfrak{m})\), and so \(R/\mathfrak{c}\) is strongly \(F\)-regular.

(ii) Note that \(T\) is the image of the \(R[x,f]\)-homomorphism

\[R[x,f] \otimes_R (0 :_E \mathfrak{m}) \longrightarrow R[x,f] \otimes_R E = \Phi(E) \]

induced by the inclusion map \((0 :_E \mathfrak{m}) \subseteq E\). Let \(\mathfrak{d}\) be the \(\Phi(E)\)-special ideal of \(R\) for which \(\text{gr-ann}_{R[x,f]} T = \mathfrak{d} R[x,f]\). Since \(\mathfrak{d}\) annihilates \((0 :_E \mathfrak{m})\), we see that \(\mathfrak{d}\) is proper. Suppose that there exists \(h \in \mathcal{I}(\Phi(E))\) such that \(\mathfrak{d} \subseteq h \subseteq \mathfrak{m}\). (The symbol ‘\(\subset\)’ is reserved to denote strict inclusion.) Thus we have \((0 :_E \mathfrak{m}) \subseteq (0 :_E h) \subseteq (0 :_E \mathfrak{d})\).

But we know that every \(\Phi(E)\)-special ideal of \(R\) is \(\Phi(E)\)-special, and therefore \((0 :_E h) \subseteq (\text{ann}_{\Phi(E)}(h R[x,f]))_0\). Since \(\text{ann}_{\Phi(E)}(h R[x,f])\) is an \(R[x,f]\)-submodule of \(\Phi(E)\), it follows that

\[T \subseteq \text{ann}_{\Phi(E)}(h R[x,f]) \subseteq \text{ann}_{\Phi(E)}(\mathfrak{d} R[x,f]). \]

Now take graded annihilators: in view of the bijective correspondence between the sets \(\mathcal{I}(\Phi(E))\) and \(\mathcal{A}(\Phi(E))\) alluded to in the Introduction, we have

\[\mathfrak{d} R[x,f] = \text{gr-ann}_{R[x,f]}(\text{ann}_{\Phi(E)}(\mathfrak{d} R[x,f])) \]
\[\subseteq \text{gr-ann}_{R[x,f]}(\text{ann}_{\Phi(E)}(h R[x,f])) = h R[x,f] \]
\[\subseteq \text{gr-ann}_{R[x,f]} T = \mathfrak{d} R[x,f]. \]

Hence \(h = \mathfrak{d}\) and we have a contradiction.

Thus \(\mathfrak{d}\) is a maximal member of the set of proper \(\Phi(E)\)-special ideals of \(R\); therefore \(\mathfrak{d} = \mathfrak{c}\). \(\square\)

4.2. Definition (I. M. Aberbach and F. Enescu [1, Definition 3.2]). Suppose \((R, \mathfrak{m})\) is \(F\)-finite and reduced. Let \(u\) be a generator for the socle \((0 :_E \mathfrak{m})\) of \(E\). Aberbach and Enescu defined

\[\mathfrak{P} = \{ r \in R : r \otimes u = 0 \text{ in } R^{(n)} \otimes_R E \text{ for all } n \gg 0 \}, \]

an ideal of \(R\).
In [1 §3], Aberbach and Enescu showed that in the case where \((R, \mathfrak{m})\) is \(F\)-finite and \(F\)-pure, and with the notation of \([4.2]\) the ideal \(\mathfrak{P}\) is prime and is equal to the set of elements \(c \in R\) for which, for all \(e \in \mathbb{N}\), the \(R\)-homomorphism \(\phi_{c,e} : R \rightarrow R^{1/p^e}\) for which \(\phi_{c,e}(1) = c^{1/p^e}\) does not split over \(R\). Aberbach and Enescu call this \(\mathfrak{P}\) the splitting prime for \(R\). By [1] Theorem 4.8(i)], the ring \(R/\mathfrak{P}\) is strongly \(F\)-regular.

4.3. Proposition. Suppose that \((R, \mathfrak{m})\) is \(F\)-finite and \(F\)-pure. Let \(\mathfrak{P}\) be Aberbach’s and Enescu’s splitting prime, as in \([4.2]\). Let \(q\) be the unique largest \(\Phi(E)\)-special proper ideal of \(R\), as in Theorem \([1.1]\). Then \(\mathfrak{P} = q\).

Proof. Let \(u\) be a generator for the socle \((0 :_E \mathfrak{m})\) of \(E\). We can write

\[
\mathfrak{P} = \{ r \in R : rx^n \otimes u = 0 \text{ in } Ra^n \otimes_R E \text{ for all } n \gg 0 \}.
\]

Now for a positive integer \(j\) and \(r \in R\), if \(rx^j \otimes u = 0\) in \(\Phi(E)\), then \(x(rx^{j-1} \otimes u) = rx^j \otimes u = 0\), so that \(rx^{j-1} \otimes u = 0\) because the left \(R[x,f]\)-module \(\Phi(E)\) is \(x\)-torsion-free. Therefore

\[
\mathfrak{P} = \{ r \in R : rx^n \otimes u = 0 \text{ in } Ra^n \otimes_R E \text{ for all } n \geq 0 \}.
\]

Let \(T\) be the \(R[x,f]\)-submodule of \(\Phi(E)\) generated by \((0 :_E \mathfrak{m}) \subseteq R \otimes_R E\). We thus see that \(\mathfrak{P}R[x,f] = \text{gr-ann}_{R[x,f]} T\), and this is \(qR[x,f]\) by Theorem \([4.1]\). Hence \(\mathfrak{P} = q\). \(\square\)

4.4. Remarks. Suppose that \((R, \mathfrak{m})\) is \(F\)-pure and a homomorphic image of an excellent regular local ring \(S\) of characteristic \(p\) modulo an ideal \(\mathfrak{A}\). By Theorem \([1.1](i)\), there exists a unique largest \(\Phi(E)\)-special proper ideal, \(q\), say, of \(R\) and this is prime. Let \(\mathfrak{Q}\) be the unique ideal of \(S\) containing \(\mathfrak{A}\) for which \(\mathfrak{Q}/\mathfrak{A} = q\).

(i) The results of this section suggest that \(q\) can be viewed as a generalization of Aberbach’s and Enescu’s splitting prime: for example, Proposition \([4.3]\) shows that \(q\) is that splitting prime in the case where \(R\) is, in addition, \(F\)-finite.

(ii) Note that \(R/q\) is strongly \(F\)-regular (in the sense of Lyubeznik and Smith mentioned at the beginning of the section).

(iii) By Proposition \([2.2]\), we have \((\mathfrak{A}[p^n] : \mathfrak{A}) \subseteq (\mathfrak{Q}[p^n] : \mathfrak{Q})\) for all \(n \in \mathbb{N}\). In the special case in which \(S\) is \(F\)-finite, this result was obtained by Aberbach and Enescu [1, Proposition 4.4].

References

[1] I. M. Aberbach and F. Enescu, ‘The structure of \(F\)-pure rings’, Math. Z. 250 (2005) 791–806.
[2] M. Hochster and C. Huneke, ‘Tight closure, invariant theory and the Briançon-Skoda Theorem’, J. Amer. Math. Soc. 3 (1990) 31–116.
[3] M. Hochster and J. L. Roberts, ‘Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay’, Advances in Math. 13 (1974) 115–175.
[4] E. Kunz, ‘On Noetherian rings of characteristic \(p\)’, American J. Math. 98 (1976) 999–1013.
[5] G. Lyubeznik, ‘\(F\)-modules: applications to local cohomology and \(D\)-modules in characteristic \(p > 0\)’, J. reine angew. Math. 491 (1997) 65–130.
[6] G. Lyubeznik and K. E. Smith, ‘On the commutation of the test ideal with localization and completion’, Transactions Amer. Math. Soc. 353 (2001) 3149–3180.
[7] D. Popescu, ‘General Néron desingularization’, Nagoya Math. J. 100 (1985) 97–126.
[8] D. Popescu, ‘General Néron desingularization and approximation’, Nagoya Math. J. 104 (1986) 85–115.
[9] N. Radu, ‘Une classe d’anneaux Noétheriens’, Rev. Roumaine Math. Pures Appl. 37 (1992) 79–82.
[10] K. Schwede, ‘Centers of F-purity’, Math. Z. 265 (2010) 687–714.
[11] R. Y. Sharp, ‘Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure’, Transactions Amer. Math. Soc. 359 (2007) 4237–4258.
[12] R. Y. Sharp, ‘An excellent F-pure ring of prime characteristic has a big tight closure test element’, Transactions Amer. Math. Soc. 362 (2010) 5455–5481.
[13] R. Y. Sharp, ‘Big tight closure test elements for some non-reduced excellent rings’, J. Algebra 349 (2012) 284–316.
[14] R. Y. Sharp, ‘Tight closure with respect to a multiplicatively closed subset of an F-pure local ring’, J. Pure Appl. Algebra (2014), http://dx.doi.org/10.1016/j.jpaa.2014.05.021.
[15] D. W. Sharpe and P. Vámos, Injective modules, Cambridge Tracts in Mathematics and Mathematical Physics 62 (Cambridge University Press, Cambridge, 1972).
[16] J. C. Vassilev, ‘Test ideals in quotients of F-finite regular local rings’, Transactions Amer. Math. Soc. 350 (1998) 4041–4051.

School of Mathematics and Statistics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
E-mail address: R.Y.Sharp@sheffield.ac.uk